]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/free-space-cache.c
Btrfs: don't wait as long for more batches during SSD log commit
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / free-space-cache.c
CommitLineData
0f9dd46c
JB
1/*
2 * Copyright (C) 2008 Red Hat. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
96303081 19#include <linux/pagemap.h>
0f9dd46c 20#include <linux/sched.h>
5a0e3ad6 21#include <linux/slab.h>
96303081 22#include <linux/math64.h>
6ab60601 23#include <linux/ratelimit.h>
0f9dd46c 24#include "ctree.h"
fa9c0d79
CM
25#include "free-space-cache.h"
26#include "transaction.h"
0af3d00b 27#include "disk-io.h"
43be2146 28#include "extent_io.h"
581bb050 29#include "inode-map.h"
fa9c0d79 30
96303081
JB
31#define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
32#define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
0f9dd46c 33
34d52cb6 34static int link_free_space(struct btrfs_free_space_ctl *ctl,
0cb59c99
JB
35 struct btrfs_free_space *info);
36
0414efae
LZ
37static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
38 struct btrfs_path *path,
39 u64 offset)
0af3d00b
JB
40{
41 struct btrfs_key key;
42 struct btrfs_key location;
43 struct btrfs_disk_key disk_key;
44 struct btrfs_free_space_header *header;
45 struct extent_buffer *leaf;
46 struct inode *inode = NULL;
47 int ret;
48
0af3d00b 49 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 50 key.offset = offset;
0af3d00b
JB
51 key.type = 0;
52
53 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
54 if (ret < 0)
55 return ERR_PTR(ret);
56 if (ret > 0) {
b3b4aa74 57 btrfs_release_path(path);
0af3d00b
JB
58 return ERR_PTR(-ENOENT);
59 }
60
61 leaf = path->nodes[0];
62 header = btrfs_item_ptr(leaf, path->slots[0],
63 struct btrfs_free_space_header);
64 btrfs_free_space_key(leaf, header, &disk_key);
65 btrfs_disk_key_to_cpu(&location, &disk_key);
b3b4aa74 66 btrfs_release_path(path);
0af3d00b
JB
67
68 inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
69 if (!inode)
70 return ERR_PTR(-ENOENT);
71 if (IS_ERR(inode))
72 return inode;
73 if (is_bad_inode(inode)) {
74 iput(inode);
75 return ERR_PTR(-ENOENT);
76 }
77
adae52b9
MX
78 inode->i_mapping->flags &= ~__GFP_FS;
79
0414efae
LZ
80 return inode;
81}
82
83struct inode *lookup_free_space_inode(struct btrfs_root *root,
84 struct btrfs_block_group_cache
85 *block_group, struct btrfs_path *path)
86{
87 struct inode *inode = NULL;
5b0e95bf 88 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
0414efae
LZ
89
90 spin_lock(&block_group->lock);
91 if (block_group->inode)
92 inode = igrab(block_group->inode);
93 spin_unlock(&block_group->lock);
94 if (inode)
95 return inode;
96
97 inode = __lookup_free_space_inode(root, path,
98 block_group->key.objectid);
99 if (IS_ERR(inode))
100 return inode;
101
0af3d00b 102 spin_lock(&block_group->lock);
5b0e95bf 103 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
2f356126 104 printk(KERN_INFO "Old style space inode found, converting.\n");
5b0e95bf
JB
105 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
106 BTRFS_INODE_NODATACOW;
2f356126
JB
107 block_group->disk_cache_state = BTRFS_DC_CLEAR;
108 }
109
300e4f8a 110 if (!block_group->iref) {
0af3d00b
JB
111 block_group->inode = igrab(inode);
112 block_group->iref = 1;
113 }
114 spin_unlock(&block_group->lock);
115
116 return inode;
117}
118
0414efae
LZ
119int __create_free_space_inode(struct btrfs_root *root,
120 struct btrfs_trans_handle *trans,
121 struct btrfs_path *path, u64 ino, u64 offset)
0af3d00b
JB
122{
123 struct btrfs_key key;
124 struct btrfs_disk_key disk_key;
125 struct btrfs_free_space_header *header;
126 struct btrfs_inode_item *inode_item;
127 struct extent_buffer *leaf;
5b0e95bf 128 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
0af3d00b
JB
129 int ret;
130
0414efae 131 ret = btrfs_insert_empty_inode(trans, root, path, ino);
0af3d00b
JB
132 if (ret)
133 return ret;
134
5b0e95bf
JB
135 /* We inline crc's for the free disk space cache */
136 if (ino != BTRFS_FREE_INO_OBJECTID)
137 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
138
0af3d00b
JB
139 leaf = path->nodes[0];
140 inode_item = btrfs_item_ptr(leaf, path->slots[0],
141 struct btrfs_inode_item);
142 btrfs_item_key(leaf, &disk_key, path->slots[0]);
143 memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
144 sizeof(*inode_item));
145 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
146 btrfs_set_inode_size(leaf, inode_item, 0);
147 btrfs_set_inode_nbytes(leaf, inode_item, 0);
148 btrfs_set_inode_uid(leaf, inode_item, 0);
149 btrfs_set_inode_gid(leaf, inode_item, 0);
150 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
5b0e95bf 151 btrfs_set_inode_flags(leaf, inode_item, flags);
0af3d00b
JB
152 btrfs_set_inode_nlink(leaf, inode_item, 1);
153 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
0414efae 154 btrfs_set_inode_block_group(leaf, inode_item, offset);
0af3d00b 155 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 156 btrfs_release_path(path);
0af3d00b
JB
157
158 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 159 key.offset = offset;
0af3d00b
JB
160 key.type = 0;
161
162 ret = btrfs_insert_empty_item(trans, root, path, &key,
163 sizeof(struct btrfs_free_space_header));
164 if (ret < 0) {
b3b4aa74 165 btrfs_release_path(path);
0af3d00b
JB
166 return ret;
167 }
168 leaf = path->nodes[0];
169 header = btrfs_item_ptr(leaf, path->slots[0],
170 struct btrfs_free_space_header);
171 memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
172 btrfs_set_free_space_key(leaf, header, &disk_key);
173 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 174 btrfs_release_path(path);
0af3d00b
JB
175
176 return 0;
177}
178
0414efae
LZ
179int create_free_space_inode(struct btrfs_root *root,
180 struct btrfs_trans_handle *trans,
181 struct btrfs_block_group_cache *block_group,
182 struct btrfs_path *path)
183{
184 int ret;
185 u64 ino;
186
187 ret = btrfs_find_free_objectid(root, &ino);
188 if (ret < 0)
189 return ret;
190
191 return __create_free_space_inode(root, trans, path, ino,
192 block_group->key.objectid);
193}
194
0af3d00b
JB
195int btrfs_truncate_free_space_cache(struct btrfs_root *root,
196 struct btrfs_trans_handle *trans,
197 struct btrfs_path *path,
198 struct inode *inode)
199{
65450aa6 200 struct btrfs_block_rsv *rsv;
0af3d00b
JB
201 loff_t oldsize;
202 int ret = 0;
203
65450aa6 204 rsv = trans->block_rsv;
0af3d00b 205 trans->block_rsv = root->orphan_block_rsv;
36ba022a 206 ret = btrfs_block_rsv_check(root, root->orphan_block_rsv, 5);
0af3d00b
JB
207 if (ret)
208 return ret;
209
210 oldsize = i_size_read(inode);
211 btrfs_i_size_write(inode, 0);
212 truncate_pagecache(inode, oldsize, 0);
213
214 /*
215 * We don't need an orphan item because truncating the free space cache
216 * will never be split across transactions.
217 */
218 ret = btrfs_truncate_inode_items(trans, root, inode,
219 0, BTRFS_EXTENT_DATA_KEY);
65450aa6
LB
220
221 trans->block_rsv = rsv;
0af3d00b
JB
222 if (ret) {
223 WARN_ON(1);
224 return ret;
225 }
226
82d5902d
LZ
227 ret = btrfs_update_inode(trans, root, inode);
228 return ret;
0af3d00b
JB
229}
230
9d66e233
JB
231static int readahead_cache(struct inode *inode)
232{
233 struct file_ra_state *ra;
234 unsigned long last_index;
235
236 ra = kzalloc(sizeof(*ra), GFP_NOFS);
237 if (!ra)
238 return -ENOMEM;
239
240 file_ra_state_init(ra, inode->i_mapping);
241 last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
242
243 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
244
245 kfree(ra);
246
247 return 0;
248}
249
a67509c3
JB
250struct io_ctl {
251 void *cur, *orig;
252 struct page *page;
253 struct page **pages;
254 struct btrfs_root *root;
255 unsigned long size;
256 int index;
257 int num_pages;
5b0e95bf 258 unsigned check_crcs:1;
a67509c3
JB
259};
260
261static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
262 struct btrfs_root *root)
263{
264 memset(io_ctl, 0, sizeof(struct io_ctl));
265 io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
266 PAGE_CACHE_SHIFT;
267 io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages,
268 GFP_NOFS);
269 if (!io_ctl->pages)
270 return -ENOMEM;
271 io_ctl->root = root;
5b0e95bf
JB
272 if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
273 io_ctl->check_crcs = 1;
a67509c3
JB
274 return 0;
275}
276
277static void io_ctl_free(struct io_ctl *io_ctl)
278{
279 kfree(io_ctl->pages);
280}
281
282static void io_ctl_unmap_page(struct io_ctl *io_ctl)
283{
284 if (io_ctl->cur) {
285 kunmap(io_ctl->page);
286 io_ctl->cur = NULL;
287 io_ctl->orig = NULL;
288 }
289}
290
291static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
292{
293 WARN_ON(io_ctl->cur);
294 BUG_ON(io_ctl->index >= io_ctl->num_pages);
295 io_ctl->page = io_ctl->pages[io_ctl->index++];
296 io_ctl->cur = kmap(io_ctl->page);
297 io_ctl->orig = io_ctl->cur;
298 io_ctl->size = PAGE_CACHE_SIZE;
299 if (clear)
300 memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
301}
302
303static void io_ctl_drop_pages(struct io_ctl *io_ctl)
304{
305 int i;
306
307 io_ctl_unmap_page(io_ctl);
308
309 for (i = 0; i < io_ctl->num_pages; i++) {
310 ClearPageChecked(io_ctl->pages[i]);
311 unlock_page(io_ctl->pages[i]);
312 page_cache_release(io_ctl->pages[i]);
313 }
314}
315
316static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
317 int uptodate)
318{
319 struct page *page;
320 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
321 int i;
322
323 for (i = 0; i < io_ctl->num_pages; i++) {
324 page = find_or_create_page(inode->i_mapping, i, mask);
325 if (!page) {
326 io_ctl_drop_pages(io_ctl);
327 return -ENOMEM;
328 }
329 io_ctl->pages[i] = page;
330 if (uptodate && !PageUptodate(page)) {
331 btrfs_readpage(NULL, page);
332 lock_page(page);
333 if (!PageUptodate(page)) {
334 printk(KERN_ERR "btrfs: error reading free "
335 "space cache\n");
336 io_ctl_drop_pages(io_ctl);
337 return -EIO;
338 }
339 }
340 }
341
342 return 0;
343}
344
345static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
346{
347 u64 *val;
348
349 io_ctl_map_page(io_ctl, 1);
350
351 /*
5b0e95bf
JB
352 * Skip the csum areas. If we don't check crcs then we just have a
353 * 64bit chunk at the front of the first page.
a67509c3 354 */
5b0e95bf
JB
355 if (io_ctl->check_crcs) {
356 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
357 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
358 } else {
359 io_ctl->cur += sizeof(u64);
360 io_ctl->size -= sizeof(u64) * 2;
361 }
a67509c3
JB
362
363 val = io_ctl->cur;
364 *val = cpu_to_le64(generation);
365 io_ctl->cur += sizeof(u64);
a67509c3
JB
366}
367
368static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
369{
370 u64 *gen;
371
5b0e95bf
JB
372 /*
373 * Skip the crc area. If we don't check crcs then we just have a 64bit
374 * chunk at the front of the first page.
375 */
376 if (io_ctl->check_crcs) {
377 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
378 io_ctl->size -= sizeof(u64) +
379 (sizeof(u32) * io_ctl->num_pages);
380 } else {
381 io_ctl->cur += sizeof(u64);
382 io_ctl->size -= sizeof(u64) * 2;
383 }
a67509c3 384
a67509c3
JB
385 gen = io_ctl->cur;
386 if (le64_to_cpu(*gen) != generation) {
387 printk_ratelimited(KERN_ERR "btrfs: space cache generation "
388 "(%Lu) does not match inode (%Lu)\n", *gen,
389 generation);
390 io_ctl_unmap_page(io_ctl);
391 return -EIO;
392 }
393 io_ctl->cur += sizeof(u64);
5b0e95bf
JB
394 return 0;
395}
396
397static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
398{
399 u32 *tmp;
400 u32 crc = ~(u32)0;
401 unsigned offset = 0;
402
403 if (!io_ctl->check_crcs) {
404 io_ctl_unmap_page(io_ctl);
405 return;
406 }
407
408 if (index == 0)
409 offset = sizeof(u32) * io_ctl->num_pages;;
410
411 crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
412 PAGE_CACHE_SIZE - offset);
413 btrfs_csum_final(crc, (char *)&crc);
414 io_ctl_unmap_page(io_ctl);
415 tmp = kmap(io_ctl->pages[0]);
416 tmp += index;
417 *tmp = crc;
418 kunmap(io_ctl->pages[0]);
419}
420
421static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
422{
423 u32 *tmp, val;
424 u32 crc = ~(u32)0;
425 unsigned offset = 0;
426
427 if (!io_ctl->check_crcs) {
428 io_ctl_map_page(io_ctl, 0);
429 return 0;
430 }
431
432 if (index == 0)
433 offset = sizeof(u32) * io_ctl->num_pages;
434
435 tmp = kmap(io_ctl->pages[0]);
436 tmp += index;
437 val = *tmp;
438 kunmap(io_ctl->pages[0]);
439
440 io_ctl_map_page(io_ctl, 0);
441 crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
442 PAGE_CACHE_SIZE - offset);
443 btrfs_csum_final(crc, (char *)&crc);
444 if (val != crc) {
445 printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free "
446 "space cache\n");
447 io_ctl_unmap_page(io_ctl);
448 return -EIO;
449 }
450
a67509c3
JB
451 return 0;
452}
453
454static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
455 void *bitmap)
456{
457 struct btrfs_free_space_entry *entry;
458
459 if (!io_ctl->cur)
460 return -ENOSPC;
461
462 entry = io_ctl->cur;
463 entry->offset = cpu_to_le64(offset);
464 entry->bytes = cpu_to_le64(bytes);
465 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
466 BTRFS_FREE_SPACE_EXTENT;
467 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
468 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
469
470 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
471 return 0;
472
5b0e95bf 473 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
474
475 /* No more pages to map */
476 if (io_ctl->index >= io_ctl->num_pages)
477 return 0;
478
479 /* map the next page */
480 io_ctl_map_page(io_ctl, 1);
481 return 0;
482}
483
484static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
485{
486 if (!io_ctl->cur)
487 return -ENOSPC;
488
489 /*
490 * If we aren't at the start of the current page, unmap this one and
491 * map the next one if there is any left.
492 */
493 if (io_ctl->cur != io_ctl->orig) {
5b0e95bf 494 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
495 if (io_ctl->index >= io_ctl->num_pages)
496 return -ENOSPC;
497 io_ctl_map_page(io_ctl, 0);
498 }
499
500 memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
5b0e95bf 501 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
502 if (io_ctl->index < io_ctl->num_pages)
503 io_ctl_map_page(io_ctl, 0);
504 return 0;
505}
506
507static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
508{
5b0e95bf
JB
509 /*
510 * If we're not on the boundary we know we've modified the page and we
511 * need to crc the page.
512 */
513 if (io_ctl->cur != io_ctl->orig)
514 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
515 else
516 io_ctl_unmap_page(io_ctl);
a67509c3
JB
517
518 while (io_ctl->index < io_ctl->num_pages) {
519 io_ctl_map_page(io_ctl, 1);
5b0e95bf 520 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
521 }
522}
523
5b0e95bf
JB
524static int io_ctl_read_entry(struct io_ctl *io_ctl,
525 struct btrfs_free_space *entry, u8 *type)
a67509c3
JB
526{
527 struct btrfs_free_space_entry *e;
a67509c3
JB
528
529 e = io_ctl->cur;
530 entry->offset = le64_to_cpu(e->offset);
531 entry->bytes = le64_to_cpu(e->bytes);
5b0e95bf 532 *type = e->type;
a67509c3
JB
533 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
534 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
535
536 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
5b0e95bf 537 return 0;
a67509c3
JB
538
539 io_ctl_unmap_page(io_ctl);
540
541 if (io_ctl->index >= io_ctl->num_pages)
5b0e95bf 542 return 0;
a67509c3 543
5b0e95bf 544 return io_ctl_check_crc(io_ctl, io_ctl->index);
a67509c3
JB
545}
546
5b0e95bf
JB
547static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
548 struct btrfs_free_space *entry)
a67509c3 549{
5b0e95bf
JB
550 int ret;
551
552 if (io_ctl->cur && io_ctl->cur != io_ctl->orig)
a67509c3 553 io_ctl_unmap_page(io_ctl);
5b0e95bf
JB
554
555 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
556 if (ret)
557 return ret;
558
a67509c3
JB
559 memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
560 io_ctl_unmap_page(io_ctl);
5b0e95bf
JB
561
562 return 0;
a67509c3
JB
563}
564
0414efae
LZ
565int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
566 struct btrfs_free_space_ctl *ctl,
567 struct btrfs_path *path, u64 offset)
9d66e233 568{
9d66e233
JB
569 struct btrfs_free_space_header *header;
570 struct extent_buffer *leaf;
a67509c3 571 struct io_ctl io_ctl;
9d66e233 572 struct btrfs_key key;
a67509c3 573 struct btrfs_free_space *e, *n;
9d66e233
JB
574 struct list_head bitmaps;
575 u64 num_entries;
576 u64 num_bitmaps;
577 u64 generation;
a67509c3 578 u8 type;
f6a39829 579 int ret = 0;
9d66e233
JB
580
581 INIT_LIST_HEAD(&bitmaps);
582
9d66e233 583 /* Nothing in the space cache, goodbye */
0414efae 584 if (!i_size_read(inode))
a67509c3 585 return 0;
9d66e233
JB
586
587 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 588 key.offset = offset;
9d66e233
JB
589 key.type = 0;
590
591 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0414efae 592 if (ret < 0)
a67509c3 593 return 0;
0414efae 594 else if (ret > 0) {
945d8962 595 btrfs_release_path(path);
a67509c3 596 return 0;
9d66e233
JB
597 }
598
0414efae
LZ
599 ret = -1;
600
9d66e233
JB
601 leaf = path->nodes[0];
602 header = btrfs_item_ptr(leaf, path->slots[0],
603 struct btrfs_free_space_header);
604 num_entries = btrfs_free_space_entries(leaf, header);
605 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
606 generation = btrfs_free_space_generation(leaf, header);
945d8962 607 btrfs_release_path(path);
9d66e233
JB
608
609 if (BTRFS_I(inode)->generation != generation) {
610 printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
0414efae 611 " not match free space cache generation (%llu)\n",
9d66e233 612 (unsigned long long)BTRFS_I(inode)->generation,
0414efae 613 (unsigned long long)generation);
a67509c3 614 return 0;
9d66e233
JB
615 }
616
617 if (!num_entries)
a67509c3 618 return 0;
9d66e233 619
a67509c3 620 io_ctl_init(&io_ctl, inode, root);
9d66e233 621 ret = readahead_cache(inode);
0414efae 622 if (ret)
9d66e233 623 goto out;
9d66e233 624
a67509c3
JB
625 ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
626 if (ret)
627 goto out;
9d66e233 628
5b0e95bf
JB
629 ret = io_ctl_check_crc(&io_ctl, 0);
630 if (ret)
631 goto free_cache;
632
a67509c3
JB
633 ret = io_ctl_check_generation(&io_ctl, generation);
634 if (ret)
635 goto free_cache;
9d66e233 636
a67509c3
JB
637 while (num_entries) {
638 e = kmem_cache_zalloc(btrfs_free_space_cachep,
639 GFP_NOFS);
640 if (!e)
9d66e233 641 goto free_cache;
9d66e233 642
5b0e95bf
JB
643 ret = io_ctl_read_entry(&io_ctl, e, &type);
644 if (ret) {
645 kmem_cache_free(btrfs_free_space_cachep, e);
646 goto free_cache;
647 }
648
a67509c3
JB
649 if (!e->bytes) {
650 kmem_cache_free(btrfs_free_space_cachep, e);
651 goto free_cache;
9d66e233 652 }
a67509c3
JB
653
654 if (type == BTRFS_FREE_SPACE_EXTENT) {
655 spin_lock(&ctl->tree_lock);
656 ret = link_free_space(ctl, e);
657 spin_unlock(&ctl->tree_lock);
658 if (ret) {
659 printk(KERN_ERR "Duplicate entries in "
660 "free space cache, dumping\n");
661 kmem_cache_free(btrfs_free_space_cachep, e);
9d66e233
JB
662 goto free_cache;
663 }
a67509c3
JB
664 } else {
665 BUG_ON(!num_bitmaps);
666 num_bitmaps--;
667 e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
668 if (!e->bitmap) {
669 kmem_cache_free(
670 btrfs_free_space_cachep, e);
9d66e233
JB
671 goto free_cache;
672 }
a67509c3
JB
673 spin_lock(&ctl->tree_lock);
674 ret = link_free_space(ctl, e);
675 ctl->total_bitmaps++;
676 ctl->op->recalc_thresholds(ctl);
677 spin_unlock(&ctl->tree_lock);
678 if (ret) {
679 printk(KERN_ERR "Duplicate entries in "
680 "free space cache, dumping\n");
dc89e982 681 kmem_cache_free(btrfs_free_space_cachep, e);
9d66e233
JB
682 goto free_cache;
683 }
a67509c3 684 list_add_tail(&e->list, &bitmaps);
9d66e233
JB
685 }
686
a67509c3
JB
687 num_entries--;
688 }
9d66e233 689
a67509c3
JB
690 /*
691 * We add the bitmaps at the end of the entries in order that
692 * the bitmap entries are added to the cache.
693 */
694 list_for_each_entry_safe(e, n, &bitmaps, list) {
9d66e233 695 list_del_init(&e->list);
5b0e95bf
JB
696 ret = io_ctl_read_bitmap(&io_ctl, e);
697 if (ret)
698 goto free_cache;
9d66e233
JB
699 }
700
a67509c3 701 io_ctl_drop_pages(&io_ctl);
9d66e233
JB
702 ret = 1;
703out:
a67509c3 704 io_ctl_free(&io_ctl);
9d66e233 705 return ret;
9d66e233 706free_cache:
a67509c3 707 io_ctl_drop_pages(&io_ctl);
0414efae 708 __btrfs_remove_free_space_cache(ctl);
9d66e233
JB
709 goto out;
710}
711
0414efae
LZ
712int load_free_space_cache(struct btrfs_fs_info *fs_info,
713 struct btrfs_block_group_cache *block_group)
0cb59c99 714{
34d52cb6 715 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0414efae
LZ
716 struct btrfs_root *root = fs_info->tree_root;
717 struct inode *inode;
718 struct btrfs_path *path;
5b0e95bf 719 int ret = 0;
0414efae
LZ
720 bool matched;
721 u64 used = btrfs_block_group_used(&block_group->item);
722
723 /*
724 * If we're unmounting then just return, since this does a search on the
725 * normal root and not the commit root and we could deadlock.
726 */
7841cb28 727 if (btrfs_fs_closing(fs_info))
0414efae
LZ
728 return 0;
729
730 /*
731 * If this block group has been marked to be cleared for one reason or
732 * another then we can't trust the on disk cache, so just return.
733 */
9d66e233 734 spin_lock(&block_group->lock);
0414efae
LZ
735 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
736 spin_unlock(&block_group->lock);
737 return 0;
738 }
9d66e233 739 spin_unlock(&block_group->lock);
0414efae
LZ
740
741 path = btrfs_alloc_path();
742 if (!path)
743 return 0;
744
745 inode = lookup_free_space_inode(root, block_group, path);
746 if (IS_ERR(inode)) {
747 btrfs_free_path(path);
748 return 0;
749 }
750
5b0e95bf
JB
751 /* We may have converted the inode and made the cache invalid. */
752 spin_lock(&block_group->lock);
753 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
754 spin_unlock(&block_group->lock);
755 goto out;
756 }
757 spin_unlock(&block_group->lock);
758
0414efae
LZ
759 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
760 path, block_group->key.objectid);
761 btrfs_free_path(path);
762 if (ret <= 0)
763 goto out;
764
765 spin_lock(&ctl->tree_lock);
766 matched = (ctl->free_space == (block_group->key.offset - used -
767 block_group->bytes_super));
768 spin_unlock(&ctl->tree_lock);
769
770 if (!matched) {
771 __btrfs_remove_free_space_cache(ctl);
772 printk(KERN_ERR "block group %llu has an wrong amount of free "
773 "space\n", block_group->key.objectid);
774 ret = -1;
775 }
776out:
777 if (ret < 0) {
778 /* This cache is bogus, make sure it gets cleared */
779 spin_lock(&block_group->lock);
780 block_group->disk_cache_state = BTRFS_DC_CLEAR;
781 spin_unlock(&block_group->lock);
82d5902d 782 ret = 0;
0414efae
LZ
783
784 printk(KERN_ERR "btrfs: failed to load free space cache "
785 "for block group %llu\n", block_group->key.objectid);
786 }
787
788 iput(inode);
789 return ret;
9d66e233
JB
790}
791
c09544e0
JB
792/**
793 * __btrfs_write_out_cache - write out cached info to an inode
794 * @root - the root the inode belongs to
795 * @ctl - the free space cache we are going to write out
796 * @block_group - the block_group for this cache if it belongs to a block_group
797 * @trans - the trans handle
798 * @path - the path to use
799 * @offset - the offset for the key we'll insert
800 *
801 * This function writes out a free space cache struct to disk for quick recovery
802 * on mount. This will return 0 if it was successfull in writing the cache out,
803 * and -1 if it was not.
804 */
0414efae
LZ
805int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
806 struct btrfs_free_space_ctl *ctl,
807 struct btrfs_block_group_cache *block_group,
808 struct btrfs_trans_handle *trans,
809 struct btrfs_path *path, u64 offset)
0cb59c99
JB
810{
811 struct btrfs_free_space_header *header;
812 struct extent_buffer *leaf;
0cb59c99
JB
813 struct rb_node *node;
814 struct list_head *pos, *n;
0cb59c99 815 struct extent_state *cached_state = NULL;
43be2146
JB
816 struct btrfs_free_cluster *cluster = NULL;
817 struct extent_io_tree *unpin = NULL;
a67509c3 818 struct io_ctl io_ctl;
0cb59c99
JB
819 struct list_head bitmap_list;
820 struct btrfs_key key;
43be2146 821 u64 start, end, len;
0cb59c99
JB
822 int entries = 0;
823 int bitmaps = 0;
c09544e0
JB
824 int ret;
825 int err = -1;
0cb59c99 826
0cb59c99
JB
827 INIT_LIST_HEAD(&bitmap_list);
828
0414efae
LZ
829 if (!i_size_read(inode))
830 return -1;
2b20982e 831
a67509c3 832 io_ctl_init(&io_ctl, inode, root);
be1a12a0 833
43be2146 834 /* Get the cluster for this block_group if it exists */
0414efae 835 if (block_group && !list_empty(&block_group->cluster_list))
43be2146
JB
836 cluster = list_entry(block_group->cluster_list.next,
837 struct btrfs_free_cluster,
838 block_group_list);
839
840 /*
841 * We shouldn't have switched the pinned extents yet so this is the
842 * right one
843 */
844 unpin = root->fs_info->pinned_extents;
845
a67509c3
JB
846 /* Lock all pages first so we can lock the extent safely. */
847 io_ctl_prepare_pages(&io_ctl, inode, 0);
0cb59c99 848
0cb59c99
JB
849 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
850 0, &cached_state, GFP_NOFS);
851
43be2146
JB
852 /*
853 * When searching for pinned extents, we need to start at our start
854 * offset.
855 */
0414efae
LZ
856 if (block_group)
857 start = block_group->key.objectid;
43be2146 858
f75b130e
JB
859 node = rb_first(&ctl->free_space_offset);
860 if (!node && cluster) {
861 node = rb_first(&cluster->root);
862 cluster = NULL;
863 }
864
5b0e95bf
JB
865 /* Make sure we can fit our crcs into the first page */
866 if (io_ctl.check_crcs &&
867 (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) {
868 WARN_ON(1);
869 goto out_nospc;
870 }
871
a67509c3 872 io_ctl_set_generation(&io_ctl, trans->transid);
43be2146 873
a67509c3
JB
874 /* Write out the extent entries */
875 while (node) {
876 struct btrfs_free_space *e;
0cb59c99 877
a67509c3
JB
878 e = rb_entry(node, struct btrfs_free_space, offset_index);
879 entries++;
0cb59c99 880
a67509c3
JB
881 ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes,
882 e->bitmap);
883 if (ret)
884 goto out_nospc;
2f356126 885
a67509c3
JB
886 if (e->bitmap) {
887 list_add_tail(&e->list, &bitmap_list);
888 bitmaps++;
2f356126 889 }
a67509c3
JB
890 node = rb_next(node);
891 if (!node && cluster) {
892 node = rb_first(&cluster->root);
893 cluster = NULL;
43be2146 894 }
a67509c3 895 }
43be2146 896
a67509c3
JB
897 /*
898 * We want to add any pinned extents to our free space cache
899 * so we don't leak the space
900 */
901 while (block_group && (start < block_group->key.objectid +
902 block_group->key.offset)) {
903 ret = find_first_extent_bit(unpin, start, &start, &end,
904 EXTENT_DIRTY);
905 if (ret) {
906 ret = 0;
907 break;
0cb59c99 908 }
0cb59c99 909
a67509c3
JB
910 /* This pinned extent is out of our range */
911 if (start >= block_group->key.objectid +
912 block_group->key.offset)
913 break;
2f356126 914
a67509c3
JB
915 len = block_group->key.objectid +
916 block_group->key.offset - start;
917 len = min(len, end + 1 - start);
0cb59c99 918
a67509c3
JB
919 entries++;
920 ret = io_ctl_add_entry(&io_ctl, start, len, NULL);
921 if (ret)
922 goto out_nospc;
0cb59c99 923
a67509c3
JB
924 start = end + 1;
925 }
0cb59c99
JB
926
927 /* Write out the bitmaps */
928 list_for_each_safe(pos, n, &bitmap_list) {
0cb59c99
JB
929 struct btrfs_free_space *entry =
930 list_entry(pos, struct btrfs_free_space, list);
931
a67509c3
JB
932 ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap);
933 if (ret)
934 goto out_nospc;
0cb59c99 935 list_del_init(&entry->list);
be1a12a0
JB
936 }
937
0cb59c99 938 /* Zero out the rest of the pages just to make sure */
a67509c3 939 io_ctl_zero_remaining_pages(&io_ctl);
0cb59c99 940
a67509c3
JB
941 ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
942 0, i_size_read(inode), &cached_state);
943 io_ctl_drop_pages(&io_ctl);
0cb59c99
JB
944 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
945 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
946
c09544e0 947 if (ret)
2f356126 948 goto out;
be1a12a0 949
be1a12a0 950
549b4fdb
JB
951 ret = filemap_write_and_wait(inode->i_mapping);
952 if (ret)
953 goto out;
0cb59c99
JB
954
955 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 956 key.offset = offset;
0cb59c99
JB
957 key.type = 0;
958
a9b5fcdd 959 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
0cb59c99 960 if (ret < 0) {
a67509c3 961 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
5b0e95bf
JB
962 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
963 GFP_NOFS);
2f356126 964 goto out;
0cb59c99
JB
965 }
966 leaf = path->nodes[0];
967 if (ret > 0) {
968 struct btrfs_key found_key;
969 BUG_ON(!path->slots[0]);
970 path->slots[0]--;
971 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
972 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
0414efae 973 found_key.offset != offset) {
a67509c3
JB
974 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
975 inode->i_size - 1,
5b0e95bf
JB
976 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
977 NULL, GFP_NOFS);
b3b4aa74 978 btrfs_release_path(path);
2f356126 979 goto out;
0cb59c99
JB
980 }
981 }
549b4fdb
JB
982
983 BTRFS_I(inode)->generation = trans->transid;
0cb59c99
JB
984 header = btrfs_item_ptr(leaf, path->slots[0],
985 struct btrfs_free_space_header);
986 btrfs_set_free_space_entries(leaf, header, entries);
987 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
988 btrfs_set_free_space_generation(leaf, header, trans->transid);
989 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 990 btrfs_release_path(path);
0cb59c99 991
c09544e0 992 err = 0;
2f356126 993out:
a67509c3 994 io_ctl_free(&io_ctl);
c09544e0 995 if (err) {
a67509c3 996 invalidate_inode_pages2(inode->i_mapping);
0cb59c99
JB
997 BTRFS_I(inode)->generation = 0;
998 }
0cb59c99 999 btrfs_update_inode(trans, root, inode);
c09544e0 1000 return err;
a67509c3
JB
1001
1002out_nospc:
1003 list_for_each_safe(pos, n, &bitmap_list) {
1004 struct btrfs_free_space *entry =
1005 list_entry(pos, struct btrfs_free_space, list);
1006 list_del_init(&entry->list);
1007 }
1008 io_ctl_drop_pages(&io_ctl);
1009 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1010 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1011 goto out;
0414efae
LZ
1012}
1013
1014int btrfs_write_out_cache(struct btrfs_root *root,
1015 struct btrfs_trans_handle *trans,
1016 struct btrfs_block_group_cache *block_group,
1017 struct btrfs_path *path)
1018{
1019 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1020 struct inode *inode;
1021 int ret = 0;
1022
1023 root = root->fs_info->tree_root;
1024
1025 spin_lock(&block_group->lock);
1026 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1027 spin_unlock(&block_group->lock);
1028 return 0;
1029 }
1030 spin_unlock(&block_group->lock);
1031
1032 inode = lookup_free_space_inode(root, block_group, path);
1033 if (IS_ERR(inode))
1034 return 0;
1035
1036 ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
1037 path, block_group->key.objectid);
c09544e0 1038 if (ret) {
0414efae
LZ
1039 spin_lock(&block_group->lock);
1040 block_group->disk_cache_state = BTRFS_DC_ERROR;
1041 spin_unlock(&block_group->lock);
82d5902d 1042 ret = 0;
c09544e0 1043#ifdef DEBUG
0414efae
LZ
1044 printk(KERN_ERR "btrfs: failed to write free space cace "
1045 "for block group %llu\n", block_group->key.objectid);
c09544e0 1046#endif
0414efae
LZ
1047 }
1048
0cb59c99
JB
1049 iput(inode);
1050 return ret;
1051}
1052
34d52cb6 1053static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
96303081 1054 u64 offset)
0f9dd46c 1055{
96303081
JB
1056 BUG_ON(offset < bitmap_start);
1057 offset -= bitmap_start;
34d52cb6 1058 return (unsigned long)(div_u64(offset, unit));
96303081 1059}
0f9dd46c 1060
34d52cb6 1061static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
96303081 1062{
34d52cb6 1063 return (unsigned long)(div_u64(bytes, unit));
96303081 1064}
0f9dd46c 1065
34d52cb6 1066static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1067 u64 offset)
1068{
1069 u64 bitmap_start;
1070 u64 bytes_per_bitmap;
0f9dd46c 1071
34d52cb6
LZ
1072 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1073 bitmap_start = offset - ctl->start;
96303081
JB
1074 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1075 bitmap_start *= bytes_per_bitmap;
34d52cb6 1076 bitmap_start += ctl->start;
0f9dd46c 1077
96303081 1078 return bitmap_start;
0f9dd46c
JB
1079}
1080
96303081
JB
1081static int tree_insert_offset(struct rb_root *root, u64 offset,
1082 struct rb_node *node, int bitmap)
0f9dd46c
JB
1083{
1084 struct rb_node **p = &root->rb_node;
1085 struct rb_node *parent = NULL;
1086 struct btrfs_free_space *info;
1087
1088 while (*p) {
1089 parent = *p;
96303081 1090 info = rb_entry(parent, struct btrfs_free_space, offset_index);
0f9dd46c 1091
96303081 1092 if (offset < info->offset) {
0f9dd46c 1093 p = &(*p)->rb_left;
96303081 1094 } else if (offset > info->offset) {
0f9dd46c 1095 p = &(*p)->rb_right;
96303081
JB
1096 } else {
1097 /*
1098 * we could have a bitmap entry and an extent entry
1099 * share the same offset. If this is the case, we want
1100 * the extent entry to always be found first if we do a
1101 * linear search through the tree, since we want to have
1102 * the quickest allocation time, and allocating from an
1103 * extent is faster than allocating from a bitmap. So
1104 * if we're inserting a bitmap and we find an entry at
1105 * this offset, we want to go right, or after this entry
1106 * logically. If we are inserting an extent and we've
1107 * found a bitmap, we want to go left, or before
1108 * logically.
1109 */
1110 if (bitmap) {
207dde82
JB
1111 if (info->bitmap) {
1112 WARN_ON_ONCE(1);
1113 return -EEXIST;
1114 }
96303081
JB
1115 p = &(*p)->rb_right;
1116 } else {
207dde82
JB
1117 if (!info->bitmap) {
1118 WARN_ON_ONCE(1);
1119 return -EEXIST;
1120 }
96303081
JB
1121 p = &(*p)->rb_left;
1122 }
1123 }
0f9dd46c
JB
1124 }
1125
1126 rb_link_node(node, parent, p);
1127 rb_insert_color(node, root);
1128
1129 return 0;
1130}
1131
1132/*
70cb0743
JB
1133 * searches the tree for the given offset.
1134 *
96303081
JB
1135 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1136 * want a section that has at least bytes size and comes at or after the given
1137 * offset.
0f9dd46c 1138 */
96303081 1139static struct btrfs_free_space *
34d52cb6 1140tree_search_offset(struct btrfs_free_space_ctl *ctl,
96303081 1141 u64 offset, int bitmap_only, int fuzzy)
0f9dd46c 1142{
34d52cb6 1143 struct rb_node *n = ctl->free_space_offset.rb_node;
96303081
JB
1144 struct btrfs_free_space *entry, *prev = NULL;
1145
1146 /* find entry that is closest to the 'offset' */
1147 while (1) {
1148 if (!n) {
1149 entry = NULL;
1150 break;
1151 }
0f9dd46c 1152
0f9dd46c 1153 entry = rb_entry(n, struct btrfs_free_space, offset_index);
96303081 1154 prev = entry;
0f9dd46c 1155
96303081 1156 if (offset < entry->offset)
0f9dd46c 1157 n = n->rb_left;
96303081 1158 else if (offset > entry->offset)
0f9dd46c 1159 n = n->rb_right;
96303081 1160 else
0f9dd46c 1161 break;
0f9dd46c
JB
1162 }
1163
96303081
JB
1164 if (bitmap_only) {
1165 if (!entry)
1166 return NULL;
1167 if (entry->bitmap)
1168 return entry;
0f9dd46c 1169
96303081
JB
1170 /*
1171 * bitmap entry and extent entry may share same offset,
1172 * in that case, bitmap entry comes after extent entry.
1173 */
1174 n = rb_next(n);
1175 if (!n)
1176 return NULL;
1177 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1178 if (entry->offset != offset)
1179 return NULL;
0f9dd46c 1180
96303081
JB
1181 WARN_ON(!entry->bitmap);
1182 return entry;
1183 } else if (entry) {
1184 if (entry->bitmap) {
0f9dd46c 1185 /*
96303081
JB
1186 * if previous extent entry covers the offset,
1187 * we should return it instead of the bitmap entry
0f9dd46c 1188 */
96303081
JB
1189 n = &entry->offset_index;
1190 while (1) {
1191 n = rb_prev(n);
1192 if (!n)
1193 break;
1194 prev = rb_entry(n, struct btrfs_free_space,
1195 offset_index);
1196 if (!prev->bitmap) {
1197 if (prev->offset + prev->bytes > offset)
1198 entry = prev;
1199 break;
1200 }
0f9dd46c 1201 }
96303081
JB
1202 }
1203 return entry;
1204 }
1205
1206 if (!prev)
1207 return NULL;
1208
1209 /* find last entry before the 'offset' */
1210 entry = prev;
1211 if (entry->offset > offset) {
1212 n = rb_prev(&entry->offset_index);
1213 if (n) {
1214 entry = rb_entry(n, struct btrfs_free_space,
1215 offset_index);
1216 BUG_ON(entry->offset > offset);
0f9dd46c 1217 } else {
96303081
JB
1218 if (fuzzy)
1219 return entry;
1220 else
1221 return NULL;
0f9dd46c
JB
1222 }
1223 }
1224
96303081
JB
1225 if (entry->bitmap) {
1226 n = &entry->offset_index;
1227 while (1) {
1228 n = rb_prev(n);
1229 if (!n)
1230 break;
1231 prev = rb_entry(n, struct btrfs_free_space,
1232 offset_index);
1233 if (!prev->bitmap) {
1234 if (prev->offset + prev->bytes > offset)
1235 return prev;
1236 break;
1237 }
1238 }
34d52cb6 1239 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
96303081
JB
1240 return entry;
1241 } else if (entry->offset + entry->bytes > offset)
1242 return entry;
1243
1244 if (!fuzzy)
1245 return NULL;
1246
1247 while (1) {
1248 if (entry->bitmap) {
1249 if (entry->offset + BITS_PER_BITMAP *
34d52cb6 1250 ctl->unit > offset)
96303081
JB
1251 break;
1252 } else {
1253 if (entry->offset + entry->bytes > offset)
1254 break;
1255 }
1256
1257 n = rb_next(&entry->offset_index);
1258 if (!n)
1259 return NULL;
1260 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1261 }
1262 return entry;
0f9dd46c
JB
1263}
1264
f333adb5 1265static inline void
34d52cb6 1266__unlink_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5 1267 struct btrfs_free_space *info)
0f9dd46c 1268{
34d52cb6
LZ
1269 rb_erase(&info->offset_index, &ctl->free_space_offset);
1270 ctl->free_extents--;
f333adb5
LZ
1271}
1272
34d52cb6 1273static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5
LZ
1274 struct btrfs_free_space *info)
1275{
34d52cb6
LZ
1276 __unlink_free_space(ctl, info);
1277 ctl->free_space -= info->bytes;
0f9dd46c
JB
1278}
1279
34d52cb6 1280static int link_free_space(struct btrfs_free_space_ctl *ctl,
0f9dd46c
JB
1281 struct btrfs_free_space *info)
1282{
1283 int ret = 0;
1284
96303081 1285 BUG_ON(!info->bitmap && !info->bytes);
34d52cb6 1286 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
96303081 1287 &info->offset_index, (info->bitmap != NULL));
0f9dd46c
JB
1288 if (ret)
1289 return ret;
1290
34d52cb6
LZ
1291 ctl->free_space += info->bytes;
1292 ctl->free_extents++;
96303081
JB
1293 return ret;
1294}
1295
34d52cb6 1296static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
96303081 1297{
34d52cb6 1298 struct btrfs_block_group_cache *block_group = ctl->private;
25891f79
JB
1299 u64 max_bytes;
1300 u64 bitmap_bytes;
1301 u64 extent_bytes;
8eb2d829 1302 u64 size = block_group->key.offset;
34d52cb6
LZ
1303 u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
1304 int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1305
1306 BUG_ON(ctl->total_bitmaps > max_bitmaps);
96303081
JB
1307
1308 /*
1309 * The goal is to keep the total amount of memory used per 1gb of space
1310 * at or below 32k, so we need to adjust how much memory we allow to be
1311 * used by extent based free space tracking
1312 */
8eb2d829
LZ
1313 if (size < 1024 * 1024 * 1024)
1314 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1315 else
1316 max_bytes = MAX_CACHE_BYTES_PER_GIG *
1317 div64_u64(size, 1024 * 1024 * 1024);
96303081 1318
25891f79
JB
1319 /*
1320 * we want to account for 1 more bitmap than what we have so we can make
1321 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1322 * we add more bitmaps.
1323 */
34d52cb6 1324 bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
96303081 1325
25891f79 1326 if (bitmap_bytes >= max_bytes) {
34d52cb6 1327 ctl->extents_thresh = 0;
25891f79
JB
1328 return;
1329 }
96303081 1330
25891f79
JB
1331 /*
1332 * we want the extent entry threshold to always be at most 1/2 the maxw
1333 * bytes we can have, or whatever is less than that.
1334 */
1335 extent_bytes = max_bytes - bitmap_bytes;
1336 extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
96303081 1337
34d52cb6 1338 ctl->extents_thresh =
25891f79 1339 div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
96303081
JB
1340}
1341
bb3ac5a4
MX
1342static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1343 struct btrfs_free_space *info,
1344 u64 offset, u64 bytes)
96303081 1345{
f38b6e75 1346 unsigned long start, count;
96303081 1347
34d52cb6
LZ
1348 start = offset_to_bit(info->offset, ctl->unit, offset);
1349 count = bytes_to_bits(bytes, ctl->unit);
f38b6e75 1350 BUG_ON(start + count > BITS_PER_BITMAP);
96303081 1351
f38b6e75 1352 bitmap_clear(info->bitmap, start, count);
96303081
JB
1353
1354 info->bytes -= bytes;
bb3ac5a4
MX
1355}
1356
1357static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1358 struct btrfs_free_space *info, u64 offset,
1359 u64 bytes)
1360{
1361 __bitmap_clear_bits(ctl, info, offset, bytes);
34d52cb6 1362 ctl->free_space -= bytes;
96303081
JB
1363}
1364
34d52cb6 1365static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
817d52f8
JB
1366 struct btrfs_free_space *info, u64 offset,
1367 u64 bytes)
96303081 1368{
f38b6e75 1369 unsigned long start, count;
96303081 1370
34d52cb6
LZ
1371 start = offset_to_bit(info->offset, ctl->unit, offset);
1372 count = bytes_to_bits(bytes, ctl->unit);
f38b6e75 1373 BUG_ON(start + count > BITS_PER_BITMAP);
96303081 1374
f38b6e75 1375 bitmap_set(info->bitmap, start, count);
96303081
JB
1376
1377 info->bytes += bytes;
34d52cb6 1378 ctl->free_space += bytes;
96303081
JB
1379}
1380
34d52cb6 1381static int search_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1382 struct btrfs_free_space *bitmap_info, u64 *offset,
1383 u64 *bytes)
1384{
1385 unsigned long found_bits = 0;
1386 unsigned long bits, i;
1387 unsigned long next_zero;
1388
34d52cb6 1389 i = offset_to_bit(bitmap_info->offset, ctl->unit,
96303081 1390 max_t(u64, *offset, bitmap_info->offset));
34d52cb6 1391 bits = bytes_to_bits(*bytes, ctl->unit);
96303081
JB
1392
1393 for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
1394 i < BITS_PER_BITMAP;
1395 i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
1396 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1397 BITS_PER_BITMAP, i);
1398 if ((next_zero - i) >= bits) {
1399 found_bits = next_zero - i;
1400 break;
1401 }
1402 i = next_zero;
1403 }
1404
1405 if (found_bits) {
34d52cb6
LZ
1406 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1407 *bytes = (u64)(found_bits) * ctl->unit;
96303081
JB
1408 return 0;
1409 }
1410
1411 return -1;
1412}
1413
34d52cb6
LZ
1414static struct btrfs_free_space *
1415find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
96303081
JB
1416{
1417 struct btrfs_free_space *entry;
1418 struct rb_node *node;
1419 int ret;
1420
34d52cb6 1421 if (!ctl->free_space_offset.rb_node)
96303081
JB
1422 return NULL;
1423
34d52cb6 1424 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
96303081
JB
1425 if (!entry)
1426 return NULL;
1427
1428 for (node = &entry->offset_index; node; node = rb_next(node)) {
1429 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1430 if (entry->bytes < *bytes)
1431 continue;
1432
1433 if (entry->bitmap) {
34d52cb6 1434 ret = search_bitmap(ctl, entry, offset, bytes);
96303081
JB
1435 if (!ret)
1436 return entry;
1437 continue;
1438 }
1439
1440 *offset = entry->offset;
1441 *bytes = entry->bytes;
1442 return entry;
1443 }
1444
1445 return NULL;
1446}
1447
34d52cb6 1448static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1449 struct btrfs_free_space *info, u64 offset)
1450{
34d52cb6 1451 info->offset = offset_to_bitmap(ctl, offset);
f019f426 1452 info->bytes = 0;
34d52cb6
LZ
1453 link_free_space(ctl, info);
1454 ctl->total_bitmaps++;
96303081 1455
34d52cb6 1456 ctl->op->recalc_thresholds(ctl);
96303081
JB
1457}
1458
34d52cb6 1459static void free_bitmap(struct btrfs_free_space_ctl *ctl,
edf6e2d1
LZ
1460 struct btrfs_free_space *bitmap_info)
1461{
34d52cb6 1462 unlink_free_space(ctl, bitmap_info);
edf6e2d1 1463 kfree(bitmap_info->bitmap);
dc89e982 1464 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
34d52cb6
LZ
1465 ctl->total_bitmaps--;
1466 ctl->op->recalc_thresholds(ctl);
edf6e2d1
LZ
1467}
1468
34d52cb6 1469static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1470 struct btrfs_free_space *bitmap_info,
1471 u64 *offset, u64 *bytes)
1472{
1473 u64 end;
6606bb97
JB
1474 u64 search_start, search_bytes;
1475 int ret;
96303081
JB
1476
1477again:
34d52cb6 1478 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
96303081 1479
6606bb97
JB
1480 /*
1481 * XXX - this can go away after a few releases.
1482 *
1483 * since the only user of btrfs_remove_free_space is the tree logging
1484 * stuff, and the only way to test that is under crash conditions, we
1485 * want to have this debug stuff here just in case somethings not
1486 * working. Search the bitmap for the space we are trying to use to
1487 * make sure its actually there. If its not there then we need to stop
1488 * because something has gone wrong.
1489 */
1490 search_start = *offset;
1491 search_bytes = *bytes;
13dbc089 1492 search_bytes = min(search_bytes, end - search_start + 1);
34d52cb6 1493 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
6606bb97
JB
1494 BUG_ON(ret < 0 || search_start != *offset);
1495
96303081 1496 if (*offset > bitmap_info->offset && *offset + *bytes > end) {
34d52cb6 1497 bitmap_clear_bits(ctl, bitmap_info, *offset, end - *offset + 1);
96303081
JB
1498 *bytes -= end - *offset + 1;
1499 *offset = end + 1;
1500 } else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
34d52cb6 1501 bitmap_clear_bits(ctl, bitmap_info, *offset, *bytes);
96303081
JB
1502 *bytes = 0;
1503 }
1504
1505 if (*bytes) {
6606bb97 1506 struct rb_node *next = rb_next(&bitmap_info->offset_index);
edf6e2d1 1507 if (!bitmap_info->bytes)
34d52cb6 1508 free_bitmap(ctl, bitmap_info);
96303081 1509
6606bb97
JB
1510 /*
1511 * no entry after this bitmap, but we still have bytes to
1512 * remove, so something has gone wrong.
1513 */
1514 if (!next)
96303081
JB
1515 return -EINVAL;
1516
6606bb97
JB
1517 bitmap_info = rb_entry(next, struct btrfs_free_space,
1518 offset_index);
1519
1520 /*
1521 * if the next entry isn't a bitmap we need to return to let the
1522 * extent stuff do its work.
1523 */
96303081
JB
1524 if (!bitmap_info->bitmap)
1525 return -EAGAIN;
1526
6606bb97
JB
1527 /*
1528 * Ok the next item is a bitmap, but it may not actually hold
1529 * the information for the rest of this free space stuff, so
1530 * look for it, and if we don't find it return so we can try
1531 * everything over again.
1532 */
1533 search_start = *offset;
1534 search_bytes = *bytes;
34d52cb6 1535 ret = search_bitmap(ctl, bitmap_info, &search_start,
6606bb97
JB
1536 &search_bytes);
1537 if (ret < 0 || search_start != *offset)
1538 return -EAGAIN;
1539
96303081 1540 goto again;
edf6e2d1 1541 } else if (!bitmap_info->bytes)
34d52cb6 1542 free_bitmap(ctl, bitmap_info);
96303081
JB
1543
1544 return 0;
1545}
1546
2cdc342c
JB
1547static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1548 struct btrfs_free_space *info, u64 offset,
1549 u64 bytes)
1550{
1551 u64 bytes_to_set = 0;
1552 u64 end;
1553
1554 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1555
1556 bytes_to_set = min(end - offset, bytes);
1557
1558 bitmap_set_bits(ctl, info, offset, bytes_to_set);
1559
1560 return bytes_to_set;
1561
1562}
1563
34d52cb6
LZ
1564static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1565 struct btrfs_free_space *info)
96303081 1566{
34d52cb6 1567 struct btrfs_block_group_cache *block_group = ctl->private;
96303081
JB
1568
1569 /*
1570 * If we are below the extents threshold then we can add this as an
1571 * extent, and don't have to deal with the bitmap
1572 */
34d52cb6 1573 if (ctl->free_extents < ctl->extents_thresh) {
32cb0840
JB
1574 /*
1575 * If this block group has some small extents we don't want to
1576 * use up all of our free slots in the cache with them, we want
1577 * to reserve them to larger extents, however if we have plent
1578 * of cache left then go ahead an dadd them, no sense in adding
1579 * the overhead of a bitmap if we don't have to.
1580 */
1581 if (info->bytes <= block_group->sectorsize * 4) {
34d52cb6
LZ
1582 if (ctl->free_extents * 2 <= ctl->extents_thresh)
1583 return false;
32cb0840 1584 } else {
34d52cb6 1585 return false;
32cb0840
JB
1586 }
1587 }
96303081
JB
1588
1589 /*
1590 * some block groups are so tiny they can't be enveloped by a bitmap, so
1591 * don't even bother to create a bitmap for this
1592 */
1593 if (BITS_PER_BITMAP * block_group->sectorsize >
1594 block_group->key.offset)
34d52cb6
LZ
1595 return false;
1596
1597 return true;
1598}
1599
2cdc342c
JB
1600static struct btrfs_free_space_op free_space_op = {
1601 .recalc_thresholds = recalculate_thresholds,
1602 .use_bitmap = use_bitmap,
1603};
1604
34d52cb6
LZ
1605static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1606 struct btrfs_free_space *info)
1607{
1608 struct btrfs_free_space *bitmap_info;
2cdc342c 1609 struct btrfs_block_group_cache *block_group = NULL;
34d52cb6 1610 int added = 0;
2cdc342c 1611 u64 bytes, offset, bytes_added;
34d52cb6 1612 int ret;
96303081
JB
1613
1614 bytes = info->bytes;
1615 offset = info->offset;
1616
34d52cb6
LZ
1617 if (!ctl->op->use_bitmap(ctl, info))
1618 return 0;
1619
2cdc342c
JB
1620 if (ctl->op == &free_space_op)
1621 block_group = ctl->private;
38e87880 1622again:
2cdc342c
JB
1623 /*
1624 * Since we link bitmaps right into the cluster we need to see if we
1625 * have a cluster here, and if so and it has our bitmap we need to add
1626 * the free space to that bitmap.
1627 */
1628 if (block_group && !list_empty(&block_group->cluster_list)) {
1629 struct btrfs_free_cluster *cluster;
1630 struct rb_node *node;
1631 struct btrfs_free_space *entry;
1632
1633 cluster = list_entry(block_group->cluster_list.next,
1634 struct btrfs_free_cluster,
1635 block_group_list);
1636 spin_lock(&cluster->lock);
1637 node = rb_first(&cluster->root);
1638 if (!node) {
1639 spin_unlock(&cluster->lock);
38e87880 1640 goto no_cluster_bitmap;
2cdc342c
JB
1641 }
1642
1643 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1644 if (!entry->bitmap) {
1645 spin_unlock(&cluster->lock);
38e87880 1646 goto no_cluster_bitmap;
2cdc342c
JB
1647 }
1648
1649 if (entry->offset == offset_to_bitmap(ctl, offset)) {
1650 bytes_added = add_bytes_to_bitmap(ctl, entry,
1651 offset, bytes);
1652 bytes -= bytes_added;
1653 offset += bytes_added;
1654 }
1655 spin_unlock(&cluster->lock);
1656 if (!bytes) {
1657 ret = 1;
1658 goto out;
1659 }
1660 }
38e87880
CM
1661
1662no_cluster_bitmap:
34d52cb6 1663 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
96303081
JB
1664 1, 0);
1665 if (!bitmap_info) {
1666 BUG_ON(added);
1667 goto new_bitmap;
1668 }
1669
2cdc342c
JB
1670 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1671 bytes -= bytes_added;
1672 offset += bytes_added;
1673 added = 0;
96303081
JB
1674
1675 if (!bytes) {
1676 ret = 1;
1677 goto out;
1678 } else
1679 goto again;
1680
1681new_bitmap:
1682 if (info && info->bitmap) {
34d52cb6 1683 add_new_bitmap(ctl, info, offset);
96303081
JB
1684 added = 1;
1685 info = NULL;
1686 goto again;
1687 } else {
34d52cb6 1688 spin_unlock(&ctl->tree_lock);
96303081
JB
1689
1690 /* no pre-allocated info, allocate a new one */
1691 if (!info) {
dc89e982
JB
1692 info = kmem_cache_zalloc(btrfs_free_space_cachep,
1693 GFP_NOFS);
96303081 1694 if (!info) {
34d52cb6 1695 spin_lock(&ctl->tree_lock);
96303081
JB
1696 ret = -ENOMEM;
1697 goto out;
1698 }
1699 }
1700
1701 /* allocate the bitmap */
1702 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
34d52cb6 1703 spin_lock(&ctl->tree_lock);
96303081
JB
1704 if (!info->bitmap) {
1705 ret = -ENOMEM;
1706 goto out;
1707 }
1708 goto again;
1709 }
1710
1711out:
1712 if (info) {
1713 if (info->bitmap)
1714 kfree(info->bitmap);
dc89e982 1715 kmem_cache_free(btrfs_free_space_cachep, info);
96303081 1716 }
0f9dd46c
JB
1717
1718 return ret;
1719}
1720
945d8962 1721static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5 1722 struct btrfs_free_space *info, bool update_stat)
0f9dd46c 1723{
120d66ee
LZ
1724 struct btrfs_free_space *left_info;
1725 struct btrfs_free_space *right_info;
1726 bool merged = false;
1727 u64 offset = info->offset;
1728 u64 bytes = info->bytes;
6226cb0a 1729
0f9dd46c
JB
1730 /*
1731 * first we want to see if there is free space adjacent to the range we
1732 * are adding, if there is remove that struct and add a new one to
1733 * cover the entire range
1734 */
34d52cb6 1735 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
96303081
JB
1736 if (right_info && rb_prev(&right_info->offset_index))
1737 left_info = rb_entry(rb_prev(&right_info->offset_index),
1738 struct btrfs_free_space, offset_index);
1739 else
34d52cb6 1740 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
0f9dd46c 1741
96303081 1742 if (right_info && !right_info->bitmap) {
f333adb5 1743 if (update_stat)
34d52cb6 1744 unlink_free_space(ctl, right_info);
f333adb5 1745 else
34d52cb6 1746 __unlink_free_space(ctl, right_info);
6226cb0a 1747 info->bytes += right_info->bytes;
dc89e982 1748 kmem_cache_free(btrfs_free_space_cachep, right_info);
120d66ee 1749 merged = true;
0f9dd46c
JB
1750 }
1751
96303081
JB
1752 if (left_info && !left_info->bitmap &&
1753 left_info->offset + left_info->bytes == offset) {
f333adb5 1754 if (update_stat)
34d52cb6 1755 unlink_free_space(ctl, left_info);
f333adb5 1756 else
34d52cb6 1757 __unlink_free_space(ctl, left_info);
6226cb0a
JB
1758 info->offset = left_info->offset;
1759 info->bytes += left_info->bytes;
dc89e982 1760 kmem_cache_free(btrfs_free_space_cachep, left_info);
120d66ee 1761 merged = true;
0f9dd46c
JB
1762 }
1763
120d66ee
LZ
1764 return merged;
1765}
1766
581bb050
LZ
1767int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1768 u64 offset, u64 bytes)
120d66ee
LZ
1769{
1770 struct btrfs_free_space *info;
1771 int ret = 0;
1772
dc89e982 1773 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
120d66ee
LZ
1774 if (!info)
1775 return -ENOMEM;
1776
1777 info->offset = offset;
1778 info->bytes = bytes;
1779
34d52cb6 1780 spin_lock(&ctl->tree_lock);
120d66ee 1781
34d52cb6 1782 if (try_merge_free_space(ctl, info, true))
120d66ee
LZ
1783 goto link;
1784
1785 /*
1786 * There was no extent directly to the left or right of this new
1787 * extent then we know we're going to have to allocate a new extent, so
1788 * before we do that see if we need to drop this into a bitmap
1789 */
34d52cb6 1790 ret = insert_into_bitmap(ctl, info);
120d66ee
LZ
1791 if (ret < 0) {
1792 goto out;
1793 } else if (ret) {
1794 ret = 0;
1795 goto out;
1796 }
1797link:
34d52cb6 1798 ret = link_free_space(ctl, info);
0f9dd46c 1799 if (ret)
dc89e982 1800 kmem_cache_free(btrfs_free_space_cachep, info);
96303081 1801out:
34d52cb6 1802 spin_unlock(&ctl->tree_lock);
6226cb0a 1803
0f9dd46c 1804 if (ret) {
96303081 1805 printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
c293498b 1806 BUG_ON(ret == -EEXIST);
0f9dd46c
JB
1807 }
1808
0f9dd46c
JB
1809 return ret;
1810}
1811
6226cb0a
JB
1812int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1813 u64 offset, u64 bytes)
0f9dd46c 1814{
34d52cb6 1815 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c 1816 struct btrfs_free_space *info;
96303081 1817 struct btrfs_free_space *next_info = NULL;
0f9dd46c
JB
1818 int ret = 0;
1819
34d52cb6 1820 spin_lock(&ctl->tree_lock);
6226cb0a 1821
96303081 1822again:
34d52cb6 1823 info = tree_search_offset(ctl, offset, 0, 0);
96303081 1824 if (!info) {
6606bb97
JB
1825 /*
1826 * oops didn't find an extent that matched the space we wanted
1827 * to remove, look for a bitmap instead
1828 */
34d52cb6 1829 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
6606bb97
JB
1830 1, 0);
1831 if (!info) {
1832 WARN_ON(1);
1833 goto out_lock;
1834 }
96303081
JB
1835 }
1836
1837 if (info->bytes < bytes && rb_next(&info->offset_index)) {
1838 u64 end;
1839 next_info = rb_entry(rb_next(&info->offset_index),
1840 struct btrfs_free_space,
1841 offset_index);
1842
1843 if (next_info->bitmap)
34d52cb6
LZ
1844 end = next_info->offset +
1845 BITS_PER_BITMAP * ctl->unit - 1;
96303081
JB
1846 else
1847 end = next_info->offset + next_info->bytes;
1848
1849 if (next_info->bytes < bytes ||
1850 next_info->offset > offset || offset > end) {
1851 printk(KERN_CRIT "Found free space at %llu, size %llu,"
1852 " trying to use %llu\n",
1853 (unsigned long long)info->offset,
1854 (unsigned long long)info->bytes,
1855 (unsigned long long)bytes);
0f9dd46c
JB
1856 WARN_ON(1);
1857 ret = -EINVAL;
96303081 1858 goto out_lock;
0f9dd46c 1859 }
0f9dd46c 1860
96303081
JB
1861 info = next_info;
1862 }
1863
1864 if (info->bytes == bytes) {
34d52cb6 1865 unlink_free_space(ctl, info);
96303081
JB
1866 if (info->bitmap) {
1867 kfree(info->bitmap);
34d52cb6 1868 ctl->total_bitmaps--;
0f9dd46c 1869 }
dc89e982 1870 kmem_cache_free(btrfs_free_space_cachep, info);
96303081
JB
1871 goto out_lock;
1872 }
0f9dd46c 1873
96303081 1874 if (!info->bitmap && info->offset == offset) {
34d52cb6 1875 unlink_free_space(ctl, info);
0f9dd46c
JB
1876 info->offset += bytes;
1877 info->bytes -= bytes;
34d52cb6 1878 link_free_space(ctl, info);
96303081
JB
1879 goto out_lock;
1880 }
0f9dd46c 1881
96303081
JB
1882 if (!info->bitmap && info->offset <= offset &&
1883 info->offset + info->bytes >= offset + bytes) {
9b49c9b9
CM
1884 u64 old_start = info->offset;
1885 /*
1886 * we're freeing space in the middle of the info,
1887 * this can happen during tree log replay
1888 *
1889 * first unlink the old info and then
1890 * insert it again after the hole we're creating
1891 */
34d52cb6 1892 unlink_free_space(ctl, info);
9b49c9b9
CM
1893 if (offset + bytes < info->offset + info->bytes) {
1894 u64 old_end = info->offset + info->bytes;
1895
1896 info->offset = offset + bytes;
1897 info->bytes = old_end - info->offset;
34d52cb6 1898 ret = link_free_space(ctl, info);
96303081
JB
1899 WARN_ON(ret);
1900 if (ret)
1901 goto out_lock;
9b49c9b9
CM
1902 } else {
1903 /* the hole we're creating ends at the end
1904 * of the info struct, just free the info
1905 */
dc89e982 1906 kmem_cache_free(btrfs_free_space_cachep, info);
9b49c9b9 1907 }
34d52cb6 1908 spin_unlock(&ctl->tree_lock);
96303081
JB
1909
1910 /* step two, insert a new info struct to cover
1911 * anything before the hole
9b49c9b9 1912 */
6226cb0a
JB
1913 ret = btrfs_add_free_space(block_group, old_start,
1914 offset - old_start);
96303081
JB
1915 WARN_ON(ret);
1916 goto out;
0f9dd46c 1917 }
96303081 1918
34d52cb6 1919 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
96303081
JB
1920 if (ret == -EAGAIN)
1921 goto again;
1922 BUG_ON(ret);
1923out_lock:
34d52cb6 1924 spin_unlock(&ctl->tree_lock);
0f9dd46c 1925out:
25179201
JB
1926 return ret;
1927}
1928
0f9dd46c
JB
1929void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1930 u64 bytes)
1931{
34d52cb6 1932 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c
JB
1933 struct btrfs_free_space *info;
1934 struct rb_node *n;
1935 int count = 0;
1936
34d52cb6 1937 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
0f9dd46c
JB
1938 info = rb_entry(n, struct btrfs_free_space, offset_index);
1939 if (info->bytes >= bytes)
1940 count++;
96303081 1941 printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
21380931 1942 (unsigned long long)info->offset,
96303081
JB
1943 (unsigned long long)info->bytes,
1944 (info->bitmap) ? "yes" : "no");
0f9dd46c 1945 }
96303081
JB
1946 printk(KERN_INFO "block group has cluster?: %s\n",
1947 list_empty(&block_group->cluster_list) ? "no" : "yes");
0f9dd46c
JB
1948 printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
1949 "\n", count);
1950}
1951
34d52cb6 1952void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
0f9dd46c 1953{
34d52cb6 1954 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c 1955
34d52cb6
LZ
1956 spin_lock_init(&ctl->tree_lock);
1957 ctl->unit = block_group->sectorsize;
1958 ctl->start = block_group->key.objectid;
1959 ctl->private = block_group;
1960 ctl->op = &free_space_op;
0f9dd46c 1961
34d52cb6
LZ
1962 /*
1963 * we only want to have 32k of ram per block group for keeping
1964 * track of free space, and if we pass 1/2 of that we want to
1965 * start converting things over to using bitmaps
1966 */
1967 ctl->extents_thresh = ((1024 * 32) / 2) /
1968 sizeof(struct btrfs_free_space);
0f9dd46c
JB
1969}
1970
fa9c0d79
CM
1971/*
1972 * for a given cluster, put all of its extents back into the free
1973 * space cache. If the block group passed doesn't match the block group
1974 * pointed to by the cluster, someone else raced in and freed the
1975 * cluster already. In that case, we just return without changing anything
1976 */
1977static int
1978__btrfs_return_cluster_to_free_space(
1979 struct btrfs_block_group_cache *block_group,
1980 struct btrfs_free_cluster *cluster)
1981{
34d52cb6 1982 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79
CM
1983 struct btrfs_free_space *entry;
1984 struct rb_node *node;
1985
1986 spin_lock(&cluster->lock);
1987 if (cluster->block_group != block_group)
1988 goto out;
1989
96303081 1990 cluster->block_group = NULL;
fa9c0d79 1991 cluster->window_start = 0;
96303081 1992 list_del_init(&cluster->block_group_list);
96303081 1993
fa9c0d79 1994 node = rb_first(&cluster->root);
96303081 1995 while (node) {
4e69b598
JB
1996 bool bitmap;
1997
fa9c0d79
CM
1998 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1999 node = rb_next(&entry->offset_index);
2000 rb_erase(&entry->offset_index, &cluster->root);
4e69b598
JB
2001
2002 bitmap = (entry->bitmap != NULL);
2003 if (!bitmap)
34d52cb6
LZ
2004 try_merge_free_space(ctl, entry, false);
2005 tree_insert_offset(&ctl->free_space_offset,
4e69b598 2006 entry->offset, &entry->offset_index, bitmap);
fa9c0d79 2007 }
6bef4d31 2008 cluster->root = RB_ROOT;
96303081 2009
fa9c0d79
CM
2010out:
2011 spin_unlock(&cluster->lock);
96303081 2012 btrfs_put_block_group(block_group);
fa9c0d79
CM
2013 return 0;
2014}
2015
09655373 2016void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl)
0f9dd46c
JB
2017{
2018 struct btrfs_free_space *info;
2019 struct rb_node *node;
581bb050 2020
581bb050
LZ
2021 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2022 info = rb_entry(node, struct btrfs_free_space, offset_index);
9b90f513
JB
2023 if (!info->bitmap) {
2024 unlink_free_space(ctl, info);
2025 kmem_cache_free(btrfs_free_space_cachep, info);
2026 } else {
2027 free_bitmap(ctl, info);
2028 }
581bb050
LZ
2029 if (need_resched()) {
2030 spin_unlock(&ctl->tree_lock);
2031 cond_resched();
2032 spin_lock(&ctl->tree_lock);
2033 }
2034 }
09655373
CM
2035}
2036
2037void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2038{
2039 spin_lock(&ctl->tree_lock);
2040 __btrfs_remove_free_space_cache_locked(ctl);
581bb050
LZ
2041 spin_unlock(&ctl->tree_lock);
2042}
2043
2044void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2045{
2046 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79 2047 struct btrfs_free_cluster *cluster;
96303081 2048 struct list_head *head;
0f9dd46c 2049
34d52cb6 2050 spin_lock(&ctl->tree_lock);
96303081
JB
2051 while ((head = block_group->cluster_list.next) !=
2052 &block_group->cluster_list) {
2053 cluster = list_entry(head, struct btrfs_free_cluster,
2054 block_group_list);
fa9c0d79
CM
2055
2056 WARN_ON(cluster->block_group != block_group);
2057 __btrfs_return_cluster_to_free_space(block_group, cluster);
96303081 2058 if (need_resched()) {
34d52cb6 2059 spin_unlock(&ctl->tree_lock);
96303081 2060 cond_resched();
34d52cb6 2061 spin_lock(&ctl->tree_lock);
96303081 2062 }
fa9c0d79 2063 }
09655373 2064 __btrfs_remove_free_space_cache_locked(ctl);
34d52cb6 2065 spin_unlock(&ctl->tree_lock);
fa9c0d79 2066
0f9dd46c
JB
2067}
2068
6226cb0a
JB
2069u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2070 u64 offset, u64 bytes, u64 empty_size)
0f9dd46c 2071{
34d52cb6 2072 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
6226cb0a 2073 struct btrfs_free_space *entry = NULL;
96303081 2074 u64 bytes_search = bytes + empty_size;
6226cb0a 2075 u64 ret = 0;
0f9dd46c 2076
34d52cb6
LZ
2077 spin_lock(&ctl->tree_lock);
2078 entry = find_free_space(ctl, &offset, &bytes_search);
6226cb0a 2079 if (!entry)
96303081
JB
2080 goto out;
2081
2082 ret = offset;
2083 if (entry->bitmap) {
34d52cb6 2084 bitmap_clear_bits(ctl, entry, offset, bytes);
edf6e2d1 2085 if (!entry->bytes)
34d52cb6 2086 free_bitmap(ctl, entry);
96303081 2087 } else {
34d52cb6 2088 unlink_free_space(ctl, entry);
6226cb0a
JB
2089 entry->offset += bytes;
2090 entry->bytes -= bytes;
6226cb0a 2091 if (!entry->bytes)
dc89e982 2092 kmem_cache_free(btrfs_free_space_cachep, entry);
6226cb0a 2093 else
34d52cb6 2094 link_free_space(ctl, entry);
6226cb0a 2095 }
0f9dd46c 2096
96303081 2097out:
34d52cb6 2098 spin_unlock(&ctl->tree_lock);
817d52f8 2099
0f9dd46c
JB
2100 return ret;
2101}
fa9c0d79
CM
2102
2103/*
2104 * given a cluster, put all of its extents back into the free space
2105 * cache. If a block group is passed, this function will only free
2106 * a cluster that belongs to the passed block group.
2107 *
2108 * Otherwise, it'll get a reference on the block group pointed to by the
2109 * cluster and remove the cluster from it.
2110 */
2111int btrfs_return_cluster_to_free_space(
2112 struct btrfs_block_group_cache *block_group,
2113 struct btrfs_free_cluster *cluster)
2114{
34d52cb6 2115 struct btrfs_free_space_ctl *ctl;
fa9c0d79
CM
2116 int ret;
2117
2118 /* first, get a safe pointer to the block group */
2119 spin_lock(&cluster->lock);
2120 if (!block_group) {
2121 block_group = cluster->block_group;
2122 if (!block_group) {
2123 spin_unlock(&cluster->lock);
2124 return 0;
2125 }
2126 } else if (cluster->block_group != block_group) {
2127 /* someone else has already freed it don't redo their work */
2128 spin_unlock(&cluster->lock);
2129 return 0;
2130 }
2131 atomic_inc(&block_group->count);
2132 spin_unlock(&cluster->lock);
2133
34d52cb6
LZ
2134 ctl = block_group->free_space_ctl;
2135
fa9c0d79 2136 /* now return any extents the cluster had on it */
34d52cb6 2137 spin_lock(&ctl->tree_lock);
fa9c0d79 2138 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
34d52cb6 2139 spin_unlock(&ctl->tree_lock);
fa9c0d79
CM
2140
2141 /* finally drop our ref */
2142 btrfs_put_block_group(block_group);
2143 return ret;
2144}
2145
96303081
JB
2146static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2147 struct btrfs_free_cluster *cluster,
4e69b598 2148 struct btrfs_free_space *entry,
96303081
JB
2149 u64 bytes, u64 min_start)
2150{
34d52cb6 2151 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
96303081
JB
2152 int err;
2153 u64 search_start = cluster->window_start;
2154 u64 search_bytes = bytes;
2155 u64 ret = 0;
2156
96303081
JB
2157 search_start = min_start;
2158 search_bytes = bytes;
2159
34d52cb6 2160 err = search_bitmap(ctl, entry, &search_start, &search_bytes);
96303081 2161 if (err)
4e69b598 2162 return 0;
96303081
JB
2163
2164 ret = search_start;
bb3ac5a4 2165 __bitmap_clear_bits(ctl, entry, ret, bytes);
96303081
JB
2166
2167 return ret;
2168}
2169
fa9c0d79
CM
2170/*
2171 * given a cluster, try to allocate 'bytes' from it, returns 0
2172 * if it couldn't find anything suitably large, or a logical disk offset
2173 * if things worked out
2174 */
2175u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2176 struct btrfs_free_cluster *cluster, u64 bytes,
2177 u64 min_start)
2178{
34d52cb6 2179 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79
CM
2180 struct btrfs_free_space *entry = NULL;
2181 struct rb_node *node;
2182 u64 ret = 0;
2183
2184 spin_lock(&cluster->lock);
2185 if (bytes > cluster->max_size)
2186 goto out;
2187
2188 if (cluster->block_group != block_group)
2189 goto out;
2190
2191 node = rb_first(&cluster->root);
2192 if (!node)
2193 goto out;
2194
2195 entry = rb_entry(node, struct btrfs_free_space, offset_index);
fa9c0d79 2196 while(1) {
4e69b598
JB
2197 if (entry->bytes < bytes ||
2198 (!entry->bitmap && entry->offset < min_start)) {
fa9c0d79
CM
2199 node = rb_next(&entry->offset_index);
2200 if (!node)
2201 break;
2202 entry = rb_entry(node, struct btrfs_free_space,
2203 offset_index);
2204 continue;
2205 }
fa9c0d79 2206
4e69b598
JB
2207 if (entry->bitmap) {
2208 ret = btrfs_alloc_from_bitmap(block_group,
2209 cluster, entry, bytes,
2210 min_start);
2211 if (ret == 0) {
4e69b598
JB
2212 node = rb_next(&entry->offset_index);
2213 if (!node)
2214 break;
2215 entry = rb_entry(node, struct btrfs_free_space,
2216 offset_index);
2217 continue;
2218 }
2219 } else {
4e69b598
JB
2220 ret = entry->offset;
2221
2222 entry->offset += bytes;
2223 entry->bytes -= bytes;
2224 }
fa9c0d79 2225
5e71b5d5 2226 if (entry->bytes == 0)
fa9c0d79 2227 rb_erase(&entry->offset_index, &cluster->root);
fa9c0d79
CM
2228 break;
2229 }
2230out:
2231 spin_unlock(&cluster->lock);
96303081 2232
5e71b5d5
LZ
2233 if (!ret)
2234 return 0;
2235
34d52cb6 2236 spin_lock(&ctl->tree_lock);
5e71b5d5 2237
34d52cb6 2238 ctl->free_space -= bytes;
5e71b5d5 2239 if (entry->bytes == 0) {
34d52cb6 2240 ctl->free_extents--;
4e69b598
JB
2241 if (entry->bitmap) {
2242 kfree(entry->bitmap);
34d52cb6
LZ
2243 ctl->total_bitmaps--;
2244 ctl->op->recalc_thresholds(ctl);
4e69b598 2245 }
dc89e982 2246 kmem_cache_free(btrfs_free_space_cachep, entry);
5e71b5d5
LZ
2247 }
2248
34d52cb6 2249 spin_unlock(&ctl->tree_lock);
5e71b5d5 2250
fa9c0d79
CM
2251 return ret;
2252}
2253
96303081
JB
2254static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2255 struct btrfs_free_space *entry,
2256 struct btrfs_free_cluster *cluster,
2257 u64 offset, u64 bytes, u64 min_bytes)
2258{
34d52cb6 2259 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
96303081
JB
2260 unsigned long next_zero;
2261 unsigned long i;
2262 unsigned long search_bits;
2263 unsigned long total_bits;
2264 unsigned long found_bits;
2265 unsigned long start = 0;
2266 unsigned long total_found = 0;
4e69b598 2267 int ret;
96303081
JB
2268 bool found = false;
2269
2270 i = offset_to_bit(entry->offset, block_group->sectorsize,
2271 max_t(u64, offset, entry->offset));
d0a365e8
JB
2272 search_bits = bytes_to_bits(bytes, block_group->sectorsize);
2273 total_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
96303081
JB
2274
2275again:
2276 found_bits = 0;
2277 for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
2278 i < BITS_PER_BITMAP;
2279 i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
2280 next_zero = find_next_zero_bit(entry->bitmap,
2281 BITS_PER_BITMAP, i);
2282 if (next_zero - i >= search_bits) {
2283 found_bits = next_zero - i;
2284 break;
2285 }
2286 i = next_zero;
2287 }
2288
2289 if (!found_bits)
4e69b598 2290 return -ENOSPC;
96303081
JB
2291
2292 if (!found) {
2293 start = i;
2294 found = true;
2295 }
2296
2297 total_found += found_bits;
2298
2299 if (cluster->max_size < found_bits * block_group->sectorsize)
2300 cluster->max_size = found_bits * block_group->sectorsize;
2301
2302 if (total_found < total_bits) {
2303 i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero);
2304 if (i - start > total_bits * 2) {
2305 total_found = 0;
2306 cluster->max_size = 0;
2307 found = false;
2308 }
2309 goto again;
2310 }
2311
2312 cluster->window_start = start * block_group->sectorsize +
2313 entry->offset;
34d52cb6 2314 rb_erase(&entry->offset_index, &ctl->free_space_offset);
4e69b598
JB
2315 ret = tree_insert_offset(&cluster->root, entry->offset,
2316 &entry->offset_index, 1);
2317 BUG_ON(ret);
96303081
JB
2318
2319 return 0;
2320}
2321
4e69b598
JB
2322/*
2323 * This searches the block group for just extents to fill the cluster with.
2324 */
3de85bb9
JB
2325static noinline int
2326setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2327 struct btrfs_free_cluster *cluster,
2328 struct list_head *bitmaps, u64 offset, u64 bytes,
2329 u64 min_bytes)
4e69b598 2330{
34d52cb6 2331 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4e69b598
JB
2332 struct btrfs_free_space *first = NULL;
2333 struct btrfs_free_space *entry = NULL;
2334 struct btrfs_free_space *prev = NULL;
2335 struct btrfs_free_space *last;
2336 struct rb_node *node;
2337 u64 window_start;
2338 u64 window_free;
2339 u64 max_extent;
2340 u64 max_gap = 128 * 1024;
2341
34d52cb6 2342 entry = tree_search_offset(ctl, offset, 0, 1);
4e69b598
JB
2343 if (!entry)
2344 return -ENOSPC;
2345
2346 /*
2347 * We don't want bitmaps, so just move along until we find a normal
2348 * extent entry.
2349 */
2350 while (entry->bitmap) {
86d4a77b
JB
2351 if (list_empty(&entry->list))
2352 list_add_tail(&entry->list, bitmaps);
4e69b598
JB
2353 node = rb_next(&entry->offset_index);
2354 if (!node)
2355 return -ENOSPC;
2356 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2357 }
2358
2359 window_start = entry->offset;
2360 window_free = entry->bytes;
2361 max_extent = entry->bytes;
2362 first = entry;
2363 last = entry;
2364 prev = entry;
2365
2366 while (window_free <= min_bytes) {
2367 node = rb_next(&entry->offset_index);
2368 if (!node)
2369 return -ENOSPC;
2370 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2371
86d4a77b
JB
2372 if (entry->bitmap) {
2373 if (list_empty(&entry->list))
2374 list_add_tail(&entry->list, bitmaps);
4e69b598 2375 continue;
86d4a77b
JB
2376 }
2377
4e69b598
JB
2378 /*
2379 * we haven't filled the empty size and the window is
2380 * very large. reset and try again
2381 */
2382 if (entry->offset - (prev->offset + prev->bytes) > max_gap ||
2383 entry->offset - window_start > (min_bytes * 2)) {
2384 first = entry;
2385 window_start = entry->offset;
2386 window_free = entry->bytes;
2387 last = entry;
2388 max_extent = entry->bytes;
2389 } else {
2390 last = entry;
2391 window_free += entry->bytes;
2392 if (entry->bytes > max_extent)
2393 max_extent = entry->bytes;
2394 }
2395 prev = entry;
2396 }
2397
2398 cluster->window_start = first->offset;
2399
2400 node = &first->offset_index;
2401
2402 /*
2403 * now we've found our entries, pull them out of the free space
2404 * cache and put them into the cluster rbtree
2405 */
2406 do {
2407 int ret;
2408
2409 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2410 node = rb_next(&entry->offset_index);
2411 if (entry->bitmap)
2412 continue;
2413
34d52cb6 2414 rb_erase(&entry->offset_index, &ctl->free_space_offset);
4e69b598
JB
2415 ret = tree_insert_offset(&cluster->root, entry->offset,
2416 &entry->offset_index, 0);
2417 BUG_ON(ret);
2418 } while (node && entry != last);
2419
2420 cluster->max_size = max_extent;
2421
2422 return 0;
2423}
2424
2425/*
2426 * This specifically looks for bitmaps that may work in the cluster, we assume
2427 * that we have already failed to find extents that will work.
2428 */
3de85bb9
JB
2429static noinline int
2430setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2431 struct btrfs_free_cluster *cluster,
2432 struct list_head *bitmaps, u64 offset, u64 bytes,
2433 u64 min_bytes)
4e69b598 2434{
34d52cb6 2435 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4e69b598
JB
2436 struct btrfs_free_space *entry;
2437 struct rb_node *node;
2438 int ret = -ENOSPC;
2439
34d52cb6 2440 if (ctl->total_bitmaps == 0)
4e69b598
JB
2441 return -ENOSPC;
2442
86d4a77b
JB
2443 /*
2444 * First check our cached list of bitmaps and see if there is an entry
2445 * here that will work.
2446 */
2447 list_for_each_entry(entry, bitmaps, list) {
2448 if (entry->bytes < min_bytes)
2449 continue;
2450 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2451 bytes, min_bytes);
2452 if (!ret)
2453 return 0;
2454 }
2455
2456 /*
2457 * If we do have entries on our list and we are here then we didn't find
2458 * anything, so go ahead and get the next entry after the last entry in
2459 * this list and start the search from there.
2460 */
2461 if (!list_empty(bitmaps)) {
2462 entry = list_entry(bitmaps->prev, struct btrfs_free_space,
2463 list);
2464 node = rb_next(&entry->offset_index);
2465 if (!node)
2466 return -ENOSPC;
2467 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2468 goto search;
2469 }
2470
34d52cb6 2471 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 0, 1);
4e69b598
JB
2472 if (!entry)
2473 return -ENOSPC;
2474
86d4a77b 2475search:
4e69b598
JB
2476 node = &entry->offset_index;
2477 do {
2478 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2479 node = rb_next(&entry->offset_index);
2480 if (!entry->bitmap)
2481 continue;
2482 if (entry->bytes < min_bytes)
2483 continue;
2484 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2485 bytes, min_bytes);
2486 } while (ret && node);
2487
2488 return ret;
2489}
2490
fa9c0d79
CM
2491/*
2492 * here we try to find a cluster of blocks in a block group. The goal
2493 * is to find at least bytes free and up to empty_size + bytes free.
2494 * We might not find them all in one contiguous area.
2495 *
2496 * returns zero and sets up cluster if things worked out, otherwise
2497 * it returns -enospc
2498 */
2499int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
451d7585 2500 struct btrfs_root *root,
fa9c0d79
CM
2501 struct btrfs_block_group_cache *block_group,
2502 struct btrfs_free_cluster *cluster,
2503 u64 offset, u64 bytes, u64 empty_size)
2504{
34d52cb6 2505 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
86d4a77b
JB
2506 struct list_head bitmaps;
2507 struct btrfs_free_space *entry, *tmp;
fa9c0d79 2508 u64 min_bytes;
fa9c0d79
CM
2509 int ret;
2510
2511 /* for metadata, allow allocates with more holes */
451d7585
CM
2512 if (btrfs_test_opt(root, SSD_SPREAD)) {
2513 min_bytes = bytes + empty_size;
2514 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
fa9c0d79
CM
2515 /*
2516 * we want to do larger allocations when we are
2517 * flushing out the delayed refs, it helps prevent
2518 * making more work as we go along.
2519 */
2520 if (trans->transaction->delayed_refs.flushing)
2521 min_bytes = max(bytes, (bytes + empty_size) >> 1);
2522 else
2523 min_bytes = max(bytes, (bytes + empty_size) >> 4);
2524 } else
2525 min_bytes = max(bytes, (bytes + empty_size) >> 2);
2526
34d52cb6 2527 spin_lock(&ctl->tree_lock);
7d0d2e8e
JB
2528
2529 /*
2530 * If we know we don't have enough space to make a cluster don't even
2531 * bother doing all the work to try and find one.
2532 */
34d52cb6
LZ
2533 if (ctl->free_space < min_bytes) {
2534 spin_unlock(&ctl->tree_lock);
7d0d2e8e
JB
2535 return -ENOSPC;
2536 }
2537
fa9c0d79
CM
2538 spin_lock(&cluster->lock);
2539
2540 /* someone already found a cluster, hooray */
2541 if (cluster->block_group) {
2542 ret = 0;
2543 goto out;
2544 }
fa9c0d79 2545
86d4a77b
JB
2546 INIT_LIST_HEAD(&bitmaps);
2547 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2548 bytes, min_bytes);
4e69b598 2549 if (ret)
86d4a77b
JB
2550 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2551 offset, bytes, min_bytes);
2552
2553 /* Clear our temporary list */
2554 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2555 list_del_init(&entry->list);
fa9c0d79 2556
4e69b598
JB
2557 if (!ret) {
2558 atomic_inc(&block_group->count);
2559 list_add_tail(&cluster->block_group_list,
2560 &block_group->cluster_list);
2561 cluster->block_group = block_group;
fa9c0d79 2562 }
fa9c0d79
CM
2563out:
2564 spin_unlock(&cluster->lock);
34d52cb6 2565 spin_unlock(&ctl->tree_lock);
fa9c0d79
CM
2566
2567 return ret;
2568}
2569
2570/*
2571 * simple code to zero out a cluster
2572 */
2573void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2574{
2575 spin_lock_init(&cluster->lock);
2576 spin_lock_init(&cluster->refill_lock);
6bef4d31 2577 cluster->root = RB_ROOT;
fa9c0d79
CM
2578 cluster->max_size = 0;
2579 INIT_LIST_HEAD(&cluster->block_group_list);
2580 cluster->block_group = NULL;
2581}
2582
f7039b1d
LD
2583int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2584 u64 *trimmed, u64 start, u64 end, u64 minlen)
2585{
34d52cb6 2586 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
f7039b1d
LD
2587 struct btrfs_free_space *entry = NULL;
2588 struct btrfs_fs_info *fs_info = block_group->fs_info;
2589 u64 bytes = 0;
2590 u64 actually_trimmed;
2591 int ret = 0;
2592
2593 *trimmed = 0;
2594
2595 while (start < end) {
34d52cb6 2596 spin_lock(&ctl->tree_lock);
f7039b1d 2597
34d52cb6
LZ
2598 if (ctl->free_space < minlen) {
2599 spin_unlock(&ctl->tree_lock);
f7039b1d
LD
2600 break;
2601 }
2602
34d52cb6 2603 entry = tree_search_offset(ctl, start, 0, 1);
f7039b1d 2604 if (!entry)
34d52cb6
LZ
2605 entry = tree_search_offset(ctl,
2606 offset_to_bitmap(ctl, start),
f7039b1d
LD
2607 1, 1);
2608
2609 if (!entry || entry->offset >= end) {
34d52cb6 2610 spin_unlock(&ctl->tree_lock);
f7039b1d
LD
2611 break;
2612 }
2613
2614 if (entry->bitmap) {
34d52cb6 2615 ret = search_bitmap(ctl, entry, &start, &bytes);
f7039b1d
LD
2616 if (!ret) {
2617 if (start >= end) {
34d52cb6 2618 spin_unlock(&ctl->tree_lock);
f7039b1d
LD
2619 break;
2620 }
2621 bytes = min(bytes, end - start);
34d52cb6 2622 bitmap_clear_bits(ctl, entry, start, bytes);
f7039b1d 2623 if (entry->bytes == 0)
34d52cb6 2624 free_bitmap(ctl, entry);
f7039b1d
LD
2625 } else {
2626 start = entry->offset + BITS_PER_BITMAP *
2627 block_group->sectorsize;
34d52cb6 2628 spin_unlock(&ctl->tree_lock);
f7039b1d
LD
2629 ret = 0;
2630 continue;
2631 }
2632 } else {
2633 start = entry->offset;
2634 bytes = min(entry->bytes, end - start);
34d52cb6 2635 unlink_free_space(ctl, entry);
f789b684 2636 kmem_cache_free(btrfs_free_space_cachep, entry);
f7039b1d
LD
2637 }
2638
34d52cb6 2639 spin_unlock(&ctl->tree_lock);
f7039b1d
LD
2640
2641 if (bytes >= minlen) {
fb25e914
JB
2642 struct btrfs_space_info *space_info;
2643 int update = 0;
2644
2645 space_info = block_group->space_info;
2646 spin_lock(&space_info->lock);
2647 spin_lock(&block_group->lock);
2648 if (!block_group->ro) {
2649 block_group->reserved += bytes;
2650 space_info->bytes_reserved += bytes;
2651 update = 1;
2652 }
2653 spin_unlock(&block_group->lock);
2654 spin_unlock(&space_info->lock);
f7039b1d
LD
2655
2656 ret = btrfs_error_discard_extent(fs_info->extent_root,
2657 start,
2658 bytes,
2659 &actually_trimmed);
2660
34d52cb6 2661 btrfs_add_free_space(block_group, start, bytes);
fb25e914
JB
2662 if (update) {
2663 spin_lock(&space_info->lock);
2664 spin_lock(&block_group->lock);
2665 if (block_group->ro)
2666 space_info->bytes_readonly += bytes;
2667 block_group->reserved -= bytes;
2668 space_info->bytes_reserved -= bytes;
2669 spin_unlock(&space_info->lock);
2670 spin_unlock(&block_group->lock);
2671 }
f7039b1d
LD
2672
2673 if (ret)
2674 break;
2675 *trimmed += actually_trimmed;
2676 }
2677 start += bytes;
2678 bytes = 0;
2679
2680 if (fatal_signal_pending(current)) {
2681 ret = -ERESTARTSYS;
2682 break;
2683 }
2684
2685 cond_resched();
2686 }
2687
2688 return ret;
2689}
581bb050
LZ
2690
2691/*
2692 * Find the left-most item in the cache tree, and then return the
2693 * smallest inode number in the item.
2694 *
2695 * Note: the returned inode number may not be the smallest one in
2696 * the tree, if the left-most item is a bitmap.
2697 */
2698u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2699{
2700 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2701 struct btrfs_free_space *entry = NULL;
2702 u64 ino = 0;
2703
2704 spin_lock(&ctl->tree_lock);
2705
2706 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2707 goto out;
2708
2709 entry = rb_entry(rb_first(&ctl->free_space_offset),
2710 struct btrfs_free_space, offset_index);
2711
2712 if (!entry->bitmap) {
2713 ino = entry->offset;
2714
2715 unlink_free_space(ctl, entry);
2716 entry->offset++;
2717 entry->bytes--;
2718 if (!entry->bytes)
2719 kmem_cache_free(btrfs_free_space_cachep, entry);
2720 else
2721 link_free_space(ctl, entry);
2722 } else {
2723 u64 offset = 0;
2724 u64 count = 1;
2725 int ret;
2726
2727 ret = search_bitmap(ctl, entry, &offset, &count);
2728 BUG_ON(ret);
2729
2730 ino = offset;
2731 bitmap_clear_bits(ctl, entry, offset, 1);
2732 if (entry->bytes == 0)
2733 free_bitmap(ctl, entry);
2734 }
2735out:
2736 spin_unlock(&ctl->tree_lock);
2737
2738 return ino;
2739}
82d5902d
LZ
2740
2741struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2742 struct btrfs_path *path)
2743{
2744 struct inode *inode = NULL;
2745
2746 spin_lock(&root->cache_lock);
2747 if (root->cache_inode)
2748 inode = igrab(root->cache_inode);
2749 spin_unlock(&root->cache_lock);
2750 if (inode)
2751 return inode;
2752
2753 inode = __lookup_free_space_inode(root, path, 0);
2754 if (IS_ERR(inode))
2755 return inode;
2756
2757 spin_lock(&root->cache_lock);
7841cb28 2758 if (!btrfs_fs_closing(root->fs_info))
82d5902d
LZ
2759 root->cache_inode = igrab(inode);
2760 spin_unlock(&root->cache_lock);
2761
2762 return inode;
2763}
2764
2765int create_free_ino_inode(struct btrfs_root *root,
2766 struct btrfs_trans_handle *trans,
2767 struct btrfs_path *path)
2768{
2769 return __create_free_space_inode(root, trans, path,
2770 BTRFS_FREE_INO_OBJECTID, 0);
2771}
2772
2773int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2774{
2775 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2776 struct btrfs_path *path;
2777 struct inode *inode;
2778 int ret = 0;
2779 u64 root_gen = btrfs_root_generation(&root->root_item);
2780
4b9465cb
CM
2781 if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2782 return 0;
2783
82d5902d
LZ
2784 /*
2785 * If we're unmounting then just return, since this does a search on the
2786 * normal root and not the commit root and we could deadlock.
2787 */
7841cb28 2788 if (btrfs_fs_closing(fs_info))
82d5902d
LZ
2789 return 0;
2790
2791 path = btrfs_alloc_path();
2792 if (!path)
2793 return 0;
2794
2795 inode = lookup_free_ino_inode(root, path);
2796 if (IS_ERR(inode))
2797 goto out;
2798
2799 if (root_gen != BTRFS_I(inode)->generation)
2800 goto out_put;
2801
2802 ret = __load_free_space_cache(root, inode, ctl, path, 0);
2803
2804 if (ret < 0)
2805 printk(KERN_ERR "btrfs: failed to load free ino cache for "
2806 "root %llu\n", root->root_key.objectid);
2807out_put:
2808 iput(inode);
2809out:
2810 btrfs_free_path(path);
2811 return ret;
2812}
2813
2814int btrfs_write_out_ino_cache(struct btrfs_root *root,
2815 struct btrfs_trans_handle *trans,
2816 struct btrfs_path *path)
2817{
2818 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2819 struct inode *inode;
2820 int ret;
2821
4b9465cb
CM
2822 if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2823 return 0;
2824
82d5902d
LZ
2825 inode = lookup_free_ino_inode(root, path);
2826 if (IS_ERR(inode))
2827 return 0;
2828
2829 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
c09544e0
JB
2830 if (ret) {
2831 btrfs_delalloc_release_metadata(inode, inode->i_size);
2832#ifdef DEBUG
82d5902d
LZ
2833 printk(KERN_ERR "btrfs: failed to write free ino cache "
2834 "for root %llu\n", root->root_key.objectid);
c09544e0
JB
2835#endif
2836 }
82d5902d
LZ
2837
2838 iput(inode);
2839 return ret;
2840}