]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/btrfs/free-space-cache.c
Btrfs: do not do balance in readonly mode
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / free-space-cache.c
CommitLineData
0f9dd46c
JB
1/*
2 * Copyright (C) 2008 Red Hat. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
96303081 19#include <linux/pagemap.h>
0f9dd46c 20#include <linux/sched.h>
5a0e3ad6 21#include <linux/slab.h>
96303081 22#include <linux/math64.h>
6ab60601 23#include <linux/ratelimit.h>
0f9dd46c 24#include "ctree.h"
fa9c0d79
CM
25#include "free-space-cache.h"
26#include "transaction.h"
0af3d00b 27#include "disk-io.h"
43be2146 28#include "extent_io.h"
581bb050 29#include "inode-map.h"
fa9c0d79 30
96303081
JB
31#define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
32#define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
0f9dd46c 33
34d52cb6 34static int link_free_space(struct btrfs_free_space_ctl *ctl,
0cb59c99
JB
35 struct btrfs_free_space *info);
36
0414efae
LZ
37static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
38 struct btrfs_path *path,
39 u64 offset)
0af3d00b
JB
40{
41 struct btrfs_key key;
42 struct btrfs_key location;
43 struct btrfs_disk_key disk_key;
44 struct btrfs_free_space_header *header;
45 struct extent_buffer *leaf;
46 struct inode *inode = NULL;
47 int ret;
48
0af3d00b 49 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 50 key.offset = offset;
0af3d00b
JB
51 key.type = 0;
52
53 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
54 if (ret < 0)
55 return ERR_PTR(ret);
56 if (ret > 0) {
b3b4aa74 57 btrfs_release_path(path);
0af3d00b
JB
58 return ERR_PTR(-ENOENT);
59 }
60
61 leaf = path->nodes[0];
62 header = btrfs_item_ptr(leaf, path->slots[0],
63 struct btrfs_free_space_header);
64 btrfs_free_space_key(leaf, header, &disk_key);
65 btrfs_disk_key_to_cpu(&location, &disk_key);
b3b4aa74 66 btrfs_release_path(path);
0af3d00b
JB
67
68 inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
69 if (!inode)
70 return ERR_PTR(-ENOENT);
71 if (IS_ERR(inode))
72 return inode;
73 if (is_bad_inode(inode)) {
74 iput(inode);
75 return ERR_PTR(-ENOENT);
76 }
77
adae52b9
MX
78 inode->i_mapping->flags &= ~__GFP_FS;
79
0414efae
LZ
80 return inode;
81}
82
83struct inode *lookup_free_space_inode(struct btrfs_root *root,
84 struct btrfs_block_group_cache
85 *block_group, struct btrfs_path *path)
86{
87 struct inode *inode = NULL;
5b0e95bf 88 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
0414efae
LZ
89
90 spin_lock(&block_group->lock);
91 if (block_group->inode)
92 inode = igrab(block_group->inode);
93 spin_unlock(&block_group->lock);
94 if (inode)
95 return inode;
96
97 inode = __lookup_free_space_inode(root, path,
98 block_group->key.objectid);
99 if (IS_ERR(inode))
100 return inode;
101
0af3d00b 102 spin_lock(&block_group->lock);
5b0e95bf 103 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
2f356126 104 printk(KERN_INFO "Old style space inode found, converting.\n");
5b0e95bf
JB
105 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
106 BTRFS_INODE_NODATACOW;
2f356126
JB
107 block_group->disk_cache_state = BTRFS_DC_CLEAR;
108 }
109
300e4f8a 110 if (!block_group->iref) {
0af3d00b
JB
111 block_group->inode = igrab(inode);
112 block_group->iref = 1;
113 }
114 spin_unlock(&block_group->lock);
115
116 return inode;
117}
118
0414efae
LZ
119int __create_free_space_inode(struct btrfs_root *root,
120 struct btrfs_trans_handle *trans,
121 struct btrfs_path *path, u64 ino, u64 offset)
0af3d00b
JB
122{
123 struct btrfs_key key;
124 struct btrfs_disk_key disk_key;
125 struct btrfs_free_space_header *header;
126 struct btrfs_inode_item *inode_item;
127 struct extent_buffer *leaf;
5b0e95bf 128 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
0af3d00b
JB
129 int ret;
130
0414efae 131 ret = btrfs_insert_empty_inode(trans, root, path, ino);
0af3d00b
JB
132 if (ret)
133 return ret;
134
5b0e95bf
JB
135 /* We inline crc's for the free disk space cache */
136 if (ino != BTRFS_FREE_INO_OBJECTID)
137 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
138
0af3d00b
JB
139 leaf = path->nodes[0];
140 inode_item = btrfs_item_ptr(leaf, path->slots[0],
141 struct btrfs_inode_item);
142 btrfs_item_key(leaf, &disk_key, path->slots[0]);
143 memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
144 sizeof(*inode_item));
145 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
146 btrfs_set_inode_size(leaf, inode_item, 0);
147 btrfs_set_inode_nbytes(leaf, inode_item, 0);
148 btrfs_set_inode_uid(leaf, inode_item, 0);
149 btrfs_set_inode_gid(leaf, inode_item, 0);
150 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
5b0e95bf 151 btrfs_set_inode_flags(leaf, inode_item, flags);
0af3d00b
JB
152 btrfs_set_inode_nlink(leaf, inode_item, 1);
153 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
0414efae 154 btrfs_set_inode_block_group(leaf, inode_item, offset);
0af3d00b 155 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 156 btrfs_release_path(path);
0af3d00b
JB
157
158 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 159 key.offset = offset;
0af3d00b
JB
160 key.type = 0;
161
162 ret = btrfs_insert_empty_item(trans, root, path, &key,
163 sizeof(struct btrfs_free_space_header));
164 if (ret < 0) {
b3b4aa74 165 btrfs_release_path(path);
0af3d00b
JB
166 return ret;
167 }
168 leaf = path->nodes[0];
169 header = btrfs_item_ptr(leaf, path->slots[0],
170 struct btrfs_free_space_header);
171 memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
172 btrfs_set_free_space_key(leaf, header, &disk_key);
173 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 174 btrfs_release_path(path);
0af3d00b
JB
175
176 return 0;
177}
178
0414efae
LZ
179int create_free_space_inode(struct btrfs_root *root,
180 struct btrfs_trans_handle *trans,
181 struct btrfs_block_group_cache *block_group,
182 struct btrfs_path *path)
183{
184 int ret;
185 u64 ino;
186
187 ret = btrfs_find_free_objectid(root, &ino);
188 if (ret < 0)
189 return ret;
190
191 return __create_free_space_inode(root, trans, path, ino,
192 block_group->key.objectid);
193}
194
0af3d00b
JB
195int btrfs_truncate_free_space_cache(struct btrfs_root *root,
196 struct btrfs_trans_handle *trans,
197 struct btrfs_path *path,
198 struct inode *inode)
199{
65450aa6 200 struct btrfs_block_rsv *rsv;
c8174313 201 u64 needed_bytes;
0af3d00b
JB
202 loff_t oldsize;
203 int ret = 0;
204
65450aa6 205 rsv = trans->block_rsv;
c8174313
JB
206 trans->block_rsv = &root->fs_info->global_block_rsv;
207
208 /* 1 for slack space, 1 for updating the inode */
209 needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
210 btrfs_calc_trans_metadata_size(root, 1);
211
212 spin_lock(&trans->block_rsv->lock);
213 if (trans->block_rsv->reserved < needed_bytes) {
214 spin_unlock(&trans->block_rsv->lock);
215 trans->block_rsv = rsv;
216 return -ENOSPC;
217 }
218 spin_unlock(&trans->block_rsv->lock);
0af3d00b
JB
219
220 oldsize = i_size_read(inode);
221 btrfs_i_size_write(inode, 0);
222 truncate_pagecache(inode, oldsize, 0);
223
224 /*
225 * We don't need an orphan item because truncating the free space cache
226 * will never be split across transactions.
227 */
228 ret = btrfs_truncate_inode_items(trans, root, inode,
229 0, BTRFS_EXTENT_DATA_KEY);
65450aa6 230
0af3d00b 231 if (ret) {
c8174313 232 trans->block_rsv = rsv;
79787eaa 233 btrfs_abort_transaction(trans, root, ret);
0af3d00b
JB
234 return ret;
235 }
236
82d5902d 237 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
238 if (ret)
239 btrfs_abort_transaction(trans, root, ret);
c8174313
JB
240 trans->block_rsv = rsv;
241
82d5902d 242 return ret;
0af3d00b
JB
243}
244
9d66e233
JB
245static int readahead_cache(struct inode *inode)
246{
247 struct file_ra_state *ra;
248 unsigned long last_index;
249
250 ra = kzalloc(sizeof(*ra), GFP_NOFS);
251 if (!ra)
252 return -ENOMEM;
253
254 file_ra_state_init(ra, inode->i_mapping);
255 last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
256
257 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
258
259 kfree(ra);
260
261 return 0;
262}
263
a67509c3
JB
264struct io_ctl {
265 void *cur, *orig;
266 struct page *page;
267 struct page **pages;
268 struct btrfs_root *root;
269 unsigned long size;
270 int index;
271 int num_pages;
5b0e95bf 272 unsigned check_crcs:1;
a67509c3
JB
273};
274
275static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
276 struct btrfs_root *root)
277{
278 memset(io_ctl, 0, sizeof(struct io_ctl));
279 io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
280 PAGE_CACHE_SHIFT;
281 io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages,
282 GFP_NOFS);
283 if (!io_ctl->pages)
284 return -ENOMEM;
285 io_ctl->root = root;
5b0e95bf
JB
286 if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
287 io_ctl->check_crcs = 1;
a67509c3
JB
288 return 0;
289}
290
291static void io_ctl_free(struct io_ctl *io_ctl)
292{
293 kfree(io_ctl->pages);
294}
295
296static void io_ctl_unmap_page(struct io_ctl *io_ctl)
297{
298 if (io_ctl->cur) {
299 kunmap(io_ctl->page);
300 io_ctl->cur = NULL;
301 io_ctl->orig = NULL;
302 }
303}
304
305static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
306{
307 WARN_ON(io_ctl->cur);
308 BUG_ON(io_ctl->index >= io_ctl->num_pages);
309 io_ctl->page = io_ctl->pages[io_ctl->index++];
310 io_ctl->cur = kmap(io_ctl->page);
311 io_ctl->orig = io_ctl->cur;
312 io_ctl->size = PAGE_CACHE_SIZE;
313 if (clear)
314 memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
315}
316
317static void io_ctl_drop_pages(struct io_ctl *io_ctl)
318{
319 int i;
320
321 io_ctl_unmap_page(io_ctl);
322
323 for (i = 0; i < io_ctl->num_pages; i++) {
a1ee5a45
LZ
324 if (io_ctl->pages[i]) {
325 ClearPageChecked(io_ctl->pages[i]);
326 unlock_page(io_ctl->pages[i]);
327 page_cache_release(io_ctl->pages[i]);
328 }
a67509c3
JB
329 }
330}
331
332static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
333 int uptodate)
334{
335 struct page *page;
336 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
337 int i;
338
339 for (i = 0; i < io_ctl->num_pages; i++) {
340 page = find_or_create_page(inode->i_mapping, i, mask);
341 if (!page) {
342 io_ctl_drop_pages(io_ctl);
343 return -ENOMEM;
344 }
345 io_ctl->pages[i] = page;
346 if (uptodate && !PageUptodate(page)) {
347 btrfs_readpage(NULL, page);
348 lock_page(page);
349 if (!PageUptodate(page)) {
350 printk(KERN_ERR "btrfs: error reading free "
351 "space cache\n");
352 io_ctl_drop_pages(io_ctl);
353 return -EIO;
354 }
355 }
356 }
357
f7d61dcd
JB
358 for (i = 0; i < io_ctl->num_pages; i++) {
359 clear_page_dirty_for_io(io_ctl->pages[i]);
360 set_page_extent_mapped(io_ctl->pages[i]);
361 }
362
a67509c3
JB
363 return 0;
364}
365
366static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
367{
368 u64 *val;
369
370 io_ctl_map_page(io_ctl, 1);
371
372 /*
5b0e95bf
JB
373 * Skip the csum areas. If we don't check crcs then we just have a
374 * 64bit chunk at the front of the first page.
a67509c3 375 */
5b0e95bf
JB
376 if (io_ctl->check_crcs) {
377 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
378 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
379 } else {
380 io_ctl->cur += sizeof(u64);
381 io_ctl->size -= sizeof(u64) * 2;
382 }
a67509c3
JB
383
384 val = io_ctl->cur;
385 *val = cpu_to_le64(generation);
386 io_ctl->cur += sizeof(u64);
a67509c3
JB
387}
388
389static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
390{
391 u64 *gen;
392
5b0e95bf
JB
393 /*
394 * Skip the crc area. If we don't check crcs then we just have a 64bit
395 * chunk at the front of the first page.
396 */
397 if (io_ctl->check_crcs) {
398 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
399 io_ctl->size -= sizeof(u64) +
400 (sizeof(u32) * io_ctl->num_pages);
401 } else {
402 io_ctl->cur += sizeof(u64);
403 io_ctl->size -= sizeof(u64) * 2;
404 }
a67509c3 405
a67509c3
JB
406 gen = io_ctl->cur;
407 if (le64_to_cpu(*gen) != generation) {
408 printk_ratelimited(KERN_ERR "btrfs: space cache generation "
409 "(%Lu) does not match inode (%Lu)\n", *gen,
410 generation);
411 io_ctl_unmap_page(io_ctl);
412 return -EIO;
413 }
414 io_ctl->cur += sizeof(u64);
5b0e95bf
JB
415 return 0;
416}
417
418static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
419{
420 u32 *tmp;
421 u32 crc = ~(u32)0;
422 unsigned offset = 0;
423
424 if (!io_ctl->check_crcs) {
425 io_ctl_unmap_page(io_ctl);
426 return;
427 }
428
429 if (index == 0)
cb54f257 430 offset = sizeof(u32) * io_ctl->num_pages;
5b0e95bf
JB
431
432 crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
433 PAGE_CACHE_SIZE - offset);
434 btrfs_csum_final(crc, (char *)&crc);
435 io_ctl_unmap_page(io_ctl);
436 tmp = kmap(io_ctl->pages[0]);
437 tmp += index;
438 *tmp = crc;
439 kunmap(io_ctl->pages[0]);
440}
441
442static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
443{
444 u32 *tmp, val;
445 u32 crc = ~(u32)0;
446 unsigned offset = 0;
447
448 if (!io_ctl->check_crcs) {
449 io_ctl_map_page(io_ctl, 0);
450 return 0;
451 }
452
453 if (index == 0)
454 offset = sizeof(u32) * io_ctl->num_pages;
455
456 tmp = kmap(io_ctl->pages[0]);
457 tmp += index;
458 val = *tmp;
459 kunmap(io_ctl->pages[0]);
460
461 io_ctl_map_page(io_ctl, 0);
462 crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
463 PAGE_CACHE_SIZE - offset);
464 btrfs_csum_final(crc, (char *)&crc);
465 if (val != crc) {
466 printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free "
467 "space cache\n");
468 io_ctl_unmap_page(io_ctl);
469 return -EIO;
470 }
471
a67509c3
JB
472 return 0;
473}
474
475static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
476 void *bitmap)
477{
478 struct btrfs_free_space_entry *entry;
479
480 if (!io_ctl->cur)
481 return -ENOSPC;
482
483 entry = io_ctl->cur;
484 entry->offset = cpu_to_le64(offset);
485 entry->bytes = cpu_to_le64(bytes);
486 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
487 BTRFS_FREE_SPACE_EXTENT;
488 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
489 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
490
491 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
492 return 0;
493
5b0e95bf 494 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
495
496 /* No more pages to map */
497 if (io_ctl->index >= io_ctl->num_pages)
498 return 0;
499
500 /* map the next page */
501 io_ctl_map_page(io_ctl, 1);
502 return 0;
503}
504
505static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
506{
507 if (!io_ctl->cur)
508 return -ENOSPC;
509
510 /*
511 * If we aren't at the start of the current page, unmap this one and
512 * map the next one if there is any left.
513 */
514 if (io_ctl->cur != io_ctl->orig) {
5b0e95bf 515 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
516 if (io_ctl->index >= io_ctl->num_pages)
517 return -ENOSPC;
518 io_ctl_map_page(io_ctl, 0);
519 }
520
521 memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
5b0e95bf 522 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
523 if (io_ctl->index < io_ctl->num_pages)
524 io_ctl_map_page(io_ctl, 0);
525 return 0;
526}
527
528static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
529{
5b0e95bf
JB
530 /*
531 * If we're not on the boundary we know we've modified the page and we
532 * need to crc the page.
533 */
534 if (io_ctl->cur != io_ctl->orig)
535 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
536 else
537 io_ctl_unmap_page(io_ctl);
a67509c3
JB
538
539 while (io_ctl->index < io_ctl->num_pages) {
540 io_ctl_map_page(io_ctl, 1);
5b0e95bf 541 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
542 }
543}
544
5b0e95bf
JB
545static int io_ctl_read_entry(struct io_ctl *io_ctl,
546 struct btrfs_free_space *entry, u8 *type)
a67509c3
JB
547{
548 struct btrfs_free_space_entry *e;
2f120c05
JB
549 int ret;
550
551 if (!io_ctl->cur) {
552 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
553 if (ret)
554 return ret;
555 }
a67509c3
JB
556
557 e = io_ctl->cur;
558 entry->offset = le64_to_cpu(e->offset);
559 entry->bytes = le64_to_cpu(e->bytes);
5b0e95bf 560 *type = e->type;
a67509c3
JB
561 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
562 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
563
564 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
5b0e95bf 565 return 0;
a67509c3
JB
566
567 io_ctl_unmap_page(io_ctl);
568
2f120c05 569 return 0;
a67509c3
JB
570}
571
5b0e95bf
JB
572static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
573 struct btrfs_free_space *entry)
a67509c3 574{
5b0e95bf
JB
575 int ret;
576
5b0e95bf
JB
577 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
578 if (ret)
579 return ret;
580
a67509c3
JB
581 memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
582 io_ctl_unmap_page(io_ctl);
5b0e95bf
JB
583
584 return 0;
a67509c3
JB
585}
586
0414efae
LZ
587int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
588 struct btrfs_free_space_ctl *ctl,
589 struct btrfs_path *path, u64 offset)
9d66e233 590{
9d66e233
JB
591 struct btrfs_free_space_header *header;
592 struct extent_buffer *leaf;
a67509c3 593 struct io_ctl io_ctl;
9d66e233 594 struct btrfs_key key;
a67509c3 595 struct btrfs_free_space *e, *n;
9d66e233
JB
596 struct list_head bitmaps;
597 u64 num_entries;
598 u64 num_bitmaps;
599 u64 generation;
a67509c3 600 u8 type;
f6a39829 601 int ret = 0;
9d66e233
JB
602
603 INIT_LIST_HEAD(&bitmaps);
604
9d66e233 605 /* Nothing in the space cache, goodbye */
0414efae 606 if (!i_size_read(inode))
a67509c3 607 return 0;
9d66e233
JB
608
609 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 610 key.offset = offset;
9d66e233
JB
611 key.type = 0;
612
613 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0414efae 614 if (ret < 0)
a67509c3 615 return 0;
0414efae 616 else if (ret > 0) {
945d8962 617 btrfs_release_path(path);
a67509c3 618 return 0;
9d66e233
JB
619 }
620
0414efae
LZ
621 ret = -1;
622
9d66e233
JB
623 leaf = path->nodes[0];
624 header = btrfs_item_ptr(leaf, path->slots[0],
625 struct btrfs_free_space_header);
626 num_entries = btrfs_free_space_entries(leaf, header);
627 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
628 generation = btrfs_free_space_generation(leaf, header);
945d8962 629 btrfs_release_path(path);
9d66e233
JB
630
631 if (BTRFS_I(inode)->generation != generation) {
632 printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
0414efae 633 " not match free space cache generation (%llu)\n",
9d66e233 634 (unsigned long long)BTRFS_I(inode)->generation,
0414efae 635 (unsigned long long)generation);
a67509c3 636 return 0;
9d66e233
JB
637 }
638
639 if (!num_entries)
a67509c3 640 return 0;
9d66e233 641
706efc66
LZ
642 ret = io_ctl_init(&io_ctl, inode, root);
643 if (ret)
644 return ret;
645
9d66e233 646 ret = readahead_cache(inode);
0414efae 647 if (ret)
9d66e233 648 goto out;
9d66e233 649
a67509c3
JB
650 ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
651 if (ret)
652 goto out;
9d66e233 653
5b0e95bf
JB
654 ret = io_ctl_check_crc(&io_ctl, 0);
655 if (ret)
656 goto free_cache;
657
a67509c3
JB
658 ret = io_ctl_check_generation(&io_ctl, generation);
659 if (ret)
660 goto free_cache;
9d66e233 661
a67509c3
JB
662 while (num_entries) {
663 e = kmem_cache_zalloc(btrfs_free_space_cachep,
664 GFP_NOFS);
665 if (!e)
9d66e233 666 goto free_cache;
9d66e233 667
5b0e95bf
JB
668 ret = io_ctl_read_entry(&io_ctl, e, &type);
669 if (ret) {
670 kmem_cache_free(btrfs_free_space_cachep, e);
671 goto free_cache;
672 }
673
a67509c3
JB
674 if (!e->bytes) {
675 kmem_cache_free(btrfs_free_space_cachep, e);
676 goto free_cache;
9d66e233 677 }
a67509c3
JB
678
679 if (type == BTRFS_FREE_SPACE_EXTENT) {
680 spin_lock(&ctl->tree_lock);
681 ret = link_free_space(ctl, e);
682 spin_unlock(&ctl->tree_lock);
683 if (ret) {
684 printk(KERN_ERR "Duplicate entries in "
685 "free space cache, dumping\n");
686 kmem_cache_free(btrfs_free_space_cachep, e);
9d66e233
JB
687 goto free_cache;
688 }
a67509c3
JB
689 } else {
690 BUG_ON(!num_bitmaps);
691 num_bitmaps--;
692 e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
693 if (!e->bitmap) {
694 kmem_cache_free(
695 btrfs_free_space_cachep, e);
9d66e233
JB
696 goto free_cache;
697 }
a67509c3
JB
698 spin_lock(&ctl->tree_lock);
699 ret = link_free_space(ctl, e);
700 ctl->total_bitmaps++;
701 ctl->op->recalc_thresholds(ctl);
702 spin_unlock(&ctl->tree_lock);
703 if (ret) {
704 printk(KERN_ERR "Duplicate entries in "
705 "free space cache, dumping\n");
dc89e982 706 kmem_cache_free(btrfs_free_space_cachep, e);
9d66e233
JB
707 goto free_cache;
708 }
a67509c3 709 list_add_tail(&e->list, &bitmaps);
9d66e233
JB
710 }
711
a67509c3
JB
712 num_entries--;
713 }
9d66e233 714
2f120c05
JB
715 io_ctl_unmap_page(&io_ctl);
716
a67509c3
JB
717 /*
718 * We add the bitmaps at the end of the entries in order that
719 * the bitmap entries are added to the cache.
720 */
721 list_for_each_entry_safe(e, n, &bitmaps, list) {
9d66e233 722 list_del_init(&e->list);
5b0e95bf
JB
723 ret = io_ctl_read_bitmap(&io_ctl, e);
724 if (ret)
725 goto free_cache;
9d66e233
JB
726 }
727
a67509c3 728 io_ctl_drop_pages(&io_ctl);
9d66e233
JB
729 ret = 1;
730out:
a67509c3 731 io_ctl_free(&io_ctl);
9d66e233 732 return ret;
9d66e233 733free_cache:
a67509c3 734 io_ctl_drop_pages(&io_ctl);
0414efae 735 __btrfs_remove_free_space_cache(ctl);
9d66e233
JB
736 goto out;
737}
738
0414efae
LZ
739int load_free_space_cache(struct btrfs_fs_info *fs_info,
740 struct btrfs_block_group_cache *block_group)
0cb59c99 741{
34d52cb6 742 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0414efae
LZ
743 struct btrfs_root *root = fs_info->tree_root;
744 struct inode *inode;
745 struct btrfs_path *path;
5b0e95bf 746 int ret = 0;
0414efae
LZ
747 bool matched;
748 u64 used = btrfs_block_group_used(&block_group->item);
749
0414efae
LZ
750 /*
751 * If this block group has been marked to be cleared for one reason or
752 * another then we can't trust the on disk cache, so just return.
753 */
9d66e233 754 spin_lock(&block_group->lock);
0414efae
LZ
755 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
756 spin_unlock(&block_group->lock);
757 return 0;
758 }
9d66e233 759 spin_unlock(&block_group->lock);
0414efae
LZ
760
761 path = btrfs_alloc_path();
762 if (!path)
763 return 0;
d53ba474
JB
764 path->search_commit_root = 1;
765 path->skip_locking = 1;
0414efae
LZ
766
767 inode = lookup_free_space_inode(root, block_group, path);
768 if (IS_ERR(inode)) {
769 btrfs_free_path(path);
770 return 0;
771 }
772
5b0e95bf
JB
773 /* We may have converted the inode and made the cache invalid. */
774 spin_lock(&block_group->lock);
775 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
776 spin_unlock(&block_group->lock);
a7e221e9 777 btrfs_free_path(path);
5b0e95bf
JB
778 goto out;
779 }
780 spin_unlock(&block_group->lock);
781
0414efae
LZ
782 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
783 path, block_group->key.objectid);
784 btrfs_free_path(path);
785 if (ret <= 0)
786 goto out;
787
788 spin_lock(&ctl->tree_lock);
789 matched = (ctl->free_space == (block_group->key.offset - used -
790 block_group->bytes_super));
791 spin_unlock(&ctl->tree_lock);
792
793 if (!matched) {
794 __btrfs_remove_free_space_cache(ctl);
795 printk(KERN_ERR "block group %llu has an wrong amount of free "
796 "space\n", block_group->key.objectid);
797 ret = -1;
798 }
799out:
800 if (ret < 0) {
801 /* This cache is bogus, make sure it gets cleared */
802 spin_lock(&block_group->lock);
803 block_group->disk_cache_state = BTRFS_DC_CLEAR;
804 spin_unlock(&block_group->lock);
82d5902d 805 ret = 0;
0414efae
LZ
806
807 printk(KERN_ERR "btrfs: failed to load free space cache "
808 "for block group %llu\n", block_group->key.objectid);
809 }
810
811 iput(inode);
812 return ret;
9d66e233
JB
813}
814
c09544e0
JB
815/**
816 * __btrfs_write_out_cache - write out cached info to an inode
817 * @root - the root the inode belongs to
818 * @ctl - the free space cache we are going to write out
819 * @block_group - the block_group for this cache if it belongs to a block_group
820 * @trans - the trans handle
821 * @path - the path to use
822 * @offset - the offset for the key we'll insert
823 *
824 * This function writes out a free space cache struct to disk for quick recovery
825 * on mount. This will return 0 if it was successfull in writing the cache out,
826 * and -1 if it was not.
827 */
0414efae
LZ
828int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
829 struct btrfs_free_space_ctl *ctl,
830 struct btrfs_block_group_cache *block_group,
831 struct btrfs_trans_handle *trans,
832 struct btrfs_path *path, u64 offset)
0cb59c99
JB
833{
834 struct btrfs_free_space_header *header;
835 struct extent_buffer *leaf;
0cb59c99
JB
836 struct rb_node *node;
837 struct list_head *pos, *n;
0cb59c99 838 struct extent_state *cached_state = NULL;
43be2146
JB
839 struct btrfs_free_cluster *cluster = NULL;
840 struct extent_io_tree *unpin = NULL;
a67509c3 841 struct io_ctl io_ctl;
0cb59c99
JB
842 struct list_head bitmap_list;
843 struct btrfs_key key;
db804f23 844 u64 start, extent_start, extent_end, len;
0cb59c99
JB
845 int entries = 0;
846 int bitmaps = 0;
c09544e0
JB
847 int ret;
848 int err = -1;
0cb59c99 849
0cb59c99
JB
850 INIT_LIST_HEAD(&bitmap_list);
851
0414efae
LZ
852 if (!i_size_read(inode))
853 return -1;
2b20982e 854
706efc66
LZ
855 ret = io_ctl_init(&io_ctl, inode, root);
856 if (ret)
857 return -1;
be1a12a0 858
43be2146 859 /* Get the cluster for this block_group if it exists */
0414efae 860 if (block_group && !list_empty(&block_group->cluster_list))
43be2146
JB
861 cluster = list_entry(block_group->cluster_list.next,
862 struct btrfs_free_cluster,
863 block_group_list);
864
a67509c3
JB
865 /* Lock all pages first so we can lock the extent safely. */
866 io_ctl_prepare_pages(&io_ctl, inode, 0);
0cb59c99 867
0cb59c99 868 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
d0082371 869 0, &cached_state);
0cb59c99 870
f75b130e
JB
871 node = rb_first(&ctl->free_space_offset);
872 if (!node && cluster) {
873 node = rb_first(&cluster->root);
874 cluster = NULL;
875 }
876
5b0e95bf
JB
877 /* Make sure we can fit our crcs into the first page */
878 if (io_ctl.check_crcs &&
879 (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) {
880 WARN_ON(1);
881 goto out_nospc;
882 }
883
a67509c3 884 io_ctl_set_generation(&io_ctl, trans->transid);
43be2146 885
a67509c3
JB
886 /* Write out the extent entries */
887 while (node) {
888 struct btrfs_free_space *e;
0cb59c99 889
a67509c3
JB
890 e = rb_entry(node, struct btrfs_free_space, offset_index);
891 entries++;
0cb59c99 892
a67509c3
JB
893 ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes,
894 e->bitmap);
895 if (ret)
896 goto out_nospc;
2f356126 897
a67509c3
JB
898 if (e->bitmap) {
899 list_add_tail(&e->list, &bitmap_list);
900 bitmaps++;
2f356126 901 }
a67509c3
JB
902 node = rb_next(node);
903 if (!node && cluster) {
904 node = rb_first(&cluster->root);
905 cluster = NULL;
43be2146 906 }
a67509c3 907 }
43be2146 908
a67509c3
JB
909 /*
910 * We want to add any pinned extents to our free space cache
911 * so we don't leak the space
912 */
db804f23
LZ
913
914 /*
915 * We shouldn't have switched the pinned extents yet so this is the
916 * right one
917 */
918 unpin = root->fs_info->pinned_extents;
919
920 if (block_group)
921 start = block_group->key.objectid;
922
a67509c3
JB
923 while (block_group && (start < block_group->key.objectid +
924 block_group->key.offset)) {
db804f23
LZ
925 ret = find_first_extent_bit(unpin, start,
926 &extent_start, &extent_end,
a67509c3
JB
927 EXTENT_DIRTY);
928 if (ret) {
929 ret = 0;
930 break;
0cb59c99 931 }
0cb59c99 932
a67509c3 933 /* This pinned extent is out of our range */
db804f23 934 if (extent_start >= block_group->key.objectid +
a67509c3
JB
935 block_group->key.offset)
936 break;
2f356126 937
db804f23
LZ
938 extent_start = max(extent_start, start);
939 extent_end = min(block_group->key.objectid +
940 block_group->key.offset, extent_end + 1);
941 len = extent_end - extent_start;
0cb59c99 942
a67509c3 943 entries++;
db804f23 944 ret = io_ctl_add_entry(&io_ctl, extent_start, len, NULL);
a67509c3
JB
945 if (ret)
946 goto out_nospc;
0cb59c99 947
db804f23 948 start = extent_end;
a67509c3 949 }
0cb59c99
JB
950
951 /* Write out the bitmaps */
952 list_for_each_safe(pos, n, &bitmap_list) {
0cb59c99
JB
953 struct btrfs_free_space *entry =
954 list_entry(pos, struct btrfs_free_space, list);
955
a67509c3
JB
956 ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap);
957 if (ret)
958 goto out_nospc;
0cb59c99 959 list_del_init(&entry->list);
be1a12a0
JB
960 }
961
0cb59c99 962 /* Zero out the rest of the pages just to make sure */
a67509c3 963 io_ctl_zero_remaining_pages(&io_ctl);
0cb59c99 964
a67509c3
JB
965 ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
966 0, i_size_read(inode), &cached_state);
967 io_ctl_drop_pages(&io_ctl);
0cb59c99
JB
968 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
969 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
970
c09544e0 971 if (ret)
2f356126 972 goto out;
be1a12a0 973
be1a12a0 974
5fd02043 975 btrfs_wait_ordered_range(inode, 0, (u64)-1);
0cb59c99
JB
976
977 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 978 key.offset = offset;
0cb59c99
JB
979 key.type = 0;
980
a9b5fcdd 981 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
0cb59c99 982 if (ret < 0) {
a67509c3 983 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
5b0e95bf
JB
984 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
985 GFP_NOFS);
2f356126 986 goto out;
0cb59c99
JB
987 }
988 leaf = path->nodes[0];
989 if (ret > 0) {
990 struct btrfs_key found_key;
991 BUG_ON(!path->slots[0]);
992 path->slots[0]--;
993 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
994 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
0414efae 995 found_key.offset != offset) {
a67509c3
JB
996 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
997 inode->i_size - 1,
5b0e95bf
JB
998 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
999 NULL, GFP_NOFS);
b3b4aa74 1000 btrfs_release_path(path);
2f356126 1001 goto out;
0cb59c99
JB
1002 }
1003 }
549b4fdb
JB
1004
1005 BTRFS_I(inode)->generation = trans->transid;
0cb59c99
JB
1006 header = btrfs_item_ptr(leaf, path->slots[0],
1007 struct btrfs_free_space_header);
1008 btrfs_set_free_space_entries(leaf, header, entries);
1009 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1010 btrfs_set_free_space_generation(leaf, header, trans->transid);
1011 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 1012 btrfs_release_path(path);
0cb59c99 1013
c09544e0 1014 err = 0;
2f356126 1015out:
a67509c3 1016 io_ctl_free(&io_ctl);
c09544e0 1017 if (err) {
a67509c3 1018 invalidate_inode_pages2(inode->i_mapping);
0cb59c99
JB
1019 BTRFS_I(inode)->generation = 0;
1020 }
0cb59c99 1021 btrfs_update_inode(trans, root, inode);
c09544e0 1022 return err;
a67509c3
JB
1023
1024out_nospc:
1025 list_for_each_safe(pos, n, &bitmap_list) {
1026 struct btrfs_free_space *entry =
1027 list_entry(pos, struct btrfs_free_space, list);
1028 list_del_init(&entry->list);
1029 }
1030 io_ctl_drop_pages(&io_ctl);
1031 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1032 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1033 goto out;
0414efae
LZ
1034}
1035
1036int btrfs_write_out_cache(struct btrfs_root *root,
1037 struct btrfs_trans_handle *trans,
1038 struct btrfs_block_group_cache *block_group,
1039 struct btrfs_path *path)
1040{
1041 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1042 struct inode *inode;
1043 int ret = 0;
1044
1045 root = root->fs_info->tree_root;
1046
1047 spin_lock(&block_group->lock);
1048 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1049 spin_unlock(&block_group->lock);
1050 return 0;
1051 }
1052 spin_unlock(&block_group->lock);
1053
1054 inode = lookup_free_space_inode(root, block_group, path);
1055 if (IS_ERR(inode))
1056 return 0;
1057
1058 ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
1059 path, block_group->key.objectid);
c09544e0 1060 if (ret) {
0414efae
LZ
1061 spin_lock(&block_group->lock);
1062 block_group->disk_cache_state = BTRFS_DC_ERROR;
1063 spin_unlock(&block_group->lock);
82d5902d 1064 ret = 0;
c09544e0 1065#ifdef DEBUG
934e7d44 1066 printk(KERN_ERR "btrfs: failed to write free space cache "
0414efae 1067 "for block group %llu\n", block_group->key.objectid);
c09544e0 1068#endif
0414efae
LZ
1069 }
1070
0cb59c99
JB
1071 iput(inode);
1072 return ret;
1073}
1074
34d52cb6 1075static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
96303081 1076 u64 offset)
0f9dd46c 1077{
96303081
JB
1078 BUG_ON(offset < bitmap_start);
1079 offset -= bitmap_start;
34d52cb6 1080 return (unsigned long)(div_u64(offset, unit));
96303081 1081}
0f9dd46c 1082
34d52cb6 1083static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
96303081 1084{
34d52cb6 1085 return (unsigned long)(div_u64(bytes, unit));
96303081 1086}
0f9dd46c 1087
34d52cb6 1088static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1089 u64 offset)
1090{
1091 u64 bitmap_start;
1092 u64 bytes_per_bitmap;
0f9dd46c 1093
34d52cb6
LZ
1094 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1095 bitmap_start = offset - ctl->start;
96303081
JB
1096 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1097 bitmap_start *= bytes_per_bitmap;
34d52cb6 1098 bitmap_start += ctl->start;
0f9dd46c 1099
96303081 1100 return bitmap_start;
0f9dd46c
JB
1101}
1102
96303081
JB
1103static int tree_insert_offset(struct rb_root *root, u64 offset,
1104 struct rb_node *node, int bitmap)
0f9dd46c
JB
1105{
1106 struct rb_node **p = &root->rb_node;
1107 struct rb_node *parent = NULL;
1108 struct btrfs_free_space *info;
1109
1110 while (*p) {
1111 parent = *p;
96303081 1112 info = rb_entry(parent, struct btrfs_free_space, offset_index);
0f9dd46c 1113
96303081 1114 if (offset < info->offset) {
0f9dd46c 1115 p = &(*p)->rb_left;
96303081 1116 } else if (offset > info->offset) {
0f9dd46c 1117 p = &(*p)->rb_right;
96303081
JB
1118 } else {
1119 /*
1120 * we could have a bitmap entry and an extent entry
1121 * share the same offset. If this is the case, we want
1122 * the extent entry to always be found first if we do a
1123 * linear search through the tree, since we want to have
1124 * the quickest allocation time, and allocating from an
1125 * extent is faster than allocating from a bitmap. So
1126 * if we're inserting a bitmap and we find an entry at
1127 * this offset, we want to go right, or after this entry
1128 * logically. If we are inserting an extent and we've
1129 * found a bitmap, we want to go left, or before
1130 * logically.
1131 */
1132 if (bitmap) {
207dde82
JB
1133 if (info->bitmap) {
1134 WARN_ON_ONCE(1);
1135 return -EEXIST;
1136 }
96303081
JB
1137 p = &(*p)->rb_right;
1138 } else {
207dde82
JB
1139 if (!info->bitmap) {
1140 WARN_ON_ONCE(1);
1141 return -EEXIST;
1142 }
96303081
JB
1143 p = &(*p)->rb_left;
1144 }
1145 }
0f9dd46c
JB
1146 }
1147
1148 rb_link_node(node, parent, p);
1149 rb_insert_color(node, root);
1150
1151 return 0;
1152}
1153
1154/*
70cb0743
JB
1155 * searches the tree for the given offset.
1156 *
96303081
JB
1157 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1158 * want a section that has at least bytes size and comes at or after the given
1159 * offset.
0f9dd46c 1160 */
96303081 1161static struct btrfs_free_space *
34d52cb6 1162tree_search_offset(struct btrfs_free_space_ctl *ctl,
96303081 1163 u64 offset, int bitmap_only, int fuzzy)
0f9dd46c 1164{
34d52cb6 1165 struct rb_node *n = ctl->free_space_offset.rb_node;
96303081
JB
1166 struct btrfs_free_space *entry, *prev = NULL;
1167
1168 /* find entry that is closest to the 'offset' */
1169 while (1) {
1170 if (!n) {
1171 entry = NULL;
1172 break;
1173 }
0f9dd46c 1174
0f9dd46c 1175 entry = rb_entry(n, struct btrfs_free_space, offset_index);
96303081 1176 prev = entry;
0f9dd46c 1177
96303081 1178 if (offset < entry->offset)
0f9dd46c 1179 n = n->rb_left;
96303081 1180 else if (offset > entry->offset)
0f9dd46c 1181 n = n->rb_right;
96303081 1182 else
0f9dd46c 1183 break;
0f9dd46c
JB
1184 }
1185
96303081
JB
1186 if (bitmap_only) {
1187 if (!entry)
1188 return NULL;
1189 if (entry->bitmap)
1190 return entry;
0f9dd46c 1191
96303081
JB
1192 /*
1193 * bitmap entry and extent entry may share same offset,
1194 * in that case, bitmap entry comes after extent entry.
1195 */
1196 n = rb_next(n);
1197 if (!n)
1198 return NULL;
1199 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1200 if (entry->offset != offset)
1201 return NULL;
0f9dd46c 1202
96303081
JB
1203 WARN_ON(!entry->bitmap);
1204 return entry;
1205 } else if (entry) {
1206 if (entry->bitmap) {
0f9dd46c 1207 /*
96303081
JB
1208 * if previous extent entry covers the offset,
1209 * we should return it instead of the bitmap entry
0f9dd46c 1210 */
96303081
JB
1211 n = &entry->offset_index;
1212 while (1) {
1213 n = rb_prev(n);
1214 if (!n)
1215 break;
1216 prev = rb_entry(n, struct btrfs_free_space,
1217 offset_index);
1218 if (!prev->bitmap) {
1219 if (prev->offset + prev->bytes > offset)
1220 entry = prev;
1221 break;
1222 }
0f9dd46c 1223 }
96303081
JB
1224 }
1225 return entry;
1226 }
1227
1228 if (!prev)
1229 return NULL;
1230
1231 /* find last entry before the 'offset' */
1232 entry = prev;
1233 if (entry->offset > offset) {
1234 n = rb_prev(&entry->offset_index);
1235 if (n) {
1236 entry = rb_entry(n, struct btrfs_free_space,
1237 offset_index);
1238 BUG_ON(entry->offset > offset);
0f9dd46c 1239 } else {
96303081
JB
1240 if (fuzzy)
1241 return entry;
1242 else
1243 return NULL;
0f9dd46c
JB
1244 }
1245 }
1246
96303081
JB
1247 if (entry->bitmap) {
1248 n = &entry->offset_index;
1249 while (1) {
1250 n = rb_prev(n);
1251 if (!n)
1252 break;
1253 prev = rb_entry(n, struct btrfs_free_space,
1254 offset_index);
1255 if (!prev->bitmap) {
1256 if (prev->offset + prev->bytes > offset)
1257 return prev;
1258 break;
1259 }
1260 }
34d52cb6 1261 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
96303081
JB
1262 return entry;
1263 } else if (entry->offset + entry->bytes > offset)
1264 return entry;
1265
1266 if (!fuzzy)
1267 return NULL;
1268
1269 while (1) {
1270 if (entry->bitmap) {
1271 if (entry->offset + BITS_PER_BITMAP *
34d52cb6 1272 ctl->unit > offset)
96303081
JB
1273 break;
1274 } else {
1275 if (entry->offset + entry->bytes > offset)
1276 break;
1277 }
1278
1279 n = rb_next(&entry->offset_index);
1280 if (!n)
1281 return NULL;
1282 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1283 }
1284 return entry;
0f9dd46c
JB
1285}
1286
f333adb5 1287static inline void
34d52cb6 1288__unlink_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5 1289 struct btrfs_free_space *info)
0f9dd46c 1290{
34d52cb6
LZ
1291 rb_erase(&info->offset_index, &ctl->free_space_offset);
1292 ctl->free_extents--;
f333adb5
LZ
1293}
1294
34d52cb6 1295static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5
LZ
1296 struct btrfs_free_space *info)
1297{
34d52cb6
LZ
1298 __unlink_free_space(ctl, info);
1299 ctl->free_space -= info->bytes;
0f9dd46c
JB
1300}
1301
34d52cb6 1302static int link_free_space(struct btrfs_free_space_ctl *ctl,
0f9dd46c
JB
1303 struct btrfs_free_space *info)
1304{
1305 int ret = 0;
1306
96303081 1307 BUG_ON(!info->bitmap && !info->bytes);
34d52cb6 1308 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
96303081 1309 &info->offset_index, (info->bitmap != NULL));
0f9dd46c
JB
1310 if (ret)
1311 return ret;
1312
34d52cb6
LZ
1313 ctl->free_space += info->bytes;
1314 ctl->free_extents++;
96303081
JB
1315 return ret;
1316}
1317
34d52cb6 1318static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
96303081 1319{
34d52cb6 1320 struct btrfs_block_group_cache *block_group = ctl->private;
25891f79
JB
1321 u64 max_bytes;
1322 u64 bitmap_bytes;
1323 u64 extent_bytes;
8eb2d829 1324 u64 size = block_group->key.offset;
34d52cb6
LZ
1325 u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
1326 int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1327
1328 BUG_ON(ctl->total_bitmaps > max_bitmaps);
96303081
JB
1329
1330 /*
1331 * The goal is to keep the total amount of memory used per 1gb of space
1332 * at or below 32k, so we need to adjust how much memory we allow to be
1333 * used by extent based free space tracking
1334 */
8eb2d829
LZ
1335 if (size < 1024 * 1024 * 1024)
1336 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1337 else
1338 max_bytes = MAX_CACHE_BYTES_PER_GIG *
1339 div64_u64(size, 1024 * 1024 * 1024);
96303081 1340
25891f79
JB
1341 /*
1342 * we want to account for 1 more bitmap than what we have so we can make
1343 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1344 * we add more bitmaps.
1345 */
34d52cb6 1346 bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
96303081 1347
25891f79 1348 if (bitmap_bytes >= max_bytes) {
34d52cb6 1349 ctl->extents_thresh = 0;
25891f79
JB
1350 return;
1351 }
96303081 1352
25891f79
JB
1353 /*
1354 * we want the extent entry threshold to always be at most 1/2 the maxw
1355 * bytes we can have, or whatever is less than that.
1356 */
1357 extent_bytes = max_bytes - bitmap_bytes;
1358 extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
96303081 1359
34d52cb6 1360 ctl->extents_thresh =
25891f79 1361 div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
96303081
JB
1362}
1363
bb3ac5a4
MX
1364static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1365 struct btrfs_free_space *info,
1366 u64 offset, u64 bytes)
96303081 1367{
f38b6e75 1368 unsigned long start, count;
96303081 1369
34d52cb6
LZ
1370 start = offset_to_bit(info->offset, ctl->unit, offset);
1371 count = bytes_to_bits(bytes, ctl->unit);
f38b6e75 1372 BUG_ON(start + count > BITS_PER_BITMAP);
96303081 1373
f38b6e75 1374 bitmap_clear(info->bitmap, start, count);
96303081
JB
1375
1376 info->bytes -= bytes;
bb3ac5a4
MX
1377}
1378
1379static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1380 struct btrfs_free_space *info, u64 offset,
1381 u64 bytes)
1382{
1383 __bitmap_clear_bits(ctl, info, offset, bytes);
34d52cb6 1384 ctl->free_space -= bytes;
96303081
JB
1385}
1386
34d52cb6 1387static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
817d52f8
JB
1388 struct btrfs_free_space *info, u64 offset,
1389 u64 bytes)
96303081 1390{
f38b6e75 1391 unsigned long start, count;
96303081 1392
34d52cb6
LZ
1393 start = offset_to_bit(info->offset, ctl->unit, offset);
1394 count = bytes_to_bits(bytes, ctl->unit);
f38b6e75 1395 BUG_ON(start + count > BITS_PER_BITMAP);
96303081 1396
f38b6e75 1397 bitmap_set(info->bitmap, start, count);
96303081
JB
1398
1399 info->bytes += bytes;
34d52cb6 1400 ctl->free_space += bytes;
96303081
JB
1401}
1402
34d52cb6 1403static int search_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1404 struct btrfs_free_space *bitmap_info, u64 *offset,
1405 u64 *bytes)
1406{
1407 unsigned long found_bits = 0;
1408 unsigned long bits, i;
1409 unsigned long next_zero;
1410
34d52cb6 1411 i = offset_to_bit(bitmap_info->offset, ctl->unit,
96303081 1412 max_t(u64, *offset, bitmap_info->offset));
34d52cb6 1413 bits = bytes_to_bits(*bytes, ctl->unit);
96303081
JB
1414
1415 for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
1416 i < BITS_PER_BITMAP;
1417 i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
1418 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1419 BITS_PER_BITMAP, i);
1420 if ((next_zero - i) >= bits) {
1421 found_bits = next_zero - i;
1422 break;
1423 }
1424 i = next_zero;
1425 }
1426
1427 if (found_bits) {
34d52cb6
LZ
1428 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1429 *bytes = (u64)(found_bits) * ctl->unit;
96303081
JB
1430 return 0;
1431 }
1432
1433 return -1;
1434}
1435
34d52cb6
LZ
1436static struct btrfs_free_space *
1437find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
96303081
JB
1438{
1439 struct btrfs_free_space *entry;
1440 struct rb_node *node;
1441 int ret;
1442
34d52cb6 1443 if (!ctl->free_space_offset.rb_node)
96303081
JB
1444 return NULL;
1445
34d52cb6 1446 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
96303081
JB
1447 if (!entry)
1448 return NULL;
1449
1450 for (node = &entry->offset_index; node; node = rb_next(node)) {
1451 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1452 if (entry->bytes < *bytes)
1453 continue;
1454
1455 if (entry->bitmap) {
34d52cb6 1456 ret = search_bitmap(ctl, entry, offset, bytes);
96303081
JB
1457 if (!ret)
1458 return entry;
1459 continue;
1460 }
1461
1462 *offset = entry->offset;
1463 *bytes = entry->bytes;
1464 return entry;
1465 }
1466
1467 return NULL;
1468}
1469
34d52cb6 1470static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1471 struct btrfs_free_space *info, u64 offset)
1472{
34d52cb6 1473 info->offset = offset_to_bitmap(ctl, offset);
f019f426 1474 info->bytes = 0;
f2d0f676 1475 INIT_LIST_HEAD(&info->list);
34d52cb6
LZ
1476 link_free_space(ctl, info);
1477 ctl->total_bitmaps++;
96303081 1478
34d52cb6 1479 ctl->op->recalc_thresholds(ctl);
96303081
JB
1480}
1481
34d52cb6 1482static void free_bitmap(struct btrfs_free_space_ctl *ctl,
edf6e2d1
LZ
1483 struct btrfs_free_space *bitmap_info)
1484{
34d52cb6 1485 unlink_free_space(ctl, bitmap_info);
edf6e2d1 1486 kfree(bitmap_info->bitmap);
dc89e982 1487 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
34d52cb6
LZ
1488 ctl->total_bitmaps--;
1489 ctl->op->recalc_thresholds(ctl);
edf6e2d1
LZ
1490}
1491
34d52cb6 1492static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1493 struct btrfs_free_space *bitmap_info,
1494 u64 *offset, u64 *bytes)
1495{
1496 u64 end;
6606bb97
JB
1497 u64 search_start, search_bytes;
1498 int ret;
96303081
JB
1499
1500again:
34d52cb6 1501 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
96303081 1502
6606bb97
JB
1503 /*
1504 * XXX - this can go away after a few releases.
1505 *
1506 * since the only user of btrfs_remove_free_space is the tree logging
1507 * stuff, and the only way to test that is under crash conditions, we
1508 * want to have this debug stuff here just in case somethings not
1509 * working. Search the bitmap for the space we are trying to use to
1510 * make sure its actually there. If its not there then we need to stop
1511 * because something has gone wrong.
1512 */
1513 search_start = *offset;
1514 search_bytes = *bytes;
13dbc089 1515 search_bytes = min(search_bytes, end - search_start + 1);
34d52cb6 1516 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
6606bb97
JB
1517 BUG_ON(ret < 0 || search_start != *offset);
1518
96303081 1519 if (*offset > bitmap_info->offset && *offset + *bytes > end) {
34d52cb6 1520 bitmap_clear_bits(ctl, bitmap_info, *offset, end - *offset + 1);
96303081
JB
1521 *bytes -= end - *offset + 1;
1522 *offset = end + 1;
1523 } else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
34d52cb6 1524 bitmap_clear_bits(ctl, bitmap_info, *offset, *bytes);
96303081
JB
1525 *bytes = 0;
1526 }
1527
1528 if (*bytes) {
6606bb97 1529 struct rb_node *next = rb_next(&bitmap_info->offset_index);
edf6e2d1 1530 if (!bitmap_info->bytes)
34d52cb6 1531 free_bitmap(ctl, bitmap_info);
96303081 1532
6606bb97
JB
1533 /*
1534 * no entry after this bitmap, but we still have bytes to
1535 * remove, so something has gone wrong.
1536 */
1537 if (!next)
96303081
JB
1538 return -EINVAL;
1539
6606bb97
JB
1540 bitmap_info = rb_entry(next, struct btrfs_free_space,
1541 offset_index);
1542
1543 /*
1544 * if the next entry isn't a bitmap we need to return to let the
1545 * extent stuff do its work.
1546 */
96303081
JB
1547 if (!bitmap_info->bitmap)
1548 return -EAGAIN;
1549
6606bb97
JB
1550 /*
1551 * Ok the next item is a bitmap, but it may not actually hold
1552 * the information for the rest of this free space stuff, so
1553 * look for it, and if we don't find it return so we can try
1554 * everything over again.
1555 */
1556 search_start = *offset;
1557 search_bytes = *bytes;
34d52cb6 1558 ret = search_bitmap(ctl, bitmap_info, &search_start,
6606bb97
JB
1559 &search_bytes);
1560 if (ret < 0 || search_start != *offset)
1561 return -EAGAIN;
1562
96303081 1563 goto again;
edf6e2d1 1564 } else if (!bitmap_info->bytes)
34d52cb6 1565 free_bitmap(ctl, bitmap_info);
96303081
JB
1566
1567 return 0;
1568}
1569
2cdc342c
JB
1570static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1571 struct btrfs_free_space *info, u64 offset,
1572 u64 bytes)
1573{
1574 u64 bytes_to_set = 0;
1575 u64 end;
1576
1577 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1578
1579 bytes_to_set = min(end - offset, bytes);
1580
1581 bitmap_set_bits(ctl, info, offset, bytes_to_set);
1582
1583 return bytes_to_set;
1584
1585}
1586
34d52cb6
LZ
1587static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1588 struct btrfs_free_space *info)
96303081 1589{
34d52cb6 1590 struct btrfs_block_group_cache *block_group = ctl->private;
96303081
JB
1591
1592 /*
1593 * If we are below the extents threshold then we can add this as an
1594 * extent, and don't have to deal with the bitmap
1595 */
34d52cb6 1596 if (ctl->free_extents < ctl->extents_thresh) {
32cb0840
JB
1597 /*
1598 * If this block group has some small extents we don't want to
1599 * use up all of our free slots in the cache with them, we want
1600 * to reserve them to larger extents, however if we have plent
1601 * of cache left then go ahead an dadd them, no sense in adding
1602 * the overhead of a bitmap if we don't have to.
1603 */
1604 if (info->bytes <= block_group->sectorsize * 4) {
34d52cb6
LZ
1605 if (ctl->free_extents * 2 <= ctl->extents_thresh)
1606 return false;
32cb0840 1607 } else {
34d52cb6 1608 return false;
32cb0840
JB
1609 }
1610 }
96303081
JB
1611
1612 /*
1613 * some block groups are so tiny they can't be enveloped by a bitmap, so
1614 * don't even bother to create a bitmap for this
1615 */
1616 if (BITS_PER_BITMAP * block_group->sectorsize >
1617 block_group->key.offset)
34d52cb6
LZ
1618 return false;
1619
1620 return true;
1621}
1622
2cdc342c
JB
1623static struct btrfs_free_space_op free_space_op = {
1624 .recalc_thresholds = recalculate_thresholds,
1625 .use_bitmap = use_bitmap,
1626};
1627
34d52cb6
LZ
1628static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1629 struct btrfs_free_space *info)
1630{
1631 struct btrfs_free_space *bitmap_info;
2cdc342c 1632 struct btrfs_block_group_cache *block_group = NULL;
34d52cb6 1633 int added = 0;
2cdc342c 1634 u64 bytes, offset, bytes_added;
34d52cb6 1635 int ret;
96303081
JB
1636
1637 bytes = info->bytes;
1638 offset = info->offset;
1639
34d52cb6
LZ
1640 if (!ctl->op->use_bitmap(ctl, info))
1641 return 0;
1642
2cdc342c
JB
1643 if (ctl->op == &free_space_op)
1644 block_group = ctl->private;
38e87880 1645again:
2cdc342c
JB
1646 /*
1647 * Since we link bitmaps right into the cluster we need to see if we
1648 * have a cluster here, and if so and it has our bitmap we need to add
1649 * the free space to that bitmap.
1650 */
1651 if (block_group && !list_empty(&block_group->cluster_list)) {
1652 struct btrfs_free_cluster *cluster;
1653 struct rb_node *node;
1654 struct btrfs_free_space *entry;
1655
1656 cluster = list_entry(block_group->cluster_list.next,
1657 struct btrfs_free_cluster,
1658 block_group_list);
1659 spin_lock(&cluster->lock);
1660 node = rb_first(&cluster->root);
1661 if (!node) {
1662 spin_unlock(&cluster->lock);
38e87880 1663 goto no_cluster_bitmap;
2cdc342c
JB
1664 }
1665
1666 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1667 if (!entry->bitmap) {
1668 spin_unlock(&cluster->lock);
38e87880 1669 goto no_cluster_bitmap;
2cdc342c
JB
1670 }
1671
1672 if (entry->offset == offset_to_bitmap(ctl, offset)) {
1673 bytes_added = add_bytes_to_bitmap(ctl, entry,
1674 offset, bytes);
1675 bytes -= bytes_added;
1676 offset += bytes_added;
1677 }
1678 spin_unlock(&cluster->lock);
1679 if (!bytes) {
1680 ret = 1;
1681 goto out;
1682 }
1683 }
38e87880
CM
1684
1685no_cluster_bitmap:
34d52cb6 1686 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
96303081
JB
1687 1, 0);
1688 if (!bitmap_info) {
1689 BUG_ON(added);
1690 goto new_bitmap;
1691 }
1692
2cdc342c
JB
1693 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1694 bytes -= bytes_added;
1695 offset += bytes_added;
1696 added = 0;
96303081
JB
1697
1698 if (!bytes) {
1699 ret = 1;
1700 goto out;
1701 } else
1702 goto again;
1703
1704new_bitmap:
1705 if (info && info->bitmap) {
34d52cb6 1706 add_new_bitmap(ctl, info, offset);
96303081
JB
1707 added = 1;
1708 info = NULL;
1709 goto again;
1710 } else {
34d52cb6 1711 spin_unlock(&ctl->tree_lock);
96303081
JB
1712
1713 /* no pre-allocated info, allocate a new one */
1714 if (!info) {
dc89e982
JB
1715 info = kmem_cache_zalloc(btrfs_free_space_cachep,
1716 GFP_NOFS);
96303081 1717 if (!info) {
34d52cb6 1718 spin_lock(&ctl->tree_lock);
96303081
JB
1719 ret = -ENOMEM;
1720 goto out;
1721 }
1722 }
1723
1724 /* allocate the bitmap */
1725 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
34d52cb6 1726 spin_lock(&ctl->tree_lock);
96303081
JB
1727 if (!info->bitmap) {
1728 ret = -ENOMEM;
1729 goto out;
1730 }
1731 goto again;
1732 }
1733
1734out:
1735 if (info) {
1736 if (info->bitmap)
1737 kfree(info->bitmap);
dc89e982 1738 kmem_cache_free(btrfs_free_space_cachep, info);
96303081 1739 }
0f9dd46c
JB
1740
1741 return ret;
1742}
1743
945d8962 1744static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5 1745 struct btrfs_free_space *info, bool update_stat)
0f9dd46c 1746{
120d66ee
LZ
1747 struct btrfs_free_space *left_info;
1748 struct btrfs_free_space *right_info;
1749 bool merged = false;
1750 u64 offset = info->offset;
1751 u64 bytes = info->bytes;
6226cb0a 1752
0f9dd46c
JB
1753 /*
1754 * first we want to see if there is free space adjacent to the range we
1755 * are adding, if there is remove that struct and add a new one to
1756 * cover the entire range
1757 */
34d52cb6 1758 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
96303081
JB
1759 if (right_info && rb_prev(&right_info->offset_index))
1760 left_info = rb_entry(rb_prev(&right_info->offset_index),
1761 struct btrfs_free_space, offset_index);
1762 else
34d52cb6 1763 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
0f9dd46c 1764
96303081 1765 if (right_info && !right_info->bitmap) {
f333adb5 1766 if (update_stat)
34d52cb6 1767 unlink_free_space(ctl, right_info);
f333adb5 1768 else
34d52cb6 1769 __unlink_free_space(ctl, right_info);
6226cb0a 1770 info->bytes += right_info->bytes;
dc89e982 1771 kmem_cache_free(btrfs_free_space_cachep, right_info);
120d66ee 1772 merged = true;
0f9dd46c
JB
1773 }
1774
96303081
JB
1775 if (left_info && !left_info->bitmap &&
1776 left_info->offset + left_info->bytes == offset) {
f333adb5 1777 if (update_stat)
34d52cb6 1778 unlink_free_space(ctl, left_info);
f333adb5 1779 else
34d52cb6 1780 __unlink_free_space(ctl, left_info);
6226cb0a
JB
1781 info->offset = left_info->offset;
1782 info->bytes += left_info->bytes;
dc89e982 1783 kmem_cache_free(btrfs_free_space_cachep, left_info);
120d66ee 1784 merged = true;
0f9dd46c
JB
1785 }
1786
120d66ee
LZ
1787 return merged;
1788}
1789
581bb050
LZ
1790int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1791 u64 offset, u64 bytes)
120d66ee
LZ
1792{
1793 struct btrfs_free_space *info;
1794 int ret = 0;
1795
dc89e982 1796 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
120d66ee
LZ
1797 if (!info)
1798 return -ENOMEM;
1799
1800 info->offset = offset;
1801 info->bytes = bytes;
1802
34d52cb6 1803 spin_lock(&ctl->tree_lock);
120d66ee 1804
34d52cb6 1805 if (try_merge_free_space(ctl, info, true))
120d66ee
LZ
1806 goto link;
1807
1808 /*
1809 * There was no extent directly to the left or right of this new
1810 * extent then we know we're going to have to allocate a new extent, so
1811 * before we do that see if we need to drop this into a bitmap
1812 */
34d52cb6 1813 ret = insert_into_bitmap(ctl, info);
120d66ee
LZ
1814 if (ret < 0) {
1815 goto out;
1816 } else if (ret) {
1817 ret = 0;
1818 goto out;
1819 }
1820link:
34d52cb6 1821 ret = link_free_space(ctl, info);
0f9dd46c 1822 if (ret)
dc89e982 1823 kmem_cache_free(btrfs_free_space_cachep, info);
96303081 1824out:
34d52cb6 1825 spin_unlock(&ctl->tree_lock);
6226cb0a 1826
0f9dd46c 1827 if (ret) {
96303081 1828 printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
c293498b 1829 BUG_ON(ret == -EEXIST);
0f9dd46c
JB
1830 }
1831
0f9dd46c
JB
1832 return ret;
1833}
1834
6226cb0a
JB
1835int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1836 u64 offset, u64 bytes)
0f9dd46c 1837{
34d52cb6 1838 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c 1839 struct btrfs_free_space *info;
96303081 1840 struct btrfs_free_space *next_info = NULL;
0f9dd46c
JB
1841 int ret = 0;
1842
34d52cb6 1843 spin_lock(&ctl->tree_lock);
6226cb0a 1844
96303081 1845again:
34d52cb6 1846 info = tree_search_offset(ctl, offset, 0, 0);
96303081 1847 if (!info) {
6606bb97
JB
1848 /*
1849 * oops didn't find an extent that matched the space we wanted
1850 * to remove, look for a bitmap instead
1851 */
34d52cb6 1852 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
6606bb97
JB
1853 1, 0);
1854 if (!info) {
24a70313
CM
1855 /* the tree logging code might be calling us before we
1856 * have fully loaded the free space rbtree for this
1857 * block group. So it is possible the entry won't
1858 * be in the rbtree yet at all. The caching code
1859 * will make sure not to put it in the rbtree if
1860 * the logging code has pinned it.
1861 */
6606bb97
JB
1862 goto out_lock;
1863 }
96303081
JB
1864 }
1865
1866 if (info->bytes < bytes && rb_next(&info->offset_index)) {
1867 u64 end;
1868 next_info = rb_entry(rb_next(&info->offset_index),
1869 struct btrfs_free_space,
1870 offset_index);
1871
1872 if (next_info->bitmap)
34d52cb6
LZ
1873 end = next_info->offset +
1874 BITS_PER_BITMAP * ctl->unit - 1;
96303081
JB
1875 else
1876 end = next_info->offset + next_info->bytes;
1877
1878 if (next_info->bytes < bytes ||
1879 next_info->offset > offset || offset > end) {
1880 printk(KERN_CRIT "Found free space at %llu, size %llu,"
1881 " trying to use %llu\n",
1882 (unsigned long long)info->offset,
1883 (unsigned long long)info->bytes,
1884 (unsigned long long)bytes);
0f9dd46c
JB
1885 WARN_ON(1);
1886 ret = -EINVAL;
96303081 1887 goto out_lock;
0f9dd46c 1888 }
0f9dd46c 1889
96303081
JB
1890 info = next_info;
1891 }
1892
1893 if (info->bytes == bytes) {
34d52cb6 1894 unlink_free_space(ctl, info);
96303081
JB
1895 if (info->bitmap) {
1896 kfree(info->bitmap);
34d52cb6 1897 ctl->total_bitmaps--;
0f9dd46c 1898 }
dc89e982 1899 kmem_cache_free(btrfs_free_space_cachep, info);
1eae31e9 1900 ret = 0;
96303081
JB
1901 goto out_lock;
1902 }
0f9dd46c 1903
96303081 1904 if (!info->bitmap && info->offset == offset) {
34d52cb6 1905 unlink_free_space(ctl, info);
0f9dd46c
JB
1906 info->offset += bytes;
1907 info->bytes -= bytes;
1eae31e9
CM
1908 ret = link_free_space(ctl, info);
1909 WARN_ON(ret);
96303081
JB
1910 goto out_lock;
1911 }
0f9dd46c 1912
96303081
JB
1913 if (!info->bitmap && info->offset <= offset &&
1914 info->offset + info->bytes >= offset + bytes) {
9b49c9b9
CM
1915 u64 old_start = info->offset;
1916 /*
1917 * we're freeing space in the middle of the info,
1918 * this can happen during tree log replay
1919 *
1920 * first unlink the old info and then
1921 * insert it again after the hole we're creating
1922 */
34d52cb6 1923 unlink_free_space(ctl, info);
9b49c9b9
CM
1924 if (offset + bytes < info->offset + info->bytes) {
1925 u64 old_end = info->offset + info->bytes;
1926
1927 info->offset = offset + bytes;
1928 info->bytes = old_end - info->offset;
34d52cb6 1929 ret = link_free_space(ctl, info);
96303081
JB
1930 WARN_ON(ret);
1931 if (ret)
1932 goto out_lock;
9b49c9b9
CM
1933 } else {
1934 /* the hole we're creating ends at the end
1935 * of the info struct, just free the info
1936 */
dc89e982 1937 kmem_cache_free(btrfs_free_space_cachep, info);
9b49c9b9 1938 }
34d52cb6 1939 spin_unlock(&ctl->tree_lock);
96303081
JB
1940
1941 /* step two, insert a new info struct to cover
1942 * anything before the hole
9b49c9b9 1943 */
6226cb0a
JB
1944 ret = btrfs_add_free_space(block_group, old_start,
1945 offset - old_start);
79787eaa 1946 WARN_ON(ret); /* -ENOMEM */
96303081 1947 goto out;
0f9dd46c 1948 }
96303081 1949
34d52cb6 1950 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
96303081
JB
1951 if (ret == -EAGAIN)
1952 goto again;
79787eaa 1953 BUG_ON(ret); /* logic error */
96303081 1954out_lock:
34d52cb6 1955 spin_unlock(&ctl->tree_lock);
0f9dd46c 1956out:
25179201
JB
1957 return ret;
1958}
1959
0f9dd46c
JB
1960void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1961 u64 bytes)
1962{
34d52cb6 1963 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c
JB
1964 struct btrfs_free_space *info;
1965 struct rb_node *n;
1966 int count = 0;
1967
34d52cb6 1968 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
0f9dd46c
JB
1969 info = rb_entry(n, struct btrfs_free_space, offset_index);
1970 if (info->bytes >= bytes)
1971 count++;
96303081 1972 printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
21380931 1973 (unsigned long long)info->offset,
96303081
JB
1974 (unsigned long long)info->bytes,
1975 (info->bitmap) ? "yes" : "no");
0f9dd46c 1976 }
96303081
JB
1977 printk(KERN_INFO "block group has cluster?: %s\n",
1978 list_empty(&block_group->cluster_list) ? "no" : "yes");
0f9dd46c
JB
1979 printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
1980 "\n", count);
1981}
1982
34d52cb6 1983void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
0f9dd46c 1984{
34d52cb6 1985 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c 1986
34d52cb6
LZ
1987 spin_lock_init(&ctl->tree_lock);
1988 ctl->unit = block_group->sectorsize;
1989 ctl->start = block_group->key.objectid;
1990 ctl->private = block_group;
1991 ctl->op = &free_space_op;
0f9dd46c 1992
34d52cb6
LZ
1993 /*
1994 * we only want to have 32k of ram per block group for keeping
1995 * track of free space, and if we pass 1/2 of that we want to
1996 * start converting things over to using bitmaps
1997 */
1998 ctl->extents_thresh = ((1024 * 32) / 2) /
1999 sizeof(struct btrfs_free_space);
0f9dd46c
JB
2000}
2001
fa9c0d79
CM
2002/*
2003 * for a given cluster, put all of its extents back into the free
2004 * space cache. If the block group passed doesn't match the block group
2005 * pointed to by the cluster, someone else raced in and freed the
2006 * cluster already. In that case, we just return without changing anything
2007 */
2008static int
2009__btrfs_return_cluster_to_free_space(
2010 struct btrfs_block_group_cache *block_group,
2011 struct btrfs_free_cluster *cluster)
2012{
34d52cb6 2013 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79
CM
2014 struct btrfs_free_space *entry;
2015 struct rb_node *node;
2016
2017 spin_lock(&cluster->lock);
2018 if (cluster->block_group != block_group)
2019 goto out;
2020
96303081 2021 cluster->block_group = NULL;
fa9c0d79 2022 cluster->window_start = 0;
96303081 2023 list_del_init(&cluster->block_group_list);
96303081 2024
fa9c0d79 2025 node = rb_first(&cluster->root);
96303081 2026 while (node) {
4e69b598
JB
2027 bool bitmap;
2028
fa9c0d79
CM
2029 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2030 node = rb_next(&entry->offset_index);
2031 rb_erase(&entry->offset_index, &cluster->root);
4e69b598
JB
2032
2033 bitmap = (entry->bitmap != NULL);
2034 if (!bitmap)
34d52cb6
LZ
2035 try_merge_free_space(ctl, entry, false);
2036 tree_insert_offset(&ctl->free_space_offset,
4e69b598 2037 entry->offset, &entry->offset_index, bitmap);
fa9c0d79 2038 }
6bef4d31 2039 cluster->root = RB_ROOT;
96303081 2040
fa9c0d79
CM
2041out:
2042 spin_unlock(&cluster->lock);
96303081 2043 btrfs_put_block_group(block_group);
fa9c0d79
CM
2044 return 0;
2045}
2046
09655373 2047void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl)
0f9dd46c
JB
2048{
2049 struct btrfs_free_space *info;
2050 struct rb_node *node;
581bb050 2051
581bb050
LZ
2052 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2053 info = rb_entry(node, struct btrfs_free_space, offset_index);
9b90f513
JB
2054 if (!info->bitmap) {
2055 unlink_free_space(ctl, info);
2056 kmem_cache_free(btrfs_free_space_cachep, info);
2057 } else {
2058 free_bitmap(ctl, info);
2059 }
581bb050
LZ
2060 if (need_resched()) {
2061 spin_unlock(&ctl->tree_lock);
2062 cond_resched();
2063 spin_lock(&ctl->tree_lock);
2064 }
2065 }
09655373
CM
2066}
2067
2068void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2069{
2070 spin_lock(&ctl->tree_lock);
2071 __btrfs_remove_free_space_cache_locked(ctl);
581bb050
LZ
2072 spin_unlock(&ctl->tree_lock);
2073}
2074
2075void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2076{
2077 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79 2078 struct btrfs_free_cluster *cluster;
96303081 2079 struct list_head *head;
0f9dd46c 2080
34d52cb6 2081 spin_lock(&ctl->tree_lock);
96303081
JB
2082 while ((head = block_group->cluster_list.next) !=
2083 &block_group->cluster_list) {
2084 cluster = list_entry(head, struct btrfs_free_cluster,
2085 block_group_list);
fa9c0d79
CM
2086
2087 WARN_ON(cluster->block_group != block_group);
2088 __btrfs_return_cluster_to_free_space(block_group, cluster);
96303081 2089 if (need_resched()) {
34d52cb6 2090 spin_unlock(&ctl->tree_lock);
96303081 2091 cond_resched();
34d52cb6 2092 spin_lock(&ctl->tree_lock);
96303081 2093 }
fa9c0d79 2094 }
09655373 2095 __btrfs_remove_free_space_cache_locked(ctl);
34d52cb6 2096 spin_unlock(&ctl->tree_lock);
fa9c0d79 2097
0f9dd46c
JB
2098}
2099
6226cb0a
JB
2100u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2101 u64 offset, u64 bytes, u64 empty_size)
0f9dd46c 2102{
34d52cb6 2103 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
6226cb0a 2104 struct btrfs_free_space *entry = NULL;
96303081 2105 u64 bytes_search = bytes + empty_size;
6226cb0a 2106 u64 ret = 0;
0f9dd46c 2107
34d52cb6
LZ
2108 spin_lock(&ctl->tree_lock);
2109 entry = find_free_space(ctl, &offset, &bytes_search);
6226cb0a 2110 if (!entry)
96303081
JB
2111 goto out;
2112
2113 ret = offset;
2114 if (entry->bitmap) {
34d52cb6 2115 bitmap_clear_bits(ctl, entry, offset, bytes);
edf6e2d1 2116 if (!entry->bytes)
34d52cb6 2117 free_bitmap(ctl, entry);
96303081 2118 } else {
34d52cb6 2119 unlink_free_space(ctl, entry);
6226cb0a
JB
2120 entry->offset += bytes;
2121 entry->bytes -= bytes;
6226cb0a 2122 if (!entry->bytes)
dc89e982 2123 kmem_cache_free(btrfs_free_space_cachep, entry);
6226cb0a 2124 else
34d52cb6 2125 link_free_space(ctl, entry);
6226cb0a 2126 }
0f9dd46c 2127
96303081 2128out:
34d52cb6 2129 spin_unlock(&ctl->tree_lock);
817d52f8 2130
0f9dd46c
JB
2131 return ret;
2132}
fa9c0d79
CM
2133
2134/*
2135 * given a cluster, put all of its extents back into the free space
2136 * cache. If a block group is passed, this function will only free
2137 * a cluster that belongs to the passed block group.
2138 *
2139 * Otherwise, it'll get a reference on the block group pointed to by the
2140 * cluster and remove the cluster from it.
2141 */
2142int btrfs_return_cluster_to_free_space(
2143 struct btrfs_block_group_cache *block_group,
2144 struct btrfs_free_cluster *cluster)
2145{
34d52cb6 2146 struct btrfs_free_space_ctl *ctl;
fa9c0d79
CM
2147 int ret;
2148
2149 /* first, get a safe pointer to the block group */
2150 spin_lock(&cluster->lock);
2151 if (!block_group) {
2152 block_group = cluster->block_group;
2153 if (!block_group) {
2154 spin_unlock(&cluster->lock);
2155 return 0;
2156 }
2157 } else if (cluster->block_group != block_group) {
2158 /* someone else has already freed it don't redo their work */
2159 spin_unlock(&cluster->lock);
2160 return 0;
2161 }
2162 atomic_inc(&block_group->count);
2163 spin_unlock(&cluster->lock);
2164
34d52cb6
LZ
2165 ctl = block_group->free_space_ctl;
2166
fa9c0d79 2167 /* now return any extents the cluster had on it */
34d52cb6 2168 spin_lock(&ctl->tree_lock);
fa9c0d79 2169 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
34d52cb6 2170 spin_unlock(&ctl->tree_lock);
fa9c0d79
CM
2171
2172 /* finally drop our ref */
2173 btrfs_put_block_group(block_group);
2174 return ret;
2175}
2176
96303081
JB
2177static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2178 struct btrfs_free_cluster *cluster,
4e69b598 2179 struct btrfs_free_space *entry,
96303081
JB
2180 u64 bytes, u64 min_start)
2181{
34d52cb6 2182 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
96303081
JB
2183 int err;
2184 u64 search_start = cluster->window_start;
2185 u64 search_bytes = bytes;
2186 u64 ret = 0;
2187
96303081
JB
2188 search_start = min_start;
2189 search_bytes = bytes;
2190
34d52cb6 2191 err = search_bitmap(ctl, entry, &search_start, &search_bytes);
96303081 2192 if (err)
4e69b598 2193 return 0;
96303081
JB
2194
2195 ret = search_start;
bb3ac5a4 2196 __bitmap_clear_bits(ctl, entry, ret, bytes);
96303081
JB
2197
2198 return ret;
2199}
2200
fa9c0d79
CM
2201/*
2202 * given a cluster, try to allocate 'bytes' from it, returns 0
2203 * if it couldn't find anything suitably large, or a logical disk offset
2204 * if things worked out
2205 */
2206u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2207 struct btrfs_free_cluster *cluster, u64 bytes,
2208 u64 min_start)
2209{
34d52cb6 2210 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79
CM
2211 struct btrfs_free_space *entry = NULL;
2212 struct rb_node *node;
2213 u64 ret = 0;
2214
2215 spin_lock(&cluster->lock);
2216 if (bytes > cluster->max_size)
2217 goto out;
2218
2219 if (cluster->block_group != block_group)
2220 goto out;
2221
2222 node = rb_first(&cluster->root);
2223 if (!node)
2224 goto out;
2225
2226 entry = rb_entry(node, struct btrfs_free_space, offset_index);
fa9c0d79 2227 while(1) {
4e69b598
JB
2228 if (entry->bytes < bytes ||
2229 (!entry->bitmap && entry->offset < min_start)) {
fa9c0d79
CM
2230 node = rb_next(&entry->offset_index);
2231 if (!node)
2232 break;
2233 entry = rb_entry(node, struct btrfs_free_space,
2234 offset_index);
2235 continue;
2236 }
fa9c0d79 2237
4e69b598
JB
2238 if (entry->bitmap) {
2239 ret = btrfs_alloc_from_bitmap(block_group,
2240 cluster, entry, bytes,
0b4a9d24 2241 cluster->window_start);
4e69b598 2242 if (ret == 0) {
4e69b598
JB
2243 node = rb_next(&entry->offset_index);
2244 if (!node)
2245 break;
2246 entry = rb_entry(node, struct btrfs_free_space,
2247 offset_index);
2248 continue;
2249 }
9b230628 2250 cluster->window_start += bytes;
4e69b598 2251 } else {
4e69b598
JB
2252 ret = entry->offset;
2253
2254 entry->offset += bytes;
2255 entry->bytes -= bytes;
2256 }
fa9c0d79 2257
5e71b5d5 2258 if (entry->bytes == 0)
fa9c0d79 2259 rb_erase(&entry->offset_index, &cluster->root);
fa9c0d79
CM
2260 break;
2261 }
2262out:
2263 spin_unlock(&cluster->lock);
96303081 2264
5e71b5d5
LZ
2265 if (!ret)
2266 return 0;
2267
34d52cb6 2268 spin_lock(&ctl->tree_lock);
5e71b5d5 2269
34d52cb6 2270 ctl->free_space -= bytes;
5e71b5d5 2271 if (entry->bytes == 0) {
34d52cb6 2272 ctl->free_extents--;
4e69b598
JB
2273 if (entry->bitmap) {
2274 kfree(entry->bitmap);
34d52cb6
LZ
2275 ctl->total_bitmaps--;
2276 ctl->op->recalc_thresholds(ctl);
4e69b598 2277 }
dc89e982 2278 kmem_cache_free(btrfs_free_space_cachep, entry);
5e71b5d5
LZ
2279 }
2280
34d52cb6 2281 spin_unlock(&ctl->tree_lock);
5e71b5d5 2282
fa9c0d79
CM
2283 return ret;
2284}
2285
96303081
JB
2286static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2287 struct btrfs_free_space *entry,
2288 struct btrfs_free_cluster *cluster,
1bb91902
AO
2289 u64 offset, u64 bytes,
2290 u64 cont1_bytes, u64 min_bytes)
96303081 2291{
34d52cb6 2292 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
96303081
JB
2293 unsigned long next_zero;
2294 unsigned long i;
1bb91902
AO
2295 unsigned long want_bits;
2296 unsigned long min_bits;
96303081
JB
2297 unsigned long found_bits;
2298 unsigned long start = 0;
2299 unsigned long total_found = 0;
4e69b598 2300 int ret;
96303081
JB
2301
2302 i = offset_to_bit(entry->offset, block_group->sectorsize,
2303 max_t(u64, offset, entry->offset));
1bb91902
AO
2304 want_bits = bytes_to_bits(bytes, block_group->sectorsize);
2305 min_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
96303081
JB
2306
2307again:
2308 found_bits = 0;
2309 for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
2310 i < BITS_PER_BITMAP;
2311 i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
2312 next_zero = find_next_zero_bit(entry->bitmap,
2313 BITS_PER_BITMAP, i);
1bb91902 2314 if (next_zero - i >= min_bits) {
96303081
JB
2315 found_bits = next_zero - i;
2316 break;
2317 }
2318 i = next_zero;
2319 }
2320
2321 if (!found_bits)
4e69b598 2322 return -ENOSPC;
96303081 2323
1bb91902 2324 if (!total_found) {
96303081 2325 start = i;
b78d09bc 2326 cluster->max_size = 0;
96303081
JB
2327 }
2328
2329 total_found += found_bits;
2330
2331 if (cluster->max_size < found_bits * block_group->sectorsize)
2332 cluster->max_size = found_bits * block_group->sectorsize;
2333
1bb91902
AO
2334 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2335 i = next_zero + 1;
96303081
JB
2336 goto again;
2337 }
2338
2339 cluster->window_start = start * block_group->sectorsize +
2340 entry->offset;
34d52cb6 2341 rb_erase(&entry->offset_index, &ctl->free_space_offset);
4e69b598
JB
2342 ret = tree_insert_offset(&cluster->root, entry->offset,
2343 &entry->offset_index, 1);
79787eaa 2344 BUG_ON(ret); /* -EEXIST; Logic error */
96303081 2345
3f7de037
JB
2346 trace_btrfs_setup_cluster(block_group, cluster,
2347 total_found * block_group->sectorsize, 1);
96303081
JB
2348 return 0;
2349}
2350
4e69b598
JB
2351/*
2352 * This searches the block group for just extents to fill the cluster with.
1bb91902
AO
2353 * Try to find a cluster with at least bytes total bytes, at least one
2354 * extent of cont1_bytes, and other clusters of at least min_bytes.
4e69b598 2355 */
3de85bb9
JB
2356static noinline int
2357setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2358 struct btrfs_free_cluster *cluster,
2359 struct list_head *bitmaps, u64 offset, u64 bytes,
1bb91902 2360 u64 cont1_bytes, u64 min_bytes)
4e69b598 2361{
34d52cb6 2362 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4e69b598
JB
2363 struct btrfs_free_space *first = NULL;
2364 struct btrfs_free_space *entry = NULL;
4e69b598
JB
2365 struct btrfs_free_space *last;
2366 struct rb_node *node;
2367 u64 window_start;
2368 u64 window_free;
2369 u64 max_extent;
3f7de037 2370 u64 total_size = 0;
4e69b598 2371
34d52cb6 2372 entry = tree_search_offset(ctl, offset, 0, 1);
4e69b598
JB
2373 if (!entry)
2374 return -ENOSPC;
2375
2376 /*
2377 * We don't want bitmaps, so just move along until we find a normal
2378 * extent entry.
2379 */
1bb91902
AO
2380 while (entry->bitmap || entry->bytes < min_bytes) {
2381 if (entry->bitmap && list_empty(&entry->list))
86d4a77b 2382 list_add_tail(&entry->list, bitmaps);
4e69b598
JB
2383 node = rb_next(&entry->offset_index);
2384 if (!node)
2385 return -ENOSPC;
2386 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2387 }
2388
2389 window_start = entry->offset;
2390 window_free = entry->bytes;
2391 max_extent = entry->bytes;
2392 first = entry;
2393 last = entry;
4e69b598 2394
1bb91902
AO
2395 for (node = rb_next(&entry->offset_index); node;
2396 node = rb_next(&entry->offset_index)) {
4e69b598
JB
2397 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2398
86d4a77b
JB
2399 if (entry->bitmap) {
2400 if (list_empty(&entry->list))
2401 list_add_tail(&entry->list, bitmaps);
4e69b598 2402 continue;
86d4a77b
JB
2403 }
2404
1bb91902
AO
2405 if (entry->bytes < min_bytes)
2406 continue;
2407
2408 last = entry;
2409 window_free += entry->bytes;
2410 if (entry->bytes > max_extent)
4e69b598 2411 max_extent = entry->bytes;
4e69b598
JB
2412 }
2413
1bb91902
AO
2414 if (window_free < bytes || max_extent < cont1_bytes)
2415 return -ENOSPC;
2416
4e69b598
JB
2417 cluster->window_start = first->offset;
2418
2419 node = &first->offset_index;
2420
2421 /*
2422 * now we've found our entries, pull them out of the free space
2423 * cache and put them into the cluster rbtree
2424 */
2425 do {
2426 int ret;
2427
2428 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2429 node = rb_next(&entry->offset_index);
1bb91902 2430 if (entry->bitmap || entry->bytes < min_bytes)
4e69b598
JB
2431 continue;
2432
34d52cb6 2433 rb_erase(&entry->offset_index, &ctl->free_space_offset);
4e69b598
JB
2434 ret = tree_insert_offset(&cluster->root, entry->offset,
2435 &entry->offset_index, 0);
3f7de037 2436 total_size += entry->bytes;
79787eaa 2437 BUG_ON(ret); /* -EEXIST; Logic error */
4e69b598
JB
2438 } while (node && entry != last);
2439
2440 cluster->max_size = max_extent;
3f7de037 2441 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
4e69b598
JB
2442 return 0;
2443}
2444
2445/*
2446 * This specifically looks for bitmaps that may work in the cluster, we assume
2447 * that we have already failed to find extents that will work.
2448 */
3de85bb9
JB
2449static noinline int
2450setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2451 struct btrfs_free_cluster *cluster,
2452 struct list_head *bitmaps, u64 offset, u64 bytes,
1bb91902 2453 u64 cont1_bytes, u64 min_bytes)
4e69b598 2454{
34d52cb6 2455 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4e69b598 2456 struct btrfs_free_space *entry;
4e69b598 2457 int ret = -ENOSPC;
0f0fbf1d 2458 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
4e69b598 2459
34d52cb6 2460 if (ctl->total_bitmaps == 0)
4e69b598
JB
2461 return -ENOSPC;
2462
0f0fbf1d
LZ
2463 /*
2464 * The bitmap that covers offset won't be in the list unless offset
2465 * is just its start offset.
2466 */
2467 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2468 if (entry->offset != bitmap_offset) {
2469 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2470 if (entry && list_empty(&entry->list))
2471 list_add(&entry->list, bitmaps);
2472 }
2473
86d4a77b 2474 list_for_each_entry(entry, bitmaps, list) {
357b9784 2475 if (entry->bytes < bytes)
86d4a77b
JB
2476 continue;
2477 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
1bb91902 2478 bytes, cont1_bytes, min_bytes);
86d4a77b
JB
2479 if (!ret)
2480 return 0;
2481 }
2482
2483 /*
52621cb6
LZ
2484 * The bitmaps list has all the bitmaps that record free space
2485 * starting after offset, so no more search is required.
86d4a77b 2486 */
52621cb6 2487 return -ENOSPC;
4e69b598
JB
2488}
2489
fa9c0d79
CM
2490/*
2491 * here we try to find a cluster of blocks in a block group. The goal
1bb91902 2492 * is to find at least bytes+empty_size.
fa9c0d79
CM
2493 * We might not find them all in one contiguous area.
2494 *
2495 * returns zero and sets up cluster if things worked out, otherwise
2496 * it returns -enospc
2497 */
2498int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
451d7585 2499 struct btrfs_root *root,
fa9c0d79
CM
2500 struct btrfs_block_group_cache *block_group,
2501 struct btrfs_free_cluster *cluster,
2502 u64 offset, u64 bytes, u64 empty_size)
2503{
34d52cb6 2504 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
86d4a77b 2505 struct btrfs_free_space *entry, *tmp;
52621cb6 2506 LIST_HEAD(bitmaps);
fa9c0d79 2507 u64 min_bytes;
1bb91902 2508 u64 cont1_bytes;
fa9c0d79
CM
2509 int ret;
2510
1bb91902
AO
2511 /*
2512 * Choose the minimum extent size we'll require for this
2513 * cluster. For SSD_SPREAD, don't allow any fragmentation.
2514 * For metadata, allow allocates with smaller extents. For
2515 * data, keep it dense.
2516 */
451d7585 2517 if (btrfs_test_opt(root, SSD_SPREAD)) {
1bb91902 2518 cont1_bytes = min_bytes = bytes + empty_size;
451d7585 2519 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
1bb91902
AO
2520 cont1_bytes = bytes;
2521 min_bytes = block_group->sectorsize;
2522 } else {
2523 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
2524 min_bytes = block_group->sectorsize;
2525 }
fa9c0d79 2526
34d52cb6 2527 spin_lock(&ctl->tree_lock);
7d0d2e8e
JB
2528
2529 /*
2530 * If we know we don't have enough space to make a cluster don't even
2531 * bother doing all the work to try and find one.
2532 */
1bb91902 2533 if (ctl->free_space < bytes) {
34d52cb6 2534 spin_unlock(&ctl->tree_lock);
7d0d2e8e
JB
2535 return -ENOSPC;
2536 }
2537
fa9c0d79
CM
2538 spin_lock(&cluster->lock);
2539
2540 /* someone already found a cluster, hooray */
2541 if (cluster->block_group) {
2542 ret = 0;
2543 goto out;
2544 }
fa9c0d79 2545
3f7de037
JB
2546 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
2547 min_bytes);
2548
2549 INIT_LIST_HEAD(&bitmaps);
86d4a77b 2550 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
1bb91902
AO
2551 bytes + empty_size,
2552 cont1_bytes, min_bytes);
4e69b598 2553 if (ret)
86d4a77b 2554 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
1bb91902
AO
2555 offset, bytes + empty_size,
2556 cont1_bytes, min_bytes);
86d4a77b
JB
2557
2558 /* Clear our temporary list */
2559 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2560 list_del_init(&entry->list);
fa9c0d79 2561
4e69b598
JB
2562 if (!ret) {
2563 atomic_inc(&block_group->count);
2564 list_add_tail(&cluster->block_group_list,
2565 &block_group->cluster_list);
2566 cluster->block_group = block_group;
3f7de037
JB
2567 } else {
2568 trace_btrfs_failed_cluster_setup(block_group);
fa9c0d79 2569 }
fa9c0d79
CM
2570out:
2571 spin_unlock(&cluster->lock);
34d52cb6 2572 spin_unlock(&ctl->tree_lock);
fa9c0d79
CM
2573
2574 return ret;
2575}
2576
2577/*
2578 * simple code to zero out a cluster
2579 */
2580void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2581{
2582 spin_lock_init(&cluster->lock);
2583 spin_lock_init(&cluster->refill_lock);
6bef4d31 2584 cluster->root = RB_ROOT;
fa9c0d79
CM
2585 cluster->max_size = 0;
2586 INIT_LIST_HEAD(&cluster->block_group_list);
2587 cluster->block_group = NULL;
2588}
2589
7fe1e641
LZ
2590static int do_trimming(struct btrfs_block_group_cache *block_group,
2591 u64 *total_trimmed, u64 start, u64 bytes,
2592 u64 reserved_start, u64 reserved_bytes)
f7039b1d 2593{
7fe1e641 2594 struct btrfs_space_info *space_info = block_group->space_info;
f7039b1d 2595 struct btrfs_fs_info *fs_info = block_group->fs_info;
7fe1e641
LZ
2596 int ret;
2597 int update = 0;
2598 u64 trimmed = 0;
f7039b1d 2599
7fe1e641
LZ
2600 spin_lock(&space_info->lock);
2601 spin_lock(&block_group->lock);
2602 if (!block_group->ro) {
2603 block_group->reserved += reserved_bytes;
2604 space_info->bytes_reserved += reserved_bytes;
2605 update = 1;
2606 }
2607 spin_unlock(&block_group->lock);
2608 spin_unlock(&space_info->lock);
2609
2610 ret = btrfs_error_discard_extent(fs_info->extent_root,
2611 start, bytes, &trimmed);
2612 if (!ret)
2613 *total_trimmed += trimmed;
2614
2615 btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
2616
2617 if (update) {
2618 spin_lock(&space_info->lock);
2619 spin_lock(&block_group->lock);
2620 if (block_group->ro)
2621 space_info->bytes_readonly += reserved_bytes;
2622 block_group->reserved -= reserved_bytes;
2623 space_info->bytes_reserved -= reserved_bytes;
2624 spin_unlock(&space_info->lock);
2625 spin_unlock(&block_group->lock);
2626 }
2627
2628 return ret;
2629}
2630
2631static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
2632 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2633{
2634 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2635 struct btrfs_free_space *entry;
2636 struct rb_node *node;
2637 int ret = 0;
2638 u64 extent_start;
2639 u64 extent_bytes;
2640 u64 bytes;
f7039b1d
LD
2641
2642 while (start < end) {
34d52cb6 2643 spin_lock(&ctl->tree_lock);
f7039b1d 2644
34d52cb6
LZ
2645 if (ctl->free_space < minlen) {
2646 spin_unlock(&ctl->tree_lock);
f7039b1d
LD
2647 break;
2648 }
2649
34d52cb6 2650 entry = tree_search_offset(ctl, start, 0, 1);
7fe1e641 2651 if (!entry) {
34d52cb6 2652 spin_unlock(&ctl->tree_lock);
f7039b1d
LD
2653 break;
2654 }
2655
7fe1e641
LZ
2656 /* skip bitmaps */
2657 while (entry->bitmap) {
2658 node = rb_next(&entry->offset_index);
2659 if (!node) {
34d52cb6 2660 spin_unlock(&ctl->tree_lock);
7fe1e641 2661 goto out;
f7039b1d 2662 }
7fe1e641
LZ
2663 entry = rb_entry(node, struct btrfs_free_space,
2664 offset_index);
f7039b1d
LD
2665 }
2666
7fe1e641
LZ
2667 if (entry->offset >= end) {
2668 spin_unlock(&ctl->tree_lock);
2669 break;
f7039b1d
LD
2670 }
2671
7fe1e641
LZ
2672 extent_start = entry->offset;
2673 extent_bytes = entry->bytes;
2674 start = max(start, extent_start);
2675 bytes = min(extent_start + extent_bytes, end) - start;
2676 if (bytes < minlen) {
2677 spin_unlock(&ctl->tree_lock);
2678 goto next;
f7039b1d
LD
2679 }
2680
7fe1e641
LZ
2681 unlink_free_space(ctl, entry);
2682 kmem_cache_free(btrfs_free_space_cachep, entry);
2683
34d52cb6 2684 spin_unlock(&ctl->tree_lock);
f7039b1d 2685
7fe1e641
LZ
2686 ret = do_trimming(block_group, total_trimmed, start, bytes,
2687 extent_start, extent_bytes);
2688 if (ret)
2689 break;
2690next:
2691 start += bytes;
f7039b1d 2692
7fe1e641
LZ
2693 if (fatal_signal_pending(current)) {
2694 ret = -ERESTARTSYS;
2695 break;
2696 }
2697
2698 cond_resched();
2699 }
2700out:
2701 return ret;
2702}
2703
2704static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
2705 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2706{
2707 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2708 struct btrfs_free_space *entry;
2709 int ret = 0;
2710 int ret2;
2711 u64 bytes;
2712 u64 offset = offset_to_bitmap(ctl, start);
2713
2714 while (offset < end) {
2715 bool next_bitmap = false;
2716
2717 spin_lock(&ctl->tree_lock);
2718
2719 if (ctl->free_space < minlen) {
2720 spin_unlock(&ctl->tree_lock);
2721 break;
2722 }
2723
2724 entry = tree_search_offset(ctl, offset, 1, 0);
2725 if (!entry) {
2726 spin_unlock(&ctl->tree_lock);
2727 next_bitmap = true;
2728 goto next;
2729 }
2730
2731 bytes = minlen;
2732 ret2 = search_bitmap(ctl, entry, &start, &bytes);
2733 if (ret2 || start >= end) {
2734 spin_unlock(&ctl->tree_lock);
2735 next_bitmap = true;
2736 goto next;
2737 }
2738
2739 bytes = min(bytes, end - start);
2740 if (bytes < minlen) {
2741 spin_unlock(&ctl->tree_lock);
2742 goto next;
2743 }
2744
2745 bitmap_clear_bits(ctl, entry, start, bytes);
2746 if (entry->bytes == 0)
2747 free_bitmap(ctl, entry);
2748
2749 spin_unlock(&ctl->tree_lock);
2750
2751 ret = do_trimming(block_group, total_trimmed, start, bytes,
2752 start, bytes);
2753 if (ret)
2754 break;
2755next:
2756 if (next_bitmap) {
2757 offset += BITS_PER_BITMAP * ctl->unit;
2758 } else {
2759 start += bytes;
2760 if (start >= offset + BITS_PER_BITMAP * ctl->unit)
2761 offset += BITS_PER_BITMAP * ctl->unit;
f7039b1d 2762 }
f7039b1d
LD
2763
2764 if (fatal_signal_pending(current)) {
2765 ret = -ERESTARTSYS;
2766 break;
2767 }
2768
2769 cond_resched();
2770 }
2771
2772 return ret;
2773}
581bb050 2774
7fe1e641
LZ
2775int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2776 u64 *trimmed, u64 start, u64 end, u64 minlen)
2777{
2778 int ret;
2779
2780 *trimmed = 0;
2781
2782 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
2783 if (ret)
2784 return ret;
2785
2786 ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
2787
2788 return ret;
2789}
2790
581bb050
LZ
2791/*
2792 * Find the left-most item in the cache tree, and then return the
2793 * smallest inode number in the item.
2794 *
2795 * Note: the returned inode number may not be the smallest one in
2796 * the tree, if the left-most item is a bitmap.
2797 */
2798u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2799{
2800 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2801 struct btrfs_free_space *entry = NULL;
2802 u64 ino = 0;
2803
2804 spin_lock(&ctl->tree_lock);
2805
2806 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2807 goto out;
2808
2809 entry = rb_entry(rb_first(&ctl->free_space_offset),
2810 struct btrfs_free_space, offset_index);
2811
2812 if (!entry->bitmap) {
2813 ino = entry->offset;
2814
2815 unlink_free_space(ctl, entry);
2816 entry->offset++;
2817 entry->bytes--;
2818 if (!entry->bytes)
2819 kmem_cache_free(btrfs_free_space_cachep, entry);
2820 else
2821 link_free_space(ctl, entry);
2822 } else {
2823 u64 offset = 0;
2824 u64 count = 1;
2825 int ret;
2826
2827 ret = search_bitmap(ctl, entry, &offset, &count);
79787eaa 2828 /* Logic error; Should be empty if it can't find anything */
581bb050
LZ
2829 BUG_ON(ret);
2830
2831 ino = offset;
2832 bitmap_clear_bits(ctl, entry, offset, 1);
2833 if (entry->bytes == 0)
2834 free_bitmap(ctl, entry);
2835 }
2836out:
2837 spin_unlock(&ctl->tree_lock);
2838
2839 return ino;
2840}
82d5902d
LZ
2841
2842struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2843 struct btrfs_path *path)
2844{
2845 struct inode *inode = NULL;
2846
2847 spin_lock(&root->cache_lock);
2848 if (root->cache_inode)
2849 inode = igrab(root->cache_inode);
2850 spin_unlock(&root->cache_lock);
2851 if (inode)
2852 return inode;
2853
2854 inode = __lookup_free_space_inode(root, path, 0);
2855 if (IS_ERR(inode))
2856 return inode;
2857
2858 spin_lock(&root->cache_lock);
7841cb28 2859 if (!btrfs_fs_closing(root->fs_info))
82d5902d
LZ
2860 root->cache_inode = igrab(inode);
2861 spin_unlock(&root->cache_lock);
2862
2863 return inode;
2864}
2865
2866int create_free_ino_inode(struct btrfs_root *root,
2867 struct btrfs_trans_handle *trans,
2868 struct btrfs_path *path)
2869{
2870 return __create_free_space_inode(root, trans, path,
2871 BTRFS_FREE_INO_OBJECTID, 0);
2872}
2873
2874int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2875{
2876 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2877 struct btrfs_path *path;
2878 struct inode *inode;
2879 int ret = 0;
2880 u64 root_gen = btrfs_root_generation(&root->root_item);
2881
4b9465cb
CM
2882 if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2883 return 0;
2884
82d5902d
LZ
2885 /*
2886 * If we're unmounting then just return, since this does a search on the
2887 * normal root and not the commit root and we could deadlock.
2888 */
7841cb28 2889 if (btrfs_fs_closing(fs_info))
82d5902d
LZ
2890 return 0;
2891
2892 path = btrfs_alloc_path();
2893 if (!path)
2894 return 0;
2895
2896 inode = lookup_free_ino_inode(root, path);
2897 if (IS_ERR(inode))
2898 goto out;
2899
2900 if (root_gen != BTRFS_I(inode)->generation)
2901 goto out_put;
2902
2903 ret = __load_free_space_cache(root, inode, ctl, path, 0);
2904
2905 if (ret < 0)
2906 printk(KERN_ERR "btrfs: failed to load free ino cache for "
2907 "root %llu\n", root->root_key.objectid);
2908out_put:
2909 iput(inode);
2910out:
2911 btrfs_free_path(path);
2912 return ret;
2913}
2914
2915int btrfs_write_out_ino_cache(struct btrfs_root *root,
2916 struct btrfs_trans_handle *trans,
2917 struct btrfs_path *path)
2918{
2919 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2920 struct inode *inode;
2921 int ret;
2922
4b9465cb
CM
2923 if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2924 return 0;
2925
82d5902d
LZ
2926 inode = lookup_free_ino_inode(root, path);
2927 if (IS_ERR(inode))
2928 return 0;
2929
2930 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
c09544e0
JB
2931 if (ret) {
2932 btrfs_delalloc_release_metadata(inode, inode->i_size);
2933#ifdef DEBUG
82d5902d
LZ
2934 printk(KERN_ERR "btrfs: failed to write free ino cache "
2935 "for root %llu\n", root->root_key.objectid);
c09544e0
JB
2936#endif
2937 }
82d5902d
LZ
2938
2939 iput(inode);
2940 return ret;
2941}