]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/inode.c
btrfs: tests: pass fs_info to extent_map tests
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
8f18cf13 6#include <linux/kernel.h>
065631f6 7#include <linux/bio.h>
39279cc3 8#include <linux/buffer_head.h>
f2eb0a24 9#include <linux/file.h>
39279cc3
CM
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
39279cc3
CM
16#include <linux/backing-dev.h>
17#include <linux/mpage.h>
18#include <linux/swap.h>
19#include <linux/writeback.h>
39279cc3 20#include <linux/compat.h>
9ebefb18 21#include <linux/bit_spinlock.h>
5103e947 22#include <linux/xattr.h>
33268eaf 23#include <linux/posix_acl.h>
d899e052 24#include <linux/falloc.h>
5a0e3ad6 25#include <linux/slab.h>
7a36ddec 26#include <linux/ratelimit.h>
22c44fe6 27#include <linux/mount.h>
55e301fd 28#include <linux/btrfs.h>
53b381b3 29#include <linux/blkdev.h>
f23b5a59 30#include <linux/posix_acl_xattr.h>
e2e40f2c 31#include <linux/uio.h>
69fe2d75 32#include <linux/magic.h>
ae5e165d 33#include <linux/iversion.h>
92d32170 34#include <asm/unaligned.h>
39279cc3
CM
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39279cc3 39#include "print-tree.h"
e6dcd2dc 40#include "ordered-data.h"
95819c05 41#include "xattr.h"
e02119d5 42#include "tree-log.h"
4a54c8c1 43#include "volumes.h"
c8b97818 44#include "compression.h"
b4ce94de 45#include "locking.h"
dc89e982 46#include "free-space-cache.h"
581bb050 47#include "inode-map.h"
38c227d8 48#include "backref.h"
63541927 49#include "props.h"
31193213 50#include "qgroup.h"
dda3245e 51#include "dedupe.h"
39279cc3
CM
52
53struct btrfs_iget_args {
90d3e592 54 struct btrfs_key *location;
39279cc3
CM
55 struct btrfs_root *root;
56};
57
f28a4928 58struct btrfs_dio_data {
f28a4928
FM
59 u64 reserve;
60 u64 unsubmitted_oe_range_start;
61 u64 unsubmitted_oe_range_end;
4aaedfb0 62 int overwrite;
f28a4928
FM
63};
64
6e1d5dcc
AD
65static const struct inode_operations btrfs_dir_inode_operations;
66static const struct inode_operations btrfs_symlink_inode_operations;
67static const struct inode_operations btrfs_dir_ro_inode_operations;
68static const struct inode_operations btrfs_special_inode_operations;
69static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
70static const struct address_space_operations btrfs_aops;
71static const struct address_space_operations btrfs_symlink_aops;
828c0950 72static const struct file_operations btrfs_dir_file_operations;
20e5506b 73static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
74
75static struct kmem_cache *btrfs_inode_cachep;
76struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 77struct kmem_cache *btrfs_path_cachep;
dc89e982 78struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
79
80#define S_SHIFT 12
4d4ab6d6 81static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
82 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
83 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
84 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
85 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
86 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
87 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
88 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
89};
90
3972f260 91static int btrfs_setsize(struct inode *inode, struct iattr *attr);
213e8c55 92static int btrfs_truncate(struct inode *inode, bool skip_writeback);
5fd02043 93static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
94static noinline int cow_file_range(struct inode *inode,
95 struct page *locked_page,
dda3245e
WX
96 u64 start, u64 end, u64 delalloc_end,
97 int *page_started, unsigned long *nr_written,
98 int unlock, struct btrfs_dedupe_hash *hash);
6f9994db
LB
99static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
100 u64 orig_start, u64 block_start,
101 u64 block_len, u64 orig_block_len,
102 u64 ram_bytes, int compress_type,
103 int type);
7b128766 104
52427260
QW
105static void __endio_write_update_ordered(struct inode *inode,
106 const u64 offset, const u64 bytes,
107 const bool uptodate);
108
109/*
110 * Cleanup all submitted ordered extents in specified range to handle errors
111 * from the fill_dellaloc() callback.
112 *
113 * NOTE: caller must ensure that when an error happens, it can not call
114 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
115 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
116 * to be released, which we want to happen only when finishing the ordered
117 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
118 * fill_delalloc() callback already does proper cleanup for the first page of
119 * the range, that is, it invokes the callback writepage_end_io_hook() for the
120 * range of the first page.
121 */
122static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
123 const u64 offset,
124 const u64 bytes)
125{
63d71450
NA
126 unsigned long index = offset >> PAGE_SHIFT;
127 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
128 struct page *page;
129
130 while (index <= end_index) {
131 page = find_get_page(inode->i_mapping, index);
132 index++;
133 if (!page)
134 continue;
135 ClearPagePrivate2(page);
136 put_page(page);
137 }
52427260
QW
138 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
139 bytes - PAGE_SIZE, false);
140}
141
48a3b636 142static int btrfs_dirty_inode(struct inode *inode);
7b128766 143
6a3891c5
JB
144#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
145void btrfs_test_inode_set_ops(struct inode *inode)
146{
147 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
148}
149#endif
150
f34f57a3 151static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
152 struct inode *inode, struct inode *dir,
153 const struct qstr *qstr)
0279b4cd
JO
154{
155 int err;
156
f34f57a3 157 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 158 if (!err)
2a7dba39 159 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
160 return err;
161}
162
c8b97818
CM
163/*
164 * this does all the hard work for inserting an inline extent into
165 * the btree. The caller should have done a btrfs_drop_extents so that
166 * no overlapping inline items exist in the btree
167 */
40f76580 168static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 169 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
170 struct btrfs_root *root, struct inode *inode,
171 u64 start, size_t size, size_t compressed_size,
fe3f566c 172 int compress_type,
c8b97818
CM
173 struct page **compressed_pages)
174{
c8b97818
CM
175 struct extent_buffer *leaf;
176 struct page *page = NULL;
177 char *kaddr;
178 unsigned long ptr;
179 struct btrfs_file_extent_item *ei;
c8b97818
CM
180 int ret;
181 size_t cur_size = size;
c8b97818 182 unsigned long offset;
c8b97818 183
fe3f566c 184 if (compressed_size && compressed_pages)
c8b97818 185 cur_size = compressed_size;
c8b97818 186
1acae57b 187 inode_add_bytes(inode, size);
c8b97818 188
1acae57b
FDBM
189 if (!extent_inserted) {
190 struct btrfs_key key;
191 size_t datasize;
c8b97818 192
4a0cc7ca 193 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 194 key.offset = start;
962a298f 195 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 196
1acae57b
FDBM
197 datasize = btrfs_file_extent_calc_inline_size(cur_size);
198 path->leave_spinning = 1;
199 ret = btrfs_insert_empty_item(trans, root, path, &key,
200 datasize);
79b4f4c6 201 if (ret)
1acae57b 202 goto fail;
c8b97818
CM
203 }
204 leaf = path->nodes[0];
205 ei = btrfs_item_ptr(leaf, path->slots[0],
206 struct btrfs_file_extent_item);
207 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
208 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
209 btrfs_set_file_extent_encryption(leaf, ei, 0);
210 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
211 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
212 ptr = btrfs_file_extent_inline_start(ei);
213
261507a0 214 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
215 struct page *cpage;
216 int i = 0;
d397712b 217 while (compressed_size > 0) {
c8b97818 218 cpage = compressed_pages[i];
5b050f04 219 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 220 PAGE_SIZE);
c8b97818 221
7ac687d9 222 kaddr = kmap_atomic(cpage);
c8b97818 223 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 224 kunmap_atomic(kaddr);
c8b97818
CM
225
226 i++;
227 ptr += cur_size;
228 compressed_size -= cur_size;
229 }
230 btrfs_set_file_extent_compression(leaf, ei,
261507a0 231 compress_type);
c8b97818
CM
232 } else {
233 page = find_get_page(inode->i_mapping,
09cbfeaf 234 start >> PAGE_SHIFT);
c8b97818 235 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 236 kaddr = kmap_atomic(page);
09cbfeaf 237 offset = start & (PAGE_SIZE - 1);
c8b97818 238 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 239 kunmap_atomic(kaddr);
09cbfeaf 240 put_page(page);
c8b97818
CM
241 }
242 btrfs_mark_buffer_dirty(leaf);
1acae57b 243 btrfs_release_path(path);
c8b97818 244
c2167754
YZ
245 /*
246 * we're an inline extent, so nobody can
247 * extend the file past i_size without locking
248 * a page we already have locked.
249 *
250 * We must do any isize and inode updates
251 * before we unlock the pages. Otherwise we
252 * could end up racing with unlink.
253 */
c8b97818 254 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 255 ret = btrfs_update_inode(trans, root, inode);
c2167754 256
c8b97818 257fail:
79b4f4c6 258 return ret;
c8b97818
CM
259}
260
261
262/*
263 * conditionally insert an inline extent into the file. This
264 * does the checks required to make sure the data is small enough
265 * to fit as an inline extent.
266 */
d02c0e20 267static noinline int cow_file_range_inline(struct inode *inode, u64 start,
00361589
JB
268 u64 end, size_t compressed_size,
269 int compress_type,
270 struct page **compressed_pages)
c8b97818 271{
d02c0e20 272 struct btrfs_root *root = BTRFS_I(inode)->root;
0b246afa 273 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 274 struct btrfs_trans_handle *trans;
c8b97818
CM
275 u64 isize = i_size_read(inode);
276 u64 actual_end = min(end + 1, isize);
277 u64 inline_len = actual_end - start;
0b246afa 278 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
279 u64 data_len = inline_len;
280 int ret;
1acae57b
FDBM
281 struct btrfs_path *path;
282 int extent_inserted = 0;
283 u32 extent_item_size;
c8b97818
CM
284
285 if (compressed_size)
286 data_len = compressed_size;
287
288 if (start > 0 ||
0b246afa
JM
289 actual_end > fs_info->sectorsize ||
290 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 291 (!compressed_size &&
0b246afa 292 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 293 end + 1 < isize ||
0b246afa 294 data_len > fs_info->max_inline) {
c8b97818
CM
295 return 1;
296 }
297
1acae57b
FDBM
298 path = btrfs_alloc_path();
299 if (!path)
300 return -ENOMEM;
301
00361589 302 trans = btrfs_join_transaction(root);
1acae57b
FDBM
303 if (IS_ERR(trans)) {
304 btrfs_free_path(path);
00361589 305 return PTR_ERR(trans);
1acae57b 306 }
69fe2d75 307 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
00361589 308
1acae57b
FDBM
309 if (compressed_size && compressed_pages)
310 extent_item_size = btrfs_file_extent_calc_inline_size(
311 compressed_size);
312 else
313 extent_item_size = btrfs_file_extent_calc_inline_size(
314 inline_len);
315
316 ret = __btrfs_drop_extents(trans, root, inode, path,
317 start, aligned_end, NULL,
318 1, 1, extent_item_size, &extent_inserted);
00361589 319 if (ret) {
66642832 320 btrfs_abort_transaction(trans, ret);
00361589
JB
321 goto out;
322 }
c8b97818
CM
323
324 if (isize > actual_end)
325 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
326 ret = insert_inline_extent(trans, path, extent_inserted,
327 root, inode, start,
c8b97818 328 inline_len, compressed_size,
fe3f566c 329 compress_type, compressed_pages);
2adcac1a 330 if (ret && ret != -ENOSPC) {
66642832 331 btrfs_abort_transaction(trans, ret);
00361589 332 goto out;
2adcac1a 333 } else if (ret == -ENOSPC) {
00361589
JB
334 ret = 1;
335 goto out;
79787eaa 336 }
2adcac1a 337
bdc20e67 338 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
dcdbc059 339 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 340out:
94ed938a
QW
341 /*
342 * Don't forget to free the reserved space, as for inlined extent
343 * it won't count as data extent, free them directly here.
344 * And at reserve time, it's always aligned to page size, so
345 * just free one page here.
346 */
bc42bda2 347 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 348 btrfs_free_path(path);
3a45bb20 349 btrfs_end_transaction(trans);
00361589 350 return ret;
c8b97818
CM
351}
352
771ed689
CM
353struct async_extent {
354 u64 start;
355 u64 ram_size;
356 u64 compressed_size;
357 struct page **pages;
358 unsigned long nr_pages;
261507a0 359 int compress_type;
771ed689
CM
360 struct list_head list;
361};
362
363struct async_cow {
364 struct inode *inode;
365 struct btrfs_root *root;
366 struct page *locked_page;
367 u64 start;
368 u64 end;
f82b7359 369 unsigned int write_flags;
771ed689
CM
370 struct list_head extents;
371 struct btrfs_work work;
372};
373
374static noinline int add_async_extent(struct async_cow *cow,
375 u64 start, u64 ram_size,
376 u64 compressed_size,
377 struct page **pages,
261507a0
LZ
378 unsigned long nr_pages,
379 int compress_type)
771ed689
CM
380{
381 struct async_extent *async_extent;
382
383 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 384 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
385 async_extent->start = start;
386 async_extent->ram_size = ram_size;
387 async_extent->compressed_size = compressed_size;
388 async_extent->pages = pages;
389 async_extent->nr_pages = nr_pages;
261507a0 390 async_extent->compress_type = compress_type;
771ed689
CM
391 list_add_tail(&async_extent->list, &cow->extents);
392 return 0;
393}
394
c2fcdcdf 395static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
f79707b0 396{
0b246afa 397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
398
399 /* force compress */
0b246afa 400 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 401 return 1;
eec63c65
DS
402 /* defrag ioctl */
403 if (BTRFS_I(inode)->defrag_compress)
404 return 1;
f79707b0
WS
405 /* bad compression ratios */
406 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
407 return 0;
0b246afa 408 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0 409 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
b52aa8c9 410 BTRFS_I(inode)->prop_compress)
c2fcdcdf 411 return btrfs_compress_heuristic(inode, start, end);
f79707b0
WS
412 return 0;
413}
414
6158e1ce 415static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
416 u64 start, u64 end, u64 num_bytes, u64 small_write)
417{
418 /* If this is a small write inside eof, kick off a defrag */
419 if (num_bytes < small_write &&
6158e1ce 420 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
421 btrfs_add_inode_defrag(NULL, inode);
422}
423
d352ac68 424/*
771ed689
CM
425 * we create compressed extents in two phases. The first
426 * phase compresses a range of pages that have already been
427 * locked (both pages and state bits are locked).
c8b97818 428 *
771ed689
CM
429 * This is done inside an ordered work queue, and the compression
430 * is spread across many cpus. The actual IO submission is step
431 * two, and the ordered work queue takes care of making sure that
432 * happens in the same order things were put onto the queue by
433 * writepages and friends.
c8b97818 434 *
771ed689
CM
435 * If this code finds it can't get good compression, it puts an
436 * entry onto the work queue to write the uncompressed bytes. This
437 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
438 * are written in the same order that the flusher thread sent them
439 * down.
d352ac68 440 */
c44f649e 441static noinline void compress_file_range(struct inode *inode,
771ed689
CM
442 struct page *locked_page,
443 u64 start, u64 end,
444 struct async_cow *async_cow,
445 int *num_added)
b888db2b 446{
0b246afa 447 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0b246afa 448 u64 blocksize = fs_info->sectorsize;
c8b97818 449 u64 actual_end;
42dc7bab 450 u64 isize = i_size_read(inode);
e6dcd2dc 451 int ret = 0;
c8b97818
CM
452 struct page **pages = NULL;
453 unsigned long nr_pages;
c8b97818
CM
454 unsigned long total_compressed = 0;
455 unsigned long total_in = 0;
c8b97818
CM
456 int i;
457 int will_compress;
0b246afa 458 int compress_type = fs_info->compress_type;
4adaa611 459 int redirty = 0;
b888db2b 460
6158e1ce
NB
461 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
462 SZ_16K);
4cb5300b 463
42dc7bab 464 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
465again:
466 will_compress = 0;
09cbfeaf 467 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
468 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
469 nr_pages = min_t(unsigned long, nr_pages,
470 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 471
f03d9301
CM
472 /*
473 * we don't want to send crud past the end of i_size through
474 * compression, that's just a waste of CPU time. So, if the
475 * end of the file is before the start of our current
476 * requested range of bytes, we bail out to the uncompressed
477 * cleanup code that can deal with all of this.
478 *
479 * It isn't really the fastest way to fix things, but this is a
480 * very uncommon corner.
481 */
482 if (actual_end <= start)
483 goto cleanup_and_bail_uncompressed;
484
c8b97818
CM
485 total_compressed = actual_end - start;
486
4bcbb332
SW
487 /*
488 * skip compression for a small file range(<=blocksize) that
01327610 489 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
490 */
491 if (total_compressed <= blocksize &&
492 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
493 goto cleanup_and_bail_uncompressed;
494
069eac78
DS
495 total_compressed = min_t(unsigned long, total_compressed,
496 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
497 total_in = 0;
498 ret = 0;
db94535d 499
771ed689
CM
500 /*
501 * we do compression for mount -o compress and when the
502 * inode has not been flagged as nocompress. This flag can
503 * change at any time if we discover bad compression ratios.
c8b97818 504 */
c2fcdcdf 505 if (inode_need_compress(inode, start, end)) {
c8b97818 506 WARN_ON(pages);
31e818fe 507 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
508 if (!pages) {
509 /* just bail out to the uncompressed code */
510 goto cont;
511 }
c8b97818 512
eec63c65
DS
513 if (BTRFS_I(inode)->defrag_compress)
514 compress_type = BTRFS_I(inode)->defrag_compress;
515 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 516 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 517
4adaa611
CM
518 /*
519 * we need to call clear_page_dirty_for_io on each
520 * page in the range. Otherwise applications with the file
521 * mmap'd can wander in and change the page contents while
522 * we are compressing them.
523 *
524 * If the compression fails for any reason, we set the pages
525 * dirty again later on.
e9679de3
TT
526 *
527 * Note that the remaining part is redirtied, the start pointer
528 * has moved, the end is the original one.
4adaa611 529 */
e9679de3
TT
530 if (!redirty) {
531 extent_range_clear_dirty_for_io(inode, start, end);
532 redirty = 1;
533 }
f51d2b59
DS
534
535 /* Compression level is applied here and only here */
536 ret = btrfs_compress_pages(
537 compress_type | (fs_info->compress_level << 4),
261507a0 538 inode->i_mapping, start,
38c31464 539 pages,
4d3a800e 540 &nr_pages,
261507a0 541 &total_in,
e5d74902 542 &total_compressed);
c8b97818
CM
543
544 if (!ret) {
545 unsigned long offset = total_compressed &
09cbfeaf 546 (PAGE_SIZE - 1);
4d3a800e 547 struct page *page = pages[nr_pages - 1];
c8b97818
CM
548 char *kaddr;
549
550 /* zero the tail end of the last page, we might be
551 * sending it down to disk
552 */
553 if (offset) {
7ac687d9 554 kaddr = kmap_atomic(page);
c8b97818 555 memset(kaddr + offset, 0,
09cbfeaf 556 PAGE_SIZE - offset);
7ac687d9 557 kunmap_atomic(kaddr);
c8b97818
CM
558 }
559 will_compress = 1;
560 }
561 }
560f7d75 562cont:
c8b97818
CM
563 if (start == 0) {
564 /* lets try to make an inline extent */
6018ba0a 565 if (ret || total_in < actual_end) {
c8b97818 566 /* we didn't compress the entire range, try
771ed689 567 * to make an uncompressed inline extent.
c8b97818 568 */
d02c0e20
NB
569 ret = cow_file_range_inline(inode, start, end, 0,
570 BTRFS_COMPRESS_NONE, NULL);
c8b97818 571 } else {
771ed689 572 /* try making a compressed inline extent */
d02c0e20 573 ret = cow_file_range_inline(inode, start, end,
fe3f566c
LZ
574 total_compressed,
575 compress_type, pages);
c8b97818 576 }
79787eaa 577 if (ret <= 0) {
151a41bc 578 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
579 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
580 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
581 unsigned long page_error_op;
582
e6eb4314 583 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 584
771ed689 585 /*
79787eaa
JM
586 * inline extent creation worked or returned error,
587 * we don't need to create any more async work items.
588 * Unlock and free up our temp pages.
8b62f87b
JB
589 *
590 * We use DO_ACCOUNTING here because we need the
591 * delalloc_release_metadata to be done _after_ we drop
592 * our outstanding extent for clearing delalloc for this
593 * range.
771ed689 594 */
ba8b04c1
QW
595 extent_clear_unlock_delalloc(inode, start, end, end,
596 NULL, clear_flags,
597 PAGE_UNLOCK |
c2790a2e
JB
598 PAGE_CLEAR_DIRTY |
599 PAGE_SET_WRITEBACK |
e6eb4314 600 page_error_op |
c2790a2e 601 PAGE_END_WRITEBACK);
c8b97818
CM
602 goto free_pages_out;
603 }
604 }
605
606 if (will_compress) {
607 /*
608 * we aren't doing an inline extent round the compressed size
609 * up to a block size boundary so the allocator does sane
610 * things
611 */
fda2832f 612 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
613
614 /*
615 * one last check to make sure the compression is really a
170607eb
TT
616 * win, compare the page count read with the blocks on disk,
617 * compression must free at least one sector size
c8b97818 618 */
09cbfeaf 619 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 620 if (total_compressed + blocksize <= total_in) {
c8bb0c8b
AS
621 *num_added += 1;
622
623 /*
624 * The async work queues will take care of doing actual
625 * allocation on disk for these compressed pages, and
626 * will submit them to the elevator.
627 */
1170862d 628 add_async_extent(async_cow, start, total_in,
4d3a800e 629 total_compressed, pages, nr_pages,
c8bb0c8b
AS
630 compress_type);
631
1170862d
TT
632 if (start + total_in < end) {
633 start += total_in;
c8bb0c8b
AS
634 pages = NULL;
635 cond_resched();
636 goto again;
637 }
638 return;
c8b97818
CM
639 }
640 }
c8bb0c8b 641 if (pages) {
c8b97818
CM
642 /*
643 * the compression code ran but failed to make things smaller,
644 * free any pages it allocated and our page pointer array
645 */
4d3a800e 646 for (i = 0; i < nr_pages; i++) {
70b99e69 647 WARN_ON(pages[i]->mapping);
09cbfeaf 648 put_page(pages[i]);
c8b97818
CM
649 }
650 kfree(pages);
651 pages = NULL;
652 total_compressed = 0;
4d3a800e 653 nr_pages = 0;
c8b97818
CM
654
655 /* flag the file so we don't compress in the future */
0b246afa 656 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 657 !(BTRFS_I(inode)->prop_compress)) {
a555f810 658 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 659 }
c8b97818 660 }
f03d9301 661cleanup_and_bail_uncompressed:
c8bb0c8b
AS
662 /*
663 * No compression, but we still need to write the pages in the file
664 * we've been given so far. redirty the locked page if it corresponds
665 * to our extent and set things up for the async work queue to run
666 * cow_file_range to do the normal delalloc dance.
667 */
668 if (page_offset(locked_page) >= start &&
669 page_offset(locked_page) <= end)
670 __set_page_dirty_nobuffers(locked_page);
671 /* unlocked later on in the async handlers */
672
673 if (redirty)
674 extent_range_redirty_for_io(inode, start, end);
675 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
676 BTRFS_COMPRESS_NONE);
677 *num_added += 1;
3b951516 678
c44f649e 679 return;
771ed689
CM
680
681free_pages_out:
4d3a800e 682 for (i = 0; i < nr_pages; i++) {
771ed689 683 WARN_ON(pages[i]->mapping);
09cbfeaf 684 put_page(pages[i]);
771ed689 685 }
d397712b 686 kfree(pages);
771ed689 687}
771ed689 688
40ae837b
FM
689static void free_async_extent_pages(struct async_extent *async_extent)
690{
691 int i;
692
693 if (!async_extent->pages)
694 return;
695
696 for (i = 0; i < async_extent->nr_pages; i++) {
697 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 698 put_page(async_extent->pages[i]);
40ae837b
FM
699 }
700 kfree(async_extent->pages);
701 async_extent->nr_pages = 0;
702 async_extent->pages = NULL;
771ed689
CM
703}
704
705/*
706 * phase two of compressed writeback. This is the ordered portion
707 * of the code, which only gets called in the order the work was
708 * queued. We walk all the async extents created by compress_file_range
709 * and send them down to the disk.
710 */
dec8f175 711static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
712 struct async_cow *async_cow)
713{
0b246afa 714 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
715 struct async_extent *async_extent;
716 u64 alloc_hint = 0;
771ed689
CM
717 struct btrfs_key ins;
718 struct extent_map *em;
719 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689 720 struct extent_io_tree *io_tree;
f5a84ee3 721 int ret = 0;
771ed689 722
3e04e7f1 723again:
d397712b 724 while (!list_empty(&async_cow->extents)) {
771ed689
CM
725 async_extent = list_entry(async_cow->extents.next,
726 struct async_extent, list);
727 list_del(&async_extent->list);
c8b97818 728
771ed689
CM
729 io_tree = &BTRFS_I(inode)->io_tree;
730
f5a84ee3 731retry:
771ed689
CM
732 /* did the compression code fall back to uncompressed IO? */
733 if (!async_extent->pages) {
734 int page_started = 0;
735 unsigned long nr_written = 0;
736
737 lock_extent(io_tree, async_extent->start,
2ac55d41 738 async_extent->start +
d0082371 739 async_extent->ram_size - 1);
771ed689
CM
740
741 /* allocate blocks */
f5a84ee3
JB
742 ret = cow_file_range(inode, async_cow->locked_page,
743 async_extent->start,
744 async_extent->start +
745 async_extent->ram_size - 1,
dda3245e
WX
746 async_extent->start +
747 async_extent->ram_size - 1,
748 &page_started, &nr_written, 0,
749 NULL);
771ed689 750
79787eaa
JM
751 /* JDM XXX */
752
771ed689
CM
753 /*
754 * if page_started, cow_file_range inserted an
755 * inline extent and took care of all the unlocking
756 * and IO for us. Otherwise, we need to submit
757 * all those pages down to the drive.
758 */
f5a84ee3 759 if (!page_started && !ret)
5e3ee236
NB
760 extent_write_locked_range(inode,
761 async_extent->start,
d397712b 762 async_extent->start +
771ed689 763 async_extent->ram_size - 1,
771ed689 764 WB_SYNC_ALL);
3e04e7f1
JB
765 else if (ret)
766 unlock_page(async_cow->locked_page);
771ed689
CM
767 kfree(async_extent);
768 cond_resched();
769 continue;
770 }
771
772 lock_extent(io_tree, async_extent->start,
d0082371 773 async_extent->start + async_extent->ram_size - 1);
771ed689 774
18513091 775 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
776 async_extent->compressed_size,
777 async_extent->compressed_size,
e570fd27 778 0, alloc_hint, &ins, 1, 1);
f5a84ee3 779 if (ret) {
40ae837b 780 free_async_extent_pages(async_extent);
3e04e7f1 781
fdf8e2ea
JB
782 if (ret == -ENOSPC) {
783 unlock_extent(io_tree, async_extent->start,
784 async_extent->start +
785 async_extent->ram_size - 1);
ce62003f
LB
786
787 /*
788 * we need to redirty the pages if we decide to
789 * fallback to uncompressed IO, otherwise we
790 * will not submit these pages down to lower
791 * layers.
792 */
793 extent_range_redirty_for_io(inode,
794 async_extent->start,
795 async_extent->start +
796 async_extent->ram_size - 1);
797
79787eaa 798 goto retry;
fdf8e2ea 799 }
3e04e7f1 800 goto out_free;
f5a84ee3 801 }
c2167754
YZ
802 /*
803 * here we're doing allocation and writeback of the
804 * compressed pages
805 */
6f9994db
LB
806 em = create_io_em(inode, async_extent->start,
807 async_extent->ram_size, /* len */
808 async_extent->start, /* orig_start */
809 ins.objectid, /* block_start */
810 ins.offset, /* block_len */
811 ins.offset, /* orig_block_len */
812 async_extent->ram_size, /* ram_bytes */
813 async_extent->compress_type,
814 BTRFS_ORDERED_COMPRESSED);
815 if (IS_ERR(em))
816 /* ret value is not necessary due to void function */
3e04e7f1 817 goto out_free_reserve;
6f9994db 818 free_extent_map(em);
3e04e7f1 819
261507a0
LZ
820 ret = btrfs_add_ordered_extent_compress(inode,
821 async_extent->start,
822 ins.objectid,
823 async_extent->ram_size,
824 ins.offset,
825 BTRFS_ORDERED_COMPRESSED,
826 async_extent->compress_type);
d9f85963 827 if (ret) {
dcdbc059
NB
828 btrfs_drop_extent_cache(BTRFS_I(inode),
829 async_extent->start,
d9f85963
FM
830 async_extent->start +
831 async_extent->ram_size - 1, 0);
3e04e7f1 832 goto out_free_reserve;
d9f85963 833 }
0b246afa 834 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 835
771ed689
CM
836 /*
837 * clear dirty, set writeback and unlock the pages.
838 */
c2790a2e 839 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
840 async_extent->start +
841 async_extent->ram_size - 1,
a791e35e
CM
842 async_extent->start +
843 async_extent->ram_size - 1,
151a41bc
JB
844 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
845 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 846 PAGE_SET_WRITEBACK);
4e4cbee9 847 if (btrfs_submit_compressed_write(inode,
d397712b
CM
848 async_extent->start,
849 async_extent->ram_size,
850 ins.objectid,
851 ins.offset, async_extent->pages,
f82b7359
LB
852 async_extent->nr_pages,
853 async_cow->write_flags)) {
fce2a4e6
FM
854 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
855 struct page *p = async_extent->pages[0];
856 const u64 start = async_extent->start;
857 const u64 end = start + async_extent->ram_size - 1;
858
859 p->mapping = inode->i_mapping;
860 tree->ops->writepage_end_io_hook(p, start, end,
861 NULL, 0);
862 p->mapping = NULL;
ba8b04c1
QW
863 extent_clear_unlock_delalloc(inode, start, end, end,
864 NULL, 0,
fce2a4e6
FM
865 PAGE_END_WRITEBACK |
866 PAGE_SET_ERROR);
40ae837b 867 free_async_extent_pages(async_extent);
fce2a4e6 868 }
771ed689
CM
869 alloc_hint = ins.objectid + ins.offset;
870 kfree(async_extent);
871 cond_resched();
872 }
dec8f175 873 return;
3e04e7f1 874out_free_reserve:
0b246afa 875 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 876 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 877out_free:
c2790a2e 878 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
879 async_extent->start +
880 async_extent->ram_size - 1,
3e04e7f1
JB
881 async_extent->start +
882 async_extent->ram_size - 1,
c2790a2e 883 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 884 EXTENT_DELALLOC_NEW |
151a41bc
JB
885 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
886 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
887 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
888 PAGE_SET_ERROR);
40ae837b 889 free_async_extent_pages(async_extent);
79787eaa 890 kfree(async_extent);
3e04e7f1 891 goto again;
771ed689
CM
892}
893
4b46fce2
JB
894static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
895 u64 num_bytes)
896{
897 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
898 struct extent_map *em;
899 u64 alloc_hint = 0;
900
901 read_lock(&em_tree->lock);
902 em = search_extent_mapping(em_tree, start, num_bytes);
903 if (em) {
904 /*
905 * if block start isn't an actual block number then find the
906 * first block in this inode and use that as a hint. If that
907 * block is also bogus then just don't worry about it.
908 */
909 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
910 free_extent_map(em);
911 em = search_extent_mapping(em_tree, 0, 0);
912 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
913 alloc_hint = em->block_start;
914 if (em)
915 free_extent_map(em);
916 } else {
917 alloc_hint = em->block_start;
918 free_extent_map(em);
919 }
920 }
921 read_unlock(&em_tree->lock);
922
923 return alloc_hint;
924}
925
771ed689
CM
926/*
927 * when extent_io.c finds a delayed allocation range in the file,
928 * the call backs end up in this code. The basic idea is to
929 * allocate extents on disk for the range, and create ordered data structs
930 * in ram to track those extents.
931 *
932 * locked_page is the page that writepage had locked already. We use
933 * it to make sure we don't do extra locks or unlocks.
934 *
935 * *page_started is set to one if we unlock locked_page and do everything
936 * required to start IO on it. It may be clean and already done with
937 * IO when we return.
938 */
00361589
JB
939static noinline int cow_file_range(struct inode *inode,
940 struct page *locked_page,
dda3245e
WX
941 u64 start, u64 end, u64 delalloc_end,
942 int *page_started, unsigned long *nr_written,
943 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 944{
0b246afa 945 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 946 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
947 u64 alloc_hint = 0;
948 u64 num_bytes;
949 unsigned long ram_size;
a315e68f 950 u64 cur_alloc_size = 0;
0b246afa 951 u64 blocksize = fs_info->sectorsize;
771ed689
CM
952 struct btrfs_key ins;
953 struct extent_map *em;
a315e68f
FM
954 unsigned clear_bits;
955 unsigned long page_ops;
956 bool extent_reserved = false;
771ed689
CM
957 int ret = 0;
958
70ddc553 959 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 960 WARN_ON_ONCE(1);
29bce2f3
JB
961 ret = -EINVAL;
962 goto out_unlock;
02ecd2c2 963 }
771ed689 964
fda2832f 965 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 966 num_bytes = max(blocksize, num_bytes);
566b1760 967 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 968
6158e1ce 969 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 970
771ed689
CM
971 if (start == 0) {
972 /* lets try to make an inline extent */
d02c0e20
NB
973 ret = cow_file_range_inline(inode, start, end, 0,
974 BTRFS_COMPRESS_NONE, NULL);
771ed689 975 if (ret == 0) {
8b62f87b
JB
976 /*
977 * We use DO_ACCOUNTING here because we need the
978 * delalloc_release_metadata to be run _after_ we drop
979 * our outstanding extent for clearing delalloc for this
980 * range.
981 */
ba8b04c1
QW
982 extent_clear_unlock_delalloc(inode, start, end,
983 delalloc_end, NULL,
c2790a2e 984 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
985 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
986 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
987 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
988 PAGE_END_WRITEBACK);
771ed689 989 *nr_written = *nr_written +
09cbfeaf 990 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 991 *page_started = 1;
771ed689 992 goto out;
79787eaa 993 } else if (ret < 0) {
79787eaa 994 goto out_unlock;
771ed689
CM
995 }
996 }
997
4b46fce2 998 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
999 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1000 start + num_bytes - 1, 0);
771ed689 1001
3752d22f
AJ
1002 while (num_bytes > 0) {
1003 cur_alloc_size = num_bytes;
18513091 1004 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 1005 fs_info->sectorsize, 0, alloc_hint,
e570fd27 1006 &ins, 1, 1);
00361589 1007 if (ret < 0)
79787eaa 1008 goto out_unlock;
a315e68f
FM
1009 cur_alloc_size = ins.offset;
1010 extent_reserved = true;
d397712b 1011
771ed689 1012 ram_size = ins.offset;
6f9994db
LB
1013 em = create_io_em(inode, start, ins.offset, /* len */
1014 start, /* orig_start */
1015 ins.objectid, /* block_start */
1016 ins.offset, /* block_len */
1017 ins.offset, /* orig_block_len */
1018 ram_size, /* ram_bytes */
1019 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1020 BTRFS_ORDERED_REGULAR /* type */);
6f9994db 1021 if (IS_ERR(em))
ace68bac 1022 goto out_reserve;
6f9994db 1023 free_extent_map(em);
e6dcd2dc 1024
e6dcd2dc 1025 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1026 ram_size, cur_alloc_size, 0);
ace68bac 1027 if (ret)
d9f85963 1028 goto out_drop_extent_cache;
c8b97818 1029
17d217fe
YZ
1030 if (root->root_key.objectid ==
1031 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1032 ret = btrfs_reloc_clone_csums(inode, start,
1033 cur_alloc_size);
4dbd80fb
QW
1034 /*
1035 * Only drop cache here, and process as normal.
1036 *
1037 * We must not allow extent_clear_unlock_delalloc()
1038 * at out_unlock label to free meta of this ordered
1039 * extent, as its meta should be freed by
1040 * btrfs_finish_ordered_io().
1041 *
1042 * So we must continue until @start is increased to
1043 * skip current ordered extent.
1044 */
00361589 1045 if (ret)
4dbd80fb
QW
1046 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1047 start + ram_size - 1, 0);
17d217fe
YZ
1048 }
1049
0b246afa 1050 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1051
c8b97818
CM
1052 /* we're not doing compressed IO, don't unlock the first
1053 * page (which the caller expects to stay locked), don't
1054 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1055 *
1056 * Do set the Private2 bit so we know this page was properly
1057 * setup for writepage
c8b97818 1058 */
a315e68f
FM
1059 page_ops = unlock ? PAGE_UNLOCK : 0;
1060 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1061
c2790a2e 1062 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1063 start + ram_size - 1,
1064 delalloc_end, locked_page,
c2790a2e 1065 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1066 page_ops);
3752d22f
AJ
1067 if (num_bytes < cur_alloc_size)
1068 num_bytes = 0;
4dbd80fb 1069 else
3752d22f 1070 num_bytes -= cur_alloc_size;
c59f8951
CM
1071 alloc_hint = ins.objectid + ins.offset;
1072 start += cur_alloc_size;
a315e68f 1073 extent_reserved = false;
4dbd80fb
QW
1074
1075 /*
1076 * btrfs_reloc_clone_csums() error, since start is increased
1077 * extent_clear_unlock_delalloc() at out_unlock label won't
1078 * free metadata of current ordered extent, we're OK to exit.
1079 */
1080 if (ret)
1081 goto out_unlock;
b888db2b 1082 }
79787eaa 1083out:
be20aa9d 1084 return ret;
b7d5b0a8 1085
d9f85963 1086out_drop_extent_cache:
dcdbc059 1087 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1088out_reserve:
0b246afa 1089 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1090 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1091out_unlock:
a7e3b975
FM
1092 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1093 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1094 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1095 PAGE_END_WRITEBACK;
1096 /*
1097 * If we reserved an extent for our delalloc range (or a subrange) and
1098 * failed to create the respective ordered extent, then it means that
1099 * when we reserved the extent we decremented the extent's size from
1100 * the data space_info's bytes_may_use counter and incremented the
1101 * space_info's bytes_reserved counter by the same amount. We must make
1102 * sure extent_clear_unlock_delalloc() does not try to decrement again
1103 * the data space_info's bytes_may_use counter, therefore we do not pass
1104 * it the flag EXTENT_CLEAR_DATA_RESV.
1105 */
1106 if (extent_reserved) {
1107 extent_clear_unlock_delalloc(inode, start,
1108 start + cur_alloc_size,
1109 start + cur_alloc_size,
1110 locked_page,
1111 clear_bits,
1112 page_ops);
1113 start += cur_alloc_size;
1114 if (start >= end)
1115 goto out;
1116 }
ba8b04c1
QW
1117 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1118 locked_page,
a315e68f
FM
1119 clear_bits | EXTENT_CLEAR_DATA_RESV,
1120 page_ops);
79787eaa 1121 goto out;
771ed689 1122}
c8b97818 1123
771ed689
CM
1124/*
1125 * work queue call back to started compression on a file and pages
1126 */
1127static noinline void async_cow_start(struct btrfs_work *work)
1128{
1129 struct async_cow *async_cow;
1130 int num_added = 0;
1131 async_cow = container_of(work, struct async_cow, work);
1132
1133 compress_file_range(async_cow->inode, async_cow->locked_page,
1134 async_cow->start, async_cow->end, async_cow,
1135 &num_added);
8180ef88 1136 if (num_added == 0) {
cb77fcd8 1137 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1138 async_cow->inode = NULL;
8180ef88 1139 }
771ed689
CM
1140}
1141
1142/*
1143 * work queue call back to submit previously compressed pages
1144 */
1145static noinline void async_cow_submit(struct btrfs_work *work)
1146{
0b246afa 1147 struct btrfs_fs_info *fs_info;
771ed689
CM
1148 struct async_cow *async_cow;
1149 struct btrfs_root *root;
1150 unsigned long nr_pages;
1151
1152 async_cow = container_of(work, struct async_cow, work);
1153
1154 root = async_cow->root;
0b246afa 1155 fs_info = root->fs_info;
09cbfeaf
KS
1156 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1157 PAGE_SHIFT;
771ed689 1158
ee863954
DS
1159 /*
1160 * atomic_sub_return implies a barrier for waitqueue_active
1161 */
0b246afa 1162 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
ee22184b 1163 5 * SZ_1M &&
0b246afa
JM
1164 waitqueue_active(&fs_info->async_submit_wait))
1165 wake_up(&fs_info->async_submit_wait);
771ed689 1166
d397712b 1167 if (async_cow->inode)
771ed689 1168 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1169}
c8b97818 1170
771ed689
CM
1171static noinline void async_cow_free(struct btrfs_work *work)
1172{
1173 struct async_cow *async_cow;
1174 async_cow = container_of(work, struct async_cow, work);
8180ef88 1175 if (async_cow->inode)
cb77fcd8 1176 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1177 kfree(async_cow);
1178}
1179
1180static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1181 u64 start, u64 end, int *page_started,
f82b7359
LB
1182 unsigned long *nr_written,
1183 unsigned int write_flags)
771ed689 1184{
0b246afa 1185 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
1186 struct async_cow *async_cow;
1187 struct btrfs_root *root = BTRFS_I(inode)->root;
1188 unsigned long nr_pages;
1189 u64 cur_end;
771ed689 1190
a3429ab7 1191 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
ae0f1625 1192 1, 0, NULL);
d397712b 1193 while (start < end) {
771ed689 1194 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1195 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1196 async_cow->inode = igrab(inode);
771ed689
CM
1197 async_cow->root = root;
1198 async_cow->locked_page = locked_page;
1199 async_cow->start = start;
f82b7359 1200 async_cow->write_flags = write_flags;
771ed689 1201
f79707b0 1202 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
0b246afa 1203 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
771ed689
CM
1204 cur_end = end;
1205 else
ee22184b 1206 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1207
1208 async_cow->end = cur_end;
1209 INIT_LIST_HEAD(&async_cow->extents);
1210
9e0af237
LB
1211 btrfs_init_work(&async_cow->work,
1212 btrfs_delalloc_helper,
1213 async_cow_start, async_cow_submit,
1214 async_cow_free);
771ed689 1215
09cbfeaf
KS
1216 nr_pages = (cur_end - start + PAGE_SIZE) >>
1217 PAGE_SHIFT;
0b246afa 1218 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1219
0b246afa 1220 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
771ed689 1221
771ed689
CM
1222 *nr_written += nr_pages;
1223 start = cur_end + 1;
1224 }
1225 *page_started = 1;
1226 return 0;
be20aa9d
CM
1227}
1228
2ff7e61e 1229static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1230 u64 bytenr, u64 num_bytes)
1231{
1232 int ret;
1233 struct btrfs_ordered_sum *sums;
1234 LIST_HEAD(list);
1235
0b246afa 1236 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1237 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1238 if (ret == 0 && list_empty(&list))
1239 return 0;
1240
1241 while (!list_empty(&list)) {
1242 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1243 list_del(&sums->list);
1244 kfree(sums);
1245 }
58113753
LB
1246 if (ret < 0)
1247 return ret;
17d217fe
YZ
1248 return 1;
1249}
1250
d352ac68
CM
1251/*
1252 * when nowcow writeback call back. This checks for snapshots or COW copies
1253 * of the extents that exist in the file, and COWs the file as required.
1254 *
1255 * If no cow copies or snapshots exist, we write directly to the existing
1256 * blocks on disk
1257 */
7f366cfe
CM
1258static noinline int run_delalloc_nocow(struct inode *inode,
1259 struct page *locked_page,
771ed689
CM
1260 u64 start, u64 end, int *page_started, int force,
1261 unsigned long *nr_written)
be20aa9d 1262{
0b246afa 1263 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d
CM
1264 struct btrfs_root *root = BTRFS_I(inode)->root;
1265 struct extent_buffer *leaf;
be20aa9d 1266 struct btrfs_path *path;
80ff3856 1267 struct btrfs_file_extent_item *fi;
be20aa9d 1268 struct btrfs_key found_key;
6f9994db 1269 struct extent_map *em;
80ff3856
YZ
1270 u64 cow_start;
1271 u64 cur_offset;
1272 u64 extent_end;
5d4f98a2 1273 u64 extent_offset;
80ff3856
YZ
1274 u64 disk_bytenr;
1275 u64 num_bytes;
b4939680 1276 u64 disk_num_bytes;
cc95bef6 1277 u64 ram_bytes;
80ff3856 1278 int extent_type;
79787eaa 1279 int ret, err;
d899e052 1280 int type;
80ff3856
YZ
1281 int nocow;
1282 int check_prev = 1;
82d5902d 1283 bool nolock;
4a0cc7ca 1284 u64 ino = btrfs_ino(BTRFS_I(inode));
be20aa9d
CM
1285
1286 path = btrfs_alloc_path();
17ca04af 1287 if (!path) {
ba8b04c1
QW
1288 extent_clear_unlock_delalloc(inode, start, end, end,
1289 locked_page,
c2790a2e 1290 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1291 EXTENT_DO_ACCOUNTING |
1292 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1293 PAGE_CLEAR_DIRTY |
1294 PAGE_SET_WRITEBACK |
1295 PAGE_END_WRITEBACK);
d8926bb3 1296 return -ENOMEM;
17ca04af 1297 }
82d5902d 1298
70ddc553 1299 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
82d5902d 1300
80ff3856
YZ
1301 cow_start = (u64)-1;
1302 cur_offset = start;
1303 while (1) {
e4c3b2dc 1304 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1305 cur_offset, 0);
d788a349 1306 if (ret < 0)
79787eaa 1307 goto error;
80ff3856
YZ
1308 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1309 leaf = path->nodes[0];
1310 btrfs_item_key_to_cpu(leaf, &found_key,
1311 path->slots[0] - 1);
33345d01 1312 if (found_key.objectid == ino &&
80ff3856
YZ
1313 found_key.type == BTRFS_EXTENT_DATA_KEY)
1314 path->slots[0]--;
1315 }
1316 check_prev = 0;
1317next_slot:
1318 leaf = path->nodes[0];
1319 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1320 ret = btrfs_next_leaf(root, path);
e8916699
LB
1321 if (ret < 0) {
1322 if (cow_start != (u64)-1)
1323 cur_offset = cow_start;
79787eaa 1324 goto error;
e8916699 1325 }
80ff3856
YZ
1326 if (ret > 0)
1327 break;
1328 leaf = path->nodes[0];
1329 }
be20aa9d 1330
80ff3856
YZ
1331 nocow = 0;
1332 disk_bytenr = 0;
17d217fe 1333 num_bytes = 0;
80ff3856
YZ
1334 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1335
1d512cb7
FM
1336 if (found_key.objectid > ino)
1337 break;
1338 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1339 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1340 path->slots[0]++;
1341 goto next_slot;
1342 }
1343 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1344 found_key.offset > end)
1345 break;
1346
1347 if (found_key.offset > cur_offset) {
1348 extent_end = found_key.offset;
e9061e21 1349 extent_type = 0;
80ff3856
YZ
1350 goto out_check;
1351 }
1352
1353 fi = btrfs_item_ptr(leaf, path->slots[0],
1354 struct btrfs_file_extent_item);
1355 extent_type = btrfs_file_extent_type(leaf, fi);
1356
cc95bef6 1357 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1358 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1359 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1360 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1361 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1362 extent_end = found_key.offset +
1363 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1364 disk_num_bytes =
1365 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1366 if (extent_end <= start) {
1367 path->slots[0]++;
1368 goto next_slot;
1369 }
17d217fe
YZ
1370 if (disk_bytenr == 0)
1371 goto out_check;
80ff3856
YZ
1372 if (btrfs_file_extent_compression(leaf, fi) ||
1373 btrfs_file_extent_encryption(leaf, fi) ||
1374 btrfs_file_extent_other_encoding(leaf, fi))
1375 goto out_check;
d899e052
YZ
1376 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1377 goto out_check;
2ff7e61e 1378 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1379 goto out_check;
58113753
LB
1380 ret = btrfs_cross_ref_exist(root, ino,
1381 found_key.offset -
1382 extent_offset, disk_bytenr);
1383 if (ret) {
1384 /*
1385 * ret could be -EIO if the above fails to read
1386 * metadata.
1387 */
1388 if (ret < 0) {
1389 if (cow_start != (u64)-1)
1390 cur_offset = cow_start;
1391 goto error;
1392 }
1393
1394 WARN_ON_ONCE(nolock);
17d217fe 1395 goto out_check;
58113753 1396 }
5d4f98a2 1397 disk_bytenr += extent_offset;
17d217fe
YZ
1398 disk_bytenr += cur_offset - found_key.offset;
1399 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1400 /*
1401 * if there are pending snapshots for this root,
1402 * we fall into common COW way.
1403 */
1404 if (!nolock) {
ea14b57f 1405 err = btrfs_start_write_no_snapshotting(root);
e9894fd3
WS
1406 if (!err)
1407 goto out_check;
1408 }
17d217fe
YZ
1409 /*
1410 * force cow if csum exists in the range.
1411 * this ensure that csum for a given extent are
1412 * either valid or do not exist.
1413 */
58113753
LB
1414 ret = csum_exist_in_range(fs_info, disk_bytenr,
1415 num_bytes);
1416 if (ret) {
91e1f56a 1417 if (!nolock)
ea14b57f 1418 btrfs_end_write_no_snapshotting(root);
58113753
LB
1419
1420 /*
1421 * ret could be -EIO if the above fails to read
1422 * metadata.
1423 */
1424 if (ret < 0) {
1425 if (cow_start != (u64)-1)
1426 cur_offset = cow_start;
1427 goto error;
1428 }
1429 WARN_ON_ONCE(nolock);
17d217fe 1430 goto out_check;
91e1f56a
RK
1431 }
1432 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1433 if (!nolock)
ea14b57f 1434 btrfs_end_write_no_snapshotting(root);
f78c436c 1435 goto out_check;
91e1f56a 1436 }
80ff3856
YZ
1437 nocow = 1;
1438 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1439 extent_end = found_key.offset +
514ac8ad
CM
1440 btrfs_file_extent_inline_len(leaf,
1441 path->slots[0], fi);
da17066c 1442 extent_end = ALIGN(extent_end,
0b246afa 1443 fs_info->sectorsize);
80ff3856
YZ
1444 } else {
1445 BUG_ON(1);
1446 }
1447out_check:
1448 if (extent_end <= start) {
1449 path->slots[0]++;
e9894fd3 1450 if (!nolock && nocow)
ea14b57f 1451 btrfs_end_write_no_snapshotting(root);
f78c436c 1452 if (nocow)
0b246afa 1453 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1454 goto next_slot;
1455 }
1456 if (!nocow) {
1457 if (cow_start == (u64)-1)
1458 cow_start = cur_offset;
1459 cur_offset = extent_end;
1460 if (cur_offset > end)
1461 break;
1462 path->slots[0]++;
1463 goto next_slot;
7ea394f1
YZ
1464 }
1465
b3b4aa74 1466 btrfs_release_path(path);
80ff3856 1467 if (cow_start != (u64)-1) {
00361589
JB
1468 ret = cow_file_range(inode, locked_page,
1469 cow_start, found_key.offset - 1,
dda3245e
WX
1470 end, page_started, nr_written, 1,
1471 NULL);
e9894fd3
WS
1472 if (ret) {
1473 if (!nolock && nocow)
ea14b57f 1474 btrfs_end_write_no_snapshotting(root);
f78c436c 1475 if (nocow)
0b246afa 1476 btrfs_dec_nocow_writers(fs_info,
f78c436c 1477 disk_bytenr);
79787eaa 1478 goto error;
e9894fd3 1479 }
80ff3856 1480 cow_start = (u64)-1;
7ea394f1 1481 }
80ff3856 1482
d899e052 1483 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db
LB
1484 u64 orig_start = found_key.offset - extent_offset;
1485
1486 em = create_io_em(inode, cur_offset, num_bytes,
1487 orig_start,
1488 disk_bytenr, /* block_start */
1489 num_bytes, /* block_len */
1490 disk_num_bytes, /* orig_block_len */
1491 ram_bytes, BTRFS_COMPRESS_NONE,
1492 BTRFS_ORDERED_PREALLOC);
1493 if (IS_ERR(em)) {
1494 if (!nolock && nocow)
ea14b57f 1495 btrfs_end_write_no_snapshotting(root);
6f9994db
LB
1496 if (nocow)
1497 btrfs_dec_nocow_writers(fs_info,
1498 disk_bytenr);
1499 ret = PTR_ERR(em);
1500 goto error;
d899e052 1501 }
6f9994db
LB
1502 free_extent_map(em);
1503 }
1504
1505 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
d899e052
YZ
1506 type = BTRFS_ORDERED_PREALLOC;
1507 } else {
1508 type = BTRFS_ORDERED_NOCOW;
1509 }
80ff3856
YZ
1510
1511 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1512 num_bytes, num_bytes, type);
f78c436c 1513 if (nocow)
0b246afa 1514 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1515 BUG_ON(ret); /* -ENOMEM */
771ed689 1516
efa56464 1517 if (root->root_key.objectid ==
4dbd80fb
QW
1518 BTRFS_DATA_RELOC_TREE_OBJECTID)
1519 /*
1520 * Error handled later, as we must prevent
1521 * extent_clear_unlock_delalloc() in error handler
1522 * from freeing metadata of created ordered extent.
1523 */
efa56464
YZ
1524 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1525 num_bytes);
efa56464 1526
c2790a2e 1527 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1528 cur_offset + num_bytes - 1, end,
c2790a2e 1529 locked_page, EXTENT_LOCKED |
18513091
WX
1530 EXTENT_DELALLOC |
1531 EXTENT_CLEAR_DATA_RESV,
1532 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1533
e9894fd3 1534 if (!nolock && nocow)
ea14b57f 1535 btrfs_end_write_no_snapshotting(root);
80ff3856 1536 cur_offset = extent_end;
4dbd80fb
QW
1537
1538 /*
1539 * btrfs_reloc_clone_csums() error, now we're OK to call error
1540 * handler, as metadata for created ordered extent will only
1541 * be freed by btrfs_finish_ordered_io().
1542 */
1543 if (ret)
1544 goto error;
80ff3856
YZ
1545 if (cur_offset > end)
1546 break;
be20aa9d 1547 }
b3b4aa74 1548 btrfs_release_path(path);
80ff3856 1549
17ca04af 1550 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1551 cow_start = cur_offset;
17ca04af
JB
1552 cur_offset = end;
1553 }
1554
80ff3856 1555 if (cow_start != (u64)-1) {
dda3245e
WX
1556 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1557 page_started, nr_written, 1, NULL);
d788a349 1558 if (ret)
79787eaa 1559 goto error;
80ff3856
YZ
1560 }
1561
79787eaa 1562error:
17ca04af 1563 if (ret && cur_offset < end)
ba8b04c1 1564 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1565 locked_page, EXTENT_LOCKED |
151a41bc
JB
1566 EXTENT_DELALLOC | EXTENT_DEFRAG |
1567 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1568 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1569 PAGE_SET_WRITEBACK |
1570 PAGE_END_WRITEBACK);
7ea394f1 1571 btrfs_free_path(path);
79787eaa 1572 return ret;
be20aa9d
CM
1573}
1574
47059d93
WS
1575static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1576{
1577
1578 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1579 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1580 return 0;
1581
1582 /*
1583 * @defrag_bytes is a hint value, no spinlock held here,
1584 * if is not zero, it means the file is defragging.
1585 * Force cow if given extent needs to be defragged.
1586 */
1587 if (BTRFS_I(inode)->defrag_bytes &&
1588 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1589 EXTENT_DEFRAG, 0, NULL))
1590 return 1;
1591
1592 return 0;
1593}
1594
d352ac68
CM
1595/*
1596 * extent_io.c call back to do delayed allocation processing
1597 */
c6100a4b 1598static int run_delalloc_range(void *private_data, struct page *locked_page,
771ed689 1599 u64 start, u64 end, int *page_started,
f82b7359
LB
1600 unsigned long *nr_written,
1601 struct writeback_control *wbc)
be20aa9d 1602{
c6100a4b 1603 struct inode *inode = private_data;
be20aa9d 1604 int ret;
47059d93 1605 int force_cow = need_force_cow(inode, start, end);
f82b7359 1606 unsigned int write_flags = wbc_to_write_flags(wbc);
a2135011 1607
47059d93 1608 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1609 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1610 page_started, 1, nr_written);
47059d93 1611 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1612 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1613 page_started, 0, nr_written);
c2fcdcdf 1614 } else if (!inode_need_compress(inode, start, end)) {
dda3245e
WX
1615 ret = cow_file_range(inode, locked_page, start, end, end,
1616 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1617 } else {
1618 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1619 &BTRFS_I(inode)->runtime_flags);
771ed689 1620 ret = cow_file_range_async(inode, locked_page, start, end,
f82b7359
LB
1621 page_started, nr_written,
1622 write_flags);
7ddf5a42 1623 }
52427260
QW
1624 if (ret)
1625 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
b888db2b
CM
1626 return ret;
1627}
1628
c6100a4b 1629static void btrfs_split_extent_hook(void *private_data,
1bf85046 1630 struct extent_state *orig, u64 split)
9ed74f2d 1631{
c6100a4b 1632 struct inode *inode = private_data;
dcab6a3b
JB
1633 u64 size;
1634
0ca1f7ce 1635 /* not delalloc, ignore it */
9ed74f2d 1636 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1637 return;
9ed74f2d 1638
dcab6a3b
JB
1639 size = orig->end - orig->start + 1;
1640 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1641 u32 num_extents;
dcab6a3b
JB
1642 u64 new_size;
1643
1644 /*
ba117213
JB
1645 * See the explanation in btrfs_merge_extent_hook, the same
1646 * applies here, just in reverse.
dcab6a3b
JB
1647 */
1648 new_size = orig->end - split + 1;
823bb20a 1649 num_extents = count_max_extents(new_size);
ba117213 1650 new_size = split - orig->start;
823bb20a
DS
1651 num_extents += count_max_extents(new_size);
1652 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1653 return;
1654 }
1655
9e0baf60 1656 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1657 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1658 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1659}
1660
1661/*
1662 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1663 * extents so we can keep track of new extents that are just merged onto old
1664 * extents, such as when we are doing sequential writes, so we can properly
1665 * account for the metadata space we'll need.
1666 */
c6100a4b 1667static void btrfs_merge_extent_hook(void *private_data,
1bf85046
JM
1668 struct extent_state *new,
1669 struct extent_state *other)
9ed74f2d 1670{
c6100a4b 1671 struct inode *inode = private_data;
dcab6a3b 1672 u64 new_size, old_size;
823bb20a 1673 u32 num_extents;
dcab6a3b 1674
9ed74f2d
JB
1675 /* not delalloc, ignore it */
1676 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1677 return;
9ed74f2d 1678
8461a3de
JB
1679 if (new->start > other->start)
1680 new_size = new->end - other->start + 1;
1681 else
1682 new_size = other->end - new->start + 1;
dcab6a3b
JB
1683
1684 /* we're not bigger than the max, unreserve the space and go */
1685 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1686 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1687 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1688 spin_unlock(&BTRFS_I(inode)->lock);
1689 return;
1690 }
1691
1692 /*
ba117213
JB
1693 * We have to add up either side to figure out how many extents were
1694 * accounted for before we merged into one big extent. If the number of
1695 * extents we accounted for is <= the amount we need for the new range
1696 * then we can return, otherwise drop. Think of it like this
1697 *
1698 * [ 4k][MAX_SIZE]
1699 *
1700 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1701 * need 2 outstanding extents, on one side we have 1 and the other side
1702 * we have 1 so they are == and we can return. But in this case
1703 *
1704 * [MAX_SIZE+4k][MAX_SIZE+4k]
1705 *
1706 * Each range on their own accounts for 2 extents, but merged together
1707 * they are only 3 extents worth of accounting, so we need to drop in
1708 * this case.
dcab6a3b 1709 */
ba117213 1710 old_size = other->end - other->start + 1;
823bb20a 1711 num_extents = count_max_extents(old_size);
ba117213 1712 old_size = new->end - new->start + 1;
823bb20a
DS
1713 num_extents += count_max_extents(old_size);
1714 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1715 return;
1716
9e0baf60 1717 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1718 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1719 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1720}
1721
eb73c1b7
MX
1722static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1723 struct inode *inode)
1724{
0b246afa
JM
1725 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1726
eb73c1b7
MX
1727 spin_lock(&root->delalloc_lock);
1728 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1729 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1730 &root->delalloc_inodes);
1731 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1732 &BTRFS_I(inode)->runtime_flags);
1733 root->nr_delalloc_inodes++;
1734 if (root->nr_delalloc_inodes == 1) {
0b246afa 1735 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1736 BUG_ON(!list_empty(&root->delalloc_root));
1737 list_add_tail(&root->delalloc_root,
0b246afa
JM
1738 &fs_info->delalloc_roots);
1739 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1740 }
1741 }
1742 spin_unlock(&root->delalloc_lock);
1743}
1744
2b877331
NB
1745
1746void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1747 struct btrfs_inode *inode)
eb73c1b7 1748{
9e3e97f4 1749 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0b246afa 1750
9e3e97f4
NB
1751 if (!list_empty(&inode->delalloc_inodes)) {
1752 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1753 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1754 &inode->runtime_flags);
eb73c1b7
MX
1755 root->nr_delalloc_inodes--;
1756 if (!root->nr_delalloc_inodes) {
0b246afa 1757 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1758 BUG_ON(list_empty(&root->delalloc_root));
1759 list_del_init(&root->delalloc_root);
0b246afa 1760 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1761 }
1762 }
2b877331
NB
1763}
1764
1765static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1766 struct btrfs_inode *inode)
1767{
1768 spin_lock(&root->delalloc_lock);
1769 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
1770 spin_unlock(&root->delalloc_lock);
1771}
1772
d352ac68
CM
1773/*
1774 * extent_io.c set_bit_hook, used to track delayed allocation
1775 * bytes in this file, and to maintain the list of inodes that
1776 * have pending delalloc work to be done.
1777 */
c6100a4b 1778static void btrfs_set_bit_hook(void *private_data,
9ee49a04 1779 struct extent_state *state, unsigned *bits)
291d673e 1780{
c6100a4b 1781 struct inode *inode = private_data;
9ed74f2d 1782
0b246afa
JM
1783 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1784
47059d93
WS
1785 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1786 WARN_ON(1);
75eff68e
CM
1787 /*
1788 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1789 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1790 * bit, which is only set or cleared with irqs on
1791 */
0ca1f7ce 1792 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1793 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1794 u64 len = state->end + 1 - state->start;
8b62f87b 1795 u32 num_extents = count_max_extents(len);
70ddc553 1796 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1797
8b62f87b
JB
1798 spin_lock(&BTRFS_I(inode)->lock);
1799 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1800 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 1801
6a3891c5 1802 /* For sanity tests */
0b246afa 1803 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1804 return;
1805
104b4e51
NB
1806 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1807 fs_info->delalloc_batch);
df0af1a5 1808 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1809 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1810 if (*bits & EXTENT_DEFRAG)
1811 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1812 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1813 &BTRFS_I(inode)->runtime_flags))
1814 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1815 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1816 }
a7e3b975
FM
1817
1818 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1819 (*bits & EXTENT_DELALLOC_NEW)) {
1820 spin_lock(&BTRFS_I(inode)->lock);
1821 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1822 state->start;
1823 spin_unlock(&BTRFS_I(inode)->lock);
1824 }
291d673e
CM
1825}
1826
d352ac68
CM
1827/*
1828 * extent_io.c clear_bit_hook, see set_bit_hook for why
1829 */
c6100a4b 1830static void btrfs_clear_bit_hook(void *private_data,
41074888 1831 struct extent_state *state,
9ee49a04 1832 unsigned *bits)
291d673e 1833{
c6100a4b 1834 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
6fc0ef68 1835 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
47059d93 1836 u64 len = state->end + 1 - state->start;
823bb20a 1837 u32 num_extents = count_max_extents(len);
47059d93 1838
4a4b964f
FM
1839 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1840 spin_lock(&inode->lock);
6fc0ef68 1841 inode->defrag_bytes -= len;
4a4b964f
FM
1842 spin_unlock(&inode->lock);
1843 }
47059d93 1844
75eff68e
CM
1845 /*
1846 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1847 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1848 * bit, which is only set or cleared with irqs on
1849 */
0ca1f7ce 1850 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1851 struct btrfs_root *root = inode->root;
83eea1f1 1852 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1853
8b62f87b
JB
1854 spin_lock(&inode->lock);
1855 btrfs_mod_outstanding_extents(inode, -num_extents);
1856 spin_unlock(&inode->lock);
0ca1f7ce 1857
b6d08f06
JB
1858 /*
1859 * We don't reserve metadata space for space cache inodes so we
1860 * don't need to call dellalloc_release_metadata if there is an
1861 * error.
1862 */
a315e68f 1863 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 1864 root != fs_info->tree_root)
43b18595 1865 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 1866
6a3891c5 1867 /* For sanity tests. */
0b246afa 1868 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1869 return;
1870
a315e68f
FM
1871 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1872 do_list && !(state->state & EXTENT_NORESERVE) &&
1873 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
1874 btrfs_free_reserved_data_space_noquota(
1875 &inode->vfs_inode,
51773bec 1876 state->start, len);
9ed74f2d 1877
104b4e51
NB
1878 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1879 fs_info->delalloc_batch);
6fc0ef68
NB
1880 spin_lock(&inode->lock);
1881 inode->delalloc_bytes -= len;
1882 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 1883 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1884 &inode->runtime_flags))
eb73c1b7 1885 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 1886 spin_unlock(&inode->lock);
291d673e 1887 }
a7e3b975
FM
1888
1889 if ((state->state & EXTENT_DELALLOC_NEW) &&
1890 (*bits & EXTENT_DELALLOC_NEW)) {
1891 spin_lock(&inode->lock);
1892 ASSERT(inode->new_delalloc_bytes >= len);
1893 inode->new_delalloc_bytes -= len;
1894 spin_unlock(&inode->lock);
1895 }
291d673e
CM
1896}
1897
d352ac68
CM
1898/*
1899 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1900 * we don't create bios that span stripes or chunks
6f034ece
LB
1901 *
1902 * return 1 if page cannot be merged to bio
1903 * return 0 if page can be merged to bio
1904 * return error otherwise
d352ac68 1905 */
81a75f67 1906int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1907 size_t size, struct bio *bio,
1908 unsigned long bio_flags)
239b14b3 1909{
0b246afa
JM
1910 struct inode *inode = page->mapping->host;
1911 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1912 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1913 u64 length = 0;
1914 u64 map_length;
239b14b3
CM
1915 int ret;
1916
771ed689
CM
1917 if (bio_flags & EXTENT_BIO_COMPRESSED)
1918 return 0;
1919
4f024f37 1920 length = bio->bi_iter.bi_size;
239b14b3 1921 map_length = length;
0b246afa
JM
1922 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1923 NULL, 0);
6f034ece
LB
1924 if (ret < 0)
1925 return ret;
d397712b 1926 if (map_length < length + size)
239b14b3 1927 return 1;
3444a972 1928 return 0;
239b14b3
CM
1929}
1930
d352ac68
CM
1931/*
1932 * in order to insert checksums into the metadata in large chunks,
1933 * we wait until bio submission time. All the pages in the bio are
1934 * checksummed and sums are attached onto the ordered extent record.
1935 *
1936 * At IO completion time the cums attached on the ordered extent record
1937 * are inserted into the btree
1938 */
d0ee3934 1939static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
eaf25d93 1940 u64 bio_offset)
065631f6 1941{
c6100a4b 1942 struct inode *inode = private_data;
4e4cbee9 1943 blk_status_t ret = 0;
e015640f 1944
2ff7e61e 1945 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1946 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1947 return 0;
1948}
e015640f 1949
4a69a410
CM
1950/*
1951 * in order to insert checksums into the metadata in large chunks,
1952 * we wait until bio submission time. All the pages in the bio are
1953 * checksummed and sums are attached onto the ordered extent record.
1954 *
1955 * At IO completion time the cums attached on the ordered extent record
1956 * are inserted into the btree
1957 */
d0ee3934 1958static blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio,
6c553435 1959 int mirror_num)
4a69a410 1960{
c6100a4b 1961 struct inode *inode = private_data;
2ff7e61e 1962 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 1963 blk_status_t ret;
61891923 1964
2ff7e61e 1965 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
4246a0b6 1966 if (ret) {
4e4cbee9 1967 bio->bi_status = ret;
4246a0b6
CH
1968 bio_endio(bio);
1969 }
61891923 1970 return ret;
44b8bd7e
CM
1971}
1972
d352ac68 1973/*
cad321ad 1974 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
1975 * on write, or reading the csums from the tree before a read.
1976 *
1977 * Rules about async/sync submit,
1978 * a) read: sync submit
1979 *
1980 * b) write without checksum: sync submit
1981 *
1982 * c) write with checksum:
1983 * c-1) if bio is issued by fsync: sync submit
1984 * (sync_writers != 0)
1985 *
1986 * c-2) if root is reloc root: sync submit
1987 * (only in case of buffered IO)
1988 *
1989 * c-3) otherwise: async submit
d352ac68 1990 */
8c27cb35 1991static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
c6100a4b
JB
1992 int mirror_num, unsigned long bio_flags,
1993 u64 bio_offset)
44b8bd7e 1994{
c6100a4b 1995 struct inode *inode = private_data;
0b246afa 1996 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 1997 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1998 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 1999 blk_status_t ret = 0;
19b9bdb0 2000 int skip_sum;
b812ce28 2001 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 2002
6cbff00f 2003 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 2004
70ddc553 2005 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 2006 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 2007
37226b21 2008 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 2009 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 2010 if (ret)
61891923 2011 goto out;
5fd02043 2012
d20f7043 2013 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
2014 ret = btrfs_submit_compressed_read(inode, bio,
2015 mirror_num,
2016 bio_flags);
2017 goto out;
c2db1073 2018 } else if (!skip_sum) {
2ff7e61e 2019 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 2020 if (ret)
61891923 2021 goto out;
c2db1073 2022 }
4d1b5fb4 2023 goto mapit;
b812ce28 2024 } else if (async && !skip_sum) {
17d217fe
YZ
2025 /* csum items have already been cloned */
2026 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2027 goto mapit;
19b9bdb0 2028 /* we're doing a write, do the async checksumming */
c6100a4b
JB
2029 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2030 bio_offset, inode,
d0ee3934
DS
2031 btrfs_submit_bio_start,
2032 btrfs_submit_bio_done);
61891923 2033 goto out;
b812ce28 2034 } else if (!skip_sum) {
2ff7e61e 2035 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
2036 if (ret)
2037 goto out;
19b9bdb0
CM
2038 }
2039
0b86a832 2040mapit:
2ff7e61e 2041 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
2042
2043out:
4e4cbee9
CH
2044 if (ret) {
2045 bio->bi_status = ret;
4246a0b6
CH
2046 bio_endio(bio);
2047 }
61891923 2048 return ret;
065631f6 2049}
6885f308 2050
d352ac68
CM
2051/*
2052 * given a list of ordered sums record them in the inode. This happens
2053 * at IO completion time based on sums calculated at bio submission time.
2054 */
ba1da2f4 2055static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2056 struct inode *inode, struct list_head *list)
e6dcd2dc 2057{
e6dcd2dc 2058 struct btrfs_ordered_sum *sum;
ac01f26a 2059 int ret;
e6dcd2dc 2060
c6e30871 2061 list_for_each_entry(sum, list, list) {
7c2871a2 2062 trans->adding_csums = true;
ac01f26a 2063 ret = btrfs_csum_file_blocks(trans,
d20f7043 2064 BTRFS_I(inode)->root->fs_info->csum_root, sum);
7c2871a2 2065 trans->adding_csums = false;
ac01f26a
NB
2066 if (ret)
2067 return ret;
e6dcd2dc
CM
2068 }
2069 return 0;
2070}
2071
2ac55d41 2072int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
e3b8a485 2073 unsigned int extra_bits,
ba8b04c1 2074 struct extent_state **cached_state, int dedupe)
ea8c2819 2075{
09cbfeaf 2076 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 2077 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
e3b8a485 2078 extra_bits, cached_state);
ea8c2819
CM
2079}
2080
d352ac68 2081/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2082struct btrfs_writepage_fixup {
2083 struct page *page;
2084 struct btrfs_work work;
2085};
2086
b2950863 2087static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2088{
2089 struct btrfs_writepage_fixup *fixup;
2090 struct btrfs_ordered_extent *ordered;
2ac55d41 2091 struct extent_state *cached_state = NULL;
364ecf36 2092 struct extent_changeset *data_reserved = NULL;
247e743c
CM
2093 struct page *page;
2094 struct inode *inode;
2095 u64 page_start;
2096 u64 page_end;
87826df0 2097 int ret;
247e743c
CM
2098
2099 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2100 page = fixup->page;
4a096752 2101again:
247e743c
CM
2102 lock_page(page);
2103 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2104 ClearPageChecked(page);
2105 goto out_page;
2106 }
2107
2108 inode = page->mapping->host;
2109 page_start = page_offset(page);
09cbfeaf 2110 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2111
ff13db41 2112 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2113 &cached_state);
4a096752
CM
2114
2115 /* already ordered? We're done */
8b62b72b 2116 if (PagePrivate2(page))
247e743c 2117 goto out;
4a096752 2118
a776c6fa 2119 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2120 PAGE_SIZE);
4a096752 2121 if (ordered) {
2ac55d41 2122 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
e43bbe5e 2123 page_end, &cached_state);
4a096752
CM
2124 unlock_page(page);
2125 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2126 btrfs_put_ordered_extent(ordered);
4a096752
CM
2127 goto again;
2128 }
247e743c 2129
364ecf36 2130 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
09cbfeaf 2131 PAGE_SIZE);
87826df0
JM
2132 if (ret) {
2133 mapping_set_error(page->mapping, ret);
2134 end_extent_writepage(page, ret, page_start, page_end);
2135 ClearPageChecked(page);
2136 goto out;
2137 }
2138
f3038ee3
NB
2139 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2140 &cached_state, 0);
2141 if (ret) {
2142 mapping_set_error(page->mapping, ret);
2143 end_extent_writepage(page, ret, page_start, page_end);
2144 ClearPageChecked(page);
2145 goto out;
2146 }
2147
247e743c 2148 ClearPageChecked(page);
87826df0 2149 set_page_dirty(page);
43b18595 2150 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
247e743c 2151out:
2ac55d41 2152 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
e43bbe5e 2153 &cached_state);
247e743c
CM
2154out_page:
2155 unlock_page(page);
09cbfeaf 2156 put_page(page);
b897abec 2157 kfree(fixup);
364ecf36 2158 extent_changeset_free(data_reserved);
247e743c
CM
2159}
2160
2161/*
2162 * There are a few paths in the higher layers of the kernel that directly
2163 * set the page dirty bit without asking the filesystem if it is a
2164 * good idea. This causes problems because we want to make sure COW
2165 * properly happens and the data=ordered rules are followed.
2166 *
c8b97818 2167 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2168 * hasn't been properly setup for IO. We kick off an async process
2169 * to fix it up. The async helper will wait for ordered extents, set
2170 * the delalloc bit and make it safe to write the page.
2171 */
b2950863 2172static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2173{
2174 struct inode *inode = page->mapping->host;
0b246afa 2175 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2176 struct btrfs_writepage_fixup *fixup;
247e743c 2177
8b62b72b
CM
2178 /* this page is properly in the ordered list */
2179 if (TestClearPagePrivate2(page))
247e743c
CM
2180 return 0;
2181
2182 if (PageChecked(page))
2183 return -EAGAIN;
2184
2185 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2186 if (!fixup)
2187 return -EAGAIN;
f421950f 2188
247e743c 2189 SetPageChecked(page);
09cbfeaf 2190 get_page(page);
9e0af237
LB
2191 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2192 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2193 fixup->page = page;
0b246afa 2194 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2195 return -EBUSY;
247e743c
CM
2196}
2197
d899e052
YZ
2198static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2199 struct inode *inode, u64 file_pos,
2200 u64 disk_bytenr, u64 disk_num_bytes,
2201 u64 num_bytes, u64 ram_bytes,
2202 u8 compression, u8 encryption,
2203 u16 other_encoding, int extent_type)
2204{
2205 struct btrfs_root *root = BTRFS_I(inode)->root;
2206 struct btrfs_file_extent_item *fi;
2207 struct btrfs_path *path;
2208 struct extent_buffer *leaf;
2209 struct btrfs_key ins;
a12b877b 2210 u64 qg_released;
1acae57b 2211 int extent_inserted = 0;
d899e052
YZ
2212 int ret;
2213
2214 path = btrfs_alloc_path();
d8926bb3
MF
2215 if (!path)
2216 return -ENOMEM;
d899e052 2217
a1ed835e
CM
2218 /*
2219 * we may be replacing one extent in the tree with another.
2220 * The new extent is pinned in the extent map, and we don't want
2221 * to drop it from the cache until it is completely in the btree.
2222 *
2223 * So, tell btrfs_drop_extents to leave this extent in the cache.
2224 * the caller is expected to unpin it and allow it to be merged
2225 * with the others.
2226 */
1acae57b
FDBM
2227 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2228 file_pos + num_bytes, NULL, 0,
2229 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2230 if (ret)
2231 goto out;
d899e052 2232
1acae57b 2233 if (!extent_inserted) {
4a0cc7ca 2234 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2235 ins.offset = file_pos;
2236 ins.type = BTRFS_EXTENT_DATA_KEY;
2237
2238 path->leave_spinning = 1;
2239 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2240 sizeof(*fi));
2241 if (ret)
2242 goto out;
2243 }
d899e052
YZ
2244 leaf = path->nodes[0];
2245 fi = btrfs_item_ptr(leaf, path->slots[0],
2246 struct btrfs_file_extent_item);
2247 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2248 btrfs_set_file_extent_type(leaf, fi, extent_type);
2249 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2250 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2251 btrfs_set_file_extent_offset(leaf, fi, 0);
2252 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2253 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2254 btrfs_set_file_extent_compression(leaf, fi, compression);
2255 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2256 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2257
d899e052 2258 btrfs_mark_buffer_dirty(leaf);
ce195332 2259 btrfs_release_path(path);
d899e052
YZ
2260
2261 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2262
2263 ins.objectid = disk_bytenr;
2264 ins.offset = disk_num_bytes;
2265 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2266
297d750b 2267 /*
5846a3c2
QW
2268 * Release the reserved range from inode dirty range map, as it is
2269 * already moved into delayed_ref_head
297d750b 2270 */
a12b877b
QW
2271 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2272 if (ret < 0)
2273 goto out;
2274 qg_released = ret;
84f7d8e6
JB
2275 ret = btrfs_alloc_reserved_file_extent(trans, root,
2276 btrfs_ino(BTRFS_I(inode)),
2277 file_pos, qg_released, &ins);
79787eaa 2278out:
d899e052 2279 btrfs_free_path(path);
b9473439 2280
79787eaa 2281 return ret;
d899e052
YZ
2282}
2283
38c227d8
LB
2284/* snapshot-aware defrag */
2285struct sa_defrag_extent_backref {
2286 struct rb_node node;
2287 struct old_sa_defrag_extent *old;
2288 u64 root_id;
2289 u64 inum;
2290 u64 file_pos;
2291 u64 extent_offset;
2292 u64 num_bytes;
2293 u64 generation;
2294};
2295
2296struct old_sa_defrag_extent {
2297 struct list_head list;
2298 struct new_sa_defrag_extent *new;
2299
2300 u64 extent_offset;
2301 u64 bytenr;
2302 u64 offset;
2303 u64 len;
2304 int count;
2305};
2306
2307struct new_sa_defrag_extent {
2308 struct rb_root root;
2309 struct list_head head;
2310 struct btrfs_path *path;
2311 struct inode *inode;
2312 u64 file_pos;
2313 u64 len;
2314 u64 bytenr;
2315 u64 disk_len;
2316 u8 compress_type;
2317};
2318
2319static int backref_comp(struct sa_defrag_extent_backref *b1,
2320 struct sa_defrag_extent_backref *b2)
2321{
2322 if (b1->root_id < b2->root_id)
2323 return -1;
2324 else if (b1->root_id > b2->root_id)
2325 return 1;
2326
2327 if (b1->inum < b2->inum)
2328 return -1;
2329 else if (b1->inum > b2->inum)
2330 return 1;
2331
2332 if (b1->file_pos < b2->file_pos)
2333 return -1;
2334 else if (b1->file_pos > b2->file_pos)
2335 return 1;
2336
2337 /*
2338 * [------------------------------] ===> (a range of space)
2339 * |<--->| |<---->| =============> (fs/file tree A)
2340 * |<---------------------------->| ===> (fs/file tree B)
2341 *
2342 * A range of space can refer to two file extents in one tree while
2343 * refer to only one file extent in another tree.
2344 *
2345 * So we may process a disk offset more than one time(two extents in A)
2346 * and locate at the same extent(one extent in B), then insert two same
2347 * backrefs(both refer to the extent in B).
2348 */
2349 return 0;
2350}
2351
2352static void backref_insert(struct rb_root *root,
2353 struct sa_defrag_extent_backref *backref)
2354{
2355 struct rb_node **p = &root->rb_node;
2356 struct rb_node *parent = NULL;
2357 struct sa_defrag_extent_backref *entry;
2358 int ret;
2359
2360 while (*p) {
2361 parent = *p;
2362 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2363
2364 ret = backref_comp(backref, entry);
2365 if (ret < 0)
2366 p = &(*p)->rb_left;
2367 else
2368 p = &(*p)->rb_right;
2369 }
2370
2371 rb_link_node(&backref->node, parent, p);
2372 rb_insert_color(&backref->node, root);
2373}
2374
2375/*
2376 * Note the backref might has changed, and in this case we just return 0.
2377 */
2378static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2379 void *ctx)
2380{
2381 struct btrfs_file_extent_item *extent;
38c227d8
LB
2382 struct old_sa_defrag_extent *old = ctx;
2383 struct new_sa_defrag_extent *new = old->new;
2384 struct btrfs_path *path = new->path;
2385 struct btrfs_key key;
2386 struct btrfs_root *root;
2387 struct sa_defrag_extent_backref *backref;
2388 struct extent_buffer *leaf;
2389 struct inode *inode = new->inode;
0b246afa 2390 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2391 int slot;
2392 int ret;
2393 u64 extent_offset;
2394 u64 num_bytes;
2395
2396 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2397 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2398 return 0;
2399
2400 key.objectid = root_id;
2401 key.type = BTRFS_ROOT_ITEM_KEY;
2402 key.offset = (u64)-1;
2403
38c227d8
LB
2404 root = btrfs_read_fs_root_no_name(fs_info, &key);
2405 if (IS_ERR(root)) {
2406 if (PTR_ERR(root) == -ENOENT)
2407 return 0;
2408 WARN_ON(1);
ab8d0fc4 2409 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2410 inum, offset, root_id);
2411 return PTR_ERR(root);
2412 }
2413
2414 key.objectid = inum;
2415 key.type = BTRFS_EXTENT_DATA_KEY;
2416 if (offset > (u64)-1 << 32)
2417 key.offset = 0;
2418 else
2419 key.offset = offset;
2420
2421 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2422 if (WARN_ON(ret < 0))
38c227d8 2423 return ret;
50f1319c 2424 ret = 0;
38c227d8
LB
2425
2426 while (1) {
2427 cond_resched();
2428
2429 leaf = path->nodes[0];
2430 slot = path->slots[0];
2431
2432 if (slot >= btrfs_header_nritems(leaf)) {
2433 ret = btrfs_next_leaf(root, path);
2434 if (ret < 0) {
2435 goto out;
2436 } else if (ret > 0) {
2437 ret = 0;
2438 goto out;
2439 }
2440 continue;
2441 }
2442
2443 path->slots[0]++;
2444
2445 btrfs_item_key_to_cpu(leaf, &key, slot);
2446
2447 if (key.objectid > inum)
2448 goto out;
2449
2450 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2451 continue;
2452
2453 extent = btrfs_item_ptr(leaf, slot,
2454 struct btrfs_file_extent_item);
2455
2456 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2457 continue;
2458
e68afa49
LB
2459 /*
2460 * 'offset' refers to the exact key.offset,
2461 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2462 * (key.offset - extent_offset).
2463 */
2464 if (key.offset != offset)
38c227d8
LB
2465 continue;
2466
e68afa49 2467 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2468 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2469
38c227d8
LB
2470 if (extent_offset >= old->extent_offset + old->offset +
2471 old->len || extent_offset + num_bytes <=
2472 old->extent_offset + old->offset)
2473 continue;
38c227d8
LB
2474 break;
2475 }
2476
2477 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2478 if (!backref) {
2479 ret = -ENOENT;
2480 goto out;
2481 }
2482
2483 backref->root_id = root_id;
2484 backref->inum = inum;
e68afa49 2485 backref->file_pos = offset;
38c227d8
LB
2486 backref->num_bytes = num_bytes;
2487 backref->extent_offset = extent_offset;
2488 backref->generation = btrfs_file_extent_generation(leaf, extent);
2489 backref->old = old;
2490 backref_insert(&new->root, backref);
2491 old->count++;
2492out:
2493 btrfs_release_path(path);
2494 WARN_ON(ret);
2495 return ret;
2496}
2497
2498static noinline bool record_extent_backrefs(struct btrfs_path *path,
2499 struct new_sa_defrag_extent *new)
2500{
0b246afa 2501 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2502 struct old_sa_defrag_extent *old, *tmp;
2503 int ret;
2504
2505 new->path = path;
2506
2507 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2508 ret = iterate_inodes_from_logical(old->bytenr +
2509 old->extent_offset, fs_info,
38c227d8 2510 path, record_one_backref,
c995ab3c 2511 old, false);
4724b106
JB
2512 if (ret < 0 && ret != -ENOENT)
2513 return false;
38c227d8
LB
2514
2515 /* no backref to be processed for this extent */
2516 if (!old->count) {
2517 list_del(&old->list);
2518 kfree(old);
2519 }
2520 }
2521
2522 if (list_empty(&new->head))
2523 return false;
2524
2525 return true;
2526}
2527
2528static int relink_is_mergable(struct extent_buffer *leaf,
2529 struct btrfs_file_extent_item *fi,
116e0024 2530 struct new_sa_defrag_extent *new)
38c227d8 2531{
116e0024 2532 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2533 return 0;
2534
2535 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2536 return 0;
2537
116e0024
LB
2538 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2539 return 0;
2540
2541 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2542 btrfs_file_extent_other_encoding(leaf, fi))
2543 return 0;
2544
2545 return 1;
2546}
2547
2548/*
2549 * Note the backref might has changed, and in this case we just return 0.
2550 */
2551static noinline int relink_extent_backref(struct btrfs_path *path,
2552 struct sa_defrag_extent_backref *prev,
2553 struct sa_defrag_extent_backref *backref)
2554{
2555 struct btrfs_file_extent_item *extent;
2556 struct btrfs_file_extent_item *item;
2557 struct btrfs_ordered_extent *ordered;
2558 struct btrfs_trans_handle *trans;
38c227d8
LB
2559 struct btrfs_root *root;
2560 struct btrfs_key key;
2561 struct extent_buffer *leaf;
2562 struct old_sa_defrag_extent *old = backref->old;
2563 struct new_sa_defrag_extent *new = old->new;
0b246afa 2564 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2565 struct inode *inode;
2566 struct extent_state *cached = NULL;
2567 int ret = 0;
2568 u64 start;
2569 u64 len;
2570 u64 lock_start;
2571 u64 lock_end;
2572 bool merge = false;
2573 int index;
2574
2575 if (prev && prev->root_id == backref->root_id &&
2576 prev->inum == backref->inum &&
2577 prev->file_pos + prev->num_bytes == backref->file_pos)
2578 merge = true;
2579
2580 /* step 1: get root */
2581 key.objectid = backref->root_id;
2582 key.type = BTRFS_ROOT_ITEM_KEY;
2583 key.offset = (u64)-1;
2584
38c227d8
LB
2585 index = srcu_read_lock(&fs_info->subvol_srcu);
2586
2587 root = btrfs_read_fs_root_no_name(fs_info, &key);
2588 if (IS_ERR(root)) {
2589 srcu_read_unlock(&fs_info->subvol_srcu, index);
2590 if (PTR_ERR(root) == -ENOENT)
2591 return 0;
2592 return PTR_ERR(root);
2593 }
38c227d8 2594
bcbba5e6
WS
2595 if (btrfs_root_readonly(root)) {
2596 srcu_read_unlock(&fs_info->subvol_srcu, index);
2597 return 0;
2598 }
2599
38c227d8
LB
2600 /* step 2: get inode */
2601 key.objectid = backref->inum;
2602 key.type = BTRFS_INODE_ITEM_KEY;
2603 key.offset = 0;
2604
2605 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2606 if (IS_ERR(inode)) {
2607 srcu_read_unlock(&fs_info->subvol_srcu, index);
2608 return 0;
2609 }
2610
2611 srcu_read_unlock(&fs_info->subvol_srcu, index);
2612
2613 /* step 3: relink backref */
2614 lock_start = backref->file_pos;
2615 lock_end = backref->file_pos + backref->num_bytes - 1;
2616 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2617 &cached);
38c227d8
LB
2618
2619 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2620 if (ordered) {
2621 btrfs_put_ordered_extent(ordered);
2622 goto out_unlock;
2623 }
2624
2625 trans = btrfs_join_transaction(root);
2626 if (IS_ERR(trans)) {
2627 ret = PTR_ERR(trans);
2628 goto out_unlock;
2629 }
2630
2631 key.objectid = backref->inum;
2632 key.type = BTRFS_EXTENT_DATA_KEY;
2633 key.offset = backref->file_pos;
2634
2635 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2636 if (ret < 0) {
2637 goto out_free_path;
2638 } else if (ret > 0) {
2639 ret = 0;
2640 goto out_free_path;
2641 }
2642
2643 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2644 struct btrfs_file_extent_item);
2645
2646 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2647 backref->generation)
2648 goto out_free_path;
2649
2650 btrfs_release_path(path);
2651
2652 start = backref->file_pos;
2653 if (backref->extent_offset < old->extent_offset + old->offset)
2654 start += old->extent_offset + old->offset -
2655 backref->extent_offset;
2656
2657 len = min(backref->extent_offset + backref->num_bytes,
2658 old->extent_offset + old->offset + old->len);
2659 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2660
2661 ret = btrfs_drop_extents(trans, root, inode, start,
2662 start + len, 1);
2663 if (ret)
2664 goto out_free_path;
2665again:
4a0cc7ca 2666 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2667 key.type = BTRFS_EXTENT_DATA_KEY;
2668 key.offset = start;
2669
a09a0a70 2670 path->leave_spinning = 1;
38c227d8
LB
2671 if (merge) {
2672 struct btrfs_file_extent_item *fi;
2673 u64 extent_len;
2674 struct btrfs_key found_key;
2675
3c9665df 2676 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2677 if (ret < 0)
2678 goto out_free_path;
2679
2680 path->slots[0]--;
2681 leaf = path->nodes[0];
2682 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2683
2684 fi = btrfs_item_ptr(leaf, path->slots[0],
2685 struct btrfs_file_extent_item);
2686 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2687
116e0024
LB
2688 if (extent_len + found_key.offset == start &&
2689 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2690 btrfs_set_file_extent_num_bytes(leaf, fi,
2691 extent_len + len);
2692 btrfs_mark_buffer_dirty(leaf);
2693 inode_add_bytes(inode, len);
2694
2695 ret = 1;
2696 goto out_free_path;
2697 } else {
2698 merge = false;
2699 btrfs_release_path(path);
2700 goto again;
2701 }
2702 }
2703
2704 ret = btrfs_insert_empty_item(trans, root, path, &key,
2705 sizeof(*extent));
2706 if (ret) {
66642832 2707 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2708 goto out_free_path;
2709 }
2710
2711 leaf = path->nodes[0];
2712 item = btrfs_item_ptr(leaf, path->slots[0],
2713 struct btrfs_file_extent_item);
2714 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2715 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2716 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2717 btrfs_set_file_extent_num_bytes(leaf, item, len);
2718 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2719 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2720 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2721 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2722 btrfs_set_file_extent_encryption(leaf, item, 0);
2723 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2724
2725 btrfs_mark_buffer_dirty(leaf);
2726 inode_add_bytes(inode, len);
a09a0a70 2727 btrfs_release_path(path);
38c227d8 2728
84f7d8e6 2729 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
38c227d8
LB
2730 new->disk_len, 0,
2731 backref->root_id, backref->inum,
b06c4bf5 2732 new->file_pos); /* start - extent_offset */
38c227d8 2733 if (ret) {
66642832 2734 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2735 goto out_free_path;
2736 }
2737
2738 ret = 1;
2739out_free_path:
2740 btrfs_release_path(path);
a09a0a70 2741 path->leave_spinning = 0;
3a45bb20 2742 btrfs_end_transaction(trans);
38c227d8
LB
2743out_unlock:
2744 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
e43bbe5e 2745 &cached);
38c227d8
LB
2746 iput(inode);
2747 return ret;
2748}
2749
6f519564
LB
2750static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2751{
2752 struct old_sa_defrag_extent *old, *tmp;
2753
2754 if (!new)
2755 return;
2756
2757 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2758 kfree(old);
2759 }
2760 kfree(new);
2761}
2762
38c227d8
LB
2763static void relink_file_extents(struct new_sa_defrag_extent *new)
2764{
0b246afa 2765 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2766 struct btrfs_path *path;
38c227d8
LB
2767 struct sa_defrag_extent_backref *backref;
2768 struct sa_defrag_extent_backref *prev = NULL;
2769 struct inode *inode;
38c227d8
LB
2770 struct rb_node *node;
2771 int ret;
2772
2773 inode = new->inode;
38c227d8
LB
2774
2775 path = btrfs_alloc_path();
2776 if (!path)
2777 return;
2778
2779 if (!record_extent_backrefs(path, new)) {
2780 btrfs_free_path(path);
2781 goto out;
2782 }
2783 btrfs_release_path(path);
2784
2785 while (1) {
2786 node = rb_first(&new->root);
2787 if (!node)
2788 break;
2789 rb_erase(node, &new->root);
2790
2791 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2792
2793 ret = relink_extent_backref(path, prev, backref);
2794 WARN_ON(ret < 0);
2795
2796 kfree(prev);
2797
2798 if (ret == 1)
2799 prev = backref;
2800 else
2801 prev = NULL;
2802 cond_resched();
2803 }
2804 kfree(prev);
2805
2806 btrfs_free_path(path);
38c227d8 2807out:
6f519564
LB
2808 free_sa_defrag_extent(new);
2809
0b246afa
JM
2810 atomic_dec(&fs_info->defrag_running);
2811 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2812}
2813
2814static struct new_sa_defrag_extent *
2815record_old_file_extents(struct inode *inode,
2816 struct btrfs_ordered_extent *ordered)
2817{
0b246afa 2818 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2819 struct btrfs_root *root = BTRFS_I(inode)->root;
2820 struct btrfs_path *path;
2821 struct btrfs_key key;
6f519564 2822 struct old_sa_defrag_extent *old;
38c227d8
LB
2823 struct new_sa_defrag_extent *new;
2824 int ret;
2825
2826 new = kmalloc(sizeof(*new), GFP_NOFS);
2827 if (!new)
2828 return NULL;
2829
2830 new->inode = inode;
2831 new->file_pos = ordered->file_offset;
2832 new->len = ordered->len;
2833 new->bytenr = ordered->start;
2834 new->disk_len = ordered->disk_len;
2835 new->compress_type = ordered->compress_type;
2836 new->root = RB_ROOT;
2837 INIT_LIST_HEAD(&new->head);
2838
2839 path = btrfs_alloc_path();
2840 if (!path)
2841 goto out_kfree;
2842
4a0cc7ca 2843 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2844 key.type = BTRFS_EXTENT_DATA_KEY;
2845 key.offset = new->file_pos;
2846
2847 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2848 if (ret < 0)
2849 goto out_free_path;
2850 if (ret > 0 && path->slots[0] > 0)
2851 path->slots[0]--;
2852
2853 /* find out all the old extents for the file range */
2854 while (1) {
2855 struct btrfs_file_extent_item *extent;
2856 struct extent_buffer *l;
2857 int slot;
2858 u64 num_bytes;
2859 u64 offset;
2860 u64 end;
2861 u64 disk_bytenr;
2862 u64 extent_offset;
2863
2864 l = path->nodes[0];
2865 slot = path->slots[0];
2866
2867 if (slot >= btrfs_header_nritems(l)) {
2868 ret = btrfs_next_leaf(root, path);
2869 if (ret < 0)
6f519564 2870 goto out_free_path;
38c227d8
LB
2871 else if (ret > 0)
2872 break;
2873 continue;
2874 }
2875
2876 btrfs_item_key_to_cpu(l, &key, slot);
2877
4a0cc7ca 2878 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2879 break;
2880 if (key.type != BTRFS_EXTENT_DATA_KEY)
2881 break;
2882 if (key.offset >= new->file_pos + new->len)
2883 break;
2884
2885 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2886
2887 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2888 if (key.offset + num_bytes < new->file_pos)
2889 goto next;
2890
2891 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2892 if (!disk_bytenr)
2893 goto next;
2894
2895 extent_offset = btrfs_file_extent_offset(l, extent);
2896
2897 old = kmalloc(sizeof(*old), GFP_NOFS);
2898 if (!old)
6f519564 2899 goto out_free_path;
38c227d8
LB
2900
2901 offset = max(new->file_pos, key.offset);
2902 end = min(new->file_pos + new->len, key.offset + num_bytes);
2903
2904 old->bytenr = disk_bytenr;
2905 old->extent_offset = extent_offset;
2906 old->offset = offset - key.offset;
2907 old->len = end - offset;
2908 old->new = new;
2909 old->count = 0;
2910 list_add_tail(&old->list, &new->head);
2911next:
2912 path->slots[0]++;
2913 cond_resched();
2914 }
2915
2916 btrfs_free_path(path);
0b246afa 2917 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2918
2919 return new;
2920
38c227d8
LB
2921out_free_path:
2922 btrfs_free_path(path);
2923out_kfree:
6f519564 2924 free_sa_defrag_extent(new);
38c227d8
LB
2925 return NULL;
2926}
2927
2ff7e61e 2928static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2929 u64 start, u64 len)
2930{
2931 struct btrfs_block_group_cache *cache;
2932
0b246afa 2933 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2934 ASSERT(cache);
2935
2936 spin_lock(&cache->lock);
2937 cache->delalloc_bytes -= len;
2938 spin_unlock(&cache->lock);
2939
2940 btrfs_put_block_group(cache);
2941}
2942
d352ac68
CM
2943/* as ordered data IO finishes, this gets called so we can finish
2944 * an ordered extent if the range of bytes in the file it covers are
2945 * fully written.
2946 */
5fd02043 2947static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2948{
5fd02043 2949 struct inode *inode = ordered_extent->inode;
0b246afa 2950 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2951 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2952 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2953 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2954 struct extent_state *cached_state = NULL;
38c227d8 2955 struct new_sa_defrag_extent *new = NULL;
261507a0 2956 int compress_type = 0;
77cef2ec
JB
2957 int ret = 0;
2958 u64 logical_len = ordered_extent->len;
82d5902d 2959 bool nolock;
77cef2ec 2960 bool truncated = false;
a7e3b975
FM
2961 bool range_locked = false;
2962 bool clear_new_delalloc_bytes = false;
2963
2964 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2965 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2966 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2967 clear_new_delalloc_bytes = true;
e6dcd2dc 2968
70ddc553 2969 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2970
5fd02043
JB
2971 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2972 ret = -EIO;
2973 goto out;
2974 }
2975
7ab7956e
NB
2976 btrfs_free_io_failure_record(BTRFS_I(inode),
2977 ordered_extent->file_offset,
2978 ordered_extent->file_offset +
2979 ordered_extent->len - 1);
f612496b 2980
77cef2ec
JB
2981 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2982 truncated = true;
2983 logical_len = ordered_extent->truncated_len;
2984 /* Truncated the entire extent, don't bother adding */
2985 if (!logical_len)
2986 goto out;
2987 }
2988
c2167754 2989 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2990 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2991
2992 /*
2993 * For mwrite(mmap + memset to write) case, we still reserve
2994 * space for NOCOW range.
2995 * As NOCOW won't cause a new delayed ref, just free the space
2996 */
bc42bda2 2997 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
94ed938a 2998 ordered_extent->len);
6c760c07
JB
2999 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3000 if (nolock)
3001 trans = btrfs_join_transaction_nolock(root);
3002 else
3003 trans = btrfs_join_transaction(root);
3004 if (IS_ERR(trans)) {
3005 ret = PTR_ERR(trans);
3006 trans = NULL;
3007 goto out;
c2167754 3008 }
69fe2d75 3009 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
3010 ret = btrfs_update_inode_fallback(trans, root, inode);
3011 if (ret) /* -ENOMEM or corruption */
66642832 3012 btrfs_abort_transaction(trans, ret);
c2167754
YZ
3013 goto out;
3014 }
e6dcd2dc 3015
a7e3b975 3016 range_locked = true;
2ac55d41
JB
3017 lock_extent_bits(io_tree, ordered_extent->file_offset,
3018 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 3019 &cached_state);
e6dcd2dc 3020
38c227d8
LB
3021 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3022 ordered_extent->file_offset + ordered_extent->len - 1,
452e62b7 3023 EXTENT_DEFRAG, 0, cached_state);
38c227d8
LB
3024 if (ret) {
3025 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 3026 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
3027 /* the inode is shared */
3028 new = record_old_file_extents(inode, ordered_extent);
3029
3030 clear_extent_bit(io_tree, ordered_extent->file_offset,
3031 ordered_extent->file_offset + ordered_extent->len - 1,
ae0f1625 3032 EXTENT_DEFRAG, 0, 0, &cached_state);
38c227d8
LB
3033 }
3034
0cb59c99 3035 if (nolock)
7a7eaa40 3036 trans = btrfs_join_transaction_nolock(root);
0cb59c99 3037 else
7a7eaa40 3038 trans = btrfs_join_transaction(root);
79787eaa
JM
3039 if (IS_ERR(trans)) {
3040 ret = PTR_ERR(trans);
3041 trans = NULL;
a7e3b975 3042 goto out;
79787eaa 3043 }
a79b7d4b 3044
69fe2d75 3045 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 3046
c8b97818 3047 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 3048 compress_type = ordered_extent->compress_type;
d899e052 3049 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 3050 BUG_ON(compress_type);
b430b775
JM
3051 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3052 ordered_extent->len);
7a6d7067 3053 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
3054 ordered_extent->file_offset,
3055 ordered_extent->file_offset +
77cef2ec 3056 logical_len);
d899e052 3057 } else {
0b246afa 3058 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
3059 ret = insert_reserved_file_extent(trans, inode,
3060 ordered_extent->file_offset,
3061 ordered_extent->start,
3062 ordered_extent->disk_len,
77cef2ec 3063 logical_len, logical_len,
261507a0 3064 compress_type, 0, 0,
d899e052 3065 BTRFS_FILE_EXTENT_REG);
e570fd27 3066 if (!ret)
2ff7e61e 3067 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
3068 ordered_extent->start,
3069 ordered_extent->disk_len);
d899e052 3070 }
5dc562c5
JB
3071 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3072 ordered_extent->file_offset, ordered_extent->len,
3073 trans->transid);
79787eaa 3074 if (ret < 0) {
66642832 3075 btrfs_abort_transaction(trans, ret);
a7e3b975 3076 goto out;
79787eaa 3077 }
2ac55d41 3078
ac01f26a
NB
3079 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3080 if (ret) {
3081 btrfs_abort_transaction(trans, ret);
3082 goto out;
3083 }
e6dcd2dc 3084
6c760c07
JB
3085 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3086 ret = btrfs_update_inode_fallback(trans, root, inode);
3087 if (ret) { /* -ENOMEM or corruption */
66642832 3088 btrfs_abort_transaction(trans, ret);
a7e3b975 3089 goto out;
1ef30be1
JB
3090 }
3091 ret = 0;
c2167754 3092out:
a7e3b975
FM
3093 if (range_locked || clear_new_delalloc_bytes) {
3094 unsigned int clear_bits = 0;
3095
3096 if (range_locked)
3097 clear_bits |= EXTENT_LOCKED;
3098 if (clear_new_delalloc_bytes)
3099 clear_bits |= EXTENT_DELALLOC_NEW;
3100 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3101 ordered_extent->file_offset,
3102 ordered_extent->file_offset +
3103 ordered_extent->len - 1,
3104 clear_bits,
3105 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
ae0f1625 3106 0, &cached_state);
a7e3b975
FM
3107 }
3108
a698d075 3109 if (trans)
3a45bb20 3110 btrfs_end_transaction(trans);
0cb59c99 3111
77cef2ec
JB
3112 if (ret || truncated) {
3113 u64 start, end;
3114
3115 if (truncated)
3116 start = ordered_extent->file_offset + logical_len;
3117 else
3118 start = ordered_extent->file_offset;
3119 end = ordered_extent->file_offset + ordered_extent->len - 1;
f08dc36f 3120 clear_extent_uptodate(io_tree, start, end, NULL);
77cef2ec
JB
3121
3122 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 3123 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 3124
0bec9ef5
JB
3125 /*
3126 * If the ordered extent had an IOERR or something else went
3127 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3128 * back to the allocator. We only free the extent in the
3129 * truncated case if we didn't write out the extent at all.
0bec9ef5 3130 */
77cef2ec
JB
3131 if ((ret || !logical_len) &&
3132 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3133 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3134 btrfs_free_reserved_extent(fs_info,
3135 ordered_extent->start,
e570fd27 3136 ordered_extent->disk_len, 1);
0bec9ef5
JB
3137 }
3138
3139
5fd02043 3140 /*
8bad3c02
LB
3141 * This needs to be done to make sure anybody waiting knows we are done
3142 * updating everything for this ordered extent.
5fd02043
JB
3143 */
3144 btrfs_remove_ordered_extent(inode, ordered_extent);
3145
38c227d8 3146 /* for snapshot-aware defrag */
6f519564
LB
3147 if (new) {
3148 if (ret) {
3149 free_sa_defrag_extent(new);
0b246afa 3150 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3151 } else {
3152 relink_file_extents(new);
3153 }
3154 }
38c227d8 3155
e6dcd2dc
CM
3156 /* once for us */
3157 btrfs_put_ordered_extent(ordered_extent);
3158 /* once for the tree */
3159 btrfs_put_ordered_extent(ordered_extent);
3160
5fd02043
JB
3161 return ret;
3162}
3163
3164static void finish_ordered_fn(struct btrfs_work *work)
3165{
3166 struct btrfs_ordered_extent *ordered_extent;
3167 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3168 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3169}
3170
c3988d63 3171static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3172 struct extent_state *state, int uptodate)
3173{
5fd02043 3174 struct inode *inode = page->mapping->host;
0b246afa 3175 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3176 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3177 struct btrfs_workqueue *wq;
3178 btrfs_work_func_t func;
5fd02043 3179
1abe9b8a 3180 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3181
8b62b72b 3182 ClearPagePrivate2(page);
5fd02043
JB
3183 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3184 end - start + 1, uptodate))
c3988d63 3185 return;
5fd02043 3186
70ddc553 3187 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 3188 wq = fs_info->endio_freespace_worker;
9e0af237
LB
3189 func = btrfs_freespace_write_helper;
3190 } else {
0b246afa 3191 wq = fs_info->endio_write_workers;
9e0af237
LB
3192 func = btrfs_endio_write_helper;
3193 }
5fd02043 3194
9e0af237
LB
3195 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3196 NULL);
3197 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3198}
3199
dc380aea
MX
3200static int __readpage_endio_check(struct inode *inode,
3201 struct btrfs_io_bio *io_bio,
3202 int icsum, struct page *page,
3203 int pgoff, u64 start, size_t len)
3204{
3205 char *kaddr;
3206 u32 csum_expected;
3207 u32 csum = ~(u32)0;
dc380aea
MX
3208
3209 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3210
3211 kaddr = kmap_atomic(page);
3212 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
0b5e3daf 3213 btrfs_csum_final(csum, (u8 *)&csum);
dc380aea
MX
3214 if (csum != csum_expected)
3215 goto zeroit;
3216
3217 kunmap_atomic(kaddr);
3218 return 0;
3219zeroit:
0970a22e 3220 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
6f6b643e 3221 io_bio->mirror_num);
dc380aea
MX
3222 memset(kaddr + pgoff, 1, len);
3223 flush_dcache_page(page);
3224 kunmap_atomic(kaddr);
dc380aea
MX
3225 return -EIO;
3226}
3227
d352ac68
CM
3228/*
3229 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3230 * if there's a match, we allow the bio to finish. If not, the code in
3231 * extent_io.c will try to find good copies for us.
d352ac68 3232 */
facc8a22
MX
3233static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3234 u64 phy_offset, struct page *page,
3235 u64 start, u64 end, int mirror)
07157aac 3236{
4eee4fa4 3237 size_t offset = start - page_offset(page);
07157aac 3238 struct inode *inode = page->mapping->host;
d1310b2e 3239 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3240 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3241
d20f7043
CM
3242 if (PageChecked(page)) {
3243 ClearPageChecked(page);
dc380aea 3244 return 0;
d20f7043 3245 }
6cbff00f
CH
3246
3247 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3248 return 0;
17d217fe
YZ
3249
3250 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3251 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3252 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3253 return 0;
17d217fe 3254 }
d20f7043 3255
facc8a22 3256 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3257 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3258 start, (size_t)(end - start + 1));
07157aac 3259}
b888db2b 3260
c1c3fac2
NB
3261/*
3262 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3263 *
3264 * @inode: The inode we want to perform iput on
3265 *
3266 * This function uses the generic vfs_inode::i_count to track whether we should
3267 * just decrement it (in case it's > 1) or if this is the last iput then link
3268 * the inode to the delayed iput machinery. Delayed iputs are processed at
3269 * transaction commit time/superblock commit/cleaner kthread.
3270 */
24bbcf04
YZ
3271void btrfs_add_delayed_iput(struct inode *inode)
3272{
0b246afa 3273 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3274 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3275
3276 if (atomic_add_unless(&inode->i_count, -1, 1))
3277 return;
3278
24bbcf04 3279 spin_lock(&fs_info->delayed_iput_lock);
c1c3fac2
NB
3280 ASSERT(list_empty(&binode->delayed_iput));
3281 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
24bbcf04
YZ
3282 spin_unlock(&fs_info->delayed_iput_lock);
3283}
3284
2ff7e61e 3285void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3286{
24bbcf04 3287
24bbcf04 3288 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3289 while (!list_empty(&fs_info->delayed_iputs)) {
3290 struct btrfs_inode *inode;
3291
3292 inode = list_first_entry(&fs_info->delayed_iputs,
3293 struct btrfs_inode, delayed_iput);
c1c3fac2 3294 list_del_init(&inode->delayed_iput);
8089fe62
DS
3295 spin_unlock(&fs_info->delayed_iput_lock);
3296 iput(&inode->vfs_inode);
3297 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3298 }
8089fe62 3299 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3300}
3301
d68fc57b 3302/*
42b2aa86 3303 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3304 * files in the subvolume, it removes orphan item and frees block_rsv
3305 * structure.
3306 */
3307void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3308 struct btrfs_root *root)
3309{
0b246afa 3310 struct btrfs_fs_info *fs_info = root->fs_info;
90290e19 3311 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3312 int ret;
3313
8a35d95f 3314 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3315 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3316 return;
3317
90290e19 3318 spin_lock(&root->orphan_lock);
8a35d95f 3319 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3320 spin_unlock(&root->orphan_lock);
3321 return;
3322 }
3323
3324 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3325 spin_unlock(&root->orphan_lock);
3326 return;
3327 }
3328
3329 block_rsv = root->orphan_block_rsv;
3330 root->orphan_block_rsv = NULL;
3331 spin_unlock(&root->orphan_lock);
3332
27cdeb70 3333 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b 3334 btrfs_root_refs(&root->root_item) > 0) {
0b246afa 3335 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
d68fc57b 3336 root->root_key.objectid);
4ef31a45 3337 if (ret)
66642832 3338 btrfs_abort_transaction(trans, ret);
4ef31a45 3339 else
27cdeb70
MX
3340 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3341 &root->state);
d68fc57b
YZ
3342 }
3343
90290e19
JB
3344 if (block_rsv) {
3345 WARN_ON(block_rsv->size > 0);
2ff7e61e 3346 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b
YZ
3347 }
3348}
3349
7b128766
JB
3350/*
3351 * This creates an orphan entry for the given inode in case something goes
3352 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3353 *
3354 * NOTE: caller of this function should reserve 5 units of metadata for
3355 * this function.
7b128766 3356 */
73f2e545
NB
3357int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3358 struct btrfs_inode *inode)
7b128766 3359{
73f2e545
NB
3360 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3361 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3362 struct btrfs_block_rsv *block_rsv = NULL;
3363 int reserve = 0;
0a0d4415 3364 bool insert = false;
d68fc57b 3365 int ret;
7b128766 3366
d68fc57b 3367 if (!root->orphan_block_rsv) {
2ff7e61e
JM
3368 block_rsv = btrfs_alloc_block_rsv(fs_info,
3369 BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3370 if (!block_rsv)
3371 return -ENOMEM;
d68fc57b 3372 }
7b128766 3373
8a35d95f 3374 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
0a0d4415
OS
3375 &inode->runtime_flags))
3376 insert = true;
7b128766 3377
72ac3c0d 3378 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3379 &inode->runtime_flags))
d68fc57b 3380 reserve = 1;
3d5addaf
LB
3381
3382 spin_lock(&root->orphan_lock);
3383 /* If someone has created ->orphan_block_rsv, be happy to use it. */
3384 if (!root->orphan_block_rsv) {
3385 root->orphan_block_rsv = block_rsv;
3386 } else if (block_rsv) {
3387 btrfs_free_block_rsv(fs_info, block_rsv);
3388 block_rsv = NULL;
3389 }
3390
3391 if (insert)
3392 atomic_inc(&root->orphan_inodes);
d68fc57b 3393 spin_unlock(&root->orphan_lock);
7b128766 3394
d68fc57b
YZ
3395 /* grab metadata reservation from transaction handle */
3396 if (reserve) {
3397 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3398 ASSERT(!ret);
3399 if (ret) {
1a932ef4
LB
3400 /*
3401 * dec doesn't need spin_lock as ->orphan_block_rsv
3402 * would be released only if ->orphan_inodes is
3403 * zero.
3404 */
3b6571c1
JB
3405 atomic_dec(&root->orphan_inodes);
3406 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3407 &inode->runtime_flags);
3b6571c1
JB
3408 if (insert)
3409 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3410 &inode->runtime_flags);
3b6571c1
JB
3411 return ret;
3412 }
d68fc57b 3413 }
7b128766 3414
d68fc57b 3415 /* insert an orphan item to track this unlinked/truncated file */
0a0d4415 3416 if (insert) {
73f2e545 3417 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3418 if (ret) {
4ef31a45
JB
3419 if (reserve) {
3420 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3421 &inode->runtime_flags);
4ef31a45
JB
3422 btrfs_orphan_release_metadata(inode);
3423 }
1a932ef4
LB
3424 /*
3425 * btrfs_orphan_commit_root may race with us and set
3426 * ->orphan_block_rsv to zero, in order to avoid that,
3427 * decrease ->orphan_inodes after everything is done.
3428 */
3429 atomic_dec(&root->orphan_inodes);
4ef31a45 3430 if (ret != -EEXIST) {
e8e7cff6 3431 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3432 &inode->runtime_flags);
66642832 3433 btrfs_abort_transaction(trans, ret);
4ef31a45
JB
3434 return ret;
3435 }
79787eaa
JM
3436 }
3437 ret = 0;
d68fc57b
YZ
3438 }
3439
d68fc57b 3440 return 0;
7b128766
JB
3441}
3442
3443/*
3444 * We have done the truncate/delete so we can go ahead and remove the orphan
3445 * item for this particular inode.
3446 */
48a3b636 3447static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3448 struct btrfs_inode *inode)
7b128766 3449{
3d6ae7bb 3450 struct btrfs_root *root = inode->root;
d68fc57b 3451 int delete_item = 0;
7b128766
JB
3452 int ret = 0;
3453
8a35d95f 3454 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3d6ae7bb 3455 &inode->runtime_flags))
d68fc57b 3456 delete_item = 1;
7b128766 3457
1a932ef4
LB
3458 if (delete_item && trans)
3459 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
3460
72ac3c0d 3461 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3d6ae7bb 3462 &inode->runtime_flags))
1a932ef4 3463 btrfs_orphan_release_metadata(inode);
7b128766 3464
1a932ef4
LB
3465 /*
3466 * btrfs_orphan_commit_root may race with us and set ->orphan_block_rsv
3467 * to zero, in order to avoid that, decrease ->orphan_inodes after
3468 * everything is done.
3469 */
3470 if (delete_item)
8a35d95f 3471 atomic_dec(&root->orphan_inodes);
703c88e0 3472
4ef31a45 3473 return ret;
7b128766
JB
3474}
3475
3476/*
3477 * this cleans up any orphans that may be left on the list from the last use
3478 * of this root.
3479 */
66b4ffd1 3480int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3481{
0b246afa 3482 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3483 struct btrfs_path *path;
3484 struct extent_buffer *leaf;
7b128766
JB
3485 struct btrfs_key key, found_key;
3486 struct btrfs_trans_handle *trans;
3487 struct inode *inode;
8f6d7f4f 3488 u64 last_objectid = 0;
7b128766
JB
3489 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3490
d68fc57b 3491 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3492 return 0;
c71bf099
YZ
3493
3494 path = btrfs_alloc_path();
66b4ffd1
JB
3495 if (!path) {
3496 ret = -ENOMEM;
3497 goto out;
3498 }
e4058b54 3499 path->reada = READA_BACK;
7b128766
JB
3500
3501 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3502 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3503 key.offset = (u64)-1;
3504
7b128766
JB
3505 while (1) {
3506 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3507 if (ret < 0)
3508 goto out;
7b128766
JB
3509
3510 /*
3511 * if ret == 0 means we found what we were searching for, which
25985edc 3512 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3513 * find the key and see if we have stuff that matches
3514 */
3515 if (ret > 0) {
66b4ffd1 3516 ret = 0;
7b128766
JB
3517 if (path->slots[0] == 0)
3518 break;
3519 path->slots[0]--;
3520 }
3521
3522 /* pull out the item */
3523 leaf = path->nodes[0];
7b128766
JB
3524 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3525
3526 /* make sure the item matches what we want */
3527 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3528 break;
962a298f 3529 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3530 break;
3531
3532 /* release the path since we're done with it */
b3b4aa74 3533 btrfs_release_path(path);
7b128766
JB
3534
3535 /*
3536 * this is where we are basically btrfs_lookup, without the
3537 * crossing root thing. we store the inode number in the
3538 * offset of the orphan item.
3539 */
8f6d7f4f
JB
3540
3541 if (found_key.offset == last_objectid) {
0b246afa
JM
3542 btrfs_err(fs_info,
3543 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3544 ret = -EINVAL;
3545 goto out;
3546 }
3547
3548 last_objectid = found_key.offset;
3549
5d4f98a2
YZ
3550 found_key.objectid = found_key.offset;
3551 found_key.type = BTRFS_INODE_ITEM_KEY;
3552 found_key.offset = 0;
0b246afa 3553 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3554 ret = PTR_ERR_OR_ZERO(inode);
67710892 3555 if (ret && ret != -ENOENT)
66b4ffd1 3556 goto out;
7b128766 3557
0b246afa 3558 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3559 struct btrfs_root *dead_root;
3560 struct btrfs_fs_info *fs_info = root->fs_info;
3561 int is_dead_root = 0;
3562
3563 /*
3564 * this is an orphan in the tree root. Currently these
3565 * could come from 2 sources:
3566 * a) a snapshot deletion in progress
3567 * b) a free space cache inode
3568 * We need to distinguish those two, as the snapshot
3569 * orphan must not get deleted.
3570 * find_dead_roots already ran before us, so if this
3571 * is a snapshot deletion, we should find the root
3572 * in the dead_roots list
3573 */
3574 spin_lock(&fs_info->trans_lock);
3575 list_for_each_entry(dead_root, &fs_info->dead_roots,
3576 root_list) {
3577 if (dead_root->root_key.objectid ==
3578 found_key.objectid) {
3579 is_dead_root = 1;
3580 break;
3581 }
3582 }
3583 spin_unlock(&fs_info->trans_lock);
3584 if (is_dead_root) {
3585 /* prevent this orphan from being found again */
3586 key.offset = found_key.objectid - 1;
3587 continue;
3588 }
3589 }
7b128766 3590 /*
a8c9e576
JB
3591 * Inode is already gone but the orphan item is still there,
3592 * kill the orphan item.
7b128766 3593 */
67710892 3594 if (ret == -ENOENT) {
a8c9e576 3595 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3596 if (IS_ERR(trans)) {
3597 ret = PTR_ERR(trans);
3598 goto out;
3599 }
0b246afa
JM
3600 btrfs_debug(fs_info, "auto deleting %Lu",
3601 found_key.objectid);
a8c9e576
JB
3602 ret = btrfs_del_orphan_item(trans, root,
3603 found_key.objectid);
3a45bb20 3604 btrfs_end_transaction(trans);
4ef31a45
JB
3605 if (ret)
3606 goto out;
7b128766
JB
3607 continue;
3608 }
3609
a8c9e576
JB
3610 /*
3611 * add this inode to the orphan list so btrfs_orphan_del does
3612 * the proper thing when we hit it
3613 */
8a35d95f
JB
3614 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3615 &BTRFS_I(inode)->runtime_flags);
925396ec 3616 atomic_inc(&root->orphan_inodes);
a8c9e576 3617
7b128766
JB
3618 /* if we have links, this was a truncate, lets do that */
3619 if (inode->i_nlink) {
fae7f21c 3620 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3621 iput(inode);
3622 continue;
3623 }
7b128766 3624 nr_truncate++;
f3fe820c
JB
3625
3626 /* 1 for the orphan item deletion. */
3627 trans = btrfs_start_transaction(root, 1);
3628 if (IS_ERR(trans)) {
c69b26b0 3629 iput(inode);
f3fe820c
JB
3630 ret = PTR_ERR(trans);
3631 goto out;
3632 }
73f2e545 3633 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 3634 btrfs_end_transaction(trans);
c69b26b0
JB
3635 if (ret) {
3636 iput(inode);
f3fe820c 3637 goto out;
c69b26b0 3638 }
f3fe820c 3639
213e8c55 3640 ret = btrfs_truncate(inode, false);
4a7d0f68 3641 if (ret)
3d6ae7bb 3642 btrfs_orphan_del(NULL, BTRFS_I(inode));
7b128766
JB
3643 } else {
3644 nr_unlink++;
3645 }
3646
3647 /* this will do delete_inode and everything for us */
3648 iput(inode);
66b4ffd1
JB
3649 if (ret)
3650 goto out;
7b128766 3651 }
3254c876
MX
3652 /* release the path since we're done with it */
3653 btrfs_release_path(path);
3654
d68fc57b
YZ
3655 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3656
3657 if (root->orphan_block_rsv)
2ff7e61e 3658 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
d68fc57b
YZ
3659 (u64)-1);
3660
27cdeb70
MX
3661 if (root->orphan_block_rsv ||
3662 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3663 trans = btrfs_join_transaction(root);
66b4ffd1 3664 if (!IS_ERR(trans))
3a45bb20 3665 btrfs_end_transaction(trans);
d68fc57b 3666 }
7b128766
JB
3667
3668 if (nr_unlink)
0b246afa 3669 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3670 if (nr_truncate)
0b246afa 3671 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3672
3673out:
3674 if (ret)
0b246afa 3675 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3676 btrfs_free_path(path);
3677 return ret;
7b128766
JB
3678}
3679
46a53cca
CM
3680/*
3681 * very simple check to peek ahead in the leaf looking for xattrs. If we
3682 * don't find any xattrs, we know there can't be any acls.
3683 *
3684 * slot is the slot the inode is in, objectid is the objectid of the inode
3685 */
3686static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3687 int slot, u64 objectid,
3688 int *first_xattr_slot)
46a53cca
CM
3689{
3690 u32 nritems = btrfs_header_nritems(leaf);
3691 struct btrfs_key found_key;
f23b5a59
JB
3692 static u64 xattr_access = 0;
3693 static u64 xattr_default = 0;
46a53cca
CM
3694 int scanned = 0;
3695
f23b5a59 3696 if (!xattr_access) {
97d79299
AG
3697 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3698 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3699 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3700 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3701 }
3702
46a53cca 3703 slot++;
63541927 3704 *first_xattr_slot = -1;
46a53cca
CM
3705 while (slot < nritems) {
3706 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3707
3708 /* we found a different objectid, there must not be acls */
3709 if (found_key.objectid != objectid)
3710 return 0;
3711
3712 /* we found an xattr, assume we've got an acl */
f23b5a59 3713 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3714 if (*first_xattr_slot == -1)
3715 *first_xattr_slot = slot;
f23b5a59
JB
3716 if (found_key.offset == xattr_access ||
3717 found_key.offset == xattr_default)
3718 return 1;
3719 }
46a53cca
CM
3720
3721 /*
3722 * we found a key greater than an xattr key, there can't
3723 * be any acls later on
3724 */
3725 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3726 return 0;
3727
3728 slot++;
3729 scanned++;
3730
3731 /*
3732 * it goes inode, inode backrefs, xattrs, extents,
3733 * so if there are a ton of hard links to an inode there can
3734 * be a lot of backrefs. Don't waste time searching too hard,
3735 * this is just an optimization
3736 */
3737 if (scanned >= 8)
3738 break;
3739 }
3740 /* we hit the end of the leaf before we found an xattr or
3741 * something larger than an xattr. We have to assume the inode
3742 * has acls
3743 */
63541927
FDBM
3744 if (*first_xattr_slot == -1)
3745 *first_xattr_slot = slot;
46a53cca
CM
3746 return 1;
3747}
3748
d352ac68
CM
3749/*
3750 * read an inode from the btree into the in-memory inode
3751 */
67710892 3752static int btrfs_read_locked_inode(struct inode *inode)
39279cc3 3753{
0b246afa 3754 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 3755 struct btrfs_path *path;
5f39d397 3756 struct extent_buffer *leaf;
39279cc3
CM
3757 struct btrfs_inode_item *inode_item;
3758 struct btrfs_root *root = BTRFS_I(inode)->root;
3759 struct btrfs_key location;
67de1176 3760 unsigned long ptr;
46a53cca 3761 int maybe_acls;
618e21d5 3762 u32 rdev;
39279cc3 3763 int ret;
2f7e33d4 3764 bool filled = false;
63541927 3765 int first_xattr_slot;
2f7e33d4
MX
3766
3767 ret = btrfs_fill_inode(inode, &rdev);
3768 if (!ret)
3769 filled = true;
39279cc3
CM
3770
3771 path = btrfs_alloc_path();
67710892
FM
3772 if (!path) {
3773 ret = -ENOMEM;
1748f843 3774 goto make_bad;
67710892 3775 }
1748f843 3776
39279cc3 3777 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3778
39279cc3 3779 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3780 if (ret) {
3781 if (ret > 0)
3782 ret = -ENOENT;
39279cc3 3783 goto make_bad;
67710892 3784 }
39279cc3 3785
5f39d397 3786 leaf = path->nodes[0];
2f7e33d4
MX
3787
3788 if (filled)
67de1176 3789 goto cache_index;
2f7e33d4 3790
5f39d397
CM
3791 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3792 struct btrfs_inode_item);
5f39d397 3793 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3794 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3795 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3796 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3797 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3798
a937b979
DS
3799 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3800 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3801
a937b979
DS
3802 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3803 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3804
a937b979
DS
3805 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3806 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3807
9cc97d64 3808 BTRFS_I(inode)->i_otime.tv_sec =
3809 btrfs_timespec_sec(leaf, &inode_item->otime);
3810 BTRFS_I(inode)->i_otime.tv_nsec =
3811 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3812
a76a3cd4 3813 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3814 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3815 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3816
c7f88c4e
JL
3817 inode_set_iversion_queried(inode,
3818 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3819 inode->i_generation = BTRFS_I(inode)->generation;
3820 inode->i_rdev = 0;
3821 rdev = btrfs_inode_rdev(leaf, inode_item);
3822
3823 BTRFS_I(inode)->index_cnt = (u64)-1;
3824 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3825
3826cache_index:
5dc562c5
JB
3827 /*
3828 * If we were modified in the current generation and evicted from memory
3829 * and then re-read we need to do a full sync since we don't have any
3830 * idea about which extents were modified before we were evicted from
3831 * cache.
6e17d30b
YD
3832 *
3833 * This is required for both inode re-read from disk and delayed inode
3834 * in delayed_nodes_tree.
5dc562c5 3835 */
0b246afa 3836 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3837 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3838 &BTRFS_I(inode)->runtime_flags);
3839
bde6c242
FM
3840 /*
3841 * We don't persist the id of the transaction where an unlink operation
3842 * against the inode was last made. So here we assume the inode might
3843 * have been evicted, and therefore the exact value of last_unlink_trans
3844 * lost, and set it to last_trans to avoid metadata inconsistencies
3845 * between the inode and its parent if the inode is fsync'ed and the log
3846 * replayed. For example, in the scenario:
3847 *
3848 * touch mydir/foo
3849 * ln mydir/foo mydir/bar
3850 * sync
3851 * unlink mydir/bar
3852 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3853 * xfs_io -c fsync mydir/foo
3854 * <power failure>
3855 * mount fs, triggers fsync log replay
3856 *
3857 * We must make sure that when we fsync our inode foo we also log its
3858 * parent inode, otherwise after log replay the parent still has the
3859 * dentry with the "bar" name but our inode foo has a link count of 1
3860 * and doesn't have an inode ref with the name "bar" anymore.
3861 *
3862 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3863 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3864 * transaction commits on fsync if our inode is a directory, or if our
3865 * inode is not a directory, logging its parent unnecessarily.
3866 */
3867 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3868
67de1176
MX
3869 path->slots[0]++;
3870 if (inode->i_nlink != 1 ||
3871 path->slots[0] >= btrfs_header_nritems(leaf))
3872 goto cache_acl;
3873
3874 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3875 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3876 goto cache_acl;
3877
3878 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3879 if (location.type == BTRFS_INODE_REF_KEY) {
3880 struct btrfs_inode_ref *ref;
3881
3882 ref = (struct btrfs_inode_ref *)ptr;
3883 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3884 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3885 struct btrfs_inode_extref *extref;
3886
3887 extref = (struct btrfs_inode_extref *)ptr;
3888 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3889 extref);
3890 }
2f7e33d4 3891cache_acl:
46a53cca
CM
3892 /*
3893 * try to precache a NULL acl entry for files that don't have
3894 * any xattrs or acls
3895 */
33345d01 3896 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3897 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3898 if (first_xattr_slot != -1) {
3899 path->slots[0] = first_xattr_slot;
3900 ret = btrfs_load_inode_props(inode, path);
3901 if (ret)
0b246afa 3902 btrfs_err(fs_info,
351fd353 3903 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3904 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3905 root->root_key.objectid, ret);
3906 }
3907 btrfs_free_path(path);
3908
72c04902
AV
3909 if (!maybe_acls)
3910 cache_no_acl(inode);
46a53cca 3911
39279cc3 3912 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3913 case S_IFREG:
3914 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3915 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3916 inode->i_fop = &btrfs_file_operations;
3917 inode->i_op = &btrfs_file_inode_operations;
3918 break;
3919 case S_IFDIR:
3920 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3921 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3922 break;
3923 case S_IFLNK:
3924 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3925 inode_nohighmem(inode);
39279cc3
CM
3926 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3927 break;
618e21d5 3928 default:
0279b4cd 3929 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3930 init_special_inode(inode, inode->i_mode, rdev);
3931 break;
39279cc3 3932 }
6cbff00f
CH
3933
3934 btrfs_update_iflags(inode);
67710892 3935 return 0;
39279cc3
CM
3936
3937make_bad:
39279cc3 3938 btrfs_free_path(path);
39279cc3 3939 make_bad_inode(inode);
67710892 3940 return ret;
39279cc3
CM
3941}
3942
d352ac68
CM
3943/*
3944 * given a leaf and an inode, copy the inode fields into the leaf
3945 */
e02119d5
CM
3946static void fill_inode_item(struct btrfs_trans_handle *trans,
3947 struct extent_buffer *leaf,
5f39d397 3948 struct btrfs_inode_item *item,
39279cc3
CM
3949 struct inode *inode)
3950{
51fab693
LB
3951 struct btrfs_map_token token;
3952
3953 btrfs_init_map_token(&token);
5f39d397 3954
51fab693
LB
3955 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3956 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3957 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3958 &token);
3959 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3960 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3961
a937b979 3962 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3963 inode->i_atime.tv_sec, &token);
a937b979 3964 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3965 inode->i_atime.tv_nsec, &token);
5f39d397 3966
a937b979 3967 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3968 inode->i_mtime.tv_sec, &token);
a937b979 3969 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3970 inode->i_mtime.tv_nsec, &token);
5f39d397 3971
a937b979 3972 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3973 inode->i_ctime.tv_sec, &token);
a937b979 3974 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3975 inode->i_ctime.tv_nsec, &token);
5f39d397 3976
9cc97d64 3977 btrfs_set_token_timespec_sec(leaf, &item->otime,
3978 BTRFS_I(inode)->i_otime.tv_sec, &token);
3979 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3980 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3981
51fab693
LB
3982 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3983 &token);
3984 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3985 &token);
c7f88c4e
JL
3986 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3987 &token);
51fab693
LB
3988 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3989 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3990 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3991 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3992}
3993
d352ac68
CM
3994/*
3995 * copy everything in the in-memory inode into the btree.
3996 */
2115133f 3997static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3998 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3999{
4000 struct btrfs_inode_item *inode_item;
4001 struct btrfs_path *path;
5f39d397 4002 struct extent_buffer *leaf;
39279cc3
CM
4003 int ret;
4004
4005 path = btrfs_alloc_path();
16cdcec7
MX
4006 if (!path)
4007 return -ENOMEM;
4008
b9473439 4009 path->leave_spinning = 1;
16cdcec7
MX
4010 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
4011 1);
39279cc3
CM
4012 if (ret) {
4013 if (ret > 0)
4014 ret = -ENOENT;
4015 goto failed;
4016 }
4017
5f39d397
CM
4018 leaf = path->nodes[0];
4019 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 4020 struct btrfs_inode_item);
39279cc3 4021
e02119d5 4022 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 4023 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 4024 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
4025 ret = 0;
4026failed:
39279cc3
CM
4027 btrfs_free_path(path);
4028 return ret;
4029}
4030
2115133f
CM
4031/*
4032 * copy everything in the in-memory inode into the btree.
4033 */
4034noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4035 struct btrfs_root *root, struct inode *inode)
4036{
0b246afa 4037 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
4038 int ret;
4039
4040 /*
4041 * If the inode is a free space inode, we can deadlock during commit
4042 * if we put it into the delayed code.
4043 *
4044 * The data relocation inode should also be directly updated
4045 * without delay
4046 */
70ddc553 4047 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 4048 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 4049 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
4050 btrfs_update_root_times(trans, root);
4051
2115133f
CM
4052 ret = btrfs_delayed_update_inode(trans, root, inode);
4053 if (!ret)
4054 btrfs_set_inode_last_trans(trans, inode);
4055 return ret;
4056 }
4057
4058 return btrfs_update_inode_item(trans, root, inode);
4059}
4060
be6aef60
JB
4061noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4062 struct btrfs_root *root,
4063 struct inode *inode)
2115133f
CM
4064{
4065 int ret;
4066
4067 ret = btrfs_update_inode(trans, root, inode);
4068 if (ret == -ENOSPC)
4069 return btrfs_update_inode_item(trans, root, inode);
4070 return ret;
4071}
4072
d352ac68
CM
4073/*
4074 * unlink helper that gets used here in inode.c and in the tree logging
4075 * recovery code. It remove a link in a directory with a given name, and
4076 * also drops the back refs in the inode to the directory
4077 */
92986796
AV
4078static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4079 struct btrfs_root *root,
4ec5934e
NB
4080 struct btrfs_inode *dir,
4081 struct btrfs_inode *inode,
92986796 4082 const char *name, int name_len)
39279cc3 4083{
0b246afa 4084 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4085 struct btrfs_path *path;
39279cc3 4086 int ret = 0;
5f39d397 4087 struct extent_buffer *leaf;
39279cc3 4088 struct btrfs_dir_item *di;
5f39d397 4089 struct btrfs_key key;
aec7477b 4090 u64 index;
33345d01
LZ
4091 u64 ino = btrfs_ino(inode);
4092 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
4093
4094 path = btrfs_alloc_path();
54aa1f4d
CM
4095 if (!path) {
4096 ret = -ENOMEM;
554233a6 4097 goto out;
54aa1f4d
CM
4098 }
4099
b9473439 4100 path->leave_spinning = 1;
33345d01 4101 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
4102 name, name_len, -1);
4103 if (IS_ERR(di)) {
4104 ret = PTR_ERR(di);
4105 goto err;
4106 }
4107 if (!di) {
4108 ret = -ENOENT;
4109 goto err;
4110 }
5f39d397
CM
4111 leaf = path->nodes[0];
4112 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 4113 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4114 if (ret)
4115 goto err;
b3b4aa74 4116 btrfs_release_path(path);
39279cc3 4117
67de1176
MX
4118 /*
4119 * If we don't have dir index, we have to get it by looking up
4120 * the inode ref, since we get the inode ref, remove it directly,
4121 * it is unnecessary to do delayed deletion.
4122 *
4123 * But if we have dir index, needn't search inode ref to get it.
4124 * Since the inode ref is close to the inode item, it is better
4125 * that we delay to delete it, and just do this deletion when
4126 * we update the inode item.
4127 */
4ec5934e 4128 if (inode->dir_index) {
67de1176
MX
4129 ret = btrfs_delayed_delete_inode_ref(inode);
4130 if (!ret) {
4ec5934e 4131 index = inode->dir_index;
67de1176
MX
4132 goto skip_backref;
4133 }
4134 }
4135
33345d01
LZ
4136 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4137 dir_ino, &index);
aec7477b 4138 if (ret) {
0b246afa 4139 btrfs_info(fs_info,
c2cf52eb 4140 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4141 name_len, name, ino, dir_ino);
66642832 4142 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4143 goto err;
4144 }
67de1176 4145skip_backref:
2ff7e61e 4146 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
79787eaa 4147 if (ret) {
66642832 4148 btrfs_abort_transaction(trans, ret);
39279cc3 4149 goto err;
79787eaa 4150 }
39279cc3 4151
4ec5934e
NB
4152 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4153 dir_ino);
79787eaa 4154 if (ret != 0 && ret != -ENOENT) {
66642832 4155 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4156 goto err;
4157 }
e02119d5 4158
4ec5934e
NB
4159 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4160 index);
6418c961
CM
4161 if (ret == -ENOENT)
4162 ret = 0;
d4e3991b 4163 else if (ret)
66642832 4164 btrfs_abort_transaction(trans, ret);
39279cc3
CM
4165err:
4166 btrfs_free_path(path);
e02119d5
CM
4167 if (ret)
4168 goto out;
4169
6ef06d27 4170 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
4171 inode_inc_iversion(&inode->vfs_inode);
4172 inode_inc_iversion(&dir->vfs_inode);
4173 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4174 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4175 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 4176out:
39279cc3
CM
4177 return ret;
4178}
4179
92986796
AV
4180int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4181 struct btrfs_root *root,
4ec5934e 4182 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
4183 const char *name, int name_len)
4184{
4185 int ret;
4186 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4187 if (!ret) {
4ec5934e
NB
4188 drop_nlink(&inode->vfs_inode);
4189 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4190 }
4191 return ret;
4192}
39279cc3 4193
a22285a6
YZ
4194/*
4195 * helper to start transaction for unlink and rmdir.
4196 *
d52be818
JB
4197 * unlink and rmdir are special in btrfs, they do not always free space, so
4198 * if we cannot make our reservations the normal way try and see if there is
4199 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4200 * allow the unlink to occur.
a22285a6 4201 */
d52be818 4202static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4203{
a22285a6 4204 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4205
e70bea5f
JB
4206 /*
4207 * 1 for the possible orphan item
4208 * 1 for the dir item
4209 * 1 for the dir index
4210 * 1 for the inode ref
e70bea5f
JB
4211 * 1 for the inode
4212 */
8eab77ff 4213 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4214}
4215
4216static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4217{
4218 struct btrfs_root *root = BTRFS_I(dir)->root;
4219 struct btrfs_trans_handle *trans;
2b0143b5 4220 struct inode *inode = d_inode(dentry);
a22285a6 4221 int ret;
a22285a6 4222
d52be818 4223 trans = __unlink_start_trans(dir);
a22285a6
YZ
4224 if (IS_ERR(trans))
4225 return PTR_ERR(trans);
5f39d397 4226
4ec5934e
NB
4227 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4228 0);
12fcfd22 4229
4ec5934e
NB
4230 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4231 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4232 dentry->d_name.len);
b532402e
TI
4233 if (ret)
4234 goto out;
7b128766 4235
a22285a6 4236 if (inode->i_nlink == 0) {
73f2e545 4237 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4238 if (ret)
4239 goto out;
a22285a6 4240 }
7b128766 4241
b532402e 4242out:
3a45bb20 4243 btrfs_end_transaction(trans);
2ff7e61e 4244 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4245 return ret;
4246}
4247
4df27c4d
YZ
4248int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4249 struct btrfs_root *root,
4250 struct inode *dir, u64 objectid,
4251 const char *name, int name_len)
4252{
0b246afa 4253 struct btrfs_fs_info *fs_info = root->fs_info;
4df27c4d
YZ
4254 struct btrfs_path *path;
4255 struct extent_buffer *leaf;
4256 struct btrfs_dir_item *di;
4257 struct btrfs_key key;
4258 u64 index;
4259 int ret;
4a0cc7ca 4260 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4261
4262 path = btrfs_alloc_path();
4263 if (!path)
4264 return -ENOMEM;
4265
33345d01 4266 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4267 name, name_len, -1);
79787eaa
JM
4268 if (IS_ERR_OR_NULL(di)) {
4269 if (!di)
4270 ret = -ENOENT;
4271 else
4272 ret = PTR_ERR(di);
4273 goto out;
4274 }
4df27c4d
YZ
4275
4276 leaf = path->nodes[0];
4277 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4278 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4279 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4280 if (ret) {
66642832 4281 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4282 goto out;
4283 }
b3b4aa74 4284 btrfs_release_path(path);
4df27c4d 4285
0b246afa
JM
4286 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4287 root->root_key.objectid, dir_ino,
4288 &index, name, name_len);
4df27c4d 4289 if (ret < 0) {
79787eaa 4290 if (ret != -ENOENT) {
66642832 4291 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4292 goto out;
4293 }
33345d01 4294 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4295 name, name_len);
79787eaa
JM
4296 if (IS_ERR_OR_NULL(di)) {
4297 if (!di)
4298 ret = -ENOENT;
4299 else
4300 ret = PTR_ERR(di);
66642832 4301 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4302 goto out;
4303 }
4df27c4d
YZ
4304
4305 leaf = path->nodes[0];
4306 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4307 btrfs_release_path(path);
4df27c4d
YZ
4308 index = key.offset;
4309 }
945d8962 4310 btrfs_release_path(path);
4df27c4d 4311
e67bbbb9 4312 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
79787eaa 4313 if (ret) {
66642832 4314 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4315 goto out;
4316 }
4df27c4d 4317
6ef06d27 4318 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4319 inode_inc_iversion(dir);
c2050a45 4320 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4321 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4322 if (ret)
66642832 4323 btrfs_abort_transaction(trans, ret);
79787eaa 4324out:
71d7aed0 4325 btrfs_free_path(path);
79787eaa 4326 return ret;
4df27c4d
YZ
4327}
4328
39279cc3
CM
4329static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4330{
2b0143b5 4331 struct inode *inode = d_inode(dentry);
1832a6d5 4332 int err = 0;
39279cc3 4333 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4334 struct btrfs_trans_handle *trans;
44f714da 4335 u64 last_unlink_trans;
39279cc3 4336
b3ae244e 4337 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4338 return -ENOTEMPTY;
4a0cc7ca 4339 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
b3ae244e 4340 return -EPERM;
134d4512 4341
d52be818 4342 trans = __unlink_start_trans(dir);
a22285a6 4343 if (IS_ERR(trans))
5df6a9f6 4344 return PTR_ERR(trans);
5df6a9f6 4345
4a0cc7ca 4346 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4347 err = btrfs_unlink_subvol(trans, root, dir,
4348 BTRFS_I(inode)->location.objectid,
4349 dentry->d_name.name,
4350 dentry->d_name.len);
4351 goto out;
4352 }
4353
73f2e545 4354 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4355 if (err)
4df27c4d 4356 goto out;
7b128766 4357
44f714da
FM
4358 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4359
39279cc3 4360 /* now the directory is empty */
4ec5934e
NB
4361 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4362 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4363 dentry->d_name.len);
44f714da 4364 if (!err) {
6ef06d27 4365 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4366 /*
4367 * Propagate the last_unlink_trans value of the deleted dir to
4368 * its parent directory. This is to prevent an unrecoverable
4369 * log tree in the case we do something like this:
4370 * 1) create dir foo
4371 * 2) create snapshot under dir foo
4372 * 3) delete the snapshot
4373 * 4) rmdir foo
4374 * 5) mkdir foo
4375 * 6) fsync foo or some file inside foo
4376 */
4377 if (last_unlink_trans >= trans->transid)
4378 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4379 }
4df27c4d 4380out:
3a45bb20 4381 btrfs_end_transaction(trans);
2ff7e61e 4382 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4383
39279cc3
CM
4384 return err;
4385}
4386
28f75a0e
CM
4387static int truncate_space_check(struct btrfs_trans_handle *trans,
4388 struct btrfs_root *root,
4389 u64 bytes_deleted)
4390{
0b246afa 4391 struct btrfs_fs_info *fs_info = root->fs_info;
28f75a0e
CM
4392 int ret;
4393
dc95f7bf
JB
4394 /*
4395 * This is only used to apply pressure to the enospc system, we don't
4396 * intend to use this reservation at all.
4397 */
2ff7e61e 4398 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
0b246afa
JM
4399 bytes_deleted *= fs_info->nodesize;
4400 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
28f75a0e 4401 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf 4402 if (!ret) {
0b246afa 4403 trace_btrfs_space_reservation(fs_info, "transaction",
dc95f7bf
JB
4404 trans->transid,
4405 bytes_deleted, 1);
28f75a0e 4406 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4407 }
28f75a0e
CM
4408 return ret;
4409
4410}
4411
ddfae63c
JB
4412/*
4413 * Return this if we need to call truncate_block for the last bit of the
4414 * truncate.
4415 */
4416#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4417
39279cc3
CM
4418/*
4419 * this can truncate away extent items, csum items and directory items.
4420 * It starts at a high offset and removes keys until it can't find
d352ac68 4421 * any higher than new_size
39279cc3
CM
4422 *
4423 * csum items that cross the new i_size are truncated to the new size
4424 * as well.
7b128766
JB
4425 *
4426 * min_type is the minimum key type to truncate down to. If set to 0, this
4427 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4428 */
8082510e
YZ
4429int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4430 struct btrfs_root *root,
4431 struct inode *inode,
4432 u64 new_size, u32 min_type)
39279cc3 4433{
0b246afa 4434 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4435 struct btrfs_path *path;
5f39d397 4436 struct extent_buffer *leaf;
39279cc3 4437 struct btrfs_file_extent_item *fi;
8082510e
YZ
4438 struct btrfs_key key;
4439 struct btrfs_key found_key;
39279cc3 4440 u64 extent_start = 0;
db94535d 4441 u64 extent_num_bytes = 0;
5d4f98a2 4442 u64 extent_offset = 0;
39279cc3 4443 u64 item_end = 0;
c1aa4575 4444 u64 last_size = new_size;
8082510e 4445 u32 found_type = (u8)-1;
39279cc3
CM
4446 int found_extent;
4447 int del_item;
85e21bac
CM
4448 int pending_del_nr = 0;
4449 int pending_del_slot = 0;
179e29e4 4450 int extent_type = -1;
8082510e
YZ
4451 int ret;
4452 int err = 0;
4a0cc7ca 4453 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4454 u64 bytes_deleted = 0;
897ca819
TM
4455 bool be_nice = false;
4456 bool should_throttle = false;
4457 bool should_end = false;
8082510e
YZ
4458
4459 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4460
28ed1345
CM
4461 /*
4462 * for non-free space inodes and ref cows, we want to back off from
4463 * time to time
4464 */
70ddc553 4465 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345 4466 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
897ca819 4467 be_nice = true;
28ed1345 4468
0eb0e19c
MF
4469 path = btrfs_alloc_path();
4470 if (!path)
4471 return -ENOMEM;
e4058b54 4472 path->reada = READA_BACK;
0eb0e19c 4473
5dc562c5
JB
4474 /*
4475 * We want to drop from the next block forward in case this new size is
4476 * not block aligned since we will be keeping the last block of the
4477 * extent just the way it is.
4478 */
27cdeb70 4479 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4480 root == fs_info->tree_root)
dcdbc059 4481 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4482 fs_info->sectorsize),
da17066c 4483 (u64)-1, 0);
8082510e 4484
16cdcec7
MX
4485 /*
4486 * This function is also used to drop the items in the log tree before
4487 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4488 * it is used to drop the loged items. So we shouldn't kill the delayed
4489 * items.
4490 */
4491 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4492 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4493
33345d01 4494 key.objectid = ino;
39279cc3 4495 key.offset = (u64)-1;
5f39d397
CM
4496 key.type = (u8)-1;
4497
85e21bac 4498search_again:
28ed1345
CM
4499 /*
4500 * with a 16K leaf size and 128MB extents, you can actually queue
4501 * up a huge file in a single leaf. Most of the time that
4502 * bytes_deleted is > 0, it will be huge by the time we get here
4503 */
ee22184b 4504 if (be_nice && bytes_deleted > SZ_32M) {
3a45bb20 4505 if (btrfs_should_end_transaction(trans)) {
28ed1345
CM
4506 err = -EAGAIN;
4507 goto error;
4508 }
4509 }
4510
4511
b9473439 4512 path->leave_spinning = 1;
85e21bac 4513 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4514 if (ret < 0) {
4515 err = ret;
4516 goto out;
4517 }
d397712b 4518
85e21bac 4519 if (ret > 0) {
e02119d5
CM
4520 /* there are no items in the tree for us to truncate, we're
4521 * done
4522 */
8082510e
YZ
4523 if (path->slots[0] == 0)
4524 goto out;
85e21bac
CM
4525 path->slots[0]--;
4526 }
4527
d397712b 4528 while (1) {
39279cc3 4529 fi = NULL;
5f39d397
CM
4530 leaf = path->nodes[0];
4531 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4532 found_type = found_key.type;
39279cc3 4533
33345d01 4534 if (found_key.objectid != ino)
39279cc3 4535 break;
5f39d397 4536
85e21bac 4537 if (found_type < min_type)
39279cc3
CM
4538 break;
4539
5f39d397 4540 item_end = found_key.offset;
39279cc3 4541 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4542 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4543 struct btrfs_file_extent_item);
179e29e4
CM
4544 extent_type = btrfs_file_extent_type(leaf, fi);
4545 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4546 item_end +=
db94535d 4547 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4548
4549 trace_btrfs_truncate_show_fi_regular(
4550 BTRFS_I(inode), leaf, fi,
4551 found_key.offset);
179e29e4 4552 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4553 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4554 path->slots[0], fi);
09ed2f16
LB
4555
4556 trace_btrfs_truncate_show_fi_inline(
4557 BTRFS_I(inode), leaf, fi, path->slots[0],
4558 found_key.offset);
39279cc3 4559 }
008630c1 4560 item_end--;
39279cc3 4561 }
8082510e
YZ
4562 if (found_type > min_type) {
4563 del_item = 1;
4564 } else {
76b42abb 4565 if (item_end < new_size)
b888db2b 4566 break;
8082510e
YZ
4567 if (found_key.offset >= new_size)
4568 del_item = 1;
4569 else
4570 del_item = 0;
39279cc3 4571 }
39279cc3 4572 found_extent = 0;
39279cc3 4573 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4574 if (found_type != BTRFS_EXTENT_DATA_KEY)
4575 goto delete;
4576
4577 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4578 u64 num_dec;
db94535d 4579 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4580 if (!del_item) {
db94535d
CM
4581 u64 orig_num_bytes =
4582 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4583 extent_num_bytes = ALIGN(new_size -
4584 found_key.offset,
0b246afa 4585 fs_info->sectorsize);
db94535d
CM
4586 btrfs_set_file_extent_num_bytes(leaf, fi,
4587 extent_num_bytes);
4588 num_dec = (orig_num_bytes -
9069218d 4589 extent_num_bytes);
27cdeb70
MX
4590 if (test_bit(BTRFS_ROOT_REF_COWS,
4591 &root->state) &&
4592 extent_start != 0)
a76a3cd4 4593 inode_sub_bytes(inode, num_dec);
5f39d397 4594 btrfs_mark_buffer_dirty(leaf);
39279cc3 4595 } else {
db94535d
CM
4596 extent_num_bytes =
4597 btrfs_file_extent_disk_num_bytes(leaf,
4598 fi);
5d4f98a2
YZ
4599 extent_offset = found_key.offset -
4600 btrfs_file_extent_offset(leaf, fi);
4601
39279cc3 4602 /* FIXME blocksize != 4096 */
9069218d 4603 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4604 if (extent_start != 0) {
4605 found_extent = 1;
27cdeb70
MX
4606 if (test_bit(BTRFS_ROOT_REF_COWS,
4607 &root->state))
a76a3cd4 4608 inode_sub_bytes(inode, num_dec);
e02119d5 4609 }
39279cc3 4610 }
9069218d 4611 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4612 /*
4613 * we can't truncate inline items that have had
4614 * special encodings
4615 */
4616 if (!del_item &&
c8b97818 4617 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4618 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4619 btrfs_file_extent_compression(leaf, fi) == 0) {
4620 u32 size = (u32)(new_size - found_key.offset);
4621
4622 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4623 size = btrfs_file_extent_calc_inline_size(size);
4624 btrfs_truncate_item(root->fs_info, path, size, 1);
4625 } else if (!del_item) {
514ac8ad 4626 /*
ddfae63c
JB
4627 * We have to bail so the last_size is set to
4628 * just before this extent.
514ac8ad 4629 */
ddfae63c
JB
4630 err = NEED_TRUNCATE_BLOCK;
4631 break;
4632 }
0305cd5f 4633
ddfae63c 4634 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0305cd5f 4635 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4636 }
179e29e4 4637delete:
ddfae63c
JB
4638 if (del_item)
4639 last_size = found_key.offset;
4640 else
4641 last_size = new_size;
39279cc3 4642 if (del_item) {
85e21bac
CM
4643 if (!pending_del_nr) {
4644 /* no pending yet, add ourselves */
4645 pending_del_slot = path->slots[0];
4646 pending_del_nr = 1;
4647 } else if (pending_del_nr &&
4648 path->slots[0] + 1 == pending_del_slot) {
4649 /* hop on the pending chunk */
4650 pending_del_nr++;
4651 pending_del_slot = path->slots[0];
4652 } else {
d397712b 4653 BUG();
85e21bac 4654 }
39279cc3
CM
4655 } else {
4656 break;
4657 }
897ca819 4658 should_throttle = false;
28f75a0e 4659
27cdeb70
MX
4660 if (found_extent &&
4661 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4662 root == fs_info->tree_root)) {
b9473439 4663 btrfs_set_path_blocking(path);
28ed1345 4664 bytes_deleted += extent_num_bytes;
84f7d8e6 4665 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4666 extent_num_bytes, 0,
4667 btrfs_header_owner(leaf),
b06c4bf5 4668 ino, extent_offset);
39279cc3 4669 BUG_ON(ret);
2ff7e61e
JM
4670 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4671 btrfs_async_run_delayed_refs(fs_info,
dd4b857a
WX
4672 trans->delayed_ref_updates * 2,
4673 trans->transid, 0);
28f75a0e
CM
4674 if (be_nice) {
4675 if (truncate_space_check(trans, root,
4676 extent_num_bytes)) {
897ca819 4677 should_end = true;
28f75a0e
CM
4678 }
4679 if (btrfs_should_throttle_delayed_refs(trans,
2ff7e61e 4680 fs_info))
897ca819 4681 should_throttle = true;
28f75a0e 4682 }
39279cc3 4683 }
85e21bac 4684
8082510e
YZ
4685 if (found_type == BTRFS_INODE_ITEM_KEY)
4686 break;
4687
4688 if (path->slots[0] == 0 ||
1262133b 4689 path->slots[0] != pending_del_slot ||
28f75a0e 4690 should_throttle || should_end) {
8082510e
YZ
4691 if (pending_del_nr) {
4692 ret = btrfs_del_items(trans, root, path,
4693 pending_del_slot,
4694 pending_del_nr);
79787eaa 4695 if (ret) {
66642832 4696 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4697 goto error;
4698 }
8082510e
YZ
4699 pending_del_nr = 0;
4700 }
b3b4aa74 4701 btrfs_release_path(path);
28f75a0e 4702 if (should_throttle) {
1262133b
JB
4703 unsigned long updates = trans->delayed_ref_updates;
4704 if (updates) {
4705 trans->delayed_ref_updates = 0;
2ff7e61e 4706 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 4707 updates * 2);
1262133b
JB
4708 if (ret && !err)
4709 err = ret;
4710 }
4711 }
28f75a0e
CM
4712 /*
4713 * if we failed to refill our space rsv, bail out
4714 * and let the transaction restart
4715 */
4716 if (should_end) {
4717 err = -EAGAIN;
4718 goto error;
4719 }
85e21bac 4720 goto search_again;
8082510e
YZ
4721 } else {
4722 path->slots[0]--;
85e21bac 4723 }
39279cc3 4724 }
8082510e 4725out:
85e21bac
CM
4726 if (pending_del_nr) {
4727 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4728 pending_del_nr);
79787eaa 4729 if (ret)
66642832 4730 btrfs_abort_transaction(trans, ret);
85e21bac 4731 }
79787eaa 4732error:
76b42abb
FM
4733 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4734 ASSERT(last_size >= new_size);
4735 if (!err && last_size > new_size)
4736 last_size = new_size;
7f4f6e0a 4737 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4738 }
28ed1345 4739
39279cc3 4740 btrfs_free_path(path);
28ed1345 4741
ee22184b 4742 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4743 unsigned long updates = trans->delayed_ref_updates;
4744 if (updates) {
4745 trans->delayed_ref_updates = 0;
c79a70b1 4746 ret = btrfs_run_delayed_refs(trans, updates * 2);
28ed1345
CM
4747 if (ret && !err)
4748 err = ret;
4749 }
4750 }
8082510e 4751 return err;
39279cc3
CM
4752}
4753
4754/*
9703fefe 4755 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4756 * @inode - inode that we're zeroing
4757 * @from - the offset to start zeroing
4758 * @len - the length to zero, 0 to zero the entire range respective to the
4759 * offset
4760 * @front - zero up to the offset instead of from the offset on
4761 *
9703fefe 4762 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4763 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4764 */
9703fefe 4765int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4766 int front)
39279cc3 4767{
0b246afa 4768 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4769 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4770 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4771 struct btrfs_ordered_extent *ordered;
2ac55d41 4772 struct extent_state *cached_state = NULL;
364ecf36 4773 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4774 char *kaddr;
0b246afa 4775 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4776 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4777 unsigned offset = from & (blocksize - 1);
39279cc3 4778 struct page *page;
3b16a4e3 4779 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4780 int ret = 0;
9703fefe
CR
4781 u64 block_start;
4782 u64 block_end;
39279cc3 4783
b03ebd99
NB
4784 if (IS_ALIGNED(offset, blocksize) &&
4785 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4786 goto out;
9703fefe 4787
8b62f87b
JB
4788 block_start = round_down(from, blocksize);
4789 block_end = block_start + blocksize - 1;
4790
364ecf36 4791 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8b62f87b 4792 block_start, blocksize);
5d5e103a
JB
4793 if (ret)
4794 goto out;
39279cc3 4795
211c17f5 4796again:
3b16a4e3 4797 page = find_or_create_page(mapping, index, mask);
5d5e103a 4798 if (!page) {
bc42bda2 4799 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
4800 block_start, blocksize, true);
4801 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
ac6a2b36 4802 ret = -ENOMEM;
39279cc3 4803 goto out;
5d5e103a 4804 }
e6dcd2dc 4805
39279cc3 4806 if (!PageUptodate(page)) {
9ebefb18 4807 ret = btrfs_readpage(NULL, page);
39279cc3 4808 lock_page(page);
211c17f5
CM
4809 if (page->mapping != mapping) {
4810 unlock_page(page);
09cbfeaf 4811 put_page(page);
211c17f5
CM
4812 goto again;
4813 }
39279cc3
CM
4814 if (!PageUptodate(page)) {
4815 ret = -EIO;
89642229 4816 goto out_unlock;
39279cc3
CM
4817 }
4818 }
211c17f5 4819 wait_on_page_writeback(page);
e6dcd2dc 4820
9703fefe 4821 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4822 set_page_extent_mapped(page);
4823
9703fefe 4824 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4825 if (ordered) {
9703fefe 4826 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4827 &cached_state);
e6dcd2dc 4828 unlock_page(page);
09cbfeaf 4829 put_page(page);
eb84ae03 4830 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4831 btrfs_put_ordered_extent(ordered);
4832 goto again;
4833 }
4834
9703fefe 4835 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4836 EXTENT_DIRTY | EXTENT_DELALLOC |
4837 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 4838 0, 0, &cached_state);
5d5e103a 4839
e3b8a485 4840 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
ba8b04c1 4841 &cached_state, 0);
9ed74f2d 4842 if (ret) {
9703fefe 4843 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4844 &cached_state);
9ed74f2d
JB
4845 goto out_unlock;
4846 }
4847
9703fefe 4848 if (offset != blocksize) {
2aaa6655 4849 if (!len)
9703fefe 4850 len = blocksize - offset;
e6dcd2dc 4851 kaddr = kmap(page);
2aaa6655 4852 if (front)
9703fefe
CR
4853 memset(kaddr + (block_start - page_offset(page)),
4854 0, offset);
2aaa6655 4855 else
9703fefe
CR
4856 memset(kaddr + (block_start - page_offset(page)) + offset,
4857 0, len);
e6dcd2dc
CM
4858 flush_dcache_page(page);
4859 kunmap(page);
4860 }
247e743c 4861 ClearPageChecked(page);
e6dcd2dc 4862 set_page_dirty(page);
e43bbe5e 4863 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
39279cc3 4864
89642229 4865out_unlock:
5d5e103a 4866 if (ret)
bc42bda2 4867 btrfs_delalloc_release_space(inode, data_reserved, block_start,
43b18595
QW
4868 blocksize, true);
4869 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
39279cc3 4870 unlock_page(page);
09cbfeaf 4871 put_page(page);
39279cc3 4872out:
364ecf36 4873 extent_changeset_free(data_reserved);
39279cc3
CM
4874 return ret;
4875}
4876
16e7549f
JB
4877static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4878 u64 offset, u64 len)
4879{
0b246afa 4880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4881 struct btrfs_trans_handle *trans;
4882 int ret;
4883
4884 /*
4885 * Still need to make sure the inode looks like it's been updated so
4886 * that any holes get logged if we fsync.
4887 */
0b246afa
JM
4888 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4889 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4890 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4891 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4892 return 0;
4893 }
4894
4895 /*
4896 * 1 - for the one we're dropping
4897 * 1 - for the one we're adding
4898 * 1 - for updating the inode.
4899 */
4900 trans = btrfs_start_transaction(root, 3);
4901 if (IS_ERR(trans))
4902 return PTR_ERR(trans);
4903
4904 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4905 if (ret) {
66642832 4906 btrfs_abort_transaction(trans, ret);
3a45bb20 4907 btrfs_end_transaction(trans);
16e7549f
JB
4908 return ret;
4909 }
4910
f85b7379
DS
4911 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4912 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4913 if (ret)
66642832 4914 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4915 else
4916 btrfs_update_inode(trans, root, inode);
3a45bb20 4917 btrfs_end_transaction(trans);
16e7549f
JB
4918 return ret;
4919}
4920
695a0d0d
JB
4921/*
4922 * This function puts in dummy file extents for the area we're creating a hole
4923 * for. So if we are truncating this file to a larger size we need to insert
4924 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4925 * the range between oldsize and size
4926 */
a41ad394 4927int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4928{
0b246afa 4929 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4930 struct btrfs_root *root = BTRFS_I(inode)->root;
4931 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4932 struct extent_map *em = NULL;
2ac55d41 4933 struct extent_state *cached_state = NULL;
5dc562c5 4934 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4935 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4936 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4937 u64 last_byte;
4938 u64 cur_offset;
4939 u64 hole_size;
9ed74f2d 4940 int err = 0;
39279cc3 4941
a71754fc 4942 /*
9703fefe
CR
4943 * If our size started in the middle of a block we need to zero out the
4944 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4945 * expose stale data.
4946 */
9703fefe 4947 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4948 if (err)
4949 return err;
4950
9036c102
YZ
4951 if (size <= hole_start)
4952 return 0;
4953
9036c102
YZ
4954 while (1) {
4955 struct btrfs_ordered_extent *ordered;
fa7c1494 4956
ff13db41 4957 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4958 &cached_state);
a776c6fa 4959 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
fa7c1494 4960 block_end - hole_start);
9036c102
YZ
4961 if (!ordered)
4962 break;
2ac55d41 4963 unlock_extent_cached(io_tree, hole_start, block_end - 1,
e43bbe5e 4964 &cached_state);
fa7c1494 4965 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4966 btrfs_put_ordered_extent(ordered);
4967 }
39279cc3 4968
9036c102
YZ
4969 cur_offset = hole_start;
4970 while (1) {
fc4f21b1 4971 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 4972 block_end - cur_offset, 0);
79787eaa
JM
4973 if (IS_ERR(em)) {
4974 err = PTR_ERR(em);
f2767956 4975 em = NULL;
79787eaa
JM
4976 break;
4977 }
9036c102 4978 last_byte = min(extent_map_end(em), block_end);
0b246afa 4979 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 4980 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4981 struct extent_map *hole_em;
9036c102 4982 hole_size = last_byte - cur_offset;
9ed74f2d 4983
16e7549f
JB
4984 err = maybe_insert_hole(root, inode, cur_offset,
4985 hole_size);
4986 if (err)
3893e33b 4987 break;
dcdbc059 4988 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
4989 cur_offset + hole_size - 1, 0);
4990 hole_em = alloc_extent_map();
4991 if (!hole_em) {
4992 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4993 &BTRFS_I(inode)->runtime_flags);
4994 goto next;
4995 }
4996 hole_em->start = cur_offset;
4997 hole_em->len = hole_size;
4998 hole_em->orig_start = cur_offset;
8082510e 4999
5dc562c5
JB
5000 hole_em->block_start = EXTENT_MAP_HOLE;
5001 hole_em->block_len = 0;
b4939680 5002 hole_em->orig_block_len = 0;
cc95bef6 5003 hole_em->ram_bytes = hole_size;
0b246afa 5004 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 5005 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 5006 hole_em->generation = fs_info->generation;
8082510e 5007
5dc562c5
JB
5008 while (1) {
5009 write_lock(&em_tree->lock);
09a2a8f9 5010 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
5011 write_unlock(&em_tree->lock);
5012 if (err != -EEXIST)
5013 break;
dcdbc059
NB
5014 btrfs_drop_extent_cache(BTRFS_I(inode),
5015 cur_offset,
5dc562c5
JB
5016 cur_offset +
5017 hole_size - 1, 0);
5018 }
5019 free_extent_map(hole_em);
9036c102 5020 }
16e7549f 5021next:
9036c102 5022 free_extent_map(em);
a22285a6 5023 em = NULL;
9036c102 5024 cur_offset = last_byte;
8082510e 5025 if (cur_offset >= block_end)
9036c102
YZ
5026 break;
5027 }
a22285a6 5028 free_extent_map(em);
e43bbe5e 5029 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
5030 return err;
5031}
39279cc3 5032
3972f260 5033static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 5034{
f4a2f4c5
MX
5035 struct btrfs_root *root = BTRFS_I(inode)->root;
5036 struct btrfs_trans_handle *trans;
a41ad394 5037 loff_t oldsize = i_size_read(inode);
3972f260
ES
5038 loff_t newsize = attr->ia_size;
5039 int mask = attr->ia_valid;
8082510e
YZ
5040 int ret;
5041
3972f260
ES
5042 /*
5043 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5044 * special case where we need to update the times despite not having
5045 * these flags set. For all other operations the VFS set these flags
5046 * explicitly if it wants a timestamp update.
5047 */
dff6efc3
CH
5048 if (newsize != oldsize) {
5049 inode_inc_iversion(inode);
5050 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5051 inode->i_ctime = inode->i_mtime =
c2050a45 5052 current_time(inode);
dff6efc3 5053 }
3972f260 5054
a41ad394 5055 if (newsize > oldsize) {
9ea24bbe 5056 /*
ea14b57f 5057 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
5058 * This is to ensure the snapshot captures a fully consistent
5059 * state of this file - if the snapshot captures this expanding
5060 * truncation, it must capture all writes that happened before
5061 * this truncation.
5062 */
0bc19f90 5063 btrfs_wait_for_snapshot_creation(root);
a41ad394 5064 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 5065 if (ret) {
ea14b57f 5066 btrfs_end_write_no_snapshotting(root);
8082510e 5067 return ret;
9ea24bbe 5068 }
8082510e 5069
f4a2f4c5 5070 trans = btrfs_start_transaction(root, 1);
9ea24bbe 5071 if (IS_ERR(trans)) {
ea14b57f 5072 btrfs_end_write_no_snapshotting(root);
f4a2f4c5 5073 return PTR_ERR(trans);
9ea24bbe 5074 }
f4a2f4c5
MX
5075
5076 i_size_write(inode, newsize);
5077 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5078 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5079 ret = btrfs_update_inode(trans, root, inode);
ea14b57f 5080 btrfs_end_write_no_snapshotting(root);
3a45bb20 5081 btrfs_end_transaction(trans);
a41ad394 5082 } else {
8082510e 5083
a41ad394
JB
5084 /*
5085 * We're truncating a file that used to have good data down to
5086 * zero. Make sure it gets into the ordered flush list so that
5087 * any new writes get down to disk quickly.
5088 */
5089 if (newsize == 0)
72ac3c0d
JB
5090 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5091 &BTRFS_I(inode)->runtime_flags);
8082510e 5092
f3fe820c
JB
5093 /*
5094 * 1 for the orphan item we're going to add
5095 * 1 for the orphan item deletion.
5096 */
5097 trans = btrfs_start_transaction(root, 2);
5098 if (IS_ERR(trans))
5099 return PTR_ERR(trans);
5100
5101 /*
5102 * We need to do this in case we fail at _any_ point during the
5103 * actual truncate. Once we do the truncate_setsize we could
5104 * invalidate pages which forces any outstanding ordered io to
5105 * be instantly completed which will give us extents that need
5106 * to be truncated. If we fail to get an orphan inode down we
5107 * could have left over extents that were never meant to live,
01327610 5108 * so we need to guarantee from this point on that everything
f3fe820c
JB
5109 * will be consistent.
5110 */
73f2e545 5111 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 5112 btrfs_end_transaction(trans);
f3fe820c
JB
5113 if (ret)
5114 return ret;
5115
a41ad394
JB
5116 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5117 truncate_setsize(inode, newsize);
2e60a51e
MX
5118
5119 /* Disable nonlocked read DIO to avoid the end less truncate */
abcefb1e 5120 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 5121 inode_dio_wait(inode);
0b581701 5122 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 5123
213e8c55 5124 ret = btrfs_truncate(inode, newsize == oldsize);
7f4f6e0a
JB
5125 if (ret && inode->i_nlink) {
5126 int err;
5127
19fd2df5
LB
5128 /* To get a stable disk_i_size */
5129 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5130 if (err) {
3d6ae7bb 5131 btrfs_orphan_del(NULL, BTRFS_I(inode));
19fd2df5
LB
5132 return err;
5133 }
5134
7f4f6e0a
JB
5135 /*
5136 * failed to truncate, disk_i_size is only adjusted down
5137 * as we remove extents, so it should represent the true
5138 * size of the inode, so reset the in memory size and
5139 * delete our orphan entry.
5140 */
5141 trans = btrfs_join_transaction(root);
5142 if (IS_ERR(trans)) {
3d6ae7bb 5143 btrfs_orphan_del(NULL, BTRFS_I(inode));
7f4f6e0a
JB
5144 return ret;
5145 }
5146 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
3d6ae7bb 5147 err = btrfs_orphan_del(trans, BTRFS_I(inode));
7f4f6e0a 5148 if (err)
66642832 5149 btrfs_abort_transaction(trans, err);
3a45bb20 5150 btrfs_end_transaction(trans);
7f4f6e0a 5151 }
8082510e
YZ
5152 }
5153
a41ad394 5154 return ret;
8082510e
YZ
5155}
5156
9036c102
YZ
5157static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5158{
2b0143b5 5159 struct inode *inode = d_inode(dentry);
b83cc969 5160 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5161 int err;
39279cc3 5162
b83cc969
LZ
5163 if (btrfs_root_readonly(root))
5164 return -EROFS;
5165
31051c85 5166 err = setattr_prepare(dentry, attr);
9036c102
YZ
5167 if (err)
5168 return err;
2bf5a725 5169
5a3f23d5 5170 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5171 err = btrfs_setsize(inode, attr);
8082510e
YZ
5172 if (err)
5173 return err;
39279cc3 5174 }
9036c102 5175
1025774c
CH
5176 if (attr->ia_valid) {
5177 setattr_copy(inode, attr);
0c4d2d95 5178 inode_inc_iversion(inode);
22c44fe6 5179 err = btrfs_dirty_inode(inode);
1025774c 5180
22c44fe6 5181 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5182 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5183 }
33268eaf 5184
39279cc3
CM
5185 return err;
5186}
61295eb8 5187
131e404a
FDBM
5188/*
5189 * While truncating the inode pages during eviction, we get the VFS calling
5190 * btrfs_invalidatepage() against each page of the inode. This is slow because
5191 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5192 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5193 * extent_state structures over and over, wasting lots of time.
5194 *
5195 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5196 * those expensive operations on a per page basis and do only the ordered io
5197 * finishing, while we release here the extent_map and extent_state structures,
5198 * without the excessive merging and splitting.
5199 */
5200static void evict_inode_truncate_pages(struct inode *inode)
5201{
5202 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5203 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5204 struct rb_node *node;
5205
5206 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5207 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5208
5209 write_lock(&map_tree->lock);
5210 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5211 struct extent_map *em;
5212
5213 node = rb_first(&map_tree->map);
5214 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5215 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5216 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5217 remove_extent_mapping(map_tree, em);
5218 free_extent_map(em);
7064dd5c
FM
5219 if (need_resched()) {
5220 write_unlock(&map_tree->lock);
5221 cond_resched();
5222 write_lock(&map_tree->lock);
5223 }
131e404a
FDBM
5224 }
5225 write_unlock(&map_tree->lock);
5226
6ca07097
FM
5227 /*
5228 * Keep looping until we have no more ranges in the io tree.
5229 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5230 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5231 * still in progress (unlocked the pages in the bio but did not yet
5232 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5233 * ranges can still be locked and eviction started because before
5234 * submitting those bios, which are executed by a separate task (work
5235 * queue kthread), inode references (inode->i_count) were not taken
5236 * (which would be dropped in the end io callback of each bio).
5237 * Therefore here we effectively end up waiting for those bios and
5238 * anyone else holding locked ranges without having bumped the inode's
5239 * reference count - if we don't do it, when they access the inode's
5240 * io_tree to unlock a range it may be too late, leading to an
5241 * use-after-free issue.
5242 */
131e404a
FDBM
5243 spin_lock(&io_tree->lock);
5244 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5245 struct extent_state *state;
5246 struct extent_state *cached_state = NULL;
6ca07097
FM
5247 u64 start;
5248 u64 end;
131e404a
FDBM
5249
5250 node = rb_first(&io_tree->state);
5251 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5252 start = state->start;
5253 end = state->end;
131e404a
FDBM
5254 spin_unlock(&io_tree->lock);
5255
ff13db41 5256 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5257
5258 /*
5259 * If still has DELALLOC flag, the extent didn't reach disk,
5260 * and its reserved space won't be freed by delayed_ref.
5261 * So we need to free its reserved space here.
5262 * (Refer to comment in btrfs_invalidatepage, case 2)
5263 *
5264 * Note, end is the bytenr of last byte, so we need + 1 here.
5265 */
5266 if (state->state & EXTENT_DELALLOC)
bc42bda2 5267 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
b9d0b389 5268
6ca07097 5269 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5270 EXTENT_LOCKED | EXTENT_DIRTY |
5271 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
ae0f1625 5272 EXTENT_DEFRAG, 1, 1, &cached_state);
131e404a 5273
7064dd5c 5274 cond_resched();
131e404a
FDBM
5275 spin_lock(&io_tree->lock);
5276 }
5277 spin_unlock(&io_tree->lock);
5278}
5279
bd555975 5280void btrfs_evict_inode(struct inode *inode)
39279cc3 5281{
0b246afa 5282 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5283 struct btrfs_trans_handle *trans;
5284 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5285 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5286 int steal_from_global = 0;
3d48d981 5287 u64 min_size;
39279cc3
CM
5288 int ret;
5289
1abe9b8a 5290 trace_btrfs_inode_evict(inode);
5291
3d48d981 5292 if (!root) {
e8f1bc14 5293 clear_inode(inode);
3d48d981
NB
5294 return;
5295 }
5296
0b246afa 5297 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
3d48d981 5298
131e404a
FDBM
5299 evict_inode_truncate_pages(inode);
5300
69e9c6c6
SB
5301 if (inode->i_nlink &&
5302 ((btrfs_root_refs(&root->root_item) != 0 &&
5303 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5304 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5305 goto no_delete;
5306
39279cc3 5307 if (is_bad_inode(inode)) {
3d6ae7bb 5308 btrfs_orphan_del(NULL, BTRFS_I(inode));
39279cc3
CM
5309 goto no_delete;
5310 }
bd555975 5311 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5312 if (!special_file(inode->i_mode))
5313 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5314
7ab7956e 5315 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5316
0b246afa 5317 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
6bf02314 5318 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5319 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5320 goto no_delete;
5321 }
5322
76dda93c 5323 if (inode->i_nlink > 0) {
69e9c6c6
SB
5324 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5325 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5326 goto no_delete;
5327 }
5328
aa79021f 5329 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
0e8c36a9 5330 if (ret) {
3d6ae7bb 5331 btrfs_orphan_del(NULL, BTRFS_I(inode));
0e8c36a9
MX
5332 goto no_delete;
5333 }
5334
2ff7e61e 5335 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
4289a667 5336 if (!rsv) {
3d6ae7bb 5337 btrfs_orphan_del(NULL, BTRFS_I(inode));
4289a667
JB
5338 goto no_delete;
5339 }
4a338542 5340 rsv->size = min_size;
ca7e70f5 5341 rsv->failfast = 1;
0b246afa 5342 global_rsv = &fs_info->global_block_rsv;
4289a667 5343
6ef06d27 5344 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5345
4289a667 5346 /*
8407aa46
MX
5347 * This is a bit simpler than btrfs_truncate since we've already
5348 * reserved our space for our orphan item in the unlink, so we just
5349 * need to reserve some slack space in case we add bytes and update
5350 * inode item when doing the truncate.
4289a667 5351 */
8082510e 5352 while (1) {
08e007d2
MX
5353 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5354 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5355
5356 /*
5357 * Try and steal from the global reserve since we will
5358 * likely not use this space anyway, we want to try as
5359 * hard as possible to get this to work.
5360 */
5361 if (ret)
3bce876f
JB
5362 steal_from_global++;
5363 else
5364 steal_from_global = 0;
5365 ret = 0;
d68fc57b 5366
3bce876f
JB
5367 /*
5368 * steal_from_global == 0: we reserved stuff, hooray!
5369 * steal_from_global == 1: we didn't reserve stuff, boo!
5370 * steal_from_global == 2: we've committed, still not a lot of
5371 * room but maybe we'll have room in the global reserve this
5372 * time.
5373 * steal_from_global == 3: abandon all hope!
5374 */
5375 if (steal_from_global > 2) {
0b246afa
JM
5376 btrfs_warn(fs_info,
5377 "Could not get space for a delete, will truncate on mount %d",
5378 ret);
3d6ae7bb 5379 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5380 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5381 goto no_delete;
d68fc57b 5382 }
7b128766 5383
0e8c36a9 5384 trans = btrfs_join_transaction(root);
4289a667 5385 if (IS_ERR(trans)) {
3d6ae7bb 5386 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5387 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5388 goto no_delete;
d68fc57b 5389 }
7b128766 5390
3bce876f 5391 /*
01327610 5392 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5393 * sure there is room to do it, if not we need to commit and try
5394 * again.
5395 */
5396 if (steal_from_global) {
2ff7e61e 5397 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
3bce876f 5398 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
25d609f8 5399 min_size, 0);
3bce876f
JB
5400 else
5401 ret = -ENOSPC;
5402 }
5403
5404 /*
5405 * Couldn't steal from the global reserve, we have too much
5406 * pending stuff built up, commit the transaction and try it
5407 * again.
5408 */
5409 if (ret) {
3a45bb20 5410 ret = btrfs_commit_transaction(trans);
3bce876f 5411 if (ret) {
3d6ae7bb 5412 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5413 btrfs_free_block_rsv(fs_info, rsv);
3bce876f
JB
5414 goto no_delete;
5415 }
5416 continue;
5417 } else {
5418 steal_from_global = 0;
5419 }
5420
4289a667
JB
5421 trans->block_rsv = rsv;
5422
d68fc57b 5423 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5424 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5425 break;
85e21bac 5426
0b246afa 5427 trans->block_rsv = &fs_info->trans_block_rsv;
3a45bb20 5428 btrfs_end_transaction(trans);
8082510e 5429 trans = NULL;
2ff7e61e 5430 btrfs_btree_balance_dirty(fs_info);
8082510e 5431 }
5f39d397 5432
2ff7e61e 5433 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5434
4ef31a45
JB
5435 /*
5436 * Errors here aren't a big deal, it just means we leave orphan items
5437 * in the tree. They will be cleaned up on the next mount.
5438 */
8082510e 5439 if (ret == 0) {
4289a667 5440 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 5441 btrfs_orphan_del(trans, BTRFS_I(inode));
4ef31a45 5442 } else {
3d6ae7bb 5443 btrfs_orphan_del(NULL, BTRFS_I(inode));
8082510e 5444 }
54aa1f4d 5445
0b246afa
JM
5446 trans->block_rsv = &fs_info->trans_block_rsv;
5447 if (!(root == fs_info->tree_root ||
581bb050 5448 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5449 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5450
3a45bb20 5451 btrfs_end_transaction(trans);
2ff7e61e 5452 btrfs_btree_balance_dirty(fs_info);
39279cc3 5453no_delete:
f48d1cf5 5454 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5455 clear_inode(inode);
39279cc3
CM
5456}
5457
5458/*
5459 * this returns the key found in the dir entry in the location pointer.
005d6712
SY
5460 * If no dir entries were found, returns -ENOENT.
5461 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3
CM
5462 */
5463static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5464 struct btrfs_key *location)
5465{
5466 const char *name = dentry->d_name.name;
5467 int namelen = dentry->d_name.len;
5468 struct btrfs_dir_item *di;
5469 struct btrfs_path *path;
5470 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5471 int ret = 0;
39279cc3
CM
5472
5473 path = btrfs_alloc_path();
d8926bb3
MF
5474 if (!path)
5475 return -ENOMEM;
3954401f 5476
f85b7379
DS
5477 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5478 name, namelen, 0);
005d6712
SY
5479 if (!di) {
5480 ret = -ENOENT;
5481 goto out;
5482 }
5483 if (IS_ERR(di)) {
0d9f7f3e 5484 ret = PTR_ERR(di);
005d6712
SY
5485 goto out;
5486 }
d397712b 5487
5f39d397 5488 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5489 if (location->type != BTRFS_INODE_ITEM_KEY &&
5490 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5491 ret = -EUCLEAN;
56a0e706
LB
5492 btrfs_warn(root->fs_info,
5493"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5494 __func__, name, btrfs_ino(BTRFS_I(dir)),
5495 location->objectid, location->type, location->offset);
56a0e706 5496 }
39279cc3 5497out:
39279cc3
CM
5498 btrfs_free_path(path);
5499 return ret;
5500}
5501
5502/*
5503 * when we hit a tree root in a directory, the btrfs part of the inode
5504 * needs to be changed to reflect the root directory of the tree root. This
5505 * is kind of like crossing a mount point.
5506 */
2ff7e61e 5507static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5508 struct inode *dir,
5509 struct dentry *dentry,
5510 struct btrfs_key *location,
5511 struct btrfs_root **sub_root)
39279cc3 5512{
4df27c4d
YZ
5513 struct btrfs_path *path;
5514 struct btrfs_root *new_root;
5515 struct btrfs_root_ref *ref;
5516 struct extent_buffer *leaf;
1d4c08e0 5517 struct btrfs_key key;
4df27c4d
YZ
5518 int ret;
5519 int err = 0;
39279cc3 5520
4df27c4d
YZ
5521 path = btrfs_alloc_path();
5522 if (!path) {
5523 err = -ENOMEM;
5524 goto out;
5525 }
39279cc3 5526
4df27c4d 5527 err = -ENOENT;
1d4c08e0
DS
5528 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5529 key.type = BTRFS_ROOT_REF_KEY;
5530 key.offset = location->objectid;
5531
0b246afa 5532 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5533 if (ret) {
5534 if (ret < 0)
5535 err = ret;
5536 goto out;
5537 }
39279cc3 5538
4df27c4d
YZ
5539 leaf = path->nodes[0];
5540 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5541 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5542 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5543 goto out;
39279cc3 5544
4df27c4d
YZ
5545 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5546 (unsigned long)(ref + 1),
5547 dentry->d_name.len);
5548 if (ret)
5549 goto out;
5550
b3b4aa74 5551 btrfs_release_path(path);
4df27c4d 5552
0b246afa 5553 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5554 if (IS_ERR(new_root)) {
5555 err = PTR_ERR(new_root);
5556 goto out;
5557 }
5558
4df27c4d
YZ
5559 *sub_root = new_root;
5560 location->objectid = btrfs_root_dirid(&new_root->root_item);
5561 location->type = BTRFS_INODE_ITEM_KEY;
5562 location->offset = 0;
5563 err = 0;
5564out:
5565 btrfs_free_path(path);
5566 return err;
39279cc3
CM
5567}
5568
5d4f98a2
YZ
5569static void inode_tree_add(struct inode *inode)
5570{
5571 struct btrfs_root *root = BTRFS_I(inode)->root;
5572 struct btrfs_inode *entry;
03e860bd
NP
5573 struct rb_node **p;
5574 struct rb_node *parent;
cef21937 5575 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5576 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5577
1d3382cb 5578 if (inode_unhashed(inode))
76dda93c 5579 return;
e1409cef 5580 parent = NULL;
5d4f98a2 5581 spin_lock(&root->inode_lock);
e1409cef 5582 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5583 while (*p) {
5584 parent = *p;
5585 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5586
4a0cc7ca 5587 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5588 p = &parent->rb_left;
4a0cc7ca 5589 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5590 p = &parent->rb_right;
5d4f98a2
YZ
5591 else {
5592 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5593 (I_WILL_FREE | I_FREEING)));
cef21937 5594 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
NP
5595 RB_CLEAR_NODE(parent);
5596 spin_unlock(&root->inode_lock);
cef21937 5597 return;
5d4f98a2
YZ
5598 }
5599 }
cef21937
FDBM
5600 rb_link_node(new, parent, p);
5601 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5602 spin_unlock(&root->inode_lock);
5603}
5604
5605static void inode_tree_del(struct inode *inode)
5606{
0b246afa 5607 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5608 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5609 int empty = 0;
5d4f98a2 5610
03e860bd 5611 spin_lock(&root->inode_lock);
5d4f98a2 5612 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5613 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5614 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5615 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5616 }
03e860bd 5617 spin_unlock(&root->inode_lock);
76dda93c 5618
69e9c6c6 5619 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5620 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5621 spin_lock(&root->inode_lock);
5622 empty = RB_EMPTY_ROOT(&root->inode_tree);
5623 spin_unlock(&root->inode_lock);
5624 if (empty)
5625 btrfs_add_dead_root(root);
5626 }
5627}
5628
143bede5 5629void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c 5630{
0b246afa 5631 struct btrfs_fs_info *fs_info = root->fs_info;
76dda93c
YZ
5632 struct rb_node *node;
5633 struct rb_node *prev;
5634 struct btrfs_inode *entry;
5635 struct inode *inode;
5636 u64 objectid = 0;
5637
0b246afa 5638 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
7813b3db 5639 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5640
5641 spin_lock(&root->inode_lock);
5642again:
5643 node = root->inode_tree.rb_node;
5644 prev = NULL;
5645 while (node) {
5646 prev = node;
5647 entry = rb_entry(node, struct btrfs_inode, rb_node);
5648
4a0cc7ca 5649 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c 5650 node = node->rb_left;
4a0cc7ca 5651 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c
YZ
5652 node = node->rb_right;
5653 else
5654 break;
5655 }
5656 if (!node) {
5657 while (prev) {
5658 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4a0cc7ca 5659 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
76dda93c
YZ
5660 node = prev;
5661 break;
5662 }
5663 prev = rb_next(prev);
5664 }
5665 }
5666 while (node) {
5667 entry = rb_entry(node, struct btrfs_inode, rb_node);
4a0cc7ca 5668 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
76dda93c
YZ
5669 inode = igrab(&entry->vfs_inode);
5670 if (inode) {
5671 spin_unlock(&root->inode_lock);
5672 if (atomic_read(&inode->i_count) > 1)
5673 d_prune_aliases(inode);
5674 /*
45321ac5 5675 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5676 * the inode cache when its usage count
5677 * hits zero.
5678 */
5679 iput(inode);
5680 cond_resched();
5681 spin_lock(&root->inode_lock);
5682 goto again;
5683 }
5684
5685 if (cond_resched_lock(&root->inode_lock))
5686 goto again;
5687
5688 node = rb_next(node);
5689 }
5690 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5691}
5692
e02119d5
CM
5693static int btrfs_init_locked_inode(struct inode *inode, void *p)
5694{
5695 struct btrfs_iget_args *args = p;
90d3e592
CM
5696 inode->i_ino = args->location->objectid;
5697 memcpy(&BTRFS_I(inode)->location, args->location,
5698 sizeof(*args->location));
e02119d5 5699 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5700 return 0;
5701}
5702
5703static int btrfs_find_actor(struct inode *inode, void *opaque)
5704{
5705 struct btrfs_iget_args *args = opaque;
90d3e592 5706 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5707 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5708}
5709
5d4f98a2 5710static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5711 struct btrfs_key *location,
5d4f98a2 5712 struct btrfs_root *root)
39279cc3
CM
5713{
5714 struct inode *inode;
5715 struct btrfs_iget_args args;
90d3e592 5716 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5717
90d3e592 5718 args.location = location;
39279cc3
CM
5719 args.root = root;
5720
778ba82b 5721 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5722 btrfs_init_locked_inode,
5723 (void *)&args);
5724 return inode;
5725}
5726
1a54ef8c
BR
5727/* Get an inode object given its location and corresponding root.
5728 * Returns in *is_new if the inode was read from disk
5729 */
5730struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5731 struct btrfs_root *root, int *new)
1a54ef8c
BR
5732{
5733 struct inode *inode;
5734
90d3e592 5735 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5736 if (!inode)
5d4f98a2 5737 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5738
5739 if (inode->i_state & I_NEW) {
67710892
FM
5740 int ret;
5741
5742 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5743 if (!is_bad_inode(inode)) {
5744 inode_tree_add(inode);
5745 unlock_new_inode(inode);
5746 if (new)
5747 *new = 1;
5748 } else {
e0b6d65b
ST
5749 unlock_new_inode(inode);
5750 iput(inode);
67710892
FM
5751 ASSERT(ret < 0);
5752 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5753 }
5754 }
5755
1a54ef8c
BR
5756 return inode;
5757}
5758
4df27c4d
YZ
5759static struct inode *new_simple_dir(struct super_block *s,
5760 struct btrfs_key *key,
5761 struct btrfs_root *root)
5762{
5763 struct inode *inode = new_inode(s);
5764
5765 if (!inode)
5766 return ERR_PTR(-ENOMEM);
5767
4df27c4d
YZ
5768 BTRFS_I(inode)->root = root;
5769 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5770 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5771
5772 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5773 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5774 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5775 inode->i_fop = &simple_dir_operations;
5776 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5777 inode->i_mtime = current_time(inode);
9cc97d64 5778 inode->i_atime = inode->i_mtime;
5779 inode->i_ctime = inode->i_mtime;
5780 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5781
5782 return inode;
5783}
5784
3de4586c 5785struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5786{
0b246afa 5787 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5788 struct inode *inode;
4df27c4d 5789 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5790 struct btrfs_root *sub_root = root;
5791 struct btrfs_key location;
76dda93c 5792 int index;
b4aff1f8 5793 int ret = 0;
39279cc3
CM
5794
5795 if (dentry->d_name.len > BTRFS_NAME_LEN)
5796 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5797
39e3c955 5798 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5799 if (ret < 0)
5800 return ERR_PTR(ret);
5f39d397 5801
4df27c4d 5802 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5803 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5804 return inode;
5805 }
5806
0b246afa 5807 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5808 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5809 &location, &sub_root);
5810 if (ret < 0) {
5811 if (ret != -ENOENT)
5812 inode = ERR_PTR(ret);
5813 else
5814 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5815 } else {
73f73415 5816 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5817 }
0b246afa 5818 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5819
34d19bad 5820 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5821 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5822 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5823 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5824 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5825 if (ret) {
5826 iput(inode);
66b4ffd1 5827 inode = ERR_PTR(ret);
01cd3367 5828 }
c71bf099
YZ
5829 }
5830
3de4586c
CM
5831 return inode;
5832}
5833
fe15ce44 5834static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5835{
5836 struct btrfs_root *root;
2b0143b5 5837 struct inode *inode = d_inode(dentry);
76dda93c 5838
848cce0d 5839 if (!inode && !IS_ROOT(dentry))
2b0143b5 5840 inode = d_inode(dentry->d_parent);
76dda93c 5841
848cce0d
LZ
5842 if (inode) {
5843 root = BTRFS_I(inode)->root;
efefb143
YZ
5844 if (btrfs_root_refs(&root->root_item) == 0)
5845 return 1;
848cce0d 5846
4a0cc7ca 5847 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5848 return 1;
efefb143 5849 }
76dda93c
YZ
5850 return 0;
5851}
5852
b4aff1f8
JB
5853static void btrfs_dentry_release(struct dentry *dentry)
5854{
944a4515 5855 kfree(dentry->d_fsdata);
b4aff1f8
JB
5856}
5857
3de4586c 5858static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5859 unsigned int flags)
3de4586c 5860{
5662344b 5861 struct inode *inode;
a66e7cc6 5862
5662344b
TI
5863 inode = btrfs_lookup_dentry(dir, dentry);
5864 if (IS_ERR(inode)) {
5865 if (PTR_ERR(inode) == -ENOENT)
5866 inode = NULL;
5867 else
5868 return ERR_CAST(inode);
5869 }
5870
41d28bca 5871 return d_splice_alias(inode, dentry);
39279cc3
CM
5872}
5873
16cdcec7 5874unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5875 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5876};
5877
23b5ec74
JB
5878/*
5879 * All this infrastructure exists because dir_emit can fault, and we are holding
5880 * the tree lock when doing readdir. For now just allocate a buffer and copy
5881 * our information into that, and then dir_emit from the buffer. This is
5882 * similar to what NFS does, only we don't keep the buffer around in pagecache
5883 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5884 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5885 * tree lock.
5886 */
5887static int btrfs_opendir(struct inode *inode, struct file *file)
5888{
5889 struct btrfs_file_private *private;
5890
5891 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5892 if (!private)
5893 return -ENOMEM;
5894 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5895 if (!private->filldir_buf) {
5896 kfree(private);
5897 return -ENOMEM;
5898 }
5899 file->private_data = private;
5900 return 0;
5901}
5902
5903struct dir_entry {
5904 u64 ino;
5905 u64 offset;
5906 unsigned type;
5907 int name_len;
5908};
5909
5910static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5911{
5912 while (entries--) {
5913 struct dir_entry *entry = addr;
5914 char *name = (char *)(entry + 1);
5915
92d32170
DS
5916 ctx->pos = get_unaligned(&entry->offset);
5917 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5918 get_unaligned(&entry->ino),
5919 get_unaligned(&entry->type)))
23b5ec74 5920 return 1;
92d32170
DS
5921 addr += sizeof(struct dir_entry) +
5922 get_unaligned(&entry->name_len);
23b5ec74
JB
5923 ctx->pos++;
5924 }
5925 return 0;
5926}
5927
9cdda8d3 5928static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5929{
9cdda8d3 5930 struct inode *inode = file_inode(file);
39279cc3 5931 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5932 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5933 struct btrfs_dir_item *di;
5934 struct btrfs_key key;
5f39d397 5935 struct btrfs_key found_key;
39279cc3 5936 struct btrfs_path *path;
23b5ec74 5937 void *addr;
16cdcec7
MX
5938 struct list_head ins_list;
5939 struct list_head del_list;
39279cc3 5940 int ret;
5f39d397 5941 struct extent_buffer *leaf;
39279cc3 5942 int slot;
5f39d397
CM
5943 char *name_ptr;
5944 int name_len;
23b5ec74
JB
5945 int entries = 0;
5946 int total_len = 0;
02dbfc99 5947 bool put = false;
c2951f32 5948 struct btrfs_key location;
5f39d397 5949
9cdda8d3
AV
5950 if (!dir_emit_dots(file, ctx))
5951 return 0;
5952
49593bfa 5953 path = btrfs_alloc_path();
16cdcec7
MX
5954 if (!path)
5955 return -ENOMEM;
ff5714cc 5956
23b5ec74 5957 addr = private->filldir_buf;
e4058b54 5958 path->reada = READA_FORWARD;
49593bfa 5959
c2951f32
JM
5960 INIT_LIST_HEAD(&ins_list);
5961 INIT_LIST_HEAD(&del_list);
5962 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5963
23b5ec74 5964again:
c2951f32 5965 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5966 key.offset = ctx->pos;
4a0cc7ca 5967 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5968
39279cc3
CM
5969 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5970 if (ret < 0)
5971 goto err;
49593bfa
DW
5972
5973 while (1) {
23b5ec74
JB
5974 struct dir_entry *entry;
5975
5f39d397 5976 leaf = path->nodes[0];
39279cc3 5977 slot = path->slots[0];
b9e03af0
LZ
5978 if (slot >= btrfs_header_nritems(leaf)) {
5979 ret = btrfs_next_leaf(root, path);
5980 if (ret < 0)
5981 goto err;
5982 else if (ret > 0)
5983 break;
5984 continue;
39279cc3 5985 }
3de4586c 5986
5f39d397
CM
5987 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5988
5989 if (found_key.objectid != key.objectid)
39279cc3 5990 break;
c2951f32 5991 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5992 break;
9cdda8d3 5993 if (found_key.offset < ctx->pos)
b9e03af0 5994 goto next;
c2951f32 5995 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5996 goto next;
39279cc3 5997 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
c2951f32 5998 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5999 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6000 PAGE_SIZE) {
6001 btrfs_release_path(path);
6002 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6003 if (ret)
6004 goto nopos;
6005 addr = private->filldir_buf;
6006 entries = 0;
6007 total_len = 0;
6008 goto again;
c2951f32 6009 }
23b5ec74
JB
6010
6011 entry = addr;
92d32170 6012 put_unaligned(name_len, &entry->name_len);
23b5ec74 6013 name_ptr = (char *)(entry + 1);
c2951f32
JM
6014 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6015 name_len);
92d32170
DS
6016 put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
6017 &entry->type);
c2951f32 6018 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
6019 put_unaligned(location.objectid, &entry->ino);
6020 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
6021 entries++;
6022 addr += sizeof(struct dir_entry) + name_len;
6023 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
6024next:
6025 path->slots[0]++;
39279cc3 6026 }
23b5ec74
JB
6027 btrfs_release_path(path);
6028
6029 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6030 if (ret)
6031 goto nopos;
49593bfa 6032
d2fbb2b5 6033 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 6034 if (ret)
bc4ef759
DS
6035 goto nopos;
6036
db62efbb
ZB
6037 /*
6038 * Stop new entries from being returned after we return the last
6039 * entry.
6040 *
6041 * New directory entries are assigned a strictly increasing
6042 * offset. This means that new entries created during readdir
6043 * are *guaranteed* to be seen in the future by that readdir.
6044 * This has broken buggy programs which operate on names as
6045 * they're returned by readdir. Until we re-use freed offsets
6046 * we have this hack to stop new entries from being returned
6047 * under the assumption that they'll never reach this huge
6048 * offset.
6049 *
6050 * This is being careful not to overflow 32bit loff_t unless the
6051 * last entry requires it because doing so has broken 32bit apps
6052 * in the past.
6053 */
c2951f32
JM
6054 if (ctx->pos >= INT_MAX)
6055 ctx->pos = LLONG_MAX;
6056 else
6057 ctx->pos = INT_MAX;
39279cc3
CM
6058nopos:
6059 ret = 0;
6060err:
02dbfc99
OS
6061 if (put)
6062 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 6063 btrfs_free_path(path);
39279cc3
CM
6064 return ret;
6065}
6066
a9185b41 6067int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
6068{
6069 struct btrfs_root *root = BTRFS_I(inode)->root;
6070 struct btrfs_trans_handle *trans;
6071 int ret = 0;
0af3d00b 6072 bool nolock = false;
39279cc3 6073
72ac3c0d 6074 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
6075 return 0;
6076
70ddc553
NB
6077 if (btrfs_fs_closing(root->fs_info) &&
6078 btrfs_is_free_space_inode(BTRFS_I(inode)))
82d5902d 6079 nolock = true;
0af3d00b 6080
a9185b41 6081 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 6082 if (nolock)
7a7eaa40 6083 trans = btrfs_join_transaction_nolock(root);
0af3d00b 6084 else
7a7eaa40 6085 trans = btrfs_join_transaction(root);
3612b495
TI
6086 if (IS_ERR(trans))
6087 return PTR_ERR(trans);
3a45bb20 6088 ret = btrfs_commit_transaction(trans);
39279cc3
CM
6089 }
6090 return ret;
6091}
6092
6093/*
54aa1f4d 6094 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6095 * inode changes. But, it is most likely to find the inode in cache.
6096 * FIXME, needs more benchmarking...there are no reasons other than performance
6097 * to keep or drop this code.
6098 */
48a3b636 6099static int btrfs_dirty_inode(struct inode *inode)
39279cc3 6100{
2ff7e61e 6101 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
6102 struct btrfs_root *root = BTRFS_I(inode)->root;
6103 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6104 int ret;
6105
72ac3c0d 6106 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6107 return 0;
39279cc3 6108
7a7eaa40 6109 trans = btrfs_join_transaction(root);
22c44fe6
JB
6110 if (IS_ERR(trans))
6111 return PTR_ERR(trans);
8929ecfa
YZ
6112
6113 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6114 if (ret && ret == -ENOSPC) {
6115 /* whoops, lets try again with the full transaction */
3a45bb20 6116 btrfs_end_transaction(trans);
94b60442 6117 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6118 if (IS_ERR(trans))
6119 return PTR_ERR(trans);
8929ecfa 6120
94b60442 6121 ret = btrfs_update_inode(trans, root, inode);
94b60442 6122 }
3a45bb20 6123 btrfs_end_transaction(trans);
16cdcec7 6124 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6125 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6126
6127 return ret;
6128}
6129
6130/*
6131 * This is a copy of file_update_time. We need this so we can return error on
6132 * ENOSPC for updating the inode in the case of file write and mmap writes.
6133 */
e41f941a
JB
6134static int btrfs_update_time(struct inode *inode, struct timespec *now,
6135 int flags)
22c44fe6 6136{
2bc55652 6137 struct btrfs_root *root = BTRFS_I(inode)->root;
3a8c7231 6138 bool dirty = flags & ~S_VERSION;
2bc55652
AB
6139
6140 if (btrfs_root_readonly(root))
6141 return -EROFS;
6142
e41f941a 6143 if (flags & S_VERSION)
3a8c7231 6144 dirty |= inode_maybe_inc_iversion(inode, dirty);
e41f941a
JB
6145 if (flags & S_CTIME)
6146 inode->i_ctime = *now;
6147 if (flags & S_MTIME)
6148 inode->i_mtime = *now;
6149 if (flags & S_ATIME)
6150 inode->i_atime = *now;
3a8c7231 6151 return dirty ? btrfs_dirty_inode(inode) : 0;
39279cc3
CM
6152}
6153
d352ac68
CM
6154/*
6155 * find the highest existing sequence number in a directory
6156 * and then set the in-memory index_cnt variable to reflect
6157 * free sequence numbers
6158 */
4c570655 6159static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6160{
4c570655 6161 struct btrfs_root *root = inode->root;
aec7477b
JB
6162 struct btrfs_key key, found_key;
6163 struct btrfs_path *path;
6164 struct extent_buffer *leaf;
6165 int ret;
6166
4c570655 6167 key.objectid = btrfs_ino(inode);
962a298f 6168 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6169 key.offset = (u64)-1;
6170
6171 path = btrfs_alloc_path();
6172 if (!path)
6173 return -ENOMEM;
6174
6175 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6176 if (ret < 0)
6177 goto out;
6178 /* FIXME: we should be able to handle this */
6179 if (ret == 0)
6180 goto out;
6181 ret = 0;
6182
6183 /*
6184 * MAGIC NUMBER EXPLANATION:
6185 * since we search a directory based on f_pos we have to start at 2
6186 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6187 * else has to start at 2
6188 */
6189 if (path->slots[0] == 0) {
4c570655 6190 inode->index_cnt = 2;
aec7477b
JB
6191 goto out;
6192 }
6193
6194 path->slots[0]--;
6195
6196 leaf = path->nodes[0];
6197 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6198
4c570655 6199 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6200 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6201 inode->index_cnt = 2;
aec7477b
JB
6202 goto out;
6203 }
6204
4c570655 6205 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6206out:
6207 btrfs_free_path(path);
6208 return ret;
6209}
6210
d352ac68
CM
6211/*
6212 * helper to find a free sequence number in a given directory. This current
6213 * code is very simple, later versions will do smarter things in the btree
6214 */
877574e2 6215int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6216{
6217 int ret = 0;
6218
877574e2
NB
6219 if (dir->index_cnt == (u64)-1) {
6220 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6221 if (ret) {
6222 ret = btrfs_set_inode_index_count(dir);
6223 if (ret)
6224 return ret;
6225 }
aec7477b
JB
6226 }
6227
877574e2
NB
6228 *index = dir->index_cnt;
6229 dir->index_cnt++;
aec7477b
JB
6230
6231 return ret;
6232}
6233
b0d5d10f
CM
6234static int btrfs_insert_inode_locked(struct inode *inode)
6235{
6236 struct btrfs_iget_args args;
6237 args.location = &BTRFS_I(inode)->location;
6238 args.root = BTRFS_I(inode)->root;
6239
6240 return insert_inode_locked4(inode,
6241 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6242 btrfs_find_actor, &args);
6243}
6244
19aee8de
AJ
6245/*
6246 * Inherit flags from the parent inode.
6247 *
6248 * Currently only the compression flags and the cow flags are inherited.
6249 */
6250static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6251{
6252 unsigned int flags;
6253
6254 if (!dir)
6255 return;
6256
6257 flags = BTRFS_I(dir)->flags;
6258
6259 if (flags & BTRFS_INODE_NOCOMPRESS) {
6260 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6261 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6262 } else if (flags & BTRFS_INODE_COMPRESS) {
6263 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6264 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6265 }
6266
6267 if (flags & BTRFS_INODE_NODATACOW) {
6268 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6269 if (S_ISREG(inode->i_mode))
6270 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6271 }
6272
6273 btrfs_update_iflags(inode);
6274}
6275
39279cc3
CM
6276static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6277 struct btrfs_root *root,
aec7477b 6278 struct inode *dir,
9c58309d 6279 const char *name, int name_len,
175a4eb7
AV
6280 u64 ref_objectid, u64 objectid,
6281 umode_t mode, u64 *index)
39279cc3 6282{
0b246afa 6283 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6284 struct inode *inode;
5f39d397 6285 struct btrfs_inode_item *inode_item;
39279cc3 6286 struct btrfs_key *location;
5f39d397 6287 struct btrfs_path *path;
9c58309d
CM
6288 struct btrfs_inode_ref *ref;
6289 struct btrfs_key key[2];
6290 u32 sizes[2];
ef3b9af5 6291 int nitems = name ? 2 : 1;
9c58309d 6292 unsigned long ptr;
39279cc3 6293 int ret;
39279cc3 6294
5f39d397 6295 path = btrfs_alloc_path();
d8926bb3
MF
6296 if (!path)
6297 return ERR_PTR(-ENOMEM);
5f39d397 6298
0b246afa 6299 inode = new_inode(fs_info->sb);
8fb27640
YS
6300 if (!inode) {
6301 btrfs_free_path(path);
39279cc3 6302 return ERR_PTR(-ENOMEM);
8fb27640 6303 }
39279cc3 6304
5762b5c9
FM
6305 /*
6306 * O_TMPFILE, set link count to 0, so that after this point,
6307 * we fill in an inode item with the correct link count.
6308 */
6309 if (!name)
6310 set_nlink(inode, 0);
6311
581bb050
LZ
6312 /*
6313 * we have to initialize this early, so we can reclaim the inode
6314 * number if we fail afterwards in this function.
6315 */
6316 inode->i_ino = objectid;
6317
ef3b9af5 6318 if (dir && name) {
1abe9b8a 6319 trace_btrfs_inode_request(dir);
6320
877574e2 6321 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6322 if (ret) {
8fb27640 6323 btrfs_free_path(path);
09771430 6324 iput(inode);
aec7477b 6325 return ERR_PTR(ret);
09771430 6326 }
ef3b9af5
FM
6327 } else if (dir) {
6328 *index = 0;
aec7477b
JB
6329 }
6330 /*
6331 * index_cnt is ignored for everything but a dir,
df6703e1 6332 * btrfs_set_inode_index_count has an explanation for the magic
aec7477b
JB
6333 * number
6334 */
6335 BTRFS_I(inode)->index_cnt = 2;
67de1176 6336 BTRFS_I(inode)->dir_index = *index;
39279cc3 6337 BTRFS_I(inode)->root = root;
e02119d5 6338 BTRFS_I(inode)->generation = trans->transid;
76195853 6339 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6340
5dc562c5
JB
6341 /*
6342 * We could have gotten an inode number from somebody who was fsynced
6343 * and then removed in this same transaction, so let's just set full
6344 * sync since it will be a full sync anyway and this will blow away the
6345 * old info in the log.
6346 */
6347 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6348
9c58309d 6349 key[0].objectid = objectid;
962a298f 6350 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6351 key[0].offset = 0;
6352
9c58309d 6353 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6354
6355 if (name) {
6356 /*
6357 * Start new inodes with an inode_ref. This is slightly more
6358 * efficient for small numbers of hard links since they will
6359 * be packed into one item. Extended refs will kick in if we
6360 * add more hard links than can fit in the ref item.
6361 */
6362 key[1].objectid = objectid;
962a298f 6363 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6364 key[1].offset = ref_objectid;
6365
6366 sizes[1] = name_len + sizeof(*ref);
6367 }
9c58309d 6368
b0d5d10f
CM
6369 location = &BTRFS_I(inode)->location;
6370 location->objectid = objectid;
6371 location->offset = 0;
962a298f 6372 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6373
6374 ret = btrfs_insert_inode_locked(inode);
6375 if (ret < 0)
6376 goto fail;
6377
b9473439 6378 path->leave_spinning = 1;
ef3b9af5 6379 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6380 if (ret != 0)
b0d5d10f 6381 goto fail_unlock;
5f39d397 6382
ecc11fab 6383 inode_init_owner(inode, dir, mode);
a76a3cd4 6384 inode_set_bytes(inode, 0);
9cc97d64 6385
c2050a45 6386 inode->i_mtime = current_time(inode);
9cc97d64 6387 inode->i_atime = inode->i_mtime;
6388 inode->i_ctime = inode->i_mtime;
6389 BTRFS_I(inode)->i_otime = inode->i_mtime;
6390
5f39d397
CM
6391 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6392 struct btrfs_inode_item);
b159fa28 6393 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6394 sizeof(*inode_item));
e02119d5 6395 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6396
ef3b9af5
FM
6397 if (name) {
6398 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6399 struct btrfs_inode_ref);
6400 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6401 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6402 ptr = (unsigned long)(ref + 1);
6403 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6404 }
9c58309d 6405
5f39d397
CM
6406 btrfs_mark_buffer_dirty(path->nodes[0]);
6407 btrfs_free_path(path);
6408
6cbff00f
CH
6409 btrfs_inherit_iflags(inode, dir);
6410
569254b0 6411 if (S_ISREG(mode)) {
0b246afa 6412 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6413 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6414 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6415 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6416 BTRFS_INODE_NODATASUM;
94272164
CM
6417 }
6418
5d4f98a2 6419 inode_tree_add(inode);
1abe9b8a 6420
6421 trace_btrfs_inode_new(inode);
1973f0fa 6422 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6423
8ea05e3a
AB
6424 btrfs_update_root_times(trans, root);
6425
63541927
FDBM
6426 ret = btrfs_inode_inherit_props(trans, inode, dir);
6427 if (ret)
0b246afa 6428 btrfs_err(fs_info,
63541927 6429 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6430 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6431
39279cc3 6432 return inode;
b0d5d10f
CM
6433
6434fail_unlock:
6435 unlock_new_inode(inode);
5f39d397 6436fail:
ef3b9af5 6437 if (dir && name)
aec7477b 6438 BTRFS_I(dir)->index_cnt--;
5f39d397 6439 btrfs_free_path(path);
09771430 6440 iput(inode);
5f39d397 6441 return ERR_PTR(ret);
39279cc3
CM
6442}
6443
6444static inline u8 btrfs_inode_type(struct inode *inode)
6445{
6446 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6447}
6448
d352ac68
CM
6449/*
6450 * utility function to add 'inode' into 'parent_inode' with
6451 * a give name and a given sequence number.
6452 * if 'add_backref' is true, also insert a backref from the
6453 * inode to the parent directory.
6454 */
e02119d5 6455int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6456 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6457 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6458{
db0a669f 6459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
4df27c4d 6460 int ret = 0;
39279cc3 6461 struct btrfs_key key;
db0a669f
NB
6462 struct btrfs_root *root = parent_inode->root;
6463 u64 ino = btrfs_ino(inode);
6464 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6465
33345d01 6466 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6467 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6468 } else {
33345d01 6469 key.objectid = ino;
962a298f 6470 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6471 key.offset = 0;
6472 }
6473
33345d01 6474 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
0b246afa
JM
6475 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6476 root->root_key.objectid, parent_ino,
6477 index, name, name_len);
4df27c4d 6478 } else if (add_backref) {
33345d01
LZ
6479 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6480 parent_ino, index);
4df27c4d 6481 }
39279cc3 6482
79787eaa
JM
6483 /* Nothing to clean up yet */
6484 if (ret)
6485 return ret;
4df27c4d 6486
79787eaa
JM
6487 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6488 parent_inode, &key,
db0a669f 6489 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6490 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6491 goto fail_dir_item;
6492 else if (ret) {
66642832 6493 btrfs_abort_transaction(trans, ret);
79787eaa 6494 return ret;
39279cc3 6495 }
79787eaa 6496
db0a669f 6497 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6498 name_len * 2);
db0a669f
NB
6499 inode_inc_iversion(&parent_inode->vfs_inode);
6500 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6501 current_time(&parent_inode->vfs_inode);
6502 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6503 if (ret)
66642832 6504 btrfs_abort_transaction(trans, ret);
39279cc3 6505 return ret;
fe66a05a
CM
6506
6507fail_dir_item:
6508 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6509 u64 local_index;
6510 int err;
0b246afa
JM
6511 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6512 root->root_key.objectid, parent_ino,
6513 &local_index, name, name_len);
fe66a05a
CM
6514
6515 } else if (add_backref) {
6516 u64 local_index;
6517 int err;
6518
6519 err = btrfs_del_inode_ref(trans, root, name, name_len,
6520 ino, parent_ino, &local_index);
6521 }
6522 return ret;
39279cc3
CM
6523}
6524
6525static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6526 struct btrfs_inode *dir, struct dentry *dentry,
6527 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6528{
a1b075d2
JB
6529 int err = btrfs_add_link(trans, dir, inode,
6530 dentry->d_name.name, dentry->d_name.len,
6531 backref, index);
39279cc3
CM
6532 if (err > 0)
6533 err = -EEXIST;
6534 return err;
6535}
6536
618e21d5 6537static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6538 umode_t mode, dev_t rdev)
618e21d5 6539{
2ff7e61e 6540 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6541 struct btrfs_trans_handle *trans;
6542 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6543 struct inode *inode = NULL;
618e21d5
JB
6544 int err;
6545 int drop_inode = 0;
6546 u64 objectid;
00e4e6b3 6547 u64 index = 0;
618e21d5 6548
9ed74f2d
JB
6549 /*
6550 * 2 for inode item and ref
6551 * 2 for dir items
6552 * 1 for xattr if selinux is on
6553 */
a22285a6
YZ
6554 trans = btrfs_start_transaction(root, 5);
6555 if (IS_ERR(trans))
6556 return PTR_ERR(trans);
1832a6d5 6557
581bb050
LZ
6558 err = btrfs_find_free_ino(root, &objectid);
6559 if (err)
6560 goto out_unlock;
6561
aec7477b 6562 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6563 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6564 mode, &index);
7cf96da3
TI
6565 if (IS_ERR(inode)) {
6566 err = PTR_ERR(inode);
618e21d5 6567 goto out_unlock;
7cf96da3 6568 }
618e21d5 6569
ad19db71
CS
6570 /*
6571 * If the active LSM wants to access the inode during
6572 * d_instantiate it needs these. Smack checks to see
6573 * if the filesystem supports xattrs by looking at the
6574 * ops vector.
6575 */
ad19db71 6576 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6577 init_special_inode(inode, inode->i_mode, rdev);
6578
6579 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6580 if (err)
b0d5d10f
CM
6581 goto out_unlock_inode;
6582
cef415af
NB
6583 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6584 0, index);
b0d5d10f
CM
6585 if (err) {
6586 goto out_unlock_inode;
6587 } else {
1b4ab1bb 6588 btrfs_update_inode(trans, root, inode);
1e2e547a 6589 d_instantiate_new(dentry, inode);
618e21d5 6590 }
b0d5d10f 6591
618e21d5 6592out_unlock:
3a45bb20 6593 btrfs_end_transaction(trans);
2ff7e61e 6594 btrfs_btree_balance_dirty(fs_info);
618e21d5
JB
6595 if (drop_inode) {
6596 inode_dec_link_count(inode);
6597 iput(inode);
6598 }
618e21d5 6599 return err;
b0d5d10f
CM
6600
6601out_unlock_inode:
6602 drop_inode = 1;
6603 unlock_new_inode(inode);
6604 goto out_unlock;
6605
618e21d5
JB
6606}
6607
39279cc3 6608static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6609 umode_t mode, bool excl)
39279cc3 6610{
2ff7e61e 6611 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6612 struct btrfs_trans_handle *trans;
6613 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6614 struct inode *inode = NULL;
43baa579 6615 int drop_inode_on_err = 0;
a22285a6 6616 int err;
39279cc3 6617 u64 objectid;
00e4e6b3 6618 u64 index = 0;
39279cc3 6619
9ed74f2d
JB
6620 /*
6621 * 2 for inode item and ref
6622 * 2 for dir items
6623 * 1 for xattr if selinux is on
6624 */
a22285a6
YZ
6625 trans = btrfs_start_transaction(root, 5);
6626 if (IS_ERR(trans))
6627 return PTR_ERR(trans);
9ed74f2d 6628
581bb050
LZ
6629 err = btrfs_find_free_ino(root, &objectid);
6630 if (err)
6631 goto out_unlock;
6632
aec7477b 6633 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6634 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6635 mode, &index);
7cf96da3
TI
6636 if (IS_ERR(inode)) {
6637 err = PTR_ERR(inode);
39279cc3 6638 goto out_unlock;
7cf96da3 6639 }
43baa579 6640 drop_inode_on_err = 1;
ad19db71
CS
6641 /*
6642 * If the active LSM wants to access the inode during
6643 * d_instantiate it needs these. Smack checks to see
6644 * if the filesystem supports xattrs by looking at the
6645 * ops vector.
6646 */
6647 inode->i_fop = &btrfs_file_operations;
6648 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6649 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6650
6651 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6652 if (err)
6653 goto out_unlock_inode;
6654
6655 err = btrfs_update_inode(trans, root, inode);
6656 if (err)
6657 goto out_unlock_inode;
ad19db71 6658
cef415af
NB
6659 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6660 0, index);
39279cc3 6661 if (err)
b0d5d10f 6662 goto out_unlock_inode;
43baa579 6663
43baa579 6664 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1e2e547a 6665 d_instantiate_new(dentry, inode);
43baa579 6666
39279cc3 6667out_unlock:
3a45bb20 6668 btrfs_end_transaction(trans);
43baa579 6669 if (err && drop_inode_on_err) {
39279cc3
CM
6670 inode_dec_link_count(inode);
6671 iput(inode);
6672 }
2ff7e61e 6673 btrfs_btree_balance_dirty(fs_info);
39279cc3 6674 return err;
b0d5d10f
CM
6675
6676out_unlock_inode:
6677 unlock_new_inode(inode);
6678 goto out_unlock;
6679
39279cc3
CM
6680}
6681
6682static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6683 struct dentry *dentry)
6684{
271dba45 6685 struct btrfs_trans_handle *trans = NULL;
39279cc3 6686 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6687 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6688 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6689 u64 index;
39279cc3
CM
6690 int err;
6691 int drop_inode = 0;
6692
4a8be425
TH
6693 /* do not allow sys_link's with other subvols of the same device */
6694 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6695 return -EXDEV;
4a8be425 6696
f186373f 6697 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6698 return -EMLINK;
4a8be425 6699
877574e2 6700 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6701 if (err)
6702 goto fail;
6703
a22285a6 6704 /*
7e6b6465 6705 * 2 items for inode and inode ref
a22285a6 6706 * 2 items for dir items
7e6b6465 6707 * 1 item for parent inode
a22285a6 6708 */
7e6b6465 6709 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6710 if (IS_ERR(trans)) {
6711 err = PTR_ERR(trans);
271dba45 6712 trans = NULL;
a22285a6
YZ
6713 goto fail;
6714 }
5f39d397 6715
67de1176
MX
6716 /* There are several dir indexes for this inode, clear the cache. */
6717 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6718 inc_nlink(inode);
0c4d2d95 6719 inode_inc_iversion(inode);
c2050a45 6720 inode->i_ctime = current_time(inode);
7de9c6ee 6721 ihold(inode);
e9976151 6722 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6723
cef415af
NB
6724 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6725 1, index);
5f39d397 6726
a5719521 6727 if (err) {
54aa1f4d 6728 drop_inode = 1;
a5719521 6729 } else {
10d9f309 6730 struct dentry *parent = dentry->d_parent;
a5719521 6731 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6732 if (err)
6733 goto fail;
ef3b9af5
FM
6734 if (inode->i_nlink == 1) {
6735 /*
6736 * If new hard link count is 1, it's a file created
6737 * with open(2) O_TMPFILE flag.
6738 */
3d6ae7bb 6739 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6740 if (err)
6741 goto fail;
6742 }
08c422c2 6743 d_instantiate(dentry, inode);
9ca5fbfb 6744 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
a5719521 6745 }
39279cc3 6746
1832a6d5 6747fail:
271dba45 6748 if (trans)
3a45bb20 6749 btrfs_end_transaction(trans);
39279cc3
CM
6750 if (drop_inode) {
6751 inode_dec_link_count(inode);
6752 iput(inode);
6753 }
2ff7e61e 6754 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6755 return err;
6756}
6757
18bb1db3 6758static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6759{
2ff7e61e 6760 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6761 struct inode *inode = NULL;
39279cc3
CM
6762 struct btrfs_trans_handle *trans;
6763 struct btrfs_root *root = BTRFS_I(dir)->root;
6764 int err = 0;
6765 int drop_on_err = 0;
b9d86667 6766 u64 objectid = 0;
00e4e6b3 6767 u64 index = 0;
39279cc3 6768
9ed74f2d
JB
6769 /*
6770 * 2 items for inode and ref
6771 * 2 items for dir items
6772 * 1 for xattr if selinux is on
6773 */
a22285a6
YZ
6774 trans = btrfs_start_transaction(root, 5);
6775 if (IS_ERR(trans))
6776 return PTR_ERR(trans);
39279cc3 6777
581bb050
LZ
6778 err = btrfs_find_free_ino(root, &objectid);
6779 if (err)
6780 goto out_fail;
6781
aec7477b 6782 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6783 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6784 S_IFDIR | mode, &index);
39279cc3
CM
6785 if (IS_ERR(inode)) {
6786 err = PTR_ERR(inode);
6787 goto out_fail;
6788 }
5f39d397 6789
39279cc3 6790 drop_on_err = 1;
b0d5d10f
CM
6791 /* these must be set before we unlock the inode */
6792 inode->i_op = &btrfs_dir_inode_operations;
6793 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6794
2a7dba39 6795 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6796 if (err)
b0d5d10f 6797 goto out_fail_inode;
39279cc3 6798
6ef06d27 6799 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6800 err = btrfs_update_inode(trans, root, inode);
6801 if (err)
b0d5d10f 6802 goto out_fail_inode;
5f39d397 6803
db0a669f
NB
6804 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6805 dentry->d_name.name,
6806 dentry->d_name.len, 0, index);
39279cc3 6807 if (err)
b0d5d10f 6808 goto out_fail_inode;
5f39d397 6809
1e2e547a 6810 d_instantiate_new(dentry, inode);
39279cc3 6811 drop_on_err = 0;
39279cc3
CM
6812
6813out_fail:
3a45bb20 6814 btrfs_end_transaction(trans);
c7cfb8a5
WS
6815 if (drop_on_err) {
6816 inode_dec_link_count(inode);
39279cc3 6817 iput(inode);
c7cfb8a5 6818 }
2ff7e61e 6819 btrfs_btree_balance_dirty(fs_info);
39279cc3 6820 return err;
b0d5d10f
CM
6821
6822out_fail_inode:
6823 unlock_new_inode(inode);
6824 goto out_fail;
39279cc3
CM
6825}
6826
c8b97818 6827static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6828 struct page *page,
c8b97818
CM
6829 size_t pg_offset, u64 extent_offset,
6830 struct btrfs_file_extent_item *item)
6831{
6832 int ret;
6833 struct extent_buffer *leaf = path->nodes[0];
6834 char *tmp;
6835 size_t max_size;
6836 unsigned long inline_size;
6837 unsigned long ptr;
261507a0 6838 int compress_type;
c8b97818
CM
6839
6840 WARN_ON(pg_offset != 0);
261507a0 6841 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6842 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6843 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6844 btrfs_item_nr(path->slots[0]));
c8b97818 6845 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6846 if (!tmp)
6847 return -ENOMEM;
c8b97818
CM
6848 ptr = btrfs_file_extent_inline_start(item);
6849
6850 read_extent_buffer(leaf, tmp, ptr, inline_size);
6851
09cbfeaf 6852 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6853 ret = btrfs_decompress(compress_type, tmp, page,
6854 extent_offset, inline_size, max_size);
e1699d2d
ZB
6855
6856 /*
6857 * decompression code contains a memset to fill in any space between the end
6858 * of the uncompressed data and the end of max_size in case the decompressed
6859 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6860 * the end of an inline extent and the beginning of the next block, so we
6861 * cover that region here.
6862 */
6863
6864 if (max_size + pg_offset < PAGE_SIZE) {
6865 char *map = kmap(page);
6866 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6867 kunmap(page);
6868 }
c8b97818 6869 kfree(tmp);
166ae5a4 6870 return ret;
c8b97818
CM
6871}
6872
d352ac68
CM
6873/*
6874 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6875 * the ugly parts come from merging extents from the disk with the in-ram
6876 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6877 * where the in-ram extents might be locked pending data=ordered completion.
6878 *
6879 * This also copies inline extents directly into the page.
6880 */
fc4f21b1
NB
6881struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6882 struct page *page,
6883 size_t pg_offset, u64 start, u64 len,
6884 int create)
a52d9a80 6885{
fc4f21b1 6886 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
a52d9a80
CM
6887 int ret;
6888 int err = 0;
a52d9a80
CM
6889 u64 extent_start = 0;
6890 u64 extent_end = 0;
fc4f21b1 6891 u64 objectid = btrfs_ino(inode);
a52d9a80 6892 u32 found_type;
f421950f 6893 struct btrfs_path *path = NULL;
fc4f21b1 6894 struct btrfs_root *root = inode->root;
a52d9a80 6895 struct btrfs_file_extent_item *item;
5f39d397
CM
6896 struct extent_buffer *leaf;
6897 struct btrfs_key found_key;
a52d9a80 6898 struct extent_map *em = NULL;
fc4f21b1
NB
6899 struct extent_map_tree *em_tree = &inode->extent_tree;
6900 struct extent_io_tree *io_tree = &inode->io_tree;
7ffbb598 6901 const bool new_inline = !page || create;
a52d9a80 6902
890871be 6903 read_lock(&em_tree->lock);
d1310b2e 6904 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6905 if (em)
0b246afa 6906 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6907 read_unlock(&em_tree->lock);
d1310b2e 6908
a52d9a80 6909 if (em) {
e1c4b745
CM
6910 if (em->start > start || em->start + em->len <= start)
6911 free_extent_map(em);
6912 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6913 free_extent_map(em);
6914 else
6915 goto out;
a52d9a80 6916 }
172ddd60 6917 em = alloc_extent_map();
a52d9a80 6918 if (!em) {
d1310b2e
CM
6919 err = -ENOMEM;
6920 goto out;
a52d9a80 6921 }
0b246afa 6922 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6923 em->start = EXTENT_MAP_HOLE;
445a6944 6924 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6925 em->len = (u64)-1;
c8b97818 6926 em->block_len = (u64)-1;
f421950f
CM
6927
6928 if (!path) {
6929 path = btrfs_alloc_path();
026fd317
JB
6930 if (!path) {
6931 err = -ENOMEM;
6932 goto out;
6933 }
6934 /*
6935 * Chances are we'll be called again, so go ahead and do
6936 * readahead
6937 */
e4058b54 6938 path->reada = READA_FORWARD;
f421950f
CM
6939 }
6940
5c9a702e 6941 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80
CM
6942 if (ret < 0) {
6943 err = ret;
6944 goto out;
6945 }
6946
6947 if (ret != 0) {
6948 if (path->slots[0] == 0)
6949 goto not_found;
6950 path->slots[0]--;
6951 }
6952
5f39d397
CM
6953 leaf = path->nodes[0];
6954 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6955 struct btrfs_file_extent_item);
a52d9a80 6956 /* are we inside the extent that was found? */
5f39d397 6957 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6958 found_type = found_key.type;
5f39d397 6959 if (found_key.objectid != objectid ||
a52d9a80 6960 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6961 /*
6962 * If we backup past the first extent we want to move forward
6963 * and see if there is an extent in front of us, otherwise we'll
6964 * say there is a hole for our whole search range which can
6965 * cause problems.
6966 */
6967 extent_end = start;
6968 goto next;
a52d9a80
CM
6969 }
6970
5f39d397
CM
6971 found_type = btrfs_file_extent_type(leaf, item);
6972 extent_start = found_key.offset;
d899e052
YZ
6973 if (found_type == BTRFS_FILE_EXTENT_REG ||
6974 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6975 extent_end = extent_start +
db94535d 6976 btrfs_file_extent_num_bytes(leaf, item);
09ed2f16
LB
6977
6978 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6979 extent_start);
9036c102
YZ
6980 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6981 size_t size;
514ac8ad 6982 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
da17066c 6983 extent_end = ALIGN(extent_start + size,
0b246afa 6984 fs_info->sectorsize);
09ed2f16
LB
6985
6986 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6987 path->slots[0],
6988 extent_start);
9036c102 6989 }
25a50341 6990next:
9036c102
YZ
6991 if (start >= extent_end) {
6992 path->slots[0]++;
6993 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6994 ret = btrfs_next_leaf(root, path);
6995 if (ret < 0) {
6996 err = ret;
6997 goto out;
a52d9a80 6998 }
9036c102
YZ
6999 if (ret > 0)
7000 goto not_found;
7001 leaf = path->nodes[0];
a52d9a80 7002 }
9036c102
YZ
7003 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7004 if (found_key.objectid != objectid ||
7005 found_key.type != BTRFS_EXTENT_DATA_KEY)
7006 goto not_found;
7007 if (start + len <= found_key.offset)
7008 goto not_found;
e2eca69d
WS
7009 if (start > found_key.offset)
7010 goto next;
9036c102 7011 em->start = start;
70c8a91c 7012 em->orig_start = start;
9036c102
YZ
7013 em->len = found_key.offset - start;
7014 goto not_found_em;
7015 }
7016
fc4f21b1 7017 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 7018 new_inline, em);
7ffbb598 7019
d899e052
YZ
7020 if (found_type == BTRFS_FILE_EXTENT_REG ||
7021 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
7022 goto insert;
7023 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 7024 unsigned long ptr;
a52d9a80 7025 char *map;
3326d1b0
CM
7026 size_t size;
7027 size_t extent_offset;
7028 size_t copy_size;
a52d9a80 7029
7ffbb598 7030 if (new_inline)
689f9346 7031 goto out;
5f39d397 7032
514ac8ad 7033 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 7034 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
7035 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7036 size - extent_offset);
3326d1b0 7037 em->start = extent_start + extent_offset;
0b246afa 7038 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 7039 em->orig_block_len = em->len;
70c8a91c 7040 em->orig_start = em->start;
689f9346 7041 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
bf46f52d 7042 if (!PageUptodate(page)) {
261507a0
LZ
7043 if (btrfs_file_extent_compression(leaf, item) !=
7044 BTRFS_COMPRESS_NONE) {
e40da0e5 7045 ret = uncompress_inline(path, page, pg_offset,
c8b97818 7046 extent_offset, item);
166ae5a4
ZB
7047 if (ret) {
7048 err = ret;
7049 goto out;
7050 }
c8b97818
CM
7051 } else {
7052 map = kmap(page);
7053 read_extent_buffer(leaf, map + pg_offset, ptr,
7054 copy_size);
09cbfeaf 7055 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 7056 memset(map + pg_offset + copy_size, 0,
09cbfeaf 7057 PAGE_SIZE - pg_offset -
93c82d57
CM
7058 copy_size);
7059 }
c8b97818
CM
7060 kunmap(page);
7061 }
179e29e4 7062 flush_dcache_page(page);
a52d9a80 7063 }
d1310b2e 7064 set_extent_uptodate(io_tree, em->start,
507903b8 7065 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7066 goto insert;
a52d9a80
CM
7067 }
7068not_found:
7069 em->start = start;
70c8a91c 7070 em->orig_start = start;
d1310b2e 7071 em->len = len;
a52d9a80 7072not_found_em:
5f39d397 7073 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 7074insert:
b3b4aa74 7075 btrfs_release_path(path);
d1310b2e 7076 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 7077 btrfs_err(fs_info,
5d163e0e
JM
7078 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7079 em->start, em->len, start, len);
a52d9a80
CM
7080 err = -EIO;
7081 goto out;
7082 }
d1310b2e
CM
7083
7084 err = 0;
890871be 7085 write_lock(&em_tree->lock);
7b4df058 7086 err = btrfs_add_extent_mapping(em_tree, &em, start, len);
890871be 7087 write_unlock(&em_tree->lock);
a52d9a80 7088out:
1abe9b8a 7089
fc4f21b1 7090 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 7091
527afb44 7092 btrfs_free_path(path);
a52d9a80
CM
7093 if (err) {
7094 free_extent_map(em);
a52d9a80
CM
7095 return ERR_PTR(err);
7096 }
79787eaa 7097 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7098 return em;
7099}
7100
fc4f21b1
NB
7101struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7102 struct page *page,
7103 size_t pg_offset, u64 start, u64 len,
7104 int create)
ec29ed5b
CM
7105{
7106 struct extent_map *em;
7107 struct extent_map *hole_em = NULL;
7108 u64 range_start = start;
7109 u64 end;
7110 u64 found;
7111 u64 found_end;
7112 int err = 0;
7113
7114 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7115 if (IS_ERR(em))
7116 return em;
9986277e
DC
7117 /*
7118 * If our em maps to:
7119 * - a hole or
7120 * - a pre-alloc extent,
7121 * there might actually be delalloc bytes behind it.
7122 */
7123 if (em->block_start != EXTENT_MAP_HOLE &&
7124 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7125 return em;
7126 else
7127 hole_em = em;
ec29ed5b
CM
7128
7129 /* check to see if we've wrapped (len == -1 or similar) */
7130 end = start + len;
7131 if (end < start)
7132 end = (u64)-1;
7133 else
7134 end -= 1;
7135
7136 em = NULL;
7137
7138 /* ok, we didn't find anything, lets look for delalloc */
fc4f21b1 7139 found = count_range_bits(&inode->io_tree, &range_start,
ec29ed5b
CM
7140 end, len, EXTENT_DELALLOC, 1);
7141 found_end = range_start + found;
7142 if (found_end < range_start)
7143 found_end = (u64)-1;
7144
7145 /*
7146 * we didn't find anything useful, return
7147 * the original results from get_extent()
7148 */
7149 if (range_start > end || found_end <= start) {
7150 em = hole_em;
7151 hole_em = NULL;
7152 goto out;
7153 }
7154
7155 /* adjust the range_start to make sure it doesn't
7156 * go backwards from the start they passed in
7157 */
67871254 7158 range_start = max(start, range_start);
ec29ed5b
CM
7159 found = found_end - range_start;
7160
7161 if (found > 0) {
7162 u64 hole_start = start;
7163 u64 hole_len = len;
7164
172ddd60 7165 em = alloc_extent_map();
ec29ed5b
CM
7166 if (!em) {
7167 err = -ENOMEM;
7168 goto out;
7169 }
7170 /*
7171 * when btrfs_get_extent can't find anything it
7172 * returns one huge hole
7173 *
7174 * make sure what it found really fits our range, and
7175 * adjust to make sure it is based on the start from
7176 * the caller
7177 */
7178 if (hole_em) {
7179 u64 calc_end = extent_map_end(hole_em);
7180
7181 if (calc_end <= start || (hole_em->start > end)) {
7182 free_extent_map(hole_em);
7183 hole_em = NULL;
7184 } else {
7185 hole_start = max(hole_em->start, start);
7186 hole_len = calc_end - hole_start;
7187 }
7188 }
7189 em->bdev = NULL;
7190 if (hole_em && range_start > hole_start) {
7191 /* our hole starts before our delalloc, so we
7192 * have to return just the parts of the hole
7193 * that go until the delalloc starts
7194 */
7195 em->len = min(hole_len,
7196 range_start - hole_start);
7197 em->start = hole_start;
7198 em->orig_start = hole_start;
7199 /*
7200 * don't adjust block start at all,
7201 * it is fixed at EXTENT_MAP_HOLE
7202 */
7203 em->block_start = hole_em->block_start;
7204 em->block_len = hole_len;
f9e4fb53
LB
7205 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7206 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7207 } else {
7208 em->start = range_start;
7209 em->len = found;
7210 em->orig_start = range_start;
7211 em->block_start = EXTENT_MAP_DELALLOC;
7212 em->block_len = found;
7213 }
bf8d32b9 7214 } else {
ec29ed5b
CM
7215 return hole_em;
7216 }
7217out:
7218
7219 free_extent_map(hole_em);
7220 if (err) {
7221 free_extent_map(em);
7222 return ERR_PTR(err);
7223 }
7224 return em;
7225}
7226
5f9a8a51
FM
7227static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7228 const u64 start,
7229 const u64 len,
7230 const u64 orig_start,
7231 const u64 block_start,
7232 const u64 block_len,
7233 const u64 orig_block_len,
7234 const u64 ram_bytes,
7235 const int type)
7236{
7237 struct extent_map *em = NULL;
7238 int ret;
7239
5f9a8a51 7240 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7241 em = create_io_em(inode, start, len, orig_start,
7242 block_start, block_len, orig_block_len,
7243 ram_bytes,
7244 BTRFS_COMPRESS_NONE, /* compress_type */
7245 type);
5f9a8a51
FM
7246 if (IS_ERR(em))
7247 goto out;
7248 }
7249 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7250 len, block_len, type);
7251 if (ret) {
7252 if (em) {
7253 free_extent_map(em);
dcdbc059 7254 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7255 start + len - 1, 0);
7256 }
7257 em = ERR_PTR(ret);
7258 }
7259 out:
5f9a8a51
FM
7260
7261 return em;
7262}
7263
4b46fce2
JB
7264static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7265 u64 start, u64 len)
7266{
0b246afa 7267 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7268 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7269 struct extent_map *em;
4b46fce2
JB
7270 struct btrfs_key ins;
7271 u64 alloc_hint;
7272 int ret;
4b46fce2 7273
4b46fce2 7274 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7275 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7276 0, alloc_hint, &ins, 1, 1);
00361589
JB
7277 if (ret)
7278 return ERR_PTR(ret);
4b46fce2 7279
5f9a8a51
FM
7280 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7281 ins.objectid, ins.offset, ins.offset,
6288d6ea 7282 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7283 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7284 if (IS_ERR(em))
2ff7e61e
JM
7285 btrfs_free_reserved_extent(fs_info, ins.objectid,
7286 ins.offset, 1);
de0ee0ed 7287
4b46fce2
JB
7288 return em;
7289}
7290
46bfbb5c
CM
7291/*
7292 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7293 * block must be cow'd
7294 */
00361589 7295noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7296 u64 *orig_start, u64 *orig_block_len,
7297 u64 *ram_bytes)
46bfbb5c 7298{
2ff7e61e 7299 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7300 struct btrfs_path *path;
7301 int ret;
7302 struct extent_buffer *leaf;
7303 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7304 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7305 struct btrfs_file_extent_item *fi;
7306 struct btrfs_key key;
7307 u64 disk_bytenr;
7308 u64 backref_offset;
7309 u64 extent_end;
7310 u64 num_bytes;
7311 int slot;
7312 int found_type;
7ee9e440 7313 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7314
46bfbb5c
CM
7315 path = btrfs_alloc_path();
7316 if (!path)
7317 return -ENOMEM;
7318
f85b7379
DS
7319 ret = btrfs_lookup_file_extent(NULL, root, path,
7320 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7321 if (ret < 0)
7322 goto out;
7323
7324 slot = path->slots[0];
7325 if (ret == 1) {
7326 if (slot == 0) {
7327 /* can't find the item, must cow */
7328 ret = 0;
7329 goto out;
7330 }
7331 slot--;
7332 }
7333 ret = 0;
7334 leaf = path->nodes[0];
7335 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7336 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7337 key.type != BTRFS_EXTENT_DATA_KEY) {
7338 /* not our file or wrong item type, must cow */
7339 goto out;
7340 }
7341
7342 if (key.offset > offset) {
7343 /* Wrong offset, must cow */
7344 goto out;
7345 }
7346
7347 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7348 found_type = btrfs_file_extent_type(leaf, fi);
7349 if (found_type != BTRFS_FILE_EXTENT_REG &&
7350 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7351 /* not a regular extent, must cow */
7352 goto out;
7353 }
7ee9e440
JB
7354
7355 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7356 goto out;
7357
e77751aa
MX
7358 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7359 if (extent_end <= offset)
7360 goto out;
7361
46bfbb5c 7362 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7363 if (disk_bytenr == 0)
7364 goto out;
7365
7366 if (btrfs_file_extent_compression(leaf, fi) ||
7367 btrfs_file_extent_encryption(leaf, fi) ||
7368 btrfs_file_extent_other_encoding(leaf, fi))
7369 goto out;
7370
46bfbb5c
CM
7371 backref_offset = btrfs_file_extent_offset(leaf, fi);
7372
7ee9e440
JB
7373 if (orig_start) {
7374 *orig_start = key.offset - backref_offset;
7375 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7376 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7377 }
eb384b55 7378
2ff7e61e 7379 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7380 goto out;
7b2b7085
MX
7381
7382 num_bytes = min(offset + *len, extent_end) - offset;
7383 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7384 u64 range_end;
7385
da17066c
JM
7386 range_end = round_up(offset + num_bytes,
7387 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7388 ret = test_range_bit(io_tree, offset, range_end,
7389 EXTENT_DELALLOC, 0, NULL);
7390 if (ret) {
7391 ret = -EAGAIN;
7392 goto out;
7393 }
7394 }
7395
1bda19eb 7396 btrfs_release_path(path);
46bfbb5c
CM
7397
7398 /*
7399 * look for other files referencing this extent, if we
7400 * find any we must cow
7401 */
00361589 7402
e4c3b2dc 7403 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7404 key.offset - backref_offset, disk_bytenr);
00361589
JB
7405 if (ret) {
7406 ret = 0;
7407 goto out;
7408 }
46bfbb5c
CM
7409
7410 /*
7411 * adjust disk_bytenr and num_bytes to cover just the bytes
7412 * in this extent we are about to write. If there
7413 * are any csums in that range we have to cow in order
7414 * to keep the csums correct
7415 */
7416 disk_bytenr += backref_offset;
7417 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7418 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7419 goto out;
46bfbb5c
CM
7420 /*
7421 * all of the above have passed, it is safe to overwrite this extent
7422 * without cow
7423 */
eb384b55 7424 *len = num_bytes;
46bfbb5c
CM
7425 ret = 1;
7426out:
7427 btrfs_free_path(path);
7428 return ret;
7429}
7430
eb838e73
JB
7431static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7432 struct extent_state **cached_state, int writing)
7433{
7434 struct btrfs_ordered_extent *ordered;
7435 int ret = 0;
7436
7437 while (1) {
7438 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7439 cached_state);
eb838e73
JB
7440 /*
7441 * We're concerned with the entire range that we're going to be
01327610 7442 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7443 * extents in this range.
7444 */
a776c6fa 7445 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7446 lockend - lockstart + 1);
7447
7448 /*
7449 * We need to make sure there are no buffered pages in this
7450 * range either, we could have raced between the invalidate in
7451 * generic_file_direct_write and locking the extent. The
7452 * invalidate needs to happen so that reads after a write do not
7453 * get stale data.
7454 */
fc4adbff 7455 if (!ordered &&
051c98eb
DS
7456 (!writing || !filemap_range_has_page(inode->i_mapping,
7457 lockstart, lockend)))
eb838e73
JB
7458 break;
7459
7460 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 7461 cached_state);
eb838e73
JB
7462
7463 if (ordered) {
ade77029
FM
7464 /*
7465 * If we are doing a DIO read and the ordered extent we
7466 * found is for a buffered write, we can not wait for it
7467 * to complete and retry, because if we do so we can
7468 * deadlock with concurrent buffered writes on page
7469 * locks. This happens only if our DIO read covers more
7470 * than one extent map, if at this point has already
7471 * created an ordered extent for a previous extent map
7472 * and locked its range in the inode's io tree, and a
7473 * concurrent write against that previous extent map's
7474 * range and this range started (we unlock the ranges
7475 * in the io tree only when the bios complete and
7476 * buffered writes always lock pages before attempting
7477 * to lock range in the io tree).
7478 */
7479 if (writing ||
7480 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7481 btrfs_start_ordered_extent(inode, ordered, 1);
7482 else
7483 ret = -ENOTBLK;
eb838e73
JB
7484 btrfs_put_ordered_extent(ordered);
7485 } else {
eb838e73 7486 /*
b850ae14
FM
7487 * We could trigger writeback for this range (and wait
7488 * for it to complete) and then invalidate the pages for
7489 * this range (through invalidate_inode_pages2_range()),
7490 * but that can lead us to a deadlock with a concurrent
7491 * call to readpages() (a buffered read or a defrag call
7492 * triggered a readahead) on a page lock due to an
7493 * ordered dio extent we created before but did not have
7494 * yet a corresponding bio submitted (whence it can not
7495 * complete), which makes readpages() wait for that
7496 * ordered extent to complete while holding a lock on
7497 * that page.
eb838e73 7498 */
b850ae14 7499 ret = -ENOTBLK;
eb838e73
JB
7500 }
7501
ade77029
FM
7502 if (ret)
7503 break;
7504
eb838e73
JB
7505 cond_resched();
7506 }
7507
7508 return ret;
7509}
7510
6f9994db
LB
7511/* The callers of this must take lock_extent() */
7512static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7513 u64 orig_start, u64 block_start,
7514 u64 block_len, u64 orig_block_len,
7515 u64 ram_bytes, int compress_type,
7516 int type)
69ffb543
JB
7517{
7518 struct extent_map_tree *em_tree;
7519 struct extent_map *em;
7520 struct btrfs_root *root = BTRFS_I(inode)->root;
7521 int ret;
7522
6f9994db
LB
7523 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7524 type == BTRFS_ORDERED_COMPRESSED ||
7525 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7526 type == BTRFS_ORDERED_REGULAR);
6f9994db 7527
69ffb543
JB
7528 em_tree = &BTRFS_I(inode)->extent_tree;
7529 em = alloc_extent_map();
7530 if (!em)
7531 return ERR_PTR(-ENOMEM);
7532
7533 em->start = start;
7534 em->orig_start = orig_start;
7535 em->len = len;
7536 em->block_len = block_len;
7537 em->block_start = block_start;
7538 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7539 em->orig_block_len = orig_block_len;
cc95bef6 7540 em->ram_bytes = ram_bytes;
70c8a91c 7541 em->generation = -1;
69ffb543 7542 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7543 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7544 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7545 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7546 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7547 em->compress_type = compress_type;
7548 }
69ffb543
JB
7549
7550 do {
dcdbc059 7551 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7552 em->start + em->len - 1, 0);
7553 write_lock(&em_tree->lock);
09a2a8f9 7554 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7555 write_unlock(&em_tree->lock);
6f9994db
LB
7556 /*
7557 * The caller has taken lock_extent(), who could race with us
7558 * to add em?
7559 */
69ffb543
JB
7560 } while (ret == -EEXIST);
7561
7562 if (ret) {
7563 free_extent_map(em);
7564 return ERR_PTR(ret);
7565 }
7566
6f9994db 7567 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7568 return em;
7569}
7570
4b46fce2
JB
7571static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7572 struct buffer_head *bh_result, int create)
7573{
0b246afa 7574 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7575 struct extent_map *em;
eb838e73 7576 struct extent_state *cached_state = NULL;
50745b0a 7577 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7578 u64 start = iblock << inode->i_blkbits;
eb838e73 7579 u64 lockstart, lockend;
4b46fce2 7580 u64 len = bh_result->b_size;
eb838e73 7581 int unlock_bits = EXTENT_LOCKED;
0934856d 7582 int ret = 0;
eb838e73 7583
172a5049 7584 if (create)
3266789f 7585 unlock_bits |= EXTENT_DIRTY;
172a5049 7586 else
0b246afa 7587 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7588
c329861d
JB
7589 lockstart = start;
7590 lockend = start + len - 1;
7591
e1cbbfa5
JB
7592 if (current->journal_info) {
7593 /*
7594 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7595 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7596 * confused.
7597 */
50745b0a 7598 dio_data = current->journal_info;
e1cbbfa5
JB
7599 current->journal_info = NULL;
7600 }
7601
eb838e73
JB
7602 /*
7603 * If this errors out it's because we couldn't invalidate pagecache for
7604 * this range and we need to fallback to buffered.
7605 */
9c9464cc
FM
7606 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7607 create)) {
7608 ret = -ENOTBLK;
7609 goto err;
7610 }
eb838e73 7611
fc4f21b1 7612 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7613 if (IS_ERR(em)) {
7614 ret = PTR_ERR(em);
7615 goto unlock_err;
7616 }
4b46fce2
JB
7617
7618 /*
7619 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7620 * io. INLINE is special, and we could probably kludge it in here, but
7621 * it's still buffered so for safety lets just fall back to the generic
7622 * buffered path.
7623 *
7624 * For COMPRESSED we _have_ to read the entire extent in so we can
7625 * decompress it, so there will be buffering required no matter what we
7626 * do, so go ahead and fallback to buffered.
7627 *
01327610 7628 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7629 * to buffered IO. Don't blame me, this is the price we pay for using
7630 * the generic code.
7631 */
7632 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7633 em->block_start == EXTENT_MAP_INLINE) {
7634 free_extent_map(em);
eb838e73
JB
7635 ret = -ENOTBLK;
7636 goto unlock_err;
4b46fce2
JB
7637 }
7638
7639 /* Just a good old fashioned hole, return */
7640 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7641 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7642 free_extent_map(em);
eb838e73 7643 goto unlock_err;
4b46fce2
JB
7644 }
7645
7646 /*
7647 * We don't allocate a new extent in the following cases
7648 *
7649 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7650 * existing extent.
7651 * 2) The extent is marked as PREALLOC. We're good to go here and can
7652 * just use the extent.
7653 *
7654 */
46bfbb5c 7655 if (!create) {
eb838e73
JB
7656 len = min(len, em->len - (start - em->start));
7657 lockstart = start + len;
7658 goto unlock;
46bfbb5c 7659 }
4b46fce2
JB
7660
7661 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7662 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7663 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7664 int type;
eb384b55 7665 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7666
7667 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7668 type = BTRFS_ORDERED_PREALLOC;
7669 else
7670 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7671 len = min(len, em->len - (start - em->start));
4b46fce2 7672 block_start = em->block_start + (start - em->start);
46bfbb5c 7673
00361589 7674 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c 7675 &orig_block_len, &ram_bytes) == 1 &&
0b246afa 7676 btrfs_inc_nocow_writers(fs_info, block_start)) {
5f9a8a51 7677 struct extent_map *em2;
0b901916 7678
5f9a8a51
FM
7679 em2 = btrfs_create_dio_extent(inode, start, len,
7680 orig_start, block_start,
7681 len, orig_block_len,
7682 ram_bytes, type);
0b246afa 7683 btrfs_dec_nocow_writers(fs_info, block_start);
69ffb543
JB
7684 if (type == BTRFS_ORDERED_PREALLOC) {
7685 free_extent_map(em);
5f9a8a51 7686 em = em2;
69ffb543 7687 }
5f9a8a51
FM
7688 if (em2 && IS_ERR(em2)) {
7689 ret = PTR_ERR(em2);
eb838e73 7690 goto unlock_err;
46bfbb5c 7691 }
18513091
WX
7692 /*
7693 * For inode marked NODATACOW or extent marked PREALLOC,
7694 * use the existing or preallocated extent, so does not
7695 * need to adjust btrfs_space_info's bytes_may_use.
7696 */
7697 btrfs_free_reserved_data_space_noquota(inode,
7698 start, len);
46bfbb5c 7699 goto unlock;
4b46fce2 7700 }
4b46fce2 7701 }
00361589 7702
46bfbb5c
CM
7703 /*
7704 * this will cow the extent, reset the len in case we changed
7705 * it above
7706 */
7707 len = bh_result->b_size;
70c8a91c
JB
7708 free_extent_map(em);
7709 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7710 if (IS_ERR(em)) {
7711 ret = PTR_ERR(em);
7712 goto unlock_err;
7713 }
46bfbb5c
CM
7714 len = min(len, em->len - (start - em->start));
7715unlock:
4b46fce2
JB
7716 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7717 inode->i_blkbits;
46bfbb5c 7718 bh_result->b_size = len;
4b46fce2
JB
7719 bh_result->b_bdev = em->bdev;
7720 set_buffer_mapped(bh_result);
c3473e83
JB
7721 if (create) {
7722 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7723 set_buffer_new(bh_result);
7724
7725 /*
7726 * Need to update the i_size under the extent lock so buffered
7727 * readers will get the updated i_size when we unlock.
7728 */
4aaedfb0 7729 if (!dio_data->overwrite && start + len > i_size_read(inode))
c3473e83 7730 i_size_write(inode, start + len);
0934856d 7731
50745b0a 7732 WARN_ON(dio_data->reserve < len);
7733 dio_data->reserve -= len;
f28a4928 7734 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7735 current->journal_info = dio_data;
c3473e83 7736 }
4b46fce2 7737
eb838e73
JB
7738 /*
7739 * In the case of write we need to clear and unlock the entire range,
7740 * in the case of read we need to unlock only the end area that we
7741 * aren't using if there is any left over space.
7742 */
24c03fa5 7743 if (lockstart < lockend) {
0934856d
MX
7744 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7745 lockend, unlock_bits, 1, 0,
ae0f1625 7746 &cached_state);
24c03fa5 7747 } else {
eb838e73 7748 free_extent_state(cached_state);
24c03fa5 7749 }
eb838e73 7750
4b46fce2
JB
7751 free_extent_map(em);
7752
7753 return 0;
eb838e73
JB
7754
7755unlock_err:
eb838e73 7756 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ae0f1625 7757 unlock_bits, 1, 0, &cached_state);
9c9464cc 7758err:
50745b0a 7759 if (dio_data)
7760 current->journal_info = dio_data;
eb838e73 7761 return ret;
4b46fce2
JB
7762}
7763
58efbc9f
OS
7764static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7765 struct bio *bio,
7766 int mirror_num)
8b110e39 7767{
2ff7e61e 7768 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7769 blk_status_t ret;
8b110e39 7770
37226b21 7771 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7772
2ff7e61e 7773 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39 7774 if (ret)
ea057f6d 7775 return ret;
8b110e39 7776
2ff7e61e 7777 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
ea057f6d 7778
8b110e39
MX
7779 return ret;
7780}
7781
7782static int btrfs_check_dio_repairable(struct inode *inode,
7783 struct bio *failed_bio,
7784 struct io_failure_record *failrec,
7785 int failed_mirror)
7786{
ab8d0fc4 7787 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7788 int num_copies;
7789
ab8d0fc4 7790 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7791 if (num_copies == 1) {
7792 /*
7793 * we only have a single copy of the data, so don't bother with
7794 * all the retry and error correction code that follows. no
7795 * matter what the error is, it is very likely to persist.
7796 */
ab8d0fc4
JM
7797 btrfs_debug(fs_info,
7798 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7799 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7800 return 0;
7801 }
7802
7803 failrec->failed_mirror = failed_mirror;
7804 failrec->this_mirror++;
7805 if (failrec->this_mirror == failed_mirror)
7806 failrec->this_mirror++;
7807
7808 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7809 btrfs_debug(fs_info,
7810 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7811 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7812 return 0;
7813 }
7814
7815 return 1;
7816}
7817
58efbc9f
OS
7818static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7819 struct page *page, unsigned int pgoff,
7820 u64 start, u64 end, int failed_mirror,
7821 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7822{
7823 struct io_failure_record *failrec;
7870d082
JB
7824 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7825 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8b110e39
MX
7826 struct bio *bio;
7827 int isector;
f1c77c55 7828 unsigned int read_mode = 0;
17347cec 7829 int segs;
8b110e39 7830 int ret;
58efbc9f 7831 blk_status_t status;
c16a8ac3 7832 struct bio_vec bvec;
8b110e39 7833
37226b21 7834 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7835
7836 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7837 if (ret)
58efbc9f 7838 return errno_to_blk_status(ret);
8b110e39
MX
7839
7840 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7841 failed_mirror);
7842 if (!ret) {
7870d082 7843 free_io_failure(failure_tree, io_tree, failrec);
58efbc9f 7844 return BLK_STS_IOERR;
8b110e39
MX
7845 }
7846
17347cec 7847 segs = bio_segments(failed_bio);
c16a8ac3 7848 bio_get_first_bvec(failed_bio, &bvec);
17347cec 7849 if (segs > 1 ||
c16a8ac3 7850 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
70fd7614 7851 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
7852
7853 isector = start - btrfs_io_bio(failed_bio)->logical;
7854 isector >>= inode->i_sb->s_blocksize_bits;
7855 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7856 pgoff, isector, repair_endio, repair_arg);
37226b21 7857 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
7858
7859 btrfs_debug(BTRFS_I(inode)->root->fs_info,
913e1535 7860 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8b110e39
MX
7861 read_mode, failrec->this_mirror, failrec->in_validation);
7862
58efbc9f
OS
7863 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7864 if (status) {
7870d082 7865 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
7866 bio_put(bio);
7867 }
7868
58efbc9f 7869 return status;
8b110e39
MX
7870}
7871
7872struct btrfs_retry_complete {
7873 struct completion done;
7874 struct inode *inode;
7875 u64 start;
7876 int uptodate;
7877};
7878
4246a0b6 7879static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7880{
7881 struct btrfs_retry_complete *done = bio->bi_private;
7870d082 7882 struct inode *inode = done->inode;
8b110e39 7883 struct bio_vec *bvec;
7870d082 7884 struct extent_io_tree *io_tree, *failure_tree;
8b110e39
MX
7885 int i;
7886
4e4cbee9 7887 if (bio->bi_status)
8b110e39
MX
7888 goto end;
7889
2dabb324 7890 ASSERT(bio->bi_vcnt == 1);
7870d082
JB
7891 io_tree = &BTRFS_I(inode)->io_tree;
7892 failure_tree = &BTRFS_I(inode)->io_failure_tree;
263663cd 7893 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 7894
8b110e39 7895 done->uptodate = 1;
c09abff8 7896 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 7897 bio_for_each_segment_all(bvec, bio, i)
7870d082
JB
7898 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7899 io_tree, done->start, bvec->bv_page,
7900 btrfs_ino(BTRFS_I(inode)), 0);
8b110e39
MX
7901end:
7902 complete(&done->done);
7903 bio_put(bio);
7904}
7905
58efbc9f
OS
7906static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7907 struct btrfs_io_bio *io_bio)
4b46fce2 7908{
2dabb324 7909 struct btrfs_fs_info *fs_info;
17347cec
LB
7910 struct bio_vec bvec;
7911 struct bvec_iter iter;
8b110e39 7912 struct btrfs_retry_complete done;
4b46fce2 7913 u64 start;
2dabb324
CR
7914 unsigned int pgoff;
7915 u32 sectorsize;
7916 int nr_sectors;
58efbc9f
OS
7917 blk_status_t ret;
7918 blk_status_t err = BLK_STS_OK;
4b46fce2 7919
2dabb324 7920 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 7921 sectorsize = fs_info->sectorsize;
2dabb324 7922
8b110e39
MX
7923 start = io_bio->logical;
7924 done.inode = inode;
17347cec 7925 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 7926
17347cec
LB
7927 bio_for_each_segment(bvec, &io_bio->bio, iter) {
7928 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7929 pgoff = bvec.bv_offset;
2dabb324
CR
7930
7931next_block_or_try_again:
8b110e39
MX
7932 done.uptodate = 0;
7933 done.start = start;
7934 init_completion(&done.done);
7935
17347cec 7936 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
7937 pgoff, start, start + sectorsize - 1,
7938 io_bio->mirror_num,
7939 btrfs_retry_endio_nocsum, &done);
629ebf4f
LB
7940 if (ret) {
7941 err = ret;
7942 goto next;
7943 }
8b110e39 7944
9c17f6cd 7945 wait_for_completion_io(&done.done);
8b110e39
MX
7946
7947 if (!done.uptodate) {
7948 /* We might have another mirror, so try again */
2dabb324 7949 goto next_block_or_try_again;
8b110e39
MX
7950 }
7951
629ebf4f 7952next:
2dabb324
CR
7953 start += sectorsize;
7954
97bf5a55
LB
7955 nr_sectors--;
7956 if (nr_sectors) {
2dabb324 7957 pgoff += sectorsize;
97bf5a55 7958 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
7959 goto next_block_or_try_again;
7960 }
8b110e39
MX
7961 }
7962
629ebf4f 7963 return err;
8b110e39
MX
7964}
7965
4246a0b6 7966static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7967{
7968 struct btrfs_retry_complete *done = bio->bi_private;
7969 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082
JB
7970 struct extent_io_tree *io_tree, *failure_tree;
7971 struct inode *inode = done->inode;
8b110e39
MX
7972 struct bio_vec *bvec;
7973 int uptodate;
7974 int ret;
7975 int i;
7976
4e4cbee9 7977 if (bio->bi_status)
8b110e39
MX
7978 goto end;
7979
7980 uptodate = 1;
2dabb324 7981
2dabb324 7982 ASSERT(bio->bi_vcnt == 1);
263663cd 7983 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 7984
7870d082
JB
7985 io_tree = &BTRFS_I(inode)->io_tree;
7986 failure_tree = &BTRFS_I(inode)->io_failure_tree;
7987
c09abff8 7988 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 7989 bio_for_each_segment_all(bvec, bio, i) {
7870d082
JB
7990 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7991 bvec->bv_offset, done->start,
7992 bvec->bv_len);
8b110e39 7993 if (!ret)
7870d082
JB
7994 clean_io_failure(BTRFS_I(inode)->root->fs_info,
7995 failure_tree, io_tree, done->start,
7996 bvec->bv_page,
7997 btrfs_ino(BTRFS_I(inode)),
7998 bvec->bv_offset);
8b110e39
MX
7999 else
8000 uptodate = 0;
8001 }
8002
8003 done->uptodate = uptodate;
8004end:
8005 complete(&done->done);
8006 bio_put(bio);
8007}
8008
4e4cbee9
CH
8009static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8010 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39 8011{
2dabb324 8012 struct btrfs_fs_info *fs_info;
17347cec
LB
8013 struct bio_vec bvec;
8014 struct bvec_iter iter;
8b110e39
MX
8015 struct btrfs_retry_complete done;
8016 u64 start;
8017 u64 offset = 0;
2dabb324
CR
8018 u32 sectorsize;
8019 int nr_sectors;
8020 unsigned int pgoff;
8021 int csum_pos;
ef7cdac1 8022 bool uptodate = (err == 0);
8b110e39 8023 int ret;
58efbc9f 8024 blk_status_t status;
dc380aea 8025
2dabb324 8026 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8027 sectorsize = fs_info->sectorsize;
2dabb324 8028
58efbc9f 8029 err = BLK_STS_OK;
c1dc0896 8030 start = io_bio->logical;
8b110e39 8031 done.inode = inode;
17347cec 8032 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8033
17347cec
LB
8034 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8035 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
2dabb324 8036
17347cec 8037 pgoff = bvec.bv_offset;
2dabb324 8038next_block:
ef7cdac1
LB
8039 if (uptodate) {
8040 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8041 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8042 bvec.bv_page, pgoff, start, sectorsize);
8043 if (likely(!ret))
8044 goto next;
8045 }
8b110e39
MX
8046try_again:
8047 done.uptodate = 0;
8048 done.start = start;
8049 init_completion(&done.done);
8050
58efbc9f
OS
8051 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8052 pgoff, start, start + sectorsize - 1,
8053 io_bio->mirror_num, btrfs_retry_endio,
8054 &done);
8055 if (status) {
8056 err = status;
8b110e39
MX
8057 goto next;
8058 }
8059
9c17f6cd 8060 wait_for_completion_io(&done.done);
8b110e39
MX
8061
8062 if (!done.uptodate) {
8063 /* We might have another mirror, so try again */
8064 goto try_again;
8065 }
8066next:
2dabb324
CR
8067 offset += sectorsize;
8068 start += sectorsize;
8069
8070 ASSERT(nr_sectors);
8071
97bf5a55
LB
8072 nr_sectors--;
8073 if (nr_sectors) {
2dabb324 8074 pgoff += sectorsize;
97bf5a55 8075 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8076 goto next_block;
8077 }
2c30c71b 8078 }
c1dc0896
MX
8079
8080 return err;
8081}
8082
4e4cbee9
CH
8083static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8084 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39
MX
8085{
8086 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8087
8088 if (skip_csum) {
8089 if (unlikely(err))
8090 return __btrfs_correct_data_nocsum(inode, io_bio);
8091 else
58efbc9f 8092 return BLK_STS_OK;
8b110e39
MX
8093 } else {
8094 return __btrfs_subio_endio_read(inode, io_bio, err);
8095 }
8096}
8097
4246a0b6 8098static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8099{
8100 struct btrfs_dio_private *dip = bio->bi_private;
8101 struct inode *inode = dip->inode;
8102 struct bio *dio_bio;
8103 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4e4cbee9 8104 blk_status_t err = bio->bi_status;
c1dc0896 8105
99c4e3b9 8106 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8b110e39 8107 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8108
4b46fce2 8109 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8110 dip->logical_offset + dip->bytes - 1);
9be3395b 8111 dio_bio = dip->dio_bio;
4b46fce2 8112
4b46fce2 8113 kfree(dip);
c0da7aa1 8114
99c4e3b9 8115 dio_bio->bi_status = err;
4055351c 8116 dio_end_io(dio_bio);
23ea8e5a
MX
8117
8118 if (io_bio->end_io)
4e4cbee9 8119 io_bio->end_io(io_bio, blk_status_to_errno(err));
9be3395b 8120 bio_put(bio);
4b46fce2
JB
8121}
8122
52427260
QW
8123static void __endio_write_update_ordered(struct inode *inode,
8124 const u64 offset, const u64 bytes,
8125 const bool uptodate)
4b46fce2 8126{
0b246afa 8127 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8128 struct btrfs_ordered_extent *ordered = NULL;
52427260
QW
8129 struct btrfs_workqueue *wq;
8130 btrfs_work_func_t func;
14543774
FM
8131 u64 ordered_offset = offset;
8132 u64 ordered_bytes = bytes;
67c003f9 8133 u64 last_offset;
4b46fce2 8134
52427260
QW
8135 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8136 wq = fs_info->endio_freespace_worker;
8137 func = btrfs_freespace_write_helper;
8138 } else {
8139 wq = fs_info->endio_write_workers;
8140 func = btrfs_endio_write_helper;
8141 }
8142
b25f0d00
NB
8143 while (ordered_offset < offset + bytes) {
8144 last_offset = ordered_offset;
8145 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8146 &ordered_offset,
8147 ordered_bytes,
8148 uptodate)) {
8149 btrfs_init_work(&ordered->work, func,
8150 finish_ordered_fn,
8151 NULL, NULL);
8152 btrfs_queue_work(wq, &ordered->work);
8153 }
8154 /*
8155 * If btrfs_dec_test_ordered_pending does not find any ordered
8156 * extent in the range, we can exit.
8157 */
8158 if (ordered_offset == last_offset)
8159 return;
8160 /*
8161 * Our bio might span multiple ordered extents. In this case
8162 * we keep goin until we have accounted the whole dio.
8163 */
8164 if (ordered_offset < offset + bytes) {
8165 ordered_bytes = offset + bytes - ordered_offset;
8166 ordered = NULL;
8167 }
163cf09c 8168 }
14543774
FM
8169}
8170
8171static void btrfs_endio_direct_write(struct bio *bio)
8172{
8173 struct btrfs_dio_private *dip = bio->bi_private;
8174 struct bio *dio_bio = dip->dio_bio;
8175
52427260 8176 __endio_write_update_ordered(dip->inode, dip->logical_offset,
4e4cbee9 8177 dip->bytes, !bio->bi_status);
4b46fce2 8178
4b46fce2 8179 kfree(dip);
c0da7aa1 8180
4e4cbee9 8181 dio_bio->bi_status = bio->bi_status;
4055351c 8182 dio_end_io(dio_bio);
9be3395b 8183 bio_put(bio);
4b46fce2
JB
8184}
8185
d0ee3934 8186static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
d0779291 8187 struct bio *bio, u64 offset)
eaf25d93 8188{
c6100a4b 8189 struct inode *inode = private_data;
4e4cbee9 8190 blk_status_t ret;
2ff7e61e 8191 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8192 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8193 return 0;
8194}
8195
4246a0b6 8196static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8197{
8198 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 8199 blk_status_t err = bio->bi_status;
e65e1535 8200
8b110e39
MX
8201 if (err)
8202 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8203 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8204 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8205 bio->bi_opf,
8b110e39
MX
8206 (unsigned long long)bio->bi_iter.bi_sector,
8207 bio->bi_iter.bi_size, err);
8208
8209 if (dip->subio_endio)
8210 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8211
8212 if (err) {
e65e1535 8213 /*
de224b7c
NB
8214 * We want to perceive the errors flag being set before
8215 * decrementing the reference count. We don't need a barrier
8216 * since atomic operations with a return value are fully
8217 * ordered as per atomic_t.txt
e65e1535 8218 */
de224b7c 8219 dip->errors = 1;
e65e1535
MX
8220 }
8221
8222 /* if there are more bios still pending for this dio, just exit */
8223 if (!atomic_dec_and_test(&dip->pending_bios))
8224 goto out;
8225
9be3395b 8226 if (dip->errors) {
e65e1535 8227 bio_io_error(dip->orig_bio);
9be3395b 8228 } else {
2dbe0c77 8229 dip->dio_bio->bi_status = BLK_STS_OK;
4246a0b6 8230 bio_endio(dip->orig_bio);
e65e1535
MX
8231 }
8232out:
8233 bio_put(bio);
8234}
8235
4e4cbee9 8236static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8237 struct btrfs_dio_private *dip,
8238 struct bio *bio,
8239 u64 file_offset)
8240{
8241 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8242 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
4e4cbee9 8243 blk_status_t ret;
c1dc0896
MX
8244
8245 /*
8246 * We load all the csum data we need when we submit
8247 * the first bio to reduce the csum tree search and
8248 * contention.
8249 */
8250 if (dip->logical_offset == file_offset) {
2ff7e61e 8251 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8252 file_offset);
8253 if (ret)
8254 return ret;
8255 }
8256
8257 if (bio == dip->orig_bio)
8258 return 0;
8259
8260 file_offset -= dip->logical_offset;
8261 file_offset >>= inode->i_sb->s_blocksize_bits;
8262 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8263
8264 return 0;
8265}
8266
d0ee3934
DS
8267static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8268 struct inode *inode, u64 file_offset, int async_submit)
e65e1535 8269{
0b246afa 8270 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8271 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8272 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 8273 blk_status_t ret;
e65e1535 8274
4c274bc6 8275 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
8276 if (async_submit)
8277 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8278
5fd02043 8279 if (!write) {
0b246afa 8280 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8281 if (ret)
8282 goto err;
8283 }
e65e1535 8284
e6961cac 8285 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
8286 goto map;
8287
8288 if (write && async_submit) {
c6100a4b
JB
8289 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8290 file_offset, inode,
d0ee3934
DS
8291 btrfs_submit_bio_start_direct_io,
8292 btrfs_submit_bio_done);
e65e1535 8293 goto err;
1ae39938
JB
8294 } else if (write) {
8295 /*
8296 * If we aren't doing async submit, calculate the csum of the
8297 * bio now.
8298 */
2ff7e61e 8299 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8300 if (ret)
8301 goto err;
23ea8e5a 8302 } else {
2ff7e61e 8303 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8304 file_offset);
c2db1073
TI
8305 if (ret)
8306 goto err;
8307 }
1ae39938 8308map:
9b4a9b28 8309 ret = btrfs_map_bio(fs_info, bio, 0, 0);
e65e1535 8310err:
e65e1535
MX
8311 return ret;
8312}
8313
e6961cac 8314static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
e65e1535
MX
8315{
8316 struct inode *inode = dip->inode;
0b246afa 8317 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535
MX
8318 struct bio *bio;
8319 struct bio *orig_bio = dip->orig_bio;
4f024f37 8320 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535 8321 u64 file_offset = dip->logical_offset;
e65e1535 8322 u64 map_length;
1ae39938 8323 int async_submit = 0;
725130ba
LB
8324 u64 submit_len;
8325 int clone_offset = 0;
8326 int clone_len;
5f4dc8fc 8327 int ret;
58efbc9f 8328 blk_status_t status;
e65e1535 8329
4f024f37 8330 map_length = orig_bio->bi_iter.bi_size;
725130ba 8331 submit_len = map_length;
0b246afa
JM
8332 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8333 &map_length, NULL, 0);
7a5c3c9b 8334 if (ret)
e65e1535 8335 return -EIO;
facc8a22 8336
725130ba 8337 if (map_length >= submit_len) {
02f57c7a 8338 bio = orig_bio;
c1dc0896 8339 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8340 goto submit;
8341 }
8342
53b381b3 8343 /* async crcs make it difficult to collect full stripe writes. */
1b86826d 8344 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8345 async_submit = 0;
8346 else
8347 async_submit = 1;
8348
725130ba
LB
8349 /* bio split */
8350 ASSERT(map_length <= INT_MAX);
02f57c7a 8351 atomic_inc(&dip->pending_bios);
3c91ee69 8352 do {
725130ba 8353 clone_len = min_t(int, submit_len, map_length);
02f57c7a 8354
725130ba
LB
8355 /*
8356 * This will never fail as it's passing GPF_NOFS and
8357 * the allocation is backed by btrfs_bioset.
8358 */
e477094f 8359 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
725130ba
LB
8360 clone_len);
8361 bio->bi_private = dip;
8362 bio->bi_end_io = btrfs_end_dio_bio;
8363 btrfs_io_bio(bio)->logical = file_offset;
8364
8365 ASSERT(submit_len >= clone_len);
8366 submit_len -= clone_len;
8367 if (submit_len == 0)
8368 break;
e65e1535 8369
725130ba
LB
8370 /*
8371 * Increase the count before we submit the bio so we know
8372 * the end IO handler won't happen before we increase the
8373 * count. Otherwise, the dip might get freed before we're
8374 * done setting it up.
8375 */
8376 atomic_inc(&dip->pending_bios);
e65e1535 8377
d0ee3934 8378 status = btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
8379 async_submit);
8380 if (status) {
725130ba
LB
8381 bio_put(bio);
8382 atomic_dec(&dip->pending_bios);
8383 goto out_err;
8384 }
e65e1535 8385
725130ba
LB
8386 clone_offset += clone_len;
8387 start_sector += clone_len >> 9;
8388 file_offset += clone_len;
5f4dc8fc 8389
725130ba
LB
8390 map_length = submit_len;
8391 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8392 start_sector << 9, &map_length, NULL, 0);
8393 if (ret)
8394 goto out_err;
3c91ee69 8395 } while (submit_len > 0);
e65e1535 8396
02f57c7a 8397submit:
d0ee3934 8398 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
58efbc9f 8399 if (!status)
e65e1535
MX
8400 return 0;
8401
8402 bio_put(bio);
8403out_err:
8404 dip->errors = 1;
8405 /*
de224b7c
NB
8406 * Before atomic variable goto zero, we must make sure dip->errors is
8407 * perceived to be set. This ordering is ensured by the fact that an
8408 * atomic operations with a return value are fully ordered as per
8409 * atomic_t.txt
e65e1535 8410 */
e65e1535
MX
8411 if (atomic_dec_and_test(&dip->pending_bios))
8412 bio_io_error(dip->orig_bio);
8413
8414 /* bio_end_io() will handle error, so we needn't return it */
8415 return 0;
8416}
8417
8a4c1e42
MC
8418static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8419 loff_t file_offset)
4b46fce2 8420{
61de718f 8421 struct btrfs_dio_private *dip = NULL;
3892ac90
LB
8422 struct bio *bio = NULL;
8423 struct btrfs_io_bio *io_bio;
8a4c1e42 8424 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8425 int ret = 0;
8426
8b6c1d56 8427 bio = btrfs_bio_clone(dio_bio);
9be3395b 8428
c1dc0896 8429 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8430 if (!dip) {
8431 ret = -ENOMEM;
61de718f 8432 goto free_ordered;
4b46fce2 8433 }
4b46fce2 8434
9be3395b 8435 dip->private = dio_bio->bi_private;
4b46fce2
JB
8436 dip->inode = inode;
8437 dip->logical_offset = file_offset;
4f024f37
KO
8438 dip->bytes = dio_bio->bi_iter.bi_size;
8439 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
3892ac90
LB
8440 bio->bi_private = dip;
8441 dip->orig_bio = bio;
9be3395b 8442 dip->dio_bio = dio_bio;
e65e1535 8443 atomic_set(&dip->pending_bios, 0);
3892ac90
LB
8444 io_bio = btrfs_io_bio(bio);
8445 io_bio->logical = file_offset;
4b46fce2 8446
c1dc0896 8447 if (write) {
3892ac90 8448 bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8449 } else {
3892ac90 8450 bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8451 dip->subio_endio = btrfs_subio_endio_read;
8452 }
4b46fce2 8453
f28a4928
FM
8454 /*
8455 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8456 * even if we fail to submit a bio, because in such case we do the
8457 * corresponding error handling below and it must not be done a second
8458 * time by btrfs_direct_IO().
8459 */
8460 if (write) {
8461 struct btrfs_dio_data *dio_data = current->journal_info;
8462
8463 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8464 dip->bytes;
8465 dio_data->unsubmitted_oe_range_start =
8466 dio_data->unsubmitted_oe_range_end;
8467 }
8468
e6961cac 8469 ret = btrfs_submit_direct_hook(dip);
e65e1535 8470 if (!ret)
eaf25d93 8471 return;
9be3395b 8472
3892ac90
LB
8473 if (io_bio->end_io)
8474 io_bio->end_io(io_bio, ret);
9be3395b 8475
4b46fce2
JB
8476free_ordered:
8477 /*
61de718f
FM
8478 * If we arrived here it means either we failed to submit the dip
8479 * or we either failed to clone the dio_bio or failed to allocate the
8480 * dip. If we cloned the dio_bio and allocated the dip, we can just
8481 * call bio_endio against our io_bio so that we get proper resource
8482 * cleanup if we fail to submit the dip, otherwise, we must do the
8483 * same as btrfs_endio_direct_[write|read] because we can't call these
8484 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8485 */
3892ac90 8486 if (bio && dip) {
054ec2f6 8487 bio_io_error(bio);
61de718f 8488 /*
3892ac90 8489 * The end io callbacks free our dip, do the final put on bio
61de718f
FM
8490 * and all the cleanup and final put for dio_bio (through
8491 * dio_end_io()).
8492 */
8493 dip = NULL;
3892ac90 8494 bio = NULL;
61de718f 8495 } else {
14543774 8496 if (write)
52427260 8497 __endio_write_update_ordered(inode,
14543774
FM
8498 file_offset,
8499 dio_bio->bi_iter.bi_size,
52427260 8500 false);
14543774 8501 else
61de718f
FM
8502 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8503 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8504
4e4cbee9 8505 dio_bio->bi_status = BLK_STS_IOERR;
61de718f
FM
8506 /*
8507 * Releases and cleans up our dio_bio, no need to bio_put()
8508 * nor bio_endio()/bio_io_error() against dio_bio.
8509 */
4055351c 8510 dio_end_io(dio_bio);
4b46fce2 8511 }
3892ac90
LB
8512 if (bio)
8513 bio_put(bio);
61de718f 8514 kfree(dip);
4b46fce2
JB
8515}
8516
2ff7e61e 8517static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
2ff7e61e 8518 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8519{
8520 int seg;
a1b75f7d 8521 int i;
0b246afa 8522 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8523 ssize_t retval = -EINVAL;
5a5f79b5
CM
8524
8525 if (offset & blocksize_mask)
8526 goto out;
8527
28060d5d
AV
8528 if (iov_iter_alignment(iter) & blocksize_mask)
8529 goto out;
a1b75f7d 8530
28060d5d 8531 /* If this is a write we don't need to check anymore */
cd27e455 8532 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8533 return 0;
8534 /*
8535 * Check to make sure we don't have duplicate iov_base's in this
8536 * iovec, if so return EINVAL, otherwise we'll get csum errors
8537 * when reading back.
8538 */
8539 for (seg = 0; seg < iter->nr_segs; seg++) {
8540 for (i = seg + 1; i < iter->nr_segs; i++) {
8541 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8542 goto out;
8543 }
5a5f79b5
CM
8544 }
8545 retval = 0;
8546out:
8547 return retval;
8548}
eb838e73 8549
c8b8e32d 8550static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8551{
4b46fce2
JB
8552 struct file *file = iocb->ki_filp;
8553 struct inode *inode = file->f_mapping->host;
0b246afa 8554 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8555 struct btrfs_dio_data dio_data = { 0 };
364ecf36 8556 struct extent_changeset *data_reserved = NULL;
c8b8e32d 8557 loff_t offset = iocb->ki_pos;
0934856d 8558 size_t count = 0;
2e60a51e 8559 int flags = 0;
38851cc1
MX
8560 bool wakeup = true;
8561 bool relock = false;
0934856d 8562 ssize_t ret;
4b46fce2 8563
8c70c9f8 8564 if (check_direct_IO(fs_info, iter, offset))
5a5f79b5 8565 return 0;
3f7c579c 8566
fe0f07d0 8567 inode_dio_begin(inode);
38851cc1 8568
0e267c44 8569 /*
41bd9ca4
MX
8570 * The generic stuff only does filemap_write_and_wait_range, which
8571 * isn't enough if we've written compressed pages to this area, so
8572 * we need to flush the dirty pages again to make absolutely sure
8573 * that any outstanding dirty pages are on disk.
0e267c44 8574 */
a6cbcd4a 8575 count = iov_iter_count(iter);
41bd9ca4
MX
8576 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8577 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8578 filemap_fdatawrite_range(inode->i_mapping, offset,
8579 offset + count - 1);
0e267c44 8580
6f673763 8581 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8582 /*
8583 * If the write DIO is beyond the EOF, we need update
8584 * the isize, but it is protected by i_mutex. So we can
8585 * not unlock the i_mutex at this case.
8586 */
8587 if (offset + count <= inode->i_size) {
4aaedfb0 8588 dio_data.overwrite = 1;
5955102c 8589 inode_unlock(inode);
38851cc1 8590 relock = true;
edf064e7
GR
8591 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8592 ret = -EAGAIN;
8593 goto out;
38851cc1 8594 }
364ecf36
QW
8595 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8596 offset, count);
0934856d 8597 if (ret)
38851cc1 8598 goto out;
e1cbbfa5
JB
8599
8600 /*
8601 * We need to know how many extents we reserved so that we can
8602 * do the accounting properly if we go over the number we
8603 * originally calculated. Abuse current->journal_info for this.
8604 */
da17066c 8605 dio_data.reserve = round_up(count,
0b246afa 8606 fs_info->sectorsize);
f28a4928
FM
8607 dio_data.unsubmitted_oe_range_start = (u64)offset;
8608 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8609 current->journal_info = &dio_data;
97dcdea0 8610 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8611 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8612 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8613 inode_dio_end(inode);
38851cc1
MX
8614 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8615 wakeup = false;
0934856d
MX
8616 }
8617
17f8c842 8618 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8619 fs_info->fs_devices->latest_bdev,
c8b8e32d 8620 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8621 btrfs_submit_direct, flags);
6f673763 8622 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8623 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8624 current->journal_info = NULL;
ddba1bfc 8625 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8626 if (dio_data.reserve)
bc42bda2 8627 btrfs_delalloc_release_space(inode, data_reserved,
43b18595 8628 offset, dio_data.reserve, true);
f28a4928
FM
8629 /*
8630 * On error we might have left some ordered extents
8631 * without submitting corresponding bios for them, so
8632 * cleanup them up to avoid other tasks getting them
8633 * and waiting for them to complete forever.
8634 */
8635 if (dio_data.unsubmitted_oe_range_start <
8636 dio_data.unsubmitted_oe_range_end)
52427260 8637 __endio_write_update_ordered(inode,
f28a4928
FM
8638 dio_data.unsubmitted_oe_range_start,
8639 dio_data.unsubmitted_oe_range_end -
8640 dio_data.unsubmitted_oe_range_start,
52427260 8641 false);
ddba1bfc 8642 } else if (ret >= 0 && (size_t)ret < count)
bc42bda2 8643 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
8644 offset, count - (size_t)ret, true);
8645 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
0934856d 8646 }
38851cc1 8647out:
2e60a51e 8648 if (wakeup)
fe0f07d0 8649 inode_dio_end(inode);
38851cc1 8650 if (relock)
5955102c 8651 inode_lock(inode);
0934856d 8652
364ecf36 8653 extent_changeset_free(data_reserved);
0934856d 8654 return ret;
16432985
CM
8655}
8656
05dadc09
TI
8657#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8658
1506fcc8
YS
8659static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8660 __u64 start, __u64 len)
8661{
05dadc09
TI
8662 int ret;
8663
8664 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8665 if (ret)
8666 return ret;
8667
2135fb9b 8668 return extent_fiemap(inode, fieinfo, start, len);
1506fcc8
YS
8669}
8670
a52d9a80 8671int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8672{
d1310b2e
CM
8673 struct extent_io_tree *tree;
8674 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8675 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8676}
1832a6d5 8677
a52d9a80 8678static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8679{
be7bd730
JB
8680 struct inode *inode = page->mapping->host;
8681 int ret;
b888db2b
CM
8682
8683 if (current->flags & PF_MEMALLOC) {
8684 redirty_page_for_writepage(wbc, page);
8685 unlock_page(page);
8686 return 0;
8687 }
be7bd730
JB
8688
8689 /*
8690 * If we are under memory pressure we will call this directly from the
8691 * VM, we need to make sure we have the inode referenced for the ordered
8692 * extent. If not just return like we didn't do anything.
8693 */
8694 if (!igrab(inode)) {
8695 redirty_page_for_writepage(wbc, page);
8696 return AOP_WRITEPAGE_ACTIVATE;
8697 }
0a9b0e53 8698 ret = extent_write_full_page(page, wbc);
be7bd730
JB
8699 btrfs_add_delayed_iput(inode);
8700 return ret;
9ebefb18
CM
8701}
8702
48a3b636
ES
8703static int btrfs_writepages(struct address_space *mapping,
8704 struct writeback_control *wbc)
b293f02e 8705{
d1310b2e 8706 struct extent_io_tree *tree;
771ed689 8707
d1310b2e 8708 tree = &BTRFS_I(mapping->host)->io_tree;
43317599 8709 return extent_writepages(tree, mapping, wbc);
b293f02e
CM
8710}
8711
3ab2fb5a
CM
8712static int
8713btrfs_readpages(struct file *file, struct address_space *mapping,
8714 struct list_head *pages, unsigned nr_pages)
8715{
d1310b2e
CM
8716 struct extent_io_tree *tree;
8717 tree = &BTRFS_I(mapping->host)->io_tree;
0932584b 8718 return extent_readpages(tree, mapping, pages, nr_pages);
3ab2fb5a 8719}
e6dcd2dc 8720static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8721{
d1310b2e
CM
8722 struct extent_io_tree *tree;
8723 struct extent_map_tree *map;
a52d9a80 8724 int ret;
8c2383c3 8725
d1310b2e
CM
8726 tree = &BTRFS_I(page->mapping->host)->io_tree;
8727 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8728 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8729 if (ret == 1) {
8730 ClearPagePrivate(page);
8731 set_page_private(page, 0);
09cbfeaf 8732 put_page(page);
39279cc3 8733 }
a52d9a80 8734 return ret;
39279cc3
CM
8735}
8736
e6dcd2dc
CM
8737static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8738{
98509cfc
CM
8739 if (PageWriteback(page) || PageDirty(page))
8740 return 0;
3ba7ab22 8741 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8742}
8743
d47992f8
LC
8744static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8745 unsigned int length)
39279cc3 8746{
5fd02043 8747 struct inode *inode = page->mapping->host;
d1310b2e 8748 struct extent_io_tree *tree;
e6dcd2dc 8749 struct btrfs_ordered_extent *ordered;
2ac55d41 8750 struct extent_state *cached_state = NULL;
e6dcd2dc 8751 u64 page_start = page_offset(page);
09cbfeaf 8752 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8753 u64 start;
8754 u64 end;
131e404a 8755 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8756
8b62b72b
CM
8757 /*
8758 * we have the page locked, so new writeback can't start,
8759 * and the dirty bit won't be cleared while we are here.
8760 *
8761 * Wait for IO on this page so that we can safely clear
8762 * the PagePrivate2 bit and do ordered accounting
8763 */
e6dcd2dc 8764 wait_on_page_writeback(page);
8b62b72b 8765
5fd02043 8766 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8767 if (offset) {
8768 btrfs_releasepage(page, GFP_NOFS);
8769 return;
8770 }
131e404a
FDBM
8771
8772 if (!inode_evicting)
ff13db41 8773 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8774again:
8775 start = page_start;
a776c6fa 8776 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8777 page_end - start + 1);
e6dcd2dc 8778 if (ordered) {
dbfdb6d1 8779 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8780 /*
8781 * IO on this page will never be started, so we need
8782 * to account for any ordered extents now
8783 */
131e404a 8784 if (!inode_evicting)
dbfdb6d1 8785 clear_extent_bit(tree, start, end,
131e404a 8786 EXTENT_DIRTY | EXTENT_DELALLOC |
a7e3b975 8787 EXTENT_DELALLOC_NEW |
131e404a 8788 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8789 EXTENT_DEFRAG, 1, 0, &cached_state);
8b62b72b
CM
8790 /*
8791 * whoever cleared the private bit is responsible
8792 * for the finish_ordered_io
8793 */
77cef2ec
JB
8794 if (TestClearPagePrivate2(page)) {
8795 struct btrfs_ordered_inode_tree *tree;
8796 u64 new_len;
8797
8798 tree = &BTRFS_I(inode)->ordered_tree;
8799
8800 spin_lock_irq(&tree->lock);
8801 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8802 new_len = start - ordered->file_offset;
77cef2ec
JB
8803 if (new_len < ordered->truncated_len)
8804 ordered->truncated_len = new_len;
8805 spin_unlock_irq(&tree->lock);
8806
8807 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8808 start,
8809 end - start + 1, 1))
77cef2ec 8810 btrfs_finish_ordered_io(ordered);
8b62b72b 8811 }
e6dcd2dc 8812 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8813 if (!inode_evicting) {
8814 cached_state = NULL;
dbfdb6d1 8815 lock_extent_bits(tree, start, end,
131e404a
FDBM
8816 &cached_state);
8817 }
dbfdb6d1
CR
8818
8819 start = end + 1;
8820 if (start < page_end)
8821 goto again;
131e404a
FDBM
8822 }
8823
b9d0b389
QW
8824 /*
8825 * Qgroup reserved space handler
8826 * Page here will be either
8827 * 1) Already written to disk
8828 * In this case, its reserved space is released from data rsv map
8829 * and will be freed by delayed_ref handler finally.
8830 * So even we call qgroup_free_data(), it won't decrease reserved
8831 * space.
8832 * 2) Not written to disk
0b34c261
GR
8833 * This means the reserved space should be freed here. However,
8834 * if a truncate invalidates the page (by clearing PageDirty)
8835 * and the page is accounted for while allocating extent
8836 * in btrfs_check_data_free_space() we let delayed_ref to
8837 * free the entire extent.
b9d0b389 8838 */
0b34c261 8839 if (PageDirty(page))
bc42bda2 8840 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a
FDBM
8841 if (!inode_evicting) {
8842 clear_extent_bit(tree, page_start, page_end,
8843 EXTENT_LOCKED | EXTENT_DIRTY |
a7e3b975
FM
8844 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8845 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
ae0f1625 8846 &cached_state);
131e404a
FDBM
8847
8848 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8849 }
e6dcd2dc 8850
4a096752 8851 ClearPageChecked(page);
9ad6b7bc 8852 if (PagePrivate(page)) {
9ad6b7bc
CM
8853 ClearPagePrivate(page);
8854 set_page_private(page, 0);
09cbfeaf 8855 put_page(page);
9ad6b7bc 8856 }
39279cc3
CM
8857}
8858
9ebefb18
CM
8859/*
8860 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8861 * called from a page fault handler when a page is first dirtied. Hence we must
8862 * be careful to check for EOF conditions here. We set the page up correctly
8863 * for a written page which means we get ENOSPC checking when writing into
8864 * holes and correct delalloc and unwritten extent mapping on filesystems that
8865 * support these features.
8866 *
8867 * We are not allowed to take the i_mutex here so we have to play games to
8868 * protect against truncate races as the page could now be beyond EOF. Because
8869 * vmtruncate() writes the inode size before removing pages, once we have the
8870 * page lock we can determine safely if the page is beyond EOF. If it is not
8871 * beyond EOF, then the page is guaranteed safe against truncation until we
8872 * unlock the page.
8873 */
11bac800 8874int btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8875{
c2ec175c 8876 struct page *page = vmf->page;
11bac800 8877 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8878 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8879 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8880 struct btrfs_ordered_extent *ordered;
2ac55d41 8881 struct extent_state *cached_state = NULL;
364ecf36 8882 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
8883 char *kaddr;
8884 unsigned long zero_start;
9ebefb18 8885 loff_t size;
1832a6d5 8886 int ret;
9998eb70 8887 int reserved = 0;
d0b7da88 8888 u64 reserved_space;
a52d9a80 8889 u64 page_start;
e6dcd2dc 8890 u64 page_end;
d0b7da88
CR
8891 u64 end;
8892
09cbfeaf 8893 reserved_space = PAGE_SIZE;
9ebefb18 8894
b2b5ef5c 8895 sb_start_pagefault(inode->i_sb);
df480633 8896 page_start = page_offset(page);
09cbfeaf 8897 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8898 end = page_end;
df480633 8899
d0b7da88
CR
8900 /*
8901 * Reserving delalloc space after obtaining the page lock can lead to
8902 * deadlock. For example, if a dirty page is locked by this function
8903 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8904 * dirty page write out, then the btrfs_writepage() function could
8905 * end up waiting indefinitely to get a lock on the page currently
8906 * being processed by btrfs_page_mkwrite() function.
8907 */
364ecf36 8908 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
d0b7da88 8909 reserved_space);
9998eb70 8910 if (!ret) {
11bac800 8911 ret = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8912 reserved = 1;
8913 }
56a76f82
NP
8914 if (ret) {
8915 if (ret == -ENOMEM)
8916 ret = VM_FAULT_OOM;
8917 else /* -ENOSPC, -EIO, etc */
8918 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8919 if (reserved)
8920 goto out;
8921 goto out_noreserve;
56a76f82 8922 }
1832a6d5 8923
56a76f82 8924 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8925again:
9ebefb18 8926 lock_page(page);
9ebefb18 8927 size = i_size_read(inode);
a52d9a80 8928
9ebefb18 8929 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8930 (page_start >= size)) {
9ebefb18
CM
8931 /* page got truncated out from underneath us */
8932 goto out_unlock;
8933 }
e6dcd2dc
CM
8934 wait_on_page_writeback(page);
8935
ff13db41 8936 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8937 set_page_extent_mapped(page);
8938
eb84ae03
CM
8939 /*
8940 * we can't set the delalloc bits if there are pending ordered
8941 * extents. Drop our locks and wait for them to finish
8942 */
a776c6fa
NB
8943 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8944 PAGE_SIZE);
e6dcd2dc 8945 if (ordered) {
2ac55d41 8946 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8947 &cached_state);
e6dcd2dc 8948 unlock_page(page);
eb84ae03 8949 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8950 btrfs_put_ordered_extent(ordered);
8951 goto again;
8952 }
8953
09cbfeaf 8954 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 8955 reserved_space = round_up(size - page_start,
0b246afa 8956 fs_info->sectorsize);
09cbfeaf 8957 if (reserved_space < PAGE_SIZE) {
d0b7da88 8958 end = page_start + reserved_space - 1;
bc42bda2 8959 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
8960 page_start, PAGE_SIZE - reserved_space,
8961 true);
d0b7da88
CR
8962 }
8963 }
8964
fbf19087 8965 /*
5416034f
LB
8966 * page_mkwrite gets called when the page is firstly dirtied after it's
8967 * faulted in, but write(2) could also dirty a page and set delalloc
8968 * bits, thus in this case for space account reason, we still need to
8969 * clear any delalloc bits within this page range since we have to
8970 * reserve data&meta space before lock_page() (see above comments).
fbf19087 8971 */
d0b7da88 8972 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
8973 EXTENT_DIRTY | EXTENT_DELALLOC |
8974 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 8975 0, 0, &cached_state);
fbf19087 8976
e3b8a485 8977 ret = btrfs_set_extent_delalloc(inode, page_start, end, 0,
ba8b04c1 8978 &cached_state, 0);
9ed74f2d 8979 if (ret) {
2ac55d41 8980 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8981 &cached_state);
9ed74f2d
JB
8982 ret = VM_FAULT_SIGBUS;
8983 goto out_unlock;
8984 }
e6dcd2dc 8985 ret = 0;
9ebefb18
CM
8986
8987 /* page is wholly or partially inside EOF */
09cbfeaf
KS
8988 if (page_start + PAGE_SIZE > size)
8989 zero_start = size & ~PAGE_MASK;
9ebefb18 8990 else
09cbfeaf 8991 zero_start = PAGE_SIZE;
9ebefb18 8992
09cbfeaf 8993 if (zero_start != PAGE_SIZE) {
e6dcd2dc 8994 kaddr = kmap(page);
09cbfeaf 8995 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
8996 flush_dcache_page(page);
8997 kunmap(page);
8998 }
247e743c 8999 ClearPageChecked(page);
e6dcd2dc 9000 set_page_dirty(page);
50a9b214 9001 SetPageUptodate(page);
5a3f23d5 9002
0b246afa 9003 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 9004 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9005 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9006
e43bbe5e 9007 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9ebefb18
CM
9008
9009out_unlock:
b2b5ef5c 9010 if (!ret) {
43b18595 9011 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
b2b5ef5c 9012 sb_end_pagefault(inode->i_sb);
364ecf36 9013 extent_changeset_free(data_reserved);
50a9b214 9014 return VM_FAULT_LOCKED;
b2b5ef5c 9015 }
9ebefb18 9016 unlock_page(page);
1832a6d5 9017out:
43b18595 9018 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
bc42bda2 9019 btrfs_delalloc_release_space(inode, data_reserved, page_start,
43b18595 9020 reserved_space, (ret != 0));
9998eb70 9021out_noreserve:
b2b5ef5c 9022 sb_end_pagefault(inode->i_sb);
364ecf36 9023 extent_changeset_free(data_reserved);
9ebefb18
CM
9024 return ret;
9025}
9026
213e8c55 9027static int btrfs_truncate(struct inode *inode, bool skip_writeback)
39279cc3 9028{
0b246afa 9029 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 9030 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9031 struct btrfs_block_rsv *rsv;
a71754fc 9032 int ret = 0;
3893e33b 9033 int err = 0;
39279cc3 9034 struct btrfs_trans_handle *trans;
0b246afa
JM
9035 u64 mask = fs_info->sectorsize - 1;
9036 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 9037
213e8c55
FM
9038 if (!skip_writeback) {
9039 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9040 (u64)-1);
9041 if (ret)
9042 return ret;
9043 }
39279cc3 9044
fcb80c2a 9045 /*
01327610 9046 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9047 * 3 things going on here
9048 *
9049 * 1) We need to reserve space for our orphan item and the space to
9050 * delete our orphan item. Lord knows we don't want to have a dangling
9051 * orphan item because we didn't reserve space to remove it.
9052 *
9053 * 2) We need to reserve space to update our inode.
9054 *
9055 * 3) We need to have something to cache all the space that is going to
9056 * be free'd up by the truncate operation, but also have some slack
9057 * space reserved in case it uses space during the truncate (thank you
9058 * very much snapshotting).
9059 *
01327610 9060 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9061 * space doing the truncate, and we have no earthly idea how much space
01327610 9062 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9063 * doesn't end up using space reserved for updating the inode or
9064 * removing the orphan item. We also need to be able to stop the
9065 * transaction and start a new one, which means we need to be able to
9066 * update the inode several times, and we have no idea of knowing how
9067 * many times that will be, so we can't just reserve 1 item for the
01327610 9068 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9069 * Then there is the orphan item, which does indeed need to be held on
9070 * to for the whole operation, and we need nobody to touch this reserved
9071 * space except the orphan code.
9072 *
9073 * So that leaves us with
9074 *
9075 * 1) root->orphan_block_rsv - for the orphan deletion.
9076 * 2) rsv - for the truncate reservation, which we will steal from the
9077 * transaction reservation.
9078 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9079 * updating the inode.
9080 */
2ff7e61e 9081 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9082 if (!rsv)
9083 return -ENOMEM;
4a338542 9084 rsv->size = min_size;
ca7e70f5 9085 rsv->failfast = 1;
f0cd846e 9086
907cbceb 9087 /*
07127184 9088 * 1 for the truncate slack space
907cbceb
JB
9089 * 1 for updating the inode.
9090 */
f3fe820c 9091 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9092 if (IS_ERR(trans)) {
9093 err = PTR_ERR(trans);
9094 goto out;
9095 }
f0cd846e 9096
907cbceb 9097 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9098 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 9099 min_size, 0);
fcb80c2a 9100 BUG_ON(ret);
f0cd846e 9101
5dc562c5
JB
9102 /*
9103 * So if we truncate and then write and fsync we normally would just
9104 * write the extents that changed, which is a problem if we need to
9105 * first truncate that entire inode. So set this flag so we write out
9106 * all of the extents in the inode to the sync log so we're completely
9107 * safe.
9108 */
9109 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9110 trans->block_rsv = rsv;
907cbceb 9111
8082510e
YZ
9112 while (1) {
9113 ret = btrfs_truncate_inode_items(trans, root, inode,
9114 inode->i_size,
9115 BTRFS_EXTENT_DATA_KEY);
ddfae63c 9116 trans->block_rsv = &fs_info->trans_block_rsv;
28ed1345 9117 if (ret != -ENOSPC && ret != -EAGAIN) {
d5014738
OS
9118 if (ret < 0)
9119 err = ret;
8082510e 9120 break;
3893e33b 9121 }
39279cc3 9122
8082510e 9123 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9124 if (ret) {
9125 err = ret;
9126 break;
9127 }
ca7e70f5 9128
3a45bb20 9129 btrfs_end_transaction(trans);
2ff7e61e 9130 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9131
9132 trans = btrfs_start_transaction(root, 2);
9133 if (IS_ERR(trans)) {
9134 ret = err = PTR_ERR(trans);
9135 trans = NULL;
9136 break;
9137 }
9138
47b5d646 9139 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9140 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 9141 rsv, min_size, 0);
ca7e70f5
JB
9142 BUG_ON(ret); /* shouldn't happen */
9143 trans->block_rsv = rsv;
8082510e
YZ
9144 }
9145
ddfae63c
JB
9146 /*
9147 * We can't call btrfs_truncate_block inside a trans handle as we could
9148 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9149 * we've truncated everything except the last little bit, and can do
9150 * btrfs_truncate_block and then update the disk_i_size.
9151 */
9152 if (ret == NEED_TRUNCATE_BLOCK) {
9153 btrfs_end_transaction(trans);
9154 btrfs_btree_balance_dirty(fs_info);
9155
9156 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9157 if (ret)
9158 goto out;
9159 trans = btrfs_start_transaction(root, 1);
9160 if (IS_ERR(trans)) {
9161 ret = PTR_ERR(trans);
9162 goto out;
9163 }
9164 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9165 }
9166
8082510e 9167 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9168 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 9169 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
3893e33b
JB
9170 if (ret)
9171 err = ret;
8082510e
YZ
9172 }
9173
917c16b2 9174 if (trans) {
0b246afa 9175 trans->block_rsv = &fs_info->trans_block_rsv;
917c16b2
CM
9176 ret = btrfs_update_inode(trans, root, inode);
9177 if (ret && !err)
9178 err = ret;
7b128766 9179
3a45bb20 9180 ret = btrfs_end_transaction(trans);
2ff7e61e 9181 btrfs_btree_balance_dirty(fs_info);
917c16b2 9182 }
fcb80c2a 9183out:
2ff7e61e 9184 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9185
3893e33b
JB
9186 if (ret && !err)
9187 err = ret;
a41ad394 9188
3893e33b 9189 return err;
39279cc3
CM
9190}
9191
d352ac68
CM
9192/*
9193 * create a new subvolume directory/inode (helper for the ioctl).
9194 */
d2fb3437 9195int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9196 struct btrfs_root *new_root,
9197 struct btrfs_root *parent_root,
9198 u64 new_dirid)
39279cc3 9199{
39279cc3 9200 struct inode *inode;
76dda93c 9201 int err;
00e4e6b3 9202 u64 index = 0;
39279cc3 9203
12fc9d09
FA
9204 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9205 new_dirid, new_dirid,
9206 S_IFDIR | (~current_umask() & S_IRWXUGO),
9207 &index);
54aa1f4d 9208 if (IS_ERR(inode))
f46b5a66 9209 return PTR_ERR(inode);
39279cc3
CM
9210 inode->i_op = &btrfs_dir_inode_operations;
9211 inode->i_fop = &btrfs_dir_file_operations;
9212
bfe86848 9213 set_nlink(inode, 1);
6ef06d27 9214 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9215 unlock_new_inode(inode);
3b96362c 9216
63541927
FDBM
9217 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9218 if (err)
9219 btrfs_err(new_root->fs_info,
351fd353 9220 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9221 new_root->root_key.objectid, err);
9222
76dda93c 9223 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9224
76dda93c 9225 iput(inode);
ce598979 9226 return err;
39279cc3
CM
9227}
9228
39279cc3
CM
9229struct inode *btrfs_alloc_inode(struct super_block *sb)
9230{
69fe2d75 9231 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 9232 struct btrfs_inode *ei;
2ead6ae7 9233 struct inode *inode;
39279cc3 9234
712e36c5 9235 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
9236 if (!ei)
9237 return NULL;
2ead6ae7
YZ
9238
9239 ei->root = NULL;
2ead6ae7 9240 ei->generation = 0;
15ee9bc7 9241 ei->last_trans = 0;
257c62e1 9242 ei->last_sub_trans = 0;
e02119d5 9243 ei->logged_trans = 0;
2ead6ae7 9244 ei->delalloc_bytes = 0;
a7e3b975 9245 ei->new_delalloc_bytes = 0;
47059d93 9246 ei->defrag_bytes = 0;
2ead6ae7
YZ
9247 ei->disk_i_size = 0;
9248 ei->flags = 0;
7709cde3 9249 ei->csum_bytes = 0;
2ead6ae7 9250 ei->index_cnt = (u64)-1;
67de1176 9251 ei->dir_index = 0;
2ead6ae7 9252 ei->last_unlink_trans = 0;
46d8bc34 9253 ei->last_log_commit = 0;
2ead6ae7 9254
9e0baf60
JB
9255 spin_lock_init(&ei->lock);
9256 ei->outstanding_extents = 0;
69fe2d75
JB
9257 if (sb->s_magic != BTRFS_TEST_MAGIC)
9258 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9259 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 9260 ei->runtime_flags = 0;
b52aa8c9 9261 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 9262 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9263
16cdcec7
MX
9264 ei->delayed_node = NULL;
9265
9cc97d64 9266 ei->i_otime.tv_sec = 0;
9267 ei->i_otime.tv_nsec = 0;
9268
2ead6ae7 9269 inode = &ei->vfs_inode;
a8067e02 9270 extent_map_tree_init(&ei->extent_tree);
c6100a4b
JB
9271 extent_io_tree_init(&ei->io_tree, inode);
9272 extent_io_tree_init(&ei->io_failure_tree, inode);
0b32f4bb
JB
9273 ei->io_tree.track_uptodate = 1;
9274 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9275 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9276 mutex_init(&ei->log_mutex);
f248679e 9277 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9278 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9279 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9280 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9281 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9282 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9283
9284 return inode;
39279cc3
CM
9285}
9286
aaedb55b
JB
9287#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9288void btrfs_test_destroy_inode(struct inode *inode)
9289{
dcdbc059 9290 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9291 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9292}
9293#endif
9294
fa0d7e3d
NP
9295static void btrfs_i_callback(struct rcu_head *head)
9296{
9297 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9298 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9299}
9300
39279cc3
CM
9301void btrfs_destroy_inode(struct inode *inode)
9302{
0b246afa 9303 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9304 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9305 struct btrfs_root *root = BTRFS_I(inode)->root;
9306
b3d9b7a3 9307 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9308 WARN_ON(inode->i_data.nrpages);
69fe2d75
JB
9309 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9310 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9e0baf60 9311 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7709cde3 9312 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 9313 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 9314 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9315 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9316
a6dbd429
JB
9317 /*
9318 * This can happen where we create an inode, but somebody else also
9319 * created the same inode and we need to destroy the one we already
9320 * created.
9321 */
9322 if (!root)
9323 goto free;
9324
8a35d95f
JB
9325 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9326 &BTRFS_I(inode)->runtime_flags)) {
0b246afa 9327 btrfs_info(fs_info, "inode %llu still on the orphan list",
4a0cc7ca 9328 btrfs_ino(BTRFS_I(inode)));
8a35d95f 9329 atomic_dec(&root->orphan_inodes);
7b128766 9330 }
7b128766 9331
d397712b 9332 while (1) {
e6dcd2dc
CM
9333 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9334 if (!ordered)
9335 break;
9336 else {
0b246afa 9337 btrfs_err(fs_info,
5d163e0e
JM
9338 "found ordered extent %llu %llu on inode cleanup",
9339 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9340 btrfs_remove_ordered_extent(inode, ordered);
9341 btrfs_put_ordered_extent(ordered);
9342 btrfs_put_ordered_extent(ordered);
9343 }
9344 }
56fa9d07 9345 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9346 inode_tree_del(inode);
dcdbc059 9347 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
a6dbd429 9348free:
fa0d7e3d 9349 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9350}
9351
45321ac5 9352int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9353{
9354 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9355
6379ef9f
NA
9356 if (root == NULL)
9357 return 1;
9358
fa6ac876 9359 /* the snap/subvol tree is on deleting */
69e9c6c6 9360 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9361 return 1;
76dda93c 9362 else
45321ac5 9363 return generic_drop_inode(inode);
76dda93c
YZ
9364}
9365
0ee0fda0 9366static void init_once(void *foo)
39279cc3
CM
9367{
9368 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9369
9370 inode_init_once(&ei->vfs_inode);
9371}
9372
e67c718b 9373void __cold btrfs_destroy_cachep(void)
39279cc3 9374{
8c0a8537
KS
9375 /*
9376 * Make sure all delayed rcu free inodes are flushed before we
9377 * destroy cache.
9378 */
9379 rcu_barrier();
5598e900
KM
9380 kmem_cache_destroy(btrfs_inode_cachep);
9381 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
9382 kmem_cache_destroy(btrfs_path_cachep);
9383 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9384}
9385
f5c29bd9 9386int __init btrfs_init_cachep(void)
39279cc3 9387{
837e1972 9388 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9389 sizeof(struct btrfs_inode), 0,
5d097056
VD
9390 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9391 init_once);
39279cc3
CM
9392 if (!btrfs_inode_cachep)
9393 goto fail;
9601e3f6 9394
837e1972 9395 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9396 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9397 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9398 if (!btrfs_trans_handle_cachep)
9399 goto fail;
9601e3f6 9400
837e1972 9401 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9402 sizeof(struct btrfs_path), 0,
fba4b697 9403 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9404 if (!btrfs_path_cachep)
9405 goto fail;
9601e3f6 9406
837e1972 9407 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9408 sizeof(struct btrfs_free_space), 0,
fba4b697 9409 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9410 if (!btrfs_free_space_cachep)
9411 goto fail;
9412
39279cc3
CM
9413 return 0;
9414fail:
9415 btrfs_destroy_cachep();
9416 return -ENOMEM;
9417}
9418
a528d35e
DH
9419static int btrfs_getattr(const struct path *path, struct kstat *stat,
9420 u32 request_mask, unsigned int flags)
39279cc3 9421{
df0af1a5 9422 u64 delalloc_bytes;
a528d35e 9423 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9424 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
9425 u32 bi_flags = BTRFS_I(inode)->flags;
9426
9427 stat->result_mask |= STATX_BTIME;
9428 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9429 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9430 if (bi_flags & BTRFS_INODE_APPEND)
9431 stat->attributes |= STATX_ATTR_APPEND;
9432 if (bi_flags & BTRFS_INODE_COMPRESS)
9433 stat->attributes |= STATX_ATTR_COMPRESSED;
9434 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9435 stat->attributes |= STATX_ATTR_IMMUTABLE;
9436 if (bi_flags & BTRFS_INODE_NODUMP)
9437 stat->attributes |= STATX_ATTR_NODUMP;
9438
9439 stat->attributes_mask |= (STATX_ATTR_APPEND |
9440 STATX_ATTR_COMPRESSED |
9441 STATX_ATTR_IMMUTABLE |
9442 STATX_ATTR_NODUMP);
fadc0d8b 9443
39279cc3 9444 generic_fillattr(inode, stat);
0ee5dc67 9445 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9446
9447 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9448 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 9449 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9450 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9451 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9452 return 0;
9453}
9454
cdd1fedf
DF
9455static int btrfs_rename_exchange(struct inode *old_dir,
9456 struct dentry *old_dentry,
9457 struct inode *new_dir,
9458 struct dentry *new_dentry)
9459{
0b246afa 9460 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9461 struct btrfs_trans_handle *trans;
9462 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9463 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9464 struct inode *new_inode = new_dentry->d_inode;
9465 struct inode *old_inode = old_dentry->d_inode;
c2050a45 9466 struct timespec ctime = current_time(old_inode);
cdd1fedf 9467 struct dentry *parent;
4a0cc7ca
NB
9468 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9469 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9470 u64 old_idx = 0;
9471 u64 new_idx = 0;
9472 u64 root_objectid;
9473 int ret;
86e8aa0e
FM
9474 bool root_log_pinned = false;
9475 bool dest_log_pinned = false;
cdd1fedf
DF
9476
9477 /* we only allow rename subvolume link between subvolumes */
9478 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9479 return -EXDEV;
9480
9481 /* close the race window with snapshot create/destroy ioctl */
9482 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9483 down_read(&fs_info->subvol_sem);
cdd1fedf 9484 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9485 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9486
9487 /*
9488 * We want to reserve the absolute worst case amount of items. So if
9489 * both inodes are subvols and we need to unlink them then that would
9490 * require 4 item modifications, but if they are both normal inodes it
9491 * would require 5 item modifications, so we'll assume their normal
9492 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9493 * should cover the worst case number of items we'll modify.
9494 */
9495 trans = btrfs_start_transaction(root, 12);
9496 if (IS_ERR(trans)) {
9497 ret = PTR_ERR(trans);
9498 goto out_notrans;
9499 }
9500
9501 /*
9502 * We need to find a free sequence number both in the source and
9503 * in the destination directory for the exchange.
9504 */
877574e2 9505 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9506 if (ret)
9507 goto out_fail;
877574e2 9508 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9509 if (ret)
9510 goto out_fail;
9511
9512 BTRFS_I(old_inode)->dir_index = 0ULL;
9513 BTRFS_I(new_inode)->dir_index = 0ULL;
9514
9515 /* Reference for the source. */
9516 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9517 /* force full log commit if subvolume involved. */
0b246afa 9518 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9519 } else {
376e5a57
FM
9520 btrfs_pin_log_trans(root);
9521 root_log_pinned = true;
cdd1fedf
DF
9522 ret = btrfs_insert_inode_ref(trans, dest,
9523 new_dentry->d_name.name,
9524 new_dentry->d_name.len,
9525 old_ino,
f85b7379
DS
9526 btrfs_ino(BTRFS_I(new_dir)),
9527 old_idx);
cdd1fedf
DF
9528 if (ret)
9529 goto out_fail;
cdd1fedf
DF
9530 }
9531
9532 /* And now for the dest. */
9533 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9534 /* force full log commit if subvolume involved. */
0b246afa 9535 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9536 } else {
376e5a57
FM
9537 btrfs_pin_log_trans(dest);
9538 dest_log_pinned = true;
cdd1fedf
DF
9539 ret = btrfs_insert_inode_ref(trans, root,
9540 old_dentry->d_name.name,
9541 old_dentry->d_name.len,
9542 new_ino,
f85b7379
DS
9543 btrfs_ino(BTRFS_I(old_dir)),
9544 new_idx);
cdd1fedf
DF
9545 if (ret)
9546 goto out_fail;
cdd1fedf
DF
9547 }
9548
9549 /* Update inode version and ctime/mtime. */
9550 inode_inc_iversion(old_dir);
9551 inode_inc_iversion(new_dir);
9552 inode_inc_iversion(old_inode);
9553 inode_inc_iversion(new_inode);
9554 old_dir->i_ctime = old_dir->i_mtime = ctime;
9555 new_dir->i_ctime = new_dir->i_mtime = ctime;
9556 old_inode->i_ctime = ctime;
9557 new_inode->i_ctime = ctime;
9558
9559 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9560 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9561 BTRFS_I(old_inode), 1);
9562 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9563 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9564 }
9565
9566 /* src is a subvolume */
9567 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9568 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9569 ret = btrfs_unlink_subvol(trans, root, old_dir,
9570 root_objectid,
9571 old_dentry->d_name.name,
9572 old_dentry->d_name.len);
9573 } else { /* src is an inode */
4ec5934e
NB
9574 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9575 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9576 old_dentry->d_name.name,
9577 old_dentry->d_name.len);
9578 if (!ret)
9579 ret = btrfs_update_inode(trans, root, old_inode);
9580 }
9581 if (ret) {
66642832 9582 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9583 goto out_fail;
9584 }
9585
9586 /* dest is a subvolume */
9587 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9588 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9589 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9590 root_objectid,
9591 new_dentry->d_name.name,
9592 new_dentry->d_name.len);
9593 } else { /* dest is an inode */
4ec5934e
NB
9594 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9595 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9596 new_dentry->d_name.name,
9597 new_dentry->d_name.len);
9598 if (!ret)
9599 ret = btrfs_update_inode(trans, dest, new_inode);
9600 }
9601 if (ret) {
66642832 9602 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9603 goto out_fail;
9604 }
9605
db0a669f 9606 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9607 new_dentry->d_name.name,
9608 new_dentry->d_name.len, 0, old_idx);
9609 if (ret) {
66642832 9610 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9611 goto out_fail;
9612 }
9613
db0a669f 9614 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9615 old_dentry->d_name.name,
9616 old_dentry->d_name.len, 0, new_idx);
9617 if (ret) {
66642832 9618 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9619 goto out_fail;
9620 }
9621
9622 if (old_inode->i_nlink == 1)
9623 BTRFS_I(old_inode)->dir_index = old_idx;
9624 if (new_inode->i_nlink == 1)
9625 BTRFS_I(new_inode)->dir_index = new_idx;
9626
86e8aa0e 9627 if (root_log_pinned) {
cdd1fedf 9628 parent = new_dentry->d_parent;
f85b7379
DS
9629 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9630 parent);
cdd1fedf 9631 btrfs_end_log_trans(root);
86e8aa0e 9632 root_log_pinned = false;
cdd1fedf 9633 }
86e8aa0e 9634 if (dest_log_pinned) {
cdd1fedf 9635 parent = old_dentry->d_parent;
f85b7379
DS
9636 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9637 parent);
cdd1fedf 9638 btrfs_end_log_trans(dest);
86e8aa0e 9639 dest_log_pinned = false;
cdd1fedf
DF
9640 }
9641out_fail:
86e8aa0e
FM
9642 /*
9643 * If we have pinned a log and an error happened, we unpin tasks
9644 * trying to sync the log and force them to fallback to a transaction
9645 * commit if the log currently contains any of the inodes involved in
9646 * this rename operation (to ensure we do not persist a log with an
9647 * inconsistent state for any of these inodes or leading to any
9648 * inconsistencies when replayed). If the transaction was aborted, the
9649 * abortion reason is propagated to userspace when attempting to commit
9650 * the transaction. If the log does not contain any of these inodes, we
9651 * allow the tasks to sync it.
9652 */
9653 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9654 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9655 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9656 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9657 (new_inode &&
0f8939b8 9658 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9659 btrfs_set_log_full_commit(fs_info, trans);
86e8aa0e
FM
9660
9661 if (root_log_pinned) {
9662 btrfs_end_log_trans(root);
9663 root_log_pinned = false;
9664 }
9665 if (dest_log_pinned) {
9666 btrfs_end_log_trans(dest);
9667 dest_log_pinned = false;
9668 }
9669 }
3a45bb20 9670 ret = btrfs_end_transaction(trans);
cdd1fedf
DF
9671out_notrans:
9672 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9673 up_read(&fs_info->subvol_sem);
cdd1fedf 9674 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9675 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9676
9677 return ret;
9678}
9679
9680static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9681 struct btrfs_root *root,
9682 struct inode *dir,
9683 struct dentry *dentry)
9684{
9685 int ret;
9686 struct inode *inode;
9687 u64 objectid;
9688 u64 index;
9689
9690 ret = btrfs_find_free_ino(root, &objectid);
9691 if (ret)
9692 return ret;
9693
9694 inode = btrfs_new_inode(trans, root, dir,
9695 dentry->d_name.name,
9696 dentry->d_name.len,
4a0cc7ca 9697 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9698 objectid,
9699 S_IFCHR | WHITEOUT_MODE,
9700 &index);
9701
9702 if (IS_ERR(inode)) {
9703 ret = PTR_ERR(inode);
9704 return ret;
9705 }
9706
9707 inode->i_op = &btrfs_special_inode_operations;
9708 init_special_inode(inode, inode->i_mode,
9709 WHITEOUT_DEV);
9710
9711 ret = btrfs_init_inode_security(trans, inode, dir,
9712 &dentry->d_name);
9713 if (ret)
c9901618 9714 goto out;
cdd1fedf 9715
cef415af
NB
9716 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9717 BTRFS_I(inode), 0, index);
cdd1fedf 9718 if (ret)
c9901618 9719 goto out;
cdd1fedf
DF
9720
9721 ret = btrfs_update_inode(trans, root, inode);
c9901618 9722out:
cdd1fedf 9723 unlock_new_inode(inode);
c9901618
FM
9724 if (ret)
9725 inode_dec_link_count(inode);
cdd1fedf
DF
9726 iput(inode);
9727
c9901618 9728 return ret;
cdd1fedf
DF
9729}
9730
d397712b 9731static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9732 struct inode *new_dir, struct dentry *new_dentry,
9733 unsigned int flags)
39279cc3 9734{
0b246afa 9735 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9736 struct btrfs_trans_handle *trans;
5062af35 9737 unsigned int trans_num_items;
39279cc3 9738 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9739 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9740 struct inode *new_inode = d_inode(new_dentry);
9741 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9742 u64 index = 0;
4df27c4d 9743 u64 root_objectid;
39279cc3 9744 int ret;
4a0cc7ca 9745 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9746 bool log_pinned = false;
39279cc3 9747
4a0cc7ca 9748 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9749 return -EPERM;
9750
4df27c4d 9751 /* we only allow rename subvolume link between subvolumes */
33345d01 9752 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9753 return -EXDEV;
9754
33345d01 9755 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9756 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9757 return -ENOTEMPTY;
5f39d397 9758
4df27c4d
YZ
9759 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9760 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9761 return -ENOTEMPTY;
9c52057c
CM
9762
9763
9764 /* check for collisions, even if the name isn't there */
4871c158 9765 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9766 new_dentry->d_name.name,
9767 new_dentry->d_name.len);
9768
9769 if (ret) {
9770 if (ret == -EEXIST) {
9771 /* we shouldn't get
9772 * eexist without a new_inode */
fae7f21c 9773 if (WARN_ON(!new_inode)) {
9c52057c
CM
9774 return ret;
9775 }
9776 } else {
9777 /* maybe -EOVERFLOW */
9778 return ret;
9779 }
9780 }
9781 ret = 0;
9782
5a3f23d5 9783 /*
8d875f95
CM
9784 * we're using rename to replace one file with another. Start IO on it
9785 * now so we don't add too much work to the end of the transaction
5a3f23d5 9786 */
8d875f95 9787 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9788 filemap_flush(old_inode->i_mapping);
9789
76dda93c 9790 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9791 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9792 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9793 /*
9794 * We want to reserve the absolute worst case amount of items. So if
9795 * both inodes are subvols and we need to unlink them then that would
9796 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9797 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9798 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9799 * should cover the worst case number of items we'll modify.
5062af35
FM
9800 * If our rename has the whiteout flag, we need more 5 units for the
9801 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9802 * when selinux is enabled).
a22285a6 9803 */
5062af35
FM
9804 trans_num_items = 11;
9805 if (flags & RENAME_WHITEOUT)
9806 trans_num_items += 5;
9807 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9808 if (IS_ERR(trans)) {
cdd1fedf
DF
9809 ret = PTR_ERR(trans);
9810 goto out_notrans;
9811 }
76dda93c 9812
4df27c4d
YZ
9813 if (dest != root)
9814 btrfs_record_root_in_trans(trans, dest);
5f39d397 9815
877574e2 9816 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9817 if (ret)
9818 goto out_fail;
5a3f23d5 9819
67de1176 9820 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9821 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9822 /* force full log commit if subvolume involved. */
0b246afa 9823 btrfs_set_log_full_commit(fs_info, trans);
4df27c4d 9824 } else {
c4aba954
FM
9825 btrfs_pin_log_trans(root);
9826 log_pinned = true;
a5719521
YZ
9827 ret = btrfs_insert_inode_ref(trans, dest,
9828 new_dentry->d_name.name,
9829 new_dentry->d_name.len,
33345d01 9830 old_ino,
4a0cc7ca 9831 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9832 if (ret)
9833 goto out_fail;
4df27c4d 9834 }
5a3f23d5 9835
0c4d2d95
JB
9836 inode_inc_iversion(old_dir);
9837 inode_inc_iversion(new_dir);
9838 inode_inc_iversion(old_inode);
04b285f3
DD
9839 old_dir->i_ctime = old_dir->i_mtime =
9840 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9841 old_inode->i_ctime = current_time(old_dir);
5f39d397 9842
12fcfd22 9843 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9844 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9845 BTRFS_I(old_inode), 1);
12fcfd22 9846
33345d01 9847 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9848 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9849 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9850 old_dentry->d_name.name,
9851 old_dentry->d_name.len);
9852 } else {
4ec5934e
NB
9853 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9854 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9855 old_dentry->d_name.name,
9856 old_dentry->d_name.len);
9857 if (!ret)
9858 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9859 }
79787eaa 9860 if (ret) {
66642832 9861 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9862 goto out_fail;
9863 }
39279cc3
CM
9864
9865 if (new_inode) {
0c4d2d95 9866 inode_inc_iversion(new_inode);
c2050a45 9867 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9868 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
9869 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9870 root_objectid = BTRFS_I(new_inode)->location.objectid;
9871 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9872 root_objectid,
9873 new_dentry->d_name.name,
9874 new_dentry->d_name.len);
9875 BUG_ON(new_inode->i_nlink == 0);
9876 } else {
4ec5934e
NB
9877 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9878 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9879 new_dentry->d_name.name,
9880 new_dentry->d_name.len);
9881 }
4ef31a45 9882 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9883 ret = btrfs_orphan_add(trans,
9884 BTRFS_I(d_inode(new_dentry)));
79787eaa 9885 if (ret) {
66642832 9886 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9887 goto out_fail;
9888 }
39279cc3 9889 }
aec7477b 9890
db0a669f 9891 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 9892 new_dentry->d_name.name,
a5719521 9893 new_dentry->d_name.len, 0, index);
79787eaa 9894 if (ret) {
66642832 9895 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9896 goto out_fail;
9897 }
39279cc3 9898
67de1176
MX
9899 if (old_inode->i_nlink == 1)
9900 BTRFS_I(old_inode)->dir_index = index;
9901
3dc9e8f7 9902 if (log_pinned) {
10d9f309 9903 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9904
f85b7379
DS
9905 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9906 parent);
4df27c4d 9907 btrfs_end_log_trans(root);
3dc9e8f7 9908 log_pinned = false;
4df27c4d 9909 }
cdd1fedf
DF
9910
9911 if (flags & RENAME_WHITEOUT) {
9912 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9913 old_dentry);
9914
9915 if (ret) {
66642832 9916 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9917 goto out_fail;
9918 }
4df27c4d 9919 }
39279cc3 9920out_fail:
3dc9e8f7
FM
9921 /*
9922 * If we have pinned the log and an error happened, we unpin tasks
9923 * trying to sync the log and force them to fallback to a transaction
9924 * commit if the log currently contains any of the inodes involved in
9925 * this rename operation (to ensure we do not persist a log with an
9926 * inconsistent state for any of these inodes or leading to any
9927 * inconsistencies when replayed). If the transaction was aborted, the
9928 * abortion reason is propagated to userspace when attempting to commit
9929 * the transaction. If the log does not contain any of these inodes, we
9930 * allow the tasks to sync it.
9931 */
9932 if (ret && log_pinned) {
0f8939b8
NB
9933 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9934 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9935 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 9936 (new_inode &&
0f8939b8 9937 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9938 btrfs_set_log_full_commit(fs_info, trans);
3dc9e8f7
FM
9939
9940 btrfs_end_log_trans(root);
9941 log_pinned = false;
9942 }
3a45bb20 9943 btrfs_end_transaction(trans);
b44c59a8 9944out_notrans:
33345d01 9945 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9946 up_read(&fs_info->subvol_sem);
9ed74f2d 9947
39279cc3
CM
9948 return ret;
9949}
9950
80ace85c
MS
9951static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9952 struct inode *new_dir, struct dentry *new_dentry,
9953 unsigned int flags)
9954{
cdd1fedf 9955 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9956 return -EINVAL;
9957
cdd1fedf
DF
9958 if (flags & RENAME_EXCHANGE)
9959 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9960 new_dentry);
9961
9962 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9963}
9964
8ccf6f19
MX
9965static void btrfs_run_delalloc_work(struct btrfs_work *work)
9966{
9967 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9968 struct inode *inode;
8ccf6f19
MX
9969
9970 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9971 work);
9f23e289 9972 inode = delalloc_work->inode;
30424601
DS
9973 filemap_flush(inode->i_mapping);
9974 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9975 &BTRFS_I(inode)->runtime_flags))
9f23e289 9976 filemap_flush(inode->i_mapping);
8ccf6f19
MX
9977
9978 if (delalloc_work->delay_iput)
9f23e289 9979 btrfs_add_delayed_iput(inode);
8ccf6f19 9980 else
9f23e289 9981 iput(inode);
8ccf6f19
MX
9982 complete(&delalloc_work->completion);
9983}
9984
9985struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 9986 int delay_iput)
8ccf6f19
MX
9987{
9988 struct btrfs_delalloc_work *work;
9989
100d5702 9990 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9991 if (!work)
9992 return NULL;
9993
9994 init_completion(&work->completion);
9995 INIT_LIST_HEAD(&work->list);
9996 work->inode = inode;
8ccf6f19 9997 work->delay_iput = delay_iput;
9e0af237
LB
9998 WARN_ON_ONCE(!inode);
9999 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10000 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
10001
10002 return work;
10003}
10004
10005void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10006{
10007 wait_for_completion(&work->completion);
100d5702 10008 kfree(work);
8ccf6f19
MX
10009}
10010
d352ac68
CM
10011/*
10012 * some fairly slow code that needs optimization. This walks the list
10013 * of all the inodes with pending delalloc and forces them to disk.
10014 */
6c255e67
MX
10015static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10016 int nr)
ea8c2819 10017{
ea8c2819 10018 struct btrfs_inode *binode;
5b21f2ed 10019 struct inode *inode;
8ccf6f19
MX
10020 struct btrfs_delalloc_work *work, *next;
10021 struct list_head works;
1eafa6c7 10022 struct list_head splice;
8ccf6f19 10023 int ret = 0;
ea8c2819 10024
8ccf6f19 10025 INIT_LIST_HEAD(&works);
1eafa6c7 10026 INIT_LIST_HEAD(&splice);
63607cc8 10027
573bfb72 10028 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10029 spin_lock(&root->delalloc_lock);
10030 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10031 while (!list_empty(&splice)) {
10032 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10033 delalloc_inodes);
1eafa6c7 10034
eb73c1b7
MX
10035 list_move_tail(&binode->delalloc_inodes,
10036 &root->delalloc_inodes);
5b21f2ed 10037 inode = igrab(&binode->vfs_inode);
df0af1a5 10038 if (!inode) {
eb73c1b7 10039 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10040 continue;
df0af1a5 10041 }
eb73c1b7 10042 spin_unlock(&root->delalloc_lock);
1eafa6c7 10043
651d494a 10044 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10045 if (!work) {
f4ab9ea7
JB
10046 if (delay_iput)
10047 btrfs_add_delayed_iput(inode);
10048 else
10049 iput(inode);
1eafa6c7 10050 ret = -ENOMEM;
a1ecaabb 10051 goto out;
5b21f2ed 10052 }
1eafa6c7 10053 list_add_tail(&work->list, &works);
a44903ab
QW
10054 btrfs_queue_work(root->fs_info->flush_workers,
10055 &work->work);
6c255e67
MX
10056 ret++;
10057 if (nr != -1 && ret >= nr)
a1ecaabb 10058 goto out;
5b21f2ed 10059 cond_resched();
eb73c1b7 10060 spin_lock(&root->delalloc_lock);
ea8c2819 10061 }
eb73c1b7 10062 spin_unlock(&root->delalloc_lock);
8c8bee1d 10063
a1ecaabb 10064out:
eb73c1b7
MX
10065 list_for_each_entry_safe(work, next, &works, list) {
10066 list_del_init(&work->list);
10067 btrfs_wait_and_free_delalloc_work(work);
10068 }
10069
10070 if (!list_empty_careful(&splice)) {
10071 spin_lock(&root->delalloc_lock);
10072 list_splice_tail(&splice, &root->delalloc_inodes);
10073 spin_unlock(&root->delalloc_lock);
10074 }
573bfb72 10075 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10076 return ret;
10077}
1eafa6c7 10078
eb73c1b7
MX
10079int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10080{
0b246afa 10081 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10082 int ret;
1eafa6c7 10083
0b246afa 10084 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10085 return -EROFS;
10086
6c255e67
MX
10087 ret = __start_delalloc_inodes(root, delay_iput, -1);
10088 if (ret > 0)
10089 ret = 0;
eb73c1b7
MX
10090 return ret;
10091}
10092
6c255e67
MX
10093int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10094 int nr)
eb73c1b7
MX
10095{
10096 struct btrfs_root *root;
10097 struct list_head splice;
10098 int ret;
10099
2c21b4d7 10100 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10101 return -EROFS;
10102
10103 INIT_LIST_HEAD(&splice);
10104
573bfb72 10105 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10106 spin_lock(&fs_info->delalloc_root_lock);
10107 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10108 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10109 root = list_first_entry(&splice, struct btrfs_root,
10110 delalloc_root);
10111 root = btrfs_grab_fs_root(root);
10112 BUG_ON(!root);
10113 list_move_tail(&root->delalloc_root,
10114 &fs_info->delalloc_roots);
10115 spin_unlock(&fs_info->delalloc_root_lock);
10116
6c255e67 10117 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10118 btrfs_put_fs_root(root);
6c255e67 10119 if (ret < 0)
eb73c1b7
MX
10120 goto out;
10121
6c255e67
MX
10122 if (nr != -1) {
10123 nr -= ret;
10124 WARN_ON(nr < 0);
10125 }
eb73c1b7 10126 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10127 }
eb73c1b7 10128 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10129
6c255e67 10130 ret = 0;
eb73c1b7 10131out:
1eafa6c7 10132 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10133 spin_lock(&fs_info->delalloc_root_lock);
10134 list_splice_tail(&splice, &fs_info->delalloc_roots);
10135 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10136 }
573bfb72 10137 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10138 return ret;
ea8c2819
CM
10139}
10140
39279cc3
CM
10141static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10142 const char *symname)
10143{
0b246afa 10144 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10145 struct btrfs_trans_handle *trans;
10146 struct btrfs_root *root = BTRFS_I(dir)->root;
10147 struct btrfs_path *path;
10148 struct btrfs_key key;
1832a6d5 10149 struct inode *inode = NULL;
39279cc3
CM
10150 int err;
10151 int drop_inode = 0;
10152 u64 objectid;
67871254 10153 u64 index = 0;
39279cc3
CM
10154 int name_len;
10155 int datasize;
5f39d397 10156 unsigned long ptr;
39279cc3 10157 struct btrfs_file_extent_item *ei;
5f39d397 10158 struct extent_buffer *leaf;
39279cc3 10159
f06becc4 10160 name_len = strlen(symname);
0b246afa 10161 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10162 return -ENAMETOOLONG;
1832a6d5 10163
9ed74f2d
JB
10164 /*
10165 * 2 items for inode item and ref
10166 * 2 items for dir items
9269d12b
FM
10167 * 1 item for updating parent inode item
10168 * 1 item for the inline extent item
9ed74f2d
JB
10169 * 1 item for xattr if selinux is on
10170 */
9269d12b 10171 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10172 if (IS_ERR(trans))
10173 return PTR_ERR(trans);
1832a6d5 10174
581bb050
LZ
10175 err = btrfs_find_free_ino(root, &objectid);
10176 if (err)
10177 goto out_unlock;
10178
aec7477b 10179 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10180 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10181 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10182 if (IS_ERR(inode)) {
10183 err = PTR_ERR(inode);
39279cc3 10184 goto out_unlock;
7cf96da3 10185 }
39279cc3 10186
ad19db71
CS
10187 /*
10188 * If the active LSM wants to access the inode during
10189 * d_instantiate it needs these. Smack checks to see
10190 * if the filesystem supports xattrs by looking at the
10191 * ops vector.
10192 */
10193 inode->i_fop = &btrfs_file_operations;
10194 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10195 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10196 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10197
10198 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10199 if (err)
10200 goto out_unlock_inode;
ad19db71 10201
39279cc3 10202 path = btrfs_alloc_path();
d8926bb3
MF
10203 if (!path) {
10204 err = -ENOMEM;
b0d5d10f 10205 goto out_unlock_inode;
d8926bb3 10206 }
4a0cc7ca 10207 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10208 key.offset = 0;
962a298f 10209 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10210 datasize = btrfs_file_extent_calc_inline_size(name_len);
10211 err = btrfs_insert_empty_item(trans, root, path, &key,
10212 datasize);
54aa1f4d 10213 if (err) {
b0839166 10214 btrfs_free_path(path);
b0d5d10f 10215 goto out_unlock_inode;
54aa1f4d 10216 }
5f39d397
CM
10217 leaf = path->nodes[0];
10218 ei = btrfs_item_ptr(leaf, path->slots[0],
10219 struct btrfs_file_extent_item);
10220 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10221 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10222 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10223 btrfs_set_file_extent_encryption(leaf, ei, 0);
10224 btrfs_set_file_extent_compression(leaf, ei, 0);
10225 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10226 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10227
39279cc3 10228 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10229 write_extent_buffer(leaf, symname, ptr, name_len);
10230 btrfs_mark_buffer_dirty(leaf);
39279cc3 10231 btrfs_free_path(path);
5f39d397 10232
39279cc3 10233 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10234 inode_nohighmem(inode);
39279cc3 10235 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10236 inode_set_bytes(inode, name_len);
6ef06d27 10237 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10238 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10239 /*
10240 * Last step, add directory indexes for our symlink inode. This is the
10241 * last step to avoid extra cleanup of these indexes if an error happens
10242 * elsewhere above.
10243 */
10244 if (!err)
cef415af
NB
10245 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10246 BTRFS_I(inode), 0, index);
b0d5d10f 10247 if (err) {
54aa1f4d 10248 drop_inode = 1;
b0d5d10f
CM
10249 goto out_unlock_inode;
10250 }
10251
1e2e547a 10252 d_instantiate_new(dentry, inode);
39279cc3
CM
10253
10254out_unlock:
3a45bb20 10255 btrfs_end_transaction(trans);
39279cc3
CM
10256 if (drop_inode) {
10257 inode_dec_link_count(inode);
10258 iput(inode);
10259 }
2ff7e61e 10260 btrfs_btree_balance_dirty(fs_info);
39279cc3 10261 return err;
b0d5d10f
CM
10262
10263out_unlock_inode:
10264 drop_inode = 1;
10265 unlock_new_inode(inode);
10266 goto out_unlock;
39279cc3 10267}
16432985 10268
0af3d00b
JB
10269static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10270 u64 start, u64 num_bytes, u64 min_size,
10271 loff_t actual_len, u64 *alloc_hint,
10272 struct btrfs_trans_handle *trans)
d899e052 10273{
0b246afa 10274 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10275 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10276 struct extent_map *em;
d899e052
YZ
10277 struct btrfs_root *root = BTRFS_I(inode)->root;
10278 struct btrfs_key ins;
d899e052 10279 u64 cur_offset = start;
55a61d1d 10280 u64 i_size;
154ea289 10281 u64 cur_bytes;
0b670dc4 10282 u64 last_alloc = (u64)-1;
d899e052 10283 int ret = 0;
0af3d00b 10284 bool own_trans = true;
18513091 10285 u64 end = start + num_bytes - 1;
d899e052 10286
0af3d00b
JB
10287 if (trans)
10288 own_trans = false;
d899e052 10289 while (num_bytes > 0) {
0af3d00b
JB
10290 if (own_trans) {
10291 trans = btrfs_start_transaction(root, 3);
10292 if (IS_ERR(trans)) {
10293 ret = PTR_ERR(trans);
10294 break;
10295 }
5a303d5d
YZ
10296 }
10297
ee22184b 10298 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10299 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10300 /*
10301 * If we are severely fragmented we could end up with really
10302 * small allocations, so if the allocator is returning small
10303 * chunks lets make its job easier by only searching for those
10304 * sized chunks.
10305 */
10306 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10307 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10308 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10309 if (ret) {
0af3d00b 10310 if (own_trans)
3a45bb20 10311 btrfs_end_transaction(trans);
a22285a6 10312 break;
d899e052 10313 }
0b246afa 10314 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10315
0b670dc4 10316 last_alloc = ins.offset;
d899e052
YZ
10317 ret = insert_reserved_file_extent(trans, inode,
10318 cur_offset, ins.objectid,
10319 ins.offset, ins.offset,
920bbbfb 10320 ins.offset, 0, 0, 0,
d899e052 10321 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10322 if (ret) {
2ff7e61e 10323 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10324 ins.offset, 0);
66642832 10325 btrfs_abort_transaction(trans, ret);
79787eaa 10326 if (own_trans)
3a45bb20 10327 btrfs_end_transaction(trans);
79787eaa
JM
10328 break;
10329 }
31193213 10330
dcdbc059 10331 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10332 cur_offset + ins.offset -1, 0);
5a303d5d 10333
5dc562c5
JB
10334 em = alloc_extent_map();
10335 if (!em) {
10336 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10337 &BTRFS_I(inode)->runtime_flags);
10338 goto next;
10339 }
10340
10341 em->start = cur_offset;
10342 em->orig_start = cur_offset;
10343 em->len = ins.offset;
10344 em->block_start = ins.objectid;
10345 em->block_len = ins.offset;
b4939680 10346 em->orig_block_len = ins.offset;
cc95bef6 10347 em->ram_bytes = ins.offset;
0b246afa 10348 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10349 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10350 em->generation = trans->transid;
10351
10352 while (1) {
10353 write_lock(&em_tree->lock);
09a2a8f9 10354 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10355 write_unlock(&em_tree->lock);
10356 if (ret != -EEXIST)
10357 break;
dcdbc059 10358 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10359 cur_offset + ins.offset - 1,
10360 0);
10361 }
10362 free_extent_map(em);
10363next:
d899e052
YZ
10364 num_bytes -= ins.offset;
10365 cur_offset += ins.offset;
efa56464 10366 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10367
0c4d2d95 10368 inode_inc_iversion(inode);
c2050a45 10369 inode->i_ctime = current_time(inode);
6cbff00f 10370 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10371 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10372 (actual_len > inode->i_size) &&
10373 (cur_offset > inode->i_size)) {
d1ea6a61 10374 if (cur_offset > actual_len)
55a61d1d 10375 i_size = actual_len;
d1ea6a61 10376 else
55a61d1d
JB
10377 i_size = cur_offset;
10378 i_size_write(inode, i_size);
10379 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10380 }
10381
d899e052 10382 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10383
10384 if (ret) {
66642832 10385 btrfs_abort_transaction(trans, ret);
79787eaa 10386 if (own_trans)
3a45bb20 10387 btrfs_end_transaction(trans);
79787eaa
JM
10388 break;
10389 }
d899e052 10390
0af3d00b 10391 if (own_trans)
3a45bb20 10392 btrfs_end_transaction(trans);
5a303d5d 10393 }
18513091 10394 if (cur_offset < end)
bc42bda2 10395 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
18513091 10396 end - cur_offset + 1);
d899e052
YZ
10397 return ret;
10398}
10399
0af3d00b
JB
10400int btrfs_prealloc_file_range(struct inode *inode, int mode,
10401 u64 start, u64 num_bytes, u64 min_size,
10402 loff_t actual_len, u64 *alloc_hint)
10403{
10404 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10405 min_size, actual_len, alloc_hint,
10406 NULL);
10407}
10408
10409int btrfs_prealloc_file_range_trans(struct inode *inode,
10410 struct btrfs_trans_handle *trans, int mode,
10411 u64 start, u64 num_bytes, u64 min_size,
10412 loff_t actual_len, u64 *alloc_hint)
10413{
10414 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10415 min_size, actual_len, alloc_hint, trans);
10416}
10417
e6dcd2dc
CM
10418static int btrfs_set_page_dirty(struct page *page)
10419{
e6dcd2dc
CM
10420 return __set_page_dirty_nobuffers(page);
10421}
10422
10556cb2 10423static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10424{
b83cc969 10425 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10426 umode_t mode = inode->i_mode;
b83cc969 10427
cb6db4e5
JM
10428 if (mask & MAY_WRITE &&
10429 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10430 if (btrfs_root_readonly(root))
10431 return -EROFS;
10432 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10433 return -EACCES;
10434 }
2830ba7f 10435 return generic_permission(inode, mask);
fdebe2bd 10436}
39279cc3 10437
ef3b9af5
FM
10438static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10439{
2ff7e61e 10440 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10441 struct btrfs_trans_handle *trans;
10442 struct btrfs_root *root = BTRFS_I(dir)->root;
10443 struct inode *inode = NULL;
10444 u64 objectid;
10445 u64 index;
10446 int ret = 0;
10447
10448 /*
10449 * 5 units required for adding orphan entry
10450 */
10451 trans = btrfs_start_transaction(root, 5);
10452 if (IS_ERR(trans))
10453 return PTR_ERR(trans);
10454
10455 ret = btrfs_find_free_ino(root, &objectid);
10456 if (ret)
10457 goto out;
10458
10459 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10460 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10461 if (IS_ERR(inode)) {
10462 ret = PTR_ERR(inode);
10463 inode = NULL;
10464 goto out;
10465 }
10466
ef3b9af5
FM
10467 inode->i_fop = &btrfs_file_operations;
10468 inode->i_op = &btrfs_file_inode_operations;
10469
10470 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10471 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10472
b0d5d10f
CM
10473 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10474 if (ret)
10475 goto out_inode;
10476
10477 ret = btrfs_update_inode(trans, root, inode);
10478 if (ret)
10479 goto out_inode;
73f2e545 10480 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10481 if (ret)
b0d5d10f 10482 goto out_inode;
ef3b9af5 10483
5762b5c9
FM
10484 /*
10485 * We set number of links to 0 in btrfs_new_inode(), and here we set
10486 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10487 * through:
10488 *
10489 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10490 */
10491 set_nlink(inode, 1);
b0d5d10f 10492 unlock_new_inode(inode);
ef3b9af5
FM
10493 d_tmpfile(dentry, inode);
10494 mark_inode_dirty(inode);
10495
10496out:
3a45bb20 10497 btrfs_end_transaction(trans);
ef3b9af5
FM
10498 if (ret)
10499 iput(inode);
2ff7e61e 10500 btrfs_btree_balance_dirty(fs_info);
ef3b9af5 10501 return ret;
b0d5d10f
CM
10502
10503out_inode:
10504 unlock_new_inode(inode);
10505 goto out;
10506
ef3b9af5
FM
10507}
10508
20a7db8a 10509__attribute__((const))
9d0d1c8b 10510static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
20a7db8a 10511{
9d0d1c8b 10512 return -EAGAIN;
20a7db8a
DS
10513}
10514
c6100a4b
JB
10515static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10516{
10517 struct inode *inode = private_data;
10518 return btrfs_sb(inode->i_sb);
10519}
10520
10521static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10522 u64 start, u64 end)
10523{
10524 struct inode *inode = private_data;
10525 u64 isize;
10526
10527 isize = i_size_read(inode);
10528 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10529 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10530 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10531 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10532 }
10533}
10534
10535void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10536{
10537 struct inode *inode = private_data;
10538 unsigned long index = start >> PAGE_SHIFT;
10539 unsigned long end_index = end >> PAGE_SHIFT;
10540 struct page *page;
10541
10542 while (index <= end_index) {
10543 page = find_get_page(inode->i_mapping, index);
10544 ASSERT(page); /* Pages should be in the extent_io_tree */
10545 set_page_writeback(page);
10546 put_page(page);
10547 index++;
10548 }
10549}
10550
6e1d5dcc 10551static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10552 .getattr = btrfs_getattr,
39279cc3
CM
10553 .lookup = btrfs_lookup,
10554 .create = btrfs_create,
10555 .unlink = btrfs_unlink,
10556 .link = btrfs_link,
10557 .mkdir = btrfs_mkdir,
10558 .rmdir = btrfs_rmdir,
2773bf00 10559 .rename = btrfs_rename2,
39279cc3
CM
10560 .symlink = btrfs_symlink,
10561 .setattr = btrfs_setattr,
618e21d5 10562 .mknod = btrfs_mknod,
5103e947 10563 .listxattr = btrfs_listxattr,
fdebe2bd 10564 .permission = btrfs_permission,
4e34e719 10565 .get_acl = btrfs_get_acl,
996a710d 10566 .set_acl = btrfs_set_acl,
93fd63c2 10567 .update_time = btrfs_update_time,
ef3b9af5 10568 .tmpfile = btrfs_tmpfile,
39279cc3 10569};
6e1d5dcc 10570static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10571 .lookup = btrfs_lookup,
fdebe2bd 10572 .permission = btrfs_permission,
93fd63c2 10573 .update_time = btrfs_update_time,
39279cc3 10574};
76dda93c 10575
828c0950 10576static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10577 .llseek = generic_file_llseek,
10578 .read = generic_read_dir,
02dbfc99 10579 .iterate_shared = btrfs_real_readdir,
23b5ec74 10580 .open = btrfs_opendir,
34287aa3 10581 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10582#ifdef CONFIG_COMPAT
4c63c245 10583 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10584#endif
6bf13c0c 10585 .release = btrfs_release_file,
e02119d5 10586 .fsync = btrfs_sync_file,
39279cc3
CM
10587};
10588
20e5506b 10589static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10590 /* mandatory callbacks */
065631f6 10591 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac 10592 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4d53dddb 10593 .merge_bio_hook = btrfs_merge_bio_hook,
9d0d1c8b 10594 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
c6100a4b
JB
10595 .tree_fs_info = iotree_fs_info,
10596 .set_range_writeback = btrfs_set_range_writeback,
4d53dddb
DS
10597
10598 /* optional callbacks */
10599 .fill_delalloc = run_delalloc_range,
e6dcd2dc 10600 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10601 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10602 .set_bit_hook = btrfs_set_bit_hook,
10603 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10604 .merge_extent_hook = btrfs_merge_extent_hook,
10605 .split_extent_hook = btrfs_split_extent_hook,
c6100a4b 10606 .check_extent_io_range = btrfs_check_extent_io_range,
07157aac
CM
10607};
10608
35054394
CM
10609/*
10610 * btrfs doesn't support the bmap operation because swapfiles
10611 * use bmap to make a mapping of extents in the file. They assume
10612 * these extents won't change over the life of the file and they
10613 * use the bmap result to do IO directly to the drive.
10614 *
10615 * the btrfs bmap call would return logical addresses that aren't
10616 * suitable for IO and they also will change frequently as COW
10617 * operations happen. So, swapfile + btrfs == corruption.
10618 *
10619 * For now we're avoiding this by dropping bmap.
10620 */
7f09410b 10621static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10622 .readpage = btrfs_readpage,
10623 .writepage = btrfs_writepage,
b293f02e 10624 .writepages = btrfs_writepages,
3ab2fb5a 10625 .readpages = btrfs_readpages,
16432985 10626 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10627 .invalidatepage = btrfs_invalidatepage,
10628 .releasepage = btrfs_releasepage,
e6dcd2dc 10629 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10630 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10631};
10632
7f09410b 10633static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10634 .readpage = btrfs_readpage,
10635 .writepage = btrfs_writepage,
2bf5a725
CM
10636 .invalidatepage = btrfs_invalidatepage,
10637 .releasepage = btrfs_releasepage,
39279cc3
CM
10638};
10639
6e1d5dcc 10640static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10641 .getattr = btrfs_getattr,
10642 .setattr = btrfs_setattr,
5103e947 10643 .listxattr = btrfs_listxattr,
fdebe2bd 10644 .permission = btrfs_permission,
1506fcc8 10645 .fiemap = btrfs_fiemap,
4e34e719 10646 .get_acl = btrfs_get_acl,
996a710d 10647 .set_acl = btrfs_set_acl,
e41f941a 10648 .update_time = btrfs_update_time,
39279cc3 10649};
6e1d5dcc 10650static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10651 .getattr = btrfs_getattr,
10652 .setattr = btrfs_setattr,
fdebe2bd 10653 .permission = btrfs_permission,
33268eaf 10654 .listxattr = btrfs_listxattr,
4e34e719 10655 .get_acl = btrfs_get_acl,
996a710d 10656 .set_acl = btrfs_set_acl,
e41f941a 10657 .update_time = btrfs_update_time,
618e21d5 10658};
6e1d5dcc 10659static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10660 .get_link = page_get_link,
f209561a 10661 .getattr = btrfs_getattr,
22c44fe6 10662 .setattr = btrfs_setattr,
fdebe2bd 10663 .permission = btrfs_permission,
0279b4cd 10664 .listxattr = btrfs_listxattr,
e41f941a 10665 .update_time = btrfs_update_time,
39279cc3 10666};
76dda93c 10667
82d339d9 10668const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10669 .d_delete = btrfs_dentry_delete,
b4aff1f8 10670 .d_release = btrfs_dentry_release,
76dda93c 10671};