]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/inode.c
btrfs: implement delayed inode items operation
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
4b4e25f2 40#include "compat.h"
39279cc3
CM
41#include "ctree.h"
42#include "disk-io.h"
43#include "transaction.h"
44#include "btrfs_inode.h"
45#include "ioctl.h"
46#include "print-tree.h"
0b86a832 47#include "volumes.h"
e6dcd2dc 48#include "ordered-data.h"
95819c05 49#include "xattr.h"
e02119d5 50#include "tree-log.h"
c8b97818 51#include "compression.h"
b4ce94de 52#include "locking.h"
dc89e982 53#include "free-space-cache.h"
39279cc3
CM
54
55struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
58};
59
6e1d5dcc
AD
60static const struct inode_operations btrfs_dir_inode_operations;
61static const struct inode_operations btrfs_symlink_inode_operations;
62static const struct inode_operations btrfs_dir_ro_inode_operations;
63static const struct inode_operations btrfs_special_inode_operations;
64static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
65static const struct address_space_operations btrfs_aops;
66static const struct address_space_operations btrfs_symlink_aops;
828c0950 67static const struct file_operations btrfs_dir_file_operations;
d1310b2e 68static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
69
70static struct kmem_cache *btrfs_inode_cachep;
71struct kmem_cache *btrfs_trans_handle_cachep;
72struct kmem_cache *btrfs_transaction_cachep;
39279cc3 73struct kmem_cache *btrfs_path_cachep;
dc89e982 74struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
75
76#define S_SHIFT 12
77static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85};
86
a41ad394
JB
87static int btrfs_setsize(struct inode *inode, loff_t newsize);
88static int btrfs_truncate(struct inode *inode);
c8b97818 89static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
90static noinline int cow_file_range(struct inode *inode,
91 struct page *locked_page,
92 u64 start, u64 end, int *page_started,
93 unsigned long *nr_written, int unlock);
7b128766 94
f34f57a3 95static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
96 struct inode *inode, struct inode *dir,
97 const struct qstr *qstr)
0279b4cd
JO
98{
99 int err;
100
f34f57a3 101 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 102 if (!err)
2a7dba39 103 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
104 return err;
105}
106
c8b97818
CM
107/*
108 * this does all the hard work for inserting an inline extent into
109 * the btree. The caller should have done a btrfs_drop_extents so that
110 * no overlapping inline items exist in the btree
111 */
d397712b 112static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
113 struct btrfs_root *root, struct inode *inode,
114 u64 start, size_t size, size_t compressed_size,
fe3f566c 115 int compress_type,
c8b97818
CM
116 struct page **compressed_pages)
117{
118 struct btrfs_key key;
119 struct btrfs_path *path;
120 struct extent_buffer *leaf;
121 struct page *page = NULL;
122 char *kaddr;
123 unsigned long ptr;
124 struct btrfs_file_extent_item *ei;
125 int err = 0;
126 int ret;
127 size_t cur_size = size;
128 size_t datasize;
129 unsigned long offset;
c8b97818 130
fe3f566c 131 if (compressed_size && compressed_pages)
c8b97818 132 cur_size = compressed_size;
c8b97818 133
d397712b
CM
134 path = btrfs_alloc_path();
135 if (!path)
c8b97818
CM
136 return -ENOMEM;
137
b9473439 138 path->leave_spinning = 1;
c8b97818
CM
139 btrfs_set_trans_block_group(trans, inode);
140
141 key.objectid = inode->i_ino;
142 key.offset = start;
143 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
144 datasize = btrfs_file_extent_calc_inline_size(cur_size);
145
146 inode_add_bytes(inode, size);
147 ret = btrfs_insert_empty_item(trans, root, path, &key,
148 datasize);
149 BUG_ON(ret);
150 if (ret) {
151 err = ret;
c8b97818
CM
152 goto fail;
153 }
154 leaf = path->nodes[0];
155 ei = btrfs_item_ptr(leaf, path->slots[0],
156 struct btrfs_file_extent_item);
157 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
158 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
159 btrfs_set_file_extent_encryption(leaf, ei, 0);
160 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
161 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
162 ptr = btrfs_file_extent_inline_start(ei);
163
261507a0 164 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
165 struct page *cpage;
166 int i = 0;
d397712b 167 while (compressed_size > 0) {
c8b97818 168 cpage = compressed_pages[i];
5b050f04 169 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
170 PAGE_CACHE_SIZE);
171
b9473439 172 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 173 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 174 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
175
176 i++;
177 ptr += cur_size;
178 compressed_size -= cur_size;
179 }
180 btrfs_set_file_extent_compression(leaf, ei,
261507a0 181 compress_type);
c8b97818
CM
182 } else {
183 page = find_get_page(inode->i_mapping,
184 start >> PAGE_CACHE_SHIFT);
185 btrfs_set_file_extent_compression(leaf, ei, 0);
186 kaddr = kmap_atomic(page, KM_USER0);
187 offset = start & (PAGE_CACHE_SIZE - 1);
188 write_extent_buffer(leaf, kaddr + offset, ptr, size);
189 kunmap_atomic(kaddr, KM_USER0);
190 page_cache_release(page);
191 }
192 btrfs_mark_buffer_dirty(leaf);
193 btrfs_free_path(path);
194
c2167754
YZ
195 /*
196 * we're an inline extent, so nobody can
197 * extend the file past i_size without locking
198 * a page we already have locked.
199 *
200 * We must do any isize and inode updates
201 * before we unlock the pages. Otherwise we
202 * could end up racing with unlink.
203 */
c8b97818
CM
204 BTRFS_I(inode)->disk_i_size = inode->i_size;
205 btrfs_update_inode(trans, root, inode);
c2167754 206
c8b97818
CM
207 return 0;
208fail:
209 btrfs_free_path(path);
210 return err;
211}
212
213
214/*
215 * conditionally insert an inline extent into the file. This
216 * does the checks required to make sure the data is small enough
217 * to fit as an inline extent.
218 */
7f366cfe 219static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
220 struct btrfs_root *root,
221 struct inode *inode, u64 start, u64 end,
fe3f566c 222 size_t compressed_size, int compress_type,
c8b97818
CM
223 struct page **compressed_pages)
224{
225 u64 isize = i_size_read(inode);
226 u64 actual_end = min(end + 1, isize);
227 u64 inline_len = actual_end - start;
228 u64 aligned_end = (end + root->sectorsize - 1) &
229 ~((u64)root->sectorsize - 1);
230 u64 hint_byte;
231 u64 data_len = inline_len;
232 int ret;
233
234 if (compressed_size)
235 data_len = compressed_size;
236
237 if (start > 0 ||
70b99e69 238 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
239 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
240 (!compressed_size &&
241 (actual_end & (root->sectorsize - 1)) == 0) ||
242 end + 1 < isize ||
243 data_len > root->fs_info->max_inline) {
244 return 1;
245 }
246
920bbbfb 247 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 248 &hint_byte, 1);
c8b97818
CM
249 BUG_ON(ret);
250
251 if (isize > actual_end)
252 inline_len = min_t(u64, isize, actual_end);
253 ret = insert_inline_extent(trans, root, inode, start,
254 inline_len, compressed_size,
fe3f566c 255 compress_type, compressed_pages);
c8b97818 256 BUG_ON(ret);
0ca1f7ce 257 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 258 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
259 return 0;
260}
261
771ed689
CM
262struct async_extent {
263 u64 start;
264 u64 ram_size;
265 u64 compressed_size;
266 struct page **pages;
267 unsigned long nr_pages;
261507a0 268 int compress_type;
771ed689
CM
269 struct list_head list;
270};
271
272struct async_cow {
273 struct inode *inode;
274 struct btrfs_root *root;
275 struct page *locked_page;
276 u64 start;
277 u64 end;
278 struct list_head extents;
279 struct btrfs_work work;
280};
281
282static noinline int add_async_extent(struct async_cow *cow,
283 u64 start, u64 ram_size,
284 u64 compressed_size,
285 struct page **pages,
261507a0
LZ
286 unsigned long nr_pages,
287 int compress_type)
771ed689
CM
288{
289 struct async_extent *async_extent;
290
291 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
dac97e51 292 BUG_ON(!async_extent);
771ed689
CM
293 async_extent->start = start;
294 async_extent->ram_size = ram_size;
295 async_extent->compressed_size = compressed_size;
296 async_extent->pages = pages;
297 async_extent->nr_pages = nr_pages;
261507a0 298 async_extent->compress_type = compress_type;
771ed689
CM
299 list_add_tail(&async_extent->list, &cow->extents);
300 return 0;
301}
302
d352ac68 303/*
771ed689
CM
304 * we create compressed extents in two phases. The first
305 * phase compresses a range of pages that have already been
306 * locked (both pages and state bits are locked).
c8b97818 307 *
771ed689
CM
308 * This is done inside an ordered work queue, and the compression
309 * is spread across many cpus. The actual IO submission is step
310 * two, and the ordered work queue takes care of making sure that
311 * happens in the same order things were put onto the queue by
312 * writepages and friends.
c8b97818 313 *
771ed689
CM
314 * If this code finds it can't get good compression, it puts an
315 * entry onto the work queue to write the uncompressed bytes. This
316 * makes sure that both compressed inodes and uncompressed inodes
317 * are written in the same order that pdflush sent them down.
d352ac68 318 */
771ed689
CM
319static noinline int compress_file_range(struct inode *inode,
320 struct page *locked_page,
321 u64 start, u64 end,
322 struct async_cow *async_cow,
323 int *num_added)
b888db2b
CM
324{
325 struct btrfs_root *root = BTRFS_I(inode)->root;
326 struct btrfs_trans_handle *trans;
db94535d 327 u64 num_bytes;
db94535d 328 u64 blocksize = root->sectorsize;
c8b97818 329 u64 actual_end;
42dc7bab 330 u64 isize = i_size_read(inode);
e6dcd2dc 331 int ret = 0;
c8b97818
CM
332 struct page **pages = NULL;
333 unsigned long nr_pages;
334 unsigned long nr_pages_ret = 0;
335 unsigned long total_compressed = 0;
336 unsigned long total_in = 0;
337 unsigned long max_compressed = 128 * 1024;
771ed689 338 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
339 int i;
340 int will_compress;
261507a0 341 int compress_type = root->fs_info->compress_type;
b888db2b 342
42dc7bab 343 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
344again:
345 will_compress = 0;
346 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
347 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 348
f03d9301
CM
349 /*
350 * we don't want to send crud past the end of i_size through
351 * compression, that's just a waste of CPU time. So, if the
352 * end of the file is before the start of our current
353 * requested range of bytes, we bail out to the uncompressed
354 * cleanup code that can deal with all of this.
355 *
356 * It isn't really the fastest way to fix things, but this is a
357 * very uncommon corner.
358 */
359 if (actual_end <= start)
360 goto cleanup_and_bail_uncompressed;
361
c8b97818
CM
362 total_compressed = actual_end - start;
363
364 /* we want to make sure that amount of ram required to uncompress
365 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
366 * of a compressed extent to 128k. This is a crucial number
367 * because it also controls how easily we can spread reads across
368 * cpus for decompression.
369 *
370 * We also want to make sure the amount of IO required to do
371 * a random read is reasonably small, so we limit the size of
372 * a compressed extent to 128k.
c8b97818
CM
373 */
374 total_compressed = min(total_compressed, max_uncompressed);
db94535d 375 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 376 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
377 total_in = 0;
378 ret = 0;
db94535d 379
771ed689
CM
380 /*
381 * we do compression for mount -o compress and when the
382 * inode has not been flagged as nocompress. This flag can
383 * change at any time if we discover bad compression ratios.
c8b97818 384 */
6cbff00f 385 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 386 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
387 (BTRFS_I(inode)->force_compress) ||
388 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 389 WARN_ON(pages);
cfbc246e 390 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
dac97e51 391 BUG_ON(!pages);
c8b97818 392
261507a0
LZ
393 if (BTRFS_I(inode)->force_compress)
394 compress_type = BTRFS_I(inode)->force_compress;
395
396 ret = btrfs_compress_pages(compress_type,
397 inode->i_mapping, start,
398 total_compressed, pages,
399 nr_pages, &nr_pages_ret,
400 &total_in,
401 &total_compressed,
402 max_compressed);
c8b97818
CM
403
404 if (!ret) {
405 unsigned long offset = total_compressed &
406 (PAGE_CACHE_SIZE - 1);
407 struct page *page = pages[nr_pages_ret - 1];
408 char *kaddr;
409
410 /* zero the tail end of the last page, we might be
411 * sending it down to disk
412 */
413 if (offset) {
414 kaddr = kmap_atomic(page, KM_USER0);
415 memset(kaddr + offset, 0,
416 PAGE_CACHE_SIZE - offset);
417 kunmap_atomic(kaddr, KM_USER0);
418 }
419 will_compress = 1;
420 }
421 }
422 if (start == 0) {
771ed689 423 trans = btrfs_join_transaction(root, 1);
3612b495 424 BUG_ON(IS_ERR(trans));
771ed689 425 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 426 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 427
c8b97818 428 /* lets try to make an inline extent */
771ed689 429 if (ret || total_in < (actual_end - start)) {
c8b97818 430 /* we didn't compress the entire range, try
771ed689 431 * to make an uncompressed inline extent.
c8b97818
CM
432 */
433 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 434 start, end, 0, 0, NULL);
c8b97818 435 } else {
771ed689 436 /* try making a compressed inline extent */
c8b97818
CM
437 ret = cow_file_range_inline(trans, root, inode,
438 start, end,
fe3f566c
LZ
439 total_compressed,
440 compress_type, pages);
c8b97818
CM
441 }
442 if (ret == 0) {
771ed689
CM
443 /*
444 * inline extent creation worked, we don't need
445 * to create any more async work items. Unlock
446 * and free up our temp pages.
447 */
c8b97818 448 extent_clear_unlock_delalloc(inode,
a791e35e
CM
449 &BTRFS_I(inode)->io_tree,
450 start, end, NULL,
451 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 452 EXTENT_CLEAR_DELALLOC |
a791e35e 453 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
454
455 btrfs_end_transaction(trans, root);
c8b97818
CM
456 goto free_pages_out;
457 }
c2167754 458 btrfs_end_transaction(trans, root);
c8b97818
CM
459 }
460
461 if (will_compress) {
462 /*
463 * we aren't doing an inline extent round the compressed size
464 * up to a block size boundary so the allocator does sane
465 * things
466 */
467 total_compressed = (total_compressed + blocksize - 1) &
468 ~(blocksize - 1);
469
470 /*
471 * one last check to make sure the compression is really a
472 * win, compare the page count read with the blocks on disk
473 */
474 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
475 ~(PAGE_CACHE_SIZE - 1);
476 if (total_compressed >= total_in) {
477 will_compress = 0;
478 } else {
c8b97818
CM
479 num_bytes = total_in;
480 }
481 }
482 if (!will_compress && pages) {
483 /*
484 * the compression code ran but failed to make things smaller,
485 * free any pages it allocated and our page pointer array
486 */
487 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 488 WARN_ON(pages[i]->mapping);
c8b97818
CM
489 page_cache_release(pages[i]);
490 }
491 kfree(pages);
492 pages = NULL;
493 total_compressed = 0;
494 nr_pages_ret = 0;
495
496 /* flag the file so we don't compress in the future */
1e701a32
CM
497 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
498 !(BTRFS_I(inode)->force_compress)) {
a555f810 499 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 500 }
c8b97818 501 }
771ed689
CM
502 if (will_compress) {
503 *num_added += 1;
c8b97818 504
771ed689
CM
505 /* the async work queues will take care of doing actual
506 * allocation on disk for these compressed pages,
507 * and will submit them to the elevator.
508 */
509 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
510 total_compressed, pages, nr_pages_ret,
511 compress_type);
179e29e4 512
24ae6365 513 if (start + num_bytes < end) {
771ed689
CM
514 start += num_bytes;
515 pages = NULL;
516 cond_resched();
517 goto again;
518 }
519 } else {
f03d9301 520cleanup_and_bail_uncompressed:
771ed689
CM
521 /*
522 * No compression, but we still need to write the pages in
523 * the file we've been given so far. redirty the locked
524 * page if it corresponds to our extent and set things up
525 * for the async work queue to run cow_file_range to do
526 * the normal delalloc dance
527 */
528 if (page_offset(locked_page) >= start &&
529 page_offset(locked_page) <= end) {
530 __set_page_dirty_nobuffers(locked_page);
531 /* unlocked later on in the async handlers */
532 }
261507a0
LZ
533 add_async_extent(async_cow, start, end - start + 1,
534 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
535 *num_added += 1;
536 }
3b951516 537
771ed689
CM
538out:
539 return 0;
540
541free_pages_out:
542 for (i = 0; i < nr_pages_ret; i++) {
543 WARN_ON(pages[i]->mapping);
544 page_cache_release(pages[i]);
545 }
d397712b 546 kfree(pages);
771ed689
CM
547
548 goto out;
549}
550
551/*
552 * phase two of compressed writeback. This is the ordered portion
553 * of the code, which only gets called in the order the work was
554 * queued. We walk all the async extents created by compress_file_range
555 * and send them down to the disk.
556 */
557static noinline int submit_compressed_extents(struct inode *inode,
558 struct async_cow *async_cow)
559{
560 struct async_extent *async_extent;
561 u64 alloc_hint = 0;
562 struct btrfs_trans_handle *trans;
563 struct btrfs_key ins;
564 struct extent_map *em;
565 struct btrfs_root *root = BTRFS_I(inode)->root;
566 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
567 struct extent_io_tree *io_tree;
f5a84ee3 568 int ret = 0;
771ed689
CM
569
570 if (list_empty(&async_cow->extents))
571 return 0;
572
771ed689 573
d397712b 574 while (!list_empty(&async_cow->extents)) {
771ed689
CM
575 async_extent = list_entry(async_cow->extents.next,
576 struct async_extent, list);
577 list_del(&async_extent->list);
c8b97818 578
771ed689
CM
579 io_tree = &BTRFS_I(inode)->io_tree;
580
f5a84ee3 581retry:
771ed689
CM
582 /* did the compression code fall back to uncompressed IO? */
583 if (!async_extent->pages) {
584 int page_started = 0;
585 unsigned long nr_written = 0;
586
587 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
588 async_extent->start +
589 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
590
591 /* allocate blocks */
f5a84ee3
JB
592 ret = cow_file_range(inode, async_cow->locked_page,
593 async_extent->start,
594 async_extent->start +
595 async_extent->ram_size - 1,
596 &page_started, &nr_written, 0);
771ed689
CM
597
598 /*
599 * if page_started, cow_file_range inserted an
600 * inline extent and took care of all the unlocking
601 * and IO for us. Otherwise, we need to submit
602 * all those pages down to the drive.
603 */
f5a84ee3 604 if (!page_started && !ret)
771ed689
CM
605 extent_write_locked_range(io_tree,
606 inode, async_extent->start,
d397712b 607 async_extent->start +
771ed689
CM
608 async_extent->ram_size - 1,
609 btrfs_get_extent,
610 WB_SYNC_ALL);
611 kfree(async_extent);
612 cond_resched();
613 continue;
614 }
615
616 lock_extent(io_tree, async_extent->start,
617 async_extent->start + async_extent->ram_size - 1,
618 GFP_NOFS);
771ed689 619
c2167754 620 trans = btrfs_join_transaction(root, 1);
3612b495 621 BUG_ON(IS_ERR(trans));
771ed689
CM
622 ret = btrfs_reserve_extent(trans, root,
623 async_extent->compressed_size,
624 async_extent->compressed_size,
625 0, alloc_hint,
626 (u64)-1, &ins, 1);
c2167754
YZ
627 btrfs_end_transaction(trans, root);
628
f5a84ee3
JB
629 if (ret) {
630 int i;
631 for (i = 0; i < async_extent->nr_pages; i++) {
632 WARN_ON(async_extent->pages[i]->mapping);
633 page_cache_release(async_extent->pages[i]);
634 }
635 kfree(async_extent->pages);
636 async_extent->nr_pages = 0;
637 async_extent->pages = NULL;
638 unlock_extent(io_tree, async_extent->start,
639 async_extent->start +
640 async_extent->ram_size - 1, GFP_NOFS);
641 goto retry;
642 }
643
c2167754
YZ
644 /*
645 * here we're doing allocation and writeback of the
646 * compressed pages
647 */
648 btrfs_drop_extent_cache(inode, async_extent->start,
649 async_extent->start +
650 async_extent->ram_size - 1, 0);
651
771ed689 652 em = alloc_extent_map(GFP_NOFS);
c26a9203 653 BUG_ON(!em);
771ed689
CM
654 em->start = async_extent->start;
655 em->len = async_extent->ram_size;
445a6944 656 em->orig_start = em->start;
c8b97818 657
771ed689
CM
658 em->block_start = ins.objectid;
659 em->block_len = ins.offset;
660 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 661 em->compress_type = async_extent->compress_type;
771ed689
CM
662 set_bit(EXTENT_FLAG_PINNED, &em->flags);
663 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
664
d397712b 665 while (1) {
890871be 666 write_lock(&em_tree->lock);
771ed689 667 ret = add_extent_mapping(em_tree, em);
890871be 668 write_unlock(&em_tree->lock);
771ed689
CM
669 if (ret != -EEXIST) {
670 free_extent_map(em);
671 break;
672 }
673 btrfs_drop_extent_cache(inode, async_extent->start,
674 async_extent->start +
675 async_extent->ram_size - 1, 0);
676 }
677
261507a0
LZ
678 ret = btrfs_add_ordered_extent_compress(inode,
679 async_extent->start,
680 ins.objectid,
681 async_extent->ram_size,
682 ins.offset,
683 BTRFS_ORDERED_COMPRESSED,
684 async_extent->compress_type);
771ed689
CM
685 BUG_ON(ret);
686
771ed689
CM
687 /*
688 * clear dirty, set writeback and unlock the pages.
689 */
690 extent_clear_unlock_delalloc(inode,
a791e35e
CM
691 &BTRFS_I(inode)->io_tree,
692 async_extent->start,
693 async_extent->start +
694 async_extent->ram_size - 1,
695 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
696 EXTENT_CLEAR_UNLOCK |
a3429ab7 697 EXTENT_CLEAR_DELALLOC |
a791e35e 698 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
699
700 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
701 async_extent->start,
702 async_extent->ram_size,
703 ins.objectid,
704 ins.offset, async_extent->pages,
705 async_extent->nr_pages);
771ed689
CM
706
707 BUG_ON(ret);
771ed689
CM
708 alloc_hint = ins.objectid + ins.offset;
709 kfree(async_extent);
710 cond_resched();
711 }
712
771ed689
CM
713 return 0;
714}
715
4b46fce2
JB
716static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
717 u64 num_bytes)
718{
719 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
720 struct extent_map *em;
721 u64 alloc_hint = 0;
722
723 read_lock(&em_tree->lock);
724 em = search_extent_mapping(em_tree, start, num_bytes);
725 if (em) {
726 /*
727 * if block start isn't an actual block number then find the
728 * first block in this inode and use that as a hint. If that
729 * block is also bogus then just don't worry about it.
730 */
731 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
732 free_extent_map(em);
733 em = search_extent_mapping(em_tree, 0, 0);
734 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
735 alloc_hint = em->block_start;
736 if (em)
737 free_extent_map(em);
738 } else {
739 alloc_hint = em->block_start;
740 free_extent_map(em);
741 }
742 }
743 read_unlock(&em_tree->lock);
744
745 return alloc_hint;
746}
747
771ed689
CM
748/*
749 * when extent_io.c finds a delayed allocation range in the file,
750 * the call backs end up in this code. The basic idea is to
751 * allocate extents on disk for the range, and create ordered data structs
752 * in ram to track those extents.
753 *
754 * locked_page is the page that writepage had locked already. We use
755 * it to make sure we don't do extra locks or unlocks.
756 *
757 * *page_started is set to one if we unlock locked_page and do everything
758 * required to start IO on it. It may be clean and already done with
759 * IO when we return.
760 */
761static noinline int cow_file_range(struct inode *inode,
762 struct page *locked_page,
763 u64 start, u64 end, int *page_started,
764 unsigned long *nr_written,
765 int unlock)
766{
767 struct btrfs_root *root = BTRFS_I(inode)->root;
768 struct btrfs_trans_handle *trans;
769 u64 alloc_hint = 0;
770 u64 num_bytes;
771 unsigned long ram_size;
772 u64 disk_num_bytes;
773 u64 cur_alloc_size;
774 u64 blocksize = root->sectorsize;
771ed689
CM
775 struct btrfs_key ins;
776 struct extent_map *em;
777 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
778 int ret = 0;
779
0cb59c99 780 BUG_ON(root == root->fs_info->tree_root);
771ed689 781 trans = btrfs_join_transaction(root, 1);
3612b495 782 BUG_ON(IS_ERR(trans));
771ed689 783 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 784 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 785
771ed689
CM
786 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
787 num_bytes = max(blocksize, num_bytes);
788 disk_num_bytes = num_bytes;
789 ret = 0;
790
791 if (start == 0) {
792 /* lets try to make an inline extent */
793 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 794 start, end, 0, 0, NULL);
771ed689
CM
795 if (ret == 0) {
796 extent_clear_unlock_delalloc(inode,
a791e35e
CM
797 &BTRFS_I(inode)->io_tree,
798 start, end, NULL,
799 EXTENT_CLEAR_UNLOCK_PAGE |
800 EXTENT_CLEAR_UNLOCK |
801 EXTENT_CLEAR_DELALLOC |
802 EXTENT_CLEAR_DIRTY |
803 EXTENT_SET_WRITEBACK |
804 EXTENT_END_WRITEBACK);
c2167754 805
771ed689
CM
806 *nr_written = *nr_written +
807 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
808 *page_started = 1;
809 ret = 0;
810 goto out;
811 }
812 }
813
814 BUG_ON(disk_num_bytes >
815 btrfs_super_total_bytes(&root->fs_info->super_copy));
816
4b46fce2 817 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
818 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
819
d397712b 820 while (disk_num_bytes > 0) {
a791e35e
CM
821 unsigned long op;
822
287a0ab9 823 cur_alloc_size = disk_num_bytes;
e6dcd2dc 824 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 825 root->sectorsize, 0, alloc_hint,
e6dcd2dc 826 (u64)-1, &ins, 1);
d397712b
CM
827 BUG_ON(ret);
828
e6dcd2dc 829 em = alloc_extent_map(GFP_NOFS);
c26a9203 830 BUG_ON(!em);
e6dcd2dc 831 em->start = start;
445a6944 832 em->orig_start = em->start;
771ed689
CM
833 ram_size = ins.offset;
834 em->len = ins.offset;
c8b97818 835
e6dcd2dc 836 em->block_start = ins.objectid;
c8b97818 837 em->block_len = ins.offset;
e6dcd2dc 838 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 839 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 840
d397712b 841 while (1) {
890871be 842 write_lock(&em_tree->lock);
e6dcd2dc 843 ret = add_extent_mapping(em_tree, em);
890871be 844 write_unlock(&em_tree->lock);
e6dcd2dc
CM
845 if (ret != -EEXIST) {
846 free_extent_map(em);
847 break;
848 }
849 btrfs_drop_extent_cache(inode, start,
c8b97818 850 start + ram_size - 1, 0);
e6dcd2dc
CM
851 }
852
98d20f67 853 cur_alloc_size = ins.offset;
e6dcd2dc 854 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 855 ram_size, cur_alloc_size, 0);
e6dcd2dc 856 BUG_ON(ret);
c8b97818 857
17d217fe
YZ
858 if (root->root_key.objectid ==
859 BTRFS_DATA_RELOC_TREE_OBJECTID) {
860 ret = btrfs_reloc_clone_csums(inode, start,
861 cur_alloc_size);
862 BUG_ON(ret);
863 }
864
d397712b 865 if (disk_num_bytes < cur_alloc_size)
3b951516 866 break;
d397712b 867
c8b97818
CM
868 /* we're not doing compressed IO, don't unlock the first
869 * page (which the caller expects to stay locked), don't
870 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
871 *
872 * Do set the Private2 bit so we know this page was properly
873 * setup for writepage
c8b97818 874 */
a791e35e
CM
875 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
876 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
877 EXTENT_SET_PRIVATE2;
878
c8b97818
CM
879 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
880 start, start + ram_size - 1,
a791e35e 881 locked_page, op);
c8b97818 882 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
883 num_bytes -= cur_alloc_size;
884 alloc_hint = ins.objectid + ins.offset;
885 start += cur_alloc_size;
b888db2b 886 }
b888db2b 887out:
771ed689 888 ret = 0;
b888db2b 889 btrfs_end_transaction(trans, root);
c8b97818 890
be20aa9d 891 return ret;
771ed689 892}
c8b97818 893
771ed689
CM
894/*
895 * work queue call back to started compression on a file and pages
896 */
897static noinline void async_cow_start(struct btrfs_work *work)
898{
899 struct async_cow *async_cow;
900 int num_added = 0;
901 async_cow = container_of(work, struct async_cow, work);
902
903 compress_file_range(async_cow->inode, async_cow->locked_page,
904 async_cow->start, async_cow->end, async_cow,
905 &num_added);
906 if (num_added == 0)
907 async_cow->inode = NULL;
908}
909
910/*
911 * work queue call back to submit previously compressed pages
912 */
913static noinline void async_cow_submit(struct btrfs_work *work)
914{
915 struct async_cow *async_cow;
916 struct btrfs_root *root;
917 unsigned long nr_pages;
918
919 async_cow = container_of(work, struct async_cow, work);
920
921 root = async_cow->root;
922 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
923 PAGE_CACHE_SHIFT;
924
925 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
926
927 if (atomic_read(&root->fs_info->async_delalloc_pages) <
928 5 * 1042 * 1024 &&
929 waitqueue_active(&root->fs_info->async_submit_wait))
930 wake_up(&root->fs_info->async_submit_wait);
931
d397712b 932 if (async_cow->inode)
771ed689 933 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 934}
c8b97818 935
771ed689
CM
936static noinline void async_cow_free(struct btrfs_work *work)
937{
938 struct async_cow *async_cow;
939 async_cow = container_of(work, struct async_cow, work);
940 kfree(async_cow);
941}
942
943static int cow_file_range_async(struct inode *inode, struct page *locked_page,
944 u64 start, u64 end, int *page_started,
945 unsigned long *nr_written)
946{
947 struct async_cow *async_cow;
948 struct btrfs_root *root = BTRFS_I(inode)->root;
949 unsigned long nr_pages;
950 u64 cur_end;
951 int limit = 10 * 1024 * 1042;
952
a3429ab7
CM
953 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
954 1, 0, NULL, GFP_NOFS);
d397712b 955 while (start < end) {
771ed689 956 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
8d413713 957 BUG_ON(!async_cow);
771ed689
CM
958 async_cow->inode = inode;
959 async_cow->root = root;
960 async_cow->locked_page = locked_page;
961 async_cow->start = start;
962
6cbff00f 963 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
964 cur_end = end;
965 else
966 cur_end = min(end, start + 512 * 1024 - 1);
967
968 async_cow->end = cur_end;
969 INIT_LIST_HEAD(&async_cow->extents);
970
971 async_cow->work.func = async_cow_start;
972 async_cow->work.ordered_func = async_cow_submit;
973 async_cow->work.ordered_free = async_cow_free;
974 async_cow->work.flags = 0;
975
771ed689
CM
976 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
977 PAGE_CACHE_SHIFT;
978 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
979
980 btrfs_queue_worker(&root->fs_info->delalloc_workers,
981 &async_cow->work);
982
983 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
984 wait_event(root->fs_info->async_submit_wait,
985 (atomic_read(&root->fs_info->async_delalloc_pages) <
986 limit));
987 }
988
d397712b 989 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
990 atomic_read(&root->fs_info->async_delalloc_pages)) {
991 wait_event(root->fs_info->async_submit_wait,
992 (atomic_read(&root->fs_info->async_delalloc_pages) ==
993 0));
994 }
995
996 *nr_written += nr_pages;
997 start = cur_end + 1;
998 }
999 *page_started = 1;
1000 return 0;
be20aa9d
CM
1001}
1002
d397712b 1003static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1004 u64 bytenr, u64 num_bytes)
1005{
1006 int ret;
1007 struct btrfs_ordered_sum *sums;
1008 LIST_HEAD(list);
1009
07d400a6
YZ
1010 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1011 bytenr + num_bytes - 1, &list);
17d217fe
YZ
1012 if (ret == 0 && list_empty(&list))
1013 return 0;
1014
1015 while (!list_empty(&list)) {
1016 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1017 list_del(&sums->list);
1018 kfree(sums);
1019 }
1020 return 1;
1021}
1022
d352ac68
CM
1023/*
1024 * when nowcow writeback call back. This checks for snapshots or COW copies
1025 * of the extents that exist in the file, and COWs the file as required.
1026 *
1027 * If no cow copies or snapshots exist, we write directly to the existing
1028 * blocks on disk
1029 */
7f366cfe
CM
1030static noinline int run_delalloc_nocow(struct inode *inode,
1031 struct page *locked_page,
771ed689
CM
1032 u64 start, u64 end, int *page_started, int force,
1033 unsigned long *nr_written)
be20aa9d 1034{
be20aa9d 1035 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1036 struct btrfs_trans_handle *trans;
be20aa9d 1037 struct extent_buffer *leaf;
be20aa9d 1038 struct btrfs_path *path;
80ff3856 1039 struct btrfs_file_extent_item *fi;
be20aa9d 1040 struct btrfs_key found_key;
80ff3856
YZ
1041 u64 cow_start;
1042 u64 cur_offset;
1043 u64 extent_end;
5d4f98a2 1044 u64 extent_offset;
80ff3856
YZ
1045 u64 disk_bytenr;
1046 u64 num_bytes;
1047 int extent_type;
1048 int ret;
d899e052 1049 int type;
80ff3856
YZ
1050 int nocow;
1051 int check_prev = 1;
0cb59c99 1052 bool nolock = false;
be20aa9d
CM
1053
1054 path = btrfs_alloc_path();
1055 BUG_ON(!path);
0cb59c99
JB
1056 if (root == root->fs_info->tree_root) {
1057 nolock = true;
1058 trans = btrfs_join_transaction_nolock(root, 1);
1059 } else {
1060 trans = btrfs_join_transaction(root, 1);
1061 }
3612b495 1062 BUG_ON(IS_ERR(trans));
be20aa9d 1063
80ff3856
YZ
1064 cow_start = (u64)-1;
1065 cur_offset = start;
1066 while (1) {
1067 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1068 cur_offset, 0);
1069 BUG_ON(ret < 0);
1070 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1071 leaf = path->nodes[0];
1072 btrfs_item_key_to_cpu(leaf, &found_key,
1073 path->slots[0] - 1);
1074 if (found_key.objectid == inode->i_ino &&
1075 found_key.type == BTRFS_EXTENT_DATA_KEY)
1076 path->slots[0]--;
1077 }
1078 check_prev = 0;
1079next_slot:
1080 leaf = path->nodes[0];
1081 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1082 ret = btrfs_next_leaf(root, path);
1083 if (ret < 0)
1084 BUG_ON(1);
1085 if (ret > 0)
1086 break;
1087 leaf = path->nodes[0];
1088 }
be20aa9d 1089
80ff3856
YZ
1090 nocow = 0;
1091 disk_bytenr = 0;
17d217fe 1092 num_bytes = 0;
80ff3856
YZ
1093 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1094
1095 if (found_key.objectid > inode->i_ino ||
1096 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1097 found_key.offset > end)
1098 break;
1099
1100 if (found_key.offset > cur_offset) {
1101 extent_end = found_key.offset;
e9061e21 1102 extent_type = 0;
80ff3856
YZ
1103 goto out_check;
1104 }
1105
1106 fi = btrfs_item_ptr(leaf, path->slots[0],
1107 struct btrfs_file_extent_item);
1108 extent_type = btrfs_file_extent_type(leaf, fi);
1109
d899e052
YZ
1110 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1111 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1112 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1113 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1114 extent_end = found_key.offset +
1115 btrfs_file_extent_num_bytes(leaf, fi);
1116 if (extent_end <= start) {
1117 path->slots[0]++;
1118 goto next_slot;
1119 }
17d217fe
YZ
1120 if (disk_bytenr == 0)
1121 goto out_check;
80ff3856
YZ
1122 if (btrfs_file_extent_compression(leaf, fi) ||
1123 btrfs_file_extent_encryption(leaf, fi) ||
1124 btrfs_file_extent_other_encoding(leaf, fi))
1125 goto out_check;
d899e052
YZ
1126 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1127 goto out_check;
d2fb3437 1128 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1129 goto out_check;
17d217fe 1130 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1131 found_key.offset -
1132 extent_offset, disk_bytenr))
17d217fe 1133 goto out_check;
5d4f98a2 1134 disk_bytenr += extent_offset;
17d217fe
YZ
1135 disk_bytenr += cur_offset - found_key.offset;
1136 num_bytes = min(end + 1, extent_end) - cur_offset;
1137 /*
1138 * force cow if csum exists in the range.
1139 * this ensure that csum for a given extent are
1140 * either valid or do not exist.
1141 */
1142 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1143 goto out_check;
80ff3856
YZ
1144 nocow = 1;
1145 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1146 extent_end = found_key.offset +
1147 btrfs_file_extent_inline_len(leaf, fi);
1148 extent_end = ALIGN(extent_end, root->sectorsize);
1149 } else {
1150 BUG_ON(1);
1151 }
1152out_check:
1153 if (extent_end <= start) {
1154 path->slots[0]++;
1155 goto next_slot;
1156 }
1157 if (!nocow) {
1158 if (cow_start == (u64)-1)
1159 cow_start = cur_offset;
1160 cur_offset = extent_end;
1161 if (cur_offset > end)
1162 break;
1163 path->slots[0]++;
1164 goto next_slot;
7ea394f1
YZ
1165 }
1166
1167 btrfs_release_path(root, path);
80ff3856
YZ
1168 if (cow_start != (u64)-1) {
1169 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1170 found_key.offset - 1, page_started,
1171 nr_written, 1);
80ff3856
YZ
1172 BUG_ON(ret);
1173 cow_start = (u64)-1;
7ea394f1 1174 }
80ff3856 1175
d899e052
YZ
1176 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1177 struct extent_map *em;
1178 struct extent_map_tree *em_tree;
1179 em_tree = &BTRFS_I(inode)->extent_tree;
1180 em = alloc_extent_map(GFP_NOFS);
c26a9203 1181 BUG_ON(!em);
d899e052 1182 em->start = cur_offset;
445a6944 1183 em->orig_start = em->start;
d899e052
YZ
1184 em->len = num_bytes;
1185 em->block_len = num_bytes;
1186 em->block_start = disk_bytenr;
1187 em->bdev = root->fs_info->fs_devices->latest_bdev;
1188 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1189 while (1) {
890871be 1190 write_lock(&em_tree->lock);
d899e052 1191 ret = add_extent_mapping(em_tree, em);
890871be 1192 write_unlock(&em_tree->lock);
d899e052
YZ
1193 if (ret != -EEXIST) {
1194 free_extent_map(em);
1195 break;
1196 }
1197 btrfs_drop_extent_cache(inode, em->start,
1198 em->start + em->len - 1, 0);
1199 }
1200 type = BTRFS_ORDERED_PREALLOC;
1201 } else {
1202 type = BTRFS_ORDERED_NOCOW;
1203 }
80ff3856
YZ
1204
1205 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1206 num_bytes, num_bytes, type);
1207 BUG_ON(ret);
771ed689 1208
efa56464
YZ
1209 if (root->root_key.objectid ==
1210 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1211 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1212 num_bytes);
1213 BUG_ON(ret);
1214 }
1215
d899e052 1216 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1217 cur_offset, cur_offset + num_bytes - 1,
1218 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1219 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1220 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1221 cur_offset = extent_end;
1222 if (cur_offset > end)
1223 break;
be20aa9d 1224 }
80ff3856
YZ
1225 btrfs_release_path(root, path);
1226
1227 if (cur_offset <= end && cow_start == (u64)-1)
1228 cow_start = cur_offset;
1229 if (cow_start != (u64)-1) {
1230 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1231 page_started, nr_written, 1);
80ff3856
YZ
1232 BUG_ON(ret);
1233 }
1234
0cb59c99
JB
1235 if (nolock) {
1236 ret = btrfs_end_transaction_nolock(trans, root);
1237 BUG_ON(ret);
1238 } else {
1239 ret = btrfs_end_transaction(trans, root);
1240 BUG_ON(ret);
1241 }
7ea394f1 1242 btrfs_free_path(path);
80ff3856 1243 return 0;
be20aa9d
CM
1244}
1245
d352ac68
CM
1246/*
1247 * extent_io.c call back to do delayed allocation processing
1248 */
c8b97818 1249static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1250 u64 start, u64 end, int *page_started,
1251 unsigned long *nr_written)
be20aa9d 1252{
be20aa9d 1253 int ret;
7f366cfe 1254 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1255
6cbff00f 1256 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1257 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1258 page_started, 1, nr_written);
6cbff00f 1259 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1260 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1261 page_started, 0, nr_written);
1e701a32 1262 else if (!btrfs_test_opt(root, COMPRESS) &&
75e7cb7f
LB
1263 !(BTRFS_I(inode)->force_compress) &&
1264 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
7f366cfe
CM
1265 ret = cow_file_range(inode, locked_page, start, end,
1266 page_started, nr_written, 1);
be20aa9d 1267 else
771ed689 1268 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1269 page_started, nr_written);
b888db2b
CM
1270 return ret;
1271}
1272
9ed74f2d 1273static int btrfs_split_extent_hook(struct inode *inode,
0ca1f7ce 1274 struct extent_state *orig, u64 split)
9ed74f2d 1275{
0ca1f7ce 1276 /* not delalloc, ignore it */
9ed74f2d
JB
1277 if (!(orig->state & EXTENT_DELALLOC))
1278 return 0;
1279
0ca1f7ce 1280 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1281 return 0;
1282}
1283
1284/*
1285 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1286 * extents so we can keep track of new extents that are just merged onto old
1287 * extents, such as when we are doing sequential writes, so we can properly
1288 * account for the metadata space we'll need.
1289 */
1290static int btrfs_merge_extent_hook(struct inode *inode,
1291 struct extent_state *new,
1292 struct extent_state *other)
1293{
9ed74f2d
JB
1294 /* not delalloc, ignore it */
1295 if (!(other->state & EXTENT_DELALLOC))
1296 return 0;
1297
0ca1f7ce 1298 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1299 return 0;
1300}
1301
d352ac68
CM
1302/*
1303 * extent_io.c set_bit_hook, used to track delayed allocation
1304 * bytes in this file, and to maintain the list of inodes that
1305 * have pending delalloc work to be done.
1306 */
0ca1f7ce
YZ
1307static int btrfs_set_bit_hook(struct inode *inode,
1308 struct extent_state *state, int *bits)
291d673e 1309{
9ed74f2d 1310
75eff68e
CM
1311 /*
1312 * set_bit and clear bit hooks normally require _irqsave/restore
1313 * but in this case, we are only testeing for the DELALLOC
1314 * bit, which is only set or cleared with irqs on
1315 */
0ca1f7ce 1316 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1317 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1318 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1319 int do_list = (root->root_key.objectid !=
1320 BTRFS_ROOT_TREE_OBJECTID);
9ed74f2d 1321
0ca1f7ce
YZ
1322 if (*bits & EXTENT_FIRST_DELALLOC)
1323 *bits &= ~EXTENT_FIRST_DELALLOC;
1324 else
1325 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
287a0ab9 1326
75eff68e 1327 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1328 BTRFS_I(inode)->delalloc_bytes += len;
1329 root->fs_info->delalloc_bytes += len;
0cb59c99 1330 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1331 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1332 &root->fs_info->delalloc_inodes);
1333 }
75eff68e 1334 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1335 }
1336 return 0;
1337}
1338
d352ac68
CM
1339/*
1340 * extent_io.c clear_bit_hook, see set_bit_hook for why
1341 */
9ed74f2d 1342static int btrfs_clear_bit_hook(struct inode *inode,
0ca1f7ce 1343 struct extent_state *state, int *bits)
291d673e 1344{
75eff68e
CM
1345 /*
1346 * set_bit and clear bit hooks normally require _irqsave/restore
1347 * but in this case, we are only testeing for the DELALLOC
1348 * bit, which is only set or cleared with irqs on
1349 */
0ca1f7ce 1350 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1351 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1352 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1353 int do_list = (root->root_key.objectid !=
1354 BTRFS_ROOT_TREE_OBJECTID);
bcbfce8a 1355
0ca1f7ce
YZ
1356 if (*bits & EXTENT_FIRST_DELALLOC)
1357 *bits &= ~EXTENT_FIRST_DELALLOC;
1358 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1359 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1360
1361 if (*bits & EXTENT_DO_ACCOUNTING)
1362 btrfs_delalloc_release_metadata(inode, len);
1363
0cb59c99
JB
1364 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1365 && do_list)
0ca1f7ce 1366 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1367
75eff68e 1368 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1369 root->fs_info->delalloc_bytes -= len;
1370 BTRFS_I(inode)->delalloc_bytes -= len;
1371
0cb59c99 1372 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1373 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1374 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1375 }
75eff68e 1376 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1377 }
1378 return 0;
1379}
1380
d352ac68
CM
1381/*
1382 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1383 * we don't create bios that span stripes or chunks
1384 */
239b14b3 1385int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1386 size_t size, struct bio *bio,
1387 unsigned long bio_flags)
239b14b3
CM
1388{
1389 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1390 struct btrfs_mapping_tree *map_tree;
a62b9401 1391 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1392 u64 length = 0;
1393 u64 map_length;
239b14b3
CM
1394 int ret;
1395
771ed689
CM
1396 if (bio_flags & EXTENT_BIO_COMPRESSED)
1397 return 0;
1398
f2d8d74d 1399 length = bio->bi_size;
239b14b3
CM
1400 map_tree = &root->fs_info->mapping_tree;
1401 map_length = length;
cea9e445 1402 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1403 &map_length, NULL, 0);
cea9e445 1404
d397712b 1405 if (map_length < length + size)
239b14b3 1406 return 1;
411fc6bc 1407 return ret;
239b14b3
CM
1408}
1409
d352ac68
CM
1410/*
1411 * in order to insert checksums into the metadata in large chunks,
1412 * we wait until bio submission time. All the pages in the bio are
1413 * checksummed and sums are attached onto the ordered extent record.
1414 *
1415 * At IO completion time the cums attached on the ordered extent record
1416 * are inserted into the btree
1417 */
d397712b
CM
1418static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1419 struct bio *bio, int mirror_num,
eaf25d93
CM
1420 unsigned long bio_flags,
1421 u64 bio_offset)
065631f6 1422{
065631f6 1423 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1424 int ret = 0;
e015640f 1425
d20f7043 1426 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1427 BUG_ON(ret);
4a69a410
CM
1428 return 0;
1429}
e015640f 1430
4a69a410
CM
1431/*
1432 * in order to insert checksums into the metadata in large chunks,
1433 * we wait until bio submission time. All the pages in the bio are
1434 * checksummed and sums are attached onto the ordered extent record.
1435 *
1436 * At IO completion time the cums attached on the ordered extent record
1437 * are inserted into the btree
1438 */
b2950863 1439static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1440 int mirror_num, unsigned long bio_flags,
1441 u64 bio_offset)
4a69a410
CM
1442{
1443 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1444 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1445}
1446
d352ac68 1447/*
cad321ad
CM
1448 * extent_io.c submission hook. This does the right thing for csum calculation
1449 * on write, or reading the csums from the tree before a read
d352ac68 1450 */
b2950863 1451static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1452 int mirror_num, unsigned long bio_flags,
1453 u64 bio_offset)
44b8bd7e
CM
1454{
1455 struct btrfs_root *root = BTRFS_I(inode)->root;
1456 int ret = 0;
19b9bdb0 1457 int skip_sum;
44b8bd7e 1458
6cbff00f 1459 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1460
0cb59c99
JB
1461 if (root == root->fs_info->tree_root)
1462 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1463 else
1464 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1465 BUG_ON(ret);
065631f6 1466
7b6d91da 1467 if (!(rw & REQ_WRITE)) {
d20f7043 1468 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1469 return btrfs_submit_compressed_read(inode, bio,
1470 mirror_num, bio_flags);
c2db1073
TI
1471 } else if (!skip_sum) {
1472 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1473 if (ret)
1474 return ret;
1475 }
4d1b5fb4 1476 goto mapit;
19b9bdb0 1477 } else if (!skip_sum) {
17d217fe
YZ
1478 /* csum items have already been cloned */
1479 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1480 goto mapit;
19b9bdb0
CM
1481 /* we're doing a write, do the async checksumming */
1482 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1483 inode, rw, bio, mirror_num,
eaf25d93
CM
1484 bio_flags, bio_offset,
1485 __btrfs_submit_bio_start,
4a69a410 1486 __btrfs_submit_bio_done);
19b9bdb0
CM
1487 }
1488
0b86a832 1489mapit:
8b712842 1490 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1491}
6885f308 1492
d352ac68
CM
1493/*
1494 * given a list of ordered sums record them in the inode. This happens
1495 * at IO completion time based on sums calculated at bio submission time.
1496 */
ba1da2f4 1497static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1498 struct inode *inode, u64 file_offset,
1499 struct list_head *list)
1500{
e6dcd2dc
CM
1501 struct btrfs_ordered_sum *sum;
1502
1503 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1504
1505 list_for_each_entry(sum, list, list) {
d20f7043
CM
1506 btrfs_csum_file_blocks(trans,
1507 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1508 }
1509 return 0;
1510}
1511
2ac55d41
JB
1512int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1513 struct extent_state **cached_state)
ea8c2819 1514{
d397712b 1515 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1516 WARN_ON(1);
ea8c2819 1517 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1518 cached_state, GFP_NOFS);
ea8c2819
CM
1519}
1520
d352ac68 1521/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1522struct btrfs_writepage_fixup {
1523 struct page *page;
1524 struct btrfs_work work;
1525};
1526
b2950863 1527static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1528{
1529 struct btrfs_writepage_fixup *fixup;
1530 struct btrfs_ordered_extent *ordered;
2ac55d41 1531 struct extent_state *cached_state = NULL;
247e743c
CM
1532 struct page *page;
1533 struct inode *inode;
1534 u64 page_start;
1535 u64 page_end;
1536
1537 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1538 page = fixup->page;
4a096752 1539again:
247e743c
CM
1540 lock_page(page);
1541 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1542 ClearPageChecked(page);
1543 goto out_page;
1544 }
1545
1546 inode = page->mapping->host;
1547 page_start = page_offset(page);
1548 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1549
2ac55d41
JB
1550 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1551 &cached_state, GFP_NOFS);
4a096752
CM
1552
1553 /* already ordered? We're done */
8b62b72b 1554 if (PagePrivate2(page))
247e743c 1555 goto out;
4a096752
CM
1556
1557 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1558 if (ordered) {
2ac55d41
JB
1559 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1560 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1561 unlock_page(page);
1562 btrfs_start_ordered_extent(inode, ordered, 1);
1563 goto again;
1564 }
247e743c 1565
0ca1f7ce 1566 BUG();
2ac55d41 1567 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1568 ClearPageChecked(page);
1569out:
2ac55d41
JB
1570 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1571 &cached_state, GFP_NOFS);
247e743c
CM
1572out_page:
1573 unlock_page(page);
1574 page_cache_release(page);
b897abec 1575 kfree(fixup);
247e743c
CM
1576}
1577
1578/*
1579 * There are a few paths in the higher layers of the kernel that directly
1580 * set the page dirty bit without asking the filesystem if it is a
1581 * good idea. This causes problems because we want to make sure COW
1582 * properly happens and the data=ordered rules are followed.
1583 *
c8b97818 1584 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1585 * hasn't been properly setup for IO. We kick off an async process
1586 * to fix it up. The async helper will wait for ordered extents, set
1587 * the delalloc bit and make it safe to write the page.
1588 */
b2950863 1589static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1590{
1591 struct inode *inode = page->mapping->host;
1592 struct btrfs_writepage_fixup *fixup;
1593 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1594
8b62b72b
CM
1595 /* this page is properly in the ordered list */
1596 if (TestClearPagePrivate2(page))
247e743c
CM
1597 return 0;
1598
1599 if (PageChecked(page))
1600 return -EAGAIN;
1601
1602 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1603 if (!fixup)
1604 return -EAGAIN;
f421950f 1605
247e743c
CM
1606 SetPageChecked(page);
1607 page_cache_get(page);
1608 fixup->work.func = btrfs_writepage_fixup_worker;
1609 fixup->page = page;
1610 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1611 return -EAGAIN;
1612}
1613
d899e052
YZ
1614static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1615 struct inode *inode, u64 file_pos,
1616 u64 disk_bytenr, u64 disk_num_bytes,
1617 u64 num_bytes, u64 ram_bytes,
1618 u8 compression, u8 encryption,
1619 u16 other_encoding, int extent_type)
1620{
1621 struct btrfs_root *root = BTRFS_I(inode)->root;
1622 struct btrfs_file_extent_item *fi;
1623 struct btrfs_path *path;
1624 struct extent_buffer *leaf;
1625 struct btrfs_key ins;
1626 u64 hint;
1627 int ret;
1628
1629 path = btrfs_alloc_path();
1630 BUG_ON(!path);
1631
b9473439 1632 path->leave_spinning = 1;
a1ed835e
CM
1633
1634 /*
1635 * we may be replacing one extent in the tree with another.
1636 * The new extent is pinned in the extent map, and we don't want
1637 * to drop it from the cache until it is completely in the btree.
1638 *
1639 * So, tell btrfs_drop_extents to leave this extent in the cache.
1640 * the caller is expected to unpin it and allow it to be merged
1641 * with the others.
1642 */
920bbbfb
YZ
1643 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1644 &hint, 0);
d899e052
YZ
1645 BUG_ON(ret);
1646
1647 ins.objectid = inode->i_ino;
1648 ins.offset = file_pos;
1649 ins.type = BTRFS_EXTENT_DATA_KEY;
1650 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1651 BUG_ON(ret);
1652 leaf = path->nodes[0];
1653 fi = btrfs_item_ptr(leaf, path->slots[0],
1654 struct btrfs_file_extent_item);
1655 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1656 btrfs_set_file_extent_type(leaf, fi, extent_type);
1657 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1658 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1659 btrfs_set_file_extent_offset(leaf, fi, 0);
1660 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1661 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1662 btrfs_set_file_extent_compression(leaf, fi, compression);
1663 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1664 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1665
1666 btrfs_unlock_up_safe(path, 1);
1667 btrfs_set_lock_blocking(leaf);
1668
d899e052
YZ
1669 btrfs_mark_buffer_dirty(leaf);
1670
1671 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1672
1673 ins.objectid = disk_bytenr;
1674 ins.offset = disk_num_bytes;
1675 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1676 ret = btrfs_alloc_reserved_file_extent(trans, root,
1677 root->root_key.objectid,
1678 inode->i_ino, file_pos, &ins);
d899e052 1679 BUG_ON(ret);
d899e052 1680 btrfs_free_path(path);
b9473439 1681
d899e052
YZ
1682 return 0;
1683}
1684
5d13a98f
CM
1685/*
1686 * helper function for btrfs_finish_ordered_io, this
1687 * just reads in some of the csum leaves to prime them into ram
1688 * before we start the transaction. It limits the amount of btree
1689 * reads required while inside the transaction.
1690 */
d352ac68
CM
1691/* as ordered data IO finishes, this gets called so we can finish
1692 * an ordered extent if the range of bytes in the file it covers are
1693 * fully written.
1694 */
211f90e6 1695static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1696{
e6dcd2dc 1697 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1698 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1699 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1700 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1701 struct extent_state *cached_state = NULL;
261507a0 1702 int compress_type = 0;
e6dcd2dc 1703 int ret;
0cb59c99 1704 bool nolock = false;
e6dcd2dc 1705
5a1a3df1
JB
1706 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1707 end - start + 1);
ba1da2f4 1708 if (!ret)
e6dcd2dc 1709 return 0;
e6dcd2dc 1710 BUG_ON(!ordered_extent);
efd049fb 1711
0cb59c99
JB
1712 nolock = (root == root->fs_info->tree_root);
1713
c2167754
YZ
1714 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1715 BUG_ON(!list_empty(&ordered_extent->list));
1716 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1717 if (!ret) {
0cb59c99
JB
1718 if (nolock)
1719 trans = btrfs_join_transaction_nolock(root, 1);
1720 else
1721 trans = btrfs_join_transaction(root, 1);
3612b495 1722 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1723 btrfs_set_trans_block_group(trans, inode);
1724 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1725 ret = btrfs_update_inode(trans, root, inode);
1726 BUG_ON(ret);
c2167754
YZ
1727 }
1728 goto out;
1729 }
e6dcd2dc 1730
2ac55d41
JB
1731 lock_extent_bits(io_tree, ordered_extent->file_offset,
1732 ordered_extent->file_offset + ordered_extent->len - 1,
1733 0, &cached_state, GFP_NOFS);
e6dcd2dc 1734
0cb59c99
JB
1735 if (nolock)
1736 trans = btrfs_join_transaction_nolock(root, 1);
1737 else
1738 trans = btrfs_join_transaction(root, 1);
3612b495 1739 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1740 btrfs_set_trans_block_group(trans, inode);
1741 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1742
c8b97818 1743 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1744 compress_type = ordered_extent->compress_type;
d899e052 1745 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1746 BUG_ON(compress_type);
920bbbfb 1747 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1748 ordered_extent->file_offset,
1749 ordered_extent->file_offset +
1750 ordered_extent->len);
1751 BUG_ON(ret);
1752 } else {
0af3d00b 1753 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1754 ret = insert_reserved_file_extent(trans, inode,
1755 ordered_extent->file_offset,
1756 ordered_extent->start,
1757 ordered_extent->disk_len,
1758 ordered_extent->len,
1759 ordered_extent->len,
261507a0 1760 compress_type, 0, 0,
d899e052 1761 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1762 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1763 ordered_extent->file_offset,
1764 ordered_extent->len);
d899e052
YZ
1765 BUG_ON(ret);
1766 }
2ac55d41
JB
1767 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1768 ordered_extent->file_offset +
1769 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1770
e6dcd2dc
CM
1771 add_pending_csums(trans, inode, ordered_extent->file_offset,
1772 &ordered_extent->list);
1773
1ef30be1
JB
1774 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1775 if (!ret) {
1776 ret = btrfs_update_inode(trans, root, inode);
1777 BUG_ON(ret);
1778 }
1779 ret = 0;
c2167754 1780out:
0cb59c99
JB
1781 if (nolock) {
1782 if (trans)
1783 btrfs_end_transaction_nolock(trans, root);
1784 } else {
1785 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1786 if (trans)
1787 btrfs_end_transaction(trans, root);
1788 }
1789
e6dcd2dc
CM
1790 /* once for us */
1791 btrfs_put_ordered_extent(ordered_extent);
1792 /* once for the tree */
1793 btrfs_put_ordered_extent(ordered_extent);
1794
e6dcd2dc
CM
1795 return 0;
1796}
1797
b2950863 1798static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1799 struct extent_state *state, int uptodate)
1800{
1abe9b8a 1801 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1802
8b62b72b 1803 ClearPagePrivate2(page);
211f90e6
CM
1804 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1805}
1806
d352ac68
CM
1807/*
1808 * When IO fails, either with EIO or csum verification fails, we
1809 * try other mirrors that might have a good copy of the data. This
1810 * io_failure_record is used to record state as we go through all the
1811 * mirrors. If another mirror has good data, the page is set up to date
1812 * and things continue. If a good mirror can't be found, the original
1813 * bio end_io callback is called to indicate things have failed.
1814 */
7e38326f
CM
1815struct io_failure_record {
1816 struct page *page;
1817 u64 start;
1818 u64 len;
1819 u64 logical;
d20f7043 1820 unsigned long bio_flags;
7e38326f
CM
1821 int last_mirror;
1822};
1823
b2950863 1824static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1825 struct page *page, u64 start, u64 end,
1826 struct extent_state *state)
7e38326f
CM
1827{
1828 struct io_failure_record *failrec = NULL;
1829 u64 private;
1830 struct extent_map *em;
1831 struct inode *inode = page->mapping->host;
1832 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1833 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1834 struct bio *bio;
1835 int num_copies;
1836 int ret;
1259ab75 1837 int rw;
7e38326f
CM
1838 u64 logical;
1839
1840 ret = get_state_private(failure_tree, start, &private);
1841 if (ret) {
7e38326f
CM
1842 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1843 if (!failrec)
1844 return -ENOMEM;
1845 failrec->start = start;
1846 failrec->len = end - start + 1;
1847 failrec->last_mirror = 0;
d20f7043 1848 failrec->bio_flags = 0;
7e38326f 1849
890871be 1850 read_lock(&em_tree->lock);
3b951516
CM
1851 em = lookup_extent_mapping(em_tree, start, failrec->len);
1852 if (em->start > start || em->start + em->len < start) {
1853 free_extent_map(em);
1854 em = NULL;
1855 }
890871be 1856 read_unlock(&em_tree->lock);
7e38326f
CM
1857
1858 if (!em || IS_ERR(em)) {
1859 kfree(failrec);
1860 return -EIO;
1861 }
1862 logical = start - em->start;
1863 logical = em->block_start + logical;
d20f7043
CM
1864 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1865 logical = em->block_start;
1866 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
261507a0
LZ
1867 extent_set_compress_type(&failrec->bio_flags,
1868 em->compress_type);
d20f7043 1869 }
7e38326f
CM
1870 failrec->logical = logical;
1871 free_extent_map(em);
1872 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1873 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1874 set_state_private(failure_tree, start,
1875 (u64)(unsigned long)failrec);
7e38326f 1876 } else {
587f7704 1877 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1878 }
1879 num_copies = btrfs_num_copies(
1880 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1881 failrec->logical, failrec->len);
1882 failrec->last_mirror++;
1883 if (!state) {
cad321ad 1884 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1885 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1886 failrec->start,
1887 EXTENT_LOCKED);
1888 if (state && state->start != failrec->start)
1889 state = NULL;
cad321ad 1890 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1891 }
1892 if (!state || failrec->last_mirror > num_copies) {
1893 set_state_private(failure_tree, failrec->start, 0);
1894 clear_extent_bits(failure_tree, failrec->start,
1895 failrec->start + failrec->len - 1,
1896 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1897 kfree(failrec);
1898 return -EIO;
1899 }
1900 bio = bio_alloc(GFP_NOFS, 1);
1901 bio->bi_private = state;
1902 bio->bi_end_io = failed_bio->bi_end_io;
1903 bio->bi_sector = failrec->logical >> 9;
1904 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1905 bio->bi_size = 0;
d20f7043 1906
7e38326f 1907 bio_add_page(bio, page, failrec->len, start - page_offset(page));
7b6d91da 1908 if (failed_bio->bi_rw & REQ_WRITE)
1259ab75
CM
1909 rw = WRITE;
1910 else
1911 rw = READ;
1912
c2db1073 1913 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1914 failrec->last_mirror,
eaf25d93 1915 failrec->bio_flags, 0);
c2db1073 1916 return ret;
1259ab75
CM
1917}
1918
d352ac68
CM
1919/*
1920 * each time an IO finishes, we do a fast check in the IO failure tree
1921 * to see if we need to process or clean up an io_failure_record
1922 */
b2950863 1923static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1924{
1925 u64 private;
1926 u64 private_failure;
1927 struct io_failure_record *failure;
1928 int ret;
1929
1930 private = 0;
1931 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
ec29ed5b 1932 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1259ab75
CM
1933 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1934 start, &private_failure);
1935 if (ret == 0) {
1936 failure = (struct io_failure_record *)(unsigned long)
1937 private_failure;
1938 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1939 failure->start, 0);
1940 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1941 failure->start,
1942 failure->start + failure->len - 1,
1943 EXTENT_DIRTY | EXTENT_LOCKED,
1944 GFP_NOFS);
1945 kfree(failure);
1946 }
1947 }
7e38326f
CM
1948 return 0;
1949}
1950
d352ac68
CM
1951/*
1952 * when reads are done, we need to check csums to verify the data is correct
1953 * if there's a match, we allow the bio to finish. If not, we go through
1954 * the io_failure_record routines to find good copies
1955 */
b2950863 1956static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1957 struct extent_state *state)
07157aac 1958{
35ebb934 1959 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1960 struct inode *inode = page->mapping->host;
d1310b2e 1961 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1962 char *kaddr;
aadfeb6e 1963 u64 private = ~(u32)0;
07157aac 1964 int ret;
ff79f819
CM
1965 struct btrfs_root *root = BTRFS_I(inode)->root;
1966 u32 csum = ~(u32)0;
d1310b2e 1967
d20f7043
CM
1968 if (PageChecked(page)) {
1969 ClearPageChecked(page);
1970 goto good;
1971 }
6cbff00f
CH
1972
1973 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1974 return 0;
1975
1976 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1977 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1978 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1979 GFP_NOFS);
b6cda9bc 1980 return 0;
17d217fe 1981 }
d20f7043 1982
c2e639f0 1983 if (state && state->start == start) {
70dec807
CM
1984 private = state->private;
1985 ret = 0;
1986 } else {
1987 ret = get_state_private(io_tree, start, &private);
1988 }
9ab86c8e 1989 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1990 if (ret)
07157aac 1991 goto zeroit;
d397712b 1992
ff79f819
CM
1993 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1994 btrfs_csum_final(csum, (char *)&csum);
d397712b 1995 if (csum != private)
07157aac 1996 goto zeroit;
d397712b 1997
9ab86c8e 1998 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1999good:
7e38326f
CM
2000 /* if the io failure tree for this inode is non-empty,
2001 * check to see if we've recovered from a failed IO
2002 */
1259ab75 2003 btrfs_clean_io_failures(inode, start);
07157aac
CM
2004 return 0;
2005
2006zeroit:
193f284d
CM
2007 if (printk_ratelimit()) {
2008 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2009 "private %llu\n", page->mapping->host->i_ino,
2010 (unsigned long long)start, csum,
2011 (unsigned long long)private);
2012 }
db94535d
CM
2013 memset(kaddr + offset, 1, end - start + 1);
2014 flush_dcache_page(page);
9ab86c8e 2015 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2016 if (private == 0)
2017 return 0;
7e38326f 2018 return -EIO;
07157aac 2019}
b888db2b 2020
24bbcf04
YZ
2021struct delayed_iput {
2022 struct list_head list;
2023 struct inode *inode;
2024};
2025
2026void btrfs_add_delayed_iput(struct inode *inode)
2027{
2028 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2029 struct delayed_iput *delayed;
2030
2031 if (atomic_add_unless(&inode->i_count, -1, 1))
2032 return;
2033
2034 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2035 delayed->inode = inode;
2036
2037 spin_lock(&fs_info->delayed_iput_lock);
2038 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2039 spin_unlock(&fs_info->delayed_iput_lock);
2040}
2041
2042void btrfs_run_delayed_iputs(struct btrfs_root *root)
2043{
2044 LIST_HEAD(list);
2045 struct btrfs_fs_info *fs_info = root->fs_info;
2046 struct delayed_iput *delayed;
2047 int empty;
2048
2049 spin_lock(&fs_info->delayed_iput_lock);
2050 empty = list_empty(&fs_info->delayed_iputs);
2051 spin_unlock(&fs_info->delayed_iput_lock);
2052 if (empty)
2053 return;
2054
2055 down_read(&root->fs_info->cleanup_work_sem);
2056 spin_lock(&fs_info->delayed_iput_lock);
2057 list_splice_init(&fs_info->delayed_iputs, &list);
2058 spin_unlock(&fs_info->delayed_iput_lock);
2059
2060 while (!list_empty(&list)) {
2061 delayed = list_entry(list.next, struct delayed_iput, list);
2062 list_del(&delayed->list);
2063 iput(delayed->inode);
2064 kfree(delayed);
2065 }
2066 up_read(&root->fs_info->cleanup_work_sem);
2067}
2068
d68fc57b
YZ
2069/*
2070 * calculate extra metadata reservation when snapshotting a subvolume
2071 * contains orphan files.
2072 */
2073void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2074 struct btrfs_pending_snapshot *pending,
2075 u64 *bytes_to_reserve)
2076{
2077 struct btrfs_root *root;
2078 struct btrfs_block_rsv *block_rsv;
2079 u64 num_bytes;
2080 int index;
2081
2082 root = pending->root;
2083 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2084 return;
2085
2086 block_rsv = root->orphan_block_rsv;
2087
2088 /* orphan block reservation for the snapshot */
2089 num_bytes = block_rsv->size;
2090
2091 /*
2092 * after the snapshot is created, COWing tree blocks may use more
2093 * space than it frees. So we should make sure there is enough
2094 * reserved space.
2095 */
2096 index = trans->transid & 0x1;
2097 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2098 num_bytes += block_rsv->size -
2099 (block_rsv->reserved + block_rsv->freed[index]);
2100 }
2101
2102 *bytes_to_reserve += num_bytes;
2103}
2104
2105void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2106 struct btrfs_pending_snapshot *pending)
2107{
2108 struct btrfs_root *root = pending->root;
2109 struct btrfs_root *snap = pending->snap;
2110 struct btrfs_block_rsv *block_rsv;
2111 u64 num_bytes;
2112 int index;
2113 int ret;
2114
2115 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2116 return;
2117
2118 /* refill source subvolume's orphan block reservation */
2119 block_rsv = root->orphan_block_rsv;
2120 index = trans->transid & 0x1;
2121 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2122 num_bytes = block_rsv->size -
2123 (block_rsv->reserved + block_rsv->freed[index]);
2124 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2125 root->orphan_block_rsv,
2126 num_bytes);
2127 BUG_ON(ret);
2128 }
2129
2130 /* setup orphan block reservation for the snapshot */
2131 block_rsv = btrfs_alloc_block_rsv(snap);
2132 BUG_ON(!block_rsv);
2133
2134 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2135 snap->orphan_block_rsv = block_rsv;
2136
2137 num_bytes = root->orphan_block_rsv->size;
2138 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2139 block_rsv, num_bytes);
2140 BUG_ON(ret);
2141
2142#if 0
2143 /* insert orphan item for the snapshot */
2144 WARN_ON(!root->orphan_item_inserted);
2145 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2146 snap->root_key.objectid);
2147 BUG_ON(ret);
2148 snap->orphan_item_inserted = 1;
2149#endif
2150}
2151
2152enum btrfs_orphan_cleanup_state {
2153 ORPHAN_CLEANUP_STARTED = 1,
2154 ORPHAN_CLEANUP_DONE = 2,
2155};
2156
2157/*
2158 * This is called in transaction commmit time. If there are no orphan
2159 * files in the subvolume, it removes orphan item and frees block_rsv
2160 * structure.
2161 */
2162void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2163 struct btrfs_root *root)
2164{
2165 int ret;
2166
2167 if (!list_empty(&root->orphan_list) ||
2168 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2169 return;
2170
2171 if (root->orphan_item_inserted &&
2172 btrfs_root_refs(&root->root_item) > 0) {
2173 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2174 root->root_key.objectid);
2175 BUG_ON(ret);
2176 root->orphan_item_inserted = 0;
2177 }
2178
2179 if (root->orphan_block_rsv) {
2180 WARN_ON(root->orphan_block_rsv->size > 0);
2181 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2182 root->orphan_block_rsv = NULL;
2183 }
2184}
2185
7b128766
JB
2186/*
2187 * This creates an orphan entry for the given inode in case something goes
2188 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2189 *
2190 * NOTE: caller of this function should reserve 5 units of metadata for
2191 * this function.
7b128766
JB
2192 */
2193int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2194{
2195 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2196 struct btrfs_block_rsv *block_rsv = NULL;
2197 int reserve = 0;
2198 int insert = 0;
2199 int ret;
7b128766 2200
d68fc57b
YZ
2201 if (!root->orphan_block_rsv) {
2202 block_rsv = btrfs_alloc_block_rsv(root);
2203 BUG_ON(!block_rsv);
2204 }
7b128766 2205
d68fc57b
YZ
2206 spin_lock(&root->orphan_lock);
2207 if (!root->orphan_block_rsv) {
2208 root->orphan_block_rsv = block_rsv;
2209 } else if (block_rsv) {
2210 btrfs_free_block_rsv(root, block_rsv);
2211 block_rsv = NULL;
7b128766 2212 }
7b128766 2213
d68fc57b
YZ
2214 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2215 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2216#if 0
2217 /*
2218 * For proper ENOSPC handling, we should do orphan
2219 * cleanup when mounting. But this introduces backward
2220 * compatibility issue.
2221 */
2222 if (!xchg(&root->orphan_item_inserted, 1))
2223 insert = 2;
2224 else
2225 insert = 1;
2226#endif
2227 insert = 1;
7b128766
JB
2228 }
2229
d68fc57b
YZ
2230 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2231 BTRFS_I(inode)->orphan_meta_reserved = 1;
2232 reserve = 1;
2233 }
2234 spin_unlock(&root->orphan_lock);
7b128766 2235
d68fc57b
YZ
2236 if (block_rsv)
2237 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
7b128766 2238
d68fc57b
YZ
2239 /* grab metadata reservation from transaction handle */
2240 if (reserve) {
2241 ret = btrfs_orphan_reserve_metadata(trans, inode);
2242 BUG_ON(ret);
2243 }
7b128766 2244
d68fc57b
YZ
2245 /* insert an orphan item to track this unlinked/truncated file */
2246 if (insert >= 1) {
2247 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2248 BUG_ON(ret);
2249 }
2250
2251 /* insert an orphan item to track subvolume contains orphan files */
2252 if (insert >= 2) {
2253 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2254 root->root_key.objectid);
2255 BUG_ON(ret);
2256 }
2257 return 0;
7b128766
JB
2258}
2259
2260/*
2261 * We have done the truncate/delete so we can go ahead and remove the orphan
2262 * item for this particular inode.
2263 */
2264int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2265{
2266 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2267 int delete_item = 0;
2268 int release_rsv = 0;
7b128766
JB
2269 int ret = 0;
2270
d68fc57b
YZ
2271 spin_lock(&root->orphan_lock);
2272 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2273 list_del_init(&BTRFS_I(inode)->i_orphan);
2274 delete_item = 1;
7b128766
JB
2275 }
2276
d68fc57b
YZ
2277 if (BTRFS_I(inode)->orphan_meta_reserved) {
2278 BTRFS_I(inode)->orphan_meta_reserved = 0;
2279 release_rsv = 1;
7b128766 2280 }
d68fc57b 2281 spin_unlock(&root->orphan_lock);
7b128766 2282
d68fc57b
YZ
2283 if (trans && delete_item) {
2284 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2285 BUG_ON(ret);
2286 }
7b128766 2287
d68fc57b
YZ
2288 if (release_rsv)
2289 btrfs_orphan_release_metadata(inode);
7b128766 2290
d68fc57b 2291 return 0;
7b128766
JB
2292}
2293
2294/*
2295 * this cleans up any orphans that may be left on the list from the last use
2296 * of this root.
2297 */
66b4ffd1 2298int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2299{
2300 struct btrfs_path *path;
2301 struct extent_buffer *leaf;
7b128766
JB
2302 struct btrfs_key key, found_key;
2303 struct btrfs_trans_handle *trans;
2304 struct inode *inode;
2305 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2306
d68fc57b 2307 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2308 return 0;
c71bf099
YZ
2309
2310 path = btrfs_alloc_path();
66b4ffd1
JB
2311 if (!path) {
2312 ret = -ENOMEM;
2313 goto out;
2314 }
7b128766
JB
2315 path->reada = -1;
2316
2317 key.objectid = BTRFS_ORPHAN_OBJECTID;
2318 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2319 key.offset = (u64)-1;
2320
7b128766
JB
2321 while (1) {
2322 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2323 if (ret < 0)
2324 goto out;
7b128766
JB
2325
2326 /*
2327 * if ret == 0 means we found what we were searching for, which
25985edc 2328 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2329 * find the key and see if we have stuff that matches
2330 */
2331 if (ret > 0) {
66b4ffd1 2332 ret = 0;
7b128766
JB
2333 if (path->slots[0] == 0)
2334 break;
2335 path->slots[0]--;
2336 }
2337
2338 /* pull out the item */
2339 leaf = path->nodes[0];
7b128766
JB
2340 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2341
2342 /* make sure the item matches what we want */
2343 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2344 break;
2345 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2346 break;
2347
2348 /* release the path since we're done with it */
2349 btrfs_release_path(root, path);
2350
2351 /*
2352 * this is where we are basically btrfs_lookup, without the
2353 * crossing root thing. we store the inode number in the
2354 * offset of the orphan item.
2355 */
5d4f98a2
YZ
2356 found_key.objectid = found_key.offset;
2357 found_key.type = BTRFS_INODE_ITEM_KEY;
2358 found_key.offset = 0;
73f73415 2359 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
66b4ffd1
JB
2360 if (IS_ERR(inode)) {
2361 ret = PTR_ERR(inode);
2362 goto out;
2363 }
7b128766 2364
7b128766
JB
2365 /*
2366 * add this inode to the orphan list so btrfs_orphan_del does
2367 * the proper thing when we hit it
2368 */
d68fc57b 2369 spin_lock(&root->orphan_lock);
7b128766 2370 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
d68fc57b 2371 spin_unlock(&root->orphan_lock);
7b128766
JB
2372
2373 /*
2374 * if this is a bad inode, means we actually succeeded in
2375 * removing the inode, but not the orphan record, which means
2376 * we need to manually delete the orphan since iput will just
2377 * do a destroy_inode
2378 */
2379 if (is_bad_inode(inode)) {
a22285a6 2380 trans = btrfs_start_transaction(root, 0);
66b4ffd1
JB
2381 if (IS_ERR(trans)) {
2382 ret = PTR_ERR(trans);
2383 goto out;
2384 }
7b128766 2385 btrfs_orphan_del(trans, inode);
5b21f2ed 2386 btrfs_end_transaction(trans, root);
7b128766
JB
2387 iput(inode);
2388 continue;
2389 }
2390
2391 /* if we have links, this was a truncate, lets do that */
2392 if (inode->i_nlink) {
a41ad394
JB
2393 if (!S_ISREG(inode->i_mode)) {
2394 WARN_ON(1);
2395 iput(inode);
2396 continue;
2397 }
7b128766 2398 nr_truncate++;
66b4ffd1 2399 ret = btrfs_truncate(inode);
7b128766
JB
2400 } else {
2401 nr_unlink++;
2402 }
2403
2404 /* this will do delete_inode and everything for us */
2405 iput(inode);
66b4ffd1
JB
2406 if (ret)
2407 goto out;
7b128766 2408 }
d68fc57b
YZ
2409 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2410
2411 if (root->orphan_block_rsv)
2412 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2413 (u64)-1);
2414
2415 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2416 trans = btrfs_join_transaction(root, 1);
66b4ffd1
JB
2417 if (!IS_ERR(trans))
2418 btrfs_end_transaction(trans, root);
d68fc57b 2419 }
7b128766
JB
2420
2421 if (nr_unlink)
2422 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2423 if (nr_truncate)
2424 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2425
2426out:
2427 if (ret)
2428 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2429 btrfs_free_path(path);
2430 return ret;
7b128766
JB
2431}
2432
46a53cca
CM
2433/*
2434 * very simple check to peek ahead in the leaf looking for xattrs. If we
2435 * don't find any xattrs, we know there can't be any acls.
2436 *
2437 * slot is the slot the inode is in, objectid is the objectid of the inode
2438 */
2439static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2440 int slot, u64 objectid)
2441{
2442 u32 nritems = btrfs_header_nritems(leaf);
2443 struct btrfs_key found_key;
2444 int scanned = 0;
2445
2446 slot++;
2447 while (slot < nritems) {
2448 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2449
2450 /* we found a different objectid, there must not be acls */
2451 if (found_key.objectid != objectid)
2452 return 0;
2453
2454 /* we found an xattr, assume we've got an acl */
2455 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2456 return 1;
2457
2458 /*
2459 * we found a key greater than an xattr key, there can't
2460 * be any acls later on
2461 */
2462 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2463 return 0;
2464
2465 slot++;
2466 scanned++;
2467
2468 /*
2469 * it goes inode, inode backrefs, xattrs, extents,
2470 * so if there are a ton of hard links to an inode there can
2471 * be a lot of backrefs. Don't waste time searching too hard,
2472 * this is just an optimization
2473 */
2474 if (scanned >= 8)
2475 break;
2476 }
2477 /* we hit the end of the leaf before we found an xattr or
2478 * something larger than an xattr. We have to assume the inode
2479 * has acls
2480 */
2481 return 1;
2482}
2483
d352ac68
CM
2484/*
2485 * read an inode from the btree into the in-memory inode
2486 */
5d4f98a2 2487static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2488{
2489 struct btrfs_path *path;
5f39d397 2490 struct extent_buffer *leaf;
39279cc3 2491 struct btrfs_inode_item *inode_item;
0b86a832 2492 struct btrfs_timespec *tspec;
39279cc3
CM
2493 struct btrfs_root *root = BTRFS_I(inode)->root;
2494 struct btrfs_key location;
46a53cca 2495 int maybe_acls;
39279cc3 2496 u64 alloc_group_block;
618e21d5 2497 u32 rdev;
39279cc3
CM
2498 int ret;
2499
2500 path = btrfs_alloc_path();
2501 BUG_ON(!path);
39279cc3 2502 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2503
39279cc3 2504 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2505 if (ret)
39279cc3 2506 goto make_bad;
39279cc3 2507
5f39d397
CM
2508 leaf = path->nodes[0];
2509 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2510 struct btrfs_inode_item);
2511
2512 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2513 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2514 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2515 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2516 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2517
2518 tspec = btrfs_inode_atime(inode_item);
2519 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2520 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2521
2522 tspec = btrfs_inode_mtime(inode_item);
2523 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2524 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2525
2526 tspec = btrfs_inode_ctime(inode_item);
2527 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2528 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2529
a76a3cd4 2530 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2531 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2532 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2533 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2534 inode->i_rdev = 0;
5f39d397
CM
2535 rdev = btrfs_inode_rdev(leaf, inode_item);
2536
aec7477b 2537 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2538 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2539
5f39d397 2540 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2541
46a53cca
CM
2542 /*
2543 * try to precache a NULL acl entry for files that don't have
2544 * any xattrs or acls
2545 */
2546 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2547 if (!maybe_acls)
2548 cache_no_acl(inode);
46a53cca 2549
d2fb3437
YZ
2550 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2551 alloc_group_block, 0);
39279cc3
CM
2552 btrfs_free_path(path);
2553 inode_item = NULL;
2554
39279cc3 2555 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2556 case S_IFREG:
2557 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2558 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2559 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2560 inode->i_fop = &btrfs_file_operations;
2561 inode->i_op = &btrfs_file_inode_operations;
2562 break;
2563 case S_IFDIR:
2564 inode->i_fop = &btrfs_dir_file_operations;
2565 if (root == root->fs_info->tree_root)
2566 inode->i_op = &btrfs_dir_ro_inode_operations;
2567 else
2568 inode->i_op = &btrfs_dir_inode_operations;
2569 break;
2570 case S_IFLNK:
2571 inode->i_op = &btrfs_symlink_inode_operations;
2572 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2573 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2574 break;
618e21d5 2575 default:
0279b4cd 2576 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2577 init_special_inode(inode, inode->i_mode, rdev);
2578 break;
39279cc3 2579 }
6cbff00f
CH
2580
2581 btrfs_update_iflags(inode);
39279cc3
CM
2582 return;
2583
2584make_bad:
39279cc3 2585 btrfs_free_path(path);
39279cc3
CM
2586 make_bad_inode(inode);
2587}
2588
d352ac68
CM
2589/*
2590 * given a leaf and an inode, copy the inode fields into the leaf
2591 */
e02119d5
CM
2592static void fill_inode_item(struct btrfs_trans_handle *trans,
2593 struct extent_buffer *leaf,
5f39d397 2594 struct btrfs_inode_item *item,
39279cc3
CM
2595 struct inode *inode)
2596{
12ddb96c
JB
2597 if (!leaf->map_token)
2598 map_private_extent_buffer(leaf, (unsigned long)item,
2599 sizeof(struct btrfs_inode_item),
2600 &leaf->map_token, &leaf->kaddr,
2601 &leaf->map_start, &leaf->map_len,
2602 KM_USER1);
2603
5f39d397
CM
2604 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2605 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2606 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2607 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2608 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2609
2610 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2611 inode->i_atime.tv_sec);
2612 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2613 inode->i_atime.tv_nsec);
2614
2615 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2616 inode->i_mtime.tv_sec);
2617 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2618 inode->i_mtime.tv_nsec);
2619
2620 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2621 inode->i_ctime.tv_sec);
2622 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2623 inode->i_ctime.tv_nsec);
2624
a76a3cd4 2625 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2626 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2627 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2628 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2629 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2630 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2631 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
12ddb96c
JB
2632
2633 if (leaf->map_token) {
2634 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2635 leaf->map_token = NULL;
2636 }
39279cc3
CM
2637}
2638
d352ac68
CM
2639/*
2640 * copy everything in the in-memory inode into the btree.
2641 */
d397712b
CM
2642noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2643 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2644{
2645 struct btrfs_inode_item *inode_item;
2646 struct btrfs_path *path;
5f39d397 2647 struct extent_buffer *leaf;
39279cc3
CM
2648 int ret;
2649
16cdcec7
MX
2650 /*
2651 * If root is tree root, it means this inode is used to
2652 * store free space information. And these inodes are updated
2653 * when committing the transaction, so they needn't delaye to
2654 * be updated, or deadlock will occured.
2655 */
2656 if (likely(root != root->fs_info->tree_root)) {
2657 ret = btrfs_delayed_update_inode(trans, root, inode);
2658 if (!ret)
2659 btrfs_set_inode_last_trans(trans, inode);
2660 return ret;
2661 }
2662
39279cc3 2663 path = btrfs_alloc_path();
16cdcec7
MX
2664 if (!path)
2665 return -ENOMEM;
2666
b9473439 2667 path->leave_spinning = 1;
16cdcec7
MX
2668 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2669 1);
39279cc3
CM
2670 if (ret) {
2671 if (ret > 0)
2672 ret = -ENOENT;
2673 goto failed;
2674 }
2675
b4ce94de 2676 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2677 leaf = path->nodes[0];
2678 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2679 struct btrfs_inode_item);
39279cc3 2680
e02119d5 2681 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2682 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2683 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2684 ret = 0;
2685failed:
39279cc3
CM
2686 btrfs_free_path(path);
2687 return ret;
2688}
2689
d352ac68
CM
2690/*
2691 * unlink helper that gets used here in inode.c and in the tree logging
2692 * recovery code. It remove a link in a directory with a given name, and
2693 * also drops the back refs in the inode to the directory
2694 */
92986796
AV
2695static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2696 struct btrfs_root *root,
2697 struct inode *dir, struct inode *inode,
2698 const char *name, int name_len)
39279cc3
CM
2699{
2700 struct btrfs_path *path;
39279cc3 2701 int ret = 0;
5f39d397 2702 struct extent_buffer *leaf;
39279cc3 2703 struct btrfs_dir_item *di;
5f39d397 2704 struct btrfs_key key;
aec7477b 2705 u64 index;
39279cc3
CM
2706
2707 path = btrfs_alloc_path();
54aa1f4d
CM
2708 if (!path) {
2709 ret = -ENOMEM;
554233a6 2710 goto out;
54aa1f4d
CM
2711 }
2712
b9473439 2713 path->leave_spinning = 1;
39279cc3
CM
2714 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2715 name, name_len, -1);
2716 if (IS_ERR(di)) {
2717 ret = PTR_ERR(di);
2718 goto err;
2719 }
2720 if (!di) {
2721 ret = -ENOENT;
2722 goto err;
2723 }
5f39d397
CM
2724 leaf = path->nodes[0];
2725 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2726 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2727 if (ret)
2728 goto err;
39279cc3
CM
2729 btrfs_release_path(root, path);
2730
aec7477b 2731 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2732 inode->i_ino,
2733 dir->i_ino, &index);
aec7477b 2734 if (ret) {
d397712b 2735 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2736 "inode %lu parent %lu\n", name_len, name,
e02119d5 2737 inode->i_ino, dir->i_ino);
aec7477b
JB
2738 goto err;
2739 }
2740
16cdcec7
MX
2741 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2742 if (ret)
39279cc3 2743 goto err;
39279cc3 2744
e02119d5
CM
2745 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2746 inode, dir->i_ino);
49eb7e46 2747 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2748
2749 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2750 dir, index);
6418c961
CM
2751 if (ret == -ENOENT)
2752 ret = 0;
39279cc3
CM
2753err:
2754 btrfs_free_path(path);
e02119d5
CM
2755 if (ret)
2756 goto out;
2757
2758 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2759 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2760 btrfs_update_inode(trans, root, dir);
e02119d5 2761out:
39279cc3
CM
2762 return ret;
2763}
2764
92986796
AV
2765int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2766 struct btrfs_root *root,
2767 struct inode *dir, struct inode *inode,
2768 const char *name, int name_len)
2769{
2770 int ret;
2771 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2772 if (!ret) {
2773 btrfs_drop_nlink(inode);
2774 ret = btrfs_update_inode(trans, root, inode);
2775 }
2776 return ret;
2777}
2778
2779
a22285a6
YZ
2780/* helper to check if there is any shared block in the path */
2781static int check_path_shared(struct btrfs_root *root,
2782 struct btrfs_path *path)
39279cc3 2783{
a22285a6
YZ
2784 struct extent_buffer *eb;
2785 int level;
0e4dcbef 2786 u64 refs = 1;
5df6a9f6 2787
a22285a6 2788 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2789 int ret;
2790
a22285a6
YZ
2791 if (!path->nodes[level])
2792 break;
2793 eb = path->nodes[level];
2794 if (!btrfs_block_can_be_shared(root, eb))
2795 continue;
2796 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2797 &refs, NULL);
2798 if (refs > 1)
2799 return 1;
5df6a9f6 2800 }
dedefd72 2801 return 0;
39279cc3
CM
2802}
2803
a22285a6
YZ
2804/*
2805 * helper to start transaction for unlink and rmdir.
2806 *
2807 * unlink and rmdir are special in btrfs, they do not always free space.
2808 * so in enospc case, we should make sure they will free space before
2809 * allowing them to use the global metadata reservation.
2810 */
2811static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2812 struct dentry *dentry)
4df27c4d 2813{
39279cc3 2814 struct btrfs_trans_handle *trans;
a22285a6 2815 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2816 struct btrfs_path *path;
a22285a6 2817 struct btrfs_inode_ref *ref;
4df27c4d 2818 struct btrfs_dir_item *di;
7b128766 2819 struct inode *inode = dentry->d_inode;
4df27c4d 2820 u64 index;
a22285a6
YZ
2821 int check_link = 1;
2822 int err = -ENOSPC;
4df27c4d
YZ
2823 int ret;
2824
a22285a6
YZ
2825 trans = btrfs_start_transaction(root, 10);
2826 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2827 return trans;
4df27c4d 2828
a22285a6
YZ
2829 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2830 return ERR_PTR(-ENOSPC);
4df27c4d 2831
a22285a6
YZ
2832 /* check if there is someone else holds reference */
2833 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2834 return ERR_PTR(-ENOSPC);
4df27c4d 2835
a22285a6
YZ
2836 if (atomic_read(&inode->i_count) > 2)
2837 return ERR_PTR(-ENOSPC);
4df27c4d 2838
a22285a6
YZ
2839 if (xchg(&root->fs_info->enospc_unlink, 1))
2840 return ERR_PTR(-ENOSPC);
2841
2842 path = btrfs_alloc_path();
2843 if (!path) {
2844 root->fs_info->enospc_unlink = 0;
2845 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2846 }
2847
a22285a6 2848 trans = btrfs_start_transaction(root, 0);
5df6a9f6 2849 if (IS_ERR(trans)) {
a22285a6
YZ
2850 btrfs_free_path(path);
2851 root->fs_info->enospc_unlink = 0;
2852 return trans;
2853 }
4df27c4d 2854
a22285a6
YZ
2855 path->skip_locking = 1;
2856 path->search_commit_root = 1;
4df27c4d 2857
a22285a6
YZ
2858 ret = btrfs_lookup_inode(trans, root, path,
2859 &BTRFS_I(dir)->location, 0);
2860 if (ret < 0) {
2861 err = ret;
2862 goto out;
2863 }
2864 if (ret == 0) {
2865 if (check_path_shared(root, path))
2866 goto out;
2867 } else {
2868 check_link = 0;
5df6a9f6 2869 }
a22285a6
YZ
2870 btrfs_release_path(root, path);
2871
2872 ret = btrfs_lookup_inode(trans, root, path,
2873 &BTRFS_I(inode)->location, 0);
2874 if (ret < 0) {
2875 err = ret;
2876 goto out;
2877 }
2878 if (ret == 0) {
2879 if (check_path_shared(root, path))
2880 goto out;
2881 } else {
2882 check_link = 0;
2883 }
2884 btrfs_release_path(root, path);
2885
2886 if (ret == 0 && S_ISREG(inode->i_mode)) {
2887 ret = btrfs_lookup_file_extent(trans, root, path,
2888 inode->i_ino, (u64)-1, 0);
2889 if (ret < 0) {
2890 err = ret;
2891 goto out;
2892 }
2893 BUG_ON(ret == 0);
2894 if (check_path_shared(root, path))
2895 goto out;
2896 btrfs_release_path(root, path);
2897 }
2898
2899 if (!check_link) {
2900 err = 0;
2901 goto out;
2902 }
2903
2904 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2905 dentry->d_name.name, dentry->d_name.len, 0);
2906 if (IS_ERR(di)) {
2907 err = PTR_ERR(di);
2908 goto out;
2909 }
2910 if (di) {
2911 if (check_path_shared(root, path))
2912 goto out;
2913 } else {
2914 err = 0;
2915 goto out;
2916 }
2917 btrfs_release_path(root, path);
2918
2919 ref = btrfs_lookup_inode_ref(trans, root, path,
2920 dentry->d_name.name, dentry->d_name.len,
2921 inode->i_ino, dir->i_ino, 0);
2922 if (IS_ERR(ref)) {
2923 err = PTR_ERR(ref);
2924 goto out;
2925 }
2926 BUG_ON(!ref);
2927 if (check_path_shared(root, path))
2928 goto out;
2929 index = btrfs_inode_ref_index(path->nodes[0], ref);
2930 btrfs_release_path(root, path);
2931
16cdcec7
MX
2932 /*
2933 * This is a commit root search, if we can lookup inode item and other
2934 * relative items in the commit root, it means the transaction of
2935 * dir/file creation has been committed, and the dir index item that we
2936 * delay to insert has also been inserted into the commit root. So
2937 * we needn't worry about the delayed insertion of the dir index item
2938 * here.
2939 */
a22285a6
YZ
2940 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2941 dentry->d_name.name, dentry->d_name.len, 0);
2942 if (IS_ERR(di)) {
2943 err = PTR_ERR(di);
2944 goto out;
2945 }
2946 BUG_ON(ret == -ENOENT);
2947 if (check_path_shared(root, path))
2948 goto out;
2949
2950 err = 0;
2951out:
2952 btrfs_free_path(path);
2953 if (err) {
2954 btrfs_end_transaction(trans, root);
2955 root->fs_info->enospc_unlink = 0;
2956 return ERR_PTR(err);
2957 }
2958
2959 trans->block_rsv = &root->fs_info->global_block_rsv;
2960 return trans;
2961}
2962
2963static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2964 struct btrfs_root *root)
2965{
2966 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2967 BUG_ON(!root->fs_info->enospc_unlink);
2968 root->fs_info->enospc_unlink = 0;
2969 }
2970 btrfs_end_transaction_throttle(trans, root);
2971}
2972
2973static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2974{
2975 struct btrfs_root *root = BTRFS_I(dir)->root;
2976 struct btrfs_trans_handle *trans;
2977 struct inode *inode = dentry->d_inode;
2978 int ret;
2979 unsigned long nr = 0;
2980
2981 trans = __unlink_start_trans(dir, dentry);
2982 if (IS_ERR(trans))
2983 return PTR_ERR(trans);
5f39d397 2984
39279cc3 2985 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2986
2987 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2988
e02119d5
CM
2989 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2990 dentry->d_name.name, dentry->d_name.len);
a22285a6 2991 BUG_ON(ret);
7b128766 2992
a22285a6 2993 if (inode->i_nlink == 0) {
7b128766 2994 ret = btrfs_orphan_add(trans, inode);
a22285a6
YZ
2995 BUG_ON(ret);
2996 }
7b128766 2997
d3c2fdcf 2998 nr = trans->blocks_used;
a22285a6 2999 __unlink_end_trans(trans, root);
d3c2fdcf 3000 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3001 return ret;
3002}
3003
4df27c4d
YZ
3004int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3005 struct btrfs_root *root,
3006 struct inode *dir, u64 objectid,
3007 const char *name, int name_len)
3008{
3009 struct btrfs_path *path;
3010 struct extent_buffer *leaf;
3011 struct btrfs_dir_item *di;
3012 struct btrfs_key key;
3013 u64 index;
3014 int ret;
3015
3016 path = btrfs_alloc_path();
3017 if (!path)
3018 return -ENOMEM;
3019
3020 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
3021 name, name_len, -1);
3022 BUG_ON(!di || IS_ERR(di));
3023
3024 leaf = path->nodes[0];
3025 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3026 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3027 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3028 BUG_ON(ret);
3029 btrfs_release_path(root, path);
3030
3031 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3032 objectid, root->root_key.objectid,
3033 dir->i_ino, &index, name, name_len);
3034 if (ret < 0) {
3035 BUG_ON(ret != -ENOENT);
3036 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
3037 name, name_len);
3038 BUG_ON(!di || IS_ERR(di));
3039
3040 leaf = path->nodes[0];
3041 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3042 btrfs_release_path(root, path);
3043 index = key.offset;
3044 }
16cdcec7 3045 btrfs_release_path(root, path);
4df27c4d 3046
16cdcec7 3047 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4df27c4d 3048 BUG_ON(ret);
4df27c4d
YZ
3049
3050 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3051 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3052 ret = btrfs_update_inode(trans, root, dir);
3053 BUG_ON(ret);
4df27c4d 3054
4df27c4d
YZ
3055 return 0;
3056}
3057
39279cc3
CM
3058static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3059{
3060 struct inode *inode = dentry->d_inode;
1832a6d5 3061 int err = 0;
39279cc3 3062 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3063 struct btrfs_trans_handle *trans;
1832a6d5 3064 unsigned long nr = 0;
39279cc3 3065
3394e160 3066 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
4df27c4d 3067 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
3068 return -ENOTEMPTY;
3069
a22285a6
YZ
3070 trans = __unlink_start_trans(dir, dentry);
3071 if (IS_ERR(trans))
5df6a9f6 3072 return PTR_ERR(trans);
5df6a9f6 3073
39279cc3 3074 btrfs_set_trans_block_group(trans, dir);
39279cc3 3075
4df27c4d
YZ
3076 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3077 err = btrfs_unlink_subvol(trans, root, dir,
3078 BTRFS_I(inode)->location.objectid,
3079 dentry->d_name.name,
3080 dentry->d_name.len);
3081 goto out;
3082 }
3083
7b128766
JB
3084 err = btrfs_orphan_add(trans, inode);
3085 if (err)
4df27c4d 3086 goto out;
7b128766 3087
39279cc3 3088 /* now the directory is empty */
e02119d5
CM
3089 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3090 dentry->d_name.name, dentry->d_name.len);
d397712b 3091 if (!err)
dbe674a9 3092 btrfs_i_size_write(inode, 0);
4df27c4d 3093out:
d3c2fdcf 3094 nr = trans->blocks_used;
a22285a6 3095 __unlink_end_trans(trans, root);
d3c2fdcf 3096 btrfs_btree_balance_dirty(root, nr);
3954401f 3097
39279cc3
CM
3098 return err;
3099}
3100
d20f7043 3101#if 0
323ac95b
CM
3102/*
3103 * when truncating bytes in a file, it is possible to avoid reading
3104 * the leaves that contain only checksum items. This can be the
3105 * majority of the IO required to delete a large file, but it must
3106 * be done carefully.
3107 *
3108 * The keys in the level just above the leaves are checked to make sure
3109 * the lowest key in a given leaf is a csum key, and starts at an offset
3110 * after the new size.
3111 *
3112 * Then the key for the next leaf is checked to make sure it also has
3113 * a checksum item for the same file. If it does, we know our target leaf
3114 * contains only checksum items, and it can be safely freed without reading
3115 * it.
3116 *
3117 * This is just an optimization targeted at large files. It may do
3118 * nothing. It will return 0 unless things went badly.
3119 */
3120static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3121 struct btrfs_root *root,
3122 struct btrfs_path *path,
3123 struct inode *inode, u64 new_size)
3124{
3125 struct btrfs_key key;
3126 int ret;
3127 int nritems;
3128 struct btrfs_key found_key;
3129 struct btrfs_key other_key;
5b84e8d6
YZ
3130 struct btrfs_leaf_ref *ref;
3131 u64 leaf_gen;
3132 u64 leaf_start;
323ac95b
CM
3133
3134 path->lowest_level = 1;
3135 key.objectid = inode->i_ino;
3136 key.type = BTRFS_CSUM_ITEM_KEY;
3137 key.offset = new_size;
3138again:
3139 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3140 if (ret < 0)
3141 goto out;
3142
3143 if (path->nodes[1] == NULL) {
3144 ret = 0;
3145 goto out;
3146 }
3147 ret = 0;
3148 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3149 nritems = btrfs_header_nritems(path->nodes[1]);
3150
3151 if (!nritems)
3152 goto out;
3153
3154 if (path->slots[1] >= nritems)
3155 goto next_node;
3156
3157 /* did we find a key greater than anything we want to delete? */
3158 if (found_key.objectid > inode->i_ino ||
3159 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3160 goto out;
3161
3162 /* we check the next key in the node to make sure the leave contains
3163 * only checksum items. This comparison doesn't work if our
3164 * leaf is the last one in the node
3165 */
3166 if (path->slots[1] + 1 >= nritems) {
3167next_node:
3168 /* search forward from the last key in the node, this
3169 * will bring us into the next node in the tree
3170 */
3171 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3172
3173 /* unlikely, but we inc below, so check to be safe */
3174 if (found_key.offset == (u64)-1)
3175 goto out;
3176
3177 /* search_forward needs a path with locks held, do the
3178 * search again for the original key. It is possible
3179 * this will race with a balance and return a path that
3180 * we could modify, but this drop is just an optimization
3181 * and is allowed to miss some leaves.
3182 */
3183 btrfs_release_path(root, path);
3184 found_key.offset++;
3185
3186 /* setup a max key for search_forward */
3187 other_key.offset = (u64)-1;
3188 other_key.type = key.type;
3189 other_key.objectid = key.objectid;
3190
3191 path->keep_locks = 1;
3192 ret = btrfs_search_forward(root, &found_key, &other_key,
3193 path, 0, 0);
3194 path->keep_locks = 0;
3195 if (ret || found_key.objectid != key.objectid ||
3196 found_key.type != key.type) {
3197 ret = 0;
3198 goto out;
3199 }
3200
3201 key.offset = found_key.offset;
3202 btrfs_release_path(root, path);
3203 cond_resched();
3204 goto again;
3205 }
3206
3207 /* we know there's one more slot after us in the tree,
3208 * read that key so we can verify it is also a checksum item
3209 */
3210 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3211
3212 if (found_key.objectid < inode->i_ino)
3213 goto next_key;
3214
3215 if (found_key.type != key.type || found_key.offset < new_size)
3216 goto next_key;
3217
3218 /*
3219 * if the key for the next leaf isn't a csum key from this objectid,
3220 * we can't be sure there aren't good items inside this leaf.
3221 * Bail out
3222 */
3223 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3224 goto out;
3225
5b84e8d6
YZ
3226 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3227 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
3228 /*
3229 * it is safe to delete this leaf, it contains only
3230 * csum items from this inode at an offset >= new_size
3231 */
5b84e8d6 3232 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
3233 BUG_ON(ret);
3234
5b84e8d6
YZ
3235 if (root->ref_cows && leaf_gen < trans->transid) {
3236 ref = btrfs_alloc_leaf_ref(root, 0);
3237 if (ref) {
3238 ref->root_gen = root->root_key.offset;
3239 ref->bytenr = leaf_start;
3240 ref->owner = 0;
3241 ref->generation = leaf_gen;
3242 ref->nritems = 0;
3243
bd56b302
CM
3244 btrfs_sort_leaf_ref(ref);
3245
5b84e8d6
YZ
3246 ret = btrfs_add_leaf_ref(root, ref, 0);
3247 WARN_ON(ret);
3248 btrfs_free_leaf_ref(root, ref);
3249 } else {
3250 WARN_ON(1);
3251 }
3252 }
323ac95b
CM
3253next_key:
3254 btrfs_release_path(root, path);
3255
3256 if (other_key.objectid == inode->i_ino &&
3257 other_key.type == key.type && other_key.offset > key.offset) {
3258 key.offset = other_key.offset;
3259 cond_resched();
3260 goto again;
3261 }
3262 ret = 0;
3263out:
3264 /* fixup any changes we've made to the path */
3265 path->lowest_level = 0;
3266 path->keep_locks = 0;
3267 btrfs_release_path(root, path);
3268 return ret;
3269}
3270
d20f7043
CM
3271#endif
3272
39279cc3
CM
3273/*
3274 * this can truncate away extent items, csum items and directory items.
3275 * It starts at a high offset and removes keys until it can't find
d352ac68 3276 * any higher than new_size
39279cc3
CM
3277 *
3278 * csum items that cross the new i_size are truncated to the new size
3279 * as well.
7b128766
JB
3280 *
3281 * min_type is the minimum key type to truncate down to. If set to 0, this
3282 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3283 */
8082510e
YZ
3284int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3285 struct btrfs_root *root,
3286 struct inode *inode,
3287 u64 new_size, u32 min_type)
39279cc3 3288{
39279cc3 3289 struct btrfs_path *path;
5f39d397 3290 struct extent_buffer *leaf;
39279cc3 3291 struct btrfs_file_extent_item *fi;
8082510e
YZ
3292 struct btrfs_key key;
3293 struct btrfs_key found_key;
39279cc3 3294 u64 extent_start = 0;
db94535d 3295 u64 extent_num_bytes = 0;
5d4f98a2 3296 u64 extent_offset = 0;
39279cc3 3297 u64 item_end = 0;
8082510e
YZ
3298 u64 mask = root->sectorsize - 1;
3299 u32 found_type = (u8)-1;
39279cc3
CM
3300 int found_extent;
3301 int del_item;
85e21bac
CM
3302 int pending_del_nr = 0;
3303 int pending_del_slot = 0;
179e29e4 3304 int extent_type = -1;
771ed689 3305 int encoding;
8082510e
YZ
3306 int ret;
3307 int err = 0;
3308
3309 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3310
0af3d00b 3311 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3312 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3313
16cdcec7
MX
3314 /*
3315 * This function is also used to drop the items in the log tree before
3316 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3317 * it is used to drop the loged items. So we shouldn't kill the delayed
3318 * items.
3319 */
3320 if (min_type == 0 && root == BTRFS_I(inode)->root)
3321 btrfs_kill_delayed_inode_items(inode);
3322
39279cc3
CM
3323 path = btrfs_alloc_path();
3324 BUG_ON(!path);
33c17ad5 3325 path->reada = -1;
5f39d397 3326
39279cc3
CM
3327 key.objectid = inode->i_ino;
3328 key.offset = (u64)-1;
5f39d397
CM
3329 key.type = (u8)-1;
3330
85e21bac 3331search_again:
b9473439 3332 path->leave_spinning = 1;
85e21bac 3333 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3334 if (ret < 0) {
3335 err = ret;
3336 goto out;
3337 }
d397712b 3338
85e21bac 3339 if (ret > 0) {
e02119d5
CM
3340 /* there are no items in the tree for us to truncate, we're
3341 * done
3342 */
8082510e
YZ
3343 if (path->slots[0] == 0)
3344 goto out;
85e21bac
CM
3345 path->slots[0]--;
3346 }
3347
d397712b 3348 while (1) {
39279cc3 3349 fi = NULL;
5f39d397
CM
3350 leaf = path->nodes[0];
3351 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3352 found_type = btrfs_key_type(&found_key);
771ed689 3353 encoding = 0;
39279cc3 3354
5f39d397 3355 if (found_key.objectid != inode->i_ino)
39279cc3 3356 break;
5f39d397 3357
85e21bac 3358 if (found_type < min_type)
39279cc3
CM
3359 break;
3360
5f39d397 3361 item_end = found_key.offset;
39279cc3 3362 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3363 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3364 struct btrfs_file_extent_item);
179e29e4 3365 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3366 encoding = btrfs_file_extent_compression(leaf, fi);
3367 encoding |= btrfs_file_extent_encryption(leaf, fi);
3368 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3369
179e29e4 3370 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3371 item_end +=
db94535d 3372 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3373 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3374 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3375 fi);
39279cc3 3376 }
008630c1 3377 item_end--;
39279cc3 3378 }
8082510e
YZ
3379 if (found_type > min_type) {
3380 del_item = 1;
3381 } else {
3382 if (item_end < new_size)
b888db2b 3383 break;
8082510e
YZ
3384 if (found_key.offset >= new_size)
3385 del_item = 1;
3386 else
3387 del_item = 0;
39279cc3 3388 }
39279cc3 3389 found_extent = 0;
39279cc3 3390 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3391 if (found_type != BTRFS_EXTENT_DATA_KEY)
3392 goto delete;
3393
3394 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3395 u64 num_dec;
db94535d 3396 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3397 if (!del_item && !encoding) {
db94535d
CM
3398 u64 orig_num_bytes =
3399 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3400 extent_num_bytes = new_size -
5f39d397 3401 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3402 extent_num_bytes = extent_num_bytes &
3403 ~((u64)root->sectorsize - 1);
db94535d
CM
3404 btrfs_set_file_extent_num_bytes(leaf, fi,
3405 extent_num_bytes);
3406 num_dec = (orig_num_bytes -
9069218d 3407 extent_num_bytes);
e02119d5 3408 if (root->ref_cows && extent_start != 0)
a76a3cd4 3409 inode_sub_bytes(inode, num_dec);
5f39d397 3410 btrfs_mark_buffer_dirty(leaf);
39279cc3 3411 } else {
db94535d
CM
3412 extent_num_bytes =
3413 btrfs_file_extent_disk_num_bytes(leaf,
3414 fi);
5d4f98a2
YZ
3415 extent_offset = found_key.offset -
3416 btrfs_file_extent_offset(leaf, fi);
3417
39279cc3 3418 /* FIXME blocksize != 4096 */
9069218d 3419 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3420 if (extent_start != 0) {
3421 found_extent = 1;
e02119d5 3422 if (root->ref_cows)
a76a3cd4 3423 inode_sub_bytes(inode, num_dec);
e02119d5 3424 }
39279cc3 3425 }
9069218d 3426 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3427 /*
3428 * we can't truncate inline items that have had
3429 * special encodings
3430 */
3431 if (!del_item &&
3432 btrfs_file_extent_compression(leaf, fi) == 0 &&
3433 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3434 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3435 u32 size = new_size - found_key.offset;
3436
3437 if (root->ref_cows) {
a76a3cd4
YZ
3438 inode_sub_bytes(inode, item_end + 1 -
3439 new_size);
e02119d5
CM
3440 }
3441 size =
3442 btrfs_file_extent_calc_inline_size(size);
9069218d 3443 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3444 size, 1);
9069218d 3445 BUG_ON(ret);
e02119d5 3446 } else if (root->ref_cows) {
a76a3cd4
YZ
3447 inode_sub_bytes(inode, item_end + 1 -
3448 found_key.offset);
9069218d 3449 }
39279cc3 3450 }
179e29e4 3451delete:
39279cc3 3452 if (del_item) {
85e21bac
CM
3453 if (!pending_del_nr) {
3454 /* no pending yet, add ourselves */
3455 pending_del_slot = path->slots[0];
3456 pending_del_nr = 1;
3457 } else if (pending_del_nr &&
3458 path->slots[0] + 1 == pending_del_slot) {
3459 /* hop on the pending chunk */
3460 pending_del_nr++;
3461 pending_del_slot = path->slots[0];
3462 } else {
d397712b 3463 BUG();
85e21bac 3464 }
39279cc3
CM
3465 } else {
3466 break;
3467 }
0af3d00b
JB
3468 if (found_extent && (root->ref_cows ||
3469 root == root->fs_info->tree_root)) {
b9473439 3470 btrfs_set_path_blocking(path);
39279cc3 3471 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3472 extent_num_bytes, 0,
3473 btrfs_header_owner(leaf),
3474 inode->i_ino, extent_offset);
39279cc3
CM
3475 BUG_ON(ret);
3476 }
85e21bac 3477
8082510e
YZ
3478 if (found_type == BTRFS_INODE_ITEM_KEY)
3479 break;
3480
3481 if (path->slots[0] == 0 ||
3482 path->slots[0] != pending_del_slot) {
3483 if (root->ref_cows) {
3484 err = -EAGAIN;
3485 goto out;
3486 }
3487 if (pending_del_nr) {
3488 ret = btrfs_del_items(trans, root, path,
3489 pending_del_slot,
3490 pending_del_nr);
3491 BUG_ON(ret);
3492 pending_del_nr = 0;
3493 }
85e21bac
CM
3494 btrfs_release_path(root, path);
3495 goto search_again;
8082510e
YZ
3496 } else {
3497 path->slots[0]--;
85e21bac 3498 }
39279cc3 3499 }
8082510e 3500out:
85e21bac
CM
3501 if (pending_del_nr) {
3502 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3503 pending_del_nr);
d68fc57b 3504 BUG_ON(ret);
85e21bac 3505 }
39279cc3 3506 btrfs_free_path(path);
8082510e 3507 return err;
39279cc3
CM
3508}
3509
3510/*
3511 * taken from block_truncate_page, but does cow as it zeros out
3512 * any bytes left in the last page in the file.
3513 */
3514static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3515{
3516 struct inode *inode = mapping->host;
db94535d 3517 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3518 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3519 struct btrfs_ordered_extent *ordered;
2ac55d41 3520 struct extent_state *cached_state = NULL;
e6dcd2dc 3521 char *kaddr;
db94535d 3522 u32 blocksize = root->sectorsize;
39279cc3
CM
3523 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3524 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3525 struct page *page;
39279cc3 3526 int ret = 0;
a52d9a80 3527 u64 page_start;
e6dcd2dc 3528 u64 page_end;
39279cc3
CM
3529
3530 if ((offset & (blocksize - 1)) == 0)
3531 goto out;
0ca1f7ce 3532 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3533 if (ret)
3534 goto out;
39279cc3
CM
3535
3536 ret = -ENOMEM;
211c17f5 3537again:
39279cc3 3538 page = grab_cache_page(mapping, index);
5d5e103a 3539 if (!page) {
0ca1f7ce 3540 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3541 goto out;
5d5e103a 3542 }
e6dcd2dc
CM
3543
3544 page_start = page_offset(page);
3545 page_end = page_start + PAGE_CACHE_SIZE - 1;
3546
39279cc3 3547 if (!PageUptodate(page)) {
9ebefb18 3548 ret = btrfs_readpage(NULL, page);
39279cc3 3549 lock_page(page);
211c17f5
CM
3550 if (page->mapping != mapping) {
3551 unlock_page(page);
3552 page_cache_release(page);
3553 goto again;
3554 }
39279cc3
CM
3555 if (!PageUptodate(page)) {
3556 ret = -EIO;
89642229 3557 goto out_unlock;
39279cc3
CM
3558 }
3559 }
211c17f5 3560 wait_on_page_writeback(page);
e6dcd2dc 3561
2ac55d41
JB
3562 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3563 GFP_NOFS);
e6dcd2dc
CM
3564 set_page_extent_mapped(page);
3565
3566 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3567 if (ordered) {
2ac55d41
JB
3568 unlock_extent_cached(io_tree, page_start, page_end,
3569 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3570 unlock_page(page);
3571 page_cache_release(page);
eb84ae03 3572 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3573 btrfs_put_ordered_extent(ordered);
3574 goto again;
3575 }
3576
2ac55d41 3577 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3578 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3579 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3580
2ac55d41
JB
3581 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3582 &cached_state);
9ed74f2d 3583 if (ret) {
2ac55d41
JB
3584 unlock_extent_cached(io_tree, page_start, page_end,
3585 &cached_state, GFP_NOFS);
9ed74f2d
JB
3586 goto out_unlock;
3587 }
3588
e6dcd2dc
CM
3589 ret = 0;
3590 if (offset != PAGE_CACHE_SIZE) {
3591 kaddr = kmap(page);
3592 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3593 flush_dcache_page(page);
3594 kunmap(page);
3595 }
247e743c 3596 ClearPageChecked(page);
e6dcd2dc 3597 set_page_dirty(page);
2ac55d41
JB
3598 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3599 GFP_NOFS);
39279cc3 3600
89642229 3601out_unlock:
5d5e103a 3602 if (ret)
0ca1f7ce 3603 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3604 unlock_page(page);
3605 page_cache_release(page);
3606out:
3607 return ret;
3608}
3609
695a0d0d
JB
3610/*
3611 * This function puts in dummy file extents for the area we're creating a hole
3612 * for. So if we are truncating this file to a larger size we need to insert
3613 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3614 * the range between oldsize and size
3615 */
a41ad394 3616int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3617{
9036c102
YZ
3618 struct btrfs_trans_handle *trans;
3619 struct btrfs_root *root = BTRFS_I(inode)->root;
3620 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3621 struct extent_map *em = NULL;
2ac55d41 3622 struct extent_state *cached_state = NULL;
9036c102 3623 u64 mask = root->sectorsize - 1;
a41ad394 3624 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3625 u64 block_end = (size + mask) & ~mask;
3626 u64 last_byte;
3627 u64 cur_offset;
3628 u64 hole_size;
9ed74f2d 3629 int err = 0;
39279cc3 3630
9036c102
YZ
3631 if (size <= hole_start)
3632 return 0;
3633
9036c102
YZ
3634 while (1) {
3635 struct btrfs_ordered_extent *ordered;
3636 btrfs_wait_ordered_range(inode, hole_start,
3637 block_end - hole_start);
2ac55d41
JB
3638 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3639 &cached_state, GFP_NOFS);
9036c102
YZ
3640 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3641 if (!ordered)
3642 break;
2ac55d41
JB
3643 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3644 &cached_state, GFP_NOFS);
9036c102
YZ
3645 btrfs_put_ordered_extent(ordered);
3646 }
39279cc3 3647
9036c102
YZ
3648 cur_offset = hole_start;
3649 while (1) {
3650 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3651 block_end - cur_offset, 0);
3652 BUG_ON(IS_ERR(em) || !em);
3653 last_byte = min(extent_map_end(em), block_end);
3654 last_byte = (last_byte + mask) & ~mask;
8082510e 3655 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3656 u64 hint_byte = 0;
9036c102 3657 hole_size = last_byte - cur_offset;
9ed74f2d 3658
a22285a6
YZ
3659 trans = btrfs_start_transaction(root, 2);
3660 if (IS_ERR(trans)) {
3661 err = PTR_ERR(trans);
9ed74f2d 3662 break;
a22285a6 3663 }
8082510e
YZ
3664 btrfs_set_trans_block_group(trans, inode);
3665
3666 err = btrfs_drop_extents(trans, inode, cur_offset,
3667 cur_offset + hole_size,
3668 &hint_byte, 1);
3893e33b
JB
3669 if (err)
3670 break;
8082510e 3671
9036c102
YZ
3672 err = btrfs_insert_file_extent(trans, root,
3673 inode->i_ino, cur_offset, 0,
3674 0, hole_size, 0, hole_size,
3675 0, 0, 0);
3893e33b
JB
3676 if (err)
3677 break;
8082510e 3678
9036c102
YZ
3679 btrfs_drop_extent_cache(inode, hole_start,
3680 last_byte - 1, 0);
8082510e
YZ
3681
3682 btrfs_end_transaction(trans, root);
9036c102
YZ
3683 }
3684 free_extent_map(em);
a22285a6 3685 em = NULL;
9036c102 3686 cur_offset = last_byte;
8082510e 3687 if (cur_offset >= block_end)
9036c102
YZ
3688 break;
3689 }
1832a6d5 3690
a22285a6 3691 free_extent_map(em);
2ac55d41
JB
3692 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3693 GFP_NOFS);
9036c102
YZ
3694 return err;
3695}
39279cc3 3696
a41ad394 3697static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3698{
a41ad394 3699 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3700 int ret;
3701
a41ad394 3702 if (newsize == oldsize)
8082510e
YZ
3703 return 0;
3704
a41ad394
JB
3705 if (newsize > oldsize) {
3706 i_size_write(inode, newsize);
3707 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3708 truncate_pagecache(inode, oldsize, newsize);
3709 ret = btrfs_cont_expand(inode, oldsize, newsize);
8082510e 3710 if (ret) {
a41ad394 3711 btrfs_setsize(inode, oldsize);
8082510e
YZ
3712 return ret;
3713 }
3714
930f028a 3715 mark_inode_dirty(inode);
a41ad394 3716 } else {
8082510e 3717
a41ad394
JB
3718 /*
3719 * We're truncating a file that used to have good data down to
3720 * zero. Make sure it gets into the ordered flush list so that
3721 * any new writes get down to disk quickly.
3722 */
3723 if (newsize == 0)
3724 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3725
a41ad394
JB
3726 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3727 truncate_setsize(inode, newsize);
3728 ret = btrfs_truncate(inode);
8082510e
YZ
3729 }
3730
a41ad394 3731 return ret;
8082510e
YZ
3732}
3733
9036c102
YZ
3734static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3735{
3736 struct inode *inode = dentry->d_inode;
b83cc969 3737 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3738 int err;
39279cc3 3739
b83cc969
LZ
3740 if (btrfs_root_readonly(root))
3741 return -EROFS;
3742
9036c102
YZ
3743 err = inode_change_ok(inode, attr);
3744 if (err)
3745 return err;
2bf5a725 3746
5a3f23d5 3747 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3748 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3749 if (err)
3750 return err;
39279cc3 3751 }
9036c102 3752
1025774c
CH
3753 if (attr->ia_valid) {
3754 setattr_copy(inode, attr);
3755 mark_inode_dirty(inode);
3756
3757 if (attr->ia_valid & ATTR_MODE)
3758 err = btrfs_acl_chmod(inode);
3759 }
33268eaf 3760
39279cc3
CM
3761 return err;
3762}
61295eb8 3763
bd555975 3764void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3765{
3766 struct btrfs_trans_handle *trans;
3767 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3768 unsigned long nr;
39279cc3
CM
3769 int ret;
3770
1abe9b8a 3771 trace_btrfs_inode_evict(inode);
3772
39279cc3 3773 truncate_inode_pages(&inode->i_data, 0);
0af3d00b
JB
3774 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3775 root == root->fs_info->tree_root))
bd555975
AV
3776 goto no_delete;
3777
39279cc3 3778 if (is_bad_inode(inode)) {
7b128766 3779 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3780 goto no_delete;
3781 }
bd555975 3782 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3783 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3784
c71bf099
YZ
3785 if (root->fs_info->log_root_recovering) {
3786 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3787 goto no_delete;
3788 }
3789
76dda93c
YZ
3790 if (inode->i_nlink > 0) {
3791 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3792 goto no_delete;
3793 }
3794
dbe674a9 3795 btrfs_i_size_write(inode, 0);
5f39d397 3796
8082510e 3797 while (1) {
d68fc57b
YZ
3798 trans = btrfs_start_transaction(root, 0);
3799 BUG_ON(IS_ERR(trans));
8082510e 3800 btrfs_set_trans_block_group(trans, inode);
d68fc57b
YZ
3801 trans->block_rsv = root->orphan_block_rsv;
3802
3803 ret = btrfs_block_rsv_check(trans, root,
3804 root->orphan_block_rsv, 0, 5);
3805 if (ret) {
3806 BUG_ON(ret != -EAGAIN);
3807 ret = btrfs_commit_transaction(trans, root);
3808 BUG_ON(ret);
3809 continue;
3810 }
7b128766 3811
d68fc57b 3812 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3813 if (ret != -EAGAIN)
3814 break;
85e21bac 3815
8082510e
YZ
3816 nr = trans->blocks_used;
3817 btrfs_end_transaction(trans, root);
3818 trans = NULL;
3819 btrfs_btree_balance_dirty(root, nr);
d68fc57b 3820
8082510e 3821 }
5f39d397 3822
8082510e
YZ
3823 if (ret == 0) {
3824 ret = btrfs_orphan_del(trans, inode);
3825 BUG_ON(ret);
3826 }
54aa1f4d 3827
d3c2fdcf 3828 nr = trans->blocks_used;
54aa1f4d 3829 btrfs_end_transaction(trans, root);
d3c2fdcf 3830 btrfs_btree_balance_dirty(root, nr);
39279cc3 3831no_delete:
bd555975 3832 end_writeback(inode);
8082510e 3833 return;
39279cc3
CM
3834}
3835
3836/*
3837 * this returns the key found in the dir entry in the location pointer.
3838 * If no dir entries were found, location->objectid is 0.
3839 */
3840static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3841 struct btrfs_key *location)
3842{
3843 const char *name = dentry->d_name.name;
3844 int namelen = dentry->d_name.len;
3845 struct btrfs_dir_item *di;
3846 struct btrfs_path *path;
3847 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3848 int ret = 0;
39279cc3
CM
3849
3850 path = btrfs_alloc_path();
3851 BUG_ON(!path);
3954401f 3852
39279cc3
CM
3853 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3854 namelen, 0);
0d9f7f3e
Y
3855 if (IS_ERR(di))
3856 ret = PTR_ERR(di);
d397712b
CM
3857
3858 if (!di || IS_ERR(di))
3954401f 3859 goto out_err;
d397712b 3860
5f39d397 3861 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3862out:
39279cc3
CM
3863 btrfs_free_path(path);
3864 return ret;
3954401f
CM
3865out_err:
3866 location->objectid = 0;
3867 goto out;
39279cc3
CM
3868}
3869
3870/*
3871 * when we hit a tree root in a directory, the btrfs part of the inode
3872 * needs to be changed to reflect the root directory of the tree root. This
3873 * is kind of like crossing a mount point.
3874 */
3875static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3876 struct inode *dir,
3877 struct dentry *dentry,
3878 struct btrfs_key *location,
3879 struct btrfs_root **sub_root)
39279cc3 3880{
4df27c4d
YZ
3881 struct btrfs_path *path;
3882 struct btrfs_root *new_root;
3883 struct btrfs_root_ref *ref;
3884 struct extent_buffer *leaf;
3885 int ret;
3886 int err = 0;
39279cc3 3887
4df27c4d
YZ
3888 path = btrfs_alloc_path();
3889 if (!path) {
3890 err = -ENOMEM;
3891 goto out;
3892 }
39279cc3 3893
4df27c4d
YZ
3894 err = -ENOENT;
3895 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3896 BTRFS_I(dir)->root->root_key.objectid,
3897 location->objectid);
3898 if (ret) {
3899 if (ret < 0)
3900 err = ret;
3901 goto out;
3902 }
39279cc3 3903
4df27c4d
YZ
3904 leaf = path->nodes[0];
3905 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3906 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3907 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3908 goto out;
39279cc3 3909
4df27c4d
YZ
3910 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3911 (unsigned long)(ref + 1),
3912 dentry->d_name.len);
3913 if (ret)
3914 goto out;
3915
3916 btrfs_release_path(root->fs_info->tree_root, path);
3917
3918 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3919 if (IS_ERR(new_root)) {
3920 err = PTR_ERR(new_root);
3921 goto out;
3922 }
3923
3924 if (btrfs_root_refs(&new_root->root_item) == 0) {
3925 err = -ENOENT;
3926 goto out;
3927 }
3928
3929 *sub_root = new_root;
3930 location->objectid = btrfs_root_dirid(&new_root->root_item);
3931 location->type = BTRFS_INODE_ITEM_KEY;
3932 location->offset = 0;
3933 err = 0;
3934out:
3935 btrfs_free_path(path);
3936 return err;
39279cc3
CM
3937}
3938
5d4f98a2
YZ
3939static void inode_tree_add(struct inode *inode)
3940{
3941 struct btrfs_root *root = BTRFS_I(inode)->root;
3942 struct btrfs_inode *entry;
03e860bd
FNP
3943 struct rb_node **p;
3944 struct rb_node *parent;
03e860bd
FNP
3945again:
3946 p = &root->inode_tree.rb_node;
3947 parent = NULL;
5d4f98a2 3948
1d3382cb 3949 if (inode_unhashed(inode))
76dda93c
YZ
3950 return;
3951
5d4f98a2
YZ
3952 spin_lock(&root->inode_lock);
3953 while (*p) {
3954 parent = *p;
3955 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3956
3957 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3958 p = &parent->rb_left;
5d4f98a2 3959 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3960 p = &parent->rb_right;
5d4f98a2
YZ
3961 else {
3962 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3963 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3964 rb_erase(parent, &root->inode_tree);
3965 RB_CLEAR_NODE(parent);
3966 spin_unlock(&root->inode_lock);
3967 goto again;
5d4f98a2
YZ
3968 }
3969 }
3970 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3971 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3972 spin_unlock(&root->inode_lock);
3973}
3974
3975static void inode_tree_del(struct inode *inode)
3976{
3977 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3978 int empty = 0;
5d4f98a2 3979
03e860bd 3980 spin_lock(&root->inode_lock);
5d4f98a2 3981 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3982 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3983 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3984 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3985 }
03e860bd 3986 spin_unlock(&root->inode_lock);
76dda93c 3987
0af3d00b
JB
3988 /*
3989 * Free space cache has inodes in the tree root, but the tree root has a
3990 * root_refs of 0, so this could end up dropping the tree root as a
3991 * snapshot, so we need the extra !root->fs_info->tree_root check to
3992 * make sure we don't drop it.
3993 */
3994 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3995 root != root->fs_info->tree_root) {
76dda93c
YZ
3996 synchronize_srcu(&root->fs_info->subvol_srcu);
3997 spin_lock(&root->inode_lock);
3998 empty = RB_EMPTY_ROOT(&root->inode_tree);
3999 spin_unlock(&root->inode_lock);
4000 if (empty)
4001 btrfs_add_dead_root(root);
4002 }
4003}
4004
4005int btrfs_invalidate_inodes(struct btrfs_root *root)
4006{
4007 struct rb_node *node;
4008 struct rb_node *prev;
4009 struct btrfs_inode *entry;
4010 struct inode *inode;
4011 u64 objectid = 0;
4012
4013 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4014
4015 spin_lock(&root->inode_lock);
4016again:
4017 node = root->inode_tree.rb_node;
4018 prev = NULL;
4019 while (node) {
4020 prev = node;
4021 entry = rb_entry(node, struct btrfs_inode, rb_node);
4022
4023 if (objectid < entry->vfs_inode.i_ino)
4024 node = node->rb_left;
4025 else if (objectid > entry->vfs_inode.i_ino)
4026 node = node->rb_right;
4027 else
4028 break;
4029 }
4030 if (!node) {
4031 while (prev) {
4032 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4033 if (objectid <= entry->vfs_inode.i_ino) {
4034 node = prev;
4035 break;
4036 }
4037 prev = rb_next(prev);
4038 }
4039 }
4040 while (node) {
4041 entry = rb_entry(node, struct btrfs_inode, rb_node);
4042 objectid = entry->vfs_inode.i_ino + 1;
4043 inode = igrab(&entry->vfs_inode);
4044 if (inode) {
4045 spin_unlock(&root->inode_lock);
4046 if (atomic_read(&inode->i_count) > 1)
4047 d_prune_aliases(inode);
4048 /*
45321ac5 4049 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4050 * the inode cache when its usage count
4051 * hits zero.
4052 */
4053 iput(inode);
4054 cond_resched();
4055 spin_lock(&root->inode_lock);
4056 goto again;
4057 }
4058
4059 if (cond_resched_lock(&root->inode_lock))
4060 goto again;
4061
4062 node = rb_next(node);
4063 }
4064 spin_unlock(&root->inode_lock);
4065 return 0;
5d4f98a2
YZ
4066}
4067
e02119d5
CM
4068static int btrfs_init_locked_inode(struct inode *inode, void *p)
4069{
4070 struct btrfs_iget_args *args = p;
4071 inode->i_ino = args->ino;
e02119d5 4072 BTRFS_I(inode)->root = args->root;
6a63209f 4073 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
4074 return 0;
4075}
4076
4077static int btrfs_find_actor(struct inode *inode, void *opaque)
4078{
4079 struct btrfs_iget_args *args = opaque;
d397712b
CM
4080 return args->ino == inode->i_ino &&
4081 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4082}
4083
5d4f98a2
YZ
4084static struct inode *btrfs_iget_locked(struct super_block *s,
4085 u64 objectid,
4086 struct btrfs_root *root)
39279cc3
CM
4087{
4088 struct inode *inode;
4089 struct btrfs_iget_args args;
4090 args.ino = objectid;
4091 args.root = root;
4092
4093 inode = iget5_locked(s, objectid, btrfs_find_actor,
4094 btrfs_init_locked_inode,
4095 (void *)&args);
4096 return inode;
4097}
4098
1a54ef8c
BR
4099/* Get an inode object given its location and corresponding root.
4100 * Returns in *is_new if the inode was read from disk
4101 */
4102struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4103 struct btrfs_root *root, int *new)
1a54ef8c
BR
4104{
4105 struct inode *inode;
4106
4107 inode = btrfs_iget_locked(s, location->objectid, root);
4108 if (!inode)
5d4f98a2 4109 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4110
4111 if (inode->i_state & I_NEW) {
4112 BTRFS_I(inode)->root = root;
4113 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4114 btrfs_read_locked_inode(inode);
5d4f98a2 4115 inode_tree_add(inode);
1a54ef8c 4116 unlock_new_inode(inode);
73f73415
JB
4117 if (new)
4118 *new = 1;
1a54ef8c
BR
4119 }
4120
4121 return inode;
4122}
4123
4df27c4d
YZ
4124static struct inode *new_simple_dir(struct super_block *s,
4125 struct btrfs_key *key,
4126 struct btrfs_root *root)
4127{
4128 struct inode *inode = new_inode(s);
4129
4130 if (!inode)
4131 return ERR_PTR(-ENOMEM);
4132
4df27c4d
YZ
4133 BTRFS_I(inode)->root = root;
4134 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4135 BTRFS_I(inode)->dummy_inode = 1;
4136
4137 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4138 inode->i_op = &simple_dir_inode_operations;
4139 inode->i_fop = &simple_dir_operations;
4140 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4141 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4142
4143 return inode;
4144}
4145
3de4586c 4146struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4147{
d397712b 4148 struct inode *inode;
4df27c4d 4149 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4150 struct btrfs_root *sub_root = root;
4151 struct btrfs_key location;
76dda93c 4152 int index;
5d4f98a2 4153 int ret;
39279cc3
CM
4154
4155 if (dentry->d_name.len > BTRFS_NAME_LEN)
4156 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4157
39279cc3 4158 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 4159
39279cc3
CM
4160 if (ret < 0)
4161 return ERR_PTR(ret);
5f39d397 4162
4df27c4d
YZ
4163 if (location.objectid == 0)
4164 return NULL;
4165
4166 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4167 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4168 return inode;
4169 }
4170
4171 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4172
76dda93c 4173 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4174 ret = fixup_tree_root_location(root, dir, dentry,
4175 &location, &sub_root);
4176 if (ret < 0) {
4177 if (ret != -ENOENT)
4178 inode = ERR_PTR(ret);
4179 else
4180 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4181 } else {
73f73415 4182 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4183 }
76dda93c
YZ
4184 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4185
34d19bad 4186 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4187 down_read(&root->fs_info->cleanup_work_sem);
4188 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4189 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4190 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4191 if (ret)
4192 inode = ERR_PTR(ret);
c71bf099
YZ
4193 }
4194
3de4586c
CM
4195 return inode;
4196}
4197
fe15ce44 4198static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4199{
4200 struct btrfs_root *root;
4201
efefb143
YZ
4202 if (!dentry->d_inode && !IS_ROOT(dentry))
4203 dentry = dentry->d_parent;
76dda93c 4204
efefb143
YZ
4205 if (dentry->d_inode) {
4206 root = BTRFS_I(dentry->d_inode)->root;
4207 if (btrfs_root_refs(&root->root_item) == 0)
4208 return 1;
4209 }
76dda93c
YZ
4210 return 0;
4211}
4212
3de4586c
CM
4213static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4214 struct nameidata *nd)
4215{
4216 struct inode *inode;
4217
3de4586c
CM
4218 inode = btrfs_lookup_dentry(dir, dentry);
4219 if (IS_ERR(inode))
4220 return ERR_CAST(inode);
7b128766 4221
39279cc3
CM
4222 return d_splice_alias(inode, dentry);
4223}
4224
16cdcec7 4225unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4226 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4227};
4228
cbdf5a24
DW
4229static int btrfs_real_readdir(struct file *filp, void *dirent,
4230 filldir_t filldir)
39279cc3 4231{
6da6abae 4232 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4233 struct btrfs_root *root = BTRFS_I(inode)->root;
4234 struct btrfs_item *item;
4235 struct btrfs_dir_item *di;
4236 struct btrfs_key key;
5f39d397 4237 struct btrfs_key found_key;
39279cc3 4238 struct btrfs_path *path;
16cdcec7
MX
4239 struct list_head ins_list;
4240 struct list_head del_list;
39279cc3 4241 int ret;
5f39d397 4242 struct extent_buffer *leaf;
39279cc3 4243 int slot;
39279cc3
CM
4244 unsigned char d_type;
4245 int over = 0;
4246 u32 di_cur;
4247 u32 di_total;
4248 u32 di_len;
4249 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4250 char tmp_name[32];
4251 char *name_ptr;
4252 int name_len;
16cdcec7 4253 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4254
4255 /* FIXME, use a real flag for deciding about the key type */
4256 if (root->fs_info->tree_root == root)
4257 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4258
3954401f
CM
4259 /* special case for "." */
4260 if (filp->f_pos == 0) {
4261 over = filldir(dirent, ".", 1,
4262 1, inode->i_ino,
4263 DT_DIR);
4264 if (over)
4265 return 0;
4266 filp->f_pos = 1;
4267 }
3954401f
CM
4268 /* special case for .., just use the back ref */
4269 if (filp->f_pos == 1) {
5ecc7e5d 4270 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4271 over = filldir(dirent, "..", 2,
5ecc7e5d 4272 2, pino, DT_DIR);
3954401f 4273 if (over)
49593bfa 4274 return 0;
3954401f
CM
4275 filp->f_pos = 2;
4276 }
49593bfa 4277 path = btrfs_alloc_path();
16cdcec7
MX
4278 if (!path)
4279 return -ENOMEM;
49593bfa
DW
4280 path->reada = 2;
4281
16cdcec7
MX
4282 if (key_type == BTRFS_DIR_INDEX_KEY) {
4283 INIT_LIST_HEAD(&ins_list);
4284 INIT_LIST_HEAD(&del_list);
4285 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4286 }
4287
39279cc3
CM
4288 btrfs_set_key_type(&key, key_type);
4289 key.offset = filp->f_pos;
49593bfa 4290 key.objectid = inode->i_ino;
5f39d397 4291
39279cc3
CM
4292 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4293 if (ret < 0)
4294 goto err;
49593bfa
DW
4295
4296 while (1) {
5f39d397 4297 leaf = path->nodes[0];
39279cc3 4298 slot = path->slots[0];
b9e03af0
LZ
4299 if (slot >= btrfs_header_nritems(leaf)) {
4300 ret = btrfs_next_leaf(root, path);
4301 if (ret < 0)
4302 goto err;
4303 else if (ret > 0)
4304 break;
4305 continue;
39279cc3 4306 }
3de4586c 4307
5f39d397
CM
4308 item = btrfs_item_nr(leaf, slot);
4309 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4310
4311 if (found_key.objectid != key.objectid)
39279cc3 4312 break;
5f39d397 4313 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4314 break;
5f39d397 4315 if (found_key.offset < filp->f_pos)
b9e03af0 4316 goto next;
16cdcec7
MX
4317 if (key_type == BTRFS_DIR_INDEX_KEY &&
4318 btrfs_should_delete_dir_index(&del_list,
4319 found_key.offset))
4320 goto next;
5f39d397
CM
4321
4322 filp->f_pos = found_key.offset;
16cdcec7 4323 is_curr = 1;
49593bfa 4324
39279cc3
CM
4325 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4326 di_cur = 0;
5f39d397 4327 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4328
4329 while (di_cur < di_total) {
5f39d397
CM
4330 struct btrfs_key location;
4331
22a94d44
JB
4332 if (verify_dir_item(root, leaf, di))
4333 break;
4334
5f39d397 4335 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4336 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4337 name_ptr = tmp_name;
4338 } else {
4339 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4340 if (!name_ptr) {
4341 ret = -ENOMEM;
4342 goto err;
4343 }
5f39d397
CM
4344 }
4345 read_extent_buffer(leaf, name_ptr,
4346 (unsigned long)(di + 1), name_len);
4347
4348 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4349 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
4350
4351 /* is this a reference to our own snapshot? If so
4352 * skip it
4353 */
4354 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4355 location.objectid == root->root_key.objectid) {
4356 over = 0;
4357 goto skip;
4358 }
5f39d397 4359 over = filldir(dirent, name_ptr, name_len,
49593bfa 4360 found_key.offset, location.objectid,
39279cc3 4361 d_type);
5f39d397 4362
3de4586c 4363skip:
5f39d397
CM
4364 if (name_ptr != tmp_name)
4365 kfree(name_ptr);
4366
39279cc3
CM
4367 if (over)
4368 goto nopos;
5103e947 4369 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4370 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4371 di_cur += di_len;
4372 di = (struct btrfs_dir_item *)((char *)di + di_len);
4373 }
b9e03af0
LZ
4374next:
4375 path->slots[0]++;
39279cc3 4376 }
49593bfa 4377
16cdcec7
MX
4378 if (key_type == BTRFS_DIR_INDEX_KEY) {
4379 if (is_curr)
4380 filp->f_pos++;
4381 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4382 &ins_list);
4383 if (ret)
4384 goto nopos;
4385 }
4386
49593bfa 4387 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4388 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4389 /*
4390 * 32-bit glibc will use getdents64, but then strtol -
4391 * so the last number we can serve is this.
4392 */
4393 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4394 else
4395 filp->f_pos++;
39279cc3
CM
4396nopos:
4397 ret = 0;
4398err:
16cdcec7
MX
4399 if (key_type == BTRFS_DIR_INDEX_KEY)
4400 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4401 btrfs_free_path(path);
39279cc3
CM
4402 return ret;
4403}
4404
a9185b41 4405int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4406{
4407 struct btrfs_root *root = BTRFS_I(inode)->root;
4408 struct btrfs_trans_handle *trans;
4409 int ret = 0;
0af3d00b 4410 bool nolock = false;
39279cc3 4411
8929ecfa 4412 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4413 return 0;
4414
0af3d00b
JB
4415 smp_mb();
4416 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4417
a9185b41 4418 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b
JB
4419 if (nolock)
4420 trans = btrfs_join_transaction_nolock(root, 1);
4421 else
4422 trans = btrfs_join_transaction(root, 1);
3612b495
TI
4423 if (IS_ERR(trans))
4424 return PTR_ERR(trans);
39279cc3 4425 btrfs_set_trans_block_group(trans, inode);
0af3d00b
JB
4426 if (nolock)
4427 ret = btrfs_end_transaction_nolock(trans, root);
4428 else
4429 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4430 }
4431 return ret;
4432}
4433
4434/*
54aa1f4d 4435 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4436 * inode changes. But, it is most likely to find the inode in cache.
4437 * FIXME, needs more benchmarking...there are no reasons other than performance
4438 * to keep or drop this code.
4439 */
4440void btrfs_dirty_inode(struct inode *inode)
4441{
4442 struct btrfs_root *root = BTRFS_I(inode)->root;
4443 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4444 int ret;
4445
4446 if (BTRFS_I(inode)->dummy_inode)
4447 return;
39279cc3 4448
f9295749 4449 trans = btrfs_join_transaction(root, 1);
3612b495 4450 BUG_ON(IS_ERR(trans));
39279cc3 4451 btrfs_set_trans_block_group(trans, inode);
8929ecfa
YZ
4452
4453 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4454 if (ret && ret == -ENOSPC) {
4455 /* whoops, lets try again with the full transaction */
4456 btrfs_end_transaction(trans, root);
4457 trans = btrfs_start_transaction(root, 1);
9aeead73
CM
4458 if (IS_ERR(trans)) {
4459 if (printk_ratelimit()) {
4460 printk(KERN_ERR "btrfs: fail to "
4461 "dirty inode %lu error %ld\n",
4462 inode->i_ino, PTR_ERR(trans));
4463 }
4464 return;
4465 }
94b60442 4466 btrfs_set_trans_block_group(trans, inode);
8929ecfa 4467
94b60442
CM
4468 ret = btrfs_update_inode(trans, root, inode);
4469 if (ret) {
9aeead73
CM
4470 if (printk_ratelimit()) {
4471 printk(KERN_ERR "btrfs: fail to "
4472 "dirty inode %lu error %d\n",
4473 inode->i_ino, ret);
4474 }
94b60442
CM
4475 }
4476 }
39279cc3 4477 btrfs_end_transaction(trans, root);
16cdcec7
MX
4478 if (BTRFS_I(inode)->delayed_node)
4479 btrfs_balance_delayed_items(root);
39279cc3
CM
4480}
4481
d352ac68
CM
4482/*
4483 * find the highest existing sequence number in a directory
4484 * and then set the in-memory index_cnt variable to reflect
4485 * free sequence numbers
4486 */
aec7477b
JB
4487static int btrfs_set_inode_index_count(struct inode *inode)
4488{
4489 struct btrfs_root *root = BTRFS_I(inode)->root;
4490 struct btrfs_key key, found_key;
4491 struct btrfs_path *path;
4492 struct extent_buffer *leaf;
4493 int ret;
4494
4495 key.objectid = inode->i_ino;
4496 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4497 key.offset = (u64)-1;
4498
4499 path = btrfs_alloc_path();
4500 if (!path)
4501 return -ENOMEM;
4502
4503 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4504 if (ret < 0)
4505 goto out;
4506 /* FIXME: we should be able to handle this */
4507 if (ret == 0)
4508 goto out;
4509 ret = 0;
4510
4511 /*
4512 * MAGIC NUMBER EXPLANATION:
4513 * since we search a directory based on f_pos we have to start at 2
4514 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4515 * else has to start at 2
4516 */
4517 if (path->slots[0] == 0) {
4518 BTRFS_I(inode)->index_cnt = 2;
4519 goto out;
4520 }
4521
4522 path->slots[0]--;
4523
4524 leaf = path->nodes[0];
4525 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4526
4527 if (found_key.objectid != inode->i_ino ||
4528 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4529 BTRFS_I(inode)->index_cnt = 2;
4530 goto out;
4531 }
4532
4533 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4534out:
4535 btrfs_free_path(path);
4536 return ret;
4537}
4538
d352ac68
CM
4539/*
4540 * helper to find a free sequence number in a given directory. This current
4541 * code is very simple, later versions will do smarter things in the btree
4542 */
3de4586c 4543int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4544{
4545 int ret = 0;
4546
4547 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4548 ret = btrfs_inode_delayed_dir_index_count(dir);
4549 if (ret) {
4550 ret = btrfs_set_inode_index_count(dir);
4551 if (ret)
4552 return ret;
4553 }
aec7477b
JB
4554 }
4555
00e4e6b3 4556 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4557 BTRFS_I(dir)->index_cnt++;
4558
4559 return ret;
4560}
4561
39279cc3
CM
4562static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4563 struct btrfs_root *root,
aec7477b 4564 struct inode *dir,
9c58309d 4565 const char *name, int name_len,
d2fb3437
YZ
4566 u64 ref_objectid, u64 objectid,
4567 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
4568{
4569 struct inode *inode;
5f39d397 4570 struct btrfs_inode_item *inode_item;
39279cc3 4571 struct btrfs_key *location;
5f39d397 4572 struct btrfs_path *path;
9c58309d
CM
4573 struct btrfs_inode_ref *ref;
4574 struct btrfs_key key[2];
4575 u32 sizes[2];
4576 unsigned long ptr;
39279cc3
CM
4577 int ret;
4578 int owner;
4579
5f39d397
CM
4580 path = btrfs_alloc_path();
4581 BUG_ON(!path);
4582
39279cc3 4583 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4584 if (!inode) {
4585 btrfs_free_path(path);
39279cc3 4586 return ERR_PTR(-ENOMEM);
8fb27640 4587 }
39279cc3 4588
aec7477b 4589 if (dir) {
1abe9b8a 4590 trace_btrfs_inode_request(dir);
4591
3de4586c 4592 ret = btrfs_set_inode_index(dir, index);
09771430 4593 if (ret) {
8fb27640 4594 btrfs_free_path(path);
09771430 4595 iput(inode);
aec7477b 4596 return ERR_PTR(ret);
09771430 4597 }
aec7477b
JB
4598 }
4599 /*
4600 * index_cnt is ignored for everything but a dir,
4601 * btrfs_get_inode_index_count has an explanation for the magic
4602 * number
4603 */
4604 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4605 BTRFS_I(inode)->root = root;
e02119d5 4606 BTRFS_I(inode)->generation = trans->transid;
76195853 4607 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4608 btrfs_set_inode_space_info(root, inode);
b888db2b 4609
39279cc3
CM
4610 if (mode & S_IFDIR)
4611 owner = 0;
4612 else
4613 owner = 1;
d2fb3437
YZ
4614 BTRFS_I(inode)->block_group =
4615 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
4616
4617 key[0].objectid = objectid;
4618 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4619 key[0].offset = 0;
4620
4621 key[1].objectid = objectid;
4622 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4623 key[1].offset = ref_objectid;
4624
4625 sizes[0] = sizeof(struct btrfs_inode_item);
4626 sizes[1] = name_len + sizeof(*ref);
4627
b9473439 4628 path->leave_spinning = 1;
9c58309d
CM
4629 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4630 if (ret != 0)
5f39d397
CM
4631 goto fail;
4632
ecc11fab 4633 inode_init_owner(inode, dir, mode);
39279cc3 4634 inode->i_ino = objectid;
a76a3cd4 4635 inode_set_bytes(inode, 0);
39279cc3 4636 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4637 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4638 struct btrfs_inode_item);
e02119d5 4639 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4640
4641 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4642 struct btrfs_inode_ref);
4643 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4644 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4645 ptr = (unsigned long)(ref + 1);
4646 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4647
5f39d397
CM
4648 btrfs_mark_buffer_dirty(path->nodes[0]);
4649 btrfs_free_path(path);
4650
39279cc3
CM
4651 location = &BTRFS_I(inode)->location;
4652 location->objectid = objectid;
39279cc3
CM
4653 location->offset = 0;
4654 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4655
6cbff00f
CH
4656 btrfs_inherit_iflags(inode, dir);
4657
94272164
CM
4658 if ((mode & S_IFREG)) {
4659 if (btrfs_test_opt(root, NODATASUM))
4660 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4661 if (btrfs_test_opt(root, NODATACOW) ||
4662 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4663 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4664 }
4665
39279cc3 4666 insert_inode_hash(inode);
5d4f98a2 4667 inode_tree_add(inode);
1abe9b8a 4668
4669 trace_btrfs_inode_new(inode);
4670
39279cc3 4671 return inode;
5f39d397 4672fail:
aec7477b
JB
4673 if (dir)
4674 BTRFS_I(dir)->index_cnt--;
5f39d397 4675 btrfs_free_path(path);
09771430 4676 iput(inode);
5f39d397 4677 return ERR_PTR(ret);
39279cc3
CM
4678}
4679
4680static inline u8 btrfs_inode_type(struct inode *inode)
4681{
4682 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4683}
4684
d352ac68
CM
4685/*
4686 * utility function to add 'inode' into 'parent_inode' with
4687 * a give name and a given sequence number.
4688 * if 'add_backref' is true, also insert a backref from the
4689 * inode to the parent directory.
4690 */
e02119d5
CM
4691int btrfs_add_link(struct btrfs_trans_handle *trans,
4692 struct inode *parent_inode, struct inode *inode,
4693 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4694{
4df27c4d 4695 int ret = 0;
39279cc3 4696 struct btrfs_key key;
e02119d5 4697 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 4698
4df27c4d
YZ
4699 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4700 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4701 } else {
4702 key.objectid = inode->i_ino;
4703 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4704 key.offset = 0;
4705 }
4706
4707 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4708 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4709 key.objectid, root->root_key.objectid,
4710 parent_inode->i_ino,
4711 index, name, name_len);
4712 } else if (add_backref) {
4713 ret = btrfs_insert_inode_ref(trans, root,
4714 name, name_len, inode->i_ino,
4715 parent_inode->i_ino, index);
4716 }
39279cc3 4717
39279cc3 4718 if (ret == 0) {
4df27c4d 4719 ret = btrfs_insert_dir_item(trans, root, name, name_len,
16cdcec7 4720 parent_inode, &key,
4df27c4d
YZ
4721 btrfs_inode_type(inode), index);
4722 BUG_ON(ret);
4723
dbe674a9 4724 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4725 name_len * 2);
79c44584 4726 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4727 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4728 }
4729 return ret;
4730}
4731
4732static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4733 struct inode *dir, struct dentry *dentry,
4734 struct inode *inode, int backref, u64 index)
39279cc3 4735{
a1b075d2
JB
4736 int err = btrfs_add_link(trans, dir, inode,
4737 dentry->d_name.name, dentry->d_name.len,
4738 backref, index);
39279cc3
CM
4739 if (!err) {
4740 d_instantiate(dentry, inode);
4741 return 0;
4742 }
4743 if (err > 0)
4744 err = -EEXIST;
4745 return err;
4746}
4747
618e21d5
JB
4748static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4749 int mode, dev_t rdev)
4750{
4751 struct btrfs_trans_handle *trans;
4752 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4753 struct inode *inode = NULL;
618e21d5
JB
4754 int err;
4755 int drop_inode = 0;
4756 u64 objectid;
1832a6d5 4757 unsigned long nr = 0;
00e4e6b3 4758 u64 index = 0;
618e21d5
JB
4759
4760 if (!new_valid_dev(rdev))
4761 return -EINVAL;
4762
a22285a6
YZ
4763 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4764 if (err)
4765 return err;
4766
9ed74f2d
JB
4767 /*
4768 * 2 for inode item and ref
4769 * 2 for dir items
4770 * 1 for xattr if selinux is on
4771 */
a22285a6
YZ
4772 trans = btrfs_start_transaction(root, 5);
4773 if (IS_ERR(trans))
4774 return PTR_ERR(trans);
1832a6d5 4775
618e21d5
JB
4776 btrfs_set_trans_block_group(trans, dir);
4777
aec7477b 4778 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 4779 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3 4780 BTRFS_I(dir)->block_group, mode, &index);
7cf96da3
TI
4781 if (IS_ERR(inode)) {
4782 err = PTR_ERR(inode);
618e21d5 4783 goto out_unlock;
7cf96da3 4784 }
618e21d5 4785
2a7dba39 4786 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4787 if (err) {
4788 drop_inode = 1;
4789 goto out_unlock;
4790 }
4791
618e21d5 4792 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4793 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4794 if (err)
4795 drop_inode = 1;
4796 else {
4797 inode->i_op = &btrfs_special_inode_operations;
4798 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4799 btrfs_update_inode(trans, root, inode);
618e21d5 4800 }
618e21d5
JB
4801 btrfs_update_inode_block_group(trans, inode);
4802 btrfs_update_inode_block_group(trans, dir);
4803out_unlock:
d3c2fdcf 4804 nr = trans->blocks_used;
89ce8a63 4805 btrfs_end_transaction_throttle(trans, root);
a22285a6 4806 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4807 if (drop_inode) {
4808 inode_dec_link_count(inode);
4809 iput(inode);
4810 }
618e21d5
JB
4811 return err;
4812}
4813
39279cc3
CM
4814static int btrfs_create(struct inode *dir, struct dentry *dentry,
4815 int mode, struct nameidata *nd)
4816{
4817 struct btrfs_trans_handle *trans;
4818 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4819 struct inode *inode = NULL;
39279cc3 4820 int drop_inode = 0;
a22285a6 4821 int err;
1832a6d5 4822 unsigned long nr = 0;
39279cc3 4823 u64 objectid;
00e4e6b3 4824 u64 index = 0;
39279cc3 4825
a22285a6
YZ
4826 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4827 if (err)
4828 return err;
9ed74f2d
JB
4829 /*
4830 * 2 for inode item and ref
4831 * 2 for dir items
4832 * 1 for xattr if selinux is on
4833 */
a22285a6
YZ
4834 trans = btrfs_start_transaction(root, 5);
4835 if (IS_ERR(trans))
4836 return PTR_ERR(trans);
9ed74f2d 4837
39279cc3
CM
4838 btrfs_set_trans_block_group(trans, dir);
4839
aec7477b 4840 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2
JB
4841 dentry->d_name.len, dir->i_ino, objectid,
4842 BTRFS_I(dir)->block_group, mode, &index);
7cf96da3
TI
4843 if (IS_ERR(inode)) {
4844 err = PTR_ERR(inode);
39279cc3 4845 goto out_unlock;
7cf96da3 4846 }
39279cc3 4847
2a7dba39 4848 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4849 if (err) {
4850 drop_inode = 1;
4851 goto out_unlock;
4852 }
4853
39279cc3 4854 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4855 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4856 if (err)
4857 drop_inode = 1;
4858 else {
4859 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4860 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4861 inode->i_fop = &btrfs_file_operations;
4862 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4863 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4864 }
39279cc3
CM
4865 btrfs_update_inode_block_group(trans, inode);
4866 btrfs_update_inode_block_group(trans, dir);
4867out_unlock:
d3c2fdcf 4868 nr = trans->blocks_used;
ab78c84d 4869 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4870 if (drop_inode) {
4871 inode_dec_link_count(inode);
4872 iput(inode);
4873 }
d3c2fdcf 4874 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4875 return err;
4876}
4877
4878static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4879 struct dentry *dentry)
4880{
4881 struct btrfs_trans_handle *trans;
4882 struct btrfs_root *root = BTRFS_I(dir)->root;
4883 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4884 u64 index;
1832a6d5 4885 unsigned long nr = 0;
39279cc3
CM
4886 int err;
4887 int drop_inode = 0;
4888
4a8be425
TH
4889 /* do not allow sys_link's with other subvols of the same device */
4890 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4891 return -EXDEV;
4a8be425 4892
c055e99e
AV
4893 if (inode->i_nlink == ~0U)
4894 return -EMLINK;
4a8be425 4895
3de4586c 4896 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4897 if (err)
4898 goto fail;
4899
a22285a6 4900 /*
7e6b6465 4901 * 2 items for inode and inode ref
a22285a6 4902 * 2 items for dir items
7e6b6465 4903 * 1 item for parent inode
a22285a6 4904 */
7e6b6465 4905 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4906 if (IS_ERR(trans)) {
4907 err = PTR_ERR(trans);
4908 goto fail;
4909 }
5f39d397 4910
3153495d
MX
4911 btrfs_inc_nlink(inode);
4912 inode->i_ctime = CURRENT_TIME;
4913
39279cc3 4914 btrfs_set_trans_block_group(trans, dir);
7de9c6ee 4915 ihold(inode);
aec7477b 4916
a1b075d2 4917 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4918
a5719521 4919 if (err) {
54aa1f4d 4920 drop_inode = 1;
a5719521 4921 } else {
6a912213 4922 struct dentry *parent = dget_parent(dentry);
a5719521
YZ
4923 btrfs_update_inode_block_group(trans, dir);
4924 err = btrfs_update_inode(trans, root, inode);
4925 BUG_ON(err);
6a912213
JB
4926 btrfs_log_new_name(trans, inode, NULL, parent);
4927 dput(parent);
a5719521 4928 }
39279cc3 4929
d3c2fdcf 4930 nr = trans->blocks_used;
ab78c84d 4931 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4932fail:
39279cc3
CM
4933 if (drop_inode) {
4934 inode_dec_link_count(inode);
4935 iput(inode);
4936 }
d3c2fdcf 4937 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4938 return err;
4939}
4940
39279cc3
CM
4941static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4942{
b9d86667 4943 struct inode *inode = NULL;
39279cc3
CM
4944 struct btrfs_trans_handle *trans;
4945 struct btrfs_root *root = BTRFS_I(dir)->root;
4946 int err = 0;
4947 int drop_on_err = 0;
b9d86667 4948 u64 objectid = 0;
00e4e6b3 4949 u64 index = 0;
d3c2fdcf 4950 unsigned long nr = 1;
39279cc3 4951
a22285a6
YZ
4952 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4953 if (err)
4954 return err;
4955
9ed74f2d
JB
4956 /*
4957 * 2 items for inode and ref
4958 * 2 items for dir items
4959 * 1 for xattr if selinux is on
4960 */
a22285a6
YZ
4961 trans = btrfs_start_transaction(root, 5);
4962 if (IS_ERR(trans))
4963 return PTR_ERR(trans);
9ed74f2d 4964 btrfs_set_trans_block_group(trans, dir);
39279cc3 4965
aec7477b 4966 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 4967 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3
CM
4968 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4969 &index);
39279cc3
CM
4970 if (IS_ERR(inode)) {
4971 err = PTR_ERR(inode);
4972 goto out_fail;
4973 }
5f39d397 4974
39279cc3 4975 drop_on_err = 1;
33268eaf 4976
2a7dba39 4977 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4978 if (err)
4979 goto out_fail;
4980
39279cc3
CM
4981 inode->i_op = &btrfs_dir_inode_operations;
4982 inode->i_fop = &btrfs_dir_file_operations;
4983 btrfs_set_trans_block_group(trans, inode);
4984
dbe674a9 4985 btrfs_i_size_write(inode, 0);
39279cc3
CM
4986 err = btrfs_update_inode(trans, root, inode);
4987 if (err)
4988 goto out_fail;
5f39d397 4989
a1b075d2
JB
4990 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4991 dentry->d_name.len, 0, index);
39279cc3
CM
4992 if (err)
4993 goto out_fail;
5f39d397 4994
39279cc3
CM
4995 d_instantiate(dentry, inode);
4996 drop_on_err = 0;
39279cc3
CM
4997 btrfs_update_inode_block_group(trans, inode);
4998 btrfs_update_inode_block_group(trans, dir);
4999
5000out_fail:
d3c2fdcf 5001 nr = trans->blocks_used;
ab78c84d 5002 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
5003 if (drop_on_err)
5004 iput(inode);
d3c2fdcf 5005 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5006 return err;
5007}
5008
d352ac68
CM
5009/* helper for btfs_get_extent. Given an existing extent in the tree,
5010 * and an extent that you want to insert, deal with overlap and insert
5011 * the new extent into the tree.
5012 */
3b951516
CM
5013static int merge_extent_mapping(struct extent_map_tree *em_tree,
5014 struct extent_map *existing,
e6dcd2dc
CM
5015 struct extent_map *em,
5016 u64 map_start, u64 map_len)
3b951516
CM
5017{
5018 u64 start_diff;
3b951516 5019
e6dcd2dc
CM
5020 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5021 start_diff = map_start - em->start;
5022 em->start = map_start;
5023 em->len = map_len;
c8b97818
CM
5024 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5025 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5026 em->block_start += start_diff;
c8b97818
CM
5027 em->block_len -= start_diff;
5028 }
e6dcd2dc 5029 return add_extent_mapping(em_tree, em);
3b951516
CM
5030}
5031
c8b97818
CM
5032static noinline int uncompress_inline(struct btrfs_path *path,
5033 struct inode *inode, struct page *page,
5034 size_t pg_offset, u64 extent_offset,
5035 struct btrfs_file_extent_item *item)
5036{
5037 int ret;
5038 struct extent_buffer *leaf = path->nodes[0];
5039 char *tmp;
5040 size_t max_size;
5041 unsigned long inline_size;
5042 unsigned long ptr;
261507a0 5043 int compress_type;
c8b97818
CM
5044
5045 WARN_ON(pg_offset != 0);
261507a0 5046 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5047 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5048 inline_size = btrfs_file_extent_inline_item_len(leaf,
5049 btrfs_item_nr(leaf, path->slots[0]));
5050 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5051 if (!tmp)
5052 return -ENOMEM;
c8b97818
CM
5053 ptr = btrfs_file_extent_inline_start(item);
5054
5055 read_extent_buffer(leaf, tmp, ptr, inline_size);
5056
5b050f04 5057 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5058 ret = btrfs_decompress(compress_type, tmp, page,
5059 extent_offset, inline_size, max_size);
c8b97818
CM
5060 if (ret) {
5061 char *kaddr = kmap_atomic(page, KM_USER0);
5062 unsigned long copy_size = min_t(u64,
5063 PAGE_CACHE_SIZE - pg_offset,
5064 max_size - extent_offset);
5065 memset(kaddr + pg_offset, 0, copy_size);
5066 kunmap_atomic(kaddr, KM_USER0);
5067 }
5068 kfree(tmp);
5069 return 0;
5070}
5071
d352ac68
CM
5072/*
5073 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5074 * the ugly parts come from merging extents from the disk with the in-ram
5075 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5076 * where the in-ram extents might be locked pending data=ordered completion.
5077 *
5078 * This also copies inline extents directly into the page.
5079 */
d397712b 5080
a52d9a80 5081struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5082 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5083 int create)
5084{
5085 int ret;
5086 int err = 0;
db94535d 5087 u64 bytenr;
a52d9a80
CM
5088 u64 extent_start = 0;
5089 u64 extent_end = 0;
5090 u64 objectid = inode->i_ino;
5091 u32 found_type;
f421950f 5092 struct btrfs_path *path = NULL;
a52d9a80
CM
5093 struct btrfs_root *root = BTRFS_I(inode)->root;
5094 struct btrfs_file_extent_item *item;
5f39d397
CM
5095 struct extent_buffer *leaf;
5096 struct btrfs_key found_key;
a52d9a80
CM
5097 struct extent_map *em = NULL;
5098 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5099 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5100 struct btrfs_trans_handle *trans = NULL;
261507a0 5101 int compress_type;
a52d9a80 5102
a52d9a80 5103again:
890871be 5104 read_lock(&em_tree->lock);
d1310b2e 5105 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5106 if (em)
5107 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5108 read_unlock(&em_tree->lock);
d1310b2e 5109
a52d9a80 5110 if (em) {
e1c4b745
CM
5111 if (em->start > start || em->start + em->len <= start)
5112 free_extent_map(em);
5113 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5114 free_extent_map(em);
5115 else
5116 goto out;
a52d9a80 5117 }
d1310b2e 5118 em = alloc_extent_map(GFP_NOFS);
a52d9a80 5119 if (!em) {
d1310b2e
CM
5120 err = -ENOMEM;
5121 goto out;
a52d9a80 5122 }
e6dcd2dc 5123 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5124 em->start = EXTENT_MAP_HOLE;
445a6944 5125 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5126 em->len = (u64)-1;
c8b97818 5127 em->block_len = (u64)-1;
f421950f
CM
5128
5129 if (!path) {
5130 path = btrfs_alloc_path();
5131 BUG_ON(!path);
5132 }
5133
179e29e4
CM
5134 ret = btrfs_lookup_file_extent(trans, root, path,
5135 objectid, start, trans != NULL);
a52d9a80
CM
5136 if (ret < 0) {
5137 err = ret;
5138 goto out;
5139 }
5140
5141 if (ret != 0) {
5142 if (path->slots[0] == 0)
5143 goto not_found;
5144 path->slots[0]--;
5145 }
5146
5f39d397
CM
5147 leaf = path->nodes[0];
5148 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5149 struct btrfs_file_extent_item);
a52d9a80 5150 /* are we inside the extent that was found? */
5f39d397
CM
5151 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5152 found_type = btrfs_key_type(&found_key);
5153 if (found_key.objectid != objectid ||
a52d9a80
CM
5154 found_type != BTRFS_EXTENT_DATA_KEY) {
5155 goto not_found;
5156 }
5157
5f39d397
CM
5158 found_type = btrfs_file_extent_type(leaf, item);
5159 extent_start = found_key.offset;
261507a0 5160 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5161 if (found_type == BTRFS_FILE_EXTENT_REG ||
5162 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5163 extent_end = extent_start +
db94535d 5164 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5165 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5166 size_t size;
5167 size = btrfs_file_extent_inline_len(leaf, item);
5168 extent_end = (extent_start + size + root->sectorsize - 1) &
5169 ~((u64)root->sectorsize - 1);
5170 }
5171
5172 if (start >= extent_end) {
5173 path->slots[0]++;
5174 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5175 ret = btrfs_next_leaf(root, path);
5176 if (ret < 0) {
5177 err = ret;
5178 goto out;
a52d9a80 5179 }
9036c102
YZ
5180 if (ret > 0)
5181 goto not_found;
5182 leaf = path->nodes[0];
a52d9a80 5183 }
9036c102
YZ
5184 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5185 if (found_key.objectid != objectid ||
5186 found_key.type != BTRFS_EXTENT_DATA_KEY)
5187 goto not_found;
5188 if (start + len <= found_key.offset)
5189 goto not_found;
5190 em->start = start;
5191 em->len = found_key.offset - start;
5192 goto not_found_em;
5193 }
5194
d899e052
YZ
5195 if (found_type == BTRFS_FILE_EXTENT_REG ||
5196 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5197 em->start = extent_start;
5198 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5199 em->orig_start = extent_start -
5200 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5201 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5202 if (bytenr == 0) {
5f39d397 5203 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5204 goto insert;
5205 }
261507a0 5206 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5207 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5208 em->compress_type = compress_type;
c8b97818
CM
5209 em->block_start = bytenr;
5210 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5211 item);
5212 } else {
5213 bytenr += btrfs_file_extent_offset(leaf, item);
5214 em->block_start = bytenr;
5215 em->block_len = em->len;
d899e052
YZ
5216 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5217 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5218 }
a52d9a80
CM
5219 goto insert;
5220 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5221 unsigned long ptr;
a52d9a80 5222 char *map;
3326d1b0
CM
5223 size_t size;
5224 size_t extent_offset;
5225 size_t copy_size;
a52d9a80 5226
689f9346 5227 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5228 if (!page || create) {
689f9346 5229 em->start = extent_start;
9036c102 5230 em->len = extent_end - extent_start;
689f9346
Y
5231 goto out;
5232 }
5f39d397 5233
9036c102
YZ
5234 size = btrfs_file_extent_inline_len(leaf, item);
5235 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5236 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5237 size - extent_offset);
3326d1b0 5238 em->start = extent_start + extent_offset;
70dec807
CM
5239 em->len = (copy_size + root->sectorsize - 1) &
5240 ~((u64)root->sectorsize - 1);
ff5b7ee3 5241 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5242 if (compress_type) {
c8b97818 5243 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5244 em->compress_type = compress_type;
5245 }
689f9346 5246 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5247 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5248 if (btrfs_file_extent_compression(leaf, item) !=
5249 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5250 ret = uncompress_inline(path, inode, page,
5251 pg_offset,
5252 extent_offset, item);
5253 BUG_ON(ret);
5254 } else {
5255 map = kmap(page);
5256 read_extent_buffer(leaf, map + pg_offset, ptr,
5257 copy_size);
93c82d57
CM
5258 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5259 memset(map + pg_offset + copy_size, 0,
5260 PAGE_CACHE_SIZE - pg_offset -
5261 copy_size);
5262 }
c8b97818
CM
5263 kunmap(page);
5264 }
179e29e4
CM
5265 flush_dcache_page(page);
5266 } else if (create && PageUptodate(page)) {
0ca1f7ce 5267 WARN_ON(1);
179e29e4
CM
5268 if (!trans) {
5269 kunmap(page);
5270 free_extent_map(em);
5271 em = NULL;
5272 btrfs_release_path(root, path);
f9295749 5273 trans = btrfs_join_transaction(root, 1);
3612b495
TI
5274 if (IS_ERR(trans))
5275 return ERR_CAST(trans);
179e29e4
CM
5276 goto again;
5277 }
c8b97818 5278 map = kmap(page);
70dec807 5279 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5280 copy_size);
c8b97818 5281 kunmap(page);
179e29e4 5282 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5283 }
d1310b2e 5284 set_extent_uptodate(io_tree, em->start,
507903b8 5285 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5286 goto insert;
5287 } else {
d397712b 5288 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5289 WARN_ON(1);
5290 }
5291not_found:
5292 em->start = start;
d1310b2e 5293 em->len = len;
a52d9a80 5294not_found_em:
5f39d397 5295 em->block_start = EXTENT_MAP_HOLE;
9036c102 5296 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
5297insert:
5298 btrfs_release_path(root, path);
d1310b2e 5299 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5300 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5301 "[%llu %llu]\n", (unsigned long long)em->start,
5302 (unsigned long long)em->len,
5303 (unsigned long long)start,
5304 (unsigned long long)len);
a52d9a80
CM
5305 err = -EIO;
5306 goto out;
5307 }
d1310b2e
CM
5308
5309 err = 0;
890871be 5310 write_lock(&em_tree->lock);
a52d9a80 5311 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5312 /* it is possible that someone inserted the extent into the tree
5313 * while we had the lock dropped. It is also possible that
5314 * an overlapping map exists in the tree
5315 */
a52d9a80 5316 if (ret == -EEXIST) {
3b951516 5317 struct extent_map *existing;
e6dcd2dc
CM
5318
5319 ret = 0;
5320
3b951516 5321 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5322 if (existing && (existing->start > start ||
5323 existing->start + existing->len <= start)) {
5324 free_extent_map(existing);
5325 existing = NULL;
5326 }
3b951516
CM
5327 if (!existing) {
5328 existing = lookup_extent_mapping(em_tree, em->start,
5329 em->len);
5330 if (existing) {
5331 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5332 em, start,
5333 root->sectorsize);
3b951516
CM
5334 free_extent_map(existing);
5335 if (err) {
5336 free_extent_map(em);
5337 em = NULL;
5338 }
5339 } else {
5340 err = -EIO;
3b951516
CM
5341 free_extent_map(em);
5342 em = NULL;
5343 }
5344 } else {
5345 free_extent_map(em);
5346 em = existing;
e6dcd2dc 5347 err = 0;
a52d9a80 5348 }
a52d9a80 5349 }
890871be 5350 write_unlock(&em_tree->lock);
a52d9a80 5351out:
1abe9b8a 5352
5353 trace_btrfs_get_extent(root, em);
5354
f421950f
CM
5355 if (path)
5356 btrfs_free_path(path);
a52d9a80
CM
5357 if (trans) {
5358 ret = btrfs_end_transaction(trans, root);
d397712b 5359 if (!err)
a52d9a80
CM
5360 err = ret;
5361 }
a52d9a80
CM
5362 if (err) {
5363 free_extent_map(em);
a52d9a80
CM
5364 return ERR_PTR(err);
5365 }
5366 return em;
5367}
5368
ec29ed5b
CM
5369struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5370 size_t pg_offset, u64 start, u64 len,
5371 int create)
5372{
5373 struct extent_map *em;
5374 struct extent_map *hole_em = NULL;
5375 u64 range_start = start;
5376 u64 end;
5377 u64 found;
5378 u64 found_end;
5379 int err = 0;
5380
5381 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5382 if (IS_ERR(em))
5383 return em;
5384 if (em) {
5385 /*
5386 * if our em maps to a hole, there might
5387 * actually be delalloc bytes behind it
5388 */
5389 if (em->block_start != EXTENT_MAP_HOLE)
5390 return em;
5391 else
5392 hole_em = em;
5393 }
5394
5395 /* check to see if we've wrapped (len == -1 or similar) */
5396 end = start + len;
5397 if (end < start)
5398 end = (u64)-1;
5399 else
5400 end -= 1;
5401
5402 em = NULL;
5403
5404 /* ok, we didn't find anything, lets look for delalloc */
5405 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5406 end, len, EXTENT_DELALLOC, 1);
5407 found_end = range_start + found;
5408 if (found_end < range_start)
5409 found_end = (u64)-1;
5410
5411 /*
5412 * we didn't find anything useful, return
5413 * the original results from get_extent()
5414 */
5415 if (range_start > end || found_end <= start) {
5416 em = hole_em;
5417 hole_em = NULL;
5418 goto out;
5419 }
5420
5421 /* adjust the range_start to make sure it doesn't
5422 * go backwards from the start they passed in
5423 */
5424 range_start = max(start,range_start);
5425 found = found_end - range_start;
5426
5427 if (found > 0) {
5428 u64 hole_start = start;
5429 u64 hole_len = len;
5430
5431 em = alloc_extent_map(GFP_NOFS);
5432 if (!em) {
5433 err = -ENOMEM;
5434 goto out;
5435 }
5436 /*
5437 * when btrfs_get_extent can't find anything it
5438 * returns one huge hole
5439 *
5440 * make sure what it found really fits our range, and
5441 * adjust to make sure it is based on the start from
5442 * the caller
5443 */
5444 if (hole_em) {
5445 u64 calc_end = extent_map_end(hole_em);
5446
5447 if (calc_end <= start || (hole_em->start > end)) {
5448 free_extent_map(hole_em);
5449 hole_em = NULL;
5450 } else {
5451 hole_start = max(hole_em->start, start);
5452 hole_len = calc_end - hole_start;
5453 }
5454 }
5455 em->bdev = NULL;
5456 if (hole_em && range_start > hole_start) {
5457 /* our hole starts before our delalloc, so we
5458 * have to return just the parts of the hole
5459 * that go until the delalloc starts
5460 */
5461 em->len = min(hole_len,
5462 range_start - hole_start);
5463 em->start = hole_start;
5464 em->orig_start = hole_start;
5465 /*
5466 * don't adjust block start at all,
5467 * it is fixed at EXTENT_MAP_HOLE
5468 */
5469 em->block_start = hole_em->block_start;
5470 em->block_len = hole_len;
5471 } else {
5472 em->start = range_start;
5473 em->len = found;
5474 em->orig_start = range_start;
5475 em->block_start = EXTENT_MAP_DELALLOC;
5476 em->block_len = found;
5477 }
5478 } else if (hole_em) {
5479 return hole_em;
5480 }
5481out:
5482
5483 free_extent_map(hole_em);
5484 if (err) {
5485 free_extent_map(em);
5486 return ERR_PTR(err);
5487 }
5488 return em;
5489}
5490
4b46fce2 5491static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5492 struct extent_map *em,
4b46fce2
JB
5493 u64 start, u64 len)
5494{
5495 struct btrfs_root *root = BTRFS_I(inode)->root;
5496 struct btrfs_trans_handle *trans;
4b46fce2
JB
5497 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5498 struct btrfs_key ins;
5499 u64 alloc_hint;
5500 int ret;
16d299ac 5501 bool insert = false;
4b46fce2 5502
16d299ac
JB
5503 /*
5504 * Ok if the extent map we looked up is a hole and is for the exact
5505 * range we want, there is no reason to allocate a new one, however if
5506 * it is not right then we need to free this one and drop the cache for
5507 * our range.
5508 */
5509 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5510 em->len != len) {
5511 free_extent_map(em);
5512 em = NULL;
5513 insert = true;
5514 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5515 }
4b46fce2
JB
5516
5517 trans = btrfs_join_transaction(root, 0);
3612b495
TI
5518 if (IS_ERR(trans))
5519 return ERR_CAST(trans);
4b46fce2
JB
5520
5521 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5522
5523 alloc_hint = get_extent_allocation_hint(inode, start, len);
5524 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5525 alloc_hint, (u64)-1, &ins, 1);
5526 if (ret) {
5527 em = ERR_PTR(ret);
5528 goto out;
5529 }
5530
4b46fce2 5531 if (!em) {
16d299ac
JB
5532 em = alloc_extent_map(GFP_NOFS);
5533 if (!em) {
5534 em = ERR_PTR(-ENOMEM);
5535 goto out;
5536 }
4b46fce2
JB
5537 }
5538
5539 em->start = start;
5540 em->orig_start = em->start;
5541 em->len = ins.offset;
5542
5543 em->block_start = ins.objectid;
5544 em->block_len = ins.offset;
5545 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5546
5547 /*
5548 * We need to do this because if we're using the original em we searched
5549 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5550 */
5551 em->flags = 0;
4b46fce2
JB
5552 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5553
16d299ac 5554 while (insert) {
4b46fce2
JB
5555 write_lock(&em_tree->lock);
5556 ret = add_extent_mapping(em_tree, em);
5557 write_unlock(&em_tree->lock);
5558 if (ret != -EEXIST)
5559 break;
5560 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5561 }
5562
5563 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5564 ins.offset, ins.offset, 0);
5565 if (ret) {
5566 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5567 em = ERR_PTR(ret);
5568 }
5569out:
5570 btrfs_end_transaction(trans, root);
5571 return em;
5572}
5573
46bfbb5c
CM
5574/*
5575 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5576 * block must be cow'd
5577 */
5578static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5579 struct inode *inode, u64 offset, u64 len)
5580{
5581 struct btrfs_path *path;
5582 int ret;
5583 struct extent_buffer *leaf;
5584 struct btrfs_root *root = BTRFS_I(inode)->root;
5585 struct btrfs_file_extent_item *fi;
5586 struct btrfs_key key;
5587 u64 disk_bytenr;
5588 u64 backref_offset;
5589 u64 extent_end;
5590 u64 num_bytes;
5591 int slot;
5592 int found_type;
5593
5594 path = btrfs_alloc_path();
5595 if (!path)
5596 return -ENOMEM;
5597
5598 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5599 offset, 0);
5600 if (ret < 0)
5601 goto out;
5602
5603 slot = path->slots[0];
5604 if (ret == 1) {
5605 if (slot == 0) {
5606 /* can't find the item, must cow */
5607 ret = 0;
5608 goto out;
5609 }
5610 slot--;
5611 }
5612 ret = 0;
5613 leaf = path->nodes[0];
5614 btrfs_item_key_to_cpu(leaf, &key, slot);
5615 if (key.objectid != inode->i_ino ||
5616 key.type != BTRFS_EXTENT_DATA_KEY) {
5617 /* not our file or wrong item type, must cow */
5618 goto out;
5619 }
5620
5621 if (key.offset > offset) {
5622 /* Wrong offset, must cow */
5623 goto out;
5624 }
5625
5626 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5627 found_type = btrfs_file_extent_type(leaf, fi);
5628 if (found_type != BTRFS_FILE_EXTENT_REG &&
5629 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5630 /* not a regular extent, must cow */
5631 goto out;
5632 }
5633 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5634 backref_offset = btrfs_file_extent_offset(leaf, fi);
5635
5636 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5637 if (extent_end < offset + len) {
5638 /* extent doesn't include our full range, must cow */
5639 goto out;
5640 }
5641
5642 if (btrfs_extent_readonly(root, disk_bytenr))
5643 goto out;
5644
5645 /*
5646 * look for other files referencing this extent, if we
5647 * find any we must cow
5648 */
5649 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5650 key.offset - backref_offset, disk_bytenr))
5651 goto out;
5652
5653 /*
5654 * adjust disk_bytenr and num_bytes to cover just the bytes
5655 * in this extent we are about to write. If there
5656 * are any csums in that range we have to cow in order
5657 * to keep the csums correct
5658 */
5659 disk_bytenr += backref_offset;
5660 disk_bytenr += offset - key.offset;
5661 num_bytes = min(offset + len, extent_end) - offset;
5662 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5663 goto out;
5664 /*
5665 * all of the above have passed, it is safe to overwrite this extent
5666 * without cow
5667 */
5668 ret = 1;
5669out:
5670 btrfs_free_path(path);
5671 return ret;
5672}
5673
4b46fce2
JB
5674static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5675 struct buffer_head *bh_result, int create)
5676{
5677 struct extent_map *em;
5678 struct btrfs_root *root = BTRFS_I(inode)->root;
5679 u64 start = iblock << inode->i_blkbits;
5680 u64 len = bh_result->b_size;
46bfbb5c 5681 struct btrfs_trans_handle *trans;
4b46fce2
JB
5682
5683 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5684 if (IS_ERR(em))
5685 return PTR_ERR(em);
5686
5687 /*
5688 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5689 * io. INLINE is special, and we could probably kludge it in here, but
5690 * it's still buffered so for safety lets just fall back to the generic
5691 * buffered path.
5692 *
5693 * For COMPRESSED we _have_ to read the entire extent in so we can
5694 * decompress it, so there will be buffering required no matter what we
5695 * do, so go ahead and fallback to buffered.
5696 *
5697 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5698 * to buffered IO. Don't blame me, this is the price we pay for using
5699 * the generic code.
5700 */
5701 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5702 em->block_start == EXTENT_MAP_INLINE) {
5703 free_extent_map(em);
5704 return -ENOTBLK;
5705 }
5706
5707 /* Just a good old fashioned hole, return */
5708 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5709 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5710 free_extent_map(em);
5711 /* DIO will do one hole at a time, so just unlock a sector */
5712 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5713 start + root->sectorsize - 1, GFP_NOFS);
5714 return 0;
5715 }
5716
5717 /*
5718 * We don't allocate a new extent in the following cases
5719 *
5720 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5721 * existing extent.
5722 * 2) The extent is marked as PREALLOC. We're good to go here and can
5723 * just use the extent.
5724 *
5725 */
46bfbb5c
CM
5726 if (!create) {
5727 len = em->len - (start - em->start);
4b46fce2 5728 goto map;
46bfbb5c 5729 }
4b46fce2
JB
5730
5731 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5732 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5733 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5734 int type;
5735 int ret;
46bfbb5c 5736 u64 block_start;
4b46fce2
JB
5737
5738 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5739 type = BTRFS_ORDERED_PREALLOC;
5740 else
5741 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5742 len = min(len, em->len - (start - em->start));
4b46fce2 5743 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5744
5745 /*
5746 * we're not going to log anything, but we do need
5747 * to make sure the current transaction stays open
5748 * while we look for nocow cross refs
5749 */
5750 trans = btrfs_join_transaction(root, 0);
3612b495 5751 if (IS_ERR(trans))
46bfbb5c
CM
5752 goto must_cow;
5753
5754 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5755 ret = btrfs_add_ordered_extent_dio(inode, start,
5756 block_start, len, len, type);
5757 btrfs_end_transaction(trans, root);
5758 if (ret) {
5759 free_extent_map(em);
5760 return ret;
5761 }
5762 goto unlock;
4b46fce2 5763 }
46bfbb5c 5764 btrfs_end_transaction(trans, root);
4b46fce2 5765 }
46bfbb5c
CM
5766must_cow:
5767 /*
5768 * this will cow the extent, reset the len in case we changed
5769 * it above
5770 */
5771 len = bh_result->b_size;
16d299ac 5772 em = btrfs_new_extent_direct(inode, em, start, len);
46bfbb5c
CM
5773 if (IS_ERR(em))
5774 return PTR_ERR(em);
5775 len = min(len, em->len - (start - em->start));
5776unlock:
4845e44f
CM
5777 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5778 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5779 0, NULL, GFP_NOFS);
4b46fce2
JB
5780map:
5781 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5782 inode->i_blkbits;
46bfbb5c 5783 bh_result->b_size = len;
4b46fce2
JB
5784 bh_result->b_bdev = em->bdev;
5785 set_buffer_mapped(bh_result);
5786 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5787 set_buffer_new(bh_result);
5788
5789 free_extent_map(em);
5790
5791 return 0;
5792}
5793
5794struct btrfs_dio_private {
5795 struct inode *inode;
5796 u64 logical_offset;
5797 u64 disk_bytenr;
5798 u64 bytes;
5799 u32 *csums;
5800 void *private;
e65e1535
MX
5801
5802 /* number of bios pending for this dio */
5803 atomic_t pending_bios;
5804
5805 /* IO errors */
5806 int errors;
5807
5808 struct bio *orig_bio;
4b46fce2
JB
5809};
5810
5811static void btrfs_endio_direct_read(struct bio *bio, int err)
5812{
e65e1535 5813 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5814 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5815 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5816 struct inode *inode = dip->inode;
5817 struct btrfs_root *root = BTRFS_I(inode)->root;
5818 u64 start;
5819 u32 *private = dip->csums;
5820
5821 start = dip->logical_offset;
5822 do {
5823 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5824 struct page *page = bvec->bv_page;
5825 char *kaddr;
5826 u32 csum = ~(u32)0;
5827 unsigned long flags;
5828
5829 local_irq_save(flags);
5830 kaddr = kmap_atomic(page, KM_IRQ0);
5831 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5832 csum, bvec->bv_len);
5833 btrfs_csum_final(csum, (char *)&csum);
5834 kunmap_atomic(kaddr, KM_IRQ0);
5835 local_irq_restore(flags);
5836
5837 flush_dcache_page(bvec->bv_page);
5838 if (csum != *private) {
5839 printk(KERN_ERR "btrfs csum failed ino %lu off"
5840 " %llu csum %u private %u\n",
5841 inode->i_ino, (unsigned long long)start,
5842 csum, *private);
5843 err = -EIO;
5844 }
5845 }
5846
5847 start += bvec->bv_len;
5848 private++;
5849 bvec++;
5850 } while (bvec <= bvec_end);
5851
5852 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5853 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5854 bio->bi_private = dip->private;
5855
5856 kfree(dip->csums);
5857 kfree(dip);
c0da7aa1
JB
5858
5859 /* If we had a csum failure make sure to clear the uptodate flag */
5860 if (err)
5861 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5862 dio_end_io(bio, err);
5863}
5864
5865static void btrfs_endio_direct_write(struct bio *bio, int err)
5866{
5867 struct btrfs_dio_private *dip = bio->bi_private;
5868 struct inode *inode = dip->inode;
5869 struct btrfs_root *root = BTRFS_I(inode)->root;
5870 struct btrfs_trans_handle *trans;
5871 struct btrfs_ordered_extent *ordered = NULL;
5872 struct extent_state *cached_state = NULL;
163cf09c
CM
5873 u64 ordered_offset = dip->logical_offset;
5874 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5875 int ret;
5876
5877 if (err)
5878 goto out_done;
163cf09c
CM
5879again:
5880 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5881 &ordered_offset,
5882 ordered_bytes);
4b46fce2 5883 if (!ret)
163cf09c 5884 goto out_test;
4b46fce2
JB
5885
5886 BUG_ON(!ordered);
5887
5888 trans = btrfs_join_transaction(root, 1);
3612b495 5889 if (IS_ERR(trans)) {
4b46fce2
JB
5890 err = -ENOMEM;
5891 goto out;
5892 }
5893 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5894
5895 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5896 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5897 if (!ret)
5898 ret = btrfs_update_inode(trans, root, inode);
5899 err = ret;
5900 goto out;
5901 }
5902
5903 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5904 ordered->file_offset + ordered->len - 1, 0,
5905 &cached_state, GFP_NOFS);
5906
5907 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5908 ret = btrfs_mark_extent_written(trans, inode,
5909 ordered->file_offset,
5910 ordered->file_offset +
5911 ordered->len);
5912 if (ret) {
5913 err = ret;
5914 goto out_unlock;
5915 }
5916 } else {
5917 ret = insert_reserved_file_extent(trans, inode,
5918 ordered->file_offset,
5919 ordered->start,
5920 ordered->disk_len,
5921 ordered->len,
5922 ordered->len,
5923 0, 0, 0,
5924 BTRFS_FILE_EXTENT_REG);
5925 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5926 ordered->file_offset, ordered->len);
5927 if (ret) {
5928 err = ret;
5929 WARN_ON(1);
5930 goto out_unlock;
5931 }
5932 }
5933
5934 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
1ef30be1
JB
5935 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5936 if (!ret)
5937 btrfs_update_inode(trans, root, inode);
5938 ret = 0;
4b46fce2
JB
5939out_unlock:
5940 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5941 ordered->file_offset + ordered->len - 1,
5942 &cached_state, GFP_NOFS);
5943out:
5944 btrfs_delalloc_release_metadata(inode, ordered->len);
5945 btrfs_end_transaction(trans, root);
163cf09c 5946 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5947 btrfs_put_ordered_extent(ordered);
5948 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5949
5950out_test:
5951 /*
5952 * our bio might span multiple ordered extents. If we haven't
5953 * completed the accounting for the whole dio, go back and try again
5954 */
5955 if (ordered_offset < dip->logical_offset + dip->bytes) {
5956 ordered_bytes = dip->logical_offset + dip->bytes -
5957 ordered_offset;
5958 goto again;
5959 }
4b46fce2
JB
5960out_done:
5961 bio->bi_private = dip->private;
5962
5963 kfree(dip->csums);
5964 kfree(dip);
c0da7aa1
JB
5965
5966 /* If we had an error make sure to clear the uptodate flag */
5967 if (err)
5968 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5969 dio_end_io(bio, err);
5970}
5971
eaf25d93
CM
5972static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5973 struct bio *bio, int mirror_num,
5974 unsigned long bio_flags, u64 offset)
5975{
5976 int ret;
5977 struct btrfs_root *root = BTRFS_I(inode)->root;
5978 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5979 BUG_ON(ret);
5980 return 0;
5981}
5982
e65e1535
MX
5983static void btrfs_end_dio_bio(struct bio *bio, int err)
5984{
5985 struct btrfs_dio_private *dip = bio->bi_private;
5986
5987 if (err) {
5988 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
3dd1462e
JB
5989 "sector %#Lx len %u err no %d\n",
5990 dip->inode->i_ino, bio->bi_rw,
5991 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5992 dip->errors = 1;
5993
5994 /*
5995 * before atomic variable goto zero, we must make sure
5996 * dip->errors is perceived to be set.
5997 */
5998 smp_mb__before_atomic_dec();
5999 }
6000
6001 /* if there are more bios still pending for this dio, just exit */
6002 if (!atomic_dec_and_test(&dip->pending_bios))
6003 goto out;
6004
6005 if (dip->errors)
6006 bio_io_error(dip->orig_bio);
6007 else {
6008 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6009 bio_endio(dip->orig_bio, 0);
6010 }
6011out:
6012 bio_put(bio);
6013}
6014
6015static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6016 u64 first_sector, gfp_t gfp_flags)
6017{
6018 int nr_vecs = bio_get_nr_vecs(bdev);
6019 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6020}
6021
6022static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6023 int rw, u64 file_offset, int skip_sum,
1ae39938 6024 u32 *csums, int async_submit)
e65e1535
MX
6025{
6026 int write = rw & REQ_WRITE;
6027 struct btrfs_root *root = BTRFS_I(inode)->root;
6028 int ret;
6029
6030 bio_get(bio);
6031 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6032 if (ret)
6033 goto err;
6034
1ae39938
JB
6035 if (skip_sum)
6036 goto map;
6037
6038 if (write && async_submit) {
e65e1535
MX
6039 ret = btrfs_wq_submit_bio(root->fs_info,
6040 inode, rw, bio, 0, 0,
6041 file_offset,
6042 __btrfs_submit_bio_start_direct_io,
6043 __btrfs_submit_bio_done);
6044 goto err;
1ae39938
JB
6045 } else if (write) {
6046 /*
6047 * If we aren't doing async submit, calculate the csum of the
6048 * bio now.
6049 */
6050 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6051 if (ret)
6052 goto err;
c2db1073
TI
6053 } else if (!skip_sum) {
6054 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
e65e1535 6055 file_offset, csums);
c2db1073
TI
6056 if (ret)
6057 goto err;
6058 }
e65e1535 6059
1ae39938
JB
6060map:
6061 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
6062err:
6063 bio_put(bio);
6064 return ret;
6065}
6066
6067static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6068 int skip_sum)
6069{
6070 struct inode *inode = dip->inode;
6071 struct btrfs_root *root = BTRFS_I(inode)->root;
6072 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6073 struct bio *bio;
6074 struct bio *orig_bio = dip->orig_bio;
6075 struct bio_vec *bvec = orig_bio->bi_io_vec;
6076 u64 start_sector = orig_bio->bi_sector;
6077 u64 file_offset = dip->logical_offset;
6078 u64 submit_len = 0;
6079 u64 map_length;
6080 int nr_pages = 0;
6081 u32 *csums = dip->csums;
6082 int ret = 0;
1ae39938 6083 int async_submit = 0;
98bc3149 6084 int write = rw & REQ_WRITE;
e65e1535 6085
e65e1535
MX
6086 map_length = orig_bio->bi_size;
6087 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6088 &map_length, NULL, 0);
6089 if (ret) {
64728bbb 6090 bio_put(orig_bio);
e65e1535
MX
6091 return -EIO;
6092 }
6093
02f57c7a
JB
6094 if (map_length >= orig_bio->bi_size) {
6095 bio = orig_bio;
6096 goto submit;
6097 }
6098
1ae39938 6099 async_submit = 1;
02f57c7a
JB
6100 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6101 if (!bio)
6102 return -ENOMEM;
6103 bio->bi_private = dip;
6104 bio->bi_end_io = btrfs_end_dio_bio;
6105 atomic_inc(&dip->pending_bios);
6106
e65e1535
MX
6107 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6108 if (unlikely(map_length < submit_len + bvec->bv_len ||
6109 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6110 bvec->bv_offset) < bvec->bv_len)) {
6111 /*
6112 * inc the count before we submit the bio so
6113 * we know the end IO handler won't happen before
6114 * we inc the count. Otherwise, the dip might get freed
6115 * before we're done setting it up
6116 */
6117 atomic_inc(&dip->pending_bios);
6118 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6119 file_offset, skip_sum,
1ae39938 6120 csums, async_submit);
e65e1535
MX
6121 if (ret) {
6122 bio_put(bio);
6123 atomic_dec(&dip->pending_bios);
6124 goto out_err;
6125 }
6126
98bc3149
JB
6127 /* Write's use the ordered csums */
6128 if (!write && !skip_sum)
e65e1535
MX
6129 csums = csums + nr_pages;
6130 start_sector += submit_len >> 9;
6131 file_offset += submit_len;
6132
6133 submit_len = 0;
6134 nr_pages = 0;
6135
6136 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6137 start_sector, GFP_NOFS);
6138 if (!bio)
6139 goto out_err;
6140 bio->bi_private = dip;
6141 bio->bi_end_io = btrfs_end_dio_bio;
6142
6143 map_length = orig_bio->bi_size;
6144 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6145 &map_length, NULL, 0);
6146 if (ret) {
6147 bio_put(bio);
6148 goto out_err;
6149 }
6150 } else {
6151 submit_len += bvec->bv_len;
6152 nr_pages ++;
6153 bvec++;
6154 }
6155 }
6156
02f57c7a 6157submit:
e65e1535 6158 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
1ae39938 6159 csums, async_submit);
e65e1535
MX
6160 if (!ret)
6161 return 0;
6162
6163 bio_put(bio);
6164out_err:
6165 dip->errors = 1;
6166 /*
6167 * before atomic variable goto zero, we must
6168 * make sure dip->errors is perceived to be set.
6169 */
6170 smp_mb__before_atomic_dec();
6171 if (atomic_dec_and_test(&dip->pending_bios))
6172 bio_io_error(dip->orig_bio);
6173
6174 /* bio_end_io() will handle error, so we needn't return it */
6175 return 0;
6176}
6177
4b46fce2
JB
6178static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6179 loff_t file_offset)
6180{
6181 struct btrfs_root *root = BTRFS_I(inode)->root;
6182 struct btrfs_dio_private *dip;
6183 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6184 int skip_sum;
7b6d91da 6185 int write = rw & REQ_WRITE;
4b46fce2
JB
6186 int ret = 0;
6187
6188 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6189
6190 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6191 if (!dip) {
6192 ret = -ENOMEM;
6193 goto free_ordered;
6194 }
6195 dip->csums = NULL;
6196
98bc3149
JB
6197 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6198 if (!write && !skip_sum) {
4b46fce2
JB
6199 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6200 if (!dip->csums) {
b4966b77 6201 kfree(dip);
4b46fce2
JB
6202 ret = -ENOMEM;
6203 goto free_ordered;
6204 }
6205 }
6206
6207 dip->private = bio->bi_private;
6208 dip->inode = inode;
6209 dip->logical_offset = file_offset;
6210
4b46fce2
JB
6211 dip->bytes = 0;
6212 do {
6213 dip->bytes += bvec->bv_len;
6214 bvec++;
6215 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6216
46bfbb5c 6217 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6218 bio->bi_private = dip;
e65e1535
MX
6219 dip->errors = 0;
6220 dip->orig_bio = bio;
6221 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6222
6223 if (write)
6224 bio->bi_end_io = btrfs_endio_direct_write;
6225 else
6226 bio->bi_end_io = btrfs_endio_direct_read;
6227
e65e1535
MX
6228 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6229 if (!ret)
eaf25d93 6230 return;
4b46fce2
JB
6231free_ordered:
6232 /*
6233 * If this is a write, we need to clean up the reserved space and kill
6234 * the ordered extent.
6235 */
6236 if (write) {
6237 struct btrfs_ordered_extent *ordered;
955256f2 6238 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6239 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6240 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6241 btrfs_free_reserved_extent(root, ordered->start,
6242 ordered->disk_len);
6243 btrfs_put_ordered_extent(ordered);
6244 btrfs_put_ordered_extent(ordered);
6245 }
6246 bio_endio(bio, ret);
6247}
6248
5a5f79b5
CM
6249static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6250 const struct iovec *iov, loff_t offset,
6251 unsigned long nr_segs)
6252{
6253 int seg;
a1b75f7d 6254 int i;
5a5f79b5
CM
6255 size_t size;
6256 unsigned long addr;
6257 unsigned blocksize_mask = root->sectorsize - 1;
6258 ssize_t retval = -EINVAL;
6259 loff_t end = offset;
6260
6261 if (offset & blocksize_mask)
6262 goto out;
6263
6264 /* Check the memory alignment. Blocks cannot straddle pages */
6265 for (seg = 0; seg < nr_segs; seg++) {
6266 addr = (unsigned long)iov[seg].iov_base;
6267 size = iov[seg].iov_len;
6268 end += size;
a1b75f7d 6269 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6270 goto out;
a1b75f7d
JB
6271
6272 /* If this is a write we don't need to check anymore */
6273 if (rw & WRITE)
6274 continue;
6275
6276 /*
6277 * Check to make sure we don't have duplicate iov_base's in this
6278 * iovec, if so return EINVAL, otherwise we'll get csum errors
6279 * when reading back.
6280 */
6281 for (i = seg + 1; i < nr_segs; i++) {
6282 if (iov[seg].iov_base == iov[i].iov_base)
6283 goto out;
6284 }
5a5f79b5
CM
6285 }
6286 retval = 0;
6287out:
6288 return retval;
6289}
16432985
CM
6290static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6291 const struct iovec *iov, loff_t offset,
6292 unsigned long nr_segs)
6293{
4b46fce2
JB
6294 struct file *file = iocb->ki_filp;
6295 struct inode *inode = file->f_mapping->host;
6296 struct btrfs_ordered_extent *ordered;
4845e44f 6297 struct extent_state *cached_state = NULL;
4b46fce2
JB
6298 u64 lockstart, lockend;
6299 ssize_t ret;
4845e44f
CM
6300 int writing = rw & WRITE;
6301 int write_bits = 0;
3f7c579c 6302 size_t count = iov_length(iov, nr_segs);
4b46fce2 6303
5a5f79b5
CM
6304 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6305 offset, nr_segs)) {
6306 return 0;
6307 }
6308
4b46fce2 6309 lockstart = offset;
3f7c579c
CM
6310 lockend = offset + count - 1;
6311
6312 if (writing) {
6313 ret = btrfs_delalloc_reserve_space(inode, count);
6314 if (ret)
6315 goto out;
6316 }
4845e44f 6317
4b46fce2 6318 while (1) {
4845e44f
CM
6319 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6320 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6321 /*
6322 * We're concerned with the entire range that we're going to be
6323 * doing DIO to, so we need to make sure theres no ordered
6324 * extents in this range.
6325 */
6326 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6327 lockend - lockstart + 1);
6328 if (!ordered)
6329 break;
4845e44f
CM
6330 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6331 &cached_state, GFP_NOFS);
4b46fce2
JB
6332 btrfs_start_ordered_extent(inode, ordered, 1);
6333 btrfs_put_ordered_extent(ordered);
6334 cond_resched();
6335 }
6336
4845e44f
CM
6337 /*
6338 * we don't use btrfs_set_extent_delalloc because we don't want
6339 * the dirty or uptodate bits
6340 */
6341 if (writing) {
6342 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6343 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6344 EXTENT_DELALLOC, 0, NULL, &cached_state,
6345 GFP_NOFS);
6346 if (ret) {
6347 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6348 lockend, EXTENT_LOCKED | write_bits,
6349 1, 0, &cached_state, GFP_NOFS);
6350 goto out;
6351 }
6352 }
6353
6354 free_extent_state(cached_state);
6355 cached_state = NULL;
6356
5a5f79b5
CM
6357 ret = __blockdev_direct_IO(rw, iocb, inode,
6358 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6359 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6360 btrfs_submit_direct, 0);
4b46fce2
JB
6361
6362 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6363 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6364 offset + iov_length(iov, nr_segs) - 1,
6365 EXTENT_LOCKED | write_bits, 1, 0,
6366 &cached_state, GFP_NOFS);
4b46fce2
JB
6367 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6368 /*
6369 * We're falling back to buffered, unlock the section we didn't
6370 * do IO on.
6371 */
4845e44f
CM
6372 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6373 offset + iov_length(iov, nr_segs) - 1,
6374 EXTENT_LOCKED | write_bits, 1, 0,
6375 &cached_state, GFP_NOFS);
4b46fce2 6376 }
4845e44f
CM
6377out:
6378 free_extent_state(cached_state);
4b46fce2 6379 return ret;
16432985
CM
6380}
6381
1506fcc8
YS
6382static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6383 __u64 start, __u64 len)
6384{
ec29ed5b 6385 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6386}
6387
a52d9a80 6388int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6389{
d1310b2e
CM
6390 struct extent_io_tree *tree;
6391 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6392 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 6393}
1832a6d5 6394
a52d9a80 6395static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6396{
d1310b2e 6397 struct extent_io_tree *tree;
b888db2b
CM
6398
6399
6400 if (current->flags & PF_MEMALLOC) {
6401 redirty_page_for_writepage(wbc, page);
6402 unlock_page(page);
6403 return 0;
6404 }
d1310b2e 6405 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6406 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6407}
6408
f421950f
CM
6409int btrfs_writepages(struct address_space *mapping,
6410 struct writeback_control *wbc)
b293f02e 6411{
d1310b2e 6412 struct extent_io_tree *tree;
771ed689 6413
d1310b2e 6414 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6415 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6416}
6417
3ab2fb5a
CM
6418static int
6419btrfs_readpages(struct file *file, struct address_space *mapping,
6420 struct list_head *pages, unsigned nr_pages)
6421{
d1310b2e
CM
6422 struct extent_io_tree *tree;
6423 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6424 return extent_readpages(tree, mapping, pages, nr_pages,
6425 btrfs_get_extent);
6426}
e6dcd2dc 6427static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6428{
d1310b2e
CM
6429 struct extent_io_tree *tree;
6430 struct extent_map_tree *map;
a52d9a80 6431 int ret;
8c2383c3 6432
d1310b2e
CM
6433 tree = &BTRFS_I(page->mapping->host)->io_tree;
6434 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6435 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6436 if (ret == 1) {
6437 ClearPagePrivate(page);
6438 set_page_private(page, 0);
6439 page_cache_release(page);
39279cc3 6440 }
a52d9a80 6441 return ret;
39279cc3
CM
6442}
6443
e6dcd2dc
CM
6444static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6445{
98509cfc
CM
6446 if (PageWriteback(page) || PageDirty(page))
6447 return 0;
b335b003 6448 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6449}
6450
a52d9a80 6451static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6452{
d1310b2e 6453 struct extent_io_tree *tree;
e6dcd2dc 6454 struct btrfs_ordered_extent *ordered;
2ac55d41 6455 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6456 u64 page_start = page_offset(page);
6457 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6458
8b62b72b
CM
6459
6460 /*
6461 * we have the page locked, so new writeback can't start,
6462 * and the dirty bit won't be cleared while we are here.
6463 *
6464 * Wait for IO on this page so that we can safely clear
6465 * the PagePrivate2 bit and do ordered accounting
6466 */
e6dcd2dc 6467 wait_on_page_writeback(page);
8b62b72b 6468
d1310b2e 6469 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6470 if (offset) {
6471 btrfs_releasepage(page, GFP_NOFS);
6472 return;
6473 }
2ac55d41
JB
6474 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6475 GFP_NOFS);
e6dcd2dc
CM
6476 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6477 page_offset(page));
6478 if (ordered) {
eb84ae03
CM
6479 /*
6480 * IO on this page will never be started, so we need
6481 * to account for any ordered extents now
6482 */
e6dcd2dc
CM
6483 clear_extent_bit(tree, page_start, page_end,
6484 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6485 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6486 &cached_state, GFP_NOFS);
8b62b72b
CM
6487 /*
6488 * whoever cleared the private bit is responsible
6489 * for the finish_ordered_io
6490 */
6491 if (TestClearPagePrivate2(page)) {
6492 btrfs_finish_ordered_io(page->mapping->host,
6493 page_start, page_end);
6494 }
e6dcd2dc 6495 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6496 cached_state = NULL;
6497 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6498 GFP_NOFS);
e6dcd2dc
CM
6499 }
6500 clear_extent_bit(tree, page_start, page_end,
32c00aff 6501 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6502 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6503 __btrfs_releasepage(page, GFP_NOFS);
6504
4a096752 6505 ClearPageChecked(page);
9ad6b7bc 6506 if (PagePrivate(page)) {
9ad6b7bc
CM
6507 ClearPagePrivate(page);
6508 set_page_private(page, 0);
6509 page_cache_release(page);
6510 }
39279cc3
CM
6511}
6512
9ebefb18
CM
6513/*
6514 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6515 * called from a page fault handler when a page is first dirtied. Hence we must
6516 * be careful to check for EOF conditions here. We set the page up correctly
6517 * for a written page which means we get ENOSPC checking when writing into
6518 * holes and correct delalloc and unwritten extent mapping on filesystems that
6519 * support these features.
6520 *
6521 * We are not allowed to take the i_mutex here so we have to play games to
6522 * protect against truncate races as the page could now be beyond EOF. Because
6523 * vmtruncate() writes the inode size before removing pages, once we have the
6524 * page lock we can determine safely if the page is beyond EOF. If it is not
6525 * beyond EOF, then the page is guaranteed safe against truncation until we
6526 * unlock the page.
6527 */
c2ec175c 6528int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6529{
c2ec175c 6530 struct page *page = vmf->page;
6da6abae 6531 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6532 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6533 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6534 struct btrfs_ordered_extent *ordered;
2ac55d41 6535 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6536 char *kaddr;
6537 unsigned long zero_start;
9ebefb18 6538 loff_t size;
1832a6d5 6539 int ret;
a52d9a80 6540 u64 page_start;
e6dcd2dc 6541 u64 page_end;
9ebefb18 6542
0ca1f7ce 6543 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
6544 if (ret) {
6545 if (ret == -ENOMEM)
6546 ret = VM_FAULT_OOM;
6547 else /* -ENOSPC, -EIO, etc */
6548 ret = VM_FAULT_SIGBUS;
1832a6d5 6549 goto out;
56a76f82 6550 }
1832a6d5 6551
56a76f82 6552 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6553again:
9ebefb18 6554 lock_page(page);
9ebefb18 6555 size = i_size_read(inode);
e6dcd2dc
CM
6556 page_start = page_offset(page);
6557 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6558
9ebefb18 6559 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6560 (page_start >= size)) {
9ebefb18
CM
6561 /* page got truncated out from underneath us */
6562 goto out_unlock;
6563 }
e6dcd2dc
CM
6564 wait_on_page_writeback(page);
6565
2ac55d41
JB
6566 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6567 GFP_NOFS);
e6dcd2dc
CM
6568 set_page_extent_mapped(page);
6569
eb84ae03
CM
6570 /*
6571 * we can't set the delalloc bits if there are pending ordered
6572 * extents. Drop our locks and wait for them to finish
6573 */
e6dcd2dc
CM
6574 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6575 if (ordered) {
2ac55d41
JB
6576 unlock_extent_cached(io_tree, page_start, page_end,
6577 &cached_state, GFP_NOFS);
e6dcd2dc 6578 unlock_page(page);
eb84ae03 6579 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6580 btrfs_put_ordered_extent(ordered);
6581 goto again;
6582 }
6583
fbf19087
JB
6584 /*
6585 * XXX - page_mkwrite gets called every time the page is dirtied, even
6586 * if it was already dirty, so for space accounting reasons we need to
6587 * clear any delalloc bits for the range we are fixing to save. There
6588 * is probably a better way to do this, but for now keep consistent with
6589 * prepare_pages in the normal write path.
6590 */
2ac55d41 6591 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6592 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6593 0, 0, &cached_state, GFP_NOFS);
fbf19087 6594
2ac55d41
JB
6595 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6596 &cached_state);
9ed74f2d 6597 if (ret) {
2ac55d41
JB
6598 unlock_extent_cached(io_tree, page_start, page_end,
6599 &cached_state, GFP_NOFS);
9ed74f2d
JB
6600 ret = VM_FAULT_SIGBUS;
6601 goto out_unlock;
6602 }
e6dcd2dc 6603 ret = 0;
9ebefb18
CM
6604
6605 /* page is wholly or partially inside EOF */
a52d9a80 6606 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6607 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6608 else
e6dcd2dc 6609 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6610
e6dcd2dc
CM
6611 if (zero_start != PAGE_CACHE_SIZE) {
6612 kaddr = kmap(page);
6613 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6614 flush_dcache_page(page);
6615 kunmap(page);
6616 }
247e743c 6617 ClearPageChecked(page);
e6dcd2dc 6618 set_page_dirty(page);
50a9b214 6619 SetPageUptodate(page);
5a3f23d5 6620
257c62e1
CM
6621 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6622 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6623
2ac55d41 6624 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6625
6626out_unlock:
50a9b214
CM
6627 if (!ret)
6628 return VM_FAULT_LOCKED;
9ebefb18 6629 unlock_page(page);
0ca1f7ce 6630 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 6631out:
9ebefb18
CM
6632 return ret;
6633}
6634
a41ad394 6635static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6636{
6637 struct btrfs_root *root = BTRFS_I(inode)->root;
6638 int ret;
3893e33b 6639 int err = 0;
39279cc3 6640 struct btrfs_trans_handle *trans;
d3c2fdcf 6641 unsigned long nr;
dbe674a9 6642 u64 mask = root->sectorsize - 1;
39279cc3 6643
5d5e103a
JB
6644 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6645 if (ret)
a41ad394 6646 return ret;
8082510e 6647
4a096752 6648 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6649 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6650
f0cd846e
JB
6651 trans = btrfs_start_transaction(root, 5);
6652 if (IS_ERR(trans))
6653 return PTR_ERR(trans);
6654
6655 btrfs_set_trans_block_group(trans, inode);
6656
6657 ret = btrfs_orphan_add(trans, inode);
6658 if (ret) {
6659 btrfs_end_transaction(trans, root);
6660 return ret;
6661 }
6662
6663 nr = trans->blocks_used;
6664 btrfs_end_transaction(trans, root);
6665 btrfs_btree_balance_dirty(root, nr);
6666
6667 /* Now start a transaction for the truncate */
d68fc57b 6668 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
6669 if (IS_ERR(trans))
6670 return PTR_ERR(trans);
8082510e 6671 btrfs_set_trans_block_group(trans, inode);
d68fc57b 6672 trans->block_rsv = root->orphan_block_rsv;
5a3f23d5
CM
6673
6674 /*
6675 * setattr is responsible for setting the ordered_data_close flag,
6676 * but that is only tested during the last file release. That
6677 * could happen well after the next commit, leaving a great big
6678 * window where new writes may get lost if someone chooses to write
6679 * to this file after truncating to zero
6680 *
6681 * The inode doesn't have any dirty data here, and so if we commit
6682 * this is a noop. If someone immediately starts writing to the inode
6683 * it is very likely we'll catch some of their writes in this
6684 * transaction, and the commit will find this file on the ordered
6685 * data list with good things to send down.
6686 *
6687 * This is a best effort solution, there is still a window where
6688 * using truncate to replace the contents of the file will
6689 * end up with a zero length file after a crash.
6690 */
6691 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6692 btrfs_add_ordered_operation(trans, root, inode);
6693
8082510e 6694 while (1) {
d68fc57b
YZ
6695 if (!trans) {
6696 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
6697 if (IS_ERR(trans))
6698 return PTR_ERR(trans);
d68fc57b
YZ
6699 btrfs_set_trans_block_group(trans, inode);
6700 trans->block_rsv = root->orphan_block_rsv;
6701 }
6702
6703 ret = btrfs_block_rsv_check(trans, root,
6704 root->orphan_block_rsv, 0, 5);
3893e33b 6705 if (ret == -EAGAIN) {
d68fc57b 6706 ret = btrfs_commit_transaction(trans, root);
3893e33b
JB
6707 if (ret)
6708 return ret;
d68fc57b
YZ
6709 trans = NULL;
6710 continue;
3893e33b
JB
6711 } else if (ret) {
6712 err = ret;
6713 break;
d68fc57b
YZ
6714 }
6715
8082510e
YZ
6716 ret = btrfs_truncate_inode_items(trans, root, inode,
6717 inode->i_size,
6718 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6719 if (ret != -EAGAIN) {
6720 err = ret;
8082510e 6721 break;
3893e33b 6722 }
39279cc3 6723
8082510e 6724 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6725 if (ret) {
6726 err = ret;
6727 break;
6728 }
5f39d397 6729
8082510e
YZ
6730 nr = trans->blocks_used;
6731 btrfs_end_transaction(trans, root);
d68fc57b 6732 trans = NULL;
8082510e 6733 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6734 }
6735
6736 if (ret == 0 && inode->i_nlink > 0) {
6737 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6738 if (ret)
6739 err = ret;
ded5db9d
JB
6740 } else if (ret && inode->i_nlink > 0) {
6741 /*
6742 * Failed to do the truncate, remove us from the in memory
6743 * orphan list.
6744 */
6745 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6746 }
6747
6748 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6749 if (ret && !err)
6750 err = ret;
7b128766 6751
7b128766 6752 nr = trans->blocks_used;
89ce8a63 6753 ret = btrfs_end_transaction_throttle(trans, root);
3893e33b
JB
6754 if (ret && !err)
6755 err = ret;
d3c2fdcf 6756 btrfs_btree_balance_dirty(root, nr);
a41ad394 6757
3893e33b 6758 return err;
39279cc3
CM
6759}
6760
d352ac68
CM
6761/*
6762 * create a new subvolume directory/inode (helper for the ioctl).
6763 */
d2fb3437 6764int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 6765 struct btrfs_root *new_root,
d2fb3437 6766 u64 new_dirid, u64 alloc_hint)
39279cc3 6767{
39279cc3 6768 struct inode *inode;
76dda93c 6769 int err;
00e4e6b3 6770 u64 index = 0;
39279cc3 6771
aec7477b 6772 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 6773 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 6774 if (IS_ERR(inode))
f46b5a66 6775 return PTR_ERR(inode);
39279cc3
CM
6776 inode->i_op = &btrfs_dir_inode_operations;
6777 inode->i_fop = &btrfs_dir_file_operations;
6778
39279cc3 6779 inode->i_nlink = 1;
dbe674a9 6780 btrfs_i_size_write(inode, 0);
3b96362c 6781
76dda93c
YZ
6782 err = btrfs_update_inode(trans, new_root, inode);
6783 BUG_ON(err);
cb8e7090 6784
76dda93c 6785 iput(inode);
cb8e7090 6786 return 0;
39279cc3
CM
6787}
6788
d352ac68
CM
6789/* helper function for file defrag and space balancing. This
6790 * forces readahead on a given range of bytes in an inode
6791 */
edbd8d4e 6792unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
6793 struct file_ra_state *ra, struct file *file,
6794 pgoff_t offset, pgoff_t last_index)
6795{
8e7bf94f 6796 pgoff_t req_size = last_index - offset + 1;
86479a04 6797
86479a04
CM
6798 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6799 return offset + req_size;
86479a04
CM
6800}
6801
39279cc3
CM
6802struct inode *btrfs_alloc_inode(struct super_block *sb)
6803{
6804 struct btrfs_inode *ei;
2ead6ae7 6805 struct inode *inode;
39279cc3
CM
6806
6807 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6808 if (!ei)
6809 return NULL;
2ead6ae7
YZ
6810
6811 ei->root = NULL;
6812 ei->space_info = NULL;
6813 ei->generation = 0;
6814 ei->sequence = 0;
15ee9bc7 6815 ei->last_trans = 0;
257c62e1 6816 ei->last_sub_trans = 0;
e02119d5 6817 ei->logged_trans = 0;
2ead6ae7
YZ
6818 ei->delalloc_bytes = 0;
6819 ei->reserved_bytes = 0;
6820 ei->disk_i_size = 0;
6821 ei->flags = 0;
6822 ei->index_cnt = (u64)-1;
6823 ei->last_unlink_trans = 0;
6824
0ca1f7ce 6825 atomic_set(&ei->outstanding_extents, 0);
57a45ced 6826 atomic_set(&ei->reserved_extents, 0);
2ead6ae7
YZ
6827
6828 ei->ordered_data_close = 0;
d68fc57b 6829 ei->orphan_meta_reserved = 0;
2ead6ae7 6830 ei->dummy_inode = 0;
261507a0 6831 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 6832
16cdcec7
MX
6833 ei->delayed_node = NULL;
6834
2ead6ae7
YZ
6835 inode = &ei->vfs_inode;
6836 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6837 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6838 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6839 mutex_init(&ei->log_mutex);
e6dcd2dc 6840 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6841 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6842 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6843 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6844 RB_CLEAR_NODE(&ei->rb_node);
6845
6846 return inode;
39279cc3
CM
6847}
6848
fa0d7e3d
NP
6849static void btrfs_i_callback(struct rcu_head *head)
6850{
6851 struct inode *inode = container_of(head, struct inode, i_rcu);
6852 INIT_LIST_HEAD(&inode->i_dentry);
6853 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6854}
6855
39279cc3
CM
6856void btrfs_destroy_inode(struct inode *inode)
6857{
e6dcd2dc 6858 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6859 struct btrfs_root *root = BTRFS_I(inode)->root;
6860
39279cc3
CM
6861 WARN_ON(!list_empty(&inode->i_dentry));
6862 WARN_ON(inode->i_data.nrpages);
0ca1f7ce 6863 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
57a45ced 6864 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
39279cc3 6865
a6dbd429
JB
6866 /*
6867 * This can happen where we create an inode, but somebody else also
6868 * created the same inode and we need to destroy the one we already
6869 * created.
6870 */
6871 if (!root)
6872 goto free;
6873
5a3f23d5
CM
6874 /*
6875 * Make sure we're properly removed from the ordered operation
6876 * lists.
6877 */
6878 smp_mb();
6879 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6880 spin_lock(&root->fs_info->ordered_extent_lock);
6881 list_del_init(&BTRFS_I(inode)->ordered_operations);
6882 spin_unlock(&root->fs_info->ordered_extent_lock);
6883 }
6884
0af3d00b
JB
6885 if (root == root->fs_info->tree_root) {
6886 struct btrfs_block_group_cache *block_group;
6887
6888 block_group = btrfs_lookup_block_group(root->fs_info,
6889 BTRFS_I(inode)->block_group);
6890 if (block_group && block_group->inode == inode) {
6891 spin_lock(&block_group->lock);
6892 block_group->inode = NULL;
6893 spin_unlock(&block_group->lock);
6894 btrfs_put_block_group(block_group);
6895 } else if (block_group) {
6896 btrfs_put_block_group(block_group);
6897 }
6898 }
6899
d68fc57b 6900 spin_lock(&root->orphan_lock);
7b128766 6901 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
8082510e
YZ
6902 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6903 inode->i_ino);
6904 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6905 }
d68fc57b 6906 spin_unlock(&root->orphan_lock);
7b128766 6907
d397712b 6908 while (1) {
e6dcd2dc
CM
6909 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6910 if (!ordered)
6911 break;
6912 else {
d397712b
CM
6913 printk(KERN_ERR "btrfs found ordered "
6914 "extent %llu %llu on inode cleanup\n",
6915 (unsigned long long)ordered->file_offset,
6916 (unsigned long long)ordered->len);
e6dcd2dc
CM
6917 btrfs_remove_ordered_extent(inode, ordered);
6918 btrfs_put_ordered_extent(ordered);
6919 btrfs_put_ordered_extent(ordered);
6920 }
6921 }
5d4f98a2 6922 inode_tree_del(inode);
5b21f2ed 6923 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6924free:
16cdcec7 6925 btrfs_remove_delayed_node(inode);
fa0d7e3d 6926 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6927}
6928
45321ac5 6929int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6930{
6931 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6932
0af3d00b
JB
6933 if (btrfs_root_refs(&root->root_item) == 0 &&
6934 root != root->fs_info->tree_root)
45321ac5 6935 return 1;
76dda93c 6936 else
45321ac5 6937 return generic_drop_inode(inode);
76dda93c
YZ
6938}
6939
0ee0fda0 6940static void init_once(void *foo)
39279cc3
CM
6941{
6942 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6943
6944 inode_init_once(&ei->vfs_inode);
6945}
6946
6947void btrfs_destroy_cachep(void)
6948{
6949 if (btrfs_inode_cachep)
6950 kmem_cache_destroy(btrfs_inode_cachep);
6951 if (btrfs_trans_handle_cachep)
6952 kmem_cache_destroy(btrfs_trans_handle_cachep);
6953 if (btrfs_transaction_cachep)
6954 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6955 if (btrfs_path_cachep)
6956 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6957 if (btrfs_free_space_cachep)
6958 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6959}
6960
6961int btrfs_init_cachep(void)
6962{
9601e3f6
CH
6963 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6964 sizeof(struct btrfs_inode), 0,
6965 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6966 if (!btrfs_inode_cachep)
6967 goto fail;
9601e3f6
CH
6968
6969 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6970 sizeof(struct btrfs_trans_handle), 0,
6971 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6972 if (!btrfs_trans_handle_cachep)
6973 goto fail;
9601e3f6
CH
6974
6975 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6976 sizeof(struct btrfs_transaction), 0,
6977 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6978 if (!btrfs_transaction_cachep)
6979 goto fail;
9601e3f6
CH
6980
6981 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6982 sizeof(struct btrfs_path), 0,
6983 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6984 if (!btrfs_path_cachep)
6985 goto fail;
9601e3f6 6986
dc89e982
JB
6987 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6988 sizeof(struct btrfs_free_space), 0,
6989 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6990 if (!btrfs_free_space_cachep)
6991 goto fail;
6992
39279cc3
CM
6993 return 0;
6994fail:
6995 btrfs_destroy_cachep();
6996 return -ENOMEM;
6997}
6998
6999static int btrfs_getattr(struct vfsmount *mnt,
7000 struct dentry *dentry, struct kstat *stat)
7001{
7002 struct inode *inode = dentry->d_inode;
7003 generic_fillattr(inode, stat);
3394e160 7004 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 7005 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
7006 stat->blocks = (inode_get_bytes(inode) +
7007 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
7008 return 0;
7009}
7010
75e7cb7f
LB
7011/*
7012 * If a file is moved, it will inherit the cow and compression flags of the new
7013 * directory.
7014 */
7015static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7016{
7017 struct btrfs_inode *b_dir = BTRFS_I(dir);
7018 struct btrfs_inode *b_inode = BTRFS_I(inode);
7019
7020 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7021 b_inode->flags |= BTRFS_INODE_NODATACOW;
7022 else
7023 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7024
7025 if (b_dir->flags & BTRFS_INODE_COMPRESS)
7026 b_inode->flags |= BTRFS_INODE_COMPRESS;
7027 else
7028 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
7029}
7030
d397712b
CM
7031static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7032 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
7033{
7034 struct btrfs_trans_handle *trans;
7035 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 7036 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
7037 struct inode *new_inode = new_dentry->d_inode;
7038 struct inode *old_inode = old_dentry->d_inode;
7039 struct timespec ctime = CURRENT_TIME;
00e4e6b3 7040 u64 index = 0;
4df27c4d 7041 u64 root_objectid;
39279cc3
CM
7042 int ret;
7043
f679a840
YZ
7044 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
7045 return -EPERM;
7046
4df27c4d
YZ
7047 /* we only allow rename subvolume link between subvolumes */
7048 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
7049 return -EXDEV;
7050
4df27c4d
YZ
7051 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7052 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 7053 return -ENOTEMPTY;
5f39d397 7054
4df27c4d
YZ
7055 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7056 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7057 return -ENOTEMPTY;
5a3f23d5
CM
7058 /*
7059 * we're using rename to replace one file with another.
7060 * and the replacement file is large. Start IO on it now so
7061 * we don't add too much work to the end of the transaction
7062 */
4baf8c92 7063 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
7064 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7065 filemap_flush(old_inode->i_mapping);
7066
76dda93c
YZ
7067 /* close the racy window with snapshot create/destroy ioctl */
7068 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7069 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
7070 /*
7071 * We want to reserve the absolute worst case amount of items. So if
7072 * both inodes are subvols and we need to unlink them then that would
7073 * require 4 item modifications, but if they are both normal inodes it
7074 * would require 5 item modifications, so we'll assume their normal
7075 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7076 * should cover the worst case number of items we'll modify.
7077 */
7078 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
7079 if (IS_ERR(trans)) {
7080 ret = PTR_ERR(trans);
7081 goto out_notrans;
7082 }
76dda93c 7083
a5719521 7084 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 7085
4df27c4d
YZ
7086 if (dest != root)
7087 btrfs_record_root_in_trans(trans, dest);
5f39d397 7088
a5719521
YZ
7089 ret = btrfs_set_inode_index(new_dir, &index);
7090 if (ret)
7091 goto out_fail;
5a3f23d5 7092
a5719521 7093 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7094 /* force full log commit if subvolume involved. */
7095 root->fs_info->last_trans_log_full_commit = trans->transid;
7096 } else {
a5719521
YZ
7097 ret = btrfs_insert_inode_ref(trans, dest,
7098 new_dentry->d_name.name,
7099 new_dentry->d_name.len,
7100 old_inode->i_ino,
7101 new_dir->i_ino, index);
7102 if (ret)
7103 goto out_fail;
4df27c4d
YZ
7104 /*
7105 * this is an ugly little race, but the rename is required
7106 * to make sure that if we crash, the inode is either at the
7107 * old name or the new one. pinning the log transaction lets
7108 * us make sure we don't allow a log commit to come in after
7109 * we unlink the name but before we add the new name back in.
7110 */
7111 btrfs_pin_log_trans(root);
7112 }
5a3f23d5
CM
7113 /*
7114 * make sure the inode gets flushed if it is replacing
7115 * something.
7116 */
7117 if (new_inode && new_inode->i_size &&
7118 old_inode && S_ISREG(old_inode->i_mode)) {
7119 btrfs_add_ordered_operation(trans, root, old_inode);
7120 }
7121
39279cc3
CM
7122 old_dir->i_ctime = old_dir->i_mtime = ctime;
7123 new_dir->i_ctime = new_dir->i_mtime = ctime;
7124 old_inode->i_ctime = ctime;
5f39d397 7125
12fcfd22
CM
7126 if (old_dentry->d_parent != new_dentry->d_parent)
7127 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7128
4df27c4d
YZ
7129 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7130 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7131 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7132 old_dentry->d_name.name,
7133 old_dentry->d_name.len);
7134 } else {
92986796
AV
7135 ret = __btrfs_unlink_inode(trans, root, old_dir,
7136 old_dentry->d_inode,
7137 old_dentry->d_name.name,
7138 old_dentry->d_name.len);
7139 if (!ret)
7140 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d
YZ
7141 }
7142 BUG_ON(ret);
39279cc3
CM
7143
7144 if (new_inode) {
7145 new_inode->i_ctime = CURRENT_TIME;
4df27c4d
YZ
7146 if (unlikely(new_inode->i_ino ==
7147 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7148 root_objectid = BTRFS_I(new_inode)->location.objectid;
7149 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7150 root_objectid,
7151 new_dentry->d_name.name,
7152 new_dentry->d_name.len);
7153 BUG_ON(new_inode->i_nlink == 0);
7154 } else {
7155 ret = btrfs_unlink_inode(trans, dest, new_dir,
7156 new_dentry->d_inode,
7157 new_dentry->d_name.name,
7158 new_dentry->d_name.len);
7159 }
7160 BUG_ON(ret);
7b128766 7161 if (new_inode->i_nlink == 0) {
e02119d5 7162 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7163 BUG_ON(ret);
7b128766 7164 }
39279cc3 7165 }
aec7477b 7166
75e7cb7f
LB
7167 fixup_inode_flags(new_dir, old_inode);
7168
4df27c4d
YZ
7169 ret = btrfs_add_link(trans, new_dir, old_inode,
7170 new_dentry->d_name.name,
a5719521 7171 new_dentry->d_name.len, 0, index);
4df27c4d 7172 BUG_ON(ret);
39279cc3 7173
4df27c4d 7174 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6a912213
JB
7175 struct dentry *parent = dget_parent(new_dentry);
7176 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7177 dput(parent);
4df27c4d
YZ
7178 btrfs_end_log_trans(root);
7179 }
39279cc3 7180out_fail:
ab78c84d 7181 btrfs_end_transaction_throttle(trans, root);
b44c59a8 7182out_notrans:
76dda93c
YZ
7183 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7184 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7185
39279cc3
CM
7186 return ret;
7187}
7188
d352ac68
CM
7189/*
7190 * some fairly slow code that needs optimization. This walks the list
7191 * of all the inodes with pending delalloc and forces them to disk.
7192 */
24bbcf04 7193int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7194{
7195 struct list_head *head = &root->fs_info->delalloc_inodes;
7196 struct btrfs_inode *binode;
5b21f2ed 7197 struct inode *inode;
ea8c2819 7198
c146afad
YZ
7199 if (root->fs_info->sb->s_flags & MS_RDONLY)
7200 return -EROFS;
7201
75eff68e 7202 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7203 while (!list_empty(head)) {
ea8c2819
CM
7204 binode = list_entry(head->next, struct btrfs_inode,
7205 delalloc_inodes);
5b21f2ed
ZY
7206 inode = igrab(&binode->vfs_inode);
7207 if (!inode)
7208 list_del_init(&binode->delalloc_inodes);
75eff68e 7209 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7210 if (inode) {
8c8bee1d 7211 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7212 if (delay_iput)
7213 btrfs_add_delayed_iput(inode);
7214 else
7215 iput(inode);
5b21f2ed
ZY
7216 }
7217 cond_resched();
75eff68e 7218 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7219 }
75eff68e 7220 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7221
7222 /* the filemap_flush will queue IO into the worker threads, but
7223 * we have to make sure the IO is actually started and that
7224 * ordered extents get created before we return
7225 */
7226 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7227 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7228 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7229 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7230 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7231 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7232 }
7233 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7234 return 0;
7235}
7236
0019f10d
JB
7237int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7238 int sync)
5da9d01b
YZ
7239{
7240 struct btrfs_inode *binode;
7241 struct inode *inode = NULL;
7242
7243 spin_lock(&root->fs_info->delalloc_lock);
7244 while (!list_empty(&root->fs_info->delalloc_inodes)) {
7245 binode = list_entry(root->fs_info->delalloc_inodes.next,
7246 struct btrfs_inode, delalloc_inodes);
7247 inode = igrab(&binode->vfs_inode);
7248 if (inode) {
7249 list_move_tail(&binode->delalloc_inodes,
7250 &root->fs_info->delalloc_inodes);
7251 break;
7252 }
7253
7254 list_del_init(&binode->delalloc_inodes);
7255 cond_resched_lock(&root->fs_info->delalloc_lock);
7256 }
7257 spin_unlock(&root->fs_info->delalloc_lock);
7258
7259 if (inode) {
0019f10d
JB
7260 if (sync) {
7261 filemap_write_and_wait(inode->i_mapping);
7262 /*
7263 * We have to do this because compression doesn't
7264 * actually set PG_writeback until it submits the pages
7265 * for IO, which happens in an async thread, so we could
7266 * race and not actually wait for any writeback pages
7267 * because they've not been submitted yet. Technically
7268 * this could still be the case for the ordered stuff
7269 * since the async thread may not have started to do its
7270 * work yet. If this becomes the case then we need to
7271 * figure out a way to make sure that in writepage we
7272 * wait for any async pages to be submitted before
7273 * returning so that fdatawait does what its supposed to
7274 * do.
7275 */
7276 btrfs_wait_ordered_range(inode, 0, (u64)-1);
7277 } else {
7278 filemap_flush(inode->i_mapping);
7279 }
5da9d01b
YZ
7280 if (delay_iput)
7281 btrfs_add_delayed_iput(inode);
7282 else
7283 iput(inode);
7284 return 1;
7285 }
7286 return 0;
7287}
7288
39279cc3
CM
7289static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7290 const char *symname)
7291{
7292 struct btrfs_trans_handle *trans;
7293 struct btrfs_root *root = BTRFS_I(dir)->root;
7294 struct btrfs_path *path;
7295 struct btrfs_key key;
1832a6d5 7296 struct inode *inode = NULL;
39279cc3
CM
7297 int err;
7298 int drop_inode = 0;
7299 u64 objectid;
00e4e6b3 7300 u64 index = 0 ;
39279cc3
CM
7301 int name_len;
7302 int datasize;
5f39d397 7303 unsigned long ptr;
39279cc3 7304 struct btrfs_file_extent_item *ei;
5f39d397 7305 struct extent_buffer *leaf;
1832a6d5 7306 unsigned long nr = 0;
39279cc3
CM
7307
7308 name_len = strlen(symname) + 1;
7309 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7310 return -ENAMETOOLONG;
1832a6d5 7311
a22285a6
YZ
7312 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7313 if (err)
7314 return err;
9ed74f2d
JB
7315 /*
7316 * 2 items for inode item and ref
7317 * 2 items for dir items
7318 * 1 item for xattr if selinux is on
7319 */
a22285a6
YZ
7320 trans = btrfs_start_transaction(root, 5);
7321 if (IS_ERR(trans))
7322 return PTR_ERR(trans);
1832a6d5 7323
39279cc3
CM
7324 btrfs_set_trans_block_group(trans, dir);
7325
aec7477b 7326 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 7327 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3
CM
7328 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7329 &index);
7cf96da3
TI
7330 if (IS_ERR(inode)) {
7331 err = PTR_ERR(inode);
39279cc3 7332 goto out_unlock;
7cf96da3 7333 }
39279cc3 7334
2a7dba39 7335 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7336 if (err) {
7337 drop_inode = 1;
7338 goto out_unlock;
7339 }
7340
39279cc3 7341 btrfs_set_trans_block_group(trans, inode);
a1b075d2 7342 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7343 if (err)
7344 drop_inode = 1;
7345 else {
7346 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7347 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
7348 inode->i_fop = &btrfs_file_operations;
7349 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 7350 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7351 }
39279cc3
CM
7352 btrfs_update_inode_block_group(trans, inode);
7353 btrfs_update_inode_block_group(trans, dir);
7354 if (drop_inode)
7355 goto out_unlock;
7356
7357 path = btrfs_alloc_path();
7358 BUG_ON(!path);
7359 key.objectid = inode->i_ino;
7360 key.offset = 0;
39279cc3
CM
7361 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7362 datasize = btrfs_file_extent_calc_inline_size(name_len);
7363 err = btrfs_insert_empty_item(trans, root, path, &key,
7364 datasize);
54aa1f4d
CM
7365 if (err) {
7366 drop_inode = 1;
7367 goto out_unlock;
7368 }
5f39d397
CM
7369 leaf = path->nodes[0];
7370 ei = btrfs_item_ptr(leaf, path->slots[0],
7371 struct btrfs_file_extent_item);
7372 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7373 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7374 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7375 btrfs_set_file_extent_encryption(leaf, ei, 0);
7376 btrfs_set_file_extent_compression(leaf, ei, 0);
7377 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7378 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7379
39279cc3 7380 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7381 write_extent_buffer(leaf, symname, ptr, name_len);
7382 btrfs_mark_buffer_dirty(leaf);
39279cc3 7383 btrfs_free_path(path);
5f39d397 7384
39279cc3
CM
7385 inode->i_op = &btrfs_symlink_inode_operations;
7386 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7387 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7388 inode_set_bytes(inode, name_len);
dbe674a9 7389 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7390 err = btrfs_update_inode(trans, root, inode);
7391 if (err)
7392 drop_inode = 1;
39279cc3
CM
7393
7394out_unlock:
d3c2fdcf 7395 nr = trans->blocks_used;
ab78c84d 7396 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
7397 if (drop_inode) {
7398 inode_dec_link_count(inode);
7399 iput(inode);
7400 }
d3c2fdcf 7401 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7402 return err;
7403}
16432985 7404
0af3d00b
JB
7405static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7406 u64 start, u64 num_bytes, u64 min_size,
7407 loff_t actual_len, u64 *alloc_hint,
7408 struct btrfs_trans_handle *trans)
d899e052 7409{
d899e052
YZ
7410 struct btrfs_root *root = BTRFS_I(inode)->root;
7411 struct btrfs_key ins;
d899e052 7412 u64 cur_offset = start;
55a61d1d 7413 u64 i_size;
d899e052 7414 int ret = 0;
0af3d00b 7415 bool own_trans = true;
d899e052 7416
0af3d00b
JB
7417 if (trans)
7418 own_trans = false;
d899e052 7419 while (num_bytes > 0) {
0af3d00b
JB
7420 if (own_trans) {
7421 trans = btrfs_start_transaction(root, 3);
7422 if (IS_ERR(trans)) {
7423 ret = PTR_ERR(trans);
7424 break;
7425 }
5a303d5d
YZ
7426 }
7427
efa56464
YZ
7428 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7429 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7430 if (ret) {
0af3d00b
JB
7431 if (own_trans)
7432 btrfs_end_transaction(trans, root);
a22285a6 7433 break;
d899e052 7434 }
5a303d5d 7435
d899e052
YZ
7436 ret = insert_reserved_file_extent(trans, inode,
7437 cur_offset, ins.objectid,
7438 ins.offset, ins.offset,
920bbbfb 7439 ins.offset, 0, 0, 0,
d899e052
YZ
7440 BTRFS_FILE_EXTENT_PREALLOC);
7441 BUG_ON(ret);
a1ed835e
CM
7442 btrfs_drop_extent_cache(inode, cur_offset,
7443 cur_offset + ins.offset -1, 0);
5a303d5d 7444
d899e052
YZ
7445 num_bytes -= ins.offset;
7446 cur_offset += ins.offset;
efa56464 7447 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7448
d899e052 7449 inode->i_ctime = CURRENT_TIME;
6cbff00f 7450 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7451 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7452 (actual_len > inode->i_size) &&
7453 (cur_offset > inode->i_size)) {
d1ea6a61 7454 if (cur_offset > actual_len)
55a61d1d 7455 i_size = actual_len;
d1ea6a61 7456 else
55a61d1d
JB
7457 i_size = cur_offset;
7458 i_size_write(inode, i_size);
7459 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7460 }
7461
d899e052
YZ
7462 ret = btrfs_update_inode(trans, root, inode);
7463 BUG_ON(ret);
d899e052 7464
0af3d00b
JB
7465 if (own_trans)
7466 btrfs_end_transaction(trans, root);
5a303d5d 7467 }
d899e052
YZ
7468 return ret;
7469}
7470
0af3d00b
JB
7471int btrfs_prealloc_file_range(struct inode *inode, int mode,
7472 u64 start, u64 num_bytes, u64 min_size,
7473 loff_t actual_len, u64 *alloc_hint)
7474{
7475 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7476 min_size, actual_len, alloc_hint,
7477 NULL);
7478}
7479
7480int btrfs_prealloc_file_range_trans(struct inode *inode,
7481 struct btrfs_trans_handle *trans, int mode,
7482 u64 start, u64 num_bytes, u64 min_size,
7483 loff_t actual_len, u64 *alloc_hint)
7484{
7485 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7486 min_size, actual_len, alloc_hint, trans);
7487}
7488
e6dcd2dc
CM
7489static int btrfs_set_page_dirty(struct page *page)
7490{
e6dcd2dc
CM
7491 return __set_page_dirty_nobuffers(page);
7492}
7493
b74c79e9 7494static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
fdebe2bd 7495{
b83cc969
LZ
7496 struct btrfs_root *root = BTRFS_I(inode)->root;
7497
7498 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7499 return -EROFS;
6cbff00f 7500 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 7501 return -EACCES;
b74c79e9 7502 return generic_permission(inode, mask, flags, btrfs_check_acl);
fdebe2bd 7503}
39279cc3 7504
6e1d5dcc 7505static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7506 .getattr = btrfs_getattr,
39279cc3
CM
7507 .lookup = btrfs_lookup,
7508 .create = btrfs_create,
7509 .unlink = btrfs_unlink,
7510 .link = btrfs_link,
7511 .mkdir = btrfs_mkdir,
7512 .rmdir = btrfs_rmdir,
7513 .rename = btrfs_rename,
7514 .symlink = btrfs_symlink,
7515 .setattr = btrfs_setattr,
618e21d5 7516 .mknod = btrfs_mknod,
95819c05
CH
7517 .setxattr = btrfs_setxattr,
7518 .getxattr = btrfs_getxattr,
5103e947 7519 .listxattr = btrfs_listxattr,
95819c05 7520 .removexattr = btrfs_removexattr,
fdebe2bd 7521 .permission = btrfs_permission,
39279cc3 7522};
6e1d5dcc 7523static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7524 .lookup = btrfs_lookup,
fdebe2bd 7525 .permission = btrfs_permission,
39279cc3 7526};
76dda93c 7527
828c0950 7528static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7529 .llseek = generic_file_llseek,
7530 .read = generic_read_dir,
cbdf5a24 7531 .readdir = btrfs_real_readdir,
34287aa3 7532 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7533#ifdef CONFIG_COMPAT
34287aa3 7534 .compat_ioctl = btrfs_ioctl,
39279cc3 7535#endif
6bf13c0c 7536 .release = btrfs_release_file,
e02119d5 7537 .fsync = btrfs_sync_file,
39279cc3
CM
7538};
7539
d1310b2e 7540static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7541 .fill_delalloc = run_delalloc_range,
065631f6 7542 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7543 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7544 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7545 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7546 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 7547 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
7548 .set_bit_hook = btrfs_set_bit_hook,
7549 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7550 .merge_extent_hook = btrfs_merge_extent_hook,
7551 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7552};
7553
35054394
CM
7554/*
7555 * btrfs doesn't support the bmap operation because swapfiles
7556 * use bmap to make a mapping of extents in the file. They assume
7557 * these extents won't change over the life of the file and they
7558 * use the bmap result to do IO directly to the drive.
7559 *
7560 * the btrfs bmap call would return logical addresses that aren't
7561 * suitable for IO and they also will change frequently as COW
7562 * operations happen. So, swapfile + btrfs == corruption.
7563 *
7564 * For now we're avoiding this by dropping bmap.
7565 */
7f09410b 7566static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7567 .readpage = btrfs_readpage,
7568 .writepage = btrfs_writepage,
b293f02e 7569 .writepages = btrfs_writepages,
3ab2fb5a 7570 .readpages = btrfs_readpages,
16432985 7571 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7572 .invalidatepage = btrfs_invalidatepage,
7573 .releasepage = btrfs_releasepage,
e6dcd2dc 7574 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7575 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7576};
7577
7f09410b 7578static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7579 .readpage = btrfs_readpage,
7580 .writepage = btrfs_writepage,
2bf5a725
CM
7581 .invalidatepage = btrfs_invalidatepage,
7582 .releasepage = btrfs_releasepage,
39279cc3
CM
7583};
7584
6e1d5dcc 7585static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7586 .getattr = btrfs_getattr,
7587 .setattr = btrfs_setattr,
95819c05
CH
7588 .setxattr = btrfs_setxattr,
7589 .getxattr = btrfs_getxattr,
5103e947 7590 .listxattr = btrfs_listxattr,
95819c05 7591 .removexattr = btrfs_removexattr,
fdebe2bd 7592 .permission = btrfs_permission,
1506fcc8 7593 .fiemap = btrfs_fiemap,
39279cc3 7594};
6e1d5dcc 7595static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7596 .getattr = btrfs_getattr,
7597 .setattr = btrfs_setattr,
fdebe2bd 7598 .permission = btrfs_permission,
95819c05
CH
7599 .setxattr = btrfs_setxattr,
7600 .getxattr = btrfs_getxattr,
33268eaf 7601 .listxattr = btrfs_listxattr,
95819c05 7602 .removexattr = btrfs_removexattr,
618e21d5 7603};
6e1d5dcc 7604static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7605 .readlink = generic_readlink,
7606 .follow_link = page_follow_link_light,
7607 .put_link = page_put_link,
f209561a 7608 .getattr = btrfs_getattr,
fdebe2bd 7609 .permission = btrfs_permission,
0279b4cd
JO
7610 .setxattr = btrfs_setxattr,
7611 .getxattr = btrfs_getxattr,
7612 .listxattr = btrfs_listxattr,
7613 .removexattr = btrfs_removexattr,
39279cc3 7614};
76dda93c 7615
82d339d9 7616const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
7617 .d_delete = btrfs_dentry_delete,
7618};