]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/inode.c
Btrfs: delayed-inode: use rb_first_cached for ins_root and del_root
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
8f18cf13 6#include <linux/kernel.h>
065631f6 7#include <linux/bio.h>
39279cc3 8#include <linux/buffer_head.h>
f2eb0a24 9#include <linux/file.h>
39279cc3
CM
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
39279cc3 16#include <linux/backing-dev.h>
39279cc3 17#include <linux/writeback.h>
39279cc3 18#include <linux/compat.h>
5103e947 19#include <linux/xattr.h>
33268eaf 20#include <linux/posix_acl.h>
d899e052 21#include <linux/falloc.h>
5a0e3ad6 22#include <linux/slab.h>
7a36ddec 23#include <linux/ratelimit.h>
55e301fd 24#include <linux/btrfs.h>
53b381b3 25#include <linux/blkdev.h>
f23b5a59 26#include <linux/posix_acl_xattr.h>
e2e40f2c 27#include <linux/uio.h>
69fe2d75 28#include <linux/magic.h>
ae5e165d 29#include <linux/iversion.h>
92d32170 30#include <asm/unaligned.h>
39279cc3
CM
31#include "ctree.h"
32#include "disk-io.h"
33#include "transaction.h"
34#include "btrfs_inode.h"
39279cc3 35#include "print-tree.h"
e6dcd2dc 36#include "ordered-data.h"
95819c05 37#include "xattr.h"
e02119d5 38#include "tree-log.h"
4a54c8c1 39#include "volumes.h"
c8b97818 40#include "compression.h"
b4ce94de 41#include "locking.h"
dc89e982 42#include "free-space-cache.h"
581bb050 43#include "inode-map.h"
38c227d8 44#include "backref.h"
63541927 45#include "props.h"
31193213 46#include "qgroup.h"
dda3245e 47#include "dedupe.h"
39279cc3
CM
48
49struct btrfs_iget_args {
90d3e592 50 struct btrfs_key *location;
39279cc3
CM
51 struct btrfs_root *root;
52};
53
f28a4928 54struct btrfs_dio_data {
f28a4928
FM
55 u64 reserve;
56 u64 unsubmitted_oe_range_start;
57 u64 unsubmitted_oe_range_end;
4aaedfb0 58 int overwrite;
f28a4928
FM
59};
60
6e1d5dcc
AD
61static const struct inode_operations btrfs_dir_inode_operations;
62static const struct inode_operations btrfs_symlink_inode_operations;
63static const struct inode_operations btrfs_dir_ro_inode_operations;
64static const struct inode_operations btrfs_special_inode_operations;
65static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
66static const struct address_space_operations btrfs_aops;
67static const struct address_space_operations btrfs_symlink_aops;
828c0950 68static const struct file_operations btrfs_dir_file_operations;
20e5506b 69static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
70
71static struct kmem_cache *btrfs_inode_cachep;
72struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 73struct kmem_cache *btrfs_path_cachep;
dc89e982 74struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
75
76#define S_SHIFT 12
4d4ab6d6 77static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85};
86
3972f260 87static int btrfs_setsize(struct inode *inode, struct iattr *attr);
213e8c55 88static int btrfs_truncate(struct inode *inode, bool skip_writeback);
5fd02043 89static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
90static noinline int cow_file_range(struct inode *inode,
91 struct page *locked_page,
dda3245e
WX
92 u64 start, u64 end, u64 delalloc_end,
93 int *page_started, unsigned long *nr_written,
94 int unlock, struct btrfs_dedupe_hash *hash);
6f9994db
LB
95static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
96 u64 orig_start, u64 block_start,
97 u64 block_len, u64 orig_block_len,
98 u64 ram_bytes, int compress_type,
99 int type);
7b128766 100
52427260
QW
101static void __endio_write_update_ordered(struct inode *inode,
102 const u64 offset, const u64 bytes,
103 const bool uptodate);
104
105/*
106 * Cleanup all submitted ordered extents in specified range to handle errors
107 * from the fill_dellaloc() callback.
108 *
109 * NOTE: caller must ensure that when an error happens, it can not call
110 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
111 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
112 * to be released, which we want to happen only when finishing the ordered
113 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
114 * fill_delalloc() callback already does proper cleanup for the first page of
115 * the range, that is, it invokes the callback writepage_end_io_hook() for the
116 * range of the first page.
117 */
118static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
119 const u64 offset,
120 const u64 bytes)
121{
63d71450
NA
122 unsigned long index = offset >> PAGE_SHIFT;
123 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
124 struct page *page;
125
126 while (index <= end_index) {
127 page = find_get_page(inode->i_mapping, index);
128 index++;
129 if (!page)
130 continue;
131 ClearPagePrivate2(page);
132 put_page(page);
133 }
52427260
QW
134 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
135 bytes - PAGE_SIZE, false);
136}
137
48a3b636 138static int btrfs_dirty_inode(struct inode *inode);
7b128766 139
6a3891c5
JB
140#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
141void btrfs_test_inode_set_ops(struct inode *inode)
142{
143 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
144}
145#endif
146
f34f57a3 147static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
148 struct inode *inode, struct inode *dir,
149 const struct qstr *qstr)
0279b4cd
JO
150{
151 int err;
152
f34f57a3 153 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 154 if (!err)
2a7dba39 155 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
156 return err;
157}
158
c8b97818
CM
159/*
160 * this does all the hard work for inserting an inline extent into
161 * the btree. The caller should have done a btrfs_drop_extents so that
162 * no overlapping inline items exist in the btree
163 */
40f76580 164static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 165 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
166 struct btrfs_root *root, struct inode *inode,
167 u64 start, size_t size, size_t compressed_size,
fe3f566c 168 int compress_type,
c8b97818
CM
169 struct page **compressed_pages)
170{
c8b97818
CM
171 struct extent_buffer *leaf;
172 struct page *page = NULL;
173 char *kaddr;
174 unsigned long ptr;
175 struct btrfs_file_extent_item *ei;
c8b97818
CM
176 int ret;
177 size_t cur_size = size;
c8b97818 178 unsigned long offset;
c8b97818 179
fe3f566c 180 if (compressed_size && compressed_pages)
c8b97818 181 cur_size = compressed_size;
c8b97818 182
1acae57b 183 inode_add_bytes(inode, size);
c8b97818 184
1acae57b
FDBM
185 if (!extent_inserted) {
186 struct btrfs_key key;
187 size_t datasize;
c8b97818 188
4a0cc7ca 189 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 190 key.offset = start;
962a298f 191 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 192
1acae57b
FDBM
193 datasize = btrfs_file_extent_calc_inline_size(cur_size);
194 path->leave_spinning = 1;
195 ret = btrfs_insert_empty_item(trans, root, path, &key,
196 datasize);
79b4f4c6 197 if (ret)
1acae57b 198 goto fail;
c8b97818
CM
199 }
200 leaf = path->nodes[0];
201 ei = btrfs_item_ptr(leaf, path->slots[0],
202 struct btrfs_file_extent_item);
203 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
204 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
205 btrfs_set_file_extent_encryption(leaf, ei, 0);
206 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
207 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
208 ptr = btrfs_file_extent_inline_start(ei);
209
261507a0 210 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
211 struct page *cpage;
212 int i = 0;
d397712b 213 while (compressed_size > 0) {
c8b97818 214 cpage = compressed_pages[i];
5b050f04 215 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 216 PAGE_SIZE);
c8b97818 217
7ac687d9 218 kaddr = kmap_atomic(cpage);
c8b97818 219 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 220 kunmap_atomic(kaddr);
c8b97818
CM
221
222 i++;
223 ptr += cur_size;
224 compressed_size -= cur_size;
225 }
226 btrfs_set_file_extent_compression(leaf, ei,
261507a0 227 compress_type);
c8b97818
CM
228 } else {
229 page = find_get_page(inode->i_mapping,
09cbfeaf 230 start >> PAGE_SHIFT);
c8b97818 231 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 232 kaddr = kmap_atomic(page);
09cbfeaf 233 offset = start & (PAGE_SIZE - 1);
c8b97818 234 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 235 kunmap_atomic(kaddr);
09cbfeaf 236 put_page(page);
c8b97818
CM
237 }
238 btrfs_mark_buffer_dirty(leaf);
1acae57b 239 btrfs_release_path(path);
c8b97818 240
c2167754
YZ
241 /*
242 * we're an inline extent, so nobody can
243 * extend the file past i_size without locking
244 * a page we already have locked.
245 *
246 * We must do any isize and inode updates
247 * before we unlock the pages. Otherwise we
248 * could end up racing with unlink.
249 */
c8b97818 250 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 251 ret = btrfs_update_inode(trans, root, inode);
c2167754 252
c8b97818 253fail:
79b4f4c6 254 return ret;
c8b97818
CM
255}
256
257
258/*
259 * conditionally insert an inline extent into the file. This
260 * does the checks required to make sure the data is small enough
261 * to fit as an inline extent.
262 */
d02c0e20 263static noinline int cow_file_range_inline(struct inode *inode, u64 start,
00361589
JB
264 u64 end, size_t compressed_size,
265 int compress_type,
266 struct page **compressed_pages)
c8b97818 267{
d02c0e20 268 struct btrfs_root *root = BTRFS_I(inode)->root;
0b246afa 269 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 270 struct btrfs_trans_handle *trans;
c8b97818
CM
271 u64 isize = i_size_read(inode);
272 u64 actual_end = min(end + 1, isize);
273 u64 inline_len = actual_end - start;
0b246afa 274 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
275 u64 data_len = inline_len;
276 int ret;
1acae57b
FDBM
277 struct btrfs_path *path;
278 int extent_inserted = 0;
279 u32 extent_item_size;
c8b97818
CM
280
281 if (compressed_size)
282 data_len = compressed_size;
283
284 if (start > 0 ||
0b246afa
JM
285 actual_end > fs_info->sectorsize ||
286 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 287 (!compressed_size &&
0b246afa 288 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 289 end + 1 < isize ||
0b246afa 290 data_len > fs_info->max_inline) {
c8b97818
CM
291 return 1;
292 }
293
1acae57b
FDBM
294 path = btrfs_alloc_path();
295 if (!path)
296 return -ENOMEM;
297
00361589 298 trans = btrfs_join_transaction(root);
1acae57b
FDBM
299 if (IS_ERR(trans)) {
300 btrfs_free_path(path);
00361589 301 return PTR_ERR(trans);
1acae57b 302 }
69fe2d75 303 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
00361589 304
1acae57b
FDBM
305 if (compressed_size && compressed_pages)
306 extent_item_size = btrfs_file_extent_calc_inline_size(
307 compressed_size);
308 else
309 extent_item_size = btrfs_file_extent_calc_inline_size(
310 inline_len);
311
312 ret = __btrfs_drop_extents(trans, root, inode, path,
313 start, aligned_end, NULL,
314 1, 1, extent_item_size, &extent_inserted);
00361589 315 if (ret) {
66642832 316 btrfs_abort_transaction(trans, ret);
00361589
JB
317 goto out;
318 }
c8b97818
CM
319
320 if (isize > actual_end)
321 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
322 ret = insert_inline_extent(trans, path, extent_inserted,
323 root, inode, start,
c8b97818 324 inline_len, compressed_size,
fe3f566c 325 compress_type, compressed_pages);
2adcac1a 326 if (ret && ret != -ENOSPC) {
66642832 327 btrfs_abort_transaction(trans, ret);
00361589 328 goto out;
2adcac1a 329 } else if (ret == -ENOSPC) {
00361589
JB
330 ret = 1;
331 goto out;
79787eaa 332 }
2adcac1a 333
bdc20e67 334 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
dcdbc059 335 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 336out:
94ed938a
QW
337 /*
338 * Don't forget to free the reserved space, as for inlined extent
339 * it won't count as data extent, free them directly here.
340 * And at reserve time, it's always aligned to page size, so
341 * just free one page here.
342 */
bc42bda2 343 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 344 btrfs_free_path(path);
3a45bb20 345 btrfs_end_transaction(trans);
00361589 346 return ret;
c8b97818
CM
347}
348
771ed689
CM
349struct async_extent {
350 u64 start;
351 u64 ram_size;
352 u64 compressed_size;
353 struct page **pages;
354 unsigned long nr_pages;
261507a0 355 int compress_type;
771ed689
CM
356 struct list_head list;
357};
358
359struct async_cow {
360 struct inode *inode;
361 struct btrfs_root *root;
362 struct page *locked_page;
363 u64 start;
364 u64 end;
f82b7359 365 unsigned int write_flags;
771ed689
CM
366 struct list_head extents;
367 struct btrfs_work work;
368};
369
370static noinline int add_async_extent(struct async_cow *cow,
371 u64 start, u64 ram_size,
372 u64 compressed_size,
373 struct page **pages,
261507a0
LZ
374 unsigned long nr_pages,
375 int compress_type)
771ed689
CM
376{
377 struct async_extent *async_extent;
378
379 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 380 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
381 async_extent->start = start;
382 async_extent->ram_size = ram_size;
383 async_extent->compressed_size = compressed_size;
384 async_extent->pages = pages;
385 async_extent->nr_pages = nr_pages;
261507a0 386 async_extent->compress_type = compress_type;
771ed689
CM
387 list_add_tail(&async_extent->list, &cow->extents);
388 return 0;
389}
390
c2fcdcdf 391static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
f79707b0 392{
0b246afa 393 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
394
395 /* force compress */
0b246afa 396 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 397 return 1;
eec63c65
DS
398 /* defrag ioctl */
399 if (BTRFS_I(inode)->defrag_compress)
400 return 1;
f79707b0
WS
401 /* bad compression ratios */
402 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
403 return 0;
0b246afa 404 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0 405 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
b52aa8c9 406 BTRFS_I(inode)->prop_compress)
c2fcdcdf 407 return btrfs_compress_heuristic(inode, start, end);
f79707b0
WS
408 return 0;
409}
410
6158e1ce 411static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
412 u64 start, u64 end, u64 num_bytes, u64 small_write)
413{
414 /* If this is a small write inside eof, kick off a defrag */
415 if (num_bytes < small_write &&
6158e1ce 416 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
417 btrfs_add_inode_defrag(NULL, inode);
418}
419
d352ac68 420/*
771ed689
CM
421 * we create compressed extents in two phases. The first
422 * phase compresses a range of pages that have already been
423 * locked (both pages and state bits are locked).
c8b97818 424 *
771ed689
CM
425 * This is done inside an ordered work queue, and the compression
426 * is spread across many cpus. The actual IO submission is step
427 * two, and the ordered work queue takes care of making sure that
428 * happens in the same order things were put onto the queue by
429 * writepages and friends.
c8b97818 430 *
771ed689
CM
431 * If this code finds it can't get good compression, it puts an
432 * entry onto the work queue to write the uncompressed bytes. This
433 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
434 * are written in the same order that the flusher thread sent them
435 * down.
d352ac68 436 */
c44f649e 437static noinline void compress_file_range(struct inode *inode,
771ed689
CM
438 struct page *locked_page,
439 u64 start, u64 end,
440 struct async_cow *async_cow,
441 int *num_added)
b888db2b 442{
0b246afa 443 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0b246afa 444 u64 blocksize = fs_info->sectorsize;
c8b97818 445 u64 actual_end;
42dc7bab 446 u64 isize = i_size_read(inode);
e6dcd2dc 447 int ret = 0;
c8b97818
CM
448 struct page **pages = NULL;
449 unsigned long nr_pages;
c8b97818
CM
450 unsigned long total_compressed = 0;
451 unsigned long total_in = 0;
c8b97818
CM
452 int i;
453 int will_compress;
0b246afa 454 int compress_type = fs_info->compress_type;
4adaa611 455 int redirty = 0;
b888db2b 456
6158e1ce
NB
457 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
458 SZ_16K);
4cb5300b 459
42dc7bab 460 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
461again:
462 will_compress = 0;
09cbfeaf 463 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
464 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
465 nr_pages = min_t(unsigned long, nr_pages,
466 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 467
f03d9301
CM
468 /*
469 * we don't want to send crud past the end of i_size through
470 * compression, that's just a waste of CPU time. So, if the
471 * end of the file is before the start of our current
472 * requested range of bytes, we bail out to the uncompressed
473 * cleanup code that can deal with all of this.
474 *
475 * It isn't really the fastest way to fix things, but this is a
476 * very uncommon corner.
477 */
478 if (actual_end <= start)
479 goto cleanup_and_bail_uncompressed;
480
c8b97818
CM
481 total_compressed = actual_end - start;
482
4bcbb332
SW
483 /*
484 * skip compression for a small file range(<=blocksize) that
01327610 485 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
486 */
487 if (total_compressed <= blocksize &&
488 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
489 goto cleanup_and_bail_uncompressed;
490
069eac78
DS
491 total_compressed = min_t(unsigned long, total_compressed,
492 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
493 total_in = 0;
494 ret = 0;
db94535d 495
771ed689
CM
496 /*
497 * we do compression for mount -o compress and when the
498 * inode has not been flagged as nocompress. This flag can
499 * change at any time if we discover bad compression ratios.
c8b97818 500 */
c2fcdcdf 501 if (inode_need_compress(inode, start, end)) {
c8b97818 502 WARN_ON(pages);
31e818fe 503 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
504 if (!pages) {
505 /* just bail out to the uncompressed code */
506 goto cont;
507 }
c8b97818 508
eec63c65
DS
509 if (BTRFS_I(inode)->defrag_compress)
510 compress_type = BTRFS_I(inode)->defrag_compress;
511 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 512 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 513
4adaa611
CM
514 /*
515 * we need to call clear_page_dirty_for_io on each
516 * page in the range. Otherwise applications with the file
517 * mmap'd can wander in and change the page contents while
518 * we are compressing them.
519 *
520 * If the compression fails for any reason, we set the pages
521 * dirty again later on.
e9679de3
TT
522 *
523 * Note that the remaining part is redirtied, the start pointer
524 * has moved, the end is the original one.
4adaa611 525 */
e9679de3
TT
526 if (!redirty) {
527 extent_range_clear_dirty_for_io(inode, start, end);
528 redirty = 1;
529 }
f51d2b59
DS
530
531 /* Compression level is applied here and only here */
532 ret = btrfs_compress_pages(
533 compress_type | (fs_info->compress_level << 4),
261507a0 534 inode->i_mapping, start,
38c31464 535 pages,
4d3a800e 536 &nr_pages,
261507a0 537 &total_in,
e5d74902 538 &total_compressed);
c8b97818
CM
539
540 if (!ret) {
541 unsigned long offset = total_compressed &
09cbfeaf 542 (PAGE_SIZE - 1);
4d3a800e 543 struct page *page = pages[nr_pages - 1];
c8b97818
CM
544 char *kaddr;
545
546 /* zero the tail end of the last page, we might be
547 * sending it down to disk
548 */
549 if (offset) {
7ac687d9 550 kaddr = kmap_atomic(page);
c8b97818 551 memset(kaddr + offset, 0,
09cbfeaf 552 PAGE_SIZE - offset);
7ac687d9 553 kunmap_atomic(kaddr);
c8b97818
CM
554 }
555 will_compress = 1;
556 }
557 }
560f7d75 558cont:
c8b97818
CM
559 if (start == 0) {
560 /* lets try to make an inline extent */
6018ba0a 561 if (ret || total_in < actual_end) {
c8b97818 562 /* we didn't compress the entire range, try
771ed689 563 * to make an uncompressed inline extent.
c8b97818 564 */
d02c0e20
NB
565 ret = cow_file_range_inline(inode, start, end, 0,
566 BTRFS_COMPRESS_NONE, NULL);
c8b97818 567 } else {
771ed689 568 /* try making a compressed inline extent */
d02c0e20 569 ret = cow_file_range_inline(inode, start, end,
fe3f566c
LZ
570 total_compressed,
571 compress_type, pages);
c8b97818 572 }
79787eaa 573 if (ret <= 0) {
151a41bc 574 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
575 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
576 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
577 unsigned long page_error_op;
578
e6eb4314 579 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 580
771ed689 581 /*
79787eaa
JM
582 * inline extent creation worked or returned error,
583 * we don't need to create any more async work items.
584 * Unlock and free up our temp pages.
8b62f87b
JB
585 *
586 * We use DO_ACCOUNTING here because we need the
587 * delalloc_release_metadata to be done _after_ we drop
588 * our outstanding extent for clearing delalloc for this
589 * range.
771ed689 590 */
ba8b04c1
QW
591 extent_clear_unlock_delalloc(inode, start, end, end,
592 NULL, clear_flags,
593 PAGE_UNLOCK |
c2790a2e
JB
594 PAGE_CLEAR_DIRTY |
595 PAGE_SET_WRITEBACK |
e6eb4314 596 page_error_op |
c2790a2e 597 PAGE_END_WRITEBACK);
c8b97818
CM
598 goto free_pages_out;
599 }
600 }
601
602 if (will_compress) {
603 /*
604 * we aren't doing an inline extent round the compressed size
605 * up to a block size boundary so the allocator does sane
606 * things
607 */
fda2832f 608 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
609
610 /*
611 * one last check to make sure the compression is really a
170607eb
TT
612 * win, compare the page count read with the blocks on disk,
613 * compression must free at least one sector size
c8b97818 614 */
09cbfeaf 615 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 616 if (total_compressed + blocksize <= total_in) {
c8bb0c8b
AS
617 *num_added += 1;
618
619 /*
620 * The async work queues will take care of doing actual
621 * allocation on disk for these compressed pages, and
622 * will submit them to the elevator.
623 */
1170862d 624 add_async_extent(async_cow, start, total_in,
4d3a800e 625 total_compressed, pages, nr_pages,
c8bb0c8b
AS
626 compress_type);
627
1170862d
TT
628 if (start + total_in < end) {
629 start += total_in;
c8bb0c8b
AS
630 pages = NULL;
631 cond_resched();
632 goto again;
633 }
634 return;
c8b97818
CM
635 }
636 }
c8bb0c8b 637 if (pages) {
c8b97818
CM
638 /*
639 * the compression code ran but failed to make things smaller,
640 * free any pages it allocated and our page pointer array
641 */
4d3a800e 642 for (i = 0; i < nr_pages; i++) {
70b99e69 643 WARN_ON(pages[i]->mapping);
09cbfeaf 644 put_page(pages[i]);
c8b97818
CM
645 }
646 kfree(pages);
647 pages = NULL;
648 total_compressed = 0;
4d3a800e 649 nr_pages = 0;
c8b97818
CM
650
651 /* flag the file so we don't compress in the future */
0b246afa 652 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 653 !(BTRFS_I(inode)->prop_compress)) {
a555f810 654 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 655 }
c8b97818 656 }
f03d9301 657cleanup_and_bail_uncompressed:
c8bb0c8b
AS
658 /*
659 * No compression, but we still need to write the pages in the file
660 * we've been given so far. redirty the locked page if it corresponds
661 * to our extent and set things up for the async work queue to run
662 * cow_file_range to do the normal delalloc dance.
663 */
664 if (page_offset(locked_page) >= start &&
665 page_offset(locked_page) <= end)
666 __set_page_dirty_nobuffers(locked_page);
667 /* unlocked later on in the async handlers */
668
669 if (redirty)
670 extent_range_redirty_for_io(inode, start, end);
671 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
672 BTRFS_COMPRESS_NONE);
673 *num_added += 1;
3b951516 674
c44f649e 675 return;
771ed689
CM
676
677free_pages_out:
4d3a800e 678 for (i = 0; i < nr_pages; i++) {
771ed689 679 WARN_ON(pages[i]->mapping);
09cbfeaf 680 put_page(pages[i]);
771ed689 681 }
d397712b 682 kfree(pages);
771ed689 683}
771ed689 684
40ae837b
FM
685static void free_async_extent_pages(struct async_extent *async_extent)
686{
687 int i;
688
689 if (!async_extent->pages)
690 return;
691
692 for (i = 0; i < async_extent->nr_pages; i++) {
693 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 694 put_page(async_extent->pages[i]);
40ae837b
FM
695 }
696 kfree(async_extent->pages);
697 async_extent->nr_pages = 0;
698 async_extent->pages = NULL;
771ed689
CM
699}
700
701/*
702 * phase two of compressed writeback. This is the ordered portion
703 * of the code, which only gets called in the order the work was
704 * queued. We walk all the async extents created by compress_file_range
705 * and send them down to the disk.
706 */
dec8f175 707static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
708 struct async_cow *async_cow)
709{
0b246afa 710 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
711 struct async_extent *async_extent;
712 u64 alloc_hint = 0;
771ed689
CM
713 struct btrfs_key ins;
714 struct extent_map *em;
715 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689 716 struct extent_io_tree *io_tree;
f5a84ee3 717 int ret = 0;
771ed689 718
3e04e7f1 719again:
d397712b 720 while (!list_empty(&async_cow->extents)) {
771ed689
CM
721 async_extent = list_entry(async_cow->extents.next,
722 struct async_extent, list);
723 list_del(&async_extent->list);
c8b97818 724
771ed689
CM
725 io_tree = &BTRFS_I(inode)->io_tree;
726
f5a84ee3 727retry:
771ed689
CM
728 /* did the compression code fall back to uncompressed IO? */
729 if (!async_extent->pages) {
730 int page_started = 0;
731 unsigned long nr_written = 0;
732
733 lock_extent(io_tree, async_extent->start,
2ac55d41 734 async_extent->start +
d0082371 735 async_extent->ram_size - 1);
771ed689
CM
736
737 /* allocate blocks */
f5a84ee3
JB
738 ret = cow_file_range(inode, async_cow->locked_page,
739 async_extent->start,
740 async_extent->start +
741 async_extent->ram_size - 1,
dda3245e
WX
742 async_extent->start +
743 async_extent->ram_size - 1,
744 &page_started, &nr_written, 0,
745 NULL);
771ed689 746
79787eaa
JM
747 /* JDM XXX */
748
771ed689
CM
749 /*
750 * if page_started, cow_file_range inserted an
751 * inline extent and took care of all the unlocking
752 * and IO for us. Otherwise, we need to submit
753 * all those pages down to the drive.
754 */
f5a84ee3 755 if (!page_started && !ret)
5e3ee236
NB
756 extent_write_locked_range(inode,
757 async_extent->start,
d397712b 758 async_extent->start +
771ed689 759 async_extent->ram_size - 1,
771ed689 760 WB_SYNC_ALL);
3e04e7f1
JB
761 else if (ret)
762 unlock_page(async_cow->locked_page);
771ed689
CM
763 kfree(async_extent);
764 cond_resched();
765 continue;
766 }
767
768 lock_extent(io_tree, async_extent->start,
d0082371 769 async_extent->start + async_extent->ram_size - 1);
771ed689 770
18513091 771 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
772 async_extent->compressed_size,
773 async_extent->compressed_size,
e570fd27 774 0, alloc_hint, &ins, 1, 1);
f5a84ee3 775 if (ret) {
40ae837b 776 free_async_extent_pages(async_extent);
3e04e7f1 777
fdf8e2ea
JB
778 if (ret == -ENOSPC) {
779 unlock_extent(io_tree, async_extent->start,
780 async_extent->start +
781 async_extent->ram_size - 1);
ce62003f
LB
782
783 /*
784 * we need to redirty the pages if we decide to
785 * fallback to uncompressed IO, otherwise we
786 * will not submit these pages down to lower
787 * layers.
788 */
789 extent_range_redirty_for_io(inode,
790 async_extent->start,
791 async_extent->start +
792 async_extent->ram_size - 1);
793
79787eaa 794 goto retry;
fdf8e2ea 795 }
3e04e7f1 796 goto out_free;
f5a84ee3 797 }
c2167754
YZ
798 /*
799 * here we're doing allocation and writeback of the
800 * compressed pages
801 */
6f9994db
LB
802 em = create_io_em(inode, async_extent->start,
803 async_extent->ram_size, /* len */
804 async_extent->start, /* orig_start */
805 ins.objectid, /* block_start */
806 ins.offset, /* block_len */
807 ins.offset, /* orig_block_len */
808 async_extent->ram_size, /* ram_bytes */
809 async_extent->compress_type,
810 BTRFS_ORDERED_COMPRESSED);
811 if (IS_ERR(em))
812 /* ret value is not necessary due to void function */
3e04e7f1 813 goto out_free_reserve;
6f9994db 814 free_extent_map(em);
3e04e7f1 815
261507a0
LZ
816 ret = btrfs_add_ordered_extent_compress(inode,
817 async_extent->start,
818 ins.objectid,
819 async_extent->ram_size,
820 ins.offset,
821 BTRFS_ORDERED_COMPRESSED,
822 async_extent->compress_type);
d9f85963 823 if (ret) {
dcdbc059
NB
824 btrfs_drop_extent_cache(BTRFS_I(inode),
825 async_extent->start,
d9f85963
FM
826 async_extent->start +
827 async_extent->ram_size - 1, 0);
3e04e7f1 828 goto out_free_reserve;
d9f85963 829 }
0b246afa 830 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 831
771ed689
CM
832 /*
833 * clear dirty, set writeback and unlock the pages.
834 */
c2790a2e 835 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
836 async_extent->start +
837 async_extent->ram_size - 1,
a791e35e
CM
838 async_extent->start +
839 async_extent->ram_size - 1,
151a41bc
JB
840 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
841 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 842 PAGE_SET_WRITEBACK);
4e4cbee9 843 if (btrfs_submit_compressed_write(inode,
d397712b
CM
844 async_extent->start,
845 async_extent->ram_size,
846 ins.objectid,
847 ins.offset, async_extent->pages,
f82b7359
LB
848 async_extent->nr_pages,
849 async_cow->write_flags)) {
fce2a4e6
FM
850 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
851 struct page *p = async_extent->pages[0];
852 const u64 start = async_extent->start;
853 const u64 end = start + async_extent->ram_size - 1;
854
855 p->mapping = inode->i_mapping;
856 tree->ops->writepage_end_io_hook(p, start, end,
857 NULL, 0);
858 p->mapping = NULL;
ba8b04c1
QW
859 extent_clear_unlock_delalloc(inode, start, end, end,
860 NULL, 0,
fce2a4e6
FM
861 PAGE_END_WRITEBACK |
862 PAGE_SET_ERROR);
40ae837b 863 free_async_extent_pages(async_extent);
fce2a4e6 864 }
771ed689
CM
865 alloc_hint = ins.objectid + ins.offset;
866 kfree(async_extent);
867 cond_resched();
868 }
dec8f175 869 return;
3e04e7f1 870out_free_reserve:
0b246afa 871 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 872 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 873out_free:
c2790a2e 874 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
875 async_extent->start +
876 async_extent->ram_size - 1,
3e04e7f1
JB
877 async_extent->start +
878 async_extent->ram_size - 1,
c2790a2e 879 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 880 EXTENT_DELALLOC_NEW |
151a41bc
JB
881 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
882 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
883 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
884 PAGE_SET_ERROR);
40ae837b 885 free_async_extent_pages(async_extent);
79787eaa 886 kfree(async_extent);
3e04e7f1 887 goto again;
771ed689
CM
888}
889
4b46fce2
JB
890static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
891 u64 num_bytes)
892{
893 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
894 struct extent_map *em;
895 u64 alloc_hint = 0;
896
897 read_lock(&em_tree->lock);
898 em = search_extent_mapping(em_tree, start, num_bytes);
899 if (em) {
900 /*
901 * if block start isn't an actual block number then find the
902 * first block in this inode and use that as a hint. If that
903 * block is also bogus then just don't worry about it.
904 */
905 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
906 free_extent_map(em);
907 em = search_extent_mapping(em_tree, 0, 0);
908 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
909 alloc_hint = em->block_start;
910 if (em)
911 free_extent_map(em);
912 } else {
913 alloc_hint = em->block_start;
914 free_extent_map(em);
915 }
916 }
917 read_unlock(&em_tree->lock);
918
919 return alloc_hint;
920}
921
771ed689
CM
922/*
923 * when extent_io.c finds a delayed allocation range in the file,
924 * the call backs end up in this code. The basic idea is to
925 * allocate extents on disk for the range, and create ordered data structs
926 * in ram to track those extents.
927 *
928 * locked_page is the page that writepage had locked already. We use
929 * it to make sure we don't do extra locks or unlocks.
930 *
931 * *page_started is set to one if we unlock locked_page and do everything
932 * required to start IO on it. It may be clean and already done with
933 * IO when we return.
934 */
00361589
JB
935static noinline int cow_file_range(struct inode *inode,
936 struct page *locked_page,
dda3245e
WX
937 u64 start, u64 end, u64 delalloc_end,
938 int *page_started, unsigned long *nr_written,
939 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 940{
0b246afa 941 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 942 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
943 u64 alloc_hint = 0;
944 u64 num_bytes;
945 unsigned long ram_size;
a315e68f 946 u64 cur_alloc_size = 0;
0b246afa 947 u64 blocksize = fs_info->sectorsize;
771ed689
CM
948 struct btrfs_key ins;
949 struct extent_map *em;
a315e68f
FM
950 unsigned clear_bits;
951 unsigned long page_ops;
952 bool extent_reserved = false;
771ed689
CM
953 int ret = 0;
954
70ddc553 955 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 956 WARN_ON_ONCE(1);
29bce2f3
JB
957 ret = -EINVAL;
958 goto out_unlock;
02ecd2c2 959 }
771ed689 960
fda2832f 961 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 962 num_bytes = max(blocksize, num_bytes);
566b1760 963 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 964
6158e1ce 965 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 966
771ed689
CM
967 if (start == 0) {
968 /* lets try to make an inline extent */
d02c0e20
NB
969 ret = cow_file_range_inline(inode, start, end, 0,
970 BTRFS_COMPRESS_NONE, NULL);
771ed689 971 if (ret == 0) {
8b62f87b
JB
972 /*
973 * We use DO_ACCOUNTING here because we need the
974 * delalloc_release_metadata to be run _after_ we drop
975 * our outstanding extent for clearing delalloc for this
976 * range.
977 */
ba8b04c1
QW
978 extent_clear_unlock_delalloc(inode, start, end,
979 delalloc_end, NULL,
c2790a2e 980 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
981 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
982 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
983 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
984 PAGE_END_WRITEBACK);
771ed689 985 *nr_written = *nr_written +
09cbfeaf 986 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 987 *page_started = 1;
771ed689 988 goto out;
79787eaa 989 } else if (ret < 0) {
79787eaa 990 goto out_unlock;
771ed689
CM
991 }
992 }
993
4b46fce2 994 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
995 btrfs_drop_extent_cache(BTRFS_I(inode), start,
996 start + num_bytes - 1, 0);
771ed689 997
3752d22f
AJ
998 while (num_bytes > 0) {
999 cur_alloc_size = num_bytes;
18513091 1000 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 1001 fs_info->sectorsize, 0, alloc_hint,
e570fd27 1002 &ins, 1, 1);
00361589 1003 if (ret < 0)
79787eaa 1004 goto out_unlock;
a315e68f
FM
1005 cur_alloc_size = ins.offset;
1006 extent_reserved = true;
d397712b 1007
771ed689 1008 ram_size = ins.offset;
6f9994db
LB
1009 em = create_io_em(inode, start, ins.offset, /* len */
1010 start, /* orig_start */
1011 ins.objectid, /* block_start */
1012 ins.offset, /* block_len */
1013 ins.offset, /* orig_block_len */
1014 ram_size, /* ram_bytes */
1015 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1016 BTRFS_ORDERED_REGULAR /* type */);
090a127a
SY
1017 if (IS_ERR(em)) {
1018 ret = PTR_ERR(em);
ace68bac 1019 goto out_reserve;
090a127a 1020 }
6f9994db 1021 free_extent_map(em);
e6dcd2dc 1022
e6dcd2dc 1023 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1024 ram_size, cur_alloc_size, 0);
ace68bac 1025 if (ret)
d9f85963 1026 goto out_drop_extent_cache;
c8b97818 1027
17d217fe
YZ
1028 if (root->root_key.objectid ==
1029 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1030 ret = btrfs_reloc_clone_csums(inode, start,
1031 cur_alloc_size);
4dbd80fb
QW
1032 /*
1033 * Only drop cache here, and process as normal.
1034 *
1035 * We must not allow extent_clear_unlock_delalloc()
1036 * at out_unlock label to free meta of this ordered
1037 * extent, as its meta should be freed by
1038 * btrfs_finish_ordered_io().
1039 *
1040 * So we must continue until @start is increased to
1041 * skip current ordered extent.
1042 */
00361589 1043 if (ret)
4dbd80fb
QW
1044 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1045 start + ram_size - 1, 0);
17d217fe
YZ
1046 }
1047
0b246afa 1048 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1049
c8b97818
CM
1050 /* we're not doing compressed IO, don't unlock the first
1051 * page (which the caller expects to stay locked), don't
1052 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1053 *
1054 * Do set the Private2 bit so we know this page was properly
1055 * setup for writepage
c8b97818 1056 */
a315e68f
FM
1057 page_ops = unlock ? PAGE_UNLOCK : 0;
1058 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1059
c2790a2e 1060 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1061 start + ram_size - 1,
1062 delalloc_end, locked_page,
c2790a2e 1063 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1064 page_ops);
3752d22f
AJ
1065 if (num_bytes < cur_alloc_size)
1066 num_bytes = 0;
4dbd80fb 1067 else
3752d22f 1068 num_bytes -= cur_alloc_size;
c59f8951
CM
1069 alloc_hint = ins.objectid + ins.offset;
1070 start += cur_alloc_size;
a315e68f 1071 extent_reserved = false;
4dbd80fb
QW
1072
1073 /*
1074 * btrfs_reloc_clone_csums() error, since start is increased
1075 * extent_clear_unlock_delalloc() at out_unlock label won't
1076 * free metadata of current ordered extent, we're OK to exit.
1077 */
1078 if (ret)
1079 goto out_unlock;
b888db2b 1080 }
79787eaa 1081out:
be20aa9d 1082 return ret;
b7d5b0a8 1083
d9f85963 1084out_drop_extent_cache:
dcdbc059 1085 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1086out_reserve:
0b246afa 1087 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1088 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1089out_unlock:
a7e3b975
FM
1090 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1091 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1092 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1093 PAGE_END_WRITEBACK;
1094 /*
1095 * If we reserved an extent for our delalloc range (or a subrange) and
1096 * failed to create the respective ordered extent, then it means that
1097 * when we reserved the extent we decremented the extent's size from
1098 * the data space_info's bytes_may_use counter and incremented the
1099 * space_info's bytes_reserved counter by the same amount. We must make
1100 * sure extent_clear_unlock_delalloc() does not try to decrement again
1101 * the data space_info's bytes_may_use counter, therefore we do not pass
1102 * it the flag EXTENT_CLEAR_DATA_RESV.
1103 */
1104 if (extent_reserved) {
1105 extent_clear_unlock_delalloc(inode, start,
1106 start + cur_alloc_size,
1107 start + cur_alloc_size,
1108 locked_page,
1109 clear_bits,
1110 page_ops);
1111 start += cur_alloc_size;
1112 if (start >= end)
1113 goto out;
1114 }
ba8b04c1
QW
1115 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1116 locked_page,
a315e68f
FM
1117 clear_bits | EXTENT_CLEAR_DATA_RESV,
1118 page_ops);
79787eaa 1119 goto out;
771ed689 1120}
c8b97818 1121
771ed689
CM
1122/*
1123 * work queue call back to started compression on a file and pages
1124 */
1125static noinline void async_cow_start(struct btrfs_work *work)
1126{
1127 struct async_cow *async_cow;
1128 int num_added = 0;
1129 async_cow = container_of(work, struct async_cow, work);
1130
1131 compress_file_range(async_cow->inode, async_cow->locked_page,
1132 async_cow->start, async_cow->end, async_cow,
1133 &num_added);
8180ef88 1134 if (num_added == 0) {
cb77fcd8 1135 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1136 async_cow->inode = NULL;
8180ef88 1137 }
771ed689
CM
1138}
1139
1140/*
1141 * work queue call back to submit previously compressed pages
1142 */
1143static noinline void async_cow_submit(struct btrfs_work *work)
1144{
0b246afa 1145 struct btrfs_fs_info *fs_info;
771ed689
CM
1146 struct async_cow *async_cow;
1147 struct btrfs_root *root;
1148 unsigned long nr_pages;
1149
1150 async_cow = container_of(work, struct async_cow, work);
1151
1152 root = async_cow->root;
0b246afa 1153 fs_info = root->fs_info;
09cbfeaf
KS
1154 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1155 PAGE_SHIFT;
771ed689 1156
093258e6 1157 /* atomic_sub_return implies a barrier */
0b246afa 1158 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
093258e6
DS
1159 5 * SZ_1M)
1160 cond_wake_up_nomb(&fs_info->async_submit_wait);
771ed689 1161
d397712b 1162 if (async_cow->inode)
771ed689 1163 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1164}
c8b97818 1165
771ed689
CM
1166static noinline void async_cow_free(struct btrfs_work *work)
1167{
1168 struct async_cow *async_cow;
1169 async_cow = container_of(work, struct async_cow, work);
8180ef88 1170 if (async_cow->inode)
cb77fcd8 1171 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1172 kfree(async_cow);
1173}
1174
1175static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1176 u64 start, u64 end, int *page_started,
f82b7359
LB
1177 unsigned long *nr_written,
1178 unsigned int write_flags)
771ed689 1179{
0b246afa 1180 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
1181 struct async_cow *async_cow;
1182 struct btrfs_root *root = BTRFS_I(inode)->root;
1183 unsigned long nr_pages;
1184 u64 cur_end;
771ed689 1185
a3429ab7 1186 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
ae0f1625 1187 1, 0, NULL);
d397712b 1188 while (start < end) {
771ed689 1189 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1190 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1191 async_cow->inode = igrab(inode);
771ed689
CM
1192 async_cow->root = root;
1193 async_cow->locked_page = locked_page;
1194 async_cow->start = start;
f82b7359 1195 async_cow->write_flags = write_flags;
771ed689 1196
f79707b0 1197 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
0b246afa 1198 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
771ed689
CM
1199 cur_end = end;
1200 else
ee22184b 1201 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1202
1203 async_cow->end = cur_end;
1204 INIT_LIST_HEAD(&async_cow->extents);
1205
9e0af237
LB
1206 btrfs_init_work(&async_cow->work,
1207 btrfs_delalloc_helper,
1208 async_cow_start, async_cow_submit,
1209 async_cow_free);
771ed689 1210
09cbfeaf
KS
1211 nr_pages = (cur_end - start + PAGE_SIZE) >>
1212 PAGE_SHIFT;
0b246afa 1213 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1214
0b246afa 1215 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
771ed689 1216
771ed689
CM
1217 *nr_written += nr_pages;
1218 start = cur_end + 1;
1219 }
1220 *page_started = 1;
1221 return 0;
be20aa9d
CM
1222}
1223
2ff7e61e 1224static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1225 u64 bytenr, u64 num_bytes)
1226{
1227 int ret;
1228 struct btrfs_ordered_sum *sums;
1229 LIST_HEAD(list);
1230
0b246afa 1231 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1232 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1233 if (ret == 0 && list_empty(&list))
1234 return 0;
1235
1236 while (!list_empty(&list)) {
1237 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1238 list_del(&sums->list);
1239 kfree(sums);
1240 }
58113753
LB
1241 if (ret < 0)
1242 return ret;
17d217fe
YZ
1243 return 1;
1244}
1245
d352ac68
CM
1246/*
1247 * when nowcow writeback call back. This checks for snapshots or COW copies
1248 * of the extents that exist in the file, and COWs the file as required.
1249 *
1250 * If no cow copies or snapshots exist, we write directly to the existing
1251 * blocks on disk
1252 */
7f366cfe
CM
1253static noinline int run_delalloc_nocow(struct inode *inode,
1254 struct page *locked_page,
771ed689
CM
1255 u64 start, u64 end, int *page_started, int force,
1256 unsigned long *nr_written)
be20aa9d 1257{
0b246afa 1258 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d
CM
1259 struct btrfs_root *root = BTRFS_I(inode)->root;
1260 struct extent_buffer *leaf;
be20aa9d 1261 struct btrfs_path *path;
80ff3856 1262 struct btrfs_file_extent_item *fi;
be20aa9d 1263 struct btrfs_key found_key;
6f9994db 1264 struct extent_map *em;
80ff3856
YZ
1265 u64 cow_start;
1266 u64 cur_offset;
1267 u64 extent_end;
5d4f98a2 1268 u64 extent_offset;
80ff3856
YZ
1269 u64 disk_bytenr;
1270 u64 num_bytes;
b4939680 1271 u64 disk_num_bytes;
cc95bef6 1272 u64 ram_bytes;
80ff3856 1273 int extent_type;
8ecebf4d 1274 int ret;
d899e052 1275 int type;
80ff3856
YZ
1276 int nocow;
1277 int check_prev = 1;
82d5902d 1278 bool nolock;
4a0cc7ca 1279 u64 ino = btrfs_ino(BTRFS_I(inode));
be20aa9d
CM
1280
1281 path = btrfs_alloc_path();
17ca04af 1282 if (!path) {
ba8b04c1
QW
1283 extent_clear_unlock_delalloc(inode, start, end, end,
1284 locked_page,
c2790a2e 1285 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1286 EXTENT_DO_ACCOUNTING |
1287 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1288 PAGE_CLEAR_DIRTY |
1289 PAGE_SET_WRITEBACK |
1290 PAGE_END_WRITEBACK);
d8926bb3 1291 return -ENOMEM;
17ca04af 1292 }
82d5902d 1293
70ddc553 1294 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
82d5902d 1295
80ff3856
YZ
1296 cow_start = (u64)-1;
1297 cur_offset = start;
1298 while (1) {
e4c3b2dc 1299 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1300 cur_offset, 0);
d788a349 1301 if (ret < 0)
79787eaa 1302 goto error;
80ff3856
YZ
1303 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1304 leaf = path->nodes[0];
1305 btrfs_item_key_to_cpu(leaf, &found_key,
1306 path->slots[0] - 1);
33345d01 1307 if (found_key.objectid == ino &&
80ff3856
YZ
1308 found_key.type == BTRFS_EXTENT_DATA_KEY)
1309 path->slots[0]--;
1310 }
1311 check_prev = 0;
1312next_slot:
1313 leaf = path->nodes[0];
1314 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1315 ret = btrfs_next_leaf(root, path);
e8916699
LB
1316 if (ret < 0) {
1317 if (cow_start != (u64)-1)
1318 cur_offset = cow_start;
79787eaa 1319 goto error;
e8916699 1320 }
80ff3856
YZ
1321 if (ret > 0)
1322 break;
1323 leaf = path->nodes[0];
1324 }
be20aa9d 1325
80ff3856
YZ
1326 nocow = 0;
1327 disk_bytenr = 0;
17d217fe 1328 num_bytes = 0;
80ff3856
YZ
1329 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1330
1d512cb7
FM
1331 if (found_key.objectid > ino)
1332 break;
1333 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1334 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1335 path->slots[0]++;
1336 goto next_slot;
1337 }
1338 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1339 found_key.offset > end)
1340 break;
1341
1342 if (found_key.offset > cur_offset) {
1343 extent_end = found_key.offset;
e9061e21 1344 extent_type = 0;
80ff3856
YZ
1345 goto out_check;
1346 }
1347
1348 fi = btrfs_item_ptr(leaf, path->slots[0],
1349 struct btrfs_file_extent_item);
1350 extent_type = btrfs_file_extent_type(leaf, fi);
1351
cc95bef6 1352 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1353 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1354 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1355 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1356 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1357 extent_end = found_key.offset +
1358 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1359 disk_num_bytes =
1360 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1361 if (extent_end <= start) {
1362 path->slots[0]++;
1363 goto next_slot;
1364 }
17d217fe
YZ
1365 if (disk_bytenr == 0)
1366 goto out_check;
80ff3856
YZ
1367 if (btrfs_file_extent_compression(leaf, fi) ||
1368 btrfs_file_extent_encryption(leaf, fi) ||
1369 btrfs_file_extent_other_encoding(leaf, fi))
1370 goto out_check;
78d4295b
EL
1371 /*
1372 * Do the same check as in btrfs_cross_ref_exist but
1373 * without the unnecessary search.
1374 */
1375 if (btrfs_file_extent_generation(leaf, fi) <=
1376 btrfs_root_last_snapshot(&root->root_item))
1377 goto out_check;
d899e052
YZ
1378 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1379 goto out_check;
2ff7e61e 1380 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1381 goto out_check;
58113753
LB
1382 ret = btrfs_cross_ref_exist(root, ino,
1383 found_key.offset -
1384 extent_offset, disk_bytenr);
1385 if (ret) {
1386 /*
1387 * ret could be -EIO if the above fails to read
1388 * metadata.
1389 */
1390 if (ret < 0) {
1391 if (cow_start != (u64)-1)
1392 cur_offset = cow_start;
1393 goto error;
1394 }
1395
1396 WARN_ON_ONCE(nolock);
17d217fe 1397 goto out_check;
58113753 1398 }
5d4f98a2 1399 disk_bytenr += extent_offset;
17d217fe
YZ
1400 disk_bytenr += cur_offset - found_key.offset;
1401 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1402 /*
1403 * if there are pending snapshots for this root,
1404 * we fall into common COW way.
1405 */
8ecebf4d
RK
1406 if (!nolock && atomic_read(&root->snapshot_force_cow))
1407 goto out_check;
17d217fe
YZ
1408 /*
1409 * force cow if csum exists in the range.
1410 * this ensure that csum for a given extent are
1411 * either valid or do not exist.
1412 */
58113753
LB
1413 ret = csum_exist_in_range(fs_info, disk_bytenr,
1414 num_bytes);
1415 if (ret) {
58113753
LB
1416 /*
1417 * ret could be -EIO if the above fails to read
1418 * metadata.
1419 */
1420 if (ret < 0) {
1421 if (cow_start != (u64)-1)
1422 cur_offset = cow_start;
1423 goto error;
1424 }
1425 WARN_ON_ONCE(nolock);
17d217fe 1426 goto out_check;
91e1f56a 1427 }
8ecebf4d 1428 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
f78c436c 1429 goto out_check;
80ff3856
YZ
1430 nocow = 1;
1431 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1432 extent_end = found_key.offset +
e41ca589 1433 btrfs_file_extent_ram_bytes(leaf, fi);
da17066c 1434 extent_end = ALIGN(extent_end,
0b246afa 1435 fs_info->sectorsize);
80ff3856
YZ
1436 } else {
1437 BUG_ON(1);
1438 }
1439out_check:
1440 if (extent_end <= start) {
1441 path->slots[0]++;
f78c436c 1442 if (nocow)
0b246afa 1443 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1444 goto next_slot;
1445 }
1446 if (!nocow) {
1447 if (cow_start == (u64)-1)
1448 cow_start = cur_offset;
1449 cur_offset = extent_end;
1450 if (cur_offset > end)
1451 break;
1452 path->slots[0]++;
1453 goto next_slot;
7ea394f1
YZ
1454 }
1455
b3b4aa74 1456 btrfs_release_path(path);
80ff3856 1457 if (cow_start != (u64)-1) {
00361589
JB
1458 ret = cow_file_range(inode, locked_page,
1459 cow_start, found_key.offset - 1,
dda3245e
WX
1460 end, page_started, nr_written, 1,
1461 NULL);
e9894fd3 1462 if (ret) {
f78c436c 1463 if (nocow)
0b246afa 1464 btrfs_dec_nocow_writers(fs_info,
f78c436c 1465 disk_bytenr);
79787eaa 1466 goto error;
e9894fd3 1467 }
80ff3856 1468 cow_start = (u64)-1;
7ea394f1 1469 }
80ff3856 1470
d899e052 1471 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db
LB
1472 u64 orig_start = found_key.offset - extent_offset;
1473
1474 em = create_io_em(inode, cur_offset, num_bytes,
1475 orig_start,
1476 disk_bytenr, /* block_start */
1477 num_bytes, /* block_len */
1478 disk_num_bytes, /* orig_block_len */
1479 ram_bytes, BTRFS_COMPRESS_NONE,
1480 BTRFS_ORDERED_PREALLOC);
1481 if (IS_ERR(em)) {
6f9994db
LB
1482 if (nocow)
1483 btrfs_dec_nocow_writers(fs_info,
1484 disk_bytenr);
1485 ret = PTR_ERR(em);
1486 goto error;
d899e052 1487 }
6f9994db
LB
1488 free_extent_map(em);
1489 }
1490
1491 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
d899e052
YZ
1492 type = BTRFS_ORDERED_PREALLOC;
1493 } else {
1494 type = BTRFS_ORDERED_NOCOW;
1495 }
80ff3856
YZ
1496
1497 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1498 num_bytes, num_bytes, type);
f78c436c 1499 if (nocow)
0b246afa 1500 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1501 BUG_ON(ret); /* -ENOMEM */
771ed689 1502
efa56464 1503 if (root->root_key.objectid ==
4dbd80fb
QW
1504 BTRFS_DATA_RELOC_TREE_OBJECTID)
1505 /*
1506 * Error handled later, as we must prevent
1507 * extent_clear_unlock_delalloc() in error handler
1508 * from freeing metadata of created ordered extent.
1509 */
efa56464
YZ
1510 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1511 num_bytes);
efa56464 1512
c2790a2e 1513 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1514 cur_offset + num_bytes - 1, end,
c2790a2e 1515 locked_page, EXTENT_LOCKED |
18513091
WX
1516 EXTENT_DELALLOC |
1517 EXTENT_CLEAR_DATA_RESV,
1518 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1519
80ff3856 1520 cur_offset = extent_end;
4dbd80fb
QW
1521
1522 /*
1523 * btrfs_reloc_clone_csums() error, now we're OK to call error
1524 * handler, as metadata for created ordered extent will only
1525 * be freed by btrfs_finish_ordered_io().
1526 */
1527 if (ret)
1528 goto error;
80ff3856
YZ
1529 if (cur_offset > end)
1530 break;
be20aa9d 1531 }
b3b4aa74 1532 btrfs_release_path(path);
80ff3856 1533
17ca04af 1534 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1535 cow_start = cur_offset;
17ca04af
JB
1536 cur_offset = end;
1537 }
1538
80ff3856 1539 if (cow_start != (u64)-1) {
dda3245e
WX
1540 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1541 page_started, nr_written, 1, NULL);
d788a349 1542 if (ret)
79787eaa 1543 goto error;
80ff3856
YZ
1544 }
1545
79787eaa 1546error:
17ca04af 1547 if (ret && cur_offset < end)
ba8b04c1 1548 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1549 locked_page, EXTENT_LOCKED |
151a41bc
JB
1550 EXTENT_DELALLOC | EXTENT_DEFRAG |
1551 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1552 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1553 PAGE_SET_WRITEBACK |
1554 PAGE_END_WRITEBACK);
7ea394f1 1555 btrfs_free_path(path);
79787eaa 1556 return ret;
be20aa9d
CM
1557}
1558
47059d93
WS
1559static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1560{
1561
1562 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1563 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1564 return 0;
1565
1566 /*
1567 * @defrag_bytes is a hint value, no spinlock held here,
1568 * if is not zero, it means the file is defragging.
1569 * Force cow if given extent needs to be defragged.
1570 */
1571 if (BTRFS_I(inode)->defrag_bytes &&
1572 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1573 EXTENT_DEFRAG, 0, NULL))
1574 return 1;
1575
1576 return 0;
1577}
1578
d352ac68
CM
1579/*
1580 * extent_io.c call back to do delayed allocation processing
1581 */
c6100a4b 1582static int run_delalloc_range(void *private_data, struct page *locked_page,
771ed689 1583 u64 start, u64 end, int *page_started,
f82b7359
LB
1584 unsigned long *nr_written,
1585 struct writeback_control *wbc)
be20aa9d 1586{
c6100a4b 1587 struct inode *inode = private_data;
be20aa9d 1588 int ret;
47059d93 1589 int force_cow = need_force_cow(inode, start, end);
f82b7359 1590 unsigned int write_flags = wbc_to_write_flags(wbc);
a2135011 1591
47059d93 1592 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1593 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1594 page_started, 1, nr_written);
47059d93 1595 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1596 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1597 page_started, 0, nr_written);
c2fcdcdf 1598 } else if (!inode_need_compress(inode, start, end)) {
dda3245e
WX
1599 ret = cow_file_range(inode, locked_page, start, end, end,
1600 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1601 } else {
1602 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1603 &BTRFS_I(inode)->runtime_flags);
771ed689 1604 ret = cow_file_range_async(inode, locked_page, start, end,
f82b7359
LB
1605 page_started, nr_written,
1606 write_flags);
7ddf5a42 1607 }
52427260
QW
1608 if (ret)
1609 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
b888db2b
CM
1610 return ret;
1611}
1612
c6100a4b 1613static void btrfs_split_extent_hook(void *private_data,
1bf85046 1614 struct extent_state *orig, u64 split)
9ed74f2d 1615{
c6100a4b 1616 struct inode *inode = private_data;
dcab6a3b
JB
1617 u64 size;
1618
0ca1f7ce 1619 /* not delalloc, ignore it */
9ed74f2d 1620 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1621 return;
9ed74f2d 1622
dcab6a3b
JB
1623 size = orig->end - orig->start + 1;
1624 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1625 u32 num_extents;
dcab6a3b
JB
1626 u64 new_size;
1627
1628 /*
ba117213
JB
1629 * See the explanation in btrfs_merge_extent_hook, the same
1630 * applies here, just in reverse.
dcab6a3b
JB
1631 */
1632 new_size = orig->end - split + 1;
823bb20a 1633 num_extents = count_max_extents(new_size);
ba117213 1634 new_size = split - orig->start;
823bb20a
DS
1635 num_extents += count_max_extents(new_size);
1636 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1637 return;
1638 }
1639
9e0baf60 1640 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1641 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1642 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1643}
1644
1645/*
1646 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1647 * extents so we can keep track of new extents that are just merged onto old
1648 * extents, such as when we are doing sequential writes, so we can properly
1649 * account for the metadata space we'll need.
1650 */
c6100a4b 1651static void btrfs_merge_extent_hook(void *private_data,
1bf85046
JM
1652 struct extent_state *new,
1653 struct extent_state *other)
9ed74f2d 1654{
c6100a4b 1655 struct inode *inode = private_data;
dcab6a3b 1656 u64 new_size, old_size;
823bb20a 1657 u32 num_extents;
dcab6a3b 1658
9ed74f2d
JB
1659 /* not delalloc, ignore it */
1660 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1661 return;
9ed74f2d 1662
8461a3de
JB
1663 if (new->start > other->start)
1664 new_size = new->end - other->start + 1;
1665 else
1666 new_size = other->end - new->start + 1;
dcab6a3b
JB
1667
1668 /* we're not bigger than the max, unreserve the space and go */
1669 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1670 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1671 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1672 spin_unlock(&BTRFS_I(inode)->lock);
1673 return;
1674 }
1675
1676 /*
ba117213
JB
1677 * We have to add up either side to figure out how many extents were
1678 * accounted for before we merged into one big extent. If the number of
1679 * extents we accounted for is <= the amount we need for the new range
1680 * then we can return, otherwise drop. Think of it like this
1681 *
1682 * [ 4k][MAX_SIZE]
1683 *
1684 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1685 * need 2 outstanding extents, on one side we have 1 and the other side
1686 * we have 1 so they are == and we can return. But in this case
1687 *
1688 * [MAX_SIZE+4k][MAX_SIZE+4k]
1689 *
1690 * Each range on their own accounts for 2 extents, but merged together
1691 * they are only 3 extents worth of accounting, so we need to drop in
1692 * this case.
dcab6a3b 1693 */
ba117213 1694 old_size = other->end - other->start + 1;
823bb20a 1695 num_extents = count_max_extents(old_size);
ba117213 1696 old_size = new->end - new->start + 1;
823bb20a
DS
1697 num_extents += count_max_extents(old_size);
1698 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1699 return;
1700
9e0baf60 1701 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1702 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1703 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1704}
1705
eb73c1b7
MX
1706static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1707 struct inode *inode)
1708{
0b246afa
JM
1709 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1710
eb73c1b7
MX
1711 spin_lock(&root->delalloc_lock);
1712 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1713 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1714 &root->delalloc_inodes);
1715 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1716 &BTRFS_I(inode)->runtime_flags);
1717 root->nr_delalloc_inodes++;
1718 if (root->nr_delalloc_inodes == 1) {
0b246afa 1719 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1720 BUG_ON(!list_empty(&root->delalloc_root));
1721 list_add_tail(&root->delalloc_root,
0b246afa
JM
1722 &fs_info->delalloc_roots);
1723 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1724 }
1725 }
1726 spin_unlock(&root->delalloc_lock);
1727}
1728
2b877331
NB
1729
1730void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1731 struct btrfs_inode *inode)
eb73c1b7 1732{
3ffbd68c 1733 struct btrfs_fs_info *fs_info = root->fs_info;
0b246afa 1734
9e3e97f4
NB
1735 if (!list_empty(&inode->delalloc_inodes)) {
1736 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1737 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1738 &inode->runtime_flags);
eb73c1b7
MX
1739 root->nr_delalloc_inodes--;
1740 if (!root->nr_delalloc_inodes) {
7c8a0d36 1741 ASSERT(list_empty(&root->delalloc_inodes));
0b246afa 1742 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1743 BUG_ON(list_empty(&root->delalloc_root));
1744 list_del_init(&root->delalloc_root);
0b246afa 1745 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1746 }
1747 }
2b877331
NB
1748}
1749
1750static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1751 struct btrfs_inode *inode)
1752{
1753 spin_lock(&root->delalloc_lock);
1754 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
1755 spin_unlock(&root->delalloc_lock);
1756}
1757
d352ac68
CM
1758/*
1759 * extent_io.c set_bit_hook, used to track delayed allocation
1760 * bytes in this file, and to maintain the list of inodes that
1761 * have pending delalloc work to be done.
1762 */
c6100a4b 1763static void btrfs_set_bit_hook(void *private_data,
9ee49a04 1764 struct extent_state *state, unsigned *bits)
291d673e 1765{
c6100a4b 1766 struct inode *inode = private_data;
9ed74f2d 1767
0b246afa
JM
1768 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1769
47059d93
WS
1770 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1771 WARN_ON(1);
75eff68e
CM
1772 /*
1773 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1774 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1775 * bit, which is only set or cleared with irqs on
1776 */
0ca1f7ce 1777 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1778 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1779 u64 len = state->end + 1 - state->start;
8b62f87b 1780 u32 num_extents = count_max_extents(len);
70ddc553 1781 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1782
8b62f87b
JB
1783 spin_lock(&BTRFS_I(inode)->lock);
1784 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1785 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 1786
6a3891c5 1787 /* For sanity tests */
0b246afa 1788 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1789 return;
1790
104b4e51
NB
1791 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1792 fs_info->delalloc_batch);
df0af1a5 1793 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1794 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1795 if (*bits & EXTENT_DEFRAG)
1796 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1797 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1798 &BTRFS_I(inode)->runtime_flags))
1799 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1800 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1801 }
a7e3b975
FM
1802
1803 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1804 (*bits & EXTENT_DELALLOC_NEW)) {
1805 spin_lock(&BTRFS_I(inode)->lock);
1806 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1807 state->start;
1808 spin_unlock(&BTRFS_I(inode)->lock);
1809 }
291d673e
CM
1810}
1811
d352ac68
CM
1812/*
1813 * extent_io.c clear_bit_hook, see set_bit_hook for why
1814 */
c6100a4b 1815static void btrfs_clear_bit_hook(void *private_data,
41074888 1816 struct extent_state *state,
9ee49a04 1817 unsigned *bits)
291d673e 1818{
c6100a4b 1819 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
6fc0ef68 1820 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
47059d93 1821 u64 len = state->end + 1 - state->start;
823bb20a 1822 u32 num_extents = count_max_extents(len);
47059d93 1823
4a4b964f
FM
1824 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1825 spin_lock(&inode->lock);
6fc0ef68 1826 inode->defrag_bytes -= len;
4a4b964f
FM
1827 spin_unlock(&inode->lock);
1828 }
47059d93 1829
75eff68e
CM
1830 /*
1831 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1832 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1833 * bit, which is only set or cleared with irqs on
1834 */
0ca1f7ce 1835 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1836 struct btrfs_root *root = inode->root;
83eea1f1 1837 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1838
8b62f87b
JB
1839 spin_lock(&inode->lock);
1840 btrfs_mod_outstanding_extents(inode, -num_extents);
1841 spin_unlock(&inode->lock);
0ca1f7ce 1842
b6d08f06
JB
1843 /*
1844 * We don't reserve metadata space for space cache inodes so we
1845 * don't need to call dellalloc_release_metadata if there is an
1846 * error.
1847 */
a315e68f 1848 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 1849 root != fs_info->tree_root)
43b18595 1850 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 1851
6a3891c5 1852 /* For sanity tests. */
0b246afa 1853 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1854 return;
1855
a315e68f
FM
1856 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1857 do_list && !(state->state & EXTENT_NORESERVE) &&
1858 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
1859 btrfs_free_reserved_data_space_noquota(
1860 &inode->vfs_inode,
51773bec 1861 state->start, len);
9ed74f2d 1862
104b4e51
NB
1863 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1864 fs_info->delalloc_batch);
6fc0ef68
NB
1865 spin_lock(&inode->lock);
1866 inode->delalloc_bytes -= len;
1867 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 1868 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1869 &inode->runtime_flags))
eb73c1b7 1870 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 1871 spin_unlock(&inode->lock);
291d673e 1872 }
a7e3b975
FM
1873
1874 if ((state->state & EXTENT_DELALLOC_NEW) &&
1875 (*bits & EXTENT_DELALLOC_NEW)) {
1876 spin_lock(&inode->lock);
1877 ASSERT(inode->new_delalloc_bytes >= len);
1878 inode->new_delalloc_bytes -= len;
1879 spin_unlock(&inode->lock);
1880 }
291d673e
CM
1881}
1882
d352ac68 1883/*
00032d38
DS
1884 * Merge bio hook, this must check the chunk tree to make sure we don't create
1885 * bios that span stripes or chunks
6f034ece
LB
1886 *
1887 * return 1 if page cannot be merged to bio
1888 * return 0 if page can be merged to bio
1889 * return error otherwise
d352ac68 1890 */
81a75f67 1891int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1892 size_t size, struct bio *bio,
1893 unsigned long bio_flags)
239b14b3 1894{
0b246afa
JM
1895 struct inode *inode = page->mapping->host;
1896 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1897 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1898 u64 length = 0;
1899 u64 map_length;
239b14b3
CM
1900 int ret;
1901
771ed689
CM
1902 if (bio_flags & EXTENT_BIO_COMPRESSED)
1903 return 0;
1904
4f024f37 1905 length = bio->bi_iter.bi_size;
239b14b3 1906 map_length = length;
0b246afa
JM
1907 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1908 NULL, 0);
6f034ece
LB
1909 if (ret < 0)
1910 return ret;
d397712b 1911 if (map_length < length + size)
239b14b3 1912 return 1;
3444a972 1913 return 0;
239b14b3
CM
1914}
1915
d352ac68
CM
1916/*
1917 * in order to insert checksums into the metadata in large chunks,
1918 * we wait until bio submission time. All the pages in the bio are
1919 * checksummed and sums are attached onto the ordered extent record.
1920 *
1921 * At IO completion time the cums attached on the ordered extent record
1922 * are inserted into the btree
1923 */
d0ee3934 1924static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
eaf25d93 1925 u64 bio_offset)
065631f6 1926{
c6100a4b 1927 struct inode *inode = private_data;
4e4cbee9 1928 blk_status_t ret = 0;
e015640f 1929
2ff7e61e 1930 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1931 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1932 return 0;
1933}
e015640f 1934
4a69a410
CM
1935/*
1936 * in order to insert checksums into the metadata in large chunks,
1937 * we wait until bio submission time. All the pages in the bio are
1938 * checksummed and sums are attached onto the ordered extent record.
1939 *
1940 * At IO completion time the cums attached on the ordered extent record
1941 * are inserted into the btree
1942 */
e288c080 1943blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio,
6c553435 1944 int mirror_num)
4a69a410 1945{
c6100a4b 1946 struct inode *inode = private_data;
2ff7e61e 1947 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 1948 blk_status_t ret;
61891923 1949
2ff7e61e 1950 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
4246a0b6 1951 if (ret) {
4e4cbee9 1952 bio->bi_status = ret;
4246a0b6
CH
1953 bio_endio(bio);
1954 }
61891923 1955 return ret;
44b8bd7e
CM
1956}
1957
d352ac68 1958/*
cad321ad 1959 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
1960 * on write, or reading the csums from the tree before a read.
1961 *
1962 * Rules about async/sync submit,
1963 * a) read: sync submit
1964 *
1965 * b) write without checksum: sync submit
1966 *
1967 * c) write with checksum:
1968 * c-1) if bio is issued by fsync: sync submit
1969 * (sync_writers != 0)
1970 *
1971 * c-2) if root is reloc root: sync submit
1972 * (only in case of buffered IO)
1973 *
1974 * c-3) otherwise: async submit
d352ac68 1975 */
8c27cb35 1976static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
c6100a4b
JB
1977 int mirror_num, unsigned long bio_flags,
1978 u64 bio_offset)
44b8bd7e 1979{
c6100a4b 1980 struct inode *inode = private_data;
0b246afa 1981 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 1982 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1983 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 1984 blk_status_t ret = 0;
19b9bdb0 1985 int skip_sum;
b812ce28 1986 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1987
6cbff00f 1988 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1989
70ddc553 1990 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 1991 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1992
37226b21 1993 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 1994 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 1995 if (ret)
61891923 1996 goto out;
5fd02043 1997
d20f7043 1998 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1999 ret = btrfs_submit_compressed_read(inode, bio,
2000 mirror_num,
2001 bio_flags);
2002 goto out;
c2db1073 2003 } else if (!skip_sum) {
2ff7e61e 2004 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 2005 if (ret)
61891923 2006 goto out;
c2db1073 2007 }
4d1b5fb4 2008 goto mapit;
b812ce28 2009 } else if (async && !skip_sum) {
17d217fe
YZ
2010 /* csum items have already been cloned */
2011 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2012 goto mapit;
19b9bdb0 2013 /* we're doing a write, do the async checksumming */
c6100a4b
JB
2014 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2015 bio_offset, inode,
e288c080 2016 btrfs_submit_bio_start);
61891923 2017 goto out;
b812ce28 2018 } else if (!skip_sum) {
2ff7e61e 2019 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
2020 if (ret)
2021 goto out;
19b9bdb0
CM
2022 }
2023
0b86a832 2024mapit:
2ff7e61e 2025 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
2026
2027out:
4e4cbee9
CH
2028 if (ret) {
2029 bio->bi_status = ret;
4246a0b6
CH
2030 bio_endio(bio);
2031 }
61891923 2032 return ret;
065631f6 2033}
6885f308 2034
d352ac68
CM
2035/*
2036 * given a list of ordered sums record them in the inode. This happens
2037 * at IO completion time based on sums calculated at bio submission time.
2038 */
ba1da2f4 2039static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2040 struct inode *inode, struct list_head *list)
e6dcd2dc 2041{
e6dcd2dc 2042 struct btrfs_ordered_sum *sum;
ac01f26a 2043 int ret;
e6dcd2dc 2044
c6e30871 2045 list_for_each_entry(sum, list, list) {
7c2871a2 2046 trans->adding_csums = true;
ac01f26a 2047 ret = btrfs_csum_file_blocks(trans,
d20f7043 2048 BTRFS_I(inode)->root->fs_info->csum_root, sum);
7c2871a2 2049 trans->adding_csums = false;
ac01f26a
NB
2050 if (ret)
2051 return ret;
e6dcd2dc
CM
2052 }
2053 return 0;
2054}
2055
2ac55d41 2056int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
e3b8a485 2057 unsigned int extra_bits,
ba8b04c1 2058 struct extent_state **cached_state, int dedupe)
ea8c2819 2059{
09cbfeaf 2060 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 2061 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
e3b8a485 2062 extra_bits, cached_state);
ea8c2819
CM
2063}
2064
d352ac68 2065/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2066struct btrfs_writepage_fixup {
2067 struct page *page;
2068 struct btrfs_work work;
2069};
2070
b2950863 2071static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2072{
2073 struct btrfs_writepage_fixup *fixup;
2074 struct btrfs_ordered_extent *ordered;
2ac55d41 2075 struct extent_state *cached_state = NULL;
364ecf36 2076 struct extent_changeset *data_reserved = NULL;
247e743c
CM
2077 struct page *page;
2078 struct inode *inode;
2079 u64 page_start;
2080 u64 page_end;
87826df0 2081 int ret;
247e743c
CM
2082
2083 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2084 page = fixup->page;
4a096752 2085again:
247e743c
CM
2086 lock_page(page);
2087 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2088 ClearPageChecked(page);
2089 goto out_page;
2090 }
2091
2092 inode = page->mapping->host;
2093 page_start = page_offset(page);
09cbfeaf 2094 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2095
ff13db41 2096 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2097 &cached_state);
4a096752
CM
2098
2099 /* already ordered? We're done */
8b62b72b 2100 if (PagePrivate2(page))
247e743c 2101 goto out;
4a096752 2102
a776c6fa 2103 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2104 PAGE_SIZE);
4a096752 2105 if (ordered) {
2ac55d41 2106 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
e43bbe5e 2107 page_end, &cached_state);
4a096752
CM
2108 unlock_page(page);
2109 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2110 btrfs_put_ordered_extent(ordered);
4a096752
CM
2111 goto again;
2112 }
247e743c 2113
364ecf36 2114 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
09cbfeaf 2115 PAGE_SIZE);
87826df0
JM
2116 if (ret) {
2117 mapping_set_error(page->mapping, ret);
2118 end_extent_writepage(page, ret, page_start, page_end);
2119 ClearPageChecked(page);
2120 goto out;
2121 }
2122
f3038ee3
NB
2123 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2124 &cached_state, 0);
2125 if (ret) {
2126 mapping_set_error(page->mapping, ret);
2127 end_extent_writepage(page, ret, page_start, page_end);
2128 ClearPageChecked(page);
2129 goto out;
2130 }
2131
247e743c 2132 ClearPageChecked(page);
87826df0 2133 set_page_dirty(page);
43b18595 2134 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
247e743c 2135out:
2ac55d41 2136 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
e43bbe5e 2137 &cached_state);
247e743c
CM
2138out_page:
2139 unlock_page(page);
09cbfeaf 2140 put_page(page);
b897abec 2141 kfree(fixup);
364ecf36 2142 extent_changeset_free(data_reserved);
247e743c
CM
2143}
2144
2145/*
2146 * There are a few paths in the higher layers of the kernel that directly
2147 * set the page dirty bit without asking the filesystem if it is a
2148 * good idea. This causes problems because we want to make sure COW
2149 * properly happens and the data=ordered rules are followed.
2150 *
c8b97818 2151 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2152 * hasn't been properly setup for IO. We kick off an async process
2153 * to fix it up. The async helper will wait for ordered extents, set
2154 * the delalloc bit and make it safe to write the page.
2155 */
b2950863 2156static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2157{
2158 struct inode *inode = page->mapping->host;
0b246afa 2159 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2160 struct btrfs_writepage_fixup *fixup;
247e743c 2161
8b62b72b
CM
2162 /* this page is properly in the ordered list */
2163 if (TestClearPagePrivate2(page))
247e743c
CM
2164 return 0;
2165
2166 if (PageChecked(page))
2167 return -EAGAIN;
2168
2169 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2170 if (!fixup)
2171 return -EAGAIN;
f421950f 2172
247e743c 2173 SetPageChecked(page);
09cbfeaf 2174 get_page(page);
9e0af237
LB
2175 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2176 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2177 fixup->page = page;
0b246afa 2178 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2179 return -EBUSY;
247e743c
CM
2180}
2181
d899e052
YZ
2182static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2183 struct inode *inode, u64 file_pos,
2184 u64 disk_bytenr, u64 disk_num_bytes,
2185 u64 num_bytes, u64 ram_bytes,
2186 u8 compression, u8 encryption,
2187 u16 other_encoding, int extent_type)
2188{
2189 struct btrfs_root *root = BTRFS_I(inode)->root;
2190 struct btrfs_file_extent_item *fi;
2191 struct btrfs_path *path;
2192 struct extent_buffer *leaf;
2193 struct btrfs_key ins;
a12b877b 2194 u64 qg_released;
1acae57b 2195 int extent_inserted = 0;
d899e052
YZ
2196 int ret;
2197
2198 path = btrfs_alloc_path();
d8926bb3
MF
2199 if (!path)
2200 return -ENOMEM;
d899e052 2201
a1ed835e
CM
2202 /*
2203 * we may be replacing one extent in the tree with another.
2204 * The new extent is pinned in the extent map, and we don't want
2205 * to drop it from the cache until it is completely in the btree.
2206 *
2207 * So, tell btrfs_drop_extents to leave this extent in the cache.
2208 * the caller is expected to unpin it and allow it to be merged
2209 * with the others.
2210 */
1acae57b
FDBM
2211 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2212 file_pos + num_bytes, NULL, 0,
2213 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2214 if (ret)
2215 goto out;
d899e052 2216
1acae57b 2217 if (!extent_inserted) {
4a0cc7ca 2218 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2219 ins.offset = file_pos;
2220 ins.type = BTRFS_EXTENT_DATA_KEY;
2221
2222 path->leave_spinning = 1;
2223 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2224 sizeof(*fi));
2225 if (ret)
2226 goto out;
2227 }
d899e052
YZ
2228 leaf = path->nodes[0];
2229 fi = btrfs_item_ptr(leaf, path->slots[0],
2230 struct btrfs_file_extent_item);
2231 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2232 btrfs_set_file_extent_type(leaf, fi, extent_type);
2233 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2234 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2235 btrfs_set_file_extent_offset(leaf, fi, 0);
2236 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2237 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2238 btrfs_set_file_extent_compression(leaf, fi, compression);
2239 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2240 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2241
d899e052 2242 btrfs_mark_buffer_dirty(leaf);
ce195332 2243 btrfs_release_path(path);
d899e052
YZ
2244
2245 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2246
2247 ins.objectid = disk_bytenr;
2248 ins.offset = disk_num_bytes;
2249 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2250
297d750b 2251 /*
5846a3c2
QW
2252 * Release the reserved range from inode dirty range map, as it is
2253 * already moved into delayed_ref_head
297d750b 2254 */
a12b877b
QW
2255 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2256 if (ret < 0)
2257 goto out;
2258 qg_released = ret;
84f7d8e6
JB
2259 ret = btrfs_alloc_reserved_file_extent(trans, root,
2260 btrfs_ino(BTRFS_I(inode)),
2261 file_pos, qg_released, &ins);
79787eaa 2262out:
d899e052 2263 btrfs_free_path(path);
b9473439 2264
79787eaa 2265 return ret;
d899e052
YZ
2266}
2267
38c227d8
LB
2268/* snapshot-aware defrag */
2269struct sa_defrag_extent_backref {
2270 struct rb_node node;
2271 struct old_sa_defrag_extent *old;
2272 u64 root_id;
2273 u64 inum;
2274 u64 file_pos;
2275 u64 extent_offset;
2276 u64 num_bytes;
2277 u64 generation;
2278};
2279
2280struct old_sa_defrag_extent {
2281 struct list_head list;
2282 struct new_sa_defrag_extent *new;
2283
2284 u64 extent_offset;
2285 u64 bytenr;
2286 u64 offset;
2287 u64 len;
2288 int count;
2289};
2290
2291struct new_sa_defrag_extent {
2292 struct rb_root root;
2293 struct list_head head;
2294 struct btrfs_path *path;
2295 struct inode *inode;
2296 u64 file_pos;
2297 u64 len;
2298 u64 bytenr;
2299 u64 disk_len;
2300 u8 compress_type;
2301};
2302
2303static int backref_comp(struct sa_defrag_extent_backref *b1,
2304 struct sa_defrag_extent_backref *b2)
2305{
2306 if (b1->root_id < b2->root_id)
2307 return -1;
2308 else if (b1->root_id > b2->root_id)
2309 return 1;
2310
2311 if (b1->inum < b2->inum)
2312 return -1;
2313 else if (b1->inum > b2->inum)
2314 return 1;
2315
2316 if (b1->file_pos < b2->file_pos)
2317 return -1;
2318 else if (b1->file_pos > b2->file_pos)
2319 return 1;
2320
2321 /*
2322 * [------------------------------] ===> (a range of space)
2323 * |<--->| |<---->| =============> (fs/file tree A)
2324 * |<---------------------------->| ===> (fs/file tree B)
2325 *
2326 * A range of space can refer to two file extents in one tree while
2327 * refer to only one file extent in another tree.
2328 *
2329 * So we may process a disk offset more than one time(two extents in A)
2330 * and locate at the same extent(one extent in B), then insert two same
2331 * backrefs(both refer to the extent in B).
2332 */
2333 return 0;
2334}
2335
2336static void backref_insert(struct rb_root *root,
2337 struct sa_defrag_extent_backref *backref)
2338{
2339 struct rb_node **p = &root->rb_node;
2340 struct rb_node *parent = NULL;
2341 struct sa_defrag_extent_backref *entry;
2342 int ret;
2343
2344 while (*p) {
2345 parent = *p;
2346 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2347
2348 ret = backref_comp(backref, entry);
2349 if (ret < 0)
2350 p = &(*p)->rb_left;
2351 else
2352 p = &(*p)->rb_right;
2353 }
2354
2355 rb_link_node(&backref->node, parent, p);
2356 rb_insert_color(&backref->node, root);
2357}
2358
2359/*
2360 * Note the backref might has changed, and in this case we just return 0.
2361 */
2362static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2363 void *ctx)
2364{
2365 struct btrfs_file_extent_item *extent;
38c227d8
LB
2366 struct old_sa_defrag_extent *old = ctx;
2367 struct new_sa_defrag_extent *new = old->new;
2368 struct btrfs_path *path = new->path;
2369 struct btrfs_key key;
2370 struct btrfs_root *root;
2371 struct sa_defrag_extent_backref *backref;
2372 struct extent_buffer *leaf;
2373 struct inode *inode = new->inode;
0b246afa 2374 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2375 int slot;
2376 int ret;
2377 u64 extent_offset;
2378 u64 num_bytes;
2379
2380 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2381 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2382 return 0;
2383
2384 key.objectid = root_id;
2385 key.type = BTRFS_ROOT_ITEM_KEY;
2386 key.offset = (u64)-1;
2387
38c227d8
LB
2388 root = btrfs_read_fs_root_no_name(fs_info, &key);
2389 if (IS_ERR(root)) {
2390 if (PTR_ERR(root) == -ENOENT)
2391 return 0;
2392 WARN_ON(1);
ab8d0fc4 2393 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2394 inum, offset, root_id);
2395 return PTR_ERR(root);
2396 }
2397
2398 key.objectid = inum;
2399 key.type = BTRFS_EXTENT_DATA_KEY;
2400 if (offset > (u64)-1 << 32)
2401 key.offset = 0;
2402 else
2403 key.offset = offset;
2404
2405 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2406 if (WARN_ON(ret < 0))
38c227d8 2407 return ret;
50f1319c 2408 ret = 0;
38c227d8
LB
2409
2410 while (1) {
2411 cond_resched();
2412
2413 leaf = path->nodes[0];
2414 slot = path->slots[0];
2415
2416 if (slot >= btrfs_header_nritems(leaf)) {
2417 ret = btrfs_next_leaf(root, path);
2418 if (ret < 0) {
2419 goto out;
2420 } else if (ret > 0) {
2421 ret = 0;
2422 goto out;
2423 }
2424 continue;
2425 }
2426
2427 path->slots[0]++;
2428
2429 btrfs_item_key_to_cpu(leaf, &key, slot);
2430
2431 if (key.objectid > inum)
2432 goto out;
2433
2434 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2435 continue;
2436
2437 extent = btrfs_item_ptr(leaf, slot,
2438 struct btrfs_file_extent_item);
2439
2440 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2441 continue;
2442
e68afa49
LB
2443 /*
2444 * 'offset' refers to the exact key.offset,
2445 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2446 * (key.offset - extent_offset).
2447 */
2448 if (key.offset != offset)
38c227d8
LB
2449 continue;
2450
e68afa49 2451 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2452 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2453
38c227d8
LB
2454 if (extent_offset >= old->extent_offset + old->offset +
2455 old->len || extent_offset + num_bytes <=
2456 old->extent_offset + old->offset)
2457 continue;
38c227d8
LB
2458 break;
2459 }
2460
2461 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2462 if (!backref) {
2463 ret = -ENOENT;
2464 goto out;
2465 }
2466
2467 backref->root_id = root_id;
2468 backref->inum = inum;
e68afa49 2469 backref->file_pos = offset;
38c227d8
LB
2470 backref->num_bytes = num_bytes;
2471 backref->extent_offset = extent_offset;
2472 backref->generation = btrfs_file_extent_generation(leaf, extent);
2473 backref->old = old;
2474 backref_insert(&new->root, backref);
2475 old->count++;
2476out:
2477 btrfs_release_path(path);
2478 WARN_ON(ret);
2479 return ret;
2480}
2481
2482static noinline bool record_extent_backrefs(struct btrfs_path *path,
2483 struct new_sa_defrag_extent *new)
2484{
0b246afa 2485 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2486 struct old_sa_defrag_extent *old, *tmp;
2487 int ret;
2488
2489 new->path = path;
2490
2491 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2492 ret = iterate_inodes_from_logical(old->bytenr +
2493 old->extent_offset, fs_info,
38c227d8 2494 path, record_one_backref,
c995ab3c 2495 old, false);
4724b106
JB
2496 if (ret < 0 && ret != -ENOENT)
2497 return false;
38c227d8
LB
2498
2499 /* no backref to be processed for this extent */
2500 if (!old->count) {
2501 list_del(&old->list);
2502 kfree(old);
2503 }
2504 }
2505
2506 if (list_empty(&new->head))
2507 return false;
2508
2509 return true;
2510}
2511
2512static int relink_is_mergable(struct extent_buffer *leaf,
2513 struct btrfs_file_extent_item *fi,
116e0024 2514 struct new_sa_defrag_extent *new)
38c227d8 2515{
116e0024 2516 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2517 return 0;
2518
2519 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2520 return 0;
2521
116e0024
LB
2522 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2523 return 0;
2524
2525 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2526 btrfs_file_extent_other_encoding(leaf, fi))
2527 return 0;
2528
2529 return 1;
2530}
2531
2532/*
2533 * Note the backref might has changed, and in this case we just return 0.
2534 */
2535static noinline int relink_extent_backref(struct btrfs_path *path,
2536 struct sa_defrag_extent_backref *prev,
2537 struct sa_defrag_extent_backref *backref)
2538{
2539 struct btrfs_file_extent_item *extent;
2540 struct btrfs_file_extent_item *item;
2541 struct btrfs_ordered_extent *ordered;
2542 struct btrfs_trans_handle *trans;
38c227d8
LB
2543 struct btrfs_root *root;
2544 struct btrfs_key key;
2545 struct extent_buffer *leaf;
2546 struct old_sa_defrag_extent *old = backref->old;
2547 struct new_sa_defrag_extent *new = old->new;
0b246afa 2548 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2549 struct inode *inode;
2550 struct extent_state *cached = NULL;
2551 int ret = 0;
2552 u64 start;
2553 u64 len;
2554 u64 lock_start;
2555 u64 lock_end;
2556 bool merge = false;
2557 int index;
2558
2559 if (prev && prev->root_id == backref->root_id &&
2560 prev->inum == backref->inum &&
2561 prev->file_pos + prev->num_bytes == backref->file_pos)
2562 merge = true;
2563
2564 /* step 1: get root */
2565 key.objectid = backref->root_id;
2566 key.type = BTRFS_ROOT_ITEM_KEY;
2567 key.offset = (u64)-1;
2568
38c227d8
LB
2569 index = srcu_read_lock(&fs_info->subvol_srcu);
2570
2571 root = btrfs_read_fs_root_no_name(fs_info, &key);
2572 if (IS_ERR(root)) {
2573 srcu_read_unlock(&fs_info->subvol_srcu, index);
2574 if (PTR_ERR(root) == -ENOENT)
2575 return 0;
2576 return PTR_ERR(root);
2577 }
38c227d8 2578
bcbba5e6
WS
2579 if (btrfs_root_readonly(root)) {
2580 srcu_read_unlock(&fs_info->subvol_srcu, index);
2581 return 0;
2582 }
2583
38c227d8
LB
2584 /* step 2: get inode */
2585 key.objectid = backref->inum;
2586 key.type = BTRFS_INODE_ITEM_KEY;
2587 key.offset = 0;
2588
2589 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2590 if (IS_ERR(inode)) {
2591 srcu_read_unlock(&fs_info->subvol_srcu, index);
2592 return 0;
2593 }
2594
2595 srcu_read_unlock(&fs_info->subvol_srcu, index);
2596
2597 /* step 3: relink backref */
2598 lock_start = backref->file_pos;
2599 lock_end = backref->file_pos + backref->num_bytes - 1;
2600 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2601 &cached);
38c227d8
LB
2602
2603 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2604 if (ordered) {
2605 btrfs_put_ordered_extent(ordered);
2606 goto out_unlock;
2607 }
2608
2609 trans = btrfs_join_transaction(root);
2610 if (IS_ERR(trans)) {
2611 ret = PTR_ERR(trans);
2612 goto out_unlock;
2613 }
2614
2615 key.objectid = backref->inum;
2616 key.type = BTRFS_EXTENT_DATA_KEY;
2617 key.offset = backref->file_pos;
2618
2619 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2620 if (ret < 0) {
2621 goto out_free_path;
2622 } else if (ret > 0) {
2623 ret = 0;
2624 goto out_free_path;
2625 }
2626
2627 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2628 struct btrfs_file_extent_item);
2629
2630 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2631 backref->generation)
2632 goto out_free_path;
2633
2634 btrfs_release_path(path);
2635
2636 start = backref->file_pos;
2637 if (backref->extent_offset < old->extent_offset + old->offset)
2638 start += old->extent_offset + old->offset -
2639 backref->extent_offset;
2640
2641 len = min(backref->extent_offset + backref->num_bytes,
2642 old->extent_offset + old->offset + old->len);
2643 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2644
2645 ret = btrfs_drop_extents(trans, root, inode, start,
2646 start + len, 1);
2647 if (ret)
2648 goto out_free_path;
2649again:
4a0cc7ca 2650 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2651 key.type = BTRFS_EXTENT_DATA_KEY;
2652 key.offset = start;
2653
a09a0a70 2654 path->leave_spinning = 1;
38c227d8
LB
2655 if (merge) {
2656 struct btrfs_file_extent_item *fi;
2657 u64 extent_len;
2658 struct btrfs_key found_key;
2659
3c9665df 2660 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2661 if (ret < 0)
2662 goto out_free_path;
2663
2664 path->slots[0]--;
2665 leaf = path->nodes[0];
2666 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2667
2668 fi = btrfs_item_ptr(leaf, path->slots[0],
2669 struct btrfs_file_extent_item);
2670 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2671
116e0024
LB
2672 if (extent_len + found_key.offset == start &&
2673 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2674 btrfs_set_file_extent_num_bytes(leaf, fi,
2675 extent_len + len);
2676 btrfs_mark_buffer_dirty(leaf);
2677 inode_add_bytes(inode, len);
2678
2679 ret = 1;
2680 goto out_free_path;
2681 } else {
2682 merge = false;
2683 btrfs_release_path(path);
2684 goto again;
2685 }
2686 }
2687
2688 ret = btrfs_insert_empty_item(trans, root, path, &key,
2689 sizeof(*extent));
2690 if (ret) {
66642832 2691 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2692 goto out_free_path;
2693 }
2694
2695 leaf = path->nodes[0];
2696 item = btrfs_item_ptr(leaf, path->slots[0],
2697 struct btrfs_file_extent_item);
2698 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2699 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2700 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2701 btrfs_set_file_extent_num_bytes(leaf, item, len);
2702 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2703 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2704 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2705 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2706 btrfs_set_file_extent_encryption(leaf, item, 0);
2707 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2708
2709 btrfs_mark_buffer_dirty(leaf);
2710 inode_add_bytes(inode, len);
a09a0a70 2711 btrfs_release_path(path);
38c227d8 2712
84f7d8e6 2713 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
38c227d8
LB
2714 new->disk_len, 0,
2715 backref->root_id, backref->inum,
b06c4bf5 2716 new->file_pos); /* start - extent_offset */
38c227d8 2717 if (ret) {
66642832 2718 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2719 goto out_free_path;
2720 }
2721
2722 ret = 1;
2723out_free_path:
2724 btrfs_release_path(path);
a09a0a70 2725 path->leave_spinning = 0;
3a45bb20 2726 btrfs_end_transaction(trans);
38c227d8
LB
2727out_unlock:
2728 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
e43bbe5e 2729 &cached);
38c227d8
LB
2730 iput(inode);
2731 return ret;
2732}
2733
6f519564
LB
2734static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2735{
2736 struct old_sa_defrag_extent *old, *tmp;
2737
2738 if (!new)
2739 return;
2740
2741 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2742 kfree(old);
2743 }
2744 kfree(new);
2745}
2746
38c227d8
LB
2747static void relink_file_extents(struct new_sa_defrag_extent *new)
2748{
0b246afa 2749 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2750 struct btrfs_path *path;
38c227d8
LB
2751 struct sa_defrag_extent_backref *backref;
2752 struct sa_defrag_extent_backref *prev = NULL;
38c227d8
LB
2753 struct rb_node *node;
2754 int ret;
2755
38c227d8
LB
2756 path = btrfs_alloc_path();
2757 if (!path)
2758 return;
2759
2760 if (!record_extent_backrefs(path, new)) {
2761 btrfs_free_path(path);
2762 goto out;
2763 }
2764 btrfs_release_path(path);
2765
2766 while (1) {
2767 node = rb_first(&new->root);
2768 if (!node)
2769 break;
2770 rb_erase(node, &new->root);
2771
2772 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2773
2774 ret = relink_extent_backref(path, prev, backref);
2775 WARN_ON(ret < 0);
2776
2777 kfree(prev);
2778
2779 if (ret == 1)
2780 prev = backref;
2781 else
2782 prev = NULL;
2783 cond_resched();
2784 }
2785 kfree(prev);
2786
2787 btrfs_free_path(path);
38c227d8 2788out:
6f519564
LB
2789 free_sa_defrag_extent(new);
2790
0b246afa
JM
2791 atomic_dec(&fs_info->defrag_running);
2792 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2793}
2794
2795static struct new_sa_defrag_extent *
2796record_old_file_extents(struct inode *inode,
2797 struct btrfs_ordered_extent *ordered)
2798{
0b246afa 2799 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2800 struct btrfs_root *root = BTRFS_I(inode)->root;
2801 struct btrfs_path *path;
2802 struct btrfs_key key;
6f519564 2803 struct old_sa_defrag_extent *old;
38c227d8
LB
2804 struct new_sa_defrag_extent *new;
2805 int ret;
2806
2807 new = kmalloc(sizeof(*new), GFP_NOFS);
2808 if (!new)
2809 return NULL;
2810
2811 new->inode = inode;
2812 new->file_pos = ordered->file_offset;
2813 new->len = ordered->len;
2814 new->bytenr = ordered->start;
2815 new->disk_len = ordered->disk_len;
2816 new->compress_type = ordered->compress_type;
2817 new->root = RB_ROOT;
2818 INIT_LIST_HEAD(&new->head);
2819
2820 path = btrfs_alloc_path();
2821 if (!path)
2822 goto out_kfree;
2823
4a0cc7ca 2824 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2825 key.type = BTRFS_EXTENT_DATA_KEY;
2826 key.offset = new->file_pos;
2827
2828 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2829 if (ret < 0)
2830 goto out_free_path;
2831 if (ret > 0 && path->slots[0] > 0)
2832 path->slots[0]--;
2833
2834 /* find out all the old extents for the file range */
2835 while (1) {
2836 struct btrfs_file_extent_item *extent;
2837 struct extent_buffer *l;
2838 int slot;
2839 u64 num_bytes;
2840 u64 offset;
2841 u64 end;
2842 u64 disk_bytenr;
2843 u64 extent_offset;
2844
2845 l = path->nodes[0];
2846 slot = path->slots[0];
2847
2848 if (slot >= btrfs_header_nritems(l)) {
2849 ret = btrfs_next_leaf(root, path);
2850 if (ret < 0)
6f519564 2851 goto out_free_path;
38c227d8
LB
2852 else if (ret > 0)
2853 break;
2854 continue;
2855 }
2856
2857 btrfs_item_key_to_cpu(l, &key, slot);
2858
4a0cc7ca 2859 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2860 break;
2861 if (key.type != BTRFS_EXTENT_DATA_KEY)
2862 break;
2863 if (key.offset >= new->file_pos + new->len)
2864 break;
2865
2866 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2867
2868 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2869 if (key.offset + num_bytes < new->file_pos)
2870 goto next;
2871
2872 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2873 if (!disk_bytenr)
2874 goto next;
2875
2876 extent_offset = btrfs_file_extent_offset(l, extent);
2877
2878 old = kmalloc(sizeof(*old), GFP_NOFS);
2879 if (!old)
6f519564 2880 goto out_free_path;
38c227d8
LB
2881
2882 offset = max(new->file_pos, key.offset);
2883 end = min(new->file_pos + new->len, key.offset + num_bytes);
2884
2885 old->bytenr = disk_bytenr;
2886 old->extent_offset = extent_offset;
2887 old->offset = offset - key.offset;
2888 old->len = end - offset;
2889 old->new = new;
2890 old->count = 0;
2891 list_add_tail(&old->list, &new->head);
2892next:
2893 path->slots[0]++;
2894 cond_resched();
2895 }
2896
2897 btrfs_free_path(path);
0b246afa 2898 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2899
2900 return new;
2901
38c227d8
LB
2902out_free_path:
2903 btrfs_free_path(path);
2904out_kfree:
6f519564 2905 free_sa_defrag_extent(new);
38c227d8
LB
2906 return NULL;
2907}
2908
2ff7e61e 2909static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2910 u64 start, u64 len)
2911{
2912 struct btrfs_block_group_cache *cache;
2913
0b246afa 2914 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2915 ASSERT(cache);
2916
2917 spin_lock(&cache->lock);
2918 cache->delalloc_bytes -= len;
2919 spin_unlock(&cache->lock);
2920
2921 btrfs_put_block_group(cache);
2922}
2923
d352ac68
CM
2924/* as ordered data IO finishes, this gets called so we can finish
2925 * an ordered extent if the range of bytes in the file it covers are
2926 * fully written.
2927 */
5fd02043 2928static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2929{
5fd02043 2930 struct inode *inode = ordered_extent->inode;
0b246afa 2931 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2932 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2933 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2934 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2935 struct extent_state *cached_state = NULL;
38c227d8 2936 struct new_sa_defrag_extent *new = NULL;
261507a0 2937 int compress_type = 0;
77cef2ec
JB
2938 int ret = 0;
2939 u64 logical_len = ordered_extent->len;
82d5902d 2940 bool nolock;
77cef2ec 2941 bool truncated = false;
a7e3b975
FM
2942 bool range_locked = false;
2943 bool clear_new_delalloc_bytes = false;
2944
2945 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2946 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2947 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2948 clear_new_delalloc_bytes = true;
e6dcd2dc 2949
70ddc553 2950 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2951
5fd02043
JB
2952 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2953 ret = -EIO;
2954 goto out;
2955 }
2956
7ab7956e
NB
2957 btrfs_free_io_failure_record(BTRFS_I(inode),
2958 ordered_extent->file_offset,
2959 ordered_extent->file_offset +
2960 ordered_extent->len - 1);
f612496b 2961
77cef2ec
JB
2962 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2963 truncated = true;
2964 logical_len = ordered_extent->truncated_len;
2965 /* Truncated the entire extent, don't bother adding */
2966 if (!logical_len)
2967 goto out;
2968 }
2969
c2167754 2970 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2971 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2972
2973 /*
2974 * For mwrite(mmap + memset to write) case, we still reserve
2975 * space for NOCOW range.
2976 * As NOCOW won't cause a new delayed ref, just free the space
2977 */
bc42bda2 2978 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
94ed938a 2979 ordered_extent->len);
6c760c07
JB
2980 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2981 if (nolock)
2982 trans = btrfs_join_transaction_nolock(root);
2983 else
2984 trans = btrfs_join_transaction(root);
2985 if (IS_ERR(trans)) {
2986 ret = PTR_ERR(trans);
2987 trans = NULL;
2988 goto out;
c2167754 2989 }
69fe2d75 2990 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
2991 ret = btrfs_update_inode_fallback(trans, root, inode);
2992 if (ret) /* -ENOMEM or corruption */
66642832 2993 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2994 goto out;
2995 }
e6dcd2dc 2996
a7e3b975 2997 range_locked = true;
2ac55d41
JB
2998 lock_extent_bits(io_tree, ordered_extent->file_offset,
2999 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 3000 &cached_state);
e6dcd2dc 3001
38c227d8
LB
3002 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3003 ordered_extent->file_offset + ordered_extent->len - 1,
452e62b7 3004 EXTENT_DEFRAG, 0, cached_state);
38c227d8
LB
3005 if (ret) {
3006 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 3007 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
3008 /* the inode is shared */
3009 new = record_old_file_extents(inode, ordered_extent);
3010
3011 clear_extent_bit(io_tree, ordered_extent->file_offset,
3012 ordered_extent->file_offset + ordered_extent->len - 1,
ae0f1625 3013 EXTENT_DEFRAG, 0, 0, &cached_state);
38c227d8
LB
3014 }
3015
0cb59c99 3016 if (nolock)
7a7eaa40 3017 trans = btrfs_join_transaction_nolock(root);
0cb59c99 3018 else
7a7eaa40 3019 trans = btrfs_join_transaction(root);
79787eaa
JM
3020 if (IS_ERR(trans)) {
3021 ret = PTR_ERR(trans);
3022 trans = NULL;
a7e3b975 3023 goto out;
79787eaa 3024 }
a79b7d4b 3025
69fe2d75 3026 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 3027
c8b97818 3028 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 3029 compress_type = ordered_extent->compress_type;
d899e052 3030 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 3031 BUG_ON(compress_type);
b430b775
JM
3032 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3033 ordered_extent->len);
7a6d7067 3034 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
3035 ordered_extent->file_offset,
3036 ordered_extent->file_offset +
77cef2ec 3037 logical_len);
d899e052 3038 } else {
0b246afa 3039 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
3040 ret = insert_reserved_file_extent(trans, inode,
3041 ordered_extent->file_offset,
3042 ordered_extent->start,
3043 ordered_extent->disk_len,
77cef2ec 3044 logical_len, logical_len,
261507a0 3045 compress_type, 0, 0,
d899e052 3046 BTRFS_FILE_EXTENT_REG);
e570fd27 3047 if (!ret)
2ff7e61e 3048 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
3049 ordered_extent->start,
3050 ordered_extent->disk_len);
d899e052 3051 }
5dc562c5
JB
3052 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3053 ordered_extent->file_offset, ordered_extent->len,
3054 trans->transid);
79787eaa 3055 if (ret < 0) {
66642832 3056 btrfs_abort_transaction(trans, ret);
a7e3b975 3057 goto out;
79787eaa 3058 }
2ac55d41 3059
ac01f26a
NB
3060 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3061 if (ret) {
3062 btrfs_abort_transaction(trans, ret);
3063 goto out;
3064 }
e6dcd2dc 3065
6c760c07
JB
3066 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3067 ret = btrfs_update_inode_fallback(trans, root, inode);
3068 if (ret) { /* -ENOMEM or corruption */
66642832 3069 btrfs_abort_transaction(trans, ret);
a7e3b975 3070 goto out;
1ef30be1
JB
3071 }
3072 ret = 0;
c2167754 3073out:
a7e3b975
FM
3074 if (range_locked || clear_new_delalloc_bytes) {
3075 unsigned int clear_bits = 0;
3076
3077 if (range_locked)
3078 clear_bits |= EXTENT_LOCKED;
3079 if (clear_new_delalloc_bytes)
3080 clear_bits |= EXTENT_DELALLOC_NEW;
3081 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3082 ordered_extent->file_offset,
3083 ordered_extent->file_offset +
3084 ordered_extent->len - 1,
3085 clear_bits,
3086 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
ae0f1625 3087 0, &cached_state);
a7e3b975
FM
3088 }
3089
a698d075 3090 if (trans)
3a45bb20 3091 btrfs_end_transaction(trans);
0cb59c99 3092
77cef2ec
JB
3093 if (ret || truncated) {
3094 u64 start, end;
3095
3096 if (truncated)
3097 start = ordered_extent->file_offset + logical_len;
3098 else
3099 start = ordered_extent->file_offset;
3100 end = ordered_extent->file_offset + ordered_extent->len - 1;
f08dc36f 3101 clear_extent_uptodate(io_tree, start, end, NULL);
77cef2ec
JB
3102
3103 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 3104 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 3105
0bec9ef5
JB
3106 /*
3107 * If the ordered extent had an IOERR or something else went
3108 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3109 * back to the allocator. We only free the extent in the
3110 * truncated case if we didn't write out the extent at all.
0bec9ef5 3111 */
77cef2ec
JB
3112 if ((ret || !logical_len) &&
3113 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3114 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3115 btrfs_free_reserved_extent(fs_info,
3116 ordered_extent->start,
e570fd27 3117 ordered_extent->disk_len, 1);
0bec9ef5
JB
3118 }
3119
3120
5fd02043 3121 /*
8bad3c02
LB
3122 * This needs to be done to make sure anybody waiting knows we are done
3123 * updating everything for this ordered extent.
5fd02043
JB
3124 */
3125 btrfs_remove_ordered_extent(inode, ordered_extent);
3126
38c227d8 3127 /* for snapshot-aware defrag */
6f519564
LB
3128 if (new) {
3129 if (ret) {
3130 free_sa_defrag_extent(new);
0b246afa 3131 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3132 } else {
3133 relink_file_extents(new);
3134 }
3135 }
38c227d8 3136
e6dcd2dc
CM
3137 /* once for us */
3138 btrfs_put_ordered_extent(ordered_extent);
3139 /* once for the tree */
3140 btrfs_put_ordered_extent(ordered_extent);
3141
e73e81b6
EL
3142 /* Try to release some metadata so we don't get an OOM but don't wait */
3143 btrfs_btree_balance_dirty_nodelay(fs_info);
3144
5fd02043
JB
3145 return ret;
3146}
3147
3148static void finish_ordered_fn(struct btrfs_work *work)
3149{
3150 struct btrfs_ordered_extent *ordered_extent;
3151 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3152 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3153}
3154
c3988d63 3155static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3156 struct extent_state *state, int uptodate)
3157{
5fd02043 3158 struct inode *inode = page->mapping->host;
0b246afa 3159 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3160 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3161 struct btrfs_workqueue *wq;
3162 btrfs_work_func_t func;
5fd02043 3163
1abe9b8a 3164 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3165
8b62b72b 3166 ClearPagePrivate2(page);
5fd02043
JB
3167 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3168 end - start + 1, uptodate))
c3988d63 3169 return;
5fd02043 3170
70ddc553 3171 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 3172 wq = fs_info->endio_freespace_worker;
9e0af237
LB
3173 func = btrfs_freespace_write_helper;
3174 } else {
0b246afa 3175 wq = fs_info->endio_write_workers;
9e0af237
LB
3176 func = btrfs_endio_write_helper;
3177 }
5fd02043 3178
9e0af237
LB
3179 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3180 NULL);
3181 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3182}
3183
dc380aea
MX
3184static int __readpage_endio_check(struct inode *inode,
3185 struct btrfs_io_bio *io_bio,
3186 int icsum, struct page *page,
3187 int pgoff, u64 start, size_t len)
3188{
3189 char *kaddr;
3190 u32 csum_expected;
3191 u32 csum = ~(u32)0;
dc380aea
MX
3192
3193 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3194
3195 kaddr = kmap_atomic(page);
3196 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
0b5e3daf 3197 btrfs_csum_final(csum, (u8 *)&csum);
dc380aea
MX
3198 if (csum != csum_expected)
3199 goto zeroit;
3200
3201 kunmap_atomic(kaddr);
3202 return 0;
3203zeroit:
0970a22e 3204 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
6f6b643e 3205 io_bio->mirror_num);
dc380aea
MX
3206 memset(kaddr + pgoff, 1, len);
3207 flush_dcache_page(page);
3208 kunmap_atomic(kaddr);
dc380aea
MX
3209 return -EIO;
3210}
3211
d352ac68
CM
3212/*
3213 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3214 * if there's a match, we allow the bio to finish. If not, the code in
3215 * extent_io.c will try to find good copies for us.
d352ac68 3216 */
facc8a22
MX
3217static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3218 u64 phy_offset, struct page *page,
3219 u64 start, u64 end, int mirror)
07157aac 3220{
4eee4fa4 3221 size_t offset = start - page_offset(page);
07157aac 3222 struct inode *inode = page->mapping->host;
d1310b2e 3223 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3224 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3225
d20f7043
CM
3226 if (PageChecked(page)) {
3227 ClearPageChecked(page);
dc380aea 3228 return 0;
d20f7043 3229 }
6cbff00f
CH
3230
3231 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3232 return 0;
17d217fe
YZ
3233
3234 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3235 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3236 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3237 return 0;
17d217fe 3238 }
d20f7043 3239
facc8a22 3240 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3241 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3242 start, (size_t)(end - start + 1));
07157aac 3243}
b888db2b 3244
c1c3fac2
NB
3245/*
3246 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3247 *
3248 * @inode: The inode we want to perform iput on
3249 *
3250 * This function uses the generic vfs_inode::i_count to track whether we should
3251 * just decrement it (in case it's > 1) or if this is the last iput then link
3252 * the inode to the delayed iput machinery. Delayed iputs are processed at
3253 * transaction commit time/superblock commit/cleaner kthread.
3254 */
24bbcf04
YZ
3255void btrfs_add_delayed_iput(struct inode *inode)
3256{
0b246afa 3257 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3258 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3259
3260 if (atomic_add_unless(&inode->i_count, -1, 1))
3261 return;
3262
24bbcf04 3263 spin_lock(&fs_info->delayed_iput_lock);
c1c3fac2
NB
3264 ASSERT(list_empty(&binode->delayed_iput));
3265 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
24bbcf04
YZ
3266 spin_unlock(&fs_info->delayed_iput_lock);
3267}
3268
2ff7e61e 3269void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3270{
24bbcf04 3271
24bbcf04 3272 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3273 while (!list_empty(&fs_info->delayed_iputs)) {
3274 struct btrfs_inode *inode;
3275
3276 inode = list_first_entry(&fs_info->delayed_iputs,
3277 struct btrfs_inode, delayed_iput);
c1c3fac2 3278 list_del_init(&inode->delayed_iput);
8089fe62
DS
3279 spin_unlock(&fs_info->delayed_iput_lock);
3280 iput(&inode->vfs_inode);
3281 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3282 }
8089fe62 3283 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3284}
3285
7b128766 3286/*
f7e9e8fc
OS
3287 * This creates an orphan entry for the given inode in case something goes wrong
3288 * in the middle of an unlink.
7b128766 3289 */
73f2e545 3290int btrfs_orphan_add(struct btrfs_trans_handle *trans,
27919067 3291 struct btrfs_inode *inode)
7b128766 3292{
d68fc57b 3293 int ret;
7b128766 3294
27919067
OS
3295 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3296 if (ret && ret != -EEXIST) {
3297 btrfs_abort_transaction(trans, ret);
3298 return ret;
d68fc57b
YZ
3299 }
3300
d68fc57b 3301 return 0;
7b128766
JB
3302}
3303
3304/*
f7e9e8fc
OS
3305 * We have done the delete so we can go ahead and remove the orphan item for
3306 * this particular inode.
7b128766 3307 */
48a3b636 3308static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3309 struct btrfs_inode *inode)
7b128766 3310{
27919067 3311 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
7b128766
JB
3312}
3313
3314/*
3315 * this cleans up any orphans that may be left on the list from the last use
3316 * of this root.
3317 */
66b4ffd1 3318int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3319{
0b246afa 3320 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3321 struct btrfs_path *path;
3322 struct extent_buffer *leaf;
7b128766
JB
3323 struct btrfs_key key, found_key;
3324 struct btrfs_trans_handle *trans;
3325 struct inode *inode;
8f6d7f4f 3326 u64 last_objectid = 0;
f7e9e8fc 3327 int ret = 0, nr_unlink = 0;
7b128766 3328
d68fc57b 3329 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3330 return 0;
c71bf099
YZ
3331
3332 path = btrfs_alloc_path();
66b4ffd1
JB
3333 if (!path) {
3334 ret = -ENOMEM;
3335 goto out;
3336 }
e4058b54 3337 path->reada = READA_BACK;
7b128766
JB
3338
3339 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3340 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3341 key.offset = (u64)-1;
3342
7b128766
JB
3343 while (1) {
3344 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3345 if (ret < 0)
3346 goto out;
7b128766
JB
3347
3348 /*
3349 * if ret == 0 means we found what we were searching for, which
25985edc 3350 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3351 * find the key and see if we have stuff that matches
3352 */
3353 if (ret > 0) {
66b4ffd1 3354 ret = 0;
7b128766
JB
3355 if (path->slots[0] == 0)
3356 break;
3357 path->slots[0]--;
3358 }
3359
3360 /* pull out the item */
3361 leaf = path->nodes[0];
7b128766
JB
3362 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3363
3364 /* make sure the item matches what we want */
3365 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3366 break;
962a298f 3367 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3368 break;
3369
3370 /* release the path since we're done with it */
b3b4aa74 3371 btrfs_release_path(path);
7b128766
JB
3372
3373 /*
3374 * this is where we are basically btrfs_lookup, without the
3375 * crossing root thing. we store the inode number in the
3376 * offset of the orphan item.
3377 */
8f6d7f4f
JB
3378
3379 if (found_key.offset == last_objectid) {
0b246afa
JM
3380 btrfs_err(fs_info,
3381 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3382 ret = -EINVAL;
3383 goto out;
3384 }
3385
3386 last_objectid = found_key.offset;
3387
5d4f98a2
YZ
3388 found_key.objectid = found_key.offset;
3389 found_key.type = BTRFS_INODE_ITEM_KEY;
3390 found_key.offset = 0;
0b246afa 3391 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3392 ret = PTR_ERR_OR_ZERO(inode);
67710892 3393 if (ret && ret != -ENOENT)
66b4ffd1 3394 goto out;
7b128766 3395
0b246afa 3396 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3397 struct btrfs_root *dead_root;
3398 struct btrfs_fs_info *fs_info = root->fs_info;
3399 int is_dead_root = 0;
3400
3401 /*
3402 * this is an orphan in the tree root. Currently these
3403 * could come from 2 sources:
3404 * a) a snapshot deletion in progress
3405 * b) a free space cache inode
3406 * We need to distinguish those two, as the snapshot
3407 * orphan must not get deleted.
3408 * find_dead_roots already ran before us, so if this
3409 * is a snapshot deletion, we should find the root
3410 * in the dead_roots list
3411 */
3412 spin_lock(&fs_info->trans_lock);
3413 list_for_each_entry(dead_root, &fs_info->dead_roots,
3414 root_list) {
3415 if (dead_root->root_key.objectid ==
3416 found_key.objectid) {
3417 is_dead_root = 1;
3418 break;
3419 }
3420 }
3421 spin_unlock(&fs_info->trans_lock);
3422 if (is_dead_root) {
3423 /* prevent this orphan from being found again */
3424 key.offset = found_key.objectid - 1;
3425 continue;
3426 }
f7e9e8fc 3427
f8e9e0b0 3428 }
f7e9e8fc 3429
7b128766 3430 /*
f7e9e8fc
OS
3431 * If we have an inode with links, there are a couple of
3432 * possibilities. Old kernels (before v3.12) used to create an
3433 * orphan item for truncate indicating that there were possibly
3434 * extent items past i_size that needed to be deleted. In v3.12,
3435 * truncate was changed to update i_size in sync with the extent
3436 * items, but the (useless) orphan item was still created. Since
3437 * v4.18, we don't create the orphan item for truncate at all.
3438 *
3439 * So, this item could mean that we need to do a truncate, but
3440 * only if this filesystem was last used on a pre-v3.12 kernel
3441 * and was not cleanly unmounted. The odds of that are quite
3442 * slim, and it's a pain to do the truncate now, so just delete
3443 * the orphan item.
3444 *
3445 * It's also possible that this orphan item was supposed to be
3446 * deleted but wasn't. The inode number may have been reused,
3447 * but either way, we can delete the orphan item.
7b128766 3448 */
f7e9e8fc
OS
3449 if (ret == -ENOENT || inode->i_nlink) {
3450 if (!ret)
3451 iput(inode);
a8c9e576 3452 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3453 if (IS_ERR(trans)) {
3454 ret = PTR_ERR(trans);
3455 goto out;
3456 }
0b246afa
JM
3457 btrfs_debug(fs_info, "auto deleting %Lu",
3458 found_key.objectid);
a8c9e576
JB
3459 ret = btrfs_del_orphan_item(trans, root,
3460 found_key.objectid);
3a45bb20 3461 btrfs_end_transaction(trans);
4ef31a45
JB
3462 if (ret)
3463 goto out;
7b128766
JB
3464 continue;
3465 }
3466
f7e9e8fc 3467 nr_unlink++;
7b128766
JB
3468
3469 /* this will do delete_inode and everything for us */
3470 iput(inode);
3471 }
3254c876
MX
3472 /* release the path since we're done with it */
3473 btrfs_release_path(path);
3474
d68fc57b
YZ
3475 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3476
a575ceeb 3477 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3478 trans = btrfs_join_transaction(root);
66b4ffd1 3479 if (!IS_ERR(trans))
3a45bb20 3480 btrfs_end_transaction(trans);
d68fc57b 3481 }
7b128766
JB
3482
3483 if (nr_unlink)
0b246afa 3484 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
66b4ffd1
JB
3485
3486out:
3487 if (ret)
0b246afa 3488 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3489 btrfs_free_path(path);
3490 return ret;
7b128766
JB
3491}
3492
46a53cca
CM
3493/*
3494 * very simple check to peek ahead in the leaf looking for xattrs. If we
3495 * don't find any xattrs, we know there can't be any acls.
3496 *
3497 * slot is the slot the inode is in, objectid is the objectid of the inode
3498 */
3499static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3500 int slot, u64 objectid,
3501 int *first_xattr_slot)
46a53cca
CM
3502{
3503 u32 nritems = btrfs_header_nritems(leaf);
3504 struct btrfs_key found_key;
f23b5a59
JB
3505 static u64 xattr_access = 0;
3506 static u64 xattr_default = 0;
46a53cca
CM
3507 int scanned = 0;
3508
f23b5a59 3509 if (!xattr_access) {
97d79299
AG
3510 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3511 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3512 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3513 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3514 }
3515
46a53cca 3516 slot++;
63541927 3517 *first_xattr_slot = -1;
46a53cca
CM
3518 while (slot < nritems) {
3519 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3520
3521 /* we found a different objectid, there must not be acls */
3522 if (found_key.objectid != objectid)
3523 return 0;
3524
3525 /* we found an xattr, assume we've got an acl */
f23b5a59 3526 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3527 if (*first_xattr_slot == -1)
3528 *first_xattr_slot = slot;
f23b5a59
JB
3529 if (found_key.offset == xattr_access ||
3530 found_key.offset == xattr_default)
3531 return 1;
3532 }
46a53cca
CM
3533
3534 /*
3535 * we found a key greater than an xattr key, there can't
3536 * be any acls later on
3537 */
3538 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3539 return 0;
3540
3541 slot++;
3542 scanned++;
3543
3544 /*
3545 * it goes inode, inode backrefs, xattrs, extents,
3546 * so if there are a ton of hard links to an inode there can
3547 * be a lot of backrefs. Don't waste time searching too hard,
3548 * this is just an optimization
3549 */
3550 if (scanned >= 8)
3551 break;
3552 }
3553 /* we hit the end of the leaf before we found an xattr or
3554 * something larger than an xattr. We have to assume the inode
3555 * has acls
3556 */
63541927
FDBM
3557 if (*first_xattr_slot == -1)
3558 *first_xattr_slot = slot;
46a53cca
CM
3559 return 1;
3560}
3561
d352ac68
CM
3562/*
3563 * read an inode from the btree into the in-memory inode
3564 */
67710892 3565static int btrfs_read_locked_inode(struct inode *inode)
39279cc3 3566{
0b246afa 3567 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 3568 struct btrfs_path *path;
5f39d397 3569 struct extent_buffer *leaf;
39279cc3
CM
3570 struct btrfs_inode_item *inode_item;
3571 struct btrfs_root *root = BTRFS_I(inode)->root;
3572 struct btrfs_key location;
67de1176 3573 unsigned long ptr;
46a53cca 3574 int maybe_acls;
618e21d5 3575 u32 rdev;
39279cc3 3576 int ret;
2f7e33d4 3577 bool filled = false;
63541927 3578 int first_xattr_slot;
2f7e33d4
MX
3579
3580 ret = btrfs_fill_inode(inode, &rdev);
3581 if (!ret)
3582 filled = true;
39279cc3
CM
3583
3584 path = btrfs_alloc_path();
f5b3a417
AV
3585 if (!path)
3586 return -ENOMEM;
1748f843 3587
39279cc3 3588 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3589
39279cc3 3590 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892 3591 if (ret) {
f5b3a417
AV
3592 btrfs_free_path(path);
3593 return ret;
67710892 3594 }
39279cc3 3595
5f39d397 3596 leaf = path->nodes[0];
2f7e33d4
MX
3597
3598 if (filled)
67de1176 3599 goto cache_index;
2f7e33d4 3600
5f39d397
CM
3601 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3602 struct btrfs_inode_item);
5f39d397 3603 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3604 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3605 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3606 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3607 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3608
a937b979
DS
3609 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3610 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3611
a937b979
DS
3612 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3613 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3614
a937b979
DS
3615 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3616 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3617
9cc97d64 3618 BTRFS_I(inode)->i_otime.tv_sec =
3619 btrfs_timespec_sec(leaf, &inode_item->otime);
3620 BTRFS_I(inode)->i_otime.tv_nsec =
3621 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3622
a76a3cd4 3623 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3624 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3625 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3626
c7f88c4e
JL
3627 inode_set_iversion_queried(inode,
3628 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3629 inode->i_generation = BTRFS_I(inode)->generation;
3630 inode->i_rdev = 0;
3631 rdev = btrfs_inode_rdev(leaf, inode_item);
3632
3633 BTRFS_I(inode)->index_cnt = (u64)-1;
3634 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3635
3636cache_index:
5dc562c5
JB
3637 /*
3638 * If we were modified in the current generation and evicted from memory
3639 * and then re-read we need to do a full sync since we don't have any
3640 * idea about which extents were modified before we were evicted from
3641 * cache.
6e17d30b
YD
3642 *
3643 * This is required for both inode re-read from disk and delayed inode
3644 * in delayed_nodes_tree.
5dc562c5 3645 */
0b246afa 3646 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3647 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3648 &BTRFS_I(inode)->runtime_flags);
3649
bde6c242
FM
3650 /*
3651 * We don't persist the id of the transaction where an unlink operation
3652 * against the inode was last made. So here we assume the inode might
3653 * have been evicted, and therefore the exact value of last_unlink_trans
3654 * lost, and set it to last_trans to avoid metadata inconsistencies
3655 * between the inode and its parent if the inode is fsync'ed and the log
3656 * replayed. For example, in the scenario:
3657 *
3658 * touch mydir/foo
3659 * ln mydir/foo mydir/bar
3660 * sync
3661 * unlink mydir/bar
3662 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3663 * xfs_io -c fsync mydir/foo
3664 * <power failure>
3665 * mount fs, triggers fsync log replay
3666 *
3667 * We must make sure that when we fsync our inode foo we also log its
3668 * parent inode, otherwise after log replay the parent still has the
3669 * dentry with the "bar" name but our inode foo has a link count of 1
3670 * and doesn't have an inode ref with the name "bar" anymore.
3671 *
3672 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3673 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3674 * transaction commits on fsync if our inode is a directory, or if our
3675 * inode is not a directory, logging its parent unnecessarily.
3676 */
3677 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3678
67de1176
MX
3679 path->slots[0]++;
3680 if (inode->i_nlink != 1 ||
3681 path->slots[0] >= btrfs_header_nritems(leaf))
3682 goto cache_acl;
3683
3684 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3685 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3686 goto cache_acl;
3687
3688 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3689 if (location.type == BTRFS_INODE_REF_KEY) {
3690 struct btrfs_inode_ref *ref;
3691
3692 ref = (struct btrfs_inode_ref *)ptr;
3693 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3694 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3695 struct btrfs_inode_extref *extref;
3696
3697 extref = (struct btrfs_inode_extref *)ptr;
3698 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3699 extref);
3700 }
2f7e33d4 3701cache_acl:
46a53cca
CM
3702 /*
3703 * try to precache a NULL acl entry for files that don't have
3704 * any xattrs or acls
3705 */
33345d01 3706 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3707 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3708 if (first_xattr_slot != -1) {
3709 path->slots[0] = first_xattr_slot;
3710 ret = btrfs_load_inode_props(inode, path);
3711 if (ret)
0b246afa 3712 btrfs_err(fs_info,
351fd353 3713 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3714 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3715 root->root_key.objectid, ret);
3716 }
3717 btrfs_free_path(path);
3718
72c04902
AV
3719 if (!maybe_acls)
3720 cache_no_acl(inode);
46a53cca 3721
39279cc3 3722 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3723 case S_IFREG:
3724 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3725 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3726 inode->i_fop = &btrfs_file_operations;
3727 inode->i_op = &btrfs_file_inode_operations;
3728 break;
3729 case S_IFDIR:
3730 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3731 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3732 break;
3733 case S_IFLNK:
3734 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3735 inode_nohighmem(inode);
39279cc3
CM
3736 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3737 break;
618e21d5 3738 default:
0279b4cd 3739 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3740 init_special_inode(inode, inode->i_mode, rdev);
3741 break;
39279cc3 3742 }
6cbff00f 3743
7b6a221e 3744 btrfs_sync_inode_flags_to_i_flags(inode);
67710892 3745 return 0;
39279cc3
CM
3746}
3747
d352ac68
CM
3748/*
3749 * given a leaf and an inode, copy the inode fields into the leaf
3750 */
e02119d5
CM
3751static void fill_inode_item(struct btrfs_trans_handle *trans,
3752 struct extent_buffer *leaf,
5f39d397 3753 struct btrfs_inode_item *item,
39279cc3
CM
3754 struct inode *inode)
3755{
51fab693
LB
3756 struct btrfs_map_token token;
3757
3758 btrfs_init_map_token(&token);
5f39d397 3759
51fab693
LB
3760 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3761 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3762 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3763 &token);
3764 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3765 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3766
a937b979 3767 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3768 inode->i_atime.tv_sec, &token);
a937b979 3769 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3770 inode->i_atime.tv_nsec, &token);
5f39d397 3771
a937b979 3772 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3773 inode->i_mtime.tv_sec, &token);
a937b979 3774 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3775 inode->i_mtime.tv_nsec, &token);
5f39d397 3776
a937b979 3777 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3778 inode->i_ctime.tv_sec, &token);
a937b979 3779 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3780 inode->i_ctime.tv_nsec, &token);
5f39d397 3781
9cc97d64 3782 btrfs_set_token_timespec_sec(leaf, &item->otime,
3783 BTRFS_I(inode)->i_otime.tv_sec, &token);
3784 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3785 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3786
51fab693
LB
3787 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3788 &token);
3789 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3790 &token);
c7f88c4e
JL
3791 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3792 &token);
51fab693
LB
3793 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3794 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3795 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3796 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3797}
3798
d352ac68
CM
3799/*
3800 * copy everything in the in-memory inode into the btree.
3801 */
2115133f 3802static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3803 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3804{
3805 struct btrfs_inode_item *inode_item;
3806 struct btrfs_path *path;
5f39d397 3807 struct extent_buffer *leaf;
39279cc3
CM
3808 int ret;
3809
3810 path = btrfs_alloc_path();
16cdcec7
MX
3811 if (!path)
3812 return -ENOMEM;
3813
b9473439 3814 path->leave_spinning = 1;
16cdcec7
MX
3815 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3816 1);
39279cc3
CM
3817 if (ret) {
3818 if (ret > 0)
3819 ret = -ENOENT;
3820 goto failed;
3821 }
3822
5f39d397
CM
3823 leaf = path->nodes[0];
3824 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3825 struct btrfs_inode_item);
39279cc3 3826
e02119d5 3827 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3828 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3829 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3830 ret = 0;
3831failed:
39279cc3
CM
3832 btrfs_free_path(path);
3833 return ret;
3834}
3835
2115133f
CM
3836/*
3837 * copy everything in the in-memory inode into the btree.
3838 */
3839noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3840 struct btrfs_root *root, struct inode *inode)
3841{
0b246afa 3842 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3843 int ret;
3844
3845 /*
3846 * If the inode is a free space inode, we can deadlock during commit
3847 * if we put it into the delayed code.
3848 *
3849 * The data relocation inode should also be directly updated
3850 * without delay
3851 */
70ddc553 3852 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 3853 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 3854 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
3855 btrfs_update_root_times(trans, root);
3856
2115133f
CM
3857 ret = btrfs_delayed_update_inode(trans, root, inode);
3858 if (!ret)
3859 btrfs_set_inode_last_trans(trans, inode);
3860 return ret;
3861 }
3862
3863 return btrfs_update_inode_item(trans, root, inode);
3864}
3865
be6aef60
JB
3866noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3867 struct btrfs_root *root,
3868 struct inode *inode)
2115133f
CM
3869{
3870 int ret;
3871
3872 ret = btrfs_update_inode(trans, root, inode);
3873 if (ret == -ENOSPC)
3874 return btrfs_update_inode_item(trans, root, inode);
3875 return ret;
3876}
3877
d352ac68
CM
3878/*
3879 * unlink helper that gets used here in inode.c and in the tree logging
3880 * recovery code. It remove a link in a directory with a given name, and
3881 * also drops the back refs in the inode to the directory
3882 */
92986796
AV
3883static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3884 struct btrfs_root *root,
4ec5934e
NB
3885 struct btrfs_inode *dir,
3886 struct btrfs_inode *inode,
92986796 3887 const char *name, int name_len)
39279cc3 3888{
0b246afa 3889 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 3890 struct btrfs_path *path;
39279cc3 3891 int ret = 0;
5f39d397 3892 struct extent_buffer *leaf;
39279cc3 3893 struct btrfs_dir_item *di;
5f39d397 3894 struct btrfs_key key;
aec7477b 3895 u64 index;
33345d01
LZ
3896 u64 ino = btrfs_ino(inode);
3897 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3898
3899 path = btrfs_alloc_path();
54aa1f4d
CM
3900 if (!path) {
3901 ret = -ENOMEM;
554233a6 3902 goto out;
54aa1f4d
CM
3903 }
3904
b9473439 3905 path->leave_spinning = 1;
33345d01 3906 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3 3907 name, name_len, -1);
3cf5068f
LB
3908 if (IS_ERR_OR_NULL(di)) {
3909 ret = di ? PTR_ERR(di) : -ENOENT;
39279cc3
CM
3910 goto err;
3911 }
5f39d397
CM
3912 leaf = path->nodes[0];
3913 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3914 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3915 if (ret)
3916 goto err;
b3b4aa74 3917 btrfs_release_path(path);
39279cc3 3918
67de1176
MX
3919 /*
3920 * If we don't have dir index, we have to get it by looking up
3921 * the inode ref, since we get the inode ref, remove it directly,
3922 * it is unnecessary to do delayed deletion.
3923 *
3924 * But if we have dir index, needn't search inode ref to get it.
3925 * Since the inode ref is close to the inode item, it is better
3926 * that we delay to delete it, and just do this deletion when
3927 * we update the inode item.
3928 */
4ec5934e 3929 if (inode->dir_index) {
67de1176
MX
3930 ret = btrfs_delayed_delete_inode_ref(inode);
3931 if (!ret) {
4ec5934e 3932 index = inode->dir_index;
67de1176
MX
3933 goto skip_backref;
3934 }
3935 }
3936
33345d01
LZ
3937 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3938 dir_ino, &index);
aec7477b 3939 if (ret) {
0b246afa 3940 btrfs_info(fs_info,
c2cf52eb 3941 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3942 name_len, name, ino, dir_ino);
66642832 3943 btrfs_abort_transaction(trans, ret);
aec7477b
JB
3944 goto err;
3945 }
67de1176 3946skip_backref:
9add2945 3947 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
79787eaa 3948 if (ret) {
66642832 3949 btrfs_abort_transaction(trans, ret);
39279cc3 3950 goto err;
79787eaa 3951 }
39279cc3 3952
4ec5934e
NB
3953 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3954 dir_ino);
79787eaa 3955 if (ret != 0 && ret != -ENOENT) {
66642832 3956 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3957 goto err;
3958 }
e02119d5 3959
4ec5934e
NB
3960 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3961 index);
6418c961
CM
3962 if (ret == -ENOENT)
3963 ret = 0;
d4e3991b 3964 else if (ret)
66642832 3965 btrfs_abort_transaction(trans, ret);
39279cc3
CM
3966err:
3967 btrfs_free_path(path);
e02119d5
CM
3968 if (ret)
3969 goto out;
3970
6ef06d27 3971 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
3972 inode_inc_iversion(&inode->vfs_inode);
3973 inode_inc_iversion(&dir->vfs_inode);
3974 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3975 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3976 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 3977out:
39279cc3
CM
3978 return ret;
3979}
3980
92986796
AV
3981int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3982 struct btrfs_root *root,
4ec5934e 3983 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
3984 const char *name, int name_len)
3985{
3986 int ret;
3987 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3988 if (!ret) {
4ec5934e
NB
3989 drop_nlink(&inode->vfs_inode);
3990 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
3991 }
3992 return ret;
3993}
39279cc3 3994
a22285a6
YZ
3995/*
3996 * helper to start transaction for unlink and rmdir.
3997 *
d52be818
JB
3998 * unlink and rmdir are special in btrfs, they do not always free space, so
3999 * if we cannot make our reservations the normal way try and see if there is
4000 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4001 * allow the unlink to occur.
a22285a6 4002 */
d52be818 4003static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4004{
a22285a6 4005 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4006
e70bea5f
JB
4007 /*
4008 * 1 for the possible orphan item
4009 * 1 for the dir item
4010 * 1 for the dir index
4011 * 1 for the inode ref
e70bea5f
JB
4012 * 1 for the inode
4013 */
8eab77ff 4014 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4015}
4016
4017static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4018{
4019 struct btrfs_root *root = BTRFS_I(dir)->root;
4020 struct btrfs_trans_handle *trans;
2b0143b5 4021 struct inode *inode = d_inode(dentry);
a22285a6 4022 int ret;
a22285a6 4023
d52be818 4024 trans = __unlink_start_trans(dir);
a22285a6
YZ
4025 if (IS_ERR(trans))
4026 return PTR_ERR(trans);
5f39d397 4027
4ec5934e
NB
4028 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4029 0);
12fcfd22 4030
4ec5934e
NB
4031 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4032 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4033 dentry->d_name.len);
b532402e
TI
4034 if (ret)
4035 goto out;
7b128766 4036
a22285a6 4037 if (inode->i_nlink == 0) {
73f2e545 4038 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4039 if (ret)
4040 goto out;
a22285a6 4041 }
7b128766 4042
b532402e 4043out:
3a45bb20 4044 btrfs_end_transaction(trans);
2ff7e61e 4045 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4046 return ret;
4047}
4048
f60a2364 4049static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
401b3b19
LF
4050 struct inode *dir, u64 objectid,
4051 const char *name, int name_len)
4df27c4d 4052{
401b3b19 4053 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
4054 struct btrfs_path *path;
4055 struct extent_buffer *leaf;
4056 struct btrfs_dir_item *di;
4057 struct btrfs_key key;
4058 u64 index;
4059 int ret;
4a0cc7ca 4060 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4061
4062 path = btrfs_alloc_path();
4063 if (!path)
4064 return -ENOMEM;
4065
33345d01 4066 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4067 name, name_len, -1);
79787eaa 4068 if (IS_ERR_OR_NULL(di)) {
3cf5068f 4069 ret = di ? PTR_ERR(di) : -ENOENT;
79787eaa
JM
4070 goto out;
4071 }
4df27c4d
YZ
4072
4073 leaf = path->nodes[0];
4074 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4075 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4076 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4077 if (ret) {
66642832 4078 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4079 goto out;
4080 }
b3b4aa74 4081 btrfs_release_path(path);
4df27c4d 4082
3ee1c553
LF
4083 ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4084 dir_ino, &index, name, name_len);
4df27c4d 4085 if (ret < 0) {
79787eaa 4086 if (ret != -ENOENT) {
66642832 4087 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4088 goto out;
4089 }
33345d01 4090 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4091 name, name_len);
79787eaa
JM
4092 if (IS_ERR_OR_NULL(di)) {
4093 if (!di)
4094 ret = -ENOENT;
4095 else
4096 ret = PTR_ERR(di);
66642832 4097 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4098 goto out;
4099 }
4df27c4d
YZ
4100
4101 leaf = path->nodes[0];
4102 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4df27c4d
YZ
4103 index = key.offset;
4104 }
945d8962 4105 btrfs_release_path(path);
4df27c4d 4106
9add2945 4107 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
79787eaa 4108 if (ret) {
66642832 4109 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4110 goto out;
4111 }
4df27c4d 4112
6ef06d27 4113 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4114 inode_inc_iversion(dir);
c2050a45 4115 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4116 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4117 if (ret)
66642832 4118 btrfs_abort_transaction(trans, ret);
79787eaa 4119out:
71d7aed0 4120 btrfs_free_path(path);
79787eaa 4121 return ret;
4df27c4d
YZ
4122}
4123
ec42f167
MT
4124/*
4125 * Helper to check if the subvolume references other subvolumes or if it's
4126 * default.
4127 */
f60a2364 4128static noinline int may_destroy_subvol(struct btrfs_root *root)
ec42f167
MT
4129{
4130 struct btrfs_fs_info *fs_info = root->fs_info;
4131 struct btrfs_path *path;
4132 struct btrfs_dir_item *di;
4133 struct btrfs_key key;
4134 u64 dir_id;
4135 int ret;
4136
4137 path = btrfs_alloc_path();
4138 if (!path)
4139 return -ENOMEM;
4140
4141 /* Make sure this root isn't set as the default subvol */
4142 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4143 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4144 dir_id, "default", 7, 0);
4145 if (di && !IS_ERR(di)) {
4146 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4147 if (key.objectid == root->root_key.objectid) {
4148 ret = -EPERM;
4149 btrfs_err(fs_info,
4150 "deleting default subvolume %llu is not allowed",
4151 key.objectid);
4152 goto out;
4153 }
4154 btrfs_release_path(path);
4155 }
4156
4157 key.objectid = root->root_key.objectid;
4158 key.type = BTRFS_ROOT_REF_KEY;
4159 key.offset = (u64)-1;
4160
4161 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4162 if (ret < 0)
4163 goto out;
4164 BUG_ON(ret == 0);
4165
4166 ret = 0;
4167 if (path->slots[0] > 0) {
4168 path->slots[0]--;
4169 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4170 if (key.objectid == root->root_key.objectid &&
4171 key.type == BTRFS_ROOT_REF_KEY)
4172 ret = -ENOTEMPTY;
4173 }
4174out:
4175 btrfs_free_path(path);
4176 return ret;
4177}
4178
20a68004
NB
4179/* Delete all dentries for inodes belonging to the root */
4180static void btrfs_prune_dentries(struct btrfs_root *root)
4181{
4182 struct btrfs_fs_info *fs_info = root->fs_info;
4183 struct rb_node *node;
4184 struct rb_node *prev;
4185 struct btrfs_inode *entry;
4186 struct inode *inode;
4187 u64 objectid = 0;
4188
4189 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4190 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4191
4192 spin_lock(&root->inode_lock);
4193again:
4194 node = root->inode_tree.rb_node;
4195 prev = NULL;
4196 while (node) {
4197 prev = node;
4198 entry = rb_entry(node, struct btrfs_inode, rb_node);
4199
37508515 4200 if (objectid < btrfs_ino(entry))
20a68004 4201 node = node->rb_left;
37508515 4202 else if (objectid > btrfs_ino(entry))
20a68004
NB
4203 node = node->rb_right;
4204 else
4205 break;
4206 }
4207 if (!node) {
4208 while (prev) {
4209 entry = rb_entry(prev, struct btrfs_inode, rb_node);
37508515 4210 if (objectid <= btrfs_ino(entry)) {
20a68004
NB
4211 node = prev;
4212 break;
4213 }
4214 prev = rb_next(prev);
4215 }
4216 }
4217 while (node) {
4218 entry = rb_entry(node, struct btrfs_inode, rb_node);
37508515 4219 objectid = btrfs_ino(entry) + 1;
20a68004
NB
4220 inode = igrab(&entry->vfs_inode);
4221 if (inode) {
4222 spin_unlock(&root->inode_lock);
4223 if (atomic_read(&inode->i_count) > 1)
4224 d_prune_aliases(inode);
4225 /*
4226 * btrfs_drop_inode will have it removed from the inode
4227 * cache when its usage count hits zero.
4228 */
4229 iput(inode);
4230 cond_resched();
4231 spin_lock(&root->inode_lock);
4232 goto again;
4233 }
4234
4235 if (cond_resched_lock(&root->inode_lock))
4236 goto again;
4237
4238 node = rb_next(node);
4239 }
4240 spin_unlock(&root->inode_lock);
4241}
4242
f60a2364
MT
4243int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4244{
4245 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4246 struct btrfs_root *root = BTRFS_I(dir)->root;
4247 struct inode *inode = d_inode(dentry);
4248 struct btrfs_root *dest = BTRFS_I(inode)->root;
4249 struct btrfs_trans_handle *trans;
4250 struct btrfs_block_rsv block_rsv;
4251 u64 root_flags;
f60a2364
MT
4252 int ret;
4253 int err;
4254
4255 /*
4256 * Don't allow to delete a subvolume with send in progress. This is
4257 * inside the inode lock so the error handling that has to drop the bit
4258 * again is not run concurrently.
4259 */
4260 spin_lock(&dest->root_item_lock);
a7176f74 4261 if (dest->send_in_progress) {
f60a2364
MT
4262 spin_unlock(&dest->root_item_lock);
4263 btrfs_warn(fs_info,
4264 "attempt to delete subvolume %llu during send",
4265 dest->root_key.objectid);
4266 return -EPERM;
4267 }
a7176f74
LF
4268 root_flags = btrfs_root_flags(&dest->root_item);
4269 btrfs_set_root_flags(&dest->root_item,
4270 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4271 spin_unlock(&dest->root_item_lock);
f60a2364
MT
4272
4273 down_write(&fs_info->subvol_sem);
4274
4275 err = may_destroy_subvol(dest);
4276 if (err)
4277 goto out_up_write;
4278
4279 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4280 /*
4281 * One for dir inode,
4282 * two for dir entries,
4283 * two for root ref/backref.
4284 */
c4c129db 4285 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
f60a2364
MT
4286 if (err)
4287 goto out_up_write;
4288
4289 trans = btrfs_start_transaction(root, 0);
4290 if (IS_ERR(trans)) {
4291 err = PTR_ERR(trans);
4292 goto out_release;
4293 }
4294 trans->block_rsv = &block_rsv;
4295 trans->bytes_reserved = block_rsv.size;
4296
4297 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4298
401b3b19
LF
4299 ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4300 dentry->d_name.name, dentry->d_name.len);
f60a2364
MT
4301 if (ret) {
4302 err = ret;
4303 btrfs_abort_transaction(trans, ret);
4304 goto out_end_trans;
4305 }
4306
4307 btrfs_record_root_in_trans(trans, dest);
4308
4309 memset(&dest->root_item.drop_progress, 0,
4310 sizeof(dest->root_item.drop_progress));
4311 dest->root_item.drop_level = 0;
4312 btrfs_set_root_refs(&dest->root_item, 0);
4313
4314 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4315 ret = btrfs_insert_orphan_item(trans,
4316 fs_info->tree_root,
4317 dest->root_key.objectid);
4318 if (ret) {
4319 btrfs_abort_transaction(trans, ret);
4320 err = ret;
4321 goto out_end_trans;
4322 }
4323 }
4324
d1957791 4325 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
f60a2364
MT
4326 BTRFS_UUID_KEY_SUBVOL,
4327 dest->root_key.objectid);
4328 if (ret && ret != -ENOENT) {
4329 btrfs_abort_transaction(trans, ret);
4330 err = ret;
4331 goto out_end_trans;
4332 }
4333 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
d1957791 4334 ret = btrfs_uuid_tree_remove(trans,
f60a2364
MT
4335 dest->root_item.received_uuid,
4336 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4337 dest->root_key.objectid);
4338 if (ret && ret != -ENOENT) {
4339 btrfs_abort_transaction(trans, ret);
4340 err = ret;
4341 goto out_end_trans;
4342 }
4343 }
4344
4345out_end_trans:
4346 trans->block_rsv = NULL;
4347 trans->bytes_reserved = 0;
4348 ret = btrfs_end_transaction(trans);
4349 if (ret && !err)
4350 err = ret;
4351 inode->i_flags |= S_DEAD;
4352out_release:
4353 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4354out_up_write:
4355 up_write(&fs_info->subvol_sem);
4356 if (err) {
4357 spin_lock(&dest->root_item_lock);
4358 root_flags = btrfs_root_flags(&dest->root_item);
4359 btrfs_set_root_flags(&dest->root_item,
4360 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4361 spin_unlock(&dest->root_item_lock);
4362 } else {
4363 d_invalidate(dentry);
20a68004 4364 btrfs_prune_dentries(dest);
f60a2364
MT
4365 ASSERT(dest->send_in_progress == 0);
4366
4367 /* the last ref */
4368 if (dest->ino_cache_inode) {
4369 iput(dest->ino_cache_inode);
4370 dest->ino_cache_inode = NULL;
4371 }
4372 }
4373
4374 return err;
4375}
4376
39279cc3
CM
4377static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4378{
2b0143b5 4379 struct inode *inode = d_inode(dentry);
1832a6d5 4380 int err = 0;
39279cc3 4381 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4382 struct btrfs_trans_handle *trans;
44f714da 4383 u64 last_unlink_trans;
39279cc3 4384
b3ae244e 4385 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4386 return -ENOTEMPTY;
4a0cc7ca 4387 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
a79a464d 4388 return btrfs_delete_subvolume(dir, dentry);
134d4512 4389
d52be818 4390 trans = __unlink_start_trans(dir);
a22285a6 4391 if (IS_ERR(trans))
5df6a9f6 4392 return PTR_ERR(trans);
5df6a9f6 4393
4a0cc7ca 4394 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
401b3b19 4395 err = btrfs_unlink_subvol(trans, dir,
4df27c4d
YZ
4396 BTRFS_I(inode)->location.objectid,
4397 dentry->d_name.name,
4398 dentry->d_name.len);
4399 goto out;
4400 }
4401
73f2e545 4402 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4403 if (err)
4df27c4d 4404 goto out;
7b128766 4405
44f714da
FM
4406 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4407
39279cc3 4408 /* now the directory is empty */
4ec5934e
NB
4409 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4410 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4411 dentry->d_name.len);
44f714da 4412 if (!err) {
6ef06d27 4413 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4414 /*
4415 * Propagate the last_unlink_trans value of the deleted dir to
4416 * its parent directory. This is to prevent an unrecoverable
4417 * log tree in the case we do something like this:
4418 * 1) create dir foo
4419 * 2) create snapshot under dir foo
4420 * 3) delete the snapshot
4421 * 4) rmdir foo
4422 * 5) mkdir foo
4423 * 6) fsync foo or some file inside foo
4424 */
4425 if (last_unlink_trans >= trans->transid)
4426 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4427 }
4df27c4d 4428out:
3a45bb20 4429 btrfs_end_transaction(trans);
2ff7e61e 4430 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4431
39279cc3
CM
4432 return err;
4433}
4434
28f75a0e
CM
4435static int truncate_space_check(struct btrfs_trans_handle *trans,
4436 struct btrfs_root *root,
4437 u64 bytes_deleted)
4438{
0b246afa 4439 struct btrfs_fs_info *fs_info = root->fs_info;
28f75a0e
CM
4440 int ret;
4441
dc95f7bf
JB
4442 /*
4443 * This is only used to apply pressure to the enospc system, we don't
4444 * intend to use this reservation at all.
4445 */
2ff7e61e 4446 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
0b246afa
JM
4447 bytes_deleted *= fs_info->nodesize;
4448 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
28f75a0e 4449 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf 4450 if (!ret) {
0b246afa 4451 trace_btrfs_space_reservation(fs_info, "transaction",
dc95f7bf
JB
4452 trans->transid,
4453 bytes_deleted, 1);
28f75a0e 4454 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4455 }
28f75a0e
CM
4456 return ret;
4457
4458}
4459
ddfae63c
JB
4460/*
4461 * Return this if we need to call truncate_block for the last bit of the
4462 * truncate.
4463 */
4464#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4465
39279cc3
CM
4466/*
4467 * this can truncate away extent items, csum items and directory items.
4468 * It starts at a high offset and removes keys until it can't find
d352ac68 4469 * any higher than new_size
39279cc3
CM
4470 *
4471 * csum items that cross the new i_size are truncated to the new size
4472 * as well.
7b128766
JB
4473 *
4474 * min_type is the minimum key type to truncate down to. If set to 0, this
4475 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4476 */
8082510e
YZ
4477int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4478 struct btrfs_root *root,
4479 struct inode *inode,
4480 u64 new_size, u32 min_type)
39279cc3 4481{
0b246afa 4482 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4483 struct btrfs_path *path;
5f39d397 4484 struct extent_buffer *leaf;
39279cc3 4485 struct btrfs_file_extent_item *fi;
8082510e
YZ
4486 struct btrfs_key key;
4487 struct btrfs_key found_key;
39279cc3 4488 u64 extent_start = 0;
db94535d 4489 u64 extent_num_bytes = 0;
5d4f98a2 4490 u64 extent_offset = 0;
39279cc3 4491 u64 item_end = 0;
c1aa4575 4492 u64 last_size = new_size;
8082510e 4493 u32 found_type = (u8)-1;
39279cc3
CM
4494 int found_extent;
4495 int del_item;
85e21bac
CM
4496 int pending_del_nr = 0;
4497 int pending_del_slot = 0;
179e29e4 4498 int extent_type = -1;
8082510e 4499 int ret;
4a0cc7ca 4500 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4501 u64 bytes_deleted = 0;
897ca819
TM
4502 bool be_nice = false;
4503 bool should_throttle = false;
4504 bool should_end = false;
8082510e
YZ
4505
4506 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4507
28ed1345
CM
4508 /*
4509 * for non-free space inodes and ref cows, we want to back off from
4510 * time to time
4511 */
70ddc553 4512 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345 4513 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
897ca819 4514 be_nice = true;
28ed1345 4515
0eb0e19c
MF
4516 path = btrfs_alloc_path();
4517 if (!path)
4518 return -ENOMEM;
e4058b54 4519 path->reada = READA_BACK;
0eb0e19c 4520
5dc562c5
JB
4521 /*
4522 * We want to drop from the next block forward in case this new size is
4523 * not block aligned since we will be keeping the last block of the
4524 * extent just the way it is.
4525 */
27cdeb70 4526 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4527 root == fs_info->tree_root)
dcdbc059 4528 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4529 fs_info->sectorsize),
da17066c 4530 (u64)-1, 0);
8082510e 4531
16cdcec7
MX
4532 /*
4533 * This function is also used to drop the items in the log tree before
4534 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4535 * it is used to drop the loged items. So we shouldn't kill the delayed
4536 * items.
4537 */
4538 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4539 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4540
33345d01 4541 key.objectid = ino;
39279cc3 4542 key.offset = (u64)-1;
5f39d397
CM
4543 key.type = (u8)-1;
4544
85e21bac 4545search_again:
28ed1345
CM
4546 /*
4547 * with a 16K leaf size and 128MB extents, you can actually queue
4548 * up a huge file in a single leaf. Most of the time that
4549 * bytes_deleted is > 0, it will be huge by the time we get here
4550 */
fd86a3a3
OS
4551 if (be_nice && bytes_deleted > SZ_32M &&
4552 btrfs_should_end_transaction(trans)) {
4553 ret = -EAGAIN;
4554 goto out;
28ed1345
CM
4555 }
4556
b9473439 4557 path->leave_spinning = 1;
85e21bac 4558 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
fd86a3a3 4559 if (ret < 0)
8082510e 4560 goto out;
d397712b 4561
85e21bac 4562 if (ret > 0) {
fd86a3a3 4563 ret = 0;
e02119d5
CM
4564 /* there are no items in the tree for us to truncate, we're
4565 * done
4566 */
8082510e
YZ
4567 if (path->slots[0] == 0)
4568 goto out;
85e21bac
CM
4569 path->slots[0]--;
4570 }
4571
d397712b 4572 while (1) {
39279cc3 4573 fi = NULL;
5f39d397
CM
4574 leaf = path->nodes[0];
4575 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4576 found_type = found_key.type;
39279cc3 4577
33345d01 4578 if (found_key.objectid != ino)
39279cc3 4579 break;
5f39d397 4580
85e21bac 4581 if (found_type < min_type)
39279cc3
CM
4582 break;
4583
5f39d397 4584 item_end = found_key.offset;
39279cc3 4585 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4586 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4587 struct btrfs_file_extent_item);
179e29e4
CM
4588 extent_type = btrfs_file_extent_type(leaf, fi);
4589 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4590 item_end +=
db94535d 4591 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4592
4593 trace_btrfs_truncate_show_fi_regular(
4594 BTRFS_I(inode), leaf, fi,
4595 found_key.offset);
179e29e4 4596 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589
QW
4597 item_end += btrfs_file_extent_ram_bytes(leaf,
4598 fi);
09ed2f16
LB
4599
4600 trace_btrfs_truncate_show_fi_inline(
4601 BTRFS_I(inode), leaf, fi, path->slots[0],
4602 found_key.offset);
39279cc3 4603 }
008630c1 4604 item_end--;
39279cc3 4605 }
8082510e
YZ
4606 if (found_type > min_type) {
4607 del_item = 1;
4608 } else {
76b42abb 4609 if (item_end < new_size)
b888db2b 4610 break;
8082510e
YZ
4611 if (found_key.offset >= new_size)
4612 del_item = 1;
4613 else
4614 del_item = 0;
39279cc3 4615 }
39279cc3 4616 found_extent = 0;
39279cc3 4617 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4618 if (found_type != BTRFS_EXTENT_DATA_KEY)
4619 goto delete;
4620
4621 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4622 u64 num_dec;
db94535d 4623 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4624 if (!del_item) {
db94535d
CM
4625 u64 orig_num_bytes =
4626 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4627 extent_num_bytes = ALIGN(new_size -
4628 found_key.offset,
0b246afa 4629 fs_info->sectorsize);
db94535d
CM
4630 btrfs_set_file_extent_num_bytes(leaf, fi,
4631 extent_num_bytes);
4632 num_dec = (orig_num_bytes -
9069218d 4633 extent_num_bytes);
27cdeb70
MX
4634 if (test_bit(BTRFS_ROOT_REF_COWS,
4635 &root->state) &&
4636 extent_start != 0)
a76a3cd4 4637 inode_sub_bytes(inode, num_dec);
5f39d397 4638 btrfs_mark_buffer_dirty(leaf);
39279cc3 4639 } else {
db94535d
CM
4640 extent_num_bytes =
4641 btrfs_file_extent_disk_num_bytes(leaf,
4642 fi);
5d4f98a2
YZ
4643 extent_offset = found_key.offset -
4644 btrfs_file_extent_offset(leaf, fi);
4645
39279cc3 4646 /* FIXME blocksize != 4096 */
9069218d 4647 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4648 if (extent_start != 0) {
4649 found_extent = 1;
27cdeb70
MX
4650 if (test_bit(BTRFS_ROOT_REF_COWS,
4651 &root->state))
a76a3cd4 4652 inode_sub_bytes(inode, num_dec);
e02119d5 4653 }
39279cc3 4654 }
9069218d 4655 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4656 /*
4657 * we can't truncate inline items that have had
4658 * special encodings
4659 */
4660 if (!del_item &&
c8b97818 4661 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4662 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4663 btrfs_file_extent_compression(leaf, fi) == 0) {
4664 u32 size = (u32)(new_size - found_key.offset);
4665
4666 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4667 size = btrfs_file_extent_calc_inline_size(size);
4668 btrfs_truncate_item(root->fs_info, path, size, 1);
4669 } else if (!del_item) {
514ac8ad 4670 /*
ddfae63c
JB
4671 * We have to bail so the last_size is set to
4672 * just before this extent.
514ac8ad 4673 */
fd86a3a3 4674 ret = NEED_TRUNCATE_BLOCK;
ddfae63c
JB
4675 break;
4676 }
0305cd5f 4677
ddfae63c 4678 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0305cd5f 4679 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4680 }
179e29e4 4681delete:
ddfae63c
JB
4682 if (del_item)
4683 last_size = found_key.offset;
4684 else
4685 last_size = new_size;
39279cc3 4686 if (del_item) {
85e21bac
CM
4687 if (!pending_del_nr) {
4688 /* no pending yet, add ourselves */
4689 pending_del_slot = path->slots[0];
4690 pending_del_nr = 1;
4691 } else if (pending_del_nr &&
4692 path->slots[0] + 1 == pending_del_slot) {
4693 /* hop on the pending chunk */
4694 pending_del_nr++;
4695 pending_del_slot = path->slots[0];
4696 } else {
d397712b 4697 BUG();
85e21bac 4698 }
39279cc3
CM
4699 } else {
4700 break;
4701 }
897ca819 4702 should_throttle = false;
28f75a0e 4703
27cdeb70
MX
4704 if (found_extent &&
4705 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4706 root == fs_info->tree_root)) {
b9473439 4707 btrfs_set_path_blocking(path);
28ed1345 4708 bytes_deleted += extent_num_bytes;
84f7d8e6 4709 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4710 extent_num_bytes, 0,
4711 btrfs_header_owner(leaf),
b06c4bf5 4712 ino, extent_offset);
05522109
OS
4713 if (ret) {
4714 btrfs_abort_transaction(trans, ret);
4715 break;
4716 }
2ff7e61e
JM
4717 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4718 btrfs_async_run_delayed_refs(fs_info,
dd4b857a
WX
4719 trans->delayed_ref_updates * 2,
4720 trans->transid, 0);
28f75a0e
CM
4721 if (be_nice) {
4722 if (truncate_space_check(trans, root,
4723 extent_num_bytes)) {
897ca819 4724 should_end = true;
28f75a0e
CM
4725 }
4726 if (btrfs_should_throttle_delayed_refs(trans,
2ff7e61e 4727 fs_info))
897ca819 4728 should_throttle = true;
28f75a0e 4729 }
39279cc3 4730 }
85e21bac 4731
8082510e
YZ
4732 if (found_type == BTRFS_INODE_ITEM_KEY)
4733 break;
4734
4735 if (path->slots[0] == 0 ||
1262133b 4736 path->slots[0] != pending_del_slot ||
28f75a0e 4737 should_throttle || should_end) {
8082510e
YZ
4738 if (pending_del_nr) {
4739 ret = btrfs_del_items(trans, root, path,
4740 pending_del_slot,
4741 pending_del_nr);
79787eaa 4742 if (ret) {
66642832 4743 btrfs_abort_transaction(trans, ret);
fd86a3a3 4744 break;
79787eaa 4745 }
8082510e
YZ
4746 pending_del_nr = 0;
4747 }
b3b4aa74 4748 btrfs_release_path(path);
28f75a0e 4749 if (should_throttle) {
1262133b
JB
4750 unsigned long updates = trans->delayed_ref_updates;
4751 if (updates) {
4752 trans->delayed_ref_updates = 0;
2ff7e61e 4753 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 4754 updates * 2);
fd86a3a3
OS
4755 if (ret)
4756 break;
1262133b
JB
4757 }
4758 }
28f75a0e
CM
4759 /*
4760 * if we failed to refill our space rsv, bail out
4761 * and let the transaction restart
4762 */
4763 if (should_end) {
fd86a3a3
OS
4764 ret = -EAGAIN;
4765 break;
28f75a0e 4766 }
85e21bac 4767 goto search_again;
8082510e
YZ
4768 } else {
4769 path->slots[0]--;
85e21bac 4770 }
39279cc3 4771 }
8082510e 4772out:
fd86a3a3
OS
4773 if (ret >= 0 && pending_del_nr) {
4774 int err;
4775
4776 err = btrfs_del_items(trans, root, path, pending_del_slot,
85e21bac 4777 pending_del_nr);
fd86a3a3
OS
4778 if (err) {
4779 btrfs_abort_transaction(trans, err);
4780 ret = err;
4781 }
85e21bac 4782 }
76b42abb
FM
4783 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4784 ASSERT(last_size >= new_size);
fd86a3a3 4785 if (!ret && last_size > new_size)
76b42abb 4786 last_size = new_size;
7f4f6e0a 4787 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4788 }
28ed1345 4789
39279cc3 4790 btrfs_free_path(path);
28ed1345 4791
fd86a3a3 4792 if (be_nice && bytes_deleted > SZ_32M && (ret >= 0 || ret == -EAGAIN)) {
28ed1345 4793 unsigned long updates = trans->delayed_ref_updates;
fd86a3a3
OS
4794 int err;
4795
28ed1345
CM
4796 if (updates) {
4797 trans->delayed_ref_updates = 0;
fd86a3a3
OS
4798 err = btrfs_run_delayed_refs(trans, updates * 2);
4799 if (err)
4800 ret = err;
28ed1345
CM
4801 }
4802 }
fd86a3a3 4803 return ret;
39279cc3
CM
4804}
4805
4806/*
9703fefe 4807 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4808 * @inode - inode that we're zeroing
4809 * @from - the offset to start zeroing
4810 * @len - the length to zero, 0 to zero the entire range respective to the
4811 * offset
4812 * @front - zero up to the offset instead of from the offset on
4813 *
9703fefe 4814 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4815 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4816 */
9703fefe 4817int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4818 int front)
39279cc3 4819{
0b246afa 4820 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4821 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4822 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4823 struct btrfs_ordered_extent *ordered;
2ac55d41 4824 struct extent_state *cached_state = NULL;
364ecf36 4825 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4826 char *kaddr;
0b246afa 4827 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4828 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4829 unsigned offset = from & (blocksize - 1);
39279cc3 4830 struct page *page;
3b16a4e3 4831 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4832 int ret = 0;
9703fefe
CR
4833 u64 block_start;
4834 u64 block_end;
39279cc3 4835
b03ebd99
NB
4836 if (IS_ALIGNED(offset, blocksize) &&
4837 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4838 goto out;
9703fefe 4839
8b62f87b
JB
4840 block_start = round_down(from, blocksize);
4841 block_end = block_start + blocksize - 1;
4842
364ecf36 4843 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8b62f87b 4844 block_start, blocksize);
5d5e103a
JB
4845 if (ret)
4846 goto out;
39279cc3 4847
211c17f5 4848again:
3b16a4e3 4849 page = find_or_create_page(mapping, index, mask);
5d5e103a 4850 if (!page) {
bc42bda2 4851 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
4852 block_start, blocksize, true);
4853 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
ac6a2b36 4854 ret = -ENOMEM;
39279cc3 4855 goto out;
5d5e103a 4856 }
e6dcd2dc 4857
39279cc3 4858 if (!PageUptodate(page)) {
9ebefb18 4859 ret = btrfs_readpage(NULL, page);
39279cc3 4860 lock_page(page);
211c17f5
CM
4861 if (page->mapping != mapping) {
4862 unlock_page(page);
09cbfeaf 4863 put_page(page);
211c17f5
CM
4864 goto again;
4865 }
39279cc3
CM
4866 if (!PageUptodate(page)) {
4867 ret = -EIO;
89642229 4868 goto out_unlock;
39279cc3
CM
4869 }
4870 }
211c17f5 4871 wait_on_page_writeback(page);
e6dcd2dc 4872
9703fefe 4873 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4874 set_page_extent_mapped(page);
4875
9703fefe 4876 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4877 if (ordered) {
9703fefe 4878 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4879 &cached_state);
e6dcd2dc 4880 unlock_page(page);
09cbfeaf 4881 put_page(page);
eb84ae03 4882 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4883 btrfs_put_ordered_extent(ordered);
4884 goto again;
4885 }
4886
9703fefe 4887 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4888 EXTENT_DIRTY | EXTENT_DELALLOC |
4889 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 4890 0, 0, &cached_state);
5d5e103a 4891
e3b8a485 4892 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
ba8b04c1 4893 &cached_state, 0);
9ed74f2d 4894 if (ret) {
9703fefe 4895 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4896 &cached_state);
9ed74f2d
JB
4897 goto out_unlock;
4898 }
4899
9703fefe 4900 if (offset != blocksize) {
2aaa6655 4901 if (!len)
9703fefe 4902 len = blocksize - offset;
e6dcd2dc 4903 kaddr = kmap(page);
2aaa6655 4904 if (front)
9703fefe
CR
4905 memset(kaddr + (block_start - page_offset(page)),
4906 0, offset);
2aaa6655 4907 else
9703fefe
CR
4908 memset(kaddr + (block_start - page_offset(page)) + offset,
4909 0, len);
e6dcd2dc
CM
4910 flush_dcache_page(page);
4911 kunmap(page);
4912 }
247e743c 4913 ClearPageChecked(page);
e6dcd2dc 4914 set_page_dirty(page);
e43bbe5e 4915 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
39279cc3 4916
89642229 4917out_unlock:
5d5e103a 4918 if (ret)
bc42bda2 4919 btrfs_delalloc_release_space(inode, data_reserved, block_start,
43b18595
QW
4920 blocksize, true);
4921 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
39279cc3 4922 unlock_page(page);
09cbfeaf 4923 put_page(page);
39279cc3 4924out:
364ecf36 4925 extent_changeset_free(data_reserved);
39279cc3
CM
4926 return ret;
4927}
4928
16e7549f
JB
4929static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4930 u64 offset, u64 len)
4931{
0b246afa 4932 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4933 struct btrfs_trans_handle *trans;
4934 int ret;
4935
4936 /*
4937 * Still need to make sure the inode looks like it's been updated so
4938 * that any holes get logged if we fsync.
4939 */
0b246afa
JM
4940 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4941 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4942 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4943 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4944 return 0;
4945 }
4946
4947 /*
4948 * 1 - for the one we're dropping
4949 * 1 - for the one we're adding
4950 * 1 - for updating the inode.
4951 */
4952 trans = btrfs_start_transaction(root, 3);
4953 if (IS_ERR(trans))
4954 return PTR_ERR(trans);
4955
4956 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4957 if (ret) {
66642832 4958 btrfs_abort_transaction(trans, ret);
3a45bb20 4959 btrfs_end_transaction(trans);
16e7549f
JB
4960 return ret;
4961 }
4962
f85b7379
DS
4963 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4964 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4965 if (ret)
66642832 4966 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4967 else
4968 btrfs_update_inode(trans, root, inode);
3a45bb20 4969 btrfs_end_transaction(trans);
16e7549f
JB
4970 return ret;
4971}
4972
695a0d0d
JB
4973/*
4974 * This function puts in dummy file extents for the area we're creating a hole
4975 * for. So if we are truncating this file to a larger size we need to insert
4976 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4977 * the range between oldsize and size
4978 */
a41ad394 4979int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4980{
0b246afa 4981 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4982 struct btrfs_root *root = BTRFS_I(inode)->root;
4983 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4984 struct extent_map *em = NULL;
2ac55d41 4985 struct extent_state *cached_state = NULL;
5dc562c5 4986 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4987 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4988 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4989 u64 last_byte;
4990 u64 cur_offset;
4991 u64 hole_size;
9ed74f2d 4992 int err = 0;
39279cc3 4993
a71754fc 4994 /*
9703fefe
CR
4995 * If our size started in the middle of a block we need to zero out the
4996 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4997 * expose stale data.
4998 */
9703fefe 4999 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
5000 if (err)
5001 return err;
5002
9036c102
YZ
5003 if (size <= hole_start)
5004 return 0;
5005
9036c102
YZ
5006 while (1) {
5007 struct btrfs_ordered_extent *ordered;
fa7c1494 5008
ff13db41 5009 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 5010 &cached_state);
a776c6fa 5011 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
fa7c1494 5012 block_end - hole_start);
9036c102
YZ
5013 if (!ordered)
5014 break;
2ac55d41 5015 unlock_extent_cached(io_tree, hole_start, block_end - 1,
e43bbe5e 5016 &cached_state);
fa7c1494 5017 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
5018 btrfs_put_ordered_extent(ordered);
5019 }
39279cc3 5020
9036c102
YZ
5021 cur_offset = hole_start;
5022 while (1) {
fc4f21b1 5023 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 5024 block_end - cur_offset, 0);
79787eaa
JM
5025 if (IS_ERR(em)) {
5026 err = PTR_ERR(em);
f2767956 5027 em = NULL;
79787eaa
JM
5028 break;
5029 }
9036c102 5030 last_byte = min(extent_map_end(em), block_end);
0b246afa 5031 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 5032 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 5033 struct extent_map *hole_em;
9036c102 5034 hole_size = last_byte - cur_offset;
9ed74f2d 5035
16e7549f
JB
5036 err = maybe_insert_hole(root, inode, cur_offset,
5037 hole_size);
5038 if (err)
3893e33b 5039 break;
dcdbc059 5040 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
5041 cur_offset + hole_size - 1, 0);
5042 hole_em = alloc_extent_map();
5043 if (!hole_em) {
5044 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5045 &BTRFS_I(inode)->runtime_flags);
5046 goto next;
5047 }
5048 hole_em->start = cur_offset;
5049 hole_em->len = hole_size;
5050 hole_em->orig_start = cur_offset;
8082510e 5051
5dc562c5
JB
5052 hole_em->block_start = EXTENT_MAP_HOLE;
5053 hole_em->block_len = 0;
b4939680 5054 hole_em->orig_block_len = 0;
cc95bef6 5055 hole_em->ram_bytes = hole_size;
0b246afa 5056 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 5057 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 5058 hole_em->generation = fs_info->generation;
8082510e 5059
5dc562c5
JB
5060 while (1) {
5061 write_lock(&em_tree->lock);
09a2a8f9 5062 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
5063 write_unlock(&em_tree->lock);
5064 if (err != -EEXIST)
5065 break;
dcdbc059
NB
5066 btrfs_drop_extent_cache(BTRFS_I(inode),
5067 cur_offset,
5dc562c5
JB
5068 cur_offset +
5069 hole_size - 1, 0);
5070 }
5071 free_extent_map(hole_em);
9036c102 5072 }
16e7549f 5073next:
9036c102 5074 free_extent_map(em);
a22285a6 5075 em = NULL;
9036c102 5076 cur_offset = last_byte;
8082510e 5077 if (cur_offset >= block_end)
9036c102
YZ
5078 break;
5079 }
a22285a6 5080 free_extent_map(em);
e43bbe5e 5081 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
5082 return err;
5083}
39279cc3 5084
3972f260 5085static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 5086{
f4a2f4c5
MX
5087 struct btrfs_root *root = BTRFS_I(inode)->root;
5088 struct btrfs_trans_handle *trans;
a41ad394 5089 loff_t oldsize = i_size_read(inode);
3972f260
ES
5090 loff_t newsize = attr->ia_size;
5091 int mask = attr->ia_valid;
8082510e
YZ
5092 int ret;
5093
3972f260
ES
5094 /*
5095 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5096 * special case where we need to update the times despite not having
5097 * these flags set. For all other operations the VFS set these flags
5098 * explicitly if it wants a timestamp update.
5099 */
dff6efc3
CH
5100 if (newsize != oldsize) {
5101 inode_inc_iversion(inode);
5102 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5103 inode->i_ctime = inode->i_mtime =
c2050a45 5104 current_time(inode);
dff6efc3 5105 }
3972f260 5106
a41ad394 5107 if (newsize > oldsize) {
9ea24bbe 5108 /*
ea14b57f 5109 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
5110 * This is to ensure the snapshot captures a fully consistent
5111 * state of this file - if the snapshot captures this expanding
5112 * truncation, it must capture all writes that happened before
5113 * this truncation.
5114 */
0bc19f90 5115 btrfs_wait_for_snapshot_creation(root);
a41ad394 5116 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 5117 if (ret) {
ea14b57f 5118 btrfs_end_write_no_snapshotting(root);
8082510e 5119 return ret;
9ea24bbe 5120 }
8082510e 5121
f4a2f4c5 5122 trans = btrfs_start_transaction(root, 1);
9ea24bbe 5123 if (IS_ERR(trans)) {
ea14b57f 5124 btrfs_end_write_no_snapshotting(root);
f4a2f4c5 5125 return PTR_ERR(trans);
9ea24bbe 5126 }
f4a2f4c5
MX
5127
5128 i_size_write(inode, newsize);
5129 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5130 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5131 ret = btrfs_update_inode(trans, root, inode);
ea14b57f 5132 btrfs_end_write_no_snapshotting(root);
3a45bb20 5133 btrfs_end_transaction(trans);
a41ad394 5134 } else {
8082510e 5135
a41ad394
JB
5136 /*
5137 * We're truncating a file that used to have good data down to
5138 * zero. Make sure it gets into the ordered flush list so that
5139 * any new writes get down to disk quickly.
5140 */
5141 if (newsize == 0)
72ac3c0d
JB
5142 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5143 &BTRFS_I(inode)->runtime_flags);
8082510e 5144
a41ad394 5145 truncate_setsize(inode, newsize);
2e60a51e
MX
5146
5147 /* Disable nonlocked read DIO to avoid the end less truncate */
abcefb1e 5148 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 5149 inode_dio_wait(inode);
0b581701 5150 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 5151
213e8c55 5152 ret = btrfs_truncate(inode, newsize == oldsize);
7f4f6e0a
JB
5153 if (ret && inode->i_nlink) {
5154 int err;
5155
5156 /*
f7e9e8fc
OS
5157 * Truncate failed, so fix up the in-memory size. We
5158 * adjusted disk_i_size down as we removed extents, so
5159 * wait for disk_i_size to be stable and then update the
5160 * in-memory size to match.
7f4f6e0a 5161 */
f7e9e8fc 5162 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
7f4f6e0a 5163 if (err)
f7e9e8fc
OS
5164 return err;
5165 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
7f4f6e0a 5166 }
8082510e
YZ
5167 }
5168
a41ad394 5169 return ret;
8082510e
YZ
5170}
5171
9036c102
YZ
5172static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5173{
2b0143b5 5174 struct inode *inode = d_inode(dentry);
b83cc969 5175 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5176 int err;
39279cc3 5177
b83cc969
LZ
5178 if (btrfs_root_readonly(root))
5179 return -EROFS;
5180
31051c85 5181 err = setattr_prepare(dentry, attr);
9036c102
YZ
5182 if (err)
5183 return err;
2bf5a725 5184
5a3f23d5 5185 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5186 err = btrfs_setsize(inode, attr);
8082510e
YZ
5187 if (err)
5188 return err;
39279cc3 5189 }
9036c102 5190
1025774c
CH
5191 if (attr->ia_valid) {
5192 setattr_copy(inode, attr);
0c4d2d95 5193 inode_inc_iversion(inode);
22c44fe6 5194 err = btrfs_dirty_inode(inode);
1025774c 5195
22c44fe6 5196 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5197 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5198 }
33268eaf 5199
39279cc3
CM
5200 return err;
5201}
61295eb8 5202
131e404a
FDBM
5203/*
5204 * While truncating the inode pages during eviction, we get the VFS calling
5205 * btrfs_invalidatepage() against each page of the inode. This is slow because
5206 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5207 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5208 * extent_state structures over and over, wasting lots of time.
5209 *
5210 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5211 * those expensive operations on a per page basis and do only the ordered io
5212 * finishing, while we release here the extent_map and extent_state structures,
5213 * without the excessive merging and splitting.
5214 */
5215static void evict_inode_truncate_pages(struct inode *inode)
5216{
5217 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5218 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5219 struct rb_node *node;
5220
5221 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5222 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5223
5224 write_lock(&map_tree->lock);
5225 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5226 struct extent_map *em;
5227
5228 node = rb_first(&map_tree->map);
5229 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5230 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5231 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5232 remove_extent_mapping(map_tree, em);
5233 free_extent_map(em);
7064dd5c
FM
5234 if (need_resched()) {
5235 write_unlock(&map_tree->lock);
5236 cond_resched();
5237 write_lock(&map_tree->lock);
5238 }
131e404a
FDBM
5239 }
5240 write_unlock(&map_tree->lock);
5241
6ca07097
FM
5242 /*
5243 * Keep looping until we have no more ranges in the io tree.
5244 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5245 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5246 * still in progress (unlocked the pages in the bio but did not yet
5247 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5248 * ranges can still be locked and eviction started because before
5249 * submitting those bios, which are executed by a separate task (work
5250 * queue kthread), inode references (inode->i_count) were not taken
5251 * (which would be dropped in the end io callback of each bio).
5252 * Therefore here we effectively end up waiting for those bios and
5253 * anyone else holding locked ranges without having bumped the inode's
5254 * reference count - if we don't do it, when they access the inode's
5255 * io_tree to unlock a range it may be too late, leading to an
5256 * use-after-free issue.
5257 */
131e404a
FDBM
5258 spin_lock(&io_tree->lock);
5259 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5260 struct extent_state *state;
5261 struct extent_state *cached_state = NULL;
6ca07097
FM
5262 u64 start;
5263 u64 end;
131e404a
FDBM
5264
5265 node = rb_first(&io_tree->state);
5266 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5267 start = state->start;
5268 end = state->end;
131e404a
FDBM
5269 spin_unlock(&io_tree->lock);
5270
ff13db41 5271 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5272
5273 /*
5274 * If still has DELALLOC flag, the extent didn't reach disk,
5275 * and its reserved space won't be freed by delayed_ref.
5276 * So we need to free its reserved space here.
5277 * (Refer to comment in btrfs_invalidatepage, case 2)
5278 *
5279 * Note, end is the bytenr of last byte, so we need + 1 here.
5280 */
5281 if (state->state & EXTENT_DELALLOC)
bc42bda2 5282 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
b9d0b389 5283
6ca07097 5284 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5285 EXTENT_LOCKED | EXTENT_DIRTY |
5286 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
ae0f1625 5287 EXTENT_DEFRAG, 1, 1, &cached_state);
131e404a 5288
7064dd5c 5289 cond_resched();
131e404a
FDBM
5290 spin_lock(&io_tree->lock);
5291 }
5292 spin_unlock(&io_tree->lock);
5293}
5294
4b9d7b59
OS
5295static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5296 struct btrfs_block_rsv *rsv,
5297 u64 min_size)
5298{
5299 struct btrfs_fs_info *fs_info = root->fs_info;
5300 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5301 int failures = 0;
5302
5303 for (;;) {
5304 struct btrfs_trans_handle *trans;
5305 int ret;
5306
5307 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5308 BTRFS_RESERVE_FLUSH_LIMIT);
5309
5310 if (ret && ++failures > 2) {
5311 btrfs_warn(fs_info,
5312 "could not allocate space for a delete; will truncate on mount");
5313 return ERR_PTR(-ENOSPC);
5314 }
5315
5316 trans = btrfs_join_transaction(root);
5317 if (IS_ERR(trans) || !ret)
5318 return trans;
5319
5320 /*
5321 * Try to steal from the global reserve if there is space for
5322 * it.
5323 */
5324 if (!btrfs_check_space_for_delayed_refs(trans, fs_info) &&
3a584174 5325 !btrfs_block_rsv_migrate(global_rsv, rsv, min_size, false))
4b9d7b59
OS
5326 return trans;
5327
5328 /* If not, commit and try again. */
5329 ret = btrfs_commit_transaction(trans);
5330 if (ret)
5331 return ERR_PTR(ret);
5332 }
5333}
5334
bd555975 5335void btrfs_evict_inode(struct inode *inode)
39279cc3 5336{
0b246afa 5337 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5338 struct btrfs_trans_handle *trans;
5339 struct btrfs_root *root = BTRFS_I(inode)->root;
4b9d7b59 5340 struct btrfs_block_rsv *rsv;
3d48d981 5341 u64 min_size;
39279cc3
CM
5342 int ret;
5343
1abe9b8a 5344 trace_btrfs_inode_evict(inode);
5345
3d48d981 5346 if (!root) {
e8f1bc14 5347 clear_inode(inode);
3d48d981
NB
5348 return;
5349 }
5350
0b246afa 5351 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
3d48d981 5352
131e404a
FDBM
5353 evict_inode_truncate_pages(inode);
5354
69e9c6c6
SB
5355 if (inode->i_nlink &&
5356 ((btrfs_root_refs(&root->root_item) != 0 &&
5357 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5358 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5359 goto no_delete;
5360
27919067 5361 if (is_bad_inode(inode))
39279cc3 5362 goto no_delete;
5f39d397 5363
7ab7956e 5364 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5365
7b40b695 5366 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
c71bf099 5367 goto no_delete;
c71bf099 5368
76dda93c 5369 if (inode->i_nlink > 0) {
69e9c6c6
SB
5370 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5371 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5372 goto no_delete;
5373 }
5374
aa79021f 5375 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
27919067 5376 if (ret)
0e8c36a9 5377 goto no_delete;
0e8c36a9 5378
2ff7e61e 5379 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
27919067 5380 if (!rsv)
4289a667 5381 goto no_delete;
4a338542 5382 rsv->size = min_size;
ca7e70f5 5383 rsv->failfast = 1;
4289a667 5384
6ef06d27 5385 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5386
8082510e 5387 while (1) {
4b9d7b59 5388 trans = evict_refill_and_join(root, rsv, min_size);
27919067
OS
5389 if (IS_ERR(trans))
5390 goto free_rsv;
7b128766 5391
4289a667
JB
5392 trans->block_rsv = rsv;
5393
d68fc57b 5394 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
27919067
OS
5395 trans->block_rsv = &fs_info->trans_block_rsv;
5396 btrfs_end_transaction(trans);
5397 btrfs_btree_balance_dirty(fs_info);
5398 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5399 goto free_rsv;
5400 else if (!ret)
8082510e 5401 break;
8082510e 5402 }
5f39d397 5403
4ef31a45 5404 /*
27919067
OS
5405 * Errors here aren't a big deal, it just means we leave orphan items in
5406 * the tree. They will be cleaned up on the next mount. If the inode
5407 * number gets reused, cleanup deletes the orphan item without doing
5408 * anything, and unlink reuses the existing orphan item.
5409 *
5410 * If it turns out that we are dropping too many of these, we might want
5411 * to add a mechanism for retrying these after a commit.
4ef31a45 5412 */
27919067
OS
5413 trans = evict_refill_and_join(root, rsv, min_size);
5414 if (!IS_ERR(trans)) {
5415 trans->block_rsv = rsv;
5416 btrfs_orphan_del(trans, BTRFS_I(inode));
5417 trans->block_rsv = &fs_info->trans_block_rsv;
5418 btrfs_end_transaction(trans);
5419 }
54aa1f4d 5420
0b246afa 5421 if (!(root == fs_info->tree_root ||
581bb050 5422 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5423 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5424
27919067
OS
5425free_rsv:
5426 btrfs_free_block_rsv(fs_info, rsv);
39279cc3 5427no_delete:
27919067
OS
5428 /*
5429 * If we didn't successfully delete, the orphan item will still be in
5430 * the tree and we'll retry on the next mount. Again, we might also want
5431 * to retry these periodically in the future.
5432 */
f48d1cf5 5433 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5434 clear_inode(inode);
39279cc3
CM
5435}
5436
5437/*
5438 * this returns the key found in the dir entry in the location pointer.
005d6712
SY
5439 * If no dir entries were found, returns -ENOENT.
5440 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3
CM
5441 */
5442static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5443 struct btrfs_key *location)
5444{
5445 const char *name = dentry->d_name.name;
5446 int namelen = dentry->d_name.len;
5447 struct btrfs_dir_item *di;
5448 struct btrfs_path *path;
5449 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5450 int ret = 0;
39279cc3
CM
5451
5452 path = btrfs_alloc_path();
d8926bb3
MF
5453 if (!path)
5454 return -ENOMEM;
3954401f 5455
f85b7379
DS
5456 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5457 name, namelen, 0);
3cf5068f
LB
5458 if (IS_ERR_OR_NULL(di)) {
5459 ret = di ? PTR_ERR(di) : -ENOENT;
005d6712
SY
5460 goto out;
5461 }
d397712b 5462
5f39d397 5463 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5464 if (location->type != BTRFS_INODE_ITEM_KEY &&
5465 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5466 ret = -EUCLEAN;
56a0e706
LB
5467 btrfs_warn(root->fs_info,
5468"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5469 __func__, name, btrfs_ino(BTRFS_I(dir)),
5470 location->objectid, location->type, location->offset);
56a0e706 5471 }
39279cc3 5472out:
39279cc3
CM
5473 btrfs_free_path(path);
5474 return ret;
5475}
5476
5477/*
5478 * when we hit a tree root in a directory, the btrfs part of the inode
5479 * needs to be changed to reflect the root directory of the tree root. This
5480 * is kind of like crossing a mount point.
5481 */
2ff7e61e 5482static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5483 struct inode *dir,
5484 struct dentry *dentry,
5485 struct btrfs_key *location,
5486 struct btrfs_root **sub_root)
39279cc3 5487{
4df27c4d
YZ
5488 struct btrfs_path *path;
5489 struct btrfs_root *new_root;
5490 struct btrfs_root_ref *ref;
5491 struct extent_buffer *leaf;
1d4c08e0 5492 struct btrfs_key key;
4df27c4d
YZ
5493 int ret;
5494 int err = 0;
39279cc3 5495
4df27c4d
YZ
5496 path = btrfs_alloc_path();
5497 if (!path) {
5498 err = -ENOMEM;
5499 goto out;
5500 }
39279cc3 5501
4df27c4d 5502 err = -ENOENT;
1d4c08e0
DS
5503 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5504 key.type = BTRFS_ROOT_REF_KEY;
5505 key.offset = location->objectid;
5506
0b246afa 5507 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5508 if (ret) {
5509 if (ret < 0)
5510 err = ret;
5511 goto out;
5512 }
39279cc3 5513
4df27c4d
YZ
5514 leaf = path->nodes[0];
5515 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5516 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5517 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5518 goto out;
39279cc3 5519
4df27c4d
YZ
5520 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5521 (unsigned long)(ref + 1),
5522 dentry->d_name.len);
5523 if (ret)
5524 goto out;
5525
b3b4aa74 5526 btrfs_release_path(path);
4df27c4d 5527
0b246afa 5528 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5529 if (IS_ERR(new_root)) {
5530 err = PTR_ERR(new_root);
5531 goto out;
5532 }
5533
4df27c4d
YZ
5534 *sub_root = new_root;
5535 location->objectid = btrfs_root_dirid(&new_root->root_item);
5536 location->type = BTRFS_INODE_ITEM_KEY;
5537 location->offset = 0;
5538 err = 0;
5539out:
5540 btrfs_free_path(path);
5541 return err;
39279cc3
CM
5542}
5543
5d4f98a2
YZ
5544static void inode_tree_add(struct inode *inode)
5545{
5546 struct btrfs_root *root = BTRFS_I(inode)->root;
5547 struct btrfs_inode *entry;
03e860bd
NP
5548 struct rb_node **p;
5549 struct rb_node *parent;
cef21937 5550 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5551 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5552
1d3382cb 5553 if (inode_unhashed(inode))
76dda93c 5554 return;
e1409cef 5555 parent = NULL;
5d4f98a2 5556 spin_lock(&root->inode_lock);
e1409cef 5557 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5558 while (*p) {
5559 parent = *p;
5560 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5561
37508515 5562 if (ino < btrfs_ino(entry))
03e860bd 5563 p = &parent->rb_left;
37508515 5564 else if (ino > btrfs_ino(entry))
03e860bd 5565 p = &parent->rb_right;
5d4f98a2
YZ
5566 else {
5567 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5568 (I_WILL_FREE | I_FREEING)));
cef21937 5569 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
NP
5570 RB_CLEAR_NODE(parent);
5571 spin_unlock(&root->inode_lock);
cef21937 5572 return;
5d4f98a2
YZ
5573 }
5574 }
cef21937
FDBM
5575 rb_link_node(new, parent, p);
5576 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5577 spin_unlock(&root->inode_lock);
5578}
5579
5580static void inode_tree_del(struct inode *inode)
5581{
0b246afa 5582 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5583 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5584 int empty = 0;
5d4f98a2 5585
03e860bd 5586 spin_lock(&root->inode_lock);
5d4f98a2 5587 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5588 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5589 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5590 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5591 }
03e860bd 5592 spin_unlock(&root->inode_lock);
76dda93c 5593
69e9c6c6 5594 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5595 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5596 spin_lock(&root->inode_lock);
5597 empty = RB_EMPTY_ROOT(&root->inode_tree);
5598 spin_unlock(&root->inode_lock);
5599 if (empty)
5600 btrfs_add_dead_root(root);
5601 }
5602}
5603
5d4f98a2 5604
e02119d5
CM
5605static int btrfs_init_locked_inode(struct inode *inode, void *p)
5606{
5607 struct btrfs_iget_args *args = p;
90d3e592
CM
5608 inode->i_ino = args->location->objectid;
5609 memcpy(&BTRFS_I(inode)->location, args->location,
5610 sizeof(*args->location));
e02119d5 5611 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5612 return 0;
5613}
5614
5615static int btrfs_find_actor(struct inode *inode, void *opaque)
5616{
5617 struct btrfs_iget_args *args = opaque;
90d3e592 5618 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5619 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5620}
5621
5d4f98a2 5622static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5623 struct btrfs_key *location,
5d4f98a2 5624 struct btrfs_root *root)
39279cc3
CM
5625{
5626 struct inode *inode;
5627 struct btrfs_iget_args args;
90d3e592 5628 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5629
90d3e592 5630 args.location = location;
39279cc3
CM
5631 args.root = root;
5632
778ba82b 5633 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5634 btrfs_init_locked_inode,
5635 (void *)&args);
5636 return inode;
5637}
5638
1a54ef8c
BR
5639/* Get an inode object given its location and corresponding root.
5640 * Returns in *is_new if the inode was read from disk
5641 */
5642struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5643 struct btrfs_root *root, int *new)
1a54ef8c
BR
5644{
5645 struct inode *inode;
5646
90d3e592 5647 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5648 if (!inode)
5d4f98a2 5649 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5650
5651 if (inode->i_state & I_NEW) {
67710892
FM
5652 int ret;
5653
5654 ret = btrfs_read_locked_inode(inode);
9bc2ceff 5655 if (!ret) {
1748f843
MF
5656 inode_tree_add(inode);
5657 unlock_new_inode(inode);
5658 if (new)
5659 *new = 1;
5660 } else {
f5b3a417
AV
5661 iget_failed(inode);
5662 /*
5663 * ret > 0 can come from btrfs_search_slot called by
5664 * btrfs_read_locked_inode, this means the inode item
5665 * was not found.
5666 */
5667 if (ret > 0)
5668 ret = -ENOENT;
5669 inode = ERR_PTR(ret);
1748f843
MF
5670 }
5671 }
5672
1a54ef8c
BR
5673 return inode;
5674}
5675
4df27c4d
YZ
5676static struct inode *new_simple_dir(struct super_block *s,
5677 struct btrfs_key *key,
5678 struct btrfs_root *root)
5679{
5680 struct inode *inode = new_inode(s);
5681
5682 if (!inode)
5683 return ERR_PTR(-ENOMEM);
5684
4df27c4d
YZ
5685 BTRFS_I(inode)->root = root;
5686 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5687 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5688
5689 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5690 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5691 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5692 inode->i_fop = &simple_dir_operations;
5693 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5694 inode->i_mtime = current_time(inode);
9cc97d64 5695 inode->i_atime = inode->i_mtime;
5696 inode->i_ctime = inode->i_mtime;
d3c6be6f 5697 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5698
5699 return inode;
5700}
5701
3de4586c 5702struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5703{
0b246afa 5704 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5705 struct inode *inode;
4df27c4d 5706 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5707 struct btrfs_root *sub_root = root;
5708 struct btrfs_key location;
76dda93c 5709 int index;
b4aff1f8 5710 int ret = 0;
39279cc3
CM
5711
5712 if (dentry->d_name.len > BTRFS_NAME_LEN)
5713 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5714
39e3c955 5715 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5716 if (ret < 0)
5717 return ERR_PTR(ret);
5f39d397 5718
4df27c4d 5719 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5720 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5721 return inode;
5722 }
5723
0b246afa 5724 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5725 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5726 &location, &sub_root);
5727 if (ret < 0) {
5728 if (ret != -ENOENT)
5729 inode = ERR_PTR(ret);
5730 else
5731 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5732 } else {
73f73415 5733 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5734 }
0b246afa 5735 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5736
34d19bad 5737 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5738 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5739 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5740 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5741 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5742 if (ret) {
5743 iput(inode);
66b4ffd1 5744 inode = ERR_PTR(ret);
01cd3367 5745 }
c71bf099
YZ
5746 }
5747
3de4586c
CM
5748 return inode;
5749}
5750
fe15ce44 5751static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5752{
5753 struct btrfs_root *root;
2b0143b5 5754 struct inode *inode = d_inode(dentry);
76dda93c 5755
848cce0d 5756 if (!inode && !IS_ROOT(dentry))
2b0143b5 5757 inode = d_inode(dentry->d_parent);
76dda93c 5758
848cce0d
LZ
5759 if (inode) {
5760 root = BTRFS_I(inode)->root;
efefb143
YZ
5761 if (btrfs_root_refs(&root->root_item) == 0)
5762 return 1;
848cce0d 5763
4a0cc7ca 5764 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5765 return 1;
efefb143 5766 }
76dda93c
YZ
5767 return 0;
5768}
5769
3de4586c 5770static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5771 unsigned int flags)
3de4586c 5772{
5662344b 5773 struct inode *inode;
a66e7cc6 5774
5662344b
TI
5775 inode = btrfs_lookup_dentry(dir, dentry);
5776 if (IS_ERR(inode)) {
5777 if (PTR_ERR(inode) == -ENOENT)
5778 inode = NULL;
5779 else
5780 return ERR_CAST(inode);
5781 }
5782
41d28bca 5783 return d_splice_alias(inode, dentry);
39279cc3
CM
5784}
5785
16cdcec7 5786unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5787 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5788};
5789
23b5ec74
JB
5790/*
5791 * All this infrastructure exists because dir_emit can fault, and we are holding
5792 * the tree lock when doing readdir. For now just allocate a buffer and copy
5793 * our information into that, and then dir_emit from the buffer. This is
5794 * similar to what NFS does, only we don't keep the buffer around in pagecache
5795 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5796 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5797 * tree lock.
5798 */
5799static int btrfs_opendir(struct inode *inode, struct file *file)
5800{
5801 struct btrfs_file_private *private;
5802
5803 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5804 if (!private)
5805 return -ENOMEM;
5806 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5807 if (!private->filldir_buf) {
5808 kfree(private);
5809 return -ENOMEM;
5810 }
5811 file->private_data = private;
5812 return 0;
5813}
5814
5815struct dir_entry {
5816 u64 ino;
5817 u64 offset;
5818 unsigned type;
5819 int name_len;
5820};
5821
5822static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5823{
5824 while (entries--) {
5825 struct dir_entry *entry = addr;
5826 char *name = (char *)(entry + 1);
5827
92d32170
DS
5828 ctx->pos = get_unaligned(&entry->offset);
5829 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5830 get_unaligned(&entry->ino),
5831 get_unaligned(&entry->type)))
23b5ec74 5832 return 1;
92d32170
DS
5833 addr += sizeof(struct dir_entry) +
5834 get_unaligned(&entry->name_len);
23b5ec74
JB
5835 ctx->pos++;
5836 }
5837 return 0;
5838}
5839
9cdda8d3 5840static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5841{
9cdda8d3 5842 struct inode *inode = file_inode(file);
39279cc3 5843 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5844 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5845 struct btrfs_dir_item *di;
5846 struct btrfs_key key;
5f39d397 5847 struct btrfs_key found_key;
39279cc3 5848 struct btrfs_path *path;
23b5ec74 5849 void *addr;
16cdcec7
MX
5850 struct list_head ins_list;
5851 struct list_head del_list;
39279cc3 5852 int ret;
5f39d397 5853 struct extent_buffer *leaf;
39279cc3 5854 int slot;
5f39d397
CM
5855 char *name_ptr;
5856 int name_len;
23b5ec74
JB
5857 int entries = 0;
5858 int total_len = 0;
02dbfc99 5859 bool put = false;
c2951f32 5860 struct btrfs_key location;
5f39d397 5861
9cdda8d3
AV
5862 if (!dir_emit_dots(file, ctx))
5863 return 0;
5864
49593bfa 5865 path = btrfs_alloc_path();
16cdcec7
MX
5866 if (!path)
5867 return -ENOMEM;
ff5714cc 5868
23b5ec74 5869 addr = private->filldir_buf;
e4058b54 5870 path->reada = READA_FORWARD;
49593bfa 5871
c2951f32
JM
5872 INIT_LIST_HEAD(&ins_list);
5873 INIT_LIST_HEAD(&del_list);
5874 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5875
23b5ec74 5876again:
c2951f32 5877 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5878 key.offset = ctx->pos;
4a0cc7ca 5879 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5880
39279cc3
CM
5881 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5882 if (ret < 0)
5883 goto err;
49593bfa
DW
5884
5885 while (1) {
23b5ec74
JB
5886 struct dir_entry *entry;
5887
5f39d397 5888 leaf = path->nodes[0];
39279cc3 5889 slot = path->slots[0];
b9e03af0
LZ
5890 if (slot >= btrfs_header_nritems(leaf)) {
5891 ret = btrfs_next_leaf(root, path);
5892 if (ret < 0)
5893 goto err;
5894 else if (ret > 0)
5895 break;
5896 continue;
39279cc3 5897 }
3de4586c 5898
5f39d397
CM
5899 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5900
5901 if (found_key.objectid != key.objectid)
39279cc3 5902 break;
c2951f32 5903 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5904 break;
9cdda8d3 5905 if (found_key.offset < ctx->pos)
b9e03af0 5906 goto next;
c2951f32 5907 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5908 goto next;
39279cc3 5909 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
c2951f32 5910 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5911 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5912 PAGE_SIZE) {
5913 btrfs_release_path(path);
5914 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5915 if (ret)
5916 goto nopos;
5917 addr = private->filldir_buf;
5918 entries = 0;
5919 total_len = 0;
5920 goto again;
c2951f32 5921 }
23b5ec74
JB
5922
5923 entry = addr;
92d32170 5924 put_unaligned(name_len, &entry->name_len);
23b5ec74 5925 name_ptr = (char *)(entry + 1);
c2951f32
JM
5926 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5927 name_len);
92d32170
DS
5928 put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
5929 &entry->type);
c2951f32 5930 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
5931 put_unaligned(location.objectid, &entry->ino);
5932 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
5933 entries++;
5934 addr += sizeof(struct dir_entry) + name_len;
5935 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
5936next:
5937 path->slots[0]++;
39279cc3 5938 }
23b5ec74
JB
5939 btrfs_release_path(path);
5940
5941 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5942 if (ret)
5943 goto nopos;
49593bfa 5944
d2fbb2b5 5945 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5946 if (ret)
bc4ef759
DS
5947 goto nopos;
5948
db62efbb
ZB
5949 /*
5950 * Stop new entries from being returned after we return the last
5951 * entry.
5952 *
5953 * New directory entries are assigned a strictly increasing
5954 * offset. This means that new entries created during readdir
5955 * are *guaranteed* to be seen in the future by that readdir.
5956 * This has broken buggy programs which operate on names as
5957 * they're returned by readdir. Until we re-use freed offsets
5958 * we have this hack to stop new entries from being returned
5959 * under the assumption that they'll never reach this huge
5960 * offset.
5961 *
5962 * This is being careful not to overflow 32bit loff_t unless the
5963 * last entry requires it because doing so has broken 32bit apps
5964 * in the past.
5965 */
c2951f32
JM
5966 if (ctx->pos >= INT_MAX)
5967 ctx->pos = LLONG_MAX;
5968 else
5969 ctx->pos = INT_MAX;
39279cc3
CM
5970nopos:
5971 ret = 0;
5972err:
02dbfc99
OS
5973 if (put)
5974 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5975 btrfs_free_path(path);
39279cc3
CM
5976 return ret;
5977}
5978
39279cc3 5979/*
54aa1f4d 5980 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5981 * inode changes. But, it is most likely to find the inode in cache.
5982 * FIXME, needs more benchmarking...there are no reasons other than performance
5983 * to keep or drop this code.
5984 */
48a3b636 5985static int btrfs_dirty_inode(struct inode *inode)
39279cc3 5986{
2ff7e61e 5987 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5988 struct btrfs_root *root = BTRFS_I(inode)->root;
5989 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5990 int ret;
5991
72ac3c0d 5992 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5993 return 0;
39279cc3 5994
7a7eaa40 5995 trans = btrfs_join_transaction(root);
22c44fe6
JB
5996 if (IS_ERR(trans))
5997 return PTR_ERR(trans);
8929ecfa
YZ
5998
5999 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6000 if (ret && ret == -ENOSPC) {
6001 /* whoops, lets try again with the full transaction */
3a45bb20 6002 btrfs_end_transaction(trans);
94b60442 6003 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6004 if (IS_ERR(trans))
6005 return PTR_ERR(trans);
8929ecfa 6006
94b60442 6007 ret = btrfs_update_inode(trans, root, inode);
94b60442 6008 }
3a45bb20 6009 btrfs_end_transaction(trans);
16cdcec7 6010 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6011 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6012
6013 return ret;
6014}
6015
6016/*
6017 * This is a copy of file_update_time. We need this so we can return error on
6018 * ENOSPC for updating the inode in the case of file write and mmap writes.
6019 */
95582b00 6020static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
e41f941a 6021 int flags)
22c44fe6 6022{
2bc55652 6023 struct btrfs_root *root = BTRFS_I(inode)->root;
3a8c7231 6024 bool dirty = flags & ~S_VERSION;
2bc55652
AB
6025
6026 if (btrfs_root_readonly(root))
6027 return -EROFS;
6028
e41f941a 6029 if (flags & S_VERSION)
3a8c7231 6030 dirty |= inode_maybe_inc_iversion(inode, dirty);
e41f941a
JB
6031 if (flags & S_CTIME)
6032 inode->i_ctime = *now;
6033 if (flags & S_MTIME)
6034 inode->i_mtime = *now;
6035 if (flags & S_ATIME)
6036 inode->i_atime = *now;
3a8c7231 6037 return dirty ? btrfs_dirty_inode(inode) : 0;
39279cc3
CM
6038}
6039
d352ac68
CM
6040/*
6041 * find the highest existing sequence number in a directory
6042 * and then set the in-memory index_cnt variable to reflect
6043 * free sequence numbers
6044 */
4c570655 6045static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6046{
4c570655 6047 struct btrfs_root *root = inode->root;
aec7477b
JB
6048 struct btrfs_key key, found_key;
6049 struct btrfs_path *path;
6050 struct extent_buffer *leaf;
6051 int ret;
6052
4c570655 6053 key.objectid = btrfs_ino(inode);
962a298f 6054 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6055 key.offset = (u64)-1;
6056
6057 path = btrfs_alloc_path();
6058 if (!path)
6059 return -ENOMEM;
6060
6061 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6062 if (ret < 0)
6063 goto out;
6064 /* FIXME: we should be able to handle this */
6065 if (ret == 0)
6066 goto out;
6067 ret = 0;
6068
6069 /*
6070 * MAGIC NUMBER EXPLANATION:
6071 * since we search a directory based on f_pos we have to start at 2
6072 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6073 * else has to start at 2
6074 */
6075 if (path->slots[0] == 0) {
4c570655 6076 inode->index_cnt = 2;
aec7477b
JB
6077 goto out;
6078 }
6079
6080 path->slots[0]--;
6081
6082 leaf = path->nodes[0];
6083 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6084
4c570655 6085 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6086 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6087 inode->index_cnt = 2;
aec7477b
JB
6088 goto out;
6089 }
6090
4c570655 6091 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6092out:
6093 btrfs_free_path(path);
6094 return ret;
6095}
6096
d352ac68
CM
6097/*
6098 * helper to find a free sequence number in a given directory. This current
6099 * code is very simple, later versions will do smarter things in the btree
6100 */
877574e2 6101int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6102{
6103 int ret = 0;
6104
877574e2
NB
6105 if (dir->index_cnt == (u64)-1) {
6106 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6107 if (ret) {
6108 ret = btrfs_set_inode_index_count(dir);
6109 if (ret)
6110 return ret;
6111 }
aec7477b
JB
6112 }
6113
877574e2
NB
6114 *index = dir->index_cnt;
6115 dir->index_cnt++;
aec7477b
JB
6116
6117 return ret;
6118}
6119
b0d5d10f
CM
6120static int btrfs_insert_inode_locked(struct inode *inode)
6121{
6122 struct btrfs_iget_args args;
6123 args.location = &BTRFS_I(inode)->location;
6124 args.root = BTRFS_I(inode)->root;
6125
6126 return insert_inode_locked4(inode,
6127 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6128 btrfs_find_actor, &args);
6129}
6130
19aee8de
AJ
6131/*
6132 * Inherit flags from the parent inode.
6133 *
6134 * Currently only the compression flags and the cow flags are inherited.
6135 */
6136static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6137{
6138 unsigned int flags;
6139
6140 if (!dir)
6141 return;
6142
6143 flags = BTRFS_I(dir)->flags;
6144
6145 if (flags & BTRFS_INODE_NOCOMPRESS) {
6146 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6147 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6148 } else if (flags & BTRFS_INODE_COMPRESS) {
6149 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6150 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6151 }
6152
6153 if (flags & BTRFS_INODE_NODATACOW) {
6154 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6155 if (S_ISREG(inode->i_mode))
6156 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6157 }
6158
7b6a221e 6159 btrfs_sync_inode_flags_to_i_flags(inode);
19aee8de
AJ
6160}
6161
39279cc3
CM
6162static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6163 struct btrfs_root *root,
aec7477b 6164 struct inode *dir,
9c58309d 6165 const char *name, int name_len,
175a4eb7
AV
6166 u64 ref_objectid, u64 objectid,
6167 umode_t mode, u64 *index)
39279cc3 6168{
0b246afa 6169 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6170 struct inode *inode;
5f39d397 6171 struct btrfs_inode_item *inode_item;
39279cc3 6172 struct btrfs_key *location;
5f39d397 6173 struct btrfs_path *path;
9c58309d
CM
6174 struct btrfs_inode_ref *ref;
6175 struct btrfs_key key[2];
6176 u32 sizes[2];
ef3b9af5 6177 int nitems = name ? 2 : 1;
9c58309d 6178 unsigned long ptr;
39279cc3 6179 int ret;
39279cc3 6180
5f39d397 6181 path = btrfs_alloc_path();
d8926bb3
MF
6182 if (!path)
6183 return ERR_PTR(-ENOMEM);
5f39d397 6184
0b246afa 6185 inode = new_inode(fs_info->sb);
8fb27640
YS
6186 if (!inode) {
6187 btrfs_free_path(path);
39279cc3 6188 return ERR_PTR(-ENOMEM);
8fb27640 6189 }
39279cc3 6190
5762b5c9
FM
6191 /*
6192 * O_TMPFILE, set link count to 0, so that after this point,
6193 * we fill in an inode item with the correct link count.
6194 */
6195 if (!name)
6196 set_nlink(inode, 0);
6197
581bb050
LZ
6198 /*
6199 * we have to initialize this early, so we can reclaim the inode
6200 * number if we fail afterwards in this function.
6201 */
6202 inode->i_ino = objectid;
6203
ef3b9af5 6204 if (dir && name) {
1abe9b8a 6205 trace_btrfs_inode_request(dir);
6206
877574e2 6207 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6208 if (ret) {
8fb27640 6209 btrfs_free_path(path);
09771430 6210 iput(inode);
aec7477b 6211 return ERR_PTR(ret);
09771430 6212 }
ef3b9af5
FM
6213 } else if (dir) {
6214 *index = 0;
aec7477b
JB
6215 }
6216 /*
6217 * index_cnt is ignored for everything but a dir,
df6703e1 6218 * btrfs_set_inode_index_count has an explanation for the magic
aec7477b
JB
6219 * number
6220 */
6221 BTRFS_I(inode)->index_cnt = 2;
67de1176 6222 BTRFS_I(inode)->dir_index = *index;
39279cc3 6223 BTRFS_I(inode)->root = root;
e02119d5 6224 BTRFS_I(inode)->generation = trans->transid;
76195853 6225 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6226
5dc562c5
JB
6227 /*
6228 * We could have gotten an inode number from somebody who was fsynced
6229 * and then removed in this same transaction, so let's just set full
6230 * sync since it will be a full sync anyway and this will blow away the
6231 * old info in the log.
6232 */
6233 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6234
9c58309d 6235 key[0].objectid = objectid;
962a298f 6236 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6237 key[0].offset = 0;
6238
9c58309d 6239 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6240
6241 if (name) {
6242 /*
6243 * Start new inodes with an inode_ref. This is slightly more
6244 * efficient for small numbers of hard links since they will
6245 * be packed into one item. Extended refs will kick in if we
6246 * add more hard links than can fit in the ref item.
6247 */
6248 key[1].objectid = objectid;
962a298f 6249 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6250 key[1].offset = ref_objectid;
6251
6252 sizes[1] = name_len + sizeof(*ref);
6253 }
9c58309d 6254
b0d5d10f
CM
6255 location = &BTRFS_I(inode)->location;
6256 location->objectid = objectid;
6257 location->offset = 0;
962a298f 6258 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6259
6260 ret = btrfs_insert_inode_locked(inode);
32955c54
AV
6261 if (ret < 0) {
6262 iput(inode);
b0d5d10f 6263 goto fail;
32955c54 6264 }
b0d5d10f 6265
b9473439 6266 path->leave_spinning = 1;
ef3b9af5 6267 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6268 if (ret != 0)
b0d5d10f 6269 goto fail_unlock;
5f39d397 6270
ecc11fab 6271 inode_init_owner(inode, dir, mode);
a76a3cd4 6272 inode_set_bytes(inode, 0);
9cc97d64 6273
c2050a45 6274 inode->i_mtime = current_time(inode);
9cc97d64 6275 inode->i_atime = inode->i_mtime;
6276 inode->i_ctime = inode->i_mtime;
d3c6be6f 6277 BTRFS_I(inode)->i_otime = inode->i_mtime;
9cc97d64 6278
5f39d397
CM
6279 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6280 struct btrfs_inode_item);
b159fa28 6281 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6282 sizeof(*inode_item));
e02119d5 6283 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6284
ef3b9af5
FM
6285 if (name) {
6286 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6287 struct btrfs_inode_ref);
6288 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6289 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6290 ptr = (unsigned long)(ref + 1);
6291 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6292 }
9c58309d 6293
5f39d397
CM
6294 btrfs_mark_buffer_dirty(path->nodes[0]);
6295 btrfs_free_path(path);
6296
6cbff00f
CH
6297 btrfs_inherit_iflags(inode, dir);
6298
569254b0 6299 if (S_ISREG(mode)) {
0b246afa 6300 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6301 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6302 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6303 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6304 BTRFS_INODE_NODATASUM;
94272164
CM
6305 }
6306
5d4f98a2 6307 inode_tree_add(inode);
1abe9b8a 6308
6309 trace_btrfs_inode_new(inode);
1973f0fa 6310 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6311
8ea05e3a
AB
6312 btrfs_update_root_times(trans, root);
6313
63541927
FDBM
6314 ret = btrfs_inode_inherit_props(trans, inode, dir);
6315 if (ret)
0b246afa 6316 btrfs_err(fs_info,
63541927 6317 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6318 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6319
39279cc3 6320 return inode;
b0d5d10f
CM
6321
6322fail_unlock:
32955c54 6323 discard_new_inode(inode);
5f39d397 6324fail:
ef3b9af5 6325 if (dir && name)
aec7477b 6326 BTRFS_I(dir)->index_cnt--;
5f39d397
CM
6327 btrfs_free_path(path);
6328 return ERR_PTR(ret);
39279cc3
CM
6329}
6330
6331static inline u8 btrfs_inode_type(struct inode *inode)
6332{
6333 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6334}
6335
d352ac68
CM
6336/*
6337 * utility function to add 'inode' into 'parent_inode' with
6338 * a give name and a given sequence number.
6339 * if 'add_backref' is true, also insert a backref from the
6340 * inode to the parent directory.
6341 */
e02119d5 6342int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6343 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6344 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6345{
4df27c4d 6346 int ret = 0;
39279cc3 6347 struct btrfs_key key;
db0a669f
NB
6348 struct btrfs_root *root = parent_inode->root;
6349 u64 ino = btrfs_ino(inode);
6350 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6351
33345d01 6352 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6353 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6354 } else {
33345d01 6355 key.objectid = ino;
962a298f 6356 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6357 key.offset = 0;
6358 }
6359
33345d01 6360 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6025c19f 6361 ret = btrfs_add_root_ref(trans, key.objectid,
0b246afa
JM
6362 root->root_key.objectid, parent_ino,
6363 index, name, name_len);
4df27c4d 6364 } else if (add_backref) {
33345d01
LZ
6365 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6366 parent_ino, index);
4df27c4d 6367 }
39279cc3 6368
79787eaa
JM
6369 /* Nothing to clean up yet */
6370 if (ret)
6371 return ret;
4df27c4d 6372
684572df 6373 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
db0a669f 6374 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6375 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6376 goto fail_dir_item;
6377 else if (ret) {
66642832 6378 btrfs_abort_transaction(trans, ret);
79787eaa 6379 return ret;
39279cc3 6380 }
79787eaa 6381
db0a669f 6382 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6383 name_len * 2);
db0a669f
NB
6384 inode_inc_iversion(&parent_inode->vfs_inode);
6385 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6386 current_time(&parent_inode->vfs_inode);
6387 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6388 if (ret)
66642832 6389 btrfs_abort_transaction(trans, ret);
39279cc3 6390 return ret;
fe66a05a
CM
6391
6392fail_dir_item:
6393 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6394 u64 local_index;
6395 int err;
3ee1c553 6396 err = btrfs_del_root_ref(trans, key.objectid,
0b246afa
JM
6397 root->root_key.objectid, parent_ino,
6398 &local_index, name, name_len);
fe66a05a
CM
6399
6400 } else if (add_backref) {
6401 u64 local_index;
6402 int err;
6403
6404 err = btrfs_del_inode_ref(trans, root, name, name_len,
6405 ino, parent_ino, &local_index);
6406 }
6407 return ret;
39279cc3
CM
6408}
6409
6410static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6411 struct btrfs_inode *dir, struct dentry *dentry,
6412 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6413{
a1b075d2
JB
6414 int err = btrfs_add_link(trans, dir, inode,
6415 dentry->d_name.name, dentry->d_name.len,
6416 backref, index);
39279cc3
CM
6417 if (err > 0)
6418 err = -EEXIST;
6419 return err;
6420}
6421
618e21d5 6422static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6423 umode_t mode, dev_t rdev)
618e21d5 6424{
2ff7e61e 6425 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6426 struct btrfs_trans_handle *trans;
6427 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6428 struct inode *inode = NULL;
618e21d5 6429 int err;
618e21d5 6430 u64 objectid;
00e4e6b3 6431 u64 index = 0;
618e21d5 6432
9ed74f2d
JB
6433 /*
6434 * 2 for inode item and ref
6435 * 2 for dir items
6436 * 1 for xattr if selinux is on
6437 */
a22285a6
YZ
6438 trans = btrfs_start_transaction(root, 5);
6439 if (IS_ERR(trans))
6440 return PTR_ERR(trans);
1832a6d5 6441
581bb050
LZ
6442 err = btrfs_find_free_ino(root, &objectid);
6443 if (err)
6444 goto out_unlock;
6445
aec7477b 6446 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6447 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6448 mode, &index);
7cf96da3
TI
6449 if (IS_ERR(inode)) {
6450 err = PTR_ERR(inode);
32955c54 6451 inode = NULL;
618e21d5 6452 goto out_unlock;
7cf96da3 6453 }
618e21d5 6454
ad19db71
CS
6455 /*
6456 * If the active LSM wants to access the inode during
6457 * d_instantiate it needs these. Smack checks to see
6458 * if the filesystem supports xattrs by looking at the
6459 * ops vector.
6460 */
ad19db71 6461 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6462 init_special_inode(inode, inode->i_mode, rdev);
6463
6464 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6465 if (err)
32955c54 6466 goto out_unlock;
b0d5d10f 6467
cef415af
NB
6468 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6469 0, index);
32955c54
AV
6470 if (err)
6471 goto out_unlock;
6472
6473 btrfs_update_inode(trans, root, inode);
6474 d_instantiate_new(dentry, inode);
b0d5d10f 6475
618e21d5 6476out_unlock:
3a45bb20 6477 btrfs_end_transaction(trans);
2ff7e61e 6478 btrfs_btree_balance_dirty(fs_info);
32955c54 6479 if (err && inode) {
618e21d5 6480 inode_dec_link_count(inode);
32955c54 6481 discard_new_inode(inode);
618e21d5 6482 }
618e21d5
JB
6483 return err;
6484}
6485
39279cc3 6486static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6487 umode_t mode, bool excl)
39279cc3 6488{
2ff7e61e 6489 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6490 struct btrfs_trans_handle *trans;
6491 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6492 struct inode *inode = NULL;
a22285a6 6493 int err;
39279cc3 6494 u64 objectid;
00e4e6b3 6495 u64 index = 0;
39279cc3 6496
9ed74f2d
JB
6497 /*
6498 * 2 for inode item and ref
6499 * 2 for dir items
6500 * 1 for xattr if selinux is on
6501 */
a22285a6
YZ
6502 trans = btrfs_start_transaction(root, 5);
6503 if (IS_ERR(trans))
6504 return PTR_ERR(trans);
9ed74f2d 6505
581bb050
LZ
6506 err = btrfs_find_free_ino(root, &objectid);
6507 if (err)
6508 goto out_unlock;
6509
aec7477b 6510 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6511 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6512 mode, &index);
7cf96da3
TI
6513 if (IS_ERR(inode)) {
6514 err = PTR_ERR(inode);
32955c54 6515 inode = NULL;
39279cc3 6516 goto out_unlock;
7cf96da3 6517 }
ad19db71
CS
6518 /*
6519 * If the active LSM wants to access the inode during
6520 * d_instantiate it needs these. Smack checks to see
6521 * if the filesystem supports xattrs by looking at the
6522 * ops vector.
6523 */
6524 inode->i_fop = &btrfs_file_operations;
6525 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6526 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6527
6528 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6529 if (err)
32955c54 6530 goto out_unlock;
b0d5d10f
CM
6531
6532 err = btrfs_update_inode(trans, root, inode);
6533 if (err)
32955c54 6534 goto out_unlock;
ad19db71 6535
cef415af
NB
6536 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6537 0, index);
39279cc3 6538 if (err)
32955c54 6539 goto out_unlock;
43baa579 6540
43baa579 6541 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1e2e547a 6542 d_instantiate_new(dentry, inode);
43baa579 6543
39279cc3 6544out_unlock:
3a45bb20 6545 btrfs_end_transaction(trans);
32955c54 6546 if (err && inode) {
39279cc3 6547 inode_dec_link_count(inode);
32955c54 6548 discard_new_inode(inode);
39279cc3 6549 }
2ff7e61e 6550 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6551 return err;
6552}
6553
6554static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6555 struct dentry *dentry)
6556{
271dba45 6557 struct btrfs_trans_handle *trans = NULL;
39279cc3 6558 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6559 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6560 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6561 u64 index;
39279cc3
CM
6562 int err;
6563 int drop_inode = 0;
6564
4a8be425 6565 /* do not allow sys_link's with other subvols of the same device */
4fd786e6 6566 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
3ab3564f 6567 return -EXDEV;
4a8be425 6568
f186373f 6569 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6570 return -EMLINK;
4a8be425 6571
877574e2 6572 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6573 if (err)
6574 goto fail;
6575
a22285a6 6576 /*
7e6b6465 6577 * 2 items for inode and inode ref
a22285a6 6578 * 2 items for dir items
7e6b6465 6579 * 1 item for parent inode
399b0bbf 6580 * 1 item for orphan item deletion if O_TMPFILE
a22285a6 6581 */
399b0bbf 6582 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
a22285a6
YZ
6583 if (IS_ERR(trans)) {
6584 err = PTR_ERR(trans);
271dba45 6585 trans = NULL;
a22285a6
YZ
6586 goto fail;
6587 }
5f39d397 6588
67de1176
MX
6589 /* There are several dir indexes for this inode, clear the cache. */
6590 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6591 inc_nlink(inode);
0c4d2d95 6592 inode_inc_iversion(inode);
c2050a45 6593 inode->i_ctime = current_time(inode);
7de9c6ee 6594 ihold(inode);
e9976151 6595 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6596
cef415af
NB
6597 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6598 1, index);
5f39d397 6599
a5719521 6600 if (err) {
54aa1f4d 6601 drop_inode = 1;
a5719521 6602 } else {
10d9f309 6603 struct dentry *parent = dentry->d_parent;
d4682ba0
FM
6604 int ret;
6605
a5719521 6606 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6607 if (err)
6608 goto fail;
ef3b9af5
FM
6609 if (inode->i_nlink == 1) {
6610 /*
6611 * If new hard link count is 1, it's a file created
6612 * with open(2) O_TMPFILE flag.
6613 */
3d6ae7bb 6614 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6615 if (err)
6616 goto fail;
6617 }
08c422c2 6618 d_instantiate(dentry, inode);
d4682ba0
FM
6619 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6620 true, NULL);
6621 if (ret == BTRFS_NEED_TRANS_COMMIT) {
6622 err = btrfs_commit_transaction(trans);
6623 trans = NULL;
6624 }
a5719521 6625 }
39279cc3 6626
1832a6d5 6627fail:
271dba45 6628 if (trans)
3a45bb20 6629 btrfs_end_transaction(trans);
39279cc3
CM
6630 if (drop_inode) {
6631 inode_dec_link_count(inode);
6632 iput(inode);
6633 }
2ff7e61e 6634 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6635 return err;
6636}
6637
18bb1db3 6638static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6639{
2ff7e61e 6640 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6641 struct inode *inode = NULL;
39279cc3
CM
6642 struct btrfs_trans_handle *trans;
6643 struct btrfs_root *root = BTRFS_I(dir)->root;
6644 int err = 0;
6645 int drop_on_err = 0;
b9d86667 6646 u64 objectid = 0;
00e4e6b3 6647 u64 index = 0;
39279cc3 6648
9ed74f2d
JB
6649 /*
6650 * 2 items for inode and ref
6651 * 2 items for dir items
6652 * 1 for xattr if selinux is on
6653 */
a22285a6
YZ
6654 trans = btrfs_start_transaction(root, 5);
6655 if (IS_ERR(trans))
6656 return PTR_ERR(trans);
39279cc3 6657
581bb050
LZ
6658 err = btrfs_find_free_ino(root, &objectid);
6659 if (err)
6660 goto out_fail;
6661
aec7477b 6662 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6663 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6664 S_IFDIR | mode, &index);
39279cc3
CM
6665 if (IS_ERR(inode)) {
6666 err = PTR_ERR(inode);
32955c54 6667 inode = NULL;
39279cc3
CM
6668 goto out_fail;
6669 }
5f39d397 6670
39279cc3 6671 drop_on_err = 1;
b0d5d10f
CM
6672 /* these must be set before we unlock the inode */
6673 inode->i_op = &btrfs_dir_inode_operations;
6674 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6675
2a7dba39 6676 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6677 if (err)
32955c54 6678 goto out_fail;
39279cc3 6679
6ef06d27 6680 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6681 err = btrfs_update_inode(trans, root, inode);
6682 if (err)
32955c54 6683 goto out_fail;
5f39d397 6684
db0a669f
NB
6685 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6686 dentry->d_name.name,
6687 dentry->d_name.len, 0, index);
39279cc3 6688 if (err)
32955c54 6689 goto out_fail;
5f39d397 6690
1e2e547a 6691 d_instantiate_new(dentry, inode);
39279cc3 6692 drop_on_err = 0;
39279cc3
CM
6693
6694out_fail:
3a45bb20 6695 btrfs_end_transaction(trans);
32955c54 6696 if (err && inode) {
c7cfb8a5 6697 inode_dec_link_count(inode);
32955c54 6698 discard_new_inode(inode);
c7cfb8a5 6699 }
2ff7e61e 6700 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6701 return err;
6702}
6703
c8b97818 6704static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6705 struct page *page,
c8b97818
CM
6706 size_t pg_offset, u64 extent_offset,
6707 struct btrfs_file_extent_item *item)
6708{
6709 int ret;
6710 struct extent_buffer *leaf = path->nodes[0];
6711 char *tmp;
6712 size_t max_size;
6713 unsigned long inline_size;
6714 unsigned long ptr;
261507a0 6715 int compress_type;
c8b97818
CM
6716
6717 WARN_ON(pg_offset != 0);
261507a0 6718 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6719 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6720 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6721 btrfs_item_nr(path->slots[0]));
c8b97818 6722 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6723 if (!tmp)
6724 return -ENOMEM;
c8b97818
CM
6725 ptr = btrfs_file_extent_inline_start(item);
6726
6727 read_extent_buffer(leaf, tmp, ptr, inline_size);
6728
09cbfeaf 6729 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6730 ret = btrfs_decompress(compress_type, tmp, page,
6731 extent_offset, inline_size, max_size);
e1699d2d
ZB
6732
6733 /*
6734 * decompression code contains a memset to fill in any space between the end
6735 * of the uncompressed data and the end of max_size in case the decompressed
6736 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6737 * the end of an inline extent and the beginning of the next block, so we
6738 * cover that region here.
6739 */
6740
6741 if (max_size + pg_offset < PAGE_SIZE) {
6742 char *map = kmap(page);
6743 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6744 kunmap(page);
6745 }
c8b97818 6746 kfree(tmp);
166ae5a4 6747 return ret;
c8b97818
CM
6748}
6749
d352ac68
CM
6750/*
6751 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6752 * the ugly parts come from merging extents from the disk with the in-ram
6753 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6754 * where the in-ram extents might be locked pending data=ordered completion.
6755 *
6756 * This also copies inline extents directly into the page.
6757 */
fc4f21b1 6758struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
de2c6615
LB
6759 struct page *page,
6760 size_t pg_offset, u64 start, u64 len,
6761 int create)
a52d9a80 6762{
3ffbd68c 6763 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a52d9a80
CM
6764 int ret;
6765 int err = 0;
a52d9a80
CM
6766 u64 extent_start = 0;
6767 u64 extent_end = 0;
fc4f21b1 6768 u64 objectid = btrfs_ino(inode);
a52d9a80 6769 u32 found_type;
f421950f 6770 struct btrfs_path *path = NULL;
fc4f21b1 6771 struct btrfs_root *root = inode->root;
a52d9a80 6772 struct btrfs_file_extent_item *item;
5f39d397
CM
6773 struct extent_buffer *leaf;
6774 struct btrfs_key found_key;
a52d9a80 6775 struct extent_map *em = NULL;
fc4f21b1
NB
6776 struct extent_map_tree *em_tree = &inode->extent_tree;
6777 struct extent_io_tree *io_tree = &inode->io_tree;
7ffbb598 6778 const bool new_inline = !page || create;
a52d9a80 6779
890871be 6780 read_lock(&em_tree->lock);
d1310b2e 6781 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6782 if (em)
0b246afa 6783 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6784 read_unlock(&em_tree->lock);
d1310b2e 6785
a52d9a80 6786 if (em) {
e1c4b745
CM
6787 if (em->start > start || em->start + em->len <= start)
6788 free_extent_map(em);
6789 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6790 free_extent_map(em);
6791 else
6792 goto out;
a52d9a80 6793 }
172ddd60 6794 em = alloc_extent_map();
a52d9a80 6795 if (!em) {
d1310b2e
CM
6796 err = -ENOMEM;
6797 goto out;
a52d9a80 6798 }
0b246afa 6799 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6800 em->start = EXTENT_MAP_HOLE;
445a6944 6801 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6802 em->len = (u64)-1;
c8b97818 6803 em->block_len = (u64)-1;
f421950f 6804
bee6ec82 6805 path = btrfs_alloc_path();
f421950f 6806 if (!path) {
bee6ec82
LB
6807 err = -ENOMEM;
6808 goto out;
f421950f
CM
6809 }
6810
bee6ec82
LB
6811 /* Chances are we'll be called again, so go ahead and do readahead */
6812 path->reada = READA_FORWARD;
6813
e49aabd9
LB
6814 /*
6815 * Unless we're going to uncompress the inline extent, no sleep would
6816 * happen.
6817 */
6818 path->leave_spinning = 1;
6819
5c9a702e 6820 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80
CM
6821 if (ret < 0) {
6822 err = ret;
6823 goto out;
6824 }
6825
6826 if (ret != 0) {
6827 if (path->slots[0] == 0)
6828 goto not_found;
6829 path->slots[0]--;
6830 }
6831
5f39d397
CM
6832 leaf = path->nodes[0];
6833 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6834 struct btrfs_file_extent_item);
a52d9a80 6835 /* are we inside the extent that was found? */
5f39d397 6836 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6837 found_type = found_key.type;
5f39d397 6838 if (found_key.objectid != objectid ||
a52d9a80 6839 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6840 /*
6841 * If we backup past the first extent we want to move forward
6842 * and see if there is an extent in front of us, otherwise we'll
6843 * say there is a hole for our whole search range which can
6844 * cause problems.
6845 */
6846 extent_end = start;
6847 goto next;
a52d9a80
CM
6848 }
6849
5f39d397
CM
6850 found_type = btrfs_file_extent_type(leaf, item);
6851 extent_start = found_key.offset;
d899e052
YZ
6852 if (found_type == BTRFS_FILE_EXTENT_REG ||
6853 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6854 extent_end = extent_start +
db94535d 6855 btrfs_file_extent_num_bytes(leaf, item);
09ed2f16
LB
6856
6857 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6858 extent_start);
9036c102
YZ
6859 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6860 size_t size;
e41ca589
QW
6861
6862 size = btrfs_file_extent_ram_bytes(leaf, item);
da17066c 6863 extent_end = ALIGN(extent_start + size,
0b246afa 6864 fs_info->sectorsize);
09ed2f16
LB
6865
6866 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6867 path->slots[0],
6868 extent_start);
9036c102 6869 }
25a50341 6870next:
9036c102
YZ
6871 if (start >= extent_end) {
6872 path->slots[0]++;
6873 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6874 ret = btrfs_next_leaf(root, path);
6875 if (ret < 0) {
6876 err = ret;
6877 goto out;
a52d9a80 6878 }
9036c102
YZ
6879 if (ret > 0)
6880 goto not_found;
6881 leaf = path->nodes[0];
a52d9a80 6882 }
9036c102
YZ
6883 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6884 if (found_key.objectid != objectid ||
6885 found_key.type != BTRFS_EXTENT_DATA_KEY)
6886 goto not_found;
6887 if (start + len <= found_key.offset)
6888 goto not_found;
e2eca69d
WS
6889 if (start > found_key.offset)
6890 goto next;
9036c102 6891 em->start = start;
70c8a91c 6892 em->orig_start = start;
9036c102
YZ
6893 em->len = found_key.offset - start;
6894 goto not_found_em;
6895 }
6896
fc4f21b1 6897 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 6898 new_inline, em);
7ffbb598 6899
d899e052
YZ
6900 if (found_type == BTRFS_FILE_EXTENT_REG ||
6901 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6902 goto insert;
6903 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6904 unsigned long ptr;
a52d9a80 6905 char *map;
3326d1b0
CM
6906 size_t size;
6907 size_t extent_offset;
6908 size_t copy_size;
a52d9a80 6909
7ffbb598 6910 if (new_inline)
689f9346 6911 goto out;
5f39d397 6912
e41ca589 6913 size = btrfs_file_extent_ram_bytes(leaf, item);
9036c102 6914 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6915 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6916 size - extent_offset);
3326d1b0 6917 em->start = extent_start + extent_offset;
0b246afa 6918 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 6919 em->orig_block_len = em->len;
70c8a91c 6920 em->orig_start = em->start;
689f9346 6921 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
e49aabd9
LB
6922
6923 btrfs_set_path_blocking(path);
bf46f52d 6924 if (!PageUptodate(page)) {
261507a0
LZ
6925 if (btrfs_file_extent_compression(leaf, item) !=
6926 BTRFS_COMPRESS_NONE) {
e40da0e5 6927 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6928 extent_offset, item);
166ae5a4
ZB
6929 if (ret) {
6930 err = ret;
6931 goto out;
6932 }
c8b97818
CM
6933 } else {
6934 map = kmap(page);
6935 read_extent_buffer(leaf, map + pg_offset, ptr,
6936 copy_size);
09cbfeaf 6937 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6938 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6939 PAGE_SIZE - pg_offset -
93c82d57
CM
6940 copy_size);
6941 }
c8b97818
CM
6942 kunmap(page);
6943 }
179e29e4 6944 flush_dcache_page(page);
a52d9a80 6945 }
d1310b2e 6946 set_extent_uptodate(io_tree, em->start,
507903b8 6947 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6948 goto insert;
a52d9a80
CM
6949 }
6950not_found:
6951 em->start = start;
70c8a91c 6952 em->orig_start = start;
d1310b2e 6953 em->len = len;
a52d9a80 6954not_found_em:
5f39d397 6955 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 6956insert:
b3b4aa74 6957 btrfs_release_path(path);
d1310b2e 6958 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 6959 btrfs_err(fs_info,
5d163e0e
JM
6960 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6961 em->start, em->len, start, len);
a52d9a80
CM
6962 err = -EIO;
6963 goto out;
6964 }
d1310b2e
CM
6965
6966 err = 0;
890871be 6967 write_lock(&em_tree->lock);
f46b24c9 6968 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
890871be 6969 write_unlock(&em_tree->lock);
a52d9a80 6970out:
c6414280 6971 btrfs_free_path(path);
1abe9b8a 6972
fc4f21b1 6973 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 6974
a52d9a80
CM
6975 if (err) {
6976 free_extent_map(em);
a52d9a80
CM
6977 return ERR_PTR(err);
6978 }
79787eaa 6979 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6980 return em;
6981}
6982
fc4f21b1
NB
6983struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6984 struct page *page,
6985 size_t pg_offset, u64 start, u64 len,
6986 int create)
ec29ed5b
CM
6987{
6988 struct extent_map *em;
6989 struct extent_map *hole_em = NULL;
6990 u64 range_start = start;
6991 u64 end;
6992 u64 found;
6993 u64 found_end;
6994 int err = 0;
6995
6996 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6997 if (IS_ERR(em))
6998 return em;
9986277e
DC
6999 /*
7000 * If our em maps to:
7001 * - a hole or
7002 * - a pre-alloc extent,
7003 * there might actually be delalloc bytes behind it.
7004 */
7005 if (em->block_start != EXTENT_MAP_HOLE &&
7006 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7007 return em;
7008 else
7009 hole_em = em;
ec29ed5b
CM
7010
7011 /* check to see if we've wrapped (len == -1 or similar) */
7012 end = start + len;
7013 if (end < start)
7014 end = (u64)-1;
7015 else
7016 end -= 1;
7017
7018 em = NULL;
7019
7020 /* ok, we didn't find anything, lets look for delalloc */
fc4f21b1 7021 found = count_range_bits(&inode->io_tree, &range_start,
ec29ed5b
CM
7022 end, len, EXTENT_DELALLOC, 1);
7023 found_end = range_start + found;
7024 if (found_end < range_start)
7025 found_end = (u64)-1;
7026
7027 /*
7028 * we didn't find anything useful, return
7029 * the original results from get_extent()
7030 */
7031 if (range_start > end || found_end <= start) {
7032 em = hole_em;
7033 hole_em = NULL;
7034 goto out;
7035 }
7036
7037 /* adjust the range_start to make sure it doesn't
7038 * go backwards from the start they passed in
7039 */
67871254 7040 range_start = max(start, range_start);
ec29ed5b
CM
7041 found = found_end - range_start;
7042
7043 if (found > 0) {
7044 u64 hole_start = start;
7045 u64 hole_len = len;
7046
172ddd60 7047 em = alloc_extent_map();
ec29ed5b
CM
7048 if (!em) {
7049 err = -ENOMEM;
7050 goto out;
7051 }
7052 /*
7053 * when btrfs_get_extent can't find anything it
7054 * returns one huge hole
7055 *
7056 * make sure what it found really fits our range, and
7057 * adjust to make sure it is based on the start from
7058 * the caller
7059 */
7060 if (hole_em) {
7061 u64 calc_end = extent_map_end(hole_em);
7062
7063 if (calc_end <= start || (hole_em->start > end)) {
7064 free_extent_map(hole_em);
7065 hole_em = NULL;
7066 } else {
7067 hole_start = max(hole_em->start, start);
7068 hole_len = calc_end - hole_start;
7069 }
7070 }
7071 em->bdev = NULL;
7072 if (hole_em && range_start > hole_start) {
7073 /* our hole starts before our delalloc, so we
7074 * have to return just the parts of the hole
7075 * that go until the delalloc starts
7076 */
7077 em->len = min(hole_len,
7078 range_start - hole_start);
7079 em->start = hole_start;
7080 em->orig_start = hole_start;
7081 /*
7082 * don't adjust block start at all,
7083 * it is fixed at EXTENT_MAP_HOLE
7084 */
7085 em->block_start = hole_em->block_start;
7086 em->block_len = hole_len;
f9e4fb53
LB
7087 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7088 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7089 } else {
7090 em->start = range_start;
7091 em->len = found;
7092 em->orig_start = range_start;
7093 em->block_start = EXTENT_MAP_DELALLOC;
7094 em->block_len = found;
7095 }
bf8d32b9 7096 } else {
ec29ed5b
CM
7097 return hole_em;
7098 }
7099out:
7100
7101 free_extent_map(hole_em);
7102 if (err) {
7103 free_extent_map(em);
7104 return ERR_PTR(err);
7105 }
7106 return em;
7107}
7108
5f9a8a51
FM
7109static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7110 const u64 start,
7111 const u64 len,
7112 const u64 orig_start,
7113 const u64 block_start,
7114 const u64 block_len,
7115 const u64 orig_block_len,
7116 const u64 ram_bytes,
7117 const int type)
7118{
7119 struct extent_map *em = NULL;
7120 int ret;
7121
5f9a8a51 7122 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7123 em = create_io_em(inode, start, len, orig_start,
7124 block_start, block_len, orig_block_len,
7125 ram_bytes,
7126 BTRFS_COMPRESS_NONE, /* compress_type */
7127 type);
5f9a8a51
FM
7128 if (IS_ERR(em))
7129 goto out;
7130 }
7131 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7132 len, block_len, type);
7133 if (ret) {
7134 if (em) {
7135 free_extent_map(em);
dcdbc059 7136 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7137 start + len - 1, 0);
7138 }
7139 em = ERR_PTR(ret);
7140 }
7141 out:
5f9a8a51
FM
7142
7143 return em;
7144}
7145
4b46fce2
JB
7146static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7147 u64 start, u64 len)
7148{
0b246afa 7149 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7150 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7151 struct extent_map *em;
4b46fce2
JB
7152 struct btrfs_key ins;
7153 u64 alloc_hint;
7154 int ret;
4b46fce2 7155
4b46fce2 7156 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7157 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7158 0, alloc_hint, &ins, 1, 1);
00361589
JB
7159 if (ret)
7160 return ERR_PTR(ret);
4b46fce2 7161
5f9a8a51
FM
7162 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7163 ins.objectid, ins.offset, ins.offset,
6288d6ea 7164 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7165 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7166 if (IS_ERR(em))
2ff7e61e
JM
7167 btrfs_free_reserved_extent(fs_info, ins.objectid,
7168 ins.offset, 1);
de0ee0ed 7169
4b46fce2
JB
7170 return em;
7171}
7172
46bfbb5c
CM
7173/*
7174 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7175 * block must be cow'd
7176 */
00361589 7177noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7178 u64 *orig_start, u64 *orig_block_len,
7179 u64 *ram_bytes)
46bfbb5c 7180{
2ff7e61e 7181 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7182 struct btrfs_path *path;
7183 int ret;
7184 struct extent_buffer *leaf;
7185 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7186 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7187 struct btrfs_file_extent_item *fi;
7188 struct btrfs_key key;
7189 u64 disk_bytenr;
7190 u64 backref_offset;
7191 u64 extent_end;
7192 u64 num_bytes;
7193 int slot;
7194 int found_type;
7ee9e440 7195 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7196
46bfbb5c
CM
7197 path = btrfs_alloc_path();
7198 if (!path)
7199 return -ENOMEM;
7200
f85b7379
DS
7201 ret = btrfs_lookup_file_extent(NULL, root, path,
7202 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7203 if (ret < 0)
7204 goto out;
7205
7206 slot = path->slots[0];
7207 if (ret == 1) {
7208 if (slot == 0) {
7209 /* can't find the item, must cow */
7210 ret = 0;
7211 goto out;
7212 }
7213 slot--;
7214 }
7215 ret = 0;
7216 leaf = path->nodes[0];
7217 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7218 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7219 key.type != BTRFS_EXTENT_DATA_KEY) {
7220 /* not our file or wrong item type, must cow */
7221 goto out;
7222 }
7223
7224 if (key.offset > offset) {
7225 /* Wrong offset, must cow */
7226 goto out;
7227 }
7228
7229 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7230 found_type = btrfs_file_extent_type(leaf, fi);
7231 if (found_type != BTRFS_FILE_EXTENT_REG &&
7232 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7233 /* not a regular extent, must cow */
7234 goto out;
7235 }
7ee9e440
JB
7236
7237 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7238 goto out;
7239
e77751aa
MX
7240 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7241 if (extent_end <= offset)
7242 goto out;
7243
46bfbb5c 7244 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7245 if (disk_bytenr == 0)
7246 goto out;
7247
7248 if (btrfs_file_extent_compression(leaf, fi) ||
7249 btrfs_file_extent_encryption(leaf, fi) ||
7250 btrfs_file_extent_other_encoding(leaf, fi))
7251 goto out;
7252
78d4295b
EL
7253 /*
7254 * Do the same check as in btrfs_cross_ref_exist but without the
7255 * unnecessary search.
7256 */
7257 if (btrfs_file_extent_generation(leaf, fi) <=
7258 btrfs_root_last_snapshot(&root->root_item))
7259 goto out;
7260
46bfbb5c
CM
7261 backref_offset = btrfs_file_extent_offset(leaf, fi);
7262
7ee9e440
JB
7263 if (orig_start) {
7264 *orig_start = key.offset - backref_offset;
7265 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7266 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7267 }
eb384b55 7268
2ff7e61e 7269 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7270 goto out;
7b2b7085
MX
7271
7272 num_bytes = min(offset + *len, extent_end) - offset;
7273 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7274 u64 range_end;
7275
da17066c
JM
7276 range_end = round_up(offset + num_bytes,
7277 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7278 ret = test_range_bit(io_tree, offset, range_end,
7279 EXTENT_DELALLOC, 0, NULL);
7280 if (ret) {
7281 ret = -EAGAIN;
7282 goto out;
7283 }
7284 }
7285
1bda19eb 7286 btrfs_release_path(path);
46bfbb5c
CM
7287
7288 /*
7289 * look for other files referencing this extent, if we
7290 * find any we must cow
7291 */
00361589 7292
e4c3b2dc 7293 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7294 key.offset - backref_offset, disk_bytenr);
00361589
JB
7295 if (ret) {
7296 ret = 0;
7297 goto out;
7298 }
46bfbb5c
CM
7299
7300 /*
7301 * adjust disk_bytenr and num_bytes to cover just the bytes
7302 * in this extent we are about to write. If there
7303 * are any csums in that range we have to cow in order
7304 * to keep the csums correct
7305 */
7306 disk_bytenr += backref_offset;
7307 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7308 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7309 goto out;
46bfbb5c
CM
7310 /*
7311 * all of the above have passed, it is safe to overwrite this extent
7312 * without cow
7313 */
eb384b55 7314 *len = num_bytes;
46bfbb5c
CM
7315 ret = 1;
7316out:
7317 btrfs_free_path(path);
7318 return ret;
7319}
7320
eb838e73
JB
7321static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7322 struct extent_state **cached_state, int writing)
7323{
7324 struct btrfs_ordered_extent *ordered;
7325 int ret = 0;
7326
7327 while (1) {
7328 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7329 cached_state);
eb838e73
JB
7330 /*
7331 * We're concerned with the entire range that we're going to be
01327610 7332 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7333 * extents in this range.
7334 */
a776c6fa 7335 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7336 lockend - lockstart + 1);
7337
7338 /*
7339 * We need to make sure there are no buffered pages in this
7340 * range either, we could have raced between the invalidate in
7341 * generic_file_direct_write and locking the extent. The
7342 * invalidate needs to happen so that reads after a write do not
7343 * get stale data.
7344 */
fc4adbff 7345 if (!ordered &&
051c98eb
DS
7346 (!writing || !filemap_range_has_page(inode->i_mapping,
7347 lockstart, lockend)))
eb838e73
JB
7348 break;
7349
7350 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 7351 cached_state);
eb838e73
JB
7352
7353 if (ordered) {
ade77029
FM
7354 /*
7355 * If we are doing a DIO read and the ordered extent we
7356 * found is for a buffered write, we can not wait for it
7357 * to complete and retry, because if we do so we can
7358 * deadlock with concurrent buffered writes on page
7359 * locks. This happens only if our DIO read covers more
7360 * than one extent map, if at this point has already
7361 * created an ordered extent for a previous extent map
7362 * and locked its range in the inode's io tree, and a
7363 * concurrent write against that previous extent map's
7364 * range and this range started (we unlock the ranges
7365 * in the io tree only when the bios complete and
7366 * buffered writes always lock pages before attempting
7367 * to lock range in the io tree).
7368 */
7369 if (writing ||
7370 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7371 btrfs_start_ordered_extent(inode, ordered, 1);
7372 else
7373 ret = -ENOTBLK;
eb838e73
JB
7374 btrfs_put_ordered_extent(ordered);
7375 } else {
eb838e73 7376 /*
b850ae14
FM
7377 * We could trigger writeback for this range (and wait
7378 * for it to complete) and then invalidate the pages for
7379 * this range (through invalidate_inode_pages2_range()),
7380 * but that can lead us to a deadlock with a concurrent
7381 * call to readpages() (a buffered read or a defrag call
7382 * triggered a readahead) on a page lock due to an
7383 * ordered dio extent we created before but did not have
7384 * yet a corresponding bio submitted (whence it can not
7385 * complete), which makes readpages() wait for that
7386 * ordered extent to complete while holding a lock on
7387 * that page.
eb838e73 7388 */
b850ae14 7389 ret = -ENOTBLK;
eb838e73
JB
7390 }
7391
ade77029
FM
7392 if (ret)
7393 break;
7394
eb838e73
JB
7395 cond_resched();
7396 }
7397
7398 return ret;
7399}
7400
6f9994db
LB
7401/* The callers of this must take lock_extent() */
7402static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7403 u64 orig_start, u64 block_start,
7404 u64 block_len, u64 orig_block_len,
7405 u64 ram_bytes, int compress_type,
7406 int type)
69ffb543
JB
7407{
7408 struct extent_map_tree *em_tree;
7409 struct extent_map *em;
7410 struct btrfs_root *root = BTRFS_I(inode)->root;
7411 int ret;
7412
6f9994db
LB
7413 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7414 type == BTRFS_ORDERED_COMPRESSED ||
7415 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7416 type == BTRFS_ORDERED_REGULAR);
6f9994db 7417
69ffb543
JB
7418 em_tree = &BTRFS_I(inode)->extent_tree;
7419 em = alloc_extent_map();
7420 if (!em)
7421 return ERR_PTR(-ENOMEM);
7422
7423 em->start = start;
7424 em->orig_start = orig_start;
7425 em->len = len;
7426 em->block_len = block_len;
7427 em->block_start = block_start;
7428 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7429 em->orig_block_len = orig_block_len;
cc95bef6 7430 em->ram_bytes = ram_bytes;
70c8a91c 7431 em->generation = -1;
69ffb543 7432 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7433 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7434 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7435 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7436 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7437 em->compress_type = compress_type;
7438 }
69ffb543
JB
7439
7440 do {
dcdbc059 7441 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7442 em->start + em->len - 1, 0);
7443 write_lock(&em_tree->lock);
09a2a8f9 7444 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7445 write_unlock(&em_tree->lock);
6f9994db
LB
7446 /*
7447 * The caller has taken lock_extent(), who could race with us
7448 * to add em?
7449 */
69ffb543
JB
7450 } while (ret == -EEXIST);
7451
7452 if (ret) {
7453 free_extent_map(em);
7454 return ERR_PTR(ret);
7455 }
7456
6f9994db 7457 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7458 return em;
7459}
7460
1c8d0175
NB
7461
7462static int btrfs_get_blocks_direct_read(struct extent_map *em,
7463 struct buffer_head *bh_result,
7464 struct inode *inode,
7465 u64 start, u64 len)
7466{
7467 if (em->block_start == EXTENT_MAP_HOLE ||
7468 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7469 return -ENOENT;
7470
7471 len = min(len, em->len - (start - em->start));
7472
7473 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7474 inode->i_blkbits;
7475 bh_result->b_size = len;
7476 bh_result->b_bdev = em->bdev;
7477 set_buffer_mapped(bh_result);
7478
7479 return 0;
7480}
7481
c5794e51
NB
7482static int btrfs_get_blocks_direct_write(struct extent_map **map,
7483 struct buffer_head *bh_result,
7484 struct inode *inode,
7485 struct btrfs_dio_data *dio_data,
7486 u64 start, u64 len)
7487{
7488 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7489 struct extent_map *em = *map;
7490 int ret = 0;
7491
7492 /*
7493 * We don't allocate a new extent in the following cases
7494 *
7495 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7496 * existing extent.
7497 * 2) The extent is marked as PREALLOC. We're good to go here and can
7498 * just use the extent.
7499 *
7500 */
7501 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7502 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7503 em->block_start != EXTENT_MAP_HOLE)) {
7504 int type;
7505 u64 block_start, orig_start, orig_block_len, ram_bytes;
7506
7507 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7508 type = BTRFS_ORDERED_PREALLOC;
7509 else
7510 type = BTRFS_ORDERED_NOCOW;
7511 len = min(len, em->len - (start - em->start));
7512 block_start = em->block_start + (start - em->start);
7513
7514 if (can_nocow_extent(inode, start, &len, &orig_start,
7515 &orig_block_len, &ram_bytes) == 1 &&
7516 btrfs_inc_nocow_writers(fs_info, block_start)) {
7517 struct extent_map *em2;
7518
7519 em2 = btrfs_create_dio_extent(inode, start, len,
7520 orig_start, block_start,
7521 len, orig_block_len,
7522 ram_bytes, type);
7523 btrfs_dec_nocow_writers(fs_info, block_start);
7524 if (type == BTRFS_ORDERED_PREALLOC) {
7525 free_extent_map(em);
7526 *map = em = em2;
7527 }
7528
7529 if (em2 && IS_ERR(em2)) {
7530 ret = PTR_ERR(em2);
7531 goto out;
7532 }
7533 /*
7534 * For inode marked NODATACOW or extent marked PREALLOC,
7535 * use the existing or preallocated extent, so does not
7536 * need to adjust btrfs_space_info's bytes_may_use.
7537 */
7538 btrfs_free_reserved_data_space_noquota(inode, start,
7539 len);
7540 goto skip_cow;
7541 }
7542 }
7543
7544 /* this will cow the extent */
7545 len = bh_result->b_size;
7546 free_extent_map(em);
7547 *map = em = btrfs_new_extent_direct(inode, start, len);
7548 if (IS_ERR(em)) {
7549 ret = PTR_ERR(em);
7550 goto out;
7551 }
7552
7553 len = min(len, em->len - (start - em->start));
7554
7555skip_cow:
7556 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7557 inode->i_blkbits;
7558 bh_result->b_size = len;
7559 bh_result->b_bdev = em->bdev;
7560 set_buffer_mapped(bh_result);
7561
7562 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7563 set_buffer_new(bh_result);
7564
7565 /*
7566 * Need to update the i_size under the extent lock so buffered
7567 * readers will get the updated i_size when we unlock.
7568 */
7569 if (!dio_data->overwrite && start + len > i_size_read(inode))
7570 i_size_write(inode, start + len);
7571
7572 WARN_ON(dio_data->reserve < len);
7573 dio_data->reserve -= len;
7574 dio_data->unsubmitted_oe_range_end = start + len;
7575 current->journal_info = dio_data;
7576out:
7577 return ret;
7578}
7579
4b46fce2
JB
7580static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7581 struct buffer_head *bh_result, int create)
7582{
0b246afa 7583 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7584 struct extent_map *em;
eb838e73 7585 struct extent_state *cached_state = NULL;
50745b0a 7586 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7587 u64 start = iblock << inode->i_blkbits;
eb838e73 7588 u64 lockstart, lockend;
4b46fce2 7589 u64 len = bh_result->b_size;
eb838e73 7590 int unlock_bits = EXTENT_LOCKED;
0934856d 7591 int ret = 0;
eb838e73 7592
172a5049 7593 if (create)
3266789f 7594 unlock_bits |= EXTENT_DIRTY;
172a5049 7595 else
0b246afa 7596 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7597
c329861d
JB
7598 lockstart = start;
7599 lockend = start + len - 1;
7600
e1cbbfa5
JB
7601 if (current->journal_info) {
7602 /*
7603 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7604 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7605 * confused.
7606 */
50745b0a 7607 dio_data = current->journal_info;
e1cbbfa5
JB
7608 current->journal_info = NULL;
7609 }
7610
eb838e73
JB
7611 /*
7612 * If this errors out it's because we couldn't invalidate pagecache for
7613 * this range and we need to fallback to buffered.
7614 */
9c9464cc
FM
7615 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7616 create)) {
7617 ret = -ENOTBLK;
7618 goto err;
7619 }
eb838e73 7620
fc4f21b1 7621 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7622 if (IS_ERR(em)) {
7623 ret = PTR_ERR(em);
7624 goto unlock_err;
7625 }
4b46fce2
JB
7626
7627 /*
7628 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7629 * io. INLINE is special, and we could probably kludge it in here, but
7630 * it's still buffered so for safety lets just fall back to the generic
7631 * buffered path.
7632 *
7633 * For COMPRESSED we _have_ to read the entire extent in so we can
7634 * decompress it, so there will be buffering required no matter what we
7635 * do, so go ahead and fallback to buffered.
7636 *
01327610 7637 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7638 * to buffered IO. Don't blame me, this is the price we pay for using
7639 * the generic code.
7640 */
7641 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7642 em->block_start == EXTENT_MAP_INLINE) {
7643 free_extent_map(em);
eb838e73
JB
7644 ret = -ENOTBLK;
7645 goto unlock_err;
4b46fce2
JB
7646 }
7647
c5794e51
NB
7648 if (create) {
7649 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7650 dio_data, start, len);
7651 if (ret < 0)
7652 goto unlock_err;
7653
7654 /* clear and unlock the entire range */
7655 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7656 unlock_bits, 1, 0, &cached_state);
7657 } else {
1c8d0175
NB
7658 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7659 start, len);
7660 /* Can be negative only if we read from a hole */
7661 if (ret < 0) {
7662 ret = 0;
7663 free_extent_map(em);
7664 goto unlock_err;
7665 }
7666 /*
7667 * We need to unlock only the end area that we aren't using.
7668 * The rest is going to be unlocked by the endio routine.
7669 */
7670 lockstart = start + bh_result->b_size;
7671 if (lockstart < lockend) {
7672 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7673 lockend, unlock_bits, 1, 0,
7674 &cached_state);
7675 } else {
7676 free_extent_state(cached_state);
7677 }
4b46fce2
JB
7678 }
7679
4b46fce2
JB
7680 free_extent_map(em);
7681
7682 return 0;
eb838e73
JB
7683
7684unlock_err:
eb838e73 7685 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ae0f1625 7686 unlock_bits, 1, 0, &cached_state);
9c9464cc 7687err:
50745b0a 7688 if (dio_data)
7689 current->journal_info = dio_data;
eb838e73 7690 return ret;
4b46fce2
JB
7691}
7692
58efbc9f
OS
7693static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7694 struct bio *bio,
7695 int mirror_num)
8b110e39 7696{
2ff7e61e 7697 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7698 blk_status_t ret;
8b110e39 7699
37226b21 7700 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7701
2ff7e61e 7702 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39 7703 if (ret)
ea057f6d 7704 return ret;
8b110e39 7705
2ff7e61e 7706 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
ea057f6d 7707
8b110e39
MX
7708 return ret;
7709}
7710
7711static int btrfs_check_dio_repairable(struct inode *inode,
7712 struct bio *failed_bio,
7713 struct io_failure_record *failrec,
7714 int failed_mirror)
7715{
ab8d0fc4 7716 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7717 int num_copies;
7718
ab8d0fc4 7719 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7720 if (num_copies == 1) {
7721 /*
7722 * we only have a single copy of the data, so don't bother with
7723 * all the retry and error correction code that follows. no
7724 * matter what the error is, it is very likely to persist.
7725 */
ab8d0fc4
JM
7726 btrfs_debug(fs_info,
7727 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7728 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7729 return 0;
7730 }
7731
7732 failrec->failed_mirror = failed_mirror;
7733 failrec->this_mirror++;
7734 if (failrec->this_mirror == failed_mirror)
7735 failrec->this_mirror++;
7736
7737 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7738 btrfs_debug(fs_info,
7739 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7740 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7741 return 0;
7742 }
7743
7744 return 1;
7745}
7746
58efbc9f
OS
7747static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7748 struct page *page, unsigned int pgoff,
7749 u64 start, u64 end, int failed_mirror,
7750 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7751{
7752 struct io_failure_record *failrec;
7870d082
JB
7753 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7754 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8b110e39
MX
7755 struct bio *bio;
7756 int isector;
f1c77c55 7757 unsigned int read_mode = 0;
17347cec 7758 int segs;
8b110e39 7759 int ret;
58efbc9f 7760 blk_status_t status;
c16a8ac3 7761 struct bio_vec bvec;
8b110e39 7762
37226b21 7763 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7764
7765 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7766 if (ret)
58efbc9f 7767 return errno_to_blk_status(ret);
8b110e39
MX
7768
7769 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7770 failed_mirror);
7771 if (!ret) {
7870d082 7772 free_io_failure(failure_tree, io_tree, failrec);
58efbc9f 7773 return BLK_STS_IOERR;
8b110e39
MX
7774 }
7775
17347cec 7776 segs = bio_segments(failed_bio);
c16a8ac3 7777 bio_get_first_bvec(failed_bio, &bvec);
17347cec 7778 if (segs > 1 ||
c16a8ac3 7779 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
70fd7614 7780 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
7781
7782 isector = start - btrfs_io_bio(failed_bio)->logical;
7783 isector >>= inode->i_sb->s_blocksize_bits;
7784 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7785 pgoff, isector, repair_endio, repair_arg);
ebcc3263 7786 bio->bi_opf = REQ_OP_READ | read_mode;
8b110e39
MX
7787
7788 btrfs_debug(BTRFS_I(inode)->root->fs_info,
913e1535 7789 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8b110e39
MX
7790 read_mode, failrec->this_mirror, failrec->in_validation);
7791
58efbc9f
OS
7792 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7793 if (status) {
7870d082 7794 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
7795 bio_put(bio);
7796 }
7797
58efbc9f 7798 return status;
8b110e39
MX
7799}
7800
7801struct btrfs_retry_complete {
7802 struct completion done;
7803 struct inode *inode;
7804 u64 start;
7805 int uptodate;
7806};
7807
4246a0b6 7808static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7809{
7810 struct btrfs_retry_complete *done = bio->bi_private;
7870d082 7811 struct inode *inode = done->inode;
8b110e39 7812 struct bio_vec *bvec;
7870d082 7813 struct extent_io_tree *io_tree, *failure_tree;
8b110e39
MX
7814 int i;
7815
4e4cbee9 7816 if (bio->bi_status)
8b110e39
MX
7817 goto end;
7818
2dabb324 7819 ASSERT(bio->bi_vcnt == 1);
7870d082
JB
7820 io_tree = &BTRFS_I(inode)->io_tree;
7821 failure_tree = &BTRFS_I(inode)->io_failure_tree;
263663cd 7822 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 7823
8b110e39 7824 done->uptodate = 1;
c09abff8 7825 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 7826 bio_for_each_segment_all(bvec, bio, i)
7870d082
JB
7827 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7828 io_tree, done->start, bvec->bv_page,
7829 btrfs_ino(BTRFS_I(inode)), 0);
8b110e39
MX
7830end:
7831 complete(&done->done);
7832 bio_put(bio);
7833}
7834
58efbc9f
OS
7835static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7836 struct btrfs_io_bio *io_bio)
4b46fce2 7837{
2dabb324 7838 struct btrfs_fs_info *fs_info;
17347cec
LB
7839 struct bio_vec bvec;
7840 struct bvec_iter iter;
8b110e39 7841 struct btrfs_retry_complete done;
4b46fce2 7842 u64 start;
2dabb324
CR
7843 unsigned int pgoff;
7844 u32 sectorsize;
7845 int nr_sectors;
58efbc9f
OS
7846 blk_status_t ret;
7847 blk_status_t err = BLK_STS_OK;
4b46fce2 7848
2dabb324 7849 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 7850 sectorsize = fs_info->sectorsize;
2dabb324 7851
8b110e39
MX
7852 start = io_bio->logical;
7853 done.inode = inode;
17347cec 7854 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 7855
17347cec
LB
7856 bio_for_each_segment(bvec, &io_bio->bio, iter) {
7857 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7858 pgoff = bvec.bv_offset;
2dabb324
CR
7859
7860next_block_or_try_again:
8b110e39
MX
7861 done.uptodate = 0;
7862 done.start = start;
7863 init_completion(&done.done);
7864
17347cec 7865 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
7866 pgoff, start, start + sectorsize - 1,
7867 io_bio->mirror_num,
7868 btrfs_retry_endio_nocsum, &done);
629ebf4f
LB
7869 if (ret) {
7870 err = ret;
7871 goto next;
7872 }
8b110e39 7873
9c17f6cd 7874 wait_for_completion_io(&done.done);
8b110e39
MX
7875
7876 if (!done.uptodate) {
7877 /* We might have another mirror, so try again */
2dabb324 7878 goto next_block_or_try_again;
8b110e39
MX
7879 }
7880
629ebf4f 7881next:
2dabb324
CR
7882 start += sectorsize;
7883
97bf5a55
LB
7884 nr_sectors--;
7885 if (nr_sectors) {
2dabb324 7886 pgoff += sectorsize;
97bf5a55 7887 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
7888 goto next_block_or_try_again;
7889 }
8b110e39
MX
7890 }
7891
629ebf4f 7892 return err;
8b110e39
MX
7893}
7894
4246a0b6 7895static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7896{
7897 struct btrfs_retry_complete *done = bio->bi_private;
7898 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082
JB
7899 struct extent_io_tree *io_tree, *failure_tree;
7900 struct inode *inode = done->inode;
8b110e39
MX
7901 struct bio_vec *bvec;
7902 int uptodate;
7903 int ret;
7904 int i;
7905
4e4cbee9 7906 if (bio->bi_status)
8b110e39
MX
7907 goto end;
7908
7909 uptodate = 1;
2dabb324 7910
2dabb324 7911 ASSERT(bio->bi_vcnt == 1);
263663cd 7912 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 7913
7870d082
JB
7914 io_tree = &BTRFS_I(inode)->io_tree;
7915 failure_tree = &BTRFS_I(inode)->io_failure_tree;
7916
c09abff8 7917 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 7918 bio_for_each_segment_all(bvec, bio, i) {
7870d082
JB
7919 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7920 bvec->bv_offset, done->start,
7921 bvec->bv_len);
8b110e39 7922 if (!ret)
7870d082
JB
7923 clean_io_failure(BTRFS_I(inode)->root->fs_info,
7924 failure_tree, io_tree, done->start,
7925 bvec->bv_page,
7926 btrfs_ino(BTRFS_I(inode)),
7927 bvec->bv_offset);
8b110e39
MX
7928 else
7929 uptodate = 0;
7930 }
7931
7932 done->uptodate = uptodate;
7933end:
7934 complete(&done->done);
7935 bio_put(bio);
7936}
7937
4e4cbee9
CH
7938static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
7939 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39 7940{
2dabb324 7941 struct btrfs_fs_info *fs_info;
17347cec
LB
7942 struct bio_vec bvec;
7943 struct bvec_iter iter;
8b110e39
MX
7944 struct btrfs_retry_complete done;
7945 u64 start;
7946 u64 offset = 0;
2dabb324
CR
7947 u32 sectorsize;
7948 int nr_sectors;
7949 unsigned int pgoff;
7950 int csum_pos;
ef7cdac1 7951 bool uptodate = (err == 0);
8b110e39 7952 int ret;
58efbc9f 7953 blk_status_t status;
dc380aea 7954
2dabb324 7955 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 7956 sectorsize = fs_info->sectorsize;
2dabb324 7957
58efbc9f 7958 err = BLK_STS_OK;
c1dc0896 7959 start = io_bio->logical;
8b110e39 7960 done.inode = inode;
17347cec 7961 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 7962
17347cec
LB
7963 bio_for_each_segment(bvec, &io_bio->bio, iter) {
7964 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
2dabb324 7965
17347cec 7966 pgoff = bvec.bv_offset;
2dabb324 7967next_block:
ef7cdac1
LB
7968 if (uptodate) {
7969 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
7970 ret = __readpage_endio_check(inode, io_bio, csum_pos,
7971 bvec.bv_page, pgoff, start, sectorsize);
7972 if (likely(!ret))
7973 goto next;
7974 }
8b110e39
MX
7975try_again:
7976 done.uptodate = 0;
7977 done.start = start;
7978 init_completion(&done.done);
7979
58efbc9f
OS
7980 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7981 pgoff, start, start + sectorsize - 1,
7982 io_bio->mirror_num, btrfs_retry_endio,
7983 &done);
7984 if (status) {
7985 err = status;
8b110e39
MX
7986 goto next;
7987 }
7988
9c17f6cd 7989 wait_for_completion_io(&done.done);
8b110e39
MX
7990
7991 if (!done.uptodate) {
7992 /* We might have another mirror, so try again */
7993 goto try_again;
7994 }
7995next:
2dabb324
CR
7996 offset += sectorsize;
7997 start += sectorsize;
7998
7999 ASSERT(nr_sectors);
8000
97bf5a55
LB
8001 nr_sectors--;
8002 if (nr_sectors) {
2dabb324 8003 pgoff += sectorsize;
97bf5a55 8004 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8005 goto next_block;
8006 }
2c30c71b 8007 }
c1dc0896
MX
8008
8009 return err;
8010}
8011
4e4cbee9
CH
8012static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8013 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39
MX
8014{
8015 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8016
8017 if (skip_csum) {
8018 if (unlikely(err))
8019 return __btrfs_correct_data_nocsum(inode, io_bio);
8020 else
58efbc9f 8021 return BLK_STS_OK;
8b110e39
MX
8022 } else {
8023 return __btrfs_subio_endio_read(inode, io_bio, err);
8024 }
8025}
8026
4246a0b6 8027static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8028{
8029 struct btrfs_dio_private *dip = bio->bi_private;
8030 struct inode *inode = dip->inode;
8031 struct bio *dio_bio;
8032 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4e4cbee9 8033 blk_status_t err = bio->bi_status;
c1dc0896 8034
99c4e3b9 8035 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8b110e39 8036 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8037
4b46fce2 8038 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8039 dip->logical_offset + dip->bytes - 1);
9be3395b 8040 dio_bio = dip->dio_bio;
4b46fce2 8041
4b46fce2 8042 kfree(dip);
c0da7aa1 8043
99c4e3b9 8044 dio_bio->bi_status = err;
4055351c 8045 dio_end_io(dio_bio);
23ea8e5a
MX
8046
8047 if (io_bio->end_io)
4e4cbee9 8048 io_bio->end_io(io_bio, blk_status_to_errno(err));
9be3395b 8049 bio_put(bio);
4b46fce2
JB
8050}
8051
52427260
QW
8052static void __endio_write_update_ordered(struct inode *inode,
8053 const u64 offset, const u64 bytes,
8054 const bool uptodate)
4b46fce2 8055{
0b246afa 8056 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8057 struct btrfs_ordered_extent *ordered = NULL;
52427260
QW
8058 struct btrfs_workqueue *wq;
8059 btrfs_work_func_t func;
14543774
FM
8060 u64 ordered_offset = offset;
8061 u64 ordered_bytes = bytes;
67c003f9 8062 u64 last_offset;
4b46fce2 8063
52427260
QW
8064 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8065 wq = fs_info->endio_freespace_worker;
8066 func = btrfs_freespace_write_helper;
8067 } else {
8068 wq = fs_info->endio_write_workers;
8069 func = btrfs_endio_write_helper;
8070 }
8071
b25f0d00
NB
8072 while (ordered_offset < offset + bytes) {
8073 last_offset = ordered_offset;
8074 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8075 &ordered_offset,
8076 ordered_bytes,
8077 uptodate)) {
8078 btrfs_init_work(&ordered->work, func,
8079 finish_ordered_fn,
8080 NULL, NULL);
8081 btrfs_queue_work(wq, &ordered->work);
8082 }
8083 /*
8084 * If btrfs_dec_test_ordered_pending does not find any ordered
8085 * extent in the range, we can exit.
8086 */
8087 if (ordered_offset == last_offset)
8088 return;
8089 /*
8090 * Our bio might span multiple ordered extents. In this case
8091 * we keep goin until we have accounted the whole dio.
8092 */
8093 if (ordered_offset < offset + bytes) {
8094 ordered_bytes = offset + bytes - ordered_offset;
8095 ordered = NULL;
8096 }
163cf09c 8097 }
14543774
FM
8098}
8099
8100static void btrfs_endio_direct_write(struct bio *bio)
8101{
8102 struct btrfs_dio_private *dip = bio->bi_private;
8103 struct bio *dio_bio = dip->dio_bio;
8104
52427260 8105 __endio_write_update_ordered(dip->inode, dip->logical_offset,
4e4cbee9 8106 dip->bytes, !bio->bi_status);
4b46fce2 8107
4b46fce2 8108 kfree(dip);
c0da7aa1 8109
4e4cbee9 8110 dio_bio->bi_status = bio->bi_status;
4055351c 8111 dio_end_io(dio_bio);
9be3395b 8112 bio_put(bio);
4b46fce2
JB
8113}
8114
d0ee3934 8115static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
d0779291 8116 struct bio *bio, u64 offset)
eaf25d93 8117{
c6100a4b 8118 struct inode *inode = private_data;
4e4cbee9 8119 blk_status_t ret;
2ff7e61e 8120 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8121 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8122 return 0;
8123}
8124
4246a0b6 8125static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8126{
8127 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 8128 blk_status_t err = bio->bi_status;
e65e1535 8129
8b110e39
MX
8130 if (err)
8131 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8132 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8133 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8134 bio->bi_opf,
8b110e39
MX
8135 (unsigned long long)bio->bi_iter.bi_sector,
8136 bio->bi_iter.bi_size, err);
8137
8138 if (dip->subio_endio)
8139 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8140
8141 if (err) {
e65e1535 8142 /*
de224b7c
NB
8143 * We want to perceive the errors flag being set before
8144 * decrementing the reference count. We don't need a barrier
8145 * since atomic operations with a return value are fully
8146 * ordered as per atomic_t.txt
e65e1535 8147 */
de224b7c 8148 dip->errors = 1;
e65e1535
MX
8149 }
8150
8151 /* if there are more bios still pending for this dio, just exit */
8152 if (!atomic_dec_and_test(&dip->pending_bios))
8153 goto out;
8154
9be3395b 8155 if (dip->errors) {
e65e1535 8156 bio_io_error(dip->orig_bio);
9be3395b 8157 } else {
2dbe0c77 8158 dip->dio_bio->bi_status = BLK_STS_OK;
4246a0b6 8159 bio_endio(dip->orig_bio);
e65e1535
MX
8160 }
8161out:
8162 bio_put(bio);
8163}
8164
4e4cbee9 8165static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8166 struct btrfs_dio_private *dip,
8167 struct bio *bio,
8168 u64 file_offset)
8169{
8170 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8171 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
4e4cbee9 8172 blk_status_t ret;
c1dc0896
MX
8173
8174 /*
8175 * We load all the csum data we need when we submit
8176 * the first bio to reduce the csum tree search and
8177 * contention.
8178 */
8179 if (dip->logical_offset == file_offset) {
2ff7e61e 8180 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8181 file_offset);
8182 if (ret)
8183 return ret;
8184 }
8185
8186 if (bio == dip->orig_bio)
8187 return 0;
8188
8189 file_offset -= dip->logical_offset;
8190 file_offset >>= inode->i_sb->s_blocksize_bits;
8191 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8192
8193 return 0;
8194}
8195
d0ee3934
DS
8196static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8197 struct inode *inode, u64 file_offset, int async_submit)
e65e1535 8198{
0b246afa 8199 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8200 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8201 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 8202 blk_status_t ret;
e65e1535 8203
4c274bc6 8204 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
8205 if (async_submit)
8206 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8207
5fd02043 8208 if (!write) {
0b246afa 8209 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8210 if (ret)
8211 goto err;
8212 }
e65e1535 8213
e6961cac 8214 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
8215 goto map;
8216
8217 if (write && async_submit) {
c6100a4b
JB
8218 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8219 file_offset, inode,
e288c080 8220 btrfs_submit_bio_start_direct_io);
e65e1535 8221 goto err;
1ae39938
JB
8222 } else if (write) {
8223 /*
8224 * If we aren't doing async submit, calculate the csum of the
8225 * bio now.
8226 */
2ff7e61e 8227 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8228 if (ret)
8229 goto err;
23ea8e5a 8230 } else {
2ff7e61e 8231 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8232 file_offset);
c2db1073
TI
8233 if (ret)
8234 goto err;
8235 }
1ae39938 8236map:
9b4a9b28 8237 ret = btrfs_map_bio(fs_info, bio, 0, 0);
e65e1535 8238err:
e65e1535
MX
8239 return ret;
8240}
8241
e6961cac 8242static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
e65e1535
MX
8243{
8244 struct inode *inode = dip->inode;
0b246afa 8245 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535
MX
8246 struct bio *bio;
8247 struct bio *orig_bio = dip->orig_bio;
4f024f37 8248 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535 8249 u64 file_offset = dip->logical_offset;
e65e1535 8250 u64 map_length;
1ae39938 8251 int async_submit = 0;
725130ba
LB
8252 u64 submit_len;
8253 int clone_offset = 0;
8254 int clone_len;
5f4dc8fc 8255 int ret;
58efbc9f 8256 blk_status_t status;
e65e1535 8257
4f024f37 8258 map_length = orig_bio->bi_iter.bi_size;
725130ba 8259 submit_len = map_length;
0b246afa
JM
8260 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8261 &map_length, NULL, 0);
7a5c3c9b 8262 if (ret)
e65e1535 8263 return -EIO;
facc8a22 8264
725130ba 8265 if (map_length >= submit_len) {
02f57c7a 8266 bio = orig_bio;
c1dc0896 8267 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8268 goto submit;
8269 }
8270
53b381b3 8271 /* async crcs make it difficult to collect full stripe writes. */
1b86826d 8272 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8273 async_submit = 0;
8274 else
8275 async_submit = 1;
8276
725130ba
LB
8277 /* bio split */
8278 ASSERT(map_length <= INT_MAX);
02f57c7a 8279 atomic_inc(&dip->pending_bios);
3c91ee69 8280 do {
725130ba 8281 clone_len = min_t(int, submit_len, map_length);
02f57c7a 8282
725130ba
LB
8283 /*
8284 * This will never fail as it's passing GPF_NOFS and
8285 * the allocation is backed by btrfs_bioset.
8286 */
e477094f 8287 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
725130ba
LB
8288 clone_len);
8289 bio->bi_private = dip;
8290 bio->bi_end_io = btrfs_end_dio_bio;
8291 btrfs_io_bio(bio)->logical = file_offset;
8292
8293 ASSERT(submit_len >= clone_len);
8294 submit_len -= clone_len;
8295 if (submit_len == 0)
8296 break;
e65e1535 8297
725130ba
LB
8298 /*
8299 * Increase the count before we submit the bio so we know
8300 * the end IO handler won't happen before we increase the
8301 * count. Otherwise, the dip might get freed before we're
8302 * done setting it up.
8303 */
8304 atomic_inc(&dip->pending_bios);
e65e1535 8305
d0ee3934 8306 status = btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
8307 async_submit);
8308 if (status) {
725130ba
LB
8309 bio_put(bio);
8310 atomic_dec(&dip->pending_bios);
8311 goto out_err;
8312 }
e65e1535 8313
725130ba
LB
8314 clone_offset += clone_len;
8315 start_sector += clone_len >> 9;
8316 file_offset += clone_len;
5f4dc8fc 8317
725130ba
LB
8318 map_length = submit_len;
8319 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8320 start_sector << 9, &map_length, NULL, 0);
8321 if (ret)
8322 goto out_err;
3c91ee69 8323 } while (submit_len > 0);
e65e1535 8324
02f57c7a 8325submit:
d0ee3934 8326 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
58efbc9f 8327 if (!status)
e65e1535
MX
8328 return 0;
8329
8330 bio_put(bio);
8331out_err:
8332 dip->errors = 1;
8333 /*
de224b7c
NB
8334 * Before atomic variable goto zero, we must make sure dip->errors is
8335 * perceived to be set. This ordering is ensured by the fact that an
8336 * atomic operations with a return value are fully ordered as per
8337 * atomic_t.txt
e65e1535 8338 */
e65e1535
MX
8339 if (atomic_dec_and_test(&dip->pending_bios))
8340 bio_io_error(dip->orig_bio);
8341
8342 /* bio_end_io() will handle error, so we needn't return it */
8343 return 0;
8344}
8345
8a4c1e42
MC
8346static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8347 loff_t file_offset)
4b46fce2 8348{
61de718f 8349 struct btrfs_dio_private *dip = NULL;
3892ac90
LB
8350 struct bio *bio = NULL;
8351 struct btrfs_io_bio *io_bio;
8a4c1e42 8352 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8353 int ret = 0;
8354
8b6c1d56 8355 bio = btrfs_bio_clone(dio_bio);
9be3395b 8356
c1dc0896 8357 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8358 if (!dip) {
8359 ret = -ENOMEM;
61de718f 8360 goto free_ordered;
4b46fce2 8361 }
4b46fce2 8362
9be3395b 8363 dip->private = dio_bio->bi_private;
4b46fce2
JB
8364 dip->inode = inode;
8365 dip->logical_offset = file_offset;
4f024f37
KO
8366 dip->bytes = dio_bio->bi_iter.bi_size;
8367 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
3892ac90
LB
8368 bio->bi_private = dip;
8369 dip->orig_bio = bio;
9be3395b 8370 dip->dio_bio = dio_bio;
e65e1535 8371 atomic_set(&dip->pending_bios, 0);
3892ac90
LB
8372 io_bio = btrfs_io_bio(bio);
8373 io_bio->logical = file_offset;
4b46fce2 8374
c1dc0896 8375 if (write) {
3892ac90 8376 bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8377 } else {
3892ac90 8378 bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8379 dip->subio_endio = btrfs_subio_endio_read;
8380 }
4b46fce2 8381
f28a4928
FM
8382 /*
8383 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8384 * even if we fail to submit a bio, because in such case we do the
8385 * corresponding error handling below and it must not be done a second
8386 * time by btrfs_direct_IO().
8387 */
8388 if (write) {
8389 struct btrfs_dio_data *dio_data = current->journal_info;
8390
8391 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8392 dip->bytes;
8393 dio_data->unsubmitted_oe_range_start =
8394 dio_data->unsubmitted_oe_range_end;
8395 }
8396
e6961cac 8397 ret = btrfs_submit_direct_hook(dip);
e65e1535 8398 if (!ret)
eaf25d93 8399 return;
9be3395b 8400
3892ac90
LB
8401 if (io_bio->end_io)
8402 io_bio->end_io(io_bio, ret);
9be3395b 8403
4b46fce2
JB
8404free_ordered:
8405 /*
61de718f
FM
8406 * If we arrived here it means either we failed to submit the dip
8407 * or we either failed to clone the dio_bio or failed to allocate the
8408 * dip. If we cloned the dio_bio and allocated the dip, we can just
8409 * call bio_endio against our io_bio so that we get proper resource
8410 * cleanup if we fail to submit the dip, otherwise, we must do the
8411 * same as btrfs_endio_direct_[write|read] because we can't call these
8412 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8413 */
3892ac90 8414 if (bio && dip) {
054ec2f6 8415 bio_io_error(bio);
61de718f 8416 /*
3892ac90 8417 * The end io callbacks free our dip, do the final put on bio
61de718f
FM
8418 * and all the cleanup and final put for dio_bio (through
8419 * dio_end_io()).
8420 */
8421 dip = NULL;
3892ac90 8422 bio = NULL;
61de718f 8423 } else {
14543774 8424 if (write)
52427260 8425 __endio_write_update_ordered(inode,
14543774
FM
8426 file_offset,
8427 dio_bio->bi_iter.bi_size,
52427260 8428 false);
14543774 8429 else
61de718f
FM
8430 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8431 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8432
4e4cbee9 8433 dio_bio->bi_status = BLK_STS_IOERR;
61de718f
FM
8434 /*
8435 * Releases and cleans up our dio_bio, no need to bio_put()
8436 * nor bio_endio()/bio_io_error() against dio_bio.
8437 */
4055351c 8438 dio_end_io(dio_bio);
4b46fce2 8439 }
3892ac90
LB
8440 if (bio)
8441 bio_put(bio);
61de718f 8442 kfree(dip);
4b46fce2
JB
8443}
8444
2ff7e61e 8445static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
2ff7e61e 8446 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8447{
8448 int seg;
a1b75f7d 8449 int i;
0b246afa 8450 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8451 ssize_t retval = -EINVAL;
5a5f79b5
CM
8452
8453 if (offset & blocksize_mask)
8454 goto out;
8455
28060d5d
AV
8456 if (iov_iter_alignment(iter) & blocksize_mask)
8457 goto out;
a1b75f7d 8458
28060d5d 8459 /* If this is a write we don't need to check anymore */
cd27e455 8460 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8461 return 0;
8462 /*
8463 * Check to make sure we don't have duplicate iov_base's in this
8464 * iovec, if so return EINVAL, otherwise we'll get csum errors
8465 * when reading back.
8466 */
8467 for (seg = 0; seg < iter->nr_segs; seg++) {
8468 for (i = seg + 1; i < iter->nr_segs; i++) {
8469 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8470 goto out;
8471 }
5a5f79b5
CM
8472 }
8473 retval = 0;
8474out:
8475 return retval;
8476}
eb838e73 8477
c8b8e32d 8478static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8479{
4b46fce2
JB
8480 struct file *file = iocb->ki_filp;
8481 struct inode *inode = file->f_mapping->host;
0b246afa 8482 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8483 struct btrfs_dio_data dio_data = { 0 };
364ecf36 8484 struct extent_changeset *data_reserved = NULL;
c8b8e32d 8485 loff_t offset = iocb->ki_pos;
0934856d 8486 size_t count = 0;
2e60a51e 8487 int flags = 0;
38851cc1
MX
8488 bool wakeup = true;
8489 bool relock = false;
0934856d 8490 ssize_t ret;
4b46fce2 8491
8c70c9f8 8492 if (check_direct_IO(fs_info, iter, offset))
5a5f79b5 8493 return 0;
3f7c579c 8494
fe0f07d0 8495 inode_dio_begin(inode);
38851cc1 8496
0e267c44 8497 /*
41bd9ca4
MX
8498 * The generic stuff only does filemap_write_and_wait_range, which
8499 * isn't enough if we've written compressed pages to this area, so
8500 * we need to flush the dirty pages again to make absolutely sure
8501 * that any outstanding dirty pages are on disk.
0e267c44 8502 */
a6cbcd4a 8503 count = iov_iter_count(iter);
41bd9ca4
MX
8504 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8505 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8506 filemap_fdatawrite_range(inode->i_mapping, offset,
8507 offset + count - 1);
0e267c44 8508
6f673763 8509 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8510 /*
8511 * If the write DIO is beyond the EOF, we need update
8512 * the isize, but it is protected by i_mutex. So we can
8513 * not unlock the i_mutex at this case.
8514 */
8515 if (offset + count <= inode->i_size) {
4aaedfb0 8516 dio_data.overwrite = 1;
5955102c 8517 inode_unlock(inode);
38851cc1 8518 relock = true;
edf064e7
GR
8519 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8520 ret = -EAGAIN;
8521 goto out;
38851cc1 8522 }
364ecf36
QW
8523 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8524 offset, count);
0934856d 8525 if (ret)
38851cc1 8526 goto out;
e1cbbfa5
JB
8527
8528 /*
8529 * We need to know how many extents we reserved so that we can
8530 * do the accounting properly if we go over the number we
8531 * originally calculated. Abuse current->journal_info for this.
8532 */
da17066c 8533 dio_data.reserve = round_up(count,
0b246afa 8534 fs_info->sectorsize);
f28a4928
FM
8535 dio_data.unsubmitted_oe_range_start = (u64)offset;
8536 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8537 current->journal_info = &dio_data;
97dcdea0 8538 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8539 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8540 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8541 inode_dio_end(inode);
38851cc1
MX
8542 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8543 wakeup = false;
0934856d
MX
8544 }
8545
17f8c842 8546 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8547 fs_info->fs_devices->latest_bdev,
c8b8e32d 8548 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8549 btrfs_submit_direct, flags);
6f673763 8550 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8551 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8552 current->journal_info = NULL;
ddba1bfc 8553 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8554 if (dio_data.reserve)
bc42bda2 8555 btrfs_delalloc_release_space(inode, data_reserved,
43b18595 8556 offset, dio_data.reserve, true);
f28a4928
FM
8557 /*
8558 * On error we might have left some ordered extents
8559 * without submitting corresponding bios for them, so
8560 * cleanup them up to avoid other tasks getting them
8561 * and waiting for them to complete forever.
8562 */
8563 if (dio_data.unsubmitted_oe_range_start <
8564 dio_data.unsubmitted_oe_range_end)
52427260 8565 __endio_write_update_ordered(inode,
f28a4928
FM
8566 dio_data.unsubmitted_oe_range_start,
8567 dio_data.unsubmitted_oe_range_end -
8568 dio_data.unsubmitted_oe_range_start,
52427260 8569 false);
ddba1bfc 8570 } else if (ret >= 0 && (size_t)ret < count)
bc42bda2 8571 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
8572 offset, count - (size_t)ret, true);
8573 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
0934856d 8574 }
38851cc1 8575out:
2e60a51e 8576 if (wakeup)
fe0f07d0 8577 inode_dio_end(inode);
38851cc1 8578 if (relock)
5955102c 8579 inode_lock(inode);
0934856d 8580
364ecf36 8581 extent_changeset_free(data_reserved);
0934856d 8582 return ret;
16432985
CM
8583}
8584
05dadc09
TI
8585#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8586
1506fcc8
YS
8587static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8588 __u64 start, __u64 len)
8589{
05dadc09
TI
8590 int ret;
8591
8592 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8593 if (ret)
8594 return ret;
8595
2135fb9b 8596 return extent_fiemap(inode, fieinfo, start, len);
1506fcc8
YS
8597}
8598
a52d9a80 8599int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8600{
d1310b2e
CM
8601 struct extent_io_tree *tree;
8602 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8603 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8604}
1832a6d5 8605
a52d9a80 8606static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8607{
be7bd730
JB
8608 struct inode *inode = page->mapping->host;
8609 int ret;
b888db2b
CM
8610
8611 if (current->flags & PF_MEMALLOC) {
8612 redirty_page_for_writepage(wbc, page);
8613 unlock_page(page);
8614 return 0;
8615 }
be7bd730
JB
8616
8617 /*
8618 * If we are under memory pressure we will call this directly from the
8619 * VM, we need to make sure we have the inode referenced for the ordered
8620 * extent. If not just return like we didn't do anything.
8621 */
8622 if (!igrab(inode)) {
8623 redirty_page_for_writepage(wbc, page);
8624 return AOP_WRITEPAGE_ACTIVATE;
8625 }
0a9b0e53 8626 ret = extent_write_full_page(page, wbc);
be7bd730
JB
8627 btrfs_add_delayed_iput(inode);
8628 return ret;
9ebefb18
CM
8629}
8630
48a3b636
ES
8631static int btrfs_writepages(struct address_space *mapping,
8632 struct writeback_control *wbc)
b293f02e 8633{
8ae225a8 8634 return extent_writepages(mapping, wbc);
b293f02e
CM
8635}
8636
3ab2fb5a
CM
8637static int
8638btrfs_readpages(struct file *file, struct address_space *mapping,
8639 struct list_head *pages, unsigned nr_pages)
8640{
2a3ff0ad 8641 return extent_readpages(mapping, pages, nr_pages);
3ab2fb5a 8642}
2a3ff0ad 8643
e6dcd2dc 8644static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8645{
477a30ba 8646 int ret = try_release_extent_mapping(page, gfp_flags);
a52d9a80
CM
8647 if (ret == 1) {
8648 ClearPagePrivate(page);
8649 set_page_private(page, 0);
09cbfeaf 8650 put_page(page);
39279cc3 8651 }
a52d9a80 8652 return ret;
39279cc3
CM
8653}
8654
e6dcd2dc
CM
8655static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8656{
98509cfc
CM
8657 if (PageWriteback(page) || PageDirty(page))
8658 return 0;
3ba7ab22 8659 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8660}
8661
d47992f8
LC
8662static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8663 unsigned int length)
39279cc3 8664{
5fd02043 8665 struct inode *inode = page->mapping->host;
d1310b2e 8666 struct extent_io_tree *tree;
e6dcd2dc 8667 struct btrfs_ordered_extent *ordered;
2ac55d41 8668 struct extent_state *cached_state = NULL;
e6dcd2dc 8669 u64 page_start = page_offset(page);
09cbfeaf 8670 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8671 u64 start;
8672 u64 end;
131e404a 8673 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8674
8b62b72b
CM
8675 /*
8676 * we have the page locked, so new writeback can't start,
8677 * and the dirty bit won't be cleared while we are here.
8678 *
8679 * Wait for IO on this page so that we can safely clear
8680 * the PagePrivate2 bit and do ordered accounting
8681 */
e6dcd2dc 8682 wait_on_page_writeback(page);
8b62b72b 8683
5fd02043 8684 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8685 if (offset) {
8686 btrfs_releasepage(page, GFP_NOFS);
8687 return;
8688 }
131e404a
FDBM
8689
8690 if (!inode_evicting)
ff13db41 8691 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8692again:
8693 start = page_start;
a776c6fa 8694 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8695 page_end - start + 1);
e6dcd2dc 8696 if (ordered) {
dbfdb6d1 8697 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8698 /*
8699 * IO on this page will never be started, so we need
8700 * to account for any ordered extents now
8701 */
131e404a 8702 if (!inode_evicting)
dbfdb6d1 8703 clear_extent_bit(tree, start, end,
131e404a 8704 EXTENT_DIRTY | EXTENT_DELALLOC |
a7e3b975 8705 EXTENT_DELALLOC_NEW |
131e404a 8706 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8707 EXTENT_DEFRAG, 1, 0, &cached_state);
8b62b72b
CM
8708 /*
8709 * whoever cleared the private bit is responsible
8710 * for the finish_ordered_io
8711 */
77cef2ec
JB
8712 if (TestClearPagePrivate2(page)) {
8713 struct btrfs_ordered_inode_tree *tree;
8714 u64 new_len;
8715
8716 tree = &BTRFS_I(inode)->ordered_tree;
8717
8718 spin_lock_irq(&tree->lock);
8719 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8720 new_len = start - ordered->file_offset;
77cef2ec
JB
8721 if (new_len < ordered->truncated_len)
8722 ordered->truncated_len = new_len;
8723 spin_unlock_irq(&tree->lock);
8724
8725 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8726 start,
8727 end - start + 1, 1))
77cef2ec 8728 btrfs_finish_ordered_io(ordered);
8b62b72b 8729 }
e6dcd2dc 8730 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8731 if (!inode_evicting) {
8732 cached_state = NULL;
dbfdb6d1 8733 lock_extent_bits(tree, start, end,
131e404a
FDBM
8734 &cached_state);
8735 }
dbfdb6d1
CR
8736
8737 start = end + 1;
8738 if (start < page_end)
8739 goto again;
131e404a
FDBM
8740 }
8741
b9d0b389
QW
8742 /*
8743 * Qgroup reserved space handler
8744 * Page here will be either
8745 * 1) Already written to disk
8746 * In this case, its reserved space is released from data rsv map
8747 * and will be freed by delayed_ref handler finally.
8748 * So even we call qgroup_free_data(), it won't decrease reserved
8749 * space.
8750 * 2) Not written to disk
0b34c261
GR
8751 * This means the reserved space should be freed here. However,
8752 * if a truncate invalidates the page (by clearing PageDirty)
8753 * and the page is accounted for while allocating extent
8754 * in btrfs_check_data_free_space() we let delayed_ref to
8755 * free the entire extent.
b9d0b389 8756 */
0b34c261 8757 if (PageDirty(page))
bc42bda2 8758 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a
FDBM
8759 if (!inode_evicting) {
8760 clear_extent_bit(tree, page_start, page_end,
8761 EXTENT_LOCKED | EXTENT_DIRTY |
a7e3b975
FM
8762 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8763 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
ae0f1625 8764 &cached_state);
131e404a
FDBM
8765
8766 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8767 }
e6dcd2dc 8768
4a096752 8769 ClearPageChecked(page);
9ad6b7bc 8770 if (PagePrivate(page)) {
9ad6b7bc
CM
8771 ClearPagePrivate(page);
8772 set_page_private(page, 0);
09cbfeaf 8773 put_page(page);
9ad6b7bc 8774 }
39279cc3
CM
8775}
8776
9ebefb18
CM
8777/*
8778 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8779 * called from a page fault handler when a page is first dirtied. Hence we must
8780 * be careful to check for EOF conditions here. We set the page up correctly
8781 * for a written page which means we get ENOSPC checking when writing into
8782 * holes and correct delalloc and unwritten extent mapping on filesystems that
8783 * support these features.
8784 *
8785 * We are not allowed to take the i_mutex here so we have to play games to
8786 * protect against truncate races as the page could now be beyond EOF. Because
d1342aad
OS
8787 * truncate_setsize() writes the inode size before removing pages, once we have
8788 * the page lock we can determine safely if the page is beyond EOF. If it is not
9ebefb18
CM
8789 * beyond EOF, then the page is guaranteed safe against truncation until we
8790 * unlock the page.
8791 */
a528a241 8792vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8793{
c2ec175c 8794 struct page *page = vmf->page;
11bac800 8795 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8796 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8797 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8798 struct btrfs_ordered_extent *ordered;
2ac55d41 8799 struct extent_state *cached_state = NULL;
364ecf36 8800 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
8801 char *kaddr;
8802 unsigned long zero_start;
9ebefb18 8803 loff_t size;
a528a241
SJ
8804 vm_fault_t ret;
8805 int ret2;
9998eb70 8806 int reserved = 0;
d0b7da88 8807 u64 reserved_space;
a52d9a80 8808 u64 page_start;
e6dcd2dc 8809 u64 page_end;
d0b7da88
CR
8810 u64 end;
8811
09cbfeaf 8812 reserved_space = PAGE_SIZE;
9ebefb18 8813
b2b5ef5c 8814 sb_start_pagefault(inode->i_sb);
df480633 8815 page_start = page_offset(page);
09cbfeaf 8816 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8817 end = page_end;
df480633 8818
d0b7da88
CR
8819 /*
8820 * Reserving delalloc space after obtaining the page lock can lead to
8821 * deadlock. For example, if a dirty page is locked by this function
8822 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8823 * dirty page write out, then the btrfs_writepage() function could
8824 * end up waiting indefinitely to get a lock on the page currently
8825 * being processed by btrfs_page_mkwrite() function.
8826 */
a528a241 8827 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
d0b7da88 8828 reserved_space);
a528a241
SJ
8829 if (!ret2) {
8830 ret2 = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8831 reserved = 1;
8832 }
a528a241
SJ
8833 if (ret2) {
8834 ret = vmf_error(ret2);
9998eb70
CM
8835 if (reserved)
8836 goto out;
8837 goto out_noreserve;
56a76f82 8838 }
1832a6d5 8839
56a76f82 8840 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8841again:
9ebefb18 8842 lock_page(page);
9ebefb18 8843 size = i_size_read(inode);
a52d9a80 8844
9ebefb18 8845 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8846 (page_start >= size)) {
9ebefb18
CM
8847 /* page got truncated out from underneath us */
8848 goto out_unlock;
8849 }
e6dcd2dc
CM
8850 wait_on_page_writeback(page);
8851
ff13db41 8852 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8853 set_page_extent_mapped(page);
8854
eb84ae03
CM
8855 /*
8856 * we can't set the delalloc bits if there are pending ordered
8857 * extents. Drop our locks and wait for them to finish
8858 */
a776c6fa
NB
8859 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8860 PAGE_SIZE);
e6dcd2dc 8861 if (ordered) {
2ac55d41 8862 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8863 &cached_state);
e6dcd2dc 8864 unlock_page(page);
eb84ae03 8865 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8866 btrfs_put_ordered_extent(ordered);
8867 goto again;
8868 }
8869
09cbfeaf 8870 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 8871 reserved_space = round_up(size - page_start,
0b246afa 8872 fs_info->sectorsize);
09cbfeaf 8873 if (reserved_space < PAGE_SIZE) {
d0b7da88 8874 end = page_start + reserved_space - 1;
bc42bda2 8875 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
8876 page_start, PAGE_SIZE - reserved_space,
8877 true);
d0b7da88
CR
8878 }
8879 }
8880
fbf19087 8881 /*
5416034f
LB
8882 * page_mkwrite gets called when the page is firstly dirtied after it's
8883 * faulted in, but write(2) could also dirty a page and set delalloc
8884 * bits, thus in this case for space account reason, we still need to
8885 * clear any delalloc bits within this page range since we have to
8886 * reserve data&meta space before lock_page() (see above comments).
fbf19087 8887 */
d0b7da88 8888 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
8889 EXTENT_DIRTY | EXTENT_DELALLOC |
8890 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 8891 0, 0, &cached_state);
fbf19087 8892
a528a241 8893 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
ba8b04c1 8894 &cached_state, 0);
a528a241 8895 if (ret2) {
2ac55d41 8896 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8897 &cached_state);
9ed74f2d
JB
8898 ret = VM_FAULT_SIGBUS;
8899 goto out_unlock;
8900 }
a528a241 8901 ret2 = 0;
9ebefb18
CM
8902
8903 /* page is wholly or partially inside EOF */
09cbfeaf
KS
8904 if (page_start + PAGE_SIZE > size)
8905 zero_start = size & ~PAGE_MASK;
9ebefb18 8906 else
09cbfeaf 8907 zero_start = PAGE_SIZE;
9ebefb18 8908
09cbfeaf 8909 if (zero_start != PAGE_SIZE) {
e6dcd2dc 8910 kaddr = kmap(page);
09cbfeaf 8911 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
8912 flush_dcache_page(page);
8913 kunmap(page);
8914 }
247e743c 8915 ClearPageChecked(page);
e6dcd2dc 8916 set_page_dirty(page);
50a9b214 8917 SetPageUptodate(page);
5a3f23d5 8918
0b246afa 8919 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 8920 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8921 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8922
e43bbe5e 8923 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9ebefb18 8924
a528a241 8925 if (!ret2) {
43b18595 8926 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
b2b5ef5c 8927 sb_end_pagefault(inode->i_sb);
364ecf36 8928 extent_changeset_free(data_reserved);
50a9b214 8929 return VM_FAULT_LOCKED;
b2b5ef5c 8930 }
717beb96
CM
8931
8932out_unlock:
9ebefb18 8933 unlock_page(page);
1832a6d5 8934out:
43b18595 8935 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
bc42bda2 8936 btrfs_delalloc_release_space(inode, data_reserved, page_start,
43b18595 8937 reserved_space, (ret != 0));
9998eb70 8938out_noreserve:
b2b5ef5c 8939 sb_end_pagefault(inode->i_sb);
364ecf36 8940 extent_changeset_free(data_reserved);
9ebefb18
CM
8941 return ret;
8942}
8943
213e8c55 8944static int btrfs_truncate(struct inode *inode, bool skip_writeback)
39279cc3 8945{
0b246afa 8946 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 8947 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8948 struct btrfs_block_rsv *rsv;
ad7e1a74 8949 int ret;
39279cc3 8950 struct btrfs_trans_handle *trans;
0b246afa
JM
8951 u64 mask = fs_info->sectorsize - 1;
8952 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 8953
213e8c55
FM
8954 if (!skip_writeback) {
8955 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8956 (u64)-1);
8957 if (ret)
8958 return ret;
8959 }
39279cc3 8960
fcb80c2a 8961 /*
f7e9e8fc
OS
8962 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8963 * things going on here:
fcb80c2a 8964 *
f7e9e8fc 8965 * 1) We need to reserve space to update our inode.
fcb80c2a 8966 *
f7e9e8fc 8967 * 2) We need to have something to cache all the space that is going to
fcb80c2a
JB
8968 * be free'd up by the truncate operation, but also have some slack
8969 * space reserved in case it uses space during the truncate (thank you
8970 * very much snapshotting).
8971 *
f7e9e8fc 8972 * And we need these to be separate. The fact is we can use a lot of
fcb80c2a 8973 * space doing the truncate, and we have no earthly idea how much space
01327610 8974 * we will use, so we need the truncate reservation to be separate so it
f7e9e8fc
OS
8975 * doesn't end up using space reserved for updating the inode. We also
8976 * need to be able to stop the transaction and start a new one, which
8977 * means we need to be able to update the inode several times, and we
8978 * have no idea of knowing how many times that will be, so we can't just
8979 * reserve 1 item for the entirety of the operation, so that has to be
8980 * done separately as well.
fcb80c2a
JB
8981 *
8982 * So that leaves us with
8983 *
f7e9e8fc 8984 * 1) rsv - for the truncate reservation, which we will steal from the
fcb80c2a 8985 * transaction reservation.
f7e9e8fc 8986 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
fcb80c2a
JB
8987 * updating the inode.
8988 */
2ff7e61e 8989 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8990 if (!rsv)
8991 return -ENOMEM;
4a338542 8992 rsv->size = min_size;
ca7e70f5 8993 rsv->failfast = 1;
f0cd846e 8994
907cbceb 8995 /*
07127184 8996 * 1 for the truncate slack space
907cbceb
JB
8997 * 1 for updating the inode.
8998 */
f3fe820c 8999 trans = btrfs_start_transaction(root, 2);
fcb80c2a 9000 if (IS_ERR(trans)) {
ad7e1a74 9001 ret = PTR_ERR(trans);
fcb80c2a
JB
9002 goto out;
9003 }
f0cd846e 9004
907cbceb 9005 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9006 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
3a584174 9007 min_size, false);
fcb80c2a 9008 BUG_ON(ret);
f0cd846e 9009
5dc562c5
JB
9010 /*
9011 * So if we truncate and then write and fsync we normally would just
9012 * write the extents that changed, which is a problem if we need to
9013 * first truncate that entire inode. So set this flag so we write out
9014 * all of the extents in the inode to the sync log so we're completely
9015 * safe.
9016 */
9017 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9018 trans->block_rsv = rsv;
907cbceb 9019
8082510e
YZ
9020 while (1) {
9021 ret = btrfs_truncate_inode_items(trans, root, inode,
9022 inode->i_size,
9023 BTRFS_EXTENT_DATA_KEY);
ddfae63c 9024 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74 9025 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 9026 break;
39279cc3 9027
8082510e 9028 ret = btrfs_update_inode(trans, root, inode);
ad7e1a74 9029 if (ret)
3893e33b 9030 break;
ca7e70f5 9031
3a45bb20 9032 btrfs_end_transaction(trans);
2ff7e61e 9033 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9034
9035 trans = btrfs_start_transaction(root, 2);
9036 if (IS_ERR(trans)) {
ad7e1a74 9037 ret = PTR_ERR(trans);
ca7e70f5
JB
9038 trans = NULL;
9039 break;
9040 }
9041
47b5d646 9042 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9043 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
3a584174 9044 rsv, min_size, false);
ca7e70f5
JB
9045 BUG_ON(ret); /* shouldn't happen */
9046 trans->block_rsv = rsv;
8082510e
YZ
9047 }
9048
ddfae63c
JB
9049 /*
9050 * We can't call btrfs_truncate_block inside a trans handle as we could
9051 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9052 * we've truncated everything except the last little bit, and can do
9053 * btrfs_truncate_block and then update the disk_i_size.
9054 */
9055 if (ret == NEED_TRUNCATE_BLOCK) {
9056 btrfs_end_transaction(trans);
9057 btrfs_btree_balance_dirty(fs_info);
9058
9059 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9060 if (ret)
9061 goto out;
9062 trans = btrfs_start_transaction(root, 1);
9063 if (IS_ERR(trans)) {
9064 ret = PTR_ERR(trans);
9065 goto out;
9066 }
9067 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9068 }
9069
917c16b2 9070 if (trans) {
ad7e1a74
OS
9071 int ret2;
9072
0b246afa 9073 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74
OS
9074 ret2 = btrfs_update_inode(trans, root, inode);
9075 if (ret2 && !ret)
9076 ret = ret2;
7b128766 9077
ad7e1a74
OS
9078 ret2 = btrfs_end_transaction(trans);
9079 if (ret2 && !ret)
9080 ret = ret2;
2ff7e61e 9081 btrfs_btree_balance_dirty(fs_info);
917c16b2 9082 }
fcb80c2a 9083out:
2ff7e61e 9084 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9085
ad7e1a74 9086 return ret;
39279cc3
CM
9087}
9088
d352ac68
CM
9089/*
9090 * create a new subvolume directory/inode (helper for the ioctl).
9091 */
d2fb3437 9092int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9093 struct btrfs_root *new_root,
9094 struct btrfs_root *parent_root,
9095 u64 new_dirid)
39279cc3 9096{
39279cc3 9097 struct inode *inode;
76dda93c 9098 int err;
00e4e6b3 9099 u64 index = 0;
39279cc3 9100
12fc9d09
FA
9101 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9102 new_dirid, new_dirid,
9103 S_IFDIR | (~current_umask() & S_IRWXUGO),
9104 &index);
54aa1f4d 9105 if (IS_ERR(inode))
f46b5a66 9106 return PTR_ERR(inode);
39279cc3
CM
9107 inode->i_op = &btrfs_dir_inode_operations;
9108 inode->i_fop = &btrfs_dir_file_operations;
9109
bfe86848 9110 set_nlink(inode, 1);
6ef06d27 9111 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9112 unlock_new_inode(inode);
3b96362c 9113
63541927
FDBM
9114 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9115 if (err)
9116 btrfs_err(new_root->fs_info,
351fd353 9117 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9118 new_root->root_key.objectid, err);
9119
76dda93c 9120 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9121
76dda93c 9122 iput(inode);
ce598979 9123 return err;
39279cc3
CM
9124}
9125
39279cc3
CM
9126struct inode *btrfs_alloc_inode(struct super_block *sb)
9127{
69fe2d75 9128 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 9129 struct btrfs_inode *ei;
2ead6ae7 9130 struct inode *inode;
39279cc3 9131
712e36c5 9132 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
9133 if (!ei)
9134 return NULL;
2ead6ae7
YZ
9135
9136 ei->root = NULL;
2ead6ae7 9137 ei->generation = 0;
15ee9bc7 9138 ei->last_trans = 0;
257c62e1 9139 ei->last_sub_trans = 0;
e02119d5 9140 ei->logged_trans = 0;
2ead6ae7 9141 ei->delalloc_bytes = 0;
a7e3b975 9142 ei->new_delalloc_bytes = 0;
47059d93 9143 ei->defrag_bytes = 0;
2ead6ae7
YZ
9144 ei->disk_i_size = 0;
9145 ei->flags = 0;
7709cde3 9146 ei->csum_bytes = 0;
2ead6ae7 9147 ei->index_cnt = (u64)-1;
67de1176 9148 ei->dir_index = 0;
2ead6ae7 9149 ei->last_unlink_trans = 0;
46d8bc34 9150 ei->last_log_commit = 0;
2ead6ae7 9151
9e0baf60
JB
9152 spin_lock_init(&ei->lock);
9153 ei->outstanding_extents = 0;
69fe2d75
JB
9154 if (sb->s_magic != BTRFS_TEST_MAGIC)
9155 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9156 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 9157 ei->runtime_flags = 0;
b52aa8c9 9158 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 9159 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9160
16cdcec7
MX
9161 ei->delayed_node = NULL;
9162
9cc97d64 9163 ei->i_otime.tv_sec = 0;
9164 ei->i_otime.tv_nsec = 0;
9165
2ead6ae7 9166 inode = &ei->vfs_inode;
a8067e02 9167 extent_map_tree_init(&ei->extent_tree);
c6100a4b
JB
9168 extent_io_tree_init(&ei->io_tree, inode);
9169 extent_io_tree_init(&ei->io_failure_tree, inode);
0b32f4bb
JB
9170 ei->io_tree.track_uptodate = 1;
9171 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9172 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9173 mutex_init(&ei->log_mutex);
f248679e 9174 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9175 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9176 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9177 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9178 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9179 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9180
9181 return inode;
39279cc3
CM
9182}
9183
aaedb55b
JB
9184#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9185void btrfs_test_destroy_inode(struct inode *inode)
9186{
dcdbc059 9187 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9188 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9189}
9190#endif
9191
fa0d7e3d
NP
9192static void btrfs_i_callback(struct rcu_head *head)
9193{
9194 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9195 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9196}
9197
39279cc3
CM
9198void btrfs_destroy_inode(struct inode *inode)
9199{
0b246afa 9200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9201 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9202 struct btrfs_root *root = BTRFS_I(inode)->root;
9203
b3d9b7a3 9204 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9205 WARN_ON(inode->i_data.nrpages);
69fe2d75
JB
9206 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9207 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9e0baf60 9208 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7709cde3 9209 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 9210 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 9211 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9212 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9213
a6dbd429
JB
9214 /*
9215 * This can happen where we create an inode, but somebody else also
9216 * created the same inode and we need to destroy the one we already
9217 * created.
9218 */
9219 if (!root)
9220 goto free;
9221
d397712b 9222 while (1) {
e6dcd2dc
CM
9223 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9224 if (!ordered)
9225 break;
9226 else {
0b246afa 9227 btrfs_err(fs_info,
5d163e0e
JM
9228 "found ordered extent %llu %llu on inode cleanup",
9229 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9230 btrfs_remove_ordered_extent(inode, ordered);
9231 btrfs_put_ordered_extent(ordered);
9232 btrfs_put_ordered_extent(ordered);
9233 }
9234 }
56fa9d07 9235 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9236 inode_tree_del(inode);
dcdbc059 9237 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
a6dbd429 9238free:
fa0d7e3d 9239 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9240}
9241
45321ac5 9242int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9243{
9244 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9245
6379ef9f
NA
9246 if (root == NULL)
9247 return 1;
9248
fa6ac876 9249 /* the snap/subvol tree is on deleting */
69e9c6c6 9250 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9251 return 1;
76dda93c 9252 else
45321ac5 9253 return generic_drop_inode(inode);
76dda93c
YZ
9254}
9255
0ee0fda0 9256static void init_once(void *foo)
39279cc3
CM
9257{
9258 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9259
9260 inode_init_once(&ei->vfs_inode);
9261}
9262
e67c718b 9263void __cold btrfs_destroy_cachep(void)
39279cc3 9264{
8c0a8537
KS
9265 /*
9266 * Make sure all delayed rcu free inodes are flushed before we
9267 * destroy cache.
9268 */
9269 rcu_barrier();
5598e900
KM
9270 kmem_cache_destroy(btrfs_inode_cachep);
9271 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
9272 kmem_cache_destroy(btrfs_path_cachep);
9273 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9274}
9275
f5c29bd9 9276int __init btrfs_init_cachep(void)
39279cc3 9277{
837e1972 9278 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9279 sizeof(struct btrfs_inode), 0,
5d097056
VD
9280 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9281 init_once);
39279cc3
CM
9282 if (!btrfs_inode_cachep)
9283 goto fail;
9601e3f6 9284
837e1972 9285 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9286 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9287 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9288 if (!btrfs_trans_handle_cachep)
9289 goto fail;
9601e3f6 9290
837e1972 9291 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9292 sizeof(struct btrfs_path), 0,
fba4b697 9293 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9294 if (!btrfs_path_cachep)
9295 goto fail;
9601e3f6 9296
837e1972 9297 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9298 sizeof(struct btrfs_free_space), 0,
fba4b697 9299 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9300 if (!btrfs_free_space_cachep)
9301 goto fail;
9302
39279cc3
CM
9303 return 0;
9304fail:
9305 btrfs_destroy_cachep();
9306 return -ENOMEM;
9307}
9308
a528d35e
DH
9309static int btrfs_getattr(const struct path *path, struct kstat *stat,
9310 u32 request_mask, unsigned int flags)
39279cc3 9311{
df0af1a5 9312 u64 delalloc_bytes;
a528d35e 9313 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9314 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
9315 u32 bi_flags = BTRFS_I(inode)->flags;
9316
9317 stat->result_mask |= STATX_BTIME;
9318 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9319 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9320 if (bi_flags & BTRFS_INODE_APPEND)
9321 stat->attributes |= STATX_ATTR_APPEND;
9322 if (bi_flags & BTRFS_INODE_COMPRESS)
9323 stat->attributes |= STATX_ATTR_COMPRESSED;
9324 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9325 stat->attributes |= STATX_ATTR_IMMUTABLE;
9326 if (bi_flags & BTRFS_INODE_NODUMP)
9327 stat->attributes |= STATX_ATTR_NODUMP;
9328
9329 stat->attributes_mask |= (STATX_ATTR_APPEND |
9330 STATX_ATTR_COMPRESSED |
9331 STATX_ATTR_IMMUTABLE |
9332 STATX_ATTR_NODUMP);
fadc0d8b 9333
39279cc3 9334 generic_fillattr(inode, stat);
0ee5dc67 9335 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9336
9337 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9338 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 9339 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9340 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9341 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9342 return 0;
9343}
9344
cdd1fedf
DF
9345static int btrfs_rename_exchange(struct inode *old_dir,
9346 struct dentry *old_dentry,
9347 struct inode *new_dir,
9348 struct dentry *new_dentry)
9349{
0b246afa 9350 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9351 struct btrfs_trans_handle *trans;
9352 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9353 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9354 struct inode *new_inode = new_dentry->d_inode;
9355 struct inode *old_inode = old_dentry->d_inode;
95582b00 9356 struct timespec64 ctime = current_time(old_inode);
cdd1fedf 9357 struct dentry *parent;
4a0cc7ca
NB
9358 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9359 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9360 u64 old_idx = 0;
9361 u64 new_idx = 0;
9362 u64 root_objectid;
9363 int ret;
86e8aa0e
FM
9364 bool root_log_pinned = false;
9365 bool dest_log_pinned = false;
d4682ba0
FM
9366 struct btrfs_log_ctx ctx_root;
9367 struct btrfs_log_ctx ctx_dest;
9368 bool sync_log_root = false;
9369 bool sync_log_dest = false;
9370 bool commit_transaction = false;
cdd1fedf
DF
9371
9372 /* we only allow rename subvolume link between subvolumes */
9373 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9374 return -EXDEV;
9375
d4682ba0
FM
9376 btrfs_init_log_ctx(&ctx_root, old_inode);
9377 btrfs_init_log_ctx(&ctx_dest, new_inode);
9378
cdd1fedf
DF
9379 /* close the race window with snapshot create/destroy ioctl */
9380 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9381 down_read(&fs_info->subvol_sem);
cdd1fedf 9382 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9383 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9384
9385 /*
9386 * We want to reserve the absolute worst case amount of items. So if
9387 * both inodes are subvols and we need to unlink them then that would
9388 * require 4 item modifications, but if they are both normal inodes it
9389 * would require 5 item modifications, so we'll assume their normal
9390 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9391 * should cover the worst case number of items we'll modify.
9392 */
9393 trans = btrfs_start_transaction(root, 12);
9394 if (IS_ERR(trans)) {
9395 ret = PTR_ERR(trans);
9396 goto out_notrans;
9397 }
9398
9399 /*
9400 * We need to find a free sequence number both in the source and
9401 * in the destination directory for the exchange.
9402 */
877574e2 9403 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9404 if (ret)
9405 goto out_fail;
877574e2 9406 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9407 if (ret)
9408 goto out_fail;
9409
9410 BTRFS_I(old_inode)->dir_index = 0ULL;
9411 BTRFS_I(new_inode)->dir_index = 0ULL;
9412
9413 /* Reference for the source. */
9414 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9415 /* force full log commit if subvolume involved. */
0b246afa 9416 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9417 } else {
376e5a57
FM
9418 btrfs_pin_log_trans(root);
9419 root_log_pinned = true;
cdd1fedf
DF
9420 ret = btrfs_insert_inode_ref(trans, dest,
9421 new_dentry->d_name.name,
9422 new_dentry->d_name.len,
9423 old_ino,
f85b7379
DS
9424 btrfs_ino(BTRFS_I(new_dir)),
9425 old_idx);
cdd1fedf
DF
9426 if (ret)
9427 goto out_fail;
cdd1fedf
DF
9428 }
9429
9430 /* And now for the dest. */
9431 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9432 /* force full log commit if subvolume involved. */
0b246afa 9433 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9434 } else {
376e5a57
FM
9435 btrfs_pin_log_trans(dest);
9436 dest_log_pinned = true;
cdd1fedf
DF
9437 ret = btrfs_insert_inode_ref(trans, root,
9438 old_dentry->d_name.name,
9439 old_dentry->d_name.len,
9440 new_ino,
f85b7379
DS
9441 btrfs_ino(BTRFS_I(old_dir)),
9442 new_idx);
cdd1fedf
DF
9443 if (ret)
9444 goto out_fail;
cdd1fedf
DF
9445 }
9446
9447 /* Update inode version and ctime/mtime. */
9448 inode_inc_iversion(old_dir);
9449 inode_inc_iversion(new_dir);
9450 inode_inc_iversion(old_inode);
9451 inode_inc_iversion(new_inode);
9452 old_dir->i_ctime = old_dir->i_mtime = ctime;
9453 new_dir->i_ctime = new_dir->i_mtime = ctime;
9454 old_inode->i_ctime = ctime;
9455 new_inode->i_ctime = ctime;
9456
9457 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9458 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9459 BTRFS_I(old_inode), 1);
9460 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9461 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9462 }
9463
9464 /* src is a subvolume */
9465 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9466 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
401b3b19 9467 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
cdd1fedf
DF
9468 old_dentry->d_name.name,
9469 old_dentry->d_name.len);
9470 } else { /* src is an inode */
4ec5934e
NB
9471 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9472 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9473 old_dentry->d_name.name,
9474 old_dentry->d_name.len);
9475 if (!ret)
9476 ret = btrfs_update_inode(trans, root, old_inode);
9477 }
9478 if (ret) {
66642832 9479 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9480 goto out_fail;
9481 }
9482
9483 /* dest is a subvolume */
9484 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9485 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
401b3b19 9486 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
cdd1fedf
DF
9487 new_dentry->d_name.name,
9488 new_dentry->d_name.len);
9489 } else { /* dest is an inode */
4ec5934e
NB
9490 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9491 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9492 new_dentry->d_name.name,
9493 new_dentry->d_name.len);
9494 if (!ret)
9495 ret = btrfs_update_inode(trans, dest, new_inode);
9496 }
9497 if (ret) {
66642832 9498 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9499 goto out_fail;
9500 }
9501
db0a669f 9502 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9503 new_dentry->d_name.name,
9504 new_dentry->d_name.len, 0, old_idx);
9505 if (ret) {
66642832 9506 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9507 goto out_fail;
9508 }
9509
db0a669f 9510 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9511 old_dentry->d_name.name,
9512 old_dentry->d_name.len, 0, new_idx);
9513 if (ret) {
66642832 9514 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9515 goto out_fail;
9516 }
9517
9518 if (old_inode->i_nlink == 1)
9519 BTRFS_I(old_inode)->dir_index = old_idx;
9520 if (new_inode->i_nlink == 1)
9521 BTRFS_I(new_inode)->dir_index = new_idx;
9522
86e8aa0e 9523 if (root_log_pinned) {
cdd1fedf 9524 parent = new_dentry->d_parent;
d4682ba0
FM
9525 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9526 BTRFS_I(old_dir), parent,
9527 false, &ctx_root);
9528 if (ret == BTRFS_NEED_LOG_SYNC)
9529 sync_log_root = true;
9530 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9531 commit_transaction = true;
9532 ret = 0;
cdd1fedf 9533 btrfs_end_log_trans(root);
86e8aa0e 9534 root_log_pinned = false;
cdd1fedf 9535 }
86e8aa0e 9536 if (dest_log_pinned) {
d4682ba0
FM
9537 if (!commit_transaction) {
9538 parent = old_dentry->d_parent;
9539 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9540 BTRFS_I(new_dir), parent,
9541 false, &ctx_dest);
9542 if (ret == BTRFS_NEED_LOG_SYNC)
9543 sync_log_dest = true;
9544 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9545 commit_transaction = true;
9546 ret = 0;
9547 }
cdd1fedf 9548 btrfs_end_log_trans(dest);
86e8aa0e 9549 dest_log_pinned = false;
cdd1fedf
DF
9550 }
9551out_fail:
86e8aa0e
FM
9552 /*
9553 * If we have pinned a log and an error happened, we unpin tasks
9554 * trying to sync the log and force them to fallback to a transaction
9555 * commit if the log currently contains any of the inodes involved in
9556 * this rename operation (to ensure we do not persist a log with an
9557 * inconsistent state for any of these inodes or leading to any
9558 * inconsistencies when replayed). If the transaction was aborted, the
9559 * abortion reason is propagated to userspace when attempting to commit
9560 * the transaction. If the log does not contain any of these inodes, we
9561 * allow the tasks to sync it.
9562 */
9563 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9564 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9565 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9566 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9567 (new_inode &&
0f8939b8 9568 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9569 btrfs_set_log_full_commit(fs_info, trans);
86e8aa0e
FM
9570
9571 if (root_log_pinned) {
9572 btrfs_end_log_trans(root);
9573 root_log_pinned = false;
9574 }
9575 if (dest_log_pinned) {
9576 btrfs_end_log_trans(dest);
9577 dest_log_pinned = false;
9578 }
9579 }
d4682ba0
FM
9580 if (!ret && sync_log_root && !commit_transaction) {
9581 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9582 &ctx_root);
9583 if (ret)
9584 commit_transaction = true;
9585 }
9586 if (!ret && sync_log_dest && !commit_transaction) {
9587 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9588 &ctx_dest);
9589 if (ret)
9590 commit_transaction = true;
9591 }
9592 if (commit_transaction) {
9593 ret = btrfs_commit_transaction(trans);
9594 } else {
9595 int ret2;
9596
9597 ret2 = btrfs_end_transaction(trans);
9598 ret = ret ? ret : ret2;
9599 }
cdd1fedf
DF
9600out_notrans:
9601 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9602 up_read(&fs_info->subvol_sem);
cdd1fedf 9603 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9604 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9605
9606 return ret;
9607}
9608
9609static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9610 struct btrfs_root *root,
9611 struct inode *dir,
9612 struct dentry *dentry)
9613{
9614 int ret;
9615 struct inode *inode;
9616 u64 objectid;
9617 u64 index;
9618
9619 ret = btrfs_find_free_ino(root, &objectid);
9620 if (ret)
9621 return ret;
9622
9623 inode = btrfs_new_inode(trans, root, dir,
9624 dentry->d_name.name,
9625 dentry->d_name.len,
4a0cc7ca 9626 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9627 objectid,
9628 S_IFCHR | WHITEOUT_MODE,
9629 &index);
9630
9631 if (IS_ERR(inode)) {
9632 ret = PTR_ERR(inode);
9633 return ret;
9634 }
9635
9636 inode->i_op = &btrfs_special_inode_operations;
9637 init_special_inode(inode, inode->i_mode,
9638 WHITEOUT_DEV);
9639
9640 ret = btrfs_init_inode_security(trans, inode, dir,
9641 &dentry->d_name);
9642 if (ret)
c9901618 9643 goto out;
cdd1fedf 9644
cef415af
NB
9645 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9646 BTRFS_I(inode), 0, index);
cdd1fedf 9647 if (ret)
c9901618 9648 goto out;
cdd1fedf
DF
9649
9650 ret = btrfs_update_inode(trans, root, inode);
c9901618 9651out:
cdd1fedf 9652 unlock_new_inode(inode);
c9901618
FM
9653 if (ret)
9654 inode_dec_link_count(inode);
cdd1fedf
DF
9655 iput(inode);
9656
c9901618 9657 return ret;
cdd1fedf
DF
9658}
9659
d397712b 9660static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9661 struct inode *new_dir, struct dentry *new_dentry,
9662 unsigned int flags)
39279cc3 9663{
0b246afa 9664 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9665 struct btrfs_trans_handle *trans;
5062af35 9666 unsigned int trans_num_items;
39279cc3 9667 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9668 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9669 struct inode *new_inode = d_inode(new_dentry);
9670 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9671 u64 index = 0;
4df27c4d 9672 u64 root_objectid;
39279cc3 9673 int ret;
4a0cc7ca 9674 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9675 bool log_pinned = false;
d4682ba0
FM
9676 struct btrfs_log_ctx ctx;
9677 bool sync_log = false;
9678 bool commit_transaction = false;
39279cc3 9679
4a0cc7ca 9680 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9681 return -EPERM;
9682
4df27c4d 9683 /* we only allow rename subvolume link between subvolumes */
33345d01 9684 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9685 return -EXDEV;
9686
33345d01 9687 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9688 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9689 return -ENOTEMPTY;
5f39d397 9690
4df27c4d
YZ
9691 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9692 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9693 return -ENOTEMPTY;
9c52057c
CM
9694
9695
9696 /* check for collisions, even if the name isn't there */
4871c158 9697 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9698 new_dentry->d_name.name,
9699 new_dentry->d_name.len);
9700
9701 if (ret) {
9702 if (ret == -EEXIST) {
9703 /* we shouldn't get
9704 * eexist without a new_inode */
fae7f21c 9705 if (WARN_ON(!new_inode)) {
9c52057c
CM
9706 return ret;
9707 }
9708 } else {
9709 /* maybe -EOVERFLOW */
9710 return ret;
9711 }
9712 }
9713 ret = 0;
9714
5a3f23d5 9715 /*
8d875f95
CM
9716 * we're using rename to replace one file with another. Start IO on it
9717 * now so we don't add too much work to the end of the transaction
5a3f23d5 9718 */
8d875f95 9719 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9720 filemap_flush(old_inode->i_mapping);
9721
76dda93c 9722 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9723 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9724 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9725 /*
9726 * We want to reserve the absolute worst case amount of items. So if
9727 * both inodes are subvols and we need to unlink them then that would
9728 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9729 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9730 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9731 * should cover the worst case number of items we'll modify.
5062af35
FM
9732 * If our rename has the whiteout flag, we need more 5 units for the
9733 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9734 * when selinux is enabled).
a22285a6 9735 */
5062af35
FM
9736 trans_num_items = 11;
9737 if (flags & RENAME_WHITEOUT)
9738 trans_num_items += 5;
9739 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9740 if (IS_ERR(trans)) {
cdd1fedf
DF
9741 ret = PTR_ERR(trans);
9742 goto out_notrans;
9743 }
76dda93c 9744
4df27c4d
YZ
9745 if (dest != root)
9746 btrfs_record_root_in_trans(trans, dest);
5f39d397 9747
877574e2 9748 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9749 if (ret)
9750 goto out_fail;
5a3f23d5 9751
67de1176 9752 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9753 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9754 /* force full log commit if subvolume involved. */
0b246afa 9755 btrfs_set_log_full_commit(fs_info, trans);
4df27c4d 9756 } else {
c4aba954
FM
9757 btrfs_pin_log_trans(root);
9758 log_pinned = true;
a5719521
YZ
9759 ret = btrfs_insert_inode_ref(trans, dest,
9760 new_dentry->d_name.name,
9761 new_dentry->d_name.len,
33345d01 9762 old_ino,
4a0cc7ca 9763 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9764 if (ret)
9765 goto out_fail;
4df27c4d 9766 }
5a3f23d5 9767
0c4d2d95
JB
9768 inode_inc_iversion(old_dir);
9769 inode_inc_iversion(new_dir);
9770 inode_inc_iversion(old_inode);
04b285f3
DD
9771 old_dir->i_ctime = old_dir->i_mtime =
9772 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9773 old_inode->i_ctime = current_time(old_dir);
5f39d397 9774
12fcfd22 9775 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9776 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9777 BTRFS_I(old_inode), 1);
12fcfd22 9778
33345d01 9779 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9780 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
401b3b19 9781 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
4df27c4d
YZ
9782 old_dentry->d_name.name,
9783 old_dentry->d_name.len);
9784 } else {
4ec5934e
NB
9785 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9786 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9787 old_dentry->d_name.name,
9788 old_dentry->d_name.len);
9789 if (!ret)
9790 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9791 }
79787eaa 9792 if (ret) {
66642832 9793 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9794 goto out_fail;
9795 }
39279cc3
CM
9796
9797 if (new_inode) {
0c4d2d95 9798 inode_inc_iversion(new_inode);
c2050a45 9799 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9800 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
9801 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9802 root_objectid = BTRFS_I(new_inode)->location.objectid;
401b3b19 9803 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
4df27c4d
YZ
9804 new_dentry->d_name.name,
9805 new_dentry->d_name.len);
9806 BUG_ON(new_inode->i_nlink == 0);
9807 } else {
4ec5934e
NB
9808 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9809 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9810 new_dentry->d_name.name,
9811 new_dentry->d_name.len);
9812 }
4ef31a45 9813 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9814 ret = btrfs_orphan_add(trans,
9815 BTRFS_I(d_inode(new_dentry)));
79787eaa 9816 if (ret) {
66642832 9817 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9818 goto out_fail;
9819 }
39279cc3 9820 }
aec7477b 9821
db0a669f 9822 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 9823 new_dentry->d_name.name,
a5719521 9824 new_dentry->d_name.len, 0, index);
79787eaa 9825 if (ret) {
66642832 9826 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9827 goto out_fail;
9828 }
39279cc3 9829
67de1176
MX
9830 if (old_inode->i_nlink == 1)
9831 BTRFS_I(old_inode)->dir_index = index;
9832
3dc9e8f7 9833 if (log_pinned) {
10d9f309 9834 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9835
d4682ba0
FM
9836 btrfs_init_log_ctx(&ctx, old_inode);
9837 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9838 BTRFS_I(old_dir), parent,
9839 false, &ctx);
9840 if (ret == BTRFS_NEED_LOG_SYNC)
9841 sync_log = true;
9842 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9843 commit_transaction = true;
9844 ret = 0;
4df27c4d 9845 btrfs_end_log_trans(root);
3dc9e8f7 9846 log_pinned = false;
4df27c4d 9847 }
cdd1fedf
DF
9848
9849 if (flags & RENAME_WHITEOUT) {
9850 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9851 old_dentry);
9852
9853 if (ret) {
66642832 9854 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9855 goto out_fail;
9856 }
4df27c4d 9857 }
39279cc3 9858out_fail:
3dc9e8f7
FM
9859 /*
9860 * If we have pinned the log and an error happened, we unpin tasks
9861 * trying to sync the log and force them to fallback to a transaction
9862 * commit if the log currently contains any of the inodes involved in
9863 * this rename operation (to ensure we do not persist a log with an
9864 * inconsistent state for any of these inodes or leading to any
9865 * inconsistencies when replayed). If the transaction was aborted, the
9866 * abortion reason is propagated to userspace when attempting to commit
9867 * the transaction. If the log does not contain any of these inodes, we
9868 * allow the tasks to sync it.
9869 */
9870 if (ret && log_pinned) {
0f8939b8
NB
9871 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9872 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9873 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 9874 (new_inode &&
0f8939b8 9875 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9876 btrfs_set_log_full_commit(fs_info, trans);
3dc9e8f7
FM
9877
9878 btrfs_end_log_trans(root);
9879 log_pinned = false;
9880 }
d4682ba0
FM
9881 if (!ret && sync_log) {
9882 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9883 if (ret)
9884 commit_transaction = true;
9885 }
9886 if (commit_transaction) {
9887 ret = btrfs_commit_transaction(trans);
9888 } else {
9889 int ret2;
9890
9891 ret2 = btrfs_end_transaction(trans);
9892 ret = ret ? ret : ret2;
9893 }
b44c59a8 9894out_notrans:
33345d01 9895 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9896 up_read(&fs_info->subvol_sem);
9ed74f2d 9897
39279cc3
CM
9898 return ret;
9899}
9900
80ace85c
MS
9901static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9902 struct inode *new_dir, struct dentry *new_dentry,
9903 unsigned int flags)
9904{
cdd1fedf 9905 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9906 return -EINVAL;
9907
cdd1fedf
DF
9908 if (flags & RENAME_EXCHANGE)
9909 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9910 new_dentry);
9911
9912 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9913}
9914
3a2f8c07
NB
9915struct btrfs_delalloc_work {
9916 struct inode *inode;
9917 struct completion completion;
9918 struct list_head list;
9919 struct btrfs_work work;
9920};
9921
8ccf6f19
MX
9922static void btrfs_run_delalloc_work(struct btrfs_work *work)
9923{
9924 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9925 struct inode *inode;
8ccf6f19
MX
9926
9927 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9928 work);
9f23e289 9929 inode = delalloc_work->inode;
30424601
DS
9930 filemap_flush(inode->i_mapping);
9931 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9932 &BTRFS_I(inode)->runtime_flags))
9f23e289 9933 filemap_flush(inode->i_mapping);
8ccf6f19 9934
076da91c 9935 iput(inode);
8ccf6f19
MX
9936 complete(&delalloc_work->completion);
9937}
9938
3a2f8c07 9939static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8ccf6f19
MX
9940{
9941 struct btrfs_delalloc_work *work;
9942
100d5702 9943 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9944 if (!work)
9945 return NULL;
9946
9947 init_completion(&work->completion);
9948 INIT_LIST_HEAD(&work->list);
9949 work->inode = inode;
9e0af237
LB
9950 WARN_ON_ONCE(!inode);
9951 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9952 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9953
9954 return work;
9955}
9956
d352ac68
CM
9957/*
9958 * some fairly slow code that needs optimization. This walks the list
9959 * of all the inodes with pending delalloc and forces them to disk.
9960 */
4fbb5147 9961static int start_delalloc_inodes(struct btrfs_root *root, int nr)
ea8c2819 9962{
ea8c2819 9963 struct btrfs_inode *binode;
5b21f2ed 9964 struct inode *inode;
8ccf6f19
MX
9965 struct btrfs_delalloc_work *work, *next;
9966 struct list_head works;
1eafa6c7 9967 struct list_head splice;
8ccf6f19 9968 int ret = 0;
ea8c2819 9969
8ccf6f19 9970 INIT_LIST_HEAD(&works);
1eafa6c7 9971 INIT_LIST_HEAD(&splice);
63607cc8 9972
573bfb72 9973 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9974 spin_lock(&root->delalloc_lock);
9975 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9976 while (!list_empty(&splice)) {
9977 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9978 delalloc_inodes);
1eafa6c7 9979
eb73c1b7
MX
9980 list_move_tail(&binode->delalloc_inodes,
9981 &root->delalloc_inodes);
5b21f2ed 9982 inode = igrab(&binode->vfs_inode);
df0af1a5 9983 if (!inode) {
eb73c1b7 9984 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9985 continue;
df0af1a5 9986 }
eb73c1b7 9987 spin_unlock(&root->delalloc_lock);
1eafa6c7 9988
076da91c 9989 work = btrfs_alloc_delalloc_work(inode);
5d99a998 9990 if (!work) {
4fbb5147 9991 iput(inode);
1eafa6c7 9992 ret = -ENOMEM;
a1ecaabb 9993 goto out;
5b21f2ed 9994 }
1eafa6c7 9995 list_add_tail(&work->list, &works);
a44903ab
QW
9996 btrfs_queue_work(root->fs_info->flush_workers,
9997 &work->work);
6c255e67
MX
9998 ret++;
9999 if (nr != -1 && ret >= nr)
a1ecaabb 10000 goto out;
5b21f2ed 10001 cond_resched();
eb73c1b7 10002 spin_lock(&root->delalloc_lock);
ea8c2819 10003 }
eb73c1b7 10004 spin_unlock(&root->delalloc_lock);
8c8bee1d 10005
a1ecaabb 10006out:
eb73c1b7
MX
10007 list_for_each_entry_safe(work, next, &works, list) {
10008 list_del_init(&work->list);
40012f96
NB
10009 wait_for_completion(&work->completion);
10010 kfree(work);
eb73c1b7
MX
10011 }
10012
81f1d390 10013 if (!list_empty(&splice)) {
eb73c1b7
MX
10014 spin_lock(&root->delalloc_lock);
10015 list_splice_tail(&splice, &root->delalloc_inodes);
10016 spin_unlock(&root->delalloc_lock);
10017 }
573bfb72 10018 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10019 return ret;
10020}
1eafa6c7 10021
76f32e24 10022int btrfs_start_delalloc_inodes(struct btrfs_root *root)
eb73c1b7 10023{
0b246afa 10024 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10025 int ret;
1eafa6c7 10026
0b246afa 10027 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10028 return -EROFS;
10029
4fbb5147 10030 ret = start_delalloc_inodes(root, -1);
6c255e67
MX
10031 if (ret > 0)
10032 ret = 0;
eb73c1b7
MX
10033 return ret;
10034}
10035
82b3e53b 10036int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
eb73c1b7
MX
10037{
10038 struct btrfs_root *root;
10039 struct list_head splice;
10040 int ret;
10041
2c21b4d7 10042 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10043 return -EROFS;
10044
10045 INIT_LIST_HEAD(&splice);
10046
573bfb72 10047 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10048 spin_lock(&fs_info->delalloc_root_lock);
10049 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10050 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10051 root = list_first_entry(&splice, struct btrfs_root,
10052 delalloc_root);
10053 root = btrfs_grab_fs_root(root);
10054 BUG_ON(!root);
10055 list_move_tail(&root->delalloc_root,
10056 &fs_info->delalloc_roots);
10057 spin_unlock(&fs_info->delalloc_root_lock);
10058
4fbb5147 10059 ret = start_delalloc_inodes(root, nr);
eb73c1b7 10060 btrfs_put_fs_root(root);
6c255e67 10061 if (ret < 0)
eb73c1b7
MX
10062 goto out;
10063
6c255e67
MX
10064 if (nr != -1) {
10065 nr -= ret;
10066 WARN_ON(nr < 0);
10067 }
eb73c1b7 10068 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10069 }
eb73c1b7 10070 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10071
6c255e67 10072 ret = 0;
eb73c1b7 10073out:
81f1d390 10074 if (!list_empty(&splice)) {
eb73c1b7
MX
10075 spin_lock(&fs_info->delalloc_root_lock);
10076 list_splice_tail(&splice, &fs_info->delalloc_roots);
10077 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10078 }
573bfb72 10079 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10080 return ret;
ea8c2819
CM
10081}
10082
39279cc3
CM
10083static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10084 const char *symname)
10085{
0b246afa 10086 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10087 struct btrfs_trans_handle *trans;
10088 struct btrfs_root *root = BTRFS_I(dir)->root;
10089 struct btrfs_path *path;
10090 struct btrfs_key key;
1832a6d5 10091 struct inode *inode = NULL;
39279cc3 10092 int err;
39279cc3 10093 u64 objectid;
67871254 10094 u64 index = 0;
39279cc3
CM
10095 int name_len;
10096 int datasize;
5f39d397 10097 unsigned long ptr;
39279cc3 10098 struct btrfs_file_extent_item *ei;
5f39d397 10099 struct extent_buffer *leaf;
39279cc3 10100
f06becc4 10101 name_len = strlen(symname);
0b246afa 10102 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10103 return -ENAMETOOLONG;
1832a6d5 10104
9ed74f2d
JB
10105 /*
10106 * 2 items for inode item and ref
10107 * 2 items for dir items
9269d12b
FM
10108 * 1 item for updating parent inode item
10109 * 1 item for the inline extent item
9ed74f2d
JB
10110 * 1 item for xattr if selinux is on
10111 */
9269d12b 10112 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10113 if (IS_ERR(trans))
10114 return PTR_ERR(trans);
1832a6d5 10115
581bb050
LZ
10116 err = btrfs_find_free_ino(root, &objectid);
10117 if (err)
10118 goto out_unlock;
10119
aec7477b 10120 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10121 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10122 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10123 if (IS_ERR(inode)) {
10124 err = PTR_ERR(inode);
32955c54 10125 inode = NULL;
39279cc3 10126 goto out_unlock;
7cf96da3 10127 }
39279cc3 10128
ad19db71
CS
10129 /*
10130 * If the active LSM wants to access the inode during
10131 * d_instantiate it needs these. Smack checks to see
10132 * if the filesystem supports xattrs by looking at the
10133 * ops vector.
10134 */
10135 inode->i_fop = &btrfs_file_operations;
10136 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10137 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10138 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10139
10140 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10141 if (err)
32955c54 10142 goto out_unlock;
ad19db71 10143
39279cc3 10144 path = btrfs_alloc_path();
d8926bb3
MF
10145 if (!path) {
10146 err = -ENOMEM;
32955c54 10147 goto out_unlock;
d8926bb3 10148 }
4a0cc7ca 10149 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10150 key.offset = 0;
962a298f 10151 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10152 datasize = btrfs_file_extent_calc_inline_size(name_len);
10153 err = btrfs_insert_empty_item(trans, root, path, &key,
10154 datasize);
54aa1f4d 10155 if (err) {
b0839166 10156 btrfs_free_path(path);
32955c54 10157 goto out_unlock;
54aa1f4d 10158 }
5f39d397
CM
10159 leaf = path->nodes[0];
10160 ei = btrfs_item_ptr(leaf, path->slots[0],
10161 struct btrfs_file_extent_item);
10162 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10163 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10164 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10165 btrfs_set_file_extent_encryption(leaf, ei, 0);
10166 btrfs_set_file_extent_compression(leaf, ei, 0);
10167 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10168 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10169
39279cc3 10170 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10171 write_extent_buffer(leaf, symname, ptr, name_len);
10172 btrfs_mark_buffer_dirty(leaf);
39279cc3 10173 btrfs_free_path(path);
5f39d397 10174
39279cc3 10175 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10176 inode_nohighmem(inode);
39279cc3 10177 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10178 inode_set_bytes(inode, name_len);
6ef06d27 10179 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10180 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10181 /*
10182 * Last step, add directory indexes for our symlink inode. This is the
10183 * last step to avoid extra cleanup of these indexes if an error happens
10184 * elsewhere above.
10185 */
10186 if (!err)
cef415af
NB
10187 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10188 BTRFS_I(inode), 0, index);
32955c54
AV
10189 if (err)
10190 goto out_unlock;
b0d5d10f 10191
1e2e547a 10192 d_instantiate_new(dentry, inode);
39279cc3
CM
10193
10194out_unlock:
3a45bb20 10195 btrfs_end_transaction(trans);
32955c54 10196 if (err && inode) {
39279cc3 10197 inode_dec_link_count(inode);
32955c54 10198 discard_new_inode(inode);
39279cc3 10199 }
2ff7e61e 10200 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
10201 return err;
10202}
16432985 10203
0af3d00b
JB
10204static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10205 u64 start, u64 num_bytes, u64 min_size,
10206 loff_t actual_len, u64 *alloc_hint,
10207 struct btrfs_trans_handle *trans)
d899e052 10208{
0b246afa 10209 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10210 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10211 struct extent_map *em;
d899e052
YZ
10212 struct btrfs_root *root = BTRFS_I(inode)->root;
10213 struct btrfs_key ins;
d899e052 10214 u64 cur_offset = start;
55a61d1d 10215 u64 i_size;
154ea289 10216 u64 cur_bytes;
0b670dc4 10217 u64 last_alloc = (u64)-1;
d899e052 10218 int ret = 0;
0af3d00b 10219 bool own_trans = true;
18513091 10220 u64 end = start + num_bytes - 1;
d899e052 10221
0af3d00b
JB
10222 if (trans)
10223 own_trans = false;
d899e052 10224 while (num_bytes > 0) {
0af3d00b
JB
10225 if (own_trans) {
10226 trans = btrfs_start_transaction(root, 3);
10227 if (IS_ERR(trans)) {
10228 ret = PTR_ERR(trans);
10229 break;
10230 }
5a303d5d
YZ
10231 }
10232
ee22184b 10233 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10234 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10235 /*
10236 * If we are severely fragmented we could end up with really
10237 * small allocations, so if the allocator is returning small
10238 * chunks lets make its job easier by only searching for those
10239 * sized chunks.
10240 */
10241 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10242 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10243 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10244 if (ret) {
0af3d00b 10245 if (own_trans)
3a45bb20 10246 btrfs_end_transaction(trans);
a22285a6 10247 break;
d899e052 10248 }
0b246afa 10249 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10250
0b670dc4 10251 last_alloc = ins.offset;
d899e052
YZ
10252 ret = insert_reserved_file_extent(trans, inode,
10253 cur_offset, ins.objectid,
10254 ins.offset, ins.offset,
920bbbfb 10255 ins.offset, 0, 0, 0,
d899e052 10256 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10257 if (ret) {
2ff7e61e 10258 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10259 ins.offset, 0);
66642832 10260 btrfs_abort_transaction(trans, ret);
79787eaa 10261 if (own_trans)
3a45bb20 10262 btrfs_end_transaction(trans);
79787eaa
JM
10263 break;
10264 }
31193213 10265
dcdbc059 10266 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10267 cur_offset + ins.offset -1, 0);
5a303d5d 10268
5dc562c5
JB
10269 em = alloc_extent_map();
10270 if (!em) {
10271 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10272 &BTRFS_I(inode)->runtime_flags);
10273 goto next;
10274 }
10275
10276 em->start = cur_offset;
10277 em->orig_start = cur_offset;
10278 em->len = ins.offset;
10279 em->block_start = ins.objectid;
10280 em->block_len = ins.offset;
b4939680 10281 em->orig_block_len = ins.offset;
cc95bef6 10282 em->ram_bytes = ins.offset;
0b246afa 10283 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10284 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10285 em->generation = trans->transid;
10286
10287 while (1) {
10288 write_lock(&em_tree->lock);
09a2a8f9 10289 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10290 write_unlock(&em_tree->lock);
10291 if (ret != -EEXIST)
10292 break;
dcdbc059 10293 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10294 cur_offset + ins.offset - 1,
10295 0);
10296 }
10297 free_extent_map(em);
10298next:
d899e052
YZ
10299 num_bytes -= ins.offset;
10300 cur_offset += ins.offset;
efa56464 10301 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10302
0c4d2d95 10303 inode_inc_iversion(inode);
c2050a45 10304 inode->i_ctime = current_time(inode);
6cbff00f 10305 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10306 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10307 (actual_len > inode->i_size) &&
10308 (cur_offset > inode->i_size)) {
d1ea6a61 10309 if (cur_offset > actual_len)
55a61d1d 10310 i_size = actual_len;
d1ea6a61 10311 else
55a61d1d
JB
10312 i_size = cur_offset;
10313 i_size_write(inode, i_size);
10314 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10315 }
10316
d899e052 10317 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10318
10319 if (ret) {
66642832 10320 btrfs_abort_transaction(trans, ret);
79787eaa 10321 if (own_trans)
3a45bb20 10322 btrfs_end_transaction(trans);
79787eaa
JM
10323 break;
10324 }
d899e052 10325
0af3d00b 10326 if (own_trans)
3a45bb20 10327 btrfs_end_transaction(trans);
5a303d5d 10328 }
18513091 10329 if (cur_offset < end)
bc42bda2 10330 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
18513091 10331 end - cur_offset + 1);
d899e052
YZ
10332 return ret;
10333}
10334
0af3d00b
JB
10335int btrfs_prealloc_file_range(struct inode *inode, int mode,
10336 u64 start, u64 num_bytes, u64 min_size,
10337 loff_t actual_len, u64 *alloc_hint)
10338{
10339 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10340 min_size, actual_len, alloc_hint,
10341 NULL);
10342}
10343
10344int btrfs_prealloc_file_range_trans(struct inode *inode,
10345 struct btrfs_trans_handle *trans, int mode,
10346 u64 start, u64 num_bytes, u64 min_size,
10347 loff_t actual_len, u64 *alloc_hint)
10348{
10349 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10350 min_size, actual_len, alloc_hint, trans);
10351}
10352
e6dcd2dc
CM
10353static int btrfs_set_page_dirty(struct page *page)
10354{
e6dcd2dc
CM
10355 return __set_page_dirty_nobuffers(page);
10356}
10357
10556cb2 10358static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10359{
b83cc969 10360 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10361 umode_t mode = inode->i_mode;
b83cc969 10362
cb6db4e5
JM
10363 if (mask & MAY_WRITE &&
10364 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10365 if (btrfs_root_readonly(root))
10366 return -EROFS;
10367 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10368 return -EACCES;
10369 }
2830ba7f 10370 return generic_permission(inode, mask);
fdebe2bd 10371}
39279cc3 10372
ef3b9af5
FM
10373static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10374{
2ff7e61e 10375 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10376 struct btrfs_trans_handle *trans;
10377 struct btrfs_root *root = BTRFS_I(dir)->root;
10378 struct inode *inode = NULL;
10379 u64 objectid;
10380 u64 index;
10381 int ret = 0;
10382
10383 /*
10384 * 5 units required for adding orphan entry
10385 */
10386 trans = btrfs_start_transaction(root, 5);
10387 if (IS_ERR(trans))
10388 return PTR_ERR(trans);
10389
10390 ret = btrfs_find_free_ino(root, &objectid);
10391 if (ret)
10392 goto out;
10393
10394 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10395 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10396 if (IS_ERR(inode)) {
10397 ret = PTR_ERR(inode);
10398 inode = NULL;
10399 goto out;
10400 }
10401
ef3b9af5
FM
10402 inode->i_fop = &btrfs_file_operations;
10403 inode->i_op = &btrfs_file_inode_operations;
10404
10405 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10406 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10407
b0d5d10f
CM
10408 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10409 if (ret)
32955c54 10410 goto out;
b0d5d10f
CM
10411
10412 ret = btrfs_update_inode(trans, root, inode);
10413 if (ret)
32955c54 10414 goto out;
73f2e545 10415 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10416 if (ret)
32955c54 10417 goto out;
ef3b9af5 10418
5762b5c9
FM
10419 /*
10420 * We set number of links to 0 in btrfs_new_inode(), and here we set
10421 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10422 * through:
10423 *
10424 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10425 */
10426 set_nlink(inode, 1);
ef3b9af5 10427 d_tmpfile(dentry, inode);
32955c54 10428 unlock_new_inode(inode);
ef3b9af5 10429 mark_inode_dirty(inode);
ef3b9af5 10430out:
3a45bb20 10431 btrfs_end_transaction(trans);
32955c54
AV
10432 if (ret && inode)
10433 discard_new_inode(inode);
2ff7e61e 10434 btrfs_btree_balance_dirty(fs_info);
ef3b9af5
FM
10435 return ret;
10436}
10437
20a7db8a 10438__attribute__((const))
9d0d1c8b 10439static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
20a7db8a 10440{
9d0d1c8b 10441 return -EAGAIN;
20a7db8a
DS
10442}
10443
c6100a4b
JB
10444static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10445 u64 start, u64 end)
10446{
10447 struct inode *inode = private_data;
10448 u64 isize;
10449
10450 isize = i_size_read(inode);
10451 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10452 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10453 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10454 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10455 }
10456}
10457
5cdc84bf 10458void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
c6100a4b 10459{
5cdc84bf 10460 struct inode *inode = tree->private_data;
c6100a4b
JB
10461 unsigned long index = start >> PAGE_SHIFT;
10462 unsigned long end_index = end >> PAGE_SHIFT;
10463 struct page *page;
10464
10465 while (index <= end_index) {
10466 page = find_get_page(inode->i_mapping, index);
10467 ASSERT(page); /* Pages should be in the extent_io_tree */
10468 set_page_writeback(page);
10469 put_page(page);
10470 index++;
10471 }
10472}
10473
6e1d5dcc 10474static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10475 .getattr = btrfs_getattr,
39279cc3
CM
10476 .lookup = btrfs_lookup,
10477 .create = btrfs_create,
10478 .unlink = btrfs_unlink,
10479 .link = btrfs_link,
10480 .mkdir = btrfs_mkdir,
10481 .rmdir = btrfs_rmdir,
2773bf00 10482 .rename = btrfs_rename2,
39279cc3
CM
10483 .symlink = btrfs_symlink,
10484 .setattr = btrfs_setattr,
618e21d5 10485 .mknod = btrfs_mknod,
5103e947 10486 .listxattr = btrfs_listxattr,
fdebe2bd 10487 .permission = btrfs_permission,
4e34e719 10488 .get_acl = btrfs_get_acl,
996a710d 10489 .set_acl = btrfs_set_acl,
93fd63c2 10490 .update_time = btrfs_update_time,
ef3b9af5 10491 .tmpfile = btrfs_tmpfile,
39279cc3 10492};
6e1d5dcc 10493static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10494 .lookup = btrfs_lookup,
fdebe2bd 10495 .permission = btrfs_permission,
93fd63c2 10496 .update_time = btrfs_update_time,
39279cc3 10497};
76dda93c 10498
828c0950 10499static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10500 .llseek = generic_file_llseek,
10501 .read = generic_read_dir,
02dbfc99 10502 .iterate_shared = btrfs_real_readdir,
23b5ec74 10503 .open = btrfs_opendir,
34287aa3 10504 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10505#ifdef CONFIG_COMPAT
4c63c245 10506 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10507#endif
6bf13c0c 10508 .release = btrfs_release_file,
e02119d5 10509 .fsync = btrfs_sync_file,
39279cc3
CM
10510};
10511
20e5506b 10512static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10513 /* mandatory callbacks */
065631f6 10514 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac 10515 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
9d0d1c8b 10516 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
4d53dddb
DS
10517
10518 /* optional callbacks */
10519 .fill_delalloc = run_delalloc_range,
e6dcd2dc 10520 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10521 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10522 .set_bit_hook = btrfs_set_bit_hook,
10523 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10524 .merge_extent_hook = btrfs_merge_extent_hook,
10525 .split_extent_hook = btrfs_split_extent_hook,
c6100a4b 10526 .check_extent_io_range = btrfs_check_extent_io_range,
07157aac
CM
10527};
10528
35054394
CM
10529/*
10530 * btrfs doesn't support the bmap operation because swapfiles
10531 * use bmap to make a mapping of extents in the file. They assume
10532 * these extents won't change over the life of the file and they
10533 * use the bmap result to do IO directly to the drive.
10534 *
10535 * the btrfs bmap call would return logical addresses that aren't
10536 * suitable for IO and they also will change frequently as COW
10537 * operations happen. So, swapfile + btrfs == corruption.
10538 *
10539 * For now we're avoiding this by dropping bmap.
10540 */
7f09410b 10541static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10542 .readpage = btrfs_readpage,
10543 .writepage = btrfs_writepage,
b293f02e 10544 .writepages = btrfs_writepages,
3ab2fb5a 10545 .readpages = btrfs_readpages,
16432985 10546 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10547 .invalidatepage = btrfs_invalidatepage,
10548 .releasepage = btrfs_releasepage,
e6dcd2dc 10549 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10550 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10551};
10552
7f09410b 10553static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10554 .readpage = btrfs_readpage,
10555 .writepage = btrfs_writepage,
2bf5a725
CM
10556 .invalidatepage = btrfs_invalidatepage,
10557 .releasepage = btrfs_releasepage,
39279cc3
CM
10558};
10559
6e1d5dcc 10560static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10561 .getattr = btrfs_getattr,
10562 .setattr = btrfs_setattr,
5103e947 10563 .listxattr = btrfs_listxattr,
fdebe2bd 10564 .permission = btrfs_permission,
1506fcc8 10565 .fiemap = btrfs_fiemap,
4e34e719 10566 .get_acl = btrfs_get_acl,
996a710d 10567 .set_acl = btrfs_set_acl,
e41f941a 10568 .update_time = btrfs_update_time,
39279cc3 10569};
6e1d5dcc 10570static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10571 .getattr = btrfs_getattr,
10572 .setattr = btrfs_setattr,
fdebe2bd 10573 .permission = btrfs_permission,
33268eaf 10574 .listxattr = btrfs_listxattr,
4e34e719 10575 .get_acl = btrfs_get_acl,
996a710d 10576 .set_acl = btrfs_set_acl,
e41f941a 10577 .update_time = btrfs_update_time,
618e21d5 10578};
6e1d5dcc 10579static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10580 .get_link = page_get_link,
f209561a 10581 .getattr = btrfs_getattr,
22c44fe6 10582 .setattr = btrfs_setattr,
fdebe2bd 10583 .permission = btrfs_permission,
0279b4cd 10584 .listxattr = btrfs_listxattr,
e41f941a 10585 .update_time = btrfs_update_time,
39279cc3 10586};
76dda93c 10587
82d339d9 10588const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
10589 .d_delete = btrfs_dentry_delete,
10590};