]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/file.c
kill the 5th argument of generic_file_buffered_write()
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / file.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
39279cc3
CM
19#include <linux/fs.h>
20#include <linux/pagemap.h>
21#include <linux/highmem.h>
22#include <linux/time.h>
23#include <linux/init.h>
24#include <linux/string.h>
39279cc3
CM
25#include <linux/backing-dev.h>
26#include <linux/mpage.h>
a27bb332 27#include <linux/aio.h>
2fe17c10 28#include <linux/falloc.h>
39279cc3
CM
29#include <linux/swap.h>
30#include <linux/writeback.h>
31#include <linux/statfs.h>
32#include <linux/compat.h>
5a0e3ad6 33#include <linux/slab.h>
55e301fd 34#include <linux/btrfs.h>
39279cc3
CM
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39279cc3 39#include "print-tree.h"
e02119d5
CM
40#include "tree-log.h"
41#include "locking.h"
2aaa6655 42#include "volumes.h"
39279cc3 43
9247f317 44static struct kmem_cache *btrfs_inode_defrag_cachep;
4cb5300b
CM
45/*
46 * when auto defrag is enabled we
47 * queue up these defrag structs to remember which
48 * inodes need defragging passes
49 */
50struct inode_defrag {
51 struct rb_node rb_node;
52 /* objectid */
53 u64 ino;
54 /*
55 * transid where the defrag was added, we search for
56 * extents newer than this
57 */
58 u64 transid;
59
60 /* root objectid */
61 u64 root;
62
63 /* last offset we were able to defrag */
64 u64 last_offset;
65
66 /* if we've wrapped around back to zero once already */
67 int cycled;
68};
69
762f2263
MX
70static int __compare_inode_defrag(struct inode_defrag *defrag1,
71 struct inode_defrag *defrag2)
72{
73 if (defrag1->root > defrag2->root)
74 return 1;
75 else if (defrag1->root < defrag2->root)
76 return -1;
77 else if (defrag1->ino > defrag2->ino)
78 return 1;
79 else if (defrag1->ino < defrag2->ino)
80 return -1;
81 else
82 return 0;
83}
84
4cb5300b
CM
85/* pop a record for an inode into the defrag tree. The lock
86 * must be held already
87 *
88 * If you're inserting a record for an older transid than an
89 * existing record, the transid already in the tree is lowered
90 *
91 * If an existing record is found the defrag item you
92 * pass in is freed
93 */
8ddc4734 94static int __btrfs_add_inode_defrag(struct inode *inode,
4cb5300b
CM
95 struct inode_defrag *defrag)
96{
97 struct btrfs_root *root = BTRFS_I(inode)->root;
98 struct inode_defrag *entry;
99 struct rb_node **p;
100 struct rb_node *parent = NULL;
762f2263 101 int ret;
4cb5300b
CM
102
103 p = &root->fs_info->defrag_inodes.rb_node;
104 while (*p) {
105 parent = *p;
106 entry = rb_entry(parent, struct inode_defrag, rb_node);
107
762f2263
MX
108 ret = __compare_inode_defrag(defrag, entry);
109 if (ret < 0)
4cb5300b 110 p = &parent->rb_left;
762f2263 111 else if (ret > 0)
4cb5300b
CM
112 p = &parent->rb_right;
113 else {
114 /* if we're reinserting an entry for
115 * an old defrag run, make sure to
116 * lower the transid of our existing record
117 */
118 if (defrag->transid < entry->transid)
119 entry->transid = defrag->transid;
120 if (defrag->last_offset > entry->last_offset)
121 entry->last_offset = defrag->last_offset;
8ddc4734 122 return -EEXIST;
4cb5300b
CM
123 }
124 }
72ac3c0d 125 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
126 rb_link_node(&defrag->rb_node, parent, p);
127 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
8ddc4734
MX
128 return 0;
129}
4cb5300b 130
8ddc4734
MX
131static inline int __need_auto_defrag(struct btrfs_root *root)
132{
133 if (!btrfs_test_opt(root, AUTO_DEFRAG))
134 return 0;
135
136 if (btrfs_fs_closing(root->fs_info))
137 return 0;
4cb5300b 138
8ddc4734 139 return 1;
4cb5300b
CM
140}
141
142/*
143 * insert a defrag record for this inode if auto defrag is
144 * enabled
145 */
146int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
147 struct inode *inode)
148{
149 struct btrfs_root *root = BTRFS_I(inode)->root;
150 struct inode_defrag *defrag;
4cb5300b 151 u64 transid;
8ddc4734 152 int ret;
4cb5300b 153
8ddc4734 154 if (!__need_auto_defrag(root))
4cb5300b
CM
155 return 0;
156
72ac3c0d 157 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
4cb5300b
CM
158 return 0;
159
160 if (trans)
161 transid = trans->transid;
162 else
163 transid = BTRFS_I(inode)->root->last_trans;
164
9247f317 165 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
4cb5300b
CM
166 if (!defrag)
167 return -ENOMEM;
168
a4689d2b 169 defrag->ino = btrfs_ino(inode);
4cb5300b
CM
170 defrag->transid = transid;
171 defrag->root = root->root_key.objectid;
172
173 spin_lock(&root->fs_info->defrag_inodes_lock);
8ddc4734
MX
174 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
175 /*
176 * If we set IN_DEFRAG flag and evict the inode from memory,
177 * and then re-read this inode, this new inode doesn't have
178 * IN_DEFRAG flag. At the case, we may find the existed defrag.
179 */
180 ret = __btrfs_add_inode_defrag(inode, defrag);
181 if (ret)
182 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
183 } else {
9247f317 184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
8ddc4734 185 }
4cb5300b 186 spin_unlock(&root->fs_info->defrag_inodes_lock);
a0f98dde 187 return 0;
4cb5300b
CM
188}
189
190/*
8ddc4734
MX
191 * Requeue the defrag object. If there is a defrag object that points to
192 * the same inode in the tree, we will merge them together (by
193 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
4cb5300b 194 */
48a3b636
ES
195static void btrfs_requeue_inode_defrag(struct inode *inode,
196 struct inode_defrag *defrag)
8ddc4734
MX
197{
198 struct btrfs_root *root = BTRFS_I(inode)->root;
199 int ret;
200
201 if (!__need_auto_defrag(root))
202 goto out;
203
204 /*
205 * Here we don't check the IN_DEFRAG flag, because we need merge
206 * them together.
207 */
208 spin_lock(&root->fs_info->defrag_inodes_lock);
209 ret = __btrfs_add_inode_defrag(inode, defrag);
210 spin_unlock(&root->fs_info->defrag_inodes_lock);
211 if (ret)
212 goto out;
213 return;
214out:
215 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
216}
217
4cb5300b 218/*
26176e7c
MX
219 * pick the defragable inode that we want, if it doesn't exist, we will get
220 * the next one.
4cb5300b 221 */
26176e7c
MX
222static struct inode_defrag *
223btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
4cb5300b
CM
224{
225 struct inode_defrag *entry = NULL;
762f2263 226 struct inode_defrag tmp;
4cb5300b
CM
227 struct rb_node *p;
228 struct rb_node *parent = NULL;
762f2263
MX
229 int ret;
230
231 tmp.ino = ino;
232 tmp.root = root;
4cb5300b 233
26176e7c
MX
234 spin_lock(&fs_info->defrag_inodes_lock);
235 p = fs_info->defrag_inodes.rb_node;
4cb5300b
CM
236 while (p) {
237 parent = p;
238 entry = rb_entry(parent, struct inode_defrag, rb_node);
239
762f2263
MX
240 ret = __compare_inode_defrag(&tmp, entry);
241 if (ret < 0)
4cb5300b 242 p = parent->rb_left;
762f2263 243 else if (ret > 0)
4cb5300b
CM
244 p = parent->rb_right;
245 else
26176e7c 246 goto out;
4cb5300b
CM
247 }
248
26176e7c
MX
249 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250 parent = rb_next(parent);
251 if (parent)
4cb5300b 252 entry = rb_entry(parent, struct inode_defrag, rb_node);
26176e7c
MX
253 else
254 entry = NULL;
4cb5300b 255 }
26176e7c
MX
256out:
257 if (entry)
258 rb_erase(parent, &fs_info->defrag_inodes);
259 spin_unlock(&fs_info->defrag_inodes_lock);
260 return entry;
4cb5300b
CM
261}
262
26176e7c 263void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
4cb5300b
CM
264{
265 struct inode_defrag *defrag;
26176e7c
MX
266 struct rb_node *node;
267
268 spin_lock(&fs_info->defrag_inodes_lock);
269 node = rb_first(&fs_info->defrag_inodes);
270 while (node) {
271 rb_erase(node, &fs_info->defrag_inodes);
272 defrag = rb_entry(node, struct inode_defrag, rb_node);
273 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
274
275 if (need_resched()) {
276 spin_unlock(&fs_info->defrag_inodes_lock);
277 cond_resched();
278 spin_lock(&fs_info->defrag_inodes_lock);
279 }
280
281 node = rb_first(&fs_info->defrag_inodes);
282 }
283 spin_unlock(&fs_info->defrag_inodes_lock);
284}
285
286#define BTRFS_DEFRAG_BATCH 1024
287
288static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289 struct inode_defrag *defrag)
290{
4cb5300b
CM
291 struct btrfs_root *inode_root;
292 struct inode *inode;
4cb5300b
CM
293 struct btrfs_key key;
294 struct btrfs_ioctl_defrag_range_args range;
4cb5300b 295 int num_defrag;
6f1c3605
LB
296 int index;
297 int ret;
4cb5300b 298
26176e7c
MX
299 /* get the inode */
300 key.objectid = defrag->root;
301 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
302 key.offset = (u64)-1;
6f1c3605
LB
303
304 index = srcu_read_lock(&fs_info->subvol_srcu);
305
26176e7c
MX
306 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
307 if (IS_ERR(inode_root)) {
6f1c3605
LB
308 ret = PTR_ERR(inode_root);
309 goto cleanup;
310 }
26176e7c
MX
311
312 key.objectid = defrag->ino;
313 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
314 key.offset = 0;
315 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
316 if (IS_ERR(inode)) {
6f1c3605
LB
317 ret = PTR_ERR(inode);
318 goto cleanup;
26176e7c 319 }
6f1c3605 320 srcu_read_unlock(&fs_info->subvol_srcu, index);
26176e7c
MX
321
322 /* do a chunk of defrag */
323 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
324 memset(&range, 0, sizeof(range));
325 range.len = (u64)-1;
26176e7c 326 range.start = defrag->last_offset;
b66f00da
MX
327
328 sb_start_write(fs_info->sb);
26176e7c
MX
329 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
330 BTRFS_DEFRAG_BATCH);
b66f00da 331 sb_end_write(fs_info->sb);
26176e7c
MX
332 /*
333 * if we filled the whole defrag batch, there
334 * must be more work to do. Queue this defrag
335 * again
336 */
337 if (num_defrag == BTRFS_DEFRAG_BATCH) {
338 defrag->last_offset = range.start;
339 btrfs_requeue_inode_defrag(inode, defrag);
340 } else if (defrag->last_offset && !defrag->cycled) {
341 /*
342 * we didn't fill our defrag batch, but
343 * we didn't start at zero. Make sure we loop
344 * around to the start of the file.
345 */
346 defrag->last_offset = 0;
347 defrag->cycled = 1;
348 btrfs_requeue_inode_defrag(inode, defrag);
349 } else {
350 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
351 }
352
353 iput(inode);
354 return 0;
6f1c3605
LB
355cleanup:
356 srcu_read_unlock(&fs_info->subvol_srcu, index);
357 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
358 return ret;
26176e7c
MX
359}
360
361/*
362 * run through the list of inodes in the FS that need
363 * defragging
364 */
365int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
366{
367 struct inode_defrag *defrag;
368 u64 first_ino = 0;
369 u64 root_objectid = 0;
4cb5300b
CM
370
371 atomic_inc(&fs_info->defrag_running);
67871254 372 while (1) {
dc81cdc5
MX
373 /* Pause the auto defragger. */
374 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
375 &fs_info->fs_state))
376 break;
377
26176e7c
MX
378 if (!__need_auto_defrag(fs_info->tree_root))
379 break;
4cb5300b
CM
380
381 /* find an inode to defrag */
26176e7c
MX
382 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
383 first_ino);
4cb5300b 384 if (!defrag) {
26176e7c 385 if (root_objectid || first_ino) {
762f2263 386 root_objectid = 0;
4cb5300b
CM
387 first_ino = 0;
388 continue;
389 } else {
390 break;
391 }
392 }
393
4cb5300b 394 first_ino = defrag->ino + 1;
762f2263 395 root_objectid = defrag->root;
4cb5300b 396
26176e7c 397 __btrfs_run_defrag_inode(fs_info, defrag);
4cb5300b 398 }
4cb5300b
CM
399 atomic_dec(&fs_info->defrag_running);
400
401 /*
402 * during unmount, we use the transaction_wait queue to
403 * wait for the defragger to stop
404 */
405 wake_up(&fs_info->transaction_wait);
406 return 0;
407}
39279cc3 408
d352ac68
CM
409/* simple helper to fault in pages and copy. This should go away
410 * and be replaced with calls into generic code.
411 */
d397712b 412static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
d0215f3e 413 size_t write_bytes,
a1b32a59 414 struct page **prepared_pages,
11c65dcc 415 struct iov_iter *i)
39279cc3 416{
914ee295 417 size_t copied = 0;
d0215f3e 418 size_t total_copied = 0;
11c65dcc 419 int pg = 0;
39279cc3
CM
420 int offset = pos & (PAGE_CACHE_SIZE - 1);
421
11c65dcc 422 while (write_bytes > 0) {
39279cc3
CM
423 size_t count = min_t(size_t,
424 PAGE_CACHE_SIZE - offset, write_bytes);
11c65dcc 425 struct page *page = prepared_pages[pg];
914ee295
XZ
426 /*
427 * Copy data from userspace to the current page
914ee295 428 */
914ee295 429 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
11c65dcc 430
39279cc3
CM
431 /* Flush processor's dcache for this page */
432 flush_dcache_page(page);
31339acd
CM
433
434 /*
435 * if we get a partial write, we can end up with
436 * partially up to date pages. These add
437 * a lot of complexity, so make sure they don't
438 * happen by forcing this copy to be retried.
439 *
440 * The rest of the btrfs_file_write code will fall
441 * back to page at a time copies after we return 0.
442 */
443 if (!PageUptodate(page) && copied < count)
444 copied = 0;
445
11c65dcc
JB
446 iov_iter_advance(i, copied);
447 write_bytes -= copied;
914ee295 448 total_copied += copied;
39279cc3 449
914ee295 450 /* Return to btrfs_file_aio_write to fault page */
9f570b8d 451 if (unlikely(copied == 0))
914ee295 452 break;
11c65dcc
JB
453
454 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
455 offset += copied;
456 } else {
457 pg++;
458 offset = 0;
459 }
39279cc3 460 }
914ee295 461 return total_copied;
39279cc3
CM
462}
463
d352ac68
CM
464/*
465 * unlocks pages after btrfs_file_write is done with them
466 */
48a3b636 467static void btrfs_drop_pages(struct page **pages, size_t num_pages)
39279cc3
CM
468{
469 size_t i;
470 for (i = 0; i < num_pages; i++) {
d352ac68
CM
471 /* page checked is some magic around finding pages that
472 * have been modified without going through btrfs_set_page_dirty
473 * clear it here
474 */
4a096752 475 ClearPageChecked(pages[i]);
39279cc3
CM
476 unlock_page(pages[i]);
477 mark_page_accessed(pages[i]);
478 page_cache_release(pages[i]);
479 }
480}
481
d352ac68
CM
482/*
483 * after copy_from_user, pages need to be dirtied and we need to make
484 * sure holes are created between the current EOF and the start of
485 * any next extents (if required).
486 *
487 * this also makes the decision about creating an inline extent vs
488 * doing real data extents, marking pages dirty and delalloc as required.
489 */
be1a12a0 490int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
48a3b636
ES
491 struct page **pages, size_t num_pages,
492 loff_t pos, size_t write_bytes,
493 struct extent_state **cached)
39279cc3 494{
39279cc3 495 int err = 0;
a52d9a80 496 int i;
db94535d 497 u64 num_bytes;
a52d9a80
CM
498 u64 start_pos;
499 u64 end_of_last_block;
500 u64 end_pos = pos + write_bytes;
501 loff_t isize = i_size_read(inode);
39279cc3 502
5f39d397 503 start_pos = pos & ~((u64)root->sectorsize - 1);
fda2832f 504 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
39279cc3 505
db94535d 506 end_of_last_block = start_pos + num_bytes - 1;
2ac55d41 507 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
be1a12a0 508 cached);
d0215f3e
JB
509 if (err)
510 return err;
9ed74f2d 511
c8b97818
CM
512 for (i = 0; i < num_pages; i++) {
513 struct page *p = pages[i];
514 SetPageUptodate(p);
515 ClearPageChecked(p);
516 set_page_dirty(p);
a52d9a80 517 }
9f570b8d
JB
518
519 /*
520 * we've only changed i_size in ram, and we haven't updated
521 * the disk i_size. There is no need to log the inode
522 * at this time.
523 */
524 if (end_pos > isize)
a52d9a80 525 i_size_write(inode, end_pos);
a22285a6 526 return 0;
39279cc3
CM
527}
528
d352ac68
CM
529/*
530 * this drops all the extents in the cache that intersect the range
531 * [start, end]. Existing extents are split as required.
532 */
7014cdb4
JB
533void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
534 int skip_pinned)
a52d9a80
CM
535{
536 struct extent_map *em;
3b951516
CM
537 struct extent_map *split = NULL;
538 struct extent_map *split2 = NULL;
a52d9a80 539 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
39b5637f 540 u64 len = end - start + 1;
5dc562c5 541 u64 gen;
3b951516
CM
542 int ret;
543 int testend = 1;
5b21f2ed 544 unsigned long flags;
c8b97818 545 int compressed = 0;
09a2a8f9 546 bool modified;
a52d9a80 547
e6dcd2dc 548 WARN_ON(end < start);
3b951516 549 if (end == (u64)-1) {
39b5637f 550 len = (u64)-1;
3b951516
CM
551 testend = 0;
552 }
d397712b 553 while (1) {
7014cdb4
JB
554 int no_splits = 0;
555
09a2a8f9 556 modified = false;
3b951516 557 if (!split)
172ddd60 558 split = alloc_extent_map();
3b951516 559 if (!split2)
172ddd60 560 split2 = alloc_extent_map();
7014cdb4
JB
561 if (!split || !split2)
562 no_splits = 1;
3b951516 563
890871be 564 write_lock(&em_tree->lock);
39b5637f 565 em = lookup_extent_mapping(em_tree, start, len);
d1310b2e 566 if (!em) {
890871be 567 write_unlock(&em_tree->lock);
a52d9a80 568 break;
d1310b2e 569 }
5b21f2ed 570 flags = em->flags;
5dc562c5 571 gen = em->generation;
5b21f2ed 572 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
55ef6899 573 if (testend && em->start + em->len >= start + len) {
5b21f2ed 574 free_extent_map(em);
a1ed835e 575 write_unlock(&em_tree->lock);
5b21f2ed
ZY
576 break;
577 }
55ef6899
YZ
578 start = em->start + em->len;
579 if (testend)
5b21f2ed 580 len = start + len - (em->start + em->len);
5b21f2ed 581 free_extent_map(em);
a1ed835e 582 write_unlock(&em_tree->lock);
5b21f2ed
ZY
583 continue;
584 }
c8b97818 585 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3ce7e67a 586 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
3b277594 587 clear_bit(EXTENT_FLAG_LOGGING, &flags);
09a2a8f9 588 modified = !list_empty(&em->list);
a52d9a80 589 remove_extent_mapping(em_tree, em);
7014cdb4
JB
590 if (no_splits)
591 goto next;
3b951516 592
ee20a983 593 if (em->start < start) {
3b951516
CM
594 split->start = em->start;
595 split->len = start - em->start;
ee20a983
JB
596
597 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
598 split->orig_start = em->orig_start;
599 split->block_start = em->block_start;
600
601 if (compressed)
602 split->block_len = em->block_len;
603 else
604 split->block_len = split->len;
605 split->orig_block_len = max(split->block_len,
606 em->orig_block_len);
607 split->ram_bytes = em->ram_bytes;
608 } else {
609 split->orig_start = split->start;
610 split->block_len = 0;
611 split->block_start = em->block_start;
612 split->orig_block_len = 0;
613 split->ram_bytes = split->len;
614 }
615
5dc562c5 616 split->generation = gen;
3b951516 617 split->bdev = em->bdev;
5b21f2ed 618 split->flags = flags;
261507a0 619 split->compress_type = em->compress_type;
09a2a8f9 620 ret = add_extent_mapping(em_tree, split, modified);
79787eaa 621 BUG_ON(ret); /* Logic error */
3b951516
CM
622 free_extent_map(split);
623 split = split2;
624 split2 = NULL;
625 }
ee20a983 626 if (testend && em->start + em->len > start + len) {
3b951516
CM
627 u64 diff = start + len - em->start;
628
629 split->start = start + len;
630 split->len = em->start + em->len - (start + len);
631 split->bdev = em->bdev;
5b21f2ed 632 split->flags = flags;
261507a0 633 split->compress_type = em->compress_type;
5dc562c5 634 split->generation = gen;
ee20a983
JB
635
636 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
637 split->orig_block_len = max(em->block_len,
b4939680 638 em->orig_block_len);
3b951516 639
ee20a983
JB
640 split->ram_bytes = em->ram_bytes;
641 if (compressed) {
642 split->block_len = em->block_len;
643 split->block_start = em->block_start;
644 split->orig_start = em->orig_start;
645 } else {
646 split->block_len = split->len;
647 split->block_start = em->block_start
648 + diff;
649 split->orig_start = em->orig_start;
650 }
c8b97818 651 } else {
ee20a983
JB
652 split->ram_bytes = split->len;
653 split->orig_start = split->start;
654 split->block_len = 0;
655 split->block_start = em->block_start;
656 split->orig_block_len = 0;
c8b97818 657 }
3b951516 658
09a2a8f9 659 ret = add_extent_mapping(em_tree, split, modified);
79787eaa 660 BUG_ON(ret); /* Logic error */
3b951516
CM
661 free_extent_map(split);
662 split = NULL;
663 }
7014cdb4 664next:
890871be 665 write_unlock(&em_tree->lock);
d1310b2e 666
a52d9a80
CM
667 /* once for us */
668 free_extent_map(em);
669 /* once for the tree*/
670 free_extent_map(em);
671 }
3b951516
CM
672 if (split)
673 free_extent_map(split);
674 if (split2)
675 free_extent_map(split2);
a52d9a80
CM
676}
677
39279cc3
CM
678/*
679 * this is very complex, but the basic idea is to drop all extents
680 * in the range start - end. hint_block is filled in with a block number
681 * that would be a good hint to the block allocator for this file.
682 *
683 * If an extent intersects the range but is not entirely inside the range
684 * it is either truncated or split. Anything entirely inside the range
685 * is deleted from the tree.
686 */
5dc562c5
JB
687int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
688 struct btrfs_root *root, struct inode *inode,
689 struct btrfs_path *path, u64 start, u64 end,
1acae57b
FDBM
690 u64 *drop_end, int drop_cache,
691 int replace_extent,
692 u32 extent_item_size,
693 int *key_inserted)
39279cc3 694{
5f39d397 695 struct extent_buffer *leaf;
920bbbfb 696 struct btrfs_file_extent_item *fi;
00f5c795 697 struct btrfs_key key;
920bbbfb 698 struct btrfs_key new_key;
33345d01 699 u64 ino = btrfs_ino(inode);
920bbbfb
YZ
700 u64 search_start = start;
701 u64 disk_bytenr = 0;
702 u64 num_bytes = 0;
703 u64 extent_offset = 0;
704 u64 extent_end = 0;
705 int del_nr = 0;
706 int del_slot = 0;
707 int extent_type;
ccd467d6 708 int recow;
00f5c795 709 int ret;
dc7fdde3 710 int modify_tree = -1;
5dc562c5 711 int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
c3308f84 712 int found = 0;
1acae57b 713 int leafs_visited = 0;
39279cc3 714
a1ed835e
CM
715 if (drop_cache)
716 btrfs_drop_extent_cache(inode, start, end - 1, 0);
a52d9a80 717
dc7fdde3
CM
718 if (start >= BTRFS_I(inode)->disk_i_size)
719 modify_tree = 0;
720
d397712b 721 while (1) {
ccd467d6 722 recow = 0;
33345d01 723 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 724 search_start, modify_tree);
39279cc3 725 if (ret < 0)
920bbbfb
YZ
726 break;
727 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
728 leaf = path->nodes[0];
729 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 730 if (key.objectid == ino &&
920bbbfb
YZ
731 key.type == BTRFS_EXTENT_DATA_KEY)
732 path->slots[0]--;
39279cc3 733 }
920bbbfb 734 ret = 0;
1acae57b 735 leafs_visited++;
8c2383c3 736next_slot:
5f39d397 737 leaf = path->nodes[0];
920bbbfb
YZ
738 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
739 BUG_ON(del_nr > 0);
740 ret = btrfs_next_leaf(root, path);
741 if (ret < 0)
742 break;
743 if (ret > 0) {
744 ret = 0;
745 break;
8c2383c3 746 }
1acae57b 747 leafs_visited++;
920bbbfb
YZ
748 leaf = path->nodes[0];
749 recow = 1;
750 }
751
752 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
33345d01 753 if (key.objectid > ino ||
920bbbfb
YZ
754 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
755 break;
756
757 fi = btrfs_item_ptr(leaf, path->slots[0],
758 struct btrfs_file_extent_item);
759 extent_type = btrfs_file_extent_type(leaf, fi);
760
761 if (extent_type == BTRFS_FILE_EXTENT_REG ||
762 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
763 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
764 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
765 extent_offset = btrfs_file_extent_offset(leaf, fi);
766 extent_end = key.offset +
767 btrfs_file_extent_num_bytes(leaf, fi);
768 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
769 extent_end = key.offset +
514ac8ad
CM
770 btrfs_file_extent_inline_len(leaf,
771 path->slots[0], fi);
8c2383c3 772 } else {
920bbbfb 773 WARN_ON(1);
8c2383c3 774 extent_end = search_start;
39279cc3
CM
775 }
776
920bbbfb
YZ
777 if (extent_end <= search_start) {
778 path->slots[0]++;
8c2383c3 779 goto next_slot;
39279cc3
CM
780 }
781
c3308f84 782 found = 1;
920bbbfb 783 search_start = max(key.offset, start);
dc7fdde3
CM
784 if (recow || !modify_tree) {
785 modify_tree = -1;
b3b4aa74 786 btrfs_release_path(path);
920bbbfb 787 continue;
39279cc3 788 }
6643558d 789
920bbbfb
YZ
790 /*
791 * | - range to drop - |
792 * | -------- extent -------- |
793 */
794 if (start > key.offset && end < extent_end) {
795 BUG_ON(del_nr > 0);
796 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
797
798 memcpy(&new_key, &key, sizeof(new_key));
799 new_key.offset = start;
800 ret = btrfs_duplicate_item(trans, root, path,
801 &new_key);
802 if (ret == -EAGAIN) {
b3b4aa74 803 btrfs_release_path(path);
920bbbfb 804 continue;
6643558d 805 }
920bbbfb
YZ
806 if (ret < 0)
807 break;
808
809 leaf = path->nodes[0];
810 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
811 struct btrfs_file_extent_item);
812 btrfs_set_file_extent_num_bytes(leaf, fi,
813 start - key.offset);
814
815 fi = btrfs_item_ptr(leaf, path->slots[0],
816 struct btrfs_file_extent_item);
817
818 extent_offset += start - key.offset;
819 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
820 btrfs_set_file_extent_num_bytes(leaf, fi,
821 extent_end - start);
822 btrfs_mark_buffer_dirty(leaf);
823
5dc562c5 824 if (update_refs && disk_bytenr > 0) {
771ed689 825 ret = btrfs_inc_extent_ref(trans, root,
920bbbfb
YZ
826 disk_bytenr, num_bytes, 0,
827 root->root_key.objectid,
828 new_key.objectid,
66d7e7f0 829 start - extent_offset, 0);
79787eaa 830 BUG_ON(ret); /* -ENOMEM */
771ed689 831 }
920bbbfb 832 key.offset = start;
6643558d 833 }
920bbbfb
YZ
834 /*
835 * | ---- range to drop ----- |
836 * | -------- extent -------- |
837 */
838 if (start <= key.offset && end < extent_end) {
839 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
6643558d 840
920bbbfb
YZ
841 memcpy(&new_key, &key, sizeof(new_key));
842 new_key.offset = end;
afe5fea7 843 btrfs_set_item_key_safe(root, path, &new_key);
6643558d 844
920bbbfb
YZ
845 extent_offset += end - key.offset;
846 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
847 btrfs_set_file_extent_num_bytes(leaf, fi,
848 extent_end - end);
849 btrfs_mark_buffer_dirty(leaf);
2671485d 850 if (update_refs && disk_bytenr > 0)
920bbbfb 851 inode_sub_bytes(inode, end - key.offset);
920bbbfb 852 break;
39279cc3 853 }
771ed689 854
920bbbfb
YZ
855 search_start = extent_end;
856 /*
857 * | ---- range to drop ----- |
858 * | -------- extent -------- |
859 */
860 if (start > key.offset && end >= extent_end) {
861 BUG_ON(del_nr > 0);
862 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
8c2383c3 863
920bbbfb
YZ
864 btrfs_set_file_extent_num_bytes(leaf, fi,
865 start - key.offset);
866 btrfs_mark_buffer_dirty(leaf);
2671485d 867 if (update_refs && disk_bytenr > 0)
920bbbfb 868 inode_sub_bytes(inode, extent_end - start);
920bbbfb
YZ
869 if (end == extent_end)
870 break;
c8b97818 871
920bbbfb
YZ
872 path->slots[0]++;
873 goto next_slot;
31840ae1
ZY
874 }
875
920bbbfb
YZ
876 /*
877 * | ---- range to drop ----- |
878 * | ------ extent ------ |
879 */
880 if (start <= key.offset && end >= extent_end) {
881 if (del_nr == 0) {
882 del_slot = path->slots[0];
883 del_nr = 1;
884 } else {
885 BUG_ON(del_slot + del_nr != path->slots[0]);
886 del_nr++;
887 }
31840ae1 888
5dc562c5
JB
889 if (update_refs &&
890 extent_type == BTRFS_FILE_EXTENT_INLINE) {
a76a3cd4 891 inode_sub_bytes(inode,
920bbbfb
YZ
892 extent_end - key.offset);
893 extent_end = ALIGN(extent_end,
894 root->sectorsize);
5dc562c5 895 } else if (update_refs && disk_bytenr > 0) {
31840ae1 896 ret = btrfs_free_extent(trans, root,
920bbbfb
YZ
897 disk_bytenr, num_bytes, 0,
898 root->root_key.objectid,
5d4f98a2 899 key.objectid, key.offset -
66d7e7f0 900 extent_offset, 0);
79787eaa 901 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
902 inode_sub_bytes(inode,
903 extent_end - key.offset);
31840ae1 904 }
31840ae1 905
920bbbfb
YZ
906 if (end == extent_end)
907 break;
908
909 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
910 path->slots[0]++;
911 goto next_slot;
912 }
913
914 ret = btrfs_del_items(trans, root, path, del_slot,
915 del_nr);
79787eaa
JM
916 if (ret) {
917 btrfs_abort_transaction(trans, root, ret);
5dc562c5 918 break;
79787eaa 919 }
920bbbfb
YZ
920
921 del_nr = 0;
922 del_slot = 0;
923
b3b4aa74 924 btrfs_release_path(path);
920bbbfb 925 continue;
39279cc3 926 }
920bbbfb
YZ
927
928 BUG_ON(1);
39279cc3 929 }
920bbbfb 930
79787eaa 931 if (!ret && del_nr > 0) {
1acae57b
FDBM
932 /*
933 * Set path->slots[0] to first slot, so that after the delete
934 * if items are move off from our leaf to its immediate left or
935 * right neighbor leafs, we end up with a correct and adjusted
936 * path->slots[0] for our insertion.
937 */
938 path->slots[0] = del_slot;
920bbbfb 939 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa
JM
940 if (ret)
941 btrfs_abort_transaction(trans, root, ret);
1acae57b
FDBM
942
943 leaf = path->nodes[0];
944 /*
945 * leaf eb has flag EXTENT_BUFFER_STALE if it was deleted (that
946 * is, its contents got pushed to its neighbors), in which case
947 * it means path->locks[0] == 0
948 */
949 if (!ret && replace_extent && leafs_visited == 1 &&
950 path->locks[0] &&
951 btrfs_leaf_free_space(root, leaf) >=
952 sizeof(struct btrfs_item) + extent_item_size) {
953
954 key.objectid = ino;
955 key.type = BTRFS_EXTENT_DATA_KEY;
956 key.offset = start;
957 setup_items_for_insert(root, path, &key,
958 &extent_item_size,
959 extent_item_size,
960 sizeof(struct btrfs_item) +
961 extent_item_size, 1);
962 *key_inserted = 1;
963 }
6643558d 964 }
920bbbfb 965
1acae57b
FDBM
966 if (!replace_extent || !(*key_inserted))
967 btrfs_release_path(path);
2aaa6655 968 if (drop_end)
c3308f84 969 *drop_end = found ? min(end, extent_end) : end;
5dc562c5
JB
970 return ret;
971}
972
973int btrfs_drop_extents(struct btrfs_trans_handle *trans,
974 struct btrfs_root *root, struct inode *inode, u64 start,
2671485d 975 u64 end, int drop_cache)
5dc562c5
JB
976{
977 struct btrfs_path *path;
978 int ret;
979
980 path = btrfs_alloc_path();
981 if (!path)
982 return -ENOMEM;
2aaa6655 983 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1acae57b 984 drop_cache, 0, 0, NULL);
920bbbfb 985 btrfs_free_path(path);
39279cc3
CM
986 return ret;
987}
988
d899e052 989static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
990 u64 objectid, u64 bytenr, u64 orig_offset,
991 u64 *start, u64 *end)
d899e052
YZ
992{
993 struct btrfs_file_extent_item *fi;
994 struct btrfs_key key;
995 u64 extent_end;
996
997 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
998 return 0;
999
1000 btrfs_item_key_to_cpu(leaf, &key, slot);
1001 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1002 return 0;
1003
1004 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1005 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1006 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 1007 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
1008 btrfs_file_extent_compression(leaf, fi) ||
1009 btrfs_file_extent_encryption(leaf, fi) ||
1010 btrfs_file_extent_other_encoding(leaf, fi))
1011 return 0;
1012
1013 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1014 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1015 return 0;
1016
1017 *start = key.offset;
1018 *end = extent_end;
1019 return 1;
1020}
1021
1022/*
1023 * Mark extent in the range start - end as written.
1024 *
1025 * This changes extent type from 'pre-allocated' to 'regular'. If only
1026 * part of extent is marked as written, the extent will be split into
1027 * two or three.
1028 */
1029int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
d899e052
YZ
1030 struct inode *inode, u64 start, u64 end)
1031{
920bbbfb 1032 struct btrfs_root *root = BTRFS_I(inode)->root;
d899e052
YZ
1033 struct extent_buffer *leaf;
1034 struct btrfs_path *path;
1035 struct btrfs_file_extent_item *fi;
1036 struct btrfs_key key;
920bbbfb 1037 struct btrfs_key new_key;
d899e052
YZ
1038 u64 bytenr;
1039 u64 num_bytes;
1040 u64 extent_end;
5d4f98a2 1041 u64 orig_offset;
d899e052
YZ
1042 u64 other_start;
1043 u64 other_end;
920bbbfb
YZ
1044 u64 split;
1045 int del_nr = 0;
1046 int del_slot = 0;
6c7d54ac 1047 int recow;
d899e052 1048 int ret;
33345d01 1049 u64 ino = btrfs_ino(inode);
d899e052 1050
d899e052 1051 path = btrfs_alloc_path();
d8926bb3
MF
1052 if (!path)
1053 return -ENOMEM;
d899e052 1054again:
6c7d54ac 1055 recow = 0;
920bbbfb 1056 split = start;
33345d01 1057 key.objectid = ino;
d899e052 1058 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 1059 key.offset = split;
d899e052
YZ
1060
1061 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
1062 if (ret < 0)
1063 goto out;
d899e052
YZ
1064 if (ret > 0 && path->slots[0] > 0)
1065 path->slots[0]--;
1066
1067 leaf = path->nodes[0];
1068 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
33345d01 1069 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
d899e052
YZ
1070 fi = btrfs_item_ptr(leaf, path->slots[0],
1071 struct btrfs_file_extent_item);
920bbbfb
YZ
1072 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1073 BTRFS_FILE_EXTENT_PREALLOC);
d899e052
YZ
1074 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1075 BUG_ON(key.offset > start || extent_end < end);
1076
1077 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1078 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 1079 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
1080 memcpy(&new_key, &key, sizeof(new_key));
1081
1082 if (start == key.offset && end < extent_end) {
1083 other_start = 0;
1084 other_end = start;
1085 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1086 ino, bytenr, orig_offset,
6c7d54ac
YZ
1087 &other_start, &other_end)) {
1088 new_key.offset = end;
afe5fea7 1089 btrfs_set_item_key_safe(root, path, &new_key);
6c7d54ac
YZ
1090 fi = btrfs_item_ptr(leaf, path->slots[0],
1091 struct btrfs_file_extent_item);
224ecce5
JB
1092 btrfs_set_file_extent_generation(leaf, fi,
1093 trans->transid);
6c7d54ac
YZ
1094 btrfs_set_file_extent_num_bytes(leaf, fi,
1095 extent_end - end);
1096 btrfs_set_file_extent_offset(leaf, fi,
1097 end - orig_offset);
1098 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1099 struct btrfs_file_extent_item);
224ecce5
JB
1100 btrfs_set_file_extent_generation(leaf, fi,
1101 trans->transid);
6c7d54ac
YZ
1102 btrfs_set_file_extent_num_bytes(leaf, fi,
1103 end - other_start);
1104 btrfs_mark_buffer_dirty(leaf);
1105 goto out;
1106 }
1107 }
1108
1109 if (start > key.offset && end == extent_end) {
1110 other_start = end;
1111 other_end = 0;
1112 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1113 ino, bytenr, orig_offset,
6c7d54ac
YZ
1114 &other_start, &other_end)) {
1115 fi = btrfs_item_ptr(leaf, path->slots[0],
1116 struct btrfs_file_extent_item);
1117 btrfs_set_file_extent_num_bytes(leaf, fi,
1118 start - key.offset);
224ecce5
JB
1119 btrfs_set_file_extent_generation(leaf, fi,
1120 trans->transid);
6c7d54ac
YZ
1121 path->slots[0]++;
1122 new_key.offset = start;
afe5fea7 1123 btrfs_set_item_key_safe(root, path, &new_key);
6c7d54ac
YZ
1124
1125 fi = btrfs_item_ptr(leaf, path->slots[0],
1126 struct btrfs_file_extent_item);
224ecce5
JB
1127 btrfs_set_file_extent_generation(leaf, fi,
1128 trans->transid);
6c7d54ac
YZ
1129 btrfs_set_file_extent_num_bytes(leaf, fi,
1130 other_end - start);
1131 btrfs_set_file_extent_offset(leaf, fi,
1132 start - orig_offset);
1133 btrfs_mark_buffer_dirty(leaf);
1134 goto out;
1135 }
1136 }
d899e052 1137
920bbbfb
YZ
1138 while (start > key.offset || end < extent_end) {
1139 if (key.offset == start)
1140 split = end;
1141
920bbbfb
YZ
1142 new_key.offset = split;
1143 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1144 if (ret == -EAGAIN) {
b3b4aa74 1145 btrfs_release_path(path);
920bbbfb 1146 goto again;
d899e052 1147 }
79787eaa
JM
1148 if (ret < 0) {
1149 btrfs_abort_transaction(trans, root, ret);
1150 goto out;
1151 }
d899e052 1152
920bbbfb
YZ
1153 leaf = path->nodes[0];
1154 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 1155 struct btrfs_file_extent_item);
224ecce5 1156 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 1157 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
1158 split - key.offset);
1159
1160 fi = btrfs_item_ptr(leaf, path->slots[0],
1161 struct btrfs_file_extent_item);
1162
224ecce5 1163 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
1164 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1165 btrfs_set_file_extent_num_bytes(leaf, fi,
1166 extent_end - split);
d899e052
YZ
1167 btrfs_mark_buffer_dirty(leaf);
1168
920bbbfb
YZ
1169 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1170 root->root_key.objectid,
66d7e7f0 1171 ino, orig_offset, 0);
79787eaa 1172 BUG_ON(ret); /* -ENOMEM */
d899e052 1173
920bbbfb
YZ
1174 if (split == start) {
1175 key.offset = start;
1176 } else {
1177 BUG_ON(start != key.offset);
d899e052 1178 path->slots[0]--;
920bbbfb 1179 extent_end = end;
d899e052 1180 }
6c7d54ac 1181 recow = 1;
d899e052
YZ
1182 }
1183
920bbbfb
YZ
1184 other_start = end;
1185 other_end = 0;
6c7d54ac 1186 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1187 ino, bytenr, orig_offset,
6c7d54ac
YZ
1188 &other_start, &other_end)) {
1189 if (recow) {
b3b4aa74 1190 btrfs_release_path(path);
6c7d54ac
YZ
1191 goto again;
1192 }
920bbbfb
YZ
1193 extent_end = other_end;
1194 del_slot = path->slots[0] + 1;
1195 del_nr++;
1196 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1197 0, root->root_key.objectid,
66d7e7f0 1198 ino, orig_offset, 0);
79787eaa 1199 BUG_ON(ret); /* -ENOMEM */
d899e052 1200 }
920bbbfb
YZ
1201 other_start = 0;
1202 other_end = start;
6c7d54ac 1203 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1204 ino, bytenr, orig_offset,
6c7d54ac
YZ
1205 &other_start, &other_end)) {
1206 if (recow) {
b3b4aa74 1207 btrfs_release_path(path);
6c7d54ac
YZ
1208 goto again;
1209 }
920bbbfb
YZ
1210 key.offset = other_start;
1211 del_slot = path->slots[0];
1212 del_nr++;
1213 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1214 0, root->root_key.objectid,
66d7e7f0 1215 ino, orig_offset, 0);
79787eaa 1216 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
1217 }
1218 if (del_nr == 0) {
3f6fae95
SL
1219 fi = btrfs_item_ptr(leaf, path->slots[0],
1220 struct btrfs_file_extent_item);
920bbbfb
YZ
1221 btrfs_set_file_extent_type(leaf, fi,
1222 BTRFS_FILE_EXTENT_REG);
224ecce5 1223 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb 1224 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 1225 } else {
3f6fae95
SL
1226 fi = btrfs_item_ptr(leaf, del_slot - 1,
1227 struct btrfs_file_extent_item);
6c7d54ac
YZ
1228 btrfs_set_file_extent_type(leaf, fi,
1229 BTRFS_FILE_EXTENT_REG);
224ecce5 1230 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
1231 btrfs_set_file_extent_num_bytes(leaf, fi,
1232 extent_end - key.offset);
1233 btrfs_mark_buffer_dirty(leaf);
920bbbfb 1234
6c7d54ac 1235 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa
JM
1236 if (ret < 0) {
1237 btrfs_abort_transaction(trans, root, ret);
1238 goto out;
1239 }
6c7d54ac 1240 }
920bbbfb 1241out:
d899e052
YZ
1242 btrfs_free_path(path);
1243 return 0;
1244}
1245
b1bf862e
CM
1246/*
1247 * on error we return an unlocked page and the error value
1248 * on success we return a locked page and 0
1249 */
b6316429
JB
1250static int prepare_uptodate_page(struct page *page, u64 pos,
1251 bool force_uptodate)
b1bf862e
CM
1252{
1253 int ret = 0;
1254
b6316429
JB
1255 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1256 !PageUptodate(page)) {
b1bf862e
CM
1257 ret = btrfs_readpage(NULL, page);
1258 if (ret)
1259 return ret;
1260 lock_page(page);
1261 if (!PageUptodate(page)) {
1262 unlock_page(page);
1263 return -EIO;
1264 }
1265 }
1266 return 0;
1267}
1268
39279cc3 1269/*
376cc685 1270 * this just gets pages into the page cache and locks them down.
39279cc3 1271 */
b37392ea
MX
1272static noinline int prepare_pages(struct inode *inode, struct page **pages,
1273 size_t num_pages, loff_t pos,
1274 size_t write_bytes, bool force_uptodate)
39279cc3
CM
1275{
1276 int i;
1277 unsigned long index = pos >> PAGE_CACHE_SHIFT;
3b16a4e3 1278 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
fc28b62d 1279 int err = 0;
376cc685 1280 int faili;
8c2383c3 1281
39279cc3 1282 for (i = 0; i < num_pages; i++) {
a94733d0 1283 pages[i] = find_or_create_page(inode->i_mapping, index + i,
e3a41a5b 1284 mask | __GFP_WRITE);
39279cc3 1285 if (!pages[i]) {
b1bf862e
CM
1286 faili = i - 1;
1287 err = -ENOMEM;
1288 goto fail;
1289 }
1290
1291 if (i == 0)
b6316429
JB
1292 err = prepare_uptodate_page(pages[i], pos,
1293 force_uptodate);
b1bf862e
CM
1294 if (i == num_pages - 1)
1295 err = prepare_uptodate_page(pages[i],
b6316429 1296 pos + write_bytes, false);
b1bf862e
CM
1297 if (err) {
1298 page_cache_release(pages[i]);
1299 faili = i - 1;
1300 goto fail;
39279cc3 1301 }
ccd467d6 1302 wait_on_page_writeback(pages[i]);
39279cc3 1303 }
376cc685
MX
1304
1305 return 0;
1306fail:
1307 while (faili >= 0) {
1308 unlock_page(pages[faili]);
1309 page_cache_release(pages[faili]);
1310 faili--;
1311 }
1312 return err;
1313
1314}
1315
1316/*
1317 * This function locks the extent and properly waits for data=ordered extents
1318 * to finish before allowing the pages to be modified if need.
1319 *
1320 * The return value:
1321 * 1 - the extent is locked
1322 * 0 - the extent is not locked, and everything is OK
1323 * -EAGAIN - need re-prepare the pages
1324 * the other < 0 number - Something wrong happens
1325 */
1326static noinline int
1327lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1328 size_t num_pages, loff_t pos,
1329 u64 *lockstart, u64 *lockend,
1330 struct extent_state **cached_state)
1331{
1332 u64 start_pos;
1333 u64 last_pos;
1334 int i;
1335 int ret = 0;
1336
1337 start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1338 last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1339
0762704b 1340 if (start_pos < inode->i_size) {
e6dcd2dc 1341 struct btrfs_ordered_extent *ordered;
2ac55d41 1342 lock_extent_bits(&BTRFS_I(inode)->io_tree,
376cc685
MX
1343 start_pos, last_pos, 0, cached_state);
1344 ordered = btrfs_lookup_first_ordered_extent(inode, last_pos);
e6dcd2dc
CM
1345 if (ordered &&
1346 ordered->file_offset + ordered->len > start_pos &&
376cc685 1347 ordered->file_offset <= last_pos) {
e6dcd2dc 1348 btrfs_put_ordered_extent(ordered);
2ac55d41 1349 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
376cc685
MX
1350 start_pos, last_pos,
1351 cached_state, GFP_NOFS);
e6dcd2dc
CM
1352 for (i = 0; i < num_pages; i++) {
1353 unlock_page(pages[i]);
1354 page_cache_release(pages[i]);
1355 }
376cc685
MX
1356 ret = btrfs_wait_ordered_range(inode, start_pos,
1357 last_pos - start_pos + 1);
1358 if (ret)
1359 return ret;
1360 else
1361 return -EAGAIN;
e6dcd2dc
CM
1362 }
1363 if (ordered)
1364 btrfs_put_ordered_extent(ordered);
1365
2ac55d41 1366 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
376cc685 1367 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b 1368 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
376cc685
MX
1369 0, 0, cached_state, GFP_NOFS);
1370 *lockstart = start_pos;
1371 *lockend = last_pos;
1372 ret = 1;
0762704b 1373 }
376cc685 1374
e6dcd2dc 1375 for (i = 0; i < num_pages; i++) {
32c7f202
WF
1376 if (clear_page_dirty_for_io(pages[i]))
1377 account_page_redirty(pages[i]);
e6dcd2dc
CM
1378 set_page_extent_mapped(pages[i]);
1379 WARN_ON(!PageLocked(pages[i]));
1380 }
b1bf862e 1381
376cc685 1382 return ret;
39279cc3
CM
1383}
1384
7ee9e440
JB
1385static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1386 size_t *write_bytes)
1387{
7ee9e440
JB
1388 struct btrfs_root *root = BTRFS_I(inode)->root;
1389 struct btrfs_ordered_extent *ordered;
1390 u64 lockstart, lockend;
1391 u64 num_bytes;
1392 int ret;
1393
1394 lockstart = round_down(pos, root->sectorsize);
1395 lockend = lockstart + round_up(*write_bytes, root->sectorsize) - 1;
1396
1397 while (1) {
1398 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1399 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1400 lockend - lockstart + 1);
1401 if (!ordered) {
1402 break;
1403 }
1404 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1405 btrfs_start_ordered_extent(inode, ordered, 1);
1406 btrfs_put_ordered_extent(ordered);
1407 }
1408
7ee9e440 1409 num_bytes = lockend - lockstart + 1;
00361589 1410 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
7ee9e440
JB
1411 if (ret <= 0) {
1412 ret = 0;
1413 } else {
1414 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1415 EXTENT_DIRTY | EXTENT_DELALLOC |
1416 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1417 NULL, GFP_NOFS);
1418 *write_bytes = min_t(size_t, *write_bytes, num_bytes);
1419 }
1420
1421 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1422
1423 return ret;
1424}
1425
d0215f3e
JB
1426static noinline ssize_t __btrfs_buffered_write(struct file *file,
1427 struct iov_iter *i,
1428 loff_t pos)
4b46fce2 1429{
496ad9aa 1430 struct inode *inode = file_inode(file);
11c65dcc 1431 struct btrfs_root *root = BTRFS_I(inode)->root;
11c65dcc 1432 struct page **pages = NULL;
376cc685 1433 struct extent_state *cached_state = NULL;
7ee9e440 1434 u64 release_bytes = 0;
376cc685
MX
1435 u64 lockstart;
1436 u64 lockend;
39279cc3 1437 unsigned long first_index;
d0215f3e
JB
1438 size_t num_written = 0;
1439 int nrptrs;
c9149235 1440 int ret = 0;
7ee9e440 1441 bool only_release_metadata = false;
b6316429 1442 bool force_page_uptodate = false;
376cc685 1443 bool need_unlock;
4b46fce2 1444
d0215f3e 1445 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
11c65dcc
JB
1446 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1447 (sizeof(struct page *)));
142349f5
WF
1448 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1449 nrptrs = max(nrptrs, 8);
8c2383c3 1450 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
d0215f3e
JB
1451 if (!pages)
1452 return -ENOMEM;
ab93dbec 1453
39279cc3 1454 first_index = pos >> PAGE_CACHE_SHIFT;
39279cc3 1455
d0215f3e 1456 while (iov_iter_count(i) > 0) {
39279cc3 1457 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
d0215f3e 1458 size_t write_bytes = min(iov_iter_count(i),
11c65dcc 1459 nrptrs * (size_t)PAGE_CACHE_SIZE -
8c2383c3 1460 offset);
3a90983d
YZ
1461 size_t num_pages = (write_bytes + offset +
1462 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
7ee9e440 1463 size_t reserve_bytes;
d0215f3e
JB
1464 size_t dirty_pages;
1465 size_t copied;
39279cc3 1466
8c2383c3 1467 WARN_ON(num_pages > nrptrs);
1832a6d5 1468
914ee295
XZ
1469 /*
1470 * Fault pages before locking them in prepare_pages
1471 * to avoid recursive lock
1472 */
d0215f3e 1473 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
914ee295 1474 ret = -EFAULT;
d0215f3e 1475 break;
914ee295
XZ
1476 }
1477
7ee9e440
JB
1478 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1479 ret = btrfs_check_data_free_space(inode, reserve_bytes);
1480 if (ret == -ENOSPC &&
1481 (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1482 BTRFS_INODE_PREALLOC))) {
1483 ret = check_can_nocow(inode, pos, &write_bytes);
1484 if (ret > 0) {
1485 only_release_metadata = true;
1486 /*
1487 * our prealloc extent may be smaller than
1488 * write_bytes, so scale down.
1489 */
1490 num_pages = (write_bytes + offset +
1491 PAGE_CACHE_SIZE - 1) >>
1492 PAGE_CACHE_SHIFT;
1493 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1494 ret = 0;
1495 } else {
1496 ret = -ENOSPC;
1497 }
1498 }
1499
1832a6d5 1500 if (ret)
d0215f3e 1501 break;
1832a6d5 1502
7ee9e440
JB
1503 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1504 if (ret) {
1505 if (!only_release_metadata)
1506 btrfs_free_reserved_data_space(inode,
1507 reserve_bytes);
1508 break;
1509 }
1510
1511 release_bytes = reserve_bytes;
376cc685
MX
1512 need_unlock = false;
1513again:
4a64001f
JB
1514 /*
1515 * This is going to setup the pages array with the number of
1516 * pages we want, so we don't really need to worry about the
1517 * contents of pages from loop to loop
1518 */
b37392ea
MX
1519 ret = prepare_pages(inode, pages, num_pages,
1520 pos, write_bytes,
b6316429 1521 force_page_uptodate);
7ee9e440 1522 if (ret)
d0215f3e 1523 break;
39279cc3 1524
376cc685
MX
1525 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1526 pos, &lockstart, &lockend,
1527 &cached_state);
1528 if (ret < 0) {
1529 if (ret == -EAGAIN)
1530 goto again;
1531 break;
1532 } else if (ret > 0) {
1533 need_unlock = true;
1534 ret = 0;
1535 }
1536
914ee295 1537 copied = btrfs_copy_from_user(pos, num_pages,
d0215f3e 1538 write_bytes, pages, i);
b1bf862e
CM
1539
1540 /*
1541 * if we have trouble faulting in the pages, fall
1542 * back to one page at a time
1543 */
1544 if (copied < write_bytes)
1545 nrptrs = 1;
1546
b6316429
JB
1547 if (copied == 0) {
1548 force_page_uptodate = true;
b1bf862e 1549 dirty_pages = 0;
b6316429
JB
1550 } else {
1551 force_page_uptodate = false;
b1bf862e
CM
1552 dirty_pages = (copied + offset +
1553 PAGE_CACHE_SIZE - 1) >>
1554 PAGE_CACHE_SHIFT;
b6316429 1555 }
914ee295 1556
d0215f3e
JB
1557 /*
1558 * If we had a short copy we need to release the excess delaloc
1559 * bytes we reserved. We need to increment outstanding_extents
1560 * because btrfs_delalloc_release_space will decrement it, but
1561 * we still have an outstanding extent for the chunk we actually
1562 * managed to copy.
1563 */
914ee295 1564 if (num_pages > dirty_pages) {
7ee9e440
JB
1565 release_bytes = (num_pages - dirty_pages) <<
1566 PAGE_CACHE_SHIFT;
9e0baf60
JB
1567 if (copied > 0) {
1568 spin_lock(&BTRFS_I(inode)->lock);
1569 BTRFS_I(inode)->outstanding_extents++;
1570 spin_unlock(&BTRFS_I(inode)->lock);
1571 }
7ee9e440
JB
1572 if (only_release_metadata)
1573 btrfs_delalloc_release_metadata(inode,
1574 release_bytes);
1575 else
1576 btrfs_delalloc_release_space(inode,
1577 release_bytes);
914ee295
XZ
1578 }
1579
7ee9e440 1580 release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
376cc685
MX
1581
1582 if (copied > 0)
be1a12a0
JB
1583 ret = btrfs_dirty_pages(root, inode, pages,
1584 dirty_pages, pos, copied,
1585 NULL);
376cc685
MX
1586 if (need_unlock)
1587 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1588 lockstart, lockend, &cached_state,
1589 GFP_NOFS);
f1de9683
MX
1590 if (ret) {
1591 btrfs_drop_pages(pages, num_pages);
376cc685 1592 break;
f1de9683 1593 }
39279cc3 1594
376cc685 1595 release_bytes = 0;
7ee9e440
JB
1596 if (only_release_metadata && copied > 0) {
1597 u64 lockstart = round_down(pos, root->sectorsize);
1598 u64 lockend = lockstart +
1599 (dirty_pages << PAGE_CACHE_SHIFT) - 1;
1600
1601 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1602 lockend, EXTENT_NORESERVE, NULL,
1603 NULL, GFP_NOFS);
1604 only_release_metadata = false;
1605 }
1606
f1de9683
MX
1607 btrfs_drop_pages(pages, num_pages);
1608
d0215f3e
JB
1609 cond_resched();
1610
d0e1d66b 1611 balance_dirty_pages_ratelimited(inode->i_mapping);
d0215f3e 1612 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
b53d3f5d 1613 btrfs_btree_balance_dirty(root);
cb843a6f 1614
914ee295
XZ
1615 pos += copied;
1616 num_written += copied;
d0215f3e 1617 }
39279cc3 1618
d0215f3e
JB
1619 kfree(pages);
1620
7ee9e440
JB
1621 if (release_bytes) {
1622 if (only_release_metadata)
1623 btrfs_delalloc_release_metadata(inode, release_bytes);
1624 else
1625 btrfs_delalloc_release_space(inode, release_bytes);
1626 }
1627
d0215f3e
JB
1628 return num_written ? num_written : ret;
1629}
1630
1631static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1632 const struct iovec *iov,
1633 unsigned long nr_segs, loff_t pos,
1634 loff_t *ppos, size_t count, size_t ocount)
1635{
1636 struct file *file = iocb->ki_filp;
d0215f3e
JB
1637 struct iov_iter i;
1638 ssize_t written;
1639 ssize_t written_buffered;
1640 loff_t endbyte;
1641 int err;
1642
1643 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1644 count, ocount);
1645
d0215f3e
JB
1646 if (written < 0 || written == count)
1647 return written;
1648
1649 pos += written;
1650 count -= written;
1651 iov_iter_init(&i, iov, nr_segs, count, written);
1652 written_buffered = __btrfs_buffered_write(file, &i, pos);
1653 if (written_buffered < 0) {
1654 err = written_buffered;
1655 goto out;
39279cc3 1656 }
d0215f3e
JB
1657 endbyte = pos + written_buffered - 1;
1658 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1659 if (err)
1660 goto out;
1661 written += written_buffered;
1662 *ppos = pos + written_buffered;
1663 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1664 endbyte >> PAGE_CACHE_SHIFT);
39279cc3 1665out:
d0215f3e
JB
1666 return written ? written : err;
1667}
5b92ee72 1668
6c760c07
JB
1669static void update_time_for_write(struct inode *inode)
1670{
1671 struct timespec now;
1672
1673 if (IS_NOCMTIME(inode))
1674 return;
1675
1676 now = current_fs_time(inode->i_sb);
1677 if (!timespec_equal(&inode->i_mtime, &now))
1678 inode->i_mtime = now;
1679
1680 if (!timespec_equal(&inode->i_ctime, &now))
1681 inode->i_ctime = now;
1682
1683 if (IS_I_VERSION(inode))
1684 inode_inc_iversion(inode);
1685}
1686
d0215f3e
JB
1687static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1688 const struct iovec *iov,
1689 unsigned long nr_segs, loff_t pos)
1690{
1691 struct file *file = iocb->ki_filp;
496ad9aa 1692 struct inode *inode = file_inode(file);
d0215f3e
JB
1693 struct btrfs_root *root = BTRFS_I(inode)->root;
1694 loff_t *ppos = &iocb->ki_pos;
0c1a98c8 1695 u64 start_pos;
d0215f3e
JB
1696 ssize_t num_written = 0;
1697 ssize_t err = 0;
1698 size_t count, ocount;
b812ce28 1699 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
d0215f3e 1700
d0215f3e
JB
1701 mutex_lock(&inode->i_mutex);
1702
1703 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1704 if (err) {
1705 mutex_unlock(&inode->i_mutex);
1706 goto out;
1707 }
1708 count = ocount;
1709
1710 current->backing_dev_info = inode->i_mapping->backing_dev_info;
1711 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1712 if (err) {
1713 mutex_unlock(&inode->i_mutex);
1714 goto out;
1715 }
1716
1717 if (count == 0) {
1718 mutex_unlock(&inode->i_mutex);
1719 goto out;
1720 }
1721
1722 err = file_remove_suid(file);
1723 if (err) {
1724 mutex_unlock(&inode->i_mutex);
1725 goto out;
1726 }
1727
1728 /*
1729 * If BTRFS flips readonly due to some impossible error
1730 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1731 * although we have opened a file as writable, we have
1732 * to stop this write operation to ensure FS consistency.
1733 */
87533c47 1734 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
d0215f3e
JB
1735 mutex_unlock(&inode->i_mutex);
1736 err = -EROFS;
1737 goto out;
1738 }
1739
6c760c07
JB
1740 /*
1741 * We reserve space for updating the inode when we reserve space for the
1742 * extent we are going to write, so we will enospc out there. We don't
1743 * need to start yet another transaction to update the inode as we will
1744 * update the inode when we finish writing whatever data we write.
1745 */
1746 update_time_for_write(inode);
d0215f3e 1747
0c1a98c8
MX
1748 start_pos = round_down(pos, root->sectorsize);
1749 if (start_pos > i_size_read(inode)) {
1750 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1751 if (err) {
1752 mutex_unlock(&inode->i_mutex);
1753 goto out;
1754 }
1755 }
1756
b812ce28
JB
1757 if (sync)
1758 atomic_inc(&BTRFS_I(inode)->sync_writers);
1759
d0215f3e
JB
1760 if (unlikely(file->f_flags & O_DIRECT)) {
1761 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1762 pos, ppos, count, ocount);
1763 } else {
1764 struct iov_iter i;
1765
1766 iov_iter_init(&i, iov, nr_segs, count, num_written);
1767
1768 num_written = __btrfs_buffered_write(file, &i, pos);
1769 if (num_written > 0)
1770 *ppos = pos + num_written;
1771 }
1772
1773 mutex_unlock(&inode->i_mutex);
2ff3e9b6 1774
5a3f23d5
CM
1775 /*
1776 * we want to make sure fsync finds this change
1777 * but we haven't joined a transaction running right now.
1778 *
1779 * Later on, someone is sure to update the inode and get the
1780 * real transid recorded.
1781 *
1782 * We set last_trans now to the fs_info generation + 1,
1783 * this will either be one more than the running transaction
1784 * or the generation used for the next transaction if there isn't
1785 * one running right now.
6c760c07
JB
1786 *
1787 * We also have to set last_sub_trans to the current log transid,
1788 * otherwise subsequent syncs to a file that's been synced in this
1789 * transaction will appear to have already occured.
5a3f23d5
CM
1790 */
1791 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
6c760c07 1792 BTRFS_I(inode)->last_sub_trans = root->log_transid;
02afc27f 1793 if (num_written > 0) {
d0215f3e
JB
1794 err = generic_write_sync(file, pos, num_written);
1795 if (err < 0 && num_written > 0)
2ff3e9b6
CM
1796 num_written = err;
1797 }
0a3404dc 1798
b812ce28
JB
1799 if (sync)
1800 atomic_dec(&BTRFS_I(inode)->sync_writers);
0a3404dc 1801out:
39279cc3 1802 current->backing_dev_info = NULL;
39279cc3
CM
1803 return num_written ? num_written : err;
1804}
1805
d397712b 1806int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 1807{
5a3f23d5
CM
1808 /*
1809 * ordered_data_close is set by settattr when we are about to truncate
1810 * a file from a non-zero size to a zero size. This tries to
1811 * flush down new bytes that may have been written if the
1812 * application were using truncate to replace a file in place.
1813 */
72ac3c0d
JB
1814 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1815 &BTRFS_I(inode)->runtime_flags)) {
569e0f35
JB
1816 struct btrfs_trans_handle *trans;
1817 struct btrfs_root *root = BTRFS_I(inode)->root;
1818
1819 /*
1820 * We need to block on a committing transaction to keep us from
1821 * throwing a ordered operation on to the list and causing
1822 * something like sync to deadlock trying to flush out this
1823 * inode.
1824 */
1825 trans = btrfs_start_transaction(root, 0);
1826 if (IS_ERR(trans))
1827 return PTR_ERR(trans);
1828 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1829 btrfs_end_transaction(trans, root);
5a3f23d5
CM
1830 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1831 filemap_flush(inode->i_mapping);
1832 }
6bf13c0c
SW
1833 if (filp->private_data)
1834 btrfs_ioctl_trans_end(filp);
e1b81e67
M
1835 return 0;
1836}
1837
d352ac68
CM
1838/*
1839 * fsync call for both files and directories. This logs the inode into
1840 * the tree log instead of forcing full commits whenever possible.
1841 *
1842 * It needs to call filemap_fdatawait so that all ordered extent updates are
1843 * in the metadata btree are up to date for copying to the log.
1844 *
1845 * It drops the inode mutex before doing the tree log commit. This is an
1846 * important optimization for directories because holding the mutex prevents
1847 * new operations on the dir while we write to disk.
1848 */
02c24a82 1849int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 1850{
7ea80859 1851 struct dentry *dentry = file->f_path.dentry;
39279cc3
CM
1852 struct inode *inode = dentry->d_inode;
1853 struct btrfs_root *root = BTRFS_I(inode)->root;
15ee9bc7 1854 int ret = 0;
39279cc3 1855 struct btrfs_trans_handle *trans;
2ab28f32 1856 bool full_sync = 0;
39279cc3 1857
1abe9b8a 1858 trace_btrfs_sync_file(file, datasync);
257c62e1 1859
90abccf2
MX
1860 /*
1861 * We write the dirty pages in the range and wait until they complete
1862 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
1863 * multi-task, and make the performance up. See
1864 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 1865 */
b812ce28 1866 atomic_inc(&BTRFS_I(inode)->sync_writers);
2ab28f32
JB
1867 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1868 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1869 &BTRFS_I(inode)->runtime_flags))
1870 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
b812ce28 1871 atomic_dec(&BTRFS_I(inode)->sync_writers);
90abccf2
MX
1872 if (ret)
1873 return ret;
1874
02c24a82
JB
1875 mutex_lock(&inode->i_mutex);
1876
0885ef5b 1877 /*
90abccf2
MX
1878 * We flush the dirty pages again to avoid some dirty pages in the
1879 * range being left.
0885ef5b 1880 */
2ecb7923 1881 atomic_inc(&root->log_batch);
2ab28f32
JB
1882 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1883 &BTRFS_I(inode)->runtime_flags);
0ef8b726
JB
1884 if (full_sync) {
1885 ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
1886 if (ret) {
1887 mutex_unlock(&inode->i_mutex);
1888 goto out;
1889 }
1890 }
2ecb7923 1891 atomic_inc(&root->log_batch);
257c62e1 1892
39279cc3 1893 /*
15ee9bc7
JB
1894 * check the transaction that last modified this inode
1895 * and see if its already been committed
39279cc3 1896 */
02c24a82
JB
1897 if (!BTRFS_I(inode)->last_trans) {
1898 mutex_unlock(&inode->i_mutex);
15ee9bc7 1899 goto out;
02c24a82 1900 }
a2135011 1901
257c62e1
CM
1902 /*
1903 * if the last transaction that changed this file was before
1904 * the current transaction, we can bail out now without any
1905 * syncing
1906 */
a4abeea4 1907 smp_mb();
22ee6985
JB
1908 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1909 BTRFS_I(inode)->last_trans <=
15ee9bc7
JB
1910 root->fs_info->last_trans_committed) {
1911 BTRFS_I(inode)->last_trans = 0;
5dc562c5
JB
1912
1913 /*
1914 * We'v had everything committed since the last time we were
1915 * modified so clear this flag in case it was set for whatever
1916 * reason, it's no longer relevant.
1917 */
1918 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1919 &BTRFS_I(inode)->runtime_flags);
02c24a82 1920 mutex_unlock(&inode->i_mutex);
15ee9bc7
JB
1921 goto out;
1922 }
15ee9bc7
JB
1923
1924 /*
a52d9a80
CM
1925 * ok we haven't committed the transaction yet, lets do a commit
1926 */
6f902af4 1927 if (file->private_data)
6bf13c0c
SW
1928 btrfs_ioctl_trans_end(file);
1929
5039eddc
JB
1930 /*
1931 * We use start here because we will need to wait on the IO to complete
1932 * in btrfs_sync_log, which could require joining a transaction (for
1933 * example checking cross references in the nocow path). If we use join
1934 * here we could get into a situation where we're waiting on IO to
1935 * happen that is blocked on a transaction trying to commit. With start
1936 * we inc the extwriter counter, so we wait for all extwriters to exit
1937 * before we start blocking join'ers. This comment is to keep somebody
1938 * from thinking they are super smart and changing this to
1939 * btrfs_join_transaction *cough*Josef*cough*.
1940 */
a22285a6
YZ
1941 trans = btrfs_start_transaction(root, 0);
1942 if (IS_ERR(trans)) {
1943 ret = PTR_ERR(trans);
02c24a82 1944 mutex_unlock(&inode->i_mutex);
39279cc3
CM
1945 goto out;
1946 }
5039eddc 1947 trans->sync = true;
e02119d5 1948
2cfbd50b 1949 ret = btrfs_log_dentry_safe(trans, root, dentry);
02c24a82 1950 if (ret < 0) {
a0634be5
FDBM
1951 /* Fallthrough and commit/free transaction. */
1952 ret = 1;
02c24a82 1953 }
49eb7e46
CM
1954
1955 /* we've logged all the items and now have a consistent
1956 * version of the file in the log. It is possible that
1957 * someone will come in and modify the file, but that's
1958 * fine because the log is consistent on disk, and we
1959 * have references to all of the file's extents
1960 *
1961 * It is possible that someone will come in and log the
1962 * file again, but that will end up using the synchronization
1963 * inside btrfs_sync_log to keep things safe.
1964 */
02c24a82 1965 mutex_unlock(&inode->i_mutex);
49eb7e46 1966
257c62e1 1967 if (ret != BTRFS_NO_LOG_SYNC) {
0ef8b726 1968 if (!ret) {
257c62e1 1969 ret = btrfs_sync_log(trans, root);
0ef8b726 1970 if (!ret) {
257c62e1 1971 ret = btrfs_end_transaction(trans, root);
0ef8b726 1972 goto out;
2ab28f32 1973 }
257c62e1 1974 }
0ef8b726
JB
1975 if (!full_sync) {
1976 ret = btrfs_wait_ordered_range(inode, start,
1977 end - start + 1);
1978 if (ret)
1979 goto out;
1980 }
1981 ret = btrfs_commit_transaction(trans, root);
257c62e1
CM
1982 } else {
1983 ret = btrfs_end_transaction(trans, root);
e02119d5 1984 }
39279cc3 1985out:
014e4ac4 1986 return ret > 0 ? -EIO : ret;
39279cc3
CM
1987}
1988
f0f37e2f 1989static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 1990 .fault = filemap_fault,
9ebefb18 1991 .page_mkwrite = btrfs_page_mkwrite,
0b173bc4 1992 .remap_pages = generic_file_remap_pages,
9ebefb18
CM
1993};
1994
1995static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
1996{
058a457e
MX
1997 struct address_space *mapping = filp->f_mapping;
1998
1999 if (!mapping->a_ops->readpage)
2000 return -ENOEXEC;
2001
9ebefb18 2002 file_accessed(filp);
058a457e 2003 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 2004
9ebefb18
CM
2005 return 0;
2006}
2007
2aaa6655
JB
2008static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2009 int slot, u64 start, u64 end)
2010{
2011 struct btrfs_file_extent_item *fi;
2012 struct btrfs_key key;
2013
2014 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2015 return 0;
2016
2017 btrfs_item_key_to_cpu(leaf, &key, slot);
2018 if (key.objectid != btrfs_ino(inode) ||
2019 key.type != BTRFS_EXTENT_DATA_KEY)
2020 return 0;
2021
2022 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2023
2024 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2025 return 0;
2026
2027 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2028 return 0;
2029
2030 if (key.offset == end)
2031 return 1;
2032 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2033 return 1;
2034 return 0;
2035}
2036
2037static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2038 struct btrfs_path *path, u64 offset, u64 end)
2039{
2040 struct btrfs_root *root = BTRFS_I(inode)->root;
2041 struct extent_buffer *leaf;
2042 struct btrfs_file_extent_item *fi;
2043 struct extent_map *hole_em;
2044 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2045 struct btrfs_key key;
2046 int ret;
2047
16e7549f
JB
2048 if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2049 goto out;
2050
2aaa6655
JB
2051 key.objectid = btrfs_ino(inode);
2052 key.type = BTRFS_EXTENT_DATA_KEY;
2053 key.offset = offset;
2054
2aaa6655
JB
2055 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2056 if (ret < 0)
2057 return ret;
2058 BUG_ON(!ret);
2059
2060 leaf = path->nodes[0];
2061 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2062 u64 num_bytes;
2063
2064 path->slots[0]--;
2065 fi = btrfs_item_ptr(leaf, path->slots[0],
2066 struct btrfs_file_extent_item);
2067 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2068 end - offset;
2069 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2070 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2071 btrfs_set_file_extent_offset(leaf, fi, 0);
2072 btrfs_mark_buffer_dirty(leaf);
2073 goto out;
2074 }
2075
2076 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
2077 u64 num_bytes;
2078
2079 path->slots[0]++;
2080 key.offset = offset;
afe5fea7 2081 btrfs_set_item_key_safe(root, path, &key);
2aaa6655
JB
2082 fi = btrfs_item_ptr(leaf, path->slots[0],
2083 struct btrfs_file_extent_item);
2084 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2085 offset;
2086 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2087 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2088 btrfs_set_file_extent_offset(leaf, fi, 0);
2089 btrfs_mark_buffer_dirty(leaf);
2090 goto out;
2091 }
2092 btrfs_release_path(path);
2093
2094 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2095 0, 0, end - offset, 0, end - offset,
2096 0, 0, 0);
2097 if (ret)
2098 return ret;
2099
2100out:
2101 btrfs_release_path(path);
2102
2103 hole_em = alloc_extent_map();
2104 if (!hole_em) {
2105 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2106 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2107 &BTRFS_I(inode)->runtime_flags);
2108 } else {
2109 hole_em->start = offset;
2110 hole_em->len = end - offset;
cc95bef6 2111 hole_em->ram_bytes = hole_em->len;
2aaa6655
JB
2112 hole_em->orig_start = offset;
2113
2114 hole_em->block_start = EXTENT_MAP_HOLE;
2115 hole_em->block_len = 0;
b4939680 2116 hole_em->orig_block_len = 0;
2aaa6655
JB
2117 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2118 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2119 hole_em->generation = trans->transid;
2120
2121 do {
2122 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2123 write_lock(&em_tree->lock);
09a2a8f9 2124 ret = add_extent_mapping(em_tree, hole_em, 1);
2aaa6655
JB
2125 write_unlock(&em_tree->lock);
2126 } while (ret == -EEXIST);
2127 free_extent_map(hole_em);
2128 if (ret)
2129 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2130 &BTRFS_I(inode)->runtime_flags);
2131 }
2132
2133 return 0;
2134}
2135
2136static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2137{
2138 struct btrfs_root *root = BTRFS_I(inode)->root;
2139 struct extent_state *cached_state = NULL;
2140 struct btrfs_path *path;
2141 struct btrfs_block_rsv *rsv;
2142 struct btrfs_trans_handle *trans;
0061280d
MX
2143 u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2144 u64 lockend = round_down(offset + len,
2145 BTRFS_I(inode)->root->sectorsize) - 1;
2aaa6655
JB
2146 u64 cur_offset = lockstart;
2147 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2148 u64 drop_end;
2aaa6655
JB
2149 int ret = 0;
2150 int err = 0;
16e7549f 2151 int rsv_count;
6347b3c4
MX
2152 bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2153 ((offset + len - 1) >> PAGE_CACHE_SHIFT));
16e7549f 2154 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2aaa6655 2155
0ef8b726
JB
2156 ret = btrfs_wait_ordered_range(inode, offset, len);
2157 if (ret)
2158 return ret;
2aaa6655
JB
2159
2160 mutex_lock(&inode->i_mutex);
7426cc04
MX
2161 /*
2162 * We needn't truncate any page which is beyond the end of the file
2163 * because we are sure there is no data there.
2164 */
2aaa6655
JB
2165 /*
2166 * Only do this if we are in the same page and we aren't doing the
2167 * entire page.
2168 */
2169 if (same_page && len < PAGE_CACHE_SIZE) {
7426cc04
MX
2170 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
2171 ret = btrfs_truncate_page(inode, offset, len, 0);
2aaa6655
JB
2172 mutex_unlock(&inode->i_mutex);
2173 return ret;
2174 }
2175
2176 /* zero back part of the first page */
7426cc04
MX
2177 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2178 ret = btrfs_truncate_page(inode, offset, 0, 0);
2179 if (ret) {
2180 mutex_unlock(&inode->i_mutex);
2181 return ret;
2182 }
2aaa6655
JB
2183 }
2184
2185 /* zero the front end of the last page */
0061280d
MX
2186 if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2187 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2188 if (ret) {
2189 mutex_unlock(&inode->i_mutex);
2190 return ret;
2191 }
2aaa6655
JB
2192 }
2193
2194 if (lockend < lockstart) {
2195 mutex_unlock(&inode->i_mutex);
2196 return 0;
2197 }
2198
2199 while (1) {
2200 struct btrfs_ordered_extent *ordered;
2201
2202 truncate_pagecache_range(inode, lockstart, lockend);
2203
2204 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2205 0, &cached_state);
2206 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2207
2208 /*
2209 * We need to make sure we have no ordered extents in this range
2210 * and nobody raced in and read a page in this range, if we did
2211 * we need to try again.
2212 */
2213 if ((!ordered ||
6126e3ca 2214 (ordered->file_offset + ordered->len <= lockstart ||
2aaa6655
JB
2215 ordered->file_offset > lockend)) &&
2216 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2217 lockend, EXTENT_UPTODATE, 0,
2218 cached_state)) {
2219 if (ordered)
2220 btrfs_put_ordered_extent(ordered);
2221 break;
2222 }
2223 if (ordered)
2224 btrfs_put_ordered_extent(ordered);
2225 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2226 lockend, &cached_state, GFP_NOFS);
0ef8b726
JB
2227 ret = btrfs_wait_ordered_range(inode, lockstart,
2228 lockend - lockstart + 1);
2229 if (ret) {
2230 mutex_unlock(&inode->i_mutex);
2231 return ret;
2232 }
2aaa6655
JB
2233 }
2234
2235 path = btrfs_alloc_path();
2236 if (!path) {
2237 ret = -ENOMEM;
2238 goto out;
2239 }
2240
66d8f3dd 2241 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2aaa6655
JB
2242 if (!rsv) {
2243 ret = -ENOMEM;
2244 goto out_free;
2245 }
2246 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2247 rsv->failfast = 1;
2248
2249 /*
2250 * 1 - update the inode
2251 * 1 - removing the extents in the range
16e7549f 2252 * 1 - adding the hole extent if no_holes isn't set
2aaa6655 2253 */
16e7549f
JB
2254 rsv_count = no_holes ? 2 : 3;
2255 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2256 if (IS_ERR(trans)) {
2257 err = PTR_ERR(trans);
2258 goto out_free;
2259 }
2260
2261 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2262 min_size);
2263 BUG_ON(ret);
2264 trans->block_rsv = rsv;
2265
2266 while (cur_offset < lockend) {
2267 ret = __btrfs_drop_extents(trans, root, inode, path,
2268 cur_offset, lockend + 1,
1acae57b 2269 &drop_end, 1, 0, 0, NULL);
2aaa6655
JB
2270 if (ret != -ENOSPC)
2271 break;
2272
2273 trans->block_rsv = &root->fs_info->trans_block_rsv;
2274
2275 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2276 if (ret) {
2277 err = ret;
2278 break;
2279 }
2280
2281 cur_offset = drop_end;
2282
2283 ret = btrfs_update_inode(trans, root, inode);
2284 if (ret) {
2285 err = ret;
2286 break;
2287 }
2288
2aaa6655 2289 btrfs_end_transaction(trans, root);
b53d3f5d 2290 btrfs_btree_balance_dirty(root);
2aaa6655 2291
16e7549f 2292 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2293 if (IS_ERR(trans)) {
2294 ret = PTR_ERR(trans);
2295 trans = NULL;
2296 break;
2297 }
2298
2299 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2300 rsv, min_size);
2301 BUG_ON(ret); /* shouldn't happen */
2302 trans->block_rsv = rsv;
2303 }
2304
2305 if (ret) {
2306 err = ret;
2307 goto out_trans;
2308 }
2309
2310 trans->block_rsv = &root->fs_info->trans_block_rsv;
2311 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2312 if (ret) {
2313 err = ret;
2314 goto out_trans;
2315 }
2316
2317out_trans:
2318 if (!trans)
2319 goto out_free;
2320
e1f5790e
TI
2321 inode_inc_iversion(inode);
2322 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2323
2aaa6655
JB
2324 trans->block_rsv = &root->fs_info->trans_block_rsv;
2325 ret = btrfs_update_inode(trans, root, inode);
2aaa6655 2326 btrfs_end_transaction(trans, root);
b53d3f5d 2327 btrfs_btree_balance_dirty(root);
2aaa6655
JB
2328out_free:
2329 btrfs_free_path(path);
2330 btrfs_free_block_rsv(root, rsv);
2331out:
2332 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2333 &cached_state, GFP_NOFS);
2334 mutex_unlock(&inode->i_mutex);
2335 if (ret && !err)
2336 err = ret;
2337 return err;
2338}
2339
2fe17c10
CH
2340static long btrfs_fallocate(struct file *file, int mode,
2341 loff_t offset, loff_t len)
2342{
496ad9aa 2343 struct inode *inode = file_inode(file);
2fe17c10 2344 struct extent_state *cached_state = NULL;
6113077c 2345 struct btrfs_root *root = BTRFS_I(inode)->root;
2fe17c10
CH
2346 u64 cur_offset;
2347 u64 last_byte;
2348 u64 alloc_start;
2349 u64 alloc_end;
2350 u64 alloc_hint = 0;
2351 u64 locked_end;
2fe17c10 2352 struct extent_map *em;
797f4277 2353 int blocksize = BTRFS_I(inode)->root->sectorsize;
2fe17c10
CH
2354 int ret;
2355
797f4277
MX
2356 alloc_start = round_down(offset, blocksize);
2357 alloc_end = round_up(offset + len, blocksize);
2fe17c10 2358
2aaa6655
JB
2359 /* Make sure we aren't being give some crap mode */
2360 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2fe17c10
CH
2361 return -EOPNOTSUPP;
2362
2aaa6655
JB
2363 if (mode & FALLOC_FL_PUNCH_HOLE)
2364 return btrfs_punch_hole(inode, offset, len);
2365
d98456fc
CM
2366 /*
2367 * Make sure we have enough space before we do the
2368 * allocation.
2369 */
0ff6fabd 2370 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
d98456fc
CM
2371 if (ret)
2372 return ret;
6113077c
WS
2373 if (root->fs_info->quota_enabled) {
2374 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2375 if (ret)
2376 goto out_reserve_fail;
2377 }
d98456fc 2378
2fe17c10
CH
2379 mutex_lock(&inode->i_mutex);
2380 ret = inode_newsize_ok(inode, alloc_end);
2381 if (ret)
2382 goto out;
2383
2384 if (alloc_start > inode->i_size) {
a41ad394
JB
2385 ret = btrfs_cont_expand(inode, i_size_read(inode),
2386 alloc_start);
2fe17c10
CH
2387 if (ret)
2388 goto out;
a71754fc
JB
2389 } else {
2390 /*
2391 * If we are fallocating from the end of the file onward we
2392 * need to zero out the end of the page if i_size lands in the
2393 * middle of a page.
2394 */
2395 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2396 if (ret)
2397 goto out;
2fe17c10
CH
2398 }
2399
a71754fc
JB
2400 /*
2401 * wait for ordered IO before we have any locks. We'll loop again
2402 * below with the locks held.
2403 */
0ef8b726
JB
2404 ret = btrfs_wait_ordered_range(inode, alloc_start,
2405 alloc_end - alloc_start);
2406 if (ret)
2407 goto out;
a71754fc 2408
2fe17c10
CH
2409 locked_end = alloc_end - 1;
2410 while (1) {
2411 struct btrfs_ordered_extent *ordered;
2412
2413 /* the extent lock is ordered inside the running
2414 * transaction
2415 */
2416 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
d0082371 2417 locked_end, 0, &cached_state);
2fe17c10
CH
2418 ordered = btrfs_lookup_first_ordered_extent(inode,
2419 alloc_end - 1);
2420 if (ordered &&
2421 ordered->file_offset + ordered->len > alloc_start &&
2422 ordered->file_offset < alloc_end) {
2423 btrfs_put_ordered_extent(ordered);
2424 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2425 alloc_start, locked_end,
2426 &cached_state, GFP_NOFS);
2427 /*
2428 * we can't wait on the range with the transaction
2429 * running or with the extent lock held
2430 */
0ef8b726
JB
2431 ret = btrfs_wait_ordered_range(inode, alloc_start,
2432 alloc_end - alloc_start);
2433 if (ret)
2434 goto out;
2fe17c10
CH
2435 } else {
2436 if (ordered)
2437 btrfs_put_ordered_extent(ordered);
2438 break;
2439 }
2440 }
2441
2442 cur_offset = alloc_start;
2443 while (1) {
f1e490a7
JB
2444 u64 actual_end;
2445
2fe17c10
CH
2446 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2447 alloc_end - cur_offset, 0);
79787eaa
JM
2448 if (IS_ERR_OR_NULL(em)) {
2449 if (!em)
2450 ret = -ENOMEM;
2451 else
2452 ret = PTR_ERR(em);
2453 break;
2454 }
2fe17c10 2455 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 2456 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 2457 last_byte = ALIGN(last_byte, blocksize);
f1e490a7 2458
2fe17c10
CH
2459 if (em->block_start == EXTENT_MAP_HOLE ||
2460 (cur_offset >= inode->i_size &&
2461 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2462 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2463 last_byte - cur_offset,
2464 1 << inode->i_blkbits,
2465 offset + len,
2466 &alloc_hint);
1b9c332b 2467
2fe17c10
CH
2468 if (ret < 0) {
2469 free_extent_map(em);
2470 break;
2471 }
f1e490a7
JB
2472 } else if (actual_end > inode->i_size &&
2473 !(mode & FALLOC_FL_KEEP_SIZE)) {
2474 /*
2475 * We didn't need to allocate any more space, but we
2476 * still extended the size of the file so we need to
2477 * update i_size.
2478 */
2479 inode->i_ctime = CURRENT_TIME;
2480 i_size_write(inode, actual_end);
2481 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2fe17c10
CH
2482 }
2483 free_extent_map(em);
2484
2485 cur_offset = last_byte;
2486 if (cur_offset >= alloc_end) {
2487 ret = 0;
2488 break;
2489 }
2490 }
2491 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2492 &cached_state, GFP_NOFS);
2fe17c10
CH
2493out:
2494 mutex_unlock(&inode->i_mutex);
6113077c
WS
2495 if (root->fs_info->quota_enabled)
2496 btrfs_qgroup_free(root, alloc_end - alloc_start);
2497out_reserve_fail:
d98456fc 2498 /* Let go of our reservation. */
0ff6fabd 2499 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2fe17c10
CH
2500 return ret;
2501}
2502
965c8e59 2503static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
b2675157
JB
2504{
2505 struct btrfs_root *root = BTRFS_I(inode)->root;
7f4ca37c 2506 struct extent_map *em = NULL;
b2675157
JB
2507 struct extent_state *cached_state = NULL;
2508 u64 lockstart = *offset;
2509 u64 lockend = i_size_read(inode);
2510 u64 start = *offset;
b2675157 2511 u64 len = i_size_read(inode);
b2675157
JB
2512 int ret = 0;
2513
2514 lockend = max_t(u64, root->sectorsize, lockend);
2515 if (lockend <= lockstart)
2516 lockend = lockstart + root->sectorsize;
2517
1214b53f 2518 lockend--;
b2675157
JB
2519 len = lockend - lockstart + 1;
2520
2521 len = max_t(u64, len, root->sectorsize);
2522 if (inode->i_size == 0)
2523 return -ENXIO;
2524
2525 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
d0082371 2526 &cached_state);
b2675157 2527
7f4ca37c 2528 while (start < inode->i_size) {
b2675157
JB
2529 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2530 if (IS_ERR(em)) {
6af021d8 2531 ret = PTR_ERR(em);
7f4ca37c 2532 em = NULL;
b2675157
JB
2533 break;
2534 }
2535
7f4ca37c
JB
2536 if (whence == SEEK_HOLE &&
2537 (em->block_start == EXTENT_MAP_HOLE ||
2538 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2539 break;
2540 else if (whence == SEEK_DATA &&
2541 (em->block_start != EXTENT_MAP_HOLE &&
2542 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2543 break;
b2675157
JB
2544
2545 start = em->start + em->len;
b2675157 2546 free_extent_map(em);
7f4ca37c 2547 em = NULL;
b2675157
JB
2548 cond_resched();
2549 }
7f4ca37c
JB
2550 free_extent_map(em);
2551 if (!ret) {
2552 if (whence == SEEK_DATA && start >= inode->i_size)
2553 ret = -ENXIO;
2554 else
2555 *offset = min_t(loff_t, start, inode->i_size);
2556 }
b2675157
JB
2557 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2558 &cached_state, GFP_NOFS);
2559 return ret;
2560}
2561
965c8e59 2562static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
2563{
2564 struct inode *inode = file->f_mapping->host;
2565 int ret;
2566
2567 mutex_lock(&inode->i_mutex);
965c8e59 2568 switch (whence) {
b2675157
JB
2569 case SEEK_END:
2570 case SEEK_CUR:
965c8e59 2571 offset = generic_file_llseek(file, offset, whence);
b2675157
JB
2572 goto out;
2573 case SEEK_DATA:
2574 case SEEK_HOLE:
48802c8a
JL
2575 if (offset >= i_size_read(inode)) {
2576 mutex_unlock(&inode->i_mutex);
2577 return -ENXIO;
2578 }
2579
965c8e59 2580 ret = find_desired_extent(inode, &offset, whence);
b2675157
JB
2581 if (ret) {
2582 mutex_unlock(&inode->i_mutex);
2583 return ret;
2584 }
2585 }
2586
46a1c2c7 2587 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
b2675157
JB
2588out:
2589 mutex_unlock(&inode->i_mutex);
2590 return offset;
2591}
2592
828c0950 2593const struct file_operations btrfs_file_operations = {
b2675157 2594 .llseek = btrfs_file_llseek,
39279cc3 2595 .read = do_sync_read,
4a001071 2596 .write = do_sync_write,
9ebefb18 2597 .aio_read = generic_file_aio_read,
e9906a98 2598 .splice_read = generic_file_splice_read,
11c65dcc 2599 .aio_write = btrfs_file_aio_write,
9ebefb18 2600 .mmap = btrfs_file_mmap,
39279cc3 2601 .open = generic_file_open,
e1b81e67 2602 .release = btrfs_release_file,
39279cc3 2603 .fsync = btrfs_sync_file,
2fe17c10 2604 .fallocate = btrfs_fallocate,
34287aa3 2605 .unlocked_ioctl = btrfs_ioctl,
39279cc3 2606#ifdef CONFIG_COMPAT
34287aa3 2607 .compat_ioctl = btrfs_ioctl,
39279cc3
CM
2608#endif
2609};
9247f317
MX
2610
2611void btrfs_auto_defrag_exit(void)
2612{
2613 if (btrfs_inode_defrag_cachep)
2614 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2615}
2616
2617int btrfs_auto_defrag_init(void)
2618{
2619 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2620 sizeof(struct inode_defrag), 0,
2621 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2622 NULL);
2623 if (!btrfs_inode_defrag_cachep)
2624 return -ENOMEM;
2625
2626 return 0;
2627}