]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/free-space-cache.c
Btrfs: do not allow logged extents to be merged or removed
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / free-space-cache.c
CommitLineData
0f9dd46c
JB
1/*
2 * Copyright (C) 2008 Red Hat. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
96303081 19#include <linux/pagemap.h>
0f9dd46c 20#include <linux/sched.h>
5a0e3ad6 21#include <linux/slab.h>
96303081 22#include <linux/math64.h>
6ab60601 23#include <linux/ratelimit.h>
0f9dd46c 24#include "ctree.h"
fa9c0d79
CM
25#include "free-space-cache.h"
26#include "transaction.h"
0af3d00b 27#include "disk-io.h"
43be2146 28#include "extent_io.h"
581bb050 29#include "inode-map.h"
fa9c0d79 30
96303081
JB
31#define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
32#define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
0f9dd46c 33
34d52cb6 34static int link_free_space(struct btrfs_free_space_ctl *ctl,
0cb59c99 35 struct btrfs_free_space *info);
cd023e7b
JB
36static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
37 struct btrfs_free_space *info);
0cb59c99 38
0414efae
LZ
39static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
40 struct btrfs_path *path,
41 u64 offset)
0af3d00b
JB
42{
43 struct btrfs_key key;
44 struct btrfs_key location;
45 struct btrfs_disk_key disk_key;
46 struct btrfs_free_space_header *header;
47 struct extent_buffer *leaf;
48 struct inode *inode = NULL;
49 int ret;
50
0af3d00b 51 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 52 key.offset = offset;
0af3d00b
JB
53 key.type = 0;
54
55 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
56 if (ret < 0)
57 return ERR_PTR(ret);
58 if (ret > 0) {
b3b4aa74 59 btrfs_release_path(path);
0af3d00b
JB
60 return ERR_PTR(-ENOENT);
61 }
62
63 leaf = path->nodes[0];
64 header = btrfs_item_ptr(leaf, path->slots[0],
65 struct btrfs_free_space_header);
66 btrfs_free_space_key(leaf, header, &disk_key);
67 btrfs_disk_key_to_cpu(&location, &disk_key);
b3b4aa74 68 btrfs_release_path(path);
0af3d00b
JB
69
70 inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
71 if (!inode)
72 return ERR_PTR(-ENOENT);
73 if (IS_ERR(inode))
74 return inode;
75 if (is_bad_inode(inode)) {
76 iput(inode);
77 return ERR_PTR(-ENOENT);
78 }
79
528c0327
AV
80 mapping_set_gfp_mask(inode->i_mapping,
81 mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS);
adae52b9 82
0414efae
LZ
83 return inode;
84}
85
86struct inode *lookup_free_space_inode(struct btrfs_root *root,
87 struct btrfs_block_group_cache
88 *block_group, struct btrfs_path *path)
89{
90 struct inode *inode = NULL;
5b0e95bf 91 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
0414efae
LZ
92
93 spin_lock(&block_group->lock);
94 if (block_group->inode)
95 inode = igrab(block_group->inode);
96 spin_unlock(&block_group->lock);
97 if (inode)
98 return inode;
99
100 inode = __lookup_free_space_inode(root, path,
101 block_group->key.objectid);
102 if (IS_ERR(inode))
103 return inode;
104
0af3d00b 105 spin_lock(&block_group->lock);
5b0e95bf 106 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
2f356126 107 printk(KERN_INFO "Old style space inode found, converting.\n");
5b0e95bf
JB
108 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
109 BTRFS_INODE_NODATACOW;
2f356126
JB
110 block_group->disk_cache_state = BTRFS_DC_CLEAR;
111 }
112
300e4f8a 113 if (!block_group->iref) {
0af3d00b
JB
114 block_group->inode = igrab(inode);
115 block_group->iref = 1;
116 }
117 spin_unlock(&block_group->lock);
118
119 return inode;
120}
121
0414efae
LZ
122int __create_free_space_inode(struct btrfs_root *root,
123 struct btrfs_trans_handle *trans,
124 struct btrfs_path *path, u64 ino, u64 offset)
0af3d00b
JB
125{
126 struct btrfs_key key;
127 struct btrfs_disk_key disk_key;
128 struct btrfs_free_space_header *header;
129 struct btrfs_inode_item *inode_item;
130 struct extent_buffer *leaf;
5b0e95bf 131 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
0af3d00b
JB
132 int ret;
133
0414efae 134 ret = btrfs_insert_empty_inode(trans, root, path, ino);
0af3d00b
JB
135 if (ret)
136 return ret;
137
5b0e95bf
JB
138 /* We inline crc's for the free disk space cache */
139 if (ino != BTRFS_FREE_INO_OBJECTID)
140 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
141
0af3d00b
JB
142 leaf = path->nodes[0];
143 inode_item = btrfs_item_ptr(leaf, path->slots[0],
144 struct btrfs_inode_item);
145 btrfs_item_key(leaf, &disk_key, path->slots[0]);
146 memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
147 sizeof(*inode_item));
148 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
149 btrfs_set_inode_size(leaf, inode_item, 0);
150 btrfs_set_inode_nbytes(leaf, inode_item, 0);
151 btrfs_set_inode_uid(leaf, inode_item, 0);
152 btrfs_set_inode_gid(leaf, inode_item, 0);
153 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
5b0e95bf 154 btrfs_set_inode_flags(leaf, inode_item, flags);
0af3d00b
JB
155 btrfs_set_inode_nlink(leaf, inode_item, 1);
156 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
0414efae 157 btrfs_set_inode_block_group(leaf, inode_item, offset);
0af3d00b 158 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 159 btrfs_release_path(path);
0af3d00b
JB
160
161 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 162 key.offset = offset;
0af3d00b
JB
163 key.type = 0;
164
165 ret = btrfs_insert_empty_item(trans, root, path, &key,
166 sizeof(struct btrfs_free_space_header));
167 if (ret < 0) {
b3b4aa74 168 btrfs_release_path(path);
0af3d00b
JB
169 return ret;
170 }
171 leaf = path->nodes[0];
172 header = btrfs_item_ptr(leaf, path->slots[0],
173 struct btrfs_free_space_header);
174 memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
175 btrfs_set_free_space_key(leaf, header, &disk_key);
176 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 177 btrfs_release_path(path);
0af3d00b
JB
178
179 return 0;
180}
181
0414efae
LZ
182int create_free_space_inode(struct btrfs_root *root,
183 struct btrfs_trans_handle *trans,
184 struct btrfs_block_group_cache *block_group,
185 struct btrfs_path *path)
186{
187 int ret;
188 u64 ino;
189
190 ret = btrfs_find_free_objectid(root, &ino);
191 if (ret < 0)
192 return ret;
193
194 return __create_free_space_inode(root, trans, path, ino,
195 block_group->key.objectid);
196}
197
0af3d00b
JB
198int btrfs_truncate_free_space_cache(struct btrfs_root *root,
199 struct btrfs_trans_handle *trans,
200 struct btrfs_path *path,
201 struct inode *inode)
202{
65450aa6 203 struct btrfs_block_rsv *rsv;
c8174313 204 u64 needed_bytes;
0af3d00b
JB
205 loff_t oldsize;
206 int ret = 0;
207
65450aa6 208 rsv = trans->block_rsv;
c8174313
JB
209 trans->block_rsv = &root->fs_info->global_block_rsv;
210
211 /* 1 for slack space, 1 for updating the inode */
212 needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
213 btrfs_calc_trans_metadata_size(root, 1);
214
215 spin_lock(&trans->block_rsv->lock);
216 if (trans->block_rsv->reserved < needed_bytes) {
217 spin_unlock(&trans->block_rsv->lock);
218 trans->block_rsv = rsv;
219 return -ENOSPC;
220 }
221 spin_unlock(&trans->block_rsv->lock);
0af3d00b
JB
222
223 oldsize = i_size_read(inode);
224 btrfs_i_size_write(inode, 0);
225 truncate_pagecache(inode, oldsize, 0);
226
227 /*
228 * We don't need an orphan item because truncating the free space cache
229 * will never be split across transactions.
230 */
231 ret = btrfs_truncate_inode_items(trans, root, inode,
232 0, BTRFS_EXTENT_DATA_KEY);
65450aa6 233
0af3d00b 234 if (ret) {
c8174313 235 trans->block_rsv = rsv;
79787eaa 236 btrfs_abort_transaction(trans, root, ret);
0af3d00b
JB
237 return ret;
238 }
239
82d5902d 240 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
241 if (ret)
242 btrfs_abort_transaction(trans, root, ret);
c8174313
JB
243 trans->block_rsv = rsv;
244
82d5902d 245 return ret;
0af3d00b
JB
246}
247
9d66e233
JB
248static int readahead_cache(struct inode *inode)
249{
250 struct file_ra_state *ra;
251 unsigned long last_index;
252
253 ra = kzalloc(sizeof(*ra), GFP_NOFS);
254 if (!ra)
255 return -ENOMEM;
256
257 file_ra_state_init(ra, inode->i_mapping);
258 last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
259
260 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
261
262 kfree(ra);
263
264 return 0;
265}
266
a67509c3
JB
267struct io_ctl {
268 void *cur, *orig;
269 struct page *page;
270 struct page **pages;
271 struct btrfs_root *root;
272 unsigned long size;
273 int index;
274 int num_pages;
5b0e95bf 275 unsigned check_crcs:1;
a67509c3
JB
276};
277
278static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
279 struct btrfs_root *root)
280{
281 memset(io_ctl, 0, sizeof(struct io_ctl));
282 io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
283 PAGE_CACHE_SHIFT;
284 io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages,
285 GFP_NOFS);
286 if (!io_ctl->pages)
287 return -ENOMEM;
288 io_ctl->root = root;
5b0e95bf
JB
289 if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
290 io_ctl->check_crcs = 1;
a67509c3
JB
291 return 0;
292}
293
294static void io_ctl_free(struct io_ctl *io_ctl)
295{
296 kfree(io_ctl->pages);
297}
298
299static void io_ctl_unmap_page(struct io_ctl *io_ctl)
300{
301 if (io_ctl->cur) {
302 kunmap(io_ctl->page);
303 io_ctl->cur = NULL;
304 io_ctl->orig = NULL;
305 }
306}
307
308static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
309{
a67509c3
JB
310 BUG_ON(io_ctl->index >= io_ctl->num_pages);
311 io_ctl->page = io_ctl->pages[io_ctl->index++];
312 io_ctl->cur = kmap(io_ctl->page);
313 io_ctl->orig = io_ctl->cur;
314 io_ctl->size = PAGE_CACHE_SIZE;
315 if (clear)
316 memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
317}
318
319static void io_ctl_drop_pages(struct io_ctl *io_ctl)
320{
321 int i;
322
323 io_ctl_unmap_page(io_ctl);
324
325 for (i = 0; i < io_ctl->num_pages; i++) {
a1ee5a45
LZ
326 if (io_ctl->pages[i]) {
327 ClearPageChecked(io_ctl->pages[i]);
328 unlock_page(io_ctl->pages[i]);
329 page_cache_release(io_ctl->pages[i]);
330 }
a67509c3
JB
331 }
332}
333
334static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
335 int uptodate)
336{
337 struct page *page;
338 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
339 int i;
340
341 for (i = 0; i < io_ctl->num_pages; i++) {
342 page = find_or_create_page(inode->i_mapping, i, mask);
343 if (!page) {
344 io_ctl_drop_pages(io_ctl);
345 return -ENOMEM;
346 }
347 io_ctl->pages[i] = page;
348 if (uptodate && !PageUptodate(page)) {
349 btrfs_readpage(NULL, page);
350 lock_page(page);
351 if (!PageUptodate(page)) {
352 printk(KERN_ERR "btrfs: error reading free "
353 "space cache\n");
354 io_ctl_drop_pages(io_ctl);
355 return -EIO;
356 }
357 }
358 }
359
f7d61dcd
JB
360 for (i = 0; i < io_ctl->num_pages; i++) {
361 clear_page_dirty_for_io(io_ctl->pages[i]);
362 set_page_extent_mapped(io_ctl->pages[i]);
363 }
364
a67509c3
JB
365 return 0;
366}
367
368static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
369{
528c0327 370 __le64 *val;
a67509c3
JB
371
372 io_ctl_map_page(io_ctl, 1);
373
374 /*
5b0e95bf
JB
375 * Skip the csum areas. If we don't check crcs then we just have a
376 * 64bit chunk at the front of the first page.
a67509c3 377 */
5b0e95bf
JB
378 if (io_ctl->check_crcs) {
379 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
380 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
381 } else {
382 io_ctl->cur += sizeof(u64);
383 io_ctl->size -= sizeof(u64) * 2;
384 }
a67509c3
JB
385
386 val = io_ctl->cur;
387 *val = cpu_to_le64(generation);
388 io_ctl->cur += sizeof(u64);
a67509c3
JB
389}
390
391static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
392{
528c0327 393 __le64 *gen;
a67509c3 394
5b0e95bf
JB
395 /*
396 * Skip the crc area. If we don't check crcs then we just have a 64bit
397 * chunk at the front of the first page.
398 */
399 if (io_ctl->check_crcs) {
400 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
401 io_ctl->size -= sizeof(u64) +
402 (sizeof(u32) * io_ctl->num_pages);
403 } else {
404 io_ctl->cur += sizeof(u64);
405 io_ctl->size -= sizeof(u64) * 2;
406 }
a67509c3 407
a67509c3
JB
408 gen = io_ctl->cur;
409 if (le64_to_cpu(*gen) != generation) {
410 printk_ratelimited(KERN_ERR "btrfs: space cache generation "
411 "(%Lu) does not match inode (%Lu)\n", *gen,
412 generation);
413 io_ctl_unmap_page(io_ctl);
414 return -EIO;
415 }
416 io_ctl->cur += sizeof(u64);
5b0e95bf
JB
417 return 0;
418}
419
420static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
421{
422 u32 *tmp;
423 u32 crc = ~(u32)0;
424 unsigned offset = 0;
425
426 if (!io_ctl->check_crcs) {
427 io_ctl_unmap_page(io_ctl);
428 return;
429 }
430
431 if (index == 0)
cb54f257 432 offset = sizeof(u32) * io_ctl->num_pages;
5b0e95bf
JB
433
434 crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
435 PAGE_CACHE_SIZE - offset);
436 btrfs_csum_final(crc, (char *)&crc);
437 io_ctl_unmap_page(io_ctl);
438 tmp = kmap(io_ctl->pages[0]);
439 tmp += index;
440 *tmp = crc;
441 kunmap(io_ctl->pages[0]);
442}
443
444static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
445{
446 u32 *tmp, val;
447 u32 crc = ~(u32)0;
448 unsigned offset = 0;
449
450 if (!io_ctl->check_crcs) {
451 io_ctl_map_page(io_ctl, 0);
452 return 0;
453 }
454
455 if (index == 0)
456 offset = sizeof(u32) * io_ctl->num_pages;
457
458 tmp = kmap(io_ctl->pages[0]);
459 tmp += index;
460 val = *tmp;
461 kunmap(io_ctl->pages[0]);
462
463 io_ctl_map_page(io_ctl, 0);
464 crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
465 PAGE_CACHE_SIZE - offset);
466 btrfs_csum_final(crc, (char *)&crc);
467 if (val != crc) {
468 printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free "
469 "space cache\n");
470 io_ctl_unmap_page(io_ctl);
471 return -EIO;
472 }
473
a67509c3
JB
474 return 0;
475}
476
477static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
478 void *bitmap)
479{
480 struct btrfs_free_space_entry *entry;
481
482 if (!io_ctl->cur)
483 return -ENOSPC;
484
485 entry = io_ctl->cur;
486 entry->offset = cpu_to_le64(offset);
487 entry->bytes = cpu_to_le64(bytes);
488 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
489 BTRFS_FREE_SPACE_EXTENT;
490 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
491 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
492
493 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
494 return 0;
495
5b0e95bf 496 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
497
498 /* No more pages to map */
499 if (io_ctl->index >= io_ctl->num_pages)
500 return 0;
501
502 /* map the next page */
503 io_ctl_map_page(io_ctl, 1);
504 return 0;
505}
506
507static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
508{
509 if (!io_ctl->cur)
510 return -ENOSPC;
511
512 /*
513 * If we aren't at the start of the current page, unmap this one and
514 * map the next one if there is any left.
515 */
516 if (io_ctl->cur != io_ctl->orig) {
5b0e95bf 517 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
518 if (io_ctl->index >= io_ctl->num_pages)
519 return -ENOSPC;
520 io_ctl_map_page(io_ctl, 0);
521 }
522
523 memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
5b0e95bf 524 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
525 if (io_ctl->index < io_ctl->num_pages)
526 io_ctl_map_page(io_ctl, 0);
527 return 0;
528}
529
530static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
531{
5b0e95bf
JB
532 /*
533 * If we're not on the boundary we know we've modified the page and we
534 * need to crc the page.
535 */
536 if (io_ctl->cur != io_ctl->orig)
537 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
538 else
539 io_ctl_unmap_page(io_ctl);
a67509c3
JB
540
541 while (io_ctl->index < io_ctl->num_pages) {
542 io_ctl_map_page(io_ctl, 1);
5b0e95bf 543 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
544 }
545}
546
5b0e95bf
JB
547static int io_ctl_read_entry(struct io_ctl *io_ctl,
548 struct btrfs_free_space *entry, u8 *type)
a67509c3
JB
549{
550 struct btrfs_free_space_entry *e;
2f120c05
JB
551 int ret;
552
553 if (!io_ctl->cur) {
554 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
555 if (ret)
556 return ret;
557 }
a67509c3
JB
558
559 e = io_ctl->cur;
560 entry->offset = le64_to_cpu(e->offset);
561 entry->bytes = le64_to_cpu(e->bytes);
5b0e95bf 562 *type = e->type;
a67509c3
JB
563 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
564 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
565
566 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
5b0e95bf 567 return 0;
a67509c3
JB
568
569 io_ctl_unmap_page(io_ctl);
570
2f120c05 571 return 0;
a67509c3
JB
572}
573
5b0e95bf
JB
574static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
575 struct btrfs_free_space *entry)
a67509c3 576{
5b0e95bf
JB
577 int ret;
578
5b0e95bf
JB
579 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
580 if (ret)
581 return ret;
582
a67509c3
JB
583 memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
584 io_ctl_unmap_page(io_ctl);
5b0e95bf
JB
585
586 return 0;
a67509c3
JB
587}
588
cd023e7b
JB
589/*
590 * Since we attach pinned extents after the fact we can have contiguous sections
591 * of free space that are split up in entries. This poses a problem with the
592 * tree logging stuff since it could have allocated across what appears to be 2
593 * entries since we would have merged the entries when adding the pinned extents
594 * back to the free space cache. So run through the space cache that we just
595 * loaded and merge contiguous entries. This will make the log replay stuff not
596 * blow up and it will make for nicer allocator behavior.
597 */
598static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
599{
600 struct btrfs_free_space *e, *prev = NULL;
601 struct rb_node *n;
602
603again:
604 spin_lock(&ctl->tree_lock);
605 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
606 e = rb_entry(n, struct btrfs_free_space, offset_index);
607 if (!prev)
608 goto next;
609 if (e->bitmap || prev->bitmap)
610 goto next;
611 if (prev->offset + prev->bytes == e->offset) {
612 unlink_free_space(ctl, prev);
613 unlink_free_space(ctl, e);
614 prev->bytes += e->bytes;
615 kmem_cache_free(btrfs_free_space_cachep, e);
616 link_free_space(ctl, prev);
617 prev = NULL;
618 spin_unlock(&ctl->tree_lock);
619 goto again;
620 }
621next:
622 prev = e;
623 }
624 spin_unlock(&ctl->tree_lock);
625}
626
0414efae
LZ
627int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
628 struct btrfs_free_space_ctl *ctl,
629 struct btrfs_path *path, u64 offset)
9d66e233 630{
9d66e233
JB
631 struct btrfs_free_space_header *header;
632 struct extent_buffer *leaf;
a67509c3 633 struct io_ctl io_ctl;
9d66e233 634 struct btrfs_key key;
a67509c3 635 struct btrfs_free_space *e, *n;
9d66e233
JB
636 struct list_head bitmaps;
637 u64 num_entries;
638 u64 num_bitmaps;
639 u64 generation;
a67509c3 640 u8 type;
f6a39829 641 int ret = 0;
9d66e233
JB
642
643 INIT_LIST_HEAD(&bitmaps);
644
9d66e233 645 /* Nothing in the space cache, goodbye */
0414efae 646 if (!i_size_read(inode))
a67509c3 647 return 0;
9d66e233
JB
648
649 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 650 key.offset = offset;
9d66e233
JB
651 key.type = 0;
652
653 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0414efae 654 if (ret < 0)
a67509c3 655 return 0;
0414efae 656 else if (ret > 0) {
945d8962 657 btrfs_release_path(path);
a67509c3 658 return 0;
9d66e233
JB
659 }
660
0414efae
LZ
661 ret = -1;
662
9d66e233
JB
663 leaf = path->nodes[0];
664 header = btrfs_item_ptr(leaf, path->slots[0],
665 struct btrfs_free_space_header);
666 num_entries = btrfs_free_space_entries(leaf, header);
667 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
668 generation = btrfs_free_space_generation(leaf, header);
945d8962 669 btrfs_release_path(path);
9d66e233
JB
670
671 if (BTRFS_I(inode)->generation != generation) {
672 printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
0414efae 673 " not match free space cache generation (%llu)\n",
9d66e233 674 (unsigned long long)BTRFS_I(inode)->generation,
0414efae 675 (unsigned long long)generation);
a67509c3 676 return 0;
9d66e233
JB
677 }
678
679 if (!num_entries)
a67509c3 680 return 0;
9d66e233 681
706efc66
LZ
682 ret = io_ctl_init(&io_ctl, inode, root);
683 if (ret)
684 return ret;
685
9d66e233 686 ret = readahead_cache(inode);
0414efae 687 if (ret)
9d66e233 688 goto out;
9d66e233 689
a67509c3
JB
690 ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
691 if (ret)
692 goto out;
9d66e233 693
5b0e95bf
JB
694 ret = io_ctl_check_crc(&io_ctl, 0);
695 if (ret)
696 goto free_cache;
697
a67509c3
JB
698 ret = io_ctl_check_generation(&io_ctl, generation);
699 if (ret)
700 goto free_cache;
9d66e233 701
a67509c3
JB
702 while (num_entries) {
703 e = kmem_cache_zalloc(btrfs_free_space_cachep,
704 GFP_NOFS);
705 if (!e)
9d66e233 706 goto free_cache;
9d66e233 707
5b0e95bf
JB
708 ret = io_ctl_read_entry(&io_ctl, e, &type);
709 if (ret) {
710 kmem_cache_free(btrfs_free_space_cachep, e);
711 goto free_cache;
712 }
713
a67509c3
JB
714 if (!e->bytes) {
715 kmem_cache_free(btrfs_free_space_cachep, e);
716 goto free_cache;
9d66e233 717 }
a67509c3
JB
718
719 if (type == BTRFS_FREE_SPACE_EXTENT) {
720 spin_lock(&ctl->tree_lock);
721 ret = link_free_space(ctl, e);
722 spin_unlock(&ctl->tree_lock);
723 if (ret) {
724 printk(KERN_ERR "Duplicate entries in "
725 "free space cache, dumping\n");
726 kmem_cache_free(btrfs_free_space_cachep, e);
9d66e233
JB
727 goto free_cache;
728 }
a67509c3
JB
729 } else {
730 BUG_ON(!num_bitmaps);
731 num_bitmaps--;
732 e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
733 if (!e->bitmap) {
734 kmem_cache_free(
735 btrfs_free_space_cachep, e);
9d66e233
JB
736 goto free_cache;
737 }
a67509c3
JB
738 spin_lock(&ctl->tree_lock);
739 ret = link_free_space(ctl, e);
740 ctl->total_bitmaps++;
741 ctl->op->recalc_thresholds(ctl);
742 spin_unlock(&ctl->tree_lock);
743 if (ret) {
744 printk(KERN_ERR "Duplicate entries in "
745 "free space cache, dumping\n");
dc89e982 746 kmem_cache_free(btrfs_free_space_cachep, e);
9d66e233
JB
747 goto free_cache;
748 }
a67509c3 749 list_add_tail(&e->list, &bitmaps);
9d66e233
JB
750 }
751
a67509c3
JB
752 num_entries--;
753 }
9d66e233 754
2f120c05
JB
755 io_ctl_unmap_page(&io_ctl);
756
a67509c3
JB
757 /*
758 * We add the bitmaps at the end of the entries in order that
759 * the bitmap entries are added to the cache.
760 */
761 list_for_each_entry_safe(e, n, &bitmaps, list) {
9d66e233 762 list_del_init(&e->list);
5b0e95bf
JB
763 ret = io_ctl_read_bitmap(&io_ctl, e);
764 if (ret)
765 goto free_cache;
9d66e233
JB
766 }
767
a67509c3 768 io_ctl_drop_pages(&io_ctl);
cd023e7b 769 merge_space_tree(ctl);
9d66e233
JB
770 ret = 1;
771out:
a67509c3 772 io_ctl_free(&io_ctl);
9d66e233 773 return ret;
9d66e233 774free_cache:
a67509c3 775 io_ctl_drop_pages(&io_ctl);
0414efae 776 __btrfs_remove_free_space_cache(ctl);
9d66e233
JB
777 goto out;
778}
779
0414efae
LZ
780int load_free_space_cache(struct btrfs_fs_info *fs_info,
781 struct btrfs_block_group_cache *block_group)
0cb59c99 782{
34d52cb6 783 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0414efae
LZ
784 struct btrfs_root *root = fs_info->tree_root;
785 struct inode *inode;
786 struct btrfs_path *path;
5b0e95bf 787 int ret = 0;
0414efae
LZ
788 bool matched;
789 u64 used = btrfs_block_group_used(&block_group->item);
790
0414efae
LZ
791 /*
792 * If this block group has been marked to be cleared for one reason or
793 * another then we can't trust the on disk cache, so just return.
794 */
9d66e233 795 spin_lock(&block_group->lock);
0414efae
LZ
796 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
797 spin_unlock(&block_group->lock);
798 return 0;
799 }
9d66e233 800 spin_unlock(&block_group->lock);
0414efae
LZ
801
802 path = btrfs_alloc_path();
803 if (!path)
804 return 0;
d53ba474
JB
805 path->search_commit_root = 1;
806 path->skip_locking = 1;
0414efae
LZ
807
808 inode = lookup_free_space_inode(root, block_group, path);
809 if (IS_ERR(inode)) {
810 btrfs_free_path(path);
811 return 0;
812 }
813
5b0e95bf
JB
814 /* We may have converted the inode and made the cache invalid. */
815 spin_lock(&block_group->lock);
816 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
817 spin_unlock(&block_group->lock);
a7e221e9 818 btrfs_free_path(path);
5b0e95bf
JB
819 goto out;
820 }
821 spin_unlock(&block_group->lock);
822
0414efae
LZ
823 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
824 path, block_group->key.objectid);
825 btrfs_free_path(path);
826 if (ret <= 0)
827 goto out;
828
829 spin_lock(&ctl->tree_lock);
830 matched = (ctl->free_space == (block_group->key.offset - used -
831 block_group->bytes_super));
832 spin_unlock(&ctl->tree_lock);
833
834 if (!matched) {
835 __btrfs_remove_free_space_cache(ctl);
836 printk(KERN_ERR "block group %llu has an wrong amount of free "
837 "space\n", block_group->key.objectid);
838 ret = -1;
839 }
840out:
841 if (ret < 0) {
842 /* This cache is bogus, make sure it gets cleared */
843 spin_lock(&block_group->lock);
844 block_group->disk_cache_state = BTRFS_DC_CLEAR;
845 spin_unlock(&block_group->lock);
82d5902d 846 ret = 0;
0414efae
LZ
847
848 printk(KERN_ERR "btrfs: failed to load free space cache "
849 "for block group %llu\n", block_group->key.objectid);
850 }
851
852 iput(inode);
853 return ret;
9d66e233
JB
854}
855
c09544e0
JB
856/**
857 * __btrfs_write_out_cache - write out cached info to an inode
858 * @root - the root the inode belongs to
859 * @ctl - the free space cache we are going to write out
860 * @block_group - the block_group for this cache if it belongs to a block_group
861 * @trans - the trans handle
862 * @path - the path to use
863 * @offset - the offset for the key we'll insert
864 *
865 * This function writes out a free space cache struct to disk for quick recovery
866 * on mount. This will return 0 if it was successfull in writing the cache out,
867 * and -1 if it was not.
868 */
0414efae
LZ
869int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
870 struct btrfs_free_space_ctl *ctl,
871 struct btrfs_block_group_cache *block_group,
872 struct btrfs_trans_handle *trans,
873 struct btrfs_path *path, u64 offset)
0cb59c99
JB
874{
875 struct btrfs_free_space_header *header;
876 struct extent_buffer *leaf;
0cb59c99
JB
877 struct rb_node *node;
878 struct list_head *pos, *n;
0cb59c99 879 struct extent_state *cached_state = NULL;
43be2146
JB
880 struct btrfs_free_cluster *cluster = NULL;
881 struct extent_io_tree *unpin = NULL;
a67509c3 882 struct io_ctl io_ctl;
0cb59c99
JB
883 struct list_head bitmap_list;
884 struct btrfs_key key;
db804f23 885 u64 start, extent_start, extent_end, len;
0cb59c99
JB
886 int entries = 0;
887 int bitmaps = 0;
c09544e0
JB
888 int ret;
889 int err = -1;
0cb59c99 890
0cb59c99
JB
891 INIT_LIST_HEAD(&bitmap_list);
892
0414efae
LZ
893 if (!i_size_read(inode))
894 return -1;
2b20982e 895
706efc66
LZ
896 ret = io_ctl_init(&io_ctl, inode, root);
897 if (ret)
898 return -1;
be1a12a0 899
43be2146 900 /* Get the cluster for this block_group if it exists */
0414efae 901 if (block_group && !list_empty(&block_group->cluster_list))
43be2146
JB
902 cluster = list_entry(block_group->cluster_list.next,
903 struct btrfs_free_cluster,
904 block_group_list);
905
a67509c3
JB
906 /* Lock all pages first so we can lock the extent safely. */
907 io_ctl_prepare_pages(&io_ctl, inode, 0);
0cb59c99 908
0cb59c99 909 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
d0082371 910 0, &cached_state);
0cb59c99 911
f75b130e
JB
912 node = rb_first(&ctl->free_space_offset);
913 if (!node && cluster) {
914 node = rb_first(&cluster->root);
915 cluster = NULL;
916 }
917
5b0e95bf
JB
918 /* Make sure we can fit our crcs into the first page */
919 if (io_ctl.check_crcs &&
920 (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) {
921 WARN_ON(1);
922 goto out_nospc;
923 }
924
a67509c3 925 io_ctl_set_generation(&io_ctl, trans->transid);
43be2146 926
a67509c3
JB
927 /* Write out the extent entries */
928 while (node) {
929 struct btrfs_free_space *e;
0cb59c99 930
a67509c3
JB
931 e = rb_entry(node, struct btrfs_free_space, offset_index);
932 entries++;
0cb59c99 933
a67509c3
JB
934 ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes,
935 e->bitmap);
936 if (ret)
937 goto out_nospc;
2f356126 938
a67509c3
JB
939 if (e->bitmap) {
940 list_add_tail(&e->list, &bitmap_list);
941 bitmaps++;
2f356126 942 }
a67509c3
JB
943 node = rb_next(node);
944 if (!node && cluster) {
945 node = rb_first(&cluster->root);
946 cluster = NULL;
43be2146 947 }
a67509c3 948 }
43be2146 949
a67509c3
JB
950 /*
951 * We want to add any pinned extents to our free space cache
952 * so we don't leak the space
953 */
db804f23
LZ
954
955 /*
956 * We shouldn't have switched the pinned extents yet so this is the
957 * right one
958 */
959 unpin = root->fs_info->pinned_extents;
960
961 if (block_group)
962 start = block_group->key.objectid;
963
a67509c3
JB
964 while (block_group && (start < block_group->key.objectid +
965 block_group->key.offset)) {
db804f23
LZ
966 ret = find_first_extent_bit(unpin, start,
967 &extent_start, &extent_end,
e6138876 968 EXTENT_DIRTY, NULL);
a67509c3
JB
969 if (ret) {
970 ret = 0;
971 break;
0cb59c99 972 }
0cb59c99 973
a67509c3 974 /* This pinned extent is out of our range */
db804f23 975 if (extent_start >= block_group->key.objectid +
a67509c3
JB
976 block_group->key.offset)
977 break;
2f356126 978
db804f23
LZ
979 extent_start = max(extent_start, start);
980 extent_end = min(block_group->key.objectid +
981 block_group->key.offset, extent_end + 1);
982 len = extent_end - extent_start;
0cb59c99 983
a67509c3 984 entries++;
db804f23 985 ret = io_ctl_add_entry(&io_ctl, extent_start, len, NULL);
a67509c3
JB
986 if (ret)
987 goto out_nospc;
0cb59c99 988
db804f23 989 start = extent_end;
a67509c3 990 }
0cb59c99
JB
991
992 /* Write out the bitmaps */
993 list_for_each_safe(pos, n, &bitmap_list) {
0cb59c99
JB
994 struct btrfs_free_space *entry =
995 list_entry(pos, struct btrfs_free_space, list);
996
a67509c3
JB
997 ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap);
998 if (ret)
999 goto out_nospc;
0cb59c99 1000 list_del_init(&entry->list);
be1a12a0
JB
1001 }
1002
0cb59c99 1003 /* Zero out the rest of the pages just to make sure */
a67509c3 1004 io_ctl_zero_remaining_pages(&io_ctl);
0cb59c99 1005
a67509c3
JB
1006 ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
1007 0, i_size_read(inode), &cached_state);
1008 io_ctl_drop_pages(&io_ctl);
0cb59c99
JB
1009 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1010 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1011
c09544e0 1012 if (ret)
2f356126 1013 goto out;
be1a12a0 1014
be1a12a0 1015
5fd02043 1016 btrfs_wait_ordered_range(inode, 0, (u64)-1);
0cb59c99
JB
1017
1018 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 1019 key.offset = offset;
0cb59c99
JB
1020 key.type = 0;
1021
a9b5fcdd 1022 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
0cb59c99 1023 if (ret < 0) {
a67509c3 1024 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
5b0e95bf
JB
1025 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1026 GFP_NOFS);
2f356126 1027 goto out;
0cb59c99
JB
1028 }
1029 leaf = path->nodes[0];
1030 if (ret > 0) {
1031 struct btrfs_key found_key;
1032 BUG_ON(!path->slots[0]);
1033 path->slots[0]--;
1034 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1035 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
0414efae 1036 found_key.offset != offset) {
a67509c3
JB
1037 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1038 inode->i_size - 1,
5b0e95bf
JB
1039 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1040 NULL, GFP_NOFS);
b3b4aa74 1041 btrfs_release_path(path);
2f356126 1042 goto out;
0cb59c99
JB
1043 }
1044 }
549b4fdb
JB
1045
1046 BTRFS_I(inode)->generation = trans->transid;
0cb59c99
JB
1047 header = btrfs_item_ptr(leaf, path->slots[0],
1048 struct btrfs_free_space_header);
1049 btrfs_set_free_space_entries(leaf, header, entries);
1050 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1051 btrfs_set_free_space_generation(leaf, header, trans->transid);
1052 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 1053 btrfs_release_path(path);
0cb59c99 1054
c09544e0 1055 err = 0;
2f356126 1056out:
a67509c3 1057 io_ctl_free(&io_ctl);
c09544e0 1058 if (err) {
a67509c3 1059 invalidate_inode_pages2(inode->i_mapping);
0cb59c99
JB
1060 BTRFS_I(inode)->generation = 0;
1061 }
0cb59c99 1062 btrfs_update_inode(trans, root, inode);
c09544e0 1063 return err;
a67509c3
JB
1064
1065out_nospc:
1066 list_for_each_safe(pos, n, &bitmap_list) {
1067 struct btrfs_free_space *entry =
1068 list_entry(pos, struct btrfs_free_space, list);
1069 list_del_init(&entry->list);
1070 }
1071 io_ctl_drop_pages(&io_ctl);
1072 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1073 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1074 goto out;
0414efae
LZ
1075}
1076
1077int btrfs_write_out_cache(struct btrfs_root *root,
1078 struct btrfs_trans_handle *trans,
1079 struct btrfs_block_group_cache *block_group,
1080 struct btrfs_path *path)
1081{
1082 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1083 struct inode *inode;
1084 int ret = 0;
1085
1086 root = root->fs_info->tree_root;
1087
1088 spin_lock(&block_group->lock);
1089 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1090 spin_unlock(&block_group->lock);
1091 return 0;
1092 }
1093 spin_unlock(&block_group->lock);
1094
1095 inode = lookup_free_space_inode(root, block_group, path);
1096 if (IS_ERR(inode))
1097 return 0;
1098
1099 ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
1100 path, block_group->key.objectid);
c09544e0 1101 if (ret) {
0414efae
LZ
1102 spin_lock(&block_group->lock);
1103 block_group->disk_cache_state = BTRFS_DC_ERROR;
1104 spin_unlock(&block_group->lock);
82d5902d 1105 ret = 0;
c09544e0 1106#ifdef DEBUG
934e7d44 1107 printk(KERN_ERR "btrfs: failed to write free space cache "
0414efae 1108 "for block group %llu\n", block_group->key.objectid);
c09544e0 1109#endif
0414efae
LZ
1110 }
1111
0cb59c99
JB
1112 iput(inode);
1113 return ret;
1114}
1115
34d52cb6 1116static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
96303081 1117 u64 offset)
0f9dd46c 1118{
96303081
JB
1119 BUG_ON(offset < bitmap_start);
1120 offset -= bitmap_start;
34d52cb6 1121 return (unsigned long)(div_u64(offset, unit));
96303081 1122}
0f9dd46c 1123
34d52cb6 1124static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
96303081 1125{
34d52cb6 1126 return (unsigned long)(div_u64(bytes, unit));
96303081 1127}
0f9dd46c 1128
34d52cb6 1129static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1130 u64 offset)
1131{
1132 u64 bitmap_start;
1133 u64 bytes_per_bitmap;
0f9dd46c 1134
34d52cb6
LZ
1135 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1136 bitmap_start = offset - ctl->start;
96303081
JB
1137 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1138 bitmap_start *= bytes_per_bitmap;
34d52cb6 1139 bitmap_start += ctl->start;
0f9dd46c 1140
96303081 1141 return bitmap_start;
0f9dd46c
JB
1142}
1143
96303081
JB
1144static int tree_insert_offset(struct rb_root *root, u64 offset,
1145 struct rb_node *node, int bitmap)
0f9dd46c
JB
1146{
1147 struct rb_node **p = &root->rb_node;
1148 struct rb_node *parent = NULL;
1149 struct btrfs_free_space *info;
1150
1151 while (*p) {
1152 parent = *p;
96303081 1153 info = rb_entry(parent, struct btrfs_free_space, offset_index);
0f9dd46c 1154
96303081 1155 if (offset < info->offset) {
0f9dd46c 1156 p = &(*p)->rb_left;
96303081 1157 } else if (offset > info->offset) {
0f9dd46c 1158 p = &(*p)->rb_right;
96303081
JB
1159 } else {
1160 /*
1161 * we could have a bitmap entry and an extent entry
1162 * share the same offset. If this is the case, we want
1163 * the extent entry to always be found first if we do a
1164 * linear search through the tree, since we want to have
1165 * the quickest allocation time, and allocating from an
1166 * extent is faster than allocating from a bitmap. So
1167 * if we're inserting a bitmap and we find an entry at
1168 * this offset, we want to go right, or after this entry
1169 * logically. If we are inserting an extent and we've
1170 * found a bitmap, we want to go left, or before
1171 * logically.
1172 */
1173 if (bitmap) {
207dde82
JB
1174 if (info->bitmap) {
1175 WARN_ON_ONCE(1);
1176 return -EEXIST;
1177 }
96303081
JB
1178 p = &(*p)->rb_right;
1179 } else {
207dde82
JB
1180 if (!info->bitmap) {
1181 WARN_ON_ONCE(1);
1182 return -EEXIST;
1183 }
96303081
JB
1184 p = &(*p)->rb_left;
1185 }
1186 }
0f9dd46c
JB
1187 }
1188
1189 rb_link_node(node, parent, p);
1190 rb_insert_color(node, root);
1191
1192 return 0;
1193}
1194
1195/*
70cb0743
JB
1196 * searches the tree for the given offset.
1197 *
96303081
JB
1198 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1199 * want a section that has at least bytes size and comes at or after the given
1200 * offset.
0f9dd46c 1201 */
96303081 1202static struct btrfs_free_space *
34d52cb6 1203tree_search_offset(struct btrfs_free_space_ctl *ctl,
96303081 1204 u64 offset, int bitmap_only, int fuzzy)
0f9dd46c 1205{
34d52cb6 1206 struct rb_node *n = ctl->free_space_offset.rb_node;
96303081
JB
1207 struct btrfs_free_space *entry, *prev = NULL;
1208
1209 /* find entry that is closest to the 'offset' */
1210 while (1) {
1211 if (!n) {
1212 entry = NULL;
1213 break;
1214 }
0f9dd46c 1215
0f9dd46c 1216 entry = rb_entry(n, struct btrfs_free_space, offset_index);
96303081 1217 prev = entry;
0f9dd46c 1218
96303081 1219 if (offset < entry->offset)
0f9dd46c 1220 n = n->rb_left;
96303081 1221 else if (offset > entry->offset)
0f9dd46c 1222 n = n->rb_right;
96303081 1223 else
0f9dd46c 1224 break;
0f9dd46c
JB
1225 }
1226
96303081
JB
1227 if (bitmap_only) {
1228 if (!entry)
1229 return NULL;
1230 if (entry->bitmap)
1231 return entry;
0f9dd46c 1232
96303081
JB
1233 /*
1234 * bitmap entry and extent entry may share same offset,
1235 * in that case, bitmap entry comes after extent entry.
1236 */
1237 n = rb_next(n);
1238 if (!n)
1239 return NULL;
1240 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1241 if (entry->offset != offset)
1242 return NULL;
0f9dd46c 1243
96303081
JB
1244 WARN_ON(!entry->bitmap);
1245 return entry;
1246 } else if (entry) {
1247 if (entry->bitmap) {
0f9dd46c 1248 /*
96303081
JB
1249 * if previous extent entry covers the offset,
1250 * we should return it instead of the bitmap entry
0f9dd46c 1251 */
de6c4115
MX
1252 n = rb_prev(&entry->offset_index);
1253 if (n) {
96303081
JB
1254 prev = rb_entry(n, struct btrfs_free_space,
1255 offset_index);
de6c4115
MX
1256 if (!prev->bitmap &&
1257 prev->offset + prev->bytes > offset)
1258 entry = prev;
0f9dd46c 1259 }
96303081
JB
1260 }
1261 return entry;
1262 }
1263
1264 if (!prev)
1265 return NULL;
1266
1267 /* find last entry before the 'offset' */
1268 entry = prev;
1269 if (entry->offset > offset) {
1270 n = rb_prev(&entry->offset_index);
1271 if (n) {
1272 entry = rb_entry(n, struct btrfs_free_space,
1273 offset_index);
1274 BUG_ON(entry->offset > offset);
0f9dd46c 1275 } else {
96303081
JB
1276 if (fuzzy)
1277 return entry;
1278 else
1279 return NULL;
0f9dd46c
JB
1280 }
1281 }
1282
96303081 1283 if (entry->bitmap) {
de6c4115
MX
1284 n = rb_prev(&entry->offset_index);
1285 if (n) {
96303081
JB
1286 prev = rb_entry(n, struct btrfs_free_space,
1287 offset_index);
de6c4115
MX
1288 if (!prev->bitmap &&
1289 prev->offset + prev->bytes > offset)
1290 return prev;
96303081 1291 }
34d52cb6 1292 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
96303081
JB
1293 return entry;
1294 } else if (entry->offset + entry->bytes > offset)
1295 return entry;
1296
1297 if (!fuzzy)
1298 return NULL;
1299
1300 while (1) {
1301 if (entry->bitmap) {
1302 if (entry->offset + BITS_PER_BITMAP *
34d52cb6 1303 ctl->unit > offset)
96303081
JB
1304 break;
1305 } else {
1306 if (entry->offset + entry->bytes > offset)
1307 break;
1308 }
1309
1310 n = rb_next(&entry->offset_index);
1311 if (!n)
1312 return NULL;
1313 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1314 }
1315 return entry;
0f9dd46c
JB
1316}
1317
f333adb5 1318static inline void
34d52cb6 1319__unlink_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5 1320 struct btrfs_free_space *info)
0f9dd46c 1321{
34d52cb6
LZ
1322 rb_erase(&info->offset_index, &ctl->free_space_offset);
1323 ctl->free_extents--;
f333adb5
LZ
1324}
1325
34d52cb6 1326static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5
LZ
1327 struct btrfs_free_space *info)
1328{
34d52cb6
LZ
1329 __unlink_free_space(ctl, info);
1330 ctl->free_space -= info->bytes;
0f9dd46c
JB
1331}
1332
34d52cb6 1333static int link_free_space(struct btrfs_free_space_ctl *ctl,
0f9dd46c
JB
1334 struct btrfs_free_space *info)
1335{
1336 int ret = 0;
1337
96303081 1338 BUG_ON(!info->bitmap && !info->bytes);
34d52cb6 1339 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
96303081 1340 &info->offset_index, (info->bitmap != NULL));
0f9dd46c
JB
1341 if (ret)
1342 return ret;
1343
34d52cb6
LZ
1344 ctl->free_space += info->bytes;
1345 ctl->free_extents++;
96303081
JB
1346 return ret;
1347}
1348
34d52cb6 1349static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
96303081 1350{
34d52cb6 1351 struct btrfs_block_group_cache *block_group = ctl->private;
25891f79
JB
1352 u64 max_bytes;
1353 u64 bitmap_bytes;
1354 u64 extent_bytes;
8eb2d829 1355 u64 size = block_group->key.offset;
96009762 1356 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
34d52cb6
LZ
1357 int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1358
1359 BUG_ON(ctl->total_bitmaps > max_bitmaps);
96303081
JB
1360
1361 /*
1362 * The goal is to keep the total amount of memory used per 1gb of space
1363 * at or below 32k, so we need to adjust how much memory we allow to be
1364 * used by extent based free space tracking
1365 */
8eb2d829
LZ
1366 if (size < 1024 * 1024 * 1024)
1367 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1368 else
1369 max_bytes = MAX_CACHE_BYTES_PER_GIG *
1370 div64_u64(size, 1024 * 1024 * 1024);
96303081 1371
25891f79
JB
1372 /*
1373 * we want to account for 1 more bitmap than what we have so we can make
1374 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1375 * we add more bitmaps.
1376 */
34d52cb6 1377 bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
96303081 1378
25891f79 1379 if (bitmap_bytes >= max_bytes) {
34d52cb6 1380 ctl->extents_thresh = 0;
25891f79
JB
1381 return;
1382 }
96303081 1383
25891f79
JB
1384 /*
1385 * we want the extent entry threshold to always be at most 1/2 the maxw
1386 * bytes we can have, or whatever is less than that.
1387 */
1388 extent_bytes = max_bytes - bitmap_bytes;
1389 extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
96303081 1390
34d52cb6 1391 ctl->extents_thresh =
25891f79 1392 div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
96303081
JB
1393}
1394
bb3ac5a4
MX
1395static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1396 struct btrfs_free_space *info,
1397 u64 offset, u64 bytes)
96303081 1398{
f38b6e75 1399 unsigned long start, count;
96303081 1400
34d52cb6
LZ
1401 start = offset_to_bit(info->offset, ctl->unit, offset);
1402 count = bytes_to_bits(bytes, ctl->unit);
f38b6e75 1403 BUG_ON(start + count > BITS_PER_BITMAP);
96303081 1404
f38b6e75 1405 bitmap_clear(info->bitmap, start, count);
96303081
JB
1406
1407 info->bytes -= bytes;
bb3ac5a4
MX
1408}
1409
1410static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1411 struct btrfs_free_space *info, u64 offset,
1412 u64 bytes)
1413{
1414 __bitmap_clear_bits(ctl, info, offset, bytes);
34d52cb6 1415 ctl->free_space -= bytes;
96303081
JB
1416}
1417
34d52cb6 1418static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
817d52f8
JB
1419 struct btrfs_free_space *info, u64 offset,
1420 u64 bytes)
96303081 1421{
f38b6e75 1422 unsigned long start, count;
96303081 1423
34d52cb6
LZ
1424 start = offset_to_bit(info->offset, ctl->unit, offset);
1425 count = bytes_to_bits(bytes, ctl->unit);
f38b6e75 1426 BUG_ON(start + count > BITS_PER_BITMAP);
96303081 1427
f38b6e75 1428 bitmap_set(info->bitmap, start, count);
96303081
JB
1429
1430 info->bytes += bytes;
34d52cb6 1431 ctl->free_space += bytes;
96303081
JB
1432}
1433
34d52cb6 1434static int search_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1435 struct btrfs_free_space *bitmap_info, u64 *offset,
1436 u64 *bytes)
1437{
1438 unsigned long found_bits = 0;
1439 unsigned long bits, i;
1440 unsigned long next_zero;
1441
34d52cb6 1442 i = offset_to_bit(bitmap_info->offset, ctl->unit,
96303081 1443 max_t(u64, *offset, bitmap_info->offset));
34d52cb6 1444 bits = bytes_to_bits(*bytes, ctl->unit);
96303081 1445
ebb3dad4 1446 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
96303081
JB
1447 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1448 BITS_PER_BITMAP, i);
1449 if ((next_zero - i) >= bits) {
1450 found_bits = next_zero - i;
1451 break;
1452 }
1453 i = next_zero;
1454 }
1455
1456 if (found_bits) {
34d52cb6
LZ
1457 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1458 *bytes = (u64)(found_bits) * ctl->unit;
96303081
JB
1459 return 0;
1460 }
1461
1462 return -1;
1463}
1464
34d52cb6
LZ
1465static struct btrfs_free_space *
1466find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
96303081
JB
1467{
1468 struct btrfs_free_space *entry;
1469 struct rb_node *node;
1470 int ret;
1471
34d52cb6 1472 if (!ctl->free_space_offset.rb_node)
96303081
JB
1473 return NULL;
1474
34d52cb6 1475 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
96303081
JB
1476 if (!entry)
1477 return NULL;
1478
1479 for (node = &entry->offset_index; node; node = rb_next(node)) {
1480 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1481 if (entry->bytes < *bytes)
1482 continue;
1483
1484 if (entry->bitmap) {
34d52cb6 1485 ret = search_bitmap(ctl, entry, offset, bytes);
96303081
JB
1486 if (!ret)
1487 return entry;
1488 continue;
1489 }
1490
1491 *offset = entry->offset;
1492 *bytes = entry->bytes;
1493 return entry;
1494 }
1495
1496 return NULL;
1497}
1498
34d52cb6 1499static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1500 struct btrfs_free_space *info, u64 offset)
1501{
34d52cb6 1502 info->offset = offset_to_bitmap(ctl, offset);
f019f426 1503 info->bytes = 0;
f2d0f676 1504 INIT_LIST_HEAD(&info->list);
34d52cb6
LZ
1505 link_free_space(ctl, info);
1506 ctl->total_bitmaps++;
96303081 1507
34d52cb6 1508 ctl->op->recalc_thresholds(ctl);
96303081
JB
1509}
1510
34d52cb6 1511static void free_bitmap(struct btrfs_free_space_ctl *ctl,
edf6e2d1
LZ
1512 struct btrfs_free_space *bitmap_info)
1513{
34d52cb6 1514 unlink_free_space(ctl, bitmap_info);
edf6e2d1 1515 kfree(bitmap_info->bitmap);
dc89e982 1516 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
34d52cb6
LZ
1517 ctl->total_bitmaps--;
1518 ctl->op->recalc_thresholds(ctl);
edf6e2d1
LZ
1519}
1520
34d52cb6 1521static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1522 struct btrfs_free_space *bitmap_info,
1523 u64 *offset, u64 *bytes)
1524{
1525 u64 end;
6606bb97
JB
1526 u64 search_start, search_bytes;
1527 int ret;
96303081
JB
1528
1529again:
34d52cb6 1530 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
96303081 1531
6606bb97 1532 /*
bdb7d303
JB
1533 * We need to search for bits in this bitmap. We could only cover some
1534 * of the extent in this bitmap thanks to how we add space, so we need
1535 * to search for as much as it as we can and clear that amount, and then
1536 * go searching for the next bit.
6606bb97
JB
1537 */
1538 search_start = *offset;
bdb7d303 1539 search_bytes = ctl->unit;
13dbc089 1540 search_bytes = min(search_bytes, end - search_start + 1);
34d52cb6 1541 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
6606bb97
JB
1542 BUG_ON(ret < 0 || search_start != *offset);
1543
bdb7d303
JB
1544 /* We may have found more bits than what we need */
1545 search_bytes = min(search_bytes, *bytes);
1546
1547 /* Cannot clear past the end of the bitmap */
1548 search_bytes = min(search_bytes, end - search_start + 1);
1549
1550 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1551 *offset += search_bytes;
1552 *bytes -= search_bytes;
96303081
JB
1553
1554 if (*bytes) {
6606bb97 1555 struct rb_node *next = rb_next(&bitmap_info->offset_index);
edf6e2d1 1556 if (!bitmap_info->bytes)
34d52cb6 1557 free_bitmap(ctl, bitmap_info);
96303081 1558
6606bb97
JB
1559 /*
1560 * no entry after this bitmap, but we still have bytes to
1561 * remove, so something has gone wrong.
1562 */
1563 if (!next)
96303081
JB
1564 return -EINVAL;
1565
6606bb97
JB
1566 bitmap_info = rb_entry(next, struct btrfs_free_space,
1567 offset_index);
1568
1569 /*
1570 * if the next entry isn't a bitmap we need to return to let the
1571 * extent stuff do its work.
1572 */
96303081
JB
1573 if (!bitmap_info->bitmap)
1574 return -EAGAIN;
1575
6606bb97
JB
1576 /*
1577 * Ok the next item is a bitmap, but it may not actually hold
1578 * the information for the rest of this free space stuff, so
1579 * look for it, and if we don't find it return so we can try
1580 * everything over again.
1581 */
1582 search_start = *offset;
bdb7d303 1583 search_bytes = ctl->unit;
34d52cb6 1584 ret = search_bitmap(ctl, bitmap_info, &search_start,
6606bb97
JB
1585 &search_bytes);
1586 if (ret < 0 || search_start != *offset)
1587 return -EAGAIN;
1588
96303081 1589 goto again;
edf6e2d1 1590 } else if (!bitmap_info->bytes)
34d52cb6 1591 free_bitmap(ctl, bitmap_info);
96303081
JB
1592
1593 return 0;
1594}
1595
2cdc342c
JB
1596static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1597 struct btrfs_free_space *info, u64 offset,
1598 u64 bytes)
1599{
1600 u64 bytes_to_set = 0;
1601 u64 end;
1602
1603 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1604
1605 bytes_to_set = min(end - offset, bytes);
1606
1607 bitmap_set_bits(ctl, info, offset, bytes_to_set);
1608
1609 return bytes_to_set;
1610
1611}
1612
34d52cb6
LZ
1613static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1614 struct btrfs_free_space *info)
96303081 1615{
34d52cb6 1616 struct btrfs_block_group_cache *block_group = ctl->private;
96303081
JB
1617
1618 /*
1619 * If we are below the extents threshold then we can add this as an
1620 * extent, and don't have to deal with the bitmap
1621 */
34d52cb6 1622 if (ctl->free_extents < ctl->extents_thresh) {
32cb0840
JB
1623 /*
1624 * If this block group has some small extents we don't want to
1625 * use up all of our free slots in the cache with them, we want
1626 * to reserve them to larger extents, however if we have plent
1627 * of cache left then go ahead an dadd them, no sense in adding
1628 * the overhead of a bitmap if we don't have to.
1629 */
1630 if (info->bytes <= block_group->sectorsize * 4) {
34d52cb6
LZ
1631 if (ctl->free_extents * 2 <= ctl->extents_thresh)
1632 return false;
32cb0840 1633 } else {
34d52cb6 1634 return false;
32cb0840
JB
1635 }
1636 }
96303081
JB
1637
1638 /*
1639 * some block groups are so tiny they can't be enveloped by a bitmap, so
1640 * don't even bother to create a bitmap for this
1641 */
96009762 1642 if (BITS_PER_BITMAP * ctl->unit > block_group->key.offset)
34d52cb6
LZ
1643 return false;
1644
1645 return true;
1646}
1647
2cdc342c
JB
1648static struct btrfs_free_space_op free_space_op = {
1649 .recalc_thresholds = recalculate_thresholds,
1650 .use_bitmap = use_bitmap,
1651};
1652
34d52cb6
LZ
1653static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1654 struct btrfs_free_space *info)
1655{
1656 struct btrfs_free_space *bitmap_info;
2cdc342c 1657 struct btrfs_block_group_cache *block_group = NULL;
34d52cb6 1658 int added = 0;
2cdc342c 1659 u64 bytes, offset, bytes_added;
34d52cb6 1660 int ret;
96303081
JB
1661
1662 bytes = info->bytes;
1663 offset = info->offset;
1664
34d52cb6
LZ
1665 if (!ctl->op->use_bitmap(ctl, info))
1666 return 0;
1667
2cdc342c
JB
1668 if (ctl->op == &free_space_op)
1669 block_group = ctl->private;
38e87880 1670again:
2cdc342c
JB
1671 /*
1672 * Since we link bitmaps right into the cluster we need to see if we
1673 * have a cluster here, and if so and it has our bitmap we need to add
1674 * the free space to that bitmap.
1675 */
1676 if (block_group && !list_empty(&block_group->cluster_list)) {
1677 struct btrfs_free_cluster *cluster;
1678 struct rb_node *node;
1679 struct btrfs_free_space *entry;
1680
1681 cluster = list_entry(block_group->cluster_list.next,
1682 struct btrfs_free_cluster,
1683 block_group_list);
1684 spin_lock(&cluster->lock);
1685 node = rb_first(&cluster->root);
1686 if (!node) {
1687 spin_unlock(&cluster->lock);
38e87880 1688 goto no_cluster_bitmap;
2cdc342c
JB
1689 }
1690
1691 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1692 if (!entry->bitmap) {
1693 spin_unlock(&cluster->lock);
38e87880 1694 goto no_cluster_bitmap;
2cdc342c
JB
1695 }
1696
1697 if (entry->offset == offset_to_bitmap(ctl, offset)) {
1698 bytes_added = add_bytes_to_bitmap(ctl, entry,
1699 offset, bytes);
1700 bytes -= bytes_added;
1701 offset += bytes_added;
1702 }
1703 spin_unlock(&cluster->lock);
1704 if (!bytes) {
1705 ret = 1;
1706 goto out;
1707 }
1708 }
38e87880
CM
1709
1710no_cluster_bitmap:
34d52cb6 1711 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
96303081
JB
1712 1, 0);
1713 if (!bitmap_info) {
1714 BUG_ON(added);
1715 goto new_bitmap;
1716 }
1717
2cdc342c
JB
1718 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1719 bytes -= bytes_added;
1720 offset += bytes_added;
1721 added = 0;
96303081
JB
1722
1723 if (!bytes) {
1724 ret = 1;
1725 goto out;
1726 } else
1727 goto again;
1728
1729new_bitmap:
1730 if (info && info->bitmap) {
34d52cb6 1731 add_new_bitmap(ctl, info, offset);
96303081
JB
1732 added = 1;
1733 info = NULL;
1734 goto again;
1735 } else {
34d52cb6 1736 spin_unlock(&ctl->tree_lock);
96303081
JB
1737
1738 /* no pre-allocated info, allocate a new one */
1739 if (!info) {
dc89e982
JB
1740 info = kmem_cache_zalloc(btrfs_free_space_cachep,
1741 GFP_NOFS);
96303081 1742 if (!info) {
34d52cb6 1743 spin_lock(&ctl->tree_lock);
96303081
JB
1744 ret = -ENOMEM;
1745 goto out;
1746 }
1747 }
1748
1749 /* allocate the bitmap */
1750 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
34d52cb6 1751 spin_lock(&ctl->tree_lock);
96303081
JB
1752 if (!info->bitmap) {
1753 ret = -ENOMEM;
1754 goto out;
1755 }
1756 goto again;
1757 }
1758
1759out:
1760 if (info) {
1761 if (info->bitmap)
1762 kfree(info->bitmap);
dc89e982 1763 kmem_cache_free(btrfs_free_space_cachep, info);
96303081 1764 }
0f9dd46c
JB
1765
1766 return ret;
1767}
1768
945d8962 1769static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5 1770 struct btrfs_free_space *info, bool update_stat)
0f9dd46c 1771{
120d66ee
LZ
1772 struct btrfs_free_space *left_info;
1773 struct btrfs_free_space *right_info;
1774 bool merged = false;
1775 u64 offset = info->offset;
1776 u64 bytes = info->bytes;
6226cb0a 1777
0f9dd46c
JB
1778 /*
1779 * first we want to see if there is free space adjacent to the range we
1780 * are adding, if there is remove that struct and add a new one to
1781 * cover the entire range
1782 */
34d52cb6 1783 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
96303081
JB
1784 if (right_info && rb_prev(&right_info->offset_index))
1785 left_info = rb_entry(rb_prev(&right_info->offset_index),
1786 struct btrfs_free_space, offset_index);
1787 else
34d52cb6 1788 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
0f9dd46c 1789
96303081 1790 if (right_info && !right_info->bitmap) {
f333adb5 1791 if (update_stat)
34d52cb6 1792 unlink_free_space(ctl, right_info);
f333adb5 1793 else
34d52cb6 1794 __unlink_free_space(ctl, right_info);
6226cb0a 1795 info->bytes += right_info->bytes;
dc89e982 1796 kmem_cache_free(btrfs_free_space_cachep, right_info);
120d66ee 1797 merged = true;
0f9dd46c
JB
1798 }
1799
96303081
JB
1800 if (left_info && !left_info->bitmap &&
1801 left_info->offset + left_info->bytes == offset) {
f333adb5 1802 if (update_stat)
34d52cb6 1803 unlink_free_space(ctl, left_info);
f333adb5 1804 else
34d52cb6 1805 __unlink_free_space(ctl, left_info);
6226cb0a
JB
1806 info->offset = left_info->offset;
1807 info->bytes += left_info->bytes;
dc89e982 1808 kmem_cache_free(btrfs_free_space_cachep, left_info);
120d66ee 1809 merged = true;
0f9dd46c
JB
1810 }
1811
120d66ee
LZ
1812 return merged;
1813}
1814
581bb050
LZ
1815int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1816 u64 offset, u64 bytes)
120d66ee
LZ
1817{
1818 struct btrfs_free_space *info;
1819 int ret = 0;
1820
dc89e982 1821 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
120d66ee
LZ
1822 if (!info)
1823 return -ENOMEM;
1824
1825 info->offset = offset;
1826 info->bytes = bytes;
1827
34d52cb6 1828 spin_lock(&ctl->tree_lock);
120d66ee 1829
34d52cb6 1830 if (try_merge_free_space(ctl, info, true))
120d66ee
LZ
1831 goto link;
1832
1833 /*
1834 * There was no extent directly to the left or right of this new
1835 * extent then we know we're going to have to allocate a new extent, so
1836 * before we do that see if we need to drop this into a bitmap
1837 */
34d52cb6 1838 ret = insert_into_bitmap(ctl, info);
120d66ee
LZ
1839 if (ret < 0) {
1840 goto out;
1841 } else if (ret) {
1842 ret = 0;
1843 goto out;
1844 }
1845link:
34d52cb6 1846 ret = link_free_space(ctl, info);
0f9dd46c 1847 if (ret)
dc89e982 1848 kmem_cache_free(btrfs_free_space_cachep, info);
96303081 1849out:
34d52cb6 1850 spin_unlock(&ctl->tree_lock);
6226cb0a 1851
0f9dd46c 1852 if (ret) {
96303081 1853 printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
c293498b 1854 BUG_ON(ret == -EEXIST);
0f9dd46c
JB
1855 }
1856
0f9dd46c
JB
1857 return ret;
1858}
1859
6226cb0a
JB
1860int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1861 u64 offset, u64 bytes)
0f9dd46c 1862{
34d52cb6 1863 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c
JB
1864 struct btrfs_free_space *info;
1865 int ret = 0;
1866
34d52cb6 1867 spin_lock(&ctl->tree_lock);
6226cb0a 1868
96303081 1869again:
bdb7d303
JB
1870 if (!bytes)
1871 goto out_lock;
1872
34d52cb6 1873 info = tree_search_offset(ctl, offset, 0, 0);
96303081 1874 if (!info) {
6606bb97
JB
1875 /*
1876 * oops didn't find an extent that matched the space we wanted
1877 * to remove, look for a bitmap instead
1878 */
34d52cb6 1879 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
6606bb97
JB
1880 1, 0);
1881 if (!info) {
24a70313
CM
1882 /* the tree logging code might be calling us before we
1883 * have fully loaded the free space rbtree for this
1884 * block group. So it is possible the entry won't
1885 * be in the rbtree yet at all. The caching code
1886 * will make sure not to put it in the rbtree if
1887 * the logging code has pinned it.
1888 */
6606bb97
JB
1889 goto out_lock;
1890 }
96303081
JB
1891 }
1892
bdb7d303 1893 if (!info->bitmap) {
34d52cb6 1894 unlink_free_space(ctl, info);
bdb7d303
JB
1895 if (offset == info->offset) {
1896 u64 to_free = min(bytes, info->bytes);
1897
1898 info->bytes -= to_free;
1899 info->offset += to_free;
1900 if (info->bytes) {
1901 ret = link_free_space(ctl, info);
1902 WARN_ON(ret);
1903 } else {
1904 kmem_cache_free(btrfs_free_space_cachep, info);
1905 }
0f9dd46c 1906
bdb7d303
JB
1907 offset += to_free;
1908 bytes -= to_free;
1909 goto again;
1910 } else {
1911 u64 old_end = info->bytes + info->offset;
9b49c9b9 1912
bdb7d303 1913 info->bytes = offset - info->offset;
34d52cb6 1914 ret = link_free_space(ctl, info);
96303081
JB
1915 WARN_ON(ret);
1916 if (ret)
1917 goto out_lock;
96303081 1918
bdb7d303
JB
1919 /* Not enough bytes in this entry to satisfy us */
1920 if (old_end < offset + bytes) {
1921 bytes -= old_end - offset;
1922 offset = old_end;
1923 goto again;
1924 } else if (old_end == offset + bytes) {
1925 /* all done */
1926 goto out_lock;
1927 }
1928 spin_unlock(&ctl->tree_lock);
1929
1930 ret = btrfs_add_free_space(block_group, offset + bytes,
1931 old_end - (offset + bytes));
1932 WARN_ON(ret);
1933 goto out;
1934 }
0f9dd46c 1935 }
96303081 1936
34d52cb6 1937 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
96303081
JB
1938 if (ret == -EAGAIN)
1939 goto again;
79787eaa 1940 BUG_ON(ret); /* logic error */
96303081 1941out_lock:
34d52cb6 1942 spin_unlock(&ctl->tree_lock);
0f9dd46c 1943out:
25179201
JB
1944 return ret;
1945}
1946
0f9dd46c
JB
1947void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1948 u64 bytes)
1949{
34d52cb6 1950 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c
JB
1951 struct btrfs_free_space *info;
1952 struct rb_node *n;
1953 int count = 0;
1954
34d52cb6 1955 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
0f9dd46c 1956 info = rb_entry(n, struct btrfs_free_space, offset_index);
f6175efa 1957 if (info->bytes >= bytes && !block_group->ro)
0f9dd46c 1958 count++;
96303081 1959 printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
21380931 1960 (unsigned long long)info->offset,
96303081
JB
1961 (unsigned long long)info->bytes,
1962 (info->bitmap) ? "yes" : "no");
0f9dd46c 1963 }
96303081
JB
1964 printk(KERN_INFO "block group has cluster?: %s\n",
1965 list_empty(&block_group->cluster_list) ? "no" : "yes");
0f9dd46c
JB
1966 printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
1967 "\n", count);
1968}
1969
34d52cb6 1970void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
0f9dd46c 1971{
34d52cb6 1972 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c 1973
34d52cb6
LZ
1974 spin_lock_init(&ctl->tree_lock);
1975 ctl->unit = block_group->sectorsize;
1976 ctl->start = block_group->key.objectid;
1977 ctl->private = block_group;
1978 ctl->op = &free_space_op;
0f9dd46c 1979
34d52cb6
LZ
1980 /*
1981 * we only want to have 32k of ram per block group for keeping
1982 * track of free space, and if we pass 1/2 of that we want to
1983 * start converting things over to using bitmaps
1984 */
1985 ctl->extents_thresh = ((1024 * 32) / 2) /
1986 sizeof(struct btrfs_free_space);
0f9dd46c
JB
1987}
1988
fa9c0d79
CM
1989/*
1990 * for a given cluster, put all of its extents back into the free
1991 * space cache. If the block group passed doesn't match the block group
1992 * pointed to by the cluster, someone else raced in and freed the
1993 * cluster already. In that case, we just return without changing anything
1994 */
1995static int
1996__btrfs_return_cluster_to_free_space(
1997 struct btrfs_block_group_cache *block_group,
1998 struct btrfs_free_cluster *cluster)
1999{
34d52cb6 2000 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79
CM
2001 struct btrfs_free_space *entry;
2002 struct rb_node *node;
2003
2004 spin_lock(&cluster->lock);
2005 if (cluster->block_group != block_group)
2006 goto out;
2007
96303081 2008 cluster->block_group = NULL;
fa9c0d79 2009 cluster->window_start = 0;
96303081 2010 list_del_init(&cluster->block_group_list);
96303081 2011
fa9c0d79 2012 node = rb_first(&cluster->root);
96303081 2013 while (node) {
4e69b598
JB
2014 bool bitmap;
2015
fa9c0d79
CM
2016 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2017 node = rb_next(&entry->offset_index);
2018 rb_erase(&entry->offset_index, &cluster->root);
4e69b598
JB
2019
2020 bitmap = (entry->bitmap != NULL);
2021 if (!bitmap)
34d52cb6
LZ
2022 try_merge_free_space(ctl, entry, false);
2023 tree_insert_offset(&ctl->free_space_offset,
4e69b598 2024 entry->offset, &entry->offset_index, bitmap);
fa9c0d79 2025 }
6bef4d31 2026 cluster->root = RB_ROOT;
96303081 2027
fa9c0d79
CM
2028out:
2029 spin_unlock(&cluster->lock);
96303081 2030 btrfs_put_block_group(block_group);
fa9c0d79
CM
2031 return 0;
2032}
2033
09655373 2034void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl)
0f9dd46c
JB
2035{
2036 struct btrfs_free_space *info;
2037 struct rb_node *node;
581bb050 2038
581bb050
LZ
2039 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2040 info = rb_entry(node, struct btrfs_free_space, offset_index);
9b90f513
JB
2041 if (!info->bitmap) {
2042 unlink_free_space(ctl, info);
2043 kmem_cache_free(btrfs_free_space_cachep, info);
2044 } else {
2045 free_bitmap(ctl, info);
2046 }
581bb050
LZ
2047 if (need_resched()) {
2048 spin_unlock(&ctl->tree_lock);
2049 cond_resched();
2050 spin_lock(&ctl->tree_lock);
2051 }
2052 }
09655373
CM
2053}
2054
2055void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2056{
2057 spin_lock(&ctl->tree_lock);
2058 __btrfs_remove_free_space_cache_locked(ctl);
581bb050
LZ
2059 spin_unlock(&ctl->tree_lock);
2060}
2061
2062void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2063{
2064 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79 2065 struct btrfs_free_cluster *cluster;
96303081 2066 struct list_head *head;
0f9dd46c 2067
34d52cb6 2068 spin_lock(&ctl->tree_lock);
96303081
JB
2069 while ((head = block_group->cluster_list.next) !=
2070 &block_group->cluster_list) {
2071 cluster = list_entry(head, struct btrfs_free_cluster,
2072 block_group_list);
fa9c0d79
CM
2073
2074 WARN_ON(cluster->block_group != block_group);
2075 __btrfs_return_cluster_to_free_space(block_group, cluster);
96303081 2076 if (need_resched()) {
34d52cb6 2077 spin_unlock(&ctl->tree_lock);
96303081 2078 cond_resched();
34d52cb6 2079 spin_lock(&ctl->tree_lock);
96303081 2080 }
fa9c0d79 2081 }
09655373 2082 __btrfs_remove_free_space_cache_locked(ctl);
34d52cb6 2083 spin_unlock(&ctl->tree_lock);
fa9c0d79 2084
0f9dd46c
JB
2085}
2086
6226cb0a
JB
2087u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2088 u64 offset, u64 bytes, u64 empty_size)
0f9dd46c 2089{
34d52cb6 2090 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
6226cb0a 2091 struct btrfs_free_space *entry = NULL;
96303081 2092 u64 bytes_search = bytes + empty_size;
6226cb0a 2093 u64 ret = 0;
0f9dd46c 2094
34d52cb6
LZ
2095 spin_lock(&ctl->tree_lock);
2096 entry = find_free_space(ctl, &offset, &bytes_search);
6226cb0a 2097 if (!entry)
96303081
JB
2098 goto out;
2099
2100 ret = offset;
2101 if (entry->bitmap) {
34d52cb6 2102 bitmap_clear_bits(ctl, entry, offset, bytes);
edf6e2d1 2103 if (!entry->bytes)
34d52cb6 2104 free_bitmap(ctl, entry);
96303081 2105 } else {
34d52cb6 2106 unlink_free_space(ctl, entry);
6226cb0a
JB
2107 entry->offset += bytes;
2108 entry->bytes -= bytes;
6226cb0a 2109 if (!entry->bytes)
dc89e982 2110 kmem_cache_free(btrfs_free_space_cachep, entry);
6226cb0a 2111 else
34d52cb6 2112 link_free_space(ctl, entry);
6226cb0a 2113 }
0f9dd46c 2114
96303081 2115out:
34d52cb6 2116 spin_unlock(&ctl->tree_lock);
817d52f8 2117
0f9dd46c
JB
2118 return ret;
2119}
fa9c0d79
CM
2120
2121/*
2122 * given a cluster, put all of its extents back into the free space
2123 * cache. If a block group is passed, this function will only free
2124 * a cluster that belongs to the passed block group.
2125 *
2126 * Otherwise, it'll get a reference on the block group pointed to by the
2127 * cluster and remove the cluster from it.
2128 */
2129int btrfs_return_cluster_to_free_space(
2130 struct btrfs_block_group_cache *block_group,
2131 struct btrfs_free_cluster *cluster)
2132{
34d52cb6 2133 struct btrfs_free_space_ctl *ctl;
fa9c0d79
CM
2134 int ret;
2135
2136 /* first, get a safe pointer to the block group */
2137 spin_lock(&cluster->lock);
2138 if (!block_group) {
2139 block_group = cluster->block_group;
2140 if (!block_group) {
2141 spin_unlock(&cluster->lock);
2142 return 0;
2143 }
2144 } else if (cluster->block_group != block_group) {
2145 /* someone else has already freed it don't redo their work */
2146 spin_unlock(&cluster->lock);
2147 return 0;
2148 }
2149 atomic_inc(&block_group->count);
2150 spin_unlock(&cluster->lock);
2151
34d52cb6
LZ
2152 ctl = block_group->free_space_ctl;
2153
fa9c0d79 2154 /* now return any extents the cluster had on it */
34d52cb6 2155 spin_lock(&ctl->tree_lock);
fa9c0d79 2156 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
34d52cb6 2157 spin_unlock(&ctl->tree_lock);
fa9c0d79
CM
2158
2159 /* finally drop our ref */
2160 btrfs_put_block_group(block_group);
2161 return ret;
2162}
2163
96303081
JB
2164static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2165 struct btrfs_free_cluster *cluster,
4e69b598 2166 struct btrfs_free_space *entry,
96303081
JB
2167 u64 bytes, u64 min_start)
2168{
34d52cb6 2169 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
96303081
JB
2170 int err;
2171 u64 search_start = cluster->window_start;
2172 u64 search_bytes = bytes;
2173 u64 ret = 0;
2174
96303081
JB
2175 search_start = min_start;
2176 search_bytes = bytes;
2177
34d52cb6 2178 err = search_bitmap(ctl, entry, &search_start, &search_bytes);
96303081 2179 if (err)
4e69b598 2180 return 0;
96303081
JB
2181
2182 ret = search_start;
bb3ac5a4 2183 __bitmap_clear_bits(ctl, entry, ret, bytes);
96303081
JB
2184
2185 return ret;
2186}
2187
fa9c0d79
CM
2188/*
2189 * given a cluster, try to allocate 'bytes' from it, returns 0
2190 * if it couldn't find anything suitably large, or a logical disk offset
2191 * if things worked out
2192 */
2193u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2194 struct btrfs_free_cluster *cluster, u64 bytes,
2195 u64 min_start)
2196{
34d52cb6 2197 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79
CM
2198 struct btrfs_free_space *entry = NULL;
2199 struct rb_node *node;
2200 u64 ret = 0;
2201
2202 spin_lock(&cluster->lock);
2203 if (bytes > cluster->max_size)
2204 goto out;
2205
2206 if (cluster->block_group != block_group)
2207 goto out;
2208
2209 node = rb_first(&cluster->root);
2210 if (!node)
2211 goto out;
2212
2213 entry = rb_entry(node, struct btrfs_free_space, offset_index);
fa9c0d79 2214 while(1) {
4e69b598
JB
2215 if (entry->bytes < bytes ||
2216 (!entry->bitmap && entry->offset < min_start)) {
fa9c0d79
CM
2217 node = rb_next(&entry->offset_index);
2218 if (!node)
2219 break;
2220 entry = rb_entry(node, struct btrfs_free_space,
2221 offset_index);
2222 continue;
2223 }
fa9c0d79 2224
4e69b598
JB
2225 if (entry->bitmap) {
2226 ret = btrfs_alloc_from_bitmap(block_group,
2227 cluster, entry, bytes,
0b4a9d24 2228 cluster->window_start);
4e69b598 2229 if (ret == 0) {
4e69b598
JB
2230 node = rb_next(&entry->offset_index);
2231 if (!node)
2232 break;
2233 entry = rb_entry(node, struct btrfs_free_space,
2234 offset_index);
2235 continue;
2236 }
9b230628 2237 cluster->window_start += bytes;
4e69b598 2238 } else {
4e69b598
JB
2239 ret = entry->offset;
2240
2241 entry->offset += bytes;
2242 entry->bytes -= bytes;
2243 }
fa9c0d79 2244
5e71b5d5 2245 if (entry->bytes == 0)
fa9c0d79 2246 rb_erase(&entry->offset_index, &cluster->root);
fa9c0d79
CM
2247 break;
2248 }
2249out:
2250 spin_unlock(&cluster->lock);
96303081 2251
5e71b5d5
LZ
2252 if (!ret)
2253 return 0;
2254
34d52cb6 2255 spin_lock(&ctl->tree_lock);
5e71b5d5 2256
34d52cb6 2257 ctl->free_space -= bytes;
5e71b5d5 2258 if (entry->bytes == 0) {
34d52cb6 2259 ctl->free_extents--;
4e69b598
JB
2260 if (entry->bitmap) {
2261 kfree(entry->bitmap);
34d52cb6
LZ
2262 ctl->total_bitmaps--;
2263 ctl->op->recalc_thresholds(ctl);
4e69b598 2264 }
dc89e982 2265 kmem_cache_free(btrfs_free_space_cachep, entry);
5e71b5d5
LZ
2266 }
2267
34d52cb6 2268 spin_unlock(&ctl->tree_lock);
5e71b5d5 2269
fa9c0d79
CM
2270 return ret;
2271}
2272
96303081
JB
2273static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2274 struct btrfs_free_space *entry,
2275 struct btrfs_free_cluster *cluster,
1bb91902
AO
2276 u64 offset, u64 bytes,
2277 u64 cont1_bytes, u64 min_bytes)
96303081 2278{
34d52cb6 2279 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
96303081
JB
2280 unsigned long next_zero;
2281 unsigned long i;
1bb91902
AO
2282 unsigned long want_bits;
2283 unsigned long min_bits;
96303081
JB
2284 unsigned long found_bits;
2285 unsigned long start = 0;
2286 unsigned long total_found = 0;
4e69b598 2287 int ret;
96303081 2288
96009762 2289 i = offset_to_bit(entry->offset, ctl->unit,
96303081 2290 max_t(u64, offset, entry->offset));
96009762
WSH
2291 want_bits = bytes_to_bits(bytes, ctl->unit);
2292 min_bits = bytes_to_bits(min_bytes, ctl->unit);
96303081
JB
2293
2294again:
2295 found_bits = 0;
ebb3dad4 2296 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
96303081
JB
2297 next_zero = find_next_zero_bit(entry->bitmap,
2298 BITS_PER_BITMAP, i);
1bb91902 2299 if (next_zero - i >= min_bits) {
96303081
JB
2300 found_bits = next_zero - i;
2301 break;
2302 }
2303 i = next_zero;
2304 }
2305
2306 if (!found_bits)
4e69b598 2307 return -ENOSPC;
96303081 2308
1bb91902 2309 if (!total_found) {
96303081 2310 start = i;
b78d09bc 2311 cluster->max_size = 0;
96303081
JB
2312 }
2313
2314 total_found += found_bits;
2315
96009762
WSH
2316 if (cluster->max_size < found_bits * ctl->unit)
2317 cluster->max_size = found_bits * ctl->unit;
96303081 2318
1bb91902
AO
2319 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2320 i = next_zero + 1;
96303081
JB
2321 goto again;
2322 }
2323
96009762 2324 cluster->window_start = start * ctl->unit + entry->offset;
34d52cb6 2325 rb_erase(&entry->offset_index, &ctl->free_space_offset);
4e69b598
JB
2326 ret = tree_insert_offset(&cluster->root, entry->offset,
2327 &entry->offset_index, 1);
79787eaa 2328 BUG_ON(ret); /* -EEXIST; Logic error */
96303081 2329
3f7de037 2330 trace_btrfs_setup_cluster(block_group, cluster,
96009762 2331 total_found * ctl->unit, 1);
96303081
JB
2332 return 0;
2333}
2334
4e69b598
JB
2335/*
2336 * This searches the block group for just extents to fill the cluster with.
1bb91902
AO
2337 * Try to find a cluster with at least bytes total bytes, at least one
2338 * extent of cont1_bytes, and other clusters of at least min_bytes.
4e69b598 2339 */
3de85bb9
JB
2340static noinline int
2341setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2342 struct btrfs_free_cluster *cluster,
2343 struct list_head *bitmaps, u64 offset, u64 bytes,
1bb91902 2344 u64 cont1_bytes, u64 min_bytes)
4e69b598 2345{
34d52cb6 2346 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4e69b598
JB
2347 struct btrfs_free_space *first = NULL;
2348 struct btrfs_free_space *entry = NULL;
4e69b598
JB
2349 struct btrfs_free_space *last;
2350 struct rb_node *node;
2351 u64 window_start;
2352 u64 window_free;
2353 u64 max_extent;
3f7de037 2354 u64 total_size = 0;
4e69b598 2355
34d52cb6 2356 entry = tree_search_offset(ctl, offset, 0, 1);
4e69b598
JB
2357 if (!entry)
2358 return -ENOSPC;
2359
2360 /*
2361 * We don't want bitmaps, so just move along until we find a normal
2362 * extent entry.
2363 */
1bb91902
AO
2364 while (entry->bitmap || entry->bytes < min_bytes) {
2365 if (entry->bitmap && list_empty(&entry->list))
86d4a77b 2366 list_add_tail(&entry->list, bitmaps);
4e69b598
JB
2367 node = rb_next(&entry->offset_index);
2368 if (!node)
2369 return -ENOSPC;
2370 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2371 }
2372
2373 window_start = entry->offset;
2374 window_free = entry->bytes;
2375 max_extent = entry->bytes;
2376 first = entry;
2377 last = entry;
4e69b598 2378
1bb91902
AO
2379 for (node = rb_next(&entry->offset_index); node;
2380 node = rb_next(&entry->offset_index)) {
4e69b598
JB
2381 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2382
86d4a77b
JB
2383 if (entry->bitmap) {
2384 if (list_empty(&entry->list))
2385 list_add_tail(&entry->list, bitmaps);
4e69b598 2386 continue;
86d4a77b
JB
2387 }
2388
1bb91902
AO
2389 if (entry->bytes < min_bytes)
2390 continue;
2391
2392 last = entry;
2393 window_free += entry->bytes;
2394 if (entry->bytes > max_extent)
4e69b598 2395 max_extent = entry->bytes;
4e69b598
JB
2396 }
2397
1bb91902
AO
2398 if (window_free < bytes || max_extent < cont1_bytes)
2399 return -ENOSPC;
2400
4e69b598
JB
2401 cluster->window_start = first->offset;
2402
2403 node = &first->offset_index;
2404
2405 /*
2406 * now we've found our entries, pull them out of the free space
2407 * cache and put them into the cluster rbtree
2408 */
2409 do {
2410 int ret;
2411
2412 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2413 node = rb_next(&entry->offset_index);
1bb91902 2414 if (entry->bitmap || entry->bytes < min_bytes)
4e69b598
JB
2415 continue;
2416
34d52cb6 2417 rb_erase(&entry->offset_index, &ctl->free_space_offset);
4e69b598
JB
2418 ret = tree_insert_offset(&cluster->root, entry->offset,
2419 &entry->offset_index, 0);
3f7de037 2420 total_size += entry->bytes;
79787eaa 2421 BUG_ON(ret); /* -EEXIST; Logic error */
4e69b598
JB
2422 } while (node && entry != last);
2423
2424 cluster->max_size = max_extent;
3f7de037 2425 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
4e69b598
JB
2426 return 0;
2427}
2428
2429/*
2430 * This specifically looks for bitmaps that may work in the cluster, we assume
2431 * that we have already failed to find extents that will work.
2432 */
3de85bb9
JB
2433static noinline int
2434setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2435 struct btrfs_free_cluster *cluster,
2436 struct list_head *bitmaps, u64 offset, u64 bytes,
1bb91902 2437 u64 cont1_bytes, u64 min_bytes)
4e69b598 2438{
34d52cb6 2439 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4e69b598 2440 struct btrfs_free_space *entry;
4e69b598 2441 int ret = -ENOSPC;
0f0fbf1d 2442 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
4e69b598 2443
34d52cb6 2444 if (ctl->total_bitmaps == 0)
4e69b598
JB
2445 return -ENOSPC;
2446
0f0fbf1d
LZ
2447 /*
2448 * The bitmap that covers offset won't be in the list unless offset
2449 * is just its start offset.
2450 */
2451 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2452 if (entry->offset != bitmap_offset) {
2453 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2454 if (entry && list_empty(&entry->list))
2455 list_add(&entry->list, bitmaps);
2456 }
2457
86d4a77b 2458 list_for_each_entry(entry, bitmaps, list) {
357b9784 2459 if (entry->bytes < bytes)
86d4a77b
JB
2460 continue;
2461 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
1bb91902 2462 bytes, cont1_bytes, min_bytes);
86d4a77b
JB
2463 if (!ret)
2464 return 0;
2465 }
2466
2467 /*
52621cb6
LZ
2468 * The bitmaps list has all the bitmaps that record free space
2469 * starting after offset, so no more search is required.
86d4a77b 2470 */
52621cb6 2471 return -ENOSPC;
4e69b598
JB
2472}
2473
fa9c0d79
CM
2474/*
2475 * here we try to find a cluster of blocks in a block group. The goal
1bb91902 2476 * is to find at least bytes+empty_size.
fa9c0d79
CM
2477 * We might not find them all in one contiguous area.
2478 *
2479 * returns zero and sets up cluster if things worked out, otherwise
2480 * it returns -enospc
2481 */
2482int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
451d7585 2483 struct btrfs_root *root,
fa9c0d79
CM
2484 struct btrfs_block_group_cache *block_group,
2485 struct btrfs_free_cluster *cluster,
2486 u64 offset, u64 bytes, u64 empty_size)
2487{
34d52cb6 2488 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
86d4a77b 2489 struct btrfs_free_space *entry, *tmp;
52621cb6 2490 LIST_HEAD(bitmaps);
fa9c0d79 2491 u64 min_bytes;
1bb91902 2492 u64 cont1_bytes;
fa9c0d79
CM
2493 int ret;
2494
1bb91902
AO
2495 /*
2496 * Choose the minimum extent size we'll require for this
2497 * cluster. For SSD_SPREAD, don't allow any fragmentation.
2498 * For metadata, allow allocates with smaller extents. For
2499 * data, keep it dense.
2500 */
451d7585 2501 if (btrfs_test_opt(root, SSD_SPREAD)) {
1bb91902 2502 cont1_bytes = min_bytes = bytes + empty_size;
451d7585 2503 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
1bb91902
AO
2504 cont1_bytes = bytes;
2505 min_bytes = block_group->sectorsize;
2506 } else {
2507 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
2508 min_bytes = block_group->sectorsize;
2509 }
fa9c0d79 2510
34d52cb6 2511 spin_lock(&ctl->tree_lock);
7d0d2e8e
JB
2512
2513 /*
2514 * If we know we don't have enough space to make a cluster don't even
2515 * bother doing all the work to try and find one.
2516 */
1bb91902 2517 if (ctl->free_space < bytes) {
34d52cb6 2518 spin_unlock(&ctl->tree_lock);
7d0d2e8e
JB
2519 return -ENOSPC;
2520 }
2521
fa9c0d79
CM
2522 spin_lock(&cluster->lock);
2523
2524 /* someone already found a cluster, hooray */
2525 if (cluster->block_group) {
2526 ret = 0;
2527 goto out;
2528 }
fa9c0d79 2529
3f7de037
JB
2530 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
2531 min_bytes);
2532
2533 INIT_LIST_HEAD(&bitmaps);
86d4a77b 2534 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
1bb91902
AO
2535 bytes + empty_size,
2536 cont1_bytes, min_bytes);
4e69b598 2537 if (ret)
86d4a77b 2538 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
1bb91902
AO
2539 offset, bytes + empty_size,
2540 cont1_bytes, min_bytes);
86d4a77b
JB
2541
2542 /* Clear our temporary list */
2543 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2544 list_del_init(&entry->list);
fa9c0d79 2545
4e69b598
JB
2546 if (!ret) {
2547 atomic_inc(&block_group->count);
2548 list_add_tail(&cluster->block_group_list,
2549 &block_group->cluster_list);
2550 cluster->block_group = block_group;
3f7de037
JB
2551 } else {
2552 trace_btrfs_failed_cluster_setup(block_group);
fa9c0d79 2553 }
fa9c0d79
CM
2554out:
2555 spin_unlock(&cluster->lock);
34d52cb6 2556 spin_unlock(&ctl->tree_lock);
fa9c0d79
CM
2557
2558 return ret;
2559}
2560
2561/*
2562 * simple code to zero out a cluster
2563 */
2564void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2565{
2566 spin_lock_init(&cluster->lock);
2567 spin_lock_init(&cluster->refill_lock);
6bef4d31 2568 cluster->root = RB_ROOT;
fa9c0d79
CM
2569 cluster->max_size = 0;
2570 INIT_LIST_HEAD(&cluster->block_group_list);
2571 cluster->block_group = NULL;
2572}
2573
7fe1e641
LZ
2574static int do_trimming(struct btrfs_block_group_cache *block_group,
2575 u64 *total_trimmed, u64 start, u64 bytes,
2576 u64 reserved_start, u64 reserved_bytes)
f7039b1d 2577{
7fe1e641 2578 struct btrfs_space_info *space_info = block_group->space_info;
f7039b1d 2579 struct btrfs_fs_info *fs_info = block_group->fs_info;
7fe1e641
LZ
2580 int ret;
2581 int update = 0;
2582 u64 trimmed = 0;
f7039b1d 2583
7fe1e641
LZ
2584 spin_lock(&space_info->lock);
2585 spin_lock(&block_group->lock);
2586 if (!block_group->ro) {
2587 block_group->reserved += reserved_bytes;
2588 space_info->bytes_reserved += reserved_bytes;
2589 update = 1;
2590 }
2591 spin_unlock(&block_group->lock);
2592 spin_unlock(&space_info->lock);
2593
2594 ret = btrfs_error_discard_extent(fs_info->extent_root,
2595 start, bytes, &trimmed);
2596 if (!ret)
2597 *total_trimmed += trimmed;
2598
2599 btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
2600
2601 if (update) {
2602 spin_lock(&space_info->lock);
2603 spin_lock(&block_group->lock);
2604 if (block_group->ro)
2605 space_info->bytes_readonly += reserved_bytes;
2606 block_group->reserved -= reserved_bytes;
2607 space_info->bytes_reserved -= reserved_bytes;
2608 spin_unlock(&space_info->lock);
2609 spin_unlock(&block_group->lock);
2610 }
2611
2612 return ret;
2613}
2614
2615static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
2616 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2617{
2618 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2619 struct btrfs_free_space *entry;
2620 struct rb_node *node;
2621 int ret = 0;
2622 u64 extent_start;
2623 u64 extent_bytes;
2624 u64 bytes;
f7039b1d
LD
2625
2626 while (start < end) {
34d52cb6 2627 spin_lock(&ctl->tree_lock);
f7039b1d 2628
34d52cb6
LZ
2629 if (ctl->free_space < minlen) {
2630 spin_unlock(&ctl->tree_lock);
f7039b1d
LD
2631 break;
2632 }
2633
34d52cb6 2634 entry = tree_search_offset(ctl, start, 0, 1);
7fe1e641 2635 if (!entry) {
34d52cb6 2636 spin_unlock(&ctl->tree_lock);
f7039b1d
LD
2637 break;
2638 }
2639
7fe1e641
LZ
2640 /* skip bitmaps */
2641 while (entry->bitmap) {
2642 node = rb_next(&entry->offset_index);
2643 if (!node) {
34d52cb6 2644 spin_unlock(&ctl->tree_lock);
7fe1e641 2645 goto out;
f7039b1d 2646 }
7fe1e641
LZ
2647 entry = rb_entry(node, struct btrfs_free_space,
2648 offset_index);
f7039b1d
LD
2649 }
2650
7fe1e641
LZ
2651 if (entry->offset >= end) {
2652 spin_unlock(&ctl->tree_lock);
2653 break;
f7039b1d
LD
2654 }
2655
7fe1e641
LZ
2656 extent_start = entry->offset;
2657 extent_bytes = entry->bytes;
2658 start = max(start, extent_start);
2659 bytes = min(extent_start + extent_bytes, end) - start;
2660 if (bytes < minlen) {
2661 spin_unlock(&ctl->tree_lock);
2662 goto next;
f7039b1d
LD
2663 }
2664
7fe1e641
LZ
2665 unlink_free_space(ctl, entry);
2666 kmem_cache_free(btrfs_free_space_cachep, entry);
2667
34d52cb6 2668 spin_unlock(&ctl->tree_lock);
f7039b1d 2669
7fe1e641
LZ
2670 ret = do_trimming(block_group, total_trimmed, start, bytes,
2671 extent_start, extent_bytes);
2672 if (ret)
2673 break;
2674next:
2675 start += bytes;
f7039b1d 2676
7fe1e641
LZ
2677 if (fatal_signal_pending(current)) {
2678 ret = -ERESTARTSYS;
2679 break;
2680 }
2681
2682 cond_resched();
2683 }
2684out:
2685 return ret;
2686}
2687
2688static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
2689 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2690{
2691 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2692 struct btrfs_free_space *entry;
2693 int ret = 0;
2694 int ret2;
2695 u64 bytes;
2696 u64 offset = offset_to_bitmap(ctl, start);
2697
2698 while (offset < end) {
2699 bool next_bitmap = false;
2700
2701 spin_lock(&ctl->tree_lock);
2702
2703 if (ctl->free_space < minlen) {
2704 spin_unlock(&ctl->tree_lock);
2705 break;
2706 }
2707
2708 entry = tree_search_offset(ctl, offset, 1, 0);
2709 if (!entry) {
2710 spin_unlock(&ctl->tree_lock);
2711 next_bitmap = true;
2712 goto next;
2713 }
2714
2715 bytes = minlen;
2716 ret2 = search_bitmap(ctl, entry, &start, &bytes);
2717 if (ret2 || start >= end) {
2718 spin_unlock(&ctl->tree_lock);
2719 next_bitmap = true;
2720 goto next;
2721 }
2722
2723 bytes = min(bytes, end - start);
2724 if (bytes < minlen) {
2725 spin_unlock(&ctl->tree_lock);
2726 goto next;
2727 }
2728
2729 bitmap_clear_bits(ctl, entry, start, bytes);
2730 if (entry->bytes == 0)
2731 free_bitmap(ctl, entry);
2732
2733 spin_unlock(&ctl->tree_lock);
2734
2735 ret = do_trimming(block_group, total_trimmed, start, bytes,
2736 start, bytes);
2737 if (ret)
2738 break;
2739next:
2740 if (next_bitmap) {
2741 offset += BITS_PER_BITMAP * ctl->unit;
2742 } else {
2743 start += bytes;
2744 if (start >= offset + BITS_PER_BITMAP * ctl->unit)
2745 offset += BITS_PER_BITMAP * ctl->unit;
f7039b1d 2746 }
f7039b1d
LD
2747
2748 if (fatal_signal_pending(current)) {
2749 ret = -ERESTARTSYS;
2750 break;
2751 }
2752
2753 cond_resched();
2754 }
2755
2756 return ret;
2757}
581bb050 2758
7fe1e641
LZ
2759int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2760 u64 *trimmed, u64 start, u64 end, u64 minlen)
2761{
2762 int ret;
2763
2764 *trimmed = 0;
2765
2766 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
2767 if (ret)
2768 return ret;
2769
2770 ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
2771
2772 return ret;
2773}
2774
581bb050
LZ
2775/*
2776 * Find the left-most item in the cache tree, and then return the
2777 * smallest inode number in the item.
2778 *
2779 * Note: the returned inode number may not be the smallest one in
2780 * the tree, if the left-most item is a bitmap.
2781 */
2782u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2783{
2784 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2785 struct btrfs_free_space *entry = NULL;
2786 u64 ino = 0;
2787
2788 spin_lock(&ctl->tree_lock);
2789
2790 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2791 goto out;
2792
2793 entry = rb_entry(rb_first(&ctl->free_space_offset),
2794 struct btrfs_free_space, offset_index);
2795
2796 if (!entry->bitmap) {
2797 ino = entry->offset;
2798
2799 unlink_free_space(ctl, entry);
2800 entry->offset++;
2801 entry->bytes--;
2802 if (!entry->bytes)
2803 kmem_cache_free(btrfs_free_space_cachep, entry);
2804 else
2805 link_free_space(ctl, entry);
2806 } else {
2807 u64 offset = 0;
2808 u64 count = 1;
2809 int ret;
2810
2811 ret = search_bitmap(ctl, entry, &offset, &count);
79787eaa 2812 /* Logic error; Should be empty if it can't find anything */
581bb050
LZ
2813 BUG_ON(ret);
2814
2815 ino = offset;
2816 bitmap_clear_bits(ctl, entry, offset, 1);
2817 if (entry->bytes == 0)
2818 free_bitmap(ctl, entry);
2819 }
2820out:
2821 spin_unlock(&ctl->tree_lock);
2822
2823 return ino;
2824}
82d5902d
LZ
2825
2826struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2827 struct btrfs_path *path)
2828{
2829 struct inode *inode = NULL;
2830
2831 spin_lock(&root->cache_lock);
2832 if (root->cache_inode)
2833 inode = igrab(root->cache_inode);
2834 spin_unlock(&root->cache_lock);
2835 if (inode)
2836 return inode;
2837
2838 inode = __lookup_free_space_inode(root, path, 0);
2839 if (IS_ERR(inode))
2840 return inode;
2841
2842 spin_lock(&root->cache_lock);
7841cb28 2843 if (!btrfs_fs_closing(root->fs_info))
82d5902d
LZ
2844 root->cache_inode = igrab(inode);
2845 spin_unlock(&root->cache_lock);
2846
2847 return inode;
2848}
2849
2850int create_free_ino_inode(struct btrfs_root *root,
2851 struct btrfs_trans_handle *trans,
2852 struct btrfs_path *path)
2853{
2854 return __create_free_space_inode(root, trans, path,
2855 BTRFS_FREE_INO_OBJECTID, 0);
2856}
2857
2858int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2859{
2860 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2861 struct btrfs_path *path;
2862 struct inode *inode;
2863 int ret = 0;
2864 u64 root_gen = btrfs_root_generation(&root->root_item);
2865
4b9465cb
CM
2866 if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2867 return 0;
2868
82d5902d
LZ
2869 /*
2870 * If we're unmounting then just return, since this does a search on the
2871 * normal root and not the commit root and we could deadlock.
2872 */
7841cb28 2873 if (btrfs_fs_closing(fs_info))
82d5902d
LZ
2874 return 0;
2875
2876 path = btrfs_alloc_path();
2877 if (!path)
2878 return 0;
2879
2880 inode = lookup_free_ino_inode(root, path);
2881 if (IS_ERR(inode))
2882 goto out;
2883
2884 if (root_gen != BTRFS_I(inode)->generation)
2885 goto out_put;
2886
2887 ret = __load_free_space_cache(root, inode, ctl, path, 0);
2888
2889 if (ret < 0)
2890 printk(KERN_ERR "btrfs: failed to load free ino cache for "
2891 "root %llu\n", root->root_key.objectid);
2892out_put:
2893 iput(inode);
2894out:
2895 btrfs_free_path(path);
2896 return ret;
2897}
2898
2899int btrfs_write_out_ino_cache(struct btrfs_root *root,
2900 struct btrfs_trans_handle *trans,
2901 struct btrfs_path *path)
2902{
2903 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2904 struct inode *inode;
2905 int ret;
2906
4b9465cb
CM
2907 if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2908 return 0;
2909
82d5902d
LZ
2910 inode = lookup_free_ino_inode(root, path);
2911 if (IS_ERR(inode))
2912 return 0;
2913
2914 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
c09544e0
JB
2915 if (ret) {
2916 btrfs_delalloc_release_metadata(inode, inode->i_size);
2917#ifdef DEBUG
82d5902d
LZ
2918 printk(KERN_ERR "btrfs: failed to write free ino cache "
2919 "for root %llu\n", root->root_key.objectid);
c09544e0
JB
2920#endif
2921 }
82d5902d
LZ
2922
2923 iput(inode);
2924 return ret;
2925}