]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/inode.c
Merge branch 'fixes-for-v4.9-rc2' of http://git.agner.ch/git/linux-drm-fsl-dcu into...
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
55e301fd 42#include <linux/btrfs.h>
53b381b3 43#include <linux/blkdev.h>
f23b5a59 44#include <linux/posix_acl_xattr.h>
e2e40f2c 45#include <linux/uio.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
dda3245e 63#include "dedupe.h"
39279cc3
CM
64
65struct btrfs_iget_args {
90d3e592 66 struct btrfs_key *location;
39279cc3
CM
67 struct btrfs_root *root;
68};
69
f28a4928
FM
70struct btrfs_dio_data {
71 u64 outstanding_extents;
72 u64 reserve;
73 u64 unsubmitted_oe_range_start;
74 u64 unsubmitted_oe_range_end;
75};
76
6e1d5dcc
AD
77static const struct inode_operations btrfs_dir_inode_operations;
78static const struct inode_operations btrfs_symlink_inode_operations;
79static const struct inode_operations btrfs_dir_ro_inode_operations;
80static const struct inode_operations btrfs_special_inode_operations;
81static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
82static const struct address_space_operations btrfs_aops;
83static const struct address_space_operations btrfs_symlink_aops;
828c0950 84static const struct file_operations btrfs_dir_file_operations;
20e5506b 85static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
86
87static struct kmem_cache *btrfs_inode_cachep;
88struct kmem_cache *btrfs_trans_handle_cachep;
89struct kmem_cache *btrfs_transaction_cachep;
39279cc3 90struct kmem_cache *btrfs_path_cachep;
dc89e982 91struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
92
93#define S_SHIFT 12
4d4ab6d6 94static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
102};
103
3972f260 104static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 105static int btrfs_truncate(struct inode *inode);
5fd02043 106static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
107static noinline int cow_file_range(struct inode *inode,
108 struct page *locked_page,
dda3245e
WX
109 u64 start, u64 end, u64 delalloc_end,
110 int *page_started, unsigned long *nr_written,
111 int unlock, struct btrfs_dedupe_hash *hash);
70c8a91c
JB
112static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
113 u64 len, u64 orig_start,
114 u64 block_start, u64 block_len,
cc95bef6
JB
115 u64 orig_block_len, u64 ram_bytes,
116 int type);
7b128766 117
48a3b636 118static int btrfs_dirty_inode(struct inode *inode);
7b128766 119
6a3891c5
JB
120#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
121void btrfs_test_inode_set_ops(struct inode *inode)
122{
123 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
124}
125#endif
126
f34f57a3 127static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
128 struct inode *inode, struct inode *dir,
129 const struct qstr *qstr)
0279b4cd
JO
130{
131 int err;
132
f34f57a3 133 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 134 if (!err)
2a7dba39 135 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
136 return err;
137}
138
c8b97818
CM
139/*
140 * this does all the hard work for inserting an inline extent into
141 * the btree. The caller should have done a btrfs_drop_extents so that
142 * no overlapping inline items exist in the btree
143 */
40f76580 144static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 145 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
146 struct btrfs_root *root, struct inode *inode,
147 u64 start, size_t size, size_t compressed_size,
fe3f566c 148 int compress_type,
c8b97818
CM
149 struct page **compressed_pages)
150{
c8b97818
CM
151 struct extent_buffer *leaf;
152 struct page *page = NULL;
153 char *kaddr;
154 unsigned long ptr;
155 struct btrfs_file_extent_item *ei;
156 int err = 0;
157 int ret;
158 size_t cur_size = size;
c8b97818 159 unsigned long offset;
c8b97818 160
fe3f566c 161 if (compressed_size && compressed_pages)
c8b97818 162 cur_size = compressed_size;
c8b97818 163
1acae57b 164 inode_add_bytes(inode, size);
c8b97818 165
1acae57b
FDBM
166 if (!extent_inserted) {
167 struct btrfs_key key;
168 size_t datasize;
c8b97818 169
1acae57b
FDBM
170 key.objectid = btrfs_ino(inode);
171 key.offset = start;
962a298f 172 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 173
1acae57b
FDBM
174 datasize = btrfs_file_extent_calc_inline_size(cur_size);
175 path->leave_spinning = 1;
176 ret = btrfs_insert_empty_item(trans, root, path, &key,
177 datasize);
178 if (ret) {
179 err = ret;
180 goto fail;
181 }
c8b97818
CM
182 }
183 leaf = path->nodes[0];
184 ei = btrfs_item_ptr(leaf, path->slots[0],
185 struct btrfs_file_extent_item);
186 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
187 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
188 btrfs_set_file_extent_encryption(leaf, ei, 0);
189 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
190 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
191 ptr = btrfs_file_extent_inline_start(ei);
192
261507a0 193 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
194 struct page *cpage;
195 int i = 0;
d397712b 196 while (compressed_size > 0) {
c8b97818 197 cpage = compressed_pages[i];
5b050f04 198 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 199 PAGE_SIZE);
c8b97818 200
7ac687d9 201 kaddr = kmap_atomic(cpage);
c8b97818 202 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 203 kunmap_atomic(kaddr);
c8b97818
CM
204
205 i++;
206 ptr += cur_size;
207 compressed_size -= cur_size;
208 }
209 btrfs_set_file_extent_compression(leaf, ei,
261507a0 210 compress_type);
c8b97818
CM
211 } else {
212 page = find_get_page(inode->i_mapping,
09cbfeaf 213 start >> PAGE_SHIFT);
c8b97818 214 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 215 kaddr = kmap_atomic(page);
09cbfeaf 216 offset = start & (PAGE_SIZE - 1);
c8b97818 217 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 218 kunmap_atomic(kaddr);
09cbfeaf 219 put_page(page);
c8b97818
CM
220 }
221 btrfs_mark_buffer_dirty(leaf);
1acae57b 222 btrfs_release_path(path);
c8b97818 223
c2167754
YZ
224 /*
225 * we're an inline extent, so nobody can
226 * extend the file past i_size without locking
227 * a page we already have locked.
228 *
229 * We must do any isize and inode updates
230 * before we unlock the pages. Otherwise we
231 * could end up racing with unlink.
232 */
c8b97818 233 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 234 ret = btrfs_update_inode(trans, root, inode);
c2167754 235
79787eaa 236 return ret;
c8b97818 237fail:
c8b97818
CM
238 return err;
239}
240
241
242/*
243 * conditionally insert an inline extent into the file. This
244 * does the checks required to make sure the data is small enough
245 * to fit as an inline extent.
246 */
00361589
JB
247static noinline int cow_file_range_inline(struct btrfs_root *root,
248 struct inode *inode, u64 start,
249 u64 end, size_t compressed_size,
250 int compress_type,
251 struct page **compressed_pages)
c8b97818 252{
00361589 253 struct btrfs_trans_handle *trans;
c8b97818
CM
254 u64 isize = i_size_read(inode);
255 u64 actual_end = min(end + 1, isize);
256 u64 inline_len = actual_end - start;
fda2832f 257 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
258 u64 data_len = inline_len;
259 int ret;
1acae57b
FDBM
260 struct btrfs_path *path;
261 int extent_inserted = 0;
262 u32 extent_item_size;
c8b97818
CM
263
264 if (compressed_size)
265 data_len = compressed_size;
266
267 if (start > 0 ||
0c29ba99 268 actual_end > root->sectorsize ||
354877be 269 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
270 (!compressed_size &&
271 (actual_end & (root->sectorsize - 1)) == 0) ||
272 end + 1 < isize ||
273 data_len > root->fs_info->max_inline) {
274 return 1;
275 }
276
1acae57b
FDBM
277 path = btrfs_alloc_path();
278 if (!path)
279 return -ENOMEM;
280
00361589 281 trans = btrfs_join_transaction(root);
1acae57b
FDBM
282 if (IS_ERR(trans)) {
283 btrfs_free_path(path);
00361589 284 return PTR_ERR(trans);
1acae57b 285 }
00361589
JB
286 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
287
1acae57b
FDBM
288 if (compressed_size && compressed_pages)
289 extent_item_size = btrfs_file_extent_calc_inline_size(
290 compressed_size);
291 else
292 extent_item_size = btrfs_file_extent_calc_inline_size(
293 inline_len);
294
295 ret = __btrfs_drop_extents(trans, root, inode, path,
296 start, aligned_end, NULL,
297 1, 1, extent_item_size, &extent_inserted);
00361589 298 if (ret) {
66642832 299 btrfs_abort_transaction(trans, ret);
00361589
JB
300 goto out;
301 }
c8b97818
CM
302
303 if (isize > actual_end)
304 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
305 ret = insert_inline_extent(trans, path, extent_inserted,
306 root, inode, start,
c8b97818 307 inline_len, compressed_size,
fe3f566c 308 compress_type, compressed_pages);
2adcac1a 309 if (ret && ret != -ENOSPC) {
66642832 310 btrfs_abort_transaction(trans, ret);
00361589 311 goto out;
2adcac1a 312 } else if (ret == -ENOSPC) {
00361589
JB
313 ret = 1;
314 goto out;
79787eaa 315 }
2adcac1a 316
bdc20e67 317 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 318 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 319 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 320out:
94ed938a
QW
321 /*
322 * Don't forget to free the reserved space, as for inlined extent
323 * it won't count as data extent, free them directly here.
324 * And at reserve time, it's always aligned to page size, so
325 * just free one page here.
326 */
09cbfeaf 327 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
1acae57b 328 btrfs_free_path(path);
00361589
JB
329 btrfs_end_transaction(trans, root);
330 return ret;
c8b97818
CM
331}
332
771ed689
CM
333struct async_extent {
334 u64 start;
335 u64 ram_size;
336 u64 compressed_size;
337 struct page **pages;
338 unsigned long nr_pages;
261507a0 339 int compress_type;
771ed689
CM
340 struct list_head list;
341};
342
343struct async_cow {
344 struct inode *inode;
345 struct btrfs_root *root;
346 struct page *locked_page;
347 u64 start;
348 u64 end;
349 struct list_head extents;
350 struct btrfs_work work;
351};
352
353static noinline int add_async_extent(struct async_cow *cow,
354 u64 start, u64 ram_size,
355 u64 compressed_size,
356 struct page **pages,
261507a0
LZ
357 unsigned long nr_pages,
358 int compress_type)
771ed689
CM
359{
360 struct async_extent *async_extent;
361
362 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 363 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
364 async_extent->start = start;
365 async_extent->ram_size = ram_size;
366 async_extent->compressed_size = compressed_size;
367 async_extent->pages = pages;
368 async_extent->nr_pages = nr_pages;
261507a0 369 async_extent->compress_type = compress_type;
771ed689
CM
370 list_add_tail(&async_extent->list, &cow->extents);
371 return 0;
372}
373
f79707b0
WS
374static inline int inode_need_compress(struct inode *inode)
375{
376 struct btrfs_root *root = BTRFS_I(inode)->root;
377
378 /* force compress */
3cdde224 379 if (btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
f79707b0
WS
380 return 1;
381 /* bad compression ratios */
382 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
383 return 0;
3cdde224 384 if (btrfs_test_opt(root->fs_info, COMPRESS) ||
f79707b0
WS
385 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
386 BTRFS_I(inode)->force_compress)
387 return 1;
388 return 0;
389}
390
d352ac68 391/*
771ed689
CM
392 * we create compressed extents in two phases. The first
393 * phase compresses a range of pages that have already been
394 * locked (both pages and state bits are locked).
c8b97818 395 *
771ed689
CM
396 * This is done inside an ordered work queue, and the compression
397 * is spread across many cpus. The actual IO submission is step
398 * two, and the ordered work queue takes care of making sure that
399 * happens in the same order things were put onto the queue by
400 * writepages and friends.
c8b97818 401 *
771ed689
CM
402 * If this code finds it can't get good compression, it puts an
403 * entry onto the work queue to write the uncompressed bytes. This
404 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
405 * are written in the same order that the flusher thread sent them
406 * down.
d352ac68 407 */
c44f649e 408static noinline void compress_file_range(struct inode *inode,
771ed689
CM
409 struct page *locked_page,
410 u64 start, u64 end,
411 struct async_cow *async_cow,
412 int *num_added)
b888db2b
CM
413{
414 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 415 u64 num_bytes;
db94535d 416 u64 blocksize = root->sectorsize;
c8b97818 417 u64 actual_end;
42dc7bab 418 u64 isize = i_size_read(inode);
e6dcd2dc 419 int ret = 0;
c8b97818
CM
420 struct page **pages = NULL;
421 unsigned long nr_pages;
422 unsigned long nr_pages_ret = 0;
423 unsigned long total_compressed = 0;
424 unsigned long total_in = 0;
ee22184b
BL
425 unsigned long max_compressed = SZ_128K;
426 unsigned long max_uncompressed = SZ_128K;
c8b97818
CM
427 int i;
428 int will_compress;
261507a0 429 int compress_type = root->fs_info->compress_type;
4adaa611 430 int redirty = 0;
b888db2b 431
4cb13e5d 432 /* if this is a small write inside eof, kick off a defrag */
ee22184b 433 if ((end - start + 1) < SZ_16K &&
4cb13e5d 434 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
435 btrfs_add_inode_defrag(NULL, inode);
436
42dc7bab 437 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
438again:
439 will_compress = 0;
09cbfeaf
KS
440 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
441 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
be20aa9d 442
f03d9301
CM
443 /*
444 * we don't want to send crud past the end of i_size through
445 * compression, that's just a waste of CPU time. So, if the
446 * end of the file is before the start of our current
447 * requested range of bytes, we bail out to the uncompressed
448 * cleanup code that can deal with all of this.
449 *
450 * It isn't really the fastest way to fix things, but this is a
451 * very uncommon corner.
452 */
453 if (actual_end <= start)
454 goto cleanup_and_bail_uncompressed;
455
c8b97818
CM
456 total_compressed = actual_end - start;
457
4bcbb332
SW
458 /*
459 * skip compression for a small file range(<=blocksize) that
01327610 460 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
461 */
462 if (total_compressed <= blocksize &&
463 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
464 goto cleanup_and_bail_uncompressed;
465
c8b97818
CM
466 /* we want to make sure that amount of ram required to uncompress
467 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
468 * of a compressed extent to 128k. This is a crucial number
469 * because it also controls how easily we can spread reads across
470 * cpus for decompression.
471 *
472 * We also want to make sure the amount of IO required to do
473 * a random read is reasonably small, so we limit the size of
474 * a compressed extent to 128k.
c8b97818
CM
475 */
476 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 477 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 478 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
479 total_in = 0;
480 ret = 0;
db94535d 481
771ed689
CM
482 /*
483 * we do compression for mount -o compress and when the
484 * inode has not been flagged as nocompress. This flag can
485 * change at any time if we discover bad compression ratios.
c8b97818 486 */
f79707b0 487 if (inode_need_compress(inode)) {
c8b97818 488 WARN_ON(pages);
31e818fe 489 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
490 if (!pages) {
491 /* just bail out to the uncompressed code */
492 goto cont;
493 }
c8b97818 494
261507a0
LZ
495 if (BTRFS_I(inode)->force_compress)
496 compress_type = BTRFS_I(inode)->force_compress;
497
4adaa611
CM
498 /*
499 * we need to call clear_page_dirty_for_io on each
500 * page in the range. Otherwise applications with the file
501 * mmap'd can wander in and change the page contents while
502 * we are compressing them.
503 *
504 * If the compression fails for any reason, we set the pages
505 * dirty again later on.
506 */
507 extent_range_clear_dirty_for_io(inode, start, end);
508 redirty = 1;
261507a0
LZ
509 ret = btrfs_compress_pages(compress_type,
510 inode->i_mapping, start,
511 total_compressed, pages,
512 nr_pages, &nr_pages_ret,
513 &total_in,
514 &total_compressed,
515 max_compressed);
c8b97818
CM
516
517 if (!ret) {
518 unsigned long offset = total_compressed &
09cbfeaf 519 (PAGE_SIZE - 1);
c8b97818
CM
520 struct page *page = pages[nr_pages_ret - 1];
521 char *kaddr;
522
523 /* zero the tail end of the last page, we might be
524 * sending it down to disk
525 */
526 if (offset) {
7ac687d9 527 kaddr = kmap_atomic(page);
c8b97818 528 memset(kaddr + offset, 0,
09cbfeaf 529 PAGE_SIZE - offset);
7ac687d9 530 kunmap_atomic(kaddr);
c8b97818
CM
531 }
532 will_compress = 1;
533 }
534 }
560f7d75 535cont:
c8b97818
CM
536 if (start == 0) {
537 /* lets try to make an inline extent */
771ed689 538 if (ret || total_in < (actual_end - start)) {
c8b97818 539 /* we didn't compress the entire range, try
771ed689 540 * to make an uncompressed inline extent.
c8b97818 541 */
00361589
JB
542 ret = cow_file_range_inline(root, inode, start, end,
543 0, 0, NULL);
c8b97818 544 } else {
771ed689 545 /* try making a compressed inline extent */
00361589 546 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
547 total_compressed,
548 compress_type, pages);
c8b97818 549 }
79787eaa 550 if (ret <= 0) {
151a41bc
JB
551 unsigned long clear_flags = EXTENT_DELALLOC |
552 EXTENT_DEFRAG;
e6eb4314
FM
553 unsigned long page_error_op;
554
151a41bc 555 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 556 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 557
771ed689 558 /*
79787eaa
JM
559 * inline extent creation worked or returned error,
560 * we don't need to create any more async work items.
561 * Unlock and free up our temp pages.
771ed689 562 */
ba8b04c1
QW
563 extent_clear_unlock_delalloc(inode, start, end, end,
564 NULL, clear_flags,
565 PAGE_UNLOCK |
c2790a2e
JB
566 PAGE_CLEAR_DIRTY |
567 PAGE_SET_WRITEBACK |
e6eb4314 568 page_error_op |
c2790a2e 569 PAGE_END_WRITEBACK);
18513091
WX
570 btrfs_free_reserved_data_space_noquota(inode, start,
571 end - start + 1);
c8b97818
CM
572 goto free_pages_out;
573 }
574 }
575
576 if (will_compress) {
577 /*
578 * we aren't doing an inline extent round the compressed size
579 * up to a block size boundary so the allocator does sane
580 * things
581 */
fda2832f 582 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
583
584 /*
585 * one last check to make sure the compression is really a
586 * win, compare the page count read with the blocks on disk
587 */
09cbfeaf 588 total_in = ALIGN(total_in, PAGE_SIZE);
c8b97818
CM
589 if (total_compressed >= total_in) {
590 will_compress = 0;
591 } else {
c8b97818 592 num_bytes = total_in;
c8bb0c8b
AS
593 *num_added += 1;
594
595 /*
596 * The async work queues will take care of doing actual
597 * allocation on disk for these compressed pages, and
598 * will submit them to the elevator.
599 */
600 add_async_extent(async_cow, start, num_bytes,
601 total_compressed, pages, nr_pages_ret,
602 compress_type);
603
604 if (start + num_bytes < end) {
605 start += num_bytes;
606 pages = NULL;
607 cond_resched();
608 goto again;
609 }
610 return;
c8b97818
CM
611 }
612 }
c8bb0c8b 613 if (pages) {
c8b97818
CM
614 /*
615 * the compression code ran but failed to make things smaller,
616 * free any pages it allocated and our page pointer array
617 */
618 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 619 WARN_ON(pages[i]->mapping);
09cbfeaf 620 put_page(pages[i]);
c8b97818
CM
621 }
622 kfree(pages);
623 pages = NULL;
624 total_compressed = 0;
625 nr_pages_ret = 0;
626
627 /* flag the file so we don't compress in the future */
3cdde224 628 if (!btrfs_test_opt(root->fs_info, FORCE_COMPRESS) &&
1e701a32 629 !(BTRFS_I(inode)->force_compress)) {
a555f810 630 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 631 }
c8b97818 632 }
f03d9301 633cleanup_and_bail_uncompressed:
c8bb0c8b
AS
634 /*
635 * No compression, but we still need to write the pages in the file
636 * we've been given so far. redirty the locked page if it corresponds
637 * to our extent and set things up for the async work queue to run
638 * cow_file_range to do the normal delalloc dance.
639 */
640 if (page_offset(locked_page) >= start &&
641 page_offset(locked_page) <= end)
642 __set_page_dirty_nobuffers(locked_page);
643 /* unlocked later on in the async handlers */
644
645 if (redirty)
646 extent_range_redirty_for_io(inode, start, end);
647 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
648 BTRFS_COMPRESS_NONE);
649 *num_added += 1;
3b951516 650
c44f649e 651 return;
771ed689
CM
652
653free_pages_out:
654 for (i = 0; i < nr_pages_ret; i++) {
655 WARN_ON(pages[i]->mapping);
09cbfeaf 656 put_page(pages[i]);
771ed689 657 }
d397712b 658 kfree(pages);
771ed689 659}
771ed689 660
40ae837b
FM
661static void free_async_extent_pages(struct async_extent *async_extent)
662{
663 int i;
664
665 if (!async_extent->pages)
666 return;
667
668 for (i = 0; i < async_extent->nr_pages; i++) {
669 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 670 put_page(async_extent->pages[i]);
40ae837b
FM
671 }
672 kfree(async_extent->pages);
673 async_extent->nr_pages = 0;
674 async_extent->pages = NULL;
771ed689
CM
675}
676
677/*
678 * phase two of compressed writeback. This is the ordered portion
679 * of the code, which only gets called in the order the work was
680 * queued. We walk all the async extents created by compress_file_range
681 * and send them down to the disk.
682 */
dec8f175 683static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
684 struct async_cow *async_cow)
685{
686 struct async_extent *async_extent;
687 u64 alloc_hint = 0;
771ed689
CM
688 struct btrfs_key ins;
689 struct extent_map *em;
690 struct btrfs_root *root = BTRFS_I(inode)->root;
691 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
692 struct extent_io_tree *io_tree;
f5a84ee3 693 int ret = 0;
771ed689 694
3e04e7f1 695again:
d397712b 696 while (!list_empty(&async_cow->extents)) {
771ed689
CM
697 async_extent = list_entry(async_cow->extents.next,
698 struct async_extent, list);
699 list_del(&async_extent->list);
c8b97818 700
771ed689
CM
701 io_tree = &BTRFS_I(inode)->io_tree;
702
f5a84ee3 703retry:
771ed689
CM
704 /* did the compression code fall back to uncompressed IO? */
705 if (!async_extent->pages) {
706 int page_started = 0;
707 unsigned long nr_written = 0;
708
709 lock_extent(io_tree, async_extent->start,
2ac55d41 710 async_extent->start +
d0082371 711 async_extent->ram_size - 1);
771ed689
CM
712
713 /* allocate blocks */
f5a84ee3
JB
714 ret = cow_file_range(inode, async_cow->locked_page,
715 async_extent->start,
716 async_extent->start +
717 async_extent->ram_size - 1,
dda3245e
WX
718 async_extent->start +
719 async_extent->ram_size - 1,
720 &page_started, &nr_written, 0,
721 NULL);
771ed689 722
79787eaa
JM
723 /* JDM XXX */
724
771ed689
CM
725 /*
726 * if page_started, cow_file_range inserted an
727 * inline extent and took care of all the unlocking
728 * and IO for us. Otherwise, we need to submit
729 * all those pages down to the drive.
730 */
f5a84ee3 731 if (!page_started && !ret)
771ed689
CM
732 extent_write_locked_range(io_tree,
733 inode, async_extent->start,
d397712b 734 async_extent->start +
771ed689
CM
735 async_extent->ram_size - 1,
736 btrfs_get_extent,
737 WB_SYNC_ALL);
3e04e7f1
JB
738 else if (ret)
739 unlock_page(async_cow->locked_page);
771ed689
CM
740 kfree(async_extent);
741 cond_resched();
742 continue;
743 }
744
745 lock_extent(io_tree, async_extent->start,
d0082371 746 async_extent->start + async_extent->ram_size - 1);
771ed689 747
18513091 748 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
749 async_extent->compressed_size,
750 async_extent->compressed_size,
e570fd27 751 0, alloc_hint, &ins, 1, 1);
f5a84ee3 752 if (ret) {
40ae837b 753 free_async_extent_pages(async_extent);
3e04e7f1 754
fdf8e2ea
JB
755 if (ret == -ENOSPC) {
756 unlock_extent(io_tree, async_extent->start,
757 async_extent->start +
758 async_extent->ram_size - 1);
ce62003f
LB
759
760 /*
761 * we need to redirty the pages if we decide to
762 * fallback to uncompressed IO, otherwise we
763 * will not submit these pages down to lower
764 * layers.
765 */
766 extent_range_redirty_for_io(inode,
767 async_extent->start,
768 async_extent->start +
769 async_extent->ram_size - 1);
770
79787eaa 771 goto retry;
fdf8e2ea 772 }
3e04e7f1 773 goto out_free;
f5a84ee3 774 }
c2167754
YZ
775 /*
776 * here we're doing allocation and writeback of the
777 * compressed pages
778 */
779 btrfs_drop_extent_cache(inode, async_extent->start,
780 async_extent->start +
781 async_extent->ram_size - 1, 0);
782
172ddd60 783 em = alloc_extent_map();
b9aa55be
LB
784 if (!em) {
785 ret = -ENOMEM;
3e04e7f1 786 goto out_free_reserve;
b9aa55be 787 }
771ed689
CM
788 em->start = async_extent->start;
789 em->len = async_extent->ram_size;
445a6944 790 em->orig_start = em->start;
2ab28f32
JB
791 em->mod_start = em->start;
792 em->mod_len = em->len;
c8b97818 793
771ed689
CM
794 em->block_start = ins.objectid;
795 em->block_len = ins.offset;
b4939680 796 em->orig_block_len = ins.offset;
cc95bef6 797 em->ram_bytes = async_extent->ram_size;
771ed689 798 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 799 em->compress_type = async_extent->compress_type;
771ed689
CM
800 set_bit(EXTENT_FLAG_PINNED, &em->flags);
801 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 802 em->generation = -1;
771ed689 803
d397712b 804 while (1) {
890871be 805 write_lock(&em_tree->lock);
09a2a8f9 806 ret = add_extent_mapping(em_tree, em, 1);
890871be 807 write_unlock(&em_tree->lock);
771ed689
CM
808 if (ret != -EEXIST) {
809 free_extent_map(em);
810 break;
811 }
812 btrfs_drop_extent_cache(inode, async_extent->start,
813 async_extent->start +
814 async_extent->ram_size - 1, 0);
815 }
816
3e04e7f1
JB
817 if (ret)
818 goto out_free_reserve;
819
261507a0
LZ
820 ret = btrfs_add_ordered_extent_compress(inode,
821 async_extent->start,
822 ins.objectid,
823 async_extent->ram_size,
824 ins.offset,
825 BTRFS_ORDERED_COMPRESSED,
826 async_extent->compress_type);
d9f85963
FM
827 if (ret) {
828 btrfs_drop_extent_cache(inode, async_extent->start,
829 async_extent->start +
830 async_extent->ram_size - 1, 0);
3e04e7f1 831 goto out_free_reserve;
d9f85963 832 }
9cfa3e34 833 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
771ed689 834
771ed689
CM
835 /*
836 * clear dirty, set writeback and unlock the pages.
837 */
c2790a2e 838 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
839 async_extent->start +
840 async_extent->ram_size - 1,
a791e35e
CM
841 async_extent->start +
842 async_extent->ram_size - 1,
151a41bc
JB
843 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
844 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 845 PAGE_SET_WRITEBACK);
771ed689 846 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
847 async_extent->start,
848 async_extent->ram_size,
849 ins.objectid,
850 ins.offset, async_extent->pages,
851 async_extent->nr_pages);
fce2a4e6
FM
852 if (ret) {
853 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
854 struct page *p = async_extent->pages[0];
855 const u64 start = async_extent->start;
856 const u64 end = start + async_extent->ram_size - 1;
857
858 p->mapping = inode->i_mapping;
859 tree->ops->writepage_end_io_hook(p, start, end,
860 NULL, 0);
861 p->mapping = NULL;
ba8b04c1
QW
862 extent_clear_unlock_delalloc(inode, start, end, end,
863 NULL, 0,
fce2a4e6
FM
864 PAGE_END_WRITEBACK |
865 PAGE_SET_ERROR);
40ae837b 866 free_async_extent_pages(async_extent);
fce2a4e6 867 }
771ed689
CM
868 alloc_hint = ins.objectid + ins.offset;
869 kfree(async_extent);
870 cond_resched();
871 }
dec8f175 872 return;
3e04e7f1 873out_free_reserve:
9cfa3e34 874 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
e570fd27 875 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 876out_free:
c2790a2e 877 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
878 async_extent->start +
879 async_extent->ram_size - 1,
3e04e7f1
JB
880 async_extent->start +
881 async_extent->ram_size - 1,
c2790a2e 882 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
883 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
884 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
885 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
886 PAGE_SET_ERROR);
40ae837b 887 free_async_extent_pages(async_extent);
79787eaa 888 kfree(async_extent);
3e04e7f1 889 goto again;
771ed689
CM
890}
891
4b46fce2
JB
892static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
893 u64 num_bytes)
894{
895 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
896 struct extent_map *em;
897 u64 alloc_hint = 0;
898
899 read_lock(&em_tree->lock);
900 em = search_extent_mapping(em_tree, start, num_bytes);
901 if (em) {
902 /*
903 * if block start isn't an actual block number then find the
904 * first block in this inode and use that as a hint. If that
905 * block is also bogus then just don't worry about it.
906 */
907 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
908 free_extent_map(em);
909 em = search_extent_mapping(em_tree, 0, 0);
910 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
911 alloc_hint = em->block_start;
912 if (em)
913 free_extent_map(em);
914 } else {
915 alloc_hint = em->block_start;
916 free_extent_map(em);
917 }
918 }
919 read_unlock(&em_tree->lock);
920
921 return alloc_hint;
922}
923
771ed689
CM
924/*
925 * when extent_io.c finds a delayed allocation range in the file,
926 * the call backs end up in this code. The basic idea is to
927 * allocate extents on disk for the range, and create ordered data structs
928 * in ram to track those extents.
929 *
930 * locked_page is the page that writepage had locked already. We use
931 * it to make sure we don't do extra locks or unlocks.
932 *
933 * *page_started is set to one if we unlock locked_page and do everything
934 * required to start IO on it. It may be clean and already done with
935 * IO when we return.
936 */
00361589
JB
937static noinline int cow_file_range(struct inode *inode,
938 struct page *locked_page,
dda3245e
WX
939 u64 start, u64 end, u64 delalloc_end,
940 int *page_started, unsigned long *nr_written,
941 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 942{
00361589 943 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
944 u64 alloc_hint = 0;
945 u64 num_bytes;
946 unsigned long ram_size;
947 u64 disk_num_bytes;
948 u64 cur_alloc_size;
949 u64 blocksize = root->sectorsize;
771ed689
CM
950 struct btrfs_key ins;
951 struct extent_map *em;
952 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
953 int ret = 0;
954
02ecd2c2
JB
955 if (btrfs_is_free_space_inode(inode)) {
956 WARN_ON_ONCE(1);
29bce2f3
JB
957 ret = -EINVAL;
958 goto out_unlock;
02ecd2c2 959 }
771ed689 960
fda2832f 961 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
962 num_bytes = max(blocksize, num_bytes);
963 disk_num_bytes = num_bytes;
771ed689 964
4cb5300b 965 /* if this is a small write inside eof, kick off defrag */
ee22184b 966 if (num_bytes < SZ_64K &&
4cb13e5d 967 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 968 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 969
771ed689
CM
970 if (start == 0) {
971 /* lets try to make an inline extent */
00361589
JB
972 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
973 NULL);
771ed689 974 if (ret == 0) {
ba8b04c1
QW
975 extent_clear_unlock_delalloc(inode, start, end,
976 delalloc_end, NULL,
c2790a2e 977 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 978 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
979 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
980 PAGE_END_WRITEBACK);
18513091
WX
981 btrfs_free_reserved_data_space_noquota(inode, start,
982 end - start + 1);
771ed689 983 *nr_written = *nr_written +
09cbfeaf 984 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 985 *page_started = 1;
771ed689 986 goto out;
79787eaa 987 } else if (ret < 0) {
79787eaa 988 goto out_unlock;
771ed689
CM
989 }
990 }
991
992 BUG_ON(disk_num_bytes >
6c41761f 993 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 994
4b46fce2 995 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
996 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
997
d397712b 998 while (disk_num_bytes > 0) {
a791e35e
CM
999 unsigned long op;
1000
287a0ab9 1001 cur_alloc_size = disk_num_bytes;
18513091 1002 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
771ed689 1003 root->sectorsize, 0, alloc_hint,
e570fd27 1004 &ins, 1, 1);
00361589 1005 if (ret < 0)
79787eaa 1006 goto out_unlock;
d397712b 1007
172ddd60 1008 em = alloc_extent_map();
b9aa55be
LB
1009 if (!em) {
1010 ret = -ENOMEM;
ace68bac 1011 goto out_reserve;
b9aa55be 1012 }
e6dcd2dc 1013 em->start = start;
445a6944 1014 em->orig_start = em->start;
771ed689
CM
1015 ram_size = ins.offset;
1016 em->len = ins.offset;
2ab28f32
JB
1017 em->mod_start = em->start;
1018 em->mod_len = em->len;
c8b97818 1019
e6dcd2dc 1020 em->block_start = ins.objectid;
c8b97818 1021 em->block_len = ins.offset;
b4939680 1022 em->orig_block_len = ins.offset;
cc95bef6 1023 em->ram_bytes = ram_size;
e6dcd2dc 1024 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 1025 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 1026 em->generation = -1;
c8b97818 1027
d397712b 1028 while (1) {
890871be 1029 write_lock(&em_tree->lock);
09a2a8f9 1030 ret = add_extent_mapping(em_tree, em, 1);
890871be 1031 write_unlock(&em_tree->lock);
e6dcd2dc
CM
1032 if (ret != -EEXIST) {
1033 free_extent_map(em);
1034 break;
1035 }
1036 btrfs_drop_extent_cache(inode, start,
c8b97818 1037 start + ram_size - 1, 0);
e6dcd2dc 1038 }
ace68bac
LB
1039 if (ret)
1040 goto out_reserve;
e6dcd2dc 1041
98d20f67 1042 cur_alloc_size = ins.offset;
e6dcd2dc 1043 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1044 ram_size, cur_alloc_size, 0);
ace68bac 1045 if (ret)
d9f85963 1046 goto out_drop_extent_cache;
c8b97818 1047
17d217fe
YZ
1048 if (root->root_key.objectid ==
1049 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1050 ret = btrfs_reloc_clone_csums(inode, start,
1051 cur_alloc_size);
00361589 1052 if (ret)
d9f85963 1053 goto out_drop_extent_cache;
17d217fe
YZ
1054 }
1055
9cfa3e34
FM
1056 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1057
d397712b 1058 if (disk_num_bytes < cur_alloc_size)
3b951516 1059 break;
d397712b 1060
c8b97818
CM
1061 /* we're not doing compressed IO, don't unlock the first
1062 * page (which the caller expects to stay locked), don't
1063 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1064 *
1065 * Do set the Private2 bit so we know this page was properly
1066 * setup for writepage
c8b97818 1067 */
c2790a2e
JB
1068 op = unlock ? PAGE_UNLOCK : 0;
1069 op |= PAGE_SET_PRIVATE2;
a791e35e 1070
c2790a2e 1071 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1072 start + ram_size - 1,
1073 delalloc_end, locked_page,
c2790a2e
JB
1074 EXTENT_LOCKED | EXTENT_DELALLOC,
1075 op);
c8b97818 1076 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1077 num_bytes -= cur_alloc_size;
1078 alloc_hint = ins.objectid + ins.offset;
1079 start += cur_alloc_size;
b888db2b 1080 }
79787eaa 1081out:
be20aa9d 1082 return ret;
b7d5b0a8 1083
d9f85963
FM
1084out_drop_extent_cache:
1085 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1086out_reserve:
9cfa3e34 1087 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
e570fd27 1088 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1089out_unlock:
ba8b04c1
QW
1090 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1091 locked_page,
151a41bc
JB
1092 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1093 EXTENT_DELALLOC | EXTENT_DEFRAG,
1094 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1095 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1096 goto out;
771ed689 1097}
c8b97818 1098
771ed689
CM
1099/*
1100 * work queue call back to started compression on a file and pages
1101 */
1102static noinline void async_cow_start(struct btrfs_work *work)
1103{
1104 struct async_cow *async_cow;
1105 int num_added = 0;
1106 async_cow = container_of(work, struct async_cow, work);
1107
1108 compress_file_range(async_cow->inode, async_cow->locked_page,
1109 async_cow->start, async_cow->end, async_cow,
1110 &num_added);
8180ef88 1111 if (num_added == 0) {
cb77fcd8 1112 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1113 async_cow->inode = NULL;
8180ef88 1114 }
771ed689
CM
1115}
1116
1117/*
1118 * work queue call back to submit previously compressed pages
1119 */
1120static noinline void async_cow_submit(struct btrfs_work *work)
1121{
1122 struct async_cow *async_cow;
1123 struct btrfs_root *root;
1124 unsigned long nr_pages;
1125
1126 async_cow = container_of(work, struct async_cow, work);
1127
1128 root = async_cow->root;
09cbfeaf
KS
1129 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1130 PAGE_SHIFT;
771ed689 1131
ee863954
DS
1132 /*
1133 * atomic_sub_return implies a barrier for waitqueue_active
1134 */
66657b31 1135 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
ee22184b 1136 5 * SZ_1M &&
771ed689
CM
1137 waitqueue_active(&root->fs_info->async_submit_wait))
1138 wake_up(&root->fs_info->async_submit_wait);
1139
d397712b 1140 if (async_cow->inode)
771ed689 1141 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1142}
c8b97818 1143
771ed689
CM
1144static noinline void async_cow_free(struct btrfs_work *work)
1145{
1146 struct async_cow *async_cow;
1147 async_cow = container_of(work, struct async_cow, work);
8180ef88 1148 if (async_cow->inode)
cb77fcd8 1149 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1150 kfree(async_cow);
1151}
1152
1153static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1154 u64 start, u64 end, int *page_started,
1155 unsigned long *nr_written)
1156{
1157 struct async_cow *async_cow;
1158 struct btrfs_root *root = BTRFS_I(inode)->root;
1159 unsigned long nr_pages;
1160 u64 cur_end;
ee22184b 1161 int limit = 10 * SZ_1M;
771ed689 1162
a3429ab7
CM
1163 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1164 1, 0, NULL, GFP_NOFS);
d397712b 1165 while (start < end) {
771ed689 1166 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1167 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1168 async_cow->inode = igrab(inode);
771ed689
CM
1169 async_cow->root = root;
1170 async_cow->locked_page = locked_page;
1171 async_cow->start = start;
1172
f79707b0 1173 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
3cdde224 1174 !btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
771ed689
CM
1175 cur_end = end;
1176 else
ee22184b 1177 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1178
1179 async_cow->end = cur_end;
1180 INIT_LIST_HEAD(&async_cow->extents);
1181
9e0af237
LB
1182 btrfs_init_work(&async_cow->work,
1183 btrfs_delalloc_helper,
1184 async_cow_start, async_cow_submit,
1185 async_cow_free);
771ed689 1186
09cbfeaf
KS
1187 nr_pages = (cur_end - start + PAGE_SIZE) >>
1188 PAGE_SHIFT;
771ed689
CM
1189 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1190
afe3d242
QW
1191 btrfs_queue_work(root->fs_info->delalloc_workers,
1192 &async_cow->work);
771ed689
CM
1193
1194 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1195 wait_event(root->fs_info->async_submit_wait,
1196 (atomic_read(&root->fs_info->async_delalloc_pages) <
1197 limit));
1198 }
1199
d397712b 1200 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1201 atomic_read(&root->fs_info->async_delalloc_pages)) {
1202 wait_event(root->fs_info->async_submit_wait,
1203 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1204 0));
1205 }
1206
1207 *nr_written += nr_pages;
1208 start = cur_end + 1;
1209 }
1210 *page_started = 1;
1211 return 0;
be20aa9d
CM
1212}
1213
d397712b 1214static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1215 u64 bytenr, u64 num_bytes)
1216{
1217 int ret;
1218 struct btrfs_ordered_sum *sums;
1219 LIST_HEAD(list);
1220
07d400a6 1221 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1222 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1223 if (ret == 0 && list_empty(&list))
1224 return 0;
1225
1226 while (!list_empty(&list)) {
1227 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1228 list_del(&sums->list);
1229 kfree(sums);
1230 }
1231 return 1;
1232}
1233
d352ac68
CM
1234/*
1235 * when nowcow writeback call back. This checks for snapshots or COW copies
1236 * of the extents that exist in the file, and COWs the file as required.
1237 *
1238 * If no cow copies or snapshots exist, we write directly to the existing
1239 * blocks on disk
1240 */
7f366cfe
CM
1241static noinline int run_delalloc_nocow(struct inode *inode,
1242 struct page *locked_page,
771ed689
CM
1243 u64 start, u64 end, int *page_started, int force,
1244 unsigned long *nr_written)
be20aa9d 1245{
be20aa9d 1246 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1247 struct btrfs_trans_handle *trans;
be20aa9d 1248 struct extent_buffer *leaf;
be20aa9d 1249 struct btrfs_path *path;
80ff3856 1250 struct btrfs_file_extent_item *fi;
be20aa9d 1251 struct btrfs_key found_key;
80ff3856
YZ
1252 u64 cow_start;
1253 u64 cur_offset;
1254 u64 extent_end;
5d4f98a2 1255 u64 extent_offset;
80ff3856
YZ
1256 u64 disk_bytenr;
1257 u64 num_bytes;
b4939680 1258 u64 disk_num_bytes;
cc95bef6 1259 u64 ram_bytes;
80ff3856 1260 int extent_type;
79787eaa 1261 int ret, err;
d899e052 1262 int type;
80ff3856
YZ
1263 int nocow;
1264 int check_prev = 1;
82d5902d 1265 bool nolock;
33345d01 1266 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1267
1268 path = btrfs_alloc_path();
17ca04af 1269 if (!path) {
ba8b04c1
QW
1270 extent_clear_unlock_delalloc(inode, start, end, end,
1271 locked_page,
c2790a2e 1272 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1273 EXTENT_DO_ACCOUNTING |
1274 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1275 PAGE_CLEAR_DIRTY |
1276 PAGE_SET_WRITEBACK |
1277 PAGE_END_WRITEBACK);
d8926bb3 1278 return -ENOMEM;
17ca04af 1279 }
82d5902d 1280
83eea1f1 1281 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1282
1283 if (nolock)
7a7eaa40 1284 trans = btrfs_join_transaction_nolock(root);
82d5902d 1285 else
7a7eaa40 1286 trans = btrfs_join_transaction(root);
ff5714cc 1287
79787eaa 1288 if (IS_ERR(trans)) {
ba8b04c1
QW
1289 extent_clear_unlock_delalloc(inode, start, end, end,
1290 locked_page,
c2790a2e 1291 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1292 EXTENT_DO_ACCOUNTING |
1293 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1294 PAGE_CLEAR_DIRTY |
1295 PAGE_SET_WRITEBACK |
1296 PAGE_END_WRITEBACK);
79787eaa
JM
1297 btrfs_free_path(path);
1298 return PTR_ERR(trans);
1299 }
1300
74b21075 1301 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1302
80ff3856
YZ
1303 cow_start = (u64)-1;
1304 cur_offset = start;
1305 while (1) {
33345d01 1306 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1307 cur_offset, 0);
d788a349 1308 if (ret < 0)
79787eaa 1309 goto error;
80ff3856
YZ
1310 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1311 leaf = path->nodes[0];
1312 btrfs_item_key_to_cpu(leaf, &found_key,
1313 path->slots[0] - 1);
33345d01 1314 if (found_key.objectid == ino &&
80ff3856
YZ
1315 found_key.type == BTRFS_EXTENT_DATA_KEY)
1316 path->slots[0]--;
1317 }
1318 check_prev = 0;
1319next_slot:
1320 leaf = path->nodes[0];
1321 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1322 ret = btrfs_next_leaf(root, path);
d788a349 1323 if (ret < 0)
79787eaa 1324 goto error;
80ff3856
YZ
1325 if (ret > 0)
1326 break;
1327 leaf = path->nodes[0];
1328 }
be20aa9d 1329
80ff3856
YZ
1330 nocow = 0;
1331 disk_bytenr = 0;
17d217fe 1332 num_bytes = 0;
80ff3856
YZ
1333 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1334
1d512cb7
FM
1335 if (found_key.objectid > ino)
1336 break;
1337 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1338 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1339 path->slots[0]++;
1340 goto next_slot;
1341 }
1342 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1343 found_key.offset > end)
1344 break;
1345
1346 if (found_key.offset > cur_offset) {
1347 extent_end = found_key.offset;
e9061e21 1348 extent_type = 0;
80ff3856
YZ
1349 goto out_check;
1350 }
1351
1352 fi = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_file_extent_item);
1354 extent_type = btrfs_file_extent_type(leaf, fi);
1355
cc95bef6 1356 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1357 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1358 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1359 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1360 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1361 extent_end = found_key.offset +
1362 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1363 disk_num_bytes =
1364 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1365 if (extent_end <= start) {
1366 path->slots[0]++;
1367 goto next_slot;
1368 }
17d217fe
YZ
1369 if (disk_bytenr == 0)
1370 goto out_check;
80ff3856
YZ
1371 if (btrfs_file_extent_compression(leaf, fi) ||
1372 btrfs_file_extent_encryption(leaf, fi) ||
1373 btrfs_file_extent_other_encoding(leaf, fi))
1374 goto out_check;
d899e052
YZ
1375 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1376 goto out_check;
d2fb3437 1377 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1378 goto out_check;
33345d01 1379 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1380 found_key.offset -
1381 extent_offset, disk_bytenr))
17d217fe 1382 goto out_check;
5d4f98a2 1383 disk_bytenr += extent_offset;
17d217fe
YZ
1384 disk_bytenr += cur_offset - found_key.offset;
1385 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1386 /*
1387 * if there are pending snapshots for this root,
1388 * we fall into common COW way.
1389 */
1390 if (!nolock) {
9ea24bbe 1391 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1392 if (!err)
1393 goto out_check;
1394 }
17d217fe
YZ
1395 /*
1396 * force cow if csum exists in the range.
1397 * this ensure that csum for a given extent are
1398 * either valid or do not exist.
1399 */
1400 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1401 goto out_check;
f78c436c
FM
1402 if (!btrfs_inc_nocow_writers(root->fs_info,
1403 disk_bytenr))
1404 goto out_check;
80ff3856
YZ
1405 nocow = 1;
1406 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1407 extent_end = found_key.offset +
514ac8ad
CM
1408 btrfs_file_extent_inline_len(leaf,
1409 path->slots[0], fi);
80ff3856
YZ
1410 extent_end = ALIGN(extent_end, root->sectorsize);
1411 } else {
1412 BUG_ON(1);
1413 }
1414out_check:
1415 if (extent_end <= start) {
1416 path->slots[0]++;
e9894fd3 1417 if (!nolock && nocow)
9ea24bbe 1418 btrfs_end_write_no_snapshoting(root);
f78c436c
FM
1419 if (nocow)
1420 btrfs_dec_nocow_writers(root->fs_info,
1421 disk_bytenr);
80ff3856
YZ
1422 goto next_slot;
1423 }
1424 if (!nocow) {
1425 if (cow_start == (u64)-1)
1426 cow_start = cur_offset;
1427 cur_offset = extent_end;
1428 if (cur_offset > end)
1429 break;
1430 path->slots[0]++;
1431 goto next_slot;
7ea394f1
YZ
1432 }
1433
b3b4aa74 1434 btrfs_release_path(path);
80ff3856 1435 if (cow_start != (u64)-1) {
00361589
JB
1436 ret = cow_file_range(inode, locked_page,
1437 cow_start, found_key.offset - 1,
dda3245e
WX
1438 end, page_started, nr_written, 1,
1439 NULL);
e9894fd3
WS
1440 if (ret) {
1441 if (!nolock && nocow)
9ea24bbe 1442 btrfs_end_write_no_snapshoting(root);
f78c436c
FM
1443 if (nocow)
1444 btrfs_dec_nocow_writers(root->fs_info,
1445 disk_bytenr);
79787eaa 1446 goto error;
e9894fd3 1447 }
80ff3856 1448 cow_start = (u64)-1;
7ea394f1 1449 }
80ff3856 1450
d899e052
YZ
1451 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1452 struct extent_map *em;
1453 struct extent_map_tree *em_tree;
1454 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1455 em = alloc_extent_map();
79787eaa 1456 BUG_ON(!em); /* -ENOMEM */
d899e052 1457 em->start = cur_offset;
70c8a91c 1458 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1459 em->len = num_bytes;
1460 em->block_len = num_bytes;
1461 em->block_start = disk_bytenr;
b4939680 1462 em->orig_block_len = disk_num_bytes;
cc95bef6 1463 em->ram_bytes = ram_bytes;
d899e052 1464 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1465 em->mod_start = em->start;
1466 em->mod_len = em->len;
d899e052 1467 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1468 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1469 em->generation = -1;
d899e052 1470 while (1) {
890871be 1471 write_lock(&em_tree->lock);
09a2a8f9 1472 ret = add_extent_mapping(em_tree, em, 1);
890871be 1473 write_unlock(&em_tree->lock);
d899e052
YZ
1474 if (ret != -EEXIST) {
1475 free_extent_map(em);
1476 break;
1477 }
1478 btrfs_drop_extent_cache(inode, em->start,
1479 em->start + em->len - 1, 0);
1480 }
1481 type = BTRFS_ORDERED_PREALLOC;
1482 } else {
1483 type = BTRFS_ORDERED_NOCOW;
1484 }
80ff3856
YZ
1485
1486 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1487 num_bytes, num_bytes, type);
f78c436c
FM
1488 if (nocow)
1489 btrfs_dec_nocow_writers(root->fs_info, disk_bytenr);
79787eaa 1490 BUG_ON(ret); /* -ENOMEM */
771ed689 1491
efa56464
YZ
1492 if (root->root_key.objectid ==
1493 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1494 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1495 num_bytes);
e9894fd3
WS
1496 if (ret) {
1497 if (!nolock && nocow)
9ea24bbe 1498 btrfs_end_write_no_snapshoting(root);
79787eaa 1499 goto error;
e9894fd3 1500 }
efa56464
YZ
1501 }
1502
c2790a2e 1503 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1504 cur_offset + num_bytes - 1, end,
c2790a2e 1505 locked_page, EXTENT_LOCKED |
18513091
WX
1506 EXTENT_DELALLOC |
1507 EXTENT_CLEAR_DATA_RESV,
1508 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1509
e9894fd3 1510 if (!nolock && nocow)
9ea24bbe 1511 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1512 cur_offset = extent_end;
1513 if (cur_offset > end)
1514 break;
be20aa9d 1515 }
b3b4aa74 1516 btrfs_release_path(path);
80ff3856 1517
17ca04af 1518 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1519 cow_start = cur_offset;
17ca04af
JB
1520 cur_offset = end;
1521 }
1522
80ff3856 1523 if (cow_start != (u64)-1) {
dda3245e
WX
1524 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1525 page_started, nr_written, 1, NULL);
d788a349 1526 if (ret)
79787eaa 1527 goto error;
80ff3856
YZ
1528 }
1529
79787eaa 1530error:
a698d075 1531 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1532 if (!ret)
1533 ret = err;
1534
17ca04af 1535 if (ret && cur_offset < end)
ba8b04c1 1536 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1537 locked_page, EXTENT_LOCKED |
151a41bc
JB
1538 EXTENT_DELALLOC | EXTENT_DEFRAG |
1539 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1540 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1541 PAGE_SET_WRITEBACK |
1542 PAGE_END_WRITEBACK);
7ea394f1 1543 btrfs_free_path(path);
79787eaa 1544 return ret;
be20aa9d
CM
1545}
1546
47059d93
WS
1547static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1548{
1549
1550 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1551 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1552 return 0;
1553
1554 /*
1555 * @defrag_bytes is a hint value, no spinlock held here,
1556 * if is not zero, it means the file is defragging.
1557 * Force cow if given extent needs to be defragged.
1558 */
1559 if (BTRFS_I(inode)->defrag_bytes &&
1560 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1561 EXTENT_DEFRAG, 0, NULL))
1562 return 1;
1563
1564 return 0;
1565}
1566
d352ac68
CM
1567/*
1568 * extent_io.c call back to do delayed allocation processing
1569 */
c8b97818 1570static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1571 u64 start, u64 end, int *page_started,
1572 unsigned long *nr_written)
be20aa9d 1573{
be20aa9d 1574 int ret;
47059d93 1575 int force_cow = need_force_cow(inode, start, end);
a2135011 1576
47059d93 1577 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1578 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1579 page_started, 1, nr_written);
47059d93 1580 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1581 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1582 page_started, 0, nr_written);
7816030e 1583 } else if (!inode_need_compress(inode)) {
dda3245e
WX
1584 ret = cow_file_range(inode, locked_page, start, end, end,
1585 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1586 } else {
1587 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1588 &BTRFS_I(inode)->runtime_flags);
771ed689 1589 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1590 page_started, nr_written);
7ddf5a42 1591 }
b888db2b
CM
1592 return ret;
1593}
1594
1bf85046
JM
1595static void btrfs_split_extent_hook(struct inode *inode,
1596 struct extent_state *orig, u64 split)
9ed74f2d 1597{
dcab6a3b
JB
1598 u64 size;
1599
0ca1f7ce 1600 /* not delalloc, ignore it */
9ed74f2d 1601 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1602 return;
9ed74f2d 1603
dcab6a3b
JB
1604 size = orig->end - orig->start + 1;
1605 if (size > BTRFS_MAX_EXTENT_SIZE) {
1606 u64 num_extents;
1607 u64 new_size;
1608
1609 /*
ba117213
JB
1610 * See the explanation in btrfs_merge_extent_hook, the same
1611 * applies here, just in reverse.
dcab6a3b
JB
1612 */
1613 new_size = orig->end - split + 1;
ba117213 1614 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
dcab6a3b 1615 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1616 new_size = split - orig->start;
1617 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1618 BTRFS_MAX_EXTENT_SIZE);
1619 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1620 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1621 return;
1622 }
1623
9e0baf60
JB
1624 spin_lock(&BTRFS_I(inode)->lock);
1625 BTRFS_I(inode)->outstanding_extents++;
1626 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1627}
1628
1629/*
1630 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1631 * extents so we can keep track of new extents that are just merged onto old
1632 * extents, such as when we are doing sequential writes, so we can properly
1633 * account for the metadata space we'll need.
1634 */
1bf85046
JM
1635static void btrfs_merge_extent_hook(struct inode *inode,
1636 struct extent_state *new,
1637 struct extent_state *other)
9ed74f2d 1638{
dcab6a3b
JB
1639 u64 new_size, old_size;
1640 u64 num_extents;
1641
9ed74f2d
JB
1642 /* not delalloc, ignore it */
1643 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1644 return;
9ed74f2d 1645
8461a3de
JB
1646 if (new->start > other->start)
1647 new_size = new->end - other->start + 1;
1648 else
1649 new_size = other->end - new->start + 1;
dcab6a3b
JB
1650
1651 /* we're not bigger than the max, unreserve the space and go */
1652 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1653 spin_lock(&BTRFS_I(inode)->lock);
1654 BTRFS_I(inode)->outstanding_extents--;
1655 spin_unlock(&BTRFS_I(inode)->lock);
1656 return;
1657 }
1658
1659 /*
ba117213
JB
1660 * We have to add up either side to figure out how many extents were
1661 * accounted for before we merged into one big extent. If the number of
1662 * extents we accounted for is <= the amount we need for the new range
1663 * then we can return, otherwise drop. Think of it like this
1664 *
1665 * [ 4k][MAX_SIZE]
1666 *
1667 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1668 * need 2 outstanding extents, on one side we have 1 and the other side
1669 * we have 1 so they are == and we can return. But in this case
1670 *
1671 * [MAX_SIZE+4k][MAX_SIZE+4k]
1672 *
1673 * Each range on their own accounts for 2 extents, but merged together
1674 * they are only 3 extents worth of accounting, so we need to drop in
1675 * this case.
dcab6a3b 1676 */
ba117213 1677 old_size = other->end - other->start + 1;
dcab6a3b
JB
1678 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1679 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1680 old_size = new->end - new->start + 1;
1681 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1682 BTRFS_MAX_EXTENT_SIZE);
1683
dcab6a3b 1684 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
ba117213 1685 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1686 return;
1687
9e0baf60
JB
1688 spin_lock(&BTRFS_I(inode)->lock);
1689 BTRFS_I(inode)->outstanding_extents--;
1690 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1691}
1692
eb73c1b7
MX
1693static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1694 struct inode *inode)
1695{
1696 spin_lock(&root->delalloc_lock);
1697 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1698 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1699 &root->delalloc_inodes);
1700 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1701 &BTRFS_I(inode)->runtime_flags);
1702 root->nr_delalloc_inodes++;
1703 if (root->nr_delalloc_inodes == 1) {
1704 spin_lock(&root->fs_info->delalloc_root_lock);
1705 BUG_ON(!list_empty(&root->delalloc_root));
1706 list_add_tail(&root->delalloc_root,
1707 &root->fs_info->delalloc_roots);
1708 spin_unlock(&root->fs_info->delalloc_root_lock);
1709 }
1710 }
1711 spin_unlock(&root->delalloc_lock);
1712}
1713
1714static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1715 struct inode *inode)
1716{
1717 spin_lock(&root->delalloc_lock);
1718 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1719 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1720 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1721 &BTRFS_I(inode)->runtime_flags);
1722 root->nr_delalloc_inodes--;
1723 if (!root->nr_delalloc_inodes) {
1724 spin_lock(&root->fs_info->delalloc_root_lock);
1725 BUG_ON(list_empty(&root->delalloc_root));
1726 list_del_init(&root->delalloc_root);
1727 spin_unlock(&root->fs_info->delalloc_root_lock);
1728 }
1729 }
1730 spin_unlock(&root->delalloc_lock);
1731}
1732
d352ac68
CM
1733/*
1734 * extent_io.c set_bit_hook, used to track delayed allocation
1735 * bytes in this file, and to maintain the list of inodes that
1736 * have pending delalloc work to be done.
1737 */
1bf85046 1738static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1739 struct extent_state *state, unsigned *bits)
291d673e 1740{
9ed74f2d 1741
47059d93
WS
1742 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1743 WARN_ON(1);
75eff68e
CM
1744 /*
1745 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1746 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1747 * bit, which is only set or cleared with irqs on
1748 */
0ca1f7ce 1749 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1750 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1751 u64 len = state->end + 1 - state->start;
83eea1f1 1752 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1753
9e0baf60 1754 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1755 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1756 } else {
1757 spin_lock(&BTRFS_I(inode)->lock);
1758 BTRFS_I(inode)->outstanding_extents++;
1759 spin_unlock(&BTRFS_I(inode)->lock);
1760 }
287a0ab9 1761
6a3891c5 1762 /* For sanity tests */
f5ee5c9a 1763 if (btrfs_is_testing(root->fs_info))
6a3891c5
JB
1764 return;
1765
963d678b
MX
1766 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1767 root->fs_info->delalloc_batch);
df0af1a5 1768 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1769 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1770 if (*bits & EXTENT_DEFRAG)
1771 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1772 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1773 &BTRFS_I(inode)->runtime_flags))
1774 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1775 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1776 }
291d673e
CM
1777}
1778
d352ac68
CM
1779/*
1780 * extent_io.c clear_bit_hook, see set_bit_hook for why
1781 */
1bf85046 1782static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1783 struct extent_state *state,
9ee49a04 1784 unsigned *bits)
291d673e 1785{
47059d93 1786 u64 len = state->end + 1 - state->start;
dcab6a3b
JB
1787 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1788 BTRFS_MAX_EXTENT_SIZE);
47059d93
WS
1789
1790 spin_lock(&BTRFS_I(inode)->lock);
1791 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1792 BTRFS_I(inode)->defrag_bytes -= len;
1793 spin_unlock(&BTRFS_I(inode)->lock);
1794
75eff68e
CM
1795 /*
1796 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1797 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1798 * bit, which is only set or cleared with irqs on
1799 */
0ca1f7ce 1800 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1801 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1802 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1803
9e0baf60 1804 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1805 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1806 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1807 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 1808 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60
JB
1809 spin_unlock(&BTRFS_I(inode)->lock);
1810 }
0ca1f7ce 1811
b6d08f06
JB
1812 /*
1813 * We don't reserve metadata space for space cache inodes so we
1814 * don't need to call dellalloc_release_metadata if there is an
1815 * error.
1816 */
1817 if (*bits & EXTENT_DO_ACCOUNTING &&
1818 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1819 btrfs_delalloc_release_metadata(inode, len);
1820
6a3891c5 1821 /* For sanity tests. */
f5ee5c9a 1822 if (btrfs_is_testing(root->fs_info))
6a3891c5
JB
1823 return;
1824
0cb59c99 1825 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
18513091
WX
1826 && do_list && !(state->state & EXTENT_NORESERVE)
1827 && (*bits & (EXTENT_DO_ACCOUNTING |
1828 EXTENT_CLEAR_DATA_RESV)))
51773bec
QW
1829 btrfs_free_reserved_data_space_noquota(inode,
1830 state->start, len);
9ed74f2d 1831
963d678b
MX
1832 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1833 root->fs_info->delalloc_batch);
df0af1a5 1834 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1835 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1836 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1837 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1838 &BTRFS_I(inode)->runtime_flags))
1839 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1840 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1841 }
291d673e
CM
1842}
1843
d352ac68
CM
1844/*
1845 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1846 * we don't create bios that span stripes or chunks
6f034ece
LB
1847 *
1848 * return 1 if page cannot be merged to bio
1849 * return 0 if page can be merged to bio
1850 * return error otherwise
d352ac68 1851 */
81a75f67 1852int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1853 size_t size, struct bio *bio,
1854 unsigned long bio_flags)
239b14b3
CM
1855{
1856 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1857 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1858 u64 length = 0;
1859 u64 map_length;
239b14b3
CM
1860 int ret;
1861
771ed689
CM
1862 if (bio_flags & EXTENT_BIO_COMPRESSED)
1863 return 0;
1864
4f024f37 1865 length = bio->bi_iter.bi_size;
239b14b3 1866 map_length = length;
b3d3fa51 1867 ret = btrfs_map_block(root->fs_info, bio_op(bio), logical,
f188591e 1868 &map_length, NULL, 0);
6f034ece
LB
1869 if (ret < 0)
1870 return ret;
d397712b 1871 if (map_length < length + size)
239b14b3 1872 return 1;
3444a972 1873 return 0;
239b14b3
CM
1874}
1875
d352ac68
CM
1876/*
1877 * in order to insert checksums into the metadata in large chunks,
1878 * we wait until bio submission time. All the pages in the bio are
1879 * checksummed and sums are attached onto the ordered extent record.
1880 *
1881 * At IO completion time the cums attached on the ordered extent record
1882 * are inserted into the btree
1883 */
81a75f67
MC
1884static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
1885 int mirror_num, unsigned long bio_flags,
eaf25d93 1886 u64 bio_offset)
065631f6 1887{
065631f6 1888 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1889 int ret = 0;
e015640f 1890
d20f7043 1891 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1892 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1893 return 0;
1894}
e015640f 1895
4a69a410
CM
1896/*
1897 * in order to insert checksums into the metadata in large chunks,
1898 * we wait until bio submission time. All the pages in the bio are
1899 * checksummed and sums are attached onto the ordered extent record.
1900 *
1901 * At IO completion time the cums attached on the ordered extent record
1902 * are inserted into the btree
1903 */
81a75f67 1904static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio,
eaf25d93
CM
1905 int mirror_num, unsigned long bio_flags,
1906 u64 bio_offset)
4a69a410
CM
1907{
1908 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1909 int ret;
1910
81a75f67 1911 ret = btrfs_map_bio(root, bio, mirror_num, 1);
4246a0b6
CH
1912 if (ret) {
1913 bio->bi_error = ret;
1914 bio_endio(bio);
1915 }
61891923 1916 return ret;
44b8bd7e
CM
1917}
1918
d352ac68 1919/*
cad321ad
CM
1920 * extent_io.c submission hook. This does the right thing for csum calculation
1921 * on write, or reading the csums from the tree before a read
d352ac68 1922 */
81a75f67 1923static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
eaf25d93
CM
1924 int mirror_num, unsigned long bio_flags,
1925 u64 bio_offset)
44b8bd7e
CM
1926{
1927 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1928 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1929 int ret = 0;
19b9bdb0 1930 int skip_sum;
b812ce28 1931 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1932
6cbff00f 1933 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1934
83eea1f1 1935 if (btrfs_is_free_space_inode(inode))
0d51e28a 1936 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1937
37226b21 1938 if (bio_op(bio) != REQ_OP_WRITE) {
5fd02043
JB
1939 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1940 if (ret)
61891923 1941 goto out;
5fd02043 1942
d20f7043 1943 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1944 ret = btrfs_submit_compressed_read(inode, bio,
1945 mirror_num,
1946 bio_flags);
1947 goto out;
c2db1073
TI
1948 } else if (!skip_sum) {
1949 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1950 if (ret)
61891923 1951 goto out;
c2db1073 1952 }
4d1b5fb4 1953 goto mapit;
b812ce28 1954 } else if (async && !skip_sum) {
17d217fe
YZ
1955 /* csum items have already been cloned */
1956 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1957 goto mapit;
19b9bdb0 1958 /* we're doing a write, do the async checksumming */
61891923 1959 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
81a75f67 1960 inode, bio, mirror_num,
eaf25d93
CM
1961 bio_flags, bio_offset,
1962 __btrfs_submit_bio_start,
4a69a410 1963 __btrfs_submit_bio_done);
61891923 1964 goto out;
b812ce28
JB
1965 } else if (!skip_sum) {
1966 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1967 if (ret)
1968 goto out;
19b9bdb0
CM
1969 }
1970
0b86a832 1971mapit:
81a75f67 1972 ret = btrfs_map_bio(root, bio, mirror_num, 0);
61891923
SB
1973
1974out:
4246a0b6
CH
1975 if (ret < 0) {
1976 bio->bi_error = ret;
1977 bio_endio(bio);
1978 }
61891923 1979 return ret;
065631f6 1980}
6885f308 1981
d352ac68
CM
1982/*
1983 * given a list of ordered sums record them in the inode. This happens
1984 * at IO completion time based on sums calculated at bio submission time.
1985 */
ba1da2f4 1986static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1987 struct inode *inode, u64 file_offset,
1988 struct list_head *list)
1989{
e6dcd2dc
CM
1990 struct btrfs_ordered_sum *sum;
1991
c6e30871 1992 list_for_each_entry(sum, list, list) {
39847c4d 1993 trans->adding_csums = 1;
d20f7043
CM
1994 btrfs_csum_file_blocks(trans,
1995 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1996 trans->adding_csums = 0;
e6dcd2dc
CM
1997 }
1998 return 0;
1999}
2000
2ac55d41 2001int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
ba8b04c1 2002 struct extent_state **cached_state, int dedupe)
ea8c2819 2003{
09cbfeaf 2004 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 2005 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
7cd8c752 2006 cached_state);
ea8c2819
CM
2007}
2008
d352ac68 2009/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2010struct btrfs_writepage_fixup {
2011 struct page *page;
2012 struct btrfs_work work;
2013};
2014
b2950863 2015static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2016{
2017 struct btrfs_writepage_fixup *fixup;
2018 struct btrfs_ordered_extent *ordered;
2ac55d41 2019 struct extent_state *cached_state = NULL;
247e743c
CM
2020 struct page *page;
2021 struct inode *inode;
2022 u64 page_start;
2023 u64 page_end;
87826df0 2024 int ret;
247e743c
CM
2025
2026 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2027 page = fixup->page;
4a096752 2028again:
247e743c
CM
2029 lock_page(page);
2030 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2031 ClearPageChecked(page);
2032 goto out_page;
2033 }
2034
2035 inode = page->mapping->host;
2036 page_start = page_offset(page);
09cbfeaf 2037 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2038
ff13db41 2039 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2040 &cached_state);
4a096752
CM
2041
2042 /* already ordered? We're done */
8b62b72b 2043 if (PagePrivate2(page))
247e743c 2044 goto out;
4a096752 2045
dbfdb6d1 2046 ordered = btrfs_lookup_ordered_range(inode, page_start,
09cbfeaf 2047 PAGE_SIZE);
4a096752 2048 if (ordered) {
2ac55d41
JB
2049 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2050 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2051 unlock_page(page);
2052 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2053 btrfs_put_ordered_extent(ordered);
4a096752
CM
2054 goto again;
2055 }
247e743c 2056
7cf5b976 2057 ret = btrfs_delalloc_reserve_space(inode, page_start,
09cbfeaf 2058 PAGE_SIZE);
87826df0
JM
2059 if (ret) {
2060 mapping_set_error(page->mapping, ret);
2061 end_extent_writepage(page, ret, page_start, page_end);
2062 ClearPageChecked(page);
2063 goto out;
2064 }
2065
ba8b04c1
QW
2066 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
2067 0);
247e743c 2068 ClearPageChecked(page);
87826df0 2069 set_page_dirty(page);
247e743c 2070out:
2ac55d41
JB
2071 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2072 &cached_state, GFP_NOFS);
247e743c
CM
2073out_page:
2074 unlock_page(page);
09cbfeaf 2075 put_page(page);
b897abec 2076 kfree(fixup);
247e743c
CM
2077}
2078
2079/*
2080 * There are a few paths in the higher layers of the kernel that directly
2081 * set the page dirty bit without asking the filesystem if it is a
2082 * good idea. This causes problems because we want to make sure COW
2083 * properly happens and the data=ordered rules are followed.
2084 *
c8b97818 2085 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2086 * hasn't been properly setup for IO. We kick off an async process
2087 * to fix it up. The async helper will wait for ordered extents, set
2088 * the delalloc bit and make it safe to write the page.
2089 */
b2950863 2090static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2091{
2092 struct inode *inode = page->mapping->host;
2093 struct btrfs_writepage_fixup *fixup;
2094 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 2095
8b62b72b
CM
2096 /* this page is properly in the ordered list */
2097 if (TestClearPagePrivate2(page))
247e743c
CM
2098 return 0;
2099
2100 if (PageChecked(page))
2101 return -EAGAIN;
2102
2103 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2104 if (!fixup)
2105 return -EAGAIN;
f421950f 2106
247e743c 2107 SetPageChecked(page);
09cbfeaf 2108 get_page(page);
9e0af237
LB
2109 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2110 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2111 fixup->page = page;
dc6e3209 2112 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 2113 return -EBUSY;
247e743c
CM
2114}
2115
d899e052
YZ
2116static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2117 struct inode *inode, u64 file_pos,
2118 u64 disk_bytenr, u64 disk_num_bytes,
2119 u64 num_bytes, u64 ram_bytes,
2120 u8 compression, u8 encryption,
2121 u16 other_encoding, int extent_type)
2122{
2123 struct btrfs_root *root = BTRFS_I(inode)->root;
2124 struct btrfs_file_extent_item *fi;
2125 struct btrfs_path *path;
2126 struct extent_buffer *leaf;
2127 struct btrfs_key ins;
1acae57b 2128 int extent_inserted = 0;
d899e052
YZ
2129 int ret;
2130
2131 path = btrfs_alloc_path();
d8926bb3
MF
2132 if (!path)
2133 return -ENOMEM;
d899e052 2134
a1ed835e
CM
2135 /*
2136 * we may be replacing one extent in the tree with another.
2137 * The new extent is pinned in the extent map, and we don't want
2138 * to drop it from the cache until it is completely in the btree.
2139 *
2140 * So, tell btrfs_drop_extents to leave this extent in the cache.
2141 * the caller is expected to unpin it and allow it to be merged
2142 * with the others.
2143 */
1acae57b
FDBM
2144 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2145 file_pos + num_bytes, NULL, 0,
2146 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2147 if (ret)
2148 goto out;
d899e052 2149
1acae57b
FDBM
2150 if (!extent_inserted) {
2151 ins.objectid = btrfs_ino(inode);
2152 ins.offset = file_pos;
2153 ins.type = BTRFS_EXTENT_DATA_KEY;
2154
2155 path->leave_spinning = 1;
2156 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2157 sizeof(*fi));
2158 if (ret)
2159 goto out;
2160 }
d899e052
YZ
2161 leaf = path->nodes[0];
2162 fi = btrfs_item_ptr(leaf, path->slots[0],
2163 struct btrfs_file_extent_item);
2164 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2165 btrfs_set_file_extent_type(leaf, fi, extent_type);
2166 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2167 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2168 btrfs_set_file_extent_offset(leaf, fi, 0);
2169 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2170 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2171 btrfs_set_file_extent_compression(leaf, fi, compression);
2172 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2173 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2174
d899e052 2175 btrfs_mark_buffer_dirty(leaf);
ce195332 2176 btrfs_release_path(path);
d899e052
YZ
2177
2178 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2179
2180 ins.objectid = disk_bytenr;
2181 ins.offset = disk_num_bytes;
2182 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2183 ret = btrfs_alloc_reserved_file_extent(trans, root,
2184 root->root_key.objectid,
5846a3c2
QW
2185 btrfs_ino(inode), file_pos,
2186 ram_bytes, &ins);
297d750b 2187 /*
5846a3c2
QW
2188 * Release the reserved range from inode dirty range map, as it is
2189 * already moved into delayed_ref_head
297d750b
QW
2190 */
2191 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
79787eaa 2192out:
d899e052 2193 btrfs_free_path(path);
b9473439 2194
79787eaa 2195 return ret;
d899e052
YZ
2196}
2197
38c227d8
LB
2198/* snapshot-aware defrag */
2199struct sa_defrag_extent_backref {
2200 struct rb_node node;
2201 struct old_sa_defrag_extent *old;
2202 u64 root_id;
2203 u64 inum;
2204 u64 file_pos;
2205 u64 extent_offset;
2206 u64 num_bytes;
2207 u64 generation;
2208};
2209
2210struct old_sa_defrag_extent {
2211 struct list_head list;
2212 struct new_sa_defrag_extent *new;
2213
2214 u64 extent_offset;
2215 u64 bytenr;
2216 u64 offset;
2217 u64 len;
2218 int count;
2219};
2220
2221struct new_sa_defrag_extent {
2222 struct rb_root root;
2223 struct list_head head;
2224 struct btrfs_path *path;
2225 struct inode *inode;
2226 u64 file_pos;
2227 u64 len;
2228 u64 bytenr;
2229 u64 disk_len;
2230 u8 compress_type;
2231};
2232
2233static int backref_comp(struct sa_defrag_extent_backref *b1,
2234 struct sa_defrag_extent_backref *b2)
2235{
2236 if (b1->root_id < b2->root_id)
2237 return -1;
2238 else if (b1->root_id > b2->root_id)
2239 return 1;
2240
2241 if (b1->inum < b2->inum)
2242 return -1;
2243 else if (b1->inum > b2->inum)
2244 return 1;
2245
2246 if (b1->file_pos < b2->file_pos)
2247 return -1;
2248 else if (b1->file_pos > b2->file_pos)
2249 return 1;
2250
2251 /*
2252 * [------------------------------] ===> (a range of space)
2253 * |<--->| |<---->| =============> (fs/file tree A)
2254 * |<---------------------------->| ===> (fs/file tree B)
2255 *
2256 * A range of space can refer to two file extents in one tree while
2257 * refer to only one file extent in another tree.
2258 *
2259 * So we may process a disk offset more than one time(two extents in A)
2260 * and locate at the same extent(one extent in B), then insert two same
2261 * backrefs(both refer to the extent in B).
2262 */
2263 return 0;
2264}
2265
2266static void backref_insert(struct rb_root *root,
2267 struct sa_defrag_extent_backref *backref)
2268{
2269 struct rb_node **p = &root->rb_node;
2270 struct rb_node *parent = NULL;
2271 struct sa_defrag_extent_backref *entry;
2272 int ret;
2273
2274 while (*p) {
2275 parent = *p;
2276 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2277
2278 ret = backref_comp(backref, entry);
2279 if (ret < 0)
2280 p = &(*p)->rb_left;
2281 else
2282 p = &(*p)->rb_right;
2283 }
2284
2285 rb_link_node(&backref->node, parent, p);
2286 rb_insert_color(&backref->node, root);
2287}
2288
2289/*
2290 * Note the backref might has changed, and in this case we just return 0.
2291 */
2292static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2293 void *ctx)
2294{
2295 struct btrfs_file_extent_item *extent;
2296 struct btrfs_fs_info *fs_info;
2297 struct old_sa_defrag_extent *old = ctx;
2298 struct new_sa_defrag_extent *new = old->new;
2299 struct btrfs_path *path = new->path;
2300 struct btrfs_key key;
2301 struct btrfs_root *root;
2302 struct sa_defrag_extent_backref *backref;
2303 struct extent_buffer *leaf;
2304 struct inode *inode = new->inode;
2305 int slot;
2306 int ret;
2307 u64 extent_offset;
2308 u64 num_bytes;
2309
2310 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2311 inum == btrfs_ino(inode))
2312 return 0;
2313
2314 key.objectid = root_id;
2315 key.type = BTRFS_ROOT_ITEM_KEY;
2316 key.offset = (u64)-1;
2317
2318 fs_info = BTRFS_I(inode)->root->fs_info;
2319 root = btrfs_read_fs_root_no_name(fs_info, &key);
2320 if (IS_ERR(root)) {
2321 if (PTR_ERR(root) == -ENOENT)
2322 return 0;
2323 WARN_ON(1);
ab8d0fc4 2324 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2325 inum, offset, root_id);
2326 return PTR_ERR(root);
2327 }
2328
2329 key.objectid = inum;
2330 key.type = BTRFS_EXTENT_DATA_KEY;
2331 if (offset > (u64)-1 << 32)
2332 key.offset = 0;
2333 else
2334 key.offset = offset;
2335
2336 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2337 if (WARN_ON(ret < 0))
38c227d8 2338 return ret;
50f1319c 2339 ret = 0;
38c227d8
LB
2340
2341 while (1) {
2342 cond_resched();
2343
2344 leaf = path->nodes[0];
2345 slot = path->slots[0];
2346
2347 if (slot >= btrfs_header_nritems(leaf)) {
2348 ret = btrfs_next_leaf(root, path);
2349 if (ret < 0) {
2350 goto out;
2351 } else if (ret > 0) {
2352 ret = 0;
2353 goto out;
2354 }
2355 continue;
2356 }
2357
2358 path->slots[0]++;
2359
2360 btrfs_item_key_to_cpu(leaf, &key, slot);
2361
2362 if (key.objectid > inum)
2363 goto out;
2364
2365 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2366 continue;
2367
2368 extent = btrfs_item_ptr(leaf, slot,
2369 struct btrfs_file_extent_item);
2370
2371 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2372 continue;
2373
e68afa49
LB
2374 /*
2375 * 'offset' refers to the exact key.offset,
2376 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2377 * (key.offset - extent_offset).
2378 */
2379 if (key.offset != offset)
38c227d8
LB
2380 continue;
2381
e68afa49 2382 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2383 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2384
38c227d8
LB
2385 if (extent_offset >= old->extent_offset + old->offset +
2386 old->len || extent_offset + num_bytes <=
2387 old->extent_offset + old->offset)
2388 continue;
38c227d8
LB
2389 break;
2390 }
2391
2392 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2393 if (!backref) {
2394 ret = -ENOENT;
2395 goto out;
2396 }
2397
2398 backref->root_id = root_id;
2399 backref->inum = inum;
e68afa49 2400 backref->file_pos = offset;
38c227d8
LB
2401 backref->num_bytes = num_bytes;
2402 backref->extent_offset = extent_offset;
2403 backref->generation = btrfs_file_extent_generation(leaf, extent);
2404 backref->old = old;
2405 backref_insert(&new->root, backref);
2406 old->count++;
2407out:
2408 btrfs_release_path(path);
2409 WARN_ON(ret);
2410 return ret;
2411}
2412
2413static noinline bool record_extent_backrefs(struct btrfs_path *path,
2414 struct new_sa_defrag_extent *new)
2415{
2416 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2417 struct old_sa_defrag_extent *old, *tmp;
2418 int ret;
2419
2420 new->path = path;
2421
2422 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2423 ret = iterate_inodes_from_logical(old->bytenr +
2424 old->extent_offset, fs_info,
38c227d8
LB
2425 path, record_one_backref,
2426 old);
4724b106
JB
2427 if (ret < 0 && ret != -ENOENT)
2428 return false;
38c227d8
LB
2429
2430 /* no backref to be processed for this extent */
2431 if (!old->count) {
2432 list_del(&old->list);
2433 kfree(old);
2434 }
2435 }
2436
2437 if (list_empty(&new->head))
2438 return false;
2439
2440 return true;
2441}
2442
2443static int relink_is_mergable(struct extent_buffer *leaf,
2444 struct btrfs_file_extent_item *fi,
116e0024 2445 struct new_sa_defrag_extent *new)
38c227d8 2446{
116e0024 2447 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2448 return 0;
2449
2450 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2451 return 0;
2452
116e0024
LB
2453 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2454 return 0;
2455
2456 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2457 btrfs_file_extent_other_encoding(leaf, fi))
2458 return 0;
2459
2460 return 1;
2461}
2462
2463/*
2464 * Note the backref might has changed, and in this case we just return 0.
2465 */
2466static noinline int relink_extent_backref(struct btrfs_path *path,
2467 struct sa_defrag_extent_backref *prev,
2468 struct sa_defrag_extent_backref *backref)
2469{
2470 struct btrfs_file_extent_item *extent;
2471 struct btrfs_file_extent_item *item;
2472 struct btrfs_ordered_extent *ordered;
2473 struct btrfs_trans_handle *trans;
2474 struct btrfs_fs_info *fs_info;
2475 struct btrfs_root *root;
2476 struct btrfs_key key;
2477 struct extent_buffer *leaf;
2478 struct old_sa_defrag_extent *old = backref->old;
2479 struct new_sa_defrag_extent *new = old->new;
2480 struct inode *src_inode = new->inode;
2481 struct inode *inode;
2482 struct extent_state *cached = NULL;
2483 int ret = 0;
2484 u64 start;
2485 u64 len;
2486 u64 lock_start;
2487 u64 lock_end;
2488 bool merge = false;
2489 int index;
2490
2491 if (prev && prev->root_id == backref->root_id &&
2492 prev->inum == backref->inum &&
2493 prev->file_pos + prev->num_bytes == backref->file_pos)
2494 merge = true;
2495
2496 /* step 1: get root */
2497 key.objectid = backref->root_id;
2498 key.type = BTRFS_ROOT_ITEM_KEY;
2499 key.offset = (u64)-1;
2500
2501 fs_info = BTRFS_I(src_inode)->root->fs_info;
2502 index = srcu_read_lock(&fs_info->subvol_srcu);
2503
2504 root = btrfs_read_fs_root_no_name(fs_info, &key);
2505 if (IS_ERR(root)) {
2506 srcu_read_unlock(&fs_info->subvol_srcu, index);
2507 if (PTR_ERR(root) == -ENOENT)
2508 return 0;
2509 return PTR_ERR(root);
2510 }
38c227d8 2511
bcbba5e6
WS
2512 if (btrfs_root_readonly(root)) {
2513 srcu_read_unlock(&fs_info->subvol_srcu, index);
2514 return 0;
2515 }
2516
38c227d8
LB
2517 /* step 2: get inode */
2518 key.objectid = backref->inum;
2519 key.type = BTRFS_INODE_ITEM_KEY;
2520 key.offset = 0;
2521
2522 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2523 if (IS_ERR(inode)) {
2524 srcu_read_unlock(&fs_info->subvol_srcu, index);
2525 return 0;
2526 }
2527
2528 srcu_read_unlock(&fs_info->subvol_srcu, index);
2529
2530 /* step 3: relink backref */
2531 lock_start = backref->file_pos;
2532 lock_end = backref->file_pos + backref->num_bytes - 1;
2533 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2534 &cached);
38c227d8
LB
2535
2536 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2537 if (ordered) {
2538 btrfs_put_ordered_extent(ordered);
2539 goto out_unlock;
2540 }
2541
2542 trans = btrfs_join_transaction(root);
2543 if (IS_ERR(trans)) {
2544 ret = PTR_ERR(trans);
2545 goto out_unlock;
2546 }
2547
2548 key.objectid = backref->inum;
2549 key.type = BTRFS_EXTENT_DATA_KEY;
2550 key.offset = backref->file_pos;
2551
2552 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2553 if (ret < 0) {
2554 goto out_free_path;
2555 } else if (ret > 0) {
2556 ret = 0;
2557 goto out_free_path;
2558 }
2559
2560 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2561 struct btrfs_file_extent_item);
2562
2563 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2564 backref->generation)
2565 goto out_free_path;
2566
2567 btrfs_release_path(path);
2568
2569 start = backref->file_pos;
2570 if (backref->extent_offset < old->extent_offset + old->offset)
2571 start += old->extent_offset + old->offset -
2572 backref->extent_offset;
2573
2574 len = min(backref->extent_offset + backref->num_bytes,
2575 old->extent_offset + old->offset + old->len);
2576 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2577
2578 ret = btrfs_drop_extents(trans, root, inode, start,
2579 start + len, 1);
2580 if (ret)
2581 goto out_free_path;
2582again:
2583 key.objectid = btrfs_ino(inode);
2584 key.type = BTRFS_EXTENT_DATA_KEY;
2585 key.offset = start;
2586
a09a0a70 2587 path->leave_spinning = 1;
38c227d8
LB
2588 if (merge) {
2589 struct btrfs_file_extent_item *fi;
2590 u64 extent_len;
2591 struct btrfs_key found_key;
2592
3c9665df 2593 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2594 if (ret < 0)
2595 goto out_free_path;
2596
2597 path->slots[0]--;
2598 leaf = path->nodes[0];
2599 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2600
2601 fi = btrfs_item_ptr(leaf, path->slots[0],
2602 struct btrfs_file_extent_item);
2603 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2604
116e0024
LB
2605 if (extent_len + found_key.offset == start &&
2606 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2607 btrfs_set_file_extent_num_bytes(leaf, fi,
2608 extent_len + len);
2609 btrfs_mark_buffer_dirty(leaf);
2610 inode_add_bytes(inode, len);
2611
2612 ret = 1;
2613 goto out_free_path;
2614 } else {
2615 merge = false;
2616 btrfs_release_path(path);
2617 goto again;
2618 }
2619 }
2620
2621 ret = btrfs_insert_empty_item(trans, root, path, &key,
2622 sizeof(*extent));
2623 if (ret) {
66642832 2624 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2625 goto out_free_path;
2626 }
2627
2628 leaf = path->nodes[0];
2629 item = btrfs_item_ptr(leaf, path->slots[0],
2630 struct btrfs_file_extent_item);
2631 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2632 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2633 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2634 btrfs_set_file_extent_num_bytes(leaf, item, len);
2635 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2636 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2637 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2638 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2639 btrfs_set_file_extent_encryption(leaf, item, 0);
2640 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2641
2642 btrfs_mark_buffer_dirty(leaf);
2643 inode_add_bytes(inode, len);
a09a0a70 2644 btrfs_release_path(path);
38c227d8
LB
2645
2646 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2647 new->disk_len, 0,
2648 backref->root_id, backref->inum,
b06c4bf5 2649 new->file_pos); /* start - extent_offset */
38c227d8 2650 if (ret) {
66642832 2651 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2652 goto out_free_path;
2653 }
2654
2655 ret = 1;
2656out_free_path:
2657 btrfs_release_path(path);
a09a0a70 2658 path->leave_spinning = 0;
38c227d8
LB
2659 btrfs_end_transaction(trans, root);
2660out_unlock:
2661 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2662 &cached, GFP_NOFS);
2663 iput(inode);
2664 return ret;
2665}
2666
6f519564
LB
2667static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2668{
2669 struct old_sa_defrag_extent *old, *tmp;
2670
2671 if (!new)
2672 return;
2673
2674 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2675 kfree(old);
2676 }
2677 kfree(new);
2678}
2679
38c227d8
LB
2680static void relink_file_extents(struct new_sa_defrag_extent *new)
2681{
2682 struct btrfs_path *path;
38c227d8
LB
2683 struct sa_defrag_extent_backref *backref;
2684 struct sa_defrag_extent_backref *prev = NULL;
2685 struct inode *inode;
2686 struct btrfs_root *root;
2687 struct rb_node *node;
2688 int ret;
2689
2690 inode = new->inode;
2691 root = BTRFS_I(inode)->root;
2692
2693 path = btrfs_alloc_path();
2694 if (!path)
2695 return;
2696
2697 if (!record_extent_backrefs(path, new)) {
2698 btrfs_free_path(path);
2699 goto out;
2700 }
2701 btrfs_release_path(path);
2702
2703 while (1) {
2704 node = rb_first(&new->root);
2705 if (!node)
2706 break;
2707 rb_erase(node, &new->root);
2708
2709 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2710
2711 ret = relink_extent_backref(path, prev, backref);
2712 WARN_ON(ret < 0);
2713
2714 kfree(prev);
2715
2716 if (ret == 1)
2717 prev = backref;
2718 else
2719 prev = NULL;
2720 cond_resched();
2721 }
2722 kfree(prev);
2723
2724 btrfs_free_path(path);
38c227d8 2725out:
6f519564
LB
2726 free_sa_defrag_extent(new);
2727
38c227d8
LB
2728 atomic_dec(&root->fs_info->defrag_running);
2729 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2730}
2731
2732static struct new_sa_defrag_extent *
2733record_old_file_extents(struct inode *inode,
2734 struct btrfs_ordered_extent *ordered)
2735{
2736 struct btrfs_root *root = BTRFS_I(inode)->root;
2737 struct btrfs_path *path;
2738 struct btrfs_key key;
6f519564 2739 struct old_sa_defrag_extent *old;
38c227d8
LB
2740 struct new_sa_defrag_extent *new;
2741 int ret;
2742
2743 new = kmalloc(sizeof(*new), GFP_NOFS);
2744 if (!new)
2745 return NULL;
2746
2747 new->inode = inode;
2748 new->file_pos = ordered->file_offset;
2749 new->len = ordered->len;
2750 new->bytenr = ordered->start;
2751 new->disk_len = ordered->disk_len;
2752 new->compress_type = ordered->compress_type;
2753 new->root = RB_ROOT;
2754 INIT_LIST_HEAD(&new->head);
2755
2756 path = btrfs_alloc_path();
2757 if (!path)
2758 goto out_kfree;
2759
2760 key.objectid = btrfs_ino(inode);
2761 key.type = BTRFS_EXTENT_DATA_KEY;
2762 key.offset = new->file_pos;
2763
2764 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2765 if (ret < 0)
2766 goto out_free_path;
2767 if (ret > 0 && path->slots[0] > 0)
2768 path->slots[0]--;
2769
2770 /* find out all the old extents for the file range */
2771 while (1) {
2772 struct btrfs_file_extent_item *extent;
2773 struct extent_buffer *l;
2774 int slot;
2775 u64 num_bytes;
2776 u64 offset;
2777 u64 end;
2778 u64 disk_bytenr;
2779 u64 extent_offset;
2780
2781 l = path->nodes[0];
2782 slot = path->slots[0];
2783
2784 if (slot >= btrfs_header_nritems(l)) {
2785 ret = btrfs_next_leaf(root, path);
2786 if (ret < 0)
6f519564 2787 goto out_free_path;
38c227d8
LB
2788 else if (ret > 0)
2789 break;
2790 continue;
2791 }
2792
2793 btrfs_item_key_to_cpu(l, &key, slot);
2794
2795 if (key.objectid != btrfs_ino(inode))
2796 break;
2797 if (key.type != BTRFS_EXTENT_DATA_KEY)
2798 break;
2799 if (key.offset >= new->file_pos + new->len)
2800 break;
2801
2802 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2803
2804 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2805 if (key.offset + num_bytes < new->file_pos)
2806 goto next;
2807
2808 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2809 if (!disk_bytenr)
2810 goto next;
2811
2812 extent_offset = btrfs_file_extent_offset(l, extent);
2813
2814 old = kmalloc(sizeof(*old), GFP_NOFS);
2815 if (!old)
6f519564 2816 goto out_free_path;
38c227d8
LB
2817
2818 offset = max(new->file_pos, key.offset);
2819 end = min(new->file_pos + new->len, key.offset + num_bytes);
2820
2821 old->bytenr = disk_bytenr;
2822 old->extent_offset = extent_offset;
2823 old->offset = offset - key.offset;
2824 old->len = end - offset;
2825 old->new = new;
2826 old->count = 0;
2827 list_add_tail(&old->list, &new->head);
2828next:
2829 path->slots[0]++;
2830 cond_resched();
2831 }
2832
2833 btrfs_free_path(path);
2834 atomic_inc(&root->fs_info->defrag_running);
2835
2836 return new;
2837
38c227d8
LB
2838out_free_path:
2839 btrfs_free_path(path);
2840out_kfree:
6f519564 2841 free_sa_defrag_extent(new);
38c227d8
LB
2842 return NULL;
2843}
2844
e570fd27
MX
2845static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2846 u64 start, u64 len)
2847{
2848 struct btrfs_block_group_cache *cache;
2849
2850 cache = btrfs_lookup_block_group(root->fs_info, start);
2851 ASSERT(cache);
2852
2853 spin_lock(&cache->lock);
2854 cache->delalloc_bytes -= len;
2855 spin_unlock(&cache->lock);
2856
2857 btrfs_put_block_group(cache);
2858}
2859
d352ac68
CM
2860/* as ordered data IO finishes, this gets called so we can finish
2861 * an ordered extent if the range of bytes in the file it covers are
2862 * fully written.
2863 */
5fd02043 2864static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2865{
5fd02043 2866 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2867 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2868 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2869 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2870 struct extent_state *cached_state = NULL;
38c227d8 2871 struct new_sa_defrag_extent *new = NULL;
261507a0 2872 int compress_type = 0;
77cef2ec
JB
2873 int ret = 0;
2874 u64 logical_len = ordered_extent->len;
82d5902d 2875 bool nolock;
77cef2ec 2876 bool truncated = false;
e6dcd2dc 2877
83eea1f1 2878 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2879
5fd02043
JB
2880 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2881 ret = -EIO;
2882 goto out;
2883 }
2884
f612496b
MX
2885 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2886 ordered_extent->file_offset +
2887 ordered_extent->len - 1);
2888
77cef2ec
JB
2889 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2890 truncated = true;
2891 logical_len = ordered_extent->truncated_len;
2892 /* Truncated the entire extent, don't bother adding */
2893 if (!logical_len)
2894 goto out;
2895 }
2896
c2167754 2897 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2898 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2899
2900 /*
2901 * For mwrite(mmap + memset to write) case, we still reserve
2902 * space for NOCOW range.
2903 * As NOCOW won't cause a new delayed ref, just free the space
2904 */
2905 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2906 ordered_extent->len);
6c760c07
JB
2907 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2908 if (nolock)
2909 trans = btrfs_join_transaction_nolock(root);
2910 else
2911 trans = btrfs_join_transaction(root);
2912 if (IS_ERR(trans)) {
2913 ret = PTR_ERR(trans);
2914 trans = NULL;
2915 goto out;
c2167754 2916 }
6c760c07
JB
2917 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2918 ret = btrfs_update_inode_fallback(trans, root, inode);
2919 if (ret) /* -ENOMEM or corruption */
66642832 2920 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2921 goto out;
2922 }
e6dcd2dc 2923
2ac55d41
JB
2924 lock_extent_bits(io_tree, ordered_extent->file_offset,
2925 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2926 &cached_state);
e6dcd2dc 2927
38c227d8
LB
2928 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2929 ordered_extent->file_offset + ordered_extent->len - 1,
2930 EXTENT_DEFRAG, 1, cached_state);
2931 if (ret) {
2932 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2933 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2934 /* the inode is shared */
2935 new = record_old_file_extents(inode, ordered_extent);
2936
2937 clear_extent_bit(io_tree, ordered_extent->file_offset,
2938 ordered_extent->file_offset + ordered_extent->len - 1,
2939 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2940 }
2941
0cb59c99 2942 if (nolock)
7a7eaa40 2943 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2944 else
7a7eaa40 2945 trans = btrfs_join_transaction(root);
79787eaa
JM
2946 if (IS_ERR(trans)) {
2947 ret = PTR_ERR(trans);
2948 trans = NULL;
2949 goto out_unlock;
2950 }
a79b7d4b 2951
0ca1f7ce 2952 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2953
c8b97818 2954 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2955 compress_type = ordered_extent->compress_type;
d899e052 2956 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2957 BUG_ON(compress_type);
920bbbfb 2958 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2959 ordered_extent->file_offset,
2960 ordered_extent->file_offset +
77cef2ec 2961 logical_len);
d899e052 2962 } else {
0af3d00b 2963 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2964 ret = insert_reserved_file_extent(trans, inode,
2965 ordered_extent->file_offset,
2966 ordered_extent->start,
2967 ordered_extent->disk_len,
77cef2ec 2968 logical_len, logical_len,
261507a0 2969 compress_type, 0, 0,
d899e052 2970 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2971 if (!ret)
2972 btrfs_release_delalloc_bytes(root,
2973 ordered_extent->start,
2974 ordered_extent->disk_len);
d899e052 2975 }
5dc562c5
JB
2976 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2977 ordered_extent->file_offset, ordered_extent->len,
2978 trans->transid);
79787eaa 2979 if (ret < 0) {
66642832 2980 btrfs_abort_transaction(trans, ret);
5fd02043 2981 goto out_unlock;
79787eaa 2982 }
2ac55d41 2983
e6dcd2dc
CM
2984 add_pending_csums(trans, inode, ordered_extent->file_offset,
2985 &ordered_extent->list);
2986
6c760c07
JB
2987 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2988 ret = btrfs_update_inode_fallback(trans, root, inode);
2989 if (ret) { /* -ENOMEM or corruption */
66642832 2990 btrfs_abort_transaction(trans, ret);
6c760c07 2991 goto out_unlock;
1ef30be1
JB
2992 }
2993 ret = 0;
5fd02043
JB
2994out_unlock:
2995 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2996 ordered_extent->file_offset +
2997 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2998out:
5b0e95bf 2999 if (root != root->fs_info->tree_root)
0cb59c99 3000 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
3001 if (trans)
3002 btrfs_end_transaction(trans, root);
0cb59c99 3003
77cef2ec
JB
3004 if (ret || truncated) {
3005 u64 start, end;
3006
3007 if (truncated)
3008 start = ordered_extent->file_offset + logical_len;
3009 else
3010 start = ordered_extent->file_offset;
3011 end = ordered_extent->file_offset + ordered_extent->len - 1;
3012 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3013
3014 /* Drop the cache for the part of the extent we didn't write. */
3015 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 3016
0bec9ef5
JB
3017 /*
3018 * If the ordered extent had an IOERR or something else went
3019 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3020 * back to the allocator. We only free the extent in the
3021 * truncated case if we didn't write out the extent at all.
0bec9ef5 3022 */
77cef2ec
JB
3023 if ((ret || !logical_len) &&
3024 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
3025 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3026 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 3027 ordered_extent->disk_len, 1);
0bec9ef5
JB
3028 }
3029
3030
5fd02043 3031 /*
8bad3c02
LB
3032 * This needs to be done to make sure anybody waiting knows we are done
3033 * updating everything for this ordered extent.
5fd02043
JB
3034 */
3035 btrfs_remove_ordered_extent(inode, ordered_extent);
3036
38c227d8 3037 /* for snapshot-aware defrag */
6f519564
LB
3038 if (new) {
3039 if (ret) {
3040 free_sa_defrag_extent(new);
3041 atomic_dec(&root->fs_info->defrag_running);
3042 } else {
3043 relink_file_extents(new);
3044 }
3045 }
38c227d8 3046
e6dcd2dc
CM
3047 /* once for us */
3048 btrfs_put_ordered_extent(ordered_extent);
3049 /* once for the tree */
3050 btrfs_put_ordered_extent(ordered_extent);
3051
5fd02043
JB
3052 return ret;
3053}
3054
3055static void finish_ordered_fn(struct btrfs_work *work)
3056{
3057 struct btrfs_ordered_extent *ordered_extent;
3058 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3059 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3060}
3061
b2950863 3062static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3063 struct extent_state *state, int uptodate)
3064{
5fd02043
JB
3065 struct inode *inode = page->mapping->host;
3066 struct btrfs_root *root = BTRFS_I(inode)->root;
3067 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3068 struct btrfs_workqueue *wq;
3069 btrfs_work_func_t func;
5fd02043 3070
1abe9b8a 3071 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3072
8b62b72b 3073 ClearPagePrivate2(page);
5fd02043
JB
3074 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3075 end - start + 1, uptodate))
3076 return 0;
3077
9e0af237
LB
3078 if (btrfs_is_free_space_inode(inode)) {
3079 wq = root->fs_info->endio_freespace_worker;
3080 func = btrfs_freespace_write_helper;
3081 } else {
3082 wq = root->fs_info->endio_write_workers;
3083 func = btrfs_endio_write_helper;
3084 }
5fd02043 3085
9e0af237
LB
3086 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3087 NULL);
3088 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
3089
3090 return 0;
211f90e6
CM
3091}
3092
dc380aea
MX
3093static int __readpage_endio_check(struct inode *inode,
3094 struct btrfs_io_bio *io_bio,
3095 int icsum, struct page *page,
3096 int pgoff, u64 start, size_t len)
3097{
3098 char *kaddr;
3099 u32 csum_expected;
3100 u32 csum = ~(u32)0;
dc380aea
MX
3101
3102 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3103
3104 kaddr = kmap_atomic(page);
3105 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3106 btrfs_csum_final(csum, (char *)&csum);
3107 if (csum != csum_expected)
3108 goto zeroit;
3109
3110 kunmap_atomic(kaddr);
3111 return 0;
3112zeroit:
94647322
DS
3113 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3114 "csum failed ino %llu off %llu csum %u expected csum %u",
dc380aea
MX
3115 btrfs_ino(inode), start, csum, csum_expected);
3116 memset(kaddr + pgoff, 1, len);
3117 flush_dcache_page(page);
3118 kunmap_atomic(kaddr);
3119 if (csum_expected == 0)
3120 return 0;
3121 return -EIO;
3122}
3123
d352ac68
CM
3124/*
3125 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3126 * if there's a match, we allow the bio to finish. If not, the code in
3127 * extent_io.c will try to find good copies for us.
d352ac68 3128 */
facc8a22
MX
3129static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3130 u64 phy_offset, struct page *page,
3131 u64 start, u64 end, int mirror)
07157aac 3132{
4eee4fa4 3133 size_t offset = start - page_offset(page);
07157aac 3134 struct inode *inode = page->mapping->host;
d1310b2e 3135 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3136 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3137
d20f7043
CM
3138 if (PageChecked(page)) {
3139 ClearPageChecked(page);
dc380aea 3140 return 0;
d20f7043 3141 }
6cbff00f
CH
3142
3143 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3144 return 0;
17d217fe
YZ
3145
3146 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3147 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3148 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3149 return 0;
17d217fe 3150 }
d20f7043 3151
facc8a22 3152 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3153 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3154 start, (size_t)(end - start + 1));
07157aac 3155}
b888db2b 3156
24bbcf04
YZ
3157void btrfs_add_delayed_iput(struct inode *inode)
3158{
3159 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
8089fe62 3160 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3161
3162 if (atomic_add_unless(&inode->i_count, -1, 1))
3163 return;
3164
24bbcf04 3165 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3166 if (binode->delayed_iput_count == 0) {
3167 ASSERT(list_empty(&binode->delayed_iput));
3168 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3169 } else {
3170 binode->delayed_iput_count++;
3171 }
24bbcf04
YZ
3172 spin_unlock(&fs_info->delayed_iput_lock);
3173}
3174
3175void btrfs_run_delayed_iputs(struct btrfs_root *root)
3176{
24bbcf04 3177 struct btrfs_fs_info *fs_info = root->fs_info;
24bbcf04 3178
24bbcf04 3179 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3180 while (!list_empty(&fs_info->delayed_iputs)) {
3181 struct btrfs_inode *inode;
3182
3183 inode = list_first_entry(&fs_info->delayed_iputs,
3184 struct btrfs_inode, delayed_iput);
3185 if (inode->delayed_iput_count) {
3186 inode->delayed_iput_count--;
3187 list_move_tail(&inode->delayed_iput,
3188 &fs_info->delayed_iputs);
3189 } else {
3190 list_del_init(&inode->delayed_iput);
3191 }
3192 spin_unlock(&fs_info->delayed_iput_lock);
3193 iput(&inode->vfs_inode);
3194 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3195 }
8089fe62 3196 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3197}
3198
d68fc57b 3199/*
42b2aa86 3200 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3201 * files in the subvolume, it removes orphan item and frees block_rsv
3202 * structure.
3203 */
3204void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3205 struct btrfs_root *root)
3206{
90290e19 3207 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3208 int ret;
3209
8a35d95f 3210 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3211 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3212 return;
3213
90290e19 3214 spin_lock(&root->orphan_lock);
8a35d95f 3215 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3216 spin_unlock(&root->orphan_lock);
3217 return;
3218 }
3219
3220 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3221 spin_unlock(&root->orphan_lock);
3222 return;
3223 }
3224
3225 block_rsv = root->orphan_block_rsv;
3226 root->orphan_block_rsv = NULL;
3227 spin_unlock(&root->orphan_lock);
3228
27cdeb70 3229 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3230 btrfs_root_refs(&root->root_item) > 0) {
3231 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3232 root->root_key.objectid);
4ef31a45 3233 if (ret)
66642832 3234 btrfs_abort_transaction(trans, ret);
4ef31a45 3235 else
27cdeb70
MX
3236 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3237 &root->state);
d68fc57b
YZ
3238 }
3239
90290e19
JB
3240 if (block_rsv) {
3241 WARN_ON(block_rsv->size > 0);
3242 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3243 }
3244}
3245
7b128766
JB
3246/*
3247 * This creates an orphan entry for the given inode in case something goes
3248 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3249 *
3250 * NOTE: caller of this function should reserve 5 units of metadata for
3251 * this function.
7b128766
JB
3252 */
3253int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3254{
3255 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3256 struct btrfs_block_rsv *block_rsv = NULL;
3257 int reserve = 0;
3258 int insert = 0;
3259 int ret;
7b128766 3260
d68fc57b 3261 if (!root->orphan_block_rsv) {
66d8f3dd 3262 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3263 if (!block_rsv)
3264 return -ENOMEM;
d68fc57b 3265 }
7b128766 3266
d68fc57b
YZ
3267 spin_lock(&root->orphan_lock);
3268 if (!root->orphan_block_rsv) {
3269 root->orphan_block_rsv = block_rsv;
3270 } else if (block_rsv) {
3271 btrfs_free_block_rsv(root, block_rsv);
3272 block_rsv = NULL;
7b128766 3273 }
7b128766 3274
8a35d95f
JB
3275 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3276 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3277#if 0
3278 /*
3279 * For proper ENOSPC handling, we should do orphan
3280 * cleanup when mounting. But this introduces backward
3281 * compatibility issue.
3282 */
3283 if (!xchg(&root->orphan_item_inserted, 1))
3284 insert = 2;
3285 else
3286 insert = 1;
3287#endif
3288 insert = 1;
321f0e70 3289 atomic_inc(&root->orphan_inodes);
7b128766
JB
3290 }
3291
72ac3c0d
JB
3292 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3293 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3294 reserve = 1;
d68fc57b 3295 spin_unlock(&root->orphan_lock);
7b128766 3296
d68fc57b
YZ
3297 /* grab metadata reservation from transaction handle */
3298 if (reserve) {
3299 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3300 ASSERT(!ret);
3301 if (ret) {
3302 atomic_dec(&root->orphan_inodes);
3303 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3304 &BTRFS_I(inode)->runtime_flags);
3305 if (insert)
3306 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3307 &BTRFS_I(inode)->runtime_flags);
3308 return ret;
3309 }
d68fc57b 3310 }
7b128766 3311
d68fc57b
YZ
3312 /* insert an orphan item to track this unlinked/truncated file */
3313 if (insert >= 1) {
33345d01 3314 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3315 if (ret) {
703c88e0 3316 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3317 if (reserve) {
3318 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3319 &BTRFS_I(inode)->runtime_flags);
3320 btrfs_orphan_release_metadata(inode);
3321 }
3322 if (ret != -EEXIST) {
e8e7cff6
JB
3323 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3324 &BTRFS_I(inode)->runtime_flags);
66642832 3325 btrfs_abort_transaction(trans, ret);
4ef31a45
JB
3326 return ret;
3327 }
79787eaa
JM
3328 }
3329 ret = 0;
d68fc57b
YZ
3330 }
3331
3332 /* insert an orphan item to track subvolume contains orphan files */
3333 if (insert >= 2) {
3334 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3335 root->root_key.objectid);
79787eaa 3336 if (ret && ret != -EEXIST) {
66642832 3337 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3338 return ret;
3339 }
d68fc57b
YZ
3340 }
3341 return 0;
7b128766
JB
3342}
3343
3344/*
3345 * We have done the truncate/delete so we can go ahead and remove the orphan
3346 * item for this particular inode.
3347 */
48a3b636
ES
3348static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3349 struct inode *inode)
7b128766
JB
3350{
3351 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3352 int delete_item = 0;
3353 int release_rsv = 0;
7b128766
JB
3354 int ret = 0;
3355
d68fc57b 3356 spin_lock(&root->orphan_lock);
8a35d95f
JB
3357 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3358 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3359 delete_item = 1;
7b128766 3360
72ac3c0d
JB
3361 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3362 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3363 release_rsv = 1;
d68fc57b 3364 spin_unlock(&root->orphan_lock);
7b128766 3365
703c88e0 3366 if (delete_item) {
8a35d95f 3367 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3368 if (trans)
3369 ret = btrfs_del_orphan_item(trans, root,
3370 btrfs_ino(inode));
8a35d95f 3371 }
7b128766 3372
703c88e0
FDBM
3373 if (release_rsv)
3374 btrfs_orphan_release_metadata(inode);
3375
4ef31a45 3376 return ret;
7b128766
JB
3377}
3378
3379/*
3380 * this cleans up any orphans that may be left on the list from the last use
3381 * of this root.
3382 */
66b4ffd1 3383int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3384{
3385 struct btrfs_path *path;
3386 struct extent_buffer *leaf;
7b128766
JB
3387 struct btrfs_key key, found_key;
3388 struct btrfs_trans_handle *trans;
3389 struct inode *inode;
8f6d7f4f 3390 u64 last_objectid = 0;
7b128766
JB
3391 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3392
d68fc57b 3393 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3394 return 0;
c71bf099
YZ
3395
3396 path = btrfs_alloc_path();
66b4ffd1
JB
3397 if (!path) {
3398 ret = -ENOMEM;
3399 goto out;
3400 }
e4058b54 3401 path->reada = READA_BACK;
7b128766
JB
3402
3403 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3404 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3405 key.offset = (u64)-1;
3406
7b128766
JB
3407 while (1) {
3408 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3409 if (ret < 0)
3410 goto out;
7b128766
JB
3411
3412 /*
3413 * if ret == 0 means we found what we were searching for, which
25985edc 3414 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3415 * find the key and see if we have stuff that matches
3416 */
3417 if (ret > 0) {
66b4ffd1 3418 ret = 0;
7b128766
JB
3419 if (path->slots[0] == 0)
3420 break;
3421 path->slots[0]--;
3422 }
3423
3424 /* pull out the item */
3425 leaf = path->nodes[0];
7b128766
JB
3426 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3427
3428 /* make sure the item matches what we want */
3429 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3430 break;
962a298f 3431 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3432 break;
3433
3434 /* release the path since we're done with it */
b3b4aa74 3435 btrfs_release_path(path);
7b128766
JB
3436
3437 /*
3438 * this is where we are basically btrfs_lookup, without the
3439 * crossing root thing. we store the inode number in the
3440 * offset of the orphan item.
3441 */
8f6d7f4f
JB
3442
3443 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3444 btrfs_err(root->fs_info,
3445 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3446 ret = -EINVAL;
3447 goto out;
3448 }
3449
3450 last_objectid = found_key.offset;
3451
5d4f98a2
YZ
3452 found_key.objectid = found_key.offset;
3453 found_key.type = BTRFS_INODE_ITEM_KEY;
3454 found_key.offset = 0;
73f73415 3455 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3456 ret = PTR_ERR_OR_ZERO(inode);
67710892 3457 if (ret && ret != -ENOENT)
66b4ffd1 3458 goto out;
7b128766 3459
67710892 3460 if (ret == -ENOENT && root == root->fs_info->tree_root) {
f8e9e0b0
AJ
3461 struct btrfs_root *dead_root;
3462 struct btrfs_fs_info *fs_info = root->fs_info;
3463 int is_dead_root = 0;
3464
3465 /*
3466 * this is an orphan in the tree root. Currently these
3467 * could come from 2 sources:
3468 * a) a snapshot deletion in progress
3469 * b) a free space cache inode
3470 * We need to distinguish those two, as the snapshot
3471 * orphan must not get deleted.
3472 * find_dead_roots already ran before us, so if this
3473 * is a snapshot deletion, we should find the root
3474 * in the dead_roots list
3475 */
3476 spin_lock(&fs_info->trans_lock);
3477 list_for_each_entry(dead_root, &fs_info->dead_roots,
3478 root_list) {
3479 if (dead_root->root_key.objectid ==
3480 found_key.objectid) {
3481 is_dead_root = 1;
3482 break;
3483 }
3484 }
3485 spin_unlock(&fs_info->trans_lock);
3486 if (is_dead_root) {
3487 /* prevent this orphan from being found again */
3488 key.offset = found_key.objectid - 1;
3489 continue;
3490 }
3491 }
7b128766 3492 /*
a8c9e576
JB
3493 * Inode is already gone but the orphan item is still there,
3494 * kill the orphan item.
7b128766 3495 */
67710892 3496 if (ret == -ENOENT) {
a8c9e576 3497 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3498 if (IS_ERR(trans)) {
3499 ret = PTR_ERR(trans);
3500 goto out;
3501 }
c2cf52eb
SK
3502 btrfs_debug(root->fs_info, "auto deleting %Lu",
3503 found_key.objectid);
a8c9e576
JB
3504 ret = btrfs_del_orphan_item(trans, root,
3505 found_key.objectid);
5b21f2ed 3506 btrfs_end_transaction(trans, root);
4ef31a45
JB
3507 if (ret)
3508 goto out;
7b128766
JB
3509 continue;
3510 }
3511
a8c9e576
JB
3512 /*
3513 * add this inode to the orphan list so btrfs_orphan_del does
3514 * the proper thing when we hit it
3515 */
8a35d95f
JB
3516 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3517 &BTRFS_I(inode)->runtime_flags);
925396ec 3518 atomic_inc(&root->orphan_inodes);
a8c9e576 3519
7b128766
JB
3520 /* if we have links, this was a truncate, lets do that */
3521 if (inode->i_nlink) {
fae7f21c 3522 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3523 iput(inode);
3524 continue;
3525 }
7b128766 3526 nr_truncate++;
f3fe820c
JB
3527
3528 /* 1 for the orphan item deletion. */
3529 trans = btrfs_start_transaction(root, 1);
3530 if (IS_ERR(trans)) {
c69b26b0 3531 iput(inode);
f3fe820c
JB
3532 ret = PTR_ERR(trans);
3533 goto out;
3534 }
3535 ret = btrfs_orphan_add(trans, inode);
3536 btrfs_end_transaction(trans, root);
c69b26b0
JB
3537 if (ret) {
3538 iput(inode);
f3fe820c 3539 goto out;
c69b26b0 3540 }
f3fe820c 3541
66b4ffd1 3542 ret = btrfs_truncate(inode);
4a7d0f68
JB
3543 if (ret)
3544 btrfs_orphan_del(NULL, inode);
7b128766
JB
3545 } else {
3546 nr_unlink++;
3547 }
3548
3549 /* this will do delete_inode and everything for us */
3550 iput(inode);
66b4ffd1
JB
3551 if (ret)
3552 goto out;
7b128766 3553 }
3254c876
MX
3554 /* release the path since we're done with it */
3555 btrfs_release_path(path);
3556
d68fc57b
YZ
3557 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3558
3559 if (root->orphan_block_rsv)
3560 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3561 (u64)-1);
3562
27cdeb70
MX
3563 if (root->orphan_block_rsv ||
3564 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3565 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3566 if (!IS_ERR(trans))
3567 btrfs_end_transaction(trans, root);
d68fc57b 3568 }
7b128766
JB
3569
3570 if (nr_unlink)
4884b476 3571 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3572 if (nr_truncate)
4884b476 3573 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3574
3575out:
3576 if (ret)
68b663d1 3577 btrfs_err(root->fs_info,
c2cf52eb 3578 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3579 btrfs_free_path(path);
3580 return ret;
7b128766
JB
3581}
3582
46a53cca
CM
3583/*
3584 * very simple check to peek ahead in the leaf looking for xattrs. If we
3585 * don't find any xattrs, we know there can't be any acls.
3586 *
3587 * slot is the slot the inode is in, objectid is the objectid of the inode
3588 */
3589static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3590 int slot, u64 objectid,
3591 int *first_xattr_slot)
46a53cca
CM
3592{
3593 u32 nritems = btrfs_header_nritems(leaf);
3594 struct btrfs_key found_key;
f23b5a59
JB
3595 static u64 xattr_access = 0;
3596 static u64 xattr_default = 0;
46a53cca
CM
3597 int scanned = 0;
3598
f23b5a59 3599 if (!xattr_access) {
97d79299
AG
3600 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3601 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3602 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3603 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3604 }
3605
46a53cca 3606 slot++;
63541927 3607 *first_xattr_slot = -1;
46a53cca
CM
3608 while (slot < nritems) {
3609 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3610
3611 /* we found a different objectid, there must not be acls */
3612 if (found_key.objectid != objectid)
3613 return 0;
3614
3615 /* we found an xattr, assume we've got an acl */
f23b5a59 3616 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3617 if (*first_xattr_slot == -1)
3618 *first_xattr_slot = slot;
f23b5a59
JB
3619 if (found_key.offset == xattr_access ||
3620 found_key.offset == xattr_default)
3621 return 1;
3622 }
46a53cca
CM
3623
3624 /*
3625 * we found a key greater than an xattr key, there can't
3626 * be any acls later on
3627 */
3628 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3629 return 0;
3630
3631 slot++;
3632 scanned++;
3633
3634 /*
3635 * it goes inode, inode backrefs, xattrs, extents,
3636 * so if there are a ton of hard links to an inode there can
3637 * be a lot of backrefs. Don't waste time searching too hard,
3638 * this is just an optimization
3639 */
3640 if (scanned >= 8)
3641 break;
3642 }
3643 /* we hit the end of the leaf before we found an xattr or
3644 * something larger than an xattr. We have to assume the inode
3645 * has acls
3646 */
63541927
FDBM
3647 if (*first_xattr_slot == -1)
3648 *first_xattr_slot = slot;
46a53cca
CM
3649 return 1;
3650}
3651
d352ac68
CM
3652/*
3653 * read an inode from the btree into the in-memory inode
3654 */
67710892 3655static int btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3656{
3657 struct btrfs_path *path;
5f39d397 3658 struct extent_buffer *leaf;
39279cc3
CM
3659 struct btrfs_inode_item *inode_item;
3660 struct btrfs_root *root = BTRFS_I(inode)->root;
3661 struct btrfs_key location;
67de1176 3662 unsigned long ptr;
46a53cca 3663 int maybe_acls;
618e21d5 3664 u32 rdev;
39279cc3 3665 int ret;
2f7e33d4 3666 bool filled = false;
63541927 3667 int first_xattr_slot;
2f7e33d4
MX
3668
3669 ret = btrfs_fill_inode(inode, &rdev);
3670 if (!ret)
3671 filled = true;
39279cc3
CM
3672
3673 path = btrfs_alloc_path();
67710892
FM
3674 if (!path) {
3675 ret = -ENOMEM;
1748f843 3676 goto make_bad;
67710892 3677 }
1748f843 3678
39279cc3 3679 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3680
39279cc3 3681 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3682 if (ret) {
3683 if (ret > 0)
3684 ret = -ENOENT;
39279cc3 3685 goto make_bad;
67710892 3686 }
39279cc3 3687
5f39d397 3688 leaf = path->nodes[0];
2f7e33d4
MX
3689
3690 if (filled)
67de1176 3691 goto cache_index;
2f7e33d4 3692
5f39d397
CM
3693 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3694 struct btrfs_inode_item);
5f39d397 3695 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3696 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3697 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3698 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3699 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397 3700
a937b979
DS
3701 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3702 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3703
a937b979
DS
3704 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3705 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3706
a937b979
DS
3707 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3708 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3709
9cc97d64 3710 BTRFS_I(inode)->i_otime.tv_sec =
3711 btrfs_timespec_sec(leaf, &inode_item->otime);
3712 BTRFS_I(inode)->i_otime.tv_nsec =
3713 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3714
a76a3cd4 3715 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3716 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3717 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3718
6e17d30b
YD
3719 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3720 inode->i_generation = BTRFS_I(inode)->generation;
3721 inode->i_rdev = 0;
3722 rdev = btrfs_inode_rdev(leaf, inode_item);
3723
3724 BTRFS_I(inode)->index_cnt = (u64)-1;
3725 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3726
3727cache_index:
5dc562c5
JB
3728 /*
3729 * If we were modified in the current generation and evicted from memory
3730 * and then re-read we need to do a full sync since we don't have any
3731 * idea about which extents were modified before we were evicted from
3732 * cache.
6e17d30b
YD
3733 *
3734 * This is required for both inode re-read from disk and delayed inode
3735 * in delayed_nodes_tree.
5dc562c5
JB
3736 */
3737 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3738 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3739 &BTRFS_I(inode)->runtime_flags);
3740
bde6c242
FM
3741 /*
3742 * We don't persist the id of the transaction where an unlink operation
3743 * against the inode was last made. So here we assume the inode might
3744 * have been evicted, and therefore the exact value of last_unlink_trans
3745 * lost, and set it to last_trans to avoid metadata inconsistencies
3746 * between the inode and its parent if the inode is fsync'ed and the log
3747 * replayed. For example, in the scenario:
3748 *
3749 * touch mydir/foo
3750 * ln mydir/foo mydir/bar
3751 * sync
3752 * unlink mydir/bar
3753 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3754 * xfs_io -c fsync mydir/foo
3755 * <power failure>
3756 * mount fs, triggers fsync log replay
3757 *
3758 * We must make sure that when we fsync our inode foo we also log its
3759 * parent inode, otherwise after log replay the parent still has the
3760 * dentry with the "bar" name but our inode foo has a link count of 1
3761 * and doesn't have an inode ref with the name "bar" anymore.
3762 *
3763 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3764 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3765 * transaction commits on fsync if our inode is a directory, or if our
3766 * inode is not a directory, logging its parent unnecessarily.
3767 */
3768 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3769
67de1176
MX
3770 path->slots[0]++;
3771 if (inode->i_nlink != 1 ||
3772 path->slots[0] >= btrfs_header_nritems(leaf))
3773 goto cache_acl;
3774
3775 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3776 if (location.objectid != btrfs_ino(inode))
3777 goto cache_acl;
3778
3779 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3780 if (location.type == BTRFS_INODE_REF_KEY) {
3781 struct btrfs_inode_ref *ref;
3782
3783 ref = (struct btrfs_inode_ref *)ptr;
3784 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3785 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3786 struct btrfs_inode_extref *extref;
3787
3788 extref = (struct btrfs_inode_extref *)ptr;
3789 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3790 extref);
3791 }
2f7e33d4 3792cache_acl:
46a53cca
CM
3793 /*
3794 * try to precache a NULL acl entry for files that don't have
3795 * any xattrs or acls
3796 */
33345d01 3797 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3798 btrfs_ino(inode), &first_xattr_slot);
3799 if (first_xattr_slot != -1) {
3800 path->slots[0] = first_xattr_slot;
3801 ret = btrfs_load_inode_props(inode, path);
3802 if (ret)
3803 btrfs_err(root->fs_info,
351fd353 3804 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3805 btrfs_ino(inode),
3806 root->root_key.objectid, ret);
3807 }
3808 btrfs_free_path(path);
3809
72c04902
AV
3810 if (!maybe_acls)
3811 cache_no_acl(inode);
46a53cca 3812
39279cc3 3813 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3814 case S_IFREG:
3815 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3816 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3817 inode->i_fop = &btrfs_file_operations;
3818 inode->i_op = &btrfs_file_inode_operations;
3819 break;
3820 case S_IFDIR:
3821 inode->i_fop = &btrfs_dir_file_operations;
3822 if (root == root->fs_info->tree_root)
3823 inode->i_op = &btrfs_dir_ro_inode_operations;
3824 else
3825 inode->i_op = &btrfs_dir_inode_operations;
3826 break;
3827 case S_IFLNK:
3828 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3829 inode_nohighmem(inode);
39279cc3
CM
3830 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3831 break;
618e21d5 3832 default:
0279b4cd 3833 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3834 init_special_inode(inode, inode->i_mode, rdev);
3835 break;
39279cc3 3836 }
6cbff00f
CH
3837
3838 btrfs_update_iflags(inode);
67710892 3839 return 0;
39279cc3
CM
3840
3841make_bad:
39279cc3 3842 btrfs_free_path(path);
39279cc3 3843 make_bad_inode(inode);
67710892 3844 return ret;
39279cc3
CM
3845}
3846
d352ac68
CM
3847/*
3848 * given a leaf and an inode, copy the inode fields into the leaf
3849 */
e02119d5
CM
3850static void fill_inode_item(struct btrfs_trans_handle *trans,
3851 struct extent_buffer *leaf,
5f39d397 3852 struct btrfs_inode_item *item,
39279cc3
CM
3853 struct inode *inode)
3854{
51fab693
LB
3855 struct btrfs_map_token token;
3856
3857 btrfs_init_map_token(&token);
5f39d397 3858
51fab693
LB
3859 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3860 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3861 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3862 &token);
3863 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3864 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3865
a937b979 3866 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3867 inode->i_atime.tv_sec, &token);
a937b979 3868 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3869 inode->i_atime.tv_nsec, &token);
5f39d397 3870
a937b979 3871 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3872 inode->i_mtime.tv_sec, &token);
a937b979 3873 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3874 inode->i_mtime.tv_nsec, &token);
5f39d397 3875
a937b979 3876 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3877 inode->i_ctime.tv_sec, &token);
a937b979 3878 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3879 inode->i_ctime.tv_nsec, &token);
5f39d397 3880
9cc97d64 3881 btrfs_set_token_timespec_sec(leaf, &item->otime,
3882 BTRFS_I(inode)->i_otime.tv_sec, &token);
3883 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3884 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3885
51fab693
LB
3886 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3887 &token);
3888 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3889 &token);
3890 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3891 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3892 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3893 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3894 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3895}
3896
d352ac68
CM
3897/*
3898 * copy everything in the in-memory inode into the btree.
3899 */
2115133f 3900static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3901 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3902{
3903 struct btrfs_inode_item *inode_item;
3904 struct btrfs_path *path;
5f39d397 3905 struct extent_buffer *leaf;
39279cc3
CM
3906 int ret;
3907
3908 path = btrfs_alloc_path();
16cdcec7
MX
3909 if (!path)
3910 return -ENOMEM;
3911
b9473439 3912 path->leave_spinning = 1;
16cdcec7
MX
3913 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3914 1);
39279cc3
CM
3915 if (ret) {
3916 if (ret > 0)
3917 ret = -ENOENT;
3918 goto failed;
3919 }
3920
5f39d397
CM
3921 leaf = path->nodes[0];
3922 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3923 struct btrfs_inode_item);
39279cc3 3924
e02119d5 3925 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3926 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3927 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3928 ret = 0;
3929failed:
39279cc3
CM
3930 btrfs_free_path(path);
3931 return ret;
3932}
3933
2115133f
CM
3934/*
3935 * copy everything in the in-memory inode into the btree.
3936 */
3937noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3938 struct btrfs_root *root, struct inode *inode)
3939{
3940 int ret;
3941
3942 /*
3943 * If the inode is a free space inode, we can deadlock during commit
3944 * if we put it into the delayed code.
3945 *
3946 * The data relocation inode should also be directly updated
3947 * without delay
3948 */
83eea1f1 3949 if (!btrfs_is_free_space_inode(inode)
1d52c78a 3950 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
afcdd129 3951 && !test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
8ea05e3a
AB
3952 btrfs_update_root_times(trans, root);
3953
2115133f
CM
3954 ret = btrfs_delayed_update_inode(trans, root, inode);
3955 if (!ret)
3956 btrfs_set_inode_last_trans(trans, inode);
3957 return ret;
3958 }
3959
3960 return btrfs_update_inode_item(trans, root, inode);
3961}
3962
be6aef60
JB
3963noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3964 struct btrfs_root *root,
3965 struct inode *inode)
2115133f
CM
3966{
3967 int ret;
3968
3969 ret = btrfs_update_inode(trans, root, inode);
3970 if (ret == -ENOSPC)
3971 return btrfs_update_inode_item(trans, root, inode);
3972 return ret;
3973}
3974
d352ac68
CM
3975/*
3976 * unlink helper that gets used here in inode.c and in the tree logging
3977 * recovery code. It remove a link in a directory with a given name, and
3978 * also drops the back refs in the inode to the directory
3979 */
92986796
AV
3980static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3981 struct btrfs_root *root,
3982 struct inode *dir, struct inode *inode,
3983 const char *name, int name_len)
39279cc3
CM
3984{
3985 struct btrfs_path *path;
39279cc3 3986 int ret = 0;
5f39d397 3987 struct extent_buffer *leaf;
39279cc3 3988 struct btrfs_dir_item *di;
5f39d397 3989 struct btrfs_key key;
aec7477b 3990 u64 index;
33345d01
LZ
3991 u64 ino = btrfs_ino(inode);
3992 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3993
3994 path = btrfs_alloc_path();
54aa1f4d
CM
3995 if (!path) {
3996 ret = -ENOMEM;
554233a6 3997 goto out;
54aa1f4d
CM
3998 }
3999
b9473439 4000 path->leave_spinning = 1;
33345d01 4001 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
4002 name, name_len, -1);
4003 if (IS_ERR(di)) {
4004 ret = PTR_ERR(di);
4005 goto err;
4006 }
4007 if (!di) {
4008 ret = -ENOENT;
4009 goto err;
4010 }
5f39d397
CM
4011 leaf = path->nodes[0];
4012 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 4013 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4014 if (ret)
4015 goto err;
b3b4aa74 4016 btrfs_release_path(path);
39279cc3 4017
67de1176
MX
4018 /*
4019 * If we don't have dir index, we have to get it by looking up
4020 * the inode ref, since we get the inode ref, remove it directly,
4021 * it is unnecessary to do delayed deletion.
4022 *
4023 * But if we have dir index, needn't search inode ref to get it.
4024 * Since the inode ref is close to the inode item, it is better
4025 * that we delay to delete it, and just do this deletion when
4026 * we update the inode item.
4027 */
4028 if (BTRFS_I(inode)->dir_index) {
4029 ret = btrfs_delayed_delete_inode_ref(inode);
4030 if (!ret) {
4031 index = BTRFS_I(inode)->dir_index;
4032 goto skip_backref;
4033 }
4034 }
4035
33345d01
LZ
4036 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4037 dir_ino, &index);
aec7477b 4038 if (ret) {
c2cf52eb
SK
4039 btrfs_info(root->fs_info,
4040 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4041 name_len, name, ino, dir_ino);
66642832 4042 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4043 goto err;
4044 }
67de1176 4045skip_backref:
16cdcec7 4046 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa 4047 if (ret) {
66642832 4048 btrfs_abort_transaction(trans, ret);
39279cc3 4049 goto err;
79787eaa 4050 }
39279cc3 4051
e02119d5 4052 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 4053 inode, dir_ino);
79787eaa 4054 if (ret != 0 && ret != -ENOENT) {
66642832 4055 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4056 goto err;
4057 }
e02119d5
CM
4058
4059 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4060 dir, index);
6418c961
CM
4061 if (ret == -ENOENT)
4062 ret = 0;
d4e3991b 4063 else if (ret)
66642832 4064 btrfs_abort_transaction(trans, ret);
39279cc3
CM
4065err:
4066 btrfs_free_path(path);
e02119d5
CM
4067 if (ret)
4068 goto out;
4069
4070 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
4071 inode_inc_iversion(inode);
4072 inode_inc_iversion(dir);
04b285f3 4073 inode->i_ctime = dir->i_mtime =
c2050a45 4074 dir->i_ctime = current_time(inode);
b9959295 4075 ret = btrfs_update_inode(trans, root, dir);
e02119d5 4076out:
39279cc3
CM
4077 return ret;
4078}
4079
92986796
AV
4080int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4081 struct btrfs_root *root,
4082 struct inode *dir, struct inode *inode,
4083 const char *name, int name_len)
4084{
4085 int ret;
4086 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4087 if (!ret) {
8b558c5f 4088 drop_nlink(inode);
92986796
AV
4089 ret = btrfs_update_inode(trans, root, inode);
4090 }
4091 return ret;
4092}
39279cc3 4093
a22285a6
YZ
4094/*
4095 * helper to start transaction for unlink and rmdir.
4096 *
d52be818
JB
4097 * unlink and rmdir are special in btrfs, they do not always free space, so
4098 * if we cannot make our reservations the normal way try and see if there is
4099 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4100 * allow the unlink to occur.
a22285a6 4101 */
d52be818 4102static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4103{
a22285a6 4104 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4105
e70bea5f
JB
4106 /*
4107 * 1 for the possible orphan item
4108 * 1 for the dir item
4109 * 1 for the dir index
4110 * 1 for the inode ref
e70bea5f
JB
4111 * 1 for the inode
4112 */
8eab77ff 4113 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4114}
4115
4116static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4117{
4118 struct btrfs_root *root = BTRFS_I(dir)->root;
4119 struct btrfs_trans_handle *trans;
2b0143b5 4120 struct inode *inode = d_inode(dentry);
a22285a6 4121 int ret;
a22285a6 4122
d52be818 4123 trans = __unlink_start_trans(dir);
a22285a6
YZ
4124 if (IS_ERR(trans))
4125 return PTR_ERR(trans);
5f39d397 4126
2b0143b5 4127 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
12fcfd22 4128
2b0143b5 4129 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4130 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
4131 if (ret)
4132 goto out;
7b128766 4133
a22285a6 4134 if (inode->i_nlink == 0) {
7b128766 4135 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
4136 if (ret)
4137 goto out;
a22285a6 4138 }
7b128766 4139
b532402e 4140out:
d52be818 4141 btrfs_end_transaction(trans, root);
b53d3f5d 4142 btrfs_btree_balance_dirty(root);
39279cc3
CM
4143 return ret;
4144}
4145
4df27c4d
YZ
4146int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4147 struct btrfs_root *root,
4148 struct inode *dir, u64 objectid,
4149 const char *name, int name_len)
4150{
4151 struct btrfs_path *path;
4152 struct extent_buffer *leaf;
4153 struct btrfs_dir_item *di;
4154 struct btrfs_key key;
4155 u64 index;
4156 int ret;
33345d01 4157 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
4158
4159 path = btrfs_alloc_path();
4160 if (!path)
4161 return -ENOMEM;
4162
33345d01 4163 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4164 name, name_len, -1);
79787eaa
JM
4165 if (IS_ERR_OR_NULL(di)) {
4166 if (!di)
4167 ret = -ENOENT;
4168 else
4169 ret = PTR_ERR(di);
4170 goto out;
4171 }
4df27c4d
YZ
4172
4173 leaf = path->nodes[0];
4174 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4175 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4176 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4177 if (ret) {
66642832 4178 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4179 goto out;
4180 }
b3b4aa74 4181 btrfs_release_path(path);
4df27c4d
YZ
4182
4183 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4184 objectid, root->root_key.objectid,
33345d01 4185 dir_ino, &index, name, name_len);
4df27c4d 4186 if (ret < 0) {
79787eaa 4187 if (ret != -ENOENT) {
66642832 4188 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4189 goto out;
4190 }
33345d01 4191 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4192 name, name_len);
79787eaa
JM
4193 if (IS_ERR_OR_NULL(di)) {
4194 if (!di)
4195 ret = -ENOENT;
4196 else
4197 ret = PTR_ERR(di);
66642832 4198 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4199 goto out;
4200 }
4df27c4d
YZ
4201
4202 leaf = path->nodes[0];
4203 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4204 btrfs_release_path(path);
4df27c4d
YZ
4205 index = key.offset;
4206 }
945d8962 4207 btrfs_release_path(path);
4df27c4d 4208
16cdcec7 4209 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa 4210 if (ret) {
66642832 4211 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4212 goto out;
4213 }
4df27c4d
YZ
4214
4215 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4216 inode_inc_iversion(dir);
c2050a45 4217 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4218 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4219 if (ret)
66642832 4220 btrfs_abort_transaction(trans, ret);
79787eaa 4221out:
71d7aed0 4222 btrfs_free_path(path);
79787eaa 4223 return ret;
4df27c4d
YZ
4224}
4225
39279cc3
CM
4226static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4227{
2b0143b5 4228 struct inode *inode = d_inode(dentry);
1832a6d5 4229 int err = 0;
39279cc3 4230 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4231 struct btrfs_trans_handle *trans;
44f714da 4232 u64 last_unlink_trans;
39279cc3 4233
b3ae244e 4234 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4235 return -ENOTEMPTY;
b3ae244e
DS
4236 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4237 return -EPERM;
134d4512 4238
d52be818 4239 trans = __unlink_start_trans(dir);
a22285a6 4240 if (IS_ERR(trans))
5df6a9f6 4241 return PTR_ERR(trans);
5df6a9f6 4242
33345d01 4243 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4244 err = btrfs_unlink_subvol(trans, root, dir,
4245 BTRFS_I(inode)->location.objectid,
4246 dentry->d_name.name,
4247 dentry->d_name.len);
4248 goto out;
4249 }
4250
7b128766
JB
4251 err = btrfs_orphan_add(trans, inode);
4252 if (err)
4df27c4d 4253 goto out;
7b128766 4254
44f714da
FM
4255 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4256
39279cc3 4257 /* now the directory is empty */
2b0143b5 4258 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4259 dentry->d_name.name, dentry->d_name.len);
44f714da 4260 if (!err) {
dbe674a9 4261 btrfs_i_size_write(inode, 0);
44f714da
FM
4262 /*
4263 * Propagate the last_unlink_trans value of the deleted dir to
4264 * its parent directory. This is to prevent an unrecoverable
4265 * log tree in the case we do something like this:
4266 * 1) create dir foo
4267 * 2) create snapshot under dir foo
4268 * 3) delete the snapshot
4269 * 4) rmdir foo
4270 * 5) mkdir foo
4271 * 6) fsync foo or some file inside foo
4272 */
4273 if (last_unlink_trans >= trans->transid)
4274 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4275 }
4df27c4d 4276out:
d52be818 4277 btrfs_end_transaction(trans, root);
b53d3f5d 4278 btrfs_btree_balance_dirty(root);
3954401f 4279
39279cc3
CM
4280 return err;
4281}
4282
28f75a0e
CM
4283static int truncate_space_check(struct btrfs_trans_handle *trans,
4284 struct btrfs_root *root,
4285 u64 bytes_deleted)
4286{
4287 int ret;
4288
dc95f7bf
JB
4289 /*
4290 * This is only used to apply pressure to the enospc system, we don't
4291 * intend to use this reservation at all.
4292 */
28f75a0e 4293 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
dc95f7bf 4294 bytes_deleted *= root->nodesize;
28f75a0e
CM
4295 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4296 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf
JB
4297 if (!ret) {
4298 trace_btrfs_space_reservation(root->fs_info, "transaction",
4299 trans->transid,
4300 bytes_deleted, 1);
28f75a0e 4301 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4302 }
28f75a0e
CM
4303 return ret;
4304
4305}
4306
0305cd5f
FM
4307static int truncate_inline_extent(struct inode *inode,
4308 struct btrfs_path *path,
4309 struct btrfs_key *found_key,
4310 const u64 item_end,
4311 const u64 new_size)
4312{
4313 struct extent_buffer *leaf = path->nodes[0];
4314 int slot = path->slots[0];
4315 struct btrfs_file_extent_item *fi;
4316 u32 size = (u32)(new_size - found_key->offset);
4317 struct btrfs_root *root = BTRFS_I(inode)->root;
4318
4319 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4320
4321 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4322 loff_t offset = new_size;
09cbfeaf 4323 loff_t page_end = ALIGN(offset, PAGE_SIZE);
0305cd5f
FM
4324
4325 /*
4326 * Zero out the remaining of the last page of our inline extent,
4327 * instead of directly truncating our inline extent here - that
4328 * would be much more complex (decompressing all the data, then
4329 * compressing the truncated data, which might be bigger than
4330 * the size of the inline extent, resize the extent, etc).
4331 * We release the path because to get the page we might need to
4332 * read the extent item from disk (data not in the page cache).
4333 */
4334 btrfs_release_path(path);
9703fefe
CR
4335 return btrfs_truncate_block(inode, offset, page_end - offset,
4336 0);
0305cd5f
FM
4337 }
4338
4339 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4340 size = btrfs_file_extent_calc_inline_size(size);
4341 btrfs_truncate_item(root, path, size, 1);
4342
4343 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4344 inode_sub_bytes(inode, item_end + 1 - new_size);
4345
4346 return 0;
4347}
4348
39279cc3
CM
4349/*
4350 * this can truncate away extent items, csum items and directory items.
4351 * It starts at a high offset and removes keys until it can't find
d352ac68 4352 * any higher than new_size
39279cc3
CM
4353 *
4354 * csum items that cross the new i_size are truncated to the new size
4355 * as well.
7b128766
JB
4356 *
4357 * min_type is the minimum key type to truncate down to. If set to 0, this
4358 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4359 */
8082510e
YZ
4360int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4361 struct btrfs_root *root,
4362 struct inode *inode,
4363 u64 new_size, u32 min_type)
39279cc3 4364{
39279cc3 4365 struct btrfs_path *path;
5f39d397 4366 struct extent_buffer *leaf;
39279cc3 4367 struct btrfs_file_extent_item *fi;
8082510e
YZ
4368 struct btrfs_key key;
4369 struct btrfs_key found_key;
39279cc3 4370 u64 extent_start = 0;
db94535d 4371 u64 extent_num_bytes = 0;
5d4f98a2 4372 u64 extent_offset = 0;
39279cc3 4373 u64 item_end = 0;
c1aa4575 4374 u64 last_size = new_size;
8082510e 4375 u32 found_type = (u8)-1;
39279cc3
CM
4376 int found_extent;
4377 int del_item;
85e21bac
CM
4378 int pending_del_nr = 0;
4379 int pending_del_slot = 0;
179e29e4 4380 int extent_type = -1;
8082510e
YZ
4381 int ret;
4382 int err = 0;
33345d01 4383 u64 ino = btrfs_ino(inode);
28ed1345 4384 u64 bytes_deleted = 0;
1262133b
JB
4385 bool be_nice = 0;
4386 bool should_throttle = 0;
28f75a0e 4387 bool should_end = 0;
8082510e
YZ
4388
4389 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4390
28ed1345
CM
4391 /*
4392 * for non-free space inodes and ref cows, we want to back off from
4393 * time to time
4394 */
4395 if (!btrfs_is_free_space_inode(inode) &&
4396 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4397 be_nice = 1;
4398
0eb0e19c
MF
4399 path = btrfs_alloc_path();
4400 if (!path)
4401 return -ENOMEM;
e4058b54 4402 path->reada = READA_BACK;
0eb0e19c 4403
5dc562c5
JB
4404 /*
4405 * We want to drop from the next block forward in case this new size is
4406 * not block aligned since we will be keeping the last block of the
4407 * extent just the way it is.
4408 */
27cdeb70
MX
4409 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4410 root == root->fs_info->tree_root)
fda2832f
QW
4411 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4412 root->sectorsize), (u64)-1, 0);
8082510e 4413
16cdcec7
MX
4414 /*
4415 * This function is also used to drop the items in the log tree before
4416 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4417 * it is used to drop the loged items. So we shouldn't kill the delayed
4418 * items.
4419 */
4420 if (min_type == 0 && root == BTRFS_I(inode)->root)
4421 btrfs_kill_delayed_inode_items(inode);
4422
33345d01 4423 key.objectid = ino;
39279cc3 4424 key.offset = (u64)-1;
5f39d397
CM
4425 key.type = (u8)-1;
4426
85e21bac 4427search_again:
28ed1345
CM
4428 /*
4429 * with a 16K leaf size and 128MB extents, you can actually queue
4430 * up a huge file in a single leaf. Most of the time that
4431 * bytes_deleted is > 0, it will be huge by the time we get here
4432 */
ee22184b 4433 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4434 if (btrfs_should_end_transaction(trans, root)) {
4435 err = -EAGAIN;
4436 goto error;
4437 }
4438 }
4439
4440
b9473439 4441 path->leave_spinning = 1;
85e21bac 4442 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4443 if (ret < 0) {
4444 err = ret;
4445 goto out;
4446 }
d397712b 4447
85e21bac 4448 if (ret > 0) {
e02119d5
CM
4449 /* there are no items in the tree for us to truncate, we're
4450 * done
4451 */
8082510e
YZ
4452 if (path->slots[0] == 0)
4453 goto out;
85e21bac
CM
4454 path->slots[0]--;
4455 }
4456
d397712b 4457 while (1) {
39279cc3 4458 fi = NULL;
5f39d397
CM
4459 leaf = path->nodes[0];
4460 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4461 found_type = found_key.type;
39279cc3 4462
33345d01 4463 if (found_key.objectid != ino)
39279cc3 4464 break;
5f39d397 4465
85e21bac 4466 if (found_type < min_type)
39279cc3
CM
4467 break;
4468
5f39d397 4469 item_end = found_key.offset;
39279cc3 4470 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4471 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4472 struct btrfs_file_extent_item);
179e29e4
CM
4473 extent_type = btrfs_file_extent_type(leaf, fi);
4474 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4475 item_end +=
db94535d 4476 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4477 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4478 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4479 path->slots[0], fi);
39279cc3 4480 }
008630c1 4481 item_end--;
39279cc3 4482 }
8082510e
YZ
4483 if (found_type > min_type) {
4484 del_item = 1;
4485 } else {
4486 if (item_end < new_size)
b888db2b 4487 break;
8082510e
YZ
4488 if (found_key.offset >= new_size)
4489 del_item = 1;
4490 else
4491 del_item = 0;
39279cc3 4492 }
39279cc3 4493 found_extent = 0;
39279cc3 4494 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4495 if (found_type != BTRFS_EXTENT_DATA_KEY)
4496 goto delete;
4497
7f4f6e0a
JB
4498 if (del_item)
4499 last_size = found_key.offset;
4500 else
4501 last_size = new_size;
4502
179e29e4 4503 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4504 u64 num_dec;
db94535d 4505 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4506 if (!del_item) {
db94535d
CM
4507 u64 orig_num_bytes =
4508 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4509 extent_num_bytes = ALIGN(new_size -
4510 found_key.offset,
4511 root->sectorsize);
db94535d
CM
4512 btrfs_set_file_extent_num_bytes(leaf, fi,
4513 extent_num_bytes);
4514 num_dec = (orig_num_bytes -
9069218d 4515 extent_num_bytes);
27cdeb70
MX
4516 if (test_bit(BTRFS_ROOT_REF_COWS,
4517 &root->state) &&
4518 extent_start != 0)
a76a3cd4 4519 inode_sub_bytes(inode, num_dec);
5f39d397 4520 btrfs_mark_buffer_dirty(leaf);
39279cc3 4521 } else {
db94535d
CM
4522 extent_num_bytes =
4523 btrfs_file_extent_disk_num_bytes(leaf,
4524 fi);
5d4f98a2
YZ
4525 extent_offset = found_key.offset -
4526 btrfs_file_extent_offset(leaf, fi);
4527
39279cc3 4528 /* FIXME blocksize != 4096 */
9069218d 4529 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4530 if (extent_start != 0) {
4531 found_extent = 1;
27cdeb70
MX
4532 if (test_bit(BTRFS_ROOT_REF_COWS,
4533 &root->state))
a76a3cd4 4534 inode_sub_bytes(inode, num_dec);
e02119d5 4535 }
39279cc3 4536 }
9069218d 4537 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4538 /*
4539 * we can't truncate inline items that have had
4540 * special encodings
4541 */
4542 if (!del_item &&
c8b97818
CM
4543 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4544 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4545
4546 /*
0305cd5f
FM
4547 * Need to release path in order to truncate a
4548 * compressed extent. So delete any accumulated
4549 * extent items so far.
514ac8ad 4550 */
0305cd5f
FM
4551 if (btrfs_file_extent_compression(leaf, fi) !=
4552 BTRFS_COMPRESS_NONE && pending_del_nr) {
4553 err = btrfs_del_items(trans, root, path,
4554 pending_del_slot,
4555 pending_del_nr);
4556 if (err) {
4557 btrfs_abort_transaction(trans,
0305cd5f
FM
4558 err);
4559 goto error;
4560 }
4561 pending_del_nr = 0;
4562 }
4563
4564 err = truncate_inline_extent(inode, path,
4565 &found_key,
4566 item_end,
4567 new_size);
4568 if (err) {
66642832 4569 btrfs_abort_transaction(trans, err);
0305cd5f
FM
4570 goto error;
4571 }
27cdeb70
MX
4572 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4573 &root->state)) {
0305cd5f 4574 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4575 }
39279cc3 4576 }
179e29e4 4577delete:
39279cc3 4578 if (del_item) {
85e21bac
CM
4579 if (!pending_del_nr) {
4580 /* no pending yet, add ourselves */
4581 pending_del_slot = path->slots[0];
4582 pending_del_nr = 1;
4583 } else if (pending_del_nr &&
4584 path->slots[0] + 1 == pending_del_slot) {
4585 /* hop on the pending chunk */
4586 pending_del_nr++;
4587 pending_del_slot = path->slots[0];
4588 } else {
d397712b 4589 BUG();
85e21bac 4590 }
39279cc3
CM
4591 } else {
4592 break;
4593 }
28f75a0e
CM
4594 should_throttle = 0;
4595
27cdeb70
MX
4596 if (found_extent &&
4597 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4598 root == root->fs_info->tree_root)) {
b9473439 4599 btrfs_set_path_blocking(path);
28ed1345 4600 bytes_deleted += extent_num_bytes;
39279cc3 4601 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4602 extent_num_bytes, 0,
4603 btrfs_header_owner(leaf),
b06c4bf5 4604 ino, extent_offset);
39279cc3 4605 BUG_ON(ret);
1262133b 4606 if (btrfs_should_throttle_delayed_refs(trans, root))
28ed1345 4607 btrfs_async_run_delayed_refs(root,
31b9655f 4608 trans->transid,
28ed1345 4609 trans->delayed_ref_updates * 2, 0);
28f75a0e
CM
4610 if (be_nice) {
4611 if (truncate_space_check(trans, root,
4612 extent_num_bytes)) {
4613 should_end = 1;
4614 }
4615 if (btrfs_should_throttle_delayed_refs(trans,
4616 root)) {
4617 should_throttle = 1;
4618 }
4619 }
39279cc3 4620 }
85e21bac 4621
8082510e
YZ
4622 if (found_type == BTRFS_INODE_ITEM_KEY)
4623 break;
4624
4625 if (path->slots[0] == 0 ||
1262133b 4626 path->slots[0] != pending_del_slot ||
28f75a0e 4627 should_throttle || should_end) {
8082510e
YZ
4628 if (pending_del_nr) {
4629 ret = btrfs_del_items(trans, root, path,
4630 pending_del_slot,
4631 pending_del_nr);
79787eaa 4632 if (ret) {
66642832 4633 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4634 goto error;
4635 }
8082510e
YZ
4636 pending_del_nr = 0;
4637 }
b3b4aa74 4638 btrfs_release_path(path);
28f75a0e 4639 if (should_throttle) {
1262133b
JB
4640 unsigned long updates = trans->delayed_ref_updates;
4641 if (updates) {
4642 trans->delayed_ref_updates = 0;
4643 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4644 if (ret && !err)
4645 err = ret;
4646 }
4647 }
28f75a0e
CM
4648 /*
4649 * if we failed to refill our space rsv, bail out
4650 * and let the transaction restart
4651 */
4652 if (should_end) {
4653 err = -EAGAIN;
4654 goto error;
4655 }
85e21bac 4656 goto search_again;
8082510e
YZ
4657 } else {
4658 path->slots[0]--;
85e21bac 4659 }
39279cc3 4660 }
8082510e 4661out:
85e21bac
CM
4662 if (pending_del_nr) {
4663 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4664 pending_del_nr);
79787eaa 4665 if (ret)
66642832 4666 btrfs_abort_transaction(trans, ret);
85e21bac 4667 }
79787eaa 4668error:
c1aa4575 4669 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4670 btrfs_ordered_update_i_size(inode, last_size, NULL);
28ed1345 4671
39279cc3 4672 btrfs_free_path(path);
28ed1345 4673
ee22184b 4674 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4675 unsigned long updates = trans->delayed_ref_updates;
4676 if (updates) {
4677 trans->delayed_ref_updates = 0;
4678 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4679 if (ret && !err)
4680 err = ret;
4681 }
4682 }
8082510e 4683 return err;
39279cc3
CM
4684}
4685
4686/*
9703fefe 4687 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4688 * @inode - inode that we're zeroing
4689 * @from - the offset to start zeroing
4690 * @len - the length to zero, 0 to zero the entire range respective to the
4691 * offset
4692 * @front - zero up to the offset instead of from the offset on
4693 *
9703fefe 4694 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4695 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4696 */
9703fefe 4697int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4698 int front)
39279cc3 4699{
2aaa6655 4700 struct address_space *mapping = inode->i_mapping;
db94535d 4701 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4702 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4703 struct btrfs_ordered_extent *ordered;
2ac55d41 4704 struct extent_state *cached_state = NULL;
e6dcd2dc 4705 char *kaddr;
db94535d 4706 u32 blocksize = root->sectorsize;
09cbfeaf 4707 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4708 unsigned offset = from & (blocksize - 1);
39279cc3 4709 struct page *page;
3b16a4e3 4710 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4711 int ret = 0;
9703fefe
CR
4712 u64 block_start;
4713 u64 block_end;
39279cc3 4714
2aaa6655
JB
4715 if ((offset & (blocksize - 1)) == 0 &&
4716 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4717 goto out;
9703fefe 4718
7cf5b976 4719 ret = btrfs_delalloc_reserve_space(inode,
9703fefe 4720 round_down(from, blocksize), blocksize);
5d5e103a
JB
4721 if (ret)
4722 goto out;
39279cc3 4723
211c17f5 4724again:
3b16a4e3 4725 page = find_or_create_page(mapping, index, mask);
5d5e103a 4726 if (!page) {
7cf5b976 4727 btrfs_delalloc_release_space(inode,
9703fefe
CR
4728 round_down(from, blocksize),
4729 blocksize);
ac6a2b36 4730 ret = -ENOMEM;
39279cc3 4731 goto out;
5d5e103a 4732 }
e6dcd2dc 4733
9703fefe
CR
4734 block_start = round_down(from, blocksize);
4735 block_end = block_start + blocksize - 1;
e6dcd2dc 4736
39279cc3 4737 if (!PageUptodate(page)) {
9ebefb18 4738 ret = btrfs_readpage(NULL, page);
39279cc3 4739 lock_page(page);
211c17f5
CM
4740 if (page->mapping != mapping) {
4741 unlock_page(page);
09cbfeaf 4742 put_page(page);
211c17f5
CM
4743 goto again;
4744 }
39279cc3
CM
4745 if (!PageUptodate(page)) {
4746 ret = -EIO;
89642229 4747 goto out_unlock;
39279cc3
CM
4748 }
4749 }
211c17f5 4750 wait_on_page_writeback(page);
e6dcd2dc 4751
9703fefe 4752 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4753 set_page_extent_mapped(page);
4754
9703fefe 4755 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4756 if (ordered) {
9703fefe 4757 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4758 &cached_state, GFP_NOFS);
e6dcd2dc 4759 unlock_page(page);
09cbfeaf 4760 put_page(page);
eb84ae03 4761 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4762 btrfs_put_ordered_extent(ordered);
4763 goto again;
4764 }
4765
9703fefe 4766 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4767 EXTENT_DIRTY | EXTENT_DELALLOC |
4768 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4769 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4770
9703fefe 4771 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
ba8b04c1 4772 &cached_state, 0);
9ed74f2d 4773 if (ret) {
9703fefe 4774 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4775 &cached_state, GFP_NOFS);
9ed74f2d
JB
4776 goto out_unlock;
4777 }
4778
9703fefe 4779 if (offset != blocksize) {
2aaa6655 4780 if (!len)
9703fefe 4781 len = blocksize - offset;
e6dcd2dc 4782 kaddr = kmap(page);
2aaa6655 4783 if (front)
9703fefe
CR
4784 memset(kaddr + (block_start - page_offset(page)),
4785 0, offset);
2aaa6655 4786 else
9703fefe
CR
4787 memset(kaddr + (block_start - page_offset(page)) + offset,
4788 0, len);
e6dcd2dc
CM
4789 flush_dcache_page(page);
4790 kunmap(page);
4791 }
247e743c 4792 ClearPageChecked(page);
e6dcd2dc 4793 set_page_dirty(page);
9703fefe 4794 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4795 GFP_NOFS);
39279cc3 4796
89642229 4797out_unlock:
5d5e103a 4798 if (ret)
9703fefe
CR
4799 btrfs_delalloc_release_space(inode, block_start,
4800 blocksize);
39279cc3 4801 unlock_page(page);
09cbfeaf 4802 put_page(page);
39279cc3
CM
4803out:
4804 return ret;
4805}
4806
16e7549f
JB
4807static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4808 u64 offset, u64 len)
4809{
4810 struct btrfs_trans_handle *trans;
4811 int ret;
4812
4813 /*
4814 * Still need to make sure the inode looks like it's been updated so
4815 * that any holes get logged if we fsync.
4816 */
4817 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4818 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4819 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4820 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4821 return 0;
4822 }
4823
4824 /*
4825 * 1 - for the one we're dropping
4826 * 1 - for the one we're adding
4827 * 1 - for updating the inode.
4828 */
4829 trans = btrfs_start_transaction(root, 3);
4830 if (IS_ERR(trans))
4831 return PTR_ERR(trans);
4832
4833 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4834 if (ret) {
66642832 4835 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4836 btrfs_end_transaction(trans, root);
4837 return ret;
4838 }
4839
4840 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4841 0, 0, len, 0, len, 0, 0, 0);
4842 if (ret)
66642832 4843 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4844 else
4845 btrfs_update_inode(trans, root, inode);
4846 btrfs_end_transaction(trans, root);
4847 return ret;
4848}
4849
695a0d0d
JB
4850/*
4851 * This function puts in dummy file extents for the area we're creating a hole
4852 * for. So if we are truncating this file to a larger size we need to insert
4853 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4854 * the range between oldsize and size
4855 */
a41ad394 4856int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4857{
9036c102
YZ
4858 struct btrfs_root *root = BTRFS_I(inode)->root;
4859 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4860 struct extent_map *em = NULL;
2ac55d41 4861 struct extent_state *cached_state = NULL;
5dc562c5 4862 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4863 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4864 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4865 u64 last_byte;
4866 u64 cur_offset;
4867 u64 hole_size;
9ed74f2d 4868 int err = 0;
39279cc3 4869
a71754fc 4870 /*
9703fefe
CR
4871 * If our size started in the middle of a block we need to zero out the
4872 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4873 * expose stale data.
4874 */
9703fefe 4875 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4876 if (err)
4877 return err;
4878
9036c102
YZ
4879 if (size <= hole_start)
4880 return 0;
4881
9036c102
YZ
4882 while (1) {
4883 struct btrfs_ordered_extent *ordered;
fa7c1494 4884
ff13db41 4885 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4886 &cached_state);
fa7c1494
MX
4887 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4888 block_end - hole_start);
9036c102
YZ
4889 if (!ordered)
4890 break;
2ac55d41
JB
4891 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4892 &cached_state, GFP_NOFS);
fa7c1494 4893 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4894 btrfs_put_ordered_extent(ordered);
4895 }
39279cc3 4896
9036c102
YZ
4897 cur_offset = hole_start;
4898 while (1) {
4899 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4900 block_end - cur_offset, 0);
79787eaa
JM
4901 if (IS_ERR(em)) {
4902 err = PTR_ERR(em);
f2767956 4903 em = NULL;
79787eaa
JM
4904 break;
4905 }
9036c102 4906 last_byte = min(extent_map_end(em), block_end);
fda2832f 4907 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4908 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4909 struct extent_map *hole_em;
9036c102 4910 hole_size = last_byte - cur_offset;
9ed74f2d 4911
16e7549f
JB
4912 err = maybe_insert_hole(root, inode, cur_offset,
4913 hole_size);
4914 if (err)
3893e33b 4915 break;
5dc562c5
JB
4916 btrfs_drop_extent_cache(inode, cur_offset,
4917 cur_offset + hole_size - 1, 0);
4918 hole_em = alloc_extent_map();
4919 if (!hole_em) {
4920 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4921 &BTRFS_I(inode)->runtime_flags);
4922 goto next;
4923 }
4924 hole_em->start = cur_offset;
4925 hole_em->len = hole_size;
4926 hole_em->orig_start = cur_offset;
8082510e 4927
5dc562c5
JB
4928 hole_em->block_start = EXTENT_MAP_HOLE;
4929 hole_em->block_len = 0;
b4939680 4930 hole_em->orig_block_len = 0;
cc95bef6 4931 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4932 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4933 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4934 hole_em->generation = root->fs_info->generation;
8082510e 4935
5dc562c5
JB
4936 while (1) {
4937 write_lock(&em_tree->lock);
09a2a8f9 4938 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4939 write_unlock(&em_tree->lock);
4940 if (err != -EEXIST)
4941 break;
4942 btrfs_drop_extent_cache(inode, cur_offset,
4943 cur_offset +
4944 hole_size - 1, 0);
4945 }
4946 free_extent_map(hole_em);
9036c102 4947 }
16e7549f 4948next:
9036c102 4949 free_extent_map(em);
a22285a6 4950 em = NULL;
9036c102 4951 cur_offset = last_byte;
8082510e 4952 if (cur_offset >= block_end)
9036c102
YZ
4953 break;
4954 }
a22285a6 4955 free_extent_map(em);
2ac55d41
JB
4956 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4957 GFP_NOFS);
9036c102
YZ
4958 return err;
4959}
39279cc3 4960
3972f260 4961static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4962{
f4a2f4c5
MX
4963 struct btrfs_root *root = BTRFS_I(inode)->root;
4964 struct btrfs_trans_handle *trans;
a41ad394 4965 loff_t oldsize = i_size_read(inode);
3972f260
ES
4966 loff_t newsize = attr->ia_size;
4967 int mask = attr->ia_valid;
8082510e
YZ
4968 int ret;
4969
3972f260
ES
4970 /*
4971 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4972 * special case where we need to update the times despite not having
4973 * these flags set. For all other operations the VFS set these flags
4974 * explicitly if it wants a timestamp update.
4975 */
dff6efc3
CH
4976 if (newsize != oldsize) {
4977 inode_inc_iversion(inode);
4978 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4979 inode->i_ctime = inode->i_mtime =
c2050a45 4980 current_time(inode);
dff6efc3 4981 }
3972f260 4982
a41ad394 4983 if (newsize > oldsize) {
9ea24bbe
FM
4984 /*
4985 * Don't do an expanding truncate while snapshoting is ongoing.
4986 * This is to ensure the snapshot captures a fully consistent
4987 * state of this file - if the snapshot captures this expanding
4988 * truncation, it must capture all writes that happened before
4989 * this truncation.
4990 */
0bc19f90 4991 btrfs_wait_for_snapshot_creation(root);
a41ad394 4992 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4993 if (ret) {
4994 btrfs_end_write_no_snapshoting(root);
8082510e 4995 return ret;
9ea24bbe 4996 }
8082510e 4997
f4a2f4c5 4998 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4999 if (IS_ERR(trans)) {
5000 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 5001 return PTR_ERR(trans);
9ea24bbe 5002 }
f4a2f4c5
MX
5003
5004 i_size_write(inode, newsize);
5005 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5006 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5007 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 5008 btrfs_end_write_no_snapshoting(root);
7ad85bb7 5009 btrfs_end_transaction(trans, root);
a41ad394 5010 } else {
8082510e 5011
a41ad394
JB
5012 /*
5013 * We're truncating a file that used to have good data down to
5014 * zero. Make sure it gets into the ordered flush list so that
5015 * any new writes get down to disk quickly.
5016 */
5017 if (newsize == 0)
72ac3c0d
JB
5018 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5019 &BTRFS_I(inode)->runtime_flags);
8082510e 5020
f3fe820c
JB
5021 /*
5022 * 1 for the orphan item we're going to add
5023 * 1 for the orphan item deletion.
5024 */
5025 trans = btrfs_start_transaction(root, 2);
5026 if (IS_ERR(trans))
5027 return PTR_ERR(trans);
5028
5029 /*
5030 * We need to do this in case we fail at _any_ point during the
5031 * actual truncate. Once we do the truncate_setsize we could
5032 * invalidate pages which forces any outstanding ordered io to
5033 * be instantly completed which will give us extents that need
5034 * to be truncated. If we fail to get an orphan inode down we
5035 * could have left over extents that were never meant to live,
01327610 5036 * so we need to guarantee from this point on that everything
f3fe820c
JB
5037 * will be consistent.
5038 */
5039 ret = btrfs_orphan_add(trans, inode);
5040 btrfs_end_transaction(trans, root);
5041 if (ret)
5042 return ret;
5043
a41ad394
JB
5044 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5045 truncate_setsize(inode, newsize);
2e60a51e
MX
5046
5047 /* Disable nonlocked read DIO to avoid the end less truncate */
5048 btrfs_inode_block_unlocked_dio(inode);
5049 inode_dio_wait(inode);
5050 btrfs_inode_resume_unlocked_dio(inode);
5051
a41ad394 5052 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5053 if (ret && inode->i_nlink) {
5054 int err;
5055
5056 /*
5057 * failed to truncate, disk_i_size is only adjusted down
5058 * as we remove extents, so it should represent the true
5059 * size of the inode, so reset the in memory size and
5060 * delete our orphan entry.
5061 */
5062 trans = btrfs_join_transaction(root);
5063 if (IS_ERR(trans)) {
5064 btrfs_orphan_del(NULL, inode);
5065 return ret;
5066 }
5067 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5068 err = btrfs_orphan_del(trans, inode);
5069 if (err)
66642832 5070 btrfs_abort_transaction(trans, err);
7f4f6e0a
JB
5071 btrfs_end_transaction(trans, root);
5072 }
8082510e
YZ
5073 }
5074
a41ad394 5075 return ret;
8082510e
YZ
5076}
5077
9036c102
YZ
5078static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5079{
2b0143b5 5080 struct inode *inode = d_inode(dentry);
b83cc969 5081 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5082 int err;
39279cc3 5083
b83cc969
LZ
5084 if (btrfs_root_readonly(root))
5085 return -EROFS;
5086
31051c85 5087 err = setattr_prepare(dentry, attr);
9036c102
YZ
5088 if (err)
5089 return err;
2bf5a725 5090
5a3f23d5 5091 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5092 err = btrfs_setsize(inode, attr);
8082510e
YZ
5093 if (err)
5094 return err;
39279cc3 5095 }
9036c102 5096
1025774c
CH
5097 if (attr->ia_valid) {
5098 setattr_copy(inode, attr);
0c4d2d95 5099 inode_inc_iversion(inode);
22c44fe6 5100 err = btrfs_dirty_inode(inode);
1025774c 5101
22c44fe6 5102 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5103 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5104 }
33268eaf 5105
39279cc3
CM
5106 return err;
5107}
61295eb8 5108
131e404a
FDBM
5109/*
5110 * While truncating the inode pages during eviction, we get the VFS calling
5111 * btrfs_invalidatepage() against each page of the inode. This is slow because
5112 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5113 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5114 * extent_state structures over and over, wasting lots of time.
5115 *
5116 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5117 * those expensive operations on a per page basis and do only the ordered io
5118 * finishing, while we release here the extent_map and extent_state structures,
5119 * without the excessive merging and splitting.
5120 */
5121static void evict_inode_truncate_pages(struct inode *inode)
5122{
5123 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5124 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5125 struct rb_node *node;
5126
5127 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5128 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5129
5130 write_lock(&map_tree->lock);
5131 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5132 struct extent_map *em;
5133
5134 node = rb_first(&map_tree->map);
5135 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5136 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5137 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5138 remove_extent_mapping(map_tree, em);
5139 free_extent_map(em);
7064dd5c
FM
5140 if (need_resched()) {
5141 write_unlock(&map_tree->lock);
5142 cond_resched();
5143 write_lock(&map_tree->lock);
5144 }
131e404a
FDBM
5145 }
5146 write_unlock(&map_tree->lock);
5147
6ca07097
FM
5148 /*
5149 * Keep looping until we have no more ranges in the io tree.
5150 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5151 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5152 * still in progress (unlocked the pages in the bio but did not yet
5153 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5154 * ranges can still be locked and eviction started because before
5155 * submitting those bios, which are executed by a separate task (work
5156 * queue kthread), inode references (inode->i_count) were not taken
5157 * (which would be dropped in the end io callback of each bio).
5158 * Therefore here we effectively end up waiting for those bios and
5159 * anyone else holding locked ranges without having bumped the inode's
5160 * reference count - if we don't do it, when they access the inode's
5161 * io_tree to unlock a range it may be too late, leading to an
5162 * use-after-free issue.
5163 */
131e404a
FDBM
5164 spin_lock(&io_tree->lock);
5165 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5166 struct extent_state *state;
5167 struct extent_state *cached_state = NULL;
6ca07097
FM
5168 u64 start;
5169 u64 end;
131e404a
FDBM
5170
5171 node = rb_first(&io_tree->state);
5172 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5173 start = state->start;
5174 end = state->end;
131e404a
FDBM
5175 spin_unlock(&io_tree->lock);
5176
ff13db41 5177 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5178
5179 /*
5180 * If still has DELALLOC flag, the extent didn't reach disk,
5181 * and its reserved space won't be freed by delayed_ref.
5182 * So we need to free its reserved space here.
5183 * (Refer to comment in btrfs_invalidatepage, case 2)
5184 *
5185 * Note, end is the bytenr of last byte, so we need + 1 here.
5186 */
5187 if (state->state & EXTENT_DELALLOC)
5188 btrfs_qgroup_free_data(inode, start, end - start + 1);
5189
6ca07097 5190 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5191 EXTENT_LOCKED | EXTENT_DIRTY |
5192 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5193 EXTENT_DEFRAG, 1, 1,
5194 &cached_state, GFP_NOFS);
131e404a 5195
7064dd5c 5196 cond_resched();
131e404a
FDBM
5197 spin_lock(&io_tree->lock);
5198 }
5199 spin_unlock(&io_tree->lock);
5200}
5201
bd555975 5202void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
5203{
5204 struct btrfs_trans_handle *trans;
5205 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5206 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5207 int steal_from_global = 0;
3d48d981 5208 u64 min_size;
39279cc3
CM
5209 int ret;
5210
1abe9b8a 5211 trace_btrfs_inode_evict(inode);
5212
3d48d981
NB
5213 if (!root) {
5214 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5215 return;
5216 }
5217
5218 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5219
131e404a
FDBM
5220 evict_inode_truncate_pages(inode);
5221
69e9c6c6
SB
5222 if (inode->i_nlink &&
5223 ((btrfs_root_refs(&root->root_item) != 0 &&
5224 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5225 btrfs_is_free_space_inode(inode)))
bd555975
AV
5226 goto no_delete;
5227
39279cc3 5228 if (is_bad_inode(inode)) {
7b128766 5229 btrfs_orphan_del(NULL, inode);
39279cc3
CM
5230 goto no_delete;
5231 }
bd555975 5232 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5233 if (!special_file(inode->i_mode))
5234 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5235
f612496b
MX
5236 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5237
afcdd129 5238 if (test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6bf02314 5239 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5240 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5241 goto no_delete;
5242 }
5243
76dda93c 5244 if (inode->i_nlink > 0) {
69e9c6c6
SB
5245 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5246 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5247 goto no_delete;
5248 }
5249
0e8c36a9
MX
5250 ret = btrfs_commit_inode_delayed_inode(inode);
5251 if (ret) {
5252 btrfs_orphan_del(NULL, inode);
5253 goto no_delete;
5254 }
5255
66d8f3dd 5256 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
5257 if (!rsv) {
5258 btrfs_orphan_del(NULL, inode);
5259 goto no_delete;
5260 }
4a338542 5261 rsv->size = min_size;
ca7e70f5 5262 rsv->failfast = 1;
726c35fa 5263 global_rsv = &root->fs_info->global_block_rsv;
4289a667 5264
dbe674a9 5265 btrfs_i_size_write(inode, 0);
5f39d397 5266
4289a667 5267 /*
8407aa46
MX
5268 * This is a bit simpler than btrfs_truncate since we've already
5269 * reserved our space for our orphan item in the unlink, so we just
5270 * need to reserve some slack space in case we add bytes and update
5271 * inode item when doing the truncate.
4289a667 5272 */
8082510e 5273 while (1) {
08e007d2
MX
5274 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5275 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5276
5277 /*
5278 * Try and steal from the global reserve since we will
5279 * likely not use this space anyway, we want to try as
5280 * hard as possible to get this to work.
5281 */
5282 if (ret)
3bce876f
JB
5283 steal_from_global++;
5284 else
5285 steal_from_global = 0;
5286 ret = 0;
d68fc57b 5287
3bce876f
JB
5288 /*
5289 * steal_from_global == 0: we reserved stuff, hooray!
5290 * steal_from_global == 1: we didn't reserve stuff, boo!
5291 * steal_from_global == 2: we've committed, still not a lot of
5292 * room but maybe we'll have room in the global reserve this
5293 * time.
5294 * steal_from_global == 3: abandon all hope!
5295 */
5296 if (steal_from_global > 2) {
c2cf52eb
SK
5297 btrfs_warn(root->fs_info,
5298 "Could not get space for a delete, will truncate on mount %d",
5299 ret);
4289a667
JB
5300 btrfs_orphan_del(NULL, inode);
5301 btrfs_free_block_rsv(root, rsv);
5302 goto no_delete;
d68fc57b 5303 }
7b128766 5304
0e8c36a9 5305 trans = btrfs_join_transaction(root);
4289a667
JB
5306 if (IS_ERR(trans)) {
5307 btrfs_orphan_del(NULL, inode);
5308 btrfs_free_block_rsv(root, rsv);
5309 goto no_delete;
d68fc57b 5310 }
7b128766 5311
3bce876f 5312 /*
01327610 5313 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5314 * sure there is room to do it, if not we need to commit and try
5315 * again.
5316 */
5317 if (steal_from_global) {
5318 if (!btrfs_check_space_for_delayed_refs(trans, root))
5319 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
25d609f8 5320 min_size, 0);
3bce876f
JB
5321 else
5322 ret = -ENOSPC;
5323 }
5324
5325 /*
5326 * Couldn't steal from the global reserve, we have too much
5327 * pending stuff built up, commit the transaction and try it
5328 * again.
5329 */
5330 if (ret) {
5331 ret = btrfs_commit_transaction(trans, root);
5332 if (ret) {
5333 btrfs_orphan_del(NULL, inode);
5334 btrfs_free_block_rsv(root, rsv);
5335 goto no_delete;
5336 }
5337 continue;
5338 } else {
5339 steal_from_global = 0;
5340 }
5341
4289a667
JB
5342 trans->block_rsv = rsv;
5343
d68fc57b 5344 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5345 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5346 break;
85e21bac 5347
8407aa46 5348 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
5349 btrfs_end_transaction(trans, root);
5350 trans = NULL;
b53d3f5d 5351 btrfs_btree_balance_dirty(root);
8082510e 5352 }
5f39d397 5353
4289a667
JB
5354 btrfs_free_block_rsv(root, rsv);
5355
4ef31a45
JB
5356 /*
5357 * Errors here aren't a big deal, it just means we leave orphan items
5358 * in the tree. They will be cleaned up on the next mount.
5359 */
8082510e 5360 if (ret == 0) {
4289a667 5361 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
5362 btrfs_orphan_del(trans, inode);
5363 } else {
5364 btrfs_orphan_del(NULL, inode);
8082510e 5365 }
54aa1f4d 5366
4289a667 5367 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
5368 if (!(root == root->fs_info->tree_root ||
5369 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 5370 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 5371
54aa1f4d 5372 btrfs_end_transaction(trans, root);
b53d3f5d 5373 btrfs_btree_balance_dirty(root);
39279cc3 5374no_delete:
89042e5a 5375 btrfs_remove_delayed_node(inode);
dbd5768f 5376 clear_inode(inode);
39279cc3
CM
5377}
5378
5379/*
5380 * this returns the key found in the dir entry in the location pointer.
5381 * If no dir entries were found, location->objectid is 0.
5382 */
5383static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5384 struct btrfs_key *location)
5385{
5386 const char *name = dentry->d_name.name;
5387 int namelen = dentry->d_name.len;
5388 struct btrfs_dir_item *di;
5389 struct btrfs_path *path;
5390 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5391 int ret = 0;
39279cc3
CM
5392
5393 path = btrfs_alloc_path();
d8926bb3
MF
5394 if (!path)
5395 return -ENOMEM;
3954401f 5396
33345d01 5397 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 5398 namelen, 0);
0d9f7f3e
Y
5399 if (IS_ERR(di))
5400 ret = PTR_ERR(di);
d397712b 5401
c704005d 5402 if (IS_ERR_OR_NULL(di))
3954401f 5403 goto out_err;
d397712b 5404
5f39d397 5405 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5406out:
39279cc3
CM
5407 btrfs_free_path(path);
5408 return ret;
3954401f
CM
5409out_err:
5410 location->objectid = 0;
5411 goto out;
39279cc3
CM
5412}
5413
5414/*
5415 * when we hit a tree root in a directory, the btrfs part of the inode
5416 * needs to be changed to reflect the root directory of the tree root. This
5417 * is kind of like crossing a mount point.
5418 */
5419static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
5420 struct inode *dir,
5421 struct dentry *dentry,
5422 struct btrfs_key *location,
5423 struct btrfs_root **sub_root)
39279cc3 5424{
4df27c4d
YZ
5425 struct btrfs_path *path;
5426 struct btrfs_root *new_root;
5427 struct btrfs_root_ref *ref;
5428 struct extent_buffer *leaf;
1d4c08e0 5429 struct btrfs_key key;
4df27c4d
YZ
5430 int ret;
5431 int err = 0;
39279cc3 5432
4df27c4d
YZ
5433 path = btrfs_alloc_path();
5434 if (!path) {
5435 err = -ENOMEM;
5436 goto out;
5437 }
39279cc3 5438
4df27c4d 5439 err = -ENOENT;
1d4c08e0
DS
5440 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5441 key.type = BTRFS_ROOT_REF_KEY;
5442 key.offset = location->objectid;
5443
5444 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5445 0, 0);
4df27c4d
YZ
5446 if (ret) {
5447 if (ret < 0)
5448 err = ret;
5449 goto out;
5450 }
39279cc3 5451
4df27c4d
YZ
5452 leaf = path->nodes[0];
5453 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 5454 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
5455 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5456 goto out;
39279cc3 5457
4df27c4d
YZ
5458 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5459 (unsigned long)(ref + 1),
5460 dentry->d_name.len);
5461 if (ret)
5462 goto out;
5463
b3b4aa74 5464 btrfs_release_path(path);
4df27c4d
YZ
5465
5466 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5467 if (IS_ERR(new_root)) {
5468 err = PTR_ERR(new_root);
5469 goto out;
5470 }
5471
4df27c4d
YZ
5472 *sub_root = new_root;
5473 location->objectid = btrfs_root_dirid(&new_root->root_item);
5474 location->type = BTRFS_INODE_ITEM_KEY;
5475 location->offset = 0;
5476 err = 0;
5477out:
5478 btrfs_free_path(path);
5479 return err;
39279cc3
CM
5480}
5481
5d4f98a2
YZ
5482static void inode_tree_add(struct inode *inode)
5483{
5484 struct btrfs_root *root = BTRFS_I(inode)->root;
5485 struct btrfs_inode *entry;
03e860bd
FNP
5486 struct rb_node **p;
5487 struct rb_node *parent;
cef21937 5488 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5489 u64 ino = btrfs_ino(inode);
5d4f98a2 5490
1d3382cb 5491 if (inode_unhashed(inode))
76dda93c 5492 return;
e1409cef 5493 parent = NULL;
5d4f98a2 5494 spin_lock(&root->inode_lock);
e1409cef 5495 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5496 while (*p) {
5497 parent = *p;
5498 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5499
33345d01 5500 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5501 p = &parent->rb_left;
33345d01 5502 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5503 p = &parent->rb_right;
5d4f98a2
YZ
5504 else {
5505 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5506 (I_WILL_FREE | I_FREEING)));
cef21937 5507 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5508 RB_CLEAR_NODE(parent);
5509 spin_unlock(&root->inode_lock);
cef21937 5510 return;
5d4f98a2
YZ
5511 }
5512 }
cef21937
FDBM
5513 rb_link_node(new, parent, p);
5514 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5515 spin_unlock(&root->inode_lock);
5516}
5517
5518static void inode_tree_del(struct inode *inode)
5519{
5520 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5521 int empty = 0;
5d4f98a2 5522
03e860bd 5523 spin_lock(&root->inode_lock);
5d4f98a2 5524 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5525 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5526 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5527 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5528 }
03e860bd 5529 spin_unlock(&root->inode_lock);
76dda93c 5530
69e9c6c6 5531 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5532 synchronize_srcu(&root->fs_info->subvol_srcu);
5533 spin_lock(&root->inode_lock);
5534 empty = RB_EMPTY_ROOT(&root->inode_tree);
5535 spin_unlock(&root->inode_lock);
5536 if (empty)
5537 btrfs_add_dead_root(root);
5538 }
5539}
5540
143bede5 5541void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5542{
5543 struct rb_node *node;
5544 struct rb_node *prev;
5545 struct btrfs_inode *entry;
5546 struct inode *inode;
5547 u64 objectid = 0;
5548
7813b3db
LB
5549 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5550 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5551
5552 spin_lock(&root->inode_lock);
5553again:
5554 node = root->inode_tree.rb_node;
5555 prev = NULL;
5556 while (node) {
5557 prev = node;
5558 entry = rb_entry(node, struct btrfs_inode, rb_node);
5559
33345d01 5560 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5561 node = node->rb_left;
33345d01 5562 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5563 node = node->rb_right;
5564 else
5565 break;
5566 }
5567 if (!node) {
5568 while (prev) {
5569 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5570 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5571 node = prev;
5572 break;
5573 }
5574 prev = rb_next(prev);
5575 }
5576 }
5577 while (node) {
5578 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5579 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5580 inode = igrab(&entry->vfs_inode);
5581 if (inode) {
5582 spin_unlock(&root->inode_lock);
5583 if (atomic_read(&inode->i_count) > 1)
5584 d_prune_aliases(inode);
5585 /*
45321ac5 5586 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5587 * the inode cache when its usage count
5588 * hits zero.
5589 */
5590 iput(inode);
5591 cond_resched();
5592 spin_lock(&root->inode_lock);
5593 goto again;
5594 }
5595
5596 if (cond_resched_lock(&root->inode_lock))
5597 goto again;
5598
5599 node = rb_next(node);
5600 }
5601 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5602}
5603
e02119d5
CM
5604static int btrfs_init_locked_inode(struct inode *inode, void *p)
5605{
5606 struct btrfs_iget_args *args = p;
90d3e592
CM
5607 inode->i_ino = args->location->objectid;
5608 memcpy(&BTRFS_I(inode)->location, args->location,
5609 sizeof(*args->location));
e02119d5 5610 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5611 return 0;
5612}
5613
5614static int btrfs_find_actor(struct inode *inode, void *opaque)
5615{
5616 struct btrfs_iget_args *args = opaque;
90d3e592 5617 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5618 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5619}
5620
5d4f98a2 5621static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5622 struct btrfs_key *location,
5d4f98a2 5623 struct btrfs_root *root)
39279cc3
CM
5624{
5625 struct inode *inode;
5626 struct btrfs_iget_args args;
90d3e592 5627 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5628
90d3e592 5629 args.location = location;
39279cc3
CM
5630 args.root = root;
5631
778ba82b 5632 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5633 btrfs_init_locked_inode,
5634 (void *)&args);
5635 return inode;
5636}
5637
1a54ef8c
BR
5638/* Get an inode object given its location and corresponding root.
5639 * Returns in *is_new if the inode was read from disk
5640 */
5641struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5642 struct btrfs_root *root, int *new)
1a54ef8c
BR
5643{
5644 struct inode *inode;
5645
90d3e592 5646 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5647 if (!inode)
5d4f98a2 5648 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5649
5650 if (inode->i_state & I_NEW) {
67710892
FM
5651 int ret;
5652
5653 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5654 if (!is_bad_inode(inode)) {
5655 inode_tree_add(inode);
5656 unlock_new_inode(inode);
5657 if (new)
5658 *new = 1;
5659 } else {
e0b6d65b
ST
5660 unlock_new_inode(inode);
5661 iput(inode);
67710892
FM
5662 ASSERT(ret < 0);
5663 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5664 }
5665 }
5666
1a54ef8c
BR
5667 return inode;
5668}
5669
4df27c4d
YZ
5670static struct inode *new_simple_dir(struct super_block *s,
5671 struct btrfs_key *key,
5672 struct btrfs_root *root)
5673{
5674 struct inode *inode = new_inode(s);
5675
5676 if (!inode)
5677 return ERR_PTR(-ENOMEM);
5678
4df27c4d
YZ
5679 BTRFS_I(inode)->root = root;
5680 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5681 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5682
5683 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5684 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5685 inode->i_fop = &simple_dir_operations;
5686 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5687 inode->i_mtime = current_time(inode);
9cc97d64 5688 inode->i_atime = inode->i_mtime;
5689 inode->i_ctime = inode->i_mtime;
5690 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5691
5692 return inode;
5693}
5694
3de4586c 5695struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5696{
d397712b 5697 struct inode *inode;
4df27c4d 5698 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5699 struct btrfs_root *sub_root = root;
5700 struct btrfs_key location;
76dda93c 5701 int index;
b4aff1f8 5702 int ret = 0;
39279cc3
CM
5703
5704 if (dentry->d_name.len > BTRFS_NAME_LEN)
5705 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5706
39e3c955 5707 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5708 if (ret < 0)
5709 return ERR_PTR(ret);
5f39d397 5710
4df27c4d 5711 if (location.objectid == 0)
5662344b 5712 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5713
5714 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5715 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5716 return inode;
5717 }
5718
5719 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5720
76dda93c 5721 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5722 ret = fixup_tree_root_location(root, dir, dentry,
5723 &location, &sub_root);
5724 if (ret < 0) {
5725 if (ret != -ENOENT)
5726 inode = ERR_PTR(ret);
5727 else
5728 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5729 } else {
73f73415 5730 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5731 }
76dda93c
YZ
5732 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5733
34d19bad 5734 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5735 down_read(&root->fs_info->cleanup_work_sem);
5736 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5737 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5738 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5739 if (ret) {
5740 iput(inode);
66b4ffd1 5741 inode = ERR_PTR(ret);
01cd3367 5742 }
c71bf099
YZ
5743 }
5744
3de4586c
CM
5745 return inode;
5746}
5747
fe15ce44 5748static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5749{
5750 struct btrfs_root *root;
2b0143b5 5751 struct inode *inode = d_inode(dentry);
76dda93c 5752
848cce0d 5753 if (!inode && !IS_ROOT(dentry))
2b0143b5 5754 inode = d_inode(dentry->d_parent);
76dda93c 5755
848cce0d
LZ
5756 if (inode) {
5757 root = BTRFS_I(inode)->root;
efefb143
YZ
5758 if (btrfs_root_refs(&root->root_item) == 0)
5759 return 1;
848cce0d
LZ
5760
5761 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5762 return 1;
efefb143 5763 }
76dda93c
YZ
5764 return 0;
5765}
5766
b4aff1f8
JB
5767static void btrfs_dentry_release(struct dentry *dentry)
5768{
944a4515 5769 kfree(dentry->d_fsdata);
b4aff1f8
JB
5770}
5771
3de4586c 5772static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5773 unsigned int flags)
3de4586c 5774{
5662344b 5775 struct inode *inode;
a66e7cc6 5776
5662344b
TI
5777 inode = btrfs_lookup_dentry(dir, dentry);
5778 if (IS_ERR(inode)) {
5779 if (PTR_ERR(inode) == -ENOENT)
5780 inode = NULL;
5781 else
5782 return ERR_CAST(inode);
5783 }
5784
41d28bca 5785 return d_splice_alias(inode, dentry);
39279cc3
CM
5786}
5787
16cdcec7 5788unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5789 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5790};
5791
9cdda8d3 5792static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5793{
9cdda8d3 5794 struct inode *inode = file_inode(file);
39279cc3
CM
5795 struct btrfs_root *root = BTRFS_I(inode)->root;
5796 struct btrfs_item *item;
5797 struct btrfs_dir_item *di;
5798 struct btrfs_key key;
5f39d397 5799 struct btrfs_key found_key;
39279cc3 5800 struct btrfs_path *path;
16cdcec7
MX
5801 struct list_head ins_list;
5802 struct list_head del_list;
39279cc3 5803 int ret;
5f39d397 5804 struct extent_buffer *leaf;
39279cc3 5805 int slot;
39279cc3
CM
5806 unsigned char d_type;
5807 int over = 0;
5808 u32 di_cur;
5809 u32 di_total;
5810 u32 di_len;
5811 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5812 char tmp_name[32];
5813 char *name_ptr;
5814 int name_len;
9cdda8d3 5815 int is_curr = 0; /* ctx->pos points to the current index? */
bc4ef759 5816 bool emitted;
02dbfc99 5817 bool put = false;
39279cc3
CM
5818
5819 /* FIXME, use a real flag for deciding about the key type */
5820 if (root->fs_info->tree_root == root)
5821 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5822
9cdda8d3
AV
5823 if (!dir_emit_dots(file, ctx))
5824 return 0;
5825
49593bfa 5826 path = btrfs_alloc_path();
16cdcec7
MX
5827 if (!path)
5828 return -ENOMEM;
ff5714cc 5829
e4058b54 5830 path->reada = READA_FORWARD;
49593bfa 5831
16cdcec7
MX
5832 if (key_type == BTRFS_DIR_INDEX_KEY) {
5833 INIT_LIST_HEAD(&ins_list);
5834 INIT_LIST_HEAD(&del_list);
02dbfc99
OS
5835 put = btrfs_readdir_get_delayed_items(inode, &ins_list,
5836 &del_list);
16cdcec7
MX
5837 }
5838
962a298f 5839 key.type = key_type;
9cdda8d3 5840 key.offset = ctx->pos;
33345d01 5841 key.objectid = btrfs_ino(inode);
5f39d397 5842
39279cc3
CM
5843 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5844 if (ret < 0)
5845 goto err;
49593bfa 5846
bc4ef759 5847 emitted = false;
49593bfa 5848 while (1) {
5f39d397 5849 leaf = path->nodes[0];
39279cc3 5850 slot = path->slots[0];
b9e03af0
LZ
5851 if (slot >= btrfs_header_nritems(leaf)) {
5852 ret = btrfs_next_leaf(root, path);
5853 if (ret < 0)
5854 goto err;
5855 else if (ret > 0)
5856 break;
5857 continue;
39279cc3 5858 }
3de4586c 5859
dd3cc16b 5860 item = btrfs_item_nr(slot);
5f39d397
CM
5861 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5862
5863 if (found_key.objectid != key.objectid)
39279cc3 5864 break;
962a298f 5865 if (found_key.type != key_type)
39279cc3 5866 break;
9cdda8d3 5867 if (found_key.offset < ctx->pos)
b9e03af0 5868 goto next;
16cdcec7
MX
5869 if (key_type == BTRFS_DIR_INDEX_KEY &&
5870 btrfs_should_delete_dir_index(&del_list,
5871 found_key.offset))
5872 goto next;
5f39d397 5873
9cdda8d3 5874 ctx->pos = found_key.offset;
16cdcec7 5875 is_curr = 1;
49593bfa 5876
39279cc3
CM
5877 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5878 di_cur = 0;
5f39d397 5879 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5880
5881 while (di_cur < di_total) {
5f39d397
CM
5882 struct btrfs_key location;
5883
22a94d44
JB
5884 if (verify_dir_item(root, leaf, di))
5885 break;
5886
5f39d397 5887 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5888 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5889 name_ptr = tmp_name;
5890 } else {
49e350a4 5891 name_ptr = kmalloc(name_len, GFP_KERNEL);
49593bfa
DW
5892 if (!name_ptr) {
5893 ret = -ENOMEM;
5894 goto err;
5895 }
5f39d397
CM
5896 }
5897 read_extent_buffer(leaf, name_ptr,
5898 (unsigned long)(di + 1), name_len);
5899
5900 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5901 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5902
fede766f 5903
3de4586c 5904 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5905 * skip it.
5906 *
5907 * In contrast to old kernels, we insert the snapshot's
5908 * dir item and dir index after it has been created, so
5909 * we won't find a reference to our own snapshot. We
5910 * still keep the following code for backward
5911 * compatibility.
3de4586c
CM
5912 */
5913 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5914 location.objectid == root->root_key.objectid) {
5915 over = 0;
5916 goto skip;
5917 }
9cdda8d3
AV
5918 over = !dir_emit(ctx, name_ptr, name_len,
5919 location.objectid, d_type);
5f39d397 5920
3de4586c 5921skip:
5f39d397
CM
5922 if (name_ptr != tmp_name)
5923 kfree(name_ptr);
5924
39279cc3
CM
5925 if (over)
5926 goto nopos;
bc4ef759 5927 emitted = true;
5103e947 5928 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5929 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5930 di_cur += di_len;
5931 di = (struct btrfs_dir_item *)((char *)di + di_len);
5932 }
b9e03af0
LZ
5933next:
5934 path->slots[0]++;
39279cc3 5935 }
49593bfa 5936
16cdcec7
MX
5937 if (key_type == BTRFS_DIR_INDEX_KEY) {
5938 if (is_curr)
9cdda8d3 5939 ctx->pos++;
bc4ef759 5940 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
16cdcec7
MX
5941 if (ret)
5942 goto nopos;
5943 }
5944
bc4ef759
DS
5945 /*
5946 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5947 * it was was set to the termination value in previous call. We assume
5948 * that "." and ".." were emitted if we reach this point and set the
5949 * termination value as well for an empty directory.
5950 */
5951 if (ctx->pos > 2 && !emitted)
5952 goto nopos;
5953
49593bfa 5954 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5955 ctx->pos++;
5956
5957 /*
5958 * Stop new entries from being returned after we return the last
5959 * entry.
5960 *
5961 * New directory entries are assigned a strictly increasing
5962 * offset. This means that new entries created during readdir
5963 * are *guaranteed* to be seen in the future by that readdir.
5964 * This has broken buggy programs which operate on names as
5965 * they're returned by readdir. Until we re-use freed offsets
5966 * we have this hack to stop new entries from being returned
5967 * under the assumption that they'll never reach this huge
5968 * offset.
5969 *
5970 * This is being careful not to overflow 32bit loff_t unless the
5971 * last entry requires it because doing so has broken 32bit apps
5972 * in the past.
5973 */
5974 if (key_type == BTRFS_DIR_INDEX_KEY) {
5975 if (ctx->pos >= INT_MAX)
5976 ctx->pos = LLONG_MAX;
5977 else
5978 ctx->pos = INT_MAX;
5979 }
39279cc3
CM
5980nopos:
5981 ret = 0;
5982err:
02dbfc99
OS
5983 if (put)
5984 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5985 btrfs_free_path(path);
39279cc3
CM
5986 return ret;
5987}
5988
a9185b41 5989int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5990{
5991 struct btrfs_root *root = BTRFS_I(inode)->root;
5992 struct btrfs_trans_handle *trans;
5993 int ret = 0;
0af3d00b 5994 bool nolock = false;
39279cc3 5995
72ac3c0d 5996 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5997 return 0;
5998
83eea1f1 5999 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 6000 nolock = true;
0af3d00b 6001
a9185b41 6002 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 6003 if (nolock)
7a7eaa40 6004 trans = btrfs_join_transaction_nolock(root);
0af3d00b 6005 else
7a7eaa40 6006 trans = btrfs_join_transaction(root);
3612b495
TI
6007 if (IS_ERR(trans))
6008 return PTR_ERR(trans);
a698d075 6009 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
6010 }
6011 return ret;
6012}
6013
6014/*
54aa1f4d 6015 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6016 * inode changes. But, it is most likely to find the inode in cache.
6017 * FIXME, needs more benchmarking...there are no reasons other than performance
6018 * to keep or drop this code.
6019 */
48a3b636 6020static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
6021{
6022 struct btrfs_root *root = BTRFS_I(inode)->root;
6023 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6024 int ret;
6025
72ac3c0d 6026 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6027 return 0;
39279cc3 6028
7a7eaa40 6029 trans = btrfs_join_transaction(root);
22c44fe6
JB
6030 if (IS_ERR(trans))
6031 return PTR_ERR(trans);
8929ecfa
YZ
6032
6033 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6034 if (ret && ret == -ENOSPC) {
6035 /* whoops, lets try again with the full transaction */
6036 btrfs_end_transaction(trans, root);
6037 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6038 if (IS_ERR(trans))
6039 return PTR_ERR(trans);
8929ecfa 6040
94b60442 6041 ret = btrfs_update_inode(trans, root, inode);
94b60442 6042 }
39279cc3 6043 btrfs_end_transaction(trans, root);
16cdcec7
MX
6044 if (BTRFS_I(inode)->delayed_node)
6045 btrfs_balance_delayed_items(root);
22c44fe6
JB
6046
6047 return ret;
6048}
6049
6050/*
6051 * This is a copy of file_update_time. We need this so we can return error on
6052 * ENOSPC for updating the inode in the case of file write and mmap writes.
6053 */
e41f941a
JB
6054static int btrfs_update_time(struct inode *inode, struct timespec *now,
6055 int flags)
22c44fe6 6056{
2bc55652
AB
6057 struct btrfs_root *root = BTRFS_I(inode)->root;
6058
6059 if (btrfs_root_readonly(root))
6060 return -EROFS;
6061
e41f941a 6062 if (flags & S_VERSION)
22c44fe6 6063 inode_inc_iversion(inode);
e41f941a
JB
6064 if (flags & S_CTIME)
6065 inode->i_ctime = *now;
6066 if (flags & S_MTIME)
6067 inode->i_mtime = *now;
6068 if (flags & S_ATIME)
6069 inode->i_atime = *now;
6070 return btrfs_dirty_inode(inode);
39279cc3
CM
6071}
6072
d352ac68
CM
6073/*
6074 * find the highest existing sequence number in a directory
6075 * and then set the in-memory index_cnt variable to reflect
6076 * free sequence numbers
6077 */
aec7477b
JB
6078static int btrfs_set_inode_index_count(struct inode *inode)
6079{
6080 struct btrfs_root *root = BTRFS_I(inode)->root;
6081 struct btrfs_key key, found_key;
6082 struct btrfs_path *path;
6083 struct extent_buffer *leaf;
6084 int ret;
6085
33345d01 6086 key.objectid = btrfs_ino(inode);
962a298f 6087 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6088 key.offset = (u64)-1;
6089
6090 path = btrfs_alloc_path();
6091 if (!path)
6092 return -ENOMEM;
6093
6094 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6095 if (ret < 0)
6096 goto out;
6097 /* FIXME: we should be able to handle this */
6098 if (ret == 0)
6099 goto out;
6100 ret = 0;
6101
6102 /*
6103 * MAGIC NUMBER EXPLANATION:
6104 * since we search a directory based on f_pos we have to start at 2
6105 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6106 * else has to start at 2
6107 */
6108 if (path->slots[0] == 0) {
6109 BTRFS_I(inode)->index_cnt = 2;
6110 goto out;
6111 }
6112
6113 path->slots[0]--;
6114
6115 leaf = path->nodes[0];
6116 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6117
33345d01 6118 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6119 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
6120 BTRFS_I(inode)->index_cnt = 2;
6121 goto out;
6122 }
6123
6124 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6125out:
6126 btrfs_free_path(path);
6127 return ret;
6128}
6129
d352ac68
CM
6130/*
6131 * helper to find a free sequence number in a given directory. This current
6132 * code is very simple, later versions will do smarter things in the btree
6133 */
3de4586c 6134int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
6135{
6136 int ret = 0;
6137
6138 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
6139 ret = btrfs_inode_delayed_dir_index_count(dir);
6140 if (ret) {
6141 ret = btrfs_set_inode_index_count(dir);
6142 if (ret)
6143 return ret;
6144 }
aec7477b
JB
6145 }
6146
00e4e6b3 6147 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
6148 BTRFS_I(dir)->index_cnt++;
6149
6150 return ret;
6151}
6152
b0d5d10f
CM
6153static int btrfs_insert_inode_locked(struct inode *inode)
6154{
6155 struct btrfs_iget_args args;
6156 args.location = &BTRFS_I(inode)->location;
6157 args.root = BTRFS_I(inode)->root;
6158
6159 return insert_inode_locked4(inode,
6160 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6161 btrfs_find_actor, &args);
6162}
6163
39279cc3
CM
6164static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6165 struct btrfs_root *root,
aec7477b 6166 struct inode *dir,
9c58309d 6167 const char *name, int name_len,
175a4eb7
AV
6168 u64 ref_objectid, u64 objectid,
6169 umode_t mode, u64 *index)
39279cc3
CM
6170{
6171 struct inode *inode;
5f39d397 6172 struct btrfs_inode_item *inode_item;
39279cc3 6173 struct btrfs_key *location;
5f39d397 6174 struct btrfs_path *path;
9c58309d
CM
6175 struct btrfs_inode_ref *ref;
6176 struct btrfs_key key[2];
6177 u32 sizes[2];
ef3b9af5 6178 int nitems = name ? 2 : 1;
9c58309d 6179 unsigned long ptr;
39279cc3 6180 int ret;
39279cc3 6181
5f39d397 6182 path = btrfs_alloc_path();
d8926bb3
MF
6183 if (!path)
6184 return ERR_PTR(-ENOMEM);
5f39d397 6185
39279cc3 6186 inode = new_inode(root->fs_info->sb);
8fb27640
YS
6187 if (!inode) {
6188 btrfs_free_path(path);
39279cc3 6189 return ERR_PTR(-ENOMEM);
8fb27640 6190 }
39279cc3 6191
5762b5c9
FM
6192 /*
6193 * O_TMPFILE, set link count to 0, so that after this point,
6194 * we fill in an inode item with the correct link count.
6195 */
6196 if (!name)
6197 set_nlink(inode, 0);
6198
581bb050
LZ
6199 /*
6200 * we have to initialize this early, so we can reclaim the inode
6201 * number if we fail afterwards in this function.
6202 */
6203 inode->i_ino = objectid;
6204
ef3b9af5 6205 if (dir && name) {
1abe9b8a 6206 trace_btrfs_inode_request(dir);
6207
3de4586c 6208 ret = btrfs_set_inode_index(dir, index);
09771430 6209 if (ret) {
8fb27640 6210 btrfs_free_path(path);
09771430 6211 iput(inode);
aec7477b 6212 return ERR_PTR(ret);
09771430 6213 }
ef3b9af5
FM
6214 } else if (dir) {
6215 *index = 0;
aec7477b
JB
6216 }
6217 /*
6218 * index_cnt is ignored for everything but a dir,
6219 * btrfs_get_inode_index_count has an explanation for the magic
6220 * number
6221 */
6222 BTRFS_I(inode)->index_cnt = 2;
67de1176 6223 BTRFS_I(inode)->dir_index = *index;
39279cc3 6224 BTRFS_I(inode)->root = root;
e02119d5 6225 BTRFS_I(inode)->generation = trans->transid;
76195853 6226 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6227
5dc562c5
JB
6228 /*
6229 * We could have gotten an inode number from somebody who was fsynced
6230 * and then removed in this same transaction, so let's just set full
6231 * sync since it will be a full sync anyway and this will blow away the
6232 * old info in the log.
6233 */
6234 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6235
9c58309d 6236 key[0].objectid = objectid;
962a298f 6237 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6238 key[0].offset = 0;
6239
9c58309d 6240 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6241
6242 if (name) {
6243 /*
6244 * Start new inodes with an inode_ref. This is slightly more
6245 * efficient for small numbers of hard links since they will
6246 * be packed into one item. Extended refs will kick in if we
6247 * add more hard links than can fit in the ref item.
6248 */
6249 key[1].objectid = objectid;
962a298f 6250 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6251 key[1].offset = ref_objectid;
6252
6253 sizes[1] = name_len + sizeof(*ref);
6254 }
9c58309d 6255
b0d5d10f
CM
6256 location = &BTRFS_I(inode)->location;
6257 location->objectid = objectid;
6258 location->offset = 0;
962a298f 6259 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6260
6261 ret = btrfs_insert_inode_locked(inode);
6262 if (ret < 0)
6263 goto fail;
6264
b9473439 6265 path->leave_spinning = 1;
ef3b9af5 6266 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6267 if (ret != 0)
b0d5d10f 6268 goto fail_unlock;
5f39d397 6269
ecc11fab 6270 inode_init_owner(inode, dir, mode);
a76a3cd4 6271 inode_set_bytes(inode, 0);
9cc97d64 6272
c2050a45 6273 inode->i_mtime = current_time(inode);
9cc97d64 6274 inode->i_atime = inode->i_mtime;
6275 inode->i_ctime = inode->i_mtime;
6276 BTRFS_I(inode)->i_otime = inode->i_mtime;
6277
5f39d397
CM
6278 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6279 struct btrfs_inode_item);
293f7e07
LZ
6280 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6281 sizeof(*inode_item));
e02119d5 6282 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6283
ef3b9af5
FM
6284 if (name) {
6285 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6286 struct btrfs_inode_ref);
6287 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6288 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6289 ptr = (unsigned long)(ref + 1);
6290 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6291 }
9c58309d 6292
5f39d397
CM
6293 btrfs_mark_buffer_dirty(path->nodes[0]);
6294 btrfs_free_path(path);
6295
6cbff00f
CH
6296 btrfs_inherit_iflags(inode, dir);
6297
569254b0 6298 if (S_ISREG(mode)) {
3cdde224 6299 if (btrfs_test_opt(root->fs_info, NODATASUM))
94272164 6300 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
3cdde224 6301 if (btrfs_test_opt(root->fs_info, NODATACOW))
f2bdf9a8
JB
6302 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6303 BTRFS_INODE_NODATASUM;
94272164
CM
6304 }
6305
5d4f98a2 6306 inode_tree_add(inode);
1abe9b8a 6307
6308 trace_btrfs_inode_new(inode);
1973f0fa 6309 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6310
8ea05e3a
AB
6311 btrfs_update_root_times(trans, root);
6312
63541927
FDBM
6313 ret = btrfs_inode_inherit_props(trans, inode, dir);
6314 if (ret)
6315 btrfs_err(root->fs_info,
6316 "error inheriting props for ino %llu (root %llu): %d",
6317 btrfs_ino(inode), root->root_key.objectid, ret);
6318
39279cc3 6319 return inode;
b0d5d10f
CM
6320
6321fail_unlock:
6322 unlock_new_inode(inode);
5f39d397 6323fail:
ef3b9af5 6324 if (dir && name)
aec7477b 6325 BTRFS_I(dir)->index_cnt--;
5f39d397 6326 btrfs_free_path(path);
09771430 6327 iput(inode);
5f39d397 6328 return ERR_PTR(ret);
39279cc3
CM
6329}
6330
6331static inline u8 btrfs_inode_type(struct inode *inode)
6332{
6333 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6334}
6335
d352ac68
CM
6336/*
6337 * utility function to add 'inode' into 'parent_inode' with
6338 * a give name and a given sequence number.
6339 * if 'add_backref' is true, also insert a backref from the
6340 * inode to the parent directory.
6341 */
e02119d5
CM
6342int btrfs_add_link(struct btrfs_trans_handle *trans,
6343 struct inode *parent_inode, struct inode *inode,
6344 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6345{
4df27c4d 6346 int ret = 0;
39279cc3 6347 struct btrfs_key key;
e02119d5 6348 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
6349 u64 ino = btrfs_ino(inode);
6350 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6351
33345d01 6352 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6353 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6354 } else {
33345d01 6355 key.objectid = ino;
962a298f 6356 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6357 key.offset = 0;
6358 }
6359
33345d01 6360 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6361 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6362 key.objectid, root->root_key.objectid,
33345d01 6363 parent_ino, index, name, name_len);
4df27c4d 6364 } else if (add_backref) {
33345d01
LZ
6365 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6366 parent_ino, index);
4df27c4d 6367 }
39279cc3 6368
79787eaa
JM
6369 /* Nothing to clean up yet */
6370 if (ret)
6371 return ret;
4df27c4d 6372
79787eaa
JM
6373 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6374 parent_inode, &key,
6375 btrfs_inode_type(inode), index);
9c52057c 6376 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6377 goto fail_dir_item;
6378 else if (ret) {
66642832 6379 btrfs_abort_transaction(trans, ret);
79787eaa 6380 return ret;
39279cc3 6381 }
79787eaa
JM
6382
6383 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6384 name_len * 2);
0c4d2d95 6385 inode_inc_iversion(parent_inode);
04b285f3 6386 parent_inode->i_mtime = parent_inode->i_ctime =
c2050a45 6387 current_time(parent_inode);
79787eaa
JM
6388 ret = btrfs_update_inode(trans, root, parent_inode);
6389 if (ret)
66642832 6390 btrfs_abort_transaction(trans, ret);
39279cc3 6391 return ret;
fe66a05a
CM
6392
6393fail_dir_item:
6394 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6395 u64 local_index;
6396 int err;
6397 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6398 key.objectid, root->root_key.objectid,
6399 parent_ino, &local_index, name, name_len);
6400
6401 } else if (add_backref) {
6402 u64 local_index;
6403 int err;
6404
6405 err = btrfs_del_inode_ref(trans, root, name, name_len,
6406 ino, parent_ino, &local_index);
6407 }
6408 return ret;
39279cc3
CM
6409}
6410
6411static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
6412 struct inode *dir, struct dentry *dentry,
6413 struct inode *inode, int backref, u64 index)
39279cc3 6414{
a1b075d2
JB
6415 int err = btrfs_add_link(trans, dir, inode,
6416 dentry->d_name.name, dentry->d_name.len,
6417 backref, index);
39279cc3
CM
6418 if (err > 0)
6419 err = -EEXIST;
6420 return err;
6421}
6422
618e21d5 6423static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6424 umode_t mode, dev_t rdev)
618e21d5
JB
6425{
6426 struct btrfs_trans_handle *trans;
6427 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6428 struct inode *inode = NULL;
618e21d5
JB
6429 int err;
6430 int drop_inode = 0;
6431 u64 objectid;
00e4e6b3 6432 u64 index = 0;
618e21d5 6433
9ed74f2d
JB
6434 /*
6435 * 2 for inode item and ref
6436 * 2 for dir items
6437 * 1 for xattr if selinux is on
6438 */
a22285a6
YZ
6439 trans = btrfs_start_transaction(root, 5);
6440 if (IS_ERR(trans))
6441 return PTR_ERR(trans);
1832a6d5 6442
581bb050
LZ
6443 err = btrfs_find_free_ino(root, &objectid);
6444 if (err)
6445 goto out_unlock;
6446
aec7477b 6447 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6448 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6449 mode, &index);
7cf96da3
TI
6450 if (IS_ERR(inode)) {
6451 err = PTR_ERR(inode);
618e21d5 6452 goto out_unlock;
7cf96da3 6453 }
618e21d5 6454
ad19db71
CS
6455 /*
6456 * If the active LSM wants to access the inode during
6457 * d_instantiate it needs these. Smack checks to see
6458 * if the filesystem supports xattrs by looking at the
6459 * ops vector.
6460 */
ad19db71 6461 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6462 init_special_inode(inode, inode->i_mode, rdev);
6463
6464 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6465 if (err)
b0d5d10f
CM
6466 goto out_unlock_inode;
6467
6468 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6469 if (err) {
6470 goto out_unlock_inode;
6471 } else {
1b4ab1bb 6472 btrfs_update_inode(trans, root, inode);
b0d5d10f 6473 unlock_new_inode(inode);
08c422c2 6474 d_instantiate(dentry, inode);
618e21d5 6475 }
b0d5d10f 6476
618e21d5 6477out_unlock:
7ad85bb7 6478 btrfs_end_transaction(trans, root);
c581afc8 6479 btrfs_balance_delayed_items(root);
b53d3f5d 6480 btrfs_btree_balance_dirty(root);
618e21d5
JB
6481 if (drop_inode) {
6482 inode_dec_link_count(inode);
6483 iput(inode);
6484 }
618e21d5 6485 return err;
b0d5d10f
CM
6486
6487out_unlock_inode:
6488 drop_inode = 1;
6489 unlock_new_inode(inode);
6490 goto out_unlock;
6491
618e21d5
JB
6492}
6493
39279cc3 6494static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6495 umode_t mode, bool excl)
39279cc3
CM
6496{
6497 struct btrfs_trans_handle *trans;
6498 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6499 struct inode *inode = NULL;
43baa579 6500 int drop_inode_on_err = 0;
a22285a6 6501 int err;
39279cc3 6502 u64 objectid;
00e4e6b3 6503 u64 index = 0;
39279cc3 6504
9ed74f2d
JB
6505 /*
6506 * 2 for inode item and ref
6507 * 2 for dir items
6508 * 1 for xattr if selinux is on
6509 */
a22285a6
YZ
6510 trans = btrfs_start_transaction(root, 5);
6511 if (IS_ERR(trans))
6512 return PTR_ERR(trans);
9ed74f2d 6513
581bb050
LZ
6514 err = btrfs_find_free_ino(root, &objectid);
6515 if (err)
6516 goto out_unlock;
6517
aec7477b 6518 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6519 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6520 mode, &index);
7cf96da3
TI
6521 if (IS_ERR(inode)) {
6522 err = PTR_ERR(inode);
39279cc3 6523 goto out_unlock;
7cf96da3 6524 }
43baa579 6525 drop_inode_on_err = 1;
ad19db71
CS
6526 /*
6527 * If the active LSM wants to access the inode during
6528 * d_instantiate it needs these. Smack checks to see
6529 * if the filesystem supports xattrs by looking at the
6530 * ops vector.
6531 */
6532 inode->i_fop = &btrfs_file_operations;
6533 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6534 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6535
6536 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6537 if (err)
6538 goto out_unlock_inode;
6539
6540 err = btrfs_update_inode(trans, root, inode);
6541 if (err)
6542 goto out_unlock_inode;
ad19db71 6543
a1b075d2 6544 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6545 if (err)
b0d5d10f 6546 goto out_unlock_inode;
43baa579 6547
43baa579 6548 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6549 unlock_new_inode(inode);
43baa579
FB
6550 d_instantiate(dentry, inode);
6551
39279cc3 6552out_unlock:
7ad85bb7 6553 btrfs_end_transaction(trans, root);
43baa579 6554 if (err && drop_inode_on_err) {
39279cc3
CM
6555 inode_dec_link_count(inode);
6556 iput(inode);
6557 }
c581afc8 6558 btrfs_balance_delayed_items(root);
b53d3f5d 6559 btrfs_btree_balance_dirty(root);
39279cc3 6560 return err;
b0d5d10f
CM
6561
6562out_unlock_inode:
6563 unlock_new_inode(inode);
6564 goto out_unlock;
6565
39279cc3
CM
6566}
6567
6568static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6569 struct dentry *dentry)
6570{
271dba45 6571 struct btrfs_trans_handle *trans = NULL;
39279cc3 6572 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6573 struct inode *inode = d_inode(old_dentry);
00e4e6b3 6574 u64 index;
39279cc3
CM
6575 int err;
6576 int drop_inode = 0;
6577
4a8be425
TH
6578 /* do not allow sys_link's with other subvols of the same device */
6579 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6580 return -EXDEV;
4a8be425 6581
f186373f 6582 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6583 return -EMLINK;
4a8be425 6584
3de4586c 6585 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6586 if (err)
6587 goto fail;
6588
a22285a6 6589 /*
7e6b6465 6590 * 2 items for inode and inode ref
a22285a6 6591 * 2 items for dir items
7e6b6465 6592 * 1 item for parent inode
a22285a6 6593 */
7e6b6465 6594 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6595 if (IS_ERR(trans)) {
6596 err = PTR_ERR(trans);
271dba45 6597 trans = NULL;
a22285a6
YZ
6598 goto fail;
6599 }
5f39d397 6600
67de1176
MX
6601 /* There are several dir indexes for this inode, clear the cache. */
6602 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6603 inc_nlink(inode);
0c4d2d95 6604 inode_inc_iversion(inode);
c2050a45 6605 inode->i_ctime = current_time(inode);
7de9c6ee 6606 ihold(inode);
e9976151 6607 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6608
a1b075d2 6609 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6610
a5719521 6611 if (err) {
54aa1f4d 6612 drop_inode = 1;
a5719521 6613 } else {
10d9f309 6614 struct dentry *parent = dentry->d_parent;
a5719521 6615 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6616 if (err)
6617 goto fail;
ef3b9af5
FM
6618 if (inode->i_nlink == 1) {
6619 /*
6620 * If new hard link count is 1, it's a file created
6621 * with open(2) O_TMPFILE flag.
6622 */
6623 err = btrfs_orphan_del(trans, inode);
6624 if (err)
6625 goto fail;
6626 }
08c422c2 6627 d_instantiate(dentry, inode);
6a912213 6628 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6629 }
39279cc3 6630
c581afc8 6631 btrfs_balance_delayed_items(root);
1832a6d5 6632fail:
271dba45
FM
6633 if (trans)
6634 btrfs_end_transaction(trans, root);
39279cc3
CM
6635 if (drop_inode) {
6636 inode_dec_link_count(inode);
6637 iput(inode);
6638 }
b53d3f5d 6639 btrfs_btree_balance_dirty(root);
39279cc3
CM
6640 return err;
6641}
6642
18bb1db3 6643static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6644{
b9d86667 6645 struct inode *inode = NULL;
39279cc3
CM
6646 struct btrfs_trans_handle *trans;
6647 struct btrfs_root *root = BTRFS_I(dir)->root;
6648 int err = 0;
6649 int drop_on_err = 0;
b9d86667 6650 u64 objectid = 0;
00e4e6b3 6651 u64 index = 0;
39279cc3 6652
9ed74f2d
JB
6653 /*
6654 * 2 items for inode and ref
6655 * 2 items for dir items
6656 * 1 for xattr if selinux is on
6657 */
a22285a6
YZ
6658 trans = btrfs_start_transaction(root, 5);
6659 if (IS_ERR(trans))
6660 return PTR_ERR(trans);
39279cc3 6661
581bb050
LZ
6662 err = btrfs_find_free_ino(root, &objectid);
6663 if (err)
6664 goto out_fail;
6665
aec7477b 6666 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6667 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6668 S_IFDIR | mode, &index);
39279cc3
CM
6669 if (IS_ERR(inode)) {
6670 err = PTR_ERR(inode);
6671 goto out_fail;
6672 }
5f39d397 6673
39279cc3 6674 drop_on_err = 1;
b0d5d10f
CM
6675 /* these must be set before we unlock the inode */
6676 inode->i_op = &btrfs_dir_inode_operations;
6677 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6678
2a7dba39 6679 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6680 if (err)
b0d5d10f 6681 goto out_fail_inode;
39279cc3 6682
dbe674a9 6683 btrfs_i_size_write(inode, 0);
39279cc3
CM
6684 err = btrfs_update_inode(trans, root, inode);
6685 if (err)
b0d5d10f 6686 goto out_fail_inode;
5f39d397 6687
a1b075d2
JB
6688 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6689 dentry->d_name.len, 0, index);
39279cc3 6690 if (err)
b0d5d10f 6691 goto out_fail_inode;
5f39d397 6692
39279cc3 6693 d_instantiate(dentry, inode);
b0d5d10f
CM
6694 /*
6695 * mkdir is special. We're unlocking after we call d_instantiate
6696 * to avoid a race with nfsd calling d_instantiate.
6697 */
6698 unlock_new_inode(inode);
39279cc3 6699 drop_on_err = 0;
39279cc3
CM
6700
6701out_fail:
7ad85bb7 6702 btrfs_end_transaction(trans, root);
c7cfb8a5
WS
6703 if (drop_on_err) {
6704 inode_dec_link_count(inode);
39279cc3 6705 iput(inode);
c7cfb8a5 6706 }
c581afc8 6707 btrfs_balance_delayed_items(root);
b53d3f5d 6708 btrfs_btree_balance_dirty(root);
39279cc3 6709 return err;
b0d5d10f
CM
6710
6711out_fail_inode:
6712 unlock_new_inode(inode);
6713 goto out_fail;
39279cc3
CM
6714}
6715
e6c4efd8
QW
6716/* Find next extent map of a given extent map, caller needs to ensure locks */
6717static struct extent_map *next_extent_map(struct extent_map *em)
6718{
6719 struct rb_node *next;
6720
6721 next = rb_next(&em->rb_node);
6722 if (!next)
6723 return NULL;
6724 return container_of(next, struct extent_map, rb_node);
6725}
6726
6727static struct extent_map *prev_extent_map(struct extent_map *em)
6728{
6729 struct rb_node *prev;
6730
6731 prev = rb_prev(&em->rb_node);
6732 if (!prev)
6733 return NULL;
6734 return container_of(prev, struct extent_map, rb_node);
6735}
6736
d352ac68 6737/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6738 * the existing extent is the nearest extent to map_start,
d352ac68 6739 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6740 * the best fitted new extent into the tree.
d352ac68 6741 */
3b951516
CM
6742static int merge_extent_mapping(struct extent_map_tree *em_tree,
6743 struct extent_map *existing,
e6dcd2dc 6744 struct extent_map *em,
51f395ad 6745 u64 map_start)
3b951516 6746{
e6c4efd8
QW
6747 struct extent_map *prev;
6748 struct extent_map *next;
6749 u64 start;
6750 u64 end;
3b951516 6751 u64 start_diff;
3b951516 6752
e6dcd2dc 6753 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6754
6755 if (existing->start > map_start) {
6756 next = existing;
6757 prev = prev_extent_map(next);
6758 } else {
6759 prev = existing;
6760 next = next_extent_map(prev);
6761 }
6762
6763 start = prev ? extent_map_end(prev) : em->start;
6764 start = max_t(u64, start, em->start);
6765 end = next ? next->start : extent_map_end(em);
6766 end = min_t(u64, end, extent_map_end(em));
6767 start_diff = start - em->start;
6768 em->start = start;
6769 em->len = end - start;
c8b97818
CM
6770 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6771 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6772 em->block_start += start_diff;
c8b97818
CM
6773 em->block_len -= start_diff;
6774 }
09a2a8f9 6775 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6776}
6777
c8b97818 6778static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6779 struct page *page,
c8b97818
CM
6780 size_t pg_offset, u64 extent_offset,
6781 struct btrfs_file_extent_item *item)
6782{
6783 int ret;
6784 struct extent_buffer *leaf = path->nodes[0];
6785 char *tmp;
6786 size_t max_size;
6787 unsigned long inline_size;
6788 unsigned long ptr;
261507a0 6789 int compress_type;
c8b97818
CM
6790
6791 WARN_ON(pg_offset != 0);
261507a0 6792 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6793 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6794 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6795 btrfs_item_nr(path->slots[0]));
c8b97818 6796 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6797 if (!tmp)
6798 return -ENOMEM;
c8b97818
CM
6799 ptr = btrfs_file_extent_inline_start(item);
6800
6801 read_extent_buffer(leaf, tmp, ptr, inline_size);
6802
09cbfeaf 6803 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6804 ret = btrfs_decompress(compress_type, tmp, page,
6805 extent_offset, inline_size, max_size);
c8b97818 6806 kfree(tmp);
166ae5a4 6807 return ret;
c8b97818
CM
6808}
6809
d352ac68
CM
6810/*
6811 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6812 * the ugly parts come from merging extents from the disk with the in-ram
6813 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6814 * where the in-ram extents might be locked pending data=ordered completion.
6815 *
6816 * This also copies inline extents directly into the page.
6817 */
d397712b 6818
a52d9a80 6819struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6820 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6821 int create)
6822{
6823 int ret;
6824 int err = 0;
a52d9a80
CM
6825 u64 extent_start = 0;
6826 u64 extent_end = 0;
33345d01 6827 u64 objectid = btrfs_ino(inode);
a52d9a80 6828 u32 found_type;
f421950f 6829 struct btrfs_path *path = NULL;
a52d9a80
CM
6830 struct btrfs_root *root = BTRFS_I(inode)->root;
6831 struct btrfs_file_extent_item *item;
5f39d397
CM
6832 struct extent_buffer *leaf;
6833 struct btrfs_key found_key;
a52d9a80
CM
6834 struct extent_map *em = NULL;
6835 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6836 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6837 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6838 const bool new_inline = !page || create;
a52d9a80 6839
a52d9a80 6840again:
890871be 6841 read_lock(&em_tree->lock);
d1310b2e 6842 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6843 if (em)
6844 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6845 read_unlock(&em_tree->lock);
d1310b2e 6846
a52d9a80 6847 if (em) {
e1c4b745
CM
6848 if (em->start > start || em->start + em->len <= start)
6849 free_extent_map(em);
6850 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6851 free_extent_map(em);
6852 else
6853 goto out;
a52d9a80 6854 }
172ddd60 6855 em = alloc_extent_map();
a52d9a80 6856 if (!em) {
d1310b2e
CM
6857 err = -ENOMEM;
6858 goto out;
a52d9a80 6859 }
e6dcd2dc 6860 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6861 em->start = EXTENT_MAP_HOLE;
445a6944 6862 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6863 em->len = (u64)-1;
c8b97818 6864 em->block_len = (u64)-1;
f421950f
CM
6865
6866 if (!path) {
6867 path = btrfs_alloc_path();
026fd317
JB
6868 if (!path) {
6869 err = -ENOMEM;
6870 goto out;
6871 }
6872 /*
6873 * Chances are we'll be called again, so go ahead and do
6874 * readahead
6875 */
e4058b54 6876 path->reada = READA_FORWARD;
f421950f
CM
6877 }
6878
179e29e4
CM
6879 ret = btrfs_lookup_file_extent(trans, root, path,
6880 objectid, start, trans != NULL);
a52d9a80
CM
6881 if (ret < 0) {
6882 err = ret;
6883 goto out;
6884 }
6885
6886 if (ret != 0) {
6887 if (path->slots[0] == 0)
6888 goto not_found;
6889 path->slots[0]--;
6890 }
6891
5f39d397
CM
6892 leaf = path->nodes[0];
6893 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6894 struct btrfs_file_extent_item);
a52d9a80 6895 /* are we inside the extent that was found? */
5f39d397 6896 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6897 found_type = found_key.type;
5f39d397 6898 if (found_key.objectid != objectid ||
a52d9a80 6899 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6900 /*
6901 * If we backup past the first extent we want to move forward
6902 * and see if there is an extent in front of us, otherwise we'll
6903 * say there is a hole for our whole search range which can
6904 * cause problems.
6905 */
6906 extent_end = start;
6907 goto next;
a52d9a80
CM
6908 }
6909
5f39d397
CM
6910 found_type = btrfs_file_extent_type(leaf, item);
6911 extent_start = found_key.offset;
d899e052
YZ
6912 if (found_type == BTRFS_FILE_EXTENT_REG ||
6913 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6914 extent_end = extent_start +
db94535d 6915 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6916 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6917 size_t size;
514ac8ad 6918 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6919 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6920 }
25a50341 6921next:
9036c102
YZ
6922 if (start >= extent_end) {
6923 path->slots[0]++;
6924 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6925 ret = btrfs_next_leaf(root, path);
6926 if (ret < 0) {
6927 err = ret;
6928 goto out;
a52d9a80 6929 }
9036c102
YZ
6930 if (ret > 0)
6931 goto not_found;
6932 leaf = path->nodes[0];
a52d9a80 6933 }
9036c102
YZ
6934 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6935 if (found_key.objectid != objectid ||
6936 found_key.type != BTRFS_EXTENT_DATA_KEY)
6937 goto not_found;
6938 if (start + len <= found_key.offset)
6939 goto not_found;
e2eca69d
WS
6940 if (start > found_key.offset)
6941 goto next;
9036c102 6942 em->start = start;
70c8a91c 6943 em->orig_start = start;
9036c102
YZ
6944 em->len = found_key.offset - start;
6945 goto not_found_em;
6946 }
6947
7ffbb598
FM
6948 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6949
d899e052
YZ
6950 if (found_type == BTRFS_FILE_EXTENT_REG ||
6951 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6952 goto insert;
6953 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6954 unsigned long ptr;
a52d9a80 6955 char *map;
3326d1b0
CM
6956 size_t size;
6957 size_t extent_offset;
6958 size_t copy_size;
a52d9a80 6959
7ffbb598 6960 if (new_inline)
689f9346 6961 goto out;
5f39d397 6962
514ac8ad 6963 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6964 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6965 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6966 size - extent_offset);
3326d1b0 6967 em->start = extent_start + extent_offset;
fda2832f 6968 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6969 em->orig_block_len = em->len;
70c8a91c 6970 em->orig_start = em->start;
689f9346 6971 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6972 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6973 if (btrfs_file_extent_compression(leaf, item) !=
6974 BTRFS_COMPRESS_NONE) {
e40da0e5 6975 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6976 extent_offset, item);
166ae5a4
ZB
6977 if (ret) {
6978 err = ret;
6979 goto out;
6980 }
c8b97818
CM
6981 } else {
6982 map = kmap(page);
6983 read_extent_buffer(leaf, map + pg_offset, ptr,
6984 copy_size);
09cbfeaf 6985 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6986 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6987 PAGE_SIZE - pg_offset -
93c82d57
CM
6988 copy_size);
6989 }
c8b97818
CM
6990 kunmap(page);
6991 }
179e29e4
CM
6992 flush_dcache_page(page);
6993 } else if (create && PageUptodate(page)) {
6bf7e080 6994 BUG();
179e29e4
CM
6995 if (!trans) {
6996 kunmap(page);
6997 free_extent_map(em);
6998 em = NULL;
ff5714cc 6999
b3b4aa74 7000 btrfs_release_path(path);
7a7eaa40 7001 trans = btrfs_join_transaction(root);
ff5714cc 7002
3612b495
TI
7003 if (IS_ERR(trans))
7004 return ERR_CAST(trans);
179e29e4
CM
7005 goto again;
7006 }
c8b97818 7007 map = kmap(page);
70dec807 7008 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 7009 copy_size);
c8b97818 7010 kunmap(page);
179e29e4 7011 btrfs_mark_buffer_dirty(leaf);
a52d9a80 7012 }
d1310b2e 7013 set_extent_uptodate(io_tree, em->start,
507903b8 7014 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7015 goto insert;
a52d9a80
CM
7016 }
7017not_found:
7018 em->start = start;
70c8a91c 7019 em->orig_start = start;
d1310b2e 7020 em->len = len;
a52d9a80 7021not_found_em:
5f39d397 7022 em->block_start = EXTENT_MAP_HOLE;
9036c102 7023 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 7024insert:
b3b4aa74 7025 btrfs_release_path(path);
d1310b2e 7026 if (em->start > start || extent_map_end(em) <= start) {
5d163e0e
JM
7027 btrfs_err(root->fs_info,
7028 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7029 em->start, em->len, start, len);
a52d9a80
CM
7030 err = -EIO;
7031 goto out;
7032 }
d1310b2e
CM
7033
7034 err = 0;
890871be 7035 write_lock(&em_tree->lock);
09a2a8f9 7036 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
7037 /* it is possible that someone inserted the extent into the tree
7038 * while we had the lock dropped. It is also possible that
7039 * an overlapping map exists in the tree
7040 */
a52d9a80 7041 if (ret == -EEXIST) {
3b951516 7042 struct extent_map *existing;
e6dcd2dc
CM
7043
7044 ret = 0;
7045
e6c4efd8
QW
7046 existing = search_extent_mapping(em_tree, start, len);
7047 /*
7048 * existing will always be non-NULL, since there must be
7049 * extent causing the -EEXIST.
7050 */
8dff9c85
CM
7051 if (existing->start == em->start &&
7052 extent_map_end(existing) == extent_map_end(em) &&
7053 em->block_start == existing->block_start) {
7054 /*
7055 * these two extents are the same, it happens
7056 * with inlines especially
7057 */
7058 free_extent_map(em);
7059 em = existing;
7060 err = 0;
7061
7062 } else if (start >= extent_map_end(existing) ||
32be3a1a 7063 start <= existing->start) {
e6c4efd8
QW
7064 /*
7065 * The existing extent map is the one nearest to
7066 * the [start, start + len) range which overlaps
7067 */
7068 err = merge_extent_mapping(em_tree, existing,
7069 em, start);
e1c4b745 7070 free_extent_map(existing);
e6c4efd8 7071 if (err) {
3b951516
CM
7072 free_extent_map(em);
7073 em = NULL;
7074 }
7075 } else {
7076 free_extent_map(em);
7077 em = existing;
e6dcd2dc 7078 err = 0;
a52d9a80 7079 }
a52d9a80 7080 }
890871be 7081 write_unlock(&em_tree->lock);
a52d9a80 7082out:
1abe9b8a 7083
4cd8587c 7084 trace_btrfs_get_extent(root, em);
1abe9b8a 7085
527afb44 7086 btrfs_free_path(path);
a52d9a80
CM
7087 if (trans) {
7088 ret = btrfs_end_transaction(trans, root);
d397712b 7089 if (!err)
a52d9a80
CM
7090 err = ret;
7091 }
a52d9a80
CM
7092 if (err) {
7093 free_extent_map(em);
a52d9a80
CM
7094 return ERR_PTR(err);
7095 }
79787eaa 7096 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7097 return em;
7098}
7099
ec29ed5b
CM
7100struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7101 size_t pg_offset, u64 start, u64 len,
7102 int create)
7103{
7104 struct extent_map *em;
7105 struct extent_map *hole_em = NULL;
7106 u64 range_start = start;
7107 u64 end;
7108 u64 found;
7109 u64 found_end;
7110 int err = 0;
7111
7112 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7113 if (IS_ERR(em))
7114 return em;
7115 if (em) {
7116 /*
f9e4fb53
LB
7117 * if our em maps to
7118 * - a hole or
7119 * - a pre-alloc extent,
7120 * there might actually be delalloc bytes behind it.
ec29ed5b 7121 */
f9e4fb53
LB
7122 if (em->block_start != EXTENT_MAP_HOLE &&
7123 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
7124 return em;
7125 else
7126 hole_em = em;
7127 }
7128
7129 /* check to see if we've wrapped (len == -1 or similar) */
7130 end = start + len;
7131 if (end < start)
7132 end = (u64)-1;
7133 else
7134 end -= 1;
7135
7136 em = NULL;
7137
7138 /* ok, we didn't find anything, lets look for delalloc */
7139 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7140 end, len, EXTENT_DELALLOC, 1);
7141 found_end = range_start + found;
7142 if (found_end < range_start)
7143 found_end = (u64)-1;
7144
7145 /*
7146 * we didn't find anything useful, return
7147 * the original results from get_extent()
7148 */
7149 if (range_start > end || found_end <= start) {
7150 em = hole_em;
7151 hole_em = NULL;
7152 goto out;
7153 }
7154
7155 /* adjust the range_start to make sure it doesn't
7156 * go backwards from the start they passed in
7157 */
67871254 7158 range_start = max(start, range_start);
ec29ed5b
CM
7159 found = found_end - range_start;
7160
7161 if (found > 0) {
7162 u64 hole_start = start;
7163 u64 hole_len = len;
7164
172ddd60 7165 em = alloc_extent_map();
ec29ed5b
CM
7166 if (!em) {
7167 err = -ENOMEM;
7168 goto out;
7169 }
7170 /*
7171 * when btrfs_get_extent can't find anything it
7172 * returns one huge hole
7173 *
7174 * make sure what it found really fits our range, and
7175 * adjust to make sure it is based on the start from
7176 * the caller
7177 */
7178 if (hole_em) {
7179 u64 calc_end = extent_map_end(hole_em);
7180
7181 if (calc_end <= start || (hole_em->start > end)) {
7182 free_extent_map(hole_em);
7183 hole_em = NULL;
7184 } else {
7185 hole_start = max(hole_em->start, start);
7186 hole_len = calc_end - hole_start;
7187 }
7188 }
7189 em->bdev = NULL;
7190 if (hole_em && range_start > hole_start) {
7191 /* our hole starts before our delalloc, so we
7192 * have to return just the parts of the hole
7193 * that go until the delalloc starts
7194 */
7195 em->len = min(hole_len,
7196 range_start - hole_start);
7197 em->start = hole_start;
7198 em->orig_start = hole_start;
7199 /*
7200 * don't adjust block start at all,
7201 * it is fixed at EXTENT_MAP_HOLE
7202 */
7203 em->block_start = hole_em->block_start;
7204 em->block_len = hole_len;
f9e4fb53
LB
7205 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7206 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7207 } else {
7208 em->start = range_start;
7209 em->len = found;
7210 em->orig_start = range_start;
7211 em->block_start = EXTENT_MAP_DELALLOC;
7212 em->block_len = found;
7213 }
7214 } else if (hole_em) {
7215 return hole_em;
7216 }
7217out:
7218
7219 free_extent_map(hole_em);
7220 if (err) {
7221 free_extent_map(em);
7222 return ERR_PTR(err);
7223 }
7224 return em;
7225}
7226
5f9a8a51
FM
7227static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7228 const u64 start,
7229 const u64 len,
7230 const u64 orig_start,
7231 const u64 block_start,
7232 const u64 block_len,
7233 const u64 orig_block_len,
7234 const u64 ram_bytes,
7235 const int type)
7236{
7237 struct extent_map *em = NULL;
7238 int ret;
7239
7240 down_read(&BTRFS_I(inode)->dio_sem);
7241 if (type != BTRFS_ORDERED_NOCOW) {
7242 em = create_pinned_em(inode, start, len, orig_start,
7243 block_start, block_len, orig_block_len,
7244 ram_bytes, type);
7245 if (IS_ERR(em))
7246 goto out;
7247 }
7248 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7249 len, block_len, type);
7250 if (ret) {
7251 if (em) {
7252 free_extent_map(em);
7253 btrfs_drop_extent_cache(inode, start,
7254 start + len - 1, 0);
7255 }
7256 em = ERR_PTR(ret);
7257 }
7258 out:
7259 up_read(&BTRFS_I(inode)->dio_sem);
7260
7261 return em;
7262}
7263
4b46fce2
JB
7264static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7265 u64 start, u64 len)
7266{
7267 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7268 struct extent_map *em;
4b46fce2
JB
7269 struct btrfs_key ins;
7270 u64 alloc_hint;
7271 int ret;
4b46fce2 7272
4b46fce2 7273 alloc_hint = get_extent_allocation_hint(inode, start, len);
18513091 7274 ret = btrfs_reserve_extent(root, len, len, root->sectorsize, 0,
e570fd27 7275 alloc_hint, &ins, 1, 1);
00361589
JB
7276 if (ret)
7277 return ERR_PTR(ret);
4b46fce2 7278
5f9a8a51
FM
7279 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7280 ins.objectid, ins.offset, ins.offset,
7281 ins.offset, 0);
9cfa3e34 7282 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
5f9a8a51 7283 if (IS_ERR(em))
e570fd27 7284 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
de0ee0ed 7285
4b46fce2
JB
7286 return em;
7287}
7288
46bfbb5c
CM
7289/*
7290 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7291 * block must be cow'd
7292 */
00361589 7293noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7294 u64 *orig_start, u64 *orig_block_len,
7295 u64 *ram_bytes)
46bfbb5c 7296{
00361589 7297 struct btrfs_trans_handle *trans;
46bfbb5c
CM
7298 struct btrfs_path *path;
7299 int ret;
7300 struct extent_buffer *leaf;
7301 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7302 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7303 struct btrfs_file_extent_item *fi;
7304 struct btrfs_key key;
7305 u64 disk_bytenr;
7306 u64 backref_offset;
7307 u64 extent_end;
7308 u64 num_bytes;
7309 int slot;
7310 int found_type;
7ee9e440 7311 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7312
46bfbb5c
CM
7313 path = btrfs_alloc_path();
7314 if (!path)
7315 return -ENOMEM;
7316
00361589 7317 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
7318 offset, 0);
7319 if (ret < 0)
7320 goto out;
7321
7322 slot = path->slots[0];
7323 if (ret == 1) {
7324 if (slot == 0) {
7325 /* can't find the item, must cow */
7326 ret = 0;
7327 goto out;
7328 }
7329 slot--;
7330 }
7331 ret = 0;
7332 leaf = path->nodes[0];
7333 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 7334 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
7335 key.type != BTRFS_EXTENT_DATA_KEY) {
7336 /* not our file or wrong item type, must cow */
7337 goto out;
7338 }
7339
7340 if (key.offset > offset) {
7341 /* Wrong offset, must cow */
7342 goto out;
7343 }
7344
7345 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7346 found_type = btrfs_file_extent_type(leaf, fi);
7347 if (found_type != BTRFS_FILE_EXTENT_REG &&
7348 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7349 /* not a regular extent, must cow */
7350 goto out;
7351 }
7ee9e440
JB
7352
7353 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7354 goto out;
7355
e77751aa
MX
7356 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7357 if (extent_end <= offset)
7358 goto out;
7359
46bfbb5c 7360 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7361 if (disk_bytenr == 0)
7362 goto out;
7363
7364 if (btrfs_file_extent_compression(leaf, fi) ||
7365 btrfs_file_extent_encryption(leaf, fi) ||
7366 btrfs_file_extent_other_encoding(leaf, fi))
7367 goto out;
7368
46bfbb5c
CM
7369 backref_offset = btrfs_file_extent_offset(leaf, fi);
7370
7ee9e440
JB
7371 if (orig_start) {
7372 *orig_start = key.offset - backref_offset;
7373 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7374 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7375 }
eb384b55 7376
46bfbb5c
CM
7377 if (btrfs_extent_readonly(root, disk_bytenr))
7378 goto out;
7b2b7085
MX
7379
7380 num_bytes = min(offset + *len, extent_end) - offset;
7381 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7382 u64 range_end;
7383
7384 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7385 ret = test_range_bit(io_tree, offset, range_end,
7386 EXTENT_DELALLOC, 0, NULL);
7387 if (ret) {
7388 ret = -EAGAIN;
7389 goto out;
7390 }
7391 }
7392
1bda19eb 7393 btrfs_release_path(path);
46bfbb5c
CM
7394
7395 /*
7396 * look for other files referencing this extent, if we
7397 * find any we must cow
7398 */
00361589
JB
7399 trans = btrfs_join_transaction(root);
7400 if (IS_ERR(trans)) {
7401 ret = 0;
46bfbb5c 7402 goto out;
00361589
JB
7403 }
7404
7405 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7406 key.offset - backref_offset, disk_bytenr);
7407 btrfs_end_transaction(trans, root);
7408 if (ret) {
7409 ret = 0;
7410 goto out;
7411 }
46bfbb5c
CM
7412
7413 /*
7414 * adjust disk_bytenr and num_bytes to cover just the bytes
7415 * in this extent we are about to write. If there
7416 * are any csums in that range we have to cow in order
7417 * to keep the csums correct
7418 */
7419 disk_bytenr += backref_offset;
7420 disk_bytenr += offset - key.offset;
46bfbb5c
CM
7421 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7422 goto out;
7423 /*
7424 * all of the above have passed, it is safe to overwrite this extent
7425 * without cow
7426 */
eb384b55 7427 *len = num_bytes;
46bfbb5c
CM
7428 ret = 1;
7429out:
7430 btrfs_free_path(path);
7431 return ret;
7432}
7433
fc4adbff
AG
7434bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7435{
7436 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7437 int found = false;
7438 void **pagep = NULL;
7439 struct page *page = NULL;
7440 int start_idx;
7441 int end_idx;
7442
09cbfeaf 7443 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7444
7445 /*
7446 * end is the last byte in the last page. end == start is legal
7447 */
09cbfeaf 7448 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7449
7450 rcu_read_lock();
7451
7452 /* Most of the code in this while loop is lifted from
7453 * find_get_page. It's been modified to begin searching from a
7454 * page and return just the first page found in that range. If the
7455 * found idx is less than or equal to the end idx then we know that
7456 * a page exists. If no pages are found or if those pages are
7457 * outside of the range then we're fine (yay!) */
7458 while (page == NULL &&
7459 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7460 page = radix_tree_deref_slot(pagep);
7461 if (unlikely(!page))
7462 break;
7463
7464 if (radix_tree_exception(page)) {
809f9016
FM
7465 if (radix_tree_deref_retry(page)) {
7466 page = NULL;
fc4adbff 7467 continue;
809f9016 7468 }
fc4adbff
AG
7469 /*
7470 * Otherwise, shmem/tmpfs must be storing a swap entry
7471 * here as an exceptional entry: so return it without
7472 * attempting to raise page count.
7473 */
6fdef6d4 7474 page = NULL;
fc4adbff
AG
7475 break; /* TODO: Is this relevant for this use case? */
7476 }
7477
91405151
FM
7478 if (!page_cache_get_speculative(page)) {
7479 page = NULL;
fc4adbff 7480 continue;
91405151 7481 }
fc4adbff
AG
7482
7483 /*
7484 * Has the page moved?
7485 * This is part of the lockless pagecache protocol. See
7486 * include/linux/pagemap.h for details.
7487 */
7488 if (unlikely(page != *pagep)) {
09cbfeaf 7489 put_page(page);
fc4adbff
AG
7490 page = NULL;
7491 }
7492 }
7493
7494 if (page) {
7495 if (page->index <= end_idx)
7496 found = true;
09cbfeaf 7497 put_page(page);
fc4adbff
AG
7498 }
7499
7500 rcu_read_unlock();
7501 return found;
7502}
7503
eb838e73
JB
7504static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7505 struct extent_state **cached_state, int writing)
7506{
7507 struct btrfs_ordered_extent *ordered;
7508 int ret = 0;
7509
7510 while (1) {
7511 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7512 cached_state);
eb838e73
JB
7513 /*
7514 * We're concerned with the entire range that we're going to be
01327610 7515 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7516 * extents in this range.
7517 */
7518 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7519 lockend - lockstart + 1);
7520
7521 /*
7522 * We need to make sure there are no buffered pages in this
7523 * range either, we could have raced between the invalidate in
7524 * generic_file_direct_write and locking the extent. The
7525 * invalidate needs to happen so that reads after a write do not
7526 * get stale data.
7527 */
fc4adbff
AG
7528 if (!ordered &&
7529 (!writing ||
7530 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7531 break;
7532
7533 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7534 cached_state, GFP_NOFS);
7535
7536 if (ordered) {
ade77029
FM
7537 /*
7538 * If we are doing a DIO read and the ordered extent we
7539 * found is for a buffered write, we can not wait for it
7540 * to complete and retry, because if we do so we can
7541 * deadlock with concurrent buffered writes on page
7542 * locks. This happens only if our DIO read covers more
7543 * than one extent map, if at this point has already
7544 * created an ordered extent for a previous extent map
7545 * and locked its range in the inode's io tree, and a
7546 * concurrent write against that previous extent map's
7547 * range and this range started (we unlock the ranges
7548 * in the io tree only when the bios complete and
7549 * buffered writes always lock pages before attempting
7550 * to lock range in the io tree).
7551 */
7552 if (writing ||
7553 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7554 btrfs_start_ordered_extent(inode, ordered, 1);
7555 else
7556 ret = -ENOTBLK;
eb838e73
JB
7557 btrfs_put_ordered_extent(ordered);
7558 } else {
eb838e73 7559 /*
b850ae14
FM
7560 * We could trigger writeback for this range (and wait
7561 * for it to complete) and then invalidate the pages for
7562 * this range (through invalidate_inode_pages2_range()),
7563 * but that can lead us to a deadlock with a concurrent
7564 * call to readpages() (a buffered read or a defrag call
7565 * triggered a readahead) on a page lock due to an
7566 * ordered dio extent we created before but did not have
7567 * yet a corresponding bio submitted (whence it can not
7568 * complete), which makes readpages() wait for that
7569 * ordered extent to complete while holding a lock on
7570 * that page.
eb838e73 7571 */
b850ae14 7572 ret = -ENOTBLK;
eb838e73
JB
7573 }
7574
ade77029
FM
7575 if (ret)
7576 break;
7577
eb838e73
JB
7578 cond_resched();
7579 }
7580
7581 return ret;
7582}
7583
69ffb543
JB
7584static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7585 u64 len, u64 orig_start,
7586 u64 block_start, u64 block_len,
cc95bef6
JB
7587 u64 orig_block_len, u64 ram_bytes,
7588 int type)
69ffb543
JB
7589{
7590 struct extent_map_tree *em_tree;
7591 struct extent_map *em;
7592 struct btrfs_root *root = BTRFS_I(inode)->root;
7593 int ret;
7594
7595 em_tree = &BTRFS_I(inode)->extent_tree;
7596 em = alloc_extent_map();
7597 if (!em)
7598 return ERR_PTR(-ENOMEM);
7599
7600 em->start = start;
7601 em->orig_start = orig_start;
2ab28f32
JB
7602 em->mod_start = start;
7603 em->mod_len = len;
69ffb543
JB
7604 em->len = len;
7605 em->block_len = block_len;
7606 em->block_start = block_start;
7607 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7608 em->orig_block_len = orig_block_len;
cc95bef6 7609 em->ram_bytes = ram_bytes;
70c8a91c 7610 em->generation = -1;
69ffb543
JB
7611 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7612 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7613 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7614
7615 do {
7616 btrfs_drop_extent_cache(inode, em->start,
7617 em->start + em->len - 1, 0);
7618 write_lock(&em_tree->lock);
09a2a8f9 7619 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7620 write_unlock(&em_tree->lock);
7621 } while (ret == -EEXIST);
7622
7623 if (ret) {
7624 free_extent_map(em);
7625 return ERR_PTR(ret);
7626 }
7627
7628 return em;
7629}
7630
9c9464cc
FM
7631static void adjust_dio_outstanding_extents(struct inode *inode,
7632 struct btrfs_dio_data *dio_data,
7633 const u64 len)
7634{
7635 unsigned num_extents;
7636
7637 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7638 BTRFS_MAX_EXTENT_SIZE);
7639 /*
7640 * If we have an outstanding_extents count still set then we're
7641 * within our reservation, otherwise we need to adjust our inode
7642 * counter appropriately.
7643 */
7644 if (dio_data->outstanding_extents) {
7645 dio_data->outstanding_extents -= num_extents;
7646 } else {
7647 spin_lock(&BTRFS_I(inode)->lock);
7648 BTRFS_I(inode)->outstanding_extents += num_extents;
7649 spin_unlock(&BTRFS_I(inode)->lock);
7650 }
7651}
7652
4b46fce2
JB
7653static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7654 struct buffer_head *bh_result, int create)
7655{
7656 struct extent_map *em;
7657 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7658 struct extent_state *cached_state = NULL;
50745b0a 7659 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7660 u64 start = iblock << inode->i_blkbits;
eb838e73 7661 u64 lockstart, lockend;
4b46fce2 7662 u64 len = bh_result->b_size;
eb838e73 7663 int unlock_bits = EXTENT_LOCKED;
0934856d 7664 int ret = 0;
eb838e73 7665
172a5049 7666 if (create)
3266789f 7667 unlock_bits |= EXTENT_DIRTY;
172a5049 7668 else
c329861d 7669 len = min_t(u64, len, root->sectorsize);
eb838e73 7670
c329861d
JB
7671 lockstart = start;
7672 lockend = start + len - 1;
7673
e1cbbfa5
JB
7674 if (current->journal_info) {
7675 /*
7676 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7677 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7678 * confused.
7679 */
50745b0a 7680 dio_data = current->journal_info;
e1cbbfa5
JB
7681 current->journal_info = NULL;
7682 }
7683
eb838e73
JB
7684 /*
7685 * If this errors out it's because we couldn't invalidate pagecache for
7686 * this range and we need to fallback to buffered.
7687 */
9c9464cc
FM
7688 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7689 create)) {
7690 ret = -ENOTBLK;
7691 goto err;
7692 }
eb838e73 7693
4b46fce2 7694 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7695 if (IS_ERR(em)) {
7696 ret = PTR_ERR(em);
7697 goto unlock_err;
7698 }
4b46fce2
JB
7699
7700 /*
7701 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7702 * io. INLINE is special, and we could probably kludge it in here, but
7703 * it's still buffered so for safety lets just fall back to the generic
7704 * buffered path.
7705 *
7706 * For COMPRESSED we _have_ to read the entire extent in so we can
7707 * decompress it, so there will be buffering required no matter what we
7708 * do, so go ahead and fallback to buffered.
7709 *
01327610 7710 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7711 * to buffered IO. Don't blame me, this is the price we pay for using
7712 * the generic code.
7713 */
7714 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7715 em->block_start == EXTENT_MAP_INLINE) {
7716 free_extent_map(em);
eb838e73
JB
7717 ret = -ENOTBLK;
7718 goto unlock_err;
4b46fce2
JB
7719 }
7720
7721 /* Just a good old fashioned hole, return */
7722 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7723 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7724 free_extent_map(em);
eb838e73 7725 goto unlock_err;
4b46fce2
JB
7726 }
7727
7728 /*
7729 * We don't allocate a new extent in the following cases
7730 *
7731 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7732 * existing extent.
7733 * 2) The extent is marked as PREALLOC. We're good to go here and can
7734 * just use the extent.
7735 *
7736 */
46bfbb5c 7737 if (!create) {
eb838e73
JB
7738 len = min(len, em->len - (start - em->start));
7739 lockstart = start + len;
7740 goto unlock;
46bfbb5c 7741 }
4b46fce2
JB
7742
7743 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7744 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7745 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7746 int type;
eb384b55 7747 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7748
7749 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7750 type = BTRFS_ORDERED_PREALLOC;
7751 else
7752 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7753 len = min(len, em->len - (start - em->start));
4b46fce2 7754 block_start = em->block_start + (start - em->start);
46bfbb5c 7755
00361589 7756 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c
FM
7757 &orig_block_len, &ram_bytes) == 1 &&
7758 btrfs_inc_nocow_writers(root->fs_info, block_start)) {
5f9a8a51 7759 struct extent_map *em2;
0b901916 7760
5f9a8a51
FM
7761 em2 = btrfs_create_dio_extent(inode, start, len,
7762 orig_start, block_start,
7763 len, orig_block_len,
7764 ram_bytes, type);
f78c436c 7765 btrfs_dec_nocow_writers(root->fs_info, block_start);
69ffb543
JB
7766 if (type == BTRFS_ORDERED_PREALLOC) {
7767 free_extent_map(em);
5f9a8a51 7768 em = em2;
69ffb543 7769 }
5f9a8a51
FM
7770 if (em2 && IS_ERR(em2)) {
7771 ret = PTR_ERR(em2);
eb838e73 7772 goto unlock_err;
46bfbb5c 7773 }
18513091
WX
7774 /*
7775 * For inode marked NODATACOW or extent marked PREALLOC,
7776 * use the existing or preallocated extent, so does not
7777 * need to adjust btrfs_space_info's bytes_may_use.
7778 */
7779 btrfs_free_reserved_data_space_noquota(inode,
7780 start, len);
46bfbb5c 7781 goto unlock;
4b46fce2 7782 }
4b46fce2 7783 }
00361589 7784
46bfbb5c
CM
7785 /*
7786 * this will cow the extent, reset the len in case we changed
7787 * it above
7788 */
7789 len = bh_result->b_size;
70c8a91c
JB
7790 free_extent_map(em);
7791 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7792 if (IS_ERR(em)) {
7793 ret = PTR_ERR(em);
7794 goto unlock_err;
7795 }
46bfbb5c
CM
7796 len = min(len, em->len - (start - em->start));
7797unlock:
4b46fce2
JB
7798 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7799 inode->i_blkbits;
46bfbb5c 7800 bh_result->b_size = len;
4b46fce2
JB
7801 bh_result->b_bdev = em->bdev;
7802 set_buffer_mapped(bh_result);
c3473e83
JB
7803 if (create) {
7804 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7805 set_buffer_new(bh_result);
7806
7807 /*
7808 * Need to update the i_size under the extent lock so buffered
7809 * readers will get the updated i_size when we unlock.
7810 */
7811 if (start + len > i_size_read(inode))
7812 i_size_write(inode, start + len);
0934856d 7813
9c9464cc 7814 adjust_dio_outstanding_extents(inode, dio_data, len);
50745b0a 7815 WARN_ON(dio_data->reserve < len);
7816 dio_data->reserve -= len;
f28a4928 7817 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7818 current->journal_info = dio_data;
c3473e83 7819 }
4b46fce2 7820
eb838e73
JB
7821 /*
7822 * In the case of write we need to clear and unlock the entire range,
7823 * in the case of read we need to unlock only the end area that we
7824 * aren't using if there is any left over space.
7825 */
24c03fa5 7826 if (lockstart < lockend) {
0934856d
MX
7827 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7828 lockend, unlock_bits, 1, 0,
7829 &cached_state, GFP_NOFS);
24c03fa5 7830 } else {
eb838e73 7831 free_extent_state(cached_state);
24c03fa5 7832 }
eb838e73 7833
4b46fce2
JB
7834 free_extent_map(em);
7835
7836 return 0;
eb838e73
JB
7837
7838unlock_err:
eb838e73
JB
7839 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7840 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7841err:
50745b0a 7842 if (dio_data)
7843 current->journal_info = dio_data;
9c9464cc
FM
7844 /*
7845 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7846 * write less data then expected, so that we don't underflow our inode's
7847 * outstanding extents counter.
7848 */
7849 if (create && dio_data)
7850 adjust_dio_outstanding_extents(inode, dio_data, len);
7851
eb838e73 7852 return ret;
4b46fce2
JB
7853}
7854
8b110e39 7855static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
81a75f67 7856 int mirror_num)
8b110e39
MX
7857{
7858 struct btrfs_root *root = BTRFS_I(inode)->root;
7859 int ret;
7860
37226b21 7861 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39
MX
7862
7863 bio_get(bio);
7864
7865 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7866 BTRFS_WQ_ENDIO_DIO_REPAIR);
7867 if (ret)
7868 goto err;
7869
81a75f67 7870 ret = btrfs_map_bio(root, bio, mirror_num, 0);
8b110e39
MX
7871err:
7872 bio_put(bio);
7873 return ret;
7874}
7875
7876static int btrfs_check_dio_repairable(struct inode *inode,
7877 struct bio *failed_bio,
7878 struct io_failure_record *failrec,
7879 int failed_mirror)
7880{
ab8d0fc4 7881 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7882 int num_copies;
7883
ab8d0fc4 7884 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7885 if (num_copies == 1) {
7886 /*
7887 * we only have a single copy of the data, so don't bother with
7888 * all the retry and error correction code that follows. no
7889 * matter what the error is, it is very likely to persist.
7890 */
ab8d0fc4
JM
7891 btrfs_debug(fs_info,
7892 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7893 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7894 return 0;
7895 }
7896
7897 failrec->failed_mirror = failed_mirror;
7898 failrec->this_mirror++;
7899 if (failrec->this_mirror == failed_mirror)
7900 failrec->this_mirror++;
7901
7902 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7903 btrfs_debug(fs_info,
7904 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7905 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7906 return 0;
7907 }
7908
7909 return 1;
7910}
7911
7912static int dio_read_error(struct inode *inode, struct bio *failed_bio,
2dabb324
CR
7913 struct page *page, unsigned int pgoff,
7914 u64 start, u64 end, int failed_mirror,
7915 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7916{
7917 struct io_failure_record *failrec;
7918 struct bio *bio;
7919 int isector;
7920 int read_mode;
7921 int ret;
7922
37226b21 7923 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7924
7925 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7926 if (ret)
7927 return ret;
7928
7929 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7930 failed_mirror);
7931 if (!ret) {
7932 free_io_failure(inode, failrec);
7933 return -EIO;
7934 }
7935
2dabb324
CR
7936 if ((failed_bio->bi_vcnt > 1)
7937 || (failed_bio->bi_io_vec->bv_len
7938 > BTRFS_I(inode)->root->sectorsize))
8b110e39
MX
7939 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7940 else
7941 read_mode = READ_SYNC;
7942
7943 isector = start - btrfs_io_bio(failed_bio)->logical;
7944 isector >>= inode->i_sb->s_blocksize_bits;
7945 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7946 pgoff, isector, repair_endio, repair_arg);
8b110e39
MX
7947 if (!bio) {
7948 free_io_failure(inode, failrec);
7949 return -EIO;
7950 }
37226b21 7951 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
7952
7953 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7954 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7955 read_mode, failrec->this_mirror, failrec->in_validation);
7956
81a75f67 7957 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8b110e39
MX
7958 if (ret) {
7959 free_io_failure(inode, failrec);
7960 bio_put(bio);
7961 }
7962
7963 return ret;
7964}
7965
7966struct btrfs_retry_complete {
7967 struct completion done;
7968 struct inode *inode;
7969 u64 start;
7970 int uptodate;
7971};
7972
4246a0b6 7973static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7974{
7975 struct btrfs_retry_complete *done = bio->bi_private;
2dabb324 7976 struct inode *inode;
8b110e39
MX
7977 struct bio_vec *bvec;
7978 int i;
7979
4246a0b6 7980 if (bio->bi_error)
8b110e39
MX
7981 goto end;
7982
2dabb324
CR
7983 ASSERT(bio->bi_vcnt == 1);
7984 inode = bio->bi_io_vec->bv_page->mapping->host;
7985 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7986
8b110e39
MX
7987 done->uptodate = 1;
7988 bio_for_each_segment_all(bvec, bio, i)
7989 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7990end:
7991 complete(&done->done);
7992 bio_put(bio);
7993}
7994
7995static int __btrfs_correct_data_nocsum(struct inode *inode,
7996 struct btrfs_io_bio *io_bio)
4b46fce2 7997{
2dabb324 7998 struct btrfs_fs_info *fs_info;
2c30c71b 7999 struct bio_vec *bvec;
8b110e39 8000 struct btrfs_retry_complete done;
4b46fce2 8001 u64 start;
2dabb324
CR
8002 unsigned int pgoff;
8003 u32 sectorsize;
8004 int nr_sectors;
2c30c71b 8005 int i;
c1dc0896 8006 int ret;
4b46fce2 8007
2dabb324
CR
8008 fs_info = BTRFS_I(inode)->root->fs_info;
8009 sectorsize = BTRFS_I(inode)->root->sectorsize;
8010
8b110e39
MX
8011 start = io_bio->logical;
8012 done.inode = inode;
8013
8014 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
8015 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8016 pgoff = bvec->bv_offset;
8017
8018next_block_or_try_again:
8b110e39
MX
8019 done.uptodate = 0;
8020 done.start = start;
8021 init_completion(&done.done);
8022
2dabb324
CR
8023 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8024 pgoff, start, start + sectorsize - 1,
8025 io_bio->mirror_num,
8026 btrfs_retry_endio_nocsum, &done);
8b110e39
MX
8027 if (ret)
8028 return ret;
8029
8030 wait_for_completion(&done.done);
8031
8032 if (!done.uptodate) {
8033 /* We might have another mirror, so try again */
2dabb324 8034 goto next_block_or_try_again;
8b110e39
MX
8035 }
8036
2dabb324
CR
8037 start += sectorsize;
8038
8039 if (nr_sectors--) {
8040 pgoff += sectorsize;
8041 goto next_block_or_try_again;
8042 }
8b110e39
MX
8043 }
8044
8045 return 0;
8046}
8047
4246a0b6 8048static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
8049{
8050 struct btrfs_retry_complete *done = bio->bi_private;
8051 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2dabb324 8052 struct inode *inode;
8b110e39 8053 struct bio_vec *bvec;
2dabb324 8054 u64 start;
8b110e39
MX
8055 int uptodate;
8056 int ret;
8057 int i;
8058
4246a0b6 8059 if (bio->bi_error)
8b110e39
MX
8060 goto end;
8061
8062 uptodate = 1;
2dabb324
CR
8063
8064 start = done->start;
8065
8066 ASSERT(bio->bi_vcnt == 1);
8067 inode = bio->bi_io_vec->bv_page->mapping->host;
8068 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
8069
8b110e39
MX
8070 bio_for_each_segment_all(bvec, bio, i) {
8071 ret = __readpage_endio_check(done->inode, io_bio, i,
2dabb324
CR
8072 bvec->bv_page, bvec->bv_offset,
8073 done->start, bvec->bv_len);
8b110e39
MX
8074 if (!ret)
8075 clean_io_failure(done->inode, done->start,
2dabb324 8076 bvec->bv_page, bvec->bv_offset);
8b110e39
MX
8077 else
8078 uptodate = 0;
8079 }
8080
8081 done->uptodate = uptodate;
8082end:
8083 complete(&done->done);
8084 bio_put(bio);
8085}
8086
8087static int __btrfs_subio_endio_read(struct inode *inode,
8088 struct btrfs_io_bio *io_bio, int err)
8089{
2dabb324 8090 struct btrfs_fs_info *fs_info;
8b110e39
MX
8091 struct bio_vec *bvec;
8092 struct btrfs_retry_complete done;
8093 u64 start;
8094 u64 offset = 0;
2dabb324
CR
8095 u32 sectorsize;
8096 int nr_sectors;
8097 unsigned int pgoff;
8098 int csum_pos;
8b110e39
MX
8099 int i;
8100 int ret;
dc380aea 8101
2dabb324
CR
8102 fs_info = BTRFS_I(inode)->root->fs_info;
8103 sectorsize = BTRFS_I(inode)->root->sectorsize;
8104
8b110e39 8105 err = 0;
c1dc0896 8106 start = io_bio->logical;
8b110e39
MX
8107 done.inode = inode;
8108
c1dc0896 8109 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
8110 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8111
8112 pgoff = bvec->bv_offset;
8113next_block:
8114 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8115 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8116 bvec->bv_page, pgoff, start,
8117 sectorsize);
8b110e39
MX
8118 if (likely(!ret))
8119 goto next;
8120try_again:
8121 done.uptodate = 0;
8122 done.start = start;
8123 init_completion(&done.done);
8124
2dabb324
CR
8125 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8126 pgoff, start, start + sectorsize - 1,
8127 io_bio->mirror_num,
8128 btrfs_retry_endio, &done);
8b110e39
MX
8129 if (ret) {
8130 err = ret;
8131 goto next;
8132 }
8133
8134 wait_for_completion(&done.done);
8135
8136 if (!done.uptodate) {
8137 /* We might have another mirror, so try again */
8138 goto try_again;
8139 }
8140next:
2dabb324
CR
8141 offset += sectorsize;
8142 start += sectorsize;
8143
8144 ASSERT(nr_sectors);
8145
8146 if (--nr_sectors) {
8147 pgoff += sectorsize;
8148 goto next_block;
8149 }
2c30c71b 8150 }
c1dc0896
MX
8151
8152 return err;
8153}
8154
8b110e39
MX
8155static int btrfs_subio_endio_read(struct inode *inode,
8156 struct btrfs_io_bio *io_bio, int err)
8157{
8158 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8159
8160 if (skip_csum) {
8161 if (unlikely(err))
8162 return __btrfs_correct_data_nocsum(inode, io_bio);
8163 else
8164 return 0;
8165 } else {
8166 return __btrfs_subio_endio_read(inode, io_bio, err);
8167 }
8168}
8169
4246a0b6 8170static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8171{
8172 struct btrfs_dio_private *dip = bio->bi_private;
8173 struct inode *inode = dip->inode;
8174 struct bio *dio_bio;
8175 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 8176 int err = bio->bi_error;
c1dc0896 8177
8b110e39
MX
8178 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8179 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8180
4b46fce2 8181 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8182 dip->logical_offset + dip->bytes - 1);
9be3395b 8183 dio_bio = dip->dio_bio;
4b46fce2 8184
4b46fce2 8185 kfree(dip);
c0da7aa1 8186
1636d1d7 8187 dio_bio->bi_error = bio->bi_error;
4246a0b6 8188 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
8189
8190 if (io_bio->end_io)
8191 io_bio->end_io(io_bio, err);
9be3395b 8192 bio_put(bio);
4b46fce2
JB
8193}
8194
14543774
FM
8195static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8196 const u64 offset,
8197 const u64 bytes,
8198 const int uptodate)
4b46fce2 8199{
4b46fce2 8200 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 8201 struct btrfs_ordered_extent *ordered = NULL;
14543774
FM
8202 u64 ordered_offset = offset;
8203 u64 ordered_bytes = bytes;
4b46fce2
JB
8204 int ret;
8205
163cf09c
CM
8206again:
8207 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8208 &ordered_offset,
4246a0b6 8209 ordered_bytes,
14543774 8210 uptodate);
4b46fce2 8211 if (!ret)
163cf09c 8212 goto out_test;
4b46fce2 8213
9e0af237
LB
8214 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8215 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
8216 btrfs_queue_work(root->fs_info->endio_write_workers,
8217 &ordered->work);
163cf09c
CM
8218out_test:
8219 /*
8220 * our bio might span multiple ordered extents. If we haven't
8221 * completed the accounting for the whole dio, go back and try again
8222 */
14543774
FM
8223 if (ordered_offset < offset + bytes) {
8224 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8225 ordered = NULL;
163cf09c
CM
8226 goto again;
8227 }
14543774
FM
8228}
8229
8230static void btrfs_endio_direct_write(struct bio *bio)
8231{
8232 struct btrfs_dio_private *dip = bio->bi_private;
8233 struct bio *dio_bio = dip->dio_bio;
8234
8235 btrfs_endio_direct_write_update_ordered(dip->inode,
8236 dip->logical_offset,
8237 dip->bytes,
8238 !bio->bi_error);
4b46fce2 8239
4b46fce2 8240 kfree(dip);
c0da7aa1 8241
1636d1d7 8242 dio_bio->bi_error = bio->bi_error;
4246a0b6 8243 dio_end_io(dio_bio, bio->bi_error);
9be3395b 8244 bio_put(bio);
4b46fce2
JB
8245}
8246
81a75f67 8247static int __btrfs_submit_bio_start_direct_io(struct inode *inode,
eaf25d93
CM
8248 struct bio *bio, int mirror_num,
8249 unsigned long bio_flags, u64 offset)
8250{
8251 int ret;
8252 struct btrfs_root *root = BTRFS_I(inode)->root;
8253 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 8254 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8255 return 0;
8256}
8257
4246a0b6 8258static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8259{
8260 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8261 int err = bio->bi_error;
e65e1535 8262
8b110e39
MX
8263 if (err)
8264 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8265 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
1eff9d32 8266 btrfs_ino(dip->inode), bio_op(bio), bio->bi_opf,
8b110e39
MX
8267 (unsigned long long)bio->bi_iter.bi_sector,
8268 bio->bi_iter.bi_size, err);
8269
8270 if (dip->subio_endio)
8271 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8272
8273 if (err) {
e65e1535
MX
8274 dip->errors = 1;
8275
8276 /*
8277 * before atomic variable goto zero, we must make sure
8278 * dip->errors is perceived to be set.
8279 */
4e857c58 8280 smp_mb__before_atomic();
e65e1535
MX
8281 }
8282
8283 /* if there are more bios still pending for this dio, just exit */
8284 if (!atomic_dec_and_test(&dip->pending_bios))
8285 goto out;
8286
9be3395b 8287 if (dip->errors) {
e65e1535 8288 bio_io_error(dip->orig_bio);
9be3395b 8289 } else {
4246a0b6
CH
8290 dip->dio_bio->bi_error = 0;
8291 bio_endio(dip->orig_bio);
e65e1535
MX
8292 }
8293out:
8294 bio_put(bio);
8295}
8296
8297static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8298 u64 first_sector, gfp_t gfp_flags)
8299{
da2f0f74 8300 struct bio *bio;
22365979 8301 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
da2f0f74
CM
8302 if (bio)
8303 bio_associate_current(bio);
8304 return bio;
e65e1535
MX
8305}
8306
c1dc0896
MX
8307static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8308 struct inode *inode,
8309 struct btrfs_dio_private *dip,
8310 struct bio *bio,
8311 u64 file_offset)
8312{
8313 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8314 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8315 int ret;
8316
8317 /*
8318 * We load all the csum data we need when we submit
8319 * the first bio to reduce the csum tree search and
8320 * contention.
8321 */
8322 if (dip->logical_offset == file_offset) {
8323 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8324 file_offset);
8325 if (ret)
8326 return ret;
8327 }
8328
8329 if (bio == dip->orig_bio)
8330 return 0;
8331
8332 file_offset -= dip->logical_offset;
8333 file_offset >>= inode->i_sb->s_blocksize_bits;
8334 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8335
8336 return 0;
8337}
8338
e65e1535 8339static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
81a75f67 8340 u64 file_offset, int skip_sum,
c329861d 8341 int async_submit)
e65e1535 8342{
facc8a22 8343 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8344 bool write = bio_op(bio) == REQ_OP_WRITE;
e65e1535
MX
8345 struct btrfs_root *root = BTRFS_I(inode)->root;
8346 int ret;
8347
b812ce28
JB
8348 if (async_submit)
8349 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8350
e65e1535 8351 bio_get(bio);
5fd02043
JB
8352
8353 if (!write) {
bfebd8b5
DS
8354 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8355 BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8356 if (ret)
8357 goto err;
8358 }
e65e1535 8359
1ae39938
JB
8360 if (skip_sum)
8361 goto map;
8362
8363 if (write && async_submit) {
e65e1535 8364 ret = btrfs_wq_submit_bio(root->fs_info,
81a75f67 8365 inode, bio, 0, 0, file_offset,
e65e1535
MX
8366 __btrfs_submit_bio_start_direct_io,
8367 __btrfs_submit_bio_done);
8368 goto err;
1ae39938
JB
8369 } else if (write) {
8370 /*
8371 * If we aren't doing async submit, calculate the csum of the
8372 * bio now.
8373 */
8374 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8375 if (ret)
8376 goto err;
23ea8e5a 8377 } else {
c1dc0896
MX
8378 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8379 file_offset);
c2db1073
TI
8380 if (ret)
8381 goto err;
8382 }
1ae39938 8383map:
81a75f67 8384 ret = btrfs_map_bio(root, bio, 0, async_submit);
e65e1535
MX
8385err:
8386 bio_put(bio);
8387 return ret;
8388}
8389
81a75f67 8390static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
e65e1535
MX
8391 int skip_sum)
8392{
8393 struct inode *inode = dip->inode;
8394 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
8395 struct bio *bio;
8396 struct bio *orig_bio = dip->orig_bio;
8397 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 8398 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
8399 u64 file_offset = dip->logical_offset;
8400 u64 submit_len = 0;
8401 u64 map_length;
5f4dc8fc 8402 u32 blocksize = root->sectorsize;
1ae39938 8403 int async_submit = 0;
5f4dc8fc
CR
8404 int nr_sectors;
8405 int ret;
8406 int i;
e65e1535 8407
4f024f37 8408 map_length = orig_bio->bi_iter.bi_size;
37226b21
MC
8409 ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
8410 start_sector << 9, &map_length, NULL, 0);
7a5c3c9b 8411 if (ret)
e65e1535 8412 return -EIO;
facc8a22 8413
4f024f37 8414 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 8415 bio = orig_bio;
c1dc0896 8416 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8417 goto submit;
8418 }
8419
53b381b3 8420 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 8421 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8422 async_submit = 0;
8423 else
8424 async_submit = 1;
8425
02f57c7a
JB
8426 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8427 if (!bio)
8428 return -ENOMEM;
7a5c3c9b 8429
4382e33a 8430 bio_set_op_attrs(bio, bio_op(orig_bio), bio_flags(orig_bio));
02f57c7a
JB
8431 bio->bi_private = dip;
8432 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8433 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
8434 atomic_inc(&dip->pending_bios);
8435
e65e1535 8436 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5f4dc8fc
CR
8437 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8438 i = 0;
8439next_block:
8440 if (unlikely(map_length < submit_len + blocksize ||
8441 bio_add_page(bio, bvec->bv_page, blocksize,
8442 bvec->bv_offset + (i * blocksize)) < blocksize)) {
e65e1535
MX
8443 /*
8444 * inc the count before we submit the bio so
8445 * we know the end IO handler won't happen before
8446 * we inc the count. Otherwise, the dip might get freed
8447 * before we're done setting it up
8448 */
8449 atomic_inc(&dip->pending_bios);
81a75f67 8450 ret = __btrfs_submit_dio_bio(bio, inode,
e65e1535 8451 file_offset, skip_sum,
c329861d 8452 async_submit);
e65e1535
MX
8453 if (ret) {
8454 bio_put(bio);
8455 atomic_dec(&dip->pending_bios);
8456 goto out_err;
8457 }
8458
e65e1535
MX
8459 start_sector += submit_len >> 9;
8460 file_offset += submit_len;
8461
8462 submit_len = 0;
e65e1535
MX
8463
8464 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8465 start_sector, GFP_NOFS);
8466 if (!bio)
8467 goto out_err;
4382e33a
BVA
8468 bio_set_op_attrs(bio, bio_op(orig_bio),
8469 bio_flags(orig_bio));
e65e1535
MX
8470 bio->bi_private = dip;
8471 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8472 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 8473
4f024f37 8474 map_length = orig_bio->bi_iter.bi_size;
37226b21 8475 ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
3ec706c8 8476 start_sector << 9,
e65e1535
MX
8477 &map_length, NULL, 0);
8478 if (ret) {
8479 bio_put(bio);
8480 goto out_err;
8481 }
5f4dc8fc
CR
8482
8483 goto next_block;
e65e1535 8484 } else {
5f4dc8fc
CR
8485 submit_len += blocksize;
8486 if (--nr_sectors) {
8487 i++;
8488 goto next_block;
8489 }
e65e1535
MX
8490 bvec++;
8491 }
8492 }
8493
02f57c7a 8494submit:
81a75f67 8495 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
c329861d 8496 async_submit);
e65e1535
MX
8497 if (!ret)
8498 return 0;
8499
8500 bio_put(bio);
8501out_err:
8502 dip->errors = 1;
8503 /*
8504 * before atomic variable goto zero, we must
8505 * make sure dip->errors is perceived to be set.
8506 */
4e857c58 8507 smp_mb__before_atomic();
e65e1535
MX
8508 if (atomic_dec_and_test(&dip->pending_bios))
8509 bio_io_error(dip->orig_bio);
8510
8511 /* bio_end_io() will handle error, so we needn't return it */
8512 return 0;
8513}
8514
8a4c1e42
MC
8515static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8516 loff_t file_offset)
4b46fce2 8517{
61de718f
FM
8518 struct btrfs_dio_private *dip = NULL;
8519 struct bio *io_bio = NULL;
23ea8e5a 8520 struct btrfs_io_bio *btrfs_bio;
4b46fce2 8521 int skip_sum;
8a4c1e42 8522 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8523 int ret = 0;
8524
8525 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8526
9be3395b 8527 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
8528 if (!io_bio) {
8529 ret = -ENOMEM;
8530 goto free_ordered;
8531 }
8532
c1dc0896 8533 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8534 if (!dip) {
8535 ret = -ENOMEM;
61de718f 8536 goto free_ordered;
4b46fce2 8537 }
4b46fce2 8538
9be3395b 8539 dip->private = dio_bio->bi_private;
4b46fce2
JB
8540 dip->inode = inode;
8541 dip->logical_offset = file_offset;
4f024f37
KO
8542 dip->bytes = dio_bio->bi_iter.bi_size;
8543 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8544 io_bio->bi_private = dip;
9be3395b
CM
8545 dip->orig_bio = io_bio;
8546 dip->dio_bio = dio_bio;
e65e1535 8547 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8548 btrfs_bio = btrfs_io_bio(io_bio);
8549 btrfs_bio->logical = file_offset;
4b46fce2 8550
c1dc0896 8551 if (write) {
9be3395b 8552 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8553 } else {
9be3395b 8554 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8555 dip->subio_endio = btrfs_subio_endio_read;
8556 }
4b46fce2 8557
f28a4928
FM
8558 /*
8559 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8560 * even if we fail to submit a bio, because in such case we do the
8561 * corresponding error handling below and it must not be done a second
8562 * time by btrfs_direct_IO().
8563 */
8564 if (write) {
8565 struct btrfs_dio_data *dio_data = current->journal_info;
8566
8567 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8568 dip->bytes;
8569 dio_data->unsubmitted_oe_range_start =
8570 dio_data->unsubmitted_oe_range_end;
8571 }
8572
81a75f67 8573 ret = btrfs_submit_direct_hook(dip, skip_sum);
e65e1535 8574 if (!ret)
eaf25d93 8575 return;
9be3395b 8576
23ea8e5a
MX
8577 if (btrfs_bio->end_io)
8578 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b 8579
4b46fce2
JB
8580free_ordered:
8581 /*
61de718f
FM
8582 * If we arrived here it means either we failed to submit the dip
8583 * or we either failed to clone the dio_bio or failed to allocate the
8584 * dip. If we cloned the dio_bio and allocated the dip, we can just
8585 * call bio_endio against our io_bio so that we get proper resource
8586 * cleanup if we fail to submit the dip, otherwise, we must do the
8587 * same as btrfs_endio_direct_[write|read] because we can't call these
8588 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8589 */
61de718f 8590 if (io_bio && dip) {
4246a0b6
CH
8591 io_bio->bi_error = -EIO;
8592 bio_endio(io_bio);
61de718f
FM
8593 /*
8594 * The end io callbacks free our dip, do the final put on io_bio
8595 * and all the cleanup and final put for dio_bio (through
8596 * dio_end_io()).
8597 */
8598 dip = NULL;
8599 io_bio = NULL;
8600 } else {
14543774
FM
8601 if (write)
8602 btrfs_endio_direct_write_update_ordered(inode,
8603 file_offset,
8604 dio_bio->bi_iter.bi_size,
8605 0);
8606 else
61de718f
FM
8607 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8608 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8609
4246a0b6 8610 dio_bio->bi_error = -EIO;
61de718f
FM
8611 /*
8612 * Releases and cleans up our dio_bio, no need to bio_put()
8613 * nor bio_endio()/bio_io_error() against dio_bio.
8614 */
8615 dio_end_io(dio_bio, ret);
4b46fce2 8616 }
61de718f
FM
8617 if (io_bio)
8618 bio_put(io_bio);
8619 kfree(dip);
4b46fce2
JB
8620}
8621
6f673763 8622static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
28060d5d 8623 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8624{
8625 int seg;
a1b75f7d 8626 int i;
5a5f79b5
CM
8627 unsigned blocksize_mask = root->sectorsize - 1;
8628 ssize_t retval = -EINVAL;
5a5f79b5
CM
8629
8630 if (offset & blocksize_mask)
8631 goto out;
8632
28060d5d
AV
8633 if (iov_iter_alignment(iter) & blocksize_mask)
8634 goto out;
a1b75f7d 8635
28060d5d 8636 /* If this is a write we don't need to check anymore */
cd27e455 8637 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8638 return 0;
8639 /*
8640 * Check to make sure we don't have duplicate iov_base's in this
8641 * iovec, if so return EINVAL, otherwise we'll get csum errors
8642 * when reading back.
8643 */
8644 for (seg = 0; seg < iter->nr_segs; seg++) {
8645 for (i = seg + 1; i < iter->nr_segs; i++) {
8646 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8647 goto out;
8648 }
5a5f79b5
CM
8649 }
8650 retval = 0;
8651out:
8652 return retval;
8653}
eb838e73 8654
c8b8e32d 8655static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8656{
4b46fce2
JB
8657 struct file *file = iocb->ki_filp;
8658 struct inode *inode = file->f_mapping->host;
50745b0a 8659 struct btrfs_root *root = BTRFS_I(inode)->root;
8660 struct btrfs_dio_data dio_data = { 0 };
c8b8e32d 8661 loff_t offset = iocb->ki_pos;
0934856d 8662 size_t count = 0;
2e60a51e 8663 int flags = 0;
38851cc1
MX
8664 bool wakeup = true;
8665 bool relock = false;
0934856d 8666 ssize_t ret;
4b46fce2 8667
6f673763 8668 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
5a5f79b5 8669 return 0;
3f7c579c 8670
fe0f07d0 8671 inode_dio_begin(inode);
4e857c58 8672 smp_mb__after_atomic();
38851cc1 8673
0e267c44 8674 /*
41bd9ca4
MX
8675 * The generic stuff only does filemap_write_and_wait_range, which
8676 * isn't enough if we've written compressed pages to this area, so
8677 * we need to flush the dirty pages again to make absolutely sure
8678 * that any outstanding dirty pages are on disk.
0e267c44 8679 */
a6cbcd4a 8680 count = iov_iter_count(iter);
41bd9ca4
MX
8681 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8682 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8683 filemap_fdatawrite_range(inode->i_mapping, offset,
8684 offset + count - 1);
0e267c44 8685
6f673763 8686 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8687 /*
8688 * If the write DIO is beyond the EOF, we need update
8689 * the isize, but it is protected by i_mutex. So we can
8690 * not unlock the i_mutex at this case.
8691 */
8692 if (offset + count <= inode->i_size) {
5955102c 8693 inode_unlock(inode);
38851cc1
MX
8694 relock = true;
8695 }
7cf5b976 8696 ret = btrfs_delalloc_reserve_space(inode, offset, count);
0934856d 8697 if (ret)
38851cc1 8698 goto out;
50745b0a 8699 dio_data.outstanding_extents = div64_u64(count +
e1cbbfa5
JB
8700 BTRFS_MAX_EXTENT_SIZE - 1,
8701 BTRFS_MAX_EXTENT_SIZE);
8702
8703 /*
8704 * We need to know how many extents we reserved so that we can
8705 * do the accounting properly if we go over the number we
8706 * originally calculated. Abuse current->journal_info for this.
8707 */
50745b0a 8708 dio_data.reserve = round_up(count, root->sectorsize);
f28a4928
FM
8709 dio_data.unsubmitted_oe_range_start = (u64)offset;
8710 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8711 current->journal_info = &dio_data;
ee39b432
DS
8712 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8713 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8714 inode_dio_end(inode);
38851cc1
MX
8715 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8716 wakeup = false;
0934856d
MX
8717 }
8718
17f8c842
OS
8719 ret = __blockdev_direct_IO(iocb, inode,
8720 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
c8b8e32d 8721 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8722 btrfs_submit_direct, flags);
6f673763 8723 if (iov_iter_rw(iter) == WRITE) {
e1cbbfa5 8724 current->journal_info = NULL;
ddba1bfc 8725 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8726 if (dio_data.reserve)
7cf5b976
QW
8727 btrfs_delalloc_release_space(inode, offset,
8728 dio_data.reserve);
f28a4928
FM
8729 /*
8730 * On error we might have left some ordered extents
8731 * without submitting corresponding bios for them, so
8732 * cleanup them up to avoid other tasks getting them
8733 * and waiting for them to complete forever.
8734 */
8735 if (dio_data.unsubmitted_oe_range_start <
8736 dio_data.unsubmitted_oe_range_end)
8737 btrfs_endio_direct_write_update_ordered(inode,
8738 dio_data.unsubmitted_oe_range_start,
8739 dio_data.unsubmitted_oe_range_end -
8740 dio_data.unsubmitted_oe_range_start,
8741 0);
ddba1bfc 8742 } else if (ret >= 0 && (size_t)ret < count)
7cf5b976
QW
8743 btrfs_delalloc_release_space(inode, offset,
8744 count - (size_t)ret);
0934856d 8745 }
38851cc1 8746out:
2e60a51e 8747 if (wakeup)
fe0f07d0 8748 inode_dio_end(inode);
38851cc1 8749 if (relock)
5955102c 8750 inode_lock(inode);
0934856d
MX
8751
8752 return ret;
16432985
CM
8753}
8754
05dadc09
TI
8755#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8756
1506fcc8
YS
8757static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8758 __u64 start, __u64 len)
8759{
05dadc09
TI
8760 int ret;
8761
8762 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8763 if (ret)
8764 return ret;
8765
ec29ed5b 8766 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8767}
8768
a52d9a80 8769int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8770{
d1310b2e
CM
8771 struct extent_io_tree *tree;
8772 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8773 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8774}
1832a6d5 8775
a52d9a80 8776static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8777{
d1310b2e 8778 struct extent_io_tree *tree;
be7bd730
JB
8779 struct inode *inode = page->mapping->host;
8780 int ret;
b888db2b
CM
8781
8782 if (current->flags & PF_MEMALLOC) {
8783 redirty_page_for_writepage(wbc, page);
8784 unlock_page(page);
8785 return 0;
8786 }
be7bd730
JB
8787
8788 /*
8789 * If we are under memory pressure we will call this directly from the
8790 * VM, we need to make sure we have the inode referenced for the ordered
8791 * extent. If not just return like we didn't do anything.
8792 */
8793 if (!igrab(inode)) {
8794 redirty_page_for_writepage(wbc, page);
8795 return AOP_WRITEPAGE_ACTIVATE;
8796 }
d1310b2e 8797 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8798 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8799 btrfs_add_delayed_iput(inode);
8800 return ret;
9ebefb18
CM
8801}
8802
48a3b636
ES
8803static int btrfs_writepages(struct address_space *mapping,
8804 struct writeback_control *wbc)
b293f02e 8805{
d1310b2e 8806 struct extent_io_tree *tree;
771ed689 8807
d1310b2e 8808 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8809 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8810}
8811
3ab2fb5a
CM
8812static int
8813btrfs_readpages(struct file *file, struct address_space *mapping,
8814 struct list_head *pages, unsigned nr_pages)
8815{
d1310b2e
CM
8816 struct extent_io_tree *tree;
8817 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8818 return extent_readpages(tree, mapping, pages, nr_pages,
8819 btrfs_get_extent);
8820}
e6dcd2dc 8821static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8822{
d1310b2e
CM
8823 struct extent_io_tree *tree;
8824 struct extent_map_tree *map;
a52d9a80 8825 int ret;
8c2383c3 8826
d1310b2e
CM
8827 tree = &BTRFS_I(page->mapping->host)->io_tree;
8828 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8829 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8830 if (ret == 1) {
8831 ClearPagePrivate(page);
8832 set_page_private(page, 0);
09cbfeaf 8833 put_page(page);
39279cc3 8834 }
a52d9a80 8835 return ret;
39279cc3
CM
8836}
8837
e6dcd2dc
CM
8838static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8839{
98509cfc
CM
8840 if (PageWriteback(page) || PageDirty(page))
8841 return 0;
b335b003 8842 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8843}
8844
d47992f8
LC
8845static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8846 unsigned int length)
39279cc3 8847{
5fd02043 8848 struct inode *inode = page->mapping->host;
d1310b2e 8849 struct extent_io_tree *tree;
e6dcd2dc 8850 struct btrfs_ordered_extent *ordered;
2ac55d41 8851 struct extent_state *cached_state = NULL;
e6dcd2dc 8852 u64 page_start = page_offset(page);
09cbfeaf 8853 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8854 u64 start;
8855 u64 end;
131e404a 8856 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8857
8b62b72b
CM
8858 /*
8859 * we have the page locked, so new writeback can't start,
8860 * and the dirty bit won't be cleared while we are here.
8861 *
8862 * Wait for IO on this page so that we can safely clear
8863 * the PagePrivate2 bit and do ordered accounting
8864 */
e6dcd2dc 8865 wait_on_page_writeback(page);
8b62b72b 8866
5fd02043 8867 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8868 if (offset) {
8869 btrfs_releasepage(page, GFP_NOFS);
8870 return;
8871 }
131e404a
FDBM
8872
8873 if (!inode_evicting)
ff13db41 8874 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8875again:
8876 start = page_start;
8877 ordered = btrfs_lookup_ordered_range(inode, start,
8878 page_end - start + 1);
e6dcd2dc 8879 if (ordered) {
dbfdb6d1 8880 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8881 /*
8882 * IO on this page will never be started, so we need
8883 * to account for any ordered extents now
8884 */
131e404a 8885 if (!inode_evicting)
dbfdb6d1 8886 clear_extent_bit(tree, start, end,
131e404a
FDBM
8887 EXTENT_DIRTY | EXTENT_DELALLOC |
8888 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8889 EXTENT_DEFRAG, 1, 0, &cached_state,
8890 GFP_NOFS);
8b62b72b
CM
8891 /*
8892 * whoever cleared the private bit is responsible
8893 * for the finish_ordered_io
8894 */
77cef2ec
JB
8895 if (TestClearPagePrivate2(page)) {
8896 struct btrfs_ordered_inode_tree *tree;
8897 u64 new_len;
8898
8899 tree = &BTRFS_I(inode)->ordered_tree;
8900
8901 spin_lock_irq(&tree->lock);
8902 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8903 new_len = start - ordered->file_offset;
77cef2ec
JB
8904 if (new_len < ordered->truncated_len)
8905 ordered->truncated_len = new_len;
8906 spin_unlock_irq(&tree->lock);
8907
8908 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8909 start,
8910 end - start + 1, 1))
77cef2ec 8911 btrfs_finish_ordered_io(ordered);
8b62b72b 8912 }
e6dcd2dc 8913 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8914 if (!inode_evicting) {
8915 cached_state = NULL;
dbfdb6d1 8916 lock_extent_bits(tree, start, end,
131e404a
FDBM
8917 &cached_state);
8918 }
dbfdb6d1
CR
8919
8920 start = end + 1;
8921 if (start < page_end)
8922 goto again;
131e404a
FDBM
8923 }
8924
b9d0b389
QW
8925 /*
8926 * Qgroup reserved space handler
8927 * Page here will be either
8928 * 1) Already written to disk
8929 * In this case, its reserved space is released from data rsv map
8930 * and will be freed by delayed_ref handler finally.
8931 * So even we call qgroup_free_data(), it won't decrease reserved
8932 * space.
8933 * 2) Not written to disk
8934 * This means the reserved space should be freed here.
8935 */
09cbfeaf 8936 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
131e404a
FDBM
8937 if (!inode_evicting) {
8938 clear_extent_bit(tree, page_start, page_end,
8939 EXTENT_LOCKED | EXTENT_DIRTY |
8940 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8941 EXTENT_DEFRAG, 1, 1,
8942 &cached_state, GFP_NOFS);
8943
8944 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8945 }
e6dcd2dc 8946
4a096752 8947 ClearPageChecked(page);
9ad6b7bc 8948 if (PagePrivate(page)) {
9ad6b7bc
CM
8949 ClearPagePrivate(page);
8950 set_page_private(page, 0);
09cbfeaf 8951 put_page(page);
9ad6b7bc 8952 }
39279cc3
CM
8953}
8954
9ebefb18
CM
8955/*
8956 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8957 * called from a page fault handler when a page is first dirtied. Hence we must
8958 * be careful to check for EOF conditions here. We set the page up correctly
8959 * for a written page which means we get ENOSPC checking when writing into
8960 * holes and correct delalloc and unwritten extent mapping on filesystems that
8961 * support these features.
8962 *
8963 * We are not allowed to take the i_mutex here so we have to play games to
8964 * protect against truncate races as the page could now be beyond EOF. Because
8965 * vmtruncate() writes the inode size before removing pages, once we have the
8966 * page lock we can determine safely if the page is beyond EOF. If it is not
8967 * beyond EOF, then the page is guaranteed safe against truncation until we
8968 * unlock the page.
8969 */
c2ec175c 8970int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8971{
c2ec175c 8972 struct page *page = vmf->page;
496ad9aa 8973 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8974 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8975 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8976 struct btrfs_ordered_extent *ordered;
2ac55d41 8977 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8978 char *kaddr;
8979 unsigned long zero_start;
9ebefb18 8980 loff_t size;
1832a6d5 8981 int ret;
9998eb70 8982 int reserved = 0;
d0b7da88 8983 u64 reserved_space;
a52d9a80 8984 u64 page_start;
e6dcd2dc 8985 u64 page_end;
d0b7da88
CR
8986 u64 end;
8987
09cbfeaf 8988 reserved_space = PAGE_SIZE;
9ebefb18 8989
b2b5ef5c 8990 sb_start_pagefault(inode->i_sb);
df480633 8991 page_start = page_offset(page);
09cbfeaf 8992 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8993 end = page_end;
df480633 8994
d0b7da88
CR
8995 /*
8996 * Reserving delalloc space after obtaining the page lock can lead to
8997 * deadlock. For example, if a dirty page is locked by this function
8998 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8999 * dirty page write out, then the btrfs_writepage() function could
9000 * end up waiting indefinitely to get a lock on the page currently
9001 * being processed by btrfs_page_mkwrite() function.
9002 */
7cf5b976 9003 ret = btrfs_delalloc_reserve_space(inode, page_start,
d0b7da88 9004 reserved_space);
9998eb70 9005 if (!ret) {
e41f941a 9006 ret = file_update_time(vma->vm_file);
9998eb70
CM
9007 reserved = 1;
9008 }
56a76f82
NP
9009 if (ret) {
9010 if (ret == -ENOMEM)
9011 ret = VM_FAULT_OOM;
9012 else /* -ENOSPC, -EIO, etc */
9013 ret = VM_FAULT_SIGBUS;
9998eb70
CM
9014 if (reserved)
9015 goto out;
9016 goto out_noreserve;
56a76f82 9017 }
1832a6d5 9018
56a76f82 9019 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 9020again:
9ebefb18 9021 lock_page(page);
9ebefb18 9022 size = i_size_read(inode);
a52d9a80 9023
9ebefb18 9024 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 9025 (page_start >= size)) {
9ebefb18
CM
9026 /* page got truncated out from underneath us */
9027 goto out_unlock;
9028 }
e6dcd2dc
CM
9029 wait_on_page_writeback(page);
9030
ff13db41 9031 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
9032 set_page_extent_mapped(page);
9033
eb84ae03
CM
9034 /*
9035 * we can't set the delalloc bits if there are pending ordered
9036 * extents. Drop our locks and wait for them to finish
9037 */
d0b7da88 9038 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
e6dcd2dc 9039 if (ordered) {
2ac55d41
JB
9040 unlock_extent_cached(io_tree, page_start, page_end,
9041 &cached_state, GFP_NOFS);
e6dcd2dc 9042 unlock_page(page);
eb84ae03 9043 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
9044 btrfs_put_ordered_extent(ordered);
9045 goto again;
9046 }
9047
09cbfeaf 9048 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
d0b7da88 9049 reserved_space = round_up(size - page_start, root->sectorsize);
09cbfeaf 9050 if (reserved_space < PAGE_SIZE) {
d0b7da88
CR
9051 end = page_start + reserved_space - 1;
9052 spin_lock(&BTRFS_I(inode)->lock);
9053 BTRFS_I(inode)->outstanding_extents++;
9054 spin_unlock(&BTRFS_I(inode)->lock);
9055 btrfs_delalloc_release_space(inode, page_start,
09cbfeaf 9056 PAGE_SIZE - reserved_space);
d0b7da88
CR
9057 }
9058 }
9059
fbf19087
JB
9060 /*
9061 * XXX - page_mkwrite gets called every time the page is dirtied, even
9062 * if it was already dirty, so for space accounting reasons we need to
9063 * clear any delalloc bits for the range we are fixing to save. There
9064 * is probably a better way to do this, but for now keep consistent with
9065 * prepare_pages in the normal write path.
9066 */
d0b7da88 9067 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
9068 EXTENT_DIRTY | EXTENT_DELALLOC |
9069 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 9070 0, 0, &cached_state, GFP_NOFS);
fbf19087 9071
d0b7da88 9072 ret = btrfs_set_extent_delalloc(inode, page_start, end,
ba8b04c1 9073 &cached_state, 0);
9ed74f2d 9074 if (ret) {
2ac55d41
JB
9075 unlock_extent_cached(io_tree, page_start, page_end,
9076 &cached_state, GFP_NOFS);
9ed74f2d
JB
9077 ret = VM_FAULT_SIGBUS;
9078 goto out_unlock;
9079 }
e6dcd2dc 9080 ret = 0;
9ebefb18
CM
9081
9082 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9083 if (page_start + PAGE_SIZE > size)
9084 zero_start = size & ~PAGE_MASK;
9ebefb18 9085 else
09cbfeaf 9086 zero_start = PAGE_SIZE;
9ebefb18 9087
09cbfeaf 9088 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9089 kaddr = kmap(page);
09cbfeaf 9090 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9091 flush_dcache_page(page);
9092 kunmap(page);
9093 }
247e743c 9094 ClearPageChecked(page);
e6dcd2dc 9095 set_page_dirty(page);
50a9b214 9096 SetPageUptodate(page);
5a3f23d5 9097
257c62e1
CM
9098 BTRFS_I(inode)->last_trans = root->fs_info->generation;
9099 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9100 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9101
2ac55d41 9102 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
9103
9104out_unlock:
b2b5ef5c
JK
9105 if (!ret) {
9106 sb_end_pagefault(inode->i_sb);
50a9b214 9107 return VM_FAULT_LOCKED;
b2b5ef5c 9108 }
9ebefb18 9109 unlock_page(page);
1832a6d5 9110out:
d0b7da88 9111 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9998eb70 9112out_noreserve:
b2b5ef5c 9113 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
9114 return ret;
9115}
9116
a41ad394 9117static int btrfs_truncate(struct inode *inode)
39279cc3
CM
9118{
9119 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9120 struct btrfs_block_rsv *rsv;
a71754fc 9121 int ret = 0;
3893e33b 9122 int err = 0;
39279cc3 9123 struct btrfs_trans_handle *trans;
dbe674a9 9124 u64 mask = root->sectorsize - 1;
07127184 9125 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 9126
0ef8b726
JB
9127 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9128 (u64)-1);
9129 if (ret)
9130 return ret;
39279cc3 9131
fcb80c2a 9132 /*
01327610 9133 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9134 * 3 things going on here
9135 *
9136 * 1) We need to reserve space for our orphan item and the space to
9137 * delete our orphan item. Lord knows we don't want to have a dangling
9138 * orphan item because we didn't reserve space to remove it.
9139 *
9140 * 2) We need to reserve space to update our inode.
9141 *
9142 * 3) We need to have something to cache all the space that is going to
9143 * be free'd up by the truncate operation, but also have some slack
9144 * space reserved in case it uses space during the truncate (thank you
9145 * very much snapshotting).
9146 *
01327610 9147 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9148 * space doing the truncate, and we have no earthly idea how much space
01327610 9149 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9150 * doesn't end up using space reserved for updating the inode or
9151 * removing the orphan item. We also need to be able to stop the
9152 * transaction and start a new one, which means we need to be able to
9153 * update the inode several times, and we have no idea of knowing how
9154 * many times that will be, so we can't just reserve 1 item for the
01327610 9155 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9156 * Then there is the orphan item, which does indeed need to be held on
9157 * to for the whole operation, and we need nobody to touch this reserved
9158 * space except the orphan code.
9159 *
9160 * So that leaves us with
9161 *
9162 * 1) root->orphan_block_rsv - for the orphan deletion.
9163 * 2) rsv - for the truncate reservation, which we will steal from the
9164 * transaction reservation.
9165 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9166 * updating the inode.
9167 */
66d8f3dd 9168 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9169 if (!rsv)
9170 return -ENOMEM;
4a338542 9171 rsv->size = min_size;
ca7e70f5 9172 rsv->failfast = 1;
f0cd846e 9173
907cbceb 9174 /*
07127184 9175 * 1 for the truncate slack space
907cbceb
JB
9176 * 1 for updating the inode.
9177 */
f3fe820c 9178 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9179 if (IS_ERR(trans)) {
9180 err = PTR_ERR(trans);
9181 goto out;
9182 }
f0cd846e 9183
907cbceb
JB
9184 /* Migrate the slack space for the truncate to our reserve */
9185 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
25d609f8 9186 min_size, 0);
fcb80c2a 9187 BUG_ON(ret);
f0cd846e 9188
5dc562c5
JB
9189 /*
9190 * So if we truncate and then write and fsync we normally would just
9191 * write the extents that changed, which is a problem if we need to
9192 * first truncate that entire inode. So set this flag so we write out
9193 * all of the extents in the inode to the sync log so we're completely
9194 * safe.
9195 */
9196 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9197 trans->block_rsv = rsv;
907cbceb 9198
8082510e
YZ
9199 while (1) {
9200 ret = btrfs_truncate_inode_items(trans, root, inode,
9201 inode->i_size,
9202 BTRFS_EXTENT_DATA_KEY);
28ed1345 9203 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9204 err = ret;
8082510e 9205 break;
3893e33b 9206 }
39279cc3 9207
fcb80c2a 9208 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 9209 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9210 if (ret) {
9211 err = ret;
9212 break;
9213 }
ca7e70f5 9214
8082510e 9215 btrfs_end_transaction(trans, root);
b53d3f5d 9216 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
9217
9218 trans = btrfs_start_transaction(root, 2);
9219 if (IS_ERR(trans)) {
9220 ret = err = PTR_ERR(trans);
9221 trans = NULL;
9222 break;
9223 }
9224
9225 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
25d609f8 9226 rsv, min_size, 0);
ca7e70f5
JB
9227 BUG_ON(ret); /* shouldn't happen */
9228 trans->block_rsv = rsv;
8082510e
YZ
9229 }
9230
9231 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9232 trans->block_rsv = root->orphan_block_rsv;
8082510e 9233 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
9234 if (ret)
9235 err = ret;
8082510e
YZ
9236 }
9237
917c16b2
CM
9238 if (trans) {
9239 trans->block_rsv = &root->fs_info->trans_block_rsv;
9240 ret = btrfs_update_inode(trans, root, inode);
9241 if (ret && !err)
9242 err = ret;
7b128766 9243
7ad85bb7 9244 ret = btrfs_end_transaction(trans, root);
b53d3f5d 9245 btrfs_btree_balance_dirty(root);
917c16b2 9246 }
fcb80c2a
JB
9247out:
9248 btrfs_free_block_rsv(root, rsv);
9249
3893e33b
JB
9250 if (ret && !err)
9251 err = ret;
a41ad394 9252
3893e33b 9253 return err;
39279cc3
CM
9254}
9255
d352ac68
CM
9256/*
9257 * create a new subvolume directory/inode (helper for the ioctl).
9258 */
d2fb3437 9259int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9260 struct btrfs_root *new_root,
9261 struct btrfs_root *parent_root,
9262 u64 new_dirid)
39279cc3 9263{
39279cc3 9264 struct inode *inode;
76dda93c 9265 int err;
00e4e6b3 9266 u64 index = 0;
39279cc3 9267
12fc9d09
FA
9268 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9269 new_dirid, new_dirid,
9270 S_IFDIR | (~current_umask() & S_IRWXUGO),
9271 &index);
54aa1f4d 9272 if (IS_ERR(inode))
f46b5a66 9273 return PTR_ERR(inode);
39279cc3
CM
9274 inode->i_op = &btrfs_dir_inode_operations;
9275 inode->i_fop = &btrfs_dir_file_operations;
9276
bfe86848 9277 set_nlink(inode, 1);
dbe674a9 9278 btrfs_i_size_write(inode, 0);
b0d5d10f 9279 unlock_new_inode(inode);
3b96362c 9280
63541927
FDBM
9281 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9282 if (err)
9283 btrfs_err(new_root->fs_info,
351fd353 9284 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9285 new_root->root_key.objectid, err);
9286
76dda93c 9287 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9288
76dda93c 9289 iput(inode);
ce598979 9290 return err;
39279cc3
CM
9291}
9292
39279cc3
CM
9293struct inode *btrfs_alloc_inode(struct super_block *sb)
9294{
9295 struct btrfs_inode *ei;
2ead6ae7 9296 struct inode *inode;
39279cc3
CM
9297
9298 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9299 if (!ei)
9300 return NULL;
2ead6ae7
YZ
9301
9302 ei->root = NULL;
2ead6ae7 9303 ei->generation = 0;
15ee9bc7 9304 ei->last_trans = 0;
257c62e1 9305 ei->last_sub_trans = 0;
e02119d5 9306 ei->logged_trans = 0;
2ead6ae7 9307 ei->delalloc_bytes = 0;
47059d93 9308 ei->defrag_bytes = 0;
2ead6ae7
YZ
9309 ei->disk_i_size = 0;
9310 ei->flags = 0;
7709cde3 9311 ei->csum_bytes = 0;
2ead6ae7 9312 ei->index_cnt = (u64)-1;
67de1176 9313 ei->dir_index = 0;
2ead6ae7 9314 ei->last_unlink_trans = 0;
46d8bc34 9315 ei->last_log_commit = 0;
8089fe62 9316 ei->delayed_iput_count = 0;
2ead6ae7 9317
9e0baf60
JB
9318 spin_lock_init(&ei->lock);
9319 ei->outstanding_extents = 0;
9320 ei->reserved_extents = 0;
2ead6ae7 9321
72ac3c0d 9322 ei->runtime_flags = 0;
261507a0 9323 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9324
16cdcec7
MX
9325 ei->delayed_node = NULL;
9326
9cc97d64 9327 ei->i_otime.tv_sec = 0;
9328 ei->i_otime.tv_nsec = 0;
9329
2ead6ae7 9330 inode = &ei->vfs_inode;
a8067e02 9331 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
9332 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9333 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
9334 ei->io_tree.track_uptodate = 1;
9335 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9336 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9337 mutex_init(&ei->log_mutex);
f248679e 9338 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9339 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9340 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9341 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9342 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9343 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9344
9345 return inode;
39279cc3
CM
9346}
9347
aaedb55b
JB
9348#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9349void btrfs_test_destroy_inode(struct inode *inode)
9350{
9351 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9352 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9353}
9354#endif
9355
fa0d7e3d
NP
9356static void btrfs_i_callback(struct rcu_head *head)
9357{
9358 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9359 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9360}
9361
39279cc3
CM
9362void btrfs_destroy_inode(struct inode *inode)
9363{
e6dcd2dc 9364 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9365 struct btrfs_root *root = BTRFS_I(inode)->root;
9366
b3d9b7a3 9367 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9368 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9369 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9370 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
9371 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9372 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9373 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9374
a6dbd429
JB
9375 /*
9376 * This can happen where we create an inode, but somebody else also
9377 * created the same inode and we need to destroy the one we already
9378 * created.
9379 */
9380 if (!root)
9381 goto free;
9382
8a35d95f
JB
9383 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9384 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 9385 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 9386 btrfs_ino(inode));
8a35d95f 9387 atomic_dec(&root->orphan_inodes);
7b128766 9388 }
7b128766 9389
d397712b 9390 while (1) {
e6dcd2dc
CM
9391 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9392 if (!ordered)
9393 break;
9394 else {
5d163e0e
JM
9395 btrfs_err(root->fs_info,
9396 "found ordered extent %llu %llu on inode cleanup",
9397 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9398 btrfs_remove_ordered_extent(inode, ordered);
9399 btrfs_put_ordered_extent(ordered);
9400 btrfs_put_ordered_extent(ordered);
9401 }
9402 }
56fa9d07 9403 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9404 inode_tree_del(inode);
5b21f2ed 9405 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 9406free:
fa0d7e3d 9407 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9408}
9409
45321ac5 9410int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9411{
9412 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9413
6379ef9f
NA
9414 if (root == NULL)
9415 return 1;
9416
fa6ac876 9417 /* the snap/subvol tree is on deleting */
69e9c6c6 9418 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9419 return 1;
76dda93c 9420 else
45321ac5 9421 return generic_drop_inode(inode);
76dda93c
YZ
9422}
9423
0ee0fda0 9424static void init_once(void *foo)
39279cc3
CM
9425{
9426 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9427
9428 inode_init_once(&ei->vfs_inode);
9429}
9430
9431void btrfs_destroy_cachep(void)
9432{
8c0a8537
KS
9433 /*
9434 * Make sure all delayed rcu free inodes are flushed before we
9435 * destroy cache.
9436 */
9437 rcu_barrier();
5598e900
KM
9438 kmem_cache_destroy(btrfs_inode_cachep);
9439 kmem_cache_destroy(btrfs_trans_handle_cachep);
9440 kmem_cache_destroy(btrfs_transaction_cachep);
9441 kmem_cache_destroy(btrfs_path_cachep);
9442 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9443}
9444
9445int btrfs_init_cachep(void)
9446{
837e1972 9447 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9448 sizeof(struct btrfs_inode), 0,
5d097056
VD
9449 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9450 init_once);
39279cc3
CM
9451 if (!btrfs_inode_cachep)
9452 goto fail;
9601e3f6 9453
837e1972 9454 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9455 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9456 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9457 if (!btrfs_trans_handle_cachep)
9458 goto fail;
9601e3f6 9459
837e1972 9460 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6 9461 sizeof(struct btrfs_transaction), 0,
fba4b697 9462 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9463 if (!btrfs_transaction_cachep)
9464 goto fail;
9601e3f6 9465
837e1972 9466 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9467 sizeof(struct btrfs_path), 0,
fba4b697 9468 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9469 if (!btrfs_path_cachep)
9470 goto fail;
9601e3f6 9471
837e1972 9472 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9473 sizeof(struct btrfs_free_space), 0,
fba4b697 9474 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9475 if (!btrfs_free_space_cachep)
9476 goto fail;
9477
39279cc3
CM
9478 return 0;
9479fail:
9480 btrfs_destroy_cachep();
9481 return -ENOMEM;
9482}
9483
9484static int btrfs_getattr(struct vfsmount *mnt,
9485 struct dentry *dentry, struct kstat *stat)
9486{
df0af1a5 9487 u64 delalloc_bytes;
2b0143b5 9488 struct inode *inode = d_inode(dentry);
fadc0d8b
DS
9489 u32 blocksize = inode->i_sb->s_blocksize;
9490
39279cc3 9491 generic_fillattr(inode, stat);
0ee5dc67 9492 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9493
9494 spin_lock(&BTRFS_I(inode)->lock);
9495 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9496 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9497 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9498 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9499 return 0;
9500}
9501
cdd1fedf
DF
9502static int btrfs_rename_exchange(struct inode *old_dir,
9503 struct dentry *old_dentry,
9504 struct inode *new_dir,
9505 struct dentry *new_dentry)
9506{
9507 struct btrfs_trans_handle *trans;
9508 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9509 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9510 struct inode *new_inode = new_dentry->d_inode;
9511 struct inode *old_inode = old_dentry->d_inode;
c2050a45 9512 struct timespec ctime = current_time(old_inode);
cdd1fedf
DF
9513 struct dentry *parent;
9514 u64 old_ino = btrfs_ino(old_inode);
9515 u64 new_ino = btrfs_ino(new_inode);
9516 u64 old_idx = 0;
9517 u64 new_idx = 0;
9518 u64 root_objectid;
9519 int ret;
86e8aa0e
FM
9520 bool root_log_pinned = false;
9521 bool dest_log_pinned = false;
cdd1fedf
DF
9522
9523 /* we only allow rename subvolume link between subvolumes */
9524 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9525 return -EXDEV;
9526
9527 /* close the race window with snapshot create/destroy ioctl */
9528 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9529 down_read(&root->fs_info->subvol_sem);
9530 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9531 down_read(&dest->fs_info->subvol_sem);
9532
9533 /*
9534 * We want to reserve the absolute worst case amount of items. So if
9535 * both inodes are subvols and we need to unlink them then that would
9536 * require 4 item modifications, but if they are both normal inodes it
9537 * would require 5 item modifications, so we'll assume their normal
9538 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9539 * should cover the worst case number of items we'll modify.
9540 */
9541 trans = btrfs_start_transaction(root, 12);
9542 if (IS_ERR(trans)) {
9543 ret = PTR_ERR(trans);
9544 goto out_notrans;
9545 }
9546
9547 /*
9548 * We need to find a free sequence number both in the source and
9549 * in the destination directory for the exchange.
9550 */
9551 ret = btrfs_set_inode_index(new_dir, &old_idx);
9552 if (ret)
9553 goto out_fail;
9554 ret = btrfs_set_inode_index(old_dir, &new_idx);
9555 if (ret)
9556 goto out_fail;
9557
9558 BTRFS_I(old_inode)->dir_index = 0ULL;
9559 BTRFS_I(new_inode)->dir_index = 0ULL;
9560
9561 /* Reference for the source. */
9562 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9563 /* force full log commit if subvolume involved. */
9564 btrfs_set_log_full_commit(root->fs_info, trans);
9565 } else {
376e5a57
FM
9566 btrfs_pin_log_trans(root);
9567 root_log_pinned = true;
cdd1fedf
DF
9568 ret = btrfs_insert_inode_ref(trans, dest,
9569 new_dentry->d_name.name,
9570 new_dentry->d_name.len,
9571 old_ino,
9572 btrfs_ino(new_dir), old_idx);
9573 if (ret)
9574 goto out_fail;
cdd1fedf
DF
9575 }
9576
9577 /* And now for the dest. */
9578 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9579 /* force full log commit if subvolume involved. */
9580 btrfs_set_log_full_commit(dest->fs_info, trans);
9581 } else {
376e5a57
FM
9582 btrfs_pin_log_trans(dest);
9583 dest_log_pinned = true;
cdd1fedf
DF
9584 ret = btrfs_insert_inode_ref(trans, root,
9585 old_dentry->d_name.name,
9586 old_dentry->d_name.len,
9587 new_ino,
9588 btrfs_ino(old_dir), new_idx);
9589 if (ret)
9590 goto out_fail;
cdd1fedf
DF
9591 }
9592
9593 /* Update inode version and ctime/mtime. */
9594 inode_inc_iversion(old_dir);
9595 inode_inc_iversion(new_dir);
9596 inode_inc_iversion(old_inode);
9597 inode_inc_iversion(new_inode);
9598 old_dir->i_ctime = old_dir->i_mtime = ctime;
9599 new_dir->i_ctime = new_dir->i_mtime = ctime;
9600 old_inode->i_ctime = ctime;
9601 new_inode->i_ctime = ctime;
9602
9603 if (old_dentry->d_parent != new_dentry->d_parent) {
9604 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9605 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9606 }
9607
9608 /* src is a subvolume */
9609 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9610 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9611 ret = btrfs_unlink_subvol(trans, root, old_dir,
9612 root_objectid,
9613 old_dentry->d_name.name,
9614 old_dentry->d_name.len);
9615 } else { /* src is an inode */
9616 ret = __btrfs_unlink_inode(trans, root, old_dir,
9617 old_dentry->d_inode,
9618 old_dentry->d_name.name,
9619 old_dentry->d_name.len);
9620 if (!ret)
9621 ret = btrfs_update_inode(trans, root, old_inode);
9622 }
9623 if (ret) {
66642832 9624 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9625 goto out_fail;
9626 }
9627
9628 /* dest is a subvolume */
9629 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9630 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9631 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9632 root_objectid,
9633 new_dentry->d_name.name,
9634 new_dentry->d_name.len);
9635 } else { /* dest is an inode */
9636 ret = __btrfs_unlink_inode(trans, dest, new_dir,
9637 new_dentry->d_inode,
9638 new_dentry->d_name.name,
9639 new_dentry->d_name.len);
9640 if (!ret)
9641 ret = btrfs_update_inode(trans, dest, new_inode);
9642 }
9643 if (ret) {
66642832 9644 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9645 goto out_fail;
9646 }
9647
9648 ret = btrfs_add_link(trans, new_dir, old_inode,
9649 new_dentry->d_name.name,
9650 new_dentry->d_name.len, 0, old_idx);
9651 if (ret) {
66642832 9652 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9653 goto out_fail;
9654 }
9655
9656 ret = btrfs_add_link(trans, old_dir, new_inode,
9657 old_dentry->d_name.name,
9658 old_dentry->d_name.len, 0, new_idx);
9659 if (ret) {
66642832 9660 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9661 goto out_fail;
9662 }
9663
9664 if (old_inode->i_nlink == 1)
9665 BTRFS_I(old_inode)->dir_index = old_idx;
9666 if (new_inode->i_nlink == 1)
9667 BTRFS_I(new_inode)->dir_index = new_idx;
9668
86e8aa0e 9669 if (root_log_pinned) {
cdd1fedf
DF
9670 parent = new_dentry->d_parent;
9671 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9672 btrfs_end_log_trans(root);
86e8aa0e 9673 root_log_pinned = false;
cdd1fedf 9674 }
86e8aa0e 9675 if (dest_log_pinned) {
cdd1fedf
DF
9676 parent = old_dentry->d_parent;
9677 btrfs_log_new_name(trans, new_inode, new_dir, parent);
9678 btrfs_end_log_trans(dest);
86e8aa0e 9679 dest_log_pinned = false;
cdd1fedf
DF
9680 }
9681out_fail:
86e8aa0e
FM
9682 /*
9683 * If we have pinned a log and an error happened, we unpin tasks
9684 * trying to sync the log and force them to fallback to a transaction
9685 * commit if the log currently contains any of the inodes involved in
9686 * this rename operation (to ensure we do not persist a log with an
9687 * inconsistent state for any of these inodes or leading to any
9688 * inconsistencies when replayed). If the transaction was aborted, the
9689 * abortion reason is propagated to userspace when attempting to commit
9690 * the transaction. If the log does not contain any of these inodes, we
9691 * allow the tasks to sync it.
9692 */
9693 if (ret && (root_log_pinned || dest_log_pinned)) {
9694 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9695 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9696 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9697 (new_inode &&
9698 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9699 btrfs_set_log_full_commit(root->fs_info, trans);
9700
9701 if (root_log_pinned) {
9702 btrfs_end_log_trans(root);
9703 root_log_pinned = false;
9704 }
9705 if (dest_log_pinned) {
9706 btrfs_end_log_trans(dest);
9707 dest_log_pinned = false;
9708 }
9709 }
cdd1fedf
DF
9710 ret = btrfs_end_transaction(trans, root);
9711out_notrans:
9712 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9713 up_read(&dest->fs_info->subvol_sem);
9714 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9715 up_read(&root->fs_info->subvol_sem);
9716
9717 return ret;
9718}
9719
9720static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9721 struct btrfs_root *root,
9722 struct inode *dir,
9723 struct dentry *dentry)
9724{
9725 int ret;
9726 struct inode *inode;
9727 u64 objectid;
9728 u64 index;
9729
9730 ret = btrfs_find_free_ino(root, &objectid);
9731 if (ret)
9732 return ret;
9733
9734 inode = btrfs_new_inode(trans, root, dir,
9735 dentry->d_name.name,
9736 dentry->d_name.len,
9737 btrfs_ino(dir),
9738 objectid,
9739 S_IFCHR | WHITEOUT_MODE,
9740 &index);
9741
9742 if (IS_ERR(inode)) {
9743 ret = PTR_ERR(inode);
9744 return ret;
9745 }
9746
9747 inode->i_op = &btrfs_special_inode_operations;
9748 init_special_inode(inode, inode->i_mode,
9749 WHITEOUT_DEV);
9750
9751 ret = btrfs_init_inode_security(trans, inode, dir,
9752 &dentry->d_name);
9753 if (ret)
c9901618 9754 goto out;
cdd1fedf
DF
9755
9756 ret = btrfs_add_nondir(trans, dir, dentry,
9757 inode, 0, index);
9758 if (ret)
c9901618 9759 goto out;
cdd1fedf
DF
9760
9761 ret = btrfs_update_inode(trans, root, inode);
c9901618 9762out:
cdd1fedf 9763 unlock_new_inode(inode);
c9901618
FM
9764 if (ret)
9765 inode_dec_link_count(inode);
cdd1fedf
DF
9766 iput(inode);
9767
c9901618 9768 return ret;
cdd1fedf
DF
9769}
9770
d397712b 9771static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9772 struct inode *new_dir, struct dentry *new_dentry,
9773 unsigned int flags)
39279cc3
CM
9774{
9775 struct btrfs_trans_handle *trans;
5062af35 9776 unsigned int trans_num_items;
39279cc3 9777 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9778 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9779 struct inode *new_inode = d_inode(new_dentry);
9780 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9781 u64 index = 0;
4df27c4d 9782 u64 root_objectid;
39279cc3 9783 int ret;
33345d01 9784 u64 old_ino = btrfs_ino(old_inode);
3dc9e8f7 9785 bool log_pinned = false;
39279cc3 9786
33345d01 9787 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9788 return -EPERM;
9789
4df27c4d 9790 /* we only allow rename subvolume link between subvolumes */
33345d01 9791 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9792 return -EXDEV;
9793
33345d01
LZ
9794 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9795 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9796 return -ENOTEMPTY;
5f39d397 9797
4df27c4d
YZ
9798 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9799 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9800 return -ENOTEMPTY;
9c52057c
CM
9801
9802
9803 /* check for collisions, even if the name isn't there */
4871c158 9804 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9805 new_dentry->d_name.name,
9806 new_dentry->d_name.len);
9807
9808 if (ret) {
9809 if (ret == -EEXIST) {
9810 /* we shouldn't get
9811 * eexist without a new_inode */
fae7f21c 9812 if (WARN_ON(!new_inode)) {
9c52057c
CM
9813 return ret;
9814 }
9815 } else {
9816 /* maybe -EOVERFLOW */
9817 return ret;
9818 }
9819 }
9820 ret = 0;
9821
5a3f23d5 9822 /*
8d875f95
CM
9823 * we're using rename to replace one file with another. Start IO on it
9824 * now so we don't add too much work to the end of the transaction
5a3f23d5 9825 */
8d875f95 9826 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9827 filemap_flush(old_inode->i_mapping);
9828
76dda93c 9829 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9830 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9831 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
9832 /*
9833 * We want to reserve the absolute worst case amount of items. So if
9834 * both inodes are subvols and we need to unlink them then that would
9835 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9836 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9837 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9838 * should cover the worst case number of items we'll modify.
5062af35
FM
9839 * If our rename has the whiteout flag, we need more 5 units for the
9840 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9841 * when selinux is enabled).
a22285a6 9842 */
5062af35
FM
9843 trans_num_items = 11;
9844 if (flags & RENAME_WHITEOUT)
9845 trans_num_items += 5;
9846 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9847 if (IS_ERR(trans)) {
cdd1fedf
DF
9848 ret = PTR_ERR(trans);
9849 goto out_notrans;
9850 }
76dda93c 9851
4df27c4d
YZ
9852 if (dest != root)
9853 btrfs_record_root_in_trans(trans, dest);
5f39d397 9854
a5719521
YZ
9855 ret = btrfs_set_inode_index(new_dir, &index);
9856 if (ret)
9857 goto out_fail;
5a3f23d5 9858
67de1176 9859 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9860 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9861 /* force full log commit if subvolume involved. */
995946dd 9862 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 9863 } else {
c4aba954
FM
9864 btrfs_pin_log_trans(root);
9865 log_pinned = true;
a5719521
YZ
9866 ret = btrfs_insert_inode_ref(trans, dest,
9867 new_dentry->d_name.name,
9868 new_dentry->d_name.len,
33345d01
LZ
9869 old_ino,
9870 btrfs_ino(new_dir), index);
a5719521
YZ
9871 if (ret)
9872 goto out_fail;
4df27c4d 9873 }
5a3f23d5 9874
0c4d2d95
JB
9875 inode_inc_iversion(old_dir);
9876 inode_inc_iversion(new_dir);
9877 inode_inc_iversion(old_inode);
04b285f3
DD
9878 old_dir->i_ctime = old_dir->i_mtime =
9879 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9880 old_inode->i_ctime = current_time(old_dir);
5f39d397 9881
12fcfd22
CM
9882 if (old_dentry->d_parent != new_dentry->d_parent)
9883 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9884
33345d01 9885 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9886 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9887 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9888 old_dentry->d_name.name,
9889 old_dentry->d_name.len);
9890 } else {
92986796 9891 ret = __btrfs_unlink_inode(trans, root, old_dir,
2b0143b5 9892 d_inode(old_dentry),
92986796
AV
9893 old_dentry->d_name.name,
9894 old_dentry->d_name.len);
9895 if (!ret)
9896 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9897 }
79787eaa 9898 if (ret) {
66642832 9899 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9900 goto out_fail;
9901 }
39279cc3
CM
9902
9903 if (new_inode) {
0c4d2d95 9904 inode_inc_iversion(new_inode);
c2050a45 9905 new_inode->i_ctime = current_time(new_inode);
33345d01 9906 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
9907 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9908 root_objectid = BTRFS_I(new_inode)->location.objectid;
9909 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9910 root_objectid,
9911 new_dentry->d_name.name,
9912 new_dentry->d_name.len);
9913 BUG_ON(new_inode->i_nlink == 0);
9914 } else {
9915 ret = btrfs_unlink_inode(trans, dest, new_dir,
2b0143b5 9916 d_inode(new_dentry),
4df27c4d
YZ
9917 new_dentry->d_name.name,
9918 new_dentry->d_name.len);
9919 }
4ef31a45 9920 if (!ret && new_inode->i_nlink == 0)
2b0143b5 9921 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
79787eaa 9922 if (ret) {
66642832 9923 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9924 goto out_fail;
9925 }
39279cc3 9926 }
aec7477b 9927
4df27c4d
YZ
9928 ret = btrfs_add_link(trans, new_dir, old_inode,
9929 new_dentry->d_name.name,
a5719521 9930 new_dentry->d_name.len, 0, index);
79787eaa 9931 if (ret) {
66642832 9932 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9933 goto out_fail;
9934 }
39279cc3 9935
67de1176
MX
9936 if (old_inode->i_nlink == 1)
9937 BTRFS_I(old_inode)->dir_index = index;
9938
3dc9e8f7 9939 if (log_pinned) {
10d9f309 9940 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9941
6a912213 9942 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d 9943 btrfs_end_log_trans(root);
3dc9e8f7 9944 log_pinned = false;
4df27c4d 9945 }
cdd1fedf
DF
9946
9947 if (flags & RENAME_WHITEOUT) {
9948 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9949 old_dentry);
9950
9951 if (ret) {
66642832 9952 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9953 goto out_fail;
9954 }
4df27c4d 9955 }
39279cc3 9956out_fail:
3dc9e8f7
FM
9957 /*
9958 * If we have pinned the log and an error happened, we unpin tasks
9959 * trying to sync the log and force them to fallback to a transaction
9960 * commit if the log currently contains any of the inodes involved in
9961 * this rename operation (to ensure we do not persist a log with an
9962 * inconsistent state for any of these inodes or leading to any
9963 * inconsistencies when replayed). If the transaction was aborted, the
9964 * abortion reason is propagated to userspace when attempting to commit
9965 * the transaction. If the log does not contain any of these inodes, we
9966 * allow the tasks to sync it.
9967 */
9968 if (ret && log_pinned) {
9969 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9970 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9971 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9972 (new_inode &&
9973 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9974 btrfs_set_log_full_commit(root->fs_info, trans);
9975
9976 btrfs_end_log_trans(root);
9977 log_pinned = false;
9978 }
7ad85bb7 9979 btrfs_end_transaction(trans, root);
b44c59a8 9980out_notrans:
33345d01 9981 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9982 up_read(&root->fs_info->subvol_sem);
9ed74f2d 9983
39279cc3
CM
9984 return ret;
9985}
9986
80ace85c
MS
9987static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9988 struct inode *new_dir, struct dentry *new_dentry,
9989 unsigned int flags)
9990{
cdd1fedf 9991 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9992 return -EINVAL;
9993
cdd1fedf
DF
9994 if (flags & RENAME_EXCHANGE)
9995 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9996 new_dentry);
9997
9998 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9999}
10000
8ccf6f19
MX
10001static void btrfs_run_delalloc_work(struct btrfs_work *work)
10002{
10003 struct btrfs_delalloc_work *delalloc_work;
9f23e289 10004 struct inode *inode;
8ccf6f19
MX
10005
10006 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10007 work);
9f23e289 10008 inode = delalloc_work->inode;
30424601
DS
10009 filemap_flush(inode->i_mapping);
10010 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10011 &BTRFS_I(inode)->runtime_flags))
9f23e289 10012 filemap_flush(inode->i_mapping);
8ccf6f19
MX
10013
10014 if (delalloc_work->delay_iput)
9f23e289 10015 btrfs_add_delayed_iput(inode);
8ccf6f19 10016 else
9f23e289 10017 iput(inode);
8ccf6f19
MX
10018 complete(&delalloc_work->completion);
10019}
10020
10021struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 10022 int delay_iput)
8ccf6f19
MX
10023{
10024 struct btrfs_delalloc_work *work;
10025
100d5702 10026 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
10027 if (!work)
10028 return NULL;
10029
10030 init_completion(&work->completion);
10031 INIT_LIST_HEAD(&work->list);
10032 work->inode = inode;
8ccf6f19 10033 work->delay_iput = delay_iput;
9e0af237
LB
10034 WARN_ON_ONCE(!inode);
10035 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10036 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
10037
10038 return work;
10039}
10040
10041void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10042{
10043 wait_for_completion(&work->completion);
100d5702 10044 kfree(work);
8ccf6f19
MX
10045}
10046
d352ac68
CM
10047/*
10048 * some fairly slow code that needs optimization. This walks the list
10049 * of all the inodes with pending delalloc and forces them to disk.
10050 */
6c255e67
MX
10051static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10052 int nr)
ea8c2819 10053{
ea8c2819 10054 struct btrfs_inode *binode;
5b21f2ed 10055 struct inode *inode;
8ccf6f19
MX
10056 struct btrfs_delalloc_work *work, *next;
10057 struct list_head works;
1eafa6c7 10058 struct list_head splice;
8ccf6f19 10059 int ret = 0;
ea8c2819 10060
8ccf6f19 10061 INIT_LIST_HEAD(&works);
1eafa6c7 10062 INIT_LIST_HEAD(&splice);
63607cc8 10063
573bfb72 10064 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10065 spin_lock(&root->delalloc_lock);
10066 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10067 while (!list_empty(&splice)) {
10068 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10069 delalloc_inodes);
1eafa6c7 10070
eb73c1b7
MX
10071 list_move_tail(&binode->delalloc_inodes,
10072 &root->delalloc_inodes);
5b21f2ed 10073 inode = igrab(&binode->vfs_inode);
df0af1a5 10074 if (!inode) {
eb73c1b7 10075 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10076 continue;
df0af1a5 10077 }
eb73c1b7 10078 spin_unlock(&root->delalloc_lock);
1eafa6c7 10079
651d494a 10080 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10081 if (!work) {
f4ab9ea7
JB
10082 if (delay_iput)
10083 btrfs_add_delayed_iput(inode);
10084 else
10085 iput(inode);
1eafa6c7 10086 ret = -ENOMEM;
a1ecaabb 10087 goto out;
5b21f2ed 10088 }
1eafa6c7 10089 list_add_tail(&work->list, &works);
a44903ab
QW
10090 btrfs_queue_work(root->fs_info->flush_workers,
10091 &work->work);
6c255e67
MX
10092 ret++;
10093 if (nr != -1 && ret >= nr)
a1ecaabb 10094 goto out;
5b21f2ed 10095 cond_resched();
eb73c1b7 10096 spin_lock(&root->delalloc_lock);
ea8c2819 10097 }
eb73c1b7 10098 spin_unlock(&root->delalloc_lock);
8c8bee1d 10099
a1ecaabb 10100out:
eb73c1b7
MX
10101 list_for_each_entry_safe(work, next, &works, list) {
10102 list_del_init(&work->list);
10103 btrfs_wait_and_free_delalloc_work(work);
10104 }
10105
10106 if (!list_empty_careful(&splice)) {
10107 spin_lock(&root->delalloc_lock);
10108 list_splice_tail(&splice, &root->delalloc_inodes);
10109 spin_unlock(&root->delalloc_lock);
10110 }
573bfb72 10111 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10112 return ret;
10113}
1eafa6c7 10114
eb73c1b7
MX
10115int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10116{
10117 int ret;
1eafa6c7 10118
2c21b4d7 10119 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
10120 return -EROFS;
10121
6c255e67
MX
10122 ret = __start_delalloc_inodes(root, delay_iput, -1);
10123 if (ret > 0)
10124 ret = 0;
eb73c1b7
MX
10125 /*
10126 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
10127 * we have to make sure the IO is actually started and that
10128 * ordered extents get created before we return
10129 */
10130 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 10131 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 10132 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 10133 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
10134 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10135 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
10136 }
10137 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
10138 return ret;
10139}
10140
6c255e67
MX
10141int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10142 int nr)
eb73c1b7
MX
10143{
10144 struct btrfs_root *root;
10145 struct list_head splice;
10146 int ret;
10147
2c21b4d7 10148 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10149 return -EROFS;
10150
10151 INIT_LIST_HEAD(&splice);
10152
573bfb72 10153 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10154 spin_lock(&fs_info->delalloc_root_lock);
10155 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10156 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10157 root = list_first_entry(&splice, struct btrfs_root,
10158 delalloc_root);
10159 root = btrfs_grab_fs_root(root);
10160 BUG_ON(!root);
10161 list_move_tail(&root->delalloc_root,
10162 &fs_info->delalloc_roots);
10163 spin_unlock(&fs_info->delalloc_root_lock);
10164
6c255e67 10165 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10166 btrfs_put_fs_root(root);
6c255e67 10167 if (ret < 0)
eb73c1b7
MX
10168 goto out;
10169
6c255e67
MX
10170 if (nr != -1) {
10171 nr -= ret;
10172 WARN_ON(nr < 0);
10173 }
eb73c1b7 10174 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10175 }
eb73c1b7 10176 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10177
6c255e67 10178 ret = 0;
eb73c1b7
MX
10179 atomic_inc(&fs_info->async_submit_draining);
10180 while (atomic_read(&fs_info->nr_async_submits) ||
10181 atomic_read(&fs_info->async_delalloc_pages)) {
10182 wait_event(fs_info->async_submit_wait,
10183 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10184 atomic_read(&fs_info->async_delalloc_pages) == 0));
10185 }
10186 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 10187out:
1eafa6c7 10188 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10189 spin_lock(&fs_info->delalloc_root_lock);
10190 list_splice_tail(&splice, &fs_info->delalloc_roots);
10191 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10192 }
573bfb72 10193 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10194 return ret;
ea8c2819
CM
10195}
10196
39279cc3
CM
10197static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10198 const char *symname)
10199{
10200 struct btrfs_trans_handle *trans;
10201 struct btrfs_root *root = BTRFS_I(dir)->root;
10202 struct btrfs_path *path;
10203 struct btrfs_key key;
1832a6d5 10204 struct inode *inode = NULL;
39279cc3
CM
10205 int err;
10206 int drop_inode = 0;
10207 u64 objectid;
67871254 10208 u64 index = 0;
39279cc3
CM
10209 int name_len;
10210 int datasize;
5f39d397 10211 unsigned long ptr;
39279cc3 10212 struct btrfs_file_extent_item *ei;
5f39d397 10213 struct extent_buffer *leaf;
39279cc3 10214
f06becc4 10215 name_len = strlen(symname);
39279cc3
CM
10216 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10217 return -ENAMETOOLONG;
1832a6d5 10218
9ed74f2d
JB
10219 /*
10220 * 2 items for inode item and ref
10221 * 2 items for dir items
9269d12b
FM
10222 * 1 item for updating parent inode item
10223 * 1 item for the inline extent item
9ed74f2d
JB
10224 * 1 item for xattr if selinux is on
10225 */
9269d12b 10226 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10227 if (IS_ERR(trans))
10228 return PTR_ERR(trans);
1832a6d5 10229
581bb050
LZ
10230 err = btrfs_find_free_ino(root, &objectid);
10231 if (err)
10232 goto out_unlock;
10233
aec7477b 10234 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 10235 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 10236 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10237 if (IS_ERR(inode)) {
10238 err = PTR_ERR(inode);
39279cc3 10239 goto out_unlock;
7cf96da3 10240 }
39279cc3 10241
ad19db71
CS
10242 /*
10243 * If the active LSM wants to access the inode during
10244 * d_instantiate it needs these. Smack checks to see
10245 * if the filesystem supports xattrs by looking at the
10246 * ops vector.
10247 */
10248 inode->i_fop = &btrfs_file_operations;
10249 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10250 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10251 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10252
10253 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10254 if (err)
10255 goto out_unlock_inode;
ad19db71 10256
39279cc3 10257 path = btrfs_alloc_path();
d8926bb3
MF
10258 if (!path) {
10259 err = -ENOMEM;
b0d5d10f 10260 goto out_unlock_inode;
d8926bb3 10261 }
33345d01 10262 key.objectid = btrfs_ino(inode);
39279cc3 10263 key.offset = 0;
962a298f 10264 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10265 datasize = btrfs_file_extent_calc_inline_size(name_len);
10266 err = btrfs_insert_empty_item(trans, root, path, &key,
10267 datasize);
54aa1f4d 10268 if (err) {
b0839166 10269 btrfs_free_path(path);
b0d5d10f 10270 goto out_unlock_inode;
54aa1f4d 10271 }
5f39d397
CM
10272 leaf = path->nodes[0];
10273 ei = btrfs_item_ptr(leaf, path->slots[0],
10274 struct btrfs_file_extent_item);
10275 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10276 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10277 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10278 btrfs_set_file_extent_encryption(leaf, ei, 0);
10279 btrfs_set_file_extent_compression(leaf, ei, 0);
10280 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10281 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10282
39279cc3 10283 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10284 write_extent_buffer(leaf, symname, ptr, name_len);
10285 btrfs_mark_buffer_dirty(leaf);
39279cc3 10286 btrfs_free_path(path);
5f39d397 10287
39279cc3 10288 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10289 inode_nohighmem(inode);
39279cc3 10290 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10291 inode_set_bytes(inode, name_len);
f06becc4 10292 btrfs_i_size_write(inode, name_len);
54aa1f4d 10293 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10294 /*
10295 * Last step, add directory indexes for our symlink inode. This is the
10296 * last step to avoid extra cleanup of these indexes if an error happens
10297 * elsewhere above.
10298 */
10299 if (!err)
10300 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
b0d5d10f 10301 if (err) {
54aa1f4d 10302 drop_inode = 1;
b0d5d10f
CM
10303 goto out_unlock_inode;
10304 }
10305
10306 unlock_new_inode(inode);
10307 d_instantiate(dentry, inode);
39279cc3
CM
10308
10309out_unlock:
7ad85bb7 10310 btrfs_end_transaction(trans, root);
39279cc3
CM
10311 if (drop_inode) {
10312 inode_dec_link_count(inode);
10313 iput(inode);
10314 }
b53d3f5d 10315 btrfs_btree_balance_dirty(root);
39279cc3 10316 return err;
b0d5d10f
CM
10317
10318out_unlock_inode:
10319 drop_inode = 1;
10320 unlock_new_inode(inode);
10321 goto out_unlock;
39279cc3 10322}
16432985 10323
0af3d00b
JB
10324static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10325 u64 start, u64 num_bytes, u64 min_size,
10326 loff_t actual_len, u64 *alloc_hint,
10327 struct btrfs_trans_handle *trans)
d899e052 10328{
5dc562c5
JB
10329 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10330 struct extent_map *em;
d899e052
YZ
10331 struct btrfs_root *root = BTRFS_I(inode)->root;
10332 struct btrfs_key ins;
d899e052 10333 u64 cur_offset = start;
55a61d1d 10334 u64 i_size;
154ea289 10335 u64 cur_bytes;
0b670dc4 10336 u64 last_alloc = (u64)-1;
d899e052 10337 int ret = 0;
0af3d00b 10338 bool own_trans = true;
18513091 10339 u64 end = start + num_bytes - 1;
d899e052 10340
0af3d00b
JB
10341 if (trans)
10342 own_trans = false;
d899e052 10343 while (num_bytes > 0) {
0af3d00b
JB
10344 if (own_trans) {
10345 trans = btrfs_start_transaction(root, 3);
10346 if (IS_ERR(trans)) {
10347 ret = PTR_ERR(trans);
10348 break;
10349 }
5a303d5d
YZ
10350 }
10351
ee22184b 10352 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10353 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10354 /*
10355 * If we are severely fragmented we could end up with really
10356 * small allocations, so if the allocator is returning small
10357 * chunks lets make its job easier by only searching for those
10358 * sized chunks.
10359 */
10360 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10361 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10362 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10363 if (ret) {
0af3d00b
JB
10364 if (own_trans)
10365 btrfs_end_transaction(trans, root);
a22285a6 10366 break;
d899e052 10367 }
9cfa3e34 10368 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
5a303d5d 10369
0b670dc4 10370 last_alloc = ins.offset;
d899e052
YZ
10371 ret = insert_reserved_file_extent(trans, inode,
10372 cur_offset, ins.objectid,
10373 ins.offset, ins.offset,
920bbbfb 10374 ins.offset, 0, 0, 0,
d899e052 10375 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10376 if (ret) {
857cc2fc 10377 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 10378 ins.offset, 0);
66642832 10379 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10380 if (own_trans)
10381 btrfs_end_transaction(trans, root);
10382 break;
10383 }
31193213 10384
a1ed835e
CM
10385 btrfs_drop_extent_cache(inode, cur_offset,
10386 cur_offset + ins.offset -1, 0);
5a303d5d 10387
5dc562c5
JB
10388 em = alloc_extent_map();
10389 if (!em) {
10390 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10391 &BTRFS_I(inode)->runtime_flags);
10392 goto next;
10393 }
10394
10395 em->start = cur_offset;
10396 em->orig_start = cur_offset;
10397 em->len = ins.offset;
10398 em->block_start = ins.objectid;
10399 em->block_len = ins.offset;
b4939680 10400 em->orig_block_len = ins.offset;
cc95bef6 10401 em->ram_bytes = ins.offset;
5dc562c5
JB
10402 em->bdev = root->fs_info->fs_devices->latest_bdev;
10403 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10404 em->generation = trans->transid;
10405
10406 while (1) {
10407 write_lock(&em_tree->lock);
09a2a8f9 10408 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10409 write_unlock(&em_tree->lock);
10410 if (ret != -EEXIST)
10411 break;
10412 btrfs_drop_extent_cache(inode, cur_offset,
10413 cur_offset + ins.offset - 1,
10414 0);
10415 }
10416 free_extent_map(em);
10417next:
d899e052
YZ
10418 num_bytes -= ins.offset;
10419 cur_offset += ins.offset;
efa56464 10420 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10421
0c4d2d95 10422 inode_inc_iversion(inode);
c2050a45 10423 inode->i_ctime = current_time(inode);
6cbff00f 10424 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10425 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10426 (actual_len > inode->i_size) &&
10427 (cur_offset > inode->i_size)) {
d1ea6a61 10428 if (cur_offset > actual_len)
55a61d1d 10429 i_size = actual_len;
d1ea6a61 10430 else
55a61d1d
JB
10431 i_size = cur_offset;
10432 i_size_write(inode, i_size);
10433 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10434 }
10435
d899e052 10436 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10437
10438 if (ret) {
66642832 10439 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10440 if (own_trans)
10441 btrfs_end_transaction(trans, root);
10442 break;
10443 }
d899e052 10444
0af3d00b
JB
10445 if (own_trans)
10446 btrfs_end_transaction(trans, root);
5a303d5d 10447 }
18513091
WX
10448 if (cur_offset < end)
10449 btrfs_free_reserved_data_space(inode, cur_offset,
10450 end - cur_offset + 1);
d899e052
YZ
10451 return ret;
10452}
10453
0af3d00b
JB
10454int btrfs_prealloc_file_range(struct inode *inode, int mode,
10455 u64 start, u64 num_bytes, u64 min_size,
10456 loff_t actual_len, u64 *alloc_hint)
10457{
10458 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10459 min_size, actual_len, alloc_hint,
10460 NULL);
10461}
10462
10463int btrfs_prealloc_file_range_trans(struct inode *inode,
10464 struct btrfs_trans_handle *trans, int mode,
10465 u64 start, u64 num_bytes, u64 min_size,
10466 loff_t actual_len, u64 *alloc_hint)
10467{
10468 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10469 min_size, actual_len, alloc_hint, trans);
10470}
10471
e6dcd2dc
CM
10472static int btrfs_set_page_dirty(struct page *page)
10473{
e6dcd2dc
CM
10474 return __set_page_dirty_nobuffers(page);
10475}
10476
10556cb2 10477static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10478{
b83cc969 10479 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10480 umode_t mode = inode->i_mode;
b83cc969 10481
cb6db4e5
JM
10482 if (mask & MAY_WRITE &&
10483 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10484 if (btrfs_root_readonly(root))
10485 return -EROFS;
10486 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10487 return -EACCES;
10488 }
2830ba7f 10489 return generic_permission(inode, mask);
fdebe2bd 10490}
39279cc3 10491
ef3b9af5
FM
10492static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10493{
10494 struct btrfs_trans_handle *trans;
10495 struct btrfs_root *root = BTRFS_I(dir)->root;
10496 struct inode *inode = NULL;
10497 u64 objectid;
10498 u64 index;
10499 int ret = 0;
10500
10501 /*
10502 * 5 units required for adding orphan entry
10503 */
10504 trans = btrfs_start_transaction(root, 5);
10505 if (IS_ERR(trans))
10506 return PTR_ERR(trans);
10507
10508 ret = btrfs_find_free_ino(root, &objectid);
10509 if (ret)
10510 goto out;
10511
10512 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10513 btrfs_ino(dir), objectid, mode, &index);
10514 if (IS_ERR(inode)) {
10515 ret = PTR_ERR(inode);
10516 inode = NULL;
10517 goto out;
10518 }
10519
ef3b9af5
FM
10520 inode->i_fop = &btrfs_file_operations;
10521 inode->i_op = &btrfs_file_inode_operations;
10522
10523 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10524 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10525
b0d5d10f
CM
10526 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10527 if (ret)
10528 goto out_inode;
10529
10530 ret = btrfs_update_inode(trans, root, inode);
10531 if (ret)
10532 goto out_inode;
ef3b9af5
FM
10533 ret = btrfs_orphan_add(trans, inode);
10534 if (ret)
b0d5d10f 10535 goto out_inode;
ef3b9af5 10536
5762b5c9
FM
10537 /*
10538 * We set number of links to 0 in btrfs_new_inode(), and here we set
10539 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10540 * through:
10541 *
10542 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10543 */
10544 set_nlink(inode, 1);
b0d5d10f 10545 unlock_new_inode(inode);
ef3b9af5
FM
10546 d_tmpfile(dentry, inode);
10547 mark_inode_dirty(inode);
10548
10549out:
10550 btrfs_end_transaction(trans, root);
10551 if (ret)
10552 iput(inode);
10553 btrfs_balance_delayed_items(root);
10554 btrfs_btree_balance_dirty(root);
ef3b9af5 10555 return ret;
b0d5d10f
CM
10556
10557out_inode:
10558 unlock_new_inode(inode);
10559 goto out;
10560
ef3b9af5
FM
10561}
10562
6e1d5dcc 10563static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10564 .getattr = btrfs_getattr,
39279cc3
CM
10565 .lookup = btrfs_lookup,
10566 .create = btrfs_create,
10567 .unlink = btrfs_unlink,
10568 .link = btrfs_link,
10569 .mkdir = btrfs_mkdir,
10570 .rmdir = btrfs_rmdir,
2773bf00 10571 .rename = btrfs_rename2,
39279cc3
CM
10572 .symlink = btrfs_symlink,
10573 .setattr = btrfs_setattr,
618e21d5 10574 .mknod = btrfs_mknod,
5103e947 10575 .listxattr = btrfs_listxattr,
fdebe2bd 10576 .permission = btrfs_permission,
4e34e719 10577 .get_acl = btrfs_get_acl,
996a710d 10578 .set_acl = btrfs_set_acl,
93fd63c2 10579 .update_time = btrfs_update_time,
ef3b9af5 10580 .tmpfile = btrfs_tmpfile,
39279cc3 10581};
6e1d5dcc 10582static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10583 .lookup = btrfs_lookup,
fdebe2bd 10584 .permission = btrfs_permission,
4e34e719 10585 .get_acl = btrfs_get_acl,
996a710d 10586 .set_acl = btrfs_set_acl,
93fd63c2 10587 .update_time = btrfs_update_time,
39279cc3 10588};
76dda93c 10589
828c0950 10590static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10591 .llseek = generic_file_llseek,
10592 .read = generic_read_dir,
02dbfc99 10593 .iterate_shared = btrfs_real_readdir,
34287aa3 10594 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10595#ifdef CONFIG_COMPAT
4c63c245 10596 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10597#endif
6bf13c0c 10598 .release = btrfs_release_file,
e02119d5 10599 .fsync = btrfs_sync_file,
39279cc3
CM
10600};
10601
20e5506b 10602static const struct extent_io_ops btrfs_extent_io_ops = {
07157aac 10603 .fill_delalloc = run_delalloc_range,
065631f6 10604 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 10605 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 10606 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 10607 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10608 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10609 .set_bit_hook = btrfs_set_bit_hook,
10610 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10611 .merge_extent_hook = btrfs_merge_extent_hook,
10612 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
10613};
10614
35054394
CM
10615/*
10616 * btrfs doesn't support the bmap operation because swapfiles
10617 * use bmap to make a mapping of extents in the file. They assume
10618 * these extents won't change over the life of the file and they
10619 * use the bmap result to do IO directly to the drive.
10620 *
10621 * the btrfs bmap call would return logical addresses that aren't
10622 * suitable for IO and they also will change frequently as COW
10623 * operations happen. So, swapfile + btrfs == corruption.
10624 *
10625 * For now we're avoiding this by dropping bmap.
10626 */
7f09410b 10627static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10628 .readpage = btrfs_readpage,
10629 .writepage = btrfs_writepage,
b293f02e 10630 .writepages = btrfs_writepages,
3ab2fb5a 10631 .readpages = btrfs_readpages,
16432985 10632 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10633 .invalidatepage = btrfs_invalidatepage,
10634 .releasepage = btrfs_releasepage,
e6dcd2dc 10635 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10636 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10637};
10638
7f09410b 10639static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10640 .readpage = btrfs_readpage,
10641 .writepage = btrfs_writepage,
2bf5a725
CM
10642 .invalidatepage = btrfs_invalidatepage,
10643 .releasepage = btrfs_releasepage,
39279cc3
CM
10644};
10645
6e1d5dcc 10646static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10647 .getattr = btrfs_getattr,
10648 .setattr = btrfs_setattr,
5103e947 10649 .listxattr = btrfs_listxattr,
fdebe2bd 10650 .permission = btrfs_permission,
1506fcc8 10651 .fiemap = btrfs_fiemap,
4e34e719 10652 .get_acl = btrfs_get_acl,
996a710d 10653 .set_acl = btrfs_set_acl,
e41f941a 10654 .update_time = btrfs_update_time,
39279cc3 10655};
6e1d5dcc 10656static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10657 .getattr = btrfs_getattr,
10658 .setattr = btrfs_setattr,
fdebe2bd 10659 .permission = btrfs_permission,
33268eaf 10660 .listxattr = btrfs_listxattr,
4e34e719 10661 .get_acl = btrfs_get_acl,
996a710d 10662 .set_acl = btrfs_set_acl,
e41f941a 10663 .update_time = btrfs_update_time,
618e21d5 10664};
6e1d5dcc 10665static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3 10666 .readlink = generic_readlink,
6b255391 10667 .get_link = page_get_link,
f209561a 10668 .getattr = btrfs_getattr,
22c44fe6 10669 .setattr = btrfs_setattr,
fdebe2bd 10670 .permission = btrfs_permission,
0279b4cd 10671 .listxattr = btrfs_listxattr,
e41f941a 10672 .update_time = btrfs_update_time,
39279cc3 10673};
76dda93c 10674
82d339d9 10675const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10676 .d_delete = btrfs_dentry_delete,
b4aff1f8 10677 .d_release = btrfs_dentry_release,
76dda93c 10678};