]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/file.c
Btrfs: move definition of the function btrfs_find_new_delalloc_bytes
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / file.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
39279cc3
CM
19#include <linux/fs.h>
20#include <linux/pagemap.h>
21#include <linux/highmem.h>
22#include <linux/time.h>
23#include <linux/init.h>
24#include <linux/string.h>
39279cc3
CM
25#include <linux/backing-dev.h>
26#include <linux/mpage.h>
2fe17c10 27#include <linux/falloc.h>
39279cc3
CM
28#include <linux/swap.h>
29#include <linux/writeback.h>
39279cc3 30#include <linux/compat.h>
5a0e3ad6 31#include <linux/slab.h>
55e301fd 32#include <linux/btrfs.h>
e2e40f2c 33#include <linux/uio.h>
39279cc3
CM
34#include "ctree.h"
35#include "disk-io.h"
36#include "transaction.h"
37#include "btrfs_inode.h"
39279cc3 38#include "print-tree.h"
e02119d5
CM
39#include "tree-log.h"
40#include "locking.h"
2aaa6655 41#include "volumes.h"
fcebe456 42#include "qgroup.h"
ebb8765b 43#include "compression.h"
39279cc3 44
9247f317 45static struct kmem_cache *btrfs_inode_defrag_cachep;
4cb5300b
CM
46/*
47 * when auto defrag is enabled we
48 * queue up these defrag structs to remember which
49 * inodes need defragging passes
50 */
51struct inode_defrag {
52 struct rb_node rb_node;
53 /* objectid */
54 u64 ino;
55 /*
56 * transid where the defrag was added, we search for
57 * extents newer than this
58 */
59 u64 transid;
60
61 /* root objectid */
62 u64 root;
63
64 /* last offset we were able to defrag */
65 u64 last_offset;
66
67 /* if we've wrapped around back to zero once already */
68 int cycled;
69};
70
762f2263
MX
71static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 struct inode_defrag *defrag2)
73{
74 if (defrag1->root > defrag2->root)
75 return 1;
76 else if (defrag1->root < defrag2->root)
77 return -1;
78 else if (defrag1->ino > defrag2->ino)
79 return 1;
80 else if (defrag1->ino < defrag2->ino)
81 return -1;
82 else
83 return 0;
84}
85
4cb5300b
CM
86/* pop a record for an inode into the defrag tree. The lock
87 * must be held already
88 *
89 * If you're inserting a record for an older transid than an
90 * existing record, the transid already in the tree is lowered
91 *
92 * If an existing record is found the defrag item you
93 * pass in is freed
94 */
6158e1ce 95static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
4cb5300b
CM
96 struct inode_defrag *defrag)
97{
6158e1ce 98 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
4cb5300b
CM
99 struct inode_defrag *entry;
100 struct rb_node **p;
101 struct rb_node *parent = NULL;
762f2263 102 int ret;
4cb5300b 103
0b246afa 104 p = &fs_info->defrag_inodes.rb_node;
4cb5300b
CM
105 while (*p) {
106 parent = *p;
107 entry = rb_entry(parent, struct inode_defrag, rb_node);
108
762f2263
MX
109 ret = __compare_inode_defrag(defrag, entry);
110 if (ret < 0)
4cb5300b 111 p = &parent->rb_left;
762f2263 112 else if (ret > 0)
4cb5300b
CM
113 p = &parent->rb_right;
114 else {
115 /* if we're reinserting an entry for
116 * an old defrag run, make sure to
117 * lower the transid of our existing record
118 */
119 if (defrag->transid < entry->transid)
120 entry->transid = defrag->transid;
121 if (defrag->last_offset > entry->last_offset)
122 entry->last_offset = defrag->last_offset;
8ddc4734 123 return -EEXIST;
4cb5300b
CM
124 }
125 }
6158e1ce 126 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
4cb5300b 127 rb_link_node(&defrag->rb_node, parent, p);
0b246afa 128 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
8ddc4734
MX
129 return 0;
130}
4cb5300b 131
2ff7e61e 132static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
8ddc4734 133{
0b246afa 134 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
8ddc4734
MX
135 return 0;
136
0b246afa 137 if (btrfs_fs_closing(fs_info))
8ddc4734 138 return 0;
4cb5300b 139
8ddc4734 140 return 1;
4cb5300b
CM
141}
142
143/*
144 * insert a defrag record for this inode if auto defrag is
145 * enabled
146 */
147int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
6158e1ce 148 struct btrfs_inode *inode)
4cb5300b 149{
6158e1ce
NB
150 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
151 struct btrfs_root *root = inode->root;
4cb5300b 152 struct inode_defrag *defrag;
4cb5300b 153 u64 transid;
8ddc4734 154 int ret;
4cb5300b 155
2ff7e61e 156 if (!__need_auto_defrag(fs_info))
4cb5300b
CM
157 return 0;
158
6158e1ce 159 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
4cb5300b
CM
160 return 0;
161
162 if (trans)
163 transid = trans->transid;
164 else
6158e1ce 165 transid = inode->root->last_trans;
4cb5300b 166
9247f317 167 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
4cb5300b
CM
168 if (!defrag)
169 return -ENOMEM;
170
6158e1ce 171 defrag->ino = btrfs_ino(inode);
4cb5300b
CM
172 defrag->transid = transid;
173 defrag->root = root->root_key.objectid;
174
0b246afa 175 spin_lock(&fs_info->defrag_inodes_lock);
6158e1ce 176 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
8ddc4734
MX
177 /*
178 * If we set IN_DEFRAG flag and evict the inode from memory,
179 * and then re-read this inode, this new inode doesn't have
180 * IN_DEFRAG flag. At the case, we may find the existed defrag.
181 */
182 ret = __btrfs_add_inode_defrag(inode, defrag);
183 if (ret)
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 } else {
9247f317 186 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
8ddc4734 187 }
0b246afa 188 spin_unlock(&fs_info->defrag_inodes_lock);
a0f98dde 189 return 0;
4cb5300b
CM
190}
191
192/*
8ddc4734
MX
193 * Requeue the defrag object. If there is a defrag object that points to
194 * the same inode in the tree, we will merge them together (by
195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
4cb5300b 196 */
46e59791 197static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
48a3b636 198 struct inode_defrag *defrag)
8ddc4734 199{
46e59791 200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
8ddc4734
MX
201 int ret;
202
2ff7e61e 203 if (!__need_auto_defrag(fs_info))
8ddc4734
MX
204 goto out;
205
206 /*
207 * Here we don't check the IN_DEFRAG flag, because we need merge
208 * them together.
209 */
0b246afa 210 spin_lock(&fs_info->defrag_inodes_lock);
8ddc4734 211 ret = __btrfs_add_inode_defrag(inode, defrag);
0b246afa 212 spin_unlock(&fs_info->defrag_inodes_lock);
8ddc4734
MX
213 if (ret)
214 goto out;
215 return;
216out:
217 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
218}
219
4cb5300b 220/*
26176e7c
MX
221 * pick the defragable inode that we want, if it doesn't exist, we will get
222 * the next one.
4cb5300b 223 */
26176e7c
MX
224static struct inode_defrag *
225btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
4cb5300b
CM
226{
227 struct inode_defrag *entry = NULL;
762f2263 228 struct inode_defrag tmp;
4cb5300b
CM
229 struct rb_node *p;
230 struct rb_node *parent = NULL;
762f2263
MX
231 int ret;
232
233 tmp.ino = ino;
234 tmp.root = root;
4cb5300b 235
26176e7c
MX
236 spin_lock(&fs_info->defrag_inodes_lock);
237 p = fs_info->defrag_inodes.rb_node;
4cb5300b
CM
238 while (p) {
239 parent = p;
240 entry = rb_entry(parent, struct inode_defrag, rb_node);
241
762f2263
MX
242 ret = __compare_inode_defrag(&tmp, entry);
243 if (ret < 0)
4cb5300b 244 p = parent->rb_left;
762f2263 245 else if (ret > 0)
4cb5300b
CM
246 p = parent->rb_right;
247 else
26176e7c 248 goto out;
4cb5300b
CM
249 }
250
26176e7c
MX
251 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
252 parent = rb_next(parent);
253 if (parent)
4cb5300b 254 entry = rb_entry(parent, struct inode_defrag, rb_node);
26176e7c
MX
255 else
256 entry = NULL;
4cb5300b 257 }
26176e7c
MX
258out:
259 if (entry)
260 rb_erase(parent, &fs_info->defrag_inodes);
261 spin_unlock(&fs_info->defrag_inodes_lock);
262 return entry;
4cb5300b
CM
263}
264
26176e7c 265void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
4cb5300b
CM
266{
267 struct inode_defrag *defrag;
26176e7c
MX
268 struct rb_node *node;
269
270 spin_lock(&fs_info->defrag_inodes_lock);
271 node = rb_first(&fs_info->defrag_inodes);
272 while (node) {
273 rb_erase(node, &fs_info->defrag_inodes);
274 defrag = rb_entry(node, struct inode_defrag, rb_node);
275 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
276
351810c1 277 cond_resched_lock(&fs_info->defrag_inodes_lock);
26176e7c
MX
278
279 node = rb_first(&fs_info->defrag_inodes);
280 }
281 spin_unlock(&fs_info->defrag_inodes_lock);
282}
283
284#define BTRFS_DEFRAG_BATCH 1024
285
286static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
287 struct inode_defrag *defrag)
288{
4cb5300b
CM
289 struct btrfs_root *inode_root;
290 struct inode *inode;
4cb5300b
CM
291 struct btrfs_key key;
292 struct btrfs_ioctl_defrag_range_args range;
4cb5300b 293 int num_defrag;
6f1c3605
LB
294 int index;
295 int ret;
4cb5300b 296
26176e7c
MX
297 /* get the inode */
298 key.objectid = defrag->root;
962a298f 299 key.type = BTRFS_ROOT_ITEM_KEY;
26176e7c 300 key.offset = (u64)-1;
6f1c3605
LB
301
302 index = srcu_read_lock(&fs_info->subvol_srcu);
303
26176e7c
MX
304 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
305 if (IS_ERR(inode_root)) {
6f1c3605
LB
306 ret = PTR_ERR(inode_root);
307 goto cleanup;
308 }
26176e7c
MX
309
310 key.objectid = defrag->ino;
962a298f 311 key.type = BTRFS_INODE_ITEM_KEY;
26176e7c
MX
312 key.offset = 0;
313 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
314 if (IS_ERR(inode)) {
6f1c3605
LB
315 ret = PTR_ERR(inode);
316 goto cleanup;
26176e7c 317 }
6f1c3605 318 srcu_read_unlock(&fs_info->subvol_srcu, index);
26176e7c
MX
319
320 /* do a chunk of defrag */
321 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
322 memset(&range, 0, sizeof(range));
323 range.len = (u64)-1;
26176e7c 324 range.start = defrag->last_offset;
b66f00da
MX
325
326 sb_start_write(fs_info->sb);
26176e7c
MX
327 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
328 BTRFS_DEFRAG_BATCH);
b66f00da 329 sb_end_write(fs_info->sb);
26176e7c
MX
330 /*
331 * if we filled the whole defrag batch, there
332 * must be more work to do. Queue this defrag
333 * again
334 */
335 if (num_defrag == BTRFS_DEFRAG_BATCH) {
336 defrag->last_offset = range.start;
46e59791 337 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
26176e7c
MX
338 } else if (defrag->last_offset && !defrag->cycled) {
339 /*
340 * we didn't fill our defrag batch, but
341 * we didn't start at zero. Make sure we loop
342 * around to the start of the file.
343 */
344 defrag->last_offset = 0;
345 defrag->cycled = 1;
46e59791 346 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
26176e7c
MX
347 } else {
348 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
349 }
350
351 iput(inode);
352 return 0;
6f1c3605
LB
353cleanup:
354 srcu_read_unlock(&fs_info->subvol_srcu, index);
355 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
356 return ret;
26176e7c
MX
357}
358
359/*
360 * run through the list of inodes in the FS that need
361 * defragging
362 */
363int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
364{
365 struct inode_defrag *defrag;
366 u64 first_ino = 0;
367 u64 root_objectid = 0;
4cb5300b
CM
368
369 atomic_inc(&fs_info->defrag_running);
67871254 370 while (1) {
dc81cdc5
MX
371 /* Pause the auto defragger. */
372 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
373 &fs_info->fs_state))
374 break;
375
2ff7e61e 376 if (!__need_auto_defrag(fs_info))
26176e7c 377 break;
4cb5300b
CM
378
379 /* find an inode to defrag */
26176e7c
MX
380 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
381 first_ino);
4cb5300b 382 if (!defrag) {
26176e7c 383 if (root_objectid || first_ino) {
762f2263 384 root_objectid = 0;
4cb5300b
CM
385 first_ino = 0;
386 continue;
387 } else {
388 break;
389 }
390 }
391
4cb5300b 392 first_ino = defrag->ino + 1;
762f2263 393 root_objectid = defrag->root;
4cb5300b 394
26176e7c 395 __btrfs_run_defrag_inode(fs_info, defrag);
4cb5300b 396 }
4cb5300b
CM
397 atomic_dec(&fs_info->defrag_running);
398
399 /*
400 * during unmount, we use the transaction_wait queue to
401 * wait for the defragger to stop
402 */
403 wake_up(&fs_info->transaction_wait);
404 return 0;
405}
39279cc3 406
d352ac68
CM
407/* simple helper to fault in pages and copy. This should go away
408 * and be replaced with calls into generic code.
409 */
ee22f0c4 410static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
a1b32a59 411 struct page **prepared_pages,
11c65dcc 412 struct iov_iter *i)
39279cc3 413{
914ee295 414 size_t copied = 0;
d0215f3e 415 size_t total_copied = 0;
11c65dcc 416 int pg = 0;
09cbfeaf 417 int offset = pos & (PAGE_SIZE - 1);
39279cc3 418
11c65dcc 419 while (write_bytes > 0) {
39279cc3 420 size_t count = min_t(size_t,
09cbfeaf 421 PAGE_SIZE - offset, write_bytes);
11c65dcc 422 struct page *page = prepared_pages[pg];
914ee295
XZ
423 /*
424 * Copy data from userspace to the current page
914ee295 425 */
914ee295 426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
11c65dcc 427
39279cc3
CM
428 /* Flush processor's dcache for this page */
429 flush_dcache_page(page);
31339acd
CM
430
431 /*
432 * if we get a partial write, we can end up with
433 * partially up to date pages. These add
434 * a lot of complexity, so make sure they don't
435 * happen by forcing this copy to be retried.
436 *
437 * The rest of the btrfs_file_write code will fall
438 * back to page at a time copies after we return 0.
439 */
440 if (!PageUptodate(page) && copied < count)
441 copied = 0;
442
11c65dcc
JB
443 iov_iter_advance(i, copied);
444 write_bytes -= copied;
914ee295 445 total_copied += copied;
39279cc3 446
b30ac0fc 447 /* Return to btrfs_file_write_iter to fault page */
9f570b8d 448 if (unlikely(copied == 0))
914ee295 449 break;
11c65dcc 450
09cbfeaf 451 if (copied < PAGE_SIZE - offset) {
11c65dcc
JB
452 offset += copied;
453 } else {
454 pg++;
455 offset = 0;
456 }
39279cc3 457 }
914ee295 458 return total_copied;
39279cc3
CM
459}
460
d352ac68
CM
461/*
462 * unlocks pages after btrfs_file_write is done with them
463 */
48a3b636 464static void btrfs_drop_pages(struct page **pages, size_t num_pages)
39279cc3
CM
465{
466 size_t i;
467 for (i = 0; i < num_pages; i++) {
d352ac68
CM
468 /* page checked is some magic around finding pages that
469 * have been modified without going through btrfs_set_page_dirty
2457aec6
MG
470 * clear it here. There should be no need to mark the pages
471 * accessed as prepare_pages should have marked them accessed
472 * in prepare_pages via find_or_create_page()
d352ac68 473 */
4a096752 474 ClearPageChecked(pages[i]);
39279cc3 475 unlock_page(pages[i]);
09cbfeaf 476 put_page(pages[i]);
39279cc3
CM
477 }
478}
479
f48bf66b
FM
480static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
481 const u64 start,
482 const u64 len,
483 struct extent_state **cached_state)
484{
485 u64 search_start = start;
486 const u64 end = start + len - 1;
487
488 while (search_start < end) {
489 const u64 search_len = end - search_start + 1;
490 struct extent_map *em;
491 u64 em_len;
492 int ret = 0;
493
494 em = btrfs_get_extent(inode, NULL, 0, search_start,
495 search_len, 0);
496 if (IS_ERR(em))
497 return PTR_ERR(em);
498
499 if (em->block_start != EXTENT_MAP_HOLE)
500 goto next;
501
502 em_len = em->len;
503 if (em->start < search_start)
504 em_len -= search_start - em->start;
505 if (em_len > search_len)
506 em_len = search_len;
507
508 ret = set_extent_bit(&inode->io_tree, search_start,
509 search_start + em_len - 1,
510 EXTENT_DELALLOC_NEW,
511 NULL, cached_state, GFP_NOFS);
512next:
513 search_start = extent_map_end(em);
514 free_extent_map(em);
515 if (ret)
516 return ret;
517 }
518 return 0;
519}
520
d352ac68
CM
521/*
522 * after copy_from_user, pages need to be dirtied and we need to make
523 * sure holes are created between the current EOF and the start of
524 * any next extents (if required).
525 *
526 * this also makes the decision about creating an inline extent vs
527 * doing real data extents, marking pages dirty and delalloc as required.
528 */
2ff7e61e
JM
529int btrfs_dirty_pages(struct inode *inode, struct page **pages,
530 size_t num_pages, loff_t pos, size_t write_bytes,
531 struct extent_state **cached)
39279cc3 532{
0b246afa 533 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 534 int err = 0;
a52d9a80 535 int i;
db94535d 536 u64 num_bytes;
a52d9a80
CM
537 u64 start_pos;
538 u64 end_of_last_block;
539 u64 end_pos = pos + write_bytes;
540 loff_t isize = i_size_read(inode);
39279cc3 541
0b246afa 542 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
da17066c 543 num_bytes = round_up(write_bytes + pos - start_pos,
0b246afa 544 fs_info->sectorsize);
39279cc3 545
db94535d 546 end_of_last_block = start_pos + num_bytes - 1;
2ac55d41 547 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
ba8b04c1 548 cached, 0);
d0215f3e
JB
549 if (err)
550 return err;
9ed74f2d 551
c8b97818
CM
552 for (i = 0; i < num_pages; i++) {
553 struct page *p = pages[i];
554 SetPageUptodate(p);
555 ClearPageChecked(p);
556 set_page_dirty(p);
a52d9a80 557 }
9f570b8d
JB
558
559 /*
560 * we've only changed i_size in ram, and we haven't updated
561 * the disk i_size. There is no need to log the inode
562 * at this time.
563 */
564 if (end_pos > isize)
a52d9a80 565 i_size_write(inode, end_pos);
a22285a6 566 return 0;
39279cc3
CM
567}
568
d352ac68
CM
569/*
570 * this drops all the extents in the cache that intersect the range
571 * [start, end]. Existing extents are split as required.
572 */
dcdbc059 573void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
7014cdb4 574 int skip_pinned)
a52d9a80
CM
575{
576 struct extent_map *em;
3b951516
CM
577 struct extent_map *split = NULL;
578 struct extent_map *split2 = NULL;
dcdbc059 579 struct extent_map_tree *em_tree = &inode->extent_tree;
39b5637f 580 u64 len = end - start + 1;
5dc562c5 581 u64 gen;
3b951516
CM
582 int ret;
583 int testend = 1;
5b21f2ed 584 unsigned long flags;
c8b97818 585 int compressed = 0;
09a2a8f9 586 bool modified;
a52d9a80 587
e6dcd2dc 588 WARN_ON(end < start);
3b951516 589 if (end == (u64)-1) {
39b5637f 590 len = (u64)-1;
3b951516
CM
591 testend = 0;
592 }
d397712b 593 while (1) {
7014cdb4
JB
594 int no_splits = 0;
595
09a2a8f9 596 modified = false;
3b951516 597 if (!split)
172ddd60 598 split = alloc_extent_map();
3b951516 599 if (!split2)
172ddd60 600 split2 = alloc_extent_map();
7014cdb4
JB
601 if (!split || !split2)
602 no_splits = 1;
3b951516 603
890871be 604 write_lock(&em_tree->lock);
39b5637f 605 em = lookup_extent_mapping(em_tree, start, len);
d1310b2e 606 if (!em) {
890871be 607 write_unlock(&em_tree->lock);
a52d9a80 608 break;
d1310b2e 609 }
5b21f2ed 610 flags = em->flags;
5dc562c5 611 gen = em->generation;
5b21f2ed 612 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
55ef6899 613 if (testend && em->start + em->len >= start + len) {
5b21f2ed 614 free_extent_map(em);
a1ed835e 615 write_unlock(&em_tree->lock);
5b21f2ed
ZY
616 break;
617 }
55ef6899
YZ
618 start = em->start + em->len;
619 if (testend)
5b21f2ed 620 len = start + len - (em->start + em->len);
5b21f2ed 621 free_extent_map(em);
a1ed835e 622 write_unlock(&em_tree->lock);
5b21f2ed
ZY
623 continue;
624 }
c8b97818 625 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3ce7e67a 626 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
3b277594 627 clear_bit(EXTENT_FLAG_LOGGING, &flags);
09a2a8f9 628 modified = !list_empty(&em->list);
7014cdb4
JB
629 if (no_splits)
630 goto next;
3b951516 631
ee20a983 632 if (em->start < start) {
3b951516
CM
633 split->start = em->start;
634 split->len = start - em->start;
ee20a983
JB
635
636 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
637 split->orig_start = em->orig_start;
638 split->block_start = em->block_start;
639
640 if (compressed)
641 split->block_len = em->block_len;
642 else
643 split->block_len = split->len;
644 split->orig_block_len = max(split->block_len,
645 em->orig_block_len);
646 split->ram_bytes = em->ram_bytes;
647 } else {
648 split->orig_start = split->start;
649 split->block_len = 0;
650 split->block_start = em->block_start;
651 split->orig_block_len = 0;
652 split->ram_bytes = split->len;
653 }
654
5dc562c5 655 split->generation = gen;
3b951516 656 split->bdev = em->bdev;
5b21f2ed 657 split->flags = flags;
261507a0 658 split->compress_type = em->compress_type;
176840b3 659 replace_extent_mapping(em_tree, em, split, modified);
3b951516
CM
660 free_extent_map(split);
661 split = split2;
662 split2 = NULL;
663 }
ee20a983 664 if (testend && em->start + em->len > start + len) {
3b951516
CM
665 u64 diff = start + len - em->start;
666
667 split->start = start + len;
668 split->len = em->start + em->len - (start + len);
669 split->bdev = em->bdev;
5b21f2ed 670 split->flags = flags;
261507a0 671 split->compress_type = em->compress_type;
5dc562c5 672 split->generation = gen;
ee20a983
JB
673
674 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
675 split->orig_block_len = max(em->block_len,
b4939680 676 em->orig_block_len);
3b951516 677
ee20a983
JB
678 split->ram_bytes = em->ram_bytes;
679 if (compressed) {
680 split->block_len = em->block_len;
681 split->block_start = em->block_start;
682 split->orig_start = em->orig_start;
683 } else {
684 split->block_len = split->len;
685 split->block_start = em->block_start
686 + diff;
687 split->orig_start = em->orig_start;
688 }
c8b97818 689 } else {
ee20a983
JB
690 split->ram_bytes = split->len;
691 split->orig_start = split->start;
692 split->block_len = 0;
693 split->block_start = em->block_start;
694 split->orig_block_len = 0;
c8b97818 695 }
3b951516 696
176840b3
FM
697 if (extent_map_in_tree(em)) {
698 replace_extent_mapping(em_tree, em, split,
699 modified);
700 } else {
701 ret = add_extent_mapping(em_tree, split,
702 modified);
703 ASSERT(ret == 0); /* Logic error */
704 }
3b951516
CM
705 free_extent_map(split);
706 split = NULL;
707 }
7014cdb4 708next:
176840b3
FM
709 if (extent_map_in_tree(em))
710 remove_extent_mapping(em_tree, em);
890871be 711 write_unlock(&em_tree->lock);
d1310b2e 712
a52d9a80
CM
713 /* once for us */
714 free_extent_map(em);
715 /* once for the tree*/
716 free_extent_map(em);
717 }
3b951516
CM
718 if (split)
719 free_extent_map(split);
720 if (split2)
721 free_extent_map(split2);
a52d9a80
CM
722}
723
39279cc3
CM
724/*
725 * this is very complex, but the basic idea is to drop all extents
726 * in the range start - end. hint_block is filled in with a block number
727 * that would be a good hint to the block allocator for this file.
728 *
729 * If an extent intersects the range but is not entirely inside the range
730 * it is either truncated or split. Anything entirely inside the range
731 * is deleted from the tree.
732 */
5dc562c5
JB
733int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
734 struct btrfs_root *root, struct inode *inode,
735 struct btrfs_path *path, u64 start, u64 end,
1acae57b
FDBM
736 u64 *drop_end, int drop_cache,
737 int replace_extent,
738 u32 extent_item_size,
739 int *key_inserted)
39279cc3 740{
0b246afa 741 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 742 struct extent_buffer *leaf;
920bbbfb 743 struct btrfs_file_extent_item *fi;
00f5c795 744 struct btrfs_key key;
920bbbfb 745 struct btrfs_key new_key;
4a0cc7ca 746 u64 ino = btrfs_ino(BTRFS_I(inode));
920bbbfb
YZ
747 u64 search_start = start;
748 u64 disk_bytenr = 0;
749 u64 num_bytes = 0;
750 u64 extent_offset = 0;
751 u64 extent_end = 0;
62fe51c1 752 u64 last_end = start;
920bbbfb
YZ
753 int del_nr = 0;
754 int del_slot = 0;
755 int extent_type;
ccd467d6 756 int recow;
00f5c795 757 int ret;
dc7fdde3 758 int modify_tree = -1;
27cdeb70 759 int update_refs;
c3308f84 760 int found = 0;
1acae57b 761 int leafs_visited = 0;
39279cc3 762
a1ed835e 763 if (drop_cache)
dcdbc059 764 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
a52d9a80 765
d5f37527 766 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
dc7fdde3
CM
767 modify_tree = 0;
768
27cdeb70 769 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 770 root == fs_info->tree_root);
d397712b 771 while (1) {
ccd467d6 772 recow = 0;
33345d01 773 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 774 search_start, modify_tree);
39279cc3 775 if (ret < 0)
920bbbfb
YZ
776 break;
777 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
778 leaf = path->nodes[0];
779 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 780 if (key.objectid == ino &&
920bbbfb
YZ
781 key.type == BTRFS_EXTENT_DATA_KEY)
782 path->slots[0]--;
39279cc3 783 }
920bbbfb 784 ret = 0;
1acae57b 785 leafs_visited++;
8c2383c3 786next_slot:
5f39d397 787 leaf = path->nodes[0];
920bbbfb
YZ
788 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
789 BUG_ON(del_nr > 0);
790 ret = btrfs_next_leaf(root, path);
791 if (ret < 0)
792 break;
793 if (ret > 0) {
794 ret = 0;
795 break;
8c2383c3 796 }
1acae57b 797 leafs_visited++;
920bbbfb
YZ
798 leaf = path->nodes[0];
799 recow = 1;
800 }
801
802 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
aeafbf84
FM
803
804 if (key.objectid > ino)
805 break;
806 if (WARN_ON_ONCE(key.objectid < ino) ||
807 key.type < BTRFS_EXTENT_DATA_KEY) {
808 ASSERT(del_nr == 0);
809 path->slots[0]++;
810 goto next_slot;
811 }
812 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
920bbbfb
YZ
813 break;
814
815 fi = btrfs_item_ptr(leaf, path->slots[0],
816 struct btrfs_file_extent_item);
817 extent_type = btrfs_file_extent_type(leaf, fi);
818
819 if (extent_type == BTRFS_FILE_EXTENT_REG ||
820 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
821 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
822 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
823 extent_offset = btrfs_file_extent_offset(leaf, fi);
824 extent_end = key.offset +
825 btrfs_file_extent_num_bytes(leaf, fi);
826 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
827 extent_end = key.offset +
514ac8ad
CM
828 btrfs_file_extent_inline_len(leaf,
829 path->slots[0], fi);
8c2383c3 830 } else {
aeafbf84
FM
831 /* can't happen */
832 BUG();
39279cc3
CM
833 }
834
fc19c5e7
FM
835 /*
836 * Don't skip extent items representing 0 byte lengths. They
837 * used to be created (bug) if while punching holes we hit
838 * -ENOSPC condition. So if we find one here, just ensure we
839 * delete it, otherwise we would insert a new file extent item
840 * with the same key (offset) as that 0 bytes length file
841 * extent item in the call to setup_items_for_insert() later
842 * in this function.
843 */
62fe51c1
JB
844 if (extent_end == key.offset && extent_end >= search_start) {
845 last_end = extent_end;
fc19c5e7 846 goto delete_extent_item;
62fe51c1 847 }
fc19c5e7 848
920bbbfb
YZ
849 if (extent_end <= search_start) {
850 path->slots[0]++;
8c2383c3 851 goto next_slot;
39279cc3
CM
852 }
853
c3308f84 854 found = 1;
920bbbfb 855 search_start = max(key.offset, start);
dc7fdde3
CM
856 if (recow || !modify_tree) {
857 modify_tree = -1;
b3b4aa74 858 btrfs_release_path(path);
920bbbfb 859 continue;
39279cc3 860 }
6643558d 861
920bbbfb
YZ
862 /*
863 * | - range to drop - |
864 * | -------- extent -------- |
865 */
866 if (start > key.offset && end < extent_end) {
867 BUG_ON(del_nr > 0);
00fdf13a 868 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 869 ret = -EOPNOTSUPP;
00fdf13a
LB
870 break;
871 }
920bbbfb
YZ
872
873 memcpy(&new_key, &key, sizeof(new_key));
874 new_key.offset = start;
875 ret = btrfs_duplicate_item(trans, root, path,
876 &new_key);
877 if (ret == -EAGAIN) {
b3b4aa74 878 btrfs_release_path(path);
920bbbfb 879 continue;
6643558d 880 }
920bbbfb
YZ
881 if (ret < 0)
882 break;
883
884 leaf = path->nodes[0];
885 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
886 struct btrfs_file_extent_item);
887 btrfs_set_file_extent_num_bytes(leaf, fi,
888 start - key.offset);
889
890 fi = btrfs_item_ptr(leaf, path->slots[0],
891 struct btrfs_file_extent_item);
892
893 extent_offset += start - key.offset;
894 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
895 btrfs_set_file_extent_num_bytes(leaf, fi,
896 extent_end - start);
897 btrfs_mark_buffer_dirty(leaf);
898
5dc562c5 899 if (update_refs && disk_bytenr > 0) {
84f7d8e6 900 ret = btrfs_inc_extent_ref(trans, root,
920bbbfb
YZ
901 disk_bytenr, num_bytes, 0,
902 root->root_key.objectid,
903 new_key.objectid,
b06c4bf5 904 start - extent_offset);
79787eaa 905 BUG_ON(ret); /* -ENOMEM */
771ed689 906 }
920bbbfb 907 key.offset = start;
6643558d 908 }
62fe51c1
JB
909 /*
910 * From here on out we will have actually dropped something, so
911 * last_end can be updated.
912 */
913 last_end = extent_end;
914
920bbbfb
YZ
915 /*
916 * | ---- range to drop ----- |
917 * | -------- extent -------- |
918 */
919 if (start <= key.offset && end < extent_end) {
00fdf13a 920 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 921 ret = -EOPNOTSUPP;
00fdf13a
LB
922 break;
923 }
6643558d 924
920bbbfb
YZ
925 memcpy(&new_key, &key, sizeof(new_key));
926 new_key.offset = end;
0b246afa 927 btrfs_set_item_key_safe(fs_info, path, &new_key);
6643558d 928
920bbbfb
YZ
929 extent_offset += end - key.offset;
930 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
931 btrfs_set_file_extent_num_bytes(leaf, fi,
932 extent_end - end);
933 btrfs_mark_buffer_dirty(leaf);
2671485d 934 if (update_refs && disk_bytenr > 0)
920bbbfb 935 inode_sub_bytes(inode, end - key.offset);
920bbbfb 936 break;
39279cc3 937 }
771ed689 938
920bbbfb
YZ
939 search_start = extent_end;
940 /*
941 * | ---- range to drop ----- |
942 * | -------- extent -------- |
943 */
944 if (start > key.offset && end >= extent_end) {
945 BUG_ON(del_nr > 0);
00fdf13a 946 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 947 ret = -EOPNOTSUPP;
00fdf13a
LB
948 break;
949 }
8c2383c3 950
920bbbfb
YZ
951 btrfs_set_file_extent_num_bytes(leaf, fi,
952 start - key.offset);
953 btrfs_mark_buffer_dirty(leaf);
2671485d 954 if (update_refs && disk_bytenr > 0)
920bbbfb 955 inode_sub_bytes(inode, extent_end - start);
920bbbfb
YZ
956 if (end == extent_end)
957 break;
c8b97818 958
920bbbfb
YZ
959 path->slots[0]++;
960 goto next_slot;
31840ae1
ZY
961 }
962
920bbbfb
YZ
963 /*
964 * | ---- range to drop ----- |
965 * | ------ extent ------ |
966 */
967 if (start <= key.offset && end >= extent_end) {
fc19c5e7 968delete_extent_item:
920bbbfb
YZ
969 if (del_nr == 0) {
970 del_slot = path->slots[0];
971 del_nr = 1;
972 } else {
973 BUG_ON(del_slot + del_nr != path->slots[0]);
974 del_nr++;
975 }
31840ae1 976
5dc562c5
JB
977 if (update_refs &&
978 extent_type == BTRFS_FILE_EXTENT_INLINE) {
a76a3cd4 979 inode_sub_bytes(inode,
920bbbfb
YZ
980 extent_end - key.offset);
981 extent_end = ALIGN(extent_end,
0b246afa 982 fs_info->sectorsize);
5dc562c5 983 } else if (update_refs && disk_bytenr > 0) {
84f7d8e6 984 ret = btrfs_free_extent(trans, root,
920bbbfb
YZ
985 disk_bytenr, num_bytes, 0,
986 root->root_key.objectid,
5d4f98a2 987 key.objectid, key.offset -
b06c4bf5 988 extent_offset);
79787eaa 989 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
990 inode_sub_bytes(inode,
991 extent_end - key.offset);
31840ae1 992 }
31840ae1 993
920bbbfb
YZ
994 if (end == extent_end)
995 break;
996
997 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
998 path->slots[0]++;
999 goto next_slot;
1000 }
1001
1002 ret = btrfs_del_items(trans, root, path, del_slot,
1003 del_nr);
79787eaa 1004 if (ret) {
66642832 1005 btrfs_abort_transaction(trans, ret);
5dc562c5 1006 break;
79787eaa 1007 }
920bbbfb
YZ
1008
1009 del_nr = 0;
1010 del_slot = 0;
1011
b3b4aa74 1012 btrfs_release_path(path);
920bbbfb 1013 continue;
39279cc3 1014 }
920bbbfb
YZ
1015
1016 BUG_ON(1);
39279cc3 1017 }
920bbbfb 1018
79787eaa 1019 if (!ret && del_nr > 0) {
1acae57b
FDBM
1020 /*
1021 * Set path->slots[0] to first slot, so that after the delete
1022 * if items are move off from our leaf to its immediate left or
1023 * right neighbor leafs, we end up with a correct and adjusted
d5f37527 1024 * path->slots[0] for our insertion (if replace_extent != 0).
1acae57b
FDBM
1025 */
1026 path->slots[0] = del_slot;
920bbbfb 1027 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 1028 if (ret)
66642832 1029 btrfs_abort_transaction(trans, ret);
d5f37527 1030 }
1acae57b 1031
d5f37527
FDBM
1032 leaf = path->nodes[0];
1033 /*
1034 * If btrfs_del_items() was called, it might have deleted a leaf, in
1035 * which case it unlocked our path, so check path->locks[0] matches a
1036 * write lock.
1037 */
1038 if (!ret && replace_extent && leafs_visited == 1 &&
1039 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1040 path->locks[0] == BTRFS_WRITE_LOCK) &&
2ff7e61e 1041 btrfs_leaf_free_space(fs_info, leaf) >=
d5f37527
FDBM
1042 sizeof(struct btrfs_item) + extent_item_size) {
1043
1044 key.objectid = ino;
1045 key.type = BTRFS_EXTENT_DATA_KEY;
1046 key.offset = start;
1047 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1048 struct btrfs_key slot_key;
1049
1050 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1051 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1052 path->slots[0]++;
1acae57b 1053 }
d5f37527
FDBM
1054 setup_items_for_insert(root, path, &key,
1055 &extent_item_size,
1056 extent_item_size,
1057 sizeof(struct btrfs_item) +
1058 extent_item_size, 1);
1059 *key_inserted = 1;
6643558d 1060 }
920bbbfb 1061
1acae57b
FDBM
1062 if (!replace_extent || !(*key_inserted))
1063 btrfs_release_path(path);
2aaa6655 1064 if (drop_end)
62fe51c1 1065 *drop_end = found ? min(end, last_end) : end;
5dc562c5
JB
1066 return ret;
1067}
1068
1069int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1070 struct btrfs_root *root, struct inode *inode, u64 start,
2671485d 1071 u64 end, int drop_cache)
5dc562c5
JB
1072{
1073 struct btrfs_path *path;
1074 int ret;
1075
1076 path = btrfs_alloc_path();
1077 if (!path)
1078 return -ENOMEM;
2aaa6655 1079 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1acae57b 1080 drop_cache, 0, 0, NULL);
920bbbfb 1081 btrfs_free_path(path);
39279cc3
CM
1082 return ret;
1083}
1084
d899e052 1085static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
1086 u64 objectid, u64 bytenr, u64 orig_offset,
1087 u64 *start, u64 *end)
d899e052
YZ
1088{
1089 struct btrfs_file_extent_item *fi;
1090 struct btrfs_key key;
1091 u64 extent_end;
1092
1093 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1094 return 0;
1095
1096 btrfs_item_key_to_cpu(leaf, &key, slot);
1097 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1098 return 0;
1099
1100 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1101 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1102 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 1103 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
1104 btrfs_file_extent_compression(leaf, fi) ||
1105 btrfs_file_extent_encryption(leaf, fi) ||
1106 btrfs_file_extent_other_encoding(leaf, fi))
1107 return 0;
1108
1109 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1110 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1111 return 0;
1112
1113 *start = key.offset;
1114 *end = extent_end;
1115 return 1;
1116}
1117
1118/*
1119 * Mark extent in the range start - end as written.
1120 *
1121 * This changes extent type from 'pre-allocated' to 'regular'. If only
1122 * part of extent is marked as written, the extent will be split into
1123 * two or three.
1124 */
1125int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
7a6d7067 1126 struct btrfs_inode *inode, u64 start, u64 end)
d899e052 1127{
7a6d7067
NB
1128 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1129 struct btrfs_root *root = inode->root;
d899e052
YZ
1130 struct extent_buffer *leaf;
1131 struct btrfs_path *path;
1132 struct btrfs_file_extent_item *fi;
1133 struct btrfs_key key;
920bbbfb 1134 struct btrfs_key new_key;
d899e052
YZ
1135 u64 bytenr;
1136 u64 num_bytes;
1137 u64 extent_end;
5d4f98a2 1138 u64 orig_offset;
d899e052
YZ
1139 u64 other_start;
1140 u64 other_end;
920bbbfb
YZ
1141 u64 split;
1142 int del_nr = 0;
1143 int del_slot = 0;
6c7d54ac 1144 int recow;
d899e052 1145 int ret;
7a6d7067 1146 u64 ino = btrfs_ino(inode);
d899e052 1147
d899e052 1148 path = btrfs_alloc_path();
d8926bb3
MF
1149 if (!path)
1150 return -ENOMEM;
d899e052 1151again:
6c7d54ac 1152 recow = 0;
920bbbfb 1153 split = start;
33345d01 1154 key.objectid = ino;
d899e052 1155 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 1156 key.offset = split;
d899e052
YZ
1157
1158 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
1159 if (ret < 0)
1160 goto out;
d899e052
YZ
1161 if (ret > 0 && path->slots[0] > 0)
1162 path->slots[0]--;
1163
1164 leaf = path->nodes[0];
1165 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
9c8e63db
JB
1166 if (key.objectid != ino ||
1167 key.type != BTRFS_EXTENT_DATA_KEY) {
1168 ret = -EINVAL;
1169 btrfs_abort_transaction(trans, ret);
1170 goto out;
1171 }
d899e052
YZ
1172 fi = btrfs_item_ptr(leaf, path->slots[0],
1173 struct btrfs_file_extent_item);
9c8e63db
JB
1174 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1175 ret = -EINVAL;
1176 btrfs_abort_transaction(trans, ret);
1177 goto out;
1178 }
d899e052 1179 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
9c8e63db
JB
1180 if (key.offset > start || extent_end < end) {
1181 ret = -EINVAL;
1182 btrfs_abort_transaction(trans, ret);
1183 goto out;
1184 }
d899e052
YZ
1185
1186 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1187 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 1188 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
1189 memcpy(&new_key, &key, sizeof(new_key));
1190
1191 if (start == key.offset && end < extent_end) {
1192 other_start = 0;
1193 other_end = start;
1194 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1195 ino, bytenr, orig_offset,
6c7d54ac
YZ
1196 &other_start, &other_end)) {
1197 new_key.offset = end;
0b246afa 1198 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
1199 fi = btrfs_item_ptr(leaf, path->slots[0],
1200 struct btrfs_file_extent_item);
224ecce5
JB
1201 btrfs_set_file_extent_generation(leaf, fi,
1202 trans->transid);
6c7d54ac
YZ
1203 btrfs_set_file_extent_num_bytes(leaf, fi,
1204 extent_end - end);
1205 btrfs_set_file_extent_offset(leaf, fi,
1206 end - orig_offset);
1207 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1208 struct btrfs_file_extent_item);
224ecce5
JB
1209 btrfs_set_file_extent_generation(leaf, fi,
1210 trans->transid);
6c7d54ac
YZ
1211 btrfs_set_file_extent_num_bytes(leaf, fi,
1212 end - other_start);
1213 btrfs_mark_buffer_dirty(leaf);
1214 goto out;
1215 }
1216 }
1217
1218 if (start > key.offset && end == extent_end) {
1219 other_start = end;
1220 other_end = 0;
1221 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1222 ino, bytenr, orig_offset,
6c7d54ac
YZ
1223 &other_start, &other_end)) {
1224 fi = btrfs_item_ptr(leaf, path->slots[0],
1225 struct btrfs_file_extent_item);
1226 btrfs_set_file_extent_num_bytes(leaf, fi,
1227 start - key.offset);
224ecce5
JB
1228 btrfs_set_file_extent_generation(leaf, fi,
1229 trans->transid);
6c7d54ac
YZ
1230 path->slots[0]++;
1231 new_key.offset = start;
0b246afa 1232 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
1233
1234 fi = btrfs_item_ptr(leaf, path->slots[0],
1235 struct btrfs_file_extent_item);
224ecce5
JB
1236 btrfs_set_file_extent_generation(leaf, fi,
1237 trans->transid);
6c7d54ac
YZ
1238 btrfs_set_file_extent_num_bytes(leaf, fi,
1239 other_end - start);
1240 btrfs_set_file_extent_offset(leaf, fi,
1241 start - orig_offset);
1242 btrfs_mark_buffer_dirty(leaf);
1243 goto out;
1244 }
1245 }
d899e052 1246
920bbbfb
YZ
1247 while (start > key.offset || end < extent_end) {
1248 if (key.offset == start)
1249 split = end;
1250
920bbbfb
YZ
1251 new_key.offset = split;
1252 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1253 if (ret == -EAGAIN) {
b3b4aa74 1254 btrfs_release_path(path);
920bbbfb 1255 goto again;
d899e052 1256 }
79787eaa 1257 if (ret < 0) {
66642832 1258 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1259 goto out;
1260 }
d899e052 1261
920bbbfb
YZ
1262 leaf = path->nodes[0];
1263 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 1264 struct btrfs_file_extent_item);
224ecce5 1265 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 1266 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
1267 split - key.offset);
1268
1269 fi = btrfs_item_ptr(leaf, path->slots[0],
1270 struct btrfs_file_extent_item);
1271
224ecce5 1272 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
1273 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1274 btrfs_set_file_extent_num_bytes(leaf, fi,
1275 extent_end - split);
d899e052
YZ
1276 btrfs_mark_buffer_dirty(leaf);
1277
84f7d8e6 1278 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
2ff7e61e 1279 0, root->root_key.objectid,
b06c4bf5 1280 ino, orig_offset);
9c8e63db
JB
1281 if (ret) {
1282 btrfs_abort_transaction(trans, ret);
1283 goto out;
1284 }
d899e052 1285
920bbbfb
YZ
1286 if (split == start) {
1287 key.offset = start;
1288 } else {
9c8e63db
JB
1289 if (start != key.offset) {
1290 ret = -EINVAL;
1291 btrfs_abort_transaction(trans, ret);
1292 goto out;
1293 }
d899e052 1294 path->slots[0]--;
920bbbfb 1295 extent_end = end;
d899e052 1296 }
6c7d54ac 1297 recow = 1;
d899e052
YZ
1298 }
1299
920bbbfb
YZ
1300 other_start = end;
1301 other_end = 0;
6c7d54ac 1302 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1303 ino, bytenr, orig_offset,
6c7d54ac
YZ
1304 &other_start, &other_end)) {
1305 if (recow) {
b3b4aa74 1306 btrfs_release_path(path);
6c7d54ac
YZ
1307 goto again;
1308 }
920bbbfb
YZ
1309 extent_end = other_end;
1310 del_slot = path->slots[0] + 1;
1311 del_nr++;
84f7d8e6 1312 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
920bbbfb 1313 0, root->root_key.objectid,
b06c4bf5 1314 ino, orig_offset);
9c8e63db
JB
1315 if (ret) {
1316 btrfs_abort_transaction(trans, ret);
1317 goto out;
1318 }
d899e052 1319 }
920bbbfb
YZ
1320 other_start = 0;
1321 other_end = start;
6c7d54ac 1322 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1323 ino, bytenr, orig_offset,
6c7d54ac
YZ
1324 &other_start, &other_end)) {
1325 if (recow) {
b3b4aa74 1326 btrfs_release_path(path);
6c7d54ac
YZ
1327 goto again;
1328 }
920bbbfb
YZ
1329 key.offset = other_start;
1330 del_slot = path->slots[0];
1331 del_nr++;
84f7d8e6 1332 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
920bbbfb 1333 0, root->root_key.objectid,
b06c4bf5 1334 ino, orig_offset);
9c8e63db
JB
1335 if (ret) {
1336 btrfs_abort_transaction(trans, ret);
1337 goto out;
1338 }
920bbbfb
YZ
1339 }
1340 if (del_nr == 0) {
3f6fae95
SL
1341 fi = btrfs_item_ptr(leaf, path->slots[0],
1342 struct btrfs_file_extent_item);
920bbbfb
YZ
1343 btrfs_set_file_extent_type(leaf, fi,
1344 BTRFS_FILE_EXTENT_REG);
224ecce5 1345 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb 1346 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 1347 } else {
3f6fae95
SL
1348 fi = btrfs_item_ptr(leaf, del_slot - 1,
1349 struct btrfs_file_extent_item);
6c7d54ac
YZ
1350 btrfs_set_file_extent_type(leaf, fi,
1351 BTRFS_FILE_EXTENT_REG);
224ecce5 1352 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
1353 btrfs_set_file_extent_num_bytes(leaf, fi,
1354 extent_end - key.offset);
1355 btrfs_mark_buffer_dirty(leaf);
920bbbfb 1356
6c7d54ac 1357 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 1358 if (ret < 0) {
66642832 1359 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1360 goto out;
1361 }
6c7d54ac 1362 }
920bbbfb 1363out:
d899e052
YZ
1364 btrfs_free_path(path);
1365 return 0;
1366}
1367
b1bf862e
CM
1368/*
1369 * on error we return an unlocked page and the error value
1370 * on success we return a locked page and 0
1371 */
bb1591b4
CM
1372static int prepare_uptodate_page(struct inode *inode,
1373 struct page *page, u64 pos,
b6316429 1374 bool force_uptodate)
b1bf862e
CM
1375{
1376 int ret = 0;
1377
09cbfeaf 1378 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
b6316429 1379 !PageUptodate(page)) {
b1bf862e
CM
1380 ret = btrfs_readpage(NULL, page);
1381 if (ret)
1382 return ret;
1383 lock_page(page);
1384 if (!PageUptodate(page)) {
1385 unlock_page(page);
1386 return -EIO;
1387 }
bb1591b4
CM
1388 if (page->mapping != inode->i_mapping) {
1389 unlock_page(page);
1390 return -EAGAIN;
1391 }
b1bf862e
CM
1392 }
1393 return 0;
1394}
1395
39279cc3 1396/*
376cc685 1397 * this just gets pages into the page cache and locks them down.
39279cc3 1398 */
b37392ea
MX
1399static noinline int prepare_pages(struct inode *inode, struct page **pages,
1400 size_t num_pages, loff_t pos,
1401 size_t write_bytes, bool force_uptodate)
39279cc3
CM
1402{
1403 int i;
09cbfeaf 1404 unsigned long index = pos >> PAGE_SHIFT;
3b16a4e3 1405 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
fc28b62d 1406 int err = 0;
376cc685 1407 int faili;
8c2383c3 1408
39279cc3 1409 for (i = 0; i < num_pages; i++) {
bb1591b4 1410again:
a94733d0 1411 pages[i] = find_or_create_page(inode->i_mapping, index + i,
e3a41a5b 1412 mask | __GFP_WRITE);
39279cc3 1413 if (!pages[i]) {
b1bf862e
CM
1414 faili = i - 1;
1415 err = -ENOMEM;
1416 goto fail;
1417 }
1418
1419 if (i == 0)
bb1591b4 1420 err = prepare_uptodate_page(inode, pages[i], pos,
b6316429 1421 force_uptodate);
bb1591b4
CM
1422 if (!err && i == num_pages - 1)
1423 err = prepare_uptodate_page(inode, pages[i],
b6316429 1424 pos + write_bytes, false);
b1bf862e 1425 if (err) {
09cbfeaf 1426 put_page(pages[i]);
bb1591b4
CM
1427 if (err == -EAGAIN) {
1428 err = 0;
1429 goto again;
1430 }
b1bf862e
CM
1431 faili = i - 1;
1432 goto fail;
39279cc3 1433 }
ccd467d6 1434 wait_on_page_writeback(pages[i]);
39279cc3 1435 }
376cc685
MX
1436
1437 return 0;
1438fail:
1439 while (faili >= 0) {
1440 unlock_page(pages[faili]);
09cbfeaf 1441 put_page(pages[faili]);
376cc685
MX
1442 faili--;
1443 }
1444 return err;
1445
1446}
1447
1448/*
1449 * This function locks the extent and properly waits for data=ordered extents
1450 * to finish before allowing the pages to be modified if need.
1451 *
1452 * The return value:
1453 * 1 - the extent is locked
1454 * 0 - the extent is not locked, and everything is OK
1455 * -EAGAIN - need re-prepare the pages
1456 * the other < 0 number - Something wrong happens
1457 */
1458static noinline int
2cff578c 1459lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
376cc685 1460 size_t num_pages, loff_t pos,
2e78c927 1461 size_t write_bytes,
376cc685
MX
1462 u64 *lockstart, u64 *lockend,
1463 struct extent_state **cached_state)
1464{
2cff578c 1465 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
376cc685
MX
1466 u64 start_pos;
1467 u64 last_pos;
1468 int i;
1469 int ret = 0;
1470
0b246afa 1471 start_pos = round_down(pos, fs_info->sectorsize);
2e78c927 1472 last_pos = start_pos
da17066c 1473 + round_up(pos + write_bytes - start_pos,
0b246afa 1474 fs_info->sectorsize) - 1;
376cc685 1475
a7e3b975
FM
1476 if (start_pos < inode->vfs_inode.i_size ||
1477 (inode->flags & BTRFS_INODE_PREALLOC)) {
e6dcd2dc 1478 struct btrfs_ordered_extent *ordered;
a7e3b975
FM
1479 unsigned int clear_bits;
1480
2cff578c
NB
1481 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1482 cached_state);
b88935bf
MX
1483 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1484 last_pos - start_pos + 1);
e6dcd2dc
CM
1485 if (ordered &&
1486 ordered->file_offset + ordered->len > start_pos &&
376cc685 1487 ordered->file_offset <= last_pos) {
2cff578c
NB
1488 unlock_extent_cached(&inode->io_tree, start_pos,
1489 last_pos, cached_state, GFP_NOFS);
e6dcd2dc
CM
1490 for (i = 0; i < num_pages; i++) {
1491 unlock_page(pages[i]);
09cbfeaf 1492 put_page(pages[i]);
e6dcd2dc 1493 }
2cff578c
NB
1494 btrfs_start_ordered_extent(&inode->vfs_inode,
1495 ordered, 1);
b88935bf
MX
1496 btrfs_put_ordered_extent(ordered);
1497 return -EAGAIN;
e6dcd2dc
CM
1498 }
1499 if (ordered)
1500 btrfs_put_ordered_extent(ordered);
a7e3b975
FM
1501 ret = btrfs_find_new_delalloc_bytes(inode, start_pos,
1502 last_pos - start_pos + 1,
1503 cached_state);
1504 clear_bits = EXTENT_DIRTY | EXTENT_DELALLOC |
1505 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG;
1506 if (ret)
1507 clear_bits |= EXTENT_DELALLOC_NEW | EXTENT_LOCKED;
2cff578c 1508 clear_extent_bit(&inode->io_tree, start_pos,
a7e3b975
FM
1509 last_pos, clear_bits,
1510 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
1511 0, cached_state, GFP_NOFS);
1512 if (ret)
1513 return ret;
376cc685
MX
1514 *lockstart = start_pos;
1515 *lockend = last_pos;
1516 ret = 1;
0762704b 1517 }
376cc685 1518
e6dcd2dc 1519 for (i = 0; i < num_pages; i++) {
32c7f202
WF
1520 if (clear_page_dirty_for_io(pages[i]))
1521 account_page_redirty(pages[i]);
e6dcd2dc
CM
1522 set_page_extent_mapped(pages[i]);
1523 WARN_ON(!PageLocked(pages[i]));
1524 }
b1bf862e 1525
376cc685 1526 return ret;
39279cc3
CM
1527}
1528
85b7ab67 1529static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
7ee9e440
JB
1530 size_t *write_bytes)
1531{
85b7ab67
NB
1532 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1533 struct btrfs_root *root = inode->root;
7ee9e440
JB
1534 struct btrfs_ordered_extent *ordered;
1535 u64 lockstart, lockend;
1536 u64 num_bytes;
1537 int ret;
1538
ea14b57f 1539 ret = btrfs_start_write_no_snapshotting(root);
8257b2dc
MX
1540 if (!ret)
1541 return -ENOSPC;
1542
0b246afa 1543 lockstart = round_down(pos, fs_info->sectorsize);
da17066c 1544 lockend = round_up(pos + *write_bytes,
0b246afa 1545 fs_info->sectorsize) - 1;
7ee9e440
JB
1546
1547 while (1) {
85b7ab67 1548 lock_extent(&inode->io_tree, lockstart, lockend);
7ee9e440
JB
1549 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1550 lockend - lockstart + 1);
1551 if (!ordered) {
1552 break;
1553 }
85b7ab67
NB
1554 unlock_extent(&inode->io_tree, lockstart, lockend);
1555 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
7ee9e440
JB
1556 btrfs_put_ordered_extent(ordered);
1557 }
1558
7ee9e440 1559 num_bytes = lockend - lockstart + 1;
85b7ab67
NB
1560 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1561 NULL, NULL, NULL);
7ee9e440
JB
1562 if (ret <= 0) {
1563 ret = 0;
ea14b57f 1564 btrfs_end_write_no_snapshotting(root);
7ee9e440 1565 } else {
c933956d
MX
1566 *write_bytes = min_t(size_t, *write_bytes ,
1567 num_bytes - pos + lockstart);
7ee9e440
JB
1568 }
1569
85b7ab67 1570 unlock_extent(&inode->io_tree, lockstart, lockend);
7ee9e440
JB
1571
1572 return ret;
1573}
1574
d0215f3e
JB
1575static noinline ssize_t __btrfs_buffered_write(struct file *file,
1576 struct iov_iter *i,
1577 loff_t pos)
4b46fce2 1578{
496ad9aa 1579 struct inode *inode = file_inode(file);
0b246afa 1580 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
11c65dcc 1581 struct btrfs_root *root = BTRFS_I(inode)->root;
11c65dcc 1582 struct page **pages = NULL;
376cc685 1583 struct extent_state *cached_state = NULL;
364ecf36 1584 struct extent_changeset *data_reserved = NULL;
7ee9e440 1585 u64 release_bytes = 0;
376cc685
MX
1586 u64 lockstart;
1587 u64 lockend;
d0215f3e
JB
1588 size_t num_written = 0;
1589 int nrptrs;
c9149235 1590 int ret = 0;
7ee9e440 1591 bool only_release_metadata = false;
b6316429 1592 bool force_page_uptodate = false;
4b46fce2 1593
09cbfeaf
KS
1594 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1595 PAGE_SIZE / (sizeof(struct page *)));
142349f5
WF
1596 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1597 nrptrs = max(nrptrs, 8);
31e818fe 1598 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
d0215f3e
JB
1599 if (!pages)
1600 return -ENOMEM;
ab93dbec 1601
d0215f3e 1602 while (iov_iter_count(i) > 0) {
09cbfeaf 1603 size_t offset = pos & (PAGE_SIZE - 1);
2e78c927 1604 size_t sector_offset;
d0215f3e 1605 size_t write_bytes = min(iov_iter_count(i),
09cbfeaf 1606 nrptrs * (size_t)PAGE_SIZE -
8c2383c3 1607 offset);
ed6078f7 1608 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
09cbfeaf 1609 PAGE_SIZE);
7ee9e440 1610 size_t reserve_bytes;
d0215f3e
JB
1611 size_t dirty_pages;
1612 size_t copied;
2e78c927
CR
1613 size_t dirty_sectors;
1614 size_t num_sectors;
79f015f2 1615 int extents_locked;
39279cc3 1616
8c2383c3 1617 WARN_ON(num_pages > nrptrs);
1832a6d5 1618
914ee295
XZ
1619 /*
1620 * Fault pages before locking them in prepare_pages
1621 * to avoid recursive lock
1622 */
d0215f3e 1623 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
914ee295 1624 ret = -EFAULT;
d0215f3e 1625 break;
914ee295
XZ
1626 }
1627
da17066c 1628 sector_offset = pos & (fs_info->sectorsize - 1);
2e78c927 1629 reserve_bytes = round_up(write_bytes + sector_offset,
da17066c 1630 fs_info->sectorsize);
d9d8b2a5 1631
364ecf36
QW
1632 extent_changeset_release(data_reserved);
1633 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1634 write_bytes);
c6887cd1
JB
1635 if (ret < 0) {
1636 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1637 BTRFS_INODE_PREALLOC)) &&
85b7ab67
NB
1638 check_can_nocow(BTRFS_I(inode), pos,
1639 &write_bytes) > 0) {
c6887cd1
JB
1640 /*
1641 * For nodata cow case, no need to reserve
1642 * data space.
1643 */
1644 only_release_metadata = true;
1645 /*
1646 * our prealloc extent may be smaller than
1647 * write_bytes, so scale down.
1648 */
1649 num_pages = DIV_ROUND_UP(write_bytes + offset,
1650 PAGE_SIZE);
1651 reserve_bytes = round_up(write_bytes +
1652 sector_offset,
da17066c 1653 fs_info->sectorsize);
c6887cd1
JB
1654 } else {
1655 break;
1656 }
1657 }
1832a6d5 1658
8b62f87b 1659 WARN_ON(reserve_bytes == 0);
9f3db423
NB
1660 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1661 reserve_bytes);
7ee9e440
JB
1662 if (ret) {
1663 if (!only_release_metadata)
bc42bda2
QW
1664 btrfs_free_reserved_data_space(inode,
1665 data_reserved, pos,
1666 write_bytes);
8257b2dc 1667 else
ea14b57f 1668 btrfs_end_write_no_snapshotting(root);
7ee9e440
JB
1669 break;
1670 }
1671
1672 release_bytes = reserve_bytes;
376cc685 1673again:
4a64001f
JB
1674 /*
1675 * This is going to setup the pages array with the number of
1676 * pages we want, so we don't really need to worry about the
1677 * contents of pages from loop to loop
1678 */
b37392ea
MX
1679 ret = prepare_pages(inode, pages, num_pages,
1680 pos, write_bytes,
b6316429 1681 force_page_uptodate);
8b62f87b
JB
1682 if (ret) {
1683 btrfs_delalloc_release_extents(BTRFS_I(inode),
1684 reserve_bytes);
d0215f3e 1685 break;
8b62f87b 1686 }
39279cc3 1687
79f015f2
GR
1688 extents_locked = lock_and_cleanup_extent_if_need(
1689 BTRFS_I(inode), pages,
2cff578c
NB
1690 num_pages, pos, write_bytes, &lockstart,
1691 &lockend, &cached_state);
79f015f2
GR
1692 if (extents_locked < 0) {
1693 if (extents_locked == -EAGAIN)
376cc685 1694 goto again;
8b62f87b
JB
1695 btrfs_delalloc_release_extents(BTRFS_I(inode),
1696 reserve_bytes);
79f015f2 1697 ret = extents_locked;
376cc685 1698 break;
376cc685
MX
1699 }
1700
ee22f0c4 1701 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
b1bf862e 1702
0b246afa 1703 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
56244ef1 1704 dirty_sectors = round_up(copied + sector_offset,
0b246afa
JM
1705 fs_info->sectorsize);
1706 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
56244ef1 1707
b1bf862e
CM
1708 /*
1709 * if we have trouble faulting in the pages, fall
1710 * back to one page at a time
1711 */
1712 if (copied < write_bytes)
1713 nrptrs = 1;
1714
b6316429
JB
1715 if (copied == 0) {
1716 force_page_uptodate = true;
56244ef1 1717 dirty_sectors = 0;
b1bf862e 1718 dirty_pages = 0;
b6316429
JB
1719 } else {
1720 force_page_uptodate = false;
ed6078f7 1721 dirty_pages = DIV_ROUND_UP(copied + offset,
09cbfeaf 1722 PAGE_SIZE);
b6316429 1723 }
914ee295 1724
2e78c927 1725 if (num_sectors > dirty_sectors) {
8b8b08cb
CM
1726 /* release everything except the sectors we dirtied */
1727 release_bytes -= dirty_sectors <<
0b246afa 1728 fs_info->sb->s_blocksize_bits;
485290a7 1729 if (only_release_metadata) {
691fa059 1730 btrfs_delalloc_release_metadata(BTRFS_I(inode),
7ee9e440 1731 release_bytes);
485290a7
QW
1732 } else {
1733 u64 __pos;
1734
da17066c 1735 __pos = round_down(pos,
0b246afa 1736 fs_info->sectorsize) +
09cbfeaf 1737 (dirty_pages << PAGE_SHIFT);
bc42bda2
QW
1738 btrfs_delalloc_release_space(inode,
1739 data_reserved, __pos,
1740 release_bytes);
485290a7 1741 }
914ee295
XZ
1742 }
1743
2e78c927 1744 release_bytes = round_up(copied + sector_offset,
0b246afa 1745 fs_info->sectorsize);
376cc685
MX
1746
1747 if (copied > 0)
2ff7e61e
JM
1748 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1749 pos, copied, NULL);
79f015f2 1750 if (extents_locked)
376cc685
MX
1751 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1752 lockstart, lockend, &cached_state,
1753 GFP_NOFS);
8b62f87b 1754 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
f1de9683
MX
1755 if (ret) {
1756 btrfs_drop_pages(pages, num_pages);
376cc685 1757 break;
f1de9683 1758 }
39279cc3 1759
376cc685 1760 release_bytes = 0;
8257b2dc 1761 if (only_release_metadata)
ea14b57f 1762 btrfs_end_write_no_snapshotting(root);
8257b2dc 1763
7ee9e440 1764 if (only_release_metadata && copied > 0) {
da17066c 1765 lockstart = round_down(pos,
0b246afa 1766 fs_info->sectorsize);
da17066c 1767 lockend = round_up(pos + copied,
0b246afa 1768 fs_info->sectorsize) - 1;
7ee9e440
JB
1769
1770 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1771 lockend, EXTENT_NORESERVE, NULL,
1772 NULL, GFP_NOFS);
1773 only_release_metadata = false;
1774 }
1775
f1de9683
MX
1776 btrfs_drop_pages(pages, num_pages);
1777
d0215f3e
JB
1778 cond_resched();
1779
d0e1d66b 1780 balance_dirty_pages_ratelimited(inode->i_mapping);
0b246afa 1781 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
2ff7e61e 1782 btrfs_btree_balance_dirty(fs_info);
cb843a6f 1783
914ee295
XZ
1784 pos += copied;
1785 num_written += copied;
d0215f3e 1786 }
39279cc3 1787
d0215f3e
JB
1788 kfree(pages);
1789
7ee9e440 1790 if (release_bytes) {
8257b2dc 1791 if (only_release_metadata) {
ea14b57f 1792 btrfs_end_write_no_snapshotting(root);
691fa059
NB
1793 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1794 release_bytes);
8257b2dc 1795 } else {
bc42bda2
QW
1796 btrfs_delalloc_release_space(inode, data_reserved,
1797 round_down(pos, fs_info->sectorsize),
1798 release_bytes);
8257b2dc 1799 }
7ee9e440
JB
1800 }
1801
364ecf36 1802 extent_changeset_free(data_reserved);
d0215f3e
JB
1803 return num_written ? num_written : ret;
1804}
1805
1af5bb49 1806static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
d0215f3e
JB
1807{
1808 struct file *file = iocb->ki_filp;
728404da 1809 struct inode *inode = file_inode(file);
1af5bb49 1810 loff_t pos = iocb->ki_pos;
d0215f3e
JB
1811 ssize_t written;
1812 ssize_t written_buffered;
1813 loff_t endbyte;
1814 int err;
1815
1af5bb49 1816 written = generic_file_direct_write(iocb, from);
d0215f3e 1817
0c949334 1818 if (written < 0 || !iov_iter_count(from))
d0215f3e
JB
1819 return written;
1820
1821 pos += written;
0ae5e4d3 1822 written_buffered = __btrfs_buffered_write(file, from, pos);
d0215f3e
JB
1823 if (written_buffered < 0) {
1824 err = written_buffered;
1825 goto out;
39279cc3 1826 }
075bdbdb
FM
1827 /*
1828 * Ensure all data is persisted. We want the next direct IO read to be
1829 * able to read what was just written.
1830 */
d0215f3e 1831 endbyte = pos + written_buffered - 1;
728404da 1832 err = btrfs_fdatawrite_range(inode, pos, endbyte);
075bdbdb
FM
1833 if (err)
1834 goto out;
728404da 1835 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
d0215f3e
JB
1836 if (err)
1837 goto out;
1838 written += written_buffered;
867c4f93 1839 iocb->ki_pos = pos + written_buffered;
09cbfeaf
KS
1840 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1841 endbyte >> PAGE_SHIFT);
39279cc3 1842out:
d0215f3e
JB
1843 return written ? written : err;
1844}
5b92ee72 1845
6c760c07
JB
1846static void update_time_for_write(struct inode *inode)
1847{
1848 struct timespec now;
1849
1850 if (IS_NOCMTIME(inode))
1851 return;
1852
c2050a45 1853 now = current_time(inode);
6c760c07
JB
1854 if (!timespec_equal(&inode->i_mtime, &now))
1855 inode->i_mtime = now;
1856
1857 if (!timespec_equal(&inode->i_ctime, &now))
1858 inode->i_ctime = now;
1859
1860 if (IS_I_VERSION(inode))
1861 inode_inc_iversion(inode);
1862}
1863
b30ac0fc
AV
1864static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1865 struct iov_iter *from)
d0215f3e
JB
1866{
1867 struct file *file = iocb->ki_filp;
496ad9aa 1868 struct inode *inode = file_inode(file);
0b246afa 1869 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d0215f3e 1870 struct btrfs_root *root = BTRFS_I(inode)->root;
0c1a98c8 1871 u64 start_pos;
3ac0d7b9 1872 u64 end_pos;
d0215f3e 1873 ssize_t num_written = 0;
b812ce28 1874 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
3309dd04 1875 ssize_t err;
ff0fa732 1876 loff_t pos;
edf064e7 1877 size_t count = iov_iter_count(from);
27772b68
CR
1878 loff_t oldsize;
1879 int clean_page = 0;
d0215f3e 1880
91f9943e
CH
1881 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1882 (iocb->ki_flags & IOCB_NOWAIT))
1883 return -EOPNOTSUPP;
1884
ff0fa732
GR
1885 if (!inode_trylock(inode)) {
1886 if (iocb->ki_flags & IOCB_NOWAIT)
edf064e7 1887 return -EAGAIN;
ff0fa732
GR
1888 inode_lock(inode);
1889 }
1890
1891 err = generic_write_checks(iocb, from);
1892 if (err <= 0) {
1893 inode_unlock(inode);
1894 return err;
1895 }
1896
1897 pos = iocb->ki_pos;
1898 if (iocb->ki_flags & IOCB_NOWAIT) {
edf064e7
GR
1899 /*
1900 * We will allocate space in case nodatacow is not set,
1901 * so bail
1902 */
1903 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1904 BTRFS_INODE_PREALLOC)) ||
1905 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1906 inode_unlock(inode);
1907 return -EAGAIN;
1908 }
d0215f3e
JB
1909 }
1910
3309dd04 1911 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 1912 err = file_remove_privs(file);
d0215f3e 1913 if (err) {
5955102c 1914 inode_unlock(inode);
d0215f3e
JB
1915 goto out;
1916 }
1917
1918 /*
1919 * If BTRFS flips readonly due to some impossible error
1920 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1921 * although we have opened a file as writable, we have
1922 * to stop this write operation to ensure FS consistency.
1923 */
0b246afa 1924 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
5955102c 1925 inode_unlock(inode);
d0215f3e
JB
1926 err = -EROFS;
1927 goto out;
1928 }
1929
6c760c07
JB
1930 /*
1931 * We reserve space for updating the inode when we reserve space for the
1932 * extent we are going to write, so we will enospc out there. We don't
1933 * need to start yet another transaction to update the inode as we will
1934 * update the inode when we finish writing whatever data we write.
1935 */
1936 update_time_for_write(inode);
d0215f3e 1937
0b246afa 1938 start_pos = round_down(pos, fs_info->sectorsize);
27772b68
CR
1939 oldsize = i_size_read(inode);
1940 if (start_pos > oldsize) {
3ac0d7b9 1941 /* Expand hole size to cover write data, preventing empty gap */
da17066c 1942 end_pos = round_up(pos + count,
0b246afa 1943 fs_info->sectorsize);
27772b68 1944 err = btrfs_cont_expand(inode, oldsize, end_pos);
0c1a98c8 1945 if (err) {
5955102c 1946 inode_unlock(inode);
0c1a98c8
MX
1947 goto out;
1948 }
0b246afa 1949 if (start_pos > round_up(oldsize, fs_info->sectorsize))
27772b68 1950 clean_page = 1;
0c1a98c8
MX
1951 }
1952
b812ce28
JB
1953 if (sync)
1954 atomic_inc(&BTRFS_I(inode)->sync_writers);
1955
2ba48ce5 1956 if (iocb->ki_flags & IOCB_DIRECT) {
1af5bb49 1957 num_written = __btrfs_direct_write(iocb, from);
d0215f3e 1958 } else {
b30ac0fc 1959 num_written = __btrfs_buffered_write(file, from, pos);
d0215f3e 1960 if (num_written > 0)
867c4f93 1961 iocb->ki_pos = pos + num_written;
27772b68
CR
1962 if (clean_page)
1963 pagecache_isize_extended(inode, oldsize,
1964 i_size_read(inode));
d0215f3e
JB
1965 }
1966
5955102c 1967 inode_unlock(inode);
2ff3e9b6 1968
5a3f23d5 1969 /*
6c760c07
JB
1970 * We also have to set last_sub_trans to the current log transid,
1971 * otherwise subsequent syncs to a file that's been synced in this
bb7ab3b9 1972 * transaction will appear to have already occurred.
5a3f23d5 1973 */
2f2ff0ee 1974 spin_lock(&BTRFS_I(inode)->lock);
6c760c07 1975 BTRFS_I(inode)->last_sub_trans = root->log_transid;
2f2ff0ee 1976 spin_unlock(&BTRFS_I(inode)->lock);
e2592217
CH
1977 if (num_written > 0)
1978 num_written = generic_write_sync(iocb, num_written);
0a3404dc 1979
b812ce28
JB
1980 if (sync)
1981 atomic_dec(&BTRFS_I(inode)->sync_writers);
0a3404dc 1982out:
39279cc3 1983 current->backing_dev_info = NULL;
39279cc3
CM
1984 return num_written ? num_written : err;
1985}
1986
d397712b 1987int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 1988{
23b5ec74
JB
1989 struct btrfs_file_private *private = filp->private_data;
1990
1991 if (private && private->trans)
6bf13c0c 1992 btrfs_ioctl_trans_end(filp);
23b5ec74
JB
1993 if (private && private->filldir_buf)
1994 kfree(private->filldir_buf);
1995 kfree(private);
1996 filp->private_data = NULL;
1997
f6dc45c7
CM
1998 /*
1999 * ordered_data_close is set by settattr when we are about to truncate
2000 * a file from a non-zero size to a zero size. This tries to
2001 * flush down new bytes that may have been written if the
2002 * application were using truncate to replace a file in place.
2003 */
2004 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2005 &BTRFS_I(inode)->runtime_flags))
2006 filemap_flush(inode->i_mapping);
e1b81e67
M
2007 return 0;
2008}
2009
669249ee
FM
2010static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2011{
2012 int ret;
2013
2014 atomic_inc(&BTRFS_I(inode)->sync_writers);
728404da 2015 ret = btrfs_fdatawrite_range(inode, start, end);
669249ee
FM
2016 atomic_dec(&BTRFS_I(inode)->sync_writers);
2017
2018 return ret;
2019}
2020
d352ac68
CM
2021/*
2022 * fsync call for both files and directories. This logs the inode into
2023 * the tree log instead of forcing full commits whenever possible.
2024 *
2025 * It needs to call filemap_fdatawait so that all ordered extent updates are
2026 * in the metadata btree are up to date for copying to the log.
2027 *
2028 * It drops the inode mutex before doing the tree log commit. This is an
2029 * important optimization for directories because holding the mutex prevents
2030 * new operations on the dir while we write to disk.
2031 */
02c24a82 2032int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 2033{
de17e793 2034 struct dentry *dentry = file_dentry(file);
2b0143b5 2035 struct inode *inode = d_inode(dentry);
0b246afa 2036 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 2037 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3 2038 struct btrfs_trans_handle *trans;
8b050d35 2039 struct btrfs_log_ctx ctx;
333427a5 2040 int ret = 0, err;
897ca819 2041 bool full_sync = false;
9dcbeed4 2042 u64 len;
39279cc3 2043
9dcbeed4
DS
2044 /*
2045 * The range length can be represented by u64, we have to do the typecasts
2046 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2047 */
2048 len = (u64)end - (u64)start + 1;
1abe9b8a 2049 trace_btrfs_sync_file(file, datasync);
257c62e1 2050
90abccf2
MX
2051 /*
2052 * We write the dirty pages in the range and wait until they complete
2053 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
2054 * multi-task, and make the performance up. See
2055 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 2056 */
669249ee 2057 ret = start_ordered_ops(inode, start, end);
90abccf2 2058 if (ret)
333427a5 2059 goto out;
90abccf2 2060
5955102c 2061 inode_lock(inode);
2ecb7923 2062 atomic_inc(&root->log_batch);
2ab28f32
JB
2063 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2064 &BTRFS_I(inode)->runtime_flags);
669249ee
FM
2065 /*
2066 * We might have have had more pages made dirty after calling
2067 * start_ordered_ops and before acquiring the inode's i_mutex.
2068 */
0ef8b726 2069 if (full_sync) {
669249ee
FM
2070 /*
2071 * For a full sync, we need to make sure any ordered operations
2072 * start and finish before we start logging the inode, so that
2073 * all extents are persisted and the respective file extent
2074 * items are in the fs/subvol btree.
2075 */
b659ef02 2076 ret = btrfs_wait_ordered_range(inode, start, len);
669249ee
FM
2077 } else {
2078 /*
2079 * Start any new ordered operations before starting to log the
2080 * inode. We will wait for them to finish in btrfs_sync_log().
2081 *
2082 * Right before acquiring the inode's mutex, we might have new
2083 * writes dirtying pages, which won't immediately start the
2084 * respective ordered operations - that is done through the
2085 * fill_delalloc callbacks invoked from the writepage and
2086 * writepages address space operations. So make sure we start
2087 * all ordered operations before starting to log our inode. Not
2088 * doing this means that while logging the inode, writeback
2089 * could start and invoke writepage/writepages, which would call
2090 * the fill_delalloc callbacks (cow_file_range,
2091 * submit_compressed_extents). These callbacks add first an
2092 * extent map to the modified list of extents and then create
2093 * the respective ordered operation, which means in
2094 * tree-log.c:btrfs_log_inode() we might capture all existing
2095 * ordered operations (with btrfs_get_logged_extents()) before
2096 * the fill_delalloc callback adds its ordered operation, and by
2097 * the time we visit the modified list of extent maps (with
2098 * btrfs_log_changed_extents()), we see and process the extent
2099 * map they created. We then use the extent map to construct a
2100 * file extent item for logging without waiting for the
2101 * respective ordered operation to finish - this file extent
2102 * item points to a disk location that might not have yet been
2103 * written to, containing random data - so after a crash a log
2104 * replay will make our inode have file extent items that point
2105 * to disk locations containing invalid data, as we returned
2106 * success to userspace without waiting for the respective
2107 * ordered operation to finish, because it wasn't captured by
2108 * btrfs_get_logged_extents().
2109 */
2110 ret = start_ordered_ops(inode, start, end);
2111 }
2112 if (ret) {
5955102c 2113 inode_unlock(inode);
669249ee 2114 goto out;
0ef8b726 2115 }
2ecb7923 2116 atomic_inc(&root->log_batch);
257c62e1 2117
39279cc3 2118 /*
3a8b36f3
FM
2119 * If the last transaction that changed this file was before the current
2120 * transaction and we have the full sync flag set in our inode, we can
2121 * bail out now without any syncing.
2122 *
2123 * Note that we can't bail out if the full sync flag isn't set. This is
2124 * because when the full sync flag is set we start all ordered extents
2125 * and wait for them to fully complete - when they complete they update
2126 * the inode's last_trans field through:
2127 *
2128 * btrfs_finish_ordered_io() ->
2129 * btrfs_update_inode_fallback() ->
2130 * btrfs_update_inode() ->
2131 * btrfs_set_inode_last_trans()
2132 *
2133 * So we are sure that last_trans is up to date and can do this check to
2134 * bail out safely. For the fast path, when the full sync flag is not
2135 * set in our inode, we can not do it because we start only our ordered
2136 * extents and don't wait for them to complete (that is when
2137 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2138 * value might be less than or equals to fs_info->last_trans_committed,
2139 * and setting a speculative last_trans for an inode when a buffered
2140 * write is made (such as fs_info->generation + 1 for example) would not
2141 * be reliable since after setting the value and before fsync is called
2142 * any number of transactions can start and commit (transaction kthread
2143 * commits the current transaction periodically), and a transaction
2144 * commit does not start nor waits for ordered extents to complete.
257c62e1 2145 */
a4abeea4 2146 smp_mb();
0f8939b8 2147 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
affc0ff9 2148 (full_sync && BTRFS_I(inode)->last_trans <=
0b246afa 2149 fs_info->last_trans_committed) ||
affc0ff9
FM
2150 (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2151 BTRFS_I(inode)->last_trans
0b246afa 2152 <= fs_info->last_trans_committed)) {
5dc562c5 2153 /*
01327610 2154 * We've had everything committed since the last time we were
5dc562c5
JB
2155 * modified so clear this flag in case it was set for whatever
2156 * reason, it's no longer relevant.
2157 */
2158 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2159 &BTRFS_I(inode)->runtime_flags);
0596a904
FM
2160 /*
2161 * An ordered extent might have started before and completed
2162 * already with io errors, in which case the inode was not
2163 * updated and we end up here. So check the inode's mapping
333427a5
JL
2164 * for any errors that might have happened since we last
2165 * checked called fsync.
0596a904 2166 */
333427a5 2167 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
5955102c 2168 inode_unlock(inode);
15ee9bc7
JB
2169 goto out;
2170 }
15ee9bc7
JB
2171
2172 /*
a52d9a80
CM
2173 * ok we haven't committed the transaction yet, lets do a commit
2174 */
6f902af4 2175 if (file->private_data)
6bf13c0c
SW
2176 btrfs_ioctl_trans_end(file);
2177
5039eddc
JB
2178 /*
2179 * We use start here because we will need to wait on the IO to complete
2180 * in btrfs_sync_log, which could require joining a transaction (for
2181 * example checking cross references in the nocow path). If we use join
2182 * here we could get into a situation where we're waiting on IO to
2183 * happen that is blocked on a transaction trying to commit. With start
2184 * we inc the extwriter counter, so we wait for all extwriters to exit
2185 * before we start blocking join'ers. This comment is to keep somebody
2186 * from thinking they are super smart and changing this to
2187 * btrfs_join_transaction *cough*Josef*cough*.
2188 */
a22285a6
YZ
2189 trans = btrfs_start_transaction(root, 0);
2190 if (IS_ERR(trans)) {
2191 ret = PTR_ERR(trans);
5955102c 2192 inode_unlock(inode);
39279cc3
CM
2193 goto out;
2194 }
5039eddc 2195 trans->sync = true;
e02119d5 2196
28a23593 2197 btrfs_init_log_ctx(&ctx, inode);
8b050d35 2198
49dae1bc 2199 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
02c24a82 2200 if (ret < 0) {
a0634be5
FDBM
2201 /* Fallthrough and commit/free transaction. */
2202 ret = 1;
02c24a82 2203 }
49eb7e46
CM
2204
2205 /* we've logged all the items and now have a consistent
2206 * version of the file in the log. It is possible that
2207 * someone will come in and modify the file, but that's
2208 * fine because the log is consistent on disk, and we
2209 * have references to all of the file's extents
2210 *
2211 * It is possible that someone will come in and log the
2212 * file again, but that will end up using the synchronization
2213 * inside btrfs_sync_log to keep things safe.
2214 */
5955102c 2215 inode_unlock(inode);
49eb7e46 2216
8407f553
FM
2217 /*
2218 * If any of the ordered extents had an error, just return it to user
2219 * space, so that the application knows some writes didn't succeed and
2220 * can take proper action (retry for e.g.). Blindly committing the
2221 * transaction in this case, would fool userspace that everything was
2222 * successful. And we also want to make sure our log doesn't contain
2223 * file extent items pointing to extents that weren't fully written to -
2224 * just like in the non fast fsync path, where we check for the ordered
2225 * operation's error flag before writing to the log tree and return -EIO
2226 * if any of them had this flag set (btrfs_wait_ordered_range) -
2227 * therefore we need to check for errors in the ordered operations,
2228 * which are indicated by ctx.io_err.
2229 */
2230 if (ctx.io_err) {
3a45bb20 2231 btrfs_end_transaction(trans);
8407f553
FM
2232 ret = ctx.io_err;
2233 goto out;
2234 }
2235
257c62e1 2236 if (ret != BTRFS_NO_LOG_SYNC) {
0ef8b726 2237 if (!ret) {
8b050d35 2238 ret = btrfs_sync_log(trans, root, &ctx);
0ef8b726 2239 if (!ret) {
3a45bb20 2240 ret = btrfs_end_transaction(trans);
0ef8b726 2241 goto out;
2ab28f32 2242 }
257c62e1 2243 }
0ef8b726 2244 if (!full_sync) {
9dcbeed4 2245 ret = btrfs_wait_ordered_range(inode, start, len);
b05fd874 2246 if (ret) {
3a45bb20 2247 btrfs_end_transaction(trans);
0ef8b726 2248 goto out;
b05fd874 2249 }
0ef8b726 2250 }
3a45bb20 2251 ret = btrfs_commit_transaction(trans);
257c62e1 2252 } else {
3a45bb20 2253 ret = btrfs_end_transaction(trans);
e02119d5 2254 }
39279cc3 2255out:
333427a5
JL
2256 err = file_check_and_advance_wb_err(file);
2257 if (!ret)
2258 ret = err;
014e4ac4 2259 return ret > 0 ? -EIO : ret;
39279cc3
CM
2260}
2261
f0f37e2f 2262static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 2263 .fault = filemap_fault,
f1820361 2264 .map_pages = filemap_map_pages,
9ebefb18
CM
2265 .page_mkwrite = btrfs_page_mkwrite,
2266};
2267
2268static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2269{
058a457e
MX
2270 struct address_space *mapping = filp->f_mapping;
2271
2272 if (!mapping->a_ops->readpage)
2273 return -ENOEXEC;
2274
9ebefb18 2275 file_accessed(filp);
058a457e 2276 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 2277
9ebefb18
CM
2278 return 0;
2279}
2280
35339c24 2281static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2aaa6655
JB
2282 int slot, u64 start, u64 end)
2283{
2284 struct btrfs_file_extent_item *fi;
2285 struct btrfs_key key;
2286
2287 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2288 return 0;
2289
2290 btrfs_item_key_to_cpu(leaf, &key, slot);
35339c24 2291 if (key.objectid != btrfs_ino(inode) ||
2aaa6655
JB
2292 key.type != BTRFS_EXTENT_DATA_KEY)
2293 return 0;
2294
2295 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2296
2297 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2298 return 0;
2299
2300 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2301 return 0;
2302
2303 if (key.offset == end)
2304 return 1;
2305 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2306 return 1;
2307 return 0;
2308}
2309
a012a74e
NB
2310static int fill_holes(struct btrfs_trans_handle *trans,
2311 struct btrfs_inode *inode,
2312 struct btrfs_path *path, u64 offset, u64 end)
2aaa6655 2313{
a012a74e
NB
2314 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
2315 struct btrfs_root *root = inode->root;
2aaa6655
JB
2316 struct extent_buffer *leaf;
2317 struct btrfs_file_extent_item *fi;
2318 struct extent_map *hole_em;
a012a74e 2319 struct extent_map_tree *em_tree = &inode->extent_tree;
2aaa6655
JB
2320 struct btrfs_key key;
2321 int ret;
2322
0b246afa 2323 if (btrfs_fs_incompat(fs_info, NO_HOLES))
16e7549f
JB
2324 goto out;
2325
a012a74e 2326 key.objectid = btrfs_ino(inode);
2aaa6655
JB
2327 key.type = BTRFS_EXTENT_DATA_KEY;
2328 key.offset = offset;
2329
2aaa6655 2330 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
f94480bd
JB
2331 if (ret <= 0) {
2332 /*
2333 * We should have dropped this offset, so if we find it then
2334 * something has gone horribly wrong.
2335 */
2336 if (ret == 0)
2337 ret = -EINVAL;
2aaa6655 2338 return ret;
f94480bd 2339 }
2aaa6655
JB
2340
2341 leaf = path->nodes[0];
a012a74e 2342 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2aaa6655
JB
2343 u64 num_bytes;
2344
2345 path->slots[0]--;
2346 fi = btrfs_item_ptr(leaf, path->slots[0],
2347 struct btrfs_file_extent_item);
2348 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2349 end - offset;
2350 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2351 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2352 btrfs_set_file_extent_offset(leaf, fi, 0);
2353 btrfs_mark_buffer_dirty(leaf);
2354 goto out;
2355 }
2356
1707e26d 2357 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2aaa6655
JB
2358 u64 num_bytes;
2359
2aaa6655 2360 key.offset = offset;
0b246afa 2361 btrfs_set_item_key_safe(fs_info, path, &key);
2aaa6655
JB
2362 fi = btrfs_item_ptr(leaf, path->slots[0],
2363 struct btrfs_file_extent_item);
2364 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2365 offset;
2366 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2367 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2368 btrfs_set_file_extent_offset(leaf, fi, 0);
2369 btrfs_mark_buffer_dirty(leaf);
2370 goto out;
2371 }
2372 btrfs_release_path(path);
2373
a012a74e 2374 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
f85b7379 2375 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2aaa6655
JB
2376 if (ret)
2377 return ret;
2378
2379out:
2380 btrfs_release_path(path);
2381
2382 hole_em = alloc_extent_map();
2383 if (!hole_em) {
2384 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
a012a74e 2385 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2aaa6655
JB
2386 } else {
2387 hole_em->start = offset;
2388 hole_em->len = end - offset;
cc95bef6 2389 hole_em->ram_bytes = hole_em->len;
2aaa6655
JB
2390 hole_em->orig_start = offset;
2391
2392 hole_em->block_start = EXTENT_MAP_HOLE;
2393 hole_em->block_len = 0;
b4939680 2394 hole_em->orig_block_len = 0;
0b246afa 2395 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2aaa6655
JB
2396 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2397 hole_em->generation = trans->transid;
2398
2399 do {
2400 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2401 write_lock(&em_tree->lock);
09a2a8f9 2402 ret = add_extent_mapping(em_tree, hole_em, 1);
2aaa6655
JB
2403 write_unlock(&em_tree->lock);
2404 } while (ret == -EEXIST);
2405 free_extent_map(hole_em);
2406 if (ret)
2407 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a012a74e 2408 &inode->runtime_flags);
2aaa6655
JB
2409 }
2410
2411 return 0;
2412}
2413
d7781546
QW
2414/*
2415 * Find a hole extent on given inode and change start/len to the end of hole
2416 * extent.(hole/vacuum extent whose em->start <= start &&
2417 * em->start + em->len > start)
2418 * When a hole extent is found, return 1 and modify start/len.
2419 */
2420static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2421{
609805d8 2422 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d7781546
QW
2423 struct extent_map *em;
2424 int ret = 0;
2425
609805d8
FM
2426 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2427 round_down(*start, fs_info->sectorsize),
2428 round_up(*len, fs_info->sectorsize), 0);
9986277e
DC
2429 if (IS_ERR(em))
2430 return PTR_ERR(em);
d7781546
QW
2431
2432 /* Hole or vacuum extent(only exists in no-hole mode) */
2433 if (em->block_start == EXTENT_MAP_HOLE) {
2434 ret = 1;
2435 *len = em->start + em->len > *start + *len ?
2436 0 : *start + *len - em->start - em->len;
2437 *start = em->start + em->len;
2438 }
2439 free_extent_map(em);
2440 return ret;
2441}
2442
2aaa6655
JB
2443static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2444{
0b246afa 2445 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655
JB
2446 struct btrfs_root *root = BTRFS_I(inode)->root;
2447 struct extent_state *cached_state = NULL;
2448 struct btrfs_path *path;
2449 struct btrfs_block_rsv *rsv;
2450 struct btrfs_trans_handle *trans;
d7781546
QW
2451 u64 lockstart;
2452 u64 lockend;
2453 u64 tail_start;
2454 u64 tail_len;
2455 u64 orig_start = offset;
2456 u64 cur_offset;
5f52a2c5 2457 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2aaa6655 2458 u64 drop_end;
2aaa6655
JB
2459 int ret = 0;
2460 int err = 0;
6e4d6fa1 2461 unsigned int rsv_count;
9703fefe 2462 bool same_block;
0b246afa 2463 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
a1a50f60 2464 u64 ino_size;
9703fefe 2465 bool truncated_block = false;
e8c1c76e 2466 bool updated_inode = false;
2aaa6655 2467
0ef8b726
JB
2468 ret = btrfs_wait_ordered_range(inode, offset, len);
2469 if (ret)
2470 return ret;
2aaa6655 2471
5955102c 2472 inode_lock(inode);
0b246afa 2473 ino_size = round_up(inode->i_size, fs_info->sectorsize);
d7781546
QW
2474 ret = find_first_non_hole(inode, &offset, &len);
2475 if (ret < 0)
2476 goto out_only_mutex;
2477 if (ret && !len) {
2478 /* Already in a large hole */
2479 ret = 0;
2480 goto out_only_mutex;
2481 }
2482
da17066c 2483 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
d7781546 2484 lockend = round_down(offset + len,
da17066c 2485 btrfs_inode_sectorsize(inode)) - 1;
0b246afa
JM
2486 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2487 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
7426cc04 2488 /*
9703fefe 2489 * We needn't truncate any block which is beyond the end of the file
7426cc04
MX
2490 * because we are sure there is no data there.
2491 */
2aaa6655 2492 /*
9703fefe
CR
2493 * Only do this if we are in the same block and we aren't doing the
2494 * entire block.
2aaa6655 2495 */
0b246afa 2496 if (same_block && len < fs_info->sectorsize) {
e8c1c76e 2497 if (offset < ino_size) {
9703fefe
CR
2498 truncated_block = true;
2499 ret = btrfs_truncate_block(inode, offset, len, 0);
e8c1c76e
FM
2500 } else {
2501 ret = 0;
2502 }
d7781546 2503 goto out_only_mutex;
2aaa6655
JB
2504 }
2505
9703fefe 2506 /* zero back part of the first block */
12870f1c 2507 if (offset < ino_size) {
9703fefe
CR
2508 truncated_block = true;
2509 ret = btrfs_truncate_block(inode, offset, 0, 0);
7426cc04 2510 if (ret) {
5955102c 2511 inode_unlock(inode);
7426cc04
MX
2512 return ret;
2513 }
2aaa6655
JB
2514 }
2515
d7781546
QW
2516 /* Check the aligned pages after the first unaligned page,
2517 * if offset != orig_start, which means the first unaligned page
01327610 2518 * including several following pages are already in holes,
d7781546
QW
2519 * the extra check can be skipped */
2520 if (offset == orig_start) {
2521 /* after truncate page, check hole again */
2522 len = offset + len - lockstart;
2523 offset = lockstart;
2524 ret = find_first_non_hole(inode, &offset, &len);
2525 if (ret < 0)
2526 goto out_only_mutex;
2527 if (ret && !len) {
2528 ret = 0;
2529 goto out_only_mutex;
2530 }
2531 lockstart = offset;
2532 }
2533
2534 /* Check the tail unaligned part is in a hole */
2535 tail_start = lockend + 1;
2536 tail_len = offset + len - tail_start;
2537 if (tail_len) {
2538 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2539 if (unlikely(ret < 0))
2540 goto out_only_mutex;
2541 if (!ret) {
2542 /* zero the front end of the last page */
2543 if (tail_start + tail_len < ino_size) {
9703fefe
CR
2544 truncated_block = true;
2545 ret = btrfs_truncate_block(inode,
2546 tail_start + tail_len,
2547 0, 1);
d7781546
QW
2548 if (ret)
2549 goto out_only_mutex;
51f395ad 2550 }
0061280d 2551 }
2aaa6655
JB
2552 }
2553
2554 if (lockend < lockstart) {
e8c1c76e
FM
2555 ret = 0;
2556 goto out_only_mutex;
2aaa6655
JB
2557 }
2558
2559 while (1) {
2560 struct btrfs_ordered_extent *ordered;
2561
2562 truncate_pagecache_range(inode, lockstart, lockend);
2563
2564 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 2565 &cached_state);
2aaa6655
JB
2566 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2567
2568 /*
2569 * We need to make sure we have no ordered extents in this range
2570 * and nobody raced in and read a page in this range, if we did
2571 * we need to try again.
2572 */
2573 if ((!ordered ||
6126e3ca 2574 (ordered->file_offset + ordered->len <= lockstart ||
2aaa6655 2575 ordered->file_offset > lockend)) &&
fc4adbff 2576 !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2aaa6655
JB
2577 if (ordered)
2578 btrfs_put_ordered_extent(ordered);
2579 break;
2580 }
2581 if (ordered)
2582 btrfs_put_ordered_extent(ordered);
2583 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2584 lockend, &cached_state, GFP_NOFS);
0ef8b726
JB
2585 ret = btrfs_wait_ordered_range(inode, lockstart,
2586 lockend - lockstart + 1);
2587 if (ret) {
5955102c 2588 inode_unlock(inode);
0ef8b726
JB
2589 return ret;
2590 }
2aaa6655
JB
2591 }
2592
2593 path = btrfs_alloc_path();
2594 if (!path) {
2595 ret = -ENOMEM;
2596 goto out;
2597 }
2598
2ff7e61e 2599 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2aaa6655
JB
2600 if (!rsv) {
2601 ret = -ENOMEM;
2602 goto out_free;
2603 }
5f52a2c5 2604 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2aaa6655
JB
2605 rsv->failfast = 1;
2606
2607 /*
2608 * 1 - update the inode
2609 * 1 - removing the extents in the range
16e7549f 2610 * 1 - adding the hole extent if no_holes isn't set
2aaa6655 2611 */
16e7549f
JB
2612 rsv_count = no_holes ? 2 : 3;
2613 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2614 if (IS_ERR(trans)) {
2615 err = PTR_ERR(trans);
2616 goto out_free;
2617 }
2618
0b246afa 2619 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 2620 min_size, 0);
2aaa6655
JB
2621 BUG_ON(ret);
2622 trans->block_rsv = rsv;
2623
d7781546
QW
2624 cur_offset = lockstart;
2625 len = lockend - cur_offset;
2aaa6655
JB
2626 while (cur_offset < lockend) {
2627 ret = __btrfs_drop_extents(trans, root, inode, path,
2628 cur_offset, lockend + 1,
1acae57b 2629 &drop_end, 1, 0, 0, NULL);
2aaa6655
JB
2630 if (ret != -ENOSPC)
2631 break;
2632
0b246afa 2633 trans->block_rsv = &fs_info->trans_block_rsv;
2aaa6655 2634
62fe51c1 2635 if (cur_offset < drop_end && cur_offset < ino_size) {
a012a74e
NB
2636 ret = fill_holes(trans, BTRFS_I(inode), path,
2637 cur_offset, drop_end);
12870f1c 2638 if (ret) {
f94480bd
JB
2639 /*
2640 * If we failed then we didn't insert our hole
2641 * entries for the area we dropped, so now the
2642 * fs is corrupted, so we must abort the
2643 * transaction.
2644 */
2645 btrfs_abort_transaction(trans, ret);
12870f1c
FM
2646 err = ret;
2647 break;
2648 }
2aaa6655
JB
2649 }
2650
2651 cur_offset = drop_end;
2652
2653 ret = btrfs_update_inode(trans, root, inode);
2654 if (ret) {
2655 err = ret;
2656 break;
2657 }
2658
3a45bb20 2659 btrfs_end_transaction(trans);
2ff7e61e 2660 btrfs_btree_balance_dirty(fs_info);
2aaa6655 2661
16e7549f 2662 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2663 if (IS_ERR(trans)) {
2664 ret = PTR_ERR(trans);
2665 trans = NULL;
2666 break;
2667 }
2668
0b246afa 2669 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 2670 rsv, min_size, 0);
2aaa6655
JB
2671 BUG_ON(ret); /* shouldn't happen */
2672 trans->block_rsv = rsv;
d7781546
QW
2673
2674 ret = find_first_non_hole(inode, &cur_offset, &len);
2675 if (unlikely(ret < 0))
2676 break;
2677 if (ret && !len) {
2678 ret = 0;
2679 break;
2680 }
2aaa6655
JB
2681 }
2682
2683 if (ret) {
2684 err = ret;
2685 goto out_trans;
2686 }
2687
0b246afa 2688 trans->block_rsv = &fs_info->trans_block_rsv;
2959a32a
FM
2689 /*
2690 * If we are using the NO_HOLES feature we might have had already an
2691 * hole that overlaps a part of the region [lockstart, lockend] and
2692 * ends at (or beyond) lockend. Since we have no file extent items to
2693 * represent holes, drop_end can be less than lockend and so we must
2694 * make sure we have an extent map representing the existing hole (the
2695 * call to __btrfs_drop_extents() might have dropped the existing extent
2696 * map representing the existing hole), otherwise the fast fsync path
2697 * will not record the existence of the hole region
2698 * [existing_hole_start, lockend].
2699 */
2700 if (drop_end <= lockend)
2701 drop_end = lockend + 1;
fc19c5e7
FM
2702 /*
2703 * Don't insert file hole extent item if it's for a range beyond eof
2704 * (because it's useless) or if it represents a 0 bytes range (when
2705 * cur_offset == drop_end).
2706 */
2707 if (cur_offset < ino_size && cur_offset < drop_end) {
a012a74e
NB
2708 ret = fill_holes(trans, BTRFS_I(inode), path,
2709 cur_offset, drop_end);
12870f1c 2710 if (ret) {
f94480bd
JB
2711 /* Same comment as above. */
2712 btrfs_abort_transaction(trans, ret);
12870f1c
FM
2713 err = ret;
2714 goto out_trans;
2715 }
2aaa6655
JB
2716 }
2717
2718out_trans:
2719 if (!trans)
2720 goto out_free;
2721
e1f5790e 2722 inode_inc_iversion(inode);
c2050a45 2723 inode->i_mtime = inode->i_ctime = current_time(inode);
e1f5790e 2724
0b246afa 2725 trans->block_rsv = &fs_info->trans_block_rsv;
2aaa6655 2726 ret = btrfs_update_inode(trans, root, inode);
e8c1c76e 2727 updated_inode = true;
3a45bb20 2728 btrfs_end_transaction(trans);
2ff7e61e 2729 btrfs_btree_balance_dirty(fs_info);
2aaa6655
JB
2730out_free:
2731 btrfs_free_path(path);
2ff7e61e 2732 btrfs_free_block_rsv(fs_info, rsv);
2aaa6655
JB
2733out:
2734 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2735 &cached_state, GFP_NOFS);
d7781546 2736out_only_mutex:
9703fefe 2737 if (!updated_inode && truncated_block && !ret && !err) {
e8c1c76e
FM
2738 /*
2739 * If we only end up zeroing part of a page, we still need to
2740 * update the inode item, so that all the time fields are
2741 * updated as well as the necessary btrfs inode in memory fields
2742 * for detecting, at fsync time, if the inode isn't yet in the
2743 * log tree or it's there but not up to date.
2744 */
2745 trans = btrfs_start_transaction(root, 1);
2746 if (IS_ERR(trans)) {
2747 err = PTR_ERR(trans);
2748 } else {
2749 err = btrfs_update_inode(trans, root, inode);
3a45bb20 2750 ret = btrfs_end_transaction(trans);
e8c1c76e
FM
2751 }
2752 }
5955102c 2753 inode_unlock(inode);
2aaa6655
JB
2754 if (ret && !err)
2755 err = ret;
2756 return err;
2757}
2758
14524a84
QW
2759/* Helper structure to record which range is already reserved */
2760struct falloc_range {
2761 struct list_head list;
2762 u64 start;
2763 u64 len;
2764};
2765
2766/*
2767 * Helper function to add falloc range
2768 *
2769 * Caller should have locked the larger range of extent containing
2770 * [start, len)
2771 */
2772static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2773{
2774 struct falloc_range *prev = NULL;
2775 struct falloc_range *range = NULL;
2776
2777 if (list_empty(head))
2778 goto insert;
2779
2780 /*
2781 * As fallocate iterate by bytenr order, we only need to check
2782 * the last range.
2783 */
2784 prev = list_entry(head->prev, struct falloc_range, list);
2785 if (prev->start + prev->len == start) {
2786 prev->len += len;
2787 return 0;
2788 }
2789insert:
32fc932e 2790 range = kmalloc(sizeof(*range), GFP_KERNEL);
14524a84
QW
2791 if (!range)
2792 return -ENOMEM;
2793 range->start = start;
2794 range->len = len;
2795 list_add_tail(&range->list, head);
2796 return 0;
2797}
2798
2fe17c10
CH
2799static long btrfs_fallocate(struct file *file, int mode,
2800 loff_t offset, loff_t len)
2801{
496ad9aa 2802 struct inode *inode = file_inode(file);
2fe17c10 2803 struct extent_state *cached_state = NULL;
364ecf36 2804 struct extent_changeset *data_reserved = NULL;
14524a84
QW
2805 struct falloc_range *range;
2806 struct falloc_range *tmp;
2807 struct list_head reserve_list;
2fe17c10
CH
2808 u64 cur_offset;
2809 u64 last_byte;
2810 u64 alloc_start;
2811 u64 alloc_end;
2812 u64 alloc_hint = 0;
2813 u64 locked_end;
14524a84 2814 u64 actual_end = 0;
2fe17c10 2815 struct extent_map *em;
da17066c 2816 int blocksize = btrfs_inode_sectorsize(inode);
2fe17c10
CH
2817 int ret;
2818
797f4277
MX
2819 alloc_start = round_down(offset, blocksize);
2820 alloc_end = round_up(offset + len, blocksize);
18513091 2821 cur_offset = alloc_start;
2fe17c10 2822
2aaa6655
JB
2823 /* Make sure we aren't being give some crap mode */
2824 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2fe17c10
CH
2825 return -EOPNOTSUPP;
2826
2aaa6655
JB
2827 if (mode & FALLOC_FL_PUNCH_HOLE)
2828 return btrfs_punch_hole(inode, offset, len);
2829
d98456fc 2830 /*
14524a84
QW
2831 * Only trigger disk allocation, don't trigger qgroup reserve
2832 *
2833 * For qgroup space, it will be checked later.
d98456fc 2834 */
04f4f916
NB
2835 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2836 alloc_end - alloc_start);
14524a84 2837 if (ret < 0)
d98456fc
CM
2838 return ret;
2839
5955102c 2840 inode_lock(inode);
2a162ce9
DI
2841
2842 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2843 ret = inode_newsize_ok(inode, offset + len);
2844 if (ret)
2845 goto out;
2846 }
2fe17c10 2847
14524a84
QW
2848 /*
2849 * TODO: Move these two operations after we have checked
2850 * accurate reserved space, or fallocate can still fail but
2851 * with page truncated or size expanded.
2852 *
2853 * But that's a minor problem and won't do much harm BTW.
2854 */
2fe17c10 2855 if (alloc_start > inode->i_size) {
a41ad394
JB
2856 ret = btrfs_cont_expand(inode, i_size_read(inode),
2857 alloc_start);
2fe17c10
CH
2858 if (ret)
2859 goto out;
0f6925fa 2860 } else if (offset + len > inode->i_size) {
a71754fc
JB
2861 /*
2862 * If we are fallocating from the end of the file onward we
9703fefe
CR
2863 * need to zero out the end of the block if i_size lands in the
2864 * middle of a block.
a71754fc 2865 */
9703fefe 2866 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
a71754fc
JB
2867 if (ret)
2868 goto out;
2fe17c10
CH
2869 }
2870
a71754fc
JB
2871 /*
2872 * wait for ordered IO before we have any locks. We'll loop again
2873 * below with the locks held.
2874 */
0ef8b726
JB
2875 ret = btrfs_wait_ordered_range(inode, alloc_start,
2876 alloc_end - alloc_start);
2877 if (ret)
2878 goto out;
a71754fc 2879
2fe17c10
CH
2880 locked_end = alloc_end - 1;
2881 while (1) {
2882 struct btrfs_ordered_extent *ordered;
2883
2884 /* the extent lock is ordered inside the running
2885 * transaction
2886 */
2887 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
ff13db41 2888 locked_end, &cached_state);
2fe17c10
CH
2889 ordered = btrfs_lookup_first_ordered_extent(inode,
2890 alloc_end - 1);
2891 if (ordered &&
2892 ordered->file_offset + ordered->len > alloc_start &&
2893 ordered->file_offset < alloc_end) {
2894 btrfs_put_ordered_extent(ordered);
2895 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2896 alloc_start, locked_end,
32fc932e 2897 &cached_state, GFP_KERNEL);
2fe17c10
CH
2898 /*
2899 * we can't wait on the range with the transaction
2900 * running or with the extent lock held
2901 */
0ef8b726
JB
2902 ret = btrfs_wait_ordered_range(inode, alloc_start,
2903 alloc_end - alloc_start);
2904 if (ret)
2905 goto out;
2fe17c10
CH
2906 } else {
2907 if (ordered)
2908 btrfs_put_ordered_extent(ordered);
2909 break;
2910 }
2911 }
2912
14524a84
QW
2913 /* First, check if we exceed the qgroup limit */
2914 INIT_LIST_HEAD(&reserve_list);
2fe17c10 2915 while (1) {
fc4f21b1 2916 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
2fe17c10 2917 alloc_end - cur_offset, 0);
9986277e
DC
2918 if (IS_ERR(em)) {
2919 ret = PTR_ERR(em);
79787eaa
JM
2920 break;
2921 }
2fe17c10 2922 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 2923 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 2924 last_byte = ALIGN(last_byte, blocksize);
2fe17c10
CH
2925 if (em->block_start == EXTENT_MAP_HOLE ||
2926 (cur_offset >= inode->i_size &&
2927 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
14524a84
QW
2928 ret = add_falloc_range(&reserve_list, cur_offset,
2929 last_byte - cur_offset);
2930 if (ret < 0) {
2931 free_extent_map(em);
2932 break;
3d850dd4 2933 }
364ecf36
QW
2934 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
2935 cur_offset, last_byte - cur_offset);
be2d253c
FM
2936 if (ret < 0) {
2937 free_extent_map(em);
14524a84 2938 break;
be2d253c 2939 }
18513091
WX
2940 } else {
2941 /*
2942 * Do not need to reserve unwritten extent for this
2943 * range, free reserved data space first, otherwise
2944 * it'll result in false ENOSPC error.
2945 */
bc42bda2
QW
2946 btrfs_free_reserved_data_space(inode, data_reserved,
2947 cur_offset, last_byte - cur_offset);
2fe17c10
CH
2948 }
2949 free_extent_map(em);
2fe17c10 2950 cur_offset = last_byte;
14524a84 2951 if (cur_offset >= alloc_end)
2fe17c10 2952 break;
14524a84
QW
2953 }
2954
2955 /*
2956 * If ret is still 0, means we're OK to fallocate.
2957 * Or just cleanup the list and exit.
2958 */
2959 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2960 if (!ret)
2961 ret = btrfs_prealloc_file_range(inode, mode,
2962 range->start,
93407472 2963 range->len, i_blocksize(inode),
14524a84 2964 offset + len, &alloc_hint);
18513091 2965 else
bc42bda2
QW
2966 btrfs_free_reserved_data_space(inode,
2967 data_reserved, range->start,
2968 range->len);
14524a84
QW
2969 list_del(&range->list);
2970 kfree(range);
2971 }
2972 if (ret < 0)
2973 goto out_unlock;
2974
2975 if (actual_end > inode->i_size &&
2976 !(mode & FALLOC_FL_KEEP_SIZE)) {
2977 struct btrfs_trans_handle *trans;
2978 struct btrfs_root *root = BTRFS_I(inode)->root;
2979
2980 /*
2981 * We didn't need to allocate any more space, but we
2982 * still extended the size of the file so we need to
2983 * update i_size and the inode item.
2984 */
2985 trans = btrfs_start_transaction(root, 1);
2986 if (IS_ERR(trans)) {
2987 ret = PTR_ERR(trans);
2988 } else {
c2050a45 2989 inode->i_ctime = current_time(inode);
14524a84
QW
2990 i_size_write(inode, actual_end);
2991 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2992 ret = btrfs_update_inode(trans, root, inode);
2993 if (ret)
3a45bb20 2994 btrfs_end_transaction(trans);
14524a84 2995 else
3a45bb20 2996 ret = btrfs_end_transaction(trans);
2fe17c10
CH
2997 }
2998 }
14524a84 2999out_unlock:
2fe17c10 3000 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
32fc932e 3001 &cached_state, GFP_KERNEL);
2fe17c10 3002out:
5955102c 3003 inode_unlock(inode);
d98456fc 3004 /* Let go of our reservation. */
18513091 3005 if (ret != 0)
bc42bda2
QW
3006 btrfs_free_reserved_data_space(inode, data_reserved,
3007 alloc_start, alloc_end - cur_offset);
364ecf36 3008 extent_changeset_free(data_reserved);
2fe17c10
CH
3009 return ret;
3010}
3011
965c8e59 3012static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
b2675157 3013{
0b246afa 3014 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7f4ca37c 3015 struct extent_map *em = NULL;
b2675157 3016 struct extent_state *cached_state = NULL;
4d1a40c6
LB
3017 u64 lockstart;
3018 u64 lockend;
3019 u64 start;
3020 u64 len;
b2675157
JB
3021 int ret = 0;
3022
4d1a40c6
LB
3023 if (inode->i_size == 0)
3024 return -ENXIO;
3025
3026 /*
3027 * *offset can be negative, in this case we start finding DATA/HOLE from
3028 * the very start of the file.
3029 */
3030 start = max_t(loff_t, 0, *offset);
3031
0b246afa 3032 lockstart = round_down(start, fs_info->sectorsize);
da17066c 3033 lockend = round_up(i_size_read(inode),
0b246afa 3034 fs_info->sectorsize);
b2675157 3035 if (lockend <= lockstart)
0b246afa 3036 lockend = lockstart + fs_info->sectorsize;
1214b53f 3037 lockend--;
b2675157
JB
3038 len = lockend - lockstart + 1;
3039
ff13db41 3040 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
d0082371 3041 &cached_state);
b2675157 3042
7f4ca37c 3043 while (start < inode->i_size) {
fc4f21b1
NB
3044 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
3045 start, len, 0);
b2675157 3046 if (IS_ERR(em)) {
6af021d8 3047 ret = PTR_ERR(em);
7f4ca37c 3048 em = NULL;
b2675157
JB
3049 break;
3050 }
3051
7f4ca37c
JB
3052 if (whence == SEEK_HOLE &&
3053 (em->block_start == EXTENT_MAP_HOLE ||
3054 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3055 break;
3056 else if (whence == SEEK_DATA &&
3057 (em->block_start != EXTENT_MAP_HOLE &&
3058 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3059 break;
b2675157
JB
3060
3061 start = em->start + em->len;
b2675157 3062 free_extent_map(em);
7f4ca37c 3063 em = NULL;
b2675157
JB
3064 cond_resched();
3065 }
7f4ca37c
JB
3066 free_extent_map(em);
3067 if (!ret) {
3068 if (whence == SEEK_DATA && start >= inode->i_size)
3069 ret = -ENXIO;
3070 else
3071 *offset = min_t(loff_t, start, inode->i_size);
3072 }
b2675157
JB
3073 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3074 &cached_state, GFP_NOFS);
3075 return ret;
3076}
3077
965c8e59 3078static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
3079{
3080 struct inode *inode = file->f_mapping->host;
3081 int ret;
3082
5955102c 3083 inode_lock(inode);
965c8e59 3084 switch (whence) {
b2675157
JB
3085 case SEEK_END:
3086 case SEEK_CUR:
965c8e59 3087 offset = generic_file_llseek(file, offset, whence);
b2675157
JB
3088 goto out;
3089 case SEEK_DATA:
3090 case SEEK_HOLE:
48802c8a 3091 if (offset >= i_size_read(inode)) {
5955102c 3092 inode_unlock(inode);
48802c8a
JL
3093 return -ENXIO;
3094 }
3095
965c8e59 3096 ret = find_desired_extent(inode, &offset, whence);
b2675157 3097 if (ret) {
5955102c 3098 inode_unlock(inode);
b2675157
JB
3099 return ret;
3100 }
3101 }
3102
46a1c2c7 3103 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
b2675157 3104out:
5955102c 3105 inode_unlock(inode);
b2675157
JB
3106 return offset;
3107}
3108
edf064e7
GR
3109static int btrfs_file_open(struct inode *inode, struct file *filp)
3110{
91f9943e 3111 filp->f_mode |= FMODE_NOWAIT;
edf064e7
GR
3112 return generic_file_open(inode, filp);
3113}
3114
828c0950 3115const struct file_operations btrfs_file_operations = {
b2675157 3116 .llseek = btrfs_file_llseek,
aad4f8bb 3117 .read_iter = generic_file_read_iter,
e9906a98 3118 .splice_read = generic_file_splice_read,
b30ac0fc 3119 .write_iter = btrfs_file_write_iter,
9ebefb18 3120 .mmap = btrfs_file_mmap,
edf064e7 3121 .open = btrfs_file_open,
e1b81e67 3122 .release = btrfs_release_file,
39279cc3 3123 .fsync = btrfs_sync_file,
2fe17c10 3124 .fallocate = btrfs_fallocate,
34287aa3 3125 .unlocked_ioctl = btrfs_ioctl,
39279cc3 3126#ifdef CONFIG_COMPAT
4c63c245 3127 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 3128#endif
04b38d60 3129 .clone_file_range = btrfs_clone_file_range,
2b3909f8 3130 .dedupe_file_range = btrfs_dedupe_file_range,
39279cc3 3131};
9247f317
MX
3132
3133void btrfs_auto_defrag_exit(void)
3134{
5598e900 3135 kmem_cache_destroy(btrfs_inode_defrag_cachep);
9247f317
MX
3136}
3137
3138int btrfs_auto_defrag_init(void)
3139{
3140 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3141 sizeof(struct inode_defrag), 0,
fba4b697 3142 SLAB_MEM_SPREAD,
9247f317
MX
3143 NULL);
3144 if (!btrfs_inode_defrag_cachep)
3145 return -ENOMEM;
3146
3147 return 0;
3148}
728404da
FM
3149
3150int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3151{
3152 int ret;
3153
3154 /*
3155 * So with compression we will find and lock a dirty page and clear the
3156 * first one as dirty, setup an async extent, and immediately return
3157 * with the entire range locked but with nobody actually marked with
3158 * writeback. So we can't just filemap_write_and_wait_range() and
3159 * expect it to work since it will just kick off a thread to do the
3160 * actual work. So we need to call filemap_fdatawrite_range _again_
3161 * since it will wait on the page lock, which won't be unlocked until
3162 * after the pages have been marked as writeback and so we're good to go
3163 * from there. We have to do this otherwise we'll miss the ordered
3164 * extents and that results in badness. Please Josef, do not think you
3165 * know better and pull this out at some point in the future, it is
3166 * right and you are wrong.
3167 */
3168 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3169 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3170 &BTRFS_I(inode)->runtime_flags))
3171 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3172
3173 return ret;
3174}