]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/inode.c
Btrfs: add statx support
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
39279cc3 33#include <linux/compat.h>
9ebefb18 34#include <linux/bit_spinlock.h>
5103e947 35#include <linux/xattr.h>
33268eaf 36#include <linux/posix_acl.h>
d899e052 37#include <linux/falloc.h>
5a0e3ad6 38#include <linux/slab.h>
7a36ddec 39#include <linux/ratelimit.h>
22c44fe6 40#include <linux/mount.h>
55e301fd 41#include <linux/btrfs.h>
53b381b3 42#include <linux/blkdev.h>
f23b5a59 43#include <linux/posix_acl_xattr.h>
e2e40f2c 44#include <linux/uio.h>
39279cc3
CM
45#include "ctree.h"
46#include "disk-io.h"
47#include "transaction.h"
48#include "btrfs_inode.h"
39279cc3 49#include "print-tree.h"
e6dcd2dc 50#include "ordered-data.h"
95819c05 51#include "xattr.h"
e02119d5 52#include "tree-log.h"
4a54c8c1 53#include "volumes.h"
c8b97818 54#include "compression.h"
b4ce94de 55#include "locking.h"
dc89e982 56#include "free-space-cache.h"
581bb050 57#include "inode-map.h"
38c227d8 58#include "backref.h"
f23b5a59 59#include "hash.h"
63541927 60#include "props.h"
31193213 61#include "qgroup.h"
dda3245e 62#include "dedupe.h"
39279cc3
CM
63
64struct btrfs_iget_args {
90d3e592 65 struct btrfs_key *location;
39279cc3
CM
66 struct btrfs_root *root;
67};
68
f28a4928
FM
69struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
4aaedfb0 74 int overwrite;
f28a4928
FM
75};
76
6e1d5dcc
AD
77static const struct inode_operations btrfs_dir_inode_operations;
78static const struct inode_operations btrfs_symlink_inode_operations;
79static const struct inode_operations btrfs_dir_ro_inode_operations;
80static const struct inode_operations btrfs_special_inode_operations;
81static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
82static const struct address_space_operations btrfs_aops;
83static const struct address_space_operations btrfs_symlink_aops;
828c0950 84static const struct file_operations btrfs_dir_file_operations;
20e5506b 85static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
86
87static struct kmem_cache *btrfs_inode_cachep;
88struct kmem_cache *btrfs_trans_handle_cachep;
89struct kmem_cache *btrfs_transaction_cachep;
39279cc3 90struct kmem_cache *btrfs_path_cachep;
dc89e982 91struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
92
93#define S_SHIFT 12
4d4ab6d6 94static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
102};
103
3972f260 104static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 105static int btrfs_truncate(struct inode *inode);
5fd02043 106static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
107static noinline int cow_file_range(struct inode *inode,
108 struct page *locked_page,
dda3245e
WX
109 u64 start, u64 end, u64 delalloc_end,
110 int *page_started, unsigned long *nr_written,
111 int unlock, struct btrfs_dedupe_hash *hash);
6f9994db
LB
112static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
113 u64 orig_start, u64 block_start,
114 u64 block_len, u64 orig_block_len,
115 u64 ram_bytes, int compress_type,
116 int type);
7b128766 117
52427260
QW
118static void __endio_write_update_ordered(struct inode *inode,
119 const u64 offset, const u64 bytes,
120 const bool uptodate);
121
122/*
123 * Cleanup all submitted ordered extents in specified range to handle errors
124 * from the fill_dellaloc() callback.
125 *
126 * NOTE: caller must ensure that when an error happens, it can not call
127 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
128 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
129 * to be released, which we want to happen only when finishing the ordered
130 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
131 * fill_delalloc() callback already does proper cleanup for the first page of
132 * the range, that is, it invokes the callback writepage_end_io_hook() for the
133 * range of the first page.
134 */
135static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
136 const u64 offset,
137 const u64 bytes)
138{
139 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
140 bytes - PAGE_SIZE, false);
141}
142
48a3b636 143static int btrfs_dirty_inode(struct inode *inode);
7b128766 144
6a3891c5
JB
145#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
146void btrfs_test_inode_set_ops(struct inode *inode)
147{
148 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
149}
150#endif
151
f34f57a3 152static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
153 struct inode *inode, struct inode *dir,
154 const struct qstr *qstr)
0279b4cd
JO
155{
156 int err;
157
f34f57a3 158 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 159 if (!err)
2a7dba39 160 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
161 return err;
162}
163
c8b97818
CM
164/*
165 * this does all the hard work for inserting an inline extent into
166 * the btree. The caller should have done a btrfs_drop_extents so that
167 * no overlapping inline items exist in the btree
168 */
40f76580 169static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 170 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
171 struct btrfs_root *root, struct inode *inode,
172 u64 start, size_t size, size_t compressed_size,
fe3f566c 173 int compress_type,
c8b97818
CM
174 struct page **compressed_pages)
175{
c8b97818
CM
176 struct extent_buffer *leaf;
177 struct page *page = NULL;
178 char *kaddr;
179 unsigned long ptr;
180 struct btrfs_file_extent_item *ei;
181 int err = 0;
182 int ret;
183 size_t cur_size = size;
c8b97818 184 unsigned long offset;
c8b97818 185
fe3f566c 186 if (compressed_size && compressed_pages)
c8b97818 187 cur_size = compressed_size;
c8b97818 188
1acae57b 189 inode_add_bytes(inode, size);
c8b97818 190
1acae57b
FDBM
191 if (!extent_inserted) {
192 struct btrfs_key key;
193 size_t datasize;
c8b97818 194
4a0cc7ca 195 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 196 key.offset = start;
962a298f 197 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 198
1acae57b
FDBM
199 datasize = btrfs_file_extent_calc_inline_size(cur_size);
200 path->leave_spinning = 1;
201 ret = btrfs_insert_empty_item(trans, root, path, &key,
202 datasize);
203 if (ret) {
204 err = ret;
205 goto fail;
206 }
c8b97818
CM
207 }
208 leaf = path->nodes[0];
209 ei = btrfs_item_ptr(leaf, path->slots[0],
210 struct btrfs_file_extent_item);
211 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
212 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
213 btrfs_set_file_extent_encryption(leaf, ei, 0);
214 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
215 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
216 ptr = btrfs_file_extent_inline_start(ei);
217
261507a0 218 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
219 struct page *cpage;
220 int i = 0;
d397712b 221 while (compressed_size > 0) {
c8b97818 222 cpage = compressed_pages[i];
5b050f04 223 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 224 PAGE_SIZE);
c8b97818 225
7ac687d9 226 kaddr = kmap_atomic(cpage);
c8b97818 227 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 228 kunmap_atomic(kaddr);
c8b97818
CM
229
230 i++;
231 ptr += cur_size;
232 compressed_size -= cur_size;
233 }
234 btrfs_set_file_extent_compression(leaf, ei,
261507a0 235 compress_type);
c8b97818
CM
236 } else {
237 page = find_get_page(inode->i_mapping,
09cbfeaf 238 start >> PAGE_SHIFT);
c8b97818 239 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 240 kaddr = kmap_atomic(page);
09cbfeaf 241 offset = start & (PAGE_SIZE - 1);
c8b97818 242 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 243 kunmap_atomic(kaddr);
09cbfeaf 244 put_page(page);
c8b97818
CM
245 }
246 btrfs_mark_buffer_dirty(leaf);
1acae57b 247 btrfs_release_path(path);
c8b97818 248
c2167754
YZ
249 /*
250 * we're an inline extent, so nobody can
251 * extend the file past i_size without locking
252 * a page we already have locked.
253 *
254 * We must do any isize and inode updates
255 * before we unlock the pages. Otherwise we
256 * could end up racing with unlink.
257 */
c8b97818 258 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 259 ret = btrfs_update_inode(trans, root, inode);
c2167754 260
79787eaa 261 return ret;
c8b97818 262fail:
c8b97818
CM
263 return err;
264}
265
266
267/*
268 * conditionally insert an inline extent into the file. This
269 * does the checks required to make sure the data is small enough
270 * to fit as an inline extent.
271 */
00361589
JB
272static noinline int cow_file_range_inline(struct btrfs_root *root,
273 struct inode *inode, u64 start,
274 u64 end, size_t compressed_size,
275 int compress_type,
276 struct page **compressed_pages)
c8b97818 277{
0b246afa 278 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 279 struct btrfs_trans_handle *trans;
c8b97818
CM
280 u64 isize = i_size_read(inode);
281 u64 actual_end = min(end + 1, isize);
282 u64 inline_len = actual_end - start;
0b246afa 283 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
284 u64 data_len = inline_len;
285 int ret;
1acae57b
FDBM
286 struct btrfs_path *path;
287 int extent_inserted = 0;
288 u32 extent_item_size;
c8b97818
CM
289
290 if (compressed_size)
291 data_len = compressed_size;
292
293 if (start > 0 ||
0b246afa
JM
294 actual_end > fs_info->sectorsize ||
295 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 296 (!compressed_size &&
0b246afa 297 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 298 end + 1 < isize ||
0b246afa 299 data_len > fs_info->max_inline) {
c8b97818
CM
300 return 1;
301 }
302
1acae57b
FDBM
303 path = btrfs_alloc_path();
304 if (!path)
305 return -ENOMEM;
306
00361589 307 trans = btrfs_join_transaction(root);
1acae57b
FDBM
308 if (IS_ERR(trans)) {
309 btrfs_free_path(path);
00361589 310 return PTR_ERR(trans);
1acae57b 311 }
0b246afa 312 trans->block_rsv = &fs_info->delalloc_block_rsv;
00361589 313
1acae57b
FDBM
314 if (compressed_size && compressed_pages)
315 extent_item_size = btrfs_file_extent_calc_inline_size(
316 compressed_size);
317 else
318 extent_item_size = btrfs_file_extent_calc_inline_size(
319 inline_len);
320
321 ret = __btrfs_drop_extents(trans, root, inode, path,
322 start, aligned_end, NULL,
323 1, 1, extent_item_size, &extent_inserted);
00361589 324 if (ret) {
66642832 325 btrfs_abort_transaction(trans, ret);
00361589
JB
326 goto out;
327 }
c8b97818
CM
328
329 if (isize > actual_end)
330 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
331 ret = insert_inline_extent(trans, path, extent_inserted,
332 root, inode, start,
c8b97818 333 inline_len, compressed_size,
fe3f566c 334 compress_type, compressed_pages);
2adcac1a 335 if (ret && ret != -ENOSPC) {
66642832 336 btrfs_abort_transaction(trans, ret);
00361589 337 goto out;
2adcac1a 338 } else if (ret == -ENOSPC) {
00361589
JB
339 ret = 1;
340 goto out;
79787eaa 341 }
2adcac1a 342
bdc20e67 343 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
691fa059 344 btrfs_delalloc_release_metadata(BTRFS_I(inode), end + 1 - start);
dcdbc059 345 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 346out:
94ed938a
QW
347 /*
348 * Don't forget to free the reserved space, as for inlined extent
349 * it won't count as data extent, free them directly here.
350 * And at reserve time, it's always aligned to page size, so
351 * just free one page here.
352 */
09cbfeaf 353 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
1acae57b 354 btrfs_free_path(path);
3a45bb20 355 btrfs_end_transaction(trans);
00361589 356 return ret;
c8b97818
CM
357}
358
771ed689
CM
359struct async_extent {
360 u64 start;
361 u64 ram_size;
362 u64 compressed_size;
363 struct page **pages;
364 unsigned long nr_pages;
261507a0 365 int compress_type;
771ed689
CM
366 struct list_head list;
367};
368
369struct async_cow {
370 struct inode *inode;
371 struct btrfs_root *root;
372 struct page *locked_page;
373 u64 start;
374 u64 end;
375 struct list_head extents;
376 struct btrfs_work work;
377};
378
379static noinline int add_async_extent(struct async_cow *cow,
380 u64 start, u64 ram_size,
381 u64 compressed_size,
382 struct page **pages,
261507a0
LZ
383 unsigned long nr_pages,
384 int compress_type)
771ed689
CM
385{
386 struct async_extent *async_extent;
387
388 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 389 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
390 async_extent->start = start;
391 async_extent->ram_size = ram_size;
392 async_extent->compressed_size = compressed_size;
393 async_extent->pages = pages;
394 async_extent->nr_pages = nr_pages;
261507a0 395 async_extent->compress_type = compress_type;
771ed689
CM
396 list_add_tail(&async_extent->list, &cow->extents);
397 return 0;
398}
399
f79707b0
WS
400static inline int inode_need_compress(struct inode *inode)
401{
0b246afa 402 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
403
404 /* force compress */
0b246afa 405 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0
WS
406 return 1;
407 /* bad compression ratios */
408 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
409 return 0;
0b246afa 410 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0
WS
411 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
412 BTRFS_I(inode)->force_compress)
413 return 1;
414 return 0;
415}
416
6158e1ce 417static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
418 u64 start, u64 end, u64 num_bytes, u64 small_write)
419{
420 /* If this is a small write inside eof, kick off a defrag */
421 if (num_bytes < small_write &&
6158e1ce 422 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
423 btrfs_add_inode_defrag(NULL, inode);
424}
425
d352ac68 426/*
771ed689
CM
427 * we create compressed extents in two phases. The first
428 * phase compresses a range of pages that have already been
429 * locked (both pages and state bits are locked).
c8b97818 430 *
771ed689
CM
431 * This is done inside an ordered work queue, and the compression
432 * is spread across many cpus. The actual IO submission is step
433 * two, and the ordered work queue takes care of making sure that
434 * happens in the same order things were put onto the queue by
435 * writepages and friends.
c8b97818 436 *
771ed689
CM
437 * If this code finds it can't get good compression, it puts an
438 * entry onto the work queue to write the uncompressed bytes. This
439 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
440 * are written in the same order that the flusher thread sent them
441 * down.
d352ac68 442 */
c44f649e 443static noinline void compress_file_range(struct inode *inode,
771ed689
CM
444 struct page *locked_page,
445 u64 start, u64 end,
446 struct async_cow *async_cow,
447 int *num_added)
b888db2b 448{
0b246afa 449 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
b888db2b 450 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 451 u64 num_bytes;
0b246afa 452 u64 blocksize = fs_info->sectorsize;
c8b97818 453 u64 actual_end;
42dc7bab 454 u64 isize = i_size_read(inode);
e6dcd2dc 455 int ret = 0;
c8b97818
CM
456 struct page **pages = NULL;
457 unsigned long nr_pages;
c8b97818
CM
458 unsigned long total_compressed = 0;
459 unsigned long total_in = 0;
c8b97818
CM
460 int i;
461 int will_compress;
0b246afa 462 int compress_type = fs_info->compress_type;
4adaa611 463 int redirty = 0;
b888db2b 464
6158e1ce
NB
465 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
466 SZ_16K);
4cb5300b 467
42dc7bab 468 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
469again:
470 will_compress = 0;
09cbfeaf 471 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
472 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
473 nr_pages = min_t(unsigned long, nr_pages,
474 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 475
f03d9301
CM
476 /*
477 * we don't want to send crud past the end of i_size through
478 * compression, that's just a waste of CPU time. So, if the
479 * end of the file is before the start of our current
480 * requested range of bytes, we bail out to the uncompressed
481 * cleanup code that can deal with all of this.
482 *
483 * It isn't really the fastest way to fix things, but this is a
484 * very uncommon corner.
485 */
486 if (actual_end <= start)
487 goto cleanup_and_bail_uncompressed;
488
c8b97818
CM
489 total_compressed = actual_end - start;
490
4bcbb332
SW
491 /*
492 * skip compression for a small file range(<=blocksize) that
01327610 493 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
494 */
495 if (total_compressed <= blocksize &&
496 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
497 goto cleanup_and_bail_uncompressed;
498
069eac78
DS
499 total_compressed = min_t(unsigned long, total_compressed,
500 BTRFS_MAX_UNCOMPRESSED);
fda2832f 501 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 502 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
503 total_in = 0;
504 ret = 0;
db94535d 505
771ed689
CM
506 /*
507 * we do compression for mount -o compress and when the
508 * inode has not been flagged as nocompress. This flag can
509 * change at any time if we discover bad compression ratios.
c8b97818 510 */
f79707b0 511 if (inode_need_compress(inode)) {
c8b97818 512 WARN_ON(pages);
31e818fe 513 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
514 if (!pages) {
515 /* just bail out to the uncompressed code */
516 goto cont;
517 }
c8b97818 518
261507a0
LZ
519 if (BTRFS_I(inode)->force_compress)
520 compress_type = BTRFS_I(inode)->force_compress;
521
4adaa611
CM
522 /*
523 * we need to call clear_page_dirty_for_io on each
524 * page in the range. Otherwise applications with the file
525 * mmap'd can wander in and change the page contents while
526 * we are compressing them.
527 *
528 * If the compression fails for any reason, we set the pages
529 * dirty again later on.
530 */
531 extent_range_clear_dirty_for_io(inode, start, end);
532 redirty = 1;
261507a0
LZ
533 ret = btrfs_compress_pages(compress_type,
534 inode->i_mapping, start,
38c31464 535 pages,
4d3a800e 536 &nr_pages,
261507a0 537 &total_in,
e5d74902 538 &total_compressed);
c8b97818
CM
539
540 if (!ret) {
541 unsigned long offset = total_compressed &
09cbfeaf 542 (PAGE_SIZE - 1);
4d3a800e 543 struct page *page = pages[nr_pages - 1];
c8b97818
CM
544 char *kaddr;
545
546 /* zero the tail end of the last page, we might be
547 * sending it down to disk
548 */
549 if (offset) {
7ac687d9 550 kaddr = kmap_atomic(page);
c8b97818 551 memset(kaddr + offset, 0,
09cbfeaf 552 PAGE_SIZE - offset);
7ac687d9 553 kunmap_atomic(kaddr);
c8b97818
CM
554 }
555 will_compress = 1;
556 }
557 }
560f7d75 558cont:
c8b97818
CM
559 if (start == 0) {
560 /* lets try to make an inline extent */
771ed689 561 if (ret || total_in < (actual_end - start)) {
c8b97818 562 /* we didn't compress the entire range, try
771ed689 563 * to make an uncompressed inline extent.
c8b97818 564 */
00361589 565 ret = cow_file_range_inline(root, inode, start, end,
f74670f7 566 0, BTRFS_COMPRESS_NONE, NULL);
c8b97818 567 } else {
771ed689 568 /* try making a compressed inline extent */
00361589 569 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
570 total_compressed,
571 compress_type, pages);
c8b97818 572 }
79787eaa 573 if (ret <= 0) {
151a41bc 574 unsigned long clear_flags = EXTENT_DELALLOC |
a7e3b975 575 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG;
e6eb4314
FM
576 unsigned long page_error_op;
577
151a41bc 578 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 579 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 580
771ed689 581 /*
79787eaa
JM
582 * inline extent creation worked or returned error,
583 * we don't need to create any more async work items.
584 * Unlock and free up our temp pages.
771ed689 585 */
ba8b04c1
QW
586 extent_clear_unlock_delalloc(inode, start, end, end,
587 NULL, clear_flags,
588 PAGE_UNLOCK |
c2790a2e
JB
589 PAGE_CLEAR_DIRTY |
590 PAGE_SET_WRITEBACK |
e6eb4314 591 page_error_op |
c2790a2e 592 PAGE_END_WRITEBACK);
1c81ba23
FM
593 if (ret == 0)
594 btrfs_free_reserved_data_space_noquota(inode,
595 start,
596 end - start + 1);
c8b97818
CM
597 goto free_pages_out;
598 }
599 }
600
601 if (will_compress) {
602 /*
603 * we aren't doing an inline extent round the compressed size
604 * up to a block size boundary so the allocator does sane
605 * things
606 */
fda2832f 607 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
608
609 /*
610 * one last check to make sure the compression is really a
611 * win, compare the page count read with the blocks on disk
612 */
09cbfeaf 613 total_in = ALIGN(total_in, PAGE_SIZE);
c8b97818
CM
614 if (total_compressed >= total_in) {
615 will_compress = 0;
616 } else {
c8b97818 617 num_bytes = total_in;
c8bb0c8b
AS
618 *num_added += 1;
619
620 /*
621 * The async work queues will take care of doing actual
622 * allocation on disk for these compressed pages, and
623 * will submit them to the elevator.
624 */
625 add_async_extent(async_cow, start, num_bytes,
4d3a800e 626 total_compressed, pages, nr_pages,
c8bb0c8b
AS
627 compress_type);
628
629 if (start + num_bytes < end) {
630 start += num_bytes;
631 pages = NULL;
632 cond_resched();
633 goto again;
634 }
635 return;
c8b97818
CM
636 }
637 }
c8bb0c8b 638 if (pages) {
c8b97818
CM
639 /*
640 * the compression code ran but failed to make things smaller,
641 * free any pages it allocated and our page pointer array
642 */
4d3a800e 643 for (i = 0; i < nr_pages; i++) {
70b99e69 644 WARN_ON(pages[i]->mapping);
09cbfeaf 645 put_page(pages[i]);
c8b97818
CM
646 }
647 kfree(pages);
648 pages = NULL;
649 total_compressed = 0;
4d3a800e 650 nr_pages = 0;
c8b97818
CM
651
652 /* flag the file so we don't compress in the future */
0b246afa 653 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
1e701a32 654 !(BTRFS_I(inode)->force_compress)) {
a555f810 655 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 656 }
c8b97818 657 }
f03d9301 658cleanup_and_bail_uncompressed:
c8bb0c8b
AS
659 /*
660 * No compression, but we still need to write the pages in the file
661 * we've been given so far. redirty the locked page if it corresponds
662 * to our extent and set things up for the async work queue to run
663 * cow_file_range to do the normal delalloc dance.
664 */
665 if (page_offset(locked_page) >= start &&
666 page_offset(locked_page) <= end)
667 __set_page_dirty_nobuffers(locked_page);
668 /* unlocked later on in the async handlers */
669
670 if (redirty)
671 extent_range_redirty_for_io(inode, start, end);
672 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
673 BTRFS_COMPRESS_NONE);
674 *num_added += 1;
3b951516 675
c44f649e 676 return;
771ed689
CM
677
678free_pages_out:
4d3a800e 679 for (i = 0; i < nr_pages; i++) {
771ed689 680 WARN_ON(pages[i]->mapping);
09cbfeaf 681 put_page(pages[i]);
771ed689 682 }
d397712b 683 kfree(pages);
771ed689 684}
771ed689 685
40ae837b
FM
686static void free_async_extent_pages(struct async_extent *async_extent)
687{
688 int i;
689
690 if (!async_extent->pages)
691 return;
692
693 for (i = 0; i < async_extent->nr_pages; i++) {
694 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 695 put_page(async_extent->pages[i]);
40ae837b
FM
696 }
697 kfree(async_extent->pages);
698 async_extent->nr_pages = 0;
699 async_extent->pages = NULL;
771ed689
CM
700}
701
702/*
703 * phase two of compressed writeback. This is the ordered portion
704 * of the code, which only gets called in the order the work was
705 * queued. We walk all the async extents created by compress_file_range
706 * and send them down to the disk.
707 */
dec8f175 708static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
709 struct async_cow *async_cow)
710{
0b246afa 711 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
712 struct async_extent *async_extent;
713 u64 alloc_hint = 0;
771ed689
CM
714 struct btrfs_key ins;
715 struct extent_map *em;
716 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689 717 struct extent_io_tree *io_tree;
f5a84ee3 718 int ret = 0;
771ed689 719
3e04e7f1 720again:
d397712b 721 while (!list_empty(&async_cow->extents)) {
771ed689
CM
722 async_extent = list_entry(async_cow->extents.next,
723 struct async_extent, list);
724 list_del(&async_extent->list);
c8b97818 725
771ed689
CM
726 io_tree = &BTRFS_I(inode)->io_tree;
727
f5a84ee3 728retry:
771ed689
CM
729 /* did the compression code fall back to uncompressed IO? */
730 if (!async_extent->pages) {
731 int page_started = 0;
732 unsigned long nr_written = 0;
733
734 lock_extent(io_tree, async_extent->start,
2ac55d41 735 async_extent->start +
d0082371 736 async_extent->ram_size - 1);
771ed689
CM
737
738 /* allocate blocks */
f5a84ee3
JB
739 ret = cow_file_range(inode, async_cow->locked_page,
740 async_extent->start,
741 async_extent->start +
742 async_extent->ram_size - 1,
dda3245e
WX
743 async_extent->start +
744 async_extent->ram_size - 1,
745 &page_started, &nr_written, 0,
746 NULL);
771ed689 747
79787eaa
JM
748 /* JDM XXX */
749
771ed689
CM
750 /*
751 * if page_started, cow_file_range inserted an
752 * inline extent and took care of all the unlocking
753 * and IO for us. Otherwise, we need to submit
754 * all those pages down to the drive.
755 */
f5a84ee3 756 if (!page_started && !ret)
771ed689
CM
757 extent_write_locked_range(io_tree,
758 inode, async_extent->start,
d397712b 759 async_extent->start +
771ed689
CM
760 async_extent->ram_size - 1,
761 btrfs_get_extent,
762 WB_SYNC_ALL);
3e04e7f1
JB
763 else if (ret)
764 unlock_page(async_cow->locked_page);
771ed689
CM
765 kfree(async_extent);
766 cond_resched();
767 continue;
768 }
769
770 lock_extent(io_tree, async_extent->start,
d0082371 771 async_extent->start + async_extent->ram_size - 1);
771ed689 772
18513091 773 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
774 async_extent->compressed_size,
775 async_extent->compressed_size,
e570fd27 776 0, alloc_hint, &ins, 1, 1);
f5a84ee3 777 if (ret) {
40ae837b 778 free_async_extent_pages(async_extent);
3e04e7f1 779
fdf8e2ea
JB
780 if (ret == -ENOSPC) {
781 unlock_extent(io_tree, async_extent->start,
782 async_extent->start +
783 async_extent->ram_size - 1);
ce62003f
LB
784
785 /*
786 * we need to redirty the pages if we decide to
787 * fallback to uncompressed IO, otherwise we
788 * will not submit these pages down to lower
789 * layers.
790 */
791 extent_range_redirty_for_io(inode,
792 async_extent->start,
793 async_extent->start +
794 async_extent->ram_size - 1);
795
79787eaa 796 goto retry;
fdf8e2ea 797 }
3e04e7f1 798 goto out_free;
f5a84ee3 799 }
c2167754
YZ
800 /*
801 * here we're doing allocation and writeback of the
802 * compressed pages
803 */
6f9994db
LB
804 em = create_io_em(inode, async_extent->start,
805 async_extent->ram_size, /* len */
806 async_extent->start, /* orig_start */
807 ins.objectid, /* block_start */
808 ins.offset, /* block_len */
809 ins.offset, /* orig_block_len */
810 async_extent->ram_size, /* ram_bytes */
811 async_extent->compress_type,
812 BTRFS_ORDERED_COMPRESSED);
813 if (IS_ERR(em))
814 /* ret value is not necessary due to void function */
3e04e7f1 815 goto out_free_reserve;
6f9994db 816 free_extent_map(em);
3e04e7f1 817
261507a0
LZ
818 ret = btrfs_add_ordered_extent_compress(inode,
819 async_extent->start,
820 ins.objectid,
821 async_extent->ram_size,
822 ins.offset,
823 BTRFS_ORDERED_COMPRESSED,
824 async_extent->compress_type);
d9f85963 825 if (ret) {
dcdbc059
NB
826 btrfs_drop_extent_cache(BTRFS_I(inode),
827 async_extent->start,
d9f85963
FM
828 async_extent->start +
829 async_extent->ram_size - 1, 0);
3e04e7f1 830 goto out_free_reserve;
d9f85963 831 }
0b246afa 832 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 833
771ed689
CM
834 /*
835 * clear dirty, set writeback and unlock the pages.
836 */
c2790a2e 837 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
838 async_extent->start +
839 async_extent->ram_size - 1,
a791e35e
CM
840 async_extent->start +
841 async_extent->ram_size - 1,
151a41bc
JB
842 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
843 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 844 PAGE_SET_WRITEBACK);
771ed689 845 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
846 async_extent->start,
847 async_extent->ram_size,
848 ins.objectid,
849 ins.offset, async_extent->pages,
850 async_extent->nr_pages);
fce2a4e6
FM
851 if (ret) {
852 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
853 struct page *p = async_extent->pages[0];
854 const u64 start = async_extent->start;
855 const u64 end = start + async_extent->ram_size - 1;
856
857 p->mapping = inode->i_mapping;
858 tree->ops->writepage_end_io_hook(p, start, end,
859 NULL, 0);
860 p->mapping = NULL;
ba8b04c1
QW
861 extent_clear_unlock_delalloc(inode, start, end, end,
862 NULL, 0,
fce2a4e6
FM
863 PAGE_END_WRITEBACK |
864 PAGE_SET_ERROR);
40ae837b 865 free_async_extent_pages(async_extent);
fce2a4e6 866 }
771ed689
CM
867 alloc_hint = ins.objectid + ins.offset;
868 kfree(async_extent);
869 cond_resched();
870 }
dec8f175 871 return;
3e04e7f1 872out_free_reserve:
0b246afa 873 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 874 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 875out_free:
c2790a2e 876 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
877 async_extent->start +
878 async_extent->ram_size - 1,
3e04e7f1
JB
879 async_extent->start +
880 async_extent->ram_size - 1,
c2790a2e 881 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 882 EXTENT_DELALLOC_NEW |
151a41bc
JB
883 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
884 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
885 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
886 PAGE_SET_ERROR);
40ae837b 887 free_async_extent_pages(async_extent);
79787eaa 888 kfree(async_extent);
3e04e7f1 889 goto again;
771ed689
CM
890}
891
4b46fce2
JB
892static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
893 u64 num_bytes)
894{
895 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
896 struct extent_map *em;
897 u64 alloc_hint = 0;
898
899 read_lock(&em_tree->lock);
900 em = search_extent_mapping(em_tree, start, num_bytes);
901 if (em) {
902 /*
903 * if block start isn't an actual block number then find the
904 * first block in this inode and use that as a hint. If that
905 * block is also bogus then just don't worry about it.
906 */
907 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
908 free_extent_map(em);
909 em = search_extent_mapping(em_tree, 0, 0);
910 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
911 alloc_hint = em->block_start;
912 if (em)
913 free_extent_map(em);
914 } else {
915 alloc_hint = em->block_start;
916 free_extent_map(em);
917 }
918 }
919 read_unlock(&em_tree->lock);
920
921 return alloc_hint;
922}
923
771ed689
CM
924/*
925 * when extent_io.c finds a delayed allocation range in the file,
926 * the call backs end up in this code. The basic idea is to
927 * allocate extents on disk for the range, and create ordered data structs
928 * in ram to track those extents.
929 *
930 * locked_page is the page that writepage had locked already. We use
931 * it to make sure we don't do extra locks or unlocks.
932 *
933 * *page_started is set to one if we unlock locked_page and do everything
934 * required to start IO on it. It may be clean and already done with
935 * IO when we return.
936 */
00361589
JB
937static noinline int cow_file_range(struct inode *inode,
938 struct page *locked_page,
dda3245e
WX
939 u64 start, u64 end, u64 delalloc_end,
940 int *page_started, unsigned long *nr_written,
941 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 942{
0b246afa 943 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 944 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
945 u64 alloc_hint = 0;
946 u64 num_bytes;
947 unsigned long ram_size;
948 u64 disk_num_bytes;
a315e68f 949 u64 cur_alloc_size = 0;
0b246afa 950 u64 blocksize = fs_info->sectorsize;
771ed689
CM
951 struct btrfs_key ins;
952 struct extent_map *em;
a315e68f
FM
953 unsigned clear_bits;
954 unsigned long page_ops;
955 bool extent_reserved = false;
771ed689
CM
956 int ret = 0;
957
70ddc553 958 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 959 WARN_ON_ONCE(1);
29bce2f3
JB
960 ret = -EINVAL;
961 goto out_unlock;
02ecd2c2 962 }
771ed689 963
fda2832f 964 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
965 num_bytes = max(blocksize, num_bytes);
966 disk_num_bytes = num_bytes;
771ed689 967
6158e1ce 968 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 969
771ed689
CM
970 if (start == 0) {
971 /* lets try to make an inline extent */
f74670f7
AJ
972 ret = cow_file_range_inline(root, inode, start, end, 0,
973 BTRFS_COMPRESS_NONE, NULL);
771ed689 974 if (ret == 0) {
ba8b04c1
QW
975 extent_clear_unlock_delalloc(inode, start, end,
976 delalloc_end, NULL,
c2790a2e 977 EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 978 EXTENT_DELALLOC_NEW |
151a41bc 979 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
980 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
981 PAGE_END_WRITEBACK);
18513091
WX
982 btrfs_free_reserved_data_space_noquota(inode, start,
983 end - start + 1);
771ed689 984 *nr_written = *nr_written +
09cbfeaf 985 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 986 *page_started = 1;
771ed689 987 goto out;
79787eaa 988 } else if (ret < 0) {
79787eaa 989 goto out_unlock;
771ed689
CM
990 }
991 }
992
993 BUG_ON(disk_num_bytes >
0b246afa 994 btrfs_super_total_bytes(fs_info->super_copy));
771ed689 995
4b46fce2 996 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
997 btrfs_drop_extent_cache(BTRFS_I(inode), start,
998 start + num_bytes - 1, 0);
771ed689 999
d397712b 1000 while (disk_num_bytes > 0) {
287a0ab9 1001 cur_alloc_size = disk_num_bytes;
18513091 1002 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 1003 fs_info->sectorsize, 0, alloc_hint,
e570fd27 1004 &ins, 1, 1);
00361589 1005 if (ret < 0)
79787eaa 1006 goto out_unlock;
a315e68f
FM
1007 cur_alloc_size = ins.offset;
1008 extent_reserved = true;
d397712b 1009
771ed689 1010 ram_size = ins.offset;
6f9994db
LB
1011 em = create_io_em(inode, start, ins.offset, /* len */
1012 start, /* orig_start */
1013 ins.objectid, /* block_start */
1014 ins.offset, /* block_len */
1015 ins.offset, /* orig_block_len */
1016 ram_size, /* ram_bytes */
1017 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1018 BTRFS_ORDERED_REGULAR /* type */);
6f9994db 1019 if (IS_ERR(em))
ace68bac 1020 goto out_reserve;
6f9994db 1021 free_extent_map(em);
e6dcd2dc 1022
e6dcd2dc 1023 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1024 ram_size, cur_alloc_size, 0);
ace68bac 1025 if (ret)
d9f85963 1026 goto out_drop_extent_cache;
c8b97818 1027
17d217fe
YZ
1028 if (root->root_key.objectid ==
1029 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1030 ret = btrfs_reloc_clone_csums(inode, start,
1031 cur_alloc_size);
4dbd80fb
QW
1032 /*
1033 * Only drop cache here, and process as normal.
1034 *
1035 * We must not allow extent_clear_unlock_delalloc()
1036 * at out_unlock label to free meta of this ordered
1037 * extent, as its meta should be freed by
1038 * btrfs_finish_ordered_io().
1039 *
1040 * So we must continue until @start is increased to
1041 * skip current ordered extent.
1042 */
00361589 1043 if (ret)
4dbd80fb
QW
1044 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1045 start + ram_size - 1, 0);
17d217fe
YZ
1046 }
1047
0b246afa 1048 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1049
c8b97818
CM
1050 /* we're not doing compressed IO, don't unlock the first
1051 * page (which the caller expects to stay locked), don't
1052 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1053 *
1054 * Do set the Private2 bit so we know this page was properly
1055 * setup for writepage
c8b97818 1056 */
a315e68f
FM
1057 page_ops = unlock ? PAGE_UNLOCK : 0;
1058 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1059
c2790a2e 1060 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1061 start + ram_size - 1,
1062 delalloc_end, locked_page,
c2790a2e 1063 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1064 page_ops);
4dbd80fb
QW
1065 if (disk_num_bytes < cur_alloc_size)
1066 disk_num_bytes = 0;
1067 else
1068 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1069 num_bytes -= cur_alloc_size;
1070 alloc_hint = ins.objectid + ins.offset;
1071 start += cur_alloc_size;
a315e68f 1072 extent_reserved = false;
4dbd80fb
QW
1073
1074 /*
1075 * btrfs_reloc_clone_csums() error, since start is increased
1076 * extent_clear_unlock_delalloc() at out_unlock label won't
1077 * free metadata of current ordered extent, we're OK to exit.
1078 */
1079 if (ret)
1080 goto out_unlock;
b888db2b 1081 }
79787eaa 1082out:
be20aa9d 1083 return ret;
b7d5b0a8 1084
d9f85963 1085out_drop_extent_cache:
dcdbc059 1086 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1087out_reserve:
0b246afa 1088 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1089 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1090out_unlock:
a7e3b975
FM
1091 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1092 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1093 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1094 PAGE_END_WRITEBACK;
1095 /*
1096 * If we reserved an extent for our delalloc range (or a subrange) and
1097 * failed to create the respective ordered extent, then it means that
1098 * when we reserved the extent we decremented the extent's size from
1099 * the data space_info's bytes_may_use counter and incremented the
1100 * space_info's bytes_reserved counter by the same amount. We must make
1101 * sure extent_clear_unlock_delalloc() does not try to decrement again
1102 * the data space_info's bytes_may_use counter, therefore we do not pass
1103 * it the flag EXTENT_CLEAR_DATA_RESV.
1104 */
1105 if (extent_reserved) {
1106 extent_clear_unlock_delalloc(inode, start,
1107 start + cur_alloc_size,
1108 start + cur_alloc_size,
1109 locked_page,
1110 clear_bits,
1111 page_ops);
1112 start += cur_alloc_size;
1113 if (start >= end)
1114 goto out;
1115 }
ba8b04c1
QW
1116 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1117 locked_page,
a315e68f
FM
1118 clear_bits | EXTENT_CLEAR_DATA_RESV,
1119 page_ops);
79787eaa 1120 goto out;
771ed689 1121}
c8b97818 1122
771ed689
CM
1123/*
1124 * work queue call back to started compression on a file and pages
1125 */
1126static noinline void async_cow_start(struct btrfs_work *work)
1127{
1128 struct async_cow *async_cow;
1129 int num_added = 0;
1130 async_cow = container_of(work, struct async_cow, work);
1131
1132 compress_file_range(async_cow->inode, async_cow->locked_page,
1133 async_cow->start, async_cow->end, async_cow,
1134 &num_added);
8180ef88 1135 if (num_added == 0) {
cb77fcd8 1136 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1137 async_cow->inode = NULL;
8180ef88 1138 }
771ed689
CM
1139}
1140
1141/*
1142 * work queue call back to submit previously compressed pages
1143 */
1144static noinline void async_cow_submit(struct btrfs_work *work)
1145{
0b246afa 1146 struct btrfs_fs_info *fs_info;
771ed689
CM
1147 struct async_cow *async_cow;
1148 struct btrfs_root *root;
1149 unsigned long nr_pages;
1150
1151 async_cow = container_of(work, struct async_cow, work);
1152
1153 root = async_cow->root;
0b246afa 1154 fs_info = root->fs_info;
09cbfeaf
KS
1155 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1156 PAGE_SHIFT;
771ed689 1157
ee863954
DS
1158 /*
1159 * atomic_sub_return implies a barrier for waitqueue_active
1160 */
0b246afa 1161 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
ee22184b 1162 5 * SZ_1M &&
0b246afa
JM
1163 waitqueue_active(&fs_info->async_submit_wait))
1164 wake_up(&fs_info->async_submit_wait);
771ed689 1165
d397712b 1166 if (async_cow->inode)
771ed689 1167 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1168}
c8b97818 1169
771ed689
CM
1170static noinline void async_cow_free(struct btrfs_work *work)
1171{
1172 struct async_cow *async_cow;
1173 async_cow = container_of(work, struct async_cow, work);
8180ef88 1174 if (async_cow->inode)
cb77fcd8 1175 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1176 kfree(async_cow);
1177}
1178
1179static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1180 u64 start, u64 end, int *page_started,
1181 unsigned long *nr_written)
1182{
0b246afa 1183 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
1184 struct async_cow *async_cow;
1185 struct btrfs_root *root = BTRFS_I(inode)->root;
1186 unsigned long nr_pages;
1187 u64 cur_end;
771ed689 1188
a3429ab7
CM
1189 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1190 1, 0, NULL, GFP_NOFS);
d397712b 1191 while (start < end) {
771ed689 1192 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1193 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1194 async_cow->inode = igrab(inode);
771ed689
CM
1195 async_cow->root = root;
1196 async_cow->locked_page = locked_page;
1197 async_cow->start = start;
1198
f79707b0 1199 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
0b246afa 1200 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
771ed689
CM
1201 cur_end = end;
1202 else
ee22184b 1203 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1204
1205 async_cow->end = cur_end;
1206 INIT_LIST_HEAD(&async_cow->extents);
1207
9e0af237
LB
1208 btrfs_init_work(&async_cow->work,
1209 btrfs_delalloc_helper,
1210 async_cow_start, async_cow_submit,
1211 async_cow_free);
771ed689 1212
09cbfeaf
KS
1213 nr_pages = (cur_end - start + PAGE_SIZE) >>
1214 PAGE_SHIFT;
0b246afa 1215 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1216
0b246afa 1217 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
771ed689 1218
0b246afa
JM
1219 while (atomic_read(&fs_info->async_submit_draining) &&
1220 atomic_read(&fs_info->async_delalloc_pages)) {
1221 wait_event(fs_info->async_submit_wait,
1222 (atomic_read(&fs_info->async_delalloc_pages) ==
1223 0));
771ed689
CM
1224 }
1225
1226 *nr_written += nr_pages;
1227 start = cur_end + 1;
1228 }
1229 *page_started = 1;
1230 return 0;
be20aa9d
CM
1231}
1232
2ff7e61e 1233static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1234 u64 bytenr, u64 num_bytes)
1235{
1236 int ret;
1237 struct btrfs_ordered_sum *sums;
1238 LIST_HEAD(list);
1239
0b246afa 1240 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1241 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1242 if (ret == 0 && list_empty(&list))
1243 return 0;
1244
1245 while (!list_empty(&list)) {
1246 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1247 list_del(&sums->list);
1248 kfree(sums);
1249 }
1250 return 1;
1251}
1252
d352ac68
CM
1253/*
1254 * when nowcow writeback call back. This checks for snapshots or COW copies
1255 * of the extents that exist in the file, and COWs the file as required.
1256 *
1257 * If no cow copies or snapshots exist, we write directly to the existing
1258 * blocks on disk
1259 */
7f366cfe
CM
1260static noinline int run_delalloc_nocow(struct inode *inode,
1261 struct page *locked_page,
771ed689
CM
1262 u64 start, u64 end, int *page_started, int force,
1263 unsigned long *nr_written)
be20aa9d 1264{
0b246afa 1265 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d
CM
1266 struct btrfs_root *root = BTRFS_I(inode)->root;
1267 struct extent_buffer *leaf;
be20aa9d 1268 struct btrfs_path *path;
80ff3856 1269 struct btrfs_file_extent_item *fi;
be20aa9d 1270 struct btrfs_key found_key;
6f9994db 1271 struct extent_map *em;
80ff3856
YZ
1272 u64 cow_start;
1273 u64 cur_offset;
1274 u64 extent_end;
5d4f98a2 1275 u64 extent_offset;
80ff3856
YZ
1276 u64 disk_bytenr;
1277 u64 num_bytes;
b4939680 1278 u64 disk_num_bytes;
cc95bef6 1279 u64 ram_bytes;
80ff3856 1280 int extent_type;
79787eaa 1281 int ret, err;
d899e052 1282 int type;
80ff3856
YZ
1283 int nocow;
1284 int check_prev = 1;
82d5902d 1285 bool nolock;
4a0cc7ca 1286 u64 ino = btrfs_ino(BTRFS_I(inode));
be20aa9d
CM
1287
1288 path = btrfs_alloc_path();
17ca04af 1289 if (!path) {
ba8b04c1
QW
1290 extent_clear_unlock_delalloc(inode, start, end, end,
1291 locked_page,
c2790a2e 1292 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1293 EXTENT_DO_ACCOUNTING |
1294 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1295 PAGE_CLEAR_DIRTY |
1296 PAGE_SET_WRITEBACK |
1297 PAGE_END_WRITEBACK);
d8926bb3 1298 return -ENOMEM;
17ca04af 1299 }
82d5902d 1300
70ddc553 1301 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
82d5902d 1302
80ff3856
YZ
1303 cow_start = (u64)-1;
1304 cur_offset = start;
1305 while (1) {
e4c3b2dc 1306 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1307 cur_offset, 0);
d788a349 1308 if (ret < 0)
79787eaa 1309 goto error;
80ff3856
YZ
1310 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1311 leaf = path->nodes[0];
1312 btrfs_item_key_to_cpu(leaf, &found_key,
1313 path->slots[0] - 1);
33345d01 1314 if (found_key.objectid == ino &&
80ff3856
YZ
1315 found_key.type == BTRFS_EXTENT_DATA_KEY)
1316 path->slots[0]--;
1317 }
1318 check_prev = 0;
1319next_slot:
1320 leaf = path->nodes[0];
1321 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1322 ret = btrfs_next_leaf(root, path);
d788a349 1323 if (ret < 0)
79787eaa 1324 goto error;
80ff3856
YZ
1325 if (ret > 0)
1326 break;
1327 leaf = path->nodes[0];
1328 }
be20aa9d 1329
80ff3856
YZ
1330 nocow = 0;
1331 disk_bytenr = 0;
17d217fe 1332 num_bytes = 0;
80ff3856
YZ
1333 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1334
1d512cb7
FM
1335 if (found_key.objectid > ino)
1336 break;
1337 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1338 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1339 path->slots[0]++;
1340 goto next_slot;
1341 }
1342 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1343 found_key.offset > end)
1344 break;
1345
1346 if (found_key.offset > cur_offset) {
1347 extent_end = found_key.offset;
e9061e21 1348 extent_type = 0;
80ff3856
YZ
1349 goto out_check;
1350 }
1351
1352 fi = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_file_extent_item);
1354 extent_type = btrfs_file_extent_type(leaf, fi);
1355
cc95bef6 1356 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1357 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1358 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1359 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1360 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1361 extent_end = found_key.offset +
1362 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1363 disk_num_bytes =
1364 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1365 if (extent_end <= start) {
1366 path->slots[0]++;
1367 goto next_slot;
1368 }
17d217fe
YZ
1369 if (disk_bytenr == 0)
1370 goto out_check;
80ff3856
YZ
1371 if (btrfs_file_extent_compression(leaf, fi) ||
1372 btrfs_file_extent_encryption(leaf, fi) ||
1373 btrfs_file_extent_other_encoding(leaf, fi))
1374 goto out_check;
d899e052
YZ
1375 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1376 goto out_check;
2ff7e61e 1377 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1378 goto out_check;
e4c3b2dc 1379 if (btrfs_cross_ref_exist(root, ino,
5d4f98a2
YZ
1380 found_key.offset -
1381 extent_offset, disk_bytenr))
17d217fe 1382 goto out_check;
5d4f98a2 1383 disk_bytenr += extent_offset;
17d217fe
YZ
1384 disk_bytenr += cur_offset - found_key.offset;
1385 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1386 /*
1387 * if there are pending snapshots for this root,
1388 * we fall into common COW way.
1389 */
1390 if (!nolock) {
9ea24bbe 1391 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1392 if (!err)
1393 goto out_check;
1394 }
17d217fe
YZ
1395 /*
1396 * force cow if csum exists in the range.
1397 * this ensure that csum for a given extent are
1398 * either valid or do not exist.
1399 */
2ff7e61e 1400 if (csum_exist_in_range(fs_info, disk_bytenr,
91e1f56a
RK
1401 num_bytes)) {
1402 if (!nolock)
1403 btrfs_end_write_no_snapshoting(root);
17d217fe 1404 goto out_check;
91e1f56a
RK
1405 }
1406 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1407 if (!nolock)
1408 btrfs_end_write_no_snapshoting(root);
f78c436c 1409 goto out_check;
91e1f56a 1410 }
80ff3856
YZ
1411 nocow = 1;
1412 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1413 extent_end = found_key.offset +
514ac8ad
CM
1414 btrfs_file_extent_inline_len(leaf,
1415 path->slots[0], fi);
da17066c 1416 extent_end = ALIGN(extent_end,
0b246afa 1417 fs_info->sectorsize);
80ff3856
YZ
1418 } else {
1419 BUG_ON(1);
1420 }
1421out_check:
1422 if (extent_end <= start) {
1423 path->slots[0]++;
e9894fd3 1424 if (!nolock && nocow)
9ea24bbe 1425 btrfs_end_write_no_snapshoting(root);
f78c436c 1426 if (nocow)
0b246afa 1427 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1428 goto next_slot;
1429 }
1430 if (!nocow) {
1431 if (cow_start == (u64)-1)
1432 cow_start = cur_offset;
1433 cur_offset = extent_end;
1434 if (cur_offset > end)
1435 break;
1436 path->slots[0]++;
1437 goto next_slot;
7ea394f1
YZ
1438 }
1439
b3b4aa74 1440 btrfs_release_path(path);
80ff3856 1441 if (cow_start != (u64)-1) {
00361589
JB
1442 ret = cow_file_range(inode, locked_page,
1443 cow_start, found_key.offset - 1,
dda3245e
WX
1444 end, page_started, nr_written, 1,
1445 NULL);
e9894fd3
WS
1446 if (ret) {
1447 if (!nolock && nocow)
9ea24bbe 1448 btrfs_end_write_no_snapshoting(root);
f78c436c 1449 if (nocow)
0b246afa 1450 btrfs_dec_nocow_writers(fs_info,
f78c436c 1451 disk_bytenr);
79787eaa 1452 goto error;
e9894fd3 1453 }
80ff3856 1454 cow_start = (u64)-1;
7ea394f1 1455 }
80ff3856 1456
d899e052 1457 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db
LB
1458 u64 orig_start = found_key.offset - extent_offset;
1459
1460 em = create_io_em(inode, cur_offset, num_bytes,
1461 orig_start,
1462 disk_bytenr, /* block_start */
1463 num_bytes, /* block_len */
1464 disk_num_bytes, /* orig_block_len */
1465 ram_bytes, BTRFS_COMPRESS_NONE,
1466 BTRFS_ORDERED_PREALLOC);
1467 if (IS_ERR(em)) {
1468 if (!nolock && nocow)
1469 btrfs_end_write_no_snapshoting(root);
1470 if (nocow)
1471 btrfs_dec_nocow_writers(fs_info,
1472 disk_bytenr);
1473 ret = PTR_ERR(em);
1474 goto error;
d899e052 1475 }
6f9994db
LB
1476 free_extent_map(em);
1477 }
1478
1479 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
d899e052
YZ
1480 type = BTRFS_ORDERED_PREALLOC;
1481 } else {
1482 type = BTRFS_ORDERED_NOCOW;
1483 }
80ff3856
YZ
1484
1485 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1486 num_bytes, num_bytes, type);
f78c436c 1487 if (nocow)
0b246afa 1488 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1489 BUG_ON(ret); /* -ENOMEM */
771ed689 1490
efa56464 1491 if (root->root_key.objectid ==
4dbd80fb
QW
1492 BTRFS_DATA_RELOC_TREE_OBJECTID)
1493 /*
1494 * Error handled later, as we must prevent
1495 * extent_clear_unlock_delalloc() in error handler
1496 * from freeing metadata of created ordered extent.
1497 */
efa56464
YZ
1498 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1499 num_bytes);
efa56464 1500
c2790a2e 1501 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1502 cur_offset + num_bytes - 1, end,
c2790a2e 1503 locked_page, EXTENT_LOCKED |
18513091
WX
1504 EXTENT_DELALLOC |
1505 EXTENT_CLEAR_DATA_RESV,
1506 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1507
e9894fd3 1508 if (!nolock && nocow)
9ea24bbe 1509 btrfs_end_write_no_snapshoting(root);
80ff3856 1510 cur_offset = extent_end;
4dbd80fb
QW
1511
1512 /*
1513 * btrfs_reloc_clone_csums() error, now we're OK to call error
1514 * handler, as metadata for created ordered extent will only
1515 * be freed by btrfs_finish_ordered_io().
1516 */
1517 if (ret)
1518 goto error;
80ff3856
YZ
1519 if (cur_offset > end)
1520 break;
be20aa9d 1521 }
b3b4aa74 1522 btrfs_release_path(path);
80ff3856 1523
17ca04af 1524 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1525 cow_start = cur_offset;
17ca04af
JB
1526 cur_offset = end;
1527 }
1528
80ff3856 1529 if (cow_start != (u64)-1) {
dda3245e
WX
1530 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1531 page_started, nr_written, 1, NULL);
d788a349 1532 if (ret)
79787eaa 1533 goto error;
80ff3856
YZ
1534 }
1535
79787eaa 1536error:
17ca04af 1537 if (ret && cur_offset < end)
ba8b04c1 1538 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1539 locked_page, EXTENT_LOCKED |
151a41bc
JB
1540 EXTENT_DELALLOC | EXTENT_DEFRAG |
1541 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1542 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1543 PAGE_SET_WRITEBACK |
1544 PAGE_END_WRITEBACK);
7ea394f1 1545 btrfs_free_path(path);
79787eaa 1546 return ret;
be20aa9d
CM
1547}
1548
47059d93
WS
1549static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1550{
1551
1552 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1553 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1554 return 0;
1555
1556 /*
1557 * @defrag_bytes is a hint value, no spinlock held here,
1558 * if is not zero, it means the file is defragging.
1559 * Force cow if given extent needs to be defragged.
1560 */
1561 if (BTRFS_I(inode)->defrag_bytes &&
1562 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1563 EXTENT_DEFRAG, 0, NULL))
1564 return 1;
1565
1566 return 0;
1567}
1568
d352ac68
CM
1569/*
1570 * extent_io.c call back to do delayed allocation processing
1571 */
c6100a4b 1572static int run_delalloc_range(void *private_data, struct page *locked_page,
771ed689
CM
1573 u64 start, u64 end, int *page_started,
1574 unsigned long *nr_written)
be20aa9d 1575{
c6100a4b 1576 struct inode *inode = private_data;
be20aa9d 1577 int ret;
47059d93 1578 int force_cow = need_force_cow(inode, start, end);
a2135011 1579
47059d93 1580 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1581 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1582 page_started, 1, nr_written);
47059d93 1583 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1584 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1585 page_started, 0, nr_written);
7816030e 1586 } else if (!inode_need_compress(inode)) {
dda3245e
WX
1587 ret = cow_file_range(inode, locked_page, start, end, end,
1588 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1589 } else {
1590 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1591 &BTRFS_I(inode)->runtime_flags);
771ed689 1592 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1593 page_started, nr_written);
7ddf5a42 1594 }
52427260
QW
1595 if (ret)
1596 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
b888db2b
CM
1597 return ret;
1598}
1599
c6100a4b 1600static void btrfs_split_extent_hook(void *private_data,
1bf85046 1601 struct extent_state *orig, u64 split)
9ed74f2d 1602{
c6100a4b 1603 struct inode *inode = private_data;
dcab6a3b
JB
1604 u64 size;
1605
0ca1f7ce 1606 /* not delalloc, ignore it */
9ed74f2d 1607 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1608 return;
9ed74f2d 1609
dcab6a3b
JB
1610 size = orig->end - orig->start + 1;
1611 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1612 u32 num_extents;
dcab6a3b
JB
1613 u64 new_size;
1614
1615 /*
ba117213
JB
1616 * See the explanation in btrfs_merge_extent_hook, the same
1617 * applies here, just in reverse.
dcab6a3b
JB
1618 */
1619 new_size = orig->end - split + 1;
823bb20a 1620 num_extents = count_max_extents(new_size);
ba117213 1621 new_size = split - orig->start;
823bb20a
DS
1622 num_extents += count_max_extents(new_size);
1623 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1624 return;
1625 }
1626
9e0baf60
JB
1627 spin_lock(&BTRFS_I(inode)->lock);
1628 BTRFS_I(inode)->outstanding_extents++;
1629 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1630}
1631
1632/*
1633 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1634 * extents so we can keep track of new extents that are just merged onto old
1635 * extents, such as when we are doing sequential writes, so we can properly
1636 * account for the metadata space we'll need.
1637 */
c6100a4b 1638static void btrfs_merge_extent_hook(void *private_data,
1bf85046
JM
1639 struct extent_state *new,
1640 struct extent_state *other)
9ed74f2d 1641{
c6100a4b 1642 struct inode *inode = private_data;
dcab6a3b 1643 u64 new_size, old_size;
823bb20a 1644 u32 num_extents;
dcab6a3b 1645
9ed74f2d
JB
1646 /* not delalloc, ignore it */
1647 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1648 return;
9ed74f2d 1649
8461a3de
JB
1650 if (new->start > other->start)
1651 new_size = new->end - other->start + 1;
1652 else
1653 new_size = other->end - new->start + 1;
dcab6a3b
JB
1654
1655 /* we're not bigger than the max, unreserve the space and go */
1656 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1657 spin_lock(&BTRFS_I(inode)->lock);
1658 BTRFS_I(inode)->outstanding_extents--;
1659 spin_unlock(&BTRFS_I(inode)->lock);
1660 return;
1661 }
1662
1663 /*
ba117213
JB
1664 * We have to add up either side to figure out how many extents were
1665 * accounted for before we merged into one big extent. If the number of
1666 * extents we accounted for is <= the amount we need for the new range
1667 * then we can return, otherwise drop. Think of it like this
1668 *
1669 * [ 4k][MAX_SIZE]
1670 *
1671 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1672 * need 2 outstanding extents, on one side we have 1 and the other side
1673 * we have 1 so they are == and we can return. But in this case
1674 *
1675 * [MAX_SIZE+4k][MAX_SIZE+4k]
1676 *
1677 * Each range on their own accounts for 2 extents, but merged together
1678 * they are only 3 extents worth of accounting, so we need to drop in
1679 * this case.
dcab6a3b 1680 */
ba117213 1681 old_size = other->end - other->start + 1;
823bb20a 1682 num_extents = count_max_extents(old_size);
ba117213 1683 old_size = new->end - new->start + 1;
823bb20a
DS
1684 num_extents += count_max_extents(old_size);
1685 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1686 return;
1687
9e0baf60
JB
1688 spin_lock(&BTRFS_I(inode)->lock);
1689 BTRFS_I(inode)->outstanding_extents--;
1690 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1691}
1692
eb73c1b7
MX
1693static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1694 struct inode *inode)
1695{
0b246afa
JM
1696 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1697
eb73c1b7
MX
1698 spin_lock(&root->delalloc_lock);
1699 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1700 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1701 &root->delalloc_inodes);
1702 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1703 &BTRFS_I(inode)->runtime_flags);
1704 root->nr_delalloc_inodes++;
1705 if (root->nr_delalloc_inodes == 1) {
0b246afa 1706 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1707 BUG_ON(!list_empty(&root->delalloc_root));
1708 list_add_tail(&root->delalloc_root,
0b246afa
JM
1709 &fs_info->delalloc_roots);
1710 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1711 }
1712 }
1713 spin_unlock(&root->delalloc_lock);
1714}
1715
1716static void btrfs_del_delalloc_inode(struct btrfs_root *root,
9e3e97f4 1717 struct btrfs_inode *inode)
eb73c1b7 1718{
9e3e97f4 1719 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0b246afa 1720
eb73c1b7 1721 spin_lock(&root->delalloc_lock);
9e3e97f4
NB
1722 if (!list_empty(&inode->delalloc_inodes)) {
1723 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1724 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1725 &inode->runtime_flags);
eb73c1b7
MX
1726 root->nr_delalloc_inodes--;
1727 if (!root->nr_delalloc_inodes) {
0b246afa 1728 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1729 BUG_ON(list_empty(&root->delalloc_root));
1730 list_del_init(&root->delalloc_root);
0b246afa 1731 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1732 }
1733 }
1734 spin_unlock(&root->delalloc_lock);
1735}
1736
d352ac68
CM
1737/*
1738 * extent_io.c set_bit_hook, used to track delayed allocation
1739 * bytes in this file, and to maintain the list of inodes that
1740 * have pending delalloc work to be done.
1741 */
c6100a4b 1742static void btrfs_set_bit_hook(void *private_data,
9ee49a04 1743 struct extent_state *state, unsigned *bits)
291d673e 1744{
c6100a4b 1745 struct inode *inode = private_data;
9ed74f2d 1746
0b246afa
JM
1747 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1748
47059d93
WS
1749 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1750 WARN_ON(1);
75eff68e
CM
1751 /*
1752 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1753 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1754 * bit, which is only set or cleared with irqs on
1755 */
0ca1f7ce 1756 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1757 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1758 u64 len = state->end + 1 - state->start;
70ddc553 1759 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1760
9e0baf60 1761 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1762 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1763 } else {
1764 spin_lock(&BTRFS_I(inode)->lock);
1765 BTRFS_I(inode)->outstanding_extents++;
1766 spin_unlock(&BTRFS_I(inode)->lock);
1767 }
287a0ab9 1768
6a3891c5 1769 /* For sanity tests */
0b246afa 1770 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1771 return;
1772
0b246afa
JM
1773 __percpu_counter_add(&fs_info->delalloc_bytes, len,
1774 fs_info->delalloc_batch);
df0af1a5 1775 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1776 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1777 if (*bits & EXTENT_DEFRAG)
1778 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1779 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1780 &BTRFS_I(inode)->runtime_flags))
1781 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1782 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1783 }
a7e3b975
FM
1784
1785 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1786 (*bits & EXTENT_DELALLOC_NEW)) {
1787 spin_lock(&BTRFS_I(inode)->lock);
1788 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1789 state->start;
1790 spin_unlock(&BTRFS_I(inode)->lock);
1791 }
291d673e
CM
1792}
1793
d352ac68
CM
1794/*
1795 * extent_io.c clear_bit_hook, see set_bit_hook for why
1796 */
c6100a4b 1797static void btrfs_clear_bit_hook(void *private_data,
41074888 1798 struct extent_state *state,
9ee49a04 1799 unsigned *bits)
291d673e 1800{
c6100a4b 1801 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
6fc0ef68 1802 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
47059d93 1803 u64 len = state->end + 1 - state->start;
823bb20a 1804 u32 num_extents = count_max_extents(len);
47059d93 1805
6fc0ef68 1806 spin_lock(&inode->lock);
47059d93 1807 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
6fc0ef68
NB
1808 inode->defrag_bytes -= len;
1809 spin_unlock(&inode->lock);
47059d93 1810
75eff68e
CM
1811 /*
1812 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1813 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1814 * bit, which is only set or cleared with irqs on
1815 */
0ca1f7ce 1816 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1817 struct btrfs_root *root = inode->root;
83eea1f1 1818 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1819
9e0baf60 1820 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1821 *bits &= ~EXTENT_FIRST_DELALLOC;
a315e68f 1822 } else if (!(*bits & EXTENT_CLEAR_META_RESV)) {
6fc0ef68
NB
1823 spin_lock(&inode->lock);
1824 inode->outstanding_extents -= num_extents;
1825 spin_unlock(&inode->lock);
9e0baf60 1826 }
0ca1f7ce 1827
b6d08f06
JB
1828 /*
1829 * We don't reserve metadata space for space cache inodes so we
1830 * don't need to call dellalloc_release_metadata if there is an
1831 * error.
1832 */
a315e68f 1833 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 1834 root != fs_info->tree_root)
0ca1f7ce
YZ
1835 btrfs_delalloc_release_metadata(inode, len);
1836
6a3891c5 1837 /* For sanity tests. */
0b246afa 1838 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1839 return;
1840
a315e68f
FM
1841 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1842 do_list && !(state->state & EXTENT_NORESERVE) &&
1843 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
1844 btrfs_free_reserved_data_space_noquota(
1845 &inode->vfs_inode,
51773bec 1846 state->start, len);
9ed74f2d 1847
0b246afa
JM
1848 __percpu_counter_add(&fs_info->delalloc_bytes, -len,
1849 fs_info->delalloc_batch);
6fc0ef68
NB
1850 spin_lock(&inode->lock);
1851 inode->delalloc_bytes -= len;
1852 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 1853 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1854 &inode->runtime_flags))
eb73c1b7 1855 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 1856 spin_unlock(&inode->lock);
291d673e 1857 }
a7e3b975
FM
1858
1859 if ((state->state & EXTENT_DELALLOC_NEW) &&
1860 (*bits & EXTENT_DELALLOC_NEW)) {
1861 spin_lock(&inode->lock);
1862 ASSERT(inode->new_delalloc_bytes >= len);
1863 inode->new_delalloc_bytes -= len;
1864 spin_unlock(&inode->lock);
1865 }
291d673e
CM
1866}
1867
d352ac68
CM
1868/*
1869 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1870 * we don't create bios that span stripes or chunks
6f034ece
LB
1871 *
1872 * return 1 if page cannot be merged to bio
1873 * return 0 if page can be merged to bio
1874 * return error otherwise
d352ac68 1875 */
81a75f67 1876int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1877 size_t size, struct bio *bio,
1878 unsigned long bio_flags)
239b14b3 1879{
0b246afa
JM
1880 struct inode *inode = page->mapping->host;
1881 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1882 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1883 u64 length = 0;
1884 u64 map_length;
239b14b3
CM
1885 int ret;
1886
771ed689
CM
1887 if (bio_flags & EXTENT_BIO_COMPRESSED)
1888 return 0;
1889
4f024f37 1890 length = bio->bi_iter.bi_size;
239b14b3 1891 map_length = length;
0b246afa
JM
1892 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1893 NULL, 0);
6f034ece
LB
1894 if (ret < 0)
1895 return ret;
d397712b 1896 if (map_length < length + size)
239b14b3 1897 return 1;
3444a972 1898 return 0;
239b14b3
CM
1899}
1900
d352ac68
CM
1901/*
1902 * in order to insert checksums into the metadata in large chunks,
1903 * we wait until bio submission time. All the pages in the bio are
1904 * checksummed and sums are attached onto the ordered extent record.
1905 *
1906 * At IO completion time the cums attached on the ordered extent record
1907 * are inserted into the btree
1908 */
c6100a4b 1909static int __btrfs_submit_bio_start(void *private_data, struct bio *bio,
81a75f67 1910 int mirror_num, unsigned long bio_flags,
eaf25d93 1911 u64 bio_offset)
065631f6 1912{
c6100a4b 1913 struct inode *inode = private_data;
065631f6 1914 int ret = 0;
e015640f 1915
2ff7e61e 1916 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1917 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1918 return 0;
1919}
e015640f 1920
4a69a410
CM
1921/*
1922 * in order to insert checksums into the metadata in large chunks,
1923 * we wait until bio submission time. All the pages in the bio are
1924 * checksummed and sums are attached onto the ordered extent record.
1925 *
1926 * At IO completion time the cums attached on the ordered extent record
1927 * are inserted into the btree
1928 */
c6100a4b 1929static int __btrfs_submit_bio_done(void *private_data, struct bio *bio,
eaf25d93
CM
1930 int mirror_num, unsigned long bio_flags,
1931 u64 bio_offset)
4a69a410 1932{
c6100a4b 1933 struct inode *inode = private_data;
2ff7e61e 1934 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
61891923
SB
1935 int ret;
1936
2ff7e61e 1937 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
4246a0b6
CH
1938 if (ret) {
1939 bio->bi_error = ret;
1940 bio_endio(bio);
1941 }
61891923 1942 return ret;
44b8bd7e
CM
1943}
1944
d352ac68 1945/*
cad321ad
CM
1946 * extent_io.c submission hook. This does the right thing for csum calculation
1947 * on write, or reading the csums from the tree before a read
d352ac68 1948 */
c6100a4b
JB
1949static int btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1950 int mirror_num, unsigned long bio_flags,
1951 u64 bio_offset)
44b8bd7e 1952{
c6100a4b 1953 struct inode *inode = private_data;
0b246afa 1954 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 1955 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1956 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1957 int ret = 0;
19b9bdb0 1958 int skip_sum;
b812ce28 1959 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1960
6cbff00f 1961 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1962
70ddc553 1963 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 1964 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1965
37226b21 1966 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 1967 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 1968 if (ret)
61891923 1969 goto out;
5fd02043 1970
d20f7043 1971 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1972 ret = btrfs_submit_compressed_read(inode, bio,
1973 mirror_num,
1974 bio_flags);
1975 goto out;
c2db1073 1976 } else if (!skip_sum) {
2ff7e61e 1977 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 1978 if (ret)
61891923 1979 goto out;
c2db1073 1980 }
4d1b5fb4 1981 goto mapit;
b812ce28 1982 } else if (async && !skip_sum) {
17d217fe
YZ
1983 /* csum items have already been cloned */
1984 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1985 goto mapit;
19b9bdb0 1986 /* we're doing a write, do the async checksumming */
c6100a4b
JB
1987 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
1988 bio_offset, inode,
0b246afa
JM
1989 __btrfs_submit_bio_start,
1990 __btrfs_submit_bio_done);
61891923 1991 goto out;
b812ce28 1992 } else if (!skip_sum) {
2ff7e61e 1993 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
1994 if (ret)
1995 goto out;
19b9bdb0
CM
1996 }
1997
0b86a832 1998mapit:
2ff7e61e 1999 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
2000
2001out:
4246a0b6
CH
2002 if (ret < 0) {
2003 bio->bi_error = ret;
2004 bio_endio(bio);
2005 }
61891923 2006 return ret;
065631f6 2007}
6885f308 2008
d352ac68
CM
2009/*
2010 * given a list of ordered sums record them in the inode. This happens
2011 * at IO completion time based on sums calculated at bio submission time.
2012 */
ba1da2f4 2013static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2014 struct inode *inode, struct list_head *list)
e6dcd2dc 2015{
e6dcd2dc
CM
2016 struct btrfs_ordered_sum *sum;
2017
c6e30871 2018 list_for_each_entry(sum, list, list) {
39847c4d 2019 trans->adding_csums = 1;
d20f7043
CM
2020 btrfs_csum_file_blocks(trans,
2021 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 2022 trans->adding_csums = 0;
e6dcd2dc
CM
2023 }
2024 return 0;
2025}
2026
2ac55d41 2027int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
ba8b04c1 2028 struct extent_state **cached_state, int dedupe)
ea8c2819 2029{
09cbfeaf 2030 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 2031 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
7cd8c752 2032 cached_state);
ea8c2819
CM
2033}
2034
d352ac68 2035/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2036struct btrfs_writepage_fixup {
2037 struct page *page;
2038 struct btrfs_work work;
2039};
2040
b2950863 2041static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2042{
2043 struct btrfs_writepage_fixup *fixup;
2044 struct btrfs_ordered_extent *ordered;
2ac55d41 2045 struct extent_state *cached_state = NULL;
247e743c
CM
2046 struct page *page;
2047 struct inode *inode;
2048 u64 page_start;
2049 u64 page_end;
87826df0 2050 int ret;
247e743c
CM
2051
2052 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2053 page = fixup->page;
4a096752 2054again:
247e743c
CM
2055 lock_page(page);
2056 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2057 ClearPageChecked(page);
2058 goto out_page;
2059 }
2060
2061 inode = page->mapping->host;
2062 page_start = page_offset(page);
09cbfeaf 2063 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2064
ff13db41 2065 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2066 &cached_state);
4a096752
CM
2067
2068 /* already ordered? We're done */
8b62b72b 2069 if (PagePrivate2(page))
247e743c 2070 goto out;
4a096752 2071
a776c6fa 2072 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2073 PAGE_SIZE);
4a096752 2074 if (ordered) {
2ac55d41
JB
2075 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2076 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2077 unlock_page(page);
2078 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2079 btrfs_put_ordered_extent(ordered);
4a096752
CM
2080 goto again;
2081 }
247e743c 2082
7cf5b976 2083 ret = btrfs_delalloc_reserve_space(inode, page_start,
09cbfeaf 2084 PAGE_SIZE);
87826df0
JM
2085 if (ret) {
2086 mapping_set_error(page->mapping, ret);
2087 end_extent_writepage(page, ret, page_start, page_end);
2088 ClearPageChecked(page);
2089 goto out;
2090 }
2091
ba8b04c1
QW
2092 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
2093 0);
247e743c 2094 ClearPageChecked(page);
87826df0 2095 set_page_dirty(page);
247e743c 2096out:
2ac55d41
JB
2097 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2098 &cached_state, GFP_NOFS);
247e743c
CM
2099out_page:
2100 unlock_page(page);
09cbfeaf 2101 put_page(page);
b897abec 2102 kfree(fixup);
247e743c
CM
2103}
2104
2105/*
2106 * There are a few paths in the higher layers of the kernel that directly
2107 * set the page dirty bit without asking the filesystem if it is a
2108 * good idea. This causes problems because we want to make sure COW
2109 * properly happens and the data=ordered rules are followed.
2110 *
c8b97818 2111 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2112 * hasn't been properly setup for IO. We kick off an async process
2113 * to fix it up. The async helper will wait for ordered extents, set
2114 * the delalloc bit and make it safe to write the page.
2115 */
b2950863 2116static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2117{
2118 struct inode *inode = page->mapping->host;
0b246afa 2119 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2120 struct btrfs_writepage_fixup *fixup;
247e743c 2121
8b62b72b
CM
2122 /* this page is properly in the ordered list */
2123 if (TestClearPagePrivate2(page))
247e743c
CM
2124 return 0;
2125
2126 if (PageChecked(page))
2127 return -EAGAIN;
2128
2129 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2130 if (!fixup)
2131 return -EAGAIN;
f421950f 2132
247e743c 2133 SetPageChecked(page);
09cbfeaf 2134 get_page(page);
9e0af237
LB
2135 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2136 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2137 fixup->page = page;
0b246afa 2138 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2139 return -EBUSY;
247e743c
CM
2140}
2141
d899e052
YZ
2142static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2143 struct inode *inode, u64 file_pos,
2144 u64 disk_bytenr, u64 disk_num_bytes,
2145 u64 num_bytes, u64 ram_bytes,
2146 u8 compression, u8 encryption,
2147 u16 other_encoding, int extent_type)
2148{
2149 struct btrfs_root *root = BTRFS_I(inode)->root;
2150 struct btrfs_file_extent_item *fi;
2151 struct btrfs_path *path;
2152 struct extent_buffer *leaf;
2153 struct btrfs_key ins;
1acae57b 2154 int extent_inserted = 0;
d899e052
YZ
2155 int ret;
2156
2157 path = btrfs_alloc_path();
d8926bb3
MF
2158 if (!path)
2159 return -ENOMEM;
d899e052 2160
a1ed835e
CM
2161 /*
2162 * we may be replacing one extent in the tree with another.
2163 * The new extent is pinned in the extent map, and we don't want
2164 * to drop it from the cache until it is completely in the btree.
2165 *
2166 * So, tell btrfs_drop_extents to leave this extent in the cache.
2167 * the caller is expected to unpin it and allow it to be merged
2168 * with the others.
2169 */
1acae57b
FDBM
2170 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2171 file_pos + num_bytes, NULL, 0,
2172 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2173 if (ret)
2174 goto out;
d899e052 2175
1acae57b 2176 if (!extent_inserted) {
4a0cc7ca 2177 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2178 ins.offset = file_pos;
2179 ins.type = BTRFS_EXTENT_DATA_KEY;
2180
2181 path->leave_spinning = 1;
2182 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2183 sizeof(*fi));
2184 if (ret)
2185 goto out;
2186 }
d899e052
YZ
2187 leaf = path->nodes[0];
2188 fi = btrfs_item_ptr(leaf, path->slots[0],
2189 struct btrfs_file_extent_item);
2190 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2191 btrfs_set_file_extent_type(leaf, fi, extent_type);
2192 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2193 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2194 btrfs_set_file_extent_offset(leaf, fi, 0);
2195 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2196 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2197 btrfs_set_file_extent_compression(leaf, fi, compression);
2198 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2199 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2200
d899e052 2201 btrfs_mark_buffer_dirty(leaf);
ce195332 2202 btrfs_release_path(path);
d899e052
YZ
2203
2204 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2205
2206 ins.objectid = disk_bytenr;
2207 ins.offset = disk_num_bytes;
2208 ins.type = BTRFS_EXTENT_ITEM_KEY;
2ff7e61e 2209 ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid,
f85b7379 2210 btrfs_ino(BTRFS_I(inode)), file_pos, ram_bytes, &ins);
297d750b 2211 /*
5846a3c2
QW
2212 * Release the reserved range from inode dirty range map, as it is
2213 * already moved into delayed_ref_head
297d750b
QW
2214 */
2215 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
79787eaa 2216out:
d899e052 2217 btrfs_free_path(path);
b9473439 2218
79787eaa 2219 return ret;
d899e052
YZ
2220}
2221
38c227d8
LB
2222/* snapshot-aware defrag */
2223struct sa_defrag_extent_backref {
2224 struct rb_node node;
2225 struct old_sa_defrag_extent *old;
2226 u64 root_id;
2227 u64 inum;
2228 u64 file_pos;
2229 u64 extent_offset;
2230 u64 num_bytes;
2231 u64 generation;
2232};
2233
2234struct old_sa_defrag_extent {
2235 struct list_head list;
2236 struct new_sa_defrag_extent *new;
2237
2238 u64 extent_offset;
2239 u64 bytenr;
2240 u64 offset;
2241 u64 len;
2242 int count;
2243};
2244
2245struct new_sa_defrag_extent {
2246 struct rb_root root;
2247 struct list_head head;
2248 struct btrfs_path *path;
2249 struct inode *inode;
2250 u64 file_pos;
2251 u64 len;
2252 u64 bytenr;
2253 u64 disk_len;
2254 u8 compress_type;
2255};
2256
2257static int backref_comp(struct sa_defrag_extent_backref *b1,
2258 struct sa_defrag_extent_backref *b2)
2259{
2260 if (b1->root_id < b2->root_id)
2261 return -1;
2262 else if (b1->root_id > b2->root_id)
2263 return 1;
2264
2265 if (b1->inum < b2->inum)
2266 return -1;
2267 else if (b1->inum > b2->inum)
2268 return 1;
2269
2270 if (b1->file_pos < b2->file_pos)
2271 return -1;
2272 else if (b1->file_pos > b2->file_pos)
2273 return 1;
2274
2275 /*
2276 * [------------------------------] ===> (a range of space)
2277 * |<--->| |<---->| =============> (fs/file tree A)
2278 * |<---------------------------->| ===> (fs/file tree B)
2279 *
2280 * A range of space can refer to two file extents in one tree while
2281 * refer to only one file extent in another tree.
2282 *
2283 * So we may process a disk offset more than one time(two extents in A)
2284 * and locate at the same extent(one extent in B), then insert two same
2285 * backrefs(both refer to the extent in B).
2286 */
2287 return 0;
2288}
2289
2290static void backref_insert(struct rb_root *root,
2291 struct sa_defrag_extent_backref *backref)
2292{
2293 struct rb_node **p = &root->rb_node;
2294 struct rb_node *parent = NULL;
2295 struct sa_defrag_extent_backref *entry;
2296 int ret;
2297
2298 while (*p) {
2299 parent = *p;
2300 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2301
2302 ret = backref_comp(backref, entry);
2303 if (ret < 0)
2304 p = &(*p)->rb_left;
2305 else
2306 p = &(*p)->rb_right;
2307 }
2308
2309 rb_link_node(&backref->node, parent, p);
2310 rb_insert_color(&backref->node, root);
2311}
2312
2313/*
2314 * Note the backref might has changed, and in this case we just return 0.
2315 */
2316static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2317 void *ctx)
2318{
2319 struct btrfs_file_extent_item *extent;
38c227d8
LB
2320 struct old_sa_defrag_extent *old = ctx;
2321 struct new_sa_defrag_extent *new = old->new;
2322 struct btrfs_path *path = new->path;
2323 struct btrfs_key key;
2324 struct btrfs_root *root;
2325 struct sa_defrag_extent_backref *backref;
2326 struct extent_buffer *leaf;
2327 struct inode *inode = new->inode;
0b246afa 2328 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2329 int slot;
2330 int ret;
2331 u64 extent_offset;
2332 u64 num_bytes;
2333
2334 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2335 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2336 return 0;
2337
2338 key.objectid = root_id;
2339 key.type = BTRFS_ROOT_ITEM_KEY;
2340 key.offset = (u64)-1;
2341
38c227d8
LB
2342 root = btrfs_read_fs_root_no_name(fs_info, &key);
2343 if (IS_ERR(root)) {
2344 if (PTR_ERR(root) == -ENOENT)
2345 return 0;
2346 WARN_ON(1);
ab8d0fc4 2347 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2348 inum, offset, root_id);
2349 return PTR_ERR(root);
2350 }
2351
2352 key.objectid = inum;
2353 key.type = BTRFS_EXTENT_DATA_KEY;
2354 if (offset > (u64)-1 << 32)
2355 key.offset = 0;
2356 else
2357 key.offset = offset;
2358
2359 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2360 if (WARN_ON(ret < 0))
38c227d8 2361 return ret;
50f1319c 2362 ret = 0;
38c227d8
LB
2363
2364 while (1) {
2365 cond_resched();
2366
2367 leaf = path->nodes[0];
2368 slot = path->slots[0];
2369
2370 if (slot >= btrfs_header_nritems(leaf)) {
2371 ret = btrfs_next_leaf(root, path);
2372 if (ret < 0) {
2373 goto out;
2374 } else if (ret > 0) {
2375 ret = 0;
2376 goto out;
2377 }
2378 continue;
2379 }
2380
2381 path->slots[0]++;
2382
2383 btrfs_item_key_to_cpu(leaf, &key, slot);
2384
2385 if (key.objectid > inum)
2386 goto out;
2387
2388 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2389 continue;
2390
2391 extent = btrfs_item_ptr(leaf, slot,
2392 struct btrfs_file_extent_item);
2393
2394 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2395 continue;
2396
e68afa49
LB
2397 /*
2398 * 'offset' refers to the exact key.offset,
2399 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2400 * (key.offset - extent_offset).
2401 */
2402 if (key.offset != offset)
38c227d8
LB
2403 continue;
2404
e68afa49 2405 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2406 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2407
38c227d8
LB
2408 if (extent_offset >= old->extent_offset + old->offset +
2409 old->len || extent_offset + num_bytes <=
2410 old->extent_offset + old->offset)
2411 continue;
38c227d8
LB
2412 break;
2413 }
2414
2415 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2416 if (!backref) {
2417 ret = -ENOENT;
2418 goto out;
2419 }
2420
2421 backref->root_id = root_id;
2422 backref->inum = inum;
e68afa49 2423 backref->file_pos = offset;
38c227d8
LB
2424 backref->num_bytes = num_bytes;
2425 backref->extent_offset = extent_offset;
2426 backref->generation = btrfs_file_extent_generation(leaf, extent);
2427 backref->old = old;
2428 backref_insert(&new->root, backref);
2429 old->count++;
2430out:
2431 btrfs_release_path(path);
2432 WARN_ON(ret);
2433 return ret;
2434}
2435
2436static noinline bool record_extent_backrefs(struct btrfs_path *path,
2437 struct new_sa_defrag_extent *new)
2438{
0b246afa 2439 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2440 struct old_sa_defrag_extent *old, *tmp;
2441 int ret;
2442
2443 new->path = path;
2444
2445 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2446 ret = iterate_inodes_from_logical(old->bytenr +
2447 old->extent_offset, fs_info,
38c227d8
LB
2448 path, record_one_backref,
2449 old);
4724b106
JB
2450 if (ret < 0 && ret != -ENOENT)
2451 return false;
38c227d8
LB
2452
2453 /* no backref to be processed for this extent */
2454 if (!old->count) {
2455 list_del(&old->list);
2456 kfree(old);
2457 }
2458 }
2459
2460 if (list_empty(&new->head))
2461 return false;
2462
2463 return true;
2464}
2465
2466static int relink_is_mergable(struct extent_buffer *leaf,
2467 struct btrfs_file_extent_item *fi,
116e0024 2468 struct new_sa_defrag_extent *new)
38c227d8 2469{
116e0024 2470 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2471 return 0;
2472
2473 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2474 return 0;
2475
116e0024
LB
2476 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2477 return 0;
2478
2479 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2480 btrfs_file_extent_other_encoding(leaf, fi))
2481 return 0;
2482
2483 return 1;
2484}
2485
2486/*
2487 * Note the backref might has changed, and in this case we just return 0.
2488 */
2489static noinline int relink_extent_backref(struct btrfs_path *path,
2490 struct sa_defrag_extent_backref *prev,
2491 struct sa_defrag_extent_backref *backref)
2492{
2493 struct btrfs_file_extent_item *extent;
2494 struct btrfs_file_extent_item *item;
2495 struct btrfs_ordered_extent *ordered;
2496 struct btrfs_trans_handle *trans;
38c227d8
LB
2497 struct btrfs_root *root;
2498 struct btrfs_key key;
2499 struct extent_buffer *leaf;
2500 struct old_sa_defrag_extent *old = backref->old;
2501 struct new_sa_defrag_extent *new = old->new;
0b246afa 2502 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2503 struct inode *inode;
2504 struct extent_state *cached = NULL;
2505 int ret = 0;
2506 u64 start;
2507 u64 len;
2508 u64 lock_start;
2509 u64 lock_end;
2510 bool merge = false;
2511 int index;
2512
2513 if (prev && prev->root_id == backref->root_id &&
2514 prev->inum == backref->inum &&
2515 prev->file_pos + prev->num_bytes == backref->file_pos)
2516 merge = true;
2517
2518 /* step 1: get root */
2519 key.objectid = backref->root_id;
2520 key.type = BTRFS_ROOT_ITEM_KEY;
2521 key.offset = (u64)-1;
2522
38c227d8
LB
2523 index = srcu_read_lock(&fs_info->subvol_srcu);
2524
2525 root = btrfs_read_fs_root_no_name(fs_info, &key);
2526 if (IS_ERR(root)) {
2527 srcu_read_unlock(&fs_info->subvol_srcu, index);
2528 if (PTR_ERR(root) == -ENOENT)
2529 return 0;
2530 return PTR_ERR(root);
2531 }
38c227d8 2532
bcbba5e6
WS
2533 if (btrfs_root_readonly(root)) {
2534 srcu_read_unlock(&fs_info->subvol_srcu, index);
2535 return 0;
2536 }
2537
38c227d8
LB
2538 /* step 2: get inode */
2539 key.objectid = backref->inum;
2540 key.type = BTRFS_INODE_ITEM_KEY;
2541 key.offset = 0;
2542
2543 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2544 if (IS_ERR(inode)) {
2545 srcu_read_unlock(&fs_info->subvol_srcu, index);
2546 return 0;
2547 }
2548
2549 srcu_read_unlock(&fs_info->subvol_srcu, index);
2550
2551 /* step 3: relink backref */
2552 lock_start = backref->file_pos;
2553 lock_end = backref->file_pos + backref->num_bytes - 1;
2554 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2555 &cached);
38c227d8
LB
2556
2557 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2558 if (ordered) {
2559 btrfs_put_ordered_extent(ordered);
2560 goto out_unlock;
2561 }
2562
2563 trans = btrfs_join_transaction(root);
2564 if (IS_ERR(trans)) {
2565 ret = PTR_ERR(trans);
2566 goto out_unlock;
2567 }
2568
2569 key.objectid = backref->inum;
2570 key.type = BTRFS_EXTENT_DATA_KEY;
2571 key.offset = backref->file_pos;
2572
2573 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2574 if (ret < 0) {
2575 goto out_free_path;
2576 } else if (ret > 0) {
2577 ret = 0;
2578 goto out_free_path;
2579 }
2580
2581 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2582 struct btrfs_file_extent_item);
2583
2584 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2585 backref->generation)
2586 goto out_free_path;
2587
2588 btrfs_release_path(path);
2589
2590 start = backref->file_pos;
2591 if (backref->extent_offset < old->extent_offset + old->offset)
2592 start += old->extent_offset + old->offset -
2593 backref->extent_offset;
2594
2595 len = min(backref->extent_offset + backref->num_bytes,
2596 old->extent_offset + old->offset + old->len);
2597 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2598
2599 ret = btrfs_drop_extents(trans, root, inode, start,
2600 start + len, 1);
2601 if (ret)
2602 goto out_free_path;
2603again:
4a0cc7ca 2604 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2605 key.type = BTRFS_EXTENT_DATA_KEY;
2606 key.offset = start;
2607
a09a0a70 2608 path->leave_spinning = 1;
38c227d8
LB
2609 if (merge) {
2610 struct btrfs_file_extent_item *fi;
2611 u64 extent_len;
2612 struct btrfs_key found_key;
2613
3c9665df 2614 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2615 if (ret < 0)
2616 goto out_free_path;
2617
2618 path->slots[0]--;
2619 leaf = path->nodes[0];
2620 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2621
2622 fi = btrfs_item_ptr(leaf, path->slots[0],
2623 struct btrfs_file_extent_item);
2624 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2625
116e0024
LB
2626 if (extent_len + found_key.offset == start &&
2627 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2628 btrfs_set_file_extent_num_bytes(leaf, fi,
2629 extent_len + len);
2630 btrfs_mark_buffer_dirty(leaf);
2631 inode_add_bytes(inode, len);
2632
2633 ret = 1;
2634 goto out_free_path;
2635 } else {
2636 merge = false;
2637 btrfs_release_path(path);
2638 goto again;
2639 }
2640 }
2641
2642 ret = btrfs_insert_empty_item(trans, root, path, &key,
2643 sizeof(*extent));
2644 if (ret) {
66642832 2645 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2646 goto out_free_path;
2647 }
2648
2649 leaf = path->nodes[0];
2650 item = btrfs_item_ptr(leaf, path->slots[0],
2651 struct btrfs_file_extent_item);
2652 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2653 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2654 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2655 btrfs_set_file_extent_num_bytes(leaf, item, len);
2656 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2657 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2658 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2659 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2660 btrfs_set_file_extent_encryption(leaf, item, 0);
2661 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2662
2663 btrfs_mark_buffer_dirty(leaf);
2664 inode_add_bytes(inode, len);
a09a0a70 2665 btrfs_release_path(path);
38c227d8 2666
2ff7e61e 2667 ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr,
38c227d8
LB
2668 new->disk_len, 0,
2669 backref->root_id, backref->inum,
b06c4bf5 2670 new->file_pos); /* start - extent_offset */
38c227d8 2671 if (ret) {
66642832 2672 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2673 goto out_free_path;
2674 }
2675
2676 ret = 1;
2677out_free_path:
2678 btrfs_release_path(path);
a09a0a70 2679 path->leave_spinning = 0;
3a45bb20 2680 btrfs_end_transaction(trans);
38c227d8
LB
2681out_unlock:
2682 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2683 &cached, GFP_NOFS);
2684 iput(inode);
2685 return ret;
2686}
2687
6f519564
LB
2688static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2689{
2690 struct old_sa_defrag_extent *old, *tmp;
2691
2692 if (!new)
2693 return;
2694
2695 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2696 kfree(old);
2697 }
2698 kfree(new);
2699}
2700
38c227d8
LB
2701static void relink_file_extents(struct new_sa_defrag_extent *new)
2702{
0b246afa 2703 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2704 struct btrfs_path *path;
38c227d8
LB
2705 struct sa_defrag_extent_backref *backref;
2706 struct sa_defrag_extent_backref *prev = NULL;
2707 struct inode *inode;
2708 struct btrfs_root *root;
2709 struct rb_node *node;
2710 int ret;
2711
2712 inode = new->inode;
2713 root = BTRFS_I(inode)->root;
2714
2715 path = btrfs_alloc_path();
2716 if (!path)
2717 return;
2718
2719 if (!record_extent_backrefs(path, new)) {
2720 btrfs_free_path(path);
2721 goto out;
2722 }
2723 btrfs_release_path(path);
2724
2725 while (1) {
2726 node = rb_first(&new->root);
2727 if (!node)
2728 break;
2729 rb_erase(node, &new->root);
2730
2731 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2732
2733 ret = relink_extent_backref(path, prev, backref);
2734 WARN_ON(ret < 0);
2735
2736 kfree(prev);
2737
2738 if (ret == 1)
2739 prev = backref;
2740 else
2741 prev = NULL;
2742 cond_resched();
2743 }
2744 kfree(prev);
2745
2746 btrfs_free_path(path);
38c227d8 2747out:
6f519564
LB
2748 free_sa_defrag_extent(new);
2749
0b246afa
JM
2750 atomic_dec(&fs_info->defrag_running);
2751 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2752}
2753
2754static struct new_sa_defrag_extent *
2755record_old_file_extents(struct inode *inode,
2756 struct btrfs_ordered_extent *ordered)
2757{
0b246afa 2758 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2759 struct btrfs_root *root = BTRFS_I(inode)->root;
2760 struct btrfs_path *path;
2761 struct btrfs_key key;
6f519564 2762 struct old_sa_defrag_extent *old;
38c227d8
LB
2763 struct new_sa_defrag_extent *new;
2764 int ret;
2765
2766 new = kmalloc(sizeof(*new), GFP_NOFS);
2767 if (!new)
2768 return NULL;
2769
2770 new->inode = inode;
2771 new->file_pos = ordered->file_offset;
2772 new->len = ordered->len;
2773 new->bytenr = ordered->start;
2774 new->disk_len = ordered->disk_len;
2775 new->compress_type = ordered->compress_type;
2776 new->root = RB_ROOT;
2777 INIT_LIST_HEAD(&new->head);
2778
2779 path = btrfs_alloc_path();
2780 if (!path)
2781 goto out_kfree;
2782
4a0cc7ca 2783 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2784 key.type = BTRFS_EXTENT_DATA_KEY;
2785 key.offset = new->file_pos;
2786
2787 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2788 if (ret < 0)
2789 goto out_free_path;
2790 if (ret > 0 && path->slots[0] > 0)
2791 path->slots[0]--;
2792
2793 /* find out all the old extents for the file range */
2794 while (1) {
2795 struct btrfs_file_extent_item *extent;
2796 struct extent_buffer *l;
2797 int slot;
2798 u64 num_bytes;
2799 u64 offset;
2800 u64 end;
2801 u64 disk_bytenr;
2802 u64 extent_offset;
2803
2804 l = path->nodes[0];
2805 slot = path->slots[0];
2806
2807 if (slot >= btrfs_header_nritems(l)) {
2808 ret = btrfs_next_leaf(root, path);
2809 if (ret < 0)
6f519564 2810 goto out_free_path;
38c227d8
LB
2811 else if (ret > 0)
2812 break;
2813 continue;
2814 }
2815
2816 btrfs_item_key_to_cpu(l, &key, slot);
2817
4a0cc7ca 2818 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2819 break;
2820 if (key.type != BTRFS_EXTENT_DATA_KEY)
2821 break;
2822 if (key.offset >= new->file_pos + new->len)
2823 break;
2824
2825 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2826
2827 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2828 if (key.offset + num_bytes < new->file_pos)
2829 goto next;
2830
2831 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2832 if (!disk_bytenr)
2833 goto next;
2834
2835 extent_offset = btrfs_file_extent_offset(l, extent);
2836
2837 old = kmalloc(sizeof(*old), GFP_NOFS);
2838 if (!old)
6f519564 2839 goto out_free_path;
38c227d8
LB
2840
2841 offset = max(new->file_pos, key.offset);
2842 end = min(new->file_pos + new->len, key.offset + num_bytes);
2843
2844 old->bytenr = disk_bytenr;
2845 old->extent_offset = extent_offset;
2846 old->offset = offset - key.offset;
2847 old->len = end - offset;
2848 old->new = new;
2849 old->count = 0;
2850 list_add_tail(&old->list, &new->head);
2851next:
2852 path->slots[0]++;
2853 cond_resched();
2854 }
2855
2856 btrfs_free_path(path);
0b246afa 2857 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2858
2859 return new;
2860
38c227d8
LB
2861out_free_path:
2862 btrfs_free_path(path);
2863out_kfree:
6f519564 2864 free_sa_defrag_extent(new);
38c227d8
LB
2865 return NULL;
2866}
2867
2ff7e61e 2868static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2869 u64 start, u64 len)
2870{
2871 struct btrfs_block_group_cache *cache;
2872
0b246afa 2873 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2874 ASSERT(cache);
2875
2876 spin_lock(&cache->lock);
2877 cache->delalloc_bytes -= len;
2878 spin_unlock(&cache->lock);
2879
2880 btrfs_put_block_group(cache);
2881}
2882
d352ac68
CM
2883/* as ordered data IO finishes, this gets called so we can finish
2884 * an ordered extent if the range of bytes in the file it covers are
2885 * fully written.
2886 */
5fd02043 2887static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2888{
5fd02043 2889 struct inode *inode = ordered_extent->inode;
0b246afa 2890 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2891 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2892 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2893 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2894 struct extent_state *cached_state = NULL;
38c227d8 2895 struct new_sa_defrag_extent *new = NULL;
261507a0 2896 int compress_type = 0;
77cef2ec
JB
2897 int ret = 0;
2898 u64 logical_len = ordered_extent->len;
82d5902d 2899 bool nolock;
77cef2ec 2900 bool truncated = false;
a7e3b975
FM
2901 bool range_locked = false;
2902 bool clear_new_delalloc_bytes = false;
2903
2904 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2905 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2906 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2907 clear_new_delalloc_bytes = true;
e6dcd2dc 2908
70ddc553 2909 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2910
5fd02043
JB
2911 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2912 ret = -EIO;
2913 goto out;
2914 }
2915
7ab7956e
NB
2916 btrfs_free_io_failure_record(BTRFS_I(inode),
2917 ordered_extent->file_offset,
2918 ordered_extent->file_offset +
2919 ordered_extent->len - 1);
f612496b 2920
77cef2ec
JB
2921 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2922 truncated = true;
2923 logical_len = ordered_extent->truncated_len;
2924 /* Truncated the entire extent, don't bother adding */
2925 if (!logical_len)
2926 goto out;
2927 }
2928
c2167754 2929 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2930 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2931
2932 /*
2933 * For mwrite(mmap + memset to write) case, we still reserve
2934 * space for NOCOW range.
2935 * As NOCOW won't cause a new delayed ref, just free the space
2936 */
2937 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2938 ordered_extent->len);
6c760c07
JB
2939 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2940 if (nolock)
2941 trans = btrfs_join_transaction_nolock(root);
2942 else
2943 trans = btrfs_join_transaction(root);
2944 if (IS_ERR(trans)) {
2945 ret = PTR_ERR(trans);
2946 trans = NULL;
2947 goto out;
c2167754 2948 }
0b246afa 2949 trans->block_rsv = &fs_info->delalloc_block_rsv;
6c760c07
JB
2950 ret = btrfs_update_inode_fallback(trans, root, inode);
2951 if (ret) /* -ENOMEM or corruption */
66642832 2952 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2953 goto out;
2954 }
e6dcd2dc 2955
a7e3b975 2956 range_locked = true;
2ac55d41
JB
2957 lock_extent_bits(io_tree, ordered_extent->file_offset,
2958 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2959 &cached_state);
e6dcd2dc 2960
38c227d8
LB
2961 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2962 ordered_extent->file_offset + ordered_extent->len - 1,
452e62b7 2963 EXTENT_DEFRAG, 0, cached_state);
38c227d8
LB
2964 if (ret) {
2965 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2966 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2967 /* the inode is shared */
2968 new = record_old_file_extents(inode, ordered_extent);
2969
2970 clear_extent_bit(io_tree, ordered_extent->file_offset,
2971 ordered_extent->file_offset + ordered_extent->len - 1,
2972 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2973 }
2974
0cb59c99 2975 if (nolock)
7a7eaa40 2976 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2977 else
7a7eaa40 2978 trans = btrfs_join_transaction(root);
79787eaa
JM
2979 if (IS_ERR(trans)) {
2980 ret = PTR_ERR(trans);
2981 trans = NULL;
a7e3b975 2982 goto out;
79787eaa 2983 }
a79b7d4b 2984
0b246afa 2985 trans->block_rsv = &fs_info->delalloc_block_rsv;
c2167754 2986
c8b97818 2987 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2988 compress_type = ordered_extent->compress_type;
d899e052 2989 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2990 BUG_ON(compress_type);
7a6d7067 2991 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
2992 ordered_extent->file_offset,
2993 ordered_extent->file_offset +
77cef2ec 2994 logical_len);
d899e052 2995 } else {
0b246afa 2996 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
2997 ret = insert_reserved_file_extent(trans, inode,
2998 ordered_extent->file_offset,
2999 ordered_extent->start,
3000 ordered_extent->disk_len,
77cef2ec 3001 logical_len, logical_len,
261507a0 3002 compress_type, 0, 0,
d899e052 3003 BTRFS_FILE_EXTENT_REG);
e570fd27 3004 if (!ret)
2ff7e61e 3005 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
3006 ordered_extent->start,
3007 ordered_extent->disk_len);
d899e052 3008 }
5dc562c5
JB
3009 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3010 ordered_extent->file_offset, ordered_extent->len,
3011 trans->transid);
79787eaa 3012 if (ret < 0) {
66642832 3013 btrfs_abort_transaction(trans, ret);
a7e3b975 3014 goto out;
79787eaa 3015 }
2ac55d41 3016
df9f628e 3017 add_pending_csums(trans, inode, &ordered_extent->list);
e6dcd2dc 3018
6c760c07
JB
3019 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3020 ret = btrfs_update_inode_fallback(trans, root, inode);
3021 if (ret) { /* -ENOMEM or corruption */
66642832 3022 btrfs_abort_transaction(trans, ret);
a7e3b975 3023 goto out;
1ef30be1
JB
3024 }
3025 ret = 0;
c2167754 3026out:
a7e3b975
FM
3027 if (range_locked || clear_new_delalloc_bytes) {
3028 unsigned int clear_bits = 0;
3029
3030 if (range_locked)
3031 clear_bits |= EXTENT_LOCKED;
3032 if (clear_new_delalloc_bytes)
3033 clear_bits |= EXTENT_DELALLOC_NEW;
3034 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3035 ordered_extent->file_offset,
3036 ordered_extent->file_offset +
3037 ordered_extent->len - 1,
3038 clear_bits,
3039 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3040 0, &cached_state, GFP_NOFS);
3041 }
3042
0b246afa 3043 if (root != fs_info->tree_root)
691fa059
NB
3044 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3045 ordered_extent->len);
a698d075 3046 if (trans)
3a45bb20 3047 btrfs_end_transaction(trans);
0cb59c99 3048
77cef2ec
JB
3049 if (ret || truncated) {
3050 u64 start, end;
3051
3052 if (truncated)
3053 start = ordered_extent->file_offset + logical_len;
3054 else
3055 start = ordered_extent->file_offset;
3056 end = ordered_extent->file_offset + ordered_extent->len - 1;
3057 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3058
3059 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 3060 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 3061
0bec9ef5
JB
3062 /*
3063 * If the ordered extent had an IOERR or something else went
3064 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3065 * back to the allocator. We only free the extent in the
3066 * truncated case if we didn't write out the extent at all.
0bec9ef5 3067 */
77cef2ec
JB
3068 if ((ret || !logical_len) &&
3069 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3070 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3071 btrfs_free_reserved_extent(fs_info,
3072 ordered_extent->start,
e570fd27 3073 ordered_extent->disk_len, 1);
0bec9ef5
JB
3074 }
3075
3076
5fd02043 3077 /*
8bad3c02
LB
3078 * This needs to be done to make sure anybody waiting knows we are done
3079 * updating everything for this ordered extent.
5fd02043
JB
3080 */
3081 btrfs_remove_ordered_extent(inode, ordered_extent);
3082
38c227d8 3083 /* for snapshot-aware defrag */
6f519564
LB
3084 if (new) {
3085 if (ret) {
3086 free_sa_defrag_extent(new);
0b246afa 3087 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3088 } else {
3089 relink_file_extents(new);
3090 }
3091 }
38c227d8 3092
e6dcd2dc
CM
3093 /* once for us */
3094 btrfs_put_ordered_extent(ordered_extent);
3095 /* once for the tree */
3096 btrfs_put_ordered_extent(ordered_extent);
3097
5fd02043
JB
3098 return ret;
3099}
3100
3101static void finish_ordered_fn(struct btrfs_work *work)
3102{
3103 struct btrfs_ordered_extent *ordered_extent;
3104 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3105 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3106}
3107
c3988d63 3108static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3109 struct extent_state *state, int uptodate)
3110{
5fd02043 3111 struct inode *inode = page->mapping->host;
0b246afa 3112 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3113 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3114 struct btrfs_workqueue *wq;
3115 btrfs_work_func_t func;
5fd02043 3116
1abe9b8a 3117 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3118
8b62b72b 3119 ClearPagePrivate2(page);
5fd02043
JB
3120 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3121 end - start + 1, uptodate))
c3988d63 3122 return;
5fd02043 3123
70ddc553 3124 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 3125 wq = fs_info->endio_freespace_worker;
9e0af237
LB
3126 func = btrfs_freespace_write_helper;
3127 } else {
0b246afa 3128 wq = fs_info->endio_write_workers;
9e0af237
LB
3129 func = btrfs_endio_write_helper;
3130 }
5fd02043 3131
9e0af237
LB
3132 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3133 NULL);
3134 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3135}
3136
dc380aea
MX
3137static int __readpage_endio_check(struct inode *inode,
3138 struct btrfs_io_bio *io_bio,
3139 int icsum, struct page *page,
3140 int pgoff, u64 start, size_t len)
3141{
3142 char *kaddr;
3143 u32 csum_expected;
3144 u32 csum = ~(u32)0;
dc380aea
MX
3145
3146 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3147
3148 kaddr = kmap_atomic(page);
3149 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
0b5e3daf 3150 btrfs_csum_final(csum, (u8 *)&csum);
dc380aea
MX
3151 if (csum != csum_expected)
3152 goto zeroit;
3153
3154 kunmap_atomic(kaddr);
3155 return 0;
3156zeroit:
0970a22e 3157 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
6f6b643e 3158 io_bio->mirror_num);
dc380aea
MX
3159 memset(kaddr + pgoff, 1, len);
3160 flush_dcache_page(page);
3161 kunmap_atomic(kaddr);
3162 if (csum_expected == 0)
3163 return 0;
3164 return -EIO;
3165}
3166
d352ac68
CM
3167/*
3168 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3169 * if there's a match, we allow the bio to finish. If not, the code in
3170 * extent_io.c will try to find good copies for us.
d352ac68 3171 */
facc8a22
MX
3172static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3173 u64 phy_offset, struct page *page,
3174 u64 start, u64 end, int mirror)
07157aac 3175{
4eee4fa4 3176 size_t offset = start - page_offset(page);
07157aac 3177 struct inode *inode = page->mapping->host;
d1310b2e 3178 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3179 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3180
d20f7043
CM
3181 if (PageChecked(page)) {
3182 ClearPageChecked(page);
dc380aea 3183 return 0;
d20f7043 3184 }
6cbff00f
CH
3185
3186 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3187 return 0;
17d217fe
YZ
3188
3189 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3190 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3191 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3192 return 0;
17d217fe 3193 }
d20f7043 3194
facc8a22 3195 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3196 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3197 start, (size_t)(end - start + 1));
07157aac 3198}
b888db2b 3199
24bbcf04
YZ
3200void btrfs_add_delayed_iput(struct inode *inode)
3201{
0b246afa 3202 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3203 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3204
3205 if (atomic_add_unless(&inode->i_count, -1, 1))
3206 return;
3207
24bbcf04 3208 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3209 if (binode->delayed_iput_count == 0) {
3210 ASSERT(list_empty(&binode->delayed_iput));
3211 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3212 } else {
3213 binode->delayed_iput_count++;
3214 }
24bbcf04
YZ
3215 spin_unlock(&fs_info->delayed_iput_lock);
3216}
3217
2ff7e61e 3218void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3219{
24bbcf04 3220
24bbcf04 3221 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3222 while (!list_empty(&fs_info->delayed_iputs)) {
3223 struct btrfs_inode *inode;
3224
3225 inode = list_first_entry(&fs_info->delayed_iputs,
3226 struct btrfs_inode, delayed_iput);
3227 if (inode->delayed_iput_count) {
3228 inode->delayed_iput_count--;
3229 list_move_tail(&inode->delayed_iput,
3230 &fs_info->delayed_iputs);
3231 } else {
3232 list_del_init(&inode->delayed_iput);
3233 }
3234 spin_unlock(&fs_info->delayed_iput_lock);
3235 iput(&inode->vfs_inode);
3236 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3237 }
8089fe62 3238 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3239}
3240
d68fc57b 3241/*
42b2aa86 3242 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3243 * files in the subvolume, it removes orphan item and frees block_rsv
3244 * structure.
3245 */
3246void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3247 struct btrfs_root *root)
3248{
0b246afa 3249 struct btrfs_fs_info *fs_info = root->fs_info;
90290e19 3250 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3251 int ret;
3252
8a35d95f 3253 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3254 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3255 return;
3256
90290e19 3257 spin_lock(&root->orphan_lock);
8a35d95f 3258 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3259 spin_unlock(&root->orphan_lock);
3260 return;
3261 }
3262
3263 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3264 spin_unlock(&root->orphan_lock);
3265 return;
3266 }
3267
3268 block_rsv = root->orphan_block_rsv;
3269 root->orphan_block_rsv = NULL;
3270 spin_unlock(&root->orphan_lock);
3271
27cdeb70 3272 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b 3273 btrfs_root_refs(&root->root_item) > 0) {
0b246afa 3274 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
d68fc57b 3275 root->root_key.objectid);
4ef31a45 3276 if (ret)
66642832 3277 btrfs_abort_transaction(trans, ret);
4ef31a45 3278 else
27cdeb70
MX
3279 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3280 &root->state);
d68fc57b
YZ
3281 }
3282
90290e19
JB
3283 if (block_rsv) {
3284 WARN_ON(block_rsv->size > 0);
2ff7e61e 3285 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b
YZ
3286 }
3287}
3288
7b128766
JB
3289/*
3290 * This creates an orphan entry for the given inode in case something goes
3291 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3292 *
3293 * NOTE: caller of this function should reserve 5 units of metadata for
3294 * this function.
7b128766 3295 */
73f2e545
NB
3296int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3297 struct btrfs_inode *inode)
7b128766 3298{
73f2e545
NB
3299 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3300 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3301 struct btrfs_block_rsv *block_rsv = NULL;
3302 int reserve = 0;
3303 int insert = 0;
3304 int ret;
7b128766 3305
d68fc57b 3306 if (!root->orphan_block_rsv) {
2ff7e61e
JM
3307 block_rsv = btrfs_alloc_block_rsv(fs_info,
3308 BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3309 if (!block_rsv)
3310 return -ENOMEM;
d68fc57b 3311 }
7b128766 3312
d68fc57b
YZ
3313 spin_lock(&root->orphan_lock);
3314 if (!root->orphan_block_rsv) {
3315 root->orphan_block_rsv = block_rsv;
3316 } else if (block_rsv) {
2ff7e61e 3317 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b 3318 block_rsv = NULL;
7b128766 3319 }
7b128766 3320
8a35d95f 3321 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3322 &inode->runtime_flags)) {
d68fc57b
YZ
3323#if 0
3324 /*
3325 * For proper ENOSPC handling, we should do orphan
3326 * cleanup when mounting. But this introduces backward
3327 * compatibility issue.
3328 */
3329 if (!xchg(&root->orphan_item_inserted, 1))
3330 insert = 2;
3331 else
3332 insert = 1;
3333#endif
3334 insert = 1;
321f0e70 3335 atomic_inc(&root->orphan_inodes);
7b128766
JB
3336 }
3337
72ac3c0d 3338 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3339 &inode->runtime_flags))
d68fc57b 3340 reserve = 1;
d68fc57b 3341 spin_unlock(&root->orphan_lock);
7b128766 3342
d68fc57b
YZ
3343 /* grab metadata reservation from transaction handle */
3344 if (reserve) {
3345 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3346 ASSERT(!ret);
3347 if (ret) {
3348 atomic_dec(&root->orphan_inodes);
3349 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3350 &inode->runtime_flags);
3b6571c1
JB
3351 if (insert)
3352 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3353 &inode->runtime_flags);
3b6571c1
JB
3354 return ret;
3355 }
d68fc57b 3356 }
7b128766 3357
d68fc57b
YZ
3358 /* insert an orphan item to track this unlinked/truncated file */
3359 if (insert >= 1) {
73f2e545 3360 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3361 if (ret) {
703c88e0 3362 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3363 if (reserve) {
3364 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3365 &inode->runtime_flags);
4ef31a45
JB
3366 btrfs_orphan_release_metadata(inode);
3367 }
3368 if (ret != -EEXIST) {
e8e7cff6 3369 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3370 &inode->runtime_flags);
66642832 3371 btrfs_abort_transaction(trans, ret);
4ef31a45
JB
3372 return ret;
3373 }
79787eaa
JM
3374 }
3375 ret = 0;
d68fc57b
YZ
3376 }
3377
3378 /* insert an orphan item to track subvolume contains orphan files */
3379 if (insert >= 2) {
0b246afa 3380 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
d68fc57b 3381 root->root_key.objectid);
79787eaa 3382 if (ret && ret != -EEXIST) {
66642832 3383 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3384 return ret;
3385 }
d68fc57b
YZ
3386 }
3387 return 0;
7b128766
JB
3388}
3389
3390/*
3391 * We have done the truncate/delete so we can go ahead and remove the orphan
3392 * item for this particular inode.
3393 */
48a3b636 3394static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3395 struct btrfs_inode *inode)
7b128766 3396{
3d6ae7bb 3397 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3398 int delete_item = 0;
3399 int release_rsv = 0;
7b128766
JB
3400 int ret = 0;
3401
d68fc57b 3402 spin_lock(&root->orphan_lock);
8a35d95f 3403 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3d6ae7bb 3404 &inode->runtime_flags))
d68fc57b 3405 delete_item = 1;
7b128766 3406
72ac3c0d 3407 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3d6ae7bb 3408 &inode->runtime_flags))
d68fc57b 3409 release_rsv = 1;
d68fc57b 3410 spin_unlock(&root->orphan_lock);
7b128766 3411
703c88e0 3412 if (delete_item) {
8a35d95f 3413 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3414 if (trans)
3415 ret = btrfs_del_orphan_item(trans, root,
3d6ae7bb 3416 btrfs_ino(inode));
8a35d95f 3417 }
7b128766 3418
703c88e0
FDBM
3419 if (release_rsv)
3420 btrfs_orphan_release_metadata(inode);
3421
4ef31a45 3422 return ret;
7b128766
JB
3423}
3424
3425/*
3426 * this cleans up any orphans that may be left on the list from the last use
3427 * of this root.
3428 */
66b4ffd1 3429int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3430{
0b246afa 3431 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3432 struct btrfs_path *path;
3433 struct extent_buffer *leaf;
7b128766
JB
3434 struct btrfs_key key, found_key;
3435 struct btrfs_trans_handle *trans;
3436 struct inode *inode;
8f6d7f4f 3437 u64 last_objectid = 0;
7b128766
JB
3438 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3439
d68fc57b 3440 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3441 return 0;
c71bf099
YZ
3442
3443 path = btrfs_alloc_path();
66b4ffd1
JB
3444 if (!path) {
3445 ret = -ENOMEM;
3446 goto out;
3447 }
e4058b54 3448 path->reada = READA_BACK;
7b128766
JB
3449
3450 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3451 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3452 key.offset = (u64)-1;
3453
7b128766
JB
3454 while (1) {
3455 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3456 if (ret < 0)
3457 goto out;
7b128766
JB
3458
3459 /*
3460 * if ret == 0 means we found what we were searching for, which
25985edc 3461 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3462 * find the key and see if we have stuff that matches
3463 */
3464 if (ret > 0) {
66b4ffd1 3465 ret = 0;
7b128766
JB
3466 if (path->slots[0] == 0)
3467 break;
3468 path->slots[0]--;
3469 }
3470
3471 /* pull out the item */
3472 leaf = path->nodes[0];
7b128766
JB
3473 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3474
3475 /* make sure the item matches what we want */
3476 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3477 break;
962a298f 3478 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3479 break;
3480
3481 /* release the path since we're done with it */
b3b4aa74 3482 btrfs_release_path(path);
7b128766
JB
3483
3484 /*
3485 * this is where we are basically btrfs_lookup, without the
3486 * crossing root thing. we store the inode number in the
3487 * offset of the orphan item.
3488 */
8f6d7f4f
JB
3489
3490 if (found_key.offset == last_objectid) {
0b246afa
JM
3491 btrfs_err(fs_info,
3492 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3493 ret = -EINVAL;
3494 goto out;
3495 }
3496
3497 last_objectid = found_key.offset;
3498
5d4f98a2
YZ
3499 found_key.objectid = found_key.offset;
3500 found_key.type = BTRFS_INODE_ITEM_KEY;
3501 found_key.offset = 0;
0b246afa 3502 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3503 ret = PTR_ERR_OR_ZERO(inode);
67710892 3504 if (ret && ret != -ENOENT)
66b4ffd1 3505 goto out;
7b128766 3506
0b246afa 3507 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3508 struct btrfs_root *dead_root;
3509 struct btrfs_fs_info *fs_info = root->fs_info;
3510 int is_dead_root = 0;
3511
3512 /*
3513 * this is an orphan in the tree root. Currently these
3514 * could come from 2 sources:
3515 * a) a snapshot deletion in progress
3516 * b) a free space cache inode
3517 * We need to distinguish those two, as the snapshot
3518 * orphan must not get deleted.
3519 * find_dead_roots already ran before us, so if this
3520 * is a snapshot deletion, we should find the root
3521 * in the dead_roots list
3522 */
3523 spin_lock(&fs_info->trans_lock);
3524 list_for_each_entry(dead_root, &fs_info->dead_roots,
3525 root_list) {
3526 if (dead_root->root_key.objectid ==
3527 found_key.objectid) {
3528 is_dead_root = 1;
3529 break;
3530 }
3531 }
3532 spin_unlock(&fs_info->trans_lock);
3533 if (is_dead_root) {
3534 /* prevent this orphan from being found again */
3535 key.offset = found_key.objectid - 1;
3536 continue;
3537 }
3538 }
7b128766 3539 /*
a8c9e576
JB
3540 * Inode is already gone but the orphan item is still there,
3541 * kill the orphan item.
7b128766 3542 */
67710892 3543 if (ret == -ENOENT) {
a8c9e576 3544 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3545 if (IS_ERR(trans)) {
3546 ret = PTR_ERR(trans);
3547 goto out;
3548 }
0b246afa
JM
3549 btrfs_debug(fs_info, "auto deleting %Lu",
3550 found_key.objectid);
a8c9e576
JB
3551 ret = btrfs_del_orphan_item(trans, root,
3552 found_key.objectid);
3a45bb20 3553 btrfs_end_transaction(trans);
4ef31a45
JB
3554 if (ret)
3555 goto out;
7b128766
JB
3556 continue;
3557 }
3558
a8c9e576
JB
3559 /*
3560 * add this inode to the orphan list so btrfs_orphan_del does
3561 * the proper thing when we hit it
3562 */
8a35d95f
JB
3563 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3564 &BTRFS_I(inode)->runtime_flags);
925396ec 3565 atomic_inc(&root->orphan_inodes);
a8c9e576 3566
7b128766
JB
3567 /* if we have links, this was a truncate, lets do that */
3568 if (inode->i_nlink) {
fae7f21c 3569 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3570 iput(inode);
3571 continue;
3572 }
7b128766 3573 nr_truncate++;
f3fe820c
JB
3574
3575 /* 1 for the orphan item deletion. */
3576 trans = btrfs_start_transaction(root, 1);
3577 if (IS_ERR(trans)) {
c69b26b0 3578 iput(inode);
f3fe820c
JB
3579 ret = PTR_ERR(trans);
3580 goto out;
3581 }
73f2e545 3582 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 3583 btrfs_end_transaction(trans);
c69b26b0
JB
3584 if (ret) {
3585 iput(inode);
f3fe820c 3586 goto out;
c69b26b0 3587 }
f3fe820c 3588
66b4ffd1 3589 ret = btrfs_truncate(inode);
4a7d0f68 3590 if (ret)
3d6ae7bb 3591 btrfs_orphan_del(NULL, BTRFS_I(inode));
7b128766
JB
3592 } else {
3593 nr_unlink++;
3594 }
3595
3596 /* this will do delete_inode and everything for us */
3597 iput(inode);
66b4ffd1
JB
3598 if (ret)
3599 goto out;
7b128766 3600 }
3254c876
MX
3601 /* release the path since we're done with it */
3602 btrfs_release_path(path);
3603
d68fc57b
YZ
3604 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3605
3606 if (root->orphan_block_rsv)
2ff7e61e 3607 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
d68fc57b
YZ
3608 (u64)-1);
3609
27cdeb70
MX
3610 if (root->orphan_block_rsv ||
3611 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3612 trans = btrfs_join_transaction(root);
66b4ffd1 3613 if (!IS_ERR(trans))
3a45bb20 3614 btrfs_end_transaction(trans);
d68fc57b 3615 }
7b128766
JB
3616
3617 if (nr_unlink)
0b246afa 3618 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3619 if (nr_truncate)
0b246afa 3620 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3621
3622out:
3623 if (ret)
0b246afa 3624 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3625 btrfs_free_path(path);
3626 return ret;
7b128766
JB
3627}
3628
46a53cca
CM
3629/*
3630 * very simple check to peek ahead in the leaf looking for xattrs. If we
3631 * don't find any xattrs, we know there can't be any acls.
3632 *
3633 * slot is the slot the inode is in, objectid is the objectid of the inode
3634 */
3635static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3636 int slot, u64 objectid,
3637 int *first_xattr_slot)
46a53cca
CM
3638{
3639 u32 nritems = btrfs_header_nritems(leaf);
3640 struct btrfs_key found_key;
f23b5a59
JB
3641 static u64 xattr_access = 0;
3642 static u64 xattr_default = 0;
46a53cca
CM
3643 int scanned = 0;
3644
f23b5a59 3645 if (!xattr_access) {
97d79299
AG
3646 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3647 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3648 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3649 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3650 }
3651
46a53cca 3652 slot++;
63541927 3653 *first_xattr_slot = -1;
46a53cca
CM
3654 while (slot < nritems) {
3655 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3656
3657 /* we found a different objectid, there must not be acls */
3658 if (found_key.objectid != objectid)
3659 return 0;
3660
3661 /* we found an xattr, assume we've got an acl */
f23b5a59 3662 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3663 if (*first_xattr_slot == -1)
3664 *first_xattr_slot = slot;
f23b5a59
JB
3665 if (found_key.offset == xattr_access ||
3666 found_key.offset == xattr_default)
3667 return 1;
3668 }
46a53cca
CM
3669
3670 /*
3671 * we found a key greater than an xattr key, there can't
3672 * be any acls later on
3673 */
3674 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3675 return 0;
3676
3677 slot++;
3678 scanned++;
3679
3680 /*
3681 * it goes inode, inode backrefs, xattrs, extents,
3682 * so if there are a ton of hard links to an inode there can
3683 * be a lot of backrefs. Don't waste time searching too hard,
3684 * this is just an optimization
3685 */
3686 if (scanned >= 8)
3687 break;
3688 }
3689 /* we hit the end of the leaf before we found an xattr or
3690 * something larger than an xattr. We have to assume the inode
3691 * has acls
3692 */
63541927
FDBM
3693 if (*first_xattr_slot == -1)
3694 *first_xattr_slot = slot;
46a53cca
CM
3695 return 1;
3696}
3697
d352ac68
CM
3698/*
3699 * read an inode from the btree into the in-memory inode
3700 */
67710892 3701static int btrfs_read_locked_inode(struct inode *inode)
39279cc3 3702{
0b246afa 3703 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 3704 struct btrfs_path *path;
5f39d397 3705 struct extent_buffer *leaf;
39279cc3
CM
3706 struct btrfs_inode_item *inode_item;
3707 struct btrfs_root *root = BTRFS_I(inode)->root;
3708 struct btrfs_key location;
67de1176 3709 unsigned long ptr;
46a53cca 3710 int maybe_acls;
618e21d5 3711 u32 rdev;
39279cc3 3712 int ret;
2f7e33d4 3713 bool filled = false;
63541927 3714 int first_xattr_slot;
2f7e33d4
MX
3715
3716 ret = btrfs_fill_inode(inode, &rdev);
3717 if (!ret)
3718 filled = true;
39279cc3
CM
3719
3720 path = btrfs_alloc_path();
67710892
FM
3721 if (!path) {
3722 ret = -ENOMEM;
1748f843 3723 goto make_bad;
67710892 3724 }
1748f843 3725
39279cc3 3726 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3727
39279cc3 3728 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3729 if (ret) {
3730 if (ret > 0)
3731 ret = -ENOENT;
39279cc3 3732 goto make_bad;
67710892 3733 }
39279cc3 3734
5f39d397 3735 leaf = path->nodes[0];
2f7e33d4
MX
3736
3737 if (filled)
67de1176 3738 goto cache_index;
2f7e33d4 3739
5f39d397
CM
3740 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3741 struct btrfs_inode_item);
5f39d397 3742 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3743 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3744 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3745 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3746 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3747
a937b979
DS
3748 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3749 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3750
a937b979
DS
3751 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3752 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3753
a937b979
DS
3754 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3755 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3756
9cc97d64 3757 BTRFS_I(inode)->i_otime.tv_sec =
3758 btrfs_timespec_sec(leaf, &inode_item->otime);
3759 BTRFS_I(inode)->i_otime.tv_nsec =
3760 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3761
a76a3cd4 3762 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3763 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3764 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3765
6e17d30b
YD
3766 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3767 inode->i_generation = BTRFS_I(inode)->generation;
3768 inode->i_rdev = 0;
3769 rdev = btrfs_inode_rdev(leaf, inode_item);
3770
3771 BTRFS_I(inode)->index_cnt = (u64)-1;
3772 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3773
3774cache_index:
5dc562c5
JB
3775 /*
3776 * If we were modified in the current generation and evicted from memory
3777 * and then re-read we need to do a full sync since we don't have any
3778 * idea about which extents were modified before we were evicted from
3779 * cache.
6e17d30b
YD
3780 *
3781 * This is required for both inode re-read from disk and delayed inode
3782 * in delayed_nodes_tree.
5dc562c5 3783 */
0b246afa 3784 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3785 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3786 &BTRFS_I(inode)->runtime_flags);
3787
bde6c242
FM
3788 /*
3789 * We don't persist the id of the transaction where an unlink operation
3790 * against the inode was last made. So here we assume the inode might
3791 * have been evicted, and therefore the exact value of last_unlink_trans
3792 * lost, and set it to last_trans to avoid metadata inconsistencies
3793 * between the inode and its parent if the inode is fsync'ed and the log
3794 * replayed. For example, in the scenario:
3795 *
3796 * touch mydir/foo
3797 * ln mydir/foo mydir/bar
3798 * sync
3799 * unlink mydir/bar
3800 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3801 * xfs_io -c fsync mydir/foo
3802 * <power failure>
3803 * mount fs, triggers fsync log replay
3804 *
3805 * We must make sure that when we fsync our inode foo we also log its
3806 * parent inode, otherwise after log replay the parent still has the
3807 * dentry with the "bar" name but our inode foo has a link count of 1
3808 * and doesn't have an inode ref with the name "bar" anymore.
3809 *
3810 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3811 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3812 * transaction commits on fsync if our inode is a directory, or if our
3813 * inode is not a directory, logging its parent unnecessarily.
3814 */
3815 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3816
67de1176
MX
3817 path->slots[0]++;
3818 if (inode->i_nlink != 1 ||
3819 path->slots[0] >= btrfs_header_nritems(leaf))
3820 goto cache_acl;
3821
3822 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3823 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3824 goto cache_acl;
3825
3826 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3827 if (location.type == BTRFS_INODE_REF_KEY) {
3828 struct btrfs_inode_ref *ref;
3829
3830 ref = (struct btrfs_inode_ref *)ptr;
3831 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3832 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3833 struct btrfs_inode_extref *extref;
3834
3835 extref = (struct btrfs_inode_extref *)ptr;
3836 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3837 extref);
3838 }
2f7e33d4 3839cache_acl:
46a53cca
CM
3840 /*
3841 * try to precache a NULL acl entry for files that don't have
3842 * any xattrs or acls
3843 */
33345d01 3844 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3845 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3846 if (first_xattr_slot != -1) {
3847 path->slots[0] = first_xattr_slot;
3848 ret = btrfs_load_inode_props(inode, path);
3849 if (ret)
0b246afa 3850 btrfs_err(fs_info,
351fd353 3851 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3852 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3853 root->root_key.objectid, ret);
3854 }
3855 btrfs_free_path(path);
3856
72c04902
AV
3857 if (!maybe_acls)
3858 cache_no_acl(inode);
46a53cca 3859
39279cc3 3860 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3861 case S_IFREG:
3862 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3863 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3864 inode->i_fop = &btrfs_file_operations;
3865 inode->i_op = &btrfs_file_inode_operations;
3866 break;
3867 case S_IFDIR:
3868 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3869 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3870 break;
3871 case S_IFLNK:
3872 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3873 inode_nohighmem(inode);
39279cc3
CM
3874 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3875 break;
618e21d5 3876 default:
0279b4cd 3877 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3878 init_special_inode(inode, inode->i_mode, rdev);
3879 break;
39279cc3 3880 }
6cbff00f
CH
3881
3882 btrfs_update_iflags(inode);
67710892 3883 return 0;
39279cc3
CM
3884
3885make_bad:
39279cc3 3886 btrfs_free_path(path);
39279cc3 3887 make_bad_inode(inode);
67710892 3888 return ret;
39279cc3
CM
3889}
3890
d352ac68
CM
3891/*
3892 * given a leaf and an inode, copy the inode fields into the leaf
3893 */
e02119d5
CM
3894static void fill_inode_item(struct btrfs_trans_handle *trans,
3895 struct extent_buffer *leaf,
5f39d397 3896 struct btrfs_inode_item *item,
39279cc3
CM
3897 struct inode *inode)
3898{
51fab693
LB
3899 struct btrfs_map_token token;
3900
3901 btrfs_init_map_token(&token);
5f39d397 3902
51fab693
LB
3903 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3904 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3905 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3906 &token);
3907 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3908 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3909
a937b979 3910 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3911 inode->i_atime.tv_sec, &token);
a937b979 3912 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3913 inode->i_atime.tv_nsec, &token);
5f39d397 3914
a937b979 3915 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3916 inode->i_mtime.tv_sec, &token);
a937b979 3917 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3918 inode->i_mtime.tv_nsec, &token);
5f39d397 3919
a937b979 3920 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3921 inode->i_ctime.tv_sec, &token);
a937b979 3922 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3923 inode->i_ctime.tv_nsec, &token);
5f39d397 3924
9cc97d64 3925 btrfs_set_token_timespec_sec(leaf, &item->otime,
3926 BTRFS_I(inode)->i_otime.tv_sec, &token);
3927 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3928 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3929
51fab693
LB
3930 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3931 &token);
3932 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3933 &token);
3934 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3935 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3936 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3937 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3938 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3939}
3940
d352ac68
CM
3941/*
3942 * copy everything in the in-memory inode into the btree.
3943 */
2115133f 3944static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3945 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3946{
3947 struct btrfs_inode_item *inode_item;
3948 struct btrfs_path *path;
5f39d397 3949 struct extent_buffer *leaf;
39279cc3
CM
3950 int ret;
3951
3952 path = btrfs_alloc_path();
16cdcec7
MX
3953 if (!path)
3954 return -ENOMEM;
3955
b9473439 3956 path->leave_spinning = 1;
16cdcec7
MX
3957 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3958 1);
39279cc3
CM
3959 if (ret) {
3960 if (ret > 0)
3961 ret = -ENOENT;
3962 goto failed;
3963 }
3964
5f39d397
CM
3965 leaf = path->nodes[0];
3966 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3967 struct btrfs_inode_item);
39279cc3 3968
e02119d5 3969 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3970 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3971 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3972 ret = 0;
3973failed:
39279cc3
CM
3974 btrfs_free_path(path);
3975 return ret;
3976}
3977
2115133f
CM
3978/*
3979 * copy everything in the in-memory inode into the btree.
3980 */
3981noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3982 struct btrfs_root *root, struct inode *inode)
3983{
0b246afa 3984 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3985 int ret;
3986
3987 /*
3988 * If the inode is a free space inode, we can deadlock during commit
3989 * if we put it into the delayed code.
3990 *
3991 * The data relocation inode should also be directly updated
3992 * without delay
3993 */
70ddc553 3994 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 3995 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 3996 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
3997 btrfs_update_root_times(trans, root);
3998
2115133f
CM
3999 ret = btrfs_delayed_update_inode(trans, root, inode);
4000 if (!ret)
4001 btrfs_set_inode_last_trans(trans, inode);
4002 return ret;
4003 }
4004
4005 return btrfs_update_inode_item(trans, root, inode);
4006}
4007
be6aef60
JB
4008noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4009 struct btrfs_root *root,
4010 struct inode *inode)
2115133f
CM
4011{
4012 int ret;
4013
4014 ret = btrfs_update_inode(trans, root, inode);
4015 if (ret == -ENOSPC)
4016 return btrfs_update_inode_item(trans, root, inode);
4017 return ret;
4018}
4019
d352ac68
CM
4020/*
4021 * unlink helper that gets used here in inode.c and in the tree logging
4022 * recovery code. It remove a link in a directory with a given name, and
4023 * also drops the back refs in the inode to the directory
4024 */
92986796
AV
4025static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4026 struct btrfs_root *root,
4ec5934e
NB
4027 struct btrfs_inode *dir,
4028 struct btrfs_inode *inode,
92986796 4029 const char *name, int name_len)
39279cc3 4030{
0b246afa 4031 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4032 struct btrfs_path *path;
39279cc3 4033 int ret = 0;
5f39d397 4034 struct extent_buffer *leaf;
39279cc3 4035 struct btrfs_dir_item *di;
5f39d397 4036 struct btrfs_key key;
aec7477b 4037 u64 index;
33345d01
LZ
4038 u64 ino = btrfs_ino(inode);
4039 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
4040
4041 path = btrfs_alloc_path();
54aa1f4d
CM
4042 if (!path) {
4043 ret = -ENOMEM;
554233a6 4044 goto out;
54aa1f4d
CM
4045 }
4046
b9473439 4047 path->leave_spinning = 1;
33345d01 4048 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
4049 name, name_len, -1);
4050 if (IS_ERR(di)) {
4051 ret = PTR_ERR(di);
4052 goto err;
4053 }
4054 if (!di) {
4055 ret = -ENOENT;
4056 goto err;
4057 }
5f39d397
CM
4058 leaf = path->nodes[0];
4059 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 4060 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4061 if (ret)
4062 goto err;
b3b4aa74 4063 btrfs_release_path(path);
39279cc3 4064
67de1176
MX
4065 /*
4066 * If we don't have dir index, we have to get it by looking up
4067 * the inode ref, since we get the inode ref, remove it directly,
4068 * it is unnecessary to do delayed deletion.
4069 *
4070 * But if we have dir index, needn't search inode ref to get it.
4071 * Since the inode ref is close to the inode item, it is better
4072 * that we delay to delete it, and just do this deletion when
4073 * we update the inode item.
4074 */
4ec5934e 4075 if (inode->dir_index) {
67de1176
MX
4076 ret = btrfs_delayed_delete_inode_ref(inode);
4077 if (!ret) {
4ec5934e 4078 index = inode->dir_index;
67de1176
MX
4079 goto skip_backref;
4080 }
4081 }
4082
33345d01
LZ
4083 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4084 dir_ino, &index);
aec7477b 4085 if (ret) {
0b246afa 4086 btrfs_info(fs_info,
c2cf52eb 4087 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4088 name_len, name, ino, dir_ino);
66642832 4089 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4090 goto err;
4091 }
67de1176 4092skip_backref:
2ff7e61e 4093 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
79787eaa 4094 if (ret) {
66642832 4095 btrfs_abort_transaction(trans, ret);
39279cc3 4096 goto err;
79787eaa 4097 }
39279cc3 4098
4ec5934e
NB
4099 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4100 dir_ino);
79787eaa 4101 if (ret != 0 && ret != -ENOENT) {
66642832 4102 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4103 goto err;
4104 }
e02119d5 4105
4ec5934e
NB
4106 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4107 index);
6418c961
CM
4108 if (ret == -ENOENT)
4109 ret = 0;
d4e3991b 4110 else if (ret)
66642832 4111 btrfs_abort_transaction(trans, ret);
39279cc3
CM
4112err:
4113 btrfs_free_path(path);
e02119d5
CM
4114 if (ret)
4115 goto out;
4116
6ef06d27 4117 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
4118 inode_inc_iversion(&inode->vfs_inode);
4119 inode_inc_iversion(&dir->vfs_inode);
4120 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4121 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4122 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 4123out:
39279cc3
CM
4124 return ret;
4125}
4126
92986796
AV
4127int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4128 struct btrfs_root *root,
4ec5934e 4129 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
4130 const char *name, int name_len)
4131{
4132 int ret;
4133 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4134 if (!ret) {
4ec5934e
NB
4135 drop_nlink(&inode->vfs_inode);
4136 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4137 }
4138 return ret;
4139}
39279cc3 4140
a22285a6
YZ
4141/*
4142 * helper to start transaction for unlink and rmdir.
4143 *
d52be818
JB
4144 * unlink and rmdir are special in btrfs, they do not always free space, so
4145 * if we cannot make our reservations the normal way try and see if there is
4146 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4147 * allow the unlink to occur.
a22285a6 4148 */
d52be818 4149static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4150{
a22285a6 4151 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4152
e70bea5f
JB
4153 /*
4154 * 1 for the possible orphan item
4155 * 1 for the dir item
4156 * 1 for the dir index
4157 * 1 for the inode ref
e70bea5f
JB
4158 * 1 for the inode
4159 */
8eab77ff 4160 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4161}
4162
4163static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4164{
4165 struct btrfs_root *root = BTRFS_I(dir)->root;
4166 struct btrfs_trans_handle *trans;
2b0143b5 4167 struct inode *inode = d_inode(dentry);
a22285a6 4168 int ret;
a22285a6 4169
d52be818 4170 trans = __unlink_start_trans(dir);
a22285a6
YZ
4171 if (IS_ERR(trans))
4172 return PTR_ERR(trans);
5f39d397 4173
4ec5934e
NB
4174 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4175 0);
12fcfd22 4176
4ec5934e
NB
4177 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4178 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4179 dentry->d_name.len);
b532402e
TI
4180 if (ret)
4181 goto out;
7b128766 4182
a22285a6 4183 if (inode->i_nlink == 0) {
73f2e545 4184 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4185 if (ret)
4186 goto out;
a22285a6 4187 }
7b128766 4188
b532402e 4189out:
3a45bb20 4190 btrfs_end_transaction(trans);
2ff7e61e 4191 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4192 return ret;
4193}
4194
4df27c4d
YZ
4195int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4196 struct btrfs_root *root,
4197 struct inode *dir, u64 objectid,
4198 const char *name, int name_len)
4199{
0b246afa 4200 struct btrfs_fs_info *fs_info = root->fs_info;
4df27c4d
YZ
4201 struct btrfs_path *path;
4202 struct extent_buffer *leaf;
4203 struct btrfs_dir_item *di;
4204 struct btrfs_key key;
4205 u64 index;
4206 int ret;
4a0cc7ca 4207 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4208
4209 path = btrfs_alloc_path();
4210 if (!path)
4211 return -ENOMEM;
4212
33345d01 4213 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4214 name, name_len, -1);
79787eaa
JM
4215 if (IS_ERR_OR_NULL(di)) {
4216 if (!di)
4217 ret = -ENOENT;
4218 else
4219 ret = PTR_ERR(di);
4220 goto out;
4221 }
4df27c4d
YZ
4222
4223 leaf = path->nodes[0];
4224 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4225 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4226 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4227 if (ret) {
66642832 4228 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4229 goto out;
4230 }
b3b4aa74 4231 btrfs_release_path(path);
4df27c4d 4232
0b246afa
JM
4233 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4234 root->root_key.objectid, dir_ino,
4235 &index, name, name_len);
4df27c4d 4236 if (ret < 0) {
79787eaa 4237 if (ret != -ENOENT) {
66642832 4238 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4239 goto out;
4240 }
33345d01 4241 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4242 name, name_len);
79787eaa
JM
4243 if (IS_ERR_OR_NULL(di)) {
4244 if (!di)
4245 ret = -ENOENT;
4246 else
4247 ret = PTR_ERR(di);
66642832 4248 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4249 goto out;
4250 }
4df27c4d
YZ
4251
4252 leaf = path->nodes[0];
4253 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4254 btrfs_release_path(path);
4df27c4d
YZ
4255 index = key.offset;
4256 }
945d8962 4257 btrfs_release_path(path);
4df27c4d 4258
e67bbbb9 4259 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
79787eaa 4260 if (ret) {
66642832 4261 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4262 goto out;
4263 }
4df27c4d 4264
6ef06d27 4265 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4266 inode_inc_iversion(dir);
c2050a45 4267 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4268 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4269 if (ret)
66642832 4270 btrfs_abort_transaction(trans, ret);
79787eaa 4271out:
71d7aed0 4272 btrfs_free_path(path);
79787eaa 4273 return ret;
4df27c4d
YZ
4274}
4275
39279cc3
CM
4276static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4277{
2b0143b5 4278 struct inode *inode = d_inode(dentry);
1832a6d5 4279 int err = 0;
39279cc3 4280 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4281 struct btrfs_trans_handle *trans;
44f714da 4282 u64 last_unlink_trans;
39279cc3 4283
b3ae244e 4284 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4285 return -ENOTEMPTY;
4a0cc7ca 4286 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
b3ae244e 4287 return -EPERM;
134d4512 4288
d52be818 4289 trans = __unlink_start_trans(dir);
a22285a6 4290 if (IS_ERR(trans))
5df6a9f6 4291 return PTR_ERR(trans);
5df6a9f6 4292
4a0cc7ca 4293 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4294 err = btrfs_unlink_subvol(trans, root, dir,
4295 BTRFS_I(inode)->location.objectid,
4296 dentry->d_name.name,
4297 dentry->d_name.len);
4298 goto out;
4299 }
4300
73f2e545 4301 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4302 if (err)
4df27c4d 4303 goto out;
7b128766 4304
44f714da
FM
4305 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4306
39279cc3 4307 /* now the directory is empty */
4ec5934e
NB
4308 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4309 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4310 dentry->d_name.len);
44f714da 4311 if (!err) {
6ef06d27 4312 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4313 /*
4314 * Propagate the last_unlink_trans value of the deleted dir to
4315 * its parent directory. This is to prevent an unrecoverable
4316 * log tree in the case we do something like this:
4317 * 1) create dir foo
4318 * 2) create snapshot under dir foo
4319 * 3) delete the snapshot
4320 * 4) rmdir foo
4321 * 5) mkdir foo
4322 * 6) fsync foo or some file inside foo
4323 */
4324 if (last_unlink_trans >= trans->transid)
4325 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4326 }
4df27c4d 4327out:
3a45bb20 4328 btrfs_end_transaction(trans);
2ff7e61e 4329 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4330
39279cc3
CM
4331 return err;
4332}
4333
28f75a0e
CM
4334static int truncate_space_check(struct btrfs_trans_handle *trans,
4335 struct btrfs_root *root,
4336 u64 bytes_deleted)
4337{
0b246afa 4338 struct btrfs_fs_info *fs_info = root->fs_info;
28f75a0e
CM
4339 int ret;
4340
dc95f7bf
JB
4341 /*
4342 * This is only used to apply pressure to the enospc system, we don't
4343 * intend to use this reservation at all.
4344 */
2ff7e61e 4345 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
0b246afa
JM
4346 bytes_deleted *= fs_info->nodesize;
4347 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
28f75a0e 4348 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf 4349 if (!ret) {
0b246afa 4350 trace_btrfs_space_reservation(fs_info, "transaction",
dc95f7bf
JB
4351 trans->transid,
4352 bytes_deleted, 1);
28f75a0e 4353 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4354 }
28f75a0e
CM
4355 return ret;
4356
4357}
4358
0305cd5f
FM
4359static int truncate_inline_extent(struct inode *inode,
4360 struct btrfs_path *path,
4361 struct btrfs_key *found_key,
4362 const u64 item_end,
4363 const u64 new_size)
4364{
4365 struct extent_buffer *leaf = path->nodes[0];
4366 int slot = path->slots[0];
4367 struct btrfs_file_extent_item *fi;
4368 u32 size = (u32)(new_size - found_key->offset);
4369 struct btrfs_root *root = BTRFS_I(inode)->root;
4370
4371 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4372
4373 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4374 loff_t offset = new_size;
09cbfeaf 4375 loff_t page_end = ALIGN(offset, PAGE_SIZE);
0305cd5f
FM
4376
4377 /*
4378 * Zero out the remaining of the last page of our inline extent,
4379 * instead of directly truncating our inline extent here - that
4380 * would be much more complex (decompressing all the data, then
4381 * compressing the truncated data, which might be bigger than
4382 * the size of the inline extent, resize the extent, etc).
4383 * We release the path because to get the page we might need to
4384 * read the extent item from disk (data not in the page cache).
4385 */
4386 btrfs_release_path(path);
9703fefe
CR
4387 return btrfs_truncate_block(inode, offset, page_end - offset,
4388 0);
0305cd5f
FM
4389 }
4390
4391 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4392 size = btrfs_file_extent_calc_inline_size(size);
2ff7e61e 4393 btrfs_truncate_item(root->fs_info, path, size, 1);
0305cd5f
FM
4394
4395 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4396 inode_sub_bytes(inode, item_end + 1 - new_size);
4397
4398 return 0;
4399}
4400
39279cc3
CM
4401/*
4402 * this can truncate away extent items, csum items and directory items.
4403 * It starts at a high offset and removes keys until it can't find
d352ac68 4404 * any higher than new_size
39279cc3
CM
4405 *
4406 * csum items that cross the new i_size are truncated to the new size
4407 * as well.
7b128766
JB
4408 *
4409 * min_type is the minimum key type to truncate down to. If set to 0, this
4410 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4411 */
8082510e
YZ
4412int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4413 struct btrfs_root *root,
4414 struct inode *inode,
4415 u64 new_size, u32 min_type)
39279cc3 4416{
0b246afa 4417 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4418 struct btrfs_path *path;
5f39d397 4419 struct extent_buffer *leaf;
39279cc3 4420 struct btrfs_file_extent_item *fi;
8082510e
YZ
4421 struct btrfs_key key;
4422 struct btrfs_key found_key;
39279cc3 4423 u64 extent_start = 0;
db94535d 4424 u64 extent_num_bytes = 0;
5d4f98a2 4425 u64 extent_offset = 0;
39279cc3 4426 u64 item_end = 0;
c1aa4575 4427 u64 last_size = new_size;
8082510e 4428 u32 found_type = (u8)-1;
39279cc3
CM
4429 int found_extent;
4430 int del_item;
85e21bac
CM
4431 int pending_del_nr = 0;
4432 int pending_del_slot = 0;
179e29e4 4433 int extent_type = -1;
8082510e
YZ
4434 int ret;
4435 int err = 0;
4a0cc7ca 4436 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4437 u64 bytes_deleted = 0;
1262133b
JB
4438 bool be_nice = 0;
4439 bool should_throttle = 0;
28f75a0e 4440 bool should_end = 0;
8082510e
YZ
4441
4442 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4443
28ed1345
CM
4444 /*
4445 * for non-free space inodes and ref cows, we want to back off from
4446 * time to time
4447 */
70ddc553 4448 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345
CM
4449 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4450 be_nice = 1;
4451
0eb0e19c
MF
4452 path = btrfs_alloc_path();
4453 if (!path)
4454 return -ENOMEM;
e4058b54 4455 path->reada = READA_BACK;
0eb0e19c 4456
5dc562c5
JB
4457 /*
4458 * We want to drop from the next block forward in case this new size is
4459 * not block aligned since we will be keeping the last block of the
4460 * extent just the way it is.
4461 */
27cdeb70 4462 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4463 root == fs_info->tree_root)
dcdbc059 4464 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4465 fs_info->sectorsize),
da17066c 4466 (u64)-1, 0);
8082510e 4467
16cdcec7
MX
4468 /*
4469 * This function is also used to drop the items in the log tree before
4470 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4471 * it is used to drop the loged items. So we shouldn't kill the delayed
4472 * items.
4473 */
4474 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4475 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4476
33345d01 4477 key.objectid = ino;
39279cc3 4478 key.offset = (u64)-1;
5f39d397
CM
4479 key.type = (u8)-1;
4480
85e21bac 4481search_again:
28ed1345
CM
4482 /*
4483 * with a 16K leaf size and 128MB extents, you can actually queue
4484 * up a huge file in a single leaf. Most of the time that
4485 * bytes_deleted is > 0, it will be huge by the time we get here
4486 */
ee22184b 4487 if (be_nice && bytes_deleted > SZ_32M) {
3a45bb20 4488 if (btrfs_should_end_transaction(trans)) {
28ed1345
CM
4489 err = -EAGAIN;
4490 goto error;
4491 }
4492 }
4493
4494
b9473439 4495 path->leave_spinning = 1;
85e21bac 4496 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4497 if (ret < 0) {
4498 err = ret;
4499 goto out;
4500 }
d397712b 4501
85e21bac 4502 if (ret > 0) {
e02119d5
CM
4503 /* there are no items in the tree for us to truncate, we're
4504 * done
4505 */
8082510e
YZ
4506 if (path->slots[0] == 0)
4507 goto out;
85e21bac
CM
4508 path->slots[0]--;
4509 }
4510
d397712b 4511 while (1) {
39279cc3 4512 fi = NULL;
5f39d397
CM
4513 leaf = path->nodes[0];
4514 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4515 found_type = found_key.type;
39279cc3 4516
33345d01 4517 if (found_key.objectid != ino)
39279cc3 4518 break;
5f39d397 4519
85e21bac 4520 if (found_type < min_type)
39279cc3
CM
4521 break;
4522
5f39d397 4523 item_end = found_key.offset;
39279cc3 4524 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4525 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4526 struct btrfs_file_extent_item);
179e29e4
CM
4527 extent_type = btrfs_file_extent_type(leaf, fi);
4528 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4529 item_end +=
db94535d 4530 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4531
4532 trace_btrfs_truncate_show_fi_regular(
4533 BTRFS_I(inode), leaf, fi,
4534 found_key.offset);
179e29e4 4535 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4536 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4537 path->slots[0], fi);
09ed2f16
LB
4538
4539 trace_btrfs_truncate_show_fi_inline(
4540 BTRFS_I(inode), leaf, fi, path->slots[0],
4541 found_key.offset);
39279cc3 4542 }
008630c1 4543 item_end--;
39279cc3 4544 }
8082510e
YZ
4545 if (found_type > min_type) {
4546 del_item = 1;
4547 } else {
76b42abb 4548 if (item_end < new_size)
b888db2b 4549 break;
8082510e
YZ
4550 if (found_key.offset >= new_size)
4551 del_item = 1;
4552 else
4553 del_item = 0;
39279cc3 4554 }
39279cc3 4555 found_extent = 0;
39279cc3 4556 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4557 if (found_type != BTRFS_EXTENT_DATA_KEY)
4558 goto delete;
4559
7f4f6e0a
JB
4560 if (del_item)
4561 last_size = found_key.offset;
4562 else
4563 last_size = new_size;
4564
179e29e4 4565 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4566 u64 num_dec;
db94535d 4567 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4568 if (!del_item) {
db94535d
CM
4569 u64 orig_num_bytes =
4570 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4571 extent_num_bytes = ALIGN(new_size -
4572 found_key.offset,
0b246afa 4573 fs_info->sectorsize);
db94535d
CM
4574 btrfs_set_file_extent_num_bytes(leaf, fi,
4575 extent_num_bytes);
4576 num_dec = (orig_num_bytes -
9069218d 4577 extent_num_bytes);
27cdeb70
MX
4578 if (test_bit(BTRFS_ROOT_REF_COWS,
4579 &root->state) &&
4580 extent_start != 0)
a76a3cd4 4581 inode_sub_bytes(inode, num_dec);
5f39d397 4582 btrfs_mark_buffer_dirty(leaf);
39279cc3 4583 } else {
db94535d
CM
4584 extent_num_bytes =
4585 btrfs_file_extent_disk_num_bytes(leaf,
4586 fi);
5d4f98a2
YZ
4587 extent_offset = found_key.offset -
4588 btrfs_file_extent_offset(leaf, fi);
4589
39279cc3 4590 /* FIXME blocksize != 4096 */
9069218d 4591 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4592 if (extent_start != 0) {
4593 found_extent = 1;
27cdeb70
MX
4594 if (test_bit(BTRFS_ROOT_REF_COWS,
4595 &root->state))
a76a3cd4 4596 inode_sub_bytes(inode, num_dec);
e02119d5 4597 }
39279cc3 4598 }
9069218d 4599 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4600 /*
4601 * we can't truncate inline items that have had
4602 * special encodings
4603 */
4604 if (!del_item &&
c8b97818
CM
4605 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4606 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4607
4608 /*
0305cd5f
FM
4609 * Need to release path in order to truncate a
4610 * compressed extent. So delete any accumulated
4611 * extent items so far.
514ac8ad 4612 */
0305cd5f
FM
4613 if (btrfs_file_extent_compression(leaf, fi) !=
4614 BTRFS_COMPRESS_NONE && pending_del_nr) {
4615 err = btrfs_del_items(trans, root, path,
4616 pending_del_slot,
4617 pending_del_nr);
4618 if (err) {
4619 btrfs_abort_transaction(trans,
0305cd5f
FM
4620 err);
4621 goto error;
4622 }
4623 pending_del_nr = 0;
4624 }
4625
4626 err = truncate_inline_extent(inode, path,
4627 &found_key,
4628 item_end,
4629 new_size);
4630 if (err) {
66642832 4631 btrfs_abort_transaction(trans, err);
0305cd5f
FM
4632 goto error;
4633 }
27cdeb70
MX
4634 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4635 &root->state)) {
0305cd5f 4636 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4637 }
39279cc3 4638 }
179e29e4 4639delete:
39279cc3 4640 if (del_item) {
85e21bac
CM
4641 if (!pending_del_nr) {
4642 /* no pending yet, add ourselves */
4643 pending_del_slot = path->slots[0];
4644 pending_del_nr = 1;
4645 } else if (pending_del_nr &&
4646 path->slots[0] + 1 == pending_del_slot) {
4647 /* hop on the pending chunk */
4648 pending_del_nr++;
4649 pending_del_slot = path->slots[0];
4650 } else {
d397712b 4651 BUG();
85e21bac 4652 }
39279cc3
CM
4653 } else {
4654 break;
4655 }
28f75a0e
CM
4656 should_throttle = 0;
4657
27cdeb70
MX
4658 if (found_extent &&
4659 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4660 root == fs_info->tree_root)) {
b9473439 4661 btrfs_set_path_blocking(path);
28ed1345 4662 bytes_deleted += extent_num_bytes;
2ff7e61e 4663 ret = btrfs_free_extent(trans, fs_info, extent_start,
5d4f98a2
YZ
4664 extent_num_bytes, 0,
4665 btrfs_header_owner(leaf),
b06c4bf5 4666 ino, extent_offset);
39279cc3 4667 BUG_ON(ret);
2ff7e61e
JM
4668 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4669 btrfs_async_run_delayed_refs(fs_info,
dd4b857a
WX
4670 trans->delayed_ref_updates * 2,
4671 trans->transid, 0);
28f75a0e
CM
4672 if (be_nice) {
4673 if (truncate_space_check(trans, root,
4674 extent_num_bytes)) {
4675 should_end = 1;
4676 }
4677 if (btrfs_should_throttle_delayed_refs(trans,
2ff7e61e 4678 fs_info))
28f75a0e 4679 should_throttle = 1;
28f75a0e 4680 }
39279cc3 4681 }
85e21bac 4682
8082510e
YZ
4683 if (found_type == BTRFS_INODE_ITEM_KEY)
4684 break;
4685
4686 if (path->slots[0] == 0 ||
1262133b 4687 path->slots[0] != pending_del_slot ||
28f75a0e 4688 should_throttle || should_end) {
8082510e
YZ
4689 if (pending_del_nr) {
4690 ret = btrfs_del_items(trans, root, path,
4691 pending_del_slot,
4692 pending_del_nr);
79787eaa 4693 if (ret) {
66642832 4694 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4695 goto error;
4696 }
8082510e
YZ
4697 pending_del_nr = 0;
4698 }
b3b4aa74 4699 btrfs_release_path(path);
28f75a0e 4700 if (should_throttle) {
1262133b
JB
4701 unsigned long updates = trans->delayed_ref_updates;
4702 if (updates) {
4703 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4704 ret = btrfs_run_delayed_refs(trans,
4705 fs_info,
4706 updates * 2);
1262133b
JB
4707 if (ret && !err)
4708 err = ret;
4709 }
4710 }
28f75a0e
CM
4711 /*
4712 * if we failed to refill our space rsv, bail out
4713 * and let the transaction restart
4714 */
4715 if (should_end) {
4716 err = -EAGAIN;
4717 goto error;
4718 }
85e21bac 4719 goto search_again;
8082510e
YZ
4720 } else {
4721 path->slots[0]--;
85e21bac 4722 }
39279cc3 4723 }
8082510e 4724out:
85e21bac
CM
4725 if (pending_del_nr) {
4726 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4727 pending_del_nr);
79787eaa 4728 if (ret)
66642832 4729 btrfs_abort_transaction(trans, ret);
85e21bac 4730 }
79787eaa 4731error:
76b42abb
FM
4732 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4733 ASSERT(last_size >= new_size);
4734 if (!err && last_size > new_size)
4735 last_size = new_size;
7f4f6e0a 4736 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4737 }
28ed1345 4738
39279cc3 4739 btrfs_free_path(path);
28ed1345 4740
ee22184b 4741 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4742 unsigned long updates = trans->delayed_ref_updates;
4743 if (updates) {
4744 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4745 ret = btrfs_run_delayed_refs(trans, fs_info,
4746 updates * 2);
28ed1345
CM
4747 if (ret && !err)
4748 err = ret;
4749 }
4750 }
8082510e 4751 return err;
39279cc3
CM
4752}
4753
4754/*
9703fefe 4755 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4756 * @inode - inode that we're zeroing
4757 * @from - the offset to start zeroing
4758 * @len - the length to zero, 0 to zero the entire range respective to the
4759 * offset
4760 * @front - zero up to the offset instead of from the offset on
4761 *
9703fefe 4762 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4763 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4764 */
9703fefe 4765int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4766 int front)
39279cc3 4767{
0b246afa 4768 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4769 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4770 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4771 struct btrfs_ordered_extent *ordered;
2ac55d41 4772 struct extent_state *cached_state = NULL;
e6dcd2dc 4773 char *kaddr;
0b246afa 4774 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4775 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4776 unsigned offset = from & (blocksize - 1);
39279cc3 4777 struct page *page;
3b16a4e3 4778 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4779 int ret = 0;
9703fefe
CR
4780 u64 block_start;
4781 u64 block_end;
39279cc3 4782
2aaa6655
JB
4783 if ((offset & (blocksize - 1)) == 0 &&
4784 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4785 goto out;
9703fefe 4786
7cf5b976 4787 ret = btrfs_delalloc_reserve_space(inode,
9703fefe 4788 round_down(from, blocksize), blocksize);
5d5e103a
JB
4789 if (ret)
4790 goto out;
39279cc3 4791
211c17f5 4792again:
3b16a4e3 4793 page = find_or_create_page(mapping, index, mask);
5d5e103a 4794 if (!page) {
7cf5b976 4795 btrfs_delalloc_release_space(inode,
9703fefe
CR
4796 round_down(from, blocksize),
4797 blocksize);
ac6a2b36 4798 ret = -ENOMEM;
39279cc3 4799 goto out;
5d5e103a 4800 }
e6dcd2dc 4801
9703fefe
CR
4802 block_start = round_down(from, blocksize);
4803 block_end = block_start + blocksize - 1;
e6dcd2dc 4804
39279cc3 4805 if (!PageUptodate(page)) {
9ebefb18 4806 ret = btrfs_readpage(NULL, page);
39279cc3 4807 lock_page(page);
211c17f5
CM
4808 if (page->mapping != mapping) {
4809 unlock_page(page);
09cbfeaf 4810 put_page(page);
211c17f5
CM
4811 goto again;
4812 }
39279cc3
CM
4813 if (!PageUptodate(page)) {
4814 ret = -EIO;
89642229 4815 goto out_unlock;
39279cc3
CM
4816 }
4817 }
211c17f5 4818 wait_on_page_writeback(page);
e6dcd2dc 4819
9703fefe 4820 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4821 set_page_extent_mapped(page);
4822
9703fefe 4823 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4824 if (ordered) {
9703fefe 4825 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4826 &cached_state, GFP_NOFS);
e6dcd2dc 4827 unlock_page(page);
09cbfeaf 4828 put_page(page);
eb84ae03 4829 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4830 btrfs_put_ordered_extent(ordered);
4831 goto again;
4832 }
4833
9703fefe 4834 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4835 EXTENT_DIRTY | EXTENT_DELALLOC |
4836 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4837 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4838
9703fefe 4839 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
ba8b04c1 4840 &cached_state, 0);
9ed74f2d 4841 if (ret) {
9703fefe 4842 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4843 &cached_state, GFP_NOFS);
9ed74f2d
JB
4844 goto out_unlock;
4845 }
4846
9703fefe 4847 if (offset != blocksize) {
2aaa6655 4848 if (!len)
9703fefe 4849 len = blocksize - offset;
e6dcd2dc 4850 kaddr = kmap(page);
2aaa6655 4851 if (front)
9703fefe
CR
4852 memset(kaddr + (block_start - page_offset(page)),
4853 0, offset);
2aaa6655 4854 else
9703fefe
CR
4855 memset(kaddr + (block_start - page_offset(page)) + offset,
4856 0, len);
e6dcd2dc
CM
4857 flush_dcache_page(page);
4858 kunmap(page);
4859 }
247e743c 4860 ClearPageChecked(page);
e6dcd2dc 4861 set_page_dirty(page);
9703fefe 4862 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4863 GFP_NOFS);
39279cc3 4864
89642229 4865out_unlock:
5d5e103a 4866 if (ret)
9703fefe
CR
4867 btrfs_delalloc_release_space(inode, block_start,
4868 blocksize);
39279cc3 4869 unlock_page(page);
09cbfeaf 4870 put_page(page);
39279cc3
CM
4871out:
4872 return ret;
4873}
4874
16e7549f
JB
4875static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4876 u64 offset, u64 len)
4877{
0b246afa 4878 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4879 struct btrfs_trans_handle *trans;
4880 int ret;
4881
4882 /*
4883 * Still need to make sure the inode looks like it's been updated so
4884 * that any holes get logged if we fsync.
4885 */
0b246afa
JM
4886 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4887 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4888 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4889 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4890 return 0;
4891 }
4892
4893 /*
4894 * 1 - for the one we're dropping
4895 * 1 - for the one we're adding
4896 * 1 - for updating the inode.
4897 */
4898 trans = btrfs_start_transaction(root, 3);
4899 if (IS_ERR(trans))
4900 return PTR_ERR(trans);
4901
4902 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4903 if (ret) {
66642832 4904 btrfs_abort_transaction(trans, ret);
3a45bb20 4905 btrfs_end_transaction(trans);
16e7549f
JB
4906 return ret;
4907 }
4908
f85b7379
DS
4909 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4910 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4911 if (ret)
66642832 4912 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4913 else
4914 btrfs_update_inode(trans, root, inode);
3a45bb20 4915 btrfs_end_transaction(trans);
16e7549f
JB
4916 return ret;
4917}
4918
695a0d0d
JB
4919/*
4920 * This function puts in dummy file extents for the area we're creating a hole
4921 * for. So if we are truncating this file to a larger size we need to insert
4922 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4923 * the range between oldsize and size
4924 */
a41ad394 4925int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4926{
0b246afa 4927 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4928 struct btrfs_root *root = BTRFS_I(inode)->root;
4929 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4930 struct extent_map *em = NULL;
2ac55d41 4931 struct extent_state *cached_state = NULL;
5dc562c5 4932 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4933 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4934 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4935 u64 last_byte;
4936 u64 cur_offset;
4937 u64 hole_size;
9ed74f2d 4938 int err = 0;
39279cc3 4939
a71754fc 4940 /*
9703fefe
CR
4941 * If our size started in the middle of a block we need to zero out the
4942 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4943 * expose stale data.
4944 */
9703fefe 4945 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4946 if (err)
4947 return err;
4948
9036c102
YZ
4949 if (size <= hole_start)
4950 return 0;
4951
9036c102
YZ
4952 while (1) {
4953 struct btrfs_ordered_extent *ordered;
fa7c1494 4954
ff13db41 4955 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4956 &cached_state);
a776c6fa 4957 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
fa7c1494 4958 block_end - hole_start);
9036c102
YZ
4959 if (!ordered)
4960 break;
2ac55d41
JB
4961 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4962 &cached_state, GFP_NOFS);
fa7c1494 4963 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4964 btrfs_put_ordered_extent(ordered);
4965 }
39279cc3 4966
9036c102
YZ
4967 cur_offset = hole_start;
4968 while (1) {
fc4f21b1 4969 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 4970 block_end - cur_offset, 0);
79787eaa
JM
4971 if (IS_ERR(em)) {
4972 err = PTR_ERR(em);
f2767956 4973 em = NULL;
79787eaa
JM
4974 break;
4975 }
9036c102 4976 last_byte = min(extent_map_end(em), block_end);
0b246afa 4977 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 4978 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4979 struct extent_map *hole_em;
9036c102 4980 hole_size = last_byte - cur_offset;
9ed74f2d 4981
16e7549f
JB
4982 err = maybe_insert_hole(root, inode, cur_offset,
4983 hole_size);
4984 if (err)
3893e33b 4985 break;
dcdbc059 4986 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
4987 cur_offset + hole_size - 1, 0);
4988 hole_em = alloc_extent_map();
4989 if (!hole_em) {
4990 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4991 &BTRFS_I(inode)->runtime_flags);
4992 goto next;
4993 }
4994 hole_em->start = cur_offset;
4995 hole_em->len = hole_size;
4996 hole_em->orig_start = cur_offset;
8082510e 4997
5dc562c5
JB
4998 hole_em->block_start = EXTENT_MAP_HOLE;
4999 hole_em->block_len = 0;
b4939680 5000 hole_em->orig_block_len = 0;
cc95bef6 5001 hole_em->ram_bytes = hole_size;
0b246afa 5002 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 5003 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 5004 hole_em->generation = fs_info->generation;
8082510e 5005
5dc562c5
JB
5006 while (1) {
5007 write_lock(&em_tree->lock);
09a2a8f9 5008 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
5009 write_unlock(&em_tree->lock);
5010 if (err != -EEXIST)
5011 break;
dcdbc059
NB
5012 btrfs_drop_extent_cache(BTRFS_I(inode),
5013 cur_offset,
5dc562c5
JB
5014 cur_offset +
5015 hole_size - 1, 0);
5016 }
5017 free_extent_map(hole_em);
9036c102 5018 }
16e7549f 5019next:
9036c102 5020 free_extent_map(em);
a22285a6 5021 em = NULL;
9036c102 5022 cur_offset = last_byte;
8082510e 5023 if (cur_offset >= block_end)
9036c102
YZ
5024 break;
5025 }
a22285a6 5026 free_extent_map(em);
2ac55d41
JB
5027 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
5028 GFP_NOFS);
9036c102
YZ
5029 return err;
5030}
39279cc3 5031
3972f260 5032static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 5033{
f4a2f4c5
MX
5034 struct btrfs_root *root = BTRFS_I(inode)->root;
5035 struct btrfs_trans_handle *trans;
a41ad394 5036 loff_t oldsize = i_size_read(inode);
3972f260
ES
5037 loff_t newsize = attr->ia_size;
5038 int mask = attr->ia_valid;
8082510e
YZ
5039 int ret;
5040
3972f260
ES
5041 /*
5042 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5043 * special case where we need to update the times despite not having
5044 * these flags set. For all other operations the VFS set these flags
5045 * explicitly if it wants a timestamp update.
5046 */
dff6efc3
CH
5047 if (newsize != oldsize) {
5048 inode_inc_iversion(inode);
5049 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5050 inode->i_ctime = inode->i_mtime =
c2050a45 5051 current_time(inode);
dff6efc3 5052 }
3972f260 5053
a41ad394 5054 if (newsize > oldsize) {
9ea24bbe
FM
5055 /*
5056 * Don't do an expanding truncate while snapshoting is ongoing.
5057 * This is to ensure the snapshot captures a fully consistent
5058 * state of this file - if the snapshot captures this expanding
5059 * truncation, it must capture all writes that happened before
5060 * this truncation.
5061 */
0bc19f90 5062 btrfs_wait_for_snapshot_creation(root);
a41ad394 5063 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
5064 if (ret) {
5065 btrfs_end_write_no_snapshoting(root);
8082510e 5066 return ret;
9ea24bbe 5067 }
8082510e 5068
f4a2f4c5 5069 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
5070 if (IS_ERR(trans)) {
5071 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 5072 return PTR_ERR(trans);
9ea24bbe 5073 }
f4a2f4c5
MX
5074
5075 i_size_write(inode, newsize);
5076 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5077 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5078 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 5079 btrfs_end_write_no_snapshoting(root);
3a45bb20 5080 btrfs_end_transaction(trans);
a41ad394 5081 } else {
8082510e 5082
a41ad394
JB
5083 /*
5084 * We're truncating a file that used to have good data down to
5085 * zero. Make sure it gets into the ordered flush list so that
5086 * any new writes get down to disk quickly.
5087 */
5088 if (newsize == 0)
72ac3c0d
JB
5089 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5090 &BTRFS_I(inode)->runtime_flags);
8082510e 5091
f3fe820c
JB
5092 /*
5093 * 1 for the orphan item we're going to add
5094 * 1 for the orphan item deletion.
5095 */
5096 trans = btrfs_start_transaction(root, 2);
5097 if (IS_ERR(trans))
5098 return PTR_ERR(trans);
5099
5100 /*
5101 * We need to do this in case we fail at _any_ point during the
5102 * actual truncate. Once we do the truncate_setsize we could
5103 * invalidate pages which forces any outstanding ordered io to
5104 * be instantly completed which will give us extents that need
5105 * to be truncated. If we fail to get an orphan inode down we
5106 * could have left over extents that were never meant to live,
01327610 5107 * so we need to guarantee from this point on that everything
f3fe820c
JB
5108 * will be consistent.
5109 */
73f2e545 5110 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 5111 btrfs_end_transaction(trans);
f3fe820c
JB
5112 if (ret)
5113 return ret;
5114
a41ad394
JB
5115 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5116 truncate_setsize(inode, newsize);
2e60a51e
MX
5117
5118 /* Disable nonlocked read DIO to avoid the end less truncate */
abcefb1e 5119 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 5120 inode_dio_wait(inode);
0b581701 5121 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 5122
a41ad394 5123 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5124 if (ret && inode->i_nlink) {
5125 int err;
5126
19fd2df5
LB
5127 /* To get a stable disk_i_size */
5128 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5129 if (err) {
3d6ae7bb 5130 btrfs_orphan_del(NULL, BTRFS_I(inode));
19fd2df5
LB
5131 return err;
5132 }
5133
7f4f6e0a
JB
5134 /*
5135 * failed to truncate, disk_i_size is only adjusted down
5136 * as we remove extents, so it should represent the true
5137 * size of the inode, so reset the in memory size and
5138 * delete our orphan entry.
5139 */
5140 trans = btrfs_join_transaction(root);
5141 if (IS_ERR(trans)) {
3d6ae7bb 5142 btrfs_orphan_del(NULL, BTRFS_I(inode));
7f4f6e0a
JB
5143 return ret;
5144 }
5145 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
3d6ae7bb 5146 err = btrfs_orphan_del(trans, BTRFS_I(inode));
7f4f6e0a 5147 if (err)
66642832 5148 btrfs_abort_transaction(trans, err);
3a45bb20 5149 btrfs_end_transaction(trans);
7f4f6e0a 5150 }
8082510e
YZ
5151 }
5152
a41ad394 5153 return ret;
8082510e
YZ
5154}
5155
9036c102
YZ
5156static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5157{
2b0143b5 5158 struct inode *inode = d_inode(dentry);
b83cc969 5159 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5160 int err;
39279cc3 5161
b83cc969
LZ
5162 if (btrfs_root_readonly(root))
5163 return -EROFS;
5164
31051c85 5165 err = setattr_prepare(dentry, attr);
9036c102
YZ
5166 if (err)
5167 return err;
2bf5a725 5168
5a3f23d5 5169 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5170 err = btrfs_setsize(inode, attr);
8082510e
YZ
5171 if (err)
5172 return err;
39279cc3 5173 }
9036c102 5174
1025774c
CH
5175 if (attr->ia_valid) {
5176 setattr_copy(inode, attr);
0c4d2d95 5177 inode_inc_iversion(inode);
22c44fe6 5178 err = btrfs_dirty_inode(inode);
1025774c 5179
22c44fe6 5180 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5181 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5182 }
33268eaf 5183
39279cc3
CM
5184 return err;
5185}
61295eb8 5186
131e404a
FDBM
5187/*
5188 * While truncating the inode pages during eviction, we get the VFS calling
5189 * btrfs_invalidatepage() against each page of the inode. This is slow because
5190 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5191 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5192 * extent_state structures over and over, wasting lots of time.
5193 *
5194 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5195 * those expensive operations on a per page basis and do only the ordered io
5196 * finishing, while we release here the extent_map and extent_state structures,
5197 * without the excessive merging and splitting.
5198 */
5199static void evict_inode_truncate_pages(struct inode *inode)
5200{
5201 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5202 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5203 struct rb_node *node;
5204
5205 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5206 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5207
5208 write_lock(&map_tree->lock);
5209 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5210 struct extent_map *em;
5211
5212 node = rb_first(&map_tree->map);
5213 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5214 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5215 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5216 remove_extent_mapping(map_tree, em);
5217 free_extent_map(em);
7064dd5c
FM
5218 if (need_resched()) {
5219 write_unlock(&map_tree->lock);
5220 cond_resched();
5221 write_lock(&map_tree->lock);
5222 }
131e404a
FDBM
5223 }
5224 write_unlock(&map_tree->lock);
5225
6ca07097
FM
5226 /*
5227 * Keep looping until we have no more ranges in the io tree.
5228 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5229 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5230 * still in progress (unlocked the pages in the bio but did not yet
5231 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5232 * ranges can still be locked and eviction started because before
5233 * submitting those bios, which are executed by a separate task (work
5234 * queue kthread), inode references (inode->i_count) were not taken
5235 * (which would be dropped in the end io callback of each bio).
5236 * Therefore here we effectively end up waiting for those bios and
5237 * anyone else holding locked ranges without having bumped the inode's
5238 * reference count - if we don't do it, when they access the inode's
5239 * io_tree to unlock a range it may be too late, leading to an
5240 * use-after-free issue.
5241 */
131e404a
FDBM
5242 spin_lock(&io_tree->lock);
5243 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5244 struct extent_state *state;
5245 struct extent_state *cached_state = NULL;
6ca07097
FM
5246 u64 start;
5247 u64 end;
131e404a
FDBM
5248
5249 node = rb_first(&io_tree->state);
5250 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5251 start = state->start;
5252 end = state->end;
131e404a
FDBM
5253 spin_unlock(&io_tree->lock);
5254
ff13db41 5255 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5256
5257 /*
5258 * If still has DELALLOC flag, the extent didn't reach disk,
5259 * and its reserved space won't be freed by delayed_ref.
5260 * So we need to free its reserved space here.
5261 * (Refer to comment in btrfs_invalidatepage, case 2)
5262 *
5263 * Note, end is the bytenr of last byte, so we need + 1 here.
5264 */
5265 if (state->state & EXTENT_DELALLOC)
5266 btrfs_qgroup_free_data(inode, start, end - start + 1);
5267
6ca07097 5268 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5269 EXTENT_LOCKED | EXTENT_DIRTY |
5270 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5271 EXTENT_DEFRAG, 1, 1,
5272 &cached_state, GFP_NOFS);
131e404a 5273
7064dd5c 5274 cond_resched();
131e404a
FDBM
5275 spin_lock(&io_tree->lock);
5276 }
5277 spin_unlock(&io_tree->lock);
5278}
5279
bd555975 5280void btrfs_evict_inode(struct inode *inode)
39279cc3 5281{
0b246afa 5282 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5283 struct btrfs_trans_handle *trans;
5284 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5285 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5286 int steal_from_global = 0;
3d48d981 5287 u64 min_size;
39279cc3
CM
5288 int ret;
5289
1abe9b8a 5290 trace_btrfs_inode_evict(inode);
5291
3d48d981
NB
5292 if (!root) {
5293 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5294 return;
5295 }
5296
0b246afa 5297 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
3d48d981 5298
131e404a
FDBM
5299 evict_inode_truncate_pages(inode);
5300
69e9c6c6
SB
5301 if (inode->i_nlink &&
5302 ((btrfs_root_refs(&root->root_item) != 0 &&
5303 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5304 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5305 goto no_delete;
5306
39279cc3 5307 if (is_bad_inode(inode)) {
3d6ae7bb 5308 btrfs_orphan_del(NULL, BTRFS_I(inode));
39279cc3
CM
5309 goto no_delete;
5310 }
bd555975 5311 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5312 if (!special_file(inode->i_mode))
5313 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5314
7ab7956e 5315 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5316
0b246afa 5317 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
6bf02314 5318 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5319 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5320 goto no_delete;
5321 }
5322
76dda93c 5323 if (inode->i_nlink > 0) {
69e9c6c6
SB
5324 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5325 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5326 goto no_delete;
5327 }
5328
aa79021f 5329 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
0e8c36a9 5330 if (ret) {
3d6ae7bb 5331 btrfs_orphan_del(NULL, BTRFS_I(inode));
0e8c36a9
MX
5332 goto no_delete;
5333 }
5334
2ff7e61e 5335 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
4289a667 5336 if (!rsv) {
3d6ae7bb 5337 btrfs_orphan_del(NULL, BTRFS_I(inode));
4289a667
JB
5338 goto no_delete;
5339 }
4a338542 5340 rsv->size = min_size;
ca7e70f5 5341 rsv->failfast = 1;
0b246afa 5342 global_rsv = &fs_info->global_block_rsv;
4289a667 5343
6ef06d27 5344 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5345
4289a667 5346 /*
8407aa46
MX
5347 * This is a bit simpler than btrfs_truncate since we've already
5348 * reserved our space for our orphan item in the unlink, so we just
5349 * need to reserve some slack space in case we add bytes and update
5350 * inode item when doing the truncate.
4289a667 5351 */
8082510e 5352 while (1) {
08e007d2
MX
5353 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5354 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5355
5356 /*
5357 * Try and steal from the global reserve since we will
5358 * likely not use this space anyway, we want to try as
5359 * hard as possible to get this to work.
5360 */
5361 if (ret)
3bce876f
JB
5362 steal_from_global++;
5363 else
5364 steal_from_global = 0;
5365 ret = 0;
d68fc57b 5366
3bce876f
JB
5367 /*
5368 * steal_from_global == 0: we reserved stuff, hooray!
5369 * steal_from_global == 1: we didn't reserve stuff, boo!
5370 * steal_from_global == 2: we've committed, still not a lot of
5371 * room but maybe we'll have room in the global reserve this
5372 * time.
5373 * steal_from_global == 3: abandon all hope!
5374 */
5375 if (steal_from_global > 2) {
0b246afa
JM
5376 btrfs_warn(fs_info,
5377 "Could not get space for a delete, will truncate on mount %d",
5378 ret);
3d6ae7bb 5379 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5380 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5381 goto no_delete;
d68fc57b 5382 }
7b128766 5383
0e8c36a9 5384 trans = btrfs_join_transaction(root);
4289a667 5385 if (IS_ERR(trans)) {
3d6ae7bb 5386 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5387 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5388 goto no_delete;
d68fc57b 5389 }
7b128766 5390
3bce876f 5391 /*
01327610 5392 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5393 * sure there is room to do it, if not we need to commit and try
5394 * again.
5395 */
5396 if (steal_from_global) {
2ff7e61e 5397 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
3bce876f 5398 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
25d609f8 5399 min_size, 0);
3bce876f
JB
5400 else
5401 ret = -ENOSPC;
5402 }
5403
5404 /*
5405 * Couldn't steal from the global reserve, we have too much
5406 * pending stuff built up, commit the transaction and try it
5407 * again.
5408 */
5409 if (ret) {
3a45bb20 5410 ret = btrfs_commit_transaction(trans);
3bce876f 5411 if (ret) {
3d6ae7bb 5412 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5413 btrfs_free_block_rsv(fs_info, rsv);
3bce876f
JB
5414 goto no_delete;
5415 }
5416 continue;
5417 } else {
5418 steal_from_global = 0;
5419 }
5420
4289a667
JB
5421 trans->block_rsv = rsv;
5422
d68fc57b 5423 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5424 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5425 break;
85e21bac 5426
0b246afa 5427 trans->block_rsv = &fs_info->trans_block_rsv;
3a45bb20 5428 btrfs_end_transaction(trans);
8082510e 5429 trans = NULL;
2ff7e61e 5430 btrfs_btree_balance_dirty(fs_info);
8082510e 5431 }
5f39d397 5432
2ff7e61e 5433 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5434
4ef31a45
JB
5435 /*
5436 * Errors here aren't a big deal, it just means we leave orphan items
5437 * in the tree. They will be cleaned up on the next mount.
5438 */
8082510e 5439 if (ret == 0) {
4289a667 5440 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 5441 btrfs_orphan_del(trans, BTRFS_I(inode));
4ef31a45 5442 } else {
3d6ae7bb 5443 btrfs_orphan_del(NULL, BTRFS_I(inode));
8082510e 5444 }
54aa1f4d 5445
0b246afa
JM
5446 trans->block_rsv = &fs_info->trans_block_rsv;
5447 if (!(root == fs_info->tree_root ||
581bb050 5448 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5449 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5450
3a45bb20 5451 btrfs_end_transaction(trans);
2ff7e61e 5452 btrfs_btree_balance_dirty(fs_info);
39279cc3 5453no_delete:
f48d1cf5 5454 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5455 clear_inode(inode);
39279cc3
CM
5456}
5457
5458/*
5459 * this returns the key found in the dir entry in the location pointer.
5460 * If no dir entries were found, location->objectid is 0.
5461 */
5462static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5463 struct btrfs_key *location)
5464{
5465 const char *name = dentry->d_name.name;
5466 int namelen = dentry->d_name.len;
5467 struct btrfs_dir_item *di;
5468 struct btrfs_path *path;
5469 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5470 int ret = 0;
39279cc3
CM
5471
5472 path = btrfs_alloc_path();
d8926bb3
MF
5473 if (!path)
5474 return -ENOMEM;
3954401f 5475
f85b7379
DS
5476 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5477 name, namelen, 0);
0d9f7f3e
Y
5478 if (IS_ERR(di))
5479 ret = PTR_ERR(di);
d397712b 5480
c704005d 5481 if (IS_ERR_OR_NULL(di))
3954401f 5482 goto out_err;
d397712b 5483
5f39d397 5484 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5485out:
39279cc3
CM
5486 btrfs_free_path(path);
5487 return ret;
3954401f
CM
5488out_err:
5489 location->objectid = 0;
5490 goto out;
39279cc3
CM
5491}
5492
5493/*
5494 * when we hit a tree root in a directory, the btrfs part of the inode
5495 * needs to be changed to reflect the root directory of the tree root. This
5496 * is kind of like crossing a mount point.
5497 */
2ff7e61e 5498static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5499 struct inode *dir,
5500 struct dentry *dentry,
5501 struct btrfs_key *location,
5502 struct btrfs_root **sub_root)
39279cc3 5503{
4df27c4d
YZ
5504 struct btrfs_path *path;
5505 struct btrfs_root *new_root;
5506 struct btrfs_root_ref *ref;
5507 struct extent_buffer *leaf;
1d4c08e0 5508 struct btrfs_key key;
4df27c4d
YZ
5509 int ret;
5510 int err = 0;
39279cc3 5511
4df27c4d
YZ
5512 path = btrfs_alloc_path();
5513 if (!path) {
5514 err = -ENOMEM;
5515 goto out;
5516 }
39279cc3 5517
4df27c4d 5518 err = -ENOENT;
1d4c08e0
DS
5519 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5520 key.type = BTRFS_ROOT_REF_KEY;
5521 key.offset = location->objectid;
5522
0b246afa 5523 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5524 if (ret) {
5525 if (ret < 0)
5526 err = ret;
5527 goto out;
5528 }
39279cc3 5529
4df27c4d
YZ
5530 leaf = path->nodes[0];
5531 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5532 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5533 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5534 goto out;
39279cc3 5535
4df27c4d
YZ
5536 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5537 (unsigned long)(ref + 1),
5538 dentry->d_name.len);
5539 if (ret)
5540 goto out;
5541
b3b4aa74 5542 btrfs_release_path(path);
4df27c4d 5543
0b246afa 5544 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5545 if (IS_ERR(new_root)) {
5546 err = PTR_ERR(new_root);
5547 goto out;
5548 }
5549
4df27c4d
YZ
5550 *sub_root = new_root;
5551 location->objectid = btrfs_root_dirid(&new_root->root_item);
5552 location->type = BTRFS_INODE_ITEM_KEY;
5553 location->offset = 0;
5554 err = 0;
5555out:
5556 btrfs_free_path(path);
5557 return err;
39279cc3
CM
5558}
5559
5d4f98a2
YZ
5560static void inode_tree_add(struct inode *inode)
5561{
5562 struct btrfs_root *root = BTRFS_I(inode)->root;
5563 struct btrfs_inode *entry;
03e860bd
FNP
5564 struct rb_node **p;
5565 struct rb_node *parent;
cef21937 5566 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5567 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5568
1d3382cb 5569 if (inode_unhashed(inode))
76dda93c 5570 return;
e1409cef 5571 parent = NULL;
5d4f98a2 5572 spin_lock(&root->inode_lock);
e1409cef 5573 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5574 while (*p) {
5575 parent = *p;
5576 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5577
4a0cc7ca 5578 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5579 p = &parent->rb_left;
4a0cc7ca 5580 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5581 p = &parent->rb_right;
5d4f98a2
YZ
5582 else {
5583 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5584 (I_WILL_FREE | I_FREEING)));
cef21937 5585 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5586 RB_CLEAR_NODE(parent);
5587 spin_unlock(&root->inode_lock);
cef21937 5588 return;
5d4f98a2
YZ
5589 }
5590 }
cef21937
FDBM
5591 rb_link_node(new, parent, p);
5592 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5593 spin_unlock(&root->inode_lock);
5594}
5595
5596static void inode_tree_del(struct inode *inode)
5597{
0b246afa 5598 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5599 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5600 int empty = 0;
5d4f98a2 5601
03e860bd 5602 spin_lock(&root->inode_lock);
5d4f98a2 5603 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5604 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5605 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5606 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5607 }
03e860bd 5608 spin_unlock(&root->inode_lock);
76dda93c 5609
69e9c6c6 5610 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5611 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5612 spin_lock(&root->inode_lock);
5613 empty = RB_EMPTY_ROOT(&root->inode_tree);
5614 spin_unlock(&root->inode_lock);
5615 if (empty)
5616 btrfs_add_dead_root(root);
5617 }
5618}
5619
143bede5 5620void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c 5621{
0b246afa 5622 struct btrfs_fs_info *fs_info = root->fs_info;
76dda93c
YZ
5623 struct rb_node *node;
5624 struct rb_node *prev;
5625 struct btrfs_inode *entry;
5626 struct inode *inode;
5627 u64 objectid = 0;
5628
0b246afa 5629 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
7813b3db 5630 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5631
5632 spin_lock(&root->inode_lock);
5633again:
5634 node = root->inode_tree.rb_node;
5635 prev = NULL;
5636 while (node) {
5637 prev = node;
5638 entry = rb_entry(node, struct btrfs_inode, rb_node);
5639
4a0cc7ca 5640 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c 5641 node = node->rb_left;
4a0cc7ca 5642 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c
YZ
5643 node = node->rb_right;
5644 else
5645 break;
5646 }
5647 if (!node) {
5648 while (prev) {
5649 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4a0cc7ca 5650 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
76dda93c
YZ
5651 node = prev;
5652 break;
5653 }
5654 prev = rb_next(prev);
5655 }
5656 }
5657 while (node) {
5658 entry = rb_entry(node, struct btrfs_inode, rb_node);
4a0cc7ca 5659 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
76dda93c
YZ
5660 inode = igrab(&entry->vfs_inode);
5661 if (inode) {
5662 spin_unlock(&root->inode_lock);
5663 if (atomic_read(&inode->i_count) > 1)
5664 d_prune_aliases(inode);
5665 /*
45321ac5 5666 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5667 * the inode cache when its usage count
5668 * hits zero.
5669 */
5670 iput(inode);
5671 cond_resched();
5672 spin_lock(&root->inode_lock);
5673 goto again;
5674 }
5675
5676 if (cond_resched_lock(&root->inode_lock))
5677 goto again;
5678
5679 node = rb_next(node);
5680 }
5681 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5682}
5683
e02119d5
CM
5684static int btrfs_init_locked_inode(struct inode *inode, void *p)
5685{
5686 struct btrfs_iget_args *args = p;
90d3e592
CM
5687 inode->i_ino = args->location->objectid;
5688 memcpy(&BTRFS_I(inode)->location, args->location,
5689 sizeof(*args->location));
e02119d5 5690 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5691 return 0;
5692}
5693
5694static int btrfs_find_actor(struct inode *inode, void *opaque)
5695{
5696 struct btrfs_iget_args *args = opaque;
90d3e592 5697 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5698 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5699}
5700
5d4f98a2 5701static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5702 struct btrfs_key *location,
5d4f98a2 5703 struct btrfs_root *root)
39279cc3
CM
5704{
5705 struct inode *inode;
5706 struct btrfs_iget_args args;
90d3e592 5707 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5708
90d3e592 5709 args.location = location;
39279cc3
CM
5710 args.root = root;
5711
778ba82b 5712 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5713 btrfs_init_locked_inode,
5714 (void *)&args);
5715 return inode;
5716}
5717
1a54ef8c
BR
5718/* Get an inode object given its location and corresponding root.
5719 * Returns in *is_new if the inode was read from disk
5720 */
5721struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5722 struct btrfs_root *root, int *new)
1a54ef8c
BR
5723{
5724 struct inode *inode;
5725
90d3e592 5726 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5727 if (!inode)
5d4f98a2 5728 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5729
5730 if (inode->i_state & I_NEW) {
67710892
FM
5731 int ret;
5732
5733 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5734 if (!is_bad_inode(inode)) {
5735 inode_tree_add(inode);
5736 unlock_new_inode(inode);
5737 if (new)
5738 *new = 1;
5739 } else {
e0b6d65b
ST
5740 unlock_new_inode(inode);
5741 iput(inode);
67710892
FM
5742 ASSERT(ret < 0);
5743 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5744 }
5745 }
5746
1a54ef8c
BR
5747 return inode;
5748}
5749
4df27c4d
YZ
5750static struct inode *new_simple_dir(struct super_block *s,
5751 struct btrfs_key *key,
5752 struct btrfs_root *root)
5753{
5754 struct inode *inode = new_inode(s);
5755
5756 if (!inode)
5757 return ERR_PTR(-ENOMEM);
5758
4df27c4d
YZ
5759 BTRFS_I(inode)->root = root;
5760 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5761 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5762
5763 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5764 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5765 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5766 inode->i_fop = &simple_dir_operations;
5767 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5768 inode->i_mtime = current_time(inode);
9cc97d64 5769 inode->i_atime = inode->i_mtime;
5770 inode->i_ctime = inode->i_mtime;
5771 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5772
5773 return inode;
5774}
5775
3de4586c 5776struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5777{
0b246afa 5778 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5779 struct inode *inode;
4df27c4d 5780 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5781 struct btrfs_root *sub_root = root;
5782 struct btrfs_key location;
76dda93c 5783 int index;
b4aff1f8 5784 int ret = 0;
39279cc3
CM
5785
5786 if (dentry->d_name.len > BTRFS_NAME_LEN)
5787 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5788
39e3c955 5789 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5790 if (ret < 0)
5791 return ERR_PTR(ret);
5f39d397 5792
4df27c4d 5793 if (location.objectid == 0)
5662344b 5794 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5795
5796 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5797 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5798 return inode;
5799 }
5800
5801 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5802
0b246afa 5803 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5804 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5805 &location, &sub_root);
5806 if (ret < 0) {
5807 if (ret != -ENOENT)
5808 inode = ERR_PTR(ret);
5809 else
5810 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5811 } else {
73f73415 5812 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5813 }
0b246afa 5814 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5815
34d19bad 5816 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5817 down_read(&fs_info->cleanup_work_sem);
c71bf099 5818 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5819 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5820 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5821 if (ret) {
5822 iput(inode);
66b4ffd1 5823 inode = ERR_PTR(ret);
01cd3367 5824 }
c71bf099
YZ
5825 }
5826
3de4586c
CM
5827 return inode;
5828}
5829
fe15ce44 5830static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5831{
5832 struct btrfs_root *root;
2b0143b5 5833 struct inode *inode = d_inode(dentry);
76dda93c 5834
848cce0d 5835 if (!inode && !IS_ROOT(dentry))
2b0143b5 5836 inode = d_inode(dentry->d_parent);
76dda93c 5837
848cce0d
LZ
5838 if (inode) {
5839 root = BTRFS_I(inode)->root;
efefb143
YZ
5840 if (btrfs_root_refs(&root->root_item) == 0)
5841 return 1;
848cce0d 5842
4a0cc7ca 5843 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5844 return 1;
efefb143 5845 }
76dda93c
YZ
5846 return 0;
5847}
5848
b4aff1f8
JB
5849static void btrfs_dentry_release(struct dentry *dentry)
5850{
944a4515 5851 kfree(dentry->d_fsdata);
b4aff1f8
JB
5852}
5853
3de4586c 5854static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5855 unsigned int flags)
3de4586c 5856{
5662344b 5857 struct inode *inode;
a66e7cc6 5858
5662344b
TI
5859 inode = btrfs_lookup_dentry(dir, dentry);
5860 if (IS_ERR(inode)) {
5861 if (PTR_ERR(inode) == -ENOENT)
5862 inode = NULL;
5863 else
5864 return ERR_CAST(inode);
5865 }
5866
41d28bca 5867 return d_splice_alias(inode, dentry);
39279cc3
CM
5868}
5869
16cdcec7 5870unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5871 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5872};
5873
9cdda8d3 5874static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5875{
9cdda8d3 5876 struct inode *inode = file_inode(file);
2ff7e61e 5877 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 5878 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3
CM
5879 struct btrfs_dir_item *di;
5880 struct btrfs_key key;
5f39d397 5881 struct btrfs_key found_key;
39279cc3 5882 struct btrfs_path *path;
16cdcec7
MX
5883 struct list_head ins_list;
5884 struct list_head del_list;
39279cc3 5885 int ret;
5f39d397 5886 struct extent_buffer *leaf;
39279cc3 5887 int slot;
39279cc3
CM
5888 unsigned char d_type;
5889 int over = 0;
5f39d397
CM
5890 char tmp_name[32];
5891 char *name_ptr;
5892 int name_len;
02dbfc99 5893 bool put = false;
c2951f32 5894 struct btrfs_key location;
5f39d397 5895
9cdda8d3
AV
5896 if (!dir_emit_dots(file, ctx))
5897 return 0;
5898
49593bfa 5899 path = btrfs_alloc_path();
16cdcec7
MX
5900 if (!path)
5901 return -ENOMEM;
ff5714cc 5902
e4058b54 5903 path->reada = READA_FORWARD;
49593bfa 5904
c2951f32
JM
5905 INIT_LIST_HEAD(&ins_list);
5906 INIT_LIST_HEAD(&del_list);
5907 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5908
c2951f32 5909 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5910 key.offset = ctx->pos;
4a0cc7ca 5911 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5912
39279cc3
CM
5913 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5914 if (ret < 0)
5915 goto err;
49593bfa
DW
5916
5917 while (1) {
5f39d397 5918 leaf = path->nodes[0];
39279cc3 5919 slot = path->slots[0];
b9e03af0
LZ
5920 if (slot >= btrfs_header_nritems(leaf)) {
5921 ret = btrfs_next_leaf(root, path);
5922 if (ret < 0)
5923 goto err;
5924 else if (ret > 0)
5925 break;
5926 continue;
39279cc3 5927 }
3de4586c 5928
5f39d397
CM
5929 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5930
5931 if (found_key.objectid != key.objectid)
39279cc3 5932 break;
c2951f32 5933 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5934 break;
9cdda8d3 5935 if (found_key.offset < ctx->pos)
b9e03af0 5936 goto next;
c2951f32 5937 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5938 goto next;
5f39d397 5939
9cdda8d3 5940 ctx->pos = found_key.offset;
49593bfa 5941
39279cc3 5942 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2ff7e61e 5943 if (verify_dir_item(fs_info, leaf, di))
c2951f32 5944 goto next;
22a94d44 5945
c2951f32
JM
5946 name_len = btrfs_dir_name_len(leaf, di);
5947 if (name_len <= sizeof(tmp_name)) {
5948 name_ptr = tmp_name;
5949 } else {
5950 name_ptr = kmalloc(name_len, GFP_KERNEL);
5951 if (!name_ptr) {
5952 ret = -ENOMEM;
5953 goto err;
5f39d397 5954 }
c2951f32
JM
5955 }
5956 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5957 name_len);
3de4586c 5958
c2951f32
JM
5959 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5960 btrfs_dir_item_key_to_cpu(leaf, di, &location);
fede766f 5961
c2951f32
JM
5962 over = !dir_emit(ctx, name_ptr, name_len, location.objectid,
5963 d_type);
5f39d397 5964
c2951f32
JM
5965 if (name_ptr != tmp_name)
5966 kfree(name_ptr);
5f39d397 5967
c2951f32
JM
5968 if (over)
5969 goto nopos;
d2fbb2b5 5970 ctx->pos++;
b9e03af0
LZ
5971next:
5972 path->slots[0]++;
39279cc3 5973 }
49593bfa 5974
d2fbb2b5 5975 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5976 if (ret)
bc4ef759
DS
5977 goto nopos;
5978
db62efbb
ZB
5979 /*
5980 * Stop new entries from being returned after we return the last
5981 * entry.
5982 *
5983 * New directory entries are assigned a strictly increasing
5984 * offset. This means that new entries created during readdir
5985 * are *guaranteed* to be seen in the future by that readdir.
5986 * This has broken buggy programs which operate on names as
5987 * they're returned by readdir. Until we re-use freed offsets
5988 * we have this hack to stop new entries from being returned
5989 * under the assumption that they'll never reach this huge
5990 * offset.
5991 *
5992 * This is being careful not to overflow 32bit loff_t unless the
5993 * last entry requires it because doing so has broken 32bit apps
5994 * in the past.
5995 */
c2951f32
JM
5996 if (ctx->pos >= INT_MAX)
5997 ctx->pos = LLONG_MAX;
5998 else
5999 ctx->pos = INT_MAX;
39279cc3
CM
6000nopos:
6001 ret = 0;
6002err:
02dbfc99
OS
6003 if (put)
6004 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 6005 btrfs_free_path(path);
39279cc3
CM
6006 return ret;
6007}
6008
a9185b41 6009int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
6010{
6011 struct btrfs_root *root = BTRFS_I(inode)->root;
6012 struct btrfs_trans_handle *trans;
6013 int ret = 0;
0af3d00b 6014 bool nolock = false;
39279cc3 6015
72ac3c0d 6016 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
6017 return 0;
6018
70ddc553
NB
6019 if (btrfs_fs_closing(root->fs_info) &&
6020 btrfs_is_free_space_inode(BTRFS_I(inode)))
82d5902d 6021 nolock = true;
0af3d00b 6022
a9185b41 6023 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 6024 if (nolock)
7a7eaa40 6025 trans = btrfs_join_transaction_nolock(root);
0af3d00b 6026 else
7a7eaa40 6027 trans = btrfs_join_transaction(root);
3612b495
TI
6028 if (IS_ERR(trans))
6029 return PTR_ERR(trans);
3a45bb20 6030 ret = btrfs_commit_transaction(trans);
39279cc3
CM
6031 }
6032 return ret;
6033}
6034
6035/*
54aa1f4d 6036 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6037 * inode changes. But, it is most likely to find the inode in cache.
6038 * FIXME, needs more benchmarking...there are no reasons other than performance
6039 * to keep or drop this code.
6040 */
48a3b636 6041static int btrfs_dirty_inode(struct inode *inode)
39279cc3 6042{
2ff7e61e 6043 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
6044 struct btrfs_root *root = BTRFS_I(inode)->root;
6045 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6046 int ret;
6047
72ac3c0d 6048 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6049 return 0;
39279cc3 6050
7a7eaa40 6051 trans = btrfs_join_transaction(root);
22c44fe6
JB
6052 if (IS_ERR(trans))
6053 return PTR_ERR(trans);
8929ecfa
YZ
6054
6055 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6056 if (ret && ret == -ENOSPC) {
6057 /* whoops, lets try again with the full transaction */
3a45bb20 6058 btrfs_end_transaction(trans);
94b60442 6059 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6060 if (IS_ERR(trans))
6061 return PTR_ERR(trans);
8929ecfa 6062
94b60442 6063 ret = btrfs_update_inode(trans, root, inode);
94b60442 6064 }
3a45bb20 6065 btrfs_end_transaction(trans);
16cdcec7 6066 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6067 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6068
6069 return ret;
6070}
6071
6072/*
6073 * This is a copy of file_update_time. We need this so we can return error on
6074 * ENOSPC for updating the inode in the case of file write and mmap writes.
6075 */
e41f941a
JB
6076static int btrfs_update_time(struct inode *inode, struct timespec *now,
6077 int flags)
22c44fe6 6078{
2bc55652
AB
6079 struct btrfs_root *root = BTRFS_I(inode)->root;
6080
6081 if (btrfs_root_readonly(root))
6082 return -EROFS;
6083
e41f941a 6084 if (flags & S_VERSION)
22c44fe6 6085 inode_inc_iversion(inode);
e41f941a
JB
6086 if (flags & S_CTIME)
6087 inode->i_ctime = *now;
6088 if (flags & S_MTIME)
6089 inode->i_mtime = *now;
6090 if (flags & S_ATIME)
6091 inode->i_atime = *now;
6092 return btrfs_dirty_inode(inode);
39279cc3
CM
6093}
6094
d352ac68
CM
6095/*
6096 * find the highest existing sequence number in a directory
6097 * and then set the in-memory index_cnt variable to reflect
6098 * free sequence numbers
6099 */
4c570655 6100static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6101{
4c570655 6102 struct btrfs_root *root = inode->root;
aec7477b
JB
6103 struct btrfs_key key, found_key;
6104 struct btrfs_path *path;
6105 struct extent_buffer *leaf;
6106 int ret;
6107
4c570655 6108 key.objectid = btrfs_ino(inode);
962a298f 6109 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6110 key.offset = (u64)-1;
6111
6112 path = btrfs_alloc_path();
6113 if (!path)
6114 return -ENOMEM;
6115
6116 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6117 if (ret < 0)
6118 goto out;
6119 /* FIXME: we should be able to handle this */
6120 if (ret == 0)
6121 goto out;
6122 ret = 0;
6123
6124 /*
6125 * MAGIC NUMBER EXPLANATION:
6126 * since we search a directory based on f_pos we have to start at 2
6127 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6128 * else has to start at 2
6129 */
6130 if (path->slots[0] == 0) {
4c570655 6131 inode->index_cnt = 2;
aec7477b
JB
6132 goto out;
6133 }
6134
6135 path->slots[0]--;
6136
6137 leaf = path->nodes[0];
6138 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6139
4c570655 6140 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6141 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6142 inode->index_cnt = 2;
aec7477b
JB
6143 goto out;
6144 }
6145
4c570655 6146 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6147out:
6148 btrfs_free_path(path);
6149 return ret;
6150}
6151
d352ac68
CM
6152/*
6153 * helper to find a free sequence number in a given directory. This current
6154 * code is very simple, later versions will do smarter things in the btree
6155 */
877574e2 6156int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6157{
6158 int ret = 0;
6159
877574e2
NB
6160 if (dir->index_cnt == (u64)-1) {
6161 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6162 if (ret) {
6163 ret = btrfs_set_inode_index_count(dir);
6164 if (ret)
6165 return ret;
6166 }
aec7477b
JB
6167 }
6168
877574e2
NB
6169 *index = dir->index_cnt;
6170 dir->index_cnt++;
aec7477b
JB
6171
6172 return ret;
6173}
6174
b0d5d10f
CM
6175static int btrfs_insert_inode_locked(struct inode *inode)
6176{
6177 struct btrfs_iget_args args;
6178 args.location = &BTRFS_I(inode)->location;
6179 args.root = BTRFS_I(inode)->root;
6180
6181 return insert_inode_locked4(inode,
6182 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6183 btrfs_find_actor, &args);
6184}
6185
39279cc3
CM
6186static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6187 struct btrfs_root *root,
aec7477b 6188 struct inode *dir,
9c58309d 6189 const char *name, int name_len,
175a4eb7
AV
6190 u64 ref_objectid, u64 objectid,
6191 umode_t mode, u64 *index)
39279cc3 6192{
0b246afa 6193 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6194 struct inode *inode;
5f39d397 6195 struct btrfs_inode_item *inode_item;
39279cc3 6196 struct btrfs_key *location;
5f39d397 6197 struct btrfs_path *path;
9c58309d
CM
6198 struct btrfs_inode_ref *ref;
6199 struct btrfs_key key[2];
6200 u32 sizes[2];
ef3b9af5 6201 int nitems = name ? 2 : 1;
9c58309d 6202 unsigned long ptr;
39279cc3 6203 int ret;
39279cc3 6204
5f39d397 6205 path = btrfs_alloc_path();
d8926bb3
MF
6206 if (!path)
6207 return ERR_PTR(-ENOMEM);
5f39d397 6208
0b246afa 6209 inode = new_inode(fs_info->sb);
8fb27640
YS
6210 if (!inode) {
6211 btrfs_free_path(path);
39279cc3 6212 return ERR_PTR(-ENOMEM);
8fb27640 6213 }
39279cc3 6214
5762b5c9
FM
6215 /*
6216 * O_TMPFILE, set link count to 0, so that after this point,
6217 * we fill in an inode item with the correct link count.
6218 */
6219 if (!name)
6220 set_nlink(inode, 0);
6221
581bb050
LZ
6222 /*
6223 * we have to initialize this early, so we can reclaim the inode
6224 * number if we fail afterwards in this function.
6225 */
6226 inode->i_ino = objectid;
6227
ef3b9af5 6228 if (dir && name) {
1abe9b8a 6229 trace_btrfs_inode_request(dir);
6230
877574e2 6231 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6232 if (ret) {
8fb27640 6233 btrfs_free_path(path);
09771430 6234 iput(inode);
aec7477b 6235 return ERR_PTR(ret);
09771430 6236 }
ef3b9af5
FM
6237 } else if (dir) {
6238 *index = 0;
aec7477b
JB
6239 }
6240 /*
6241 * index_cnt is ignored for everything but a dir,
6242 * btrfs_get_inode_index_count has an explanation for the magic
6243 * number
6244 */
6245 BTRFS_I(inode)->index_cnt = 2;
67de1176 6246 BTRFS_I(inode)->dir_index = *index;
39279cc3 6247 BTRFS_I(inode)->root = root;
e02119d5 6248 BTRFS_I(inode)->generation = trans->transid;
76195853 6249 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6250
5dc562c5
JB
6251 /*
6252 * We could have gotten an inode number from somebody who was fsynced
6253 * and then removed in this same transaction, so let's just set full
6254 * sync since it will be a full sync anyway and this will blow away the
6255 * old info in the log.
6256 */
6257 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6258
9c58309d 6259 key[0].objectid = objectid;
962a298f 6260 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6261 key[0].offset = 0;
6262
9c58309d 6263 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6264
6265 if (name) {
6266 /*
6267 * Start new inodes with an inode_ref. This is slightly more
6268 * efficient for small numbers of hard links since they will
6269 * be packed into one item. Extended refs will kick in if we
6270 * add more hard links than can fit in the ref item.
6271 */
6272 key[1].objectid = objectid;
962a298f 6273 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6274 key[1].offset = ref_objectid;
6275
6276 sizes[1] = name_len + sizeof(*ref);
6277 }
9c58309d 6278
b0d5d10f
CM
6279 location = &BTRFS_I(inode)->location;
6280 location->objectid = objectid;
6281 location->offset = 0;
962a298f 6282 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6283
6284 ret = btrfs_insert_inode_locked(inode);
6285 if (ret < 0)
6286 goto fail;
6287
b9473439 6288 path->leave_spinning = 1;
ef3b9af5 6289 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6290 if (ret != 0)
b0d5d10f 6291 goto fail_unlock;
5f39d397 6292
ecc11fab 6293 inode_init_owner(inode, dir, mode);
a76a3cd4 6294 inode_set_bytes(inode, 0);
9cc97d64 6295
c2050a45 6296 inode->i_mtime = current_time(inode);
9cc97d64 6297 inode->i_atime = inode->i_mtime;
6298 inode->i_ctime = inode->i_mtime;
6299 BTRFS_I(inode)->i_otime = inode->i_mtime;
6300
5f39d397
CM
6301 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6302 struct btrfs_inode_item);
b159fa28 6303 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6304 sizeof(*inode_item));
e02119d5 6305 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6306
ef3b9af5
FM
6307 if (name) {
6308 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6309 struct btrfs_inode_ref);
6310 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6311 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6312 ptr = (unsigned long)(ref + 1);
6313 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6314 }
9c58309d 6315
5f39d397
CM
6316 btrfs_mark_buffer_dirty(path->nodes[0]);
6317 btrfs_free_path(path);
6318
6cbff00f
CH
6319 btrfs_inherit_iflags(inode, dir);
6320
569254b0 6321 if (S_ISREG(mode)) {
0b246afa 6322 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6323 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6324 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6325 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6326 BTRFS_INODE_NODATASUM;
94272164
CM
6327 }
6328
5d4f98a2 6329 inode_tree_add(inode);
1abe9b8a 6330
6331 trace_btrfs_inode_new(inode);
1973f0fa 6332 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6333
8ea05e3a
AB
6334 btrfs_update_root_times(trans, root);
6335
63541927
FDBM
6336 ret = btrfs_inode_inherit_props(trans, inode, dir);
6337 if (ret)
0b246afa 6338 btrfs_err(fs_info,
63541927 6339 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6340 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6341
39279cc3 6342 return inode;
b0d5d10f
CM
6343
6344fail_unlock:
6345 unlock_new_inode(inode);
5f39d397 6346fail:
ef3b9af5 6347 if (dir && name)
aec7477b 6348 BTRFS_I(dir)->index_cnt--;
5f39d397 6349 btrfs_free_path(path);
09771430 6350 iput(inode);
5f39d397 6351 return ERR_PTR(ret);
39279cc3
CM
6352}
6353
6354static inline u8 btrfs_inode_type(struct inode *inode)
6355{
6356 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6357}
6358
d352ac68
CM
6359/*
6360 * utility function to add 'inode' into 'parent_inode' with
6361 * a give name and a given sequence number.
6362 * if 'add_backref' is true, also insert a backref from the
6363 * inode to the parent directory.
6364 */
e02119d5 6365int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6366 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6367 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6368{
db0a669f 6369 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
4df27c4d 6370 int ret = 0;
39279cc3 6371 struct btrfs_key key;
db0a669f
NB
6372 struct btrfs_root *root = parent_inode->root;
6373 u64 ino = btrfs_ino(inode);
6374 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6375
33345d01 6376 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6377 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6378 } else {
33345d01 6379 key.objectid = ino;
962a298f 6380 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6381 key.offset = 0;
6382 }
6383
33345d01 6384 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
0b246afa
JM
6385 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6386 root->root_key.objectid, parent_ino,
6387 index, name, name_len);
4df27c4d 6388 } else if (add_backref) {
33345d01
LZ
6389 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6390 parent_ino, index);
4df27c4d 6391 }
39279cc3 6392
79787eaa
JM
6393 /* Nothing to clean up yet */
6394 if (ret)
6395 return ret;
4df27c4d 6396
79787eaa
JM
6397 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6398 parent_inode, &key,
db0a669f 6399 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6400 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6401 goto fail_dir_item;
6402 else if (ret) {
66642832 6403 btrfs_abort_transaction(trans, ret);
79787eaa 6404 return ret;
39279cc3 6405 }
79787eaa 6406
db0a669f 6407 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6408 name_len * 2);
db0a669f
NB
6409 inode_inc_iversion(&parent_inode->vfs_inode);
6410 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6411 current_time(&parent_inode->vfs_inode);
6412 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6413 if (ret)
66642832 6414 btrfs_abort_transaction(trans, ret);
39279cc3 6415 return ret;
fe66a05a
CM
6416
6417fail_dir_item:
6418 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6419 u64 local_index;
6420 int err;
0b246afa
JM
6421 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6422 root->root_key.objectid, parent_ino,
6423 &local_index, name, name_len);
fe66a05a
CM
6424
6425 } else if (add_backref) {
6426 u64 local_index;
6427 int err;
6428
6429 err = btrfs_del_inode_ref(trans, root, name, name_len,
6430 ino, parent_ino, &local_index);
6431 }
6432 return ret;
39279cc3
CM
6433}
6434
6435static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6436 struct btrfs_inode *dir, struct dentry *dentry,
6437 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6438{
a1b075d2
JB
6439 int err = btrfs_add_link(trans, dir, inode,
6440 dentry->d_name.name, dentry->d_name.len,
6441 backref, index);
39279cc3
CM
6442 if (err > 0)
6443 err = -EEXIST;
6444 return err;
6445}
6446
618e21d5 6447static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6448 umode_t mode, dev_t rdev)
618e21d5 6449{
2ff7e61e 6450 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6451 struct btrfs_trans_handle *trans;
6452 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6453 struct inode *inode = NULL;
618e21d5
JB
6454 int err;
6455 int drop_inode = 0;
6456 u64 objectid;
00e4e6b3 6457 u64 index = 0;
618e21d5 6458
9ed74f2d
JB
6459 /*
6460 * 2 for inode item and ref
6461 * 2 for dir items
6462 * 1 for xattr if selinux is on
6463 */
a22285a6
YZ
6464 trans = btrfs_start_transaction(root, 5);
6465 if (IS_ERR(trans))
6466 return PTR_ERR(trans);
1832a6d5 6467
581bb050
LZ
6468 err = btrfs_find_free_ino(root, &objectid);
6469 if (err)
6470 goto out_unlock;
6471
aec7477b 6472 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6473 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6474 mode, &index);
7cf96da3
TI
6475 if (IS_ERR(inode)) {
6476 err = PTR_ERR(inode);
618e21d5 6477 goto out_unlock;
7cf96da3 6478 }
618e21d5 6479
ad19db71
CS
6480 /*
6481 * If the active LSM wants to access the inode during
6482 * d_instantiate it needs these. Smack checks to see
6483 * if the filesystem supports xattrs by looking at the
6484 * ops vector.
6485 */
ad19db71 6486 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6487 init_special_inode(inode, inode->i_mode, rdev);
6488
6489 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6490 if (err)
b0d5d10f
CM
6491 goto out_unlock_inode;
6492
cef415af
NB
6493 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6494 0, index);
b0d5d10f
CM
6495 if (err) {
6496 goto out_unlock_inode;
6497 } else {
1b4ab1bb 6498 btrfs_update_inode(trans, root, inode);
b0d5d10f 6499 unlock_new_inode(inode);
08c422c2 6500 d_instantiate(dentry, inode);
618e21d5 6501 }
b0d5d10f 6502
618e21d5 6503out_unlock:
3a45bb20 6504 btrfs_end_transaction(trans);
2ff7e61e
JM
6505 btrfs_balance_delayed_items(fs_info);
6506 btrfs_btree_balance_dirty(fs_info);
618e21d5
JB
6507 if (drop_inode) {
6508 inode_dec_link_count(inode);
6509 iput(inode);
6510 }
618e21d5 6511 return err;
b0d5d10f
CM
6512
6513out_unlock_inode:
6514 drop_inode = 1;
6515 unlock_new_inode(inode);
6516 goto out_unlock;
6517
618e21d5
JB
6518}
6519
39279cc3 6520static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6521 umode_t mode, bool excl)
39279cc3 6522{
2ff7e61e 6523 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6524 struct btrfs_trans_handle *trans;
6525 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6526 struct inode *inode = NULL;
43baa579 6527 int drop_inode_on_err = 0;
a22285a6 6528 int err;
39279cc3 6529 u64 objectid;
00e4e6b3 6530 u64 index = 0;
39279cc3 6531
9ed74f2d
JB
6532 /*
6533 * 2 for inode item and ref
6534 * 2 for dir items
6535 * 1 for xattr if selinux is on
6536 */
a22285a6
YZ
6537 trans = btrfs_start_transaction(root, 5);
6538 if (IS_ERR(trans))
6539 return PTR_ERR(trans);
9ed74f2d 6540
581bb050
LZ
6541 err = btrfs_find_free_ino(root, &objectid);
6542 if (err)
6543 goto out_unlock;
6544
aec7477b 6545 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6546 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6547 mode, &index);
7cf96da3
TI
6548 if (IS_ERR(inode)) {
6549 err = PTR_ERR(inode);
39279cc3 6550 goto out_unlock;
7cf96da3 6551 }
43baa579 6552 drop_inode_on_err = 1;
ad19db71
CS
6553 /*
6554 * If the active LSM wants to access the inode during
6555 * d_instantiate it needs these. Smack checks to see
6556 * if the filesystem supports xattrs by looking at the
6557 * ops vector.
6558 */
6559 inode->i_fop = &btrfs_file_operations;
6560 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6561 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6562
6563 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6564 if (err)
6565 goto out_unlock_inode;
6566
6567 err = btrfs_update_inode(trans, root, inode);
6568 if (err)
6569 goto out_unlock_inode;
ad19db71 6570
cef415af
NB
6571 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6572 0, index);
39279cc3 6573 if (err)
b0d5d10f 6574 goto out_unlock_inode;
43baa579 6575
43baa579 6576 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6577 unlock_new_inode(inode);
43baa579
FB
6578 d_instantiate(dentry, inode);
6579
39279cc3 6580out_unlock:
3a45bb20 6581 btrfs_end_transaction(trans);
43baa579 6582 if (err && drop_inode_on_err) {
39279cc3
CM
6583 inode_dec_link_count(inode);
6584 iput(inode);
6585 }
2ff7e61e
JM
6586 btrfs_balance_delayed_items(fs_info);
6587 btrfs_btree_balance_dirty(fs_info);
39279cc3 6588 return err;
b0d5d10f
CM
6589
6590out_unlock_inode:
6591 unlock_new_inode(inode);
6592 goto out_unlock;
6593
39279cc3
CM
6594}
6595
6596static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6597 struct dentry *dentry)
6598{
271dba45 6599 struct btrfs_trans_handle *trans = NULL;
39279cc3 6600 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6601 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6602 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6603 u64 index;
39279cc3
CM
6604 int err;
6605 int drop_inode = 0;
6606
4a8be425
TH
6607 /* do not allow sys_link's with other subvols of the same device */
6608 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6609 return -EXDEV;
4a8be425 6610
f186373f 6611 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6612 return -EMLINK;
4a8be425 6613
877574e2 6614 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6615 if (err)
6616 goto fail;
6617
a22285a6 6618 /*
7e6b6465 6619 * 2 items for inode and inode ref
a22285a6 6620 * 2 items for dir items
7e6b6465 6621 * 1 item for parent inode
a22285a6 6622 */
7e6b6465 6623 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6624 if (IS_ERR(trans)) {
6625 err = PTR_ERR(trans);
271dba45 6626 trans = NULL;
a22285a6
YZ
6627 goto fail;
6628 }
5f39d397 6629
67de1176
MX
6630 /* There are several dir indexes for this inode, clear the cache. */
6631 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6632 inc_nlink(inode);
0c4d2d95 6633 inode_inc_iversion(inode);
c2050a45 6634 inode->i_ctime = current_time(inode);
7de9c6ee 6635 ihold(inode);
e9976151 6636 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6637
cef415af
NB
6638 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6639 1, index);
5f39d397 6640
a5719521 6641 if (err) {
54aa1f4d 6642 drop_inode = 1;
a5719521 6643 } else {
10d9f309 6644 struct dentry *parent = dentry->d_parent;
a5719521 6645 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6646 if (err)
6647 goto fail;
ef3b9af5
FM
6648 if (inode->i_nlink == 1) {
6649 /*
6650 * If new hard link count is 1, it's a file created
6651 * with open(2) O_TMPFILE flag.
6652 */
3d6ae7bb 6653 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6654 if (err)
6655 goto fail;
6656 }
08c422c2 6657 d_instantiate(dentry, inode);
9ca5fbfb 6658 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
a5719521 6659 }
39279cc3 6660
2ff7e61e 6661 btrfs_balance_delayed_items(fs_info);
1832a6d5 6662fail:
271dba45 6663 if (trans)
3a45bb20 6664 btrfs_end_transaction(trans);
39279cc3
CM
6665 if (drop_inode) {
6666 inode_dec_link_count(inode);
6667 iput(inode);
6668 }
2ff7e61e 6669 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6670 return err;
6671}
6672
18bb1db3 6673static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6674{
2ff7e61e 6675 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6676 struct inode *inode = NULL;
39279cc3
CM
6677 struct btrfs_trans_handle *trans;
6678 struct btrfs_root *root = BTRFS_I(dir)->root;
6679 int err = 0;
6680 int drop_on_err = 0;
b9d86667 6681 u64 objectid = 0;
00e4e6b3 6682 u64 index = 0;
39279cc3 6683
9ed74f2d
JB
6684 /*
6685 * 2 items for inode and ref
6686 * 2 items for dir items
6687 * 1 for xattr if selinux is on
6688 */
a22285a6
YZ
6689 trans = btrfs_start_transaction(root, 5);
6690 if (IS_ERR(trans))
6691 return PTR_ERR(trans);
39279cc3 6692
581bb050
LZ
6693 err = btrfs_find_free_ino(root, &objectid);
6694 if (err)
6695 goto out_fail;
6696
aec7477b 6697 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6698 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6699 S_IFDIR | mode, &index);
39279cc3
CM
6700 if (IS_ERR(inode)) {
6701 err = PTR_ERR(inode);
6702 goto out_fail;
6703 }
5f39d397 6704
39279cc3 6705 drop_on_err = 1;
b0d5d10f
CM
6706 /* these must be set before we unlock the inode */
6707 inode->i_op = &btrfs_dir_inode_operations;
6708 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6709
2a7dba39 6710 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6711 if (err)
b0d5d10f 6712 goto out_fail_inode;
39279cc3 6713
6ef06d27 6714 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6715 err = btrfs_update_inode(trans, root, inode);
6716 if (err)
b0d5d10f 6717 goto out_fail_inode;
5f39d397 6718
db0a669f
NB
6719 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6720 dentry->d_name.name,
6721 dentry->d_name.len, 0, index);
39279cc3 6722 if (err)
b0d5d10f 6723 goto out_fail_inode;
5f39d397 6724
39279cc3 6725 d_instantiate(dentry, inode);
b0d5d10f
CM
6726 /*
6727 * mkdir is special. We're unlocking after we call d_instantiate
6728 * to avoid a race with nfsd calling d_instantiate.
6729 */
6730 unlock_new_inode(inode);
39279cc3 6731 drop_on_err = 0;
39279cc3
CM
6732
6733out_fail:
3a45bb20 6734 btrfs_end_transaction(trans);
c7cfb8a5
WS
6735 if (drop_on_err) {
6736 inode_dec_link_count(inode);
39279cc3 6737 iput(inode);
c7cfb8a5 6738 }
2ff7e61e
JM
6739 btrfs_balance_delayed_items(fs_info);
6740 btrfs_btree_balance_dirty(fs_info);
39279cc3 6741 return err;
b0d5d10f
CM
6742
6743out_fail_inode:
6744 unlock_new_inode(inode);
6745 goto out_fail;
39279cc3
CM
6746}
6747
e6c4efd8
QW
6748/* Find next extent map of a given extent map, caller needs to ensure locks */
6749static struct extent_map *next_extent_map(struct extent_map *em)
6750{
6751 struct rb_node *next;
6752
6753 next = rb_next(&em->rb_node);
6754 if (!next)
6755 return NULL;
6756 return container_of(next, struct extent_map, rb_node);
6757}
6758
6759static struct extent_map *prev_extent_map(struct extent_map *em)
6760{
6761 struct rb_node *prev;
6762
6763 prev = rb_prev(&em->rb_node);
6764 if (!prev)
6765 return NULL;
6766 return container_of(prev, struct extent_map, rb_node);
6767}
6768
d352ac68 6769/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6770 * the existing extent is the nearest extent to map_start,
d352ac68 6771 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6772 * the best fitted new extent into the tree.
d352ac68 6773 */
3b951516
CM
6774static int merge_extent_mapping(struct extent_map_tree *em_tree,
6775 struct extent_map *existing,
e6dcd2dc 6776 struct extent_map *em,
51f395ad 6777 u64 map_start)
3b951516 6778{
e6c4efd8
QW
6779 struct extent_map *prev;
6780 struct extent_map *next;
6781 u64 start;
6782 u64 end;
3b951516 6783 u64 start_diff;
3b951516 6784
e6dcd2dc 6785 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6786
6787 if (existing->start > map_start) {
6788 next = existing;
6789 prev = prev_extent_map(next);
6790 } else {
6791 prev = existing;
6792 next = next_extent_map(prev);
6793 }
6794
6795 start = prev ? extent_map_end(prev) : em->start;
6796 start = max_t(u64, start, em->start);
6797 end = next ? next->start : extent_map_end(em);
6798 end = min_t(u64, end, extent_map_end(em));
6799 start_diff = start - em->start;
6800 em->start = start;
6801 em->len = end - start;
c8b97818
CM
6802 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6803 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6804 em->block_start += start_diff;
c8b97818
CM
6805 em->block_len -= start_diff;
6806 }
09a2a8f9 6807 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6808}
6809
c8b97818 6810static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6811 struct page *page,
c8b97818
CM
6812 size_t pg_offset, u64 extent_offset,
6813 struct btrfs_file_extent_item *item)
6814{
6815 int ret;
6816 struct extent_buffer *leaf = path->nodes[0];
6817 char *tmp;
6818 size_t max_size;
6819 unsigned long inline_size;
6820 unsigned long ptr;
261507a0 6821 int compress_type;
c8b97818
CM
6822
6823 WARN_ON(pg_offset != 0);
261507a0 6824 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6825 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6826 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6827 btrfs_item_nr(path->slots[0]));
c8b97818 6828 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6829 if (!tmp)
6830 return -ENOMEM;
c8b97818
CM
6831 ptr = btrfs_file_extent_inline_start(item);
6832
6833 read_extent_buffer(leaf, tmp, ptr, inline_size);
6834
09cbfeaf 6835 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6836 ret = btrfs_decompress(compress_type, tmp, page,
6837 extent_offset, inline_size, max_size);
e1699d2d
ZB
6838
6839 /*
6840 * decompression code contains a memset to fill in any space between the end
6841 * of the uncompressed data and the end of max_size in case the decompressed
6842 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6843 * the end of an inline extent and the beginning of the next block, so we
6844 * cover that region here.
6845 */
6846
6847 if (max_size + pg_offset < PAGE_SIZE) {
6848 char *map = kmap(page);
6849 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6850 kunmap(page);
6851 }
c8b97818 6852 kfree(tmp);
166ae5a4 6853 return ret;
c8b97818
CM
6854}
6855
d352ac68
CM
6856/*
6857 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6858 * the ugly parts come from merging extents from the disk with the in-ram
6859 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6860 * where the in-ram extents might be locked pending data=ordered completion.
6861 *
6862 * This also copies inline extents directly into the page.
6863 */
fc4f21b1
NB
6864struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6865 struct page *page,
6866 size_t pg_offset, u64 start, u64 len,
6867 int create)
a52d9a80 6868{
fc4f21b1 6869 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
a52d9a80
CM
6870 int ret;
6871 int err = 0;
a52d9a80
CM
6872 u64 extent_start = 0;
6873 u64 extent_end = 0;
fc4f21b1 6874 u64 objectid = btrfs_ino(inode);
a52d9a80 6875 u32 found_type;
f421950f 6876 struct btrfs_path *path = NULL;
fc4f21b1 6877 struct btrfs_root *root = inode->root;
a52d9a80 6878 struct btrfs_file_extent_item *item;
5f39d397
CM
6879 struct extent_buffer *leaf;
6880 struct btrfs_key found_key;
a52d9a80 6881 struct extent_map *em = NULL;
fc4f21b1
NB
6882 struct extent_map_tree *em_tree = &inode->extent_tree;
6883 struct extent_io_tree *io_tree = &inode->io_tree;
a52d9a80 6884 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6885 const bool new_inline = !page || create;
a52d9a80 6886
a52d9a80 6887again:
890871be 6888 read_lock(&em_tree->lock);
d1310b2e 6889 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6890 if (em)
0b246afa 6891 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6892 read_unlock(&em_tree->lock);
d1310b2e 6893
a52d9a80 6894 if (em) {
e1c4b745
CM
6895 if (em->start > start || em->start + em->len <= start)
6896 free_extent_map(em);
6897 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6898 free_extent_map(em);
6899 else
6900 goto out;
a52d9a80 6901 }
172ddd60 6902 em = alloc_extent_map();
a52d9a80 6903 if (!em) {
d1310b2e
CM
6904 err = -ENOMEM;
6905 goto out;
a52d9a80 6906 }
0b246afa 6907 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6908 em->start = EXTENT_MAP_HOLE;
445a6944 6909 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6910 em->len = (u64)-1;
c8b97818 6911 em->block_len = (u64)-1;
f421950f
CM
6912
6913 if (!path) {
6914 path = btrfs_alloc_path();
026fd317
JB
6915 if (!path) {
6916 err = -ENOMEM;
6917 goto out;
6918 }
6919 /*
6920 * Chances are we'll be called again, so go ahead and do
6921 * readahead
6922 */
e4058b54 6923 path->reada = READA_FORWARD;
f421950f
CM
6924 }
6925
179e29e4
CM
6926 ret = btrfs_lookup_file_extent(trans, root, path,
6927 objectid, start, trans != NULL);
a52d9a80
CM
6928 if (ret < 0) {
6929 err = ret;
6930 goto out;
6931 }
6932
6933 if (ret != 0) {
6934 if (path->slots[0] == 0)
6935 goto not_found;
6936 path->slots[0]--;
6937 }
6938
5f39d397
CM
6939 leaf = path->nodes[0];
6940 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6941 struct btrfs_file_extent_item);
a52d9a80 6942 /* are we inside the extent that was found? */
5f39d397 6943 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6944 found_type = found_key.type;
5f39d397 6945 if (found_key.objectid != objectid ||
a52d9a80 6946 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6947 /*
6948 * If we backup past the first extent we want to move forward
6949 * and see if there is an extent in front of us, otherwise we'll
6950 * say there is a hole for our whole search range which can
6951 * cause problems.
6952 */
6953 extent_end = start;
6954 goto next;
a52d9a80
CM
6955 }
6956
5f39d397
CM
6957 found_type = btrfs_file_extent_type(leaf, item);
6958 extent_start = found_key.offset;
d899e052
YZ
6959 if (found_type == BTRFS_FILE_EXTENT_REG ||
6960 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6961 extent_end = extent_start +
db94535d 6962 btrfs_file_extent_num_bytes(leaf, item);
09ed2f16
LB
6963
6964 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6965 extent_start);
9036c102
YZ
6966 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6967 size_t size;
514ac8ad 6968 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
da17066c 6969 extent_end = ALIGN(extent_start + size,
0b246afa 6970 fs_info->sectorsize);
09ed2f16
LB
6971
6972 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6973 path->slots[0],
6974 extent_start);
9036c102 6975 }
25a50341 6976next:
9036c102
YZ
6977 if (start >= extent_end) {
6978 path->slots[0]++;
6979 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6980 ret = btrfs_next_leaf(root, path);
6981 if (ret < 0) {
6982 err = ret;
6983 goto out;
a52d9a80 6984 }
9036c102
YZ
6985 if (ret > 0)
6986 goto not_found;
6987 leaf = path->nodes[0];
a52d9a80 6988 }
9036c102
YZ
6989 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6990 if (found_key.objectid != objectid ||
6991 found_key.type != BTRFS_EXTENT_DATA_KEY)
6992 goto not_found;
6993 if (start + len <= found_key.offset)
6994 goto not_found;
e2eca69d
WS
6995 if (start > found_key.offset)
6996 goto next;
9036c102 6997 em->start = start;
70c8a91c 6998 em->orig_start = start;
9036c102
YZ
6999 em->len = found_key.offset - start;
7000 goto not_found_em;
7001 }
7002
fc4f21b1 7003 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 7004 new_inline, em);
7ffbb598 7005
d899e052
YZ
7006 if (found_type == BTRFS_FILE_EXTENT_REG ||
7007 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
7008 goto insert;
7009 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 7010 unsigned long ptr;
a52d9a80 7011 char *map;
3326d1b0
CM
7012 size_t size;
7013 size_t extent_offset;
7014 size_t copy_size;
a52d9a80 7015
7ffbb598 7016 if (new_inline)
689f9346 7017 goto out;
5f39d397 7018
514ac8ad 7019 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 7020 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
7021 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7022 size - extent_offset);
3326d1b0 7023 em->start = extent_start + extent_offset;
0b246afa 7024 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 7025 em->orig_block_len = em->len;
70c8a91c 7026 em->orig_start = em->start;
689f9346 7027 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 7028 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
7029 if (btrfs_file_extent_compression(leaf, item) !=
7030 BTRFS_COMPRESS_NONE) {
e40da0e5 7031 ret = uncompress_inline(path, page, pg_offset,
c8b97818 7032 extent_offset, item);
166ae5a4
ZB
7033 if (ret) {
7034 err = ret;
7035 goto out;
7036 }
c8b97818
CM
7037 } else {
7038 map = kmap(page);
7039 read_extent_buffer(leaf, map + pg_offset, ptr,
7040 copy_size);
09cbfeaf 7041 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 7042 memset(map + pg_offset + copy_size, 0,
09cbfeaf 7043 PAGE_SIZE - pg_offset -
93c82d57
CM
7044 copy_size);
7045 }
c8b97818
CM
7046 kunmap(page);
7047 }
179e29e4
CM
7048 flush_dcache_page(page);
7049 } else if (create && PageUptodate(page)) {
6bf7e080 7050 BUG();
179e29e4
CM
7051 if (!trans) {
7052 kunmap(page);
7053 free_extent_map(em);
7054 em = NULL;
ff5714cc 7055
b3b4aa74 7056 btrfs_release_path(path);
7a7eaa40 7057 trans = btrfs_join_transaction(root);
ff5714cc 7058
3612b495
TI
7059 if (IS_ERR(trans))
7060 return ERR_CAST(trans);
179e29e4
CM
7061 goto again;
7062 }
c8b97818 7063 map = kmap(page);
70dec807 7064 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 7065 copy_size);
c8b97818 7066 kunmap(page);
179e29e4 7067 btrfs_mark_buffer_dirty(leaf);
a52d9a80 7068 }
d1310b2e 7069 set_extent_uptodate(io_tree, em->start,
507903b8 7070 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7071 goto insert;
a52d9a80
CM
7072 }
7073not_found:
7074 em->start = start;
70c8a91c 7075 em->orig_start = start;
d1310b2e 7076 em->len = len;
a52d9a80 7077not_found_em:
5f39d397 7078 em->block_start = EXTENT_MAP_HOLE;
9036c102 7079 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 7080insert:
b3b4aa74 7081 btrfs_release_path(path);
d1310b2e 7082 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 7083 btrfs_err(fs_info,
5d163e0e
JM
7084 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7085 em->start, em->len, start, len);
a52d9a80
CM
7086 err = -EIO;
7087 goto out;
7088 }
d1310b2e
CM
7089
7090 err = 0;
890871be 7091 write_lock(&em_tree->lock);
09a2a8f9 7092 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
7093 /* it is possible that someone inserted the extent into the tree
7094 * while we had the lock dropped. It is also possible that
7095 * an overlapping map exists in the tree
7096 */
a52d9a80 7097 if (ret == -EEXIST) {
3b951516 7098 struct extent_map *existing;
e6dcd2dc
CM
7099
7100 ret = 0;
7101
e6c4efd8
QW
7102 existing = search_extent_mapping(em_tree, start, len);
7103 /*
7104 * existing will always be non-NULL, since there must be
7105 * extent causing the -EEXIST.
7106 */
8dff9c85 7107 if (existing->start == em->start &&
8e2bd3b7 7108 extent_map_end(existing) >= extent_map_end(em) &&
8dff9c85
CM
7109 em->block_start == existing->block_start) {
7110 /*
8e2bd3b7
OS
7111 * The existing extent map already encompasses the
7112 * entire extent map we tried to add.
8dff9c85
CM
7113 */
7114 free_extent_map(em);
7115 em = existing;
7116 err = 0;
7117
7118 } else if (start >= extent_map_end(existing) ||
32be3a1a 7119 start <= existing->start) {
e6c4efd8
QW
7120 /*
7121 * The existing extent map is the one nearest to
7122 * the [start, start + len) range which overlaps
7123 */
7124 err = merge_extent_mapping(em_tree, existing,
7125 em, start);
e1c4b745 7126 free_extent_map(existing);
e6c4efd8 7127 if (err) {
3b951516
CM
7128 free_extent_map(em);
7129 em = NULL;
7130 }
7131 } else {
7132 free_extent_map(em);
7133 em = existing;
e6dcd2dc 7134 err = 0;
a52d9a80 7135 }
a52d9a80 7136 }
890871be 7137 write_unlock(&em_tree->lock);
a52d9a80 7138out:
1abe9b8a 7139
fc4f21b1 7140 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 7141
527afb44 7142 btrfs_free_path(path);
a52d9a80 7143 if (trans) {
3a45bb20 7144 ret = btrfs_end_transaction(trans);
d397712b 7145 if (!err)
a52d9a80
CM
7146 err = ret;
7147 }
a52d9a80
CM
7148 if (err) {
7149 free_extent_map(em);
a52d9a80
CM
7150 return ERR_PTR(err);
7151 }
79787eaa 7152 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7153 return em;
7154}
7155
fc4f21b1
NB
7156struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7157 struct page *page,
7158 size_t pg_offset, u64 start, u64 len,
7159 int create)
ec29ed5b
CM
7160{
7161 struct extent_map *em;
7162 struct extent_map *hole_em = NULL;
7163 u64 range_start = start;
7164 u64 end;
7165 u64 found;
7166 u64 found_end;
7167 int err = 0;
7168
7169 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7170 if (IS_ERR(em))
7171 return em;
9986277e
DC
7172 /*
7173 * If our em maps to:
7174 * - a hole or
7175 * - a pre-alloc extent,
7176 * there might actually be delalloc bytes behind it.
7177 */
7178 if (em->block_start != EXTENT_MAP_HOLE &&
7179 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7180 return em;
7181 else
7182 hole_em = em;
ec29ed5b
CM
7183
7184 /* check to see if we've wrapped (len == -1 or similar) */
7185 end = start + len;
7186 if (end < start)
7187 end = (u64)-1;
7188 else
7189 end -= 1;
7190
7191 em = NULL;
7192
7193 /* ok, we didn't find anything, lets look for delalloc */
fc4f21b1 7194 found = count_range_bits(&inode->io_tree, &range_start,
ec29ed5b
CM
7195 end, len, EXTENT_DELALLOC, 1);
7196 found_end = range_start + found;
7197 if (found_end < range_start)
7198 found_end = (u64)-1;
7199
7200 /*
7201 * we didn't find anything useful, return
7202 * the original results from get_extent()
7203 */
7204 if (range_start > end || found_end <= start) {
7205 em = hole_em;
7206 hole_em = NULL;
7207 goto out;
7208 }
7209
7210 /* adjust the range_start to make sure it doesn't
7211 * go backwards from the start they passed in
7212 */
67871254 7213 range_start = max(start, range_start);
ec29ed5b
CM
7214 found = found_end - range_start;
7215
7216 if (found > 0) {
7217 u64 hole_start = start;
7218 u64 hole_len = len;
7219
172ddd60 7220 em = alloc_extent_map();
ec29ed5b
CM
7221 if (!em) {
7222 err = -ENOMEM;
7223 goto out;
7224 }
7225 /*
7226 * when btrfs_get_extent can't find anything it
7227 * returns one huge hole
7228 *
7229 * make sure what it found really fits our range, and
7230 * adjust to make sure it is based on the start from
7231 * the caller
7232 */
7233 if (hole_em) {
7234 u64 calc_end = extent_map_end(hole_em);
7235
7236 if (calc_end <= start || (hole_em->start > end)) {
7237 free_extent_map(hole_em);
7238 hole_em = NULL;
7239 } else {
7240 hole_start = max(hole_em->start, start);
7241 hole_len = calc_end - hole_start;
7242 }
7243 }
7244 em->bdev = NULL;
7245 if (hole_em && range_start > hole_start) {
7246 /* our hole starts before our delalloc, so we
7247 * have to return just the parts of the hole
7248 * that go until the delalloc starts
7249 */
7250 em->len = min(hole_len,
7251 range_start - hole_start);
7252 em->start = hole_start;
7253 em->orig_start = hole_start;
7254 /*
7255 * don't adjust block start at all,
7256 * it is fixed at EXTENT_MAP_HOLE
7257 */
7258 em->block_start = hole_em->block_start;
7259 em->block_len = hole_len;
f9e4fb53
LB
7260 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7261 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7262 } else {
7263 em->start = range_start;
7264 em->len = found;
7265 em->orig_start = range_start;
7266 em->block_start = EXTENT_MAP_DELALLOC;
7267 em->block_len = found;
7268 }
7269 } else if (hole_em) {
7270 return hole_em;
7271 }
7272out:
7273
7274 free_extent_map(hole_em);
7275 if (err) {
7276 free_extent_map(em);
7277 return ERR_PTR(err);
7278 }
7279 return em;
7280}
7281
5f9a8a51
FM
7282static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7283 const u64 start,
7284 const u64 len,
7285 const u64 orig_start,
7286 const u64 block_start,
7287 const u64 block_len,
7288 const u64 orig_block_len,
7289 const u64 ram_bytes,
7290 const int type)
7291{
7292 struct extent_map *em = NULL;
7293 int ret;
7294
5f9a8a51 7295 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7296 em = create_io_em(inode, start, len, orig_start,
7297 block_start, block_len, orig_block_len,
7298 ram_bytes,
7299 BTRFS_COMPRESS_NONE, /* compress_type */
7300 type);
5f9a8a51
FM
7301 if (IS_ERR(em))
7302 goto out;
7303 }
7304 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7305 len, block_len, type);
7306 if (ret) {
7307 if (em) {
7308 free_extent_map(em);
dcdbc059 7309 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7310 start + len - 1, 0);
7311 }
7312 em = ERR_PTR(ret);
7313 }
7314 out:
5f9a8a51
FM
7315
7316 return em;
7317}
7318
4b46fce2
JB
7319static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7320 u64 start, u64 len)
7321{
0b246afa 7322 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7323 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7324 struct extent_map *em;
4b46fce2
JB
7325 struct btrfs_key ins;
7326 u64 alloc_hint;
7327 int ret;
4b46fce2 7328
4b46fce2 7329 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7330 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7331 0, alloc_hint, &ins, 1, 1);
00361589
JB
7332 if (ret)
7333 return ERR_PTR(ret);
4b46fce2 7334
5f9a8a51
FM
7335 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7336 ins.objectid, ins.offset, ins.offset,
6288d6ea 7337 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7338 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7339 if (IS_ERR(em))
2ff7e61e
JM
7340 btrfs_free_reserved_extent(fs_info, ins.objectid,
7341 ins.offset, 1);
de0ee0ed 7342
4b46fce2
JB
7343 return em;
7344}
7345
46bfbb5c
CM
7346/*
7347 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7348 * block must be cow'd
7349 */
00361589 7350noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7351 u64 *orig_start, u64 *orig_block_len,
7352 u64 *ram_bytes)
46bfbb5c 7353{
2ff7e61e 7354 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7355 struct btrfs_path *path;
7356 int ret;
7357 struct extent_buffer *leaf;
7358 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7359 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7360 struct btrfs_file_extent_item *fi;
7361 struct btrfs_key key;
7362 u64 disk_bytenr;
7363 u64 backref_offset;
7364 u64 extent_end;
7365 u64 num_bytes;
7366 int slot;
7367 int found_type;
7ee9e440 7368 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7369
46bfbb5c
CM
7370 path = btrfs_alloc_path();
7371 if (!path)
7372 return -ENOMEM;
7373
f85b7379
DS
7374 ret = btrfs_lookup_file_extent(NULL, root, path,
7375 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7376 if (ret < 0)
7377 goto out;
7378
7379 slot = path->slots[0];
7380 if (ret == 1) {
7381 if (slot == 0) {
7382 /* can't find the item, must cow */
7383 ret = 0;
7384 goto out;
7385 }
7386 slot--;
7387 }
7388 ret = 0;
7389 leaf = path->nodes[0];
7390 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7391 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7392 key.type != BTRFS_EXTENT_DATA_KEY) {
7393 /* not our file or wrong item type, must cow */
7394 goto out;
7395 }
7396
7397 if (key.offset > offset) {
7398 /* Wrong offset, must cow */
7399 goto out;
7400 }
7401
7402 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7403 found_type = btrfs_file_extent_type(leaf, fi);
7404 if (found_type != BTRFS_FILE_EXTENT_REG &&
7405 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7406 /* not a regular extent, must cow */
7407 goto out;
7408 }
7ee9e440
JB
7409
7410 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7411 goto out;
7412
e77751aa
MX
7413 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7414 if (extent_end <= offset)
7415 goto out;
7416
46bfbb5c 7417 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7418 if (disk_bytenr == 0)
7419 goto out;
7420
7421 if (btrfs_file_extent_compression(leaf, fi) ||
7422 btrfs_file_extent_encryption(leaf, fi) ||
7423 btrfs_file_extent_other_encoding(leaf, fi))
7424 goto out;
7425
46bfbb5c
CM
7426 backref_offset = btrfs_file_extent_offset(leaf, fi);
7427
7ee9e440
JB
7428 if (orig_start) {
7429 *orig_start = key.offset - backref_offset;
7430 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7431 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7432 }
eb384b55 7433
2ff7e61e 7434 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7435 goto out;
7b2b7085
MX
7436
7437 num_bytes = min(offset + *len, extent_end) - offset;
7438 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7439 u64 range_end;
7440
da17066c
JM
7441 range_end = round_up(offset + num_bytes,
7442 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7443 ret = test_range_bit(io_tree, offset, range_end,
7444 EXTENT_DELALLOC, 0, NULL);
7445 if (ret) {
7446 ret = -EAGAIN;
7447 goto out;
7448 }
7449 }
7450
1bda19eb 7451 btrfs_release_path(path);
46bfbb5c
CM
7452
7453 /*
7454 * look for other files referencing this extent, if we
7455 * find any we must cow
7456 */
00361589 7457
e4c3b2dc 7458 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7459 key.offset - backref_offset, disk_bytenr);
00361589
JB
7460 if (ret) {
7461 ret = 0;
7462 goto out;
7463 }
46bfbb5c
CM
7464
7465 /*
7466 * adjust disk_bytenr and num_bytes to cover just the bytes
7467 * in this extent we are about to write. If there
7468 * are any csums in that range we have to cow in order
7469 * to keep the csums correct
7470 */
7471 disk_bytenr += backref_offset;
7472 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7473 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7474 goto out;
46bfbb5c
CM
7475 /*
7476 * all of the above have passed, it is safe to overwrite this extent
7477 * without cow
7478 */
eb384b55 7479 *len = num_bytes;
46bfbb5c
CM
7480 ret = 1;
7481out:
7482 btrfs_free_path(path);
7483 return ret;
7484}
7485
fc4adbff
AG
7486bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7487{
7488 struct radix_tree_root *root = &inode->i_mapping->page_tree;
e03733da 7489 bool found = false;
fc4adbff
AG
7490 void **pagep = NULL;
7491 struct page *page = NULL;
cc2b702c
DS
7492 unsigned long start_idx;
7493 unsigned long end_idx;
fc4adbff 7494
09cbfeaf 7495 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7496
7497 /*
7498 * end is the last byte in the last page. end == start is legal
7499 */
09cbfeaf 7500 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7501
7502 rcu_read_lock();
7503
7504 /* Most of the code in this while loop is lifted from
7505 * find_get_page. It's been modified to begin searching from a
7506 * page and return just the first page found in that range. If the
7507 * found idx is less than or equal to the end idx then we know that
7508 * a page exists. If no pages are found or if those pages are
7509 * outside of the range then we're fine (yay!) */
7510 while (page == NULL &&
7511 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7512 page = radix_tree_deref_slot(pagep);
7513 if (unlikely(!page))
7514 break;
7515
7516 if (radix_tree_exception(page)) {
809f9016
FM
7517 if (radix_tree_deref_retry(page)) {
7518 page = NULL;
fc4adbff 7519 continue;
809f9016 7520 }
fc4adbff
AG
7521 /*
7522 * Otherwise, shmem/tmpfs must be storing a swap entry
7523 * here as an exceptional entry: so return it without
7524 * attempting to raise page count.
7525 */
6fdef6d4 7526 page = NULL;
fc4adbff
AG
7527 break; /* TODO: Is this relevant for this use case? */
7528 }
7529
91405151
FM
7530 if (!page_cache_get_speculative(page)) {
7531 page = NULL;
fc4adbff 7532 continue;
91405151 7533 }
fc4adbff
AG
7534
7535 /*
7536 * Has the page moved?
7537 * This is part of the lockless pagecache protocol. See
7538 * include/linux/pagemap.h for details.
7539 */
7540 if (unlikely(page != *pagep)) {
09cbfeaf 7541 put_page(page);
fc4adbff
AG
7542 page = NULL;
7543 }
7544 }
7545
7546 if (page) {
7547 if (page->index <= end_idx)
7548 found = true;
09cbfeaf 7549 put_page(page);
fc4adbff
AG
7550 }
7551
7552 rcu_read_unlock();
7553 return found;
7554}
7555
eb838e73
JB
7556static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7557 struct extent_state **cached_state, int writing)
7558{
7559 struct btrfs_ordered_extent *ordered;
7560 int ret = 0;
7561
7562 while (1) {
7563 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7564 cached_state);
eb838e73
JB
7565 /*
7566 * We're concerned with the entire range that we're going to be
01327610 7567 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7568 * extents in this range.
7569 */
a776c6fa 7570 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7571 lockend - lockstart + 1);
7572
7573 /*
7574 * We need to make sure there are no buffered pages in this
7575 * range either, we could have raced between the invalidate in
7576 * generic_file_direct_write and locking the extent. The
7577 * invalidate needs to happen so that reads after a write do not
7578 * get stale data.
7579 */
fc4adbff
AG
7580 if (!ordered &&
7581 (!writing ||
7582 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7583 break;
7584
7585 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7586 cached_state, GFP_NOFS);
7587
7588 if (ordered) {
ade77029
FM
7589 /*
7590 * If we are doing a DIO read and the ordered extent we
7591 * found is for a buffered write, we can not wait for it
7592 * to complete and retry, because if we do so we can
7593 * deadlock with concurrent buffered writes on page
7594 * locks. This happens only if our DIO read covers more
7595 * than one extent map, if at this point has already
7596 * created an ordered extent for a previous extent map
7597 * and locked its range in the inode's io tree, and a
7598 * concurrent write against that previous extent map's
7599 * range and this range started (we unlock the ranges
7600 * in the io tree only when the bios complete and
7601 * buffered writes always lock pages before attempting
7602 * to lock range in the io tree).
7603 */
7604 if (writing ||
7605 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7606 btrfs_start_ordered_extent(inode, ordered, 1);
7607 else
7608 ret = -ENOTBLK;
eb838e73
JB
7609 btrfs_put_ordered_extent(ordered);
7610 } else {
eb838e73 7611 /*
b850ae14
FM
7612 * We could trigger writeback for this range (and wait
7613 * for it to complete) and then invalidate the pages for
7614 * this range (through invalidate_inode_pages2_range()),
7615 * but that can lead us to a deadlock with a concurrent
7616 * call to readpages() (a buffered read or a defrag call
7617 * triggered a readahead) on a page lock due to an
7618 * ordered dio extent we created before but did not have
7619 * yet a corresponding bio submitted (whence it can not
7620 * complete), which makes readpages() wait for that
7621 * ordered extent to complete while holding a lock on
7622 * that page.
eb838e73 7623 */
b850ae14 7624 ret = -ENOTBLK;
eb838e73
JB
7625 }
7626
ade77029
FM
7627 if (ret)
7628 break;
7629
eb838e73
JB
7630 cond_resched();
7631 }
7632
7633 return ret;
7634}
7635
6f9994db
LB
7636/* The callers of this must take lock_extent() */
7637static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7638 u64 orig_start, u64 block_start,
7639 u64 block_len, u64 orig_block_len,
7640 u64 ram_bytes, int compress_type,
7641 int type)
69ffb543
JB
7642{
7643 struct extent_map_tree *em_tree;
7644 struct extent_map *em;
7645 struct btrfs_root *root = BTRFS_I(inode)->root;
7646 int ret;
7647
6f9994db
LB
7648 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7649 type == BTRFS_ORDERED_COMPRESSED ||
7650 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7651 type == BTRFS_ORDERED_REGULAR);
6f9994db 7652
69ffb543
JB
7653 em_tree = &BTRFS_I(inode)->extent_tree;
7654 em = alloc_extent_map();
7655 if (!em)
7656 return ERR_PTR(-ENOMEM);
7657
7658 em->start = start;
7659 em->orig_start = orig_start;
7660 em->len = len;
7661 em->block_len = block_len;
7662 em->block_start = block_start;
7663 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7664 em->orig_block_len = orig_block_len;
cc95bef6 7665 em->ram_bytes = ram_bytes;
70c8a91c 7666 em->generation = -1;
69ffb543 7667 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7668 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7669 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7670 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7671 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7672 em->compress_type = compress_type;
7673 }
69ffb543
JB
7674
7675 do {
dcdbc059 7676 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7677 em->start + em->len - 1, 0);
7678 write_lock(&em_tree->lock);
09a2a8f9 7679 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7680 write_unlock(&em_tree->lock);
6f9994db
LB
7681 /*
7682 * The caller has taken lock_extent(), who could race with us
7683 * to add em?
7684 */
69ffb543
JB
7685 } while (ret == -EEXIST);
7686
7687 if (ret) {
7688 free_extent_map(em);
7689 return ERR_PTR(ret);
7690 }
7691
6f9994db 7692 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7693 return em;
7694}
7695
9c9464cc
FM
7696static void adjust_dio_outstanding_extents(struct inode *inode,
7697 struct btrfs_dio_data *dio_data,
7698 const u64 len)
7699{
823bb20a 7700 unsigned num_extents = count_max_extents(len);
9c9464cc 7701
9c9464cc
FM
7702 /*
7703 * If we have an outstanding_extents count still set then we're
7704 * within our reservation, otherwise we need to adjust our inode
7705 * counter appropriately.
7706 */
c2931667 7707 if (dio_data->outstanding_extents >= num_extents) {
9c9464cc
FM
7708 dio_data->outstanding_extents -= num_extents;
7709 } else {
c2931667
LB
7710 /*
7711 * If dio write length has been split due to no large enough
7712 * contiguous space, we need to compensate our inode counter
7713 * appropriately.
7714 */
7715 u64 num_needed = num_extents - dio_data->outstanding_extents;
7716
9c9464cc 7717 spin_lock(&BTRFS_I(inode)->lock);
c2931667 7718 BTRFS_I(inode)->outstanding_extents += num_needed;
9c9464cc
FM
7719 spin_unlock(&BTRFS_I(inode)->lock);
7720 }
7721}
7722
4b46fce2
JB
7723static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7724 struct buffer_head *bh_result, int create)
7725{
0b246afa 7726 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7727 struct extent_map *em;
eb838e73 7728 struct extent_state *cached_state = NULL;
50745b0a 7729 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7730 u64 start = iblock << inode->i_blkbits;
eb838e73 7731 u64 lockstart, lockend;
4b46fce2 7732 u64 len = bh_result->b_size;
eb838e73 7733 int unlock_bits = EXTENT_LOCKED;
0934856d 7734 int ret = 0;
eb838e73 7735
172a5049 7736 if (create)
3266789f 7737 unlock_bits |= EXTENT_DIRTY;
172a5049 7738 else
0b246afa 7739 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7740
c329861d
JB
7741 lockstart = start;
7742 lockend = start + len - 1;
7743
e1cbbfa5
JB
7744 if (current->journal_info) {
7745 /*
7746 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7747 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7748 * confused.
7749 */
50745b0a 7750 dio_data = current->journal_info;
e1cbbfa5
JB
7751 current->journal_info = NULL;
7752 }
7753
eb838e73
JB
7754 /*
7755 * If this errors out it's because we couldn't invalidate pagecache for
7756 * this range and we need to fallback to buffered.
7757 */
9c9464cc
FM
7758 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7759 create)) {
7760 ret = -ENOTBLK;
7761 goto err;
7762 }
eb838e73 7763
fc4f21b1 7764 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7765 if (IS_ERR(em)) {
7766 ret = PTR_ERR(em);
7767 goto unlock_err;
7768 }
4b46fce2
JB
7769
7770 /*
7771 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7772 * io. INLINE is special, and we could probably kludge it in here, but
7773 * it's still buffered so for safety lets just fall back to the generic
7774 * buffered path.
7775 *
7776 * For COMPRESSED we _have_ to read the entire extent in so we can
7777 * decompress it, so there will be buffering required no matter what we
7778 * do, so go ahead and fallback to buffered.
7779 *
01327610 7780 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7781 * to buffered IO. Don't blame me, this is the price we pay for using
7782 * the generic code.
7783 */
7784 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7785 em->block_start == EXTENT_MAP_INLINE) {
7786 free_extent_map(em);
eb838e73
JB
7787 ret = -ENOTBLK;
7788 goto unlock_err;
4b46fce2
JB
7789 }
7790
7791 /* Just a good old fashioned hole, return */
7792 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7793 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7794 free_extent_map(em);
eb838e73 7795 goto unlock_err;
4b46fce2
JB
7796 }
7797
7798 /*
7799 * We don't allocate a new extent in the following cases
7800 *
7801 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7802 * existing extent.
7803 * 2) The extent is marked as PREALLOC. We're good to go here and can
7804 * just use the extent.
7805 *
7806 */
46bfbb5c 7807 if (!create) {
eb838e73
JB
7808 len = min(len, em->len - (start - em->start));
7809 lockstart = start + len;
7810 goto unlock;
46bfbb5c 7811 }
4b46fce2
JB
7812
7813 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7814 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7815 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7816 int type;
eb384b55 7817 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7818
7819 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7820 type = BTRFS_ORDERED_PREALLOC;
7821 else
7822 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7823 len = min(len, em->len - (start - em->start));
4b46fce2 7824 block_start = em->block_start + (start - em->start);
46bfbb5c 7825
00361589 7826 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c 7827 &orig_block_len, &ram_bytes) == 1 &&
0b246afa 7828 btrfs_inc_nocow_writers(fs_info, block_start)) {
5f9a8a51 7829 struct extent_map *em2;
0b901916 7830
5f9a8a51
FM
7831 em2 = btrfs_create_dio_extent(inode, start, len,
7832 orig_start, block_start,
7833 len, orig_block_len,
7834 ram_bytes, type);
0b246afa 7835 btrfs_dec_nocow_writers(fs_info, block_start);
69ffb543
JB
7836 if (type == BTRFS_ORDERED_PREALLOC) {
7837 free_extent_map(em);
5f9a8a51 7838 em = em2;
69ffb543 7839 }
5f9a8a51
FM
7840 if (em2 && IS_ERR(em2)) {
7841 ret = PTR_ERR(em2);
eb838e73 7842 goto unlock_err;
46bfbb5c 7843 }
18513091
WX
7844 /*
7845 * For inode marked NODATACOW or extent marked PREALLOC,
7846 * use the existing or preallocated extent, so does not
7847 * need to adjust btrfs_space_info's bytes_may_use.
7848 */
7849 btrfs_free_reserved_data_space_noquota(inode,
7850 start, len);
46bfbb5c 7851 goto unlock;
4b46fce2 7852 }
4b46fce2 7853 }
00361589 7854
46bfbb5c
CM
7855 /*
7856 * this will cow the extent, reset the len in case we changed
7857 * it above
7858 */
7859 len = bh_result->b_size;
70c8a91c
JB
7860 free_extent_map(em);
7861 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7862 if (IS_ERR(em)) {
7863 ret = PTR_ERR(em);
7864 goto unlock_err;
7865 }
46bfbb5c
CM
7866 len = min(len, em->len - (start - em->start));
7867unlock:
4b46fce2
JB
7868 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7869 inode->i_blkbits;
46bfbb5c 7870 bh_result->b_size = len;
4b46fce2
JB
7871 bh_result->b_bdev = em->bdev;
7872 set_buffer_mapped(bh_result);
c3473e83
JB
7873 if (create) {
7874 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7875 set_buffer_new(bh_result);
7876
7877 /*
7878 * Need to update the i_size under the extent lock so buffered
7879 * readers will get the updated i_size when we unlock.
7880 */
4aaedfb0 7881 if (!dio_data->overwrite && start + len > i_size_read(inode))
c3473e83 7882 i_size_write(inode, start + len);
0934856d 7883
9c9464cc 7884 adjust_dio_outstanding_extents(inode, dio_data, len);
50745b0a 7885 WARN_ON(dio_data->reserve < len);
7886 dio_data->reserve -= len;
f28a4928 7887 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7888 current->journal_info = dio_data;
c3473e83 7889 }
4b46fce2 7890
eb838e73
JB
7891 /*
7892 * In the case of write we need to clear and unlock the entire range,
7893 * in the case of read we need to unlock only the end area that we
7894 * aren't using if there is any left over space.
7895 */
24c03fa5 7896 if (lockstart < lockend) {
0934856d
MX
7897 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7898 lockend, unlock_bits, 1, 0,
7899 &cached_state, GFP_NOFS);
24c03fa5 7900 } else {
eb838e73 7901 free_extent_state(cached_state);
24c03fa5 7902 }
eb838e73 7903
4b46fce2
JB
7904 free_extent_map(em);
7905
7906 return 0;
eb838e73
JB
7907
7908unlock_err:
eb838e73
JB
7909 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7910 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7911err:
50745b0a 7912 if (dio_data)
7913 current->journal_info = dio_data;
9c9464cc
FM
7914 /*
7915 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7916 * write less data then expected, so that we don't underflow our inode's
7917 * outstanding extents counter.
7918 */
7919 if (create && dio_data)
7920 adjust_dio_outstanding_extents(inode, dio_data, len);
7921
eb838e73 7922 return ret;
4b46fce2
JB
7923}
7924
8b110e39 7925static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
81a75f67 7926 int mirror_num)
8b110e39 7927{
2ff7e61e 7928 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7929 int ret;
7930
37226b21 7931 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39
MX
7932
7933 bio_get(bio);
7934
2ff7e61e 7935 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39
MX
7936 if (ret)
7937 goto err;
7938
2ff7e61e 7939 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
8b110e39
MX
7940err:
7941 bio_put(bio);
7942 return ret;
7943}
7944
7945static int btrfs_check_dio_repairable(struct inode *inode,
7946 struct bio *failed_bio,
7947 struct io_failure_record *failrec,
7948 int failed_mirror)
7949{
ab8d0fc4 7950 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7951 int num_copies;
7952
ab8d0fc4 7953 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7954 if (num_copies == 1) {
7955 /*
7956 * we only have a single copy of the data, so don't bother with
7957 * all the retry and error correction code that follows. no
7958 * matter what the error is, it is very likely to persist.
7959 */
ab8d0fc4
JM
7960 btrfs_debug(fs_info,
7961 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7962 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7963 return 0;
7964 }
7965
7966 failrec->failed_mirror = failed_mirror;
7967 failrec->this_mirror++;
7968 if (failrec->this_mirror == failed_mirror)
7969 failrec->this_mirror++;
7970
7971 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7972 btrfs_debug(fs_info,
7973 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7974 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7975 return 0;
7976 }
7977
7978 return 1;
7979}
7980
7981static int dio_read_error(struct inode *inode, struct bio *failed_bio,
2dabb324
CR
7982 struct page *page, unsigned int pgoff,
7983 u64 start, u64 end, int failed_mirror,
7984 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7985{
7986 struct io_failure_record *failrec;
7870d082
JB
7987 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7988 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8b110e39
MX
7989 struct bio *bio;
7990 int isector;
70fd7614 7991 int read_mode = 0;
17347cec 7992 int segs;
8b110e39
MX
7993 int ret;
7994
37226b21 7995 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7996
7997 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7998 if (ret)
7999 return ret;
8000
8001 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
8002 failed_mirror);
8003 if (!ret) {
7870d082 8004 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
8005 return -EIO;
8006 }
8007
17347cec
LB
8008 segs = bio_segments(failed_bio);
8009 if (segs > 1 ||
8010 (failed_bio->bi_io_vec->bv_len > btrfs_inode_sectorsize(inode)))
70fd7614 8011 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
8012
8013 isector = start - btrfs_io_bio(failed_bio)->logical;
8014 isector >>= inode->i_sb->s_blocksize_bits;
8015 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 8016 pgoff, isector, repair_endio, repair_arg);
8b110e39 8017 if (!bio) {
7870d082 8018 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
8019 return -EIO;
8020 }
37226b21 8021 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
8022
8023 btrfs_debug(BTRFS_I(inode)->root->fs_info,
8024 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
8025 read_mode, failrec->this_mirror, failrec->in_validation);
8026
81a75f67 8027 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8b110e39 8028 if (ret) {
7870d082 8029 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
8030 bio_put(bio);
8031 }
8032
8033 return ret;
8034}
8035
8036struct btrfs_retry_complete {
8037 struct completion done;
8038 struct inode *inode;
8039 u64 start;
8040 int uptodate;
8041};
8042
4246a0b6 8043static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
8044{
8045 struct btrfs_retry_complete *done = bio->bi_private;
7870d082 8046 struct inode *inode = done->inode;
8b110e39 8047 struct bio_vec *bvec;
7870d082 8048 struct extent_io_tree *io_tree, *failure_tree;
8b110e39
MX
8049 int i;
8050
4246a0b6 8051 if (bio->bi_error)
8b110e39
MX
8052 goto end;
8053
2dabb324 8054 ASSERT(bio->bi_vcnt == 1);
7870d082
JB
8055 io_tree = &BTRFS_I(inode)->io_tree;
8056 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8057 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 8058
8b110e39
MX
8059 done->uptodate = 1;
8060 bio_for_each_segment_all(bvec, bio, i)
7870d082
JB
8061 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8062 io_tree, done->start, bvec->bv_page,
8063 btrfs_ino(BTRFS_I(inode)), 0);
8b110e39
MX
8064end:
8065 complete(&done->done);
8066 bio_put(bio);
8067}
8068
8069static int __btrfs_correct_data_nocsum(struct inode *inode,
8070 struct btrfs_io_bio *io_bio)
4b46fce2 8071{
2dabb324 8072 struct btrfs_fs_info *fs_info;
17347cec
LB
8073 struct bio_vec bvec;
8074 struct bvec_iter iter;
8b110e39 8075 struct btrfs_retry_complete done;
4b46fce2 8076 u64 start;
2dabb324
CR
8077 unsigned int pgoff;
8078 u32 sectorsize;
8079 int nr_sectors;
c1dc0896 8080 int ret;
629ebf4f 8081 int err = 0;
4b46fce2 8082
2dabb324 8083 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8084 sectorsize = fs_info->sectorsize;
2dabb324 8085
8b110e39
MX
8086 start = io_bio->logical;
8087 done.inode = inode;
17347cec 8088 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8089
17347cec
LB
8090 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8091 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8092 pgoff = bvec.bv_offset;
2dabb324
CR
8093
8094next_block_or_try_again:
8b110e39
MX
8095 done.uptodate = 0;
8096 done.start = start;
8097 init_completion(&done.done);
8098
17347cec 8099 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
8100 pgoff, start, start + sectorsize - 1,
8101 io_bio->mirror_num,
8102 btrfs_retry_endio_nocsum, &done);
629ebf4f
LB
8103 if (ret) {
8104 err = ret;
8105 goto next;
8106 }
8b110e39
MX
8107
8108 wait_for_completion(&done.done);
8109
8110 if (!done.uptodate) {
8111 /* We might have another mirror, so try again */
2dabb324 8112 goto next_block_or_try_again;
8b110e39
MX
8113 }
8114
629ebf4f 8115next:
2dabb324
CR
8116 start += sectorsize;
8117
97bf5a55
LB
8118 nr_sectors--;
8119 if (nr_sectors) {
2dabb324 8120 pgoff += sectorsize;
97bf5a55 8121 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8122 goto next_block_or_try_again;
8123 }
8b110e39
MX
8124 }
8125
629ebf4f 8126 return err;
8b110e39
MX
8127}
8128
4246a0b6 8129static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
8130{
8131 struct btrfs_retry_complete *done = bio->bi_private;
8132 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082
JB
8133 struct extent_io_tree *io_tree, *failure_tree;
8134 struct inode *inode = done->inode;
8b110e39
MX
8135 struct bio_vec *bvec;
8136 int uptodate;
8137 int ret;
8138 int i;
8139
4246a0b6 8140 if (bio->bi_error)
8b110e39
MX
8141 goto end;
8142
8143 uptodate = 1;
2dabb324 8144
2dabb324 8145 ASSERT(bio->bi_vcnt == 1);
2e949b0a 8146 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 8147
7870d082
JB
8148 io_tree = &BTRFS_I(inode)->io_tree;
8149 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8150
8b110e39 8151 bio_for_each_segment_all(bvec, bio, i) {
7870d082
JB
8152 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8153 bvec->bv_offset, done->start,
8154 bvec->bv_len);
8b110e39 8155 if (!ret)
7870d082
JB
8156 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8157 failure_tree, io_tree, done->start,
8158 bvec->bv_page,
8159 btrfs_ino(BTRFS_I(inode)),
8160 bvec->bv_offset);
8b110e39
MX
8161 else
8162 uptodate = 0;
8163 }
8164
8165 done->uptodate = uptodate;
8166end:
8167 complete(&done->done);
8168 bio_put(bio);
8169}
8170
8171static int __btrfs_subio_endio_read(struct inode *inode,
8172 struct btrfs_io_bio *io_bio, int err)
8173{
2dabb324 8174 struct btrfs_fs_info *fs_info;
17347cec
LB
8175 struct bio_vec bvec;
8176 struct bvec_iter iter;
8b110e39
MX
8177 struct btrfs_retry_complete done;
8178 u64 start;
8179 u64 offset = 0;
2dabb324
CR
8180 u32 sectorsize;
8181 int nr_sectors;
8182 unsigned int pgoff;
8183 int csum_pos;
8b110e39 8184 int ret;
dc380aea 8185
2dabb324 8186 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8187 sectorsize = fs_info->sectorsize;
2dabb324 8188
8b110e39 8189 err = 0;
c1dc0896 8190 start = io_bio->logical;
8b110e39 8191 done.inode = inode;
17347cec 8192 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8193
17347cec
LB
8194 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8195 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
2dabb324 8196
17347cec 8197 pgoff = bvec.bv_offset;
2dabb324
CR
8198next_block:
8199 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8200 ret = __readpage_endio_check(inode, io_bio, csum_pos,
17347cec 8201 bvec.bv_page, pgoff, start,
2dabb324 8202 sectorsize);
8b110e39
MX
8203 if (likely(!ret))
8204 goto next;
8205try_again:
8206 done.uptodate = 0;
8207 done.start = start;
8208 init_completion(&done.done);
8209
17347cec 8210 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
8211 pgoff, start, start + sectorsize - 1,
8212 io_bio->mirror_num,
8213 btrfs_retry_endio, &done);
8b110e39
MX
8214 if (ret) {
8215 err = ret;
8216 goto next;
8217 }
8218
8219 wait_for_completion(&done.done);
8220
8221 if (!done.uptodate) {
8222 /* We might have another mirror, so try again */
8223 goto try_again;
8224 }
8225next:
2dabb324
CR
8226 offset += sectorsize;
8227 start += sectorsize;
8228
8229 ASSERT(nr_sectors);
8230
97bf5a55
LB
8231 nr_sectors--;
8232 if (nr_sectors) {
2dabb324 8233 pgoff += sectorsize;
97bf5a55 8234 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8235 goto next_block;
8236 }
2c30c71b 8237 }
c1dc0896
MX
8238
8239 return err;
8240}
8241
8b110e39
MX
8242static int btrfs_subio_endio_read(struct inode *inode,
8243 struct btrfs_io_bio *io_bio, int err)
8244{
8245 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8246
8247 if (skip_csum) {
8248 if (unlikely(err))
8249 return __btrfs_correct_data_nocsum(inode, io_bio);
8250 else
8251 return 0;
8252 } else {
8253 return __btrfs_subio_endio_read(inode, io_bio, err);
8254 }
8255}
8256
4246a0b6 8257static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8258{
8259 struct btrfs_dio_private *dip = bio->bi_private;
8260 struct inode *inode = dip->inode;
8261 struct bio *dio_bio;
8262 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 8263 int err = bio->bi_error;
c1dc0896 8264
8b110e39
MX
8265 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8266 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8267
4b46fce2 8268 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8269 dip->logical_offset + dip->bytes - 1);
9be3395b 8270 dio_bio = dip->dio_bio;
4b46fce2 8271
4b46fce2 8272 kfree(dip);
c0da7aa1 8273
1636d1d7 8274 dio_bio->bi_error = bio->bi_error;
4246a0b6 8275 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
8276
8277 if (io_bio->end_io)
8278 io_bio->end_io(io_bio, err);
9be3395b 8279 bio_put(bio);
4b46fce2
JB
8280}
8281
52427260
QW
8282static void __endio_write_update_ordered(struct inode *inode,
8283 const u64 offset, const u64 bytes,
8284 const bool uptodate)
4b46fce2 8285{
0b246afa 8286 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8287 struct btrfs_ordered_extent *ordered = NULL;
52427260
QW
8288 struct btrfs_workqueue *wq;
8289 btrfs_work_func_t func;
14543774
FM
8290 u64 ordered_offset = offset;
8291 u64 ordered_bytes = bytes;
4b46fce2
JB
8292 int ret;
8293
52427260
QW
8294 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8295 wq = fs_info->endio_freespace_worker;
8296 func = btrfs_freespace_write_helper;
8297 } else {
8298 wq = fs_info->endio_write_workers;
8299 func = btrfs_endio_write_helper;
8300 }
8301
163cf09c
CM
8302again:
8303 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8304 &ordered_offset,
4246a0b6 8305 ordered_bytes,
14543774 8306 uptodate);
4b46fce2 8307 if (!ret)
163cf09c 8308 goto out_test;
4b46fce2 8309
52427260
QW
8310 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8311 btrfs_queue_work(wq, &ordered->work);
163cf09c
CM
8312out_test:
8313 /*
8314 * our bio might span multiple ordered extents. If we haven't
8315 * completed the accounting for the whole dio, go back and try again
8316 */
14543774
FM
8317 if (ordered_offset < offset + bytes) {
8318 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8319 ordered = NULL;
163cf09c
CM
8320 goto again;
8321 }
14543774
FM
8322}
8323
8324static void btrfs_endio_direct_write(struct bio *bio)
8325{
8326 struct btrfs_dio_private *dip = bio->bi_private;
8327 struct bio *dio_bio = dip->dio_bio;
8328
52427260
QW
8329 __endio_write_update_ordered(dip->inode, dip->logical_offset,
8330 dip->bytes, !bio->bi_error);
4b46fce2 8331
4b46fce2 8332 kfree(dip);
c0da7aa1 8333
1636d1d7 8334 dio_bio->bi_error = bio->bi_error;
4246a0b6 8335 dio_end_io(dio_bio, bio->bi_error);
9be3395b 8336 bio_put(bio);
4b46fce2
JB
8337}
8338
c6100a4b 8339static int __btrfs_submit_bio_start_direct_io(void *private_data,
eaf25d93
CM
8340 struct bio *bio, int mirror_num,
8341 unsigned long bio_flags, u64 offset)
8342{
c6100a4b 8343 struct inode *inode = private_data;
eaf25d93 8344 int ret;
2ff7e61e 8345 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8346 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8347 return 0;
8348}
8349
4246a0b6 8350static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8351{
8352 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8353 int err = bio->bi_error;
e65e1535 8354
8b110e39
MX
8355 if (err)
8356 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8357 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8358 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8359 bio->bi_opf,
8b110e39
MX
8360 (unsigned long long)bio->bi_iter.bi_sector,
8361 bio->bi_iter.bi_size, err);
8362
8363 if (dip->subio_endio)
8364 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8365
8366 if (err) {
e65e1535
MX
8367 dip->errors = 1;
8368
8369 /*
8370 * before atomic variable goto zero, we must make sure
8371 * dip->errors is perceived to be set.
8372 */
4e857c58 8373 smp_mb__before_atomic();
e65e1535
MX
8374 }
8375
8376 /* if there are more bios still pending for this dio, just exit */
8377 if (!atomic_dec_and_test(&dip->pending_bios))
8378 goto out;
8379
9be3395b 8380 if (dip->errors) {
e65e1535 8381 bio_io_error(dip->orig_bio);
9be3395b 8382 } else {
4246a0b6
CH
8383 dip->dio_bio->bi_error = 0;
8384 bio_endio(dip->orig_bio);
e65e1535
MX
8385 }
8386out:
8387 bio_put(bio);
8388}
8389
2ff7e61e 8390static inline int btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8391 struct btrfs_dio_private *dip,
8392 struct bio *bio,
8393 u64 file_offset)
8394{
8395 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8396 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8397 int ret;
8398
8399 /*
8400 * We load all the csum data we need when we submit
8401 * the first bio to reduce the csum tree search and
8402 * contention.
8403 */
8404 if (dip->logical_offset == file_offset) {
2ff7e61e 8405 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8406 file_offset);
8407 if (ret)
8408 return ret;
8409 }
8410
8411 if (bio == dip->orig_bio)
8412 return 0;
8413
8414 file_offset -= dip->logical_offset;
8415 file_offset >>= inode->i_sb->s_blocksize_bits;
8416 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8417
8418 return 0;
8419}
8420
e65e1535 8421static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
81a75f67 8422 u64 file_offset, int skip_sum,
c329861d 8423 int async_submit)
e65e1535 8424{
0b246afa 8425 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8426 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8427 bool write = bio_op(bio) == REQ_OP_WRITE;
e65e1535
MX
8428 int ret;
8429
b812ce28
JB
8430 if (async_submit)
8431 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8432
e65e1535 8433 bio_get(bio);
5fd02043
JB
8434
8435 if (!write) {
0b246afa 8436 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8437 if (ret)
8438 goto err;
8439 }
e65e1535 8440
1ae39938
JB
8441 if (skip_sum)
8442 goto map;
8443
8444 if (write && async_submit) {
c6100a4b
JB
8445 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8446 file_offset, inode,
0b246afa
JM
8447 __btrfs_submit_bio_start_direct_io,
8448 __btrfs_submit_bio_done);
e65e1535 8449 goto err;
1ae39938
JB
8450 } else if (write) {
8451 /*
8452 * If we aren't doing async submit, calculate the csum of the
8453 * bio now.
8454 */
2ff7e61e 8455 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8456 if (ret)
8457 goto err;
23ea8e5a 8458 } else {
2ff7e61e 8459 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8460 file_offset);
c2db1073
TI
8461 if (ret)
8462 goto err;
8463 }
1ae39938 8464map:
2ff7e61e 8465 ret = btrfs_map_bio(fs_info, bio, 0, async_submit);
e65e1535
MX
8466err:
8467 bio_put(bio);
8468 return ret;
8469}
8470
81a75f67 8471static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
e65e1535
MX
8472 int skip_sum)
8473{
8474 struct inode *inode = dip->inode;
0b246afa 8475 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535
MX
8476 struct bio *bio;
8477 struct bio *orig_bio = dip->orig_bio;
4f024f37 8478 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535 8479 u64 file_offset = dip->logical_offset;
e65e1535 8480 u64 map_length;
1ae39938 8481 int async_submit = 0;
725130ba
LB
8482 u64 submit_len;
8483 int clone_offset = 0;
8484 int clone_len;
5f4dc8fc 8485 int ret;
e65e1535 8486
4f024f37 8487 map_length = orig_bio->bi_iter.bi_size;
725130ba 8488 submit_len = map_length;
0b246afa
JM
8489 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8490 &map_length, NULL, 0);
7a5c3c9b 8491 if (ret)
e65e1535 8492 return -EIO;
facc8a22 8493
725130ba 8494 if (map_length >= submit_len) {
02f57c7a 8495 bio = orig_bio;
c1dc0896 8496 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8497 goto submit;
8498 }
8499
53b381b3 8500 /* async crcs make it difficult to collect full stripe writes. */
1b86826d 8501 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8502 async_submit = 0;
8503 else
8504 async_submit = 1;
8505
725130ba
LB
8506 /* bio split */
8507 ASSERT(map_length <= INT_MAX);
02f57c7a 8508 atomic_inc(&dip->pending_bios);
3c91ee69 8509 do {
725130ba 8510 clone_len = min_t(int, submit_len, map_length);
02f57c7a 8511
725130ba
LB
8512 /*
8513 * This will never fail as it's passing GPF_NOFS and
8514 * the allocation is backed by btrfs_bioset.
8515 */
e477094f 8516 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
725130ba
LB
8517 clone_len);
8518 bio->bi_private = dip;
8519 bio->bi_end_io = btrfs_end_dio_bio;
8520 btrfs_io_bio(bio)->logical = file_offset;
8521
8522 ASSERT(submit_len >= clone_len);
8523 submit_len -= clone_len;
8524 if (submit_len == 0)
8525 break;
e65e1535 8526
725130ba
LB
8527 /*
8528 * Increase the count before we submit the bio so we know
8529 * the end IO handler won't happen before we increase the
8530 * count. Otherwise, the dip might get freed before we're
8531 * done setting it up.
8532 */
8533 atomic_inc(&dip->pending_bios);
e65e1535 8534
725130ba
LB
8535 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
8536 async_submit);
8537 if (ret) {
8538 bio_put(bio);
8539 atomic_dec(&dip->pending_bios);
8540 goto out_err;
8541 }
e65e1535 8542
725130ba
LB
8543 clone_offset += clone_len;
8544 start_sector += clone_len >> 9;
8545 file_offset += clone_len;
5f4dc8fc 8546
725130ba
LB
8547 map_length = submit_len;
8548 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8549 start_sector << 9, &map_length, NULL, 0);
8550 if (ret)
8551 goto out_err;
3c91ee69 8552 } while (submit_len > 0);
e65e1535 8553
02f57c7a 8554submit:
81a75f67 8555 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
c329861d 8556 async_submit);
e65e1535
MX
8557 if (!ret)
8558 return 0;
8559
8560 bio_put(bio);
8561out_err:
8562 dip->errors = 1;
8563 /*
8564 * before atomic variable goto zero, we must
8565 * make sure dip->errors is perceived to be set.
8566 */
4e857c58 8567 smp_mb__before_atomic();
e65e1535
MX
8568 if (atomic_dec_and_test(&dip->pending_bios))
8569 bio_io_error(dip->orig_bio);
8570
8571 /* bio_end_io() will handle error, so we needn't return it */
8572 return 0;
8573}
8574
8a4c1e42
MC
8575static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8576 loff_t file_offset)
4b46fce2 8577{
61de718f 8578 struct btrfs_dio_private *dip = NULL;
3892ac90
LB
8579 struct bio *bio = NULL;
8580 struct btrfs_io_bio *io_bio;
4b46fce2 8581 int skip_sum;
8a4c1e42 8582 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8583 int ret = 0;
8584
8585 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8586
3892ac90
LB
8587 bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8588 if (!bio) {
9be3395b
CM
8589 ret = -ENOMEM;
8590 goto free_ordered;
8591 }
8592
c1dc0896 8593 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8594 if (!dip) {
8595 ret = -ENOMEM;
61de718f 8596 goto free_ordered;
4b46fce2 8597 }
4b46fce2 8598
9be3395b 8599 dip->private = dio_bio->bi_private;
4b46fce2
JB
8600 dip->inode = inode;
8601 dip->logical_offset = file_offset;
4f024f37
KO
8602 dip->bytes = dio_bio->bi_iter.bi_size;
8603 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
3892ac90
LB
8604 bio->bi_private = dip;
8605 dip->orig_bio = bio;
9be3395b 8606 dip->dio_bio = dio_bio;
e65e1535 8607 atomic_set(&dip->pending_bios, 0);
3892ac90
LB
8608 io_bio = btrfs_io_bio(bio);
8609 io_bio->logical = file_offset;
4b46fce2 8610
c1dc0896 8611 if (write) {
3892ac90 8612 bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8613 } else {
3892ac90 8614 bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8615 dip->subio_endio = btrfs_subio_endio_read;
8616 }
4b46fce2 8617
f28a4928
FM
8618 /*
8619 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8620 * even if we fail to submit a bio, because in such case we do the
8621 * corresponding error handling below and it must not be done a second
8622 * time by btrfs_direct_IO().
8623 */
8624 if (write) {
8625 struct btrfs_dio_data *dio_data = current->journal_info;
8626
8627 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8628 dip->bytes;
8629 dio_data->unsubmitted_oe_range_start =
8630 dio_data->unsubmitted_oe_range_end;
8631 }
8632
81a75f67 8633 ret = btrfs_submit_direct_hook(dip, skip_sum);
e65e1535 8634 if (!ret)
eaf25d93 8635 return;
9be3395b 8636
3892ac90
LB
8637 if (io_bio->end_io)
8638 io_bio->end_io(io_bio, ret);
9be3395b 8639
4b46fce2
JB
8640free_ordered:
8641 /*
61de718f
FM
8642 * If we arrived here it means either we failed to submit the dip
8643 * or we either failed to clone the dio_bio or failed to allocate the
8644 * dip. If we cloned the dio_bio and allocated the dip, we can just
8645 * call bio_endio against our io_bio so that we get proper resource
8646 * cleanup if we fail to submit the dip, otherwise, we must do the
8647 * same as btrfs_endio_direct_[write|read] because we can't call these
8648 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8649 */
3892ac90
LB
8650 if (bio && dip) {
8651 bio->bi_error = -EIO;
8652 bio_endio(bio);
61de718f 8653 /*
3892ac90 8654 * The end io callbacks free our dip, do the final put on bio
61de718f
FM
8655 * and all the cleanup and final put for dio_bio (through
8656 * dio_end_io()).
8657 */
8658 dip = NULL;
3892ac90 8659 bio = NULL;
61de718f 8660 } else {
14543774 8661 if (write)
52427260 8662 __endio_write_update_ordered(inode,
14543774
FM
8663 file_offset,
8664 dio_bio->bi_iter.bi_size,
52427260 8665 false);
14543774 8666 else
61de718f
FM
8667 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8668 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8669
4246a0b6 8670 dio_bio->bi_error = -EIO;
61de718f
FM
8671 /*
8672 * Releases and cleans up our dio_bio, no need to bio_put()
8673 * nor bio_endio()/bio_io_error() against dio_bio.
8674 */
8675 dio_end_io(dio_bio, ret);
4b46fce2 8676 }
3892ac90
LB
8677 if (bio)
8678 bio_put(bio);
61de718f 8679 kfree(dip);
4b46fce2
JB
8680}
8681
2ff7e61e
JM
8682static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8683 struct kiocb *iocb,
8684 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8685{
8686 int seg;
a1b75f7d 8687 int i;
0b246afa 8688 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8689 ssize_t retval = -EINVAL;
5a5f79b5
CM
8690
8691 if (offset & blocksize_mask)
8692 goto out;
8693
28060d5d
AV
8694 if (iov_iter_alignment(iter) & blocksize_mask)
8695 goto out;
a1b75f7d 8696
28060d5d 8697 /* If this is a write we don't need to check anymore */
cd27e455 8698 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8699 return 0;
8700 /*
8701 * Check to make sure we don't have duplicate iov_base's in this
8702 * iovec, if so return EINVAL, otherwise we'll get csum errors
8703 * when reading back.
8704 */
8705 for (seg = 0; seg < iter->nr_segs; seg++) {
8706 for (i = seg + 1; i < iter->nr_segs; i++) {
8707 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8708 goto out;
8709 }
5a5f79b5
CM
8710 }
8711 retval = 0;
8712out:
8713 return retval;
8714}
eb838e73 8715
c8b8e32d 8716static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8717{
4b46fce2
JB
8718 struct file *file = iocb->ki_filp;
8719 struct inode *inode = file->f_mapping->host;
0b246afa 8720 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8721 struct btrfs_dio_data dio_data = { 0 };
c8b8e32d 8722 loff_t offset = iocb->ki_pos;
0934856d 8723 size_t count = 0;
2e60a51e 8724 int flags = 0;
38851cc1
MX
8725 bool wakeup = true;
8726 bool relock = false;
0934856d 8727 ssize_t ret;
4b46fce2 8728
2ff7e61e 8729 if (check_direct_IO(fs_info, iocb, iter, offset))
5a5f79b5 8730 return 0;
3f7c579c 8731
fe0f07d0 8732 inode_dio_begin(inode);
4e857c58 8733 smp_mb__after_atomic();
38851cc1 8734
0e267c44 8735 /*
41bd9ca4
MX
8736 * The generic stuff only does filemap_write_and_wait_range, which
8737 * isn't enough if we've written compressed pages to this area, so
8738 * we need to flush the dirty pages again to make absolutely sure
8739 * that any outstanding dirty pages are on disk.
0e267c44 8740 */
a6cbcd4a 8741 count = iov_iter_count(iter);
41bd9ca4
MX
8742 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8743 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8744 filemap_fdatawrite_range(inode->i_mapping, offset,
8745 offset + count - 1);
0e267c44 8746
6f673763 8747 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8748 /*
8749 * If the write DIO is beyond the EOF, we need update
8750 * the isize, but it is protected by i_mutex. So we can
8751 * not unlock the i_mutex at this case.
8752 */
8753 if (offset + count <= inode->i_size) {
4aaedfb0 8754 dio_data.overwrite = 1;
5955102c 8755 inode_unlock(inode);
38851cc1
MX
8756 relock = true;
8757 }
7cf5b976 8758 ret = btrfs_delalloc_reserve_space(inode, offset, count);
0934856d 8759 if (ret)
38851cc1 8760 goto out;
823bb20a 8761 dio_data.outstanding_extents = count_max_extents(count);
e1cbbfa5
JB
8762
8763 /*
8764 * We need to know how many extents we reserved so that we can
8765 * do the accounting properly if we go over the number we
8766 * originally calculated. Abuse current->journal_info for this.
8767 */
da17066c 8768 dio_data.reserve = round_up(count,
0b246afa 8769 fs_info->sectorsize);
f28a4928
FM
8770 dio_data.unsubmitted_oe_range_start = (u64)offset;
8771 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8772 current->journal_info = &dio_data;
97dcdea0 8773 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8774 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8775 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8776 inode_dio_end(inode);
38851cc1
MX
8777 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8778 wakeup = false;
0934856d
MX
8779 }
8780
17f8c842 8781 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8782 fs_info->fs_devices->latest_bdev,
c8b8e32d 8783 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8784 btrfs_submit_direct, flags);
6f673763 8785 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8786 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8787 current->journal_info = NULL;
ddba1bfc 8788 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8789 if (dio_data.reserve)
7cf5b976
QW
8790 btrfs_delalloc_release_space(inode, offset,
8791 dio_data.reserve);
f28a4928
FM
8792 /*
8793 * On error we might have left some ordered extents
8794 * without submitting corresponding bios for them, so
8795 * cleanup them up to avoid other tasks getting them
8796 * and waiting for them to complete forever.
8797 */
8798 if (dio_data.unsubmitted_oe_range_start <
8799 dio_data.unsubmitted_oe_range_end)
52427260 8800 __endio_write_update_ordered(inode,
f28a4928
FM
8801 dio_data.unsubmitted_oe_range_start,
8802 dio_data.unsubmitted_oe_range_end -
8803 dio_data.unsubmitted_oe_range_start,
52427260 8804 false);
ddba1bfc 8805 } else if (ret >= 0 && (size_t)ret < count)
7cf5b976
QW
8806 btrfs_delalloc_release_space(inode, offset,
8807 count - (size_t)ret);
0934856d 8808 }
38851cc1 8809out:
2e60a51e 8810 if (wakeup)
fe0f07d0 8811 inode_dio_end(inode);
38851cc1 8812 if (relock)
5955102c 8813 inode_lock(inode);
0934856d
MX
8814
8815 return ret;
16432985
CM
8816}
8817
05dadc09
TI
8818#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8819
1506fcc8
YS
8820static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8821 __u64 start, __u64 len)
8822{
05dadc09
TI
8823 int ret;
8824
8825 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8826 if (ret)
8827 return ret;
8828
ec29ed5b 8829 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8830}
8831
a52d9a80 8832int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8833{
d1310b2e
CM
8834 struct extent_io_tree *tree;
8835 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8836 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8837}
1832a6d5 8838
a52d9a80 8839static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8840{
d1310b2e 8841 struct extent_io_tree *tree;
be7bd730
JB
8842 struct inode *inode = page->mapping->host;
8843 int ret;
b888db2b
CM
8844
8845 if (current->flags & PF_MEMALLOC) {
8846 redirty_page_for_writepage(wbc, page);
8847 unlock_page(page);
8848 return 0;
8849 }
be7bd730
JB
8850
8851 /*
8852 * If we are under memory pressure we will call this directly from the
8853 * VM, we need to make sure we have the inode referenced for the ordered
8854 * extent. If not just return like we didn't do anything.
8855 */
8856 if (!igrab(inode)) {
8857 redirty_page_for_writepage(wbc, page);
8858 return AOP_WRITEPAGE_ACTIVATE;
8859 }
d1310b2e 8860 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8861 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8862 btrfs_add_delayed_iput(inode);
8863 return ret;
9ebefb18
CM
8864}
8865
48a3b636
ES
8866static int btrfs_writepages(struct address_space *mapping,
8867 struct writeback_control *wbc)
b293f02e 8868{
d1310b2e 8869 struct extent_io_tree *tree;
771ed689 8870
d1310b2e 8871 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8872 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8873}
8874
3ab2fb5a
CM
8875static int
8876btrfs_readpages(struct file *file, struct address_space *mapping,
8877 struct list_head *pages, unsigned nr_pages)
8878{
d1310b2e
CM
8879 struct extent_io_tree *tree;
8880 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8881 return extent_readpages(tree, mapping, pages, nr_pages,
8882 btrfs_get_extent);
8883}
e6dcd2dc 8884static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8885{
d1310b2e
CM
8886 struct extent_io_tree *tree;
8887 struct extent_map_tree *map;
a52d9a80 8888 int ret;
8c2383c3 8889
d1310b2e
CM
8890 tree = &BTRFS_I(page->mapping->host)->io_tree;
8891 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8892 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8893 if (ret == 1) {
8894 ClearPagePrivate(page);
8895 set_page_private(page, 0);
09cbfeaf 8896 put_page(page);
39279cc3 8897 }
a52d9a80 8898 return ret;
39279cc3
CM
8899}
8900
e6dcd2dc
CM
8901static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8902{
98509cfc
CM
8903 if (PageWriteback(page) || PageDirty(page))
8904 return 0;
3ba7ab22 8905 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8906}
8907
d47992f8
LC
8908static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8909 unsigned int length)
39279cc3 8910{
5fd02043 8911 struct inode *inode = page->mapping->host;
d1310b2e 8912 struct extent_io_tree *tree;
e6dcd2dc 8913 struct btrfs_ordered_extent *ordered;
2ac55d41 8914 struct extent_state *cached_state = NULL;
e6dcd2dc 8915 u64 page_start = page_offset(page);
09cbfeaf 8916 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8917 u64 start;
8918 u64 end;
131e404a 8919 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8920
8b62b72b
CM
8921 /*
8922 * we have the page locked, so new writeback can't start,
8923 * and the dirty bit won't be cleared while we are here.
8924 *
8925 * Wait for IO on this page so that we can safely clear
8926 * the PagePrivate2 bit and do ordered accounting
8927 */
e6dcd2dc 8928 wait_on_page_writeback(page);
8b62b72b 8929
5fd02043 8930 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8931 if (offset) {
8932 btrfs_releasepage(page, GFP_NOFS);
8933 return;
8934 }
131e404a
FDBM
8935
8936 if (!inode_evicting)
ff13db41 8937 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8938again:
8939 start = page_start;
a776c6fa 8940 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8941 page_end - start + 1);
e6dcd2dc 8942 if (ordered) {
dbfdb6d1 8943 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8944 /*
8945 * IO on this page will never be started, so we need
8946 * to account for any ordered extents now
8947 */
131e404a 8948 if (!inode_evicting)
dbfdb6d1 8949 clear_extent_bit(tree, start, end,
131e404a 8950 EXTENT_DIRTY | EXTENT_DELALLOC |
a7e3b975 8951 EXTENT_DELALLOC_NEW |
131e404a
FDBM
8952 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8953 EXTENT_DEFRAG, 1, 0, &cached_state,
8954 GFP_NOFS);
8b62b72b
CM
8955 /*
8956 * whoever cleared the private bit is responsible
8957 * for the finish_ordered_io
8958 */
77cef2ec
JB
8959 if (TestClearPagePrivate2(page)) {
8960 struct btrfs_ordered_inode_tree *tree;
8961 u64 new_len;
8962
8963 tree = &BTRFS_I(inode)->ordered_tree;
8964
8965 spin_lock_irq(&tree->lock);
8966 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8967 new_len = start - ordered->file_offset;
77cef2ec
JB
8968 if (new_len < ordered->truncated_len)
8969 ordered->truncated_len = new_len;
8970 spin_unlock_irq(&tree->lock);
8971
8972 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8973 start,
8974 end - start + 1, 1))
77cef2ec 8975 btrfs_finish_ordered_io(ordered);
8b62b72b 8976 }
e6dcd2dc 8977 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8978 if (!inode_evicting) {
8979 cached_state = NULL;
dbfdb6d1 8980 lock_extent_bits(tree, start, end,
131e404a
FDBM
8981 &cached_state);
8982 }
dbfdb6d1
CR
8983
8984 start = end + 1;
8985 if (start < page_end)
8986 goto again;
131e404a
FDBM
8987 }
8988
b9d0b389
QW
8989 /*
8990 * Qgroup reserved space handler
8991 * Page here will be either
8992 * 1) Already written to disk
8993 * In this case, its reserved space is released from data rsv map
8994 * and will be freed by delayed_ref handler finally.
8995 * So even we call qgroup_free_data(), it won't decrease reserved
8996 * space.
8997 * 2) Not written to disk
0b34c261
GR
8998 * This means the reserved space should be freed here. However,
8999 * if a truncate invalidates the page (by clearing PageDirty)
9000 * and the page is accounted for while allocating extent
9001 * in btrfs_check_data_free_space() we let delayed_ref to
9002 * free the entire extent.
b9d0b389 9003 */
0b34c261
GR
9004 if (PageDirty(page))
9005 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
131e404a
FDBM
9006 if (!inode_evicting) {
9007 clear_extent_bit(tree, page_start, page_end,
9008 EXTENT_LOCKED | EXTENT_DIRTY |
a7e3b975
FM
9009 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
9010 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
131e404a
FDBM
9011 &cached_state, GFP_NOFS);
9012
9013 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 9014 }
e6dcd2dc 9015
4a096752 9016 ClearPageChecked(page);
9ad6b7bc 9017 if (PagePrivate(page)) {
9ad6b7bc
CM
9018 ClearPagePrivate(page);
9019 set_page_private(page, 0);
09cbfeaf 9020 put_page(page);
9ad6b7bc 9021 }
39279cc3
CM
9022}
9023
9ebefb18
CM
9024/*
9025 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9026 * called from a page fault handler when a page is first dirtied. Hence we must
9027 * be careful to check for EOF conditions here. We set the page up correctly
9028 * for a written page which means we get ENOSPC checking when writing into
9029 * holes and correct delalloc and unwritten extent mapping on filesystems that
9030 * support these features.
9031 *
9032 * We are not allowed to take the i_mutex here so we have to play games to
9033 * protect against truncate races as the page could now be beyond EOF. Because
9034 * vmtruncate() writes the inode size before removing pages, once we have the
9035 * page lock we can determine safely if the page is beyond EOF. If it is not
9036 * beyond EOF, then the page is guaranteed safe against truncation until we
9037 * unlock the page.
9038 */
11bac800 9039int btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 9040{
c2ec175c 9041 struct page *page = vmf->page;
11bac800 9042 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 9043 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
9044 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9045 struct btrfs_ordered_extent *ordered;
2ac55d41 9046 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
9047 char *kaddr;
9048 unsigned long zero_start;
9ebefb18 9049 loff_t size;
1832a6d5 9050 int ret;
9998eb70 9051 int reserved = 0;
d0b7da88 9052 u64 reserved_space;
a52d9a80 9053 u64 page_start;
e6dcd2dc 9054 u64 page_end;
d0b7da88
CR
9055 u64 end;
9056
09cbfeaf 9057 reserved_space = PAGE_SIZE;
9ebefb18 9058
b2b5ef5c 9059 sb_start_pagefault(inode->i_sb);
df480633 9060 page_start = page_offset(page);
09cbfeaf 9061 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 9062 end = page_end;
df480633 9063
d0b7da88
CR
9064 /*
9065 * Reserving delalloc space after obtaining the page lock can lead to
9066 * deadlock. For example, if a dirty page is locked by this function
9067 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9068 * dirty page write out, then the btrfs_writepage() function could
9069 * end up waiting indefinitely to get a lock on the page currently
9070 * being processed by btrfs_page_mkwrite() function.
9071 */
7cf5b976 9072 ret = btrfs_delalloc_reserve_space(inode, page_start,
d0b7da88 9073 reserved_space);
9998eb70 9074 if (!ret) {
11bac800 9075 ret = file_update_time(vmf->vma->vm_file);
9998eb70
CM
9076 reserved = 1;
9077 }
56a76f82
NP
9078 if (ret) {
9079 if (ret == -ENOMEM)
9080 ret = VM_FAULT_OOM;
9081 else /* -ENOSPC, -EIO, etc */
9082 ret = VM_FAULT_SIGBUS;
9998eb70
CM
9083 if (reserved)
9084 goto out;
9085 goto out_noreserve;
56a76f82 9086 }
1832a6d5 9087
56a76f82 9088 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 9089again:
9ebefb18 9090 lock_page(page);
9ebefb18 9091 size = i_size_read(inode);
a52d9a80 9092
9ebefb18 9093 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 9094 (page_start >= size)) {
9ebefb18
CM
9095 /* page got truncated out from underneath us */
9096 goto out_unlock;
9097 }
e6dcd2dc
CM
9098 wait_on_page_writeback(page);
9099
ff13db41 9100 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
9101 set_page_extent_mapped(page);
9102
eb84ae03
CM
9103 /*
9104 * we can't set the delalloc bits if there are pending ordered
9105 * extents. Drop our locks and wait for them to finish
9106 */
a776c6fa
NB
9107 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9108 PAGE_SIZE);
e6dcd2dc 9109 if (ordered) {
2ac55d41
JB
9110 unlock_extent_cached(io_tree, page_start, page_end,
9111 &cached_state, GFP_NOFS);
e6dcd2dc 9112 unlock_page(page);
eb84ae03 9113 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
9114 btrfs_put_ordered_extent(ordered);
9115 goto again;
9116 }
9117
09cbfeaf 9118 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 9119 reserved_space = round_up(size - page_start,
0b246afa 9120 fs_info->sectorsize);
09cbfeaf 9121 if (reserved_space < PAGE_SIZE) {
d0b7da88
CR
9122 end = page_start + reserved_space - 1;
9123 spin_lock(&BTRFS_I(inode)->lock);
9124 BTRFS_I(inode)->outstanding_extents++;
9125 spin_unlock(&BTRFS_I(inode)->lock);
9126 btrfs_delalloc_release_space(inode, page_start,
09cbfeaf 9127 PAGE_SIZE - reserved_space);
d0b7da88
CR
9128 }
9129 }
9130
fbf19087 9131 /*
5416034f
LB
9132 * page_mkwrite gets called when the page is firstly dirtied after it's
9133 * faulted in, but write(2) could also dirty a page and set delalloc
9134 * bits, thus in this case for space account reason, we still need to
9135 * clear any delalloc bits within this page range since we have to
9136 * reserve data&meta space before lock_page() (see above comments).
fbf19087 9137 */
d0b7da88 9138 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
9139 EXTENT_DIRTY | EXTENT_DELALLOC |
9140 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 9141 0, 0, &cached_state, GFP_NOFS);
fbf19087 9142
d0b7da88 9143 ret = btrfs_set_extent_delalloc(inode, page_start, end,
ba8b04c1 9144 &cached_state, 0);
9ed74f2d 9145 if (ret) {
2ac55d41
JB
9146 unlock_extent_cached(io_tree, page_start, page_end,
9147 &cached_state, GFP_NOFS);
9ed74f2d
JB
9148 ret = VM_FAULT_SIGBUS;
9149 goto out_unlock;
9150 }
e6dcd2dc 9151 ret = 0;
9ebefb18
CM
9152
9153 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9154 if (page_start + PAGE_SIZE > size)
9155 zero_start = size & ~PAGE_MASK;
9ebefb18 9156 else
09cbfeaf 9157 zero_start = PAGE_SIZE;
9ebefb18 9158
09cbfeaf 9159 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9160 kaddr = kmap(page);
09cbfeaf 9161 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9162 flush_dcache_page(page);
9163 kunmap(page);
9164 }
247e743c 9165 ClearPageChecked(page);
e6dcd2dc 9166 set_page_dirty(page);
50a9b214 9167 SetPageUptodate(page);
5a3f23d5 9168
0b246afa 9169 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 9170 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9171 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9172
2ac55d41 9173 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
9174
9175out_unlock:
b2b5ef5c
JK
9176 if (!ret) {
9177 sb_end_pagefault(inode->i_sb);
50a9b214 9178 return VM_FAULT_LOCKED;
b2b5ef5c 9179 }
9ebefb18 9180 unlock_page(page);
1832a6d5 9181out:
d0b7da88 9182 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9998eb70 9183out_noreserve:
b2b5ef5c 9184 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
9185 return ret;
9186}
9187
a41ad394 9188static int btrfs_truncate(struct inode *inode)
39279cc3 9189{
0b246afa 9190 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 9191 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9192 struct btrfs_block_rsv *rsv;
a71754fc 9193 int ret = 0;
3893e33b 9194 int err = 0;
39279cc3 9195 struct btrfs_trans_handle *trans;
0b246afa
JM
9196 u64 mask = fs_info->sectorsize - 1;
9197 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 9198
0ef8b726
JB
9199 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9200 (u64)-1);
9201 if (ret)
9202 return ret;
39279cc3 9203
fcb80c2a 9204 /*
01327610 9205 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9206 * 3 things going on here
9207 *
9208 * 1) We need to reserve space for our orphan item and the space to
9209 * delete our orphan item. Lord knows we don't want to have a dangling
9210 * orphan item because we didn't reserve space to remove it.
9211 *
9212 * 2) We need to reserve space to update our inode.
9213 *
9214 * 3) We need to have something to cache all the space that is going to
9215 * be free'd up by the truncate operation, but also have some slack
9216 * space reserved in case it uses space during the truncate (thank you
9217 * very much snapshotting).
9218 *
01327610 9219 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9220 * space doing the truncate, and we have no earthly idea how much space
01327610 9221 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9222 * doesn't end up using space reserved for updating the inode or
9223 * removing the orphan item. We also need to be able to stop the
9224 * transaction and start a new one, which means we need to be able to
9225 * update the inode several times, and we have no idea of knowing how
9226 * many times that will be, so we can't just reserve 1 item for the
01327610 9227 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9228 * Then there is the orphan item, which does indeed need to be held on
9229 * to for the whole operation, and we need nobody to touch this reserved
9230 * space except the orphan code.
9231 *
9232 * So that leaves us with
9233 *
9234 * 1) root->orphan_block_rsv - for the orphan deletion.
9235 * 2) rsv - for the truncate reservation, which we will steal from the
9236 * transaction reservation.
9237 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9238 * updating the inode.
9239 */
2ff7e61e 9240 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9241 if (!rsv)
9242 return -ENOMEM;
4a338542 9243 rsv->size = min_size;
ca7e70f5 9244 rsv->failfast = 1;
f0cd846e 9245
907cbceb 9246 /*
07127184 9247 * 1 for the truncate slack space
907cbceb
JB
9248 * 1 for updating the inode.
9249 */
f3fe820c 9250 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9251 if (IS_ERR(trans)) {
9252 err = PTR_ERR(trans);
9253 goto out;
9254 }
f0cd846e 9255
907cbceb 9256 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9257 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 9258 min_size, 0);
fcb80c2a 9259 BUG_ON(ret);
f0cd846e 9260
5dc562c5
JB
9261 /*
9262 * So if we truncate and then write and fsync we normally would just
9263 * write the extents that changed, which is a problem if we need to
9264 * first truncate that entire inode. So set this flag so we write out
9265 * all of the extents in the inode to the sync log so we're completely
9266 * safe.
9267 */
9268 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9269 trans->block_rsv = rsv;
907cbceb 9270
8082510e
YZ
9271 while (1) {
9272 ret = btrfs_truncate_inode_items(trans, root, inode,
9273 inode->i_size,
9274 BTRFS_EXTENT_DATA_KEY);
28ed1345 9275 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9276 err = ret;
8082510e 9277 break;
3893e33b 9278 }
39279cc3 9279
0b246afa 9280 trans->block_rsv = &fs_info->trans_block_rsv;
8082510e 9281 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9282 if (ret) {
9283 err = ret;
9284 break;
9285 }
ca7e70f5 9286
3a45bb20 9287 btrfs_end_transaction(trans);
2ff7e61e 9288 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9289
9290 trans = btrfs_start_transaction(root, 2);
9291 if (IS_ERR(trans)) {
9292 ret = err = PTR_ERR(trans);
9293 trans = NULL;
9294 break;
9295 }
9296
47b5d646 9297 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9298 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 9299 rsv, min_size, 0);
ca7e70f5
JB
9300 BUG_ON(ret); /* shouldn't happen */
9301 trans->block_rsv = rsv;
8082510e
YZ
9302 }
9303
9304 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9305 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 9306 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
3893e33b
JB
9307 if (ret)
9308 err = ret;
8082510e
YZ
9309 }
9310
917c16b2 9311 if (trans) {
0b246afa 9312 trans->block_rsv = &fs_info->trans_block_rsv;
917c16b2
CM
9313 ret = btrfs_update_inode(trans, root, inode);
9314 if (ret && !err)
9315 err = ret;
7b128766 9316
3a45bb20 9317 ret = btrfs_end_transaction(trans);
2ff7e61e 9318 btrfs_btree_balance_dirty(fs_info);
917c16b2 9319 }
fcb80c2a 9320out:
2ff7e61e 9321 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9322
3893e33b
JB
9323 if (ret && !err)
9324 err = ret;
a41ad394 9325
3893e33b 9326 return err;
39279cc3
CM
9327}
9328
d352ac68
CM
9329/*
9330 * create a new subvolume directory/inode (helper for the ioctl).
9331 */
d2fb3437 9332int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9333 struct btrfs_root *new_root,
9334 struct btrfs_root *parent_root,
9335 u64 new_dirid)
39279cc3 9336{
39279cc3 9337 struct inode *inode;
76dda93c 9338 int err;
00e4e6b3 9339 u64 index = 0;
39279cc3 9340
12fc9d09
FA
9341 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9342 new_dirid, new_dirid,
9343 S_IFDIR | (~current_umask() & S_IRWXUGO),
9344 &index);
54aa1f4d 9345 if (IS_ERR(inode))
f46b5a66 9346 return PTR_ERR(inode);
39279cc3
CM
9347 inode->i_op = &btrfs_dir_inode_operations;
9348 inode->i_fop = &btrfs_dir_file_operations;
9349
bfe86848 9350 set_nlink(inode, 1);
6ef06d27 9351 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9352 unlock_new_inode(inode);
3b96362c 9353
63541927
FDBM
9354 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9355 if (err)
9356 btrfs_err(new_root->fs_info,
351fd353 9357 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9358 new_root->root_key.objectid, err);
9359
76dda93c 9360 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9361
76dda93c 9362 iput(inode);
ce598979 9363 return err;
39279cc3
CM
9364}
9365
39279cc3
CM
9366struct inode *btrfs_alloc_inode(struct super_block *sb)
9367{
9368 struct btrfs_inode *ei;
2ead6ae7 9369 struct inode *inode;
39279cc3
CM
9370
9371 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9372 if (!ei)
9373 return NULL;
2ead6ae7
YZ
9374
9375 ei->root = NULL;
2ead6ae7 9376 ei->generation = 0;
15ee9bc7 9377 ei->last_trans = 0;
257c62e1 9378 ei->last_sub_trans = 0;
e02119d5 9379 ei->logged_trans = 0;
2ead6ae7 9380 ei->delalloc_bytes = 0;
a7e3b975 9381 ei->new_delalloc_bytes = 0;
47059d93 9382 ei->defrag_bytes = 0;
2ead6ae7
YZ
9383 ei->disk_i_size = 0;
9384 ei->flags = 0;
7709cde3 9385 ei->csum_bytes = 0;
2ead6ae7 9386 ei->index_cnt = (u64)-1;
67de1176 9387 ei->dir_index = 0;
2ead6ae7 9388 ei->last_unlink_trans = 0;
46d8bc34 9389 ei->last_log_commit = 0;
8089fe62 9390 ei->delayed_iput_count = 0;
2ead6ae7 9391
9e0baf60
JB
9392 spin_lock_init(&ei->lock);
9393 ei->outstanding_extents = 0;
9394 ei->reserved_extents = 0;
2ead6ae7 9395
72ac3c0d 9396 ei->runtime_flags = 0;
261507a0 9397 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9398
16cdcec7
MX
9399 ei->delayed_node = NULL;
9400
9cc97d64 9401 ei->i_otime.tv_sec = 0;
9402 ei->i_otime.tv_nsec = 0;
9403
2ead6ae7 9404 inode = &ei->vfs_inode;
a8067e02 9405 extent_map_tree_init(&ei->extent_tree);
c6100a4b
JB
9406 extent_io_tree_init(&ei->io_tree, inode);
9407 extent_io_tree_init(&ei->io_failure_tree, inode);
0b32f4bb
JB
9408 ei->io_tree.track_uptodate = 1;
9409 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9410 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9411 mutex_init(&ei->log_mutex);
f248679e 9412 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9413 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9414 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9415 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9416 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9417 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9418
9419 return inode;
39279cc3
CM
9420}
9421
aaedb55b
JB
9422#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9423void btrfs_test_destroy_inode(struct inode *inode)
9424{
dcdbc059 9425 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9426 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9427}
9428#endif
9429
fa0d7e3d
NP
9430static void btrfs_i_callback(struct rcu_head *head)
9431{
9432 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9433 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9434}
9435
39279cc3
CM
9436void btrfs_destroy_inode(struct inode *inode)
9437{
0b246afa 9438 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9439 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9440 struct btrfs_root *root = BTRFS_I(inode)->root;
9441
b3d9b7a3 9442 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9443 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9444 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9445 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3 9446 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 9447 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 9448 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9449 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9450
a6dbd429
JB
9451 /*
9452 * This can happen where we create an inode, but somebody else also
9453 * created the same inode and we need to destroy the one we already
9454 * created.
9455 */
9456 if (!root)
9457 goto free;
9458
8a35d95f
JB
9459 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9460 &BTRFS_I(inode)->runtime_flags)) {
0b246afa 9461 btrfs_info(fs_info, "inode %llu still on the orphan list",
4a0cc7ca 9462 btrfs_ino(BTRFS_I(inode)));
8a35d95f 9463 atomic_dec(&root->orphan_inodes);
7b128766 9464 }
7b128766 9465
d397712b 9466 while (1) {
e6dcd2dc
CM
9467 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9468 if (!ordered)
9469 break;
9470 else {
0b246afa 9471 btrfs_err(fs_info,
5d163e0e
JM
9472 "found ordered extent %llu %llu on inode cleanup",
9473 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9474 btrfs_remove_ordered_extent(inode, ordered);
9475 btrfs_put_ordered_extent(ordered);
9476 btrfs_put_ordered_extent(ordered);
9477 }
9478 }
56fa9d07 9479 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9480 inode_tree_del(inode);
dcdbc059 9481 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
a6dbd429 9482free:
fa0d7e3d 9483 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9484}
9485
45321ac5 9486int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9487{
9488 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9489
6379ef9f
NA
9490 if (root == NULL)
9491 return 1;
9492
fa6ac876 9493 /* the snap/subvol tree is on deleting */
69e9c6c6 9494 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9495 return 1;
76dda93c 9496 else
45321ac5 9497 return generic_drop_inode(inode);
76dda93c
YZ
9498}
9499
0ee0fda0 9500static void init_once(void *foo)
39279cc3
CM
9501{
9502 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9503
9504 inode_init_once(&ei->vfs_inode);
9505}
9506
9507void btrfs_destroy_cachep(void)
9508{
8c0a8537
KS
9509 /*
9510 * Make sure all delayed rcu free inodes are flushed before we
9511 * destroy cache.
9512 */
9513 rcu_barrier();
5598e900
KM
9514 kmem_cache_destroy(btrfs_inode_cachep);
9515 kmem_cache_destroy(btrfs_trans_handle_cachep);
9516 kmem_cache_destroy(btrfs_transaction_cachep);
9517 kmem_cache_destroy(btrfs_path_cachep);
9518 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9519}
9520
9521int btrfs_init_cachep(void)
9522{
837e1972 9523 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9524 sizeof(struct btrfs_inode), 0,
5d097056
VD
9525 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9526 init_once);
39279cc3
CM
9527 if (!btrfs_inode_cachep)
9528 goto fail;
9601e3f6 9529
837e1972 9530 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9531 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9532 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9533 if (!btrfs_trans_handle_cachep)
9534 goto fail;
9601e3f6 9535
837e1972 9536 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6 9537 sizeof(struct btrfs_transaction), 0,
fba4b697 9538 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9539 if (!btrfs_transaction_cachep)
9540 goto fail;
9601e3f6 9541
837e1972 9542 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9543 sizeof(struct btrfs_path), 0,
fba4b697 9544 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9545 if (!btrfs_path_cachep)
9546 goto fail;
9601e3f6 9547
837e1972 9548 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9549 sizeof(struct btrfs_free_space), 0,
fba4b697 9550 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9551 if (!btrfs_free_space_cachep)
9552 goto fail;
9553
39279cc3
CM
9554 return 0;
9555fail:
9556 btrfs_destroy_cachep();
9557 return -ENOMEM;
9558}
9559
a528d35e
DH
9560static int btrfs_getattr(const struct path *path, struct kstat *stat,
9561 u32 request_mask, unsigned int flags)
39279cc3 9562{
df0af1a5 9563 u64 delalloc_bytes;
a528d35e 9564 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9565 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
9566 u32 bi_flags = BTRFS_I(inode)->flags;
9567
9568 stat->result_mask |= STATX_BTIME;
9569 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9570 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9571 if (bi_flags & BTRFS_INODE_APPEND)
9572 stat->attributes |= STATX_ATTR_APPEND;
9573 if (bi_flags & BTRFS_INODE_COMPRESS)
9574 stat->attributes |= STATX_ATTR_COMPRESSED;
9575 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9576 stat->attributes |= STATX_ATTR_IMMUTABLE;
9577 if (bi_flags & BTRFS_INODE_NODUMP)
9578 stat->attributes |= STATX_ATTR_NODUMP;
9579
9580 stat->attributes_mask |= (STATX_ATTR_APPEND |
9581 STATX_ATTR_COMPRESSED |
9582 STATX_ATTR_IMMUTABLE |
9583 STATX_ATTR_NODUMP);
fadc0d8b 9584
39279cc3 9585 generic_fillattr(inode, stat);
0ee5dc67 9586 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9587
9588 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9589 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 9590 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9591 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9592 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9593 return 0;
9594}
9595
cdd1fedf
DF
9596static int btrfs_rename_exchange(struct inode *old_dir,
9597 struct dentry *old_dentry,
9598 struct inode *new_dir,
9599 struct dentry *new_dentry)
9600{
0b246afa 9601 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9602 struct btrfs_trans_handle *trans;
9603 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9604 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9605 struct inode *new_inode = new_dentry->d_inode;
9606 struct inode *old_inode = old_dentry->d_inode;
c2050a45 9607 struct timespec ctime = current_time(old_inode);
cdd1fedf 9608 struct dentry *parent;
4a0cc7ca
NB
9609 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9610 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9611 u64 old_idx = 0;
9612 u64 new_idx = 0;
9613 u64 root_objectid;
9614 int ret;
86e8aa0e
FM
9615 bool root_log_pinned = false;
9616 bool dest_log_pinned = false;
cdd1fedf
DF
9617
9618 /* we only allow rename subvolume link between subvolumes */
9619 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9620 return -EXDEV;
9621
9622 /* close the race window with snapshot create/destroy ioctl */
9623 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9624 down_read(&fs_info->subvol_sem);
cdd1fedf 9625 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9626 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9627
9628 /*
9629 * We want to reserve the absolute worst case amount of items. So if
9630 * both inodes are subvols and we need to unlink them then that would
9631 * require 4 item modifications, but if they are both normal inodes it
9632 * would require 5 item modifications, so we'll assume their normal
9633 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9634 * should cover the worst case number of items we'll modify.
9635 */
9636 trans = btrfs_start_transaction(root, 12);
9637 if (IS_ERR(trans)) {
9638 ret = PTR_ERR(trans);
9639 goto out_notrans;
9640 }
9641
9642 /*
9643 * We need to find a free sequence number both in the source and
9644 * in the destination directory for the exchange.
9645 */
877574e2 9646 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9647 if (ret)
9648 goto out_fail;
877574e2 9649 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9650 if (ret)
9651 goto out_fail;
9652
9653 BTRFS_I(old_inode)->dir_index = 0ULL;
9654 BTRFS_I(new_inode)->dir_index = 0ULL;
9655
9656 /* Reference for the source. */
9657 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9658 /* force full log commit if subvolume involved. */
0b246afa 9659 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9660 } else {
376e5a57
FM
9661 btrfs_pin_log_trans(root);
9662 root_log_pinned = true;
cdd1fedf
DF
9663 ret = btrfs_insert_inode_ref(trans, dest,
9664 new_dentry->d_name.name,
9665 new_dentry->d_name.len,
9666 old_ino,
f85b7379
DS
9667 btrfs_ino(BTRFS_I(new_dir)),
9668 old_idx);
cdd1fedf
DF
9669 if (ret)
9670 goto out_fail;
cdd1fedf
DF
9671 }
9672
9673 /* And now for the dest. */
9674 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9675 /* force full log commit if subvolume involved. */
0b246afa 9676 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9677 } else {
376e5a57
FM
9678 btrfs_pin_log_trans(dest);
9679 dest_log_pinned = true;
cdd1fedf
DF
9680 ret = btrfs_insert_inode_ref(trans, root,
9681 old_dentry->d_name.name,
9682 old_dentry->d_name.len,
9683 new_ino,
f85b7379
DS
9684 btrfs_ino(BTRFS_I(old_dir)),
9685 new_idx);
cdd1fedf
DF
9686 if (ret)
9687 goto out_fail;
cdd1fedf
DF
9688 }
9689
9690 /* Update inode version and ctime/mtime. */
9691 inode_inc_iversion(old_dir);
9692 inode_inc_iversion(new_dir);
9693 inode_inc_iversion(old_inode);
9694 inode_inc_iversion(new_inode);
9695 old_dir->i_ctime = old_dir->i_mtime = ctime;
9696 new_dir->i_ctime = new_dir->i_mtime = ctime;
9697 old_inode->i_ctime = ctime;
9698 new_inode->i_ctime = ctime;
9699
9700 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9701 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9702 BTRFS_I(old_inode), 1);
9703 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9704 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9705 }
9706
9707 /* src is a subvolume */
9708 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9709 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9710 ret = btrfs_unlink_subvol(trans, root, old_dir,
9711 root_objectid,
9712 old_dentry->d_name.name,
9713 old_dentry->d_name.len);
9714 } else { /* src is an inode */
4ec5934e
NB
9715 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9716 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9717 old_dentry->d_name.name,
9718 old_dentry->d_name.len);
9719 if (!ret)
9720 ret = btrfs_update_inode(trans, root, old_inode);
9721 }
9722 if (ret) {
66642832 9723 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9724 goto out_fail;
9725 }
9726
9727 /* dest is a subvolume */
9728 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9729 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9730 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9731 root_objectid,
9732 new_dentry->d_name.name,
9733 new_dentry->d_name.len);
9734 } else { /* dest is an inode */
4ec5934e
NB
9735 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9736 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9737 new_dentry->d_name.name,
9738 new_dentry->d_name.len);
9739 if (!ret)
9740 ret = btrfs_update_inode(trans, dest, new_inode);
9741 }
9742 if (ret) {
66642832 9743 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9744 goto out_fail;
9745 }
9746
db0a669f 9747 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9748 new_dentry->d_name.name,
9749 new_dentry->d_name.len, 0, old_idx);
9750 if (ret) {
66642832 9751 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9752 goto out_fail;
9753 }
9754
db0a669f 9755 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9756 old_dentry->d_name.name,
9757 old_dentry->d_name.len, 0, new_idx);
9758 if (ret) {
66642832 9759 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9760 goto out_fail;
9761 }
9762
9763 if (old_inode->i_nlink == 1)
9764 BTRFS_I(old_inode)->dir_index = old_idx;
9765 if (new_inode->i_nlink == 1)
9766 BTRFS_I(new_inode)->dir_index = new_idx;
9767
86e8aa0e 9768 if (root_log_pinned) {
cdd1fedf 9769 parent = new_dentry->d_parent;
f85b7379
DS
9770 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9771 parent);
cdd1fedf 9772 btrfs_end_log_trans(root);
86e8aa0e 9773 root_log_pinned = false;
cdd1fedf 9774 }
86e8aa0e 9775 if (dest_log_pinned) {
cdd1fedf 9776 parent = old_dentry->d_parent;
f85b7379
DS
9777 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9778 parent);
cdd1fedf 9779 btrfs_end_log_trans(dest);
86e8aa0e 9780 dest_log_pinned = false;
cdd1fedf
DF
9781 }
9782out_fail:
86e8aa0e
FM
9783 /*
9784 * If we have pinned a log and an error happened, we unpin tasks
9785 * trying to sync the log and force them to fallback to a transaction
9786 * commit if the log currently contains any of the inodes involved in
9787 * this rename operation (to ensure we do not persist a log with an
9788 * inconsistent state for any of these inodes or leading to any
9789 * inconsistencies when replayed). If the transaction was aborted, the
9790 * abortion reason is propagated to userspace when attempting to commit
9791 * the transaction. If the log does not contain any of these inodes, we
9792 * allow the tasks to sync it.
9793 */
9794 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9795 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9796 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9797 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9798 (new_inode &&
0f8939b8 9799 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9800 btrfs_set_log_full_commit(fs_info, trans);
86e8aa0e
FM
9801
9802 if (root_log_pinned) {
9803 btrfs_end_log_trans(root);
9804 root_log_pinned = false;
9805 }
9806 if (dest_log_pinned) {
9807 btrfs_end_log_trans(dest);
9808 dest_log_pinned = false;
9809 }
9810 }
3a45bb20 9811 ret = btrfs_end_transaction(trans);
cdd1fedf
DF
9812out_notrans:
9813 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9814 up_read(&fs_info->subvol_sem);
cdd1fedf 9815 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9816 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9817
9818 return ret;
9819}
9820
9821static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9822 struct btrfs_root *root,
9823 struct inode *dir,
9824 struct dentry *dentry)
9825{
9826 int ret;
9827 struct inode *inode;
9828 u64 objectid;
9829 u64 index;
9830
9831 ret = btrfs_find_free_ino(root, &objectid);
9832 if (ret)
9833 return ret;
9834
9835 inode = btrfs_new_inode(trans, root, dir,
9836 dentry->d_name.name,
9837 dentry->d_name.len,
4a0cc7ca 9838 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9839 objectid,
9840 S_IFCHR | WHITEOUT_MODE,
9841 &index);
9842
9843 if (IS_ERR(inode)) {
9844 ret = PTR_ERR(inode);
9845 return ret;
9846 }
9847
9848 inode->i_op = &btrfs_special_inode_operations;
9849 init_special_inode(inode, inode->i_mode,
9850 WHITEOUT_DEV);
9851
9852 ret = btrfs_init_inode_security(trans, inode, dir,
9853 &dentry->d_name);
9854 if (ret)
c9901618 9855 goto out;
cdd1fedf 9856
cef415af
NB
9857 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9858 BTRFS_I(inode), 0, index);
cdd1fedf 9859 if (ret)
c9901618 9860 goto out;
cdd1fedf
DF
9861
9862 ret = btrfs_update_inode(trans, root, inode);
c9901618 9863out:
cdd1fedf 9864 unlock_new_inode(inode);
c9901618
FM
9865 if (ret)
9866 inode_dec_link_count(inode);
cdd1fedf
DF
9867 iput(inode);
9868
c9901618 9869 return ret;
cdd1fedf
DF
9870}
9871
d397712b 9872static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9873 struct inode *new_dir, struct dentry *new_dentry,
9874 unsigned int flags)
39279cc3 9875{
0b246afa 9876 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9877 struct btrfs_trans_handle *trans;
5062af35 9878 unsigned int trans_num_items;
39279cc3 9879 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9880 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9881 struct inode *new_inode = d_inode(new_dentry);
9882 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9883 u64 index = 0;
4df27c4d 9884 u64 root_objectid;
39279cc3 9885 int ret;
4a0cc7ca 9886 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9887 bool log_pinned = false;
39279cc3 9888
4a0cc7ca 9889 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9890 return -EPERM;
9891
4df27c4d 9892 /* we only allow rename subvolume link between subvolumes */
33345d01 9893 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9894 return -EXDEV;
9895
33345d01 9896 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9897 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9898 return -ENOTEMPTY;
5f39d397 9899
4df27c4d
YZ
9900 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9901 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9902 return -ENOTEMPTY;
9c52057c
CM
9903
9904
9905 /* check for collisions, even if the name isn't there */
4871c158 9906 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9907 new_dentry->d_name.name,
9908 new_dentry->d_name.len);
9909
9910 if (ret) {
9911 if (ret == -EEXIST) {
9912 /* we shouldn't get
9913 * eexist without a new_inode */
fae7f21c 9914 if (WARN_ON(!new_inode)) {
9c52057c
CM
9915 return ret;
9916 }
9917 } else {
9918 /* maybe -EOVERFLOW */
9919 return ret;
9920 }
9921 }
9922 ret = 0;
9923
5a3f23d5 9924 /*
8d875f95
CM
9925 * we're using rename to replace one file with another. Start IO on it
9926 * now so we don't add too much work to the end of the transaction
5a3f23d5 9927 */
8d875f95 9928 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9929 filemap_flush(old_inode->i_mapping);
9930
76dda93c 9931 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9932 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9933 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9934 /*
9935 * We want to reserve the absolute worst case amount of items. So if
9936 * both inodes are subvols and we need to unlink them then that would
9937 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9938 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9939 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9940 * should cover the worst case number of items we'll modify.
5062af35
FM
9941 * If our rename has the whiteout flag, we need more 5 units for the
9942 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9943 * when selinux is enabled).
a22285a6 9944 */
5062af35
FM
9945 trans_num_items = 11;
9946 if (flags & RENAME_WHITEOUT)
9947 trans_num_items += 5;
9948 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9949 if (IS_ERR(trans)) {
cdd1fedf
DF
9950 ret = PTR_ERR(trans);
9951 goto out_notrans;
9952 }
76dda93c 9953
4df27c4d
YZ
9954 if (dest != root)
9955 btrfs_record_root_in_trans(trans, dest);
5f39d397 9956
877574e2 9957 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9958 if (ret)
9959 goto out_fail;
5a3f23d5 9960
67de1176 9961 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9962 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9963 /* force full log commit if subvolume involved. */
0b246afa 9964 btrfs_set_log_full_commit(fs_info, trans);
4df27c4d 9965 } else {
c4aba954
FM
9966 btrfs_pin_log_trans(root);
9967 log_pinned = true;
a5719521
YZ
9968 ret = btrfs_insert_inode_ref(trans, dest,
9969 new_dentry->d_name.name,
9970 new_dentry->d_name.len,
33345d01 9971 old_ino,
4a0cc7ca 9972 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9973 if (ret)
9974 goto out_fail;
4df27c4d 9975 }
5a3f23d5 9976
0c4d2d95
JB
9977 inode_inc_iversion(old_dir);
9978 inode_inc_iversion(new_dir);
9979 inode_inc_iversion(old_inode);
04b285f3
DD
9980 old_dir->i_ctime = old_dir->i_mtime =
9981 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9982 old_inode->i_ctime = current_time(old_dir);
5f39d397 9983
12fcfd22 9984 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9985 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9986 BTRFS_I(old_inode), 1);
12fcfd22 9987
33345d01 9988 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9989 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9990 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9991 old_dentry->d_name.name,
9992 old_dentry->d_name.len);
9993 } else {
4ec5934e
NB
9994 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9995 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9996 old_dentry->d_name.name,
9997 old_dentry->d_name.len);
9998 if (!ret)
9999 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 10000 }
79787eaa 10001 if (ret) {
66642832 10002 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10003 goto out_fail;
10004 }
39279cc3
CM
10005
10006 if (new_inode) {
0c4d2d95 10007 inode_inc_iversion(new_inode);
c2050a45 10008 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 10009 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
10010 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
10011 root_objectid = BTRFS_I(new_inode)->location.objectid;
10012 ret = btrfs_unlink_subvol(trans, dest, new_dir,
10013 root_objectid,
10014 new_dentry->d_name.name,
10015 new_dentry->d_name.len);
10016 BUG_ON(new_inode->i_nlink == 0);
10017 } else {
4ec5934e
NB
10018 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10019 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
10020 new_dentry->d_name.name,
10021 new_dentry->d_name.len);
10022 }
4ef31a45 10023 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
10024 ret = btrfs_orphan_add(trans,
10025 BTRFS_I(d_inode(new_dentry)));
79787eaa 10026 if (ret) {
66642832 10027 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10028 goto out_fail;
10029 }
39279cc3 10030 }
aec7477b 10031
db0a669f 10032 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 10033 new_dentry->d_name.name,
a5719521 10034 new_dentry->d_name.len, 0, index);
79787eaa 10035 if (ret) {
66642832 10036 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10037 goto out_fail;
10038 }
39279cc3 10039
67de1176
MX
10040 if (old_inode->i_nlink == 1)
10041 BTRFS_I(old_inode)->dir_index = index;
10042
3dc9e8f7 10043 if (log_pinned) {
10d9f309 10044 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 10045
f85b7379
DS
10046 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
10047 parent);
4df27c4d 10048 btrfs_end_log_trans(root);
3dc9e8f7 10049 log_pinned = false;
4df27c4d 10050 }
cdd1fedf
DF
10051
10052 if (flags & RENAME_WHITEOUT) {
10053 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10054 old_dentry);
10055
10056 if (ret) {
66642832 10057 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
10058 goto out_fail;
10059 }
4df27c4d 10060 }
39279cc3 10061out_fail:
3dc9e8f7
FM
10062 /*
10063 * If we have pinned the log and an error happened, we unpin tasks
10064 * trying to sync the log and force them to fallback to a transaction
10065 * commit if the log currently contains any of the inodes involved in
10066 * this rename operation (to ensure we do not persist a log with an
10067 * inconsistent state for any of these inodes or leading to any
10068 * inconsistencies when replayed). If the transaction was aborted, the
10069 * abortion reason is propagated to userspace when attempting to commit
10070 * the transaction. If the log does not contain any of these inodes, we
10071 * allow the tasks to sync it.
10072 */
10073 if (ret && log_pinned) {
0f8939b8
NB
10074 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10075 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10076 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 10077 (new_inode &&
0f8939b8 10078 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 10079 btrfs_set_log_full_commit(fs_info, trans);
3dc9e8f7
FM
10080
10081 btrfs_end_log_trans(root);
10082 log_pinned = false;
10083 }
3a45bb20 10084 btrfs_end_transaction(trans);
b44c59a8 10085out_notrans:
33345d01 10086 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 10087 up_read(&fs_info->subvol_sem);
9ed74f2d 10088
39279cc3
CM
10089 return ret;
10090}
10091
80ace85c
MS
10092static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10093 struct inode *new_dir, struct dentry *new_dentry,
10094 unsigned int flags)
10095{
cdd1fedf 10096 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
10097 return -EINVAL;
10098
cdd1fedf
DF
10099 if (flags & RENAME_EXCHANGE)
10100 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10101 new_dentry);
10102
10103 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
10104}
10105
8ccf6f19
MX
10106static void btrfs_run_delalloc_work(struct btrfs_work *work)
10107{
10108 struct btrfs_delalloc_work *delalloc_work;
9f23e289 10109 struct inode *inode;
8ccf6f19
MX
10110
10111 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10112 work);
9f23e289 10113 inode = delalloc_work->inode;
30424601
DS
10114 filemap_flush(inode->i_mapping);
10115 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10116 &BTRFS_I(inode)->runtime_flags))
9f23e289 10117 filemap_flush(inode->i_mapping);
8ccf6f19
MX
10118
10119 if (delalloc_work->delay_iput)
9f23e289 10120 btrfs_add_delayed_iput(inode);
8ccf6f19 10121 else
9f23e289 10122 iput(inode);
8ccf6f19
MX
10123 complete(&delalloc_work->completion);
10124}
10125
10126struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 10127 int delay_iput)
8ccf6f19
MX
10128{
10129 struct btrfs_delalloc_work *work;
10130
100d5702 10131 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
10132 if (!work)
10133 return NULL;
10134
10135 init_completion(&work->completion);
10136 INIT_LIST_HEAD(&work->list);
10137 work->inode = inode;
8ccf6f19 10138 work->delay_iput = delay_iput;
9e0af237
LB
10139 WARN_ON_ONCE(!inode);
10140 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10141 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
10142
10143 return work;
10144}
10145
10146void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10147{
10148 wait_for_completion(&work->completion);
100d5702 10149 kfree(work);
8ccf6f19
MX
10150}
10151
d352ac68
CM
10152/*
10153 * some fairly slow code that needs optimization. This walks the list
10154 * of all the inodes with pending delalloc and forces them to disk.
10155 */
6c255e67
MX
10156static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10157 int nr)
ea8c2819 10158{
ea8c2819 10159 struct btrfs_inode *binode;
5b21f2ed 10160 struct inode *inode;
8ccf6f19
MX
10161 struct btrfs_delalloc_work *work, *next;
10162 struct list_head works;
1eafa6c7 10163 struct list_head splice;
8ccf6f19 10164 int ret = 0;
ea8c2819 10165
8ccf6f19 10166 INIT_LIST_HEAD(&works);
1eafa6c7 10167 INIT_LIST_HEAD(&splice);
63607cc8 10168
573bfb72 10169 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10170 spin_lock(&root->delalloc_lock);
10171 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10172 while (!list_empty(&splice)) {
10173 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10174 delalloc_inodes);
1eafa6c7 10175
eb73c1b7
MX
10176 list_move_tail(&binode->delalloc_inodes,
10177 &root->delalloc_inodes);
5b21f2ed 10178 inode = igrab(&binode->vfs_inode);
df0af1a5 10179 if (!inode) {
eb73c1b7 10180 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10181 continue;
df0af1a5 10182 }
eb73c1b7 10183 spin_unlock(&root->delalloc_lock);
1eafa6c7 10184
651d494a 10185 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10186 if (!work) {
f4ab9ea7
JB
10187 if (delay_iput)
10188 btrfs_add_delayed_iput(inode);
10189 else
10190 iput(inode);
1eafa6c7 10191 ret = -ENOMEM;
a1ecaabb 10192 goto out;
5b21f2ed 10193 }
1eafa6c7 10194 list_add_tail(&work->list, &works);
a44903ab
QW
10195 btrfs_queue_work(root->fs_info->flush_workers,
10196 &work->work);
6c255e67
MX
10197 ret++;
10198 if (nr != -1 && ret >= nr)
a1ecaabb 10199 goto out;
5b21f2ed 10200 cond_resched();
eb73c1b7 10201 spin_lock(&root->delalloc_lock);
ea8c2819 10202 }
eb73c1b7 10203 spin_unlock(&root->delalloc_lock);
8c8bee1d 10204
a1ecaabb 10205out:
eb73c1b7
MX
10206 list_for_each_entry_safe(work, next, &works, list) {
10207 list_del_init(&work->list);
10208 btrfs_wait_and_free_delalloc_work(work);
10209 }
10210
10211 if (!list_empty_careful(&splice)) {
10212 spin_lock(&root->delalloc_lock);
10213 list_splice_tail(&splice, &root->delalloc_inodes);
10214 spin_unlock(&root->delalloc_lock);
10215 }
573bfb72 10216 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10217 return ret;
10218}
1eafa6c7 10219
eb73c1b7
MX
10220int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10221{
0b246afa 10222 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10223 int ret;
1eafa6c7 10224
0b246afa 10225 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10226 return -EROFS;
10227
6c255e67
MX
10228 ret = __start_delalloc_inodes(root, delay_iput, -1);
10229 if (ret > 0)
10230 ret = 0;
eb73c1b7
MX
10231 /*
10232 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
10233 * we have to make sure the IO is actually started and that
10234 * ordered extents get created before we return
10235 */
0b246afa
JM
10236 atomic_inc(&fs_info->async_submit_draining);
10237 while (atomic_read(&fs_info->nr_async_submits) ||
10238 atomic_read(&fs_info->async_delalloc_pages)) {
10239 wait_event(fs_info->async_submit_wait,
10240 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10241 atomic_read(&fs_info->async_delalloc_pages) == 0));
10242 }
10243 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7
MX
10244 return ret;
10245}
10246
6c255e67
MX
10247int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10248 int nr)
eb73c1b7
MX
10249{
10250 struct btrfs_root *root;
10251 struct list_head splice;
10252 int ret;
10253
2c21b4d7 10254 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10255 return -EROFS;
10256
10257 INIT_LIST_HEAD(&splice);
10258
573bfb72 10259 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10260 spin_lock(&fs_info->delalloc_root_lock);
10261 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10262 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10263 root = list_first_entry(&splice, struct btrfs_root,
10264 delalloc_root);
10265 root = btrfs_grab_fs_root(root);
10266 BUG_ON(!root);
10267 list_move_tail(&root->delalloc_root,
10268 &fs_info->delalloc_roots);
10269 spin_unlock(&fs_info->delalloc_root_lock);
10270
6c255e67 10271 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10272 btrfs_put_fs_root(root);
6c255e67 10273 if (ret < 0)
eb73c1b7
MX
10274 goto out;
10275
6c255e67
MX
10276 if (nr != -1) {
10277 nr -= ret;
10278 WARN_ON(nr < 0);
10279 }
eb73c1b7 10280 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10281 }
eb73c1b7 10282 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10283
6c255e67 10284 ret = 0;
eb73c1b7
MX
10285 atomic_inc(&fs_info->async_submit_draining);
10286 while (atomic_read(&fs_info->nr_async_submits) ||
10287 atomic_read(&fs_info->async_delalloc_pages)) {
10288 wait_event(fs_info->async_submit_wait,
10289 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10290 atomic_read(&fs_info->async_delalloc_pages) == 0));
10291 }
10292 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 10293out:
1eafa6c7 10294 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10295 spin_lock(&fs_info->delalloc_root_lock);
10296 list_splice_tail(&splice, &fs_info->delalloc_roots);
10297 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10298 }
573bfb72 10299 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10300 return ret;
ea8c2819
CM
10301}
10302
39279cc3
CM
10303static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10304 const char *symname)
10305{
0b246afa 10306 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10307 struct btrfs_trans_handle *trans;
10308 struct btrfs_root *root = BTRFS_I(dir)->root;
10309 struct btrfs_path *path;
10310 struct btrfs_key key;
1832a6d5 10311 struct inode *inode = NULL;
39279cc3
CM
10312 int err;
10313 int drop_inode = 0;
10314 u64 objectid;
67871254 10315 u64 index = 0;
39279cc3
CM
10316 int name_len;
10317 int datasize;
5f39d397 10318 unsigned long ptr;
39279cc3 10319 struct btrfs_file_extent_item *ei;
5f39d397 10320 struct extent_buffer *leaf;
39279cc3 10321
f06becc4 10322 name_len = strlen(symname);
0b246afa 10323 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10324 return -ENAMETOOLONG;
1832a6d5 10325
9ed74f2d
JB
10326 /*
10327 * 2 items for inode item and ref
10328 * 2 items for dir items
9269d12b
FM
10329 * 1 item for updating parent inode item
10330 * 1 item for the inline extent item
9ed74f2d
JB
10331 * 1 item for xattr if selinux is on
10332 */
9269d12b 10333 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10334 if (IS_ERR(trans))
10335 return PTR_ERR(trans);
1832a6d5 10336
581bb050
LZ
10337 err = btrfs_find_free_ino(root, &objectid);
10338 if (err)
10339 goto out_unlock;
10340
aec7477b 10341 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10342 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10343 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10344 if (IS_ERR(inode)) {
10345 err = PTR_ERR(inode);
39279cc3 10346 goto out_unlock;
7cf96da3 10347 }
39279cc3 10348
ad19db71
CS
10349 /*
10350 * If the active LSM wants to access the inode during
10351 * d_instantiate it needs these. Smack checks to see
10352 * if the filesystem supports xattrs by looking at the
10353 * ops vector.
10354 */
10355 inode->i_fop = &btrfs_file_operations;
10356 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10357 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10358 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10359
10360 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10361 if (err)
10362 goto out_unlock_inode;
ad19db71 10363
39279cc3 10364 path = btrfs_alloc_path();
d8926bb3
MF
10365 if (!path) {
10366 err = -ENOMEM;
b0d5d10f 10367 goto out_unlock_inode;
d8926bb3 10368 }
4a0cc7ca 10369 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10370 key.offset = 0;
962a298f 10371 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10372 datasize = btrfs_file_extent_calc_inline_size(name_len);
10373 err = btrfs_insert_empty_item(trans, root, path, &key,
10374 datasize);
54aa1f4d 10375 if (err) {
b0839166 10376 btrfs_free_path(path);
b0d5d10f 10377 goto out_unlock_inode;
54aa1f4d 10378 }
5f39d397
CM
10379 leaf = path->nodes[0];
10380 ei = btrfs_item_ptr(leaf, path->slots[0],
10381 struct btrfs_file_extent_item);
10382 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10383 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10384 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10385 btrfs_set_file_extent_encryption(leaf, ei, 0);
10386 btrfs_set_file_extent_compression(leaf, ei, 0);
10387 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10388 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10389
39279cc3 10390 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10391 write_extent_buffer(leaf, symname, ptr, name_len);
10392 btrfs_mark_buffer_dirty(leaf);
39279cc3 10393 btrfs_free_path(path);
5f39d397 10394
39279cc3 10395 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10396 inode_nohighmem(inode);
39279cc3 10397 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10398 inode_set_bytes(inode, name_len);
6ef06d27 10399 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10400 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10401 /*
10402 * Last step, add directory indexes for our symlink inode. This is the
10403 * last step to avoid extra cleanup of these indexes if an error happens
10404 * elsewhere above.
10405 */
10406 if (!err)
cef415af
NB
10407 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10408 BTRFS_I(inode), 0, index);
b0d5d10f 10409 if (err) {
54aa1f4d 10410 drop_inode = 1;
b0d5d10f
CM
10411 goto out_unlock_inode;
10412 }
10413
10414 unlock_new_inode(inode);
10415 d_instantiate(dentry, inode);
39279cc3
CM
10416
10417out_unlock:
3a45bb20 10418 btrfs_end_transaction(trans);
39279cc3
CM
10419 if (drop_inode) {
10420 inode_dec_link_count(inode);
10421 iput(inode);
10422 }
2ff7e61e 10423 btrfs_btree_balance_dirty(fs_info);
39279cc3 10424 return err;
b0d5d10f
CM
10425
10426out_unlock_inode:
10427 drop_inode = 1;
10428 unlock_new_inode(inode);
10429 goto out_unlock;
39279cc3 10430}
16432985 10431
0af3d00b
JB
10432static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10433 u64 start, u64 num_bytes, u64 min_size,
10434 loff_t actual_len, u64 *alloc_hint,
10435 struct btrfs_trans_handle *trans)
d899e052 10436{
0b246afa 10437 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10438 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10439 struct extent_map *em;
d899e052
YZ
10440 struct btrfs_root *root = BTRFS_I(inode)->root;
10441 struct btrfs_key ins;
d899e052 10442 u64 cur_offset = start;
55a61d1d 10443 u64 i_size;
154ea289 10444 u64 cur_bytes;
0b670dc4 10445 u64 last_alloc = (u64)-1;
d899e052 10446 int ret = 0;
0af3d00b 10447 bool own_trans = true;
18513091 10448 u64 end = start + num_bytes - 1;
d899e052 10449
0af3d00b
JB
10450 if (trans)
10451 own_trans = false;
d899e052 10452 while (num_bytes > 0) {
0af3d00b
JB
10453 if (own_trans) {
10454 trans = btrfs_start_transaction(root, 3);
10455 if (IS_ERR(trans)) {
10456 ret = PTR_ERR(trans);
10457 break;
10458 }
5a303d5d
YZ
10459 }
10460
ee22184b 10461 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10462 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10463 /*
10464 * If we are severely fragmented we could end up with really
10465 * small allocations, so if the allocator is returning small
10466 * chunks lets make its job easier by only searching for those
10467 * sized chunks.
10468 */
10469 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10470 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10471 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10472 if (ret) {
0af3d00b 10473 if (own_trans)
3a45bb20 10474 btrfs_end_transaction(trans);
a22285a6 10475 break;
d899e052 10476 }
0b246afa 10477 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10478
0b670dc4 10479 last_alloc = ins.offset;
d899e052
YZ
10480 ret = insert_reserved_file_extent(trans, inode,
10481 cur_offset, ins.objectid,
10482 ins.offset, ins.offset,
920bbbfb 10483 ins.offset, 0, 0, 0,
d899e052 10484 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10485 if (ret) {
2ff7e61e 10486 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10487 ins.offset, 0);
66642832 10488 btrfs_abort_transaction(trans, ret);
79787eaa 10489 if (own_trans)
3a45bb20 10490 btrfs_end_transaction(trans);
79787eaa
JM
10491 break;
10492 }
31193213 10493
dcdbc059 10494 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10495 cur_offset + ins.offset -1, 0);
5a303d5d 10496
5dc562c5
JB
10497 em = alloc_extent_map();
10498 if (!em) {
10499 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10500 &BTRFS_I(inode)->runtime_flags);
10501 goto next;
10502 }
10503
10504 em->start = cur_offset;
10505 em->orig_start = cur_offset;
10506 em->len = ins.offset;
10507 em->block_start = ins.objectid;
10508 em->block_len = ins.offset;
b4939680 10509 em->orig_block_len = ins.offset;
cc95bef6 10510 em->ram_bytes = ins.offset;
0b246afa 10511 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10512 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10513 em->generation = trans->transid;
10514
10515 while (1) {
10516 write_lock(&em_tree->lock);
09a2a8f9 10517 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10518 write_unlock(&em_tree->lock);
10519 if (ret != -EEXIST)
10520 break;
dcdbc059 10521 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10522 cur_offset + ins.offset - 1,
10523 0);
10524 }
10525 free_extent_map(em);
10526next:
d899e052
YZ
10527 num_bytes -= ins.offset;
10528 cur_offset += ins.offset;
efa56464 10529 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10530
0c4d2d95 10531 inode_inc_iversion(inode);
c2050a45 10532 inode->i_ctime = current_time(inode);
6cbff00f 10533 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10534 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10535 (actual_len > inode->i_size) &&
10536 (cur_offset > inode->i_size)) {
d1ea6a61 10537 if (cur_offset > actual_len)
55a61d1d 10538 i_size = actual_len;
d1ea6a61 10539 else
55a61d1d
JB
10540 i_size = cur_offset;
10541 i_size_write(inode, i_size);
10542 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10543 }
10544
d899e052 10545 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10546
10547 if (ret) {
66642832 10548 btrfs_abort_transaction(trans, ret);
79787eaa 10549 if (own_trans)
3a45bb20 10550 btrfs_end_transaction(trans);
79787eaa
JM
10551 break;
10552 }
d899e052 10553
0af3d00b 10554 if (own_trans)
3a45bb20 10555 btrfs_end_transaction(trans);
5a303d5d 10556 }
18513091
WX
10557 if (cur_offset < end)
10558 btrfs_free_reserved_data_space(inode, cur_offset,
10559 end - cur_offset + 1);
d899e052
YZ
10560 return ret;
10561}
10562
0af3d00b
JB
10563int btrfs_prealloc_file_range(struct inode *inode, int mode,
10564 u64 start, u64 num_bytes, u64 min_size,
10565 loff_t actual_len, u64 *alloc_hint)
10566{
10567 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10568 min_size, actual_len, alloc_hint,
10569 NULL);
10570}
10571
10572int btrfs_prealloc_file_range_trans(struct inode *inode,
10573 struct btrfs_trans_handle *trans, int mode,
10574 u64 start, u64 num_bytes, u64 min_size,
10575 loff_t actual_len, u64 *alloc_hint)
10576{
10577 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10578 min_size, actual_len, alloc_hint, trans);
10579}
10580
e6dcd2dc
CM
10581static int btrfs_set_page_dirty(struct page *page)
10582{
e6dcd2dc
CM
10583 return __set_page_dirty_nobuffers(page);
10584}
10585
10556cb2 10586static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10587{
b83cc969 10588 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10589 umode_t mode = inode->i_mode;
b83cc969 10590
cb6db4e5
JM
10591 if (mask & MAY_WRITE &&
10592 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10593 if (btrfs_root_readonly(root))
10594 return -EROFS;
10595 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10596 return -EACCES;
10597 }
2830ba7f 10598 return generic_permission(inode, mask);
fdebe2bd 10599}
39279cc3 10600
ef3b9af5
FM
10601static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10602{
2ff7e61e 10603 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10604 struct btrfs_trans_handle *trans;
10605 struct btrfs_root *root = BTRFS_I(dir)->root;
10606 struct inode *inode = NULL;
10607 u64 objectid;
10608 u64 index;
10609 int ret = 0;
10610
10611 /*
10612 * 5 units required for adding orphan entry
10613 */
10614 trans = btrfs_start_transaction(root, 5);
10615 if (IS_ERR(trans))
10616 return PTR_ERR(trans);
10617
10618 ret = btrfs_find_free_ino(root, &objectid);
10619 if (ret)
10620 goto out;
10621
10622 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10623 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10624 if (IS_ERR(inode)) {
10625 ret = PTR_ERR(inode);
10626 inode = NULL;
10627 goto out;
10628 }
10629
ef3b9af5
FM
10630 inode->i_fop = &btrfs_file_operations;
10631 inode->i_op = &btrfs_file_inode_operations;
10632
10633 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10634 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10635
b0d5d10f
CM
10636 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10637 if (ret)
10638 goto out_inode;
10639
10640 ret = btrfs_update_inode(trans, root, inode);
10641 if (ret)
10642 goto out_inode;
73f2e545 10643 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10644 if (ret)
b0d5d10f 10645 goto out_inode;
ef3b9af5 10646
5762b5c9
FM
10647 /*
10648 * We set number of links to 0 in btrfs_new_inode(), and here we set
10649 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10650 * through:
10651 *
10652 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10653 */
10654 set_nlink(inode, 1);
b0d5d10f 10655 unlock_new_inode(inode);
ef3b9af5
FM
10656 d_tmpfile(dentry, inode);
10657 mark_inode_dirty(inode);
10658
10659out:
3a45bb20 10660 btrfs_end_transaction(trans);
ef3b9af5
FM
10661 if (ret)
10662 iput(inode);
2ff7e61e
JM
10663 btrfs_balance_delayed_items(fs_info);
10664 btrfs_btree_balance_dirty(fs_info);
ef3b9af5 10665 return ret;
b0d5d10f
CM
10666
10667out_inode:
10668 unlock_new_inode(inode);
10669 goto out;
10670
ef3b9af5
FM
10671}
10672
20a7db8a 10673__attribute__((const))
9d0d1c8b 10674static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
20a7db8a 10675{
9d0d1c8b 10676 return -EAGAIN;
20a7db8a
DS
10677}
10678
c6100a4b
JB
10679static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10680{
10681 struct inode *inode = private_data;
10682 return btrfs_sb(inode->i_sb);
10683}
10684
10685static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10686 u64 start, u64 end)
10687{
10688 struct inode *inode = private_data;
10689 u64 isize;
10690
10691 isize = i_size_read(inode);
10692 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10693 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10694 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10695 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10696 }
10697}
10698
10699void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10700{
10701 struct inode *inode = private_data;
10702 unsigned long index = start >> PAGE_SHIFT;
10703 unsigned long end_index = end >> PAGE_SHIFT;
10704 struct page *page;
10705
10706 while (index <= end_index) {
10707 page = find_get_page(inode->i_mapping, index);
10708 ASSERT(page); /* Pages should be in the extent_io_tree */
10709 set_page_writeback(page);
10710 put_page(page);
10711 index++;
10712 }
10713}
10714
6e1d5dcc 10715static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10716 .getattr = btrfs_getattr,
39279cc3
CM
10717 .lookup = btrfs_lookup,
10718 .create = btrfs_create,
10719 .unlink = btrfs_unlink,
10720 .link = btrfs_link,
10721 .mkdir = btrfs_mkdir,
10722 .rmdir = btrfs_rmdir,
2773bf00 10723 .rename = btrfs_rename2,
39279cc3
CM
10724 .symlink = btrfs_symlink,
10725 .setattr = btrfs_setattr,
618e21d5 10726 .mknod = btrfs_mknod,
5103e947 10727 .listxattr = btrfs_listxattr,
fdebe2bd 10728 .permission = btrfs_permission,
4e34e719 10729 .get_acl = btrfs_get_acl,
996a710d 10730 .set_acl = btrfs_set_acl,
93fd63c2 10731 .update_time = btrfs_update_time,
ef3b9af5 10732 .tmpfile = btrfs_tmpfile,
39279cc3 10733};
6e1d5dcc 10734static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10735 .lookup = btrfs_lookup,
fdebe2bd 10736 .permission = btrfs_permission,
93fd63c2 10737 .update_time = btrfs_update_time,
39279cc3 10738};
76dda93c 10739
828c0950 10740static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10741 .llseek = generic_file_llseek,
10742 .read = generic_read_dir,
02dbfc99 10743 .iterate_shared = btrfs_real_readdir,
34287aa3 10744 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10745#ifdef CONFIG_COMPAT
4c63c245 10746 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10747#endif
6bf13c0c 10748 .release = btrfs_release_file,
e02119d5 10749 .fsync = btrfs_sync_file,
39279cc3
CM
10750};
10751
20e5506b 10752static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10753 /* mandatory callbacks */
065631f6 10754 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac 10755 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4d53dddb 10756 .merge_bio_hook = btrfs_merge_bio_hook,
9d0d1c8b 10757 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
c6100a4b
JB
10758 .tree_fs_info = iotree_fs_info,
10759 .set_range_writeback = btrfs_set_range_writeback,
4d53dddb
DS
10760
10761 /* optional callbacks */
10762 .fill_delalloc = run_delalloc_range,
e6dcd2dc 10763 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10764 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10765 .set_bit_hook = btrfs_set_bit_hook,
10766 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10767 .merge_extent_hook = btrfs_merge_extent_hook,
10768 .split_extent_hook = btrfs_split_extent_hook,
c6100a4b 10769 .check_extent_io_range = btrfs_check_extent_io_range,
07157aac
CM
10770};
10771
35054394
CM
10772/*
10773 * btrfs doesn't support the bmap operation because swapfiles
10774 * use bmap to make a mapping of extents in the file. They assume
10775 * these extents won't change over the life of the file and they
10776 * use the bmap result to do IO directly to the drive.
10777 *
10778 * the btrfs bmap call would return logical addresses that aren't
10779 * suitable for IO and they also will change frequently as COW
10780 * operations happen. So, swapfile + btrfs == corruption.
10781 *
10782 * For now we're avoiding this by dropping bmap.
10783 */
7f09410b 10784static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10785 .readpage = btrfs_readpage,
10786 .writepage = btrfs_writepage,
b293f02e 10787 .writepages = btrfs_writepages,
3ab2fb5a 10788 .readpages = btrfs_readpages,
16432985 10789 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10790 .invalidatepage = btrfs_invalidatepage,
10791 .releasepage = btrfs_releasepage,
e6dcd2dc 10792 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10793 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10794};
10795
7f09410b 10796static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10797 .readpage = btrfs_readpage,
10798 .writepage = btrfs_writepage,
2bf5a725
CM
10799 .invalidatepage = btrfs_invalidatepage,
10800 .releasepage = btrfs_releasepage,
39279cc3
CM
10801};
10802
6e1d5dcc 10803static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10804 .getattr = btrfs_getattr,
10805 .setattr = btrfs_setattr,
5103e947 10806 .listxattr = btrfs_listxattr,
fdebe2bd 10807 .permission = btrfs_permission,
1506fcc8 10808 .fiemap = btrfs_fiemap,
4e34e719 10809 .get_acl = btrfs_get_acl,
996a710d 10810 .set_acl = btrfs_set_acl,
e41f941a 10811 .update_time = btrfs_update_time,
39279cc3 10812};
6e1d5dcc 10813static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10814 .getattr = btrfs_getattr,
10815 .setattr = btrfs_setattr,
fdebe2bd 10816 .permission = btrfs_permission,
33268eaf 10817 .listxattr = btrfs_listxattr,
4e34e719 10818 .get_acl = btrfs_get_acl,
996a710d 10819 .set_acl = btrfs_set_acl,
e41f941a 10820 .update_time = btrfs_update_time,
618e21d5 10821};
6e1d5dcc 10822static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10823 .get_link = page_get_link,
f209561a 10824 .getattr = btrfs_getattr,
22c44fe6 10825 .setattr = btrfs_setattr,
fdebe2bd 10826 .permission = btrfs_permission,
0279b4cd 10827 .listxattr = btrfs_listxattr,
e41f941a 10828 .update_time = btrfs_update_time,
39279cc3 10829};
76dda93c 10830
82d339d9 10831const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10832 .d_delete = btrfs_dentry_delete,
b4aff1f8 10833 .d_release = btrfs_dentry_release,
76dda93c 10834};