]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/inode.c
Merge branch 'misc-for-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
55e301fd 42#include <linux/btrfs.h>
53b381b3 43#include <linux/blkdev.h>
f23b5a59 44#include <linux/posix_acl_xattr.h>
e2e40f2c 45#include <linux/uio.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
39279cc3
CM
63
64struct btrfs_iget_args {
90d3e592 65 struct btrfs_key *location;
39279cc3
CM
66 struct btrfs_root *root;
67};
68
f28a4928
FM
69struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
74};
75
6e1d5dcc
AD
76static const struct inode_operations btrfs_dir_inode_operations;
77static const struct inode_operations btrfs_symlink_inode_operations;
78static const struct inode_operations btrfs_dir_ro_inode_operations;
79static const struct inode_operations btrfs_special_inode_operations;
80static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
81static const struct address_space_operations btrfs_aops;
82static const struct address_space_operations btrfs_symlink_aops;
828c0950 83static const struct file_operations btrfs_dir_file_operations;
20e5506b 84static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
85
86static struct kmem_cache *btrfs_inode_cachep;
87struct kmem_cache *btrfs_trans_handle_cachep;
88struct kmem_cache *btrfs_transaction_cachep;
39279cc3 89struct kmem_cache *btrfs_path_cachep;
dc89e982 90struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
91
92#define S_SHIFT 12
4d4ab6d6 93static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101};
102
3972f260 103static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 104static int btrfs_truncate(struct inode *inode);
5fd02043 105static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
106static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
108 u64 start, u64 end, int *page_started,
109 unsigned long *nr_written, int unlock);
70c8a91c
JB
110static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
111 u64 len, u64 orig_start,
112 u64 block_start, u64 block_len,
cc95bef6
JB
113 u64 orig_block_len, u64 ram_bytes,
114 int type);
7b128766 115
48a3b636 116static int btrfs_dirty_inode(struct inode *inode);
7b128766 117
6a3891c5
JB
118#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
119void btrfs_test_inode_set_ops(struct inode *inode)
120{
121 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
122}
123#endif
124
f34f57a3 125static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
126 struct inode *inode, struct inode *dir,
127 const struct qstr *qstr)
0279b4cd
JO
128{
129 int err;
130
f34f57a3 131 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 132 if (!err)
2a7dba39 133 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
134 return err;
135}
136
c8b97818
CM
137/*
138 * this does all the hard work for inserting an inline extent into
139 * the btree. The caller should have done a btrfs_drop_extents so that
140 * no overlapping inline items exist in the btree
141 */
40f76580 142static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 143 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
144 struct btrfs_root *root, struct inode *inode,
145 u64 start, size_t size, size_t compressed_size,
fe3f566c 146 int compress_type,
c8b97818
CM
147 struct page **compressed_pages)
148{
c8b97818
CM
149 struct extent_buffer *leaf;
150 struct page *page = NULL;
151 char *kaddr;
152 unsigned long ptr;
153 struct btrfs_file_extent_item *ei;
154 int err = 0;
155 int ret;
156 size_t cur_size = size;
c8b97818 157 unsigned long offset;
c8b97818 158
fe3f566c 159 if (compressed_size && compressed_pages)
c8b97818 160 cur_size = compressed_size;
c8b97818 161
1acae57b 162 inode_add_bytes(inode, size);
c8b97818 163
1acae57b
FDBM
164 if (!extent_inserted) {
165 struct btrfs_key key;
166 size_t datasize;
c8b97818 167
1acae57b
FDBM
168 key.objectid = btrfs_ino(inode);
169 key.offset = start;
962a298f 170 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 171
1acae57b
FDBM
172 datasize = btrfs_file_extent_calc_inline_size(cur_size);
173 path->leave_spinning = 1;
174 ret = btrfs_insert_empty_item(trans, root, path, &key,
175 datasize);
176 if (ret) {
177 err = ret;
178 goto fail;
179 }
c8b97818
CM
180 }
181 leaf = path->nodes[0];
182 ei = btrfs_item_ptr(leaf, path->slots[0],
183 struct btrfs_file_extent_item);
184 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
185 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
186 btrfs_set_file_extent_encryption(leaf, ei, 0);
187 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
188 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
189 ptr = btrfs_file_extent_inline_start(ei);
190
261507a0 191 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
192 struct page *cpage;
193 int i = 0;
d397712b 194 while (compressed_size > 0) {
c8b97818 195 cpage = compressed_pages[i];
5b050f04 196 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
197 PAGE_CACHE_SIZE);
198
7ac687d9 199 kaddr = kmap_atomic(cpage);
c8b97818 200 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 201 kunmap_atomic(kaddr);
c8b97818
CM
202
203 i++;
204 ptr += cur_size;
205 compressed_size -= cur_size;
206 }
207 btrfs_set_file_extent_compression(leaf, ei,
261507a0 208 compress_type);
c8b97818
CM
209 } else {
210 page = find_get_page(inode->i_mapping,
211 start >> PAGE_CACHE_SHIFT);
212 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 213 kaddr = kmap_atomic(page);
c8b97818
CM
214 offset = start & (PAGE_CACHE_SIZE - 1);
215 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 216 kunmap_atomic(kaddr);
c8b97818
CM
217 page_cache_release(page);
218 }
219 btrfs_mark_buffer_dirty(leaf);
1acae57b 220 btrfs_release_path(path);
c8b97818 221
c2167754
YZ
222 /*
223 * we're an inline extent, so nobody can
224 * extend the file past i_size without locking
225 * a page we already have locked.
226 *
227 * We must do any isize and inode updates
228 * before we unlock the pages. Otherwise we
229 * could end up racing with unlink.
230 */
c8b97818 231 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 232 ret = btrfs_update_inode(trans, root, inode);
c2167754 233
79787eaa 234 return ret;
c8b97818 235fail:
c8b97818
CM
236 return err;
237}
238
239
240/*
241 * conditionally insert an inline extent into the file. This
242 * does the checks required to make sure the data is small enough
243 * to fit as an inline extent.
244 */
00361589
JB
245static noinline int cow_file_range_inline(struct btrfs_root *root,
246 struct inode *inode, u64 start,
247 u64 end, size_t compressed_size,
248 int compress_type,
249 struct page **compressed_pages)
c8b97818 250{
00361589 251 struct btrfs_trans_handle *trans;
c8b97818
CM
252 u64 isize = i_size_read(inode);
253 u64 actual_end = min(end + 1, isize);
254 u64 inline_len = actual_end - start;
fda2832f 255 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
256 u64 data_len = inline_len;
257 int ret;
1acae57b
FDBM
258 struct btrfs_path *path;
259 int extent_inserted = 0;
260 u32 extent_item_size;
c8b97818
CM
261
262 if (compressed_size)
263 data_len = compressed_size;
264
265 if (start > 0 ||
354877be
WS
266 actual_end > PAGE_CACHE_SIZE ||
267 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
268 (!compressed_size &&
269 (actual_end & (root->sectorsize - 1)) == 0) ||
270 end + 1 < isize ||
271 data_len > root->fs_info->max_inline) {
272 return 1;
273 }
274
1acae57b
FDBM
275 path = btrfs_alloc_path();
276 if (!path)
277 return -ENOMEM;
278
00361589 279 trans = btrfs_join_transaction(root);
1acae57b
FDBM
280 if (IS_ERR(trans)) {
281 btrfs_free_path(path);
00361589 282 return PTR_ERR(trans);
1acae57b 283 }
00361589
JB
284 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
285
1acae57b
FDBM
286 if (compressed_size && compressed_pages)
287 extent_item_size = btrfs_file_extent_calc_inline_size(
288 compressed_size);
289 else
290 extent_item_size = btrfs_file_extent_calc_inline_size(
291 inline_len);
292
293 ret = __btrfs_drop_extents(trans, root, inode, path,
294 start, aligned_end, NULL,
295 1, 1, extent_item_size, &extent_inserted);
00361589
JB
296 if (ret) {
297 btrfs_abort_transaction(trans, root, ret);
298 goto out;
299 }
c8b97818
CM
300
301 if (isize > actual_end)
302 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
303 ret = insert_inline_extent(trans, path, extent_inserted,
304 root, inode, start,
c8b97818 305 inline_len, compressed_size,
fe3f566c 306 compress_type, compressed_pages);
2adcac1a 307 if (ret && ret != -ENOSPC) {
79787eaa 308 btrfs_abort_transaction(trans, root, ret);
00361589 309 goto out;
2adcac1a 310 } else if (ret == -ENOSPC) {
00361589
JB
311 ret = 1;
312 goto out;
79787eaa 313 }
2adcac1a 314
bdc20e67 315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 316 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 317 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 318out:
94ed938a
QW
319 /*
320 * Don't forget to free the reserved space, as for inlined extent
321 * it won't count as data extent, free them directly here.
322 * And at reserve time, it's always aligned to page size, so
323 * just free one page here.
324 */
325 btrfs_qgroup_free_data(inode, 0, PAGE_CACHE_SIZE);
1acae57b 326 btrfs_free_path(path);
00361589
JB
327 btrfs_end_transaction(trans, root);
328 return ret;
c8b97818
CM
329}
330
771ed689
CM
331struct async_extent {
332 u64 start;
333 u64 ram_size;
334 u64 compressed_size;
335 struct page **pages;
336 unsigned long nr_pages;
261507a0 337 int compress_type;
771ed689
CM
338 struct list_head list;
339};
340
341struct async_cow {
342 struct inode *inode;
343 struct btrfs_root *root;
344 struct page *locked_page;
345 u64 start;
346 u64 end;
347 struct list_head extents;
348 struct btrfs_work work;
349};
350
351static noinline int add_async_extent(struct async_cow *cow,
352 u64 start, u64 ram_size,
353 u64 compressed_size,
354 struct page **pages,
261507a0
LZ
355 unsigned long nr_pages,
356 int compress_type)
771ed689
CM
357{
358 struct async_extent *async_extent;
359
360 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 361 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
362 async_extent->start = start;
363 async_extent->ram_size = ram_size;
364 async_extent->compressed_size = compressed_size;
365 async_extent->pages = pages;
366 async_extent->nr_pages = nr_pages;
261507a0 367 async_extent->compress_type = compress_type;
771ed689
CM
368 list_add_tail(&async_extent->list, &cow->extents);
369 return 0;
370}
371
f79707b0
WS
372static inline int inode_need_compress(struct inode *inode)
373{
374 struct btrfs_root *root = BTRFS_I(inode)->root;
375
376 /* force compress */
377 if (btrfs_test_opt(root, FORCE_COMPRESS))
378 return 1;
379 /* bad compression ratios */
380 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
381 return 0;
382 if (btrfs_test_opt(root, COMPRESS) ||
383 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
384 BTRFS_I(inode)->force_compress)
385 return 1;
386 return 0;
387}
388
d352ac68 389/*
771ed689
CM
390 * we create compressed extents in two phases. The first
391 * phase compresses a range of pages that have already been
392 * locked (both pages and state bits are locked).
c8b97818 393 *
771ed689
CM
394 * This is done inside an ordered work queue, and the compression
395 * is spread across many cpus. The actual IO submission is step
396 * two, and the ordered work queue takes care of making sure that
397 * happens in the same order things were put onto the queue by
398 * writepages and friends.
c8b97818 399 *
771ed689
CM
400 * If this code finds it can't get good compression, it puts an
401 * entry onto the work queue to write the uncompressed bytes. This
402 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
403 * are written in the same order that the flusher thread sent them
404 * down.
d352ac68 405 */
c44f649e 406static noinline void compress_file_range(struct inode *inode,
771ed689
CM
407 struct page *locked_page,
408 u64 start, u64 end,
409 struct async_cow *async_cow,
410 int *num_added)
b888db2b
CM
411{
412 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 413 u64 num_bytes;
db94535d 414 u64 blocksize = root->sectorsize;
c8b97818 415 u64 actual_end;
42dc7bab 416 u64 isize = i_size_read(inode);
e6dcd2dc 417 int ret = 0;
c8b97818
CM
418 struct page **pages = NULL;
419 unsigned long nr_pages;
420 unsigned long nr_pages_ret = 0;
421 unsigned long total_compressed = 0;
422 unsigned long total_in = 0;
ee22184b
BL
423 unsigned long max_compressed = SZ_128K;
424 unsigned long max_uncompressed = SZ_128K;
c8b97818
CM
425 int i;
426 int will_compress;
261507a0 427 int compress_type = root->fs_info->compress_type;
4adaa611 428 int redirty = 0;
b888db2b 429
4cb13e5d 430 /* if this is a small write inside eof, kick off a defrag */
ee22184b 431 if ((end - start + 1) < SZ_16K &&
4cb13e5d 432 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
433 btrfs_add_inode_defrag(NULL, inode);
434
42dc7bab 435 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
436again:
437 will_compress = 0;
438 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
ee22184b 439 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_CACHE_SIZE);
be20aa9d 440
f03d9301
CM
441 /*
442 * we don't want to send crud past the end of i_size through
443 * compression, that's just a waste of CPU time. So, if the
444 * end of the file is before the start of our current
445 * requested range of bytes, we bail out to the uncompressed
446 * cleanup code that can deal with all of this.
447 *
448 * It isn't really the fastest way to fix things, but this is a
449 * very uncommon corner.
450 */
451 if (actual_end <= start)
452 goto cleanup_and_bail_uncompressed;
453
c8b97818
CM
454 total_compressed = actual_end - start;
455
4bcbb332
SW
456 /*
457 * skip compression for a small file range(<=blocksize) that
458 * isn't an inline extent, since it dosen't save disk space at all.
459 */
460 if (total_compressed <= blocksize &&
461 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
462 goto cleanup_and_bail_uncompressed;
463
c8b97818
CM
464 /* we want to make sure that amount of ram required to uncompress
465 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
466 * of a compressed extent to 128k. This is a crucial number
467 * because it also controls how easily we can spread reads across
468 * cpus for decompression.
469 *
470 * We also want to make sure the amount of IO required to do
471 * a random read is reasonably small, so we limit the size of
472 * a compressed extent to 128k.
c8b97818
CM
473 */
474 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 475 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 476 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
477 total_in = 0;
478 ret = 0;
db94535d 479
771ed689
CM
480 /*
481 * we do compression for mount -o compress and when the
482 * inode has not been flagged as nocompress. This flag can
483 * change at any time if we discover bad compression ratios.
c8b97818 484 */
f79707b0 485 if (inode_need_compress(inode)) {
c8b97818 486 WARN_ON(pages);
31e818fe 487 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
488 if (!pages) {
489 /* just bail out to the uncompressed code */
490 goto cont;
491 }
c8b97818 492
261507a0
LZ
493 if (BTRFS_I(inode)->force_compress)
494 compress_type = BTRFS_I(inode)->force_compress;
495
4adaa611
CM
496 /*
497 * we need to call clear_page_dirty_for_io on each
498 * page in the range. Otherwise applications with the file
499 * mmap'd can wander in and change the page contents while
500 * we are compressing them.
501 *
502 * If the compression fails for any reason, we set the pages
503 * dirty again later on.
504 */
505 extent_range_clear_dirty_for_io(inode, start, end);
506 redirty = 1;
261507a0
LZ
507 ret = btrfs_compress_pages(compress_type,
508 inode->i_mapping, start,
509 total_compressed, pages,
510 nr_pages, &nr_pages_ret,
511 &total_in,
512 &total_compressed,
513 max_compressed);
c8b97818
CM
514
515 if (!ret) {
516 unsigned long offset = total_compressed &
517 (PAGE_CACHE_SIZE - 1);
518 struct page *page = pages[nr_pages_ret - 1];
519 char *kaddr;
520
521 /* zero the tail end of the last page, we might be
522 * sending it down to disk
523 */
524 if (offset) {
7ac687d9 525 kaddr = kmap_atomic(page);
c8b97818
CM
526 memset(kaddr + offset, 0,
527 PAGE_CACHE_SIZE - offset);
7ac687d9 528 kunmap_atomic(kaddr);
c8b97818
CM
529 }
530 will_compress = 1;
531 }
532 }
560f7d75 533cont:
c8b97818
CM
534 if (start == 0) {
535 /* lets try to make an inline extent */
771ed689 536 if (ret || total_in < (actual_end - start)) {
c8b97818 537 /* we didn't compress the entire range, try
771ed689 538 * to make an uncompressed inline extent.
c8b97818 539 */
00361589
JB
540 ret = cow_file_range_inline(root, inode, start, end,
541 0, 0, NULL);
c8b97818 542 } else {
771ed689 543 /* try making a compressed inline extent */
00361589 544 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
545 total_compressed,
546 compress_type, pages);
c8b97818 547 }
79787eaa 548 if (ret <= 0) {
151a41bc
JB
549 unsigned long clear_flags = EXTENT_DELALLOC |
550 EXTENT_DEFRAG;
e6eb4314
FM
551 unsigned long page_error_op;
552
151a41bc 553 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 554 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 555
771ed689 556 /*
79787eaa
JM
557 * inline extent creation worked or returned error,
558 * we don't need to create any more async work items.
559 * Unlock and free up our temp pages.
771ed689 560 */
c2790a2e 561 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 562 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
563 PAGE_CLEAR_DIRTY |
564 PAGE_SET_WRITEBACK |
e6eb4314 565 page_error_op |
c2790a2e 566 PAGE_END_WRITEBACK);
c8b97818
CM
567 goto free_pages_out;
568 }
569 }
570
571 if (will_compress) {
572 /*
573 * we aren't doing an inline extent round the compressed size
574 * up to a block size boundary so the allocator does sane
575 * things
576 */
fda2832f 577 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
578
579 /*
580 * one last check to make sure the compression is really a
581 * win, compare the page count read with the blocks on disk
582 */
fda2832f 583 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
584 if (total_compressed >= total_in) {
585 will_compress = 0;
586 } else {
c8b97818
CM
587 num_bytes = total_in;
588 }
589 }
590 if (!will_compress && pages) {
591 /*
592 * the compression code ran but failed to make things smaller,
593 * free any pages it allocated and our page pointer array
594 */
595 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 596 WARN_ON(pages[i]->mapping);
c8b97818
CM
597 page_cache_release(pages[i]);
598 }
599 kfree(pages);
600 pages = NULL;
601 total_compressed = 0;
602 nr_pages_ret = 0;
603
604 /* flag the file so we don't compress in the future */
1e701a32
CM
605 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
606 !(BTRFS_I(inode)->force_compress)) {
a555f810 607 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 608 }
c8b97818 609 }
771ed689
CM
610 if (will_compress) {
611 *num_added += 1;
c8b97818 612
771ed689
CM
613 /* the async work queues will take care of doing actual
614 * allocation on disk for these compressed pages,
615 * and will submit them to the elevator.
616 */
617 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
618 total_compressed, pages, nr_pages_ret,
619 compress_type);
179e29e4 620
24ae6365 621 if (start + num_bytes < end) {
771ed689
CM
622 start += num_bytes;
623 pages = NULL;
624 cond_resched();
625 goto again;
626 }
627 } else {
f03d9301 628cleanup_and_bail_uncompressed:
771ed689
CM
629 /*
630 * No compression, but we still need to write the pages in
631 * the file we've been given so far. redirty the locked
632 * page if it corresponds to our extent and set things up
633 * for the async work queue to run cow_file_range to do
634 * the normal delalloc dance
635 */
636 if (page_offset(locked_page) >= start &&
637 page_offset(locked_page) <= end) {
638 __set_page_dirty_nobuffers(locked_page);
639 /* unlocked later on in the async handlers */
640 }
4adaa611
CM
641 if (redirty)
642 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
643 add_async_extent(async_cow, start, end - start + 1,
644 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
645 *num_added += 1;
646 }
3b951516 647
c44f649e 648 return;
771ed689
CM
649
650free_pages_out:
651 for (i = 0; i < nr_pages_ret; i++) {
652 WARN_ON(pages[i]->mapping);
653 page_cache_release(pages[i]);
654 }
d397712b 655 kfree(pages);
771ed689 656}
771ed689 657
40ae837b
FM
658static void free_async_extent_pages(struct async_extent *async_extent)
659{
660 int i;
661
662 if (!async_extent->pages)
663 return;
664
665 for (i = 0; i < async_extent->nr_pages; i++) {
666 WARN_ON(async_extent->pages[i]->mapping);
667 page_cache_release(async_extent->pages[i]);
668 }
669 kfree(async_extent->pages);
670 async_extent->nr_pages = 0;
671 async_extent->pages = NULL;
771ed689
CM
672}
673
674/*
675 * phase two of compressed writeback. This is the ordered portion
676 * of the code, which only gets called in the order the work was
677 * queued. We walk all the async extents created by compress_file_range
678 * and send them down to the disk.
679 */
dec8f175 680static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
681 struct async_cow *async_cow)
682{
683 struct async_extent *async_extent;
684 u64 alloc_hint = 0;
771ed689
CM
685 struct btrfs_key ins;
686 struct extent_map *em;
687 struct btrfs_root *root = BTRFS_I(inode)->root;
688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
689 struct extent_io_tree *io_tree;
f5a84ee3 690 int ret = 0;
771ed689 691
3e04e7f1 692again:
d397712b 693 while (!list_empty(&async_cow->extents)) {
771ed689
CM
694 async_extent = list_entry(async_cow->extents.next,
695 struct async_extent, list);
696 list_del(&async_extent->list);
c8b97818 697
771ed689
CM
698 io_tree = &BTRFS_I(inode)->io_tree;
699
f5a84ee3 700retry:
771ed689
CM
701 /* did the compression code fall back to uncompressed IO? */
702 if (!async_extent->pages) {
703 int page_started = 0;
704 unsigned long nr_written = 0;
705
706 lock_extent(io_tree, async_extent->start,
2ac55d41 707 async_extent->start +
d0082371 708 async_extent->ram_size - 1);
771ed689
CM
709
710 /* allocate blocks */
f5a84ee3
JB
711 ret = cow_file_range(inode, async_cow->locked_page,
712 async_extent->start,
713 async_extent->start +
714 async_extent->ram_size - 1,
715 &page_started, &nr_written, 0);
771ed689 716
79787eaa
JM
717 /* JDM XXX */
718
771ed689
CM
719 /*
720 * if page_started, cow_file_range inserted an
721 * inline extent and took care of all the unlocking
722 * and IO for us. Otherwise, we need to submit
723 * all those pages down to the drive.
724 */
f5a84ee3 725 if (!page_started && !ret)
771ed689
CM
726 extent_write_locked_range(io_tree,
727 inode, async_extent->start,
d397712b 728 async_extent->start +
771ed689
CM
729 async_extent->ram_size - 1,
730 btrfs_get_extent,
731 WB_SYNC_ALL);
3e04e7f1
JB
732 else if (ret)
733 unlock_page(async_cow->locked_page);
771ed689
CM
734 kfree(async_extent);
735 cond_resched();
736 continue;
737 }
738
739 lock_extent(io_tree, async_extent->start,
d0082371 740 async_extent->start + async_extent->ram_size - 1);
771ed689 741
00361589 742 ret = btrfs_reserve_extent(root,
771ed689
CM
743 async_extent->compressed_size,
744 async_extent->compressed_size,
e570fd27 745 0, alloc_hint, &ins, 1, 1);
f5a84ee3 746 if (ret) {
40ae837b 747 free_async_extent_pages(async_extent);
3e04e7f1 748
fdf8e2ea
JB
749 if (ret == -ENOSPC) {
750 unlock_extent(io_tree, async_extent->start,
751 async_extent->start +
752 async_extent->ram_size - 1);
ce62003f
LB
753
754 /*
755 * we need to redirty the pages if we decide to
756 * fallback to uncompressed IO, otherwise we
757 * will not submit these pages down to lower
758 * layers.
759 */
760 extent_range_redirty_for_io(inode,
761 async_extent->start,
762 async_extent->start +
763 async_extent->ram_size - 1);
764
79787eaa 765 goto retry;
fdf8e2ea 766 }
3e04e7f1 767 goto out_free;
f5a84ee3 768 }
c2167754
YZ
769 /*
770 * here we're doing allocation and writeback of the
771 * compressed pages
772 */
773 btrfs_drop_extent_cache(inode, async_extent->start,
774 async_extent->start +
775 async_extent->ram_size - 1, 0);
776
172ddd60 777 em = alloc_extent_map();
b9aa55be
LB
778 if (!em) {
779 ret = -ENOMEM;
3e04e7f1 780 goto out_free_reserve;
b9aa55be 781 }
771ed689
CM
782 em->start = async_extent->start;
783 em->len = async_extent->ram_size;
445a6944 784 em->orig_start = em->start;
2ab28f32
JB
785 em->mod_start = em->start;
786 em->mod_len = em->len;
c8b97818 787
771ed689
CM
788 em->block_start = ins.objectid;
789 em->block_len = ins.offset;
b4939680 790 em->orig_block_len = ins.offset;
cc95bef6 791 em->ram_bytes = async_extent->ram_size;
771ed689 792 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 793 em->compress_type = async_extent->compress_type;
771ed689
CM
794 set_bit(EXTENT_FLAG_PINNED, &em->flags);
795 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 796 em->generation = -1;
771ed689 797
d397712b 798 while (1) {
890871be 799 write_lock(&em_tree->lock);
09a2a8f9 800 ret = add_extent_mapping(em_tree, em, 1);
890871be 801 write_unlock(&em_tree->lock);
771ed689
CM
802 if (ret != -EEXIST) {
803 free_extent_map(em);
804 break;
805 }
806 btrfs_drop_extent_cache(inode, async_extent->start,
807 async_extent->start +
808 async_extent->ram_size - 1, 0);
809 }
810
3e04e7f1
JB
811 if (ret)
812 goto out_free_reserve;
813
261507a0
LZ
814 ret = btrfs_add_ordered_extent_compress(inode,
815 async_extent->start,
816 ins.objectid,
817 async_extent->ram_size,
818 ins.offset,
819 BTRFS_ORDERED_COMPRESSED,
820 async_extent->compress_type);
d9f85963
FM
821 if (ret) {
822 btrfs_drop_extent_cache(inode, async_extent->start,
823 async_extent->start +
824 async_extent->ram_size - 1, 0);
3e04e7f1 825 goto out_free_reserve;
d9f85963 826 }
771ed689 827
771ed689
CM
828 /*
829 * clear dirty, set writeback and unlock the pages.
830 */
c2790a2e 831 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
832 async_extent->start +
833 async_extent->ram_size - 1,
151a41bc
JB
834 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
835 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 836 PAGE_SET_WRITEBACK);
771ed689 837 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
838 async_extent->start,
839 async_extent->ram_size,
840 ins.objectid,
841 ins.offset, async_extent->pages,
842 async_extent->nr_pages);
fce2a4e6
FM
843 if (ret) {
844 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
845 struct page *p = async_extent->pages[0];
846 const u64 start = async_extent->start;
847 const u64 end = start + async_extent->ram_size - 1;
848
849 p->mapping = inode->i_mapping;
850 tree->ops->writepage_end_io_hook(p, start, end,
851 NULL, 0);
852 p->mapping = NULL;
853 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
854 PAGE_END_WRITEBACK |
855 PAGE_SET_ERROR);
40ae837b 856 free_async_extent_pages(async_extent);
fce2a4e6 857 }
771ed689
CM
858 alloc_hint = ins.objectid + ins.offset;
859 kfree(async_extent);
860 cond_resched();
861 }
dec8f175 862 return;
3e04e7f1 863out_free_reserve:
e570fd27 864 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 865out_free:
c2790a2e 866 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
867 async_extent->start +
868 async_extent->ram_size - 1,
c2790a2e 869 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
870 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
871 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
872 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
873 PAGE_SET_ERROR);
40ae837b 874 free_async_extent_pages(async_extent);
79787eaa 875 kfree(async_extent);
3e04e7f1 876 goto again;
771ed689
CM
877}
878
4b46fce2
JB
879static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
880 u64 num_bytes)
881{
882 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
883 struct extent_map *em;
884 u64 alloc_hint = 0;
885
886 read_lock(&em_tree->lock);
887 em = search_extent_mapping(em_tree, start, num_bytes);
888 if (em) {
889 /*
890 * if block start isn't an actual block number then find the
891 * first block in this inode and use that as a hint. If that
892 * block is also bogus then just don't worry about it.
893 */
894 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
895 free_extent_map(em);
896 em = search_extent_mapping(em_tree, 0, 0);
897 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
898 alloc_hint = em->block_start;
899 if (em)
900 free_extent_map(em);
901 } else {
902 alloc_hint = em->block_start;
903 free_extent_map(em);
904 }
905 }
906 read_unlock(&em_tree->lock);
907
908 return alloc_hint;
909}
910
771ed689
CM
911/*
912 * when extent_io.c finds a delayed allocation range in the file,
913 * the call backs end up in this code. The basic idea is to
914 * allocate extents on disk for the range, and create ordered data structs
915 * in ram to track those extents.
916 *
917 * locked_page is the page that writepage had locked already. We use
918 * it to make sure we don't do extra locks or unlocks.
919 *
920 * *page_started is set to one if we unlock locked_page and do everything
921 * required to start IO on it. It may be clean and already done with
922 * IO when we return.
923 */
00361589
JB
924static noinline int cow_file_range(struct inode *inode,
925 struct page *locked_page,
926 u64 start, u64 end, int *page_started,
927 unsigned long *nr_written,
928 int unlock)
771ed689 929{
00361589 930 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
931 u64 alloc_hint = 0;
932 u64 num_bytes;
933 unsigned long ram_size;
934 u64 disk_num_bytes;
935 u64 cur_alloc_size;
936 u64 blocksize = root->sectorsize;
771ed689
CM
937 struct btrfs_key ins;
938 struct extent_map *em;
939 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
940 int ret = 0;
941
02ecd2c2
JB
942 if (btrfs_is_free_space_inode(inode)) {
943 WARN_ON_ONCE(1);
29bce2f3
JB
944 ret = -EINVAL;
945 goto out_unlock;
02ecd2c2 946 }
771ed689 947
fda2832f 948 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
949 num_bytes = max(blocksize, num_bytes);
950 disk_num_bytes = num_bytes;
771ed689 951
4cb5300b 952 /* if this is a small write inside eof, kick off defrag */
ee22184b 953 if (num_bytes < SZ_64K &&
4cb13e5d 954 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 955 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 956
771ed689
CM
957 if (start == 0) {
958 /* lets try to make an inline extent */
00361589
JB
959 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
960 NULL);
771ed689 961 if (ret == 0) {
c2790a2e
JB
962 extent_clear_unlock_delalloc(inode, start, end, NULL,
963 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 964 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
965 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
966 PAGE_END_WRITEBACK);
c2167754 967
771ed689
CM
968 *nr_written = *nr_written +
969 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
970 *page_started = 1;
771ed689 971 goto out;
79787eaa 972 } else if (ret < 0) {
79787eaa 973 goto out_unlock;
771ed689
CM
974 }
975 }
976
977 BUG_ON(disk_num_bytes >
6c41761f 978 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 979
4b46fce2 980 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
981 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
982
d397712b 983 while (disk_num_bytes > 0) {
a791e35e
CM
984 unsigned long op;
985
287a0ab9 986 cur_alloc_size = disk_num_bytes;
00361589 987 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 988 root->sectorsize, 0, alloc_hint,
e570fd27 989 &ins, 1, 1);
00361589 990 if (ret < 0)
79787eaa 991 goto out_unlock;
d397712b 992
172ddd60 993 em = alloc_extent_map();
b9aa55be
LB
994 if (!em) {
995 ret = -ENOMEM;
ace68bac 996 goto out_reserve;
b9aa55be 997 }
e6dcd2dc 998 em->start = start;
445a6944 999 em->orig_start = em->start;
771ed689
CM
1000 ram_size = ins.offset;
1001 em->len = ins.offset;
2ab28f32
JB
1002 em->mod_start = em->start;
1003 em->mod_len = em->len;
c8b97818 1004
e6dcd2dc 1005 em->block_start = ins.objectid;
c8b97818 1006 em->block_len = ins.offset;
b4939680 1007 em->orig_block_len = ins.offset;
cc95bef6 1008 em->ram_bytes = ram_size;
e6dcd2dc 1009 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 1010 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 1011 em->generation = -1;
c8b97818 1012
d397712b 1013 while (1) {
890871be 1014 write_lock(&em_tree->lock);
09a2a8f9 1015 ret = add_extent_mapping(em_tree, em, 1);
890871be 1016 write_unlock(&em_tree->lock);
e6dcd2dc
CM
1017 if (ret != -EEXIST) {
1018 free_extent_map(em);
1019 break;
1020 }
1021 btrfs_drop_extent_cache(inode, start,
c8b97818 1022 start + ram_size - 1, 0);
e6dcd2dc 1023 }
ace68bac
LB
1024 if (ret)
1025 goto out_reserve;
e6dcd2dc 1026
98d20f67 1027 cur_alloc_size = ins.offset;
e6dcd2dc 1028 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1029 ram_size, cur_alloc_size, 0);
ace68bac 1030 if (ret)
d9f85963 1031 goto out_drop_extent_cache;
c8b97818 1032
17d217fe
YZ
1033 if (root->root_key.objectid ==
1034 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1035 ret = btrfs_reloc_clone_csums(inode, start,
1036 cur_alloc_size);
00361589 1037 if (ret)
d9f85963 1038 goto out_drop_extent_cache;
17d217fe
YZ
1039 }
1040
d397712b 1041 if (disk_num_bytes < cur_alloc_size)
3b951516 1042 break;
d397712b 1043
c8b97818
CM
1044 /* we're not doing compressed IO, don't unlock the first
1045 * page (which the caller expects to stay locked), don't
1046 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1047 *
1048 * Do set the Private2 bit so we know this page was properly
1049 * setup for writepage
c8b97818 1050 */
c2790a2e
JB
1051 op = unlock ? PAGE_UNLOCK : 0;
1052 op |= PAGE_SET_PRIVATE2;
a791e35e 1053
c2790a2e
JB
1054 extent_clear_unlock_delalloc(inode, start,
1055 start + ram_size - 1, locked_page,
1056 EXTENT_LOCKED | EXTENT_DELALLOC,
1057 op);
c8b97818 1058 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1059 num_bytes -= cur_alloc_size;
1060 alloc_hint = ins.objectid + ins.offset;
1061 start += cur_alloc_size;
b888db2b 1062 }
79787eaa 1063out:
be20aa9d 1064 return ret;
b7d5b0a8 1065
d9f85963
FM
1066out_drop_extent_cache:
1067 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1068out_reserve:
e570fd27 1069 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1070out_unlock:
c2790a2e 1071 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1072 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1073 EXTENT_DELALLOC | EXTENT_DEFRAG,
1074 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1075 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1076 goto out;
771ed689 1077}
c8b97818 1078
771ed689
CM
1079/*
1080 * work queue call back to started compression on a file and pages
1081 */
1082static noinline void async_cow_start(struct btrfs_work *work)
1083{
1084 struct async_cow *async_cow;
1085 int num_added = 0;
1086 async_cow = container_of(work, struct async_cow, work);
1087
1088 compress_file_range(async_cow->inode, async_cow->locked_page,
1089 async_cow->start, async_cow->end, async_cow,
1090 &num_added);
8180ef88 1091 if (num_added == 0) {
cb77fcd8 1092 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1093 async_cow->inode = NULL;
8180ef88 1094 }
771ed689
CM
1095}
1096
1097/*
1098 * work queue call back to submit previously compressed pages
1099 */
1100static noinline void async_cow_submit(struct btrfs_work *work)
1101{
1102 struct async_cow *async_cow;
1103 struct btrfs_root *root;
1104 unsigned long nr_pages;
1105
1106 async_cow = container_of(work, struct async_cow, work);
1107
1108 root = async_cow->root;
1109 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1110 PAGE_CACHE_SHIFT;
1111
ee863954
DS
1112 /*
1113 * atomic_sub_return implies a barrier for waitqueue_active
1114 */
66657b31 1115 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
ee22184b 1116 5 * SZ_1M &&
771ed689
CM
1117 waitqueue_active(&root->fs_info->async_submit_wait))
1118 wake_up(&root->fs_info->async_submit_wait);
1119
d397712b 1120 if (async_cow->inode)
771ed689 1121 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1122}
c8b97818 1123
771ed689
CM
1124static noinline void async_cow_free(struct btrfs_work *work)
1125{
1126 struct async_cow *async_cow;
1127 async_cow = container_of(work, struct async_cow, work);
8180ef88 1128 if (async_cow->inode)
cb77fcd8 1129 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1130 kfree(async_cow);
1131}
1132
1133static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1134 u64 start, u64 end, int *page_started,
1135 unsigned long *nr_written)
1136{
1137 struct async_cow *async_cow;
1138 struct btrfs_root *root = BTRFS_I(inode)->root;
1139 unsigned long nr_pages;
1140 u64 cur_end;
ee22184b 1141 int limit = 10 * SZ_1M;
771ed689 1142
a3429ab7
CM
1143 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1144 1, 0, NULL, GFP_NOFS);
d397712b 1145 while (start < end) {
771ed689 1146 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1147 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1148 async_cow->inode = igrab(inode);
771ed689
CM
1149 async_cow->root = root;
1150 async_cow->locked_page = locked_page;
1151 async_cow->start = start;
1152
f79707b0
WS
1153 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1154 !btrfs_test_opt(root, FORCE_COMPRESS))
771ed689
CM
1155 cur_end = end;
1156 else
ee22184b 1157 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1158
1159 async_cow->end = cur_end;
1160 INIT_LIST_HEAD(&async_cow->extents);
1161
9e0af237
LB
1162 btrfs_init_work(&async_cow->work,
1163 btrfs_delalloc_helper,
1164 async_cow_start, async_cow_submit,
1165 async_cow_free);
771ed689 1166
771ed689
CM
1167 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1168 PAGE_CACHE_SHIFT;
1169 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1170
afe3d242
QW
1171 btrfs_queue_work(root->fs_info->delalloc_workers,
1172 &async_cow->work);
771ed689
CM
1173
1174 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1175 wait_event(root->fs_info->async_submit_wait,
1176 (atomic_read(&root->fs_info->async_delalloc_pages) <
1177 limit));
1178 }
1179
d397712b 1180 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1181 atomic_read(&root->fs_info->async_delalloc_pages)) {
1182 wait_event(root->fs_info->async_submit_wait,
1183 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1184 0));
1185 }
1186
1187 *nr_written += nr_pages;
1188 start = cur_end + 1;
1189 }
1190 *page_started = 1;
1191 return 0;
be20aa9d
CM
1192}
1193
d397712b 1194static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1195 u64 bytenr, u64 num_bytes)
1196{
1197 int ret;
1198 struct btrfs_ordered_sum *sums;
1199 LIST_HEAD(list);
1200
07d400a6 1201 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1202 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1203 if (ret == 0 && list_empty(&list))
1204 return 0;
1205
1206 while (!list_empty(&list)) {
1207 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1208 list_del(&sums->list);
1209 kfree(sums);
1210 }
1211 return 1;
1212}
1213
d352ac68
CM
1214/*
1215 * when nowcow writeback call back. This checks for snapshots or COW copies
1216 * of the extents that exist in the file, and COWs the file as required.
1217 *
1218 * If no cow copies or snapshots exist, we write directly to the existing
1219 * blocks on disk
1220 */
7f366cfe
CM
1221static noinline int run_delalloc_nocow(struct inode *inode,
1222 struct page *locked_page,
771ed689
CM
1223 u64 start, u64 end, int *page_started, int force,
1224 unsigned long *nr_written)
be20aa9d 1225{
be20aa9d 1226 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1227 struct btrfs_trans_handle *trans;
be20aa9d 1228 struct extent_buffer *leaf;
be20aa9d 1229 struct btrfs_path *path;
80ff3856 1230 struct btrfs_file_extent_item *fi;
be20aa9d 1231 struct btrfs_key found_key;
80ff3856
YZ
1232 u64 cow_start;
1233 u64 cur_offset;
1234 u64 extent_end;
5d4f98a2 1235 u64 extent_offset;
80ff3856
YZ
1236 u64 disk_bytenr;
1237 u64 num_bytes;
b4939680 1238 u64 disk_num_bytes;
cc95bef6 1239 u64 ram_bytes;
80ff3856 1240 int extent_type;
79787eaa 1241 int ret, err;
d899e052 1242 int type;
80ff3856
YZ
1243 int nocow;
1244 int check_prev = 1;
82d5902d 1245 bool nolock;
33345d01 1246 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1247
1248 path = btrfs_alloc_path();
17ca04af 1249 if (!path) {
c2790a2e
JB
1250 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1251 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1252 EXTENT_DO_ACCOUNTING |
1253 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1254 PAGE_CLEAR_DIRTY |
1255 PAGE_SET_WRITEBACK |
1256 PAGE_END_WRITEBACK);
d8926bb3 1257 return -ENOMEM;
17ca04af 1258 }
82d5902d 1259
83eea1f1 1260 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1261
1262 if (nolock)
7a7eaa40 1263 trans = btrfs_join_transaction_nolock(root);
82d5902d 1264 else
7a7eaa40 1265 trans = btrfs_join_transaction(root);
ff5714cc 1266
79787eaa 1267 if (IS_ERR(trans)) {
c2790a2e
JB
1268 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1269 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1270 EXTENT_DO_ACCOUNTING |
1271 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1272 PAGE_CLEAR_DIRTY |
1273 PAGE_SET_WRITEBACK |
1274 PAGE_END_WRITEBACK);
79787eaa
JM
1275 btrfs_free_path(path);
1276 return PTR_ERR(trans);
1277 }
1278
74b21075 1279 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1280
80ff3856
YZ
1281 cow_start = (u64)-1;
1282 cur_offset = start;
1283 while (1) {
33345d01 1284 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1285 cur_offset, 0);
d788a349 1286 if (ret < 0)
79787eaa 1287 goto error;
80ff3856
YZ
1288 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1289 leaf = path->nodes[0];
1290 btrfs_item_key_to_cpu(leaf, &found_key,
1291 path->slots[0] - 1);
33345d01 1292 if (found_key.objectid == ino &&
80ff3856
YZ
1293 found_key.type == BTRFS_EXTENT_DATA_KEY)
1294 path->slots[0]--;
1295 }
1296 check_prev = 0;
1297next_slot:
1298 leaf = path->nodes[0];
1299 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1300 ret = btrfs_next_leaf(root, path);
d788a349 1301 if (ret < 0)
79787eaa 1302 goto error;
80ff3856
YZ
1303 if (ret > 0)
1304 break;
1305 leaf = path->nodes[0];
1306 }
be20aa9d 1307
80ff3856
YZ
1308 nocow = 0;
1309 disk_bytenr = 0;
17d217fe 1310 num_bytes = 0;
80ff3856
YZ
1311 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1312
1d512cb7
FM
1313 if (found_key.objectid > ino)
1314 break;
1315 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1316 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1317 path->slots[0]++;
1318 goto next_slot;
1319 }
1320 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1321 found_key.offset > end)
1322 break;
1323
1324 if (found_key.offset > cur_offset) {
1325 extent_end = found_key.offset;
e9061e21 1326 extent_type = 0;
80ff3856
YZ
1327 goto out_check;
1328 }
1329
1330 fi = btrfs_item_ptr(leaf, path->slots[0],
1331 struct btrfs_file_extent_item);
1332 extent_type = btrfs_file_extent_type(leaf, fi);
1333
cc95bef6 1334 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1335 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1336 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1337 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1338 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1339 extent_end = found_key.offset +
1340 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1341 disk_num_bytes =
1342 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1343 if (extent_end <= start) {
1344 path->slots[0]++;
1345 goto next_slot;
1346 }
17d217fe
YZ
1347 if (disk_bytenr == 0)
1348 goto out_check;
80ff3856
YZ
1349 if (btrfs_file_extent_compression(leaf, fi) ||
1350 btrfs_file_extent_encryption(leaf, fi) ||
1351 btrfs_file_extent_other_encoding(leaf, fi))
1352 goto out_check;
d899e052
YZ
1353 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1354 goto out_check;
d2fb3437 1355 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1356 goto out_check;
33345d01 1357 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1358 found_key.offset -
1359 extent_offset, disk_bytenr))
17d217fe 1360 goto out_check;
5d4f98a2 1361 disk_bytenr += extent_offset;
17d217fe
YZ
1362 disk_bytenr += cur_offset - found_key.offset;
1363 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1364 /*
1365 * if there are pending snapshots for this root,
1366 * we fall into common COW way.
1367 */
1368 if (!nolock) {
9ea24bbe 1369 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1370 if (!err)
1371 goto out_check;
1372 }
17d217fe
YZ
1373 /*
1374 * force cow if csum exists in the range.
1375 * this ensure that csum for a given extent are
1376 * either valid or do not exist.
1377 */
1378 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1379 goto out_check;
80ff3856
YZ
1380 nocow = 1;
1381 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1382 extent_end = found_key.offset +
514ac8ad
CM
1383 btrfs_file_extent_inline_len(leaf,
1384 path->slots[0], fi);
80ff3856
YZ
1385 extent_end = ALIGN(extent_end, root->sectorsize);
1386 } else {
1387 BUG_ON(1);
1388 }
1389out_check:
1390 if (extent_end <= start) {
1391 path->slots[0]++;
e9894fd3 1392 if (!nolock && nocow)
9ea24bbe 1393 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1394 goto next_slot;
1395 }
1396 if (!nocow) {
1397 if (cow_start == (u64)-1)
1398 cow_start = cur_offset;
1399 cur_offset = extent_end;
1400 if (cur_offset > end)
1401 break;
1402 path->slots[0]++;
1403 goto next_slot;
7ea394f1
YZ
1404 }
1405
b3b4aa74 1406 btrfs_release_path(path);
80ff3856 1407 if (cow_start != (u64)-1) {
00361589
JB
1408 ret = cow_file_range(inode, locked_page,
1409 cow_start, found_key.offset - 1,
1410 page_started, nr_written, 1);
e9894fd3
WS
1411 if (ret) {
1412 if (!nolock && nocow)
9ea24bbe 1413 btrfs_end_write_no_snapshoting(root);
79787eaa 1414 goto error;
e9894fd3 1415 }
80ff3856 1416 cow_start = (u64)-1;
7ea394f1 1417 }
80ff3856 1418
d899e052
YZ
1419 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1420 struct extent_map *em;
1421 struct extent_map_tree *em_tree;
1422 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1423 em = alloc_extent_map();
79787eaa 1424 BUG_ON(!em); /* -ENOMEM */
d899e052 1425 em->start = cur_offset;
70c8a91c 1426 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1427 em->len = num_bytes;
1428 em->block_len = num_bytes;
1429 em->block_start = disk_bytenr;
b4939680 1430 em->orig_block_len = disk_num_bytes;
cc95bef6 1431 em->ram_bytes = ram_bytes;
d899e052 1432 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1433 em->mod_start = em->start;
1434 em->mod_len = em->len;
d899e052 1435 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1436 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1437 em->generation = -1;
d899e052 1438 while (1) {
890871be 1439 write_lock(&em_tree->lock);
09a2a8f9 1440 ret = add_extent_mapping(em_tree, em, 1);
890871be 1441 write_unlock(&em_tree->lock);
d899e052
YZ
1442 if (ret != -EEXIST) {
1443 free_extent_map(em);
1444 break;
1445 }
1446 btrfs_drop_extent_cache(inode, em->start,
1447 em->start + em->len - 1, 0);
1448 }
1449 type = BTRFS_ORDERED_PREALLOC;
1450 } else {
1451 type = BTRFS_ORDERED_NOCOW;
1452 }
80ff3856
YZ
1453
1454 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1455 num_bytes, num_bytes, type);
79787eaa 1456 BUG_ON(ret); /* -ENOMEM */
771ed689 1457
efa56464
YZ
1458 if (root->root_key.objectid ==
1459 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1460 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1461 num_bytes);
e9894fd3
WS
1462 if (ret) {
1463 if (!nolock && nocow)
9ea24bbe 1464 btrfs_end_write_no_snapshoting(root);
79787eaa 1465 goto error;
e9894fd3 1466 }
efa56464
YZ
1467 }
1468
c2790a2e
JB
1469 extent_clear_unlock_delalloc(inode, cur_offset,
1470 cur_offset + num_bytes - 1,
1471 locked_page, EXTENT_LOCKED |
1472 EXTENT_DELALLOC, PAGE_UNLOCK |
1473 PAGE_SET_PRIVATE2);
e9894fd3 1474 if (!nolock && nocow)
9ea24bbe 1475 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1476 cur_offset = extent_end;
1477 if (cur_offset > end)
1478 break;
be20aa9d 1479 }
b3b4aa74 1480 btrfs_release_path(path);
80ff3856 1481
17ca04af 1482 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1483 cow_start = cur_offset;
17ca04af
JB
1484 cur_offset = end;
1485 }
1486
80ff3856 1487 if (cow_start != (u64)-1) {
00361589
JB
1488 ret = cow_file_range(inode, locked_page, cow_start, end,
1489 page_started, nr_written, 1);
d788a349 1490 if (ret)
79787eaa 1491 goto error;
80ff3856
YZ
1492 }
1493
79787eaa 1494error:
a698d075 1495 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1496 if (!ret)
1497 ret = err;
1498
17ca04af 1499 if (ret && cur_offset < end)
c2790a2e
JB
1500 extent_clear_unlock_delalloc(inode, cur_offset, end,
1501 locked_page, EXTENT_LOCKED |
151a41bc
JB
1502 EXTENT_DELALLOC | EXTENT_DEFRAG |
1503 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1504 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1505 PAGE_SET_WRITEBACK |
1506 PAGE_END_WRITEBACK);
7ea394f1 1507 btrfs_free_path(path);
79787eaa 1508 return ret;
be20aa9d
CM
1509}
1510
47059d93
WS
1511static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1512{
1513
1514 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1515 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1516 return 0;
1517
1518 /*
1519 * @defrag_bytes is a hint value, no spinlock held here,
1520 * if is not zero, it means the file is defragging.
1521 * Force cow if given extent needs to be defragged.
1522 */
1523 if (BTRFS_I(inode)->defrag_bytes &&
1524 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1525 EXTENT_DEFRAG, 0, NULL))
1526 return 1;
1527
1528 return 0;
1529}
1530
d352ac68
CM
1531/*
1532 * extent_io.c call back to do delayed allocation processing
1533 */
c8b97818 1534static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1535 u64 start, u64 end, int *page_started,
1536 unsigned long *nr_written)
be20aa9d 1537{
be20aa9d 1538 int ret;
47059d93 1539 int force_cow = need_force_cow(inode, start, end);
a2135011 1540
47059d93 1541 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1542 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1543 page_started, 1, nr_written);
47059d93 1544 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1545 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1546 page_started, 0, nr_written);
7816030e 1547 } else if (!inode_need_compress(inode)) {
7f366cfe
CM
1548 ret = cow_file_range(inode, locked_page, start, end,
1549 page_started, nr_written, 1);
7ddf5a42
JB
1550 } else {
1551 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1552 &BTRFS_I(inode)->runtime_flags);
771ed689 1553 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1554 page_started, nr_written);
7ddf5a42 1555 }
b888db2b
CM
1556 return ret;
1557}
1558
1bf85046
JM
1559static void btrfs_split_extent_hook(struct inode *inode,
1560 struct extent_state *orig, u64 split)
9ed74f2d 1561{
dcab6a3b
JB
1562 u64 size;
1563
0ca1f7ce 1564 /* not delalloc, ignore it */
9ed74f2d 1565 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1566 return;
9ed74f2d 1567
dcab6a3b
JB
1568 size = orig->end - orig->start + 1;
1569 if (size > BTRFS_MAX_EXTENT_SIZE) {
1570 u64 num_extents;
1571 u64 new_size;
1572
1573 /*
ba117213
JB
1574 * See the explanation in btrfs_merge_extent_hook, the same
1575 * applies here, just in reverse.
dcab6a3b
JB
1576 */
1577 new_size = orig->end - split + 1;
ba117213 1578 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
dcab6a3b 1579 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1580 new_size = split - orig->start;
1581 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1582 BTRFS_MAX_EXTENT_SIZE);
1583 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1584 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1585 return;
1586 }
1587
9e0baf60
JB
1588 spin_lock(&BTRFS_I(inode)->lock);
1589 BTRFS_I(inode)->outstanding_extents++;
1590 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1591}
1592
1593/*
1594 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1595 * extents so we can keep track of new extents that are just merged onto old
1596 * extents, such as when we are doing sequential writes, so we can properly
1597 * account for the metadata space we'll need.
1598 */
1bf85046
JM
1599static void btrfs_merge_extent_hook(struct inode *inode,
1600 struct extent_state *new,
1601 struct extent_state *other)
9ed74f2d 1602{
dcab6a3b
JB
1603 u64 new_size, old_size;
1604 u64 num_extents;
1605
9ed74f2d
JB
1606 /* not delalloc, ignore it */
1607 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1608 return;
9ed74f2d 1609
8461a3de
JB
1610 if (new->start > other->start)
1611 new_size = new->end - other->start + 1;
1612 else
1613 new_size = other->end - new->start + 1;
dcab6a3b
JB
1614
1615 /* we're not bigger than the max, unreserve the space and go */
1616 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1617 spin_lock(&BTRFS_I(inode)->lock);
1618 BTRFS_I(inode)->outstanding_extents--;
1619 spin_unlock(&BTRFS_I(inode)->lock);
1620 return;
1621 }
1622
1623 /*
ba117213
JB
1624 * We have to add up either side to figure out how many extents were
1625 * accounted for before we merged into one big extent. If the number of
1626 * extents we accounted for is <= the amount we need for the new range
1627 * then we can return, otherwise drop. Think of it like this
1628 *
1629 * [ 4k][MAX_SIZE]
1630 *
1631 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1632 * need 2 outstanding extents, on one side we have 1 and the other side
1633 * we have 1 so they are == and we can return. But in this case
1634 *
1635 * [MAX_SIZE+4k][MAX_SIZE+4k]
1636 *
1637 * Each range on their own accounts for 2 extents, but merged together
1638 * they are only 3 extents worth of accounting, so we need to drop in
1639 * this case.
dcab6a3b 1640 */
ba117213 1641 old_size = other->end - other->start + 1;
dcab6a3b
JB
1642 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1643 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1644 old_size = new->end - new->start + 1;
1645 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1646 BTRFS_MAX_EXTENT_SIZE);
1647
dcab6a3b 1648 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
ba117213 1649 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1650 return;
1651
9e0baf60
JB
1652 spin_lock(&BTRFS_I(inode)->lock);
1653 BTRFS_I(inode)->outstanding_extents--;
1654 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1655}
1656
eb73c1b7
MX
1657static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1658 struct inode *inode)
1659{
1660 spin_lock(&root->delalloc_lock);
1661 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1662 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1663 &root->delalloc_inodes);
1664 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1665 &BTRFS_I(inode)->runtime_flags);
1666 root->nr_delalloc_inodes++;
1667 if (root->nr_delalloc_inodes == 1) {
1668 spin_lock(&root->fs_info->delalloc_root_lock);
1669 BUG_ON(!list_empty(&root->delalloc_root));
1670 list_add_tail(&root->delalloc_root,
1671 &root->fs_info->delalloc_roots);
1672 spin_unlock(&root->fs_info->delalloc_root_lock);
1673 }
1674 }
1675 spin_unlock(&root->delalloc_lock);
1676}
1677
1678static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1679 struct inode *inode)
1680{
1681 spin_lock(&root->delalloc_lock);
1682 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1683 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1684 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1685 &BTRFS_I(inode)->runtime_flags);
1686 root->nr_delalloc_inodes--;
1687 if (!root->nr_delalloc_inodes) {
1688 spin_lock(&root->fs_info->delalloc_root_lock);
1689 BUG_ON(list_empty(&root->delalloc_root));
1690 list_del_init(&root->delalloc_root);
1691 spin_unlock(&root->fs_info->delalloc_root_lock);
1692 }
1693 }
1694 spin_unlock(&root->delalloc_lock);
1695}
1696
d352ac68
CM
1697/*
1698 * extent_io.c set_bit_hook, used to track delayed allocation
1699 * bytes in this file, and to maintain the list of inodes that
1700 * have pending delalloc work to be done.
1701 */
1bf85046 1702static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1703 struct extent_state *state, unsigned *bits)
291d673e 1704{
9ed74f2d 1705
47059d93
WS
1706 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1707 WARN_ON(1);
75eff68e
CM
1708 /*
1709 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1710 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1711 * bit, which is only set or cleared with irqs on
1712 */
0ca1f7ce 1713 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1714 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1715 u64 len = state->end + 1 - state->start;
83eea1f1 1716 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1717
9e0baf60 1718 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1719 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1720 } else {
1721 spin_lock(&BTRFS_I(inode)->lock);
1722 BTRFS_I(inode)->outstanding_extents++;
1723 spin_unlock(&BTRFS_I(inode)->lock);
1724 }
287a0ab9 1725
6a3891c5
JB
1726 /* For sanity tests */
1727 if (btrfs_test_is_dummy_root(root))
1728 return;
1729
963d678b
MX
1730 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1731 root->fs_info->delalloc_batch);
df0af1a5 1732 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1733 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1734 if (*bits & EXTENT_DEFRAG)
1735 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1736 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1737 &BTRFS_I(inode)->runtime_flags))
1738 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1739 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1740 }
291d673e
CM
1741}
1742
d352ac68
CM
1743/*
1744 * extent_io.c clear_bit_hook, see set_bit_hook for why
1745 */
1bf85046 1746static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1747 struct extent_state *state,
9ee49a04 1748 unsigned *bits)
291d673e 1749{
47059d93 1750 u64 len = state->end + 1 - state->start;
dcab6a3b
JB
1751 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1752 BTRFS_MAX_EXTENT_SIZE);
47059d93
WS
1753
1754 spin_lock(&BTRFS_I(inode)->lock);
1755 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1756 BTRFS_I(inode)->defrag_bytes -= len;
1757 spin_unlock(&BTRFS_I(inode)->lock);
1758
75eff68e
CM
1759 /*
1760 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1761 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1762 * bit, which is only set or cleared with irqs on
1763 */
0ca1f7ce 1764 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1765 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1766 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1767
9e0baf60 1768 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1769 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1770 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1771 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 1772 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60
JB
1773 spin_unlock(&BTRFS_I(inode)->lock);
1774 }
0ca1f7ce 1775
b6d08f06
JB
1776 /*
1777 * We don't reserve metadata space for space cache inodes so we
1778 * don't need to call dellalloc_release_metadata if there is an
1779 * error.
1780 */
1781 if (*bits & EXTENT_DO_ACCOUNTING &&
1782 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1783 btrfs_delalloc_release_metadata(inode, len);
1784
6a3891c5
JB
1785 /* For sanity tests. */
1786 if (btrfs_test_is_dummy_root(root))
1787 return;
1788
0cb59c99 1789 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1790 && do_list && !(state->state & EXTENT_NORESERVE))
51773bec
QW
1791 btrfs_free_reserved_data_space_noquota(inode,
1792 state->start, len);
9ed74f2d 1793
963d678b
MX
1794 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1795 root->fs_info->delalloc_batch);
df0af1a5 1796 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1797 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1798 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1799 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1800 &BTRFS_I(inode)->runtime_flags))
1801 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1802 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1803 }
291d673e
CM
1804}
1805
d352ac68
CM
1806/*
1807 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1808 * we don't create bios that span stripes or chunks
1809 */
64a16701 1810int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1811 size_t size, struct bio *bio,
1812 unsigned long bio_flags)
239b14b3
CM
1813{
1814 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1815 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1816 u64 length = 0;
1817 u64 map_length;
239b14b3
CM
1818 int ret;
1819
771ed689
CM
1820 if (bio_flags & EXTENT_BIO_COMPRESSED)
1821 return 0;
1822
4f024f37 1823 length = bio->bi_iter.bi_size;
239b14b3 1824 map_length = length;
64a16701 1825 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1826 &map_length, NULL, 0);
3ec706c8 1827 /* Will always return 0 with map_multi == NULL */
3444a972 1828 BUG_ON(ret < 0);
d397712b 1829 if (map_length < length + size)
239b14b3 1830 return 1;
3444a972 1831 return 0;
239b14b3
CM
1832}
1833
d352ac68
CM
1834/*
1835 * in order to insert checksums into the metadata in large chunks,
1836 * we wait until bio submission time. All the pages in the bio are
1837 * checksummed and sums are attached onto the ordered extent record.
1838 *
1839 * At IO completion time the cums attached on the ordered extent record
1840 * are inserted into the btree
1841 */
d397712b
CM
1842static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1843 struct bio *bio, int mirror_num,
eaf25d93
CM
1844 unsigned long bio_flags,
1845 u64 bio_offset)
065631f6 1846{
065631f6 1847 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1848 int ret = 0;
e015640f 1849
d20f7043 1850 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1851 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1852 return 0;
1853}
e015640f 1854
4a69a410
CM
1855/*
1856 * in order to insert checksums into the metadata in large chunks,
1857 * we wait until bio submission time. All the pages in the bio are
1858 * checksummed and sums are attached onto the ordered extent record.
1859 *
1860 * At IO completion time the cums attached on the ordered extent record
1861 * are inserted into the btree
1862 */
b2950863 1863static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1864 int mirror_num, unsigned long bio_flags,
1865 u64 bio_offset)
4a69a410
CM
1866{
1867 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1868 int ret;
1869
1870 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
4246a0b6
CH
1871 if (ret) {
1872 bio->bi_error = ret;
1873 bio_endio(bio);
1874 }
61891923 1875 return ret;
44b8bd7e
CM
1876}
1877
d352ac68 1878/*
cad321ad
CM
1879 * extent_io.c submission hook. This does the right thing for csum calculation
1880 * on write, or reading the csums from the tree before a read
d352ac68 1881 */
b2950863 1882static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1883 int mirror_num, unsigned long bio_flags,
1884 u64 bio_offset)
44b8bd7e
CM
1885{
1886 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1887 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1888 int ret = 0;
19b9bdb0 1889 int skip_sum;
b812ce28 1890 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1891
6cbff00f 1892 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1893
83eea1f1 1894 if (btrfs_is_free_space_inode(inode))
0d51e28a 1895 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1896
7b6d91da 1897 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1898 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1899 if (ret)
61891923 1900 goto out;
5fd02043 1901
d20f7043 1902 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1903 ret = btrfs_submit_compressed_read(inode, bio,
1904 mirror_num,
1905 bio_flags);
1906 goto out;
c2db1073
TI
1907 } else if (!skip_sum) {
1908 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1909 if (ret)
61891923 1910 goto out;
c2db1073 1911 }
4d1b5fb4 1912 goto mapit;
b812ce28 1913 } else if (async && !skip_sum) {
17d217fe
YZ
1914 /* csum items have already been cloned */
1915 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1916 goto mapit;
19b9bdb0 1917 /* we're doing a write, do the async checksumming */
61891923 1918 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1919 inode, rw, bio, mirror_num,
eaf25d93
CM
1920 bio_flags, bio_offset,
1921 __btrfs_submit_bio_start,
4a69a410 1922 __btrfs_submit_bio_done);
61891923 1923 goto out;
b812ce28
JB
1924 } else if (!skip_sum) {
1925 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1926 if (ret)
1927 goto out;
19b9bdb0
CM
1928 }
1929
0b86a832 1930mapit:
61891923
SB
1931 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1932
1933out:
4246a0b6
CH
1934 if (ret < 0) {
1935 bio->bi_error = ret;
1936 bio_endio(bio);
1937 }
61891923 1938 return ret;
065631f6 1939}
6885f308 1940
d352ac68
CM
1941/*
1942 * given a list of ordered sums record them in the inode. This happens
1943 * at IO completion time based on sums calculated at bio submission time.
1944 */
ba1da2f4 1945static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1946 struct inode *inode, u64 file_offset,
1947 struct list_head *list)
1948{
e6dcd2dc
CM
1949 struct btrfs_ordered_sum *sum;
1950
c6e30871 1951 list_for_each_entry(sum, list, list) {
39847c4d 1952 trans->adding_csums = 1;
d20f7043
CM
1953 btrfs_csum_file_blocks(trans,
1954 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1955 trans->adding_csums = 0;
e6dcd2dc
CM
1956 }
1957 return 0;
1958}
1959
2ac55d41
JB
1960int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1961 struct extent_state **cached_state)
ea8c2819 1962{
6c1500f2 1963 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1964 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1965 cached_state, GFP_NOFS);
ea8c2819
CM
1966}
1967
d352ac68 1968/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1969struct btrfs_writepage_fixup {
1970 struct page *page;
1971 struct btrfs_work work;
1972};
1973
b2950863 1974static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1975{
1976 struct btrfs_writepage_fixup *fixup;
1977 struct btrfs_ordered_extent *ordered;
2ac55d41 1978 struct extent_state *cached_state = NULL;
247e743c
CM
1979 struct page *page;
1980 struct inode *inode;
1981 u64 page_start;
1982 u64 page_end;
87826df0 1983 int ret;
247e743c
CM
1984
1985 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1986 page = fixup->page;
4a096752 1987again:
247e743c
CM
1988 lock_page(page);
1989 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1990 ClearPageChecked(page);
1991 goto out_page;
1992 }
1993
1994 inode = page->mapping->host;
1995 page_start = page_offset(page);
1996 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1997
ff13db41 1998 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 1999 &cached_state);
4a096752
CM
2000
2001 /* already ordered? We're done */
8b62b72b 2002 if (PagePrivate2(page))
247e743c 2003 goto out;
4a096752
CM
2004
2005 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2006 if (ordered) {
2ac55d41
JB
2007 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2008 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2009 unlock_page(page);
2010 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2011 btrfs_put_ordered_extent(ordered);
4a096752
CM
2012 goto again;
2013 }
247e743c 2014
7cf5b976
QW
2015 ret = btrfs_delalloc_reserve_space(inode, page_start,
2016 PAGE_CACHE_SIZE);
87826df0
JM
2017 if (ret) {
2018 mapping_set_error(page->mapping, ret);
2019 end_extent_writepage(page, ret, page_start, page_end);
2020 ClearPageChecked(page);
2021 goto out;
2022 }
2023
2ac55d41 2024 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 2025 ClearPageChecked(page);
87826df0 2026 set_page_dirty(page);
247e743c 2027out:
2ac55d41
JB
2028 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2029 &cached_state, GFP_NOFS);
247e743c
CM
2030out_page:
2031 unlock_page(page);
2032 page_cache_release(page);
b897abec 2033 kfree(fixup);
247e743c
CM
2034}
2035
2036/*
2037 * There are a few paths in the higher layers of the kernel that directly
2038 * set the page dirty bit without asking the filesystem if it is a
2039 * good idea. This causes problems because we want to make sure COW
2040 * properly happens and the data=ordered rules are followed.
2041 *
c8b97818 2042 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2043 * hasn't been properly setup for IO. We kick off an async process
2044 * to fix it up. The async helper will wait for ordered extents, set
2045 * the delalloc bit and make it safe to write the page.
2046 */
b2950863 2047static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2048{
2049 struct inode *inode = page->mapping->host;
2050 struct btrfs_writepage_fixup *fixup;
2051 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 2052
8b62b72b
CM
2053 /* this page is properly in the ordered list */
2054 if (TestClearPagePrivate2(page))
247e743c
CM
2055 return 0;
2056
2057 if (PageChecked(page))
2058 return -EAGAIN;
2059
2060 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2061 if (!fixup)
2062 return -EAGAIN;
f421950f 2063
247e743c
CM
2064 SetPageChecked(page);
2065 page_cache_get(page);
9e0af237
LB
2066 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2067 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2068 fixup->page = page;
dc6e3209 2069 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 2070 return -EBUSY;
247e743c
CM
2071}
2072
d899e052
YZ
2073static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2074 struct inode *inode, u64 file_pos,
2075 u64 disk_bytenr, u64 disk_num_bytes,
2076 u64 num_bytes, u64 ram_bytes,
2077 u8 compression, u8 encryption,
2078 u16 other_encoding, int extent_type)
2079{
2080 struct btrfs_root *root = BTRFS_I(inode)->root;
2081 struct btrfs_file_extent_item *fi;
2082 struct btrfs_path *path;
2083 struct extent_buffer *leaf;
2084 struct btrfs_key ins;
1acae57b 2085 int extent_inserted = 0;
d899e052
YZ
2086 int ret;
2087
2088 path = btrfs_alloc_path();
d8926bb3
MF
2089 if (!path)
2090 return -ENOMEM;
d899e052 2091
a1ed835e
CM
2092 /*
2093 * we may be replacing one extent in the tree with another.
2094 * The new extent is pinned in the extent map, and we don't want
2095 * to drop it from the cache until it is completely in the btree.
2096 *
2097 * So, tell btrfs_drop_extents to leave this extent in the cache.
2098 * the caller is expected to unpin it and allow it to be merged
2099 * with the others.
2100 */
1acae57b
FDBM
2101 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2102 file_pos + num_bytes, NULL, 0,
2103 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2104 if (ret)
2105 goto out;
d899e052 2106
1acae57b
FDBM
2107 if (!extent_inserted) {
2108 ins.objectid = btrfs_ino(inode);
2109 ins.offset = file_pos;
2110 ins.type = BTRFS_EXTENT_DATA_KEY;
2111
2112 path->leave_spinning = 1;
2113 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2114 sizeof(*fi));
2115 if (ret)
2116 goto out;
2117 }
d899e052
YZ
2118 leaf = path->nodes[0];
2119 fi = btrfs_item_ptr(leaf, path->slots[0],
2120 struct btrfs_file_extent_item);
2121 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2122 btrfs_set_file_extent_type(leaf, fi, extent_type);
2123 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2124 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2125 btrfs_set_file_extent_offset(leaf, fi, 0);
2126 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2127 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2128 btrfs_set_file_extent_compression(leaf, fi, compression);
2129 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2130 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2131
d899e052 2132 btrfs_mark_buffer_dirty(leaf);
ce195332 2133 btrfs_release_path(path);
d899e052
YZ
2134
2135 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2136
2137 ins.objectid = disk_bytenr;
2138 ins.offset = disk_num_bytes;
2139 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2140 ret = btrfs_alloc_reserved_file_extent(trans, root,
2141 root->root_key.objectid,
5846a3c2
QW
2142 btrfs_ino(inode), file_pos,
2143 ram_bytes, &ins);
297d750b 2144 /*
5846a3c2
QW
2145 * Release the reserved range from inode dirty range map, as it is
2146 * already moved into delayed_ref_head
297d750b
QW
2147 */
2148 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
79787eaa 2149out:
d899e052 2150 btrfs_free_path(path);
b9473439 2151
79787eaa 2152 return ret;
d899e052
YZ
2153}
2154
38c227d8
LB
2155/* snapshot-aware defrag */
2156struct sa_defrag_extent_backref {
2157 struct rb_node node;
2158 struct old_sa_defrag_extent *old;
2159 u64 root_id;
2160 u64 inum;
2161 u64 file_pos;
2162 u64 extent_offset;
2163 u64 num_bytes;
2164 u64 generation;
2165};
2166
2167struct old_sa_defrag_extent {
2168 struct list_head list;
2169 struct new_sa_defrag_extent *new;
2170
2171 u64 extent_offset;
2172 u64 bytenr;
2173 u64 offset;
2174 u64 len;
2175 int count;
2176};
2177
2178struct new_sa_defrag_extent {
2179 struct rb_root root;
2180 struct list_head head;
2181 struct btrfs_path *path;
2182 struct inode *inode;
2183 u64 file_pos;
2184 u64 len;
2185 u64 bytenr;
2186 u64 disk_len;
2187 u8 compress_type;
2188};
2189
2190static int backref_comp(struct sa_defrag_extent_backref *b1,
2191 struct sa_defrag_extent_backref *b2)
2192{
2193 if (b1->root_id < b2->root_id)
2194 return -1;
2195 else if (b1->root_id > b2->root_id)
2196 return 1;
2197
2198 if (b1->inum < b2->inum)
2199 return -1;
2200 else if (b1->inum > b2->inum)
2201 return 1;
2202
2203 if (b1->file_pos < b2->file_pos)
2204 return -1;
2205 else if (b1->file_pos > b2->file_pos)
2206 return 1;
2207
2208 /*
2209 * [------------------------------] ===> (a range of space)
2210 * |<--->| |<---->| =============> (fs/file tree A)
2211 * |<---------------------------->| ===> (fs/file tree B)
2212 *
2213 * A range of space can refer to two file extents in one tree while
2214 * refer to only one file extent in another tree.
2215 *
2216 * So we may process a disk offset more than one time(two extents in A)
2217 * and locate at the same extent(one extent in B), then insert two same
2218 * backrefs(both refer to the extent in B).
2219 */
2220 return 0;
2221}
2222
2223static void backref_insert(struct rb_root *root,
2224 struct sa_defrag_extent_backref *backref)
2225{
2226 struct rb_node **p = &root->rb_node;
2227 struct rb_node *parent = NULL;
2228 struct sa_defrag_extent_backref *entry;
2229 int ret;
2230
2231 while (*p) {
2232 parent = *p;
2233 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2234
2235 ret = backref_comp(backref, entry);
2236 if (ret < 0)
2237 p = &(*p)->rb_left;
2238 else
2239 p = &(*p)->rb_right;
2240 }
2241
2242 rb_link_node(&backref->node, parent, p);
2243 rb_insert_color(&backref->node, root);
2244}
2245
2246/*
2247 * Note the backref might has changed, and in this case we just return 0.
2248 */
2249static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2250 void *ctx)
2251{
2252 struct btrfs_file_extent_item *extent;
2253 struct btrfs_fs_info *fs_info;
2254 struct old_sa_defrag_extent *old = ctx;
2255 struct new_sa_defrag_extent *new = old->new;
2256 struct btrfs_path *path = new->path;
2257 struct btrfs_key key;
2258 struct btrfs_root *root;
2259 struct sa_defrag_extent_backref *backref;
2260 struct extent_buffer *leaf;
2261 struct inode *inode = new->inode;
2262 int slot;
2263 int ret;
2264 u64 extent_offset;
2265 u64 num_bytes;
2266
2267 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2268 inum == btrfs_ino(inode))
2269 return 0;
2270
2271 key.objectid = root_id;
2272 key.type = BTRFS_ROOT_ITEM_KEY;
2273 key.offset = (u64)-1;
2274
2275 fs_info = BTRFS_I(inode)->root->fs_info;
2276 root = btrfs_read_fs_root_no_name(fs_info, &key);
2277 if (IS_ERR(root)) {
2278 if (PTR_ERR(root) == -ENOENT)
2279 return 0;
2280 WARN_ON(1);
2281 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2282 inum, offset, root_id);
2283 return PTR_ERR(root);
2284 }
2285
2286 key.objectid = inum;
2287 key.type = BTRFS_EXTENT_DATA_KEY;
2288 if (offset > (u64)-1 << 32)
2289 key.offset = 0;
2290 else
2291 key.offset = offset;
2292
2293 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2294 if (WARN_ON(ret < 0))
38c227d8 2295 return ret;
50f1319c 2296 ret = 0;
38c227d8
LB
2297
2298 while (1) {
2299 cond_resched();
2300
2301 leaf = path->nodes[0];
2302 slot = path->slots[0];
2303
2304 if (slot >= btrfs_header_nritems(leaf)) {
2305 ret = btrfs_next_leaf(root, path);
2306 if (ret < 0) {
2307 goto out;
2308 } else if (ret > 0) {
2309 ret = 0;
2310 goto out;
2311 }
2312 continue;
2313 }
2314
2315 path->slots[0]++;
2316
2317 btrfs_item_key_to_cpu(leaf, &key, slot);
2318
2319 if (key.objectid > inum)
2320 goto out;
2321
2322 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2323 continue;
2324
2325 extent = btrfs_item_ptr(leaf, slot,
2326 struct btrfs_file_extent_item);
2327
2328 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2329 continue;
2330
e68afa49
LB
2331 /*
2332 * 'offset' refers to the exact key.offset,
2333 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2334 * (key.offset - extent_offset).
2335 */
2336 if (key.offset != offset)
38c227d8
LB
2337 continue;
2338
e68afa49 2339 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2340 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2341
38c227d8
LB
2342 if (extent_offset >= old->extent_offset + old->offset +
2343 old->len || extent_offset + num_bytes <=
2344 old->extent_offset + old->offset)
2345 continue;
38c227d8
LB
2346 break;
2347 }
2348
2349 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2350 if (!backref) {
2351 ret = -ENOENT;
2352 goto out;
2353 }
2354
2355 backref->root_id = root_id;
2356 backref->inum = inum;
e68afa49 2357 backref->file_pos = offset;
38c227d8
LB
2358 backref->num_bytes = num_bytes;
2359 backref->extent_offset = extent_offset;
2360 backref->generation = btrfs_file_extent_generation(leaf, extent);
2361 backref->old = old;
2362 backref_insert(&new->root, backref);
2363 old->count++;
2364out:
2365 btrfs_release_path(path);
2366 WARN_ON(ret);
2367 return ret;
2368}
2369
2370static noinline bool record_extent_backrefs(struct btrfs_path *path,
2371 struct new_sa_defrag_extent *new)
2372{
2373 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2374 struct old_sa_defrag_extent *old, *tmp;
2375 int ret;
2376
2377 new->path = path;
2378
2379 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2380 ret = iterate_inodes_from_logical(old->bytenr +
2381 old->extent_offset, fs_info,
38c227d8
LB
2382 path, record_one_backref,
2383 old);
4724b106
JB
2384 if (ret < 0 && ret != -ENOENT)
2385 return false;
38c227d8
LB
2386
2387 /* no backref to be processed for this extent */
2388 if (!old->count) {
2389 list_del(&old->list);
2390 kfree(old);
2391 }
2392 }
2393
2394 if (list_empty(&new->head))
2395 return false;
2396
2397 return true;
2398}
2399
2400static int relink_is_mergable(struct extent_buffer *leaf,
2401 struct btrfs_file_extent_item *fi,
116e0024 2402 struct new_sa_defrag_extent *new)
38c227d8 2403{
116e0024 2404 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2405 return 0;
2406
2407 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2408 return 0;
2409
116e0024
LB
2410 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2411 return 0;
2412
2413 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2414 btrfs_file_extent_other_encoding(leaf, fi))
2415 return 0;
2416
2417 return 1;
2418}
2419
2420/*
2421 * Note the backref might has changed, and in this case we just return 0.
2422 */
2423static noinline int relink_extent_backref(struct btrfs_path *path,
2424 struct sa_defrag_extent_backref *prev,
2425 struct sa_defrag_extent_backref *backref)
2426{
2427 struct btrfs_file_extent_item *extent;
2428 struct btrfs_file_extent_item *item;
2429 struct btrfs_ordered_extent *ordered;
2430 struct btrfs_trans_handle *trans;
2431 struct btrfs_fs_info *fs_info;
2432 struct btrfs_root *root;
2433 struct btrfs_key key;
2434 struct extent_buffer *leaf;
2435 struct old_sa_defrag_extent *old = backref->old;
2436 struct new_sa_defrag_extent *new = old->new;
2437 struct inode *src_inode = new->inode;
2438 struct inode *inode;
2439 struct extent_state *cached = NULL;
2440 int ret = 0;
2441 u64 start;
2442 u64 len;
2443 u64 lock_start;
2444 u64 lock_end;
2445 bool merge = false;
2446 int index;
2447
2448 if (prev && prev->root_id == backref->root_id &&
2449 prev->inum == backref->inum &&
2450 prev->file_pos + prev->num_bytes == backref->file_pos)
2451 merge = true;
2452
2453 /* step 1: get root */
2454 key.objectid = backref->root_id;
2455 key.type = BTRFS_ROOT_ITEM_KEY;
2456 key.offset = (u64)-1;
2457
2458 fs_info = BTRFS_I(src_inode)->root->fs_info;
2459 index = srcu_read_lock(&fs_info->subvol_srcu);
2460
2461 root = btrfs_read_fs_root_no_name(fs_info, &key);
2462 if (IS_ERR(root)) {
2463 srcu_read_unlock(&fs_info->subvol_srcu, index);
2464 if (PTR_ERR(root) == -ENOENT)
2465 return 0;
2466 return PTR_ERR(root);
2467 }
38c227d8 2468
bcbba5e6
WS
2469 if (btrfs_root_readonly(root)) {
2470 srcu_read_unlock(&fs_info->subvol_srcu, index);
2471 return 0;
2472 }
2473
38c227d8
LB
2474 /* step 2: get inode */
2475 key.objectid = backref->inum;
2476 key.type = BTRFS_INODE_ITEM_KEY;
2477 key.offset = 0;
2478
2479 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2480 if (IS_ERR(inode)) {
2481 srcu_read_unlock(&fs_info->subvol_srcu, index);
2482 return 0;
2483 }
2484
2485 srcu_read_unlock(&fs_info->subvol_srcu, index);
2486
2487 /* step 3: relink backref */
2488 lock_start = backref->file_pos;
2489 lock_end = backref->file_pos + backref->num_bytes - 1;
2490 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2491 &cached);
38c227d8
LB
2492
2493 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2494 if (ordered) {
2495 btrfs_put_ordered_extent(ordered);
2496 goto out_unlock;
2497 }
2498
2499 trans = btrfs_join_transaction(root);
2500 if (IS_ERR(trans)) {
2501 ret = PTR_ERR(trans);
2502 goto out_unlock;
2503 }
2504
2505 key.objectid = backref->inum;
2506 key.type = BTRFS_EXTENT_DATA_KEY;
2507 key.offset = backref->file_pos;
2508
2509 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2510 if (ret < 0) {
2511 goto out_free_path;
2512 } else if (ret > 0) {
2513 ret = 0;
2514 goto out_free_path;
2515 }
2516
2517 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2518 struct btrfs_file_extent_item);
2519
2520 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2521 backref->generation)
2522 goto out_free_path;
2523
2524 btrfs_release_path(path);
2525
2526 start = backref->file_pos;
2527 if (backref->extent_offset < old->extent_offset + old->offset)
2528 start += old->extent_offset + old->offset -
2529 backref->extent_offset;
2530
2531 len = min(backref->extent_offset + backref->num_bytes,
2532 old->extent_offset + old->offset + old->len);
2533 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2534
2535 ret = btrfs_drop_extents(trans, root, inode, start,
2536 start + len, 1);
2537 if (ret)
2538 goto out_free_path;
2539again:
2540 key.objectid = btrfs_ino(inode);
2541 key.type = BTRFS_EXTENT_DATA_KEY;
2542 key.offset = start;
2543
a09a0a70 2544 path->leave_spinning = 1;
38c227d8
LB
2545 if (merge) {
2546 struct btrfs_file_extent_item *fi;
2547 u64 extent_len;
2548 struct btrfs_key found_key;
2549
3c9665df 2550 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2551 if (ret < 0)
2552 goto out_free_path;
2553
2554 path->slots[0]--;
2555 leaf = path->nodes[0];
2556 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2557
2558 fi = btrfs_item_ptr(leaf, path->slots[0],
2559 struct btrfs_file_extent_item);
2560 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2561
116e0024
LB
2562 if (extent_len + found_key.offset == start &&
2563 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2564 btrfs_set_file_extent_num_bytes(leaf, fi,
2565 extent_len + len);
2566 btrfs_mark_buffer_dirty(leaf);
2567 inode_add_bytes(inode, len);
2568
2569 ret = 1;
2570 goto out_free_path;
2571 } else {
2572 merge = false;
2573 btrfs_release_path(path);
2574 goto again;
2575 }
2576 }
2577
2578 ret = btrfs_insert_empty_item(trans, root, path, &key,
2579 sizeof(*extent));
2580 if (ret) {
2581 btrfs_abort_transaction(trans, root, ret);
2582 goto out_free_path;
2583 }
2584
2585 leaf = path->nodes[0];
2586 item = btrfs_item_ptr(leaf, path->slots[0],
2587 struct btrfs_file_extent_item);
2588 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2589 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2590 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2591 btrfs_set_file_extent_num_bytes(leaf, item, len);
2592 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2593 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2594 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2595 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2596 btrfs_set_file_extent_encryption(leaf, item, 0);
2597 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2598
2599 btrfs_mark_buffer_dirty(leaf);
2600 inode_add_bytes(inode, len);
a09a0a70 2601 btrfs_release_path(path);
38c227d8
LB
2602
2603 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2604 new->disk_len, 0,
2605 backref->root_id, backref->inum,
b06c4bf5 2606 new->file_pos); /* start - extent_offset */
38c227d8
LB
2607 if (ret) {
2608 btrfs_abort_transaction(trans, root, ret);
2609 goto out_free_path;
2610 }
2611
2612 ret = 1;
2613out_free_path:
2614 btrfs_release_path(path);
a09a0a70 2615 path->leave_spinning = 0;
38c227d8
LB
2616 btrfs_end_transaction(trans, root);
2617out_unlock:
2618 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2619 &cached, GFP_NOFS);
2620 iput(inode);
2621 return ret;
2622}
2623
6f519564
LB
2624static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2625{
2626 struct old_sa_defrag_extent *old, *tmp;
2627
2628 if (!new)
2629 return;
2630
2631 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2632 kfree(old);
2633 }
2634 kfree(new);
2635}
2636
38c227d8
LB
2637static void relink_file_extents(struct new_sa_defrag_extent *new)
2638{
2639 struct btrfs_path *path;
38c227d8
LB
2640 struct sa_defrag_extent_backref *backref;
2641 struct sa_defrag_extent_backref *prev = NULL;
2642 struct inode *inode;
2643 struct btrfs_root *root;
2644 struct rb_node *node;
2645 int ret;
2646
2647 inode = new->inode;
2648 root = BTRFS_I(inode)->root;
2649
2650 path = btrfs_alloc_path();
2651 if (!path)
2652 return;
2653
2654 if (!record_extent_backrefs(path, new)) {
2655 btrfs_free_path(path);
2656 goto out;
2657 }
2658 btrfs_release_path(path);
2659
2660 while (1) {
2661 node = rb_first(&new->root);
2662 if (!node)
2663 break;
2664 rb_erase(node, &new->root);
2665
2666 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2667
2668 ret = relink_extent_backref(path, prev, backref);
2669 WARN_ON(ret < 0);
2670
2671 kfree(prev);
2672
2673 if (ret == 1)
2674 prev = backref;
2675 else
2676 prev = NULL;
2677 cond_resched();
2678 }
2679 kfree(prev);
2680
2681 btrfs_free_path(path);
38c227d8 2682out:
6f519564
LB
2683 free_sa_defrag_extent(new);
2684
38c227d8
LB
2685 atomic_dec(&root->fs_info->defrag_running);
2686 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2687}
2688
2689static struct new_sa_defrag_extent *
2690record_old_file_extents(struct inode *inode,
2691 struct btrfs_ordered_extent *ordered)
2692{
2693 struct btrfs_root *root = BTRFS_I(inode)->root;
2694 struct btrfs_path *path;
2695 struct btrfs_key key;
6f519564 2696 struct old_sa_defrag_extent *old;
38c227d8
LB
2697 struct new_sa_defrag_extent *new;
2698 int ret;
2699
2700 new = kmalloc(sizeof(*new), GFP_NOFS);
2701 if (!new)
2702 return NULL;
2703
2704 new->inode = inode;
2705 new->file_pos = ordered->file_offset;
2706 new->len = ordered->len;
2707 new->bytenr = ordered->start;
2708 new->disk_len = ordered->disk_len;
2709 new->compress_type = ordered->compress_type;
2710 new->root = RB_ROOT;
2711 INIT_LIST_HEAD(&new->head);
2712
2713 path = btrfs_alloc_path();
2714 if (!path)
2715 goto out_kfree;
2716
2717 key.objectid = btrfs_ino(inode);
2718 key.type = BTRFS_EXTENT_DATA_KEY;
2719 key.offset = new->file_pos;
2720
2721 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2722 if (ret < 0)
2723 goto out_free_path;
2724 if (ret > 0 && path->slots[0] > 0)
2725 path->slots[0]--;
2726
2727 /* find out all the old extents for the file range */
2728 while (1) {
2729 struct btrfs_file_extent_item *extent;
2730 struct extent_buffer *l;
2731 int slot;
2732 u64 num_bytes;
2733 u64 offset;
2734 u64 end;
2735 u64 disk_bytenr;
2736 u64 extent_offset;
2737
2738 l = path->nodes[0];
2739 slot = path->slots[0];
2740
2741 if (slot >= btrfs_header_nritems(l)) {
2742 ret = btrfs_next_leaf(root, path);
2743 if (ret < 0)
6f519564 2744 goto out_free_path;
38c227d8
LB
2745 else if (ret > 0)
2746 break;
2747 continue;
2748 }
2749
2750 btrfs_item_key_to_cpu(l, &key, slot);
2751
2752 if (key.objectid != btrfs_ino(inode))
2753 break;
2754 if (key.type != BTRFS_EXTENT_DATA_KEY)
2755 break;
2756 if (key.offset >= new->file_pos + new->len)
2757 break;
2758
2759 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2760
2761 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2762 if (key.offset + num_bytes < new->file_pos)
2763 goto next;
2764
2765 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2766 if (!disk_bytenr)
2767 goto next;
2768
2769 extent_offset = btrfs_file_extent_offset(l, extent);
2770
2771 old = kmalloc(sizeof(*old), GFP_NOFS);
2772 if (!old)
6f519564 2773 goto out_free_path;
38c227d8
LB
2774
2775 offset = max(new->file_pos, key.offset);
2776 end = min(new->file_pos + new->len, key.offset + num_bytes);
2777
2778 old->bytenr = disk_bytenr;
2779 old->extent_offset = extent_offset;
2780 old->offset = offset - key.offset;
2781 old->len = end - offset;
2782 old->new = new;
2783 old->count = 0;
2784 list_add_tail(&old->list, &new->head);
2785next:
2786 path->slots[0]++;
2787 cond_resched();
2788 }
2789
2790 btrfs_free_path(path);
2791 atomic_inc(&root->fs_info->defrag_running);
2792
2793 return new;
2794
38c227d8
LB
2795out_free_path:
2796 btrfs_free_path(path);
2797out_kfree:
6f519564 2798 free_sa_defrag_extent(new);
38c227d8
LB
2799 return NULL;
2800}
2801
e570fd27
MX
2802static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2803 u64 start, u64 len)
2804{
2805 struct btrfs_block_group_cache *cache;
2806
2807 cache = btrfs_lookup_block_group(root->fs_info, start);
2808 ASSERT(cache);
2809
2810 spin_lock(&cache->lock);
2811 cache->delalloc_bytes -= len;
2812 spin_unlock(&cache->lock);
2813
2814 btrfs_put_block_group(cache);
2815}
2816
d352ac68
CM
2817/* as ordered data IO finishes, this gets called so we can finish
2818 * an ordered extent if the range of bytes in the file it covers are
2819 * fully written.
2820 */
5fd02043 2821static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2822{
5fd02043 2823 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2824 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2825 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2826 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2827 struct extent_state *cached_state = NULL;
38c227d8 2828 struct new_sa_defrag_extent *new = NULL;
261507a0 2829 int compress_type = 0;
77cef2ec
JB
2830 int ret = 0;
2831 u64 logical_len = ordered_extent->len;
82d5902d 2832 bool nolock;
77cef2ec 2833 bool truncated = false;
e6dcd2dc 2834
83eea1f1 2835 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2836
5fd02043
JB
2837 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2838 ret = -EIO;
2839 goto out;
2840 }
2841
f612496b
MX
2842 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2843 ordered_extent->file_offset +
2844 ordered_extent->len - 1);
2845
77cef2ec
JB
2846 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2847 truncated = true;
2848 logical_len = ordered_extent->truncated_len;
2849 /* Truncated the entire extent, don't bother adding */
2850 if (!logical_len)
2851 goto out;
2852 }
2853
c2167754 2854 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2855 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2856
2857 /*
2858 * For mwrite(mmap + memset to write) case, we still reserve
2859 * space for NOCOW range.
2860 * As NOCOW won't cause a new delayed ref, just free the space
2861 */
2862 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2863 ordered_extent->len);
6c760c07
JB
2864 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2865 if (nolock)
2866 trans = btrfs_join_transaction_nolock(root);
2867 else
2868 trans = btrfs_join_transaction(root);
2869 if (IS_ERR(trans)) {
2870 ret = PTR_ERR(trans);
2871 trans = NULL;
2872 goto out;
c2167754 2873 }
6c760c07
JB
2874 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2875 ret = btrfs_update_inode_fallback(trans, root, inode);
2876 if (ret) /* -ENOMEM or corruption */
2877 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2878 goto out;
2879 }
e6dcd2dc 2880
2ac55d41
JB
2881 lock_extent_bits(io_tree, ordered_extent->file_offset,
2882 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2883 &cached_state);
e6dcd2dc 2884
38c227d8
LB
2885 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2886 ordered_extent->file_offset + ordered_extent->len - 1,
2887 EXTENT_DEFRAG, 1, cached_state);
2888 if (ret) {
2889 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2890 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2891 /* the inode is shared */
2892 new = record_old_file_extents(inode, ordered_extent);
2893
2894 clear_extent_bit(io_tree, ordered_extent->file_offset,
2895 ordered_extent->file_offset + ordered_extent->len - 1,
2896 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2897 }
2898
0cb59c99 2899 if (nolock)
7a7eaa40 2900 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2901 else
7a7eaa40 2902 trans = btrfs_join_transaction(root);
79787eaa
JM
2903 if (IS_ERR(trans)) {
2904 ret = PTR_ERR(trans);
2905 trans = NULL;
2906 goto out_unlock;
2907 }
a79b7d4b 2908
0ca1f7ce 2909 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2910
c8b97818 2911 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2912 compress_type = ordered_extent->compress_type;
d899e052 2913 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2914 BUG_ON(compress_type);
920bbbfb 2915 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2916 ordered_extent->file_offset,
2917 ordered_extent->file_offset +
77cef2ec 2918 logical_len);
d899e052 2919 } else {
0af3d00b 2920 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2921 ret = insert_reserved_file_extent(trans, inode,
2922 ordered_extent->file_offset,
2923 ordered_extent->start,
2924 ordered_extent->disk_len,
77cef2ec 2925 logical_len, logical_len,
261507a0 2926 compress_type, 0, 0,
d899e052 2927 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2928 if (!ret)
2929 btrfs_release_delalloc_bytes(root,
2930 ordered_extent->start,
2931 ordered_extent->disk_len);
d899e052 2932 }
5dc562c5
JB
2933 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2934 ordered_extent->file_offset, ordered_extent->len,
2935 trans->transid);
79787eaa
JM
2936 if (ret < 0) {
2937 btrfs_abort_transaction(trans, root, ret);
5fd02043 2938 goto out_unlock;
79787eaa 2939 }
2ac55d41 2940
e6dcd2dc
CM
2941 add_pending_csums(trans, inode, ordered_extent->file_offset,
2942 &ordered_extent->list);
2943
6c760c07
JB
2944 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2945 ret = btrfs_update_inode_fallback(trans, root, inode);
2946 if (ret) { /* -ENOMEM or corruption */
2947 btrfs_abort_transaction(trans, root, ret);
2948 goto out_unlock;
1ef30be1
JB
2949 }
2950 ret = 0;
5fd02043
JB
2951out_unlock:
2952 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2953 ordered_extent->file_offset +
2954 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2955out:
5b0e95bf 2956 if (root != root->fs_info->tree_root)
0cb59c99 2957 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2958 if (trans)
2959 btrfs_end_transaction(trans, root);
0cb59c99 2960
77cef2ec
JB
2961 if (ret || truncated) {
2962 u64 start, end;
2963
2964 if (truncated)
2965 start = ordered_extent->file_offset + logical_len;
2966 else
2967 start = ordered_extent->file_offset;
2968 end = ordered_extent->file_offset + ordered_extent->len - 1;
2969 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2970
2971 /* Drop the cache for the part of the extent we didn't write. */
2972 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2973
0bec9ef5
JB
2974 /*
2975 * If the ordered extent had an IOERR or something else went
2976 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2977 * back to the allocator. We only free the extent in the
2978 * truncated case if we didn't write out the extent at all.
0bec9ef5 2979 */
77cef2ec
JB
2980 if ((ret || !logical_len) &&
2981 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2982 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2983 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 2984 ordered_extent->disk_len, 1);
0bec9ef5
JB
2985 }
2986
2987
5fd02043 2988 /*
8bad3c02
LB
2989 * This needs to be done to make sure anybody waiting knows we are done
2990 * updating everything for this ordered extent.
5fd02043
JB
2991 */
2992 btrfs_remove_ordered_extent(inode, ordered_extent);
2993
38c227d8 2994 /* for snapshot-aware defrag */
6f519564
LB
2995 if (new) {
2996 if (ret) {
2997 free_sa_defrag_extent(new);
2998 atomic_dec(&root->fs_info->defrag_running);
2999 } else {
3000 relink_file_extents(new);
3001 }
3002 }
38c227d8 3003
e6dcd2dc
CM
3004 /* once for us */
3005 btrfs_put_ordered_extent(ordered_extent);
3006 /* once for the tree */
3007 btrfs_put_ordered_extent(ordered_extent);
3008
5fd02043
JB
3009 return ret;
3010}
3011
3012static void finish_ordered_fn(struct btrfs_work *work)
3013{
3014 struct btrfs_ordered_extent *ordered_extent;
3015 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3016 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3017}
3018
b2950863 3019static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3020 struct extent_state *state, int uptodate)
3021{
5fd02043
JB
3022 struct inode *inode = page->mapping->host;
3023 struct btrfs_root *root = BTRFS_I(inode)->root;
3024 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3025 struct btrfs_workqueue *wq;
3026 btrfs_work_func_t func;
5fd02043 3027
1abe9b8a 3028 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3029
8b62b72b 3030 ClearPagePrivate2(page);
5fd02043
JB
3031 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3032 end - start + 1, uptodate))
3033 return 0;
3034
9e0af237
LB
3035 if (btrfs_is_free_space_inode(inode)) {
3036 wq = root->fs_info->endio_freespace_worker;
3037 func = btrfs_freespace_write_helper;
3038 } else {
3039 wq = root->fs_info->endio_write_workers;
3040 func = btrfs_endio_write_helper;
3041 }
5fd02043 3042
9e0af237
LB
3043 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3044 NULL);
3045 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
3046
3047 return 0;
211f90e6
CM
3048}
3049
dc380aea
MX
3050static int __readpage_endio_check(struct inode *inode,
3051 struct btrfs_io_bio *io_bio,
3052 int icsum, struct page *page,
3053 int pgoff, u64 start, size_t len)
3054{
3055 char *kaddr;
3056 u32 csum_expected;
3057 u32 csum = ~(u32)0;
dc380aea
MX
3058
3059 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3060
3061 kaddr = kmap_atomic(page);
3062 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3063 btrfs_csum_final(csum, (char *)&csum);
3064 if (csum != csum_expected)
3065 goto zeroit;
3066
3067 kunmap_atomic(kaddr);
3068 return 0;
3069zeroit:
94647322
DS
3070 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3071 "csum failed ino %llu off %llu csum %u expected csum %u",
dc380aea
MX
3072 btrfs_ino(inode), start, csum, csum_expected);
3073 memset(kaddr + pgoff, 1, len);
3074 flush_dcache_page(page);
3075 kunmap_atomic(kaddr);
3076 if (csum_expected == 0)
3077 return 0;
3078 return -EIO;
3079}
3080
d352ac68
CM
3081/*
3082 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3083 * if there's a match, we allow the bio to finish. If not, the code in
3084 * extent_io.c will try to find good copies for us.
d352ac68 3085 */
facc8a22
MX
3086static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3087 u64 phy_offset, struct page *page,
3088 u64 start, u64 end, int mirror)
07157aac 3089{
4eee4fa4 3090 size_t offset = start - page_offset(page);
07157aac 3091 struct inode *inode = page->mapping->host;
d1310b2e 3092 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3093 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3094
d20f7043
CM
3095 if (PageChecked(page)) {
3096 ClearPageChecked(page);
dc380aea 3097 return 0;
d20f7043 3098 }
6cbff00f
CH
3099
3100 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3101 return 0;
17d217fe
YZ
3102
3103 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3104 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
3105 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3106 GFP_NOFS);
b6cda9bc 3107 return 0;
17d217fe 3108 }
d20f7043 3109
facc8a22 3110 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3111 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3112 start, (size_t)(end - start + 1));
07157aac 3113}
b888db2b 3114
24bbcf04
YZ
3115void btrfs_add_delayed_iput(struct inode *inode)
3116{
3117 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
8089fe62 3118 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3119
3120 if (atomic_add_unless(&inode->i_count, -1, 1))
3121 return;
3122
24bbcf04 3123 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3124 if (binode->delayed_iput_count == 0) {
3125 ASSERT(list_empty(&binode->delayed_iput));
3126 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3127 } else {
3128 binode->delayed_iput_count++;
3129 }
24bbcf04
YZ
3130 spin_unlock(&fs_info->delayed_iput_lock);
3131}
3132
3133void btrfs_run_delayed_iputs(struct btrfs_root *root)
3134{
24bbcf04 3135 struct btrfs_fs_info *fs_info = root->fs_info;
24bbcf04 3136
d7c15171 3137 down_read(&fs_info->delayed_iput_sem);
24bbcf04 3138 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3139 while (!list_empty(&fs_info->delayed_iputs)) {
3140 struct btrfs_inode *inode;
3141
3142 inode = list_first_entry(&fs_info->delayed_iputs,
3143 struct btrfs_inode, delayed_iput);
3144 if (inode->delayed_iput_count) {
3145 inode->delayed_iput_count--;
3146 list_move_tail(&inode->delayed_iput,
3147 &fs_info->delayed_iputs);
3148 } else {
3149 list_del_init(&inode->delayed_iput);
3150 }
3151 spin_unlock(&fs_info->delayed_iput_lock);
3152 iput(&inode->vfs_inode);
3153 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3154 }
8089fe62 3155 spin_unlock(&fs_info->delayed_iput_lock);
d7c15171 3156 up_read(&root->fs_info->delayed_iput_sem);
24bbcf04
YZ
3157}
3158
d68fc57b 3159/*
42b2aa86 3160 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3161 * files in the subvolume, it removes orphan item and frees block_rsv
3162 * structure.
3163 */
3164void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3165 struct btrfs_root *root)
3166{
90290e19 3167 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3168 int ret;
3169
8a35d95f 3170 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3171 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3172 return;
3173
90290e19 3174 spin_lock(&root->orphan_lock);
8a35d95f 3175 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3176 spin_unlock(&root->orphan_lock);
3177 return;
3178 }
3179
3180 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3181 spin_unlock(&root->orphan_lock);
3182 return;
3183 }
3184
3185 block_rsv = root->orphan_block_rsv;
3186 root->orphan_block_rsv = NULL;
3187 spin_unlock(&root->orphan_lock);
3188
27cdeb70 3189 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3190 btrfs_root_refs(&root->root_item) > 0) {
3191 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3192 root->root_key.objectid);
4ef31a45
JB
3193 if (ret)
3194 btrfs_abort_transaction(trans, root, ret);
3195 else
27cdeb70
MX
3196 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3197 &root->state);
d68fc57b
YZ
3198 }
3199
90290e19
JB
3200 if (block_rsv) {
3201 WARN_ON(block_rsv->size > 0);
3202 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3203 }
3204}
3205
7b128766
JB
3206/*
3207 * This creates an orphan entry for the given inode in case something goes
3208 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3209 *
3210 * NOTE: caller of this function should reserve 5 units of metadata for
3211 * this function.
7b128766
JB
3212 */
3213int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3214{
3215 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3216 struct btrfs_block_rsv *block_rsv = NULL;
3217 int reserve = 0;
3218 int insert = 0;
3219 int ret;
7b128766 3220
d68fc57b 3221 if (!root->orphan_block_rsv) {
66d8f3dd 3222 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3223 if (!block_rsv)
3224 return -ENOMEM;
d68fc57b 3225 }
7b128766 3226
d68fc57b
YZ
3227 spin_lock(&root->orphan_lock);
3228 if (!root->orphan_block_rsv) {
3229 root->orphan_block_rsv = block_rsv;
3230 } else if (block_rsv) {
3231 btrfs_free_block_rsv(root, block_rsv);
3232 block_rsv = NULL;
7b128766 3233 }
7b128766 3234
8a35d95f
JB
3235 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3236 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3237#if 0
3238 /*
3239 * For proper ENOSPC handling, we should do orphan
3240 * cleanup when mounting. But this introduces backward
3241 * compatibility issue.
3242 */
3243 if (!xchg(&root->orphan_item_inserted, 1))
3244 insert = 2;
3245 else
3246 insert = 1;
3247#endif
3248 insert = 1;
321f0e70 3249 atomic_inc(&root->orphan_inodes);
7b128766
JB
3250 }
3251
72ac3c0d
JB
3252 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3253 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3254 reserve = 1;
d68fc57b 3255 spin_unlock(&root->orphan_lock);
7b128766 3256
d68fc57b
YZ
3257 /* grab metadata reservation from transaction handle */
3258 if (reserve) {
3259 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3260 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3261 }
7b128766 3262
d68fc57b
YZ
3263 /* insert an orphan item to track this unlinked/truncated file */
3264 if (insert >= 1) {
33345d01 3265 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3266 if (ret) {
703c88e0 3267 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3268 if (reserve) {
3269 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3270 &BTRFS_I(inode)->runtime_flags);
3271 btrfs_orphan_release_metadata(inode);
3272 }
3273 if (ret != -EEXIST) {
e8e7cff6
JB
3274 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3275 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3276 btrfs_abort_transaction(trans, root, ret);
3277 return ret;
3278 }
79787eaa
JM
3279 }
3280 ret = 0;
d68fc57b
YZ
3281 }
3282
3283 /* insert an orphan item to track subvolume contains orphan files */
3284 if (insert >= 2) {
3285 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3286 root->root_key.objectid);
79787eaa
JM
3287 if (ret && ret != -EEXIST) {
3288 btrfs_abort_transaction(trans, root, ret);
3289 return ret;
3290 }
d68fc57b
YZ
3291 }
3292 return 0;
7b128766
JB
3293}
3294
3295/*
3296 * We have done the truncate/delete so we can go ahead and remove the orphan
3297 * item for this particular inode.
3298 */
48a3b636
ES
3299static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3300 struct inode *inode)
7b128766
JB
3301{
3302 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3303 int delete_item = 0;
3304 int release_rsv = 0;
7b128766
JB
3305 int ret = 0;
3306
d68fc57b 3307 spin_lock(&root->orphan_lock);
8a35d95f
JB
3308 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3309 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3310 delete_item = 1;
7b128766 3311
72ac3c0d
JB
3312 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3313 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3314 release_rsv = 1;
d68fc57b 3315 spin_unlock(&root->orphan_lock);
7b128766 3316
703c88e0 3317 if (delete_item) {
8a35d95f 3318 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3319 if (trans)
3320 ret = btrfs_del_orphan_item(trans, root,
3321 btrfs_ino(inode));
8a35d95f 3322 }
7b128766 3323
703c88e0
FDBM
3324 if (release_rsv)
3325 btrfs_orphan_release_metadata(inode);
3326
4ef31a45 3327 return ret;
7b128766
JB
3328}
3329
3330/*
3331 * this cleans up any orphans that may be left on the list from the last use
3332 * of this root.
3333 */
66b4ffd1 3334int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3335{
3336 struct btrfs_path *path;
3337 struct extent_buffer *leaf;
7b128766
JB
3338 struct btrfs_key key, found_key;
3339 struct btrfs_trans_handle *trans;
3340 struct inode *inode;
8f6d7f4f 3341 u64 last_objectid = 0;
7b128766
JB
3342 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3343
d68fc57b 3344 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3345 return 0;
c71bf099
YZ
3346
3347 path = btrfs_alloc_path();
66b4ffd1
JB
3348 if (!path) {
3349 ret = -ENOMEM;
3350 goto out;
3351 }
e4058b54 3352 path->reada = READA_BACK;
7b128766
JB
3353
3354 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3355 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3356 key.offset = (u64)-1;
3357
7b128766
JB
3358 while (1) {
3359 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3360 if (ret < 0)
3361 goto out;
7b128766
JB
3362
3363 /*
3364 * if ret == 0 means we found what we were searching for, which
25985edc 3365 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3366 * find the key and see if we have stuff that matches
3367 */
3368 if (ret > 0) {
66b4ffd1 3369 ret = 0;
7b128766
JB
3370 if (path->slots[0] == 0)
3371 break;
3372 path->slots[0]--;
3373 }
3374
3375 /* pull out the item */
3376 leaf = path->nodes[0];
7b128766
JB
3377 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3378
3379 /* make sure the item matches what we want */
3380 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3381 break;
962a298f 3382 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3383 break;
3384
3385 /* release the path since we're done with it */
b3b4aa74 3386 btrfs_release_path(path);
7b128766
JB
3387
3388 /*
3389 * this is where we are basically btrfs_lookup, without the
3390 * crossing root thing. we store the inode number in the
3391 * offset of the orphan item.
3392 */
8f6d7f4f
JB
3393
3394 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3395 btrfs_err(root->fs_info,
3396 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3397 ret = -EINVAL;
3398 goto out;
3399 }
3400
3401 last_objectid = found_key.offset;
3402
5d4f98a2
YZ
3403 found_key.objectid = found_key.offset;
3404 found_key.type = BTRFS_INODE_ITEM_KEY;
3405 found_key.offset = 0;
73f73415 3406 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3407 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3408 if (ret && ret != -ESTALE)
66b4ffd1 3409 goto out;
7b128766 3410
f8e9e0b0
AJ
3411 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3412 struct btrfs_root *dead_root;
3413 struct btrfs_fs_info *fs_info = root->fs_info;
3414 int is_dead_root = 0;
3415
3416 /*
3417 * this is an orphan in the tree root. Currently these
3418 * could come from 2 sources:
3419 * a) a snapshot deletion in progress
3420 * b) a free space cache inode
3421 * We need to distinguish those two, as the snapshot
3422 * orphan must not get deleted.
3423 * find_dead_roots already ran before us, so if this
3424 * is a snapshot deletion, we should find the root
3425 * in the dead_roots list
3426 */
3427 spin_lock(&fs_info->trans_lock);
3428 list_for_each_entry(dead_root, &fs_info->dead_roots,
3429 root_list) {
3430 if (dead_root->root_key.objectid ==
3431 found_key.objectid) {
3432 is_dead_root = 1;
3433 break;
3434 }
3435 }
3436 spin_unlock(&fs_info->trans_lock);
3437 if (is_dead_root) {
3438 /* prevent this orphan from being found again */
3439 key.offset = found_key.objectid - 1;
3440 continue;
3441 }
3442 }
7b128766 3443 /*
a8c9e576
JB
3444 * Inode is already gone but the orphan item is still there,
3445 * kill the orphan item.
7b128766 3446 */
a8c9e576
JB
3447 if (ret == -ESTALE) {
3448 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3449 if (IS_ERR(trans)) {
3450 ret = PTR_ERR(trans);
3451 goto out;
3452 }
c2cf52eb
SK
3453 btrfs_debug(root->fs_info, "auto deleting %Lu",
3454 found_key.objectid);
a8c9e576
JB
3455 ret = btrfs_del_orphan_item(trans, root,
3456 found_key.objectid);
5b21f2ed 3457 btrfs_end_transaction(trans, root);
4ef31a45
JB
3458 if (ret)
3459 goto out;
7b128766
JB
3460 continue;
3461 }
3462
a8c9e576
JB
3463 /*
3464 * add this inode to the orphan list so btrfs_orphan_del does
3465 * the proper thing when we hit it
3466 */
8a35d95f
JB
3467 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3468 &BTRFS_I(inode)->runtime_flags);
925396ec 3469 atomic_inc(&root->orphan_inodes);
a8c9e576 3470
7b128766
JB
3471 /* if we have links, this was a truncate, lets do that */
3472 if (inode->i_nlink) {
fae7f21c 3473 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3474 iput(inode);
3475 continue;
3476 }
7b128766 3477 nr_truncate++;
f3fe820c
JB
3478
3479 /* 1 for the orphan item deletion. */
3480 trans = btrfs_start_transaction(root, 1);
3481 if (IS_ERR(trans)) {
c69b26b0 3482 iput(inode);
f3fe820c
JB
3483 ret = PTR_ERR(trans);
3484 goto out;
3485 }
3486 ret = btrfs_orphan_add(trans, inode);
3487 btrfs_end_transaction(trans, root);
c69b26b0
JB
3488 if (ret) {
3489 iput(inode);
f3fe820c 3490 goto out;
c69b26b0 3491 }
f3fe820c 3492
66b4ffd1 3493 ret = btrfs_truncate(inode);
4a7d0f68
JB
3494 if (ret)
3495 btrfs_orphan_del(NULL, inode);
7b128766
JB
3496 } else {
3497 nr_unlink++;
3498 }
3499
3500 /* this will do delete_inode and everything for us */
3501 iput(inode);
66b4ffd1
JB
3502 if (ret)
3503 goto out;
7b128766 3504 }
3254c876
MX
3505 /* release the path since we're done with it */
3506 btrfs_release_path(path);
3507
d68fc57b
YZ
3508 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3509
3510 if (root->orphan_block_rsv)
3511 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3512 (u64)-1);
3513
27cdeb70
MX
3514 if (root->orphan_block_rsv ||
3515 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3516 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3517 if (!IS_ERR(trans))
3518 btrfs_end_transaction(trans, root);
d68fc57b 3519 }
7b128766
JB
3520
3521 if (nr_unlink)
4884b476 3522 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3523 if (nr_truncate)
4884b476 3524 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3525
3526out:
3527 if (ret)
68b663d1 3528 btrfs_err(root->fs_info,
c2cf52eb 3529 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3530 btrfs_free_path(path);
3531 return ret;
7b128766
JB
3532}
3533
46a53cca
CM
3534/*
3535 * very simple check to peek ahead in the leaf looking for xattrs. If we
3536 * don't find any xattrs, we know there can't be any acls.
3537 *
3538 * slot is the slot the inode is in, objectid is the objectid of the inode
3539 */
3540static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3541 int slot, u64 objectid,
3542 int *first_xattr_slot)
46a53cca
CM
3543{
3544 u32 nritems = btrfs_header_nritems(leaf);
3545 struct btrfs_key found_key;
f23b5a59
JB
3546 static u64 xattr_access = 0;
3547 static u64 xattr_default = 0;
46a53cca
CM
3548 int scanned = 0;
3549
f23b5a59
JB
3550 if (!xattr_access) {
3551 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3552 strlen(POSIX_ACL_XATTR_ACCESS));
3553 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3554 strlen(POSIX_ACL_XATTR_DEFAULT));
3555 }
3556
46a53cca 3557 slot++;
63541927 3558 *first_xattr_slot = -1;
46a53cca
CM
3559 while (slot < nritems) {
3560 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3561
3562 /* we found a different objectid, there must not be acls */
3563 if (found_key.objectid != objectid)
3564 return 0;
3565
3566 /* we found an xattr, assume we've got an acl */
f23b5a59 3567 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3568 if (*first_xattr_slot == -1)
3569 *first_xattr_slot = slot;
f23b5a59
JB
3570 if (found_key.offset == xattr_access ||
3571 found_key.offset == xattr_default)
3572 return 1;
3573 }
46a53cca
CM
3574
3575 /*
3576 * we found a key greater than an xattr key, there can't
3577 * be any acls later on
3578 */
3579 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3580 return 0;
3581
3582 slot++;
3583 scanned++;
3584
3585 /*
3586 * it goes inode, inode backrefs, xattrs, extents,
3587 * so if there are a ton of hard links to an inode there can
3588 * be a lot of backrefs. Don't waste time searching too hard,
3589 * this is just an optimization
3590 */
3591 if (scanned >= 8)
3592 break;
3593 }
3594 /* we hit the end of the leaf before we found an xattr or
3595 * something larger than an xattr. We have to assume the inode
3596 * has acls
3597 */
63541927
FDBM
3598 if (*first_xattr_slot == -1)
3599 *first_xattr_slot = slot;
46a53cca
CM
3600 return 1;
3601}
3602
d352ac68
CM
3603/*
3604 * read an inode from the btree into the in-memory inode
3605 */
5d4f98a2 3606static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3607{
3608 struct btrfs_path *path;
5f39d397 3609 struct extent_buffer *leaf;
39279cc3
CM
3610 struct btrfs_inode_item *inode_item;
3611 struct btrfs_root *root = BTRFS_I(inode)->root;
3612 struct btrfs_key location;
67de1176 3613 unsigned long ptr;
46a53cca 3614 int maybe_acls;
618e21d5 3615 u32 rdev;
39279cc3 3616 int ret;
2f7e33d4 3617 bool filled = false;
63541927 3618 int first_xattr_slot;
2f7e33d4
MX
3619
3620 ret = btrfs_fill_inode(inode, &rdev);
3621 if (!ret)
3622 filled = true;
39279cc3
CM
3623
3624 path = btrfs_alloc_path();
1748f843
MF
3625 if (!path)
3626 goto make_bad;
3627
39279cc3 3628 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3629
39279cc3 3630 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3631 if (ret)
39279cc3 3632 goto make_bad;
39279cc3 3633
5f39d397 3634 leaf = path->nodes[0];
2f7e33d4
MX
3635
3636 if (filled)
67de1176 3637 goto cache_index;
2f7e33d4 3638
5f39d397
CM
3639 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3640 struct btrfs_inode_item);
5f39d397 3641 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3642 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3643 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3644 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3645 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397 3646
a937b979
DS
3647 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3648 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3649
a937b979
DS
3650 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3651 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3652
a937b979
DS
3653 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3654 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3655
9cc97d64 3656 BTRFS_I(inode)->i_otime.tv_sec =
3657 btrfs_timespec_sec(leaf, &inode_item->otime);
3658 BTRFS_I(inode)->i_otime.tv_nsec =
3659 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3660
a76a3cd4 3661 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3662 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3663 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3664
6e17d30b
YD
3665 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3666 inode->i_generation = BTRFS_I(inode)->generation;
3667 inode->i_rdev = 0;
3668 rdev = btrfs_inode_rdev(leaf, inode_item);
3669
3670 BTRFS_I(inode)->index_cnt = (u64)-1;
3671 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3672
3673cache_index:
5dc562c5
JB
3674 /*
3675 * If we were modified in the current generation and evicted from memory
3676 * and then re-read we need to do a full sync since we don't have any
3677 * idea about which extents were modified before we were evicted from
3678 * cache.
6e17d30b
YD
3679 *
3680 * This is required for both inode re-read from disk and delayed inode
3681 * in delayed_nodes_tree.
5dc562c5
JB
3682 */
3683 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3684 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3685 &BTRFS_I(inode)->runtime_flags);
3686
bde6c242
FM
3687 /*
3688 * We don't persist the id of the transaction where an unlink operation
3689 * against the inode was last made. So here we assume the inode might
3690 * have been evicted, and therefore the exact value of last_unlink_trans
3691 * lost, and set it to last_trans to avoid metadata inconsistencies
3692 * between the inode and its parent if the inode is fsync'ed and the log
3693 * replayed. For example, in the scenario:
3694 *
3695 * touch mydir/foo
3696 * ln mydir/foo mydir/bar
3697 * sync
3698 * unlink mydir/bar
3699 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3700 * xfs_io -c fsync mydir/foo
3701 * <power failure>
3702 * mount fs, triggers fsync log replay
3703 *
3704 * We must make sure that when we fsync our inode foo we also log its
3705 * parent inode, otherwise after log replay the parent still has the
3706 * dentry with the "bar" name but our inode foo has a link count of 1
3707 * and doesn't have an inode ref with the name "bar" anymore.
3708 *
3709 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3710 * but it guarantees correctness at the expense of ocassional full
3711 * transaction commits on fsync if our inode is a directory, or if our
3712 * inode is not a directory, logging its parent unnecessarily.
3713 */
3714 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3715
67de1176
MX
3716 path->slots[0]++;
3717 if (inode->i_nlink != 1 ||
3718 path->slots[0] >= btrfs_header_nritems(leaf))
3719 goto cache_acl;
3720
3721 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3722 if (location.objectid != btrfs_ino(inode))
3723 goto cache_acl;
3724
3725 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3726 if (location.type == BTRFS_INODE_REF_KEY) {
3727 struct btrfs_inode_ref *ref;
3728
3729 ref = (struct btrfs_inode_ref *)ptr;
3730 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3731 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3732 struct btrfs_inode_extref *extref;
3733
3734 extref = (struct btrfs_inode_extref *)ptr;
3735 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3736 extref);
3737 }
2f7e33d4 3738cache_acl:
46a53cca
CM
3739 /*
3740 * try to precache a NULL acl entry for files that don't have
3741 * any xattrs or acls
3742 */
33345d01 3743 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3744 btrfs_ino(inode), &first_xattr_slot);
3745 if (first_xattr_slot != -1) {
3746 path->slots[0] = first_xattr_slot;
3747 ret = btrfs_load_inode_props(inode, path);
3748 if (ret)
3749 btrfs_err(root->fs_info,
351fd353 3750 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3751 btrfs_ino(inode),
3752 root->root_key.objectid, ret);
3753 }
3754 btrfs_free_path(path);
3755
72c04902
AV
3756 if (!maybe_acls)
3757 cache_no_acl(inode);
46a53cca 3758
39279cc3 3759 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3760 case S_IFREG:
3761 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3762 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3763 inode->i_fop = &btrfs_file_operations;
3764 inode->i_op = &btrfs_file_inode_operations;
3765 break;
3766 case S_IFDIR:
3767 inode->i_fop = &btrfs_dir_file_operations;
3768 if (root == root->fs_info->tree_root)
3769 inode->i_op = &btrfs_dir_ro_inode_operations;
3770 else
3771 inode->i_op = &btrfs_dir_inode_operations;
3772 break;
3773 case S_IFLNK:
3774 inode->i_op = &btrfs_symlink_inode_operations;
3775 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3776 break;
618e21d5 3777 default:
0279b4cd 3778 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3779 init_special_inode(inode, inode->i_mode, rdev);
3780 break;
39279cc3 3781 }
6cbff00f
CH
3782
3783 btrfs_update_iflags(inode);
39279cc3
CM
3784 return;
3785
3786make_bad:
39279cc3 3787 btrfs_free_path(path);
39279cc3
CM
3788 make_bad_inode(inode);
3789}
3790
d352ac68
CM
3791/*
3792 * given a leaf and an inode, copy the inode fields into the leaf
3793 */
e02119d5
CM
3794static void fill_inode_item(struct btrfs_trans_handle *trans,
3795 struct extent_buffer *leaf,
5f39d397 3796 struct btrfs_inode_item *item,
39279cc3
CM
3797 struct inode *inode)
3798{
51fab693
LB
3799 struct btrfs_map_token token;
3800
3801 btrfs_init_map_token(&token);
5f39d397 3802
51fab693
LB
3803 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3804 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3805 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3806 &token);
3807 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3808 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3809
a937b979 3810 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3811 inode->i_atime.tv_sec, &token);
a937b979 3812 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3813 inode->i_atime.tv_nsec, &token);
5f39d397 3814
a937b979 3815 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3816 inode->i_mtime.tv_sec, &token);
a937b979 3817 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3818 inode->i_mtime.tv_nsec, &token);
5f39d397 3819
a937b979 3820 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3821 inode->i_ctime.tv_sec, &token);
a937b979 3822 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3823 inode->i_ctime.tv_nsec, &token);
5f39d397 3824
9cc97d64 3825 btrfs_set_token_timespec_sec(leaf, &item->otime,
3826 BTRFS_I(inode)->i_otime.tv_sec, &token);
3827 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3828 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3829
51fab693
LB
3830 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3831 &token);
3832 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3833 &token);
3834 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3835 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3836 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3837 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3838 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3839}
3840
d352ac68
CM
3841/*
3842 * copy everything in the in-memory inode into the btree.
3843 */
2115133f 3844static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3845 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3846{
3847 struct btrfs_inode_item *inode_item;
3848 struct btrfs_path *path;
5f39d397 3849 struct extent_buffer *leaf;
39279cc3
CM
3850 int ret;
3851
3852 path = btrfs_alloc_path();
16cdcec7
MX
3853 if (!path)
3854 return -ENOMEM;
3855
b9473439 3856 path->leave_spinning = 1;
16cdcec7
MX
3857 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3858 1);
39279cc3
CM
3859 if (ret) {
3860 if (ret > 0)
3861 ret = -ENOENT;
3862 goto failed;
3863 }
3864
5f39d397
CM
3865 leaf = path->nodes[0];
3866 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3867 struct btrfs_inode_item);
39279cc3 3868
e02119d5 3869 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3870 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3871 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3872 ret = 0;
3873failed:
39279cc3
CM
3874 btrfs_free_path(path);
3875 return ret;
3876}
3877
2115133f
CM
3878/*
3879 * copy everything in the in-memory inode into the btree.
3880 */
3881noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3882 struct btrfs_root *root, struct inode *inode)
3883{
3884 int ret;
3885
3886 /*
3887 * If the inode is a free space inode, we can deadlock during commit
3888 * if we put it into the delayed code.
3889 *
3890 * The data relocation inode should also be directly updated
3891 * without delay
3892 */
83eea1f1 3893 if (!btrfs_is_free_space_inode(inode)
1d52c78a
JB
3894 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3895 && !root->fs_info->log_root_recovering) {
8ea05e3a
AB
3896 btrfs_update_root_times(trans, root);
3897
2115133f
CM
3898 ret = btrfs_delayed_update_inode(trans, root, inode);
3899 if (!ret)
3900 btrfs_set_inode_last_trans(trans, inode);
3901 return ret;
3902 }
3903
3904 return btrfs_update_inode_item(trans, root, inode);
3905}
3906
be6aef60
JB
3907noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3908 struct btrfs_root *root,
3909 struct inode *inode)
2115133f
CM
3910{
3911 int ret;
3912
3913 ret = btrfs_update_inode(trans, root, inode);
3914 if (ret == -ENOSPC)
3915 return btrfs_update_inode_item(trans, root, inode);
3916 return ret;
3917}
3918
d352ac68
CM
3919/*
3920 * unlink helper that gets used here in inode.c and in the tree logging
3921 * recovery code. It remove a link in a directory with a given name, and
3922 * also drops the back refs in the inode to the directory
3923 */
92986796
AV
3924static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3925 struct btrfs_root *root,
3926 struct inode *dir, struct inode *inode,
3927 const char *name, int name_len)
39279cc3
CM
3928{
3929 struct btrfs_path *path;
39279cc3 3930 int ret = 0;
5f39d397 3931 struct extent_buffer *leaf;
39279cc3 3932 struct btrfs_dir_item *di;
5f39d397 3933 struct btrfs_key key;
aec7477b 3934 u64 index;
33345d01
LZ
3935 u64 ino = btrfs_ino(inode);
3936 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3937
3938 path = btrfs_alloc_path();
54aa1f4d
CM
3939 if (!path) {
3940 ret = -ENOMEM;
554233a6 3941 goto out;
54aa1f4d
CM
3942 }
3943
b9473439 3944 path->leave_spinning = 1;
33345d01 3945 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3946 name, name_len, -1);
3947 if (IS_ERR(di)) {
3948 ret = PTR_ERR(di);
3949 goto err;
3950 }
3951 if (!di) {
3952 ret = -ENOENT;
3953 goto err;
3954 }
5f39d397
CM
3955 leaf = path->nodes[0];
3956 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3957 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3958 if (ret)
3959 goto err;
b3b4aa74 3960 btrfs_release_path(path);
39279cc3 3961
67de1176
MX
3962 /*
3963 * If we don't have dir index, we have to get it by looking up
3964 * the inode ref, since we get the inode ref, remove it directly,
3965 * it is unnecessary to do delayed deletion.
3966 *
3967 * But if we have dir index, needn't search inode ref to get it.
3968 * Since the inode ref is close to the inode item, it is better
3969 * that we delay to delete it, and just do this deletion when
3970 * we update the inode item.
3971 */
3972 if (BTRFS_I(inode)->dir_index) {
3973 ret = btrfs_delayed_delete_inode_ref(inode);
3974 if (!ret) {
3975 index = BTRFS_I(inode)->dir_index;
3976 goto skip_backref;
3977 }
3978 }
3979
33345d01
LZ
3980 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3981 dir_ino, &index);
aec7477b 3982 if (ret) {
c2cf52eb
SK
3983 btrfs_info(root->fs_info,
3984 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3985 name_len, name, ino, dir_ino);
79787eaa 3986 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3987 goto err;
3988 }
67de1176 3989skip_backref:
16cdcec7 3990 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3991 if (ret) {
3992 btrfs_abort_transaction(trans, root, ret);
39279cc3 3993 goto err;
79787eaa 3994 }
39279cc3 3995
e02119d5 3996 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3997 inode, dir_ino);
79787eaa
JM
3998 if (ret != 0 && ret != -ENOENT) {
3999 btrfs_abort_transaction(trans, root, ret);
4000 goto err;
4001 }
e02119d5
CM
4002
4003 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4004 dir, index);
6418c961
CM
4005 if (ret == -ENOENT)
4006 ret = 0;
d4e3991b
ZB
4007 else if (ret)
4008 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
4009err:
4010 btrfs_free_path(path);
e02119d5
CM
4011 if (ret)
4012 goto out;
4013
4014 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
4015 inode_inc_iversion(inode);
4016 inode_inc_iversion(dir);
e02119d5 4017 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 4018 ret = btrfs_update_inode(trans, root, dir);
e02119d5 4019out:
39279cc3
CM
4020 return ret;
4021}
4022
92986796
AV
4023int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4024 struct btrfs_root *root,
4025 struct inode *dir, struct inode *inode,
4026 const char *name, int name_len)
4027{
4028 int ret;
4029 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4030 if (!ret) {
8b558c5f 4031 drop_nlink(inode);
92986796
AV
4032 ret = btrfs_update_inode(trans, root, inode);
4033 }
4034 return ret;
4035}
39279cc3 4036
a22285a6
YZ
4037/*
4038 * helper to start transaction for unlink and rmdir.
4039 *
d52be818
JB
4040 * unlink and rmdir are special in btrfs, they do not always free space, so
4041 * if we cannot make our reservations the normal way try and see if there is
4042 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4043 * allow the unlink to occur.
a22285a6 4044 */
d52be818 4045static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4046{
a22285a6 4047 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4048
e70bea5f
JB
4049 /*
4050 * 1 for the possible orphan item
4051 * 1 for the dir item
4052 * 1 for the dir index
4053 * 1 for the inode ref
e70bea5f
JB
4054 * 1 for the inode
4055 */
8eab77ff 4056 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4057}
4058
4059static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4060{
4061 struct btrfs_root *root = BTRFS_I(dir)->root;
4062 struct btrfs_trans_handle *trans;
2b0143b5 4063 struct inode *inode = d_inode(dentry);
a22285a6 4064 int ret;
a22285a6 4065
d52be818 4066 trans = __unlink_start_trans(dir);
a22285a6
YZ
4067 if (IS_ERR(trans))
4068 return PTR_ERR(trans);
5f39d397 4069
2b0143b5 4070 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
12fcfd22 4071
2b0143b5 4072 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4073 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
4074 if (ret)
4075 goto out;
7b128766 4076
a22285a6 4077 if (inode->i_nlink == 0) {
7b128766 4078 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
4079 if (ret)
4080 goto out;
a22285a6 4081 }
7b128766 4082
b532402e 4083out:
d52be818 4084 btrfs_end_transaction(trans, root);
b53d3f5d 4085 btrfs_btree_balance_dirty(root);
39279cc3
CM
4086 return ret;
4087}
4088
4df27c4d
YZ
4089int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4090 struct btrfs_root *root,
4091 struct inode *dir, u64 objectid,
4092 const char *name, int name_len)
4093{
4094 struct btrfs_path *path;
4095 struct extent_buffer *leaf;
4096 struct btrfs_dir_item *di;
4097 struct btrfs_key key;
4098 u64 index;
4099 int ret;
33345d01 4100 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
4101
4102 path = btrfs_alloc_path();
4103 if (!path)
4104 return -ENOMEM;
4105
33345d01 4106 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4107 name, name_len, -1);
79787eaa
JM
4108 if (IS_ERR_OR_NULL(di)) {
4109 if (!di)
4110 ret = -ENOENT;
4111 else
4112 ret = PTR_ERR(di);
4113 goto out;
4114 }
4df27c4d
YZ
4115
4116 leaf = path->nodes[0];
4117 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4118 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4119 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
4120 if (ret) {
4121 btrfs_abort_transaction(trans, root, ret);
4122 goto out;
4123 }
b3b4aa74 4124 btrfs_release_path(path);
4df27c4d
YZ
4125
4126 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4127 objectid, root->root_key.objectid,
33345d01 4128 dir_ino, &index, name, name_len);
4df27c4d 4129 if (ret < 0) {
79787eaa
JM
4130 if (ret != -ENOENT) {
4131 btrfs_abort_transaction(trans, root, ret);
4132 goto out;
4133 }
33345d01 4134 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4135 name, name_len);
79787eaa
JM
4136 if (IS_ERR_OR_NULL(di)) {
4137 if (!di)
4138 ret = -ENOENT;
4139 else
4140 ret = PTR_ERR(di);
4141 btrfs_abort_transaction(trans, root, ret);
4142 goto out;
4143 }
4df27c4d
YZ
4144
4145 leaf = path->nodes[0];
4146 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4147 btrfs_release_path(path);
4df27c4d
YZ
4148 index = key.offset;
4149 }
945d8962 4150 btrfs_release_path(path);
4df27c4d 4151
16cdcec7 4152 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
4153 if (ret) {
4154 btrfs_abort_transaction(trans, root, ret);
4155 goto out;
4156 }
4df27c4d
YZ
4157
4158 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4159 inode_inc_iversion(dir);
4df27c4d 4160 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 4161 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
4162 if (ret)
4163 btrfs_abort_transaction(trans, root, ret);
4164out:
71d7aed0 4165 btrfs_free_path(path);
79787eaa 4166 return ret;
4df27c4d
YZ
4167}
4168
39279cc3
CM
4169static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4170{
2b0143b5 4171 struct inode *inode = d_inode(dentry);
1832a6d5 4172 int err = 0;
39279cc3 4173 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4174 struct btrfs_trans_handle *trans;
39279cc3 4175
b3ae244e 4176 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4177 return -ENOTEMPTY;
b3ae244e
DS
4178 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4179 return -EPERM;
134d4512 4180
d52be818 4181 trans = __unlink_start_trans(dir);
a22285a6 4182 if (IS_ERR(trans))
5df6a9f6 4183 return PTR_ERR(trans);
5df6a9f6 4184
33345d01 4185 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4186 err = btrfs_unlink_subvol(trans, root, dir,
4187 BTRFS_I(inode)->location.objectid,
4188 dentry->d_name.name,
4189 dentry->d_name.len);
4190 goto out;
4191 }
4192
7b128766
JB
4193 err = btrfs_orphan_add(trans, inode);
4194 if (err)
4df27c4d 4195 goto out;
7b128766 4196
39279cc3 4197 /* now the directory is empty */
2b0143b5 4198 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4199 dentry->d_name.name, dentry->d_name.len);
d397712b 4200 if (!err)
dbe674a9 4201 btrfs_i_size_write(inode, 0);
4df27c4d 4202out:
d52be818 4203 btrfs_end_transaction(trans, root);
b53d3f5d 4204 btrfs_btree_balance_dirty(root);
3954401f 4205
39279cc3
CM
4206 return err;
4207}
4208
28f75a0e
CM
4209static int truncate_space_check(struct btrfs_trans_handle *trans,
4210 struct btrfs_root *root,
4211 u64 bytes_deleted)
4212{
4213 int ret;
4214
4215 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4216 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4217 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4218 if (!ret)
4219 trans->bytes_reserved += bytes_deleted;
4220 return ret;
4221
4222}
4223
0305cd5f
FM
4224static int truncate_inline_extent(struct inode *inode,
4225 struct btrfs_path *path,
4226 struct btrfs_key *found_key,
4227 const u64 item_end,
4228 const u64 new_size)
4229{
4230 struct extent_buffer *leaf = path->nodes[0];
4231 int slot = path->slots[0];
4232 struct btrfs_file_extent_item *fi;
4233 u32 size = (u32)(new_size - found_key->offset);
4234 struct btrfs_root *root = BTRFS_I(inode)->root;
4235
4236 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4237
4238 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4239 loff_t offset = new_size;
4240 loff_t page_end = ALIGN(offset, PAGE_CACHE_SIZE);
4241
4242 /*
4243 * Zero out the remaining of the last page of our inline extent,
4244 * instead of directly truncating our inline extent here - that
4245 * would be much more complex (decompressing all the data, then
4246 * compressing the truncated data, which might be bigger than
4247 * the size of the inline extent, resize the extent, etc).
4248 * We release the path because to get the page we might need to
4249 * read the extent item from disk (data not in the page cache).
4250 */
4251 btrfs_release_path(path);
4252 return btrfs_truncate_page(inode, offset, page_end - offset, 0);
4253 }
4254
4255 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4256 size = btrfs_file_extent_calc_inline_size(size);
4257 btrfs_truncate_item(root, path, size, 1);
4258
4259 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4260 inode_sub_bytes(inode, item_end + 1 - new_size);
4261
4262 return 0;
4263}
4264
39279cc3
CM
4265/*
4266 * this can truncate away extent items, csum items and directory items.
4267 * It starts at a high offset and removes keys until it can't find
d352ac68 4268 * any higher than new_size
39279cc3
CM
4269 *
4270 * csum items that cross the new i_size are truncated to the new size
4271 * as well.
7b128766
JB
4272 *
4273 * min_type is the minimum key type to truncate down to. If set to 0, this
4274 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4275 */
8082510e
YZ
4276int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4277 struct btrfs_root *root,
4278 struct inode *inode,
4279 u64 new_size, u32 min_type)
39279cc3 4280{
39279cc3 4281 struct btrfs_path *path;
5f39d397 4282 struct extent_buffer *leaf;
39279cc3 4283 struct btrfs_file_extent_item *fi;
8082510e
YZ
4284 struct btrfs_key key;
4285 struct btrfs_key found_key;
39279cc3 4286 u64 extent_start = 0;
db94535d 4287 u64 extent_num_bytes = 0;
5d4f98a2 4288 u64 extent_offset = 0;
39279cc3 4289 u64 item_end = 0;
c1aa4575 4290 u64 last_size = new_size;
8082510e 4291 u32 found_type = (u8)-1;
39279cc3
CM
4292 int found_extent;
4293 int del_item;
85e21bac
CM
4294 int pending_del_nr = 0;
4295 int pending_del_slot = 0;
179e29e4 4296 int extent_type = -1;
8082510e
YZ
4297 int ret;
4298 int err = 0;
33345d01 4299 u64 ino = btrfs_ino(inode);
28ed1345 4300 u64 bytes_deleted = 0;
1262133b
JB
4301 bool be_nice = 0;
4302 bool should_throttle = 0;
28f75a0e 4303 bool should_end = 0;
8082510e
YZ
4304
4305 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4306
28ed1345
CM
4307 /*
4308 * for non-free space inodes and ref cows, we want to back off from
4309 * time to time
4310 */
4311 if (!btrfs_is_free_space_inode(inode) &&
4312 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4313 be_nice = 1;
4314
0eb0e19c
MF
4315 path = btrfs_alloc_path();
4316 if (!path)
4317 return -ENOMEM;
e4058b54 4318 path->reada = READA_BACK;
0eb0e19c 4319
5dc562c5
JB
4320 /*
4321 * We want to drop from the next block forward in case this new size is
4322 * not block aligned since we will be keeping the last block of the
4323 * extent just the way it is.
4324 */
27cdeb70
MX
4325 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4326 root == root->fs_info->tree_root)
fda2832f
QW
4327 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4328 root->sectorsize), (u64)-1, 0);
8082510e 4329
16cdcec7
MX
4330 /*
4331 * This function is also used to drop the items in the log tree before
4332 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4333 * it is used to drop the loged items. So we shouldn't kill the delayed
4334 * items.
4335 */
4336 if (min_type == 0 && root == BTRFS_I(inode)->root)
4337 btrfs_kill_delayed_inode_items(inode);
4338
33345d01 4339 key.objectid = ino;
39279cc3 4340 key.offset = (u64)-1;
5f39d397
CM
4341 key.type = (u8)-1;
4342
85e21bac 4343search_again:
28ed1345
CM
4344 /*
4345 * with a 16K leaf size and 128MB extents, you can actually queue
4346 * up a huge file in a single leaf. Most of the time that
4347 * bytes_deleted is > 0, it will be huge by the time we get here
4348 */
ee22184b 4349 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4350 if (btrfs_should_end_transaction(trans, root)) {
4351 err = -EAGAIN;
4352 goto error;
4353 }
4354 }
4355
4356
b9473439 4357 path->leave_spinning = 1;
85e21bac 4358 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4359 if (ret < 0) {
4360 err = ret;
4361 goto out;
4362 }
d397712b 4363
85e21bac 4364 if (ret > 0) {
e02119d5
CM
4365 /* there are no items in the tree for us to truncate, we're
4366 * done
4367 */
8082510e
YZ
4368 if (path->slots[0] == 0)
4369 goto out;
85e21bac
CM
4370 path->slots[0]--;
4371 }
4372
d397712b 4373 while (1) {
39279cc3 4374 fi = NULL;
5f39d397
CM
4375 leaf = path->nodes[0];
4376 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4377 found_type = found_key.type;
39279cc3 4378
33345d01 4379 if (found_key.objectid != ino)
39279cc3 4380 break;
5f39d397 4381
85e21bac 4382 if (found_type < min_type)
39279cc3
CM
4383 break;
4384
5f39d397 4385 item_end = found_key.offset;
39279cc3 4386 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4387 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4388 struct btrfs_file_extent_item);
179e29e4
CM
4389 extent_type = btrfs_file_extent_type(leaf, fi);
4390 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4391 item_end +=
db94535d 4392 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4393 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4394 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4395 path->slots[0], fi);
39279cc3 4396 }
008630c1 4397 item_end--;
39279cc3 4398 }
8082510e
YZ
4399 if (found_type > min_type) {
4400 del_item = 1;
4401 } else {
4402 if (item_end < new_size)
b888db2b 4403 break;
8082510e
YZ
4404 if (found_key.offset >= new_size)
4405 del_item = 1;
4406 else
4407 del_item = 0;
39279cc3 4408 }
39279cc3 4409 found_extent = 0;
39279cc3 4410 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4411 if (found_type != BTRFS_EXTENT_DATA_KEY)
4412 goto delete;
4413
7f4f6e0a
JB
4414 if (del_item)
4415 last_size = found_key.offset;
4416 else
4417 last_size = new_size;
4418
179e29e4 4419 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4420 u64 num_dec;
db94535d 4421 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4422 if (!del_item) {
db94535d
CM
4423 u64 orig_num_bytes =
4424 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4425 extent_num_bytes = ALIGN(new_size -
4426 found_key.offset,
4427 root->sectorsize);
db94535d
CM
4428 btrfs_set_file_extent_num_bytes(leaf, fi,
4429 extent_num_bytes);
4430 num_dec = (orig_num_bytes -
9069218d 4431 extent_num_bytes);
27cdeb70
MX
4432 if (test_bit(BTRFS_ROOT_REF_COWS,
4433 &root->state) &&
4434 extent_start != 0)
a76a3cd4 4435 inode_sub_bytes(inode, num_dec);
5f39d397 4436 btrfs_mark_buffer_dirty(leaf);
39279cc3 4437 } else {
db94535d
CM
4438 extent_num_bytes =
4439 btrfs_file_extent_disk_num_bytes(leaf,
4440 fi);
5d4f98a2
YZ
4441 extent_offset = found_key.offset -
4442 btrfs_file_extent_offset(leaf, fi);
4443
39279cc3 4444 /* FIXME blocksize != 4096 */
9069218d 4445 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4446 if (extent_start != 0) {
4447 found_extent = 1;
27cdeb70
MX
4448 if (test_bit(BTRFS_ROOT_REF_COWS,
4449 &root->state))
a76a3cd4 4450 inode_sub_bytes(inode, num_dec);
e02119d5 4451 }
39279cc3 4452 }
9069218d 4453 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4454 /*
4455 * we can't truncate inline items that have had
4456 * special encodings
4457 */
4458 if (!del_item &&
c8b97818
CM
4459 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4460 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4461
4462 /*
0305cd5f
FM
4463 * Need to release path in order to truncate a
4464 * compressed extent. So delete any accumulated
4465 * extent items so far.
514ac8ad 4466 */
0305cd5f
FM
4467 if (btrfs_file_extent_compression(leaf, fi) !=
4468 BTRFS_COMPRESS_NONE && pending_del_nr) {
4469 err = btrfs_del_items(trans, root, path,
4470 pending_del_slot,
4471 pending_del_nr);
4472 if (err) {
4473 btrfs_abort_transaction(trans,
4474 root,
4475 err);
4476 goto error;
4477 }
4478 pending_del_nr = 0;
4479 }
4480
4481 err = truncate_inline_extent(inode, path,
4482 &found_key,
4483 item_end,
4484 new_size);
4485 if (err) {
4486 btrfs_abort_transaction(trans,
4487 root, err);
4488 goto error;
4489 }
27cdeb70
MX
4490 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4491 &root->state)) {
0305cd5f 4492 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4493 }
39279cc3 4494 }
179e29e4 4495delete:
39279cc3 4496 if (del_item) {
85e21bac
CM
4497 if (!pending_del_nr) {
4498 /* no pending yet, add ourselves */
4499 pending_del_slot = path->slots[0];
4500 pending_del_nr = 1;
4501 } else if (pending_del_nr &&
4502 path->slots[0] + 1 == pending_del_slot) {
4503 /* hop on the pending chunk */
4504 pending_del_nr++;
4505 pending_del_slot = path->slots[0];
4506 } else {
d397712b 4507 BUG();
85e21bac 4508 }
39279cc3
CM
4509 } else {
4510 break;
4511 }
28f75a0e
CM
4512 should_throttle = 0;
4513
27cdeb70
MX
4514 if (found_extent &&
4515 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4516 root == root->fs_info->tree_root)) {
b9473439 4517 btrfs_set_path_blocking(path);
28ed1345 4518 bytes_deleted += extent_num_bytes;
39279cc3 4519 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4520 extent_num_bytes, 0,
4521 btrfs_header_owner(leaf),
b06c4bf5 4522 ino, extent_offset);
39279cc3 4523 BUG_ON(ret);
1262133b 4524 if (btrfs_should_throttle_delayed_refs(trans, root))
28ed1345
CM
4525 btrfs_async_run_delayed_refs(root,
4526 trans->delayed_ref_updates * 2, 0);
28f75a0e
CM
4527 if (be_nice) {
4528 if (truncate_space_check(trans, root,
4529 extent_num_bytes)) {
4530 should_end = 1;
4531 }
4532 if (btrfs_should_throttle_delayed_refs(trans,
4533 root)) {
4534 should_throttle = 1;
4535 }
4536 }
39279cc3 4537 }
85e21bac 4538
8082510e
YZ
4539 if (found_type == BTRFS_INODE_ITEM_KEY)
4540 break;
4541
4542 if (path->slots[0] == 0 ||
1262133b 4543 path->slots[0] != pending_del_slot ||
28f75a0e 4544 should_throttle || should_end) {
8082510e
YZ
4545 if (pending_del_nr) {
4546 ret = btrfs_del_items(trans, root, path,
4547 pending_del_slot,
4548 pending_del_nr);
79787eaa
JM
4549 if (ret) {
4550 btrfs_abort_transaction(trans,
4551 root, ret);
4552 goto error;
4553 }
8082510e
YZ
4554 pending_del_nr = 0;
4555 }
b3b4aa74 4556 btrfs_release_path(path);
28f75a0e 4557 if (should_throttle) {
1262133b
JB
4558 unsigned long updates = trans->delayed_ref_updates;
4559 if (updates) {
4560 trans->delayed_ref_updates = 0;
4561 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4562 if (ret && !err)
4563 err = ret;
4564 }
4565 }
28f75a0e
CM
4566 /*
4567 * if we failed to refill our space rsv, bail out
4568 * and let the transaction restart
4569 */
4570 if (should_end) {
4571 err = -EAGAIN;
4572 goto error;
4573 }
85e21bac 4574 goto search_again;
8082510e
YZ
4575 } else {
4576 path->slots[0]--;
85e21bac 4577 }
39279cc3 4578 }
8082510e 4579out:
85e21bac
CM
4580 if (pending_del_nr) {
4581 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4582 pending_del_nr);
79787eaa
JM
4583 if (ret)
4584 btrfs_abort_transaction(trans, root, ret);
85e21bac 4585 }
79787eaa 4586error:
c1aa4575 4587 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4588 btrfs_ordered_update_i_size(inode, last_size, NULL);
28ed1345 4589
39279cc3 4590 btrfs_free_path(path);
28ed1345 4591
ee22184b 4592 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4593 unsigned long updates = trans->delayed_ref_updates;
4594 if (updates) {
4595 trans->delayed_ref_updates = 0;
4596 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4597 if (ret && !err)
4598 err = ret;
4599 }
4600 }
8082510e 4601 return err;
39279cc3
CM
4602}
4603
4604/*
2aaa6655
JB
4605 * btrfs_truncate_page - read, zero a chunk and write a page
4606 * @inode - inode that we're zeroing
4607 * @from - the offset to start zeroing
4608 * @len - the length to zero, 0 to zero the entire range respective to the
4609 * offset
4610 * @front - zero up to the offset instead of from the offset on
4611 *
4612 * This will find the page for the "from" offset and cow the page and zero the
4613 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4614 */
2aaa6655
JB
4615int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4616 int front)
39279cc3 4617{
2aaa6655 4618 struct address_space *mapping = inode->i_mapping;
db94535d 4619 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4620 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4621 struct btrfs_ordered_extent *ordered;
2ac55d41 4622 struct extent_state *cached_state = NULL;
e6dcd2dc 4623 char *kaddr;
db94535d 4624 u32 blocksize = root->sectorsize;
39279cc3
CM
4625 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4626 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4627 struct page *page;
3b16a4e3 4628 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4629 int ret = 0;
a52d9a80 4630 u64 page_start;
e6dcd2dc 4631 u64 page_end;
39279cc3 4632
2aaa6655
JB
4633 if ((offset & (blocksize - 1)) == 0 &&
4634 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4635 goto out;
7cf5b976 4636 ret = btrfs_delalloc_reserve_space(inode,
df480633 4637 round_down(from, PAGE_CACHE_SIZE), PAGE_CACHE_SIZE);
5d5e103a
JB
4638 if (ret)
4639 goto out;
39279cc3 4640
211c17f5 4641again:
3b16a4e3 4642 page = find_or_create_page(mapping, index, mask);
5d5e103a 4643 if (!page) {
7cf5b976 4644 btrfs_delalloc_release_space(inode,
df480633
QW
4645 round_down(from, PAGE_CACHE_SIZE),
4646 PAGE_CACHE_SIZE);
ac6a2b36 4647 ret = -ENOMEM;
39279cc3 4648 goto out;
5d5e103a 4649 }
e6dcd2dc
CM
4650
4651 page_start = page_offset(page);
4652 page_end = page_start + PAGE_CACHE_SIZE - 1;
4653
39279cc3 4654 if (!PageUptodate(page)) {
9ebefb18 4655 ret = btrfs_readpage(NULL, page);
39279cc3 4656 lock_page(page);
211c17f5
CM
4657 if (page->mapping != mapping) {
4658 unlock_page(page);
4659 page_cache_release(page);
4660 goto again;
4661 }
39279cc3
CM
4662 if (!PageUptodate(page)) {
4663 ret = -EIO;
89642229 4664 goto out_unlock;
39279cc3
CM
4665 }
4666 }
211c17f5 4667 wait_on_page_writeback(page);
e6dcd2dc 4668
ff13db41 4669 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
4670 set_page_extent_mapped(page);
4671
4672 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4673 if (ordered) {
2ac55d41
JB
4674 unlock_extent_cached(io_tree, page_start, page_end,
4675 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4676 unlock_page(page);
4677 page_cache_release(page);
eb84ae03 4678 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4679 btrfs_put_ordered_extent(ordered);
4680 goto again;
4681 }
4682
2ac55d41 4683 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4684 EXTENT_DIRTY | EXTENT_DELALLOC |
4685 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4686 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4687
2ac55d41
JB
4688 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4689 &cached_state);
9ed74f2d 4690 if (ret) {
2ac55d41
JB
4691 unlock_extent_cached(io_tree, page_start, page_end,
4692 &cached_state, GFP_NOFS);
9ed74f2d
JB
4693 goto out_unlock;
4694 }
4695
e6dcd2dc 4696 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4697 if (!len)
4698 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4699 kaddr = kmap(page);
2aaa6655
JB
4700 if (front)
4701 memset(kaddr, 0, offset);
4702 else
4703 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4704 flush_dcache_page(page);
4705 kunmap(page);
4706 }
247e743c 4707 ClearPageChecked(page);
e6dcd2dc 4708 set_page_dirty(page);
2ac55d41
JB
4709 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4710 GFP_NOFS);
39279cc3 4711
89642229 4712out_unlock:
5d5e103a 4713 if (ret)
7cf5b976
QW
4714 btrfs_delalloc_release_space(inode, page_start,
4715 PAGE_CACHE_SIZE);
39279cc3
CM
4716 unlock_page(page);
4717 page_cache_release(page);
4718out:
4719 return ret;
4720}
4721
16e7549f
JB
4722static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4723 u64 offset, u64 len)
4724{
4725 struct btrfs_trans_handle *trans;
4726 int ret;
4727
4728 /*
4729 * Still need to make sure the inode looks like it's been updated so
4730 * that any holes get logged if we fsync.
4731 */
4732 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4733 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4734 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4735 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4736 return 0;
4737 }
4738
4739 /*
4740 * 1 - for the one we're dropping
4741 * 1 - for the one we're adding
4742 * 1 - for updating the inode.
4743 */
4744 trans = btrfs_start_transaction(root, 3);
4745 if (IS_ERR(trans))
4746 return PTR_ERR(trans);
4747
4748 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4749 if (ret) {
4750 btrfs_abort_transaction(trans, root, ret);
4751 btrfs_end_transaction(trans, root);
4752 return ret;
4753 }
4754
4755 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4756 0, 0, len, 0, len, 0, 0, 0);
4757 if (ret)
4758 btrfs_abort_transaction(trans, root, ret);
4759 else
4760 btrfs_update_inode(trans, root, inode);
4761 btrfs_end_transaction(trans, root);
4762 return ret;
4763}
4764
695a0d0d
JB
4765/*
4766 * This function puts in dummy file extents for the area we're creating a hole
4767 * for. So if we are truncating this file to a larger size we need to insert
4768 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4769 * the range between oldsize and size
4770 */
a41ad394 4771int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4772{
9036c102
YZ
4773 struct btrfs_root *root = BTRFS_I(inode)->root;
4774 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4775 struct extent_map *em = NULL;
2ac55d41 4776 struct extent_state *cached_state = NULL;
5dc562c5 4777 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4778 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4779 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4780 u64 last_byte;
4781 u64 cur_offset;
4782 u64 hole_size;
9ed74f2d 4783 int err = 0;
39279cc3 4784
a71754fc
JB
4785 /*
4786 * If our size started in the middle of a page we need to zero out the
4787 * rest of the page before we expand the i_size, otherwise we could
4788 * expose stale data.
4789 */
4790 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4791 if (err)
4792 return err;
4793
9036c102
YZ
4794 if (size <= hole_start)
4795 return 0;
4796
9036c102
YZ
4797 while (1) {
4798 struct btrfs_ordered_extent *ordered;
fa7c1494 4799
ff13db41 4800 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4801 &cached_state);
fa7c1494
MX
4802 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4803 block_end - hole_start);
9036c102
YZ
4804 if (!ordered)
4805 break;
2ac55d41
JB
4806 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4807 &cached_state, GFP_NOFS);
fa7c1494 4808 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4809 btrfs_put_ordered_extent(ordered);
4810 }
39279cc3 4811
9036c102
YZ
4812 cur_offset = hole_start;
4813 while (1) {
4814 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4815 block_end - cur_offset, 0);
79787eaa
JM
4816 if (IS_ERR(em)) {
4817 err = PTR_ERR(em);
f2767956 4818 em = NULL;
79787eaa
JM
4819 break;
4820 }
9036c102 4821 last_byte = min(extent_map_end(em), block_end);
fda2832f 4822 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4823 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4824 struct extent_map *hole_em;
9036c102 4825 hole_size = last_byte - cur_offset;
9ed74f2d 4826
16e7549f
JB
4827 err = maybe_insert_hole(root, inode, cur_offset,
4828 hole_size);
4829 if (err)
3893e33b 4830 break;
5dc562c5
JB
4831 btrfs_drop_extent_cache(inode, cur_offset,
4832 cur_offset + hole_size - 1, 0);
4833 hole_em = alloc_extent_map();
4834 if (!hole_em) {
4835 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4836 &BTRFS_I(inode)->runtime_flags);
4837 goto next;
4838 }
4839 hole_em->start = cur_offset;
4840 hole_em->len = hole_size;
4841 hole_em->orig_start = cur_offset;
8082510e 4842
5dc562c5
JB
4843 hole_em->block_start = EXTENT_MAP_HOLE;
4844 hole_em->block_len = 0;
b4939680 4845 hole_em->orig_block_len = 0;
cc95bef6 4846 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4847 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4848 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4849 hole_em->generation = root->fs_info->generation;
8082510e 4850
5dc562c5
JB
4851 while (1) {
4852 write_lock(&em_tree->lock);
09a2a8f9 4853 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4854 write_unlock(&em_tree->lock);
4855 if (err != -EEXIST)
4856 break;
4857 btrfs_drop_extent_cache(inode, cur_offset,
4858 cur_offset +
4859 hole_size - 1, 0);
4860 }
4861 free_extent_map(hole_em);
9036c102 4862 }
16e7549f 4863next:
9036c102 4864 free_extent_map(em);
a22285a6 4865 em = NULL;
9036c102 4866 cur_offset = last_byte;
8082510e 4867 if (cur_offset >= block_end)
9036c102
YZ
4868 break;
4869 }
a22285a6 4870 free_extent_map(em);
2ac55d41
JB
4871 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4872 GFP_NOFS);
9036c102
YZ
4873 return err;
4874}
39279cc3 4875
9ea24bbe
FM
4876static int wait_snapshoting_atomic_t(atomic_t *a)
4877{
4878 schedule();
4879 return 0;
4880}
4881
4882static void wait_for_snapshot_creation(struct btrfs_root *root)
4883{
4884 while (true) {
4885 int ret;
4886
4887 ret = btrfs_start_write_no_snapshoting(root);
4888 if (ret)
4889 break;
4890 wait_on_atomic_t(&root->will_be_snapshoted,
4891 wait_snapshoting_atomic_t,
4892 TASK_UNINTERRUPTIBLE);
4893 }
4894}
4895
3972f260 4896static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4897{
f4a2f4c5
MX
4898 struct btrfs_root *root = BTRFS_I(inode)->root;
4899 struct btrfs_trans_handle *trans;
a41ad394 4900 loff_t oldsize = i_size_read(inode);
3972f260
ES
4901 loff_t newsize = attr->ia_size;
4902 int mask = attr->ia_valid;
8082510e
YZ
4903 int ret;
4904
3972f260
ES
4905 /*
4906 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4907 * special case where we need to update the times despite not having
4908 * these flags set. For all other operations the VFS set these flags
4909 * explicitly if it wants a timestamp update.
4910 */
dff6efc3
CH
4911 if (newsize != oldsize) {
4912 inode_inc_iversion(inode);
4913 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4914 inode->i_ctime = inode->i_mtime =
4915 current_fs_time(inode->i_sb);
4916 }
3972f260 4917
a41ad394 4918 if (newsize > oldsize) {
7caef267 4919 truncate_pagecache(inode, newsize);
9ea24bbe
FM
4920 /*
4921 * Don't do an expanding truncate while snapshoting is ongoing.
4922 * This is to ensure the snapshot captures a fully consistent
4923 * state of this file - if the snapshot captures this expanding
4924 * truncation, it must capture all writes that happened before
4925 * this truncation.
4926 */
4927 wait_for_snapshot_creation(root);
a41ad394 4928 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4929 if (ret) {
4930 btrfs_end_write_no_snapshoting(root);
8082510e 4931 return ret;
9ea24bbe 4932 }
8082510e 4933
f4a2f4c5 4934 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4935 if (IS_ERR(trans)) {
4936 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 4937 return PTR_ERR(trans);
9ea24bbe 4938 }
f4a2f4c5
MX
4939
4940 i_size_write(inode, newsize);
4941 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4942 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 4943 btrfs_end_write_no_snapshoting(root);
7ad85bb7 4944 btrfs_end_transaction(trans, root);
a41ad394 4945 } else {
8082510e 4946
a41ad394
JB
4947 /*
4948 * We're truncating a file that used to have good data down to
4949 * zero. Make sure it gets into the ordered flush list so that
4950 * any new writes get down to disk quickly.
4951 */
4952 if (newsize == 0)
72ac3c0d
JB
4953 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4954 &BTRFS_I(inode)->runtime_flags);
8082510e 4955
f3fe820c
JB
4956 /*
4957 * 1 for the orphan item we're going to add
4958 * 1 for the orphan item deletion.
4959 */
4960 trans = btrfs_start_transaction(root, 2);
4961 if (IS_ERR(trans))
4962 return PTR_ERR(trans);
4963
4964 /*
4965 * We need to do this in case we fail at _any_ point during the
4966 * actual truncate. Once we do the truncate_setsize we could
4967 * invalidate pages which forces any outstanding ordered io to
4968 * be instantly completed which will give us extents that need
4969 * to be truncated. If we fail to get an orphan inode down we
4970 * could have left over extents that were never meant to live,
4971 * so we need to garuntee from this point on that everything
4972 * will be consistent.
4973 */
4974 ret = btrfs_orphan_add(trans, inode);
4975 btrfs_end_transaction(trans, root);
4976 if (ret)
4977 return ret;
4978
a41ad394
JB
4979 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4980 truncate_setsize(inode, newsize);
2e60a51e
MX
4981
4982 /* Disable nonlocked read DIO to avoid the end less truncate */
4983 btrfs_inode_block_unlocked_dio(inode);
4984 inode_dio_wait(inode);
4985 btrfs_inode_resume_unlocked_dio(inode);
4986
a41ad394 4987 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4988 if (ret && inode->i_nlink) {
4989 int err;
4990
4991 /*
4992 * failed to truncate, disk_i_size is only adjusted down
4993 * as we remove extents, so it should represent the true
4994 * size of the inode, so reset the in memory size and
4995 * delete our orphan entry.
4996 */
4997 trans = btrfs_join_transaction(root);
4998 if (IS_ERR(trans)) {
4999 btrfs_orphan_del(NULL, inode);
5000 return ret;
5001 }
5002 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5003 err = btrfs_orphan_del(trans, inode);
5004 if (err)
5005 btrfs_abort_transaction(trans, root, err);
5006 btrfs_end_transaction(trans, root);
5007 }
8082510e
YZ
5008 }
5009
a41ad394 5010 return ret;
8082510e
YZ
5011}
5012
9036c102
YZ
5013static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5014{
2b0143b5 5015 struct inode *inode = d_inode(dentry);
b83cc969 5016 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5017 int err;
39279cc3 5018
b83cc969
LZ
5019 if (btrfs_root_readonly(root))
5020 return -EROFS;
5021
9036c102
YZ
5022 err = inode_change_ok(inode, attr);
5023 if (err)
5024 return err;
2bf5a725 5025
5a3f23d5 5026 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5027 err = btrfs_setsize(inode, attr);
8082510e
YZ
5028 if (err)
5029 return err;
39279cc3 5030 }
9036c102 5031
1025774c
CH
5032 if (attr->ia_valid) {
5033 setattr_copy(inode, attr);
0c4d2d95 5034 inode_inc_iversion(inode);
22c44fe6 5035 err = btrfs_dirty_inode(inode);
1025774c 5036
22c44fe6 5037 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5038 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5039 }
33268eaf 5040
39279cc3
CM
5041 return err;
5042}
61295eb8 5043
131e404a
FDBM
5044/*
5045 * While truncating the inode pages during eviction, we get the VFS calling
5046 * btrfs_invalidatepage() against each page of the inode. This is slow because
5047 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5048 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5049 * extent_state structures over and over, wasting lots of time.
5050 *
5051 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5052 * those expensive operations on a per page basis and do only the ordered io
5053 * finishing, while we release here the extent_map and extent_state structures,
5054 * without the excessive merging and splitting.
5055 */
5056static void evict_inode_truncate_pages(struct inode *inode)
5057{
5058 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5059 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5060 struct rb_node *node;
5061
5062 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5063 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5064
5065 write_lock(&map_tree->lock);
5066 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5067 struct extent_map *em;
5068
5069 node = rb_first(&map_tree->map);
5070 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5071 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5072 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5073 remove_extent_mapping(map_tree, em);
5074 free_extent_map(em);
7064dd5c
FM
5075 if (need_resched()) {
5076 write_unlock(&map_tree->lock);
5077 cond_resched();
5078 write_lock(&map_tree->lock);
5079 }
131e404a
FDBM
5080 }
5081 write_unlock(&map_tree->lock);
5082
6ca07097
FM
5083 /*
5084 * Keep looping until we have no more ranges in the io tree.
5085 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5086 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5087 * still in progress (unlocked the pages in the bio but did not yet
5088 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5089 * ranges can still be locked and eviction started because before
5090 * submitting those bios, which are executed by a separate task (work
5091 * queue kthread), inode references (inode->i_count) were not taken
5092 * (which would be dropped in the end io callback of each bio).
5093 * Therefore here we effectively end up waiting for those bios and
5094 * anyone else holding locked ranges without having bumped the inode's
5095 * reference count - if we don't do it, when they access the inode's
5096 * io_tree to unlock a range it may be too late, leading to an
5097 * use-after-free issue.
5098 */
131e404a
FDBM
5099 spin_lock(&io_tree->lock);
5100 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5101 struct extent_state *state;
5102 struct extent_state *cached_state = NULL;
6ca07097
FM
5103 u64 start;
5104 u64 end;
131e404a
FDBM
5105
5106 node = rb_first(&io_tree->state);
5107 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5108 start = state->start;
5109 end = state->end;
131e404a
FDBM
5110 spin_unlock(&io_tree->lock);
5111
ff13db41 5112 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5113
5114 /*
5115 * If still has DELALLOC flag, the extent didn't reach disk,
5116 * and its reserved space won't be freed by delayed_ref.
5117 * So we need to free its reserved space here.
5118 * (Refer to comment in btrfs_invalidatepage, case 2)
5119 *
5120 * Note, end is the bytenr of last byte, so we need + 1 here.
5121 */
5122 if (state->state & EXTENT_DELALLOC)
5123 btrfs_qgroup_free_data(inode, start, end - start + 1);
5124
6ca07097 5125 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5126 EXTENT_LOCKED | EXTENT_DIRTY |
5127 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5128 EXTENT_DEFRAG, 1, 1,
5129 &cached_state, GFP_NOFS);
131e404a 5130
7064dd5c 5131 cond_resched();
131e404a
FDBM
5132 spin_lock(&io_tree->lock);
5133 }
5134 spin_unlock(&io_tree->lock);
5135}
5136
bd555975 5137void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
5138{
5139 struct btrfs_trans_handle *trans;
5140 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5141 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5142 int steal_from_global = 0;
07127184 5143 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
5144 int ret;
5145
1abe9b8a 5146 trace_btrfs_inode_evict(inode);
5147
131e404a
FDBM
5148 evict_inode_truncate_pages(inode);
5149
69e9c6c6
SB
5150 if (inode->i_nlink &&
5151 ((btrfs_root_refs(&root->root_item) != 0 &&
5152 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5153 btrfs_is_free_space_inode(inode)))
bd555975
AV
5154 goto no_delete;
5155
39279cc3 5156 if (is_bad_inode(inode)) {
7b128766 5157 btrfs_orphan_del(NULL, inode);
39279cc3
CM
5158 goto no_delete;
5159 }
bd555975 5160 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5161 if (!special_file(inode->i_mode))
5162 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5163
f612496b
MX
5164 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5165
c71bf099 5166 if (root->fs_info->log_root_recovering) {
6bf02314 5167 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5168 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5169 goto no_delete;
5170 }
5171
76dda93c 5172 if (inode->i_nlink > 0) {
69e9c6c6
SB
5173 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5174 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5175 goto no_delete;
5176 }
5177
0e8c36a9
MX
5178 ret = btrfs_commit_inode_delayed_inode(inode);
5179 if (ret) {
5180 btrfs_orphan_del(NULL, inode);
5181 goto no_delete;
5182 }
5183
66d8f3dd 5184 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
5185 if (!rsv) {
5186 btrfs_orphan_del(NULL, inode);
5187 goto no_delete;
5188 }
4a338542 5189 rsv->size = min_size;
ca7e70f5 5190 rsv->failfast = 1;
726c35fa 5191 global_rsv = &root->fs_info->global_block_rsv;
4289a667 5192
dbe674a9 5193 btrfs_i_size_write(inode, 0);
5f39d397 5194
4289a667 5195 /*
8407aa46
MX
5196 * This is a bit simpler than btrfs_truncate since we've already
5197 * reserved our space for our orphan item in the unlink, so we just
5198 * need to reserve some slack space in case we add bytes and update
5199 * inode item when doing the truncate.
4289a667 5200 */
8082510e 5201 while (1) {
08e007d2
MX
5202 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5203 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5204
5205 /*
5206 * Try and steal from the global reserve since we will
5207 * likely not use this space anyway, we want to try as
5208 * hard as possible to get this to work.
5209 */
5210 if (ret)
3bce876f
JB
5211 steal_from_global++;
5212 else
5213 steal_from_global = 0;
5214 ret = 0;
d68fc57b 5215
3bce876f
JB
5216 /*
5217 * steal_from_global == 0: we reserved stuff, hooray!
5218 * steal_from_global == 1: we didn't reserve stuff, boo!
5219 * steal_from_global == 2: we've committed, still not a lot of
5220 * room but maybe we'll have room in the global reserve this
5221 * time.
5222 * steal_from_global == 3: abandon all hope!
5223 */
5224 if (steal_from_global > 2) {
c2cf52eb
SK
5225 btrfs_warn(root->fs_info,
5226 "Could not get space for a delete, will truncate on mount %d",
5227 ret);
4289a667
JB
5228 btrfs_orphan_del(NULL, inode);
5229 btrfs_free_block_rsv(root, rsv);
5230 goto no_delete;
d68fc57b 5231 }
7b128766 5232
0e8c36a9 5233 trans = btrfs_join_transaction(root);
4289a667
JB
5234 if (IS_ERR(trans)) {
5235 btrfs_orphan_del(NULL, inode);
5236 btrfs_free_block_rsv(root, rsv);
5237 goto no_delete;
d68fc57b 5238 }
7b128766 5239
3bce876f
JB
5240 /*
5241 * We can't just steal from the global reserve, we need tomake
5242 * sure there is room to do it, if not we need to commit and try
5243 * again.
5244 */
5245 if (steal_from_global) {
5246 if (!btrfs_check_space_for_delayed_refs(trans, root))
5247 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5248 min_size);
5249 else
5250 ret = -ENOSPC;
5251 }
5252
5253 /*
5254 * Couldn't steal from the global reserve, we have too much
5255 * pending stuff built up, commit the transaction and try it
5256 * again.
5257 */
5258 if (ret) {
5259 ret = btrfs_commit_transaction(trans, root);
5260 if (ret) {
5261 btrfs_orphan_del(NULL, inode);
5262 btrfs_free_block_rsv(root, rsv);
5263 goto no_delete;
5264 }
5265 continue;
5266 } else {
5267 steal_from_global = 0;
5268 }
5269
4289a667
JB
5270 trans->block_rsv = rsv;
5271
d68fc57b 5272 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5273 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5274 break;
85e21bac 5275
8407aa46 5276 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
5277 btrfs_end_transaction(trans, root);
5278 trans = NULL;
b53d3f5d 5279 btrfs_btree_balance_dirty(root);
8082510e 5280 }
5f39d397 5281
4289a667
JB
5282 btrfs_free_block_rsv(root, rsv);
5283
4ef31a45
JB
5284 /*
5285 * Errors here aren't a big deal, it just means we leave orphan items
5286 * in the tree. They will be cleaned up on the next mount.
5287 */
8082510e 5288 if (ret == 0) {
4289a667 5289 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
5290 btrfs_orphan_del(trans, inode);
5291 } else {
5292 btrfs_orphan_del(NULL, inode);
8082510e 5293 }
54aa1f4d 5294
4289a667 5295 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
5296 if (!(root == root->fs_info->tree_root ||
5297 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 5298 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 5299
54aa1f4d 5300 btrfs_end_transaction(trans, root);
b53d3f5d 5301 btrfs_btree_balance_dirty(root);
39279cc3 5302no_delete:
89042e5a 5303 btrfs_remove_delayed_node(inode);
dbd5768f 5304 clear_inode(inode);
39279cc3
CM
5305}
5306
5307/*
5308 * this returns the key found in the dir entry in the location pointer.
5309 * If no dir entries were found, location->objectid is 0.
5310 */
5311static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5312 struct btrfs_key *location)
5313{
5314 const char *name = dentry->d_name.name;
5315 int namelen = dentry->d_name.len;
5316 struct btrfs_dir_item *di;
5317 struct btrfs_path *path;
5318 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5319 int ret = 0;
39279cc3
CM
5320
5321 path = btrfs_alloc_path();
d8926bb3
MF
5322 if (!path)
5323 return -ENOMEM;
3954401f 5324
33345d01 5325 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 5326 namelen, 0);
0d9f7f3e
Y
5327 if (IS_ERR(di))
5328 ret = PTR_ERR(di);
d397712b 5329
c704005d 5330 if (IS_ERR_OR_NULL(di))
3954401f 5331 goto out_err;
d397712b 5332
5f39d397 5333 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5334out:
39279cc3
CM
5335 btrfs_free_path(path);
5336 return ret;
3954401f
CM
5337out_err:
5338 location->objectid = 0;
5339 goto out;
39279cc3
CM
5340}
5341
5342/*
5343 * when we hit a tree root in a directory, the btrfs part of the inode
5344 * needs to be changed to reflect the root directory of the tree root. This
5345 * is kind of like crossing a mount point.
5346 */
5347static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
5348 struct inode *dir,
5349 struct dentry *dentry,
5350 struct btrfs_key *location,
5351 struct btrfs_root **sub_root)
39279cc3 5352{
4df27c4d
YZ
5353 struct btrfs_path *path;
5354 struct btrfs_root *new_root;
5355 struct btrfs_root_ref *ref;
5356 struct extent_buffer *leaf;
1d4c08e0 5357 struct btrfs_key key;
4df27c4d
YZ
5358 int ret;
5359 int err = 0;
39279cc3 5360
4df27c4d
YZ
5361 path = btrfs_alloc_path();
5362 if (!path) {
5363 err = -ENOMEM;
5364 goto out;
5365 }
39279cc3 5366
4df27c4d 5367 err = -ENOENT;
1d4c08e0
DS
5368 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5369 key.type = BTRFS_ROOT_REF_KEY;
5370 key.offset = location->objectid;
5371
5372 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5373 0, 0);
4df27c4d
YZ
5374 if (ret) {
5375 if (ret < 0)
5376 err = ret;
5377 goto out;
5378 }
39279cc3 5379
4df27c4d
YZ
5380 leaf = path->nodes[0];
5381 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 5382 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
5383 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5384 goto out;
39279cc3 5385
4df27c4d
YZ
5386 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5387 (unsigned long)(ref + 1),
5388 dentry->d_name.len);
5389 if (ret)
5390 goto out;
5391
b3b4aa74 5392 btrfs_release_path(path);
4df27c4d
YZ
5393
5394 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5395 if (IS_ERR(new_root)) {
5396 err = PTR_ERR(new_root);
5397 goto out;
5398 }
5399
4df27c4d
YZ
5400 *sub_root = new_root;
5401 location->objectid = btrfs_root_dirid(&new_root->root_item);
5402 location->type = BTRFS_INODE_ITEM_KEY;
5403 location->offset = 0;
5404 err = 0;
5405out:
5406 btrfs_free_path(path);
5407 return err;
39279cc3
CM
5408}
5409
5d4f98a2
YZ
5410static void inode_tree_add(struct inode *inode)
5411{
5412 struct btrfs_root *root = BTRFS_I(inode)->root;
5413 struct btrfs_inode *entry;
03e860bd
FNP
5414 struct rb_node **p;
5415 struct rb_node *parent;
cef21937 5416 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5417 u64 ino = btrfs_ino(inode);
5d4f98a2 5418
1d3382cb 5419 if (inode_unhashed(inode))
76dda93c 5420 return;
e1409cef 5421 parent = NULL;
5d4f98a2 5422 spin_lock(&root->inode_lock);
e1409cef 5423 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5424 while (*p) {
5425 parent = *p;
5426 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5427
33345d01 5428 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5429 p = &parent->rb_left;
33345d01 5430 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5431 p = &parent->rb_right;
5d4f98a2
YZ
5432 else {
5433 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5434 (I_WILL_FREE | I_FREEING)));
cef21937 5435 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5436 RB_CLEAR_NODE(parent);
5437 spin_unlock(&root->inode_lock);
cef21937 5438 return;
5d4f98a2
YZ
5439 }
5440 }
cef21937
FDBM
5441 rb_link_node(new, parent, p);
5442 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5443 spin_unlock(&root->inode_lock);
5444}
5445
5446static void inode_tree_del(struct inode *inode)
5447{
5448 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5449 int empty = 0;
5d4f98a2 5450
03e860bd 5451 spin_lock(&root->inode_lock);
5d4f98a2 5452 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5453 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5454 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5455 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5456 }
03e860bd 5457 spin_unlock(&root->inode_lock);
76dda93c 5458
69e9c6c6 5459 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5460 synchronize_srcu(&root->fs_info->subvol_srcu);
5461 spin_lock(&root->inode_lock);
5462 empty = RB_EMPTY_ROOT(&root->inode_tree);
5463 spin_unlock(&root->inode_lock);
5464 if (empty)
5465 btrfs_add_dead_root(root);
5466 }
5467}
5468
143bede5 5469void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5470{
5471 struct rb_node *node;
5472 struct rb_node *prev;
5473 struct btrfs_inode *entry;
5474 struct inode *inode;
5475 u64 objectid = 0;
5476
7813b3db
LB
5477 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5478 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5479
5480 spin_lock(&root->inode_lock);
5481again:
5482 node = root->inode_tree.rb_node;
5483 prev = NULL;
5484 while (node) {
5485 prev = node;
5486 entry = rb_entry(node, struct btrfs_inode, rb_node);
5487
33345d01 5488 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5489 node = node->rb_left;
33345d01 5490 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5491 node = node->rb_right;
5492 else
5493 break;
5494 }
5495 if (!node) {
5496 while (prev) {
5497 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5498 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5499 node = prev;
5500 break;
5501 }
5502 prev = rb_next(prev);
5503 }
5504 }
5505 while (node) {
5506 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5507 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5508 inode = igrab(&entry->vfs_inode);
5509 if (inode) {
5510 spin_unlock(&root->inode_lock);
5511 if (atomic_read(&inode->i_count) > 1)
5512 d_prune_aliases(inode);
5513 /*
45321ac5 5514 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5515 * the inode cache when its usage count
5516 * hits zero.
5517 */
5518 iput(inode);
5519 cond_resched();
5520 spin_lock(&root->inode_lock);
5521 goto again;
5522 }
5523
5524 if (cond_resched_lock(&root->inode_lock))
5525 goto again;
5526
5527 node = rb_next(node);
5528 }
5529 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5530}
5531
e02119d5
CM
5532static int btrfs_init_locked_inode(struct inode *inode, void *p)
5533{
5534 struct btrfs_iget_args *args = p;
90d3e592
CM
5535 inode->i_ino = args->location->objectid;
5536 memcpy(&BTRFS_I(inode)->location, args->location,
5537 sizeof(*args->location));
e02119d5 5538 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5539 return 0;
5540}
5541
5542static int btrfs_find_actor(struct inode *inode, void *opaque)
5543{
5544 struct btrfs_iget_args *args = opaque;
90d3e592 5545 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5546 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5547}
5548
5d4f98a2 5549static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5550 struct btrfs_key *location,
5d4f98a2 5551 struct btrfs_root *root)
39279cc3
CM
5552{
5553 struct inode *inode;
5554 struct btrfs_iget_args args;
90d3e592 5555 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5556
90d3e592 5557 args.location = location;
39279cc3
CM
5558 args.root = root;
5559
778ba82b 5560 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5561 btrfs_init_locked_inode,
5562 (void *)&args);
5563 return inode;
5564}
5565
1a54ef8c
BR
5566/* Get an inode object given its location and corresponding root.
5567 * Returns in *is_new if the inode was read from disk
5568 */
5569struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5570 struct btrfs_root *root, int *new)
1a54ef8c
BR
5571{
5572 struct inode *inode;
5573
90d3e592 5574 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5575 if (!inode)
5d4f98a2 5576 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5577
5578 if (inode->i_state & I_NEW) {
1a54ef8c 5579 btrfs_read_locked_inode(inode);
1748f843
MF
5580 if (!is_bad_inode(inode)) {
5581 inode_tree_add(inode);
5582 unlock_new_inode(inode);
5583 if (new)
5584 *new = 1;
5585 } else {
e0b6d65b
ST
5586 unlock_new_inode(inode);
5587 iput(inode);
5588 inode = ERR_PTR(-ESTALE);
1748f843
MF
5589 }
5590 }
5591
1a54ef8c
BR
5592 return inode;
5593}
5594
4df27c4d
YZ
5595static struct inode *new_simple_dir(struct super_block *s,
5596 struct btrfs_key *key,
5597 struct btrfs_root *root)
5598{
5599 struct inode *inode = new_inode(s);
5600
5601 if (!inode)
5602 return ERR_PTR(-ENOMEM);
5603
4df27c4d
YZ
5604 BTRFS_I(inode)->root = root;
5605 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5606 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5607
5608 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5609 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5610 inode->i_fop = &simple_dir_operations;
5611 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
9cc97d64 5612 inode->i_mtime = CURRENT_TIME;
5613 inode->i_atime = inode->i_mtime;
5614 inode->i_ctime = inode->i_mtime;
5615 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5616
5617 return inode;
5618}
5619
3de4586c 5620struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5621{
d397712b 5622 struct inode *inode;
4df27c4d 5623 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5624 struct btrfs_root *sub_root = root;
5625 struct btrfs_key location;
76dda93c 5626 int index;
b4aff1f8 5627 int ret = 0;
39279cc3
CM
5628
5629 if (dentry->d_name.len > BTRFS_NAME_LEN)
5630 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5631
39e3c955 5632 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5633 if (ret < 0)
5634 return ERR_PTR(ret);
5f39d397 5635
4df27c4d 5636 if (location.objectid == 0)
5662344b 5637 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5638
5639 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5640 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5641 return inode;
5642 }
5643
5644 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5645
76dda93c 5646 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5647 ret = fixup_tree_root_location(root, dir, dentry,
5648 &location, &sub_root);
5649 if (ret < 0) {
5650 if (ret != -ENOENT)
5651 inode = ERR_PTR(ret);
5652 else
5653 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5654 } else {
73f73415 5655 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5656 }
76dda93c
YZ
5657 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5658
34d19bad 5659 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5660 down_read(&root->fs_info->cleanup_work_sem);
5661 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5662 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5663 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5664 if (ret) {
5665 iput(inode);
66b4ffd1 5666 inode = ERR_PTR(ret);
01cd3367 5667 }
c71bf099
YZ
5668 }
5669
3de4586c
CM
5670 return inode;
5671}
5672
fe15ce44 5673static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5674{
5675 struct btrfs_root *root;
2b0143b5 5676 struct inode *inode = d_inode(dentry);
76dda93c 5677
848cce0d 5678 if (!inode && !IS_ROOT(dentry))
2b0143b5 5679 inode = d_inode(dentry->d_parent);
76dda93c 5680
848cce0d
LZ
5681 if (inode) {
5682 root = BTRFS_I(inode)->root;
efefb143
YZ
5683 if (btrfs_root_refs(&root->root_item) == 0)
5684 return 1;
848cce0d
LZ
5685
5686 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5687 return 1;
efefb143 5688 }
76dda93c
YZ
5689 return 0;
5690}
5691
b4aff1f8
JB
5692static void btrfs_dentry_release(struct dentry *dentry)
5693{
944a4515 5694 kfree(dentry->d_fsdata);
b4aff1f8
JB
5695}
5696
3de4586c 5697static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5698 unsigned int flags)
3de4586c 5699{
5662344b 5700 struct inode *inode;
a66e7cc6 5701
5662344b
TI
5702 inode = btrfs_lookup_dentry(dir, dentry);
5703 if (IS_ERR(inode)) {
5704 if (PTR_ERR(inode) == -ENOENT)
5705 inode = NULL;
5706 else
5707 return ERR_CAST(inode);
5708 }
5709
41d28bca 5710 return d_splice_alias(inode, dentry);
39279cc3
CM
5711}
5712
16cdcec7 5713unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5714 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5715};
5716
9cdda8d3 5717static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5718{
9cdda8d3 5719 struct inode *inode = file_inode(file);
39279cc3
CM
5720 struct btrfs_root *root = BTRFS_I(inode)->root;
5721 struct btrfs_item *item;
5722 struct btrfs_dir_item *di;
5723 struct btrfs_key key;
5f39d397 5724 struct btrfs_key found_key;
39279cc3 5725 struct btrfs_path *path;
16cdcec7
MX
5726 struct list_head ins_list;
5727 struct list_head del_list;
39279cc3 5728 int ret;
5f39d397 5729 struct extent_buffer *leaf;
39279cc3 5730 int slot;
39279cc3
CM
5731 unsigned char d_type;
5732 int over = 0;
5733 u32 di_cur;
5734 u32 di_total;
5735 u32 di_len;
5736 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5737 char tmp_name[32];
5738 char *name_ptr;
5739 int name_len;
9cdda8d3 5740 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5741
5742 /* FIXME, use a real flag for deciding about the key type */
5743 if (root->fs_info->tree_root == root)
5744 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5745
9cdda8d3
AV
5746 if (!dir_emit_dots(file, ctx))
5747 return 0;
5748
49593bfa 5749 path = btrfs_alloc_path();
16cdcec7
MX
5750 if (!path)
5751 return -ENOMEM;
ff5714cc 5752
e4058b54 5753 path->reada = READA_FORWARD;
49593bfa 5754
16cdcec7
MX
5755 if (key_type == BTRFS_DIR_INDEX_KEY) {
5756 INIT_LIST_HEAD(&ins_list);
5757 INIT_LIST_HEAD(&del_list);
5758 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5759 }
5760
962a298f 5761 key.type = key_type;
9cdda8d3 5762 key.offset = ctx->pos;
33345d01 5763 key.objectid = btrfs_ino(inode);
5f39d397 5764
39279cc3
CM
5765 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5766 if (ret < 0)
5767 goto err;
49593bfa
DW
5768
5769 while (1) {
5f39d397 5770 leaf = path->nodes[0];
39279cc3 5771 slot = path->slots[0];
b9e03af0
LZ
5772 if (slot >= btrfs_header_nritems(leaf)) {
5773 ret = btrfs_next_leaf(root, path);
5774 if (ret < 0)
5775 goto err;
5776 else if (ret > 0)
5777 break;
5778 continue;
39279cc3 5779 }
3de4586c 5780
dd3cc16b 5781 item = btrfs_item_nr(slot);
5f39d397
CM
5782 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5783
5784 if (found_key.objectid != key.objectid)
39279cc3 5785 break;
962a298f 5786 if (found_key.type != key_type)
39279cc3 5787 break;
9cdda8d3 5788 if (found_key.offset < ctx->pos)
b9e03af0 5789 goto next;
16cdcec7
MX
5790 if (key_type == BTRFS_DIR_INDEX_KEY &&
5791 btrfs_should_delete_dir_index(&del_list,
5792 found_key.offset))
5793 goto next;
5f39d397 5794
9cdda8d3 5795 ctx->pos = found_key.offset;
16cdcec7 5796 is_curr = 1;
49593bfa 5797
39279cc3
CM
5798 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5799 di_cur = 0;
5f39d397 5800 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5801
5802 while (di_cur < di_total) {
5f39d397
CM
5803 struct btrfs_key location;
5804
22a94d44
JB
5805 if (verify_dir_item(root, leaf, di))
5806 break;
5807
5f39d397 5808 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5809 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5810 name_ptr = tmp_name;
5811 } else {
5812 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5813 if (!name_ptr) {
5814 ret = -ENOMEM;
5815 goto err;
5816 }
5f39d397
CM
5817 }
5818 read_extent_buffer(leaf, name_ptr,
5819 (unsigned long)(di + 1), name_len);
5820
5821 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5822 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5823
fede766f 5824
3de4586c 5825 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5826 * skip it.
5827 *
5828 * In contrast to old kernels, we insert the snapshot's
5829 * dir item and dir index after it has been created, so
5830 * we won't find a reference to our own snapshot. We
5831 * still keep the following code for backward
5832 * compatibility.
3de4586c
CM
5833 */
5834 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5835 location.objectid == root->root_key.objectid) {
5836 over = 0;
5837 goto skip;
5838 }
9cdda8d3
AV
5839 over = !dir_emit(ctx, name_ptr, name_len,
5840 location.objectid, d_type);
5f39d397 5841
3de4586c 5842skip:
5f39d397
CM
5843 if (name_ptr != tmp_name)
5844 kfree(name_ptr);
5845
39279cc3
CM
5846 if (over)
5847 goto nopos;
5103e947 5848 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5849 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5850 di_cur += di_len;
5851 di = (struct btrfs_dir_item *)((char *)di + di_len);
5852 }
b9e03af0
LZ
5853next:
5854 path->slots[0]++;
39279cc3 5855 }
49593bfa 5856
16cdcec7
MX
5857 if (key_type == BTRFS_DIR_INDEX_KEY) {
5858 if (is_curr)
9cdda8d3
AV
5859 ctx->pos++;
5860 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5861 if (ret)
5862 goto nopos;
5863 }
5864
49593bfa 5865 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5866 ctx->pos++;
5867
5868 /*
5869 * Stop new entries from being returned after we return the last
5870 * entry.
5871 *
5872 * New directory entries are assigned a strictly increasing
5873 * offset. This means that new entries created during readdir
5874 * are *guaranteed* to be seen in the future by that readdir.
5875 * This has broken buggy programs which operate on names as
5876 * they're returned by readdir. Until we re-use freed offsets
5877 * we have this hack to stop new entries from being returned
5878 * under the assumption that they'll never reach this huge
5879 * offset.
5880 *
5881 * This is being careful not to overflow 32bit loff_t unless the
5882 * last entry requires it because doing so has broken 32bit apps
5883 * in the past.
5884 */
5885 if (key_type == BTRFS_DIR_INDEX_KEY) {
5886 if (ctx->pos >= INT_MAX)
5887 ctx->pos = LLONG_MAX;
5888 else
5889 ctx->pos = INT_MAX;
5890 }
39279cc3
CM
5891nopos:
5892 ret = 0;
5893err:
16cdcec7
MX
5894 if (key_type == BTRFS_DIR_INDEX_KEY)
5895 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5896 btrfs_free_path(path);
39279cc3
CM
5897 return ret;
5898}
5899
a9185b41 5900int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5901{
5902 struct btrfs_root *root = BTRFS_I(inode)->root;
5903 struct btrfs_trans_handle *trans;
5904 int ret = 0;
0af3d00b 5905 bool nolock = false;
39279cc3 5906
72ac3c0d 5907 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5908 return 0;
5909
83eea1f1 5910 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5911 nolock = true;
0af3d00b 5912
a9185b41 5913 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5914 if (nolock)
7a7eaa40 5915 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5916 else
7a7eaa40 5917 trans = btrfs_join_transaction(root);
3612b495
TI
5918 if (IS_ERR(trans))
5919 return PTR_ERR(trans);
a698d075 5920 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5921 }
5922 return ret;
5923}
5924
5925/*
54aa1f4d 5926 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5927 * inode changes. But, it is most likely to find the inode in cache.
5928 * FIXME, needs more benchmarking...there are no reasons other than performance
5929 * to keep or drop this code.
5930 */
48a3b636 5931static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5932{
5933 struct btrfs_root *root = BTRFS_I(inode)->root;
5934 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5935 int ret;
5936
72ac3c0d 5937 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5938 return 0;
39279cc3 5939
7a7eaa40 5940 trans = btrfs_join_transaction(root);
22c44fe6
JB
5941 if (IS_ERR(trans))
5942 return PTR_ERR(trans);
8929ecfa
YZ
5943
5944 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5945 if (ret && ret == -ENOSPC) {
5946 /* whoops, lets try again with the full transaction */
5947 btrfs_end_transaction(trans, root);
5948 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5949 if (IS_ERR(trans))
5950 return PTR_ERR(trans);
8929ecfa 5951
94b60442 5952 ret = btrfs_update_inode(trans, root, inode);
94b60442 5953 }
39279cc3 5954 btrfs_end_transaction(trans, root);
16cdcec7
MX
5955 if (BTRFS_I(inode)->delayed_node)
5956 btrfs_balance_delayed_items(root);
22c44fe6
JB
5957
5958 return ret;
5959}
5960
5961/*
5962 * This is a copy of file_update_time. We need this so we can return error on
5963 * ENOSPC for updating the inode in the case of file write and mmap writes.
5964 */
e41f941a
JB
5965static int btrfs_update_time(struct inode *inode, struct timespec *now,
5966 int flags)
22c44fe6 5967{
2bc55652
AB
5968 struct btrfs_root *root = BTRFS_I(inode)->root;
5969
5970 if (btrfs_root_readonly(root))
5971 return -EROFS;
5972
e41f941a 5973 if (flags & S_VERSION)
22c44fe6 5974 inode_inc_iversion(inode);
e41f941a
JB
5975 if (flags & S_CTIME)
5976 inode->i_ctime = *now;
5977 if (flags & S_MTIME)
5978 inode->i_mtime = *now;
5979 if (flags & S_ATIME)
5980 inode->i_atime = *now;
5981 return btrfs_dirty_inode(inode);
39279cc3
CM
5982}
5983
d352ac68
CM
5984/*
5985 * find the highest existing sequence number in a directory
5986 * and then set the in-memory index_cnt variable to reflect
5987 * free sequence numbers
5988 */
aec7477b
JB
5989static int btrfs_set_inode_index_count(struct inode *inode)
5990{
5991 struct btrfs_root *root = BTRFS_I(inode)->root;
5992 struct btrfs_key key, found_key;
5993 struct btrfs_path *path;
5994 struct extent_buffer *leaf;
5995 int ret;
5996
33345d01 5997 key.objectid = btrfs_ino(inode);
962a298f 5998 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
5999 key.offset = (u64)-1;
6000
6001 path = btrfs_alloc_path();
6002 if (!path)
6003 return -ENOMEM;
6004
6005 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6006 if (ret < 0)
6007 goto out;
6008 /* FIXME: we should be able to handle this */
6009 if (ret == 0)
6010 goto out;
6011 ret = 0;
6012
6013 /*
6014 * MAGIC NUMBER EXPLANATION:
6015 * since we search a directory based on f_pos we have to start at 2
6016 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6017 * else has to start at 2
6018 */
6019 if (path->slots[0] == 0) {
6020 BTRFS_I(inode)->index_cnt = 2;
6021 goto out;
6022 }
6023
6024 path->slots[0]--;
6025
6026 leaf = path->nodes[0];
6027 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6028
33345d01 6029 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6030 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
6031 BTRFS_I(inode)->index_cnt = 2;
6032 goto out;
6033 }
6034
6035 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6036out:
6037 btrfs_free_path(path);
6038 return ret;
6039}
6040
d352ac68
CM
6041/*
6042 * helper to find a free sequence number in a given directory. This current
6043 * code is very simple, later versions will do smarter things in the btree
6044 */
3de4586c 6045int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
6046{
6047 int ret = 0;
6048
6049 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
6050 ret = btrfs_inode_delayed_dir_index_count(dir);
6051 if (ret) {
6052 ret = btrfs_set_inode_index_count(dir);
6053 if (ret)
6054 return ret;
6055 }
aec7477b
JB
6056 }
6057
00e4e6b3 6058 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
6059 BTRFS_I(dir)->index_cnt++;
6060
6061 return ret;
6062}
6063
b0d5d10f
CM
6064static int btrfs_insert_inode_locked(struct inode *inode)
6065{
6066 struct btrfs_iget_args args;
6067 args.location = &BTRFS_I(inode)->location;
6068 args.root = BTRFS_I(inode)->root;
6069
6070 return insert_inode_locked4(inode,
6071 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6072 btrfs_find_actor, &args);
6073}
6074
39279cc3
CM
6075static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6076 struct btrfs_root *root,
aec7477b 6077 struct inode *dir,
9c58309d 6078 const char *name, int name_len,
175a4eb7
AV
6079 u64 ref_objectid, u64 objectid,
6080 umode_t mode, u64 *index)
39279cc3
CM
6081{
6082 struct inode *inode;
5f39d397 6083 struct btrfs_inode_item *inode_item;
39279cc3 6084 struct btrfs_key *location;
5f39d397 6085 struct btrfs_path *path;
9c58309d
CM
6086 struct btrfs_inode_ref *ref;
6087 struct btrfs_key key[2];
6088 u32 sizes[2];
ef3b9af5 6089 int nitems = name ? 2 : 1;
9c58309d 6090 unsigned long ptr;
39279cc3 6091 int ret;
39279cc3 6092
5f39d397 6093 path = btrfs_alloc_path();
d8926bb3
MF
6094 if (!path)
6095 return ERR_PTR(-ENOMEM);
5f39d397 6096
39279cc3 6097 inode = new_inode(root->fs_info->sb);
8fb27640
YS
6098 if (!inode) {
6099 btrfs_free_path(path);
39279cc3 6100 return ERR_PTR(-ENOMEM);
8fb27640 6101 }
39279cc3 6102
5762b5c9
FM
6103 /*
6104 * O_TMPFILE, set link count to 0, so that after this point,
6105 * we fill in an inode item with the correct link count.
6106 */
6107 if (!name)
6108 set_nlink(inode, 0);
6109
581bb050
LZ
6110 /*
6111 * we have to initialize this early, so we can reclaim the inode
6112 * number if we fail afterwards in this function.
6113 */
6114 inode->i_ino = objectid;
6115
ef3b9af5 6116 if (dir && name) {
1abe9b8a 6117 trace_btrfs_inode_request(dir);
6118
3de4586c 6119 ret = btrfs_set_inode_index(dir, index);
09771430 6120 if (ret) {
8fb27640 6121 btrfs_free_path(path);
09771430 6122 iput(inode);
aec7477b 6123 return ERR_PTR(ret);
09771430 6124 }
ef3b9af5
FM
6125 } else if (dir) {
6126 *index = 0;
aec7477b
JB
6127 }
6128 /*
6129 * index_cnt is ignored for everything but a dir,
6130 * btrfs_get_inode_index_count has an explanation for the magic
6131 * number
6132 */
6133 BTRFS_I(inode)->index_cnt = 2;
67de1176 6134 BTRFS_I(inode)->dir_index = *index;
39279cc3 6135 BTRFS_I(inode)->root = root;
e02119d5 6136 BTRFS_I(inode)->generation = trans->transid;
76195853 6137 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6138
5dc562c5
JB
6139 /*
6140 * We could have gotten an inode number from somebody who was fsynced
6141 * and then removed in this same transaction, so let's just set full
6142 * sync since it will be a full sync anyway and this will blow away the
6143 * old info in the log.
6144 */
6145 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6146
9c58309d 6147 key[0].objectid = objectid;
962a298f 6148 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6149 key[0].offset = 0;
6150
9c58309d 6151 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6152
6153 if (name) {
6154 /*
6155 * Start new inodes with an inode_ref. This is slightly more
6156 * efficient for small numbers of hard links since they will
6157 * be packed into one item. Extended refs will kick in if we
6158 * add more hard links than can fit in the ref item.
6159 */
6160 key[1].objectid = objectid;
962a298f 6161 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6162 key[1].offset = ref_objectid;
6163
6164 sizes[1] = name_len + sizeof(*ref);
6165 }
9c58309d 6166
b0d5d10f
CM
6167 location = &BTRFS_I(inode)->location;
6168 location->objectid = objectid;
6169 location->offset = 0;
962a298f 6170 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6171
6172 ret = btrfs_insert_inode_locked(inode);
6173 if (ret < 0)
6174 goto fail;
6175
b9473439 6176 path->leave_spinning = 1;
ef3b9af5 6177 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6178 if (ret != 0)
b0d5d10f 6179 goto fail_unlock;
5f39d397 6180
ecc11fab 6181 inode_init_owner(inode, dir, mode);
a76a3cd4 6182 inode_set_bytes(inode, 0);
9cc97d64 6183
6184 inode->i_mtime = CURRENT_TIME;
6185 inode->i_atime = inode->i_mtime;
6186 inode->i_ctime = inode->i_mtime;
6187 BTRFS_I(inode)->i_otime = inode->i_mtime;
6188
5f39d397
CM
6189 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6190 struct btrfs_inode_item);
293f7e07
LZ
6191 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6192 sizeof(*inode_item));
e02119d5 6193 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6194
ef3b9af5
FM
6195 if (name) {
6196 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6197 struct btrfs_inode_ref);
6198 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6199 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6200 ptr = (unsigned long)(ref + 1);
6201 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6202 }
9c58309d 6203
5f39d397
CM
6204 btrfs_mark_buffer_dirty(path->nodes[0]);
6205 btrfs_free_path(path);
6206
6cbff00f
CH
6207 btrfs_inherit_iflags(inode, dir);
6208
569254b0 6209 if (S_ISREG(mode)) {
94272164
CM
6210 if (btrfs_test_opt(root, NODATASUM))
6211 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 6212 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
6213 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6214 BTRFS_INODE_NODATASUM;
94272164
CM
6215 }
6216
5d4f98a2 6217 inode_tree_add(inode);
1abe9b8a 6218
6219 trace_btrfs_inode_new(inode);
1973f0fa 6220 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6221
8ea05e3a
AB
6222 btrfs_update_root_times(trans, root);
6223
63541927
FDBM
6224 ret = btrfs_inode_inherit_props(trans, inode, dir);
6225 if (ret)
6226 btrfs_err(root->fs_info,
6227 "error inheriting props for ino %llu (root %llu): %d",
6228 btrfs_ino(inode), root->root_key.objectid, ret);
6229
39279cc3 6230 return inode;
b0d5d10f
CM
6231
6232fail_unlock:
6233 unlock_new_inode(inode);
5f39d397 6234fail:
ef3b9af5 6235 if (dir && name)
aec7477b 6236 BTRFS_I(dir)->index_cnt--;
5f39d397 6237 btrfs_free_path(path);
09771430 6238 iput(inode);
5f39d397 6239 return ERR_PTR(ret);
39279cc3
CM
6240}
6241
6242static inline u8 btrfs_inode_type(struct inode *inode)
6243{
6244 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6245}
6246
d352ac68
CM
6247/*
6248 * utility function to add 'inode' into 'parent_inode' with
6249 * a give name and a given sequence number.
6250 * if 'add_backref' is true, also insert a backref from the
6251 * inode to the parent directory.
6252 */
e02119d5
CM
6253int btrfs_add_link(struct btrfs_trans_handle *trans,
6254 struct inode *parent_inode, struct inode *inode,
6255 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6256{
4df27c4d 6257 int ret = 0;
39279cc3 6258 struct btrfs_key key;
e02119d5 6259 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
6260 u64 ino = btrfs_ino(inode);
6261 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6262
33345d01 6263 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6264 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6265 } else {
33345d01 6266 key.objectid = ino;
962a298f 6267 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6268 key.offset = 0;
6269 }
6270
33345d01 6271 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6272 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6273 key.objectid, root->root_key.objectid,
33345d01 6274 parent_ino, index, name, name_len);
4df27c4d 6275 } else if (add_backref) {
33345d01
LZ
6276 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6277 parent_ino, index);
4df27c4d 6278 }
39279cc3 6279
79787eaa
JM
6280 /* Nothing to clean up yet */
6281 if (ret)
6282 return ret;
4df27c4d 6283
79787eaa
JM
6284 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6285 parent_inode, &key,
6286 btrfs_inode_type(inode), index);
9c52057c 6287 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6288 goto fail_dir_item;
6289 else if (ret) {
6290 btrfs_abort_transaction(trans, root, ret);
6291 return ret;
39279cc3 6292 }
79787eaa
JM
6293
6294 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6295 name_len * 2);
0c4d2d95 6296 inode_inc_iversion(parent_inode);
79787eaa
JM
6297 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6298 ret = btrfs_update_inode(trans, root, parent_inode);
6299 if (ret)
6300 btrfs_abort_transaction(trans, root, ret);
39279cc3 6301 return ret;
fe66a05a
CM
6302
6303fail_dir_item:
6304 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6305 u64 local_index;
6306 int err;
6307 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6308 key.objectid, root->root_key.objectid,
6309 parent_ino, &local_index, name, name_len);
6310
6311 } else if (add_backref) {
6312 u64 local_index;
6313 int err;
6314
6315 err = btrfs_del_inode_ref(trans, root, name, name_len,
6316 ino, parent_ino, &local_index);
6317 }
6318 return ret;
39279cc3
CM
6319}
6320
6321static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
6322 struct inode *dir, struct dentry *dentry,
6323 struct inode *inode, int backref, u64 index)
39279cc3 6324{
a1b075d2
JB
6325 int err = btrfs_add_link(trans, dir, inode,
6326 dentry->d_name.name, dentry->d_name.len,
6327 backref, index);
39279cc3
CM
6328 if (err > 0)
6329 err = -EEXIST;
6330 return err;
6331}
6332
618e21d5 6333static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6334 umode_t mode, dev_t rdev)
618e21d5
JB
6335{
6336 struct btrfs_trans_handle *trans;
6337 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6338 struct inode *inode = NULL;
618e21d5
JB
6339 int err;
6340 int drop_inode = 0;
6341 u64 objectid;
00e4e6b3 6342 u64 index = 0;
618e21d5 6343
9ed74f2d
JB
6344 /*
6345 * 2 for inode item and ref
6346 * 2 for dir items
6347 * 1 for xattr if selinux is on
6348 */
a22285a6
YZ
6349 trans = btrfs_start_transaction(root, 5);
6350 if (IS_ERR(trans))
6351 return PTR_ERR(trans);
1832a6d5 6352
581bb050
LZ
6353 err = btrfs_find_free_ino(root, &objectid);
6354 if (err)
6355 goto out_unlock;
6356
aec7477b 6357 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6358 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6359 mode, &index);
7cf96da3
TI
6360 if (IS_ERR(inode)) {
6361 err = PTR_ERR(inode);
618e21d5 6362 goto out_unlock;
7cf96da3 6363 }
618e21d5 6364
ad19db71
CS
6365 /*
6366 * If the active LSM wants to access the inode during
6367 * d_instantiate it needs these. Smack checks to see
6368 * if the filesystem supports xattrs by looking at the
6369 * ops vector.
6370 */
ad19db71 6371 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6372 init_special_inode(inode, inode->i_mode, rdev);
6373
6374 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6375 if (err)
b0d5d10f
CM
6376 goto out_unlock_inode;
6377
6378 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6379 if (err) {
6380 goto out_unlock_inode;
6381 } else {
1b4ab1bb 6382 btrfs_update_inode(trans, root, inode);
b0d5d10f 6383 unlock_new_inode(inode);
08c422c2 6384 d_instantiate(dentry, inode);
618e21d5 6385 }
b0d5d10f 6386
618e21d5 6387out_unlock:
7ad85bb7 6388 btrfs_end_transaction(trans, root);
c581afc8 6389 btrfs_balance_delayed_items(root);
b53d3f5d 6390 btrfs_btree_balance_dirty(root);
618e21d5
JB
6391 if (drop_inode) {
6392 inode_dec_link_count(inode);
6393 iput(inode);
6394 }
618e21d5 6395 return err;
b0d5d10f
CM
6396
6397out_unlock_inode:
6398 drop_inode = 1;
6399 unlock_new_inode(inode);
6400 goto out_unlock;
6401
618e21d5
JB
6402}
6403
39279cc3 6404static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6405 umode_t mode, bool excl)
39279cc3
CM
6406{
6407 struct btrfs_trans_handle *trans;
6408 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6409 struct inode *inode = NULL;
43baa579 6410 int drop_inode_on_err = 0;
a22285a6 6411 int err;
39279cc3 6412 u64 objectid;
00e4e6b3 6413 u64 index = 0;
39279cc3 6414
9ed74f2d
JB
6415 /*
6416 * 2 for inode item and ref
6417 * 2 for dir items
6418 * 1 for xattr if selinux is on
6419 */
a22285a6
YZ
6420 trans = btrfs_start_transaction(root, 5);
6421 if (IS_ERR(trans))
6422 return PTR_ERR(trans);
9ed74f2d 6423
581bb050
LZ
6424 err = btrfs_find_free_ino(root, &objectid);
6425 if (err)
6426 goto out_unlock;
6427
aec7477b 6428 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6429 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6430 mode, &index);
7cf96da3
TI
6431 if (IS_ERR(inode)) {
6432 err = PTR_ERR(inode);
39279cc3 6433 goto out_unlock;
7cf96da3 6434 }
43baa579 6435 drop_inode_on_err = 1;
ad19db71
CS
6436 /*
6437 * If the active LSM wants to access the inode during
6438 * d_instantiate it needs these. Smack checks to see
6439 * if the filesystem supports xattrs by looking at the
6440 * ops vector.
6441 */
6442 inode->i_fop = &btrfs_file_operations;
6443 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6444 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6445
6446 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6447 if (err)
6448 goto out_unlock_inode;
6449
6450 err = btrfs_update_inode(trans, root, inode);
6451 if (err)
6452 goto out_unlock_inode;
ad19db71 6453
a1b075d2 6454 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6455 if (err)
b0d5d10f 6456 goto out_unlock_inode;
43baa579 6457
43baa579 6458 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6459 unlock_new_inode(inode);
43baa579
FB
6460 d_instantiate(dentry, inode);
6461
39279cc3 6462out_unlock:
7ad85bb7 6463 btrfs_end_transaction(trans, root);
43baa579 6464 if (err && drop_inode_on_err) {
39279cc3
CM
6465 inode_dec_link_count(inode);
6466 iput(inode);
6467 }
c581afc8 6468 btrfs_balance_delayed_items(root);
b53d3f5d 6469 btrfs_btree_balance_dirty(root);
39279cc3 6470 return err;
b0d5d10f
CM
6471
6472out_unlock_inode:
6473 unlock_new_inode(inode);
6474 goto out_unlock;
6475
39279cc3
CM
6476}
6477
6478static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6479 struct dentry *dentry)
6480{
271dba45 6481 struct btrfs_trans_handle *trans = NULL;
39279cc3 6482 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6483 struct inode *inode = d_inode(old_dentry);
00e4e6b3 6484 u64 index;
39279cc3
CM
6485 int err;
6486 int drop_inode = 0;
6487
4a8be425
TH
6488 /* do not allow sys_link's with other subvols of the same device */
6489 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6490 return -EXDEV;
4a8be425 6491
f186373f 6492 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6493 return -EMLINK;
4a8be425 6494
3de4586c 6495 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6496 if (err)
6497 goto fail;
6498
a22285a6 6499 /*
7e6b6465 6500 * 2 items for inode and inode ref
a22285a6 6501 * 2 items for dir items
7e6b6465 6502 * 1 item for parent inode
a22285a6 6503 */
7e6b6465 6504 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6505 if (IS_ERR(trans)) {
6506 err = PTR_ERR(trans);
271dba45 6507 trans = NULL;
a22285a6
YZ
6508 goto fail;
6509 }
5f39d397 6510
67de1176
MX
6511 /* There are several dir indexes for this inode, clear the cache. */
6512 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6513 inc_nlink(inode);
0c4d2d95 6514 inode_inc_iversion(inode);
3153495d 6515 inode->i_ctime = CURRENT_TIME;
7de9c6ee 6516 ihold(inode);
e9976151 6517 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6518
a1b075d2 6519 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6520
a5719521 6521 if (err) {
54aa1f4d 6522 drop_inode = 1;
a5719521 6523 } else {
10d9f309 6524 struct dentry *parent = dentry->d_parent;
a5719521 6525 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6526 if (err)
6527 goto fail;
ef3b9af5
FM
6528 if (inode->i_nlink == 1) {
6529 /*
6530 * If new hard link count is 1, it's a file created
6531 * with open(2) O_TMPFILE flag.
6532 */
6533 err = btrfs_orphan_del(trans, inode);
6534 if (err)
6535 goto fail;
6536 }
08c422c2 6537 d_instantiate(dentry, inode);
6a912213 6538 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6539 }
39279cc3 6540
c581afc8 6541 btrfs_balance_delayed_items(root);
1832a6d5 6542fail:
271dba45
FM
6543 if (trans)
6544 btrfs_end_transaction(trans, root);
39279cc3
CM
6545 if (drop_inode) {
6546 inode_dec_link_count(inode);
6547 iput(inode);
6548 }
b53d3f5d 6549 btrfs_btree_balance_dirty(root);
39279cc3
CM
6550 return err;
6551}
6552
18bb1db3 6553static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6554{
b9d86667 6555 struct inode *inode = NULL;
39279cc3
CM
6556 struct btrfs_trans_handle *trans;
6557 struct btrfs_root *root = BTRFS_I(dir)->root;
6558 int err = 0;
6559 int drop_on_err = 0;
b9d86667 6560 u64 objectid = 0;
00e4e6b3 6561 u64 index = 0;
39279cc3 6562
9ed74f2d
JB
6563 /*
6564 * 2 items for inode and ref
6565 * 2 items for dir items
6566 * 1 for xattr if selinux is on
6567 */
a22285a6
YZ
6568 trans = btrfs_start_transaction(root, 5);
6569 if (IS_ERR(trans))
6570 return PTR_ERR(trans);
39279cc3 6571
581bb050
LZ
6572 err = btrfs_find_free_ino(root, &objectid);
6573 if (err)
6574 goto out_fail;
6575
aec7477b 6576 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6577 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6578 S_IFDIR | mode, &index);
39279cc3
CM
6579 if (IS_ERR(inode)) {
6580 err = PTR_ERR(inode);
6581 goto out_fail;
6582 }
5f39d397 6583
39279cc3 6584 drop_on_err = 1;
b0d5d10f
CM
6585 /* these must be set before we unlock the inode */
6586 inode->i_op = &btrfs_dir_inode_operations;
6587 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6588
2a7dba39 6589 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6590 if (err)
b0d5d10f 6591 goto out_fail_inode;
39279cc3 6592
dbe674a9 6593 btrfs_i_size_write(inode, 0);
39279cc3
CM
6594 err = btrfs_update_inode(trans, root, inode);
6595 if (err)
b0d5d10f 6596 goto out_fail_inode;
5f39d397 6597
a1b075d2
JB
6598 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6599 dentry->d_name.len, 0, index);
39279cc3 6600 if (err)
b0d5d10f 6601 goto out_fail_inode;
5f39d397 6602
39279cc3 6603 d_instantiate(dentry, inode);
b0d5d10f
CM
6604 /*
6605 * mkdir is special. We're unlocking after we call d_instantiate
6606 * to avoid a race with nfsd calling d_instantiate.
6607 */
6608 unlock_new_inode(inode);
39279cc3 6609 drop_on_err = 0;
39279cc3
CM
6610
6611out_fail:
7ad85bb7 6612 btrfs_end_transaction(trans, root);
c7cfb8a5
WS
6613 if (drop_on_err) {
6614 inode_dec_link_count(inode);
39279cc3 6615 iput(inode);
c7cfb8a5 6616 }
c581afc8 6617 btrfs_balance_delayed_items(root);
b53d3f5d 6618 btrfs_btree_balance_dirty(root);
39279cc3 6619 return err;
b0d5d10f
CM
6620
6621out_fail_inode:
6622 unlock_new_inode(inode);
6623 goto out_fail;
39279cc3
CM
6624}
6625
e6c4efd8
QW
6626/* Find next extent map of a given extent map, caller needs to ensure locks */
6627static struct extent_map *next_extent_map(struct extent_map *em)
6628{
6629 struct rb_node *next;
6630
6631 next = rb_next(&em->rb_node);
6632 if (!next)
6633 return NULL;
6634 return container_of(next, struct extent_map, rb_node);
6635}
6636
6637static struct extent_map *prev_extent_map(struct extent_map *em)
6638{
6639 struct rb_node *prev;
6640
6641 prev = rb_prev(&em->rb_node);
6642 if (!prev)
6643 return NULL;
6644 return container_of(prev, struct extent_map, rb_node);
6645}
6646
d352ac68 6647/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6648 * the existing extent is the nearest extent to map_start,
d352ac68 6649 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6650 * the best fitted new extent into the tree.
d352ac68 6651 */
3b951516
CM
6652static int merge_extent_mapping(struct extent_map_tree *em_tree,
6653 struct extent_map *existing,
e6dcd2dc 6654 struct extent_map *em,
51f395ad 6655 u64 map_start)
3b951516 6656{
e6c4efd8
QW
6657 struct extent_map *prev;
6658 struct extent_map *next;
6659 u64 start;
6660 u64 end;
3b951516 6661 u64 start_diff;
3b951516 6662
e6dcd2dc 6663 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6664
6665 if (existing->start > map_start) {
6666 next = existing;
6667 prev = prev_extent_map(next);
6668 } else {
6669 prev = existing;
6670 next = next_extent_map(prev);
6671 }
6672
6673 start = prev ? extent_map_end(prev) : em->start;
6674 start = max_t(u64, start, em->start);
6675 end = next ? next->start : extent_map_end(em);
6676 end = min_t(u64, end, extent_map_end(em));
6677 start_diff = start - em->start;
6678 em->start = start;
6679 em->len = end - start;
c8b97818
CM
6680 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6681 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6682 em->block_start += start_diff;
c8b97818
CM
6683 em->block_len -= start_diff;
6684 }
09a2a8f9 6685 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6686}
6687
c8b97818 6688static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6689 struct page *page,
c8b97818
CM
6690 size_t pg_offset, u64 extent_offset,
6691 struct btrfs_file_extent_item *item)
6692{
6693 int ret;
6694 struct extent_buffer *leaf = path->nodes[0];
6695 char *tmp;
6696 size_t max_size;
6697 unsigned long inline_size;
6698 unsigned long ptr;
261507a0 6699 int compress_type;
c8b97818
CM
6700
6701 WARN_ON(pg_offset != 0);
261507a0 6702 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6703 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6704 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6705 btrfs_item_nr(path->slots[0]));
c8b97818 6706 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6707 if (!tmp)
6708 return -ENOMEM;
c8b97818
CM
6709 ptr = btrfs_file_extent_inline_start(item);
6710
6711 read_extent_buffer(leaf, tmp, ptr, inline_size);
6712
5b050f04 6713 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
6714 ret = btrfs_decompress(compress_type, tmp, page,
6715 extent_offset, inline_size, max_size);
c8b97818 6716 kfree(tmp);
166ae5a4 6717 return ret;
c8b97818
CM
6718}
6719
d352ac68
CM
6720/*
6721 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6722 * the ugly parts come from merging extents from the disk with the in-ram
6723 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6724 * where the in-ram extents might be locked pending data=ordered completion.
6725 *
6726 * This also copies inline extents directly into the page.
6727 */
d397712b 6728
a52d9a80 6729struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6730 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6731 int create)
6732{
6733 int ret;
6734 int err = 0;
a52d9a80
CM
6735 u64 extent_start = 0;
6736 u64 extent_end = 0;
33345d01 6737 u64 objectid = btrfs_ino(inode);
a52d9a80 6738 u32 found_type;
f421950f 6739 struct btrfs_path *path = NULL;
a52d9a80
CM
6740 struct btrfs_root *root = BTRFS_I(inode)->root;
6741 struct btrfs_file_extent_item *item;
5f39d397
CM
6742 struct extent_buffer *leaf;
6743 struct btrfs_key found_key;
a52d9a80
CM
6744 struct extent_map *em = NULL;
6745 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6746 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6747 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6748 const bool new_inline = !page || create;
a52d9a80 6749
a52d9a80 6750again:
890871be 6751 read_lock(&em_tree->lock);
d1310b2e 6752 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6753 if (em)
6754 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6755 read_unlock(&em_tree->lock);
d1310b2e 6756
a52d9a80 6757 if (em) {
e1c4b745
CM
6758 if (em->start > start || em->start + em->len <= start)
6759 free_extent_map(em);
6760 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6761 free_extent_map(em);
6762 else
6763 goto out;
a52d9a80 6764 }
172ddd60 6765 em = alloc_extent_map();
a52d9a80 6766 if (!em) {
d1310b2e
CM
6767 err = -ENOMEM;
6768 goto out;
a52d9a80 6769 }
e6dcd2dc 6770 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6771 em->start = EXTENT_MAP_HOLE;
445a6944 6772 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6773 em->len = (u64)-1;
c8b97818 6774 em->block_len = (u64)-1;
f421950f
CM
6775
6776 if (!path) {
6777 path = btrfs_alloc_path();
026fd317
JB
6778 if (!path) {
6779 err = -ENOMEM;
6780 goto out;
6781 }
6782 /*
6783 * Chances are we'll be called again, so go ahead and do
6784 * readahead
6785 */
e4058b54 6786 path->reada = READA_FORWARD;
f421950f
CM
6787 }
6788
179e29e4
CM
6789 ret = btrfs_lookup_file_extent(trans, root, path,
6790 objectid, start, trans != NULL);
a52d9a80
CM
6791 if (ret < 0) {
6792 err = ret;
6793 goto out;
6794 }
6795
6796 if (ret != 0) {
6797 if (path->slots[0] == 0)
6798 goto not_found;
6799 path->slots[0]--;
6800 }
6801
5f39d397
CM
6802 leaf = path->nodes[0];
6803 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6804 struct btrfs_file_extent_item);
a52d9a80 6805 /* are we inside the extent that was found? */
5f39d397 6806 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6807 found_type = found_key.type;
5f39d397 6808 if (found_key.objectid != objectid ||
a52d9a80 6809 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6810 /*
6811 * If we backup past the first extent we want to move forward
6812 * and see if there is an extent in front of us, otherwise we'll
6813 * say there is a hole for our whole search range which can
6814 * cause problems.
6815 */
6816 extent_end = start;
6817 goto next;
a52d9a80
CM
6818 }
6819
5f39d397
CM
6820 found_type = btrfs_file_extent_type(leaf, item);
6821 extent_start = found_key.offset;
d899e052
YZ
6822 if (found_type == BTRFS_FILE_EXTENT_REG ||
6823 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6824 extent_end = extent_start +
db94535d 6825 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6826 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6827 size_t size;
514ac8ad 6828 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6829 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6830 }
25a50341 6831next:
9036c102
YZ
6832 if (start >= extent_end) {
6833 path->slots[0]++;
6834 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6835 ret = btrfs_next_leaf(root, path);
6836 if (ret < 0) {
6837 err = ret;
6838 goto out;
a52d9a80 6839 }
9036c102
YZ
6840 if (ret > 0)
6841 goto not_found;
6842 leaf = path->nodes[0];
a52d9a80 6843 }
9036c102
YZ
6844 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6845 if (found_key.objectid != objectid ||
6846 found_key.type != BTRFS_EXTENT_DATA_KEY)
6847 goto not_found;
6848 if (start + len <= found_key.offset)
6849 goto not_found;
e2eca69d
WS
6850 if (start > found_key.offset)
6851 goto next;
9036c102 6852 em->start = start;
70c8a91c 6853 em->orig_start = start;
9036c102
YZ
6854 em->len = found_key.offset - start;
6855 goto not_found_em;
6856 }
6857
7ffbb598
FM
6858 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6859
d899e052
YZ
6860 if (found_type == BTRFS_FILE_EXTENT_REG ||
6861 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6862 goto insert;
6863 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6864 unsigned long ptr;
a52d9a80 6865 char *map;
3326d1b0
CM
6866 size_t size;
6867 size_t extent_offset;
6868 size_t copy_size;
a52d9a80 6869
7ffbb598 6870 if (new_inline)
689f9346 6871 goto out;
5f39d397 6872
514ac8ad 6873 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6874 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6875 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6876 size - extent_offset);
3326d1b0 6877 em->start = extent_start + extent_offset;
fda2832f 6878 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6879 em->orig_block_len = em->len;
70c8a91c 6880 em->orig_start = em->start;
689f9346 6881 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6882 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6883 if (btrfs_file_extent_compression(leaf, item) !=
6884 BTRFS_COMPRESS_NONE) {
e40da0e5 6885 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6886 extent_offset, item);
166ae5a4
ZB
6887 if (ret) {
6888 err = ret;
6889 goto out;
6890 }
c8b97818
CM
6891 } else {
6892 map = kmap(page);
6893 read_extent_buffer(leaf, map + pg_offset, ptr,
6894 copy_size);
93c82d57
CM
6895 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6896 memset(map + pg_offset + copy_size, 0,
6897 PAGE_CACHE_SIZE - pg_offset -
6898 copy_size);
6899 }
c8b97818
CM
6900 kunmap(page);
6901 }
179e29e4
CM
6902 flush_dcache_page(page);
6903 } else if (create && PageUptodate(page)) {
6bf7e080 6904 BUG();
179e29e4
CM
6905 if (!trans) {
6906 kunmap(page);
6907 free_extent_map(em);
6908 em = NULL;
ff5714cc 6909
b3b4aa74 6910 btrfs_release_path(path);
7a7eaa40 6911 trans = btrfs_join_transaction(root);
ff5714cc 6912
3612b495
TI
6913 if (IS_ERR(trans))
6914 return ERR_CAST(trans);
179e29e4
CM
6915 goto again;
6916 }
c8b97818 6917 map = kmap(page);
70dec807 6918 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6919 copy_size);
c8b97818 6920 kunmap(page);
179e29e4 6921 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6922 }
d1310b2e 6923 set_extent_uptodate(io_tree, em->start,
507903b8 6924 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6925 goto insert;
a52d9a80
CM
6926 }
6927not_found:
6928 em->start = start;
70c8a91c 6929 em->orig_start = start;
d1310b2e 6930 em->len = len;
a52d9a80 6931not_found_em:
5f39d397 6932 em->block_start = EXTENT_MAP_HOLE;
9036c102 6933 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6934insert:
b3b4aa74 6935 btrfs_release_path(path);
d1310b2e 6936 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6937 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6938 em->start, em->len, start, len);
a52d9a80
CM
6939 err = -EIO;
6940 goto out;
6941 }
d1310b2e
CM
6942
6943 err = 0;
890871be 6944 write_lock(&em_tree->lock);
09a2a8f9 6945 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6946 /* it is possible that someone inserted the extent into the tree
6947 * while we had the lock dropped. It is also possible that
6948 * an overlapping map exists in the tree
6949 */
a52d9a80 6950 if (ret == -EEXIST) {
3b951516 6951 struct extent_map *existing;
e6dcd2dc
CM
6952
6953 ret = 0;
6954
e6c4efd8
QW
6955 existing = search_extent_mapping(em_tree, start, len);
6956 /*
6957 * existing will always be non-NULL, since there must be
6958 * extent causing the -EEXIST.
6959 */
6960 if (start >= extent_map_end(existing) ||
32be3a1a 6961 start <= existing->start) {
e6c4efd8
QW
6962 /*
6963 * The existing extent map is the one nearest to
6964 * the [start, start + len) range which overlaps
6965 */
6966 err = merge_extent_mapping(em_tree, existing,
6967 em, start);
e1c4b745 6968 free_extent_map(existing);
e6c4efd8 6969 if (err) {
3b951516
CM
6970 free_extent_map(em);
6971 em = NULL;
6972 }
6973 } else {
6974 free_extent_map(em);
6975 em = existing;
e6dcd2dc 6976 err = 0;
a52d9a80 6977 }
a52d9a80 6978 }
890871be 6979 write_unlock(&em_tree->lock);
a52d9a80 6980out:
1abe9b8a 6981
4cd8587c 6982 trace_btrfs_get_extent(root, em);
1abe9b8a 6983
527afb44 6984 btrfs_free_path(path);
a52d9a80
CM
6985 if (trans) {
6986 ret = btrfs_end_transaction(trans, root);
d397712b 6987 if (!err)
a52d9a80
CM
6988 err = ret;
6989 }
a52d9a80
CM
6990 if (err) {
6991 free_extent_map(em);
a52d9a80
CM
6992 return ERR_PTR(err);
6993 }
79787eaa 6994 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6995 return em;
6996}
6997
ec29ed5b
CM
6998struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6999 size_t pg_offset, u64 start, u64 len,
7000 int create)
7001{
7002 struct extent_map *em;
7003 struct extent_map *hole_em = NULL;
7004 u64 range_start = start;
7005 u64 end;
7006 u64 found;
7007 u64 found_end;
7008 int err = 0;
7009
7010 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7011 if (IS_ERR(em))
7012 return em;
7013 if (em) {
7014 /*
f9e4fb53
LB
7015 * if our em maps to
7016 * - a hole or
7017 * - a pre-alloc extent,
7018 * there might actually be delalloc bytes behind it.
ec29ed5b 7019 */
f9e4fb53
LB
7020 if (em->block_start != EXTENT_MAP_HOLE &&
7021 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
7022 return em;
7023 else
7024 hole_em = em;
7025 }
7026
7027 /* check to see if we've wrapped (len == -1 or similar) */
7028 end = start + len;
7029 if (end < start)
7030 end = (u64)-1;
7031 else
7032 end -= 1;
7033
7034 em = NULL;
7035
7036 /* ok, we didn't find anything, lets look for delalloc */
7037 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7038 end, len, EXTENT_DELALLOC, 1);
7039 found_end = range_start + found;
7040 if (found_end < range_start)
7041 found_end = (u64)-1;
7042
7043 /*
7044 * we didn't find anything useful, return
7045 * the original results from get_extent()
7046 */
7047 if (range_start > end || found_end <= start) {
7048 em = hole_em;
7049 hole_em = NULL;
7050 goto out;
7051 }
7052
7053 /* adjust the range_start to make sure it doesn't
7054 * go backwards from the start they passed in
7055 */
67871254 7056 range_start = max(start, range_start);
ec29ed5b
CM
7057 found = found_end - range_start;
7058
7059 if (found > 0) {
7060 u64 hole_start = start;
7061 u64 hole_len = len;
7062
172ddd60 7063 em = alloc_extent_map();
ec29ed5b
CM
7064 if (!em) {
7065 err = -ENOMEM;
7066 goto out;
7067 }
7068 /*
7069 * when btrfs_get_extent can't find anything it
7070 * returns one huge hole
7071 *
7072 * make sure what it found really fits our range, and
7073 * adjust to make sure it is based on the start from
7074 * the caller
7075 */
7076 if (hole_em) {
7077 u64 calc_end = extent_map_end(hole_em);
7078
7079 if (calc_end <= start || (hole_em->start > end)) {
7080 free_extent_map(hole_em);
7081 hole_em = NULL;
7082 } else {
7083 hole_start = max(hole_em->start, start);
7084 hole_len = calc_end - hole_start;
7085 }
7086 }
7087 em->bdev = NULL;
7088 if (hole_em && range_start > hole_start) {
7089 /* our hole starts before our delalloc, so we
7090 * have to return just the parts of the hole
7091 * that go until the delalloc starts
7092 */
7093 em->len = min(hole_len,
7094 range_start - hole_start);
7095 em->start = hole_start;
7096 em->orig_start = hole_start;
7097 /*
7098 * don't adjust block start at all,
7099 * it is fixed at EXTENT_MAP_HOLE
7100 */
7101 em->block_start = hole_em->block_start;
7102 em->block_len = hole_len;
f9e4fb53
LB
7103 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7104 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7105 } else {
7106 em->start = range_start;
7107 em->len = found;
7108 em->orig_start = range_start;
7109 em->block_start = EXTENT_MAP_DELALLOC;
7110 em->block_len = found;
7111 }
7112 } else if (hole_em) {
7113 return hole_em;
7114 }
7115out:
7116
7117 free_extent_map(hole_em);
7118 if (err) {
7119 free_extent_map(em);
7120 return ERR_PTR(err);
7121 }
7122 return em;
7123}
7124
4b46fce2
JB
7125static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7126 u64 start, u64 len)
7127{
7128 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7129 struct extent_map *em;
4b46fce2
JB
7130 struct btrfs_key ins;
7131 u64 alloc_hint;
7132 int ret;
4b46fce2 7133
4b46fce2 7134 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 7135 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
e570fd27 7136 alloc_hint, &ins, 1, 1);
00361589
JB
7137 if (ret)
7138 return ERR_PTR(ret);
4b46fce2 7139
70c8a91c 7140 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 7141 ins.offset, ins.offset, ins.offset, 0);
00361589 7142 if (IS_ERR(em)) {
e570fd27 7143 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
7144 return em;
7145 }
4b46fce2
JB
7146
7147 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7148 ins.offset, ins.offset, 0);
7149 if (ret) {
e570fd27 7150 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
7151 free_extent_map(em);
7152 return ERR_PTR(ret);
4b46fce2 7153 }
00361589 7154
4b46fce2
JB
7155 return em;
7156}
7157
46bfbb5c
CM
7158/*
7159 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7160 * block must be cow'd
7161 */
00361589 7162noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7163 u64 *orig_start, u64 *orig_block_len,
7164 u64 *ram_bytes)
46bfbb5c 7165{
00361589 7166 struct btrfs_trans_handle *trans;
46bfbb5c
CM
7167 struct btrfs_path *path;
7168 int ret;
7169 struct extent_buffer *leaf;
7170 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7171 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7172 struct btrfs_file_extent_item *fi;
7173 struct btrfs_key key;
7174 u64 disk_bytenr;
7175 u64 backref_offset;
7176 u64 extent_end;
7177 u64 num_bytes;
7178 int slot;
7179 int found_type;
7ee9e440 7180 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7181
46bfbb5c
CM
7182 path = btrfs_alloc_path();
7183 if (!path)
7184 return -ENOMEM;
7185
00361589 7186 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
7187 offset, 0);
7188 if (ret < 0)
7189 goto out;
7190
7191 slot = path->slots[0];
7192 if (ret == 1) {
7193 if (slot == 0) {
7194 /* can't find the item, must cow */
7195 ret = 0;
7196 goto out;
7197 }
7198 slot--;
7199 }
7200 ret = 0;
7201 leaf = path->nodes[0];
7202 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 7203 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
7204 key.type != BTRFS_EXTENT_DATA_KEY) {
7205 /* not our file or wrong item type, must cow */
7206 goto out;
7207 }
7208
7209 if (key.offset > offset) {
7210 /* Wrong offset, must cow */
7211 goto out;
7212 }
7213
7214 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7215 found_type = btrfs_file_extent_type(leaf, fi);
7216 if (found_type != BTRFS_FILE_EXTENT_REG &&
7217 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7218 /* not a regular extent, must cow */
7219 goto out;
7220 }
7ee9e440
JB
7221
7222 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7223 goto out;
7224
e77751aa
MX
7225 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7226 if (extent_end <= offset)
7227 goto out;
7228
46bfbb5c 7229 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7230 if (disk_bytenr == 0)
7231 goto out;
7232
7233 if (btrfs_file_extent_compression(leaf, fi) ||
7234 btrfs_file_extent_encryption(leaf, fi) ||
7235 btrfs_file_extent_other_encoding(leaf, fi))
7236 goto out;
7237
46bfbb5c
CM
7238 backref_offset = btrfs_file_extent_offset(leaf, fi);
7239
7ee9e440
JB
7240 if (orig_start) {
7241 *orig_start = key.offset - backref_offset;
7242 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7243 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7244 }
eb384b55 7245
46bfbb5c
CM
7246 if (btrfs_extent_readonly(root, disk_bytenr))
7247 goto out;
7b2b7085
MX
7248
7249 num_bytes = min(offset + *len, extent_end) - offset;
7250 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7251 u64 range_end;
7252
7253 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7254 ret = test_range_bit(io_tree, offset, range_end,
7255 EXTENT_DELALLOC, 0, NULL);
7256 if (ret) {
7257 ret = -EAGAIN;
7258 goto out;
7259 }
7260 }
7261
1bda19eb 7262 btrfs_release_path(path);
46bfbb5c
CM
7263
7264 /*
7265 * look for other files referencing this extent, if we
7266 * find any we must cow
7267 */
00361589
JB
7268 trans = btrfs_join_transaction(root);
7269 if (IS_ERR(trans)) {
7270 ret = 0;
46bfbb5c 7271 goto out;
00361589
JB
7272 }
7273
7274 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7275 key.offset - backref_offset, disk_bytenr);
7276 btrfs_end_transaction(trans, root);
7277 if (ret) {
7278 ret = 0;
7279 goto out;
7280 }
46bfbb5c
CM
7281
7282 /*
7283 * adjust disk_bytenr and num_bytes to cover just the bytes
7284 * in this extent we are about to write. If there
7285 * are any csums in that range we have to cow in order
7286 * to keep the csums correct
7287 */
7288 disk_bytenr += backref_offset;
7289 disk_bytenr += offset - key.offset;
46bfbb5c
CM
7290 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7291 goto out;
7292 /*
7293 * all of the above have passed, it is safe to overwrite this extent
7294 * without cow
7295 */
eb384b55 7296 *len = num_bytes;
46bfbb5c
CM
7297 ret = 1;
7298out:
7299 btrfs_free_path(path);
7300 return ret;
7301}
7302
fc4adbff
AG
7303bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7304{
7305 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7306 int found = false;
7307 void **pagep = NULL;
7308 struct page *page = NULL;
7309 int start_idx;
7310 int end_idx;
7311
7312 start_idx = start >> PAGE_CACHE_SHIFT;
7313
7314 /*
7315 * end is the last byte in the last page. end == start is legal
7316 */
7317 end_idx = end >> PAGE_CACHE_SHIFT;
7318
7319 rcu_read_lock();
7320
7321 /* Most of the code in this while loop is lifted from
7322 * find_get_page. It's been modified to begin searching from a
7323 * page and return just the first page found in that range. If the
7324 * found idx is less than or equal to the end idx then we know that
7325 * a page exists. If no pages are found or if those pages are
7326 * outside of the range then we're fine (yay!) */
7327 while (page == NULL &&
7328 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7329 page = radix_tree_deref_slot(pagep);
7330 if (unlikely(!page))
7331 break;
7332
7333 if (radix_tree_exception(page)) {
809f9016
FM
7334 if (radix_tree_deref_retry(page)) {
7335 page = NULL;
fc4adbff 7336 continue;
809f9016 7337 }
fc4adbff
AG
7338 /*
7339 * Otherwise, shmem/tmpfs must be storing a swap entry
7340 * here as an exceptional entry: so return it without
7341 * attempting to raise page count.
7342 */
6fdef6d4 7343 page = NULL;
fc4adbff
AG
7344 break; /* TODO: Is this relevant for this use case? */
7345 }
7346
91405151
FM
7347 if (!page_cache_get_speculative(page)) {
7348 page = NULL;
fc4adbff 7349 continue;
91405151 7350 }
fc4adbff
AG
7351
7352 /*
7353 * Has the page moved?
7354 * This is part of the lockless pagecache protocol. See
7355 * include/linux/pagemap.h for details.
7356 */
7357 if (unlikely(page != *pagep)) {
7358 page_cache_release(page);
7359 page = NULL;
7360 }
7361 }
7362
7363 if (page) {
7364 if (page->index <= end_idx)
7365 found = true;
7366 page_cache_release(page);
7367 }
7368
7369 rcu_read_unlock();
7370 return found;
7371}
7372
eb838e73
JB
7373static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7374 struct extent_state **cached_state, int writing)
7375{
7376 struct btrfs_ordered_extent *ordered;
7377 int ret = 0;
7378
7379 while (1) {
7380 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7381 cached_state);
eb838e73
JB
7382 /*
7383 * We're concerned with the entire range that we're going to be
7384 * doing DIO to, so we need to make sure theres no ordered
7385 * extents in this range.
7386 */
7387 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7388 lockend - lockstart + 1);
7389
7390 /*
7391 * We need to make sure there are no buffered pages in this
7392 * range either, we could have raced between the invalidate in
7393 * generic_file_direct_write and locking the extent. The
7394 * invalidate needs to happen so that reads after a write do not
7395 * get stale data.
7396 */
fc4adbff
AG
7397 if (!ordered &&
7398 (!writing ||
7399 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7400 break;
7401
7402 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7403 cached_state, GFP_NOFS);
7404
7405 if (ordered) {
7406 btrfs_start_ordered_extent(inode, ordered, 1);
7407 btrfs_put_ordered_extent(ordered);
7408 } else {
eb838e73 7409 /*
b850ae14
FM
7410 * We could trigger writeback for this range (and wait
7411 * for it to complete) and then invalidate the pages for
7412 * this range (through invalidate_inode_pages2_range()),
7413 * but that can lead us to a deadlock with a concurrent
7414 * call to readpages() (a buffered read or a defrag call
7415 * triggered a readahead) on a page lock due to an
7416 * ordered dio extent we created before but did not have
7417 * yet a corresponding bio submitted (whence it can not
7418 * complete), which makes readpages() wait for that
7419 * ordered extent to complete while holding a lock on
7420 * that page.
eb838e73 7421 */
b850ae14
FM
7422 ret = -ENOTBLK;
7423 break;
eb838e73
JB
7424 }
7425
7426 cond_resched();
7427 }
7428
7429 return ret;
7430}
7431
69ffb543
JB
7432static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7433 u64 len, u64 orig_start,
7434 u64 block_start, u64 block_len,
cc95bef6
JB
7435 u64 orig_block_len, u64 ram_bytes,
7436 int type)
69ffb543
JB
7437{
7438 struct extent_map_tree *em_tree;
7439 struct extent_map *em;
7440 struct btrfs_root *root = BTRFS_I(inode)->root;
7441 int ret;
7442
7443 em_tree = &BTRFS_I(inode)->extent_tree;
7444 em = alloc_extent_map();
7445 if (!em)
7446 return ERR_PTR(-ENOMEM);
7447
7448 em->start = start;
7449 em->orig_start = orig_start;
2ab28f32
JB
7450 em->mod_start = start;
7451 em->mod_len = len;
69ffb543
JB
7452 em->len = len;
7453 em->block_len = block_len;
7454 em->block_start = block_start;
7455 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7456 em->orig_block_len = orig_block_len;
cc95bef6 7457 em->ram_bytes = ram_bytes;
70c8a91c 7458 em->generation = -1;
69ffb543
JB
7459 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7460 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7461 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7462
7463 do {
7464 btrfs_drop_extent_cache(inode, em->start,
7465 em->start + em->len - 1, 0);
7466 write_lock(&em_tree->lock);
09a2a8f9 7467 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7468 write_unlock(&em_tree->lock);
7469 } while (ret == -EEXIST);
7470
7471 if (ret) {
7472 free_extent_map(em);
7473 return ERR_PTR(ret);
7474 }
7475
7476 return em;
7477}
7478
9c9464cc
FM
7479static void adjust_dio_outstanding_extents(struct inode *inode,
7480 struct btrfs_dio_data *dio_data,
7481 const u64 len)
7482{
7483 unsigned num_extents;
7484
7485 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7486 BTRFS_MAX_EXTENT_SIZE);
7487 /*
7488 * If we have an outstanding_extents count still set then we're
7489 * within our reservation, otherwise we need to adjust our inode
7490 * counter appropriately.
7491 */
7492 if (dio_data->outstanding_extents) {
7493 dio_data->outstanding_extents -= num_extents;
7494 } else {
7495 spin_lock(&BTRFS_I(inode)->lock);
7496 BTRFS_I(inode)->outstanding_extents += num_extents;
7497 spin_unlock(&BTRFS_I(inode)->lock);
7498 }
7499}
7500
4b46fce2
JB
7501static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7502 struct buffer_head *bh_result, int create)
7503{
7504 struct extent_map *em;
7505 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7506 struct extent_state *cached_state = NULL;
50745b0a 7507 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7508 u64 start = iblock << inode->i_blkbits;
eb838e73 7509 u64 lockstart, lockend;
4b46fce2 7510 u64 len = bh_result->b_size;
eb838e73 7511 int unlock_bits = EXTENT_LOCKED;
0934856d 7512 int ret = 0;
eb838e73 7513
172a5049 7514 if (create)
3266789f 7515 unlock_bits |= EXTENT_DIRTY;
172a5049 7516 else
c329861d 7517 len = min_t(u64, len, root->sectorsize);
eb838e73 7518
c329861d
JB
7519 lockstart = start;
7520 lockend = start + len - 1;
7521
e1cbbfa5
JB
7522 if (current->journal_info) {
7523 /*
7524 * Need to pull our outstanding extents and set journal_info to NULL so
7525 * that anything that needs to check if there's a transction doesn't get
7526 * confused.
7527 */
50745b0a 7528 dio_data = current->journal_info;
e1cbbfa5
JB
7529 current->journal_info = NULL;
7530 }
7531
eb838e73
JB
7532 /*
7533 * If this errors out it's because we couldn't invalidate pagecache for
7534 * this range and we need to fallback to buffered.
7535 */
9c9464cc
FM
7536 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7537 create)) {
7538 ret = -ENOTBLK;
7539 goto err;
7540 }
eb838e73 7541
4b46fce2 7542 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7543 if (IS_ERR(em)) {
7544 ret = PTR_ERR(em);
7545 goto unlock_err;
7546 }
4b46fce2
JB
7547
7548 /*
7549 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7550 * io. INLINE is special, and we could probably kludge it in here, but
7551 * it's still buffered so for safety lets just fall back to the generic
7552 * buffered path.
7553 *
7554 * For COMPRESSED we _have_ to read the entire extent in so we can
7555 * decompress it, so there will be buffering required no matter what we
7556 * do, so go ahead and fallback to buffered.
7557 *
7558 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7559 * to buffered IO. Don't blame me, this is the price we pay for using
7560 * the generic code.
7561 */
7562 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7563 em->block_start == EXTENT_MAP_INLINE) {
7564 free_extent_map(em);
eb838e73
JB
7565 ret = -ENOTBLK;
7566 goto unlock_err;
4b46fce2
JB
7567 }
7568
7569 /* Just a good old fashioned hole, return */
7570 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7571 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7572 free_extent_map(em);
eb838e73 7573 goto unlock_err;
4b46fce2
JB
7574 }
7575
7576 /*
7577 * We don't allocate a new extent in the following cases
7578 *
7579 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7580 * existing extent.
7581 * 2) The extent is marked as PREALLOC. We're good to go here and can
7582 * just use the extent.
7583 *
7584 */
46bfbb5c 7585 if (!create) {
eb838e73
JB
7586 len = min(len, em->len - (start - em->start));
7587 lockstart = start + len;
7588 goto unlock;
46bfbb5c 7589 }
4b46fce2
JB
7590
7591 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7592 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7593 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7594 int type;
eb384b55 7595 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7596
7597 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7598 type = BTRFS_ORDERED_PREALLOC;
7599 else
7600 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7601 len = min(len, em->len - (start - em->start));
4b46fce2 7602 block_start = em->block_start + (start - em->start);
46bfbb5c 7603
00361589 7604 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 7605 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
7606 if (type == BTRFS_ORDERED_PREALLOC) {
7607 free_extent_map(em);
7608 em = create_pinned_em(inode, start, len,
7609 orig_start,
b4939680 7610 block_start, len,
cc95bef6
JB
7611 orig_block_len,
7612 ram_bytes, type);
555e1286
FM
7613 if (IS_ERR(em)) {
7614 ret = PTR_ERR(em);
69ffb543 7615 goto unlock_err;
555e1286 7616 }
69ffb543
JB
7617 }
7618
46bfbb5c
CM
7619 ret = btrfs_add_ordered_extent_dio(inode, start,
7620 block_start, len, len, type);
46bfbb5c
CM
7621 if (ret) {
7622 free_extent_map(em);
eb838e73 7623 goto unlock_err;
46bfbb5c
CM
7624 }
7625 goto unlock;
4b46fce2 7626 }
4b46fce2 7627 }
00361589 7628
46bfbb5c
CM
7629 /*
7630 * this will cow the extent, reset the len in case we changed
7631 * it above
7632 */
7633 len = bh_result->b_size;
70c8a91c
JB
7634 free_extent_map(em);
7635 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7636 if (IS_ERR(em)) {
7637 ret = PTR_ERR(em);
7638 goto unlock_err;
7639 }
46bfbb5c
CM
7640 len = min(len, em->len - (start - em->start));
7641unlock:
4b46fce2
JB
7642 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7643 inode->i_blkbits;
46bfbb5c 7644 bh_result->b_size = len;
4b46fce2
JB
7645 bh_result->b_bdev = em->bdev;
7646 set_buffer_mapped(bh_result);
c3473e83
JB
7647 if (create) {
7648 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7649 set_buffer_new(bh_result);
7650
7651 /*
7652 * Need to update the i_size under the extent lock so buffered
7653 * readers will get the updated i_size when we unlock.
7654 */
7655 if (start + len > i_size_read(inode))
7656 i_size_write(inode, start + len);
0934856d 7657
9c9464cc 7658 adjust_dio_outstanding_extents(inode, dio_data, len);
7cf5b976 7659 btrfs_free_reserved_data_space(inode, start, len);
50745b0a 7660 WARN_ON(dio_data->reserve < len);
7661 dio_data->reserve -= len;
f28a4928 7662 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7663 current->journal_info = dio_data;
c3473e83 7664 }
4b46fce2 7665
eb838e73
JB
7666 /*
7667 * In the case of write we need to clear and unlock the entire range,
7668 * in the case of read we need to unlock only the end area that we
7669 * aren't using if there is any left over space.
7670 */
24c03fa5 7671 if (lockstart < lockend) {
0934856d
MX
7672 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7673 lockend, unlock_bits, 1, 0,
7674 &cached_state, GFP_NOFS);
24c03fa5 7675 } else {
eb838e73 7676 free_extent_state(cached_state);
24c03fa5 7677 }
eb838e73 7678
4b46fce2
JB
7679 free_extent_map(em);
7680
7681 return 0;
eb838e73
JB
7682
7683unlock_err:
eb838e73
JB
7684 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7685 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7686err:
50745b0a 7687 if (dio_data)
7688 current->journal_info = dio_data;
9c9464cc
FM
7689 /*
7690 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7691 * write less data then expected, so that we don't underflow our inode's
7692 * outstanding extents counter.
7693 */
7694 if (create && dio_data)
7695 adjust_dio_outstanding_extents(inode, dio_data, len);
7696
eb838e73 7697 return ret;
4b46fce2
JB
7698}
7699
8b110e39
MX
7700static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7701 int rw, int mirror_num)
7702{
7703 struct btrfs_root *root = BTRFS_I(inode)->root;
7704 int ret;
7705
7706 BUG_ON(rw & REQ_WRITE);
7707
7708 bio_get(bio);
7709
7710 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7711 BTRFS_WQ_ENDIO_DIO_REPAIR);
7712 if (ret)
7713 goto err;
7714
7715 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7716err:
7717 bio_put(bio);
7718 return ret;
7719}
7720
7721static int btrfs_check_dio_repairable(struct inode *inode,
7722 struct bio *failed_bio,
7723 struct io_failure_record *failrec,
7724 int failed_mirror)
7725{
7726 int num_copies;
7727
7728 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7729 failrec->logical, failrec->len);
7730 if (num_copies == 1) {
7731 /*
7732 * we only have a single copy of the data, so don't bother with
7733 * all the retry and error correction code that follows. no
7734 * matter what the error is, it is very likely to persist.
7735 */
7736 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7737 num_copies, failrec->this_mirror, failed_mirror);
7738 return 0;
7739 }
7740
7741 failrec->failed_mirror = failed_mirror;
7742 failrec->this_mirror++;
7743 if (failrec->this_mirror == failed_mirror)
7744 failrec->this_mirror++;
7745
7746 if (failrec->this_mirror > num_copies) {
7747 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7748 num_copies, failrec->this_mirror, failed_mirror);
7749 return 0;
7750 }
7751
7752 return 1;
7753}
7754
7755static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7756 struct page *page, u64 start, u64 end,
7757 int failed_mirror, bio_end_io_t *repair_endio,
7758 void *repair_arg)
7759{
7760 struct io_failure_record *failrec;
7761 struct bio *bio;
7762 int isector;
7763 int read_mode;
7764 int ret;
7765
7766 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7767
7768 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7769 if (ret)
7770 return ret;
7771
7772 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7773 failed_mirror);
7774 if (!ret) {
7775 free_io_failure(inode, failrec);
7776 return -EIO;
7777 }
7778
7779 if (failed_bio->bi_vcnt > 1)
7780 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7781 else
7782 read_mode = READ_SYNC;
7783
7784 isector = start - btrfs_io_bio(failed_bio)->logical;
7785 isector >>= inode->i_sb->s_blocksize_bits;
7786 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7787 0, isector, repair_endio, repair_arg);
7788 if (!bio) {
7789 free_io_failure(inode, failrec);
7790 return -EIO;
7791 }
7792
7793 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7794 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7795 read_mode, failrec->this_mirror, failrec->in_validation);
7796
7797 ret = submit_dio_repair_bio(inode, bio, read_mode,
7798 failrec->this_mirror);
7799 if (ret) {
7800 free_io_failure(inode, failrec);
7801 bio_put(bio);
7802 }
7803
7804 return ret;
7805}
7806
7807struct btrfs_retry_complete {
7808 struct completion done;
7809 struct inode *inode;
7810 u64 start;
7811 int uptodate;
7812};
7813
4246a0b6 7814static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7815{
7816 struct btrfs_retry_complete *done = bio->bi_private;
7817 struct bio_vec *bvec;
7818 int i;
7819
4246a0b6 7820 if (bio->bi_error)
8b110e39
MX
7821 goto end;
7822
7823 done->uptodate = 1;
7824 bio_for_each_segment_all(bvec, bio, i)
7825 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7826end:
7827 complete(&done->done);
7828 bio_put(bio);
7829}
7830
7831static int __btrfs_correct_data_nocsum(struct inode *inode,
7832 struct btrfs_io_bio *io_bio)
4b46fce2 7833{
2c30c71b 7834 struct bio_vec *bvec;
8b110e39 7835 struct btrfs_retry_complete done;
4b46fce2 7836 u64 start;
2c30c71b 7837 int i;
c1dc0896 7838 int ret;
4b46fce2 7839
8b110e39
MX
7840 start = io_bio->logical;
7841 done.inode = inode;
7842
7843 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7844try_again:
7845 done.uptodate = 0;
7846 done.start = start;
7847 init_completion(&done.done);
7848
7849 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7850 start + bvec->bv_len - 1,
7851 io_bio->mirror_num,
7852 btrfs_retry_endio_nocsum, &done);
7853 if (ret)
7854 return ret;
7855
7856 wait_for_completion(&done.done);
7857
7858 if (!done.uptodate) {
7859 /* We might have another mirror, so try again */
7860 goto try_again;
7861 }
7862
7863 start += bvec->bv_len;
7864 }
7865
7866 return 0;
7867}
7868
4246a0b6 7869static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7870{
7871 struct btrfs_retry_complete *done = bio->bi_private;
7872 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7873 struct bio_vec *bvec;
7874 int uptodate;
7875 int ret;
7876 int i;
7877
4246a0b6 7878 if (bio->bi_error)
8b110e39
MX
7879 goto end;
7880
7881 uptodate = 1;
7882 bio_for_each_segment_all(bvec, bio, i) {
7883 ret = __readpage_endio_check(done->inode, io_bio, i,
7884 bvec->bv_page, 0,
7885 done->start, bvec->bv_len);
7886 if (!ret)
7887 clean_io_failure(done->inode, done->start,
7888 bvec->bv_page, 0);
7889 else
7890 uptodate = 0;
7891 }
7892
7893 done->uptodate = uptodate;
7894end:
7895 complete(&done->done);
7896 bio_put(bio);
7897}
7898
7899static int __btrfs_subio_endio_read(struct inode *inode,
7900 struct btrfs_io_bio *io_bio, int err)
7901{
7902 struct bio_vec *bvec;
7903 struct btrfs_retry_complete done;
7904 u64 start;
7905 u64 offset = 0;
7906 int i;
7907 int ret;
dc380aea 7908
8b110e39 7909 err = 0;
c1dc0896 7910 start = io_bio->logical;
8b110e39
MX
7911 done.inode = inode;
7912
c1dc0896 7913 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
dc380aea
MX
7914 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7915 0, start, bvec->bv_len);
8b110e39
MX
7916 if (likely(!ret))
7917 goto next;
7918try_again:
7919 done.uptodate = 0;
7920 done.start = start;
7921 init_completion(&done.done);
7922
7923 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7924 start + bvec->bv_len - 1,
7925 io_bio->mirror_num,
7926 btrfs_retry_endio, &done);
7927 if (ret) {
7928 err = ret;
7929 goto next;
7930 }
7931
7932 wait_for_completion(&done.done);
7933
7934 if (!done.uptodate) {
7935 /* We might have another mirror, so try again */
7936 goto try_again;
7937 }
7938next:
7939 offset += bvec->bv_len;
4b46fce2 7940 start += bvec->bv_len;
2c30c71b 7941 }
c1dc0896
MX
7942
7943 return err;
7944}
7945
8b110e39
MX
7946static int btrfs_subio_endio_read(struct inode *inode,
7947 struct btrfs_io_bio *io_bio, int err)
7948{
7949 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7950
7951 if (skip_csum) {
7952 if (unlikely(err))
7953 return __btrfs_correct_data_nocsum(inode, io_bio);
7954 else
7955 return 0;
7956 } else {
7957 return __btrfs_subio_endio_read(inode, io_bio, err);
7958 }
7959}
7960
4246a0b6 7961static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
7962{
7963 struct btrfs_dio_private *dip = bio->bi_private;
7964 struct inode *inode = dip->inode;
7965 struct bio *dio_bio;
7966 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 7967 int err = bio->bi_error;
c1dc0896 7968
8b110e39
MX
7969 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7970 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 7971
4b46fce2 7972 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 7973 dip->logical_offset + dip->bytes - 1);
9be3395b 7974 dio_bio = dip->dio_bio;
4b46fce2 7975
4b46fce2 7976 kfree(dip);
c0da7aa1 7977
4246a0b6 7978 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
7979
7980 if (io_bio->end_io)
7981 io_bio->end_io(io_bio, err);
9be3395b 7982 bio_put(bio);
4b46fce2
JB
7983}
7984
14543774
FM
7985static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
7986 const u64 offset,
7987 const u64 bytes,
7988 const int uptodate)
4b46fce2 7989{
4b46fce2 7990 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 7991 struct btrfs_ordered_extent *ordered = NULL;
14543774
FM
7992 u64 ordered_offset = offset;
7993 u64 ordered_bytes = bytes;
4b46fce2
JB
7994 int ret;
7995
163cf09c
CM
7996again:
7997 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7998 &ordered_offset,
4246a0b6 7999 ordered_bytes,
14543774 8000 uptodate);
4b46fce2 8001 if (!ret)
163cf09c 8002 goto out_test;
4b46fce2 8003
9e0af237
LB
8004 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8005 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
8006 btrfs_queue_work(root->fs_info->endio_write_workers,
8007 &ordered->work);
163cf09c
CM
8008out_test:
8009 /*
8010 * our bio might span multiple ordered extents. If we haven't
8011 * completed the accounting for the whole dio, go back and try again
8012 */
14543774
FM
8013 if (ordered_offset < offset + bytes) {
8014 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8015 ordered = NULL;
163cf09c
CM
8016 goto again;
8017 }
14543774
FM
8018}
8019
8020static void btrfs_endio_direct_write(struct bio *bio)
8021{
8022 struct btrfs_dio_private *dip = bio->bi_private;
8023 struct bio *dio_bio = dip->dio_bio;
8024
8025 btrfs_endio_direct_write_update_ordered(dip->inode,
8026 dip->logical_offset,
8027 dip->bytes,
8028 !bio->bi_error);
4b46fce2 8029
4b46fce2 8030 kfree(dip);
c0da7aa1 8031
4246a0b6 8032 dio_end_io(dio_bio, bio->bi_error);
9be3395b 8033 bio_put(bio);
4b46fce2
JB
8034}
8035
eaf25d93
CM
8036static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8037 struct bio *bio, int mirror_num,
8038 unsigned long bio_flags, u64 offset)
8039{
8040 int ret;
8041 struct btrfs_root *root = BTRFS_I(inode)->root;
8042 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 8043 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8044 return 0;
8045}
8046
4246a0b6 8047static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8048{
8049 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8050 int err = bio->bi_error;
e65e1535 8051
8b110e39
MX
8052 if (err)
8053 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8054 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8055 btrfs_ino(dip->inode), bio->bi_rw,
8056 (unsigned long long)bio->bi_iter.bi_sector,
8057 bio->bi_iter.bi_size, err);
8058
8059 if (dip->subio_endio)
8060 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8061
8062 if (err) {
e65e1535
MX
8063 dip->errors = 1;
8064
8065 /*
8066 * before atomic variable goto zero, we must make sure
8067 * dip->errors is perceived to be set.
8068 */
4e857c58 8069 smp_mb__before_atomic();
e65e1535
MX
8070 }
8071
8072 /* if there are more bios still pending for this dio, just exit */
8073 if (!atomic_dec_and_test(&dip->pending_bios))
8074 goto out;
8075
9be3395b 8076 if (dip->errors) {
e65e1535 8077 bio_io_error(dip->orig_bio);
9be3395b 8078 } else {
4246a0b6
CH
8079 dip->dio_bio->bi_error = 0;
8080 bio_endio(dip->orig_bio);
e65e1535
MX
8081 }
8082out:
8083 bio_put(bio);
8084}
8085
8086static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8087 u64 first_sector, gfp_t gfp_flags)
8088{
da2f0f74 8089 struct bio *bio;
22365979 8090 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
da2f0f74
CM
8091 if (bio)
8092 bio_associate_current(bio);
8093 return bio;
e65e1535
MX
8094}
8095
c1dc0896
MX
8096static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8097 struct inode *inode,
8098 struct btrfs_dio_private *dip,
8099 struct bio *bio,
8100 u64 file_offset)
8101{
8102 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8103 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8104 int ret;
8105
8106 /*
8107 * We load all the csum data we need when we submit
8108 * the first bio to reduce the csum tree search and
8109 * contention.
8110 */
8111 if (dip->logical_offset == file_offset) {
8112 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8113 file_offset);
8114 if (ret)
8115 return ret;
8116 }
8117
8118 if (bio == dip->orig_bio)
8119 return 0;
8120
8121 file_offset -= dip->logical_offset;
8122 file_offset >>= inode->i_sb->s_blocksize_bits;
8123 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8124
8125 return 0;
8126}
8127
e65e1535
MX
8128static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8129 int rw, u64 file_offset, int skip_sum,
c329861d 8130 int async_submit)
e65e1535 8131{
facc8a22 8132 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
8133 int write = rw & REQ_WRITE;
8134 struct btrfs_root *root = BTRFS_I(inode)->root;
8135 int ret;
8136
b812ce28
JB
8137 if (async_submit)
8138 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8139
e65e1535 8140 bio_get(bio);
5fd02043
JB
8141
8142 if (!write) {
bfebd8b5
DS
8143 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8144 BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8145 if (ret)
8146 goto err;
8147 }
e65e1535 8148
1ae39938
JB
8149 if (skip_sum)
8150 goto map;
8151
8152 if (write && async_submit) {
e65e1535
MX
8153 ret = btrfs_wq_submit_bio(root->fs_info,
8154 inode, rw, bio, 0, 0,
8155 file_offset,
8156 __btrfs_submit_bio_start_direct_io,
8157 __btrfs_submit_bio_done);
8158 goto err;
1ae39938
JB
8159 } else if (write) {
8160 /*
8161 * If we aren't doing async submit, calculate the csum of the
8162 * bio now.
8163 */
8164 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8165 if (ret)
8166 goto err;
23ea8e5a 8167 } else {
c1dc0896
MX
8168 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8169 file_offset);
c2db1073
TI
8170 if (ret)
8171 goto err;
8172 }
1ae39938
JB
8173map:
8174 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
8175err:
8176 bio_put(bio);
8177 return ret;
8178}
8179
8180static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8181 int skip_sum)
8182{
8183 struct inode *inode = dip->inode;
8184 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
8185 struct bio *bio;
8186 struct bio *orig_bio = dip->orig_bio;
8187 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 8188 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
8189 u64 file_offset = dip->logical_offset;
8190 u64 submit_len = 0;
8191 u64 map_length;
8192 int nr_pages = 0;
23ea8e5a 8193 int ret;
1ae39938 8194 int async_submit = 0;
e65e1535 8195
4f024f37 8196 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8197 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535 8198 &map_length, NULL, 0);
7a5c3c9b 8199 if (ret)
e65e1535 8200 return -EIO;
facc8a22 8201
4f024f37 8202 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 8203 bio = orig_bio;
c1dc0896 8204 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8205 goto submit;
8206 }
8207
53b381b3 8208 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 8209 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8210 async_submit = 0;
8211 else
8212 async_submit = 1;
8213
02f57c7a
JB
8214 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8215 if (!bio)
8216 return -ENOMEM;
7a5c3c9b 8217
02f57c7a
JB
8218 bio->bi_private = dip;
8219 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8220 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
8221 atomic_inc(&dip->pending_bios);
8222
e65e1535 8223 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
ee39b432 8224 if (map_length < submit_len + bvec->bv_len ||
e65e1535 8225 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
ee39b432 8226 bvec->bv_offset) < bvec->bv_len) {
e65e1535
MX
8227 /*
8228 * inc the count before we submit the bio so
8229 * we know the end IO handler won't happen before
8230 * we inc the count. Otherwise, the dip might get freed
8231 * before we're done setting it up
8232 */
8233 atomic_inc(&dip->pending_bios);
8234 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8235 file_offset, skip_sum,
c329861d 8236 async_submit);
e65e1535
MX
8237 if (ret) {
8238 bio_put(bio);
8239 atomic_dec(&dip->pending_bios);
8240 goto out_err;
8241 }
8242
e65e1535
MX
8243 start_sector += submit_len >> 9;
8244 file_offset += submit_len;
8245
8246 submit_len = 0;
8247 nr_pages = 0;
8248
8249 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8250 start_sector, GFP_NOFS);
8251 if (!bio)
8252 goto out_err;
8253 bio->bi_private = dip;
8254 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8255 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 8256
4f024f37 8257 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8258 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 8259 start_sector << 9,
e65e1535
MX
8260 &map_length, NULL, 0);
8261 if (ret) {
8262 bio_put(bio);
8263 goto out_err;
8264 }
8265 } else {
8266 submit_len += bvec->bv_len;
67871254 8267 nr_pages++;
e65e1535
MX
8268 bvec++;
8269 }
8270 }
8271
02f57c7a 8272submit:
e65e1535 8273 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 8274 async_submit);
e65e1535
MX
8275 if (!ret)
8276 return 0;
8277
8278 bio_put(bio);
8279out_err:
8280 dip->errors = 1;
8281 /*
8282 * before atomic variable goto zero, we must
8283 * make sure dip->errors is perceived to be set.
8284 */
4e857c58 8285 smp_mb__before_atomic();
e65e1535
MX
8286 if (atomic_dec_and_test(&dip->pending_bios))
8287 bio_io_error(dip->orig_bio);
8288
8289 /* bio_end_io() will handle error, so we needn't return it */
8290 return 0;
8291}
8292
9be3395b
CM
8293static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8294 struct inode *inode, loff_t file_offset)
4b46fce2 8295{
61de718f
FM
8296 struct btrfs_dio_private *dip = NULL;
8297 struct bio *io_bio = NULL;
23ea8e5a 8298 struct btrfs_io_bio *btrfs_bio;
4b46fce2 8299 int skip_sum;
7b6d91da 8300 int write = rw & REQ_WRITE;
4b46fce2
JB
8301 int ret = 0;
8302
8303 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8304
9be3395b 8305 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
8306 if (!io_bio) {
8307 ret = -ENOMEM;
8308 goto free_ordered;
8309 }
8310
c1dc0896 8311 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8312 if (!dip) {
8313 ret = -ENOMEM;
61de718f 8314 goto free_ordered;
4b46fce2 8315 }
4b46fce2 8316
9be3395b 8317 dip->private = dio_bio->bi_private;
4b46fce2
JB
8318 dip->inode = inode;
8319 dip->logical_offset = file_offset;
4f024f37
KO
8320 dip->bytes = dio_bio->bi_iter.bi_size;
8321 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8322 io_bio->bi_private = dip;
9be3395b
CM
8323 dip->orig_bio = io_bio;
8324 dip->dio_bio = dio_bio;
e65e1535 8325 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8326 btrfs_bio = btrfs_io_bio(io_bio);
8327 btrfs_bio->logical = file_offset;
4b46fce2 8328
c1dc0896 8329 if (write) {
9be3395b 8330 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8331 } else {
9be3395b 8332 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8333 dip->subio_endio = btrfs_subio_endio_read;
8334 }
4b46fce2 8335
f28a4928
FM
8336 /*
8337 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8338 * even if we fail to submit a bio, because in such case we do the
8339 * corresponding error handling below and it must not be done a second
8340 * time by btrfs_direct_IO().
8341 */
8342 if (write) {
8343 struct btrfs_dio_data *dio_data = current->journal_info;
8344
8345 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8346 dip->bytes;
8347 dio_data->unsubmitted_oe_range_start =
8348 dio_data->unsubmitted_oe_range_end;
8349 }
8350
e65e1535
MX
8351 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8352 if (!ret)
eaf25d93 8353 return;
9be3395b 8354
23ea8e5a
MX
8355 if (btrfs_bio->end_io)
8356 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b 8357
4b46fce2
JB
8358free_ordered:
8359 /*
61de718f
FM
8360 * If we arrived here it means either we failed to submit the dip
8361 * or we either failed to clone the dio_bio or failed to allocate the
8362 * dip. If we cloned the dio_bio and allocated the dip, we can just
8363 * call bio_endio against our io_bio so that we get proper resource
8364 * cleanup if we fail to submit the dip, otherwise, we must do the
8365 * same as btrfs_endio_direct_[write|read] because we can't call these
8366 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8367 */
61de718f 8368 if (io_bio && dip) {
4246a0b6
CH
8369 io_bio->bi_error = -EIO;
8370 bio_endio(io_bio);
61de718f
FM
8371 /*
8372 * The end io callbacks free our dip, do the final put on io_bio
8373 * and all the cleanup and final put for dio_bio (through
8374 * dio_end_io()).
8375 */
8376 dip = NULL;
8377 io_bio = NULL;
8378 } else {
14543774
FM
8379 if (write)
8380 btrfs_endio_direct_write_update_ordered(inode,
8381 file_offset,
8382 dio_bio->bi_iter.bi_size,
8383 0);
8384 else
61de718f
FM
8385 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8386 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8387
4246a0b6 8388 dio_bio->bi_error = -EIO;
61de718f
FM
8389 /*
8390 * Releases and cleans up our dio_bio, no need to bio_put()
8391 * nor bio_endio()/bio_io_error() against dio_bio.
8392 */
8393 dio_end_io(dio_bio, ret);
4b46fce2 8394 }
61de718f
FM
8395 if (io_bio)
8396 bio_put(io_bio);
8397 kfree(dip);
4b46fce2
JB
8398}
8399
6f673763 8400static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
28060d5d 8401 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8402{
8403 int seg;
a1b75f7d 8404 int i;
5a5f79b5
CM
8405 unsigned blocksize_mask = root->sectorsize - 1;
8406 ssize_t retval = -EINVAL;
5a5f79b5
CM
8407
8408 if (offset & blocksize_mask)
8409 goto out;
8410
28060d5d
AV
8411 if (iov_iter_alignment(iter) & blocksize_mask)
8412 goto out;
a1b75f7d 8413
28060d5d 8414 /* If this is a write we don't need to check anymore */
6f673763 8415 if (iov_iter_rw(iter) == WRITE)
28060d5d
AV
8416 return 0;
8417 /*
8418 * Check to make sure we don't have duplicate iov_base's in this
8419 * iovec, if so return EINVAL, otherwise we'll get csum errors
8420 * when reading back.
8421 */
8422 for (seg = 0; seg < iter->nr_segs; seg++) {
8423 for (i = seg + 1; i < iter->nr_segs; i++) {
8424 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8425 goto out;
8426 }
5a5f79b5
CM
8427 }
8428 retval = 0;
8429out:
8430 return retval;
8431}
eb838e73 8432
22c6186e
OS
8433static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8434 loff_t offset)
16432985 8435{
4b46fce2
JB
8436 struct file *file = iocb->ki_filp;
8437 struct inode *inode = file->f_mapping->host;
50745b0a 8438 struct btrfs_root *root = BTRFS_I(inode)->root;
8439 struct btrfs_dio_data dio_data = { 0 };
0934856d 8440 size_t count = 0;
2e60a51e 8441 int flags = 0;
38851cc1
MX
8442 bool wakeup = true;
8443 bool relock = false;
0934856d 8444 ssize_t ret;
4b46fce2 8445
6f673763 8446 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
5a5f79b5 8447 return 0;
3f7c579c 8448
fe0f07d0 8449 inode_dio_begin(inode);
4e857c58 8450 smp_mb__after_atomic();
38851cc1 8451
0e267c44 8452 /*
41bd9ca4
MX
8453 * The generic stuff only does filemap_write_and_wait_range, which
8454 * isn't enough if we've written compressed pages to this area, so
8455 * we need to flush the dirty pages again to make absolutely sure
8456 * that any outstanding dirty pages are on disk.
0e267c44 8457 */
a6cbcd4a 8458 count = iov_iter_count(iter);
41bd9ca4
MX
8459 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8460 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8461 filemap_fdatawrite_range(inode->i_mapping, offset,
8462 offset + count - 1);
0e267c44 8463
6f673763 8464 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8465 /*
8466 * If the write DIO is beyond the EOF, we need update
8467 * the isize, but it is protected by i_mutex. So we can
8468 * not unlock the i_mutex at this case.
8469 */
8470 if (offset + count <= inode->i_size) {
8471 mutex_unlock(&inode->i_mutex);
8472 relock = true;
8473 }
7cf5b976 8474 ret = btrfs_delalloc_reserve_space(inode, offset, count);
0934856d 8475 if (ret)
38851cc1 8476 goto out;
50745b0a 8477 dio_data.outstanding_extents = div64_u64(count +
e1cbbfa5
JB
8478 BTRFS_MAX_EXTENT_SIZE - 1,
8479 BTRFS_MAX_EXTENT_SIZE);
8480
8481 /*
8482 * We need to know how many extents we reserved so that we can
8483 * do the accounting properly if we go over the number we
8484 * originally calculated. Abuse current->journal_info for this.
8485 */
50745b0a 8486 dio_data.reserve = round_up(count, root->sectorsize);
f28a4928
FM
8487 dio_data.unsubmitted_oe_range_start = (u64)offset;
8488 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8489 current->journal_info = &dio_data;
ee39b432
DS
8490 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8491 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8492 inode_dio_end(inode);
38851cc1
MX
8493 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8494 wakeup = false;
0934856d
MX
8495 }
8496
17f8c842
OS
8497 ret = __blockdev_direct_IO(iocb, inode,
8498 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8499 iter, offset, btrfs_get_blocks_direct, NULL,
8500 btrfs_submit_direct, flags);
6f673763 8501 if (iov_iter_rw(iter) == WRITE) {
e1cbbfa5 8502 current->journal_info = NULL;
ddba1bfc 8503 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8504 if (dio_data.reserve)
7cf5b976
QW
8505 btrfs_delalloc_release_space(inode, offset,
8506 dio_data.reserve);
f28a4928
FM
8507 /*
8508 * On error we might have left some ordered extents
8509 * without submitting corresponding bios for them, so
8510 * cleanup them up to avoid other tasks getting them
8511 * and waiting for them to complete forever.
8512 */
8513 if (dio_data.unsubmitted_oe_range_start <
8514 dio_data.unsubmitted_oe_range_end)
8515 btrfs_endio_direct_write_update_ordered(inode,
8516 dio_data.unsubmitted_oe_range_start,
8517 dio_data.unsubmitted_oe_range_end -
8518 dio_data.unsubmitted_oe_range_start,
8519 0);
ddba1bfc 8520 } else if (ret >= 0 && (size_t)ret < count)
7cf5b976
QW
8521 btrfs_delalloc_release_space(inode, offset,
8522 count - (size_t)ret);
0934856d 8523 }
38851cc1 8524out:
2e60a51e 8525 if (wakeup)
fe0f07d0 8526 inode_dio_end(inode);
38851cc1
MX
8527 if (relock)
8528 mutex_lock(&inode->i_mutex);
0934856d
MX
8529
8530 return ret;
16432985
CM
8531}
8532
05dadc09
TI
8533#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8534
1506fcc8
YS
8535static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8536 __u64 start, __u64 len)
8537{
05dadc09
TI
8538 int ret;
8539
8540 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8541 if (ret)
8542 return ret;
8543
ec29ed5b 8544 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8545}
8546
a52d9a80 8547int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8548{
d1310b2e
CM
8549 struct extent_io_tree *tree;
8550 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8551 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8552}
1832a6d5 8553
a52d9a80 8554static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8555{
d1310b2e 8556 struct extent_io_tree *tree;
be7bd730
JB
8557 struct inode *inode = page->mapping->host;
8558 int ret;
b888db2b
CM
8559
8560 if (current->flags & PF_MEMALLOC) {
8561 redirty_page_for_writepage(wbc, page);
8562 unlock_page(page);
8563 return 0;
8564 }
be7bd730
JB
8565
8566 /*
8567 * If we are under memory pressure we will call this directly from the
8568 * VM, we need to make sure we have the inode referenced for the ordered
8569 * extent. If not just return like we didn't do anything.
8570 */
8571 if (!igrab(inode)) {
8572 redirty_page_for_writepage(wbc, page);
8573 return AOP_WRITEPAGE_ACTIVATE;
8574 }
d1310b2e 8575 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8576 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8577 btrfs_add_delayed_iput(inode);
8578 return ret;
9ebefb18
CM
8579}
8580
48a3b636
ES
8581static int btrfs_writepages(struct address_space *mapping,
8582 struct writeback_control *wbc)
b293f02e 8583{
d1310b2e 8584 struct extent_io_tree *tree;
771ed689 8585
d1310b2e 8586 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8587 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8588}
8589
3ab2fb5a
CM
8590static int
8591btrfs_readpages(struct file *file, struct address_space *mapping,
8592 struct list_head *pages, unsigned nr_pages)
8593{
d1310b2e
CM
8594 struct extent_io_tree *tree;
8595 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8596 return extent_readpages(tree, mapping, pages, nr_pages,
8597 btrfs_get_extent);
8598}
e6dcd2dc 8599static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8600{
d1310b2e
CM
8601 struct extent_io_tree *tree;
8602 struct extent_map_tree *map;
a52d9a80 8603 int ret;
8c2383c3 8604
d1310b2e
CM
8605 tree = &BTRFS_I(page->mapping->host)->io_tree;
8606 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8607 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8608 if (ret == 1) {
8609 ClearPagePrivate(page);
8610 set_page_private(page, 0);
8611 page_cache_release(page);
39279cc3 8612 }
a52d9a80 8613 return ret;
39279cc3
CM
8614}
8615
e6dcd2dc
CM
8616static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8617{
98509cfc
CM
8618 if (PageWriteback(page) || PageDirty(page))
8619 return 0;
b335b003 8620 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8621}
8622
d47992f8
LC
8623static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8624 unsigned int length)
39279cc3 8625{
5fd02043 8626 struct inode *inode = page->mapping->host;
d1310b2e 8627 struct extent_io_tree *tree;
e6dcd2dc 8628 struct btrfs_ordered_extent *ordered;
2ac55d41 8629 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8630 u64 page_start = page_offset(page);
8631 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
131e404a 8632 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8633
8b62b72b
CM
8634 /*
8635 * we have the page locked, so new writeback can't start,
8636 * and the dirty bit won't be cleared while we are here.
8637 *
8638 * Wait for IO on this page so that we can safely clear
8639 * the PagePrivate2 bit and do ordered accounting
8640 */
e6dcd2dc 8641 wait_on_page_writeback(page);
8b62b72b 8642
5fd02043 8643 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8644 if (offset) {
8645 btrfs_releasepage(page, GFP_NOFS);
8646 return;
8647 }
131e404a
FDBM
8648
8649 if (!inode_evicting)
ff13db41 8650 lock_extent_bits(tree, page_start, page_end, &cached_state);
131e404a 8651 ordered = btrfs_lookup_ordered_extent(inode, page_start);
e6dcd2dc 8652 if (ordered) {
eb84ae03
CM
8653 /*
8654 * IO on this page will never be started, so we need
8655 * to account for any ordered extents now
8656 */
131e404a
FDBM
8657 if (!inode_evicting)
8658 clear_extent_bit(tree, page_start, page_end,
8659 EXTENT_DIRTY | EXTENT_DELALLOC |
8660 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8661 EXTENT_DEFRAG, 1, 0, &cached_state,
8662 GFP_NOFS);
8b62b72b
CM
8663 /*
8664 * whoever cleared the private bit is responsible
8665 * for the finish_ordered_io
8666 */
77cef2ec
JB
8667 if (TestClearPagePrivate2(page)) {
8668 struct btrfs_ordered_inode_tree *tree;
8669 u64 new_len;
8670
8671 tree = &BTRFS_I(inode)->ordered_tree;
8672
8673 spin_lock_irq(&tree->lock);
8674 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8675 new_len = page_start - ordered->file_offset;
8676 if (new_len < ordered->truncated_len)
8677 ordered->truncated_len = new_len;
8678 spin_unlock_irq(&tree->lock);
8679
8680 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8681 page_start,
8682 PAGE_CACHE_SIZE, 1))
8683 btrfs_finish_ordered_io(ordered);
8b62b72b 8684 }
e6dcd2dc 8685 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8686 if (!inode_evicting) {
8687 cached_state = NULL;
ff13db41 8688 lock_extent_bits(tree, page_start, page_end,
131e404a
FDBM
8689 &cached_state);
8690 }
8691 }
8692
b9d0b389
QW
8693 /*
8694 * Qgroup reserved space handler
8695 * Page here will be either
8696 * 1) Already written to disk
8697 * In this case, its reserved space is released from data rsv map
8698 * and will be freed by delayed_ref handler finally.
8699 * So even we call qgroup_free_data(), it won't decrease reserved
8700 * space.
8701 * 2) Not written to disk
8702 * This means the reserved space should be freed here.
8703 */
8704 btrfs_qgroup_free_data(inode, page_start, PAGE_CACHE_SIZE);
131e404a
FDBM
8705 if (!inode_evicting) {
8706 clear_extent_bit(tree, page_start, page_end,
8707 EXTENT_LOCKED | EXTENT_DIRTY |
8708 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8709 EXTENT_DEFRAG, 1, 1,
8710 &cached_state, GFP_NOFS);
8711
8712 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8713 }
e6dcd2dc 8714
4a096752 8715 ClearPageChecked(page);
9ad6b7bc 8716 if (PagePrivate(page)) {
9ad6b7bc
CM
8717 ClearPagePrivate(page);
8718 set_page_private(page, 0);
8719 page_cache_release(page);
8720 }
39279cc3
CM
8721}
8722
9ebefb18
CM
8723/*
8724 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8725 * called from a page fault handler when a page is first dirtied. Hence we must
8726 * be careful to check for EOF conditions here. We set the page up correctly
8727 * for a written page which means we get ENOSPC checking when writing into
8728 * holes and correct delalloc and unwritten extent mapping on filesystems that
8729 * support these features.
8730 *
8731 * We are not allowed to take the i_mutex here so we have to play games to
8732 * protect against truncate races as the page could now be beyond EOF. Because
8733 * vmtruncate() writes the inode size before removing pages, once we have the
8734 * page lock we can determine safely if the page is beyond EOF. If it is not
8735 * beyond EOF, then the page is guaranteed safe against truncation until we
8736 * unlock the page.
8737 */
c2ec175c 8738int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8739{
c2ec175c 8740 struct page *page = vmf->page;
496ad9aa 8741 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8742 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8743 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8744 struct btrfs_ordered_extent *ordered;
2ac55d41 8745 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8746 char *kaddr;
8747 unsigned long zero_start;
9ebefb18 8748 loff_t size;
1832a6d5 8749 int ret;
9998eb70 8750 int reserved = 0;
a52d9a80 8751 u64 page_start;
e6dcd2dc 8752 u64 page_end;
9ebefb18 8753
b2b5ef5c 8754 sb_start_pagefault(inode->i_sb);
df480633
QW
8755 page_start = page_offset(page);
8756 page_end = page_start + PAGE_CACHE_SIZE - 1;
8757
7cf5b976
QW
8758 ret = btrfs_delalloc_reserve_space(inode, page_start,
8759 PAGE_CACHE_SIZE);
9998eb70 8760 if (!ret) {
e41f941a 8761 ret = file_update_time(vma->vm_file);
9998eb70
CM
8762 reserved = 1;
8763 }
56a76f82
NP
8764 if (ret) {
8765 if (ret == -ENOMEM)
8766 ret = VM_FAULT_OOM;
8767 else /* -ENOSPC, -EIO, etc */
8768 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8769 if (reserved)
8770 goto out;
8771 goto out_noreserve;
56a76f82 8772 }
1832a6d5 8773
56a76f82 8774 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8775again:
9ebefb18 8776 lock_page(page);
9ebefb18 8777 size = i_size_read(inode);
a52d9a80 8778
9ebefb18 8779 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8780 (page_start >= size)) {
9ebefb18
CM
8781 /* page got truncated out from underneath us */
8782 goto out_unlock;
8783 }
e6dcd2dc
CM
8784 wait_on_page_writeback(page);
8785
ff13db41 8786 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8787 set_page_extent_mapped(page);
8788
eb84ae03
CM
8789 /*
8790 * we can't set the delalloc bits if there are pending ordered
8791 * extents. Drop our locks and wait for them to finish
8792 */
e6dcd2dc
CM
8793 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8794 if (ordered) {
2ac55d41
JB
8795 unlock_extent_cached(io_tree, page_start, page_end,
8796 &cached_state, GFP_NOFS);
e6dcd2dc 8797 unlock_page(page);
eb84ae03 8798 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8799 btrfs_put_ordered_extent(ordered);
8800 goto again;
8801 }
8802
fbf19087
JB
8803 /*
8804 * XXX - page_mkwrite gets called every time the page is dirtied, even
8805 * if it was already dirty, so for space accounting reasons we need to
8806 * clear any delalloc bits for the range we are fixing to save. There
8807 * is probably a better way to do this, but for now keep consistent with
8808 * prepare_pages in the normal write path.
8809 */
2ac55d41 8810 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
8811 EXTENT_DIRTY | EXTENT_DELALLOC |
8812 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 8813 0, 0, &cached_state, GFP_NOFS);
fbf19087 8814
2ac55d41
JB
8815 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8816 &cached_state);
9ed74f2d 8817 if (ret) {
2ac55d41
JB
8818 unlock_extent_cached(io_tree, page_start, page_end,
8819 &cached_state, GFP_NOFS);
9ed74f2d
JB
8820 ret = VM_FAULT_SIGBUS;
8821 goto out_unlock;
8822 }
e6dcd2dc 8823 ret = 0;
9ebefb18
CM
8824
8825 /* page is wholly or partially inside EOF */
a52d9a80 8826 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 8827 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 8828 else
e6dcd2dc 8829 zero_start = PAGE_CACHE_SIZE;
9ebefb18 8830
e6dcd2dc
CM
8831 if (zero_start != PAGE_CACHE_SIZE) {
8832 kaddr = kmap(page);
8833 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8834 flush_dcache_page(page);
8835 kunmap(page);
8836 }
247e743c 8837 ClearPageChecked(page);
e6dcd2dc 8838 set_page_dirty(page);
50a9b214 8839 SetPageUptodate(page);
5a3f23d5 8840
257c62e1
CM
8841 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8842 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8843 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8844
2ac55d41 8845 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
8846
8847out_unlock:
b2b5ef5c
JK
8848 if (!ret) {
8849 sb_end_pagefault(inode->i_sb);
50a9b214 8850 return VM_FAULT_LOCKED;
b2b5ef5c 8851 }
9ebefb18 8852 unlock_page(page);
1832a6d5 8853out:
7cf5b976 8854 btrfs_delalloc_release_space(inode, page_start, PAGE_CACHE_SIZE);
9998eb70 8855out_noreserve:
b2b5ef5c 8856 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
8857 return ret;
8858}
8859
a41ad394 8860static int btrfs_truncate(struct inode *inode)
39279cc3
CM
8861{
8862 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8863 struct btrfs_block_rsv *rsv;
a71754fc 8864 int ret = 0;
3893e33b 8865 int err = 0;
39279cc3 8866 struct btrfs_trans_handle *trans;
dbe674a9 8867 u64 mask = root->sectorsize - 1;
07127184 8868 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 8869
0ef8b726
JB
8870 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8871 (u64)-1);
8872 if (ret)
8873 return ret;
39279cc3 8874
fcb80c2a
JB
8875 /*
8876 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8877 * 3 things going on here
8878 *
8879 * 1) We need to reserve space for our orphan item and the space to
8880 * delete our orphan item. Lord knows we don't want to have a dangling
8881 * orphan item because we didn't reserve space to remove it.
8882 *
8883 * 2) We need to reserve space to update our inode.
8884 *
8885 * 3) We need to have something to cache all the space that is going to
8886 * be free'd up by the truncate operation, but also have some slack
8887 * space reserved in case it uses space during the truncate (thank you
8888 * very much snapshotting).
8889 *
8890 * And we need these to all be seperate. The fact is we can use alot of
8891 * space doing the truncate, and we have no earthly idea how much space
8892 * we will use, so we need the truncate reservation to be seperate so it
8893 * doesn't end up using space reserved for updating the inode or
8894 * removing the orphan item. We also need to be able to stop the
8895 * transaction and start a new one, which means we need to be able to
8896 * update the inode several times, and we have no idea of knowing how
8897 * many times that will be, so we can't just reserve 1 item for the
8898 * entirety of the opration, so that has to be done seperately as well.
8899 * Then there is the orphan item, which does indeed need to be held on
8900 * to for the whole operation, and we need nobody to touch this reserved
8901 * space except the orphan code.
8902 *
8903 * So that leaves us with
8904 *
8905 * 1) root->orphan_block_rsv - for the orphan deletion.
8906 * 2) rsv - for the truncate reservation, which we will steal from the
8907 * transaction reservation.
8908 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8909 * updating the inode.
8910 */
66d8f3dd 8911 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8912 if (!rsv)
8913 return -ENOMEM;
4a338542 8914 rsv->size = min_size;
ca7e70f5 8915 rsv->failfast = 1;
f0cd846e 8916
907cbceb 8917 /*
07127184 8918 * 1 for the truncate slack space
907cbceb
JB
8919 * 1 for updating the inode.
8920 */
f3fe820c 8921 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
8922 if (IS_ERR(trans)) {
8923 err = PTR_ERR(trans);
8924 goto out;
8925 }
f0cd846e 8926
907cbceb
JB
8927 /* Migrate the slack space for the truncate to our reserve */
8928 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8929 min_size);
fcb80c2a 8930 BUG_ON(ret);
f0cd846e 8931
5dc562c5
JB
8932 /*
8933 * So if we truncate and then write and fsync we normally would just
8934 * write the extents that changed, which is a problem if we need to
8935 * first truncate that entire inode. So set this flag so we write out
8936 * all of the extents in the inode to the sync log so we're completely
8937 * safe.
8938 */
8939 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 8940 trans->block_rsv = rsv;
907cbceb 8941
8082510e
YZ
8942 while (1) {
8943 ret = btrfs_truncate_inode_items(trans, root, inode,
8944 inode->i_size,
8945 BTRFS_EXTENT_DATA_KEY);
28ed1345 8946 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 8947 err = ret;
8082510e 8948 break;
3893e33b 8949 }
39279cc3 8950
fcb80c2a 8951 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 8952 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
8953 if (ret) {
8954 err = ret;
8955 break;
8956 }
ca7e70f5 8957
8082510e 8958 btrfs_end_transaction(trans, root);
b53d3f5d 8959 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
8960
8961 trans = btrfs_start_transaction(root, 2);
8962 if (IS_ERR(trans)) {
8963 ret = err = PTR_ERR(trans);
8964 trans = NULL;
8965 break;
8966 }
8967
8968 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8969 rsv, min_size);
8970 BUG_ON(ret); /* shouldn't happen */
8971 trans->block_rsv = rsv;
8082510e
YZ
8972 }
8973
8974 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 8975 trans->block_rsv = root->orphan_block_rsv;
8082510e 8976 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
8977 if (ret)
8978 err = ret;
8082510e
YZ
8979 }
8980
917c16b2
CM
8981 if (trans) {
8982 trans->block_rsv = &root->fs_info->trans_block_rsv;
8983 ret = btrfs_update_inode(trans, root, inode);
8984 if (ret && !err)
8985 err = ret;
7b128766 8986
7ad85bb7 8987 ret = btrfs_end_transaction(trans, root);
b53d3f5d 8988 btrfs_btree_balance_dirty(root);
917c16b2 8989 }
fcb80c2a
JB
8990
8991out:
8992 btrfs_free_block_rsv(root, rsv);
8993
3893e33b
JB
8994 if (ret && !err)
8995 err = ret;
a41ad394 8996
3893e33b 8997 return err;
39279cc3
CM
8998}
8999
d352ac68
CM
9000/*
9001 * create a new subvolume directory/inode (helper for the ioctl).
9002 */
d2fb3437 9003int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9004 struct btrfs_root *new_root,
9005 struct btrfs_root *parent_root,
9006 u64 new_dirid)
39279cc3 9007{
39279cc3 9008 struct inode *inode;
76dda93c 9009 int err;
00e4e6b3 9010 u64 index = 0;
39279cc3 9011
12fc9d09
FA
9012 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9013 new_dirid, new_dirid,
9014 S_IFDIR | (~current_umask() & S_IRWXUGO),
9015 &index);
54aa1f4d 9016 if (IS_ERR(inode))
f46b5a66 9017 return PTR_ERR(inode);
39279cc3
CM
9018 inode->i_op = &btrfs_dir_inode_operations;
9019 inode->i_fop = &btrfs_dir_file_operations;
9020
bfe86848 9021 set_nlink(inode, 1);
dbe674a9 9022 btrfs_i_size_write(inode, 0);
b0d5d10f 9023 unlock_new_inode(inode);
3b96362c 9024
63541927
FDBM
9025 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9026 if (err)
9027 btrfs_err(new_root->fs_info,
351fd353 9028 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9029 new_root->root_key.objectid, err);
9030
76dda93c 9031 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9032
76dda93c 9033 iput(inode);
ce598979 9034 return err;
39279cc3
CM
9035}
9036
39279cc3
CM
9037struct inode *btrfs_alloc_inode(struct super_block *sb)
9038{
9039 struct btrfs_inode *ei;
2ead6ae7 9040 struct inode *inode;
39279cc3
CM
9041
9042 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9043 if (!ei)
9044 return NULL;
2ead6ae7
YZ
9045
9046 ei->root = NULL;
2ead6ae7 9047 ei->generation = 0;
15ee9bc7 9048 ei->last_trans = 0;
257c62e1 9049 ei->last_sub_trans = 0;
e02119d5 9050 ei->logged_trans = 0;
2ead6ae7 9051 ei->delalloc_bytes = 0;
47059d93 9052 ei->defrag_bytes = 0;
2ead6ae7
YZ
9053 ei->disk_i_size = 0;
9054 ei->flags = 0;
7709cde3 9055 ei->csum_bytes = 0;
2ead6ae7 9056 ei->index_cnt = (u64)-1;
67de1176 9057 ei->dir_index = 0;
2ead6ae7 9058 ei->last_unlink_trans = 0;
46d8bc34 9059 ei->last_log_commit = 0;
8089fe62 9060 ei->delayed_iput_count = 0;
2ead6ae7 9061
9e0baf60
JB
9062 spin_lock_init(&ei->lock);
9063 ei->outstanding_extents = 0;
9064 ei->reserved_extents = 0;
2ead6ae7 9065
72ac3c0d 9066 ei->runtime_flags = 0;
261507a0 9067 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9068
16cdcec7
MX
9069 ei->delayed_node = NULL;
9070
9cc97d64 9071 ei->i_otime.tv_sec = 0;
9072 ei->i_otime.tv_nsec = 0;
9073
2ead6ae7 9074 inode = &ei->vfs_inode;
a8067e02 9075 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
9076 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9077 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
9078 ei->io_tree.track_uptodate = 1;
9079 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9080 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9081 mutex_init(&ei->log_mutex);
f248679e 9082 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9083 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9084 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9085 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7
YZ
9086 RB_CLEAR_NODE(&ei->rb_node);
9087
9088 return inode;
39279cc3
CM
9089}
9090
aaedb55b
JB
9091#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9092void btrfs_test_destroy_inode(struct inode *inode)
9093{
9094 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9095 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9096}
9097#endif
9098
fa0d7e3d
NP
9099static void btrfs_i_callback(struct rcu_head *head)
9100{
9101 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9102 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9103}
9104
39279cc3
CM
9105void btrfs_destroy_inode(struct inode *inode)
9106{
e6dcd2dc 9107 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9108 struct btrfs_root *root = BTRFS_I(inode)->root;
9109
b3d9b7a3 9110 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9111 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9112 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9113 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
9114 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9115 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9116 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9117
a6dbd429
JB
9118 /*
9119 * This can happen where we create an inode, but somebody else also
9120 * created the same inode and we need to destroy the one we already
9121 * created.
9122 */
9123 if (!root)
9124 goto free;
9125
8a35d95f
JB
9126 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9127 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 9128 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 9129 btrfs_ino(inode));
8a35d95f 9130 atomic_dec(&root->orphan_inodes);
7b128766 9131 }
7b128766 9132
d397712b 9133 while (1) {
e6dcd2dc
CM
9134 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9135 if (!ordered)
9136 break;
9137 else {
c2cf52eb 9138 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 9139 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9140 btrfs_remove_ordered_extent(inode, ordered);
9141 btrfs_put_ordered_extent(ordered);
9142 btrfs_put_ordered_extent(ordered);
9143 }
9144 }
56fa9d07 9145 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9146 inode_tree_del(inode);
5b21f2ed 9147 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 9148free:
fa0d7e3d 9149 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9150}
9151
45321ac5 9152int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9153{
9154 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9155
6379ef9f
NA
9156 if (root == NULL)
9157 return 1;
9158
fa6ac876 9159 /* the snap/subvol tree is on deleting */
69e9c6c6 9160 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9161 return 1;
76dda93c 9162 else
45321ac5 9163 return generic_drop_inode(inode);
76dda93c
YZ
9164}
9165
0ee0fda0 9166static void init_once(void *foo)
39279cc3
CM
9167{
9168 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9169
9170 inode_init_once(&ei->vfs_inode);
9171}
9172
9173void btrfs_destroy_cachep(void)
9174{
8c0a8537
KS
9175 /*
9176 * Make sure all delayed rcu free inodes are flushed before we
9177 * destroy cache.
9178 */
9179 rcu_barrier();
39279cc3
CM
9180 if (btrfs_inode_cachep)
9181 kmem_cache_destroy(btrfs_inode_cachep);
9182 if (btrfs_trans_handle_cachep)
9183 kmem_cache_destroy(btrfs_trans_handle_cachep);
9184 if (btrfs_transaction_cachep)
9185 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
9186 if (btrfs_path_cachep)
9187 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
9188 if (btrfs_free_space_cachep)
9189 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9190}
9191
9192int btrfs_init_cachep(void)
9193{
837e1972 9194 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
9195 sizeof(struct btrfs_inode), 0,
9196 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
9197 if (!btrfs_inode_cachep)
9198 goto fail;
9601e3f6 9199
837e1972 9200 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
9201 sizeof(struct btrfs_trans_handle), 0,
9202 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9203 if (!btrfs_trans_handle_cachep)
9204 goto fail;
9601e3f6 9205
837e1972 9206 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
9207 sizeof(struct btrfs_transaction), 0,
9208 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9209 if (!btrfs_transaction_cachep)
9210 goto fail;
9601e3f6 9211
837e1972 9212 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
9213 sizeof(struct btrfs_path), 0,
9214 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9215 if (!btrfs_path_cachep)
9216 goto fail;
9601e3f6 9217
837e1972 9218 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
9219 sizeof(struct btrfs_free_space), 0,
9220 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9221 if (!btrfs_free_space_cachep)
9222 goto fail;
9223
39279cc3
CM
9224 return 0;
9225fail:
9226 btrfs_destroy_cachep();
9227 return -ENOMEM;
9228}
9229
9230static int btrfs_getattr(struct vfsmount *mnt,
9231 struct dentry *dentry, struct kstat *stat)
9232{
df0af1a5 9233 u64 delalloc_bytes;
2b0143b5 9234 struct inode *inode = d_inode(dentry);
fadc0d8b
DS
9235 u32 blocksize = inode->i_sb->s_blocksize;
9236
39279cc3 9237 generic_fillattr(inode, stat);
0ee5dc67 9238 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 9239 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
9240
9241 spin_lock(&BTRFS_I(inode)->lock);
9242 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9243 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9244 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9245 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9246 return 0;
9247}
9248
d397712b
CM
9249static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9250 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
9251{
9252 struct btrfs_trans_handle *trans;
9253 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9254 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9255 struct inode *new_inode = d_inode(new_dentry);
9256 struct inode *old_inode = d_inode(old_dentry);
39279cc3 9257 struct timespec ctime = CURRENT_TIME;
00e4e6b3 9258 u64 index = 0;
4df27c4d 9259 u64 root_objectid;
39279cc3 9260 int ret;
33345d01 9261 u64 old_ino = btrfs_ino(old_inode);
39279cc3 9262
33345d01 9263 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9264 return -EPERM;
9265
4df27c4d 9266 /* we only allow rename subvolume link between subvolumes */
33345d01 9267 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9268 return -EXDEV;
9269
33345d01
LZ
9270 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9271 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9272 return -ENOTEMPTY;
5f39d397 9273
4df27c4d
YZ
9274 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9275 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9276 return -ENOTEMPTY;
9c52057c
CM
9277
9278
9279 /* check for collisions, even if the name isn't there */
4871c158 9280 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9281 new_dentry->d_name.name,
9282 new_dentry->d_name.len);
9283
9284 if (ret) {
9285 if (ret == -EEXIST) {
9286 /* we shouldn't get
9287 * eexist without a new_inode */
fae7f21c 9288 if (WARN_ON(!new_inode)) {
9c52057c
CM
9289 return ret;
9290 }
9291 } else {
9292 /* maybe -EOVERFLOW */
9293 return ret;
9294 }
9295 }
9296 ret = 0;
9297
5a3f23d5 9298 /*
8d875f95
CM
9299 * we're using rename to replace one file with another. Start IO on it
9300 * now so we don't add too much work to the end of the transaction
5a3f23d5 9301 */
8d875f95 9302 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9303 filemap_flush(old_inode->i_mapping);
9304
76dda93c 9305 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9306 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9307 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
9308 /*
9309 * We want to reserve the absolute worst case amount of items. So if
9310 * both inodes are subvols and we need to unlink them then that would
9311 * require 4 item modifications, but if they are both normal inodes it
9312 * would require 5 item modifications, so we'll assume their normal
9313 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9314 * should cover the worst case number of items we'll modify.
9315 */
6e137ed3 9316 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
9317 if (IS_ERR(trans)) {
9318 ret = PTR_ERR(trans);
9319 goto out_notrans;
9320 }
76dda93c 9321
4df27c4d
YZ
9322 if (dest != root)
9323 btrfs_record_root_in_trans(trans, dest);
5f39d397 9324
a5719521
YZ
9325 ret = btrfs_set_inode_index(new_dir, &index);
9326 if (ret)
9327 goto out_fail;
5a3f23d5 9328
67de1176 9329 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9330 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9331 /* force full log commit if subvolume involved. */
995946dd 9332 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 9333 } else {
a5719521
YZ
9334 ret = btrfs_insert_inode_ref(trans, dest,
9335 new_dentry->d_name.name,
9336 new_dentry->d_name.len,
33345d01
LZ
9337 old_ino,
9338 btrfs_ino(new_dir), index);
a5719521
YZ
9339 if (ret)
9340 goto out_fail;
4df27c4d
YZ
9341 /*
9342 * this is an ugly little race, but the rename is required
9343 * to make sure that if we crash, the inode is either at the
9344 * old name or the new one. pinning the log transaction lets
9345 * us make sure we don't allow a log commit to come in after
9346 * we unlink the name but before we add the new name back in.
9347 */
9348 btrfs_pin_log_trans(root);
9349 }
5a3f23d5 9350
0c4d2d95
JB
9351 inode_inc_iversion(old_dir);
9352 inode_inc_iversion(new_dir);
9353 inode_inc_iversion(old_inode);
39279cc3
CM
9354 old_dir->i_ctime = old_dir->i_mtime = ctime;
9355 new_dir->i_ctime = new_dir->i_mtime = ctime;
9356 old_inode->i_ctime = ctime;
5f39d397 9357
12fcfd22
CM
9358 if (old_dentry->d_parent != new_dentry->d_parent)
9359 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9360
33345d01 9361 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9362 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9363 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9364 old_dentry->d_name.name,
9365 old_dentry->d_name.len);
9366 } else {
92986796 9367 ret = __btrfs_unlink_inode(trans, root, old_dir,
2b0143b5 9368 d_inode(old_dentry),
92986796
AV
9369 old_dentry->d_name.name,
9370 old_dentry->d_name.len);
9371 if (!ret)
9372 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9373 }
79787eaa
JM
9374 if (ret) {
9375 btrfs_abort_transaction(trans, root, ret);
9376 goto out_fail;
9377 }
39279cc3
CM
9378
9379 if (new_inode) {
0c4d2d95 9380 inode_inc_iversion(new_inode);
39279cc3 9381 new_inode->i_ctime = CURRENT_TIME;
33345d01 9382 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
9383 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9384 root_objectid = BTRFS_I(new_inode)->location.objectid;
9385 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9386 root_objectid,
9387 new_dentry->d_name.name,
9388 new_dentry->d_name.len);
9389 BUG_ON(new_inode->i_nlink == 0);
9390 } else {
9391 ret = btrfs_unlink_inode(trans, dest, new_dir,
2b0143b5 9392 d_inode(new_dentry),
4df27c4d
YZ
9393 new_dentry->d_name.name,
9394 new_dentry->d_name.len);
9395 }
4ef31a45 9396 if (!ret && new_inode->i_nlink == 0)
2b0143b5 9397 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
79787eaa
JM
9398 if (ret) {
9399 btrfs_abort_transaction(trans, root, ret);
9400 goto out_fail;
9401 }
39279cc3 9402 }
aec7477b 9403
4df27c4d
YZ
9404 ret = btrfs_add_link(trans, new_dir, old_inode,
9405 new_dentry->d_name.name,
a5719521 9406 new_dentry->d_name.len, 0, index);
79787eaa
JM
9407 if (ret) {
9408 btrfs_abort_transaction(trans, root, ret);
9409 goto out_fail;
9410 }
39279cc3 9411
67de1176
MX
9412 if (old_inode->i_nlink == 1)
9413 BTRFS_I(old_inode)->dir_index = index;
9414
33345d01 9415 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 9416 struct dentry *parent = new_dentry->d_parent;
6a912213 9417 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
9418 btrfs_end_log_trans(root);
9419 }
39279cc3 9420out_fail:
7ad85bb7 9421 btrfs_end_transaction(trans, root);
b44c59a8 9422out_notrans:
33345d01 9423 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9424 up_read(&root->fs_info->subvol_sem);
9ed74f2d 9425
39279cc3
CM
9426 return ret;
9427}
9428
80ace85c
MS
9429static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9430 struct inode *new_dir, struct dentry *new_dentry,
9431 unsigned int flags)
9432{
9433 if (flags & ~RENAME_NOREPLACE)
9434 return -EINVAL;
9435
9436 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9437}
9438
8ccf6f19
MX
9439static void btrfs_run_delalloc_work(struct btrfs_work *work)
9440{
9441 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9442 struct inode *inode;
8ccf6f19
MX
9443
9444 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9445 work);
9f23e289 9446 inode = delalloc_work->inode;
30424601
DS
9447 filemap_flush(inode->i_mapping);
9448 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9449 &BTRFS_I(inode)->runtime_flags))
9f23e289 9450 filemap_flush(inode->i_mapping);
8ccf6f19
MX
9451
9452 if (delalloc_work->delay_iput)
9f23e289 9453 btrfs_add_delayed_iput(inode);
8ccf6f19 9454 else
9f23e289 9455 iput(inode);
8ccf6f19
MX
9456 complete(&delalloc_work->completion);
9457}
9458
9459struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 9460 int delay_iput)
8ccf6f19
MX
9461{
9462 struct btrfs_delalloc_work *work;
9463
100d5702 9464 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9465 if (!work)
9466 return NULL;
9467
9468 init_completion(&work->completion);
9469 INIT_LIST_HEAD(&work->list);
9470 work->inode = inode;
8ccf6f19 9471 work->delay_iput = delay_iput;
9e0af237
LB
9472 WARN_ON_ONCE(!inode);
9473 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9474 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9475
9476 return work;
9477}
9478
9479void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9480{
9481 wait_for_completion(&work->completion);
100d5702 9482 kfree(work);
8ccf6f19
MX
9483}
9484
d352ac68
CM
9485/*
9486 * some fairly slow code that needs optimization. This walks the list
9487 * of all the inodes with pending delalloc and forces them to disk.
9488 */
6c255e67
MX
9489static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9490 int nr)
ea8c2819 9491{
ea8c2819 9492 struct btrfs_inode *binode;
5b21f2ed 9493 struct inode *inode;
8ccf6f19
MX
9494 struct btrfs_delalloc_work *work, *next;
9495 struct list_head works;
1eafa6c7 9496 struct list_head splice;
8ccf6f19 9497 int ret = 0;
ea8c2819 9498
8ccf6f19 9499 INIT_LIST_HEAD(&works);
1eafa6c7 9500 INIT_LIST_HEAD(&splice);
63607cc8 9501
573bfb72 9502 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9503 spin_lock(&root->delalloc_lock);
9504 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9505 while (!list_empty(&splice)) {
9506 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9507 delalloc_inodes);
1eafa6c7 9508
eb73c1b7
MX
9509 list_move_tail(&binode->delalloc_inodes,
9510 &root->delalloc_inodes);
5b21f2ed 9511 inode = igrab(&binode->vfs_inode);
df0af1a5 9512 if (!inode) {
eb73c1b7 9513 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9514 continue;
df0af1a5 9515 }
eb73c1b7 9516 spin_unlock(&root->delalloc_lock);
1eafa6c7 9517
651d494a 9518 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 9519 if (!work) {
f4ab9ea7
JB
9520 if (delay_iput)
9521 btrfs_add_delayed_iput(inode);
9522 else
9523 iput(inode);
1eafa6c7 9524 ret = -ENOMEM;
a1ecaabb 9525 goto out;
5b21f2ed 9526 }
1eafa6c7 9527 list_add_tail(&work->list, &works);
a44903ab
QW
9528 btrfs_queue_work(root->fs_info->flush_workers,
9529 &work->work);
6c255e67
MX
9530 ret++;
9531 if (nr != -1 && ret >= nr)
a1ecaabb 9532 goto out;
5b21f2ed 9533 cond_resched();
eb73c1b7 9534 spin_lock(&root->delalloc_lock);
ea8c2819 9535 }
eb73c1b7 9536 spin_unlock(&root->delalloc_lock);
8c8bee1d 9537
a1ecaabb 9538out:
eb73c1b7
MX
9539 list_for_each_entry_safe(work, next, &works, list) {
9540 list_del_init(&work->list);
9541 btrfs_wait_and_free_delalloc_work(work);
9542 }
9543
9544 if (!list_empty_careful(&splice)) {
9545 spin_lock(&root->delalloc_lock);
9546 list_splice_tail(&splice, &root->delalloc_inodes);
9547 spin_unlock(&root->delalloc_lock);
9548 }
573bfb72 9549 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9550 return ret;
9551}
1eafa6c7 9552
eb73c1b7
MX
9553int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9554{
9555 int ret;
1eafa6c7 9556
2c21b4d7 9557 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
9558 return -EROFS;
9559
6c255e67
MX
9560 ret = __start_delalloc_inodes(root, delay_iput, -1);
9561 if (ret > 0)
9562 ret = 0;
eb73c1b7
MX
9563 /*
9564 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
9565 * we have to make sure the IO is actually started and that
9566 * ordered extents get created before we return
9567 */
9568 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 9569 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 9570 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 9571 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
9572 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9573 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
9574 }
9575 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
9576 return ret;
9577}
9578
6c255e67
MX
9579int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9580 int nr)
eb73c1b7
MX
9581{
9582 struct btrfs_root *root;
9583 struct list_head splice;
9584 int ret;
9585
2c21b4d7 9586 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9587 return -EROFS;
9588
9589 INIT_LIST_HEAD(&splice);
9590
573bfb72 9591 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9592 spin_lock(&fs_info->delalloc_root_lock);
9593 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 9594 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
9595 root = list_first_entry(&splice, struct btrfs_root,
9596 delalloc_root);
9597 root = btrfs_grab_fs_root(root);
9598 BUG_ON(!root);
9599 list_move_tail(&root->delalloc_root,
9600 &fs_info->delalloc_roots);
9601 spin_unlock(&fs_info->delalloc_root_lock);
9602
6c255e67 9603 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 9604 btrfs_put_fs_root(root);
6c255e67 9605 if (ret < 0)
eb73c1b7
MX
9606 goto out;
9607
6c255e67
MX
9608 if (nr != -1) {
9609 nr -= ret;
9610 WARN_ON(nr < 0);
9611 }
eb73c1b7 9612 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9613 }
eb73c1b7 9614 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9615
6c255e67 9616 ret = 0;
eb73c1b7
MX
9617 atomic_inc(&fs_info->async_submit_draining);
9618 while (atomic_read(&fs_info->nr_async_submits) ||
9619 atomic_read(&fs_info->async_delalloc_pages)) {
9620 wait_event(fs_info->async_submit_wait,
9621 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9622 atomic_read(&fs_info->async_delalloc_pages) == 0));
9623 }
9624 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 9625out:
1eafa6c7 9626 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
9627 spin_lock(&fs_info->delalloc_root_lock);
9628 list_splice_tail(&splice, &fs_info->delalloc_roots);
9629 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9630 }
573bfb72 9631 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9632 return ret;
ea8c2819
CM
9633}
9634
39279cc3
CM
9635static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9636 const char *symname)
9637{
9638 struct btrfs_trans_handle *trans;
9639 struct btrfs_root *root = BTRFS_I(dir)->root;
9640 struct btrfs_path *path;
9641 struct btrfs_key key;
1832a6d5 9642 struct inode *inode = NULL;
39279cc3
CM
9643 int err;
9644 int drop_inode = 0;
9645 u64 objectid;
67871254 9646 u64 index = 0;
39279cc3
CM
9647 int name_len;
9648 int datasize;
5f39d397 9649 unsigned long ptr;
39279cc3 9650 struct btrfs_file_extent_item *ei;
5f39d397 9651 struct extent_buffer *leaf;
39279cc3 9652
f06becc4 9653 name_len = strlen(symname);
39279cc3
CM
9654 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9655 return -ENAMETOOLONG;
1832a6d5 9656
9ed74f2d
JB
9657 /*
9658 * 2 items for inode item and ref
9659 * 2 items for dir items
9269d12b
FM
9660 * 1 item for updating parent inode item
9661 * 1 item for the inline extent item
9ed74f2d
JB
9662 * 1 item for xattr if selinux is on
9663 */
9269d12b 9664 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
9665 if (IS_ERR(trans))
9666 return PTR_ERR(trans);
1832a6d5 9667
581bb050
LZ
9668 err = btrfs_find_free_ino(root, &objectid);
9669 if (err)
9670 goto out_unlock;
9671
aec7477b 9672 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 9673 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 9674 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
9675 if (IS_ERR(inode)) {
9676 err = PTR_ERR(inode);
39279cc3 9677 goto out_unlock;
7cf96da3 9678 }
39279cc3 9679
ad19db71
CS
9680 /*
9681 * If the active LSM wants to access the inode during
9682 * d_instantiate it needs these. Smack checks to see
9683 * if the filesystem supports xattrs by looking at the
9684 * ops vector.
9685 */
9686 inode->i_fop = &btrfs_file_operations;
9687 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 9688 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
9689 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9690
9691 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9692 if (err)
9693 goto out_unlock_inode;
ad19db71 9694
39279cc3 9695 path = btrfs_alloc_path();
d8926bb3
MF
9696 if (!path) {
9697 err = -ENOMEM;
b0d5d10f 9698 goto out_unlock_inode;
d8926bb3 9699 }
33345d01 9700 key.objectid = btrfs_ino(inode);
39279cc3 9701 key.offset = 0;
962a298f 9702 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9703 datasize = btrfs_file_extent_calc_inline_size(name_len);
9704 err = btrfs_insert_empty_item(trans, root, path, &key,
9705 datasize);
54aa1f4d 9706 if (err) {
b0839166 9707 btrfs_free_path(path);
b0d5d10f 9708 goto out_unlock_inode;
54aa1f4d 9709 }
5f39d397
CM
9710 leaf = path->nodes[0];
9711 ei = btrfs_item_ptr(leaf, path->slots[0],
9712 struct btrfs_file_extent_item);
9713 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9714 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9715 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9716 btrfs_set_file_extent_encryption(leaf, ei, 0);
9717 btrfs_set_file_extent_compression(leaf, ei, 0);
9718 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9719 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9720
39279cc3 9721 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
9722 write_extent_buffer(leaf, symname, ptr, name_len);
9723 btrfs_mark_buffer_dirty(leaf);
39279cc3 9724 btrfs_free_path(path);
5f39d397 9725
39279cc3
CM
9726 inode->i_op = &btrfs_symlink_inode_operations;
9727 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 9728 inode_set_bytes(inode, name_len);
f06becc4 9729 btrfs_i_size_write(inode, name_len);
54aa1f4d 9730 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
9731 /*
9732 * Last step, add directory indexes for our symlink inode. This is the
9733 * last step to avoid extra cleanup of these indexes if an error happens
9734 * elsewhere above.
9735 */
9736 if (!err)
9737 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
b0d5d10f 9738 if (err) {
54aa1f4d 9739 drop_inode = 1;
b0d5d10f
CM
9740 goto out_unlock_inode;
9741 }
9742
9743 unlock_new_inode(inode);
9744 d_instantiate(dentry, inode);
39279cc3
CM
9745
9746out_unlock:
7ad85bb7 9747 btrfs_end_transaction(trans, root);
39279cc3
CM
9748 if (drop_inode) {
9749 inode_dec_link_count(inode);
9750 iput(inode);
9751 }
b53d3f5d 9752 btrfs_btree_balance_dirty(root);
39279cc3 9753 return err;
b0d5d10f
CM
9754
9755out_unlock_inode:
9756 drop_inode = 1;
9757 unlock_new_inode(inode);
9758 goto out_unlock;
39279cc3 9759}
16432985 9760
0af3d00b
JB
9761static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9762 u64 start, u64 num_bytes, u64 min_size,
9763 loff_t actual_len, u64 *alloc_hint,
9764 struct btrfs_trans_handle *trans)
d899e052 9765{
5dc562c5
JB
9766 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9767 struct extent_map *em;
d899e052
YZ
9768 struct btrfs_root *root = BTRFS_I(inode)->root;
9769 struct btrfs_key ins;
d899e052 9770 u64 cur_offset = start;
55a61d1d 9771 u64 i_size;
154ea289 9772 u64 cur_bytes;
0b670dc4 9773 u64 last_alloc = (u64)-1;
d899e052 9774 int ret = 0;
0af3d00b 9775 bool own_trans = true;
d899e052 9776
0af3d00b
JB
9777 if (trans)
9778 own_trans = false;
d899e052 9779 while (num_bytes > 0) {
0af3d00b
JB
9780 if (own_trans) {
9781 trans = btrfs_start_transaction(root, 3);
9782 if (IS_ERR(trans)) {
9783 ret = PTR_ERR(trans);
9784 break;
9785 }
5a303d5d
YZ
9786 }
9787
ee22184b 9788 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 9789 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
9790 /*
9791 * If we are severely fragmented we could end up with really
9792 * small allocations, so if the allocator is returning small
9793 * chunks lets make its job easier by only searching for those
9794 * sized chunks.
9795 */
9796 cur_bytes = min(cur_bytes, last_alloc);
00361589 9797 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
e570fd27 9798 *alloc_hint, &ins, 1, 0);
5a303d5d 9799 if (ret) {
0af3d00b
JB
9800 if (own_trans)
9801 btrfs_end_transaction(trans, root);
a22285a6 9802 break;
d899e052 9803 }
5a303d5d 9804
0b670dc4 9805 last_alloc = ins.offset;
d899e052
YZ
9806 ret = insert_reserved_file_extent(trans, inode,
9807 cur_offset, ins.objectid,
9808 ins.offset, ins.offset,
920bbbfb 9809 ins.offset, 0, 0, 0,
d899e052 9810 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 9811 if (ret) {
857cc2fc 9812 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 9813 ins.offset, 0);
79787eaa
JM
9814 btrfs_abort_transaction(trans, root, ret);
9815 if (own_trans)
9816 btrfs_end_transaction(trans, root);
9817 break;
9818 }
31193213 9819
a1ed835e
CM
9820 btrfs_drop_extent_cache(inode, cur_offset,
9821 cur_offset + ins.offset -1, 0);
5a303d5d 9822
5dc562c5
JB
9823 em = alloc_extent_map();
9824 if (!em) {
9825 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9826 &BTRFS_I(inode)->runtime_flags);
9827 goto next;
9828 }
9829
9830 em->start = cur_offset;
9831 em->orig_start = cur_offset;
9832 em->len = ins.offset;
9833 em->block_start = ins.objectid;
9834 em->block_len = ins.offset;
b4939680 9835 em->orig_block_len = ins.offset;
cc95bef6 9836 em->ram_bytes = ins.offset;
5dc562c5
JB
9837 em->bdev = root->fs_info->fs_devices->latest_bdev;
9838 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9839 em->generation = trans->transid;
9840
9841 while (1) {
9842 write_lock(&em_tree->lock);
09a2a8f9 9843 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
9844 write_unlock(&em_tree->lock);
9845 if (ret != -EEXIST)
9846 break;
9847 btrfs_drop_extent_cache(inode, cur_offset,
9848 cur_offset + ins.offset - 1,
9849 0);
9850 }
9851 free_extent_map(em);
9852next:
d899e052
YZ
9853 num_bytes -= ins.offset;
9854 cur_offset += ins.offset;
efa56464 9855 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9856
0c4d2d95 9857 inode_inc_iversion(inode);
d899e052 9858 inode->i_ctime = CURRENT_TIME;
6cbff00f 9859 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9860 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9861 (actual_len > inode->i_size) &&
9862 (cur_offset > inode->i_size)) {
d1ea6a61 9863 if (cur_offset > actual_len)
55a61d1d 9864 i_size = actual_len;
d1ea6a61 9865 else
55a61d1d
JB
9866 i_size = cur_offset;
9867 i_size_write(inode, i_size);
9868 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
9869 }
9870
d899e052 9871 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
9872
9873 if (ret) {
9874 btrfs_abort_transaction(trans, root, ret);
9875 if (own_trans)
9876 btrfs_end_transaction(trans, root);
9877 break;
9878 }
d899e052 9879
0af3d00b
JB
9880 if (own_trans)
9881 btrfs_end_transaction(trans, root);
5a303d5d 9882 }
d899e052
YZ
9883 return ret;
9884}
9885
0af3d00b
JB
9886int btrfs_prealloc_file_range(struct inode *inode, int mode,
9887 u64 start, u64 num_bytes, u64 min_size,
9888 loff_t actual_len, u64 *alloc_hint)
9889{
9890 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9891 min_size, actual_len, alloc_hint,
9892 NULL);
9893}
9894
9895int btrfs_prealloc_file_range_trans(struct inode *inode,
9896 struct btrfs_trans_handle *trans, int mode,
9897 u64 start, u64 num_bytes, u64 min_size,
9898 loff_t actual_len, u64 *alloc_hint)
9899{
9900 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9901 min_size, actual_len, alloc_hint, trans);
9902}
9903
e6dcd2dc
CM
9904static int btrfs_set_page_dirty(struct page *page)
9905{
e6dcd2dc
CM
9906 return __set_page_dirty_nobuffers(page);
9907}
9908
10556cb2 9909static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 9910{
b83cc969 9911 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9912 umode_t mode = inode->i_mode;
b83cc969 9913
cb6db4e5
JM
9914 if (mask & MAY_WRITE &&
9915 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9916 if (btrfs_root_readonly(root))
9917 return -EROFS;
9918 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9919 return -EACCES;
9920 }
2830ba7f 9921 return generic_permission(inode, mask);
fdebe2bd 9922}
39279cc3 9923
ef3b9af5
FM
9924static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9925{
9926 struct btrfs_trans_handle *trans;
9927 struct btrfs_root *root = BTRFS_I(dir)->root;
9928 struct inode *inode = NULL;
9929 u64 objectid;
9930 u64 index;
9931 int ret = 0;
9932
9933 /*
9934 * 5 units required for adding orphan entry
9935 */
9936 trans = btrfs_start_transaction(root, 5);
9937 if (IS_ERR(trans))
9938 return PTR_ERR(trans);
9939
9940 ret = btrfs_find_free_ino(root, &objectid);
9941 if (ret)
9942 goto out;
9943
9944 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9945 btrfs_ino(dir), objectid, mode, &index);
9946 if (IS_ERR(inode)) {
9947 ret = PTR_ERR(inode);
9948 inode = NULL;
9949 goto out;
9950 }
9951
ef3b9af5
FM
9952 inode->i_fop = &btrfs_file_operations;
9953 inode->i_op = &btrfs_file_inode_operations;
9954
9955 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
9956 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9957
b0d5d10f
CM
9958 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9959 if (ret)
9960 goto out_inode;
9961
9962 ret = btrfs_update_inode(trans, root, inode);
9963 if (ret)
9964 goto out_inode;
ef3b9af5
FM
9965 ret = btrfs_orphan_add(trans, inode);
9966 if (ret)
b0d5d10f 9967 goto out_inode;
ef3b9af5 9968
5762b5c9
FM
9969 /*
9970 * We set number of links to 0 in btrfs_new_inode(), and here we set
9971 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9972 * through:
9973 *
9974 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9975 */
9976 set_nlink(inode, 1);
b0d5d10f 9977 unlock_new_inode(inode);
ef3b9af5
FM
9978 d_tmpfile(dentry, inode);
9979 mark_inode_dirty(inode);
9980
9981out:
9982 btrfs_end_transaction(trans, root);
9983 if (ret)
9984 iput(inode);
9985 btrfs_balance_delayed_items(root);
9986 btrfs_btree_balance_dirty(root);
ef3b9af5 9987 return ret;
b0d5d10f
CM
9988
9989out_inode:
9990 unlock_new_inode(inode);
9991 goto out;
9992
ef3b9af5
FM
9993}
9994
b38ef71c
FM
9995/* Inspired by filemap_check_errors() */
9996int btrfs_inode_check_errors(struct inode *inode)
9997{
9998 int ret = 0;
9999
10000 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10001 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10002 ret = -ENOSPC;
10003 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10004 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10005 ret = -EIO;
10006
10007 return ret;
10008}
10009
6e1d5dcc 10010static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10011 .getattr = btrfs_getattr,
39279cc3
CM
10012 .lookup = btrfs_lookup,
10013 .create = btrfs_create,
10014 .unlink = btrfs_unlink,
10015 .link = btrfs_link,
10016 .mkdir = btrfs_mkdir,
10017 .rmdir = btrfs_rmdir,
80ace85c 10018 .rename2 = btrfs_rename2,
39279cc3
CM
10019 .symlink = btrfs_symlink,
10020 .setattr = btrfs_setattr,
618e21d5 10021 .mknod = btrfs_mknod,
95819c05
CH
10022 .setxattr = btrfs_setxattr,
10023 .getxattr = btrfs_getxattr,
5103e947 10024 .listxattr = btrfs_listxattr,
95819c05 10025 .removexattr = btrfs_removexattr,
fdebe2bd 10026 .permission = btrfs_permission,
4e34e719 10027 .get_acl = btrfs_get_acl,
996a710d 10028 .set_acl = btrfs_set_acl,
93fd63c2 10029 .update_time = btrfs_update_time,
ef3b9af5 10030 .tmpfile = btrfs_tmpfile,
39279cc3 10031};
6e1d5dcc 10032static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10033 .lookup = btrfs_lookup,
fdebe2bd 10034 .permission = btrfs_permission,
4e34e719 10035 .get_acl = btrfs_get_acl,
996a710d 10036 .set_acl = btrfs_set_acl,
93fd63c2 10037 .update_time = btrfs_update_time,
39279cc3 10038};
76dda93c 10039
828c0950 10040static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10041 .llseek = generic_file_llseek,
10042 .read = generic_read_dir,
9cdda8d3 10043 .iterate = btrfs_real_readdir,
34287aa3 10044 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10045#ifdef CONFIG_COMPAT
34287aa3 10046 .compat_ioctl = btrfs_ioctl,
39279cc3 10047#endif
6bf13c0c 10048 .release = btrfs_release_file,
e02119d5 10049 .fsync = btrfs_sync_file,
39279cc3
CM
10050};
10051
20e5506b 10052static const struct extent_io_ops btrfs_extent_io_ops = {
07157aac 10053 .fill_delalloc = run_delalloc_range,
065631f6 10054 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 10055 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 10056 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 10057 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10058 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10059 .set_bit_hook = btrfs_set_bit_hook,
10060 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10061 .merge_extent_hook = btrfs_merge_extent_hook,
10062 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
10063};
10064
35054394
CM
10065/*
10066 * btrfs doesn't support the bmap operation because swapfiles
10067 * use bmap to make a mapping of extents in the file. They assume
10068 * these extents won't change over the life of the file and they
10069 * use the bmap result to do IO directly to the drive.
10070 *
10071 * the btrfs bmap call would return logical addresses that aren't
10072 * suitable for IO and they also will change frequently as COW
10073 * operations happen. So, swapfile + btrfs == corruption.
10074 *
10075 * For now we're avoiding this by dropping bmap.
10076 */
7f09410b 10077static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10078 .readpage = btrfs_readpage,
10079 .writepage = btrfs_writepage,
b293f02e 10080 .writepages = btrfs_writepages,
3ab2fb5a 10081 .readpages = btrfs_readpages,
16432985 10082 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10083 .invalidatepage = btrfs_invalidatepage,
10084 .releasepage = btrfs_releasepage,
e6dcd2dc 10085 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10086 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10087};
10088
7f09410b 10089static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10090 .readpage = btrfs_readpage,
10091 .writepage = btrfs_writepage,
2bf5a725
CM
10092 .invalidatepage = btrfs_invalidatepage,
10093 .releasepage = btrfs_releasepage,
39279cc3
CM
10094};
10095
6e1d5dcc 10096static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10097 .getattr = btrfs_getattr,
10098 .setattr = btrfs_setattr,
95819c05
CH
10099 .setxattr = btrfs_setxattr,
10100 .getxattr = btrfs_getxattr,
5103e947 10101 .listxattr = btrfs_listxattr,
95819c05 10102 .removexattr = btrfs_removexattr,
fdebe2bd 10103 .permission = btrfs_permission,
1506fcc8 10104 .fiemap = btrfs_fiemap,
4e34e719 10105 .get_acl = btrfs_get_acl,
996a710d 10106 .set_acl = btrfs_set_acl,
e41f941a 10107 .update_time = btrfs_update_time,
39279cc3 10108};
6e1d5dcc 10109static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10110 .getattr = btrfs_getattr,
10111 .setattr = btrfs_setattr,
fdebe2bd 10112 .permission = btrfs_permission,
95819c05
CH
10113 .setxattr = btrfs_setxattr,
10114 .getxattr = btrfs_getxattr,
33268eaf 10115 .listxattr = btrfs_listxattr,
95819c05 10116 .removexattr = btrfs_removexattr,
4e34e719 10117 .get_acl = btrfs_get_acl,
996a710d 10118 .set_acl = btrfs_set_acl,
e41f941a 10119 .update_time = btrfs_update_time,
618e21d5 10120};
6e1d5dcc 10121static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
10122 .readlink = generic_readlink,
10123 .follow_link = page_follow_link_light,
10124 .put_link = page_put_link,
f209561a 10125 .getattr = btrfs_getattr,
22c44fe6 10126 .setattr = btrfs_setattr,
fdebe2bd 10127 .permission = btrfs_permission,
0279b4cd
JO
10128 .setxattr = btrfs_setxattr,
10129 .getxattr = btrfs_getxattr,
10130 .listxattr = btrfs_listxattr,
10131 .removexattr = btrfs_removexattr,
e41f941a 10132 .update_time = btrfs_update_time,
39279cc3 10133};
76dda93c 10134
82d339d9 10135const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10136 .d_delete = btrfs_dentry_delete,
b4aff1f8 10137 .d_release = btrfs_dentry_release,
76dda93c 10138};