]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/inode.c
btrfs: drop checks for mandatory extent_io_ops callbacks
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
39279cc3 33#include <linux/compat.h>
9ebefb18 34#include <linux/bit_spinlock.h>
5103e947 35#include <linux/xattr.h>
33268eaf 36#include <linux/posix_acl.h>
d899e052 37#include <linux/falloc.h>
5a0e3ad6 38#include <linux/slab.h>
7a36ddec 39#include <linux/ratelimit.h>
22c44fe6 40#include <linux/mount.h>
55e301fd 41#include <linux/btrfs.h>
53b381b3 42#include <linux/blkdev.h>
f23b5a59 43#include <linux/posix_acl_xattr.h>
e2e40f2c 44#include <linux/uio.h>
39279cc3
CM
45#include "ctree.h"
46#include "disk-io.h"
47#include "transaction.h"
48#include "btrfs_inode.h"
39279cc3 49#include "print-tree.h"
e6dcd2dc 50#include "ordered-data.h"
95819c05 51#include "xattr.h"
e02119d5 52#include "tree-log.h"
4a54c8c1 53#include "volumes.h"
c8b97818 54#include "compression.h"
b4ce94de 55#include "locking.h"
dc89e982 56#include "free-space-cache.h"
581bb050 57#include "inode-map.h"
38c227d8 58#include "backref.h"
f23b5a59 59#include "hash.h"
63541927 60#include "props.h"
31193213 61#include "qgroup.h"
dda3245e 62#include "dedupe.h"
39279cc3
CM
63
64struct btrfs_iget_args {
90d3e592 65 struct btrfs_key *location;
39279cc3
CM
66 struct btrfs_root *root;
67};
68
f28a4928
FM
69struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
4aaedfb0 74 int overwrite;
f28a4928
FM
75};
76
6e1d5dcc
AD
77static const struct inode_operations btrfs_dir_inode_operations;
78static const struct inode_operations btrfs_symlink_inode_operations;
79static const struct inode_operations btrfs_dir_ro_inode_operations;
80static const struct inode_operations btrfs_special_inode_operations;
81static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
82static const struct address_space_operations btrfs_aops;
83static const struct address_space_operations btrfs_symlink_aops;
828c0950 84static const struct file_operations btrfs_dir_file_operations;
20e5506b 85static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
86
87static struct kmem_cache *btrfs_inode_cachep;
88struct kmem_cache *btrfs_trans_handle_cachep;
89struct kmem_cache *btrfs_transaction_cachep;
39279cc3 90struct kmem_cache *btrfs_path_cachep;
dc89e982 91struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
92
93#define S_SHIFT 12
4d4ab6d6 94static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
102};
103
3972f260 104static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 105static int btrfs_truncate(struct inode *inode);
5fd02043 106static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
107static noinline int cow_file_range(struct inode *inode,
108 struct page *locked_page,
dda3245e
WX
109 u64 start, u64 end, u64 delalloc_end,
110 int *page_started, unsigned long *nr_written,
111 int unlock, struct btrfs_dedupe_hash *hash);
6f9994db
LB
112static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
113 u64 orig_start, u64 block_start,
114 u64 block_len, u64 orig_block_len,
115 u64 ram_bytes, int compress_type,
116 int type);
7b128766 117
48a3b636 118static int btrfs_dirty_inode(struct inode *inode);
7b128766 119
6a3891c5
JB
120#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
121void btrfs_test_inode_set_ops(struct inode *inode)
122{
123 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
124}
125#endif
126
f34f57a3 127static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
128 struct inode *inode, struct inode *dir,
129 const struct qstr *qstr)
0279b4cd
JO
130{
131 int err;
132
f34f57a3 133 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 134 if (!err)
2a7dba39 135 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
136 return err;
137}
138
c8b97818
CM
139/*
140 * this does all the hard work for inserting an inline extent into
141 * the btree. The caller should have done a btrfs_drop_extents so that
142 * no overlapping inline items exist in the btree
143 */
40f76580 144static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 145 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
146 struct btrfs_root *root, struct inode *inode,
147 u64 start, size_t size, size_t compressed_size,
fe3f566c 148 int compress_type,
c8b97818
CM
149 struct page **compressed_pages)
150{
c8b97818
CM
151 struct extent_buffer *leaf;
152 struct page *page = NULL;
153 char *kaddr;
154 unsigned long ptr;
155 struct btrfs_file_extent_item *ei;
156 int err = 0;
157 int ret;
158 size_t cur_size = size;
c8b97818 159 unsigned long offset;
c8b97818 160
fe3f566c 161 if (compressed_size && compressed_pages)
c8b97818 162 cur_size = compressed_size;
c8b97818 163
1acae57b 164 inode_add_bytes(inode, size);
c8b97818 165
1acae57b
FDBM
166 if (!extent_inserted) {
167 struct btrfs_key key;
168 size_t datasize;
c8b97818 169
4a0cc7ca 170 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 171 key.offset = start;
962a298f 172 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 173
1acae57b
FDBM
174 datasize = btrfs_file_extent_calc_inline_size(cur_size);
175 path->leave_spinning = 1;
176 ret = btrfs_insert_empty_item(trans, root, path, &key,
177 datasize);
178 if (ret) {
179 err = ret;
180 goto fail;
181 }
c8b97818
CM
182 }
183 leaf = path->nodes[0];
184 ei = btrfs_item_ptr(leaf, path->slots[0],
185 struct btrfs_file_extent_item);
186 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
187 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
188 btrfs_set_file_extent_encryption(leaf, ei, 0);
189 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
190 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
191 ptr = btrfs_file_extent_inline_start(ei);
192
261507a0 193 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
194 struct page *cpage;
195 int i = 0;
d397712b 196 while (compressed_size > 0) {
c8b97818 197 cpage = compressed_pages[i];
5b050f04 198 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 199 PAGE_SIZE);
c8b97818 200
7ac687d9 201 kaddr = kmap_atomic(cpage);
c8b97818 202 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 203 kunmap_atomic(kaddr);
c8b97818
CM
204
205 i++;
206 ptr += cur_size;
207 compressed_size -= cur_size;
208 }
209 btrfs_set_file_extent_compression(leaf, ei,
261507a0 210 compress_type);
c8b97818
CM
211 } else {
212 page = find_get_page(inode->i_mapping,
09cbfeaf 213 start >> PAGE_SHIFT);
c8b97818 214 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 215 kaddr = kmap_atomic(page);
09cbfeaf 216 offset = start & (PAGE_SIZE - 1);
c8b97818 217 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 218 kunmap_atomic(kaddr);
09cbfeaf 219 put_page(page);
c8b97818
CM
220 }
221 btrfs_mark_buffer_dirty(leaf);
1acae57b 222 btrfs_release_path(path);
c8b97818 223
c2167754
YZ
224 /*
225 * we're an inline extent, so nobody can
226 * extend the file past i_size without locking
227 * a page we already have locked.
228 *
229 * We must do any isize and inode updates
230 * before we unlock the pages. Otherwise we
231 * could end up racing with unlink.
232 */
c8b97818 233 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 234 ret = btrfs_update_inode(trans, root, inode);
c2167754 235
79787eaa 236 return ret;
c8b97818 237fail:
c8b97818
CM
238 return err;
239}
240
241
242/*
243 * conditionally insert an inline extent into the file. This
244 * does the checks required to make sure the data is small enough
245 * to fit as an inline extent.
246 */
00361589
JB
247static noinline int cow_file_range_inline(struct btrfs_root *root,
248 struct inode *inode, u64 start,
249 u64 end, size_t compressed_size,
250 int compress_type,
251 struct page **compressed_pages)
c8b97818 252{
0b246afa 253 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 254 struct btrfs_trans_handle *trans;
c8b97818
CM
255 u64 isize = i_size_read(inode);
256 u64 actual_end = min(end + 1, isize);
257 u64 inline_len = actual_end - start;
0b246afa 258 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
259 u64 data_len = inline_len;
260 int ret;
1acae57b
FDBM
261 struct btrfs_path *path;
262 int extent_inserted = 0;
263 u32 extent_item_size;
c8b97818
CM
264
265 if (compressed_size)
266 data_len = compressed_size;
267
268 if (start > 0 ||
0b246afa
JM
269 actual_end > fs_info->sectorsize ||
270 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 271 (!compressed_size &&
0b246afa 272 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 273 end + 1 < isize ||
0b246afa 274 data_len > fs_info->max_inline) {
c8b97818
CM
275 return 1;
276 }
277
1acae57b
FDBM
278 path = btrfs_alloc_path();
279 if (!path)
280 return -ENOMEM;
281
00361589 282 trans = btrfs_join_transaction(root);
1acae57b
FDBM
283 if (IS_ERR(trans)) {
284 btrfs_free_path(path);
00361589 285 return PTR_ERR(trans);
1acae57b 286 }
0b246afa 287 trans->block_rsv = &fs_info->delalloc_block_rsv;
00361589 288
1acae57b
FDBM
289 if (compressed_size && compressed_pages)
290 extent_item_size = btrfs_file_extent_calc_inline_size(
291 compressed_size);
292 else
293 extent_item_size = btrfs_file_extent_calc_inline_size(
294 inline_len);
295
296 ret = __btrfs_drop_extents(trans, root, inode, path,
297 start, aligned_end, NULL,
298 1, 1, extent_item_size, &extent_inserted);
00361589 299 if (ret) {
66642832 300 btrfs_abort_transaction(trans, ret);
00361589
JB
301 goto out;
302 }
c8b97818
CM
303
304 if (isize > actual_end)
305 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
306 ret = insert_inline_extent(trans, path, extent_inserted,
307 root, inode, start,
c8b97818 308 inline_len, compressed_size,
fe3f566c 309 compress_type, compressed_pages);
2adcac1a 310 if (ret && ret != -ENOSPC) {
66642832 311 btrfs_abort_transaction(trans, ret);
00361589 312 goto out;
2adcac1a 313 } else if (ret == -ENOSPC) {
00361589
JB
314 ret = 1;
315 goto out;
79787eaa 316 }
2adcac1a 317
bdc20e67 318 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
691fa059 319 btrfs_delalloc_release_metadata(BTRFS_I(inode), end + 1 - start);
dcdbc059 320 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 321out:
94ed938a
QW
322 /*
323 * Don't forget to free the reserved space, as for inlined extent
324 * it won't count as data extent, free them directly here.
325 * And at reserve time, it's always aligned to page size, so
326 * just free one page here.
327 */
09cbfeaf 328 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
1acae57b 329 btrfs_free_path(path);
3a45bb20 330 btrfs_end_transaction(trans);
00361589 331 return ret;
c8b97818
CM
332}
333
771ed689
CM
334struct async_extent {
335 u64 start;
336 u64 ram_size;
337 u64 compressed_size;
338 struct page **pages;
339 unsigned long nr_pages;
261507a0 340 int compress_type;
771ed689
CM
341 struct list_head list;
342};
343
344struct async_cow {
345 struct inode *inode;
346 struct btrfs_root *root;
347 struct page *locked_page;
348 u64 start;
349 u64 end;
350 struct list_head extents;
351 struct btrfs_work work;
352};
353
354static noinline int add_async_extent(struct async_cow *cow,
355 u64 start, u64 ram_size,
356 u64 compressed_size,
357 struct page **pages,
261507a0
LZ
358 unsigned long nr_pages,
359 int compress_type)
771ed689
CM
360{
361 struct async_extent *async_extent;
362
363 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 364 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
365 async_extent->start = start;
366 async_extent->ram_size = ram_size;
367 async_extent->compressed_size = compressed_size;
368 async_extent->pages = pages;
369 async_extent->nr_pages = nr_pages;
261507a0 370 async_extent->compress_type = compress_type;
771ed689
CM
371 list_add_tail(&async_extent->list, &cow->extents);
372 return 0;
373}
374
f79707b0
WS
375static inline int inode_need_compress(struct inode *inode)
376{
0b246afa 377 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
378
379 /* force compress */
0b246afa 380 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0
WS
381 return 1;
382 /* bad compression ratios */
383 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
384 return 0;
0b246afa 385 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0
WS
386 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
387 BTRFS_I(inode)->force_compress)
388 return 1;
389 return 0;
390}
391
6158e1ce 392static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
393 u64 start, u64 end, u64 num_bytes, u64 small_write)
394{
395 /* If this is a small write inside eof, kick off a defrag */
396 if (num_bytes < small_write &&
6158e1ce 397 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
398 btrfs_add_inode_defrag(NULL, inode);
399}
400
d352ac68 401/*
771ed689
CM
402 * we create compressed extents in two phases. The first
403 * phase compresses a range of pages that have already been
404 * locked (both pages and state bits are locked).
c8b97818 405 *
771ed689
CM
406 * This is done inside an ordered work queue, and the compression
407 * is spread across many cpus. The actual IO submission is step
408 * two, and the ordered work queue takes care of making sure that
409 * happens in the same order things were put onto the queue by
410 * writepages and friends.
c8b97818 411 *
771ed689
CM
412 * If this code finds it can't get good compression, it puts an
413 * entry onto the work queue to write the uncompressed bytes. This
414 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
415 * are written in the same order that the flusher thread sent them
416 * down.
d352ac68 417 */
c44f649e 418static noinline void compress_file_range(struct inode *inode,
771ed689
CM
419 struct page *locked_page,
420 u64 start, u64 end,
421 struct async_cow *async_cow,
422 int *num_added)
b888db2b 423{
0b246afa 424 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
b888db2b 425 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 426 u64 num_bytes;
0b246afa 427 u64 blocksize = fs_info->sectorsize;
c8b97818 428 u64 actual_end;
42dc7bab 429 u64 isize = i_size_read(inode);
e6dcd2dc 430 int ret = 0;
c8b97818
CM
431 struct page **pages = NULL;
432 unsigned long nr_pages;
c8b97818
CM
433 unsigned long total_compressed = 0;
434 unsigned long total_in = 0;
c8b97818
CM
435 int i;
436 int will_compress;
0b246afa 437 int compress_type = fs_info->compress_type;
4adaa611 438 int redirty = 0;
b888db2b 439
6158e1ce
NB
440 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
441 SZ_16K);
4cb5300b 442
42dc7bab 443 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
444again:
445 will_compress = 0;
09cbfeaf 446 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
447 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
448 nr_pages = min_t(unsigned long, nr_pages,
449 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 450
f03d9301
CM
451 /*
452 * we don't want to send crud past the end of i_size through
453 * compression, that's just a waste of CPU time. So, if the
454 * end of the file is before the start of our current
455 * requested range of bytes, we bail out to the uncompressed
456 * cleanup code that can deal with all of this.
457 *
458 * It isn't really the fastest way to fix things, but this is a
459 * very uncommon corner.
460 */
461 if (actual_end <= start)
462 goto cleanup_and_bail_uncompressed;
463
c8b97818
CM
464 total_compressed = actual_end - start;
465
4bcbb332
SW
466 /*
467 * skip compression for a small file range(<=blocksize) that
01327610 468 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
469 */
470 if (total_compressed <= blocksize &&
471 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
472 goto cleanup_and_bail_uncompressed;
473
069eac78
DS
474 total_compressed = min_t(unsigned long, total_compressed,
475 BTRFS_MAX_UNCOMPRESSED);
fda2832f 476 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 477 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
478 total_in = 0;
479 ret = 0;
db94535d 480
771ed689
CM
481 /*
482 * we do compression for mount -o compress and when the
483 * inode has not been flagged as nocompress. This flag can
484 * change at any time if we discover bad compression ratios.
c8b97818 485 */
f79707b0 486 if (inode_need_compress(inode)) {
c8b97818 487 WARN_ON(pages);
31e818fe 488 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
489 if (!pages) {
490 /* just bail out to the uncompressed code */
491 goto cont;
492 }
c8b97818 493
261507a0
LZ
494 if (BTRFS_I(inode)->force_compress)
495 compress_type = BTRFS_I(inode)->force_compress;
496
4adaa611
CM
497 /*
498 * we need to call clear_page_dirty_for_io on each
499 * page in the range. Otherwise applications with the file
500 * mmap'd can wander in and change the page contents while
501 * we are compressing them.
502 *
503 * If the compression fails for any reason, we set the pages
504 * dirty again later on.
505 */
506 extent_range_clear_dirty_for_io(inode, start, end);
507 redirty = 1;
261507a0
LZ
508 ret = btrfs_compress_pages(compress_type,
509 inode->i_mapping, start,
38c31464 510 pages,
4d3a800e 511 &nr_pages,
261507a0 512 &total_in,
e5d74902 513 &total_compressed);
c8b97818
CM
514
515 if (!ret) {
516 unsigned long offset = total_compressed &
09cbfeaf 517 (PAGE_SIZE - 1);
4d3a800e 518 struct page *page = pages[nr_pages - 1];
c8b97818
CM
519 char *kaddr;
520
521 /* zero the tail end of the last page, we might be
522 * sending it down to disk
523 */
524 if (offset) {
7ac687d9 525 kaddr = kmap_atomic(page);
c8b97818 526 memset(kaddr + offset, 0,
09cbfeaf 527 PAGE_SIZE - offset);
7ac687d9 528 kunmap_atomic(kaddr);
c8b97818
CM
529 }
530 will_compress = 1;
531 }
532 }
560f7d75 533cont:
c8b97818
CM
534 if (start == 0) {
535 /* lets try to make an inline extent */
771ed689 536 if (ret || total_in < (actual_end - start)) {
c8b97818 537 /* we didn't compress the entire range, try
771ed689 538 * to make an uncompressed inline extent.
c8b97818 539 */
00361589 540 ret = cow_file_range_inline(root, inode, start, end,
f74670f7 541 0, BTRFS_COMPRESS_NONE, NULL);
c8b97818 542 } else {
771ed689 543 /* try making a compressed inline extent */
00361589 544 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
545 total_compressed,
546 compress_type, pages);
c8b97818 547 }
79787eaa 548 if (ret <= 0) {
151a41bc
JB
549 unsigned long clear_flags = EXTENT_DELALLOC |
550 EXTENT_DEFRAG;
e6eb4314
FM
551 unsigned long page_error_op;
552
151a41bc 553 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 554 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 555
771ed689 556 /*
79787eaa
JM
557 * inline extent creation worked or returned error,
558 * we don't need to create any more async work items.
559 * Unlock and free up our temp pages.
771ed689 560 */
ba8b04c1
QW
561 extent_clear_unlock_delalloc(inode, start, end, end,
562 NULL, clear_flags,
563 PAGE_UNLOCK |
c2790a2e
JB
564 PAGE_CLEAR_DIRTY |
565 PAGE_SET_WRITEBACK |
e6eb4314 566 page_error_op |
c2790a2e 567 PAGE_END_WRITEBACK);
18513091
WX
568 btrfs_free_reserved_data_space_noquota(inode, start,
569 end - start + 1);
c8b97818
CM
570 goto free_pages_out;
571 }
572 }
573
574 if (will_compress) {
575 /*
576 * we aren't doing an inline extent round the compressed size
577 * up to a block size boundary so the allocator does sane
578 * things
579 */
fda2832f 580 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
581
582 /*
583 * one last check to make sure the compression is really a
584 * win, compare the page count read with the blocks on disk
585 */
09cbfeaf 586 total_in = ALIGN(total_in, PAGE_SIZE);
c8b97818
CM
587 if (total_compressed >= total_in) {
588 will_compress = 0;
589 } else {
c8b97818 590 num_bytes = total_in;
c8bb0c8b
AS
591 *num_added += 1;
592
593 /*
594 * The async work queues will take care of doing actual
595 * allocation on disk for these compressed pages, and
596 * will submit them to the elevator.
597 */
598 add_async_extent(async_cow, start, num_bytes,
4d3a800e 599 total_compressed, pages, nr_pages,
c8bb0c8b
AS
600 compress_type);
601
602 if (start + num_bytes < end) {
603 start += num_bytes;
604 pages = NULL;
605 cond_resched();
606 goto again;
607 }
608 return;
c8b97818
CM
609 }
610 }
c8bb0c8b 611 if (pages) {
c8b97818
CM
612 /*
613 * the compression code ran but failed to make things smaller,
614 * free any pages it allocated and our page pointer array
615 */
4d3a800e 616 for (i = 0; i < nr_pages; i++) {
70b99e69 617 WARN_ON(pages[i]->mapping);
09cbfeaf 618 put_page(pages[i]);
c8b97818
CM
619 }
620 kfree(pages);
621 pages = NULL;
622 total_compressed = 0;
4d3a800e 623 nr_pages = 0;
c8b97818
CM
624
625 /* flag the file so we don't compress in the future */
0b246afa 626 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
1e701a32 627 !(BTRFS_I(inode)->force_compress)) {
a555f810 628 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 629 }
c8b97818 630 }
f03d9301 631cleanup_and_bail_uncompressed:
c8bb0c8b
AS
632 /*
633 * No compression, but we still need to write the pages in the file
634 * we've been given so far. redirty the locked page if it corresponds
635 * to our extent and set things up for the async work queue to run
636 * cow_file_range to do the normal delalloc dance.
637 */
638 if (page_offset(locked_page) >= start &&
639 page_offset(locked_page) <= end)
640 __set_page_dirty_nobuffers(locked_page);
641 /* unlocked later on in the async handlers */
642
643 if (redirty)
644 extent_range_redirty_for_io(inode, start, end);
645 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
646 BTRFS_COMPRESS_NONE);
647 *num_added += 1;
3b951516 648
c44f649e 649 return;
771ed689
CM
650
651free_pages_out:
4d3a800e 652 for (i = 0; i < nr_pages; i++) {
771ed689 653 WARN_ON(pages[i]->mapping);
09cbfeaf 654 put_page(pages[i]);
771ed689 655 }
d397712b 656 kfree(pages);
771ed689 657}
771ed689 658
40ae837b
FM
659static void free_async_extent_pages(struct async_extent *async_extent)
660{
661 int i;
662
663 if (!async_extent->pages)
664 return;
665
666 for (i = 0; i < async_extent->nr_pages; i++) {
667 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 668 put_page(async_extent->pages[i]);
40ae837b
FM
669 }
670 kfree(async_extent->pages);
671 async_extent->nr_pages = 0;
672 async_extent->pages = NULL;
771ed689
CM
673}
674
675/*
676 * phase two of compressed writeback. This is the ordered portion
677 * of the code, which only gets called in the order the work was
678 * queued. We walk all the async extents created by compress_file_range
679 * and send them down to the disk.
680 */
dec8f175 681static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
682 struct async_cow *async_cow)
683{
0b246afa 684 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
685 struct async_extent *async_extent;
686 u64 alloc_hint = 0;
771ed689
CM
687 struct btrfs_key ins;
688 struct extent_map *em;
689 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689 690 struct extent_io_tree *io_tree;
f5a84ee3 691 int ret = 0;
771ed689 692
3e04e7f1 693again:
d397712b 694 while (!list_empty(&async_cow->extents)) {
771ed689
CM
695 async_extent = list_entry(async_cow->extents.next,
696 struct async_extent, list);
697 list_del(&async_extent->list);
c8b97818 698
771ed689
CM
699 io_tree = &BTRFS_I(inode)->io_tree;
700
f5a84ee3 701retry:
771ed689
CM
702 /* did the compression code fall back to uncompressed IO? */
703 if (!async_extent->pages) {
704 int page_started = 0;
705 unsigned long nr_written = 0;
706
707 lock_extent(io_tree, async_extent->start,
2ac55d41 708 async_extent->start +
d0082371 709 async_extent->ram_size - 1);
771ed689
CM
710
711 /* allocate blocks */
f5a84ee3
JB
712 ret = cow_file_range(inode, async_cow->locked_page,
713 async_extent->start,
714 async_extent->start +
715 async_extent->ram_size - 1,
dda3245e
WX
716 async_extent->start +
717 async_extent->ram_size - 1,
718 &page_started, &nr_written, 0,
719 NULL);
771ed689 720
79787eaa
JM
721 /* JDM XXX */
722
771ed689
CM
723 /*
724 * if page_started, cow_file_range inserted an
725 * inline extent and took care of all the unlocking
726 * and IO for us. Otherwise, we need to submit
727 * all those pages down to the drive.
728 */
f5a84ee3 729 if (!page_started && !ret)
771ed689
CM
730 extent_write_locked_range(io_tree,
731 inode, async_extent->start,
d397712b 732 async_extent->start +
771ed689
CM
733 async_extent->ram_size - 1,
734 btrfs_get_extent,
735 WB_SYNC_ALL);
3e04e7f1
JB
736 else if (ret)
737 unlock_page(async_cow->locked_page);
771ed689
CM
738 kfree(async_extent);
739 cond_resched();
740 continue;
741 }
742
743 lock_extent(io_tree, async_extent->start,
d0082371 744 async_extent->start + async_extent->ram_size - 1);
771ed689 745
18513091 746 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
747 async_extent->compressed_size,
748 async_extent->compressed_size,
e570fd27 749 0, alloc_hint, &ins, 1, 1);
f5a84ee3 750 if (ret) {
40ae837b 751 free_async_extent_pages(async_extent);
3e04e7f1 752
fdf8e2ea
JB
753 if (ret == -ENOSPC) {
754 unlock_extent(io_tree, async_extent->start,
755 async_extent->start +
756 async_extent->ram_size - 1);
ce62003f
LB
757
758 /*
759 * we need to redirty the pages if we decide to
760 * fallback to uncompressed IO, otherwise we
761 * will not submit these pages down to lower
762 * layers.
763 */
764 extent_range_redirty_for_io(inode,
765 async_extent->start,
766 async_extent->start +
767 async_extent->ram_size - 1);
768
79787eaa 769 goto retry;
fdf8e2ea 770 }
3e04e7f1 771 goto out_free;
f5a84ee3 772 }
c2167754
YZ
773 /*
774 * here we're doing allocation and writeback of the
775 * compressed pages
776 */
6f9994db
LB
777 em = create_io_em(inode, async_extent->start,
778 async_extent->ram_size, /* len */
779 async_extent->start, /* orig_start */
780 ins.objectid, /* block_start */
781 ins.offset, /* block_len */
782 ins.offset, /* orig_block_len */
783 async_extent->ram_size, /* ram_bytes */
784 async_extent->compress_type,
785 BTRFS_ORDERED_COMPRESSED);
786 if (IS_ERR(em))
787 /* ret value is not necessary due to void function */
3e04e7f1 788 goto out_free_reserve;
6f9994db 789 free_extent_map(em);
3e04e7f1 790
261507a0
LZ
791 ret = btrfs_add_ordered_extent_compress(inode,
792 async_extent->start,
793 ins.objectid,
794 async_extent->ram_size,
795 ins.offset,
796 BTRFS_ORDERED_COMPRESSED,
797 async_extent->compress_type);
d9f85963 798 if (ret) {
dcdbc059
NB
799 btrfs_drop_extent_cache(BTRFS_I(inode),
800 async_extent->start,
d9f85963
FM
801 async_extent->start +
802 async_extent->ram_size - 1, 0);
3e04e7f1 803 goto out_free_reserve;
d9f85963 804 }
0b246afa 805 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 806
771ed689
CM
807 /*
808 * clear dirty, set writeback and unlock the pages.
809 */
c2790a2e 810 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
811 async_extent->start +
812 async_extent->ram_size - 1,
a791e35e
CM
813 async_extent->start +
814 async_extent->ram_size - 1,
151a41bc
JB
815 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
816 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 817 PAGE_SET_WRITEBACK);
771ed689 818 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
819 async_extent->start,
820 async_extent->ram_size,
821 ins.objectid,
822 ins.offset, async_extent->pages,
823 async_extent->nr_pages);
fce2a4e6
FM
824 if (ret) {
825 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
826 struct page *p = async_extent->pages[0];
827 const u64 start = async_extent->start;
828 const u64 end = start + async_extent->ram_size - 1;
829
830 p->mapping = inode->i_mapping;
831 tree->ops->writepage_end_io_hook(p, start, end,
832 NULL, 0);
833 p->mapping = NULL;
ba8b04c1
QW
834 extent_clear_unlock_delalloc(inode, start, end, end,
835 NULL, 0,
fce2a4e6
FM
836 PAGE_END_WRITEBACK |
837 PAGE_SET_ERROR);
40ae837b 838 free_async_extent_pages(async_extent);
fce2a4e6 839 }
771ed689
CM
840 alloc_hint = ins.objectid + ins.offset;
841 kfree(async_extent);
842 cond_resched();
843 }
dec8f175 844 return;
3e04e7f1 845out_free_reserve:
0b246afa 846 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 847 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 848out_free:
c2790a2e 849 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
850 async_extent->start +
851 async_extent->ram_size - 1,
3e04e7f1
JB
852 async_extent->start +
853 async_extent->ram_size - 1,
c2790a2e 854 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
855 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
856 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
857 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
858 PAGE_SET_ERROR);
40ae837b 859 free_async_extent_pages(async_extent);
79787eaa 860 kfree(async_extent);
3e04e7f1 861 goto again;
771ed689
CM
862}
863
4b46fce2
JB
864static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
865 u64 num_bytes)
866{
867 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
868 struct extent_map *em;
869 u64 alloc_hint = 0;
870
871 read_lock(&em_tree->lock);
872 em = search_extent_mapping(em_tree, start, num_bytes);
873 if (em) {
874 /*
875 * if block start isn't an actual block number then find the
876 * first block in this inode and use that as a hint. If that
877 * block is also bogus then just don't worry about it.
878 */
879 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
880 free_extent_map(em);
881 em = search_extent_mapping(em_tree, 0, 0);
882 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
883 alloc_hint = em->block_start;
884 if (em)
885 free_extent_map(em);
886 } else {
887 alloc_hint = em->block_start;
888 free_extent_map(em);
889 }
890 }
891 read_unlock(&em_tree->lock);
892
893 return alloc_hint;
894}
895
771ed689
CM
896/*
897 * when extent_io.c finds a delayed allocation range in the file,
898 * the call backs end up in this code. The basic idea is to
899 * allocate extents on disk for the range, and create ordered data structs
900 * in ram to track those extents.
901 *
902 * locked_page is the page that writepage had locked already. We use
903 * it to make sure we don't do extra locks or unlocks.
904 *
905 * *page_started is set to one if we unlock locked_page and do everything
906 * required to start IO on it. It may be clean and already done with
907 * IO when we return.
908 */
00361589
JB
909static noinline int cow_file_range(struct inode *inode,
910 struct page *locked_page,
dda3245e
WX
911 u64 start, u64 end, u64 delalloc_end,
912 int *page_started, unsigned long *nr_written,
913 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 914{
0b246afa 915 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 916 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
917 u64 alloc_hint = 0;
918 u64 num_bytes;
919 unsigned long ram_size;
920 u64 disk_num_bytes;
921 u64 cur_alloc_size;
0b246afa 922 u64 blocksize = fs_info->sectorsize;
771ed689
CM
923 struct btrfs_key ins;
924 struct extent_map *em;
771ed689
CM
925 int ret = 0;
926
70ddc553 927 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 928 WARN_ON_ONCE(1);
29bce2f3
JB
929 ret = -EINVAL;
930 goto out_unlock;
02ecd2c2 931 }
771ed689 932
fda2832f 933 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
934 num_bytes = max(blocksize, num_bytes);
935 disk_num_bytes = num_bytes;
771ed689 936
6158e1ce 937 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 938
771ed689
CM
939 if (start == 0) {
940 /* lets try to make an inline extent */
f74670f7
AJ
941 ret = cow_file_range_inline(root, inode, start, end, 0,
942 BTRFS_COMPRESS_NONE, NULL);
771ed689 943 if (ret == 0) {
ba8b04c1
QW
944 extent_clear_unlock_delalloc(inode, start, end,
945 delalloc_end, NULL,
c2790a2e 946 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 947 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
948 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
949 PAGE_END_WRITEBACK);
18513091
WX
950 btrfs_free_reserved_data_space_noquota(inode, start,
951 end - start + 1);
771ed689 952 *nr_written = *nr_written +
09cbfeaf 953 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 954 *page_started = 1;
771ed689 955 goto out;
79787eaa 956 } else if (ret < 0) {
79787eaa 957 goto out_unlock;
771ed689
CM
958 }
959 }
960
961 BUG_ON(disk_num_bytes >
0b246afa 962 btrfs_super_total_bytes(fs_info->super_copy));
771ed689 963
4b46fce2 964 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
965 btrfs_drop_extent_cache(BTRFS_I(inode), start,
966 start + num_bytes - 1, 0);
771ed689 967
d397712b 968 while (disk_num_bytes > 0) {
a791e35e
CM
969 unsigned long op;
970
287a0ab9 971 cur_alloc_size = disk_num_bytes;
18513091 972 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 973 fs_info->sectorsize, 0, alloc_hint,
e570fd27 974 &ins, 1, 1);
00361589 975 if (ret < 0)
79787eaa 976 goto out_unlock;
d397712b 977
771ed689 978 ram_size = ins.offset;
6f9994db
LB
979 em = create_io_em(inode, start, ins.offset, /* len */
980 start, /* orig_start */
981 ins.objectid, /* block_start */
982 ins.offset, /* block_len */
983 ins.offset, /* orig_block_len */
984 ram_size, /* ram_bytes */
985 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 986 BTRFS_ORDERED_REGULAR /* type */);
6f9994db 987 if (IS_ERR(em))
ace68bac 988 goto out_reserve;
6f9994db 989 free_extent_map(em);
e6dcd2dc 990
98d20f67 991 cur_alloc_size = ins.offset;
e6dcd2dc 992 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 993 ram_size, cur_alloc_size, 0);
ace68bac 994 if (ret)
d9f85963 995 goto out_drop_extent_cache;
c8b97818 996
17d217fe
YZ
997 if (root->root_key.objectid ==
998 BTRFS_DATA_RELOC_TREE_OBJECTID) {
999 ret = btrfs_reloc_clone_csums(inode, start,
1000 cur_alloc_size);
00361589 1001 if (ret)
d9f85963 1002 goto out_drop_extent_cache;
17d217fe
YZ
1003 }
1004
0b246afa 1005 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1006
d397712b 1007 if (disk_num_bytes < cur_alloc_size)
3b951516 1008 break;
d397712b 1009
c8b97818
CM
1010 /* we're not doing compressed IO, don't unlock the first
1011 * page (which the caller expects to stay locked), don't
1012 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1013 *
1014 * Do set the Private2 bit so we know this page was properly
1015 * setup for writepage
c8b97818 1016 */
c2790a2e
JB
1017 op = unlock ? PAGE_UNLOCK : 0;
1018 op |= PAGE_SET_PRIVATE2;
a791e35e 1019
c2790a2e 1020 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1021 start + ram_size - 1,
1022 delalloc_end, locked_page,
c2790a2e
JB
1023 EXTENT_LOCKED | EXTENT_DELALLOC,
1024 op);
c8b97818 1025 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1026 num_bytes -= cur_alloc_size;
1027 alloc_hint = ins.objectid + ins.offset;
1028 start += cur_alloc_size;
b888db2b 1029 }
79787eaa 1030out:
be20aa9d 1031 return ret;
b7d5b0a8 1032
d9f85963 1033out_drop_extent_cache:
dcdbc059 1034 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1035out_reserve:
0b246afa 1036 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1037 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1038out_unlock:
ba8b04c1
QW
1039 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1040 locked_page,
151a41bc
JB
1041 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1042 EXTENT_DELALLOC | EXTENT_DEFRAG,
1043 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1044 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1045 goto out;
771ed689 1046}
c8b97818 1047
771ed689
CM
1048/*
1049 * work queue call back to started compression on a file and pages
1050 */
1051static noinline void async_cow_start(struct btrfs_work *work)
1052{
1053 struct async_cow *async_cow;
1054 int num_added = 0;
1055 async_cow = container_of(work, struct async_cow, work);
1056
1057 compress_file_range(async_cow->inode, async_cow->locked_page,
1058 async_cow->start, async_cow->end, async_cow,
1059 &num_added);
8180ef88 1060 if (num_added == 0) {
cb77fcd8 1061 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1062 async_cow->inode = NULL;
8180ef88 1063 }
771ed689
CM
1064}
1065
1066/*
1067 * work queue call back to submit previously compressed pages
1068 */
1069static noinline void async_cow_submit(struct btrfs_work *work)
1070{
0b246afa 1071 struct btrfs_fs_info *fs_info;
771ed689
CM
1072 struct async_cow *async_cow;
1073 struct btrfs_root *root;
1074 unsigned long nr_pages;
1075
1076 async_cow = container_of(work, struct async_cow, work);
1077
1078 root = async_cow->root;
0b246afa 1079 fs_info = root->fs_info;
09cbfeaf
KS
1080 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1081 PAGE_SHIFT;
771ed689 1082
ee863954
DS
1083 /*
1084 * atomic_sub_return implies a barrier for waitqueue_active
1085 */
0b246afa 1086 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
ee22184b 1087 5 * SZ_1M &&
0b246afa
JM
1088 waitqueue_active(&fs_info->async_submit_wait))
1089 wake_up(&fs_info->async_submit_wait);
771ed689 1090
d397712b 1091 if (async_cow->inode)
771ed689 1092 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1093}
c8b97818 1094
771ed689
CM
1095static noinline void async_cow_free(struct btrfs_work *work)
1096{
1097 struct async_cow *async_cow;
1098 async_cow = container_of(work, struct async_cow, work);
8180ef88 1099 if (async_cow->inode)
cb77fcd8 1100 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1101 kfree(async_cow);
1102}
1103
1104static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1105 u64 start, u64 end, int *page_started,
1106 unsigned long *nr_written)
1107{
0b246afa 1108 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
1109 struct async_cow *async_cow;
1110 struct btrfs_root *root = BTRFS_I(inode)->root;
1111 unsigned long nr_pages;
1112 u64 cur_end;
771ed689 1113
a3429ab7
CM
1114 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1115 1, 0, NULL, GFP_NOFS);
d397712b 1116 while (start < end) {
771ed689 1117 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1118 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1119 async_cow->inode = igrab(inode);
771ed689
CM
1120 async_cow->root = root;
1121 async_cow->locked_page = locked_page;
1122 async_cow->start = start;
1123
f79707b0 1124 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
0b246afa 1125 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
771ed689
CM
1126 cur_end = end;
1127 else
ee22184b 1128 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1129
1130 async_cow->end = cur_end;
1131 INIT_LIST_HEAD(&async_cow->extents);
1132
9e0af237
LB
1133 btrfs_init_work(&async_cow->work,
1134 btrfs_delalloc_helper,
1135 async_cow_start, async_cow_submit,
1136 async_cow_free);
771ed689 1137
09cbfeaf
KS
1138 nr_pages = (cur_end - start + PAGE_SIZE) >>
1139 PAGE_SHIFT;
0b246afa 1140 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1141
0b246afa 1142 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
771ed689 1143
0b246afa
JM
1144 while (atomic_read(&fs_info->async_submit_draining) &&
1145 atomic_read(&fs_info->async_delalloc_pages)) {
1146 wait_event(fs_info->async_submit_wait,
1147 (atomic_read(&fs_info->async_delalloc_pages) ==
1148 0));
771ed689
CM
1149 }
1150
1151 *nr_written += nr_pages;
1152 start = cur_end + 1;
1153 }
1154 *page_started = 1;
1155 return 0;
be20aa9d
CM
1156}
1157
2ff7e61e 1158static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1159 u64 bytenr, u64 num_bytes)
1160{
1161 int ret;
1162 struct btrfs_ordered_sum *sums;
1163 LIST_HEAD(list);
1164
0b246afa 1165 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1166 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1167 if (ret == 0 && list_empty(&list))
1168 return 0;
1169
1170 while (!list_empty(&list)) {
1171 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1172 list_del(&sums->list);
1173 kfree(sums);
1174 }
1175 return 1;
1176}
1177
d352ac68
CM
1178/*
1179 * when nowcow writeback call back. This checks for snapshots or COW copies
1180 * of the extents that exist in the file, and COWs the file as required.
1181 *
1182 * If no cow copies or snapshots exist, we write directly to the existing
1183 * blocks on disk
1184 */
7f366cfe
CM
1185static noinline int run_delalloc_nocow(struct inode *inode,
1186 struct page *locked_page,
771ed689
CM
1187 u64 start, u64 end, int *page_started, int force,
1188 unsigned long *nr_written)
be20aa9d 1189{
0b246afa 1190 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d
CM
1191 struct btrfs_root *root = BTRFS_I(inode)->root;
1192 struct extent_buffer *leaf;
be20aa9d 1193 struct btrfs_path *path;
80ff3856 1194 struct btrfs_file_extent_item *fi;
be20aa9d 1195 struct btrfs_key found_key;
6f9994db 1196 struct extent_map *em;
80ff3856
YZ
1197 u64 cow_start;
1198 u64 cur_offset;
1199 u64 extent_end;
5d4f98a2 1200 u64 extent_offset;
80ff3856
YZ
1201 u64 disk_bytenr;
1202 u64 num_bytes;
b4939680 1203 u64 disk_num_bytes;
cc95bef6 1204 u64 ram_bytes;
80ff3856 1205 int extent_type;
79787eaa 1206 int ret, err;
d899e052 1207 int type;
80ff3856
YZ
1208 int nocow;
1209 int check_prev = 1;
82d5902d 1210 bool nolock;
4a0cc7ca 1211 u64 ino = btrfs_ino(BTRFS_I(inode));
be20aa9d
CM
1212
1213 path = btrfs_alloc_path();
17ca04af 1214 if (!path) {
ba8b04c1
QW
1215 extent_clear_unlock_delalloc(inode, start, end, end,
1216 locked_page,
c2790a2e 1217 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1218 EXTENT_DO_ACCOUNTING |
1219 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1220 PAGE_CLEAR_DIRTY |
1221 PAGE_SET_WRITEBACK |
1222 PAGE_END_WRITEBACK);
d8926bb3 1223 return -ENOMEM;
17ca04af 1224 }
82d5902d 1225
70ddc553 1226 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
82d5902d 1227
80ff3856
YZ
1228 cow_start = (u64)-1;
1229 cur_offset = start;
1230 while (1) {
e4c3b2dc 1231 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1232 cur_offset, 0);
d788a349 1233 if (ret < 0)
79787eaa 1234 goto error;
80ff3856
YZ
1235 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1236 leaf = path->nodes[0];
1237 btrfs_item_key_to_cpu(leaf, &found_key,
1238 path->slots[0] - 1);
33345d01 1239 if (found_key.objectid == ino &&
80ff3856
YZ
1240 found_key.type == BTRFS_EXTENT_DATA_KEY)
1241 path->slots[0]--;
1242 }
1243 check_prev = 0;
1244next_slot:
1245 leaf = path->nodes[0];
1246 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1247 ret = btrfs_next_leaf(root, path);
d788a349 1248 if (ret < 0)
79787eaa 1249 goto error;
80ff3856
YZ
1250 if (ret > 0)
1251 break;
1252 leaf = path->nodes[0];
1253 }
be20aa9d 1254
80ff3856
YZ
1255 nocow = 0;
1256 disk_bytenr = 0;
17d217fe 1257 num_bytes = 0;
80ff3856
YZ
1258 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1259
1d512cb7
FM
1260 if (found_key.objectid > ino)
1261 break;
1262 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1263 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1264 path->slots[0]++;
1265 goto next_slot;
1266 }
1267 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1268 found_key.offset > end)
1269 break;
1270
1271 if (found_key.offset > cur_offset) {
1272 extent_end = found_key.offset;
e9061e21 1273 extent_type = 0;
80ff3856
YZ
1274 goto out_check;
1275 }
1276
1277 fi = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_file_extent_item);
1279 extent_type = btrfs_file_extent_type(leaf, fi);
1280
cc95bef6 1281 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1282 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1283 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1284 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1285 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1286 extent_end = found_key.offset +
1287 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1288 disk_num_bytes =
1289 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1290 if (extent_end <= start) {
1291 path->slots[0]++;
1292 goto next_slot;
1293 }
17d217fe
YZ
1294 if (disk_bytenr == 0)
1295 goto out_check;
80ff3856
YZ
1296 if (btrfs_file_extent_compression(leaf, fi) ||
1297 btrfs_file_extent_encryption(leaf, fi) ||
1298 btrfs_file_extent_other_encoding(leaf, fi))
1299 goto out_check;
d899e052
YZ
1300 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1301 goto out_check;
2ff7e61e 1302 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1303 goto out_check;
e4c3b2dc 1304 if (btrfs_cross_ref_exist(root, ino,
5d4f98a2
YZ
1305 found_key.offset -
1306 extent_offset, disk_bytenr))
17d217fe 1307 goto out_check;
5d4f98a2 1308 disk_bytenr += extent_offset;
17d217fe
YZ
1309 disk_bytenr += cur_offset - found_key.offset;
1310 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1311 /*
1312 * if there are pending snapshots for this root,
1313 * we fall into common COW way.
1314 */
1315 if (!nolock) {
9ea24bbe 1316 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1317 if (!err)
1318 goto out_check;
1319 }
17d217fe
YZ
1320 /*
1321 * force cow if csum exists in the range.
1322 * this ensure that csum for a given extent are
1323 * either valid or do not exist.
1324 */
2ff7e61e
JM
1325 if (csum_exist_in_range(fs_info, disk_bytenr,
1326 num_bytes))
17d217fe 1327 goto out_check;
0b246afa 1328 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
f78c436c 1329 goto out_check;
80ff3856
YZ
1330 nocow = 1;
1331 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1332 extent_end = found_key.offset +
514ac8ad
CM
1333 btrfs_file_extent_inline_len(leaf,
1334 path->slots[0], fi);
da17066c 1335 extent_end = ALIGN(extent_end,
0b246afa 1336 fs_info->sectorsize);
80ff3856
YZ
1337 } else {
1338 BUG_ON(1);
1339 }
1340out_check:
1341 if (extent_end <= start) {
1342 path->slots[0]++;
e9894fd3 1343 if (!nolock && nocow)
9ea24bbe 1344 btrfs_end_write_no_snapshoting(root);
f78c436c 1345 if (nocow)
0b246afa 1346 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1347 goto next_slot;
1348 }
1349 if (!nocow) {
1350 if (cow_start == (u64)-1)
1351 cow_start = cur_offset;
1352 cur_offset = extent_end;
1353 if (cur_offset > end)
1354 break;
1355 path->slots[0]++;
1356 goto next_slot;
7ea394f1
YZ
1357 }
1358
b3b4aa74 1359 btrfs_release_path(path);
80ff3856 1360 if (cow_start != (u64)-1) {
00361589
JB
1361 ret = cow_file_range(inode, locked_page,
1362 cow_start, found_key.offset - 1,
dda3245e
WX
1363 end, page_started, nr_written, 1,
1364 NULL);
e9894fd3
WS
1365 if (ret) {
1366 if (!nolock && nocow)
9ea24bbe 1367 btrfs_end_write_no_snapshoting(root);
f78c436c 1368 if (nocow)
0b246afa 1369 btrfs_dec_nocow_writers(fs_info,
f78c436c 1370 disk_bytenr);
79787eaa 1371 goto error;
e9894fd3 1372 }
80ff3856 1373 cow_start = (u64)-1;
7ea394f1 1374 }
80ff3856 1375
d899e052 1376 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db
LB
1377 u64 orig_start = found_key.offset - extent_offset;
1378
1379 em = create_io_em(inode, cur_offset, num_bytes,
1380 orig_start,
1381 disk_bytenr, /* block_start */
1382 num_bytes, /* block_len */
1383 disk_num_bytes, /* orig_block_len */
1384 ram_bytes, BTRFS_COMPRESS_NONE,
1385 BTRFS_ORDERED_PREALLOC);
1386 if (IS_ERR(em)) {
1387 if (!nolock && nocow)
1388 btrfs_end_write_no_snapshoting(root);
1389 if (nocow)
1390 btrfs_dec_nocow_writers(fs_info,
1391 disk_bytenr);
1392 ret = PTR_ERR(em);
1393 goto error;
d899e052 1394 }
6f9994db
LB
1395 free_extent_map(em);
1396 }
1397
1398 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
d899e052
YZ
1399 type = BTRFS_ORDERED_PREALLOC;
1400 } else {
1401 type = BTRFS_ORDERED_NOCOW;
1402 }
80ff3856
YZ
1403
1404 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1405 num_bytes, num_bytes, type);
f78c436c 1406 if (nocow)
0b246afa 1407 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1408 BUG_ON(ret); /* -ENOMEM */
771ed689 1409
efa56464
YZ
1410 if (root->root_key.objectid ==
1411 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1412 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1413 num_bytes);
e9894fd3
WS
1414 if (ret) {
1415 if (!nolock && nocow)
9ea24bbe 1416 btrfs_end_write_no_snapshoting(root);
79787eaa 1417 goto error;
e9894fd3 1418 }
efa56464
YZ
1419 }
1420
c2790a2e 1421 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1422 cur_offset + num_bytes - 1, end,
c2790a2e 1423 locked_page, EXTENT_LOCKED |
18513091
WX
1424 EXTENT_DELALLOC |
1425 EXTENT_CLEAR_DATA_RESV,
1426 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1427
e9894fd3 1428 if (!nolock && nocow)
9ea24bbe 1429 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1430 cur_offset = extent_end;
1431 if (cur_offset > end)
1432 break;
be20aa9d 1433 }
b3b4aa74 1434 btrfs_release_path(path);
80ff3856 1435
17ca04af 1436 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1437 cow_start = cur_offset;
17ca04af
JB
1438 cur_offset = end;
1439 }
1440
80ff3856 1441 if (cow_start != (u64)-1) {
dda3245e
WX
1442 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1443 page_started, nr_written, 1, NULL);
d788a349 1444 if (ret)
79787eaa 1445 goto error;
80ff3856
YZ
1446 }
1447
79787eaa 1448error:
17ca04af 1449 if (ret && cur_offset < end)
ba8b04c1 1450 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1451 locked_page, EXTENT_LOCKED |
151a41bc
JB
1452 EXTENT_DELALLOC | EXTENT_DEFRAG |
1453 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1454 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1455 PAGE_SET_WRITEBACK |
1456 PAGE_END_WRITEBACK);
7ea394f1 1457 btrfs_free_path(path);
79787eaa 1458 return ret;
be20aa9d
CM
1459}
1460
47059d93
WS
1461static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1462{
1463
1464 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1465 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1466 return 0;
1467
1468 /*
1469 * @defrag_bytes is a hint value, no spinlock held here,
1470 * if is not zero, it means the file is defragging.
1471 * Force cow if given extent needs to be defragged.
1472 */
1473 if (BTRFS_I(inode)->defrag_bytes &&
1474 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1475 EXTENT_DEFRAG, 0, NULL))
1476 return 1;
1477
1478 return 0;
1479}
1480
d352ac68
CM
1481/*
1482 * extent_io.c call back to do delayed allocation processing
1483 */
c8b97818 1484static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1485 u64 start, u64 end, int *page_started,
1486 unsigned long *nr_written)
be20aa9d 1487{
be20aa9d 1488 int ret;
47059d93 1489 int force_cow = need_force_cow(inode, start, end);
a2135011 1490
47059d93 1491 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1492 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1493 page_started, 1, nr_written);
47059d93 1494 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1495 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1496 page_started, 0, nr_written);
7816030e 1497 } else if (!inode_need_compress(inode)) {
dda3245e
WX
1498 ret = cow_file_range(inode, locked_page, start, end, end,
1499 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1500 } else {
1501 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1502 &BTRFS_I(inode)->runtime_flags);
771ed689 1503 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1504 page_started, nr_written);
7ddf5a42 1505 }
b888db2b
CM
1506 return ret;
1507}
1508
1bf85046
JM
1509static void btrfs_split_extent_hook(struct inode *inode,
1510 struct extent_state *orig, u64 split)
9ed74f2d 1511{
dcab6a3b
JB
1512 u64 size;
1513
0ca1f7ce 1514 /* not delalloc, ignore it */
9ed74f2d 1515 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1516 return;
9ed74f2d 1517
dcab6a3b
JB
1518 size = orig->end - orig->start + 1;
1519 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1520 u32 num_extents;
dcab6a3b
JB
1521 u64 new_size;
1522
1523 /*
ba117213
JB
1524 * See the explanation in btrfs_merge_extent_hook, the same
1525 * applies here, just in reverse.
dcab6a3b
JB
1526 */
1527 new_size = orig->end - split + 1;
823bb20a 1528 num_extents = count_max_extents(new_size);
ba117213 1529 new_size = split - orig->start;
823bb20a
DS
1530 num_extents += count_max_extents(new_size);
1531 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1532 return;
1533 }
1534
9e0baf60
JB
1535 spin_lock(&BTRFS_I(inode)->lock);
1536 BTRFS_I(inode)->outstanding_extents++;
1537 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1538}
1539
1540/*
1541 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1542 * extents so we can keep track of new extents that are just merged onto old
1543 * extents, such as when we are doing sequential writes, so we can properly
1544 * account for the metadata space we'll need.
1545 */
1bf85046
JM
1546static void btrfs_merge_extent_hook(struct inode *inode,
1547 struct extent_state *new,
1548 struct extent_state *other)
9ed74f2d 1549{
dcab6a3b 1550 u64 new_size, old_size;
823bb20a 1551 u32 num_extents;
dcab6a3b 1552
9ed74f2d
JB
1553 /* not delalloc, ignore it */
1554 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1555 return;
9ed74f2d 1556
8461a3de
JB
1557 if (new->start > other->start)
1558 new_size = new->end - other->start + 1;
1559 else
1560 new_size = other->end - new->start + 1;
dcab6a3b
JB
1561
1562 /* we're not bigger than the max, unreserve the space and go */
1563 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1564 spin_lock(&BTRFS_I(inode)->lock);
1565 BTRFS_I(inode)->outstanding_extents--;
1566 spin_unlock(&BTRFS_I(inode)->lock);
1567 return;
1568 }
1569
1570 /*
ba117213
JB
1571 * We have to add up either side to figure out how many extents were
1572 * accounted for before we merged into one big extent. If the number of
1573 * extents we accounted for is <= the amount we need for the new range
1574 * then we can return, otherwise drop. Think of it like this
1575 *
1576 * [ 4k][MAX_SIZE]
1577 *
1578 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1579 * need 2 outstanding extents, on one side we have 1 and the other side
1580 * we have 1 so they are == and we can return. But in this case
1581 *
1582 * [MAX_SIZE+4k][MAX_SIZE+4k]
1583 *
1584 * Each range on their own accounts for 2 extents, but merged together
1585 * they are only 3 extents worth of accounting, so we need to drop in
1586 * this case.
dcab6a3b 1587 */
ba117213 1588 old_size = other->end - other->start + 1;
823bb20a 1589 num_extents = count_max_extents(old_size);
ba117213 1590 old_size = new->end - new->start + 1;
823bb20a
DS
1591 num_extents += count_max_extents(old_size);
1592 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1593 return;
1594
9e0baf60
JB
1595 spin_lock(&BTRFS_I(inode)->lock);
1596 BTRFS_I(inode)->outstanding_extents--;
1597 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1598}
1599
eb73c1b7
MX
1600static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1601 struct inode *inode)
1602{
0b246afa
JM
1603 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1604
eb73c1b7
MX
1605 spin_lock(&root->delalloc_lock);
1606 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1607 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1608 &root->delalloc_inodes);
1609 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1610 &BTRFS_I(inode)->runtime_flags);
1611 root->nr_delalloc_inodes++;
1612 if (root->nr_delalloc_inodes == 1) {
0b246afa 1613 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1614 BUG_ON(!list_empty(&root->delalloc_root));
1615 list_add_tail(&root->delalloc_root,
0b246afa
JM
1616 &fs_info->delalloc_roots);
1617 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1618 }
1619 }
1620 spin_unlock(&root->delalloc_lock);
1621}
1622
1623static void btrfs_del_delalloc_inode(struct btrfs_root *root,
9e3e97f4 1624 struct btrfs_inode *inode)
eb73c1b7 1625{
9e3e97f4 1626 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0b246afa 1627
eb73c1b7 1628 spin_lock(&root->delalloc_lock);
9e3e97f4
NB
1629 if (!list_empty(&inode->delalloc_inodes)) {
1630 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1631 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1632 &inode->runtime_flags);
eb73c1b7
MX
1633 root->nr_delalloc_inodes--;
1634 if (!root->nr_delalloc_inodes) {
0b246afa 1635 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1636 BUG_ON(list_empty(&root->delalloc_root));
1637 list_del_init(&root->delalloc_root);
0b246afa 1638 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1639 }
1640 }
1641 spin_unlock(&root->delalloc_lock);
1642}
1643
d352ac68
CM
1644/*
1645 * extent_io.c set_bit_hook, used to track delayed allocation
1646 * bytes in this file, and to maintain the list of inodes that
1647 * have pending delalloc work to be done.
1648 */
1bf85046 1649static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1650 struct extent_state *state, unsigned *bits)
291d673e 1651{
9ed74f2d 1652
0b246afa
JM
1653 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1654
47059d93
WS
1655 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1656 WARN_ON(1);
75eff68e
CM
1657 /*
1658 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1659 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1660 * bit, which is only set or cleared with irqs on
1661 */
0ca1f7ce 1662 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1663 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1664 u64 len = state->end + 1 - state->start;
70ddc553 1665 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1666
9e0baf60 1667 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1668 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1669 } else {
1670 spin_lock(&BTRFS_I(inode)->lock);
1671 BTRFS_I(inode)->outstanding_extents++;
1672 spin_unlock(&BTRFS_I(inode)->lock);
1673 }
287a0ab9 1674
6a3891c5 1675 /* For sanity tests */
0b246afa 1676 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1677 return;
1678
0b246afa
JM
1679 __percpu_counter_add(&fs_info->delalloc_bytes, len,
1680 fs_info->delalloc_batch);
df0af1a5 1681 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1682 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1683 if (*bits & EXTENT_DEFRAG)
1684 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1685 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1686 &BTRFS_I(inode)->runtime_flags))
1687 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1688 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1689 }
291d673e
CM
1690}
1691
d352ac68
CM
1692/*
1693 * extent_io.c clear_bit_hook, see set_bit_hook for why
1694 */
6fc0ef68 1695static void btrfs_clear_bit_hook(struct btrfs_inode *inode,
41074888 1696 struct extent_state *state,
9ee49a04 1697 unsigned *bits)
291d673e 1698{
6fc0ef68 1699 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
47059d93 1700 u64 len = state->end + 1 - state->start;
823bb20a 1701 u32 num_extents = count_max_extents(len);
47059d93 1702
6fc0ef68 1703 spin_lock(&inode->lock);
47059d93 1704 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
6fc0ef68
NB
1705 inode->defrag_bytes -= len;
1706 spin_unlock(&inode->lock);
47059d93 1707
75eff68e
CM
1708 /*
1709 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1710 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1711 * bit, which is only set or cleared with irqs on
1712 */
0ca1f7ce 1713 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68
NB
1714 struct btrfs_root *root = inode->root;
1715 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1716
9e0baf60 1717 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1718 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60 1719 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
6fc0ef68
NB
1720 spin_lock(&inode->lock);
1721 inode->outstanding_extents -= num_extents;
1722 spin_unlock(&inode->lock);
9e0baf60 1723 }
0ca1f7ce 1724
b6d08f06
JB
1725 /*
1726 * We don't reserve metadata space for space cache inodes so we
1727 * don't need to call dellalloc_release_metadata if there is an
1728 * error.
1729 */
1730 if (*bits & EXTENT_DO_ACCOUNTING &&
0b246afa 1731 root != fs_info->tree_root)
6fc0ef68 1732 btrfs_delalloc_release_metadata(inode, len);
0ca1f7ce 1733
6a3891c5 1734 /* For sanity tests. */
0b246afa 1735 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1736 return;
1737
0cb59c99 1738 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
18513091
WX
1739 && do_list && !(state->state & EXTENT_NORESERVE)
1740 && (*bits & (EXTENT_DO_ACCOUNTING |
1741 EXTENT_CLEAR_DATA_RESV)))
6fc0ef68
NB
1742 btrfs_free_reserved_data_space_noquota(
1743 &inode->vfs_inode,
51773bec 1744 state->start, len);
9ed74f2d 1745
0b246afa
JM
1746 __percpu_counter_add(&fs_info->delalloc_bytes, -len,
1747 fs_info->delalloc_batch);
6fc0ef68
NB
1748 spin_lock(&inode->lock);
1749 inode->delalloc_bytes -= len;
1750 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 1751 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4
NB
1752 &inode->runtime_flags))
1753 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 1754 spin_unlock(&inode->lock);
291d673e 1755 }
291d673e
CM
1756}
1757
d352ac68
CM
1758/*
1759 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1760 * we don't create bios that span stripes or chunks
6f034ece
LB
1761 *
1762 * return 1 if page cannot be merged to bio
1763 * return 0 if page can be merged to bio
1764 * return error otherwise
d352ac68 1765 */
81a75f67 1766int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1767 size_t size, struct bio *bio,
1768 unsigned long bio_flags)
239b14b3 1769{
0b246afa
JM
1770 struct inode *inode = page->mapping->host;
1771 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1772 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1773 u64 length = 0;
1774 u64 map_length;
239b14b3
CM
1775 int ret;
1776
771ed689
CM
1777 if (bio_flags & EXTENT_BIO_COMPRESSED)
1778 return 0;
1779
4f024f37 1780 length = bio->bi_iter.bi_size;
239b14b3 1781 map_length = length;
0b246afa
JM
1782 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1783 NULL, 0);
6f034ece
LB
1784 if (ret < 0)
1785 return ret;
d397712b 1786 if (map_length < length + size)
239b14b3 1787 return 1;
3444a972 1788 return 0;
239b14b3
CM
1789}
1790
d352ac68
CM
1791/*
1792 * in order to insert checksums into the metadata in large chunks,
1793 * we wait until bio submission time. All the pages in the bio are
1794 * checksummed and sums are attached onto the ordered extent record.
1795 *
1796 * At IO completion time the cums attached on the ordered extent record
1797 * are inserted into the btree
1798 */
81a75f67
MC
1799static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
1800 int mirror_num, unsigned long bio_flags,
eaf25d93 1801 u64 bio_offset)
065631f6 1802{
065631f6 1803 int ret = 0;
e015640f 1804
2ff7e61e 1805 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1806 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1807 return 0;
1808}
e015640f 1809
4a69a410
CM
1810/*
1811 * in order to insert checksums into the metadata in large chunks,
1812 * we wait until bio submission time. All the pages in the bio are
1813 * checksummed and sums are attached onto the ordered extent record.
1814 *
1815 * At IO completion time the cums attached on the ordered extent record
1816 * are inserted into the btree
1817 */
81a75f67 1818static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio,
eaf25d93
CM
1819 int mirror_num, unsigned long bio_flags,
1820 u64 bio_offset)
4a69a410 1821{
2ff7e61e 1822 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
61891923
SB
1823 int ret;
1824
2ff7e61e 1825 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
4246a0b6
CH
1826 if (ret) {
1827 bio->bi_error = ret;
1828 bio_endio(bio);
1829 }
61891923 1830 return ret;
44b8bd7e
CM
1831}
1832
d352ac68 1833/*
cad321ad
CM
1834 * extent_io.c submission hook. This does the right thing for csum calculation
1835 * on write, or reading the csums from the tree before a read
d352ac68 1836 */
81a75f67 1837static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
eaf25d93
CM
1838 int mirror_num, unsigned long bio_flags,
1839 u64 bio_offset)
44b8bd7e 1840{
0b246afa 1841 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 1842 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1843 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1844 int ret = 0;
19b9bdb0 1845 int skip_sum;
b812ce28 1846 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1847
6cbff00f 1848 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1849
70ddc553 1850 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 1851 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1852
37226b21 1853 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 1854 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 1855 if (ret)
61891923 1856 goto out;
5fd02043 1857
d20f7043 1858 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1859 ret = btrfs_submit_compressed_read(inode, bio,
1860 mirror_num,
1861 bio_flags);
1862 goto out;
c2db1073 1863 } else if (!skip_sum) {
2ff7e61e 1864 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 1865 if (ret)
61891923 1866 goto out;
c2db1073 1867 }
4d1b5fb4 1868 goto mapit;
b812ce28 1869 } else if (async && !skip_sum) {
17d217fe
YZ
1870 /* csum items have already been cloned */
1871 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1872 goto mapit;
19b9bdb0 1873 /* we're doing a write, do the async checksumming */
0b246afa
JM
1874 ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num,
1875 bio_flags, bio_offset,
1876 __btrfs_submit_bio_start,
1877 __btrfs_submit_bio_done);
61891923 1878 goto out;
b812ce28 1879 } else if (!skip_sum) {
2ff7e61e 1880 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
1881 if (ret)
1882 goto out;
19b9bdb0
CM
1883 }
1884
0b86a832 1885mapit:
2ff7e61e 1886 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
1887
1888out:
4246a0b6
CH
1889 if (ret < 0) {
1890 bio->bi_error = ret;
1891 bio_endio(bio);
1892 }
61891923 1893 return ret;
065631f6 1894}
6885f308 1895
d352ac68
CM
1896/*
1897 * given a list of ordered sums record them in the inode. This happens
1898 * at IO completion time based on sums calculated at bio submission time.
1899 */
ba1da2f4 1900static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 1901 struct inode *inode, struct list_head *list)
e6dcd2dc 1902{
e6dcd2dc
CM
1903 struct btrfs_ordered_sum *sum;
1904
c6e30871 1905 list_for_each_entry(sum, list, list) {
39847c4d 1906 trans->adding_csums = 1;
d20f7043
CM
1907 btrfs_csum_file_blocks(trans,
1908 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1909 trans->adding_csums = 0;
e6dcd2dc
CM
1910 }
1911 return 0;
1912}
1913
2ac55d41 1914int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
ba8b04c1 1915 struct extent_state **cached_state, int dedupe)
ea8c2819 1916{
09cbfeaf 1917 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 1918 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
7cd8c752 1919 cached_state);
ea8c2819
CM
1920}
1921
d352ac68 1922/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1923struct btrfs_writepage_fixup {
1924 struct page *page;
1925 struct btrfs_work work;
1926};
1927
b2950863 1928static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1929{
1930 struct btrfs_writepage_fixup *fixup;
1931 struct btrfs_ordered_extent *ordered;
2ac55d41 1932 struct extent_state *cached_state = NULL;
247e743c
CM
1933 struct page *page;
1934 struct inode *inode;
1935 u64 page_start;
1936 u64 page_end;
87826df0 1937 int ret;
247e743c
CM
1938
1939 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1940 page = fixup->page;
4a096752 1941again:
247e743c
CM
1942 lock_page(page);
1943 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1944 ClearPageChecked(page);
1945 goto out_page;
1946 }
1947
1948 inode = page->mapping->host;
1949 page_start = page_offset(page);
09cbfeaf 1950 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 1951
ff13db41 1952 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 1953 &cached_state);
4a096752
CM
1954
1955 /* already ordered? We're done */
8b62b72b 1956 if (PagePrivate2(page))
247e743c 1957 goto out;
4a096752 1958
a776c6fa 1959 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 1960 PAGE_SIZE);
4a096752 1961 if (ordered) {
2ac55d41
JB
1962 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1963 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1964 unlock_page(page);
1965 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1966 btrfs_put_ordered_extent(ordered);
4a096752
CM
1967 goto again;
1968 }
247e743c 1969
7cf5b976 1970 ret = btrfs_delalloc_reserve_space(inode, page_start,
09cbfeaf 1971 PAGE_SIZE);
87826df0
JM
1972 if (ret) {
1973 mapping_set_error(page->mapping, ret);
1974 end_extent_writepage(page, ret, page_start, page_end);
1975 ClearPageChecked(page);
1976 goto out;
1977 }
1978
ba8b04c1
QW
1979 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
1980 0);
247e743c 1981 ClearPageChecked(page);
87826df0 1982 set_page_dirty(page);
247e743c 1983out:
2ac55d41
JB
1984 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1985 &cached_state, GFP_NOFS);
247e743c
CM
1986out_page:
1987 unlock_page(page);
09cbfeaf 1988 put_page(page);
b897abec 1989 kfree(fixup);
247e743c
CM
1990}
1991
1992/*
1993 * There are a few paths in the higher layers of the kernel that directly
1994 * set the page dirty bit without asking the filesystem if it is a
1995 * good idea. This causes problems because we want to make sure COW
1996 * properly happens and the data=ordered rules are followed.
1997 *
c8b97818 1998 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1999 * hasn't been properly setup for IO. We kick off an async process
2000 * to fix it up. The async helper will wait for ordered extents, set
2001 * the delalloc bit and make it safe to write the page.
2002 */
b2950863 2003static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2004{
2005 struct inode *inode = page->mapping->host;
0b246afa 2006 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2007 struct btrfs_writepage_fixup *fixup;
247e743c 2008
8b62b72b
CM
2009 /* this page is properly in the ordered list */
2010 if (TestClearPagePrivate2(page))
247e743c
CM
2011 return 0;
2012
2013 if (PageChecked(page))
2014 return -EAGAIN;
2015
2016 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2017 if (!fixup)
2018 return -EAGAIN;
f421950f 2019
247e743c 2020 SetPageChecked(page);
09cbfeaf 2021 get_page(page);
9e0af237
LB
2022 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2023 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2024 fixup->page = page;
0b246afa 2025 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2026 return -EBUSY;
247e743c
CM
2027}
2028
d899e052
YZ
2029static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2030 struct inode *inode, u64 file_pos,
2031 u64 disk_bytenr, u64 disk_num_bytes,
2032 u64 num_bytes, u64 ram_bytes,
2033 u8 compression, u8 encryption,
2034 u16 other_encoding, int extent_type)
2035{
2036 struct btrfs_root *root = BTRFS_I(inode)->root;
2037 struct btrfs_file_extent_item *fi;
2038 struct btrfs_path *path;
2039 struct extent_buffer *leaf;
2040 struct btrfs_key ins;
1acae57b 2041 int extent_inserted = 0;
d899e052
YZ
2042 int ret;
2043
2044 path = btrfs_alloc_path();
d8926bb3
MF
2045 if (!path)
2046 return -ENOMEM;
d899e052 2047
a1ed835e
CM
2048 /*
2049 * we may be replacing one extent in the tree with another.
2050 * The new extent is pinned in the extent map, and we don't want
2051 * to drop it from the cache until it is completely in the btree.
2052 *
2053 * So, tell btrfs_drop_extents to leave this extent in the cache.
2054 * the caller is expected to unpin it and allow it to be merged
2055 * with the others.
2056 */
1acae57b
FDBM
2057 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2058 file_pos + num_bytes, NULL, 0,
2059 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2060 if (ret)
2061 goto out;
d899e052 2062
1acae57b 2063 if (!extent_inserted) {
4a0cc7ca 2064 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2065 ins.offset = file_pos;
2066 ins.type = BTRFS_EXTENT_DATA_KEY;
2067
2068 path->leave_spinning = 1;
2069 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2070 sizeof(*fi));
2071 if (ret)
2072 goto out;
2073 }
d899e052
YZ
2074 leaf = path->nodes[0];
2075 fi = btrfs_item_ptr(leaf, path->slots[0],
2076 struct btrfs_file_extent_item);
2077 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2078 btrfs_set_file_extent_type(leaf, fi, extent_type);
2079 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2080 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2081 btrfs_set_file_extent_offset(leaf, fi, 0);
2082 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2083 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2084 btrfs_set_file_extent_compression(leaf, fi, compression);
2085 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2086 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2087
d899e052 2088 btrfs_mark_buffer_dirty(leaf);
ce195332 2089 btrfs_release_path(path);
d899e052
YZ
2090
2091 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2092
2093 ins.objectid = disk_bytenr;
2094 ins.offset = disk_num_bytes;
2095 ins.type = BTRFS_EXTENT_ITEM_KEY;
2ff7e61e 2096 ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid,
f85b7379 2097 btrfs_ino(BTRFS_I(inode)), file_pos, ram_bytes, &ins);
297d750b 2098 /*
5846a3c2
QW
2099 * Release the reserved range from inode dirty range map, as it is
2100 * already moved into delayed_ref_head
297d750b
QW
2101 */
2102 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
79787eaa 2103out:
d899e052 2104 btrfs_free_path(path);
b9473439 2105
79787eaa 2106 return ret;
d899e052
YZ
2107}
2108
38c227d8
LB
2109/* snapshot-aware defrag */
2110struct sa_defrag_extent_backref {
2111 struct rb_node node;
2112 struct old_sa_defrag_extent *old;
2113 u64 root_id;
2114 u64 inum;
2115 u64 file_pos;
2116 u64 extent_offset;
2117 u64 num_bytes;
2118 u64 generation;
2119};
2120
2121struct old_sa_defrag_extent {
2122 struct list_head list;
2123 struct new_sa_defrag_extent *new;
2124
2125 u64 extent_offset;
2126 u64 bytenr;
2127 u64 offset;
2128 u64 len;
2129 int count;
2130};
2131
2132struct new_sa_defrag_extent {
2133 struct rb_root root;
2134 struct list_head head;
2135 struct btrfs_path *path;
2136 struct inode *inode;
2137 u64 file_pos;
2138 u64 len;
2139 u64 bytenr;
2140 u64 disk_len;
2141 u8 compress_type;
2142};
2143
2144static int backref_comp(struct sa_defrag_extent_backref *b1,
2145 struct sa_defrag_extent_backref *b2)
2146{
2147 if (b1->root_id < b2->root_id)
2148 return -1;
2149 else if (b1->root_id > b2->root_id)
2150 return 1;
2151
2152 if (b1->inum < b2->inum)
2153 return -1;
2154 else if (b1->inum > b2->inum)
2155 return 1;
2156
2157 if (b1->file_pos < b2->file_pos)
2158 return -1;
2159 else if (b1->file_pos > b2->file_pos)
2160 return 1;
2161
2162 /*
2163 * [------------------------------] ===> (a range of space)
2164 * |<--->| |<---->| =============> (fs/file tree A)
2165 * |<---------------------------->| ===> (fs/file tree B)
2166 *
2167 * A range of space can refer to two file extents in one tree while
2168 * refer to only one file extent in another tree.
2169 *
2170 * So we may process a disk offset more than one time(two extents in A)
2171 * and locate at the same extent(one extent in B), then insert two same
2172 * backrefs(both refer to the extent in B).
2173 */
2174 return 0;
2175}
2176
2177static void backref_insert(struct rb_root *root,
2178 struct sa_defrag_extent_backref *backref)
2179{
2180 struct rb_node **p = &root->rb_node;
2181 struct rb_node *parent = NULL;
2182 struct sa_defrag_extent_backref *entry;
2183 int ret;
2184
2185 while (*p) {
2186 parent = *p;
2187 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2188
2189 ret = backref_comp(backref, entry);
2190 if (ret < 0)
2191 p = &(*p)->rb_left;
2192 else
2193 p = &(*p)->rb_right;
2194 }
2195
2196 rb_link_node(&backref->node, parent, p);
2197 rb_insert_color(&backref->node, root);
2198}
2199
2200/*
2201 * Note the backref might has changed, and in this case we just return 0.
2202 */
2203static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2204 void *ctx)
2205{
2206 struct btrfs_file_extent_item *extent;
38c227d8
LB
2207 struct old_sa_defrag_extent *old = ctx;
2208 struct new_sa_defrag_extent *new = old->new;
2209 struct btrfs_path *path = new->path;
2210 struct btrfs_key key;
2211 struct btrfs_root *root;
2212 struct sa_defrag_extent_backref *backref;
2213 struct extent_buffer *leaf;
2214 struct inode *inode = new->inode;
0b246afa 2215 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2216 int slot;
2217 int ret;
2218 u64 extent_offset;
2219 u64 num_bytes;
2220
2221 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2222 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2223 return 0;
2224
2225 key.objectid = root_id;
2226 key.type = BTRFS_ROOT_ITEM_KEY;
2227 key.offset = (u64)-1;
2228
38c227d8
LB
2229 root = btrfs_read_fs_root_no_name(fs_info, &key);
2230 if (IS_ERR(root)) {
2231 if (PTR_ERR(root) == -ENOENT)
2232 return 0;
2233 WARN_ON(1);
ab8d0fc4 2234 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2235 inum, offset, root_id);
2236 return PTR_ERR(root);
2237 }
2238
2239 key.objectid = inum;
2240 key.type = BTRFS_EXTENT_DATA_KEY;
2241 if (offset > (u64)-1 << 32)
2242 key.offset = 0;
2243 else
2244 key.offset = offset;
2245
2246 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2247 if (WARN_ON(ret < 0))
38c227d8 2248 return ret;
50f1319c 2249 ret = 0;
38c227d8
LB
2250
2251 while (1) {
2252 cond_resched();
2253
2254 leaf = path->nodes[0];
2255 slot = path->slots[0];
2256
2257 if (slot >= btrfs_header_nritems(leaf)) {
2258 ret = btrfs_next_leaf(root, path);
2259 if (ret < 0) {
2260 goto out;
2261 } else if (ret > 0) {
2262 ret = 0;
2263 goto out;
2264 }
2265 continue;
2266 }
2267
2268 path->slots[0]++;
2269
2270 btrfs_item_key_to_cpu(leaf, &key, slot);
2271
2272 if (key.objectid > inum)
2273 goto out;
2274
2275 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2276 continue;
2277
2278 extent = btrfs_item_ptr(leaf, slot,
2279 struct btrfs_file_extent_item);
2280
2281 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2282 continue;
2283
e68afa49
LB
2284 /*
2285 * 'offset' refers to the exact key.offset,
2286 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2287 * (key.offset - extent_offset).
2288 */
2289 if (key.offset != offset)
38c227d8
LB
2290 continue;
2291
e68afa49 2292 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2293 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2294
38c227d8
LB
2295 if (extent_offset >= old->extent_offset + old->offset +
2296 old->len || extent_offset + num_bytes <=
2297 old->extent_offset + old->offset)
2298 continue;
38c227d8
LB
2299 break;
2300 }
2301
2302 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2303 if (!backref) {
2304 ret = -ENOENT;
2305 goto out;
2306 }
2307
2308 backref->root_id = root_id;
2309 backref->inum = inum;
e68afa49 2310 backref->file_pos = offset;
38c227d8
LB
2311 backref->num_bytes = num_bytes;
2312 backref->extent_offset = extent_offset;
2313 backref->generation = btrfs_file_extent_generation(leaf, extent);
2314 backref->old = old;
2315 backref_insert(&new->root, backref);
2316 old->count++;
2317out:
2318 btrfs_release_path(path);
2319 WARN_ON(ret);
2320 return ret;
2321}
2322
2323static noinline bool record_extent_backrefs(struct btrfs_path *path,
2324 struct new_sa_defrag_extent *new)
2325{
0b246afa 2326 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2327 struct old_sa_defrag_extent *old, *tmp;
2328 int ret;
2329
2330 new->path = path;
2331
2332 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2333 ret = iterate_inodes_from_logical(old->bytenr +
2334 old->extent_offset, fs_info,
38c227d8
LB
2335 path, record_one_backref,
2336 old);
4724b106
JB
2337 if (ret < 0 && ret != -ENOENT)
2338 return false;
38c227d8
LB
2339
2340 /* no backref to be processed for this extent */
2341 if (!old->count) {
2342 list_del(&old->list);
2343 kfree(old);
2344 }
2345 }
2346
2347 if (list_empty(&new->head))
2348 return false;
2349
2350 return true;
2351}
2352
2353static int relink_is_mergable(struct extent_buffer *leaf,
2354 struct btrfs_file_extent_item *fi,
116e0024 2355 struct new_sa_defrag_extent *new)
38c227d8 2356{
116e0024 2357 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2358 return 0;
2359
2360 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2361 return 0;
2362
116e0024
LB
2363 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2364 return 0;
2365
2366 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2367 btrfs_file_extent_other_encoding(leaf, fi))
2368 return 0;
2369
2370 return 1;
2371}
2372
2373/*
2374 * Note the backref might has changed, and in this case we just return 0.
2375 */
2376static noinline int relink_extent_backref(struct btrfs_path *path,
2377 struct sa_defrag_extent_backref *prev,
2378 struct sa_defrag_extent_backref *backref)
2379{
2380 struct btrfs_file_extent_item *extent;
2381 struct btrfs_file_extent_item *item;
2382 struct btrfs_ordered_extent *ordered;
2383 struct btrfs_trans_handle *trans;
38c227d8
LB
2384 struct btrfs_root *root;
2385 struct btrfs_key key;
2386 struct extent_buffer *leaf;
2387 struct old_sa_defrag_extent *old = backref->old;
2388 struct new_sa_defrag_extent *new = old->new;
0b246afa 2389 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2390 struct inode *inode;
2391 struct extent_state *cached = NULL;
2392 int ret = 0;
2393 u64 start;
2394 u64 len;
2395 u64 lock_start;
2396 u64 lock_end;
2397 bool merge = false;
2398 int index;
2399
2400 if (prev && prev->root_id == backref->root_id &&
2401 prev->inum == backref->inum &&
2402 prev->file_pos + prev->num_bytes == backref->file_pos)
2403 merge = true;
2404
2405 /* step 1: get root */
2406 key.objectid = backref->root_id;
2407 key.type = BTRFS_ROOT_ITEM_KEY;
2408 key.offset = (u64)-1;
2409
38c227d8
LB
2410 index = srcu_read_lock(&fs_info->subvol_srcu);
2411
2412 root = btrfs_read_fs_root_no_name(fs_info, &key);
2413 if (IS_ERR(root)) {
2414 srcu_read_unlock(&fs_info->subvol_srcu, index);
2415 if (PTR_ERR(root) == -ENOENT)
2416 return 0;
2417 return PTR_ERR(root);
2418 }
38c227d8 2419
bcbba5e6
WS
2420 if (btrfs_root_readonly(root)) {
2421 srcu_read_unlock(&fs_info->subvol_srcu, index);
2422 return 0;
2423 }
2424
38c227d8
LB
2425 /* step 2: get inode */
2426 key.objectid = backref->inum;
2427 key.type = BTRFS_INODE_ITEM_KEY;
2428 key.offset = 0;
2429
2430 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2431 if (IS_ERR(inode)) {
2432 srcu_read_unlock(&fs_info->subvol_srcu, index);
2433 return 0;
2434 }
2435
2436 srcu_read_unlock(&fs_info->subvol_srcu, index);
2437
2438 /* step 3: relink backref */
2439 lock_start = backref->file_pos;
2440 lock_end = backref->file_pos + backref->num_bytes - 1;
2441 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2442 &cached);
38c227d8
LB
2443
2444 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2445 if (ordered) {
2446 btrfs_put_ordered_extent(ordered);
2447 goto out_unlock;
2448 }
2449
2450 trans = btrfs_join_transaction(root);
2451 if (IS_ERR(trans)) {
2452 ret = PTR_ERR(trans);
2453 goto out_unlock;
2454 }
2455
2456 key.objectid = backref->inum;
2457 key.type = BTRFS_EXTENT_DATA_KEY;
2458 key.offset = backref->file_pos;
2459
2460 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2461 if (ret < 0) {
2462 goto out_free_path;
2463 } else if (ret > 0) {
2464 ret = 0;
2465 goto out_free_path;
2466 }
2467
2468 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2469 struct btrfs_file_extent_item);
2470
2471 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2472 backref->generation)
2473 goto out_free_path;
2474
2475 btrfs_release_path(path);
2476
2477 start = backref->file_pos;
2478 if (backref->extent_offset < old->extent_offset + old->offset)
2479 start += old->extent_offset + old->offset -
2480 backref->extent_offset;
2481
2482 len = min(backref->extent_offset + backref->num_bytes,
2483 old->extent_offset + old->offset + old->len);
2484 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2485
2486 ret = btrfs_drop_extents(trans, root, inode, start,
2487 start + len, 1);
2488 if (ret)
2489 goto out_free_path;
2490again:
4a0cc7ca 2491 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2492 key.type = BTRFS_EXTENT_DATA_KEY;
2493 key.offset = start;
2494
a09a0a70 2495 path->leave_spinning = 1;
38c227d8
LB
2496 if (merge) {
2497 struct btrfs_file_extent_item *fi;
2498 u64 extent_len;
2499 struct btrfs_key found_key;
2500
3c9665df 2501 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2502 if (ret < 0)
2503 goto out_free_path;
2504
2505 path->slots[0]--;
2506 leaf = path->nodes[0];
2507 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2508
2509 fi = btrfs_item_ptr(leaf, path->slots[0],
2510 struct btrfs_file_extent_item);
2511 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2512
116e0024
LB
2513 if (extent_len + found_key.offset == start &&
2514 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2515 btrfs_set_file_extent_num_bytes(leaf, fi,
2516 extent_len + len);
2517 btrfs_mark_buffer_dirty(leaf);
2518 inode_add_bytes(inode, len);
2519
2520 ret = 1;
2521 goto out_free_path;
2522 } else {
2523 merge = false;
2524 btrfs_release_path(path);
2525 goto again;
2526 }
2527 }
2528
2529 ret = btrfs_insert_empty_item(trans, root, path, &key,
2530 sizeof(*extent));
2531 if (ret) {
66642832 2532 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2533 goto out_free_path;
2534 }
2535
2536 leaf = path->nodes[0];
2537 item = btrfs_item_ptr(leaf, path->slots[0],
2538 struct btrfs_file_extent_item);
2539 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2540 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2541 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2542 btrfs_set_file_extent_num_bytes(leaf, item, len);
2543 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2544 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2545 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2546 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2547 btrfs_set_file_extent_encryption(leaf, item, 0);
2548 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2549
2550 btrfs_mark_buffer_dirty(leaf);
2551 inode_add_bytes(inode, len);
a09a0a70 2552 btrfs_release_path(path);
38c227d8 2553
2ff7e61e 2554 ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr,
38c227d8
LB
2555 new->disk_len, 0,
2556 backref->root_id, backref->inum,
b06c4bf5 2557 new->file_pos); /* start - extent_offset */
38c227d8 2558 if (ret) {
66642832 2559 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2560 goto out_free_path;
2561 }
2562
2563 ret = 1;
2564out_free_path:
2565 btrfs_release_path(path);
a09a0a70 2566 path->leave_spinning = 0;
3a45bb20 2567 btrfs_end_transaction(trans);
38c227d8
LB
2568out_unlock:
2569 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2570 &cached, GFP_NOFS);
2571 iput(inode);
2572 return ret;
2573}
2574
6f519564
LB
2575static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2576{
2577 struct old_sa_defrag_extent *old, *tmp;
2578
2579 if (!new)
2580 return;
2581
2582 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2583 kfree(old);
2584 }
2585 kfree(new);
2586}
2587
38c227d8
LB
2588static void relink_file_extents(struct new_sa_defrag_extent *new)
2589{
0b246afa 2590 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2591 struct btrfs_path *path;
38c227d8
LB
2592 struct sa_defrag_extent_backref *backref;
2593 struct sa_defrag_extent_backref *prev = NULL;
2594 struct inode *inode;
2595 struct btrfs_root *root;
2596 struct rb_node *node;
2597 int ret;
2598
2599 inode = new->inode;
2600 root = BTRFS_I(inode)->root;
2601
2602 path = btrfs_alloc_path();
2603 if (!path)
2604 return;
2605
2606 if (!record_extent_backrefs(path, new)) {
2607 btrfs_free_path(path);
2608 goto out;
2609 }
2610 btrfs_release_path(path);
2611
2612 while (1) {
2613 node = rb_first(&new->root);
2614 if (!node)
2615 break;
2616 rb_erase(node, &new->root);
2617
2618 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2619
2620 ret = relink_extent_backref(path, prev, backref);
2621 WARN_ON(ret < 0);
2622
2623 kfree(prev);
2624
2625 if (ret == 1)
2626 prev = backref;
2627 else
2628 prev = NULL;
2629 cond_resched();
2630 }
2631 kfree(prev);
2632
2633 btrfs_free_path(path);
38c227d8 2634out:
6f519564
LB
2635 free_sa_defrag_extent(new);
2636
0b246afa
JM
2637 atomic_dec(&fs_info->defrag_running);
2638 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2639}
2640
2641static struct new_sa_defrag_extent *
2642record_old_file_extents(struct inode *inode,
2643 struct btrfs_ordered_extent *ordered)
2644{
0b246afa 2645 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2646 struct btrfs_root *root = BTRFS_I(inode)->root;
2647 struct btrfs_path *path;
2648 struct btrfs_key key;
6f519564 2649 struct old_sa_defrag_extent *old;
38c227d8
LB
2650 struct new_sa_defrag_extent *new;
2651 int ret;
2652
2653 new = kmalloc(sizeof(*new), GFP_NOFS);
2654 if (!new)
2655 return NULL;
2656
2657 new->inode = inode;
2658 new->file_pos = ordered->file_offset;
2659 new->len = ordered->len;
2660 new->bytenr = ordered->start;
2661 new->disk_len = ordered->disk_len;
2662 new->compress_type = ordered->compress_type;
2663 new->root = RB_ROOT;
2664 INIT_LIST_HEAD(&new->head);
2665
2666 path = btrfs_alloc_path();
2667 if (!path)
2668 goto out_kfree;
2669
4a0cc7ca 2670 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2671 key.type = BTRFS_EXTENT_DATA_KEY;
2672 key.offset = new->file_pos;
2673
2674 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2675 if (ret < 0)
2676 goto out_free_path;
2677 if (ret > 0 && path->slots[0] > 0)
2678 path->slots[0]--;
2679
2680 /* find out all the old extents for the file range */
2681 while (1) {
2682 struct btrfs_file_extent_item *extent;
2683 struct extent_buffer *l;
2684 int slot;
2685 u64 num_bytes;
2686 u64 offset;
2687 u64 end;
2688 u64 disk_bytenr;
2689 u64 extent_offset;
2690
2691 l = path->nodes[0];
2692 slot = path->slots[0];
2693
2694 if (slot >= btrfs_header_nritems(l)) {
2695 ret = btrfs_next_leaf(root, path);
2696 if (ret < 0)
6f519564 2697 goto out_free_path;
38c227d8
LB
2698 else if (ret > 0)
2699 break;
2700 continue;
2701 }
2702
2703 btrfs_item_key_to_cpu(l, &key, slot);
2704
4a0cc7ca 2705 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2706 break;
2707 if (key.type != BTRFS_EXTENT_DATA_KEY)
2708 break;
2709 if (key.offset >= new->file_pos + new->len)
2710 break;
2711
2712 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2713
2714 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2715 if (key.offset + num_bytes < new->file_pos)
2716 goto next;
2717
2718 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2719 if (!disk_bytenr)
2720 goto next;
2721
2722 extent_offset = btrfs_file_extent_offset(l, extent);
2723
2724 old = kmalloc(sizeof(*old), GFP_NOFS);
2725 if (!old)
6f519564 2726 goto out_free_path;
38c227d8
LB
2727
2728 offset = max(new->file_pos, key.offset);
2729 end = min(new->file_pos + new->len, key.offset + num_bytes);
2730
2731 old->bytenr = disk_bytenr;
2732 old->extent_offset = extent_offset;
2733 old->offset = offset - key.offset;
2734 old->len = end - offset;
2735 old->new = new;
2736 old->count = 0;
2737 list_add_tail(&old->list, &new->head);
2738next:
2739 path->slots[0]++;
2740 cond_resched();
2741 }
2742
2743 btrfs_free_path(path);
0b246afa 2744 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2745
2746 return new;
2747
38c227d8
LB
2748out_free_path:
2749 btrfs_free_path(path);
2750out_kfree:
6f519564 2751 free_sa_defrag_extent(new);
38c227d8
LB
2752 return NULL;
2753}
2754
2ff7e61e 2755static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2756 u64 start, u64 len)
2757{
2758 struct btrfs_block_group_cache *cache;
2759
0b246afa 2760 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2761 ASSERT(cache);
2762
2763 spin_lock(&cache->lock);
2764 cache->delalloc_bytes -= len;
2765 spin_unlock(&cache->lock);
2766
2767 btrfs_put_block_group(cache);
2768}
2769
d352ac68
CM
2770/* as ordered data IO finishes, this gets called so we can finish
2771 * an ordered extent if the range of bytes in the file it covers are
2772 * fully written.
2773 */
5fd02043 2774static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2775{
5fd02043 2776 struct inode *inode = ordered_extent->inode;
0b246afa 2777 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2778 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2779 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2780 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2781 struct extent_state *cached_state = NULL;
38c227d8 2782 struct new_sa_defrag_extent *new = NULL;
261507a0 2783 int compress_type = 0;
77cef2ec
JB
2784 int ret = 0;
2785 u64 logical_len = ordered_extent->len;
82d5902d 2786 bool nolock;
77cef2ec 2787 bool truncated = false;
e6dcd2dc 2788
70ddc553 2789 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2790
5fd02043
JB
2791 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2792 ret = -EIO;
2793 goto out;
2794 }
2795
7ab7956e
NB
2796 btrfs_free_io_failure_record(BTRFS_I(inode),
2797 ordered_extent->file_offset,
2798 ordered_extent->file_offset +
2799 ordered_extent->len - 1);
f612496b 2800
77cef2ec
JB
2801 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2802 truncated = true;
2803 logical_len = ordered_extent->truncated_len;
2804 /* Truncated the entire extent, don't bother adding */
2805 if (!logical_len)
2806 goto out;
2807 }
2808
c2167754 2809 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2810 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2811
2812 /*
2813 * For mwrite(mmap + memset to write) case, we still reserve
2814 * space for NOCOW range.
2815 * As NOCOW won't cause a new delayed ref, just free the space
2816 */
2817 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2818 ordered_extent->len);
6c760c07
JB
2819 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2820 if (nolock)
2821 trans = btrfs_join_transaction_nolock(root);
2822 else
2823 trans = btrfs_join_transaction(root);
2824 if (IS_ERR(trans)) {
2825 ret = PTR_ERR(trans);
2826 trans = NULL;
2827 goto out;
c2167754 2828 }
0b246afa 2829 trans->block_rsv = &fs_info->delalloc_block_rsv;
6c760c07
JB
2830 ret = btrfs_update_inode_fallback(trans, root, inode);
2831 if (ret) /* -ENOMEM or corruption */
66642832 2832 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2833 goto out;
2834 }
e6dcd2dc 2835
2ac55d41
JB
2836 lock_extent_bits(io_tree, ordered_extent->file_offset,
2837 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2838 &cached_state);
e6dcd2dc 2839
38c227d8
LB
2840 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2841 ordered_extent->file_offset + ordered_extent->len - 1,
2842 EXTENT_DEFRAG, 1, cached_state);
2843 if (ret) {
2844 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2845 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2846 /* the inode is shared */
2847 new = record_old_file_extents(inode, ordered_extent);
2848
2849 clear_extent_bit(io_tree, ordered_extent->file_offset,
2850 ordered_extent->file_offset + ordered_extent->len - 1,
2851 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2852 }
2853
0cb59c99 2854 if (nolock)
7a7eaa40 2855 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2856 else
7a7eaa40 2857 trans = btrfs_join_transaction(root);
79787eaa
JM
2858 if (IS_ERR(trans)) {
2859 ret = PTR_ERR(trans);
2860 trans = NULL;
2861 goto out_unlock;
2862 }
a79b7d4b 2863
0b246afa 2864 trans->block_rsv = &fs_info->delalloc_block_rsv;
c2167754 2865
c8b97818 2866 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2867 compress_type = ordered_extent->compress_type;
d899e052 2868 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2869 BUG_ON(compress_type);
7a6d7067 2870 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
2871 ordered_extent->file_offset,
2872 ordered_extent->file_offset +
77cef2ec 2873 logical_len);
d899e052 2874 } else {
0b246afa 2875 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
2876 ret = insert_reserved_file_extent(trans, inode,
2877 ordered_extent->file_offset,
2878 ordered_extent->start,
2879 ordered_extent->disk_len,
77cef2ec 2880 logical_len, logical_len,
261507a0 2881 compress_type, 0, 0,
d899e052 2882 BTRFS_FILE_EXTENT_REG);
e570fd27 2883 if (!ret)
2ff7e61e 2884 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
2885 ordered_extent->start,
2886 ordered_extent->disk_len);
d899e052 2887 }
5dc562c5
JB
2888 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2889 ordered_extent->file_offset, ordered_extent->len,
2890 trans->transid);
79787eaa 2891 if (ret < 0) {
66642832 2892 btrfs_abort_transaction(trans, ret);
5fd02043 2893 goto out_unlock;
79787eaa 2894 }
2ac55d41 2895
df9f628e 2896 add_pending_csums(trans, inode, &ordered_extent->list);
e6dcd2dc 2897
6c760c07
JB
2898 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2899 ret = btrfs_update_inode_fallback(trans, root, inode);
2900 if (ret) { /* -ENOMEM or corruption */
66642832 2901 btrfs_abort_transaction(trans, ret);
6c760c07 2902 goto out_unlock;
1ef30be1
JB
2903 }
2904 ret = 0;
5fd02043
JB
2905out_unlock:
2906 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2907 ordered_extent->file_offset +
2908 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2909out:
0b246afa 2910 if (root != fs_info->tree_root)
691fa059
NB
2911 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2912 ordered_extent->len);
a698d075 2913 if (trans)
3a45bb20 2914 btrfs_end_transaction(trans);
0cb59c99 2915
77cef2ec
JB
2916 if (ret || truncated) {
2917 u64 start, end;
2918
2919 if (truncated)
2920 start = ordered_extent->file_offset + logical_len;
2921 else
2922 start = ordered_extent->file_offset;
2923 end = ordered_extent->file_offset + ordered_extent->len - 1;
2924 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2925
2926 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 2927 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 2928
0bec9ef5
JB
2929 /*
2930 * If the ordered extent had an IOERR or something else went
2931 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2932 * back to the allocator. We only free the extent in the
2933 * truncated case if we didn't write out the extent at all.
0bec9ef5 2934 */
77cef2ec
JB
2935 if ((ret || !logical_len) &&
2936 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 2937 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
2938 btrfs_free_reserved_extent(fs_info,
2939 ordered_extent->start,
e570fd27 2940 ordered_extent->disk_len, 1);
0bec9ef5
JB
2941 }
2942
2943
5fd02043 2944 /*
8bad3c02
LB
2945 * This needs to be done to make sure anybody waiting knows we are done
2946 * updating everything for this ordered extent.
5fd02043
JB
2947 */
2948 btrfs_remove_ordered_extent(inode, ordered_extent);
2949
38c227d8 2950 /* for snapshot-aware defrag */
6f519564
LB
2951 if (new) {
2952 if (ret) {
2953 free_sa_defrag_extent(new);
0b246afa 2954 atomic_dec(&fs_info->defrag_running);
6f519564
LB
2955 } else {
2956 relink_file_extents(new);
2957 }
2958 }
38c227d8 2959
e6dcd2dc
CM
2960 /* once for us */
2961 btrfs_put_ordered_extent(ordered_extent);
2962 /* once for the tree */
2963 btrfs_put_ordered_extent(ordered_extent);
2964
5fd02043
JB
2965 return ret;
2966}
2967
2968static void finish_ordered_fn(struct btrfs_work *work)
2969{
2970 struct btrfs_ordered_extent *ordered_extent;
2971 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2972 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2973}
2974
c3988d63 2975static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2976 struct extent_state *state, int uptodate)
2977{
5fd02043 2978 struct inode *inode = page->mapping->host;
0b246afa 2979 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 2980 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
2981 struct btrfs_workqueue *wq;
2982 btrfs_work_func_t func;
5fd02043 2983
1abe9b8a 2984 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2985
8b62b72b 2986 ClearPagePrivate2(page);
5fd02043
JB
2987 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2988 end - start + 1, uptodate))
c3988d63 2989 return;
5fd02043 2990
70ddc553 2991 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 2992 wq = fs_info->endio_freespace_worker;
9e0af237
LB
2993 func = btrfs_freespace_write_helper;
2994 } else {
0b246afa 2995 wq = fs_info->endio_write_workers;
9e0af237
LB
2996 func = btrfs_endio_write_helper;
2997 }
5fd02043 2998
9e0af237
LB
2999 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3000 NULL);
3001 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3002}
3003
dc380aea
MX
3004static int __readpage_endio_check(struct inode *inode,
3005 struct btrfs_io_bio *io_bio,
3006 int icsum, struct page *page,
3007 int pgoff, u64 start, size_t len)
3008{
3009 char *kaddr;
3010 u32 csum_expected;
3011 u32 csum = ~(u32)0;
dc380aea
MX
3012
3013 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3014
3015 kaddr = kmap_atomic(page);
3016 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
0b5e3daf 3017 btrfs_csum_final(csum, (u8 *)&csum);
dc380aea
MX
3018 if (csum != csum_expected)
3019 goto zeroit;
3020
3021 kunmap_atomic(kaddr);
3022 return 0;
3023zeroit:
0970a22e 3024 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
6f6b643e 3025 io_bio->mirror_num);
dc380aea
MX
3026 memset(kaddr + pgoff, 1, len);
3027 flush_dcache_page(page);
3028 kunmap_atomic(kaddr);
3029 if (csum_expected == 0)
3030 return 0;
3031 return -EIO;
3032}
3033
d352ac68
CM
3034/*
3035 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3036 * if there's a match, we allow the bio to finish. If not, the code in
3037 * extent_io.c will try to find good copies for us.
d352ac68 3038 */
facc8a22
MX
3039static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3040 u64 phy_offset, struct page *page,
3041 u64 start, u64 end, int mirror)
07157aac 3042{
4eee4fa4 3043 size_t offset = start - page_offset(page);
07157aac 3044 struct inode *inode = page->mapping->host;
d1310b2e 3045 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3046 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3047
d20f7043
CM
3048 if (PageChecked(page)) {
3049 ClearPageChecked(page);
dc380aea 3050 return 0;
d20f7043 3051 }
6cbff00f
CH
3052
3053 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3054 return 0;
17d217fe
YZ
3055
3056 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3057 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3058 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3059 return 0;
17d217fe 3060 }
d20f7043 3061
facc8a22 3062 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3063 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3064 start, (size_t)(end - start + 1));
07157aac 3065}
b888db2b 3066
24bbcf04
YZ
3067void btrfs_add_delayed_iput(struct inode *inode)
3068{
0b246afa 3069 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3070 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3071
3072 if (atomic_add_unless(&inode->i_count, -1, 1))
3073 return;
3074
24bbcf04 3075 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3076 if (binode->delayed_iput_count == 0) {
3077 ASSERT(list_empty(&binode->delayed_iput));
3078 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3079 } else {
3080 binode->delayed_iput_count++;
3081 }
24bbcf04
YZ
3082 spin_unlock(&fs_info->delayed_iput_lock);
3083}
3084
2ff7e61e 3085void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3086{
24bbcf04 3087
24bbcf04 3088 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3089 while (!list_empty(&fs_info->delayed_iputs)) {
3090 struct btrfs_inode *inode;
3091
3092 inode = list_first_entry(&fs_info->delayed_iputs,
3093 struct btrfs_inode, delayed_iput);
3094 if (inode->delayed_iput_count) {
3095 inode->delayed_iput_count--;
3096 list_move_tail(&inode->delayed_iput,
3097 &fs_info->delayed_iputs);
3098 } else {
3099 list_del_init(&inode->delayed_iput);
3100 }
3101 spin_unlock(&fs_info->delayed_iput_lock);
3102 iput(&inode->vfs_inode);
3103 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3104 }
8089fe62 3105 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3106}
3107
d68fc57b 3108/*
42b2aa86 3109 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3110 * files in the subvolume, it removes orphan item and frees block_rsv
3111 * structure.
3112 */
3113void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3114 struct btrfs_root *root)
3115{
0b246afa 3116 struct btrfs_fs_info *fs_info = root->fs_info;
90290e19 3117 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3118 int ret;
3119
8a35d95f 3120 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3121 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3122 return;
3123
90290e19 3124 spin_lock(&root->orphan_lock);
8a35d95f 3125 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3126 spin_unlock(&root->orphan_lock);
3127 return;
3128 }
3129
3130 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3131 spin_unlock(&root->orphan_lock);
3132 return;
3133 }
3134
3135 block_rsv = root->orphan_block_rsv;
3136 root->orphan_block_rsv = NULL;
3137 spin_unlock(&root->orphan_lock);
3138
27cdeb70 3139 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b 3140 btrfs_root_refs(&root->root_item) > 0) {
0b246afa 3141 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
d68fc57b 3142 root->root_key.objectid);
4ef31a45 3143 if (ret)
66642832 3144 btrfs_abort_transaction(trans, ret);
4ef31a45 3145 else
27cdeb70
MX
3146 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3147 &root->state);
d68fc57b
YZ
3148 }
3149
90290e19
JB
3150 if (block_rsv) {
3151 WARN_ON(block_rsv->size > 0);
2ff7e61e 3152 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b
YZ
3153 }
3154}
3155
7b128766
JB
3156/*
3157 * This creates an orphan entry for the given inode in case something goes
3158 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3159 *
3160 * NOTE: caller of this function should reserve 5 units of metadata for
3161 * this function.
7b128766 3162 */
73f2e545
NB
3163int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3164 struct btrfs_inode *inode)
7b128766 3165{
73f2e545
NB
3166 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3167 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3168 struct btrfs_block_rsv *block_rsv = NULL;
3169 int reserve = 0;
3170 int insert = 0;
3171 int ret;
7b128766 3172
d68fc57b 3173 if (!root->orphan_block_rsv) {
2ff7e61e
JM
3174 block_rsv = btrfs_alloc_block_rsv(fs_info,
3175 BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3176 if (!block_rsv)
3177 return -ENOMEM;
d68fc57b 3178 }
7b128766 3179
d68fc57b
YZ
3180 spin_lock(&root->orphan_lock);
3181 if (!root->orphan_block_rsv) {
3182 root->orphan_block_rsv = block_rsv;
3183 } else if (block_rsv) {
2ff7e61e 3184 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b 3185 block_rsv = NULL;
7b128766 3186 }
7b128766 3187
8a35d95f 3188 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3189 &inode->runtime_flags)) {
d68fc57b
YZ
3190#if 0
3191 /*
3192 * For proper ENOSPC handling, we should do orphan
3193 * cleanup when mounting. But this introduces backward
3194 * compatibility issue.
3195 */
3196 if (!xchg(&root->orphan_item_inserted, 1))
3197 insert = 2;
3198 else
3199 insert = 1;
3200#endif
3201 insert = 1;
321f0e70 3202 atomic_inc(&root->orphan_inodes);
7b128766
JB
3203 }
3204
72ac3c0d 3205 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3206 &inode->runtime_flags))
d68fc57b 3207 reserve = 1;
d68fc57b 3208 spin_unlock(&root->orphan_lock);
7b128766 3209
d68fc57b
YZ
3210 /* grab metadata reservation from transaction handle */
3211 if (reserve) {
73f2e545 3212 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3213 ASSERT(!ret);
3214 if (ret) {
3215 atomic_dec(&root->orphan_inodes);
3216 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3217 &inode->runtime_flags);
3b6571c1
JB
3218 if (insert)
3219 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3220 &inode->runtime_flags);
3b6571c1
JB
3221 return ret;
3222 }
d68fc57b 3223 }
7b128766 3224
d68fc57b
YZ
3225 /* insert an orphan item to track this unlinked/truncated file */
3226 if (insert >= 1) {
73f2e545 3227 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3228 if (ret) {
703c88e0 3229 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3230 if (reserve) {
3231 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545
NB
3232 &inode->runtime_flags);
3233 btrfs_orphan_release_metadata(inode);
4ef31a45
JB
3234 }
3235 if (ret != -EEXIST) {
e8e7cff6 3236 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3237 &inode->runtime_flags);
66642832 3238 btrfs_abort_transaction(trans, ret);
4ef31a45
JB
3239 return ret;
3240 }
79787eaa
JM
3241 }
3242 ret = 0;
d68fc57b
YZ
3243 }
3244
3245 /* insert an orphan item to track subvolume contains orphan files */
3246 if (insert >= 2) {
0b246afa 3247 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
d68fc57b 3248 root->root_key.objectid);
79787eaa 3249 if (ret && ret != -EEXIST) {
66642832 3250 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3251 return ret;
3252 }
d68fc57b
YZ
3253 }
3254 return 0;
7b128766
JB
3255}
3256
3257/*
3258 * We have done the truncate/delete so we can go ahead and remove the orphan
3259 * item for this particular inode.
3260 */
48a3b636 3261static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3262 struct btrfs_inode *inode)
7b128766 3263{
3d6ae7bb 3264 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3265 int delete_item = 0;
3266 int release_rsv = 0;
7b128766
JB
3267 int ret = 0;
3268
d68fc57b 3269 spin_lock(&root->orphan_lock);
8a35d95f 3270 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3d6ae7bb 3271 &inode->runtime_flags))
d68fc57b 3272 delete_item = 1;
7b128766 3273
72ac3c0d 3274 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3d6ae7bb 3275 &inode->runtime_flags))
d68fc57b 3276 release_rsv = 1;
d68fc57b 3277 spin_unlock(&root->orphan_lock);
7b128766 3278
703c88e0 3279 if (delete_item) {
8a35d95f 3280 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3281 if (trans)
3282 ret = btrfs_del_orphan_item(trans, root,
3d6ae7bb 3283 btrfs_ino(inode));
8a35d95f 3284 }
7b128766 3285
703c88e0 3286 if (release_rsv)
3d6ae7bb 3287 btrfs_orphan_release_metadata(inode);
703c88e0 3288
4ef31a45 3289 return ret;
7b128766
JB
3290}
3291
3292/*
3293 * this cleans up any orphans that may be left on the list from the last use
3294 * of this root.
3295 */
66b4ffd1 3296int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3297{
0b246afa 3298 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3299 struct btrfs_path *path;
3300 struct extent_buffer *leaf;
7b128766
JB
3301 struct btrfs_key key, found_key;
3302 struct btrfs_trans_handle *trans;
3303 struct inode *inode;
8f6d7f4f 3304 u64 last_objectid = 0;
7b128766
JB
3305 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3306
d68fc57b 3307 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3308 return 0;
c71bf099
YZ
3309
3310 path = btrfs_alloc_path();
66b4ffd1
JB
3311 if (!path) {
3312 ret = -ENOMEM;
3313 goto out;
3314 }
e4058b54 3315 path->reada = READA_BACK;
7b128766
JB
3316
3317 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3318 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3319 key.offset = (u64)-1;
3320
7b128766
JB
3321 while (1) {
3322 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3323 if (ret < 0)
3324 goto out;
7b128766
JB
3325
3326 /*
3327 * if ret == 0 means we found what we were searching for, which
25985edc 3328 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3329 * find the key and see if we have stuff that matches
3330 */
3331 if (ret > 0) {
66b4ffd1 3332 ret = 0;
7b128766
JB
3333 if (path->slots[0] == 0)
3334 break;
3335 path->slots[0]--;
3336 }
3337
3338 /* pull out the item */
3339 leaf = path->nodes[0];
7b128766
JB
3340 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3341
3342 /* make sure the item matches what we want */
3343 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3344 break;
962a298f 3345 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3346 break;
3347
3348 /* release the path since we're done with it */
b3b4aa74 3349 btrfs_release_path(path);
7b128766
JB
3350
3351 /*
3352 * this is where we are basically btrfs_lookup, without the
3353 * crossing root thing. we store the inode number in the
3354 * offset of the orphan item.
3355 */
8f6d7f4f
JB
3356
3357 if (found_key.offset == last_objectid) {
0b246afa
JM
3358 btrfs_err(fs_info,
3359 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3360 ret = -EINVAL;
3361 goto out;
3362 }
3363
3364 last_objectid = found_key.offset;
3365
5d4f98a2
YZ
3366 found_key.objectid = found_key.offset;
3367 found_key.type = BTRFS_INODE_ITEM_KEY;
3368 found_key.offset = 0;
0b246afa 3369 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3370 ret = PTR_ERR_OR_ZERO(inode);
67710892 3371 if (ret && ret != -ENOENT)
66b4ffd1 3372 goto out;
7b128766 3373
0b246afa 3374 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3375 struct btrfs_root *dead_root;
3376 struct btrfs_fs_info *fs_info = root->fs_info;
3377 int is_dead_root = 0;
3378
3379 /*
3380 * this is an orphan in the tree root. Currently these
3381 * could come from 2 sources:
3382 * a) a snapshot deletion in progress
3383 * b) a free space cache inode
3384 * We need to distinguish those two, as the snapshot
3385 * orphan must not get deleted.
3386 * find_dead_roots already ran before us, so if this
3387 * is a snapshot deletion, we should find the root
3388 * in the dead_roots list
3389 */
3390 spin_lock(&fs_info->trans_lock);
3391 list_for_each_entry(dead_root, &fs_info->dead_roots,
3392 root_list) {
3393 if (dead_root->root_key.objectid ==
3394 found_key.objectid) {
3395 is_dead_root = 1;
3396 break;
3397 }
3398 }
3399 spin_unlock(&fs_info->trans_lock);
3400 if (is_dead_root) {
3401 /* prevent this orphan from being found again */
3402 key.offset = found_key.objectid - 1;
3403 continue;
3404 }
3405 }
7b128766 3406 /*
a8c9e576
JB
3407 * Inode is already gone but the orphan item is still there,
3408 * kill the orphan item.
7b128766 3409 */
67710892 3410 if (ret == -ENOENT) {
a8c9e576 3411 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3412 if (IS_ERR(trans)) {
3413 ret = PTR_ERR(trans);
3414 goto out;
3415 }
0b246afa
JM
3416 btrfs_debug(fs_info, "auto deleting %Lu",
3417 found_key.objectid);
a8c9e576
JB
3418 ret = btrfs_del_orphan_item(trans, root,
3419 found_key.objectid);
3a45bb20 3420 btrfs_end_transaction(trans);
4ef31a45
JB
3421 if (ret)
3422 goto out;
7b128766
JB
3423 continue;
3424 }
3425
a8c9e576
JB
3426 /*
3427 * add this inode to the orphan list so btrfs_orphan_del does
3428 * the proper thing when we hit it
3429 */
8a35d95f
JB
3430 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3431 &BTRFS_I(inode)->runtime_flags);
925396ec 3432 atomic_inc(&root->orphan_inodes);
a8c9e576 3433
7b128766
JB
3434 /* if we have links, this was a truncate, lets do that */
3435 if (inode->i_nlink) {
fae7f21c 3436 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3437 iput(inode);
3438 continue;
3439 }
7b128766 3440 nr_truncate++;
f3fe820c
JB
3441
3442 /* 1 for the orphan item deletion. */
3443 trans = btrfs_start_transaction(root, 1);
3444 if (IS_ERR(trans)) {
c69b26b0 3445 iput(inode);
f3fe820c
JB
3446 ret = PTR_ERR(trans);
3447 goto out;
3448 }
73f2e545 3449 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 3450 btrfs_end_transaction(trans);
c69b26b0
JB
3451 if (ret) {
3452 iput(inode);
f3fe820c 3453 goto out;
c69b26b0 3454 }
f3fe820c 3455
66b4ffd1 3456 ret = btrfs_truncate(inode);
4a7d0f68 3457 if (ret)
3d6ae7bb 3458 btrfs_orphan_del(NULL, BTRFS_I(inode));
7b128766
JB
3459 } else {
3460 nr_unlink++;
3461 }
3462
3463 /* this will do delete_inode and everything for us */
3464 iput(inode);
66b4ffd1
JB
3465 if (ret)
3466 goto out;
7b128766 3467 }
3254c876
MX
3468 /* release the path since we're done with it */
3469 btrfs_release_path(path);
3470
d68fc57b
YZ
3471 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3472
3473 if (root->orphan_block_rsv)
2ff7e61e 3474 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
d68fc57b
YZ
3475 (u64)-1);
3476
27cdeb70
MX
3477 if (root->orphan_block_rsv ||
3478 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3479 trans = btrfs_join_transaction(root);
66b4ffd1 3480 if (!IS_ERR(trans))
3a45bb20 3481 btrfs_end_transaction(trans);
d68fc57b 3482 }
7b128766
JB
3483
3484 if (nr_unlink)
0b246afa 3485 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3486 if (nr_truncate)
0b246afa 3487 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3488
3489out:
3490 if (ret)
0b246afa 3491 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3492 btrfs_free_path(path);
3493 return ret;
7b128766
JB
3494}
3495
46a53cca
CM
3496/*
3497 * very simple check to peek ahead in the leaf looking for xattrs. If we
3498 * don't find any xattrs, we know there can't be any acls.
3499 *
3500 * slot is the slot the inode is in, objectid is the objectid of the inode
3501 */
3502static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3503 int slot, u64 objectid,
3504 int *first_xattr_slot)
46a53cca
CM
3505{
3506 u32 nritems = btrfs_header_nritems(leaf);
3507 struct btrfs_key found_key;
f23b5a59
JB
3508 static u64 xattr_access = 0;
3509 static u64 xattr_default = 0;
46a53cca
CM
3510 int scanned = 0;
3511
f23b5a59 3512 if (!xattr_access) {
97d79299
AG
3513 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3514 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3515 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3516 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3517 }
3518
46a53cca 3519 slot++;
63541927 3520 *first_xattr_slot = -1;
46a53cca
CM
3521 while (slot < nritems) {
3522 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3523
3524 /* we found a different objectid, there must not be acls */
3525 if (found_key.objectid != objectid)
3526 return 0;
3527
3528 /* we found an xattr, assume we've got an acl */
f23b5a59 3529 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3530 if (*first_xattr_slot == -1)
3531 *first_xattr_slot = slot;
f23b5a59
JB
3532 if (found_key.offset == xattr_access ||
3533 found_key.offset == xattr_default)
3534 return 1;
3535 }
46a53cca
CM
3536
3537 /*
3538 * we found a key greater than an xattr key, there can't
3539 * be any acls later on
3540 */
3541 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3542 return 0;
3543
3544 slot++;
3545 scanned++;
3546
3547 /*
3548 * it goes inode, inode backrefs, xattrs, extents,
3549 * so if there are a ton of hard links to an inode there can
3550 * be a lot of backrefs. Don't waste time searching too hard,
3551 * this is just an optimization
3552 */
3553 if (scanned >= 8)
3554 break;
3555 }
3556 /* we hit the end of the leaf before we found an xattr or
3557 * something larger than an xattr. We have to assume the inode
3558 * has acls
3559 */
63541927
FDBM
3560 if (*first_xattr_slot == -1)
3561 *first_xattr_slot = slot;
46a53cca
CM
3562 return 1;
3563}
3564
d352ac68
CM
3565/*
3566 * read an inode from the btree into the in-memory inode
3567 */
67710892 3568static int btrfs_read_locked_inode(struct inode *inode)
39279cc3 3569{
0b246afa 3570 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 3571 struct btrfs_path *path;
5f39d397 3572 struct extent_buffer *leaf;
39279cc3
CM
3573 struct btrfs_inode_item *inode_item;
3574 struct btrfs_root *root = BTRFS_I(inode)->root;
3575 struct btrfs_key location;
67de1176 3576 unsigned long ptr;
46a53cca 3577 int maybe_acls;
618e21d5 3578 u32 rdev;
39279cc3 3579 int ret;
2f7e33d4 3580 bool filled = false;
63541927 3581 int first_xattr_slot;
2f7e33d4
MX
3582
3583 ret = btrfs_fill_inode(inode, &rdev);
3584 if (!ret)
3585 filled = true;
39279cc3
CM
3586
3587 path = btrfs_alloc_path();
67710892
FM
3588 if (!path) {
3589 ret = -ENOMEM;
1748f843 3590 goto make_bad;
67710892 3591 }
1748f843 3592
39279cc3 3593 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3594
39279cc3 3595 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3596 if (ret) {
3597 if (ret > 0)
3598 ret = -ENOENT;
39279cc3 3599 goto make_bad;
67710892 3600 }
39279cc3 3601
5f39d397 3602 leaf = path->nodes[0];
2f7e33d4
MX
3603
3604 if (filled)
67de1176 3605 goto cache_index;
2f7e33d4 3606
5f39d397
CM
3607 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3608 struct btrfs_inode_item);
5f39d397 3609 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3610 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3611 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3612 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3613 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3614
a937b979
DS
3615 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3616 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3617
a937b979
DS
3618 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3619 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3620
a937b979
DS
3621 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3622 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3623
9cc97d64 3624 BTRFS_I(inode)->i_otime.tv_sec =
3625 btrfs_timespec_sec(leaf, &inode_item->otime);
3626 BTRFS_I(inode)->i_otime.tv_nsec =
3627 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3628
a76a3cd4 3629 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3630 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3631 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3632
6e17d30b
YD
3633 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3634 inode->i_generation = BTRFS_I(inode)->generation;
3635 inode->i_rdev = 0;
3636 rdev = btrfs_inode_rdev(leaf, inode_item);
3637
3638 BTRFS_I(inode)->index_cnt = (u64)-1;
3639 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3640
3641cache_index:
5dc562c5
JB
3642 /*
3643 * If we were modified in the current generation and evicted from memory
3644 * and then re-read we need to do a full sync since we don't have any
3645 * idea about which extents were modified before we were evicted from
3646 * cache.
6e17d30b
YD
3647 *
3648 * This is required for both inode re-read from disk and delayed inode
3649 * in delayed_nodes_tree.
5dc562c5 3650 */
0b246afa 3651 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3652 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3653 &BTRFS_I(inode)->runtime_flags);
3654
bde6c242
FM
3655 /*
3656 * We don't persist the id of the transaction where an unlink operation
3657 * against the inode was last made. So here we assume the inode might
3658 * have been evicted, and therefore the exact value of last_unlink_trans
3659 * lost, and set it to last_trans to avoid metadata inconsistencies
3660 * between the inode and its parent if the inode is fsync'ed and the log
3661 * replayed. For example, in the scenario:
3662 *
3663 * touch mydir/foo
3664 * ln mydir/foo mydir/bar
3665 * sync
3666 * unlink mydir/bar
3667 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3668 * xfs_io -c fsync mydir/foo
3669 * <power failure>
3670 * mount fs, triggers fsync log replay
3671 *
3672 * We must make sure that when we fsync our inode foo we also log its
3673 * parent inode, otherwise after log replay the parent still has the
3674 * dentry with the "bar" name but our inode foo has a link count of 1
3675 * and doesn't have an inode ref with the name "bar" anymore.
3676 *
3677 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3678 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3679 * transaction commits on fsync if our inode is a directory, or if our
3680 * inode is not a directory, logging its parent unnecessarily.
3681 */
3682 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3683
67de1176
MX
3684 path->slots[0]++;
3685 if (inode->i_nlink != 1 ||
3686 path->slots[0] >= btrfs_header_nritems(leaf))
3687 goto cache_acl;
3688
3689 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3690 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3691 goto cache_acl;
3692
3693 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3694 if (location.type == BTRFS_INODE_REF_KEY) {
3695 struct btrfs_inode_ref *ref;
3696
3697 ref = (struct btrfs_inode_ref *)ptr;
3698 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3699 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3700 struct btrfs_inode_extref *extref;
3701
3702 extref = (struct btrfs_inode_extref *)ptr;
3703 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3704 extref);
3705 }
2f7e33d4 3706cache_acl:
46a53cca
CM
3707 /*
3708 * try to precache a NULL acl entry for files that don't have
3709 * any xattrs or acls
3710 */
33345d01 3711 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3712 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3713 if (first_xattr_slot != -1) {
3714 path->slots[0] = first_xattr_slot;
3715 ret = btrfs_load_inode_props(inode, path);
3716 if (ret)
0b246afa 3717 btrfs_err(fs_info,
351fd353 3718 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3719 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3720 root->root_key.objectid, ret);
3721 }
3722 btrfs_free_path(path);
3723
72c04902
AV
3724 if (!maybe_acls)
3725 cache_no_acl(inode);
46a53cca 3726
39279cc3 3727 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3728 case S_IFREG:
3729 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3730 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3731 inode->i_fop = &btrfs_file_operations;
3732 inode->i_op = &btrfs_file_inode_operations;
3733 break;
3734 case S_IFDIR:
3735 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3736 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3737 break;
3738 case S_IFLNK:
3739 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3740 inode_nohighmem(inode);
39279cc3
CM
3741 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3742 break;
618e21d5 3743 default:
0279b4cd 3744 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3745 init_special_inode(inode, inode->i_mode, rdev);
3746 break;
39279cc3 3747 }
6cbff00f
CH
3748
3749 btrfs_update_iflags(inode);
67710892 3750 return 0;
39279cc3
CM
3751
3752make_bad:
39279cc3 3753 btrfs_free_path(path);
39279cc3 3754 make_bad_inode(inode);
67710892 3755 return ret;
39279cc3
CM
3756}
3757
d352ac68
CM
3758/*
3759 * given a leaf and an inode, copy the inode fields into the leaf
3760 */
e02119d5
CM
3761static void fill_inode_item(struct btrfs_trans_handle *trans,
3762 struct extent_buffer *leaf,
5f39d397 3763 struct btrfs_inode_item *item,
39279cc3
CM
3764 struct inode *inode)
3765{
51fab693
LB
3766 struct btrfs_map_token token;
3767
3768 btrfs_init_map_token(&token);
5f39d397 3769
51fab693
LB
3770 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3771 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3772 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3773 &token);
3774 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3775 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3776
a937b979 3777 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3778 inode->i_atime.tv_sec, &token);
a937b979 3779 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3780 inode->i_atime.tv_nsec, &token);
5f39d397 3781
a937b979 3782 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3783 inode->i_mtime.tv_sec, &token);
a937b979 3784 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3785 inode->i_mtime.tv_nsec, &token);
5f39d397 3786
a937b979 3787 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3788 inode->i_ctime.tv_sec, &token);
a937b979 3789 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3790 inode->i_ctime.tv_nsec, &token);
5f39d397 3791
9cc97d64 3792 btrfs_set_token_timespec_sec(leaf, &item->otime,
3793 BTRFS_I(inode)->i_otime.tv_sec, &token);
3794 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3795 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3796
51fab693
LB
3797 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3798 &token);
3799 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3800 &token);
3801 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3802 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3803 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3804 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3805 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3806}
3807
d352ac68
CM
3808/*
3809 * copy everything in the in-memory inode into the btree.
3810 */
2115133f 3811static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3812 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3813{
3814 struct btrfs_inode_item *inode_item;
3815 struct btrfs_path *path;
5f39d397 3816 struct extent_buffer *leaf;
39279cc3
CM
3817 int ret;
3818
3819 path = btrfs_alloc_path();
16cdcec7
MX
3820 if (!path)
3821 return -ENOMEM;
3822
b9473439 3823 path->leave_spinning = 1;
16cdcec7
MX
3824 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3825 1);
39279cc3
CM
3826 if (ret) {
3827 if (ret > 0)
3828 ret = -ENOENT;
3829 goto failed;
3830 }
3831
5f39d397
CM
3832 leaf = path->nodes[0];
3833 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3834 struct btrfs_inode_item);
39279cc3 3835
e02119d5 3836 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3837 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3838 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3839 ret = 0;
3840failed:
39279cc3
CM
3841 btrfs_free_path(path);
3842 return ret;
3843}
3844
2115133f
CM
3845/*
3846 * copy everything in the in-memory inode into the btree.
3847 */
3848noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3849 struct btrfs_root *root, struct inode *inode)
3850{
0b246afa 3851 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3852 int ret;
3853
3854 /*
3855 * If the inode is a free space inode, we can deadlock during commit
3856 * if we put it into the delayed code.
3857 *
3858 * The data relocation inode should also be directly updated
3859 * without delay
3860 */
70ddc553 3861 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 3862 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 3863 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
3864 btrfs_update_root_times(trans, root);
3865
2115133f
CM
3866 ret = btrfs_delayed_update_inode(trans, root, inode);
3867 if (!ret)
3868 btrfs_set_inode_last_trans(trans, inode);
3869 return ret;
3870 }
3871
3872 return btrfs_update_inode_item(trans, root, inode);
3873}
3874
be6aef60
JB
3875noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3876 struct btrfs_root *root,
3877 struct inode *inode)
2115133f
CM
3878{
3879 int ret;
3880
3881 ret = btrfs_update_inode(trans, root, inode);
3882 if (ret == -ENOSPC)
3883 return btrfs_update_inode_item(trans, root, inode);
3884 return ret;
3885}
3886
d352ac68
CM
3887/*
3888 * unlink helper that gets used here in inode.c and in the tree logging
3889 * recovery code. It remove a link in a directory with a given name, and
3890 * also drops the back refs in the inode to the directory
3891 */
92986796
AV
3892static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3893 struct btrfs_root *root,
4ec5934e
NB
3894 struct btrfs_inode *dir,
3895 struct btrfs_inode *inode,
92986796 3896 const char *name, int name_len)
39279cc3 3897{
0b246afa 3898 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 3899 struct btrfs_path *path;
39279cc3 3900 int ret = 0;
5f39d397 3901 struct extent_buffer *leaf;
39279cc3 3902 struct btrfs_dir_item *di;
5f39d397 3903 struct btrfs_key key;
aec7477b 3904 u64 index;
4ec5934e
NB
3905 u64 ino = btrfs_ino(inode);
3906 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3907
3908 path = btrfs_alloc_path();
54aa1f4d
CM
3909 if (!path) {
3910 ret = -ENOMEM;
554233a6 3911 goto out;
54aa1f4d
CM
3912 }
3913
b9473439 3914 path->leave_spinning = 1;
33345d01 3915 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3916 name, name_len, -1);
3917 if (IS_ERR(di)) {
3918 ret = PTR_ERR(di);
3919 goto err;
3920 }
3921 if (!di) {
3922 ret = -ENOENT;
3923 goto err;
3924 }
5f39d397
CM
3925 leaf = path->nodes[0];
3926 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3927 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3928 if (ret)
3929 goto err;
b3b4aa74 3930 btrfs_release_path(path);
39279cc3 3931
67de1176
MX
3932 /*
3933 * If we don't have dir index, we have to get it by looking up
3934 * the inode ref, since we get the inode ref, remove it directly,
3935 * it is unnecessary to do delayed deletion.
3936 *
3937 * But if we have dir index, needn't search inode ref to get it.
3938 * Since the inode ref is close to the inode item, it is better
3939 * that we delay to delete it, and just do this deletion when
3940 * we update the inode item.
3941 */
4ec5934e
NB
3942 if (inode->dir_index) {
3943 ret = btrfs_delayed_delete_inode_ref(inode);
67de1176 3944 if (!ret) {
4ec5934e 3945 index = inode->dir_index;
67de1176
MX
3946 goto skip_backref;
3947 }
3948 }
3949
33345d01
LZ
3950 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3951 dir_ino, &index);
aec7477b 3952 if (ret) {
0b246afa 3953 btrfs_info(fs_info,
c2cf52eb 3954 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3955 name_len, name, ino, dir_ino);
66642832 3956 btrfs_abort_transaction(trans, ret);
aec7477b
JB
3957 goto err;
3958 }
67de1176 3959skip_backref:
4ec5934e 3960 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
79787eaa 3961 if (ret) {
66642832 3962 btrfs_abort_transaction(trans, ret);
39279cc3 3963 goto err;
79787eaa 3964 }
39279cc3 3965
4ec5934e
NB
3966 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3967 dir_ino);
79787eaa 3968 if (ret != 0 && ret != -ENOENT) {
66642832 3969 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3970 goto err;
3971 }
e02119d5 3972
4ec5934e
NB
3973 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3974 index);
6418c961
CM
3975 if (ret == -ENOENT)
3976 ret = 0;
d4e3991b 3977 else if (ret)
66642832 3978 btrfs_abort_transaction(trans, ret);
39279cc3
CM
3979err:
3980 btrfs_free_path(path);
e02119d5
CM
3981 if (ret)
3982 goto out;
3983
6ef06d27 3984 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
3985 inode_inc_iversion(&inode->vfs_inode);
3986 inode_inc_iversion(&dir->vfs_inode);
3987 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3988 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3989 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 3990out:
39279cc3
CM
3991 return ret;
3992}
3993
92986796
AV
3994int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3995 struct btrfs_root *root,
4ec5934e 3996 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
3997 const char *name, int name_len)
3998{
3999 int ret;
4000 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4001 if (!ret) {
4ec5934e
NB
4002 drop_nlink(&inode->vfs_inode);
4003 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4004 }
4005 return ret;
4006}
39279cc3 4007
a22285a6
YZ
4008/*
4009 * helper to start transaction for unlink and rmdir.
4010 *
d52be818
JB
4011 * unlink and rmdir are special in btrfs, they do not always free space, so
4012 * if we cannot make our reservations the normal way try and see if there is
4013 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4014 * allow the unlink to occur.
a22285a6 4015 */
d52be818 4016static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4017{
a22285a6 4018 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4019
e70bea5f
JB
4020 /*
4021 * 1 for the possible orphan item
4022 * 1 for the dir item
4023 * 1 for the dir index
4024 * 1 for the inode ref
e70bea5f
JB
4025 * 1 for the inode
4026 */
8eab77ff 4027 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4028}
4029
4030static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4031{
4032 struct btrfs_root *root = BTRFS_I(dir)->root;
4033 struct btrfs_trans_handle *trans;
2b0143b5 4034 struct inode *inode = d_inode(dentry);
a22285a6 4035 int ret;
a22285a6 4036
d52be818 4037 trans = __unlink_start_trans(dir);
a22285a6
YZ
4038 if (IS_ERR(trans))
4039 return PTR_ERR(trans);
5f39d397 4040
4ec5934e
NB
4041 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4042 0);
12fcfd22 4043
4ec5934e
NB
4044 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4045 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4046 dentry->d_name.len);
b532402e
TI
4047 if (ret)
4048 goto out;
7b128766 4049
a22285a6 4050 if (inode->i_nlink == 0) {
73f2e545 4051 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4052 if (ret)
4053 goto out;
a22285a6 4054 }
7b128766 4055
b532402e 4056out:
3a45bb20 4057 btrfs_end_transaction(trans);
2ff7e61e 4058 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4059 return ret;
4060}
4061
4df27c4d
YZ
4062int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4063 struct btrfs_root *root,
4064 struct inode *dir, u64 objectid,
4065 const char *name, int name_len)
4066{
0b246afa 4067 struct btrfs_fs_info *fs_info = root->fs_info;
4df27c4d
YZ
4068 struct btrfs_path *path;
4069 struct extent_buffer *leaf;
4070 struct btrfs_dir_item *di;
4071 struct btrfs_key key;
4072 u64 index;
4073 int ret;
4a0cc7ca 4074 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4075
4076 path = btrfs_alloc_path();
4077 if (!path)
4078 return -ENOMEM;
4079
33345d01 4080 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4081 name, name_len, -1);
79787eaa
JM
4082 if (IS_ERR_OR_NULL(di)) {
4083 if (!di)
4084 ret = -ENOENT;
4085 else
4086 ret = PTR_ERR(di);
4087 goto out;
4088 }
4df27c4d
YZ
4089
4090 leaf = path->nodes[0];
4091 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4092 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4093 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4094 if (ret) {
66642832 4095 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4096 goto out;
4097 }
b3b4aa74 4098 btrfs_release_path(path);
4df27c4d 4099
0b246afa
JM
4100 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4101 root->root_key.objectid, dir_ino,
4102 &index, name, name_len);
4df27c4d 4103 if (ret < 0) {
79787eaa 4104 if (ret != -ENOENT) {
66642832 4105 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4106 goto out;
4107 }
33345d01 4108 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4109 name, name_len);
79787eaa
JM
4110 if (IS_ERR_OR_NULL(di)) {
4111 if (!di)
4112 ret = -ENOENT;
4113 else
4114 ret = PTR_ERR(di);
66642832 4115 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4116 goto out;
4117 }
4df27c4d
YZ
4118
4119 leaf = path->nodes[0];
4120 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4121 btrfs_release_path(path);
4df27c4d
YZ
4122 index = key.offset;
4123 }
945d8962 4124 btrfs_release_path(path);
4df27c4d 4125
e67bbbb9 4126 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
79787eaa 4127 if (ret) {
66642832 4128 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4129 goto out;
4130 }
4df27c4d 4131
6ef06d27 4132 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4133 inode_inc_iversion(dir);
c2050a45 4134 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4135 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4136 if (ret)
66642832 4137 btrfs_abort_transaction(trans, ret);
79787eaa 4138out:
71d7aed0 4139 btrfs_free_path(path);
79787eaa 4140 return ret;
4df27c4d
YZ
4141}
4142
39279cc3
CM
4143static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4144{
2b0143b5 4145 struct inode *inode = d_inode(dentry);
1832a6d5 4146 int err = 0;
39279cc3 4147 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4148 struct btrfs_trans_handle *trans;
44f714da 4149 u64 last_unlink_trans;
39279cc3 4150
b3ae244e 4151 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4152 return -ENOTEMPTY;
4a0cc7ca 4153 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
b3ae244e 4154 return -EPERM;
134d4512 4155
d52be818 4156 trans = __unlink_start_trans(dir);
a22285a6 4157 if (IS_ERR(trans))
5df6a9f6 4158 return PTR_ERR(trans);
5df6a9f6 4159
4a0cc7ca 4160 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4161 err = btrfs_unlink_subvol(trans, root, dir,
4162 BTRFS_I(inode)->location.objectid,
4163 dentry->d_name.name,
4164 dentry->d_name.len);
4165 goto out;
4166 }
4167
73f2e545 4168 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4169 if (err)
4df27c4d 4170 goto out;
7b128766 4171
44f714da
FM
4172 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4173
39279cc3 4174 /* now the directory is empty */
4ec5934e
NB
4175 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4176 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4177 dentry->d_name.len);
44f714da 4178 if (!err) {
6ef06d27 4179 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4180 /*
4181 * Propagate the last_unlink_trans value of the deleted dir to
4182 * its parent directory. This is to prevent an unrecoverable
4183 * log tree in the case we do something like this:
4184 * 1) create dir foo
4185 * 2) create snapshot under dir foo
4186 * 3) delete the snapshot
4187 * 4) rmdir foo
4188 * 5) mkdir foo
4189 * 6) fsync foo or some file inside foo
4190 */
4191 if (last_unlink_trans >= trans->transid)
4192 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4193 }
4df27c4d 4194out:
3a45bb20 4195 btrfs_end_transaction(trans);
2ff7e61e 4196 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4197
39279cc3
CM
4198 return err;
4199}
4200
28f75a0e
CM
4201static int truncate_space_check(struct btrfs_trans_handle *trans,
4202 struct btrfs_root *root,
4203 u64 bytes_deleted)
4204{
0b246afa 4205 struct btrfs_fs_info *fs_info = root->fs_info;
28f75a0e
CM
4206 int ret;
4207
dc95f7bf
JB
4208 /*
4209 * This is only used to apply pressure to the enospc system, we don't
4210 * intend to use this reservation at all.
4211 */
2ff7e61e 4212 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
0b246afa
JM
4213 bytes_deleted *= fs_info->nodesize;
4214 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
28f75a0e 4215 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf 4216 if (!ret) {
0b246afa 4217 trace_btrfs_space_reservation(fs_info, "transaction",
dc95f7bf
JB
4218 trans->transid,
4219 bytes_deleted, 1);
28f75a0e 4220 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4221 }
28f75a0e
CM
4222 return ret;
4223
4224}
4225
0305cd5f
FM
4226static int truncate_inline_extent(struct inode *inode,
4227 struct btrfs_path *path,
4228 struct btrfs_key *found_key,
4229 const u64 item_end,
4230 const u64 new_size)
4231{
4232 struct extent_buffer *leaf = path->nodes[0];
4233 int slot = path->slots[0];
4234 struct btrfs_file_extent_item *fi;
4235 u32 size = (u32)(new_size - found_key->offset);
4236 struct btrfs_root *root = BTRFS_I(inode)->root;
4237
4238 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4239
4240 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4241 loff_t offset = new_size;
09cbfeaf 4242 loff_t page_end = ALIGN(offset, PAGE_SIZE);
0305cd5f
FM
4243
4244 /*
4245 * Zero out the remaining of the last page of our inline extent,
4246 * instead of directly truncating our inline extent here - that
4247 * would be much more complex (decompressing all the data, then
4248 * compressing the truncated data, which might be bigger than
4249 * the size of the inline extent, resize the extent, etc).
4250 * We release the path because to get the page we might need to
4251 * read the extent item from disk (data not in the page cache).
4252 */
4253 btrfs_release_path(path);
9703fefe
CR
4254 return btrfs_truncate_block(inode, offset, page_end - offset,
4255 0);
0305cd5f
FM
4256 }
4257
4258 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4259 size = btrfs_file_extent_calc_inline_size(size);
2ff7e61e 4260 btrfs_truncate_item(root->fs_info, path, size, 1);
0305cd5f
FM
4261
4262 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4263 inode_sub_bytes(inode, item_end + 1 - new_size);
4264
4265 return 0;
4266}
4267
39279cc3
CM
4268/*
4269 * this can truncate away extent items, csum items and directory items.
4270 * It starts at a high offset and removes keys until it can't find
d352ac68 4271 * any higher than new_size
39279cc3
CM
4272 *
4273 * csum items that cross the new i_size are truncated to the new size
4274 * as well.
7b128766
JB
4275 *
4276 * min_type is the minimum key type to truncate down to. If set to 0, this
4277 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4278 */
8082510e
YZ
4279int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4280 struct btrfs_root *root,
4281 struct inode *inode,
4282 u64 new_size, u32 min_type)
39279cc3 4283{
0b246afa 4284 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4285 struct btrfs_path *path;
5f39d397 4286 struct extent_buffer *leaf;
39279cc3 4287 struct btrfs_file_extent_item *fi;
8082510e
YZ
4288 struct btrfs_key key;
4289 struct btrfs_key found_key;
39279cc3 4290 u64 extent_start = 0;
db94535d 4291 u64 extent_num_bytes = 0;
5d4f98a2 4292 u64 extent_offset = 0;
39279cc3 4293 u64 item_end = 0;
c1aa4575 4294 u64 last_size = new_size;
8082510e 4295 u32 found_type = (u8)-1;
39279cc3
CM
4296 int found_extent;
4297 int del_item;
85e21bac
CM
4298 int pending_del_nr = 0;
4299 int pending_del_slot = 0;
179e29e4 4300 int extent_type = -1;
8082510e
YZ
4301 int ret;
4302 int err = 0;
4a0cc7ca 4303 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4304 u64 bytes_deleted = 0;
1262133b
JB
4305 bool be_nice = 0;
4306 bool should_throttle = 0;
28f75a0e 4307 bool should_end = 0;
8082510e
YZ
4308
4309 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4310
28ed1345
CM
4311 /*
4312 * for non-free space inodes and ref cows, we want to back off from
4313 * time to time
4314 */
70ddc553 4315 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345
CM
4316 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4317 be_nice = 1;
4318
0eb0e19c
MF
4319 path = btrfs_alloc_path();
4320 if (!path)
4321 return -ENOMEM;
e4058b54 4322 path->reada = READA_BACK;
0eb0e19c 4323
5dc562c5
JB
4324 /*
4325 * We want to drop from the next block forward in case this new size is
4326 * not block aligned since we will be keeping the last block of the
4327 * extent just the way it is.
4328 */
27cdeb70 4329 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4330 root == fs_info->tree_root)
dcdbc059 4331 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4332 fs_info->sectorsize),
da17066c 4333 (u64)-1, 0);
8082510e 4334
16cdcec7
MX
4335 /*
4336 * This function is also used to drop the items in the log tree before
4337 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4338 * it is used to drop the loged items. So we shouldn't kill the delayed
4339 * items.
4340 */
4341 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4342 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4343
33345d01 4344 key.objectid = ino;
39279cc3 4345 key.offset = (u64)-1;
5f39d397
CM
4346 key.type = (u8)-1;
4347
85e21bac 4348search_again:
28ed1345
CM
4349 /*
4350 * with a 16K leaf size and 128MB extents, you can actually queue
4351 * up a huge file in a single leaf. Most of the time that
4352 * bytes_deleted is > 0, it will be huge by the time we get here
4353 */
ee22184b 4354 if (be_nice && bytes_deleted > SZ_32M) {
3a45bb20 4355 if (btrfs_should_end_transaction(trans)) {
28ed1345
CM
4356 err = -EAGAIN;
4357 goto error;
4358 }
4359 }
4360
4361
b9473439 4362 path->leave_spinning = 1;
85e21bac 4363 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4364 if (ret < 0) {
4365 err = ret;
4366 goto out;
4367 }
d397712b 4368
85e21bac 4369 if (ret > 0) {
e02119d5
CM
4370 /* there are no items in the tree for us to truncate, we're
4371 * done
4372 */
8082510e
YZ
4373 if (path->slots[0] == 0)
4374 goto out;
85e21bac
CM
4375 path->slots[0]--;
4376 }
4377
d397712b 4378 while (1) {
39279cc3 4379 fi = NULL;
5f39d397
CM
4380 leaf = path->nodes[0];
4381 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4382 found_type = found_key.type;
39279cc3 4383
33345d01 4384 if (found_key.objectid != ino)
39279cc3 4385 break;
5f39d397 4386
85e21bac 4387 if (found_type < min_type)
39279cc3
CM
4388 break;
4389
5f39d397 4390 item_end = found_key.offset;
39279cc3 4391 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4392 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4393 struct btrfs_file_extent_item);
179e29e4
CM
4394 extent_type = btrfs_file_extent_type(leaf, fi);
4395 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4396 item_end +=
db94535d 4397 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4398 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4399 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4400 path->slots[0], fi);
39279cc3 4401 }
008630c1 4402 item_end--;
39279cc3 4403 }
8082510e
YZ
4404 if (found_type > min_type) {
4405 del_item = 1;
4406 } else {
91298eec
LB
4407 if (item_end < new_size) {
4408 /*
4409 * With NO_HOLES mode, for the following mapping
4410 *
4411 * [0-4k][hole][8k-12k]
4412 *
4413 * if truncating isize down to 6k, it ends up
4414 * isize being 8k.
4415 */
4416 if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
4417 last_size = new_size;
b888db2b 4418 break;
91298eec 4419 }
8082510e
YZ
4420 if (found_key.offset >= new_size)
4421 del_item = 1;
4422 else
4423 del_item = 0;
39279cc3 4424 }
39279cc3 4425 found_extent = 0;
39279cc3 4426 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4427 if (found_type != BTRFS_EXTENT_DATA_KEY)
4428 goto delete;
4429
7f4f6e0a
JB
4430 if (del_item)
4431 last_size = found_key.offset;
4432 else
4433 last_size = new_size;
4434
179e29e4 4435 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4436 u64 num_dec;
db94535d 4437 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4438 if (!del_item) {
db94535d
CM
4439 u64 orig_num_bytes =
4440 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4441 extent_num_bytes = ALIGN(new_size -
4442 found_key.offset,
0b246afa 4443 fs_info->sectorsize);
db94535d
CM
4444 btrfs_set_file_extent_num_bytes(leaf, fi,
4445 extent_num_bytes);
4446 num_dec = (orig_num_bytes -
9069218d 4447 extent_num_bytes);
27cdeb70
MX
4448 if (test_bit(BTRFS_ROOT_REF_COWS,
4449 &root->state) &&
4450 extent_start != 0)
a76a3cd4 4451 inode_sub_bytes(inode, num_dec);
5f39d397 4452 btrfs_mark_buffer_dirty(leaf);
39279cc3 4453 } else {
db94535d
CM
4454 extent_num_bytes =
4455 btrfs_file_extent_disk_num_bytes(leaf,
4456 fi);
5d4f98a2
YZ
4457 extent_offset = found_key.offset -
4458 btrfs_file_extent_offset(leaf, fi);
4459
39279cc3 4460 /* FIXME blocksize != 4096 */
9069218d 4461 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4462 if (extent_start != 0) {
4463 found_extent = 1;
27cdeb70
MX
4464 if (test_bit(BTRFS_ROOT_REF_COWS,
4465 &root->state))
a76a3cd4 4466 inode_sub_bytes(inode, num_dec);
e02119d5 4467 }
39279cc3 4468 }
9069218d 4469 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4470 /*
4471 * we can't truncate inline items that have had
4472 * special encodings
4473 */
4474 if (!del_item &&
c8b97818
CM
4475 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4476 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4477
4478 /*
0305cd5f
FM
4479 * Need to release path in order to truncate a
4480 * compressed extent. So delete any accumulated
4481 * extent items so far.
514ac8ad 4482 */
0305cd5f
FM
4483 if (btrfs_file_extent_compression(leaf, fi) !=
4484 BTRFS_COMPRESS_NONE && pending_del_nr) {
4485 err = btrfs_del_items(trans, root, path,
4486 pending_del_slot,
4487 pending_del_nr);
4488 if (err) {
4489 btrfs_abort_transaction(trans,
0305cd5f
FM
4490 err);
4491 goto error;
4492 }
4493 pending_del_nr = 0;
4494 }
4495
4496 err = truncate_inline_extent(inode, path,
4497 &found_key,
4498 item_end,
4499 new_size);
4500 if (err) {
66642832 4501 btrfs_abort_transaction(trans, err);
0305cd5f
FM
4502 goto error;
4503 }
27cdeb70
MX
4504 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4505 &root->state)) {
0305cd5f 4506 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4507 }
39279cc3 4508 }
179e29e4 4509delete:
39279cc3 4510 if (del_item) {
85e21bac
CM
4511 if (!pending_del_nr) {
4512 /* no pending yet, add ourselves */
4513 pending_del_slot = path->slots[0];
4514 pending_del_nr = 1;
4515 } else if (pending_del_nr &&
4516 path->slots[0] + 1 == pending_del_slot) {
4517 /* hop on the pending chunk */
4518 pending_del_nr++;
4519 pending_del_slot = path->slots[0];
4520 } else {
d397712b 4521 BUG();
85e21bac 4522 }
39279cc3
CM
4523 } else {
4524 break;
4525 }
28f75a0e
CM
4526 should_throttle = 0;
4527
27cdeb70
MX
4528 if (found_extent &&
4529 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4530 root == fs_info->tree_root)) {
b9473439 4531 btrfs_set_path_blocking(path);
28ed1345 4532 bytes_deleted += extent_num_bytes;
2ff7e61e 4533 ret = btrfs_free_extent(trans, fs_info, extent_start,
5d4f98a2
YZ
4534 extent_num_bytes, 0,
4535 btrfs_header_owner(leaf),
b06c4bf5 4536 ino, extent_offset);
39279cc3 4537 BUG_ON(ret);
2ff7e61e
JM
4538 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4539 btrfs_async_run_delayed_refs(fs_info,
dd4b857a
WX
4540 trans->delayed_ref_updates * 2,
4541 trans->transid, 0);
28f75a0e
CM
4542 if (be_nice) {
4543 if (truncate_space_check(trans, root,
4544 extent_num_bytes)) {
4545 should_end = 1;
4546 }
4547 if (btrfs_should_throttle_delayed_refs(trans,
2ff7e61e 4548 fs_info))
28f75a0e 4549 should_throttle = 1;
28f75a0e 4550 }
39279cc3 4551 }
85e21bac 4552
8082510e
YZ
4553 if (found_type == BTRFS_INODE_ITEM_KEY)
4554 break;
4555
4556 if (path->slots[0] == 0 ||
1262133b 4557 path->slots[0] != pending_del_slot ||
28f75a0e 4558 should_throttle || should_end) {
8082510e
YZ
4559 if (pending_del_nr) {
4560 ret = btrfs_del_items(trans, root, path,
4561 pending_del_slot,
4562 pending_del_nr);
79787eaa 4563 if (ret) {
66642832 4564 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4565 goto error;
4566 }
8082510e
YZ
4567 pending_del_nr = 0;
4568 }
b3b4aa74 4569 btrfs_release_path(path);
28f75a0e 4570 if (should_throttle) {
1262133b
JB
4571 unsigned long updates = trans->delayed_ref_updates;
4572 if (updates) {
4573 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4574 ret = btrfs_run_delayed_refs(trans,
4575 fs_info,
4576 updates * 2);
1262133b
JB
4577 if (ret && !err)
4578 err = ret;
4579 }
4580 }
28f75a0e
CM
4581 /*
4582 * if we failed to refill our space rsv, bail out
4583 * and let the transaction restart
4584 */
4585 if (should_end) {
4586 err = -EAGAIN;
4587 goto error;
4588 }
85e21bac 4589 goto search_again;
8082510e
YZ
4590 } else {
4591 path->slots[0]--;
85e21bac 4592 }
39279cc3 4593 }
8082510e 4594out:
85e21bac
CM
4595 if (pending_del_nr) {
4596 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4597 pending_del_nr);
79787eaa 4598 if (ret)
66642832 4599 btrfs_abort_transaction(trans, ret);
85e21bac 4600 }
79787eaa 4601error:
c1aa4575 4602 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4603 btrfs_ordered_update_i_size(inode, last_size, NULL);
28ed1345 4604
39279cc3 4605 btrfs_free_path(path);
28ed1345 4606
19fd2df5
LB
4607 if (err == 0) {
4608 /* only inline file may have last_size != new_size */
4609 if (new_size >= fs_info->sectorsize ||
4610 new_size > fs_info->max_inline)
4611 ASSERT(last_size == new_size);
4612 }
4613
ee22184b 4614 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4615 unsigned long updates = trans->delayed_ref_updates;
4616 if (updates) {
4617 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4618 ret = btrfs_run_delayed_refs(trans, fs_info,
4619 updates * 2);
28ed1345
CM
4620 if (ret && !err)
4621 err = ret;
4622 }
4623 }
8082510e 4624 return err;
39279cc3
CM
4625}
4626
4627/*
9703fefe 4628 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4629 * @inode - inode that we're zeroing
4630 * @from - the offset to start zeroing
4631 * @len - the length to zero, 0 to zero the entire range respective to the
4632 * offset
4633 * @front - zero up to the offset instead of from the offset on
4634 *
9703fefe 4635 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4636 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4637 */
9703fefe 4638int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4639 int front)
39279cc3 4640{
0b246afa 4641 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4642 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4643 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4644 struct btrfs_ordered_extent *ordered;
2ac55d41 4645 struct extent_state *cached_state = NULL;
e6dcd2dc 4646 char *kaddr;
0b246afa 4647 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4648 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4649 unsigned offset = from & (blocksize - 1);
39279cc3 4650 struct page *page;
3b16a4e3 4651 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4652 int ret = 0;
9703fefe
CR
4653 u64 block_start;
4654 u64 block_end;
39279cc3 4655
2aaa6655
JB
4656 if ((offset & (blocksize - 1)) == 0 &&
4657 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4658 goto out;
9703fefe 4659
7cf5b976 4660 ret = btrfs_delalloc_reserve_space(inode,
9703fefe 4661 round_down(from, blocksize), blocksize);
5d5e103a
JB
4662 if (ret)
4663 goto out;
39279cc3 4664
211c17f5 4665again:
3b16a4e3 4666 page = find_or_create_page(mapping, index, mask);
5d5e103a 4667 if (!page) {
7cf5b976 4668 btrfs_delalloc_release_space(inode,
9703fefe
CR
4669 round_down(from, blocksize),
4670 blocksize);
ac6a2b36 4671 ret = -ENOMEM;
39279cc3 4672 goto out;
5d5e103a 4673 }
e6dcd2dc 4674
9703fefe
CR
4675 block_start = round_down(from, blocksize);
4676 block_end = block_start + blocksize - 1;
e6dcd2dc 4677
39279cc3 4678 if (!PageUptodate(page)) {
9ebefb18 4679 ret = btrfs_readpage(NULL, page);
39279cc3 4680 lock_page(page);
211c17f5
CM
4681 if (page->mapping != mapping) {
4682 unlock_page(page);
09cbfeaf 4683 put_page(page);
211c17f5
CM
4684 goto again;
4685 }
39279cc3
CM
4686 if (!PageUptodate(page)) {
4687 ret = -EIO;
89642229 4688 goto out_unlock;
39279cc3
CM
4689 }
4690 }
211c17f5 4691 wait_on_page_writeback(page);
e6dcd2dc 4692
9703fefe 4693 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4694 set_page_extent_mapped(page);
4695
9703fefe 4696 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4697 if (ordered) {
9703fefe 4698 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4699 &cached_state, GFP_NOFS);
e6dcd2dc 4700 unlock_page(page);
09cbfeaf 4701 put_page(page);
eb84ae03 4702 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4703 btrfs_put_ordered_extent(ordered);
4704 goto again;
4705 }
4706
9703fefe 4707 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4708 EXTENT_DIRTY | EXTENT_DELALLOC |
4709 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4710 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4711
9703fefe 4712 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
ba8b04c1 4713 &cached_state, 0);
9ed74f2d 4714 if (ret) {
9703fefe 4715 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4716 &cached_state, GFP_NOFS);
9ed74f2d
JB
4717 goto out_unlock;
4718 }
4719
9703fefe 4720 if (offset != blocksize) {
2aaa6655 4721 if (!len)
9703fefe 4722 len = blocksize - offset;
e6dcd2dc 4723 kaddr = kmap(page);
2aaa6655 4724 if (front)
9703fefe
CR
4725 memset(kaddr + (block_start - page_offset(page)),
4726 0, offset);
2aaa6655 4727 else
9703fefe
CR
4728 memset(kaddr + (block_start - page_offset(page)) + offset,
4729 0, len);
e6dcd2dc
CM
4730 flush_dcache_page(page);
4731 kunmap(page);
4732 }
247e743c 4733 ClearPageChecked(page);
e6dcd2dc 4734 set_page_dirty(page);
9703fefe 4735 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4736 GFP_NOFS);
39279cc3 4737
89642229 4738out_unlock:
5d5e103a 4739 if (ret)
9703fefe
CR
4740 btrfs_delalloc_release_space(inode, block_start,
4741 blocksize);
39279cc3 4742 unlock_page(page);
09cbfeaf 4743 put_page(page);
39279cc3
CM
4744out:
4745 return ret;
4746}
4747
16e7549f
JB
4748static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4749 u64 offset, u64 len)
4750{
0b246afa 4751 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4752 struct btrfs_trans_handle *trans;
4753 int ret;
4754
4755 /*
4756 * Still need to make sure the inode looks like it's been updated so
4757 * that any holes get logged if we fsync.
4758 */
0b246afa
JM
4759 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4760 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4761 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4762 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4763 return 0;
4764 }
4765
4766 /*
4767 * 1 - for the one we're dropping
4768 * 1 - for the one we're adding
4769 * 1 - for updating the inode.
4770 */
4771 trans = btrfs_start_transaction(root, 3);
4772 if (IS_ERR(trans))
4773 return PTR_ERR(trans);
4774
4775 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4776 if (ret) {
66642832 4777 btrfs_abort_transaction(trans, ret);
3a45bb20 4778 btrfs_end_transaction(trans);
16e7549f
JB
4779 return ret;
4780 }
4781
f85b7379
DS
4782 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4783 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4784 if (ret)
66642832 4785 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4786 else
4787 btrfs_update_inode(trans, root, inode);
3a45bb20 4788 btrfs_end_transaction(trans);
16e7549f
JB
4789 return ret;
4790}
4791
695a0d0d
JB
4792/*
4793 * This function puts in dummy file extents for the area we're creating a hole
4794 * for. So if we are truncating this file to a larger size we need to insert
4795 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4796 * the range between oldsize and size
4797 */
a41ad394 4798int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4799{
0b246afa 4800 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4801 struct btrfs_root *root = BTRFS_I(inode)->root;
4802 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4803 struct extent_map *em = NULL;
2ac55d41 4804 struct extent_state *cached_state = NULL;
5dc562c5 4805 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4806 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4807 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4808 u64 last_byte;
4809 u64 cur_offset;
4810 u64 hole_size;
9ed74f2d 4811 int err = 0;
39279cc3 4812
a71754fc 4813 /*
9703fefe
CR
4814 * If our size started in the middle of a block we need to zero out the
4815 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4816 * expose stale data.
4817 */
9703fefe 4818 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4819 if (err)
4820 return err;
4821
9036c102
YZ
4822 if (size <= hole_start)
4823 return 0;
4824
9036c102
YZ
4825 while (1) {
4826 struct btrfs_ordered_extent *ordered;
fa7c1494 4827
ff13db41 4828 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4829 &cached_state);
a776c6fa 4830 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
fa7c1494 4831 block_end - hole_start);
9036c102
YZ
4832 if (!ordered)
4833 break;
2ac55d41
JB
4834 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4835 &cached_state, GFP_NOFS);
fa7c1494 4836 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4837 btrfs_put_ordered_extent(ordered);
4838 }
39279cc3 4839
9036c102
YZ
4840 cur_offset = hole_start;
4841 while (1) {
fc4f21b1 4842 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 4843 block_end - cur_offset, 0);
79787eaa
JM
4844 if (IS_ERR(em)) {
4845 err = PTR_ERR(em);
f2767956 4846 em = NULL;
79787eaa
JM
4847 break;
4848 }
9036c102 4849 last_byte = min(extent_map_end(em), block_end);
0b246afa 4850 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 4851 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4852 struct extent_map *hole_em;
9036c102 4853 hole_size = last_byte - cur_offset;
9ed74f2d 4854
16e7549f
JB
4855 err = maybe_insert_hole(root, inode, cur_offset,
4856 hole_size);
4857 if (err)
3893e33b 4858 break;
dcdbc059 4859 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
4860 cur_offset + hole_size - 1, 0);
4861 hole_em = alloc_extent_map();
4862 if (!hole_em) {
4863 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4864 &BTRFS_I(inode)->runtime_flags);
4865 goto next;
4866 }
4867 hole_em->start = cur_offset;
4868 hole_em->len = hole_size;
4869 hole_em->orig_start = cur_offset;
8082510e 4870
5dc562c5
JB
4871 hole_em->block_start = EXTENT_MAP_HOLE;
4872 hole_em->block_len = 0;
b4939680 4873 hole_em->orig_block_len = 0;
cc95bef6 4874 hole_em->ram_bytes = hole_size;
0b246afa 4875 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 4876 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 4877 hole_em->generation = fs_info->generation;
8082510e 4878
5dc562c5
JB
4879 while (1) {
4880 write_lock(&em_tree->lock);
09a2a8f9 4881 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4882 write_unlock(&em_tree->lock);
4883 if (err != -EEXIST)
4884 break;
dcdbc059
NB
4885 btrfs_drop_extent_cache(BTRFS_I(inode),
4886 cur_offset,
5dc562c5
JB
4887 cur_offset +
4888 hole_size - 1, 0);
4889 }
4890 free_extent_map(hole_em);
9036c102 4891 }
16e7549f 4892next:
9036c102 4893 free_extent_map(em);
a22285a6 4894 em = NULL;
9036c102 4895 cur_offset = last_byte;
8082510e 4896 if (cur_offset >= block_end)
9036c102
YZ
4897 break;
4898 }
a22285a6 4899 free_extent_map(em);
2ac55d41
JB
4900 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4901 GFP_NOFS);
9036c102
YZ
4902 return err;
4903}
39279cc3 4904
3972f260 4905static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4906{
f4a2f4c5
MX
4907 struct btrfs_root *root = BTRFS_I(inode)->root;
4908 struct btrfs_trans_handle *trans;
a41ad394 4909 loff_t oldsize = i_size_read(inode);
3972f260
ES
4910 loff_t newsize = attr->ia_size;
4911 int mask = attr->ia_valid;
8082510e
YZ
4912 int ret;
4913
3972f260
ES
4914 /*
4915 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4916 * special case where we need to update the times despite not having
4917 * these flags set. For all other operations the VFS set these flags
4918 * explicitly if it wants a timestamp update.
4919 */
dff6efc3
CH
4920 if (newsize != oldsize) {
4921 inode_inc_iversion(inode);
4922 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4923 inode->i_ctime = inode->i_mtime =
c2050a45 4924 current_time(inode);
dff6efc3 4925 }
3972f260 4926
a41ad394 4927 if (newsize > oldsize) {
9ea24bbe
FM
4928 /*
4929 * Don't do an expanding truncate while snapshoting is ongoing.
4930 * This is to ensure the snapshot captures a fully consistent
4931 * state of this file - if the snapshot captures this expanding
4932 * truncation, it must capture all writes that happened before
4933 * this truncation.
4934 */
0bc19f90 4935 btrfs_wait_for_snapshot_creation(root);
a41ad394 4936 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4937 if (ret) {
4938 btrfs_end_write_no_snapshoting(root);
8082510e 4939 return ret;
9ea24bbe 4940 }
8082510e 4941
f4a2f4c5 4942 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4943 if (IS_ERR(trans)) {
4944 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 4945 return PTR_ERR(trans);
9ea24bbe 4946 }
f4a2f4c5
MX
4947
4948 i_size_write(inode, newsize);
4949 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 4950 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 4951 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 4952 btrfs_end_write_no_snapshoting(root);
3a45bb20 4953 btrfs_end_transaction(trans);
a41ad394 4954 } else {
8082510e 4955
a41ad394
JB
4956 /*
4957 * We're truncating a file that used to have good data down to
4958 * zero. Make sure it gets into the ordered flush list so that
4959 * any new writes get down to disk quickly.
4960 */
4961 if (newsize == 0)
72ac3c0d
JB
4962 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4963 &BTRFS_I(inode)->runtime_flags);
8082510e 4964
f3fe820c
JB
4965 /*
4966 * 1 for the orphan item we're going to add
4967 * 1 for the orphan item deletion.
4968 */
4969 trans = btrfs_start_transaction(root, 2);
4970 if (IS_ERR(trans))
4971 return PTR_ERR(trans);
4972
4973 /*
4974 * We need to do this in case we fail at _any_ point during the
4975 * actual truncate. Once we do the truncate_setsize we could
4976 * invalidate pages which forces any outstanding ordered io to
4977 * be instantly completed which will give us extents that need
4978 * to be truncated. If we fail to get an orphan inode down we
4979 * could have left over extents that were never meant to live,
01327610 4980 * so we need to guarantee from this point on that everything
f3fe820c
JB
4981 * will be consistent.
4982 */
73f2e545 4983 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 4984 btrfs_end_transaction(trans);
f3fe820c
JB
4985 if (ret)
4986 return ret;
4987
a41ad394
JB
4988 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4989 truncate_setsize(inode, newsize);
2e60a51e
MX
4990
4991 /* Disable nonlocked read DIO to avoid the end less truncate */
abcefb1e 4992 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 4993 inode_dio_wait(inode);
0b581701 4994 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 4995
a41ad394 4996 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4997 if (ret && inode->i_nlink) {
4998 int err;
4999
19fd2df5
LB
5000 /* To get a stable disk_i_size */
5001 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5002 if (err) {
3d6ae7bb 5003 btrfs_orphan_del(NULL, BTRFS_I(inode));
19fd2df5
LB
5004 return err;
5005 }
5006
7f4f6e0a
JB
5007 /*
5008 * failed to truncate, disk_i_size is only adjusted down
5009 * as we remove extents, so it should represent the true
5010 * size of the inode, so reset the in memory size and
5011 * delete our orphan entry.
5012 */
5013 trans = btrfs_join_transaction(root);
5014 if (IS_ERR(trans)) {
3d6ae7bb 5015 btrfs_orphan_del(NULL, BTRFS_I(inode));
7f4f6e0a
JB
5016 return ret;
5017 }
5018 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
3d6ae7bb 5019 err = btrfs_orphan_del(trans, BTRFS_I(inode));
7f4f6e0a 5020 if (err)
66642832 5021 btrfs_abort_transaction(trans, err);
3a45bb20 5022 btrfs_end_transaction(trans);
7f4f6e0a 5023 }
8082510e
YZ
5024 }
5025
a41ad394 5026 return ret;
8082510e
YZ
5027}
5028
9036c102
YZ
5029static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5030{
2b0143b5 5031 struct inode *inode = d_inode(dentry);
b83cc969 5032 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5033 int err;
39279cc3 5034
b83cc969
LZ
5035 if (btrfs_root_readonly(root))
5036 return -EROFS;
5037
31051c85 5038 err = setattr_prepare(dentry, attr);
9036c102
YZ
5039 if (err)
5040 return err;
2bf5a725 5041
5a3f23d5 5042 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5043 err = btrfs_setsize(inode, attr);
8082510e
YZ
5044 if (err)
5045 return err;
39279cc3 5046 }
9036c102 5047
1025774c
CH
5048 if (attr->ia_valid) {
5049 setattr_copy(inode, attr);
0c4d2d95 5050 inode_inc_iversion(inode);
22c44fe6 5051 err = btrfs_dirty_inode(inode);
1025774c 5052
22c44fe6 5053 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5054 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5055 }
33268eaf 5056
39279cc3
CM
5057 return err;
5058}
61295eb8 5059
131e404a
FDBM
5060/*
5061 * While truncating the inode pages during eviction, we get the VFS calling
5062 * btrfs_invalidatepage() against each page of the inode. This is slow because
5063 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5064 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5065 * extent_state structures over and over, wasting lots of time.
5066 *
5067 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5068 * those expensive operations on a per page basis and do only the ordered io
5069 * finishing, while we release here the extent_map and extent_state structures,
5070 * without the excessive merging and splitting.
5071 */
5072static void evict_inode_truncate_pages(struct inode *inode)
5073{
5074 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5075 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5076 struct rb_node *node;
5077
5078 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5079 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5080
5081 write_lock(&map_tree->lock);
5082 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5083 struct extent_map *em;
5084
5085 node = rb_first(&map_tree->map);
5086 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5087 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5088 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5089 remove_extent_mapping(map_tree, em);
5090 free_extent_map(em);
7064dd5c
FM
5091 if (need_resched()) {
5092 write_unlock(&map_tree->lock);
5093 cond_resched();
5094 write_lock(&map_tree->lock);
5095 }
131e404a
FDBM
5096 }
5097 write_unlock(&map_tree->lock);
5098
6ca07097
FM
5099 /*
5100 * Keep looping until we have no more ranges in the io tree.
5101 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5102 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5103 * still in progress (unlocked the pages in the bio but did not yet
5104 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5105 * ranges can still be locked and eviction started because before
5106 * submitting those bios, which are executed by a separate task (work
5107 * queue kthread), inode references (inode->i_count) were not taken
5108 * (which would be dropped in the end io callback of each bio).
5109 * Therefore here we effectively end up waiting for those bios and
5110 * anyone else holding locked ranges without having bumped the inode's
5111 * reference count - if we don't do it, when they access the inode's
5112 * io_tree to unlock a range it may be too late, leading to an
5113 * use-after-free issue.
5114 */
131e404a
FDBM
5115 spin_lock(&io_tree->lock);
5116 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5117 struct extent_state *state;
5118 struct extent_state *cached_state = NULL;
6ca07097
FM
5119 u64 start;
5120 u64 end;
131e404a
FDBM
5121
5122 node = rb_first(&io_tree->state);
5123 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5124 start = state->start;
5125 end = state->end;
131e404a
FDBM
5126 spin_unlock(&io_tree->lock);
5127
ff13db41 5128 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5129
5130 /*
5131 * If still has DELALLOC flag, the extent didn't reach disk,
5132 * and its reserved space won't be freed by delayed_ref.
5133 * So we need to free its reserved space here.
5134 * (Refer to comment in btrfs_invalidatepage, case 2)
5135 *
5136 * Note, end is the bytenr of last byte, so we need + 1 here.
5137 */
5138 if (state->state & EXTENT_DELALLOC)
5139 btrfs_qgroup_free_data(inode, start, end - start + 1);
5140
6ca07097 5141 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5142 EXTENT_LOCKED | EXTENT_DIRTY |
5143 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5144 EXTENT_DEFRAG, 1, 1,
5145 &cached_state, GFP_NOFS);
131e404a 5146
7064dd5c 5147 cond_resched();
131e404a
FDBM
5148 spin_lock(&io_tree->lock);
5149 }
5150 spin_unlock(&io_tree->lock);
5151}
5152
bd555975 5153void btrfs_evict_inode(struct inode *inode)
39279cc3 5154{
0b246afa 5155 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5156 struct btrfs_trans_handle *trans;
5157 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5158 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5159 int steal_from_global = 0;
3d48d981 5160 u64 min_size;
39279cc3
CM
5161 int ret;
5162
1abe9b8a 5163 trace_btrfs_inode_evict(inode);
5164
3d48d981
NB
5165 if (!root) {
5166 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5167 return;
5168 }
5169
0b246afa 5170 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
3d48d981 5171
131e404a
FDBM
5172 evict_inode_truncate_pages(inode);
5173
69e9c6c6
SB
5174 if (inode->i_nlink &&
5175 ((btrfs_root_refs(&root->root_item) != 0 &&
5176 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5177 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5178 goto no_delete;
5179
39279cc3 5180 if (is_bad_inode(inode)) {
3d6ae7bb 5181 btrfs_orphan_del(NULL, BTRFS_I(inode));
39279cc3
CM
5182 goto no_delete;
5183 }
bd555975 5184 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5185 if (!special_file(inode->i_mode))
5186 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5187
7ab7956e 5188 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5189
0b246afa 5190 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
6bf02314 5191 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5192 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5193 goto no_delete;
5194 }
5195
76dda93c 5196 if (inode->i_nlink > 0) {
69e9c6c6
SB
5197 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5198 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5199 goto no_delete;
5200 }
5201
aa79021f 5202 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
0e8c36a9 5203 if (ret) {
3d6ae7bb 5204 btrfs_orphan_del(NULL, BTRFS_I(inode));
0e8c36a9
MX
5205 goto no_delete;
5206 }
5207
2ff7e61e 5208 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
4289a667 5209 if (!rsv) {
3d6ae7bb 5210 btrfs_orphan_del(NULL, BTRFS_I(inode));
4289a667
JB
5211 goto no_delete;
5212 }
4a338542 5213 rsv->size = min_size;
ca7e70f5 5214 rsv->failfast = 1;
0b246afa 5215 global_rsv = &fs_info->global_block_rsv;
4289a667 5216
6ef06d27 5217 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5218
4289a667 5219 /*
8407aa46
MX
5220 * This is a bit simpler than btrfs_truncate since we've already
5221 * reserved our space for our orphan item in the unlink, so we just
5222 * need to reserve some slack space in case we add bytes and update
5223 * inode item when doing the truncate.
4289a667 5224 */
8082510e 5225 while (1) {
08e007d2
MX
5226 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5227 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5228
5229 /*
5230 * Try and steal from the global reserve since we will
5231 * likely not use this space anyway, we want to try as
5232 * hard as possible to get this to work.
5233 */
5234 if (ret)
3bce876f
JB
5235 steal_from_global++;
5236 else
5237 steal_from_global = 0;
5238 ret = 0;
d68fc57b 5239
3bce876f
JB
5240 /*
5241 * steal_from_global == 0: we reserved stuff, hooray!
5242 * steal_from_global == 1: we didn't reserve stuff, boo!
5243 * steal_from_global == 2: we've committed, still not a lot of
5244 * room but maybe we'll have room in the global reserve this
5245 * time.
5246 * steal_from_global == 3: abandon all hope!
5247 */
5248 if (steal_from_global > 2) {
0b246afa
JM
5249 btrfs_warn(fs_info,
5250 "Could not get space for a delete, will truncate on mount %d",
5251 ret);
3d6ae7bb 5252 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5253 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5254 goto no_delete;
d68fc57b 5255 }
7b128766 5256
0e8c36a9 5257 trans = btrfs_join_transaction(root);
4289a667 5258 if (IS_ERR(trans)) {
3d6ae7bb 5259 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5260 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5261 goto no_delete;
d68fc57b 5262 }
7b128766 5263
3bce876f 5264 /*
01327610 5265 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5266 * sure there is room to do it, if not we need to commit and try
5267 * again.
5268 */
5269 if (steal_from_global) {
2ff7e61e 5270 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
3bce876f 5271 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
25d609f8 5272 min_size, 0);
3bce876f
JB
5273 else
5274 ret = -ENOSPC;
5275 }
5276
5277 /*
5278 * Couldn't steal from the global reserve, we have too much
5279 * pending stuff built up, commit the transaction and try it
5280 * again.
5281 */
5282 if (ret) {
3a45bb20 5283 ret = btrfs_commit_transaction(trans);
3bce876f 5284 if (ret) {
3d6ae7bb 5285 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5286 btrfs_free_block_rsv(fs_info, rsv);
3bce876f
JB
5287 goto no_delete;
5288 }
5289 continue;
5290 } else {
5291 steal_from_global = 0;
5292 }
5293
4289a667
JB
5294 trans->block_rsv = rsv;
5295
d68fc57b 5296 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5297 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5298 break;
85e21bac 5299
0b246afa 5300 trans->block_rsv = &fs_info->trans_block_rsv;
3a45bb20 5301 btrfs_end_transaction(trans);
8082510e 5302 trans = NULL;
2ff7e61e 5303 btrfs_btree_balance_dirty(fs_info);
8082510e 5304 }
5f39d397 5305
2ff7e61e 5306 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5307
4ef31a45
JB
5308 /*
5309 * Errors here aren't a big deal, it just means we leave orphan items
5310 * in the tree. They will be cleaned up on the next mount.
5311 */
8082510e 5312 if (ret == 0) {
4289a667 5313 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 5314 btrfs_orphan_del(trans, BTRFS_I(inode));
4ef31a45 5315 } else {
3d6ae7bb 5316 btrfs_orphan_del(NULL, BTRFS_I(inode));
8082510e 5317 }
54aa1f4d 5318
0b246afa
JM
5319 trans->block_rsv = &fs_info->trans_block_rsv;
5320 if (!(root == fs_info->tree_root ||
581bb050 5321 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5322 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5323
3a45bb20 5324 btrfs_end_transaction(trans);
2ff7e61e 5325 btrfs_btree_balance_dirty(fs_info);
39279cc3 5326no_delete:
f48d1cf5 5327 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5328 clear_inode(inode);
39279cc3
CM
5329}
5330
5331/*
5332 * this returns the key found in the dir entry in the location pointer.
5333 * If no dir entries were found, location->objectid is 0.
5334 */
5335static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5336 struct btrfs_key *location)
5337{
5338 const char *name = dentry->d_name.name;
5339 int namelen = dentry->d_name.len;
5340 struct btrfs_dir_item *di;
5341 struct btrfs_path *path;
5342 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5343 int ret = 0;
39279cc3
CM
5344
5345 path = btrfs_alloc_path();
d8926bb3
MF
5346 if (!path)
5347 return -ENOMEM;
3954401f 5348
f85b7379
DS
5349 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5350 name, namelen, 0);
0d9f7f3e
Y
5351 if (IS_ERR(di))
5352 ret = PTR_ERR(di);
d397712b 5353
c704005d 5354 if (IS_ERR_OR_NULL(di))
3954401f 5355 goto out_err;
d397712b 5356
5f39d397 5357 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5358out:
39279cc3
CM
5359 btrfs_free_path(path);
5360 return ret;
3954401f
CM
5361out_err:
5362 location->objectid = 0;
5363 goto out;
39279cc3
CM
5364}
5365
5366/*
5367 * when we hit a tree root in a directory, the btrfs part of the inode
5368 * needs to be changed to reflect the root directory of the tree root. This
5369 * is kind of like crossing a mount point.
5370 */
2ff7e61e 5371static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5372 struct inode *dir,
5373 struct dentry *dentry,
5374 struct btrfs_key *location,
5375 struct btrfs_root **sub_root)
39279cc3 5376{
4df27c4d
YZ
5377 struct btrfs_path *path;
5378 struct btrfs_root *new_root;
5379 struct btrfs_root_ref *ref;
5380 struct extent_buffer *leaf;
1d4c08e0 5381 struct btrfs_key key;
4df27c4d
YZ
5382 int ret;
5383 int err = 0;
39279cc3 5384
4df27c4d
YZ
5385 path = btrfs_alloc_path();
5386 if (!path) {
5387 err = -ENOMEM;
5388 goto out;
5389 }
39279cc3 5390
4df27c4d 5391 err = -ENOENT;
1d4c08e0
DS
5392 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5393 key.type = BTRFS_ROOT_REF_KEY;
5394 key.offset = location->objectid;
5395
0b246afa 5396 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5397 if (ret) {
5398 if (ret < 0)
5399 err = ret;
5400 goto out;
5401 }
39279cc3 5402
4df27c4d
YZ
5403 leaf = path->nodes[0];
5404 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5405 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5406 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5407 goto out;
39279cc3 5408
4df27c4d
YZ
5409 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5410 (unsigned long)(ref + 1),
5411 dentry->d_name.len);
5412 if (ret)
5413 goto out;
5414
b3b4aa74 5415 btrfs_release_path(path);
4df27c4d 5416
0b246afa 5417 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5418 if (IS_ERR(new_root)) {
5419 err = PTR_ERR(new_root);
5420 goto out;
5421 }
5422
4df27c4d
YZ
5423 *sub_root = new_root;
5424 location->objectid = btrfs_root_dirid(&new_root->root_item);
5425 location->type = BTRFS_INODE_ITEM_KEY;
5426 location->offset = 0;
5427 err = 0;
5428out:
5429 btrfs_free_path(path);
5430 return err;
39279cc3
CM
5431}
5432
5d4f98a2
YZ
5433static void inode_tree_add(struct inode *inode)
5434{
5435 struct btrfs_root *root = BTRFS_I(inode)->root;
5436 struct btrfs_inode *entry;
03e860bd
FNP
5437 struct rb_node **p;
5438 struct rb_node *parent;
cef21937 5439 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5440 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5441
1d3382cb 5442 if (inode_unhashed(inode))
76dda93c 5443 return;
e1409cef 5444 parent = NULL;
5d4f98a2 5445 spin_lock(&root->inode_lock);
e1409cef 5446 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5447 while (*p) {
5448 parent = *p;
5449 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5450
4a0cc7ca 5451 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5452 p = &parent->rb_left;
4a0cc7ca 5453 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5454 p = &parent->rb_right;
5d4f98a2
YZ
5455 else {
5456 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5457 (I_WILL_FREE | I_FREEING)));
cef21937 5458 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5459 RB_CLEAR_NODE(parent);
5460 spin_unlock(&root->inode_lock);
cef21937 5461 return;
5d4f98a2
YZ
5462 }
5463 }
cef21937
FDBM
5464 rb_link_node(new, parent, p);
5465 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5466 spin_unlock(&root->inode_lock);
5467}
5468
5469static void inode_tree_del(struct inode *inode)
5470{
0b246afa 5471 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5472 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5473 int empty = 0;
5d4f98a2 5474
03e860bd 5475 spin_lock(&root->inode_lock);
5d4f98a2 5476 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5477 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5478 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5479 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5480 }
03e860bd 5481 spin_unlock(&root->inode_lock);
76dda93c 5482
69e9c6c6 5483 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5484 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5485 spin_lock(&root->inode_lock);
5486 empty = RB_EMPTY_ROOT(&root->inode_tree);
5487 spin_unlock(&root->inode_lock);
5488 if (empty)
5489 btrfs_add_dead_root(root);
5490 }
5491}
5492
143bede5 5493void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c 5494{
0b246afa 5495 struct btrfs_fs_info *fs_info = root->fs_info;
76dda93c
YZ
5496 struct rb_node *node;
5497 struct rb_node *prev;
5498 struct btrfs_inode *entry;
5499 struct inode *inode;
5500 u64 objectid = 0;
5501
0b246afa 5502 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
7813b3db 5503 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5504
5505 spin_lock(&root->inode_lock);
5506again:
5507 node = root->inode_tree.rb_node;
5508 prev = NULL;
5509 while (node) {
5510 prev = node;
5511 entry = rb_entry(node, struct btrfs_inode, rb_node);
5512
4a0cc7ca 5513 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c 5514 node = node->rb_left;
4a0cc7ca 5515 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c
YZ
5516 node = node->rb_right;
5517 else
5518 break;
5519 }
5520 if (!node) {
5521 while (prev) {
5522 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4a0cc7ca 5523 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
76dda93c
YZ
5524 node = prev;
5525 break;
5526 }
5527 prev = rb_next(prev);
5528 }
5529 }
5530 while (node) {
5531 entry = rb_entry(node, struct btrfs_inode, rb_node);
4a0cc7ca 5532 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
76dda93c
YZ
5533 inode = igrab(&entry->vfs_inode);
5534 if (inode) {
5535 spin_unlock(&root->inode_lock);
5536 if (atomic_read(&inode->i_count) > 1)
5537 d_prune_aliases(inode);
5538 /*
45321ac5 5539 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5540 * the inode cache when its usage count
5541 * hits zero.
5542 */
5543 iput(inode);
5544 cond_resched();
5545 spin_lock(&root->inode_lock);
5546 goto again;
5547 }
5548
5549 if (cond_resched_lock(&root->inode_lock))
5550 goto again;
5551
5552 node = rb_next(node);
5553 }
5554 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5555}
5556
e02119d5
CM
5557static int btrfs_init_locked_inode(struct inode *inode, void *p)
5558{
5559 struct btrfs_iget_args *args = p;
90d3e592
CM
5560 inode->i_ino = args->location->objectid;
5561 memcpy(&BTRFS_I(inode)->location, args->location,
5562 sizeof(*args->location));
e02119d5 5563 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5564 return 0;
5565}
5566
5567static int btrfs_find_actor(struct inode *inode, void *opaque)
5568{
5569 struct btrfs_iget_args *args = opaque;
90d3e592 5570 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5571 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5572}
5573
5d4f98a2 5574static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5575 struct btrfs_key *location,
5d4f98a2 5576 struct btrfs_root *root)
39279cc3
CM
5577{
5578 struct inode *inode;
5579 struct btrfs_iget_args args;
90d3e592 5580 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5581
90d3e592 5582 args.location = location;
39279cc3
CM
5583 args.root = root;
5584
778ba82b 5585 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5586 btrfs_init_locked_inode,
5587 (void *)&args);
5588 return inode;
5589}
5590
1a54ef8c
BR
5591/* Get an inode object given its location and corresponding root.
5592 * Returns in *is_new if the inode was read from disk
5593 */
5594struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5595 struct btrfs_root *root, int *new)
1a54ef8c
BR
5596{
5597 struct inode *inode;
5598
90d3e592 5599 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5600 if (!inode)
5d4f98a2 5601 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5602
5603 if (inode->i_state & I_NEW) {
67710892
FM
5604 int ret;
5605
5606 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5607 if (!is_bad_inode(inode)) {
5608 inode_tree_add(inode);
5609 unlock_new_inode(inode);
5610 if (new)
5611 *new = 1;
5612 } else {
e0b6d65b
ST
5613 unlock_new_inode(inode);
5614 iput(inode);
67710892
FM
5615 ASSERT(ret < 0);
5616 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5617 }
5618 }
5619
1a54ef8c
BR
5620 return inode;
5621}
5622
4df27c4d
YZ
5623static struct inode *new_simple_dir(struct super_block *s,
5624 struct btrfs_key *key,
5625 struct btrfs_root *root)
5626{
5627 struct inode *inode = new_inode(s);
5628
5629 if (!inode)
5630 return ERR_PTR(-ENOMEM);
5631
4df27c4d
YZ
5632 BTRFS_I(inode)->root = root;
5633 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5634 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5635
5636 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5637 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5638 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5639 inode->i_fop = &simple_dir_operations;
5640 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5641 inode->i_mtime = current_time(inode);
9cc97d64 5642 inode->i_atime = inode->i_mtime;
5643 inode->i_ctime = inode->i_mtime;
5644 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5645
5646 return inode;
5647}
5648
3de4586c 5649struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5650{
0b246afa 5651 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5652 struct inode *inode;
4df27c4d 5653 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5654 struct btrfs_root *sub_root = root;
5655 struct btrfs_key location;
76dda93c 5656 int index;
b4aff1f8 5657 int ret = 0;
39279cc3
CM
5658
5659 if (dentry->d_name.len > BTRFS_NAME_LEN)
5660 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5661
39e3c955 5662 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5663 if (ret < 0)
5664 return ERR_PTR(ret);
5f39d397 5665
4df27c4d 5666 if (location.objectid == 0)
5662344b 5667 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5668
5669 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5670 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5671 return inode;
5672 }
5673
5674 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5675
0b246afa 5676 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5677 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5678 &location, &sub_root);
5679 if (ret < 0) {
5680 if (ret != -ENOENT)
5681 inode = ERR_PTR(ret);
5682 else
5683 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5684 } else {
73f73415 5685 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5686 }
0b246afa 5687 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5688
34d19bad 5689 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5690 down_read(&fs_info->cleanup_work_sem);
c71bf099 5691 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5692 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5693 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5694 if (ret) {
5695 iput(inode);
66b4ffd1 5696 inode = ERR_PTR(ret);
01cd3367 5697 }
c71bf099
YZ
5698 }
5699
3de4586c
CM
5700 return inode;
5701}
5702
fe15ce44 5703static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5704{
5705 struct btrfs_root *root;
2b0143b5 5706 struct inode *inode = d_inode(dentry);
76dda93c 5707
848cce0d 5708 if (!inode && !IS_ROOT(dentry))
2b0143b5 5709 inode = d_inode(dentry->d_parent);
76dda93c 5710
848cce0d
LZ
5711 if (inode) {
5712 root = BTRFS_I(inode)->root;
efefb143
YZ
5713 if (btrfs_root_refs(&root->root_item) == 0)
5714 return 1;
848cce0d 5715
4a0cc7ca 5716 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5717 return 1;
efefb143 5718 }
76dda93c
YZ
5719 return 0;
5720}
5721
b4aff1f8
JB
5722static void btrfs_dentry_release(struct dentry *dentry)
5723{
944a4515 5724 kfree(dentry->d_fsdata);
b4aff1f8
JB
5725}
5726
3de4586c 5727static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5728 unsigned int flags)
3de4586c 5729{
5662344b 5730 struct inode *inode;
a66e7cc6 5731
5662344b
TI
5732 inode = btrfs_lookup_dentry(dir, dentry);
5733 if (IS_ERR(inode)) {
5734 if (PTR_ERR(inode) == -ENOENT)
5735 inode = NULL;
5736 else
5737 return ERR_CAST(inode);
5738 }
5739
41d28bca 5740 return d_splice_alias(inode, dentry);
39279cc3
CM
5741}
5742
16cdcec7 5743unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5744 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5745};
5746
9cdda8d3 5747static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5748{
9cdda8d3 5749 struct inode *inode = file_inode(file);
2ff7e61e 5750 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5751 struct btrfs_root *root = BTRFS_I(inode)->root;
5752 struct btrfs_item *item;
5753 struct btrfs_dir_item *di;
5754 struct btrfs_key key;
5f39d397 5755 struct btrfs_key found_key;
39279cc3 5756 struct btrfs_path *path;
16cdcec7
MX
5757 struct list_head ins_list;
5758 struct list_head del_list;
39279cc3 5759 int ret;
5f39d397 5760 struct extent_buffer *leaf;
39279cc3 5761 int slot;
39279cc3
CM
5762 unsigned char d_type;
5763 int over = 0;
5f39d397
CM
5764 char tmp_name[32];
5765 char *name_ptr;
5766 int name_len;
02dbfc99 5767 bool put = false;
c2951f32 5768 struct btrfs_key location;
5f39d397 5769
9cdda8d3
AV
5770 if (!dir_emit_dots(file, ctx))
5771 return 0;
5772
49593bfa 5773 path = btrfs_alloc_path();
16cdcec7
MX
5774 if (!path)
5775 return -ENOMEM;
ff5714cc 5776
e4058b54 5777 path->reada = READA_FORWARD;
49593bfa 5778
c2951f32
JM
5779 INIT_LIST_HEAD(&ins_list);
5780 INIT_LIST_HEAD(&del_list);
5781 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5782
c2951f32 5783 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5784 key.offset = ctx->pos;
4a0cc7ca 5785 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5786
39279cc3
CM
5787 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5788 if (ret < 0)
5789 goto err;
49593bfa
DW
5790
5791 while (1) {
5f39d397 5792 leaf = path->nodes[0];
39279cc3 5793 slot = path->slots[0];
b9e03af0
LZ
5794 if (slot >= btrfs_header_nritems(leaf)) {
5795 ret = btrfs_next_leaf(root, path);
5796 if (ret < 0)
5797 goto err;
5798 else if (ret > 0)
5799 break;
5800 continue;
39279cc3 5801 }
3de4586c 5802
dd3cc16b 5803 item = btrfs_item_nr(slot);
5f39d397
CM
5804 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5805
5806 if (found_key.objectid != key.objectid)
39279cc3 5807 break;
c2951f32 5808 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5809 break;
9cdda8d3 5810 if (found_key.offset < ctx->pos)
b9e03af0 5811 goto next;
c2951f32 5812 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5813 goto next;
5f39d397 5814
9cdda8d3 5815 ctx->pos = found_key.offset;
49593bfa 5816
39279cc3 5817 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2ff7e61e 5818 if (verify_dir_item(fs_info, leaf, di))
c2951f32 5819 goto next;
22a94d44 5820
c2951f32
JM
5821 name_len = btrfs_dir_name_len(leaf, di);
5822 if (name_len <= sizeof(tmp_name)) {
5823 name_ptr = tmp_name;
5824 } else {
5825 name_ptr = kmalloc(name_len, GFP_KERNEL);
5826 if (!name_ptr) {
5827 ret = -ENOMEM;
5828 goto err;
5f39d397 5829 }
c2951f32
JM
5830 }
5831 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5832 name_len);
3de4586c 5833
c2951f32
JM
5834 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5835 btrfs_dir_item_key_to_cpu(leaf, di, &location);
fede766f 5836
c2951f32
JM
5837 over = !dir_emit(ctx, name_ptr, name_len, location.objectid,
5838 d_type);
5f39d397 5839
c2951f32
JM
5840 if (name_ptr != tmp_name)
5841 kfree(name_ptr);
5f39d397 5842
c2951f32
JM
5843 if (over)
5844 goto nopos;
d2fbb2b5 5845 ctx->pos++;
b9e03af0
LZ
5846next:
5847 path->slots[0]++;
39279cc3 5848 }
49593bfa 5849
d2fbb2b5 5850 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5851 if (ret)
bc4ef759
DS
5852 goto nopos;
5853
db62efbb
ZB
5854 /*
5855 * Stop new entries from being returned after we return the last
5856 * entry.
5857 *
5858 * New directory entries are assigned a strictly increasing
5859 * offset. This means that new entries created during readdir
5860 * are *guaranteed* to be seen in the future by that readdir.
5861 * This has broken buggy programs which operate on names as
5862 * they're returned by readdir. Until we re-use freed offsets
5863 * we have this hack to stop new entries from being returned
5864 * under the assumption that they'll never reach this huge
5865 * offset.
5866 *
5867 * This is being careful not to overflow 32bit loff_t unless the
5868 * last entry requires it because doing so has broken 32bit apps
5869 * in the past.
5870 */
c2951f32
JM
5871 if (ctx->pos >= INT_MAX)
5872 ctx->pos = LLONG_MAX;
5873 else
5874 ctx->pos = INT_MAX;
39279cc3
CM
5875nopos:
5876 ret = 0;
5877err:
02dbfc99
OS
5878 if (put)
5879 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5880 btrfs_free_path(path);
39279cc3
CM
5881 return ret;
5882}
5883
a9185b41 5884int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5885{
5886 struct btrfs_root *root = BTRFS_I(inode)->root;
5887 struct btrfs_trans_handle *trans;
5888 int ret = 0;
0af3d00b 5889 bool nolock = false;
39279cc3 5890
72ac3c0d 5891 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5892 return 0;
5893
70ddc553
NB
5894 if (btrfs_fs_closing(root->fs_info) &&
5895 btrfs_is_free_space_inode(BTRFS_I(inode)))
82d5902d 5896 nolock = true;
0af3d00b 5897
a9185b41 5898 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5899 if (nolock)
7a7eaa40 5900 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5901 else
7a7eaa40 5902 trans = btrfs_join_transaction(root);
3612b495
TI
5903 if (IS_ERR(trans))
5904 return PTR_ERR(trans);
3a45bb20 5905 ret = btrfs_commit_transaction(trans);
39279cc3
CM
5906 }
5907 return ret;
5908}
5909
5910/*
54aa1f4d 5911 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5912 * inode changes. But, it is most likely to find the inode in cache.
5913 * FIXME, needs more benchmarking...there are no reasons other than performance
5914 * to keep or drop this code.
5915 */
48a3b636 5916static int btrfs_dirty_inode(struct inode *inode)
39279cc3 5917{
2ff7e61e 5918 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5919 struct btrfs_root *root = BTRFS_I(inode)->root;
5920 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5921 int ret;
5922
72ac3c0d 5923 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5924 return 0;
39279cc3 5925
7a7eaa40 5926 trans = btrfs_join_transaction(root);
22c44fe6
JB
5927 if (IS_ERR(trans))
5928 return PTR_ERR(trans);
8929ecfa
YZ
5929
5930 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5931 if (ret && ret == -ENOSPC) {
5932 /* whoops, lets try again with the full transaction */
3a45bb20 5933 btrfs_end_transaction(trans);
94b60442 5934 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5935 if (IS_ERR(trans))
5936 return PTR_ERR(trans);
8929ecfa 5937
94b60442 5938 ret = btrfs_update_inode(trans, root, inode);
94b60442 5939 }
3a45bb20 5940 btrfs_end_transaction(trans);
16cdcec7 5941 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 5942 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
5943
5944 return ret;
5945}
5946
5947/*
5948 * This is a copy of file_update_time. We need this so we can return error on
5949 * ENOSPC for updating the inode in the case of file write and mmap writes.
5950 */
e41f941a
JB
5951static int btrfs_update_time(struct inode *inode, struct timespec *now,
5952 int flags)
22c44fe6 5953{
2bc55652
AB
5954 struct btrfs_root *root = BTRFS_I(inode)->root;
5955
5956 if (btrfs_root_readonly(root))
5957 return -EROFS;
5958
e41f941a 5959 if (flags & S_VERSION)
22c44fe6 5960 inode_inc_iversion(inode);
e41f941a
JB
5961 if (flags & S_CTIME)
5962 inode->i_ctime = *now;
5963 if (flags & S_MTIME)
5964 inode->i_mtime = *now;
5965 if (flags & S_ATIME)
5966 inode->i_atime = *now;
5967 return btrfs_dirty_inode(inode);
39279cc3
CM
5968}
5969
d352ac68
CM
5970/*
5971 * find the highest existing sequence number in a directory
5972 * and then set the in-memory index_cnt variable to reflect
5973 * free sequence numbers
5974 */
4c570655 5975static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 5976{
4c570655 5977 struct btrfs_root *root = inode->root;
aec7477b
JB
5978 struct btrfs_key key, found_key;
5979 struct btrfs_path *path;
5980 struct extent_buffer *leaf;
5981 int ret;
5982
4c570655 5983 key.objectid = btrfs_ino(inode);
962a298f 5984 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
5985 key.offset = (u64)-1;
5986
5987 path = btrfs_alloc_path();
5988 if (!path)
5989 return -ENOMEM;
5990
5991 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5992 if (ret < 0)
5993 goto out;
5994 /* FIXME: we should be able to handle this */
5995 if (ret == 0)
5996 goto out;
5997 ret = 0;
5998
5999 /*
6000 * MAGIC NUMBER EXPLANATION:
6001 * since we search a directory based on f_pos we have to start at 2
6002 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6003 * else has to start at 2
6004 */
6005 if (path->slots[0] == 0) {
4c570655 6006 inode->index_cnt = 2;
aec7477b
JB
6007 goto out;
6008 }
6009
6010 path->slots[0]--;
6011
6012 leaf = path->nodes[0];
6013 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6014
4c570655 6015 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6016 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6017 inode->index_cnt = 2;
aec7477b
JB
6018 goto out;
6019 }
6020
4c570655 6021 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6022out:
6023 btrfs_free_path(path);
6024 return ret;
6025}
6026
d352ac68
CM
6027/*
6028 * helper to find a free sequence number in a given directory. This current
6029 * code is very simple, later versions will do smarter things in the btree
6030 */
877574e2 6031int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6032{
6033 int ret = 0;
6034
877574e2
NB
6035 if (dir->index_cnt == (u64)-1) {
6036 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7 6037 if (ret) {
877574e2 6038 ret = btrfs_set_inode_index_count(dir);
16cdcec7
MX
6039 if (ret)
6040 return ret;
6041 }
aec7477b
JB
6042 }
6043
877574e2
NB
6044 *index = dir->index_cnt;
6045 dir->index_cnt++;
aec7477b
JB
6046
6047 return ret;
6048}
6049
b0d5d10f
CM
6050static int btrfs_insert_inode_locked(struct inode *inode)
6051{
6052 struct btrfs_iget_args args;
6053 args.location = &BTRFS_I(inode)->location;
6054 args.root = BTRFS_I(inode)->root;
6055
6056 return insert_inode_locked4(inode,
6057 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6058 btrfs_find_actor, &args);
6059}
6060
39279cc3
CM
6061static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6062 struct btrfs_root *root,
aec7477b 6063 struct inode *dir,
9c58309d 6064 const char *name, int name_len,
175a4eb7
AV
6065 u64 ref_objectid, u64 objectid,
6066 umode_t mode, u64 *index)
39279cc3 6067{
0b246afa 6068 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6069 struct inode *inode;
5f39d397 6070 struct btrfs_inode_item *inode_item;
39279cc3 6071 struct btrfs_key *location;
5f39d397 6072 struct btrfs_path *path;
9c58309d
CM
6073 struct btrfs_inode_ref *ref;
6074 struct btrfs_key key[2];
6075 u32 sizes[2];
ef3b9af5 6076 int nitems = name ? 2 : 1;
9c58309d 6077 unsigned long ptr;
39279cc3 6078 int ret;
39279cc3 6079
5f39d397 6080 path = btrfs_alloc_path();
d8926bb3
MF
6081 if (!path)
6082 return ERR_PTR(-ENOMEM);
5f39d397 6083
0b246afa 6084 inode = new_inode(fs_info->sb);
8fb27640
YS
6085 if (!inode) {
6086 btrfs_free_path(path);
39279cc3 6087 return ERR_PTR(-ENOMEM);
8fb27640 6088 }
39279cc3 6089
5762b5c9
FM
6090 /*
6091 * O_TMPFILE, set link count to 0, so that after this point,
6092 * we fill in an inode item with the correct link count.
6093 */
6094 if (!name)
6095 set_nlink(inode, 0);
6096
581bb050
LZ
6097 /*
6098 * we have to initialize this early, so we can reclaim the inode
6099 * number if we fail afterwards in this function.
6100 */
6101 inode->i_ino = objectid;
6102
ef3b9af5 6103 if (dir && name) {
1abe9b8a 6104 trace_btrfs_inode_request(dir);
6105
877574e2 6106 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6107 if (ret) {
8fb27640 6108 btrfs_free_path(path);
09771430 6109 iput(inode);
aec7477b 6110 return ERR_PTR(ret);
09771430 6111 }
ef3b9af5
FM
6112 } else if (dir) {
6113 *index = 0;
aec7477b
JB
6114 }
6115 /*
6116 * index_cnt is ignored for everything but a dir,
6117 * btrfs_get_inode_index_count has an explanation for the magic
6118 * number
6119 */
6120 BTRFS_I(inode)->index_cnt = 2;
67de1176 6121 BTRFS_I(inode)->dir_index = *index;
39279cc3 6122 BTRFS_I(inode)->root = root;
e02119d5 6123 BTRFS_I(inode)->generation = trans->transid;
76195853 6124 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6125
5dc562c5
JB
6126 /*
6127 * We could have gotten an inode number from somebody who was fsynced
6128 * and then removed in this same transaction, so let's just set full
6129 * sync since it will be a full sync anyway and this will blow away the
6130 * old info in the log.
6131 */
6132 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6133
9c58309d 6134 key[0].objectid = objectid;
962a298f 6135 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6136 key[0].offset = 0;
6137
9c58309d 6138 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6139
6140 if (name) {
6141 /*
6142 * Start new inodes with an inode_ref. This is slightly more
6143 * efficient for small numbers of hard links since they will
6144 * be packed into one item. Extended refs will kick in if we
6145 * add more hard links than can fit in the ref item.
6146 */
6147 key[1].objectid = objectid;
962a298f 6148 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6149 key[1].offset = ref_objectid;
6150
6151 sizes[1] = name_len + sizeof(*ref);
6152 }
9c58309d 6153
b0d5d10f
CM
6154 location = &BTRFS_I(inode)->location;
6155 location->objectid = objectid;
6156 location->offset = 0;
962a298f 6157 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6158
6159 ret = btrfs_insert_inode_locked(inode);
6160 if (ret < 0)
6161 goto fail;
6162
b9473439 6163 path->leave_spinning = 1;
ef3b9af5 6164 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6165 if (ret != 0)
b0d5d10f 6166 goto fail_unlock;
5f39d397 6167
ecc11fab 6168 inode_init_owner(inode, dir, mode);
a76a3cd4 6169 inode_set_bytes(inode, 0);
9cc97d64 6170
c2050a45 6171 inode->i_mtime = current_time(inode);
9cc97d64 6172 inode->i_atime = inode->i_mtime;
6173 inode->i_ctime = inode->i_mtime;
6174 BTRFS_I(inode)->i_otime = inode->i_mtime;
6175
5f39d397
CM
6176 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6177 struct btrfs_inode_item);
b159fa28 6178 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6179 sizeof(*inode_item));
e02119d5 6180 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6181
ef3b9af5
FM
6182 if (name) {
6183 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6184 struct btrfs_inode_ref);
6185 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6186 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6187 ptr = (unsigned long)(ref + 1);
6188 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6189 }
9c58309d 6190
5f39d397
CM
6191 btrfs_mark_buffer_dirty(path->nodes[0]);
6192 btrfs_free_path(path);
6193
6cbff00f
CH
6194 btrfs_inherit_iflags(inode, dir);
6195
569254b0 6196 if (S_ISREG(mode)) {
0b246afa 6197 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6198 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6199 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6200 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6201 BTRFS_INODE_NODATASUM;
94272164
CM
6202 }
6203
5d4f98a2 6204 inode_tree_add(inode);
1abe9b8a 6205
6206 trace_btrfs_inode_new(inode);
1973f0fa 6207 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6208
8ea05e3a
AB
6209 btrfs_update_root_times(trans, root);
6210
63541927
FDBM
6211 ret = btrfs_inode_inherit_props(trans, inode, dir);
6212 if (ret)
0b246afa 6213 btrfs_err(fs_info,
63541927 6214 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6215 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6216
39279cc3 6217 return inode;
b0d5d10f
CM
6218
6219fail_unlock:
6220 unlock_new_inode(inode);
5f39d397 6221fail:
ef3b9af5 6222 if (dir && name)
aec7477b 6223 BTRFS_I(dir)->index_cnt--;
5f39d397 6224 btrfs_free_path(path);
09771430 6225 iput(inode);
5f39d397 6226 return ERR_PTR(ret);
39279cc3
CM
6227}
6228
6229static inline u8 btrfs_inode_type(struct inode *inode)
6230{
6231 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6232}
6233
d352ac68
CM
6234/*
6235 * utility function to add 'inode' into 'parent_inode' with
6236 * a give name and a given sequence number.
6237 * if 'add_backref' is true, also insert a backref from the
6238 * inode to the parent directory.
6239 */
e02119d5 6240int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6241 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6242 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6243{
db0a669f 6244 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
4df27c4d 6245 int ret = 0;
39279cc3 6246 struct btrfs_key key;
db0a669f
NB
6247 struct btrfs_root *root = parent_inode->root;
6248 u64 ino = btrfs_ino(inode);
6249 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6250
33345d01 6251 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6252 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6253 } else {
33345d01 6254 key.objectid = ino;
962a298f 6255 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6256 key.offset = 0;
6257 }
6258
33345d01 6259 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
0b246afa
JM
6260 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6261 root->root_key.objectid, parent_ino,
6262 index, name, name_len);
4df27c4d 6263 } else if (add_backref) {
33345d01
LZ
6264 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6265 parent_ino, index);
4df27c4d 6266 }
39279cc3 6267
79787eaa
JM
6268 /* Nothing to clean up yet */
6269 if (ret)
6270 return ret;
4df27c4d 6271
79787eaa 6272 ret = btrfs_insert_dir_item(trans, root, name, name_len,
db0a669f
NB
6273 parent_inode, &key,
6274 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6275 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6276 goto fail_dir_item;
6277 else if (ret) {
66642832 6278 btrfs_abort_transaction(trans, ret);
79787eaa 6279 return ret;
39279cc3 6280 }
79787eaa 6281
db0a669f 6282 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6283 name_len * 2);
db0a669f
NB
6284 inode_inc_iversion(&parent_inode->vfs_inode);
6285 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6286 current_time(&parent_inode->vfs_inode);
6287 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6288 if (ret)
66642832 6289 btrfs_abort_transaction(trans, ret);
39279cc3 6290 return ret;
fe66a05a
CM
6291
6292fail_dir_item:
6293 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6294 u64 local_index;
6295 int err;
0b246afa
JM
6296 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6297 root->root_key.objectid, parent_ino,
6298 &local_index, name, name_len);
fe66a05a
CM
6299
6300 } else if (add_backref) {
6301 u64 local_index;
6302 int err;
6303
6304 err = btrfs_del_inode_ref(trans, root, name, name_len,
6305 ino, parent_ino, &local_index);
6306 }
6307 return ret;
39279cc3
CM
6308}
6309
6310static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6311 struct btrfs_inode *dir, struct dentry *dentry,
6312 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6313{
cef415af 6314 int err = btrfs_add_link(trans, dir, inode,
a1b075d2
JB
6315 dentry->d_name.name, dentry->d_name.len,
6316 backref, index);
39279cc3
CM
6317 if (err > 0)
6318 err = -EEXIST;
6319 return err;
6320}
6321
618e21d5 6322static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6323 umode_t mode, dev_t rdev)
618e21d5 6324{
2ff7e61e 6325 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6326 struct btrfs_trans_handle *trans;
6327 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6328 struct inode *inode = NULL;
618e21d5
JB
6329 int err;
6330 int drop_inode = 0;
6331 u64 objectid;
00e4e6b3 6332 u64 index = 0;
618e21d5 6333
9ed74f2d
JB
6334 /*
6335 * 2 for inode item and ref
6336 * 2 for dir items
6337 * 1 for xattr if selinux is on
6338 */
a22285a6
YZ
6339 trans = btrfs_start_transaction(root, 5);
6340 if (IS_ERR(trans))
6341 return PTR_ERR(trans);
1832a6d5 6342
581bb050
LZ
6343 err = btrfs_find_free_ino(root, &objectid);
6344 if (err)
6345 goto out_unlock;
6346
aec7477b 6347 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6348 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6349 mode, &index);
7cf96da3
TI
6350 if (IS_ERR(inode)) {
6351 err = PTR_ERR(inode);
618e21d5 6352 goto out_unlock;
7cf96da3 6353 }
618e21d5 6354
ad19db71
CS
6355 /*
6356 * If the active LSM wants to access the inode during
6357 * d_instantiate it needs these. Smack checks to see
6358 * if the filesystem supports xattrs by looking at the
6359 * ops vector.
6360 */
ad19db71 6361 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6362 init_special_inode(inode, inode->i_mode, rdev);
6363
6364 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6365 if (err)
b0d5d10f
CM
6366 goto out_unlock_inode;
6367
cef415af
NB
6368 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6369 0, index);
b0d5d10f
CM
6370 if (err) {
6371 goto out_unlock_inode;
6372 } else {
1b4ab1bb 6373 btrfs_update_inode(trans, root, inode);
b0d5d10f 6374 unlock_new_inode(inode);
08c422c2 6375 d_instantiate(dentry, inode);
618e21d5 6376 }
b0d5d10f 6377
618e21d5 6378out_unlock:
3a45bb20 6379 btrfs_end_transaction(trans);
2ff7e61e
JM
6380 btrfs_balance_delayed_items(fs_info);
6381 btrfs_btree_balance_dirty(fs_info);
618e21d5
JB
6382 if (drop_inode) {
6383 inode_dec_link_count(inode);
6384 iput(inode);
6385 }
618e21d5 6386 return err;
b0d5d10f
CM
6387
6388out_unlock_inode:
6389 drop_inode = 1;
6390 unlock_new_inode(inode);
6391 goto out_unlock;
6392
618e21d5
JB
6393}
6394
39279cc3 6395static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6396 umode_t mode, bool excl)
39279cc3 6397{
2ff7e61e 6398 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6399 struct btrfs_trans_handle *trans;
6400 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6401 struct inode *inode = NULL;
43baa579 6402 int drop_inode_on_err = 0;
a22285a6 6403 int err;
39279cc3 6404 u64 objectid;
00e4e6b3 6405 u64 index = 0;
39279cc3 6406
9ed74f2d
JB
6407 /*
6408 * 2 for inode item and ref
6409 * 2 for dir items
6410 * 1 for xattr if selinux is on
6411 */
a22285a6
YZ
6412 trans = btrfs_start_transaction(root, 5);
6413 if (IS_ERR(trans))
6414 return PTR_ERR(trans);
9ed74f2d 6415
581bb050
LZ
6416 err = btrfs_find_free_ino(root, &objectid);
6417 if (err)
6418 goto out_unlock;
6419
aec7477b 6420 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6421 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6422 mode, &index);
7cf96da3
TI
6423 if (IS_ERR(inode)) {
6424 err = PTR_ERR(inode);
39279cc3 6425 goto out_unlock;
7cf96da3 6426 }
43baa579 6427 drop_inode_on_err = 1;
ad19db71
CS
6428 /*
6429 * If the active LSM wants to access the inode during
6430 * d_instantiate it needs these. Smack checks to see
6431 * if the filesystem supports xattrs by looking at the
6432 * ops vector.
6433 */
6434 inode->i_fop = &btrfs_file_operations;
6435 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6436 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6437
6438 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6439 if (err)
6440 goto out_unlock_inode;
6441
6442 err = btrfs_update_inode(trans, root, inode);
6443 if (err)
6444 goto out_unlock_inode;
ad19db71 6445
cef415af
NB
6446 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6447 0, index);
39279cc3 6448 if (err)
b0d5d10f 6449 goto out_unlock_inode;
43baa579 6450
43baa579 6451 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6452 unlock_new_inode(inode);
43baa579
FB
6453 d_instantiate(dentry, inode);
6454
39279cc3 6455out_unlock:
3a45bb20 6456 btrfs_end_transaction(trans);
43baa579 6457 if (err && drop_inode_on_err) {
39279cc3
CM
6458 inode_dec_link_count(inode);
6459 iput(inode);
6460 }
2ff7e61e
JM
6461 btrfs_balance_delayed_items(fs_info);
6462 btrfs_btree_balance_dirty(fs_info);
39279cc3 6463 return err;
b0d5d10f
CM
6464
6465out_unlock_inode:
6466 unlock_new_inode(inode);
6467 goto out_unlock;
6468
39279cc3
CM
6469}
6470
6471static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6472 struct dentry *dentry)
6473{
271dba45 6474 struct btrfs_trans_handle *trans = NULL;
39279cc3 6475 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6476 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6477 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6478 u64 index;
39279cc3
CM
6479 int err;
6480 int drop_inode = 0;
6481
4a8be425
TH
6482 /* do not allow sys_link's with other subvols of the same device */
6483 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6484 return -EXDEV;
4a8be425 6485
f186373f 6486 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6487 return -EMLINK;
4a8be425 6488
877574e2 6489 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6490 if (err)
6491 goto fail;
6492
a22285a6 6493 /*
7e6b6465 6494 * 2 items for inode and inode ref
a22285a6 6495 * 2 items for dir items
7e6b6465 6496 * 1 item for parent inode
a22285a6 6497 */
7e6b6465 6498 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6499 if (IS_ERR(trans)) {
6500 err = PTR_ERR(trans);
271dba45 6501 trans = NULL;
a22285a6
YZ
6502 goto fail;
6503 }
5f39d397 6504
67de1176
MX
6505 /* There are several dir indexes for this inode, clear the cache. */
6506 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6507 inc_nlink(inode);
0c4d2d95 6508 inode_inc_iversion(inode);
c2050a45 6509 inode->i_ctime = current_time(inode);
7de9c6ee 6510 ihold(inode);
e9976151 6511 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6512
cef415af
NB
6513 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6514 1, index);
5f39d397 6515
a5719521 6516 if (err) {
54aa1f4d 6517 drop_inode = 1;
a5719521 6518 } else {
10d9f309 6519 struct dentry *parent = dentry->d_parent;
a5719521 6520 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6521 if (err)
6522 goto fail;
ef3b9af5
FM
6523 if (inode->i_nlink == 1) {
6524 /*
6525 * If new hard link count is 1, it's a file created
6526 * with open(2) O_TMPFILE flag.
6527 */
3d6ae7bb 6528 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6529 if (err)
6530 goto fail;
6531 }
08c422c2 6532 d_instantiate(dentry, inode);
9ca5fbfb 6533 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
a5719521 6534 }
39279cc3 6535
2ff7e61e 6536 btrfs_balance_delayed_items(fs_info);
1832a6d5 6537fail:
271dba45 6538 if (trans)
3a45bb20 6539 btrfs_end_transaction(trans);
39279cc3
CM
6540 if (drop_inode) {
6541 inode_dec_link_count(inode);
6542 iput(inode);
6543 }
2ff7e61e 6544 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6545 return err;
6546}
6547
18bb1db3 6548static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6549{
2ff7e61e 6550 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6551 struct inode *inode = NULL;
39279cc3
CM
6552 struct btrfs_trans_handle *trans;
6553 struct btrfs_root *root = BTRFS_I(dir)->root;
6554 int err = 0;
6555 int drop_on_err = 0;
b9d86667 6556 u64 objectid = 0;
00e4e6b3 6557 u64 index = 0;
39279cc3 6558
9ed74f2d
JB
6559 /*
6560 * 2 items for inode and ref
6561 * 2 items for dir items
6562 * 1 for xattr if selinux is on
6563 */
a22285a6
YZ
6564 trans = btrfs_start_transaction(root, 5);
6565 if (IS_ERR(trans))
6566 return PTR_ERR(trans);
39279cc3 6567
581bb050
LZ
6568 err = btrfs_find_free_ino(root, &objectid);
6569 if (err)
6570 goto out_fail;
6571
aec7477b 6572 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6573 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6574 S_IFDIR | mode, &index);
39279cc3
CM
6575 if (IS_ERR(inode)) {
6576 err = PTR_ERR(inode);
6577 goto out_fail;
6578 }
5f39d397 6579
39279cc3 6580 drop_on_err = 1;
b0d5d10f
CM
6581 /* these must be set before we unlock the inode */
6582 inode->i_op = &btrfs_dir_inode_operations;
6583 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6584
2a7dba39 6585 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6586 if (err)
b0d5d10f 6587 goto out_fail_inode;
39279cc3 6588
6ef06d27 6589 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6590 err = btrfs_update_inode(trans, root, inode);
6591 if (err)
b0d5d10f 6592 goto out_fail_inode;
5f39d397 6593
db0a669f
NB
6594 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6595 dentry->d_name.name,
6596 dentry->d_name.len, 0, index);
39279cc3 6597 if (err)
b0d5d10f 6598 goto out_fail_inode;
5f39d397 6599
39279cc3 6600 d_instantiate(dentry, inode);
b0d5d10f
CM
6601 /*
6602 * mkdir is special. We're unlocking after we call d_instantiate
6603 * to avoid a race with nfsd calling d_instantiate.
6604 */
6605 unlock_new_inode(inode);
39279cc3 6606 drop_on_err = 0;
39279cc3
CM
6607
6608out_fail:
3a45bb20 6609 btrfs_end_transaction(trans);
c7cfb8a5
WS
6610 if (drop_on_err) {
6611 inode_dec_link_count(inode);
39279cc3 6612 iput(inode);
c7cfb8a5 6613 }
2ff7e61e
JM
6614 btrfs_balance_delayed_items(fs_info);
6615 btrfs_btree_balance_dirty(fs_info);
39279cc3 6616 return err;
b0d5d10f
CM
6617
6618out_fail_inode:
6619 unlock_new_inode(inode);
6620 goto out_fail;
39279cc3
CM
6621}
6622
e6c4efd8
QW
6623/* Find next extent map of a given extent map, caller needs to ensure locks */
6624static struct extent_map *next_extent_map(struct extent_map *em)
6625{
6626 struct rb_node *next;
6627
6628 next = rb_next(&em->rb_node);
6629 if (!next)
6630 return NULL;
6631 return container_of(next, struct extent_map, rb_node);
6632}
6633
6634static struct extent_map *prev_extent_map(struct extent_map *em)
6635{
6636 struct rb_node *prev;
6637
6638 prev = rb_prev(&em->rb_node);
6639 if (!prev)
6640 return NULL;
6641 return container_of(prev, struct extent_map, rb_node);
6642}
6643
d352ac68 6644/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6645 * the existing extent is the nearest extent to map_start,
d352ac68 6646 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6647 * the best fitted new extent into the tree.
d352ac68 6648 */
3b951516
CM
6649static int merge_extent_mapping(struct extent_map_tree *em_tree,
6650 struct extent_map *existing,
e6dcd2dc 6651 struct extent_map *em,
51f395ad 6652 u64 map_start)
3b951516 6653{
e6c4efd8
QW
6654 struct extent_map *prev;
6655 struct extent_map *next;
6656 u64 start;
6657 u64 end;
3b951516 6658 u64 start_diff;
3b951516 6659
e6dcd2dc 6660 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6661
6662 if (existing->start > map_start) {
6663 next = existing;
6664 prev = prev_extent_map(next);
6665 } else {
6666 prev = existing;
6667 next = next_extent_map(prev);
6668 }
6669
6670 start = prev ? extent_map_end(prev) : em->start;
6671 start = max_t(u64, start, em->start);
6672 end = next ? next->start : extent_map_end(em);
6673 end = min_t(u64, end, extent_map_end(em));
6674 start_diff = start - em->start;
6675 em->start = start;
6676 em->len = end - start;
c8b97818
CM
6677 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6678 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6679 em->block_start += start_diff;
c8b97818
CM
6680 em->block_len -= start_diff;
6681 }
09a2a8f9 6682 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6683}
6684
c8b97818 6685static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6686 struct page *page,
c8b97818
CM
6687 size_t pg_offset, u64 extent_offset,
6688 struct btrfs_file_extent_item *item)
6689{
6690 int ret;
6691 struct extent_buffer *leaf = path->nodes[0];
6692 char *tmp;
6693 size_t max_size;
6694 unsigned long inline_size;
6695 unsigned long ptr;
261507a0 6696 int compress_type;
c8b97818
CM
6697
6698 WARN_ON(pg_offset != 0);
261507a0 6699 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6700 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6701 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6702 btrfs_item_nr(path->slots[0]));
c8b97818 6703 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6704 if (!tmp)
6705 return -ENOMEM;
c8b97818
CM
6706 ptr = btrfs_file_extent_inline_start(item);
6707
6708 read_extent_buffer(leaf, tmp, ptr, inline_size);
6709
09cbfeaf 6710 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6711 ret = btrfs_decompress(compress_type, tmp, page,
6712 extent_offset, inline_size, max_size);
c8b97818 6713 kfree(tmp);
166ae5a4 6714 return ret;
c8b97818
CM
6715}
6716
d352ac68
CM
6717/*
6718 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6719 * the ugly parts come from merging extents from the disk with the in-ram
6720 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6721 * where the in-ram extents might be locked pending data=ordered completion.
6722 *
6723 * This also copies inline extents directly into the page.
6724 */
d397712b 6725
fc4f21b1
NB
6726struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6727 struct page *page,
6728 size_t pg_offset, u64 start, u64 len,
6729 int create)
a52d9a80 6730{
fc4f21b1 6731 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
a52d9a80
CM
6732 int ret;
6733 int err = 0;
a52d9a80
CM
6734 u64 extent_start = 0;
6735 u64 extent_end = 0;
fc4f21b1 6736 u64 objectid = btrfs_ino(inode);
a52d9a80 6737 u32 found_type;
f421950f 6738 struct btrfs_path *path = NULL;
fc4f21b1 6739 struct btrfs_root *root = inode->root;
a52d9a80 6740 struct btrfs_file_extent_item *item;
5f39d397
CM
6741 struct extent_buffer *leaf;
6742 struct btrfs_key found_key;
a52d9a80 6743 struct extent_map *em = NULL;
fc4f21b1
NB
6744 struct extent_map_tree *em_tree = &inode->extent_tree;
6745 struct extent_io_tree *io_tree = &inode->io_tree;
a52d9a80 6746 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6747 const bool new_inline = !page || create;
a52d9a80 6748
a52d9a80 6749again:
890871be 6750 read_lock(&em_tree->lock);
d1310b2e 6751 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6752 if (em)
0b246afa 6753 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6754 read_unlock(&em_tree->lock);
d1310b2e 6755
a52d9a80 6756 if (em) {
e1c4b745
CM
6757 if (em->start > start || em->start + em->len <= start)
6758 free_extent_map(em);
6759 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6760 free_extent_map(em);
6761 else
6762 goto out;
a52d9a80 6763 }
172ddd60 6764 em = alloc_extent_map();
a52d9a80 6765 if (!em) {
d1310b2e
CM
6766 err = -ENOMEM;
6767 goto out;
a52d9a80 6768 }
0b246afa 6769 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6770 em->start = EXTENT_MAP_HOLE;
445a6944 6771 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6772 em->len = (u64)-1;
c8b97818 6773 em->block_len = (u64)-1;
f421950f
CM
6774
6775 if (!path) {
6776 path = btrfs_alloc_path();
026fd317
JB
6777 if (!path) {
6778 err = -ENOMEM;
6779 goto out;
6780 }
6781 /*
6782 * Chances are we'll be called again, so go ahead and do
6783 * readahead
6784 */
e4058b54 6785 path->reada = READA_FORWARD;
f421950f
CM
6786 }
6787
179e29e4
CM
6788 ret = btrfs_lookup_file_extent(trans, root, path,
6789 objectid, start, trans != NULL);
a52d9a80
CM
6790 if (ret < 0) {
6791 err = ret;
6792 goto out;
6793 }
6794
6795 if (ret != 0) {
6796 if (path->slots[0] == 0)
6797 goto not_found;
6798 path->slots[0]--;
6799 }
6800
5f39d397
CM
6801 leaf = path->nodes[0];
6802 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6803 struct btrfs_file_extent_item);
a52d9a80 6804 /* are we inside the extent that was found? */
5f39d397 6805 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6806 found_type = found_key.type;
5f39d397 6807 if (found_key.objectid != objectid ||
a52d9a80 6808 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6809 /*
6810 * If we backup past the first extent we want to move forward
6811 * and see if there is an extent in front of us, otherwise we'll
6812 * say there is a hole for our whole search range which can
6813 * cause problems.
6814 */
6815 extent_end = start;
6816 goto next;
a52d9a80
CM
6817 }
6818
5f39d397
CM
6819 found_type = btrfs_file_extent_type(leaf, item);
6820 extent_start = found_key.offset;
d899e052
YZ
6821 if (found_type == BTRFS_FILE_EXTENT_REG ||
6822 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6823 extent_end = extent_start +
db94535d 6824 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6825 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6826 size_t size;
514ac8ad 6827 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
da17066c 6828 extent_end = ALIGN(extent_start + size,
0b246afa 6829 fs_info->sectorsize);
9036c102 6830 }
25a50341 6831next:
9036c102
YZ
6832 if (start >= extent_end) {
6833 path->slots[0]++;
6834 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6835 ret = btrfs_next_leaf(root, path);
6836 if (ret < 0) {
6837 err = ret;
6838 goto out;
a52d9a80 6839 }
9036c102
YZ
6840 if (ret > 0)
6841 goto not_found;
6842 leaf = path->nodes[0];
a52d9a80 6843 }
9036c102
YZ
6844 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6845 if (found_key.objectid != objectid ||
6846 found_key.type != BTRFS_EXTENT_DATA_KEY)
6847 goto not_found;
6848 if (start + len <= found_key.offset)
6849 goto not_found;
e2eca69d
WS
6850 if (start > found_key.offset)
6851 goto next;
9036c102 6852 em->start = start;
70c8a91c 6853 em->orig_start = start;
9036c102
YZ
6854 em->len = found_key.offset - start;
6855 goto not_found_em;
6856 }
6857
fc4f21b1 6858 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 6859 new_inline, em);
7ffbb598 6860
d899e052
YZ
6861 if (found_type == BTRFS_FILE_EXTENT_REG ||
6862 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6863 goto insert;
6864 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6865 unsigned long ptr;
a52d9a80 6866 char *map;
3326d1b0
CM
6867 size_t size;
6868 size_t extent_offset;
6869 size_t copy_size;
a52d9a80 6870
7ffbb598 6871 if (new_inline)
689f9346 6872 goto out;
5f39d397 6873
514ac8ad 6874 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6875 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6876 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6877 size - extent_offset);
3326d1b0 6878 em->start = extent_start + extent_offset;
0b246afa 6879 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 6880 em->orig_block_len = em->len;
70c8a91c 6881 em->orig_start = em->start;
689f9346 6882 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6883 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6884 if (btrfs_file_extent_compression(leaf, item) !=
6885 BTRFS_COMPRESS_NONE) {
e40da0e5 6886 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6887 extent_offset, item);
166ae5a4
ZB
6888 if (ret) {
6889 err = ret;
6890 goto out;
6891 }
c8b97818
CM
6892 } else {
6893 map = kmap(page);
6894 read_extent_buffer(leaf, map + pg_offset, ptr,
6895 copy_size);
09cbfeaf 6896 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6897 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6898 PAGE_SIZE - pg_offset -
93c82d57
CM
6899 copy_size);
6900 }
c8b97818
CM
6901 kunmap(page);
6902 }
179e29e4
CM
6903 flush_dcache_page(page);
6904 } else if (create && PageUptodate(page)) {
6bf7e080 6905 BUG();
179e29e4
CM
6906 if (!trans) {
6907 kunmap(page);
6908 free_extent_map(em);
6909 em = NULL;
ff5714cc 6910
b3b4aa74 6911 btrfs_release_path(path);
7a7eaa40 6912 trans = btrfs_join_transaction(root);
ff5714cc 6913
3612b495
TI
6914 if (IS_ERR(trans))
6915 return ERR_CAST(trans);
179e29e4
CM
6916 goto again;
6917 }
c8b97818 6918 map = kmap(page);
70dec807 6919 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6920 copy_size);
c8b97818 6921 kunmap(page);
179e29e4 6922 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6923 }
d1310b2e 6924 set_extent_uptodate(io_tree, em->start,
507903b8 6925 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6926 goto insert;
a52d9a80
CM
6927 }
6928not_found:
6929 em->start = start;
70c8a91c 6930 em->orig_start = start;
d1310b2e 6931 em->len = len;
a52d9a80 6932not_found_em:
5f39d397 6933 em->block_start = EXTENT_MAP_HOLE;
9036c102 6934 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6935insert:
b3b4aa74 6936 btrfs_release_path(path);
d1310b2e 6937 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 6938 btrfs_err(fs_info,
5d163e0e
JM
6939 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6940 em->start, em->len, start, len);
a52d9a80
CM
6941 err = -EIO;
6942 goto out;
6943 }
d1310b2e
CM
6944
6945 err = 0;
890871be 6946 write_lock(&em_tree->lock);
09a2a8f9 6947 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6948 /* it is possible that someone inserted the extent into the tree
6949 * while we had the lock dropped. It is also possible that
6950 * an overlapping map exists in the tree
6951 */
a52d9a80 6952 if (ret == -EEXIST) {
3b951516 6953 struct extent_map *existing;
e6dcd2dc
CM
6954
6955 ret = 0;
6956
e6c4efd8
QW
6957 existing = search_extent_mapping(em_tree, start, len);
6958 /*
6959 * existing will always be non-NULL, since there must be
6960 * extent causing the -EEXIST.
6961 */
8dff9c85 6962 if (existing->start == em->start &&
8e2bd3b7 6963 extent_map_end(existing) >= extent_map_end(em) &&
8dff9c85
CM
6964 em->block_start == existing->block_start) {
6965 /*
8e2bd3b7
OS
6966 * The existing extent map already encompasses the
6967 * entire extent map we tried to add.
8dff9c85
CM
6968 */
6969 free_extent_map(em);
6970 em = existing;
6971 err = 0;
6972
6973 } else if (start >= extent_map_end(existing) ||
32be3a1a 6974 start <= existing->start) {
e6c4efd8
QW
6975 /*
6976 * The existing extent map is the one nearest to
6977 * the [start, start + len) range which overlaps
6978 */
6979 err = merge_extent_mapping(em_tree, existing,
6980 em, start);
e1c4b745 6981 free_extent_map(existing);
e6c4efd8 6982 if (err) {
3b951516
CM
6983 free_extent_map(em);
6984 em = NULL;
6985 }
6986 } else {
6987 free_extent_map(em);
6988 em = existing;
e6dcd2dc 6989 err = 0;
a52d9a80 6990 }
a52d9a80 6991 }
890871be 6992 write_unlock(&em_tree->lock);
a52d9a80 6993out:
1abe9b8a 6994
fc4f21b1 6995 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 6996
527afb44 6997 btrfs_free_path(path);
a52d9a80 6998 if (trans) {
3a45bb20 6999 ret = btrfs_end_transaction(trans);
d397712b 7000 if (!err)
a52d9a80
CM
7001 err = ret;
7002 }
a52d9a80
CM
7003 if (err) {
7004 free_extent_map(em);
a52d9a80
CM
7005 return ERR_PTR(err);
7006 }
79787eaa 7007 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7008 return em;
7009}
7010
fc4f21b1
NB
7011struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7012 struct page *page,
7013 size_t pg_offset, u64 start, u64 len,
7014 int create)
ec29ed5b
CM
7015{
7016 struct extent_map *em;
7017 struct extent_map *hole_em = NULL;
7018 u64 range_start = start;
7019 u64 end;
7020 u64 found;
7021 u64 found_end;
7022 int err = 0;
7023
7024 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7025 if (IS_ERR(em))
7026 return em;
7027 if (em) {
7028 /*
f9e4fb53
LB
7029 * if our em maps to
7030 * - a hole or
7031 * - a pre-alloc extent,
7032 * there might actually be delalloc bytes behind it.
ec29ed5b 7033 */
f9e4fb53
LB
7034 if (em->block_start != EXTENT_MAP_HOLE &&
7035 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
7036 return em;
7037 else
7038 hole_em = em;
7039 }
7040
7041 /* check to see if we've wrapped (len == -1 or similar) */
7042 end = start + len;
7043 if (end < start)
7044 end = (u64)-1;
7045 else
7046 end -= 1;
7047
7048 em = NULL;
7049
7050 /* ok, we didn't find anything, lets look for delalloc */
fc4f21b1 7051 found = count_range_bits(&inode->io_tree, &range_start,
ec29ed5b
CM
7052 end, len, EXTENT_DELALLOC, 1);
7053 found_end = range_start + found;
7054 if (found_end < range_start)
7055 found_end = (u64)-1;
7056
7057 /*
7058 * we didn't find anything useful, return
7059 * the original results from get_extent()
7060 */
7061 if (range_start > end || found_end <= start) {
7062 em = hole_em;
7063 hole_em = NULL;
7064 goto out;
7065 }
7066
7067 /* adjust the range_start to make sure it doesn't
7068 * go backwards from the start they passed in
7069 */
67871254 7070 range_start = max(start, range_start);
ec29ed5b
CM
7071 found = found_end - range_start;
7072
7073 if (found > 0) {
7074 u64 hole_start = start;
7075 u64 hole_len = len;
7076
172ddd60 7077 em = alloc_extent_map();
ec29ed5b
CM
7078 if (!em) {
7079 err = -ENOMEM;
7080 goto out;
7081 }
7082 /*
7083 * when btrfs_get_extent can't find anything it
7084 * returns one huge hole
7085 *
7086 * make sure what it found really fits our range, and
7087 * adjust to make sure it is based on the start from
7088 * the caller
7089 */
7090 if (hole_em) {
7091 u64 calc_end = extent_map_end(hole_em);
7092
7093 if (calc_end <= start || (hole_em->start > end)) {
7094 free_extent_map(hole_em);
7095 hole_em = NULL;
7096 } else {
7097 hole_start = max(hole_em->start, start);
7098 hole_len = calc_end - hole_start;
7099 }
7100 }
7101 em->bdev = NULL;
7102 if (hole_em && range_start > hole_start) {
7103 /* our hole starts before our delalloc, so we
7104 * have to return just the parts of the hole
7105 * that go until the delalloc starts
7106 */
7107 em->len = min(hole_len,
7108 range_start - hole_start);
7109 em->start = hole_start;
7110 em->orig_start = hole_start;
7111 /*
7112 * don't adjust block start at all,
7113 * it is fixed at EXTENT_MAP_HOLE
7114 */
7115 em->block_start = hole_em->block_start;
7116 em->block_len = hole_len;
f9e4fb53
LB
7117 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7118 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7119 } else {
7120 em->start = range_start;
7121 em->len = found;
7122 em->orig_start = range_start;
7123 em->block_start = EXTENT_MAP_DELALLOC;
7124 em->block_len = found;
7125 }
7126 } else if (hole_em) {
7127 return hole_em;
7128 }
7129out:
7130
7131 free_extent_map(hole_em);
7132 if (err) {
7133 free_extent_map(em);
7134 return ERR_PTR(err);
7135 }
7136 return em;
7137}
7138
5f9a8a51
FM
7139static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7140 const u64 start,
7141 const u64 len,
7142 const u64 orig_start,
7143 const u64 block_start,
7144 const u64 block_len,
7145 const u64 orig_block_len,
7146 const u64 ram_bytes,
7147 const int type)
7148{
7149 struct extent_map *em = NULL;
7150 int ret;
7151
5f9a8a51 7152 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7153 em = create_io_em(inode, start, len, orig_start,
7154 block_start, block_len, orig_block_len,
7155 ram_bytes,
7156 BTRFS_COMPRESS_NONE, /* compress_type */
7157 type);
5f9a8a51
FM
7158 if (IS_ERR(em))
7159 goto out;
7160 }
7161 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7162 len, block_len, type);
7163 if (ret) {
7164 if (em) {
7165 free_extent_map(em);
dcdbc059 7166 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7167 start + len - 1, 0);
7168 }
7169 em = ERR_PTR(ret);
7170 }
7171 out:
5f9a8a51
FM
7172
7173 return em;
7174}
7175
4b46fce2
JB
7176static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7177 u64 start, u64 len)
7178{
0b246afa 7179 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7180 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7181 struct extent_map *em;
4b46fce2
JB
7182 struct btrfs_key ins;
7183 u64 alloc_hint;
7184 int ret;
4b46fce2 7185
4b46fce2 7186 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7187 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7188 0, alloc_hint, &ins, 1, 1);
00361589
JB
7189 if (ret)
7190 return ERR_PTR(ret);
4b46fce2 7191
5f9a8a51
FM
7192 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7193 ins.objectid, ins.offset, ins.offset,
6288d6ea 7194 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7195 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7196 if (IS_ERR(em))
2ff7e61e
JM
7197 btrfs_free_reserved_extent(fs_info, ins.objectid,
7198 ins.offset, 1);
de0ee0ed 7199
4b46fce2
JB
7200 return em;
7201}
7202
46bfbb5c
CM
7203/*
7204 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7205 * block must be cow'd
7206 */
00361589 7207noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7208 u64 *orig_start, u64 *orig_block_len,
7209 u64 *ram_bytes)
46bfbb5c 7210{
2ff7e61e 7211 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7212 struct btrfs_path *path;
7213 int ret;
7214 struct extent_buffer *leaf;
7215 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7216 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7217 struct btrfs_file_extent_item *fi;
7218 struct btrfs_key key;
7219 u64 disk_bytenr;
7220 u64 backref_offset;
7221 u64 extent_end;
7222 u64 num_bytes;
7223 int slot;
7224 int found_type;
7ee9e440 7225 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7226
46bfbb5c
CM
7227 path = btrfs_alloc_path();
7228 if (!path)
7229 return -ENOMEM;
7230
f85b7379
DS
7231 ret = btrfs_lookup_file_extent(NULL, root, path,
7232 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7233 if (ret < 0)
7234 goto out;
7235
7236 slot = path->slots[0];
7237 if (ret == 1) {
7238 if (slot == 0) {
7239 /* can't find the item, must cow */
7240 ret = 0;
7241 goto out;
7242 }
7243 slot--;
7244 }
7245 ret = 0;
7246 leaf = path->nodes[0];
7247 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7248 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7249 key.type != BTRFS_EXTENT_DATA_KEY) {
7250 /* not our file or wrong item type, must cow */
7251 goto out;
7252 }
7253
7254 if (key.offset > offset) {
7255 /* Wrong offset, must cow */
7256 goto out;
7257 }
7258
7259 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7260 found_type = btrfs_file_extent_type(leaf, fi);
7261 if (found_type != BTRFS_FILE_EXTENT_REG &&
7262 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7263 /* not a regular extent, must cow */
7264 goto out;
7265 }
7ee9e440
JB
7266
7267 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7268 goto out;
7269
e77751aa
MX
7270 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7271 if (extent_end <= offset)
7272 goto out;
7273
46bfbb5c 7274 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7275 if (disk_bytenr == 0)
7276 goto out;
7277
7278 if (btrfs_file_extent_compression(leaf, fi) ||
7279 btrfs_file_extent_encryption(leaf, fi) ||
7280 btrfs_file_extent_other_encoding(leaf, fi))
7281 goto out;
7282
46bfbb5c
CM
7283 backref_offset = btrfs_file_extent_offset(leaf, fi);
7284
7ee9e440
JB
7285 if (orig_start) {
7286 *orig_start = key.offset - backref_offset;
7287 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7288 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7289 }
eb384b55 7290
2ff7e61e 7291 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7292 goto out;
7b2b7085
MX
7293
7294 num_bytes = min(offset + *len, extent_end) - offset;
7295 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7296 u64 range_end;
7297
da17066c
JM
7298 range_end = round_up(offset + num_bytes,
7299 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7300 ret = test_range_bit(io_tree, offset, range_end,
7301 EXTENT_DELALLOC, 0, NULL);
7302 if (ret) {
7303 ret = -EAGAIN;
7304 goto out;
7305 }
7306 }
7307
1bda19eb 7308 btrfs_release_path(path);
46bfbb5c
CM
7309
7310 /*
7311 * look for other files referencing this extent, if we
7312 * find any we must cow
7313 */
00361589 7314
e4c3b2dc 7315 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7316 key.offset - backref_offset, disk_bytenr);
00361589
JB
7317 if (ret) {
7318 ret = 0;
7319 goto out;
7320 }
46bfbb5c
CM
7321
7322 /*
7323 * adjust disk_bytenr and num_bytes to cover just the bytes
7324 * in this extent we are about to write. If there
7325 * are any csums in that range we have to cow in order
7326 * to keep the csums correct
7327 */
7328 disk_bytenr += backref_offset;
7329 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7330 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7331 goto out;
46bfbb5c
CM
7332 /*
7333 * all of the above have passed, it is safe to overwrite this extent
7334 * without cow
7335 */
eb384b55 7336 *len = num_bytes;
46bfbb5c
CM
7337 ret = 1;
7338out:
7339 btrfs_free_path(path);
7340 return ret;
7341}
7342
fc4adbff
AG
7343bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7344{
7345 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7346 int found = false;
7347 void **pagep = NULL;
7348 struct page *page = NULL;
7349 int start_idx;
7350 int end_idx;
7351
09cbfeaf 7352 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7353
7354 /*
7355 * end is the last byte in the last page. end == start is legal
7356 */
09cbfeaf 7357 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7358
7359 rcu_read_lock();
7360
7361 /* Most of the code in this while loop is lifted from
7362 * find_get_page. It's been modified to begin searching from a
7363 * page and return just the first page found in that range. If the
7364 * found idx is less than or equal to the end idx then we know that
7365 * a page exists. If no pages are found or if those pages are
7366 * outside of the range then we're fine (yay!) */
7367 while (page == NULL &&
7368 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7369 page = radix_tree_deref_slot(pagep);
7370 if (unlikely(!page))
7371 break;
7372
7373 if (radix_tree_exception(page)) {
809f9016
FM
7374 if (radix_tree_deref_retry(page)) {
7375 page = NULL;
fc4adbff 7376 continue;
809f9016 7377 }
fc4adbff
AG
7378 /*
7379 * Otherwise, shmem/tmpfs must be storing a swap entry
7380 * here as an exceptional entry: so return it without
7381 * attempting to raise page count.
7382 */
6fdef6d4 7383 page = NULL;
fc4adbff
AG
7384 break; /* TODO: Is this relevant for this use case? */
7385 }
7386
91405151
FM
7387 if (!page_cache_get_speculative(page)) {
7388 page = NULL;
fc4adbff 7389 continue;
91405151 7390 }
fc4adbff
AG
7391
7392 /*
7393 * Has the page moved?
7394 * This is part of the lockless pagecache protocol. See
7395 * include/linux/pagemap.h for details.
7396 */
7397 if (unlikely(page != *pagep)) {
09cbfeaf 7398 put_page(page);
fc4adbff
AG
7399 page = NULL;
7400 }
7401 }
7402
7403 if (page) {
7404 if (page->index <= end_idx)
7405 found = true;
09cbfeaf 7406 put_page(page);
fc4adbff
AG
7407 }
7408
7409 rcu_read_unlock();
7410 return found;
7411}
7412
eb838e73
JB
7413static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7414 struct extent_state **cached_state, int writing)
7415{
7416 struct btrfs_ordered_extent *ordered;
7417 int ret = 0;
7418
7419 while (1) {
7420 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7421 cached_state);
eb838e73
JB
7422 /*
7423 * We're concerned with the entire range that we're going to be
01327610 7424 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7425 * extents in this range.
7426 */
a776c6fa 7427 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7428 lockend - lockstart + 1);
7429
7430 /*
7431 * We need to make sure there are no buffered pages in this
7432 * range either, we could have raced between the invalidate in
7433 * generic_file_direct_write and locking the extent. The
7434 * invalidate needs to happen so that reads after a write do not
7435 * get stale data.
7436 */
fc4adbff
AG
7437 if (!ordered &&
7438 (!writing ||
7439 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7440 break;
7441
7442 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7443 cached_state, GFP_NOFS);
7444
7445 if (ordered) {
ade77029
FM
7446 /*
7447 * If we are doing a DIO read and the ordered extent we
7448 * found is for a buffered write, we can not wait for it
7449 * to complete and retry, because if we do so we can
7450 * deadlock with concurrent buffered writes on page
7451 * locks. This happens only if our DIO read covers more
7452 * than one extent map, if at this point has already
7453 * created an ordered extent for a previous extent map
7454 * and locked its range in the inode's io tree, and a
7455 * concurrent write against that previous extent map's
7456 * range and this range started (we unlock the ranges
7457 * in the io tree only when the bios complete and
7458 * buffered writes always lock pages before attempting
7459 * to lock range in the io tree).
7460 */
7461 if (writing ||
7462 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7463 btrfs_start_ordered_extent(inode, ordered, 1);
7464 else
7465 ret = -ENOTBLK;
eb838e73
JB
7466 btrfs_put_ordered_extent(ordered);
7467 } else {
eb838e73 7468 /*
b850ae14
FM
7469 * We could trigger writeback for this range (and wait
7470 * for it to complete) and then invalidate the pages for
7471 * this range (through invalidate_inode_pages2_range()),
7472 * but that can lead us to a deadlock with a concurrent
7473 * call to readpages() (a buffered read or a defrag call
7474 * triggered a readahead) on a page lock due to an
7475 * ordered dio extent we created before but did not have
7476 * yet a corresponding bio submitted (whence it can not
7477 * complete), which makes readpages() wait for that
7478 * ordered extent to complete while holding a lock on
7479 * that page.
eb838e73 7480 */
b850ae14 7481 ret = -ENOTBLK;
eb838e73
JB
7482 }
7483
ade77029
FM
7484 if (ret)
7485 break;
7486
eb838e73
JB
7487 cond_resched();
7488 }
7489
7490 return ret;
7491}
7492
6f9994db
LB
7493/* The callers of this must take lock_extent() */
7494static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7495 u64 orig_start, u64 block_start,
7496 u64 block_len, u64 orig_block_len,
7497 u64 ram_bytes, int compress_type,
7498 int type)
69ffb543
JB
7499{
7500 struct extent_map_tree *em_tree;
7501 struct extent_map *em;
7502 struct btrfs_root *root = BTRFS_I(inode)->root;
7503 int ret;
7504
6f9994db
LB
7505 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7506 type == BTRFS_ORDERED_COMPRESSED ||
7507 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7508 type == BTRFS_ORDERED_REGULAR);
6f9994db 7509
69ffb543
JB
7510 em_tree = &BTRFS_I(inode)->extent_tree;
7511 em = alloc_extent_map();
7512 if (!em)
7513 return ERR_PTR(-ENOMEM);
7514
7515 em->start = start;
7516 em->orig_start = orig_start;
7517 em->len = len;
7518 em->block_len = block_len;
7519 em->block_start = block_start;
7520 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7521 em->orig_block_len = orig_block_len;
cc95bef6 7522 em->ram_bytes = ram_bytes;
70c8a91c 7523 em->generation = -1;
69ffb543 7524 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7525 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7526 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7527 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7528 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7529 em->compress_type = compress_type;
7530 }
69ffb543
JB
7531
7532 do {
dcdbc059 7533 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7534 em->start + em->len - 1, 0);
7535 write_lock(&em_tree->lock);
09a2a8f9 7536 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7537 write_unlock(&em_tree->lock);
6f9994db
LB
7538 /*
7539 * The caller has taken lock_extent(), who could race with us
7540 * to add em?
7541 */
69ffb543
JB
7542 } while (ret == -EEXIST);
7543
7544 if (ret) {
7545 free_extent_map(em);
7546 return ERR_PTR(ret);
7547 }
7548
6f9994db 7549 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7550 return em;
7551}
7552
9c9464cc
FM
7553static void adjust_dio_outstanding_extents(struct inode *inode,
7554 struct btrfs_dio_data *dio_data,
7555 const u64 len)
7556{
823bb20a 7557 unsigned num_extents = count_max_extents(len);
9c9464cc 7558
9c9464cc
FM
7559 /*
7560 * If we have an outstanding_extents count still set then we're
7561 * within our reservation, otherwise we need to adjust our inode
7562 * counter appropriately.
7563 */
c2931667 7564 if (dio_data->outstanding_extents >= num_extents) {
9c9464cc
FM
7565 dio_data->outstanding_extents -= num_extents;
7566 } else {
c2931667
LB
7567 /*
7568 * If dio write length has been split due to no large enough
7569 * contiguous space, we need to compensate our inode counter
7570 * appropriately.
7571 */
7572 u64 num_needed = num_extents - dio_data->outstanding_extents;
7573
9c9464cc 7574 spin_lock(&BTRFS_I(inode)->lock);
c2931667 7575 BTRFS_I(inode)->outstanding_extents += num_needed;
9c9464cc
FM
7576 spin_unlock(&BTRFS_I(inode)->lock);
7577 }
7578}
7579
4b46fce2
JB
7580static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7581 struct buffer_head *bh_result, int create)
7582{
0b246afa 7583 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7584 struct extent_map *em;
eb838e73 7585 struct extent_state *cached_state = NULL;
50745b0a 7586 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7587 u64 start = iblock << inode->i_blkbits;
eb838e73 7588 u64 lockstart, lockend;
4b46fce2 7589 u64 len = bh_result->b_size;
eb838e73 7590 int unlock_bits = EXTENT_LOCKED;
0934856d 7591 int ret = 0;
eb838e73 7592
172a5049 7593 if (create)
3266789f 7594 unlock_bits |= EXTENT_DIRTY;
172a5049 7595 else
0b246afa 7596 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7597
c329861d
JB
7598 lockstart = start;
7599 lockend = start + len - 1;
7600
e1cbbfa5
JB
7601 if (current->journal_info) {
7602 /*
7603 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7604 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7605 * confused.
7606 */
50745b0a 7607 dio_data = current->journal_info;
e1cbbfa5
JB
7608 current->journal_info = NULL;
7609 }
7610
eb838e73
JB
7611 /*
7612 * If this errors out it's because we couldn't invalidate pagecache for
7613 * this range and we need to fallback to buffered.
7614 */
9c9464cc
FM
7615 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7616 create)) {
7617 ret = -ENOTBLK;
7618 goto err;
7619 }
eb838e73 7620
fc4f21b1 7621 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7622 if (IS_ERR(em)) {
7623 ret = PTR_ERR(em);
7624 goto unlock_err;
7625 }
4b46fce2
JB
7626
7627 /*
7628 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7629 * io. INLINE is special, and we could probably kludge it in here, but
7630 * it's still buffered so for safety lets just fall back to the generic
7631 * buffered path.
7632 *
7633 * For COMPRESSED we _have_ to read the entire extent in so we can
7634 * decompress it, so there will be buffering required no matter what we
7635 * do, so go ahead and fallback to buffered.
7636 *
01327610 7637 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7638 * to buffered IO. Don't blame me, this is the price we pay for using
7639 * the generic code.
7640 */
7641 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7642 em->block_start == EXTENT_MAP_INLINE) {
7643 free_extent_map(em);
eb838e73
JB
7644 ret = -ENOTBLK;
7645 goto unlock_err;
4b46fce2
JB
7646 }
7647
7648 /* Just a good old fashioned hole, return */
7649 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7650 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7651 free_extent_map(em);
eb838e73 7652 goto unlock_err;
4b46fce2
JB
7653 }
7654
7655 /*
7656 * We don't allocate a new extent in the following cases
7657 *
7658 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7659 * existing extent.
7660 * 2) The extent is marked as PREALLOC. We're good to go here and can
7661 * just use the extent.
7662 *
7663 */
46bfbb5c 7664 if (!create) {
eb838e73
JB
7665 len = min(len, em->len - (start - em->start));
7666 lockstart = start + len;
7667 goto unlock;
46bfbb5c 7668 }
4b46fce2
JB
7669
7670 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7671 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7672 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7673 int type;
eb384b55 7674 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7675
7676 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7677 type = BTRFS_ORDERED_PREALLOC;
7678 else
7679 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7680 len = min(len, em->len - (start - em->start));
4b46fce2 7681 block_start = em->block_start + (start - em->start);
46bfbb5c 7682
00361589 7683 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c 7684 &orig_block_len, &ram_bytes) == 1 &&
0b246afa 7685 btrfs_inc_nocow_writers(fs_info, block_start)) {
5f9a8a51 7686 struct extent_map *em2;
0b901916 7687
5f9a8a51
FM
7688 em2 = btrfs_create_dio_extent(inode, start, len,
7689 orig_start, block_start,
7690 len, orig_block_len,
7691 ram_bytes, type);
0b246afa 7692 btrfs_dec_nocow_writers(fs_info, block_start);
69ffb543
JB
7693 if (type == BTRFS_ORDERED_PREALLOC) {
7694 free_extent_map(em);
5f9a8a51 7695 em = em2;
69ffb543 7696 }
5f9a8a51
FM
7697 if (em2 && IS_ERR(em2)) {
7698 ret = PTR_ERR(em2);
eb838e73 7699 goto unlock_err;
46bfbb5c 7700 }
18513091
WX
7701 /*
7702 * For inode marked NODATACOW or extent marked PREALLOC,
7703 * use the existing or preallocated extent, so does not
7704 * need to adjust btrfs_space_info's bytes_may_use.
7705 */
7706 btrfs_free_reserved_data_space_noquota(inode,
7707 start, len);
46bfbb5c 7708 goto unlock;
4b46fce2 7709 }
4b46fce2 7710 }
00361589 7711
46bfbb5c
CM
7712 /*
7713 * this will cow the extent, reset the len in case we changed
7714 * it above
7715 */
7716 len = bh_result->b_size;
70c8a91c
JB
7717 free_extent_map(em);
7718 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7719 if (IS_ERR(em)) {
7720 ret = PTR_ERR(em);
7721 goto unlock_err;
7722 }
46bfbb5c
CM
7723 len = min(len, em->len - (start - em->start));
7724unlock:
4b46fce2
JB
7725 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7726 inode->i_blkbits;
46bfbb5c 7727 bh_result->b_size = len;
4b46fce2
JB
7728 bh_result->b_bdev = em->bdev;
7729 set_buffer_mapped(bh_result);
c3473e83
JB
7730 if (create) {
7731 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7732 set_buffer_new(bh_result);
7733
7734 /*
7735 * Need to update the i_size under the extent lock so buffered
7736 * readers will get the updated i_size when we unlock.
7737 */
4aaedfb0 7738 if (!dio_data->overwrite && start + len > i_size_read(inode))
c3473e83 7739 i_size_write(inode, start + len);
0934856d 7740
9c9464cc 7741 adjust_dio_outstanding_extents(inode, dio_data, len);
50745b0a 7742 WARN_ON(dio_data->reserve < len);
7743 dio_data->reserve -= len;
f28a4928 7744 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7745 current->journal_info = dio_data;
c3473e83 7746 }
4b46fce2 7747
eb838e73
JB
7748 /*
7749 * In the case of write we need to clear and unlock the entire range,
7750 * in the case of read we need to unlock only the end area that we
7751 * aren't using if there is any left over space.
7752 */
24c03fa5 7753 if (lockstart < lockend) {
0934856d
MX
7754 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7755 lockend, unlock_bits, 1, 0,
7756 &cached_state, GFP_NOFS);
24c03fa5 7757 } else {
eb838e73 7758 free_extent_state(cached_state);
24c03fa5 7759 }
eb838e73 7760
4b46fce2
JB
7761 free_extent_map(em);
7762
7763 return 0;
eb838e73
JB
7764
7765unlock_err:
eb838e73
JB
7766 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7767 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7768err:
50745b0a 7769 if (dio_data)
7770 current->journal_info = dio_data;
9c9464cc
FM
7771 /*
7772 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7773 * write less data then expected, so that we don't underflow our inode's
7774 * outstanding extents counter.
7775 */
7776 if (create && dio_data)
7777 adjust_dio_outstanding_extents(inode, dio_data, len);
7778
eb838e73 7779 return ret;
4b46fce2
JB
7780}
7781
8b110e39 7782static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
81a75f67 7783 int mirror_num)
8b110e39 7784{
2ff7e61e 7785 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7786 int ret;
7787
37226b21 7788 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39
MX
7789
7790 bio_get(bio);
7791
2ff7e61e 7792 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39
MX
7793 if (ret)
7794 goto err;
7795
2ff7e61e 7796 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
8b110e39
MX
7797err:
7798 bio_put(bio);
7799 return ret;
7800}
7801
7802static int btrfs_check_dio_repairable(struct inode *inode,
7803 struct bio *failed_bio,
7804 struct io_failure_record *failrec,
7805 int failed_mirror)
7806{
ab8d0fc4 7807 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7808 int num_copies;
7809
ab8d0fc4 7810 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7811 if (num_copies == 1) {
7812 /*
7813 * we only have a single copy of the data, so don't bother with
7814 * all the retry and error correction code that follows. no
7815 * matter what the error is, it is very likely to persist.
7816 */
ab8d0fc4
JM
7817 btrfs_debug(fs_info,
7818 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7819 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7820 return 0;
7821 }
7822
7823 failrec->failed_mirror = failed_mirror;
7824 failrec->this_mirror++;
7825 if (failrec->this_mirror == failed_mirror)
7826 failrec->this_mirror++;
7827
7828 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7829 btrfs_debug(fs_info,
7830 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7831 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7832 return 0;
7833 }
7834
7835 return 1;
7836}
7837
7838static int dio_read_error(struct inode *inode, struct bio *failed_bio,
2dabb324
CR
7839 struct page *page, unsigned int pgoff,
7840 u64 start, u64 end, int failed_mirror,
7841 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7842{
7843 struct io_failure_record *failrec;
7844 struct bio *bio;
7845 int isector;
70fd7614 7846 int read_mode = 0;
8b110e39
MX
7847 int ret;
7848
37226b21 7849 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7850
7851 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7852 if (ret)
7853 return ret;
7854
7855 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7856 failed_mirror);
7857 if (!ret) {
4ac1f4ac 7858 free_io_failure(BTRFS_I(inode), failrec);
8b110e39
MX
7859 return -EIO;
7860 }
7861
2dabb324
CR
7862 if ((failed_bio->bi_vcnt > 1)
7863 || (failed_bio->bi_io_vec->bv_len
da17066c 7864 > btrfs_inode_sectorsize(inode)))
70fd7614 7865 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
7866
7867 isector = start - btrfs_io_bio(failed_bio)->logical;
7868 isector >>= inode->i_sb->s_blocksize_bits;
7869 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7870 pgoff, isector, repair_endio, repair_arg);
8b110e39 7871 if (!bio) {
4ac1f4ac 7872 free_io_failure(BTRFS_I(inode), failrec);
8b110e39
MX
7873 return -EIO;
7874 }
37226b21 7875 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
7876
7877 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7878 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7879 read_mode, failrec->this_mirror, failrec->in_validation);
7880
81a75f67 7881 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8b110e39 7882 if (ret) {
4ac1f4ac 7883 free_io_failure(BTRFS_I(inode), failrec);
8b110e39
MX
7884 bio_put(bio);
7885 }
7886
7887 return ret;
7888}
7889
7890struct btrfs_retry_complete {
7891 struct completion done;
7892 struct inode *inode;
7893 u64 start;
7894 int uptodate;
7895};
7896
4246a0b6 7897static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7898{
7899 struct btrfs_retry_complete *done = bio->bi_private;
2dabb324 7900 struct inode *inode;
8b110e39
MX
7901 struct bio_vec *bvec;
7902 int i;
7903
4246a0b6 7904 if (bio->bi_error)
8b110e39
MX
7905 goto end;
7906
2dabb324
CR
7907 ASSERT(bio->bi_vcnt == 1);
7908 inode = bio->bi_io_vec->bv_page->mapping->host;
da17066c 7909 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 7910
8b110e39
MX
7911 done->uptodate = 1;
7912 bio_for_each_segment_all(bvec, bio, i)
b30cb441 7913 clean_io_failure(BTRFS_I(done->inode), done->start, bvec->bv_page, 0);
8b110e39
MX
7914end:
7915 complete(&done->done);
7916 bio_put(bio);
7917}
7918
7919static int __btrfs_correct_data_nocsum(struct inode *inode,
7920 struct btrfs_io_bio *io_bio)
4b46fce2 7921{
2dabb324 7922 struct btrfs_fs_info *fs_info;
2c30c71b 7923 struct bio_vec *bvec;
8b110e39 7924 struct btrfs_retry_complete done;
4b46fce2 7925 u64 start;
2dabb324
CR
7926 unsigned int pgoff;
7927 u32 sectorsize;
7928 int nr_sectors;
2c30c71b 7929 int i;
c1dc0896 7930 int ret;
4b46fce2 7931
2dabb324 7932 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 7933 sectorsize = fs_info->sectorsize;
2dabb324 7934
8b110e39
MX
7935 start = io_bio->logical;
7936 done.inode = inode;
7937
7938 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
7939 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7940 pgoff = bvec->bv_offset;
7941
7942next_block_or_try_again:
8b110e39
MX
7943 done.uptodate = 0;
7944 done.start = start;
7945 init_completion(&done.done);
7946
2dabb324
CR
7947 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7948 pgoff, start, start + sectorsize - 1,
7949 io_bio->mirror_num,
7950 btrfs_retry_endio_nocsum, &done);
8b110e39
MX
7951 if (ret)
7952 return ret;
7953
7954 wait_for_completion(&done.done);
7955
7956 if (!done.uptodate) {
7957 /* We might have another mirror, so try again */
2dabb324 7958 goto next_block_or_try_again;
8b110e39
MX
7959 }
7960
2dabb324
CR
7961 start += sectorsize;
7962
7963 if (nr_sectors--) {
7964 pgoff += sectorsize;
7965 goto next_block_or_try_again;
7966 }
8b110e39
MX
7967 }
7968
7969 return 0;
7970}
7971
4246a0b6 7972static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7973{
7974 struct btrfs_retry_complete *done = bio->bi_private;
7975 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2dabb324 7976 struct inode *inode;
8b110e39 7977 struct bio_vec *bvec;
2dabb324 7978 u64 start;
8b110e39
MX
7979 int uptodate;
7980 int ret;
7981 int i;
7982
4246a0b6 7983 if (bio->bi_error)
8b110e39
MX
7984 goto end;
7985
7986 uptodate = 1;
2dabb324
CR
7987
7988 start = done->start;
7989
7990 ASSERT(bio->bi_vcnt == 1);
7991 inode = bio->bi_io_vec->bv_page->mapping->host;
da17066c 7992 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 7993
8b110e39
MX
7994 bio_for_each_segment_all(bvec, bio, i) {
7995 ret = __readpage_endio_check(done->inode, io_bio, i,
2dabb324
CR
7996 bvec->bv_page, bvec->bv_offset,
7997 done->start, bvec->bv_len);
8b110e39 7998 if (!ret)
b30cb441 7999 clean_io_failure(BTRFS_I(done->inode), done->start,
2dabb324 8000 bvec->bv_page, bvec->bv_offset);
8b110e39
MX
8001 else
8002 uptodate = 0;
8003 }
8004
8005 done->uptodate = uptodate;
8006end:
8007 complete(&done->done);
8008 bio_put(bio);
8009}
8010
8011static int __btrfs_subio_endio_read(struct inode *inode,
8012 struct btrfs_io_bio *io_bio, int err)
8013{
2dabb324 8014 struct btrfs_fs_info *fs_info;
8b110e39
MX
8015 struct bio_vec *bvec;
8016 struct btrfs_retry_complete done;
8017 u64 start;
8018 u64 offset = 0;
2dabb324
CR
8019 u32 sectorsize;
8020 int nr_sectors;
8021 unsigned int pgoff;
8022 int csum_pos;
8b110e39
MX
8023 int i;
8024 int ret;
dc380aea 8025
2dabb324 8026 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8027 sectorsize = fs_info->sectorsize;
2dabb324 8028
8b110e39 8029 err = 0;
c1dc0896 8030 start = io_bio->logical;
8b110e39
MX
8031 done.inode = inode;
8032
c1dc0896 8033 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
8034 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8035
8036 pgoff = bvec->bv_offset;
8037next_block:
8038 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8039 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8040 bvec->bv_page, pgoff, start,
8041 sectorsize);
8b110e39
MX
8042 if (likely(!ret))
8043 goto next;
8044try_again:
8045 done.uptodate = 0;
8046 done.start = start;
8047 init_completion(&done.done);
8048
2dabb324
CR
8049 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8050 pgoff, start, start + sectorsize - 1,
8051 io_bio->mirror_num,
8052 btrfs_retry_endio, &done);
8b110e39
MX
8053 if (ret) {
8054 err = ret;
8055 goto next;
8056 }
8057
8058 wait_for_completion(&done.done);
8059
8060 if (!done.uptodate) {
8061 /* We might have another mirror, so try again */
8062 goto try_again;
8063 }
8064next:
2dabb324
CR
8065 offset += sectorsize;
8066 start += sectorsize;
8067
8068 ASSERT(nr_sectors);
8069
8070 if (--nr_sectors) {
8071 pgoff += sectorsize;
8072 goto next_block;
8073 }
2c30c71b 8074 }
c1dc0896
MX
8075
8076 return err;
8077}
8078
8b110e39
MX
8079static int btrfs_subio_endio_read(struct inode *inode,
8080 struct btrfs_io_bio *io_bio, int err)
8081{
8082 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8083
8084 if (skip_csum) {
8085 if (unlikely(err))
8086 return __btrfs_correct_data_nocsum(inode, io_bio);
8087 else
8088 return 0;
8089 } else {
8090 return __btrfs_subio_endio_read(inode, io_bio, err);
8091 }
8092}
8093
4246a0b6 8094static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8095{
8096 struct btrfs_dio_private *dip = bio->bi_private;
8097 struct inode *inode = dip->inode;
8098 struct bio *dio_bio;
8099 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 8100 int err = bio->bi_error;
c1dc0896 8101
8b110e39
MX
8102 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8103 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8104
4b46fce2 8105 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8106 dip->logical_offset + dip->bytes - 1);
9be3395b 8107 dio_bio = dip->dio_bio;
4b46fce2 8108
4b46fce2 8109 kfree(dip);
c0da7aa1 8110
1636d1d7 8111 dio_bio->bi_error = bio->bi_error;
4246a0b6 8112 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
8113
8114 if (io_bio->end_io)
8115 io_bio->end_io(io_bio, err);
9be3395b 8116 bio_put(bio);
4b46fce2
JB
8117}
8118
14543774
FM
8119static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8120 const u64 offset,
8121 const u64 bytes,
8122 const int uptodate)
4b46fce2 8123{
0b246afa 8124 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8125 struct btrfs_ordered_extent *ordered = NULL;
14543774
FM
8126 u64 ordered_offset = offset;
8127 u64 ordered_bytes = bytes;
4b46fce2
JB
8128 int ret;
8129
163cf09c
CM
8130again:
8131 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8132 &ordered_offset,
4246a0b6 8133 ordered_bytes,
14543774 8134 uptodate);
4b46fce2 8135 if (!ret)
163cf09c 8136 goto out_test;
4b46fce2 8137
9e0af237
LB
8138 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8139 finish_ordered_fn, NULL, NULL);
0b246afa 8140 btrfs_queue_work(fs_info->endio_write_workers, &ordered->work);
163cf09c
CM
8141out_test:
8142 /*
8143 * our bio might span multiple ordered extents. If we haven't
8144 * completed the accounting for the whole dio, go back and try again
8145 */
14543774
FM
8146 if (ordered_offset < offset + bytes) {
8147 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8148 ordered = NULL;
163cf09c
CM
8149 goto again;
8150 }
14543774
FM
8151}
8152
8153static void btrfs_endio_direct_write(struct bio *bio)
8154{
8155 struct btrfs_dio_private *dip = bio->bi_private;
8156 struct bio *dio_bio = dip->dio_bio;
8157
8158 btrfs_endio_direct_write_update_ordered(dip->inode,
8159 dip->logical_offset,
8160 dip->bytes,
8161 !bio->bi_error);
4b46fce2 8162
4b46fce2 8163 kfree(dip);
c0da7aa1 8164
1636d1d7 8165 dio_bio->bi_error = bio->bi_error;
4246a0b6 8166 dio_end_io(dio_bio, bio->bi_error);
9be3395b 8167 bio_put(bio);
4b46fce2
JB
8168}
8169
81a75f67 8170static int __btrfs_submit_bio_start_direct_io(struct inode *inode,
eaf25d93
CM
8171 struct bio *bio, int mirror_num,
8172 unsigned long bio_flags, u64 offset)
8173{
8174 int ret;
2ff7e61e 8175 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8176 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8177 return 0;
8178}
8179
4246a0b6 8180static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8181{
8182 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8183 int err = bio->bi_error;
e65e1535 8184
8b110e39
MX
8185 if (err)
8186 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8187 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8188 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8189 bio->bi_opf,
8b110e39
MX
8190 (unsigned long long)bio->bi_iter.bi_sector,
8191 bio->bi_iter.bi_size, err);
8192
8193 if (dip->subio_endio)
8194 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8195
8196 if (err) {
e65e1535
MX
8197 dip->errors = 1;
8198
8199 /*
8200 * before atomic variable goto zero, we must make sure
8201 * dip->errors is perceived to be set.
8202 */
4e857c58 8203 smp_mb__before_atomic();
e65e1535
MX
8204 }
8205
8206 /* if there are more bios still pending for this dio, just exit */
8207 if (!atomic_dec_and_test(&dip->pending_bios))
8208 goto out;
8209
9be3395b 8210 if (dip->errors) {
e65e1535 8211 bio_io_error(dip->orig_bio);
9be3395b 8212 } else {
4246a0b6
CH
8213 dip->dio_bio->bi_error = 0;
8214 bio_endio(dip->orig_bio);
e65e1535
MX
8215 }
8216out:
8217 bio_put(bio);
8218}
8219
8220static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8221 u64 first_sector, gfp_t gfp_flags)
8222{
da2f0f74 8223 struct bio *bio;
22365979 8224 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
da2f0f74
CM
8225 if (bio)
8226 bio_associate_current(bio);
8227 return bio;
e65e1535
MX
8228}
8229
2ff7e61e 8230static inline int btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8231 struct btrfs_dio_private *dip,
8232 struct bio *bio,
8233 u64 file_offset)
8234{
8235 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8236 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8237 int ret;
8238
8239 /*
8240 * We load all the csum data we need when we submit
8241 * the first bio to reduce the csum tree search and
8242 * contention.
8243 */
8244 if (dip->logical_offset == file_offset) {
2ff7e61e 8245 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8246 file_offset);
8247 if (ret)
8248 return ret;
8249 }
8250
8251 if (bio == dip->orig_bio)
8252 return 0;
8253
8254 file_offset -= dip->logical_offset;
8255 file_offset >>= inode->i_sb->s_blocksize_bits;
8256 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8257
8258 return 0;
8259}
8260
e65e1535 8261static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
81a75f67 8262 u64 file_offset, int skip_sum,
c329861d 8263 int async_submit)
e65e1535 8264{
0b246afa 8265 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8266 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8267 bool write = bio_op(bio) == REQ_OP_WRITE;
e65e1535
MX
8268 int ret;
8269
b812ce28
JB
8270 if (async_submit)
8271 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8272
e65e1535 8273 bio_get(bio);
5fd02043
JB
8274
8275 if (!write) {
0b246afa 8276 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8277 if (ret)
8278 goto err;
8279 }
e65e1535 8280
1ae39938
JB
8281 if (skip_sum)
8282 goto map;
8283
8284 if (write && async_submit) {
0b246afa
JM
8285 ret = btrfs_wq_submit_bio(fs_info, inode, bio, 0, 0,
8286 file_offset,
8287 __btrfs_submit_bio_start_direct_io,
8288 __btrfs_submit_bio_done);
e65e1535 8289 goto err;
1ae39938
JB
8290 } else if (write) {
8291 /*
8292 * If we aren't doing async submit, calculate the csum of the
8293 * bio now.
8294 */
2ff7e61e 8295 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8296 if (ret)
8297 goto err;
23ea8e5a 8298 } else {
2ff7e61e 8299 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8300 file_offset);
c2db1073
TI
8301 if (ret)
8302 goto err;
8303 }
1ae39938 8304map:
2ff7e61e 8305 ret = btrfs_map_bio(fs_info, bio, 0, async_submit);
e65e1535
MX
8306err:
8307 bio_put(bio);
8308 return ret;
8309}
8310
81a75f67 8311static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
e65e1535
MX
8312 int skip_sum)
8313{
8314 struct inode *inode = dip->inode;
0b246afa 8315 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535 8316 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
8317 struct bio *bio;
8318 struct bio *orig_bio = dip->orig_bio;
6a2de22f 8319 struct bio_vec *bvec;
4f024f37 8320 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
8321 u64 file_offset = dip->logical_offset;
8322 u64 submit_len = 0;
8323 u64 map_length;
0b246afa 8324 u32 blocksize = fs_info->sectorsize;
1ae39938 8325 int async_submit = 0;
5f4dc8fc
CR
8326 int nr_sectors;
8327 int ret;
6a2de22f 8328 int i, j;
e65e1535 8329
4f024f37 8330 map_length = orig_bio->bi_iter.bi_size;
0b246afa
JM
8331 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8332 &map_length, NULL, 0);
7a5c3c9b 8333 if (ret)
e65e1535 8334 return -EIO;
facc8a22 8335
4f024f37 8336 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 8337 bio = orig_bio;
c1dc0896 8338 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8339 goto submit;
8340 }
8341
53b381b3 8342 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 8343 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8344 async_submit = 0;
8345 else
8346 async_submit = 1;
8347
02f57c7a
JB
8348 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8349 if (!bio)
8350 return -ENOMEM;
7a5c3c9b 8351
ef295ecf 8352 bio->bi_opf = orig_bio->bi_opf;
02f57c7a
JB
8353 bio->bi_private = dip;
8354 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8355 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
8356 atomic_inc(&dip->pending_bios);
8357
6a2de22f 8358 bio_for_each_segment_all(bvec, orig_bio, j) {
0b246afa 8359 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
5f4dc8fc
CR
8360 i = 0;
8361next_block:
8362 if (unlikely(map_length < submit_len + blocksize ||
8363 bio_add_page(bio, bvec->bv_page, blocksize,
8364 bvec->bv_offset + (i * blocksize)) < blocksize)) {
e65e1535
MX
8365 /*
8366 * inc the count before we submit the bio so
8367 * we know the end IO handler won't happen before
8368 * we inc the count. Otherwise, the dip might get freed
8369 * before we're done setting it up
8370 */
8371 atomic_inc(&dip->pending_bios);
81a75f67 8372 ret = __btrfs_submit_dio_bio(bio, inode,
e65e1535 8373 file_offset, skip_sum,
c329861d 8374 async_submit);
e65e1535
MX
8375 if (ret) {
8376 bio_put(bio);
8377 atomic_dec(&dip->pending_bios);
8378 goto out_err;
8379 }
8380
e65e1535
MX
8381 start_sector += submit_len >> 9;
8382 file_offset += submit_len;
8383
8384 submit_len = 0;
e65e1535
MX
8385
8386 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8387 start_sector, GFP_NOFS);
8388 if (!bio)
8389 goto out_err;
ef295ecf 8390 bio->bi_opf = orig_bio->bi_opf;
e65e1535
MX
8391 bio->bi_private = dip;
8392 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8393 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 8394
4f024f37 8395 map_length = orig_bio->bi_iter.bi_size;
0b246afa 8396 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
3ec706c8 8397 start_sector << 9,
e65e1535
MX
8398 &map_length, NULL, 0);
8399 if (ret) {
8400 bio_put(bio);
8401 goto out_err;
8402 }
5f4dc8fc
CR
8403
8404 goto next_block;
e65e1535 8405 } else {
5f4dc8fc
CR
8406 submit_len += blocksize;
8407 if (--nr_sectors) {
8408 i++;
8409 goto next_block;
8410 }
e65e1535
MX
8411 }
8412 }
8413
02f57c7a 8414submit:
81a75f67 8415 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
c329861d 8416 async_submit);
e65e1535
MX
8417 if (!ret)
8418 return 0;
8419
8420 bio_put(bio);
8421out_err:
8422 dip->errors = 1;
8423 /*
8424 * before atomic variable goto zero, we must
8425 * make sure dip->errors is perceived to be set.
8426 */
4e857c58 8427 smp_mb__before_atomic();
e65e1535
MX
8428 if (atomic_dec_and_test(&dip->pending_bios))
8429 bio_io_error(dip->orig_bio);
8430
8431 /* bio_end_io() will handle error, so we needn't return it */
8432 return 0;
8433}
8434
8a4c1e42
MC
8435static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8436 loff_t file_offset)
4b46fce2 8437{
61de718f
FM
8438 struct btrfs_dio_private *dip = NULL;
8439 struct bio *io_bio = NULL;
23ea8e5a 8440 struct btrfs_io_bio *btrfs_bio;
4b46fce2 8441 int skip_sum;
8a4c1e42 8442 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8443 int ret = 0;
8444
8445 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8446
9be3395b 8447 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
8448 if (!io_bio) {
8449 ret = -ENOMEM;
8450 goto free_ordered;
8451 }
8452
c1dc0896 8453 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8454 if (!dip) {
8455 ret = -ENOMEM;
61de718f 8456 goto free_ordered;
4b46fce2 8457 }
4b46fce2 8458
9be3395b 8459 dip->private = dio_bio->bi_private;
4b46fce2
JB
8460 dip->inode = inode;
8461 dip->logical_offset = file_offset;
4f024f37
KO
8462 dip->bytes = dio_bio->bi_iter.bi_size;
8463 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8464 io_bio->bi_private = dip;
9be3395b
CM
8465 dip->orig_bio = io_bio;
8466 dip->dio_bio = dio_bio;
e65e1535 8467 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8468 btrfs_bio = btrfs_io_bio(io_bio);
8469 btrfs_bio->logical = file_offset;
4b46fce2 8470
c1dc0896 8471 if (write) {
9be3395b 8472 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8473 } else {
9be3395b 8474 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8475 dip->subio_endio = btrfs_subio_endio_read;
8476 }
4b46fce2 8477
f28a4928
FM
8478 /*
8479 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8480 * even if we fail to submit a bio, because in such case we do the
8481 * corresponding error handling below and it must not be done a second
8482 * time by btrfs_direct_IO().
8483 */
8484 if (write) {
8485 struct btrfs_dio_data *dio_data = current->journal_info;
8486
8487 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8488 dip->bytes;
8489 dio_data->unsubmitted_oe_range_start =
8490 dio_data->unsubmitted_oe_range_end;
8491 }
8492
81a75f67 8493 ret = btrfs_submit_direct_hook(dip, skip_sum);
e65e1535 8494 if (!ret)
eaf25d93 8495 return;
9be3395b 8496
23ea8e5a
MX
8497 if (btrfs_bio->end_io)
8498 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b 8499
4b46fce2
JB
8500free_ordered:
8501 /*
61de718f
FM
8502 * If we arrived here it means either we failed to submit the dip
8503 * or we either failed to clone the dio_bio or failed to allocate the
8504 * dip. If we cloned the dio_bio and allocated the dip, we can just
8505 * call bio_endio against our io_bio so that we get proper resource
8506 * cleanup if we fail to submit the dip, otherwise, we must do the
8507 * same as btrfs_endio_direct_[write|read] because we can't call these
8508 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8509 */
61de718f 8510 if (io_bio && dip) {
4246a0b6
CH
8511 io_bio->bi_error = -EIO;
8512 bio_endio(io_bio);
61de718f
FM
8513 /*
8514 * The end io callbacks free our dip, do the final put on io_bio
8515 * and all the cleanup and final put for dio_bio (through
8516 * dio_end_io()).
8517 */
8518 dip = NULL;
8519 io_bio = NULL;
8520 } else {
14543774
FM
8521 if (write)
8522 btrfs_endio_direct_write_update_ordered(inode,
8523 file_offset,
8524 dio_bio->bi_iter.bi_size,
8525 0);
8526 else
61de718f
FM
8527 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8528 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8529
4246a0b6 8530 dio_bio->bi_error = -EIO;
61de718f
FM
8531 /*
8532 * Releases and cleans up our dio_bio, no need to bio_put()
8533 * nor bio_endio()/bio_io_error() against dio_bio.
8534 */
8535 dio_end_io(dio_bio, ret);
4b46fce2 8536 }
61de718f
FM
8537 if (io_bio)
8538 bio_put(io_bio);
8539 kfree(dip);
4b46fce2
JB
8540}
8541
2ff7e61e
JM
8542static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8543 struct kiocb *iocb,
8544 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8545{
8546 int seg;
a1b75f7d 8547 int i;
0b246afa 8548 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8549 ssize_t retval = -EINVAL;
5a5f79b5
CM
8550
8551 if (offset & blocksize_mask)
8552 goto out;
8553
28060d5d
AV
8554 if (iov_iter_alignment(iter) & blocksize_mask)
8555 goto out;
a1b75f7d 8556
28060d5d 8557 /* If this is a write we don't need to check anymore */
cd27e455 8558 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8559 return 0;
8560 /*
8561 * Check to make sure we don't have duplicate iov_base's in this
8562 * iovec, if so return EINVAL, otherwise we'll get csum errors
8563 * when reading back.
8564 */
8565 for (seg = 0; seg < iter->nr_segs; seg++) {
8566 for (i = seg + 1; i < iter->nr_segs; i++) {
8567 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8568 goto out;
8569 }
5a5f79b5
CM
8570 }
8571 retval = 0;
8572out:
8573 return retval;
8574}
eb838e73 8575
c8b8e32d 8576static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8577{
4b46fce2
JB
8578 struct file *file = iocb->ki_filp;
8579 struct inode *inode = file->f_mapping->host;
0b246afa 8580 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8581 struct btrfs_dio_data dio_data = { 0 };
c8b8e32d 8582 loff_t offset = iocb->ki_pos;
0934856d 8583 size_t count = 0;
2e60a51e 8584 int flags = 0;
38851cc1
MX
8585 bool wakeup = true;
8586 bool relock = false;
0934856d 8587 ssize_t ret;
4b46fce2 8588
2ff7e61e 8589 if (check_direct_IO(fs_info, iocb, iter, offset))
5a5f79b5 8590 return 0;
3f7c579c 8591
fe0f07d0 8592 inode_dio_begin(inode);
4e857c58 8593 smp_mb__after_atomic();
38851cc1 8594
0e267c44 8595 /*
41bd9ca4
MX
8596 * The generic stuff only does filemap_write_and_wait_range, which
8597 * isn't enough if we've written compressed pages to this area, so
8598 * we need to flush the dirty pages again to make absolutely sure
8599 * that any outstanding dirty pages are on disk.
0e267c44 8600 */
a6cbcd4a 8601 count = iov_iter_count(iter);
41bd9ca4
MX
8602 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8603 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8604 filemap_fdatawrite_range(inode->i_mapping, offset,
8605 offset + count - 1);
0e267c44 8606
6f673763 8607 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8608 /*
8609 * If the write DIO is beyond the EOF, we need update
8610 * the isize, but it is protected by i_mutex. So we can
8611 * not unlock the i_mutex at this case.
8612 */
8613 if (offset + count <= inode->i_size) {
4aaedfb0 8614 dio_data.overwrite = 1;
5955102c 8615 inode_unlock(inode);
38851cc1
MX
8616 relock = true;
8617 }
7cf5b976 8618 ret = btrfs_delalloc_reserve_space(inode, offset, count);
0934856d 8619 if (ret)
38851cc1 8620 goto out;
823bb20a 8621 dio_data.outstanding_extents = count_max_extents(count);
e1cbbfa5
JB
8622
8623 /*
8624 * We need to know how many extents we reserved so that we can
8625 * do the accounting properly if we go over the number we
8626 * originally calculated. Abuse current->journal_info for this.
8627 */
da17066c 8628 dio_data.reserve = round_up(count,
0b246afa 8629 fs_info->sectorsize);
f28a4928
FM
8630 dio_data.unsubmitted_oe_range_start = (u64)offset;
8631 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8632 current->journal_info = &dio_data;
97dcdea0 8633 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8634 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8635 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8636 inode_dio_end(inode);
38851cc1
MX
8637 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8638 wakeup = false;
0934856d
MX
8639 }
8640
17f8c842 8641 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8642 fs_info->fs_devices->latest_bdev,
c8b8e32d 8643 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8644 btrfs_submit_direct, flags);
6f673763 8645 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8646 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8647 current->journal_info = NULL;
ddba1bfc 8648 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8649 if (dio_data.reserve)
7cf5b976
QW
8650 btrfs_delalloc_release_space(inode, offset,
8651 dio_data.reserve);
f28a4928
FM
8652 /*
8653 * On error we might have left some ordered extents
8654 * without submitting corresponding bios for them, so
8655 * cleanup them up to avoid other tasks getting them
8656 * and waiting for them to complete forever.
8657 */
8658 if (dio_data.unsubmitted_oe_range_start <
8659 dio_data.unsubmitted_oe_range_end)
8660 btrfs_endio_direct_write_update_ordered(inode,
8661 dio_data.unsubmitted_oe_range_start,
8662 dio_data.unsubmitted_oe_range_end -
8663 dio_data.unsubmitted_oe_range_start,
8664 0);
ddba1bfc 8665 } else if (ret >= 0 && (size_t)ret < count)
7cf5b976
QW
8666 btrfs_delalloc_release_space(inode, offset,
8667 count - (size_t)ret);
0934856d 8668 }
38851cc1 8669out:
2e60a51e 8670 if (wakeup)
fe0f07d0 8671 inode_dio_end(inode);
38851cc1 8672 if (relock)
5955102c 8673 inode_lock(inode);
0934856d
MX
8674
8675 return ret;
16432985
CM
8676}
8677
05dadc09
TI
8678#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8679
1506fcc8
YS
8680static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8681 __u64 start, __u64 len)
8682{
05dadc09
TI
8683 int ret;
8684
8685 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8686 if (ret)
8687 return ret;
8688
ec29ed5b 8689 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8690}
8691
a52d9a80 8692int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8693{
d1310b2e
CM
8694 struct extent_io_tree *tree;
8695 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8696 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8697}
1832a6d5 8698
a52d9a80 8699static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8700{
d1310b2e 8701 struct extent_io_tree *tree;
be7bd730
JB
8702 struct inode *inode = page->mapping->host;
8703 int ret;
b888db2b
CM
8704
8705 if (current->flags & PF_MEMALLOC) {
8706 redirty_page_for_writepage(wbc, page);
8707 unlock_page(page);
8708 return 0;
8709 }
be7bd730
JB
8710
8711 /*
8712 * If we are under memory pressure we will call this directly from the
8713 * VM, we need to make sure we have the inode referenced for the ordered
8714 * extent. If not just return like we didn't do anything.
8715 */
8716 if (!igrab(inode)) {
8717 redirty_page_for_writepage(wbc, page);
8718 return AOP_WRITEPAGE_ACTIVATE;
8719 }
d1310b2e 8720 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8721 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8722 btrfs_add_delayed_iput(inode);
8723 return ret;
9ebefb18
CM
8724}
8725
48a3b636
ES
8726static int btrfs_writepages(struct address_space *mapping,
8727 struct writeback_control *wbc)
b293f02e 8728{
d1310b2e 8729 struct extent_io_tree *tree;
771ed689 8730
d1310b2e 8731 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8732 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8733}
8734
3ab2fb5a
CM
8735static int
8736btrfs_readpages(struct file *file, struct address_space *mapping,
8737 struct list_head *pages, unsigned nr_pages)
8738{
d1310b2e
CM
8739 struct extent_io_tree *tree;
8740 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8741 return extent_readpages(tree, mapping, pages, nr_pages,
8742 btrfs_get_extent);
8743}
e6dcd2dc 8744static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8745{
d1310b2e
CM
8746 struct extent_io_tree *tree;
8747 struct extent_map_tree *map;
a52d9a80 8748 int ret;
8c2383c3 8749
d1310b2e
CM
8750 tree = &BTRFS_I(page->mapping->host)->io_tree;
8751 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8752 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8753 if (ret == 1) {
8754 ClearPagePrivate(page);
8755 set_page_private(page, 0);
09cbfeaf 8756 put_page(page);
39279cc3 8757 }
a52d9a80 8758 return ret;
39279cc3
CM
8759}
8760
e6dcd2dc
CM
8761static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8762{
98509cfc
CM
8763 if (PageWriteback(page) || PageDirty(page))
8764 return 0;
3ba7ab22 8765 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8766}
8767
d47992f8
LC
8768static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8769 unsigned int length)
39279cc3 8770{
5fd02043 8771 struct inode *inode = page->mapping->host;
d1310b2e 8772 struct extent_io_tree *tree;
e6dcd2dc 8773 struct btrfs_ordered_extent *ordered;
2ac55d41 8774 struct extent_state *cached_state = NULL;
e6dcd2dc 8775 u64 page_start = page_offset(page);
09cbfeaf 8776 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8777 u64 start;
8778 u64 end;
131e404a 8779 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8780
8b62b72b
CM
8781 /*
8782 * we have the page locked, so new writeback can't start,
8783 * and the dirty bit won't be cleared while we are here.
8784 *
8785 * Wait for IO on this page so that we can safely clear
8786 * the PagePrivate2 bit and do ordered accounting
8787 */
e6dcd2dc 8788 wait_on_page_writeback(page);
8b62b72b 8789
5fd02043 8790 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8791 if (offset) {
8792 btrfs_releasepage(page, GFP_NOFS);
8793 return;
8794 }
131e404a
FDBM
8795
8796 if (!inode_evicting)
ff13db41 8797 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8798again:
8799 start = page_start;
a776c6fa 8800 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8801 page_end - start + 1);
e6dcd2dc 8802 if (ordered) {
dbfdb6d1 8803 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8804 /*
8805 * IO on this page will never be started, so we need
8806 * to account for any ordered extents now
8807 */
131e404a 8808 if (!inode_evicting)
dbfdb6d1 8809 clear_extent_bit(tree, start, end,
131e404a
FDBM
8810 EXTENT_DIRTY | EXTENT_DELALLOC |
8811 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8812 EXTENT_DEFRAG, 1, 0, &cached_state,
8813 GFP_NOFS);
8b62b72b
CM
8814 /*
8815 * whoever cleared the private bit is responsible
8816 * for the finish_ordered_io
8817 */
77cef2ec
JB
8818 if (TestClearPagePrivate2(page)) {
8819 struct btrfs_ordered_inode_tree *tree;
8820 u64 new_len;
8821
8822 tree = &BTRFS_I(inode)->ordered_tree;
8823
8824 spin_lock_irq(&tree->lock);
8825 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8826 new_len = start - ordered->file_offset;
77cef2ec
JB
8827 if (new_len < ordered->truncated_len)
8828 ordered->truncated_len = new_len;
8829 spin_unlock_irq(&tree->lock);
8830
8831 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8832 start,
8833 end - start + 1, 1))
77cef2ec 8834 btrfs_finish_ordered_io(ordered);
8b62b72b 8835 }
e6dcd2dc 8836 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8837 if (!inode_evicting) {
8838 cached_state = NULL;
dbfdb6d1 8839 lock_extent_bits(tree, start, end,
131e404a
FDBM
8840 &cached_state);
8841 }
dbfdb6d1
CR
8842
8843 start = end + 1;
8844 if (start < page_end)
8845 goto again;
131e404a
FDBM
8846 }
8847
b9d0b389
QW
8848 /*
8849 * Qgroup reserved space handler
8850 * Page here will be either
8851 * 1) Already written to disk
8852 * In this case, its reserved space is released from data rsv map
8853 * and will be freed by delayed_ref handler finally.
8854 * So even we call qgroup_free_data(), it won't decrease reserved
8855 * space.
8856 * 2) Not written to disk
0b34c261
GR
8857 * This means the reserved space should be freed here. However,
8858 * if a truncate invalidates the page (by clearing PageDirty)
8859 * and the page is accounted for while allocating extent
8860 * in btrfs_check_data_free_space() we let delayed_ref to
8861 * free the entire extent.
b9d0b389 8862 */
0b34c261
GR
8863 if (PageDirty(page))
8864 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
131e404a
FDBM
8865 if (!inode_evicting) {
8866 clear_extent_bit(tree, page_start, page_end,
8867 EXTENT_LOCKED | EXTENT_DIRTY |
8868 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8869 EXTENT_DEFRAG, 1, 1,
8870 &cached_state, GFP_NOFS);
8871
8872 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8873 }
e6dcd2dc 8874
4a096752 8875 ClearPageChecked(page);
9ad6b7bc 8876 if (PagePrivate(page)) {
9ad6b7bc
CM
8877 ClearPagePrivate(page);
8878 set_page_private(page, 0);
09cbfeaf 8879 put_page(page);
9ad6b7bc 8880 }
39279cc3
CM
8881}
8882
9ebefb18
CM
8883/*
8884 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8885 * called from a page fault handler when a page is first dirtied. Hence we must
8886 * be careful to check for EOF conditions here. We set the page up correctly
8887 * for a written page which means we get ENOSPC checking when writing into
8888 * holes and correct delalloc and unwritten extent mapping on filesystems that
8889 * support these features.
8890 *
8891 * We are not allowed to take the i_mutex here so we have to play games to
8892 * protect against truncate races as the page could now be beyond EOF. Because
8893 * vmtruncate() writes the inode size before removing pages, once we have the
8894 * page lock we can determine safely if the page is beyond EOF. If it is not
8895 * beyond EOF, then the page is guaranteed safe against truncation until we
8896 * unlock the page.
8897 */
c2ec175c 8898int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8899{
c2ec175c 8900 struct page *page = vmf->page;
496ad9aa 8901 struct inode *inode = file_inode(vma->vm_file);
0b246afa 8902 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8903 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8904 struct btrfs_ordered_extent *ordered;
2ac55d41 8905 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8906 char *kaddr;
8907 unsigned long zero_start;
9ebefb18 8908 loff_t size;
1832a6d5 8909 int ret;
9998eb70 8910 int reserved = 0;
d0b7da88 8911 u64 reserved_space;
a52d9a80 8912 u64 page_start;
e6dcd2dc 8913 u64 page_end;
d0b7da88
CR
8914 u64 end;
8915
09cbfeaf 8916 reserved_space = PAGE_SIZE;
9ebefb18 8917
b2b5ef5c 8918 sb_start_pagefault(inode->i_sb);
df480633 8919 page_start = page_offset(page);
09cbfeaf 8920 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8921 end = page_end;
df480633 8922
d0b7da88
CR
8923 /*
8924 * Reserving delalloc space after obtaining the page lock can lead to
8925 * deadlock. For example, if a dirty page is locked by this function
8926 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8927 * dirty page write out, then the btrfs_writepage() function could
8928 * end up waiting indefinitely to get a lock on the page currently
8929 * being processed by btrfs_page_mkwrite() function.
8930 */
7cf5b976 8931 ret = btrfs_delalloc_reserve_space(inode, page_start,
d0b7da88 8932 reserved_space);
9998eb70 8933 if (!ret) {
e41f941a 8934 ret = file_update_time(vma->vm_file);
9998eb70
CM
8935 reserved = 1;
8936 }
56a76f82
NP
8937 if (ret) {
8938 if (ret == -ENOMEM)
8939 ret = VM_FAULT_OOM;
8940 else /* -ENOSPC, -EIO, etc */
8941 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8942 if (reserved)
8943 goto out;
8944 goto out_noreserve;
56a76f82 8945 }
1832a6d5 8946
56a76f82 8947 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8948again:
9ebefb18 8949 lock_page(page);
9ebefb18 8950 size = i_size_read(inode);
a52d9a80 8951
9ebefb18 8952 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8953 (page_start >= size)) {
9ebefb18
CM
8954 /* page got truncated out from underneath us */
8955 goto out_unlock;
8956 }
e6dcd2dc
CM
8957 wait_on_page_writeback(page);
8958
ff13db41 8959 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8960 set_page_extent_mapped(page);
8961
eb84ae03
CM
8962 /*
8963 * we can't set the delalloc bits if there are pending ordered
8964 * extents. Drop our locks and wait for them to finish
8965 */
a776c6fa
NB
8966 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8967 PAGE_SIZE);
e6dcd2dc 8968 if (ordered) {
2ac55d41
JB
8969 unlock_extent_cached(io_tree, page_start, page_end,
8970 &cached_state, GFP_NOFS);
e6dcd2dc 8971 unlock_page(page);
eb84ae03 8972 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8973 btrfs_put_ordered_extent(ordered);
8974 goto again;
8975 }
8976
09cbfeaf 8977 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 8978 reserved_space = round_up(size - page_start,
0b246afa 8979 fs_info->sectorsize);
09cbfeaf 8980 if (reserved_space < PAGE_SIZE) {
d0b7da88
CR
8981 end = page_start + reserved_space - 1;
8982 spin_lock(&BTRFS_I(inode)->lock);
8983 BTRFS_I(inode)->outstanding_extents++;
8984 spin_unlock(&BTRFS_I(inode)->lock);
8985 btrfs_delalloc_release_space(inode, page_start,
09cbfeaf 8986 PAGE_SIZE - reserved_space);
d0b7da88
CR
8987 }
8988 }
8989
fbf19087 8990 /*
5416034f
LB
8991 * page_mkwrite gets called when the page is firstly dirtied after it's
8992 * faulted in, but write(2) could also dirty a page and set delalloc
8993 * bits, thus in this case for space account reason, we still need to
8994 * clear any delalloc bits within this page range since we have to
8995 * reserve data&meta space before lock_page() (see above comments).
fbf19087 8996 */
d0b7da88 8997 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
8998 EXTENT_DIRTY | EXTENT_DELALLOC |
8999 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 9000 0, 0, &cached_state, GFP_NOFS);
fbf19087 9001
d0b7da88 9002 ret = btrfs_set_extent_delalloc(inode, page_start, end,
ba8b04c1 9003 &cached_state, 0);
9ed74f2d 9004 if (ret) {
2ac55d41
JB
9005 unlock_extent_cached(io_tree, page_start, page_end,
9006 &cached_state, GFP_NOFS);
9ed74f2d
JB
9007 ret = VM_FAULT_SIGBUS;
9008 goto out_unlock;
9009 }
e6dcd2dc 9010 ret = 0;
9ebefb18
CM
9011
9012 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9013 if (page_start + PAGE_SIZE > size)
9014 zero_start = size & ~PAGE_MASK;
9ebefb18 9015 else
09cbfeaf 9016 zero_start = PAGE_SIZE;
9ebefb18 9017
09cbfeaf 9018 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9019 kaddr = kmap(page);
09cbfeaf 9020 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9021 flush_dcache_page(page);
9022 kunmap(page);
9023 }
247e743c 9024 ClearPageChecked(page);
e6dcd2dc 9025 set_page_dirty(page);
50a9b214 9026 SetPageUptodate(page);
5a3f23d5 9027
0b246afa 9028 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 9029 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9030 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9031
2ac55d41 9032 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
9033
9034out_unlock:
b2b5ef5c
JK
9035 if (!ret) {
9036 sb_end_pagefault(inode->i_sb);
50a9b214 9037 return VM_FAULT_LOCKED;
b2b5ef5c 9038 }
9ebefb18 9039 unlock_page(page);
1832a6d5 9040out:
d0b7da88 9041 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9998eb70 9042out_noreserve:
b2b5ef5c 9043 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
9044 return ret;
9045}
9046
a41ad394 9047static int btrfs_truncate(struct inode *inode)
39279cc3 9048{
0b246afa 9049 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 9050 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9051 struct btrfs_block_rsv *rsv;
a71754fc 9052 int ret = 0;
3893e33b 9053 int err = 0;
39279cc3 9054 struct btrfs_trans_handle *trans;
0b246afa
JM
9055 u64 mask = fs_info->sectorsize - 1;
9056 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 9057
0ef8b726
JB
9058 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9059 (u64)-1);
9060 if (ret)
9061 return ret;
39279cc3 9062
fcb80c2a 9063 /*
01327610 9064 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9065 * 3 things going on here
9066 *
9067 * 1) We need to reserve space for our orphan item and the space to
9068 * delete our orphan item. Lord knows we don't want to have a dangling
9069 * orphan item because we didn't reserve space to remove it.
9070 *
9071 * 2) We need to reserve space to update our inode.
9072 *
9073 * 3) We need to have something to cache all the space that is going to
9074 * be free'd up by the truncate operation, but also have some slack
9075 * space reserved in case it uses space during the truncate (thank you
9076 * very much snapshotting).
9077 *
01327610 9078 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9079 * space doing the truncate, and we have no earthly idea how much space
01327610 9080 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9081 * doesn't end up using space reserved for updating the inode or
9082 * removing the orphan item. We also need to be able to stop the
9083 * transaction and start a new one, which means we need to be able to
9084 * update the inode several times, and we have no idea of knowing how
9085 * many times that will be, so we can't just reserve 1 item for the
01327610 9086 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9087 * Then there is the orphan item, which does indeed need to be held on
9088 * to for the whole operation, and we need nobody to touch this reserved
9089 * space except the orphan code.
9090 *
9091 * So that leaves us with
9092 *
9093 * 1) root->orphan_block_rsv - for the orphan deletion.
9094 * 2) rsv - for the truncate reservation, which we will steal from the
9095 * transaction reservation.
9096 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9097 * updating the inode.
9098 */
2ff7e61e 9099 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9100 if (!rsv)
9101 return -ENOMEM;
4a338542 9102 rsv->size = min_size;
ca7e70f5 9103 rsv->failfast = 1;
f0cd846e 9104
907cbceb 9105 /*
07127184 9106 * 1 for the truncate slack space
907cbceb
JB
9107 * 1 for updating the inode.
9108 */
f3fe820c 9109 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9110 if (IS_ERR(trans)) {
9111 err = PTR_ERR(trans);
9112 goto out;
9113 }
f0cd846e 9114
907cbceb 9115 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9116 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 9117 min_size, 0);
fcb80c2a 9118 BUG_ON(ret);
f0cd846e 9119
5dc562c5
JB
9120 /*
9121 * So if we truncate and then write and fsync we normally would just
9122 * write the extents that changed, which is a problem if we need to
9123 * first truncate that entire inode. So set this flag so we write out
9124 * all of the extents in the inode to the sync log so we're completely
9125 * safe.
9126 */
9127 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9128 trans->block_rsv = rsv;
907cbceb 9129
8082510e
YZ
9130 while (1) {
9131 ret = btrfs_truncate_inode_items(trans, root, inode,
9132 inode->i_size,
9133 BTRFS_EXTENT_DATA_KEY);
28ed1345 9134 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9135 err = ret;
8082510e 9136 break;
3893e33b 9137 }
39279cc3 9138
0b246afa 9139 trans->block_rsv = &fs_info->trans_block_rsv;
8082510e 9140 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9141 if (ret) {
9142 err = ret;
9143 break;
9144 }
ca7e70f5 9145
3a45bb20 9146 btrfs_end_transaction(trans);
2ff7e61e 9147 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9148
9149 trans = btrfs_start_transaction(root, 2);
9150 if (IS_ERR(trans)) {
9151 ret = err = PTR_ERR(trans);
9152 trans = NULL;
9153 break;
9154 }
9155
47b5d646 9156 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9157 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 9158 rsv, min_size, 0);
ca7e70f5
JB
9159 BUG_ON(ret); /* shouldn't happen */
9160 trans->block_rsv = rsv;
8082510e
YZ
9161 }
9162
9163 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9164 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 9165 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
3893e33b
JB
9166 if (ret)
9167 err = ret;
8082510e
YZ
9168 }
9169
917c16b2 9170 if (trans) {
0b246afa 9171 trans->block_rsv = &fs_info->trans_block_rsv;
917c16b2
CM
9172 ret = btrfs_update_inode(trans, root, inode);
9173 if (ret && !err)
9174 err = ret;
7b128766 9175
3a45bb20 9176 ret = btrfs_end_transaction(trans);
2ff7e61e 9177 btrfs_btree_balance_dirty(fs_info);
917c16b2 9178 }
fcb80c2a 9179out:
2ff7e61e 9180 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9181
3893e33b
JB
9182 if (ret && !err)
9183 err = ret;
a41ad394 9184
3893e33b 9185 return err;
39279cc3
CM
9186}
9187
d352ac68
CM
9188/*
9189 * create a new subvolume directory/inode (helper for the ioctl).
9190 */
d2fb3437 9191int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9192 struct btrfs_root *new_root,
9193 struct btrfs_root *parent_root,
9194 u64 new_dirid)
39279cc3 9195{
39279cc3 9196 struct inode *inode;
76dda93c 9197 int err;
00e4e6b3 9198 u64 index = 0;
39279cc3 9199
12fc9d09
FA
9200 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9201 new_dirid, new_dirid,
9202 S_IFDIR | (~current_umask() & S_IRWXUGO),
9203 &index);
54aa1f4d 9204 if (IS_ERR(inode))
f46b5a66 9205 return PTR_ERR(inode);
39279cc3
CM
9206 inode->i_op = &btrfs_dir_inode_operations;
9207 inode->i_fop = &btrfs_dir_file_operations;
9208
bfe86848 9209 set_nlink(inode, 1);
6ef06d27 9210 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9211 unlock_new_inode(inode);
3b96362c 9212
63541927
FDBM
9213 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9214 if (err)
9215 btrfs_err(new_root->fs_info,
351fd353 9216 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9217 new_root->root_key.objectid, err);
9218
76dda93c 9219 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9220
76dda93c 9221 iput(inode);
ce598979 9222 return err;
39279cc3
CM
9223}
9224
39279cc3
CM
9225struct inode *btrfs_alloc_inode(struct super_block *sb)
9226{
9227 struct btrfs_inode *ei;
2ead6ae7 9228 struct inode *inode;
39279cc3
CM
9229
9230 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9231 if (!ei)
9232 return NULL;
2ead6ae7
YZ
9233
9234 ei->root = NULL;
2ead6ae7 9235 ei->generation = 0;
15ee9bc7 9236 ei->last_trans = 0;
257c62e1 9237 ei->last_sub_trans = 0;
e02119d5 9238 ei->logged_trans = 0;
2ead6ae7 9239 ei->delalloc_bytes = 0;
47059d93 9240 ei->defrag_bytes = 0;
2ead6ae7
YZ
9241 ei->disk_i_size = 0;
9242 ei->flags = 0;
7709cde3 9243 ei->csum_bytes = 0;
2ead6ae7 9244 ei->index_cnt = (u64)-1;
67de1176 9245 ei->dir_index = 0;
2ead6ae7 9246 ei->last_unlink_trans = 0;
46d8bc34 9247 ei->last_log_commit = 0;
8089fe62 9248 ei->delayed_iput_count = 0;
2ead6ae7 9249
9e0baf60
JB
9250 spin_lock_init(&ei->lock);
9251 ei->outstanding_extents = 0;
9252 ei->reserved_extents = 0;
2ead6ae7 9253
72ac3c0d 9254 ei->runtime_flags = 0;
261507a0 9255 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9256
16cdcec7
MX
9257 ei->delayed_node = NULL;
9258
9cc97d64 9259 ei->i_otime.tv_sec = 0;
9260 ei->i_otime.tv_nsec = 0;
9261
2ead6ae7 9262 inode = &ei->vfs_inode;
a8067e02 9263 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
9264 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9265 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
9266 ei->io_tree.track_uptodate = 1;
9267 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9268 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9269 mutex_init(&ei->log_mutex);
f248679e 9270 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9271 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9272 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9273 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9274 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9275 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9276
9277 return inode;
39279cc3
CM
9278}
9279
aaedb55b
JB
9280#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9281void btrfs_test_destroy_inode(struct inode *inode)
9282{
dcdbc059 9283 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9284 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9285}
9286#endif
9287
fa0d7e3d
NP
9288static void btrfs_i_callback(struct rcu_head *head)
9289{
9290 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9291 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9292}
9293
39279cc3
CM
9294void btrfs_destroy_inode(struct inode *inode)
9295{
0b246afa 9296 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9297 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9298 struct btrfs_root *root = BTRFS_I(inode)->root;
9299
b3d9b7a3 9300 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9301 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9302 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9303 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
9304 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9305 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9306 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9307
a6dbd429
JB
9308 /*
9309 * This can happen where we create an inode, but somebody else also
9310 * created the same inode and we need to destroy the one we already
9311 * created.
9312 */
9313 if (!root)
9314 goto free;
9315
8a35d95f
JB
9316 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9317 &BTRFS_I(inode)->runtime_flags)) {
0b246afa 9318 btrfs_info(fs_info, "inode %llu still on the orphan list",
4a0cc7ca 9319 btrfs_ino(BTRFS_I(inode)));
8a35d95f 9320 atomic_dec(&root->orphan_inodes);
7b128766 9321 }
7b128766 9322
d397712b 9323 while (1) {
e6dcd2dc
CM
9324 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9325 if (!ordered)
9326 break;
9327 else {
0b246afa 9328 btrfs_err(fs_info,
5d163e0e
JM
9329 "found ordered extent %llu %llu on inode cleanup",
9330 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9331 btrfs_remove_ordered_extent(inode, ordered);
9332 btrfs_put_ordered_extent(ordered);
9333 btrfs_put_ordered_extent(ordered);
9334 }
9335 }
56fa9d07 9336 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9337 inode_tree_del(inode);
dcdbc059 9338 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
a6dbd429 9339free:
fa0d7e3d 9340 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9341}
9342
45321ac5 9343int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9344{
9345 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9346
6379ef9f
NA
9347 if (root == NULL)
9348 return 1;
9349
fa6ac876 9350 /* the snap/subvol tree is on deleting */
69e9c6c6 9351 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9352 return 1;
76dda93c 9353 else
45321ac5 9354 return generic_drop_inode(inode);
76dda93c
YZ
9355}
9356
0ee0fda0 9357static void init_once(void *foo)
39279cc3
CM
9358{
9359 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9360
9361 inode_init_once(&ei->vfs_inode);
9362}
9363
9364void btrfs_destroy_cachep(void)
9365{
8c0a8537
KS
9366 /*
9367 * Make sure all delayed rcu free inodes are flushed before we
9368 * destroy cache.
9369 */
9370 rcu_barrier();
5598e900
KM
9371 kmem_cache_destroy(btrfs_inode_cachep);
9372 kmem_cache_destroy(btrfs_trans_handle_cachep);
9373 kmem_cache_destroy(btrfs_transaction_cachep);
9374 kmem_cache_destroy(btrfs_path_cachep);
9375 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9376}
9377
9378int btrfs_init_cachep(void)
9379{
837e1972 9380 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9381 sizeof(struct btrfs_inode), 0,
5d097056
VD
9382 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9383 init_once);
39279cc3
CM
9384 if (!btrfs_inode_cachep)
9385 goto fail;
9601e3f6 9386
837e1972 9387 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9388 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9389 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9390 if (!btrfs_trans_handle_cachep)
9391 goto fail;
9601e3f6 9392
837e1972 9393 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6 9394 sizeof(struct btrfs_transaction), 0,
fba4b697 9395 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9396 if (!btrfs_transaction_cachep)
9397 goto fail;
9601e3f6 9398
837e1972 9399 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9400 sizeof(struct btrfs_path), 0,
fba4b697 9401 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9402 if (!btrfs_path_cachep)
9403 goto fail;
9601e3f6 9404
837e1972 9405 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9406 sizeof(struct btrfs_free_space), 0,
fba4b697 9407 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9408 if (!btrfs_free_space_cachep)
9409 goto fail;
9410
39279cc3
CM
9411 return 0;
9412fail:
9413 btrfs_destroy_cachep();
9414 return -ENOMEM;
9415}
9416
9417static int btrfs_getattr(struct vfsmount *mnt,
9418 struct dentry *dentry, struct kstat *stat)
9419{
df0af1a5 9420 u64 delalloc_bytes;
2b0143b5 9421 struct inode *inode = d_inode(dentry);
fadc0d8b
DS
9422 u32 blocksize = inode->i_sb->s_blocksize;
9423
39279cc3 9424 generic_fillattr(inode, stat);
0ee5dc67 9425 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9426
9427 spin_lock(&BTRFS_I(inode)->lock);
9428 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9429 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9430 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9431 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9432 return 0;
9433}
9434
cdd1fedf
DF
9435static int btrfs_rename_exchange(struct inode *old_dir,
9436 struct dentry *old_dentry,
9437 struct inode *new_dir,
9438 struct dentry *new_dentry)
9439{
0b246afa 9440 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9441 struct btrfs_trans_handle *trans;
9442 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9443 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9444 struct inode *new_inode = new_dentry->d_inode;
9445 struct inode *old_inode = old_dentry->d_inode;
c2050a45 9446 struct timespec ctime = current_time(old_inode);
cdd1fedf 9447 struct dentry *parent;
4a0cc7ca
NB
9448 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9449 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9450 u64 old_idx = 0;
9451 u64 new_idx = 0;
9452 u64 root_objectid;
9453 int ret;
86e8aa0e
FM
9454 bool root_log_pinned = false;
9455 bool dest_log_pinned = false;
cdd1fedf
DF
9456
9457 /* we only allow rename subvolume link between subvolumes */
9458 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9459 return -EXDEV;
9460
9461 /* close the race window with snapshot create/destroy ioctl */
9462 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9463 down_read(&fs_info->subvol_sem);
cdd1fedf 9464 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9465 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9466
9467 /*
9468 * We want to reserve the absolute worst case amount of items. So if
9469 * both inodes are subvols and we need to unlink them then that would
9470 * require 4 item modifications, but if they are both normal inodes it
9471 * would require 5 item modifications, so we'll assume their normal
9472 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9473 * should cover the worst case number of items we'll modify.
9474 */
9475 trans = btrfs_start_transaction(root, 12);
9476 if (IS_ERR(trans)) {
9477 ret = PTR_ERR(trans);
9478 goto out_notrans;
9479 }
9480
9481 /*
9482 * We need to find a free sequence number both in the source and
9483 * in the destination directory for the exchange.
9484 */
877574e2 9485 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9486 if (ret)
9487 goto out_fail;
877574e2 9488 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9489 if (ret)
9490 goto out_fail;
9491
9492 BTRFS_I(old_inode)->dir_index = 0ULL;
9493 BTRFS_I(new_inode)->dir_index = 0ULL;
9494
9495 /* Reference for the source. */
9496 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9497 /* force full log commit if subvolume involved. */
0b246afa 9498 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9499 } else {
376e5a57
FM
9500 btrfs_pin_log_trans(root);
9501 root_log_pinned = true;
cdd1fedf
DF
9502 ret = btrfs_insert_inode_ref(trans, dest,
9503 new_dentry->d_name.name,
9504 new_dentry->d_name.len,
9505 old_ino,
f85b7379
DS
9506 btrfs_ino(BTRFS_I(new_dir)),
9507 old_idx);
cdd1fedf
DF
9508 if (ret)
9509 goto out_fail;
cdd1fedf
DF
9510 }
9511
9512 /* And now for the dest. */
9513 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9514 /* force full log commit if subvolume involved. */
0b246afa 9515 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9516 } else {
376e5a57
FM
9517 btrfs_pin_log_trans(dest);
9518 dest_log_pinned = true;
cdd1fedf
DF
9519 ret = btrfs_insert_inode_ref(trans, root,
9520 old_dentry->d_name.name,
9521 old_dentry->d_name.len,
9522 new_ino,
f85b7379
DS
9523 btrfs_ino(BTRFS_I(old_dir)),
9524 new_idx);
cdd1fedf
DF
9525 if (ret)
9526 goto out_fail;
cdd1fedf
DF
9527 }
9528
9529 /* Update inode version and ctime/mtime. */
9530 inode_inc_iversion(old_dir);
9531 inode_inc_iversion(new_dir);
9532 inode_inc_iversion(old_inode);
9533 inode_inc_iversion(new_inode);
9534 old_dir->i_ctime = old_dir->i_mtime = ctime;
9535 new_dir->i_ctime = new_dir->i_mtime = ctime;
9536 old_inode->i_ctime = ctime;
9537 new_inode->i_ctime = ctime;
9538
9539 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9540 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9541 BTRFS_I(old_inode), 1);
9542 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9543 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9544 }
9545
9546 /* src is a subvolume */
9547 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9548 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9549 ret = btrfs_unlink_subvol(trans, root, old_dir,
9550 root_objectid,
9551 old_dentry->d_name.name,
9552 old_dentry->d_name.len);
9553 } else { /* src is an inode */
4ec5934e
NB
9554 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9555 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9556 old_dentry->d_name.name,
9557 old_dentry->d_name.len);
9558 if (!ret)
9559 ret = btrfs_update_inode(trans, root, old_inode);
9560 }
9561 if (ret) {
66642832 9562 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9563 goto out_fail;
9564 }
9565
9566 /* dest is a subvolume */
9567 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9568 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9569 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9570 root_objectid,
9571 new_dentry->d_name.name,
9572 new_dentry->d_name.len);
9573 } else { /* dest is an inode */
4ec5934e
NB
9574 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9575 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9576 new_dentry->d_name.name,
9577 new_dentry->d_name.len);
9578 if (!ret)
9579 ret = btrfs_update_inode(trans, dest, new_inode);
9580 }
9581 if (ret) {
66642832 9582 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9583 goto out_fail;
9584 }
9585
db0a669f 9586 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9587 new_dentry->d_name.name,
9588 new_dentry->d_name.len, 0, old_idx);
9589 if (ret) {
66642832 9590 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9591 goto out_fail;
9592 }
9593
db0a669f 9594 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9595 old_dentry->d_name.name,
9596 old_dentry->d_name.len, 0, new_idx);
9597 if (ret) {
66642832 9598 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9599 goto out_fail;
9600 }
9601
9602 if (old_inode->i_nlink == 1)
9603 BTRFS_I(old_inode)->dir_index = old_idx;
9604 if (new_inode->i_nlink == 1)
9605 BTRFS_I(new_inode)->dir_index = new_idx;
9606
86e8aa0e 9607 if (root_log_pinned) {
cdd1fedf 9608 parent = new_dentry->d_parent;
f85b7379
DS
9609 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9610 parent);
cdd1fedf 9611 btrfs_end_log_trans(root);
86e8aa0e 9612 root_log_pinned = false;
cdd1fedf 9613 }
86e8aa0e 9614 if (dest_log_pinned) {
cdd1fedf 9615 parent = old_dentry->d_parent;
f85b7379
DS
9616 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9617 parent);
cdd1fedf 9618 btrfs_end_log_trans(dest);
86e8aa0e 9619 dest_log_pinned = false;
cdd1fedf
DF
9620 }
9621out_fail:
86e8aa0e
FM
9622 /*
9623 * If we have pinned a log and an error happened, we unpin tasks
9624 * trying to sync the log and force them to fallback to a transaction
9625 * commit if the log currently contains any of the inodes involved in
9626 * this rename operation (to ensure we do not persist a log with an
9627 * inconsistent state for any of these inodes or leading to any
9628 * inconsistencies when replayed). If the transaction was aborted, the
9629 * abortion reason is propagated to userspace when attempting to commit
9630 * the transaction. If the log does not contain any of these inodes, we
9631 * allow the tasks to sync it.
9632 */
9633 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9634 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9635 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9636 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9637 (new_inode &&
0f8939b8 9638 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9639 btrfs_set_log_full_commit(fs_info, trans);
86e8aa0e
FM
9640
9641 if (root_log_pinned) {
9642 btrfs_end_log_trans(root);
9643 root_log_pinned = false;
9644 }
9645 if (dest_log_pinned) {
9646 btrfs_end_log_trans(dest);
9647 dest_log_pinned = false;
9648 }
9649 }
3a45bb20 9650 ret = btrfs_end_transaction(trans);
cdd1fedf
DF
9651out_notrans:
9652 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9653 up_read(&fs_info->subvol_sem);
cdd1fedf 9654 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9655 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9656
9657 return ret;
9658}
9659
9660static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9661 struct btrfs_root *root,
9662 struct inode *dir,
9663 struct dentry *dentry)
9664{
9665 int ret;
9666 struct inode *inode;
9667 u64 objectid;
9668 u64 index;
9669
9670 ret = btrfs_find_free_ino(root, &objectid);
9671 if (ret)
9672 return ret;
9673
9674 inode = btrfs_new_inode(trans, root, dir,
9675 dentry->d_name.name,
9676 dentry->d_name.len,
4a0cc7ca 9677 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9678 objectid,
9679 S_IFCHR | WHITEOUT_MODE,
9680 &index);
9681
9682 if (IS_ERR(inode)) {
9683 ret = PTR_ERR(inode);
9684 return ret;
9685 }
9686
9687 inode->i_op = &btrfs_special_inode_operations;
9688 init_special_inode(inode, inode->i_mode,
9689 WHITEOUT_DEV);
9690
9691 ret = btrfs_init_inode_security(trans, inode, dir,
9692 &dentry->d_name);
9693 if (ret)
c9901618 9694 goto out;
cdd1fedf 9695
cef415af
NB
9696 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9697 BTRFS_I(inode), 0, index);
cdd1fedf 9698 if (ret)
c9901618 9699 goto out;
cdd1fedf
DF
9700
9701 ret = btrfs_update_inode(trans, root, inode);
c9901618 9702out:
cdd1fedf 9703 unlock_new_inode(inode);
c9901618
FM
9704 if (ret)
9705 inode_dec_link_count(inode);
cdd1fedf
DF
9706 iput(inode);
9707
c9901618 9708 return ret;
cdd1fedf
DF
9709}
9710
d397712b 9711static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9712 struct inode *new_dir, struct dentry *new_dentry,
9713 unsigned int flags)
39279cc3 9714{
0b246afa 9715 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9716 struct btrfs_trans_handle *trans;
5062af35 9717 unsigned int trans_num_items;
39279cc3 9718 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9719 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9720 struct inode *new_inode = d_inode(new_dentry);
9721 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9722 u64 index = 0;
4df27c4d 9723 u64 root_objectid;
39279cc3 9724 int ret;
4a0cc7ca 9725 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9726 bool log_pinned = false;
39279cc3 9727
4a0cc7ca 9728 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9729 return -EPERM;
9730
4df27c4d 9731 /* we only allow rename subvolume link between subvolumes */
33345d01 9732 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9733 return -EXDEV;
9734
33345d01 9735 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9736 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9737 return -ENOTEMPTY;
5f39d397 9738
4df27c4d
YZ
9739 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9740 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9741 return -ENOTEMPTY;
9c52057c
CM
9742
9743
9744 /* check for collisions, even if the name isn't there */
4871c158 9745 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9746 new_dentry->d_name.name,
9747 new_dentry->d_name.len);
9748
9749 if (ret) {
9750 if (ret == -EEXIST) {
9751 /* we shouldn't get
9752 * eexist without a new_inode */
fae7f21c 9753 if (WARN_ON(!new_inode)) {
9c52057c
CM
9754 return ret;
9755 }
9756 } else {
9757 /* maybe -EOVERFLOW */
9758 return ret;
9759 }
9760 }
9761 ret = 0;
9762
5a3f23d5 9763 /*
8d875f95
CM
9764 * we're using rename to replace one file with another. Start IO on it
9765 * now so we don't add too much work to the end of the transaction
5a3f23d5 9766 */
8d875f95 9767 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9768 filemap_flush(old_inode->i_mapping);
9769
76dda93c 9770 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9771 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9772 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9773 /*
9774 * We want to reserve the absolute worst case amount of items. So if
9775 * both inodes are subvols and we need to unlink them then that would
9776 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9777 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9778 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9779 * should cover the worst case number of items we'll modify.
5062af35
FM
9780 * If our rename has the whiteout flag, we need more 5 units for the
9781 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9782 * when selinux is enabled).
a22285a6 9783 */
5062af35
FM
9784 trans_num_items = 11;
9785 if (flags & RENAME_WHITEOUT)
9786 trans_num_items += 5;
9787 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9788 if (IS_ERR(trans)) {
cdd1fedf
DF
9789 ret = PTR_ERR(trans);
9790 goto out_notrans;
9791 }
76dda93c 9792
4df27c4d
YZ
9793 if (dest != root)
9794 btrfs_record_root_in_trans(trans, dest);
5f39d397 9795
877574e2 9796 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9797 if (ret)
9798 goto out_fail;
5a3f23d5 9799
67de1176 9800 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9801 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9802 /* force full log commit if subvolume involved. */
0b246afa 9803 btrfs_set_log_full_commit(fs_info, trans);
4df27c4d 9804 } else {
c4aba954
FM
9805 btrfs_pin_log_trans(root);
9806 log_pinned = true;
a5719521
YZ
9807 ret = btrfs_insert_inode_ref(trans, dest,
9808 new_dentry->d_name.name,
9809 new_dentry->d_name.len,
33345d01 9810 old_ino,
4a0cc7ca 9811 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9812 if (ret)
9813 goto out_fail;
4df27c4d 9814 }
5a3f23d5 9815
0c4d2d95
JB
9816 inode_inc_iversion(old_dir);
9817 inode_inc_iversion(new_dir);
9818 inode_inc_iversion(old_inode);
04b285f3
DD
9819 old_dir->i_ctime = old_dir->i_mtime =
9820 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9821 old_inode->i_ctime = current_time(old_dir);
5f39d397 9822
12fcfd22 9823 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9824 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9825 BTRFS_I(old_inode), 1);
12fcfd22 9826
33345d01 9827 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9828 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9829 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9830 old_dentry->d_name.name,
9831 old_dentry->d_name.len);
9832 } else {
4ec5934e
NB
9833 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9834 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9835 old_dentry->d_name.name,
9836 old_dentry->d_name.len);
9837 if (!ret)
9838 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9839 }
79787eaa 9840 if (ret) {
66642832 9841 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9842 goto out_fail;
9843 }
39279cc3
CM
9844
9845 if (new_inode) {
0c4d2d95 9846 inode_inc_iversion(new_inode);
c2050a45 9847 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9848 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
9849 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9850 root_objectid = BTRFS_I(new_inode)->location.objectid;
9851 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9852 root_objectid,
9853 new_dentry->d_name.name,
9854 new_dentry->d_name.len);
9855 BUG_ON(new_inode->i_nlink == 0);
9856 } else {
4ec5934e
NB
9857 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9858 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9859 new_dentry->d_name.name,
9860 new_dentry->d_name.len);
9861 }
4ef31a45 9862 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9863 ret = btrfs_orphan_add(trans,
9864 BTRFS_I(d_inode(new_dentry)));
79787eaa 9865 if (ret) {
66642832 9866 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9867 goto out_fail;
9868 }
39279cc3 9869 }
aec7477b 9870
db0a669f 9871 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 9872 new_dentry->d_name.name,
a5719521 9873 new_dentry->d_name.len, 0, index);
79787eaa 9874 if (ret) {
66642832 9875 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9876 goto out_fail;
9877 }
39279cc3 9878
67de1176
MX
9879 if (old_inode->i_nlink == 1)
9880 BTRFS_I(old_inode)->dir_index = index;
9881
3dc9e8f7 9882 if (log_pinned) {
10d9f309 9883 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9884
f85b7379
DS
9885 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9886 parent);
4df27c4d 9887 btrfs_end_log_trans(root);
3dc9e8f7 9888 log_pinned = false;
4df27c4d 9889 }
cdd1fedf
DF
9890
9891 if (flags & RENAME_WHITEOUT) {
9892 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9893 old_dentry);
9894
9895 if (ret) {
66642832 9896 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9897 goto out_fail;
9898 }
4df27c4d 9899 }
39279cc3 9900out_fail:
3dc9e8f7
FM
9901 /*
9902 * If we have pinned the log and an error happened, we unpin tasks
9903 * trying to sync the log and force them to fallback to a transaction
9904 * commit if the log currently contains any of the inodes involved in
9905 * this rename operation (to ensure we do not persist a log with an
9906 * inconsistent state for any of these inodes or leading to any
9907 * inconsistencies when replayed). If the transaction was aborted, the
9908 * abortion reason is propagated to userspace when attempting to commit
9909 * the transaction. If the log does not contain any of these inodes, we
9910 * allow the tasks to sync it.
9911 */
9912 if (ret && log_pinned) {
0f8939b8
NB
9913 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9914 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9915 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 9916 (new_inode &&
0f8939b8 9917 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9918 btrfs_set_log_full_commit(fs_info, trans);
3dc9e8f7
FM
9919
9920 btrfs_end_log_trans(root);
9921 log_pinned = false;
9922 }
3a45bb20 9923 btrfs_end_transaction(trans);
b44c59a8 9924out_notrans:
33345d01 9925 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9926 up_read(&fs_info->subvol_sem);
9ed74f2d 9927
39279cc3
CM
9928 return ret;
9929}
9930
80ace85c
MS
9931static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9932 struct inode *new_dir, struct dentry *new_dentry,
9933 unsigned int flags)
9934{
cdd1fedf 9935 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9936 return -EINVAL;
9937
cdd1fedf
DF
9938 if (flags & RENAME_EXCHANGE)
9939 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9940 new_dentry);
9941
9942 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9943}
9944
8ccf6f19
MX
9945static void btrfs_run_delalloc_work(struct btrfs_work *work)
9946{
9947 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9948 struct inode *inode;
8ccf6f19
MX
9949
9950 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9951 work);
9f23e289 9952 inode = delalloc_work->inode;
30424601
DS
9953 filemap_flush(inode->i_mapping);
9954 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9955 &BTRFS_I(inode)->runtime_flags))
9f23e289 9956 filemap_flush(inode->i_mapping);
8ccf6f19
MX
9957
9958 if (delalloc_work->delay_iput)
9f23e289 9959 btrfs_add_delayed_iput(inode);
8ccf6f19 9960 else
9f23e289 9961 iput(inode);
8ccf6f19
MX
9962 complete(&delalloc_work->completion);
9963}
9964
9965struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 9966 int delay_iput)
8ccf6f19
MX
9967{
9968 struct btrfs_delalloc_work *work;
9969
100d5702 9970 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9971 if (!work)
9972 return NULL;
9973
9974 init_completion(&work->completion);
9975 INIT_LIST_HEAD(&work->list);
9976 work->inode = inode;
8ccf6f19 9977 work->delay_iput = delay_iput;
9e0af237
LB
9978 WARN_ON_ONCE(!inode);
9979 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9980 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9981
9982 return work;
9983}
9984
9985void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9986{
9987 wait_for_completion(&work->completion);
100d5702 9988 kfree(work);
8ccf6f19
MX
9989}
9990
d352ac68
CM
9991/*
9992 * some fairly slow code that needs optimization. This walks the list
9993 * of all the inodes with pending delalloc and forces them to disk.
9994 */
6c255e67
MX
9995static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9996 int nr)
ea8c2819 9997{
ea8c2819 9998 struct btrfs_inode *binode;
5b21f2ed 9999 struct inode *inode;
8ccf6f19
MX
10000 struct btrfs_delalloc_work *work, *next;
10001 struct list_head works;
1eafa6c7 10002 struct list_head splice;
8ccf6f19 10003 int ret = 0;
ea8c2819 10004
8ccf6f19 10005 INIT_LIST_HEAD(&works);
1eafa6c7 10006 INIT_LIST_HEAD(&splice);
63607cc8 10007
573bfb72 10008 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10009 spin_lock(&root->delalloc_lock);
10010 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10011 while (!list_empty(&splice)) {
10012 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10013 delalloc_inodes);
1eafa6c7 10014
eb73c1b7
MX
10015 list_move_tail(&binode->delalloc_inodes,
10016 &root->delalloc_inodes);
5b21f2ed 10017 inode = igrab(&binode->vfs_inode);
df0af1a5 10018 if (!inode) {
eb73c1b7 10019 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10020 continue;
df0af1a5 10021 }
eb73c1b7 10022 spin_unlock(&root->delalloc_lock);
1eafa6c7 10023
651d494a 10024 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10025 if (!work) {
f4ab9ea7
JB
10026 if (delay_iput)
10027 btrfs_add_delayed_iput(inode);
10028 else
10029 iput(inode);
1eafa6c7 10030 ret = -ENOMEM;
a1ecaabb 10031 goto out;
5b21f2ed 10032 }
1eafa6c7 10033 list_add_tail(&work->list, &works);
a44903ab
QW
10034 btrfs_queue_work(root->fs_info->flush_workers,
10035 &work->work);
6c255e67
MX
10036 ret++;
10037 if (nr != -1 && ret >= nr)
a1ecaabb 10038 goto out;
5b21f2ed 10039 cond_resched();
eb73c1b7 10040 spin_lock(&root->delalloc_lock);
ea8c2819 10041 }
eb73c1b7 10042 spin_unlock(&root->delalloc_lock);
8c8bee1d 10043
a1ecaabb 10044out:
eb73c1b7
MX
10045 list_for_each_entry_safe(work, next, &works, list) {
10046 list_del_init(&work->list);
10047 btrfs_wait_and_free_delalloc_work(work);
10048 }
10049
10050 if (!list_empty_careful(&splice)) {
10051 spin_lock(&root->delalloc_lock);
10052 list_splice_tail(&splice, &root->delalloc_inodes);
10053 spin_unlock(&root->delalloc_lock);
10054 }
573bfb72 10055 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10056 return ret;
10057}
1eafa6c7 10058
eb73c1b7
MX
10059int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10060{
0b246afa 10061 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10062 int ret;
1eafa6c7 10063
0b246afa 10064 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10065 return -EROFS;
10066
6c255e67
MX
10067 ret = __start_delalloc_inodes(root, delay_iput, -1);
10068 if (ret > 0)
10069 ret = 0;
eb73c1b7
MX
10070 /*
10071 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
10072 * we have to make sure the IO is actually started and that
10073 * ordered extents get created before we return
10074 */
0b246afa
JM
10075 atomic_inc(&fs_info->async_submit_draining);
10076 while (atomic_read(&fs_info->nr_async_submits) ||
10077 atomic_read(&fs_info->async_delalloc_pages)) {
10078 wait_event(fs_info->async_submit_wait,
10079 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10080 atomic_read(&fs_info->async_delalloc_pages) == 0));
10081 }
10082 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7
MX
10083 return ret;
10084}
10085
6c255e67
MX
10086int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10087 int nr)
eb73c1b7
MX
10088{
10089 struct btrfs_root *root;
10090 struct list_head splice;
10091 int ret;
10092
2c21b4d7 10093 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10094 return -EROFS;
10095
10096 INIT_LIST_HEAD(&splice);
10097
573bfb72 10098 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10099 spin_lock(&fs_info->delalloc_root_lock);
10100 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10101 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10102 root = list_first_entry(&splice, struct btrfs_root,
10103 delalloc_root);
10104 root = btrfs_grab_fs_root(root);
10105 BUG_ON(!root);
10106 list_move_tail(&root->delalloc_root,
10107 &fs_info->delalloc_roots);
10108 spin_unlock(&fs_info->delalloc_root_lock);
10109
6c255e67 10110 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10111 btrfs_put_fs_root(root);
6c255e67 10112 if (ret < 0)
eb73c1b7
MX
10113 goto out;
10114
6c255e67
MX
10115 if (nr != -1) {
10116 nr -= ret;
10117 WARN_ON(nr < 0);
10118 }
eb73c1b7 10119 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10120 }
eb73c1b7 10121 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10122
6c255e67 10123 ret = 0;
eb73c1b7
MX
10124 atomic_inc(&fs_info->async_submit_draining);
10125 while (atomic_read(&fs_info->nr_async_submits) ||
10126 atomic_read(&fs_info->async_delalloc_pages)) {
10127 wait_event(fs_info->async_submit_wait,
10128 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10129 atomic_read(&fs_info->async_delalloc_pages) == 0));
10130 }
10131 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 10132out:
1eafa6c7 10133 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10134 spin_lock(&fs_info->delalloc_root_lock);
10135 list_splice_tail(&splice, &fs_info->delalloc_roots);
10136 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10137 }
573bfb72 10138 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10139 return ret;
ea8c2819
CM
10140}
10141
39279cc3
CM
10142static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10143 const char *symname)
10144{
0b246afa 10145 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10146 struct btrfs_trans_handle *trans;
10147 struct btrfs_root *root = BTRFS_I(dir)->root;
10148 struct btrfs_path *path;
10149 struct btrfs_key key;
1832a6d5 10150 struct inode *inode = NULL;
39279cc3
CM
10151 int err;
10152 int drop_inode = 0;
10153 u64 objectid;
67871254 10154 u64 index = 0;
39279cc3
CM
10155 int name_len;
10156 int datasize;
5f39d397 10157 unsigned long ptr;
39279cc3 10158 struct btrfs_file_extent_item *ei;
5f39d397 10159 struct extent_buffer *leaf;
39279cc3 10160
f06becc4 10161 name_len = strlen(symname);
0b246afa 10162 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10163 return -ENAMETOOLONG;
1832a6d5 10164
9ed74f2d
JB
10165 /*
10166 * 2 items for inode item and ref
10167 * 2 items for dir items
9269d12b
FM
10168 * 1 item for updating parent inode item
10169 * 1 item for the inline extent item
9ed74f2d
JB
10170 * 1 item for xattr if selinux is on
10171 */
9269d12b 10172 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10173 if (IS_ERR(trans))
10174 return PTR_ERR(trans);
1832a6d5 10175
581bb050
LZ
10176 err = btrfs_find_free_ino(root, &objectid);
10177 if (err)
10178 goto out_unlock;
10179
aec7477b 10180 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10181 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10182 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10183 if (IS_ERR(inode)) {
10184 err = PTR_ERR(inode);
39279cc3 10185 goto out_unlock;
7cf96da3 10186 }
39279cc3 10187
ad19db71
CS
10188 /*
10189 * If the active LSM wants to access the inode during
10190 * d_instantiate it needs these. Smack checks to see
10191 * if the filesystem supports xattrs by looking at the
10192 * ops vector.
10193 */
10194 inode->i_fop = &btrfs_file_operations;
10195 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10196 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10197 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10198
10199 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10200 if (err)
10201 goto out_unlock_inode;
ad19db71 10202
39279cc3 10203 path = btrfs_alloc_path();
d8926bb3
MF
10204 if (!path) {
10205 err = -ENOMEM;
b0d5d10f 10206 goto out_unlock_inode;
d8926bb3 10207 }
4a0cc7ca 10208 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10209 key.offset = 0;
962a298f 10210 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10211 datasize = btrfs_file_extent_calc_inline_size(name_len);
10212 err = btrfs_insert_empty_item(trans, root, path, &key,
10213 datasize);
54aa1f4d 10214 if (err) {
b0839166 10215 btrfs_free_path(path);
b0d5d10f 10216 goto out_unlock_inode;
54aa1f4d 10217 }
5f39d397
CM
10218 leaf = path->nodes[0];
10219 ei = btrfs_item_ptr(leaf, path->slots[0],
10220 struct btrfs_file_extent_item);
10221 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10222 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10223 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10224 btrfs_set_file_extent_encryption(leaf, ei, 0);
10225 btrfs_set_file_extent_compression(leaf, ei, 0);
10226 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10227 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10228
39279cc3 10229 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10230 write_extent_buffer(leaf, symname, ptr, name_len);
10231 btrfs_mark_buffer_dirty(leaf);
39279cc3 10232 btrfs_free_path(path);
5f39d397 10233
39279cc3 10234 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10235 inode_nohighmem(inode);
39279cc3 10236 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10237 inode_set_bytes(inode, name_len);
6ef06d27 10238 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10239 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10240 /*
10241 * Last step, add directory indexes for our symlink inode. This is the
10242 * last step to avoid extra cleanup of these indexes if an error happens
10243 * elsewhere above.
10244 */
10245 if (!err)
cef415af
NB
10246 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10247 BTRFS_I(inode), 0, index);
b0d5d10f 10248 if (err) {
54aa1f4d 10249 drop_inode = 1;
b0d5d10f
CM
10250 goto out_unlock_inode;
10251 }
10252
10253 unlock_new_inode(inode);
10254 d_instantiate(dentry, inode);
39279cc3
CM
10255
10256out_unlock:
3a45bb20 10257 btrfs_end_transaction(trans);
39279cc3
CM
10258 if (drop_inode) {
10259 inode_dec_link_count(inode);
10260 iput(inode);
10261 }
2ff7e61e 10262 btrfs_btree_balance_dirty(fs_info);
39279cc3 10263 return err;
b0d5d10f
CM
10264
10265out_unlock_inode:
10266 drop_inode = 1;
10267 unlock_new_inode(inode);
10268 goto out_unlock;
39279cc3 10269}
16432985 10270
0af3d00b
JB
10271static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10272 u64 start, u64 num_bytes, u64 min_size,
10273 loff_t actual_len, u64 *alloc_hint,
10274 struct btrfs_trans_handle *trans)
d899e052 10275{
0b246afa 10276 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10277 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10278 struct extent_map *em;
d899e052
YZ
10279 struct btrfs_root *root = BTRFS_I(inode)->root;
10280 struct btrfs_key ins;
d899e052 10281 u64 cur_offset = start;
55a61d1d 10282 u64 i_size;
154ea289 10283 u64 cur_bytes;
0b670dc4 10284 u64 last_alloc = (u64)-1;
d899e052 10285 int ret = 0;
0af3d00b 10286 bool own_trans = true;
18513091 10287 u64 end = start + num_bytes - 1;
d899e052 10288
0af3d00b
JB
10289 if (trans)
10290 own_trans = false;
d899e052 10291 while (num_bytes > 0) {
0af3d00b
JB
10292 if (own_trans) {
10293 trans = btrfs_start_transaction(root, 3);
10294 if (IS_ERR(trans)) {
10295 ret = PTR_ERR(trans);
10296 break;
10297 }
5a303d5d
YZ
10298 }
10299
ee22184b 10300 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10301 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10302 /*
10303 * If we are severely fragmented we could end up with really
10304 * small allocations, so if the allocator is returning small
10305 * chunks lets make its job easier by only searching for those
10306 * sized chunks.
10307 */
10308 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10309 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10310 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10311 if (ret) {
0af3d00b 10312 if (own_trans)
3a45bb20 10313 btrfs_end_transaction(trans);
a22285a6 10314 break;
d899e052 10315 }
0b246afa 10316 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10317
0b670dc4 10318 last_alloc = ins.offset;
d899e052
YZ
10319 ret = insert_reserved_file_extent(trans, inode,
10320 cur_offset, ins.objectid,
10321 ins.offset, ins.offset,
920bbbfb 10322 ins.offset, 0, 0, 0,
d899e052 10323 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10324 if (ret) {
2ff7e61e 10325 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10326 ins.offset, 0);
66642832 10327 btrfs_abort_transaction(trans, ret);
79787eaa 10328 if (own_trans)
3a45bb20 10329 btrfs_end_transaction(trans);
79787eaa
JM
10330 break;
10331 }
31193213 10332
dcdbc059 10333 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10334 cur_offset + ins.offset -1, 0);
5a303d5d 10335
5dc562c5
JB
10336 em = alloc_extent_map();
10337 if (!em) {
10338 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10339 &BTRFS_I(inode)->runtime_flags);
10340 goto next;
10341 }
10342
10343 em->start = cur_offset;
10344 em->orig_start = cur_offset;
10345 em->len = ins.offset;
10346 em->block_start = ins.objectid;
10347 em->block_len = ins.offset;
b4939680 10348 em->orig_block_len = ins.offset;
cc95bef6 10349 em->ram_bytes = ins.offset;
0b246afa 10350 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10351 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10352 em->generation = trans->transid;
10353
10354 while (1) {
10355 write_lock(&em_tree->lock);
09a2a8f9 10356 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10357 write_unlock(&em_tree->lock);
10358 if (ret != -EEXIST)
10359 break;
dcdbc059 10360 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10361 cur_offset + ins.offset - 1,
10362 0);
10363 }
10364 free_extent_map(em);
10365next:
d899e052
YZ
10366 num_bytes -= ins.offset;
10367 cur_offset += ins.offset;
efa56464 10368 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10369
0c4d2d95 10370 inode_inc_iversion(inode);
c2050a45 10371 inode->i_ctime = current_time(inode);
6cbff00f 10372 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10373 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10374 (actual_len > inode->i_size) &&
10375 (cur_offset > inode->i_size)) {
d1ea6a61 10376 if (cur_offset > actual_len)
55a61d1d 10377 i_size = actual_len;
d1ea6a61 10378 else
55a61d1d
JB
10379 i_size = cur_offset;
10380 i_size_write(inode, i_size);
10381 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10382 }
10383
d899e052 10384 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10385
10386 if (ret) {
66642832 10387 btrfs_abort_transaction(trans, ret);
79787eaa 10388 if (own_trans)
3a45bb20 10389 btrfs_end_transaction(trans);
79787eaa
JM
10390 break;
10391 }
d899e052 10392
0af3d00b 10393 if (own_trans)
3a45bb20 10394 btrfs_end_transaction(trans);
5a303d5d 10395 }
18513091
WX
10396 if (cur_offset < end)
10397 btrfs_free_reserved_data_space(inode, cur_offset,
10398 end - cur_offset + 1);
d899e052
YZ
10399 return ret;
10400}
10401
0af3d00b
JB
10402int btrfs_prealloc_file_range(struct inode *inode, int mode,
10403 u64 start, u64 num_bytes, u64 min_size,
10404 loff_t actual_len, u64 *alloc_hint)
10405{
10406 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10407 min_size, actual_len, alloc_hint,
10408 NULL);
10409}
10410
10411int btrfs_prealloc_file_range_trans(struct inode *inode,
10412 struct btrfs_trans_handle *trans, int mode,
10413 u64 start, u64 num_bytes, u64 min_size,
10414 loff_t actual_len, u64 *alloc_hint)
10415{
10416 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10417 min_size, actual_len, alloc_hint, trans);
10418}
10419
e6dcd2dc
CM
10420static int btrfs_set_page_dirty(struct page *page)
10421{
e6dcd2dc
CM
10422 return __set_page_dirty_nobuffers(page);
10423}
10424
10556cb2 10425static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10426{
b83cc969 10427 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10428 umode_t mode = inode->i_mode;
b83cc969 10429
cb6db4e5
JM
10430 if (mask & MAY_WRITE &&
10431 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10432 if (btrfs_root_readonly(root))
10433 return -EROFS;
10434 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10435 return -EACCES;
10436 }
2830ba7f 10437 return generic_permission(inode, mask);
fdebe2bd 10438}
39279cc3 10439
ef3b9af5
FM
10440static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10441{
2ff7e61e 10442 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10443 struct btrfs_trans_handle *trans;
10444 struct btrfs_root *root = BTRFS_I(dir)->root;
10445 struct inode *inode = NULL;
10446 u64 objectid;
10447 u64 index;
10448 int ret = 0;
10449
10450 /*
10451 * 5 units required for adding orphan entry
10452 */
10453 trans = btrfs_start_transaction(root, 5);
10454 if (IS_ERR(trans))
10455 return PTR_ERR(trans);
10456
10457 ret = btrfs_find_free_ino(root, &objectid);
10458 if (ret)
10459 goto out;
10460
10461 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10462 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10463 if (IS_ERR(inode)) {
10464 ret = PTR_ERR(inode);
10465 inode = NULL;
10466 goto out;
10467 }
10468
ef3b9af5
FM
10469 inode->i_fop = &btrfs_file_operations;
10470 inode->i_op = &btrfs_file_inode_operations;
10471
10472 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10473 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10474
b0d5d10f
CM
10475 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10476 if (ret)
10477 goto out_inode;
10478
10479 ret = btrfs_update_inode(trans, root, inode);
10480 if (ret)
10481 goto out_inode;
73f2e545 10482 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10483 if (ret)
b0d5d10f 10484 goto out_inode;
ef3b9af5 10485
5762b5c9
FM
10486 /*
10487 * We set number of links to 0 in btrfs_new_inode(), and here we set
10488 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10489 * through:
10490 *
10491 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10492 */
10493 set_nlink(inode, 1);
b0d5d10f 10494 unlock_new_inode(inode);
ef3b9af5
FM
10495 d_tmpfile(dentry, inode);
10496 mark_inode_dirty(inode);
10497
10498out:
3a45bb20 10499 btrfs_end_transaction(trans);
ef3b9af5
FM
10500 if (ret)
10501 iput(inode);
2ff7e61e
JM
10502 btrfs_balance_delayed_items(fs_info);
10503 btrfs_btree_balance_dirty(fs_info);
ef3b9af5 10504 return ret;
b0d5d10f
CM
10505
10506out_inode:
10507 unlock_new_inode(inode);
10508 goto out;
10509
ef3b9af5
FM
10510}
10511
6e1d5dcc 10512static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10513 .getattr = btrfs_getattr,
39279cc3
CM
10514 .lookup = btrfs_lookup,
10515 .create = btrfs_create,
10516 .unlink = btrfs_unlink,
10517 .link = btrfs_link,
10518 .mkdir = btrfs_mkdir,
10519 .rmdir = btrfs_rmdir,
2773bf00 10520 .rename = btrfs_rename2,
39279cc3
CM
10521 .symlink = btrfs_symlink,
10522 .setattr = btrfs_setattr,
618e21d5 10523 .mknod = btrfs_mknod,
5103e947 10524 .listxattr = btrfs_listxattr,
fdebe2bd 10525 .permission = btrfs_permission,
4e34e719 10526 .get_acl = btrfs_get_acl,
996a710d 10527 .set_acl = btrfs_set_acl,
93fd63c2 10528 .update_time = btrfs_update_time,
ef3b9af5 10529 .tmpfile = btrfs_tmpfile,
39279cc3 10530};
6e1d5dcc 10531static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10532 .lookup = btrfs_lookup,
fdebe2bd 10533 .permission = btrfs_permission,
93fd63c2 10534 .update_time = btrfs_update_time,
39279cc3 10535};
76dda93c 10536
828c0950 10537static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10538 .llseek = generic_file_llseek,
10539 .read = generic_read_dir,
02dbfc99 10540 .iterate_shared = btrfs_real_readdir,
34287aa3 10541 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10542#ifdef CONFIG_COMPAT
4c63c245 10543 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10544#endif
6bf13c0c 10545 .release = btrfs_release_file,
e02119d5 10546 .fsync = btrfs_sync_file,
39279cc3
CM
10547};
10548
20e5506b 10549static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10550 /* mandatory callbacks */
065631f6 10551 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac 10552 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4d53dddb
DS
10553 .merge_bio_hook = btrfs_merge_bio_hook,
10554
10555 /* optional callbacks */
10556 .fill_delalloc = run_delalloc_range,
e6dcd2dc 10557 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10558 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10559 .set_bit_hook = btrfs_set_bit_hook,
10560 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10561 .merge_extent_hook = btrfs_merge_extent_hook,
10562 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
10563};
10564
35054394
CM
10565/*
10566 * btrfs doesn't support the bmap operation because swapfiles
10567 * use bmap to make a mapping of extents in the file. They assume
10568 * these extents won't change over the life of the file and they
10569 * use the bmap result to do IO directly to the drive.
10570 *
10571 * the btrfs bmap call would return logical addresses that aren't
10572 * suitable for IO and they also will change frequently as COW
10573 * operations happen. So, swapfile + btrfs == corruption.
10574 *
10575 * For now we're avoiding this by dropping bmap.
10576 */
7f09410b 10577static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10578 .readpage = btrfs_readpage,
10579 .writepage = btrfs_writepage,
b293f02e 10580 .writepages = btrfs_writepages,
3ab2fb5a 10581 .readpages = btrfs_readpages,
16432985 10582 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10583 .invalidatepage = btrfs_invalidatepage,
10584 .releasepage = btrfs_releasepage,
e6dcd2dc 10585 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10586 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10587};
10588
7f09410b 10589static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10590 .readpage = btrfs_readpage,
10591 .writepage = btrfs_writepage,
2bf5a725
CM
10592 .invalidatepage = btrfs_invalidatepage,
10593 .releasepage = btrfs_releasepage,
39279cc3
CM
10594};
10595
6e1d5dcc 10596static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10597 .getattr = btrfs_getattr,
10598 .setattr = btrfs_setattr,
5103e947 10599 .listxattr = btrfs_listxattr,
fdebe2bd 10600 .permission = btrfs_permission,
1506fcc8 10601 .fiemap = btrfs_fiemap,
4e34e719 10602 .get_acl = btrfs_get_acl,
996a710d 10603 .set_acl = btrfs_set_acl,
e41f941a 10604 .update_time = btrfs_update_time,
39279cc3 10605};
6e1d5dcc 10606static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10607 .getattr = btrfs_getattr,
10608 .setattr = btrfs_setattr,
fdebe2bd 10609 .permission = btrfs_permission,
33268eaf 10610 .listxattr = btrfs_listxattr,
4e34e719 10611 .get_acl = btrfs_get_acl,
996a710d 10612 .set_acl = btrfs_set_acl,
e41f941a 10613 .update_time = btrfs_update_time,
618e21d5 10614};
6e1d5dcc 10615static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10616 .get_link = page_get_link,
f209561a 10617 .getattr = btrfs_getattr,
22c44fe6 10618 .setattr = btrfs_setattr,
fdebe2bd 10619 .permission = btrfs_permission,
0279b4cd 10620 .listxattr = btrfs_listxattr,
e41f941a 10621 .update_time = btrfs_update_time,
39279cc3 10622};
76dda93c 10623
82d339d9 10624const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10625 .d_delete = btrfs_dentry_delete,
b4aff1f8 10626 .d_release = btrfs_dentry_release,
76dda93c 10627};