]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/btrfs/inode.c
Btrfs: fix what bits we clear when erroring out from delalloc
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
a27bb332 35#include <linux/aio.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
5a0e3ad6 40#include <linux/slab.h>
7a36ddec 41#include <linux/ratelimit.h>
22c44fe6 42#include <linux/mount.h>
55e301fd 43#include <linux/btrfs.h>
53b381b3 44#include <linux/blkdev.h>
f23b5a59 45#include <linux/posix_acl_xattr.h>
4b4e25f2 46#include "compat.h"
39279cc3
CM
47#include "ctree.h"
48#include "disk-io.h"
49#include "transaction.h"
50#include "btrfs_inode.h"
39279cc3 51#include "print-tree.h"
e6dcd2dc 52#include "ordered-data.h"
95819c05 53#include "xattr.h"
e02119d5 54#include "tree-log.h"
4a54c8c1 55#include "volumes.h"
c8b97818 56#include "compression.h"
b4ce94de 57#include "locking.h"
dc89e982 58#include "free-space-cache.h"
581bb050 59#include "inode-map.h"
38c227d8 60#include "backref.h"
f23b5a59 61#include "hash.h"
39279cc3
CM
62
63struct btrfs_iget_args {
64 u64 ino;
65 struct btrfs_root *root;
66};
67
6e1d5dcc
AD
68static const struct inode_operations btrfs_dir_inode_operations;
69static const struct inode_operations btrfs_symlink_inode_operations;
70static const struct inode_operations btrfs_dir_ro_inode_operations;
71static const struct inode_operations btrfs_special_inode_operations;
72static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
73static const struct address_space_operations btrfs_aops;
74static const struct address_space_operations btrfs_symlink_aops;
828c0950 75static const struct file_operations btrfs_dir_file_operations;
d1310b2e 76static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
77
78static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 79static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
80struct kmem_cache *btrfs_trans_handle_cachep;
81struct kmem_cache *btrfs_transaction_cachep;
39279cc3 82struct kmem_cache *btrfs_path_cachep;
dc89e982 83struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
84
85#define S_SHIFT 12
86static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94};
95
3972f260 96static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 97static int btrfs_truncate(struct inode *inode);
5fd02043 98static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
99static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
70c8a91c
JB
103static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
cc95bef6
JB
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
7b128766 108
48a3b636 109static int btrfs_dirty_inode(struct inode *inode);
7b128766 110
f34f57a3 111static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
0279b4cd
JO
114{
115 int err;
116
f34f57a3 117 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 118 if (!err)
2a7dba39 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
120 return err;
121}
122
c8b97818
CM
123/*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
d397712b 128static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
129 struct btrfs_root *root, struct inode *inode,
130 u64 start, size_t size, size_t compressed_size,
fe3f566c 131 int compress_type,
c8b97818
CM
132 struct page **compressed_pages)
133{
134 struct btrfs_key key;
135 struct btrfs_path *path;
136 struct extent_buffer *leaf;
137 struct page *page = NULL;
138 char *kaddr;
139 unsigned long ptr;
140 struct btrfs_file_extent_item *ei;
141 int err = 0;
142 int ret;
143 size_t cur_size = size;
144 size_t datasize;
145 unsigned long offset;
c8b97818 146
fe3f566c 147 if (compressed_size && compressed_pages)
c8b97818 148 cur_size = compressed_size;
c8b97818 149
d397712b
CM
150 path = btrfs_alloc_path();
151 if (!path)
c8b97818
CM
152 return -ENOMEM;
153
b9473439 154 path->leave_spinning = 1;
c8b97818 155
33345d01 156 key.objectid = btrfs_ino(inode);
c8b97818
CM
157 key.offset = start;
158 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
159 datasize = btrfs_file_extent_calc_inline_size(cur_size);
160
161 inode_add_bytes(inode, size);
162 ret = btrfs_insert_empty_item(trans, root, path, &key,
163 datasize);
c8b97818
CM
164 if (ret) {
165 err = ret;
c8b97818
CM
166 goto fail;
167 }
168 leaf = path->nodes[0];
169 ei = btrfs_item_ptr(leaf, path->slots[0],
170 struct btrfs_file_extent_item);
171 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
172 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
173 btrfs_set_file_extent_encryption(leaf, ei, 0);
174 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
175 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
176 ptr = btrfs_file_extent_inline_start(ei);
177
261507a0 178 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
179 struct page *cpage;
180 int i = 0;
d397712b 181 while (compressed_size > 0) {
c8b97818 182 cpage = compressed_pages[i];
5b050f04 183 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
184 PAGE_CACHE_SIZE);
185
7ac687d9 186 kaddr = kmap_atomic(cpage);
c8b97818 187 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 188 kunmap_atomic(kaddr);
c8b97818
CM
189
190 i++;
191 ptr += cur_size;
192 compressed_size -= cur_size;
193 }
194 btrfs_set_file_extent_compression(leaf, ei,
261507a0 195 compress_type);
c8b97818
CM
196 } else {
197 page = find_get_page(inode->i_mapping,
198 start >> PAGE_CACHE_SHIFT);
199 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 200 kaddr = kmap_atomic(page);
c8b97818
CM
201 offset = start & (PAGE_CACHE_SIZE - 1);
202 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 203 kunmap_atomic(kaddr);
c8b97818
CM
204 page_cache_release(page);
205 }
206 btrfs_mark_buffer_dirty(leaf);
207 btrfs_free_path(path);
208
c2167754
YZ
209 /*
210 * we're an inline extent, so nobody can
211 * extend the file past i_size without locking
212 * a page we already have locked.
213 *
214 * We must do any isize and inode updates
215 * before we unlock the pages. Otherwise we
216 * could end up racing with unlink.
217 */
c8b97818 218 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 219 ret = btrfs_update_inode(trans, root, inode);
c2167754 220
79787eaa 221 return ret;
c8b97818
CM
222fail:
223 btrfs_free_path(path);
224 return err;
225}
226
227
228/*
229 * conditionally insert an inline extent into the file. This
230 * does the checks required to make sure the data is small enough
231 * to fit as an inline extent.
232 */
7f366cfe 233static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
234 struct btrfs_root *root,
235 struct inode *inode, u64 start, u64 end,
fe3f566c 236 size_t compressed_size, int compress_type,
c8b97818
CM
237 struct page **compressed_pages)
238{
239 u64 isize = i_size_read(inode);
240 u64 actual_end = min(end + 1, isize);
241 u64 inline_len = actual_end - start;
fda2832f 242 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
243 u64 data_len = inline_len;
244 int ret;
245
246 if (compressed_size)
247 data_len = compressed_size;
248
249 if (start > 0 ||
70b99e69 250 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
251 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
252 (!compressed_size &&
253 (actual_end & (root->sectorsize - 1)) == 0) ||
254 end + 1 < isize ||
255 data_len > root->fs_info->max_inline) {
256 return 1;
257 }
258
2671485d 259 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
79787eaa
JM
260 if (ret)
261 return ret;
c8b97818
CM
262
263 if (isize > actual_end)
264 inline_len = min_t(u64, isize, actual_end);
265 ret = insert_inline_extent(trans, root, inode, start,
266 inline_len, compressed_size,
fe3f566c 267 compress_type, compressed_pages);
2adcac1a 268 if (ret && ret != -ENOSPC) {
79787eaa
JM
269 btrfs_abort_transaction(trans, root, ret);
270 return ret;
2adcac1a
JB
271 } else if (ret == -ENOSPC) {
272 return 1;
79787eaa 273 }
2adcac1a 274
bdc20e67 275 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 276 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 277 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
278 return 0;
279}
280
771ed689
CM
281struct async_extent {
282 u64 start;
283 u64 ram_size;
284 u64 compressed_size;
285 struct page **pages;
286 unsigned long nr_pages;
261507a0 287 int compress_type;
771ed689
CM
288 struct list_head list;
289};
290
291struct async_cow {
292 struct inode *inode;
293 struct btrfs_root *root;
294 struct page *locked_page;
295 u64 start;
296 u64 end;
297 struct list_head extents;
298 struct btrfs_work work;
299};
300
301static noinline int add_async_extent(struct async_cow *cow,
302 u64 start, u64 ram_size,
303 u64 compressed_size,
304 struct page **pages,
261507a0
LZ
305 unsigned long nr_pages,
306 int compress_type)
771ed689
CM
307{
308 struct async_extent *async_extent;
309
310 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 311 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
312 async_extent->start = start;
313 async_extent->ram_size = ram_size;
314 async_extent->compressed_size = compressed_size;
315 async_extent->pages = pages;
316 async_extent->nr_pages = nr_pages;
261507a0 317 async_extent->compress_type = compress_type;
771ed689
CM
318 list_add_tail(&async_extent->list, &cow->extents);
319 return 0;
320}
321
d352ac68 322/*
771ed689
CM
323 * we create compressed extents in two phases. The first
324 * phase compresses a range of pages that have already been
325 * locked (both pages and state bits are locked).
c8b97818 326 *
771ed689
CM
327 * This is done inside an ordered work queue, and the compression
328 * is spread across many cpus. The actual IO submission is step
329 * two, and the ordered work queue takes care of making sure that
330 * happens in the same order things were put onto the queue by
331 * writepages and friends.
c8b97818 332 *
771ed689
CM
333 * If this code finds it can't get good compression, it puts an
334 * entry onto the work queue to write the uncompressed bytes. This
335 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
336 * are written in the same order that the flusher thread sent them
337 * down.
d352ac68 338 */
771ed689
CM
339static noinline int compress_file_range(struct inode *inode,
340 struct page *locked_page,
341 u64 start, u64 end,
342 struct async_cow *async_cow,
343 int *num_added)
b888db2b
CM
344{
345 struct btrfs_root *root = BTRFS_I(inode)->root;
346 struct btrfs_trans_handle *trans;
db94535d 347 u64 num_bytes;
db94535d 348 u64 blocksize = root->sectorsize;
c8b97818 349 u64 actual_end;
42dc7bab 350 u64 isize = i_size_read(inode);
e6dcd2dc 351 int ret = 0;
c8b97818
CM
352 struct page **pages = NULL;
353 unsigned long nr_pages;
354 unsigned long nr_pages_ret = 0;
355 unsigned long total_compressed = 0;
356 unsigned long total_in = 0;
357 unsigned long max_compressed = 128 * 1024;
771ed689 358 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
359 int i;
360 int will_compress;
261507a0 361 int compress_type = root->fs_info->compress_type;
4adaa611 362 int redirty = 0;
b888db2b 363
4cb13e5d
LB
364 /* if this is a small write inside eof, kick off a defrag */
365 if ((end - start + 1) < 16 * 1024 &&
366 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
367 btrfs_add_inode_defrag(NULL, inode);
368
42dc7bab 369 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
370again:
371 will_compress = 0;
372 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
373 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 374
f03d9301
CM
375 /*
376 * we don't want to send crud past the end of i_size through
377 * compression, that's just a waste of CPU time. So, if the
378 * end of the file is before the start of our current
379 * requested range of bytes, we bail out to the uncompressed
380 * cleanup code that can deal with all of this.
381 *
382 * It isn't really the fastest way to fix things, but this is a
383 * very uncommon corner.
384 */
385 if (actual_end <= start)
386 goto cleanup_and_bail_uncompressed;
387
c8b97818
CM
388 total_compressed = actual_end - start;
389
390 /* we want to make sure that amount of ram required to uncompress
391 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
392 * of a compressed extent to 128k. This is a crucial number
393 * because it also controls how easily we can spread reads across
394 * cpus for decompression.
395 *
396 * We also want to make sure the amount of IO required to do
397 * a random read is reasonably small, so we limit the size of
398 * a compressed extent to 128k.
c8b97818
CM
399 */
400 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 401 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 402 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
403 total_in = 0;
404 ret = 0;
db94535d 405
771ed689
CM
406 /*
407 * we do compression for mount -o compress and when the
408 * inode has not been flagged as nocompress. This flag can
409 * change at any time if we discover bad compression ratios.
c8b97818 410 */
6cbff00f 411 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 412 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
413 (BTRFS_I(inode)->force_compress) ||
414 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 415 WARN_ON(pages);
cfbc246e 416 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
417 if (!pages) {
418 /* just bail out to the uncompressed code */
419 goto cont;
420 }
c8b97818 421
261507a0
LZ
422 if (BTRFS_I(inode)->force_compress)
423 compress_type = BTRFS_I(inode)->force_compress;
424
4adaa611
CM
425 /*
426 * we need to call clear_page_dirty_for_io on each
427 * page in the range. Otherwise applications with the file
428 * mmap'd can wander in and change the page contents while
429 * we are compressing them.
430 *
431 * If the compression fails for any reason, we set the pages
432 * dirty again later on.
433 */
434 extent_range_clear_dirty_for_io(inode, start, end);
435 redirty = 1;
261507a0
LZ
436 ret = btrfs_compress_pages(compress_type,
437 inode->i_mapping, start,
438 total_compressed, pages,
439 nr_pages, &nr_pages_ret,
440 &total_in,
441 &total_compressed,
442 max_compressed);
c8b97818
CM
443
444 if (!ret) {
445 unsigned long offset = total_compressed &
446 (PAGE_CACHE_SIZE - 1);
447 struct page *page = pages[nr_pages_ret - 1];
448 char *kaddr;
449
450 /* zero the tail end of the last page, we might be
451 * sending it down to disk
452 */
453 if (offset) {
7ac687d9 454 kaddr = kmap_atomic(page);
c8b97818
CM
455 memset(kaddr + offset, 0,
456 PAGE_CACHE_SIZE - offset);
7ac687d9 457 kunmap_atomic(kaddr);
c8b97818
CM
458 }
459 will_compress = 1;
460 }
461 }
560f7d75 462cont:
c8b97818 463 if (start == 0) {
7a7eaa40 464 trans = btrfs_join_transaction(root);
79787eaa
JM
465 if (IS_ERR(trans)) {
466 ret = PTR_ERR(trans);
467 trans = NULL;
468 goto cleanup_and_out;
469 }
0ca1f7ce 470 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 471
c8b97818 472 /* lets try to make an inline extent */
771ed689 473 if (ret || total_in < (actual_end - start)) {
c8b97818 474 /* we didn't compress the entire range, try
771ed689 475 * to make an uncompressed inline extent.
c8b97818
CM
476 */
477 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 478 start, end, 0, 0, NULL);
c8b97818 479 } else {
771ed689 480 /* try making a compressed inline extent */
c8b97818
CM
481 ret = cow_file_range_inline(trans, root, inode,
482 start, end,
fe3f566c
LZ
483 total_compressed,
484 compress_type, pages);
c8b97818 485 }
79787eaa 486 if (ret <= 0) {
151a41bc
JB
487 unsigned long clear_flags = EXTENT_DELALLOC |
488 EXTENT_DEFRAG;
489 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
490
771ed689 491 /*
79787eaa
JM
492 * inline extent creation worked or returned error,
493 * we don't need to create any more async work items.
494 * Unlock and free up our temp pages.
771ed689 495 */
c2790a2e 496 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 497 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
498 PAGE_CLEAR_DIRTY |
499 PAGE_SET_WRITEBACK |
500 PAGE_END_WRITEBACK);
c2167754 501 btrfs_end_transaction(trans, root);
c8b97818
CM
502 goto free_pages_out;
503 }
c2167754 504 btrfs_end_transaction(trans, root);
c8b97818
CM
505 }
506
507 if (will_compress) {
508 /*
509 * we aren't doing an inline extent round the compressed size
510 * up to a block size boundary so the allocator does sane
511 * things
512 */
fda2832f 513 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
514
515 /*
516 * one last check to make sure the compression is really a
517 * win, compare the page count read with the blocks on disk
518 */
fda2832f 519 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
520 if (total_compressed >= total_in) {
521 will_compress = 0;
522 } else {
c8b97818
CM
523 num_bytes = total_in;
524 }
525 }
526 if (!will_compress && pages) {
527 /*
528 * the compression code ran but failed to make things smaller,
529 * free any pages it allocated and our page pointer array
530 */
531 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 532 WARN_ON(pages[i]->mapping);
c8b97818
CM
533 page_cache_release(pages[i]);
534 }
535 kfree(pages);
536 pages = NULL;
537 total_compressed = 0;
538 nr_pages_ret = 0;
539
540 /* flag the file so we don't compress in the future */
1e701a32
CM
541 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
542 !(BTRFS_I(inode)->force_compress)) {
a555f810 543 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 544 }
c8b97818 545 }
771ed689
CM
546 if (will_compress) {
547 *num_added += 1;
c8b97818 548
771ed689
CM
549 /* the async work queues will take care of doing actual
550 * allocation on disk for these compressed pages,
551 * and will submit them to the elevator.
552 */
553 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
554 total_compressed, pages, nr_pages_ret,
555 compress_type);
179e29e4 556
24ae6365 557 if (start + num_bytes < end) {
771ed689
CM
558 start += num_bytes;
559 pages = NULL;
560 cond_resched();
561 goto again;
562 }
563 } else {
f03d9301 564cleanup_and_bail_uncompressed:
771ed689
CM
565 /*
566 * No compression, but we still need to write the pages in
567 * the file we've been given so far. redirty the locked
568 * page if it corresponds to our extent and set things up
569 * for the async work queue to run cow_file_range to do
570 * the normal delalloc dance
571 */
572 if (page_offset(locked_page) >= start &&
573 page_offset(locked_page) <= end) {
574 __set_page_dirty_nobuffers(locked_page);
575 /* unlocked later on in the async handlers */
576 }
4adaa611
CM
577 if (redirty)
578 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
579 add_async_extent(async_cow, start, end - start + 1,
580 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
581 *num_added += 1;
582 }
3b951516 583
771ed689 584out:
79787eaa 585 return ret;
771ed689
CM
586
587free_pages_out:
588 for (i = 0; i < nr_pages_ret; i++) {
589 WARN_ON(pages[i]->mapping);
590 page_cache_release(pages[i]);
591 }
d397712b 592 kfree(pages);
771ed689
CM
593
594 goto out;
79787eaa
JM
595
596cleanup_and_out:
c2790a2e 597 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc
JB
598 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
599 EXTENT_DEFRAG, PAGE_UNLOCK |
600 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
601 PAGE_END_WRITEBACK);
79787eaa
JM
602 if (!trans || IS_ERR(trans))
603 btrfs_error(root->fs_info, ret, "Failed to join transaction");
604 else
605 btrfs_abort_transaction(trans, root, ret);
606 goto free_pages_out;
771ed689
CM
607}
608
609/*
610 * phase two of compressed writeback. This is the ordered portion
611 * of the code, which only gets called in the order the work was
612 * queued. We walk all the async extents created by compress_file_range
613 * and send them down to the disk.
614 */
615static noinline int submit_compressed_extents(struct inode *inode,
616 struct async_cow *async_cow)
617{
618 struct async_extent *async_extent;
619 u64 alloc_hint = 0;
620 struct btrfs_trans_handle *trans;
621 struct btrfs_key ins;
622 struct extent_map *em;
623 struct btrfs_root *root = BTRFS_I(inode)->root;
624 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
625 struct extent_io_tree *io_tree;
f5a84ee3 626 int ret = 0;
771ed689
CM
627
628 if (list_empty(&async_cow->extents))
629 return 0;
630
3e04e7f1 631again:
d397712b 632 while (!list_empty(&async_cow->extents)) {
771ed689
CM
633 async_extent = list_entry(async_cow->extents.next,
634 struct async_extent, list);
635 list_del(&async_extent->list);
c8b97818 636
771ed689
CM
637 io_tree = &BTRFS_I(inode)->io_tree;
638
f5a84ee3 639retry:
771ed689
CM
640 /* did the compression code fall back to uncompressed IO? */
641 if (!async_extent->pages) {
642 int page_started = 0;
643 unsigned long nr_written = 0;
644
645 lock_extent(io_tree, async_extent->start,
2ac55d41 646 async_extent->start +
d0082371 647 async_extent->ram_size - 1);
771ed689
CM
648
649 /* allocate blocks */
f5a84ee3
JB
650 ret = cow_file_range(inode, async_cow->locked_page,
651 async_extent->start,
652 async_extent->start +
653 async_extent->ram_size - 1,
654 &page_started, &nr_written, 0);
771ed689 655
79787eaa
JM
656 /* JDM XXX */
657
771ed689
CM
658 /*
659 * if page_started, cow_file_range inserted an
660 * inline extent and took care of all the unlocking
661 * and IO for us. Otherwise, we need to submit
662 * all those pages down to the drive.
663 */
f5a84ee3 664 if (!page_started && !ret)
771ed689
CM
665 extent_write_locked_range(io_tree,
666 inode, async_extent->start,
d397712b 667 async_extent->start +
771ed689
CM
668 async_extent->ram_size - 1,
669 btrfs_get_extent,
670 WB_SYNC_ALL);
3e04e7f1
JB
671 else if (ret)
672 unlock_page(async_cow->locked_page);
771ed689
CM
673 kfree(async_extent);
674 cond_resched();
675 continue;
676 }
677
678 lock_extent(io_tree, async_extent->start,
d0082371 679 async_extent->start + async_extent->ram_size - 1);
771ed689 680
7a7eaa40 681 trans = btrfs_join_transaction(root);
79787eaa
JM
682 if (IS_ERR(trans)) {
683 ret = PTR_ERR(trans);
684 } else {
685 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
686 ret = btrfs_reserve_extent(trans, root,
771ed689
CM
687 async_extent->compressed_size,
688 async_extent->compressed_size,
81c9ad23 689 0, alloc_hint, &ins, 1);
962197ba 690 if (ret && ret != -ENOSPC)
79787eaa
JM
691 btrfs_abort_transaction(trans, root, ret);
692 btrfs_end_transaction(trans, root);
693 }
c2167754 694
f5a84ee3
JB
695 if (ret) {
696 int i;
3e04e7f1 697
f5a84ee3
JB
698 for (i = 0; i < async_extent->nr_pages; i++) {
699 WARN_ON(async_extent->pages[i]->mapping);
700 page_cache_release(async_extent->pages[i]);
701 }
702 kfree(async_extent->pages);
703 async_extent->nr_pages = 0;
704 async_extent->pages = NULL;
3e04e7f1 705
fdf8e2ea
JB
706 if (ret == -ENOSPC) {
707 unlock_extent(io_tree, async_extent->start,
708 async_extent->start +
709 async_extent->ram_size - 1);
79787eaa 710 goto retry;
fdf8e2ea 711 }
3e04e7f1 712 goto out_free;
f5a84ee3
JB
713 }
714
c2167754
YZ
715 /*
716 * here we're doing allocation and writeback of the
717 * compressed pages
718 */
719 btrfs_drop_extent_cache(inode, async_extent->start,
720 async_extent->start +
721 async_extent->ram_size - 1, 0);
722
172ddd60 723 em = alloc_extent_map();
b9aa55be
LB
724 if (!em) {
725 ret = -ENOMEM;
3e04e7f1 726 goto out_free_reserve;
b9aa55be 727 }
771ed689
CM
728 em->start = async_extent->start;
729 em->len = async_extent->ram_size;
445a6944 730 em->orig_start = em->start;
2ab28f32
JB
731 em->mod_start = em->start;
732 em->mod_len = em->len;
c8b97818 733
771ed689
CM
734 em->block_start = ins.objectid;
735 em->block_len = ins.offset;
b4939680 736 em->orig_block_len = ins.offset;
cc95bef6 737 em->ram_bytes = async_extent->ram_size;
771ed689 738 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 739 em->compress_type = async_extent->compress_type;
771ed689
CM
740 set_bit(EXTENT_FLAG_PINNED, &em->flags);
741 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 742 em->generation = -1;
771ed689 743
d397712b 744 while (1) {
890871be 745 write_lock(&em_tree->lock);
09a2a8f9 746 ret = add_extent_mapping(em_tree, em, 1);
890871be 747 write_unlock(&em_tree->lock);
771ed689
CM
748 if (ret != -EEXIST) {
749 free_extent_map(em);
750 break;
751 }
752 btrfs_drop_extent_cache(inode, async_extent->start,
753 async_extent->start +
754 async_extent->ram_size - 1, 0);
755 }
756
3e04e7f1
JB
757 if (ret)
758 goto out_free_reserve;
759
261507a0
LZ
760 ret = btrfs_add_ordered_extent_compress(inode,
761 async_extent->start,
762 ins.objectid,
763 async_extent->ram_size,
764 ins.offset,
765 BTRFS_ORDERED_COMPRESSED,
766 async_extent->compress_type);
3e04e7f1
JB
767 if (ret)
768 goto out_free_reserve;
771ed689 769
771ed689
CM
770 /*
771 * clear dirty, set writeback and unlock the pages.
772 */
c2790a2e 773 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
774 async_extent->start +
775 async_extent->ram_size - 1,
151a41bc
JB
776 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
777 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 778 PAGE_SET_WRITEBACK);
771ed689 779 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
780 async_extent->start,
781 async_extent->ram_size,
782 ins.objectid,
783 ins.offset, async_extent->pages,
784 async_extent->nr_pages);
771ed689
CM
785 alloc_hint = ins.objectid + ins.offset;
786 kfree(async_extent);
3e04e7f1
JB
787 if (ret)
788 goto out;
771ed689
CM
789 cond_resched();
790 }
79787eaa
JM
791 ret = 0;
792out:
793 return ret;
3e04e7f1
JB
794out_free_reserve:
795 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 796out_free:
c2790a2e 797 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
798 async_extent->start +
799 async_extent->ram_size - 1,
c2790a2e 800 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
801 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
802 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
803 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 804 kfree(async_extent);
3e04e7f1 805 goto again;
771ed689
CM
806}
807
4b46fce2
JB
808static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
809 u64 num_bytes)
810{
811 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
812 struct extent_map *em;
813 u64 alloc_hint = 0;
814
815 read_lock(&em_tree->lock);
816 em = search_extent_mapping(em_tree, start, num_bytes);
817 if (em) {
818 /*
819 * if block start isn't an actual block number then find the
820 * first block in this inode and use that as a hint. If that
821 * block is also bogus then just don't worry about it.
822 */
823 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
824 free_extent_map(em);
825 em = search_extent_mapping(em_tree, 0, 0);
826 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
827 alloc_hint = em->block_start;
828 if (em)
829 free_extent_map(em);
830 } else {
831 alloc_hint = em->block_start;
832 free_extent_map(em);
833 }
834 }
835 read_unlock(&em_tree->lock);
836
837 return alloc_hint;
838}
839
771ed689
CM
840/*
841 * when extent_io.c finds a delayed allocation range in the file,
842 * the call backs end up in this code. The basic idea is to
843 * allocate extents on disk for the range, and create ordered data structs
844 * in ram to track those extents.
845 *
846 * locked_page is the page that writepage had locked already. We use
847 * it to make sure we don't do extra locks or unlocks.
848 *
849 * *page_started is set to one if we unlock locked_page and do everything
850 * required to start IO on it. It may be clean and already done with
851 * IO when we return.
852 */
b7d5b0a8
MX
853static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
854 struct inode *inode,
855 struct btrfs_root *root,
856 struct page *locked_page,
857 u64 start, u64 end, int *page_started,
858 unsigned long *nr_written,
859 int unlock)
771ed689 860{
771ed689
CM
861 u64 alloc_hint = 0;
862 u64 num_bytes;
863 unsigned long ram_size;
864 u64 disk_num_bytes;
865 u64 cur_alloc_size;
866 u64 blocksize = root->sectorsize;
771ed689
CM
867 struct btrfs_key ins;
868 struct extent_map *em;
869 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
870 int ret = 0;
871
83eea1f1 872 BUG_ON(btrfs_is_free_space_inode(inode));
771ed689 873
fda2832f 874 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
875 num_bytes = max(blocksize, num_bytes);
876 disk_num_bytes = num_bytes;
771ed689 877
4cb5300b 878 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
879 if (num_bytes < 64 * 1024 &&
880 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
881 btrfs_add_inode_defrag(trans, inode);
882
771ed689
CM
883 if (start == 0) {
884 /* lets try to make an inline extent */
885 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 886 start, end, 0, 0, NULL);
771ed689 887 if (ret == 0) {
c2790a2e
JB
888 extent_clear_unlock_delalloc(inode, start, end, NULL,
889 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 890 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
891 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
892 PAGE_END_WRITEBACK);
c2167754 893
771ed689
CM
894 *nr_written = *nr_written +
895 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
896 *page_started = 1;
771ed689 897 goto out;
79787eaa
JM
898 } else if (ret < 0) {
899 btrfs_abort_transaction(trans, root, ret);
900 goto out_unlock;
771ed689
CM
901 }
902 }
903
904 BUG_ON(disk_num_bytes >
6c41761f 905 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 906
4b46fce2 907 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
908 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
909
d397712b 910 while (disk_num_bytes > 0) {
a791e35e
CM
911 unsigned long op;
912
287a0ab9 913 cur_alloc_size = disk_num_bytes;
e6dcd2dc 914 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 915 root->sectorsize, 0, alloc_hint,
81c9ad23 916 &ins, 1);
79787eaa
JM
917 if (ret < 0) {
918 btrfs_abort_transaction(trans, root, ret);
919 goto out_unlock;
920 }
d397712b 921
172ddd60 922 em = alloc_extent_map();
b9aa55be
LB
923 if (!em) {
924 ret = -ENOMEM;
ace68bac 925 goto out_reserve;
b9aa55be 926 }
e6dcd2dc 927 em->start = start;
445a6944 928 em->orig_start = em->start;
771ed689
CM
929 ram_size = ins.offset;
930 em->len = ins.offset;
2ab28f32
JB
931 em->mod_start = em->start;
932 em->mod_len = em->len;
c8b97818 933
e6dcd2dc 934 em->block_start = ins.objectid;
c8b97818 935 em->block_len = ins.offset;
b4939680 936 em->orig_block_len = ins.offset;
cc95bef6 937 em->ram_bytes = ram_size;
e6dcd2dc 938 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 939 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 940 em->generation = -1;
c8b97818 941
d397712b 942 while (1) {
890871be 943 write_lock(&em_tree->lock);
09a2a8f9 944 ret = add_extent_mapping(em_tree, em, 1);
890871be 945 write_unlock(&em_tree->lock);
e6dcd2dc
CM
946 if (ret != -EEXIST) {
947 free_extent_map(em);
948 break;
949 }
950 btrfs_drop_extent_cache(inode, start,
c8b97818 951 start + ram_size - 1, 0);
e6dcd2dc 952 }
ace68bac
LB
953 if (ret)
954 goto out_reserve;
e6dcd2dc 955
98d20f67 956 cur_alloc_size = ins.offset;
e6dcd2dc 957 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 958 ram_size, cur_alloc_size, 0);
ace68bac
LB
959 if (ret)
960 goto out_reserve;
c8b97818 961
17d217fe
YZ
962 if (root->root_key.objectid ==
963 BTRFS_DATA_RELOC_TREE_OBJECTID) {
964 ret = btrfs_reloc_clone_csums(inode, start,
965 cur_alloc_size);
79787eaa
JM
966 if (ret) {
967 btrfs_abort_transaction(trans, root, ret);
ace68bac 968 goto out_reserve;
79787eaa 969 }
17d217fe
YZ
970 }
971
d397712b 972 if (disk_num_bytes < cur_alloc_size)
3b951516 973 break;
d397712b 974
c8b97818
CM
975 /* we're not doing compressed IO, don't unlock the first
976 * page (which the caller expects to stay locked), don't
977 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
978 *
979 * Do set the Private2 bit so we know this page was properly
980 * setup for writepage
c8b97818 981 */
c2790a2e
JB
982 op = unlock ? PAGE_UNLOCK : 0;
983 op |= PAGE_SET_PRIVATE2;
a791e35e 984
c2790a2e
JB
985 extent_clear_unlock_delalloc(inode, start,
986 start + ram_size - 1, locked_page,
987 EXTENT_LOCKED | EXTENT_DELALLOC,
988 op);
c8b97818 989 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
990 num_bytes -= cur_alloc_size;
991 alloc_hint = ins.objectid + ins.offset;
992 start += cur_alloc_size;
b888db2b 993 }
79787eaa 994out:
be20aa9d 995 return ret;
b7d5b0a8 996
ace68bac
LB
997out_reserve:
998 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 999out_unlock:
c2790a2e 1000 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1001 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1002 EXTENT_DELALLOC | EXTENT_DEFRAG,
1003 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1004 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1005 goto out;
771ed689 1006}
c8b97818 1007
b7d5b0a8
MX
1008static noinline int cow_file_range(struct inode *inode,
1009 struct page *locked_page,
1010 u64 start, u64 end, int *page_started,
1011 unsigned long *nr_written,
1012 int unlock)
1013{
1014 struct btrfs_trans_handle *trans;
1015 struct btrfs_root *root = BTRFS_I(inode)->root;
1016 int ret;
1017
1018 trans = btrfs_join_transaction(root);
1019 if (IS_ERR(trans)) {
c2790a2e
JB
1020 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1021 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1022 EXTENT_DO_ACCOUNTING |
1023 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1024 PAGE_CLEAR_DIRTY |
1025 PAGE_SET_WRITEBACK |
1026 PAGE_END_WRITEBACK);
b7d5b0a8
MX
1027 return PTR_ERR(trans);
1028 }
1029 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1030
1031 ret = __cow_file_range(trans, inode, root, locked_page, start, end,
1032 page_started, nr_written, unlock);
1033
1034 btrfs_end_transaction(trans, root);
1035
1036 return ret;
1037}
1038
771ed689
CM
1039/*
1040 * work queue call back to started compression on a file and pages
1041 */
1042static noinline void async_cow_start(struct btrfs_work *work)
1043{
1044 struct async_cow *async_cow;
1045 int num_added = 0;
1046 async_cow = container_of(work, struct async_cow, work);
1047
1048 compress_file_range(async_cow->inode, async_cow->locked_page,
1049 async_cow->start, async_cow->end, async_cow,
1050 &num_added);
8180ef88 1051 if (num_added == 0) {
cb77fcd8 1052 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1053 async_cow->inode = NULL;
8180ef88 1054 }
771ed689
CM
1055}
1056
1057/*
1058 * work queue call back to submit previously compressed pages
1059 */
1060static noinline void async_cow_submit(struct btrfs_work *work)
1061{
1062 struct async_cow *async_cow;
1063 struct btrfs_root *root;
1064 unsigned long nr_pages;
1065
1066 async_cow = container_of(work, struct async_cow, work);
1067
1068 root = async_cow->root;
1069 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1070 PAGE_CACHE_SHIFT;
1071
66657b31 1072 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1073 5 * 1024 * 1024 &&
771ed689
CM
1074 waitqueue_active(&root->fs_info->async_submit_wait))
1075 wake_up(&root->fs_info->async_submit_wait);
1076
d397712b 1077 if (async_cow->inode)
771ed689 1078 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1079}
c8b97818 1080
771ed689
CM
1081static noinline void async_cow_free(struct btrfs_work *work)
1082{
1083 struct async_cow *async_cow;
1084 async_cow = container_of(work, struct async_cow, work);
8180ef88 1085 if (async_cow->inode)
cb77fcd8 1086 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1087 kfree(async_cow);
1088}
1089
1090static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1091 u64 start, u64 end, int *page_started,
1092 unsigned long *nr_written)
1093{
1094 struct async_cow *async_cow;
1095 struct btrfs_root *root = BTRFS_I(inode)->root;
1096 unsigned long nr_pages;
1097 u64 cur_end;
287082b0 1098 int limit = 10 * 1024 * 1024;
771ed689 1099
a3429ab7
CM
1100 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1101 1, 0, NULL, GFP_NOFS);
d397712b 1102 while (start < end) {
771ed689 1103 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1104 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1105 async_cow->inode = igrab(inode);
771ed689
CM
1106 async_cow->root = root;
1107 async_cow->locked_page = locked_page;
1108 async_cow->start = start;
1109
6cbff00f 1110 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1111 cur_end = end;
1112 else
1113 cur_end = min(end, start + 512 * 1024 - 1);
1114
1115 async_cow->end = cur_end;
1116 INIT_LIST_HEAD(&async_cow->extents);
1117
1118 async_cow->work.func = async_cow_start;
1119 async_cow->work.ordered_func = async_cow_submit;
1120 async_cow->work.ordered_free = async_cow_free;
1121 async_cow->work.flags = 0;
1122
771ed689
CM
1123 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1124 PAGE_CACHE_SHIFT;
1125 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1126
1127 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1128 &async_cow->work);
1129
1130 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1131 wait_event(root->fs_info->async_submit_wait,
1132 (atomic_read(&root->fs_info->async_delalloc_pages) <
1133 limit));
1134 }
1135
d397712b 1136 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1137 atomic_read(&root->fs_info->async_delalloc_pages)) {
1138 wait_event(root->fs_info->async_submit_wait,
1139 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1140 0));
1141 }
1142
1143 *nr_written += nr_pages;
1144 start = cur_end + 1;
1145 }
1146 *page_started = 1;
1147 return 0;
be20aa9d
CM
1148}
1149
d397712b 1150static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1151 u64 bytenr, u64 num_bytes)
1152{
1153 int ret;
1154 struct btrfs_ordered_sum *sums;
1155 LIST_HEAD(list);
1156
07d400a6 1157 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1158 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1159 if (ret == 0 && list_empty(&list))
1160 return 0;
1161
1162 while (!list_empty(&list)) {
1163 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1164 list_del(&sums->list);
1165 kfree(sums);
1166 }
1167 return 1;
1168}
1169
d352ac68
CM
1170/*
1171 * when nowcow writeback call back. This checks for snapshots or COW copies
1172 * of the extents that exist in the file, and COWs the file as required.
1173 *
1174 * If no cow copies or snapshots exist, we write directly to the existing
1175 * blocks on disk
1176 */
7f366cfe
CM
1177static noinline int run_delalloc_nocow(struct inode *inode,
1178 struct page *locked_page,
771ed689
CM
1179 u64 start, u64 end, int *page_started, int force,
1180 unsigned long *nr_written)
be20aa9d 1181{
be20aa9d 1182 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1183 struct btrfs_trans_handle *trans;
be20aa9d 1184 struct extent_buffer *leaf;
be20aa9d 1185 struct btrfs_path *path;
80ff3856 1186 struct btrfs_file_extent_item *fi;
be20aa9d 1187 struct btrfs_key found_key;
80ff3856
YZ
1188 u64 cow_start;
1189 u64 cur_offset;
1190 u64 extent_end;
5d4f98a2 1191 u64 extent_offset;
80ff3856
YZ
1192 u64 disk_bytenr;
1193 u64 num_bytes;
b4939680 1194 u64 disk_num_bytes;
cc95bef6 1195 u64 ram_bytes;
80ff3856 1196 int extent_type;
79787eaa 1197 int ret, err;
d899e052 1198 int type;
80ff3856
YZ
1199 int nocow;
1200 int check_prev = 1;
82d5902d 1201 bool nolock;
33345d01 1202 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1203
1204 path = btrfs_alloc_path();
17ca04af 1205 if (!path) {
c2790a2e
JB
1206 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1207 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1208 EXTENT_DO_ACCOUNTING |
1209 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1210 PAGE_CLEAR_DIRTY |
1211 PAGE_SET_WRITEBACK |
1212 PAGE_END_WRITEBACK);
d8926bb3 1213 return -ENOMEM;
17ca04af 1214 }
82d5902d 1215
83eea1f1 1216 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1217
1218 if (nolock)
7a7eaa40 1219 trans = btrfs_join_transaction_nolock(root);
82d5902d 1220 else
7a7eaa40 1221 trans = btrfs_join_transaction(root);
ff5714cc 1222
79787eaa 1223 if (IS_ERR(trans)) {
c2790a2e
JB
1224 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1225 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1226 EXTENT_DO_ACCOUNTING |
1227 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1228 PAGE_CLEAR_DIRTY |
1229 PAGE_SET_WRITEBACK |
1230 PAGE_END_WRITEBACK);
79787eaa
JM
1231 btrfs_free_path(path);
1232 return PTR_ERR(trans);
1233 }
1234
74b21075 1235 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1236
80ff3856
YZ
1237 cow_start = (u64)-1;
1238 cur_offset = start;
1239 while (1) {
33345d01 1240 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1241 cur_offset, 0);
79787eaa
JM
1242 if (ret < 0) {
1243 btrfs_abort_transaction(trans, root, ret);
1244 goto error;
1245 }
80ff3856
YZ
1246 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1247 leaf = path->nodes[0];
1248 btrfs_item_key_to_cpu(leaf, &found_key,
1249 path->slots[0] - 1);
33345d01 1250 if (found_key.objectid == ino &&
80ff3856
YZ
1251 found_key.type == BTRFS_EXTENT_DATA_KEY)
1252 path->slots[0]--;
1253 }
1254 check_prev = 0;
1255next_slot:
1256 leaf = path->nodes[0];
1257 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1258 ret = btrfs_next_leaf(root, path);
79787eaa
JM
1259 if (ret < 0) {
1260 btrfs_abort_transaction(trans, root, ret);
1261 goto error;
1262 }
80ff3856
YZ
1263 if (ret > 0)
1264 break;
1265 leaf = path->nodes[0];
1266 }
be20aa9d 1267
80ff3856
YZ
1268 nocow = 0;
1269 disk_bytenr = 0;
17d217fe 1270 num_bytes = 0;
80ff3856
YZ
1271 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1272
33345d01 1273 if (found_key.objectid > ino ||
80ff3856
YZ
1274 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1275 found_key.offset > end)
1276 break;
1277
1278 if (found_key.offset > cur_offset) {
1279 extent_end = found_key.offset;
e9061e21 1280 extent_type = 0;
80ff3856
YZ
1281 goto out_check;
1282 }
1283
1284 fi = btrfs_item_ptr(leaf, path->slots[0],
1285 struct btrfs_file_extent_item);
1286 extent_type = btrfs_file_extent_type(leaf, fi);
1287
cc95bef6 1288 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1289 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1290 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1291 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1292 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1293 extent_end = found_key.offset +
1294 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1295 disk_num_bytes =
1296 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1297 if (extent_end <= start) {
1298 path->slots[0]++;
1299 goto next_slot;
1300 }
17d217fe
YZ
1301 if (disk_bytenr == 0)
1302 goto out_check;
80ff3856
YZ
1303 if (btrfs_file_extent_compression(leaf, fi) ||
1304 btrfs_file_extent_encryption(leaf, fi) ||
1305 btrfs_file_extent_other_encoding(leaf, fi))
1306 goto out_check;
d899e052
YZ
1307 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1308 goto out_check;
d2fb3437 1309 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1310 goto out_check;
33345d01 1311 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1312 found_key.offset -
1313 extent_offset, disk_bytenr))
17d217fe 1314 goto out_check;
5d4f98a2 1315 disk_bytenr += extent_offset;
17d217fe
YZ
1316 disk_bytenr += cur_offset - found_key.offset;
1317 num_bytes = min(end + 1, extent_end) - cur_offset;
1318 /*
1319 * force cow if csum exists in the range.
1320 * this ensure that csum for a given extent are
1321 * either valid or do not exist.
1322 */
1323 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1324 goto out_check;
80ff3856
YZ
1325 nocow = 1;
1326 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1327 extent_end = found_key.offset +
1328 btrfs_file_extent_inline_len(leaf, fi);
1329 extent_end = ALIGN(extent_end, root->sectorsize);
1330 } else {
1331 BUG_ON(1);
1332 }
1333out_check:
1334 if (extent_end <= start) {
1335 path->slots[0]++;
1336 goto next_slot;
1337 }
1338 if (!nocow) {
1339 if (cow_start == (u64)-1)
1340 cow_start = cur_offset;
1341 cur_offset = extent_end;
1342 if (cur_offset > end)
1343 break;
1344 path->slots[0]++;
1345 goto next_slot;
7ea394f1
YZ
1346 }
1347
b3b4aa74 1348 btrfs_release_path(path);
80ff3856 1349 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1350 ret = __cow_file_range(trans, inode, root, locked_page,
1351 cow_start, found_key.offset - 1,
1352 page_started, nr_written, 1);
79787eaa
JM
1353 if (ret) {
1354 btrfs_abort_transaction(trans, root, ret);
1355 goto error;
1356 }
80ff3856 1357 cow_start = (u64)-1;
7ea394f1 1358 }
80ff3856 1359
d899e052
YZ
1360 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1361 struct extent_map *em;
1362 struct extent_map_tree *em_tree;
1363 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1364 em = alloc_extent_map();
79787eaa 1365 BUG_ON(!em); /* -ENOMEM */
d899e052 1366 em->start = cur_offset;
70c8a91c 1367 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1368 em->len = num_bytes;
1369 em->block_len = num_bytes;
1370 em->block_start = disk_bytenr;
b4939680 1371 em->orig_block_len = disk_num_bytes;
cc95bef6 1372 em->ram_bytes = ram_bytes;
d899e052 1373 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1374 em->mod_start = em->start;
1375 em->mod_len = em->len;
d899e052 1376 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1377 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1378 em->generation = -1;
d899e052 1379 while (1) {
890871be 1380 write_lock(&em_tree->lock);
09a2a8f9 1381 ret = add_extent_mapping(em_tree, em, 1);
890871be 1382 write_unlock(&em_tree->lock);
d899e052
YZ
1383 if (ret != -EEXIST) {
1384 free_extent_map(em);
1385 break;
1386 }
1387 btrfs_drop_extent_cache(inode, em->start,
1388 em->start + em->len - 1, 0);
1389 }
1390 type = BTRFS_ORDERED_PREALLOC;
1391 } else {
1392 type = BTRFS_ORDERED_NOCOW;
1393 }
80ff3856
YZ
1394
1395 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1396 num_bytes, num_bytes, type);
79787eaa 1397 BUG_ON(ret); /* -ENOMEM */
771ed689 1398
efa56464
YZ
1399 if (root->root_key.objectid ==
1400 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1401 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1402 num_bytes);
79787eaa
JM
1403 if (ret) {
1404 btrfs_abort_transaction(trans, root, ret);
1405 goto error;
1406 }
efa56464
YZ
1407 }
1408
c2790a2e
JB
1409 extent_clear_unlock_delalloc(inode, cur_offset,
1410 cur_offset + num_bytes - 1,
1411 locked_page, EXTENT_LOCKED |
1412 EXTENT_DELALLOC, PAGE_UNLOCK |
1413 PAGE_SET_PRIVATE2);
80ff3856
YZ
1414 cur_offset = extent_end;
1415 if (cur_offset > end)
1416 break;
be20aa9d 1417 }
b3b4aa74 1418 btrfs_release_path(path);
80ff3856 1419
17ca04af 1420 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1421 cow_start = cur_offset;
17ca04af
JB
1422 cur_offset = end;
1423 }
1424
80ff3856 1425 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1426 ret = __cow_file_range(trans, inode, root, locked_page,
1427 cow_start, end,
1428 page_started, nr_written, 1);
79787eaa
JM
1429 if (ret) {
1430 btrfs_abort_transaction(trans, root, ret);
1431 goto error;
1432 }
80ff3856
YZ
1433 }
1434
79787eaa 1435error:
a698d075 1436 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1437 if (!ret)
1438 ret = err;
1439
17ca04af 1440 if (ret && cur_offset < end)
c2790a2e
JB
1441 extent_clear_unlock_delalloc(inode, cur_offset, end,
1442 locked_page, EXTENT_LOCKED |
151a41bc
JB
1443 EXTENT_DELALLOC | EXTENT_DEFRAG |
1444 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1445 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1446 PAGE_SET_WRITEBACK |
1447 PAGE_END_WRITEBACK);
7ea394f1 1448 btrfs_free_path(path);
79787eaa 1449 return ret;
be20aa9d
CM
1450}
1451
d352ac68
CM
1452/*
1453 * extent_io.c call back to do delayed allocation processing
1454 */
c8b97818 1455static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1456 u64 start, u64 end, int *page_started,
1457 unsigned long *nr_written)
be20aa9d 1458{
be20aa9d 1459 int ret;
7f366cfe 1460 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1461
7ddf5a42 1462 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1463 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1464 page_started, 1, nr_written);
7ddf5a42 1465 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1466 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1467 page_started, 0, nr_written);
7ddf5a42
JB
1468 } else if (!btrfs_test_opt(root, COMPRESS) &&
1469 !(BTRFS_I(inode)->force_compress) &&
1470 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1471 ret = cow_file_range(inode, locked_page, start, end,
1472 page_started, nr_written, 1);
7ddf5a42
JB
1473 } else {
1474 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1475 &BTRFS_I(inode)->runtime_flags);
771ed689 1476 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1477 page_started, nr_written);
7ddf5a42 1478 }
b888db2b
CM
1479 return ret;
1480}
1481
1bf85046
JM
1482static void btrfs_split_extent_hook(struct inode *inode,
1483 struct extent_state *orig, u64 split)
9ed74f2d 1484{
0ca1f7ce 1485 /* not delalloc, ignore it */
9ed74f2d 1486 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1487 return;
9ed74f2d 1488
9e0baf60
JB
1489 spin_lock(&BTRFS_I(inode)->lock);
1490 BTRFS_I(inode)->outstanding_extents++;
1491 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1492}
1493
1494/*
1495 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1496 * extents so we can keep track of new extents that are just merged onto old
1497 * extents, such as when we are doing sequential writes, so we can properly
1498 * account for the metadata space we'll need.
1499 */
1bf85046
JM
1500static void btrfs_merge_extent_hook(struct inode *inode,
1501 struct extent_state *new,
1502 struct extent_state *other)
9ed74f2d 1503{
9ed74f2d
JB
1504 /* not delalloc, ignore it */
1505 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1506 return;
9ed74f2d 1507
9e0baf60
JB
1508 spin_lock(&BTRFS_I(inode)->lock);
1509 BTRFS_I(inode)->outstanding_extents--;
1510 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1511}
1512
eb73c1b7
MX
1513static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1514 struct inode *inode)
1515{
1516 spin_lock(&root->delalloc_lock);
1517 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1518 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1519 &root->delalloc_inodes);
1520 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1521 &BTRFS_I(inode)->runtime_flags);
1522 root->nr_delalloc_inodes++;
1523 if (root->nr_delalloc_inodes == 1) {
1524 spin_lock(&root->fs_info->delalloc_root_lock);
1525 BUG_ON(!list_empty(&root->delalloc_root));
1526 list_add_tail(&root->delalloc_root,
1527 &root->fs_info->delalloc_roots);
1528 spin_unlock(&root->fs_info->delalloc_root_lock);
1529 }
1530 }
1531 spin_unlock(&root->delalloc_lock);
1532}
1533
1534static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1535 struct inode *inode)
1536{
1537 spin_lock(&root->delalloc_lock);
1538 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1539 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1540 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1541 &BTRFS_I(inode)->runtime_flags);
1542 root->nr_delalloc_inodes--;
1543 if (!root->nr_delalloc_inodes) {
1544 spin_lock(&root->fs_info->delalloc_root_lock);
1545 BUG_ON(list_empty(&root->delalloc_root));
1546 list_del_init(&root->delalloc_root);
1547 spin_unlock(&root->fs_info->delalloc_root_lock);
1548 }
1549 }
1550 spin_unlock(&root->delalloc_lock);
1551}
1552
d352ac68
CM
1553/*
1554 * extent_io.c set_bit_hook, used to track delayed allocation
1555 * bytes in this file, and to maintain the list of inodes that
1556 * have pending delalloc work to be done.
1557 */
1bf85046 1558static void btrfs_set_bit_hook(struct inode *inode,
41074888 1559 struct extent_state *state, unsigned long *bits)
291d673e 1560{
9ed74f2d 1561
75eff68e
CM
1562 /*
1563 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1564 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1565 * bit, which is only set or cleared with irqs on
1566 */
0ca1f7ce 1567 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1568 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1569 u64 len = state->end + 1 - state->start;
83eea1f1 1570 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1571
9e0baf60 1572 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1573 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1574 } else {
1575 spin_lock(&BTRFS_I(inode)->lock);
1576 BTRFS_I(inode)->outstanding_extents++;
1577 spin_unlock(&BTRFS_I(inode)->lock);
1578 }
287a0ab9 1579
963d678b
MX
1580 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1581 root->fs_info->delalloc_batch);
df0af1a5 1582 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1583 BTRFS_I(inode)->delalloc_bytes += len;
df0af1a5 1584 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1585 &BTRFS_I(inode)->runtime_flags))
1586 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1587 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1588 }
291d673e
CM
1589}
1590
d352ac68
CM
1591/*
1592 * extent_io.c clear_bit_hook, see set_bit_hook for why
1593 */
1bf85046 1594static void btrfs_clear_bit_hook(struct inode *inode,
41074888
DS
1595 struct extent_state *state,
1596 unsigned long *bits)
291d673e 1597{
75eff68e
CM
1598 /*
1599 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1600 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1601 * bit, which is only set or cleared with irqs on
1602 */
0ca1f7ce 1603 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1604 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1605 u64 len = state->end + 1 - state->start;
83eea1f1 1606 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1607
9e0baf60 1608 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1609 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1610 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1611 spin_lock(&BTRFS_I(inode)->lock);
1612 BTRFS_I(inode)->outstanding_extents--;
1613 spin_unlock(&BTRFS_I(inode)->lock);
1614 }
0ca1f7ce
YZ
1615
1616 if (*bits & EXTENT_DO_ACCOUNTING)
1617 btrfs_delalloc_release_metadata(inode, len);
1618
0cb59c99 1619 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1620 && do_list && !(state->state & EXTENT_NORESERVE))
0ca1f7ce 1621 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1622
963d678b
MX
1623 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1624 root->fs_info->delalloc_batch);
df0af1a5 1625 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1626 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1627 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1628 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1629 &BTRFS_I(inode)->runtime_flags))
1630 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1631 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1632 }
291d673e
CM
1633}
1634
d352ac68
CM
1635/*
1636 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1637 * we don't create bios that span stripes or chunks
1638 */
64a16701 1639int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1640 size_t size, struct bio *bio,
1641 unsigned long bio_flags)
239b14b3
CM
1642{
1643 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
a62b9401 1644 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1645 u64 length = 0;
1646 u64 map_length;
239b14b3
CM
1647 int ret;
1648
771ed689
CM
1649 if (bio_flags & EXTENT_BIO_COMPRESSED)
1650 return 0;
1651
f2d8d74d 1652 length = bio->bi_size;
239b14b3 1653 map_length = length;
64a16701 1654 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1655 &map_length, NULL, 0);
3ec706c8 1656 /* Will always return 0 with map_multi == NULL */
3444a972 1657 BUG_ON(ret < 0);
d397712b 1658 if (map_length < length + size)
239b14b3 1659 return 1;
3444a972 1660 return 0;
239b14b3
CM
1661}
1662
d352ac68
CM
1663/*
1664 * in order to insert checksums into the metadata in large chunks,
1665 * we wait until bio submission time. All the pages in the bio are
1666 * checksummed and sums are attached onto the ordered extent record.
1667 *
1668 * At IO completion time the cums attached on the ordered extent record
1669 * are inserted into the btree
1670 */
d397712b
CM
1671static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1672 struct bio *bio, int mirror_num,
eaf25d93
CM
1673 unsigned long bio_flags,
1674 u64 bio_offset)
065631f6 1675{
065631f6 1676 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1677 int ret = 0;
e015640f 1678
d20f7043 1679 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1680 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1681 return 0;
1682}
e015640f 1683
4a69a410
CM
1684/*
1685 * in order to insert checksums into the metadata in large chunks,
1686 * we wait until bio submission time. All the pages in the bio are
1687 * checksummed and sums are attached onto the ordered extent record.
1688 *
1689 * At IO completion time the cums attached on the ordered extent record
1690 * are inserted into the btree
1691 */
b2950863 1692static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1693 int mirror_num, unsigned long bio_flags,
1694 u64 bio_offset)
4a69a410
CM
1695{
1696 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1697 int ret;
1698
1699 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1700 if (ret)
1701 bio_endio(bio, ret);
1702 return ret;
44b8bd7e
CM
1703}
1704
d352ac68 1705/*
cad321ad
CM
1706 * extent_io.c submission hook. This does the right thing for csum calculation
1707 * on write, or reading the csums from the tree before a read
d352ac68 1708 */
b2950863 1709static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1710 int mirror_num, unsigned long bio_flags,
1711 u64 bio_offset)
44b8bd7e
CM
1712{
1713 struct btrfs_root *root = BTRFS_I(inode)->root;
1714 int ret = 0;
19b9bdb0 1715 int skip_sum;
0417341e 1716 int metadata = 0;
b812ce28 1717 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1718
6cbff00f 1719 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1720
83eea1f1 1721 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1722 metadata = 2;
1723
7b6d91da 1724 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1725 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1726 if (ret)
61891923 1727 goto out;
5fd02043 1728
d20f7043 1729 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1730 ret = btrfs_submit_compressed_read(inode, bio,
1731 mirror_num,
1732 bio_flags);
1733 goto out;
c2db1073
TI
1734 } else if (!skip_sum) {
1735 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1736 if (ret)
61891923 1737 goto out;
c2db1073 1738 }
4d1b5fb4 1739 goto mapit;
b812ce28 1740 } else if (async && !skip_sum) {
17d217fe
YZ
1741 /* csum items have already been cloned */
1742 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1743 goto mapit;
19b9bdb0 1744 /* we're doing a write, do the async checksumming */
61891923 1745 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1746 inode, rw, bio, mirror_num,
eaf25d93
CM
1747 bio_flags, bio_offset,
1748 __btrfs_submit_bio_start,
4a69a410 1749 __btrfs_submit_bio_done);
61891923 1750 goto out;
b812ce28
JB
1751 } else if (!skip_sum) {
1752 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1753 if (ret)
1754 goto out;
19b9bdb0
CM
1755 }
1756
0b86a832 1757mapit:
61891923
SB
1758 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1759
1760out:
1761 if (ret < 0)
1762 bio_endio(bio, ret);
1763 return ret;
065631f6 1764}
6885f308 1765
d352ac68
CM
1766/*
1767 * given a list of ordered sums record them in the inode. This happens
1768 * at IO completion time based on sums calculated at bio submission time.
1769 */
ba1da2f4 1770static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1771 struct inode *inode, u64 file_offset,
1772 struct list_head *list)
1773{
e6dcd2dc
CM
1774 struct btrfs_ordered_sum *sum;
1775
c6e30871 1776 list_for_each_entry(sum, list, list) {
39847c4d 1777 trans->adding_csums = 1;
d20f7043
CM
1778 btrfs_csum_file_blocks(trans,
1779 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1780 trans->adding_csums = 0;
e6dcd2dc
CM
1781 }
1782 return 0;
1783}
1784
2ac55d41
JB
1785int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1786 struct extent_state **cached_state)
ea8c2819 1787{
6c1500f2 1788 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1789 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1790 cached_state, GFP_NOFS);
ea8c2819
CM
1791}
1792
d352ac68 1793/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1794struct btrfs_writepage_fixup {
1795 struct page *page;
1796 struct btrfs_work work;
1797};
1798
b2950863 1799static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1800{
1801 struct btrfs_writepage_fixup *fixup;
1802 struct btrfs_ordered_extent *ordered;
2ac55d41 1803 struct extent_state *cached_state = NULL;
247e743c
CM
1804 struct page *page;
1805 struct inode *inode;
1806 u64 page_start;
1807 u64 page_end;
87826df0 1808 int ret;
247e743c
CM
1809
1810 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1811 page = fixup->page;
4a096752 1812again:
247e743c
CM
1813 lock_page(page);
1814 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1815 ClearPageChecked(page);
1816 goto out_page;
1817 }
1818
1819 inode = page->mapping->host;
1820 page_start = page_offset(page);
1821 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1822
2ac55d41 1823 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1824 &cached_state);
4a096752
CM
1825
1826 /* already ordered? We're done */
8b62b72b 1827 if (PagePrivate2(page))
247e743c 1828 goto out;
4a096752
CM
1829
1830 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1831 if (ordered) {
2ac55d41
JB
1832 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1833 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1834 unlock_page(page);
1835 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1836 btrfs_put_ordered_extent(ordered);
4a096752
CM
1837 goto again;
1838 }
247e743c 1839
87826df0
JM
1840 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1841 if (ret) {
1842 mapping_set_error(page->mapping, ret);
1843 end_extent_writepage(page, ret, page_start, page_end);
1844 ClearPageChecked(page);
1845 goto out;
1846 }
1847
2ac55d41 1848 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1849 ClearPageChecked(page);
87826df0 1850 set_page_dirty(page);
247e743c 1851out:
2ac55d41
JB
1852 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1853 &cached_state, GFP_NOFS);
247e743c
CM
1854out_page:
1855 unlock_page(page);
1856 page_cache_release(page);
b897abec 1857 kfree(fixup);
247e743c
CM
1858}
1859
1860/*
1861 * There are a few paths in the higher layers of the kernel that directly
1862 * set the page dirty bit without asking the filesystem if it is a
1863 * good idea. This causes problems because we want to make sure COW
1864 * properly happens and the data=ordered rules are followed.
1865 *
c8b97818 1866 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1867 * hasn't been properly setup for IO. We kick off an async process
1868 * to fix it up. The async helper will wait for ordered extents, set
1869 * the delalloc bit and make it safe to write the page.
1870 */
b2950863 1871static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1872{
1873 struct inode *inode = page->mapping->host;
1874 struct btrfs_writepage_fixup *fixup;
1875 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1876
8b62b72b
CM
1877 /* this page is properly in the ordered list */
1878 if (TestClearPagePrivate2(page))
247e743c
CM
1879 return 0;
1880
1881 if (PageChecked(page))
1882 return -EAGAIN;
1883
1884 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1885 if (!fixup)
1886 return -EAGAIN;
f421950f 1887
247e743c
CM
1888 SetPageChecked(page);
1889 page_cache_get(page);
1890 fixup->work.func = btrfs_writepage_fixup_worker;
1891 fixup->page = page;
1892 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1893 return -EBUSY;
247e743c
CM
1894}
1895
d899e052
YZ
1896static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1897 struct inode *inode, u64 file_pos,
1898 u64 disk_bytenr, u64 disk_num_bytes,
1899 u64 num_bytes, u64 ram_bytes,
1900 u8 compression, u8 encryption,
1901 u16 other_encoding, int extent_type)
1902{
1903 struct btrfs_root *root = BTRFS_I(inode)->root;
1904 struct btrfs_file_extent_item *fi;
1905 struct btrfs_path *path;
1906 struct extent_buffer *leaf;
1907 struct btrfs_key ins;
d899e052
YZ
1908 int ret;
1909
1910 path = btrfs_alloc_path();
d8926bb3
MF
1911 if (!path)
1912 return -ENOMEM;
d899e052 1913
b9473439 1914 path->leave_spinning = 1;
a1ed835e
CM
1915
1916 /*
1917 * we may be replacing one extent in the tree with another.
1918 * The new extent is pinned in the extent map, and we don't want
1919 * to drop it from the cache until it is completely in the btree.
1920 *
1921 * So, tell btrfs_drop_extents to leave this extent in the cache.
1922 * the caller is expected to unpin it and allow it to be merged
1923 * with the others.
1924 */
5dc562c5 1925 ret = btrfs_drop_extents(trans, root, inode, file_pos,
2671485d 1926 file_pos + num_bytes, 0);
79787eaa
JM
1927 if (ret)
1928 goto out;
d899e052 1929
33345d01 1930 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1931 ins.offset = file_pos;
1932 ins.type = BTRFS_EXTENT_DATA_KEY;
1933 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
79787eaa
JM
1934 if (ret)
1935 goto out;
d899e052
YZ
1936 leaf = path->nodes[0];
1937 fi = btrfs_item_ptr(leaf, path->slots[0],
1938 struct btrfs_file_extent_item);
1939 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1940 btrfs_set_file_extent_type(leaf, fi, extent_type);
1941 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1942 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1943 btrfs_set_file_extent_offset(leaf, fi, 0);
1944 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1945 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1946 btrfs_set_file_extent_compression(leaf, fi, compression);
1947 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1948 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1949
d899e052 1950 btrfs_mark_buffer_dirty(leaf);
ce195332 1951 btrfs_release_path(path);
d899e052
YZ
1952
1953 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1954
1955 ins.objectid = disk_bytenr;
1956 ins.offset = disk_num_bytes;
1957 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1958 ret = btrfs_alloc_reserved_file_extent(trans, root,
1959 root->root_key.objectid,
33345d01 1960 btrfs_ino(inode), file_pos, &ins);
79787eaa 1961out:
d899e052 1962 btrfs_free_path(path);
b9473439 1963
79787eaa 1964 return ret;
d899e052
YZ
1965}
1966
38c227d8
LB
1967/* snapshot-aware defrag */
1968struct sa_defrag_extent_backref {
1969 struct rb_node node;
1970 struct old_sa_defrag_extent *old;
1971 u64 root_id;
1972 u64 inum;
1973 u64 file_pos;
1974 u64 extent_offset;
1975 u64 num_bytes;
1976 u64 generation;
1977};
1978
1979struct old_sa_defrag_extent {
1980 struct list_head list;
1981 struct new_sa_defrag_extent *new;
1982
1983 u64 extent_offset;
1984 u64 bytenr;
1985 u64 offset;
1986 u64 len;
1987 int count;
1988};
1989
1990struct new_sa_defrag_extent {
1991 struct rb_root root;
1992 struct list_head head;
1993 struct btrfs_path *path;
1994 struct inode *inode;
1995 u64 file_pos;
1996 u64 len;
1997 u64 bytenr;
1998 u64 disk_len;
1999 u8 compress_type;
2000};
2001
2002static int backref_comp(struct sa_defrag_extent_backref *b1,
2003 struct sa_defrag_extent_backref *b2)
2004{
2005 if (b1->root_id < b2->root_id)
2006 return -1;
2007 else if (b1->root_id > b2->root_id)
2008 return 1;
2009
2010 if (b1->inum < b2->inum)
2011 return -1;
2012 else if (b1->inum > b2->inum)
2013 return 1;
2014
2015 if (b1->file_pos < b2->file_pos)
2016 return -1;
2017 else if (b1->file_pos > b2->file_pos)
2018 return 1;
2019
2020 /*
2021 * [------------------------------] ===> (a range of space)
2022 * |<--->| |<---->| =============> (fs/file tree A)
2023 * |<---------------------------->| ===> (fs/file tree B)
2024 *
2025 * A range of space can refer to two file extents in one tree while
2026 * refer to only one file extent in another tree.
2027 *
2028 * So we may process a disk offset more than one time(two extents in A)
2029 * and locate at the same extent(one extent in B), then insert two same
2030 * backrefs(both refer to the extent in B).
2031 */
2032 return 0;
2033}
2034
2035static void backref_insert(struct rb_root *root,
2036 struct sa_defrag_extent_backref *backref)
2037{
2038 struct rb_node **p = &root->rb_node;
2039 struct rb_node *parent = NULL;
2040 struct sa_defrag_extent_backref *entry;
2041 int ret;
2042
2043 while (*p) {
2044 parent = *p;
2045 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2046
2047 ret = backref_comp(backref, entry);
2048 if (ret < 0)
2049 p = &(*p)->rb_left;
2050 else
2051 p = &(*p)->rb_right;
2052 }
2053
2054 rb_link_node(&backref->node, parent, p);
2055 rb_insert_color(&backref->node, root);
2056}
2057
2058/*
2059 * Note the backref might has changed, and in this case we just return 0.
2060 */
2061static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2062 void *ctx)
2063{
2064 struct btrfs_file_extent_item *extent;
2065 struct btrfs_fs_info *fs_info;
2066 struct old_sa_defrag_extent *old = ctx;
2067 struct new_sa_defrag_extent *new = old->new;
2068 struct btrfs_path *path = new->path;
2069 struct btrfs_key key;
2070 struct btrfs_root *root;
2071 struct sa_defrag_extent_backref *backref;
2072 struct extent_buffer *leaf;
2073 struct inode *inode = new->inode;
2074 int slot;
2075 int ret;
2076 u64 extent_offset;
2077 u64 num_bytes;
2078
2079 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2080 inum == btrfs_ino(inode))
2081 return 0;
2082
2083 key.objectid = root_id;
2084 key.type = BTRFS_ROOT_ITEM_KEY;
2085 key.offset = (u64)-1;
2086
2087 fs_info = BTRFS_I(inode)->root->fs_info;
2088 root = btrfs_read_fs_root_no_name(fs_info, &key);
2089 if (IS_ERR(root)) {
2090 if (PTR_ERR(root) == -ENOENT)
2091 return 0;
2092 WARN_ON(1);
2093 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2094 inum, offset, root_id);
2095 return PTR_ERR(root);
2096 }
2097
2098 key.objectid = inum;
2099 key.type = BTRFS_EXTENT_DATA_KEY;
2100 if (offset > (u64)-1 << 32)
2101 key.offset = 0;
2102 else
2103 key.offset = offset;
2104
2105 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2106 if (ret < 0) {
2107 WARN_ON(1);
2108 return ret;
2109 }
50f1319c 2110 ret = 0;
38c227d8
LB
2111
2112 while (1) {
2113 cond_resched();
2114
2115 leaf = path->nodes[0];
2116 slot = path->slots[0];
2117
2118 if (slot >= btrfs_header_nritems(leaf)) {
2119 ret = btrfs_next_leaf(root, path);
2120 if (ret < 0) {
2121 goto out;
2122 } else if (ret > 0) {
2123 ret = 0;
2124 goto out;
2125 }
2126 continue;
2127 }
2128
2129 path->slots[0]++;
2130
2131 btrfs_item_key_to_cpu(leaf, &key, slot);
2132
2133 if (key.objectid > inum)
2134 goto out;
2135
2136 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2137 continue;
2138
2139 extent = btrfs_item_ptr(leaf, slot,
2140 struct btrfs_file_extent_item);
2141
2142 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2143 continue;
2144
e68afa49
LB
2145 /*
2146 * 'offset' refers to the exact key.offset,
2147 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2148 * (key.offset - extent_offset).
2149 */
2150 if (key.offset != offset)
38c227d8
LB
2151 continue;
2152
e68afa49 2153 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2154 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2155
38c227d8
LB
2156 if (extent_offset >= old->extent_offset + old->offset +
2157 old->len || extent_offset + num_bytes <=
2158 old->extent_offset + old->offset)
2159 continue;
38c227d8
LB
2160 break;
2161 }
2162
2163 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2164 if (!backref) {
2165 ret = -ENOENT;
2166 goto out;
2167 }
2168
2169 backref->root_id = root_id;
2170 backref->inum = inum;
e68afa49 2171 backref->file_pos = offset;
38c227d8
LB
2172 backref->num_bytes = num_bytes;
2173 backref->extent_offset = extent_offset;
2174 backref->generation = btrfs_file_extent_generation(leaf, extent);
2175 backref->old = old;
2176 backref_insert(&new->root, backref);
2177 old->count++;
2178out:
2179 btrfs_release_path(path);
2180 WARN_ON(ret);
2181 return ret;
2182}
2183
2184static noinline bool record_extent_backrefs(struct btrfs_path *path,
2185 struct new_sa_defrag_extent *new)
2186{
2187 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2188 struct old_sa_defrag_extent *old, *tmp;
2189 int ret;
2190
2191 new->path = path;
2192
2193 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2194 ret = iterate_inodes_from_logical(old->bytenr +
2195 old->extent_offset, fs_info,
38c227d8
LB
2196 path, record_one_backref,
2197 old);
2198 BUG_ON(ret < 0 && ret != -ENOENT);
2199
2200 /* no backref to be processed for this extent */
2201 if (!old->count) {
2202 list_del(&old->list);
2203 kfree(old);
2204 }
2205 }
2206
2207 if (list_empty(&new->head))
2208 return false;
2209
2210 return true;
2211}
2212
2213static int relink_is_mergable(struct extent_buffer *leaf,
2214 struct btrfs_file_extent_item *fi,
2215 u64 disk_bytenr)
2216{
2217 if (btrfs_file_extent_disk_bytenr(leaf, fi) != disk_bytenr)
2218 return 0;
2219
2220 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2221 return 0;
2222
2223 if (btrfs_file_extent_compression(leaf, fi) ||
2224 btrfs_file_extent_encryption(leaf, fi) ||
2225 btrfs_file_extent_other_encoding(leaf, fi))
2226 return 0;
2227
2228 return 1;
2229}
2230
2231/*
2232 * Note the backref might has changed, and in this case we just return 0.
2233 */
2234static noinline int relink_extent_backref(struct btrfs_path *path,
2235 struct sa_defrag_extent_backref *prev,
2236 struct sa_defrag_extent_backref *backref)
2237{
2238 struct btrfs_file_extent_item *extent;
2239 struct btrfs_file_extent_item *item;
2240 struct btrfs_ordered_extent *ordered;
2241 struct btrfs_trans_handle *trans;
2242 struct btrfs_fs_info *fs_info;
2243 struct btrfs_root *root;
2244 struct btrfs_key key;
2245 struct extent_buffer *leaf;
2246 struct old_sa_defrag_extent *old = backref->old;
2247 struct new_sa_defrag_extent *new = old->new;
2248 struct inode *src_inode = new->inode;
2249 struct inode *inode;
2250 struct extent_state *cached = NULL;
2251 int ret = 0;
2252 u64 start;
2253 u64 len;
2254 u64 lock_start;
2255 u64 lock_end;
2256 bool merge = false;
2257 int index;
2258
2259 if (prev && prev->root_id == backref->root_id &&
2260 prev->inum == backref->inum &&
2261 prev->file_pos + prev->num_bytes == backref->file_pos)
2262 merge = true;
2263
2264 /* step 1: get root */
2265 key.objectid = backref->root_id;
2266 key.type = BTRFS_ROOT_ITEM_KEY;
2267 key.offset = (u64)-1;
2268
2269 fs_info = BTRFS_I(src_inode)->root->fs_info;
2270 index = srcu_read_lock(&fs_info->subvol_srcu);
2271
2272 root = btrfs_read_fs_root_no_name(fs_info, &key);
2273 if (IS_ERR(root)) {
2274 srcu_read_unlock(&fs_info->subvol_srcu, index);
2275 if (PTR_ERR(root) == -ENOENT)
2276 return 0;
2277 return PTR_ERR(root);
2278 }
38c227d8
LB
2279
2280 /* step 2: get inode */
2281 key.objectid = backref->inum;
2282 key.type = BTRFS_INODE_ITEM_KEY;
2283 key.offset = 0;
2284
2285 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2286 if (IS_ERR(inode)) {
2287 srcu_read_unlock(&fs_info->subvol_srcu, index);
2288 return 0;
2289 }
2290
2291 srcu_read_unlock(&fs_info->subvol_srcu, index);
2292
2293 /* step 3: relink backref */
2294 lock_start = backref->file_pos;
2295 lock_end = backref->file_pos + backref->num_bytes - 1;
2296 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2297 0, &cached);
2298
2299 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2300 if (ordered) {
2301 btrfs_put_ordered_extent(ordered);
2302 goto out_unlock;
2303 }
2304
2305 trans = btrfs_join_transaction(root);
2306 if (IS_ERR(trans)) {
2307 ret = PTR_ERR(trans);
2308 goto out_unlock;
2309 }
2310
2311 key.objectid = backref->inum;
2312 key.type = BTRFS_EXTENT_DATA_KEY;
2313 key.offset = backref->file_pos;
2314
2315 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2316 if (ret < 0) {
2317 goto out_free_path;
2318 } else if (ret > 0) {
2319 ret = 0;
2320 goto out_free_path;
2321 }
2322
2323 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2324 struct btrfs_file_extent_item);
2325
2326 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2327 backref->generation)
2328 goto out_free_path;
2329
2330 btrfs_release_path(path);
2331
2332 start = backref->file_pos;
2333 if (backref->extent_offset < old->extent_offset + old->offset)
2334 start += old->extent_offset + old->offset -
2335 backref->extent_offset;
2336
2337 len = min(backref->extent_offset + backref->num_bytes,
2338 old->extent_offset + old->offset + old->len);
2339 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2340
2341 ret = btrfs_drop_extents(trans, root, inode, start,
2342 start + len, 1);
2343 if (ret)
2344 goto out_free_path;
2345again:
2346 key.objectid = btrfs_ino(inode);
2347 key.type = BTRFS_EXTENT_DATA_KEY;
2348 key.offset = start;
2349
a09a0a70 2350 path->leave_spinning = 1;
38c227d8
LB
2351 if (merge) {
2352 struct btrfs_file_extent_item *fi;
2353 u64 extent_len;
2354 struct btrfs_key found_key;
2355
2356 ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2357 if (ret < 0)
2358 goto out_free_path;
2359
2360 path->slots[0]--;
2361 leaf = path->nodes[0];
2362 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2363
2364 fi = btrfs_item_ptr(leaf, path->slots[0],
2365 struct btrfs_file_extent_item);
2366 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2367
2368 if (relink_is_mergable(leaf, fi, new->bytenr) &&
2369 extent_len + found_key.offset == start) {
2370 btrfs_set_file_extent_num_bytes(leaf, fi,
2371 extent_len + len);
2372 btrfs_mark_buffer_dirty(leaf);
2373 inode_add_bytes(inode, len);
2374
2375 ret = 1;
2376 goto out_free_path;
2377 } else {
2378 merge = false;
2379 btrfs_release_path(path);
2380 goto again;
2381 }
2382 }
2383
2384 ret = btrfs_insert_empty_item(trans, root, path, &key,
2385 sizeof(*extent));
2386 if (ret) {
2387 btrfs_abort_transaction(trans, root, ret);
2388 goto out_free_path;
2389 }
2390
2391 leaf = path->nodes[0];
2392 item = btrfs_item_ptr(leaf, path->slots[0],
2393 struct btrfs_file_extent_item);
2394 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2395 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2396 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2397 btrfs_set_file_extent_num_bytes(leaf, item, len);
2398 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2399 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2400 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2401 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2402 btrfs_set_file_extent_encryption(leaf, item, 0);
2403 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2404
2405 btrfs_mark_buffer_dirty(leaf);
2406 inode_add_bytes(inode, len);
a09a0a70 2407 btrfs_release_path(path);
38c227d8
LB
2408
2409 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2410 new->disk_len, 0,
2411 backref->root_id, backref->inum,
2412 new->file_pos, 0); /* start - extent_offset */
2413 if (ret) {
2414 btrfs_abort_transaction(trans, root, ret);
2415 goto out_free_path;
2416 }
2417
2418 ret = 1;
2419out_free_path:
2420 btrfs_release_path(path);
a09a0a70 2421 path->leave_spinning = 0;
38c227d8
LB
2422 btrfs_end_transaction(trans, root);
2423out_unlock:
2424 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2425 &cached, GFP_NOFS);
2426 iput(inode);
2427 return ret;
2428}
2429
2430static void relink_file_extents(struct new_sa_defrag_extent *new)
2431{
2432 struct btrfs_path *path;
2433 struct old_sa_defrag_extent *old, *tmp;
2434 struct sa_defrag_extent_backref *backref;
2435 struct sa_defrag_extent_backref *prev = NULL;
2436 struct inode *inode;
2437 struct btrfs_root *root;
2438 struct rb_node *node;
2439 int ret;
2440
2441 inode = new->inode;
2442 root = BTRFS_I(inode)->root;
2443
2444 path = btrfs_alloc_path();
2445 if (!path)
2446 return;
2447
2448 if (!record_extent_backrefs(path, new)) {
2449 btrfs_free_path(path);
2450 goto out;
2451 }
2452 btrfs_release_path(path);
2453
2454 while (1) {
2455 node = rb_first(&new->root);
2456 if (!node)
2457 break;
2458 rb_erase(node, &new->root);
2459
2460 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2461
2462 ret = relink_extent_backref(path, prev, backref);
2463 WARN_ON(ret < 0);
2464
2465 kfree(prev);
2466
2467 if (ret == 1)
2468 prev = backref;
2469 else
2470 prev = NULL;
2471 cond_resched();
2472 }
2473 kfree(prev);
2474
2475 btrfs_free_path(path);
2476
2477 list_for_each_entry_safe(old, tmp, &new->head, list) {
2478 list_del(&old->list);
2479 kfree(old);
2480 }
2481out:
2482 atomic_dec(&root->fs_info->defrag_running);
2483 wake_up(&root->fs_info->transaction_wait);
2484
2485 kfree(new);
2486}
2487
2488static struct new_sa_defrag_extent *
2489record_old_file_extents(struct inode *inode,
2490 struct btrfs_ordered_extent *ordered)
2491{
2492 struct btrfs_root *root = BTRFS_I(inode)->root;
2493 struct btrfs_path *path;
2494 struct btrfs_key key;
2495 struct old_sa_defrag_extent *old, *tmp;
2496 struct new_sa_defrag_extent *new;
2497 int ret;
2498
2499 new = kmalloc(sizeof(*new), GFP_NOFS);
2500 if (!new)
2501 return NULL;
2502
2503 new->inode = inode;
2504 new->file_pos = ordered->file_offset;
2505 new->len = ordered->len;
2506 new->bytenr = ordered->start;
2507 new->disk_len = ordered->disk_len;
2508 new->compress_type = ordered->compress_type;
2509 new->root = RB_ROOT;
2510 INIT_LIST_HEAD(&new->head);
2511
2512 path = btrfs_alloc_path();
2513 if (!path)
2514 goto out_kfree;
2515
2516 key.objectid = btrfs_ino(inode);
2517 key.type = BTRFS_EXTENT_DATA_KEY;
2518 key.offset = new->file_pos;
2519
2520 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2521 if (ret < 0)
2522 goto out_free_path;
2523 if (ret > 0 && path->slots[0] > 0)
2524 path->slots[0]--;
2525
2526 /* find out all the old extents for the file range */
2527 while (1) {
2528 struct btrfs_file_extent_item *extent;
2529 struct extent_buffer *l;
2530 int slot;
2531 u64 num_bytes;
2532 u64 offset;
2533 u64 end;
2534 u64 disk_bytenr;
2535 u64 extent_offset;
2536
2537 l = path->nodes[0];
2538 slot = path->slots[0];
2539
2540 if (slot >= btrfs_header_nritems(l)) {
2541 ret = btrfs_next_leaf(root, path);
2542 if (ret < 0)
2543 goto out_free_list;
2544 else if (ret > 0)
2545 break;
2546 continue;
2547 }
2548
2549 btrfs_item_key_to_cpu(l, &key, slot);
2550
2551 if (key.objectid != btrfs_ino(inode))
2552 break;
2553 if (key.type != BTRFS_EXTENT_DATA_KEY)
2554 break;
2555 if (key.offset >= new->file_pos + new->len)
2556 break;
2557
2558 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2559
2560 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2561 if (key.offset + num_bytes < new->file_pos)
2562 goto next;
2563
2564 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2565 if (!disk_bytenr)
2566 goto next;
2567
2568 extent_offset = btrfs_file_extent_offset(l, extent);
2569
2570 old = kmalloc(sizeof(*old), GFP_NOFS);
2571 if (!old)
2572 goto out_free_list;
2573
2574 offset = max(new->file_pos, key.offset);
2575 end = min(new->file_pos + new->len, key.offset + num_bytes);
2576
2577 old->bytenr = disk_bytenr;
2578 old->extent_offset = extent_offset;
2579 old->offset = offset - key.offset;
2580 old->len = end - offset;
2581 old->new = new;
2582 old->count = 0;
2583 list_add_tail(&old->list, &new->head);
2584next:
2585 path->slots[0]++;
2586 cond_resched();
2587 }
2588
2589 btrfs_free_path(path);
2590 atomic_inc(&root->fs_info->defrag_running);
2591
2592 return new;
2593
2594out_free_list:
2595 list_for_each_entry_safe(old, tmp, &new->head, list) {
2596 list_del(&old->list);
2597 kfree(old);
2598 }
2599out_free_path:
2600 btrfs_free_path(path);
2601out_kfree:
2602 kfree(new);
2603 return NULL;
2604}
2605
5d13a98f
CM
2606/*
2607 * helper function for btrfs_finish_ordered_io, this
2608 * just reads in some of the csum leaves to prime them into ram
2609 * before we start the transaction. It limits the amount of btree
2610 * reads required while inside the transaction.
2611 */
d352ac68
CM
2612/* as ordered data IO finishes, this gets called so we can finish
2613 * an ordered extent if the range of bytes in the file it covers are
2614 * fully written.
2615 */
5fd02043 2616static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2617{
5fd02043 2618 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2619 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2620 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2621 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2622 struct extent_state *cached_state = NULL;
38c227d8 2623 struct new_sa_defrag_extent *new = NULL;
261507a0 2624 int compress_type = 0;
e6dcd2dc 2625 int ret;
82d5902d 2626 bool nolock;
e6dcd2dc 2627
83eea1f1 2628 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2629
5fd02043
JB
2630 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2631 ret = -EIO;
2632 goto out;
2633 }
2634
c2167754 2635 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2636 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2637 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2638 if (nolock)
2639 trans = btrfs_join_transaction_nolock(root);
2640 else
2641 trans = btrfs_join_transaction(root);
2642 if (IS_ERR(trans)) {
2643 ret = PTR_ERR(trans);
2644 trans = NULL;
2645 goto out;
c2167754 2646 }
6c760c07
JB
2647 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2648 ret = btrfs_update_inode_fallback(trans, root, inode);
2649 if (ret) /* -ENOMEM or corruption */
2650 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2651 goto out;
2652 }
e6dcd2dc 2653
2ac55d41
JB
2654 lock_extent_bits(io_tree, ordered_extent->file_offset,
2655 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2656 0, &cached_state);
e6dcd2dc 2657
38c227d8
LB
2658 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2659 ordered_extent->file_offset + ordered_extent->len - 1,
2660 EXTENT_DEFRAG, 1, cached_state);
2661 if (ret) {
2662 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2663 if (last_snapshot >= BTRFS_I(inode)->generation)
2664 /* the inode is shared */
2665 new = record_old_file_extents(inode, ordered_extent);
2666
2667 clear_extent_bit(io_tree, ordered_extent->file_offset,
2668 ordered_extent->file_offset + ordered_extent->len - 1,
2669 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2670 }
2671
0cb59c99 2672 if (nolock)
7a7eaa40 2673 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2674 else
7a7eaa40 2675 trans = btrfs_join_transaction(root);
79787eaa
JM
2676 if (IS_ERR(trans)) {
2677 ret = PTR_ERR(trans);
2678 trans = NULL;
2679 goto out_unlock;
2680 }
0ca1f7ce 2681 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2682
c8b97818 2683 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2684 compress_type = ordered_extent->compress_type;
d899e052 2685 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2686 BUG_ON(compress_type);
920bbbfb 2687 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2688 ordered_extent->file_offset,
2689 ordered_extent->file_offset +
2690 ordered_extent->len);
d899e052 2691 } else {
0af3d00b 2692 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2693 ret = insert_reserved_file_extent(trans, inode,
2694 ordered_extent->file_offset,
2695 ordered_extent->start,
2696 ordered_extent->disk_len,
2697 ordered_extent->len,
2698 ordered_extent->len,
261507a0 2699 compress_type, 0, 0,
d899e052 2700 BTRFS_FILE_EXTENT_REG);
d899e052 2701 }
5dc562c5
JB
2702 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2703 ordered_extent->file_offset, ordered_extent->len,
2704 trans->transid);
79787eaa
JM
2705 if (ret < 0) {
2706 btrfs_abort_transaction(trans, root, ret);
5fd02043 2707 goto out_unlock;
79787eaa 2708 }
2ac55d41 2709
e6dcd2dc
CM
2710 add_pending_csums(trans, inode, ordered_extent->file_offset,
2711 &ordered_extent->list);
2712
6c760c07
JB
2713 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2714 ret = btrfs_update_inode_fallback(trans, root, inode);
2715 if (ret) { /* -ENOMEM or corruption */
2716 btrfs_abort_transaction(trans, root, ret);
2717 goto out_unlock;
1ef30be1
JB
2718 }
2719 ret = 0;
5fd02043
JB
2720out_unlock:
2721 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2722 ordered_extent->file_offset +
2723 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2724out:
5b0e95bf 2725 if (root != root->fs_info->tree_root)
0cb59c99 2726 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2727 if (trans)
2728 btrfs_end_transaction(trans, root);
0cb59c99 2729
0bec9ef5 2730 if (ret) {
5fd02043
JB
2731 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
2732 ordered_extent->file_offset +
2733 ordered_extent->len - 1, NULL, GFP_NOFS);
2734
0bec9ef5
JB
2735 /*
2736 * If the ordered extent had an IOERR or something else went
2737 * wrong we need to return the space for this ordered extent
2738 * back to the allocator.
2739 */
2740 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2741 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2742 btrfs_free_reserved_extent(root, ordered_extent->start,
2743 ordered_extent->disk_len);
2744 }
2745
2746
5fd02043 2747 /*
8bad3c02
LB
2748 * This needs to be done to make sure anybody waiting knows we are done
2749 * updating everything for this ordered extent.
5fd02043
JB
2750 */
2751 btrfs_remove_ordered_extent(inode, ordered_extent);
2752
38c227d8
LB
2753 /* for snapshot-aware defrag */
2754 if (new)
2755 relink_file_extents(new);
2756
e6dcd2dc
CM
2757 /* once for us */
2758 btrfs_put_ordered_extent(ordered_extent);
2759 /* once for the tree */
2760 btrfs_put_ordered_extent(ordered_extent);
2761
5fd02043
JB
2762 return ret;
2763}
2764
2765static void finish_ordered_fn(struct btrfs_work *work)
2766{
2767 struct btrfs_ordered_extent *ordered_extent;
2768 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2769 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2770}
2771
b2950863 2772static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2773 struct extent_state *state, int uptodate)
2774{
5fd02043
JB
2775 struct inode *inode = page->mapping->host;
2776 struct btrfs_root *root = BTRFS_I(inode)->root;
2777 struct btrfs_ordered_extent *ordered_extent = NULL;
2778 struct btrfs_workers *workers;
2779
1abe9b8a 2780 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2781
8b62b72b 2782 ClearPagePrivate2(page);
5fd02043
JB
2783 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2784 end - start + 1, uptodate))
2785 return 0;
2786
2787 ordered_extent->work.func = finish_ordered_fn;
2788 ordered_extent->work.flags = 0;
2789
83eea1f1 2790 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2791 workers = &root->fs_info->endio_freespace_worker;
2792 else
2793 workers = &root->fs_info->endio_write_workers;
2794 btrfs_queue_worker(workers, &ordered_extent->work);
2795
2796 return 0;
211f90e6
CM
2797}
2798
d352ac68
CM
2799/*
2800 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2801 * if there's a match, we allow the bio to finish. If not, the code in
2802 * extent_io.c will try to find good copies for us.
d352ac68 2803 */
facc8a22
MX
2804static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2805 u64 phy_offset, struct page *page,
2806 u64 start, u64 end, int mirror)
07157aac 2807{
4eee4fa4 2808 size_t offset = start - page_offset(page);
07157aac 2809 struct inode *inode = page->mapping->host;
d1310b2e 2810 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2811 char *kaddr;
ff79f819 2812 struct btrfs_root *root = BTRFS_I(inode)->root;
facc8a22 2813 u32 csum_expected;
ff79f819 2814 u32 csum = ~(u32)0;
c2cf52eb
SK
2815 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2816 DEFAULT_RATELIMIT_BURST);
d1310b2e 2817
d20f7043
CM
2818 if (PageChecked(page)) {
2819 ClearPageChecked(page);
2820 goto good;
2821 }
6cbff00f
CH
2822
2823 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2824 goto good;
17d217fe
YZ
2825
2826 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2827 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2828 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2829 GFP_NOFS);
b6cda9bc 2830 return 0;
17d217fe 2831 }
d20f7043 2832
facc8a22
MX
2833 phy_offset >>= inode->i_sb->s_blocksize_bits;
2834 csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
d397712b 2835
facc8a22 2836 kaddr = kmap_atomic(page);
b0496686 2837 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
ff79f819 2838 btrfs_csum_final(csum, (char *)&csum);
facc8a22 2839 if (csum != csum_expected)
07157aac 2840 goto zeroit;
d397712b 2841
7ac687d9 2842 kunmap_atomic(kaddr);
d20f7043 2843good:
07157aac
CM
2844 return 0;
2845
2846zeroit:
c2cf52eb 2847 if (__ratelimit(&_rs))
facc8a22 2848 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c2cf52eb 2849 (unsigned long long)btrfs_ino(page->mapping->host),
facc8a22 2850 (unsigned long long)start, csum, csum_expected);
db94535d
CM
2851 memset(kaddr + offset, 1, end - start + 1);
2852 flush_dcache_page(page);
7ac687d9 2853 kunmap_atomic(kaddr);
facc8a22 2854 if (csum_expected == 0)
3b951516 2855 return 0;
7e38326f 2856 return -EIO;
07157aac 2857}
b888db2b 2858
24bbcf04
YZ
2859struct delayed_iput {
2860 struct list_head list;
2861 struct inode *inode;
2862};
2863
79787eaa
JM
2864/* JDM: If this is fs-wide, why can't we add a pointer to
2865 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2866void btrfs_add_delayed_iput(struct inode *inode)
2867{
2868 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2869 struct delayed_iput *delayed;
2870
2871 if (atomic_add_unless(&inode->i_count, -1, 1))
2872 return;
2873
2874 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2875 delayed->inode = inode;
2876
2877 spin_lock(&fs_info->delayed_iput_lock);
2878 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2879 spin_unlock(&fs_info->delayed_iput_lock);
2880}
2881
2882void btrfs_run_delayed_iputs(struct btrfs_root *root)
2883{
2884 LIST_HEAD(list);
2885 struct btrfs_fs_info *fs_info = root->fs_info;
2886 struct delayed_iput *delayed;
2887 int empty;
2888
2889 spin_lock(&fs_info->delayed_iput_lock);
2890 empty = list_empty(&fs_info->delayed_iputs);
2891 spin_unlock(&fs_info->delayed_iput_lock);
2892 if (empty)
2893 return;
2894
24bbcf04
YZ
2895 spin_lock(&fs_info->delayed_iput_lock);
2896 list_splice_init(&fs_info->delayed_iputs, &list);
2897 spin_unlock(&fs_info->delayed_iput_lock);
2898
2899 while (!list_empty(&list)) {
2900 delayed = list_entry(list.next, struct delayed_iput, list);
2901 list_del(&delayed->list);
2902 iput(delayed->inode);
2903 kfree(delayed);
2904 }
24bbcf04
YZ
2905}
2906
d68fc57b 2907/*
42b2aa86 2908 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2909 * files in the subvolume, it removes orphan item and frees block_rsv
2910 * structure.
2911 */
2912void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2913 struct btrfs_root *root)
2914{
90290e19 2915 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2916 int ret;
2917
8a35d95f 2918 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2919 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2920 return;
2921
90290e19 2922 spin_lock(&root->orphan_lock);
8a35d95f 2923 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2924 spin_unlock(&root->orphan_lock);
2925 return;
2926 }
2927
2928 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2929 spin_unlock(&root->orphan_lock);
2930 return;
2931 }
2932
2933 block_rsv = root->orphan_block_rsv;
2934 root->orphan_block_rsv = NULL;
2935 spin_unlock(&root->orphan_lock);
2936
d68fc57b
YZ
2937 if (root->orphan_item_inserted &&
2938 btrfs_root_refs(&root->root_item) > 0) {
2939 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2940 root->root_key.objectid);
2941 BUG_ON(ret);
2942 root->orphan_item_inserted = 0;
2943 }
2944
90290e19
JB
2945 if (block_rsv) {
2946 WARN_ON(block_rsv->size > 0);
2947 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2948 }
2949}
2950
7b128766
JB
2951/*
2952 * This creates an orphan entry for the given inode in case something goes
2953 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2954 *
2955 * NOTE: caller of this function should reserve 5 units of metadata for
2956 * this function.
7b128766
JB
2957 */
2958int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2959{
2960 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2961 struct btrfs_block_rsv *block_rsv = NULL;
2962 int reserve = 0;
2963 int insert = 0;
2964 int ret;
7b128766 2965
d68fc57b 2966 if (!root->orphan_block_rsv) {
66d8f3dd 2967 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
2968 if (!block_rsv)
2969 return -ENOMEM;
d68fc57b 2970 }
7b128766 2971
d68fc57b
YZ
2972 spin_lock(&root->orphan_lock);
2973 if (!root->orphan_block_rsv) {
2974 root->orphan_block_rsv = block_rsv;
2975 } else if (block_rsv) {
2976 btrfs_free_block_rsv(root, block_rsv);
2977 block_rsv = NULL;
7b128766 2978 }
7b128766 2979
8a35d95f
JB
2980 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2981 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2982#if 0
2983 /*
2984 * For proper ENOSPC handling, we should do orphan
2985 * cleanup when mounting. But this introduces backward
2986 * compatibility issue.
2987 */
2988 if (!xchg(&root->orphan_item_inserted, 1))
2989 insert = 2;
2990 else
2991 insert = 1;
2992#endif
2993 insert = 1;
321f0e70 2994 atomic_inc(&root->orphan_inodes);
7b128766
JB
2995 }
2996
72ac3c0d
JB
2997 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2998 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2999 reserve = 1;
d68fc57b 3000 spin_unlock(&root->orphan_lock);
7b128766 3001
d68fc57b
YZ
3002 /* grab metadata reservation from transaction handle */
3003 if (reserve) {
3004 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3005 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3006 }
7b128766 3007
d68fc57b
YZ
3008 /* insert an orphan item to track this unlinked/truncated file */
3009 if (insert >= 1) {
33345d01 3010 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 3011 if (ret && ret != -EEXIST) {
8a35d95f
JB
3012 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3013 &BTRFS_I(inode)->runtime_flags);
79787eaa
JM
3014 btrfs_abort_transaction(trans, root, ret);
3015 return ret;
3016 }
3017 ret = 0;
d68fc57b
YZ
3018 }
3019
3020 /* insert an orphan item to track subvolume contains orphan files */
3021 if (insert >= 2) {
3022 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3023 root->root_key.objectid);
79787eaa
JM
3024 if (ret && ret != -EEXIST) {
3025 btrfs_abort_transaction(trans, root, ret);
3026 return ret;
3027 }
d68fc57b
YZ
3028 }
3029 return 0;
7b128766
JB
3030}
3031
3032/*
3033 * We have done the truncate/delete so we can go ahead and remove the orphan
3034 * item for this particular inode.
3035 */
48a3b636
ES
3036static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3037 struct inode *inode)
7b128766
JB
3038{
3039 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3040 int delete_item = 0;
3041 int release_rsv = 0;
7b128766
JB
3042 int ret = 0;
3043
d68fc57b 3044 spin_lock(&root->orphan_lock);
8a35d95f
JB
3045 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3046 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3047 delete_item = 1;
7b128766 3048
72ac3c0d
JB
3049 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3050 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3051 release_rsv = 1;
d68fc57b 3052 spin_unlock(&root->orphan_lock);
7b128766 3053
d68fc57b 3054 if (trans && delete_item) {
33345d01 3055 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 3056 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
d68fc57b 3057 }
7b128766 3058
8a35d95f 3059 if (release_rsv) {
d68fc57b 3060 btrfs_orphan_release_metadata(inode);
8a35d95f
JB
3061 atomic_dec(&root->orphan_inodes);
3062 }
7b128766 3063
d68fc57b 3064 return 0;
7b128766
JB
3065}
3066
3067/*
3068 * this cleans up any orphans that may be left on the list from the last use
3069 * of this root.
3070 */
66b4ffd1 3071int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3072{
3073 struct btrfs_path *path;
3074 struct extent_buffer *leaf;
7b128766
JB
3075 struct btrfs_key key, found_key;
3076 struct btrfs_trans_handle *trans;
3077 struct inode *inode;
8f6d7f4f 3078 u64 last_objectid = 0;
7b128766
JB
3079 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3080
d68fc57b 3081 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3082 return 0;
c71bf099
YZ
3083
3084 path = btrfs_alloc_path();
66b4ffd1
JB
3085 if (!path) {
3086 ret = -ENOMEM;
3087 goto out;
3088 }
7b128766
JB
3089 path->reada = -1;
3090
3091 key.objectid = BTRFS_ORPHAN_OBJECTID;
3092 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3093 key.offset = (u64)-1;
3094
7b128766
JB
3095 while (1) {
3096 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3097 if (ret < 0)
3098 goto out;
7b128766
JB
3099
3100 /*
3101 * if ret == 0 means we found what we were searching for, which
25985edc 3102 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3103 * find the key and see if we have stuff that matches
3104 */
3105 if (ret > 0) {
66b4ffd1 3106 ret = 0;
7b128766
JB
3107 if (path->slots[0] == 0)
3108 break;
3109 path->slots[0]--;
3110 }
3111
3112 /* pull out the item */
3113 leaf = path->nodes[0];
7b128766
JB
3114 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3115
3116 /* make sure the item matches what we want */
3117 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3118 break;
3119 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3120 break;
3121
3122 /* release the path since we're done with it */
b3b4aa74 3123 btrfs_release_path(path);
7b128766
JB
3124
3125 /*
3126 * this is where we are basically btrfs_lookup, without the
3127 * crossing root thing. we store the inode number in the
3128 * offset of the orphan item.
3129 */
8f6d7f4f
JB
3130
3131 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3132 btrfs_err(root->fs_info,
3133 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3134 ret = -EINVAL;
3135 goto out;
3136 }
3137
3138 last_objectid = found_key.offset;
3139
5d4f98a2
YZ
3140 found_key.objectid = found_key.offset;
3141 found_key.type = BTRFS_INODE_ITEM_KEY;
3142 found_key.offset = 0;
73f73415 3143 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
3144 ret = PTR_RET(inode);
3145 if (ret && ret != -ESTALE)
66b4ffd1 3146 goto out;
7b128766 3147
f8e9e0b0
AJ
3148 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3149 struct btrfs_root *dead_root;
3150 struct btrfs_fs_info *fs_info = root->fs_info;
3151 int is_dead_root = 0;
3152
3153 /*
3154 * this is an orphan in the tree root. Currently these
3155 * could come from 2 sources:
3156 * a) a snapshot deletion in progress
3157 * b) a free space cache inode
3158 * We need to distinguish those two, as the snapshot
3159 * orphan must not get deleted.
3160 * find_dead_roots already ran before us, so if this
3161 * is a snapshot deletion, we should find the root
3162 * in the dead_roots list
3163 */
3164 spin_lock(&fs_info->trans_lock);
3165 list_for_each_entry(dead_root, &fs_info->dead_roots,
3166 root_list) {
3167 if (dead_root->root_key.objectid ==
3168 found_key.objectid) {
3169 is_dead_root = 1;
3170 break;
3171 }
3172 }
3173 spin_unlock(&fs_info->trans_lock);
3174 if (is_dead_root) {
3175 /* prevent this orphan from being found again */
3176 key.offset = found_key.objectid - 1;
3177 continue;
3178 }
3179 }
7b128766 3180 /*
a8c9e576
JB
3181 * Inode is already gone but the orphan item is still there,
3182 * kill the orphan item.
7b128766 3183 */
a8c9e576
JB
3184 if (ret == -ESTALE) {
3185 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3186 if (IS_ERR(trans)) {
3187 ret = PTR_ERR(trans);
3188 goto out;
3189 }
c2cf52eb
SK
3190 btrfs_debug(root->fs_info, "auto deleting %Lu",
3191 found_key.objectid);
a8c9e576
JB
3192 ret = btrfs_del_orphan_item(trans, root,
3193 found_key.objectid);
79787eaa 3194 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
5b21f2ed 3195 btrfs_end_transaction(trans, root);
7b128766
JB
3196 continue;
3197 }
3198
a8c9e576
JB
3199 /*
3200 * add this inode to the orphan list so btrfs_orphan_del does
3201 * the proper thing when we hit it
3202 */
8a35d95f
JB
3203 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3204 &BTRFS_I(inode)->runtime_flags);
925396ec 3205 atomic_inc(&root->orphan_inodes);
a8c9e576 3206
7b128766
JB
3207 /* if we have links, this was a truncate, lets do that */
3208 if (inode->i_nlink) {
a41ad394
JB
3209 if (!S_ISREG(inode->i_mode)) {
3210 WARN_ON(1);
3211 iput(inode);
3212 continue;
3213 }
7b128766 3214 nr_truncate++;
f3fe820c
JB
3215
3216 /* 1 for the orphan item deletion. */
3217 trans = btrfs_start_transaction(root, 1);
3218 if (IS_ERR(trans)) {
c69b26b0 3219 iput(inode);
f3fe820c
JB
3220 ret = PTR_ERR(trans);
3221 goto out;
3222 }
3223 ret = btrfs_orphan_add(trans, inode);
3224 btrfs_end_transaction(trans, root);
c69b26b0
JB
3225 if (ret) {
3226 iput(inode);
f3fe820c 3227 goto out;
c69b26b0 3228 }
f3fe820c 3229
66b4ffd1 3230 ret = btrfs_truncate(inode);
4a7d0f68
JB
3231 if (ret)
3232 btrfs_orphan_del(NULL, inode);
7b128766
JB
3233 } else {
3234 nr_unlink++;
3235 }
3236
3237 /* this will do delete_inode and everything for us */
3238 iput(inode);
66b4ffd1
JB
3239 if (ret)
3240 goto out;
7b128766 3241 }
3254c876
MX
3242 /* release the path since we're done with it */
3243 btrfs_release_path(path);
3244
d68fc57b
YZ
3245 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3246
3247 if (root->orphan_block_rsv)
3248 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3249 (u64)-1);
3250
3251 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 3252 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3253 if (!IS_ERR(trans))
3254 btrfs_end_transaction(trans, root);
d68fc57b 3255 }
7b128766
JB
3256
3257 if (nr_unlink)
4884b476 3258 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3259 if (nr_truncate)
4884b476 3260 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3261
3262out:
3263 if (ret)
c2cf52eb
SK
3264 btrfs_crit(root->fs_info,
3265 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3266 btrfs_free_path(path);
3267 return ret;
7b128766
JB
3268}
3269
46a53cca
CM
3270/*
3271 * very simple check to peek ahead in the leaf looking for xattrs. If we
3272 * don't find any xattrs, we know there can't be any acls.
3273 *
3274 * slot is the slot the inode is in, objectid is the objectid of the inode
3275 */
3276static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3277 int slot, u64 objectid)
3278{
3279 u32 nritems = btrfs_header_nritems(leaf);
3280 struct btrfs_key found_key;
f23b5a59
JB
3281 static u64 xattr_access = 0;
3282 static u64 xattr_default = 0;
46a53cca
CM
3283 int scanned = 0;
3284
f23b5a59
JB
3285 if (!xattr_access) {
3286 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3287 strlen(POSIX_ACL_XATTR_ACCESS));
3288 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3289 strlen(POSIX_ACL_XATTR_DEFAULT));
3290 }
3291
46a53cca
CM
3292 slot++;
3293 while (slot < nritems) {
3294 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3295
3296 /* we found a different objectid, there must not be acls */
3297 if (found_key.objectid != objectid)
3298 return 0;
3299
3300 /* we found an xattr, assume we've got an acl */
f23b5a59
JB
3301 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3302 if (found_key.offset == xattr_access ||
3303 found_key.offset == xattr_default)
3304 return 1;
3305 }
46a53cca
CM
3306
3307 /*
3308 * we found a key greater than an xattr key, there can't
3309 * be any acls later on
3310 */
3311 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3312 return 0;
3313
3314 slot++;
3315 scanned++;
3316
3317 /*
3318 * it goes inode, inode backrefs, xattrs, extents,
3319 * so if there are a ton of hard links to an inode there can
3320 * be a lot of backrefs. Don't waste time searching too hard,
3321 * this is just an optimization
3322 */
3323 if (scanned >= 8)
3324 break;
3325 }
3326 /* we hit the end of the leaf before we found an xattr or
3327 * something larger than an xattr. We have to assume the inode
3328 * has acls
3329 */
3330 return 1;
3331}
3332
d352ac68
CM
3333/*
3334 * read an inode from the btree into the in-memory inode
3335 */
5d4f98a2 3336static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3337{
3338 struct btrfs_path *path;
5f39d397 3339 struct extent_buffer *leaf;
39279cc3 3340 struct btrfs_inode_item *inode_item;
0b86a832 3341 struct btrfs_timespec *tspec;
39279cc3
CM
3342 struct btrfs_root *root = BTRFS_I(inode)->root;
3343 struct btrfs_key location;
46a53cca 3344 int maybe_acls;
618e21d5 3345 u32 rdev;
39279cc3 3346 int ret;
2f7e33d4
MX
3347 bool filled = false;
3348
3349 ret = btrfs_fill_inode(inode, &rdev);
3350 if (!ret)
3351 filled = true;
39279cc3
CM
3352
3353 path = btrfs_alloc_path();
1748f843
MF
3354 if (!path)
3355 goto make_bad;
3356
d90c7321 3357 path->leave_spinning = 1;
39279cc3 3358 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3359
39279cc3 3360 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3361 if (ret)
39279cc3 3362 goto make_bad;
39279cc3 3363
5f39d397 3364 leaf = path->nodes[0];
2f7e33d4
MX
3365
3366 if (filled)
3367 goto cache_acl;
3368
5f39d397
CM
3369 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3370 struct btrfs_inode_item);
5f39d397 3371 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3372 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3373 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3374 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3375 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
3376
3377 tspec = btrfs_inode_atime(inode_item);
3378 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3379 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3380
3381 tspec = btrfs_inode_mtime(inode_item);
3382 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3383 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3384
3385 tspec = btrfs_inode_ctime(inode_item);
3386 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3387 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3388
a76a3cd4 3389 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3390 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3391 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3392
3393 /*
3394 * If we were modified in the current generation and evicted from memory
3395 * and then re-read we need to do a full sync since we don't have any
3396 * idea about which extents were modified before we were evicted from
3397 * cache.
3398 */
3399 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3400 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3401 &BTRFS_I(inode)->runtime_flags);
3402
0c4d2d95 3403 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 3404 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 3405 inode->i_rdev = 0;
5f39d397
CM
3406 rdev = btrfs_inode_rdev(leaf, inode_item);
3407
aec7477b 3408 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 3409 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 3410cache_acl:
46a53cca
CM
3411 /*
3412 * try to precache a NULL acl entry for files that don't have
3413 * any xattrs or acls
3414 */
33345d01
LZ
3415 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3416 btrfs_ino(inode));
72c04902
AV
3417 if (!maybe_acls)
3418 cache_no_acl(inode);
46a53cca 3419
39279cc3 3420 btrfs_free_path(path);
39279cc3 3421
39279cc3 3422 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3423 case S_IFREG:
3424 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3425 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 3426 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3427 inode->i_fop = &btrfs_file_operations;
3428 inode->i_op = &btrfs_file_inode_operations;
3429 break;
3430 case S_IFDIR:
3431 inode->i_fop = &btrfs_dir_file_operations;
3432 if (root == root->fs_info->tree_root)
3433 inode->i_op = &btrfs_dir_ro_inode_operations;
3434 else
3435 inode->i_op = &btrfs_dir_inode_operations;
3436 break;
3437 case S_IFLNK:
3438 inode->i_op = &btrfs_symlink_inode_operations;
3439 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 3440 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 3441 break;
618e21d5 3442 default:
0279b4cd 3443 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3444 init_special_inode(inode, inode->i_mode, rdev);
3445 break;
39279cc3 3446 }
6cbff00f
CH
3447
3448 btrfs_update_iflags(inode);
39279cc3
CM
3449 return;
3450
3451make_bad:
39279cc3 3452 btrfs_free_path(path);
39279cc3
CM
3453 make_bad_inode(inode);
3454}
3455
d352ac68
CM
3456/*
3457 * given a leaf and an inode, copy the inode fields into the leaf
3458 */
e02119d5
CM
3459static void fill_inode_item(struct btrfs_trans_handle *trans,
3460 struct extent_buffer *leaf,
5f39d397 3461 struct btrfs_inode_item *item,
39279cc3
CM
3462 struct inode *inode)
3463{
51fab693
LB
3464 struct btrfs_map_token token;
3465
3466 btrfs_init_map_token(&token);
5f39d397 3467
51fab693
LB
3468 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3469 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3470 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3471 &token);
3472 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3473 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3474
51fab693
LB
3475 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3476 inode->i_atime.tv_sec, &token);
3477 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3478 inode->i_atime.tv_nsec, &token);
5f39d397 3479
51fab693
LB
3480 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3481 inode->i_mtime.tv_sec, &token);
3482 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3483 inode->i_mtime.tv_nsec, &token);
5f39d397 3484
51fab693
LB
3485 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3486 inode->i_ctime.tv_sec, &token);
3487 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3488 inode->i_ctime.tv_nsec, &token);
5f39d397 3489
51fab693
LB
3490 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3491 &token);
3492 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3493 &token);
3494 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3495 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3496 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3497 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3498 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3499}
3500
d352ac68
CM
3501/*
3502 * copy everything in the in-memory inode into the btree.
3503 */
2115133f 3504static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3505 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3506{
3507 struct btrfs_inode_item *inode_item;
3508 struct btrfs_path *path;
5f39d397 3509 struct extent_buffer *leaf;
39279cc3
CM
3510 int ret;
3511
3512 path = btrfs_alloc_path();
16cdcec7
MX
3513 if (!path)
3514 return -ENOMEM;
3515
b9473439 3516 path->leave_spinning = 1;
16cdcec7
MX
3517 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3518 1);
39279cc3
CM
3519 if (ret) {
3520 if (ret > 0)
3521 ret = -ENOENT;
3522 goto failed;
3523 }
3524
b4ce94de 3525 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
3526 leaf = path->nodes[0];
3527 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3528 struct btrfs_inode_item);
39279cc3 3529
e02119d5 3530 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3531 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3532 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3533 ret = 0;
3534failed:
39279cc3
CM
3535 btrfs_free_path(path);
3536 return ret;
3537}
3538
2115133f
CM
3539/*
3540 * copy everything in the in-memory inode into the btree.
3541 */
3542noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3543 struct btrfs_root *root, struct inode *inode)
3544{
3545 int ret;
3546
3547 /*
3548 * If the inode is a free space inode, we can deadlock during commit
3549 * if we put it into the delayed code.
3550 *
3551 * The data relocation inode should also be directly updated
3552 * without delay
3553 */
83eea1f1 3554 if (!btrfs_is_free_space_inode(inode)
2115133f 3555 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
3556 btrfs_update_root_times(trans, root);
3557
2115133f
CM
3558 ret = btrfs_delayed_update_inode(trans, root, inode);
3559 if (!ret)
3560 btrfs_set_inode_last_trans(trans, inode);
3561 return ret;
3562 }
3563
3564 return btrfs_update_inode_item(trans, root, inode);
3565}
3566
be6aef60
JB
3567noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3568 struct btrfs_root *root,
3569 struct inode *inode)
2115133f
CM
3570{
3571 int ret;
3572
3573 ret = btrfs_update_inode(trans, root, inode);
3574 if (ret == -ENOSPC)
3575 return btrfs_update_inode_item(trans, root, inode);
3576 return ret;
3577}
3578
d352ac68
CM
3579/*
3580 * unlink helper that gets used here in inode.c and in the tree logging
3581 * recovery code. It remove a link in a directory with a given name, and
3582 * also drops the back refs in the inode to the directory
3583 */
92986796
AV
3584static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3585 struct btrfs_root *root,
3586 struct inode *dir, struct inode *inode,
3587 const char *name, int name_len)
39279cc3
CM
3588{
3589 struct btrfs_path *path;
39279cc3 3590 int ret = 0;
5f39d397 3591 struct extent_buffer *leaf;
39279cc3 3592 struct btrfs_dir_item *di;
5f39d397 3593 struct btrfs_key key;
aec7477b 3594 u64 index;
33345d01
LZ
3595 u64 ino = btrfs_ino(inode);
3596 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3597
3598 path = btrfs_alloc_path();
54aa1f4d
CM
3599 if (!path) {
3600 ret = -ENOMEM;
554233a6 3601 goto out;
54aa1f4d
CM
3602 }
3603
b9473439 3604 path->leave_spinning = 1;
33345d01 3605 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3606 name, name_len, -1);
3607 if (IS_ERR(di)) {
3608 ret = PTR_ERR(di);
3609 goto err;
3610 }
3611 if (!di) {
3612 ret = -ENOENT;
3613 goto err;
3614 }
5f39d397
CM
3615 leaf = path->nodes[0];
3616 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3617 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3618 if (ret)
3619 goto err;
b3b4aa74 3620 btrfs_release_path(path);
39279cc3 3621
33345d01
LZ
3622 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3623 dir_ino, &index);
aec7477b 3624 if (ret) {
c2cf52eb
SK
3625 btrfs_info(root->fs_info,
3626 "failed to delete reference to %.*s, inode %llu parent %llu",
3627 name_len, name,
3628 (unsigned long long)ino, (unsigned long long)dir_ino);
79787eaa 3629 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3630 goto err;
3631 }
3632
16cdcec7 3633 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3634 if (ret) {
3635 btrfs_abort_transaction(trans, root, ret);
39279cc3 3636 goto err;
79787eaa 3637 }
39279cc3 3638
e02119d5 3639 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3640 inode, dir_ino);
79787eaa
JM
3641 if (ret != 0 && ret != -ENOENT) {
3642 btrfs_abort_transaction(trans, root, ret);
3643 goto err;
3644 }
e02119d5
CM
3645
3646 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3647 dir, index);
6418c961
CM
3648 if (ret == -ENOENT)
3649 ret = 0;
d4e3991b
ZB
3650 else if (ret)
3651 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3652err:
3653 btrfs_free_path(path);
e02119d5
CM
3654 if (ret)
3655 goto out;
3656
3657 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3658 inode_inc_iversion(inode);
3659 inode_inc_iversion(dir);
e02119d5 3660 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3661 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3662out:
39279cc3
CM
3663 return ret;
3664}
3665
92986796
AV
3666int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3667 struct btrfs_root *root,
3668 struct inode *dir, struct inode *inode,
3669 const char *name, int name_len)
3670{
3671 int ret;
3672 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3673 if (!ret) {
3674 btrfs_drop_nlink(inode);
3675 ret = btrfs_update_inode(trans, root, inode);
3676 }
3677 return ret;
3678}
39279cc3 3679
a22285a6
YZ
3680/*
3681 * helper to start transaction for unlink and rmdir.
3682 *
d52be818
JB
3683 * unlink and rmdir are special in btrfs, they do not always free space, so
3684 * if we cannot make our reservations the normal way try and see if there is
3685 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3686 * allow the unlink to occur.
a22285a6 3687 */
d52be818 3688static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3689{
39279cc3 3690 struct btrfs_trans_handle *trans;
a22285a6 3691 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
3692 int ret;
3693
e70bea5f
JB
3694 /*
3695 * 1 for the possible orphan item
3696 * 1 for the dir item
3697 * 1 for the dir index
3698 * 1 for the inode ref
e70bea5f
JB
3699 * 1 for the inode
3700 */
6e137ed3 3701 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
3702 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3703 return trans;
4df27c4d 3704
d52be818
JB
3705 if (PTR_ERR(trans) == -ENOSPC) {
3706 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 3707
d52be818
JB
3708 trans = btrfs_start_transaction(root, 0);
3709 if (IS_ERR(trans))
3710 return trans;
3711 ret = btrfs_cond_migrate_bytes(root->fs_info,
3712 &root->fs_info->trans_block_rsv,
3713 num_bytes, 5);
3714 if (ret) {
3715 btrfs_end_transaction(trans, root);
3716 return ERR_PTR(ret);
a22285a6 3717 }
5a77d76c 3718 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 3719 trans->bytes_reserved = num_bytes;
a22285a6 3720 }
d52be818 3721 return trans;
a22285a6
YZ
3722}
3723
3724static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3725{
3726 struct btrfs_root *root = BTRFS_I(dir)->root;
3727 struct btrfs_trans_handle *trans;
3728 struct inode *inode = dentry->d_inode;
3729 int ret;
a22285a6 3730
d52be818 3731 trans = __unlink_start_trans(dir);
a22285a6
YZ
3732 if (IS_ERR(trans))
3733 return PTR_ERR(trans);
5f39d397 3734
12fcfd22
CM
3735 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3736
e02119d5
CM
3737 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3738 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3739 if (ret)
3740 goto out;
7b128766 3741
a22285a6 3742 if (inode->i_nlink == 0) {
7b128766 3743 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3744 if (ret)
3745 goto out;
a22285a6 3746 }
7b128766 3747
b532402e 3748out:
d52be818 3749 btrfs_end_transaction(trans, root);
b53d3f5d 3750 btrfs_btree_balance_dirty(root);
39279cc3
CM
3751 return ret;
3752}
3753
4df27c4d
YZ
3754int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3755 struct btrfs_root *root,
3756 struct inode *dir, u64 objectid,
3757 const char *name, int name_len)
3758{
3759 struct btrfs_path *path;
3760 struct extent_buffer *leaf;
3761 struct btrfs_dir_item *di;
3762 struct btrfs_key key;
3763 u64 index;
3764 int ret;
33345d01 3765 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3766
3767 path = btrfs_alloc_path();
3768 if (!path)
3769 return -ENOMEM;
3770
33345d01 3771 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3772 name, name_len, -1);
79787eaa
JM
3773 if (IS_ERR_OR_NULL(di)) {
3774 if (!di)
3775 ret = -ENOENT;
3776 else
3777 ret = PTR_ERR(di);
3778 goto out;
3779 }
4df27c4d
YZ
3780
3781 leaf = path->nodes[0];
3782 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3783 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3784 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3785 if (ret) {
3786 btrfs_abort_transaction(trans, root, ret);
3787 goto out;
3788 }
b3b4aa74 3789 btrfs_release_path(path);
4df27c4d
YZ
3790
3791 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3792 objectid, root->root_key.objectid,
33345d01 3793 dir_ino, &index, name, name_len);
4df27c4d 3794 if (ret < 0) {
79787eaa
JM
3795 if (ret != -ENOENT) {
3796 btrfs_abort_transaction(trans, root, ret);
3797 goto out;
3798 }
33345d01 3799 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3800 name, name_len);
79787eaa
JM
3801 if (IS_ERR_OR_NULL(di)) {
3802 if (!di)
3803 ret = -ENOENT;
3804 else
3805 ret = PTR_ERR(di);
3806 btrfs_abort_transaction(trans, root, ret);
3807 goto out;
3808 }
4df27c4d
YZ
3809
3810 leaf = path->nodes[0];
3811 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3812 btrfs_release_path(path);
4df27c4d
YZ
3813 index = key.offset;
3814 }
945d8962 3815 btrfs_release_path(path);
4df27c4d 3816
16cdcec7 3817 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3818 if (ret) {
3819 btrfs_abort_transaction(trans, root, ret);
3820 goto out;
3821 }
4df27c4d
YZ
3822
3823 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3824 inode_inc_iversion(dir);
4df27c4d 3825 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3826 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3827 if (ret)
3828 btrfs_abort_transaction(trans, root, ret);
3829out:
71d7aed0 3830 btrfs_free_path(path);
79787eaa 3831 return ret;
4df27c4d
YZ
3832}
3833
39279cc3
CM
3834static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3835{
3836 struct inode *inode = dentry->d_inode;
1832a6d5 3837 int err = 0;
39279cc3 3838 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3839 struct btrfs_trans_handle *trans;
39279cc3 3840
b3ae244e 3841 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3842 return -ENOTEMPTY;
b3ae244e
DS
3843 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3844 return -EPERM;
134d4512 3845
d52be818 3846 trans = __unlink_start_trans(dir);
a22285a6 3847 if (IS_ERR(trans))
5df6a9f6 3848 return PTR_ERR(trans);
5df6a9f6 3849
33345d01 3850 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3851 err = btrfs_unlink_subvol(trans, root, dir,
3852 BTRFS_I(inode)->location.objectid,
3853 dentry->d_name.name,
3854 dentry->d_name.len);
3855 goto out;
3856 }
3857
7b128766
JB
3858 err = btrfs_orphan_add(trans, inode);
3859 if (err)
4df27c4d 3860 goto out;
7b128766 3861
39279cc3 3862 /* now the directory is empty */
e02119d5
CM
3863 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3864 dentry->d_name.name, dentry->d_name.len);
d397712b 3865 if (!err)
dbe674a9 3866 btrfs_i_size_write(inode, 0);
4df27c4d 3867out:
d52be818 3868 btrfs_end_transaction(trans, root);
b53d3f5d 3869 btrfs_btree_balance_dirty(root);
3954401f 3870
39279cc3
CM
3871 return err;
3872}
3873
39279cc3
CM
3874/*
3875 * this can truncate away extent items, csum items and directory items.
3876 * It starts at a high offset and removes keys until it can't find
d352ac68 3877 * any higher than new_size
39279cc3
CM
3878 *
3879 * csum items that cross the new i_size are truncated to the new size
3880 * as well.
7b128766
JB
3881 *
3882 * min_type is the minimum key type to truncate down to. If set to 0, this
3883 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3884 */
8082510e
YZ
3885int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3886 struct btrfs_root *root,
3887 struct inode *inode,
3888 u64 new_size, u32 min_type)
39279cc3 3889{
39279cc3 3890 struct btrfs_path *path;
5f39d397 3891 struct extent_buffer *leaf;
39279cc3 3892 struct btrfs_file_extent_item *fi;
8082510e
YZ
3893 struct btrfs_key key;
3894 struct btrfs_key found_key;
39279cc3 3895 u64 extent_start = 0;
db94535d 3896 u64 extent_num_bytes = 0;
5d4f98a2 3897 u64 extent_offset = 0;
39279cc3 3898 u64 item_end = 0;
8082510e 3899 u32 found_type = (u8)-1;
39279cc3
CM
3900 int found_extent;
3901 int del_item;
85e21bac
CM
3902 int pending_del_nr = 0;
3903 int pending_del_slot = 0;
179e29e4 3904 int extent_type = -1;
8082510e
YZ
3905 int ret;
3906 int err = 0;
33345d01 3907 u64 ino = btrfs_ino(inode);
8082510e
YZ
3908
3909 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3910
0eb0e19c
MF
3911 path = btrfs_alloc_path();
3912 if (!path)
3913 return -ENOMEM;
3914 path->reada = -1;
3915
5dc562c5
JB
3916 /*
3917 * We want to drop from the next block forward in case this new size is
3918 * not block aligned since we will be keeping the last block of the
3919 * extent just the way it is.
3920 */
0af3d00b 3921 if (root->ref_cows || root == root->fs_info->tree_root)
fda2832f
QW
3922 btrfs_drop_extent_cache(inode, ALIGN(new_size,
3923 root->sectorsize), (u64)-1, 0);
8082510e 3924
16cdcec7
MX
3925 /*
3926 * This function is also used to drop the items in the log tree before
3927 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3928 * it is used to drop the loged items. So we shouldn't kill the delayed
3929 * items.
3930 */
3931 if (min_type == 0 && root == BTRFS_I(inode)->root)
3932 btrfs_kill_delayed_inode_items(inode);
3933
33345d01 3934 key.objectid = ino;
39279cc3 3935 key.offset = (u64)-1;
5f39d397
CM
3936 key.type = (u8)-1;
3937
85e21bac 3938search_again:
b9473439 3939 path->leave_spinning = 1;
85e21bac 3940 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3941 if (ret < 0) {
3942 err = ret;
3943 goto out;
3944 }
d397712b 3945
85e21bac 3946 if (ret > 0) {
e02119d5
CM
3947 /* there are no items in the tree for us to truncate, we're
3948 * done
3949 */
8082510e
YZ
3950 if (path->slots[0] == 0)
3951 goto out;
85e21bac
CM
3952 path->slots[0]--;
3953 }
3954
d397712b 3955 while (1) {
39279cc3 3956 fi = NULL;
5f39d397
CM
3957 leaf = path->nodes[0];
3958 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3959 found_type = btrfs_key_type(&found_key);
39279cc3 3960
33345d01 3961 if (found_key.objectid != ino)
39279cc3 3962 break;
5f39d397 3963
85e21bac 3964 if (found_type < min_type)
39279cc3
CM
3965 break;
3966
5f39d397 3967 item_end = found_key.offset;
39279cc3 3968 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3969 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3970 struct btrfs_file_extent_item);
179e29e4
CM
3971 extent_type = btrfs_file_extent_type(leaf, fi);
3972 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3973 item_end +=
db94535d 3974 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3975 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3976 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3977 fi);
39279cc3 3978 }
008630c1 3979 item_end--;
39279cc3 3980 }
8082510e
YZ
3981 if (found_type > min_type) {
3982 del_item = 1;
3983 } else {
3984 if (item_end < new_size)
b888db2b 3985 break;
8082510e
YZ
3986 if (found_key.offset >= new_size)
3987 del_item = 1;
3988 else
3989 del_item = 0;
39279cc3 3990 }
39279cc3 3991 found_extent = 0;
39279cc3 3992 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3993 if (found_type != BTRFS_EXTENT_DATA_KEY)
3994 goto delete;
3995
3996 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3997 u64 num_dec;
db94535d 3998 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 3999 if (!del_item) {
db94535d
CM
4000 u64 orig_num_bytes =
4001 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4002 extent_num_bytes = ALIGN(new_size -
4003 found_key.offset,
4004 root->sectorsize);
db94535d
CM
4005 btrfs_set_file_extent_num_bytes(leaf, fi,
4006 extent_num_bytes);
4007 num_dec = (orig_num_bytes -
9069218d 4008 extent_num_bytes);
e02119d5 4009 if (root->ref_cows && extent_start != 0)
a76a3cd4 4010 inode_sub_bytes(inode, num_dec);
5f39d397 4011 btrfs_mark_buffer_dirty(leaf);
39279cc3 4012 } else {
db94535d
CM
4013 extent_num_bytes =
4014 btrfs_file_extent_disk_num_bytes(leaf,
4015 fi);
5d4f98a2
YZ
4016 extent_offset = found_key.offset -
4017 btrfs_file_extent_offset(leaf, fi);
4018
39279cc3 4019 /* FIXME blocksize != 4096 */
9069218d 4020 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4021 if (extent_start != 0) {
4022 found_extent = 1;
e02119d5 4023 if (root->ref_cows)
a76a3cd4 4024 inode_sub_bytes(inode, num_dec);
e02119d5 4025 }
39279cc3 4026 }
9069218d 4027 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4028 /*
4029 * we can't truncate inline items that have had
4030 * special encodings
4031 */
4032 if (!del_item &&
4033 btrfs_file_extent_compression(leaf, fi) == 0 &&
4034 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4035 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
4036 u32 size = new_size - found_key.offset;
4037
4038 if (root->ref_cows) {
a76a3cd4
YZ
4039 inode_sub_bytes(inode, item_end + 1 -
4040 new_size);
e02119d5
CM
4041 }
4042 size =
4043 btrfs_file_extent_calc_inline_size(size);
afe5fea7 4044 btrfs_truncate_item(root, path, size, 1);
e02119d5 4045 } else if (root->ref_cows) {
a76a3cd4
YZ
4046 inode_sub_bytes(inode, item_end + 1 -
4047 found_key.offset);
9069218d 4048 }
39279cc3 4049 }
179e29e4 4050delete:
39279cc3 4051 if (del_item) {
85e21bac
CM
4052 if (!pending_del_nr) {
4053 /* no pending yet, add ourselves */
4054 pending_del_slot = path->slots[0];
4055 pending_del_nr = 1;
4056 } else if (pending_del_nr &&
4057 path->slots[0] + 1 == pending_del_slot) {
4058 /* hop on the pending chunk */
4059 pending_del_nr++;
4060 pending_del_slot = path->slots[0];
4061 } else {
d397712b 4062 BUG();
85e21bac 4063 }
39279cc3
CM
4064 } else {
4065 break;
4066 }
0af3d00b
JB
4067 if (found_extent && (root->ref_cows ||
4068 root == root->fs_info->tree_root)) {
b9473439 4069 btrfs_set_path_blocking(path);
39279cc3 4070 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4071 extent_num_bytes, 0,
4072 btrfs_header_owner(leaf),
66d7e7f0 4073 ino, extent_offset, 0);
39279cc3
CM
4074 BUG_ON(ret);
4075 }
85e21bac 4076
8082510e
YZ
4077 if (found_type == BTRFS_INODE_ITEM_KEY)
4078 break;
4079
4080 if (path->slots[0] == 0 ||
4081 path->slots[0] != pending_del_slot) {
8082510e
YZ
4082 if (pending_del_nr) {
4083 ret = btrfs_del_items(trans, root, path,
4084 pending_del_slot,
4085 pending_del_nr);
79787eaa
JM
4086 if (ret) {
4087 btrfs_abort_transaction(trans,
4088 root, ret);
4089 goto error;
4090 }
8082510e
YZ
4091 pending_del_nr = 0;
4092 }
b3b4aa74 4093 btrfs_release_path(path);
85e21bac 4094 goto search_again;
8082510e
YZ
4095 } else {
4096 path->slots[0]--;
85e21bac 4097 }
39279cc3 4098 }
8082510e 4099out:
85e21bac
CM
4100 if (pending_del_nr) {
4101 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4102 pending_del_nr);
79787eaa
JM
4103 if (ret)
4104 btrfs_abort_transaction(trans, root, ret);
85e21bac 4105 }
79787eaa 4106error:
39279cc3 4107 btrfs_free_path(path);
8082510e 4108 return err;
39279cc3
CM
4109}
4110
4111/*
2aaa6655
JB
4112 * btrfs_truncate_page - read, zero a chunk and write a page
4113 * @inode - inode that we're zeroing
4114 * @from - the offset to start zeroing
4115 * @len - the length to zero, 0 to zero the entire range respective to the
4116 * offset
4117 * @front - zero up to the offset instead of from the offset on
4118 *
4119 * This will find the page for the "from" offset and cow the page and zero the
4120 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4121 */
2aaa6655
JB
4122int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4123 int front)
39279cc3 4124{
2aaa6655 4125 struct address_space *mapping = inode->i_mapping;
db94535d 4126 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4127 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4128 struct btrfs_ordered_extent *ordered;
2ac55d41 4129 struct extent_state *cached_state = NULL;
e6dcd2dc 4130 char *kaddr;
db94535d 4131 u32 blocksize = root->sectorsize;
39279cc3
CM
4132 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4133 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4134 struct page *page;
3b16a4e3 4135 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4136 int ret = 0;
a52d9a80 4137 u64 page_start;
e6dcd2dc 4138 u64 page_end;
39279cc3 4139
2aaa6655
JB
4140 if ((offset & (blocksize - 1)) == 0 &&
4141 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4142 goto out;
0ca1f7ce 4143 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4144 if (ret)
4145 goto out;
39279cc3 4146
211c17f5 4147again:
3b16a4e3 4148 page = find_or_create_page(mapping, index, mask);
5d5e103a 4149 if (!page) {
0ca1f7ce 4150 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4151 ret = -ENOMEM;
39279cc3 4152 goto out;
5d5e103a 4153 }
e6dcd2dc
CM
4154
4155 page_start = page_offset(page);
4156 page_end = page_start + PAGE_CACHE_SIZE - 1;
4157
39279cc3 4158 if (!PageUptodate(page)) {
9ebefb18 4159 ret = btrfs_readpage(NULL, page);
39279cc3 4160 lock_page(page);
211c17f5
CM
4161 if (page->mapping != mapping) {
4162 unlock_page(page);
4163 page_cache_release(page);
4164 goto again;
4165 }
39279cc3
CM
4166 if (!PageUptodate(page)) {
4167 ret = -EIO;
89642229 4168 goto out_unlock;
39279cc3
CM
4169 }
4170 }
211c17f5 4171 wait_on_page_writeback(page);
e6dcd2dc 4172
d0082371 4173 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4174 set_page_extent_mapped(page);
4175
4176 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4177 if (ordered) {
2ac55d41
JB
4178 unlock_extent_cached(io_tree, page_start, page_end,
4179 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4180 unlock_page(page);
4181 page_cache_release(page);
eb84ae03 4182 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4183 btrfs_put_ordered_extent(ordered);
4184 goto again;
4185 }
4186
2ac55d41 4187 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4188 EXTENT_DIRTY | EXTENT_DELALLOC |
4189 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4190 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4191
2ac55d41
JB
4192 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4193 &cached_state);
9ed74f2d 4194 if (ret) {
2ac55d41
JB
4195 unlock_extent_cached(io_tree, page_start, page_end,
4196 &cached_state, GFP_NOFS);
9ed74f2d
JB
4197 goto out_unlock;
4198 }
4199
e6dcd2dc 4200 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4201 if (!len)
4202 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4203 kaddr = kmap(page);
2aaa6655
JB
4204 if (front)
4205 memset(kaddr, 0, offset);
4206 else
4207 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4208 flush_dcache_page(page);
4209 kunmap(page);
4210 }
247e743c 4211 ClearPageChecked(page);
e6dcd2dc 4212 set_page_dirty(page);
2ac55d41
JB
4213 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4214 GFP_NOFS);
39279cc3 4215
89642229 4216out_unlock:
5d5e103a 4217 if (ret)
0ca1f7ce 4218 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4219 unlock_page(page);
4220 page_cache_release(page);
4221out:
4222 return ret;
4223}
4224
695a0d0d
JB
4225/*
4226 * This function puts in dummy file extents for the area we're creating a hole
4227 * for. So if we are truncating this file to a larger size we need to insert
4228 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4229 * the range between oldsize and size
4230 */
a41ad394 4231int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4232{
9036c102
YZ
4233 struct btrfs_trans_handle *trans;
4234 struct btrfs_root *root = BTRFS_I(inode)->root;
4235 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4236 struct extent_map *em = NULL;
2ac55d41 4237 struct extent_state *cached_state = NULL;
5dc562c5 4238 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4239 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4240 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4241 u64 last_byte;
4242 u64 cur_offset;
4243 u64 hole_size;
9ed74f2d 4244 int err = 0;
39279cc3 4245
a71754fc
JB
4246 /*
4247 * If our size started in the middle of a page we need to zero out the
4248 * rest of the page before we expand the i_size, otherwise we could
4249 * expose stale data.
4250 */
4251 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4252 if (err)
4253 return err;
4254
9036c102
YZ
4255 if (size <= hole_start)
4256 return 0;
4257
9036c102
YZ
4258 while (1) {
4259 struct btrfs_ordered_extent *ordered;
4260 btrfs_wait_ordered_range(inode, hole_start,
4261 block_end - hole_start);
2ac55d41 4262 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4263 &cached_state);
9036c102
YZ
4264 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
4265 if (!ordered)
4266 break;
2ac55d41
JB
4267 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4268 &cached_state, GFP_NOFS);
9036c102
YZ
4269 btrfs_put_ordered_extent(ordered);
4270 }
39279cc3 4271
9036c102
YZ
4272 cur_offset = hole_start;
4273 while (1) {
4274 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4275 block_end - cur_offset, 0);
79787eaa
JM
4276 if (IS_ERR(em)) {
4277 err = PTR_ERR(em);
f2767956 4278 em = NULL;
79787eaa
JM
4279 break;
4280 }
9036c102 4281 last_byte = min(extent_map_end(em), block_end);
fda2832f 4282 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4283 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4284 struct extent_map *hole_em;
9036c102 4285 hole_size = last_byte - cur_offset;
9ed74f2d 4286
3642320e 4287 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
4288 if (IS_ERR(trans)) {
4289 err = PTR_ERR(trans);
9ed74f2d 4290 break;
a22285a6 4291 }
8082510e 4292
5dc562c5
JB
4293 err = btrfs_drop_extents(trans, root, inode,
4294 cur_offset,
2671485d 4295 cur_offset + hole_size, 1);
5b397377 4296 if (err) {
79787eaa 4297 btrfs_abort_transaction(trans, root, err);
5b397377 4298 btrfs_end_transaction(trans, root);
3893e33b 4299 break;
5b397377 4300 }
8082510e 4301
9036c102 4302 err = btrfs_insert_file_extent(trans, root,
33345d01 4303 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
4304 0, hole_size, 0, hole_size,
4305 0, 0, 0);
5b397377 4306 if (err) {
79787eaa 4307 btrfs_abort_transaction(trans, root, err);
5b397377 4308 btrfs_end_transaction(trans, root);
3893e33b 4309 break;
5b397377 4310 }
8082510e 4311
5dc562c5
JB
4312 btrfs_drop_extent_cache(inode, cur_offset,
4313 cur_offset + hole_size - 1, 0);
4314 hole_em = alloc_extent_map();
4315 if (!hole_em) {
4316 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4317 &BTRFS_I(inode)->runtime_flags);
4318 goto next;
4319 }
4320 hole_em->start = cur_offset;
4321 hole_em->len = hole_size;
4322 hole_em->orig_start = cur_offset;
8082510e 4323
5dc562c5
JB
4324 hole_em->block_start = EXTENT_MAP_HOLE;
4325 hole_em->block_len = 0;
b4939680 4326 hole_em->orig_block_len = 0;
cc95bef6 4327 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4328 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4329 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4330 hole_em->generation = trans->transid;
8082510e 4331
5dc562c5
JB
4332 while (1) {
4333 write_lock(&em_tree->lock);
09a2a8f9 4334 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4335 write_unlock(&em_tree->lock);
4336 if (err != -EEXIST)
4337 break;
4338 btrfs_drop_extent_cache(inode, cur_offset,
4339 cur_offset +
4340 hole_size - 1, 0);
4341 }
4342 free_extent_map(hole_em);
4343next:
3642320e 4344 btrfs_update_inode(trans, root, inode);
8082510e 4345 btrfs_end_transaction(trans, root);
9036c102
YZ
4346 }
4347 free_extent_map(em);
a22285a6 4348 em = NULL;
9036c102 4349 cur_offset = last_byte;
8082510e 4350 if (cur_offset >= block_end)
9036c102
YZ
4351 break;
4352 }
1832a6d5 4353
a22285a6 4354 free_extent_map(em);
2ac55d41
JB
4355 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4356 GFP_NOFS);
9036c102
YZ
4357 return err;
4358}
39279cc3 4359
3972f260 4360static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4361{
f4a2f4c5
MX
4362 struct btrfs_root *root = BTRFS_I(inode)->root;
4363 struct btrfs_trans_handle *trans;
a41ad394 4364 loff_t oldsize = i_size_read(inode);
3972f260
ES
4365 loff_t newsize = attr->ia_size;
4366 int mask = attr->ia_valid;
8082510e
YZ
4367 int ret;
4368
3972f260
ES
4369 /*
4370 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4371 * special case where we need to update the times despite not having
4372 * these flags set. For all other operations the VFS set these flags
4373 * explicitly if it wants a timestamp update.
4374 */
4375 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4376 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4377
a41ad394 4378 if (newsize > oldsize) {
a41ad394
JB
4379 truncate_pagecache(inode, oldsize, newsize);
4380 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 4381 if (ret)
8082510e 4382 return ret;
8082510e 4383
f4a2f4c5
MX
4384 trans = btrfs_start_transaction(root, 1);
4385 if (IS_ERR(trans))
4386 return PTR_ERR(trans);
4387
4388 i_size_write(inode, newsize);
4389 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4390 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 4391 btrfs_end_transaction(trans, root);
a41ad394 4392 } else {
8082510e 4393
a41ad394
JB
4394 /*
4395 * We're truncating a file that used to have good data down to
4396 * zero. Make sure it gets into the ordered flush list so that
4397 * any new writes get down to disk quickly.
4398 */
4399 if (newsize == 0)
72ac3c0d
JB
4400 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4401 &BTRFS_I(inode)->runtime_flags);
8082510e 4402
f3fe820c
JB
4403 /*
4404 * 1 for the orphan item we're going to add
4405 * 1 for the orphan item deletion.
4406 */
4407 trans = btrfs_start_transaction(root, 2);
4408 if (IS_ERR(trans))
4409 return PTR_ERR(trans);
4410
4411 /*
4412 * We need to do this in case we fail at _any_ point during the
4413 * actual truncate. Once we do the truncate_setsize we could
4414 * invalidate pages which forces any outstanding ordered io to
4415 * be instantly completed which will give us extents that need
4416 * to be truncated. If we fail to get an orphan inode down we
4417 * could have left over extents that were never meant to live,
4418 * so we need to garuntee from this point on that everything
4419 * will be consistent.
4420 */
4421 ret = btrfs_orphan_add(trans, inode);
4422 btrfs_end_transaction(trans, root);
4423 if (ret)
4424 return ret;
4425
a41ad394
JB
4426 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4427 truncate_setsize(inode, newsize);
2e60a51e
MX
4428
4429 /* Disable nonlocked read DIO to avoid the end less truncate */
4430 btrfs_inode_block_unlocked_dio(inode);
4431 inode_dio_wait(inode);
4432 btrfs_inode_resume_unlocked_dio(inode);
4433
a41ad394 4434 ret = btrfs_truncate(inode);
f3fe820c
JB
4435 if (ret && inode->i_nlink)
4436 btrfs_orphan_del(NULL, inode);
8082510e
YZ
4437 }
4438
a41ad394 4439 return ret;
8082510e
YZ
4440}
4441
9036c102
YZ
4442static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4443{
4444 struct inode *inode = dentry->d_inode;
b83cc969 4445 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4446 int err;
39279cc3 4447
b83cc969
LZ
4448 if (btrfs_root_readonly(root))
4449 return -EROFS;
4450
9036c102
YZ
4451 err = inode_change_ok(inode, attr);
4452 if (err)
4453 return err;
2bf5a725 4454
5a3f23d5 4455 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4456 err = btrfs_setsize(inode, attr);
8082510e
YZ
4457 if (err)
4458 return err;
39279cc3 4459 }
9036c102 4460
1025774c
CH
4461 if (attr->ia_valid) {
4462 setattr_copy(inode, attr);
0c4d2d95 4463 inode_inc_iversion(inode);
22c44fe6 4464 err = btrfs_dirty_inode(inode);
1025774c 4465
22c44fe6 4466 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
4467 err = btrfs_acl_chmod(inode);
4468 }
33268eaf 4469
39279cc3
CM
4470 return err;
4471}
61295eb8 4472
bd555975 4473void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
4474{
4475 struct btrfs_trans_handle *trans;
4476 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 4477 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 4478 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
4479 int ret;
4480
1abe9b8a 4481 trace_btrfs_inode_evict(inode);
4482
39279cc3 4483 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 4484 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
83eea1f1 4485 btrfs_is_free_space_inode(inode)))
bd555975
AV
4486 goto no_delete;
4487
39279cc3 4488 if (is_bad_inode(inode)) {
7b128766 4489 btrfs_orphan_del(NULL, inode);
39279cc3
CM
4490 goto no_delete;
4491 }
bd555975 4492 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 4493 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 4494
c71bf099 4495 if (root->fs_info->log_root_recovering) {
6bf02314 4496 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 4497 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
4498 goto no_delete;
4499 }
4500
76dda93c
YZ
4501 if (inode->i_nlink > 0) {
4502 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
4503 goto no_delete;
4504 }
4505
0e8c36a9
MX
4506 ret = btrfs_commit_inode_delayed_inode(inode);
4507 if (ret) {
4508 btrfs_orphan_del(NULL, inode);
4509 goto no_delete;
4510 }
4511
66d8f3dd 4512 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
4513 if (!rsv) {
4514 btrfs_orphan_del(NULL, inode);
4515 goto no_delete;
4516 }
4a338542 4517 rsv->size = min_size;
ca7e70f5 4518 rsv->failfast = 1;
726c35fa 4519 global_rsv = &root->fs_info->global_block_rsv;
4289a667 4520
dbe674a9 4521 btrfs_i_size_write(inode, 0);
5f39d397 4522
4289a667 4523 /*
8407aa46
MX
4524 * This is a bit simpler than btrfs_truncate since we've already
4525 * reserved our space for our orphan item in the unlink, so we just
4526 * need to reserve some slack space in case we add bytes and update
4527 * inode item when doing the truncate.
4289a667 4528 */
8082510e 4529 while (1) {
08e007d2
MX
4530 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4531 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
4532
4533 /*
4534 * Try and steal from the global reserve since we will
4535 * likely not use this space anyway, we want to try as
4536 * hard as possible to get this to work.
4537 */
4538 if (ret)
4539 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 4540
d68fc57b 4541 if (ret) {
c2cf52eb
SK
4542 btrfs_warn(root->fs_info,
4543 "Could not get space for a delete, will truncate on mount %d",
4544 ret);
4289a667
JB
4545 btrfs_orphan_del(NULL, inode);
4546 btrfs_free_block_rsv(root, rsv);
4547 goto no_delete;
d68fc57b 4548 }
7b128766 4549
0e8c36a9 4550 trans = btrfs_join_transaction(root);
4289a667
JB
4551 if (IS_ERR(trans)) {
4552 btrfs_orphan_del(NULL, inode);
4553 btrfs_free_block_rsv(root, rsv);
4554 goto no_delete;
d68fc57b 4555 }
7b128766 4556
4289a667
JB
4557 trans->block_rsv = rsv;
4558
d68fc57b 4559 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4560 if (ret != -ENOSPC)
8082510e 4561 break;
85e21bac 4562
8407aa46 4563 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
4564 btrfs_end_transaction(trans, root);
4565 trans = NULL;
b53d3f5d 4566 btrfs_btree_balance_dirty(root);
8082510e 4567 }
5f39d397 4568
4289a667
JB
4569 btrfs_free_block_rsv(root, rsv);
4570
8082510e 4571 if (ret == 0) {
4289a667 4572 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
4573 ret = btrfs_orphan_del(trans, inode);
4574 BUG_ON(ret);
4575 }
54aa1f4d 4576
4289a667 4577 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
4578 if (!(root == root->fs_info->tree_root ||
4579 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 4580 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 4581
54aa1f4d 4582 btrfs_end_transaction(trans, root);
b53d3f5d 4583 btrfs_btree_balance_dirty(root);
39279cc3 4584no_delete:
89042e5a 4585 btrfs_remove_delayed_node(inode);
dbd5768f 4586 clear_inode(inode);
8082510e 4587 return;
39279cc3
CM
4588}
4589
4590/*
4591 * this returns the key found in the dir entry in the location pointer.
4592 * If no dir entries were found, location->objectid is 0.
4593 */
4594static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4595 struct btrfs_key *location)
4596{
4597 const char *name = dentry->d_name.name;
4598 int namelen = dentry->d_name.len;
4599 struct btrfs_dir_item *di;
4600 struct btrfs_path *path;
4601 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4602 int ret = 0;
39279cc3
CM
4603
4604 path = btrfs_alloc_path();
d8926bb3
MF
4605 if (!path)
4606 return -ENOMEM;
3954401f 4607
33345d01 4608 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4609 namelen, 0);
0d9f7f3e
Y
4610 if (IS_ERR(di))
4611 ret = PTR_ERR(di);
d397712b 4612
c704005d 4613 if (IS_ERR_OR_NULL(di))
3954401f 4614 goto out_err;
d397712b 4615
5f39d397 4616 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4617out:
39279cc3
CM
4618 btrfs_free_path(path);
4619 return ret;
3954401f
CM
4620out_err:
4621 location->objectid = 0;
4622 goto out;
39279cc3
CM
4623}
4624
4625/*
4626 * when we hit a tree root in a directory, the btrfs part of the inode
4627 * needs to be changed to reflect the root directory of the tree root. This
4628 * is kind of like crossing a mount point.
4629 */
4630static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
4631 struct inode *dir,
4632 struct dentry *dentry,
4633 struct btrfs_key *location,
4634 struct btrfs_root **sub_root)
39279cc3 4635{
4df27c4d
YZ
4636 struct btrfs_path *path;
4637 struct btrfs_root *new_root;
4638 struct btrfs_root_ref *ref;
4639 struct extent_buffer *leaf;
4640 int ret;
4641 int err = 0;
39279cc3 4642
4df27c4d
YZ
4643 path = btrfs_alloc_path();
4644 if (!path) {
4645 err = -ENOMEM;
4646 goto out;
4647 }
39279cc3 4648
4df27c4d
YZ
4649 err = -ENOENT;
4650 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4651 BTRFS_I(dir)->root->root_key.objectid,
4652 location->objectid);
4653 if (ret) {
4654 if (ret < 0)
4655 err = ret;
4656 goto out;
4657 }
39279cc3 4658
4df27c4d
YZ
4659 leaf = path->nodes[0];
4660 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4661 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4662 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4663 goto out;
39279cc3 4664
4df27c4d
YZ
4665 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4666 (unsigned long)(ref + 1),
4667 dentry->d_name.len);
4668 if (ret)
4669 goto out;
4670
b3b4aa74 4671 btrfs_release_path(path);
4df27c4d
YZ
4672
4673 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4674 if (IS_ERR(new_root)) {
4675 err = PTR_ERR(new_root);
4676 goto out;
4677 }
4678
4df27c4d
YZ
4679 *sub_root = new_root;
4680 location->objectid = btrfs_root_dirid(&new_root->root_item);
4681 location->type = BTRFS_INODE_ITEM_KEY;
4682 location->offset = 0;
4683 err = 0;
4684out:
4685 btrfs_free_path(path);
4686 return err;
39279cc3
CM
4687}
4688
5d4f98a2
YZ
4689static void inode_tree_add(struct inode *inode)
4690{
4691 struct btrfs_root *root = BTRFS_I(inode)->root;
4692 struct btrfs_inode *entry;
03e860bd
FNP
4693 struct rb_node **p;
4694 struct rb_node *parent;
33345d01 4695 u64 ino = btrfs_ino(inode);
5d4f98a2 4696
1d3382cb 4697 if (inode_unhashed(inode))
76dda93c 4698 return;
e1409cef
MX
4699again:
4700 parent = NULL;
5d4f98a2 4701 spin_lock(&root->inode_lock);
e1409cef 4702 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
4703 while (*p) {
4704 parent = *p;
4705 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4706
33345d01 4707 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4708 p = &parent->rb_left;
33345d01 4709 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4710 p = &parent->rb_right;
5d4f98a2
YZ
4711 else {
4712 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4713 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
4714 rb_erase(parent, &root->inode_tree);
4715 RB_CLEAR_NODE(parent);
4716 spin_unlock(&root->inode_lock);
4717 goto again;
5d4f98a2
YZ
4718 }
4719 }
4720 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4721 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4722 spin_unlock(&root->inode_lock);
4723}
4724
4725static void inode_tree_del(struct inode *inode)
4726{
4727 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4728 int empty = 0;
5d4f98a2 4729
03e860bd 4730 spin_lock(&root->inode_lock);
5d4f98a2 4731 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4732 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4733 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4734 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4735 }
03e860bd 4736 spin_unlock(&root->inode_lock);
76dda93c 4737
0af3d00b
JB
4738 /*
4739 * Free space cache has inodes in the tree root, but the tree root has a
4740 * root_refs of 0, so this could end up dropping the tree root as a
4741 * snapshot, so we need the extra !root->fs_info->tree_root check to
4742 * make sure we don't drop it.
4743 */
4744 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4745 root != root->fs_info->tree_root) {
76dda93c
YZ
4746 synchronize_srcu(&root->fs_info->subvol_srcu);
4747 spin_lock(&root->inode_lock);
4748 empty = RB_EMPTY_ROOT(&root->inode_tree);
4749 spin_unlock(&root->inode_lock);
4750 if (empty)
4751 btrfs_add_dead_root(root);
4752 }
4753}
4754
143bede5 4755void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4756{
4757 struct rb_node *node;
4758 struct rb_node *prev;
4759 struct btrfs_inode *entry;
4760 struct inode *inode;
4761 u64 objectid = 0;
4762
4763 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4764
4765 spin_lock(&root->inode_lock);
4766again:
4767 node = root->inode_tree.rb_node;
4768 prev = NULL;
4769 while (node) {
4770 prev = node;
4771 entry = rb_entry(node, struct btrfs_inode, rb_node);
4772
33345d01 4773 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4774 node = node->rb_left;
33345d01 4775 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4776 node = node->rb_right;
4777 else
4778 break;
4779 }
4780 if (!node) {
4781 while (prev) {
4782 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4783 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4784 node = prev;
4785 break;
4786 }
4787 prev = rb_next(prev);
4788 }
4789 }
4790 while (node) {
4791 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4792 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4793 inode = igrab(&entry->vfs_inode);
4794 if (inode) {
4795 spin_unlock(&root->inode_lock);
4796 if (atomic_read(&inode->i_count) > 1)
4797 d_prune_aliases(inode);
4798 /*
45321ac5 4799 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4800 * the inode cache when its usage count
4801 * hits zero.
4802 */
4803 iput(inode);
4804 cond_resched();
4805 spin_lock(&root->inode_lock);
4806 goto again;
4807 }
4808
4809 if (cond_resched_lock(&root->inode_lock))
4810 goto again;
4811
4812 node = rb_next(node);
4813 }
4814 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4815}
4816
e02119d5
CM
4817static int btrfs_init_locked_inode(struct inode *inode, void *p)
4818{
4819 struct btrfs_iget_args *args = p;
4820 inode->i_ino = args->ino;
e02119d5 4821 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4822 return 0;
4823}
4824
4825static int btrfs_find_actor(struct inode *inode, void *opaque)
4826{
4827 struct btrfs_iget_args *args = opaque;
33345d01 4828 return args->ino == btrfs_ino(inode) &&
d397712b 4829 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4830}
4831
5d4f98a2
YZ
4832static struct inode *btrfs_iget_locked(struct super_block *s,
4833 u64 objectid,
4834 struct btrfs_root *root)
39279cc3
CM
4835{
4836 struct inode *inode;
4837 struct btrfs_iget_args args;
4838 args.ino = objectid;
4839 args.root = root;
4840
4841 inode = iget5_locked(s, objectid, btrfs_find_actor,
4842 btrfs_init_locked_inode,
4843 (void *)&args);
4844 return inode;
4845}
4846
1a54ef8c
BR
4847/* Get an inode object given its location and corresponding root.
4848 * Returns in *is_new if the inode was read from disk
4849 */
4850struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4851 struct btrfs_root *root, int *new)
1a54ef8c
BR
4852{
4853 struct inode *inode;
4854
4855 inode = btrfs_iget_locked(s, location->objectid, root);
4856 if (!inode)
5d4f98a2 4857 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4858
4859 if (inode->i_state & I_NEW) {
4860 BTRFS_I(inode)->root = root;
4861 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4862 btrfs_read_locked_inode(inode);
1748f843
MF
4863 if (!is_bad_inode(inode)) {
4864 inode_tree_add(inode);
4865 unlock_new_inode(inode);
4866 if (new)
4867 *new = 1;
4868 } else {
e0b6d65b
ST
4869 unlock_new_inode(inode);
4870 iput(inode);
4871 inode = ERR_PTR(-ESTALE);
1748f843
MF
4872 }
4873 }
4874
1a54ef8c
BR
4875 return inode;
4876}
4877
4df27c4d
YZ
4878static struct inode *new_simple_dir(struct super_block *s,
4879 struct btrfs_key *key,
4880 struct btrfs_root *root)
4881{
4882 struct inode *inode = new_inode(s);
4883
4884 if (!inode)
4885 return ERR_PTR(-ENOMEM);
4886
4df27c4d
YZ
4887 BTRFS_I(inode)->root = root;
4888 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 4889 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
4890
4891 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 4892 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
4893 inode->i_fop = &simple_dir_operations;
4894 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4895 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4896
4897 return inode;
4898}
4899
3de4586c 4900struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4901{
d397712b 4902 struct inode *inode;
4df27c4d 4903 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4904 struct btrfs_root *sub_root = root;
4905 struct btrfs_key location;
76dda93c 4906 int index;
b4aff1f8 4907 int ret = 0;
39279cc3
CM
4908
4909 if (dentry->d_name.len > BTRFS_NAME_LEN)
4910 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4911
39e3c955 4912 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
4913 if (ret < 0)
4914 return ERR_PTR(ret);
5f39d397 4915
4df27c4d
YZ
4916 if (location.objectid == 0)
4917 return NULL;
4918
4919 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4920 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4921 return inode;
4922 }
4923
4924 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4925
76dda93c 4926 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4927 ret = fixup_tree_root_location(root, dir, dentry,
4928 &location, &sub_root);
4929 if (ret < 0) {
4930 if (ret != -ENOENT)
4931 inode = ERR_PTR(ret);
4932 else
4933 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4934 } else {
73f73415 4935 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4936 }
76dda93c
YZ
4937 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4938
34d19bad 4939 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4940 down_read(&root->fs_info->cleanup_work_sem);
4941 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4942 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4943 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
4944 if (ret) {
4945 iput(inode);
66b4ffd1 4946 inode = ERR_PTR(ret);
01cd3367 4947 }
c71bf099
YZ
4948 }
4949
3de4586c
CM
4950 return inode;
4951}
4952
fe15ce44 4953static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4954{
4955 struct btrfs_root *root;
848cce0d 4956 struct inode *inode = dentry->d_inode;
76dda93c 4957
848cce0d
LZ
4958 if (!inode && !IS_ROOT(dentry))
4959 inode = dentry->d_parent->d_inode;
76dda93c 4960
848cce0d
LZ
4961 if (inode) {
4962 root = BTRFS_I(inode)->root;
efefb143
YZ
4963 if (btrfs_root_refs(&root->root_item) == 0)
4964 return 1;
848cce0d
LZ
4965
4966 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4967 return 1;
efefb143 4968 }
76dda93c
YZ
4969 return 0;
4970}
4971
b4aff1f8
JB
4972static void btrfs_dentry_release(struct dentry *dentry)
4973{
4974 if (dentry->d_fsdata)
4975 kfree(dentry->d_fsdata);
4976}
4977
3de4586c 4978static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 4979 unsigned int flags)
3de4586c 4980{
a66e7cc6
JB
4981 struct dentry *ret;
4982
4983 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
a66e7cc6 4984 return ret;
39279cc3
CM
4985}
4986
16cdcec7 4987unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4988 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4989};
4990
9cdda8d3 4991static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 4992{
9cdda8d3 4993 struct inode *inode = file_inode(file);
39279cc3
CM
4994 struct btrfs_root *root = BTRFS_I(inode)->root;
4995 struct btrfs_item *item;
4996 struct btrfs_dir_item *di;
4997 struct btrfs_key key;
5f39d397 4998 struct btrfs_key found_key;
39279cc3 4999 struct btrfs_path *path;
16cdcec7
MX
5000 struct list_head ins_list;
5001 struct list_head del_list;
39279cc3 5002 int ret;
5f39d397 5003 struct extent_buffer *leaf;
39279cc3 5004 int slot;
39279cc3
CM
5005 unsigned char d_type;
5006 int over = 0;
5007 u32 di_cur;
5008 u32 di_total;
5009 u32 di_len;
5010 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5011 char tmp_name[32];
5012 char *name_ptr;
5013 int name_len;
9cdda8d3 5014 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5015
5016 /* FIXME, use a real flag for deciding about the key type */
5017 if (root->fs_info->tree_root == root)
5018 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5019
9cdda8d3
AV
5020 if (!dir_emit_dots(file, ctx))
5021 return 0;
5022
49593bfa 5023 path = btrfs_alloc_path();
16cdcec7
MX
5024 if (!path)
5025 return -ENOMEM;
ff5714cc 5026
026fd317 5027 path->reada = 1;
49593bfa 5028
16cdcec7
MX
5029 if (key_type == BTRFS_DIR_INDEX_KEY) {
5030 INIT_LIST_HEAD(&ins_list);
5031 INIT_LIST_HEAD(&del_list);
5032 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5033 }
5034
39279cc3 5035 btrfs_set_key_type(&key, key_type);
9cdda8d3 5036 key.offset = ctx->pos;
33345d01 5037 key.objectid = btrfs_ino(inode);
5f39d397 5038
39279cc3
CM
5039 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5040 if (ret < 0)
5041 goto err;
49593bfa
DW
5042
5043 while (1) {
5f39d397 5044 leaf = path->nodes[0];
39279cc3 5045 slot = path->slots[0];
b9e03af0
LZ
5046 if (slot >= btrfs_header_nritems(leaf)) {
5047 ret = btrfs_next_leaf(root, path);
5048 if (ret < 0)
5049 goto err;
5050 else if (ret > 0)
5051 break;
5052 continue;
39279cc3 5053 }
3de4586c 5054
5f39d397
CM
5055 item = btrfs_item_nr(leaf, slot);
5056 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5057
5058 if (found_key.objectid != key.objectid)
39279cc3 5059 break;
5f39d397 5060 if (btrfs_key_type(&found_key) != key_type)
39279cc3 5061 break;
9cdda8d3 5062 if (found_key.offset < ctx->pos)
b9e03af0 5063 goto next;
16cdcec7
MX
5064 if (key_type == BTRFS_DIR_INDEX_KEY &&
5065 btrfs_should_delete_dir_index(&del_list,
5066 found_key.offset))
5067 goto next;
5f39d397 5068
9cdda8d3 5069 ctx->pos = found_key.offset;
16cdcec7 5070 is_curr = 1;
49593bfa 5071
39279cc3
CM
5072 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5073 di_cur = 0;
5f39d397 5074 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5075
5076 while (di_cur < di_total) {
5f39d397
CM
5077 struct btrfs_key location;
5078
22a94d44
JB
5079 if (verify_dir_item(root, leaf, di))
5080 break;
5081
5f39d397 5082 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5083 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5084 name_ptr = tmp_name;
5085 } else {
5086 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5087 if (!name_ptr) {
5088 ret = -ENOMEM;
5089 goto err;
5090 }
5f39d397
CM
5091 }
5092 read_extent_buffer(leaf, name_ptr,
5093 (unsigned long)(di + 1), name_len);
5094
5095 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5096 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5097
fede766f 5098
3de4586c 5099 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5100 * skip it.
5101 *
5102 * In contrast to old kernels, we insert the snapshot's
5103 * dir item and dir index after it has been created, so
5104 * we won't find a reference to our own snapshot. We
5105 * still keep the following code for backward
5106 * compatibility.
3de4586c
CM
5107 */
5108 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5109 location.objectid == root->root_key.objectid) {
5110 over = 0;
5111 goto skip;
5112 }
9cdda8d3
AV
5113 over = !dir_emit(ctx, name_ptr, name_len,
5114 location.objectid, d_type);
5f39d397 5115
3de4586c 5116skip:
5f39d397
CM
5117 if (name_ptr != tmp_name)
5118 kfree(name_ptr);
5119
39279cc3
CM
5120 if (over)
5121 goto nopos;
5103e947 5122 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5123 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5124 di_cur += di_len;
5125 di = (struct btrfs_dir_item *)((char *)di + di_len);
5126 }
b9e03af0
LZ
5127next:
5128 path->slots[0]++;
39279cc3 5129 }
49593bfa 5130
16cdcec7
MX
5131 if (key_type == BTRFS_DIR_INDEX_KEY) {
5132 if (is_curr)
9cdda8d3
AV
5133 ctx->pos++;
5134 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5135 if (ret)
5136 goto nopos;
5137 }
5138
49593bfa 5139 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5140 ctx->pos++;
5141
5142 /*
5143 * Stop new entries from being returned after we return the last
5144 * entry.
5145 *
5146 * New directory entries are assigned a strictly increasing
5147 * offset. This means that new entries created during readdir
5148 * are *guaranteed* to be seen in the future by that readdir.
5149 * This has broken buggy programs which operate on names as
5150 * they're returned by readdir. Until we re-use freed offsets
5151 * we have this hack to stop new entries from being returned
5152 * under the assumption that they'll never reach this huge
5153 * offset.
5154 *
5155 * This is being careful not to overflow 32bit loff_t unless the
5156 * last entry requires it because doing so has broken 32bit apps
5157 * in the past.
5158 */
5159 if (key_type == BTRFS_DIR_INDEX_KEY) {
5160 if (ctx->pos >= INT_MAX)
5161 ctx->pos = LLONG_MAX;
5162 else
5163 ctx->pos = INT_MAX;
5164 }
39279cc3
CM
5165nopos:
5166 ret = 0;
5167err:
16cdcec7
MX
5168 if (key_type == BTRFS_DIR_INDEX_KEY)
5169 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5170 btrfs_free_path(path);
39279cc3
CM
5171 return ret;
5172}
5173
a9185b41 5174int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5175{
5176 struct btrfs_root *root = BTRFS_I(inode)->root;
5177 struct btrfs_trans_handle *trans;
5178 int ret = 0;
0af3d00b 5179 bool nolock = false;
39279cc3 5180
72ac3c0d 5181 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5182 return 0;
5183
83eea1f1 5184 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5185 nolock = true;
0af3d00b 5186
a9185b41 5187 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5188 if (nolock)
7a7eaa40 5189 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5190 else
7a7eaa40 5191 trans = btrfs_join_transaction(root);
3612b495
TI
5192 if (IS_ERR(trans))
5193 return PTR_ERR(trans);
a698d075 5194 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5195 }
5196 return ret;
5197}
5198
5199/*
54aa1f4d 5200 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5201 * inode changes. But, it is most likely to find the inode in cache.
5202 * FIXME, needs more benchmarking...there are no reasons other than performance
5203 * to keep or drop this code.
5204 */
48a3b636 5205static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5206{
5207 struct btrfs_root *root = BTRFS_I(inode)->root;
5208 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5209 int ret;
5210
72ac3c0d 5211 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5212 return 0;
39279cc3 5213
7a7eaa40 5214 trans = btrfs_join_transaction(root);
22c44fe6
JB
5215 if (IS_ERR(trans))
5216 return PTR_ERR(trans);
8929ecfa
YZ
5217
5218 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5219 if (ret && ret == -ENOSPC) {
5220 /* whoops, lets try again with the full transaction */
5221 btrfs_end_transaction(trans, root);
5222 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5223 if (IS_ERR(trans))
5224 return PTR_ERR(trans);
8929ecfa 5225
94b60442 5226 ret = btrfs_update_inode(trans, root, inode);
94b60442 5227 }
39279cc3 5228 btrfs_end_transaction(trans, root);
16cdcec7
MX
5229 if (BTRFS_I(inode)->delayed_node)
5230 btrfs_balance_delayed_items(root);
22c44fe6
JB
5231
5232 return ret;
5233}
5234
5235/*
5236 * This is a copy of file_update_time. We need this so we can return error on
5237 * ENOSPC for updating the inode in the case of file write and mmap writes.
5238 */
e41f941a
JB
5239static int btrfs_update_time(struct inode *inode, struct timespec *now,
5240 int flags)
22c44fe6 5241{
2bc55652
AB
5242 struct btrfs_root *root = BTRFS_I(inode)->root;
5243
5244 if (btrfs_root_readonly(root))
5245 return -EROFS;
5246
e41f941a 5247 if (flags & S_VERSION)
22c44fe6 5248 inode_inc_iversion(inode);
e41f941a
JB
5249 if (flags & S_CTIME)
5250 inode->i_ctime = *now;
5251 if (flags & S_MTIME)
5252 inode->i_mtime = *now;
5253 if (flags & S_ATIME)
5254 inode->i_atime = *now;
5255 return btrfs_dirty_inode(inode);
39279cc3
CM
5256}
5257
d352ac68
CM
5258/*
5259 * find the highest existing sequence number in a directory
5260 * and then set the in-memory index_cnt variable to reflect
5261 * free sequence numbers
5262 */
aec7477b
JB
5263static int btrfs_set_inode_index_count(struct inode *inode)
5264{
5265 struct btrfs_root *root = BTRFS_I(inode)->root;
5266 struct btrfs_key key, found_key;
5267 struct btrfs_path *path;
5268 struct extent_buffer *leaf;
5269 int ret;
5270
33345d01 5271 key.objectid = btrfs_ino(inode);
aec7477b
JB
5272 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5273 key.offset = (u64)-1;
5274
5275 path = btrfs_alloc_path();
5276 if (!path)
5277 return -ENOMEM;
5278
5279 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5280 if (ret < 0)
5281 goto out;
5282 /* FIXME: we should be able to handle this */
5283 if (ret == 0)
5284 goto out;
5285 ret = 0;
5286
5287 /*
5288 * MAGIC NUMBER EXPLANATION:
5289 * since we search a directory based on f_pos we have to start at 2
5290 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5291 * else has to start at 2
5292 */
5293 if (path->slots[0] == 0) {
5294 BTRFS_I(inode)->index_cnt = 2;
5295 goto out;
5296 }
5297
5298 path->slots[0]--;
5299
5300 leaf = path->nodes[0];
5301 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5302
33345d01 5303 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
5304 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5305 BTRFS_I(inode)->index_cnt = 2;
5306 goto out;
5307 }
5308
5309 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5310out:
5311 btrfs_free_path(path);
5312 return ret;
5313}
5314
d352ac68
CM
5315/*
5316 * helper to find a free sequence number in a given directory. This current
5317 * code is very simple, later versions will do smarter things in the btree
5318 */
3de4586c 5319int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5320{
5321 int ret = 0;
5322
5323 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5324 ret = btrfs_inode_delayed_dir_index_count(dir);
5325 if (ret) {
5326 ret = btrfs_set_inode_index_count(dir);
5327 if (ret)
5328 return ret;
5329 }
aec7477b
JB
5330 }
5331
00e4e6b3 5332 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5333 BTRFS_I(dir)->index_cnt++;
5334
5335 return ret;
5336}
5337
39279cc3
CM
5338static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5339 struct btrfs_root *root,
aec7477b 5340 struct inode *dir,
9c58309d 5341 const char *name, int name_len,
175a4eb7
AV
5342 u64 ref_objectid, u64 objectid,
5343 umode_t mode, u64 *index)
39279cc3
CM
5344{
5345 struct inode *inode;
5f39d397 5346 struct btrfs_inode_item *inode_item;
39279cc3 5347 struct btrfs_key *location;
5f39d397 5348 struct btrfs_path *path;
9c58309d
CM
5349 struct btrfs_inode_ref *ref;
5350 struct btrfs_key key[2];
5351 u32 sizes[2];
5352 unsigned long ptr;
39279cc3
CM
5353 int ret;
5354 int owner;
5355
5f39d397 5356 path = btrfs_alloc_path();
d8926bb3
MF
5357 if (!path)
5358 return ERR_PTR(-ENOMEM);
5f39d397 5359
39279cc3 5360 inode = new_inode(root->fs_info->sb);
8fb27640
YS
5361 if (!inode) {
5362 btrfs_free_path(path);
39279cc3 5363 return ERR_PTR(-ENOMEM);
8fb27640 5364 }
39279cc3 5365
581bb050
LZ
5366 /*
5367 * we have to initialize this early, so we can reclaim the inode
5368 * number if we fail afterwards in this function.
5369 */
5370 inode->i_ino = objectid;
5371
aec7477b 5372 if (dir) {
1abe9b8a 5373 trace_btrfs_inode_request(dir);
5374
3de4586c 5375 ret = btrfs_set_inode_index(dir, index);
09771430 5376 if (ret) {
8fb27640 5377 btrfs_free_path(path);
09771430 5378 iput(inode);
aec7477b 5379 return ERR_PTR(ret);
09771430 5380 }
aec7477b
JB
5381 }
5382 /*
5383 * index_cnt is ignored for everything but a dir,
5384 * btrfs_get_inode_index_count has an explanation for the magic
5385 * number
5386 */
5387 BTRFS_I(inode)->index_cnt = 2;
39279cc3 5388 BTRFS_I(inode)->root = root;
e02119d5 5389 BTRFS_I(inode)->generation = trans->transid;
76195853 5390 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5391
5dc562c5
JB
5392 /*
5393 * We could have gotten an inode number from somebody who was fsynced
5394 * and then removed in this same transaction, so let's just set full
5395 * sync since it will be a full sync anyway and this will blow away the
5396 * old info in the log.
5397 */
5398 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5399
569254b0 5400 if (S_ISDIR(mode))
39279cc3
CM
5401 owner = 0;
5402 else
5403 owner = 1;
9c58309d
CM
5404
5405 key[0].objectid = objectid;
5406 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5407 key[0].offset = 0;
5408
f186373f
MF
5409 /*
5410 * Start new inodes with an inode_ref. This is slightly more
5411 * efficient for small numbers of hard links since they will
5412 * be packed into one item. Extended refs will kick in if we
5413 * add more hard links than can fit in the ref item.
5414 */
9c58309d
CM
5415 key[1].objectid = objectid;
5416 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5417 key[1].offset = ref_objectid;
5418
5419 sizes[0] = sizeof(struct btrfs_inode_item);
5420 sizes[1] = name_len + sizeof(*ref);
5421
b9473439 5422 path->leave_spinning = 1;
9c58309d
CM
5423 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5424 if (ret != 0)
5f39d397
CM
5425 goto fail;
5426
ecc11fab 5427 inode_init_owner(inode, dir, mode);
a76a3cd4 5428 inode_set_bytes(inode, 0);
39279cc3 5429 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
5430 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5431 struct btrfs_inode_item);
293f7e07
LZ
5432 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5433 sizeof(*inode_item));
e02119d5 5434 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
5435
5436 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5437 struct btrfs_inode_ref);
5438 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 5439 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
5440 ptr = (unsigned long)(ref + 1);
5441 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5442
5f39d397
CM
5443 btrfs_mark_buffer_dirty(path->nodes[0]);
5444 btrfs_free_path(path);
5445
39279cc3
CM
5446 location = &BTRFS_I(inode)->location;
5447 location->objectid = objectid;
39279cc3
CM
5448 location->offset = 0;
5449 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5450
6cbff00f
CH
5451 btrfs_inherit_iflags(inode, dir);
5452
569254b0 5453 if (S_ISREG(mode)) {
94272164
CM
5454 if (btrfs_test_opt(root, NODATASUM))
5455 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 5456 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
5457 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5458 BTRFS_INODE_NODATASUM;
94272164
CM
5459 }
5460
39279cc3 5461 insert_inode_hash(inode);
5d4f98a2 5462 inode_tree_add(inode);
1abe9b8a 5463
5464 trace_btrfs_inode_new(inode);
1973f0fa 5465 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 5466
8ea05e3a
AB
5467 btrfs_update_root_times(trans, root);
5468
39279cc3 5469 return inode;
5f39d397 5470fail:
aec7477b
JB
5471 if (dir)
5472 BTRFS_I(dir)->index_cnt--;
5f39d397 5473 btrfs_free_path(path);
09771430 5474 iput(inode);
5f39d397 5475 return ERR_PTR(ret);
39279cc3
CM
5476}
5477
5478static inline u8 btrfs_inode_type(struct inode *inode)
5479{
5480 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5481}
5482
d352ac68
CM
5483/*
5484 * utility function to add 'inode' into 'parent_inode' with
5485 * a give name and a given sequence number.
5486 * if 'add_backref' is true, also insert a backref from the
5487 * inode to the parent directory.
5488 */
e02119d5
CM
5489int btrfs_add_link(struct btrfs_trans_handle *trans,
5490 struct inode *parent_inode, struct inode *inode,
5491 const char *name, int name_len, int add_backref, u64 index)
39279cc3 5492{
4df27c4d 5493 int ret = 0;
39279cc3 5494 struct btrfs_key key;
e02119d5 5495 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
5496 u64 ino = btrfs_ino(inode);
5497 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 5498
33345d01 5499 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5500 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5501 } else {
33345d01 5502 key.objectid = ino;
4df27c4d
YZ
5503 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5504 key.offset = 0;
5505 }
5506
33345d01 5507 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5508 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5509 key.objectid, root->root_key.objectid,
33345d01 5510 parent_ino, index, name, name_len);
4df27c4d 5511 } else if (add_backref) {
33345d01
LZ
5512 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5513 parent_ino, index);
4df27c4d 5514 }
39279cc3 5515
79787eaa
JM
5516 /* Nothing to clean up yet */
5517 if (ret)
5518 return ret;
4df27c4d 5519
79787eaa
JM
5520 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5521 parent_inode, &key,
5522 btrfs_inode_type(inode), index);
9c52057c 5523 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
5524 goto fail_dir_item;
5525 else if (ret) {
5526 btrfs_abort_transaction(trans, root, ret);
5527 return ret;
39279cc3 5528 }
79787eaa
JM
5529
5530 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5531 name_len * 2);
0c4d2d95 5532 inode_inc_iversion(parent_inode);
79787eaa
JM
5533 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5534 ret = btrfs_update_inode(trans, root, parent_inode);
5535 if (ret)
5536 btrfs_abort_transaction(trans, root, ret);
39279cc3 5537 return ret;
fe66a05a
CM
5538
5539fail_dir_item:
5540 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5541 u64 local_index;
5542 int err;
5543 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5544 key.objectid, root->root_key.objectid,
5545 parent_ino, &local_index, name, name_len);
5546
5547 } else if (add_backref) {
5548 u64 local_index;
5549 int err;
5550
5551 err = btrfs_del_inode_ref(trans, root, name, name_len,
5552 ino, parent_ino, &local_index);
5553 }
5554 return ret;
39279cc3
CM
5555}
5556
5557static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
5558 struct inode *dir, struct dentry *dentry,
5559 struct inode *inode, int backref, u64 index)
39279cc3 5560{
a1b075d2
JB
5561 int err = btrfs_add_link(trans, dir, inode,
5562 dentry->d_name.name, dentry->d_name.len,
5563 backref, index);
39279cc3
CM
5564 if (err > 0)
5565 err = -EEXIST;
5566 return err;
5567}
5568
618e21d5 5569static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 5570 umode_t mode, dev_t rdev)
618e21d5
JB
5571{
5572 struct btrfs_trans_handle *trans;
5573 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5574 struct inode *inode = NULL;
618e21d5
JB
5575 int err;
5576 int drop_inode = 0;
5577 u64 objectid;
00e4e6b3 5578 u64 index = 0;
618e21d5
JB
5579
5580 if (!new_valid_dev(rdev))
5581 return -EINVAL;
5582
9ed74f2d
JB
5583 /*
5584 * 2 for inode item and ref
5585 * 2 for dir items
5586 * 1 for xattr if selinux is on
5587 */
a22285a6
YZ
5588 trans = btrfs_start_transaction(root, 5);
5589 if (IS_ERR(trans))
5590 return PTR_ERR(trans);
1832a6d5 5591
581bb050
LZ
5592 err = btrfs_find_free_ino(root, &objectid);
5593 if (err)
5594 goto out_unlock;
5595
aec7477b 5596 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5597 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5598 mode, &index);
7cf96da3
TI
5599 if (IS_ERR(inode)) {
5600 err = PTR_ERR(inode);
618e21d5 5601 goto out_unlock;
7cf96da3 5602 }
618e21d5 5603
2a7dba39 5604 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5605 if (err) {
5606 drop_inode = 1;
5607 goto out_unlock;
5608 }
5609
ad19db71
CS
5610 /*
5611 * If the active LSM wants to access the inode during
5612 * d_instantiate it needs these. Smack checks to see
5613 * if the filesystem supports xattrs by looking at the
5614 * ops vector.
5615 */
5616
5617 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 5618 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
5619 if (err)
5620 drop_inode = 1;
5621 else {
618e21d5 5622 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 5623 btrfs_update_inode(trans, root, inode);
08c422c2 5624 d_instantiate(dentry, inode);
618e21d5 5625 }
618e21d5 5626out_unlock:
7ad85bb7 5627 btrfs_end_transaction(trans, root);
b53d3f5d 5628 btrfs_btree_balance_dirty(root);
618e21d5
JB
5629 if (drop_inode) {
5630 inode_dec_link_count(inode);
5631 iput(inode);
5632 }
618e21d5
JB
5633 return err;
5634}
5635
39279cc3 5636static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 5637 umode_t mode, bool excl)
39279cc3
CM
5638{
5639 struct btrfs_trans_handle *trans;
5640 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5641 struct inode *inode = NULL;
43baa579 5642 int drop_inode_on_err = 0;
a22285a6 5643 int err;
39279cc3 5644 u64 objectid;
00e4e6b3 5645 u64 index = 0;
39279cc3 5646
9ed74f2d
JB
5647 /*
5648 * 2 for inode item and ref
5649 * 2 for dir items
5650 * 1 for xattr if selinux is on
5651 */
a22285a6
YZ
5652 trans = btrfs_start_transaction(root, 5);
5653 if (IS_ERR(trans))
5654 return PTR_ERR(trans);
9ed74f2d 5655
581bb050
LZ
5656 err = btrfs_find_free_ino(root, &objectid);
5657 if (err)
5658 goto out_unlock;
5659
aec7477b 5660 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5661 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5662 mode, &index);
7cf96da3
TI
5663 if (IS_ERR(inode)) {
5664 err = PTR_ERR(inode);
39279cc3 5665 goto out_unlock;
7cf96da3 5666 }
43baa579 5667 drop_inode_on_err = 1;
39279cc3 5668
2a7dba39 5669 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
43baa579 5670 if (err)
33268eaf 5671 goto out_unlock;
33268eaf 5672
9185aa58
FB
5673 err = btrfs_update_inode(trans, root, inode);
5674 if (err)
5675 goto out_unlock;
5676
ad19db71
CS
5677 /*
5678 * If the active LSM wants to access the inode during
5679 * d_instantiate it needs these. Smack checks to see
5680 * if the filesystem supports xattrs by looking at the
5681 * ops vector.
5682 */
5683 inode->i_fop = &btrfs_file_operations;
5684 inode->i_op = &btrfs_file_inode_operations;
5685
a1b075d2 5686 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 5687 if (err)
43baa579
FB
5688 goto out_unlock;
5689
5690 inode->i_mapping->a_ops = &btrfs_aops;
5691 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5692 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5693 d_instantiate(dentry, inode);
5694
39279cc3 5695out_unlock:
7ad85bb7 5696 btrfs_end_transaction(trans, root);
43baa579 5697 if (err && drop_inode_on_err) {
39279cc3
CM
5698 inode_dec_link_count(inode);
5699 iput(inode);
5700 }
b53d3f5d 5701 btrfs_btree_balance_dirty(root);
39279cc3
CM
5702 return err;
5703}
5704
5705static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5706 struct dentry *dentry)
5707{
5708 struct btrfs_trans_handle *trans;
5709 struct btrfs_root *root = BTRFS_I(dir)->root;
5710 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5711 u64 index;
39279cc3
CM
5712 int err;
5713 int drop_inode = 0;
5714
4a8be425
TH
5715 /* do not allow sys_link's with other subvols of the same device */
5716 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5717 return -EXDEV;
4a8be425 5718
f186373f 5719 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5720 return -EMLINK;
4a8be425 5721
3de4586c 5722 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5723 if (err)
5724 goto fail;
5725
a22285a6 5726 /*
7e6b6465 5727 * 2 items for inode and inode ref
a22285a6 5728 * 2 items for dir items
7e6b6465 5729 * 1 item for parent inode
a22285a6 5730 */
7e6b6465 5731 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5732 if (IS_ERR(trans)) {
5733 err = PTR_ERR(trans);
5734 goto fail;
5735 }
5f39d397 5736
3153495d 5737 btrfs_inc_nlink(inode);
0c4d2d95 5738 inode_inc_iversion(inode);
3153495d 5739 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5740 ihold(inode);
e9976151 5741 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 5742
a1b075d2 5743 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5744
a5719521 5745 if (err) {
54aa1f4d 5746 drop_inode = 1;
a5719521 5747 } else {
10d9f309 5748 struct dentry *parent = dentry->d_parent;
a5719521 5749 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5750 if (err)
5751 goto fail;
08c422c2 5752 d_instantiate(dentry, inode);
6a912213 5753 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5754 }
39279cc3 5755
7ad85bb7 5756 btrfs_end_transaction(trans, root);
1832a6d5 5757fail:
39279cc3
CM
5758 if (drop_inode) {
5759 inode_dec_link_count(inode);
5760 iput(inode);
5761 }
b53d3f5d 5762 btrfs_btree_balance_dirty(root);
39279cc3
CM
5763 return err;
5764}
5765
18bb1db3 5766static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5767{
b9d86667 5768 struct inode *inode = NULL;
39279cc3
CM
5769 struct btrfs_trans_handle *trans;
5770 struct btrfs_root *root = BTRFS_I(dir)->root;
5771 int err = 0;
5772 int drop_on_err = 0;
b9d86667 5773 u64 objectid = 0;
00e4e6b3 5774 u64 index = 0;
39279cc3 5775
9ed74f2d
JB
5776 /*
5777 * 2 items for inode and ref
5778 * 2 items for dir items
5779 * 1 for xattr if selinux is on
5780 */
a22285a6
YZ
5781 trans = btrfs_start_transaction(root, 5);
5782 if (IS_ERR(trans))
5783 return PTR_ERR(trans);
39279cc3 5784
581bb050
LZ
5785 err = btrfs_find_free_ino(root, &objectid);
5786 if (err)
5787 goto out_fail;
5788
aec7477b 5789 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5790 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5791 S_IFDIR | mode, &index);
39279cc3
CM
5792 if (IS_ERR(inode)) {
5793 err = PTR_ERR(inode);
5794 goto out_fail;
5795 }
5f39d397 5796
39279cc3 5797 drop_on_err = 1;
33268eaf 5798
2a7dba39 5799 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5800 if (err)
5801 goto out_fail;
5802
39279cc3
CM
5803 inode->i_op = &btrfs_dir_inode_operations;
5804 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5805
dbe674a9 5806 btrfs_i_size_write(inode, 0);
39279cc3
CM
5807 err = btrfs_update_inode(trans, root, inode);
5808 if (err)
5809 goto out_fail;
5f39d397 5810
a1b075d2
JB
5811 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5812 dentry->d_name.len, 0, index);
39279cc3
CM
5813 if (err)
5814 goto out_fail;
5f39d397 5815
39279cc3
CM
5816 d_instantiate(dentry, inode);
5817 drop_on_err = 0;
39279cc3
CM
5818
5819out_fail:
7ad85bb7 5820 btrfs_end_transaction(trans, root);
39279cc3
CM
5821 if (drop_on_err)
5822 iput(inode);
b53d3f5d 5823 btrfs_btree_balance_dirty(root);
39279cc3
CM
5824 return err;
5825}
5826
d352ac68
CM
5827/* helper for btfs_get_extent. Given an existing extent in the tree,
5828 * and an extent that you want to insert, deal with overlap and insert
5829 * the new extent into the tree.
5830 */
3b951516
CM
5831static int merge_extent_mapping(struct extent_map_tree *em_tree,
5832 struct extent_map *existing,
e6dcd2dc
CM
5833 struct extent_map *em,
5834 u64 map_start, u64 map_len)
3b951516
CM
5835{
5836 u64 start_diff;
3b951516 5837
e6dcd2dc
CM
5838 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5839 start_diff = map_start - em->start;
5840 em->start = map_start;
5841 em->len = map_len;
c8b97818
CM
5842 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5843 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5844 em->block_start += start_diff;
c8b97818
CM
5845 em->block_len -= start_diff;
5846 }
09a2a8f9 5847 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
5848}
5849
c8b97818
CM
5850static noinline int uncompress_inline(struct btrfs_path *path,
5851 struct inode *inode, struct page *page,
5852 size_t pg_offset, u64 extent_offset,
5853 struct btrfs_file_extent_item *item)
5854{
5855 int ret;
5856 struct extent_buffer *leaf = path->nodes[0];
5857 char *tmp;
5858 size_t max_size;
5859 unsigned long inline_size;
5860 unsigned long ptr;
261507a0 5861 int compress_type;
c8b97818
CM
5862
5863 WARN_ON(pg_offset != 0);
261507a0 5864 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5865 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5866 inline_size = btrfs_file_extent_inline_item_len(leaf,
5867 btrfs_item_nr(leaf, path->slots[0]));
5868 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5869 if (!tmp)
5870 return -ENOMEM;
c8b97818
CM
5871 ptr = btrfs_file_extent_inline_start(item);
5872
5873 read_extent_buffer(leaf, tmp, ptr, inline_size);
5874
5b050f04 5875 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5876 ret = btrfs_decompress(compress_type, tmp, page,
5877 extent_offset, inline_size, max_size);
c8b97818 5878 if (ret) {
7ac687d9 5879 char *kaddr = kmap_atomic(page);
c8b97818
CM
5880 unsigned long copy_size = min_t(u64,
5881 PAGE_CACHE_SIZE - pg_offset,
5882 max_size - extent_offset);
5883 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 5884 kunmap_atomic(kaddr);
c8b97818
CM
5885 }
5886 kfree(tmp);
5887 return 0;
5888}
5889
d352ac68
CM
5890/*
5891 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5892 * the ugly parts come from merging extents from the disk with the in-ram
5893 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5894 * where the in-ram extents might be locked pending data=ordered completion.
5895 *
5896 * This also copies inline extents directly into the page.
5897 */
d397712b 5898
a52d9a80 5899struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5900 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5901 int create)
5902{
5903 int ret;
5904 int err = 0;
db94535d 5905 u64 bytenr;
a52d9a80
CM
5906 u64 extent_start = 0;
5907 u64 extent_end = 0;
33345d01 5908 u64 objectid = btrfs_ino(inode);
a52d9a80 5909 u32 found_type;
f421950f 5910 struct btrfs_path *path = NULL;
a52d9a80
CM
5911 struct btrfs_root *root = BTRFS_I(inode)->root;
5912 struct btrfs_file_extent_item *item;
5f39d397
CM
5913 struct extent_buffer *leaf;
5914 struct btrfs_key found_key;
a52d9a80
CM
5915 struct extent_map *em = NULL;
5916 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5917 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5918 struct btrfs_trans_handle *trans = NULL;
261507a0 5919 int compress_type;
a52d9a80 5920
a52d9a80 5921again:
890871be 5922 read_lock(&em_tree->lock);
d1310b2e 5923 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5924 if (em)
5925 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5926 read_unlock(&em_tree->lock);
d1310b2e 5927
a52d9a80 5928 if (em) {
e1c4b745
CM
5929 if (em->start > start || em->start + em->len <= start)
5930 free_extent_map(em);
5931 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5932 free_extent_map(em);
5933 else
5934 goto out;
a52d9a80 5935 }
172ddd60 5936 em = alloc_extent_map();
a52d9a80 5937 if (!em) {
d1310b2e
CM
5938 err = -ENOMEM;
5939 goto out;
a52d9a80 5940 }
e6dcd2dc 5941 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5942 em->start = EXTENT_MAP_HOLE;
445a6944 5943 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5944 em->len = (u64)-1;
c8b97818 5945 em->block_len = (u64)-1;
f421950f
CM
5946
5947 if (!path) {
5948 path = btrfs_alloc_path();
026fd317
JB
5949 if (!path) {
5950 err = -ENOMEM;
5951 goto out;
5952 }
5953 /*
5954 * Chances are we'll be called again, so go ahead and do
5955 * readahead
5956 */
5957 path->reada = 1;
f421950f
CM
5958 }
5959
179e29e4
CM
5960 ret = btrfs_lookup_file_extent(trans, root, path,
5961 objectid, start, trans != NULL);
a52d9a80
CM
5962 if (ret < 0) {
5963 err = ret;
5964 goto out;
5965 }
5966
5967 if (ret != 0) {
5968 if (path->slots[0] == 0)
5969 goto not_found;
5970 path->slots[0]--;
5971 }
5972
5f39d397
CM
5973 leaf = path->nodes[0];
5974 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5975 struct btrfs_file_extent_item);
a52d9a80 5976 /* are we inside the extent that was found? */
5f39d397
CM
5977 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5978 found_type = btrfs_key_type(&found_key);
5979 if (found_key.objectid != objectid ||
a52d9a80
CM
5980 found_type != BTRFS_EXTENT_DATA_KEY) {
5981 goto not_found;
5982 }
5983
5f39d397
CM
5984 found_type = btrfs_file_extent_type(leaf, item);
5985 extent_start = found_key.offset;
261507a0 5986 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5987 if (found_type == BTRFS_FILE_EXTENT_REG ||
5988 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5989 extent_end = extent_start +
db94535d 5990 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5991 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5992 size_t size;
5993 size = btrfs_file_extent_inline_len(leaf, item);
fda2832f 5994 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102
YZ
5995 }
5996
5997 if (start >= extent_end) {
5998 path->slots[0]++;
5999 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6000 ret = btrfs_next_leaf(root, path);
6001 if (ret < 0) {
6002 err = ret;
6003 goto out;
a52d9a80 6004 }
9036c102
YZ
6005 if (ret > 0)
6006 goto not_found;
6007 leaf = path->nodes[0];
a52d9a80 6008 }
9036c102
YZ
6009 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6010 if (found_key.objectid != objectid ||
6011 found_key.type != BTRFS_EXTENT_DATA_KEY)
6012 goto not_found;
6013 if (start + len <= found_key.offset)
6014 goto not_found;
6015 em->start = start;
70c8a91c 6016 em->orig_start = start;
9036c102
YZ
6017 em->len = found_key.offset - start;
6018 goto not_found_em;
6019 }
6020
cc95bef6 6021 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
d899e052
YZ
6022 if (found_type == BTRFS_FILE_EXTENT_REG ||
6023 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
6024 em->start = extent_start;
6025 em->len = extent_end - extent_start;
ff5b7ee3
YZ
6026 em->orig_start = extent_start -
6027 btrfs_file_extent_offset(leaf, item);
b4939680
JB
6028 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6029 item);
db94535d
CM
6030 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6031 if (bytenr == 0) {
5f39d397 6032 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
6033 goto insert;
6034 }
261507a0 6035 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 6036 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 6037 em->compress_type = compress_type;
c8b97818 6038 em->block_start = bytenr;
b4939680 6039 em->block_len = em->orig_block_len;
c8b97818
CM
6040 } else {
6041 bytenr += btrfs_file_extent_offset(leaf, item);
6042 em->block_start = bytenr;
6043 em->block_len = em->len;
d899e052
YZ
6044 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6045 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 6046 }
a52d9a80
CM
6047 goto insert;
6048 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6049 unsigned long ptr;
a52d9a80 6050 char *map;
3326d1b0
CM
6051 size_t size;
6052 size_t extent_offset;
6053 size_t copy_size;
a52d9a80 6054
689f9346 6055 em->block_start = EXTENT_MAP_INLINE;
c8b97818 6056 if (!page || create) {
689f9346 6057 em->start = extent_start;
9036c102 6058 em->len = extent_end - extent_start;
689f9346
Y
6059 goto out;
6060 }
5f39d397 6061
9036c102
YZ
6062 size = btrfs_file_extent_inline_len(leaf, item);
6063 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6064 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6065 size - extent_offset);
3326d1b0 6066 em->start = extent_start + extent_offset;
fda2832f 6067 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6068 em->orig_block_len = em->len;
70c8a91c 6069 em->orig_start = em->start;
261507a0 6070 if (compress_type) {
c8b97818 6071 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
6072 em->compress_type = compress_type;
6073 }
689f9346 6074 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6075 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6076 if (btrfs_file_extent_compression(leaf, item) !=
6077 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6078 ret = uncompress_inline(path, inode, page,
6079 pg_offset,
6080 extent_offset, item);
79787eaa 6081 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
6082 } else {
6083 map = kmap(page);
6084 read_extent_buffer(leaf, map + pg_offset, ptr,
6085 copy_size);
93c82d57
CM
6086 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6087 memset(map + pg_offset + copy_size, 0,
6088 PAGE_CACHE_SIZE - pg_offset -
6089 copy_size);
6090 }
c8b97818
CM
6091 kunmap(page);
6092 }
179e29e4
CM
6093 flush_dcache_page(page);
6094 } else if (create && PageUptodate(page)) {
6bf7e080 6095 BUG();
179e29e4
CM
6096 if (!trans) {
6097 kunmap(page);
6098 free_extent_map(em);
6099 em = NULL;
ff5714cc 6100
b3b4aa74 6101 btrfs_release_path(path);
7a7eaa40 6102 trans = btrfs_join_transaction(root);
ff5714cc 6103
3612b495
TI
6104 if (IS_ERR(trans))
6105 return ERR_CAST(trans);
179e29e4
CM
6106 goto again;
6107 }
c8b97818 6108 map = kmap(page);
70dec807 6109 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6110 copy_size);
c8b97818 6111 kunmap(page);
179e29e4 6112 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6113 }
d1310b2e 6114 set_extent_uptodate(io_tree, em->start,
507903b8 6115 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
6116 goto insert;
6117 } else {
31b1a2bd 6118 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
6119 }
6120not_found:
6121 em->start = start;
70c8a91c 6122 em->orig_start = start;
d1310b2e 6123 em->len = len;
a52d9a80 6124not_found_em:
5f39d397 6125 em->block_start = EXTENT_MAP_HOLE;
9036c102 6126 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6127insert:
b3b4aa74 6128 btrfs_release_path(path);
d1310b2e 6129 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb
SK
6130 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6131 (unsigned long long)em->start,
6132 (unsigned long long)em->len,
6133 (unsigned long long)start,
6134 (unsigned long long)len);
a52d9a80
CM
6135 err = -EIO;
6136 goto out;
6137 }
d1310b2e
CM
6138
6139 err = 0;
890871be 6140 write_lock(&em_tree->lock);
09a2a8f9 6141 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6142 /* it is possible that someone inserted the extent into the tree
6143 * while we had the lock dropped. It is also possible that
6144 * an overlapping map exists in the tree
6145 */
a52d9a80 6146 if (ret == -EEXIST) {
3b951516 6147 struct extent_map *existing;
e6dcd2dc
CM
6148
6149 ret = 0;
6150
3b951516 6151 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
6152 if (existing && (existing->start > start ||
6153 existing->start + existing->len <= start)) {
6154 free_extent_map(existing);
6155 existing = NULL;
6156 }
3b951516
CM
6157 if (!existing) {
6158 existing = lookup_extent_mapping(em_tree, em->start,
6159 em->len);
6160 if (existing) {
6161 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
6162 em, start,
6163 root->sectorsize);
3b951516
CM
6164 free_extent_map(existing);
6165 if (err) {
6166 free_extent_map(em);
6167 em = NULL;
6168 }
6169 } else {
6170 err = -EIO;
3b951516
CM
6171 free_extent_map(em);
6172 em = NULL;
6173 }
6174 } else {
6175 free_extent_map(em);
6176 em = existing;
e6dcd2dc 6177 err = 0;
a52d9a80 6178 }
a52d9a80 6179 }
890871be 6180 write_unlock(&em_tree->lock);
a52d9a80 6181out:
1abe9b8a 6182
f0bd95ea
TI
6183 if (em)
6184 trace_btrfs_get_extent(root, em);
1abe9b8a 6185
f421950f
CM
6186 if (path)
6187 btrfs_free_path(path);
a52d9a80
CM
6188 if (trans) {
6189 ret = btrfs_end_transaction(trans, root);
d397712b 6190 if (!err)
a52d9a80
CM
6191 err = ret;
6192 }
a52d9a80
CM
6193 if (err) {
6194 free_extent_map(em);
a52d9a80
CM
6195 return ERR_PTR(err);
6196 }
79787eaa 6197 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6198 return em;
6199}
6200
ec29ed5b
CM
6201struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6202 size_t pg_offset, u64 start, u64 len,
6203 int create)
6204{
6205 struct extent_map *em;
6206 struct extent_map *hole_em = NULL;
6207 u64 range_start = start;
6208 u64 end;
6209 u64 found;
6210 u64 found_end;
6211 int err = 0;
6212
6213 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6214 if (IS_ERR(em))
6215 return em;
6216 if (em) {
6217 /*
f9e4fb53
LB
6218 * if our em maps to
6219 * - a hole or
6220 * - a pre-alloc extent,
6221 * there might actually be delalloc bytes behind it.
ec29ed5b 6222 */
f9e4fb53
LB
6223 if (em->block_start != EXTENT_MAP_HOLE &&
6224 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6225 return em;
6226 else
6227 hole_em = em;
6228 }
6229
6230 /* check to see if we've wrapped (len == -1 or similar) */
6231 end = start + len;
6232 if (end < start)
6233 end = (u64)-1;
6234 else
6235 end -= 1;
6236
6237 em = NULL;
6238
6239 /* ok, we didn't find anything, lets look for delalloc */
6240 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6241 end, len, EXTENT_DELALLOC, 1);
6242 found_end = range_start + found;
6243 if (found_end < range_start)
6244 found_end = (u64)-1;
6245
6246 /*
6247 * we didn't find anything useful, return
6248 * the original results from get_extent()
6249 */
6250 if (range_start > end || found_end <= start) {
6251 em = hole_em;
6252 hole_em = NULL;
6253 goto out;
6254 }
6255
6256 /* adjust the range_start to make sure it doesn't
6257 * go backwards from the start they passed in
6258 */
6259 range_start = max(start,range_start);
6260 found = found_end - range_start;
6261
6262 if (found > 0) {
6263 u64 hole_start = start;
6264 u64 hole_len = len;
6265
172ddd60 6266 em = alloc_extent_map();
ec29ed5b
CM
6267 if (!em) {
6268 err = -ENOMEM;
6269 goto out;
6270 }
6271 /*
6272 * when btrfs_get_extent can't find anything it
6273 * returns one huge hole
6274 *
6275 * make sure what it found really fits our range, and
6276 * adjust to make sure it is based on the start from
6277 * the caller
6278 */
6279 if (hole_em) {
6280 u64 calc_end = extent_map_end(hole_em);
6281
6282 if (calc_end <= start || (hole_em->start > end)) {
6283 free_extent_map(hole_em);
6284 hole_em = NULL;
6285 } else {
6286 hole_start = max(hole_em->start, start);
6287 hole_len = calc_end - hole_start;
6288 }
6289 }
6290 em->bdev = NULL;
6291 if (hole_em && range_start > hole_start) {
6292 /* our hole starts before our delalloc, so we
6293 * have to return just the parts of the hole
6294 * that go until the delalloc starts
6295 */
6296 em->len = min(hole_len,
6297 range_start - hole_start);
6298 em->start = hole_start;
6299 em->orig_start = hole_start;
6300 /*
6301 * don't adjust block start at all,
6302 * it is fixed at EXTENT_MAP_HOLE
6303 */
6304 em->block_start = hole_em->block_start;
6305 em->block_len = hole_len;
f9e4fb53
LB
6306 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6307 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
6308 } else {
6309 em->start = range_start;
6310 em->len = found;
6311 em->orig_start = range_start;
6312 em->block_start = EXTENT_MAP_DELALLOC;
6313 em->block_len = found;
6314 }
6315 } else if (hole_em) {
6316 return hole_em;
6317 }
6318out:
6319
6320 free_extent_map(hole_em);
6321 if (err) {
6322 free_extent_map(em);
6323 return ERR_PTR(err);
6324 }
6325 return em;
6326}
6327
4b46fce2
JB
6328static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6329 u64 start, u64 len)
6330{
6331 struct btrfs_root *root = BTRFS_I(inode)->root;
6332 struct btrfs_trans_handle *trans;
70c8a91c 6333 struct extent_map *em;
4b46fce2
JB
6334 struct btrfs_key ins;
6335 u64 alloc_hint;
6336 int ret;
4b46fce2 6337
7a7eaa40 6338 trans = btrfs_join_transaction(root);
3612b495
TI
6339 if (IS_ERR(trans))
6340 return ERR_CAST(trans);
4b46fce2
JB
6341
6342 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
6343
6344 alloc_hint = get_extent_allocation_hint(inode, start, len);
6345 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
81c9ad23 6346 alloc_hint, &ins, 1);
4b46fce2
JB
6347 if (ret) {
6348 em = ERR_PTR(ret);
6349 goto out;
6350 }
6351
70c8a91c 6352 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 6353 ins.offset, ins.offset, ins.offset, 0);
70c8a91c
JB
6354 if (IS_ERR(em))
6355 goto out;
4b46fce2
JB
6356
6357 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6358 ins.offset, ins.offset, 0);
6359 if (ret) {
6360 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6361 em = ERR_PTR(ret);
6362 }
6363out:
6364 btrfs_end_transaction(trans, root);
6365 return em;
6366}
6367
46bfbb5c
CM
6368/*
6369 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6370 * block must be cow'd
6371 */
7ee9e440
JB
6372noinline int can_nocow_extent(struct btrfs_trans_handle *trans,
6373 struct inode *inode, u64 offset, u64 *len,
6374 u64 *orig_start, u64 *orig_block_len,
6375 u64 *ram_bytes)
46bfbb5c
CM
6376{
6377 struct btrfs_path *path;
6378 int ret;
6379 struct extent_buffer *leaf;
6380 struct btrfs_root *root = BTRFS_I(inode)->root;
6381 struct btrfs_file_extent_item *fi;
6382 struct btrfs_key key;
6383 u64 disk_bytenr;
6384 u64 backref_offset;
6385 u64 extent_end;
6386 u64 num_bytes;
6387 int slot;
6388 int found_type;
7ee9e440 6389 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
46bfbb5c
CM
6390 path = btrfs_alloc_path();
6391 if (!path)
6392 return -ENOMEM;
6393
33345d01 6394 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
6395 offset, 0);
6396 if (ret < 0)
6397 goto out;
6398
6399 slot = path->slots[0];
6400 if (ret == 1) {
6401 if (slot == 0) {
6402 /* can't find the item, must cow */
6403 ret = 0;
6404 goto out;
6405 }
6406 slot--;
6407 }
6408 ret = 0;
6409 leaf = path->nodes[0];
6410 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 6411 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
6412 key.type != BTRFS_EXTENT_DATA_KEY) {
6413 /* not our file or wrong item type, must cow */
6414 goto out;
6415 }
6416
6417 if (key.offset > offset) {
6418 /* Wrong offset, must cow */
6419 goto out;
6420 }
6421
6422 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6423 found_type = btrfs_file_extent_type(leaf, fi);
6424 if (found_type != BTRFS_FILE_EXTENT_REG &&
6425 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6426 /* not a regular extent, must cow */
6427 goto out;
6428 }
7ee9e440
JB
6429
6430 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6431 goto out;
6432
46bfbb5c 6433 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
6434 if (disk_bytenr == 0)
6435 goto out;
6436
6437 if (btrfs_file_extent_compression(leaf, fi) ||
6438 btrfs_file_extent_encryption(leaf, fi) ||
6439 btrfs_file_extent_other_encoding(leaf, fi))
6440 goto out;
6441
46bfbb5c
CM
6442 backref_offset = btrfs_file_extent_offset(leaf, fi);
6443
7ee9e440
JB
6444 if (orig_start) {
6445 *orig_start = key.offset - backref_offset;
6446 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6447 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6448 }
eb384b55 6449
46bfbb5c 6450 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
46bfbb5c
CM
6451
6452 if (btrfs_extent_readonly(root, disk_bytenr))
6453 goto out;
6454
6455 /*
6456 * look for other files referencing this extent, if we
6457 * find any we must cow
6458 */
33345d01 6459 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
6460 key.offset - backref_offset, disk_bytenr))
6461 goto out;
6462
6463 /*
6464 * adjust disk_bytenr and num_bytes to cover just the bytes
6465 * in this extent we are about to write. If there
6466 * are any csums in that range we have to cow in order
6467 * to keep the csums correct
6468 */
6469 disk_bytenr += backref_offset;
6470 disk_bytenr += offset - key.offset;
eb384b55 6471 num_bytes = min(offset + *len, extent_end) - offset;
46bfbb5c
CM
6472 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6473 goto out;
6474 /*
6475 * all of the above have passed, it is safe to overwrite this extent
6476 * without cow
6477 */
eb384b55 6478 *len = num_bytes;
46bfbb5c
CM
6479 ret = 1;
6480out:
6481 btrfs_free_path(path);
6482 return ret;
6483}
6484
eb838e73
JB
6485static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6486 struct extent_state **cached_state, int writing)
6487{
6488 struct btrfs_ordered_extent *ordered;
6489 int ret = 0;
6490
6491 while (1) {
6492 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6493 0, cached_state);
6494 /*
6495 * We're concerned with the entire range that we're going to be
6496 * doing DIO to, so we need to make sure theres no ordered
6497 * extents in this range.
6498 */
6499 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6500 lockend - lockstart + 1);
6501
6502 /*
6503 * We need to make sure there are no buffered pages in this
6504 * range either, we could have raced between the invalidate in
6505 * generic_file_direct_write and locking the extent. The
6506 * invalidate needs to happen so that reads after a write do not
6507 * get stale data.
6508 */
6509 if (!ordered && (!writing ||
6510 !test_range_bit(&BTRFS_I(inode)->io_tree,
6511 lockstart, lockend, EXTENT_UPTODATE, 0,
6512 *cached_state)))
6513 break;
6514
6515 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6516 cached_state, GFP_NOFS);
6517
6518 if (ordered) {
6519 btrfs_start_ordered_extent(inode, ordered, 1);
6520 btrfs_put_ordered_extent(ordered);
6521 } else {
6522 /* Screw you mmap */
6523 ret = filemap_write_and_wait_range(inode->i_mapping,
6524 lockstart,
6525 lockend);
6526 if (ret)
6527 break;
6528
6529 /*
6530 * If we found a page that couldn't be invalidated just
6531 * fall back to buffered.
6532 */
6533 ret = invalidate_inode_pages2_range(inode->i_mapping,
6534 lockstart >> PAGE_CACHE_SHIFT,
6535 lockend >> PAGE_CACHE_SHIFT);
6536 if (ret)
6537 break;
6538 }
6539
6540 cond_resched();
6541 }
6542
6543 return ret;
6544}
6545
69ffb543
JB
6546static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6547 u64 len, u64 orig_start,
6548 u64 block_start, u64 block_len,
cc95bef6
JB
6549 u64 orig_block_len, u64 ram_bytes,
6550 int type)
69ffb543
JB
6551{
6552 struct extent_map_tree *em_tree;
6553 struct extent_map *em;
6554 struct btrfs_root *root = BTRFS_I(inode)->root;
6555 int ret;
6556
6557 em_tree = &BTRFS_I(inode)->extent_tree;
6558 em = alloc_extent_map();
6559 if (!em)
6560 return ERR_PTR(-ENOMEM);
6561
6562 em->start = start;
6563 em->orig_start = orig_start;
2ab28f32
JB
6564 em->mod_start = start;
6565 em->mod_len = len;
69ffb543
JB
6566 em->len = len;
6567 em->block_len = block_len;
6568 em->block_start = block_start;
6569 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 6570 em->orig_block_len = orig_block_len;
cc95bef6 6571 em->ram_bytes = ram_bytes;
70c8a91c 6572 em->generation = -1;
69ffb543
JB
6573 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6574 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 6575 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
6576
6577 do {
6578 btrfs_drop_extent_cache(inode, em->start,
6579 em->start + em->len - 1, 0);
6580 write_lock(&em_tree->lock);
09a2a8f9 6581 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
6582 write_unlock(&em_tree->lock);
6583 } while (ret == -EEXIST);
6584
6585 if (ret) {
6586 free_extent_map(em);
6587 return ERR_PTR(ret);
6588 }
6589
6590 return em;
6591}
6592
6593
4b46fce2
JB
6594static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6595 struct buffer_head *bh_result, int create)
6596{
6597 struct extent_map *em;
6598 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 6599 struct extent_state *cached_state = NULL;
4b46fce2 6600 u64 start = iblock << inode->i_blkbits;
eb838e73 6601 u64 lockstart, lockend;
4b46fce2 6602 u64 len = bh_result->b_size;
46bfbb5c 6603 struct btrfs_trans_handle *trans;
eb838e73 6604 int unlock_bits = EXTENT_LOCKED;
0934856d 6605 int ret = 0;
eb838e73 6606
172a5049 6607 if (create)
eb838e73 6608 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
172a5049 6609 else
c329861d 6610 len = min_t(u64, len, root->sectorsize);
eb838e73 6611
c329861d
JB
6612 lockstart = start;
6613 lockend = start + len - 1;
6614
eb838e73
JB
6615 /*
6616 * If this errors out it's because we couldn't invalidate pagecache for
6617 * this range and we need to fallback to buffered.
6618 */
6619 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6620 return -ENOTBLK;
6621
4b46fce2 6622 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
6623 if (IS_ERR(em)) {
6624 ret = PTR_ERR(em);
6625 goto unlock_err;
6626 }
4b46fce2
JB
6627
6628 /*
6629 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6630 * io. INLINE is special, and we could probably kludge it in here, but
6631 * it's still buffered so for safety lets just fall back to the generic
6632 * buffered path.
6633 *
6634 * For COMPRESSED we _have_ to read the entire extent in so we can
6635 * decompress it, so there will be buffering required no matter what we
6636 * do, so go ahead and fallback to buffered.
6637 *
6638 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6639 * to buffered IO. Don't blame me, this is the price we pay for using
6640 * the generic code.
6641 */
6642 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6643 em->block_start == EXTENT_MAP_INLINE) {
6644 free_extent_map(em);
eb838e73
JB
6645 ret = -ENOTBLK;
6646 goto unlock_err;
4b46fce2
JB
6647 }
6648
6649 /* Just a good old fashioned hole, return */
6650 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6651 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6652 free_extent_map(em);
eb838e73 6653 goto unlock_err;
4b46fce2
JB
6654 }
6655
6656 /*
6657 * We don't allocate a new extent in the following cases
6658 *
6659 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6660 * existing extent.
6661 * 2) The extent is marked as PREALLOC. We're good to go here and can
6662 * just use the extent.
6663 *
6664 */
46bfbb5c 6665 if (!create) {
eb838e73
JB
6666 len = min(len, em->len - (start - em->start));
6667 lockstart = start + len;
6668 goto unlock;
46bfbb5c 6669 }
4b46fce2
JB
6670
6671 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6672 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6673 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6674 int type;
6675 int ret;
eb384b55 6676 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
6677
6678 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6679 type = BTRFS_ORDERED_PREALLOC;
6680 else
6681 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6682 len = min(len, em->len - (start - em->start));
4b46fce2 6683 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
6684
6685 /*
6686 * we're not going to log anything, but we do need
6687 * to make sure the current transaction stays open
6688 * while we look for nocow cross refs
6689 */
7a7eaa40 6690 trans = btrfs_join_transaction(root);
3612b495 6691 if (IS_ERR(trans))
46bfbb5c
CM
6692 goto must_cow;
6693
7ee9e440
JB
6694 if (can_nocow_extent(trans, inode, start, &len, &orig_start,
6695 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
6696 if (type == BTRFS_ORDERED_PREALLOC) {
6697 free_extent_map(em);
6698 em = create_pinned_em(inode, start, len,
6699 orig_start,
b4939680 6700 block_start, len,
cc95bef6
JB
6701 orig_block_len,
6702 ram_bytes, type);
69ffb543
JB
6703 if (IS_ERR(em)) {
6704 btrfs_end_transaction(trans, root);
6705 goto unlock_err;
6706 }
6707 }
6708
46bfbb5c
CM
6709 ret = btrfs_add_ordered_extent_dio(inode, start,
6710 block_start, len, len, type);
6711 btrfs_end_transaction(trans, root);
6712 if (ret) {
6713 free_extent_map(em);
eb838e73 6714 goto unlock_err;
46bfbb5c
CM
6715 }
6716 goto unlock;
4b46fce2 6717 }
46bfbb5c 6718 btrfs_end_transaction(trans, root);
4b46fce2 6719 }
46bfbb5c
CM
6720must_cow:
6721 /*
6722 * this will cow the extent, reset the len in case we changed
6723 * it above
6724 */
6725 len = bh_result->b_size;
70c8a91c
JB
6726 free_extent_map(em);
6727 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
6728 if (IS_ERR(em)) {
6729 ret = PTR_ERR(em);
6730 goto unlock_err;
6731 }
46bfbb5c
CM
6732 len = min(len, em->len - (start - em->start));
6733unlock:
4b46fce2
JB
6734 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6735 inode->i_blkbits;
46bfbb5c 6736 bh_result->b_size = len;
4b46fce2
JB
6737 bh_result->b_bdev = em->bdev;
6738 set_buffer_mapped(bh_result);
c3473e83
JB
6739 if (create) {
6740 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6741 set_buffer_new(bh_result);
6742
6743 /*
6744 * Need to update the i_size under the extent lock so buffered
6745 * readers will get the updated i_size when we unlock.
6746 */
6747 if (start + len > i_size_read(inode))
6748 i_size_write(inode, start + len);
0934856d 6749
172a5049
MX
6750 spin_lock(&BTRFS_I(inode)->lock);
6751 BTRFS_I(inode)->outstanding_extents++;
6752 spin_unlock(&BTRFS_I(inode)->lock);
6753
0934856d
MX
6754 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6755 lockstart + len - 1, EXTENT_DELALLOC, NULL,
6756 &cached_state, GFP_NOFS);
6757 BUG_ON(ret);
c3473e83 6758 }
4b46fce2 6759
eb838e73
JB
6760 /*
6761 * In the case of write we need to clear and unlock the entire range,
6762 * in the case of read we need to unlock only the end area that we
6763 * aren't using if there is any left over space.
6764 */
24c03fa5 6765 if (lockstart < lockend) {
0934856d
MX
6766 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6767 lockend, unlock_bits, 1, 0,
6768 &cached_state, GFP_NOFS);
24c03fa5 6769 } else {
eb838e73 6770 free_extent_state(cached_state);
24c03fa5 6771 }
eb838e73 6772
4b46fce2
JB
6773 free_extent_map(em);
6774
6775 return 0;
eb838e73
JB
6776
6777unlock_err:
eb838e73
JB
6778 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6779 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6780 return ret;
4b46fce2
JB
6781}
6782
4b46fce2
JB
6783static void btrfs_endio_direct_read(struct bio *bio, int err)
6784{
e65e1535 6785 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6786 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6787 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
6788 struct inode *inode = dip->inode;
6789 struct btrfs_root *root = BTRFS_I(inode)->root;
9be3395b 6790 struct bio *dio_bio;
facc8a22
MX
6791 u32 *csums = (u32 *)dip->csum;
6792 int index = 0;
4b46fce2 6793 u64 start;
4b46fce2
JB
6794
6795 start = dip->logical_offset;
6796 do {
6797 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6798 struct page *page = bvec->bv_page;
6799 char *kaddr;
6800 u32 csum = ~(u32)0;
6801 unsigned long flags;
6802
6803 local_irq_save(flags);
7ac687d9 6804 kaddr = kmap_atomic(page);
b0496686 6805 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
4b46fce2
JB
6806 csum, bvec->bv_len);
6807 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6808 kunmap_atomic(kaddr);
4b46fce2
JB
6809 local_irq_restore(flags);
6810
6811 flush_dcache_page(bvec->bv_page);
facc8a22
MX
6812 if (csum != csums[index]) {
6813 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
6814 (unsigned long long)btrfs_ino(inode),
6815 (unsigned long long)start,
6816 csum, csums[index]);
4b46fce2
JB
6817 err = -EIO;
6818 }
6819 }
6820
6821 start += bvec->bv_len;
4b46fce2 6822 bvec++;
facc8a22 6823 index++;
4b46fce2
JB
6824 } while (bvec <= bvec_end);
6825
6826 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 6827 dip->logical_offset + dip->bytes - 1);
9be3395b 6828 dio_bio = dip->dio_bio;
4b46fce2 6829
4b46fce2 6830 kfree(dip);
c0da7aa1
JB
6831
6832 /* If we had a csum failure make sure to clear the uptodate flag */
6833 if (err)
9be3395b
CM
6834 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6835 dio_end_io(dio_bio, err);
6836 bio_put(bio);
4b46fce2
JB
6837}
6838
6839static void btrfs_endio_direct_write(struct bio *bio, int err)
6840{
6841 struct btrfs_dio_private *dip = bio->bi_private;
6842 struct inode *inode = dip->inode;
6843 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 6844 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
6845 u64 ordered_offset = dip->logical_offset;
6846 u64 ordered_bytes = dip->bytes;
9be3395b 6847 struct bio *dio_bio;
4b46fce2
JB
6848 int ret;
6849
6850 if (err)
6851 goto out_done;
163cf09c
CM
6852again:
6853 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6854 &ordered_offset,
5fd02043 6855 ordered_bytes, !err);
4b46fce2 6856 if (!ret)
163cf09c 6857 goto out_test;
4b46fce2 6858
5fd02043
JB
6859 ordered->work.func = finish_ordered_fn;
6860 ordered->work.flags = 0;
6861 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6862 &ordered->work);
163cf09c
CM
6863out_test:
6864 /*
6865 * our bio might span multiple ordered extents. If we haven't
6866 * completed the accounting for the whole dio, go back and try again
6867 */
6868 if (ordered_offset < dip->logical_offset + dip->bytes) {
6869 ordered_bytes = dip->logical_offset + dip->bytes -
6870 ordered_offset;
5fd02043 6871 ordered = NULL;
163cf09c
CM
6872 goto again;
6873 }
4b46fce2 6874out_done:
9be3395b 6875 dio_bio = dip->dio_bio;
4b46fce2 6876
4b46fce2 6877 kfree(dip);
c0da7aa1
JB
6878
6879 /* If we had an error make sure to clear the uptodate flag */
6880 if (err)
9be3395b
CM
6881 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6882 dio_end_io(dio_bio, err);
6883 bio_put(bio);
4b46fce2
JB
6884}
6885
eaf25d93
CM
6886static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6887 struct bio *bio, int mirror_num,
6888 unsigned long bio_flags, u64 offset)
6889{
6890 int ret;
6891 struct btrfs_root *root = BTRFS_I(inode)->root;
6892 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 6893 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
6894 return 0;
6895}
6896
e65e1535
MX
6897static void btrfs_end_dio_bio(struct bio *bio, int err)
6898{
6899 struct btrfs_dio_private *dip = bio->bi_private;
6900
6901 if (err) {
33345d01 6902 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 6903 "sector %#Lx len %u err no %d\n",
33345d01 6904 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 6905 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
6906 dip->errors = 1;
6907
6908 /*
6909 * before atomic variable goto zero, we must make sure
6910 * dip->errors is perceived to be set.
6911 */
6912 smp_mb__before_atomic_dec();
6913 }
6914
6915 /* if there are more bios still pending for this dio, just exit */
6916 if (!atomic_dec_and_test(&dip->pending_bios))
6917 goto out;
6918
9be3395b 6919 if (dip->errors) {
e65e1535 6920 bio_io_error(dip->orig_bio);
9be3395b
CM
6921 } else {
6922 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
e65e1535
MX
6923 bio_endio(dip->orig_bio, 0);
6924 }
6925out:
6926 bio_put(bio);
6927}
6928
6929static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6930 u64 first_sector, gfp_t gfp_flags)
6931{
6932 int nr_vecs = bio_get_nr_vecs(bdev);
6933 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6934}
6935
6936static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6937 int rw, u64 file_offset, int skip_sum,
c329861d 6938 int async_submit)
e65e1535 6939{
facc8a22 6940 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
6941 int write = rw & REQ_WRITE;
6942 struct btrfs_root *root = BTRFS_I(inode)->root;
6943 int ret;
6944
b812ce28
JB
6945 if (async_submit)
6946 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
6947
e65e1535 6948 bio_get(bio);
5fd02043
JB
6949
6950 if (!write) {
6951 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6952 if (ret)
6953 goto err;
6954 }
e65e1535 6955
1ae39938
JB
6956 if (skip_sum)
6957 goto map;
6958
6959 if (write && async_submit) {
e65e1535
MX
6960 ret = btrfs_wq_submit_bio(root->fs_info,
6961 inode, rw, bio, 0, 0,
6962 file_offset,
6963 __btrfs_submit_bio_start_direct_io,
6964 __btrfs_submit_bio_done);
6965 goto err;
1ae39938
JB
6966 } else if (write) {
6967 /*
6968 * If we aren't doing async submit, calculate the csum of the
6969 * bio now.
6970 */
6971 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6972 if (ret)
6973 goto err;
c2db1073 6974 } else if (!skip_sum) {
facc8a22
MX
6975 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
6976 file_offset);
c2db1073
TI
6977 if (ret)
6978 goto err;
6979 }
e65e1535 6980
1ae39938
JB
6981map:
6982 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
6983err:
6984 bio_put(bio);
6985 return ret;
6986}
6987
6988static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6989 int skip_sum)
6990{
6991 struct inode *inode = dip->inode;
6992 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
6993 struct bio *bio;
6994 struct bio *orig_bio = dip->orig_bio;
6995 struct bio_vec *bvec = orig_bio->bi_io_vec;
6996 u64 start_sector = orig_bio->bi_sector;
6997 u64 file_offset = dip->logical_offset;
6998 u64 submit_len = 0;
6999 u64 map_length;
7000 int nr_pages = 0;
e65e1535 7001 int ret = 0;
1ae39938 7002 int async_submit = 0;
e65e1535 7003
e65e1535 7004 map_length = orig_bio->bi_size;
53b381b3 7005 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535
MX
7006 &map_length, NULL, 0);
7007 if (ret) {
64728bbb 7008 bio_put(orig_bio);
e65e1535
MX
7009 return -EIO;
7010 }
facc8a22 7011
02f57c7a
JB
7012 if (map_length >= orig_bio->bi_size) {
7013 bio = orig_bio;
7014 goto submit;
7015 }
7016
53b381b3
DW
7017 /* async crcs make it difficult to collect full stripe writes. */
7018 if (btrfs_get_alloc_profile(root, 1) &
7019 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7020 async_submit = 0;
7021 else
7022 async_submit = 1;
7023
02f57c7a
JB
7024 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7025 if (!bio)
7026 return -ENOMEM;
7027 bio->bi_private = dip;
7028 bio->bi_end_io = btrfs_end_dio_bio;
7029 atomic_inc(&dip->pending_bios);
7030
e65e1535
MX
7031 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7032 if (unlikely(map_length < submit_len + bvec->bv_len ||
7033 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7034 bvec->bv_offset) < bvec->bv_len)) {
7035 /*
7036 * inc the count before we submit the bio so
7037 * we know the end IO handler won't happen before
7038 * we inc the count. Otherwise, the dip might get freed
7039 * before we're done setting it up
7040 */
7041 atomic_inc(&dip->pending_bios);
7042 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7043 file_offset, skip_sum,
c329861d 7044 async_submit);
e65e1535
MX
7045 if (ret) {
7046 bio_put(bio);
7047 atomic_dec(&dip->pending_bios);
7048 goto out_err;
7049 }
7050
e65e1535
MX
7051 start_sector += submit_len >> 9;
7052 file_offset += submit_len;
7053
7054 submit_len = 0;
7055 nr_pages = 0;
7056
7057 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7058 start_sector, GFP_NOFS);
7059 if (!bio)
7060 goto out_err;
7061 bio->bi_private = dip;
7062 bio->bi_end_io = btrfs_end_dio_bio;
7063
7064 map_length = orig_bio->bi_size;
53b381b3 7065 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 7066 start_sector << 9,
e65e1535
MX
7067 &map_length, NULL, 0);
7068 if (ret) {
7069 bio_put(bio);
7070 goto out_err;
7071 }
7072 } else {
7073 submit_len += bvec->bv_len;
7074 nr_pages ++;
7075 bvec++;
7076 }
7077 }
7078
02f57c7a 7079submit:
e65e1535 7080 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 7081 async_submit);
e65e1535
MX
7082 if (!ret)
7083 return 0;
7084
7085 bio_put(bio);
7086out_err:
7087 dip->errors = 1;
7088 /*
7089 * before atomic variable goto zero, we must
7090 * make sure dip->errors is perceived to be set.
7091 */
7092 smp_mb__before_atomic_dec();
7093 if (atomic_dec_and_test(&dip->pending_bios))
7094 bio_io_error(dip->orig_bio);
7095
7096 /* bio_end_io() will handle error, so we needn't return it */
7097 return 0;
7098}
7099
9be3395b
CM
7100static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7101 struct inode *inode, loff_t file_offset)
4b46fce2
JB
7102{
7103 struct btrfs_root *root = BTRFS_I(inode)->root;
7104 struct btrfs_dio_private *dip;
9be3395b 7105 struct bio *io_bio;
4b46fce2 7106 int skip_sum;
facc8a22 7107 int sum_len;
7b6d91da 7108 int write = rw & REQ_WRITE;
4b46fce2 7109 int ret = 0;
facc8a22 7110 u16 csum_size;
4b46fce2
JB
7111
7112 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7113
9be3395b 7114 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
7115 if (!io_bio) {
7116 ret = -ENOMEM;
7117 goto free_ordered;
7118 }
7119
facc8a22
MX
7120 if (!skip_sum && !write) {
7121 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
7122 sum_len = dio_bio->bi_size >> inode->i_sb->s_blocksize_bits;
7123 sum_len *= csum_size;
7124 } else {
7125 sum_len = 0;
7126 }
7127
7128 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
4b46fce2
JB
7129 if (!dip) {
7130 ret = -ENOMEM;
9be3395b 7131 goto free_io_bio;
4b46fce2 7132 }
4b46fce2 7133
9be3395b 7134 dip->private = dio_bio->bi_private;
4b46fce2
JB
7135 dip->inode = inode;
7136 dip->logical_offset = file_offset;
e6da5d2e 7137 dip->bytes = dio_bio->bi_size;
9be3395b
CM
7138 dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7139 io_bio->bi_private = dip;
e65e1535 7140 dip->errors = 0;
9be3395b
CM
7141 dip->orig_bio = io_bio;
7142 dip->dio_bio = dio_bio;
e65e1535 7143 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
7144
7145 if (write)
9be3395b 7146 io_bio->bi_end_io = btrfs_endio_direct_write;
4b46fce2 7147 else
9be3395b 7148 io_bio->bi_end_io = btrfs_endio_direct_read;
4b46fce2 7149
e65e1535
MX
7150 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7151 if (!ret)
eaf25d93 7152 return;
9be3395b
CM
7153
7154free_io_bio:
7155 bio_put(io_bio);
7156
4b46fce2
JB
7157free_ordered:
7158 /*
7159 * If this is a write, we need to clean up the reserved space and kill
7160 * the ordered extent.
7161 */
7162 if (write) {
7163 struct btrfs_ordered_extent *ordered;
955256f2 7164 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
7165 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7166 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7167 btrfs_free_reserved_extent(root, ordered->start,
7168 ordered->disk_len);
7169 btrfs_put_ordered_extent(ordered);
7170 btrfs_put_ordered_extent(ordered);
7171 }
9be3395b 7172 bio_endio(dio_bio, ret);
4b46fce2
JB
7173}
7174
5a5f79b5
CM
7175static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7176 const struct iovec *iov, loff_t offset,
7177 unsigned long nr_segs)
7178{
7179 int seg;
a1b75f7d 7180 int i;
5a5f79b5
CM
7181 size_t size;
7182 unsigned long addr;
7183 unsigned blocksize_mask = root->sectorsize - 1;
7184 ssize_t retval = -EINVAL;
7185 loff_t end = offset;
7186
7187 if (offset & blocksize_mask)
7188 goto out;
7189
7190 /* Check the memory alignment. Blocks cannot straddle pages */
7191 for (seg = 0; seg < nr_segs; seg++) {
7192 addr = (unsigned long)iov[seg].iov_base;
7193 size = iov[seg].iov_len;
7194 end += size;
a1b75f7d 7195 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 7196 goto out;
a1b75f7d
JB
7197
7198 /* If this is a write we don't need to check anymore */
7199 if (rw & WRITE)
7200 continue;
7201
7202 /*
7203 * Check to make sure we don't have duplicate iov_base's in this
7204 * iovec, if so return EINVAL, otherwise we'll get csum errors
7205 * when reading back.
7206 */
7207 for (i = seg + 1; i < nr_segs; i++) {
7208 if (iov[seg].iov_base == iov[i].iov_base)
7209 goto out;
7210 }
5a5f79b5
CM
7211 }
7212 retval = 0;
7213out:
7214 return retval;
7215}
eb838e73 7216
16432985
CM
7217static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7218 const struct iovec *iov, loff_t offset,
7219 unsigned long nr_segs)
7220{
4b46fce2
JB
7221 struct file *file = iocb->ki_filp;
7222 struct inode *inode = file->f_mapping->host;
0934856d 7223 size_t count = 0;
2e60a51e 7224 int flags = 0;
38851cc1
MX
7225 bool wakeup = true;
7226 bool relock = false;
0934856d 7227 ssize_t ret;
4b46fce2 7228
5a5f79b5 7229 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 7230 offset, nr_segs))
5a5f79b5 7231 return 0;
3f7c579c 7232
38851cc1
MX
7233 atomic_inc(&inode->i_dio_count);
7234 smp_mb__after_atomic_inc();
7235
0e267c44
JB
7236 /*
7237 * The generic stuff only does filemap_write_and_wait_range, which isn't
7238 * enough if we've written compressed pages to this area, so we need to
7239 * call btrfs_wait_ordered_range to make absolutely sure that any
7240 * outstanding dirty pages are on disk.
7241 */
7242 count = iov_length(iov, nr_segs);
7243 btrfs_wait_ordered_range(inode, offset, count);
7244
0934856d 7245 if (rw & WRITE) {
38851cc1
MX
7246 /*
7247 * If the write DIO is beyond the EOF, we need update
7248 * the isize, but it is protected by i_mutex. So we can
7249 * not unlock the i_mutex at this case.
7250 */
7251 if (offset + count <= inode->i_size) {
7252 mutex_unlock(&inode->i_mutex);
7253 relock = true;
7254 }
0934856d
MX
7255 ret = btrfs_delalloc_reserve_space(inode, count);
7256 if (ret)
38851cc1
MX
7257 goto out;
7258 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7259 &BTRFS_I(inode)->runtime_flags))) {
7260 inode_dio_done(inode);
7261 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7262 wakeup = false;
0934856d
MX
7263 }
7264
7265 ret = __blockdev_direct_IO(rw, iocb, inode,
7266 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7267 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
2e60a51e 7268 btrfs_submit_direct, flags);
0934856d
MX
7269 if (rw & WRITE) {
7270 if (ret < 0 && ret != -EIOCBQUEUED)
7271 btrfs_delalloc_release_space(inode, count);
172a5049 7272 else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
7273 btrfs_delalloc_release_space(inode,
7274 count - (size_t)ret);
172a5049
MX
7275 else
7276 btrfs_delalloc_release_metadata(inode, 0);
0934856d 7277 }
38851cc1 7278out:
2e60a51e
MX
7279 if (wakeup)
7280 inode_dio_done(inode);
38851cc1
MX
7281 if (relock)
7282 mutex_lock(&inode->i_mutex);
0934856d
MX
7283
7284 return ret;
16432985
CM
7285}
7286
05dadc09
TI
7287#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7288
1506fcc8
YS
7289static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7290 __u64 start, __u64 len)
7291{
05dadc09
TI
7292 int ret;
7293
7294 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7295 if (ret)
7296 return ret;
7297
ec29ed5b 7298 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
7299}
7300
a52d9a80 7301int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 7302{
d1310b2e
CM
7303 struct extent_io_tree *tree;
7304 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 7305 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 7306}
1832a6d5 7307
a52d9a80 7308static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 7309{
d1310b2e 7310 struct extent_io_tree *tree;
b888db2b
CM
7311
7312
7313 if (current->flags & PF_MEMALLOC) {
7314 redirty_page_for_writepage(wbc, page);
7315 unlock_page(page);
7316 return 0;
7317 }
d1310b2e 7318 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 7319 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
7320}
7321
48a3b636
ES
7322static int btrfs_writepages(struct address_space *mapping,
7323 struct writeback_control *wbc)
b293f02e 7324{
d1310b2e 7325 struct extent_io_tree *tree;
771ed689 7326
d1310b2e 7327 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
7328 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7329}
7330
3ab2fb5a
CM
7331static int
7332btrfs_readpages(struct file *file, struct address_space *mapping,
7333 struct list_head *pages, unsigned nr_pages)
7334{
d1310b2e
CM
7335 struct extent_io_tree *tree;
7336 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
7337 return extent_readpages(tree, mapping, pages, nr_pages,
7338 btrfs_get_extent);
7339}
e6dcd2dc 7340static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 7341{
d1310b2e
CM
7342 struct extent_io_tree *tree;
7343 struct extent_map_tree *map;
a52d9a80 7344 int ret;
8c2383c3 7345
d1310b2e
CM
7346 tree = &BTRFS_I(page->mapping->host)->io_tree;
7347 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 7348 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
7349 if (ret == 1) {
7350 ClearPagePrivate(page);
7351 set_page_private(page, 0);
7352 page_cache_release(page);
39279cc3 7353 }
a52d9a80 7354 return ret;
39279cc3
CM
7355}
7356
e6dcd2dc
CM
7357static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7358{
98509cfc
CM
7359 if (PageWriteback(page) || PageDirty(page))
7360 return 0;
b335b003 7361 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
7362}
7363
d47992f8
LC
7364static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7365 unsigned int length)
39279cc3 7366{
5fd02043 7367 struct inode *inode = page->mapping->host;
d1310b2e 7368 struct extent_io_tree *tree;
e6dcd2dc 7369 struct btrfs_ordered_extent *ordered;
2ac55d41 7370 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7371 u64 page_start = page_offset(page);
7372 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 7373
8b62b72b
CM
7374 /*
7375 * we have the page locked, so new writeback can't start,
7376 * and the dirty bit won't be cleared while we are here.
7377 *
7378 * Wait for IO on this page so that we can safely clear
7379 * the PagePrivate2 bit and do ordered accounting
7380 */
e6dcd2dc 7381 wait_on_page_writeback(page);
8b62b72b 7382
5fd02043 7383 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
7384 if (offset) {
7385 btrfs_releasepage(page, GFP_NOFS);
7386 return;
7387 }
d0082371 7388 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
4eee4fa4 7389 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
e6dcd2dc 7390 if (ordered) {
eb84ae03
CM
7391 /*
7392 * IO on this page will never be started, so we need
7393 * to account for any ordered extents now
7394 */
e6dcd2dc
CM
7395 clear_extent_bit(tree, page_start, page_end,
7396 EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
7397 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7398 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
8b62b72b
CM
7399 /*
7400 * whoever cleared the private bit is responsible
7401 * for the finish_ordered_io
7402 */
5fd02043
JB
7403 if (TestClearPagePrivate2(page) &&
7404 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
7405 PAGE_CACHE_SIZE, 1)) {
7406 btrfs_finish_ordered_io(ordered);
8b62b72b 7407 }
e6dcd2dc 7408 btrfs_put_ordered_extent(ordered);
2ac55d41 7409 cached_state = NULL;
d0082371 7410 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7411 }
7412 clear_extent_bit(tree, page_start, page_end,
32c00aff 7413 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
7414 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
7415 &cached_state, GFP_NOFS);
e6dcd2dc
CM
7416 __btrfs_releasepage(page, GFP_NOFS);
7417
4a096752 7418 ClearPageChecked(page);
9ad6b7bc 7419 if (PagePrivate(page)) {
9ad6b7bc
CM
7420 ClearPagePrivate(page);
7421 set_page_private(page, 0);
7422 page_cache_release(page);
7423 }
39279cc3
CM
7424}
7425
9ebefb18
CM
7426/*
7427 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7428 * called from a page fault handler when a page is first dirtied. Hence we must
7429 * be careful to check for EOF conditions here. We set the page up correctly
7430 * for a written page which means we get ENOSPC checking when writing into
7431 * holes and correct delalloc and unwritten extent mapping on filesystems that
7432 * support these features.
7433 *
7434 * We are not allowed to take the i_mutex here so we have to play games to
7435 * protect against truncate races as the page could now be beyond EOF. Because
7436 * vmtruncate() writes the inode size before removing pages, once we have the
7437 * page lock we can determine safely if the page is beyond EOF. If it is not
7438 * beyond EOF, then the page is guaranteed safe against truncation until we
7439 * unlock the page.
7440 */
c2ec175c 7441int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 7442{
c2ec175c 7443 struct page *page = vmf->page;
496ad9aa 7444 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 7445 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
7446 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7447 struct btrfs_ordered_extent *ordered;
2ac55d41 7448 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7449 char *kaddr;
7450 unsigned long zero_start;
9ebefb18 7451 loff_t size;
1832a6d5 7452 int ret;
9998eb70 7453 int reserved = 0;
a52d9a80 7454 u64 page_start;
e6dcd2dc 7455 u64 page_end;
9ebefb18 7456
b2b5ef5c 7457 sb_start_pagefault(inode->i_sb);
0ca1f7ce 7458 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 7459 if (!ret) {
e41f941a 7460 ret = file_update_time(vma->vm_file);
9998eb70
CM
7461 reserved = 1;
7462 }
56a76f82
NP
7463 if (ret) {
7464 if (ret == -ENOMEM)
7465 ret = VM_FAULT_OOM;
7466 else /* -ENOSPC, -EIO, etc */
7467 ret = VM_FAULT_SIGBUS;
9998eb70
CM
7468 if (reserved)
7469 goto out;
7470 goto out_noreserve;
56a76f82 7471 }
1832a6d5 7472
56a76f82 7473 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 7474again:
9ebefb18 7475 lock_page(page);
9ebefb18 7476 size = i_size_read(inode);
e6dcd2dc
CM
7477 page_start = page_offset(page);
7478 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 7479
9ebefb18 7480 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 7481 (page_start >= size)) {
9ebefb18
CM
7482 /* page got truncated out from underneath us */
7483 goto out_unlock;
7484 }
e6dcd2dc
CM
7485 wait_on_page_writeback(page);
7486
d0082371 7487 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7488 set_page_extent_mapped(page);
7489
eb84ae03
CM
7490 /*
7491 * we can't set the delalloc bits if there are pending ordered
7492 * extents. Drop our locks and wait for them to finish
7493 */
e6dcd2dc
CM
7494 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7495 if (ordered) {
2ac55d41
JB
7496 unlock_extent_cached(io_tree, page_start, page_end,
7497 &cached_state, GFP_NOFS);
e6dcd2dc 7498 unlock_page(page);
eb84ae03 7499 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
7500 btrfs_put_ordered_extent(ordered);
7501 goto again;
7502 }
7503
fbf19087
JB
7504 /*
7505 * XXX - page_mkwrite gets called every time the page is dirtied, even
7506 * if it was already dirty, so for space accounting reasons we need to
7507 * clear any delalloc bits for the range we are fixing to save. There
7508 * is probably a better way to do this, but for now keep consistent with
7509 * prepare_pages in the normal write path.
7510 */
2ac55d41 7511 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
7512 EXTENT_DIRTY | EXTENT_DELALLOC |
7513 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 7514 0, 0, &cached_state, GFP_NOFS);
fbf19087 7515
2ac55d41
JB
7516 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7517 &cached_state);
9ed74f2d 7518 if (ret) {
2ac55d41
JB
7519 unlock_extent_cached(io_tree, page_start, page_end,
7520 &cached_state, GFP_NOFS);
9ed74f2d
JB
7521 ret = VM_FAULT_SIGBUS;
7522 goto out_unlock;
7523 }
e6dcd2dc 7524 ret = 0;
9ebefb18
CM
7525
7526 /* page is wholly or partially inside EOF */
a52d9a80 7527 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 7528 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 7529 else
e6dcd2dc 7530 zero_start = PAGE_CACHE_SIZE;
9ebefb18 7531
e6dcd2dc
CM
7532 if (zero_start != PAGE_CACHE_SIZE) {
7533 kaddr = kmap(page);
7534 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7535 flush_dcache_page(page);
7536 kunmap(page);
7537 }
247e743c 7538 ClearPageChecked(page);
e6dcd2dc 7539 set_page_dirty(page);
50a9b214 7540 SetPageUptodate(page);
5a3f23d5 7541
257c62e1
CM
7542 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7543 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 7544 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 7545
2ac55d41 7546 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
7547
7548out_unlock:
b2b5ef5c
JK
7549 if (!ret) {
7550 sb_end_pagefault(inode->i_sb);
50a9b214 7551 return VM_FAULT_LOCKED;
b2b5ef5c 7552 }
9ebefb18 7553 unlock_page(page);
1832a6d5 7554out:
ec39e180 7555 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 7556out_noreserve:
b2b5ef5c 7557 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
7558 return ret;
7559}
7560
a41ad394 7561static int btrfs_truncate(struct inode *inode)
39279cc3
CM
7562{
7563 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 7564 struct btrfs_block_rsv *rsv;
a71754fc 7565 int ret = 0;
3893e33b 7566 int err = 0;
39279cc3 7567 struct btrfs_trans_handle *trans;
dbe674a9 7568 u64 mask = root->sectorsize - 1;
07127184 7569 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 7570
4a096752 7571 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 7572 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 7573
fcb80c2a
JB
7574 /*
7575 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7576 * 3 things going on here
7577 *
7578 * 1) We need to reserve space for our orphan item and the space to
7579 * delete our orphan item. Lord knows we don't want to have a dangling
7580 * orphan item because we didn't reserve space to remove it.
7581 *
7582 * 2) We need to reserve space to update our inode.
7583 *
7584 * 3) We need to have something to cache all the space that is going to
7585 * be free'd up by the truncate operation, but also have some slack
7586 * space reserved in case it uses space during the truncate (thank you
7587 * very much snapshotting).
7588 *
7589 * And we need these to all be seperate. The fact is we can use alot of
7590 * space doing the truncate, and we have no earthly idea how much space
7591 * we will use, so we need the truncate reservation to be seperate so it
7592 * doesn't end up using space reserved for updating the inode or
7593 * removing the orphan item. We also need to be able to stop the
7594 * transaction and start a new one, which means we need to be able to
7595 * update the inode several times, and we have no idea of knowing how
7596 * many times that will be, so we can't just reserve 1 item for the
7597 * entirety of the opration, so that has to be done seperately as well.
7598 * Then there is the orphan item, which does indeed need to be held on
7599 * to for the whole operation, and we need nobody to touch this reserved
7600 * space except the orphan code.
7601 *
7602 * So that leaves us with
7603 *
7604 * 1) root->orphan_block_rsv - for the orphan deletion.
7605 * 2) rsv - for the truncate reservation, which we will steal from the
7606 * transaction reservation.
7607 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7608 * updating the inode.
7609 */
66d8f3dd 7610 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
7611 if (!rsv)
7612 return -ENOMEM;
4a338542 7613 rsv->size = min_size;
ca7e70f5 7614 rsv->failfast = 1;
f0cd846e 7615
907cbceb 7616 /*
07127184 7617 * 1 for the truncate slack space
907cbceb
JB
7618 * 1 for updating the inode.
7619 */
f3fe820c 7620 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
7621 if (IS_ERR(trans)) {
7622 err = PTR_ERR(trans);
7623 goto out;
7624 }
f0cd846e 7625
907cbceb
JB
7626 /* Migrate the slack space for the truncate to our reserve */
7627 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7628 min_size);
fcb80c2a 7629 BUG_ON(ret);
f0cd846e 7630
5a3f23d5
CM
7631 /*
7632 * setattr is responsible for setting the ordered_data_close flag,
7633 * but that is only tested during the last file release. That
7634 * could happen well after the next commit, leaving a great big
7635 * window where new writes may get lost if someone chooses to write
7636 * to this file after truncating to zero
7637 *
7638 * The inode doesn't have any dirty data here, and so if we commit
7639 * this is a noop. If someone immediately starts writing to the inode
7640 * it is very likely we'll catch some of their writes in this
7641 * transaction, and the commit will find this file on the ordered
7642 * data list with good things to send down.
7643 *
7644 * This is a best effort solution, there is still a window where
7645 * using truncate to replace the contents of the file will
7646 * end up with a zero length file after a crash.
7647 */
72ac3c0d
JB
7648 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7649 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
7650 btrfs_add_ordered_operation(trans, root, inode);
7651
5dc562c5
JB
7652 /*
7653 * So if we truncate and then write and fsync we normally would just
7654 * write the extents that changed, which is a problem if we need to
7655 * first truncate that entire inode. So set this flag so we write out
7656 * all of the extents in the inode to the sync log so we're completely
7657 * safe.
7658 */
7659 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 7660 trans->block_rsv = rsv;
907cbceb 7661
8082510e
YZ
7662 while (1) {
7663 ret = btrfs_truncate_inode_items(trans, root, inode,
7664 inode->i_size,
7665 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 7666 if (ret != -ENOSPC) {
3893e33b 7667 err = ret;
8082510e 7668 break;
3893e33b 7669 }
39279cc3 7670
fcb80c2a 7671 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 7672 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
7673 if (ret) {
7674 err = ret;
7675 break;
7676 }
ca7e70f5 7677
8082510e 7678 btrfs_end_transaction(trans, root);
b53d3f5d 7679 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
7680
7681 trans = btrfs_start_transaction(root, 2);
7682 if (IS_ERR(trans)) {
7683 ret = err = PTR_ERR(trans);
7684 trans = NULL;
7685 break;
7686 }
7687
7688 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7689 rsv, min_size);
7690 BUG_ON(ret); /* shouldn't happen */
7691 trans->block_rsv = rsv;
8082510e
YZ
7692 }
7693
7694 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 7695 trans->block_rsv = root->orphan_block_rsv;
8082510e 7696 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7697 if (ret)
7698 err = ret;
8082510e
YZ
7699 }
7700
917c16b2
CM
7701 if (trans) {
7702 trans->block_rsv = &root->fs_info->trans_block_rsv;
7703 ret = btrfs_update_inode(trans, root, inode);
7704 if (ret && !err)
7705 err = ret;
7b128766 7706
7ad85bb7 7707 ret = btrfs_end_transaction(trans, root);
b53d3f5d 7708 btrfs_btree_balance_dirty(root);
917c16b2 7709 }
fcb80c2a
JB
7710
7711out:
7712 btrfs_free_block_rsv(root, rsv);
7713
3893e33b
JB
7714 if (ret && !err)
7715 err = ret;
a41ad394 7716
3893e33b 7717 return err;
39279cc3
CM
7718}
7719
d352ac68
CM
7720/*
7721 * create a new subvolume directory/inode (helper for the ioctl).
7722 */
d2fb3437 7723int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 7724 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 7725{
39279cc3 7726 struct inode *inode;
76dda93c 7727 int err;
00e4e6b3 7728 u64 index = 0;
39279cc3 7729
12fc9d09
FA
7730 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7731 new_dirid, new_dirid,
7732 S_IFDIR | (~current_umask() & S_IRWXUGO),
7733 &index);
54aa1f4d 7734 if (IS_ERR(inode))
f46b5a66 7735 return PTR_ERR(inode);
39279cc3
CM
7736 inode->i_op = &btrfs_dir_inode_operations;
7737 inode->i_fop = &btrfs_dir_file_operations;
7738
bfe86848 7739 set_nlink(inode, 1);
dbe674a9 7740 btrfs_i_size_write(inode, 0);
3b96362c 7741
76dda93c 7742 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 7743
76dda93c 7744 iput(inode);
ce598979 7745 return err;
39279cc3
CM
7746}
7747
39279cc3
CM
7748struct inode *btrfs_alloc_inode(struct super_block *sb)
7749{
7750 struct btrfs_inode *ei;
2ead6ae7 7751 struct inode *inode;
39279cc3
CM
7752
7753 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7754 if (!ei)
7755 return NULL;
2ead6ae7
YZ
7756
7757 ei->root = NULL;
2ead6ae7 7758 ei->generation = 0;
15ee9bc7 7759 ei->last_trans = 0;
257c62e1 7760 ei->last_sub_trans = 0;
e02119d5 7761 ei->logged_trans = 0;
2ead6ae7 7762 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7763 ei->disk_i_size = 0;
7764 ei->flags = 0;
7709cde3 7765 ei->csum_bytes = 0;
2ead6ae7
YZ
7766 ei->index_cnt = (u64)-1;
7767 ei->last_unlink_trans = 0;
46d8bc34 7768 ei->last_log_commit = 0;
2ead6ae7 7769
9e0baf60
JB
7770 spin_lock_init(&ei->lock);
7771 ei->outstanding_extents = 0;
7772 ei->reserved_extents = 0;
2ead6ae7 7773
72ac3c0d 7774 ei->runtime_flags = 0;
261507a0 7775 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 7776
16cdcec7
MX
7777 ei->delayed_node = NULL;
7778
2ead6ae7 7779 inode = &ei->vfs_inode;
a8067e02 7780 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
7781 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7782 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
7783 ei->io_tree.track_uptodate = 1;
7784 ei->io_failure_tree.track_uptodate = 1;
b812ce28 7785 atomic_set(&ei->sync_writers, 0);
2ead6ae7 7786 mutex_init(&ei->log_mutex);
f248679e 7787 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 7788 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 7789 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 7790 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
7791 RB_CLEAR_NODE(&ei->rb_node);
7792
7793 return inode;
39279cc3
CM
7794}
7795
fa0d7e3d
NP
7796static void btrfs_i_callback(struct rcu_head *head)
7797{
7798 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
7799 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7800}
7801
39279cc3
CM
7802void btrfs_destroy_inode(struct inode *inode)
7803{
e6dcd2dc 7804 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
7805 struct btrfs_root *root = BTRFS_I(inode)->root;
7806
b3d9b7a3 7807 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 7808 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
7809 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7810 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
7811 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7812 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 7813
a6dbd429
JB
7814 /*
7815 * This can happen where we create an inode, but somebody else also
7816 * created the same inode and we need to destroy the one we already
7817 * created.
7818 */
7819 if (!root)
7820 goto free;
7821
5a3f23d5
CM
7822 /*
7823 * Make sure we're properly removed from the ordered operation
7824 * lists.
7825 */
7826 smp_mb();
7827 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
199c2a9c 7828 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5 7829 list_del_init(&BTRFS_I(inode)->ordered_operations);
199c2a9c 7830 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5
CM
7831 }
7832
8a35d95f
JB
7833 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7834 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb
SK
7835 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
7836 (unsigned long long)btrfs_ino(inode));
8a35d95f 7837 atomic_dec(&root->orphan_inodes);
7b128766 7838 }
7b128766 7839
d397712b 7840 while (1) {
e6dcd2dc
CM
7841 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7842 if (!ordered)
7843 break;
7844 else {
c2cf52eb
SK
7845 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
7846 (unsigned long long)ordered->file_offset,
7847 (unsigned long long)ordered->len);
e6dcd2dc
CM
7848 btrfs_remove_ordered_extent(inode, ordered);
7849 btrfs_put_ordered_extent(ordered);
7850 btrfs_put_ordered_extent(ordered);
7851 }
7852 }
5d4f98a2 7853 inode_tree_del(inode);
5b21f2ed 7854 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 7855free:
fa0d7e3d 7856 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
7857}
7858
45321ac5 7859int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
7860{
7861 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 7862
6379ef9f
NA
7863 if (root == NULL)
7864 return 1;
7865
fa6ac876 7866 /* the snap/subvol tree is on deleting */
0af3d00b 7867 if (btrfs_root_refs(&root->root_item) == 0 &&
fa6ac876 7868 root != root->fs_info->tree_root)
45321ac5 7869 return 1;
76dda93c 7870 else
45321ac5 7871 return generic_drop_inode(inode);
76dda93c
YZ
7872}
7873
0ee0fda0 7874static void init_once(void *foo)
39279cc3
CM
7875{
7876 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7877
7878 inode_init_once(&ei->vfs_inode);
7879}
7880
7881void btrfs_destroy_cachep(void)
7882{
8c0a8537
KS
7883 /*
7884 * Make sure all delayed rcu free inodes are flushed before we
7885 * destroy cache.
7886 */
7887 rcu_barrier();
39279cc3
CM
7888 if (btrfs_inode_cachep)
7889 kmem_cache_destroy(btrfs_inode_cachep);
7890 if (btrfs_trans_handle_cachep)
7891 kmem_cache_destroy(btrfs_trans_handle_cachep);
7892 if (btrfs_transaction_cachep)
7893 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
7894 if (btrfs_path_cachep)
7895 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
7896 if (btrfs_free_space_cachep)
7897 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
7898 if (btrfs_delalloc_work_cachep)
7899 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
7900}
7901
7902int btrfs_init_cachep(void)
7903{
837e1972 7904 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
7905 sizeof(struct btrfs_inode), 0,
7906 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
7907 if (!btrfs_inode_cachep)
7908 goto fail;
9601e3f6 7909
837e1972 7910 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
7911 sizeof(struct btrfs_trans_handle), 0,
7912 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7913 if (!btrfs_trans_handle_cachep)
7914 goto fail;
9601e3f6 7915
837e1972 7916 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
7917 sizeof(struct btrfs_transaction), 0,
7918 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7919 if (!btrfs_transaction_cachep)
7920 goto fail;
9601e3f6 7921
837e1972 7922 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
7923 sizeof(struct btrfs_path), 0,
7924 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7925 if (!btrfs_path_cachep)
7926 goto fail;
9601e3f6 7927
837e1972 7928 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
7929 sizeof(struct btrfs_free_space), 0,
7930 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7931 if (!btrfs_free_space_cachep)
7932 goto fail;
7933
8ccf6f19
MX
7934 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7935 sizeof(struct btrfs_delalloc_work), 0,
7936 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7937 NULL);
7938 if (!btrfs_delalloc_work_cachep)
7939 goto fail;
7940
39279cc3
CM
7941 return 0;
7942fail:
7943 btrfs_destroy_cachep();
7944 return -ENOMEM;
7945}
7946
7947static int btrfs_getattr(struct vfsmount *mnt,
7948 struct dentry *dentry, struct kstat *stat)
7949{
df0af1a5 7950 u64 delalloc_bytes;
39279cc3 7951 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
7952 u32 blocksize = inode->i_sb->s_blocksize;
7953
39279cc3 7954 generic_fillattr(inode, stat);
0ee5dc67 7955 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 7956 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
7957
7958 spin_lock(&BTRFS_I(inode)->lock);
7959 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
7960 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 7961 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 7962 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
7963 return 0;
7964}
7965
d397712b
CM
7966static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7967 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
7968{
7969 struct btrfs_trans_handle *trans;
7970 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 7971 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
7972 struct inode *new_inode = new_dentry->d_inode;
7973 struct inode *old_inode = old_dentry->d_inode;
7974 struct timespec ctime = CURRENT_TIME;
00e4e6b3 7975 u64 index = 0;
4df27c4d 7976 u64 root_objectid;
39279cc3 7977 int ret;
33345d01 7978 u64 old_ino = btrfs_ino(old_inode);
39279cc3 7979
33345d01 7980 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
7981 return -EPERM;
7982
4df27c4d 7983 /* we only allow rename subvolume link between subvolumes */
33345d01 7984 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
7985 return -EXDEV;
7986
33345d01
LZ
7987 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7988 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 7989 return -ENOTEMPTY;
5f39d397 7990
4df27c4d
YZ
7991 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7992 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7993 return -ENOTEMPTY;
9c52057c
CM
7994
7995
7996 /* check for collisions, even if the name isn't there */
7997 ret = btrfs_check_dir_item_collision(root, new_dir->i_ino,
7998 new_dentry->d_name.name,
7999 new_dentry->d_name.len);
8000
8001 if (ret) {
8002 if (ret == -EEXIST) {
8003 /* we shouldn't get
8004 * eexist without a new_inode */
8005 if (!new_inode) {
8006 WARN_ON(1);
8007 return ret;
8008 }
8009 } else {
8010 /* maybe -EOVERFLOW */
8011 return ret;
8012 }
8013 }
8014 ret = 0;
8015
5a3f23d5
CM
8016 /*
8017 * we're using rename to replace one file with another.
8018 * and the replacement file is large. Start IO on it now so
8019 * we don't add too much work to the end of the transaction
8020 */
4baf8c92 8021 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
8022 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8023 filemap_flush(old_inode->i_mapping);
8024
76dda93c 8025 /* close the racy window with snapshot create/destroy ioctl */
33345d01 8026 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8027 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
8028 /*
8029 * We want to reserve the absolute worst case amount of items. So if
8030 * both inodes are subvols and we need to unlink them then that would
8031 * require 4 item modifications, but if they are both normal inodes it
8032 * would require 5 item modifications, so we'll assume their normal
8033 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8034 * should cover the worst case number of items we'll modify.
8035 */
6e137ed3 8036 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
8037 if (IS_ERR(trans)) {
8038 ret = PTR_ERR(trans);
8039 goto out_notrans;
8040 }
76dda93c 8041
4df27c4d
YZ
8042 if (dest != root)
8043 btrfs_record_root_in_trans(trans, dest);
5f39d397 8044
a5719521
YZ
8045 ret = btrfs_set_inode_index(new_dir, &index);
8046 if (ret)
8047 goto out_fail;
5a3f23d5 8048
33345d01 8049 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8050 /* force full log commit if subvolume involved. */
8051 root->fs_info->last_trans_log_full_commit = trans->transid;
8052 } else {
a5719521
YZ
8053 ret = btrfs_insert_inode_ref(trans, dest,
8054 new_dentry->d_name.name,
8055 new_dentry->d_name.len,
33345d01
LZ
8056 old_ino,
8057 btrfs_ino(new_dir), index);
a5719521
YZ
8058 if (ret)
8059 goto out_fail;
4df27c4d
YZ
8060 /*
8061 * this is an ugly little race, but the rename is required
8062 * to make sure that if we crash, the inode is either at the
8063 * old name or the new one. pinning the log transaction lets
8064 * us make sure we don't allow a log commit to come in after
8065 * we unlink the name but before we add the new name back in.
8066 */
8067 btrfs_pin_log_trans(root);
8068 }
5a3f23d5
CM
8069 /*
8070 * make sure the inode gets flushed if it is replacing
8071 * something.
8072 */
33345d01 8073 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 8074 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 8075
0c4d2d95
JB
8076 inode_inc_iversion(old_dir);
8077 inode_inc_iversion(new_dir);
8078 inode_inc_iversion(old_inode);
39279cc3
CM
8079 old_dir->i_ctime = old_dir->i_mtime = ctime;
8080 new_dir->i_ctime = new_dir->i_mtime = ctime;
8081 old_inode->i_ctime = ctime;
5f39d397 8082
12fcfd22
CM
8083 if (old_dentry->d_parent != new_dentry->d_parent)
8084 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8085
33345d01 8086 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8087 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8088 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8089 old_dentry->d_name.name,
8090 old_dentry->d_name.len);
8091 } else {
92986796
AV
8092 ret = __btrfs_unlink_inode(trans, root, old_dir,
8093 old_dentry->d_inode,
8094 old_dentry->d_name.name,
8095 old_dentry->d_name.len);
8096 if (!ret)
8097 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 8098 }
79787eaa
JM
8099 if (ret) {
8100 btrfs_abort_transaction(trans, root, ret);
8101 goto out_fail;
8102 }
39279cc3
CM
8103
8104 if (new_inode) {
0c4d2d95 8105 inode_inc_iversion(new_inode);
39279cc3 8106 new_inode->i_ctime = CURRENT_TIME;
33345d01 8107 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
8108 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8109 root_objectid = BTRFS_I(new_inode)->location.objectid;
8110 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8111 root_objectid,
8112 new_dentry->d_name.name,
8113 new_dentry->d_name.len);
8114 BUG_ON(new_inode->i_nlink == 0);
8115 } else {
8116 ret = btrfs_unlink_inode(trans, dest, new_dir,
8117 new_dentry->d_inode,
8118 new_dentry->d_name.name,
8119 new_dentry->d_name.len);
8120 }
79787eaa 8121 if (!ret && new_inode->i_nlink == 0) {
e02119d5 8122 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 8123 BUG_ON(ret);
7b128766 8124 }
79787eaa
JM
8125 if (ret) {
8126 btrfs_abort_transaction(trans, root, ret);
8127 goto out_fail;
8128 }
39279cc3 8129 }
aec7477b 8130
4df27c4d
YZ
8131 ret = btrfs_add_link(trans, new_dir, old_inode,
8132 new_dentry->d_name.name,
a5719521 8133 new_dentry->d_name.len, 0, index);
79787eaa
JM
8134 if (ret) {
8135 btrfs_abort_transaction(trans, root, ret);
8136 goto out_fail;
8137 }
39279cc3 8138
33345d01 8139 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 8140 struct dentry *parent = new_dentry->d_parent;
6a912213 8141 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
8142 btrfs_end_log_trans(root);
8143 }
39279cc3 8144out_fail:
7ad85bb7 8145 btrfs_end_transaction(trans, root);
b44c59a8 8146out_notrans:
33345d01 8147 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8148 up_read(&root->fs_info->subvol_sem);
9ed74f2d 8149
39279cc3
CM
8150 return ret;
8151}
8152
8ccf6f19
MX
8153static void btrfs_run_delalloc_work(struct btrfs_work *work)
8154{
8155 struct btrfs_delalloc_work *delalloc_work;
8156
8157 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8158 work);
8159 if (delalloc_work->wait)
8160 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
8161 else
8162 filemap_flush(delalloc_work->inode->i_mapping);
8163
8164 if (delalloc_work->delay_iput)
8165 btrfs_add_delayed_iput(delalloc_work->inode);
8166 else
8167 iput(delalloc_work->inode);
8168 complete(&delalloc_work->completion);
8169}
8170
8171struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8172 int wait, int delay_iput)
8173{
8174 struct btrfs_delalloc_work *work;
8175
8176 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8177 if (!work)
8178 return NULL;
8179
8180 init_completion(&work->completion);
8181 INIT_LIST_HEAD(&work->list);
8182 work->inode = inode;
8183 work->wait = wait;
8184 work->delay_iput = delay_iput;
8185 work->work.func = btrfs_run_delalloc_work;
8186
8187 return work;
8188}
8189
8190void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8191{
8192 wait_for_completion(&work->completion);
8193 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8194}
8195
d352ac68
CM
8196/*
8197 * some fairly slow code that needs optimization. This walks the list
8198 * of all the inodes with pending delalloc and forces them to disk.
8199 */
eb73c1b7 8200static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819 8201{
ea8c2819 8202 struct btrfs_inode *binode;
5b21f2ed 8203 struct inode *inode;
8ccf6f19
MX
8204 struct btrfs_delalloc_work *work, *next;
8205 struct list_head works;
1eafa6c7 8206 struct list_head splice;
8ccf6f19 8207 int ret = 0;
ea8c2819 8208
8ccf6f19 8209 INIT_LIST_HEAD(&works);
1eafa6c7 8210 INIT_LIST_HEAD(&splice);
63607cc8 8211
eb73c1b7
MX
8212 spin_lock(&root->delalloc_lock);
8213 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
8214 while (!list_empty(&splice)) {
8215 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 8216 delalloc_inodes);
1eafa6c7 8217
eb73c1b7
MX
8218 list_move_tail(&binode->delalloc_inodes,
8219 &root->delalloc_inodes);
5b21f2ed 8220 inode = igrab(&binode->vfs_inode);
df0af1a5 8221 if (!inode) {
eb73c1b7 8222 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 8223 continue;
df0af1a5 8224 }
eb73c1b7 8225 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
8226
8227 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8228 if (unlikely(!work)) {
8229 ret = -ENOMEM;
8230 goto out;
5b21f2ed 8231 }
1eafa6c7
MX
8232 list_add_tail(&work->list, &works);
8233 btrfs_queue_worker(&root->fs_info->flush_workers,
8234 &work->work);
8235
5b21f2ed 8236 cond_resched();
eb73c1b7 8237 spin_lock(&root->delalloc_lock);
ea8c2819 8238 }
eb73c1b7 8239 spin_unlock(&root->delalloc_lock);
8c8bee1d 8240
1eafa6c7
MX
8241 list_for_each_entry_safe(work, next, &works, list) {
8242 list_del_init(&work->list);
8243 btrfs_wait_and_free_delalloc_work(work);
8244 }
eb73c1b7
MX
8245 return 0;
8246out:
8247 list_for_each_entry_safe(work, next, &works, list) {
8248 list_del_init(&work->list);
8249 btrfs_wait_and_free_delalloc_work(work);
8250 }
8251
8252 if (!list_empty_careful(&splice)) {
8253 spin_lock(&root->delalloc_lock);
8254 list_splice_tail(&splice, &root->delalloc_inodes);
8255 spin_unlock(&root->delalloc_lock);
8256 }
8257 return ret;
8258}
1eafa6c7 8259
eb73c1b7
MX
8260int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8261{
8262 int ret;
1eafa6c7 8263
eb73c1b7
MX
8264 if (root->fs_info->sb->s_flags & MS_RDONLY)
8265 return -EROFS;
8266
8267 ret = __start_delalloc_inodes(root, delay_iput);
8268 /*
8269 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
8270 * we have to make sure the IO is actually started and that
8271 * ordered extents get created before we return
8272 */
8273 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 8274 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 8275 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 8276 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
8277 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8278 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
8279 }
8280 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
8281 return ret;
8282}
8283
8284int btrfs_start_all_delalloc_inodes(struct btrfs_fs_info *fs_info,
8285 int delay_iput)
8286{
8287 struct btrfs_root *root;
8288 struct list_head splice;
8289 int ret;
8290
8291 if (fs_info->sb->s_flags & MS_RDONLY)
8292 return -EROFS;
8293
8294 INIT_LIST_HEAD(&splice);
8295
8296 spin_lock(&fs_info->delalloc_root_lock);
8297 list_splice_init(&fs_info->delalloc_roots, &splice);
8298 while (!list_empty(&splice)) {
8299 root = list_first_entry(&splice, struct btrfs_root,
8300 delalloc_root);
8301 root = btrfs_grab_fs_root(root);
8302 BUG_ON(!root);
8303 list_move_tail(&root->delalloc_root,
8304 &fs_info->delalloc_roots);
8305 spin_unlock(&fs_info->delalloc_root_lock);
8306
8307 ret = __start_delalloc_inodes(root, delay_iput);
8308 btrfs_put_fs_root(root);
8309 if (ret)
8310 goto out;
8311
8312 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 8313 }
eb73c1b7 8314 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8315
eb73c1b7
MX
8316 atomic_inc(&fs_info->async_submit_draining);
8317 while (atomic_read(&fs_info->nr_async_submits) ||
8318 atomic_read(&fs_info->async_delalloc_pages)) {
8319 wait_event(fs_info->async_submit_wait,
8320 (atomic_read(&fs_info->nr_async_submits) == 0 &&
8321 atomic_read(&fs_info->async_delalloc_pages) == 0));
8322 }
8323 atomic_dec(&fs_info->async_submit_draining);
8324 return 0;
8325out:
1eafa6c7 8326 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
8327 spin_lock(&fs_info->delalloc_root_lock);
8328 list_splice_tail(&splice, &fs_info->delalloc_roots);
8329 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8330 }
8ccf6f19 8331 return ret;
ea8c2819
CM
8332}
8333
39279cc3
CM
8334static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8335 const char *symname)
8336{
8337 struct btrfs_trans_handle *trans;
8338 struct btrfs_root *root = BTRFS_I(dir)->root;
8339 struct btrfs_path *path;
8340 struct btrfs_key key;
1832a6d5 8341 struct inode *inode = NULL;
39279cc3
CM
8342 int err;
8343 int drop_inode = 0;
8344 u64 objectid;
00e4e6b3 8345 u64 index = 0 ;
39279cc3
CM
8346 int name_len;
8347 int datasize;
5f39d397 8348 unsigned long ptr;
39279cc3 8349 struct btrfs_file_extent_item *ei;
5f39d397 8350 struct extent_buffer *leaf;
39279cc3
CM
8351
8352 name_len = strlen(symname) + 1;
8353 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8354 return -ENAMETOOLONG;
1832a6d5 8355
9ed74f2d
JB
8356 /*
8357 * 2 items for inode item and ref
8358 * 2 items for dir items
8359 * 1 item for xattr if selinux is on
8360 */
a22285a6
YZ
8361 trans = btrfs_start_transaction(root, 5);
8362 if (IS_ERR(trans))
8363 return PTR_ERR(trans);
1832a6d5 8364
581bb050
LZ
8365 err = btrfs_find_free_ino(root, &objectid);
8366 if (err)
8367 goto out_unlock;
8368
aec7477b 8369 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 8370 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 8371 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
8372 if (IS_ERR(inode)) {
8373 err = PTR_ERR(inode);
39279cc3 8374 goto out_unlock;
7cf96da3 8375 }
39279cc3 8376
2a7dba39 8377 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
8378 if (err) {
8379 drop_inode = 1;
8380 goto out_unlock;
8381 }
8382
ad19db71
CS
8383 /*
8384 * If the active LSM wants to access the inode during
8385 * d_instantiate it needs these. Smack checks to see
8386 * if the filesystem supports xattrs by looking at the
8387 * ops vector.
8388 */
8389 inode->i_fop = &btrfs_file_operations;
8390 inode->i_op = &btrfs_file_inode_operations;
8391
a1b075d2 8392 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
8393 if (err)
8394 drop_inode = 1;
8395 else {
8396 inode->i_mapping->a_ops = &btrfs_aops;
04160088 8397 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 8398 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 8399 }
39279cc3
CM
8400 if (drop_inode)
8401 goto out_unlock;
8402
8403 path = btrfs_alloc_path();
d8926bb3
MF
8404 if (!path) {
8405 err = -ENOMEM;
8406 drop_inode = 1;
8407 goto out_unlock;
8408 }
33345d01 8409 key.objectid = btrfs_ino(inode);
39279cc3 8410 key.offset = 0;
39279cc3
CM
8411 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8412 datasize = btrfs_file_extent_calc_inline_size(name_len);
8413 err = btrfs_insert_empty_item(trans, root, path, &key,
8414 datasize);
54aa1f4d
CM
8415 if (err) {
8416 drop_inode = 1;
b0839166 8417 btrfs_free_path(path);
54aa1f4d
CM
8418 goto out_unlock;
8419 }
5f39d397
CM
8420 leaf = path->nodes[0];
8421 ei = btrfs_item_ptr(leaf, path->slots[0],
8422 struct btrfs_file_extent_item);
8423 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8424 btrfs_set_file_extent_type(leaf, ei,
39279cc3 8425 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
8426 btrfs_set_file_extent_encryption(leaf, ei, 0);
8427 btrfs_set_file_extent_compression(leaf, ei, 0);
8428 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8429 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8430
39279cc3 8431 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
8432 write_extent_buffer(leaf, symname, ptr, name_len);
8433 btrfs_mark_buffer_dirty(leaf);
39279cc3 8434 btrfs_free_path(path);
5f39d397 8435
39279cc3
CM
8436 inode->i_op = &btrfs_symlink_inode_operations;
8437 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 8438 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 8439 inode_set_bytes(inode, name_len);
dbe674a9 8440 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
8441 err = btrfs_update_inode(trans, root, inode);
8442 if (err)
8443 drop_inode = 1;
39279cc3
CM
8444
8445out_unlock:
08c422c2
AV
8446 if (!err)
8447 d_instantiate(dentry, inode);
7ad85bb7 8448 btrfs_end_transaction(trans, root);
39279cc3
CM
8449 if (drop_inode) {
8450 inode_dec_link_count(inode);
8451 iput(inode);
8452 }
b53d3f5d 8453 btrfs_btree_balance_dirty(root);
39279cc3
CM
8454 return err;
8455}
16432985 8456
0af3d00b
JB
8457static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8458 u64 start, u64 num_bytes, u64 min_size,
8459 loff_t actual_len, u64 *alloc_hint,
8460 struct btrfs_trans_handle *trans)
d899e052 8461{
5dc562c5
JB
8462 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8463 struct extent_map *em;
d899e052
YZ
8464 struct btrfs_root *root = BTRFS_I(inode)->root;
8465 struct btrfs_key ins;
d899e052 8466 u64 cur_offset = start;
55a61d1d 8467 u64 i_size;
154ea289 8468 u64 cur_bytes;
d899e052 8469 int ret = 0;
0af3d00b 8470 bool own_trans = true;
d899e052 8471
0af3d00b
JB
8472 if (trans)
8473 own_trans = false;
d899e052 8474 while (num_bytes > 0) {
0af3d00b
JB
8475 if (own_trans) {
8476 trans = btrfs_start_transaction(root, 3);
8477 if (IS_ERR(trans)) {
8478 ret = PTR_ERR(trans);
8479 break;
8480 }
5a303d5d
YZ
8481 }
8482
154ea289
CM
8483 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8484 cur_bytes = max(cur_bytes, min_size);
8485 ret = btrfs_reserve_extent(trans, root, cur_bytes,
24542bf7 8486 min_size, 0, *alloc_hint, &ins, 1);
5a303d5d 8487 if (ret) {
0af3d00b
JB
8488 if (own_trans)
8489 btrfs_end_transaction(trans, root);
a22285a6 8490 break;
d899e052 8491 }
5a303d5d 8492
d899e052
YZ
8493 ret = insert_reserved_file_extent(trans, inode,
8494 cur_offset, ins.objectid,
8495 ins.offset, ins.offset,
920bbbfb 8496 ins.offset, 0, 0, 0,
d899e052 8497 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa
JM
8498 if (ret) {
8499 btrfs_abort_transaction(trans, root, ret);
8500 if (own_trans)
8501 btrfs_end_transaction(trans, root);
8502 break;
8503 }
a1ed835e
CM
8504 btrfs_drop_extent_cache(inode, cur_offset,
8505 cur_offset + ins.offset -1, 0);
5a303d5d 8506
5dc562c5
JB
8507 em = alloc_extent_map();
8508 if (!em) {
8509 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8510 &BTRFS_I(inode)->runtime_flags);
8511 goto next;
8512 }
8513
8514 em->start = cur_offset;
8515 em->orig_start = cur_offset;
8516 em->len = ins.offset;
8517 em->block_start = ins.objectid;
8518 em->block_len = ins.offset;
b4939680 8519 em->orig_block_len = ins.offset;
cc95bef6 8520 em->ram_bytes = ins.offset;
5dc562c5
JB
8521 em->bdev = root->fs_info->fs_devices->latest_bdev;
8522 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8523 em->generation = trans->transid;
8524
8525 while (1) {
8526 write_lock(&em_tree->lock);
09a2a8f9 8527 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
8528 write_unlock(&em_tree->lock);
8529 if (ret != -EEXIST)
8530 break;
8531 btrfs_drop_extent_cache(inode, cur_offset,
8532 cur_offset + ins.offset - 1,
8533 0);
8534 }
8535 free_extent_map(em);
8536next:
d899e052
YZ
8537 num_bytes -= ins.offset;
8538 cur_offset += ins.offset;
efa56464 8539 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 8540
0c4d2d95 8541 inode_inc_iversion(inode);
d899e052 8542 inode->i_ctime = CURRENT_TIME;
6cbff00f 8543 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 8544 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
8545 (actual_len > inode->i_size) &&
8546 (cur_offset > inode->i_size)) {
d1ea6a61 8547 if (cur_offset > actual_len)
55a61d1d 8548 i_size = actual_len;
d1ea6a61 8549 else
55a61d1d
JB
8550 i_size = cur_offset;
8551 i_size_write(inode, i_size);
8552 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
8553 }
8554
d899e052 8555 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
8556
8557 if (ret) {
8558 btrfs_abort_transaction(trans, root, ret);
8559 if (own_trans)
8560 btrfs_end_transaction(trans, root);
8561 break;
8562 }
d899e052 8563
0af3d00b
JB
8564 if (own_trans)
8565 btrfs_end_transaction(trans, root);
5a303d5d 8566 }
d899e052
YZ
8567 return ret;
8568}
8569
0af3d00b
JB
8570int btrfs_prealloc_file_range(struct inode *inode, int mode,
8571 u64 start, u64 num_bytes, u64 min_size,
8572 loff_t actual_len, u64 *alloc_hint)
8573{
8574 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8575 min_size, actual_len, alloc_hint,
8576 NULL);
8577}
8578
8579int btrfs_prealloc_file_range_trans(struct inode *inode,
8580 struct btrfs_trans_handle *trans, int mode,
8581 u64 start, u64 num_bytes, u64 min_size,
8582 loff_t actual_len, u64 *alloc_hint)
8583{
8584 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8585 min_size, actual_len, alloc_hint, trans);
8586}
8587
e6dcd2dc
CM
8588static int btrfs_set_page_dirty(struct page *page)
8589{
e6dcd2dc
CM
8590 return __set_page_dirty_nobuffers(page);
8591}
8592
10556cb2 8593static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 8594{
b83cc969 8595 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 8596 umode_t mode = inode->i_mode;
b83cc969 8597
cb6db4e5
JM
8598 if (mask & MAY_WRITE &&
8599 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8600 if (btrfs_root_readonly(root))
8601 return -EROFS;
8602 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8603 return -EACCES;
8604 }
2830ba7f 8605 return generic_permission(inode, mask);
fdebe2bd 8606}
39279cc3 8607
6e1d5dcc 8608static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 8609 .getattr = btrfs_getattr,
39279cc3
CM
8610 .lookup = btrfs_lookup,
8611 .create = btrfs_create,
8612 .unlink = btrfs_unlink,
8613 .link = btrfs_link,
8614 .mkdir = btrfs_mkdir,
8615 .rmdir = btrfs_rmdir,
8616 .rename = btrfs_rename,
8617 .symlink = btrfs_symlink,
8618 .setattr = btrfs_setattr,
618e21d5 8619 .mknod = btrfs_mknod,
95819c05
CH
8620 .setxattr = btrfs_setxattr,
8621 .getxattr = btrfs_getxattr,
5103e947 8622 .listxattr = btrfs_listxattr,
95819c05 8623 .removexattr = btrfs_removexattr,
fdebe2bd 8624 .permission = btrfs_permission,
4e34e719 8625 .get_acl = btrfs_get_acl,
39279cc3 8626};
6e1d5dcc 8627static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 8628 .lookup = btrfs_lookup,
fdebe2bd 8629 .permission = btrfs_permission,
4e34e719 8630 .get_acl = btrfs_get_acl,
39279cc3 8631};
76dda93c 8632
828c0950 8633static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
8634 .llseek = generic_file_llseek,
8635 .read = generic_read_dir,
9cdda8d3 8636 .iterate = btrfs_real_readdir,
34287aa3 8637 .unlocked_ioctl = btrfs_ioctl,
39279cc3 8638#ifdef CONFIG_COMPAT
34287aa3 8639 .compat_ioctl = btrfs_ioctl,
39279cc3 8640#endif
6bf13c0c 8641 .release = btrfs_release_file,
e02119d5 8642 .fsync = btrfs_sync_file,
39279cc3
CM
8643};
8644
d1310b2e 8645static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 8646 .fill_delalloc = run_delalloc_range,
065631f6 8647 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 8648 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 8649 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 8650 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 8651 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
8652 .set_bit_hook = btrfs_set_bit_hook,
8653 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
8654 .merge_extent_hook = btrfs_merge_extent_hook,
8655 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
8656};
8657
35054394
CM
8658/*
8659 * btrfs doesn't support the bmap operation because swapfiles
8660 * use bmap to make a mapping of extents in the file. They assume
8661 * these extents won't change over the life of the file and they
8662 * use the bmap result to do IO directly to the drive.
8663 *
8664 * the btrfs bmap call would return logical addresses that aren't
8665 * suitable for IO and they also will change frequently as COW
8666 * operations happen. So, swapfile + btrfs == corruption.
8667 *
8668 * For now we're avoiding this by dropping bmap.
8669 */
7f09410b 8670static const struct address_space_operations btrfs_aops = {
39279cc3
CM
8671 .readpage = btrfs_readpage,
8672 .writepage = btrfs_writepage,
b293f02e 8673 .writepages = btrfs_writepages,
3ab2fb5a 8674 .readpages = btrfs_readpages,
16432985 8675 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
8676 .invalidatepage = btrfs_invalidatepage,
8677 .releasepage = btrfs_releasepage,
e6dcd2dc 8678 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 8679 .error_remove_page = generic_error_remove_page,
39279cc3
CM
8680};
8681
7f09410b 8682static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
8683 .readpage = btrfs_readpage,
8684 .writepage = btrfs_writepage,
2bf5a725
CM
8685 .invalidatepage = btrfs_invalidatepage,
8686 .releasepage = btrfs_releasepage,
39279cc3
CM
8687};
8688
6e1d5dcc 8689static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
8690 .getattr = btrfs_getattr,
8691 .setattr = btrfs_setattr,
95819c05
CH
8692 .setxattr = btrfs_setxattr,
8693 .getxattr = btrfs_getxattr,
5103e947 8694 .listxattr = btrfs_listxattr,
95819c05 8695 .removexattr = btrfs_removexattr,
fdebe2bd 8696 .permission = btrfs_permission,
1506fcc8 8697 .fiemap = btrfs_fiemap,
4e34e719 8698 .get_acl = btrfs_get_acl,
e41f941a 8699 .update_time = btrfs_update_time,
39279cc3 8700};
6e1d5dcc 8701static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
8702 .getattr = btrfs_getattr,
8703 .setattr = btrfs_setattr,
fdebe2bd 8704 .permission = btrfs_permission,
95819c05
CH
8705 .setxattr = btrfs_setxattr,
8706 .getxattr = btrfs_getxattr,
33268eaf 8707 .listxattr = btrfs_listxattr,
95819c05 8708 .removexattr = btrfs_removexattr,
4e34e719 8709 .get_acl = btrfs_get_acl,
e41f941a 8710 .update_time = btrfs_update_time,
618e21d5 8711};
6e1d5dcc 8712static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
8713 .readlink = generic_readlink,
8714 .follow_link = page_follow_link_light,
8715 .put_link = page_put_link,
f209561a 8716 .getattr = btrfs_getattr,
22c44fe6 8717 .setattr = btrfs_setattr,
fdebe2bd 8718 .permission = btrfs_permission,
0279b4cd
JO
8719 .setxattr = btrfs_setxattr,
8720 .getxattr = btrfs_getxattr,
8721 .listxattr = btrfs_listxattr,
8722 .removexattr = btrfs_removexattr,
4e34e719 8723 .get_acl = btrfs_get_acl,
e41f941a 8724 .update_time = btrfs_update_time,
39279cc3 8725};
76dda93c 8726
82d339d9 8727const struct dentry_operations btrfs_dentry_operations = {
76dda93c 8728 .d_delete = btrfs_dentry_delete,
b4aff1f8 8729 .d_release = btrfs_dentry_release,
76dda93c 8730};