]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/inode.c
btrfs: replace div_u64 by shift in free_space_bitmap_size
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
7999096f 6#include <crypto/hash.h>
8f18cf13 7#include <linux/kernel.h>
065631f6 8#include <linux/bio.h>
f2eb0a24 9#include <linux/file.h>
39279cc3
CM
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
39279cc3 16#include <linux/backing-dev.h>
39279cc3 17#include <linux/writeback.h>
39279cc3 18#include <linux/compat.h>
5103e947 19#include <linux/xattr.h>
33268eaf 20#include <linux/posix_acl.h>
d899e052 21#include <linux/falloc.h>
5a0e3ad6 22#include <linux/slab.h>
7a36ddec 23#include <linux/ratelimit.h>
55e301fd 24#include <linux/btrfs.h>
53b381b3 25#include <linux/blkdev.h>
f23b5a59 26#include <linux/posix_acl_xattr.h>
e2e40f2c 27#include <linux/uio.h>
69fe2d75 28#include <linux/magic.h>
ae5e165d 29#include <linux/iversion.h>
ed46ff3d 30#include <linux/swap.h>
f8e66081 31#include <linux/migrate.h>
b1c16ac9 32#include <linux/sched/mm.h>
f85781fb 33#include <linux/iomap.h>
92d32170 34#include <asm/unaligned.h>
602cbe91 35#include "misc.h"
39279cc3
CM
36#include "ctree.h"
37#include "disk-io.h"
38#include "transaction.h"
39#include "btrfs_inode.h"
39279cc3 40#include "print-tree.h"
e6dcd2dc 41#include "ordered-data.h"
95819c05 42#include "xattr.h"
e02119d5 43#include "tree-log.h"
4a54c8c1 44#include "volumes.h"
c8b97818 45#include "compression.h"
b4ce94de 46#include "locking.h"
dc89e982 47#include "free-space-cache.h"
581bb050 48#include "inode-map.h"
63541927 49#include "props.h"
31193213 50#include "qgroup.h"
86736342 51#include "delalloc-space.h"
aac0023c 52#include "block-group.h"
467dc47e 53#include "space-info.h"
39279cc3
CM
54
55struct btrfs_iget_args {
0202e83f 56 u64 ino;
39279cc3
CM
57 struct btrfs_root *root;
58};
59
f28a4928 60struct btrfs_dio_data {
f28a4928 61 u64 reserve;
f85781fb
GR
62 loff_t length;
63 ssize_t submitted;
64 struct extent_changeset *data_reserved;
f28a4928
FM
65};
66
6e1d5dcc
AD
67static const struct inode_operations btrfs_dir_inode_operations;
68static const struct inode_operations btrfs_symlink_inode_operations;
6e1d5dcc
AD
69static const struct inode_operations btrfs_special_inode_operations;
70static const struct inode_operations btrfs_file_inode_operations;
7f09410b 71static const struct address_space_operations btrfs_aops;
828c0950 72static const struct file_operations btrfs_dir_file_operations;
39279cc3
CM
73
74static struct kmem_cache *btrfs_inode_cachep;
75struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 76struct kmem_cache *btrfs_path_cachep;
dc89e982 77struct kmem_cache *btrfs_free_space_cachep;
3acd4850 78struct kmem_cache *btrfs_free_space_bitmap_cachep;
39279cc3 79
3972f260 80static int btrfs_setsize(struct inode *inode, struct iattr *attr);
213e8c55 81static int btrfs_truncate(struct inode *inode, bool skip_writeback);
5fd02043 82static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
6e26c442 83static noinline int cow_file_range(struct btrfs_inode *inode,
771ed689 84 struct page *locked_page,
74e9194a 85 u64 start, u64 end, int *page_started,
330a5827 86 unsigned long *nr_written, int unlock);
4b67c11d
NB
87static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
88 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
89 u64 block_len, u64 orig_block_len,
90 u64 ram_bytes, int compress_type,
91 int type);
7b128766 92
b672b5c1 93static void __endio_write_update_ordered(struct btrfs_inode *inode,
52427260
QW
94 const u64 offset, const u64 bytes,
95 const bool uptodate);
96
a14b78ad
GR
97/*
98 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
99 *
100 * ilock_flags can have the following bit set:
101 *
102 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
103 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
104 * return -EAGAIN
105 */
106int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
107{
108 if (ilock_flags & BTRFS_ILOCK_SHARED) {
109 if (ilock_flags & BTRFS_ILOCK_TRY) {
110 if (!inode_trylock_shared(inode))
111 return -EAGAIN;
112 else
113 return 0;
114 }
115 inode_lock_shared(inode);
116 } else {
117 if (ilock_flags & BTRFS_ILOCK_TRY) {
118 if (!inode_trylock(inode))
119 return -EAGAIN;
120 else
121 return 0;
122 }
123 inode_lock(inode);
124 }
125 return 0;
126}
127
128/*
129 * btrfs_inode_unlock - unock inode i_rwsem
130 *
131 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
132 * to decide whether the lock acquired is shared or exclusive.
133 */
134void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
135{
136 if (ilock_flags & BTRFS_ILOCK_SHARED)
137 inode_unlock_shared(inode);
138 else
139 inode_unlock(inode);
140}
141
52427260
QW
142/*
143 * Cleanup all submitted ordered extents in specified range to handle errors
52042d8e 144 * from the btrfs_run_delalloc_range() callback.
52427260
QW
145 *
146 * NOTE: caller must ensure that when an error happens, it can not call
147 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
148 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
149 * to be released, which we want to happen only when finishing the ordered
d1051d6e 150 * extent (btrfs_finish_ordered_io()).
52427260 151 */
64e1db56 152static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
d1051d6e
NB
153 struct page *locked_page,
154 u64 offset, u64 bytes)
52427260 155{
63d71450
NA
156 unsigned long index = offset >> PAGE_SHIFT;
157 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
d1051d6e
NB
158 u64 page_start = page_offset(locked_page);
159 u64 page_end = page_start + PAGE_SIZE - 1;
160
63d71450
NA
161 struct page *page;
162
163 while (index <= end_index) {
64e1db56 164 page = find_get_page(inode->vfs_inode.i_mapping, index);
63d71450
NA
165 index++;
166 if (!page)
167 continue;
168 ClearPagePrivate2(page);
169 put_page(page);
170 }
d1051d6e
NB
171
172 /*
173 * In case this page belongs to the delalloc range being instantiated
174 * then skip it, since the first page of a range is going to be
175 * properly cleaned up by the caller of run_delalloc_range
176 */
177 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
178 offset += PAGE_SIZE;
179 bytes -= PAGE_SIZE;
180 }
181
64e1db56 182 return __endio_write_update_ordered(inode, offset, bytes, false);
52427260
QW
183}
184
48a3b636 185static int btrfs_dirty_inode(struct inode *inode);
7b128766 186
f34f57a3 187static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
188 struct inode *inode, struct inode *dir,
189 const struct qstr *qstr)
0279b4cd
JO
190{
191 int err;
192
f34f57a3 193 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 194 if (!err)
2a7dba39 195 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
196 return err;
197}
198
c8b97818
CM
199/*
200 * this does all the hard work for inserting an inline extent into
201 * the btree. The caller should have done a btrfs_drop_extents so that
202 * no overlapping inline items exist in the btree
203 */
40f76580 204static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 205 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
206 struct btrfs_root *root, struct inode *inode,
207 u64 start, size_t size, size_t compressed_size,
fe3f566c 208 int compress_type,
c8b97818
CM
209 struct page **compressed_pages)
210{
c8b97818
CM
211 struct extent_buffer *leaf;
212 struct page *page = NULL;
213 char *kaddr;
214 unsigned long ptr;
215 struct btrfs_file_extent_item *ei;
c8b97818
CM
216 int ret;
217 size_t cur_size = size;
c8b97818 218 unsigned long offset;
c8b97818 219
982f1f5d
JJB
220 ASSERT((compressed_size > 0 && compressed_pages) ||
221 (compressed_size == 0 && !compressed_pages));
222
fe3f566c 223 if (compressed_size && compressed_pages)
c8b97818 224 cur_size = compressed_size;
c8b97818 225
1acae57b 226 inode_add_bytes(inode, size);
c8b97818 227
1acae57b
FDBM
228 if (!extent_inserted) {
229 struct btrfs_key key;
230 size_t datasize;
c8b97818 231
4a0cc7ca 232 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 233 key.offset = start;
962a298f 234 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 235
1acae57b
FDBM
236 datasize = btrfs_file_extent_calc_inline_size(cur_size);
237 path->leave_spinning = 1;
238 ret = btrfs_insert_empty_item(trans, root, path, &key,
239 datasize);
79b4f4c6 240 if (ret)
1acae57b 241 goto fail;
c8b97818
CM
242 }
243 leaf = path->nodes[0];
244 ei = btrfs_item_ptr(leaf, path->slots[0],
245 struct btrfs_file_extent_item);
246 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
247 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
248 btrfs_set_file_extent_encryption(leaf, ei, 0);
249 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
250 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
251 ptr = btrfs_file_extent_inline_start(ei);
252
261507a0 253 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
254 struct page *cpage;
255 int i = 0;
d397712b 256 while (compressed_size > 0) {
c8b97818 257 cpage = compressed_pages[i];
5b050f04 258 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 259 PAGE_SIZE);
c8b97818 260
7ac687d9 261 kaddr = kmap_atomic(cpage);
c8b97818 262 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 263 kunmap_atomic(kaddr);
c8b97818
CM
264
265 i++;
266 ptr += cur_size;
267 compressed_size -= cur_size;
268 }
269 btrfs_set_file_extent_compression(leaf, ei,
261507a0 270 compress_type);
c8b97818
CM
271 } else {
272 page = find_get_page(inode->i_mapping,
09cbfeaf 273 start >> PAGE_SHIFT);
c8b97818 274 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 275 kaddr = kmap_atomic(page);
7073017a 276 offset = offset_in_page(start);
c8b97818 277 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 278 kunmap_atomic(kaddr);
09cbfeaf 279 put_page(page);
c8b97818
CM
280 }
281 btrfs_mark_buffer_dirty(leaf);
1acae57b 282 btrfs_release_path(path);
c8b97818 283
9ddc959e
JB
284 /*
285 * We align size to sectorsize for inline extents just for simplicity
286 * sake.
287 */
288 size = ALIGN(size, root->fs_info->sectorsize);
289 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
290 if (ret)
291 goto fail;
292
c2167754
YZ
293 /*
294 * we're an inline extent, so nobody can
295 * extend the file past i_size without locking
296 * a page we already have locked.
297 *
298 * We must do any isize and inode updates
299 * before we unlock the pages. Otherwise we
300 * could end up racing with unlink.
301 */
c8b97818 302 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 303 ret = btrfs_update_inode(trans, root, inode);
c2167754 304
c8b97818 305fail:
79b4f4c6 306 return ret;
c8b97818
CM
307}
308
309
310/*
311 * conditionally insert an inline extent into the file. This
312 * does the checks required to make sure the data is small enough
313 * to fit as an inline extent.
314 */
a0349401 315static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
00361589
JB
316 u64 end, size_t compressed_size,
317 int compress_type,
318 struct page **compressed_pages)
c8b97818 319{
a0349401 320 struct btrfs_root *root = inode->root;
0b246afa 321 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 322 struct btrfs_trans_handle *trans;
a0349401 323 u64 isize = i_size_read(&inode->vfs_inode);
c8b97818
CM
324 u64 actual_end = min(end + 1, isize);
325 u64 inline_len = actual_end - start;
0b246afa 326 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
327 u64 data_len = inline_len;
328 int ret;
1acae57b
FDBM
329 struct btrfs_path *path;
330 int extent_inserted = 0;
331 u32 extent_item_size;
c8b97818
CM
332
333 if (compressed_size)
334 data_len = compressed_size;
335
336 if (start > 0 ||
0b246afa
JM
337 actual_end > fs_info->sectorsize ||
338 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 339 (!compressed_size &&
0b246afa 340 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 341 end + 1 < isize ||
0b246afa 342 data_len > fs_info->max_inline) {
c8b97818
CM
343 return 1;
344 }
345
1acae57b
FDBM
346 path = btrfs_alloc_path();
347 if (!path)
348 return -ENOMEM;
349
00361589 350 trans = btrfs_join_transaction(root);
1acae57b
FDBM
351 if (IS_ERR(trans)) {
352 btrfs_free_path(path);
00361589 353 return PTR_ERR(trans);
1acae57b 354 }
a0349401 355 trans->block_rsv = &inode->block_rsv;
00361589 356
1acae57b
FDBM
357 if (compressed_size && compressed_pages)
358 extent_item_size = btrfs_file_extent_calc_inline_size(
359 compressed_size);
360 else
361 extent_item_size = btrfs_file_extent_calc_inline_size(
362 inline_len);
363
a0349401
NB
364 ret = __btrfs_drop_extents(trans, root, inode, path, start, aligned_end,
365 NULL, 1, 1, extent_item_size,
366 &extent_inserted);
00361589 367 if (ret) {
66642832 368 btrfs_abort_transaction(trans, ret);
00361589
JB
369 goto out;
370 }
c8b97818
CM
371
372 if (isize > actual_end)
373 inline_len = min_t(u64, isize, actual_end);
1acae57b 374 ret = insert_inline_extent(trans, path, extent_inserted,
a0349401 375 root, &inode->vfs_inode, start,
c8b97818 376 inline_len, compressed_size,
fe3f566c 377 compress_type, compressed_pages);
2adcac1a 378 if (ret && ret != -ENOSPC) {
66642832 379 btrfs_abort_transaction(trans, ret);
00361589 380 goto out;
2adcac1a 381 } else if (ret == -ENOSPC) {
00361589
JB
382 ret = 1;
383 goto out;
79787eaa 384 }
2adcac1a 385
a0349401
NB
386 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
387 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 388out:
94ed938a
QW
389 /*
390 * Don't forget to free the reserved space, as for inlined extent
391 * it won't count as data extent, free them directly here.
392 * And at reserve time, it's always aligned to page size, so
393 * just free one page here.
394 */
a0349401 395 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 396 btrfs_free_path(path);
3a45bb20 397 btrfs_end_transaction(trans);
00361589 398 return ret;
c8b97818
CM
399}
400
771ed689
CM
401struct async_extent {
402 u64 start;
403 u64 ram_size;
404 u64 compressed_size;
405 struct page **pages;
406 unsigned long nr_pages;
261507a0 407 int compress_type;
771ed689
CM
408 struct list_head list;
409};
410
97db1204 411struct async_chunk {
771ed689 412 struct inode *inode;
771ed689
CM
413 struct page *locked_page;
414 u64 start;
415 u64 end;
f82b7359 416 unsigned int write_flags;
771ed689 417 struct list_head extents;
ec39f769 418 struct cgroup_subsys_state *blkcg_css;
771ed689 419 struct btrfs_work work;
97db1204 420 atomic_t *pending;
771ed689
CM
421};
422
97db1204
NB
423struct async_cow {
424 /* Number of chunks in flight; must be first in the structure */
425 atomic_t num_chunks;
426 struct async_chunk chunks[];
771ed689
CM
427};
428
97db1204 429static noinline int add_async_extent(struct async_chunk *cow,
771ed689
CM
430 u64 start, u64 ram_size,
431 u64 compressed_size,
432 struct page **pages,
261507a0
LZ
433 unsigned long nr_pages,
434 int compress_type)
771ed689
CM
435{
436 struct async_extent *async_extent;
437
438 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 439 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
440 async_extent->start = start;
441 async_extent->ram_size = ram_size;
442 async_extent->compressed_size = compressed_size;
443 async_extent->pages = pages;
444 async_extent->nr_pages = nr_pages;
261507a0 445 async_extent->compress_type = compress_type;
771ed689
CM
446 list_add_tail(&async_extent->list, &cow->extents);
447 return 0;
448}
449
42c16da6
QW
450/*
451 * Check if the inode has flags compatible with compression
452 */
99c88dc7 453static inline bool inode_can_compress(struct btrfs_inode *inode)
42c16da6 454{
99c88dc7
NB
455 if (inode->flags & BTRFS_INODE_NODATACOW ||
456 inode->flags & BTRFS_INODE_NODATASUM)
42c16da6
QW
457 return false;
458 return true;
459}
460
461/*
462 * Check if the inode needs to be submitted to compression, based on mount
463 * options, defragmentation, properties or heuristics.
464 */
808a1292
NB
465static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
466 u64 end)
f79707b0 467{
808a1292 468 struct btrfs_fs_info *fs_info = inode->root->fs_info;
f79707b0 469
808a1292 470 if (!inode_can_compress(inode)) {
42c16da6
QW
471 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
472 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
808a1292 473 btrfs_ino(inode));
42c16da6
QW
474 return 0;
475 }
f79707b0 476 /* force compress */
0b246afa 477 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 478 return 1;
eec63c65 479 /* defrag ioctl */
808a1292 480 if (inode->defrag_compress)
eec63c65 481 return 1;
f79707b0 482 /* bad compression ratios */
808a1292 483 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
f79707b0 484 return 0;
0b246afa 485 if (btrfs_test_opt(fs_info, COMPRESS) ||
808a1292
NB
486 inode->flags & BTRFS_INODE_COMPRESS ||
487 inode->prop_compress)
488 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
f79707b0
WS
489 return 0;
490}
491
6158e1ce 492static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
493 u64 start, u64 end, u64 num_bytes, u64 small_write)
494{
495 /* If this is a small write inside eof, kick off a defrag */
496 if (num_bytes < small_write &&
6158e1ce 497 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
498 btrfs_add_inode_defrag(NULL, inode);
499}
500
d352ac68 501/*
771ed689
CM
502 * we create compressed extents in two phases. The first
503 * phase compresses a range of pages that have already been
504 * locked (both pages and state bits are locked).
c8b97818 505 *
771ed689
CM
506 * This is done inside an ordered work queue, and the compression
507 * is spread across many cpus. The actual IO submission is step
508 * two, and the ordered work queue takes care of making sure that
509 * happens in the same order things were put onto the queue by
510 * writepages and friends.
c8b97818 511 *
771ed689
CM
512 * If this code finds it can't get good compression, it puts an
513 * entry onto the work queue to write the uncompressed bytes. This
514 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
515 * are written in the same order that the flusher thread sent them
516 * down.
d352ac68 517 */
ac3e9933 518static noinline int compress_file_range(struct async_chunk *async_chunk)
b888db2b 519{
1368c6da 520 struct inode *inode = async_chunk->inode;
0b246afa 521 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0b246afa 522 u64 blocksize = fs_info->sectorsize;
1368c6da
NB
523 u64 start = async_chunk->start;
524 u64 end = async_chunk->end;
c8b97818 525 u64 actual_end;
d98da499 526 u64 i_size;
e6dcd2dc 527 int ret = 0;
c8b97818
CM
528 struct page **pages = NULL;
529 unsigned long nr_pages;
c8b97818
CM
530 unsigned long total_compressed = 0;
531 unsigned long total_in = 0;
c8b97818
CM
532 int i;
533 int will_compress;
0b246afa 534 int compress_type = fs_info->compress_type;
ac3e9933 535 int compressed_extents = 0;
4adaa611 536 int redirty = 0;
b888db2b 537
6158e1ce
NB
538 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
539 SZ_16K);
4cb5300b 540
d98da499
JB
541 /*
542 * We need to save i_size before now because it could change in between
543 * us evaluating the size and assigning it. This is because we lock and
544 * unlock the page in truncate and fallocate, and then modify the i_size
545 * later on.
546 *
547 * The barriers are to emulate READ_ONCE, remove that once i_size_read
548 * does that for us.
549 */
550 barrier();
551 i_size = i_size_read(inode);
552 barrier();
553 actual_end = min_t(u64, i_size, end + 1);
c8b97818
CM
554again:
555 will_compress = 0;
09cbfeaf 556 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
557 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
558 nr_pages = min_t(unsigned long, nr_pages,
559 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 560
f03d9301
CM
561 /*
562 * we don't want to send crud past the end of i_size through
563 * compression, that's just a waste of CPU time. So, if the
564 * end of the file is before the start of our current
565 * requested range of bytes, we bail out to the uncompressed
566 * cleanup code that can deal with all of this.
567 *
568 * It isn't really the fastest way to fix things, but this is a
569 * very uncommon corner.
570 */
571 if (actual_end <= start)
572 goto cleanup_and_bail_uncompressed;
573
c8b97818
CM
574 total_compressed = actual_end - start;
575
4bcbb332
SW
576 /*
577 * skip compression for a small file range(<=blocksize) that
01327610 578 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
579 */
580 if (total_compressed <= blocksize &&
581 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
582 goto cleanup_and_bail_uncompressed;
583
069eac78
DS
584 total_compressed = min_t(unsigned long, total_compressed,
585 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
586 total_in = 0;
587 ret = 0;
db94535d 588
771ed689
CM
589 /*
590 * we do compression for mount -o compress and when the
591 * inode has not been flagged as nocompress. This flag can
592 * change at any time if we discover bad compression ratios.
c8b97818 593 */
808a1292 594 if (inode_need_compress(BTRFS_I(inode), start, end)) {
c8b97818 595 WARN_ON(pages);
31e818fe 596 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
597 if (!pages) {
598 /* just bail out to the uncompressed code */
3527a018 599 nr_pages = 0;
560f7d75
LZ
600 goto cont;
601 }
c8b97818 602
eec63c65
DS
603 if (BTRFS_I(inode)->defrag_compress)
604 compress_type = BTRFS_I(inode)->defrag_compress;
605 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 606 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 607
4adaa611
CM
608 /*
609 * we need to call clear_page_dirty_for_io on each
610 * page in the range. Otherwise applications with the file
611 * mmap'd can wander in and change the page contents while
612 * we are compressing them.
613 *
614 * If the compression fails for any reason, we set the pages
615 * dirty again later on.
e9679de3
TT
616 *
617 * Note that the remaining part is redirtied, the start pointer
618 * has moved, the end is the original one.
4adaa611 619 */
e9679de3
TT
620 if (!redirty) {
621 extent_range_clear_dirty_for_io(inode, start, end);
622 redirty = 1;
623 }
f51d2b59
DS
624
625 /* Compression level is applied here and only here */
626 ret = btrfs_compress_pages(
627 compress_type | (fs_info->compress_level << 4),
261507a0 628 inode->i_mapping, start,
38c31464 629 pages,
4d3a800e 630 &nr_pages,
261507a0 631 &total_in,
e5d74902 632 &total_compressed);
c8b97818
CM
633
634 if (!ret) {
7073017a 635 unsigned long offset = offset_in_page(total_compressed);
4d3a800e 636 struct page *page = pages[nr_pages - 1];
c8b97818
CM
637 char *kaddr;
638
639 /* zero the tail end of the last page, we might be
640 * sending it down to disk
641 */
642 if (offset) {
7ac687d9 643 kaddr = kmap_atomic(page);
c8b97818 644 memset(kaddr + offset, 0,
09cbfeaf 645 PAGE_SIZE - offset);
7ac687d9 646 kunmap_atomic(kaddr);
c8b97818
CM
647 }
648 will_compress = 1;
649 }
650 }
560f7d75 651cont:
c8b97818
CM
652 if (start == 0) {
653 /* lets try to make an inline extent */
6018ba0a 654 if (ret || total_in < actual_end) {
c8b97818 655 /* we didn't compress the entire range, try
771ed689 656 * to make an uncompressed inline extent.
c8b97818 657 */
a0349401
NB
658 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
659 0, BTRFS_COMPRESS_NONE,
660 NULL);
c8b97818 661 } else {
771ed689 662 /* try making a compressed inline extent */
a0349401 663 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
fe3f566c
LZ
664 total_compressed,
665 compress_type, pages);
c8b97818 666 }
79787eaa 667 if (ret <= 0) {
151a41bc 668 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
669 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
670 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
671 unsigned long page_error_op;
672
e6eb4314 673 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 674
771ed689 675 /*
79787eaa
JM
676 * inline extent creation worked or returned error,
677 * we don't need to create any more async work items.
678 * Unlock and free up our temp pages.
8b62f87b
JB
679 *
680 * We use DO_ACCOUNTING here because we need the
681 * delalloc_release_metadata to be done _after_ we drop
682 * our outstanding extent for clearing delalloc for this
683 * range.
771ed689 684 */
ad7ff17b
NB
685 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
686 NULL,
74e9194a 687 clear_flags,
ba8b04c1 688 PAGE_UNLOCK |
c2790a2e
JB
689 PAGE_CLEAR_DIRTY |
690 PAGE_SET_WRITEBACK |
e6eb4314 691 page_error_op |
c2790a2e 692 PAGE_END_WRITEBACK);
cecc8d90 693
1e6e238c
QW
694 /*
695 * Ensure we only free the compressed pages if we have
696 * them allocated, as we can still reach here with
697 * inode_need_compress() == false.
698 */
699 if (pages) {
700 for (i = 0; i < nr_pages; i++) {
701 WARN_ON(pages[i]->mapping);
702 put_page(pages[i]);
703 }
704 kfree(pages);
cecc8d90 705 }
cecc8d90 706 return 0;
c8b97818
CM
707 }
708 }
709
710 if (will_compress) {
711 /*
712 * we aren't doing an inline extent round the compressed size
713 * up to a block size boundary so the allocator does sane
714 * things
715 */
fda2832f 716 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
717
718 /*
719 * one last check to make sure the compression is really a
170607eb
TT
720 * win, compare the page count read with the blocks on disk,
721 * compression must free at least one sector size
c8b97818 722 */
09cbfeaf 723 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 724 if (total_compressed + blocksize <= total_in) {
ac3e9933 725 compressed_extents++;
c8bb0c8b
AS
726
727 /*
728 * The async work queues will take care of doing actual
729 * allocation on disk for these compressed pages, and
730 * will submit them to the elevator.
731 */
b5326271 732 add_async_extent(async_chunk, start, total_in,
4d3a800e 733 total_compressed, pages, nr_pages,
c8bb0c8b
AS
734 compress_type);
735
1170862d
TT
736 if (start + total_in < end) {
737 start += total_in;
c8bb0c8b
AS
738 pages = NULL;
739 cond_resched();
740 goto again;
741 }
ac3e9933 742 return compressed_extents;
c8b97818
CM
743 }
744 }
c8bb0c8b 745 if (pages) {
c8b97818
CM
746 /*
747 * the compression code ran but failed to make things smaller,
748 * free any pages it allocated and our page pointer array
749 */
4d3a800e 750 for (i = 0; i < nr_pages; i++) {
70b99e69 751 WARN_ON(pages[i]->mapping);
09cbfeaf 752 put_page(pages[i]);
c8b97818
CM
753 }
754 kfree(pages);
755 pages = NULL;
756 total_compressed = 0;
4d3a800e 757 nr_pages = 0;
c8b97818
CM
758
759 /* flag the file so we don't compress in the future */
0b246afa 760 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 761 !(BTRFS_I(inode)->prop_compress)) {
a555f810 762 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 763 }
c8b97818 764 }
f03d9301 765cleanup_and_bail_uncompressed:
c8bb0c8b
AS
766 /*
767 * No compression, but we still need to write the pages in the file
768 * we've been given so far. redirty the locked page if it corresponds
769 * to our extent and set things up for the async work queue to run
770 * cow_file_range to do the normal delalloc dance.
771 */
1d53c9e6
CM
772 if (async_chunk->locked_page &&
773 (page_offset(async_chunk->locked_page) >= start &&
774 page_offset(async_chunk->locked_page)) <= end) {
1368c6da 775 __set_page_dirty_nobuffers(async_chunk->locked_page);
c8bb0c8b 776 /* unlocked later on in the async handlers */
1d53c9e6 777 }
c8bb0c8b
AS
778
779 if (redirty)
780 extent_range_redirty_for_io(inode, start, end);
b5326271 781 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
c8bb0c8b 782 BTRFS_COMPRESS_NONE);
ac3e9933 783 compressed_extents++;
3b951516 784
ac3e9933 785 return compressed_extents;
771ed689 786}
771ed689 787
40ae837b
FM
788static void free_async_extent_pages(struct async_extent *async_extent)
789{
790 int i;
791
792 if (!async_extent->pages)
793 return;
794
795 for (i = 0; i < async_extent->nr_pages; i++) {
796 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 797 put_page(async_extent->pages[i]);
40ae837b
FM
798 }
799 kfree(async_extent->pages);
800 async_extent->nr_pages = 0;
801 async_extent->pages = NULL;
771ed689
CM
802}
803
804/*
805 * phase two of compressed writeback. This is the ordered portion
806 * of the code, which only gets called in the order the work was
807 * queued. We walk all the async extents created by compress_file_range
808 * and send them down to the disk.
809 */
b5326271 810static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
771ed689 811{
a0ff10dc
NB
812 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
813 struct btrfs_fs_info *fs_info = inode->root->fs_info;
771ed689
CM
814 struct async_extent *async_extent;
815 u64 alloc_hint = 0;
771ed689
CM
816 struct btrfs_key ins;
817 struct extent_map *em;
a0ff10dc
NB
818 struct btrfs_root *root = inode->root;
819 struct extent_io_tree *io_tree = &inode->io_tree;
f5a84ee3 820 int ret = 0;
771ed689 821
3e04e7f1 822again:
b5326271
NB
823 while (!list_empty(&async_chunk->extents)) {
824 async_extent = list_entry(async_chunk->extents.next,
771ed689
CM
825 struct async_extent, list);
826 list_del(&async_extent->list);
c8b97818 827
f5a84ee3 828retry:
7447555f
NB
829 lock_extent(io_tree, async_extent->start,
830 async_extent->start + async_extent->ram_size - 1);
771ed689
CM
831 /* did the compression code fall back to uncompressed IO? */
832 if (!async_extent->pages) {
833 int page_started = 0;
834 unsigned long nr_written = 0;
835
771ed689 836 /* allocate blocks */
a0ff10dc 837 ret = cow_file_range(inode, async_chunk->locked_page,
f5a84ee3
JB
838 async_extent->start,
839 async_extent->start +
840 async_extent->ram_size - 1,
330a5827 841 &page_started, &nr_written, 0);
771ed689 842
79787eaa
JM
843 /* JDM XXX */
844
771ed689
CM
845 /*
846 * if page_started, cow_file_range inserted an
847 * inline extent and took care of all the unlocking
848 * and IO for us. Otherwise, we need to submit
849 * all those pages down to the drive.
850 */
f5a84ee3 851 if (!page_started && !ret)
a0ff10dc 852 extent_write_locked_range(&inode->vfs_inode,
5e3ee236 853 async_extent->start,
d397712b 854 async_extent->start +
771ed689 855 async_extent->ram_size - 1,
771ed689 856 WB_SYNC_ALL);
1d53c9e6 857 else if (ret && async_chunk->locked_page)
b5326271 858 unlock_page(async_chunk->locked_page);
771ed689
CM
859 kfree(async_extent);
860 cond_resched();
861 continue;
862 }
863
18513091 864 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
865 async_extent->compressed_size,
866 async_extent->compressed_size,
e570fd27 867 0, alloc_hint, &ins, 1, 1);
f5a84ee3 868 if (ret) {
40ae837b 869 free_async_extent_pages(async_extent);
3e04e7f1 870
fdf8e2ea
JB
871 if (ret == -ENOSPC) {
872 unlock_extent(io_tree, async_extent->start,
873 async_extent->start +
874 async_extent->ram_size - 1);
ce62003f
LB
875
876 /*
877 * we need to redirty the pages if we decide to
878 * fallback to uncompressed IO, otherwise we
879 * will not submit these pages down to lower
880 * layers.
881 */
a0ff10dc 882 extent_range_redirty_for_io(&inode->vfs_inode,
ce62003f
LB
883 async_extent->start,
884 async_extent->start +
885 async_extent->ram_size - 1);
886
79787eaa 887 goto retry;
fdf8e2ea 888 }
3e04e7f1 889 goto out_free;
f5a84ee3 890 }
c2167754
YZ
891 /*
892 * here we're doing allocation and writeback of the
893 * compressed pages
894 */
a0ff10dc 895 em = create_io_em(inode, async_extent->start,
6f9994db
LB
896 async_extent->ram_size, /* len */
897 async_extent->start, /* orig_start */
898 ins.objectid, /* block_start */
899 ins.offset, /* block_len */
900 ins.offset, /* orig_block_len */
901 async_extent->ram_size, /* ram_bytes */
902 async_extent->compress_type,
903 BTRFS_ORDERED_COMPRESSED);
904 if (IS_ERR(em))
905 /* ret value is not necessary due to void function */
3e04e7f1 906 goto out_free_reserve;
6f9994db 907 free_extent_map(em);
3e04e7f1 908
a0ff10dc 909 ret = btrfs_add_ordered_extent_compress(inode,
261507a0
LZ
910 async_extent->start,
911 ins.objectid,
912 async_extent->ram_size,
913 ins.offset,
914 BTRFS_ORDERED_COMPRESSED,
915 async_extent->compress_type);
d9f85963 916 if (ret) {
a0ff10dc 917 btrfs_drop_extent_cache(inode, async_extent->start,
d9f85963
FM
918 async_extent->start +
919 async_extent->ram_size - 1, 0);
3e04e7f1 920 goto out_free_reserve;
d9f85963 921 }
0b246afa 922 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 923
771ed689
CM
924 /*
925 * clear dirty, set writeback and unlock the pages.
926 */
a0ff10dc 927 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
928 async_extent->start +
929 async_extent->ram_size - 1,
151a41bc
JB
930 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
931 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 932 PAGE_SET_WRITEBACK);
a0ff10dc 933 if (btrfs_submit_compressed_write(inode, async_extent->start,
d397712b
CM
934 async_extent->ram_size,
935 ins.objectid,
936 ins.offset, async_extent->pages,
f82b7359 937 async_extent->nr_pages,
ec39f769
CM
938 async_chunk->write_flags,
939 async_chunk->blkcg_css)) {
fce2a4e6
FM
940 struct page *p = async_extent->pages[0];
941 const u64 start = async_extent->start;
942 const u64 end = start + async_extent->ram_size - 1;
943
a0ff10dc 944 p->mapping = inode->vfs_inode.i_mapping;
c629732d 945 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
7087a9d8 946
fce2a4e6 947 p->mapping = NULL;
a0ff10dc 948 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
fce2a4e6
FM
949 PAGE_END_WRITEBACK |
950 PAGE_SET_ERROR);
40ae837b 951 free_async_extent_pages(async_extent);
fce2a4e6 952 }
771ed689
CM
953 alloc_hint = ins.objectid + ins.offset;
954 kfree(async_extent);
955 cond_resched();
956 }
dec8f175 957 return;
3e04e7f1 958out_free_reserve:
0b246afa 959 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 960 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 961out_free:
a0ff10dc 962 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
963 async_extent->start +
964 async_extent->ram_size - 1,
c2790a2e 965 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 966 EXTENT_DELALLOC_NEW |
151a41bc
JB
967 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
968 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
969 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
970 PAGE_SET_ERROR);
40ae837b 971 free_async_extent_pages(async_extent);
79787eaa 972 kfree(async_extent);
3e04e7f1 973 goto again;
771ed689
CM
974}
975
43c69849 976static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
4b46fce2
JB
977 u64 num_bytes)
978{
43c69849 979 struct extent_map_tree *em_tree = &inode->extent_tree;
4b46fce2
JB
980 struct extent_map *em;
981 u64 alloc_hint = 0;
982
983 read_lock(&em_tree->lock);
984 em = search_extent_mapping(em_tree, start, num_bytes);
985 if (em) {
986 /*
987 * if block start isn't an actual block number then find the
988 * first block in this inode and use that as a hint. If that
989 * block is also bogus then just don't worry about it.
990 */
991 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
992 free_extent_map(em);
993 em = search_extent_mapping(em_tree, 0, 0);
994 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
995 alloc_hint = em->block_start;
996 if (em)
997 free_extent_map(em);
998 } else {
999 alloc_hint = em->block_start;
1000 free_extent_map(em);
1001 }
1002 }
1003 read_unlock(&em_tree->lock);
1004
1005 return alloc_hint;
1006}
1007
771ed689
CM
1008/*
1009 * when extent_io.c finds a delayed allocation range in the file,
1010 * the call backs end up in this code. The basic idea is to
1011 * allocate extents on disk for the range, and create ordered data structs
1012 * in ram to track those extents.
1013 *
1014 * locked_page is the page that writepage had locked already. We use
1015 * it to make sure we don't do extra locks or unlocks.
1016 *
1017 * *page_started is set to one if we unlock locked_page and do everything
1018 * required to start IO on it. It may be clean and already done with
1019 * IO when we return.
1020 */
6e26c442 1021static noinline int cow_file_range(struct btrfs_inode *inode,
00361589 1022 struct page *locked_page,
74e9194a 1023 u64 start, u64 end, int *page_started,
330a5827 1024 unsigned long *nr_written, int unlock)
771ed689 1025{
6e26c442
NB
1026 struct btrfs_root *root = inode->root;
1027 struct btrfs_fs_info *fs_info = root->fs_info;
771ed689
CM
1028 u64 alloc_hint = 0;
1029 u64 num_bytes;
1030 unsigned long ram_size;
a315e68f 1031 u64 cur_alloc_size = 0;
432cd2a1 1032 u64 min_alloc_size;
0b246afa 1033 u64 blocksize = fs_info->sectorsize;
771ed689
CM
1034 struct btrfs_key ins;
1035 struct extent_map *em;
a315e68f
FM
1036 unsigned clear_bits;
1037 unsigned long page_ops;
1038 bool extent_reserved = false;
771ed689
CM
1039 int ret = 0;
1040
6e26c442 1041 if (btrfs_is_free_space_inode(inode)) {
02ecd2c2 1042 WARN_ON_ONCE(1);
29bce2f3
JB
1043 ret = -EINVAL;
1044 goto out_unlock;
02ecd2c2 1045 }
771ed689 1046
fda2832f 1047 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 1048 num_bytes = max(blocksize, num_bytes);
566b1760 1049 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 1050
6e26c442 1051 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
4cb5300b 1052
771ed689
CM
1053 if (start == 0) {
1054 /* lets try to make an inline extent */
6e26c442 1055 ret = cow_file_range_inline(inode, start, end, 0,
d02c0e20 1056 BTRFS_COMPRESS_NONE, NULL);
771ed689 1057 if (ret == 0) {
8b62f87b
JB
1058 /*
1059 * We use DO_ACCOUNTING here because we need the
1060 * delalloc_release_metadata to be run _after_ we drop
1061 * our outstanding extent for clearing delalloc for this
1062 * range.
1063 */
6e26c442 1064 extent_clear_unlock_delalloc(inode, start, end, NULL,
c2790a2e 1065 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
1066 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1067 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
1068 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1069 PAGE_END_WRITEBACK);
771ed689 1070 *nr_written = *nr_written +
09cbfeaf 1071 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 1072 *page_started = 1;
771ed689 1073 goto out;
79787eaa 1074 } else if (ret < 0) {
79787eaa 1075 goto out_unlock;
771ed689
CM
1076 }
1077 }
1078
6e26c442
NB
1079 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1080 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
771ed689 1081
432cd2a1
FM
1082 /*
1083 * Relocation relies on the relocated extents to have exactly the same
1084 * size as the original extents. Normally writeback for relocation data
1085 * extents follows a NOCOW path because relocation preallocates the
1086 * extents. However, due to an operation such as scrub turning a block
1087 * group to RO mode, it may fallback to COW mode, so we must make sure
1088 * an extent allocated during COW has exactly the requested size and can
1089 * not be split into smaller extents, otherwise relocation breaks and
1090 * fails during the stage where it updates the bytenr of file extent
1091 * items.
1092 */
1093 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1094 min_alloc_size = num_bytes;
1095 else
1096 min_alloc_size = fs_info->sectorsize;
1097
3752d22f
AJ
1098 while (num_bytes > 0) {
1099 cur_alloc_size = num_bytes;
18513091 1100 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
432cd2a1 1101 min_alloc_size, 0, alloc_hint,
e570fd27 1102 &ins, 1, 1);
00361589 1103 if (ret < 0)
79787eaa 1104 goto out_unlock;
a315e68f
FM
1105 cur_alloc_size = ins.offset;
1106 extent_reserved = true;
d397712b 1107
771ed689 1108 ram_size = ins.offset;
6e26c442 1109 em = create_io_em(inode, start, ins.offset, /* len */
6f9994db
LB
1110 start, /* orig_start */
1111 ins.objectid, /* block_start */
1112 ins.offset, /* block_len */
1113 ins.offset, /* orig_block_len */
1114 ram_size, /* ram_bytes */
1115 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1116 BTRFS_ORDERED_REGULAR /* type */);
090a127a
SY
1117 if (IS_ERR(em)) {
1118 ret = PTR_ERR(em);
ace68bac 1119 goto out_reserve;
090a127a 1120 }
6f9994db 1121 free_extent_map(em);
e6dcd2dc 1122
6e26c442
NB
1123 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1124 ram_size, cur_alloc_size, 0);
ace68bac 1125 if (ret)
d9f85963 1126 goto out_drop_extent_cache;
c8b97818 1127
17d217fe
YZ
1128 if (root->root_key.objectid ==
1129 BTRFS_DATA_RELOC_TREE_OBJECTID) {
6e26c442 1130 ret = btrfs_reloc_clone_csums(inode, start,
17d217fe 1131 cur_alloc_size);
4dbd80fb
QW
1132 /*
1133 * Only drop cache here, and process as normal.
1134 *
1135 * We must not allow extent_clear_unlock_delalloc()
1136 * at out_unlock label to free meta of this ordered
1137 * extent, as its meta should be freed by
1138 * btrfs_finish_ordered_io().
1139 *
1140 * So we must continue until @start is increased to
1141 * skip current ordered extent.
1142 */
00361589 1143 if (ret)
6e26c442 1144 btrfs_drop_extent_cache(inode, start,
4dbd80fb 1145 start + ram_size - 1, 0);
17d217fe
YZ
1146 }
1147
0b246afa 1148 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1149
c8b97818
CM
1150 /* we're not doing compressed IO, don't unlock the first
1151 * page (which the caller expects to stay locked), don't
1152 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1153 *
1154 * Do set the Private2 bit so we know this page was properly
1155 * setup for writepage
c8b97818 1156 */
a315e68f
FM
1157 page_ops = unlock ? PAGE_UNLOCK : 0;
1158 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1159
6e26c442 1160 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
74e9194a 1161 locked_page,
c2790a2e 1162 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1163 page_ops);
3752d22f
AJ
1164 if (num_bytes < cur_alloc_size)
1165 num_bytes = 0;
4dbd80fb 1166 else
3752d22f 1167 num_bytes -= cur_alloc_size;
c59f8951
CM
1168 alloc_hint = ins.objectid + ins.offset;
1169 start += cur_alloc_size;
a315e68f 1170 extent_reserved = false;
4dbd80fb
QW
1171
1172 /*
1173 * btrfs_reloc_clone_csums() error, since start is increased
1174 * extent_clear_unlock_delalloc() at out_unlock label won't
1175 * free metadata of current ordered extent, we're OK to exit.
1176 */
1177 if (ret)
1178 goto out_unlock;
b888db2b 1179 }
79787eaa 1180out:
be20aa9d 1181 return ret;
b7d5b0a8 1182
d9f85963 1183out_drop_extent_cache:
6e26c442 1184 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1185out_reserve:
0b246afa 1186 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1187 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1188out_unlock:
a7e3b975
FM
1189 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1190 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1191 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1192 PAGE_END_WRITEBACK;
1193 /*
1194 * If we reserved an extent for our delalloc range (or a subrange) and
1195 * failed to create the respective ordered extent, then it means that
1196 * when we reserved the extent we decremented the extent's size from
1197 * the data space_info's bytes_may_use counter and incremented the
1198 * space_info's bytes_reserved counter by the same amount. We must make
1199 * sure extent_clear_unlock_delalloc() does not try to decrement again
1200 * the data space_info's bytes_may_use counter, therefore we do not pass
1201 * it the flag EXTENT_CLEAR_DATA_RESV.
1202 */
1203 if (extent_reserved) {
6e26c442 1204 extent_clear_unlock_delalloc(inode, start,
e2c8e92d 1205 start + cur_alloc_size - 1,
a315e68f
FM
1206 locked_page,
1207 clear_bits,
1208 page_ops);
1209 start += cur_alloc_size;
1210 if (start >= end)
1211 goto out;
1212 }
6e26c442 1213 extent_clear_unlock_delalloc(inode, start, end, locked_page,
a315e68f
FM
1214 clear_bits | EXTENT_CLEAR_DATA_RESV,
1215 page_ops);
79787eaa 1216 goto out;
771ed689 1217}
c8b97818 1218
771ed689
CM
1219/*
1220 * work queue call back to started compression on a file and pages
1221 */
1222static noinline void async_cow_start(struct btrfs_work *work)
1223{
b5326271 1224 struct async_chunk *async_chunk;
ac3e9933 1225 int compressed_extents;
771ed689 1226
b5326271 1227 async_chunk = container_of(work, struct async_chunk, work);
771ed689 1228
ac3e9933
NB
1229 compressed_extents = compress_file_range(async_chunk);
1230 if (compressed_extents == 0) {
b5326271
NB
1231 btrfs_add_delayed_iput(async_chunk->inode);
1232 async_chunk->inode = NULL;
8180ef88 1233 }
771ed689
CM
1234}
1235
1236/*
1237 * work queue call back to submit previously compressed pages
1238 */
1239static noinline void async_cow_submit(struct btrfs_work *work)
1240{
c5a68aec
NB
1241 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1242 work);
1243 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
771ed689
CM
1244 unsigned long nr_pages;
1245
b5326271 1246 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
09cbfeaf 1247 PAGE_SHIFT;
771ed689 1248
093258e6 1249 /* atomic_sub_return implies a barrier */
0b246afa 1250 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
093258e6
DS
1251 5 * SZ_1M)
1252 cond_wake_up_nomb(&fs_info->async_submit_wait);
771ed689 1253
4546d178 1254 /*
b5326271 1255 * ->inode could be NULL if async_chunk_start has failed to compress,
4546d178
NB
1256 * in which case we don't have anything to submit, yet we need to
1257 * always adjust ->async_delalloc_pages as its paired with the init
1258 * happening in cow_file_range_async
1259 */
b5326271
NB
1260 if (async_chunk->inode)
1261 submit_compressed_extents(async_chunk);
771ed689 1262}
c8b97818 1263
771ed689
CM
1264static noinline void async_cow_free(struct btrfs_work *work)
1265{
b5326271 1266 struct async_chunk *async_chunk;
97db1204 1267
b5326271
NB
1268 async_chunk = container_of(work, struct async_chunk, work);
1269 if (async_chunk->inode)
1270 btrfs_add_delayed_iput(async_chunk->inode);
ec39f769
CM
1271 if (async_chunk->blkcg_css)
1272 css_put(async_chunk->blkcg_css);
97db1204
NB
1273 /*
1274 * Since the pointer to 'pending' is at the beginning of the array of
b5326271 1275 * async_chunk's, freeing it ensures the whole array has been freed.
97db1204 1276 */
b5326271 1277 if (atomic_dec_and_test(async_chunk->pending))
b1c16ac9 1278 kvfree(async_chunk->pending);
771ed689
CM
1279}
1280
751b6431 1281static int cow_file_range_async(struct btrfs_inode *inode,
ec39f769
CM
1282 struct writeback_control *wbc,
1283 struct page *locked_page,
771ed689 1284 u64 start, u64 end, int *page_started,
fac07d2b 1285 unsigned long *nr_written)
771ed689 1286{
751b6431 1287 struct btrfs_fs_info *fs_info = inode->root->fs_info;
ec39f769 1288 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
97db1204
NB
1289 struct async_cow *ctx;
1290 struct async_chunk *async_chunk;
771ed689
CM
1291 unsigned long nr_pages;
1292 u64 cur_end;
97db1204
NB
1293 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1294 int i;
1295 bool should_compress;
b1c16ac9 1296 unsigned nofs_flag;
fac07d2b 1297 const unsigned int write_flags = wbc_to_write_flags(wbc);
771ed689 1298
751b6431 1299 unlock_extent(&inode->io_tree, start, end);
97db1204 1300
751b6431 1301 if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
97db1204
NB
1302 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1303 num_chunks = 1;
1304 should_compress = false;
1305 } else {
1306 should_compress = true;
1307 }
1308
b1c16ac9
NB
1309 nofs_flag = memalloc_nofs_save();
1310 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1311 memalloc_nofs_restore(nofs_flag);
1312
97db1204
NB
1313 if (!ctx) {
1314 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1315 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1316 EXTENT_DO_ACCOUNTING;
1317 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1318 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1319 PAGE_SET_ERROR;
1320
751b6431
NB
1321 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1322 clear_bits, page_ops);
97db1204
NB
1323 return -ENOMEM;
1324 }
1325
1326 async_chunk = ctx->chunks;
1327 atomic_set(&ctx->num_chunks, num_chunks);
1328
1329 for (i = 0; i < num_chunks; i++) {
1330 if (should_compress)
1331 cur_end = min(end, start + SZ_512K - 1);
1332 else
1333 cur_end = end;
771ed689 1334
bd4691a0
NB
1335 /*
1336 * igrab is called higher up in the call chain, take only the
1337 * lightweight reference for the callback lifetime
1338 */
751b6431 1339 ihold(&inode->vfs_inode);
97db1204 1340 async_chunk[i].pending = &ctx->num_chunks;
751b6431 1341 async_chunk[i].inode = &inode->vfs_inode;
97db1204
NB
1342 async_chunk[i].start = start;
1343 async_chunk[i].end = cur_end;
97db1204
NB
1344 async_chunk[i].write_flags = write_flags;
1345 INIT_LIST_HEAD(&async_chunk[i].extents);
1346
1d53c9e6
CM
1347 /*
1348 * The locked_page comes all the way from writepage and its
1349 * the original page we were actually given. As we spread
1350 * this large delalloc region across multiple async_chunk
1351 * structs, only the first struct needs a pointer to locked_page
1352 *
1353 * This way we don't need racey decisions about who is supposed
1354 * to unlock it.
1355 */
1356 if (locked_page) {
ec39f769
CM
1357 /*
1358 * Depending on the compressibility, the pages might or
1359 * might not go through async. We want all of them to
1360 * be accounted against wbc once. Let's do it here
1361 * before the paths diverge. wbc accounting is used
1362 * only for foreign writeback detection and doesn't
1363 * need full accuracy. Just account the whole thing
1364 * against the first page.
1365 */
1366 wbc_account_cgroup_owner(wbc, locked_page,
1367 cur_end - start);
1d53c9e6
CM
1368 async_chunk[i].locked_page = locked_page;
1369 locked_page = NULL;
1370 } else {
1371 async_chunk[i].locked_page = NULL;
1372 }
1373
ec39f769
CM
1374 if (blkcg_css != blkcg_root_css) {
1375 css_get(blkcg_css);
1376 async_chunk[i].blkcg_css = blkcg_css;
1377 } else {
1378 async_chunk[i].blkcg_css = NULL;
1379 }
1380
a0cac0ec
OS
1381 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1382 async_cow_submit, async_cow_free);
771ed689 1383
97db1204 1384 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
0b246afa 1385 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1386
97db1204 1387 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
771ed689 1388
771ed689
CM
1389 *nr_written += nr_pages;
1390 start = cur_end + 1;
1391 }
1392 *page_started = 1;
1393 return 0;
be20aa9d
CM
1394}
1395
2ff7e61e 1396static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1397 u64 bytenr, u64 num_bytes)
1398{
1399 int ret;
1400 struct btrfs_ordered_sum *sums;
1401 LIST_HEAD(list);
1402
0b246afa 1403 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1404 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1405 if (ret == 0 && list_empty(&list))
1406 return 0;
1407
1408 while (!list_empty(&list)) {
1409 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1410 list_del(&sums->list);
1411 kfree(sums);
1412 }
58113753
LB
1413 if (ret < 0)
1414 return ret;
17d217fe
YZ
1415 return 1;
1416}
1417
8ba96f3d 1418static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
467dc47e
FM
1419 const u64 start, const u64 end,
1420 int *page_started, unsigned long *nr_written)
1421{
8ba96f3d
NB
1422 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1423 const bool is_reloc_ino = (inode->root->root_key.objectid ==
6bd335b4 1424 BTRFS_DATA_RELOC_TREE_OBJECTID);
2166e5ed 1425 const u64 range_bytes = end + 1 - start;
8ba96f3d 1426 struct extent_io_tree *io_tree = &inode->io_tree;
467dc47e
FM
1427 u64 range_start = start;
1428 u64 count;
1429
1430 /*
1431 * If EXTENT_NORESERVE is set it means that when the buffered write was
1432 * made we had not enough available data space and therefore we did not
1433 * reserve data space for it, since we though we could do NOCOW for the
1434 * respective file range (either there is prealloc extent or the inode
1435 * has the NOCOW bit set).
1436 *
1437 * However when we need to fallback to COW mode (because for example the
1438 * block group for the corresponding extent was turned to RO mode by a
1439 * scrub or relocation) we need to do the following:
1440 *
1441 * 1) We increment the bytes_may_use counter of the data space info.
1442 * If COW succeeds, it allocates a new data extent and after doing
1443 * that it decrements the space info's bytes_may_use counter and
1444 * increments its bytes_reserved counter by the same amount (we do
1445 * this at btrfs_add_reserved_bytes()). So we need to increment the
1446 * bytes_may_use counter to compensate (when space is reserved at
1447 * buffered write time, the bytes_may_use counter is incremented);
1448 *
1449 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1450 * that if the COW path fails for any reason, it decrements (through
1451 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1452 * data space info, which we incremented in the step above.
2166e5ed
FM
1453 *
1454 * If we need to fallback to cow and the inode corresponds to a free
6bd335b4
FM
1455 * space cache inode or an inode of the data relocation tree, we must
1456 * also increment bytes_may_use of the data space_info for the same
1457 * reason. Space caches and relocated data extents always get a prealloc
2166e5ed 1458 * extent for them, however scrub or balance may have set the block
6bd335b4
FM
1459 * group that contains that extent to RO mode and therefore force COW
1460 * when starting writeback.
467dc47e 1461 */
2166e5ed 1462 count = count_range_bits(io_tree, &range_start, end, range_bytes,
467dc47e 1463 EXTENT_NORESERVE, 0);
6bd335b4
FM
1464 if (count > 0 || is_space_ino || is_reloc_ino) {
1465 u64 bytes = count;
8ba96f3d 1466 struct btrfs_fs_info *fs_info = inode->root->fs_info;
467dc47e
FM
1467 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1468
6bd335b4
FM
1469 if (is_space_ino || is_reloc_ino)
1470 bytes = range_bytes;
1471
467dc47e 1472 spin_lock(&sinfo->lock);
2166e5ed 1473 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
467dc47e
FM
1474 spin_unlock(&sinfo->lock);
1475
2166e5ed
FM
1476 if (count > 0)
1477 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1478 0, 0, NULL);
467dc47e
FM
1479 }
1480
8ba96f3d
NB
1481 return cow_file_range(inode, locked_page, start, end, page_started,
1482 nr_written, 1);
467dc47e
FM
1483}
1484
d352ac68
CM
1485/*
1486 * when nowcow writeback call back. This checks for snapshots or COW copies
1487 * of the extents that exist in the file, and COWs the file as required.
1488 *
1489 * If no cow copies or snapshots exist, we write directly to the existing
1490 * blocks on disk
1491 */
968322c8 1492static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
7f366cfe 1493 struct page *locked_page,
3e024846
NB
1494 const u64 start, const u64 end,
1495 int *page_started, int force,
1496 unsigned long *nr_written)
be20aa9d 1497{
968322c8
NB
1498 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1499 struct btrfs_root *root = inode->root;
be20aa9d 1500 struct btrfs_path *path;
3e024846
NB
1501 u64 cow_start = (u64)-1;
1502 u64 cur_offset = start;
8ecebf4d 1503 int ret;
3e024846 1504 bool check_prev = true;
968322c8
NB
1505 const bool freespace_inode = btrfs_is_free_space_inode(inode);
1506 u64 ino = btrfs_ino(inode);
762bf098
NB
1507 bool nocow = false;
1508 u64 disk_bytenr = 0;
be20aa9d
CM
1509
1510 path = btrfs_alloc_path();
17ca04af 1511 if (!path) {
968322c8 1512 extent_clear_unlock_delalloc(inode, start, end, locked_page,
c2790a2e 1513 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1514 EXTENT_DO_ACCOUNTING |
1515 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1516 PAGE_CLEAR_DIRTY |
1517 PAGE_SET_WRITEBACK |
1518 PAGE_END_WRITEBACK);
d8926bb3 1519 return -ENOMEM;
17ca04af 1520 }
82d5902d 1521
80ff3856 1522 while (1) {
3e024846
NB
1523 struct btrfs_key found_key;
1524 struct btrfs_file_extent_item *fi;
1525 struct extent_buffer *leaf;
1526 u64 extent_end;
1527 u64 extent_offset;
3e024846
NB
1528 u64 num_bytes = 0;
1529 u64 disk_num_bytes;
3e024846
NB
1530 u64 ram_bytes;
1531 int extent_type;
762bf098
NB
1532
1533 nocow = false;
3e024846 1534
e4c3b2dc 1535 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1536 cur_offset, 0);
d788a349 1537 if (ret < 0)
79787eaa 1538 goto error;
a6bd9cd1
NB
1539
1540 /*
1541 * If there is no extent for our range when doing the initial
1542 * search, then go back to the previous slot as it will be the
1543 * one containing the search offset
1544 */
80ff3856
YZ
1545 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1546 leaf = path->nodes[0];
1547 btrfs_item_key_to_cpu(leaf, &found_key,
1548 path->slots[0] - 1);
33345d01 1549 if (found_key.objectid == ino &&
80ff3856
YZ
1550 found_key.type == BTRFS_EXTENT_DATA_KEY)
1551 path->slots[0]--;
1552 }
3e024846 1553 check_prev = false;
80ff3856 1554next_slot:
a6bd9cd1 1555 /* Go to next leaf if we have exhausted the current one */
80ff3856
YZ
1556 leaf = path->nodes[0];
1557 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1558 ret = btrfs_next_leaf(root, path);
e8916699
LB
1559 if (ret < 0) {
1560 if (cow_start != (u64)-1)
1561 cur_offset = cow_start;
79787eaa 1562 goto error;
e8916699 1563 }
80ff3856
YZ
1564 if (ret > 0)
1565 break;
1566 leaf = path->nodes[0];
1567 }
be20aa9d 1568
80ff3856
YZ
1569 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1570
a6bd9cd1 1571 /* Didn't find anything for our INO */
1d512cb7
FM
1572 if (found_key.objectid > ino)
1573 break;
a6bd9cd1
NB
1574 /*
1575 * Keep searching until we find an EXTENT_ITEM or there are no
1576 * more extents for this inode
1577 */
1d512cb7
FM
1578 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1579 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1580 path->slots[0]++;
1581 goto next_slot;
1582 }
a6bd9cd1
NB
1583
1584 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1d512cb7 1585 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1586 found_key.offset > end)
1587 break;
1588
a6bd9cd1
NB
1589 /*
1590 * If the found extent starts after requested offset, then
1591 * adjust extent_end to be right before this extent begins
1592 */
80ff3856
YZ
1593 if (found_key.offset > cur_offset) {
1594 extent_end = found_key.offset;
e9061e21 1595 extent_type = 0;
80ff3856
YZ
1596 goto out_check;
1597 }
1598
a6bd9cd1
NB
1599 /*
1600 * Found extent which begins before our range and potentially
1601 * intersect it
1602 */
80ff3856
YZ
1603 fi = btrfs_item_ptr(leaf, path->slots[0],
1604 struct btrfs_file_extent_item);
1605 extent_type = btrfs_file_extent_type(leaf, fi);
1606
cc95bef6 1607 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1608 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1609 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1610 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1611 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1612 extent_end = found_key.offset +
1613 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1614 disk_num_bytes =
1615 btrfs_file_extent_disk_num_bytes(leaf, fi);
a6bd9cd1 1616 /*
de7999af
FM
1617 * If the extent we got ends before our current offset,
1618 * skip to the next extent.
a6bd9cd1 1619 */
de7999af 1620 if (extent_end <= cur_offset) {
80ff3856
YZ
1621 path->slots[0]++;
1622 goto next_slot;
1623 }
a6bd9cd1 1624 /* Skip holes */
17d217fe
YZ
1625 if (disk_bytenr == 0)
1626 goto out_check;
a6bd9cd1 1627 /* Skip compressed/encrypted/encoded extents */
80ff3856
YZ
1628 if (btrfs_file_extent_compression(leaf, fi) ||
1629 btrfs_file_extent_encryption(leaf, fi) ||
1630 btrfs_file_extent_other_encoding(leaf, fi))
1631 goto out_check;
78d4295b 1632 /*
a6bd9cd1
NB
1633 * If extent is created before the last volume's snapshot
1634 * this implies the extent is shared, hence we can't do
1635 * nocow. This is the same check as in
1636 * btrfs_cross_ref_exist but without calling
1637 * btrfs_search_slot.
78d4295b 1638 */
3e024846 1639 if (!freespace_inode &&
27a7ff55 1640 btrfs_file_extent_generation(leaf, fi) <=
78d4295b
EL
1641 btrfs_root_last_snapshot(&root->root_item))
1642 goto out_check;
d899e052
YZ
1643 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1644 goto out_check;
a6bd9cd1 1645 /* If extent is RO, we must COW it */
2ff7e61e 1646 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1647 goto out_check;
58113753
LB
1648 ret = btrfs_cross_ref_exist(root, ino,
1649 found_key.offset -
a84d5d42 1650 extent_offset, disk_bytenr, false);
58113753
LB
1651 if (ret) {
1652 /*
1653 * ret could be -EIO if the above fails to read
1654 * metadata.
1655 */
1656 if (ret < 0) {
1657 if (cow_start != (u64)-1)
1658 cur_offset = cow_start;
1659 goto error;
1660 }
1661
3e024846 1662 WARN_ON_ONCE(freespace_inode);
17d217fe 1663 goto out_check;
58113753 1664 }
5d4f98a2 1665 disk_bytenr += extent_offset;
17d217fe
YZ
1666 disk_bytenr += cur_offset - found_key.offset;
1667 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3 1668 /*
a6bd9cd1
NB
1669 * If there are pending snapshots for this root, we
1670 * fall into common COW way
e9894fd3 1671 */
3e024846 1672 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
8ecebf4d 1673 goto out_check;
17d217fe
YZ
1674 /*
1675 * force cow if csum exists in the range.
1676 * this ensure that csum for a given extent are
1677 * either valid or do not exist.
1678 */
58113753
LB
1679 ret = csum_exist_in_range(fs_info, disk_bytenr,
1680 num_bytes);
1681 if (ret) {
58113753
LB
1682 /*
1683 * ret could be -EIO if the above fails to read
1684 * metadata.
1685 */
1686 if (ret < 0) {
1687 if (cow_start != (u64)-1)
1688 cur_offset = cow_start;
1689 goto error;
1690 }
3e024846 1691 WARN_ON_ONCE(freespace_inode);
17d217fe 1692 goto out_check;
91e1f56a 1693 }
8ecebf4d 1694 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
f78c436c 1695 goto out_check;
3e024846 1696 nocow = true;
80ff3856 1697 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e8e21007
NB
1698 extent_end = found_key.offset + ram_bytes;
1699 extent_end = ALIGN(extent_end, fs_info->sectorsize);
922f0518
NB
1700 /* Skip extents outside of our requested range */
1701 if (extent_end <= start) {
1702 path->slots[0]++;
1703 goto next_slot;
1704 }
80ff3856 1705 } else {
e8e21007 1706 /* If this triggers then we have a memory corruption */
290342f6 1707 BUG();
80ff3856
YZ
1708 }
1709out_check:
a6bd9cd1
NB
1710 /*
1711 * If nocow is false then record the beginning of the range
1712 * that needs to be COWed
1713 */
80ff3856
YZ
1714 if (!nocow) {
1715 if (cow_start == (u64)-1)
1716 cow_start = cur_offset;
1717 cur_offset = extent_end;
1718 if (cur_offset > end)
1719 break;
1720 path->slots[0]++;
1721 goto next_slot;
7ea394f1
YZ
1722 }
1723
b3b4aa74 1724 btrfs_release_path(path);
a6bd9cd1
NB
1725
1726 /*
1727 * COW range from cow_start to found_key.offset - 1. As the key
1728 * will contain the beginning of the first extent that can be
1729 * NOCOW, following one which needs to be COW'ed
1730 */
80ff3856 1731 if (cow_start != (u64)-1) {
968322c8 1732 ret = fallback_to_cow(inode, locked_page,
8ba96f3d 1733 cow_start, found_key.offset - 1,
467dc47e 1734 page_started, nr_written);
230ed397 1735 if (ret)
79787eaa 1736 goto error;
80ff3856 1737 cow_start = (u64)-1;
7ea394f1 1738 }
80ff3856 1739
d899e052 1740 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db 1741 u64 orig_start = found_key.offset - extent_offset;
3e024846 1742 struct extent_map *em;
6f9994db 1743
968322c8 1744 em = create_io_em(inode, cur_offset, num_bytes,
6f9994db
LB
1745 orig_start,
1746 disk_bytenr, /* block_start */
1747 num_bytes, /* block_len */
1748 disk_num_bytes, /* orig_block_len */
1749 ram_bytes, BTRFS_COMPRESS_NONE,
1750 BTRFS_ORDERED_PREALLOC);
1751 if (IS_ERR(em)) {
6f9994db
LB
1752 ret = PTR_ERR(em);
1753 goto error;
d899e052 1754 }
6f9994db 1755 free_extent_map(em);
968322c8 1756 ret = btrfs_add_ordered_extent(inode, cur_offset,
bb55f626
NB
1757 disk_bytenr, num_bytes,
1758 num_bytes,
1759 BTRFS_ORDERED_PREALLOC);
762bf098 1760 if (ret) {
968322c8 1761 btrfs_drop_extent_cache(inode, cur_offset,
762bf098
NB
1762 cur_offset + num_bytes - 1,
1763 0);
1764 goto error;
1765 }
d899e052 1766 } else {
968322c8 1767 ret = btrfs_add_ordered_extent(inode, cur_offset,
bb55f626
NB
1768 disk_bytenr, num_bytes,
1769 num_bytes,
1770 BTRFS_ORDERED_NOCOW);
762bf098
NB
1771 if (ret)
1772 goto error;
d899e052 1773 }
80ff3856 1774
f78c436c 1775 if (nocow)
0b246afa 1776 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
762bf098 1777 nocow = false;
771ed689 1778
efa56464 1779 if (root->root_key.objectid ==
4dbd80fb
QW
1780 BTRFS_DATA_RELOC_TREE_OBJECTID)
1781 /*
1782 * Error handled later, as we must prevent
1783 * extent_clear_unlock_delalloc() in error handler
1784 * from freeing metadata of created ordered extent.
1785 */
968322c8 1786 ret = btrfs_reloc_clone_csums(inode, cur_offset,
efa56464 1787 num_bytes);
efa56464 1788
968322c8 1789 extent_clear_unlock_delalloc(inode, cur_offset,
74e9194a 1790 cur_offset + num_bytes - 1,
c2790a2e 1791 locked_page, EXTENT_LOCKED |
18513091
WX
1792 EXTENT_DELALLOC |
1793 EXTENT_CLEAR_DATA_RESV,
1794 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1795
80ff3856 1796 cur_offset = extent_end;
4dbd80fb
QW
1797
1798 /*
1799 * btrfs_reloc_clone_csums() error, now we're OK to call error
1800 * handler, as metadata for created ordered extent will only
1801 * be freed by btrfs_finish_ordered_io().
1802 */
1803 if (ret)
1804 goto error;
80ff3856
YZ
1805 if (cur_offset > end)
1806 break;
be20aa9d 1807 }
b3b4aa74 1808 btrfs_release_path(path);
80ff3856 1809
506481b2 1810 if (cur_offset <= end && cow_start == (u64)-1)
80ff3856 1811 cow_start = cur_offset;
17ca04af 1812
80ff3856 1813 if (cow_start != (u64)-1) {
506481b2 1814 cur_offset = end;
968322c8
NB
1815 ret = fallback_to_cow(inode, locked_page, cow_start, end,
1816 page_started, nr_written);
d788a349 1817 if (ret)
79787eaa 1818 goto error;
80ff3856
YZ
1819 }
1820
79787eaa 1821error:
762bf098
NB
1822 if (nocow)
1823 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1824
17ca04af 1825 if (ret && cur_offset < end)
968322c8 1826 extent_clear_unlock_delalloc(inode, cur_offset, end,
c2790a2e 1827 locked_page, EXTENT_LOCKED |
151a41bc
JB
1828 EXTENT_DELALLOC | EXTENT_DEFRAG |
1829 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1830 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1831 PAGE_SET_WRITEBACK |
1832 PAGE_END_WRITEBACK);
7ea394f1 1833 btrfs_free_path(path);
79787eaa 1834 return ret;
be20aa9d
CM
1835}
1836
0c494225 1837static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end)
47059d93
WS
1838{
1839
0c494225
NB
1840 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1841 !(inode->flags & BTRFS_INODE_PREALLOC))
47059d93
WS
1842 return 0;
1843
1844 /*
1845 * @defrag_bytes is a hint value, no spinlock held here,
1846 * if is not zero, it means the file is defragging.
1847 * Force cow if given extent needs to be defragged.
1848 */
0c494225
NB
1849 if (inode->defrag_bytes &&
1850 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL))
47059d93
WS
1851 return 1;
1852
1853 return 0;
1854}
1855
d352ac68 1856/*
5eaad97a
NB
1857 * Function to process delayed allocation (create CoW) for ranges which are
1858 * being touched for the first time.
d352ac68 1859 */
98456b9c 1860int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
5eaad97a
NB
1861 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1862 struct writeback_control *wbc)
be20aa9d 1863{
be20aa9d 1864 int ret;
98456b9c 1865 int force_cow = need_force_cow(inode, start, end);
a2135011 1866
98456b9c
NB
1867 if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1868 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1869 page_started, 1, nr_written);
98456b9c
NB
1870 } else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1871 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1872 page_started, 0, nr_written);
98456b9c
NB
1873 } else if (!inode_can_compress(inode) ||
1874 !inode_need_compress(inode, start, end)) {
1875 ret = cow_file_range(inode, locked_page, start, end,
1876 page_started, nr_written, 1);
7ddf5a42 1877 } else {
98456b9c
NB
1878 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1879 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
fac07d2b 1880 page_started, nr_written);
7ddf5a42 1881 }
52427260 1882 if (ret)
98456b9c 1883 btrfs_cleanup_ordered_extents(inode, locked_page, start,
d1051d6e 1884 end - start + 1);
b888db2b
CM
1885 return ret;
1886}
1887
abbb55f4
NB
1888void btrfs_split_delalloc_extent(struct inode *inode,
1889 struct extent_state *orig, u64 split)
9ed74f2d 1890{
dcab6a3b
JB
1891 u64 size;
1892
0ca1f7ce 1893 /* not delalloc, ignore it */
9ed74f2d 1894 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1895 return;
9ed74f2d 1896
dcab6a3b
JB
1897 size = orig->end - orig->start + 1;
1898 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1899 u32 num_extents;
dcab6a3b
JB
1900 u64 new_size;
1901
1902 /*
5c848198 1903 * See the explanation in btrfs_merge_delalloc_extent, the same
ba117213 1904 * applies here, just in reverse.
dcab6a3b
JB
1905 */
1906 new_size = orig->end - split + 1;
823bb20a 1907 num_extents = count_max_extents(new_size);
ba117213 1908 new_size = split - orig->start;
823bb20a
DS
1909 num_extents += count_max_extents(new_size);
1910 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1911 return;
1912 }
1913
9e0baf60 1914 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1915 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1916 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1917}
1918
1919/*
5c848198
NB
1920 * Handle merged delayed allocation extents so we can keep track of new extents
1921 * that are just merged onto old extents, such as when we are doing sequential
1922 * writes, so we can properly account for the metadata space we'll need.
9ed74f2d 1923 */
5c848198
NB
1924void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1925 struct extent_state *other)
9ed74f2d 1926{
dcab6a3b 1927 u64 new_size, old_size;
823bb20a 1928 u32 num_extents;
dcab6a3b 1929
9ed74f2d
JB
1930 /* not delalloc, ignore it */
1931 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1932 return;
9ed74f2d 1933
8461a3de
JB
1934 if (new->start > other->start)
1935 new_size = new->end - other->start + 1;
1936 else
1937 new_size = other->end - new->start + 1;
dcab6a3b
JB
1938
1939 /* we're not bigger than the max, unreserve the space and go */
1940 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1941 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1942 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1943 spin_unlock(&BTRFS_I(inode)->lock);
1944 return;
1945 }
1946
1947 /*
ba117213
JB
1948 * We have to add up either side to figure out how many extents were
1949 * accounted for before we merged into one big extent. If the number of
1950 * extents we accounted for is <= the amount we need for the new range
1951 * then we can return, otherwise drop. Think of it like this
1952 *
1953 * [ 4k][MAX_SIZE]
1954 *
1955 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1956 * need 2 outstanding extents, on one side we have 1 and the other side
1957 * we have 1 so they are == and we can return. But in this case
1958 *
1959 * [MAX_SIZE+4k][MAX_SIZE+4k]
1960 *
1961 * Each range on their own accounts for 2 extents, but merged together
1962 * they are only 3 extents worth of accounting, so we need to drop in
1963 * this case.
dcab6a3b 1964 */
ba117213 1965 old_size = other->end - other->start + 1;
823bb20a 1966 num_extents = count_max_extents(old_size);
ba117213 1967 old_size = new->end - new->start + 1;
823bb20a
DS
1968 num_extents += count_max_extents(old_size);
1969 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1970 return;
1971
9e0baf60 1972 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1973 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1974 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1975}
1976
eb73c1b7
MX
1977static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1978 struct inode *inode)
1979{
0b246afa
JM
1980 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1981
eb73c1b7
MX
1982 spin_lock(&root->delalloc_lock);
1983 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1984 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1985 &root->delalloc_inodes);
1986 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1987 &BTRFS_I(inode)->runtime_flags);
1988 root->nr_delalloc_inodes++;
1989 if (root->nr_delalloc_inodes == 1) {
0b246afa 1990 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1991 BUG_ON(!list_empty(&root->delalloc_root));
1992 list_add_tail(&root->delalloc_root,
0b246afa
JM
1993 &fs_info->delalloc_roots);
1994 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1995 }
1996 }
1997 spin_unlock(&root->delalloc_lock);
1998}
1999
2b877331
NB
2000
2001void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2002 struct btrfs_inode *inode)
eb73c1b7 2003{
3ffbd68c 2004 struct btrfs_fs_info *fs_info = root->fs_info;
0b246afa 2005
9e3e97f4
NB
2006 if (!list_empty(&inode->delalloc_inodes)) {
2007 list_del_init(&inode->delalloc_inodes);
eb73c1b7 2008 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 2009 &inode->runtime_flags);
eb73c1b7
MX
2010 root->nr_delalloc_inodes--;
2011 if (!root->nr_delalloc_inodes) {
7c8a0d36 2012 ASSERT(list_empty(&root->delalloc_inodes));
0b246afa 2013 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
2014 BUG_ON(list_empty(&root->delalloc_root));
2015 list_del_init(&root->delalloc_root);
0b246afa 2016 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
2017 }
2018 }
2b877331
NB
2019}
2020
2021static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2022 struct btrfs_inode *inode)
2023{
2024 spin_lock(&root->delalloc_lock);
2025 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
2026 spin_unlock(&root->delalloc_lock);
2027}
2028
d352ac68 2029/*
e06a1fc9
NB
2030 * Properly track delayed allocation bytes in the inode and to maintain the
2031 * list of inodes that have pending delalloc work to be done.
d352ac68 2032 */
e06a1fc9
NB
2033void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2034 unsigned *bits)
291d673e 2035{
0b246afa
JM
2036 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2037
47059d93
WS
2038 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2039 WARN_ON(1);
75eff68e
CM
2040 /*
2041 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 2042 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
2043 * bit, which is only set or cleared with irqs on
2044 */
0ca1f7ce 2045 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 2046 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2047 u64 len = state->end + 1 - state->start;
8b62f87b 2048 u32 num_extents = count_max_extents(len);
70ddc553 2049 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 2050
8b62f87b
JB
2051 spin_lock(&BTRFS_I(inode)->lock);
2052 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2053 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 2054
6a3891c5 2055 /* For sanity tests */
0b246afa 2056 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2057 return;
2058
104b4e51
NB
2059 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2060 fs_info->delalloc_batch);
df0af1a5 2061 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 2062 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
2063 if (*bits & EXTENT_DEFRAG)
2064 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 2065 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
2066 &BTRFS_I(inode)->runtime_flags))
2067 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 2068 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 2069 }
a7e3b975
FM
2070
2071 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2072 (*bits & EXTENT_DELALLOC_NEW)) {
2073 spin_lock(&BTRFS_I(inode)->lock);
2074 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2075 state->start;
2076 spin_unlock(&BTRFS_I(inode)->lock);
2077 }
291d673e
CM
2078}
2079
d352ac68 2080/*
a36bb5f9
NB
2081 * Once a range is no longer delalloc this function ensures that proper
2082 * accounting happens.
d352ac68 2083 */
a36bb5f9
NB
2084void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2085 struct extent_state *state, unsigned *bits)
291d673e 2086{
a36bb5f9
NB
2087 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2088 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
47059d93 2089 u64 len = state->end + 1 - state->start;
823bb20a 2090 u32 num_extents = count_max_extents(len);
47059d93 2091
4a4b964f
FM
2092 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2093 spin_lock(&inode->lock);
6fc0ef68 2094 inode->defrag_bytes -= len;
4a4b964f
FM
2095 spin_unlock(&inode->lock);
2096 }
47059d93 2097
75eff68e
CM
2098 /*
2099 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 2100 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
2101 * bit, which is only set or cleared with irqs on
2102 */
0ca1f7ce 2103 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 2104 struct btrfs_root *root = inode->root;
83eea1f1 2105 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 2106
8b62f87b
JB
2107 spin_lock(&inode->lock);
2108 btrfs_mod_outstanding_extents(inode, -num_extents);
2109 spin_unlock(&inode->lock);
0ca1f7ce 2110
b6d08f06
JB
2111 /*
2112 * We don't reserve metadata space for space cache inodes so we
52042d8e 2113 * don't need to call delalloc_release_metadata if there is an
b6d08f06
JB
2114 * error.
2115 */
a315e68f 2116 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 2117 root != fs_info->tree_root)
43b18595 2118 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 2119
6a3891c5 2120 /* For sanity tests. */
0b246afa 2121 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2122 return;
2123
a315e68f
FM
2124 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2125 do_list && !(state->state & EXTENT_NORESERVE) &&
2126 (*bits & EXTENT_CLEAR_DATA_RESV))
9db5d510 2127 btrfs_free_reserved_data_space_noquota(fs_info, len);
9ed74f2d 2128
104b4e51
NB
2129 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2130 fs_info->delalloc_batch);
6fc0ef68
NB
2131 spin_lock(&inode->lock);
2132 inode->delalloc_bytes -= len;
2133 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 2134 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 2135 &inode->runtime_flags))
eb73c1b7 2136 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 2137 spin_unlock(&inode->lock);
291d673e 2138 }
a7e3b975
FM
2139
2140 if ((state->state & EXTENT_DELALLOC_NEW) &&
2141 (*bits & EXTENT_DELALLOC_NEW)) {
2142 spin_lock(&inode->lock);
2143 ASSERT(inode->new_delalloc_bytes >= len);
2144 inode->new_delalloc_bytes -= len;
2145 spin_unlock(&inode->lock);
2146 }
291d673e
CM
2147}
2148
d352ac68 2149/*
da12fe54
NB
2150 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2151 * in a chunk's stripe. This function ensures that bios do not span a
2152 * stripe/chunk
6f034ece 2153 *
da12fe54
NB
2154 * @page - The page we are about to add to the bio
2155 * @size - size we want to add to the bio
2156 * @bio - bio we want to ensure is smaller than a stripe
2157 * @bio_flags - flags of the bio
2158 *
2159 * return 1 if page cannot be added to the bio
2160 * return 0 if page can be added to the bio
6f034ece 2161 * return error otherwise
d352ac68 2162 */
da12fe54
NB
2163int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2164 unsigned long bio_flags)
239b14b3 2165{
0b246afa
JM
2166 struct inode *inode = page->mapping->host;
2167 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 2168 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
2169 u64 length = 0;
2170 u64 map_length;
239b14b3 2171 int ret;
89b798ad 2172 struct btrfs_io_geometry geom;
239b14b3 2173
771ed689
CM
2174 if (bio_flags & EXTENT_BIO_COMPRESSED)
2175 return 0;
2176
4f024f37 2177 length = bio->bi_iter.bi_size;
239b14b3 2178 map_length = length;
89b798ad
NB
2179 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2180 &geom);
6f034ece
LB
2181 if (ret < 0)
2182 return ret;
89b798ad
NB
2183
2184 if (geom.len < length + size)
239b14b3 2185 return 1;
3444a972 2186 return 0;
239b14b3
CM
2187}
2188
d352ac68
CM
2189/*
2190 * in order to insert checksums into the metadata in large chunks,
2191 * we wait until bio submission time. All the pages in the bio are
2192 * checksummed and sums are attached onto the ordered extent record.
2193 *
2194 * At IO completion time the cums attached on the ordered extent record
2195 * are inserted into the btree
2196 */
8896a08d
QW
2197static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
2198 u64 bio_offset)
065631f6 2199{
c965d640 2200 return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
4a69a410 2201}
e015640f 2202
d352ac68 2203/*
cad321ad 2204 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
2205 * on write, or reading the csums from the tree before a read.
2206 *
2207 * Rules about async/sync submit,
2208 * a) read: sync submit
2209 *
2210 * b) write without checksum: sync submit
2211 *
2212 * c) write with checksum:
2213 * c-1) if bio is issued by fsync: sync submit
2214 * (sync_writers != 0)
2215 *
2216 * c-2) if root is reloc root: sync submit
2217 * (only in case of buffered IO)
2218 *
2219 * c-3) otherwise: async submit
d352ac68 2220 */
908930f3
NB
2221blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2222 int mirror_num, unsigned long bio_flags)
50489a57 2223
44b8bd7e 2224{
0b246afa 2225 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 2226 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 2227 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 2228 blk_status_t ret = 0;
19b9bdb0 2229 int skip_sum;
b812ce28 2230 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 2231
42437a63
JB
2232 skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
2233 !fs_info->csum_root;
cad321ad 2234
70ddc553 2235 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 2236 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 2237
37226b21 2238 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 2239 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 2240 if (ret)
61891923 2241 goto out;
5fd02043 2242
d20f7043 2243 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
2244 ret = btrfs_submit_compressed_read(inode, bio,
2245 mirror_num,
2246 bio_flags);
2247 goto out;
334c16d8
JB
2248 } else {
2249 /*
2250 * Lookup bio sums does extra checks around whether we
2251 * need to csum or not, which is why we ignore skip_sum
2252 * here.
2253 */
db72e47f 2254 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL);
c2db1073 2255 if (ret)
61891923 2256 goto out;
c2db1073 2257 }
4d1b5fb4 2258 goto mapit;
b812ce28 2259 } else if (async && !skip_sum) {
17d217fe
YZ
2260 /* csum items have already been cloned */
2261 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2262 goto mapit;
19b9bdb0 2263 /* we're doing a write, do the async checksumming */
8896a08d
QW
2264 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags,
2265 0, btrfs_submit_bio_start);
61891923 2266 goto out;
b812ce28 2267 } else if (!skip_sum) {
bd242a08 2268 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
b812ce28
JB
2269 if (ret)
2270 goto out;
19b9bdb0
CM
2271 }
2272
0b86a832 2273mapit:
08635bae 2274 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
2275
2276out:
4e4cbee9
CH
2277 if (ret) {
2278 bio->bi_status = ret;
4246a0b6
CH
2279 bio_endio(bio);
2280 }
61891923 2281 return ret;
065631f6 2282}
6885f308 2283
d352ac68
CM
2284/*
2285 * given a list of ordered sums record them in the inode. This happens
2286 * at IO completion time based on sums calculated at bio submission time.
2287 */
510f85ed
NB
2288static int add_pending_csums(struct btrfs_trans_handle *trans,
2289 struct list_head *list)
e6dcd2dc 2290{
e6dcd2dc 2291 struct btrfs_ordered_sum *sum;
ac01f26a 2292 int ret;
e6dcd2dc 2293
c6e30871 2294 list_for_each_entry(sum, list, list) {
7c2871a2 2295 trans->adding_csums = true;
510f85ed 2296 ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum);
7c2871a2 2297 trans->adding_csums = false;
ac01f26a
NB
2298 if (ret)
2299 return ret;
e6dcd2dc
CM
2300 }
2301 return 0;
2302}
2303
c3347309
FM
2304static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2305 const u64 start,
2306 const u64 len,
2307 struct extent_state **cached_state)
2308{
2309 u64 search_start = start;
2310 const u64 end = start + len - 1;
2311
2312 while (search_start < end) {
2313 const u64 search_len = end - search_start + 1;
2314 struct extent_map *em;
2315 u64 em_len;
2316 int ret = 0;
2317
2318 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2319 if (IS_ERR(em))
2320 return PTR_ERR(em);
2321
2322 if (em->block_start != EXTENT_MAP_HOLE)
2323 goto next;
2324
2325 em_len = em->len;
2326 if (em->start < search_start)
2327 em_len -= search_start - em->start;
2328 if (em_len > search_len)
2329 em_len = search_len;
2330
2331 ret = set_extent_bit(&inode->io_tree, search_start,
2332 search_start + em_len - 1,
2333 EXTENT_DELALLOC_NEW,
2334 NULL, cached_state, GFP_NOFS);
2335next:
2336 search_start = extent_map_end(em);
2337 free_extent_map(em);
2338 if (ret)
2339 return ret;
2340 }
2341 return 0;
2342}
2343
c2566f22 2344int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
e3b8a485 2345 unsigned int extra_bits,
330a5827 2346 struct extent_state **cached_state)
ea8c2819 2347{
fdb1e121 2348 WARN_ON(PAGE_ALIGNED(end));
c3347309
FM
2349
2350 if (start >= i_size_read(&inode->vfs_inode) &&
2351 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2352 /*
2353 * There can't be any extents following eof in this case so just
2354 * set the delalloc new bit for the range directly.
2355 */
2356 extra_bits |= EXTENT_DELALLOC_NEW;
2357 } else {
2358 int ret;
2359
2360 ret = btrfs_find_new_delalloc_bytes(inode, start,
2361 end + 1 - start,
2362 cached_state);
2363 if (ret)
2364 return ret;
2365 }
2366
c2566f22
NB
2367 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2368 cached_state);
ea8c2819
CM
2369}
2370
d352ac68 2371/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2372struct btrfs_writepage_fixup {
2373 struct page *page;
f4b1363c 2374 struct inode *inode;
247e743c
CM
2375 struct btrfs_work work;
2376};
2377
b2950863 2378static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2379{
2380 struct btrfs_writepage_fixup *fixup;
2381 struct btrfs_ordered_extent *ordered;
2ac55d41 2382 struct extent_state *cached_state = NULL;
364ecf36 2383 struct extent_changeset *data_reserved = NULL;
247e743c 2384 struct page *page;
65d87f79 2385 struct btrfs_inode *inode;
247e743c
CM
2386 u64 page_start;
2387 u64 page_end;
25f3c502 2388 int ret = 0;
f4b1363c 2389 bool free_delalloc_space = true;
247e743c
CM
2390
2391 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2392 page = fixup->page;
65d87f79 2393 inode = BTRFS_I(fixup->inode);
f4b1363c
JB
2394 page_start = page_offset(page);
2395 page_end = page_offset(page) + PAGE_SIZE - 1;
2396
2397 /*
2398 * This is similar to page_mkwrite, we need to reserve the space before
2399 * we take the page lock.
2400 */
65d87f79
NB
2401 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2402 PAGE_SIZE);
4a096752 2403again:
247e743c 2404 lock_page(page);
25f3c502
CM
2405
2406 /*
2407 * Before we queued this fixup, we took a reference on the page.
2408 * page->mapping may go NULL, but it shouldn't be moved to a different
2409 * address space.
2410 */
f4b1363c
JB
2411 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2412 /*
2413 * Unfortunately this is a little tricky, either
2414 *
2415 * 1) We got here and our page had already been dealt with and
2416 * we reserved our space, thus ret == 0, so we need to just
2417 * drop our space reservation and bail. This can happen the
2418 * first time we come into the fixup worker, or could happen
2419 * while waiting for the ordered extent.
2420 * 2) Our page was already dealt with, but we happened to get an
2421 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2422 * this case we obviously don't have anything to release, but
2423 * because the page was already dealt with we don't want to
2424 * mark the page with an error, so make sure we're resetting
2425 * ret to 0. This is why we have this check _before_ the ret
2426 * check, because we do not want to have a surprise ENOSPC
2427 * when the page was already properly dealt with.
2428 */
2429 if (!ret) {
65d87f79
NB
2430 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2431 btrfs_delalloc_release_space(inode, data_reserved,
f4b1363c
JB
2432 page_start, PAGE_SIZE,
2433 true);
2434 }
2435 ret = 0;
247e743c 2436 goto out_page;
f4b1363c 2437 }
247e743c 2438
25f3c502 2439 /*
f4b1363c
JB
2440 * We can't mess with the page state unless it is locked, so now that
2441 * it is locked bail if we failed to make our space reservation.
25f3c502 2442 */
f4b1363c
JB
2443 if (ret)
2444 goto out_page;
247e743c 2445
65d87f79 2446 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
4a096752
CM
2447
2448 /* already ordered? We're done */
8b62b72b 2449 if (PagePrivate2(page))
f4b1363c 2450 goto out_reserved;
4a096752 2451
65d87f79 2452 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
4a096752 2453 if (ordered) {
65d87f79
NB
2454 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2455 &cached_state);
4a096752 2456 unlock_page(page);
c0a43603 2457 btrfs_start_ordered_extent(ordered, 1);
87826df0 2458 btrfs_put_ordered_extent(ordered);
4a096752
CM
2459 goto again;
2460 }
247e743c 2461
65d87f79 2462 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
330a5827 2463 &cached_state);
25f3c502 2464 if (ret)
53687007 2465 goto out_reserved;
f3038ee3 2466
25f3c502
CM
2467 /*
2468 * Everything went as planned, we're now the owner of a dirty page with
2469 * delayed allocation bits set and space reserved for our COW
2470 * destination.
2471 *
2472 * The page was dirty when we started, nothing should have cleaned it.
2473 */
2474 BUG_ON(!PageDirty(page));
f4b1363c 2475 free_delalloc_space = false;
53687007 2476out_reserved:
65d87f79 2477 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
f4b1363c 2478 if (free_delalloc_space)
65d87f79
NB
2479 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2480 PAGE_SIZE, true);
2481 unlock_extent_cached(&inode->io_tree, page_start, page_end,
e43bbe5e 2482 &cached_state);
247e743c 2483out_page:
25f3c502
CM
2484 if (ret) {
2485 /*
2486 * We hit ENOSPC or other errors. Update the mapping and page
2487 * to reflect the errors and clean the page.
2488 */
2489 mapping_set_error(page->mapping, ret);
2490 end_extent_writepage(page, ret, page_start, page_end);
2491 clear_page_dirty_for_io(page);
2492 SetPageError(page);
2493 }
2494 ClearPageChecked(page);
247e743c 2495 unlock_page(page);
09cbfeaf 2496 put_page(page);
b897abec 2497 kfree(fixup);
364ecf36 2498 extent_changeset_free(data_reserved);
f4b1363c
JB
2499 /*
2500 * As a precaution, do a delayed iput in case it would be the last iput
2501 * that could need flushing space. Recursing back to fixup worker would
2502 * deadlock.
2503 */
65d87f79 2504 btrfs_add_delayed_iput(&inode->vfs_inode);
247e743c
CM
2505}
2506
2507/*
2508 * There are a few paths in the higher layers of the kernel that directly
2509 * set the page dirty bit without asking the filesystem if it is a
2510 * good idea. This causes problems because we want to make sure COW
2511 * properly happens and the data=ordered rules are followed.
2512 *
c8b97818 2513 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2514 * hasn't been properly setup for IO. We kick off an async process
2515 * to fix it up. The async helper will wait for ordered extents, set
2516 * the delalloc bit and make it safe to write the page.
2517 */
d75855b4 2518int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
247e743c
CM
2519{
2520 struct inode *inode = page->mapping->host;
0b246afa 2521 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2522 struct btrfs_writepage_fixup *fixup;
247e743c 2523
8b62b72b
CM
2524 /* this page is properly in the ordered list */
2525 if (TestClearPagePrivate2(page))
247e743c
CM
2526 return 0;
2527
25f3c502
CM
2528 /*
2529 * PageChecked is set below when we create a fixup worker for this page,
2530 * don't try to create another one if we're already PageChecked()
2531 *
2532 * The extent_io writepage code will redirty the page if we send back
2533 * EAGAIN.
2534 */
247e743c
CM
2535 if (PageChecked(page))
2536 return -EAGAIN;
2537
2538 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2539 if (!fixup)
2540 return -EAGAIN;
f421950f 2541
f4b1363c
JB
2542 /*
2543 * We are already holding a reference to this inode from
2544 * write_cache_pages. We need to hold it because the space reservation
2545 * takes place outside of the page lock, and we can't trust
2546 * page->mapping outside of the page lock.
2547 */
2548 ihold(inode);
247e743c 2549 SetPageChecked(page);
09cbfeaf 2550 get_page(page);
a0cac0ec 2551 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2552 fixup->page = page;
f4b1363c 2553 fixup->inode = inode;
0b246afa 2554 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
25f3c502
CM
2555
2556 return -EAGAIN;
247e743c
CM
2557}
2558
d899e052 2559static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
c553f94d 2560 struct btrfs_inode *inode, u64 file_pos,
9729f10a
QW
2561 struct btrfs_file_extent_item *stack_fi,
2562 u64 qgroup_reserved)
d899e052 2563{
c553f94d 2564 struct btrfs_root *root = inode->root;
d899e052
YZ
2565 struct btrfs_path *path;
2566 struct extent_buffer *leaf;
2567 struct btrfs_key ins;
203f44c5
QW
2568 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2569 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2570 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2571 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
1acae57b 2572 int extent_inserted = 0;
d899e052
YZ
2573 int ret;
2574
2575 path = btrfs_alloc_path();
d8926bb3
MF
2576 if (!path)
2577 return -ENOMEM;
d899e052 2578
a1ed835e
CM
2579 /*
2580 * we may be replacing one extent in the tree with another.
2581 * The new extent is pinned in the extent map, and we don't want
2582 * to drop it from the cache until it is completely in the btree.
2583 *
2584 * So, tell btrfs_drop_extents to leave this extent in the cache.
2585 * the caller is expected to unpin it and allow it to be merged
2586 * with the others.
2587 */
c553f94d 2588 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1acae57b 2589 file_pos + num_bytes, NULL, 0,
203f44c5 2590 1, sizeof(*stack_fi), &extent_inserted);
79787eaa
JM
2591 if (ret)
2592 goto out;
d899e052 2593
1acae57b 2594 if (!extent_inserted) {
c553f94d 2595 ins.objectid = btrfs_ino(inode);
1acae57b
FDBM
2596 ins.offset = file_pos;
2597 ins.type = BTRFS_EXTENT_DATA_KEY;
2598
2599 path->leave_spinning = 1;
2600 ret = btrfs_insert_empty_item(trans, root, path, &ins,
203f44c5 2601 sizeof(*stack_fi));
1acae57b
FDBM
2602 if (ret)
2603 goto out;
2604 }
d899e052 2605 leaf = path->nodes[0];
203f44c5
QW
2606 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2607 write_extent_buffer(leaf, stack_fi,
2608 btrfs_item_ptr_offset(leaf, path->slots[0]),
2609 sizeof(struct btrfs_file_extent_item));
b9473439 2610
d899e052 2611 btrfs_mark_buffer_dirty(leaf);
ce195332 2612 btrfs_release_path(path);
d899e052 2613
c553f94d 2614 inode_add_bytes(&inode->vfs_inode, num_bytes);
d899e052
YZ
2615
2616 ins.objectid = disk_bytenr;
2617 ins.offset = disk_num_bytes;
2618 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2619
c553f94d 2620 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
9ddc959e
JB
2621 if (ret)
2622 goto out;
2623
c553f94d 2624 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
9729f10a 2625 file_pos, qgroup_reserved, &ins);
79787eaa 2626out:
d899e052 2627 btrfs_free_path(path);
b9473439 2628
79787eaa 2629 return ret;
d899e052
YZ
2630}
2631
2ff7e61e 2632static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2633 u64 start, u64 len)
2634{
32da5386 2635 struct btrfs_block_group *cache;
e570fd27 2636
0b246afa 2637 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2638 ASSERT(cache);
2639
2640 spin_lock(&cache->lock);
2641 cache->delalloc_bytes -= len;
2642 spin_unlock(&cache->lock);
2643
2644 btrfs_put_block_group(cache);
2645}
2646
203f44c5 2647static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
203f44c5
QW
2648 struct btrfs_ordered_extent *oe)
2649{
2650 struct btrfs_file_extent_item stack_fi;
2651 u64 logical_len;
2652
2653 memset(&stack_fi, 0, sizeof(stack_fi));
2654 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2655 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2656 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2657 oe->disk_num_bytes);
2658 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2659 logical_len = oe->truncated_len;
2660 else
2661 logical_len = oe->num_bytes;
2662 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2663 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2664 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2665 /* Encryption and other encoding is reserved and all 0 */
2666
3c38c877
NB
2667 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
2668 oe->file_offset, &stack_fi,
2669 oe->qgroup_rsv);
203f44c5
QW
2670}
2671
2672/*
2673 * As ordered data IO finishes, this gets called so we can finish
d352ac68
CM
2674 * an ordered extent if the range of bytes in the file it covers are
2675 * fully written.
2676 */
5fd02043 2677static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2678{
5fd02043 2679 struct inode *inode = ordered_extent->inode;
0b246afa 2680 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2681 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2682 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2683 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2684 struct extent_state *cached_state = NULL;
bffe633e 2685 u64 start, end;
261507a0 2686 int compress_type = 0;
77cef2ec 2687 int ret = 0;
bffe633e 2688 u64 logical_len = ordered_extent->num_bytes;
8d510121 2689 bool freespace_inode;
77cef2ec 2690 bool truncated = false;
a7e3b975
FM
2691 bool range_locked = false;
2692 bool clear_new_delalloc_bytes = false;
49940bdd 2693 bool clear_reserved_extent = true;
313facc5 2694 unsigned int clear_bits;
a7e3b975 2695
bffe633e
OS
2696 start = ordered_extent->file_offset;
2697 end = start + ordered_extent->num_bytes - 1;
2698
a7e3b975
FM
2699 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2700 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2701 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2702 clear_new_delalloc_bytes = true;
e6dcd2dc 2703
8d510121 2704 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2705
5fd02043
JB
2706 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2707 ret = -EIO;
2708 goto out;
2709 }
2710
bffe633e 2711 btrfs_free_io_failure_record(BTRFS_I(inode), start, end);
f612496b 2712
77cef2ec
JB
2713 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2714 truncated = true;
2715 logical_len = ordered_extent->truncated_len;
2716 /* Truncated the entire extent, don't bother adding */
2717 if (!logical_len)
2718 goto out;
2719 }
2720
c2167754 2721 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2722 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a 2723
d923afe9 2724 btrfs_inode_safe_disk_i_size_write(inode, 0);
8d510121
NB
2725 if (freespace_inode)
2726 trans = btrfs_join_transaction_spacecache(root);
6c760c07
JB
2727 else
2728 trans = btrfs_join_transaction(root);
2729 if (IS_ERR(trans)) {
2730 ret = PTR_ERR(trans);
2731 trans = NULL;
2732 goto out;
c2167754 2733 }
69fe2d75 2734 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
2735 ret = btrfs_update_inode_fallback(trans, root, inode);
2736 if (ret) /* -ENOMEM or corruption */
66642832 2737 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2738 goto out;
2739 }
e6dcd2dc 2740
a7e3b975 2741 range_locked = true;
bffe633e 2742 lock_extent_bits(io_tree, start, end, &cached_state);
e6dcd2dc 2743
8d510121
NB
2744 if (freespace_inode)
2745 trans = btrfs_join_transaction_spacecache(root);
0cb59c99 2746 else
7a7eaa40 2747 trans = btrfs_join_transaction(root);
79787eaa
JM
2748 if (IS_ERR(trans)) {
2749 ret = PTR_ERR(trans);
2750 trans = NULL;
a7e3b975 2751 goto out;
79787eaa 2752 }
a79b7d4b 2753
69fe2d75 2754 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 2755
c8b97818 2756 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2757 compress_type = ordered_extent->compress_type;
d899e052 2758 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2759 BUG_ON(compress_type);
7a6d7067 2760 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
2761 ordered_extent->file_offset,
2762 ordered_extent->file_offset +
77cef2ec 2763 logical_len);
d899e052 2764 } else {
0b246afa 2765 BUG_ON(root == fs_info->tree_root);
3c38c877 2766 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
49940bdd
JB
2767 if (!ret) {
2768 clear_reserved_extent = false;
2ff7e61e 2769 btrfs_release_delalloc_bytes(fs_info,
bffe633e
OS
2770 ordered_extent->disk_bytenr,
2771 ordered_extent->disk_num_bytes);
49940bdd 2772 }
d899e052 2773 }
5dc562c5 2774 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
bffe633e
OS
2775 ordered_extent->file_offset,
2776 ordered_extent->num_bytes, trans->transid);
79787eaa 2777 if (ret < 0) {
66642832 2778 btrfs_abort_transaction(trans, ret);
a7e3b975 2779 goto out;
79787eaa 2780 }
2ac55d41 2781
510f85ed 2782 ret = add_pending_csums(trans, &ordered_extent->list);
ac01f26a
NB
2783 if (ret) {
2784 btrfs_abort_transaction(trans, ret);
2785 goto out;
2786 }
e6dcd2dc 2787
d923afe9 2788 btrfs_inode_safe_disk_i_size_write(inode, 0);
6c760c07
JB
2789 ret = btrfs_update_inode_fallback(trans, root, inode);
2790 if (ret) { /* -ENOMEM or corruption */
66642832 2791 btrfs_abort_transaction(trans, ret);
a7e3b975 2792 goto out;
1ef30be1
JB
2793 }
2794 ret = 0;
c2167754 2795out:
313facc5
OS
2796 clear_bits = EXTENT_DEFRAG;
2797 if (range_locked)
2798 clear_bits |= EXTENT_LOCKED;
2799 if (clear_new_delalloc_bytes)
2800 clear_bits |= EXTENT_DELALLOC_NEW;
bffe633e
OS
2801 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits,
2802 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
313facc5 2803 &cached_state);
a7e3b975 2804
a698d075 2805 if (trans)
3a45bb20 2806 btrfs_end_transaction(trans);
0cb59c99 2807
77cef2ec 2808 if (ret || truncated) {
bffe633e 2809 u64 unwritten_start = start;
77cef2ec
JB
2810
2811 if (truncated)
bffe633e
OS
2812 unwritten_start += logical_len;
2813 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
77cef2ec
JB
2814
2815 /* Drop the cache for the part of the extent we didn't write. */
bffe633e 2816 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0);
5fd02043 2817
0bec9ef5
JB
2818 /*
2819 * If the ordered extent had an IOERR or something else went
2820 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2821 * back to the allocator. We only free the extent in the
2822 * truncated case if we didn't write out the extent at all.
49940bdd
JB
2823 *
2824 * If we made it past insert_reserved_file_extent before we
2825 * errored out then we don't need to do this as the accounting
2826 * has already been done.
0bec9ef5 2827 */
77cef2ec 2828 if ((ret || !logical_len) &&
49940bdd 2829 clear_reserved_extent &&
77cef2ec 2830 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
4eaaec24
NB
2831 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2832 /*
2833 * Discard the range before returning it back to the
2834 * free space pool
2835 */
46b27f50 2836 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
4eaaec24 2837 btrfs_discard_extent(fs_info,
bffe633e
OS
2838 ordered_extent->disk_bytenr,
2839 ordered_extent->disk_num_bytes,
2840 NULL);
2ff7e61e 2841 btrfs_free_reserved_extent(fs_info,
bffe633e
OS
2842 ordered_extent->disk_bytenr,
2843 ordered_extent->disk_num_bytes, 1);
4eaaec24 2844 }
0bec9ef5
JB
2845 }
2846
5fd02043 2847 /*
8bad3c02
LB
2848 * This needs to be done to make sure anybody waiting knows we are done
2849 * updating everything for this ordered extent.
5fd02043 2850 */
71fe0a55 2851 btrfs_remove_ordered_extent(BTRFS_I(inode), ordered_extent);
5fd02043 2852
e6dcd2dc
CM
2853 /* once for us */
2854 btrfs_put_ordered_extent(ordered_extent);
2855 /* once for the tree */
2856 btrfs_put_ordered_extent(ordered_extent);
2857
5fd02043
JB
2858 return ret;
2859}
2860
2861static void finish_ordered_fn(struct btrfs_work *work)
2862{
2863 struct btrfs_ordered_extent *ordered_extent;
2864 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2865 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2866}
2867
c629732d
NB
2868void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
2869 u64 end, int uptodate)
211f90e6 2870{
3347c48f
NB
2871 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
2872 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5fd02043 2873 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237 2874 struct btrfs_workqueue *wq;
5fd02043 2875
1abe9b8a 2876 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2877
8b62b72b 2878 ClearPagePrivate2(page);
3347c48f
NB
2879 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2880 end - start + 1, uptodate))
c3988d63 2881 return;
5fd02043 2882
3347c48f 2883 if (btrfs_is_free_space_inode(inode))
0b246afa 2884 wq = fs_info->endio_freespace_worker;
a0cac0ec 2885 else
0b246afa 2886 wq = fs_info->endio_write_workers;
5fd02043 2887
a0cac0ec 2888 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
9e0af237 2889 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
2890}
2891
265d4ac0
QW
2892/*
2893 * check_data_csum - verify checksum of one sector of uncompressed data
2894 * @inode: the inode
2895 * @io_bio: btrfs_io_bio which contains the csum
2896 * @icsum: checksum index in the io_bio->csum array, size of csum_size
2897 * @page: page where is the data to be verified
2898 * @pgoff: offset inside the page
2899 *
2900 * The length of such check is always one sector size.
2901 */
47df7765 2902static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
265d4ac0 2903 int icsum, struct page *page, int pgoff)
dc380aea 2904{
d5178578
JT
2905 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2906 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
dc380aea 2907 char *kaddr;
265d4ac0 2908 u32 len = fs_info->sectorsize;
d5178578
JT
2909 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2910 u8 *csum_expected;
2911 u8 csum[BTRFS_CSUM_SIZE];
dc380aea 2912
265d4ac0
QW
2913 ASSERT(pgoff + len <= PAGE_SIZE);
2914
d5178578 2915 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
dc380aea
MX
2916
2917 kaddr = kmap_atomic(page);
d5178578
JT
2918 shash->tfm = fs_info->csum_shash;
2919
fd08001f 2920 crypto_shash_digest(shash, kaddr + pgoff, len, csum);
d5178578
JT
2921
2922 if (memcmp(csum, csum_expected, csum_size))
dc380aea
MX
2923 goto zeroit;
2924
2925 kunmap_atomic(kaddr);
2926 return 0;
2927zeroit:
265d4ac0
QW
2928 btrfs_print_data_csum_error(BTRFS_I(inode), page_offset(page) + pgoff,
2929 csum, csum_expected, io_bio->mirror_num);
814723e0
NB
2930 if (io_bio->device)
2931 btrfs_dev_stat_inc_and_print(io_bio->device,
2932 BTRFS_DEV_STAT_CORRUPTION_ERRS);
dc380aea
MX
2933 memset(kaddr + pgoff, 1, len);
2934 flush_dcache_page(page);
2935 kunmap_atomic(kaddr);
dc380aea
MX
2936 return -EIO;
2937}
2938
d352ac68
CM
2939/*
2940 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2941 * if there's a match, we allow the bio to finish. If not, the code in
2942 * extent_io.c will try to find good copies for us.
d352ac68 2943 */
9a446d6a
NB
2944int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u64 phy_offset,
2945 struct page *page, u64 start, u64 end, int mirror)
07157aac 2946{
4eee4fa4 2947 size_t offset = start - page_offset(page);
07157aac 2948 struct inode *inode = page->mapping->host;
d1310b2e 2949 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 2950 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 2951
d20f7043
CM
2952 if (PageChecked(page)) {
2953 ClearPageChecked(page);
dc380aea 2954 return 0;
d20f7043 2955 }
6cbff00f
CH
2956
2957 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 2958 return 0;
17d217fe 2959
42437a63
JB
2960 if (!root->fs_info->csum_root)
2961 return 0;
2962
17d217fe 2963 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2964 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 2965 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 2966 return 0;
17d217fe 2967 }
d20f7043 2968
facc8a22 2969 phy_offset >>= inode->i_sb->s_blocksize_bits;
265d4ac0 2970 return check_data_csum(inode, io_bio, phy_offset, page, offset);
07157aac 2971}
b888db2b 2972
c1c3fac2
NB
2973/*
2974 * btrfs_add_delayed_iput - perform a delayed iput on @inode
2975 *
2976 * @inode: The inode we want to perform iput on
2977 *
2978 * This function uses the generic vfs_inode::i_count to track whether we should
2979 * just decrement it (in case it's > 1) or if this is the last iput then link
2980 * the inode to the delayed iput machinery. Delayed iputs are processed at
2981 * transaction commit time/superblock commit/cleaner kthread.
2982 */
24bbcf04
YZ
2983void btrfs_add_delayed_iput(struct inode *inode)
2984{
0b246afa 2985 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 2986 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
2987
2988 if (atomic_add_unless(&inode->i_count, -1, 1))
2989 return;
2990
034f784d 2991 atomic_inc(&fs_info->nr_delayed_iputs);
24bbcf04 2992 spin_lock(&fs_info->delayed_iput_lock);
c1c3fac2
NB
2993 ASSERT(list_empty(&binode->delayed_iput));
2994 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
24bbcf04 2995 spin_unlock(&fs_info->delayed_iput_lock);
fd340d0f
JB
2996 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
2997 wake_up_process(fs_info->cleaner_kthread);
24bbcf04
YZ
2998}
2999
63611e73
JB
3000static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3001 struct btrfs_inode *inode)
3002{
3003 list_del_init(&inode->delayed_iput);
3004 spin_unlock(&fs_info->delayed_iput_lock);
3005 iput(&inode->vfs_inode);
3006 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3007 wake_up(&fs_info->delayed_iputs_wait);
3008 spin_lock(&fs_info->delayed_iput_lock);
3009}
3010
3011static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3012 struct btrfs_inode *inode)
3013{
3014 if (!list_empty(&inode->delayed_iput)) {
3015 spin_lock(&fs_info->delayed_iput_lock);
3016 if (!list_empty(&inode->delayed_iput))
3017 run_delayed_iput_locked(fs_info, inode);
3018 spin_unlock(&fs_info->delayed_iput_lock);
3019 }
3020}
3021
2ff7e61e 3022void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3023{
24bbcf04 3024
24bbcf04 3025 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3026 while (!list_empty(&fs_info->delayed_iputs)) {
3027 struct btrfs_inode *inode;
3028
3029 inode = list_first_entry(&fs_info->delayed_iputs,
3030 struct btrfs_inode, delayed_iput);
63611e73 3031 run_delayed_iput_locked(fs_info, inode);
24bbcf04 3032 }
8089fe62 3033 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3034}
3035
034f784d
JB
3036/**
3037 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
3038 * @fs_info - the fs_info for this fs
3039 * @return - EINTR if we were killed, 0 if nothing's pending
3040 *
3041 * This will wait on any delayed iputs that are currently running with KILLABLE
3042 * set. Once they are all done running we will return, unless we are killed in
3043 * which case we return EINTR. This helps in user operations like fallocate etc
3044 * that might get blocked on the iputs.
3045 */
3046int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3047{
3048 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3049 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3050 if (ret)
3051 return -EINTR;
3052 return 0;
3053}
3054
7b128766 3055/*
f7e9e8fc
OS
3056 * This creates an orphan entry for the given inode in case something goes wrong
3057 * in the middle of an unlink.
7b128766 3058 */
73f2e545 3059int btrfs_orphan_add(struct btrfs_trans_handle *trans,
27919067 3060 struct btrfs_inode *inode)
7b128766 3061{
d68fc57b 3062 int ret;
7b128766 3063
27919067
OS
3064 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3065 if (ret && ret != -EEXIST) {
3066 btrfs_abort_transaction(trans, ret);
3067 return ret;
d68fc57b
YZ
3068 }
3069
d68fc57b 3070 return 0;
7b128766
JB
3071}
3072
3073/*
f7e9e8fc
OS
3074 * We have done the delete so we can go ahead and remove the orphan item for
3075 * this particular inode.
7b128766 3076 */
48a3b636 3077static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3078 struct btrfs_inode *inode)
7b128766 3079{
27919067 3080 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
7b128766
JB
3081}
3082
3083/*
3084 * this cleans up any orphans that may be left on the list from the last use
3085 * of this root.
3086 */
66b4ffd1 3087int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3088{
0b246afa 3089 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3090 struct btrfs_path *path;
3091 struct extent_buffer *leaf;
7b128766
JB
3092 struct btrfs_key key, found_key;
3093 struct btrfs_trans_handle *trans;
3094 struct inode *inode;
8f6d7f4f 3095 u64 last_objectid = 0;
f7e9e8fc 3096 int ret = 0, nr_unlink = 0;
7b128766 3097
d68fc57b 3098 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3099 return 0;
c71bf099
YZ
3100
3101 path = btrfs_alloc_path();
66b4ffd1
JB
3102 if (!path) {
3103 ret = -ENOMEM;
3104 goto out;
3105 }
e4058b54 3106 path->reada = READA_BACK;
7b128766
JB
3107
3108 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3109 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3110 key.offset = (u64)-1;
3111
7b128766
JB
3112 while (1) {
3113 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3114 if (ret < 0)
3115 goto out;
7b128766
JB
3116
3117 /*
3118 * if ret == 0 means we found what we were searching for, which
25985edc 3119 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3120 * find the key and see if we have stuff that matches
3121 */
3122 if (ret > 0) {
66b4ffd1 3123 ret = 0;
7b128766
JB
3124 if (path->slots[0] == 0)
3125 break;
3126 path->slots[0]--;
3127 }
3128
3129 /* pull out the item */
3130 leaf = path->nodes[0];
7b128766
JB
3131 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3132
3133 /* make sure the item matches what we want */
3134 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3135 break;
962a298f 3136 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3137 break;
3138
3139 /* release the path since we're done with it */
b3b4aa74 3140 btrfs_release_path(path);
7b128766
JB
3141
3142 /*
3143 * this is where we are basically btrfs_lookup, without the
3144 * crossing root thing. we store the inode number in the
3145 * offset of the orphan item.
3146 */
8f6d7f4f
JB
3147
3148 if (found_key.offset == last_objectid) {
0b246afa
JM
3149 btrfs_err(fs_info,
3150 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3151 ret = -EINVAL;
3152 goto out;
3153 }
3154
3155 last_objectid = found_key.offset;
3156
5d4f98a2
YZ
3157 found_key.objectid = found_key.offset;
3158 found_key.type = BTRFS_INODE_ITEM_KEY;
3159 found_key.offset = 0;
0202e83f 3160 inode = btrfs_iget(fs_info->sb, last_objectid, root);
8c6ffba0 3161 ret = PTR_ERR_OR_ZERO(inode);
67710892 3162 if (ret && ret != -ENOENT)
66b4ffd1 3163 goto out;
7b128766 3164
0b246afa 3165 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0 3166 struct btrfs_root *dead_root;
f8e9e0b0
AJ
3167 int is_dead_root = 0;
3168
3169 /*
3170 * this is an orphan in the tree root. Currently these
3171 * could come from 2 sources:
3172 * a) a snapshot deletion in progress
3173 * b) a free space cache inode
3174 * We need to distinguish those two, as the snapshot
3175 * orphan must not get deleted.
3176 * find_dead_roots already ran before us, so if this
3177 * is a snapshot deletion, we should find the root
a619b3c7 3178 * in the fs_roots radix tree.
f8e9e0b0 3179 */
a619b3c7
RK
3180
3181 spin_lock(&fs_info->fs_roots_radix_lock);
3182 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3183 (unsigned long)found_key.objectid);
3184 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3185 is_dead_root = 1;
3186 spin_unlock(&fs_info->fs_roots_radix_lock);
3187
f8e9e0b0
AJ
3188 if (is_dead_root) {
3189 /* prevent this orphan from being found again */
3190 key.offset = found_key.objectid - 1;
3191 continue;
3192 }
f7e9e8fc 3193
f8e9e0b0 3194 }
f7e9e8fc 3195
7b128766 3196 /*
f7e9e8fc
OS
3197 * If we have an inode with links, there are a couple of
3198 * possibilities. Old kernels (before v3.12) used to create an
3199 * orphan item for truncate indicating that there were possibly
3200 * extent items past i_size that needed to be deleted. In v3.12,
3201 * truncate was changed to update i_size in sync with the extent
3202 * items, but the (useless) orphan item was still created. Since
3203 * v4.18, we don't create the orphan item for truncate at all.
3204 *
3205 * So, this item could mean that we need to do a truncate, but
3206 * only if this filesystem was last used on a pre-v3.12 kernel
3207 * and was not cleanly unmounted. The odds of that are quite
3208 * slim, and it's a pain to do the truncate now, so just delete
3209 * the orphan item.
3210 *
3211 * It's also possible that this orphan item was supposed to be
3212 * deleted but wasn't. The inode number may have been reused,
3213 * but either way, we can delete the orphan item.
7b128766 3214 */
f7e9e8fc
OS
3215 if (ret == -ENOENT || inode->i_nlink) {
3216 if (!ret)
3217 iput(inode);
a8c9e576 3218 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3219 if (IS_ERR(trans)) {
3220 ret = PTR_ERR(trans);
3221 goto out;
3222 }
0b246afa
JM
3223 btrfs_debug(fs_info, "auto deleting %Lu",
3224 found_key.objectid);
a8c9e576
JB
3225 ret = btrfs_del_orphan_item(trans, root,
3226 found_key.objectid);
3a45bb20 3227 btrfs_end_transaction(trans);
4ef31a45
JB
3228 if (ret)
3229 goto out;
7b128766
JB
3230 continue;
3231 }
3232
f7e9e8fc 3233 nr_unlink++;
7b128766
JB
3234
3235 /* this will do delete_inode and everything for us */
3236 iput(inode);
3237 }
3254c876
MX
3238 /* release the path since we're done with it */
3239 btrfs_release_path(path);
3240
d68fc57b
YZ
3241 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3242
a575ceeb 3243 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3244 trans = btrfs_join_transaction(root);
66b4ffd1 3245 if (!IS_ERR(trans))
3a45bb20 3246 btrfs_end_transaction(trans);
d68fc57b 3247 }
7b128766
JB
3248
3249 if (nr_unlink)
0b246afa 3250 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
66b4ffd1
JB
3251
3252out:
3253 if (ret)
0b246afa 3254 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3255 btrfs_free_path(path);
3256 return ret;
7b128766
JB
3257}
3258
46a53cca
CM
3259/*
3260 * very simple check to peek ahead in the leaf looking for xattrs. If we
3261 * don't find any xattrs, we know there can't be any acls.
3262 *
3263 * slot is the slot the inode is in, objectid is the objectid of the inode
3264 */
3265static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3266 int slot, u64 objectid,
3267 int *first_xattr_slot)
46a53cca
CM
3268{
3269 u32 nritems = btrfs_header_nritems(leaf);
3270 struct btrfs_key found_key;
f23b5a59
JB
3271 static u64 xattr_access = 0;
3272 static u64 xattr_default = 0;
46a53cca
CM
3273 int scanned = 0;
3274
f23b5a59 3275 if (!xattr_access) {
97d79299
AG
3276 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3277 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3278 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3279 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3280 }
3281
46a53cca 3282 slot++;
63541927 3283 *first_xattr_slot = -1;
46a53cca
CM
3284 while (slot < nritems) {
3285 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3286
3287 /* we found a different objectid, there must not be acls */
3288 if (found_key.objectid != objectid)
3289 return 0;
3290
3291 /* we found an xattr, assume we've got an acl */
f23b5a59 3292 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3293 if (*first_xattr_slot == -1)
3294 *first_xattr_slot = slot;
f23b5a59
JB
3295 if (found_key.offset == xattr_access ||
3296 found_key.offset == xattr_default)
3297 return 1;
3298 }
46a53cca
CM
3299
3300 /*
3301 * we found a key greater than an xattr key, there can't
3302 * be any acls later on
3303 */
3304 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3305 return 0;
3306
3307 slot++;
3308 scanned++;
3309
3310 /*
3311 * it goes inode, inode backrefs, xattrs, extents,
3312 * so if there are a ton of hard links to an inode there can
3313 * be a lot of backrefs. Don't waste time searching too hard,
3314 * this is just an optimization
3315 */
3316 if (scanned >= 8)
3317 break;
3318 }
3319 /* we hit the end of the leaf before we found an xattr or
3320 * something larger than an xattr. We have to assume the inode
3321 * has acls
3322 */
63541927
FDBM
3323 if (*first_xattr_slot == -1)
3324 *first_xattr_slot = slot;
46a53cca
CM
3325 return 1;
3326}
3327
d352ac68
CM
3328/*
3329 * read an inode from the btree into the in-memory inode
3330 */
4222ea71
FM
3331static int btrfs_read_locked_inode(struct inode *inode,
3332 struct btrfs_path *in_path)
39279cc3 3333{
0b246afa 3334 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4222ea71 3335 struct btrfs_path *path = in_path;
5f39d397 3336 struct extent_buffer *leaf;
39279cc3
CM
3337 struct btrfs_inode_item *inode_item;
3338 struct btrfs_root *root = BTRFS_I(inode)->root;
3339 struct btrfs_key location;
67de1176 3340 unsigned long ptr;
46a53cca 3341 int maybe_acls;
618e21d5 3342 u32 rdev;
39279cc3 3343 int ret;
2f7e33d4 3344 bool filled = false;
63541927 3345 int first_xattr_slot;
2f7e33d4
MX
3346
3347 ret = btrfs_fill_inode(inode, &rdev);
3348 if (!ret)
3349 filled = true;
39279cc3 3350
4222ea71
FM
3351 if (!path) {
3352 path = btrfs_alloc_path();
3353 if (!path)
3354 return -ENOMEM;
3355 }
1748f843 3356
39279cc3 3357 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3358
39279cc3 3359 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892 3360 if (ret) {
4222ea71
FM
3361 if (path != in_path)
3362 btrfs_free_path(path);
f5b3a417 3363 return ret;
67710892 3364 }
39279cc3 3365
5f39d397 3366 leaf = path->nodes[0];
2f7e33d4
MX
3367
3368 if (filled)
67de1176 3369 goto cache_index;
2f7e33d4 3370
5f39d397
CM
3371 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3372 struct btrfs_inode_item);
5f39d397 3373 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3374 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3375 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3376 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3377 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
41a2ee75
JB
3378 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3379 round_up(i_size_read(inode), fs_info->sectorsize));
5f39d397 3380
a937b979
DS
3381 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3382 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3383
a937b979
DS
3384 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3385 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3386
a937b979
DS
3387 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3388 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3389
9cc97d64 3390 BTRFS_I(inode)->i_otime.tv_sec =
3391 btrfs_timespec_sec(leaf, &inode_item->otime);
3392 BTRFS_I(inode)->i_otime.tv_nsec =
3393 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3394
a76a3cd4 3395 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3396 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3397 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3398
c7f88c4e
JL
3399 inode_set_iversion_queried(inode,
3400 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3401 inode->i_generation = BTRFS_I(inode)->generation;
3402 inode->i_rdev = 0;
3403 rdev = btrfs_inode_rdev(leaf, inode_item);
3404
3405 BTRFS_I(inode)->index_cnt = (u64)-1;
3406 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3407
3408cache_index:
5dc562c5
JB
3409 /*
3410 * If we were modified in the current generation and evicted from memory
3411 * and then re-read we need to do a full sync since we don't have any
3412 * idea about which extents were modified before we were evicted from
3413 * cache.
6e17d30b
YD
3414 *
3415 * This is required for both inode re-read from disk and delayed inode
3416 * in delayed_nodes_tree.
5dc562c5 3417 */
0b246afa 3418 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3419 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3420 &BTRFS_I(inode)->runtime_flags);
3421
bde6c242
FM
3422 /*
3423 * We don't persist the id of the transaction where an unlink operation
3424 * against the inode was last made. So here we assume the inode might
3425 * have been evicted, and therefore the exact value of last_unlink_trans
3426 * lost, and set it to last_trans to avoid metadata inconsistencies
3427 * between the inode and its parent if the inode is fsync'ed and the log
3428 * replayed. For example, in the scenario:
3429 *
3430 * touch mydir/foo
3431 * ln mydir/foo mydir/bar
3432 * sync
3433 * unlink mydir/bar
3434 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3435 * xfs_io -c fsync mydir/foo
3436 * <power failure>
3437 * mount fs, triggers fsync log replay
3438 *
3439 * We must make sure that when we fsync our inode foo we also log its
3440 * parent inode, otherwise after log replay the parent still has the
3441 * dentry with the "bar" name but our inode foo has a link count of 1
3442 * and doesn't have an inode ref with the name "bar" anymore.
3443 *
3444 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3445 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3446 * transaction commits on fsync if our inode is a directory, or if our
3447 * inode is not a directory, logging its parent unnecessarily.
3448 */
3449 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3450
3ebac17c
FM
3451 /*
3452 * Same logic as for last_unlink_trans. We don't persist the generation
3453 * of the last transaction where this inode was used for a reflink
3454 * operation, so after eviction and reloading the inode we must be
3455 * pessimistic and assume the last transaction that modified the inode.
3456 */
3457 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3458
67de1176
MX
3459 path->slots[0]++;
3460 if (inode->i_nlink != 1 ||
3461 path->slots[0] >= btrfs_header_nritems(leaf))
3462 goto cache_acl;
3463
3464 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3465 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3466 goto cache_acl;
3467
3468 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3469 if (location.type == BTRFS_INODE_REF_KEY) {
3470 struct btrfs_inode_ref *ref;
3471
3472 ref = (struct btrfs_inode_ref *)ptr;
3473 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3474 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3475 struct btrfs_inode_extref *extref;
3476
3477 extref = (struct btrfs_inode_extref *)ptr;
3478 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3479 extref);
3480 }
2f7e33d4 3481cache_acl:
46a53cca
CM
3482 /*
3483 * try to precache a NULL acl entry for files that don't have
3484 * any xattrs or acls
3485 */
33345d01 3486 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3487 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3488 if (first_xattr_slot != -1) {
3489 path->slots[0] = first_xattr_slot;
3490 ret = btrfs_load_inode_props(inode, path);
3491 if (ret)
0b246afa 3492 btrfs_err(fs_info,
351fd353 3493 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3494 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3495 root->root_key.objectid, ret);
3496 }
4222ea71
FM
3497 if (path != in_path)
3498 btrfs_free_path(path);
63541927 3499
72c04902
AV
3500 if (!maybe_acls)
3501 cache_no_acl(inode);
46a53cca 3502
39279cc3 3503 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3504 case S_IFREG:
3505 inode->i_mapping->a_ops = &btrfs_aops;
3506 inode->i_fop = &btrfs_file_operations;
3507 inode->i_op = &btrfs_file_inode_operations;
3508 break;
3509 case S_IFDIR:
3510 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3511 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3512 break;
3513 case S_IFLNK:
3514 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3515 inode_nohighmem(inode);
4779cc04 3516 inode->i_mapping->a_ops = &btrfs_aops;
39279cc3 3517 break;
618e21d5 3518 default:
0279b4cd 3519 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3520 init_special_inode(inode, inode->i_mode, rdev);
3521 break;
39279cc3 3522 }
6cbff00f 3523
7b6a221e 3524 btrfs_sync_inode_flags_to_i_flags(inode);
67710892 3525 return 0;
39279cc3
CM
3526}
3527
d352ac68
CM
3528/*
3529 * given a leaf and an inode, copy the inode fields into the leaf
3530 */
e02119d5
CM
3531static void fill_inode_item(struct btrfs_trans_handle *trans,
3532 struct extent_buffer *leaf,
5f39d397 3533 struct btrfs_inode_item *item,
39279cc3
CM
3534 struct inode *inode)
3535{
51fab693
LB
3536 struct btrfs_map_token token;
3537
c82f823c 3538 btrfs_init_map_token(&token, leaf);
5f39d397 3539
cc4c13d5
DS
3540 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3541 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3542 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3543 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3544 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3545
3546 btrfs_set_token_timespec_sec(&token, &item->atime,
3547 inode->i_atime.tv_sec);
3548 btrfs_set_token_timespec_nsec(&token, &item->atime,
3549 inode->i_atime.tv_nsec);
3550
3551 btrfs_set_token_timespec_sec(&token, &item->mtime,
3552 inode->i_mtime.tv_sec);
3553 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3554 inode->i_mtime.tv_nsec);
3555
3556 btrfs_set_token_timespec_sec(&token, &item->ctime,
3557 inode->i_ctime.tv_sec);
3558 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3559 inode->i_ctime.tv_nsec);
3560
3561 btrfs_set_token_timespec_sec(&token, &item->otime,
3562 BTRFS_I(inode)->i_otime.tv_sec);
3563 btrfs_set_token_timespec_nsec(&token, &item->otime,
3564 BTRFS_I(inode)->i_otime.tv_nsec);
3565
3566 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3567 btrfs_set_token_inode_generation(&token, item,
3568 BTRFS_I(inode)->generation);
3569 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3570 btrfs_set_token_inode_transid(&token, item, trans->transid);
3571 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3572 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3573 btrfs_set_token_inode_block_group(&token, item, 0);
39279cc3
CM
3574}
3575
d352ac68
CM
3576/*
3577 * copy everything in the in-memory inode into the btree.
3578 */
2115133f 3579static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3580 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3581{
3582 struct btrfs_inode_item *inode_item;
3583 struct btrfs_path *path;
5f39d397 3584 struct extent_buffer *leaf;
39279cc3
CM
3585 int ret;
3586
3587 path = btrfs_alloc_path();
16cdcec7
MX
3588 if (!path)
3589 return -ENOMEM;
3590
b9473439 3591 path->leave_spinning = 1;
16cdcec7
MX
3592 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3593 1);
39279cc3
CM
3594 if (ret) {
3595 if (ret > 0)
3596 ret = -ENOENT;
3597 goto failed;
3598 }
3599
5f39d397
CM
3600 leaf = path->nodes[0];
3601 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3602 struct btrfs_inode_item);
39279cc3 3603
e02119d5 3604 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3605 btrfs_mark_buffer_dirty(leaf);
d9094414 3606 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
39279cc3
CM
3607 ret = 0;
3608failed:
39279cc3
CM
3609 btrfs_free_path(path);
3610 return ret;
3611}
3612
2115133f
CM
3613/*
3614 * copy everything in the in-memory inode into the btree.
3615 */
3616noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3617 struct btrfs_root *root, struct inode *inode)
3618{
0b246afa 3619 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3620 int ret;
3621
3622 /*
3623 * If the inode is a free space inode, we can deadlock during commit
3624 * if we put it into the delayed code.
3625 *
3626 * The data relocation inode should also be directly updated
3627 * without delay
3628 */
70ddc553 3629 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 3630 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 3631 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
3632 btrfs_update_root_times(trans, root);
3633
2115133f
CM
3634 ret = btrfs_delayed_update_inode(trans, root, inode);
3635 if (!ret)
d9094414 3636 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
2115133f
CM
3637 return ret;
3638 }
3639
3640 return btrfs_update_inode_item(trans, root, inode);
3641}
3642
be6aef60
JB
3643noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3644 struct btrfs_root *root,
3645 struct inode *inode)
2115133f
CM
3646{
3647 int ret;
3648
3649 ret = btrfs_update_inode(trans, root, inode);
3650 if (ret == -ENOSPC)
3651 return btrfs_update_inode_item(trans, root, inode);
3652 return ret;
3653}
3654
d352ac68
CM
3655/*
3656 * unlink helper that gets used here in inode.c and in the tree logging
3657 * recovery code. It remove a link in a directory with a given name, and
3658 * also drops the back refs in the inode to the directory
3659 */
92986796
AV
3660static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3661 struct btrfs_root *root,
4ec5934e
NB
3662 struct btrfs_inode *dir,
3663 struct btrfs_inode *inode,
92986796 3664 const char *name, int name_len)
39279cc3 3665{
0b246afa 3666 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 3667 struct btrfs_path *path;
39279cc3 3668 int ret = 0;
39279cc3 3669 struct btrfs_dir_item *di;
aec7477b 3670 u64 index;
33345d01
LZ
3671 u64 ino = btrfs_ino(inode);
3672 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3673
3674 path = btrfs_alloc_path();
54aa1f4d
CM
3675 if (!path) {
3676 ret = -ENOMEM;
554233a6 3677 goto out;
54aa1f4d
CM
3678 }
3679
b9473439 3680 path->leave_spinning = 1;
33345d01 3681 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3 3682 name, name_len, -1);
3cf5068f
LB
3683 if (IS_ERR_OR_NULL(di)) {
3684 ret = di ? PTR_ERR(di) : -ENOENT;
39279cc3
CM
3685 goto err;
3686 }
39279cc3 3687 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3688 if (ret)
3689 goto err;
b3b4aa74 3690 btrfs_release_path(path);
39279cc3 3691
67de1176
MX
3692 /*
3693 * If we don't have dir index, we have to get it by looking up
3694 * the inode ref, since we get the inode ref, remove it directly,
3695 * it is unnecessary to do delayed deletion.
3696 *
3697 * But if we have dir index, needn't search inode ref to get it.
3698 * Since the inode ref is close to the inode item, it is better
3699 * that we delay to delete it, and just do this deletion when
3700 * we update the inode item.
3701 */
4ec5934e 3702 if (inode->dir_index) {
67de1176
MX
3703 ret = btrfs_delayed_delete_inode_ref(inode);
3704 if (!ret) {
4ec5934e 3705 index = inode->dir_index;
67de1176
MX
3706 goto skip_backref;
3707 }
3708 }
3709
33345d01
LZ
3710 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3711 dir_ino, &index);
aec7477b 3712 if (ret) {
0b246afa 3713 btrfs_info(fs_info,
c2cf52eb 3714 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3715 name_len, name, ino, dir_ino);
66642832 3716 btrfs_abort_transaction(trans, ret);
aec7477b
JB
3717 goto err;
3718 }
67de1176 3719skip_backref:
9add2945 3720 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
79787eaa 3721 if (ret) {
66642832 3722 btrfs_abort_transaction(trans, ret);
39279cc3 3723 goto err;
79787eaa 3724 }
39279cc3 3725
4ec5934e
NB
3726 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3727 dir_ino);
79787eaa 3728 if (ret != 0 && ret != -ENOENT) {
66642832 3729 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3730 goto err;
3731 }
e02119d5 3732
4ec5934e
NB
3733 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3734 index);
6418c961
CM
3735 if (ret == -ENOENT)
3736 ret = 0;
d4e3991b 3737 else if (ret)
66642832 3738 btrfs_abort_transaction(trans, ret);
63611e73
JB
3739
3740 /*
3741 * If we have a pending delayed iput we could end up with the final iput
3742 * being run in btrfs-cleaner context. If we have enough of these built
3743 * up we can end up burning a lot of time in btrfs-cleaner without any
3744 * way to throttle the unlinks. Since we're currently holding a ref on
3745 * the inode we can run the delayed iput here without any issues as the
3746 * final iput won't be done until after we drop the ref we're currently
3747 * holding.
3748 */
3749 btrfs_run_delayed_iput(fs_info, inode);
39279cc3
CM
3750err:
3751 btrfs_free_path(path);
e02119d5
CM
3752 if (ret)
3753 goto out;
3754
6ef06d27 3755 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
3756 inode_inc_iversion(&inode->vfs_inode);
3757 inode_inc_iversion(&dir->vfs_inode);
3758 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3759 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3760 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 3761out:
39279cc3
CM
3762 return ret;
3763}
3764
92986796
AV
3765int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3766 struct btrfs_root *root,
4ec5934e 3767 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
3768 const char *name, int name_len)
3769{
3770 int ret;
3771 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3772 if (!ret) {
4ec5934e
NB
3773 drop_nlink(&inode->vfs_inode);
3774 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
3775 }
3776 return ret;
3777}
39279cc3 3778
a22285a6
YZ
3779/*
3780 * helper to start transaction for unlink and rmdir.
3781 *
d52be818
JB
3782 * unlink and rmdir are special in btrfs, they do not always free space, so
3783 * if we cannot make our reservations the normal way try and see if there is
3784 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3785 * allow the unlink to occur.
a22285a6 3786 */
d52be818 3787static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3788{
a22285a6 3789 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 3790
e70bea5f
JB
3791 /*
3792 * 1 for the possible orphan item
3793 * 1 for the dir item
3794 * 1 for the dir index
3795 * 1 for the inode ref
e70bea5f
JB
3796 * 1 for the inode
3797 */
7f9fe614 3798 return btrfs_start_transaction_fallback_global_rsv(root, 5);
a22285a6
YZ
3799}
3800
3801static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3802{
3803 struct btrfs_root *root = BTRFS_I(dir)->root;
3804 struct btrfs_trans_handle *trans;
2b0143b5 3805 struct inode *inode = d_inode(dentry);
a22285a6 3806 int ret;
a22285a6 3807
d52be818 3808 trans = __unlink_start_trans(dir);
a22285a6
YZ
3809 if (IS_ERR(trans))
3810 return PTR_ERR(trans);
5f39d397 3811
4ec5934e
NB
3812 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
3813 0);
12fcfd22 3814
4ec5934e
NB
3815 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
3816 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
3817 dentry->d_name.len);
b532402e
TI
3818 if (ret)
3819 goto out;
7b128766 3820
a22285a6 3821 if (inode->i_nlink == 0) {
73f2e545 3822 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
3823 if (ret)
3824 goto out;
a22285a6 3825 }
7b128766 3826
b532402e 3827out:
3a45bb20 3828 btrfs_end_transaction(trans);
2ff7e61e 3829 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
3830 return ret;
3831}
3832
f60a2364 3833static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
045d3967 3834 struct inode *dir, struct dentry *dentry)
4df27c4d 3835{
401b3b19 3836 struct btrfs_root *root = BTRFS_I(dir)->root;
045d3967 3837 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4df27c4d
YZ
3838 struct btrfs_path *path;
3839 struct extent_buffer *leaf;
3840 struct btrfs_dir_item *di;
3841 struct btrfs_key key;
045d3967
JB
3842 const char *name = dentry->d_name.name;
3843 int name_len = dentry->d_name.len;
4df27c4d
YZ
3844 u64 index;
3845 int ret;
045d3967 3846 u64 objectid;
4a0cc7ca 3847 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d 3848
045d3967
JB
3849 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
3850 objectid = inode->root->root_key.objectid;
3851 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3852 objectid = inode->location.objectid;
3853 } else {
3854 WARN_ON(1);
3855 return -EINVAL;
3856 }
3857
4df27c4d
YZ
3858 path = btrfs_alloc_path();
3859 if (!path)
3860 return -ENOMEM;
3861
33345d01 3862 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3863 name, name_len, -1);
79787eaa 3864 if (IS_ERR_OR_NULL(di)) {
3cf5068f 3865 ret = di ? PTR_ERR(di) : -ENOENT;
79787eaa
JM
3866 goto out;
3867 }
4df27c4d
YZ
3868
3869 leaf = path->nodes[0];
3870 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3871 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3872 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 3873 if (ret) {
66642832 3874 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3875 goto out;
3876 }
b3b4aa74 3877 btrfs_release_path(path);
4df27c4d 3878
d49d3287
JB
3879 /*
3880 * This is a placeholder inode for a subvolume we didn't have a
3881 * reference to at the time of the snapshot creation. In the meantime
3882 * we could have renamed the real subvol link into our snapshot, so
3883 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3884 * Instead simply lookup the dir_index_item for this entry so we can
3885 * remove it. Otherwise we know we have a ref to the root and we can
3886 * call btrfs_del_root_ref, and it _shouldn't_ fail.
3887 */
3888 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
33345d01 3889 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3890 name, name_len);
79787eaa
JM
3891 if (IS_ERR_OR_NULL(di)) {
3892 if (!di)
3893 ret = -ENOENT;
3894 else
3895 ret = PTR_ERR(di);
66642832 3896 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3897 goto out;
3898 }
4df27c4d
YZ
3899
3900 leaf = path->nodes[0];
3901 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4df27c4d 3902 index = key.offset;
d49d3287
JB
3903 btrfs_release_path(path);
3904 } else {
3905 ret = btrfs_del_root_ref(trans, objectid,
3906 root->root_key.objectid, dir_ino,
3907 &index, name, name_len);
3908 if (ret) {
3909 btrfs_abort_transaction(trans, ret);
3910 goto out;
3911 }
4df27c4d
YZ
3912 }
3913
9add2945 3914 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
79787eaa 3915 if (ret) {
66642832 3916 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3917 goto out;
3918 }
4df27c4d 3919
6ef06d27 3920 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 3921 inode_inc_iversion(dir);
c2050a45 3922 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 3923 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 3924 if (ret)
66642832 3925 btrfs_abort_transaction(trans, ret);
79787eaa 3926out:
71d7aed0 3927 btrfs_free_path(path);
79787eaa 3928 return ret;
4df27c4d
YZ
3929}
3930
ec42f167
MT
3931/*
3932 * Helper to check if the subvolume references other subvolumes or if it's
3933 * default.
3934 */
f60a2364 3935static noinline int may_destroy_subvol(struct btrfs_root *root)
ec42f167
MT
3936{
3937 struct btrfs_fs_info *fs_info = root->fs_info;
3938 struct btrfs_path *path;
3939 struct btrfs_dir_item *di;
3940 struct btrfs_key key;
3941 u64 dir_id;
3942 int ret;
3943
3944 path = btrfs_alloc_path();
3945 if (!path)
3946 return -ENOMEM;
3947
3948 /* Make sure this root isn't set as the default subvol */
3949 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3950 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
3951 dir_id, "default", 7, 0);
3952 if (di && !IS_ERR(di)) {
3953 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
3954 if (key.objectid == root->root_key.objectid) {
3955 ret = -EPERM;
3956 btrfs_err(fs_info,
3957 "deleting default subvolume %llu is not allowed",
3958 key.objectid);
3959 goto out;
3960 }
3961 btrfs_release_path(path);
3962 }
3963
3964 key.objectid = root->root_key.objectid;
3965 key.type = BTRFS_ROOT_REF_KEY;
3966 key.offset = (u64)-1;
3967
3968 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3969 if (ret < 0)
3970 goto out;
3971 BUG_ON(ret == 0);
3972
3973 ret = 0;
3974 if (path->slots[0] > 0) {
3975 path->slots[0]--;
3976 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3977 if (key.objectid == root->root_key.objectid &&
3978 key.type == BTRFS_ROOT_REF_KEY)
3979 ret = -ENOTEMPTY;
3980 }
3981out:
3982 btrfs_free_path(path);
3983 return ret;
3984}
3985
20a68004
NB
3986/* Delete all dentries for inodes belonging to the root */
3987static void btrfs_prune_dentries(struct btrfs_root *root)
3988{
3989 struct btrfs_fs_info *fs_info = root->fs_info;
3990 struct rb_node *node;
3991 struct rb_node *prev;
3992 struct btrfs_inode *entry;
3993 struct inode *inode;
3994 u64 objectid = 0;
3995
3996 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3997 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3998
3999 spin_lock(&root->inode_lock);
4000again:
4001 node = root->inode_tree.rb_node;
4002 prev = NULL;
4003 while (node) {
4004 prev = node;
4005 entry = rb_entry(node, struct btrfs_inode, rb_node);
4006
37508515 4007 if (objectid < btrfs_ino(entry))
20a68004 4008 node = node->rb_left;
37508515 4009 else if (objectid > btrfs_ino(entry))
20a68004
NB
4010 node = node->rb_right;
4011 else
4012 break;
4013 }
4014 if (!node) {
4015 while (prev) {
4016 entry = rb_entry(prev, struct btrfs_inode, rb_node);
37508515 4017 if (objectid <= btrfs_ino(entry)) {
20a68004
NB
4018 node = prev;
4019 break;
4020 }
4021 prev = rb_next(prev);
4022 }
4023 }
4024 while (node) {
4025 entry = rb_entry(node, struct btrfs_inode, rb_node);
37508515 4026 objectid = btrfs_ino(entry) + 1;
20a68004
NB
4027 inode = igrab(&entry->vfs_inode);
4028 if (inode) {
4029 spin_unlock(&root->inode_lock);
4030 if (atomic_read(&inode->i_count) > 1)
4031 d_prune_aliases(inode);
4032 /*
4033 * btrfs_drop_inode will have it removed from the inode
4034 * cache when its usage count hits zero.
4035 */
4036 iput(inode);
4037 cond_resched();
4038 spin_lock(&root->inode_lock);
4039 goto again;
4040 }
4041
4042 if (cond_resched_lock(&root->inode_lock))
4043 goto again;
4044
4045 node = rb_next(node);
4046 }
4047 spin_unlock(&root->inode_lock);
4048}
4049
f60a2364
MT
4050int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4051{
4052 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4053 struct btrfs_root *root = BTRFS_I(dir)->root;
4054 struct inode *inode = d_inode(dentry);
4055 struct btrfs_root *dest = BTRFS_I(inode)->root;
4056 struct btrfs_trans_handle *trans;
4057 struct btrfs_block_rsv block_rsv;
4058 u64 root_flags;
f60a2364
MT
4059 int ret;
4060 int err;
4061
4062 /*
4063 * Don't allow to delete a subvolume with send in progress. This is
4064 * inside the inode lock so the error handling that has to drop the bit
4065 * again is not run concurrently.
4066 */
4067 spin_lock(&dest->root_item_lock);
a7176f74 4068 if (dest->send_in_progress) {
f60a2364
MT
4069 spin_unlock(&dest->root_item_lock);
4070 btrfs_warn(fs_info,
4071 "attempt to delete subvolume %llu during send",
4072 dest->root_key.objectid);
4073 return -EPERM;
4074 }
a7176f74
LF
4075 root_flags = btrfs_root_flags(&dest->root_item);
4076 btrfs_set_root_flags(&dest->root_item,
4077 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4078 spin_unlock(&dest->root_item_lock);
f60a2364
MT
4079
4080 down_write(&fs_info->subvol_sem);
4081
4082 err = may_destroy_subvol(dest);
4083 if (err)
4084 goto out_up_write;
4085
4086 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4087 /*
4088 * One for dir inode,
4089 * two for dir entries,
4090 * two for root ref/backref.
4091 */
c4c129db 4092 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
f60a2364
MT
4093 if (err)
4094 goto out_up_write;
4095
4096 trans = btrfs_start_transaction(root, 0);
4097 if (IS_ERR(trans)) {
4098 err = PTR_ERR(trans);
4099 goto out_release;
4100 }
4101 trans->block_rsv = &block_rsv;
4102 trans->bytes_reserved = block_rsv.size;
4103
4104 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4105
045d3967 4106 ret = btrfs_unlink_subvol(trans, dir, dentry);
f60a2364
MT
4107 if (ret) {
4108 err = ret;
4109 btrfs_abort_transaction(trans, ret);
4110 goto out_end_trans;
4111 }
4112
4113 btrfs_record_root_in_trans(trans, dest);
4114
4115 memset(&dest->root_item.drop_progress, 0,
4116 sizeof(dest->root_item.drop_progress));
c8422684 4117 btrfs_set_root_drop_level(&dest->root_item, 0);
f60a2364
MT
4118 btrfs_set_root_refs(&dest->root_item, 0);
4119
4120 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4121 ret = btrfs_insert_orphan_item(trans,
4122 fs_info->tree_root,
4123 dest->root_key.objectid);
4124 if (ret) {
4125 btrfs_abort_transaction(trans, ret);
4126 err = ret;
4127 goto out_end_trans;
4128 }
4129 }
4130
d1957791 4131 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
f60a2364
MT
4132 BTRFS_UUID_KEY_SUBVOL,
4133 dest->root_key.objectid);
4134 if (ret && ret != -ENOENT) {
4135 btrfs_abort_transaction(trans, ret);
4136 err = ret;
4137 goto out_end_trans;
4138 }
4139 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
d1957791 4140 ret = btrfs_uuid_tree_remove(trans,
f60a2364
MT
4141 dest->root_item.received_uuid,
4142 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4143 dest->root_key.objectid);
4144 if (ret && ret != -ENOENT) {
4145 btrfs_abort_transaction(trans, ret);
4146 err = ret;
4147 goto out_end_trans;
4148 }
4149 }
4150
082b6c97
QW
4151 free_anon_bdev(dest->anon_dev);
4152 dest->anon_dev = 0;
f60a2364
MT
4153out_end_trans:
4154 trans->block_rsv = NULL;
4155 trans->bytes_reserved = 0;
4156 ret = btrfs_end_transaction(trans);
4157 if (ret && !err)
4158 err = ret;
4159 inode->i_flags |= S_DEAD;
4160out_release:
e85fde51 4161 btrfs_subvolume_release_metadata(root, &block_rsv);
f60a2364
MT
4162out_up_write:
4163 up_write(&fs_info->subvol_sem);
4164 if (err) {
4165 spin_lock(&dest->root_item_lock);
4166 root_flags = btrfs_root_flags(&dest->root_item);
4167 btrfs_set_root_flags(&dest->root_item,
4168 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4169 spin_unlock(&dest->root_item_lock);
4170 } else {
4171 d_invalidate(dentry);
20a68004 4172 btrfs_prune_dentries(dest);
f60a2364
MT
4173 ASSERT(dest->send_in_progress == 0);
4174
4175 /* the last ref */
4176 if (dest->ino_cache_inode) {
4177 iput(dest->ino_cache_inode);
4178 dest->ino_cache_inode = NULL;
4179 }
4180 }
4181
4182 return err;
4183}
4184
39279cc3
CM
4185static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4186{
2b0143b5 4187 struct inode *inode = d_inode(dentry);
1832a6d5 4188 int err = 0;
39279cc3 4189 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4190 struct btrfs_trans_handle *trans;
44f714da 4191 u64 last_unlink_trans;
39279cc3 4192
b3ae244e 4193 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4194 return -ENOTEMPTY;
4a0cc7ca 4195 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
a79a464d 4196 return btrfs_delete_subvolume(dir, dentry);
134d4512 4197
d52be818 4198 trans = __unlink_start_trans(dir);
a22285a6 4199 if (IS_ERR(trans))
5df6a9f6 4200 return PTR_ERR(trans);
5df6a9f6 4201
4a0cc7ca 4202 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
045d3967 4203 err = btrfs_unlink_subvol(trans, dir, dentry);
4df27c4d
YZ
4204 goto out;
4205 }
4206
73f2e545 4207 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4208 if (err)
4df27c4d 4209 goto out;
7b128766 4210
44f714da
FM
4211 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4212
39279cc3 4213 /* now the directory is empty */
4ec5934e
NB
4214 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4215 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4216 dentry->d_name.len);
44f714da 4217 if (!err) {
6ef06d27 4218 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4219 /*
4220 * Propagate the last_unlink_trans value of the deleted dir to
4221 * its parent directory. This is to prevent an unrecoverable
4222 * log tree in the case we do something like this:
4223 * 1) create dir foo
4224 * 2) create snapshot under dir foo
4225 * 3) delete the snapshot
4226 * 4) rmdir foo
4227 * 5) mkdir foo
4228 * 6) fsync foo or some file inside foo
4229 */
4230 if (last_unlink_trans >= trans->transid)
4231 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4232 }
4df27c4d 4233out:
3a45bb20 4234 btrfs_end_transaction(trans);
2ff7e61e 4235 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4236
39279cc3
CM
4237 return err;
4238}
4239
ddfae63c
JB
4240/*
4241 * Return this if we need to call truncate_block for the last bit of the
4242 * truncate.
4243 */
4244#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4245
39279cc3
CM
4246/*
4247 * this can truncate away extent items, csum items and directory items.
4248 * It starts at a high offset and removes keys until it can't find
d352ac68 4249 * any higher than new_size
39279cc3
CM
4250 *
4251 * csum items that cross the new i_size are truncated to the new size
4252 * as well.
7b128766
JB
4253 *
4254 * min_type is the minimum key type to truncate down to. If set to 0, this
4255 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4256 */
8082510e
YZ
4257int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4258 struct btrfs_root *root,
4259 struct inode *inode,
4260 u64 new_size, u32 min_type)
39279cc3 4261{
0b246afa 4262 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4263 struct btrfs_path *path;
5f39d397 4264 struct extent_buffer *leaf;
39279cc3 4265 struct btrfs_file_extent_item *fi;
8082510e
YZ
4266 struct btrfs_key key;
4267 struct btrfs_key found_key;
39279cc3 4268 u64 extent_start = 0;
db94535d 4269 u64 extent_num_bytes = 0;
5d4f98a2 4270 u64 extent_offset = 0;
39279cc3 4271 u64 item_end = 0;
c1aa4575 4272 u64 last_size = new_size;
8082510e 4273 u32 found_type = (u8)-1;
39279cc3
CM
4274 int found_extent;
4275 int del_item;
85e21bac
CM
4276 int pending_del_nr = 0;
4277 int pending_del_slot = 0;
179e29e4 4278 int extent_type = -1;
8082510e 4279 int ret;
4a0cc7ca 4280 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4281 u64 bytes_deleted = 0;
897ca819
TM
4282 bool be_nice = false;
4283 bool should_throttle = false;
28553fa9
FM
4284 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4285 struct extent_state *cached_state = NULL;
8082510e
YZ
4286
4287 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4288
28ed1345 4289 /*
92a7cc42
QW
4290 * For non-free space inodes and non-shareable roots, we want to back
4291 * off from time to time. This means all inodes in subvolume roots,
4292 * reloc roots, and data reloc roots.
28ed1345 4293 */
70ddc553 4294 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
92a7cc42 4295 test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
897ca819 4296 be_nice = true;
28ed1345 4297
0eb0e19c
MF
4298 path = btrfs_alloc_path();
4299 if (!path)
4300 return -ENOMEM;
e4058b54 4301 path->reada = READA_BACK;
0eb0e19c 4302
82028e0a 4303 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
a5ae50de
FM
4304 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
4305 &cached_state);
28553fa9 4306
82028e0a
QW
4307 /*
4308 * We want to drop from the next block forward in case this
4309 * new size is not block aligned since we will be keeping the
4310 * last block of the extent just the way it is.
4311 */
dcdbc059 4312 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4313 fs_info->sectorsize),
da17066c 4314 (u64)-1, 0);
82028e0a 4315 }
8082510e 4316
16cdcec7
MX
4317 /*
4318 * This function is also used to drop the items in the log tree before
4319 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
52042d8e 4320 * it is used to drop the logged items. So we shouldn't kill the delayed
16cdcec7
MX
4321 * items.
4322 */
4323 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4324 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4325
33345d01 4326 key.objectid = ino;
39279cc3 4327 key.offset = (u64)-1;
5f39d397
CM
4328 key.type = (u8)-1;
4329
85e21bac 4330search_again:
28ed1345
CM
4331 /*
4332 * with a 16K leaf size and 128MB extents, you can actually queue
4333 * up a huge file in a single leaf. Most of the time that
4334 * bytes_deleted is > 0, it will be huge by the time we get here
4335 */
fd86a3a3
OS
4336 if (be_nice && bytes_deleted > SZ_32M &&
4337 btrfs_should_end_transaction(trans)) {
4338 ret = -EAGAIN;
4339 goto out;
28ed1345
CM
4340 }
4341
85e21bac 4342 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
fd86a3a3 4343 if (ret < 0)
8082510e 4344 goto out;
d397712b 4345
85e21bac 4346 if (ret > 0) {
fd86a3a3 4347 ret = 0;
e02119d5
CM
4348 /* there are no items in the tree for us to truncate, we're
4349 * done
4350 */
8082510e
YZ
4351 if (path->slots[0] == 0)
4352 goto out;
85e21bac
CM
4353 path->slots[0]--;
4354 }
4355
d397712b 4356 while (1) {
9ddc959e
JB
4357 u64 clear_start = 0, clear_len = 0;
4358
39279cc3 4359 fi = NULL;
5f39d397
CM
4360 leaf = path->nodes[0];
4361 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4362 found_type = found_key.type;
39279cc3 4363
33345d01 4364 if (found_key.objectid != ino)
39279cc3 4365 break;
5f39d397 4366
85e21bac 4367 if (found_type < min_type)
39279cc3
CM
4368 break;
4369
5f39d397 4370 item_end = found_key.offset;
39279cc3 4371 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4372 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4373 struct btrfs_file_extent_item);
179e29e4
CM
4374 extent_type = btrfs_file_extent_type(leaf, fi);
4375 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4376 item_end +=
db94535d 4377 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4378
4379 trace_btrfs_truncate_show_fi_regular(
4380 BTRFS_I(inode), leaf, fi,
4381 found_key.offset);
179e29e4 4382 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589
QW
4383 item_end += btrfs_file_extent_ram_bytes(leaf,
4384 fi);
09ed2f16
LB
4385
4386 trace_btrfs_truncate_show_fi_inline(
4387 BTRFS_I(inode), leaf, fi, path->slots[0],
4388 found_key.offset);
39279cc3 4389 }
008630c1 4390 item_end--;
39279cc3 4391 }
8082510e
YZ
4392 if (found_type > min_type) {
4393 del_item = 1;
4394 } else {
76b42abb 4395 if (item_end < new_size)
b888db2b 4396 break;
8082510e
YZ
4397 if (found_key.offset >= new_size)
4398 del_item = 1;
4399 else
4400 del_item = 0;
39279cc3 4401 }
39279cc3 4402 found_extent = 0;
39279cc3 4403 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4404 if (found_type != BTRFS_EXTENT_DATA_KEY)
4405 goto delete;
4406
4407 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4408 u64 num_dec;
9ddc959e
JB
4409
4410 clear_start = found_key.offset;
db94535d 4411 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4412 if (!del_item) {
db94535d
CM
4413 u64 orig_num_bytes =
4414 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4415 extent_num_bytes = ALIGN(new_size -
4416 found_key.offset,
0b246afa 4417 fs_info->sectorsize);
9ddc959e 4418 clear_start = ALIGN(new_size, fs_info->sectorsize);
db94535d
CM
4419 btrfs_set_file_extent_num_bytes(leaf, fi,
4420 extent_num_bytes);
4421 num_dec = (orig_num_bytes -
9069218d 4422 extent_num_bytes);
92a7cc42 4423 if (test_bit(BTRFS_ROOT_SHAREABLE,
27cdeb70
MX
4424 &root->state) &&
4425 extent_start != 0)
a76a3cd4 4426 inode_sub_bytes(inode, num_dec);
5f39d397 4427 btrfs_mark_buffer_dirty(leaf);
39279cc3 4428 } else {
db94535d
CM
4429 extent_num_bytes =
4430 btrfs_file_extent_disk_num_bytes(leaf,
4431 fi);
5d4f98a2
YZ
4432 extent_offset = found_key.offset -
4433 btrfs_file_extent_offset(leaf, fi);
4434
39279cc3 4435 /* FIXME blocksize != 4096 */
9069218d 4436 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4437 if (extent_start != 0) {
4438 found_extent = 1;
92a7cc42 4439 if (test_bit(BTRFS_ROOT_SHAREABLE,
27cdeb70 4440 &root->state))
a76a3cd4 4441 inode_sub_bytes(inode, num_dec);
e02119d5 4442 }
39279cc3 4443 }
9ddc959e 4444 clear_len = num_dec;
9069218d 4445 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4446 /*
4447 * we can't truncate inline items that have had
4448 * special encodings
4449 */
4450 if (!del_item &&
c8b97818 4451 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4452 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4453 btrfs_file_extent_compression(leaf, fi) == 0) {
4454 u32 size = (u32)(new_size - found_key.offset);
4455
4456 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4457 size = btrfs_file_extent_calc_inline_size(size);
78ac4f9e 4458 btrfs_truncate_item(path, size, 1);
ddfae63c 4459 } else if (!del_item) {
514ac8ad 4460 /*
ddfae63c
JB
4461 * We have to bail so the last_size is set to
4462 * just before this extent.
514ac8ad 4463 */
fd86a3a3 4464 ret = NEED_TRUNCATE_BLOCK;
ddfae63c 4465 break;
9ddc959e
JB
4466 } else {
4467 /*
4468 * Inline extents are special, we just treat
4469 * them as a full sector worth in the file
4470 * extent tree just for simplicity sake.
4471 */
4472 clear_len = fs_info->sectorsize;
ddfae63c 4473 }
0305cd5f 4474
92a7cc42 4475 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
0305cd5f 4476 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4477 }
179e29e4 4478delete:
9ddc959e
JB
4479 /*
4480 * We use btrfs_truncate_inode_items() to clean up log trees for
4481 * multiple fsyncs, and in this case we don't want to clear the
4482 * file extent range because it's just the log.
4483 */
4484 if (root == BTRFS_I(inode)->root) {
4485 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
4486 clear_start, clear_len);
4487 if (ret) {
4488 btrfs_abort_transaction(trans, ret);
4489 break;
4490 }
4491 }
4492
ddfae63c
JB
4493 if (del_item)
4494 last_size = found_key.offset;
4495 else
4496 last_size = new_size;
39279cc3 4497 if (del_item) {
85e21bac
CM
4498 if (!pending_del_nr) {
4499 /* no pending yet, add ourselves */
4500 pending_del_slot = path->slots[0];
4501 pending_del_nr = 1;
4502 } else if (pending_del_nr &&
4503 path->slots[0] + 1 == pending_del_slot) {
4504 /* hop on the pending chunk */
4505 pending_del_nr++;
4506 pending_del_slot = path->slots[0];
4507 } else {
d397712b 4508 BUG();
85e21bac 4509 }
39279cc3
CM
4510 } else {
4511 break;
4512 }
897ca819 4513 should_throttle = false;
28f75a0e 4514
27cdeb70 4515 if (found_extent &&
82028e0a 4516 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
ffd4bb2a
QW
4517 struct btrfs_ref ref = { 0 };
4518
28ed1345 4519 bytes_deleted += extent_num_bytes;
ffd4bb2a
QW
4520
4521 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4522 extent_start, extent_num_bytes, 0);
4523 ref.real_root = root->root_key.objectid;
4524 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4525 ino, extent_offset);
4526 ret = btrfs_free_extent(trans, &ref);
05522109
OS
4527 if (ret) {
4528 btrfs_abort_transaction(trans, ret);
4529 break;
4530 }
28f75a0e 4531 if (be_nice) {
7c861627 4532 if (btrfs_should_throttle_delayed_refs(trans))
897ca819 4533 should_throttle = true;
28f75a0e 4534 }
39279cc3 4535 }
85e21bac 4536
8082510e
YZ
4537 if (found_type == BTRFS_INODE_ITEM_KEY)
4538 break;
4539
4540 if (path->slots[0] == 0 ||
1262133b 4541 path->slots[0] != pending_del_slot ||
28bad212 4542 should_throttle) {
8082510e
YZ
4543 if (pending_del_nr) {
4544 ret = btrfs_del_items(trans, root, path,
4545 pending_del_slot,
4546 pending_del_nr);
79787eaa 4547 if (ret) {
66642832 4548 btrfs_abort_transaction(trans, ret);
fd86a3a3 4549 break;
79787eaa 4550 }
8082510e
YZ
4551 pending_del_nr = 0;
4552 }
b3b4aa74 4553 btrfs_release_path(path);
28bad212 4554
28f75a0e 4555 /*
28bad212
JB
4556 * We can generate a lot of delayed refs, so we need to
4557 * throttle every once and a while and make sure we're
4558 * adding enough space to keep up with the work we are
4559 * generating. Since we hold a transaction here we
4560 * can't flush, and we don't want to FLUSH_LIMIT because
4561 * we could have generated too many delayed refs to
4562 * actually allocate, so just bail if we're short and
4563 * let the normal reservation dance happen higher up.
28f75a0e 4564 */
28bad212
JB
4565 if (should_throttle) {
4566 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4567 BTRFS_RESERVE_NO_FLUSH);
4568 if (ret) {
4569 ret = -EAGAIN;
4570 break;
4571 }
28f75a0e 4572 }
85e21bac 4573 goto search_again;
8082510e
YZ
4574 } else {
4575 path->slots[0]--;
85e21bac 4576 }
39279cc3 4577 }
8082510e 4578out:
fd86a3a3
OS
4579 if (ret >= 0 && pending_del_nr) {
4580 int err;
4581
4582 err = btrfs_del_items(trans, root, path, pending_del_slot,
85e21bac 4583 pending_del_nr);
fd86a3a3
OS
4584 if (err) {
4585 btrfs_abort_transaction(trans, err);
4586 ret = err;
4587 }
85e21bac 4588 }
76b42abb
FM
4589 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4590 ASSERT(last_size >= new_size);
fd86a3a3 4591 if (!ret && last_size > new_size)
76b42abb 4592 last_size = new_size;
d923afe9 4593 btrfs_inode_safe_disk_i_size_write(inode, last_size);
a5ae50de
FM
4594 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
4595 (u64)-1, &cached_state);
76b42abb 4596 }
28ed1345 4597
39279cc3 4598 btrfs_free_path(path);
fd86a3a3 4599 return ret;
39279cc3
CM
4600}
4601
4602/*
9703fefe 4603 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4604 * @inode - inode that we're zeroing
4605 * @from - the offset to start zeroing
4606 * @len - the length to zero, 0 to zero the entire range respective to the
4607 * offset
4608 * @front - zero up to the offset instead of from the offset on
4609 *
9703fefe 4610 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4611 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4612 */
9703fefe 4613int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4614 int front)
39279cc3 4615{
0b246afa 4616 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4617 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4618 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4619 struct btrfs_ordered_extent *ordered;
2ac55d41 4620 struct extent_state *cached_state = NULL;
364ecf36 4621 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4622 char *kaddr;
6d4572a9 4623 bool only_release_metadata = false;
0b246afa 4624 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4625 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4626 unsigned offset = from & (blocksize - 1);
39279cc3 4627 struct page *page;
3b16a4e3 4628 gfp_t mask = btrfs_alloc_write_mask(mapping);
6d4572a9 4629 size_t write_bytes = blocksize;
39279cc3 4630 int ret = 0;
9703fefe
CR
4631 u64 block_start;
4632 u64 block_end;
39279cc3 4633
b03ebd99
NB
4634 if (IS_ALIGNED(offset, blocksize) &&
4635 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4636 goto out;
9703fefe 4637
8b62f87b
JB
4638 block_start = round_down(from, blocksize);
4639 block_end = block_start + blocksize - 1;
4640
36ea6f3e
NB
4641 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved,
4642 block_start, blocksize);
6d4572a9 4643 if (ret < 0) {
38d37aa9
QW
4644 if (btrfs_check_nocow_lock(BTRFS_I(inode), block_start,
4645 &write_bytes) > 0) {
6d4572a9
QW
4646 /* For nocow case, no need to reserve data space */
4647 only_release_metadata = true;
4648 } else {
4649 goto out;
4650 }
4651 }
4652 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize);
4653 if (ret < 0) {
4654 if (!only_release_metadata)
25ce28ca
NB
4655 btrfs_free_reserved_data_space(BTRFS_I(inode),
4656 data_reserved, block_start, blocksize);
6d4572a9
QW
4657 goto out;
4658 }
211c17f5 4659again:
3b16a4e3 4660 page = find_or_create_page(mapping, index, mask);
5d5e103a 4661 if (!page) {
86d52921 4662 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
43b18595 4663 block_start, blocksize, true);
8702ba93 4664 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
ac6a2b36 4665 ret = -ENOMEM;
39279cc3 4666 goto out;
5d5e103a 4667 }
e6dcd2dc 4668
39279cc3 4669 if (!PageUptodate(page)) {
9ebefb18 4670 ret = btrfs_readpage(NULL, page);
39279cc3 4671 lock_page(page);
211c17f5
CM
4672 if (page->mapping != mapping) {
4673 unlock_page(page);
09cbfeaf 4674 put_page(page);
211c17f5
CM
4675 goto again;
4676 }
39279cc3
CM
4677 if (!PageUptodate(page)) {
4678 ret = -EIO;
89642229 4679 goto out_unlock;
39279cc3
CM
4680 }
4681 }
211c17f5 4682 wait_on_page_writeback(page);
e6dcd2dc 4683
9703fefe 4684 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4685 set_page_extent_mapped(page);
4686
c3504372 4687 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), block_start);
e6dcd2dc 4688 if (ordered) {
9703fefe 4689 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4690 &cached_state);
e6dcd2dc 4691 unlock_page(page);
09cbfeaf 4692 put_page(page);
c0a43603 4693 btrfs_start_ordered_extent(ordered, 1);
e6dcd2dc
CM
4694 btrfs_put_ordered_extent(ordered);
4695 goto again;
4696 }
4697
9703fefe 4698 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
e182163d
OS
4699 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4700 0, 0, &cached_state);
5d5e103a 4701
c2566f22 4702 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), block_start, block_end, 0,
330a5827 4703 &cached_state);
9ed74f2d 4704 if (ret) {
9703fefe 4705 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4706 &cached_state);
9ed74f2d
JB
4707 goto out_unlock;
4708 }
4709
9703fefe 4710 if (offset != blocksize) {
2aaa6655 4711 if (!len)
9703fefe 4712 len = blocksize - offset;
e6dcd2dc 4713 kaddr = kmap(page);
2aaa6655 4714 if (front)
9703fefe
CR
4715 memset(kaddr + (block_start - page_offset(page)),
4716 0, offset);
2aaa6655 4717 else
9703fefe
CR
4718 memset(kaddr + (block_start - page_offset(page)) + offset,
4719 0, len);
e6dcd2dc
CM
4720 flush_dcache_page(page);
4721 kunmap(page);
4722 }
247e743c 4723 ClearPageChecked(page);
e6dcd2dc 4724 set_page_dirty(page);
e43bbe5e 4725 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
39279cc3 4726
6d4572a9
QW
4727 if (only_release_metadata)
4728 set_extent_bit(&BTRFS_I(inode)->io_tree, block_start,
3f6bb4ae 4729 block_end, EXTENT_NORESERVE, NULL, GFP_NOFS);
6d4572a9 4730
89642229 4731out_unlock:
6d4572a9
QW
4732 if (ret) {
4733 if (only_release_metadata)
4734 btrfs_delalloc_release_metadata(BTRFS_I(inode),
4735 blocksize, true);
4736 else
86d52921 4737 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
6d4572a9
QW
4738 block_start, blocksize, true);
4739 }
8702ba93 4740 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
39279cc3 4741 unlock_page(page);
09cbfeaf 4742 put_page(page);
39279cc3 4743out:
6d4572a9 4744 if (only_release_metadata)
38d37aa9 4745 btrfs_check_nocow_unlock(BTRFS_I(inode));
364ecf36 4746 extent_changeset_free(data_reserved);
39279cc3
CM
4747 return ret;
4748}
4749
16e7549f
JB
4750static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4751 u64 offset, u64 len)
4752{
0b246afa 4753 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4754 struct btrfs_trans_handle *trans;
4755 int ret;
4756
4757 /*
4758 * Still need to make sure the inode looks like it's been updated so
4759 * that any holes get logged if we fsync.
4760 */
0b246afa
JM
4761 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4762 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4763 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4764 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4765 return 0;
4766 }
4767
4768 /*
4769 * 1 - for the one we're dropping
4770 * 1 - for the one we're adding
4771 * 1 - for updating the inode.
4772 */
4773 trans = btrfs_start_transaction(root, 3);
4774 if (IS_ERR(trans))
4775 return PTR_ERR(trans);
4776
4777 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4778 if (ret) {
66642832 4779 btrfs_abort_transaction(trans, ret);
3a45bb20 4780 btrfs_end_transaction(trans);
16e7549f
JB
4781 return ret;
4782 }
4783
f85b7379
DS
4784 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4785 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4786 if (ret)
66642832 4787 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4788 else
4789 btrfs_update_inode(trans, root, inode);
3a45bb20 4790 btrfs_end_transaction(trans);
16e7549f
JB
4791 return ret;
4792}
4793
695a0d0d
JB
4794/*
4795 * This function puts in dummy file extents for the area we're creating a hole
4796 * for. So if we are truncating this file to a larger size we need to insert
4797 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4798 * the range between oldsize and size
4799 */
a41ad394 4800int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4801{
0b246afa 4802 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4803 struct btrfs_root *root = BTRFS_I(inode)->root;
4804 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4805 struct extent_map *em = NULL;
2ac55d41 4806 struct extent_state *cached_state = NULL;
5dc562c5 4807 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4808 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4809 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4810 u64 last_byte;
4811 u64 cur_offset;
4812 u64 hole_size;
9ed74f2d 4813 int err = 0;
39279cc3 4814
a71754fc 4815 /*
9703fefe
CR
4816 * If our size started in the middle of a block we need to zero out the
4817 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4818 * expose stale data.
4819 */
9703fefe 4820 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4821 if (err)
4822 return err;
4823
9036c102
YZ
4824 if (size <= hole_start)
4825 return 0;
4826
b272ae22 4827 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start,
23d31bd4 4828 block_end - 1, &cached_state);
9036c102
YZ
4829 cur_offset = hole_start;
4830 while (1) {
fc4f21b1 4831 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
39b07b5d 4832 block_end - cur_offset);
79787eaa
JM
4833 if (IS_ERR(em)) {
4834 err = PTR_ERR(em);
f2767956 4835 em = NULL;
79787eaa
JM
4836 break;
4837 }
9036c102 4838 last_byte = min(extent_map_end(em), block_end);
0b246afa 4839 last_byte = ALIGN(last_byte, fs_info->sectorsize);
9ddc959e
JB
4840 hole_size = last_byte - cur_offset;
4841
8082510e 4842 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4843 struct extent_map *hole_em;
9ed74f2d 4844
16e7549f
JB
4845 err = maybe_insert_hole(root, inode, cur_offset,
4846 hole_size);
4847 if (err)
3893e33b 4848 break;
9ddc959e
JB
4849
4850 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4851 cur_offset, hole_size);
4852 if (err)
4853 break;
4854
dcdbc059 4855 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
4856 cur_offset + hole_size - 1, 0);
4857 hole_em = alloc_extent_map();
4858 if (!hole_em) {
4859 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4860 &BTRFS_I(inode)->runtime_flags);
4861 goto next;
4862 }
4863 hole_em->start = cur_offset;
4864 hole_em->len = hole_size;
4865 hole_em->orig_start = cur_offset;
8082510e 4866
5dc562c5
JB
4867 hole_em->block_start = EXTENT_MAP_HOLE;
4868 hole_em->block_len = 0;
b4939680 4869 hole_em->orig_block_len = 0;
cc95bef6 4870 hole_em->ram_bytes = hole_size;
5dc562c5 4871 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 4872 hole_em->generation = fs_info->generation;
8082510e 4873
5dc562c5
JB
4874 while (1) {
4875 write_lock(&em_tree->lock);
09a2a8f9 4876 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4877 write_unlock(&em_tree->lock);
4878 if (err != -EEXIST)
4879 break;
dcdbc059
NB
4880 btrfs_drop_extent_cache(BTRFS_I(inode),
4881 cur_offset,
5dc562c5
JB
4882 cur_offset +
4883 hole_size - 1, 0);
4884 }
4885 free_extent_map(hole_em);
9ddc959e
JB
4886 } else {
4887 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4888 cur_offset, hole_size);
4889 if (err)
4890 break;
9036c102 4891 }
16e7549f 4892next:
9036c102 4893 free_extent_map(em);
a22285a6 4894 em = NULL;
9036c102 4895 cur_offset = last_byte;
8082510e 4896 if (cur_offset >= block_end)
9036c102
YZ
4897 break;
4898 }
a22285a6 4899 free_extent_map(em);
e43bbe5e 4900 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
4901 return err;
4902}
39279cc3 4903
3972f260 4904static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4905{
f4a2f4c5
MX
4906 struct btrfs_root *root = BTRFS_I(inode)->root;
4907 struct btrfs_trans_handle *trans;
a41ad394 4908 loff_t oldsize = i_size_read(inode);
3972f260
ES
4909 loff_t newsize = attr->ia_size;
4910 int mask = attr->ia_valid;
8082510e
YZ
4911 int ret;
4912
3972f260
ES
4913 /*
4914 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4915 * special case where we need to update the times despite not having
4916 * these flags set. For all other operations the VFS set these flags
4917 * explicitly if it wants a timestamp update.
4918 */
dff6efc3
CH
4919 if (newsize != oldsize) {
4920 inode_inc_iversion(inode);
4921 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4922 inode->i_ctime = inode->i_mtime =
c2050a45 4923 current_time(inode);
dff6efc3 4924 }
3972f260 4925
a41ad394 4926 if (newsize > oldsize) {
9ea24bbe 4927 /*
ea14b57f 4928 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
4929 * This is to ensure the snapshot captures a fully consistent
4930 * state of this file - if the snapshot captures this expanding
4931 * truncation, it must capture all writes that happened before
4932 * this truncation.
4933 */
dcc3eb96 4934 btrfs_drew_write_lock(&root->snapshot_lock);
a41ad394 4935 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 4936 if (ret) {
dcc3eb96 4937 btrfs_drew_write_unlock(&root->snapshot_lock);
8082510e 4938 return ret;
9ea24bbe 4939 }
8082510e 4940
f4a2f4c5 4941 trans = btrfs_start_transaction(root, 1);
9ea24bbe 4942 if (IS_ERR(trans)) {
dcc3eb96 4943 btrfs_drew_write_unlock(&root->snapshot_lock);
f4a2f4c5 4944 return PTR_ERR(trans);
9ea24bbe 4945 }
f4a2f4c5
MX
4946
4947 i_size_write(inode, newsize);
d923afe9 4948 btrfs_inode_safe_disk_i_size_write(inode, 0);
27772b68 4949 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 4950 ret = btrfs_update_inode(trans, root, inode);
dcc3eb96 4951 btrfs_drew_write_unlock(&root->snapshot_lock);
3a45bb20 4952 btrfs_end_transaction(trans);
a41ad394 4953 } else {
8082510e 4954
a41ad394
JB
4955 /*
4956 * We're truncating a file that used to have good data down to
1fd4033d
NB
4957 * zero. Make sure any new writes to the file get on disk
4958 * on close.
a41ad394
JB
4959 */
4960 if (newsize == 0)
1fd4033d 4961 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
72ac3c0d 4962 &BTRFS_I(inode)->runtime_flags);
8082510e 4963
a41ad394 4964 truncate_setsize(inode, newsize);
2e60a51e 4965
2e60a51e 4966 inode_dio_wait(inode);
2e60a51e 4967
213e8c55 4968 ret = btrfs_truncate(inode, newsize == oldsize);
7f4f6e0a
JB
4969 if (ret && inode->i_nlink) {
4970 int err;
4971
4972 /*
f7e9e8fc
OS
4973 * Truncate failed, so fix up the in-memory size. We
4974 * adjusted disk_i_size down as we removed extents, so
4975 * wait for disk_i_size to be stable and then update the
4976 * in-memory size to match.
7f4f6e0a 4977 */
f7e9e8fc 4978 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
7f4f6e0a 4979 if (err)
f7e9e8fc
OS
4980 return err;
4981 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
7f4f6e0a 4982 }
8082510e
YZ
4983 }
4984
a41ad394 4985 return ret;
8082510e
YZ
4986}
4987
9036c102
YZ
4988static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4989{
2b0143b5 4990 struct inode *inode = d_inode(dentry);
b83cc969 4991 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4992 int err;
39279cc3 4993
b83cc969
LZ
4994 if (btrfs_root_readonly(root))
4995 return -EROFS;
4996
31051c85 4997 err = setattr_prepare(dentry, attr);
9036c102
YZ
4998 if (err)
4999 return err;
2bf5a725 5000
5a3f23d5 5001 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5002 err = btrfs_setsize(inode, attr);
8082510e
YZ
5003 if (err)
5004 return err;
39279cc3 5005 }
9036c102 5006
1025774c
CH
5007 if (attr->ia_valid) {
5008 setattr_copy(inode, attr);
0c4d2d95 5009 inode_inc_iversion(inode);
22c44fe6 5010 err = btrfs_dirty_inode(inode);
1025774c 5011
22c44fe6 5012 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5013 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5014 }
33268eaf 5015
39279cc3
CM
5016 return err;
5017}
61295eb8 5018
131e404a
FDBM
5019/*
5020 * While truncating the inode pages during eviction, we get the VFS calling
5021 * btrfs_invalidatepage() against each page of the inode. This is slow because
5022 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5023 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5024 * extent_state structures over and over, wasting lots of time.
5025 *
5026 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5027 * those expensive operations on a per page basis and do only the ordered io
5028 * finishing, while we release here the extent_map and extent_state structures,
5029 * without the excessive merging and splitting.
5030 */
5031static void evict_inode_truncate_pages(struct inode *inode)
5032{
5033 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5034 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5035 struct rb_node *node;
5036
5037 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5038 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5039
5040 write_lock(&map_tree->lock);
07e1ce09 5041 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
131e404a
FDBM
5042 struct extent_map *em;
5043
07e1ce09 5044 node = rb_first_cached(&map_tree->map);
131e404a 5045 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5046 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5047 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5048 remove_extent_mapping(map_tree, em);
5049 free_extent_map(em);
7064dd5c
FM
5050 if (need_resched()) {
5051 write_unlock(&map_tree->lock);
5052 cond_resched();
5053 write_lock(&map_tree->lock);
5054 }
131e404a
FDBM
5055 }
5056 write_unlock(&map_tree->lock);
5057
6ca07097
FM
5058 /*
5059 * Keep looping until we have no more ranges in the io tree.
ba206a02
MWO
5060 * We can have ongoing bios started by readahead that have
5061 * their endio callback (extent_io.c:end_bio_extent_readpage)
9c6429d9
FM
5062 * still in progress (unlocked the pages in the bio but did not yet
5063 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5064 * ranges can still be locked and eviction started because before
5065 * submitting those bios, which are executed by a separate task (work
5066 * queue kthread), inode references (inode->i_count) were not taken
5067 * (which would be dropped in the end io callback of each bio).
5068 * Therefore here we effectively end up waiting for those bios and
5069 * anyone else holding locked ranges without having bumped the inode's
5070 * reference count - if we don't do it, when they access the inode's
5071 * io_tree to unlock a range it may be too late, leading to an
5072 * use-after-free issue.
5073 */
131e404a
FDBM
5074 spin_lock(&io_tree->lock);
5075 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5076 struct extent_state *state;
5077 struct extent_state *cached_state = NULL;
6ca07097
FM
5078 u64 start;
5079 u64 end;
421f0922 5080 unsigned state_flags;
131e404a
FDBM
5081
5082 node = rb_first(&io_tree->state);
5083 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5084 start = state->start;
5085 end = state->end;
421f0922 5086 state_flags = state->state;
131e404a
FDBM
5087 spin_unlock(&io_tree->lock);
5088
ff13db41 5089 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5090
5091 /*
5092 * If still has DELALLOC flag, the extent didn't reach disk,
5093 * and its reserved space won't be freed by delayed_ref.
5094 * So we need to free its reserved space here.
5095 * (Refer to comment in btrfs_invalidatepage, case 2)
5096 *
5097 * Note, end is the bytenr of last byte, so we need + 1 here.
5098 */
421f0922 5099 if (state_flags & EXTENT_DELALLOC)
8b8a979f
NB
5100 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5101 end - start + 1);
b9d0b389 5102
6ca07097 5103 clear_extent_bit(io_tree, start, end,
e182163d
OS
5104 EXTENT_LOCKED | EXTENT_DELALLOC |
5105 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5106 &cached_state);
131e404a 5107
7064dd5c 5108 cond_resched();
131e404a
FDBM
5109 spin_lock(&io_tree->lock);
5110 }
5111 spin_unlock(&io_tree->lock);
5112}
5113
4b9d7b59 5114static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
ad80cf50 5115 struct btrfs_block_rsv *rsv)
4b9d7b59
OS
5116{
5117 struct btrfs_fs_info *fs_info = root->fs_info;
5118 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d3984c90 5119 struct btrfs_trans_handle *trans;
2bd36e7b 5120 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
d3984c90 5121 int ret;
4b9d7b59 5122
d3984c90
JB
5123 /*
5124 * Eviction should be taking place at some place safe because of our
5125 * delayed iputs. However the normal flushing code will run delayed
5126 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5127 *
5128 * We reserve the delayed_refs_extra here again because we can't use
5129 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5130 * above. We reserve our extra bit here because we generate a ton of
5131 * delayed refs activity by truncating.
5132 *
5133 * If we cannot make our reservation we'll attempt to steal from the
5134 * global reserve, because we really want to be able to free up space.
5135 */
5136 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5137 BTRFS_RESERVE_FLUSH_EVICT);
5138 if (ret) {
4b9d7b59
OS
5139 /*
5140 * Try to steal from the global reserve if there is space for
5141 * it.
5142 */
d3984c90
JB
5143 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5144 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5145 btrfs_warn(fs_info,
5146 "could not allocate space for delete; will truncate on mount");
5147 return ERR_PTR(-ENOSPC);
5148 }
5149 delayed_refs_extra = 0;
5150 }
4b9d7b59 5151
d3984c90
JB
5152 trans = btrfs_join_transaction(root);
5153 if (IS_ERR(trans))
5154 return trans;
5155
5156 if (delayed_refs_extra) {
5157 trans->block_rsv = &fs_info->trans_block_rsv;
5158 trans->bytes_reserved = delayed_refs_extra;
5159 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5160 delayed_refs_extra, 1);
4b9d7b59 5161 }
d3984c90 5162 return trans;
4b9d7b59
OS
5163}
5164
bd555975 5165void btrfs_evict_inode(struct inode *inode)
39279cc3 5166{
0b246afa 5167 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5168 struct btrfs_trans_handle *trans;
5169 struct btrfs_root *root = BTRFS_I(inode)->root;
4b9d7b59 5170 struct btrfs_block_rsv *rsv;
39279cc3
CM
5171 int ret;
5172
1abe9b8a 5173 trace_btrfs_inode_evict(inode);
5174
3d48d981 5175 if (!root) {
e8f1bc14 5176 clear_inode(inode);
3d48d981
NB
5177 return;
5178 }
5179
131e404a
FDBM
5180 evict_inode_truncate_pages(inode);
5181
69e9c6c6
SB
5182 if (inode->i_nlink &&
5183 ((btrfs_root_refs(&root->root_item) != 0 &&
5184 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5185 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5186 goto no_delete;
5187
27919067 5188 if (is_bad_inode(inode))
39279cc3 5189 goto no_delete;
5f39d397 5190
7ab7956e 5191 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5192
7b40b695 5193 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
c71bf099 5194 goto no_delete;
c71bf099 5195
76dda93c 5196 if (inode->i_nlink > 0) {
69e9c6c6
SB
5197 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5198 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5199 goto no_delete;
5200 }
5201
aa79021f 5202 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
27919067 5203 if (ret)
0e8c36a9 5204 goto no_delete;
0e8c36a9 5205
2ff7e61e 5206 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
27919067 5207 if (!rsv)
4289a667 5208 goto no_delete;
2bd36e7b 5209 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
ca7e70f5 5210 rsv->failfast = 1;
4289a667 5211
6ef06d27 5212 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5213
8082510e 5214 while (1) {
ad80cf50 5215 trans = evict_refill_and_join(root, rsv);
27919067
OS
5216 if (IS_ERR(trans))
5217 goto free_rsv;
7b128766 5218
4289a667
JB
5219 trans->block_rsv = rsv;
5220
d68fc57b 5221 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
27919067
OS
5222 trans->block_rsv = &fs_info->trans_block_rsv;
5223 btrfs_end_transaction(trans);
5224 btrfs_btree_balance_dirty(fs_info);
5225 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5226 goto free_rsv;
5227 else if (!ret)
8082510e 5228 break;
8082510e 5229 }
5f39d397 5230
4ef31a45 5231 /*
27919067
OS
5232 * Errors here aren't a big deal, it just means we leave orphan items in
5233 * the tree. They will be cleaned up on the next mount. If the inode
5234 * number gets reused, cleanup deletes the orphan item without doing
5235 * anything, and unlink reuses the existing orphan item.
5236 *
5237 * If it turns out that we are dropping too many of these, we might want
5238 * to add a mechanism for retrying these after a commit.
4ef31a45 5239 */
ad80cf50 5240 trans = evict_refill_and_join(root, rsv);
27919067
OS
5241 if (!IS_ERR(trans)) {
5242 trans->block_rsv = rsv;
5243 btrfs_orphan_del(trans, BTRFS_I(inode));
5244 trans->block_rsv = &fs_info->trans_block_rsv;
5245 btrfs_end_transaction(trans);
5246 }
54aa1f4d 5247
0b246afa 5248 if (!(root == fs_info->tree_root ||
581bb050 5249 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5250 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5251
27919067
OS
5252free_rsv:
5253 btrfs_free_block_rsv(fs_info, rsv);
39279cc3 5254no_delete:
27919067
OS
5255 /*
5256 * If we didn't successfully delete, the orphan item will still be in
5257 * the tree and we'll retry on the next mount. Again, we might also want
5258 * to retry these periodically in the future.
5259 */
f48d1cf5 5260 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5261 clear_inode(inode);
39279cc3
CM
5262}
5263
5264/*
6bf9e4bd
QW
5265 * Return the key found in the dir entry in the location pointer, fill @type
5266 * with BTRFS_FT_*, and return 0.
5267 *
005d6712
SY
5268 * If no dir entries were found, returns -ENOENT.
5269 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3
CM
5270 */
5271static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
6bf9e4bd 5272 struct btrfs_key *location, u8 *type)
39279cc3
CM
5273{
5274 const char *name = dentry->d_name.name;
5275 int namelen = dentry->d_name.len;
5276 struct btrfs_dir_item *di;
5277 struct btrfs_path *path;
5278 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5279 int ret = 0;
39279cc3
CM
5280
5281 path = btrfs_alloc_path();
d8926bb3
MF
5282 if (!path)
5283 return -ENOMEM;
3954401f 5284
f85b7379
DS
5285 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5286 name, namelen, 0);
3cf5068f
LB
5287 if (IS_ERR_OR_NULL(di)) {
5288 ret = di ? PTR_ERR(di) : -ENOENT;
005d6712
SY
5289 goto out;
5290 }
d397712b 5291
5f39d397 5292 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5293 if (location->type != BTRFS_INODE_ITEM_KEY &&
5294 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5295 ret = -EUCLEAN;
56a0e706
LB
5296 btrfs_warn(root->fs_info,
5297"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5298 __func__, name, btrfs_ino(BTRFS_I(dir)),
5299 location->objectid, location->type, location->offset);
56a0e706 5300 }
6bf9e4bd
QW
5301 if (!ret)
5302 *type = btrfs_dir_type(path->nodes[0], di);
39279cc3 5303out:
39279cc3
CM
5304 btrfs_free_path(path);
5305 return ret;
5306}
5307
5308/*
5309 * when we hit a tree root in a directory, the btrfs part of the inode
5310 * needs to be changed to reflect the root directory of the tree root. This
5311 * is kind of like crossing a mount point.
5312 */
2ff7e61e 5313static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5314 struct inode *dir,
5315 struct dentry *dentry,
5316 struct btrfs_key *location,
5317 struct btrfs_root **sub_root)
39279cc3 5318{
4df27c4d
YZ
5319 struct btrfs_path *path;
5320 struct btrfs_root *new_root;
5321 struct btrfs_root_ref *ref;
5322 struct extent_buffer *leaf;
1d4c08e0 5323 struct btrfs_key key;
4df27c4d
YZ
5324 int ret;
5325 int err = 0;
39279cc3 5326
4df27c4d
YZ
5327 path = btrfs_alloc_path();
5328 if (!path) {
5329 err = -ENOMEM;
5330 goto out;
5331 }
39279cc3 5332
4df27c4d 5333 err = -ENOENT;
1d4c08e0
DS
5334 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5335 key.type = BTRFS_ROOT_REF_KEY;
5336 key.offset = location->objectid;
5337
0b246afa 5338 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5339 if (ret) {
5340 if (ret < 0)
5341 err = ret;
5342 goto out;
5343 }
39279cc3 5344
4df27c4d
YZ
5345 leaf = path->nodes[0];
5346 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5347 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5348 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5349 goto out;
39279cc3 5350
4df27c4d
YZ
5351 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5352 (unsigned long)(ref + 1),
5353 dentry->d_name.len);
5354 if (ret)
5355 goto out;
5356
b3b4aa74 5357 btrfs_release_path(path);
4df27c4d 5358
56e9357a 5359 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
4df27c4d
YZ
5360 if (IS_ERR(new_root)) {
5361 err = PTR_ERR(new_root);
5362 goto out;
5363 }
5364
4df27c4d
YZ
5365 *sub_root = new_root;
5366 location->objectid = btrfs_root_dirid(&new_root->root_item);
5367 location->type = BTRFS_INODE_ITEM_KEY;
5368 location->offset = 0;
5369 err = 0;
5370out:
5371 btrfs_free_path(path);
5372 return err;
39279cc3
CM
5373}
5374
5d4f98a2
YZ
5375static void inode_tree_add(struct inode *inode)
5376{
5377 struct btrfs_root *root = BTRFS_I(inode)->root;
5378 struct btrfs_inode *entry;
03e860bd
FNP
5379 struct rb_node **p;
5380 struct rb_node *parent;
cef21937 5381 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5382 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5383
1d3382cb 5384 if (inode_unhashed(inode))
76dda93c 5385 return;
e1409cef 5386 parent = NULL;
5d4f98a2 5387 spin_lock(&root->inode_lock);
e1409cef 5388 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5389 while (*p) {
5390 parent = *p;
5391 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5392
37508515 5393 if (ino < btrfs_ino(entry))
03e860bd 5394 p = &parent->rb_left;
37508515 5395 else if (ino > btrfs_ino(entry))
03e860bd 5396 p = &parent->rb_right;
5d4f98a2
YZ
5397 else {
5398 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5399 (I_WILL_FREE | I_FREEING)));
cef21937 5400 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5401 RB_CLEAR_NODE(parent);
5402 spin_unlock(&root->inode_lock);
cef21937 5403 return;
5d4f98a2
YZ
5404 }
5405 }
cef21937
FDBM
5406 rb_link_node(new, parent, p);
5407 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5408 spin_unlock(&root->inode_lock);
5409}
5410
b79b7249 5411static void inode_tree_del(struct btrfs_inode *inode)
5d4f98a2 5412{
b79b7249 5413 struct btrfs_root *root = inode->root;
76dda93c 5414 int empty = 0;
5d4f98a2 5415
03e860bd 5416 spin_lock(&root->inode_lock);
b79b7249
NB
5417 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5418 rb_erase(&inode->rb_node, &root->inode_tree);
5419 RB_CLEAR_NODE(&inode->rb_node);
76dda93c 5420 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5421 }
03e860bd 5422 spin_unlock(&root->inode_lock);
76dda93c 5423
69e9c6c6 5424 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5425 spin_lock(&root->inode_lock);
5426 empty = RB_EMPTY_ROOT(&root->inode_tree);
5427 spin_unlock(&root->inode_lock);
5428 if (empty)
5429 btrfs_add_dead_root(root);
5430 }
5431}
5432
5d4f98a2 5433
e02119d5
CM
5434static int btrfs_init_locked_inode(struct inode *inode, void *p)
5435{
5436 struct btrfs_iget_args *args = p;
0202e83f
DS
5437
5438 inode->i_ino = args->ino;
5439 BTRFS_I(inode)->location.objectid = args->ino;
5440 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5441 BTRFS_I(inode)->location.offset = 0;
5c8fd99f
JB
5442 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5443 BUG_ON(args->root && !BTRFS_I(inode)->root);
39279cc3
CM
5444 return 0;
5445}
5446
5447static int btrfs_find_actor(struct inode *inode, void *opaque)
5448{
5449 struct btrfs_iget_args *args = opaque;
0202e83f
DS
5450
5451 return args->ino == BTRFS_I(inode)->location.objectid &&
d397712b 5452 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5453}
5454
0202e83f 5455static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5d4f98a2 5456 struct btrfs_root *root)
39279cc3
CM
5457{
5458 struct inode *inode;
5459 struct btrfs_iget_args args;
0202e83f 5460 unsigned long hashval = btrfs_inode_hash(ino, root);
778ba82b 5461
0202e83f 5462 args.ino = ino;
39279cc3
CM
5463 args.root = root;
5464
778ba82b 5465 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5466 btrfs_init_locked_inode,
5467 (void *)&args);
5468 return inode;
5469}
5470
4c66e0d4 5471/*
0202e83f 5472 * Get an inode object given its inode number and corresponding root.
4c66e0d4
DS
5473 * Path can be preallocated to prevent recursing back to iget through
5474 * allocator. NULL is also valid but may require an additional allocation
5475 * later.
1a54ef8c 5476 */
0202e83f 5477struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
4c66e0d4 5478 struct btrfs_root *root, struct btrfs_path *path)
1a54ef8c
BR
5479{
5480 struct inode *inode;
5481
0202e83f 5482 inode = btrfs_iget_locked(s, ino, root);
1a54ef8c 5483 if (!inode)
5d4f98a2 5484 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5485
5486 if (inode->i_state & I_NEW) {
67710892
FM
5487 int ret;
5488
4222ea71 5489 ret = btrfs_read_locked_inode(inode, path);
9bc2ceff 5490 if (!ret) {
1748f843
MF
5491 inode_tree_add(inode);
5492 unlock_new_inode(inode);
1748f843 5493 } else {
f5b3a417
AV
5494 iget_failed(inode);
5495 /*
5496 * ret > 0 can come from btrfs_search_slot called by
5497 * btrfs_read_locked_inode, this means the inode item
5498 * was not found.
5499 */
5500 if (ret > 0)
5501 ret = -ENOENT;
5502 inode = ERR_PTR(ret);
1748f843
MF
5503 }
5504 }
5505
1a54ef8c
BR
5506 return inode;
5507}
5508
0202e83f 5509struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
4222ea71 5510{
0202e83f 5511 return btrfs_iget_path(s, ino, root, NULL);
4222ea71
FM
5512}
5513
4df27c4d
YZ
5514static struct inode *new_simple_dir(struct super_block *s,
5515 struct btrfs_key *key,
5516 struct btrfs_root *root)
5517{
5518 struct inode *inode = new_inode(s);
5519
5520 if (!inode)
5521 return ERR_PTR(-ENOMEM);
5522
5c8fd99f 5523 BTRFS_I(inode)->root = btrfs_grab_root(root);
4df27c4d 5524 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5525 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5526
5527 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
6bb6b514
OS
5528 /*
5529 * We only need lookup, the rest is read-only and there's no inode
5530 * associated with the dentry
5531 */
5532 inode->i_op = &simple_dir_inode_operations;
1fdf4194 5533 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5534 inode->i_fop = &simple_dir_operations;
5535 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5536 inode->i_mtime = current_time(inode);
9cc97d64 5537 inode->i_atime = inode->i_mtime;
5538 inode->i_ctime = inode->i_mtime;
d3c6be6f 5539 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5540
5541 return inode;
5542}
5543
6bf9e4bd
QW
5544static inline u8 btrfs_inode_type(struct inode *inode)
5545{
5546 /*
5547 * Compile-time asserts that generic FT_* types still match
5548 * BTRFS_FT_* types
5549 */
5550 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5551 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5552 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5553 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5554 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5555 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5556 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5557 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5558
5559 return fs_umode_to_ftype(inode->i_mode);
5560}
5561
3de4586c 5562struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5563{
0b246afa 5564 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5565 struct inode *inode;
4df27c4d 5566 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5567 struct btrfs_root *sub_root = root;
5568 struct btrfs_key location;
6bf9e4bd 5569 u8 di_type = 0;
b4aff1f8 5570 int ret = 0;
39279cc3
CM
5571
5572 if (dentry->d_name.len > BTRFS_NAME_LEN)
5573 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5574
6bf9e4bd 5575 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
39279cc3
CM
5576 if (ret < 0)
5577 return ERR_PTR(ret);
5f39d397 5578
4df27c4d 5579 if (location.type == BTRFS_INODE_ITEM_KEY) {
0202e83f 5580 inode = btrfs_iget(dir->i_sb, location.objectid, root);
6bf9e4bd
QW
5581 if (IS_ERR(inode))
5582 return inode;
5583
5584 /* Do extra check against inode mode with di_type */
5585 if (btrfs_inode_type(inode) != di_type) {
5586 btrfs_crit(fs_info,
5587"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5588 inode->i_mode, btrfs_inode_type(inode),
5589 di_type);
5590 iput(inode);
5591 return ERR_PTR(-EUCLEAN);
5592 }
4df27c4d
YZ
5593 return inode;
5594 }
5595
2ff7e61e 5596 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5597 &location, &sub_root);
5598 if (ret < 0) {
5599 if (ret != -ENOENT)
5600 inode = ERR_PTR(ret);
5601 else
5602 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5603 } else {
0202e83f 5604 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
39279cc3 5605 }
8727002f 5606 if (root != sub_root)
00246528 5607 btrfs_put_root(sub_root);
76dda93c 5608
34d19bad 5609 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5610 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5611 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5612 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5613 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5614 if (ret) {
5615 iput(inode);
66b4ffd1 5616 inode = ERR_PTR(ret);
01cd3367 5617 }
c71bf099
YZ
5618 }
5619
3de4586c
CM
5620 return inode;
5621}
5622
fe15ce44 5623static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5624{
5625 struct btrfs_root *root;
2b0143b5 5626 struct inode *inode = d_inode(dentry);
76dda93c 5627
848cce0d 5628 if (!inode && !IS_ROOT(dentry))
2b0143b5 5629 inode = d_inode(dentry->d_parent);
76dda93c 5630
848cce0d
LZ
5631 if (inode) {
5632 root = BTRFS_I(inode)->root;
efefb143
YZ
5633 if (btrfs_root_refs(&root->root_item) == 0)
5634 return 1;
848cce0d 5635
4a0cc7ca 5636 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5637 return 1;
efefb143 5638 }
76dda93c
YZ
5639 return 0;
5640}
5641
3de4586c 5642static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5643 unsigned int flags)
3de4586c 5644{
3837d208 5645 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5662344b 5646
3837d208
AV
5647 if (inode == ERR_PTR(-ENOENT))
5648 inode = NULL;
41d28bca 5649 return d_splice_alias(inode, dentry);
39279cc3
CM
5650}
5651
23b5ec74
JB
5652/*
5653 * All this infrastructure exists because dir_emit can fault, and we are holding
5654 * the tree lock when doing readdir. For now just allocate a buffer and copy
5655 * our information into that, and then dir_emit from the buffer. This is
5656 * similar to what NFS does, only we don't keep the buffer around in pagecache
5657 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5658 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5659 * tree lock.
5660 */
5661static int btrfs_opendir(struct inode *inode, struct file *file)
5662{
5663 struct btrfs_file_private *private;
5664
5665 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5666 if (!private)
5667 return -ENOMEM;
5668 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5669 if (!private->filldir_buf) {
5670 kfree(private);
5671 return -ENOMEM;
5672 }
5673 file->private_data = private;
5674 return 0;
5675}
5676
5677struct dir_entry {
5678 u64 ino;
5679 u64 offset;
5680 unsigned type;
5681 int name_len;
5682};
5683
5684static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5685{
5686 while (entries--) {
5687 struct dir_entry *entry = addr;
5688 char *name = (char *)(entry + 1);
5689
92d32170
DS
5690 ctx->pos = get_unaligned(&entry->offset);
5691 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5692 get_unaligned(&entry->ino),
5693 get_unaligned(&entry->type)))
23b5ec74 5694 return 1;
92d32170
DS
5695 addr += sizeof(struct dir_entry) +
5696 get_unaligned(&entry->name_len);
23b5ec74
JB
5697 ctx->pos++;
5698 }
5699 return 0;
5700}
5701
9cdda8d3 5702static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5703{
9cdda8d3 5704 struct inode *inode = file_inode(file);
39279cc3 5705 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5706 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5707 struct btrfs_dir_item *di;
5708 struct btrfs_key key;
5f39d397 5709 struct btrfs_key found_key;
39279cc3 5710 struct btrfs_path *path;
23b5ec74 5711 void *addr;
16cdcec7
MX
5712 struct list_head ins_list;
5713 struct list_head del_list;
39279cc3 5714 int ret;
5f39d397 5715 struct extent_buffer *leaf;
39279cc3 5716 int slot;
5f39d397
CM
5717 char *name_ptr;
5718 int name_len;
23b5ec74
JB
5719 int entries = 0;
5720 int total_len = 0;
02dbfc99 5721 bool put = false;
c2951f32 5722 struct btrfs_key location;
5f39d397 5723
9cdda8d3
AV
5724 if (!dir_emit_dots(file, ctx))
5725 return 0;
5726
49593bfa 5727 path = btrfs_alloc_path();
16cdcec7
MX
5728 if (!path)
5729 return -ENOMEM;
ff5714cc 5730
23b5ec74 5731 addr = private->filldir_buf;
e4058b54 5732 path->reada = READA_FORWARD;
49593bfa 5733
c2951f32
JM
5734 INIT_LIST_HEAD(&ins_list);
5735 INIT_LIST_HEAD(&del_list);
5736 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5737
23b5ec74 5738again:
c2951f32 5739 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5740 key.offset = ctx->pos;
4a0cc7ca 5741 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5742
39279cc3
CM
5743 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5744 if (ret < 0)
5745 goto err;
49593bfa
DW
5746
5747 while (1) {
23b5ec74
JB
5748 struct dir_entry *entry;
5749
5f39d397 5750 leaf = path->nodes[0];
39279cc3 5751 slot = path->slots[0];
b9e03af0
LZ
5752 if (slot >= btrfs_header_nritems(leaf)) {
5753 ret = btrfs_next_leaf(root, path);
5754 if (ret < 0)
5755 goto err;
5756 else if (ret > 0)
5757 break;
5758 continue;
39279cc3 5759 }
3de4586c 5760
5f39d397
CM
5761 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5762
5763 if (found_key.objectid != key.objectid)
39279cc3 5764 break;
c2951f32 5765 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5766 break;
9cdda8d3 5767 if (found_key.offset < ctx->pos)
b9e03af0 5768 goto next;
c2951f32 5769 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5770 goto next;
39279cc3 5771 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
c2951f32 5772 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5773 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5774 PAGE_SIZE) {
5775 btrfs_release_path(path);
5776 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5777 if (ret)
5778 goto nopos;
5779 addr = private->filldir_buf;
5780 entries = 0;
5781 total_len = 0;
5782 goto again;
c2951f32 5783 }
23b5ec74
JB
5784
5785 entry = addr;
92d32170 5786 put_unaligned(name_len, &entry->name_len);
23b5ec74 5787 name_ptr = (char *)(entry + 1);
c2951f32
JM
5788 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5789 name_len);
7d157c3d 5790 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
92d32170 5791 &entry->type);
c2951f32 5792 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
5793 put_unaligned(location.objectid, &entry->ino);
5794 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
5795 entries++;
5796 addr += sizeof(struct dir_entry) + name_len;
5797 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
5798next:
5799 path->slots[0]++;
39279cc3 5800 }
23b5ec74
JB
5801 btrfs_release_path(path);
5802
5803 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5804 if (ret)
5805 goto nopos;
49593bfa 5806
d2fbb2b5 5807 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5808 if (ret)
bc4ef759
DS
5809 goto nopos;
5810
db62efbb
ZB
5811 /*
5812 * Stop new entries from being returned after we return the last
5813 * entry.
5814 *
5815 * New directory entries are assigned a strictly increasing
5816 * offset. This means that new entries created during readdir
5817 * are *guaranteed* to be seen in the future by that readdir.
5818 * This has broken buggy programs which operate on names as
5819 * they're returned by readdir. Until we re-use freed offsets
5820 * we have this hack to stop new entries from being returned
5821 * under the assumption that they'll never reach this huge
5822 * offset.
5823 *
5824 * This is being careful not to overflow 32bit loff_t unless the
5825 * last entry requires it because doing so has broken 32bit apps
5826 * in the past.
5827 */
c2951f32
JM
5828 if (ctx->pos >= INT_MAX)
5829 ctx->pos = LLONG_MAX;
5830 else
5831 ctx->pos = INT_MAX;
39279cc3
CM
5832nopos:
5833 ret = 0;
5834err:
02dbfc99
OS
5835 if (put)
5836 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5837 btrfs_free_path(path);
39279cc3
CM
5838 return ret;
5839}
5840
39279cc3 5841/*
54aa1f4d 5842 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5843 * inode changes. But, it is most likely to find the inode in cache.
5844 * FIXME, needs more benchmarking...there are no reasons other than performance
5845 * to keep or drop this code.
5846 */
48a3b636 5847static int btrfs_dirty_inode(struct inode *inode)
39279cc3 5848{
2ff7e61e 5849 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5850 struct btrfs_root *root = BTRFS_I(inode)->root;
5851 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5852 int ret;
5853
72ac3c0d 5854 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5855 return 0;
39279cc3 5856
7a7eaa40 5857 trans = btrfs_join_transaction(root);
22c44fe6
JB
5858 if (IS_ERR(trans))
5859 return PTR_ERR(trans);
8929ecfa
YZ
5860
5861 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5862 if (ret && ret == -ENOSPC) {
5863 /* whoops, lets try again with the full transaction */
3a45bb20 5864 btrfs_end_transaction(trans);
94b60442 5865 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5866 if (IS_ERR(trans))
5867 return PTR_ERR(trans);
8929ecfa 5868
94b60442 5869 ret = btrfs_update_inode(trans, root, inode);
94b60442 5870 }
3a45bb20 5871 btrfs_end_transaction(trans);
16cdcec7 5872 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 5873 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
5874
5875 return ret;
5876}
5877
5878/*
5879 * This is a copy of file_update_time. We need this so we can return error on
5880 * ENOSPC for updating the inode in the case of file write and mmap writes.
5881 */
95582b00 5882static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
e41f941a 5883 int flags)
22c44fe6 5884{
2bc55652 5885 struct btrfs_root *root = BTRFS_I(inode)->root;
3a8c7231 5886 bool dirty = flags & ~S_VERSION;
2bc55652
AB
5887
5888 if (btrfs_root_readonly(root))
5889 return -EROFS;
5890
e41f941a 5891 if (flags & S_VERSION)
3a8c7231 5892 dirty |= inode_maybe_inc_iversion(inode, dirty);
e41f941a
JB
5893 if (flags & S_CTIME)
5894 inode->i_ctime = *now;
5895 if (flags & S_MTIME)
5896 inode->i_mtime = *now;
5897 if (flags & S_ATIME)
5898 inode->i_atime = *now;
3a8c7231 5899 return dirty ? btrfs_dirty_inode(inode) : 0;
39279cc3
CM
5900}
5901
d352ac68
CM
5902/*
5903 * find the highest existing sequence number in a directory
5904 * and then set the in-memory index_cnt variable to reflect
5905 * free sequence numbers
5906 */
4c570655 5907static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 5908{
4c570655 5909 struct btrfs_root *root = inode->root;
aec7477b
JB
5910 struct btrfs_key key, found_key;
5911 struct btrfs_path *path;
5912 struct extent_buffer *leaf;
5913 int ret;
5914
4c570655 5915 key.objectid = btrfs_ino(inode);
962a298f 5916 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
5917 key.offset = (u64)-1;
5918
5919 path = btrfs_alloc_path();
5920 if (!path)
5921 return -ENOMEM;
5922
5923 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5924 if (ret < 0)
5925 goto out;
5926 /* FIXME: we should be able to handle this */
5927 if (ret == 0)
5928 goto out;
5929 ret = 0;
5930
5931 /*
5932 * MAGIC NUMBER EXPLANATION:
5933 * since we search a directory based on f_pos we have to start at 2
5934 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5935 * else has to start at 2
5936 */
5937 if (path->slots[0] == 0) {
4c570655 5938 inode->index_cnt = 2;
aec7477b
JB
5939 goto out;
5940 }
5941
5942 path->slots[0]--;
5943
5944 leaf = path->nodes[0];
5945 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5946
4c570655 5947 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 5948 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 5949 inode->index_cnt = 2;
aec7477b
JB
5950 goto out;
5951 }
5952
4c570655 5953 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
5954out:
5955 btrfs_free_path(path);
5956 return ret;
5957}
5958
d352ac68
CM
5959/*
5960 * helper to find a free sequence number in a given directory. This current
5961 * code is very simple, later versions will do smarter things in the btree
5962 */
877574e2 5963int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
5964{
5965 int ret = 0;
5966
877574e2
NB
5967 if (dir->index_cnt == (u64)-1) {
5968 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
5969 if (ret) {
5970 ret = btrfs_set_inode_index_count(dir);
5971 if (ret)
5972 return ret;
5973 }
aec7477b
JB
5974 }
5975
877574e2
NB
5976 *index = dir->index_cnt;
5977 dir->index_cnt++;
aec7477b
JB
5978
5979 return ret;
5980}
5981
b0d5d10f
CM
5982static int btrfs_insert_inode_locked(struct inode *inode)
5983{
5984 struct btrfs_iget_args args;
0202e83f
DS
5985
5986 args.ino = BTRFS_I(inode)->location.objectid;
b0d5d10f
CM
5987 args.root = BTRFS_I(inode)->root;
5988
5989 return insert_inode_locked4(inode,
5990 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5991 btrfs_find_actor, &args);
5992}
5993
19aee8de
AJ
5994/*
5995 * Inherit flags from the parent inode.
5996 *
5997 * Currently only the compression flags and the cow flags are inherited.
5998 */
5999static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6000{
6001 unsigned int flags;
6002
6003 if (!dir)
6004 return;
6005
6006 flags = BTRFS_I(dir)->flags;
6007
6008 if (flags & BTRFS_INODE_NOCOMPRESS) {
6009 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6010 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6011 } else if (flags & BTRFS_INODE_COMPRESS) {
6012 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6013 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6014 }
6015
6016 if (flags & BTRFS_INODE_NODATACOW) {
6017 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6018 if (S_ISREG(inode->i_mode))
6019 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6020 }
6021
7b6a221e 6022 btrfs_sync_inode_flags_to_i_flags(inode);
19aee8de
AJ
6023}
6024
39279cc3
CM
6025static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6026 struct btrfs_root *root,
aec7477b 6027 struct inode *dir,
9c58309d 6028 const char *name, int name_len,
175a4eb7
AV
6029 u64 ref_objectid, u64 objectid,
6030 umode_t mode, u64 *index)
39279cc3 6031{
0b246afa 6032 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6033 struct inode *inode;
5f39d397 6034 struct btrfs_inode_item *inode_item;
39279cc3 6035 struct btrfs_key *location;
5f39d397 6036 struct btrfs_path *path;
9c58309d
CM
6037 struct btrfs_inode_ref *ref;
6038 struct btrfs_key key[2];
6039 u32 sizes[2];
ef3b9af5 6040 int nitems = name ? 2 : 1;
9c58309d 6041 unsigned long ptr;
11a19a90 6042 unsigned int nofs_flag;
39279cc3 6043 int ret;
39279cc3 6044
5f39d397 6045 path = btrfs_alloc_path();
d8926bb3
MF
6046 if (!path)
6047 return ERR_PTR(-ENOMEM);
5f39d397 6048
11a19a90 6049 nofs_flag = memalloc_nofs_save();
0b246afa 6050 inode = new_inode(fs_info->sb);
11a19a90 6051 memalloc_nofs_restore(nofs_flag);
8fb27640
YS
6052 if (!inode) {
6053 btrfs_free_path(path);
39279cc3 6054 return ERR_PTR(-ENOMEM);
8fb27640 6055 }
39279cc3 6056
5762b5c9
FM
6057 /*
6058 * O_TMPFILE, set link count to 0, so that after this point,
6059 * we fill in an inode item with the correct link count.
6060 */
6061 if (!name)
6062 set_nlink(inode, 0);
6063
581bb050
LZ
6064 /*
6065 * we have to initialize this early, so we can reclaim the inode
6066 * number if we fail afterwards in this function.
6067 */
6068 inode->i_ino = objectid;
6069
ef3b9af5 6070 if (dir && name) {
1abe9b8a 6071 trace_btrfs_inode_request(dir);
6072
877574e2 6073 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6074 if (ret) {
8fb27640 6075 btrfs_free_path(path);
09771430 6076 iput(inode);
aec7477b 6077 return ERR_PTR(ret);
09771430 6078 }
ef3b9af5
FM
6079 } else if (dir) {
6080 *index = 0;
aec7477b
JB
6081 }
6082 /*
6083 * index_cnt is ignored for everything but a dir,
df6703e1 6084 * btrfs_set_inode_index_count has an explanation for the magic
aec7477b
JB
6085 * number
6086 */
6087 BTRFS_I(inode)->index_cnt = 2;
67de1176 6088 BTRFS_I(inode)->dir_index = *index;
5c8fd99f 6089 BTRFS_I(inode)->root = btrfs_grab_root(root);
e02119d5 6090 BTRFS_I(inode)->generation = trans->transid;
76195853 6091 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6092
5dc562c5
JB
6093 /*
6094 * We could have gotten an inode number from somebody who was fsynced
6095 * and then removed in this same transaction, so let's just set full
6096 * sync since it will be a full sync anyway and this will blow away the
6097 * old info in the log.
6098 */
6099 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6100
9c58309d 6101 key[0].objectid = objectid;
962a298f 6102 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6103 key[0].offset = 0;
6104
9c58309d 6105 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6106
6107 if (name) {
6108 /*
6109 * Start new inodes with an inode_ref. This is slightly more
6110 * efficient for small numbers of hard links since they will
6111 * be packed into one item. Extended refs will kick in if we
6112 * add more hard links than can fit in the ref item.
6113 */
6114 key[1].objectid = objectid;
962a298f 6115 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6116 key[1].offset = ref_objectid;
6117
6118 sizes[1] = name_len + sizeof(*ref);
6119 }
9c58309d 6120
b0d5d10f
CM
6121 location = &BTRFS_I(inode)->location;
6122 location->objectid = objectid;
6123 location->offset = 0;
962a298f 6124 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6125
6126 ret = btrfs_insert_inode_locked(inode);
32955c54
AV
6127 if (ret < 0) {
6128 iput(inode);
b0d5d10f 6129 goto fail;
32955c54 6130 }
b0d5d10f 6131
b9473439 6132 path->leave_spinning = 1;
ef3b9af5 6133 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6134 if (ret != 0)
b0d5d10f 6135 goto fail_unlock;
5f39d397 6136
ecc11fab 6137 inode_init_owner(inode, dir, mode);
a76a3cd4 6138 inode_set_bytes(inode, 0);
9cc97d64 6139
c2050a45 6140 inode->i_mtime = current_time(inode);
9cc97d64 6141 inode->i_atime = inode->i_mtime;
6142 inode->i_ctime = inode->i_mtime;
d3c6be6f 6143 BTRFS_I(inode)->i_otime = inode->i_mtime;
9cc97d64 6144
5f39d397
CM
6145 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6146 struct btrfs_inode_item);
b159fa28 6147 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6148 sizeof(*inode_item));
e02119d5 6149 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6150
ef3b9af5
FM
6151 if (name) {
6152 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6153 struct btrfs_inode_ref);
6154 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6155 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6156 ptr = (unsigned long)(ref + 1);
6157 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6158 }
9c58309d 6159
5f39d397
CM
6160 btrfs_mark_buffer_dirty(path->nodes[0]);
6161 btrfs_free_path(path);
6162
6cbff00f
CH
6163 btrfs_inherit_iflags(inode, dir);
6164
569254b0 6165 if (S_ISREG(mode)) {
0b246afa 6166 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6167 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6168 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6169 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6170 BTRFS_INODE_NODATASUM;
94272164
CM
6171 }
6172
5d4f98a2 6173 inode_tree_add(inode);
1abe9b8a 6174
6175 trace_btrfs_inode_new(inode);
d9094414 6176 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
1abe9b8a 6177
8ea05e3a
AB
6178 btrfs_update_root_times(trans, root);
6179
63541927
FDBM
6180 ret = btrfs_inode_inherit_props(trans, inode, dir);
6181 if (ret)
0b246afa 6182 btrfs_err(fs_info,
63541927 6183 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6184 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6185
39279cc3 6186 return inode;
b0d5d10f
CM
6187
6188fail_unlock:
32955c54 6189 discard_new_inode(inode);
5f39d397 6190fail:
ef3b9af5 6191 if (dir && name)
aec7477b 6192 BTRFS_I(dir)->index_cnt--;
5f39d397
CM
6193 btrfs_free_path(path);
6194 return ERR_PTR(ret);
39279cc3
CM
6195}
6196
d352ac68
CM
6197/*
6198 * utility function to add 'inode' into 'parent_inode' with
6199 * a give name and a given sequence number.
6200 * if 'add_backref' is true, also insert a backref from the
6201 * inode to the parent directory.
6202 */
e02119d5 6203int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6204 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6205 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6206{
4df27c4d 6207 int ret = 0;
39279cc3 6208 struct btrfs_key key;
db0a669f
NB
6209 struct btrfs_root *root = parent_inode->root;
6210 u64 ino = btrfs_ino(inode);
6211 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6212
33345d01 6213 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6214 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6215 } else {
33345d01 6216 key.objectid = ino;
962a298f 6217 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6218 key.offset = 0;
6219 }
6220
33345d01 6221 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6025c19f 6222 ret = btrfs_add_root_ref(trans, key.objectid,
0b246afa
JM
6223 root->root_key.objectid, parent_ino,
6224 index, name, name_len);
4df27c4d 6225 } else if (add_backref) {
33345d01
LZ
6226 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6227 parent_ino, index);
4df27c4d 6228 }
39279cc3 6229
79787eaa
JM
6230 /* Nothing to clean up yet */
6231 if (ret)
6232 return ret;
4df27c4d 6233
684572df 6234 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
db0a669f 6235 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6236 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6237 goto fail_dir_item;
6238 else if (ret) {
66642832 6239 btrfs_abort_transaction(trans, ret);
79787eaa 6240 return ret;
39279cc3 6241 }
79787eaa 6242
db0a669f 6243 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6244 name_len * 2);
db0a669f 6245 inode_inc_iversion(&parent_inode->vfs_inode);
5338e43a
FM
6246 /*
6247 * If we are replaying a log tree, we do not want to update the mtime
6248 * and ctime of the parent directory with the current time, since the
6249 * log replay procedure is responsible for setting them to their correct
6250 * values (the ones it had when the fsync was done).
6251 */
6252 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6253 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6254
6255 parent_inode->vfs_inode.i_mtime = now;
6256 parent_inode->vfs_inode.i_ctime = now;
6257 }
db0a669f 6258 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6259 if (ret)
66642832 6260 btrfs_abort_transaction(trans, ret);
39279cc3 6261 return ret;
fe66a05a
CM
6262
6263fail_dir_item:
6264 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6265 u64 local_index;
6266 int err;
3ee1c553 6267 err = btrfs_del_root_ref(trans, key.objectid,
0b246afa
JM
6268 root->root_key.objectid, parent_ino,
6269 &local_index, name, name_len);
1690dd41
JT
6270 if (err)
6271 btrfs_abort_transaction(trans, err);
fe66a05a
CM
6272 } else if (add_backref) {
6273 u64 local_index;
6274 int err;
6275
6276 err = btrfs_del_inode_ref(trans, root, name, name_len,
6277 ino, parent_ino, &local_index);
1690dd41
JT
6278 if (err)
6279 btrfs_abort_transaction(trans, err);
fe66a05a 6280 }
1690dd41
JT
6281
6282 /* Return the original error code */
fe66a05a 6283 return ret;
39279cc3
CM
6284}
6285
6286static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6287 struct btrfs_inode *dir, struct dentry *dentry,
6288 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6289{
a1b075d2
JB
6290 int err = btrfs_add_link(trans, dir, inode,
6291 dentry->d_name.name, dentry->d_name.len,
6292 backref, index);
39279cc3
CM
6293 if (err > 0)
6294 err = -EEXIST;
6295 return err;
6296}
6297
618e21d5 6298static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6299 umode_t mode, dev_t rdev)
618e21d5 6300{
2ff7e61e 6301 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6302 struct btrfs_trans_handle *trans;
6303 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6304 struct inode *inode = NULL;
618e21d5 6305 int err;
618e21d5 6306 u64 objectid;
00e4e6b3 6307 u64 index = 0;
618e21d5 6308
9ed74f2d
JB
6309 /*
6310 * 2 for inode item and ref
6311 * 2 for dir items
6312 * 1 for xattr if selinux is on
6313 */
a22285a6
YZ
6314 trans = btrfs_start_transaction(root, 5);
6315 if (IS_ERR(trans))
6316 return PTR_ERR(trans);
1832a6d5 6317
581bb050
LZ
6318 err = btrfs_find_free_ino(root, &objectid);
6319 if (err)
6320 goto out_unlock;
6321
aec7477b 6322 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6323 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6324 mode, &index);
7cf96da3
TI
6325 if (IS_ERR(inode)) {
6326 err = PTR_ERR(inode);
32955c54 6327 inode = NULL;
618e21d5 6328 goto out_unlock;
7cf96da3 6329 }
618e21d5 6330
ad19db71
CS
6331 /*
6332 * If the active LSM wants to access the inode during
6333 * d_instantiate it needs these. Smack checks to see
6334 * if the filesystem supports xattrs by looking at the
6335 * ops vector.
6336 */
ad19db71 6337 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6338 init_special_inode(inode, inode->i_mode, rdev);
6339
6340 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6341 if (err)
32955c54 6342 goto out_unlock;
b0d5d10f 6343
cef415af
NB
6344 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6345 0, index);
32955c54
AV
6346 if (err)
6347 goto out_unlock;
6348
6349 btrfs_update_inode(trans, root, inode);
6350 d_instantiate_new(dentry, inode);
b0d5d10f 6351
618e21d5 6352out_unlock:
3a45bb20 6353 btrfs_end_transaction(trans);
2ff7e61e 6354 btrfs_btree_balance_dirty(fs_info);
32955c54 6355 if (err && inode) {
618e21d5 6356 inode_dec_link_count(inode);
32955c54 6357 discard_new_inode(inode);
618e21d5 6358 }
618e21d5
JB
6359 return err;
6360}
6361
39279cc3 6362static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6363 umode_t mode, bool excl)
39279cc3 6364{
2ff7e61e 6365 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6366 struct btrfs_trans_handle *trans;
6367 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6368 struct inode *inode = NULL;
a22285a6 6369 int err;
39279cc3 6370 u64 objectid;
00e4e6b3 6371 u64 index = 0;
39279cc3 6372
9ed74f2d
JB
6373 /*
6374 * 2 for inode item and ref
6375 * 2 for dir items
6376 * 1 for xattr if selinux is on
6377 */
a22285a6
YZ
6378 trans = btrfs_start_transaction(root, 5);
6379 if (IS_ERR(trans))
6380 return PTR_ERR(trans);
9ed74f2d 6381
581bb050
LZ
6382 err = btrfs_find_free_ino(root, &objectid);
6383 if (err)
6384 goto out_unlock;
6385
aec7477b 6386 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6387 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6388 mode, &index);
7cf96da3
TI
6389 if (IS_ERR(inode)) {
6390 err = PTR_ERR(inode);
32955c54 6391 inode = NULL;
39279cc3 6392 goto out_unlock;
7cf96da3 6393 }
ad19db71
CS
6394 /*
6395 * If the active LSM wants to access the inode during
6396 * d_instantiate it needs these. Smack checks to see
6397 * if the filesystem supports xattrs by looking at the
6398 * ops vector.
6399 */
6400 inode->i_fop = &btrfs_file_operations;
6401 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6402 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6403
6404 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6405 if (err)
32955c54 6406 goto out_unlock;
b0d5d10f
CM
6407
6408 err = btrfs_update_inode(trans, root, inode);
6409 if (err)
32955c54 6410 goto out_unlock;
ad19db71 6411
cef415af
NB
6412 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6413 0, index);
39279cc3 6414 if (err)
32955c54 6415 goto out_unlock;
43baa579 6416
1e2e547a 6417 d_instantiate_new(dentry, inode);
43baa579 6418
39279cc3 6419out_unlock:
3a45bb20 6420 btrfs_end_transaction(trans);
32955c54 6421 if (err && inode) {
39279cc3 6422 inode_dec_link_count(inode);
32955c54 6423 discard_new_inode(inode);
39279cc3 6424 }
2ff7e61e 6425 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6426 return err;
6427}
6428
6429static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6430 struct dentry *dentry)
6431{
271dba45 6432 struct btrfs_trans_handle *trans = NULL;
39279cc3 6433 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6434 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6435 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6436 u64 index;
39279cc3
CM
6437 int err;
6438 int drop_inode = 0;
6439
4a8be425 6440 /* do not allow sys_link's with other subvols of the same device */
4fd786e6 6441 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
3ab3564f 6442 return -EXDEV;
4a8be425 6443
f186373f 6444 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6445 return -EMLINK;
4a8be425 6446
877574e2 6447 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6448 if (err)
6449 goto fail;
6450
a22285a6 6451 /*
7e6b6465 6452 * 2 items for inode and inode ref
a22285a6 6453 * 2 items for dir items
7e6b6465 6454 * 1 item for parent inode
399b0bbf 6455 * 1 item for orphan item deletion if O_TMPFILE
a22285a6 6456 */
399b0bbf 6457 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
a22285a6
YZ
6458 if (IS_ERR(trans)) {
6459 err = PTR_ERR(trans);
271dba45 6460 trans = NULL;
a22285a6
YZ
6461 goto fail;
6462 }
5f39d397 6463
67de1176
MX
6464 /* There are several dir indexes for this inode, clear the cache. */
6465 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6466 inc_nlink(inode);
0c4d2d95 6467 inode_inc_iversion(inode);
c2050a45 6468 inode->i_ctime = current_time(inode);
7de9c6ee 6469 ihold(inode);
e9976151 6470 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6471
cef415af
NB
6472 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6473 1, index);
5f39d397 6474
a5719521 6475 if (err) {
54aa1f4d 6476 drop_inode = 1;
a5719521 6477 } else {
10d9f309 6478 struct dentry *parent = dentry->d_parent;
d4682ba0 6479
a5719521 6480 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6481 if (err)
6482 goto fail;
ef3b9af5
FM
6483 if (inode->i_nlink == 1) {
6484 /*
6485 * If new hard link count is 1, it's a file created
6486 * with open(2) O_TMPFILE flag.
6487 */
3d6ae7bb 6488 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6489 if (err)
6490 goto fail;
6491 }
08c422c2 6492 d_instantiate(dentry, inode);
75b463d2 6493 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
a5719521 6494 }
39279cc3 6495
1832a6d5 6496fail:
271dba45 6497 if (trans)
3a45bb20 6498 btrfs_end_transaction(trans);
39279cc3
CM
6499 if (drop_inode) {
6500 inode_dec_link_count(inode);
6501 iput(inode);
6502 }
2ff7e61e 6503 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6504 return err;
6505}
6506
18bb1db3 6507static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6508{
2ff7e61e 6509 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6510 struct inode *inode = NULL;
39279cc3
CM
6511 struct btrfs_trans_handle *trans;
6512 struct btrfs_root *root = BTRFS_I(dir)->root;
6513 int err = 0;
b9d86667 6514 u64 objectid = 0;
00e4e6b3 6515 u64 index = 0;
39279cc3 6516
9ed74f2d
JB
6517 /*
6518 * 2 items for inode and ref
6519 * 2 items for dir items
6520 * 1 for xattr if selinux is on
6521 */
a22285a6
YZ
6522 trans = btrfs_start_transaction(root, 5);
6523 if (IS_ERR(trans))
6524 return PTR_ERR(trans);
39279cc3 6525
581bb050
LZ
6526 err = btrfs_find_free_ino(root, &objectid);
6527 if (err)
6528 goto out_fail;
6529
aec7477b 6530 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6531 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6532 S_IFDIR | mode, &index);
39279cc3
CM
6533 if (IS_ERR(inode)) {
6534 err = PTR_ERR(inode);
32955c54 6535 inode = NULL;
39279cc3
CM
6536 goto out_fail;
6537 }
5f39d397 6538
b0d5d10f
CM
6539 /* these must be set before we unlock the inode */
6540 inode->i_op = &btrfs_dir_inode_operations;
6541 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6542
2a7dba39 6543 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6544 if (err)
32955c54 6545 goto out_fail;
39279cc3 6546
6ef06d27 6547 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6548 err = btrfs_update_inode(trans, root, inode);
6549 if (err)
32955c54 6550 goto out_fail;
5f39d397 6551
db0a669f
NB
6552 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6553 dentry->d_name.name,
6554 dentry->d_name.len, 0, index);
39279cc3 6555 if (err)
32955c54 6556 goto out_fail;
5f39d397 6557
1e2e547a 6558 d_instantiate_new(dentry, inode);
39279cc3
CM
6559
6560out_fail:
3a45bb20 6561 btrfs_end_transaction(trans);
32955c54 6562 if (err && inode) {
c7cfb8a5 6563 inode_dec_link_count(inode);
32955c54 6564 discard_new_inode(inode);
c7cfb8a5 6565 }
2ff7e61e 6566 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6567 return err;
6568}
6569
c8b97818 6570static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6571 struct page *page,
c8b97818
CM
6572 size_t pg_offset, u64 extent_offset,
6573 struct btrfs_file_extent_item *item)
6574{
6575 int ret;
6576 struct extent_buffer *leaf = path->nodes[0];
6577 char *tmp;
6578 size_t max_size;
6579 unsigned long inline_size;
6580 unsigned long ptr;
261507a0 6581 int compress_type;
c8b97818
CM
6582
6583 WARN_ON(pg_offset != 0);
261507a0 6584 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6585 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6586 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6587 btrfs_item_nr(path->slots[0]));
c8b97818 6588 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6589 if (!tmp)
6590 return -ENOMEM;
c8b97818
CM
6591 ptr = btrfs_file_extent_inline_start(item);
6592
6593 read_extent_buffer(leaf, tmp, ptr, inline_size);
6594
09cbfeaf 6595 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6596 ret = btrfs_decompress(compress_type, tmp, page,
6597 extent_offset, inline_size, max_size);
e1699d2d
ZB
6598
6599 /*
6600 * decompression code contains a memset to fill in any space between the end
6601 * of the uncompressed data and the end of max_size in case the decompressed
6602 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6603 * the end of an inline extent and the beginning of the next block, so we
6604 * cover that region here.
6605 */
6606
6607 if (max_size + pg_offset < PAGE_SIZE) {
6608 char *map = kmap(page);
6609 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6610 kunmap(page);
6611 }
c8b97818 6612 kfree(tmp);
166ae5a4 6613 return ret;
c8b97818
CM
6614}
6615
39b07b5d
OS
6616/**
6617 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6618 * @inode: file to search in
6619 * @page: page to read extent data into if the extent is inline
6620 * @pg_offset: offset into @page to copy to
6621 * @start: file offset
6622 * @len: length of range starting at @start
6623 *
6624 * This returns the first &struct extent_map which overlaps with the given
6625 * range, reading it from the B-tree and caching it if necessary. Note that
6626 * there may be more extents which overlap the given range after the returned
6627 * extent_map.
d352ac68 6628 *
39b07b5d
OS
6629 * If @page is not NULL and the extent is inline, this also reads the extent
6630 * data directly into the page and marks the extent up to date in the io_tree.
6631 *
6632 * Return: ERR_PTR on error, non-NULL extent_map on success.
d352ac68 6633 */
fc4f21b1 6634struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
6635 struct page *page, size_t pg_offset,
6636 u64 start, u64 len)
a52d9a80 6637{
3ffbd68c 6638 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1028d1c4 6639 int ret = 0;
a52d9a80
CM
6640 u64 extent_start = 0;
6641 u64 extent_end = 0;
fc4f21b1 6642 u64 objectid = btrfs_ino(inode);
7e74e235 6643 int extent_type = -1;
f421950f 6644 struct btrfs_path *path = NULL;
fc4f21b1 6645 struct btrfs_root *root = inode->root;
a52d9a80 6646 struct btrfs_file_extent_item *item;
5f39d397
CM
6647 struct extent_buffer *leaf;
6648 struct btrfs_key found_key;
a52d9a80 6649 struct extent_map *em = NULL;
fc4f21b1
NB
6650 struct extent_map_tree *em_tree = &inode->extent_tree;
6651 struct extent_io_tree *io_tree = &inode->io_tree;
a52d9a80 6652
890871be 6653 read_lock(&em_tree->lock);
d1310b2e 6654 em = lookup_extent_mapping(em_tree, start, len);
890871be 6655 read_unlock(&em_tree->lock);
d1310b2e 6656
a52d9a80 6657 if (em) {
e1c4b745
CM
6658 if (em->start > start || em->start + em->len <= start)
6659 free_extent_map(em);
6660 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6661 free_extent_map(em);
6662 else
6663 goto out;
a52d9a80 6664 }
172ddd60 6665 em = alloc_extent_map();
a52d9a80 6666 if (!em) {
1028d1c4 6667 ret = -ENOMEM;
d1310b2e 6668 goto out;
a52d9a80 6669 }
d1310b2e 6670 em->start = EXTENT_MAP_HOLE;
445a6944 6671 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6672 em->len = (u64)-1;
c8b97818 6673 em->block_len = (u64)-1;
f421950f 6674
bee6ec82 6675 path = btrfs_alloc_path();
f421950f 6676 if (!path) {
1028d1c4 6677 ret = -ENOMEM;
bee6ec82 6678 goto out;
f421950f
CM
6679 }
6680
bee6ec82
LB
6681 /* Chances are we'll be called again, so go ahead and do readahead */
6682 path->reada = READA_FORWARD;
6683
e49aabd9
LB
6684 /*
6685 * Unless we're going to uncompress the inline extent, no sleep would
6686 * happen.
6687 */
6688 path->leave_spinning = 1;
6689
51899412
JB
6690 path->recurse = btrfs_is_free_space_inode(inode);
6691
5c9a702e 6692 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80 6693 if (ret < 0) {
a52d9a80 6694 goto out;
b8eeab7f 6695 } else if (ret > 0) {
a52d9a80
CM
6696 if (path->slots[0] == 0)
6697 goto not_found;
6698 path->slots[0]--;
1028d1c4 6699 ret = 0;
a52d9a80
CM
6700 }
6701
5f39d397
CM
6702 leaf = path->nodes[0];
6703 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6704 struct btrfs_file_extent_item);
5f39d397 6705 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5f39d397 6706 if (found_key.objectid != objectid ||
694c12ed 6707 found_key.type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6708 /*
6709 * If we backup past the first extent we want to move forward
6710 * and see if there is an extent in front of us, otherwise we'll
6711 * say there is a hole for our whole search range which can
6712 * cause problems.
6713 */
6714 extent_end = start;
6715 goto next;
a52d9a80
CM
6716 }
6717
694c12ed 6718 extent_type = btrfs_file_extent_type(leaf, item);
5f39d397 6719 extent_start = found_key.offset;
a5eeb3d1 6720 extent_end = btrfs_file_extent_end(path);
694c12ed
NB
6721 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6722 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6bf9e4bd
QW
6723 /* Only regular file could have regular/prealloc extent */
6724 if (!S_ISREG(inode->vfs_inode.i_mode)) {
1028d1c4 6725 ret = -EUCLEAN;
6bf9e4bd
QW
6726 btrfs_crit(fs_info,
6727 "regular/prealloc extent found for non-regular inode %llu",
6728 btrfs_ino(inode));
6729 goto out;
6730 }
09ed2f16
LB
6731 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6732 extent_start);
694c12ed 6733 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
09ed2f16
LB
6734 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6735 path->slots[0],
6736 extent_start);
9036c102 6737 }
25a50341 6738next:
9036c102
YZ
6739 if (start >= extent_end) {
6740 path->slots[0]++;
6741 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6742 ret = btrfs_next_leaf(root, path);
1028d1c4 6743 if (ret < 0)
9036c102 6744 goto out;
1028d1c4 6745 else if (ret > 0)
9036c102 6746 goto not_found;
1028d1c4 6747
9036c102 6748 leaf = path->nodes[0];
a52d9a80 6749 }
9036c102
YZ
6750 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6751 if (found_key.objectid != objectid ||
6752 found_key.type != BTRFS_EXTENT_DATA_KEY)
6753 goto not_found;
6754 if (start + len <= found_key.offset)
6755 goto not_found;
e2eca69d
WS
6756 if (start > found_key.offset)
6757 goto next;
02a033df
NB
6758
6759 /* New extent overlaps with existing one */
9036c102 6760 em->start = start;
70c8a91c 6761 em->orig_start = start;
9036c102 6762 em->len = found_key.offset - start;
02a033df
NB
6763 em->block_start = EXTENT_MAP_HOLE;
6764 goto insert;
9036c102
YZ
6765 }
6766
39b07b5d 6767 btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
7ffbb598 6768
694c12ed
NB
6769 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6770 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6771 goto insert;
694c12ed 6772 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6773 unsigned long ptr;
a52d9a80 6774 char *map;
3326d1b0
CM
6775 size_t size;
6776 size_t extent_offset;
6777 size_t copy_size;
a52d9a80 6778
39b07b5d 6779 if (!page)
689f9346 6780 goto out;
5f39d397 6781
e41ca589 6782 size = btrfs_file_extent_ram_bytes(leaf, item);
9036c102 6783 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6784 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6785 size - extent_offset);
3326d1b0 6786 em->start = extent_start + extent_offset;
0b246afa 6787 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 6788 em->orig_block_len = em->len;
70c8a91c 6789 em->orig_start = em->start;
689f9346 6790 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
e49aabd9
LB
6791
6792 btrfs_set_path_blocking(path);
bf46f52d 6793 if (!PageUptodate(page)) {
261507a0
LZ
6794 if (btrfs_file_extent_compression(leaf, item) !=
6795 BTRFS_COMPRESS_NONE) {
e40da0e5 6796 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6797 extent_offset, item);
1028d1c4 6798 if (ret)
166ae5a4 6799 goto out;
c8b97818
CM
6800 } else {
6801 map = kmap(page);
6802 read_extent_buffer(leaf, map + pg_offset, ptr,
6803 copy_size);
09cbfeaf 6804 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6805 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6806 PAGE_SIZE - pg_offset -
93c82d57
CM
6807 copy_size);
6808 }
c8b97818
CM
6809 kunmap(page);
6810 }
179e29e4 6811 flush_dcache_page(page);
a52d9a80 6812 }
d1310b2e 6813 set_extent_uptodate(io_tree, em->start,
507903b8 6814 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6815 goto insert;
a52d9a80
CM
6816 }
6817not_found:
6818 em->start = start;
70c8a91c 6819 em->orig_start = start;
d1310b2e 6820 em->len = len;
5f39d397 6821 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 6822insert:
1028d1c4 6823 ret = 0;
b3b4aa74 6824 btrfs_release_path(path);
d1310b2e 6825 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 6826 btrfs_err(fs_info,
5d163e0e
JM
6827 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6828 em->start, em->len, start, len);
1028d1c4 6829 ret = -EIO;
a52d9a80
CM
6830 goto out;
6831 }
d1310b2e 6832
890871be 6833 write_lock(&em_tree->lock);
1028d1c4 6834 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
890871be 6835 write_unlock(&em_tree->lock);
a52d9a80 6836out:
c6414280 6837 btrfs_free_path(path);
1abe9b8a 6838
fc4f21b1 6839 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 6840
1028d1c4 6841 if (ret) {
a52d9a80 6842 free_extent_map(em);
1028d1c4 6843 return ERR_PTR(ret);
a52d9a80
CM
6844 }
6845 return em;
6846}
6847
fc4f21b1 6848struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
4ab47a8d 6849 u64 start, u64 len)
ec29ed5b
CM
6850{
6851 struct extent_map *em;
6852 struct extent_map *hole_em = NULL;
f3714ef4 6853 u64 delalloc_start = start;
ec29ed5b 6854 u64 end;
f3714ef4
NB
6855 u64 delalloc_len;
6856 u64 delalloc_end;
ec29ed5b
CM
6857 int err = 0;
6858
39b07b5d 6859 em = btrfs_get_extent(inode, NULL, 0, start, len);
ec29ed5b
CM
6860 if (IS_ERR(em))
6861 return em;
9986277e
DC
6862 /*
6863 * If our em maps to:
6864 * - a hole or
6865 * - a pre-alloc extent,
6866 * there might actually be delalloc bytes behind it.
6867 */
6868 if (em->block_start != EXTENT_MAP_HOLE &&
6869 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6870 return em;
6871 else
6872 hole_em = em;
ec29ed5b
CM
6873
6874 /* check to see if we've wrapped (len == -1 or similar) */
6875 end = start + len;
6876 if (end < start)
6877 end = (u64)-1;
6878 else
6879 end -= 1;
6880
6881 em = NULL;
6882
6883 /* ok, we didn't find anything, lets look for delalloc */
f3714ef4 6884 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
ec29ed5b 6885 end, len, EXTENT_DELALLOC, 1);
f3714ef4
NB
6886 delalloc_end = delalloc_start + delalloc_len;
6887 if (delalloc_end < delalloc_start)
6888 delalloc_end = (u64)-1;
ec29ed5b
CM
6889
6890 /*
f3714ef4
NB
6891 * We didn't find anything useful, return the original results from
6892 * get_extent()
ec29ed5b 6893 */
f3714ef4 6894 if (delalloc_start > end || delalloc_end <= start) {
ec29ed5b
CM
6895 em = hole_em;
6896 hole_em = NULL;
6897 goto out;
6898 }
6899
f3714ef4
NB
6900 /*
6901 * Adjust the delalloc_start to make sure it doesn't go backwards from
6902 * the start they passed in
ec29ed5b 6903 */
f3714ef4
NB
6904 delalloc_start = max(start, delalloc_start);
6905 delalloc_len = delalloc_end - delalloc_start;
ec29ed5b 6906
f3714ef4
NB
6907 if (delalloc_len > 0) {
6908 u64 hole_start;
02950af4 6909 u64 hole_len;
f3714ef4 6910 const u64 hole_end = extent_map_end(hole_em);
ec29ed5b 6911
172ddd60 6912 em = alloc_extent_map();
ec29ed5b
CM
6913 if (!em) {
6914 err = -ENOMEM;
6915 goto out;
6916 }
f3714ef4
NB
6917
6918 ASSERT(hole_em);
ec29ed5b 6919 /*
f3714ef4
NB
6920 * When btrfs_get_extent can't find anything it returns one
6921 * huge hole
ec29ed5b 6922 *
f3714ef4
NB
6923 * Make sure what it found really fits our range, and adjust to
6924 * make sure it is based on the start from the caller
ec29ed5b 6925 */
f3714ef4
NB
6926 if (hole_end <= start || hole_em->start > end) {
6927 free_extent_map(hole_em);
6928 hole_em = NULL;
6929 } else {
6930 hole_start = max(hole_em->start, start);
6931 hole_len = hole_end - hole_start;
ec29ed5b 6932 }
f3714ef4
NB
6933
6934 if (hole_em && delalloc_start > hole_start) {
6935 /*
6936 * Our hole starts before our delalloc, so we have to
6937 * return just the parts of the hole that go until the
6938 * delalloc starts
ec29ed5b 6939 */
f3714ef4 6940 em->len = min(hole_len, delalloc_start - hole_start);
ec29ed5b
CM
6941 em->start = hole_start;
6942 em->orig_start = hole_start;
6943 /*
f3714ef4
NB
6944 * Don't adjust block start at all, it is fixed at
6945 * EXTENT_MAP_HOLE
ec29ed5b
CM
6946 */
6947 em->block_start = hole_em->block_start;
6948 em->block_len = hole_len;
f9e4fb53
LB
6949 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6950 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b 6951 } else {
f3714ef4
NB
6952 /*
6953 * Hole is out of passed range or it starts after
6954 * delalloc range
6955 */
6956 em->start = delalloc_start;
6957 em->len = delalloc_len;
6958 em->orig_start = delalloc_start;
ec29ed5b 6959 em->block_start = EXTENT_MAP_DELALLOC;
f3714ef4 6960 em->block_len = delalloc_len;
ec29ed5b 6961 }
bf8d32b9 6962 } else {
ec29ed5b
CM
6963 return hole_em;
6964 }
6965out:
6966
6967 free_extent_map(hole_em);
6968 if (err) {
6969 free_extent_map(em);
6970 return ERR_PTR(err);
6971 }
6972 return em;
6973}
6974
64f54188 6975static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
5f9a8a51
FM
6976 const u64 start,
6977 const u64 len,
6978 const u64 orig_start,
6979 const u64 block_start,
6980 const u64 block_len,
6981 const u64 orig_block_len,
6982 const u64 ram_bytes,
6983 const int type)
6984{
6985 struct extent_map *em = NULL;
6986 int ret;
6987
5f9a8a51 6988 if (type != BTRFS_ORDERED_NOCOW) {
64f54188
NB
6989 em = create_io_em(inode, start, len, orig_start, block_start,
6990 block_len, orig_block_len, ram_bytes,
6f9994db
LB
6991 BTRFS_COMPRESS_NONE, /* compress_type */
6992 type);
5f9a8a51
FM
6993 if (IS_ERR(em))
6994 goto out;
6995 }
64f54188
NB
6996 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
6997 block_len, type);
5f9a8a51
FM
6998 if (ret) {
6999 if (em) {
7000 free_extent_map(em);
64f54188 7001 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5f9a8a51
FM
7002 }
7003 em = ERR_PTR(ret);
7004 }
7005 out:
5f9a8a51
FM
7006
7007 return em;
7008}
7009
9fc6f911 7010static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
4b46fce2
JB
7011 u64 start, u64 len)
7012{
9fc6f911
NB
7013 struct btrfs_root *root = inode->root;
7014 struct btrfs_fs_info *fs_info = root->fs_info;
70c8a91c 7015 struct extent_map *em;
4b46fce2
JB
7016 struct btrfs_key ins;
7017 u64 alloc_hint;
7018 int ret;
4b46fce2 7019
9fc6f911 7020 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7021 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7022 0, alloc_hint, &ins, 1, 1);
00361589
JB
7023 if (ret)
7024 return ERR_PTR(ret);
4b46fce2 7025
9fc6f911 7026 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
5f9a8a51 7027 ins.objectid, ins.offset, ins.offset,
6288d6ea 7028 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7029 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7030 if (IS_ERR(em))
9fc6f911
NB
7031 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7032 1);
de0ee0ed 7033
4b46fce2
JB
7034 return em;
7035}
7036
46bfbb5c 7037/*
e4ecaf90
QW
7038 * Check if we can do nocow write into the range [@offset, @offset + @len)
7039 *
7040 * @offset: File offset
7041 * @len: The length to write, will be updated to the nocow writeable
7042 * range
7043 * @orig_start: (optional) Return the original file offset of the file extent
7044 * @orig_len: (optional) Return the original on-disk length of the file extent
7045 * @ram_bytes: (optional) Return the ram_bytes of the file extent
a84d5d42
BB
7046 * @strict: if true, omit optimizations that might force us into unnecessary
7047 * cow. e.g., don't trust generation number.
e4ecaf90
QW
7048 *
7049 * This function will flush ordered extents in the range to ensure proper
7050 * nocow checks for (nowait == false) case.
7051 *
7052 * Return:
7053 * >0 and update @len if we can do nocow write
7054 * 0 if we can't do nocow write
7055 * <0 if error happened
7056 *
7057 * NOTE: This only checks the file extents, caller is responsible to wait for
7058 * any ordered extents.
46bfbb5c 7059 */
00361589 7060noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440 7061 u64 *orig_start, u64 *orig_block_len,
a84d5d42 7062 u64 *ram_bytes, bool strict)
46bfbb5c 7063{
2ff7e61e 7064 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7065 struct btrfs_path *path;
7066 int ret;
7067 struct extent_buffer *leaf;
7068 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7069 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7070 struct btrfs_file_extent_item *fi;
7071 struct btrfs_key key;
7072 u64 disk_bytenr;
7073 u64 backref_offset;
7074 u64 extent_end;
7075 u64 num_bytes;
7076 int slot;
7077 int found_type;
7ee9e440 7078 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7079
46bfbb5c
CM
7080 path = btrfs_alloc_path();
7081 if (!path)
7082 return -ENOMEM;
7083
f85b7379
DS
7084 ret = btrfs_lookup_file_extent(NULL, root, path,
7085 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7086 if (ret < 0)
7087 goto out;
7088
7089 slot = path->slots[0];
7090 if (ret == 1) {
7091 if (slot == 0) {
7092 /* can't find the item, must cow */
7093 ret = 0;
7094 goto out;
7095 }
7096 slot--;
7097 }
7098 ret = 0;
7099 leaf = path->nodes[0];
7100 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7101 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7102 key.type != BTRFS_EXTENT_DATA_KEY) {
7103 /* not our file or wrong item type, must cow */
7104 goto out;
7105 }
7106
7107 if (key.offset > offset) {
7108 /* Wrong offset, must cow */
7109 goto out;
7110 }
7111
7112 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7113 found_type = btrfs_file_extent_type(leaf, fi);
7114 if (found_type != BTRFS_FILE_EXTENT_REG &&
7115 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7116 /* not a regular extent, must cow */
7117 goto out;
7118 }
7ee9e440
JB
7119
7120 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7121 goto out;
7122
e77751aa
MX
7123 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7124 if (extent_end <= offset)
7125 goto out;
7126
46bfbb5c 7127 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7128 if (disk_bytenr == 0)
7129 goto out;
7130
7131 if (btrfs_file_extent_compression(leaf, fi) ||
7132 btrfs_file_extent_encryption(leaf, fi) ||
7133 btrfs_file_extent_other_encoding(leaf, fi))
7134 goto out;
7135
78d4295b
EL
7136 /*
7137 * Do the same check as in btrfs_cross_ref_exist but without the
7138 * unnecessary search.
7139 */
a84d5d42
BB
7140 if (!strict &&
7141 (btrfs_file_extent_generation(leaf, fi) <=
7142 btrfs_root_last_snapshot(&root->root_item)))
78d4295b
EL
7143 goto out;
7144
46bfbb5c
CM
7145 backref_offset = btrfs_file_extent_offset(leaf, fi);
7146
7ee9e440
JB
7147 if (orig_start) {
7148 *orig_start = key.offset - backref_offset;
7149 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7150 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7151 }
eb384b55 7152
2ff7e61e 7153 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7154 goto out;
7b2b7085
MX
7155
7156 num_bytes = min(offset + *len, extent_end) - offset;
7157 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7158 u64 range_end;
7159
da17066c
JM
7160 range_end = round_up(offset + num_bytes,
7161 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7162 ret = test_range_bit(io_tree, offset, range_end,
7163 EXTENT_DELALLOC, 0, NULL);
7164 if (ret) {
7165 ret = -EAGAIN;
7166 goto out;
7167 }
7168 }
7169
1bda19eb 7170 btrfs_release_path(path);
46bfbb5c
CM
7171
7172 /*
7173 * look for other files referencing this extent, if we
7174 * find any we must cow
7175 */
00361589 7176
e4c3b2dc 7177 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
a84d5d42
BB
7178 key.offset - backref_offset, disk_bytenr,
7179 strict);
00361589
JB
7180 if (ret) {
7181 ret = 0;
7182 goto out;
7183 }
46bfbb5c
CM
7184
7185 /*
7186 * adjust disk_bytenr and num_bytes to cover just the bytes
7187 * in this extent we are about to write. If there
7188 * are any csums in that range we have to cow in order
7189 * to keep the csums correct
7190 */
7191 disk_bytenr += backref_offset;
7192 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7193 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7194 goto out;
46bfbb5c
CM
7195 /*
7196 * all of the above have passed, it is safe to overwrite this extent
7197 * without cow
7198 */
eb384b55 7199 *len = num_bytes;
46bfbb5c
CM
7200 ret = 1;
7201out:
7202 btrfs_free_path(path);
7203 return ret;
7204}
7205
eb838e73 7206static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
f85781fb 7207 struct extent_state **cached_state, bool writing)
eb838e73
JB
7208{
7209 struct btrfs_ordered_extent *ordered;
7210 int ret = 0;
7211
7212 while (1) {
7213 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7214 cached_state);
eb838e73
JB
7215 /*
7216 * We're concerned with the entire range that we're going to be
01327610 7217 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7218 * extents in this range.
7219 */
a776c6fa 7220 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7221 lockend - lockstart + 1);
7222
7223 /*
7224 * We need to make sure there are no buffered pages in this
7225 * range either, we could have raced between the invalidate in
7226 * generic_file_direct_write and locking the extent. The
7227 * invalidate needs to happen so that reads after a write do not
7228 * get stale data.
7229 */
fc4adbff 7230 if (!ordered &&
051c98eb
DS
7231 (!writing || !filemap_range_has_page(inode->i_mapping,
7232 lockstart, lockend)))
eb838e73
JB
7233 break;
7234
7235 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 7236 cached_state);
eb838e73
JB
7237
7238 if (ordered) {
ade77029
FM
7239 /*
7240 * If we are doing a DIO read and the ordered extent we
7241 * found is for a buffered write, we can not wait for it
7242 * to complete and retry, because if we do so we can
7243 * deadlock with concurrent buffered writes on page
7244 * locks. This happens only if our DIO read covers more
7245 * than one extent map, if at this point has already
7246 * created an ordered extent for a previous extent map
7247 * and locked its range in the inode's io tree, and a
7248 * concurrent write against that previous extent map's
7249 * range and this range started (we unlock the ranges
7250 * in the io tree only when the bios complete and
7251 * buffered writes always lock pages before attempting
7252 * to lock range in the io tree).
7253 */
7254 if (writing ||
7255 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
c0a43603 7256 btrfs_start_ordered_extent(ordered, 1);
ade77029
FM
7257 else
7258 ret = -ENOTBLK;
eb838e73
JB
7259 btrfs_put_ordered_extent(ordered);
7260 } else {
eb838e73 7261 /*
b850ae14
FM
7262 * We could trigger writeback for this range (and wait
7263 * for it to complete) and then invalidate the pages for
7264 * this range (through invalidate_inode_pages2_range()),
7265 * but that can lead us to a deadlock with a concurrent
ba206a02 7266 * call to readahead (a buffered read or a defrag call
b850ae14
FM
7267 * triggered a readahead) on a page lock due to an
7268 * ordered dio extent we created before but did not have
7269 * yet a corresponding bio submitted (whence it can not
ba206a02 7270 * complete), which makes readahead wait for that
b850ae14
FM
7271 * ordered extent to complete while holding a lock on
7272 * that page.
eb838e73 7273 */
b850ae14 7274 ret = -ENOTBLK;
eb838e73
JB
7275 }
7276
ade77029
FM
7277 if (ret)
7278 break;
7279
eb838e73
JB
7280 cond_resched();
7281 }
7282
7283 return ret;
7284}
7285
6f9994db 7286/* The callers of this must take lock_extent() */
4b67c11d
NB
7287static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7288 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
7289 u64 block_len, u64 orig_block_len,
7290 u64 ram_bytes, int compress_type,
7291 int type)
69ffb543
JB
7292{
7293 struct extent_map_tree *em_tree;
7294 struct extent_map *em;
69ffb543
JB
7295 int ret;
7296
6f9994db
LB
7297 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7298 type == BTRFS_ORDERED_COMPRESSED ||
7299 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7300 type == BTRFS_ORDERED_REGULAR);
6f9994db 7301
4b67c11d 7302 em_tree = &inode->extent_tree;
69ffb543
JB
7303 em = alloc_extent_map();
7304 if (!em)
7305 return ERR_PTR(-ENOMEM);
7306
7307 em->start = start;
7308 em->orig_start = orig_start;
7309 em->len = len;
7310 em->block_len = block_len;
7311 em->block_start = block_start;
b4939680 7312 em->orig_block_len = orig_block_len;
cc95bef6 7313 em->ram_bytes = ram_bytes;
70c8a91c 7314 em->generation = -1;
69ffb543 7315 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7316 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7317 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7318 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7319 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7320 em->compress_type = compress_type;
7321 }
69ffb543
JB
7322
7323 do {
4b67c11d
NB
7324 btrfs_drop_extent_cache(inode, em->start,
7325 em->start + em->len - 1, 0);
69ffb543 7326 write_lock(&em_tree->lock);
09a2a8f9 7327 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7328 write_unlock(&em_tree->lock);
6f9994db
LB
7329 /*
7330 * The caller has taken lock_extent(), who could race with us
7331 * to add em?
7332 */
69ffb543
JB
7333 } while (ret == -EEXIST);
7334
7335 if (ret) {
7336 free_extent_map(em);
7337 return ERR_PTR(ret);
7338 }
7339
6f9994db 7340 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7341 return em;
7342}
7343
1c8d0175 7344
c5794e51 7345static int btrfs_get_blocks_direct_write(struct extent_map **map,
c5794e51
NB
7346 struct inode *inode,
7347 struct btrfs_dio_data *dio_data,
7348 u64 start, u64 len)
7349{
7350 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7351 struct extent_map *em = *map;
7352 int ret = 0;
7353
7354 /*
7355 * We don't allocate a new extent in the following cases
7356 *
7357 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7358 * existing extent.
7359 * 2) The extent is marked as PREALLOC. We're good to go here and can
7360 * just use the extent.
7361 *
7362 */
7363 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7364 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7365 em->block_start != EXTENT_MAP_HOLE)) {
7366 int type;
7367 u64 block_start, orig_start, orig_block_len, ram_bytes;
7368
7369 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7370 type = BTRFS_ORDERED_PREALLOC;
7371 else
7372 type = BTRFS_ORDERED_NOCOW;
7373 len = min(len, em->len - (start - em->start));
7374 block_start = em->block_start + (start - em->start);
7375
7376 if (can_nocow_extent(inode, start, &len, &orig_start,
a84d5d42 7377 &orig_block_len, &ram_bytes, false) == 1 &&
c5794e51
NB
7378 btrfs_inc_nocow_writers(fs_info, block_start)) {
7379 struct extent_map *em2;
7380
64f54188 7381 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
c5794e51
NB
7382 orig_start, block_start,
7383 len, orig_block_len,
7384 ram_bytes, type);
7385 btrfs_dec_nocow_writers(fs_info, block_start);
7386 if (type == BTRFS_ORDERED_PREALLOC) {
7387 free_extent_map(em);
7388 *map = em = em2;
7389 }
7390
7391 if (em2 && IS_ERR(em2)) {
7392 ret = PTR_ERR(em2);
7393 goto out;
7394 }
7395 /*
7396 * For inode marked NODATACOW or extent marked PREALLOC,
7397 * use the existing or preallocated extent, so does not
7398 * need to adjust btrfs_space_info's bytes_may_use.
7399 */
9db5d510 7400 btrfs_free_reserved_data_space_noquota(fs_info, len);
c5794e51
NB
7401 goto skip_cow;
7402 }
7403 }
7404
7405 /* this will cow the extent */
c5794e51 7406 free_extent_map(em);
9fc6f911 7407 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
c5794e51
NB
7408 if (IS_ERR(em)) {
7409 ret = PTR_ERR(em);
7410 goto out;
7411 }
7412
7413 len = min(len, em->len - (start - em->start));
7414
7415skip_cow:
c5794e51
NB
7416 /*
7417 * Need to update the i_size under the extent lock so buffered
7418 * readers will get the updated i_size when we unlock.
7419 */
f85781fb 7420 if (start + len > i_size_read(inode))
c5794e51
NB
7421 i_size_write(inode, start + len);
7422
c5794e51 7423 dio_data->reserve -= len;
c5794e51
NB
7424out:
7425 return ret;
7426}
7427
f85781fb
GR
7428static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7429 loff_t length, unsigned int flags, struct iomap *iomap,
7430 struct iomap *srcmap)
4b46fce2 7431{
0b246afa 7432 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7433 struct extent_map *em;
eb838e73 7434 struct extent_state *cached_state = NULL;
50745b0a 7435 struct btrfs_dio_data *dio_data = NULL;
eb838e73 7436 u64 lockstart, lockend;
f85781fb 7437 const bool write = !!(flags & IOMAP_WRITE);
0934856d 7438 int ret = 0;
f85781fb
GR
7439 u64 len = length;
7440 bool unlock_extents = false;
eb838e73 7441
f85781fb 7442 if (!write)
0b246afa 7443 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7444
c329861d
JB
7445 lockstart = start;
7446 lockend = start + len - 1;
7447
f85781fb
GR
7448 /*
7449 * The generic stuff only does filemap_write_and_wait_range, which
7450 * isn't enough if we've written compressed pages to this area, so we
7451 * need to flush the dirty pages again to make absolutely sure that any
7452 * outstanding dirty pages are on disk.
7453 */
7454 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7455 &BTRFS_I(inode)->runtime_flags)) {
7456 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7457 start + length - 1);
7458 if (ret)
7459 return ret;
7460 }
7461
7462 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
7463 if (!dio_data)
7464 return -ENOMEM;
7465
7466 dio_data->length = length;
7467 if (write) {
7468 dio_data->reserve = round_up(length, fs_info->sectorsize);
7469 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
7470 &dio_data->data_reserved,
7471 start, dio_data->reserve);
7472 if (ret) {
7473 extent_changeset_free(dio_data->data_reserved);
7474 kfree(dio_data);
7475 return ret;
7476 }
e1cbbfa5 7477 }
f85781fb
GR
7478 iomap->private = dio_data;
7479
e1cbbfa5 7480
eb838e73
JB
7481 /*
7482 * If this errors out it's because we couldn't invalidate pagecache for
7483 * this range and we need to fallback to buffered.
7484 */
f85781fb 7485 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
9c9464cc
FM
7486 ret = -ENOTBLK;
7487 goto err;
7488 }
eb838e73 7489
39b07b5d 7490 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
eb838e73
JB
7491 if (IS_ERR(em)) {
7492 ret = PTR_ERR(em);
7493 goto unlock_err;
7494 }
4b46fce2
JB
7495
7496 /*
7497 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7498 * io. INLINE is special, and we could probably kludge it in here, but
7499 * it's still buffered so for safety lets just fall back to the generic
7500 * buffered path.
7501 *
7502 * For COMPRESSED we _have_ to read the entire extent in so we can
7503 * decompress it, so there will be buffering required no matter what we
7504 * do, so go ahead and fallback to buffered.
7505 *
01327610 7506 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7507 * to buffered IO. Don't blame me, this is the price we pay for using
7508 * the generic code.
7509 */
7510 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7511 em->block_start == EXTENT_MAP_INLINE) {
7512 free_extent_map(em);
eb838e73
JB
7513 ret = -ENOTBLK;
7514 goto unlock_err;
4b46fce2
JB
7515 }
7516
f85781fb
GR
7517 len = min(len, em->len - (start - em->start));
7518 if (write) {
7519 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7520 start, len);
c5794e51
NB
7521 if (ret < 0)
7522 goto unlock_err;
f85781fb
GR
7523 unlock_extents = true;
7524 /* Recalc len in case the new em is smaller than requested */
7525 len = min(len, em->len - (start - em->start));
c5794e51 7526 } else {
1c8d0175
NB
7527 /*
7528 * We need to unlock only the end area that we aren't using.
7529 * The rest is going to be unlocked by the endio routine.
7530 */
f85781fb
GR
7531 lockstart = start + len;
7532 if (lockstart < lockend)
7533 unlock_extents = true;
7534 }
7535
7536 if (unlock_extents)
7537 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7538 lockstart, lockend, &cached_state);
7539 else
7540 free_extent_state(cached_state);
7541
7542 /*
7543 * Translate extent map information to iomap.
7544 * We trim the extents (and move the addr) even though iomap code does
7545 * that, since we have locked only the parts we are performing I/O in.
7546 */
7547 if ((em->block_start == EXTENT_MAP_HOLE) ||
7548 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7549 iomap->addr = IOMAP_NULL_ADDR;
7550 iomap->type = IOMAP_HOLE;
7551 } else {
7552 iomap->addr = em->block_start + (start - em->start);
7553 iomap->type = IOMAP_MAPPED;
a43a67a2 7554 }
f85781fb
GR
7555 iomap->offset = start;
7556 iomap->bdev = fs_info->fs_devices->latest_bdev;
7557 iomap->length = len;
a43a67a2 7558
4b46fce2
JB
7559 free_extent_map(em);
7560
7561 return 0;
eb838e73
JB
7562
7563unlock_err:
e182163d
OS
7564 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7565 &cached_state);
9c9464cc 7566err:
f85781fb
GR
7567 if (dio_data) {
7568 btrfs_delalloc_release_space(BTRFS_I(inode),
7569 dio_data->data_reserved, start,
7570 dio_data->reserve, true);
7571 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve);
7572 extent_changeset_free(dio_data->data_reserved);
7573 kfree(dio_data);
7574 }
7575 return ret;
7576}
7577
7578static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7579 ssize_t written, unsigned int flags, struct iomap *iomap)
7580{
7581 int ret = 0;
7582 struct btrfs_dio_data *dio_data = iomap->private;
7583 size_t submitted = dio_data->submitted;
7584 const bool write = !!(flags & IOMAP_WRITE);
7585
7586 if (!write && (iomap->type == IOMAP_HOLE)) {
7587 /* If reading from a hole, unlock and return */
7588 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7589 goto out;
7590 }
7591
7592 if (submitted < length) {
7593 pos += submitted;
7594 length -= submitted;
7595 if (write)
7596 __endio_write_update_ordered(BTRFS_I(inode), pos,
7597 length, false);
7598 else
7599 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7600 pos + length - 1);
7601 ret = -ENOTBLK;
7602 }
7603
7604 if (write) {
7605 if (dio_data->reserve)
7606 btrfs_delalloc_release_space(BTRFS_I(inode),
7607 dio_data->data_reserved, pos,
7608 dio_data->reserve, true);
7609 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length);
7610 extent_changeset_free(dio_data->data_reserved);
7611 }
7612out:
7613 kfree(dio_data);
7614 iomap->private = NULL;
7615
8b110e39
MX
7616 return ret;
7617}
7618
769b4f24 7619static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
8b110e39 7620{
769b4f24
OS
7621 /*
7622 * This implies a barrier so that stores to dio_bio->bi_status before
7623 * this and loads of dio_bio->bi_status after this are fully ordered.
7624 */
7625 if (!refcount_dec_and_test(&dip->refs))
7626 return;
8b110e39 7627
769b4f24 7628 if (bio_op(dip->dio_bio) == REQ_OP_WRITE) {
b672b5c1
NB
7629 __endio_write_update_ordered(BTRFS_I(dip->inode),
7630 dip->logical_offset,
769b4f24
OS
7631 dip->bytes,
7632 !dip->dio_bio->bi_status);
7633 } else {
7634 unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7635 dip->logical_offset,
7636 dip->logical_offset + dip->bytes - 1);
8b110e39
MX
7637 }
7638
f85781fb 7639 bio_endio(dip->dio_bio);
769b4f24 7640 kfree(dip);
8b110e39
MX
7641}
7642
77d5d689
OS
7643static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7644 int mirror_num,
7645 unsigned long bio_flags)
8b110e39 7646{
77d5d689 7647 struct btrfs_dio_private *dip = bio->bi_private;
2ff7e61e 7648 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7649 blk_status_t ret;
8b110e39 7650
37226b21 7651 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7652
5c047a69 7653 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8b110e39 7654 if (ret)
ea057f6d 7655 return ret;
8b110e39 7656
77d5d689 7657 refcount_inc(&dip->refs);
08635bae 7658 ret = btrfs_map_bio(fs_info, bio, mirror_num);
8b110e39 7659 if (ret)
fd9d6670 7660 refcount_dec(&dip->refs);
77d5d689 7661 return ret;
8b110e39
MX
7662}
7663
fd9d6670
OS
7664static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7665 struct btrfs_io_bio *io_bio,
7666 const bool uptodate)
4b46fce2 7667{
fd9d6670
OS
7668 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7669 const u32 sectorsize = fs_info->sectorsize;
7670 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7671 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7672 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
17347cec
LB
7673 struct bio_vec bvec;
7674 struct bvec_iter iter;
fd9d6670
OS
7675 u64 start = io_bio->logical;
7676 int icsum = 0;
58efbc9f 7677 blk_status_t err = BLK_STS_OK;
4b46fce2 7678
fd9d6670
OS
7679 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7680 unsigned int i, nr_sectors, pgoff;
8b110e39 7681
17347cec
LB
7682 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7683 pgoff = bvec.bv_offset;
fd9d6670 7684 for (i = 0; i < nr_sectors; i++) {
97bf5a55 7685 ASSERT(pgoff < PAGE_SIZE);
fd9d6670
OS
7686 if (uptodate &&
7687 (!csum || !check_data_csum(inode, io_bio, icsum,
265d4ac0 7688 bvec.bv_page, pgoff))) {
fd9d6670
OS
7689 clean_io_failure(fs_info, failure_tree, io_tree,
7690 start, bvec.bv_page,
7691 btrfs_ino(BTRFS_I(inode)),
7692 pgoff);
7693 } else {
7694 blk_status_t status;
7695
77d5d689
OS
7696 status = btrfs_submit_read_repair(inode,
7697 &io_bio->bio,
7698 start - io_bio->logical,
fd9d6670
OS
7699 bvec.bv_page, pgoff,
7700 start,
7701 start + sectorsize - 1,
77d5d689
OS
7702 io_bio->mirror_num,
7703 submit_dio_repair_bio);
fd9d6670
OS
7704 if (status)
7705 err = status;
7706 }
7707 start += sectorsize;
7708 icsum++;
2dabb324 7709 pgoff += sectorsize;
2dabb324 7710 }
2c30c71b 7711 }
c1dc0896
MX
7712 return err;
7713}
7714
b672b5c1 7715static void __endio_write_update_ordered(struct btrfs_inode *inode,
52427260
QW
7716 const u64 offset, const u64 bytes,
7717 const bool uptodate)
4b46fce2 7718{
b672b5c1 7719 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4b46fce2 7720 struct btrfs_ordered_extent *ordered = NULL;
52427260 7721 struct btrfs_workqueue *wq;
14543774
FM
7722 u64 ordered_offset = offset;
7723 u64 ordered_bytes = bytes;
67c003f9 7724 u64 last_offset;
4b46fce2 7725
b672b5c1 7726 if (btrfs_is_free_space_inode(inode))
52427260 7727 wq = fs_info->endio_freespace_worker;
a0cac0ec 7728 else
52427260 7729 wq = fs_info->endio_write_workers;
52427260 7730
b25f0d00
NB
7731 while (ordered_offset < offset + bytes) {
7732 last_offset = ordered_offset;
b672b5c1 7733 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7095821e
NB
7734 &ordered_offset,
7735 ordered_bytes,
7736 uptodate)) {
a0cac0ec
OS
7737 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7738 NULL);
b25f0d00
NB
7739 btrfs_queue_work(wq, &ordered->work);
7740 }
7741 /*
7742 * If btrfs_dec_test_ordered_pending does not find any ordered
7743 * extent in the range, we can exit.
7744 */
7745 if (ordered_offset == last_offset)
7746 return;
7747 /*
7748 * Our bio might span multiple ordered extents. In this case
52042d8e 7749 * we keep going until we have accounted the whole dio.
b25f0d00
NB
7750 */
7751 if (ordered_offset < offset + bytes) {
7752 ordered_bytes = offset + bytes - ordered_offset;
7753 ordered = NULL;
7754 }
163cf09c 7755 }
14543774
FM
7756}
7757
8896a08d
QW
7758static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
7759 struct bio *bio, u64 offset)
eaf25d93 7760{
c965d640 7761 return btrfs_csum_one_bio(BTRFS_I(inode), bio, offset, 1);
eaf25d93
CM
7762}
7763
4246a0b6 7764static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
7765{
7766 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 7767 blk_status_t err = bio->bi_status;
e65e1535 7768
8b110e39
MX
7769 if (err)
7770 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 7771 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
7772 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7773 bio->bi_opf,
8b110e39
MX
7774 (unsigned long long)bio->bi_iter.bi_sector,
7775 bio->bi_iter.bi_size, err);
7776
769b4f24
OS
7777 if (bio_op(bio) == REQ_OP_READ) {
7778 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
fd9d6670 7779 !err);
e65e1535
MX
7780 }
7781
769b4f24
OS
7782 if (err)
7783 dip->dio_bio->bi_status = err;
e65e1535 7784
e65e1535 7785 bio_put(bio);
769b4f24 7786 btrfs_dio_private_put(dip);
c1dc0896
MX
7787}
7788
d0ee3934
DS
7789static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7790 struct inode *inode, u64 file_offset, int async_submit)
e65e1535 7791{
0b246afa 7792 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 7793 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 7794 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 7795 blk_status_t ret;
e65e1535 7796
4c274bc6 7797 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
7798 if (async_submit)
7799 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7800
5fd02043 7801 if (!write) {
0b246afa 7802 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
7803 if (ret)
7804 goto err;
7805 }
e65e1535 7806
e6961cac 7807 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
7808 goto map;
7809
7810 if (write && async_submit) {
8896a08d
QW
7811 ret = btrfs_wq_submit_bio(inode, bio, 0, 0,
7812 file_offset,
e288c080 7813 btrfs_submit_bio_start_direct_io);
e65e1535 7814 goto err;
1ae39938
JB
7815 } else if (write) {
7816 /*
7817 * If we aren't doing async submit, calculate the csum of the
7818 * bio now.
7819 */
bd242a08 7820 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
1ae39938
JB
7821 if (ret)
7822 goto err;
23ea8e5a 7823 } else {
85879573
OS
7824 u64 csum_offset;
7825
7826 csum_offset = file_offset - dip->logical_offset;
7827 csum_offset >>= inode->i_sb->s_blocksize_bits;
7828 csum_offset *= btrfs_super_csum_size(fs_info->super_copy);
7829 btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
c2db1073 7830 }
1ae39938 7831map:
08635bae 7832 ret = btrfs_map_bio(fs_info, bio, 0);
e65e1535 7833err:
e65e1535
MX
7834 return ret;
7835}
7836
c36cac28
OS
7837/*
7838 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7839 * or ordered extents whether or not we submit any bios.
7840 */
7841static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
7842 struct inode *inode,
7843 loff_t file_offset)
e65e1535 7844{
c36cac28 7845 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
85879573
OS
7846 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7847 size_t dip_size;
c36cac28 7848 struct btrfs_dio_private *dip;
c36cac28 7849
85879573
OS
7850 dip_size = sizeof(*dip);
7851 if (!write && csum) {
7852 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7853 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
7854 size_t nblocks;
7855
7856 nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
7857 dip_size += csum_size * nblocks;
7858 }
7859
7860 dip = kzalloc(dip_size, GFP_NOFS);
c36cac28
OS
7861 if (!dip)
7862 return NULL;
7863
c36cac28
OS
7864 dip->inode = inode;
7865 dip->logical_offset = file_offset;
7866 dip->bytes = dio_bio->bi_iter.bi_size;
7867 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
c36cac28 7868 dip->dio_bio = dio_bio;
e3b318d1 7869 refcount_set(&dip->refs, 1);
c36cac28
OS
7870 return dip;
7871}
7872
f85781fb
GR
7873static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap,
7874 struct bio *dio_bio, loff_t file_offset)
c36cac28
OS
7875{
7876 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
0b246afa 7877 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
769b4f24
OS
7878 const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7879 BTRFS_BLOCK_GROUP_RAID56_MASK);
c36cac28 7880 struct btrfs_dio_private *dip;
e65e1535 7881 struct bio *bio;
c36cac28 7882 u64 start_sector;
1ae39938 7883 int async_submit = 0;
725130ba
LB
7884 u64 submit_len;
7885 int clone_offset = 0;
7886 int clone_len;
5f4dc8fc 7887 int ret;
58efbc9f 7888 blk_status_t status;
89b798ad 7889 struct btrfs_io_geometry geom;
f85781fb 7890 struct btrfs_dio_data *dio_data = iomap->private;
e65e1535 7891
c36cac28
OS
7892 dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
7893 if (!dip) {
7894 if (!write) {
7895 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
7896 file_offset + dio_bio->bi_iter.bi_size - 1);
7897 }
7898 dio_bio->bi_status = BLK_STS_RESOURCE;
f85781fb
GR
7899 bio_endio(dio_bio);
7900 return BLK_QC_T_NONE;
c36cac28 7901 }
facc8a22 7902
334c16d8 7903 if (!write) {
85879573
OS
7904 /*
7905 * Load the csums up front to reduce csum tree searches and
7906 * contention when submitting bios.
334c16d8
JB
7907 *
7908 * If we have csums disabled this will do nothing.
85879573
OS
7909 */
7910 status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset,
7911 dip->csums);
7912 if (status != BLK_STS_OK)
7913 goto out_err;
02f57c7a
JB
7914 }
7915
769b4f24
OS
7916 start_sector = dio_bio->bi_iter.bi_sector;
7917 submit_len = dio_bio->bi_iter.bi_size;
53b381b3 7918
3c91ee69 7919 do {
769b4f24
OS
7920 ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio),
7921 start_sector << 9, submit_len,
7922 &geom);
7923 if (ret) {
7924 status = errno_to_blk_status(ret);
7925 goto out_err;
7926 }
7927 ASSERT(geom.len <= INT_MAX);
7928
89b798ad 7929 clone_len = min_t(int, submit_len, geom.len);
02f57c7a 7930
725130ba
LB
7931 /*
7932 * This will never fail as it's passing GPF_NOFS and
7933 * the allocation is backed by btrfs_bioset.
7934 */
769b4f24 7935 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
725130ba
LB
7936 bio->bi_private = dip;
7937 bio->bi_end_io = btrfs_end_dio_bio;
7938 btrfs_io_bio(bio)->logical = file_offset;
7939
7940 ASSERT(submit_len >= clone_len);
7941 submit_len -= clone_len;
e65e1535 7942
725130ba
LB
7943 /*
7944 * Increase the count before we submit the bio so we know
7945 * the end IO handler won't happen before we increase the
7946 * count. Otherwise, the dip might get freed before we're
7947 * done setting it up.
769b4f24
OS
7948 *
7949 * We transfer the initial reference to the last bio, so we
7950 * don't need to increment the reference count for the last one.
725130ba 7951 */
769b4f24
OS
7952 if (submit_len > 0) {
7953 refcount_inc(&dip->refs);
7954 /*
7955 * If we are submitting more than one bio, submit them
7956 * all asynchronously. The exception is RAID 5 or 6, as
7957 * asynchronous checksums make it difficult to collect
7958 * full stripe writes.
7959 */
7960 if (!raid56)
7961 async_submit = 1;
7962 }
e65e1535 7963
d0ee3934 7964 status = btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
7965 async_submit);
7966 if (status) {
725130ba 7967 bio_put(bio);
769b4f24
OS
7968 if (submit_len > 0)
7969 refcount_dec(&dip->refs);
725130ba
LB
7970 goto out_err;
7971 }
e65e1535 7972
f85781fb 7973 dio_data->submitted += clone_len;
725130ba
LB
7974 clone_offset += clone_len;
7975 start_sector += clone_len >> 9;
7976 file_offset += clone_len;
3c91ee69 7977 } while (submit_len > 0);
f85781fb 7978 return BLK_QC_T_NONE;
e65e1535 7979
e65e1535 7980out_err:
769b4f24
OS
7981 dip->dio_bio->bi_status = status;
7982 btrfs_dio_private_put(dip);
f85781fb 7983 return BLK_QC_T_NONE;
4b46fce2
JB
7984}
7985
4e4cabec 7986const struct iomap_ops btrfs_dio_iomap_ops = {
f85781fb
GR
7987 .iomap_begin = btrfs_dio_iomap_begin,
7988 .iomap_end = btrfs_dio_iomap_end,
7989};
7990
4e4cabec 7991const struct iomap_dio_ops btrfs_dio_ops = {
f85781fb
GR
7992 .submit_io = btrfs_submit_direct,
7993};
7994
1506fcc8 7995static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
bab16e21 7996 u64 start, u64 len)
1506fcc8 7997{
05dadc09
TI
7998 int ret;
7999
45dd052e 8000 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
05dadc09
TI
8001 if (ret)
8002 return ret;
8003
facee0a0 8004 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
1506fcc8
YS
8005}
8006
a52d9a80 8007int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8008{
0f208812
NB
8009 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8010 u64 start = page_offset(page);
8011 u64 end = start + PAGE_SIZE - 1;
c1be9c1a 8012 unsigned long bio_flags = 0;
0f208812 8013 struct bio *bio = NULL;
c1be9c1a
NB
8014 int ret;
8015
0f208812
NB
8016 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
8017
8018 ret = btrfs_do_readpage(page, NULL, &bio, &bio_flags, 0, NULL);
c1be9c1a
NB
8019 if (bio)
8020 ret = submit_one_bio(bio, 0, bio_flags);
8021 return ret;
9ebefb18 8022}
1832a6d5 8023
a52d9a80 8024static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8025{
be7bd730
JB
8026 struct inode *inode = page->mapping->host;
8027 int ret;
b888db2b
CM
8028
8029 if (current->flags & PF_MEMALLOC) {
8030 redirty_page_for_writepage(wbc, page);
8031 unlock_page(page);
8032 return 0;
8033 }
be7bd730
JB
8034
8035 /*
8036 * If we are under memory pressure we will call this directly from the
8037 * VM, we need to make sure we have the inode referenced for the ordered
8038 * extent. If not just return like we didn't do anything.
8039 */
8040 if (!igrab(inode)) {
8041 redirty_page_for_writepage(wbc, page);
8042 return AOP_WRITEPAGE_ACTIVATE;
8043 }
0a9b0e53 8044 ret = extent_write_full_page(page, wbc);
be7bd730
JB
8045 btrfs_add_delayed_iput(inode);
8046 return ret;
9ebefb18
CM
8047}
8048
48a3b636
ES
8049static int btrfs_writepages(struct address_space *mapping,
8050 struct writeback_control *wbc)
b293f02e 8051{
8ae225a8 8052 return extent_writepages(mapping, wbc);
b293f02e
CM
8053}
8054
ba206a02 8055static void btrfs_readahead(struct readahead_control *rac)
3ab2fb5a 8056{
ba206a02 8057 extent_readahead(rac);
3ab2fb5a 8058}
2a3ff0ad 8059
e6dcd2dc 8060static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8061{
477a30ba 8062 int ret = try_release_extent_mapping(page, gfp_flags);
d1b89bc0
GJ
8063 if (ret == 1)
8064 detach_page_private(page);
a52d9a80 8065 return ret;
39279cc3
CM
8066}
8067
e6dcd2dc
CM
8068static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8069{
98509cfc
CM
8070 if (PageWriteback(page) || PageDirty(page))
8071 return 0;
3ba7ab22 8072 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8073}
8074
f8e66081
RG
8075#ifdef CONFIG_MIGRATION
8076static int btrfs_migratepage(struct address_space *mapping,
8077 struct page *newpage, struct page *page,
8078 enum migrate_mode mode)
8079{
8080 int ret;
8081
8082 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8083 if (ret != MIGRATEPAGE_SUCCESS)
8084 return ret;
8085
d1b89bc0
GJ
8086 if (page_has_private(page))
8087 attach_page_private(newpage, detach_page_private(page));
f8e66081
RG
8088
8089 if (PagePrivate2(page)) {
8090 ClearPagePrivate2(page);
8091 SetPagePrivate2(newpage);
8092 }
8093
8094 if (mode != MIGRATE_SYNC_NO_COPY)
8095 migrate_page_copy(newpage, page);
8096 else
8097 migrate_page_states(newpage, page);
8098 return MIGRATEPAGE_SUCCESS;
8099}
8100#endif
8101
d47992f8
LC
8102static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8103 unsigned int length)
39279cc3 8104{
53ac7ead
NB
8105 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8106 struct extent_io_tree *tree = &inode->io_tree;
e6dcd2dc 8107 struct btrfs_ordered_extent *ordered;
2ac55d41 8108 struct extent_state *cached_state = NULL;
e6dcd2dc 8109 u64 page_start = page_offset(page);
09cbfeaf 8110 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8111 u64 start;
8112 u64 end;
53ac7ead 8113 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
39279cc3 8114
8b62b72b
CM
8115 /*
8116 * we have the page locked, so new writeback can't start,
8117 * and the dirty bit won't be cleared while we are here.
8118 *
8119 * Wait for IO on this page so that we can safely clear
8120 * the PagePrivate2 bit and do ordered accounting
8121 */
e6dcd2dc 8122 wait_on_page_writeback(page);
8b62b72b 8123
e6dcd2dc
CM
8124 if (offset) {
8125 btrfs_releasepage(page, GFP_NOFS);
8126 return;
8127 }
131e404a
FDBM
8128
8129 if (!inode_evicting)
ff13db41 8130 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8131again:
8132 start = page_start;
53ac7ead 8133 ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1);
e6dcd2dc 8134 if (ordered) {
bffe633e
OS
8135 end = min(page_end,
8136 ordered->file_offset + ordered->num_bytes - 1);
eb84ae03
CM
8137 /*
8138 * IO on this page will never be started, so we need
8139 * to account for any ordered extents now
8140 */
131e404a 8141 if (!inode_evicting)
dbfdb6d1 8142 clear_extent_bit(tree, start, end,
e182163d 8143 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
131e404a 8144 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8145 EXTENT_DEFRAG, 1, 0, &cached_state);
8b62b72b
CM
8146 /*
8147 * whoever cleared the private bit is responsible
8148 * for the finish_ordered_io
8149 */
77cef2ec
JB
8150 if (TestClearPagePrivate2(page)) {
8151 struct btrfs_ordered_inode_tree *tree;
8152 u64 new_len;
8153
53ac7ead 8154 tree = &inode->ordered_tree;
77cef2ec
JB
8155
8156 spin_lock_irq(&tree->lock);
8157 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8158 new_len = start - ordered->file_offset;
77cef2ec
JB
8159 if (new_len < ordered->truncated_len)
8160 ordered->truncated_len = new_len;
8161 spin_unlock_irq(&tree->lock);
8162
53ac7ead
NB
8163 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8164 start,
dbfdb6d1 8165 end - start + 1, 1))
77cef2ec 8166 btrfs_finish_ordered_io(ordered);
8b62b72b 8167 }
e6dcd2dc 8168 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8169 if (!inode_evicting) {
8170 cached_state = NULL;
dbfdb6d1 8171 lock_extent_bits(tree, start, end,
131e404a
FDBM
8172 &cached_state);
8173 }
dbfdb6d1
CR
8174
8175 start = end + 1;
8176 if (start < page_end)
8177 goto again;
131e404a
FDBM
8178 }
8179
b9d0b389
QW
8180 /*
8181 * Qgroup reserved space handler
8182 * Page here will be either
fa91e4aa
QW
8183 * 1) Already written to disk or ordered extent already submitted
8184 * Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8185 * Qgroup will be handled by its qgroup_record then.
8186 * btrfs_qgroup_free_data() call will do nothing here.
8187 *
8188 * 2) Not written to disk yet
8189 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8190 * bit of its io_tree, and free the qgroup reserved data space.
8191 * Since the IO will never happen for this page.
b9d0b389 8192 */
53ac7ead 8193 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a 8194 if (!inode_evicting) {
e182163d 8195 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
a7e3b975
FM
8196 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8197 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
ae0f1625 8198 &cached_state);
131e404a
FDBM
8199
8200 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8201 }
e6dcd2dc 8202
4a096752 8203 ClearPageChecked(page);
d1b89bc0 8204 detach_page_private(page);
39279cc3
CM
8205}
8206
9ebefb18
CM
8207/*
8208 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8209 * called from a page fault handler when a page is first dirtied. Hence we must
8210 * be careful to check for EOF conditions here. We set the page up correctly
8211 * for a written page which means we get ENOSPC checking when writing into
8212 * holes and correct delalloc and unwritten extent mapping on filesystems that
8213 * support these features.
8214 *
8215 * We are not allowed to take the i_mutex here so we have to play games to
8216 * protect against truncate races as the page could now be beyond EOF. Because
d1342aad
OS
8217 * truncate_setsize() writes the inode size before removing pages, once we have
8218 * the page lock we can determine safely if the page is beyond EOF. If it is not
9ebefb18
CM
8219 * beyond EOF, then the page is guaranteed safe against truncation until we
8220 * unlock the page.
8221 */
a528a241 8222vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8223{
c2ec175c 8224 struct page *page = vmf->page;
11bac800 8225 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8226 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8227 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8228 struct btrfs_ordered_extent *ordered;
2ac55d41 8229 struct extent_state *cached_state = NULL;
364ecf36 8230 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
8231 char *kaddr;
8232 unsigned long zero_start;
9ebefb18 8233 loff_t size;
a528a241
SJ
8234 vm_fault_t ret;
8235 int ret2;
9998eb70 8236 int reserved = 0;
d0b7da88 8237 u64 reserved_space;
a52d9a80 8238 u64 page_start;
e6dcd2dc 8239 u64 page_end;
d0b7da88
CR
8240 u64 end;
8241
09cbfeaf 8242 reserved_space = PAGE_SIZE;
9ebefb18 8243
b2b5ef5c 8244 sb_start_pagefault(inode->i_sb);
df480633 8245 page_start = page_offset(page);
09cbfeaf 8246 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8247 end = page_end;
df480633 8248
d0b7da88
CR
8249 /*
8250 * Reserving delalloc space after obtaining the page lock can lead to
8251 * deadlock. For example, if a dirty page is locked by this function
8252 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8253 * dirty page write out, then the btrfs_writepage() function could
8254 * end up waiting indefinitely to get a lock on the page currently
8255 * being processed by btrfs_page_mkwrite() function.
8256 */
e5b7231e
NB
8257 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8258 page_start, reserved_space);
a528a241
SJ
8259 if (!ret2) {
8260 ret2 = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8261 reserved = 1;
8262 }
a528a241
SJ
8263 if (ret2) {
8264 ret = vmf_error(ret2);
9998eb70
CM
8265 if (reserved)
8266 goto out;
8267 goto out_noreserve;
56a76f82 8268 }
1832a6d5 8269
56a76f82 8270 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8271again:
9ebefb18 8272 lock_page(page);
9ebefb18 8273 size = i_size_read(inode);
a52d9a80 8274
9ebefb18 8275 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8276 (page_start >= size)) {
9ebefb18
CM
8277 /* page got truncated out from underneath us */
8278 goto out_unlock;
8279 }
e6dcd2dc
CM
8280 wait_on_page_writeback(page);
8281
ff13db41 8282 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8283 set_page_extent_mapped(page);
8284
eb84ae03
CM
8285 /*
8286 * we can't set the delalloc bits if there are pending ordered
8287 * extents. Drop our locks and wait for them to finish
8288 */
a776c6fa
NB
8289 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8290 PAGE_SIZE);
e6dcd2dc 8291 if (ordered) {
2ac55d41 8292 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8293 &cached_state);
e6dcd2dc 8294 unlock_page(page);
c0a43603 8295 btrfs_start_ordered_extent(ordered, 1);
e6dcd2dc
CM
8296 btrfs_put_ordered_extent(ordered);
8297 goto again;
8298 }
8299
09cbfeaf 8300 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 8301 reserved_space = round_up(size - page_start,
0b246afa 8302 fs_info->sectorsize);
09cbfeaf 8303 if (reserved_space < PAGE_SIZE) {
d0b7da88 8304 end = page_start + reserved_space - 1;
86d52921
NB
8305 btrfs_delalloc_release_space(BTRFS_I(inode),
8306 data_reserved, page_start,
8307 PAGE_SIZE - reserved_space, true);
d0b7da88
CR
8308 }
8309 }
8310
fbf19087 8311 /*
5416034f
LB
8312 * page_mkwrite gets called when the page is firstly dirtied after it's
8313 * faulted in, but write(2) could also dirty a page and set delalloc
8314 * bits, thus in this case for space account reason, we still need to
8315 * clear any delalloc bits within this page range since we have to
8316 * reserve data&meta space before lock_page() (see above comments).
fbf19087 8317 */
d0b7da88 8318 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
e182163d
OS
8319 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8320 EXTENT_DEFRAG, 0, 0, &cached_state);
fbf19087 8321
c2566f22 8322 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
330a5827 8323 &cached_state);
a528a241 8324 if (ret2) {
2ac55d41 8325 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8326 &cached_state);
9ed74f2d
JB
8327 ret = VM_FAULT_SIGBUS;
8328 goto out_unlock;
8329 }
9ebefb18
CM
8330
8331 /* page is wholly or partially inside EOF */
09cbfeaf 8332 if (page_start + PAGE_SIZE > size)
7073017a 8333 zero_start = offset_in_page(size);
9ebefb18 8334 else
09cbfeaf 8335 zero_start = PAGE_SIZE;
9ebefb18 8336
09cbfeaf 8337 if (zero_start != PAGE_SIZE) {
e6dcd2dc 8338 kaddr = kmap(page);
09cbfeaf 8339 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
8340 flush_dcache_page(page);
8341 kunmap(page);
8342 }
247e743c 8343 ClearPageChecked(page);
e6dcd2dc 8344 set_page_dirty(page);
50a9b214 8345 SetPageUptodate(page);
5a3f23d5 8346
0b246afa 8347 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 8348 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8349 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8350
e43bbe5e 8351 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9ebefb18 8352
76de60ed
YY
8353 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8354 sb_end_pagefault(inode->i_sb);
8355 extent_changeset_free(data_reserved);
8356 return VM_FAULT_LOCKED;
717beb96
CM
8357
8358out_unlock:
9ebefb18 8359 unlock_page(page);
1832a6d5 8360out:
8702ba93 8361 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
86d52921 8362 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
43b18595 8363 reserved_space, (ret != 0));
9998eb70 8364out_noreserve:
b2b5ef5c 8365 sb_end_pagefault(inode->i_sb);
364ecf36 8366 extent_changeset_free(data_reserved);
9ebefb18
CM
8367 return ret;
8368}
8369
213e8c55 8370static int btrfs_truncate(struct inode *inode, bool skip_writeback)
39279cc3 8371{
0b246afa 8372 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 8373 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8374 struct btrfs_block_rsv *rsv;
ad7e1a74 8375 int ret;
39279cc3 8376 struct btrfs_trans_handle *trans;
0b246afa 8377 u64 mask = fs_info->sectorsize - 1;
2bd36e7b 8378 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
39279cc3 8379
213e8c55
FM
8380 if (!skip_writeback) {
8381 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8382 (u64)-1);
8383 if (ret)
8384 return ret;
8385 }
39279cc3 8386
fcb80c2a 8387 /*
f7e9e8fc
OS
8388 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8389 * things going on here:
fcb80c2a 8390 *
f7e9e8fc 8391 * 1) We need to reserve space to update our inode.
fcb80c2a 8392 *
f7e9e8fc 8393 * 2) We need to have something to cache all the space that is going to
fcb80c2a
JB
8394 * be free'd up by the truncate operation, but also have some slack
8395 * space reserved in case it uses space during the truncate (thank you
8396 * very much snapshotting).
8397 *
f7e9e8fc 8398 * And we need these to be separate. The fact is we can use a lot of
fcb80c2a 8399 * space doing the truncate, and we have no earthly idea how much space
01327610 8400 * we will use, so we need the truncate reservation to be separate so it
f7e9e8fc
OS
8401 * doesn't end up using space reserved for updating the inode. We also
8402 * need to be able to stop the transaction and start a new one, which
8403 * means we need to be able to update the inode several times, and we
8404 * have no idea of knowing how many times that will be, so we can't just
8405 * reserve 1 item for the entirety of the operation, so that has to be
8406 * done separately as well.
fcb80c2a
JB
8407 *
8408 * So that leaves us with
8409 *
f7e9e8fc 8410 * 1) rsv - for the truncate reservation, which we will steal from the
fcb80c2a 8411 * transaction reservation.
f7e9e8fc 8412 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
fcb80c2a
JB
8413 * updating the inode.
8414 */
2ff7e61e 8415 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8416 if (!rsv)
8417 return -ENOMEM;
4a338542 8418 rsv->size = min_size;
ca7e70f5 8419 rsv->failfast = 1;
f0cd846e 8420
907cbceb 8421 /*
07127184 8422 * 1 for the truncate slack space
907cbceb
JB
8423 * 1 for updating the inode.
8424 */
f3fe820c 8425 trans = btrfs_start_transaction(root, 2);
fcb80c2a 8426 if (IS_ERR(trans)) {
ad7e1a74 8427 ret = PTR_ERR(trans);
fcb80c2a
JB
8428 goto out;
8429 }
f0cd846e 8430
907cbceb 8431 /* Migrate the slack space for the truncate to our reserve */
0b246afa 8432 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
3a584174 8433 min_size, false);
fcb80c2a 8434 BUG_ON(ret);
f0cd846e 8435
5dc562c5
JB
8436 /*
8437 * So if we truncate and then write and fsync we normally would just
8438 * write the extents that changed, which is a problem if we need to
8439 * first truncate that entire inode. So set this flag so we write out
8440 * all of the extents in the inode to the sync log so we're completely
8441 * safe.
8442 */
8443 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 8444 trans->block_rsv = rsv;
907cbceb 8445
8082510e
YZ
8446 while (1) {
8447 ret = btrfs_truncate_inode_items(trans, root, inode,
8448 inode->i_size,
8449 BTRFS_EXTENT_DATA_KEY);
ddfae63c 8450 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74 8451 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 8452 break;
39279cc3 8453
8082510e 8454 ret = btrfs_update_inode(trans, root, inode);
ad7e1a74 8455 if (ret)
3893e33b 8456 break;
ca7e70f5 8457
3a45bb20 8458 btrfs_end_transaction(trans);
2ff7e61e 8459 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
8460
8461 trans = btrfs_start_transaction(root, 2);
8462 if (IS_ERR(trans)) {
ad7e1a74 8463 ret = PTR_ERR(trans);
ca7e70f5
JB
8464 trans = NULL;
8465 break;
8466 }
8467
63f018be 8468 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
0b246afa 8469 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
3a584174 8470 rsv, min_size, false);
ca7e70f5
JB
8471 BUG_ON(ret); /* shouldn't happen */
8472 trans->block_rsv = rsv;
8082510e
YZ
8473 }
8474
ddfae63c
JB
8475 /*
8476 * We can't call btrfs_truncate_block inside a trans handle as we could
8477 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8478 * we've truncated everything except the last little bit, and can do
8479 * btrfs_truncate_block and then update the disk_i_size.
8480 */
8481 if (ret == NEED_TRUNCATE_BLOCK) {
8482 btrfs_end_transaction(trans);
8483 btrfs_btree_balance_dirty(fs_info);
8484
8485 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
8486 if (ret)
8487 goto out;
8488 trans = btrfs_start_transaction(root, 1);
8489 if (IS_ERR(trans)) {
8490 ret = PTR_ERR(trans);
8491 goto out;
8492 }
d923afe9 8493 btrfs_inode_safe_disk_i_size_write(inode, 0);
ddfae63c
JB
8494 }
8495
917c16b2 8496 if (trans) {
ad7e1a74
OS
8497 int ret2;
8498
0b246afa 8499 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74
OS
8500 ret2 = btrfs_update_inode(trans, root, inode);
8501 if (ret2 && !ret)
8502 ret = ret2;
7b128766 8503
ad7e1a74
OS
8504 ret2 = btrfs_end_transaction(trans);
8505 if (ret2 && !ret)
8506 ret = ret2;
2ff7e61e 8507 btrfs_btree_balance_dirty(fs_info);
917c16b2 8508 }
fcb80c2a 8509out:
2ff7e61e 8510 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 8511
ad7e1a74 8512 return ret;
39279cc3
CM
8513}
8514
d352ac68
CM
8515/*
8516 * create a new subvolume directory/inode (helper for the ioctl).
8517 */
d2fb3437 8518int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
8519 struct btrfs_root *new_root,
8520 struct btrfs_root *parent_root,
8521 u64 new_dirid)
39279cc3 8522{
39279cc3 8523 struct inode *inode;
76dda93c 8524 int err;
00e4e6b3 8525 u64 index = 0;
39279cc3 8526
12fc9d09
FA
8527 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8528 new_dirid, new_dirid,
8529 S_IFDIR | (~current_umask() & S_IRWXUGO),
8530 &index);
54aa1f4d 8531 if (IS_ERR(inode))
f46b5a66 8532 return PTR_ERR(inode);
39279cc3
CM
8533 inode->i_op = &btrfs_dir_inode_operations;
8534 inode->i_fop = &btrfs_dir_file_operations;
8535
bfe86848 8536 set_nlink(inode, 1);
6ef06d27 8537 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 8538 unlock_new_inode(inode);
3b96362c 8539
63541927
FDBM
8540 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8541 if (err)
8542 btrfs_err(new_root->fs_info,
351fd353 8543 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
8544 new_root->root_key.objectid, err);
8545
76dda93c 8546 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 8547
76dda93c 8548 iput(inode);
ce598979 8549 return err;
39279cc3
CM
8550}
8551
39279cc3
CM
8552struct inode *btrfs_alloc_inode(struct super_block *sb)
8553{
69fe2d75 8554 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 8555 struct btrfs_inode *ei;
2ead6ae7 8556 struct inode *inode;
39279cc3 8557
712e36c5 8558 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
8559 if (!ei)
8560 return NULL;
2ead6ae7
YZ
8561
8562 ei->root = NULL;
2ead6ae7 8563 ei->generation = 0;
15ee9bc7 8564 ei->last_trans = 0;
257c62e1 8565 ei->last_sub_trans = 0;
e02119d5 8566 ei->logged_trans = 0;
2ead6ae7 8567 ei->delalloc_bytes = 0;
a7e3b975 8568 ei->new_delalloc_bytes = 0;
47059d93 8569 ei->defrag_bytes = 0;
2ead6ae7
YZ
8570 ei->disk_i_size = 0;
8571 ei->flags = 0;
7709cde3 8572 ei->csum_bytes = 0;
2ead6ae7 8573 ei->index_cnt = (u64)-1;
67de1176 8574 ei->dir_index = 0;
2ead6ae7 8575 ei->last_unlink_trans = 0;
3ebac17c 8576 ei->last_reflink_trans = 0;
46d8bc34 8577 ei->last_log_commit = 0;
2ead6ae7 8578
9e0baf60
JB
8579 spin_lock_init(&ei->lock);
8580 ei->outstanding_extents = 0;
69fe2d75
JB
8581 if (sb->s_magic != BTRFS_TEST_MAGIC)
8582 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8583 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 8584 ei->runtime_flags = 0;
b52aa8c9 8585 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 8586 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8587
16cdcec7
MX
8588 ei->delayed_node = NULL;
8589
9cc97d64 8590 ei->i_otime.tv_sec = 0;
8591 ei->i_otime.tv_nsec = 0;
8592
2ead6ae7 8593 inode = &ei->vfs_inode;
a8067e02 8594 extent_map_tree_init(&ei->extent_tree);
43eb5f29
QW
8595 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8596 extent_io_tree_init(fs_info, &ei->io_failure_tree,
8597 IO_TREE_INODE_IO_FAILURE, inode);
41a2ee75
JB
8598 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8599 IO_TREE_INODE_FILE_EXTENT, inode);
7b439738
DS
8600 ei->io_tree.track_uptodate = true;
8601 ei->io_failure_tree.track_uptodate = true;
b812ce28 8602 atomic_set(&ei->sync_writers, 0);
2ead6ae7 8603 mutex_init(&ei->log_mutex);
e6dcd2dc 8604 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 8605 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 8606 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7
YZ
8607 RB_CLEAR_NODE(&ei->rb_node);
8608
8609 return inode;
39279cc3
CM
8610}
8611
aaedb55b
JB
8612#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8613void btrfs_test_destroy_inode(struct inode *inode)
8614{
dcdbc059 8615 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
8616 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8617}
8618#endif
8619
26602cab 8620void btrfs_free_inode(struct inode *inode)
fa0d7e3d 8621{
fa0d7e3d
NP
8622 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8623}
8624
633cc816 8625void btrfs_destroy_inode(struct inode *vfs_inode)
39279cc3 8626{
e6dcd2dc 8627 struct btrfs_ordered_extent *ordered;
633cc816
NB
8628 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8629 struct btrfs_root *root = inode->root;
5a3f23d5 8630
633cc816
NB
8631 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8632 WARN_ON(vfs_inode->i_data.nrpages);
8633 WARN_ON(inode->block_rsv.reserved);
8634 WARN_ON(inode->block_rsv.size);
8635 WARN_ON(inode->outstanding_extents);
8636 WARN_ON(inode->delalloc_bytes);
8637 WARN_ON(inode->new_delalloc_bytes);
8638 WARN_ON(inode->csum_bytes);
8639 WARN_ON(inode->defrag_bytes);
39279cc3 8640
a6dbd429
JB
8641 /*
8642 * This can happen where we create an inode, but somebody else also
8643 * created the same inode and we need to destroy the one we already
8644 * created.
8645 */
8646 if (!root)
26602cab 8647 return;
a6dbd429 8648
d397712b 8649 while (1) {
633cc816 8650 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
e6dcd2dc
CM
8651 if (!ordered)
8652 break;
8653 else {
633cc816 8654 btrfs_err(root->fs_info,
5d163e0e 8655 "found ordered extent %llu %llu on inode cleanup",
bffe633e 8656 ordered->file_offset, ordered->num_bytes);
71fe0a55 8657 btrfs_remove_ordered_extent(inode, ordered);
e6dcd2dc
CM
8658 btrfs_put_ordered_extent(ordered);
8659 btrfs_put_ordered_extent(ordered);
8660 }
8661 }
633cc816
NB
8662 btrfs_qgroup_check_reserved_leak(inode);
8663 inode_tree_del(inode);
8664 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8665 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8666 btrfs_put_root(inode->root);
39279cc3
CM
8667}
8668
45321ac5 8669int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8670{
8671 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8672
6379ef9f
NA
8673 if (root == NULL)
8674 return 1;
8675
fa6ac876 8676 /* the snap/subvol tree is on deleting */
69e9c6c6 8677 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8678 return 1;
76dda93c 8679 else
45321ac5 8680 return generic_drop_inode(inode);
76dda93c
YZ
8681}
8682
0ee0fda0 8683static void init_once(void *foo)
39279cc3
CM
8684{
8685 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8686
8687 inode_init_once(&ei->vfs_inode);
8688}
8689
e67c718b 8690void __cold btrfs_destroy_cachep(void)
39279cc3 8691{
8c0a8537
KS
8692 /*
8693 * Make sure all delayed rcu free inodes are flushed before we
8694 * destroy cache.
8695 */
8696 rcu_barrier();
5598e900
KM
8697 kmem_cache_destroy(btrfs_inode_cachep);
8698 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
8699 kmem_cache_destroy(btrfs_path_cachep);
8700 kmem_cache_destroy(btrfs_free_space_cachep);
3acd4850 8701 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
39279cc3
CM
8702}
8703
f5c29bd9 8704int __init btrfs_init_cachep(void)
39279cc3 8705{
837e1972 8706 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 8707 sizeof(struct btrfs_inode), 0,
5d097056
VD
8708 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8709 init_once);
39279cc3
CM
8710 if (!btrfs_inode_cachep)
8711 goto fail;
9601e3f6 8712
837e1972 8713 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 8714 sizeof(struct btrfs_trans_handle), 0,
fba4b697 8715 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8716 if (!btrfs_trans_handle_cachep)
8717 goto fail;
9601e3f6 8718
837e1972 8719 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 8720 sizeof(struct btrfs_path), 0,
fba4b697 8721 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8722 if (!btrfs_path_cachep)
8723 goto fail;
9601e3f6 8724
837e1972 8725 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 8726 sizeof(struct btrfs_free_space), 0,
fba4b697 8727 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
8728 if (!btrfs_free_space_cachep)
8729 goto fail;
8730
3acd4850
CL
8731 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
8732 PAGE_SIZE, PAGE_SIZE,
8733 SLAB_RED_ZONE, NULL);
8734 if (!btrfs_free_space_bitmap_cachep)
8735 goto fail;
8736
39279cc3
CM
8737 return 0;
8738fail:
8739 btrfs_destroy_cachep();
8740 return -ENOMEM;
8741}
8742
a528d35e
DH
8743static int btrfs_getattr(const struct path *path, struct kstat *stat,
8744 u32 request_mask, unsigned int flags)
39279cc3 8745{
df0af1a5 8746 u64 delalloc_bytes;
a528d35e 8747 struct inode *inode = d_inode(path->dentry);
fadc0d8b 8748 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
8749 u32 bi_flags = BTRFS_I(inode)->flags;
8750
8751 stat->result_mask |= STATX_BTIME;
8752 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8753 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8754 if (bi_flags & BTRFS_INODE_APPEND)
8755 stat->attributes |= STATX_ATTR_APPEND;
8756 if (bi_flags & BTRFS_INODE_COMPRESS)
8757 stat->attributes |= STATX_ATTR_COMPRESSED;
8758 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8759 stat->attributes |= STATX_ATTR_IMMUTABLE;
8760 if (bi_flags & BTRFS_INODE_NODUMP)
8761 stat->attributes |= STATX_ATTR_NODUMP;
8762
8763 stat->attributes_mask |= (STATX_ATTR_APPEND |
8764 STATX_ATTR_COMPRESSED |
8765 STATX_ATTR_IMMUTABLE |
8766 STATX_ATTR_NODUMP);
fadc0d8b 8767
39279cc3 8768 generic_fillattr(inode, stat);
0ee5dc67 8769 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
8770
8771 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 8772 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 8773 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 8774 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 8775 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
8776 return 0;
8777}
8778
cdd1fedf
DF
8779static int btrfs_rename_exchange(struct inode *old_dir,
8780 struct dentry *old_dentry,
8781 struct inode *new_dir,
8782 struct dentry *new_dentry)
8783{
0b246afa 8784 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
8785 struct btrfs_trans_handle *trans;
8786 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8787 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8788 struct inode *new_inode = new_dentry->d_inode;
8789 struct inode *old_inode = old_dentry->d_inode;
95582b00 8790 struct timespec64 ctime = current_time(old_inode);
4a0cc7ca
NB
8791 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8792 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
8793 u64 old_idx = 0;
8794 u64 new_idx = 0;
cdd1fedf 8795 int ret;
75b463d2 8796 int ret2;
86e8aa0e
FM
8797 bool root_log_pinned = false;
8798 bool dest_log_pinned = false;
cdd1fedf
DF
8799
8800 /* we only allow rename subvolume link between subvolumes */
8801 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8802 return -EXDEV;
8803
8804 /* close the race window with snapshot create/destroy ioctl */
943eb3bf
JB
8805 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8806 new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 8807 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
8808
8809 /*
8810 * We want to reserve the absolute worst case amount of items. So if
8811 * both inodes are subvols and we need to unlink them then that would
8812 * require 4 item modifications, but if they are both normal inodes it
8813 * would require 5 item modifications, so we'll assume their normal
8814 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
8815 * should cover the worst case number of items we'll modify.
8816 */
8817 trans = btrfs_start_transaction(root, 12);
8818 if (IS_ERR(trans)) {
8819 ret = PTR_ERR(trans);
8820 goto out_notrans;
8821 }
8822
3e174099
JB
8823 if (dest != root)
8824 btrfs_record_root_in_trans(trans, dest);
8825
cdd1fedf
DF
8826 /*
8827 * We need to find a free sequence number both in the source and
8828 * in the destination directory for the exchange.
8829 */
877574e2 8830 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
8831 if (ret)
8832 goto out_fail;
877574e2 8833 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
8834 if (ret)
8835 goto out_fail;
8836
8837 BTRFS_I(old_inode)->dir_index = 0ULL;
8838 BTRFS_I(new_inode)->dir_index = 0ULL;
8839
8840 /* Reference for the source. */
8841 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8842 /* force full log commit if subvolume involved. */
90787766 8843 btrfs_set_log_full_commit(trans);
cdd1fedf 8844 } else {
376e5a57
FM
8845 btrfs_pin_log_trans(root);
8846 root_log_pinned = true;
cdd1fedf
DF
8847 ret = btrfs_insert_inode_ref(trans, dest,
8848 new_dentry->d_name.name,
8849 new_dentry->d_name.len,
8850 old_ino,
f85b7379
DS
8851 btrfs_ino(BTRFS_I(new_dir)),
8852 old_idx);
cdd1fedf
DF
8853 if (ret)
8854 goto out_fail;
cdd1fedf
DF
8855 }
8856
8857 /* And now for the dest. */
8858 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8859 /* force full log commit if subvolume involved. */
90787766 8860 btrfs_set_log_full_commit(trans);
cdd1fedf 8861 } else {
376e5a57
FM
8862 btrfs_pin_log_trans(dest);
8863 dest_log_pinned = true;
cdd1fedf
DF
8864 ret = btrfs_insert_inode_ref(trans, root,
8865 old_dentry->d_name.name,
8866 old_dentry->d_name.len,
8867 new_ino,
f85b7379
DS
8868 btrfs_ino(BTRFS_I(old_dir)),
8869 new_idx);
cdd1fedf
DF
8870 if (ret)
8871 goto out_fail;
cdd1fedf
DF
8872 }
8873
8874 /* Update inode version and ctime/mtime. */
8875 inode_inc_iversion(old_dir);
8876 inode_inc_iversion(new_dir);
8877 inode_inc_iversion(old_inode);
8878 inode_inc_iversion(new_inode);
8879 old_dir->i_ctime = old_dir->i_mtime = ctime;
8880 new_dir->i_ctime = new_dir->i_mtime = ctime;
8881 old_inode->i_ctime = ctime;
8882 new_inode->i_ctime = ctime;
8883
8884 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
8885 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8886 BTRFS_I(old_inode), 1);
8887 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8888 BTRFS_I(new_inode), 1);
cdd1fedf
DF
8889 }
8890
8891 /* src is a subvolume */
8892 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
045d3967 8893 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
cdd1fedf 8894 } else { /* src is an inode */
4ec5934e
NB
8895 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
8896 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
8897 old_dentry->d_name.name,
8898 old_dentry->d_name.len);
8899 if (!ret)
8900 ret = btrfs_update_inode(trans, root, old_inode);
8901 }
8902 if (ret) {
66642832 8903 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8904 goto out_fail;
8905 }
8906
8907 /* dest is a subvolume */
8908 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
045d3967 8909 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
cdd1fedf 8910 } else { /* dest is an inode */
4ec5934e
NB
8911 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
8912 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
8913 new_dentry->d_name.name,
8914 new_dentry->d_name.len);
8915 if (!ret)
8916 ret = btrfs_update_inode(trans, dest, new_inode);
8917 }
8918 if (ret) {
66642832 8919 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8920 goto out_fail;
8921 }
8922
db0a669f 8923 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
8924 new_dentry->d_name.name,
8925 new_dentry->d_name.len, 0, old_idx);
8926 if (ret) {
66642832 8927 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8928 goto out_fail;
8929 }
8930
db0a669f 8931 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
8932 old_dentry->d_name.name,
8933 old_dentry->d_name.len, 0, new_idx);
8934 if (ret) {
66642832 8935 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8936 goto out_fail;
8937 }
8938
8939 if (old_inode->i_nlink == 1)
8940 BTRFS_I(old_inode)->dir_index = old_idx;
8941 if (new_inode->i_nlink == 1)
8942 BTRFS_I(new_inode)->dir_index = new_idx;
8943
86e8aa0e 8944 if (root_log_pinned) {
75b463d2
FM
8945 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
8946 new_dentry->d_parent);
cdd1fedf 8947 btrfs_end_log_trans(root);
86e8aa0e 8948 root_log_pinned = false;
cdd1fedf 8949 }
86e8aa0e 8950 if (dest_log_pinned) {
75b463d2
FM
8951 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
8952 old_dentry->d_parent);
cdd1fedf 8953 btrfs_end_log_trans(dest);
86e8aa0e 8954 dest_log_pinned = false;
cdd1fedf
DF
8955 }
8956out_fail:
86e8aa0e
FM
8957 /*
8958 * If we have pinned a log and an error happened, we unpin tasks
8959 * trying to sync the log and force them to fallback to a transaction
8960 * commit if the log currently contains any of the inodes involved in
8961 * this rename operation (to ensure we do not persist a log with an
8962 * inconsistent state for any of these inodes or leading to any
8963 * inconsistencies when replayed). If the transaction was aborted, the
8964 * abortion reason is propagated to userspace when attempting to commit
8965 * the transaction. If the log does not contain any of these inodes, we
8966 * allow the tasks to sync it.
8967 */
8968 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
8969 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
8970 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
8971 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 8972 (new_inode &&
0f8939b8 8973 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 8974 btrfs_set_log_full_commit(trans);
86e8aa0e
FM
8975
8976 if (root_log_pinned) {
8977 btrfs_end_log_trans(root);
8978 root_log_pinned = false;
8979 }
8980 if (dest_log_pinned) {
8981 btrfs_end_log_trans(dest);
8982 dest_log_pinned = false;
8983 }
8984 }
75b463d2
FM
8985 ret2 = btrfs_end_transaction(trans);
8986 ret = ret ? ret : ret2;
cdd1fedf 8987out_notrans:
943eb3bf
JB
8988 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8989 old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 8990 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
8991
8992 return ret;
8993}
8994
8995static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
8996 struct btrfs_root *root,
8997 struct inode *dir,
8998 struct dentry *dentry)
8999{
9000 int ret;
9001 struct inode *inode;
9002 u64 objectid;
9003 u64 index;
9004
9005 ret = btrfs_find_free_ino(root, &objectid);
9006 if (ret)
9007 return ret;
9008
9009 inode = btrfs_new_inode(trans, root, dir,
9010 dentry->d_name.name,
9011 dentry->d_name.len,
4a0cc7ca 9012 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9013 objectid,
9014 S_IFCHR | WHITEOUT_MODE,
9015 &index);
9016
9017 if (IS_ERR(inode)) {
9018 ret = PTR_ERR(inode);
9019 return ret;
9020 }
9021
9022 inode->i_op = &btrfs_special_inode_operations;
9023 init_special_inode(inode, inode->i_mode,
9024 WHITEOUT_DEV);
9025
9026 ret = btrfs_init_inode_security(trans, inode, dir,
9027 &dentry->d_name);
9028 if (ret)
c9901618 9029 goto out;
cdd1fedf 9030
cef415af
NB
9031 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9032 BTRFS_I(inode), 0, index);
cdd1fedf 9033 if (ret)
c9901618 9034 goto out;
cdd1fedf
DF
9035
9036 ret = btrfs_update_inode(trans, root, inode);
c9901618 9037out:
cdd1fedf 9038 unlock_new_inode(inode);
c9901618
FM
9039 if (ret)
9040 inode_dec_link_count(inode);
cdd1fedf
DF
9041 iput(inode);
9042
c9901618 9043 return ret;
cdd1fedf
DF
9044}
9045
d397712b 9046static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9047 struct inode *new_dir, struct dentry *new_dentry,
9048 unsigned int flags)
39279cc3 9049{
0b246afa 9050 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9051 struct btrfs_trans_handle *trans;
5062af35 9052 unsigned int trans_num_items;
39279cc3 9053 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9054 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9055 struct inode *new_inode = d_inode(new_dentry);
9056 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9057 u64 index = 0;
39279cc3 9058 int ret;
75b463d2 9059 int ret2;
4a0cc7ca 9060 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9061 bool log_pinned = false;
39279cc3 9062
4a0cc7ca 9063 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9064 return -EPERM;
9065
4df27c4d 9066 /* we only allow rename subvolume link between subvolumes */
33345d01 9067 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9068 return -EXDEV;
9069
33345d01 9070 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9071 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9072 return -ENOTEMPTY;
5f39d397 9073
4df27c4d
YZ
9074 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9075 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9076 return -ENOTEMPTY;
9c52057c
CM
9077
9078
9079 /* check for collisions, even if the name isn't there */
4871c158 9080 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9081 new_dentry->d_name.name,
9082 new_dentry->d_name.len);
9083
9084 if (ret) {
9085 if (ret == -EEXIST) {
9086 /* we shouldn't get
9087 * eexist without a new_inode */
fae7f21c 9088 if (WARN_ON(!new_inode)) {
9c52057c
CM
9089 return ret;
9090 }
9091 } else {
9092 /* maybe -EOVERFLOW */
9093 return ret;
9094 }
9095 }
9096 ret = 0;
9097
5a3f23d5 9098 /*
8d875f95
CM
9099 * we're using rename to replace one file with another. Start IO on it
9100 * now so we don't add too much work to the end of the transaction
5a3f23d5 9101 */
8d875f95 9102 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9103 filemap_flush(old_inode->i_mapping);
9104
76dda93c 9105 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9106 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9107 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9108 /*
9109 * We want to reserve the absolute worst case amount of items. So if
9110 * both inodes are subvols and we need to unlink them then that would
9111 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9112 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9113 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9114 * should cover the worst case number of items we'll modify.
5062af35
FM
9115 * If our rename has the whiteout flag, we need more 5 units for the
9116 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9117 * when selinux is enabled).
a22285a6 9118 */
5062af35
FM
9119 trans_num_items = 11;
9120 if (flags & RENAME_WHITEOUT)
9121 trans_num_items += 5;
9122 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9123 if (IS_ERR(trans)) {
cdd1fedf
DF
9124 ret = PTR_ERR(trans);
9125 goto out_notrans;
9126 }
76dda93c 9127
4df27c4d
YZ
9128 if (dest != root)
9129 btrfs_record_root_in_trans(trans, dest);
5f39d397 9130
877574e2 9131 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9132 if (ret)
9133 goto out_fail;
5a3f23d5 9134
67de1176 9135 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9136 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9137 /* force full log commit if subvolume involved. */
90787766 9138 btrfs_set_log_full_commit(trans);
4df27c4d 9139 } else {
c4aba954
FM
9140 btrfs_pin_log_trans(root);
9141 log_pinned = true;
a5719521
YZ
9142 ret = btrfs_insert_inode_ref(trans, dest,
9143 new_dentry->d_name.name,
9144 new_dentry->d_name.len,
33345d01 9145 old_ino,
4a0cc7ca 9146 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9147 if (ret)
9148 goto out_fail;
4df27c4d 9149 }
5a3f23d5 9150
0c4d2d95
JB
9151 inode_inc_iversion(old_dir);
9152 inode_inc_iversion(new_dir);
9153 inode_inc_iversion(old_inode);
04b285f3
DD
9154 old_dir->i_ctime = old_dir->i_mtime =
9155 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9156 old_inode->i_ctime = current_time(old_dir);
5f39d397 9157
12fcfd22 9158 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9159 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9160 BTRFS_I(old_inode), 1);
12fcfd22 9161
33345d01 9162 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
045d3967 9163 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
4df27c4d 9164 } else {
4ec5934e
NB
9165 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9166 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9167 old_dentry->d_name.name,
9168 old_dentry->d_name.len);
9169 if (!ret)
9170 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9171 }
79787eaa 9172 if (ret) {
66642832 9173 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9174 goto out_fail;
9175 }
39279cc3
CM
9176
9177 if (new_inode) {
0c4d2d95 9178 inode_inc_iversion(new_inode);
c2050a45 9179 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9180 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d 9181 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
045d3967 9182 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
4df27c4d
YZ
9183 BUG_ON(new_inode->i_nlink == 0);
9184 } else {
4ec5934e
NB
9185 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9186 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9187 new_dentry->d_name.name,
9188 new_dentry->d_name.len);
9189 }
4ef31a45 9190 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9191 ret = btrfs_orphan_add(trans,
9192 BTRFS_I(d_inode(new_dentry)));
79787eaa 9193 if (ret) {
66642832 9194 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9195 goto out_fail;
9196 }
39279cc3 9197 }
aec7477b 9198
db0a669f 9199 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 9200 new_dentry->d_name.name,
a5719521 9201 new_dentry->d_name.len, 0, index);
79787eaa 9202 if (ret) {
66642832 9203 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9204 goto out_fail;
9205 }
39279cc3 9206
67de1176
MX
9207 if (old_inode->i_nlink == 1)
9208 BTRFS_I(old_inode)->dir_index = index;
9209
3dc9e8f7 9210 if (log_pinned) {
75b463d2
FM
9211 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9212 new_dentry->d_parent);
4df27c4d 9213 btrfs_end_log_trans(root);
3dc9e8f7 9214 log_pinned = false;
4df27c4d 9215 }
cdd1fedf
DF
9216
9217 if (flags & RENAME_WHITEOUT) {
9218 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9219 old_dentry);
9220
9221 if (ret) {
66642832 9222 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9223 goto out_fail;
9224 }
4df27c4d 9225 }
39279cc3 9226out_fail:
3dc9e8f7
FM
9227 /*
9228 * If we have pinned the log and an error happened, we unpin tasks
9229 * trying to sync the log and force them to fallback to a transaction
9230 * commit if the log currently contains any of the inodes involved in
9231 * this rename operation (to ensure we do not persist a log with an
9232 * inconsistent state for any of these inodes or leading to any
9233 * inconsistencies when replayed). If the transaction was aborted, the
9234 * abortion reason is propagated to userspace when attempting to commit
9235 * the transaction. If the log does not contain any of these inodes, we
9236 * allow the tasks to sync it.
9237 */
9238 if (ret && log_pinned) {
0f8939b8
NB
9239 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9240 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9241 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 9242 (new_inode &&
0f8939b8 9243 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 9244 btrfs_set_log_full_commit(trans);
3dc9e8f7
FM
9245
9246 btrfs_end_log_trans(root);
9247 log_pinned = false;
9248 }
75b463d2
FM
9249 ret2 = btrfs_end_transaction(trans);
9250 ret = ret ? ret : ret2;
b44c59a8 9251out_notrans:
33345d01 9252 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9253 up_read(&fs_info->subvol_sem);
9ed74f2d 9254
39279cc3
CM
9255 return ret;
9256}
9257
80ace85c
MS
9258static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9259 struct inode *new_dir, struct dentry *new_dentry,
9260 unsigned int flags)
9261{
cdd1fedf 9262 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9263 return -EINVAL;
9264
cdd1fedf
DF
9265 if (flags & RENAME_EXCHANGE)
9266 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9267 new_dentry);
9268
9269 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9270}
9271
3a2f8c07
NB
9272struct btrfs_delalloc_work {
9273 struct inode *inode;
9274 struct completion completion;
9275 struct list_head list;
9276 struct btrfs_work work;
9277};
9278
8ccf6f19
MX
9279static void btrfs_run_delalloc_work(struct btrfs_work *work)
9280{
9281 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9282 struct inode *inode;
8ccf6f19
MX
9283
9284 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9285 work);
9f23e289 9286 inode = delalloc_work->inode;
30424601
DS
9287 filemap_flush(inode->i_mapping);
9288 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9289 &BTRFS_I(inode)->runtime_flags))
9f23e289 9290 filemap_flush(inode->i_mapping);
8ccf6f19 9291
076da91c 9292 iput(inode);
8ccf6f19
MX
9293 complete(&delalloc_work->completion);
9294}
9295
3a2f8c07 9296static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8ccf6f19
MX
9297{
9298 struct btrfs_delalloc_work *work;
9299
100d5702 9300 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9301 if (!work)
9302 return NULL;
9303
9304 init_completion(&work->completion);
9305 INIT_LIST_HEAD(&work->list);
9306 work->inode = inode;
a0cac0ec 9307 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9308
9309 return work;
9310}
9311
d352ac68
CM
9312/*
9313 * some fairly slow code that needs optimization. This walks the list
9314 * of all the inodes with pending delalloc and forces them to disk.
9315 */
b4912139 9316static int start_delalloc_inodes(struct btrfs_root *root, u64 *nr, bool snapshot)
ea8c2819 9317{
ea8c2819 9318 struct btrfs_inode *binode;
5b21f2ed 9319 struct inode *inode;
8ccf6f19
MX
9320 struct btrfs_delalloc_work *work, *next;
9321 struct list_head works;
1eafa6c7 9322 struct list_head splice;
8ccf6f19 9323 int ret = 0;
ea8c2819 9324
8ccf6f19 9325 INIT_LIST_HEAD(&works);
1eafa6c7 9326 INIT_LIST_HEAD(&splice);
63607cc8 9327
573bfb72 9328 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9329 spin_lock(&root->delalloc_lock);
9330 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9331 while (!list_empty(&splice)) {
9332 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9333 delalloc_inodes);
1eafa6c7 9334
eb73c1b7
MX
9335 list_move_tail(&binode->delalloc_inodes,
9336 &root->delalloc_inodes);
5b21f2ed 9337 inode = igrab(&binode->vfs_inode);
df0af1a5 9338 if (!inode) {
eb73c1b7 9339 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9340 continue;
df0af1a5 9341 }
eb73c1b7 9342 spin_unlock(&root->delalloc_lock);
1eafa6c7 9343
3cd24c69
EL
9344 if (snapshot)
9345 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9346 &binode->runtime_flags);
076da91c 9347 work = btrfs_alloc_delalloc_work(inode);
5d99a998 9348 if (!work) {
4fbb5147 9349 iput(inode);
1eafa6c7 9350 ret = -ENOMEM;
a1ecaabb 9351 goto out;
5b21f2ed 9352 }
1eafa6c7 9353 list_add_tail(&work->list, &works);
a44903ab
QW
9354 btrfs_queue_work(root->fs_info->flush_workers,
9355 &work->work);
b4912139
JB
9356 if (*nr != U64_MAX) {
9357 (*nr)--;
9358 if (*nr == 0)
9359 goto out;
9360 }
5b21f2ed 9361 cond_resched();
eb73c1b7 9362 spin_lock(&root->delalloc_lock);
ea8c2819 9363 }
eb73c1b7 9364 spin_unlock(&root->delalloc_lock);
8c8bee1d 9365
a1ecaabb 9366out:
eb73c1b7
MX
9367 list_for_each_entry_safe(work, next, &works, list) {
9368 list_del_init(&work->list);
40012f96
NB
9369 wait_for_completion(&work->completion);
9370 kfree(work);
eb73c1b7
MX
9371 }
9372
81f1d390 9373 if (!list_empty(&splice)) {
eb73c1b7
MX
9374 spin_lock(&root->delalloc_lock);
9375 list_splice_tail(&splice, &root->delalloc_inodes);
9376 spin_unlock(&root->delalloc_lock);
9377 }
573bfb72 9378 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9379 return ret;
9380}
1eafa6c7 9381
3cd24c69 9382int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
eb73c1b7 9383{
0b246afa 9384 struct btrfs_fs_info *fs_info = root->fs_info;
b4912139 9385 u64 nr = U64_MAX;
1eafa6c7 9386
0b246afa 9387 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9388 return -EROFS;
9389
b4912139 9390 return start_delalloc_inodes(root, &nr, true);
eb73c1b7
MX
9391}
9392
b4912139 9393int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, u64 nr)
eb73c1b7
MX
9394{
9395 struct btrfs_root *root;
9396 struct list_head splice;
9397 int ret;
9398
2c21b4d7 9399 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9400 return -EROFS;
9401
9402 INIT_LIST_HEAD(&splice);
9403
573bfb72 9404 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9405 spin_lock(&fs_info->delalloc_root_lock);
9406 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 9407 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
9408 root = list_first_entry(&splice, struct btrfs_root,
9409 delalloc_root);
00246528 9410 root = btrfs_grab_root(root);
eb73c1b7
MX
9411 BUG_ON(!root);
9412 list_move_tail(&root->delalloc_root,
9413 &fs_info->delalloc_roots);
9414 spin_unlock(&fs_info->delalloc_root_lock);
9415
b4912139 9416 ret = start_delalloc_inodes(root, &nr, false);
00246528 9417 btrfs_put_root(root);
6c255e67 9418 if (ret < 0)
eb73c1b7 9419 goto out;
eb73c1b7 9420 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9421 }
eb73c1b7 9422 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9423
6c255e67 9424 ret = 0;
eb73c1b7 9425out:
81f1d390 9426 if (!list_empty(&splice)) {
eb73c1b7
MX
9427 spin_lock(&fs_info->delalloc_root_lock);
9428 list_splice_tail(&splice, &fs_info->delalloc_roots);
9429 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9430 }
573bfb72 9431 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9432 return ret;
ea8c2819
CM
9433}
9434
39279cc3
CM
9435static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9436 const char *symname)
9437{
0b246afa 9438 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
9439 struct btrfs_trans_handle *trans;
9440 struct btrfs_root *root = BTRFS_I(dir)->root;
9441 struct btrfs_path *path;
9442 struct btrfs_key key;
1832a6d5 9443 struct inode *inode = NULL;
39279cc3 9444 int err;
39279cc3 9445 u64 objectid;
67871254 9446 u64 index = 0;
39279cc3
CM
9447 int name_len;
9448 int datasize;
5f39d397 9449 unsigned long ptr;
39279cc3 9450 struct btrfs_file_extent_item *ei;
5f39d397 9451 struct extent_buffer *leaf;
39279cc3 9452
f06becc4 9453 name_len = strlen(symname);
0b246afa 9454 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 9455 return -ENAMETOOLONG;
1832a6d5 9456
9ed74f2d
JB
9457 /*
9458 * 2 items for inode item and ref
9459 * 2 items for dir items
9269d12b
FM
9460 * 1 item for updating parent inode item
9461 * 1 item for the inline extent item
9ed74f2d
JB
9462 * 1 item for xattr if selinux is on
9463 */
9269d12b 9464 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
9465 if (IS_ERR(trans))
9466 return PTR_ERR(trans);
1832a6d5 9467
581bb050
LZ
9468 err = btrfs_find_free_ino(root, &objectid);
9469 if (err)
9470 goto out_unlock;
9471
aec7477b 9472 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
9473 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9474 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
9475 if (IS_ERR(inode)) {
9476 err = PTR_ERR(inode);
32955c54 9477 inode = NULL;
39279cc3 9478 goto out_unlock;
7cf96da3 9479 }
39279cc3 9480
ad19db71
CS
9481 /*
9482 * If the active LSM wants to access the inode during
9483 * d_instantiate it needs these. Smack checks to see
9484 * if the filesystem supports xattrs by looking at the
9485 * ops vector.
9486 */
9487 inode->i_fop = &btrfs_file_operations;
9488 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 9489 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
9490
9491 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9492 if (err)
32955c54 9493 goto out_unlock;
ad19db71 9494
39279cc3 9495 path = btrfs_alloc_path();
d8926bb3
MF
9496 if (!path) {
9497 err = -ENOMEM;
32955c54 9498 goto out_unlock;
d8926bb3 9499 }
4a0cc7ca 9500 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 9501 key.offset = 0;
962a298f 9502 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9503 datasize = btrfs_file_extent_calc_inline_size(name_len);
9504 err = btrfs_insert_empty_item(trans, root, path, &key,
9505 datasize);
54aa1f4d 9506 if (err) {
b0839166 9507 btrfs_free_path(path);
32955c54 9508 goto out_unlock;
54aa1f4d 9509 }
5f39d397
CM
9510 leaf = path->nodes[0];
9511 ei = btrfs_item_ptr(leaf, path->slots[0],
9512 struct btrfs_file_extent_item);
9513 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9514 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9515 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9516 btrfs_set_file_extent_encryption(leaf, ei, 0);
9517 btrfs_set_file_extent_compression(leaf, ei, 0);
9518 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9519 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9520
39279cc3 9521 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
9522 write_extent_buffer(leaf, symname, ptr, name_len);
9523 btrfs_mark_buffer_dirty(leaf);
39279cc3 9524 btrfs_free_path(path);
5f39d397 9525
39279cc3 9526 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 9527 inode_nohighmem(inode);
d899e052 9528 inode_set_bytes(inode, name_len);
6ef06d27 9529 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 9530 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
9531 /*
9532 * Last step, add directory indexes for our symlink inode. This is the
9533 * last step to avoid extra cleanup of these indexes if an error happens
9534 * elsewhere above.
9535 */
9536 if (!err)
cef415af
NB
9537 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9538 BTRFS_I(inode), 0, index);
32955c54
AV
9539 if (err)
9540 goto out_unlock;
b0d5d10f 9541
1e2e547a 9542 d_instantiate_new(dentry, inode);
39279cc3
CM
9543
9544out_unlock:
3a45bb20 9545 btrfs_end_transaction(trans);
32955c54 9546 if (err && inode) {
39279cc3 9547 inode_dec_link_count(inode);
32955c54 9548 discard_new_inode(inode);
39279cc3 9549 }
2ff7e61e 9550 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
9551 return err;
9552}
16432985 9553
8fccebfa
FM
9554static struct btrfs_trans_handle *insert_prealloc_file_extent(
9555 struct btrfs_trans_handle *trans_in,
203f44c5
QW
9556 struct inode *inode, struct btrfs_key *ins,
9557 u64 file_offset)
9558{
9559 struct btrfs_file_extent_item stack_fi;
bf385648 9560 struct btrfs_replace_extent_info extent_info;
8fccebfa
FM
9561 struct btrfs_trans_handle *trans = trans_in;
9562 struct btrfs_path *path;
203f44c5
QW
9563 u64 start = ins->objectid;
9564 u64 len = ins->offset;
9729f10a 9565 int ret;
203f44c5
QW
9566
9567 memset(&stack_fi, 0, sizeof(stack_fi));
9568
9569 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9570 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9571 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9572 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9573 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9574 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9575 /* Encryption and other encoding is reserved and all 0 */
9576
72b7d15b 9577 ret = btrfs_qgroup_release_data(BTRFS_I(inode), file_offset, len);
9729f10a 9578 if (ret < 0)
8fccebfa
FM
9579 return ERR_PTR(ret);
9580
9581 if (trans) {
9582 ret = insert_reserved_file_extent(trans, BTRFS_I(inode),
9583 file_offset, &stack_fi, ret);
9584 if (ret)
9585 return ERR_PTR(ret);
9586 return trans;
9587 }
9588
9589 extent_info.disk_offset = start;
9590 extent_info.disk_len = len;
9591 extent_info.data_offset = 0;
9592 extent_info.data_len = len;
9593 extent_info.file_offset = file_offset;
9594 extent_info.extent_buf = (char *)&stack_fi;
8fccebfa
FM
9595 extent_info.is_new_extent = true;
9596 extent_info.qgroup_reserved = ret;
9597 extent_info.insertions = 0;
9598
9599 path = btrfs_alloc_path();
9600 if (!path)
9601 return ERR_PTR(-ENOMEM);
9602
306bfec0 9603 ret = btrfs_replace_file_extents(inode, path, file_offset,
8fccebfa
FM
9604 file_offset + len - 1, &extent_info,
9605 &trans);
9606 btrfs_free_path(path);
9607 if (ret)
9608 return ERR_PTR(ret);
9609
9610 return trans;
203f44c5 9611}
8fccebfa 9612
0af3d00b
JB
9613static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9614 u64 start, u64 num_bytes, u64 min_size,
9615 loff_t actual_len, u64 *alloc_hint,
9616 struct btrfs_trans_handle *trans)
d899e052 9617{
0b246afa 9618 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
9619 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9620 struct extent_map *em;
d899e052
YZ
9621 struct btrfs_root *root = BTRFS_I(inode)->root;
9622 struct btrfs_key ins;
d899e052 9623 u64 cur_offset = start;
b778cf96 9624 u64 clear_offset = start;
55a61d1d 9625 u64 i_size;
154ea289 9626 u64 cur_bytes;
0b670dc4 9627 u64 last_alloc = (u64)-1;
d899e052 9628 int ret = 0;
0af3d00b 9629 bool own_trans = true;
18513091 9630 u64 end = start + num_bytes - 1;
d899e052 9631
0af3d00b
JB
9632 if (trans)
9633 own_trans = false;
d899e052 9634 while (num_bytes > 0) {
ee22184b 9635 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 9636 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
9637 /*
9638 * If we are severely fragmented we could end up with really
9639 * small allocations, so if the allocator is returning small
9640 * chunks lets make its job easier by only searching for those
9641 * sized chunks.
9642 */
9643 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
9644 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9645 min_size, 0, *alloc_hint, &ins, 1, 0);
8fccebfa 9646 if (ret)
a22285a6 9647 break;
b778cf96
JB
9648
9649 /*
9650 * We've reserved this space, and thus converted it from
9651 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9652 * from here on out we will only need to clear our reservation
9653 * for the remaining unreserved area, so advance our
9654 * clear_offset by our extent size.
9655 */
9656 clear_offset += ins.offset;
5a303d5d 9657
0b670dc4 9658 last_alloc = ins.offset;
8fccebfa 9659 trans = insert_prealloc_file_extent(trans, inode, &ins, cur_offset);
1afc708d
FM
9660 /*
9661 * Now that we inserted the prealloc extent we can finally
9662 * decrement the number of reservations in the block group.
9663 * If we did it before, we could race with relocation and have
9664 * relocation miss the reserved extent, making it fail later.
9665 */
9666 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
8fccebfa
FM
9667 if (IS_ERR(trans)) {
9668 ret = PTR_ERR(trans);
2ff7e61e 9669 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 9670 ins.offset, 0);
79787eaa
JM
9671 break;
9672 }
31193213 9673
dcdbc059 9674 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 9675 cur_offset + ins.offset -1, 0);
5a303d5d 9676
5dc562c5
JB
9677 em = alloc_extent_map();
9678 if (!em) {
9679 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9680 &BTRFS_I(inode)->runtime_flags);
9681 goto next;
9682 }
9683
9684 em->start = cur_offset;
9685 em->orig_start = cur_offset;
9686 em->len = ins.offset;
9687 em->block_start = ins.objectid;
9688 em->block_len = ins.offset;
b4939680 9689 em->orig_block_len = ins.offset;
cc95bef6 9690 em->ram_bytes = ins.offset;
5dc562c5
JB
9691 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9692 em->generation = trans->transid;
9693
9694 while (1) {
9695 write_lock(&em_tree->lock);
09a2a8f9 9696 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
9697 write_unlock(&em_tree->lock);
9698 if (ret != -EEXIST)
9699 break;
dcdbc059 9700 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
9701 cur_offset + ins.offset - 1,
9702 0);
9703 }
9704 free_extent_map(em);
9705next:
d899e052
YZ
9706 num_bytes -= ins.offset;
9707 cur_offset += ins.offset;
efa56464 9708 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9709
0c4d2d95 9710 inode_inc_iversion(inode);
c2050a45 9711 inode->i_ctime = current_time(inode);
6cbff00f 9712 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9713 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9714 (actual_len > inode->i_size) &&
9715 (cur_offset > inode->i_size)) {
d1ea6a61 9716 if (cur_offset > actual_len)
55a61d1d 9717 i_size = actual_len;
d1ea6a61 9718 else
55a61d1d
JB
9719 i_size = cur_offset;
9720 i_size_write(inode, i_size);
d923afe9 9721 btrfs_inode_safe_disk_i_size_write(inode, 0);
5a303d5d
YZ
9722 }
9723
d899e052 9724 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
9725
9726 if (ret) {
66642832 9727 btrfs_abort_transaction(trans, ret);
79787eaa 9728 if (own_trans)
3a45bb20 9729 btrfs_end_transaction(trans);
79787eaa
JM
9730 break;
9731 }
d899e052 9732
8fccebfa 9733 if (own_trans) {
3a45bb20 9734 btrfs_end_transaction(trans);
8fccebfa
FM
9735 trans = NULL;
9736 }
5a303d5d 9737 }
b778cf96 9738 if (clear_offset < end)
25ce28ca 9739 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
b778cf96 9740 end - clear_offset + 1);
d899e052
YZ
9741 return ret;
9742}
9743
0af3d00b
JB
9744int btrfs_prealloc_file_range(struct inode *inode, int mode,
9745 u64 start, u64 num_bytes, u64 min_size,
9746 loff_t actual_len, u64 *alloc_hint)
9747{
9748 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9749 min_size, actual_len, alloc_hint,
9750 NULL);
9751}
9752
9753int btrfs_prealloc_file_range_trans(struct inode *inode,
9754 struct btrfs_trans_handle *trans, int mode,
9755 u64 start, u64 num_bytes, u64 min_size,
9756 loff_t actual_len, u64 *alloc_hint)
9757{
9758 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9759 min_size, actual_len, alloc_hint, trans);
9760}
9761
e6dcd2dc
CM
9762static int btrfs_set_page_dirty(struct page *page)
9763{
e6dcd2dc
CM
9764 return __set_page_dirty_nobuffers(page);
9765}
9766
10556cb2 9767static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 9768{
b83cc969 9769 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9770 umode_t mode = inode->i_mode;
b83cc969 9771
cb6db4e5
JM
9772 if (mask & MAY_WRITE &&
9773 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9774 if (btrfs_root_readonly(root))
9775 return -EROFS;
9776 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9777 return -EACCES;
9778 }
2830ba7f 9779 return generic_permission(inode, mask);
fdebe2bd 9780}
39279cc3 9781
ef3b9af5
FM
9782static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9783{
2ff7e61e 9784 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
9785 struct btrfs_trans_handle *trans;
9786 struct btrfs_root *root = BTRFS_I(dir)->root;
9787 struct inode *inode = NULL;
9788 u64 objectid;
9789 u64 index;
9790 int ret = 0;
9791
9792 /*
9793 * 5 units required for adding orphan entry
9794 */
9795 trans = btrfs_start_transaction(root, 5);
9796 if (IS_ERR(trans))
9797 return PTR_ERR(trans);
9798
9799 ret = btrfs_find_free_ino(root, &objectid);
9800 if (ret)
9801 goto out;
9802
9803 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 9804 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
9805 if (IS_ERR(inode)) {
9806 ret = PTR_ERR(inode);
9807 inode = NULL;
9808 goto out;
9809 }
9810
ef3b9af5
FM
9811 inode->i_fop = &btrfs_file_operations;
9812 inode->i_op = &btrfs_file_inode_operations;
9813
9814 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5 9815
b0d5d10f
CM
9816 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9817 if (ret)
32955c54 9818 goto out;
b0d5d10f
CM
9819
9820 ret = btrfs_update_inode(trans, root, inode);
9821 if (ret)
32955c54 9822 goto out;
73f2e545 9823 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 9824 if (ret)
32955c54 9825 goto out;
ef3b9af5 9826
5762b5c9
FM
9827 /*
9828 * We set number of links to 0 in btrfs_new_inode(), and here we set
9829 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9830 * through:
9831 *
9832 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9833 */
9834 set_nlink(inode, 1);
ef3b9af5 9835 d_tmpfile(dentry, inode);
32955c54 9836 unlock_new_inode(inode);
ef3b9af5 9837 mark_inode_dirty(inode);
ef3b9af5 9838out:
3a45bb20 9839 btrfs_end_transaction(trans);
32955c54
AV
9840 if (ret && inode)
9841 discard_new_inode(inode);
2ff7e61e 9842 btrfs_btree_balance_dirty(fs_info);
ef3b9af5
FM
9843 return ret;
9844}
9845
5cdc84bf 9846void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
c6100a4b 9847{
5cdc84bf 9848 struct inode *inode = tree->private_data;
c6100a4b
JB
9849 unsigned long index = start >> PAGE_SHIFT;
9850 unsigned long end_index = end >> PAGE_SHIFT;
9851 struct page *page;
9852
9853 while (index <= end_index) {
9854 page = find_get_page(inode->i_mapping, index);
9855 ASSERT(page); /* Pages should be in the extent_io_tree */
9856 set_page_writeback(page);
9857 put_page(page);
9858 index++;
9859 }
9860}
9861
ed46ff3d
OS
9862#ifdef CONFIG_SWAP
9863/*
9864 * Add an entry indicating a block group or device which is pinned by a
9865 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9866 * negative errno on failure.
9867 */
9868static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9869 bool is_block_group)
9870{
9871 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9872 struct btrfs_swapfile_pin *sp, *entry;
9873 struct rb_node **p;
9874 struct rb_node *parent = NULL;
9875
9876 sp = kmalloc(sizeof(*sp), GFP_NOFS);
9877 if (!sp)
9878 return -ENOMEM;
9879 sp->ptr = ptr;
9880 sp->inode = inode;
9881 sp->is_block_group = is_block_group;
9882
9883 spin_lock(&fs_info->swapfile_pins_lock);
9884 p = &fs_info->swapfile_pins.rb_node;
9885 while (*p) {
9886 parent = *p;
9887 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9888 if (sp->ptr < entry->ptr ||
9889 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9890 p = &(*p)->rb_left;
9891 } else if (sp->ptr > entry->ptr ||
9892 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9893 p = &(*p)->rb_right;
9894 } else {
9895 spin_unlock(&fs_info->swapfile_pins_lock);
9896 kfree(sp);
9897 return 1;
9898 }
9899 }
9900 rb_link_node(&sp->node, parent, p);
9901 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9902 spin_unlock(&fs_info->swapfile_pins_lock);
9903 return 0;
9904}
9905
9906/* Free all of the entries pinned by this swapfile. */
9907static void btrfs_free_swapfile_pins(struct inode *inode)
9908{
9909 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9910 struct btrfs_swapfile_pin *sp;
9911 struct rb_node *node, *next;
9912
9913 spin_lock(&fs_info->swapfile_pins_lock);
9914 node = rb_first(&fs_info->swapfile_pins);
9915 while (node) {
9916 next = rb_next(node);
9917 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9918 if (sp->inode == inode) {
9919 rb_erase(&sp->node, &fs_info->swapfile_pins);
9920 if (sp->is_block_group)
9921 btrfs_put_block_group(sp->ptr);
9922 kfree(sp);
9923 }
9924 node = next;
9925 }
9926 spin_unlock(&fs_info->swapfile_pins_lock);
9927}
9928
9929struct btrfs_swap_info {
9930 u64 start;
9931 u64 block_start;
9932 u64 block_len;
9933 u64 lowest_ppage;
9934 u64 highest_ppage;
9935 unsigned long nr_pages;
9936 int nr_extents;
9937};
9938
9939static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9940 struct btrfs_swap_info *bsi)
9941{
9942 unsigned long nr_pages;
9943 u64 first_ppage, first_ppage_reported, next_ppage;
9944 int ret;
9945
9946 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
9947 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
9948 PAGE_SIZE) >> PAGE_SHIFT;
9949
9950 if (first_ppage >= next_ppage)
9951 return 0;
9952 nr_pages = next_ppage - first_ppage;
9953
9954 first_ppage_reported = first_ppage;
9955 if (bsi->start == 0)
9956 first_ppage_reported++;
9957 if (bsi->lowest_ppage > first_ppage_reported)
9958 bsi->lowest_ppage = first_ppage_reported;
9959 if (bsi->highest_ppage < (next_ppage - 1))
9960 bsi->highest_ppage = next_ppage - 1;
9961
9962 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
9963 if (ret < 0)
9964 return ret;
9965 bsi->nr_extents += ret;
9966 bsi->nr_pages += nr_pages;
9967 return 0;
9968}
9969
9970static void btrfs_swap_deactivate(struct file *file)
9971{
9972 struct inode *inode = file_inode(file);
9973
9974 btrfs_free_swapfile_pins(inode);
9975 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
9976}
9977
9978static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
9979 sector_t *span)
9980{
9981 struct inode *inode = file_inode(file);
9982 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9983 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9984 struct extent_state *cached_state = NULL;
9985 struct extent_map *em = NULL;
9986 struct btrfs_device *device = NULL;
9987 struct btrfs_swap_info bsi = {
9988 .lowest_ppage = (sector_t)-1ULL,
9989 };
9990 int ret = 0;
9991 u64 isize;
9992 u64 start;
9993
9994 /*
9995 * If the swap file was just created, make sure delalloc is done. If the
9996 * file changes again after this, the user is doing something stupid and
9997 * we don't really care.
9998 */
9999 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10000 if (ret)
10001 return ret;
10002
10003 /*
10004 * The inode is locked, so these flags won't change after we check them.
10005 */
10006 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10007 btrfs_warn(fs_info, "swapfile must not be compressed");
10008 return -EINVAL;
10009 }
10010 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10011 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10012 return -EINVAL;
10013 }
10014 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10015 btrfs_warn(fs_info, "swapfile must not be checksummed");
10016 return -EINVAL;
10017 }
10018
10019 /*
10020 * Balance or device remove/replace/resize can move stuff around from
c3e1f96c
GR
10021 * under us. The exclop protection makes sure they aren't running/won't
10022 * run concurrently while we are mapping the swap extents, and
10023 * fs_info->swapfile_pins prevents them from running while the swap
10024 * file is active and moving the extents. Note that this also prevents
10025 * a concurrent device add which isn't actually necessary, but it's not
ed46ff3d
OS
10026 * really worth the trouble to allow it.
10027 */
c3e1f96c 10028 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
ed46ff3d
OS
10029 btrfs_warn(fs_info,
10030 "cannot activate swapfile while exclusive operation is running");
10031 return -EBUSY;
10032 }
10033 /*
10034 * Snapshots can create extents which require COW even if NODATACOW is
10035 * set. We use this counter to prevent snapshots. We must increment it
10036 * before walking the extents because we don't want a concurrent
10037 * snapshot to run after we've already checked the extents.
10038 */
10039 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10040
10041 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10042
10043 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10044 start = 0;
10045 while (start < isize) {
10046 u64 logical_block_start, physical_block_start;
32da5386 10047 struct btrfs_block_group *bg;
ed46ff3d
OS
10048 u64 len = isize - start;
10049
39b07b5d 10050 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
ed46ff3d
OS
10051 if (IS_ERR(em)) {
10052 ret = PTR_ERR(em);
10053 goto out;
10054 }
10055
10056 if (em->block_start == EXTENT_MAP_HOLE) {
10057 btrfs_warn(fs_info, "swapfile must not have holes");
10058 ret = -EINVAL;
10059 goto out;
10060 }
10061 if (em->block_start == EXTENT_MAP_INLINE) {
10062 /*
10063 * It's unlikely we'll ever actually find ourselves
10064 * here, as a file small enough to fit inline won't be
10065 * big enough to store more than the swap header, but in
10066 * case something changes in the future, let's catch it
10067 * here rather than later.
10068 */
10069 btrfs_warn(fs_info, "swapfile must not be inline");
10070 ret = -EINVAL;
10071 goto out;
10072 }
10073 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10074 btrfs_warn(fs_info, "swapfile must not be compressed");
10075 ret = -EINVAL;
10076 goto out;
10077 }
10078
10079 logical_block_start = em->block_start + (start - em->start);
10080 len = min(len, em->len - (start - em->start));
10081 free_extent_map(em);
10082 em = NULL;
10083
a84d5d42 10084 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
ed46ff3d
OS
10085 if (ret < 0) {
10086 goto out;
10087 } else if (ret) {
10088 ret = 0;
10089 } else {
10090 btrfs_warn(fs_info,
10091 "swapfile must not be copy-on-write");
10092 ret = -EINVAL;
10093 goto out;
10094 }
10095
10096 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10097 if (IS_ERR(em)) {
10098 ret = PTR_ERR(em);
10099 goto out;
10100 }
10101
10102 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10103 btrfs_warn(fs_info,
10104 "swapfile must have single data profile");
10105 ret = -EINVAL;
10106 goto out;
10107 }
10108
10109 if (device == NULL) {
10110 device = em->map_lookup->stripes[0].dev;
10111 ret = btrfs_add_swapfile_pin(inode, device, false);
10112 if (ret == 1)
10113 ret = 0;
10114 else if (ret)
10115 goto out;
10116 } else if (device != em->map_lookup->stripes[0].dev) {
10117 btrfs_warn(fs_info, "swapfile must be on one device");
10118 ret = -EINVAL;
10119 goto out;
10120 }
10121
10122 physical_block_start = (em->map_lookup->stripes[0].physical +
10123 (logical_block_start - em->start));
10124 len = min(len, em->len - (logical_block_start - em->start));
10125 free_extent_map(em);
10126 em = NULL;
10127
10128 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10129 if (!bg) {
10130 btrfs_warn(fs_info,
10131 "could not find block group containing swapfile");
10132 ret = -EINVAL;
10133 goto out;
10134 }
10135
10136 ret = btrfs_add_swapfile_pin(inode, bg, true);
10137 if (ret) {
10138 btrfs_put_block_group(bg);
10139 if (ret == 1)
10140 ret = 0;
10141 else
10142 goto out;
10143 }
10144
10145 if (bsi.block_len &&
10146 bsi.block_start + bsi.block_len == physical_block_start) {
10147 bsi.block_len += len;
10148 } else {
10149 if (bsi.block_len) {
10150 ret = btrfs_add_swap_extent(sis, &bsi);
10151 if (ret)
10152 goto out;
10153 }
10154 bsi.start = start;
10155 bsi.block_start = physical_block_start;
10156 bsi.block_len = len;
10157 }
10158
10159 start += len;
10160 }
10161
10162 if (bsi.block_len)
10163 ret = btrfs_add_swap_extent(sis, &bsi);
10164
10165out:
10166 if (!IS_ERR_OR_NULL(em))
10167 free_extent_map(em);
10168
10169 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10170
10171 if (ret)
10172 btrfs_swap_deactivate(file);
10173
c3e1f96c 10174 btrfs_exclop_finish(fs_info);
ed46ff3d
OS
10175
10176 if (ret)
10177 return ret;
10178
10179 if (device)
10180 sis->bdev = device->bdev;
10181 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10182 sis->max = bsi.nr_pages;
10183 sis->pages = bsi.nr_pages - 1;
10184 sis->highest_bit = bsi.nr_pages - 1;
10185 return bsi.nr_extents;
10186}
10187#else
10188static void btrfs_swap_deactivate(struct file *file)
10189{
10190}
10191
10192static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10193 sector_t *span)
10194{
10195 return -EOPNOTSUPP;
10196}
10197#endif
10198
6e1d5dcc 10199static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10200 .getattr = btrfs_getattr,
39279cc3
CM
10201 .lookup = btrfs_lookup,
10202 .create = btrfs_create,
10203 .unlink = btrfs_unlink,
10204 .link = btrfs_link,
10205 .mkdir = btrfs_mkdir,
10206 .rmdir = btrfs_rmdir,
2773bf00 10207 .rename = btrfs_rename2,
39279cc3
CM
10208 .symlink = btrfs_symlink,
10209 .setattr = btrfs_setattr,
618e21d5 10210 .mknod = btrfs_mknod,
5103e947 10211 .listxattr = btrfs_listxattr,
fdebe2bd 10212 .permission = btrfs_permission,
4e34e719 10213 .get_acl = btrfs_get_acl,
996a710d 10214 .set_acl = btrfs_set_acl,
93fd63c2 10215 .update_time = btrfs_update_time,
ef3b9af5 10216 .tmpfile = btrfs_tmpfile,
39279cc3 10217};
76dda93c 10218
828c0950 10219static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10220 .llseek = generic_file_llseek,
10221 .read = generic_read_dir,
02dbfc99 10222 .iterate_shared = btrfs_real_readdir,
23b5ec74 10223 .open = btrfs_opendir,
34287aa3 10224 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10225#ifdef CONFIG_COMPAT
4c63c245 10226 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10227#endif
6bf13c0c 10228 .release = btrfs_release_file,
e02119d5 10229 .fsync = btrfs_sync_file,
39279cc3
CM
10230};
10231
35054394
CM
10232/*
10233 * btrfs doesn't support the bmap operation because swapfiles
10234 * use bmap to make a mapping of extents in the file. They assume
10235 * these extents won't change over the life of the file and they
10236 * use the bmap result to do IO directly to the drive.
10237 *
10238 * the btrfs bmap call would return logical addresses that aren't
10239 * suitable for IO and they also will change frequently as COW
10240 * operations happen. So, swapfile + btrfs == corruption.
10241 *
10242 * For now we're avoiding this by dropping bmap.
10243 */
7f09410b 10244static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10245 .readpage = btrfs_readpage,
10246 .writepage = btrfs_writepage,
b293f02e 10247 .writepages = btrfs_writepages,
ba206a02 10248 .readahead = btrfs_readahead,
f85781fb 10249 .direct_IO = noop_direct_IO,
a52d9a80
CM
10250 .invalidatepage = btrfs_invalidatepage,
10251 .releasepage = btrfs_releasepage,
f8e66081
RG
10252#ifdef CONFIG_MIGRATION
10253 .migratepage = btrfs_migratepage,
10254#endif
e6dcd2dc 10255 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10256 .error_remove_page = generic_error_remove_page,
ed46ff3d
OS
10257 .swap_activate = btrfs_swap_activate,
10258 .swap_deactivate = btrfs_swap_deactivate,
39279cc3
CM
10259};
10260
6e1d5dcc 10261static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10262 .getattr = btrfs_getattr,
10263 .setattr = btrfs_setattr,
5103e947 10264 .listxattr = btrfs_listxattr,
fdebe2bd 10265 .permission = btrfs_permission,
1506fcc8 10266 .fiemap = btrfs_fiemap,
4e34e719 10267 .get_acl = btrfs_get_acl,
996a710d 10268 .set_acl = btrfs_set_acl,
e41f941a 10269 .update_time = btrfs_update_time,
39279cc3 10270};
6e1d5dcc 10271static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10272 .getattr = btrfs_getattr,
10273 .setattr = btrfs_setattr,
fdebe2bd 10274 .permission = btrfs_permission,
33268eaf 10275 .listxattr = btrfs_listxattr,
4e34e719 10276 .get_acl = btrfs_get_acl,
996a710d 10277 .set_acl = btrfs_set_acl,
e41f941a 10278 .update_time = btrfs_update_time,
618e21d5 10279};
6e1d5dcc 10280static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10281 .get_link = page_get_link,
f209561a 10282 .getattr = btrfs_getattr,
22c44fe6 10283 .setattr = btrfs_setattr,
fdebe2bd 10284 .permission = btrfs_permission,
0279b4cd 10285 .listxattr = btrfs_listxattr,
e41f941a 10286 .update_time = btrfs_update_time,
39279cc3 10287};
76dda93c 10288
82d339d9 10289const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
10290 .d_delete = btrfs_dentry_delete,
10291};