]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/file.c
btrfs: Change the hole range to a more accurate value.
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / file.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
39279cc3
CM
19#include <linux/fs.h>
20#include <linux/pagemap.h>
21#include <linux/highmem.h>
22#include <linux/time.h>
23#include <linux/init.h>
24#include <linux/string.h>
39279cc3
CM
25#include <linux/backing-dev.h>
26#include <linux/mpage.h>
a27bb332 27#include <linux/aio.h>
2fe17c10 28#include <linux/falloc.h>
39279cc3
CM
29#include <linux/swap.h>
30#include <linux/writeback.h>
31#include <linux/statfs.h>
32#include <linux/compat.h>
5a0e3ad6 33#include <linux/slab.h>
55e301fd 34#include <linux/btrfs.h>
39279cc3
CM
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39279cc3 39#include "print-tree.h"
e02119d5
CM
40#include "tree-log.h"
41#include "locking.h"
2aaa6655 42#include "volumes.h"
39279cc3 43
9247f317 44static struct kmem_cache *btrfs_inode_defrag_cachep;
4cb5300b
CM
45/*
46 * when auto defrag is enabled we
47 * queue up these defrag structs to remember which
48 * inodes need defragging passes
49 */
50struct inode_defrag {
51 struct rb_node rb_node;
52 /* objectid */
53 u64 ino;
54 /*
55 * transid where the defrag was added, we search for
56 * extents newer than this
57 */
58 u64 transid;
59
60 /* root objectid */
61 u64 root;
62
63 /* last offset we were able to defrag */
64 u64 last_offset;
65
66 /* if we've wrapped around back to zero once already */
67 int cycled;
68};
69
762f2263
MX
70static int __compare_inode_defrag(struct inode_defrag *defrag1,
71 struct inode_defrag *defrag2)
72{
73 if (defrag1->root > defrag2->root)
74 return 1;
75 else if (defrag1->root < defrag2->root)
76 return -1;
77 else if (defrag1->ino > defrag2->ino)
78 return 1;
79 else if (defrag1->ino < defrag2->ino)
80 return -1;
81 else
82 return 0;
83}
84
4cb5300b
CM
85/* pop a record for an inode into the defrag tree. The lock
86 * must be held already
87 *
88 * If you're inserting a record for an older transid than an
89 * existing record, the transid already in the tree is lowered
90 *
91 * If an existing record is found the defrag item you
92 * pass in is freed
93 */
8ddc4734 94static int __btrfs_add_inode_defrag(struct inode *inode,
4cb5300b
CM
95 struct inode_defrag *defrag)
96{
97 struct btrfs_root *root = BTRFS_I(inode)->root;
98 struct inode_defrag *entry;
99 struct rb_node **p;
100 struct rb_node *parent = NULL;
762f2263 101 int ret;
4cb5300b
CM
102
103 p = &root->fs_info->defrag_inodes.rb_node;
104 while (*p) {
105 parent = *p;
106 entry = rb_entry(parent, struct inode_defrag, rb_node);
107
762f2263
MX
108 ret = __compare_inode_defrag(defrag, entry);
109 if (ret < 0)
4cb5300b 110 p = &parent->rb_left;
762f2263 111 else if (ret > 0)
4cb5300b
CM
112 p = &parent->rb_right;
113 else {
114 /* if we're reinserting an entry for
115 * an old defrag run, make sure to
116 * lower the transid of our existing record
117 */
118 if (defrag->transid < entry->transid)
119 entry->transid = defrag->transid;
120 if (defrag->last_offset > entry->last_offset)
121 entry->last_offset = defrag->last_offset;
8ddc4734 122 return -EEXIST;
4cb5300b
CM
123 }
124 }
72ac3c0d 125 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
126 rb_link_node(&defrag->rb_node, parent, p);
127 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
8ddc4734
MX
128 return 0;
129}
4cb5300b 130
8ddc4734
MX
131static inline int __need_auto_defrag(struct btrfs_root *root)
132{
133 if (!btrfs_test_opt(root, AUTO_DEFRAG))
134 return 0;
135
136 if (btrfs_fs_closing(root->fs_info))
137 return 0;
4cb5300b 138
8ddc4734 139 return 1;
4cb5300b
CM
140}
141
142/*
143 * insert a defrag record for this inode if auto defrag is
144 * enabled
145 */
146int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
147 struct inode *inode)
148{
149 struct btrfs_root *root = BTRFS_I(inode)->root;
150 struct inode_defrag *defrag;
4cb5300b 151 u64 transid;
8ddc4734 152 int ret;
4cb5300b 153
8ddc4734 154 if (!__need_auto_defrag(root))
4cb5300b
CM
155 return 0;
156
72ac3c0d 157 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
4cb5300b
CM
158 return 0;
159
160 if (trans)
161 transid = trans->transid;
162 else
163 transid = BTRFS_I(inode)->root->last_trans;
164
9247f317 165 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
4cb5300b
CM
166 if (!defrag)
167 return -ENOMEM;
168
a4689d2b 169 defrag->ino = btrfs_ino(inode);
4cb5300b
CM
170 defrag->transid = transid;
171 defrag->root = root->root_key.objectid;
172
173 spin_lock(&root->fs_info->defrag_inodes_lock);
8ddc4734
MX
174 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
175 /*
176 * If we set IN_DEFRAG flag and evict the inode from memory,
177 * and then re-read this inode, this new inode doesn't have
178 * IN_DEFRAG flag. At the case, we may find the existed defrag.
179 */
180 ret = __btrfs_add_inode_defrag(inode, defrag);
181 if (ret)
182 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
183 } else {
9247f317 184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
8ddc4734 185 }
4cb5300b 186 spin_unlock(&root->fs_info->defrag_inodes_lock);
a0f98dde 187 return 0;
4cb5300b
CM
188}
189
190/*
8ddc4734
MX
191 * Requeue the defrag object. If there is a defrag object that points to
192 * the same inode in the tree, we will merge them together (by
193 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
4cb5300b 194 */
48a3b636
ES
195static void btrfs_requeue_inode_defrag(struct inode *inode,
196 struct inode_defrag *defrag)
8ddc4734
MX
197{
198 struct btrfs_root *root = BTRFS_I(inode)->root;
199 int ret;
200
201 if (!__need_auto_defrag(root))
202 goto out;
203
204 /*
205 * Here we don't check the IN_DEFRAG flag, because we need merge
206 * them together.
207 */
208 spin_lock(&root->fs_info->defrag_inodes_lock);
209 ret = __btrfs_add_inode_defrag(inode, defrag);
210 spin_unlock(&root->fs_info->defrag_inodes_lock);
211 if (ret)
212 goto out;
213 return;
214out:
215 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
216}
217
4cb5300b 218/*
26176e7c
MX
219 * pick the defragable inode that we want, if it doesn't exist, we will get
220 * the next one.
4cb5300b 221 */
26176e7c
MX
222static struct inode_defrag *
223btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
4cb5300b
CM
224{
225 struct inode_defrag *entry = NULL;
762f2263 226 struct inode_defrag tmp;
4cb5300b
CM
227 struct rb_node *p;
228 struct rb_node *parent = NULL;
762f2263
MX
229 int ret;
230
231 tmp.ino = ino;
232 tmp.root = root;
4cb5300b 233
26176e7c
MX
234 spin_lock(&fs_info->defrag_inodes_lock);
235 p = fs_info->defrag_inodes.rb_node;
4cb5300b
CM
236 while (p) {
237 parent = p;
238 entry = rb_entry(parent, struct inode_defrag, rb_node);
239
762f2263
MX
240 ret = __compare_inode_defrag(&tmp, entry);
241 if (ret < 0)
4cb5300b 242 p = parent->rb_left;
762f2263 243 else if (ret > 0)
4cb5300b
CM
244 p = parent->rb_right;
245 else
26176e7c 246 goto out;
4cb5300b
CM
247 }
248
26176e7c
MX
249 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250 parent = rb_next(parent);
251 if (parent)
4cb5300b 252 entry = rb_entry(parent, struct inode_defrag, rb_node);
26176e7c
MX
253 else
254 entry = NULL;
4cb5300b 255 }
26176e7c
MX
256out:
257 if (entry)
258 rb_erase(parent, &fs_info->defrag_inodes);
259 spin_unlock(&fs_info->defrag_inodes_lock);
260 return entry;
4cb5300b
CM
261}
262
26176e7c 263void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
4cb5300b
CM
264{
265 struct inode_defrag *defrag;
26176e7c
MX
266 struct rb_node *node;
267
268 spin_lock(&fs_info->defrag_inodes_lock);
269 node = rb_first(&fs_info->defrag_inodes);
270 while (node) {
271 rb_erase(node, &fs_info->defrag_inodes);
272 defrag = rb_entry(node, struct inode_defrag, rb_node);
273 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
274
275 if (need_resched()) {
276 spin_unlock(&fs_info->defrag_inodes_lock);
277 cond_resched();
278 spin_lock(&fs_info->defrag_inodes_lock);
279 }
280
281 node = rb_first(&fs_info->defrag_inodes);
282 }
283 spin_unlock(&fs_info->defrag_inodes_lock);
284}
285
286#define BTRFS_DEFRAG_BATCH 1024
287
288static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289 struct inode_defrag *defrag)
290{
4cb5300b
CM
291 struct btrfs_root *inode_root;
292 struct inode *inode;
4cb5300b
CM
293 struct btrfs_key key;
294 struct btrfs_ioctl_defrag_range_args range;
4cb5300b 295 int num_defrag;
6f1c3605
LB
296 int index;
297 int ret;
4cb5300b 298
26176e7c
MX
299 /* get the inode */
300 key.objectid = defrag->root;
301 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
302 key.offset = (u64)-1;
6f1c3605
LB
303
304 index = srcu_read_lock(&fs_info->subvol_srcu);
305
26176e7c
MX
306 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
307 if (IS_ERR(inode_root)) {
6f1c3605
LB
308 ret = PTR_ERR(inode_root);
309 goto cleanup;
310 }
26176e7c
MX
311
312 key.objectid = defrag->ino;
313 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
314 key.offset = 0;
315 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
316 if (IS_ERR(inode)) {
6f1c3605
LB
317 ret = PTR_ERR(inode);
318 goto cleanup;
26176e7c 319 }
6f1c3605 320 srcu_read_unlock(&fs_info->subvol_srcu, index);
26176e7c
MX
321
322 /* do a chunk of defrag */
323 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
324 memset(&range, 0, sizeof(range));
325 range.len = (u64)-1;
26176e7c 326 range.start = defrag->last_offset;
b66f00da
MX
327
328 sb_start_write(fs_info->sb);
26176e7c
MX
329 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
330 BTRFS_DEFRAG_BATCH);
b66f00da 331 sb_end_write(fs_info->sb);
26176e7c
MX
332 /*
333 * if we filled the whole defrag batch, there
334 * must be more work to do. Queue this defrag
335 * again
336 */
337 if (num_defrag == BTRFS_DEFRAG_BATCH) {
338 defrag->last_offset = range.start;
339 btrfs_requeue_inode_defrag(inode, defrag);
340 } else if (defrag->last_offset && !defrag->cycled) {
341 /*
342 * we didn't fill our defrag batch, but
343 * we didn't start at zero. Make sure we loop
344 * around to the start of the file.
345 */
346 defrag->last_offset = 0;
347 defrag->cycled = 1;
348 btrfs_requeue_inode_defrag(inode, defrag);
349 } else {
350 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
351 }
352
353 iput(inode);
354 return 0;
6f1c3605
LB
355cleanup:
356 srcu_read_unlock(&fs_info->subvol_srcu, index);
357 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
358 return ret;
26176e7c
MX
359}
360
361/*
362 * run through the list of inodes in the FS that need
363 * defragging
364 */
365int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
366{
367 struct inode_defrag *defrag;
368 u64 first_ino = 0;
369 u64 root_objectid = 0;
4cb5300b
CM
370
371 atomic_inc(&fs_info->defrag_running);
67871254 372 while (1) {
dc81cdc5
MX
373 /* Pause the auto defragger. */
374 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
375 &fs_info->fs_state))
376 break;
377
26176e7c
MX
378 if (!__need_auto_defrag(fs_info->tree_root))
379 break;
4cb5300b
CM
380
381 /* find an inode to defrag */
26176e7c
MX
382 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
383 first_ino);
4cb5300b 384 if (!defrag) {
26176e7c 385 if (root_objectid || first_ino) {
762f2263 386 root_objectid = 0;
4cb5300b
CM
387 first_ino = 0;
388 continue;
389 } else {
390 break;
391 }
392 }
393
4cb5300b 394 first_ino = defrag->ino + 1;
762f2263 395 root_objectid = defrag->root;
4cb5300b 396
26176e7c 397 __btrfs_run_defrag_inode(fs_info, defrag);
4cb5300b 398 }
4cb5300b
CM
399 atomic_dec(&fs_info->defrag_running);
400
401 /*
402 * during unmount, we use the transaction_wait queue to
403 * wait for the defragger to stop
404 */
405 wake_up(&fs_info->transaction_wait);
406 return 0;
407}
39279cc3 408
d352ac68
CM
409/* simple helper to fault in pages and copy. This should go away
410 * and be replaced with calls into generic code.
411 */
d397712b 412static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
d0215f3e 413 size_t write_bytes,
a1b32a59 414 struct page **prepared_pages,
11c65dcc 415 struct iov_iter *i)
39279cc3 416{
914ee295 417 size_t copied = 0;
d0215f3e 418 size_t total_copied = 0;
11c65dcc 419 int pg = 0;
39279cc3
CM
420 int offset = pos & (PAGE_CACHE_SIZE - 1);
421
11c65dcc 422 while (write_bytes > 0) {
39279cc3
CM
423 size_t count = min_t(size_t,
424 PAGE_CACHE_SIZE - offset, write_bytes);
11c65dcc 425 struct page *page = prepared_pages[pg];
914ee295
XZ
426 /*
427 * Copy data from userspace to the current page
428 *
429 * Disable pagefault to avoid recursive lock since
430 * the pages are already locked
431 */
432 pagefault_disable();
433 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
434 pagefault_enable();
11c65dcc 435
39279cc3
CM
436 /* Flush processor's dcache for this page */
437 flush_dcache_page(page);
31339acd
CM
438
439 /*
440 * if we get a partial write, we can end up with
441 * partially up to date pages. These add
442 * a lot of complexity, so make sure they don't
443 * happen by forcing this copy to be retried.
444 *
445 * The rest of the btrfs_file_write code will fall
446 * back to page at a time copies after we return 0.
447 */
448 if (!PageUptodate(page) && copied < count)
449 copied = 0;
450
11c65dcc
JB
451 iov_iter_advance(i, copied);
452 write_bytes -= copied;
914ee295 453 total_copied += copied;
39279cc3 454
914ee295 455 /* Return to btrfs_file_aio_write to fault page */
9f570b8d 456 if (unlikely(copied == 0))
914ee295 457 break;
11c65dcc
JB
458
459 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
460 offset += copied;
461 } else {
462 pg++;
463 offset = 0;
464 }
39279cc3 465 }
914ee295 466 return total_copied;
39279cc3
CM
467}
468
d352ac68
CM
469/*
470 * unlocks pages after btrfs_file_write is done with them
471 */
48a3b636 472static void btrfs_drop_pages(struct page **pages, size_t num_pages)
39279cc3
CM
473{
474 size_t i;
475 for (i = 0; i < num_pages; i++) {
d352ac68
CM
476 /* page checked is some magic around finding pages that
477 * have been modified without going through btrfs_set_page_dirty
478 * clear it here
479 */
4a096752 480 ClearPageChecked(pages[i]);
39279cc3
CM
481 unlock_page(pages[i]);
482 mark_page_accessed(pages[i]);
483 page_cache_release(pages[i]);
484 }
485}
486
d352ac68
CM
487/*
488 * after copy_from_user, pages need to be dirtied and we need to make
489 * sure holes are created between the current EOF and the start of
490 * any next extents (if required).
491 *
492 * this also makes the decision about creating an inline extent vs
493 * doing real data extents, marking pages dirty and delalloc as required.
494 */
be1a12a0 495int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
48a3b636
ES
496 struct page **pages, size_t num_pages,
497 loff_t pos, size_t write_bytes,
498 struct extent_state **cached)
39279cc3 499{
39279cc3 500 int err = 0;
a52d9a80 501 int i;
db94535d 502 u64 num_bytes;
a52d9a80
CM
503 u64 start_pos;
504 u64 end_of_last_block;
505 u64 end_pos = pos + write_bytes;
506 loff_t isize = i_size_read(inode);
39279cc3 507
5f39d397 508 start_pos = pos & ~((u64)root->sectorsize - 1);
fda2832f 509 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
39279cc3 510
db94535d 511 end_of_last_block = start_pos + num_bytes - 1;
2ac55d41 512 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
be1a12a0 513 cached);
d0215f3e
JB
514 if (err)
515 return err;
9ed74f2d 516
c8b97818
CM
517 for (i = 0; i < num_pages; i++) {
518 struct page *p = pages[i];
519 SetPageUptodate(p);
520 ClearPageChecked(p);
521 set_page_dirty(p);
a52d9a80 522 }
9f570b8d
JB
523
524 /*
525 * we've only changed i_size in ram, and we haven't updated
526 * the disk i_size. There is no need to log the inode
527 * at this time.
528 */
529 if (end_pos > isize)
a52d9a80 530 i_size_write(inode, end_pos);
a22285a6 531 return 0;
39279cc3
CM
532}
533
d352ac68
CM
534/*
535 * this drops all the extents in the cache that intersect the range
536 * [start, end]. Existing extents are split as required.
537 */
7014cdb4
JB
538void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
539 int skip_pinned)
a52d9a80
CM
540{
541 struct extent_map *em;
3b951516
CM
542 struct extent_map *split = NULL;
543 struct extent_map *split2 = NULL;
a52d9a80 544 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
39b5637f 545 u64 len = end - start + 1;
5dc562c5 546 u64 gen;
3b951516
CM
547 int ret;
548 int testend = 1;
5b21f2ed 549 unsigned long flags;
c8b97818 550 int compressed = 0;
09a2a8f9 551 bool modified;
a52d9a80 552
e6dcd2dc 553 WARN_ON(end < start);
3b951516 554 if (end == (u64)-1) {
39b5637f 555 len = (u64)-1;
3b951516
CM
556 testend = 0;
557 }
d397712b 558 while (1) {
7014cdb4
JB
559 int no_splits = 0;
560
09a2a8f9 561 modified = false;
3b951516 562 if (!split)
172ddd60 563 split = alloc_extent_map();
3b951516 564 if (!split2)
172ddd60 565 split2 = alloc_extent_map();
7014cdb4
JB
566 if (!split || !split2)
567 no_splits = 1;
3b951516 568
890871be 569 write_lock(&em_tree->lock);
39b5637f 570 em = lookup_extent_mapping(em_tree, start, len);
d1310b2e 571 if (!em) {
890871be 572 write_unlock(&em_tree->lock);
a52d9a80 573 break;
d1310b2e 574 }
5b21f2ed 575 flags = em->flags;
5dc562c5 576 gen = em->generation;
5b21f2ed 577 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
55ef6899 578 if (testend && em->start + em->len >= start + len) {
5b21f2ed 579 free_extent_map(em);
a1ed835e 580 write_unlock(&em_tree->lock);
5b21f2ed
ZY
581 break;
582 }
55ef6899
YZ
583 start = em->start + em->len;
584 if (testend)
5b21f2ed 585 len = start + len - (em->start + em->len);
5b21f2ed 586 free_extent_map(em);
a1ed835e 587 write_unlock(&em_tree->lock);
5b21f2ed
ZY
588 continue;
589 }
c8b97818 590 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3ce7e67a 591 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
3b277594 592 clear_bit(EXTENT_FLAG_LOGGING, &flags);
09a2a8f9 593 modified = !list_empty(&em->list);
7014cdb4
JB
594 if (no_splits)
595 goto next;
3b951516 596
ee20a983 597 if (em->start < start) {
3b951516
CM
598 split->start = em->start;
599 split->len = start - em->start;
ee20a983
JB
600
601 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
602 split->orig_start = em->orig_start;
603 split->block_start = em->block_start;
604
605 if (compressed)
606 split->block_len = em->block_len;
607 else
608 split->block_len = split->len;
609 split->orig_block_len = max(split->block_len,
610 em->orig_block_len);
611 split->ram_bytes = em->ram_bytes;
612 } else {
613 split->orig_start = split->start;
614 split->block_len = 0;
615 split->block_start = em->block_start;
616 split->orig_block_len = 0;
617 split->ram_bytes = split->len;
618 }
619
5dc562c5 620 split->generation = gen;
3b951516 621 split->bdev = em->bdev;
5b21f2ed 622 split->flags = flags;
261507a0 623 split->compress_type = em->compress_type;
176840b3 624 replace_extent_mapping(em_tree, em, split, modified);
3b951516
CM
625 free_extent_map(split);
626 split = split2;
627 split2 = NULL;
628 }
ee20a983 629 if (testend && em->start + em->len > start + len) {
3b951516
CM
630 u64 diff = start + len - em->start;
631
632 split->start = start + len;
633 split->len = em->start + em->len - (start + len);
634 split->bdev = em->bdev;
5b21f2ed 635 split->flags = flags;
261507a0 636 split->compress_type = em->compress_type;
5dc562c5 637 split->generation = gen;
ee20a983
JB
638
639 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
640 split->orig_block_len = max(em->block_len,
b4939680 641 em->orig_block_len);
3b951516 642
ee20a983
JB
643 split->ram_bytes = em->ram_bytes;
644 if (compressed) {
645 split->block_len = em->block_len;
646 split->block_start = em->block_start;
647 split->orig_start = em->orig_start;
648 } else {
649 split->block_len = split->len;
650 split->block_start = em->block_start
651 + diff;
652 split->orig_start = em->orig_start;
653 }
c8b97818 654 } else {
ee20a983
JB
655 split->ram_bytes = split->len;
656 split->orig_start = split->start;
657 split->block_len = 0;
658 split->block_start = em->block_start;
659 split->orig_block_len = 0;
c8b97818 660 }
3b951516 661
176840b3
FM
662 if (extent_map_in_tree(em)) {
663 replace_extent_mapping(em_tree, em, split,
664 modified);
665 } else {
666 ret = add_extent_mapping(em_tree, split,
667 modified);
668 ASSERT(ret == 0); /* Logic error */
669 }
3b951516
CM
670 free_extent_map(split);
671 split = NULL;
672 }
7014cdb4 673next:
176840b3
FM
674 if (extent_map_in_tree(em))
675 remove_extent_mapping(em_tree, em);
890871be 676 write_unlock(&em_tree->lock);
d1310b2e 677
a52d9a80
CM
678 /* once for us */
679 free_extent_map(em);
680 /* once for the tree*/
681 free_extent_map(em);
682 }
3b951516
CM
683 if (split)
684 free_extent_map(split);
685 if (split2)
686 free_extent_map(split2);
a52d9a80
CM
687}
688
39279cc3
CM
689/*
690 * this is very complex, but the basic idea is to drop all extents
691 * in the range start - end. hint_block is filled in with a block number
692 * that would be a good hint to the block allocator for this file.
693 *
694 * If an extent intersects the range but is not entirely inside the range
695 * it is either truncated or split. Anything entirely inside the range
696 * is deleted from the tree.
697 */
5dc562c5
JB
698int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
699 struct btrfs_root *root, struct inode *inode,
700 struct btrfs_path *path, u64 start, u64 end,
1acae57b
FDBM
701 u64 *drop_end, int drop_cache,
702 int replace_extent,
703 u32 extent_item_size,
704 int *key_inserted)
39279cc3 705{
5f39d397 706 struct extent_buffer *leaf;
920bbbfb 707 struct btrfs_file_extent_item *fi;
00f5c795 708 struct btrfs_key key;
920bbbfb 709 struct btrfs_key new_key;
33345d01 710 u64 ino = btrfs_ino(inode);
920bbbfb
YZ
711 u64 search_start = start;
712 u64 disk_bytenr = 0;
713 u64 num_bytes = 0;
714 u64 extent_offset = 0;
715 u64 extent_end = 0;
716 int del_nr = 0;
717 int del_slot = 0;
718 int extent_type;
ccd467d6 719 int recow;
00f5c795 720 int ret;
dc7fdde3 721 int modify_tree = -1;
5dc562c5 722 int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
c3308f84 723 int found = 0;
1acae57b 724 int leafs_visited = 0;
39279cc3 725
a1ed835e
CM
726 if (drop_cache)
727 btrfs_drop_extent_cache(inode, start, end - 1, 0);
a52d9a80 728
d5f37527 729 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
dc7fdde3
CM
730 modify_tree = 0;
731
d397712b 732 while (1) {
ccd467d6 733 recow = 0;
33345d01 734 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 735 search_start, modify_tree);
39279cc3 736 if (ret < 0)
920bbbfb
YZ
737 break;
738 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
739 leaf = path->nodes[0];
740 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 741 if (key.objectid == ino &&
920bbbfb
YZ
742 key.type == BTRFS_EXTENT_DATA_KEY)
743 path->slots[0]--;
39279cc3 744 }
920bbbfb 745 ret = 0;
1acae57b 746 leafs_visited++;
8c2383c3 747next_slot:
5f39d397 748 leaf = path->nodes[0];
920bbbfb
YZ
749 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
750 BUG_ON(del_nr > 0);
751 ret = btrfs_next_leaf(root, path);
752 if (ret < 0)
753 break;
754 if (ret > 0) {
755 ret = 0;
756 break;
8c2383c3 757 }
1acae57b 758 leafs_visited++;
920bbbfb
YZ
759 leaf = path->nodes[0];
760 recow = 1;
761 }
762
763 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
33345d01 764 if (key.objectid > ino ||
920bbbfb
YZ
765 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
766 break;
767
768 fi = btrfs_item_ptr(leaf, path->slots[0],
769 struct btrfs_file_extent_item);
770 extent_type = btrfs_file_extent_type(leaf, fi);
771
772 if (extent_type == BTRFS_FILE_EXTENT_REG ||
773 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
774 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
775 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
776 extent_offset = btrfs_file_extent_offset(leaf, fi);
777 extent_end = key.offset +
778 btrfs_file_extent_num_bytes(leaf, fi);
779 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
780 extent_end = key.offset +
514ac8ad
CM
781 btrfs_file_extent_inline_len(leaf,
782 path->slots[0], fi);
8c2383c3 783 } else {
920bbbfb 784 WARN_ON(1);
8c2383c3 785 extent_end = search_start;
39279cc3
CM
786 }
787
920bbbfb
YZ
788 if (extent_end <= search_start) {
789 path->slots[0]++;
8c2383c3 790 goto next_slot;
39279cc3
CM
791 }
792
c3308f84 793 found = 1;
920bbbfb 794 search_start = max(key.offset, start);
dc7fdde3
CM
795 if (recow || !modify_tree) {
796 modify_tree = -1;
b3b4aa74 797 btrfs_release_path(path);
920bbbfb 798 continue;
39279cc3 799 }
6643558d 800
920bbbfb
YZ
801 /*
802 * | - range to drop - |
803 * | -------- extent -------- |
804 */
805 if (start > key.offset && end < extent_end) {
806 BUG_ON(del_nr > 0);
00fdf13a
LB
807 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
808 ret = -EINVAL;
809 break;
810 }
920bbbfb
YZ
811
812 memcpy(&new_key, &key, sizeof(new_key));
813 new_key.offset = start;
814 ret = btrfs_duplicate_item(trans, root, path,
815 &new_key);
816 if (ret == -EAGAIN) {
b3b4aa74 817 btrfs_release_path(path);
920bbbfb 818 continue;
6643558d 819 }
920bbbfb
YZ
820 if (ret < 0)
821 break;
822
823 leaf = path->nodes[0];
824 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
825 struct btrfs_file_extent_item);
826 btrfs_set_file_extent_num_bytes(leaf, fi,
827 start - key.offset);
828
829 fi = btrfs_item_ptr(leaf, path->slots[0],
830 struct btrfs_file_extent_item);
831
832 extent_offset += start - key.offset;
833 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
834 btrfs_set_file_extent_num_bytes(leaf, fi,
835 extent_end - start);
836 btrfs_mark_buffer_dirty(leaf);
837
5dc562c5 838 if (update_refs && disk_bytenr > 0) {
771ed689 839 ret = btrfs_inc_extent_ref(trans, root,
920bbbfb
YZ
840 disk_bytenr, num_bytes, 0,
841 root->root_key.objectid,
842 new_key.objectid,
66d7e7f0 843 start - extent_offset, 0);
79787eaa 844 BUG_ON(ret); /* -ENOMEM */
771ed689 845 }
920bbbfb 846 key.offset = start;
6643558d 847 }
920bbbfb
YZ
848 /*
849 * | ---- range to drop ----- |
850 * | -------- extent -------- |
851 */
852 if (start <= key.offset && end < extent_end) {
00fdf13a
LB
853 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
854 ret = -EINVAL;
855 break;
856 }
6643558d 857
920bbbfb
YZ
858 memcpy(&new_key, &key, sizeof(new_key));
859 new_key.offset = end;
afe5fea7 860 btrfs_set_item_key_safe(root, path, &new_key);
6643558d 861
920bbbfb
YZ
862 extent_offset += end - key.offset;
863 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
864 btrfs_set_file_extent_num_bytes(leaf, fi,
865 extent_end - end);
866 btrfs_mark_buffer_dirty(leaf);
2671485d 867 if (update_refs && disk_bytenr > 0)
920bbbfb 868 inode_sub_bytes(inode, end - key.offset);
920bbbfb 869 break;
39279cc3 870 }
771ed689 871
920bbbfb
YZ
872 search_start = extent_end;
873 /*
874 * | ---- range to drop ----- |
875 * | -------- extent -------- |
876 */
877 if (start > key.offset && end >= extent_end) {
878 BUG_ON(del_nr > 0);
00fdf13a
LB
879 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
880 ret = -EINVAL;
881 break;
882 }
8c2383c3 883
920bbbfb
YZ
884 btrfs_set_file_extent_num_bytes(leaf, fi,
885 start - key.offset);
886 btrfs_mark_buffer_dirty(leaf);
2671485d 887 if (update_refs && disk_bytenr > 0)
920bbbfb 888 inode_sub_bytes(inode, extent_end - start);
920bbbfb
YZ
889 if (end == extent_end)
890 break;
c8b97818 891
920bbbfb
YZ
892 path->slots[0]++;
893 goto next_slot;
31840ae1
ZY
894 }
895
920bbbfb
YZ
896 /*
897 * | ---- range to drop ----- |
898 * | ------ extent ------ |
899 */
900 if (start <= key.offset && end >= extent_end) {
901 if (del_nr == 0) {
902 del_slot = path->slots[0];
903 del_nr = 1;
904 } else {
905 BUG_ON(del_slot + del_nr != path->slots[0]);
906 del_nr++;
907 }
31840ae1 908
5dc562c5
JB
909 if (update_refs &&
910 extent_type == BTRFS_FILE_EXTENT_INLINE) {
a76a3cd4 911 inode_sub_bytes(inode,
920bbbfb
YZ
912 extent_end - key.offset);
913 extent_end = ALIGN(extent_end,
914 root->sectorsize);
5dc562c5 915 } else if (update_refs && disk_bytenr > 0) {
31840ae1 916 ret = btrfs_free_extent(trans, root,
920bbbfb
YZ
917 disk_bytenr, num_bytes, 0,
918 root->root_key.objectid,
5d4f98a2 919 key.objectid, key.offset -
66d7e7f0 920 extent_offset, 0);
79787eaa 921 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
922 inode_sub_bytes(inode,
923 extent_end - key.offset);
31840ae1 924 }
31840ae1 925
920bbbfb
YZ
926 if (end == extent_end)
927 break;
928
929 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
930 path->slots[0]++;
931 goto next_slot;
932 }
933
934 ret = btrfs_del_items(trans, root, path, del_slot,
935 del_nr);
79787eaa
JM
936 if (ret) {
937 btrfs_abort_transaction(trans, root, ret);
5dc562c5 938 break;
79787eaa 939 }
920bbbfb
YZ
940
941 del_nr = 0;
942 del_slot = 0;
943
b3b4aa74 944 btrfs_release_path(path);
920bbbfb 945 continue;
39279cc3 946 }
920bbbfb
YZ
947
948 BUG_ON(1);
39279cc3 949 }
920bbbfb 950
79787eaa 951 if (!ret && del_nr > 0) {
1acae57b
FDBM
952 /*
953 * Set path->slots[0] to first slot, so that after the delete
954 * if items are move off from our leaf to its immediate left or
955 * right neighbor leafs, we end up with a correct and adjusted
d5f37527 956 * path->slots[0] for our insertion (if replace_extent != 0).
1acae57b
FDBM
957 */
958 path->slots[0] = del_slot;
920bbbfb 959 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa
JM
960 if (ret)
961 btrfs_abort_transaction(trans, root, ret);
d5f37527 962 }
1acae57b 963
d5f37527
FDBM
964 leaf = path->nodes[0];
965 /*
966 * If btrfs_del_items() was called, it might have deleted a leaf, in
967 * which case it unlocked our path, so check path->locks[0] matches a
968 * write lock.
969 */
970 if (!ret && replace_extent && leafs_visited == 1 &&
971 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
972 path->locks[0] == BTRFS_WRITE_LOCK) &&
973 btrfs_leaf_free_space(root, leaf) >=
974 sizeof(struct btrfs_item) + extent_item_size) {
975
976 key.objectid = ino;
977 key.type = BTRFS_EXTENT_DATA_KEY;
978 key.offset = start;
979 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
980 struct btrfs_key slot_key;
981
982 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
983 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
984 path->slots[0]++;
1acae57b 985 }
d5f37527
FDBM
986 setup_items_for_insert(root, path, &key,
987 &extent_item_size,
988 extent_item_size,
989 sizeof(struct btrfs_item) +
990 extent_item_size, 1);
991 *key_inserted = 1;
6643558d 992 }
920bbbfb 993
1acae57b
FDBM
994 if (!replace_extent || !(*key_inserted))
995 btrfs_release_path(path);
2aaa6655 996 if (drop_end)
c3308f84 997 *drop_end = found ? min(end, extent_end) : end;
5dc562c5
JB
998 return ret;
999}
1000
1001int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1002 struct btrfs_root *root, struct inode *inode, u64 start,
2671485d 1003 u64 end, int drop_cache)
5dc562c5
JB
1004{
1005 struct btrfs_path *path;
1006 int ret;
1007
1008 path = btrfs_alloc_path();
1009 if (!path)
1010 return -ENOMEM;
2aaa6655 1011 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1acae57b 1012 drop_cache, 0, 0, NULL);
920bbbfb 1013 btrfs_free_path(path);
39279cc3
CM
1014 return ret;
1015}
1016
d899e052 1017static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
1018 u64 objectid, u64 bytenr, u64 orig_offset,
1019 u64 *start, u64 *end)
d899e052
YZ
1020{
1021 struct btrfs_file_extent_item *fi;
1022 struct btrfs_key key;
1023 u64 extent_end;
1024
1025 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1026 return 0;
1027
1028 btrfs_item_key_to_cpu(leaf, &key, slot);
1029 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1030 return 0;
1031
1032 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1033 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1034 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 1035 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
1036 btrfs_file_extent_compression(leaf, fi) ||
1037 btrfs_file_extent_encryption(leaf, fi) ||
1038 btrfs_file_extent_other_encoding(leaf, fi))
1039 return 0;
1040
1041 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1042 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1043 return 0;
1044
1045 *start = key.offset;
1046 *end = extent_end;
1047 return 1;
1048}
1049
1050/*
1051 * Mark extent in the range start - end as written.
1052 *
1053 * This changes extent type from 'pre-allocated' to 'regular'. If only
1054 * part of extent is marked as written, the extent will be split into
1055 * two or three.
1056 */
1057int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
d899e052
YZ
1058 struct inode *inode, u64 start, u64 end)
1059{
920bbbfb 1060 struct btrfs_root *root = BTRFS_I(inode)->root;
d899e052
YZ
1061 struct extent_buffer *leaf;
1062 struct btrfs_path *path;
1063 struct btrfs_file_extent_item *fi;
1064 struct btrfs_key key;
920bbbfb 1065 struct btrfs_key new_key;
d899e052
YZ
1066 u64 bytenr;
1067 u64 num_bytes;
1068 u64 extent_end;
5d4f98a2 1069 u64 orig_offset;
d899e052
YZ
1070 u64 other_start;
1071 u64 other_end;
920bbbfb
YZ
1072 u64 split;
1073 int del_nr = 0;
1074 int del_slot = 0;
6c7d54ac 1075 int recow;
d899e052 1076 int ret;
33345d01 1077 u64 ino = btrfs_ino(inode);
d899e052 1078
d899e052 1079 path = btrfs_alloc_path();
d8926bb3
MF
1080 if (!path)
1081 return -ENOMEM;
d899e052 1082again:
6c7d54ac 1083 recow = 0;
920bbbfb 1084 split = start;
33345d01 1085 key.objectid = ino;
d899e052 1086 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 1087 key.offset = split;
d899e052
YZ
1088
1089 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
1090 if (ret < 0)
1091 goto out;
d899e052
YZ
1092 if (ret > 0 && path->slots[0] > 0)
1093 path->slots[0]--;
1094
1095 leaf = path->nodes[0];
1096 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
33345d01 1097 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
d899e052
YZ
1098 fi = btrfs_item_ptr(leaf, path->slots[0],
1099 struct btrfs_file_extent_item);
920bbbfb
YZ
1100 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1101 BTRFS_FILE_EXTENT_PREALLOC);
d899e052
YZ
1102 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1103 BUG_ON(key.offset > start || extent_end < end);
1104
1105 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1106 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 1107 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
1108 memcpy(&new_key, &key, sizeof(new_key));
1109
1110 if (start == key.offset && end < extent_end) {
1111 other_start = 0;
1112 other_end = start;
1113 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1114 ino, bytenr, orig_offset,
6c7d54ac
YZ
1115 &other_start, &other_end)) {
1116 new_key.offset = end;
afe5fea7 1117 btrfs_set_item_key_safe(root, path, &new_key);
6c7d54ac
YZ
1118 fi = btrfs_item_ptr(leaf, path->slots[0],
1119 struct btrfs_file_extent_item);
224ecce5
JB
1120 btrfs_set_file_extent_generation(leaf, fi,
1121 trans->transid);
6c7d54ac
YZ
1122 btrfs_set_file_extent_num_bytes(leaf, fi,
1123 extent_end - end);
1124 btrfs_set_file_extent_offset(leaf, fi,
1125 end - orig_offset);
1126 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1127 struct btrfs_file_extent_item);
224ecce5
JB
1128 btrfs_set_file_extent_generation(leaf, fi,
1129 trans->transid);
6c7d54ac
YZ
1130 btrfs_set_file_extent_num_bytes(leaf, fi,
1131 end - other_start);
1132 btrfs_mark_buffer_dirty(leaf);
1133 goto out;
1134 }
1135 }
1136
1137 if (start > key.offset && end == extent_end) {
1138 other_start = end;
1139 other_end = 0;
1140 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1141 ino, bytenr, orig_offset,
6c7d54ac
YZ
1142 &other_start, &other_end)) {
1143 fi = btrfs_item_ptr(leaf, path->slots[0],
1144 struct btrfs_file_extent_item);
1145 btrfs_set_file_extent_num_bytes(leaf, fi,
1146 start - key.offset);
224ecce5
JB
1147 btrfs_set_file_extent_generation(leaf, fi,
1148 trans->transid);
6c7d54ac
YZ
1149 path->slots[0]++;
1150 new_key.offset = start;
afe5fea7 1151 btrfs_set_item_key_safe(root, path, &new_key);
6c7d54ac
YZ
1152
1153 fi = btrfs_item_ptr(leaf, path->slots[0],
1154 struct btrfs_file_extent_item);
224ecce5
JB
1155 btrfs_set_file_extent_generation(leaf, fi,
1156 trans->transid);
6c7d54ac
YZ
1157 btrfs_set_file_extent_num_bytes(leaf, fi,
1158 other_end - start);
1159 btrfs_set_file_extent_offset(leaf, fi,
1160 start - orig_offset);
1161 btrfs_mark_buffer_dirty(leaf);
1162 goto out;
1163 }
1164 }
d899e052 1165
920bbbfb
YZ
1166 while (start > key.offset || end < extent_end) {
1167 if (key.offset == start)
1168 split = end;
1169
920bbbfb
YZ
1170 new_key.offset = split;
1171 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1172 if (ret == -EAGAIN) {
b3b4aa74 1173 btrfs_release_path(path);
920bbbfb 1174 goto again;
d899e052 1175 }
79787eaa
JM
1176 if (ret < 0) {
1177 btrfs_abort_transaction(trans, root, ret);
1178 goto out;
1179 }
d899e052 1180
920bbbfb
YZ
1181 leaf = path->nodes[0];
1182 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 1183 struct btrfs_file_extent_item);
224ecce5 1184 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 1185 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
1186 split - key.offset);
1187
1188 fi = btrfs_item_ptr(leaf, path->slots[0],
1189 struct btrfs_file_extent_item);
1190
224ecce5 1191 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
1192 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1193 btrfs_set_file_extent_num_bytes(leaf, fi,
1194 extent_end - split);
d899e052
YZ
1195 btrfs_mark_buffer_dirty(leaf);
1196
920bbbfb
YZ
1197 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1198 root->root_key.objectid,
66d7e7f0 1199 ino, orig_offset, 0);
79787eaa 1200 BUG_ON(ret); /* -ENOMEM */
d899e052 1201
920bbbfb
YZ
1202 if (split == start) {
1203 key.offset = start;
1204 } else {
1205 BUG_ON(start != key.offset);
d899e052 1206 path->slots[0]--;
920bbbfb 1207 extent_end = end;
d899e052 1208 }
6c7d54ac 1209 recow = 1;
d899e052
YZ
1210 }
1211
920bbbfb
YZ
1212 other_start = end;
1213 other_end = 0;
6c7d54ac 1214 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1215 ino, bytenr, orig_offset,
6c7d54ac
YZ
1216 &other_start, &other_end)) {
1217 if (recow) {
b3b4aa74 1218 btrfs_release_path(path);
6c7d54ac
YZ
1219 goto again;
1220 }
920bbbfb
YZ
1221 extent_end = other_end;
1222 del_slot = path->slots[0] + 1;
1223 del_nr++;
1224 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1225 0, root->root_key.objectid,
66d7e7f0 1226 ino, orig_offset, 0);
79787eaa 1227 BUG_ON(ret); /* -ENOMEM */
d899e052 1228 }
920bbbfb
YZ
1229 other_start = 0;
1230 other_end = start;
6c7d54ac 1231 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1232 ino, bytenr, orig_offset,
6c7d54ac
YZ
1233 &other_start, &other_end)) {
1234 if (recow) {
b3b4aa74 1235 btrfs_release_path(path);
6c7d54ac
YZ
1236 goto again;
1237 }
920bbbfb
YZ
1238 key.offset = other_start;
1239 del_slot = path->slots[0];
1240 del_nr++;
1241 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1242 0, root->root_key.objectid,
66d7e7f0 1243 ino, orig_offset, 0);
79787eaa 1244 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
1245 }
1246 if (del_nr == 0) {
3f6fae95
SL
1247 fi = btrfs_item_ptr(leaf, path->slots[0],
1248 struct btrfs_file_extent_item);
920bbbfb
YZ
1249 btrfs_set_file_extent_type(leaf, fi,
1250 BTRFS_FILE_EXTENT_REG);
224ecce5 1251 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb 1252 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 1253 } else {
3f6fae95
SL
1254 fi = btrfs_item_ptr(leaf, del_slot - 1,
1255 struct btrfs_file_extent_item);
6c7d54ac
YZ
1256 btrfs_set_file_extent_type(leaf, fi,
1257 BTRFS_FILE_EXTENT_REG);
224ecce5 1258 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
1259 btrfs_set_file_extent_num_bytes(leaf, fi,
1260 extent_end - key.offset);
1261 btrfs_mark_buffer_dirty(leaf);
920bbbfb 1262
6c7d54ac 1263 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa
JM
1264 if (ret < 0) {
1265 btrfs_abort_transaction(trans, root, ret);
1266 goto out;
1267 }
6c7d54ac 1268 }
920bbbfb 1269out:
d899e052
YZ
1270 btrfs_free_path(path);
1271 return 0;
1272}
1273
b1bf862e
CM
1274/*
1275 * on error we return an unlocked page and the error value
1276 * on success we return a locked page and 0
1277 */
b6316429
JB
1278static int prepare_uptodate_page(struct page *page, u64 pos,
1279 bool force_uptodate)
b1bf862e
CM
1280{
1281 int ret = 0;
1282
b6316429
JB
1283 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1284 !PageUptodate(page)) {
b1bf862e
CM
1285 ret = btrfs_readpage(NULL, page);
1286 if (ret)
1287 return ret;
1288 lock_page(page);
1289 if (!PageUptodate(page)) {
1290 unlock_page(page);
1291 return -EIO;
1292 }
1293 }
1294 return 0;
1295}
1296
39279cc3 1297/*
376cc685 1298 * this just gets pages into the page cache and locks them down.
39279cc3 1299 */
b37392ea
MX
1300static noinline int prepare_pages(struct inode *inode, struct page **pages,
1301 size_t num_pages, loff_t pos,
1302 size_t write_bytes, bool force_uptodate)
39279cc3
CM
1303{
1304 int i;
1305 unsigned long index = pos >> PAGE_CACHE_SHIFT;
3b16a4e3 1306 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
fc28b62d 1307 int err = 0;
376cc685 1308 int faili;
8c2383c3 1309
39279cc3 1310 for (i = 0; i < num_pages; i++) {
a94733d0 1311 pages[i] = find_or_create_page(inode->i_mapping, index + i,
e3a41a5b 1312 mask | __GFP_WRITE);
39279cc3 1313 if (!pages[i]) {
b1bf862e
CM
1314 faili = i - 1;
1315 err = -ENOMEM;
1316 goto fail;
1317 }
1318
1319 if (i == 0)
b6316429
JB
1320 err = prepare_uptodate_page(pages[i], pos,
1321 force_uptodate);
b1bf862e
CM
1322 if (i == num_pages - 1)
1323 err = prepare_uptodate_page(pages[i],
b6316429 1324 pos + write_bytes, false);
b1bf862e
CM
1325 if (err) {
1326 page_cache_release(pages[i]);
1327 faili = i - 1;
1328 goto fail;
39279cc3 1329 }
ccd467d6 1330 wait_on_page_writeback(pages[i]);
39279cc3 1331 }
376cc685
MX
1332
1333 return 0;
1334fail:
1335 while (faili >= 0) {
1336 unlock_page(pages[faili]);
1337 page_cache_release(pages[faili]);
1338 faili--;
1339 }
1340 return err;
1341
1342}
1343
1344/*
1345 * This function locks the extent and properly waits for data=ordered extents
1346 * to finish before allowing the pages to be modified if need.
1347 *
1348 * The return value:
1349 * 1 - the extent is locked
1350 * 0 - the extent is not locked, and everything is OK
1351 * -EAGAIN - need re-prepare the pages
1352 * the other < 0 number - Something wrong happens
1353 */
1354static noinline int
1355lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1356 size_t num_pages, loff_t pos,
1357 u64 *lockstart, u64 *lockend,
1358 struct extent_state **cached_state)
1359{
1360 u64 start_pos;
1361 u64 last_pos;
1362 int i;
1363 int ret = 0;
1364
1365 start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1366 last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1367
0762704b 1368 if (start_pos < inode->i_size) {
e6dcd2dc 1369 struct btrfs_ordered_extent *ordered;
2ac55d41 1370 lock_extent_bits(&BTRFS_I(inode)->io_tree,
376cc685 1371 start_pos, last_pos, 0, cached_state);
b88935bf
MX
1372 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1373 last_pos - start_pos + 1);
e6dcd2dc
CM
1374 if (ordered &&
1375 ordered->file_offset + ordered->len > start_pos &&
376cc685 1376 ordered->file_offset <= last_pos) {
2ac55d41 1377 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
376cc685
MX
1378 start_pos, last_pos,
1379 cached_state, GFP_NOFS);
e6dcd2dc
CM
1380 for (i = 0; i < num_pages; i++) {
1381 unlock_page(pages[i]);
1382 page_cache_release(pages[i]);
1383 }
b88935bf
MX
1384 btrfs_start_ordered_extent(inode, ordered, 1);
1385 btrfs_put_ordered_extent(ordered);
1386 return -EAGAIN;
e6dcd2dc
CM
1387 }
1388 if (ordered)
1389 btrfs_put_ordered_extent(ordered);
1390
2ac55d41 1391 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
376cc685 1392 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b 1393 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
376cc685
MX
1394 0, 0, cached_state, GFP_NOFS);
1395 *lockstart = start_pos;
1396 *lockend = last_pos;
1397 ret = 1;
0762704b 1398 }
376cc685 1399
e6dcd2dc 1400 for (i = 0; i < num_pages; i++) {
32c7f202
WF
1401 if (clear_page_dirty_for_io(pages[i]))
1402 account_page_redirty(pages[i]);
e6dcd2dc
CM
1403 set_page_extent_mapped(pages[i]);
1404 WARN_ON(!PageLocked(pages[i]));
1405 }
b1bf862e 1406
376cc685 1407 return ret;
39279cc3
CM
1408}
1409
7ee9e440
JB
1410static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1411 size_t *write_bytes)
1412{
7ee9e440
JB
1413 struct btrfs_root *root = BTRFS_I(inode)->root;
1414 struct btrfs_ordered_extent *ordered;
1415 u64 lockstart, lockend;
1416 u64 num_bytes;
1417 int ret;
1418
8257b2dc
MX
1419 ret = btrfs_start_nocow_write(root);
1420 if (!ret)
1421 return -ENOSPC;
1422
7ee9e440 1423 lockstart = round_down(pos, root->sectorsize);
c933956d 1424 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
7ee9e440
JB
1425
1426 while (1) {
1427 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1428 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1429 lockend - lockstart + 1);
1430 if (!ordered) {
1431 break;
1432 }
1433 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1434 btrfs_start_ordered_extent(inode, ordered, 1);
1435 btrfs_put_ordered_extent(ordered);
1436 }
1437
7ee9e440 1438 num_bytes = lockend - lockstart + 1;
00361589 1439 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
8257b2dc 1440 if (ret <= 0) {
7ee9e440 1441 ret = 0;
8257b2dc
MX
1442 btrfs_end_nocow_write(root);
1443 } else {
c933956d
MX
1444 *write_bytes = min_t(size_t, *write_bytes ,
1445 num_bytes - pos + lockstart);
8257b2dc 1446 }
7ee9e440
JB
1447
1448 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1449
1450 return ret;
1451}
1452
d0215f3e
JB
1453static noinline ssize_t __btrfs_buffered_write(struct file *file,
1454 struct iov_iter *i,
1455 loff_t pos)
4b46fce2 1456{
496ad9aa 1457 struct inode *inode = file_inode(file);
11c65dcc 1458 struct btrfs_root *root = BTRFS_I(inode)->root;
11c65dcc 1459 struct page **pages = NULL;
376cc685 1460 struct extent_state *cached_state = NULL;
7ee9e440 1461 u64 release_bytes = 0;
376cc685
MX
1462 u64 lockstart;
1463 u64 lockend;
39279cc3 1464 unsigned long first_index;
d0215f3e
JB
1465 size_t num_written = 0;
1466 int nrptrs;
c9149235 1467 int ret = 0;
7ee9e440 1468 bool only_release_metadata = false;
b6316429 1469 bool force_page_uptodate = false;
376cc685 1470 bool need_unlock;
4b46fce2 1471
d0215f3e 1472 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
11c65dcc
JB
1473 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1474 (sizeof(struct page *)));
142349f5
WF
1475 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1476 nrptrs = max(nrptrs, 8);
8c2383c3 1477 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
d0215f3e
JB
1478 if (!pages)
1479 return -ENOMEM;
ab93dbec 1480
39279cc3 1481 first_index = pos >> PAGE_CACHE_SHIFT;
39279cc3 1482
d0215f3e 1483 while (iov_iter_count(i) > 0) {
39279cc3 1484 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
d0215f3e 1485 size_t write_bytes = min(iov_iter_count(i),
11c65dcc 1486 nrptrs * (size_t)PAGE_CACHE_SIZE -
8c2383c3 1487 offset);
3a90983d
YZ
1488 size_t num_pages = (write_bytes + offset +
1489 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
7ee9e440 1490 size_t reserve_bytes;
d0215f3e
JB
1491 size_t dirty_pages;
1492 size_t copied;
39279cc3 1493
8c2383c3 1494 WARN_ON(num_pages > nrptrs);
1832a6d5 1495
914ee295
XZ
1496 /*
1497 * Fault pages before locking them in prepare_pages
1498 * to avoid recursive lock
1499 */
d0215f3e 1500 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
914ee295 1501 ret = -EFAULT;
d0215f3e 1502 break;
914ee295
XZ
1503 }
1504
7ee9e440
JB
1505 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1506 ret = btrfs_check_data_free_space(inode, reserve_bytes);
1507 if (ret == -ENOSPC &&
1508 (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1509 BTRFS_INODE_PREALLOC))) {
1510 ret = check_can_nocow(inode, pos, &write_bytes);
1511 if (ret > 0) {
1512 only_release_metadata = true;
1513 /*
1514 * our prealloc extent may be smaller than
1515 * write_bytes, so scale down.
1516 */
1517 num_pages = (write_bytes + offset +
1518 PAGE_CACHE_SIZE - 1) >>
1519 PAGE_CACHE_SHIFT;
1520 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1521 ret = 0;
1522 } else {
1523 ret = -ENOSPC;
1524 }
1525 }
1526
1832a6d5 1527 if (ret)
d0215f3e 1528 break;
1832a6d5 1529
7ee9e440
JB
1530 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1531 if (ret) {
1532 if (!only_release_metadata)
1533 btrfs_free_reserved_data_space(inode,
1534 reserve_bytes);
8257b2dc
MX
1535 else
1536 btrfs_end_nocow_write(root);
7ee9e440
JB
1537 break;
1538 }
1539
1540 release_bytes = reserve_bytes;
376cc685
MX
1541 need_unlock = false;
1542again:
4a64001f
JB
1543 /*
1544 * This is going to setup the pages array with the number of
1545 * pages we want, so we don't really need to worry about the
1546 * contents of pages from loop to loop
1547 */
b37392ea
MX
1548 ret = prepare_pages(inode, pages, num_pages,
1549 pos, write_bytes,
b6316429 1550 force_page_uptodate);
7ee9e440 1551 if (ret)
d0215f3e 1552 break;
39279cc3 1553
376cc685
MX
1554 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1555 pos, &lockstart, &lockend,
1556 &cached_state);
1557 if (ret < 0) {
1558 if (ret == -EAGAIN)
1559 goto again;
1560 break;
1561 } else if (ret > 0) {
1562 need_unlock = true;
1563 ret = 0;
1564 }
1565
914ee295 1566 copied = btrfs_copy_from_user(pos, num_pages,
d0215f3e 1567 write_bytes, pages, i);
b1bf862e
CM
1568
1569 /*
1570 * if we have trouble faulting in the pages, fall
1571 * back to one page at a time
1572 */
1573 if (copied < write_bytes)
1574 nrptrs = 1;
1575
b6316429
JB
1576 if (copied == 0) {
1577 force_page_uptodate = true;
b1bf862e 1578 dirty_pages = 0;
b6316429
JB
1579 } else {
1580 force_page_uptodate = false;
b1bf862e
CM
1581 dirty_pages = (copied + offset +
1582 PAGE_CACHE_SIZE - 1) >>
1583 PAGE_CACHE_SHIFT;
b6316429 1584 }
914ee295 1585
d0215f3e
JB
1586 /*
1587 * If we had a short copy we need to release the excess delaloc
1588 * bytes we reserved. We need to increment outstanding_extents
1589 * because btrfs_delalloc_release_space will decrement it, but
1590 * we still have an outstanding extent for the chunk we actually
1591 * managed to copy.
1592 */
914ee295 1593 if (num_pages > dirty_pages) {
7ee9e440
JB
1594 release_bytes = (num_pages - dirty_pages) <<
1595 PAGE_CACHE_SHIFT;
9e0baf60
JB
1596 if (copied > 0) {
1597 spin_lock(&BTRFS_I(inode)->lock);
1598 BTRFS_I(inode)->outstanding_extents++;
1599 spin_unlock(&BTRFS_I(inode)->lock);
1600 }
7ee9e440
JB
1601 if (only_release_metadata)
1602 btrfs_delalloc_release_metadata(inode,
1603 release_bytes);
1604 else
1605 btrfs_delalloc_release_space(inode,
1606 release_bytes);
914ee295
XZ
1607 }
1608
7ee9e440 1609 release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
376cc685
MX
1610
1611 if (copied > 0)
be1a12a0
JB
1612 ret = btrfs_dirty_pages(root, inode, pages,
1613 dirty_pages, pos, copied,
1614 NULL);
376cc685
MX
1615 if (need_unlock)
1616 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1617 lockstart, lockend, &cached_state,
1618 GFP_NOFS);
f1de9683
MX
1619 if (ret) {
1620 btrfs_drop_pages(pages, num_pages);
376cc685 1621 break;
f1de9683 1622 }
39279cc3 1623
376cc685 1624 release_bytes = 0;
8257b2dc
MX
1625 if (only_release_metadata)
1626 btrfs_end_nocow_write(root);
1627
7ee9e440
JB
1628 if (only_release_metadata && copied > 0) {
1629 u64 lockstart = round_down(pos, root->sectorsize);
1630 u64 lockend = lockstart +
1631 (dirty_pages << PAGE_CACHE_SHIFT) - 1;
1632
1633 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1634 lockend, EXTENT_NORESERVE, NULL,
1635 NULL, GFP_NOFS);
1636 only_release_metadata = false;
1637 }
1638
f1de9683
MX
1639 btrfs_drop_pages(pages, num_pages);
1640
d0215f3e
JB
1641 cond_resched();
1642
d0e1d66b 1643 balance_dirty_pages_ratelimited(inode->i_mapping);
d0215f3e 1644 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
b53d3f5d 1645 btrfs_btree_balance_dirty(root);
cb843a6f 1646
914ee295
XZ
1647 pos += copied;
1648 num_written += copied;
d0215f3e 1649 }
39279cc3 1650
d0215f3e
JB
1651 kfree(pages);
1652
7ee9e440 1653 if (release_bytes) {
8257b2dc
MX
1654 if (only_release_metadata) {
1655 btrfs_end_nocow_write(root);
7ee9e440 1656 btrfs_delalloc_release_metadata(inode, release_bytes);
8257b2dc 1657 } else {
7ee9e440 1658 btrfs_delalloc_release_space(inode, release_bytes);
8257b2dc 1659 }
7ee9e440
JB
1660 }
1661
d0215f3e
JB
1662 return num_written ? num_written : ret;
1663}
1664
1665static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1666 const struct iovec *iov,
1667 unsigned long nr_segs, loff_t pos,
1668 loff_t *ppos, size_t count, size_t ocount)
1669{
1670 struct file *file = iocb->ki_filp;
d0215f3e
JB
1671 struct iov_iter i;
1672 ssize_t written;
1673 ssize_t written_buffered;
1674 loff_t endbyte;
1675 int err;
1676
1677 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1678 count, ocount);
1679
d0215f3e
JB
1680 if (written < 0 || written == count)
1681 return written;
1682
1683 pos += written;
1684 count -= written;
1685 iov_iter_init(&i, iov, nr_segs, count, written);
1686 written_buffered = __btrfs_buffered_write(file, &i, pos);
1687 if (written_buffered < 0) {
1688 err = written_buffered;
1689 goto out;
39279cc3 1690 }
d0215f3e
JB
1691 endbyte = pos + written_buffered - 1;
1692 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1693 if (err)
1694 goto out;
1695 written += written_buffered;
1696 *ppos = pos + written_buffered;
1697 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1698 endbyte >> PAGE_CACHE_SHIFT);
39279cc3 1699out:
d0215f3e
JB
1700 return written ? written : err;
1701}
5b92ee72 1702
6c760c07
JB
1703static void update_time_for_write(struct inode *inode)
1704{
1705 struct timespec now;
1706
1707 if (IS_NOCMTIME(inode))
1708 return;
1709
1710 now = current_fs_time(inode->i_sb);
1711 if (!timespec_equal(&inode->i_mtime, &now))
1712 inode->i_mtime = now;
1713
1714 if (!timespec_equal(&inode->i_ctime, &now))
1715 inode->i_ctime = now;
1716
1717 if (IS_I_VERSION(inode))
1718 inode_inc_iversion(inode);
1719}
1720
d0215f3e
JB
1721static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1722 const struct iovec *iov,
1723 unsigned long nr_segs, loff_t pos)
1724{
1725 struct file *file = iocb->ki_filp;
496ad9aa 1726 struct inode *inode = file_inode(file);
d0215f3e
JB
1727 struct btrfs_root *root = BTRFS_I(inode)->root;
1728 loff_t *ppos = &iocb->ki_pos;
0c1a98c8 1729 u64 start_pos;
3ac0d7b9 1730 u64 end_pos;
d0215f3e
JB
1731 ssize_t num_written = 0;
1732 ssize_t err = 0;
1733 size_t count, ocount;
b812ce28 1734 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
d0215f3e 1735
d0215f3e
JB
1736 mutex_lock(&inode->i_mutex);
1737
1738 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1739 if (err) {
1740 mutex_unlock(&inode->i_mutex);
1741 goto out;
1742 }
1743 count = ocount;
1744
1745 current->backing_dev_info = inode->i_mapping->backing_dev_info;
1746 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1747 if (err) {
1748 mutex_unlock(&inode->i_mutex);
1749 goto out;
1750 }
1751
1752 if (count == 0) {
1753 mutex_unlock(&inode->i_mutex);
1754 goto out;
1755 }
1756
1757 err = file_remove_suid(file);
1758 if (err) {
1759 mutex_unlock(&inode->i_mutex);
1760 goto out;
1761 }
1762
1763 /*
1764 * If BTRFS flips readonly due to some impossible error
1765 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1766 * although we have opened a file as writable, we have
1767 * to stop this write operation to ensure FS consistency.
1768 */
87533c47 1769 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
d0215f3e
JB
1770 mutex_unlock(&inode->i_mutex);
1771 err = -EROFS;
1772 goto out;
1773 }
1774
6c760c07
JB
1775 /*
1776 * We reserve space for updating the inode when we reserve space for the
1777 * extent we are going to write, so we will enospc out there. We don't
1778 * need to start yet another transaction to update the inode as we will
1779 * update the inode when we finish writing whatever data we write.
1780 */
1781 update_time_for_write(inode);
d0215f3e 1782
0c1a98c8
MX
1783 start_pos = round_down(pos, root->sectorsize);
1784 if (start_pos > i_size_read(inode)) {
3ac0d7b9 1785 /* Expand hole size to cover write data, preventing empty gap */
c5f7d0bb 1786 end_pos = round_up(pos + count, root->sectorsize);
3ac0d7b9 1787 err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
0c1a98c8
MX
1788 if (err) {
1789 mutex_unlock(&inode->i_mutex);
1790 goto out;
1791 }
1792 }
1793
b812ce28
JB
1794 if (sync)
1795 atomic_inc(&BTRFS_I(inode)->sync_writers);
1796
d0215f3e
JB
1797 if (unlikely(file->f_flags & O_DIRECT)) {
1798 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1799 pos, ppos, count, ocount);
1800 } else {
1801 struct iov_iter i;
1802
1803 iov_iter_init(&i, iov, nr_segs, count, num_written);
1804
1805 num_written = __btrfs_buffered_write(file, &i, pos);
1806 if (num_written > 0)
1807 *ppos = pos + num_written;
1808 }
1809
1810 mutex_unlock(&inode->i_mutex);
2ff3e9b6 1811
5a3f23d5
CM
1812 /*
1813 * we want to make sure fsync finds this change
1814 * but we haven't joined a transaction running right now.
1815 *
1816 * Later on, someone is sure to update the inode and get the
1817 * real transid recorded.
1818 *
1819 * We set last_trans now to the fs_info generation + 1,
1820 * this will either be one more than the running transaction
1821 * or the generation used for the next transaction if there isn't
1822 * one running right now.
6c760c07
JB
1823 *
1824 * We also have to set last_sub_trans to the current log transid,
1825 * otherwise subsequent syncs to a file that's been synced in this
1826 * transaction will appear to have already occured.
5a3f23d5
CM
1827 */
1828 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
6c760c07 1829 BTRFS_I(inode)->last_sub_trans = root->log_transid;
02afc27f 1830 if (num_written > 0) {
d0215f3e
JB
1831 err = generic_write_sync(file, pos, num_written);
1832 if (err < 0 && num_written > 0)
2ff3e9b6
CM
1833 num_written = err;
1834 }
0a3404dc 1835
b812ce28
JB
1836 if (sync)
1837 atomic_dec(&BTRFS_I(inode)->sync_writers);
0a3404dc 1838out:
39279cc3 1839 current->backing_dev_info = NULL;
39279cc3
CM
1840 return num_written ? num_written : err;
1841}
1842
d397712b 1843int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 1844{
5a3f23d5
CM
1845 /*
1846 * ordered_data_close is set by settattr when we are about to truncate
1847 * a file from a non-zero size to a zero size. This tries to
1848 * flush down new bytes that may have been written if the
1849 * application were using truncate to replace a file in place.
1850 */
72ac3c0d
JB
1851 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1852 &BTRFS_I(inode)->runtime_flags)) {
569e0f35
JB
1853 struct btrfs_trans_handle *trans;
1854 struct btrfs_root *root = BTRFS_I(inode)->root;
1855
1856 /*
1857 * We need to block on a committing transaction to keep us from
1858 * throwing a ordered operation on to the list and causing
1859 * something like sync to deadlock trying to flush out this
1860 * inode.
1861 */
1862 trans = btrfs_start_transaction(root, 0);
1863 if (IS_ERR(trans))
1864 return PTR_ERR(trans);
1865 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1866 btrfs_end_transaction(trans, root);
5a3f23d5
CM
1867 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1868 filemap_flush(inode->i_mapping);
1869 }
6bf13c0c
SW
1870 if (filp->private_data)
1871 btrfs_ioctl_trans_end(filp);
e1b81e67
M
1872 return 0;
1873}
1874
d352ac68
CM
1875/*
1876 * fsync call for both files and directories. This logs the inode into
1877 * the tree log instead of forcing full commits whenever possible.
1878 *
1879 * It needs to call filemap_fdatawait so that all ordered extent updates are
1880 * in the metadata btree are up to date for copying to the log.
1881 *
1882 * It drops the inode mutex before doing the tree log commit. This is an
1883 * important optimization for directories because holding the mutex prevents
1884 * new operations on the dir while we write to disk.
1885 */
02c24a82 1886int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 1887{
7ea80859 1888 struct dentry *dentry = file->f_path.dentry;
39279cc3
CM
1889 struct inode *inode = dentry->d_inode;
1890 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3 1891 struct btrfs_trans_handle *trans;
8b050d35
MX
1892 struct btrfs_log_ctx ctx;
1893 int ret = 0;
2ab28f32 1894 bool full_sync = 0;
39279cc3 1895
1abe9b8a 1896 trace_btrfs_sync_file(file, datasync);
257c62e1 1897
90abccf2
MX
1898 /*
1899 * We write the dirty pages in the range and wait until they complete
1900 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
1901 * multi-task, and make the performance up. See
1902 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 1903 */
b812ce28 1904 atomic_inc(&BTRFS_I(inode)->sync_writers);
2ab28f32
JB
1905 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1906 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1907 &BTRFS_I(inode)->runtime_flags))
1908 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
b812ce28 1909 atomic_dec(&BTRFS_I(inode)->sync_writers);
90abccf2
MX
1910 if (ret)
1911 return ret;
1912
02c24a82
JB
1913 mutex_lock(&inode->i_mutex);
1914
0885ef5b 1915 /*
90abccf2
MX
1916 * We flush the dirty pages again to avoid some dirty pages in the
1917 * range being left.
0885ef5b 1918 */
2ecb7923 1919 atomic_inc(&root->log_batch);
2ab28f32
JB
1920 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1921 &BTRFS_I(inode)->runtime_flags);
0ef8b726
JB
1922 if (full_sync) {
1923 ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
1924 if (ret) {
1925 mutex_unlock(&inode->i_mutex);
1926 goto out;
1927 }
1928 }
2ecb7923 1929 atomic_inc(&root->log_batch);
257c62e1 1930
39279cc3 1931 /*
15ee9bc7
JB
1932 * check the transaction that last modified this inode
1933 * and see if its already been committed
39279cc3 1934 */
02c24a82
JB
1935 if (!BTRFS_I(inode)->last_trans) {
1936 mutex_unlock(&inode->i_mutex);
15ee9bc7 1937 goto out;
02c24a82 1938 }
a2135011 1939
257c62e1
CM
1940 /*
1941 * if the last transaction that changed this file was before
1942 * the current transaction, we can bail out now without any
1943 * syncing
1944 */
a4abeea4 1945 smp_mb();
22ee6985
JB
1946 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1947 BTRFS_I(inode)->last_trans <=
15ee9bc7
JB
1948 root->fs_info->last_trans_committed) {
1949 BTRFS_I(inode)->last_trans = 0;
5dc562c5
JB
1950
1951 /*
1952 * We'v had everything committed since the last time we were
1953 * modified so clear this flag in case it was set for whatever
1954 * reason, it's no longer relevant.
1955 */
1956 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1957 &BTRFS_I(inode)->runtime_flags);
02c24a82 1958 mutex_unlock(&inode->i_mutex);
15ee9bc7
JB
1959 goto out;
1960 }
15ee9bc7
JB
1961
1962 /*
a52d9a80
CM
1963 * ok we haven't committed the transaction yet, lets do a commit
1964 */
6f902af4 1965 if (file->private_data)
6bf13c0c
SW
1966 btrfs_ioctl_trans_end(file);
1967
5039eddc
JB
1968 /*
1969 * We use start here because we will need to wait on the IO to complete
1970 * in btrfs_sync_log, which could require joining a transaction (for
1971 * example checking cross references in the nocow path). If we use join
1972 * here we could get into a situation where we're waiting on IO to
1973 * happen that is blocked on a transaction trying to commit. With start
1974 * we inc the extwriter counter, so we wait for all extwriters to exit
1975 * before we start blocking join'ers. This comment is to keep somebody
1976 * from thinking they are super smart and changing this to
1977 * btrfs_join_transaction *cough*Josef*cough*.
1978 */
a22285a6
YZ
1979 trans = btrfs_start_transaction(root, 0);
1980 if (IS_ERR(trans)) {
1981 ret = PTR_ERR(trans);
02c24a82 1982 mutex_unlock(&inode->i_mutex);
39279cc3
CM
1983 goto out;
1984 }
5039eddc 1985 trans->sync = true;
e02119d5 1986
8b050d35
MX
1987 btrfs_init_log_ctx(&ctx);
1988
1989 ret = btrfs_log_dentry_safe(trans, root, dentry, &ctx);
02c24a82 1990 if (ret < 0) {
a0634be5
FDBM
1991 /* Fallthrough and commit/free transaction. */
1992 ret = 1;
02c24a82 1993 }
49eb7e46
CM
1994
1995 /* we've logged all the items and now have a consistent
1996 * version of the file in the log. It is possible that
1997 * someone will come in and modify the file, but that's
1998 * fine because the log is consistent on disk, and we
1999 * have references to all of the file's extents
2000 *
2001 * It is possible that someone will come in and log the
2002 * file again, but that will end up using the synchronization
2003 * inside btrfs_sync_log to keep things safe.
2004 */
02c24a82 2005 mutex_unlock(&inode->i_mutex);
49eb7e46 2006
257c62e1 2007 if (ret != BTRFS_NO_LOG_SYNC) {
0ef8b726 2008 if (!ret) {
8b050d35 2009 ret = btrfs_sync_log(trans, root, &ctx);
0ef8b726 2010 if (!ret) {
257c62e1 2011 ret = btrfs_end_transaction(trans, root);
0ef8b726 2012 goto out;
2ab28f32 2013 }
257c62e1 2014 }
0ef8b726
JB
2015 if (!full_sync) {
2016 ret = btrfs_wait_ordered_range(inode, start,
2017 end - start + 1);
2018 if (ret)
2019 goto out;
2020 }
2021 ret = btrfs_commit_transaction(trans, root);
257c62e1
CM
2022 } else {
2023 ret = btrfs_end_transaction(trans, root);
e02119d5 2024 }
39279cc3 2025out:
014e4ac4 2026 return ret > 0 ? -EIO : ret;
39279cc3
CM
2027}
2028
f0f37e2f 2029static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 2030 .fault = filemap_fault,
9ebefb18 2031 .page_mkwrite = btrfs_page_mkwrite,
0b173bc4 2032 .remap_pages = generic_file_remap_pages,
9ebefb18
CM
2033};
2034
2035static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2036{
058a457e
MX
2037 struct address_space *mapping = filp->f_mapping;
2038
2039 if (!mapping->a_ops->readpage)
2040 return -ENOEXEC;
2041
9ebefb18 2042 file_accessed(filp);
058a457e 2043 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 2044
9ebefb18
CM
2045 return 0;
2046}
2047
2aaa6655
JB
2048static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2049 int slot, u64 start, u64 end)
2050{
2051 struct btrfs_file_extent_item *fi;
2052 struct btrfs_key key;
2053
2054 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2055 return 0;
2056
2057 btrfs_item_key_to_cpu(leaf, &key, slot);
2058 if (key.objectid != btrfs_ino(inode) ||
2059 key.type != BTRFS_EXTENT_DATA_KEY)
2060 return 0;
2061
2062 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2063
2064 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2065 return 0;
2066
2067 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2068 return 0;
2069
2070 if (key.offset == end)
2071 return 1;
2072 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2073 return 1;
2074 return 0;
2075}
2076
2077static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2078 struct btrfs_path *path, u64 offset, u64 end)
2079{
2080 struct btrfs_root *root = BTRFS_I(inode)->root;
2081 struct extent_buffer *leaf;
2082 struct btrfs_file_extent_item *fi;
2083 struct extent_map *hole_em;
2084 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2085 struct btrfs_key key;
2086 int ret;
2087
16e7549f
JB
2088 if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2089 goto out;
2090
2aaa6655
JB
2091 key.objectid = btrfs_ino(inode);
2092 key.type = BTRFS_EXTENT_DATA_KEY;
2093 key.offset = offset;
2094
2aaa6655
JB
2095 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2096 if (ret < 0)
2097 return ret;
2098 BUG_ON(!ret);
2099
2100 leaf = path->nodes[0];
2101 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2102 u64 num_bytes;
2103
2104 path->slots[0]--;
2105 fi = btrfs_item_ptr(leaf, path->slots[0],
2106 struct btrfs_file_extent_item);
2107 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2108 end - offset;
2109 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2110 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2111 btrfs_set_file_extent_offset(leaf, fi, 0);
2112 btrfs_mark_buffer_dirty(leaf);
2113 goto out;
2114 }
2115
2116 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
2117 u64 num_bytes;
2118
2119 path->slots[0]++;
2120 key.offset = offset;
afe5fea7 2121 btrfs_set_item_key_safe(root, path, &key);
2aaa6655
JB
2122 fi = btrfs_item_ptr(leaf, path->slots[0],
2123 struct btrfs_file_extent_item);
2124 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2125 offset;
2126 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2127 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2128 btrfs_set_file_extent_offset(leaf, fi, 0);
2129 btrfs_mark_buffer_dirty(leaf);
2130 goto out;
2131 }
2132 btrfs_release_path(path);
2133
2134 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2135 0, 0, end - offset, 0, end - offset,
2136 0, 0, 0);
2137 if (ret)
2138 return ret;
2139
2140out:
2141 btrfs_release_path(path);
2142
2143 hole_em = alloc_extent_map();
2144 if (!hole_em) {
2145 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2146 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2147 &BTRFS_I(inode)->runtime_flags);
2148 } else {
2149 hole_em->start = offset;
2150 hole_em->len = end - offset;
cc95bef6 2151 hole_em->ram_bytes = hole_em->len;
2aaa6655
JB
2152 hole_em->orig_start = offset;
2153
2154 hole_em->block_start = EXTENT_MAP_HOLE;
2155 hole_em->block_len = 0;
b4939680 2156 hole_em->orig_block_len = 0;
2aaa6655
JB
2157 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2158 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2159 hole_em->generation = trans->transid;
2160
2161 do {
2162 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2163 write_lock(&em_tree->lock);
09a2a8f9 2164 ret = add_extent_mapping(em_tree, hole_em, 1);
2aaa6655
JB
2165 write_unlock(&em_tree->lock);
2166 } while (ret == -EEXIST);
2167 free_extent_map(hole_em);
2168 if (ret)
2169 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2170 &BTRFS_I(inode)->runtime_flags);
2171 }
2172
2173 return 0;
2174}
2175
2176static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2177{
2178 struct btrfs_root *root = BTRFS_I(inode)->root;
2179 struct extent_state *cached_state = NULL;
2180 struct btrfs_path *path;
2181 struct btrfs_block_rsv *rsv;
2182 struct btrfs_trans_handle *trans;
0061280d
MX
2183 u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2184 u64 lockend = round_down(offset + len,
2185 BTRFS_I(inode)->root->sectorsize) - 1;
2aaa6655
JB
2186 u64 cur_offset = lockstart;
2187 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2188 u64 drop_end;
2aaa6655
JB
2189 int ret = 0;
2190 int err = 0;
16e7549f 2191 int rsv_count;
6347b3c4
MX
2192 bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2193 ((offset + len - 1) >> PAGE_CACHE_SHIFT));
16e7549f 2194 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
12870f1c 2195 u64 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
2aaa6655 2196
0ef8b726
JB
2197 ret = btrfs_wait_ordered_range(inode, offset, len);
2198 if (ret)
2199 return ret;
2aaa6655
JB
2200
2201 mutex_lock(&inode->i_mutex);
7426cc04
MX
2202 /*
2203 * We needn't truncate any page which is beyond the end of the file
2204 * because we are sure there is no data there.
2205 */
2aaa6655
JB
2206 /*
2207 * Only do this if we are in the same page and we aren't doing the
2208 * entire page.
2209 */
2210 if (same_page && len < PAGE_CACHE_SIZE) {
12870f1c 2211 if (offset < ino_size)
7426cc04 2212 ret = btrfs_truncate_page(inode, offset, len, 0);
2aaa6655
JB
2213 mutex_unlock(&inode->i_mutex);
2214 return ret;
2215 }
2216
2217 /* zero back part of the first page */
12870f1c 2218 if (offset < ino_size) {
7426cc04
MX
2219 ret = btrfs_truncate_page(inode, offset, 0, 0);
2220 if (ret) {
2221 mutex_unlock(&inode->i_mutex);
2222 return ret;
2223 }
2aaa6655
JB
2224 }
2225
2226 /* zero the front end of the last page */
12870f1c 2227 if (offset + len < ino_size) {
0061280d
MX
2228 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2229 if (ret) {
2230 mutex_unlock(&inode->i_mutex);
2231 return ret;
2232 }
2aaa6655
JB
2233 }
2234
2235 if (lockend < lockstart) {
2236 mutex_unlock(&inode->i_mutex);
2237 return 0;
2238 }
2239
2240 while (1) {
2241 struct btrfs_ordered_extent *ordered;
2242
2243 truncate_pagecache_range(inode, lockstart, lockend);
2244
2245 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2246 0, &cached_state);
2247 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2248
2249 /*
2250 * We need to make sure we have no ordered extents in this range
2251 * and nobody raced in and read a page in this range, if we did
2252 * we need to try again.
2253 */
2254 if ((!ordered ||
6126e3ca 2255 (ordered->file_offset + ordered->len <= lockstart ||
2aaa6655
JB
2256 ordered->file_offset > lockend)) &&
2257 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2258 lockend, EXTENT_UPTODATE, 0,
2259 cached_state)) {
2260 if (ordered)
2261 btrfs_put_ordered_extent(ordered);
2262 break;
2263 }
2264 if (ordered)
2265 btrfs_put_ordered_extent(ordered);
2266 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2267 lockend, &cached_state, GFP_NOFS);
0ef8b726
JB
2268 ret = btrfs_wait_ordered_range(inode, lockstart,
2269 lockend - lockstart + 1);
2270 if (ret) {
2271 mutex_unlock(&inode->i_mutex);
2272 return ret;
2273 }
2aaa6655
JB
2274 }
2275
2276 path = btrfs_alloc_path();
2277 if (!path) {
2278 ret = -ENOMEM;
2279 goto out;
2280 }
2281
66d8f3dd 2282 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2aaa6655
JB
2283 if (!rsv) {
2284 ret = -ENOMEM;
2285 goto out_free;
2286 }
2287 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2288 rsv->failfast = 1;
2289
2290 /*
2291 * 1 - update the inode
2292 * 1 - removing the extents in the range
16e7549f 2293 * 1 - adding the hole extent if no_holes isn't set
2aaa6655 2294 */
16e7549f
JB
2295 rsv_count = no_holes ? 2 : 3;
2296 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2297 if (IS_ERR(trans)) {
2298 err = PTR_ERR(trans);
2299 goto out_free;
2300 }
2301
2302 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2303 min_size);
2304 BUG_ON(ret);
2305 trans->block_rsv = rsv;
2306
2307 while (cur_offset < lockend) {
2308 ret = __btrfs_drop_extents(trans, root, inode, path,
2309 cur_offset, lockend + 1,
1acae57b 2310 &drop_end, 1, 0, 0, NULL);
2aaa6655
JB
2311 if (ret != -ENOSPC)
2312 break;
2313
2314 trans->block_rsv = &root->fs_info->trans_block_rsv;
2315
12870f1c
FM
2316 if (cur_offset < ino_size) {
2317 ret = fill_holes(trans, inode, path, cur_offset,
2318 drop_end);
2319 if (ret) {
2320 err = ret;
2321 break;
2322 }
2aaa6655
JB
2323 }
2324
2325 cur_offset = drop_end;
2326
2327 ret = btrfs_update_inode(trans, root, inode);
2328 if (ret) {
2329 err = ret;
2330 break;
2331 }
2332
2aaa6655 2333 btrfs_end_transaction(trans, root);
b53d3f5d 2334 btrfs_btree_balance_dirty(root);
2aaa6655 2335
16e7549f 2336 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2337 if (IS_ERR(trans)) {
2338 ret = PTR_ERR(trans);
2339 trans = NULL;
2340 break;
2341 }
2342
2343 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2344 rsv, min_size);
2345 BUG_ON(ret); /* shouldn't happen */
2346 trans->block_rsv = rsv;
2347 }
2348
2349 if (ret) {
2350 err = ret;
2351 goto out_trans;
2352 }
2353
2354 trans->block_rsv = &root->fs_info->trans_block_rsv;
12870f1c
FM
2355 if (cur_offset < ino_size) {
2356 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2357 if (ret) {
2358 err = ret;
2359 goto out_trans;
2360 }
2aaa6655
JB
2361 }
2362
2363out_trans:
2364 if (!trans)
2365 goto out_free;
2366
e1f5790e
TI
2367 inode_inc_iversion(inode);
2368 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2369
2aaa6655
JB
2370 trans->block_rsv = &root->fs_info->trans_block_rsv;
2371 ret = btrfs_update_inode(trans, root, inode);
2aaa6655 2372 btrfs_end_transaction(trans, root);
b53d3f5d 2373 btrfs_btree_balance_dirty(root);
2aaa6655
JB
2374out_free:
2375 btrfs_free_path(path);
2376 btrfs_free_block_rsv(root, rsv);
2377out:
2378 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2379 &cached_state, GFP_NOFS);
2380 mutex_unlock(&inode->i_mutex);
2381 if (ret && !err)
2382 err = ret;
2383 return err;
2384}
2385
2fe17c10
CH
2386static long btrfs_fallocate(struct file *file, int mode,
2387 loff_t offset, loff_t len)
2388{
496ad9aa 2389 struct inode *inode = file_inode(file);
2fe17c10 2390 struct extent_state *cached_state = NULL;
6113077c 2391 struct btrfs_root *root = BTRFS_I(inode)->root;
2fe17c10
CH
2392 u64 cur_offset;
2393 u64 last_byte;
2394 u64 alloc_start;
2395 u64 alloc_end;
2396 u64 alloc_hint = 0;
2397 u64 locked_end;
2fe17c10 2398 struct extent_map *em;
797f4277 2399 int blocksize = BTRFS_I(inode)->root->sectorsize;
2fe17c10
CH
2400 int ret;
2401
797f4277
MX
2402 alloc_start = round_down(offset, blocksize);
2403 alloc_end = round_up(offset + len, blocksize);
2fe17c10 2404
2aaa6655
JB
2405 /* Make sure we aren't being give some crap mode */
2406 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2fe17c10
CH
2407 return -EOPNOTSUPP;
2408
2aaa6655
JB
2409 if (mode & FALLOC_FL_PUNCH_HOLE)
2410 return btrfs_punch_hole(inode, offset, len);
2411
d98456fc
CM
2412 /*
2413 * Make sure we have enough space before we do the
2414 * allocation.
2415 */
0ff6fabd 2416 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
d98456fc
CM
2417 if (ret)
2418 return ret;
6113077c
WS
2419 if (root->fs_info->quota_enabled) {
2420 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2421 if (ret)
2422 goto out_reserve_fail;
2423 }
d98456fc 2424
2fe17c10
CH
2425 mutex_lock(&inode->i_mutex);
2426 ret = inode_newsize_ok(inode, alloc_end);
2427 if (ret)
2428 goto out;
2429
2430 if (alloc_start > inode->i_size) {
a41ad394
JB
2431 ret = btrfs_cont_expand(inode, i_size_read(inode),
2432 alloc_start);
2fe17c10
CH
2433 if (ret)
2434 goto out;
a71754fc
JB
2435 } else {
2436 /*
2437 * If we are fallocating from the end of the file onward we
2438 * need to zero out the end of the page if i_size lands in the
2439 * middle of a page.
2440 */
2441 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2442 if (ret)
2443 goto out;
2fe17c10
CH
2444 }
2445
a71754fc
JB
2446 /*
2447 * wait for ordered IO before we have any locks. We'll loop again
2448 * below with the locks held.
2449 */
0ef8b726
JB
2450 ret = btrfs_wait_ordered_range(inode, alloc_start,
2451 alloc_end - alloc_start);
2452 if (ret)
2453 goto out;
a71754fc 2454
2fe17c10
CH
2455 locked_end = alloc_end - 1;
2456 while (1) {
2457 struct btrfs_ordered_extent *ordered;
2458
2459 /* the extent lock is ordered inside the running
2460 * transaction
2461 */
2462 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
d0082371 2463 locked_end, 0, &cached_state);
2fe17c10
CH
2464 ordered = btrfs_lookup_first_ordered_extent(inode,
2465 alloc_end - 1);
2466 if (ordered &&
2467 ordered->file_offset + ordered->len > alloc_start &&
2468 ordered->file_offset < alloc_end) {
2469 btrfs_put_ordered_extent(ordered);
2470 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2471 alloc_start, locked_end,
2472 &cached_state, GFP_NOFS);
2473 /*
2474 * we can't wait on the range with the transaction
2475 * running or with the extent lock held
2476 */
0ef8b726
JB
2477 ret = btrfs_wait_ordered_range(inode, alloc_start,
2478 alloc_end - alloc_start);
2479 if (ret)
2480 goto out;
2fe17c10
CH
2481 } else {
2482 if (ordered)
2483 btrfs_put_ordered_extent(ordered);
2484 break;
2485 }
2486 }
2487
2488 cur_offset = alloc_start;
2489 while (1) {
f1e490a7
JB
2490 u64 actual_end;
2491
2fe17c10
CH
2492 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2493 alloc_end - cur_offset, 0);
79787eaa
JM
2494 if (IS_ERR_OR_NULL(em)) {
2495 if (!em)
2496 ret = -ENOMEM;
2497 else
2498 ret = PTR_ERR(em);
2499 break;
2500 }
2fe17c10 2501 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 2502 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 2503 last_byte = ALIGN(last_byte, blocksize);
f1e490a7 2504
2fe17c10
CH
2505 if (em->block_start == EXTENT_MAP_HOLE ||
2506 (cur_offset >= inode->i_size &&
2507 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2508 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2509 last_byte - cur_offset,
2510 1 << inode->i_blkbits,
2511 offset + len,
2512 &alloc_hint);
1b9c332b 2513
2fe17c10
CH
2514 if (ret < 0) {
2515 free_extent_map(em);
2516 break;
2517 }
f1e490a7
JB
2518 } else if (actual_end > inode->i_size &&
2519 !(mode & FALLOC_FL_KEEP_SIZE)) {
2520 /*
2521 * We didn't need to allocate any more space, but we
2522 * still extended the size of the file so we need to
2523 * update i_size.
2524 */
2525 inode->i_ctime = CURRENT_TIME;
2526 i_size_write(inode, actual_end);
2527 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2fe17c10
CH
2528 }
2529 free_extent_map(em);
2530
2531 cur_offset = last_byte;
2532 if (cur_offset >= alloc_end) {
2533 ret = 0;
2534 break;
2535 }
2536 }
2537 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2538 &cached_state, GFP_NOFS);
2fe17c10
CH
2539out:
2540 mutex_unlock(&inode->i_mutex);
6113077c
WS
2541 if (root->fs_info->quota_enabled)
2542 btrfs_qgroup_free(root, alloc_end - alloc_start);
2543out_reserve_fail:
d98456fc 2544 /* Let go of our reservation. */
0ff6fabd 2545 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2fe17c10
CH
2546 return ret;
2547}
2548
965c8e59 2549static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
b2675157
JB
2550{
2551 struct btrfs_root *root = BTRFS_I(inode)->root;
7f4ca37c 2552 struct extent_map *em = NULL;
b2675157
JB
2553 struct extent_state *cached_state = NULL;
2554 u64 lockstart = *offset;
2555 u64 lockend = i_size_read(inode);
2556 u64 start = *offset;
b2675157 2557 u64 len = i_size_read(inode);
b2675157
JB
2558 int ret = 0;
2559
2560 lockend = max_t(u64, root->sectorsize, lockend);
2561 if (lockend <= lockstart)
2562 lockend = lockstart + root->sectorsize;
2563
1214b53f 2564 lockend--;
b2675157
JB
2565 len = lockend - lockstart + 1;
2566
2567 len = max_t(u64, len, root->sectorsize);
2568 if (inode->i_size == 0)
2569 return -ENXIO;
2570
2571 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
d0082371 2572 &cached_state);
b2675157 2573
7f4ca37c 2574 while (start < inode->i_size) {
b2675157
JB
2575 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2576 if (IS_ERR(em)) {
6af021d8 2577 ret = PTR_ERR(em);
7f4ca37c 2578 em = NULL;
b2675157
JB
2579 break;
2580 }
2581
7f4ca37c
JB
2582 if (whence == SEEK_HOLE &&
2583 (em->block_start == EXTENT_MAP_HOLE ||
2584 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2585 break;
2586 else if (whence == SEEK_DATA &&
2587 (em->block_start != EXTENT_MAP_HOLE &&
2588 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2589 break;
b2675157
JB
2590
2591 start = em->start + em->len;
b2675157 2592 free_extent_map(em);
7f4ca37c 2593 em = NULL;
b2675157
JB
2594 cond_resched();
2595 }
7f4ca37c
JB
2596 free_extent_map(em);
2597 if (!ret) {
2598 if (whence == SEEK_DATA && start >= inode->i_size)
2599 ret = -ENXIO;
2600 else
2601 *offset = min_t(loff_t, start, inode->i_size);
2602 }
b2675157
JB
2603 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2604 &cached_state, GFP_NOFS);
2605 return ret;
2606}
2607
965c8e59 2608static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
2609{
2610 struct inode *inode = file->f_mapping->host;
2611 int ret;
2612
2613 mutex_lock(&inode->i_mutex);
965c8e59 2614 switch (whence) {
b2675157
JB
2615 case SEEK_END:
2616 case SEEK_CUR:
965c8e59 2617 offset = generic_file_llseek(file, offset, whence);
b2675157
JB
2618 goto out;
2619 case SEEK_DATA:
2620 case SEEK_HOLE:
48802c8a
JL
2621 if (offset >= i_size_read(inode)) {
2622 mutex_unlock(&inode->i_mutex);
2623 return -ENXIO;
2624 }
2625
965c8e59 2626 ret = find_desired_extent(inode, &offset, whence);
b2675157
JB
2627 if (ret) {
2628 mutex_unlock(&inode->i_mutex);
2629 return ret;
2630 }
2631 }
2632
46a1c2c7 2633 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
b2675157
JB
2634out:
2635 mutex_unlock(&inode->i_mutex);
2636 return offset;
2637}
2638
828c0950 2639const struct file_operations btrfs_file_operations = {
b2675157 2640 .llseek = btrfs_file_llseek,
39279cc3 2641 .read = do_sync_read,
4a001071 2642 .write = do_sync_write,
9ebefb18 2643 .aio_read = generic_file_aio_read,
e9906a98 2644 .splice_read = generic_file_splice_read,
11c65dcc 2645 .aio_write = btrfs_file_aio_write,
9ebefb18 2646 .mmap = btrfs_file_mmap,
39279cc3 2647 .open = generic_file_open,
e1b81e67 2648 .release = btrfs_release_file,
39279cc3 2649 .fsync = btrfs_sync_file,
2fe17c10 2650 .fallocate = btrfs_fallocate,
34287aa3 2651 .unlocked_ioctl = btrfs_ioctl,
39279cc3 2652#ifdef CONFIG_COMPAT
34287aa3 2653 .compat_ioctl = btrfs_ioctl,
39279cc3
CM
2654#endif
2655};
9247f317
MX
2656
2657void btrfs_auto_defrag_exit(void)
2658{
2659 if (btrfs_inode_defrag_cachep)
2660 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2661}
2662
2663int btrfs_auto_defrag_init(void)
2664{
2665 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2666 sizeof(struct inode_defrag), 0,
2667 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2668 NULL);
2669 if (!btrfs_inode_defrag_cachep)
2670 return -ENOMEM;
2671
2672 return 0;
2673}