]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - fs/btrfs/inode.c
Btrfs: update the delayed inode code to use the btrfs_ino helper.
[mirror_ubuntu-eoan-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
4b4e25f2 40#include "compat.h"
39279cc3
CM
41#include "ctree.h"
42#include "disk-io.h"
43#include "transaction.h"
44#include "btrfs_inode.h"
45#include "ioctl.h"
46#include "print-tree.h"
0b86a832 47#include "volumes.h"
e6dcd2dc 48#include "ordered-data.h"
95819c05 49#include "xattr.h"
e02119d5 50#include "tree-log.h"
c8b97818 51#include "compression.h"
b4ce94de 52#include "locking.h"
dc89e982 53#include "free-space-cache.h"
581bb050 54#include "inode-map.h"
39279cc3
CM
55
56struct btrfs_iget_args {
57 u64 ino;
58 struct btrfs_root *root;
59};
60
6e1d5dcc
AD
61static const struct inode_operations btrfs_dir_inode_operations;
62static const struct inode_operations btrfs_symlink_inode_operations;
63static const struct inode_operations btrfs_dir_ro_inode_operations;
64static const struct inode_operations btrfs_special_inode_operations;
65static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
66static const struct address_space_operations btrfs_aops;
67static const struct address_space_operations btrfs_symlink_aops;
828c0950 68static const struct file_operations btrfs_dir_file_operations;
d1310b2e 69static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
70
71static struct kmem_cache *btrfs_inode_cachep;
72struct kmem_cache *btrfs_trans_handle_cachep;
73struct kmem_cache *btrfs_transaction_cachep;
39279cc3 74struct kmem_cache *btrfs_path_cachep;
dc89e982 75struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
76
77#define S_SHIFT 12
78static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
79 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
80 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
81 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
82 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
83 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
84 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
85 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
86};
87
a41ad394
JB
88static int btrfs_setsize(struct inode *inode, loff_t newsize);
89static int btrfs_truncate(struct inode *inode);
c8b97818 90static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
91static noinline int cow_file_range(struct inode *inode,
92 struct page *locked_page,
93 u64 start, u64 end, int *page_started,
94 unsigned long *nr_written, int unlock);
7b128766 95
f34f57a3 96static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
97 struct inode *inode, struct inode *dir,
98 const struct qstr *qstr)
0279b4cd
JO
99{
100 int err;
101
f34f57a3 102 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 103 if (!err)
2a7dba39 104 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
105 return err;
106}
107
c8b97818
CM
108/*
109 * this does all the hard work for inserting an inline extent into
110 * the btree. The caller should have done a btrfs_drop_extents so that
111 * no overlapping inline items exist in the btree
112 */
d397712b 113static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
114 struct btrfs_root *root, struct inode *inode,
115 u64 start, size_t size, size_t compressed_size,
fe3f566c 116 int compress_type,
c8b97818
CM
117 struct page **compressed_pages)
118{
119 struct btrfs_key key;
120 struct btrfs_path *path;
121 struct extent_buffer *leaf;
122 struct page *page = NULL;
123 char *kaddr;
124 unsigned long ptr;
125 struct btrfs_file_extent_item *ei;
126 int err = 0;
127 int ret;
128 size_t cur_size = size;
129 size_t datasize;
130 unsigned long offset;
c8b97818 131
fe3f566c 132 if (compressed_size && compressed_pages)
c8b97818 133 cur_size = compressed_size;
c8b97818 134
d397712b
CM
135 path = btrfs_alloc_path();
136 if (!path)
c8b97818
CM
137 return -ENOMEM;
138
b9473439 139 path->leave_spinning = 1;
c8b97818
CM
140 btrfs_set_trans_block_group(trans, inode);
141
33345d01 142 key.objectid = btrfs_ino(inode);
c8b97818
CM
143 key.offset = start;
144 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
145 datasize = btrfs_file_extent_calc_inline_size(cur_size);
146
147 inode_add_bytes(inode, size);
148 ret = btrfs_insert_empty_item(trans, root, path, &key,
149 datasize);
150 BUG_ON(ret);
151 if (ret) {
152 err = ret;
c8b97818
CM
153 goto fail;
154 }
155 leaf = path->nodes[0];
156 ei = btrfs_item_ptr(leaf, path->slots[0],
157 struct btrfs_file_extent_item);
158 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160 btrfs_set_file_extent_encryption(leaf, ei, 0);
161 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163 ptr = btrfs_file_extent_inline_start(ei);
164
261507a0 165 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
166 struct page *cpage;
167 int i = 0;
d397712b 168 while (compressed_size > 0) {
c8b97818 169 cpage = compressed_pages[i];
5b050f04 170 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
171 PAGE_CACHE_SIZE);
172
b9473439 173 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 174 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 175 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
176
177 i++;
178 ptr += cur_size;
179 compressed_size -= cur_size;
180 }
181 btrfs_set_file_extent_compression(leaf, ei,
261507a0 182 compress_type);
c8b97818
CM
183 } else {
184 page = find_get_page(inode->i_mapping,
185 start >> PAGE_CACHE_SHIFT);
186 btrfs_set_file_extent_compression(leaf, ei, 0);
187 kaddr = kmap_atomic(page, KM_USER0);
188 offset = start & (PAGE_CACHE_SIZE - 1);
189 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190 kunmap_atomic(kaddr, KM_USER0);
191 page_cache_release(page);
192 }
193 btrfs_mark_buffer_dirty(leaf);
194 btrfs_free_path(path);
195
c2167754
YZ
196 /*
197 * we're an inline extent, so nobody can
198 * extend the file past i_size without locking
199 * a page we already have locked.
200 *
201 * We must do any isize and inode updates
202 * before we unlock the pages. Otherwise we
203 * could end up racing with unlink.
204 */
c8b97818
CM
205 BTRFS_I(inode)->disk_i_size = inode->i_size;
206 btrfs_update_inode(trans, root, inode);
c2167754 207
c8b97818
CM
208 return 0;
209fail:
210 btrfs_free_path(path);
211 return err;
212}
213
214
215/*
216 * conditionally insert an inline extent into the file. This
217 * does the checks required to make sure the data is small enough
218 * to fit as an inline extent.
219 */
7f366cfe 220static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
221 struct btrfs_root *root,
222 struct inode *inode, u64 start, u64 end,
fe3f566c 223 size_t compressed_size, int compress_type,
c8b97818
CM
224 struct page **compressed_pages)
225{
226 u64 isize = i_size_read(inode);
227 u64 actual_end = min(end + 1, isize);
228 u64 inline_len = actual_end - start;
229 u64 aligned_end = (end + root->sectorsize - 1) &
230 ~((u64)root->sectorsize - 1);
231 u64 hint_byte;
232 u64 data_len = inline_len;
233 int ret;
234
235 if (compressed_size)
236 data_len = compressed_size;
237
238 if (start > 0 ||
70b99e69 239 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 (!compressed_size &&
242 (actual_end & (root->sectorsize - 1)) == 0) ||
243 end + 1 < isize ||
244 data_len > root->fs_info->max_inline) {
245 return 1;
246 }
247
920bbbfb 248 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 249 &hint_byte, 1);
c8b97818
CM
250 BUG_ON(ret);
251
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
fe3f566c 256 compress_type, compressed_pages);
c8b97818 257 BUG_ON(ret);
0ca1f7ce 258 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 259 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
260 return 0;
261}
262
771ed689
CM
263struct async_extent {
264 u64 start;
265 u64 ram_size;
266 u64 compressed_size;
267 struct page **pages;
268 unsigned long nr_pages;
261507a0 269 int compress_type;
771ed689
CM
270 struct list_head list;
271};
272
273struct async_cow {
274 struct inode *inode;
275 struct btrfs_root *root;
276 struct page *locked_page;
277 u64 start;
278 u64 end;
279 struct list_head extents;
280 struct btrfs_work work;
281};
282
283static noinline int add_async_extent(struct async_cow *cow,
284 u64 start, u64 ram_size,
285 u64 compressed_size,
286 struct page **pages,
261507a0
LZ
287 unsigned long nr_pages,
288 int compress_type)
771ed689
CM
289{
290 struct async_extent *async_extent;
291
292 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
dac97e51 293 BUG_ON(!async_extent);
771ed689
CM
294 async_extent->start = start;
295 async_extent->ram_size = ram_size;
296 async_extent->compressed_size = compressed_size;
297 async_extent->pages = pages;
298 async_extent->nr_pages = nr_pages;
261507a0 299 async_extent->compress_type = compress_type;
771ed689
CM
300 list_add_tail(&async_extent->list, &cow->extents);
301 return 0;
302}
303
d352ac68 304/*
771ed689
CM
305 * we create compressed extents in two phases. The first
306 * phase compresses a range of pages that have already been
307 * locked (both pages and state bits are locked).
c8b97818 308 *
771ed689
CM
309 * This is done inside an ordered work queue, and the compression
310 * is spread across many cpus. The actual IO submission is step
311 * two, and the ordered work queue takes care of making sure that
312 * happens in the same order things were put onto the queue by
313 * writepages and friends.
c8b97818 314 *
771ed689
CM
315 * If this code finds it can't get good compression, it puts an
316 * entry onto the work queue to write the uncompressed bytes. This
317 * makes sure that both compressed inodes and uncompressed inodes
318 * are written in the same order that pdflush sent them down.
d352ac68 319 */
771ed689
CM
320static noinline int compress_file_range(struct inode *inode,
321 struct page *locked_page,
322 u64 start, u64 end,
323 struct async_cow *async_cow,
324 int *num_added)
b888db2b
CM
325{
326 struct btrfs_root *root = BTRFS_I(inode)->root;
327 struct btrfs_trans_handle *trans;
db94535d 328 u64 num_bytes;
db94535d 329 u64 blocksize = root->sectorsize;
c8b97818 330 u64 actual_end;
42dc7bab 331 u64 isize = i_size_read(inode);
e6dcd2dc 332 int ret = 0;
c8b97818
CM
333 struct page **pages = NULL;
334 unsigned long nr_pages;
335 unsigned long nr_pages_ret = 0;
336 unsigned long total_compressed = 0;
337 unsigned long total_in = 0;
338 unsigned long max_compressed = 128 * 1024;
771ed689 339 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
340 int i;
341 int will_compress;
261507a0 342 int compress_type = root->fs_info->compress_type;
b888db2b 343
42dc7bab 344 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
345again:
346 will_compress = 0;
347 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
348 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 349
f03d9301
CM
350 /*
351 * we don't want to send crud past the end of i_size through
352 * compression, that's just a waste of CPU time. So, if the
353 * end of the file is before the start of our current
354 * requested range of bytes, we bail out to the uncompressed
355 * cleanup code that can deal with all of this.
356 *
357 * It isn't really the fastest way to fix things, but this is a
358 * very uncommon corner.
359 */
360 if (actual_end <= start)
361 goto cleanup_and_bail_uncompressed;
362
c8b97818
CM
363 total_compressed = actual_end - start;
364
365 /* we want to make sure that amount of ram required to uncompress
366 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
367 * of a compressed extent to 128k. This is a crucial number
368 * because it also controls how easily we can spread reads across
369 * cpus for decompression.
370 *
371 * We also want to make sure the amount of IO required to do
372 * a random read is reasonably small, so we limit the size of
373 * a compressed extent to 128k.
c8b97818
CM
374 */
375 total_compressed = min(total_compressed, max_uncompressed);
db94535d 376 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 377 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
378 total_in = 0;
379 ret = 0;
db94535d 380
771ed689
CM
381 /*
382 * we do compression for mount -o compress and when the
383 * inode has not been flagged as nocompress. This flag can
384 * change at any time if we discover bad compression ratios.
c8b97818 385 */
6cbff00f 386 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 387 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
388 (BTRFS_I(inode)->force_compress) ||
389 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 390 WARN_ON(pages);
cfbc246e 391 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
dac97e51 392 BUG_ON(!pages);
c8b97818 393
261507a0
LZ
394 if (BTRFS_I(inode)->force_compress)
395 compress_type = BTRFS_I(inode)->force_compress;
396
397 ret = btrfs_compress_pages(compress_type,
398 inode->i_mapping, start,
399 total_compressed, pages,
400 nr_pages, &nr_pages_ret,
401 &total_in,
402 &total_compressed,
403 max_compressed);
c8b97818
CM
404
405 if (!ret) {
406 unsigned long offset = total_compressed &
407 (PAGE_CACHE_SIZE - 1);
408 struct page *page = pages[nr_pages_ret - 1];
409 char *kaddr;
410
411 /* zero the tail end of the last page, we might be
412 * sending it down to disk
413 */
414 if (offset) {
415 kaddr = kmap_atomic(page, KM_USER0);
416 memset(kaddr + offset, 0,
417 PAGE_CACHE_SIZE - offset);
418 kunmap_atomic(kaddr, KM_USER0);
419 }
420 will_compress = 1;
421 }
422 }
423 if (start == 0) {
771ed689 424 trans = btrfs_join_transaction(root, 1);
3612b495 425 BUG_ON(IS_ERR(trans));
771ed689 426 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 427 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 428
c8b97818 429 /* lets try to make an inline extent */
771ed689 430 if (ret || total_in < (actual_end - start)) {
c8b97818 431 /* we didn't compress the entire range, try
771ed689 432 * to make an uncompressed inline extent.
c8b97818
CM
433 */
434 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 435 start, end, 0, 0, NULL);
c8b97818 436 } else {
771ed689 437 /* try making a compressed inline extent */
c8b97818
CM
438 ret = cow_file_range_inline(trans, root, inode,
439 start, end,
fe3f566c
LZ
440 total_compressed,
441 compress_type, pages);
c8b97818
CM
442 }
443 if (ret == 0) {
771ed689
CM
444 /*
445 * inline extent creation worked, we don't need
446 * to create any more async work items. Unlock
447 * and free up our temp pages.
448 */
c8b97818 449 extent_clear_unlock_delalloc(inode,
a791e35e
CM
450 &BTRFS_I(inode)->io_tree,
451 start, end, NULL,
452 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 453 EXTENT_CLEAR_DELALLOC |
a791e35e 454 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
455
456 btrfs_end_transaction(trans, root);
c8b97818
CM
457 goto free_pages_out;
458 }
c2167754 459 btrfs_end_transaction(trans, root);
c8b97818
CM
460 }
461
462 if (will_compress) {
463 /*
464 * we aren't doing an inline extent round the compressed size
465 * up to a block size boundary so the allocator does sane
466 * things
467 */
468 total_compressed = (total_compressed + blocksize - 1) &
469 ~(blocksize - 1);
470
471 /*
472 * one last check to make sure the compression is really a
473 * win, compare the page count read with the blocks on disk
474 */
475 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
476 ~(PAGE_CACHE_SIZE - 1);
477 if (total_compressed >= total_in) {
478 will_compress = 0;
479 } else {
c8b97818
CM
480 num_bytes = total_in;
481 }
482 }
483 if (!will_compress && pages) {
484 /*
485 * the compression code ran but failed to make things smaller,
486 * free any pages it allocated and our page pointer array
487 */
488 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 489 WARN_ON(pages[i]->mapping);
c8b97818
CM
490 page_cache_release(pages[i]);
491 }
492 kfree(pages);
493 pages = NULL;
494 total_compressed = 0;
495 nr_pages_ret = 0;
496
497 /* flag the file so we don't compress in the future */
1e701a32
CM
498 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
499 !(BTRFS_I(inode)->force_compress)) {
a555f810 500 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 501 }
c8b97818 502 }
771ed689
CM
503 if (will_compress) {
504 *num_added += 1;
c8b97818 505
771ed689
CM
506 /* the async work queues will take care of doing actual
507 * allocation on disk for these compressed pages,
508 * and will submit them to the elevator.
509 */
510 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
511 total_compressed, pages, nr_pages_ret,
512 compress_type);
179e29e4 513
24ae6365 514 if (start + num_bytes < end) {
771ed689
CM
515 start += num_bytes;
516 pages = NULL;
517 cond_resched();
518 goto again;
519 }
520 } else {
f03d9301 521cleanup_and_bail_uncompressed:
771ed689
CM
522 /*
523 * No compression, but we still need to write the pages in
524 * the file we've been given so far. redirty the locked
525 * page if it corresponds to our extent and set things up
526 * for the async work queue to run cow_file_range to do
527 * the normal delalloc dance
528 */
529 if (page_offset(locked_page) >= start &&
530 page_offset(locked_page) <= end) {
531 __set_page_dirty_nobuffers(locked_page);
532 /* unlocked later on in the async handlers */
533 }
261507a0
LZ
534 add_async_extent(async_cow, start, end - start + 1,
535 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
536 *num_added += 1;
537 }
3b951516 538
771ed689
CM
539out:
540 return 0;
541
542free_pages_out:
543 for (i = 0; i < nr_pages_ret; i++) {
544 WARN_ON(pages[i]->mapping);
545 page_cache_release(pages[i]);
546 }
d397712b 547 kfree(pages);
771ed689
CM
548
549 goto out;
550}
551
552/*
553 * phase two of compressed writeback. This is the ordered portion
554 * of the code, which only gets called in the order the work was
555 * queued. We walk all the async extents created by compress_file_range
556 * and send them down to the disk.
557 */
558static noinline int submit_compressed_extents(struct inode *inode,
559 struct async_cow *async_cow)
560{
561 struct async_extent *async_extent;
562 u64 alloc_hint = 0;
563 struct btrfs_trans_handle *trans;
564 struct btrfs_key ins;
565 struct extent_map *em;
566 struct btrfs_root *root = BTRFS_I(inode)->root;
567 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
568 struct extent_io_tree *io_tree;
f5a84ee3 569 int ret = 0;
771ed689
CM
570
571 if (list_empty(&async_cow->extents))
572 return 0;
573
771ed689 574
d397712b 575 while (!list_empty(&async_cow->extents)) {
771ed689
CM
576 async_extent = list_entry(async_cow->extents.next,
577 struct async_extent, list);
578 list_del(&async_extent->list);
c8b97818 579
771ed689
CM
580 io_tree = &BTRFS_I(inode)->io_tree;
581
f5a84ee3 582retry:
771ed689
CM
583 /* did the compression code fall back to uncompressed IO? */
584 if (!async_extent->pages) {
585 int page_started = 0;
586 unsigned long nr_written = 0;
587
588 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
589 async_extent->start +
590 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
591
592 /* allocate blocks */
f5a84ee3
JB
593 ret = cow_file_range(inode, async_cow->locked_page,
594 async_extent->start,
595 async_extent->start +
596 async_extent->ram_size - 1,
597 &page_started, &nr_written, 0);
771ed689
CM
598
599 /*
600 * if page_started, cow_file_range inserted an
601 * inline extent and took care of all the unlocking
602 * and IO for us. Otherwise, we need to submit
603 * all those pages down to the drive.
604 */
f5a84ee3 605 if (!page_started && !ret)
771ed689
CM
606 extent_write_locked_range(io_tree,
607 inode, async_extent->start,
d397712b 608 async_extent->start +
771ed689
CM
609 async_extent->ram_size - 1,
610 btrfs_get_extent,
611 WB_SYNC_ALL);
612 kfree(async_extent);
613 cond_resched();
614 continue;
615 }
616
617 lock_extent(io_tree, async_extent->start,
618 async_extent->start + async_extent->ram_size - 1,
619 GFP_NOFS);
771ed689 620
c2167754 621 trans = btrfs_join_transaction(root, 1);
3612b495 622 BUG_ON(IS_ERR(trans));
771ed689
CM
623 ret = btrfs_reserve_extent(trans, root,
624 async_extent->compressed_size,
625 async_extent->compressed_size,
626 0, alloc_hint,
627 (u64)-1, &ins, 1);
c2167754
YZ
628 btrfs_end_transaction(trans, root);
629
f5a84ee3
JB
630 if (ret) {
631 int i;
632 for (i = 0; i < async_extent->nr_pages; i++) {
633 WARN_ON(async_extent->pages[i]->mapping);
634 page_cache_release(async_extent->pages[i]);
635 }
636 kfree(async_extent->pages);
637 async_extent->nr_pages = 0;
638 async_extent->pages = NULL;
639 unlock_extent(io_tree, async_extent->start,
640 async_extent->start +
641 async_extent->ram_size - 1, GFP_NOFS);
642 goto retry;
643 }
644
c2167754
YZ
645 /*
646 * here we're doing allocation and writeback of the
647 * compressed pages
648 */
649 btrfs_drop_extent_cache(inode, async_extent->start,
650 async_extent->start +
651 async_extent->ram_size - 1, 0);
652
771ed689 653 em = alloc_extent_map(GFP_NOFS);
c26a9203 654 BUG_ON(!em);
771ed689
CM
655 em->start = async_extent->start;
656 em->len = async_extent->ram_size;
445a6944 657 em->orig_start = em->start;
c8b97818 658
771ed689
CM
659 em->block_start = ins.objectid;
660 em->block_len = ins.offset;
661 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 662 em->compress_type = async_extent->compress_type;
771ed689
CM
663 set_bit(EXTENT_FLAG_PINNED, &em->flags);
664 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
665
d397712b 666 while (1) {
890871be 667 write_lock(&em_tree->lock);
771ed689 668 ret = add_extent_mapping(em_tree, em);
890871be 669 write_unlock(&em_tree->lock);
771ed689
CM
670 if (ret != -EEXIST) {
671 free_extent_map(em);
672 break;
673 }
674 btrfs_drop_extent_cache(inode, async_extent->start,
675 async_extent->start +
676 async_extent->ram_size - 1, 0);
677 }
678
261507a0
LZ
679 ret = btrfs_add_ordered_extent_compress(inode,
680 async_extent->start,
681 ins.objectid,
682 async_extent->ram_size,
683 ins.offset,
684 BTRFS_ORDERED_COMPRESSED,
685 async_extent->compress_type);
771ed689
CM
686 BUG_ON(ret);
687
771ed689
CM
688 /*
689 * clear dirty, set writeback and unlock the pages.
690 */
691 extent_clear_unlock_delalloc(inode,
a791e35e
CM
692 &BTRFS_I(inode)->io_tree,
693 async_extent->start,
694 async_extent->start +
695 async_extent->ram_size - 1,
696 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
697 EXTENT_CLEAR_UNLOCK |
a3429ab7 698 EXTENT_CLEAR_DELALLOC |
a791e35e 699 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
700
701 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
702 async_extent->start,
703 async_extent->ram_size,
704 ins.objectid,
705 ins.offset, async_extent->pages,
706 async_extent->nr_pages);
771ed689
CM
707
708 BUG_ON(ret);
771ed689
CM
709 alloc_hint = ins.objectid + ins.offset;
710 kfree(async_extent);
711 cond_resched();
712 }
713
771ed689
CM
714 return 0;
715}
716
4b46fce2
JB
717static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
718 u64 num_bytes)
719{
720 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
721 struct extent_map *em;
722 u64 alloc_hint = 0;
723
724 read_lock(&em_tree->lock);
725 em = search_extent_mapping(em_tree, start, num_bytes);
726 if (em) {
727 /*
728 * if block start isn't an actual block number then find the
729 * first block in this inode and use that as a hint. If that
730 * block is also bogus then just don't worry about it.
731 */
732 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
733 free_extent_map(em);
734 em = search_extent_mapping(em_tree, 0, 0);
735 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
736 alloc_hint = em->block_start;
737 if (em)
738 free_extent_map(em);
739 } else {
740 alloc_hint = em->block_start;
741 free_extent_map(em);
742 }
743 }
744 read_unlock(&em_tree->lock);
745
746 return alloc_hint;
747}
748
82d5902d
LZ
749static inline bool is_free_space_inode(struct btrfs_root *root,
750 struct inode *inode)
751{
752 if (root == root->fs_info->tree_root ||
753 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID)
754 return true;
755 return false;
756}
757
771ed689
CM
758/*
759 * when extent_io.c finds a delayed allocation range in the file,
760 * the call backs end up in this code. The basic idea is to
761 * allocate extents on disk for the range, and create ordered data structs
762 * in ram to track those extents.
763 *
764 * locked_page is the page that writepage had locked already. We use
765 * it to make sure we don't do extra locks or unlocks.
766 *
767 * *page_started is set to one if we unlock locked_page and do everything
768 * required to start IO on it. It may be clean and already done with
769 * IO when we return.
770 */
771static noinline int cow_file_range(struct inode *inode,
772 struct page *locked_page,
773 u64 start, u64 end, int *page_started,
774 unsigned long *nr_written,
775 int unlock)
776{
777 struct btrfs_root *root = BTRFS_I(inode)->root;
778 struct btrfs_trans_handle *trans;
779 u64 alloc_hint = 0;
780 u64 num_bytes;
781 unsigned long ram_size;
782 u64 disk_num_bytes;
783 u64 cur_alloc_size;
784 u64 blocksize = root->sectorsize;
771ed689
CM
785 struct btrfs_key ins;
786 struct extent_map *em;
787 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
788 int ret = 0;
789
82d5902d 790 BUG_ON(is_free_space_inode(root, inode));
771ed689 791 trans = btrfs_join_transaction(root, 1);
3612b495 792 BUG_ON(IS_ERR(trans));
771ed689 793 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 794 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 795
771ed689
CM
796 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
797 num_bytes = max(blocksize, num_bytes);
798 disk_num_bytes = num_bytes;
799 ret = 0;
800
801 if (start == 0) {
802 /* lets try to make an inline extent */
803 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 804 start, end, 0, 0, NULL);
771ed689
CM
805 if (ret == 0) {
806 extent_clear_unlock_delalloc(inode,
a791e35e
CM
807 &BTRFS_I(inode)->io_tree,
808 start, end, NULL,
809 EXTENT_CLEAR_UNLOCK_PAGE |
810 EXTENT_CLEAR_UNLOCK |
811 EXTENT_CLEAR_DELALLOC |
812 EXTENT_CLEAR_DIRTY |
813 EXTENT_SET_WRITEBACK |
814 EXTENT_END_WRITEBACK);
c2167754 815
771ed689
CM
816 *nr_written = *nr_written +
817 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
818 *page_started = 1;
819 ret = 0;
820 goto out;
821 }
822 }
823
824 BUG_ON(disk_num_bytes >
825 btrfs_super_total_bytes(&root->fs_info->super_copy));
826
4b46fce2 827 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
828 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
829
d397712b 830 while (disk_num_bytes > 0) {
a791e35e
CM
831 unsigned long op;
832
287a0ab9 833 cur_alloc_size = disk_num_bytes;
e6dcd2dc 834 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 835 root->sectorsize, 0, alloc_hint,
e6dcd2dc 836 (u64)-1, &ins, 1);
d397712b
CM
837 BUG_ON(ret);
838
e6dcd2dc 839 em = alloc_extent_map(GFP_NOFS);
c26a9203 840 BUG_ON(!em);
e6dcd2dc 841 em->start = start;
445a6944 842 em->orig_start = em->start;
771ed689
CM
843 ram_size = ins.offset;
844 em->len = ins.offset;
c8b97818 845
e6dcd2dc 846 em->block_start = ins.objectid;
c8b97818 847 em->block_len = ins.offset;
e6dcd2dc 848 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 849 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 850
d397712b 851 while (1) {
890871be 852 write_lock(&em_tree->lock);
e6dcd2dc 853 ret = add_extent_mapping(em_tree, em);
890871be 854 write_unlock(&em_tree->lock);
e6dcd2dc
CM
855 if (ret != -EEXIST) {
856 free_extent_map(em);
857 break;
858 }
859 btrfs_drop_extent_cache(inode, start,
c8b97818 860 start + ram_size - 1, 0);
e6dcd2dc
CM
861 }
862
98d20f67 863 cur_alloc_size = ins.offset;
e6dcd2dc 864 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 865 ram_size, cur_alloc_size, 0);
e6dcd2dc 866 BUG_ON(ret);
c8b97818 867
17d217fe
YZ
868 if (root->root_key.objectid ==
869 BTRFS_DATA_RELOC_TREE_OBJECTID) {
870 ret = btrfs_reloc_clone_csums(inode, start,
871 cur_alloc_size);
872 BUG_ON(ret);
873 }
874
d397712b 875 if (disk_num_bytes < cur_alloc_size)
3b951516 876 break;
d397712b 877
c8b97818
CM
878 /* we're not doing compressed IO, don't unlock the first
879 * page (which the caller expects to stay locked), don't
880 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
881 *
882 * Do set the Private2 bit so we know this page was properly
883 * setup for writepage
c8b97818 884 */
a791e35e
CM
885 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
886 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
887 EXTENT_SET_PRIVATE2;
888
c8b97818
CM
889 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
890 start, start + ram_size - 1,
a791e35e 891 locked_page, op);
c8b97818 892 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
893 num_bytes -= cur_alloc_size;
894 alloc_hint = ins.objectid + ins.offset;
895 start += cur_alloc_size;
b888db2b 896 }
b888db2b 897out:
771ed689 898 ret = 0;
b888db2b 899 btrfs_end_transaction(trans, root);
c8b97818 900
be20aa9d 901 return ret;
771ed689 902}
c8b97818 903
771ed689
CM
904/*
905 * work queue call back to started compression on a file and pages
906 */
907static noinline void async_cow_start(struct btrfs_work *work)
908{
909 struct async_cow *async_cow;
910 int num_added = 0;
911 async_cow = container_of(work, struct async_cow, work);
912
913 compress_file_range(async_cow->inode, async_cow->locked_page,
914 async_cow->start, async_cow->end, async_cow,
915 &num_added);
916 if (num_added == 0)
917 async_cow->inode = NULL;
918}
919
920/*
921 * work queue call back to submit previously compressed pages
922 */
923static noinline void async_cow_submit(struct btrfs_work *work)
924{
925 struct async_cow *async_cow;
926 struct btrfs_root *root;
927 unsigned long nr_pages;
928
929 async_cow = container_of(work, struct async_cow, work);
930
931 root = async_cow->root;
932 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
933 PAGE_CACHE_SHIFT;
934
935 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
936
937 if (atomic_read(&root->fs_info->async_delalloc_pages) <
938 5 * 1042 * 1024 &&
939 waitqueue_active(&root->fs_info->async_submit_wait))
940 wake_up(&root->fs_info->async_submit_wait);
941
d397712b 942 if (async_cow->inode)
771ed689 943 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 944}
c8b97818 945
771ed689
CM
946static noinline void async_cow_free(struct btrfs_work *work)
947{
948 struct async_cow *async_cow;
949 async_cow = container_of(work, struct async_cow, work);
950 kfree(async_cow);
951}
952
953static int cow_file_range_async(struct inode *inode, struct page *locked_page,
954 u64 start, u64 end, int *page_started,
955 unsigned long *nr_written)
956{
957 struct async_cow *async_cow;
958 struct btrfs_root *root = BTRFS_I(inode)->root;
959 unsigned long nr_pages;
960 u64 cur_end;
961 int limit = 10 * 1024 * 1042;
962
a3429ab7
CM
963 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
964 1, 0, NULL, GFP_NOFS);
d397712b 965 while (start < end) {
771ed689 966 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
8d413713 967 BUG_ON(!async_cow);
771ed689
CM
968 async_cow->inode = inode;
969 async_cow->root = root;
970 async_cow->locked_page = locked_page;
971 async_cow->start = start;
972
6cbff00f 973 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
974 cur_end = end;
975 else
976 cur_end = min(end, start + 512 * 1024 - 1);
977
978 async_cow->end = cur_end;
979 INIT_LIST_HEAD(&async_cow->extents);
980
981 async_cow->work.func = async_cow_start;
982 async_cow->work.ordered_func = async_cow_submit;
983 async_cow->work.ordered_free = async_cow_free;
984 async_cow->work.flags = 0;
985
771ed689
CM
986 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
987 PAGE_CACHE_SHIFT;
988 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
989
990 btrfs_queue_worker(&root->fs_info->delalloc_workers,
991 &async_cow->work);
992
993 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
994 wait_event(root->fs_info->async_submit_wait,
995 (atomic_read(&root->fs_info->async_delalloc_pages) <
996 limit));
997 }
998
d397712b 999 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1000 atomic_read(&root->fs_info->async_delalloc_pages)) {
1001 wait_event(root->fs_info->async_submit_wait,
1002 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1003 0));
1004 }
1005
1006 *nr_written += nr_pages;
1007 start = cur_end + 1;
1008 }
1009 *page_started = 1;
1010 return 0;
be20aa9d
CM
1011}
1012
d397712b 1013static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1014 u64 bytenr, u64 num_bytes)
1015{
1016 int ret;
1017 struct btrfs_ordered_sum *sums;
1018 LIST_HEAD(list);
1019
07d400a6
YZ
1020 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1021 bytenr + num_bytes - 1, &list);
17d217fe
YZ
1022 if (ret == 0 && list_empty(&list))
1023 return 0;
1024
1025 while (!list_empty(&list)) {
1026 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1027 list_del(&sums->list);
1028 kfree(sums);
1029 }
1030 return 1;
1031}
1032
d352ac68
CM
1033/*
1034 * when nowcow writeback call back. This checks for snapshots or COW copies
1035 * of the extents that exist in the file, and COWs the file as required.
1036 *
1037 * If no cow copies or snapshots exist, we write directly to the existing
1038 * blocks on disk
1039 */
7f366cfe
CM
1040static noinline int run_delalloc_nocow(struct inode *inode,
1041 struct page *locked_page,
771ed689
CM
1042 u64 start, u64 end, int *page_started, int force,
1043 unsigned long *nr_written)
be20aa9d 1044{
be20aa9d 1045 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1046 struct btrfs_trans_handle *trans;
be20aa9d 1047 struct extent_buffer *leaf;
be20aa9d 1048 struct btrfs_path *path;
80ff3856 1049 struct btrfs_file_extent_item *fi;
be20aa9d 1050 struct btrfs_key found_key;
80ff3856
YZ
1051 u64 cow_start;
1052 u64 cur_offset;
1053 u64 extent_end;
5d4f98a2 1054 u64 extent_offset;
80ff3856
YZ
1055 u64 disk_bytenr;
1056 u64 num_bytes;
1057 int extent_type;
1058 int ret;
d899e052 1059 int type;
80ff3856
YZ
1060 int nocow;
1061 int check_prev = 1;
82d5902d 1062 bool nolock;
33345d01 1063 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1064
1065 path = btrfs_alloc_path();
1066 BUG_ON(!path);
82d5902d
LZ
1067
1068 nolock = is_free_space_inode(root, inode);
1069
1070 if (nolock)
0cb59c99 1071 trans = btrfs_join_transaction_nolock(root, 1);
82d5902d 1072 else
0cb59c99 1073 trans = btrfs_join_transaction(root, 1);
3612b495 1074 BUG_ON(IS_ERR(trans));
be20aa9d 1075
80ff3856
YZ
1076 cow_start = (u64)-1;
1077 cur_offset = start;
1078 while (1) {
33345d01 1079 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856
YZ
1080 cur_offset, 0);
1081 BUG_ON(ret < 0);
1082 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1083 leaf = path->nodes[0];
1084 btrfs_item_key_to_cpu(leaf, &found_key,
1085 path->slots[0] - 1);
33345d01 1086 if (found_key.objectid == ino &&
80ff3856
YZ
1087 found_key.type == BTRFS_EXTENT_DATA_KEY)
1088 path->slots[0]--;
1089 }
1090 check_prev = 0;
1091next_slot:
1092 leaf = path->nodes[0];
1093 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1094 ret = btrfs_next_leaf(root, path);
1095 if (ret < 0)
1096 BUG_ON(1);
1097 if (ret > 0)
1098 break;
1099 leaf = path->nodes[0];
1100 }
be20aa9d 1101
80ff3856
YZ
1102 nocow = 0;
1103 disk_bytenr = 0;
17d217fe 1104 num_bytes = 0;
80ff3856
YZ
1105 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1106
33345d01 1107 if (found_key.objectid > ino ||
80ff3856
YZ
1108 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1109 found_key.offset > end)
1110 break;
1111
1112 if (found_key.offset > cur_offset) {
1113 extent_end = found_key.offset;
e9061e21 1114 extent_type = 0;
80ff3856
YZ
1115 goto out_check;
1116 }
1117
1118 fi = btrfs_item_ptr(leaf, path->slots[0],
1119 struct btrfs_file_extent_item);
1120 extent_type = btrfs_file_extent_type(leaf, fi);
1121
d899e052
YZ
1122 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1123 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1124 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1125 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1126 extent_end = found_key.offset +
1127 btrfs_file_extent_num_bytes(leaf, fi);
1128 if (extent_end <= start) {
1129 path->slots[0]++;
1130 goto next_slot;
1131 }
17d217fe
YZ
1132 if (disk_bytenr == 0)
1133 goto out_check;
80ff3856
YZ
1134 if (btrfs_file_extent_compression(leaf, fi) ||
1135 btrfs_file_extent_encryption(leaf, fi) ||
1136 btrfs_file_extent_other_encoding(leaf, fi))
1137 goto out_check;
d899e052
YZ
1138 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1139 goto out_check;
d2fb3437 1140 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1141 goto out_check;
33345d01 1142 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1143 found_key.offset -
1144 extent_offset, disk_bytenr))
17d217fe 1145 goto out_check;
5d4f98a2 1146 disk_bytenr += extent_offset;
17d217fe
YZ
1147 disk_bytenr += cur_offset - found_key.offset;
1148 num_bytes = min(end + 1, extent_end) - cur_offset;
1149 /*
1150 * force cow if csum exists in the range.
1151 * this ensure that csum for a given extent are
1152 * either valid or do not exist.
1153 */
1154 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1155 goto out_check;
80ff3856
YZ
1156 nocow = 1;
1157 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1158 extent_end = found_key.offset +
1159 btrfs_file_extent_inline_len(leaf, fi);
1160 extent_end = ALIGN(extent_end, root->sectorsize);
1161 } else {
1162 BUG_ON(1);
1163 }
1164out_check:
1165 if (extent_end <= start) {
1166 path->slots[0]++;
1167 goto next_slot;
1168 }
1169 if (!nocow) {
1170 if (cow_start == (u64)-1)
1171 cow_start = cur_offset;
1172 cur_offset = extent_end;
1173 if (cur_offset > end)
1174 break;
1175 path->slots[0]++;
1176 goto next_slot;
7ea394f1
YZ
1177 }
1178
1179 btrfs_release_path(root, path);
80ff3856
YZ
1180 if (cow_start != (u64)-1) {
1181 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1182 found_key.offset - 1, page_started,
1183 nr_written, 1);
80ff3856
YZ
1184 BUG_ON(ret);
1185 cow_start = (u64)-1;
7ea394f1 1186 }
80ff3856 1187
d899e052
YZ
1188 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1189 struct extent_map *em;
1190 struct extent_map_tree *em_tree;
1191 em_tree = &BTRFS_I(inode)->extent_tree;
1192 em = alloc_extent_map(GFP_NOFS);
c26a9203 1193 BUG_ON(!em);
d899e052 1194 em->start = cur_offset;
445a6944 1195 em->orig_start = em->start;
d899e052
YZ
1196 em->len = num_bytes;
1197 em->block_len = num_bytes;
1198 em->block_start = disk_bytenr;
1199 em->bdev = root->fs_info->fs_devices->latest_bdev;
1200 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1201 while (1) {
890871be 1202 write_lock(&em_tree->lock);
d899e052 1203 ret = add_extent_mapping(em_tree, em);
890871be 1204 write_unlock(&em_tree->lock);
d899e052
YZ
1205 if (ret != -EEXIST) {
1206 free_extent_map(em);
1207 break;
1208 }
1209 btrfs_drop_extent_cache(inode, em->start,
1210 em->start + em->len - 1, 0);
1211 }
1212 type = BTRFS_ORDERED_PREALLOC;
1213 } else {
1214 type = BTRFS_ORDERED_NOCOW;
1215 }
80ff3856
YZ
1216
1217 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1218 num_bytes, num_bytes, type);
1219 BUG_ON(ret);
771ed689 1220
efa56464
YZ
1221 if (root->root_key.objectid ==
1222 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1223 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1224 num_bytes);
1225 BUG_ON(ret);
1226 }
1227
d899e052 1228 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1229 cur_offset, cur_offset + num_bytes - 1,
1230 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1231 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1232 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1233 cur_offset = extent_end;
1234 if (cur_offset > end)
1235 break;
be20aa9d 1236 }
80ff3856
YZ
1237 btrfs_release_path(root, path);
1238
1239 if (cur_offset <= end && cow_start == (u64)-1)
1240 cow_start = cur_offset;
1241 if (cow_start != (u64)-1) {
1242 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1243 page_started, nr_written, 1);
80ff3856
YZ
1244 BUG_ON(ret);
1245 }
1246
0cb59c99
JB
1247 if (nolock) {
1248 ret = btrfs_end_transaction_nolock(trans, root);
1249 BUG_ON(ret);
1250 } else {
1251 ret = btrfs_end_transaction(trans, root);
1252 BUG_ON(ret);
1253 }
7ea394f1 1254 btrfs_free_path(path);
80ff3856 1255 return 0;
be20aa9d
CM
1256}
1257
d352ac68
CM
1258/*
1259 * extent_io.c call back to do delayed allocation processing
1260 */
c8b97818 1261static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1262 u64 start, u64 end, int *page_started,
1263 unsigned long *nr_written)
be20aa9d 1264{
be20aa9d 1265 int ret;
7f366cfe 1266 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1267
6cbff00f 1268 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1269 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1270 page_started, 1, nr_written);
6cbff00f 1271 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1272 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1273 page_started, 0, nr_written);
1e701a32 1274 else if (!btrfs_test_opt(root, COMPRESS) &&
75e7cb7f
LB
1275 !(BTRFS_I(inode)->force_compress) &&
1276 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
7f366cfe
CM
1277 ret = cow_file_range(inode, locked_page, start, end,
1278 page_started, nr_written, 1);
be20aa9d 1279 else
771ed689 1280 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1281 page_started, nr_written);
b888db2b
CM
1282 return ret;
1283}
1284
9ed74f2d 1285static int btrfs_split_extent_hook(struct inode *inode,
0ca1f7ce 1286 struct extent_state *orig, u64 split)
9ed74f2d 1287{
0ca1f7ce 1288 /* not delalloc, ignore it */
9ed74f2d
JB
1289 if (!(orig->state & EXTENT_DELALLOC))
1290 return 0;
1291
0ca1f7ce 1292 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1293 return 0;
1294}
1295
1296/*
1297 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1298 * extents so we can keep track of new extents that are just merged onto old
1299 * extents, such as when we are doing sequential writes, so we can properly
1300 * account for the metadata space we'll need.
1301 */
1302static int btrfs_merge_extent_hook(struct inode *inode,
1303 struct extent_state *new,
1304 struct extent_state *other)
1305{
9ed74f2d
JB
1306 /* not delalloc, ignore it */
1307 if (!(other->state & EXTENT_DELALLOC))
1308 return 0;
1309
0ca1f7ce 1310 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1311 return 0;
1312}
1313
d352ac68
CM
1314/*
1315 * extent_io.c set_bit_hook, used to track delayed allocation
1316 * bytes in this file, and to maintain the list of inodes that
1317 * have pending delalloc work to be done.
1318 */
0ca1f7ce
YZ
1319static int btrfs_set_bit_hook(struct inode *inode,
1320 struct extent_state *state, int *bits)
291d673e 1321{
9ed74f2d 1322
75eff68e
CM
1323 /*
1324 * set_bit and clear bit hooks normally require _irqsave/restore
1325 * but in this case, we are only testeing for the DELALLOC
1326 * bit, which is only set or cleared with irqs on
1327 */
0ca1f7ce 1328 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1329 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1330 u64 len = state->end + 1 - state->start;
82d5902d 1331 bool do_list = !is_free_space_inode(root, inode);
9ed74f2d 1332
0ca1f7ce
YZ
1333 if (*bits & EXTENT_FIRST_DELALLOC)
1334 *bits &= ~EXTENT_FIRST_DELALLOC;
1335 else
1336 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
287a0ab9 1337
75eff68e 1338 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1339 BTRFS_I(inode)->delalloc_bytes += len;
1340 root->fs_info->delalloc_bytes += len;
0cb59c99 1341 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1342 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1343 &root->fs_info->delalloc_inodes);
1344 }
75eff68e 1345 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1346 }
1347 return 0;
1348}
1349
d352ac68
CM
1350/*
1351 * extent_io.c clear_bit_hook, see set_bit_hook for why
1352 */
9ed74f2d 1353static int btrfs_clear_bit_hook(struct inode *inode,
0ca1f7ce 1354 struct extent_state *state, int *bits)
291d673e 1355{
75eff68e
CM
1356 /*
1357 * set_bit and clear bit hooks normally require _irqsave/restore
1358 * but in this case, we are only testeing for the DELALLOC
1359 * bit, which is only set or cleared with irqs on
1360 */
0ca1f7ce 1361 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1362 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1363 u64 len = state->end + 1 - state->start;
82d5902d 1364 bool do_list = !is_free_space_inode(root, inode);
bcbfce8a 1365
0ca1f7ce
YZ
1366 if (*bits & EXTENT_FIRST_DELALLOC)
1367 *bits &= ~EXTENT_FIRST_DELALLOC;
1368 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1369 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1370
1371 if (*bits & EXTENT_DO_ACCOUNTING)
1372 btrfs_delalloc_release_metadata(inode, len);
1373
0cb59c99
JB
1374 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1375 && do_list)
0ca1f7ce 1376 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1377
75eff68e 1378 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1379 root->fs_info->delalloc_bytes -= len;
1380 BTRFS_I(inode)->delalloc_bytes -= len;
1381
0cb59c99 1382 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1383 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1384 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1385 }
75eff68e 1386 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1387 }
1388 return 0;
1389}
1390
d352ac68
CM
1391/*
1392 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1393 * we don't create bios that span stripes or chunks
1394 */
239b14b3 1395int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1396 size_t size, struct bio *bio,
1397 unsigned long bio_flags)
239b14b3
CM
1398{
1399 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1400 struct btrfs_mapping_tree *map_tree;
a62b9401 1401 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1402 u64 length = 0;
1403 u64 map_length;
239b14b3
CM
1404 int ret;
1405
771ed689
CM
1406 if (bio_flags & EXTENT_BIO_COMPRESSED)
1407 return 0;
1408
f2d8d74d 1409 length = bio->bi_size;
239b14b3
CM
1410 map_tree = &root->fs_info->mapping_tree;
1411 map_length = length;
cea9e445 1412 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1413 &map_length, NULL, 0);
cea9e445 1414
d397712b 1415 if (map_length < length + size)
239b14b3 1416 return 1;
411fc6bc 1417 return ret;
239b14b3
CM
1418}
1419
d352ac68
CM
1420/*
1421 * in order to insert checksums into the metadata in large chunks,
1422 * we wait until bio submission time. All the pages in the bio are
1423 * checksummed and sums are attached onto the ordered extent record.
1424 *
1425 * At IO completion time the cums attached on the ordered extent record
1426 * are inserted into the btree
1427 */
d397712b
CM
1428static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1429 struct bio *bio, int mirror_num,
eaf25d93
CM
1430 unsigned long bio_flags,
1431 u64 bio_offset)
065631f6 1432{
065631f6 1433 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1434 int ret = 0;
e015640f 1435
d20f7043 1436 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1437 BUG_ON(ret);
4a69a410
CM
1438 return 0;
1439}
e015640f 1440
4a69a410
CM
1441/*
1442 * in order to insert checksums into the metadata in large chunks,
1443 * we wait until bio submission time. All the pages in the bio are
1444 * checksummed and sums are attached onto the ordered extent record.
1445 *
1446 * At IO completion time the cums attached on the ordered extent record
1447 * are inserted into the btree
1448 */
b2950863 1449static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1450 int mirror_num, unsigned long bio_flags,
1451 u64 bio_offset)
4a69a410
CM
1452{
1453 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1454 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1455}
1456
d352ac68 1457/*
cad321ad
CM
1458 * extent_io.c submission hook. This does the right thing for csum calculation
1459 * on write, or reading the csums from the tree before a read
d352ac68 1460 */
b2950863 1461static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1462 int mirror_num, unsigned long bio_flags,
1463 u64 bio_offset)
44b8bd7e
CM
1464{
1465 struct btrfs_root *root = BTRFS_I(inode)->root;
1466 int ret = 0;
19b9bdb0 1467 int skip_sum;
44b8bd7e 1468
6cbff00f 1469 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1470
82d5902d 1471 if (is_free_space_inode(root, inode))
0cb59c99
JB
1472 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1473 else
1474 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1475 BUG_ON(ret);
065631f6 1476
7b6d91da 1477 if (!(rw & REQ_WRITE)) {
d20f7043 1478 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1479 return btrfs_submit_compressed_read(inode, bio,
1480 mirror_num, bio_flags);
c2db1073
TI
1481 } else if (!skip_sum) {
1482 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1483 if (ret)
1484 return ret;
1485 }
4d1b5fb4 1486 goto mapit;
19b9bdb0 1487 } else if (!skip_sum) {
17d217fe
YZ
1488 /* csum items have already been cloned */
1489 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1490 goto mapit;
19b9bdb0
CM
1491 /* we're doing a write, do the async checksumming */
1492 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1493 inode, rw, bio, mirror_num,
eaf25d93
CM
1494 bio_flags, bio_offset,
1495 __btrfs_submit_bio_start,
4a69a410 1496 __btrfs_submit_bio_done);
19b9bdb0
CM
1497 }
1498
0b86a832 1499mapit:
8b712842 1500 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1501}
6885f308 1502
d352ac68
CM
1503/*
1504 * given a list of ordered sums record them in the inode. This happens
1505 * at IO completion time based on sums calculated at bio submission time.
1506 */
ba1da2f4 1507static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1508 struct inode *inode, u64 file_offset,
1509 struct list_head *list)
1510{
e6dcd2dc
CM
1511 struct btrfs_ordered_sum *sum;
1512
1513 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1514
1515 list_for_each_entry(sum, list, list) {
d20f7043
CM
1516 btrfs_csum_file_blocks(trans,
1517 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1518 }
1519 return 0;
1520}
1521
2ac55d41
JB
1522int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1523 struct extent_state **cached_state)
ea8c2819 1524{
d397712b 1525 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1526 WARN_ON(1);
ea8c2819 1527 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1528 cached_state, GFP_NOFS);
ea8c2819
CM
1529}
1530
d352ac68 1531/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1532struct btrfs_writepage_fixup {
1533 struct page *page;
1534 struct btrfs_work work;
1535};
1536
b2950863 1537static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1538{
1539 struct btrfs_writepage_fixup *fixup;
1540 struct btrfs_ordered_extent *ordered;
2ac55d41 1541 struct extent_state *cached_state = NULL;
247e743c
CM
1542 struct page *page;
1543 struct inode *inode;
1544 u64 page_start;
1545 u64 page_end;
1546
1547 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1548 page = fixup->page;
4a096752 1549again:
247e743c
CM
1550 lock_page(page);
1551 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1552 ClearPageChecked(page);
1553 goto out_page;
1554 }
1555
1556 inode = page->mapping->host;
1557 page_start = page_offset(page);
1558 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1559
2ac55d41
JB
1560 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1561 &cached_state, GFP_NOFS);
4a096752
CM
1562
1563 /* already ordered? We're done */
8b62b72b 1564 if (PagePrivate2(page))
247e743c 1565 goto out;
4a096752
CM
1566
1567 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1568 if (ordered) {
2ac55d41
JB
1569 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1570 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1571 unlock_page(page);
1572 btrfs_start_ordered_extent(inode, ordered, 1);
1573 goto again;
1574 }
247e743c 1575
0ca1f7ce 1576 BUG();
2ac55d41 1577 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1578 ClearPageChecked(page);
1579out:
2ac55d41
JB
1580 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1581 &cached_state, GFP_NOFS);
247e743c
CM
1582out_page:
1583 unlock_page(page);
1584 page_cache_release(page);
b897abec 1585 kfree(fixup);
247e743c
CM
1586}
1587
1588/*
1589 * There are a few paths in the higher layers of the kernel that directly
1590 * set the page dirty bit without asking the filesystem if it is a
1591 * good idea. This causes problems because we want to make sure COW
1592 * properly happens and the data=ordered rules are followed.
1593 *
c8b97818 1594 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1595 * hasn't been properly setup for IO. We kick off an async process
1596 * to fix it up. The async helper will wait for ordered extents, set
1597 * the delalloc bit and make it safe to write the page.
1598 */
b2950863 1599static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1600{
1601 struct inode *inode = page->mapping->host;
1602 struct btrfs_writepage_fixup *fixup;
1603 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1604
8b62b72b
CM
1605 /* this page is properly in the ordered list */
1606 if (TestClearPagePrivate2(page))
247e743c
CM
1607 return 0;
1608
1609 if (PageChecked(page))
1610 return -EAGAIN;
1611
1612 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1613 if (!fixup)
1614 return -EAGAIN;
f421950f 1615
247e743c
CM
1616 SetPageChecked(page);
1617 page_cache_get(page);
1618 fixup->work.func = btrfs_writepage_fixup_worker;
1619 fixup->page = page;
1620 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1621 return -EAGAIN;
1622}
1623
d899e052
YZ
1624static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1625 struct inode *inode, u64 file_pos,
1626 u64 disk_bytenr, u64 disk_num_bytes,
1627 u64 num_bytes, u64 ram_bytes,
1628 u8 compression, u8 encryption,
1629 u16 other_encoding, int extent_type)
1630{
1631 struct btrfs_root *root = BTRFS_I(inode)->root;
1632 struct btrfs_file_extent_item *fi;
1633 struct btrfs_path *path;
1634 struct extent_buffer *leaf;
1635 struct btrfs_key ins;
1636 u64 hint;
1637 int ret;
1638
1639 path = btrfs_alloc_path();
1640 BUG_ON(!path);
1641
b9473439 1642 path->leave_spinning = 1;
a1ed835e
CM
1643
1644 /*
1645 * we may be replacing one extent in the tree with another.
1646 * The new extent is pinned in the extent map, and we don't want
1647 * to drop it from the cache until it is completely in the btree.
1648 *
1649 * So, tell btrfs_drop_extents to leave this extent in the cache.
1650 * the caller is expected to unpin it and allow it to be merged
1651 * with the others.
1652 */
920bbbfb
YZ
1653 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1654 &hint, 0);
d899e052
YZ
1655 BUG_ON(ret);
1656
33345d01 1657 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1658 ins.offset = file_pos;
1659 ins.type = BTRFS_EXTENT_DATA_KEY;
1660 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1661 BUG_ON(ret);
1662 leaf = path->nodes[0];
1663 fi = btrfs_item_ptr(leaf, path->slots[0],
1664 struct btrfs_file_extent_item);
1665 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1666 btrfs_set_file_extent_type(leaf, fi, extent_type);
1667 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1668 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1669 btrfs_set_file_extent_offset(leaf, fi, 0);
1670 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1671 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1672 btrfs_set_file_extent_compression(leaf, fi, compression);
1673 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1674 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1675
1676 btrfs_unlock_up_safe(path, 1);
1677 btrfs_set_lock_blocking(leaf);
1678
d899e052
YZ
1679 btrfs_mark_buffer_dirty(leaf);
1680
1681 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1682
1683 ins.objectid = disk_bytenr;
1684 ins.offset = disk_num_bytes;
1685 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1686 ret = btrfs_alloc_reserved_file_extent(trans, root,
1687 root->root_key.objectid,
33345d01 1688 btrfs_ino(inode), file_pos, &ins);
d899e052 1689 BUG_ON(ret);
d899e052 1690 btrfs_free_path(path);
b9473439 1691
d899e052
YZ
1692 return 0;
1693}
1694
5d13a98f
CM
1695/*
1696 * helper function for btrfs_finish_ordered_io, this
1697 * just reads in some of the csum leaves to prime them into ram
1698 * before we start the transaction. It limits the amount of btree
1699 * reads required while inside the transaction.
1700 */
d352ac68
CM
1701/* as ordered data IO finishes, this gets called so we can finish
1702 * an ordered extent if the range of bytes in the file it covers are
1703 * fully written.
1704 */
211f90e6 1705static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1706{
e6dcd2dc 1707 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1708 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1709 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1710 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1711 struct extent_state *cached_state = NULL;
261507a0 1712 int compress_type = 0;
e6dcd2dc 1713 int ret;
82d5902d 1714 bool nolock;
e6dcd2dc 1715
5a1a3df1
JB
1716 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1717 end - start + 1);
ba1da2f4 1718 if (!ret)
e6dcd2dc 1719 return 0;
e6dcd2dc 1720 BUG_ON(!ordered_extent);
efd049fb 1721
82d5902d 1722 nolock = is_free_space_inode(root, inode);
0cb59c99 1723
c2167754
YZ
1724 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1725 BUG_ON(!list_empty(&ordered_extent->list));
1726 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1727 if (!ret) {
0cb59c99
JB
1728 if (nolock)
1729 trans = btrfs_join_transaction_nolock(root, 1);
1730 else
1731 trans = btrfs_join_transaction(root, 1);
3612b495 1732 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1733 btrfs_set_trans_block_group(trans, inode);
1734 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1735 ret = btrfs_update_inode(trans, root, inode);
1736 BUG_ON(ret);
c2167754
YZ
1737 }
1738 goto out;
1739 }
e6dcd2dc 1740
2ac55d41
JB
1741 lock_extent_bits(io_tree, ordered_extent->file_offset,
1742 ordered_extent->file_offset + ordered_extent->len - 1,
1743 0, &cached_state, GFP_NOFS);
e6dcd2dc 1744
0cb59c99
JB
1745 if (nolock)
1746 trans = btrfs_join_transaction_nolock(root, 1);
1747 else
1748 trans = btrfs_join_transaction(root, 1);
3612b495 1749 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1750 btrfs_set_trans_block_group(trans, inode);
1751 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1752
c8b97818 1753 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1754 compress_type = ordered_extent->compress_type;
d899e052 1755 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1756 BUG_ON(compress_type);
920bbbfb 1757 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1758 ordered_extent->file_offset,
1759 ordered_extent->file_offset +
1760 ordered_extent->len);
1761 BUG_ON(ret);
1762 } else {
0af3d00b 1763 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1764 ret = insert_reserved_file_extent(trans, inode,
1765 ordered_extent->file_offset,
1766 ordered_extent->start,
1767 ordered_extent->disk_len,
1768 ordered_extent->len,
1769 ordered_extent->len,
261507a0 1770 compress_type, 0, 0,
d899e052 1771 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1772 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1773 ordered_extent->file_offset,
1774 ordered_extent->len);
d899e052
YZ
1775 BUG_ON(ret);
1776 }
2ac55d41
JB
1777 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1778 ordered_extent->file_offset +
1779 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1780
e6dcd2dc
CM
1781 add_pending_csums(trans, inode, ordered_extent->file_offset,
1782 &ordered_extent->list);
1783
1ef30be1
JB
1784 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1785 if (!ret) {
1786 ret = btrfs_update_inode(trans, root, inode);
1787 BUG_ON(ret);
1788 }
1789 ret = 0;
c2167754 1790out:
0cb59c99
JB
1791 if (nolock) {
1792 if (trans)
1793 btrfs_end_transaction_nolock(trans, root);
1794 } else {
1795 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1796 if (trans)
1797 btrfs_end_transaction(trans, root);
1798 }
1799
e6dcd2dc
CM
1800 /* once for us */
1801 btrfs_put_ordered_extent(ordered_extent);
1802 /* once for the tree */
1803 btrfs_put_ordered_extent(ordered_extent);
1804
e6dcd2dc
CM
1805 return 0;
1806}
1807
b2950863 1808static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1809 struct extent_state *state, int uptodate)
1810{
1abe9b8a 1811 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1812
8b62b72b 1813 ClearPagePrivate2(page);
211f90e6
CM
1814 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1815}
1816
d352ac68
CM
1817/*
1818 * When IO fails, either with EIO or csum verification fails, we
1819 * try other mirrors that might have a good copy of the data. This
1820 * io_failure_record is used to record state as we go through all the
1821 * mirrors. If another mirror has good data, the page is set up to date
1822 * and things continue. If a good mirror can't be found, the original
1823 * bio end_io callback is called to indicate things have failed.
1824 */
7e38326f
CM
1825struct io_failure_record {
1826 struct page *page;
1827 u64 start;
1828 u64 len;
1829 u64 logical;
d20f7043 1830 unsigned long bio_flags;
7e38326f
CM
1831 int last_mirror;
1832};
1833
b2950863 1834static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1835 struct page *page, u64 start, u64 end,
1836 struct extent_state *state)
7e38326f
CM
1837{
1838 struct io_failure_record *failrec = NULL;
1839 u64 private;
1840 struct extent_map *em;
1841 struct inode *inode = page->mapping->host;
1842 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1843 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1844 struct bio *bio;
1845 int num_copies;
1846 int ret;
1259ab75 1847 int rw;
7e38326f
CM
1848 u64 logical;
1849
1850 ret = get_state_private(failure_tree, start, &private);
1851 if (ret) {
7e38326f
CM
1852 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1853 if (!failrec)
1854 return -ENOMEM;
1855 failrec->start = start;
1856 failrec->len = end - start + 1;
1857 failrec->last_mirror = 0;
d20f7043 1858 failrec->bio_flags = 0;
7e38326f 1859
890871be 1860 read_lock(&em_tree->lock);
3b951516
CM
1861 em = lookup_extent_mapping(em_tree, start, failrec->len);
1862 if (em->start > start || em->start + em->len < start) {
1863 free_extent_map(em);
1864 em = NULL;
1865 }
890871be 1866 read_unlock(&em_tree->lock);
7e38326f
CM
1867
1868 if (!em || IS_ERR(em)) {
1869 kfree(failrec);
1870 return -EIO;
1871 }
1872 logical = start - em->start;
1873 logical = em->block_start + logical;
d20f7043
CM
1874 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1875 logical = em->block_start;
1876 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
261507a0
LZ
1877 extent_set_compress_type(&failrec->bio_flags,
1878 em->compress_type);
d20f7043 1879 }
7e38326f
CM
1880 failrec->logical = logical;
1881 free_extent_map(em);
1882 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1883 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1884 set_state_private(failure_tree, start,
1885 (u64)(unsigned long)failrec);
7e38326f 1886 } else {
587f7704 1887 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1888 }
1889 num_copies = btrfs_num_copies(
1890 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1891 failrec->logical, failrec->len);
1892 failrec->last_mirror++;
1893 if (!state) {
cad321ad 1894 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1895 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1896 failrec->start,
1897 EXTENT_LOCKED);
1898 if (state && state->start != failrec->start)
1899 state = NULL;
cad321ad 1900 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1901 }
1902 if (!state || failrec->last_mirror > num_copies) {
1903 set_state_private(failure_tree, failrec->start, 0);
1904 clear_extent_bits(failure_tree, failrec->start,
1905 failrec->start + failrec->len - 1,
1906 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1907 kfree(failrec);
1908 return -EIO;
1909 }
1910 bio = bio_alloc(GFP_NOFS, 1);
1911 bio->bi_private = state;
1912 bio->bi_end_io = failed_bio->bi_end_io;
1913 bio->bi_sector = failrec->logical >> 9;
1914 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1915 bio->bi_size = 0;
d20f7043 1916
7e38326f 1917 bio_add_page(bio, page, failrec->len, start - page_offset(page));
7b6d91da 1918 if (failed_bio->bi_rw & REQ_WRITE)
1259ab75
CM
1919 rw = WRITE;
1920 else
1921 rw = READ;
1922
c2db1073 1923 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1924 failrec->last_mirror,
eaf25d93 1925 failrec->bio_flags, 0);
c2db1073 1926 return ret;
1259ab75
CM
1927}
1928
d352ac68
CM
1929/*
1930 * each time an IO finishes, we do a fast check in the IO failure tree
1931 * to see if we need to process or clean up an io_failure_record
1932 */
b2950863 1933static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1934{
1935 u64 private;
1936 u64 private_failure;
1937 struct io_failure_record *failure;
1938 int ret;
1939
1940 private = 0;
1941 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
ec29ed5b 1942 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1259ab75
CM
1943 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1944 start, &private_failure);
1945 if (ret == 0) {
1946 failure = (struct io_failure_record *)(unsigned long)
1947 private_failure;
1948 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1949 failure->start, 0);
1950 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1951 failure->start,
1952 failure->start + failure->len - 1,
1953 EXTENT_DIRTY | EXTENT_LOCKED,
1954 GFP_NOFS);
1955 kfree(failure);
1956 }
1957 }
7e38326f
CM
1958 return 0;
1959}
1960
d352ac68
CM
1961/*
1962 * when reads are done, we need to check csums to verify the data is correct
1963 * if there's a match, we allow the bio to finish. If not, we go through
1964 * the io_failure_record routines to find good copies
1965 */
b2950863 1966static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1967 struct extent_state *state)
07157aac 1968{
35ebb934 1969 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1970 struct inode *inode = page->mapping->host;
d1310b2e 1971 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1972 char *kaddr;
aadfeb6e 1973 u64 private = ~(u32)0;
07157aac 1974 int ret;
ff79f819
CM
1975 struct btrfs_root *root = BTRFS_I(inode)->root;
1976 u32 csum = ~(u32)0;
d1310b2e 1977
d20f7043
CM
1978 if (PageChecked(page)) {
1979 ClearPageChecked(page);
1980 goto good;
1981 }
6cbff00f
CH
1982
1983 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1984 return 0;
1985
1986 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1987 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1988 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1989 GFP_NOFS);
b6cda9bc 1990 return 0;
17d217fe 1991 }
d20f7043 1992
c2e639f0 1993 if (state && state->start == start) {
70dec807
CM
1994 private = state->private;
1995 ret = 0;
1996 } else {
1997 ret = get_state_private(io_tree, start, &private);
1998 }
9ab86c8e 1999 kaddr = kmap_atomic(page, KM_USER0);
d397712b 2000 if (ret)
07157aac 2001 goto zeroit;
d397712b 2002
ff79f819
CM
2003 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2004 btrfs_csum_final(csum, (char *)&csum);
d397712b 2005 if (csum != private)
07157aac 2006 goto zeroit;
d397712b 2007
9ab86c8e 2008 kunmap_atomic(kaddr, KM_USER0);
d20f7043 2009good:
7e38326f
CM
2010 /* if the io failure tree for this inode is non-empty,
2011 * check to see if we've recovered from a failed IO
2012 */
1259ab75 2013 btrfs_clean_io_failures(inode, start);
07157aac
CM
2014 return 0;
2015
2016zeroit:
193f284d 2017 if (printk_ratelimit()) {
33345d01
LZ
2018 printk(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2019 "private %llu\n",
2020 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
2021 (unsigned long long)start, csum,
2022 (unsigned long long)private);
2023 }
db94535d
CM
2024 memset(kaddr + offset, 1, end - start + 1);
2025 flush_dcache_page(page);
9ab86c8e 2026 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2027 if (private == 0)
2028 return 0;
7e38326f 2029 return -EIO;
07157aac 2030}
b888db2b 2031
24bbcf04
YZ
2032struct delayed_iput {
2033 struct list_head list;
2034 struct inode *inode;
2035};
2036
2037void btrfs_add_delayed_iput(struct inode *inode)
2038{
2039 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2040 struct delayed_iput *delayed;
2041
2042 if (atomic_add_unless(&inode->i_count, -1, 1))
2043 return;
2044
2045 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2046 delayed->inode = inode;
2047
2048 spin_lock(&fs_info->delayed_iput_lock);
2049 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2050 spin_unlock(&fs_info->delayed_iput_lock);
2051}
2052
2053void btrfs_run_delayed_iputs(struct btrfs_root *root)
2054{
2055 LIST_HEAD(list);
2056 struct btrfs_fs_info *fs_info = root->fs_info;
2057 struct delayed_iput *delayed;
2058 int empty;
2059
2060 spin_lock(&fs_info->delayed_iput_lock);
2061 empty = list_empty(&fs_info->delayed_iputs);
2062 spin_unlock(&fs_info->delayed_iput_lock);
2063 if (empty)
2064 return;
2065
2066 down_read(&root->fs_info->cleanup_work_sem);
2067 spin_lock(&fs_info->delayed_iput_lock);
2068 list_splice_init(&fs_info->delayed_iputs, &list);
2069 spin_unlock(&fs_info->delayed_iput_lock);
2070
2071 while (!list_empty(&list)) {
2072 delayed = list_entry(list.next, struct delayed_iput, list);
2073 list_del(&delayed->list);
2074 iput(delayed->inode);
2075 kfree(delayed);
2076 }
2077 up_read(&root->fs_info->cleanup_work_sem);
2078}
2079
d68fc57b
YZ
2080/*
2081 * calculate extra metadata reservation when snapshotting a subvolume
2082 * contains orphan files.
2083 */
2084void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2085 struct btrfs_pending_snapshot *pending,
2086 u64 *bytes_to_reserve)
2087{
2088 struct btrfs_root *root;
2089 struct btrfs_block_rsv *block_rsv;
2090 u64 num_bytes;
2091 int index;
2092
2093 root = pending->root;
2094 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2095 return;
2096
2097 block_rsv = root->orphan_block_rsv;
2098
2099 /* orphan block reservation for the snapshot */
2100 num_bytes = block_rsv->size;
2101
2102 /*
2103 * after the snapshot is created, COWing tree blocks may use more
2104 * space than it frees. So we should make sure there is enough
2105 * reserved space.
2106 */
2107 index = trans->transid & 0x1;
2108 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2109 num_bytes += block_rsv->size -
2110 (block_rsv->reserved + block_rsv->freed[index]);
2111 }
2112
2113 *bytes_to_reserve += num_bytes;
2114}
2115
2116void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2117 struct btrfs_pending_snapshot *pending)
2118{
2119 struct btrfs_root *root = pending->root;
2120 struct btrfs_root *snap = pending->snap;
2121 struct btrfs_block_rsv *block_rsv;
2122 u64 num_bytes;
2123 int index;
2124 int ret;
2125
2126 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2127 return;
2128
2129 /* refill source subvolume's orphan block reservation */
2130 block_rsv = root->orphan_block_rsv;
2131 index = trans->transid & 0x1;
2132 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2133 num_bytes = block_rsv->size -
2134 (block_rsv->reserved + block_rsv->freed[index]);
2135 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2136 root->orphan_block_rsv,
2137 num_bytes);
2138 BUG_ON(ret);
2139 }
2140
2141 /* setup orphan block reservation for the snapshot */
2142 block_rsv = btrfs_alloc_block_rsv(snap);
2143 BUG_ON(!block_rsv);
2144
2145 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2146 snap->orphan_block_rsv = block_rsv;
2147
2148 num_bytes = root->orphan_block_rsv->size;
2149 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2150 block_rsv, num_bytes);
2151 BUG_ON(ret);
2152
2153#if 0
2154 /* insert orphan item for the snapshot */
2155 WARN_ON(!root->orphan_item_inserted);
2156 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2157 snap->root_key.objectid);
2158 BUG_ON(ret);
2159 snap->orphan_item_inserted = 1;
2160#endif
2161}
2162
2163enum btrfs_orphan_cleanup_state {
2164 ORPHAN_CLEANUP_STARTED = 1,
2165 ORPHAN_CLEANUP_DONE = 2,
2166};
2167
2168/*
2169 * This is called in transaction commmit time. If there are no orphan
2170 * files in the subvolume, it removes orphan item and frees block_rsv
2171 * structure.
2172 */
2173void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2174 struct btrfs_root *root)
2175{
2176 int ret;
2177
2178 if (!list_empty(&root->orphan_list) ||
2179 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2180 return;
2181
2182 if (root->orphan_item_inserted &&
2183 btrfs_root_refs(&root->root_item) > 0) {
2184 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2185 root->root_key.objectid);
2186 BUG_ON(ret);
2187 root->orphan_item_inserted = 0;
2188 }
2189
2190 if (root->orphan_block_rsv) {
2191 WARN_ON(root->orphan_block_rsv->size > 0);
2192 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2193 root->orphan_block_rsv = NULL;
2194 }
2195}
2196
7b128766
JB
2197/*
2198 * This creates an orphan entry for the given inode in case something goes
2199 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2200 *
2201 * NOTE: caller of this function should reserve 5 units of metadata for
2202 * this function.
7b128766
JB
2203 */
2204int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2205{
2206 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2207 struct btrfs_block_rsv *block_rsv = NULL;
2208 int reserve = 0;
2209 int insert = 0;
2210 int ret;
7b128766 2211
d68fc57b
YZ
2212 if (!root->orphan_block_rsv) {
2213 block_rsv = btrfs_alloc_block_rsv(root);
2214 BUG_ON(!block_rsv);
2215 }
7b128766 2216
d68fc57b
YZ
2217 spin_lock(&root->orphan_lock);
2218 if (!root->orphan_block_rsv) {
2219 root->orphan_block_rsv = block_rsv;
2220 } else if (block_rsv) {
2221 btrfs_free_block_rsv(root, block_rsv);
2222 block_rsv = NULL;
7b128766 2223 }
7b128766 2224
d68fc57b
YZ
2225 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2226 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2227#if 0
2228 /*
2229 * For proper ENOSPC handling, we should do orphan
2230 * cleanup when mounting. But this introduces backward
2231 * compatibility issue.
2232 */
2233 if (!xchg(&root->orphan_item_inserted, 1))
2234 insert = 2;
2235 else
2236 insert = 1;
2237#endif
2238 insert = 1;
7b128766
JB
2239 }
2240
d68fc57b
YZ
2241 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2242 BTRFS_I(inode)->orphan_meta_reserved = 1;
2243 reserve = 1;
2244 }
2245 spin_unlock(&root->orphan_lock);
7b128766 2246
d68fc57b
YZ
2247 if (block_rsv)
2248 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
7b128766 2249
d68fc57b
YZ
2250 /* grab metadata reservation from transaction handle */
2251 if (reserve) {
2252 ret = btrfs_orphan_reserve_metadata(trans, inode);
2253 BUG_ON(ret);
2254 }
7b128766 2255
d68fc57b
YZ
2256 /* insert an orphan item to track this unlinked/truncated file */
2257 if (insert >= 1) {
33345d01 2258 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2259 BUG_ON(ret);
2260 }
2261
2262 /* insert an orphan item to track subvolume contains orphan files */
2263 if (insert >= 2) {
2264 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2265 root->root_key.objectid);
2266 BUG_ON(ret);
2267 }
2268 return 0;
7b128766
JB
2269}
2270
2271/*
2272 * We have done the truncate/delete so we can go ahead and remove the orphan
2273 * item for this particular inode.
2274 */
2275int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2276{
2277 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2278 int delete_item = 0;
2279 int release_rsv = 0;
7b128766
JB
2280 int ret = 0;
2281
d68fc57b
YZ
2282 spin_lock(&root->orphan_lock);
2283 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2284 list_del_init(&BTRFS_I(inode)->i_orphan);
2285 delete_item = 1;
7b128766
JB
2286 }
2287
d68fc57b
YZ
2288 if (BTRFS_I(inode)->orphan_meta_reserved) {
2289 BTRFS_I(inode)->orphan_meta_reserved = 0;
2290 release_rsv = 1;
7b128766 2291 }
d68fc57b 2292 spin_unlock(&root->orphan_lock);
7b128766 2293
d68fc57b 2294 if (trans && delete_item) {
33345d01 2295 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2296 BUG_ON(ret);
2297 }
7b128766 2298
d68fc57b
YZ
2299 if (release_rsv)
2300 btrfs_orphan_release_metadata(inode);
7b128766 2301
d68fc57b 2302 return 0;
7b128766
JB
2303}
2304
2305/*
2306 * this cleans up any orphans that may be left on the list from the last use
2307 * of this root.
2308 */
66b4ffd1 2309int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2310{
2311 struct btrfs_path *path;
2312 struct extent_buffer *leaf;
7b128766
JB
2313 struct btrfs_key key, found_key;
2314 struct btrfs_trans_handle *trans;
2315 struct inode *inode;
2316 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2317
d68fc57b 2318 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2319 return 0;
c71bf099
YZ
2320
2321 path = btrfs_alloc_path();
66b4ffd1
JB
2322 if (!path) {
2323 ret = -ENOMEM;
2324 goto out;
2325 }
7b128766
JB
2326 path->reada = -1;
2327
2328 key.objectid = BTRFS_ORPHAN_OBJECTID;
2329 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2330 key.offset = (u64)-1;
2331
7b128766
JB
2332 while (1) {
2333 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2334 if (ret < 0)
2335 goto out;
7b128766
JB
2336
2337 /*
2338 * if ret == 0 means we found what we were searching for, which
25985edc 2339 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2340 * find the key and see if we have stuff that matches
2341 */
2342 if (ret > 0) {
66b4ffd1 2343 ret = 0;
7b128766
JB
2344 if (path->slots[0] == 0)
2345 break;
2346 path->slots[0]--;
2347 }
2348
2349 /* pull out the item */
2350 leaf = path->nodes[0];
7b128766
JB
2351 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2352
2353 /* make sure the item matches what we want */
2354 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2355 break;
2356 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2357 break;
2358
2359 /* release the path since we're done with it */
2360 btrfs_release_path(root, path);
2361
2362 /*
2363 * this is where we are basically btrfs_lookup, without the
2364 * crossing root thing. we store the inode number in the
2365 * offset of the orphan item.
2366 */
5d4f98a2
YZ
2367 found_key.objectid = found_key.offset;
2368 found_key.type = BTRFS_INODE_ITEM_KEY;
2369 found_key.offset = 0;
73f73415 2370 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
66b4ffd1
JB
2371 if (IS_ERR(inode)) {
2372 ret = PTR_ERR(inode);
2373 goto out;
2374 }
7b128766 2375
7b128766
JB
2376 /*
2377 * add this inode to the orphan list so btrfs_orphan_del does
2378 * the proper thing when we hit it
2379 */
d68fc57b 2380 spin_lock(&root->orphan_lock);
7b128766 2381 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
d68fc57b 2382 spin_unlock(&root->orphan_lock);
7b128766
JB
2383
2384 /*
2385 * if this is a bad inode, means we actually succeeded in
2386 * removing the inode, but not the orphan record, which means
2387 * we need to manually delete the orphan since iput will just
2388 * do a destroy_inode
2389 */
2390 if (is_bad_inode(inode)) {
a22285a6 2391 trans = btrfs_start_transaction(root, 0);
66b4ffd1
JB
2392 if (IS_ERR(trans)) {
2393 ret = PTR_ERR(trans);
2394 goto out;
2395 }
7b128766 2396 btrfs_orphan_del(trans, inode);
5b21f2ed 2397 btrfs_end_transaction(trans, root);
7b128766
JB
2398 iput(inode);
2399 continue;
2400 }
2401
2402 /* if we have links, this was a truncate, lets do that */
2403 if (inode->i_nlink) {
a41ad394
JB
2404 if (!S_ISREG(inode->i_mode)) {
2405 WARN_ON(1);
2406 iput(inode);
2407 continue;
2408 }
7b128766 2409 nr_truncate++;
66b4ffd1 2410 ret = btrfs_truncate(inode);
7b128766
JB
2411 } else {
2412 nr_unlink++;
2413 }
2414
2415 /* this will do delete_inode and everything for us */
2416 iput(inode);
66b4ffd1
JB
2417 if (ret)
2418 goto out;
7b128766 2419 }
d68fc57b
YZ
2420 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2421
2422 if (root->orphan_block_rsv)
2423 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2424 (u64)-1);
2425
2426 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2427 trans = btrfs_join_transaction(root, 1);
66b4ffd1
JB
2428 if (!IS_ERR(trans))
2429 btrfs_end_transaction(trans, root);
d68fc57b 2430 }
7b128766
JB
2431
2432 if (nr_unlink)
2433 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2434 if (nr_truncate)
2435 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2436
2437out:
2438 if (ret)
2439 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2440 btrfs_free_path(path);
2441 return ret;
7b128766
JB
2442}
2443
46a53cca
CM
2444/*
2445 * very simple check to peek ahead in the leaf looking for xattrs. If we
2446 * don't find any xattrs, we know there can't be any acls.
2447 *
2448 * slot is the slot the inode is in, objectid is the objectid of the inode
2449 */
2450static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2451 int slot, u64 objectid)
2452{
2453 u32 nritems = btrfs_header_nritems(leaf);
2454 struct btrfs_key found_key;
2455 int scanned = 0;
2456
2457 slot++;
2458 while (slot < nritems) {
2459 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2460
2461 /* we found a different objectid, there must not be acls */
2462 if (found_key.objectid != objectid)
2463 return 0;
2464
2465 /* we found an xattr, assume we've got an acl */
2466 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2467 return 1;
2468
2469 /*
2470 * we found a key greater than an xattr key, there can't
2471 * be any acls later on
2472 */
2473 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2474 return 0;
2475
2476 slot++;
2477 scanned++;
2478
2479 /*
2480 * it goes inode, inode backrefs, xattrs, extents,
2481 * so if there are a ton of hard links to an inode there can
2482 * be a lot of backrefs. Don't waste time searching too hard,
2483 * this is just an optimization
2484 */
2485 if (scanned >= 8)
2486 break;
2487 }
2488 /* we hit the end of the leaf before we found an xattr or
2489 * something larger than an xattr. We have to assume the inode
2490 * has acls
2491 */
2492 return 1;
2493}
2494
d352ac68
CM
2495/*
2496 * read an inode from the btree into the in-memory inode
2497 */
5d4f98a2 2498static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2499{
2500 struct btrfs_path *path;
5f39d397 2501 struct extent_buffer *leaf;
39279cc3 2502 struct btrfs_inode_item *inode_item;
0b86a832 2503 struct btrfs_timespec *tspec;
39279cc3
CM
2504 struct btrfs_root *root = BTRFS_I(inode)->root;
2505 struct btrfs_key location;
46a53cca 2506 int maybe_acls;
39279cc3 2507 u64 alloc_group_block;
618e21d5 2508 u32 rdev;
39279cc3
CM
2509 int ret;
2510
2511 path = btrfs_alloc_path();
2512 BUG_ON(!path);
39279cc3 2513 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2514
39279cc3 2515 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2516 if (ret)
39279cc3 2517 goto make_bad;
39279cc3 2518
5f39d397
CM
2519 leaf = path->nodes[0];
2520 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2521 struct btrfs_inode_item);
2522
2523 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2524 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2525 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2526 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2527 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2528
2529 tspec = btrfs_inode_atime(inode_item);
2530 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2531 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2532
2533 tspec = btrfs_inode_mtime(inode_item);
2534 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2535 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2536
2537 tspec = btrfs_inode_ctime(inode_item);
2538 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2539 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2540
a76a3cd4 2541 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2542 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2543 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2544 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2545 inode->i_rdev = 0;
5f39d397
CM
2546 rdev = btrfs_inode_rdev(leaf, inode_item);
2547
aec7477b 2548 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2549 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2550
5f39d397 2551 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2552
46a53cca
CM
2553 /*
2554 * try to precache a NULL acl entry for files that don't have
2555 * any xattrs or acls
2556 */
33345d01
LZ
2557 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2558 btrfs_ino(inode));
72c04902
AV
2559 if (!maybe_acls)
2560 cache_no_acl(inode);
46a53cca 2561
d2fb3437
YZ
2562 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2563 alloc_group_block, 0);
39279cc3
CM
2564 btrfs_free_path(path);
2565 inode_item = NULL;
2566
39279cc3 2567 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2568 case S_IFREG:
2569 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2570 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2571 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2572 inode->i_fop = &btrfs_file_operations;
2573 inode->i_op = &btrfs_file_inode_operations;
2574 break;
2575 case S_IFDIR:
2576 inode->i_fop = &btrfs_dir_file_operations;
2577 if (root == root->fs_info->tree_root)
2578 inode->i_op = &btrfs_dir_ro_inode_operations;
2579 else
2580 inode->i_op = &btrfs_dir_inode_operations;
2581 break;
2582 case S_IFLNK:
2583 inode->i_op = &btrfs_symlink_inode_operations;
2584 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2585 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2586 break;
618e21d5 2587 default:
0279b4cd 2588 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2589 init_special_inode(inode, inode->i_mode, rdev);
2590 break;
39279cc3 2591 }
6cbff00f
CH
2592
2593 btrfs_update_iflags(inode);
39279cc3
CM
2594 return;
2595
2596make_bad:
39279cc3 2597 btrfs_free_path(path);
39279cc3
CM
2598 make_bad_inode(inode);
2599}
2600
d352ac68
CM
2601/*
2602 * given a leaf and an inode, copy the inode fields into the leaf
2603 */
e02119d5
CM
2604static void fill_inode_item(struct btrfs_trans_handle *trans,
2605 struct extent_buffer *leaf,
5f39d397 2606 struct btrfs_inode_item *item,
39279cc3
CM
2607 struct inode *inode)
2608{
12ddb96c
JB
2609 if (!leaf->map_token)
2610 map_private_extent_buffer(leaf, (unsigned long)item,
2611 sizeof(struct btrfs_inode_item),
2612 &leaf->map_token, &leaf->kaddr,
2613 &leaf->map_start, &leaf->map_len,
2614 KM_USER1);
2615
5f39d397
CM
2616 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2617 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2618 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2619 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2620 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2621
2622 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2623 inode->i_atime.tv_sec);
2624 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2625 inode->i_atime.tv_nsec);
2626
2627 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2628 inode->i_mtime.tv_sec);
2629 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2630 inode->i_mtime.tv_nsec);
2631
2632 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2633 inode->i_ctime.tv_sec);
2634 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2635 inode->i_ctime.tv_nsec);
2636
a76a3cd4 2637 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2638 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2639 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2640 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2641 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2642 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2643 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
12ddb96c
JB
2644
2645 if (leaf->map_token) {
2646 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2647 leaf->map_token = NULL;
2648 }
39279cc3
CM
2649}
2650
d352ac68
CM
2651/*
2652 * copy everything in the in-memory inode into the btree.
2653 */
d397712b
CM
2654noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2655 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2656{
2657 struct btrfs_inode_item *inode_item;
2658 struct btrfs_path *path;
5f39d397 2659 struct extent_buffer *leaf;
39279cc3
CM
2660 int ret;
2661
16cdcec7
MX
2662 /*
2663 * If root is tree root, it means this inode is used to
2664 * store free space information. And these inodes are updated
2665 * when committing the transaction, so they needn't delaye to
2666 * be updated, or deadlock will occured.
2667 */
dcc6d073 2668 if (!is_free_space_inode(root, inode)) {
16cdcec7
MX
2669 ret = btrfs_delayed_update_inode(trans, root, inode);
2670 if (!ret)
2671 btrfs_set_inode_last_trans(trans, inode);
2672 return ret;
2673 }
2674
39279cc3 2675 path = btrfs_alloc_path();
16cdcec7
MX
2676 if (!path)
2677 return -ENOMEM;
2678
b9473439 2679 path->leave_spinning = 1;
16cdcec7
MX
2680 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2681 1);
39279cc3
CM
2682 if (ret) {
2683 if (ret > 0)
2684 ret = -ENOENT;
2685 goto failed;
2686 }
2687
b4ce94de 2688 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2689 leaf = path->nodes[0];
2690 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2691 struct btrfs_inode_item);
39279cc3 2692
e02119d5 2693 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2694 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2695 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2696 ret = 0;
2697failed:
39279cc3
CM
2698 btrfs_free_path(path);
2699 return ret;
2700}
2701
d352ac68
CM
2702/*
2703 * unlink helper that gets used here in inode.c and in the tree logging
2704 * recovery code. It remove a link in a directory with a given name, and
2705 * also drops the back refs in the inode to the directory
2706 */
92986796
AV
2707static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2708 struct btrfs_root *root,
2709 struct inode *dir, struct inode *inode,
2710 const char *name, int name_len)
39279cc3
CM
2711{
2712 struct btrfs_path *path;
39279cc3 2713 int ret = 0;
5f39d397 2714 struct extent_buffer *leaf;
39279cc3 2715 struct btrfs_dir_item *di;
5f39d397 2716 struct btrfs_key key;
aec7477b 2717 u64 index;
33345d01
LZ
2718 u64 ino = btrfs_ino(inode);
2719 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2720
2721 path = btrfs_alloc_path();
54aa1f4d
CM
2722 if (!path) {
2723 ret = -ENOMEM;
554233a6 2724 goto out;
54aa1f4d
CM
2725 }
2726
b9473439 2727 path->leave_spinning = 1;
33345d01 2728 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2729 name, name_len, -1);
2730 if (IS_ERR(di)) {
2731 ret = PTR_ERR(di);
2732 goto err;
2733 }
2734 if (!di) {
2735 ret = -ENOENT;
2736 goto err;
2737 }
5f39d397
CM
2738 leaf = path->nodes[0];
2739 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2740 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2741 if (ret)
2742 goto err;
39279cc3
CM
2743 btrfs_release_path(root, path);
2744
33345d01
LZ
2745 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2746 dir_ino, &index);
aec7477b 2747 if (ret) {
d397712b 2748 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2749 "inode %llu parent %llu\n", name_len, name,
2750 (unsigned long long)ino, (unsigned long long)dir_ino);
aec7477b
JB
2751 goto err;
2752 }
2753
16cdcec7
MX
2754 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2755 if (ret)
39279cc3 2756 goto err;
39279cc3 2757
e02119d5 2758 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2759 inode, dir_ino);
49eb7e46 2760 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2761
2762 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2763 dir, index);
6418c961
CM
2764 if (ret == -ENOENT)
2765 ret = 0;
39279cc3
CM
2766err:
2767 btrfs_free_path(path);
e02119d5
CM
2768 if (ret)
2769 goto out;
2770
2771 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2772 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2773 btrfs_update_inode(trans, root, dir);
e02119d5 2774out:
39279cc3
CM
2775 return ret;
2776}
2777
92986796
AV
2778int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2779 struct btrfs_root *root,
2780 struct inode *dir, struct inode *inode,
2781 const char *name, int name_len)
2782{
2783 int ret;
2784 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2785 if (!ret) {
2786 btrfs_drop_nlink(inode);
2787 ret = btrfs_update_inode(trans, root, inode);
2788 }
2789 return ret;
2790}
2791
2792
a22285a6
YZ
2793/* helper to check if there is any shared block in the path */
2794static int check_path_shared(struct btrfs_root *root,
2795 struct btrfs_path *path)
39279cc3 2796{
a22285a6
YZ
2797 struct extent_buffer *eb;
2798 int level;
0e4dcbef 2799 u64 refs = 1;
5df6a9f6 2800
a22285a6 2801 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2802 int ret;
2803
a22285a6
YZ
2804 if (!path->nodes[level])
2805 break;
2806 eb = path->nodes[level];
2807 if (!btrfs_block_can_be_shared(root, eb))
2808 continue;
2809 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2810 &refs, NULL);
2811 if (refs > 1)
2812 return 1;
5df6a9f6 2813 }
dedefd72 2814 return 0;
39279cc3
CM
2815}
2816
a22285a6
YZ
2817/*
2818 * helper to start transaction for unlink and rmdir.
2819 *
2820 * unlink and rmdir are special in btrfs, they do not always free space.
2821 * so in enospc case, we should make sure they will free space before
2822 * allowing them to use the global metadata reservation.
2823 */
2824static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2825 struct dentry *dentry)
4df27c4d 2826{
39279cc3 2827 struct btrfs_trans_handle *trans;
a22285a6 2828 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2829 struct btrfs_path *path;
a22285a6 2830 struct btrfs_inode_ref *ref;
4df27c4d 2831 struct btrfs_dir_item *di;
7b128766 2832 struct inode *inode = dentry->d_inode;
4df27c4d 2833 u64 index;
a22285a6
YZ
2834 int check_link = 1;
2835 int err = -ENOSPC;
4df27c4d 2836 int ret;
33345d01
LZ
2837 u64 ino = btrfs_ino(inode);
2838 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2839
a22285a6
YZ
2840 trans = btrfs_start_transaction(root, 10);
2841 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2842 return trans;
4df27c4d 2843
33345d01 2844 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2845 return ERR_PTR(-ENOSPC);
4df27c4d 2846
a22285a6
YZ
2847 /* check if there is someone else holds reference */
2848 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2849 return ERR_PTR(-ENOSPC);
4df27c4d 2850
a22285a6
YZ
2851 if (atomic_read(&inode->i_count) > 2)
2852 return ERR_PTR(-ENOSPC);
4df27c4d 2853
a22285a6
YZ
2854 if (xchg(&root->fs_info->enospc_unlink, 1))
2855 return ERR_PTR(-ENOSPC);
2856
2857 path = btrfs_alloc_path();
2858 if (!path) {
2859 root->fs_info->enospc_unlink = 0;
2860 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2861 }
2862
a22285a6 2863 trans = btrfs_start_transaction(root, 0);
5df6a9f6 2864 if (IS_ERR(trans)) {
a22285a6
YZ
2865 btrfs_free_path(path);
2866 root->fs_info->enospc_unlink = 0;
2867 return trans;
2868 }
4df27c4d 2869
a22285a6
YZ
2870 path->skip_locking = 1;
2871 path->search_commit_root = 1;
4df27c4d 2872
a22285a6
YZ
2873 ret = btrfs_lookup_inode(trans, root, path,
2874 &BTRFS_I(dir)->location, 0);
2875 if (ret < 0) {
2876 err = ret;
2877 goto out;
2878 }
2879 if (ret == 0) {
2880 if (check_path_shared(root, path))
2881 goto out;
2882 } else {
2883 check_link = 0;
5df6a9f6 2884 }
a22285a6
YZ
2885 btrfs_release_path(root, path);
2886
2887 ret = btrfs_lookup_inode(trans, root, path,
2888 &BTRFS_I(inode)->location, 0);
2889 if (ret < 0) {
2890 err = ret;
2891 goto out;
2892 }
2893 if (ret == 0) {
2894 if (check_path_shared(root, path))
2895 goto out;
2896 } else {
2897 check_link = 0;
2898 }
2899 btrfs_release_path(root, path);
2900
2901 if (ret == 0 && S_ISREG(inode->i_mode)) {
2902 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 2903 ino, (u64)-1, 0);
a22285a6
YZ
2904 if (ret < 0) {
2905 err = ret;
2906 goto out;
2907 }
2908 BUG_ON(ret == 0);
2909 if (check_path_shared(root, path))
2910 goto out;
2911 btrfs_release_path(root, path);
2912 }
2913
2914 if (!check_link) {
2915 err = 0;
2916 goto out;
2917 }
2918
33345d01 2919 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
2920 dentry->d_name.name, dentry->d_name.len, 0);
2921 if (IS_ERR(di)) {
2922 err = PTR_ERR(di);
2923 goto out;
2924 }
2925 if (di) {
2926 if (check_path_shared(root, path))
2927 goto out;
2928 } else {
2929 err = 0;
2930 goto out;
2931 }
2932 btrfs_release_path(root, path);
2933
2934 ref = btrfs_lookup_inode_ref(trans, root, path,
2935 dentry->d_name.name, dentry->d_name.len,
33345d01 2936 ino, dir_ino, 0);
a22285a6
YZ
2937 if (IS_ERR(ref)) {
2938 err = PTR_ERR(ref);
2939 goto out;
2940 }
2941 BUG_ON(!ref);
2942 if (check_path_shared(root, path))
2943 goto out;
2944 index = btrfs_inode_ref_index(path->nodes[0], ref);
2945 btrfs_release_path(root, path);
2946
16cdcec7
MX
2947 /*
2948 * This is a commit root search, if we can lookup inode item and other
2949 * relative items in the commit root, it means the transaction of
2950 * dir/file creation has been committed, and the dir index item that we
2951 * delay to insert has also been inserted into the commit root. So
2952 * we needn't worry about the delayed insertion of the dir index item
2953 * here.
2954 */
33345d01 2955 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
2956 dentry->d_name.name, dentry->d_name.len, 0);
2957 if (IS_ERR(di)) {
2958 err = PTR_ERR(di);
2959 goto out;
2960 }
2961 BUG_ON(ret == -ENOENT);
2962 if (check_path_shared(root, path))
2963 goto out;
2964
2965 err = 0;
2966out:
2967 btrfs_free_path(path);
2968 if (err) {
2969 btrfs_end_transaction(trans, root);
2970 root->fs_info->enospc_unlink = 0;
2971 return ERR_PTR(err);
2972 }
2973
2974 trans->block_rsv = &root->fs_info->global_block_rsv;
2975 return trans;
2976}
2977
2978static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2979 struct btrfs_root *root)
2980{
2981 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2982 BUG_ON(!root->fs_info->enospc_unlink);
2983 root->fs_info->enospc_unlink = 0;
2984 }
2985 btrfs_end_transaction_throttle(trans, root);
2986}
2987
2988static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2989{
2990 struct btrfs_root *root = BTRFS_I(dir)->root;
2991 struct btrfs_trans_handle *trans;
2992 struct inode *inode = dentry->d_inode;
2993 int ret;
2994 unsigned long nr = 0;
2995
2996 trans = __unlink_start_trans(dir, dentry);
2997 if (IS_ERR(trans))
2998 return PTR_ERR(trans);
5f39d397 2999
39279cc3 3000 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
3001
3002 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3003
e02119d5
CM
3004 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3005 dentry->d_name.name, dentry->d_name.len);
a22285a6 3006 BUG_ON(ret);
7b128766 3007
a22285a6 3008 if (inode->i_nlink == 0) {
7b128766 3009 ret = btrfs_orphan_add(trans, inode);
a22285a6
YZ
3010 BUG_ON(ret);
3011 }
7b128766 3012
d3c2fdcf 3013 nr = trans->blocks_used;
a22285a6 3014 __unlink_end_trans(trans, root);
d3c2fdcf 3015 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3016 return ret;
3017}
3018
4df27c4d
YZ
3019int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3020 struct btrfs_root *root,
3021 struct inode *dir, u64 objectid,
3022 const char *name, int name_len)
3023{
3024 struct btrfs_path *path;
3025 struct extent_buffer *leaf;
3026 struct btrfs_dir_item *di;
3027 struct btrfs_key key;
3028 u64 index;
3029 int ret;
33345d01 3030 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3031
3032 path = btrfs_alloc_path();
3033 if (!path)
3034 return -ENOMEM;
3035
33345d01 3036 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d
YZ
3037 name, name_len, -1);
3038 BUG_ON(!di || IS_ERR(di));
3039
3040 leaf = path->nodes[0];
3041 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3042 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3043 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3044 BUG_ON(ret);
3045 btrfs_release_path(root, path);
3046
3047 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3048 objectid, root->root_key.objectid,
33345d01 3049 dir_ino, &index, name, name_len);
4df27c4d
YZ
3050 if (ret < 0) {
3051 BUG_ON(ret != -ENOENT);
33345d01 3052 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d
YZ
3053 name, name_len);
3054 BUG_ON(!di || IS_ERR(di));
3055
3056 leaf = path->nodes[0];
3057 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3058 btrfs_release_path(root, path);
3059 index = key.offset;
3060 }
16cdcec7 3061 btrfs_release_path(root, path);
4df27c4d 3062
16cdcec7 3063 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4df27c4d 3064 BUG_ON(ret);
4df27c4d
YZ
3065
3066 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3067 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3068 ret = btrfs_update_inode(trans, root, dir);
3069 BUG_ON(ret);
4df27c4d 3070
4df27c4d
YZ
3071 return 0;
3072}
3073
39279cc3
CM
3074static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3075{
3076 struct inode *inode = dentry->d_inode;
1832a6d5 3077 int err = 0;
39279cc3 3078 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3079 struct btrfs_trans_handle *trans;
1832a6d5 3080 unsigned long nr = 0;
39279cc3 3081
3394e160 3082 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
33345d01 3083 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
3084 return -ENOTEMPTY;
3085
a22285a6
YZ
3086 trans = __unlink_start_trans(dir, dentry);
3087 if (IS_ERR(trans))
5df6a9f6 3088 return PTR_ERR(trans);
5df6a9f6 3089
39279cc3 3090 btrfs_set_trans_block_group(trans, dir);
39279cc3 3091
33345d01 3092 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3093 err = btrfs_unlink_subvol(trans, root, dir,
3094 BTRFS_I(inode)->location.objectid,
3095 dentry->d_name.name,
3096 dentry->d_name.len);
3097 goto out;
3098 }
3099
7b128766
JB
3100 err = btrfs_orphan_add(trans, inode);
3101 if (err)
4df27c4d 3102 goto out;
7b128766 3103
39279cc3 3104 /* now the directory is empty */
e02119d5
CM
3105 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3106 dentry->d_name.name, dentry->d_name.len);
d397712b 3107 if (!err)
dbe674a9 3108 btrfs_i_size_write(inode, 0);
4df27c4d 3109out:
d3c2fdcf 3110 nr = trans->blocks_used;
a22285a6 3111 __unlink_end_trans(trans, root);
d3c2fdcf 3112 btrfs_btree_balance_dirty(root, nr);
3954401f 3113
39279cc3
CM
3114 return err;
3115}
3116
d20f7043 3117#if 0
323ac95b
CM
3118/*
3119 * when truncating bytes in a file, it is possible to avoid reading
3120 * the leaves that contain only checksum items. This can be the
3121 * majority of the IO required to delete a large file, but it must
3122 * be done carefully.
3123 *
3124 * The keys in the level just above the leaves are checked to make sure
3125 * the lowest key in a given leaf is a csum key, and starts at an offset
3126 * after the new size.
3127 *
3128 * Then the key for the next leaf is checked to make sure it also has
3129 * a checksum item for the same file. If it does, we know our target leaf
3130 * contains only checksum items, and it can be safely freed without reading
3131 * it.
3132 *
3133 * This is just an optimization targeted at large files. It may do
3134 * nothing. It will return 0 unless things went badly.
3135 */
3136static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3137 struct btrfs_root *root,
3138 struct btrfs_path *path,
3139 struct inode *inode, u64 new_size)
3140{
3141 struct btrfs_key key;
3142 int ret;
3143 int nritems;
3144 struct btrfs_key found_key;
3145 struct btrfs_key other_key;
5b84e8d6
YZ
3146 struct btrfs_leaf_ref *ref;
3147 u64 leaf_gen;
3148 u64 leaf_start;
323ac95b
CM
3149
3150 path->lowest_level = 1;
3151 key.objectid = inode->i_ino;
3152 key.type = BTRFS_CSUM_ITEM_KEY;
3153 key.offset = new_size;
3154again:
3155 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3156 if (ret < 0)
3157 goto out;
3158
3159 if (path->nodes[1] == NULL) {
3160 ret = 0;
3161 goto out;
3162 }
3163 ret = 0;
3164 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3165 nritems = btrfs_header_nritems(path->nodes[1]);
3166
3167 if (!nritems)
3168 goto out;
3169
3170 if (path->slots[1] >= nritems)
3171 goto next_node;
3172
3173 /* did we find a key greater than anything we want to delete? */
3174 if (found_key.objectid > inode->i_ino ||
3175 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3176 goto out;
3177
3178 /* we check the next key in the node to make sure the leave contains
3179 * only checksum items. This comparison doesn't work if our
3180 * leaf is the last one in the node
3181 */
3182 if (path->slots[1] + 1 >= nritems) {
3183next_node:
3184 /* search forward from the last key in the node, this
3185 * will bring us into the next node in the tree
3186 */
3187 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3188
3189 /* unlikely, but we inc below, so check to be safe */
3190 if (found_key.offset == (u64)-1)
3191 goto out;
3192
3193 /* search_forward needs a path with locks held, do the
3194 * search again for the original key. It is possible
3195 * this will race with a balance and return a path that
3196 * we could modify, but this drop is just an optimization
3197 * and is allowed to miss some leaves.
3198 */
3199 btrfs_release_path(root, path);
3200 found_key.offset++;
3201
3202 /* setup a max key for search_forward */
3203 other_key.offset = (u64)-1;
3204 other_key.type = key.type;
3205 other_key.objectid = key.objectid;
3206
3207 path->keep_locks = 1;
3208 ret = btrfs_search_forward(root, &found_key, &other_key,
3209 path, 0, 0);
3210 path->keep_locks = 0;
3211 if (ret || found_key.objectid != key.objectid ||
3212 found_key.type != key.type) {
3213 ret = 0;
3214 goto out;
3215 }
3216
3217 key.offset = found_key.offset;
3218 btrfs_release_path(root, path);
3219 cond_resched();
3220 goto again;
3221 }
3222
3223 /* we know there's one more slot after us in the tree,
3224 * read that key so we can verify it is also a checksum item
3225 */
3226 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3227
3228 if (found_key.objectid < inode->i_ino)
3229 goto next_key;
3230
3231 if (found_key.type != key.type || found_key.offset < new_size)
3232 goto next_key;
3233
3234 /*
3235 * if the key for the next leaf isn't a csum key from this objectid,
3236 * we can't be sure there aren't good items inside this leaf.
3237 * Bail out
3238 */
3239 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3240 goto out;
3241
5b84e8d6
YZ
3242 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3243 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
3244 /*
3245 * it is safe to delete this leaf, it contains only
3246 * csum items from this inode at an offset >= new_size
3247 */
5b84e8d6 3248 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
3249 BUG_ON(ret);
3250
5b84e8d6
YZ
3251 if (root->ref_cows && leaf_gen < trans->transid) {
3252 ref = btrfs_alloc_leaf_ref(root, 0);
3253 if (ref) {
3254 ref->root_gen = root->root_key.offset;
3255 ref->bytenr = leaf_start;
3256 ref->owner = 0;
3257 ref->generation = leaf_gen;
3258 ref->nritems = 0;
3259
bd56b302
CM
3260 btrfs_sort_leaf_ref(ref);
3261
5b84e8d6
YZ
3262 ret = btrfs_add_leaf_ref(root, ref, 0);
3263 WARN_ON(ret);
3264 btrfs_free_leaf_ref(root, ref);
3265 } else {
3266 WARN_ON(1);
3267 }
3268 }
323ac95b
CM
3269next_key:
3270 btrfs_release_path(root, path);
3271
3272 if (other_key.objectid == inode->i_ino &&
3273 other_key.type == key.type && other_key.offset > key.offset) {
3274 key.offset = other_key.offset;
3275 cond_resched();
3276 goto again;
3277 }
3278 ret = 0;
3279out:
3280 /* fixup any changes we've made to the path */
3281 path->lowest_level = 0;
3282 path->keep_locks = 0;
3283 btrfs_release_path(root, path);
3284 return ret;
3285}
3286
d20f7043
CM
3287#endif
3288
39279cc3
CM
3289/*
3290 * this can truncate away extent items, csum items and directory items.
3291 * It starts at a high offset and removes keys until it can't find
d352ac68 3292 * any higher than new_size
39279cc3
CM
3293 *
3294 * csum items that cross the new i_size are truncated to the new size
3295 * as well.
7b128766
JB
3296 *
3297 * min_type is the minimum key type to truncate down to. If set to 0, this
3298 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3299 */
8082510e
YZ
3300int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3301 struct btrfs_root *root,
3302 struct inode *inode,
3303 u64 new_size, u32 min_type)
39279cc3 3304{
39279cc3 3305 struct btrfs_path *path;
5f39d397 3306 struct extent_buffer *leaf;
39279cc3 3307 struct btrfs_file_extent_item *fi;
8082510e
YZ
3308 struct btrfs_key key;
3309 struct btrfs_key found_key;
39279cc3 3310 u64 extent_start = 0;
db94535d 3311 u64 extent_num_bytes = 0;
5d4f98a2 3312 u64 extent_offset = 0;
39279cc3 3313 u64 item_end = 0;
8082510e
YZ
3314 u64 mask = root->sectorsize - 1;
3315 u32 found_type = (u8)-1;
39279cc3
CM
3316 int found_extent;
3317 int del_item;
85e21bac
CM
3318 int pending_del_nr = 0;
3319 int pending_del_slot = 0;
179e29e4 3320 int extent_type = -1;
771ed689 3321 int encoding;
8082510e
YZ
3322 int ret;
3323 int err = 0;
33345d01 3324 u64 ino = btrfs_ino(inode);
8082510e
YZ
3325
3326 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3327
0af3d00b 3328 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3329 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3330
16cdcec7
MX
3331 /*
3332 * This function is also used to drop the items in the log tree before
3333 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3334 * it is used to drop the loged items. So we shouldn't kill the delayed
3335 * items.
3336 */
3337 if (min_type == 0 && root == BTRFS_I(inode)->root)
3338 btrfs_kill_delayed_inode_items(inode);
3339
39279cc3
CM
3340 path = btrfs_alloc_path();
3341 BUG_ON(!path);
33c17ad5 3342 path->reada = -1;
5f39d397 3343
33345d01 3344 key.objectid = ino;
39279cc3 3345 key.offset = (u64)-1;
5f39d397
CM
3346 key.type = (u8)-1;
3347
85e21bac 3348search_again:
b9473439 3349 path->leave_spinning = 1;
85e21bac 3350 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3351 if (ret < 0) {
3352 err = ret;
3353 goto out;
3354 }
d397712b 3355
85e21bac 3356 if (ret > 0) {
e02119d5
CM
3357 /* there are no items in the tree for us to truncate, we're
3358 * done
3359 */
8082510e
YZ
3360 if (path->slots[0] == 0)
3361 goto out;
85e21bac
CM
3362 path->slots[0]--;
3363 }
3364
d397712b 3365 while (1) {
39279cc3 3366 fi = NULL;
5f39d397
CM
3367 leaf = path->nodes[0];
3368 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3369 found_type = btrfs_key_type(&found_key);
771ed689 3370 encoding = 0;
39279cc3 3371
33345d01 3372 if (found_key.objectid != ino)
39279cc3 3373 break;
5f39d397 3374
85e21bac 3375 if (found_type < min_type)
39279cc3
CM
3376 break;
3377
5f39d397 3378 item_end = found_key.offset;
39279cc3 3379 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3380 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3381 struct btrfs_file_extent_item);
179e29e4 3382 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3383 encoding = btrfs_file_extent_compression(leaf, fi);
3384 encoding |= btrfs_file_extent_encryption(leaf, fi);
3385 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3386
179e29e4 3387 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3388 item_end +=
db94535d 3389 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3390 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3391 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3392 fi);
39279cc3 3393 }
008630c1 3394 item_end--;
39279cc3 3395 }
8082510e
YZ
3396 if (found_type > min_type) {
3397 del_item = 1;
3398 } else {
3399 if (item_end < new_size)
b888db2b 3400 break;
8082510e
YZ
3401 if (found_key.offset >= new_size)
3402 del_item = 1;
3403 else
3404 del_item = 0;
39279cc3 3405 }
39279cc3 3406 found_extent = 0;
39279cc3 3407 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3408 if (found_type != BTRFS_EXTENT_DATA_KEY)
3409 goto delete;
3410
3411 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3412 u64 num_dec;
db94535d 3413 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3414 if (!del_item && !encoding) {
db94535d
CM
3415 u64 orig_num_bytes =
3416 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3417 extent_num_bytes = new_size -
5f39d397 3418 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3419 extent_num_bytes = extent_num_bytes &
3420 ~((u64)root->sectorsize - 1);
db94535d
CM
3421 btrfs_set_file_extent_num_bytes(leaf, fi,
3422 extent_num_bytes);
3423 num_dec = (orig_num_bytes -
9069218d 3424 extent_num_bytes);
e02119d5 3425 if (root->ref_cows && extent_start != 0)
a76a3cd4 3426 inode_sub_bytes(inode, num_dec);
5f39d397 3427 btrfs_mark_buffer_dirty(leaf);
39279cc3 3428 } else {
db94535d
CM
3429 extent_num_bytes =
3430 btrfs_file_extent_disk_num_bytes(leaf,
3431 fi);
5d4f98a2
YZ
3432 extent_offset = found_key.offset -
3433 btrfs_file_extent_offset(leaf, fi);
3434
39279cc3 3435 /* FIXME blocksize != 4096 */
9069218d 3436 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3437 if (extent_start != 0) {
3438 found_extent = 1;
e02119d5 3439 if (root->ref_cows)
a76a3cd4 3440 inode_sub_bytes(inode, num_dec);
e02119d5 3441 }
39279cc3 3442 }
9069218d 3443 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3444 /*
3445 * we can't truncate inline items that have had
3446 * special encodings
3447 */
3448 if (!del_item &&
3449 btrfs_file_extent_compression(leaf, fi) == 0 &&
3450 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3451 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3452 u32 size = new_size - found_key.offset;
3453
3454 if (root->ref_cows) {
a76a3cd4
YZ
3455 inode_sub_bytes(inode, item_end + 1 -
3456 new_size);
e02119d5
CM
3457 }
3458 size =
3459 btrfs_file_extent_calc_inline_size(size);
9069218d 3460 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3461 size, 1);
9069218d 3462 BUG_ON(ret);
e02119d5 3463 } else if (root->ref_cows) {
a76a3cd4
YZ
3464 inode_sub_bytes(inode, item_end + 1 -
3465 found_key.offset);
9069218d 3466 }
39279cc3 3467 }
179e29e4 3468delete:
39279cc3 3469 if (del_item) {
85e21bac
CM
3470 if (!pending_del_nr) {
3471 /* no pending yet, add ourselves */
3472 pending_del_slot = path->slots[0];
3473 pending_del_nr = 1;
3474 } else if (pending_del_nr &&
3475 path->slots[0] + 1 == pending_del_slot) {
3476 /* hop on the pending chunk */
3477 pending_del_nr++;
3478 pending_del_slot = path->slots[0];
3479 } else {
d397712b 3480 BUG();
85e21bac 3481 }
39279cc3
CM
3482 } else {
3483 break;
3484 }
0af3d00b
JB
3485 if (found_extent && (root->ref_cows ||
3486 root == root->fs_info->tree_root)) {
b9473439 3487 btrfs_set_path_blocking(path);
39279cc3 3488 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3489 extent_num_bytes, 0,
3490 btrfs_header_owner(leaf),
33345d01 3491 ino, extent_offset);
39279cc3
CM
3492 BUG_ON(ret);
3493 }
85e21bac 3494
8082510e
YZ
3495 if (found_type == BTRFS_INODE_ITEM_KEY)
3496 break;
3497
3498 if (path->slots[0] == 0 ||
3499 path->slots[0] != pending_del_slot) {
82d5902d
LZ
3500 if (root->ref_cows &&
3501 BTRFS_I(inode)->location.objectid !=
3502 BTRFS_FREE_INO_OBJECTID) {
8082510e
YZ
3503 err = -EAGAIN;
3504 goto out;
3505 }
3506 if (pending_del_nr) {
3507 ret = btrfs_del_items(trans, root, path,
3508 pending_del_slot,
3509 pending_del_nr);
3510 BUG_ON(ret);
3511 pending_del_nr = 0;
3512 }
85e21bac
CM
3513 btrfs_release_path(root, path);
3514 goto search_again;
8082510e
YZ
3515 } else {
3516 path->slots[0]--;
85e21bac 3517 }
39279cc3 3518 }
8082510e 3519out:
85e21bac
CM
3520 if (pending_del_nr) {
3521 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3522 pending_del_nr);
d68fc57b 3523 BUG_ON(ret);
85e21bac 3524 }
39279cc3 3525 btrfs_free_path(path);
8082510e 3526 return err;
39279cc3
CM
3527}
3528
3529/*
3530 * taken from block_truncate_page, but does cow as it zeros out
3531 * any bytes left in the last page in the file.
3532 */
3533static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3534{
3535 struct inode *inode = mapping->host;
db94535d 3536 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3537 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3538 struct btrfs_ordered_extent *ordered;
2ac55d41 3539 struct extent_state *cached_state = NULL;
e6dcd2dc 3540 char *kaddr;
db94535d 3541 u32 blocksize = root->sectorsize;
39279cc3
CM
3542 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3543 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3544 struct page *page;
39279cc3 3545 int ret = 0;
a52d9a80 3546 u64 page_start;
e6dcd2dc 3547 u64 page_end;
39279cc3
CM
3548
3549 if ((offset & (blocksize - 1)) == 0)
3550 goto out;
0ca1f7ce 3551 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3552 if (ret)
3553 goto out;
39279cc3
CM
3554
3555 ret = -ENOMEM;
211c17f5 3556again:
39279cc3 3557 page = grab_cache_page(mapping, index);
5d5e103a 3558 if (!page) {
0ca1f7ce 3559 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3560 goto out;
5d5e103a 3561 }
e6dcd2dc
CM
3562
3563 page_start = page_offset(page);
3564 page_end = page_start + PAGE_CACHE_SIZE - 1;
3565
39279cc3 3566 if (!PageUptodate(page)) {
9ebefb18 3567 ret = btrfs_readpage(NULL, page);
39279cc3 3568 lock_page(page);
211c17f5
CM
3569 if (page->mapping != mapping) {
3570 unlock_page(page);
3571 page_cache_release(page);
3572 goto again;
3573 }
39279cc3
CM
3574 if (!PageUptodate(page)) {
3575 ret = -EIO;
89642229 3576 goto out_unlock;
39279cc3
CM
3577 }
3578 }
211c17f5 3579 wait_on_page_writeback(page);
e6dcd2dc 3580
2ac55d41
JB
3581 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3582 GFP_NOFS);
e6dcd2dc
CM
3583 set_page_extent_mapped(page);
3584
3585 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3586 if (ordered) {
2ac55d41
JB
3587 unlock_extent_cached(io_tree, page_start, page_end,
3588 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3589 unlock_page(page);
3590 page_cache_release(page);
eb84ae03 3591 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3592 btrfs_put_ordered_extent(ordered);
3593 goto again;
3594 }
3595
2ac55d41 3596 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3597 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3598 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3599
2ac55d41
JB
3600 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3601 &cached_state);
9ed74f2d 3602 if (ret) {
2ac55d41
JB
3603 unlock_extent_cached(io_tree, page_start, page_end,
3604 &cached_state, GFP_NOFS);
9ed74f2d
JB
3605 goto out_unlock;
3606 }
3607
e6dcd2dc
CM
3608 ret = 0;
3609 if (offset != PAGE_CACHE_SIZE) {
3610 kaddr = kmap(page);
3611 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3612 flush_dcache_page(page);
3613 kunmap(page);
3614 }
247e743c 3615 ClearPageChecked(page);
e6dcd2dc 3616 set_page_dirty(page);
2ac55d41
JB
3617 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3618 GFP_NOFS);
39279cc3 3619
89642229 3620out_unlock:
5d5e103a 3621 if (ret)
0ca1f7ce 3622 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3623 unlock_page(page);
3624 page_cache_release(page);
3625out:
3626 return ret;
3627}
3628
695a0d0d
JB
3629/*
3630 * This function puts in dummy file extents for the area we're creating a hole
3631 * for. So if we are truncating this file to a larger size we need to insert
3632 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3633 * the range between oldsize and size
3634 */
a41ad394 3635int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3636{
9036c102
YZ
3637 struct btrfs_trans_handle *trans;
3638 struct btrfs_root *root = BTRFS_I(inode)->root;
3639 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3640 struct extent_map *em = NULL;
2ac55d41 3641 struct extent_state *cached_state = NULL;
9036c102 3642 u64 mask = root->sectorsize - 1;
a41ad394 3643 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3644 u64 block_end = (size + mask) & ~mask;
3645 u64 last_byte;
3646 u64 cur_offset;
3647 u64 hole_size;
9ed74f2d 3648 int err = 0;
39279cc3 3649
9036c102
YZ
3650 if (size <= hole_start)
3651 return 0;
3652
9036c102
YZ
3653 while (1) {
3654 struct btrfs_ordered_extent *ordered;
3655 btrfs_wait_ordered_range(inode, hole_start,
3656 block_end - hole_start);
2ac55d41
JB
3657 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3658 &cached_state, GFP_NOFS);
9036c102
YZ
3659 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3660 if (!ordered)
3661 break;
2ac55d41
JB
3662 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3663 &cached_state, GFP_NOFS);
9036c102
YZ
3664 btrfs_put_ordered_extent(ordered);
3665 }
39279cc3 3666
9036c102
YZ
3667 cur_offset = hole_start;
3668 while (1) {
3669 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3670 block_end - cur_offset, 0);
3671 BUG_ON(IS_ERR(em) || !em);
3672 last_byte = min(extent_map_end(em), block_end);
3673 last_byte = (last_byte + mask) & ~mask;
8082510e 3674 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3675 u64 hint_byte = 0;
9036c102 3676 hole_size = last_byte - cur_offset;
9ed74f2d 3677
a22285a6
YZ
3678 trans = btrfs_start_transaction(root, 2);
3679 if (IS_ERR(trans)) {
3680 err = PTR_ERR(trans);
9ed74f2d 3681 break;
a22285a6 3682 }
8082510e
YZ
3683 btrfs_set_trans_block_group(trans, inode);
3684
3685 err = btrfs_drop_extents(trans, inode, cur_offset,
3686 cur_offset + hole_size,
3687 &hint_byte, 1);
3893e33b
JB
3688 if (err)
3689 break;
8082510e 3690
9036c102 3691 err = btrfs_insert_file_extent(trans, root,
33345d01 3692 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3693 0, hole_size, 0, hole_size,
3694 0, 0, 0);
3893e33b
JB
3695 if (err)
3696 break;
8082510e 3697
9036c102
YZ
3698 btrfs_drop_extent_cache(inode, hole_start,
3699 last_byte - 1, 0);
8082510e
YZ
3700
3701 btrfs_end_transaction(trans, root);
9036c102
YZ
3702 }
3703 free_extent_map(em);
a22285a6 3704 em = NULL;
9036c102 3705 cur_offset = last_byte;
8082510e 3706 if (cur_offset >= block_end)
9036c102
YZ
3707 break;
3708 }
1832a6d5 3709
a22285a6 3710 free_extent_map(em);
2ac55d41
JB
3711 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3712 GFP_NOFS);
9036c102
YZ
3713 return err;
3714}
39279cc3 3715
a41ad394 3716static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3717{
a41ad394 3718 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3719 int ret;
3720
a41ad394 3721 if (newsize == oldsize)
8082510e
YZ
3722 return 0;
3723
a41ad394
JB
3724 if (newsize > oldsize) {
3725 i_size_write(inode, newsize);
3726 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3727 truncate_pagecache(inode, oldsize, newsize);
3728 ret = btrfs_cont_expand(inode, oldsize, newsize);
8082510e 3729 if (ret) {
a41ad394 3730 btrfs_setsize(inode, oldsize);
8082510e
YZ
3731 return ret;
3732 }
3733
930f028a 3734 mark_inode_dirty(inode);
a41ad394 3735 } else {
8082510e 3736
a41ad394
JB
3737 /*
3738 * We're truncating a file that used to have good data down to
3739 * zero. Make sure it gets into the ordered flush list so that
3740 * any new writes get down to disk quickly.
3741 */
3742 if (newsize == 0)
3743 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3744
a41ad394
JB
3745 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3746 truncate_setsize(inode, newsize);
3747 ret = btrfs_truncate(inode);
8082510e
YZ
3748 }
3749
a41ad394 3750 return ret;
8082510e
YZ
3751}
3752
9036c102
YZ
3753static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3754{
3755 struct inode *inode = dentry->d_inode;
b83cc969 3756 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3757 int err;
39279cc3 3758
b83cc969
LZ
3759 if (btrfs_root_readonly(root))
3760 return -EROFS;
3761
9036c102
YZ
3762 err = inode_change_ok(inode, attr);
3763 if (err)
3764 return err;
2bf5a725 3765
5a3f23d5 3766 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3767 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3768 if (err)
3769 return err;
39279cc3 3770 }
9036c102 3771
1025774c
CH
3772 if (attr->ia_valid) {
3773 setattr_copy(inode, attr);
3774 mark_inode_dirty(inode);
3775
3776 if (attr->ia_valid & ATTR_MODE)
3777 err = btrfs_acl_chmod(inode);
3778 }
33268eaf 3779
39279cc3
CM
3780 return err;
3781}
61295eb8 3782
bd555975 3783void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3784{
3785 struct btrfs_trans_handle *trans;
3786 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3787 unsigned long nr;
39279cc3
CM
3788 int ret;
3789
1abe9b8a 3790 trace_btrfs_inode_evict(inode);
3791
39279cc3 3792 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3793 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
82d5902d 3794 is_free_space_inode(root, inode)))
bd555975
AV
3795 goto no_delete;
3796
39279cc3 3797 if (is_bad_inode(inode)) {
7b128766 3798 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3799 goto no_delete;
3800 }
bd555975 3801 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3802 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3803
c71bf099
YZ
3804 if (root->fs_info->log_root_recovering) {
3805 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3806 goto no_delete;
3807 }
3808
76dda93c
YZ
3809 if (inode->i_nlink > 0) {
3810 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3811 goto no_delete;
3812 }
3813
dbe674a9 3814 btrfs_i_size_write(inode, 0);
5f39d397 3815
8082510e 3816 while (1) {
d68fc57b
YZ
3817 trans = btrfs_start_transaction(root, 0);
3818 BUG_ON(IS_ERR(trans));
8082510e 3819 btrfs_set_trans_block_group(trans, inode);
d68fc57b
YZ
3820 trans->block_rsv = root->orphan_block_rsv;
3821
3822 ret = btrfs_block_rsv_check(trans, root,
3823 root->orphan_block_rsv, 0, 5);
3824 if (ret) {
3825 BUG_ON(ret != -EAGAIN);
3826 ret = btrfs_commit_transaction(trans, root);
3827 BUG_ON(ret);
3828 continue;
3829 }
7b128766 3830
d68fc57b 3831 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3832 if (ret != -EAGAIN)
3833 break;
85e21bac 3834
8082510e
YZ
3835 nr = trans->blocks_used;
3836 btrfs_end_transaction(trans, root);
3837 trans = NULL;
3838 btrfs_btree_balance_dirty(root, nr);
d68fc57b 3839
8082510e 3840 }
5f39d397 3841
8082510e
YZ
3842 if (ret == 0) {
3843 ret = btrfs_orphan_del(trans, inode);
3844 BUG_ON(ret);
3845 }
54aa1f4d 3846
581bb050
LZ
3847 if (!(root == root->fs_info->tree_root ||
3848 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3849 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3850
d3c2fdcf 3851 nr = trans->blocks_used;
54aa1f4d 3852 btrfs_end_transaction(trans, root);
d3c2fdcf 3853 btrfs_btree_balance_dirty(root, nr);
39279cc3 3854no_delete:
bd555975 3855 end_writeback(inode);
8082510e 3856 return;
39279cc3
CM
3857}
3858
3859/*
3860 * this returns the key found in the dir entry in the location pointer.
3861 * If no dir entries were found, location->objectid is 0.
3862 */
3863static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3864 struct btrfs_key *location)
3865{
3866 const char *name = dentry->d_name.name;
3867 int namelen = dentry->d_name.len;
3868 struct btrfs_dir_item *di;
3869 struct btrfs_path *path;
3870 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3871 int ret = 0;
39279cc3
CM
3872
3873 path = btrfs_alloc_path();
3874 BUG_ON(!path);
3954401f 3875
33345d01 3876 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3877 namelen, 0);
0d9f7f3e
Y
3878 if (IS_ERR(di))
3879 ret = PTR_ERR(di);
d397712b
CM
3880
3881 if (!di || IS_ERR(di))
3954401f 3882 goto out_err;
d397712b 3883
5f39d397 3884 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3885out:
39279cc3
CM
3886 btrfs_free_path(path);
3887 return ret;
3954401f
CM
3888out_err:
3889 location->objectid = 0;
3890 goto out;
39279cc3
CM
3891}
3892
3893/*
3894 * when we hit a tree root in a directory, the btrfs part of the inode
3895 * needs to be changed to reflect the root directory of the tree root. This
3896 * is kind of like crossing a mount point.
3897 */
3898static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3899 struct inode *dir,
3900 struct dentry *dentry,
3901 struct btrfs_key *location,
3902 struct btrfs_root **sub_root)
39279cc3 3903{
4df27c4d
YZ
3904 struct btrfs_path *path;
3905 struct btrfs_root *new_root;
3906 struct btrfs_root_ref *ref;
3907 struct extent_buffer *leaf;
3908 int ret;
3909 int err = 0;
39279cc3 3910
4df27c4d
YZ
3911 path = btrfs_alloc_path();
3912 if (!path) {
3913 err = -ENOMEM;
3914 goto out;
3915 }
39279cc3 3916
4df27c4d
YZ
3917 err = -ENOENT;
3918 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3919 BTRFS_I(dir)->root->root_key.objectid,
3920 location->objectid);
3921 if (ret) {
3922 if (ret < 0)
3923 err = ret;
3924 goto out;
3925 }
39279cc3 3926
4df27c4d
YZ
3927 leaf = path->nodes[0];
3928 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 3929 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
3930 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3931 goto out;
39279cc3 3932
4df27c4d
YZ
3933 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3934 (unsigned long)(ref + 1),
3935 dentry->d_name.len);
3936 if (ret)
3937 goto out;
3938
3939 btrfs_release_path(root->fs_info->tree_root, path);
3940
3941 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3942 if (IS_ERR(new_root)) {
3943 err = PTR_ERR(new_root);
3944 goto out;
3945 }
3946
3947 if (btrfs_root_refs(&new_root->root_item) == 0) {
3948 err = -ENOENT;
3949 goto out;
3950 }
3951
3952 *sub_root = new_root;
3953 location->objectid = btrfs_root_dirid(&new_root->root_item);
3954 location->type = BTRFS_INODE_ITEM_KEY;
3955 location->offset = 0;
3956 err = 0;
3957out:
3958 btrfs_free_path(path);
3959 return err;
39279cc3
CM
3960}
3961
5d4f98a2
YZ
3962static void inode_tree_add(struct inode *inode)
3963{
3964 struct btrfs_root *root = BTRFS_I(inode)->root;
3965 struct btrfs_inode *entry;
03e860bd
FNP
3966 struct rb_node **p;
3967 struct rb_node *parent;
33345d01 3968 u64 ino = btrfs_ino(inode);
03e860bd
FNP
3969again:
3970 p = &root->inode_tree.rb_node;
3971 parent = NULL;
5d4f98a2 3972
1d3382cb 3973 if (inode_unhashed(inode))
76dda93c
YZ
3974 return;
3975
5d4f98a2
YZ
3976 spin_lock(&root->inode_lock);
3977 while (*p) {
3978 parent = *p;
3979 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3980
33345d01 3981 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 3982 p = &parent->rb_left;
33345d01 3983 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 3984 p = &parent->rb_right;
5d4f98a2
YZ
3985 else {
3986 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3987 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3988 rb_erase(parent, &root->inode_tree);
3989 RB_CLEAR_NODE(parent);
3990 spin_unlock(&root->inode_lock);
3991 goto again;
5d4f98a2
YZ
3992 }
3993 }
3994 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3995 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3996 spin_unlock(&root->inode_lock);
3997}
3998
3999static void inode_tree_del(struct inode *inode)
4000{
4001 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4002 int empty = 0;
5d4f98a2 4003
03e860bd 4004 spin_lock(&root->inode_lock);
5d4f98a2 4005 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4006 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4007 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4008 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4009 }
03e860bd 4010 spin_unlock(&root->inode_lock);
76dda93c 4011
0af3d00b
JB
4012 /*
4013 * Free space cache has inodes in the tree root, but the tree root has a
4014 * root_refs of 0, so this could end up dropping the tree root as a
4015 * snapshot, so we need the extra !root->fs_info->tree_root check to
4016 * make sure we don't drop it.
4017 */
4018 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4019 root != root->fs_info->tree_root) {
76dda93c
YZ
4020 synchronize_srcu(&root->fs_info->subvol_srcu);
4021 spin_lock(&root->inode_lock);
4022 empty = RB_EMPTY_ROOT(&root->inode_tree);
4023 spin_unlock(&root->inode_lock);
4024 if (empty)
4025 btrfs_add_dead_root(root);
4026 }
4027}
4028
4029int btrfs_invalidate_inodes(struct btrfs_root *root)
4030{
4031 struct rb_node *node;
4032 struct rb_node *prev;
4033 struct btrfs_inode *entry;
4034 struct inode *inode;
4035 u64 objectid = 0;
4036
4037 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4038
4039 spin_lock(&root->inode_lock);
4040again:
4041 node = root->inode_tree.rb_node;
4042 prev = NULL;
4043 while (node) {
4044 prev = node;
4045 entry = rb_entry(node, struct btrfs_inode, rb_node);
4046
33345d01 4047 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4048 node = node->rb_left;
33345d01 4049 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4050 node = node->rb_right;
4051 else
4052 break;
4053 }
4054 if (!node) {
4055 while (prev) {
4056 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4057 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4058 node = prev;
4059 break;
4060 }
4061 prev = rb_next(prev);
4062 }
4063 }
4064 while (node) {
4065 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4066 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4067 inode = igrab(&entry->vfs_inode);
4068 if (inode) {
4069 spin_unlock(&root->inode_lock);
4070 if (atomic_read(&inode->i_count) > 1)
4071 d_prune_aliases(inode);
4072 /*
45321ac5 4073 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4074 * the inode cache when its usage count
4075 * hits zero.
4076 */
4077 iput(inode);
4078 cond_resched();
4079 spin_lock(&root->inode_lock);
4080 goto again;
4081 }
4082
4083 if (cond_resched_lock(&root->inode_lock))
4084 goto again;
4085
4086 node = rb_next(node);
4087 }
4088 spin_unlock(&root->inode_lock);
4089 return 0;
5d4f98a2
YZ
4090}
4091
e02119d5
CM
4092static int btrfs_init_locked_inode(struct inode *inode, void *p)
4093{
4094 struct btrfs_iget_args *args = p;
4095 inode->i_ino = args->ino;
e02119d5 4096 BTRFS_I(inode)->root = args->root;
6a63209f 4097 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
4098 return 0;
4099}
4100
4101static int btrfs_find_actor(struct inode *inode, void *opaque)
4102{
4103 struct btrfs_iget_args *args = opaque;
33345d01 4104 return args->ino == btrfs_ino(inode) &&
d397712b 4105 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4106}
4107
5d4f98a2
YZ
4108static struct inode *btrfs_iget_locked(struct super_block *s,
4109 u64 objectid,
4110 struct btrfs_root *root)
39279cc3
CM
4111{
4112 struct inode *inode;
4113 struct btrfs_iget_args args;
4114 args.ino = objectid;
4115 args.root = root;
4116
4117 inode = iget5_locked(s, objectid, btrfs_find_actor,
4118 btrfs_init_locked_inode,
4119 (void *)&args);
4120 return inode;
4121}
4122
1a54ef8c
BR
4123/* Get an inode object given its location and corresponding root.
4124 * Returns in *is_new if the inode was read from disk
4125 */
4126struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4127 struct btrfs_root *root, int *new)
1a54ef8c
BR
4128{
4129 struct inode *inode;
4130
4131 inode = btrfs_iget_locked(s, location->objectid, root);
4132 if (!inode)
5d4f98a2 4133 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4134
4135 if (inode->i_state & I_NEW) {
4136 BTRFS_I(inode)->root = root;
4137 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4138 btrfs_read_locked_inode(inode);
5d4f98a2 4139 inode_tree_add(inode);
1a54ef8c 4140 unlock_new_inode(inode);
73f73415
JB
4141 if (new)
4142 *new = 1;
1a54ef8c
BR
4143 }
4144
4145 return inode;
4146}
4147
4df27c4d
YZ
4148static struct inode *new_simple_dir(struct super_block *s,
4149 struct btrfs_key *key,
4150 struct btrfs_root *root)
4151{
4152 struct inode *inode = new_inode(s);
4153
4154 if (!inode)
4155 return ERR_PTR(-ENOMEM);
4156
4df27c4d
YZ
4157 BTRFS_I(inode)->root = root;
4158 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4159 BTRFS_I(inode)->dummy_inode = 1;
4160
4161 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4162 inode->i_op = &simple_dir_inode_operations;
4163 inode->i_fop = &simple_dir_operations;
4164 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4165 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4166
4167 return inode;
4168}
4169
3de4586c 4170struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4171{
d397712b 4172 struct inode *inode;
4df27c4d 4173 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4174 struct btrfs_root *sub_root = root;
4175 struct btrfs_key location;
76dda93c 4176 int index;
5d4f98a2 4177 int ret;
39279cc3
CM
4178
4179 if (dentry->d_name.len > BTRFS_NAME_LEN)
4180 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4181
39279cc3 4182 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 4183
39279cc3
CM
4184 if (ret < 0)
4185 return ERR_PTR(ret);
5f39d397 4186
4df27c4d
YZ
4187 if (location.objectid == 0)
4188 return NULL;
4189
4190 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4191 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4192 return inode;
4193 }
4194
4195 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4196
76dda93c 4197 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4198 ret = fixup_tree_root_location(root, dir, dentry,
4199 &location, &sub_root);
4200 if (ret < 0) {
4201 if (ret != -ENOENT)
4202 inode = ERR_PTR(ret);
4203 else
4204 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4205 } else {
73f73415 4206 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4207 }
76dda93c
YZ
4208 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4209
34d19bad 4210 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4211 down_read(&root->fs_info->cleanup_work_sem);
4212 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4213 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4214 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4215 if (ret)
4216 inode = ERR_PTR(ret);
c71bf099
YZ
4217 }
4218
3de4586c
CM
4219 return inode;
4220}
4221
fe15ce44 4222static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4223{
4224 struct btrfs_root *root;
4225
efefb143
YZ
4226 if (!dentry->d_inode && !IS_ROOT(dentry))
4227 dentry = dentry->d_parent;
76dda93c 4228
efefb143
YZ
4229 if (dentry->d_inode) {
4230 root = BTRFS_I(dentry->d_inode)->root;
4231 if (btrfs_root_refs(&root->root_item) == 0)
4232 return 1;
4233 }
76dda93c
YZ
4234 return 0;
4235}
4236
3de4586c
CM
4237static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4238 struct nameidata *nd)
4239{
4240 struct inode *inode;
4241
3de4586c
CM
4242 inode = btrfs_lookup_dentry(dir, dentry);
4243 if (IS_ERR(inode))
4244 return ERR_CAST(inode);
7b128766 4245
39279cc3
CM
4246 return d_splice_alias(inode, dentry);
4247}
4248
16cdcec7 4249unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4250 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4251};
4252
cbdf5a24
DW
4253static int btrfs_real_readdir(struct file *filp, void *dirent,
4254 filldir_t filldir)
39279cc3 4255{
6da6abae 4256 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4257 struct btrfs_root *root = BTRFS_I(inode)->root;
4258 struct btrfs_item *item;
4259 struct btrfs_dir_item *di;
4260 struct btrfs_key key;
5f39d397 4261 struct btrfs_key found_key;
39279cc3 4262 struct btrfs_path *path;
16cdcec7
MX
4263 struct list_head ins_list;
4264 struct list_head del_list;
39279cc3 4265 int ret;
5f39d397 4266 struct extent_buffer *leaf;
39279cc3 4267 int slot;
39279cc3
CM
4268 unsigned char d_type;
4269 int over = 0;
4270 u32 di_cur;
4271 u32 di_total;
4272 u32 di_len;
4273 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4274 char tmp_name[32];
4275 char *name_ptr;
4276 int name_len;
16cdcec7 4277 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4278
4279 /* FIXME, use a real flag for deciding about the key type */
4280 if (root->fs_info->tree_root == root)
4281 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4282
3954401f
CM
4283 /* special case for "." */
4284 if (filp->f_pos == 0) {
33345d01 4285 over = filldir(dirent, ".", 1, 1, btrfs_ino(inode), DT_DIR);
3954401f
CM
4286 if (over)
4287 return 0;
4288 filp->f_pos = 1;
4289 }
3954401f
CM
4290 /* special case for .., just use the back ref */
4291 if (filp->f_pos == 1) {
5ecc7e5d 4292 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4293 over = filldir(dirent, "..", 2,
5ecc7e5d 4294 2, pino, DT_DIR);
3954401f 4295 if (over)
49593bfa 4296 return 0;
3954401f
CM
4297 filp->f_pos = 2;
4298 }
49593bfa 4299 path = btrfs_alloc_path();
16cdcec7
MX
4300 if (!path)
4301 return -ENOMEM;
49593bfa
DW
4302 path->reada = 2;
4303
16cdcec7
MX
4304 if (key_type == BTRFS_DIR_INDEX_KEY) {
4305 INIT_LIST_HEAD(&ins_list);
4306 INIT_LIST_HEAD(&del_list);
4307 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4308 }
4309
39279cc3
CM
4310 btrfs_set_key_type(&key, key_type);
4311 key.offset = filp->f_pos;
33345d01 4312 key.objectid = btrfs_ino(inode);
5f39d397 4313
39279cc3
CM
4314 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4315 if (ret < 0)
4316 goto err;
49593bfa
DW
4317
4318 while (1) {
5f39d397 4319 leaf = path->nodes[0];
39279cc3 4320 slot = path->slots[0];
b9e03af0
LZ
4321 if (slot >= btrfs_header_nritems(leaf)) {
4322 ret = btrfs_next_leaf(root, path);
4323 if (ret < 0)
4324 goto err;
4325 else if (ret > 0)
4326 break;
4327 continue;
39279cc3 4328 }
3de4586c 4329
5f39d397
CM
4330 item = btrfs_item_nr(leaf, slot);
4331 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4332
4333 if (found_key.objectid != key.objectid)
39279cc3 4334 break;
5f39d397 4335 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4336 break;
5f39d397 4337 if (found_key.offset < filp->f_pos)
b9e03af0 4338 goto next;
16cdcec7
MX
4339 if (key_type == BTRFS_DIR_INDEX_KEY &&
4340 btrfs_should_delete_dir_index(&del_list,
4341 found_key.offset))
4342 goto next;
5f39d397
CM
4343
4344 filp->f_pos = found_key.offset;
16cdcec7 4345 is_curr = 1;
49593bfa 4346
39279cc3
CM
4347 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4348 di_cur = 0;
5f39d397 4349 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4350
4351 while (di_cur < di_total) {
5f39d397
CM
4352 struct btrfs_key location;
4353
22a94d44
JB
4354 if (verify_dir_item(root, leaf, di))
4355 break;
4356
5f39d397 4357 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4358 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4359 name_ptr = tmp_name;
4360 } else {
4361 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4362 if (!name_ptr) {
4363 ret = -ENOMEM;
4364 goto err;
4365 }
5f39d397
CM
4366 }
4367 read_extent_buffer(leaf, name_ptr,
4368 (unsigned long)(di + 1), name_len);
4369
4370 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4371 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
4372
4373 /* is this a reference to our own snapshot? If so
4374 * skip it
4375 */
4376 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4377 location.objectid == root->root_key.objectid) {
4378 over = 0;
4379 goto skip;
4380 }
5f39d397 4381 over = filldir(dirent, name_ptr, name_len,
49593bfa 4382 found_key.offset, location.objectid,
39279cc3 4383 d_type);
5f39d397 4384
3de4586c 4385skip:
5f39d397
CM
4386 if (name_ptr != tmp_name)
4387 kfree(name_ptr);
4388
39279cc3
CM
4389 if (over)
4390 goto nopos;
5103e947 4391 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4392 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4393 di_cur += di_len;
4394 di = (struct btrfs_dir_item *)((char *)di + di_len);
4395 }
b9e03af0
LZ
4396next:
4397 path->slots[0]++;
39279cc3 4398 }
49593bfa 4399
16cdcec7
MX
4400 if (key_type == BTRFS_DIR_INDEX_KEY) {
4401 if (is_curr)
4402 filp->f_pos++;
4403 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4404 &ins_list);
4405 if (ret)
4406 goto nopos;
4407 }
4408
49593bfa 4409 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4410 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4411 /*
4412 * 32-bit glibc will use getdents64, but then strtol -
4413 * so the last number we can serve is this.
4414 */
4415 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4416 else
4417 filp->f_pos++;
39279cc3
CM
4418nopos:
4419 ret = 0;
4420err:
16cdcec7
MX
4421 if (key_type == BTRFS_DIR_INDEX_KEY)
4422 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4423 btrfs_free_path(path);
39279cc3
CM
4424 return ret;
4425}
4426
a9185b41 4427int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4428{
4429 struct btrfs_root *root = BTRFS_I(inode)->root;
4430 struct btrfs_trans_handle *trans;
4431 int ret = 0;
0af3d00b 4432 bool nolock = false;
39279cc3 4433
8929ecfa 4434 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4435 return 0;
4436
0af3d00b 4437 smp_mb();
82d5902d
LZ
4438 if (root->fs_info->closing && is_free_space_inode(root, inode))
4439 nolock = true;
0af3d00b 4440
a9185b41 4441 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b
JB
4442 if (nolock)
4443 trans = btrfs_join_transaction_nolock(root, 1);
4444 else
4445 trans = btrfs_join_transaction(root, 1);
3612b495
TI
4446 if (IS_ERR(trans))
4447 return PTR_ERR(trans);
39279cc3 4448 btrfs_set_trans_block_group(trans, inode);
0af3d00b
JB
4449 if (nolock)
4450 ret = btrfs_end_transaction_nolock(trans, root);
4451 else
4452 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4453 }
4454 return ret;
4455}
4456
4457/*
54aa1f4d 4458 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4459 * inode changes. But, it is most likely to find the inode in cache.
4460 * FIXME, needs more benchmarking...there are no reasons other than performance
4461 * to keep or drop this code.
4462 */
4463void btrfs_dirty_inode(struct inode *inode)
4464{
4465 struct btrfs_root *root = BTRFS_I(inode)->root;
4466 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4467 int ret;
4468
4469 if (BTRFS_I(inode)->dummy_inode)
4470 return;
39279cc3 4471
f9295749 4472 trans = btrfs_join_transaction(root, 1);
3612b495 4473 BUG_ON(IS_ERR(trans));
39279cc3 4474 btrfs_set_trans_block_group(trans, inode);
8929ecfa
YZ
4475
4476 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4477 if (ret && ret == -ENOSPC) {
4478 /* whoops, lets try again with the full transaction */
4479 btrfs_end_transaction(trans, root);
4480 trans = btrfs_start_transaction(root, 1);
9aeead73
CM
4481 if (IS_ERR(trans)) {
4482 if (printk_ratelimit()) {
4483 printk(KERN_ERR "btrfs: fail to "
33345d01
LZ
4484 "dirty inode %llu error %ld\n",
4485 (unsigned long long)btrfs_ino(inode),
4486 PTR_ERR(trans));
9aeead73
CM
4487 }
4488 return;
4489 }
94b60442 4490 btrfs_set_trans_block_group(trans, inode);
8929ecfa 4491
94b60442
CM
4492 ret = btrfs_update_inode(trans, root, inode);
4493 if (ret) {
9aeead73
CM
4494 if (printk_ratelimit()) {
4495 printk(KERN_ERR "btrfs: fail to "
33345d01
LZ
4496 "dirty inode %llu error %d\n",
4497 (unsigned long long)btrfs_ino(inode),
4498 ret);
9aeead73 4499 }
94b60442
CM
4500 }
4501 }
39279cc3 4502 btrfs_end_transaction(trans, root);
16cdcec7
MX
4503 if (BTRFS_I(inode)->delayed_node)
4504 btrfs_balance_delayed_items(root);
39279cc3
CM
4505}
4506
d352ac68
CM
4507/*
4508 * find the highest existing sequence number in a directory
4509 * and then set the in-memory index_cnt variable to reflect
4510 * free sequence numbers
4511 */
aec7477b
JB
4512static int btrfs_set_inode_index_count(struct inode *inode)
4513{
4514 struct btrfs_root *root = BTRFS_I(inode)->root;
4515 struct btrfs_key key, found_key;
4516 struct btrfs_path *path;
4517 struct extent_buffer *leaf;
4518 int ret;
4519
33345d01 4520 key.objectid = btrfs_ino(inode);
aec7477b
JB
4521 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4522 key.offset = (u64)-1;
4523
4524 path = btrfs_alloc_path();
4525 if (!path)
4526 return -ENOMEM;
4527
4528 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4529 if (ret < 0)
4530 goto out;
4531 /* FIXME: we should be able to handle this */
4532 if (ret == 0)
4533 goto out;
4534 ret = 0;
4535
4536 /*
4537 * MAGIC NUMBER EXPLANATION:
4538 * since we search a directory based on f_pos we have to start at 2
4539 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4540 * else has to start at 2
4541 */
4542 if (path->slots[0] == 0) {
4543 BTRFS_I(inode)->index_cnt = 2;
4544 goto out;
4545 }
4546
4547 path->slots[0]--;
4548
4549 leaf = path->nodes[0];
4550 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4551
33345d01 4552 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4553 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4554 BTRFS_I(inode)->index_cnt = 2;
4555 goto out;
4556 }
4557
4558 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4559out:
4560 btrfs_free_path(path);
4561 return ret;
4562}
4563
d352ac68
CM
4564/*
4565 * helper to find a free sequence number in a given directory. This current
4566 * code is very simple, later versions will do smarter things in the btree
4567 */
3de4586c 4568int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4569{
4570 int ret = 0;
4571
4572 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4573 ret = btrfs_inode_delayed_dir_index_count(dir);
4574 if (ret) {
4575 ret = btrfs_set_inode_index_count(dir);
4576 if (ret)
4577 return ret;
4578 }
aec7477b
JB
4579 }
4580
00e4e6b3 4581 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4582 BTRFS_I(dir)->index_cnt++;
4583
4584 return ret;
4585}
4586
39279cc3
CM
4587static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4588 struct btrfs_root *root,
aec7477b 4589 struct inode *dir,
9c58309d 4590 const char *name, int name_len,
d2fb3437
YZ
4591 u64 ref_objectid, u64 objectid,
4592 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
4593{
4594 struct inode *inode;
5f39d397 4595 struct btrfs_inode_item *inode_item;
39279cc3 4596 struct btrfs_key *location;
5f39d397 4597 struct btrfs_path *path;
9c58309d
CM
4598 struct btrfs_inode_ref *ref;
4599 struct btrfs_key key[2];
4600 u32 sizes[2];
4601 unsigned long ptr;
39279cc3
CM
4602 int ret;
4603 int owner;
4604
5f39d397
CM
4605 path = btrfs_alloc_path();
4606 BUG_ON(!path);
4607
39279cc3 4608 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4609 if (!inode) {
4610 btrfs_free_path(path);
39279cc3 4611 return ERR_PTR(-ENOMEM);
8fb27640 4612 }
39279cc3 4613
581bb050
LZ
4614 /*
4615 * we have to initialize this early, so we can reclaim the inode
4616 * number if we fail afterwards in this function.
4617 */
4618 inode->i_ino = objectid;
4619
aec7477b 4620 if (dir) {
1abe9b8a 4621 trace_btrfs_inode_request(dir);
4622
3de4586c 4623 ret = btrfs_set_inode_index(dir, index);
09771430 4624 if (ret) {
8fb27640 4625 btrfs_free_path(path);
09771430 4626 iput(inode);
aec7477b 4627 return ERR_PTR(ret);
09771430 4628 }
aec7477b
JB
4629 }
4630 /*
4631 * index_cnt is ignored for everything but a dir,
4632 * btrfs_get_inode_index_count has an explanation for the magic
4633 * number
4634 */
4635 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4636 BTRFS_I(inode)->root = root;
e02119d5 4637 BTRFS_I(inode)->generation = trans->transid;
76195853 4638 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4639 btrfs_set_inode_space_info(root, inode);
b888db2b 4640
39279cc3
CM
4641 if (mode & S_IFDIR)
4642 owner = 0;
4643 else
4644 owner = 1;
d2fb3437
YZ
4645 BTRFS_I(inode)->block_group =
4646 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
4647
4648 key[0].objectid = objectid;
4649 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4650 key[0].offset = 0;
4651
4652 key[1].objectid = objectid;
4653 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4654 key[1].offset = ref_objectid;
4655
4656 sizes[0] = sizeof(struct btrfs_inode_item);
4657 sizes[1] = name_len + sizeof(*ref);
4658
b9473439 4659 path->leave_spinning = 1;
9c58309d
CM
4660 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4661 if (ret != 0)
5f39d397
CM
4662 goto fail;
4663
ecc11fab 4664 inode_init_owner(inode, dir, mode);
a76a3cd4 4665 inode_set_bytes(inode, 0);
39279cc3 4666 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4667 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4668 struct btrfs_inode_item);
e02119d5 4669 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4670
4671 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4672 struct btrfs_inode_ref);
4673 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4674 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4675 ptr = (unsigned long)(ref + 1);
4676 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4677
5f39d397
CM
4678 btrfs_mark_buffer_dirty(path->nodes[0]);
4679 btrfs_free_path(path);
4680
39279cc3
CM
4681 location = &BTRFS_I(inode)->location;
4682 location->objectid = objectid;
39279cc3
CM
4683 location->offset = 0;
4684 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4685
6cbff00f
CH
4686 btrfs_inherit_iflags(inode, dir);
4687
94272164
CM
4688 if ((mode & S_IFREG)) {
4689 if (btrfs_test_opt(root, NODATASUM))
4690 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4691 if (btrfs_test_opt(root, NODATACOW) ||
4692 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4693 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4694 }
4695
39279cc3 4696 insert_inode_hash(inode);
5d4f98a2 4697 inode_tree_add(inode);
1abe9b8a 4698
4699 trace_btrfs_inode_new(inode);
4700
39279cc3 4701 return inode;
5f39d397 4702fail:
aec7477b
JB
4703 if (dir)
4704 BTRFS_I(dir)->index_cnt--;
5f39d397 4705 btrfs_free_path(path);
09771430 4706 iput(inode);
5f39d397 4707 return ERR_PTR(ret);
39279cc3
CM
4708}
4709
4710static inline u8 btrfs_inode_type(struct inode *inode)
4711{
4712 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4713}
4714
d352ac68
CM
4715/*
4716 * utility function to add 'inode' into 'parent_inode' with
4717 * a give name and a given sequence number.
4718 * if 'add_backref' is true, also insert a backref from the
4719 * inode to the parent directory.
4720 */
e02119d5
CM
4721int btrfs_add_link(struct btrfs_trans_handle *trans,
4722 struct inode *parent_inode, struct inode *inode,
4723 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4724{
4df27c4d 4725 int ret = 0;
39279cc3 4726 struct btrfs_key key;
e02119d5 4727 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4728 u64 ino = btrfs_ino(inode);
4729 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4730
33345d01 4731 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4732 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4733 } else {
33345d01 4734 key.objectid = ino;
4df27c4d
YZ
4735 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4736 key.offset = 0;
4737 }
4738
33345d01 4739 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4740 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4741 key.objectid, root->root_key.objectid,
33345d01 4742 parent_ino, index, name, name_len);
4df27c4d 4743 } else if (add_backref) {
33345d01
LZ
4744 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4745 parent_ino, index);
4df27c4d 4746 }
39279cc3 4747
39279cc3 4748 if (ret == 0) {
4df27c4d 4749 ret = btrfs_insert_dir_item(trans, root, name, name_len,
16cdcec7 4750 parent_inode, &key,
4df27c4d
YZ
4751 btrfs_inode_type(inode), index);
4752 BUG_ON(ret);
4753
dbe674a9 4754 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4755 name_len * 2);
79c44584 4756 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4757 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4758 }
4759 return ret;
4760}
4761
4762static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4763 struct inode *dir, struct dentry *dentry,
4764 struct inode *inode, int backref, u64 index)
39279cc3 4765{
a1b075d2
JB
4766 int err = btrfs_add_link(trans, dir, inode,
4767 dentry->d_name.name, dentry->d_name.len,
4768 backref, index);
39279cc3
CM
4769 if (!err) {
4770 d_instantiate(dentry, inode);
4771 return 0;
4772 }
4773 if (err > 0)
4774 err = -EEXIST;
4775 return err;
4776}
4777
618e21d5
JB
4778static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4779 int mode, dev_t rdev)
4780{
4781 struct btrfs_trans_handle *trans;
4782 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4783 struct inode *inode = NULL;
618e21d5
JB
4784 int err;
4785 int drop_inode = 0;
4786 u64 objectid;
1832a6d5 4787 unsigned long nr = 0;
00e4e6b3 4788 u64 index = 0;
618e21d5
JB
4789
4790 if (!new_valid_dev(rdev))
4791 return -EINVAL;
4792
9ed74f2d
JB
4793 /*
4794 * 2 for inode item and ref
4795 * 2 for dir items
4796 * 1 for xattr if selinux is on
4797 */
a22285a6
YZ
4798 trans = btrfs_start_transaction(root, 5);
4799 if (IS_ERR(trans))
4800 return PTR_ERR(trans);
1832a6d5 4801
618e21d5
JB
4802 btrfs_set_trans_block_group(trans, dir);
4803
581bb050
LZ
4804 err = btrfs_find_free_ino(root, &objectid);
4805 if (err)
4806 goto out_unlock;
4807
aec7477b 4808 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4809 dentry->d_name.len, btrfs_ino(dir), objectid,
00e4e6b3 4810 BTRFS_I(dir)->block_group, mode, &index);
7cf96da3
TI
4811 if (IS_ERR(inode)) {
4812 err = PTR_ERR(inode);
618e21d5 4813 goto out_unlock;
7cf96da3 4814 }
618e21d5 4815
2a7dba39 4816 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4817 if (err) {
4818 drop_inode = 1;
4819 goto out_unlock;
4820 }
4821
618e21d5 4822 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4823 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4824 if (err)
4825 drop_inode = 1;
4826 else {
4827 inode->i_op = &btrfs_special_inode_operations;
4828 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4829 btrfs_update_inode(trans, root, inode);
618e21d5 4830 }
618e21d5
JB
4831 btrfs_update_inode_block_group(trans, inode);
4832 btrfs_update_inode_block_group(trans, dir);
4833out_unlock:
d3c2fdcf 4834 nr = trans->blocks_used;
89ce8a63 4835 btrfs_end_transaction_throttle(trans, root);
a22285a6 4836 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4837 if (drop_inode) {
4838 inode_dec_link_count(inode);
4839 iput(inode);
4840 }
618e21d5
JB
4841 return err;
4842}
4843
39279cc3
CM
4844static int btrfs_create(struct inode *dir, struct dentry *dentry,
4845 int mode, struct nameidata *nd)
4846{
4847 struct btrfs_trans_handle *trans;
4848 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4849 struct inode *inode = NULL;
39279cc3 4850 int drop_inode = 0;
a22285a6 4851 int err;
1832a6d5 4852 unsigned long nr = 0;
39279cc3 4853 u64 objectid;
00e4e6b3 4854 u64 index = 0;
39279cc3 4855
9ed74f2d
JB
4856 /*
4857 * 2 for inode item and ref
4858 * 2 for dir items
4859 * 1 for xattr if selinux is on
4860 */
a22285a6
YZ
4861 trans = btrfs_start_transaction(root, 5);
4862 if (IS_ERR(trans))
4863 return PTR_ERR(trans);
9ed74f2d 4864
39279cc3
CM
4865 btrfs_set_trans_block_group(trans, dir);
4866
581bb050
LZ
4867 err = btrfs_find_free_ino(root, &objectid);
4868 if (err)
4869 goto out_unlock;
4870
aec7477b 4871 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4872 dentry->d_name.len, btrfs_ino(dir), objectid,
a1b075d2 4873 BTRFS_I(dir)->block_group, mode, &index);
7cf96da3
TI
4874 if (IS_ERR(inode)) {
4875 err = PTR_ERR(inode);
39279cc3 4876 goto out_unlock;
7cf96da3 4877 }
39279cc3 4878
2a7dba39 4879 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4880 if (err) {
4881 drop_inode = 1;
4882 goto out_unlock;
4883 }
4884
39279cc3 4885 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4886 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4887 if (err)
4888 drop_inode = 1;
4889 else {
4890 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4891 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4892 inode->i_fop = &btrfs_file_operations;
4893 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4894 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4895 }
39279cc3
CM
4896 btrfs_update_inode_block_group(trans, inode);
4897 btrfs_update_inode_block_group(trans, dir);
4898out_unlock:
d3c2fdcf 4899 nr = trans->blocks_used;
ab78c84d 4900 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4901 if (drop_inode) {
4902 inode_dec_link_count(inode);
4903 iput(inode);
4904 }
d3c2fdcf 4905 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4906 return err;
4907}
4908
4909static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4910 struct dentry *dentry)
4911{
4912 struct btrfs_trans_handle *trans;
4913 struct btrfs_root *root = BTRFS_I(dir)->root;
4914 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4915 u64 index;
1832a6d5 4916 unsigned long nr = 0;
39279cc3
CM
4917 int err;
4918 int drop_inode = 0;
4919
4a8be425
TH
4920 /* do not allow sys_link's with other subvols of the same device */
4921 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4922 return -EXDEV;
4a8be425 4923
c055e99e
AV
4924 if (inode->i_nlink == ~0U)
4925 return -EMLINK;
4a8be425 4926
3de4586c 4927 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4928 if (err)
4929 goto fail;
4930
a22285a6 4931 /*
7e6b6465 4932 * 2 items for inode and inode ref
a22285a6 4933 * 2 items for dir items
7e6b6465 4934 * 1 item for parent inode
a22285a6 4935 */
7e6b6465 4936 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4937 if (IS_ERR(trans)) {
4938 err = PTR_ERR(trans);
4939 goto fail;
4940 }
5f39d397 4941
3153495d
MX
4942 btrfs_inc_nlink(inode);
4943 inode->i_ctime = CURRENT_TIME;
4944
39279cc3 4945 btrfs_set_trans_block_group(trans, dir);
7de9c6ee 4946 ihold(inode);
aec7477b 4947
a1b075d2 4948 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4949
a5719521 4950 if (err) {
54aa1f4d 4951 drop_inode = 1;
a5719521 4952 } else {
6a912213 4953 struct dentry *parent = dget_parent(dentry);
a5719521
YZ
4954 btrfs_update_inode_block_group(trans, dir);
4955 err = btrfs_update_inode(trans, root, inode);
4956 BUG_ON(err);
6a912213
JB
4957 btrfs_log_new_name(trans, inode, NULL, parent);
4958 dput(parent);
a5719521 4959 }
39279cc3 4960
d3c2fdcf 4961 nr = trans->blocks_used;
ab78c84d 4962 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4963fail:
39279cc3
CM
4964 if (drop_inode) {
4965 inode_dec_link_count(inode);
4966 iput(inode);
4967 }
d3c2fdcf 4968 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4969 return err;
4970}
4971
39279cc3
CM
4972static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4973{
b9d86667 4974 struct inode *inode = NULL;
39279cc3
CM
4975 struct btrfs_trans_handle *trans;
4976 struct btrfs_root *root = BTRFS_I(dir)->root;
4977 int err = 0;
4978 int drop_on_err = 0;
b9d86667 4979 u64 objectid = 0;
00e4e6b3 4980 u64 index = 0;
d3c2fdcf 4981 unsigned long nr = 1;
39279cc3 4982
9ed74f2d
JB
4983 /*
4984 * 2 items for inode and ref
4985 * 2 items for dir items
4986 * 1 for xattr if selinux is on
4987 */
a22285a6
YZ
4988 trans = btrfs_start_transaction(root, 5);
4989 if (IS_ERR(trans))
4990 return PTR_ERR(trans);
9ed74f2d 4991 btrfs_set_trans_block_group(trans, dir);
39279cc3 4992
581bb050
LZ
4993 err = btrfs_find_free_ino(root, &objectid);
4994 if (err)
4995 goto out_fail;
4996
aec7477b 4997 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4998 dentry->d_name.len, btrfs_ino(dir), objectid,
00e4e6b3
CM
4999 BTRFS_I(dir)->block_group, S_IFDIR | mode,
5000 &index);
39279cc3
CM
5001 if (IS_ERR(inode)) {
5002 err = PTR_ERR(inode);
5003 goto out_fail;
5004 }
5f39d397 5005
39279cc3 5006 drop_on_err = 1;
33268eaf 5007
2a7dba39 5008 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5009 if (err)
5010 goto out_fail;
5011
39279cc3
CM
5012 inode->i_op = &btrfs_dir_inode_operations;
5013 inode->i_fop = &btrfs_dir_file_operations;
5014 btrfs_set_trans_block_group(trans, inode);
5015
dbe674a9 5016 btrfs_i_size_write(inode, 0);
39279cc3
CM
5017 err = btrfs_update_inode(trans, root, inode);
5018 if (err)
5019 goto out_fail;
5f39d397 5020
a1b075d2
JB
5021 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5022 dentry->d_name.len, 0, index);
39279cc3
CM
5023 if (err)
5024 goto out_fail;
5f39d397 5025
39279cc3
CM
5026 d_instantiate(dentry, inode);
5027 drop_on_err = 0;
39279cc3
CM
5028 btrfs_update_inode_block_group(trans, inode);
5029 btrfs_update_inode_block_group(trans, dir);
5030
5031out_fail:
d3c2fdcf 5032 nr = trans->blocks_used;
ab78c84d 5033 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
5034 if (drop_on_err)
5035 iput(inode);
d3c2fdcf 5036 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5037 return err;
5038}
5039
d352ac68
CM
5040/* helper for btfs_get_extent. Given an existing extent in the tree,
5041 * and an extent that you want to insert, deal with overlap and insert
5042 * the new extent into the tree.
5043 */
3b951516
CM
5044static int merge_extent_mapping(struct extent_map_tree *em_tree,
5045 struct extent_map *existing,
e6dcd2dc
CM
5046 struct extent_map *em,
5047 u64 map_start, u64 map_len)
3b951516
CM
5048{
5049 u64 start_diff;
3b951516 5050
e6dcd2dc
CM
5051 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5052 start_diff = map_start - em->start;
5053 em->start = map_start;
5054 em->len = map_len;
c8b97818
CM
5055 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5056 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5057 em->block_start += start_diff;
c8b97818
CM
5058 em->block_len -= start_diff;
5059 }
e6dcd2dc 5060 return add_extent_mapping(em_tree, em);
3b951516
CM
5061}
5062
c8b97818
CM
5063static noinline int uncompress_inline(struct btrfs_path *path,
5064 struct inode *inode, struct page *page,
5065 size_t pg_offset, u64 extent_offset,
5066 struct btrfs_file_extent_item *item)
5067{
5068 int ret;
5069 struct extent_buffer *leaf = path->nodes[0];
5070 char *tmp;
5071 size_t max_size;
5072 unsigned long inline_size;
5073 unsigned long ptr;
261507a0 5074 int compress_type;
c8b97818
CM
5075
5076 WARN_ON(pg_offset != 0);
261507a0 5077 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5078 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5079 inline_size = btrfs_file_extent_inline_item_len(leaf,
5080 btrfs_item_nr(leaf, path->slots[0]));
5081 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5082 if (!tmp)
5083 return -ENOMEM;
c8b97818
CM
5084 ptr = btrfs_file_extent_inline_start(item);
5085
5086 read_extent_buffer(leaf, tmp, ptr, inline_size);
5087
5b050f04 5088 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5089 ret = btrfs_decompress(compress_type, tmp, page,
5090 extent_offset, inline_size, max_size);
c8b97818
CM
5091 if (ret) {
5092 char *kaddr = kmap_atomic(page, KM_USER0);
5093 unsigned long copy_size = min_t(u64,
5094 PAGE_CACHE_SIZE - pg_offset,
5095 max_size - extent_offset);
5096 memset(kaddr + pg_offset, 0, copy_size);
5097 kunmap_atomic(kaddr, KM_USER0);
5098 }
5099 kfree(tmp);
5100 return 0;
5101}
5102
d352ac68
CM
5103/*
5104 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5105 * the ugly parts come from merging extents from the disk with the in-ram
5106 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5107 * where the in-ram extents might be locked pending data=ordered completion.
5108 *
5109 * This also copies inline extents directly into the page.
5110 */
d397712b 5111
a52d9a80 5112struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5113 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5114 int create)
5115{
5116 int ret;
5117 int err = 0;
db94535d 5118 u64 bytenr;
a52d9a80
CM
5119 u64 extent_start = 0;
5120 u64 extent_end = 0;
33345d01 5121 u64 objectid = btrfs_ino(inode);
a52d9a80 5122 u32 found_type;
f421950f 5123 struct btrfs_path *path = NULL;
a52d9a80
CM
5124 struct btrfs_root *root = BTRFS_I(inode)->root;
5125 struct btrfs_file_extent_item *item;
5f39d397
CM
5126 struct extent_buffer *leaf;
5127 struct btrfs_key found_key;
a52d9a80
CM
5128 struct extent_map *em = NULL;
5129 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5130 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5131 struct btrfs_trans_handle *trans = NULL;
261507a0 5132 int compress_type;
a52d9a80 5133
a52d9a80 5134again:
890871be 5135 read_lock(&em_tree->lock);
d1310b2e 5136 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5137 if (em)
5138 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5139 read_unlock(&em_tree->lock);
d1310b2e 5140
a52d9a80 5141 if (em) {
e1c4b745
CM
5142 if (em->start > start || em->start + em->len <= start)
5143 free_extent_map(em);
5144 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5145 free_extent_map(em);
5146 else
5147 goto out;
a52d9a80 5148 }
d1310b2e 5149 em = alloc_extent_map(GFP_NOFS);
a52d9a80 5150 if (!em) {
d1310b2e
CM
5151 err = -ENOMEM;
5152 goto out;
a52d9a80 5153 }
e6dcd2dc 5154 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5155 em->start = EXTENT_MAP_HOLE;
445a6944 5156 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5157 em->len = (u64)-1;
c8b97818 5158 em->block_len = (u64)-1;
f421950f
CM
5159
5160 if (!path) {
5161 path = btrfs_alloc_path();
5162 BUG_ON(!path);
5163 }
5164
179e29e4
CM
5165 ret = btrfs_lookup_file_extent(trans, root, path,
5166 objectid, start, trans != NULL);
a52d9a80
CM
5167 if (ret < 0) {
5168 err = ret;
5169 goto out;
5170 }
5171
5172 if (ret != 0) {
5173 if (path->slots[0] == 0)
5174 goto not_found;
5175 path->slots[0]--;
5176 }
5177
5f39d397
CM
5178 leaf = path->nodes[0];
5179 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5180 struct btrfs_file_extent_item);
a52d9a80 5181 /* are we inside the extent that was found? */
5f39d397
CM
5182 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5183 found_type = btrfs_key_type(&found_key);
5184 if (found_key.objectid != objectid ||
a52d9a80
CM
5185 found_type != BTRFS_EXTENT_DATA_KEY) {
5186 goto not_found;
5187 }
5188
5f39d397
CM
5189 found_type = btrfs_file_extent_type(leaf, item);
5190 extent_start = found_key.offset;
261507a0 5191 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5192 if (found_type == BTRFS_FILE_EXTENT_REG ||
5193 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5194 extent_end = extent_start +
db94535d 5195 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5196 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5197 size_t size;
5198 size = btrfs_file_extent_inline_len(leaf, item);
5199 extent_end = (extent_start + size + root->sectorsize - 1) &
5200 ~((u64)root->sectorsize - 1);
5201 }
5202
5203 if (start >= extent_end) {
5204 path->slots[0]++;
5205 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5206 ret = btrfs_next_leaf(root, path);
5207 if (ret < 0) {
5208 err = ret;
5209 goto out;
a52d9a80 5210 }
9036c102
YZ
5211 if (ret > 0)
5212 goto not_found;
5213 leaf = path->nodes[0];
a52d9a80 5214 }
9036c102
YZ
5215 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5216 if (found_key.objectid != objectid ||
5217 found_key.type != BTRFS_EXTENT_DATA_KEY)
5218 goto not_found;
5219 if (start + len <= found_key.offset)
5220 goto not_found;
5221 em->start = start;
5222 em->len = found_key.offset - start;
5223 goto not_found_em;
5224 }
5225
d899e052
YZ
5226 if (found_type == BTRFS_FILE_EXTENT_REG ||
5227 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5228 em->start = extent_start;
5229 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5230 em->orig_start = extent_start -
5231 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5232 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5233 if (bytenr == 0) {
5f39d397 5234 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5235 goto insert;
5236 }
261507a0 5237 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5238 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5239 em->compress_type = compress_type;
c8b97818
CM
5240 em->block_start = bytenr;
5241 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5242 item);
5243 } else {
5244 bytenr += btrfs_file_extent_offset(leaf, item);
5245 em->block_start = bytenr;
5246 em->block_len = em->len;
d899e052
YZ
5247 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5248 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5249 }
a52d9a80
CM
5250 goto insert;
5251 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5252 unsigned long ptr;
a52d9a80 5253 char *map;
3326d1b0
CM
5254 size_t size;
5255 size_t extent_offset;
5256 size_t copy_size;
a52d9a80 5257
689f9346 5258 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5259 if (!page || create) {
689f9346 5260 em->start = extent_start;
9036c102 5261 em->len = extent_end - extent_start;
689f9346
Y
5262 goto out;
5263 }
5f39d397 5264
9036c102
YZ
5265 size = btrfs_file_extent_inline_len(leaf, item);
5266 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5267 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5268 size - extent_offset);
3326d1b0 5269 em->start = extent_start + extent_offset;
70dec807
CM
5270 em->len = (copy_size + root->sectorsize - 1) &
5271 ~((u64)root->sectorsize - 1);
ff5b7ee3 5272 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5273 if (compress_type) {
c8b97818 5274 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5275 em->compress_type = compress_type;
5276 }
689f9346 5277 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5278 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5279 if (btrfs_file_extent_compression(leaf, item) !=
5280 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5281 ret = uncompress_inline(path, inode, page,
5282 pg_offset,
5283 extent_offset, item);
5284 BUG_ON(ret);
5285 } else {
5286 map = kmap(page);
5287 read_extent_buffer(leaf, map + pg_offset, ptr,
5288 copy_size);
93c82d57
CM
5289 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5290 memset(map + pg_offset + copy_size, 0,
5291 PAGE_CACHE_SIZE - pg_offset -
5292 copy_size);
5293 }
c8b97818
CM
5294 kunmap(page);
5295 }
179e29e4
CM
5296 flush_dcache_page(page);
5297 } else if (create && PageUptodate(page)) {
0ca1f7ce 5298 WARN_ON(1);
179e29e4
CM
5299 if (!trans) {
5300 kunmap(page);
5301 free_extent_map(em);
5302 em = NULL;
5303 btrfs_release_path(root, path);
f9295749 5304 trans = btrfs_join_transaction(root, 1);
3612b495
TI
5305 if (IS_ERR(trans))
5306 return ERR_CAST(trans);
179e29e4
CM
5307 goto again;
5308 }
c8b97818 5309 map = kmap(page);
70dec807 5310 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5311 copy_size);
c8b97818 5312 kunmap(page);
179e29e4 5313 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5314 }
d1310b2e 5315 set_extent_uptodate(io_tree, em->start,
507903b8 5316 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5317 goto insert;
5318 } else {
d397712b 5319 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5320 WARN_ON(1);
5321 }
5322not_found:
5323 em->start = start;
d1310b2e 5324 em->len = len;
a52d9a80 5325not_found_em:
5f39d397 5326 em->block_start = EXTENT_MAP_HOLE;
9036c102 5327 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
5328insert:
5329 btrfs_release_path(root, path);
d1310b2e 5330 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5331 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5332 "[%llu %llu]\n", (unsigned long long)em->start,
5333 (unsigned long long)em->len,
5334 (unsigned long long)start,
5335 (unsigned long long)len);
a52d9a80
CM
5336 err = -EIO;
5337 goto out;
5338 }
d1310b2e
CM
5339
5340 err = 0;
890871be 5341 write_lock(&em_tree->lock);
a52d9a80 5342 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5343 /* it is possible that someone inserted the extent into the tree
5344 * while we had the lock dropped. It is also possible that
5345 * an overlapping map exists in the tree
5346 */
a52d9a80 5347 if (ret == -EEXIST) {
3b951516 5348 struct extent_map *existing;
e6dcd2dc
CM
5349
5350 ret = 0;
5351
3b951516 5352 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5353 if (existing && (existing->start > start ||
5354 existing->start + existing->len <= start)) {
5355 free_extent_map(existing);
5356 existing = NULL;
5357 }
3b951516
CM
5358 if (!existing) {
5359 existing = lookup_extent_mapping(em_tree, em->start,
5360 em->len);
5361 if (existing) {
5362 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5363 em, start,
5364 root->sectorsize);
3b951516
CM
5365 free_extent_map(existing);
5366 if (err) {
5367 free_extent_map(em);
5368 em = NULL;
5369 }
5370 } else {
5371 err = -EIO;
3b951516
CM
5372 free_extent_map(em);
5373 em = NULL;
5374 }
5375 } else {
5376 free_extent_map(em);
5377 em = existing;
e6dcd2dc 5378 err = 0;
a52d9a80 5379 }
a52d9a80 5380 }
890871be 5381 write_unlock(&em_tree->lock);
a52d9a80 5382out:
1abe9b8a 5383
5384 trace_btrfs_get_extent(root, em);
5385
f421950f
CM
5386 if (path)
5387 btrfs_free_path(path);
a52d9a80
CM
5388 if (trans) {
5389 ret = btrfs_end_transaction(trans, root);
d397712b 5390 if (!err)
a52d9a80
CM
5391 err = ret;
5392 }
a52d9a80
CM
5393 if (err) {
5394 free_extent_map(em);
a52d9a80
CM
5395 return ERR_PTR(err);
5396 }
5397 return em;
5398}
5399
ec29ed5b
CM
5400struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5401 size_t pg_offset, u64 start, u64 len,
5402 int create)
5403{
5404 struct extent_map *em;
5405 struct extent_map *hole_em = NULL;
5406 u64 range_start = start;
5407 u64 end;
5408 u64 found;
5409 u64 found_end;
5410 int err = 0;
5411
5412 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5413 if (IS_ERR(em))
5414 return em;
5415 if (em) {
5416 /*
5417 * if our em maps to a hole, there might
5418 * actually be delalloc bytes behind it
5419 */
5420 if (em->block_start != EXTENT_MAP_HOLE)
5421 return em;
5422 else
5423 hole_em = em;
5424 }
5425
5426 /* check to see if we've wrapped (len == -1 or similar) */
5427 end = start + len;
5428 if (end < start)
5429 end = (u64)-1;
5430 else
5431 end -= 1;
5432
5433 em = NULL;
5434
5435 /* ok, we didn't find anything, lets look for delalloc */
5436 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5437 end, len, EXTENT_DELALLOC, 1);
5438 found_end = range_start + found;
5439 if (found_end < range_start)
5440 found_end = (u64)-1;
5441
5442 /*
5443 * we didn't find anything useful, return
5444 * the original results from get_extent()
5445 */
5446 if (range_start > end || found_end <= start) {
5447 em = hole_em;
5448 hole_em = NULL;
5449 goto out;
5450 }
5451
5452 /* adjust the range_start to make sure it doesn't
5453 * go backwards from the start they passed in
5454 */
5455 range_start = max(start,range_start);
5456 found = found_end - range_start;
5457
5458 if (found > 0) {
5459 u64 hole_start = start;
5460 u64 hole_len = len;
5461
5462 em = alloc_extent_map(GFP_NOFS);
5463 if (!em) {
5464 err = -ENOMEM;
5465 goto out;
5466 }
5467 /*
5468 * when btrfs_get_extent can't find anything it
5469 * returns one huge hole
5470 *
5471 * make sure what it found really fits our range, and
5472 * adjust to make sure it is based on the start from
5473 * the caller
5474 */
5475 if (hole_em) {
5476 u64 calc_end = extent_map_end(hole_em);
5477
5478 if (calc_end <= start || (hole_em->start > end)) {
5479 free_extent_map(hole_em);
5480 hole_em = NULL;
5481 } else {
5482 hole_start = max(hole_em->start, start);
5483 hole_len = calc_end - hole_start;
5484 }
5485 }
5486 em->bdev = NULL;
5487 if (hole_em && range_start > hole_start) {
5488 /* our hole starts before our delalloc, so we
5489 * have to return just the parts of the hole
5490 * that go until the delalloc starts
5491 */
5492 em->len = min(hole_len,
5493 range_start - hole_start);
5494 em->start = hole_start;
5495 em->orig_start = hole_start;
5496 /*
5497 * don't adjust block start at all,
5498 * it is fixed at EXTENT_MAP_HOLE
5499 */
5500 em->block_start = hole_em->block_start;
5501 em->block_len = hole_len;
5502 } else {
5503 em->start = range_start;
5504 em->len = found;
5505 em->orig_start = range_start;
5506 em->block_start = EXTENT_MAP_DELALLOC;
5507 em->block_len = found;
5508 }
5509 } else if (hole_em) {
5510 return hole_em;
5511 }
5512out:
5513
5514 free_extent_map(hole_em);
5515 if (err) {
5516 free_extent_map(em);
5517 return ERR_PTR(err);
5518 }
5519 return em;
5520}
5521
4b46fce2 5522static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5523 struct extent_map *em,
4b46fce2
JB
5524 u64 start, u64 len)
5525{
5526 struct btrfs_root *root = BTRFS_I(inode)->root;
5527 struct btrfs_trans_handle *trans;
4b46fce2
JB
5528 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5529 struct btrfs_key ins;
5530 u64 alloc_hint;
5531 int ret;
16d299ac 5532 bool insert = false;
4b46fce2 5533
16d299ac
JB
5534 /*
5535 * Ok if the extent map we looked up is a hole and is for the exact
5536 * range we want, there is no reason to allocate a new one, however if
5537 * it is not right then we need to free this one and drop the cache for
5538 * our range.
5539 */
5540 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5541 em->len != len) {
5542 free_extent_map(em);
5543 em = NULL;
5544 insert = true;
5545 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5546 }
4b46fce2
JB
5547
5548 trans = btrfs_join_transaction(root, 0);
3612b495
TI
5549 if (IS_ERR(trans))
5550 return ERR_CAST(trans);
4b46fce2
JB
5551
5552 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5553
5554 alloc_hint = get_extent_allocation_hint(inode, start, len);
5555 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5556 alloc_hint, (u64)-1, &ins, 1);
5557 if (ret) {
5558 em = ERR_PTR(ret);
5559 goto out;
5560 }
5561
4b46fce2 5562 if (!em) {
16d299ac
JB
5563 em = alloc_extent_map(GFP_NOFS);
5564 if (!em) {
5565 em = ERR_PTR(-ENOMEM);
5566 goto out;
5567 }
4b46fce2
JB
5568 }
5569
5570 em->start = start;
5571 em->orig_start = em->start;
5572 em->len = ins.offset;
5573
5574 em->block_start = ins.objectid;
5575 em->block_len = ins.offset;
5576 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5577
5578 /*
5579 * We need to do this because if we're using the original em we searched
5580 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5581 */
5582 em->flags = 0;
4b46fce2
JB
5583 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5584
16d299ac 5585 while (insert) {
4b46fce2
JB
5586 write_lock(&em_tree->lock);
5587 ret = add_extent_mapping(em_tree, em);
5588 write_unlock(&em_tree->lock);
5589 if (ret != -EEXIST)
5590 break;
5591 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5592 }
5593
5594 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5595 ins.offset, ins.offset, 0);
5596 if (ret) {
5597 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5598 em = ERR_PTR(ret);
5599 }
5600out:
5601 btrfs_end_transaction(trans, root);
5602 return em;
5603}
5604
46bfbb5c
CM
5605/*
5606 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5607 * block must be cow'd
5608 */
5609static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5610 struct inode *inode, u64 offset, u64 len)
5611{
5612 struct btrfs_path *path;
5613 int ret;
5614 struct extent_buffer *leaf;
5615 struct btrfs_root *root = BTRFS_I(inode)->root;
5616 struct btrfs_file_extent_item *fi;
5617 struct btrfs_key key;
5618 u64 disk_bytenr;
5619 u64 backref_offset;
5620 u64 extent_end;
5621 u64 num_bytes;
5622 int slot;
5623 int found_type;
5624
5625 path = btrfs_alloc_path();
5626 if (!path)
5627 return -ENOMEM;
5628
33345d01 5629 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5630 offset, 0);
5631 if (ret < 0)
5632 goto out;
5633
5634 slot = path->slots[0];
5635 if (ret == 1) {
5636 if (slot == 0) {
5637 /* can't find the item, must cow */
5638 ret = 0;
5639 goto out;
5640 }
5641 slot--;
5642 }
5643 ret = 0;
5644 leaf = path->nodes[0];
5645 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5646 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5647 key.type != BTRFS_EXTENT_DATA_KEY) {
5648 /* not our file or wrong item type, must cow */
5649 goto out;
5650 }
5651
5652 if (key.offset > offset) {
5653 /* Wrong offset, must cow */
5654 goto out;
5655 }
5656
5657 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5658 found_type = btrfs_file_extent_type(leaf, fi);
5659 if (found_type != BTRFS_FILE_EXTENT_REG &&
5660 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5661 /* not a regular extent, must cow */
5662 goto out;
5663 }
5664 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5665 backref_offset = btrfs_file_extent_offset(leaf, fi);
5666
5667 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5668 if (extent_end < offset + len) {
5669 /* extent doesn't include our full range, must cow */
5670 goto out;
5671 }
5672
5673 if (btrfs_extent_readonly(root, disk_bytenr))
5674 goto out;
5675
5676 /*
5677 * look for other files referencing this extent, if we
5678 * find any we must cow
5679 */
33345d01 5680 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5681 key.offset - backref_offset, disk_bytenr))
5682 goto out;
5683
5684 /*
5685 * adjust disk_bytenr and num_bytes to cover just the bytes
5686 * in this extent we are about to write. If there
5687 * are any csums in that range we have to cow in order
5688 * to keep the csums correct
5689 */
5690 disk_bytenr += backref_offset;
5691 disk_bytenr += offset - key.offset;
5692 num_bytes = min(offset + len, extent_end) - offset;
5693 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5694 goto out;
5695 /*
5696 * all of the above have passed, it is safe to overwrite this extent
5697 * without cow
5698 */
5699 ret = 1;
5700out:
5701 btrfs_free_path(path);
5702 return ret;
5703}
5704
4b46fce2
JB
5705static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5706 struct buffer_head *bh_result, int create)
5707{
5708 struct extent_map *em;
5709 struct btrfs_root *root = BTRFS_I(inode)->root;
5710 u64 start = iblock << inode->i_blkbits;
5711 u64 len = bh_result->b_size;
46bfbb5c 5712 struct btrfs_trans_handle *trans;
4b46fce2
JB
5713
5714 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5715 if (IS_ERR(em))
5716 return PTR_ERR(em);
5717
5718 /*
5719 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5720 * io. INLINE is special, and we could probably kludge it in here, but
5721 * it's still buffered so for safety lets just fall back to the generic
5722 * buffered path.
5723 *
5724 * For COMPRESSED we _have_ to read the entire extent in so we can
5725 * decompress it, so there will be buffering required no matter what we
5726 * do, so go ahead and fallback to buffered.
5727 *
5728 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5729 * to buffered IO. Don't blame me, this is the price we pay for using
5730 * the generic code.
5731 */
5732 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5733 em->block_start == EXTENT_MAP_INLINE) {
5734 free_extent_map(em);
5735 return -ENOTBLK;
5736 }
5737
5738 /* Just a good old fashioned hole, return */
5739 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5740 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5741 free_extent_map(em);
5742 /* DIO will do one hole at a time, so just unlock a sector */
5743 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5744 start + root->sectorsize - 1, GFP_NOFS);
5745 return 0;
5746 }
5747
5748 /*
5749 * We don't allocate a new extent in the following cases
5750 *
5751 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5752 * existing extent.
5753 * 2) The extent is marked as PREALLOC. We're good to go here and can
5754 * just use the extent.
5755 *
5756 */
46bfbb5c
CM
5757 if (!create) {
5758 len = em->len - (start - em->start);
4b46fce2 5759 goto map;
46bfbb5c 5760 }
4b46fce2
JB
5761
5762 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5763 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5764 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5765 int type;
5766 int ret;
46bfbb5c 5767 u64 block_start;
4b46fce2
JB
5768
5769 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5770 type = BTRFS_ORDERED_PREALLOC;
5771 else
5772 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5773 len = min(len, em->len - (start - em->start));
4b46fce2 5774 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5775
5776 /*
5777 * we're not going to log anything, but we do need
5778 * to make sure the current transaction stays open
5779 * while we look for nocow cross refs
5780 */
5781 trans = btrfs_join_transaction(root, 0);
3612b495 5782 if (IS_ERR(trans))
46bfbb5c
CM
5783 goto must_cow;
5784
5785 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5786 ret = btrfs_add_ordered_extent_dio(inode, start,
5787 block_start, len, len, type);
5788 btrfs_end_transaction(trans, root);
5789 if (ret) {
5790 free_extent_map(em);
5791 return ret;
5792 }
5793 goto unlock;
4b46fce2 5794 }
46bfbb5c 5795 btrfs_end_transaction(trans, root);
4b46fce2 5796 }
46bfbb5c
CM
5797must_cow:
5798 /*
5799 * this will cow the extent, reset the len in case we changed
5800 * it above
5801 */
5802 len = bh_result->b_size;
16d299ac 5803 em = btrfs_new_extent_direct(inode, em, start, len);
46bfbb5c
CM
5804 if (IS_ERR(em))
5805 return PTR_ERR(em);
5806 len = min(len, em->len - (start - em->start));
5807unlock:
4845e44f
CM
5808 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5809 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5810 0, NULL, GFP_NOFS);
4b46fce2
JB
5811map:
5812 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5813 inode->i_blkbits;
46bfbb5c 5814 bh_result->b_size = len;
4b46fce2
JB
5815 bh_result->b_bdev = em->bdev;
5816 set_buffer_mapped(bh_result);
5817 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5818 set_buffer_new(bh_result);
5819
5820 free_extent_map(em);
5821
5822 return 0;
5823}
5824
5825struct btrfs_dio_private {
5826 struct inode *inode;
5827 u64 logical_offset;
5828 u64 disk_bytenr;
5829 u64 bytes;
5830 u32 *csums;
5831 void *private;
e65e1535
MX
5832
5833 /* number of bios pending for this dio */
5834 atomic_t pending_bios;
5835
5836 /* IO errors */
5837 int errors;
5838
5839 struct bio *orig_bio;
4b46fce2
JB
5840};
5841
5842static void btrfs_endio_direct_read(struct bio *bio, int err)
5843{
e65e1535 5844 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5845 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5846 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5847 struct inode *inode = dip->inode;
5848 struct btrfs_root *root = BTRFS_I(inode)->root;
5849 u64 start;
5850 u32 *private = dip->csums;
5851
5852 start = dip->logical_offset;
5853 do {
5854 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5855 struct page *page = bvec->bv_page;
5856 char *kaddr;
5857 u32 csum = ~(u32)0;
5858 unsigned long flags;
5859
5860 local_irq_save(flags);
5861 kaddr = kmap_atomic(page, KM_IRQ0);
5862 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5863 csum, bvec->bv_len);
5864 btrfs_csum_final(csum, (char *)&csum);
5865 kunmap_atomic(kaddr, KM_IRQ0);
5866 local_irq_restore(flags);
5867
5868 flush_dcache_page(bvec->bv_page);
5869 if (csum != *private) {
33345d01 5870 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 5871 " %llu csum %u private %u\n",
33345d01
LZ
5872 (unsigned long long)btrfs_ino(inode),
5873 (unsigned long long)start,
4b46fce2
JB
5874 csum, *private);
5875 err = -EIO;
5876 }
5877 }
5878
5879 start += bvec->bv_len;
5880 private++;
5881 bvec++;
5882 } while (bvec <= bvec_end);
5883
5884 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5885 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5886 bio->bi_private = dip->private;
5887
5888 kfree(dip->csums);
5889 kfree(dip);
c0da7aa1
JB
5890
5891 /* If we had a csum failure make sure to clear the uptodate flag */
5892 if (err)
5893 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5894 dio_end_io(bio, err);
5895}
5896
5897static void btrfs_endio_direct_write(struct bio *bio, int err)
5898{
5899 struct btrfs_dio_private *dip = bio->bi_private;
5900 struct inode *inode = dip->inode;
5901 struct btrfs_root *root = BTRFS_I(inode)->root;
5902 struct btrfs_trans_handle *trans;
5903 struct btrfs_ordered_extent *ordered = NULL;
5904 struct extent_state *cached_state = NULL;
163cf09c
CM
5905 u64 ordered_offset = dip->logical_offset;
5906 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5907 int ret;
5908
5909 if (err)
5910 goto out_done;
163cf09c
CM
5911again:
5912 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5913 &ordered_offset,
5914 ordered_bytes);
4b46fce2 5915 if (!ret)
163cf09c 5916 goto out_test;
4b46fce2
JB
5917
5918 BUG_ON(!ordered);
5919
5920 trans = btrfs_join_transaction(root, 1);
3612b495 5921 if (IS_ERR(trans)) {
4b46fce2
JB
5922 err = -ENOMEM;
5923 goto out;
5924 }
5925 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5926
5927 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5928 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5929 if (!ret)
5930 ret = btrfs_update_inode(trans, root, inode);
5931 err = ret;
5932 goto out;
5933 }
5934
5935 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5936 ordered->file_offset + ordered->len - 1, 0,
5937 &cached_state, GFP_NOFS);
5938
5939 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5940 ret = btrfs_mark_extent_written(trans, inode,
5941 ordered->file_offset,
5942 ordered->file_offset +
5943 ordered->len);
5944 if (ret) {
5945 err = ret;
5946 goto out_unlock;
5947 }
5948 } else {
5949 ret = insert_reserved_file_extent(trans, inode,
5950 ordered->file_offset,
5951 ordered->start,
5952 ordered->disk_len,
5953 ordered->len,
5954 ordered->len,
5955 0, 0, 0,
5956 BTRFS_FILE_EXTENT_REG);
5957 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5958 ordered->file_offset, ordered->len);
5959 if (ret) {
5960 err = ret;
5961 WARN_ON(1);
5962 goto out_unlock;
5963 }
5964 }
5965
5966 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
1ef30be1
JB
5967 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5968 if (!ret)
5969 btrfs_update_inode(trans, root, inode);
5970 ret = 0;
4b46fce2
JB
5971out_unlock:
5972 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5973 ordered->file_offset + ordered->len - 1,
5974 &cached_state, GFP_NOFS);
5975out:
5976 btrfs_delalloc_release_metadata(inode, ordered->len);
5977 btrfs_end_transaction(trans, root);
163cf09c 5978 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5979 btrfs_put_ordered_extent(ordered);
5980 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5981
5982out_test:
5983 /*
5984 * our bio might span multiple ordered extents. If we haven't
5985 * completed the accounting for the whole dio, go back and try again
5986 */
5987 if (ordered_offset < dip->logical_offset + dip->bytes) {
5988 ordered_bytes = dip->logical_offset + dip->bytes -
5989 ordered_offset;
5990 goto again;
5991 }
4b46fce2
JB
5992out_done:
5993 bio->bi_private = dip->private;
5994
5995 kfree(dip->csums);
5996 kfree(dip);
c0da7aa1
JB
5997
5998 /* If we had an error make sure to clear the uptodate flag */
5999 if (err)
6000 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
6001 dio_end_io(bio, err);
6002}
6003
eaf25d93
CM
6004static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6005 struct bio *bio, int mirror_num,
6006 unsigned long bio_flags, u64 offset)
6007{
6008 int ret;
6009 struct btrfs_root *root = BTRFS_I(inode)->root;
6010 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6011 BUG_ON(ret);
6012 return 0;
6013}
6014
e65e1535
MX
6015static void btrfs_end_dio_bio(struct bio *bio, int err)
6016{
6017 struct btrfs_dio_private *dip = bio->bi_private;
6018
6019 if (err) {
33345d01 6020 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 6021 "sector %#Lx len %u err no %d\n",
33345d01 6022 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 6023 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
6024 dip->errors = 1;
6025
6026 /*
6027 * before atomic variable goto zero, we must make sure
6028 * dip->errors is perceived to be set.
6029 */
6030 smp_mb__before_atomic_dec();
6031 }
6032
6033 /* if there are more bios still pending for this dio, just exit */
6034 if (!atomic_dec_and_test(&dip->pending_bios))
6035 goto out;
6036
6037 if (dip->errors)
6038 bio_io_error(dip->orig_bio);
6039 else {
6040 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6041 bio_endio(dip->orig_bio, 0);
6042 }
6043out:
6044 bio_put(bio);
6045}
6046
6047static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6048 u64 first_sector, gfp_t gfp_flags)
6049{
6050 int nr_vecs = bio_get_nr_vecs(bdev);
6051 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6052}
6053
6054static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6055 int rw, u64 file_offset, int skip_sum,
1ae39938 6056 u32 *csums, int async_submit)
e65e1535
MX
6057{
6058 int write = rw & REQ_WRITE;
6059 struct btrfs_root *root = BTRFS_I(inode)->root;
6060 int ret;
6061
6062 bio_get(bio);
6063 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6064 if (ret)
6065 goto err;
6066
1ae39938
JB
6067 if (skip_sum)
6068 goto map;
6069
6070 if (write && async_submit) {
e65e1535
MX
6071 ret = btrfs_wq_submit_bio(root->fs_info,
6072 inode, rw, bio, 0, 0,
6073 file_offset,
6074 __btrfs_submit_bio_start_direct_io,
6075 __btrfs_submit_bio_done);
6076 goto err;
1ae39938
JB
6077 } else if (write) {
6078 /*
6079 * If we aren't doing async submit, calculate the csum of the
6080 * bio now.
6081 */
6082 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6083 if (ret)
6084 goto err;
c2db1073
TI
6085 } else if (!skip_sum) {
6086 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
e65e1535 6087 file_offset, csums);
c2db1073
TI
6088 if (ret)
6089 goto err;
6090 }
e65e1535 6091
1ae39938
JB
6092map:
6093 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
6094err:
6095 bio_put(bio);
6096 return ret;
6097}
6098
6099static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6100 int skip_sum)
6101{
6102 struct inode *inode = dip->inode;
6103 struct btrfs_root *root = BTRFS_I(inode)->root;
6104 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6105 struct bio *bio;
6106 struct bio *orig_bio = dip->orig_bio;
6107 struct bio_vec *bvec = orig_bio->bi_io_vec;
6108 u64 start_sector = orig_bio->bi_sector;
6109 u64 file_offset = dip->logical_offset;
6110 u64 submit_len = 0;
6111 u64 map_length;
6112 int nr_pages = 0;
6113 u32 *csums = dip->csums;
6114 int ret = 0;
1ae39938 6115 int async_submit = 0;
98bc3149 6116 int write = rw & REQ_WRITE;
e65e1535 6117
e65e1535
MX
6118 map_length = orig_bio->bi_size;
6119 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6120 &map_length, NULL, 0);
6121 if (ret) {
64728bbb 6122 bio_put(orig_bio);
e65e1535
MX
6123 return -EIO;
6124 }
6125
02f57c7a
JB
6126 if (map_length >= orig_bio->bi_size) {
6127 bio = orig_bio;
6128 goto submit;
6129 }
6130
1ae39938 6131 async_submit = 1;
02f57c7a
JB
6132 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6133 if (!bio)
6134 return -ENOMEM;
6135 bio->bi_private = dip;
6136 bio->bi_end_io = btrfs_end_dio_bio;
6137 atomic_inc(&dip->pending_bios);
6138
e65e1535
MX
6139 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6140 if (unlikely(map_length < submit_len + bvec->bv_len ||
6141 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6142 bvec->bv_offset) < bvec->bv_len)) {
6143 /*
6144 * inc the count before we submit the bio so
6145 * we know the end IO handler won't happen before
6146 * we inc the count. Otherwise, the dip might get freed
6147 * before we're done setting it up
6148 */
6149 atomic_inc(&dip->pending_bios);
6150 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6151 file_offset, skip_sum,
1ae39938 6152 csums, async_submit);
e65e1535
MX
6153 if (ret) {
6154 bio_put(bio);
6155 atomic_dec(&dip->pending_bios);
6156 goto out_err;
6157 }
6158
98bc3149
JB
6159 /* Write's use the ordered csums */
6160 if (!write && !skip_sum)
e65e1535
MX
6161 csums = csums + nr_pages;
6162 start_sector += submit_len >> 9;
6163 file_offset += submit_len;
6164
6165 submit_len = 0;
6166 nr_pages = 0;
6167
6168 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6169 start_sector, GFP_NOFS);
6170 if (!bio)
6171 goto out_err;
6172 bio->bi_private = dip;
6173 bio->bi_end_io = btrfs_end_dio_bio;
6174
6175 map_length = orig_bio->bi_size;
6176 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6177 &map_length, NULL, 0);
6178 if (ret) {
6179 bio_put(bio);
6180 goto out_err;
6181 }
6182 } else {
6183 submit_len += bvec->bv_len;
6184 nr_pages ++;
6185 bvec++;
6186 }
6187 }
6188
02f57c7a 6189submit:
e65e1535 6190 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
1ae39938 6191 csums, async_submit);
e65e1535
MX
6192 if (!ret)
6193 return 0;
6194
6195 bio_put(bio);
6196out_err:
6197 dip->errors = 1;
6198 /*
6199 * before atomic variable goto zero, we must
6200 * make sure dip->errors is perceived to be set.
6201 */
6202 smp_mb__before_atomic_dec();
6203 if (atomic_dec_and_test(&dip->pending_bios))
6204 bio_io_error(dip->orig_bio);
6205
6206 /* bio_end_io() will handle error, so we needn't return it */
6207 return 0;
6208}
6209
4b46fce2
JB
6210static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6211 loff_t file_offset)
6212{
6213 struct btrfs_root *root = BTRFS_I(inode)->root;
6214 struct btrfs_dio_private *dip;
6215 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6216 int skip_sum;
7b6d91da 6217 int write = rw & REQ_WRITE;
4b46fce2
JB
6218 int ret = 0;
6219
6220 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6221
6222 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6223 if (!dip) {
6224 ret = -ENOMEM;
6225 goto free_ordered;
6226 }
6227 dip->csums = NULL;
6228
98bc3149
JB
6229 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6230 if (!write && !skip_sum) {
4b46fce2
JB
6231 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6232 if (!dip->csums) {
b4966b77 6233 kfree(dip);
4b46fce2
JB
6234 ret = -ENOMEM;
6235 goto free_ordered;
6236 }
6237 }
6238
6239 dip->private = bio->bi_private;
6240 dip->inode = inode;
6241 dip->logical_offset = file_offset;
6242
4b46fce2
JB
6243 dip->bytes = 0;
6244 do {
6245 dip->bytes += bvec->bv_len;
6246 bvec++;
6247 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6248
46bfbb5c 6249 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6250 bio->bi_private = dip;
e65e1535
MX
6251 dip->errors = 0;
6252 dip->orig_bio = bio;
6253 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6254
6255 if (write)
6256 bio->bi_end_io = btrfs_endio_direct_write;
6257 else
6258 bio->bi_end_io = btrfs_endio_direct_read;
6259
e65e1535
MX
6260 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6261 if (!ret)
eaf25d93 6262 return;
4b46fce2
JB
6263free_ordered:
6264 /*
6265 * If this is a write, we need to clean up the reserved space and kill
6266 * the ordered extent.
6267 */
6268 if (write) {
6269 struct btrfs_ordered_extent *ordered;
955256f2 6270 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6271 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6272 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6273 btrfs_free_reserved_extent(root, ordered->start,
6274 ordered->disk_len);
6275 btrfs_put_ordered_extent(ordered);
6276 btrfs_put_ordered_extent(ordered);
6277 }
6278 bio_endio(bio, ret);
6279}
6280
5a5f79b5
CM
6281static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6282 const struct iovec *iov, loff_t offset,
6283 unsigned long nr_segs)
6284{
6285 int seg;
a1b75f7d 6286 int i;
5a5f79b5
CM
6287 size_t size;
6288 unsigned long addr;
6289 unsigned blocksize_mask = root->sectorsize - 1;
6290 ssize_t retval = -EINVAL;
6291 loff_t end = offset;
6292
6293 if (offset & blocksize_mask)
6294 goto out;
6295
6296 /* Check the memory alignment. Blocks cannot straddle pages */
6297 for (seg = 0; seg < nr_segs; seg++) {
6298 addr = (unsigned long)iov[seg].iov_base;
6299 size = iov[seg].iov_len;
6300 end += size;
a1b75f7d 6301 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6302 goto out;
a1b75f7d
JB
6303
6304 /* If this is a write we don't need to check anymore */
6305 if (rw & WRITE)
6306 continue;
6307
6308 /*
6309 * Check to make sure we don't have duplicate iov_base's in this
6310 * iovec, if so return EINVAL, otherwise we'll get csum errors
6311 * when reading back.
6312 */
6313 for (i = seg + 1; i < nr_segs; i++) {
6314 if (iov[seg].iov_base == iov[i].iov_base)
6315 goto out;
6316 }
5a5f79b5
CM
6317 }
6318 retval = 0;
6319out:
6320 return retval;
6321}
16432985
CM
6322static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6323 const struct iovec *iov, loff_t offset,
6324 unsigned long nr_segs)
6325{
4b46fce2
JB
6326 struct file *file = iocb->ki_filp;
6327 struct inode *inode = file->f_mapping->host;
6328 struct btrfs_ordered_extent *ordered;
4845e44f 6329 struct extent_state *cached_state = NULL;
4b46fce2
JB
6330 u64 lockstart, lockend;
6331 ssize_t ret;
4845e44f
CM
6332 int writing = rw & WRITE;
6333 int write_bits = 0;
3f7c579c 6334 size_t count = iov_length(iov, nr_segs);
4b46fce2 6335
5a5f79b5
CM
6336 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6337 offset, nr_segs)) {
6338 return 0;
6339 }
6340
4b46fce2 6341 lockstart = offset;
3f7c579c
CM
6342 lockend = offset + count - 1;
6343
6344 if (writing) {
6345 ret = btrfs_delalloc_reserve_space(inode, count);
6346 if (ret)
6347 goto out;
6348 }
4845e44f 6349
4b46fce2 6350 while (1) {
4845e44f
CM
6351 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6352 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6353 /*
6354 * We're concerned with the entire range that we're going to be
6355 * doing DIO to, so we need to make sure theres no ordered
6356 * extents in this range.
6357 */
6358 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6359 lockend - lockstart + 1);
6360 if (!ordered)
6361 break;
4845e44f
CM
6362 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6363 &cached_state, GFP_NOFS);
4b46fce2
JB
6364 btrfs_start_ordered_extent(inode, ordered, 1);
6365 btrfs_put_ordered_extent(ordered);
6366 cond_resched();
6367 }
6368
4845e44f
CM
6369 /*
6370 * we don't use btrfs_set_extent_delalloc because we don't want
6371 * the dirty or uptodate bits
6372 */
6373 if (writing) {
6374 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6375 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6376 EXTENT_DELALLOC, 0, NULL, &cached_state,
6377 GFP_NOFS);
6378 if (ret) {
6379 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6380 lockend, EXTENT_LOCKED | write_bits,
6381 1, 0, &cached_state, GFP_NOFS);
6382 goto out;
6383 }
6384 }
6385
6386 free_extent_state(cached_state);
6387 cached_state = NULL;
6388
5a5f79b5
CM
6389 ret = __blockdev_direct_IO(rw, iocb, inode,
6390 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6391 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6392 btrfs_submit_direct, 0);
4b46fce2
JB
6393
6394 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6395 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6396 offset + iov_length(iov, nr_segs) - 1,
6397 EXTENT_LOCKED | write_bits, 1, 0,
6398 &cached_state, GFP_NOFS);
4b46fce2
JB
6399 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6400 /*
6401 * We're falling back to buffered, unlock the section we didn't
6402 * do IO on.
6403 */
4845e44f
CM
6404 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6405 offset + iov_length(iov, nr_segs) - 1,
6406 EXTENT_LOCKED | write_bits, 1, 0,
6407 &cached_state, GFP_NOFS);
4b46fce2 6408 }
4845e44f
CM
6409out:
6410 free_extent_state(cached_state);
4b46fce2 6411 return ret;
16432985
CM
6412}
6413
1506fcc8
YS
6414static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6415 __u64 start, __u64 len)
6416{
ec29ed5b 6417 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6418}
6419
a52d9a80 6420int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6421{
d1310b2e
CM
6422 struct extent_io_tree *tree;
6423 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6424 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 6425}
1832a6d5 6426
a52d9a80 6427static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6428{
d1310b2e 6429 struct extent_io_tree *tree;
b888db2b
CM
6430
6431
6432 if (current->flags & PF_MEMALLOC) {
6433 redirty_page_for_writepage(wbc, page);
6434 unlock_page(page);
6435 return 0;
6436 }
d1310b2e 6437 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6438 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6439}
6440
f421950f
CM
6441int btrfs_writepages(struct address_space *mapping,
6442 struct writeback_control *wbc)
b293f02e 6443{
d1310b2e 6444 struct extent_io_tree *tree;
771ed689 6445
d1310b2e 6446 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6447 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6448}
6449
3ab2fb5a
CM
6450static int
6451btrfs_readpages(struct file *file, struct address_space *mapping,
6452 struct list_head *pages, unsigned nr_pages)
6453{
d1310b2e
CM
6454 struct extent_io_tree *tree;
6455 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6456 return extent_readpages(tree, mapping, pages, nr_pages,
6457 btrfs_get_extent);
6458}
e6dcd2dc 6459static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6460{
d1310b2e
CM
6461 struct extent_io_tree *tree;
6462 struct extent_map_tree *map;
a52d9a80 6463 int ret;
8c2383c3 6464
d1310b2e
CM
6465 tree = &BTRFS_I(page->mapping->host)->io_tree;
6466 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6467 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6468 if (ret == 1) {
6469 ClearPagePrivate(page);
6470 set_page_private(page, 0);
6471 page_cache_release(page);
39279cc3 6472 }
a52d9a80 6473 return ret;
39279cc3
CM
6474}
6475
e6dcd2dc
CM
6476static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6477{
98509cfc
CM
6478 if (PageWriteback(page) || PageDirty(page))
6479 return 0;
b335b003 6480 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6481}
6482
a52d9a80 6483static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6484{
d1310b2e 6485 struct extent_io_tree *tree;
e6dcd2dc 6486 struct btrfs_ordered_extent *ordered;
2ac55d41 6487 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6488 u64 page_start = page_offset(page);
6489 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6490
8b62b72b
CM
6491
6492 /*
6493 * we have the page locked, so new writeback can't start,
6494 * and the dirty bit won't be cleared while we are here.
6495 *
6496 * Wait for IO on this page so that we can safely clear
6497 * the PagePrivate2 bit and do ordered accounting
6498 */
e6dcd2dc 6499 wait_on_page_writeback(page);
8b62b72b 6500
d1310b2e 6501 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6502 if (offset) {
6503 btrfs_releasepage(page, GFP_NOFS);
6504 return;
6505 }
2ac55d41
JB
6506 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6507 GFP_NOFS);
e6dcd2dc
CM
6508 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6509 page_offset(page));
6510 if (ordered) {
eb84ae03
CM
6511 /*
6512 * IO on this page will never be started, so we need
6513 * to account for any ordered extents now
6514 */
e6dcd2dc
CM
6515 clear_extent_bit(tree, page_start, page_end,
6516 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6517 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6518 &cached_state, GFP_NOFS);
8b62b72b
CM
6519 /*
6520 * whoever cleared the private bit is responsible
6521 * for the finish_ordered_io
6522 */
6523 if (TestClearPagePrivate2(page)) {
6524 btrfs_finish_ordered_io(page->mapping->host,
6525 page_start, page_end);
6526 }
e6dcd2dc 6527 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6528 cached_state = NULL;
6529 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6530 GFP_NOFS);
e6dcd2dc
CM
6531 }
6532 clear_extent_bit(tree, page_start, page_end,
32c00aff 6533 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6534 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6535 __btrfs_releasepage(page, GFP_NOFS);
6536
4a096752 6537 ClearPageChecked(page);
9ad6b7bc 6538 if (PagePrivate(page)) {
9ad6b7bc
CM
6539 ClearPagePrivate(page);
6540 set_page_private(page, 0);
6541 page_cache_release(page);
6542 }
39279cc3
CM
6543}
6544
9ebefb18
CM
6545/*
6546 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6547 * called from a page fault handler when a page is first dirtied. Hence we must
6548 * be careful to check for EOF conditions here. We set the page up correctly
6549 * for a written page which means we get ENOSPC checking when writing into
6550 * holes and correct delalloc and unwritten extent mapping on filesystems that
6551 * support these features.
6552 *
6553 * We are not allowed to take the i_mutex here so we have to play games to
6554 * protect against truncate races as the page could now be beyond EOF. Because
6555 * vmtruncate() writes the inode size before removing pages, once we have the
6556 * page lock we can determine safely if the page is beyond EOF. If it is not
6557 * beyond EOF, then the page is guaranteed safe against truncation until we
6558 * unlock the page.
6559 */
c2ec175c 6560int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6561{
c2ec175c 6562 struct page *page = vmf->page;
6da6abae 6563 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6564 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6565 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6566 struct btrfs_ordered_extent *ordered;
2ac55d41 6567 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6568 char *kaddr;
6569 unsigned long zero_start;
9ebefb18 6570 loff_t size;
1832a6d5 6571 int ret;
a52d9a80 6572 u64 page_start;
e6dcd2dc 6573 u64 page_end;
9ebefb18 6574
0ca1f7ce 6575 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
6576 if (ret) {
6577 if (ret == -ENOMEM)
6578 ret = VM_FAULT_OOM;
6579 else /* -ENOSPC, -EIO, etc */
6580 ret = VM_FAULT_SIGBUS;
1832a6d5 6581 goto out;
56a76f82 6582 }
1832a6d5 6583
56a76f82 6584 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6585again:
9ebefb18 6586 lock_page(page);
9ebefb18 6587 size = i_size_read(inode);
e6dcd2dc
CM
6588 page_start = page_offset(page);
6589 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6590
9ebefb18 6591 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6592 (page_start >= size)) {
9ebefb18
CM
6593 /* page got truncated out from underneath us */
6594 goto out_unlock;
6595 }
e6dcd2dc
CM
6596 wait_on_page_writeback(page);
6597
2ac55d41
JB
6598 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6599 GFP_NOFS);
e6dcd2dc
CM
6600 set_page_extent_mapped(page);
6601
eb84ae03
CM
6602 /*
6603 * we can't set the delalloc bits if there are pending ordered
6604 * extents. Drop our locks and wait for them to finish
6605 */
e6dcd2dc
CM
6606 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6607 if (ordered) {
2ac55d41
JB
6608 unlock_extent_cached(io_tree, page_start, page_end,
6609 &cached_state, GFP_NOFS);
e6dcd2dc 6610 unlock_page(page);
eb84ae03 6611 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6612 btrfs_put_ordered_extent(ordered);
6613 goto again;
6614 }
6615
fbf19087
JB
6616 /*
6617 * XXX - page_mkwrite gets called every time the page is dirtied, even
6618 * if it was already dirty, so for space accounting reasons we need to
6619 * clear any delalloc bits for the range we are fixing to save. There
6620 * is probably a better way to do this, but for now keep consistent with
6621 * prepare_pages in the normal write path.
6622 */
2ac55d41 6623 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6624 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6625 0, 0, &cached_state, GFP_NOFS);
fbf19087 6626
2ac55d41
JB
6627 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6628 &cached_state);
9ed74f2d 6629 if (ret) {
2ac55d41
JB
6630 unlock_extent_cached(io_tree, page_start, page_end,
6631 &cached_state, GFP_NOFS);
9ed74f2d
JB
6632 ret = VM_FAULT_SIGBUS;
6633 goto out_unlock;
6634 }
e6dcd2dc 6635 ret = 0;
9ebefb18
CM
6636
6637 /* page is wholly or partially inside EOF */
a52d9a80 6638 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6639 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6640 else
e6dcd2dc 6641 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6642
e6dcd2dc
CM
6643 if (zero_start != PAGE_CACHE_SIZE) {
6644 kaddr = kmap(page);
6645 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6646 flush_dcache_page(page);
6647 kunmap(page);
6648 }
247e743c 6649 ClearPageChecked(page);
e6dcd2dc 6650 set_page_dirty(page);
50a9b214 6651 SetPageUptodate(page);
5a3f23d5 6652
257c62e1
CM
6653 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6654 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6655
2ac55d41 6656 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6657
6658out_unlock:
50a9b214
CM
6659 if (!ret)
6660 return VM_FAULT_LOCKED;
9ebefb18 6661 unlock_page(page);
0ca1f7ce 6662 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 6663out:
9ebefb18
CM
6664 return ret;
6665}
6666
a41ad394 6667static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6668{
6669 struct btrfs_root *root = BTRFS_I(inode)->root;
6670 int ret;
3893e33b 6671 int err = 0;
39279cc3 6672 struct btrfs_trans_handle *trans;
d3c2fdcf 6673 unsigned long nr;
dbe674a9 6674 u64 mask = root->sectorsize - 1;
39279cc3 6675
5d5e103a
JB
6676 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6677 if (ret)
a41ad394 6678 return ret;
8082510e 6679
4a096752 6680 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6681 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6682
f0cd846e
JB
6683 trans = btrfs_start_transaction(root, 5);
6684 if (IS_ERR(trans))
6685 return PTR_ERR(trans);
6686
6687 btrfs_set_trans_block_group(trans, inode);
6688
6689 ret = btrfs_orphan_add(trans, inode);
6690 if (ret) {
6691 btrfs_end_transaction(trans, root);
6692 return ret;
6693 }
6694
6695 nr = trans->blocks_used;
6696 btrfs_end_transaction(trans, root);
6697 btrfs_btree_balance_dirty(root, nr);
6698
6699 /* Now start a transaction for the truncate */
d68fc57b 6700 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
6701 if (IS_ERR(trans))
6702 return PTR_ERR(trans);
8082510e 6703 btrfs_set_trans_block_group(trans, inode);
d68fc57b 6704 trans->block_rsv = root->orphan_block_rsv;
5a3f23d5
CM
6705
6706 /*
6707 * setattr is responsible for setting the ordered_data_close flag,
6708 * but that is only tested during the last file release. That
6709 * could happen well after the next commit, leaving a great big
6710 * window where new writes may get lost if someone chooses to write
6711 * to this file after truncating to zero
6712 *
6713 * The inode doesn't have any dirty data here, and so if we commit
6714 * this is a noop. If someone immediately starts writing to the inode
6715 * it is very likely we'll catch some of their writes in this
6716 * transaction, and the commit will find this file on the ordered
6717 * data list with good things to send down.
6718 *
6719 * This is a best effort solution, there is still a window where
6720 * using truncate to replace the contents of the file will
6721 * end up with a zero length file after a crash.
6722 */
6723 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6724 btrfs_add_ordered_operation(trans, root, inode);
6725
8082510e 6726 while (1) {
d68fc57b
YZ
6727 if (!trans) {
6728 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
6729 if (IS_ERR(trans))
6730 return PTR_ERR(trans);
d68fc57b
YZ
6731 btrfs_set_trans_block_group(trans, inode);
6732 trans->block_rsv = root->orphan_block_rsv;
6733 }
6734
6735 ret = btrfs_block_rsv_check(trans, root,
6736 root->orphan_block_rsv, 0, 5);
3893e33b 6737 if (ret == -EAGAIN) {
d68fc57b 6738 ret = btrfs_commit_transaction(trans, root);
3893e33b
JB
6739 if (ret)
6740 return ret;
d68fc57b
YZ
6741 trans = NULL;
6742 continue;
3893e33b
JB
6743 } else if (ret) {
6744 err = ret;
6745 break;
d68fc57b
YZ
6746 }
6747
8082510e
YZ
6748 ret = btrfs_truncate_inode_items(trans, root, inode,
6749 inode->i_size,
6750 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6751 if (ret != -EAGAIN) {
6752 err = ret;
8082510e 6753 break;
3893e33b 6754 }
39279cc3 6755
8082510e 6756 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6757 if (ret) {
6758 err = ret;
6759 break;
6760 }
5f39d397 6761
8082510e
YZ
6762 nr = trans->blocks_used;
6763 btrfs_end_transaction(trans, root);
d68fc57b 6764 trans = NULL;
8082510e 6765 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6766 }
6767
6768 if (ret == 0 && inode->i_nlink > 0) {
6769 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6770 if (ret)
6771 err = ret;
ded5db9d
JB
6772 } else if (ret && inode->i_nlink > 0) {
6773 /*
6774 * Failed to do the truncate, remove us from the in memory
6775 * orphan list.
6776 */
6777 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6778 }
6779
6780 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6781 if (ret && !err)
6782 err = ret;
7b128766 6783
7b128766 6784 nr = trans->blocks_used;
89ce8a63 6785 ret = btrfs_end_transaction_throttle(trans, root);
3893e33b
JB
6786 if (ret && !err)
6787 err = ret;
d3c2fdcf 6788 btrfs_btree_balance_dirty(root, nr);
a41ad394 6789
3893e33b 6790 return err;
39279cc3
CM
6791}
6792
d352ac68
CM
6793/*
6794 * create a new subvolume directory/inode (helper for the ioctl).
6795 */
d2fb3437 6796int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 6797 struct btrfs_root *new_root,
d2fb3437 6798 u64 new_dirid, u64 alloc_hint)
39279cc3 6799{
39279cc3 6800 struct inode *inode;
76dda93c 6801 int err;
00e4e6b3 6802 u64 index = 0;
39279cc3 6803
aec7477b 6804 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 6805 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 6806 if (IS_ERR(inode))
f46b5a66 6807 return PTR_ERR(inode);
39279cc3
CM
6808 inode->i_op = &btrfs_dir_inode_operations;
6809 inode->i_fop = &btrfs_dir_file_operations;
6810
39279cc3 6811 inode->i_nlink = 1;
dbe674a9 6812 btrfs_i_size_write(inode, 0);
3b96362c 6813
76dda93c
YZ
6814 err = btrfs_update_inode(trans, new_root, inode);
6815 BUG_ON(err);
cb8e7090 6816
76dda93c 6817 iput(inode);
cb8e7090 6818 return 0;
39279cc3
CM
6819}
6820
d352ac68
CM
6821/* helper function for file defrag and space balancing. This
6822 * forces readahead on a given range of bytes in an inode
6823 */
edbd8d4e 6824unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
6825 struct file_ra_state *ra, struct file *file,
6826 pgoff_t offset, pgoff_t last_index)
6827{
8e7bf94f 6828 pgoff_t req_size = last_index - offset + 1;
86479a04 6829
86479a04
CM
6830 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6831 return offset + req_size;
86479a04
CM
6832}
6833
39279cc3
CM
6834struct inode *btrfs_alloc_inode(struct super_block *sb)
6835{
6836 struct btrfs_inode *ei;
2ead6ae7 6837 struct inode *inode;
39279cc3
CM
6838
6839 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6840 if (!ei)
6841 return NULL;
2ead6ae7
YZ
6842
6843 ei->root = NULL;
6844 ei->space_info = NULL;
6845 ei->generation = 0;
6846 ei->sequence = 0;
15ee9bc7 6847 ei->last_trans = 0;
257c62e1 6848 ei->last_sub_trans = 0;
e02119d5 6849 ei->logged_trans = 0;
2ead6ae7
YZ
6850 ei->delalloc_bytes = 0;
6851 ei->reserved_bytes = 0;
6852 ei->disk_i_size = 0;
6853 ei->flags = 0;
6854 ei->index_cnt = (u64)-1;
6855 ei->last_unlink_trans = 0;
6856
0ca1f7ce 6857 atomic_set(&ei->outstanding_extents, 0);
57a45ced 6858 atomic_set(&ei->reserved_extents, 0);
2ead6ae7
YZ
6859
6860 ei->ordered_data_close = 0;
d68fc57b 6861 ei->orphan_meta_reserved = 0;
2ead6ae7 6862 ei->dummy_inode = 0;
261507a0 6863 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 6864
16cdcec7
MX
6865 ei->delayed_node = NULL;
6866
2ead6ae7
YZ
6867 inode = &ei->vfs_inode;
6868 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6869 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6870 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6871 mutex_init(&ei->log_mutex);
e6dcd2dc 6872 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6873 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6874 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6875 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6876 RB_CLEAR_NODE(&ei->rb_node);
6877
6878 return inode;
39279cc3
CM
6879}
6880
fa0d7e3d
NP
6881static void btrfs_i_callback(struct rcu_head *head)
6882{
6883 struct inode *inode = container_of(head, struct inode, i_rcu);
6884 INIT_LIST_HEAD(&inode->i_dentry);
6885 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6886}
6887
39279cc3
CM
6888void btrfs_destroy_inode(struct inode *inode)
6889{
e6dcd2dc 6890 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6891 struct btrfs_root *root = BTRFS_I(inode)->root;
6892
39279cc3
CM
6893 WARN_ON(!list_empty(&inode->i_dentry));
6894 WARN_ON(inode->i_data.nrpages);
0ca1f7ce 6895 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
57a45ced 6896 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
39279cc3 6897
a6dbd429
JB
6898 /*
6899 * This can happen where we create an inode, but somebody else also
6900 * created the same inode and we need to destroy the one we already
6901 * created.
6902 */
6903 if (!root)
6904 goto free;
6905
5a3f23d5
CM
6906 /*
6907 * Make sure we're properly removed from the ordered operation
6908 * lists.
6909 */
6910 smp_mb();
6911 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6912 spin_lock(&root->fs_info->ordered_extent_lock);
6913 list_del_init(&BTRFS_I(inode)->ordered_operations);
6914 spin_unlock(&root->fs_info->ordered_extent_lock);
6915 }
6916
0af3d00b
JB
6917 if (root == root->fs_info->tree_root) {
6918 struct btrfs_block_group_cache *block_group;
6919
6920 block_group = btrfs_lookup_block_group(root->fs_info,
6921 BTRFS_I(inode)->block_group);
6922 if (block_group && block_group->inode == inode) {
6923 spin_lock(&block_group->lock);
6924 block_group->inode = NULL;
6925 spin_unlock(&block_group->lock);
6926 btrfs_put_block_group(block_group);
6927 } else if (block_group) {
6928 btrfs_put_block_group(block_group);
6929 }
6930 }
6931
d68fc57b 6932 spin_lock(&root->orphan_lock);
7b128766 6933 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
33345d01
LZ
6934 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6935 (unsigned long long)btrfs_ino(inode));
8082510e 6936 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6937 }
d68fc57b 6938 spin_unlock(&root->orphan_lock);
7b128766 6939
d397712b 6940 while (1) {
e6dcd2dc
CM
6941 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6942 if (!ordered)
6943 break;
6944 else {
d397712b
CM
6945 printk(KERN_ERR "btrfs found ordered "
6946 "extent %llu %llu on inode cleanup\n",
6947 (unsigned long long)ordered->file_offset,
6948 (unsigned long long)ordered->len);
e6dcd2dc
CM
6949 btrfs_remove_ordered_extent(inode, ordered);
6950 btrfs_put_ordered_extent(ordered);
6951 btrfs_put_ordered_extent(ordered);
6952 }
6953 }
5d4f98a2 6954 inode_tree_del(inode);
5b21f2ed 6955 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6956free:
16cdcec7 6957 btrfs_remove_delayed_node(inode);
fa0d7e3d 6958 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6959}
6960
45321ac5 6961int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6962{
6963 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6964
0af3d00b 6965 if (btrfs_root_refs(&root->root_item) == 0 &&
82d5902d 6966 !is_free_space_inode(root, inode))
45321ac5 6967 return 1;
76dda93c 6968 else
45321ac5 6969 return generic_drop_inode(inode);
76dda93c
YZ
6970}
6971
0ee0fda0 6972static void init_once(void *foo)
39279cc3
CM
6973{
6974 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6975
6976 inode_init_once(&ei->vfs_inode);
6977}
6978
6979void btrfs_destroy_cachep(void)
6980{
6981 if (btrfs_inode_cachep)
6982 kmem_cache_destroy(btrfs_inode_cachep);
6983 if (btrfs_trans_handle_cachep)
6984 kmem_cache_destroy(btrfs_trans_handle_cachep);
6985 if (btrfs_transaction_cachep)
6986 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6987 if (btrfs_path_cachep)
6988 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6989 if (btrfs_free_space_cachep)
6990 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6991}
6992
6993int btrfs_init_cachep(void)
6994{
9601e3f6
CH
6995 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6996 sizeof(struct btrfs_inode), 0,
6997 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6998 if (!btrfs_inode_cachep)
6999 goto fail;
9601e3f6
CH
7000
7001 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
7002 sizeof(struct btrfs_trans_handle), 0,
7003 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7004 if (!btrfs_trans_handle_cachep)
7005 goto fail;
9601e3f6
CH
7006
7007 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
7008 sizeof(struct btrfs_transaction), 0,
7009 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7010 if (!btrfs_transaction_cachep)
7011 goto fail;
9601e3f6
CH
7012
7013 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
7014 sizeof(struct btrfs_path), 0,
7015 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7016 if (!btrfs_path_cachep)
7017 goto fail;
9601e3f6 7018
dc89e982
JB
7019 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
7020 sizeof(struct btrfs_free_space), 0,
7021 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7022 if (!btrfs_free_space_cachep)
7023 goto fail;
7024
39279cc3
CM
7025 return 0;
7026fail:
7027 btrfs_destroy_cachep();
7028 return -ENOMEM;
7029}
7030
7031static int btrfs_getattr(struct vfsmount *mnt,
7032 struct dentry *dentry, struct kstat *stat)
7033{
7034 struct inode *inode = dentry->d_inode;
7035 generic_fillattr(inode, stat);
3394e160 7036 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 7037 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
7038 stat->blocks = (inode_get_bytes(inode) +
7039 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
7040 return 0;
7041}
7042
75e7cb7f
LB
7043/*
7044 * If a file is moved, it will inherit the cow and compression flags of the new
7045 * directory.
7046 */
7047static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7048{
7049 struct btrfs_inode *b_dir = BTRFS_I(dir);
7050 struct btrfs_inode *b_inode = BTRFS_I(inode);
7051
7052 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7053 b_inode->flags |= BTRFS_INODE_NODATACOW;
7054 else
7055 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7056
7057 if (b_dir->flags & BTRFS_INODE_COMPRESS)
7058 b_inode->flags |= BTRFS_INODE_COMPRESS;
7059 else
7060 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
7061}
7062
d397712b
CM
7063static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7064 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
7065{
7066 struct btrfs_trans_handle *trans;
7067 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 7068 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
7069 struct inode *new_inode = new_dentry->d_inode;
7070 struct inode *old_inode = old_dentry->d_inode;
7071 struct timespec ctime = CURRENT_TIME;
00e4e6b3 7072 u64 index = 0;
4df27c4d 7073 u64 root_objectid;
39279cc3 7074 int ret;
33345d01 7075 u64 old_ino = btrfs_ino(old_inode);
39279cc3 7076
33345d01 7077 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
7078 return -EPERM;
7079
4df27c4d 7080 /* we only allow rename subvolume link between subvolumes */
33345d01 7081 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
7082 return -EXDEV;
7083
33345d01
LZ
7084 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7085 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 7086 return -ENOTEMPTY;
5f39d397 7087
4df27c4d
YZ
7088 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7089 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7090 return -ENOTEMPTY;
5a3f23d5
CM
7091 /*
7092 * we're using rename to replace one file with another.
7093 * and the replacement file is large. Start IO on it now so
7094 * we don't add too much work to the end of the transaction
7095 */
4baf8c92 7096 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
7097 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7098 filemap_flush(old_inode->i_mapping);
7099
76dda93c 7100 /* close the racy window with snapshot create/destroy ioctl */
33345d01 7101 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7102 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
7103 /*
7104 * We want to reserve the absolute worst case amount of items. So if
7105 * both inodes are subvols and we need to unlink them then that would
7106 * require 4 item modifications, but if they are both normal inodes it
7107 * would require 5 item modifications, so we'll assume their normal
7108 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7109 * should cover the worst case number of items we'll modify.
7110 */
7111 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
7112 if (IS_ERR(trans)) {
7113 ret = PTR_ERR(trans);
7114 goto out_notrans;
7115 }
76dda93c 7116
a5719521 7117 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 7118
4df27c4d
YZ
7119 if (dest != root)
7120 btrfs_record_root_in_trans(trans, dest);
5f39d397 7121
a5719521
YZ
7122 ret = btrfs_set_inode_index(new_dir, &index);
7123 if (ret)
7124 goto out_fail;
5a3f23d5 7125
33345d01 7126 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7127 /* force full log commit if subvolume involved. */
7128 root->fs_info->last_trans_log_full_commit = trans->transid;
7129 } else {
a5719521
YZ
7130 ret = btrfs_insert_inode_ref(trans, dest,
7131 new_dentry->d_name.name,
7132 new_dentry->d_name.len,
33345d01
LZ
7133 old_ino,
7134 btrfs_ino(new_dir), index);
a5719521
YZ
7135 if (ret)
7136 goto out_fail;
4df27c4d
YZ
7137 /*
7138 * this is an ugly little race, but the rename is required
7139 * to make sure that if we crash, the inode is either at the
7140 * old name or the new one. pinning the log transaction lets
7141 * us make sure we don't allow a log commit to come in after
7142 * we unlink the name but before we add the new name back in.
7143 */
7144 btrfs_pin_log_trans(root);
7145 }
5a3f23d5
CM
7146 /*
7147 * make sure the inode gets flushed if it is replacing
7148 * something.
7149 */
33345d01 7150 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 7151 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 7152
39279cc3
CM
7153 old_dir->i_ctime = old_dir->i_mtime = ctime;
7154 new_dir->i_ctime = new_dir->i_mtime = ctime;
7155 old_inode->i_ctime = ctime;
5f39d397 7156
12fcfd22
CM
7157 if (old_dentry->d_parent != new_dentry->d_parent)
7158 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7159
33345d01 7160 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7161 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7162 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7163 old_dentry->d_name.name,
7164 old_dentry->d_name.len);
7165 } else {
92986796
AV
7166 ret = __btrfs_unlink_inode(trans, root, old_dir,
7167 old_dentry->d_inode,
7168 old_dentry->d_name.name,
7169 old_dentry->d_name.len);
7170 if (!ret)
7171 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d
YZ
7172 }
7173 BUG_ON(ret);
39279cc3
CM
7174
7175 if (new_inode) {
7176 new_inode->i_ctime = CURRENT_TIME;
33345d01 7177 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7178 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7179 root_objectid = BTRFS_I(new_inode)->location.objectid;
7180 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7181 root_objectid,
7182 new_dentry->d_name.name,
7183 new_dentry->d_name.len);
7184 BUG_ON(new_inode->i_nlink == 0);
7185 } else {
7186 ret = btrfs_unlink_inode(trans, dest, new_dir,
7187 new_dentry->d_inode,
7188 new_dentry->d_name.name,
7189 new_dentry->d_name.len);
7190 }
7191 BUG_ON(ret);
7b128766 7192 if (new_inode->i_nlink == 0) {
e02119d5 7193 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7194 BUG_ON(ret);
7b128766 7195 }
39279cc3 7196 }
aec7477b 7197
75e7cb7f
LB
7198 fixup_inode_flags(new_dir, old_inode);
7199
4df27c4d
YZ
7200 ret = btrfs_add_link(trans, new_dir, old_inode,
7201 new_dentry->d_name.name,
a5719521 7202 new_dentry->d_name.len, 0, index);
4df27c4d 7203 BUG_ON(ret);
39279cc3 7204
33345d01 7205 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
6a912213
JB
7206 struct dentry *parent = dget_parent(new_dentry);
7207 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7208 dput(parent);
4df27c4d
YZ
7209 btrfs_end_log_trans(root);
7210 }
39279cc3 7211out_fail:
ab78c84d 7212 btrfs_end_transaction_throttle(trans, root);
b44c59a8 7213out_notrans:
33345d01 7214 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7215 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7216
39279cc3
CM
7217 return ret;
7218}
7219
d352ac68
CM
7220/*
7221 * some fairly slow code that needs optimization. This walks the list
7222 * of all the inodes with pending delalloc and forces them to disk.
7223 */
24bbcf04 7224int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7225{
7226 struct list_head *head = &root->fs_info->delalloc_inodes;
7227 struct btrfs_inode *binode;
5b21f2ed 7228 struct inode *inode;
ea8c2819 7229
c146afad
YZ
7230 if (root->fs_info->sb->s_flags & MS_RDONLY)
7231 return -EROFS;
7232
75eff68e 7233 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7234 while (!list_empty(head)) {
ea8c2819
CM
7235 binode = list_entry(head->next, struct btrfs_inode,
7236 delalloc_inodes);
5b21f2ed
ZY
7237 inode = igrab(&binode->vfs_inode);
7238 if (!inode)
7239 list_del_init(&binode->delalloc_inodes);
75eff68e 7240 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7241 if (inode) {
8c8bee1d 7242 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7243 if (delay_iput)
7244 btrfs_add_delayed_iput(inode);
7245 else
7246 iput(inode);
5b21f2ed
ZY
7247 }
7248 cond_resched();
75eff68e 7249 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7250 }
75eff68e 7251 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7252
7253 /* the filemap_flush will queue IO into the worker threads, but
7254 * we have to make sure the IO is actually started and that
7255 * ordered extents get created before we return
7256 */
7257 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7258 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7259 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7260 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7261 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7262 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7263 }
7264 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7265 return 0;
7266}
7267
0019f10d
JB
7268int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7269 int sync)
5da9d01b
YZ
7270{
7271 struct btrfs_inode *binode;
7272 struct inode *inode = NULL;
7273
7274 spin_lock(&root->fs_info->delalloc_lock);
7275 while (!list_empty(&root->fs_info->delalloc_inodes)) {
7276 binode = list_entry(root->fs_info->delalloc_inodes.next,
7277 struct btrfs_inode, delalloc_inodes);
7278 inode = igrab(&binode->vfs_inode);
7279 if (inode) {
7280 list_move_tail(&binode->delalloc_inodes,
7281 &root->fs_info->delalloc_inodes);
7282 break;
7283 }
7284
7285 list_del_init(&binode->delalloc_inodes);
7286 cond_resched_lock(&root->fs_info->delalloc_lock);
7287 }
7288 spin_unlock(&root->fs_info->delalloc_lock);
7289
7290 if (inode) {
0019f10d
JB
7291 if (sync) {
7292 filemap_write_and_wait(inode->i_mapping);
7293 /*
7294 * We have to do this because compression doesn't
7295 * actually set PG_writeback until it submits the pages
7296 * for IO, which happens in an async thread, so we could
7297 * race and not actually wait for any writeback pages
7298 * because they've not been submitted yet. Technically
7299 * this could still be the case for the ordered stuff
7300 * since the async thread may not have started to do its
7301 * work yet. If this becomes the case then we need to
7302 * figure out a way to make sure that in writepage we
7303 * wait for any async pages to be submitted before
7304 * returning so that fdatawait does what its supposed to
7305 * do.
7306 */
7307 btrfs_wait_ordered_range(inode, 0, (u64)-1);
7308 } else {
7309 filemap_flush(inode->i_mapping);
7310 }
5da9d01b
YZ
7311 if (delay_iput)
7312 btrfs_add_delayed_iput(inode);
7313 else
7314 iput(inode);
7315 return 1;
7316 }
7317 return 0;
7318}
7319
39279cc3
CM
7320static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7321 const char *symname)
7322{
7323 struct btrfs_trans_handle *trans;
7324 struct btrfs_root *root = BTRFS_I(dir)->root;
7325 struct btrfs_path *path;
7326 struct btrfs_key key;
1832a6d5 7327 struct inode *inode = NULL;
39279cc3
CM
7328 int err;
7329 int drop_inode = 0;
7330 u64 objectid;
00e4e6b3 7331 u64 index = 0 ;
39279cc3
CM
7332 int name_len;
7333 int datasize;
5f39d397 7334 unsigned long ptr;
39279cc3 7335 struct btrfs_file_extent_item *ei;
5f39d397 7336 struct extent_buffer *leaf;
1832a6d5 7337 unsigned long nr = 0;
39279cc3
CM
7338
7339 name_len = strlen(symname) + 1;
7340 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7341 return -ENAMETOOLONG;
1832a6d5 7342
9ed74f2d
JB
7343 /*
7344 * 2 items for inode item and ref
7345 * 2 items for dir items
7346 * 1 item for xattr if selinux is on
7347 */
a22285a6
YZ
7348 trans = btrfs_start_transaction(root, 5);
7349 if (IS_ERR(trans))
7350 return PTR_ERR(trans);
1832a6d5 7351
39279cc3
CM
7352 btrfs_set_trans_block_group(trans, dir);
7353
581bb050
LZ
7354 err = btrfs_find_free_ino(root, &objectid);
7355 if (err)
7356 goto out_unlock;
7357
aec7477b 7358 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7359 dentry->d_name.len, btrfs_ino(dir), objectid,
00e4e6b3
CM
7360 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7361 &index);
7cf96da3
TI
7362 if (IS_ERR(inode)) {
7363 err = PTR_ERR(inode);
39279cc3 7364 goto out_unlock;
7cf96da3 7365 }
39279cc3 7366
2a7dba39 7367 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7368 if (err) {
7369 drop_inode = 1;
7370 goto out_unlock;
7371 }
7372
39279cc3 7373 btrfs_set_trans_block_group(trans, inode);
a1b075d2 7374 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7375 if (err)
7376 drop_inode = 1;
7377 else {
7378 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7379 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
7380 inode->i_fop = &btrfs_file_operations;
7381 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 7382 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7383 }
39279cc3
CM
7384 btrfs_update_inode_block_group(trans, inode);
7385 btrfs_update_inode_block_group(trans, dir);
7386 if (drop_inode)
7387 goto out_unlock;
7388
7389 path = btrfs_alloc_path();
7390 BUG_ON(!path);
33345d01 7391 key.objectid = btrfs_ino(inode);
39279cc3 7392 key.offset = 0;
39279cc3
CM
7393 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7394 datasize = btrfs_file_extent_calc_inline_size(name_len);
7395 err = btrfs_insert_empty_item(trans, root, path, &key,
7396 datasize);
54aa1f4d
CM
7397 if (err) {
7398 drop_inode = 1;
7399 goto out_unlock;
7400 }
5f39d397
CM
7401 leaf = path->nodes[0];
7402 ei = btrfs_item_ptr(leaf, path->slots[0],
7403 struct btrfs_file_extent_item);
7404 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7405 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7406 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7407 btrfs_set_file_extent_encryption(leaf, ei, 0);
7408 btrfs_set_file_extent_compression(leaf, ei, 0);
7409 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7410 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7411
39279cc3 7412 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7413 write_extent_buffer(leaf, symname, ptr, name_len);
7414 btrfs_mark_buffer_dirty(leaf);
39279cc3 7415 btrfs_free_path(path);
5f39d397 7416
39279cc3
CM
7417 inode->i_op = &btrfs_symlink_inode_operations;
7418 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7419 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7420 inode_set_bytes(inode, name_len);
dbe674a9 7421 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7422 err = btrfs_update_inode(trans, root, inode);
7423 if (err)
7424 drop_inode = 1;
39279cc3
CM
7425
7426out_unlock:
d3c2fdcf 7427 nr = trans->blocks_used;
ab78c84d 7428 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
7429 if (drop_inode) {
7430 inode_dec_link_count(inode);
7431 iput(inode);
7432 }
d3c2fdcf 7433 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7434 return err;
7435}
16432985 7436
0af3d00b
JB
7437static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7438 u64 start, u64 num_bytes, u64 min_size,
7439 loff_t actual_len, u64 *alloc_hint,
7440 struct btrfs_trans_handle *trans)
d899e052 7441{
d899e052
YZ
7442 struct btrfs_root *root = BTRFS_I(inode)->root;
7443 struct btrfs_key ins;
d899e052 7444 u64 cur_offset = start;
55a61d1d 7445 u64 i_size;
d899e052 7446 int ret = 0;
0af3d00b 7447 bool own_trans = true;
d899e052 7448
0af3d00b
JB
7449 if (trans)
7450 own_trans = false;
d899e052 7451 while (num_bytes > 0) {
0af3d00b
JB
7452 if (own_trans) {
7453 trans = btrfs_start_transaction(root, 3);
7454 if (IS_ERR(trans)) {
7455 ret = PTR_ERR(trans);
7456 break;
7457 }
5a303d5d
YZ
7458 }
7459
efa56464
YZ
7460 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7461 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7462 if (ret) {
0af3d00b
JB
7463 if (own_trans)
7464 btrfs_end_transaction(trans, root);
a22285a6 7465 break;
d899e052 7466 }
5a303d5d 7467
d899e052
YZ
7468 ret = insert_reserved_file_extent(trans, inode,
7469 cur_offset, ins.objectid,
7470 ins.offset, ins.offset,
920bbbfb 7471 ins.offset, 0, 0, 0,
d899e052
YZ
7472 BTRFS_FILE_EXTENT_PREALLOC);
7473 BUG_ON(ret);
a1ed835e
CM
7474 btrfs_drop_extent_cache(inode, cur_offset,
7475 cur_offset + ins.offset -1, 0);
5a303d5d 7476
d899e052
YZ
7477 num_bytes -= ins.offset;
7478 cur_offset += ins.offset;
efa56464 7479 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7480
d899e052 7481 inode->i_ctime = CURRENT_TIME;
6cbff00f 7482 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7483 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7484 (actual_len > inode->i_size) &&
7485 (cur_offset > inode->i_size)) {
d1ea6a61 7486 if (cur_offset > actual_len)
55a61d1d 7487 i_size = actual_len;
d1ea6a61 7488 else
55a61d1d
JB
7489 i_size = cur_offset;
7490 i_size_write(inode, i_size);
7491 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7492 }
7493
d899e052
YZ
7494 ret = btrfs_update_inode(trans, root, inode);
7495 BUG_ON(ret);
d899e052 7496
0af3d00b
JB
7497 if (own_trans)
7498 btrfs_end_transaction(trans, root);
5a303d5d 7499 }
d899e052
YZ
7500 return ret;
7501}
7502
0af3d00b
JB
7503int btrfs_prealloc_file_range(struct inode *inode, int mode,
7504 u64 start, u64 num_bytes, u64 min_size,
7505 loff_t actual_len, u64 *alloc_hint)
7506{
7507 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7508 min_size, actual_len, alloc_hint,
7509 NULL);
7510}
7511
7512int btrfs_prealloc_file_range_trans(struct inode *inode,
7513 struct btrfs_trans_handle *trans, int mode,
7514 u64 start, u64 num_bytes, u64 min_size,
7515 loff_t actual_len, u64 *alloc_hint)
7516{
7517 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7518 min_size, actual_len, alloc_hint, trans);
7519}
7520
e6dcd2dc
CM
7521static int btrfs_set_page_dirty(struct page *page)
7522{
e6dcd2dc
CM
7523 return __set_page_dirty_nobuffers(page);
7524}
7525
b74c79e9 7526static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
fdebe2bd 7527{
b83cc969
LZ
7528 struct btrfs_root *root = BTRFS_I(inode)->root;
7529
7530 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7531 return -EROFS;
6cbff00f 7532 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 7533 return -EACCES;
b74c79e9 7534 return generic_permission(inode, mask, flags, btrfs_check_acl);
fdebe2bd 7535}
39279cc3 7536
6e1d5dcc 7537static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7538 .getattr = btrfs_getattr,
39279cc3
CM
7539 .lookup = btrfs_lookup,
7540 .create = btrfs_create,
7541 .unlink = btrfs_unlink,
7542 .link = btrfs_link,
7543 .mkdir = btrfs_mkdir,
7544 .rmdir = btrfs_rmdir,
7545 .rename = btrfs_rename,
7546 .symlink = btrfs_symlink,
7547 .setattr = btrfs_setattr,
618e21d5 7548 .mknod = btrfs_mknod,
95819c05
CH
7549 .setxattr = btrfs_setxattr,
7550 .getxattr = btrfs_getxattr,
5103e947 7551 .listxattr = btrfs_listxattr,
95819c05 7552 .removexattr = btrfs_removexattr,
fdebe2bd 7553 .permission = btrfs_permission,
39279cc3 7554};
6e1d5dcc 7555static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7556 .lookup = btrfs_lookup,
fdebe2bd 7557 .permission = btrfs_permission,
39279cc3 7558};
76dda93c 7559
828c0950 7560static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7561 .llseek = generic_file_llseek,
7562 .read = generic_read_dir,
cbdf5a24 7563 .readdir = btrfs_real_readdir,
34287aa3 7564 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7565#ifdef CONFIG_COMPAT
34287aa3 7566 .compat_ioctl = btrfs_ioctl,
39279cc3 7567#endif
6bf13c0c 7568 .release = btrfs_release_file,
e02119d5 7569 .fsync = btrfs_sync_file,
39279cc3
CM
7570};
7571
d1310b2e 7572static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7573 .fill_delalloc = run_delalloc_range,
065631f6 7574 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7575 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7576 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7577 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7578 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 7579 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
7580 .set_bit_hook = btrfs_set_bit_hook,
7581 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7582 .merge_extent_hook = btrfs_merge_extent_hook,
7583 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7584};
7585
35054394
CM
7586/*
7587 * btrfs doesn't support the bmap operation because swapfiles
7588 * use bmap to make a mapping of extents in the file. They assume
7589 * these extents won't change over the life of the file and they
7590 * use the bmap result to do IO directly to the drive.
7591 *
7592 * the btrfs bmap call would return logical addresses that aren't
7593 * suitable for IO and they also will change frequently as COW
7594 * operations happen. So, swapfile + btrfs == corruption.
7595 *
7596 * For now we're avoiding this by dropping bmap.
7597 */
7f09410b 7598static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7599 .readpage = btrfs_readpage,
7600 .writepage = btrfs_writepage,
b293f02e 7601 .writepages = btrfs_writepages,
3ab2fb5a 7602 .readpages = btrfs_readpages,
16432985 7603 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7604 .invalidatepage = btrfs_invalidatepage,
7605 .releasepage = btrfs_releasepage,
e6dcd2dc 7606 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7607 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7608};
7609
7f09410b 7610static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7611 .readpage = btrfs_readpage,
7612 .writepage = btrfs_writepage,
2bf5a725
CM
7613 .invalidatepage = btrfs_invalidatepage,
7614 .releasepage = btrfs_releasepage,
39279cc3
CM
7615};
7616
6e1d5dcc 7617static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7618 .getattr = btrfs_getattr,
7619 .setattr = btrfs_setattr,
95819c05
CH
7620 .setxattr = btrfs_setxattr,
7621 .getxattr = btrfs_getxattr,
5103e947 7622 .listxattr = btrfs_listxattr,
95819c05 7623 .removexattr = btrfs_removexattr,
fdebe2bd 7624 .permission = btrfs_permission,
1506fcc8 7625 .fiemap = btrfs_fiemap,
39279cc3 7626};
6e1d5dcc 7627static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7628 .getattr = btrfs_getattr,
7629 .setattr = btrfs_setattr,
fdebe2bd 7630 .permission = btrfs_permission,
95819c05
CH
7631 .setxattr = btrfs_setxattr,
7632 .getxattr = btrfs_getxattr,
33268eaf 7633 .listxattr = btrfs_listxattr,
95819c05 7634 .removexattr = btrfs_removexattr,
618e21d5 7635};
6e1d5dcc 7636static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7637 .readlink = generic_readlink,
7638 .follow_link = page_follow_link_light,
7639 .put_link = page_put_link,
f209561a 7640 .getattr = btrfs_getattr,
fdebe2bd 7641 .permission = btrfs_permission,
0279b4cd
JO
7642 .setxattr = btrfs_setxattr,
7643 .getxattr = btrfs_getxattr,
7644 .listxattr = btrfs_listxattr,
7645 .removexattr = btrfs_removexattr,
39279cc3 7646};
76dda93c 7647
82d339d9 7648const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
7649 .d_delete = btrfs_dentry_delete,
7650};