]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/inode.c
btrfs: Keep one more workspace around
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
39279cc3 33#include <linux/compat.h>
9ebefb18 34#include <linux/bit_spinlock.h>
5103e947 35#include <linux/xattr.h>
33268eaf 36#include <linux/posix_acl.h>
d899e052 37#include <linux/falloc.h>
5a0e3ad6 38#include <linux/slab.h>
7a36ddec 39#include <linux/ratelimit.h>
22c44fe6 40#include <linux/mount.h>
55e301fd 41#include <linux/btrfs.h>
53b381b3 42#include <linux/blkdev.h>
f23b5a59 43#include <linux/posix_acl_xattr.h>
e2e40f2c 44#include <linux/uio.h>
39279cc3
CM
45#include "ctree.h"
46#include "disk-io.h"
47#include "transaction.h"
48#include "btrfs_inode.h"
39279cc3 49#include "print-tree.h"
e6dcd2dc 50#include "ordered-data.h"
95819c05 51#include "xattr.h"
e02119d5 52#include "tree-log.h"
4a54c8c1 53#include "volumes.h"
c8b97818 54#include "compression.h"
b4ce94de 55#include "locking.h"
dc89e982 56#include "free-space-cache.h"
581bb050 57#include "inode-map.h"
38c227d8 58#include "backref.h"
f23b5a59 59#include "hash.h"
63541927 60#include "props.h"
31193213 61#include "qgroup.h"
dda3245e 62#include "dedupe.h"
39279cc3
CM
63
64struct btrfs_iget_args {
90d3e592 65 struct btrfs_key *location;
39279cc3
CM
66 struct btrfs_root *root;
67};
68
f28a4928
FM
69struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
4aaedfb0 74 int overwrite;
f28a4928
FM
75};
76
6e1d5dcc
AD
77static const struct inode_operations btrfs_dir_inode_operations;
78static const struct inode_operations btrfs_symlink_inode_operations;
79static const struct inode_operations btrfs_dir_ro_inode_operations;
80static const struct inode_operations btrfs_special_inode_operations;
81static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
82static const struct address_space_operations btrfs_aops;
83static const struct address_space_operations btrfs_symlink_aops;
828c0950 84static const struct file_operations btrfs_dir_file_operations;
20e5506b 85static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
86
87static struct kmem_cache *btrfs_inode_cachep;
88struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 89struct kmem_cache *btrfs_path_cachep;
dc89e982 90struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
91
92#define S_SHIFT 12
4d4ab6d6 93static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101};
102
3972f260 103static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 104static int btrfs_truncate(struct inode *inode);
5fd02043 105static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
106static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
dda3245e
WX
108 u64 start, u64 end, u64 delalloc_end,
109 int *page_started, unsigned long *nr_written,
110 int unlock, struct btrfs_dedupe_hash *hash);
6f9994db
LB
111static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
112 u64 orig_start, u64 block_start,
113 u64 block_len, u64 orig_block_len,
114 u64 ram_bytes, int compress_type,
115 int type);
7b128766 116
52427260
QW
117static void __endio_write_update_ordered(struct inode *inode,
118 const u64 offset, const u64 bytes,
119 const bool uptodate);
120
121/*
122 * Cleanup all submitted ordered extents in specified range to handle errors
123 * from the fill_dellaloc() callback.
124 *
125 * NOTE: caller must ensure that when an error happens, it can not call
126 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
127 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
128 * to be released, which we want to happen only when finishing the ordered
129 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
130 * fill_delalloc() callback already does proper cleanup for the first page of
131 * the range, that is, it invokes the callback writepage_end_io_hook() for the
132 * range of the first page.
133 */
134static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
135 const u64 offset,
136 const u64 bytes)
137{
138 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
139 bytes - PAGE_SIZE, false);
140}
141
48a3b636 142static int btrfs_dirty_inode(struct inode *inode);
7b128766 143
6a3891c5
JB
144#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
145void btrfs_test_inode_set_ops(struct inode *inode)
146{
147 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
148}
149#endif
150
f34f57a3 151static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
152 struct inode *inode, struct inode *dir,
153 const struct qstr *qstr)
0279b4cd
JO
154{
155 int err;
156
f34f57a3 157 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 158 if (!err)
2a7dba39 159 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
160 return err;
161}
162
c8b97818
CM
163/*
164 * this does all the hard work for inserting an inline extent into
165 * the btree. The caller should have done a btrfs_drop_extents so that
166 * no overlapping inline items exist in the btree
167 */
40f76580 168static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 169 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
170 struct btrfs_root *root, struct inode *inode,
171 u64 start, size_t size, size_t compressed_size,
fe3f566c 172 int compress_type,
c8b97818
CM
173 struct page **compressed_pages)
174{
c8b97818
CM
175 struct extent_buffer *leaf;
176 struct page *page = NULL;
177 char *kaddr;
178 unsigned long ptr;
179 struct btrfs_file_extent_item *ei;
c8b97818
CM
180 int ret;
181 size_t cur_size = size;
c8b97818 182 unsigned long offset;
c8b97818 183
fe3f566c 184 if (compressed_size && compressed_pages)
c8b97818 185 cur_size = compressed_size;
c8b97818 186
1acae57b 187 inode_add_bytes(inode, size);
c8b97818 188
1acae57b
FDBM
189 if (!extent_inserted) {
190 struct btrfs_key key;
191 size_t datasize;
c8b97818 192
4a0cc7ca 193 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 194 key.offset = start;
962a298f 195 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 196
1acae57b
FDBM
197 datasize = btrfs_file_extent_calc_inline_size(cur_size);
198 path->leave_spinning = 1;
199 ret = btrfs_insert_empty_item(trans, root, path, &key,
200 datasize);
79b4f4c6 201 if (ret)
1acae57b 202 goto fail;
c8b97818
CM
203 }
204 leaf = path->nodes[0];
205 ei = btrfs_item_ptr(leaf, path->slots[0],
206 struct btrfs_file_extent_item);
207 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
208 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
209 btrfs_set_file_extent_encryption(leaf, ei, 0);
210 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
211 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
212 ptr = btrfs_file_extent_inline_start(ei);
213
261507a0 214 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
215 struct page *cpage;
216 int i = 0;
d397712b 217 while (compressed_size > 0) {
c8b97818 218 cpage = compressed_pages[i];
5b050f04 219 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 220 PAGE_SIZE);
c8b97818 221
7ac687d9 222 kaddr = kmap_atomic(cpage);
c8b97818 223 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 224 kunmap_atomic(kaddr);
c8b97818
CM
225
226 i++;
227 ptr += cur_size;
228 compressed_size -= cur_size;
229 }
230 btrfs_set_file_extent_compression(leaf, ei,
261507a0 231 compress_type);
c8b97818
CM
232 } else {
233 page = find_get_page(inode->i_mapping,
09cbfeaf 234 start >> PAGE_SHIFT);
c8b97818 235 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 236 kaddr = kmap_atomic(page);
09cbfeaf 237 offset = start & (PAGE_SIZE - 1);
c8b97818 238 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 239 kunmap_atomic(kaddr);
09cbfeaf 240 put_page(page);
c8b97818
CM
241 }
242 btrfs_mark_buffer_dirty(leaf);
1acae57b 243 btrfs_release_path(path);
c8b97818 244
c2167754
YZ
245 /*
246 * we're an inline extent, so nobody can
247 * extend the file past i_size without locking
248 * a page we already have locked.
249 *
250 * We must do any isize and inode updates
251 * before we unlock the pages. Otherwise we
252 * could end up racing with unlink.
253 */
c8b97818 254 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 255 ret = btrfs_update_inode(trans, root, inode);
c2167754 256
c8b97818 257fail:
79b4f4c6 258 return ret;
c8b97818
CM
259}
260
261
262/*
263 * conditionally insert an inline extent into the file. This
264 * does the checks required to make sure the data is small enough
265 * to fit as an inline extent.
266 */
00361589
JB
267static noinline int cow_file_range_inline(struct btrfs_root *root,
268 struct inode *inode, u64 start,
269 u64 end, size_t compressed_size,
270 int compress_type,
271 struct page **compressed_pages)
c8b97818 272{
0b246afa 273 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 274 struct btrfs_trans_handle *trans;
c8b97818
CM
275 u64 isize = i_size_read(inode);
276 u64 actual_end = min(end + 1, isize);
277 u64 inline_len = actual_end - start;
0b246afa 278 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
279 u64 data_len = inline_len;
280 int ret;
1acae57b
FDBM
281 struct btrfs_path *path;
282 int extent_inserted = 0;
283 u32 extent_item_size;
c8b97818
CM
284
285 if (compressed_size)
286 data_len = compressed_size;
287
288 if (start > 0 ||
0b246afa
JM
289 actual_end > fs_info->sectorsize ||
290 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 291 (!compressed_size &&
0b246afa 292 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 293 end + 1 < isize ||
0b246afa 294 data_len > fs_info->max_inline) {
c8b97818
CM
295 return 1;
296 }
297
1acae57b
FDBM
298 path = btrfs_alloc_path();
299 if (!path)
300 return -ENOMEM;
301
00361589 302 trans = btrfs_join_transaction(root);
1acae57b
FDBM
303 if (IS_ERR(trans)) {
304 btrfs_free_path(path);
00361589 305 return PTR_ERR(trans);
1acae57b 306 }
0b246afa 307 trans->block_rsv = &fs_info->delalloc_block_rsv;
00361589 308
1acae57b
FDBM
309 if (compressed_size && compressed_pages)
310 extent_item_size = btrfs_file_extent_calc_inline_size(
311 compressed_size);
312 else
313 extent_item_size = btrfs_file_extent_calc_inline_size(
314 inline_len);
315
316 ret = __btrfs_drop_extents(trans, root, inode, path,
317 start, aligned_end, NULL,
318 1, 1, extent_item_size, &extent_inserted);
00361589 319 if (ret) {
66642832 320 btrfs_abort_transaction(trans, ret);
00361589
JB
321 goto out;
322 }
c8b97818
CM
323
324 if (isize > actual_end)
325 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
326 ret = insert_inline_extent(trans, path, extent_inserted,
327 root, inode, start,
c8b97818 328 inline_len, compressed_size,
fe3f566c 329 compress_type, compressed_pages);
2adcac1a 330 if (ret && ret != -ENOSPC) {
66642832 331 btrfs_abort_transaction(trans, ret);
00361589 332 goto out;
2adcac1a 333 } else if (ret == -ENOSPC) {
00361589
JB
334 ret = 1;
335 goto out;
79787eaa 336 }
2adcac1a 337
bdc20e67 338 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
691fa059 339 btrfs_delalloc_release_metadata(BTRFS_I(inode), end + 1 - start);
dcdbc059 340 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 341out:
94ed938a
QW
342 /*
343 * Don't forget to free the reserved space, as for inlined extent
344 * it won't count as data extent, free them directly here.
345 * And at reserve time, it's always aligned to page size, so
346 * just free one page here.
347 */
bc42bda2 348 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 349 btrfs_free_path(path);
3a45bb20 350 btrfs_end_transaction(trans);
00361589 351 return ret;
c8b97818
CM
352}
353
771ed689
CM
354struct async_extent {
355 u64 start;
356 u64 ram_size;
357 u64 compressed_size;
358 struct page **pages;
359 unsigned long nr_pages;
261507a0 360 int compress_type;
771ed689
CM
361 struct list_head list;
362};
363
364struct async_cow {
365 struct inode *inode;
366 struct btrfs_root *root;
367 struct page *locked_page;
368 u64 start;
369 u64 end;
370 struct list_head extents;
371 struct btrfs_work work;
372};
373
374static noinline int add_async_extent(struct async_cow *cow,
375 u64 start, u64 ram_size,
376 u64 compressed_size,
377 struct page **pages,
261507a0
LZ
378 unsigned long nr_pages,
379 int compress_type)
771ed689
CM
380{
381 struct async_extent *async_extent;
382
383 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 384 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
385 async_extent->start = start;
386 async_extent->ram_size = ram_size;
387 async_extent->compressed_size = compressed_size;
388 async_extent->pages = pages;
389 async_extent->nr_pages = nr_pages;
261507a0 390 async_extent->compress_type = compress_type;
771ed689
CM
391 list_add_tail(&async_extent->list, &cow->extents);
392 return 0;
393}
394
f79707b0
WS
395static inline int inode_need_compress(struct inode *inode)
396{
0b246afa 397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
398
399 /* force compress */
0b246afa 400 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0
WS
401 return 1;
402 /* bad compression ratios */
403 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
404 return 0;
0b246afa 405 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0
WS
406 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
407 BTRFS_I(inode)->force_compress)
408 return 1;
409 return 0;
410}
411
6158e1ce 412static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
413 u64 start, u64 end, u64 num_bytes, u64 small_write)
414{
415 /* If this is a small write inside eof, kick off a defrag */
416 if (num_bytes < small_write &&
6158e1ce 417 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
418 btrfs_add_inode_defrag(NULL, inode);
419}
420
d352ac68 421/*
771ed689
CM
422 * we create compressed extents in two phases. The first
423 * phase compresses a range of pages that have already been
424 * locked (both pages and state bits are locked).
c8b97818 425 *
771ed689
CM
426 * This is done inside an ordered work queue, and the compression
427 * is spread across many cpus. The actual IO submission is step
428 * two, and the ordered work queue takes care of making sure that
429 * happens in the same order things were put onto the queue by
430 * writepages and friends.
c8b97818 431 *
771ed689
CM
432 * If this code finds it can't get good compression, it puts an
433 * entry onto the work queue to write the uncompressed bytes. This
434 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
435 * are written in the same order that the flusher thread sent them
436 * down.
d352ac68 437 */
c44f649e 438static noinline void compress_file_range(struct inode *inode,
771ed689
CM
439 struct page *locked_page,
440 u64 start, u64 end,
441 struct async_cow *async_cow,
442 int *num_added)
b888db2b 443{
0b246afa 444 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
b888db2b 445 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 446 u64 num_bytes;
0b246afa 447 u64 blocksize = fs_info->sectorsize;
c8b97818 448 u64 actual_end;
42dc7bab 449 u64 isize = i_size_read(inode);
e6dcd2dc 450 int ret = 0;
c8b97818
CM
451 struct page **pages = NULL;
452 unsigned long nr_pages;
c8b97818
CM
453 unsigned long total_compressed = 0;
454 unsigned long total_in = 0;
c8b97818
CM
455 int i;
456 int will_compress;
0b246afa 457 int compress_type = fs_info->compress_type;
4adaa611 458 int redirty = 0;
b888db2b 459
6158e1ce
NB
460 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
461 SZ_16K);
4cb5300b 462
42dc7bab 463 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
464again:
465 will_compress = 0;
09cbfeaf 466 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
467 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
468 nr_pages = min_t(unsigned long, nr_pages,
469 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 470
f03d9301
CM
471 /*
472 * we don't want to send crud past the end of i_size through
473 * compression, that's just a waste of CPU time. So, if the
474 * end of the file is before the start of our current
475 * requested range of bytes, we bail out to the uncompressed
476 * cleanup code that can deal with all of this.
477 *
478 * It isn't really the fastest way to fix things, but this is a
479 * very uncommon corner.
480 */
481 if (actual_end <= start)
482 goto cleanup_and_bail_uncompressed;
483
c8b97818
CM
484 total_compressed = actual_end - start;
485
4bcbb332
SW
486 /*
487 * skip compression for a small file range(<=blocksize) that
01327610 488 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
489 */
490 if (total_compressed <= blocksize &&
491 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
492 goto cleanup_and_bail_uncompressed;
493
069eac78
DS
494 total_compressed = min_t(unsigned long, total_compressed,
495 BTRFS_MAX_UNCOMPRESSED);
fda2832f 496 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 497 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
498 total_in = 0;
499 ret = 0;
db94535d 500
771ed689
CM
501 /*
502 * we do compression for mount -o compress and when the
503 * inode has not been flagged as nocompress. This flag can
504 * change at any time if we discover bad compression ratios.
c8b97818 505 */
f79707b0 506 if (inode_need_compress(inode)) {
c8b97818 507 WARN_ON(pages);
31e818fe 508 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
509 if (!pages) {
510 /* just bail out to the uncompressed code */
511 goto cont;
512 }
c8b97818 513
261507a0
LZ
514 if (BTRFS_I(inode)->force_compress)
515 compress_type = BTRFS_I(inode)->force_compress;
516
4adaa611
CM
517 /*
518 * we need to call clear_page_dirty_for_io on each
519 * page in the range. Otherwise applications with the file
520 * mmap'd can wander in and change the page contents while
521 * we are compressing them.
522 *
523 * If the compression fails for any reason, we set the pages
524 * dirty again later on.
525 */
526 extent_range_clear_dirty_for_io(inode, start, end);
527 redirty = 1;
261507a0
LZ
528 ret = btrfs_compress_pages(compress_type,
529 inode->i_mapping, start,
38c31464 530 pages,
4d3a800e 531 &nr_pages,
261507a0 532 &total_in,
e5d74902 533 &total_compressed);
c8b97818
CM
534
535 if (!ret) {
536 unsigned long offset = total_compressed &
09cbfeaf 537 (PAGE_SIZE - 1);
4d3a800e 538 struct page *page = pages[nr_pages - 1];
c8b97818
CM
539 char *kaddr;
540
541 /* zero the tail end of the last page, we might be
542 * sending it down to disk
543 */
544 if (offset) {
7ac687d9 545 kaddr = kmap_atomic(page);
c8b97818 546 memset(kaddr + offset, 0,
09cbfeaf 547 PAGE_SIZE - offset);
7ac687d9 548 kunmap_atomic(kaddr);
c8b97818
CM
549 }
550 will_compress = 1;
551 }
552 }
560f7d75 553cont:
c8b97818
CM
554 if (start == 0) {
555 /* lets try to make an inline extent */
771ed689 556 if (ret || total_in < (actual_end - start)) {
c8b97818 557 /* we didn't compress the entire range, try
771ed689 558 * to make an uncompressed inline extent.
c8b97818 559 */
00361589 560 ret = cow_file_range_inline(root, inode, start, end,
f74670f7 561 0, BTRFS_COMPRESS_NONE, NULL);
c8b97818 562 } else {
771ed689 563 /* try making a compressed inline extent */
00361589 564 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
565 total_compressed,
566 compress_type, pages);
c8b97818 567 }
79787eaa 568 if (ret <= 0) {
151a41bc 569 unsigned long clear_flags = EXTENT_DELALLOC |
a7e3b975 570 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG;
e6eb4314
FM
571 unsigned long page_error_op;
572
151a41bc 573 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 574 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 575
771ed689 576 /*
79787eaa
JM
577 * inline extent creation worked or returned error,
578 * we don't need to create any more async work items.
579 * Unlock and free up our temp pages.
771ed689 580 */
ba8b04c1
QW
581 extent_clear_unlock_delalloc(inode, start, end, end,
582 NULL, clear_flags,
583 PAGE_UNLOCK |
c2790a2e
JB
584 PAGE_CLEAR_DIRTY |
585 PAGE_SET_WRITEBACK |
e6eb4314 586 page_error_op |
c2790a2e 587 PAGE_END_WRITEBACK);
1c81ba23
FM
588 if (ret == 0)
589 btrfs_free_reserved_data_space_noquota(inode,
590 start,
591 end - start + 1);
c8b97818
CM
592 goto free_pages_out;
593 }
594 }
595
596 if (will_compress) {
597 /*
598 * we aren't doing an inline extent round the compressed size
599 * up to a block size boundary so the allocator does sane
600 * things
601 */
fda2832f 602 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
603
604 /*
605 * one last check to make sure the compression is really a
170607eb
TT
606 * win, compare the page count read with the blocks on disk,
607 * compression must free at least one sector size
c8b97818 608 */
09cbfeaf 609 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 610 if (total_compressed + blocksize <= total_in) {
c8b97818 611 num_bytes = total_in;
c8bb0c8b
AS
612 *num_added += 1;
613
614 /*
615 * The async work queues will take care of doing actual
616 * allocation on disk for these compressed pages, and
617 * will submit them to the elevator.
618 */
619 add_async_extent(async_cow, start, num_bytes,
4d3a800e 620 total_compressed, pages, nr_pages,
c8bb0c8b
AS
621 compress_type);
622
623 if (start + num_bytes < end) {
624 start += num_bytes;
625 pages = NULL;
626 cond_resched();
627 goto again;
628 }
629 return;
c8b97818
CM
630 }
631 }
c8bb0c8b 632 if (pages) {
c8b97818
CM
633 /*
634 * the compression code ran but failed to make things smaller,
635 * free any pages it allocated and our page pointer array
636 */
4d3a800e 637 for (i = 0; i < nr_pages; i++) {
70b99e69 638 WARN_ON(pages[i]->mapping);
09cbfeaf 639 put_page(pages[i]);
c8b97818
CM
640 }
641 kfree(pages);
642 pages = NULL;
643 total_compressed = 0;
4d3a800e 644 nr_pages = 0;
c8b97818
CM
645
646 /* flag the file so we don't compress in the future */
0b246afa 647 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
1e701a32 648 !(BTRFS_I(inode)->force_compress)) {
a555f810 649 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 650 }
c8b97818 651 }
f03d9301 652cleanup_and_bail_uncompressed:
c8bb0c8b
AS
653 /*
654 * No compression, but we still need to write the pages in the file
655 * we've been given so far. redirty the locked page if it corresponds
656 * to our extent and set things up for the async work queue to run
657 * cow_file_range to do the normal delalloc dance.
658 */
659 if (page_offset(locked_page) >= start &&
660 page_offset(locked_page) <= end)
661 __set_page_dirty_nobuffers(locked_page);
662 /* unlocked later on in the async handlers */
663
664 if (redirty)
665 extent_range_redirty_for_io(inode, start, end);
666 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
667 BTRFS_COMPRESS_NONE);
668 *num_added += 1;
3b951516 669
c44f649e 670 return;
771ed689
CM
671
672free_pages_out:
4d3a800e 673 for (i = 0; i < nr_pages; i++) {
771ed689 674 WARN_ON(pages[i]->mapping);
09cbfeaf 675 put_page(pages[i]);
771ed689 676 }
d397712b 677 kfree(pages);
771ed689 678}
771ed689 679
40ae837b
FM
680static void free_async_extent_pages(struct async_extent *async_extent)
681{
682 int i;
683
684 if (!async_extent->pages)
685 return;
686
687 for (i = 0; i < async_extent->nr_pages; i++) {
688 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 689 put_page(async_extent->pages[i]);
40ae837b
FM
690 }
691 kfree(async_extent->pages);
692 async_extent->nr_pages = 0;
693 async_extent->pages = NULL;
771ed689
CM
694}
695
696/*
697 * phase two of compressed writeback. This is the ordered portion
698 * of the code, which only gets called in the order the work was
699 * queued. We walk all the async extents created by compress_file_range
700 * and send them down to the disk.
701 */
dec8f175 702static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
703 struct async_cow *async_cow)
704{
0b246afa 705 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
706 struct async_extent *async_extent;
707 u64 alloc_hint = 0;
771ed689
CM
708 struct btrfs_key ins;
709 struct extent_map *em;
710 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689 711 struct extent_io_tree *io_tree;
f5a84ee3 712 int ret = 0;
771ed689 713
3e04e7f1 714again:
d397712b 715 while (!list_empty(&async_cow->extents)) {
771ed689
CM
716 async_extent = list_entry(async_cow->extents.next,
717 struct async_extent, list);
718 list_del(&async_extent->list);
c8b97818 719
771ed689
CM
720 io_tree = &BTRFS_I(inode)->io_tree;
721
f5a84ee3 722retry:
771ed689
CM
723 /* did the compression code fall back to uncompressed IO? */
724 if (!async_extent->pages) {
725 int page_started = 0;
726 unsigned long nr_written = 0;
727
728 lock_extent(io_tree, async_extent->start,
2ac55d41 729 async_extent->start +
d0082371 730 async_extent->ram_size - 1);
771ed689
CM
731
732 /* allocate blocks */
f5a84ee3
JB
733 ret = cow_file_range(inode, async_cow->locked_page,
734 async_extent->start,
735 async_extent->start +
736 async_extent->ram_size - 1,
dda3245e
WX
737 async_extent->start +
738 async_extent->ram_size - 1,
739 &page_started, &nr_written, 0,
740 NULL);
771ed689 741
79787eaa
JM
742 /* JDM XXX */
743
771ed689
CM
744 /*
745 * if page_started, cow_file_range inserted an
746 * inline extent and took care of all the unlocking
747 * and IO for us. Otherwise, we need to submit
748 * all those pages down to the drive.
749 */
f5a84ee3 750 if (!page_started && !ret)
771ed689
CM
751 extent_write_locked_range(io_tree,
752 inode, async_extent->start,
d397712b 753 async_extent->start +
771ed689
CM
754 async_extent->ram_size - 1,
755 btrfs_get_extent,
756 WB_SYNC_ALL);
3e04e7f1
JB
757 else if (ret)
758 unlock_page(async_cow->locked_page);
771ed689
CM
759 kfree(async_extent);
760 cond_resched();
761 continue;
762 }
763
764 lock_extent(io_tree, async_extent->start,
d0082371 765 async_extent->start + async_extent->ram_size - 1);
771ed689 766
18513091 767 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
768 async_extent->compressed_size,
769 async_extent->compressed_size,
e570fd27 770 0, alloc_hint, &ins, 1, 1);
f5a84ee3 771 if (ret) {
40ae837b 772 free_async_extent_pages(async_extent);
3e04e7f1 773
fdf8e2ea
JB
774 if (ret == -ENOSPC) {
775 unlock_extent(io_tree, async_extent->start,
776 async_extent->start +
777 async_extent->ram_size - 1);
ce62003f
LB
778
779 /*
780 * we need to redirty the pages if we decide to
781 * fallback to uncompressed IO, otherwise we
782 * will not submit these pages down to lower
783 * layers.
784 */
785 extent_range_redirty_for_io(inode,
786 async_extent->start,
787 async_extent->start +
788 async_extent->ram_size - 1);
789
79787eaa 790 goto retry;
fdf8e2ea 791 }
3e04e7f1 792 goto out_free;
f5a84ee3 793 }
c2167754
YZ
794 /*
795 * here we're doing allocation and writeback of the
796 * compressed pages
797 */
6f9994db
LB
798 em = create_io_em(inode, async_extent->start,
799 async_extent->ram_size, /* len */
800 async_extent->start, /* orig_start */
801 ins.objectid, /* block_start */
802 ins.offset, /* block_len */
803 ins.offset, /* orig_block_len */
804 async_extent->ram_size, /* ram_bytes */
805 async_extent->compress_type,
806 BTRFS_ORDERED_COMPRESSED);
807 if (IS_ERR(em))
808 /* ret value is not necessary due to void function */
3e04e7f1 809 goto out_free_reserve;
6f9994db 810 free_extent_map(em);
3e04e7f1 811
261507a0
LZ
812 ret = btrfs_add_ordered_extent_compress(inode,
813 async_extent->start,
814 ins.objectid,
815 async_extent->ram_size,
816 ins.offset,
817 BTRFS_ORDERED_COMPRESSED,
818 async_extent->compress_type);
d9f85963 819 if (ret) {
dcdbc059
NB
820 btrfs_drop_extent_cache(BTRFS_I(inode),
821 async_extent->start,
d9f85963
FM
822 async_extent->start +
823 async_extent->ram_size - 1, 0);
3e04e7f1 824 goto out_free_reserve;
d9f85963 825 }
0b246afa 826 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 827
771ed689
CM
828 /*
829 * clear dirty, set writeback and unlock the pages.
830 */
c2790a2e 831 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
832 async_extent->start +
833 async_extent->ram_size - 1,
a791e35e
CM
834 async_extent->start +
835 async_extent->ram_size - 1,
151a41bc
JB
836 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
837 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 838 PAGE_SET_WRITEBACK);
4e4cbee9 839 if (btrfs_submit_compressed_write(inode,
d397712b
CM
840 async_extent->start,
841 async_extent->ram_size,
842 ins.objectid,
843 ins.offset, async_extent->pages,
4e4cbee9 844 async_extent->nr_pages)) {
fce2a4e6
FM
845 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
846 struct page *p = async_extent->pages[0];
847 const u64 start = async_extent->start;
848 const u64 end = start + async_extent->ram_size - 1;
849
850 p->mapping = inode->i_mapping;
851 tree->ops->writepage_end_io_hook(p, start, end,
852 NULL, 0);
853 p->mapping = NULL;
ba8b04c1
QW
854 extent_clear_unlock_delalloc(inode, start, end, end,
855 NULL, 0,
fce2a4e6
FM
856 PAGE_END_WRITEBACK |
857 PAGE_SET_ERROR);
40ae837b 858 free_async_extent_pages(async_extent);
fce2a4e6 859 }
771ed689
CM
860 alloc_hint = ins.objectid + ins.offset;
861 kfree(async_extent);
862 cond_resched();
863 }
dec8f175 864 return;
3e04e7f1 865out_free_reserve:
0b246afa 866 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 867 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 868out_free:
c2790a2e 869 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
870 async_extent->start +
871 async_extent->ram_size - 1,
3e04e7f1
JB
872 async_extent->start +
873 async_extent->ram_size - 1,
c2790a2e 874 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 875 EXTENT_DELALLOC_NEW |
151a41bc
JB
876 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
877 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
878 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
879 PAGE_SET_ERROR);
40ae837b 880 free_async_extent_pages(async_extent);
79787eaa 881 kfree(async_extent);
3e04e7f1 882 goto again;
771ed689
CM
883}
884
4b46fce2
JB
885static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
886 u64 num_bytes)
887{
888 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
889 struct extent_map *em;
890 u64 alloc_hint = 0;
891
892 read_lock(&em_tree->lock);
893 em = search_extent_mapping(em_tree, start, num_bytes);
894 if (em) {
895 /*
896 * if block start isn't an actual block number then find the
897 * first block in this inode and use that as a hint. If that
898 * block is also bogus then just don't worry about it.
899 */
900 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
901 free_extent_map(em);
902 em = search_extent_mapping(em_tree, 0, 0);
903 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
904 alloc_hint = em->block_start;
905 if (em)
906 free_extent_map(em);
907 } else {
908 alloc_hint = em->block_start;
909 free_extent_map(em);
910 }
911 }
912 read_unlock(&em_tree->lock);
913
914 return alloc_hint;
915}
916
771ed689
CM
917/*
918 * when extent_io.c finds a delayed allocation range in the file,
919 * the call backs end up in this code. The basic idea is to
920 * allocate extents on disk for the range, and create ordered data structs
921 * in ram to track those extents.
922 *
923 * locked_page is the page that writepage had locked already. We use
924 * it to make sure we don't do extra locks or unlocks.
925 *
926 * *page_started is set to one if we unlock locked_page and do everything
927 * required to start IO on it. It may be clean and already done with
928 * IO when we return.
929 */
00361589
JB
930static noinline int cow_file_range(struct inode *inode,
931 struct page *locked_page,
dda3245e
WX
932 u64 start, u64 end, u64 delalloc_end,
933 int *page_started, unsigned long *nr_written,
934 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 935{
0b246afa 936 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 937 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
938 u64 alloc_hint = 0;
939 u64 num_bytes;
940 unsigned long ram_size;
941 u64 disk_num_bytes;
a315e68f 942 u64 cur_alloc_size = 0;
0b246afa 943 u64 blocksize = fs_info->sectorsize;
771ed689
CM
944 struct btrfs_key ins;
945 struct extent_map *em;
a315e68f
FM
946 unsigned clear_bits;
947 unsigned long page_ops;
948 bool extent_reserved = false;
771ed689
CM
949 int ret = 0;
950
70ddc553 951 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 952 WARN_ON_ONCE(1);
29bce2f3
JB
953 ret = -EINVAL;
954 goto out_unlock;
02ecd2c2 955 }
771ed689 956
fda2832f 957 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
958 num_bytes = max(blocksize, num_bytes);
959 disk_num_bytes = num_bytes;
771ed689 960
6158e1ce 961 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 962
771ed689
CM
963 if (start == 0) {
964 /* lets try to make an inline extent */
f74670f7
AJ
965 ret = cow_file_range_inline(root, inode, start, end, 0,
966 BTRFS_COMPRESS_NONE, NULL);
771ed689 967 if (ret == 0) {
ba8b04c1
QW
968 extent_clear_unlock_delalloc(inode, start, end,
969 delalloc_end, NULL,
c2790a2e 970 EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 971 EXTENT_DELALLOC_NEW |
151a41bc 972 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
973 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
974 PAGE_END_WRITEBACK);
18513091
WX
975 btrfs_free_reserved_data_space_noquota(inode, start,
976 end - start + 1);
771ed689 977 *nr_written = *nr_written +
09cbfeaf 978 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 979 *page_started = 1;
771ed689 980 goto out;
79787eaa 981 } else if (ret < 0) {
79787eaa 982 goto out_unlock;
771ed689
CM
983 }
984 }
985
986 BUG_ON(disk_num_bytes >
0b246afa 987 btrfs_super_total_bytes(fs_info->super_copy));
771ed689 988
4b46fce2 989 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
990 btrfs_drop_extent_cache(BTRFS_I(inode), start,
991 start + num_bytes - 1, 0);
771ed689 992
d397712b 993 while (disk_num_bytes > 0) {
287a0ab9 994 cur_alloc_size = disk_num_bytes;
18513091 995 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 996 fs_info->sectorsize, 0, alloc_hint,
e570fd27 997 &ins, 1, 1);
00361589 998 if (ret < 0)
79787eaa 999 goto out_unlock;
a315e68f
FM
1000 cur_alloc_size = ins.offset;
1001 extent_reserved = true;
d397712b 1002
771ed689 1003 ram_size = ins.offset;
6f9994db
LB
1004 em = create_io_em(inode, start, ins.offset, /* len */
1005 start, /* orig_start */
1006 ins.objectid, /* block_start */
1007 ins.offset, /* block_len */
1008 ins.offset, /* orig_block_len */
1009 ram_size, /* ram_bytes */
1010 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1011 BTRFS_ORDERED_REGULAR /* type */);
6f9994db 1012 if (IS_ERR(em))
ace68bac 1013 goto out_reserve;
6f9994db 1014 free_extent_map(em);
e6dcd2dc 1015
e6dcd2dc 1016 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1017 ram_size, cur_alloc_size, 0);
ace68bac 1018 if (ret)
d9f85963 1019 goto out_drop_extent_cache;
c8b97818 1020
17d217fe
YZ
1021 if (root->root_key.objectid ==
1022 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1023 ret = btrfs_reloc_clone_csums(inode, start,
1024 cur_alloc_size);
4dbd80fb
QW
1025 /*
1026 * Only drop cache here, and process as normal.
1027 *
1028 * We must not allow extent_clear_unlock_delalloc()
1029 * at out_unlock label to free meta of this ordered
1030 * extent, as its meta should be freed by
1031 * btrfs_finish_ordered_io().
1032 *
1033 * So we must continue until @start is increased to
1034 * skip current ordered extent.
1035 */
00361589 1036 if (ret)
4dbd80fb
QW
1037 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1038 start + ram_size - 1, 0);
17d217fe
YZ
1039 }
1040
0b246afa 1041 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1042
c8b97818
CM
1043 /* we're not doing compressed IO, don't unlock the first
1044 * page (which the caller expects to stay locked), don't
1045 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1046 *
1047 * Do set the Private2 bit so we know this page was properly
1048 * setup for writepage
c8b97818 1049 */
a315e68f
FM
1050 page_ops = unlock ? PAGE_UNLOCK : 0;
1051 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1052
c2790a2e 1053 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1054 start + ram_size - 1,
1055 delalloc_end, locked_page,
c2790a2e 1056 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1057 page_ops);
4dbd80fb
QW
1058 if (disk_num_bytes < cur_alloc_size)
1059 disk_num_bytes = 0;
1060 else
1061 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1062 num_bytes -= cur_alloc_size;
1063 alloc_hint = ins.objectid + ins.offset;
1064 start += cur_alloc_size;
a315e68f 1065 extent_reserved = false;
4dbd80fb
QW
1066
1067 /*
1068 * btrfs_reloc_clone_csums() error, since start is increased
1069 * extent_clear_unlock_delalloc() at out_unlock label won't
1070 * free metadata of current ordered extent, we're OK to exit.
1071 */
1072 if (ret)
1073 goto out_unlock;
b888db2b 1074 }
79787eaa 1075out:
be20aa9d 1076 return ret;
b7d5b0a8 1077
d9f85963 1078out_drop_extent_cache:
dcdbc059 1079 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1080out_reserve:
0b246afa 1081 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1082 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1083out_unlock:
a7e3b975
FM
1084 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1085 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1086 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1087 PAGE_END_WRITEBACK;
1088 /*
1089 * If we reserved an extent for our delalloc range (or a subrange) and
1090 * failed to create the respective ordered extent, then it means that
1091 * when we reserved the extent we decremented the extent's size from
1092 * the data space_info's bytes_may_use counter and incremented the
1093 * space_info's bytes_reserved counter by the same amount. We must make
1094 * sure extent_clear_unlock_delalloc() does not try to decrement again
1095 * the data space_info's bytes_may_use counter, therefore we do not pass
1096 * it the flag EXTENT_CLEAR_DATA_RESV.
1097 */
1098 if (extent_reserved) {
1099 extent_clear_unlock_delalloc(inode, start,
1100 start + cur_alloc_size,
1101 start + cur_alloc_size,
1102 locked_page,
1103 clear_bits,
1104 page_ops);
1105 start += cur_alloc_size;
1106 if (start >= end)
1107 goto out;
1108 }
ba8b04c1
QW
1109 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1110 locked_page,
a315e68f
FM
1111 clear_bits | EXTENT_CLEAR_DATA_RESV,
1112 page_ops);
79787eaa 1113 goto out;
771ed689 1114}
c8b97818 1115
771ed689
CM
1116/*
1117 * work queue call back to started compression on a file and pages
1118 */
1119static noinline void async_cow_start(struct btrfs_work *work)
1120{
1121 struct async_cow *async_cow;
1122 int num_added = 0;
1123 async_cow = container_of(work, struct async_cow, work);
1124
1125 compress_file_range(async_cow->inode, async_cow->locked_page,
1126 async_cow->start, async_cow->end, async_cow,
1127 &num_added);
8180ef88 1128 if (num_added == 0) {
cb77fcd8 1129 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1130 async_cow->inode = NULL;
8180ef88 1131 }
771ed689
CM
1132}
1133
1134/*
1135 * work queue call back to submit previously compressed pages
1136 */
1137static noinline void async_cow_submit(struct btrfs_work *work)
1138{
0b246afa 1139 struct btrfs_fs_info *fs_info;
771ed689
CM
1140 struct async_cow *async_cow;
1141 struct btrfs_root *root;
1142 unsigned long nr_pages;
1143
1144 async_cow = container_of(work, struct async_cow, work);
1145
1146 root = async_cow->root;
0b246afa 1147 fs_info = root->fs_info;
09cbfeaf
KS
1148 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1149 PAGE_SHIFT;
771ed689 1150
ee863954
DS
1151 /*
1152 * atomic_sub_return implies a barrier for waitqueue_active
1153 */
0b246afa 1154 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
ee22184b 1155 5 * SZ_1M &&
0b246afa
JM
1156 waitqueue_active(&fs_info->async_submit_wait))
1157 wake_up(&fs_info->async_submit_wait);
771ed689 1158
d397712b 1159 if (async_cow->inode)
771ed689 1160 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1161}
c8b97818 1162
771ed689
CM
1163static noinline void async_cow_free(struct btrfs_work *work)
1164{
1165 struct async_cow *async_cow;
1166 async_cow = container_of(work, struct async_cow, work);
8180ef88 1167 if (async_cow->inode)
cb77fcd8 1168 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1169 kfree(async_cow);
1170}
1171
1172static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1173 u64 start, u64 end, int *page_started,
1174 unsigned long *nr_written)
1175{
0b246afa 1176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
1177 struct async_cow *async_cow;
1178 struct btrfs_root *root = BTRFS_I(inode)->root;
1179 unsigned long nr_pages;
1180 u64 cur_end;
771ed689 1181
a3429ab7
CM
1182 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1183 1, 0, NULL, GFP_NOFS);
d397712b 1184 while (start < end) {
771ed689 1185 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1186 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1187 async_cow->inode = igrab(inode);
771ed689
CM
1188 async_cow->root = root;
1189 async_cow->locked_page = locked_page;
1190 async_cow->start = start;
1191
f79707b0 1192 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
0b246afa 1193 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
771ed689
CM
1194 cur_end = end;
1195 else
ee22184b 1196 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1197
1198 async_cow->end = cur_end;
1199 INIT_LIST_HEAD(&async_cow->extents);
1200
9e0af237
LB
1201 btrfs_init_work(&async_cow->work,
1202 btrfs_delalloc_helper,
1203 async_cow_start, async_cow_submit,
1204 async_cow_free);
771ed689 1205
09cbfeaf
KS
1206 nr_pages = (cur_end - start + PAGE_SIZE) >>
1207 PAGE_SHIFT;
0b246afa 1208 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1209
0b246afa 1210 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
771ed689 1211
0b246afa
JM
1212 while (atomic_read(&fs_info->async_submit_draining) &&
1213 atomic_read(&fs_info->async_delalloc_pages)) {
1214 wait_event(fs_info->async_submit_wait,
1215 (atomic_read(&fs_info->async_delalloc_pages) ==
1216 0));
771ed689
CM
1217 }
1218
1219 *nr_written += nr_pages;
1220 start = cur_end + 1;
1221 }
1222 *page_started = 1;
1223 return 0;
be20aa9d
CM
1224}
1225
2ff7e61e 1226static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1227 u64 bytenr, u64 num_bytes)
1228{
1229 int ret;
1230 struct btrfs_ordered_sum *sums;
1231 LIST_HEAD(list);
1232
0b246afa 1233 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1234 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1235 if (ret == 0 && list_empty(&list))
1236 return 0;
1237
1238 while (!list_empty(&list)) {
1239 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1240 list_del(&sums->list);
1241 kfree(sums);
1242 }
1243 return 1;
1244}
1245
d352ac68
CM
1246/*
1247 * when nowcow writeback call back. This checks for snapshots or COW copies
1248 * of the extents that exist in the file, and COWs the file as required.
1249 *
1250 * If no cow copies or snapshots exist, we write directly to the existing
1251 * blocks on disk
1252 */
7f366cfe
CM
1253static noinline int run_delalloc_nocow(struct inode *inode,
1254 struct page *locked_page,
771ed689
CM
1255 u64 start, u64 end, int *page_started, int force,
1256 unsigned long *nr_written)
be20aa9d 1257{
0b246afa 1258 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d
CM
1259 struct btrfs_root *root = BTRFS_I(inode)->root;
1260 struct extent_buffer *leaf;
be20aa9d 1261 struct btrfs_path *path;
80ff3856 1262 struct btrfs_file_extent_item *fi;
be20aa9d 1263 struct btrfs_key found_key;
6f9994db 1264 struct extent_map *em;
80ff3856
YZ
1265 u64 cow_start;
1266 u64 cur_offset;
1267 u64 extent_end;
5d4f98a2 1268 u64 extent_offset;
80ff3856
YZ
1269 u64 disk_bytenr;
1270 u64 num_bytes;
b4939680 1271 u64 disk_num_bytes;
cc95bef6 1272 u64 ram_bytes;
80ff3856 1273 int extent_type;
79787eaa 1274 int ret, err;
d899e052 1275 int type;
80ff3856
YZ
1276 int nocow;
1277 int check_prev = 1;
82d5902d 1278 bool nolock;
4a0cc7ca 1279 u64 ino = btrfs_ino(BTRFS_I(inode));
be20aa9d
CM
1280
1281 path = btrfs_alloc_path();
17ca04af 1282 if (!path) {
ba8b04c1
QW
1283 extent_clear_unlock_delalloc(inode, start, end, end,
1284 locked_page,
c2790a2e 1285 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1286 EXTENT_DO_ACCOUNTING |
1287 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1288 PAGE_CLEAR_DIRTY |
1289 PAGE_SET_WRITEBACK |
1290 PAGE_END_WRITEBACK);
d8926bb3 1291 return -ENOMEM;
17ca04af 1292 }
82d5902d 1293
70ddc553 1294 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
82d5902d 1295
80ff3856
YZ
1296 cow_start = (u64)-1;
1297 cur_offset = start;
1298 while (1) {
e4c3b2dc 1299 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1300 cur_offset, 0);
d788a349 1301 if (ret < 0)
79787eaa 1302 goto error;
80ff3856
YZ
1303 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1304 leaf = path->nodes[0];
1305 btrfs_item_key_to_cpu(leaf, &found_key,
1306 path->slots[0] - 1);
33345d01 1307 if (found_key.objectid == ino &&
80ff3856
YZ
1308 found_key.type == BTRFS_EXTENT_DATA_KEY)
1309 path->slots[0]--;
1310 }
1311 check_prev = 0;
1312next_slot:
1313 leaf = path->nodes[0];
1314 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1315 ret = btrfs_next_leaf(root, path);
d788a349 1316 if (ret < 0)
79787eaa 1317 goto error;
80ff3856
YZ
1318 if (ret > 0)
1319 break;
1320 leaf = path->nodes[0];
1321 }
be20aa9d 1322
80ff3856
YZ
1323 nocow = 0;
1324 disk_bytenr = 0;
17d217fe 1325 num_bytes = 0;
80ff3856
YZ
1326 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1327
1d512cb7
FM
1328 if (found_key.objectid > ino)
1329 break;
1330 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1331 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1332 path->slots[0]++;
1333 goto next_slot;
1334 }
1335 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1336 found_key.offset > end)
1337 break;
1338
1339 if (found_key.offset > cur_offset) {
1340 extent_end = found_key.offset;
e9061e21 1341 extent_type = 0;
80ff3856
YZ
1342 goto out_check;
1343 }
1344
1345 fi = btrfs_item_ptr(leaf, path->slots[0],
1346 struct btrfs_file_extent_item);
1347 extent_type = btrfs_file_extent_type(leaf, fi);
1348
cc95bef6 1349 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1350 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1351 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1352 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1353 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1354 extent_end = found_key.offset +
1355 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1356 disk_num_bytes =
1357 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1358 if (extent_end <= start) {
1359 path->slots[0]++;
1360 goto next_slot;
1361 }
17d217fe
YZ
1362 if (disk_bytenr == 0)
1363 goto out_check;
80ff3856
YZ
1364 if (btrfs_file_extent_compression(leaf, fi) ||
1365 btrfs_file_extent_encryption(leaf, fi) ||
1366 btrfs_file_extent_other_encoding(leaf, fi))
1367 goto out_check;
d899e052
YZ
1368 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1369 goto out_check;
2ff7e61e 1370 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1371 goto out_check;
e4c3b2dc 1372 if (btrfs_cross_ref_exist(root, ino,
5d4f98a2
YZ
1373 found_key.offset -
1374 extent_offset, disk_bytenr))
17d217fe 1375 goto out_check;
5d4f98a2 1376 disk_bytenr += extent_offset;
17d217fe
YZ
1377 disk_bytenr += cur_offset - found_key.offset;
1378 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1379 /*
1380 * if there are pending snapshots for this root,
1381 * we fall into common COW way.
1382 */
1383 if (!nolock) {
9ea24bbe 1384 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1385 if (!err)
1386 goto out_check;
1387 }
17d217fe
YZ
1388 /*
1389 * force cow if csum exists in the range.
1390 * this ensure that csum for a given extent are
1391 * either valid or do not exist.
1392 */
2ff7e61e 1393 if (csum_exist_in_range(fs_info, disk_bytenr,
91e1f56a
RK
1394 num_bytes)) {
1395 if (!nolock)
1396 btrfs_end_write_no_snapshoting(root);
17d217fe 1397 goto out_check;
91e1f56a
RK
1398 }
1399 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1400 if (!nolock)
1401 btrfs_end_write_no_snapshoting(root);
f78c436c 1402 goto out_check;
91e1f56a 1403 }
80ff3856
YZ
1404 nocow = 1;
1405 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1406 extent_end = found_key.offset +
514ac8ad
CM
1407 btrfs_file_extent_inline_len(leaf,
1408 path->slots[0], fi);
da17066c 1409 extent_end = ALIGN(extent_end,
0b246afa 1410 fs_info->sectorsize);
80ff3856
YZ
1411 } else {
1412 BUG_ON(1);
1413 }
1414out_check:
1415 if (extent_end <= start) {
1416 path->slots[0]++;
e9894fd3 1417 if (!nolock && nocow)
9ea24bbe 1418 btrfs_end_write_no_snapshoting(root);
f78c436c 1419 if (nocow)
0b246afa 1420 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1421 goto next_slot;
1422 }
1423 if (!nocow) {
1424 if (cow_start == (u64)-1)
1425 cow_start = cur_offset;
1426 cur_offset = extent_end;
1427 if (cur_offset > end)
1428 break;
1429 path->slots[0]++;
1430 goto next_slot;
7ea394f1
YZ
1431 }
1432
b3b4aa74 1433 btrfs_release_path(path);
80ff3856 1434 if (cow_start != (u64)-1) {
00361589
JB
1435 ret = cow_file_range(inode, locked_page,
1436 cow_start, found_key.offset - 1,
dda3245e
WX
1437 end, page_started, nr_written, 1,
1438 NULL);
e9894fd3
WS
1439 if (ret) {
1440 if (!nolock && nocow)
9ea24bbe 1441 btrfs_end_write_no_snapshoting(root);
f78c436c 1442 if (nocow)
0b246afa 1443 btrfs_dec_nocow_writers(fs_info,
f78c436c 1444 disk_bytenr);
79787eaa 1445 goto error;
e9894fd3 1446 }
80ff3856 1447 cow_start = (u64)-1;
7ea394f1 1448 }
80ff3856 1449
d899e052 1450 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db
LB
1451 u64 orig_start = found_key.offset - extent_offset;
1452
1453 em = create_io_em(inode, cur_offset, num_bytes,
1454 orig_start,
1455 disk_bytenr, /* block_start */
1456 num_bytes, /* block_len */
1457 disk_num_bytes, /* orig_block_len */
1458 ram_bytes, BTRFS_COMPRESS_NONE,
1459 BTRFS_ORDERED_PREALLOC);
1460 if (IS_ERR(em)) {
1461 if (!nolock && nocow)
1462 btrfs_end_write_no_snapshoting(root);
1463 if (nocow)
1464 btrfs_dec_nocow_writers(fs_info,
1465 disk_bytenr);
1466 ret = PTR_ERR(em);
1467 goto error;
d899e052 1468 }
6f9994db
LB
1469 free_extent_map(em);
1470 }
1471
1472 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
d899e052
YZ
1473 type = BTRFS_ORDERED_PREALLOC;
1474 } else {
1475 type = BTRFS_ORDERED_NOCOW;
1476 }
80ff3856
YZ
1477
1478 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1479 num_bytes, num_bytes, type);
f78c436c 1480 if (nocow)
0b246afa 1481 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1482 BUG_ON(ret); /* -ENOMEM */
771ed689 1483
efa56464 1484 if (root->root_key.objectid ==
4dbd80fb
QW
1485 BTRFS_DATA_RELOC_TREE_OBJECTID)
1486 /*
1487 * Error handled later, as we must prevent
1488 * extent_clear_unlock_delalloc() in error handler
1489 * from freeing metadata of created ordered extent.
1490 */
efa56464
YZ
1491 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1492 num_bytes);
efa56464 1493
c2790a2e 1494 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1495 cur_offset + num_bytes - 1, end,
c2790a2e 1496 locked_page, EXTENT_LOCKED |
18513091
WX
1497 EXTENT_DELALLOC |
1498 EXTENT_CLEAR_DATA_RESV,
1499 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1500
e9894fd3 1501 if (!nolock && nocow)
9ea24bbe 1502 btrfs_end_write_no_snapshoting(root);
80ff3856 1503 cur_offset = extent_end;
4dbd80fb
QW
1504
1505 /*
1506 * btrfs_reloc_clone_csums() error, now we're OK to call error
1507 * handler, as metadata for created ordered extent will only
1508 * be freed by btrfs_finish_ordered_io().
1509 */
1510 if (ret)
1511 goto error;
80ff3856
YZ
1512 if (cur_offset > end)
1513 break;
be20aa9d 1514 }
b3b4aa74 1515 btrfs_release_path(path);
80ff3856 1516
17ca04af 1517 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1518 cow_start = cur_offset;
17ca04af
JB
1519 cur_offset = end;
1520 }
1521
80ff3856 1522 if (cow_start != (u64)-1) {
dda3245e
WX
1523 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1524 page_started, nr_written, 1, NULL);
d788a349 1525 if (ret)
79787eaa 1526 goto error;
80ff3856
YZ
1527 }
1528
79787eaa 1529error:
17ca04af 1530 if (ret && cur_offset < end)
ba8b04c1 1531 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1532 locked_page, EXTENT_LOCKED |
151a41bc
JB
1533 EXTENT_DELALLOC | EXTENT_DEFRAG |
1534 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1535 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1536 PAGE_SET_WRITEBACK |
1537 PAGE_END_WRITEBACK);
7ea394f1 1538 btrfs_free_path(path);
79787eaa 1539 return ret;
be20aa9d
CM
1540}
1541
47059d93
WS
1542static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1543{
1544
1545 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1546 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1547 return 0;
1548
1549 /*
1550 * @defrag_bytes is a hint value, no spinlock held here,
1551 * if is not zero, it means the file is defragging.
1552 * Force cow if given extent needs to be defragged.
1553 */
1554 if (BTRFS_I(inode)->defrag_bytes &&
1555 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1556 EXTENT_DEFRAG, 0, NULL))
1557 return 1;
1558
1559 return 0;
1560}
1561
d352ac68
CM
1562/*
1563 * extent_io.c call back to do delayed allocation processing
1564 */
c6100a4b 1565static int run_delalloc_range(void *private_data, struct page *locked_page,
771ed689
CM
1566 u64 start, u64 end, int *page_started,
1567 unsigned long *nr_written)
be20aa9d 1568{
c6100a4b 1569 struct inode *inode = private_data;
be20aa9d 1570 int ret;
47059d93 1571 int force_cow = need_force_cow(inode, start, end);
a2135011 1572
47059d93 1573 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1574 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1575 page_started, 1, nr_written);
47059d93 1576 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1577 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1578 page_started, 0, nr_written);
7816030e 1579 } else if (!inode_need_compress(inode)) {
dda3245e
WX
1580 ret = cow_file_range(inode, locked_page, start, end, end,
1581 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1582 } else {
1583 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1584 &BTRFS_I(inode)->runtime_flags);
771ed689 1585 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1586 page_started, nr_written);
7ddf5a42 1587 }
52427260
QW
1588 if (ret)
1589 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
b888db2b
CM
1590 return ret;
1591}
1592
c6100a4b 1593static void btrfs_split_extent_hook(void *private_data,
1bf85046 1594 struct extent_state *orig, u64 split)
9ed74f2d 1595{
c6100a4b 1596 struct inode *inode = private_data;
dcab6a3b
JB
1597 u64 size;
1598
0ca1f7ce 1599 /* not delalloc, ignore it */
9ed74f2d 1600 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1601 return;
9ed74f2d 1602
dcab6a3b
JB
1603 size = orig->end - orig->start + 1;
1604 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1605 u32 num_extents;
dcab6a3b
JB
1606 u64 new_size;
1607
1608 /*
ba117213
JB
1609 * See the explanation in btrfs_merge_extent_hook, the same
1610 * applies here, just in reverse.
dcab6a3b
JB
1611 */
1612 new_size = orig->end - split + 1;
823bb20a 1613 num_extents = count_max_extents(new_size);
ba117213 1614 new_size = split - orig->start;
823bb20a
DS
1615 num_extents += count_max_extents(new_size);
1616 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1617 return;
1618 }
1619
9e0baf60
JB
1620 spin_lock(&BTRFS_I(inode)->lock);
1621 BTRFS_I(inode)->outstanding_extents++;
1622 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1623}
1624
1625/*
1626 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1627 * extents so we can keep track of new extents that are just merged onto old
1628 * extents, such as when we are doing sequential writes, so we can properly
1629 * account for the metadata space we'll need.
1630 */
c6100a4b 1631static void btrfs_merge_extent_hook(void *private_data,
1bf85046
JM
1632 struct extent_state *new,
1633 struct extent_state *other)
9ed74f2d 1634{
c6100a4b 1635 struct inode *inode = private_data;
dcab6a3b 1636 u64 new_size, old_size;
823bb20a 1637 u32 num_extents;
dcab6a3b 1638
9ed74f2d
JB
1639 /* not delalloc, ignore it */
1640 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1641 return;
9ed74f2d 1642
8461a3de
JB
1643 if (new->start > other->start)
1644 new_size = new->end - other->start + 1;
1645 else
1646 new_size = other->end - new->start + 1;
dcab6a3b
JB
1647
1648 /* we're not bigger than the max, unreserve the space and go */
1649 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1650 spin_lock(&BTRFS_I(inode)->lock);
1651 BTRFS_I(inode)->outstanding_extents--;
1652 spin_unlock(&BTRFS_I(inode)->lock);
1653 return;
1654 }
1655
1656 /*
ba117213
JB
1657 * We have to add up either side to figure out how many extents were
1658 * accounted for before we merged into one big extent. If the number of
1659 * extents we accounted for is <= the amount we need for the new range
1660 * then we can return, otherwise drop. Think of it like this
1661 *
1662 * [ 4k][MAX_SIZE]
1663 *
1664 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1665 * need 2 outstanding extents, on one side we have 1 and the other side
1666 * we have 1 so they are == and we can return. But in this case
1667 *
1668 * [MAX_SIZE+4k][MAX_SIZE+4k]
1669 *
1670 * Each range on their own accounts for 2 extents, but merged together
1671 * they are only 3 extents worth of accounting, so we need to drop in
1672 * this case.
dcab6a3b 1673 */
ba117213 1674 old_size = other->end - other->start + 1;
823bb20a 1675 num_extents = count_max_extents(old_size);
ba117213 1676 old_size = new->end - new->start + 1;
823bb20a
DS
1677 num_extents += count_max_extents(old_size);
1678 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1679 return;
1680
9e0baf60
JB
1681 spin_lock(&BTRFS_I(inode)->lock);
1682 BTRFS_I(inode)->outstanding_extents--;
1683 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1684}
1685
eb73c1b7
MX
1686static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1687 struct inode *inode)
1688{
0b246afa
JM
1689 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1690
eb73c1b7
MX
1691 spin_lock(&root->delalloc_lock);
1692 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1693 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1694 &root->delalloc_inodes);
1695 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1696 &BTRFS_I(inode)->runtime_flags);
1697 root->nr_delalloc_inodes++;
1698 if (root->nr_delalloc_inodes == 1) {
0b246afa 1699 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1700 BUG_ON(!list_empty(&root->delalloc_root));
1701 list_add_tail(&root->delalloc_root,
0b246afa
JM
1702 &fs_info->delalloc_roots);
1703 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1704 }
1705 }
1706 spin_unlock(&root->delalloc_lock);
1707}
1708
1709static void btrfs_del_delalloc_inode(struct btrfs_root *root,
9e3e97f4 1710 struct btrfs_inode *inode)
eb73c1b7 1711{
9e3e97f4 1712 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0b246afa 1713
eb73c1b7 1714 spin_lock(&root->delalloc_lock);
9e3e97f4
NB
1715 if (!list_empty(&inode->delalloc_inodes)) {
1716 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1717 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1718 &inode->runtime_flags);
eb73c1b7
MX
1719 root->nr_delalloc_inodes--;
1720 if (!root->nr_delalloc_inodes) {
0b246afa 1721 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1722 BUG_ON(list_empty(&root->delalloc_root));
1723 list_del_init(&root->delalloc_root);
0b246afa 1724 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1725 }
1726 }
1727 spin_unlock(&root->delalloc_lock);
1728}
1729
d352ac68
CM
1730/*
1731 * extent_io.c set_bit_hook, used to track delayed allocation
1732 * bytes in this file, and to maintain the list of inodes that
1733 * have pending delalloc work to be done.
1734 */
c6100a4b 1735static void btrfs_set_bit_hook(void *private_data,
9ee49a04 1736 struct extent_state *state, unsigned *bits)
291d673e 1737{
c6100a4b 1738 struct inode *inode = private_data;
9ed74f2d 1739
0b246afa
JM
1740 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1741
47059d93
WS
1742 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1743 WARN_ON(1);
75eff68e
CM
1744 /*
1745 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1746 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1747 * bit, which is only set or cleared with irqs on
1748 */
0ca1f7ce 1749 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1750 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1751 u64 len = state->end + 1 - state->start;
70ddc553 1752 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1753
9e0baf60 1754 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1755 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1756 } else {
1757 spin_lock(&BTRFS_I(inode)->lock);
1758 BTRFS_I(inode)->outstanding_extents++;
1759 spin_unlock(&BTRFS_I(inode)->lock);
1760 }
287a0ab9 1761
6a3891c5 1762 /* For sanity tests */
0b246afa 1763 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1764 return;
1765
104b4e51
NB
1766 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1767 fs_info->delalloc_batch);
df0af1a5 1768 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1769 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1770 if (*bits & EXTENT_DEFRAG)
1771 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1772 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1773 &BTRFS_I(inode)->runtime_flags))
1774 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1775 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1776 }
a7e3b975
FM
1777
1778 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1779 (*bits & EXTENT_DELALLOC_NEW)) {
1780 spin_lock(&BTRFS_I(inode)->lock);
1781 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1782 state->start;
1783 spin_unlock(&BTRFS_I(inode)->lock);
1784 }
291d673e
CM
1785}
1786
d352ac68
CM
1787/*
1788 * extent_io.c clear_bit_hook, see set_bit_hook for why
1789 */
c6100a4b 1790static void btrfs_clear_bit_hook(void *private_data,
41074888 1791 struct extent_state *state,
9ee49a04 1792 unsigned *bits)
291d673e 1793{
c6100a4b 1794 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
6fc0ef68 1795 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
47059d93 1796 u64 len = state->end + 1 - state->start;
823bb20a 1797 u32 num_extents = count_max_extents(len);
47059d93 1798
6fc0ef68 1799 spin_lock(&inode->lock);
47059d93 1800 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
6fc0ef68
NB
1801 inode->defrag_bytes -= len;
1802 spin_unlock(&inode->lock);
47059d93 1803
75eff68e
CM
1804 /*
1805 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1806 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1807 * bit, which is only set or cleared with irqs on
1808 */
0ca1f7ce 1809 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1810 struct btrfs_root *root = inode->root;
83eea1f1 1811 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1812
9e0baf60 1813 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1814 *bits &= ~EXTENT_FIRST_DELALLOC;
a315e68f 1815 } else if (!(*bits & EXTENT_CLEAR_META_RESV)) {
6fc0ef68
NB
1816 spin_lock(&inode->lock);
1817 inode->outstanding_extents -= num_extents;
1818 spin_unlock(&inode->lock);
9e0baf60 1819 }
0ca1f7ce 1820
b6d08f06
JB
1821 /*
1822 * We don't reserve metadata space for space cache inodes so we
1823 * don't need to call dellalloc_release_metadata if there is an
1824 * error.
1825 */
a315e68f 1826 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 1827 root != fs_info->tree_root)
0ca1f7ce
YZ
1828 btrfs_delalloc_release_metadata(inode, len);
1829
6a3891c5 1830 /* For sanity tests. */
0b246afa 1831 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1832 return;
1833
a315e68f
FM
1834 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1835 do_list && !(state->state & EXTENT_NORESERVE) &&
1836 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
1837 btrfs_free_reserved_data_space_noquota(
1838 &inode->vfs_inode,
51773bec 1839 state->start, len);
9ed74f2d 1840
104b4e51
NB
1841 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1842 fs_info->delalloc_batch);
6fc0ef68
NB
1843 spin_lock(&inode->lock);
1844 inode->delalloc_bytes -= len;
1845 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 1846 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1847 &inode->runtime_flags))
eb73c1b7 1848 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 1849 spin_unlock(&inode->lock);
291d673e 1850 }
a7e3b975
FM
1851
1852 if ((state->state & EXTENT_DELALLOC_NEW) &&
1853 (*bits & EXTENT_DELALLOC_NEW)) {
1854 spin_lock(&inode->lock);
1855 ASSERT(inode->new_delalloc_bytes >= len);
1856 inode->new_delalloc_bytes -= len;
1857 spin_unlock(&inode->lock);
1858 }
291d673e
CM
1859}
1860
d352ac68
CM
1861/*
1862 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1863 * we don't create bios that span stripes or chunks
6f034ece
LB
1864 *
1865 * return 1 if page cannot be merged to bio
1866 * return 0 if page can be merged to bio
1867 * return error otherwise
d352ac68 1868 */
81a75f67 1869int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1870 size_t size, struct bio *bio,
1871 unsigned long bio_flags)
239b14b3 1872{
0b246afa
JM
1873 struct inode *inode = page->mapping->host;
1874 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1875 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1876 u64 length = 0;
1877 u64 map_length;
239b14b3
CM
1878 int ret;
1879
771ed689
CM
1880 if (bio_flags & EXTENT_BIO_COMPRESSED)
1881 return 0;
1882
4f024f37 1883 length = bio->bi_iter.bi_size;
239b14b3 1884 map_length = length;
0b246afa
JM
1885 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1886 NULL, 0);
6f034ece
LB
1887 if (ret < 0)
1888 return ret;
d397712b 1889 if (map_length < length + size)
239b14b3 1890 return 1;
3444a972 1891 return 0;
239b14b3
CM
1892}
1893
d352ac68
CM
1894/*
1895 * in order to insert checksums into the metadata in large chunks,
1896 * we wait until bio submission time. All the pages in the bio are
1897 * checksummed and sums are attached onto the ordered extent record.
1898 *
1899 * At IO completion time the cums attached on the ordered extent record
1900 * are inserted into the btree
1901 */
8c27cb35 1902static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio,
81a75f67 1903 int mirror_num, unsigned long bio_flags,
eaf25d93 1904 u64 bio_offset)
065631f6 1905{
c6100a4b 1906 struct inode *inode = private_data;
4e4cbee9 1907 blk_status_t ret = 0;
e015640f 1908
2ff7e61e 1909 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1910 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1911 return 0;
1912}
e015640f 1913
4a69a410
CM
1914/*
1915 * in order to insert checksums into the metadata in large chunks,
1916 * we wait until bio submission time. All the pages in the bio are
1917 * checksummed and sums are attached onto the ordered extent record.
1918 *
1919 * At IO completion time the cums attached on the ordered extent record
1920 * are inserted into the btree
1921 */
8c27cb35 1922static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio,
eaf25d93
CM
1923 int mirror_num, unsigned long bio_flags,
1924 u64 bio_offset)
4a69a410 1925{
c6100a4b 1926 struct inode *inode = private_data;
2ff7e61e 1927 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 1928 blk_status_t ret;
61891923 1929
2ff7e61e 1930 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
4246a0b6 1931 if (ret) {
4e4cbee9 1932 bio->bi_status = ret;
4246a0b6
CH
1933 bio_endio(bio);
1934 }
61891923 1935 return ret;
44b8bd7e
CM
1936}
1937
d352ac68 1938/*
cad321ad
CM
1939 * extent_io.c submission hook. This does the right thing for csum calculation
1940 * on write, or reading the csums from the tree before a read
d352ac68 1941 */
8c27cb35 1942static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
c6100a4b
JB
1943 int mirror_num, unsigned long bio_flags,
1944 u64 bio_offset)
44b8bd7e 1945{
c6100a4b 1946 struct inode *inode = private_data;
0b246afa 1947 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 1948 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1949 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 1950 blk_status_t ret = 0;
19b9bdb0 1951 int skip_sum;
b812ce28 1952 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1953
6cbff00f 1954 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1955
70ddc553 1956 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 1957 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1958
37226b21 1959 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 1960 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 1961 if (ret)
61891923 1962 goto out;
5fd02043 1963
d20f7043 1964 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1965 ret = btrfs_submit_compressed_read(inode, bio,
1966 mirror_num,
1967 bio_flags);
1968 goto out;
c2db1073 1969 } else if (!skip_sum) {
2ff7e61e 1970 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 1971 if (ret)
61891923 1972 goto out;
c2db1073 1973 }
4d1b5fb4 1974 goto mapit;
b812ce28 1975 } else if (async && !skip_sum) {
17d217fe
YZ
1976 /* csum items have already been cloned */
1977 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1978 goto mapit;
19b9bdb0 1979 /* we're doing a write, do the async checksumming */
c6100a4b
JB
1980 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
1981 bio_offset, inode,
0b246afa
JM
1982 __btrfs_submit_bio_start,
1983 __btrfs_submit_bio_done);
61891923 1984 goto out;
b812ce28 1985 } else if (!skip_sum) {
2ff7e61e 1986 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
1987 if (ret)
1988 goto out;
19b9bdb0
CM
1989 }
1990
0b86a832 1991mapit:
2ff7e61e 1992 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
1993
1994out:
4e4cbee9
CH
1995 if (ret) {
1996 bio->bi_status = ret;
4246a0b6
CH
1997 bio_endio(bio);
1998 }
61891923 1999 return ret;
065631f6 2000}
6885f308 2001
d352ac68
CM
2002/*
2003 * given a list of ordered sums record them in the inode. This happens
2004 * at IO completion time based on sums calculated at bio submission time.
2005 */
ba1da2f4 2006static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2007 struct inode *inode, struct list_head *list)
e6dcd2dc 2008{
e6dcd2dc
CM
2009 struct btrfs_ordered_sum *sum;
2010
c6e30871 2011 list_for_each_entry(sum, list, list) {
39847c4d 2012 trans->adding_csums = 1;
d20f7043
CM
2013 btrfs_csum_file_blocks(trans,
2014 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 2015 trans->adding_csums = 0;
e6dcd2dc
CM
2016 }
2017 return 0;
2018}
2019
2ac55d41 2020int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
ba8b04c1 2021 struct extent_state **cached_state, int dedupe)
ea8c2819 2022{
09cbfeaf 2023 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 2024 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
7cd8c752 2025 cached_state);
ea8c2819
CM
2026}
2027
d352ac68 2028/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2029struct btrfs_writepage_fixup {
2030 struct page *page;
2031 struct btrfs_work work;
2032};
2033
b2950863 2034static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2035{
2036 struct btrfs_writepage_fixup *fixup;
2037 struct btrfs_ordered_extent *ordered;
2ac55d41 2038 struct extent_state *cached_state = NULL;
364ecf36 2039 struct extent_changeset *data_reserved = NULL;
247e743c
CM
2040 struct page *page;
2041 struct inode *inode;
2042 u64 page_start;
2043 u64 page_end;
87826df0 2044 int ret;
247e743c
CM
2045
2046 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2047 page = fixup->page;
4a096752 2048again:
247e743c
CM
2049 lock_page(page);
2050 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2051 ClearPageChecked(page);
2052 goto out_page;
2053 }
2054
2055 inode = page->mapping->host;
2056 page_start = page_offset(page);
09cbfeaf 2057 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2058
ff13db41 2059 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2060 &cached_state);
4a096752
CM
2061
2062 /* already ordered? We're done */
8b62b72b 2063 if (PagePrivate2(page))
247e743c 2064 goto out;
4a096752 2065
a776c6fa 2066 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2067 PAGE_SIZE);
4a096752 2068 if (ordered) {
2ac55d41
JB
2069 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2070 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2071 unlock_page(page);
2072 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2073 btrfs_put_ordered_extent(ordered);
4a096752
CM
2074 goto again;
2075 }
247e743c 2076
364ecf36 2077 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
09cbfeaf 2078 PAGE_SIZE);
87826df0
JM
2079 if (ret) {
2080 mapping_set_error(page->mapping, ret);
2081 end_extent_writepage(page, ret, page_start, page_end);
2082 ClearPageChecked(page);
2083 goto out;
2084 }
2085
ba8b04c1
QW
2086 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
2087 0);
247e743c 2088 ClearPageChecked(page);
87826df0 2089 set_page_dirty(page);
247e743c 2090out:
2ac55d41
JB
2091 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2092 &cached_state, GFP_NOFS);
247e743c
CM
2093out_page:
2094 unlock_page(page);
09cbfeaf 2095 put_page(page);
b897abec 2096 kfree(fixup);
364ecf36 2097 extent_changeset_free(data_reserved);
247e743c
CM
2098}
2099
2100/*
2101 * There are a few paths in the higher layers of the kernel that directly
2102 * set the page dirty bit without asking the filesystem if it is a
2103 * good idea. This causes problems because we want to make sure COW
2104 * properly happens and the data=ordered rules are followed.
2105 *
c8b97818 2106 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2107 * hasn't been properly setup for IO. We kick off an async process
2108 * to fix it up. The async helper will wait for ordered extents, set
2109 * the delalloc bit and make it safe to write the page.
2110 */
b2950863 2111static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2112{
2113 struct inode *inode = page->mapping->host;
0b246afa 2114 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2115 struct btrfs_writepage_fixup *fixup;
247e743c 2116
8b62b72b
CM
2117 /* this page is properly in the ordered list */
2118 if (TestClearPagePrivate2(page))
247e743c
CM
2119 return 0;
2120
2121 if (PageChecked(page))
2122 return -EAGAIN;
2123
2124 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2125 if (!fixup)
2126 return -EAGAIN;
f421950f 2127
247e743c 2128 SetPageChecked(page);
09cbfeaf 2129 get_page(page);
9e0af237
LB
2130 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2131 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2132 fixup->page = page;
0b246afa 2133 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2134 return -EBUSY;
247e743c
CM
2135}
2136
d899e052
YZ
2137static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2138 struct inode *inode, u64 file_pos,
2139 u64 disk_bytenr, u64 disk_num_bytes,
2140 u64 num_bytes, u64 ram_bytes,
2141 u8 compression, u8 encryption,
2142 u16 other_encoding, int extent_type)
2143{
2144 struct btrfs_root *root = BTRFS_I(inode)->root;
2145 struct btrfs_file_extent_item *fi;
2146 struct btrfs_path *path;
2147 struct extent_buffer *leaf;
2148 struct btrfs_key ins;
a12b877b 2149 u64 qg_released;
1acae57b 2150 int extent_inserted = 0;
d899e052
YZ
2151 int ret;
2152
2153 path = btrfs_alloc_path();
d8926bb3
MF
2154 if (!path)
2155 return -ENOMEM;
d899e052 2156
a1ed835e
CM
2157 /*
2158 * we may be replacing one extent in the tree with another.
2159 * The new extent is pinned in the extent map, and we don't want
2160 * to drop it from the cache until it is completely in the btree.
2161 *
2162 * So, tell btrfs_drop_extents to leave this extent in the cache.
2163 * the caller is expected to unpin it and allow it to be merged
2164 * with the others.
2165 */
1acae57b
FDBM
2166 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2167 file_pos + num_bytes, NULL, 0,
2168 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2169 if (ret)
2170 goto out;
d899e052 2171
1acae57b 2172 if (!extent_inserted) {
4a0cc7ca 2173 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2174 ins.offset = file_pos;
2175 ins.type = BTRFS_EXTENT_DATA_KEY;
2176
2177 path->leave_spinning = 1;
2178 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2179 sizeof(*fi));
2180 if (ret)
2181 goto out;
2182 }
d899e052
YZ
2183 leaf = path->nodes[0];
2184 fi = btrfs_item_ptr(leaf, path->slots[0],
2185 struct btrfs_file_extent_item);
2186 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2187 btrfs_set_file_extent_type(leaf, fi, extent_type);
2188 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2189 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2190 btrfs_set_file_extent_offset(leaf, fi, 0);
2191 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2192 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2193 btrfs_set_file_extent_compression(leaf, fi, compression);
2194 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2195 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2196
d899e052 2197 btrfs_mark_buffer_dirty(leaf);
ce195332 2198 btrfs_release_path(path);
d899e052
YZ
2199
2200 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2201
2202 ins.objectid = disk_bytenr;
2203 ins.offset = disk_num_bytes;
2204 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2205
297d750b 2206 /*
5846a3c2
QW
2207 * Release the reserved range from inode dirty range map, as it is
2208 * already moved into delayed_ref_head
297d750b 2209 */
a12b877b
QW
2210 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2211 if (ret < 0)
2212 goto out;
2213 qg_released = ret;
2214 ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid,
2215 btrfs_ino(BTRFS_I(inode)), file_pos, qg_released, &ins);
79787eaa 2216out:
d899e052 2217 btrfs_free_path(path);
b9473439 2218
79787eaa 2219 return ret;
d899e052
YZ
2220}
2221
38c227d8
LB
2222/* snapshot-aware defrag */
2223struct sa_defrag_extent_backref {
2224 struct rb_node node;
2225 struct old_sa_defrag_extent *old;
2226 u64 root_id;
2227 u64 inum;
2228 u64 file_pos;
2229 u64 extent_offset;
2230 u64 num_bytes;
2231 u64 generation;
2232};
2233
2234struct old_sa_defrag_extent {
2235 struct list_head list;
2236 struct new_sa_defrag_extent *new;
2237
2238 u64 extent_offset;
2239 u64 bytenr;
2240 u64 offset;
2241 u64 len;
2242 int count;
2243};
2244
2245struct new_sa_defrag_extent {
2246 struct rb_root root;
2247 struct list_head head;
2248 struct btrfs_path *path;
2249 struct inode *inode;
2250 u64 file_pos;
2251 u64 len;
2252 u64 bytenr;
2253 u64 disk_len;
2254 u8 compress_type;
2255};
2256
2257static int backref_comp(struct sa_defrag_extent_backref *b1,
2258 struct sa_defrag_extent_backref *b2)
2259{
2260 if (b1->root_id < b2->root_id)
2261 return -1;
2262 else if (b1->root_id > b2->root_id)
2263 return 1;
2264
2265 if (b1->inum < b2->inum)
2266 return -1;
2267 else if (b1->inum > b2->inum)
2268 return 1;
2269
2270 if (b1->file_pos < b2->file_pos)
2271 return -1;
2272 else if (b1->file_pos > b2->file_pos)
2273 return 1;
2274
2275 /*
2276 * [------------------------------] ===> (a range of space)
2277 * |<--->| |<---->| =============> (fs/file tree A)
2278 * |<---------------------------->| ===> (fs/file tree B)
2279 *
2280 * A range of space can refer to two file extents in one tree while
2281 * refer to only one file extent in another tree.
2282 *
2283 * So we may process a disk offset more than one time(two extents in A)
2284 * and locate at the same extent(one extent in B), then insert two same
2285 * backrefs(both refer to the extent in B).
2286 */
2287 return 0;
2288}
2289
2290static void backref_insert(struct rb_root *root,
2291 struct sa_defrag_extent_backref *backref)
2292{
2293 struct rb_node **p = &root->rb_node;
2294 struct rb_node *parent = NULL;
2295 struct sa_defrag_extent_backref *entry;
2296 int ret;
2297
2298 while (*p) {
2299 parent = *p;
2300 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2301
2302 ret = backref_comp(backref, entry);
2303 if (ret < 0)
2304 p = &(*p)->rb_left;
2305 else
2306 p = &(*p)->rb_right;
2307 }
2308
2309 rb_link_node(&backref->node, parent, p);
2310 rb_insert_color(&backref->node, root);
2311}
2312
2313/*
2314 * Note the backref might has changed, and in this case we just return 0.
2315 */
2316static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2317 void *ctx)
2318{
2319 struct btrfs_file_extent_item *extent;
38c227d8
LB
2320 struct old_sa_defrag_extent *old = ctx;
2321 struct new_sa_defrag_extent *new = old->new;
2322 struct btrfs_path *path = new->path;
2323 struct btrfs_key key;
2324 struct btrfs_root *root;
2325 struct sa_defrag_extent_backref *backref;
2326 struct extent_buffer *leaf;
2327 struct inode *inode = new->inode;
0b246afa 2328 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2329 int slot;
2330 int ret;
2331 u64 extent_offset;
2332 u64 num_bytes;
2333
2334 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2335 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2336 return 0;
2337
2338 key.objectid = root_id;
2339 key.type = BTRFS_ROOT_ITEM_KEY;
2340 key.offset = (u64)-1;
2341
38c227d8
LB
2342 root = btrfs_read_fs_root_no_name(fs_info, &key);
2343 if (IS_ERR(root)) {
2344 if (PTR_ERR(root) == -ENOENT)
2345 return 0;
2346 WARN_ON(1);
ab8d0fc4 2347 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2348 inum, offset, root_id);
2349 return PTR_ERR(root);
2350 }
2351
2352 key.objectid = inum;
2353 key.type = BTRFS_EXTENT_DATA_KEY;
2354 if (offset > (u64)-1 << 32)
2355 key.offset = 0;
2356 else
2357 key.offset = offset;
2358
2359 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2360 if (WARN_ON(ret < 0))
38c227d8 2361 return ret;
50f1319c 2362 ret = 0;
38c227d8
LB
2363
2364 while (1) {
2365 cond_resched();
2366
2367 leaf = path->nodes[0];
2368 slot = path->slots[0];
2369
2370 if (slot >= btrfs_header_nritems(leaf)) {
2371 ret = btrfs_next_leaf(root, path);
2372 if (ret < 0) {
2373 goto out;
2374 } else if (ret > 0) {
2375 ret = 0;
2376 goto out;
2377 }
2378 continue;
2379 }
2380
2381 path->slots[0]++;
2382
2383 btrfs_item_key_to_cpu(leaf, &key, slot);
2384
2385 if (key.objectid > inum)
2386 goto out;
2387
2388 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2389 continue;
2390
2391 extent = btrfs_item_ptr(leaf, slot,
2392 struct btrfs_file_extent_item);
2393
2394 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2395 continue;
2396
e68afa49
LB
2397 /*
2398 * 'offset' refers to the exact key.offset,
2399 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2400 * (key.offset - extent_offset).
2401 */
2402 if (key.offset != offset)
38c227d8
LB
2403 continue;
2404
e68afa49 2405 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2406 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2407
38c227d8
LB
2408 if (extent_offset >= old->extent_offset + old->offset +
2409 old->len || extent_offset + num_bytes <=
2410 old->extent_offset + old->offset)
2411 continue;
38c227d8
LB
2412 break;
2413 }
2414
2415 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2416 if (!backref) {
2417 ret = -ENOENT;
2418 goto out;
2419 }
2420
2421 backref->root_id = root_id;
2422 backref->inum = inum;
e68afa49 2423 backref->file_pos = offset;
38c227d8
LB
2424 backref->num_bytes = num_bytes;
2425 backref->extent_offset = extent_offset;
2426 backref->generation = btrfs_file_extent_generation(leaf, extent);
2427 backref->old = old;
2428 backref_insert(&new->root, backref);
2429 old->count++;
2430out:
2431 btrfs_release_path(path);
2432 WARN_ON(ret);
2433 return ret;
2434}
2435
2436static noinline bool record_extent_backrefs(struct btrfs_path *path,
2437 struct new_sa_defrag_extent *new)
2438{
0b246afa 2439 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2440 struct old_sa_defrag_extent *old, *tmp;
2441 int ret;
2442
2443 new->path = path;
2444
2445 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2446 ret = iterate_inodes_from_logical(old->bytenr +
2447 old->extent_offset, fs_info,
38c227d8
LB
2448 path, record_one_backref,
2449 old);
4724b106
JB
2450 if (ret < 0 && ret != -ENOENT)
2451 return false;
38c227d8
LB
2452
2453 /* no backref to be processed for this extent */
2454 if (!old->count) {
2455 list_del(&old->list);
2456 kfree(old);
2457 }
2458 }
2459
2460 if (list_empty(&new->head))
2461 return false;
2462
2463 return true;
2464}
2465
2466static int relink_is_mergable(struct extent_buffer *leaf,
2467 struct btrfs_file_extent_item *fi,
116e0024 2468 struct new_sa_defrag_extent *new)
38c227d8 2469{
116e0024 2470 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2471 return 0;
2472
2473 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2474 return 0;
2475
116e0024
LB
2476 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2477 return 0;
2478
2479 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2480 btrfs_file_extent_other_encoding(leaf, fi))
2481 return 0;
2482
2483 return 1;
2484}
2485
2486/*
2487 * Note the backref might has changed, and in this case we just return 0.
2488 */
2489static noinline int relink_extent_backref(struct btrfs_path *path,
2490 struct sa_defrag_extent_backref *prev,
2491 struct sa_defrag_extent_backref *backref)
2492{
2493 struct btrfs_file_extent_item *extent;
2494 struct btrfs_file_extent_item *item;
2495 struct btrfs_ordered_extent *ordered;
2496 struct btrfs_trans_handle *trans;
38c227d8
LB
2497 struct btrfs_root *root;
2498 struct btrfs_key key;
2499 struct extent_buffer *leaf;
2500 struct old_sa_defrag_extent *old = backref->old;
2501 struct new_sa_defrag_extent *new = old->new;
0b246afa 2502 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2503 struct inode *inode;
2504 struct extent_state *cached = NULL;
2505 int ret = 0;
2506 u64 start;
2507 u64 len;
2508 u64 lock_start;
2509 u64 lock_end;
2510 bool merge = false;
2511 int index;
2512
2513 if (prev && prev->root_id == backref->root_id &&
2514 prev->inum == backref->inum &&
2515 prev->file_pos + prev->num_bytes == backref->file_pos)
2516 merge = true;
2517
2518 /* step 1: get root */
2519 key.objectid = backref->root_id;
2520 key.type = BTRFS_ROOT_ITEM_KEY;
2521 key.offset = (u64)-1;
2522
38c227d8
LB
2523 index = srcu_read_lock(&fs_info->subvol_srcu);
2524
2525 root = btrfs_read_fs_root_no_name(fs_info, &key);
2526 if (IS_ERR(root)) {
2527 srcu_read_unlock(&fs_info->subvol_srcu, index);
2528 if (PTR_ERR(root) == -ENOENT)
2529 return 0;
2530 return PTR_ERR(root);
2531 }
38c227d8 2532
bcbba5e6
WS
2533 if (btrfs_root_readonly(root)) {
2534 srcu_read_unlock(&fs_info->subvol_srcu, index);
2535 return 0;
2536 }
2537
38c227d8
LB
2538 /* step 2: get inode */
2539 key.objectid = backref->inum;
2540 key.type = BTRFS_INODE_ITEM_KEY;
2541 key.offset = 0;
2542
2543 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2544 if (IS_ERR(inode)) {
2545 srcu_read_unlock(&fs_info->subvol_srcu, index);
2546 return 0;
2547 }
2548
2549 srcu_read_unlock(&fs_info->subvol_srcu, index);
2550
2551 /* step 3: relink backref */
2552 lock_start = backref->file_pos;
2553 lock_end = backref->file_pos + backref->num_bytes - 1;
2554 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2555 &cached);
38c227d8
LB
2556
2557 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2558 if (ordered) {
2559 btrfs_put_ordered_extent(ordered);
2560 goto out_unlock;
2561 }
2562
2563 trans = btrfs_join_transaction(root);
2564 if (IS_ERR(trans)) {
2565 ret = PTR_ERR(trans);
2566 goto out_unlock;
2567 }
2568
2569 key.objectid = backref->inum;
2570 key.type = BTRFS_EXTENT_DATA_KEY;
2571 key.offset = backref->file_pos;
2572
2573 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2574 if (ret < 0) {
2575 goto out_free_path;
2576 } else if (ret > 0) {
2577 ret = 0;
2578 goto out_free_path;
2579 }
2580
2581 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2582 struct btrfs_file_extent_item);
2583
2584 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2585 backref->generation)
2586 goto out_free_path;
2587
2588 btrfs_release_path(path);
2589
2590 start = backref->file_pos;
2591 if (backref->extent_offset < old->extent_offset + old->offset)
2592 start += old->extent_offset + old->offset -
2593 backref->extent_offset;
2594
2595 len = min(backref->extent_offset + backref->num_bytes,
2596 old->extent_offset + old->offset + old->len);
2597 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2598
2599 ret = btrfs_drop_extents(trans, root, inode, start,
2600 start + len, 1);
2601 if (ret)
2602 goto out_free_path;
2603again:
4a0cc7ca 2604 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2605 key.type = BTRFS_EXTENT_DATA_KEY;
2606 key.offset = start;
2607
a09a0a70 2608 path->leave_spinning = 1;
38c227d8
LB
2609 if (merge) {
2610 struct btrfs_file_extent_item *fi;
2611 u64 extent_len;
2612 struct btrfs_key found_key;
2613
3c9665df 2614 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2615 if (ret < 0)
2616 goto out_free_path;
2617
2618 path->slots[0]--;
2619 leaf = path->nodes[0];
2620 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2621
2622 fi = btrfs_item_ptr(leaf, path->slots[0],
2623 struct btrfs_file_extent_item);
2624 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2625
116e0024
LB
2626 if (extent_len + found_key.offset == start &&
2627 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2628 btrfs_set_file_extent_num_bytes(leaf, fi,
2629 extent_len + len);
2630 btrfs_mark_buffer_dirty(leaf);
2631 inode_add_bytes(inode, len);
2632
2633 ret = 1;
2634 goto out_free_path;
2635 } else {
2636 merge = false;
2637 btrfs_release_path(path);
2638 goto again;
2639 }
2640 }
2641
2642 ret = btrfs_insert_empty_item(trans, root, path, &key,
2643 sizeof(*extent));
2644 if (ret) {
66642832 2645 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2646 goto out_free_path;
2647 }
2648
2649 leaf = path->nodes[0];
2650 item = btrfs_item_ptr(leaf, path->slots[0],
2651 struct btrfs_file_extent_item);
2652 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2653 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2654 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2655 btrfs_set_file_extent_num_bytes(leaf, item, len);
2656 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2657 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2658 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2659 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2660 btrfs_set_file_extent_encryption(leaf, item, 0);
2661 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2662
2663 btrfs_mark_buffer_dirty(leaf);
2664 inode_add_bytes(inode, len);
a09a0a70 2665 btrfs_release_path(path);
38c227d8 2666
2ff7e61e 2667 ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr,
38c227d8
LB
2668 new->disk_len, 0,
2669 backref->root_id, backref->inum,
b06c4bf5 2670 new->file_pos); /* start - extent_offset */
38c227d8 2671 if (ret) {
66642832 2672 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2673 goto out_free_path;
2674 }
2675
2676 ret = 1;
2677out_free_path:
2678 btrfs_release_path(path);
a09a0a70 2679 path->leave_spinning = 0;
3a45bb20 2680 btrfs_end_transaction(trans);
38c227d8
LB
2681out_unlock:
2682 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2683 &cached, GFP_NOFS);
2684 iput(inode);
2685 return ret;
2686}
2687
6f519564
LB
2688static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2689{
2690 struct old_sa_defrag_extent *old, *tmp;
2691
2692 if (!new)
2693 return;
2694
2695 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2696 kfree(old);
2697 }
2698 kfree(new);
2699}
2700
38c227d8
LB
2701static void relink_file_extents(struct new_sa_defrag_extent *new)
2702{
0b246afa 2703 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2704 struct btrfs_path *path;
38c227d8
LB
2705 struct sa_defrag_extent_backref *backref;
2706 struct sa_defrag_extent_backref *prev = NULL;
2707 struct inode *inode;
2708 struct btrfs_root *root;
2709 struct rb_node *node;
2710 int ret;
2711
2712 inode = new->inode;
2713 root = BTRFS_I(inode)->root;
2714
2715 path = btrfs_alloc_path();
2716 if (!path)
2717 return;
2718
2719 if (!record_extent_backrefs(path, new)) {
2720 btrfs_free_path(path);
2721 goto out;
2722 }
2723 btrfs_release_path(path);
2724
2725 while (1) {
2726 node = rb_first(&new->root);
2727 if (!node)
2728 break;
2729 rb_erase(node, &new->root);
2730
2731 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2732
2733 ret = relink_extent_backref(path, prev, backref);
2734 WARN_ON(ret < 0);
2735
2736 kfree(prev);
2737
2738 if (ret == 1)
2739 prev = backref;
2740 else
2741 prev = NULL;
2742 cond_resched();
2743 }
2744 kfree(prev);
2745
2746 btrfs_free_path(path);
38c227d8 2747out:
6f519564
LB
2748 free_sa_defrag_extent(new);
2749
0b246afa
JM
2750 atomic_dec(&fs_info->defrag_running);
2751 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2752}
2753
2754static struct new_sa_defrag_extent *
2755record_old_file_extents(struct inode *inode,
2756 struct btrfs_ordered_extent *ordered)
2757{
0b246afa 2758 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2759 struct btrfs_root *root = BTRFS_I(inode)->root;
2760 struct btrfs_path *path;
2761 struct btrfs_key key;
6f519564 2762 struct old_sa_defrag_extent *old;
38c227d8
LB
2763 struct new_sa_defrag_extent *new;
2764 int ret;
2765
2766 new = kmalloc(sizeof(*new), GFP_NOFS);
2767 if (!new)
2768 return NULL;
2769
2770 new->inode = inode;
2771 new->file_pos = ordered->file_offset;
2772 new->len = ordered->len;
2773 new->bytenr = ordered->start;
2774 new->disk_len = ordered->disk_len;
2775 new->compress_type = ordered->compress_type;
2776 new->root = RB_ROOT;
2777 INIT_LIST_HEAD(&new->head);
2778
2779 path = btrfs_alloc_path();
2780 if (!path)
2781 goto out_kfree;
2782
4a0cc7ca 2783 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2784 key.type = BTRFS_EXTENT_DATA_KEY;
2785 key.offset = new->file_pos;
2786
2787 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2788 if (ret < 0)
2789 goto out_free_path;
2790 if (ret > 0 && path->slots[0] > 0)
2791 path->slots[0]--;
2792
2793 /* find out all the old extents for the file range */
2794 while (1) {
2795 struct btrfs_file_extent_item *extent;
2796 struct extent_buffer *l;
2797 int slot;
2798 u64 num_bytes;
2799 u64 offset;
2800 u64 end;
2801 u64 disk_bytenr;
2802 u64 extent_offset;
2803
2804 l = path->nodes[0];
2805 slot = path->slots[0];
2806
2807 if (slot >= btrfs_header_nritems(l)) {
2808 ret = btrfs_next_leaf(root, path);
2809 if (ret < 0)
6f519564 2810 goto out_free_path;
38c227d8
LB
2811 else if (ret > 0)
2812 break;
2813 continue;
2814 }
2815
2816 btrfs_item_key_to_cpu(l, &key, slot);
2817
4a0cc7ca 2818 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2819 break;
2820 if (key.type != BTRFS_EXTENT_DATA_KEY)
2821 break;
2822 if (key.offset >= new->file_pos + new->len)
2823 break;
2824
2825 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2826
2827 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2828 if (key.offset + num_bytes < new->file_pos)
2829 goto next;
2830
2831 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2832 if (!disk_bytenr)
2833 goto next;
2834
2835 extent_offset = btrfs_file_extent_offset(l, extent);
2836
2837 old = kmalloc(sizeof(*old), GFP_NOFS);
2838 if (!old)
6f519564 2839 goto out_free_path;
38c227d8
LB
2840
2841 offset = max(new->file_pos, key.offset);
2842 end = min(new->file_pos + new->len, key.offset + num_bytes);
2843
2844 old->bytenr = disk_bytenr;
2845 old->extent_offset = extent_offset;
2846 old->offset = offset - key.offset;
2847 old->len = end - offset;
2848 old->new = new;
2849 old->count = 0;
2850 list_add_tail(&old->list, &new->head);
2851next:
2852 path->slots[0]++;
2853 cond_resched();
2854 }
2855
2856 btrfs_free_path(path);
0b246afa 2857 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2858
2859 return new;
2860
38c227d8
LB
2861out_free_path:
2862 btrfs_free_path(path);
2863out_kfree:
6f519564 2864 free_sa_defrag_extent(new);
38c227d8
LB
2865 return NULL;
2866}
2867
2ff7e61e 2868static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2869 u64 start, u64 len)
2870{
2871 struct btrfs_block_group_cache *cache;
2872
0b246afa 2873 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2874 ASSERT(cache);
2875
2876 spin_lock(&cache->lock);
2877 cache->delalloc_bytes -= len;
2878 spin_unlock(&cache->lock);
2879
2880 btrfs_put_block_group(cache);
2881}
2882
d352ac68
CM
2883/* as ordered data IO finishes, this gets called so we can finish
2884 * an ordered extent if the range of bytes in the file it covers are
2885 * fully written.
2886 */
5fd02043 2887static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2888{
5fd02043 2889 struct inode *inode = ordered_extent->inode;
0b246afa 2890 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2891 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2892 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2893 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2894 struct extent_state *cached_state = NULL;
38c227d8 2895 struct new_sa_defrag_extent *new = NULL;
261507a0 2896 int compress_type = 0;
77cef2ec
JB
2897 int ret = 0;
2898 u64 logical_len = ordered_extent->len;
82d5902d 2899 bool nolock;
77cef2ec 2900 bool truncated = false;
a7e3b975
FM
2901 bool range_locked = false;
2902 bool clear_new_delalloc_bytes = false;
2903
2904 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2905 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2906 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2907 clear_new_delalloc_bytes = true;
e6dcd2dc 2908
70ddc553 2909 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2910
5fd02043
JB
2911 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2912 ret = -EIO;
2913 goto out;
2914 }
2915
7ab7956e
NB
2916 btrfs_free_io_failure_record(BTRFS_I(inode),
2917 ordered_extent->file_offset,
2918 ordered_extent->file_offset +
2919 ordered_extent->len - 1);
f612496b 2920
77cef2ec
JB
2921 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2922 truncated = true;
2923 logical_len = ordered_extent->truncated_len;
2924 /* Truncated the entire extent, don't bother adding */
2925 if (!logical_len)
2926 goto out;
2927 }
2928
c2167754 2929 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2930 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2931
2932 /*
2933 * For mwrite(mmap + memset to write) case, we still reserve
2934 * space for NOCOW range.
2935 * As NOCOW won't cause a new delayed ref, just free the space
2936 */
bc42bda2 2937 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
94ed938a 2938 ordered_extent->len);
6c760c07
JB
2939 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2940 if (nolock)
2941 trans = btrfs_join_transaction_nolock(root);
2942 else
2943 trans = btrfs_join_transaction(root);
2944 if (IS_ERR(trans)) {
2945 ret = PTR_ERR(trans);
2946 trans = NULL;
2947 goto out;
c2167754 2948 }
0b246afa 2949 trans->block_rsv = &fs_info->delalloc_block_rsv;
6c760c07
JB
2950 ret = btrfs_update_inode_fallback(trans, root, inode);
2951 if (ret) /* -ENOMEM or corruption */
66642832 2952 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2953 goto out;
2954 }
e6dcd2dc 2955
a7e3b975 2956 range_locked = true;
2ac55d41
JB
2957 lock_extent_bits(io_tree, ordered_extent->file_offset,
2958 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2959 &cached_state);
e6dcd2dc 2960
38c227d8
LB
2961 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2962 ordered_extent->file_offset + ordered_extent->len - 1,
452e62b7 2963 EXTENT_DEFRAG, 0, cached_state);
38c227d8
LB
2964 if (ret) {
2965 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2966 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2967 /* the inode is shared */
2968 new = record_old_file_extents(inode, ordered_extent);
2969
2970 clear_extent_bit(io_tree, ordered_extent->file_offset,
2971 ordered_extent->file_offset + ordered_extent->len - 1,
2972 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2973 }
2974
0cb59c99 2975 if (nolock)
7a7eaa40 2976 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2977 else
7a7eaa40 2978 trans = btrfs_join_transaction(root);
79787eaa
JM
2979 if (IS_ERR(trans)) {
2980 ret = PTR_ERR(trans);
2981 trans = NULL;
a7e3b975 2982 goto out;
79787eaa 2983 }
a79b7d4b 2984
0b246afa 2985 trans->block_rsv = &fs_info->delalloc_block_rsv;
c2167754 2986
c8b97818 2987 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2988 compress_type = ordered_extent->compress_type;
d899e052 2989 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2990 BUG_ON(compress_type);
7a6d7067 2991 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
2992 ordered_extent->file_offset,
2993 ordered_extent->file_offset +
77cef2ec 2994 logical_len);
d899e052 2995 } else {
0b246afa 2996 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
2997 ret = insert_reserved_file_extent(trans, inode,
2998 ordered_extent->file_offset,
2999 ordered_extent->start,
3000 ordered_extent->disk_len,
77cef2ec 3001 logical_len, logical_len,
261507a0 3002 compress_type, 0, 0,
d899e052 3003 BTRFS_FILE_EXTENT_REG);
e570fd27 3004 if (!ret)
2ff7e61e 3005 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
3006 ordered_extent->start,
3007 ordered_extent->disk_len);
d899e052 3008 }
5dc562c5
JB
3009 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3010 ordered_extent->file_offset, ordered_extent->len,
3011 trans->transid);
79787eaa 3012 if (ret < 0) {
66642832 3013 btrfs_abort_transaction(trans, ret);
a7e3b975 3014 goto out;
79787eaa 3015 }
2ac55d41 3016
df9f628e 3017 add_pending_csums(trans, inode, &ordered_extent->list);
e6dcd2dc 3018
6c760c07
JB
3019 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3020 ret = btrfs_update_inode_fallback(trans, root, inode);
3021 if (ret) { /* -ENOMEM or corruption */
66642832 3022 btrfs_abort_transaction(trans, ret);
a7e3b975 3023 goto out;
1ef30be1
JB
3024 }
3025 ret = 0;
c2167754 3026out:
a7e3b975
FM
3027 if (range_locked || clear_new_delalloc_bytes) {
3028 unsigned int clear_bits = 0;
3029
3030 if (range_locked)
3031 clear_bits |= EXTENT_LOCKED;
3032 if (clear_new_delalloc_bytes)
3033 clear_bits |= EXTENT_DELALLOC_NEW;
3034 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3035 ordered_extent->file_offset,
3036 ordered_extent->file_offset +
3037 ordered_extent->len - 1,
3038 clear_bits,
3039 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3040 0, &cached_state, GFP_NOFS);
3041 }
3042
0b246afa 3043 if (root != fs_info->tree_root)
691fa059
NB
3044 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3045 ordered_extent->len);
a698d075 3046 if (trans)
3a45bb20 3047 btrfs_end_transaction(trans);
0cb59c99 3048
77cef2ec
JB
3049 if (ret || truncated) {
3050 u64 start, end;
3051
3052 if (truncated)
3053 start = ordered_extent->file_offset + logical_len;
3054 else
3055 start = ordered_extent->file_offset;
3056 end = ordered_extent->file_offset + ordered_extent->len - 1;
3057 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3058
3059 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 3060 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 3061
0bec9ef5
JB
3062 /*
3063 * If the ordered extent had an IOERR or something else went
3064 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3065 * back to the allocator. We only free the extent in the
3066 * truncated case if we didn't write out the extent at all.
0bec9ef5 3067 */
77cef2ec
JB
3068 if ((ret || !logical_len) &&
3069 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3070 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3071 btrfs_free_reserved_extent(fs_info,
3072 ordered_extent->start,
e570fd27 3073 ordered_extent->disk_len, 1);
0bec9ef5
JB
3074 }
3075
3076
5fd02043 3077 /*
8bad3c02
LB
3078 * This needs to be done to make sure anybody waiting knows we are done
3079 * updating everything for this ordered extent.
5fd02043
JB
3080 */
3081 btrfs_remove_ordered_extent(inode, ordered_extent);
3082
38c227d8 3083 /* for snapshot-aware defrag */
6f519564
LB
3084 if (new) {
3085 if (ret) {
3086 free_sa_defrag_extent(new);
0b246afa 3087 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3088 } else {
3089 relink_file_extents(new);
3090 }
3091 }
38c227d8 3092
e6dcd2dc
CM
3093 /* once for us */
3094 btrfs_put_ordered_extent(ordered_extent);
3095 /* once for the tree */
3096 btrfs_put_ordered_extent(ordered_extent);
3097
5fd02043
JB
3098 return ret;
3099}
3100
3101static void finish_ordered_fn(struct btrfs_work *work)
3102{
3103 struct btrfs_ordered_extent *ordered_extent;
3104 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3105 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3106}
3107
c3988d63 3108static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3109 struct extent_state *state, int uptodate)
3110{
5fd02043 3111 struct inode *inode = page->mapping->host;
0b246afa 3112 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3113 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3114 struct btrfs_workqueue *wq;
3115 btrfs_work_func_t func;
5fd02043 3116
1abe9b8a 3117 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3118
8b62b72b 3119 ClearPagePrivate2(page);
5fd02043
JB
3120 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3121 end - start + 1, uptodate))
c3988d63 3122 return;
5fd02043 3123
70ddc553 3124 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 3125 wq = fs_info->endio_freespace_worker;
9e0af237
LB
3126 func = btrfs_freespace_write_helper;
3127 } else {
0b246afa 3128 wq = fs_info->endio_write_workers;
9e0af237
LB
3129 func = btrfs_endio_write_helper;
3130 }
5fd02043 3131
9e0af237
LB
3132 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3133 NULL);
3134 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3135}
3136
dc380aea
MX
3137static int __readpage_endio_check(struct inode *inode,
3138 struct btrfs_io_bio *io_bio,
3139 int icsum, struct page *page,
3140 int pgoff, u64 start, size_t len)
3141{
3142 char *kaddr;
3143 u32 csum_expected;
3144 u32 csum = ~(u32)0;
dc380aea
MX
3145
3146 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3147
3148 kaddr = kmap_atomic(page);
3149 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
0b5e3daf 3150 btrfs_csum_final(csum, (u8 *)&csum);
dc380aea
MX
3151 if (csum != csum_expected)
3152 goto zeroit;
3153
3154 kunmap_atomic(kaddr);
3155 return 0;
3156zeroit:
0970a22e 3157 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
6f6b643e 3158 io_bio->mirror_num);
dc380aea
MX
3159 memset(kaddr + pgoff, 1, len);
3160 flush_dcache_page(page);
3161 kunmap_atomic(kaddr);
dc380aea
MX
3162 return -EIO;
3163}
3164
d352ac68
CM
3165/*
3166 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3167 * if there's a match, we allow the bio to finish. If not, the code in
3168 * extent_io.c will try to find good copies for us.
d352ac68 3169 */
facc8a22
MX
3170static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3171 u64 phy_offset, struct page *page,
3172 u64 start, u64 end, int mirror)
07157aac 3173{
4eee4fa4 3174 size_t offset = start - page_offset(page);
07157aac 3175 struct inode *inode = page->mapping->host;
d1310b2e 3176 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3177 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3178
d20f7043
CM
3179 if (PageChecked(page)) {
3180 ClearPageChecked(page);
dc380aea 3181 return 0;
d20f7043 3182 }
6cbff00f
CH
3183
3184 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3185 return 0;
17d217fe
YZ
3186
3187 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3188 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3189 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3190 return 0;
17d217fe 3191 }
d20f7043 3192
facc8a22 3193 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3194 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3195 start, (size_t)(end - start + 1));
07157aac 3196}
b888db2b 3197
24bbcf04
YZ
3198void btrfs_add_delayed_iput(struct inode *inode)
3199{
0b246afa 3200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3201 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3202
3203 if (atomic_add_unless(&inode->i_count, -1, 1))
3204 return;
3205
24bbcf04 3206 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3207 if (binode->delayed_iput_count == 0) {
3208 ASSERT(list_empty(&binode->delayed_iput));
3209 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3210 } else {
3211 binode->delayed_iput_count++;
3212 }
24bbcf04
YZ
3213 spin_unlock(&fs_info->delayed_iput_lock);
3214}
3215
2ff7e61e 3216void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3217{
24bbcf04 3218
24bbcf04 3219 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3220 while (!list_empty(&fs_info->delayed_iputs)) {
3221 struct btrfs_inode *inode;
3222
3223 inode = list_first_entry(&fs_info->delayed_iputs,
3224 struct btrfs_inode, delayed_iput);
3225 if (inode->delayed_iput_count) {
3226 inode->delayed_iput_count--;
3227 list_move_tail(&inode->delayed_iput,
3228 &fs_info->delayed_iputs);
3229 } else {
3230 list_del_init(&inode->delayed_iput);
3231 }
3232 spin_unlock(&fs_info->delayed_iput_lock);
3233 iput(&inode->vfs_inode);
3234 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3235 }
8089fe62 3236 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3237}
3238
d68fc57b 3239/*
42b2aa86 3240 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3241 * files in the subvolume, it removes orphan item and frees block_rsv
3242 * structure.
3243 */
3244void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3245 struct btrfs_root *root)
3246{
0b246afa 3247 struct btrfs_fs_info *fs_info = root->fs_info;
90290e19 3248 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3249 int ret;
3250
8a35d95f 3251 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3252 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3253 return;
3254
90290e19 3255 spin_lock(&root->orphan_lock);
8a35d95f 3256 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3257 spin_unlock(&root->orphan_lock);
3258 return;
3259 }
3260
3261 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3262 spin_unlock(&root->orphan_lock);
3263 return;
3264 }
3265
3266 block_rsv = root->orphan_block_rsv;
3267 root->orphan_block_rsv = NULL;
3268 spin_unlock(&root->orphan_lock);
3269
27cdeb70 3270 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b 3271 btrfs_root_refs(&root->root_item) > 0) {
0b246afa 3272 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
d68fc57b 3273 root->root_key.objectid);
4ef31a45 3274 if (ret)
66642832 3275 btrfs_abort_transaction(trans, ret);
4ef31a45 3276 else
27cdeb70
MX
3277 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3278 &root->state);
d68fc57b
YZ
3279 }
3280
90290e19
JB
3281 if (block_rsv) {
3282 WARN_ON(block_rsv->size > 0);
2ff7e61e 3283 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b
YZ
3284 }
3285}
3286
7b128766
JB
3287/*
3288 * This creates an orphan entry for the given inode in case something goes
3289 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3290 *
3291 * NOTE: caller of this function should reserve 5 units of metadata for
3292 * this function.
7b128766 3293 */
73f2e545
NB
3294int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3295 struct btrfs_inode *inode)
7b128766 3296{
73f2e545
NB
3297 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3298 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3299 struct btrfs_block_rsv *block_rsv = NULL;
3300 int reserve = 0;
3301 int insert = 0;
3302 int ret;
7b128766 3303
d68fc57b 3304 if (!root->orphan_block_rsv) {
2ff7e61e
JM
3305 block_rsv = btrfs_alloc_block_rsv(fs_info,
3306 BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3307 if (!block_rsv)
3308 return -ENOMEM;
d68fc57b 3309 }
7b128766 3310
d68fc57b
YZ
3311 spin_lock(&root->orphan_lock);
3312 if (!root->orphan_block_rsv) {
3313 root->orphan_block_rsv = block_rsv;
3314 } else if (block_rsv) {
2ff7e61e 3315 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b 3316 block_rsv = NULL;
7b128766 3317 }
7b128766 3318
8a35d95f 3319 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3320 &inode->runtime_flags)) {
d68fc57b
YZ
3321#if 0
3322 /*
3323 * For proper ENOSPC handling, we should do orphan
3324 * cleanup when mounting. But this introduces backward
3325 * compatibility issue.
3326 */
3327 if (!xchg(&root->orphan_item_inserted, 1))
3328 insert = 2;
3329 else
3330 insert = 1;
3331#endif
3332 insert = 1;
321f0e70 3333 atomic_inc(&root->orphan_inodes);
7b128766
JB
3334 }
3335
72ac3c0d 3336 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3337 &inode->runtime_flags))
d68fc57b 3338 reserve = 1;
d68fc57b 3339 spin_unlock(&root->orphan_lock);
7b128766 3340
d68fc57b
YZ
3341 /* grab metadata reservation from transaction handle */
3342 if (reserve) {
3343 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3344 ASSERT(!ret);
3345 if (ret) {
3346 atomic_dec(&root->orphan_inodes);
3347 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3348 &inode->runtime_flags);
3b6571c1
JB
3349 if (insert)
3350 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3351 &inode->runtime_flags);
3b6571c1
JB
3352 return ret;
3353 }
d68fc57b 3354 }
7b128766 3355
d68fc57b
YZ
3356 /* insert an orphan item to track this unlinked/truncated file */
3357 if (insert >= 1) {
73f2e545 3358 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3359 if (ret) {
703c88e0 3360 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3361 if (reserve) {
3362 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3363 &inode->runtime_flags);
4ef31a45
JB
3364 btrfs_orphan_release_metadata(inode);
3365 }
3366 if (ret != -EEXIST) {
e8e7cff6 3367 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3368 &inode->runtime_flags);
66642832 3369 btrfs_abort_transaction(trans, ret);
4ef31a45
JB
3370 return ret;
3371 }
79787eaa
JM
3372 }
3373 ret = 0;
d68fc57b
YZ
3374 }
3375
3376 /* insert an orphan item to track subvolume contains orphan files */
3377 if (insert >= 2) {
0b246afa 3378 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
d68fc57b 3379 root->root_key.objectid);
79787eaa 3380 if (ret && ret != -EEXIST) {
66642832 3381 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3382 return ret;
3383 }
d68fc57b
YZ
3384 }
3385 return 0;
7b128766
JB
3386}
3387
3388/*
3389 * We have done the truncate/delete so we can go ahead and remove the orphan
3390 * item for this particular inode.
3391 */
48a3b636 3392static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3393 struct btrfs_inode *inode)
7b128766 3394{
3d6ae7bb 3395 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3396 int delete_item = 0;
3397 int release_rsv = 0;
7b128766
JB
3398 int ret = 0;
3399
d68fc57b 3400 spin_lock(&root->orphan_lock);
8a35d95f 3401 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3d6ae7bb 3402 &inode->runtime_flags))
d68fc57b 3403 delete_item = 1;
7b128766 3404
72ac3c0d 3405 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3d6ae7bb 3406 &inode->runtime_flags))
d68fc57b 3407 release_rsv = 1;
d68fc57b 3408 spin_unlock(&root->orphan_lock);
7b128766 3409
703c88e0 3410 if (delete_item) {
8a35d95f 3411 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3412 if (trans)
3413 ret = btrfs_del_orphan_item(trans, root,
3d6ae7bb 3414 btrfs_ino(inode));
8a35d95f 3415 }
7b128766 3416
703c88e0
FDBM
3417 if (release_rsv)
3418 btrfs_orphan_release_metadata(inode);
3419
4ef31a45 3420 return ret;
7b128766
JB
3421}
3422
3423/*
3424 * this cleans up any orphans that may be left on the list from the last use
3425 * of this root.
3426 */
66b4ffd1 3427int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3428{
0b246afa 3429 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3430 struct btrfs_path *path;
3431 struct extent_buffer *leaf;
7b128766
JB
3432 struct btrfs_key key, found_key;
3433 struct btrfs_trans_handle *trans;
3434 struct inode *inode;
8f6d7f4f 3435 u64 last_objectid = 0;
7b128766
JB
3436 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3437
d68fc57b 3438 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3439 return 0;
c71bf099
YZ
3440
3441 path = btrfs_alloc_path();
66b4ffd1
JB
3442 if (!path) {
3443 ret = -ENOMEM;
3444 goto out;
3445 }
e4058b54 3446 path->reada = READA_BACK;
7b128766
JB
3447
3448 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3449 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3450 key.offset = (u64)-1;
3451
7b128766
JB
3452 while (1) {
3453 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3454 if (ret < 0)
3455 goto out;
7b128766
JB
3456
3457 /*
3458 * if ret == 0 means we found what we were searching for, which
25985edc 3459 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3460 * find the key and see if we have stuff that matches
3461 */
3462 if (ret > 0) {
66b4ffd1 3463 ret = 0;
7b128766
JB
3464 if (path->slots[0] == 0)
3465 break;
3466 path->slots[0]--;
3467 }
3468
3469 /* pull out the item */
3470 leaf = path->nodes[0];
7b128766
JB
3471 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3472
3473 /* make sure the item matches what we want */
3474 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3475 break;
962a298f 3476 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3477 break;
3478
3479 /* release the path since we're done with it */
b3b4aa74 3480 btrfs_release_path(path);
7b128766
JB
3481
3482 /*
3483 * this is where we are basically btrfs_lookup, without the
3484 * crossing root thing. we store the inode number in the
3485 * offset of the orphan item.
3486 */
8f6d7f4f
JB
3487
3488 if (found_key.offset == last_objectid) {
0b246afa
JM
3489 btrfs_err(fs_info,
3490 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3491 ret = -EINVAL;
3492 goto out;
3493 }
3494
3495 last_objectid = found_key.offset;
3496
5d4f98a2
YZ
3497 found_key.objectid = found_key.offset;
3498 found_key.type = BTRFS_INODE_ITEM_KEY;
3499 found_key.offset = 0;
0b246afa 3500 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3501 ret = PTR_ERR_OR_ZERO(inode);
67710892 3502 if (ret && ret != -ENOENT)
66b4ffd1 3503 goto out;
7b128766 3504
0b246afa 3505 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3506 struct btrfs_root *dead_root;
3507 struct btrfs_fs_info *fs_info = root->fs_info;
3508 int is_dead_root = 0;
3509
3510 /*
3511 * this is an orphan in the tree root. Currently these
3512 * could come from 2 sources:
3513 * a) a snapshot deletion in progress
3514 * b) a free space cache inode
3515 * We need to distinguish those two, as the snapshot
3516 * orphan must not get deleted.
3517 * find_dead_roots already ran before us, so if this
3518 * is a snapshot deletion, we should find the root
3519 * in the dead_roots list
3520 */
3521 spin_lock(&fs_info->trans_lock);
3522 list_for_each_entry(dead_root, &fs_info->dead_roots,
3523 root_list) {
3524 if (dead_root->root_key.objectid ==
3525 found_key.objectid) {
3526 is_dead_root = 1;
3527 break;
3528 }
3529 }
3530 spin_unlock(&fs_info->trans_lock);
3531 if (is_dead_root) {
3532 /* prevent this orphan from being found again */
3533 key.offset = found_key.objectid - 1;
3534 continue;
3535 }
3536 }
7b128766 3537 /*
a8c9e576
JB
3538 * Inode is already gone but the orphan item is still there,
3539 * kill the orphan item.
7b128766 3540 */
67710892 3541 if (ret == -ENOENT) {
a8c9e576 3542 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3543 if (IS_ERR(trans)) {
3544 ret = PTR_ERR(trans);
3545 goto out;
3546 }
0b246afa
JM
3547 btrfs_debug(fs_info, "auto deleting %Lu",
3548 found_key.objectid);
a8c9e576
JB
3549 ret = btrfs_del_orphan_item(trans, root,
3550 found_key.objectid);
3a45bb20 3551 btrfs_end_transaction(trans);
4ef31a45
JB
3552 if (ret)
3553 goto out;
7b128766
JB
3554 continue;
3555 }
3556
a8c9e576
JB
3557 /*
3558 * add this inode to the orphan list so btrfs_orphan_del does
3559 * the proper thing when we hit it
3560 */
8a35d95f
JB
3561 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3562 &BTRFS_I(inode)->runtime_flags);
925396ec 3563 atomic_inc(&root->orphan_inodes);
a8c9e576 3564
7b128766
JB
3565 /* if we have links, this was a truncate, lets do that */
3566 if (inode->i_nlink) {
fae7f21c 3567 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3568 iput(inode);
3569 continue;
3570 }
7b128766 3571 nr_truncate++;
f3fe820c
JB
3572
3573 /* 1 for the orphan item deletion. */
3574 trans = btrfs_start_transaction(root, 1);
3575 if (IS_ERR(trans)) {
c69b26b0 3576 iput(inode);
f3fe820c
JB
3577 ret = PTR_ERR(trans);
3578 goto out;
3579 }
73f2e545 3580 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 3581 btrfs_end_transaction(trans);
c69b26b0
JB
3582 if (ret) {
3583 iput(inode);
f3fe820c 3584 goto out;
c69b26b0 3585 }
f3fe820c 3586
66b4ffd1 3587 ret = btrfs_truncate(inode);
4a7d0f68 3588 if (ret)
3d6ae7bb 3589 btrfs_orphan_del(NULL, BTRFS_I(inode));
7b128766
JB
3590 } else {
3591 nr_unlink++;
3592 }
3593
3594 /* this will do delete_inode and everything for us */
3595 iput(inode);
66b4ffd1
JB
3596 if (ret)
3597 goto out;
7b128766 3598 }
3254c876
MX
3599 /* release the path since we're done with it */
3600 btrfs_release_path(path);
3601
d68fc57b
YZ
3602 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3603
3604 if (root->orphan_block_rsv)
2ff7e61e 3605 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
d68fc57b
YZ
3606 (u64)-1);
3607
27cdeb70
MX
3608 if (root->orphan_block_rsv ||
3609 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3610 trans = btrfs_join_transaction(root);
66b4ffd1 3611 if (!IS_ERR(trans))
3a45bb20 3612 btrfs_end_transaction(trans);
d68fc57b 3613 }
7b128766
JB
3614
3615 if (nr_unlink)
0b246afa 3616 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3617 if (nr_truncate)
0b246afa 3618 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3619
3620out:
3621 if (ret)
0b246afa 3622 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3623 btrfs_free_path(path);
3624 return ret;
7b128766
JB
3625}
3626
46a53cca
CM
3627/*
3628 * very simple check to peek ahead in the leaf looking for xattrs. If we
3629 * don't find any xattrs, we know there can't be any acls.
3630 *
3631 * slot is the slot the inode is in, objectid is the objectid of the inode
3632 */
3633static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3634 int slot, u64 objectid,
3635 int *first_xattr_slot)
46a53cca
CM
3636{
3637 u32 nritems = btrfs_header_nritems(leaf);
3638 struct btrfs_key found_key;
f23b5a59
JB
3639 static u64 xattr_access = 0;
3640 static u64 xattr_default = 0;
46a53cca
CM
3641 int scanned = 0;
3642
f23b5a59 3643 if (!xattr_access) {
97d79299
AG
3644 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3645 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3646 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3647 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3648 }
3649
46a53cca 3650 slot++;
63541927 3651 *first_xattr_slot = -1;
46a53cca
CM
3652 while (slot < nritems) {
3653 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3654
3655 /* we found a different objectid, there must not be acls */
3656 if (found_key.objectid != objectid)
3657 return 0;
3658
3659 /* we found an xattr, assume we've got an acl */
f23b5a59 3660 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3661 if (*first_xattr_slot == -1)
3662 *first_xattr_slot = slot;
f23b5a59
JB
3663 if (found_key.offset == xattr_access ||
3664 found_key.offset == xattr_default)
3665 return 1;
3666 }
46a53cca
CM
3667
3668 /*
3669 * we found a key greater than an xattr key, there can't
3670 * be any acls later on
3671 */
3672 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3673 return 0;
3674
3675 slot++;
3676 scanned++;
3677
3678 /*
3679 * it goes inode, inode backrefs, xattrs, extents,
3680 * so if there are a ton of hard links to an inode there can
3681 * be a lot of backrefs. Don't waste time searching too hard,
3682 * this is just an optimization
3683 */
3684 if (scanned >= 8)
3685 break;
3686 }
3687 /* we hit the end of the leaf before we found an xattr or
3688 * something larger than an xattr. We have to assume the inode
3689 * has acls
3690 */
63541927
FDBM
3691 if (*first_xattr_slot == -1)
3692 *first_xattr_slot = slot;
46a53cca
CM
3693 return 1;
3694}
3695
d352ac68
CM
3696/*
3697 * read an inode from the btree into the in-memory inode
3698 */
67710892 3699static int btrfs_read_locked_inode(struct inode *inode)
39279cc3 3700{
0b246afa 3701 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 3702 struct btrfs_path *path;
5f39d397 3703 struct extent_buffer *leaf;
39279cc3
CM
3704 struct btrfs_inode_item *inode_item;
3705 struct btrfs_root *root = BTRFS_I(inode)->root;
3706 struct btrfs_key location;
67de1176 3707 unsigned long ptr;
46a53cca 3708 int maybe_acls;
618e21d5 3709 u32 rdev;
39279cc3 3710 int ret;
2f7e33d4 3711 bool filled = false;
63541927 3712 int first_xattr_slot;
2f7e33d4
MX
3713
3714 ret = btrfs_fill_inode(inode, &rdev);
3715 if (!ret)
3716 filled = true;
39279cc3
CM
3717
3718 path = btrfs_alloc_path();
67710892
FM
3719 if (!path) {
3720 ret = -ENOMEM;
1748f843 3721 goto make_bad;
67710892 3722 }
1748f843 3723
39279cc3 3724 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3725
39279cc3 3726 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3727 if (ret) {
3728 if (ret > 0)
3729 ret = -ENOENT;
39279cc3 3730 goto make_bad;
67710892 3731 }
39279cc3 3732
5f39d397 3733 leaf = path->nodes[0];
2f7e33d4
MX
3734
3735 if (filled)
67de1176 3736 goto cache_index;
2f7e33d4 3737
5f39d397
CM
3738 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3739 struct btrfs_inode_item);
5f39d397 3740 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3741 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3742 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3743 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3744 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3745
a937b979
DS
3746 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3747 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3748
a937b979
DS
3749 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3750 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3751
a937b979
DS
3752 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3753 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3754
9cc97d64 3755 BTRFS_I(inode)->i_otime.tv_sec =
3756 btrfs_timespec_sec(leaf, &inode_item->otime);
3757 BTRFS_I(inode)->i_otime.tv_nsec =
3758 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3759
a76a3cd4 3760 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3761 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3762 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3763
6e17d30b
YD
3764 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3765 inode->i_generation = BTRFS_I(inode)->generation;
3766 inode->i_rdev = 0;
3767 rdev = btrfs_inode_rdev(leaf, inode_item);
3768
3769 BTRFS_I(inode)->index_cnt = (u64)-1;
3770 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3771
3772cache_index:
5dc562c5
JB
3773 /*
3774 * If we were modified in the current generation and evicted from memory
3775 * and then re-read we need to do a full sync since we don't have any
3776 * idea about which extents were modified before we were evicted from
3777 * cache.
6e17d30b
YD
3778 *
3779 * This is required for both inode re-read from disk and delayed inode
3780 * in delayed_nodes_tree.
5dc562c5 3781 */
0b246afa 3782 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3783 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3784 &BTRFS_I(inode)->runtime_flags);
3785
bde6c242
FM
3786 /*
3787 * We don't persist the id of the transaction where an unlink operation
3788 * against the inode was last made. So here we assume the inode might
3789 * have been evicted, and therefore the exact value of last_unlink_trans
3790 * lost, and set it to last_trans to avoid metadata inconsistencies
3791 * between the inode and its parent if the inode is fsync'ed and the log
3792 * replayed. For example, in the scenario:
3793 *
3794 * touch mydir/foo
3795 * ln mydir/foo mydir/bar
3796 * sync
3797 * unlink mydir/bar
3798 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3799 * xfs_io -c fsync mydir/foo
3800 * <power failure>
3801 * mount fs, triggers fsync log replay
3802 *
3803 * We must make sure that when we fsync our inode foo we also log its
3804 * parent inode, otherwise after log replay the parent still has the
3805 * dentry with the "bar" name but our inode foo has a link count of 1
3806 * and doesn't have an inode ref with the name "bar" anymore.
3807 *
3808 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3809 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3810 * transaction commits on fsync if our inode is a directory, or if our
3811 * inode is not a directory, logging its parent unnecessarily.
3812 */
3813 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3814
67de1176
MX
3815 path->slots[0]++;
3816 if (inode->i_nlink != 1 ||
3817 path->slots[0] >= btrfs_header_nritems(leaf))
3818 goto cache_acl;
3819
3820 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3821 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3822 goto cache_acl;
3823
3824 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3825 if (location.type == BTRFS_INODE_REF_KEY) {
3826 struct btrfs_inode_ref *ref;
3827
3828 ref = (struct btrfs_inode_ref *)ptr;
3829 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3830 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3831 struct btrfs_inode_extref *extref;
3832
3833 extref = (struct btrfs_inode_extref *)ptr;
3834 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3835 extref);
3836 }
2f7e33d4 3837cache_acl:
46a53cca
CM
3838 /*
3839 * try to precache a NULL acl entry for files that don't have
3840 * any xattrs or acls
3841 */
33345d01 3842 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3843 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3844 if (first_xattr_slot != -1) {
3845 path->slots[0] = first_xattr_slot;
3846 ret = btrfs_load_inode_props(inode, path);
3847 if (ret)
0b246afa 3848 btrfs_err(fs_info,
351fd353 3849 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3850 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3851 root->root_key.objectid, ret);
3852 }
3853 btrfs_free_path(path);
3854
72c04902
AV
3855 if (!maybe_acls)
3856 cache_no_acl(inode);
46a53cca 3857
39279cc3 3858 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3859 case S_IFREG:
3860 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3861 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3862 inode->i_fop = &btrfs_file_operations;
3863 inode->i_op = &btrfs_file_inode_operations;
3864 break;
3865 case S_IFDIR:
3866 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3867 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3868 break;
3869 case S_IFLNK:
3870 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3871 inode_nohighmem(inode);
39279cc3
CM
3872 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3873 break;
618e21d5 3874 default:
0279b4cd 3875 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3876 init_special_inode(inode, inode->i_mode, rdev);
3877 break;
39279cc3 3878 }
6cbff00f
CH
3879
3880 btrfs_update_iflags(inode);
67710892 3881 return 0;
39279cc3
CM
3882
3883make_bad:
39279cc3 3884 btrfs_free_path(path);
39279cc3 3885 make_bad_inode(inode);
67710892 3886 return ret;
39279cc3
CM
3887}
3888
d352ac68
CM
3889/*
3890 * given a leaf and an inode, copy the inode fields into the leaf
3891 */
e02119d5
CM
3892static void fill_inode_item(struct btrfs_trans_handle *trans,
3893 struct extent_buffer *leaf,
5f39d397 3894 struct btrfs_inode_item *item,
39279cc3
CM
3895 struct inode *inode)
3896{
51fab693
LB
3897 struct btrfs_map_token token;
3898
3899 btrfs_init_map_token(&token);
5f39d397 3900
51fab693
LB
3901 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3902 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3903 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3904 &token);
3905 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3906 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3907
a937b979 3908 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3909 inode->i_atime.tv_sec, &token);
a937b979 3910 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3911 inode->i_atime.tv_nsec, &token);
5f39d397 3912
a937b979 3913 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3914 inode->i_mtime.tv_sec, &token);
a937b979 3915 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3916 inode->i_mtime.tv_nsec, &token);
5f39d397 3917
a937b979 3918 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3919 inode->i_ctime.tv_sec, &token);
a937b979 3920 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3921 inode->i_ctime.tv_nsec, &token);
5f39d397 3922
9cc97d64 3923 btrfs_set_token_timespec_sec(leaf, &item->otime,
3924 BTRFS_I(inode)->i_otime.tv_sec, &token);
3925 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3926 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3927
51fab693
LB
3928 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3929 &token);
3930 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3931 &token);
3932 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3933 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3934 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3935 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3936 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3937}
3938
d352ac68
CM
3939/*
3940 * copy everything in the in-memory inode into the btree.
3941 */
2115133f 3942static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3943 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3944{
3945 struct btrfs_inode_item *inode_item;
3946 struct btrfs_path *path;
5f39d397 3947 struct extent_buffer *leaf;
39279cc3
CM
3948 int ret;
3949
3950 path = btrfs_alloc_path();
16cdcec7
MX
3951 if (!path)
3952 return -ENOMEM;
3953
b9473439 3954 path->leave_spinning = 1;
16cdcec7
MX
3955 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3956 1);
39279cc3
CM
3957 if (ret) {
3958 if (ret > 0)
3959 ret = -ENOENT;
3960 goto failed;
3961 }
3962
5f39d397
CM
3963 leaf = path->nodes[0];
3964 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3965 struct btrfs_inode_item);
39279cc3 3966
e02119d5 3967 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3968 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3969 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3970 ret = 0;
3971failed:
39279cc3
CM
3972 btrfs_free_path(path);
3973 return ret;
3974}
3975
2115133f
CM
3976/*
3977 * copy everything in the in-memory inode into the btree.
3978 */
3979noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3980 struct btrfs_root *root, struct inode *inode)
3981{
0b246afa 3982 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3983 int ret;
3984
3985 /*
3986 * If the inode is a free space inode, we can deadlock during commit
3987 * if we put it into the delayed code.
3988 *
3989 * The data relocation inode should also be directly updated
3990 * without delay
3991 */
70ddc553 3992 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 3993 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 3994 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
3995 btrfs_update_root_times(trans, root);
3996
2115133f
CM
3997 ret = btrfs_delayed_update_inode(trans, root, inode);
3998 if (!ret)
3999 btrfs_set_inode_last_trans(trans, inode);
4000 return ret;
4001 }
4002
4003 return btrfs_update_inode_item(trans, root, inode);
4004}
4005
be6aef60
JB
4006noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4007 struct btrfs_root *root,
4008 struct inode *inode)
2115133f
CM
4009{
4010 int ret;
4011
4012 ret = btrfs_update_inode(trans, root, inode);
4013 if (ret == -ENOSPC)
4014 return btrfs_update_inode_item(trans, root, inode);
4015 return ret;
4016}
4017
d352ac68
CM
4018/*
4019 * unlink helper that gets used here in inode.c and in the tree logging
4020 * recovery code. It remove a link in a directory with a given name, and
4021 * also drops the back refs in the inode to the directory
4022 */
92986796
AV
4023static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4024 struct btrfs_root *root,
4ec5934e
NB
4025 struct btrfs_inode *dir,
4026 struct btrfs_inode *inode,
92986796 4027 const char *name, int name_len)
39279cc3 4028{
0b246afa 4029 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4030 struct btrfs_path *path;
39279cc3 4031 int ret = 0;
5f39d397 4032 struct extent_buffer *leaf;
39279cc3 4033 struct btrfs_dir_item *di;
5f39d397 4034 struct btrfs_key key;
aec7477b 4035 u64 index;
33345d01
LZ
4036 u64 ino = btrfs_ino(inode);
4037 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
4038
4039 path = btrfs_alloc_path();
54aa1f4d
CM
4040 if (!path) {
4041 ret = -ENOMEM;
554233a6 4042 goto out;
54aa1f4d
CM
4043 }
4044
b9473439 4045 path->leave_spinning = 1;
33345d01 4046 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
4047 name, name_len, -1);
4048 if (IS_ERR(di)) {
4049 ret = PTR_ERR(di);
4050 goto err;
4051 }
4052 if (!di) {
4053 ret = -ENOENT;
4054 goto err;
4055 }
5f39d397
CM
4056 leaf = path->nodes[0];
4057 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 4058 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4059 if (ret)
4060 goto err;
b3b4aa74 4061 btrfs_release_path(path);
39279cc3 4062
67de1176
MX
4063 /*
4064 * If we don't have dir index, we have to get it by looking up
4065 * the inode ref, since we get the inode ref, remove it directly,
4066 * it is unnecessary to do delayed deletion.
4067 *
4068 * But if we have dir index, needn't search inode ref to get it.
4069 * Since the inode ref is close to the inode item, it is better
4070 * that we delay to delete it, and just do this deletion when
4071 * we update the inode item.
4072 */
4ec5934e 4073 if (inode->dir_index) {
67de1176
MX
4074 ret = btrfs_delayed_delete_inode_ref(inode);
4075 if (!ret) {
4ec5934e 4076 index = inode->dir_index;
67de1176
MX
4077 goto skip_backref;
4078 }
4079 }
4080
33345d01
LZ
4081 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4082 dir_ino, &index);
aec7477b 4083 if (ret) {
0b246afa 4084 btrfs_info(fs_info,
c2cf52eb 4085 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4086 name_len, name, ino, dir_ino);
66642832 4087 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4088 goto err;
4089 }
67de1176 4090skip_backref:
2ff7e61e 4091 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
79787eaa 4092 if (ret) {
66642832 4093 btrfs_abort_transaction(trans, ret);
39279cc3 4094 goto err;
79787eaa 4095 }
39279cc3 4096
4ec5934e
NB
4097 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4098 dir_ino);
79787eaa 4099 if (ret != 0 && ret != -ENOENT) {
66642832 4100 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4101 goto err;
4102 }
e02119d5 4103
4ec5934e
NB
4104 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4105 index);
6418c961
CM
4106 if (ret == -ENOENT)
4107 ret = 0;
d4e3991b 4108 else if (ret)
66642832 4109 btrfs_abort_transaction(trans, ret);
39279cc3
CM
4110err:
4111 btrfs_free_path(path);
e02119d5
CM
4112 if (ret)
4113 goto out;
4114
6ef06d27 4115 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
4116 inode_inc_iversion(&inode->vfs_inode);
4117 inode_inc_iversion(&dir->vfs_inode);
4118 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4119 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4120 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 4121out:
39279cc3
CM
4122 return ret;
4123}
4124
92986796
AV
4125int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4126 struct btrfs_root *root,
4ec5934e 4127 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
4128 const char *name, int name_len)
4129{
4130 int ret;
4131 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4132 if (!ret) {
4ec5934e
NB
4133 drop_nlink(&inode->vfs_inode);
4134 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4135 }
4136 return ret;
4137}
39279cc3 4138
a22285a6
YZ
4139/*
4140 * helper to start transaction for unlink and rmdir.
4141 *
d52be818
JB
4142 * unlink and rmdir are special in btrfs, they do not always free space, so
4143 * if we cannot make our reservations the normal way try and see if there is
4144 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4145 * allow the unlink to occur.
a22285a6 4146 */
d52be818 4147static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4148{
a22285a6 4149 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4150
e70bea5f
JB
4151 /*
4152 * 1 for the possible orphan item
4153 * 1 for the dir item
4154 * 1 for the dir index
4155 * 1 for the inode ref
e70bea5f
JB
4156 * 1 for the inode
4157 */
8eab77ff 4158 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4159}
4160
4161static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4162{
4163 struct btrfs_root *root = BTRFS_I(dir)->root;
4164 struct btrfs_trans_handle *trans;
2b0143b5 4165 struct inode *inode = d_inode(dentry);
a22285a6 4166 int ret;
a22285a6 4167
d52be818 4168 trans = __unlink_start_trans(dir);
a22285a6
YZ
4169 if (IS_ERR(trans))
4170 return PTR_ERR(trans);
5f39d397 4171
4ec5934e
NB
4172 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4173 0);
12fcfd22 4174
4ec5934e
NB
4175 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4176 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4177 dentry->d_name.len);
b532402e
TI
4178 if (ret)
4179 goto out;
7b128766 4180
a22285a6 4181 if (inode->i_nlink == 0) {
73f2e545 4182 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4183 if (ret)
4184 goto out;
a22285a6 4185 }
7b128766 4186
b532402e 4187out:
3a45bb20 4188 btrfs_end_transaction(trans);
2ff7e61e 4189 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4190 return ret;
4191}
4192
4df27c4d
YZ
4193int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4194 struct btrfs_root *root,
4195 struct inode *dir, u64 objectid,
4196 const char *name, int name_len)
4197{
0b246afa 4198 struct btrfs_fs_info *fs_info = root->fs_info;
4df27c4d
YZ
4199 struct btrfs_path *path;
4200 struct extent_buffer *leaf;
4201 struct btrfs_dir_item *di;
4202 struct btrfs_key key;
4203 u64 index;
4204 int ret;
4a0cc7ca 4205 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4206
4207 path = btrfs_alloc_path();
4208 if (!path)
4209 return -ENOMEM;
4210
33345d01 4211 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4212 name, name_len, -1);
79787eaa
JM
4213 if (IS_ERR_OR_NULL(di)) {
4214 if (!di)
4215 ret = -ENOENT;
4216 else
4217 ret = PTR_ERR(di);
4218 goto out;
4219 }
4df27c4d
YZ
4220
4221 leaf = path->nodes[0];
4222 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4223 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4224 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4225 if (ret) {
66642832 4226 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4227 goto out;
4228 }
b3b4aa74 4229 btrfs_release_path(path);
4df27c4d 4230
0b246afa
JM
4231 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4232 root->root_key.objectid, dir_ino,
4233 &index, name, name_len);
4df27c4d 4234 if (ret < 0) {
79787eaa 4235 if (ret != -ENOENT) {
66642832 4236 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4237 goto out;
4238 }
33345d01 4239 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4240 name, name_len);
79787eaa
JM
4241 if (IS_ERR_OR_NULL(di)) {
4242 if (!di)
4243 ret = -ENOENT;
4244 else
4245 ret = PTR_ERR(di);
66642832 4246 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4247 goto out;
4248 }
4df27c4d
YZ
4249
4250 leaf = path->nodes[0];
4251 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4252 btrfs_release_path(path);
4df27c4d
YZ
4253 index = key.offset;
4254 }
945d8962 4255 btrfs_release_path(path);
4df27c4d 4256
e67bbbb9 4257 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
79787eaa 4258 if (ret) {
66642832 4259 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4260 goto out;
4261 }
4df27c4d 4262
6ef06d27 4263 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4264 inode_inc_iversion(dir);
c2050a45 4265 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4266 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4267 if (ret)
66642832 4268 btrfs_abort_transaction(trans, ret);
79787eaa 4269out:
71d7aed0 4270 btrfs_free_path(path);
79787eaa 4271 return ret;
4df27c4d
YZ
4272}
4273
39279cc3
CM
4274static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4275{
2b0143b5 4276 struct inode *inode = d_inode(dentry);
1832a6d5 4277 int err = 0;
39279cc3 4278 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4279 struct btrfs_trans_handle *trans;
44f714da 4280 u64 last_unlink_trans;
39279cc3 4281
b3ae244e 4282 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4283 return -ENOTEMPTY;
4a0cc7ca 4284 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
b3ae244e 4285 return -EPERM;
134d4512 4286
d52be818 4287 trans = __unlink_start_trans(dir);
a22285a6 4288 if (IS_ERR(trans))
5df6a9f6 4289 return PTR_ERR(trans);
5df6a9f6 4290
4a0cc7ca 4291 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4292 err = btrfs_unlink_subvol(trans, root, dir,
4293 BTRFS_I(inode)->location.objectid,
4294 dentry->d_name.name,
4295 dentry->d_name.len);
4296 goto out;
4297 }
4298
73f2e545 4299 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4300 if (err)
4df27c4d 4301 goto out;
7b128766 4302
44f714da
FM
4303 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4304
39279cc3 4305 /* now the directory is empty */
4ec5934e
NB
4306 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4307 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4308 dentry->d_name.len);
44f714da 4309 if (!err) {
6ef06d27 4310 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4311 /*
4312 * Propagate the last_unlink_trans value of the deleted dir to
4313 * its parent directory. This is to prevent an unrecoverable
4314 * log tree in the case we do something like this:
4315 * 1) create dir foo
4316 * 2) create snapshot under dir foo
4317 * 3) delete the snapshot
4318 * 4) rmdir foo
4319 * 5) mkdir foo
4320 * 6) fsync foo or some file inside foo
4321 */
4322 if (last_unlink_trans >= trans->transid)
4323 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4324 }
4df27c4d 4325out:
3a45bb20 4326 btrfs_end_transaction(trans);
2ff7e61e 4327 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4328
39279cc3
CM
4329 return err;
4330}
4331
28f75a0e
CM
4332static int truncate_space_check(struct btrfs_trans_handle *trans,
4333 struct btrfs_root *root,
4334 u64 bytes_deleted)
4335{
0b246afa 4336 struct btrfs_fs_info *fs_info = root->fs_info;
28f75a0e
CM
4337 int ret;
4338
dc95f7bf
JB
4339 /*
4340 * This is only used to apply pressure to the enospc system, we don't
4341 * intend to use this reservation at all.
4342 */
2ff7e61e 4343 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
0b246afa
JM
4344 bytes_deleted *= fs_info->nodesize;
4345 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
28f75a0e 4346 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf 4347 if (!ret) {
0b246afa 4348 trace_btrfs_space_reservation(fs_info, "transaction",
dc95f7bf
JB
4349 trans->transid,
4350 bytes_deleted, 1);
28f75a0e 4351 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4352 }
28f75a0e
CM
4353 return ret;
4354
4355}
4356
0305cd5f
FM
4357static int truncate_inline_extent(struct inode *inode,
4358 struct btrfs_path *path,
4359 struct btrfs_key *found_key,
4360 const u64 item_end,
4361 const u64 new_size)
4362{
4363 struct extent_buffer *leaf = path->nodes[0];
4364 int slot = path->slots[0];
4365 struct btrfs_file_extent_item *fi;
4366 u32 size = (u32)(new_size - found_key->offset);
4367 struct btrfs_root *root = BTRFS_I(inode)->root;
4368
4369 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4370
4371 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4372 loff_t offset = new_size;
09cbfeaf 4373 loff_t page_end = ALIGN(offset, PAGE_SIZE);
0305cd5f
FM
4374
4375 /*
4376 * Zero out the remaining of the last page of our inline extent,
4377 * instead of directly truncating our inline extent here - that
4378 * would be much more complex (decompressing all the data, then
4379 * compressing the truncated data, which might be bigger than
4380 * the size of the inline extent, resize the extent, etc).
4381 * We release the path because to get the page we might need to
4382 * read the extent item from disk (data not in the page cache).
4383 */
4384 btrfs_release_path(path);
9703fefe
CR
4385 return btrfs_truncate_block(inode, offset, page_end - offset,
4386 0);
0305cd5f
FM
4387 }
4388
4389 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4390 size = btrfs_file_extent_calc_inline_size(size);
2ff7e61e 4391 btrfs_truncate_item(root->fs_info, path, size, 1);
0305cd5f
FM
4392
4393 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4394 inode_sub_bytes(inode, item_end + 1 - new_size);
4395
4396 return 0;
4397}
4398
39279cc3
CM
4399/*
4400 * this can truncate away extent items, csum items and directory items.
4401 * It starts at a high offset and removes keys until it can't find
d352ac68 4402 * any higher than new_size
39279cc3
CM
4403 *
4404 * csum items that cross the new i_size are truncated to the new size
4405 * as well.
7b128766
JB
4406 *
4407 * min_type is the minimum key type to truncate down to. If set to 0, this
4408 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4409 */
8082510e
YZ
4410int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4411 struct btrfs_root *root,
4412 struct inode *inode,
4413 u64 new_size, u32 min_type)
39279cc3 4414{
0b246afa 4415 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4416 struct btrfs_path *path;
5f39d397 4417 struct extent_buffer *leaf;
39279cc3 4418 struct btrfs_file_extent_item *fi;
8082510e
YZ
4419 struct btrfs_key key;
4420 struct btrfs_key found_key;
39279cc3 4421 u64 extent_start = 0;
db94535d 4422 u64 extent_num_bytes = 0;
5d4f98a2 4423 u64 extent_offset = 0;
39279cc3 4424 u64 item_end = 0;
c1aa4575 4425 u64 last_size = new_size;
8082510e 4426 u32 found_type = (u8)-1;
39279cc3
CM
4427 int found_extent;
4428 int del_item;
85e21bac
CM
4429 int pending_del_nr = 0;
4430 int pending_del_slot = 0;
179e29e4 4431 int extent_type = -1;
8082510e
YZ
4432 int ret;
4433 int err = 0;
4a0cc7ca 4434 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4435 u64 bytes_deleted = 0;
1262133b
JB
4436 bool be_nice = 0;
4437 bool should_throttle = 0;
28f75a0e 4438 bool should_end = 0;
8082510e
YZ
4439
4440 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4441
28ed1345
CM
4442 /*
4443 * for non-free space inodes and ref cows, we want to back off from
4444 * time to time
4445 */
70ddc553 4446 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345
CM
4447 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4448 be_nice = 1;
4449
0eb0e19c
MF
4450 path = btrfs_alloc_path();
4451 if (!path)
4452 return -ENOMEM;
e4058b54 4453 path->reada = READA_BACK;
0eb0e19c 4454
5dc562c5
JB
4455 /*
4456 * We want to drop from the next block forward in case this new size is
4457 * not block aligned since we will be keeping the last block of the
4458 * extent just the way it is.
4459 */
27cdeb70 4460 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4461 root == fs_info->tree_root)
dcdbc059 4462 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4463 fs_info->sectorsize),
da17066c 4464 (u64)-1, 0);
8082510e 4465
16cdcec7
MX
4466 /*
4467 * This function is also used to drop the items in the log tree before
4468 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4469 * it is used to drop the loged items. So we shouldn't kill the delayed
4470 * items.
4471 */
4472 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4473 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4474
33345d01 4475 key.objectid = ino;
39279cc3 4476 key.offset = (u64)-1;
5f39d397
CM
4477 key.type = (u8)-1;
4478
85e21bac 4479search_again:
28ed1345
CM
4480 /*
4481 * with a 16K leaf size and 128MB extents, you can actually queue
4482 * up a huge file in a single leaf. Most of the time that
4483 * bytes_deleted is > 0, it will be huge by the time we get here
4484 */
ee22184b 4485 if (be_nice && bytes_deleted > SZ_32M) {
3a45bb20 4486 if (btrfs_should_end_transaction(trans)) {
28ed1345
CM
4487 err = -EAGAIN;
4488 goto error;
4489 }
4490 }
4491
4492
b9473439 4493 path->leave_spinning = 1;
85e21bac 4494 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4495 if (ret < 0) {
4496 err = ret;
4497 goto out;
4498 }
d397712b 4499
85e21bac 4500 if (ret > 0) {
e02119d5
CM
4501 /* there are no items in the tree for us to truncate, we're
4502 * done
4503 */
8082510e
YZ
4504 if (path->slots[0] == 0)
4505 goto out;
85e21bac
CM
4506 path->slots[0]--;
4507 }
4508
d397712b 4509 while (1) {
39279cc3 4510 fi = NULL;
5f39d397
CM
4511 leaf = path->nodes[0];
4512 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4513 found_type = found_key.type;
39279cc3 4514
33345d01 4515 if (found_key.objectid != ino)
39279cc3 4516 break;
5f39d397 4517
85e21bac 4518 if (found_type < min_type)
39279cc3
CM
4519 break;
4520
5f39d397 4521 item_end = found_key.offset;
39279cc3 4522 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4523 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4524 struct btrfs_file_extent_item);
179e29e4
CM
4525 extent_type = btrfs_file_extent_type(leaf, fi);
4526 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4527 item_end +=
db94535d 4528 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4529
4530 trace_btrfs_truncate_show_fi_regular(
4531 BTRFS_I(inode), leaf, fi,
4532 found_key.offset);
179e29e4 4533 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4534 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4535 path->slots[0], fi);
09ed2f16
LB
4536
4537 trace_btrfs_truncate_show_fi_inline(
4538 BTRFS_I(inode), leaf, fi, path->slots[0],
4539 found_key.offset);
39279cc3 4540 }
008630c1 4541 item_end--;
39279cc3 4542 }
8082510e
YZ
4543 if (found_type > min_type) {
4544 del_item = 1;
4545 } else {
76b42abb 4546 if (item_end < new_size)
b888db2b 4547 break;
8082510e
YZ
4548 if (found_key.offset >= new_size)
4549 del_item = 1;
4550 else
4551 del_item = 0;
39279cc3 4552 }
39279cc3 4553 found_extent = 0;
39279cc3 4554 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4555 if (found_type != BTRFS_EXTENT_DATA_KEY)
4556 goto delete;
4557
7f4f6e0a
JB
4558 if (del_item)
4559 last_size = found_key.offset;
4560 else
4561 last_size = new_size;
4562
179e29e4 4563 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4564 u64 num_dec;
db94535d 4565 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4566 if (!del_item) {
db94535d
CM
4567 u64 orig_num_bytes =
4568 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4569 extent_num_bytes = ALIGN(new_size -
4570 found_key.offset,
0b246afa 4571 fs_info->sectorsize);
db94535d
CM
4572 btrfs_set_file_extent_num_bytes(leaf, fi,
4573 extent_num_bytes);
4574 num_dec = (orig_num_bytes -
9069218d 4575 extent_num_bytes);
27cdeb70
MX
4576 if (test_bit(BTRFS_ROOT_REF_COWS,
4577 &root->state) &&
4578 extent_start != 0)
a76a3cd4 4579 inode_sub_bytes(inode, num_dec);
5f39d397 4580 btrfs_mark_buffer_dirty(leaf);
39279cc3 4581 } else {
db94535d
CM
4582 extent_num_bytes =
4583 btrfs_file_extent_disk_num_bytes(leaf,
4584 fi);
5d4f98a2
YZ
4585 extent_offset = found_key.offset -
4586 btrfs_file_extent_offset(leaf, fi);
4587
39279cc3 4588 /* FIXME blocksize != 4096 */
9069218d 4589 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4590 if (extent_start != 0) {
4591 found_extent = 1;
27cdeb70
MX
4592 if (test_bit(BTRFS_ROOT_REF_COWS,
4593 &root->state))
a76a3cd4 4594 inode_sub_bytes(inode, num_dec);
e02119d5 4595 }
39279cc3 4596 }
9069218d 4597 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4598 /*
4599 * we can't truncate inline items that have had
4600 * special encodings
4601 */
4602 if (!del_item &&
c8b97818
CM
4603 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4604 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4605
4606 /*
0305cd5f
FM
4607 * Need to release path in order to truncate a
4608 * compressed extent. So delete any accumulated
4609 * extent items so far.
514ac8ad 4610 */
0305cd5f
FM
4611 if (btrfs_file_extent_compression(leaf, fi) !=
4612 BTRFS_COMPRESS_NONE && pending_del_nr) {
4613 err = btrfs_del_items(trans, root, path,
4614 pending_del_slot,
4615 pending_del_nr);
4616 if (err) {
4617 btrfs_abort_transaction(trans,
0305cd5f
FM
4618 err);
4619 goto error;
4620 }
4621 pending_del_nr = 0;
4622 }
4623
4624 err = truncate_inline_extent(inode, path,
4625 &found_key,
4626 item_end,
4627 new_size);
4628 if (err) {
66642832 4629 btrfs_abort_transaction(trans, err);
0305cd5f
FM
4630 goto error;
4631 }
27cdeb70
MX
4632 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4633 &root->state)) {
0305cd5f 4634 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4635 }
39279cc3 4636 }
179e29e4 4637delete:
39279cc3 4638 if (del_item) {
85e21bac
CM
4639 if (!pending_del_nr) {
4640 /* no pending yet, add ourselves */
4641 pending_del_slot = path->slots[0];
4642 pending_del_nr = 1;
4643 } else if (pending_del_nr &&
4644 path->slots[0] + 1 == pending_del_slot) {
4645 /* hop on the pending chunk */
4646 pending_del_nr++;
4647 pending_del_slot = path->slots[0];
4648 } else {
d397712b 4649 BUG();
85e21bac 4650 }
39279cc3
CM
4651 } else {
4652 break;
4653 }
28f75a0e
CM
4654 should_throttle = 0;
4655
27cdeb70
MX
4656 if (found_extent &&
4657 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4658 root == fs_info->tree_root)) {
b9473439 4659 btrfs_set_path_blocking(path);
28ed1345 4660 bytes_deleted += extent_num_bytes;
2ff7e61e 4661 ret = btrfs_free_extent(trans, fs_info, extent_start,
5d4f98a2
YZ
4662 extent_num_bytes, 0,
4663 btrfs_header_owner(leaf),
b06c4bf5 4664 ino, extent_offset);
39279cc3 4665 BUG_ON(ret);
2ff7e61e
JM
4666 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4667 btrfs_async_run_delayed_refs(fs_info,
dd4b857a
WX
4668 trans->delayed_ref_updates * 2,
4669 trans->transid, 0);
28f75a0e
CM
4670 if (be_nice) {
4671 if (truncate_space_check(trans, root,
4672 extent_num_bytes)) {
4673 should_end = 1;
4674 }
4675 if (btrfs_should_throttle_delayed_refs(trans,
2ff7e61e 4676 fs_info))
28f75a0e 4677 should_throttle = 1;
28f75a0e 4678 }
39279cc3 4679 }
85e21bac 4680
8082510e
YZ
4681 if (found_type == BTRFS_INODE_ITEM_KEY)
4682 break;
4683
4684 if (path->slots[0] == 0 ||
1262133b 4685 path->slots[0] != pending_del_slot ||
28f75a0e 4686 should_throttle || should_end) {
8082510e
YZ
4687 if (pending_del_nr) {
4688 ret = btrfs_del_items(trans, root, path,
4689 pending_del_slot,
4690 pending_del_nr);
79787eaa 4691 if (ret) {
66642832 4692 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4693 goto error;
4694 }
8082510e
YZ
4695 pending_del_nr = 0;
4696 }
b3b4aa74 4697 btrfs_release_path(path);
28f75a0e 4698 if (should_throttle) {
1262133b
JB
4699 unsigned long updates = trans->delayed_ref_updates;
4700 if (updates) {
4701 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4702 ret = btrfs_run_delayed_refs(trans,
4703 fs_info,
4704 updates * 2);
1262133b
JB
4705 if (ret && !err)
4706 err = ret;
4707 }
4708 }
28f75a0e
CM
4709 /*
4710 * if we failed to refill our space rsv, bail out
4711 * and let the transaction restart
4712 */
4713 if (should_end) {
4714 err = -EAGAIN;
4715 goto error;
4716 }
85e21bac 4717 goto search_again;
8082510e
YZ
4718 } else {
4719 path->slots[0]--;
85e21bac 4720 }
39279cc3 4721 }
8082510e 4722out:
85e21bac
CM
4723 if (pending_del_nr) {
4724 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4725 pending_del_nr);
79787eaa 4726 if (ret)
66642832 4727 btrfs_abort_transaction(trans, ret);
85e21bac 4728 }
79787eaa 4729error:
76b42abb
FM
4730 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4731 ASSERT(last_size >= new_size);
4732 if (!err && last_size > new_size)
4733 last_size = new_size;
7f4f6e0a 4734 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4735 }
28ed1345 4736
39279cc3 4737 btrfs_free_path(path);
28ed1345 4738
ee22184b 4739 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4740 unsigned long updates = trans->delayed_ref_updates;
4741 if (updates) {
4742 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4743 ret = btrfs_run_delayed_refs(trans, fs_info,
4744 updates * 2);
28ed1345
CM
4745 if (ret && !err)
4746 err = ret;
4747 }
4748 }
8082510e 4749 return err;
39279cc3
CM
4750}
4751
4752/*
9703fefe 4753 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4754 * @inode - inode that we're zeroing
4755 * @from - the offset to start zeroing
4756 * @len - the length to zero, 0 to zero the entire range respective to the
4757 * offset
4758 * @front - zero up to the offset instead of from the offset on
4759 *
9703fefe 4760 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4761 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4762 */
9703fefe 4763int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4764 int front)
39279cc3 4765{
0b246afa 4766 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4767 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4768 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4769 struct btrfs_ordered_extent *ordered;
2ac55d41 4770 struct extent_state *cached_state = NULL;
364ecf36 4771 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4772 char *kaddr;
0b246afa 4773 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4774 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4775 unsigned offset = from & (blocksize - 1);
39279cc3 4776 struct page *page;
3b16a4e3 4777 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4778 int ret = 0;
9703fefe
CR
4779 u64 block_start;
4780 u64 block_end;
39279cc3 4781
2aaa6655
JB
4782 if ((offset & (blocksize - 1)) == 0 &&
4783 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4784 goto out;
9703fefe 4785
364ecf36 4786 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
9703fefe 4787 round_down(from, blocksize), blocksize);
5d5e103a
JB
4788 if (ret)
4789 goto out;
39279cc3 4790
211c17f5 4791again:
3b16a4e3 4792 page = find_or_create_page(mapping, index, mask);
5d5e103a 4793 if (!page) {
bc42bda2 4794 btrfs_delalloc_release_space(inode, data_reserved,
9703fefe
CR
4795 round_down(from, blocksize),
4796 blocksize);
ac6a2b36 4797 ret = -ENOMEM;
39279cc3 4798 goto out;
5d5e103a 4799 }
e6dcd2dc 4800
9703fefe
CR
4801 block_start = round_down(from, blocksize);
4802 block_end = block_start + blocksize - 1;
e6dcd2dc 4803
39279cc3 4804 if (!PageUptodate(page)) {
9ebefb18 4805 ret = btrfs_readpage(NULL, page);
39279cc3 4806 lock_page(page);
211c17f5
CM
4807 if (page->mapping != mapping) {
4808 unlock_page(page);
09cbfeaf 4809 put_page(page);
211c17f5
CM
4810 goto again;
4811 }
39279cc3
CM
4812 if (!PageUptodate(page)) {
4813 ret = -EIO;
89642229 4814 goto out_unlock;
39279cc3
CM
4815 }
4816 }
211c17f5 4817 wait_on_page_writeback(page);
e6dcd2dc 4818
9703fefe 4819 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4820 set_page_extent_mapped(page);
4821
9703fefe 4822 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4823 if (ordered) {
9703fefe 4824 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4825 &cached_state, GFP_NOFS);
e6dcd2dc 4826 unlock_page(page);
09cbfeaf 4827 put_page(page);
eb84ae03 4828 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4829 btrfs_put_ordered_extent(ordered);
4830 goto again;
4831 }
4832
9703fefe 4833 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4834 EXTENT_DIRTY | EXTENT_DELALLOC |
4835 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4836 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4837
9703fefe 4838 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
ba8b04c1 4839 &cached_state, 0);
9ed74f2d 4840 if (ret) {
9703fefe 4841 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4842 &cached_state, GFP_NOFS);
9ed74f2d
JB
4843 goto out_unlock;
4844 }
4845
9703fefe 4846 if (offset != blocksize) {
2aaa6655 4847 if (!len)
9703fefe 4848 len = blocksize - offset;
e6dcd2dc 4849 kaddr = kmap(page);
2aaa6655 4850 if (front)
9703fefe
CR
4851 memset(kaddr + (block_start - page_offset(page)),
4852 0, offset);
2aaa6655 4853 else
9703fefe
CR
4854 memset(kaddr + (block_start - page_offset(page)) + offset,
4855 0, len);
e6dcd2dc
CM
4856 flush_dcache_page(page);
4857 kunmap(page);
4858 }
247e743c 4859 ClearPageChecked(page);
e6dcd2dc 4860 set_page_dirty(page);
9703fefe 4861 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4862 GFP_NOFS);
39279cc3 4863
89642229 4864out_unlock:
5d5e103a 4865 if (ret)
bc42bda2 4866 btrfs_delalloc_release_space(inode, data_reserved, block_start,
9703fefe 4867 blocksize);
39279cc3 4868 unlock_page(page);
09cbfeaf 4869 put_page(page);
39279cc3 4870out:
364ecf36 4871 extent_changeset_free(data_reserved);
39279cc3
CM
4872 return ret;
4873}
4874
16e7549f
JB
4875static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4876 u64 offset, u64 len)
4877{
0b246afa 4878 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4879 struct btrfs_trans_handle *trans;
4880 int ret;
4881
4882 /*
4883 * Still need to make sure the inode looks like it's been updated so
4884 * that any holes get logged if we fsync.
4885 */
0b246afa
JM
4886 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4887 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4888 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4889 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4890 return 0;
4891 }
4892
4893 /*
4894 * 1 - for the one we're dropping
4895 * 1 - for the one we're adding
4896 * 1 - for updating the inode.
4897 */
4898 trans = btrfs_start_transaction(root, 3);
4899 if (IS_ERR(trans))
4900 return PTR_ERR(trans);
4901
4902 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4903 if (ret) {
66642832 4904 btrfs_abort_transaction(trans, ret);
3a45bb20 4905 btrfs_end_transaction(trans);
16e7549f
JB
4906 return ret;
4907 }
4908
f85b7379
DS
4909 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4910 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4911 if (ret)
66642832 4912 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4913 else
4914 btrfs_update_inode(trans, root, inode);
3a45bb20 4915 btrfs_end_transaction(trans);
16e7549f
JB
4916 return ret;
4917}
4918
695a0d0d
JB
4919/*
4920 * This function puts in dummy file extents for the area we're creating a hole
4921 * for. So if we are truncating this file to a larger size we need to insert
4922 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4923 * the range between oldsize and size
4924 */
a41ad394 4925int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4926{
0b246afa 4927 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4928 struct btrfs_root *root = BTRFS_I(inode)->root;
4929 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4930 struct extent_map *em = NULL;
2ac55d41 4931 struct extent_state *cached_state = NULL;
5dc562c5 4932 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4933 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4934 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4935 u64 last_byte;
4936 u64 cur_offset;
4937 u64 hole_size;
9ed74f2d 4938 int err = 0;
39279cc3 4939
a71754fc 4940 /*
9703fefe
CR
4941 * If our size started in the middle of a block we need to zero out the
4942 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4943 * expose stale data.
4944 */
9703fefe 4945 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4946 if (err)
4947 return err;
4948
9036c102
YZ
4949 if (size <= hole_start)
4950 return 0;
4951
9036c102
YZ
4952 while (1) {
4953 struct btrfs_ordered_extent *ordered;
fa7c1494 4954
ff13db41 4955 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4956 &cached_state);
a776c6fa 4957 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
fa7c1494 4958 block_end - hole_start);
9036c102
YZ
4959 if (!ordered)
4960 break;
2ac55d41
JB
4961 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4962 &cached_state, GFP_NOFS);
fa7c1494 4963 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4964 btrfs_put_ordered_extent(ordered);
4965 }
39279cc3 4966
9036c102
YZ
4967 cur_offset = hole_start;
4968 while (1) {
fc4f21b1 4969 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 4970 block_end - cur_offset, 0);
79787eaa
JM
4971 if (IS_ERR(em)) {
4972 err = PTR_ERR(em);
f2767956 4973 em = NULL;
79787eaa
JM
4974 break;
4975 }
9036c102 4976 last_byte = min(extent_map_end(em), block_end);
0b246afa 4977 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 4978 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4979 struct extent_map *hole_em;
9036c102 4980 hole_size = last_byte - cur_offset;
9ed74f2d 4981
16e7549f
JB
4982 err = maybe_insert_hole(root, inode, cur_offset,
4983 hole_size);
4984 if (err)
3893e33b 4985 break;
dcdbc059 4986 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
4987 cur_offset + hole_size - 1, 0);
4988 hole_em = alloc_extent_map();
4989 if (!hole_em) {
4990 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4991 &BTRFS_I(inode)->runtime_flags);
4992 goto next;
4993 }
4994 hole_em->start = cur_offset;
4995 hole_em->len = hole_size;
4996 hole_em->orig_start = cur_offset;
8082510e 4997
5dc562c5
JB
4998 hole_em->block_start = EXTENT_MAP_HOLE;
4999 hole_em->block_len = 0;
b4939680 5000 hole_em->orig_block_len = 0;
cc95bef6 5001 hole_em->ram_bytes = hole_size;
0b246afa 5002 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 5003 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 5004 hole_em->generation = fs_info->generation;
8082510e 5005
5dc562c5
JB
5006 while (1) {
5007 write_lock(&em_tree->lock);
09a2a8f9 5008 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
5009 write_unlock(&em_tree->lock);
5010 if (err != -EEXIST)
5011 break;
dcdbc059
NB
5012 btrfs_drop_extent_cache(BTRFS_I(inode),
5013 cur_offset,
5dc562c5
JB
5014 cur_offset +
5015 hole_size - 1, 0);
5016 }
5017 free_extent_map(hole_em);
9036c102 5018 }
16e7549f 5019next:
9036c102 5020 free_extent_map(em);
a22285a6 5021 em = NULL;
9036c102 5022 cur_offset = last_byte;
8082510e 5023 if (cur_offset >= block_end)
9036c102
YZ
5024 break;
5025 }
a22285a6 5026 free_extent_map(em);
2ac55d41
JB
5027 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
5028 GFP_NOFS);
9036c102
YZ
5029 return err;
5030}
39279cc3 5031
3972f260 5032static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 5033{
f4a2f4c5
MX
5034 struct btrfs_root *root = BTRFS_I(inode)->root;
5035 struct btrfs_trans_handle *trans;
a41ad394 5036 loff_t oldsize = i_size_read(inode);
3972f260
ES
5037 loff_t newsize = attr->ia_size;
5038 int mask = attr->ia_valid;
8082510e
YZ
5039 int ret;
5040
3972f260
ES
5041 /*
5042 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5043 * special case where we need to update the times despite not having
5044 * these flags set. For all other operations the VFS set these flags
5045 * explicitly if it wants a timestamp update.
5046 */
dff6efc3
CH
5047 if (newsize != oldsize) {
5048 inode_inc_iversion(inode);
5049 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5050 inode->i_ctime = inode->i_mtime =
c2050a45 5051 current_time(inode);
dff6efc3 5052 }
3972f260 5053
a41ad394 5054 if (newsize > oldsize) {
9ea24bbe
FM
5055 /*
5056 * Don't do an expanding truncate while snapshoting is ongoing.
5057 * This is to ensure the snapshot captures a fully consistent
5058 * state of this file - if the snapshot captures this expanding
5059 * truncation, it must capture all writes that happened before
5060 * this truncation.
5061 */
0bc19f90 5062 btrfs_wait_for_snapshot_creation(root);
a41ad394 5063 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
5064 if (ret) {
5065 btrfs_end_write_no_snapshoting(root);
8082510e 5066 return ret;
9ea24bbe 5067 }
8082510e 5068
f4a2f4c5 5069 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
5070 if (IS_ERR(trans)) {
5071 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 5072 return PTR_ERR(trans);
9ea24bbe 5073 }
f4a2f4c5
MX
5074
5075 i_size_write(inode, newsize);
5076 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5077 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5078 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 5079 btrfs_end_write_no_snapshoting(root);
3a45bb20 5080 btrfs_end_transaction(trans);
a41ad394 5081 } else {
8082510e 5082
a41ad394
JB
5083 /*
5084 * We're truncating a file that used to have good data down to
5085 * zero. Make sure it gets into the ordered flush list so that
5086 * any new writes get down to disk quickly.
5087 */
5088 if (newsize == 0)
72ac3c0d
JB
5089 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5090 &BTRFS_I(inode)->runtime_flags);
8082510e 5091
f3fe820c
JB
5092 /*
5093 * 1 for the orphan item we're going to add
5094 * 1 for the orphan item deletion.
5095 */
5096 trans = btrfs_start_transaction(root, 2);
5097 if (IS_ERR(trans))
5098 return PTR_ERR(trans);
5099
5100 /*
5101 * We need to do this in case we fail at _any_ point during the
5102 * actual truncate. Once we do the truncate_setsize we could
5103 * invalidate pages which forces any outstanding ordered io to
5104 * be instantly completed which will give us extents that need
5105 * to be truncated. If we fail to get an orphan inode down we
5106 * could have left over extents that were never meant to live,
01327610 5107 * so we need to guarantee from this point on that everything
f3fe820c
JB
5108 * will be consistent.
5109 */
73f2e545 5110 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 5111 btrfs_end_transaction(trans);
f3fe820c
JB
5112 if (ret)
5113 return ret;
5114
a41ad394
JB
5115 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5116 truncate_setsize(inode, newsize);
2e60a51e
MX
5117
5118 /* Disable nonlocked read DIO to avoid the end less truncate */
abcefb1e 5119 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 5120 inode_dio_wait(inode);
0b581701 5121 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 5122
a41ad394 5123 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5124 if (ret && inode->i_nlink) {
5125 int err;
5126
19fd2df5
LB
5127 /* To get a stable disk_i_size */
5128 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5129 if (err) {
3d6ae7bb 5130 btrfs_orphan_del(NULL, BTRFS_I(inode));
19fd2df5
LB
5131 return err;
5132 }
5133
7f4f6e0a
JB
5134 /*
5135 * failed to truncate, disk_i_size is only adjusted down
5136 * as we remove extents, so it should represent the true
5137 * size of the inode, so reset the in memory size and
5138 * delete our orphan entry.
5139 */
5140 trans = btrfs_join_transaction(root);
5141 if (IS_ERR(trans)) {
3d6ae7bb 5142 btrfs_orphan_del(NULL, BTRFS_I(inode));
7f4f6e0a
JB
5143 return ret;
5144 }
5145 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
3d6ae7bb 5146 err = btrfs_orphan_del(trans, BTRFS_I(inode));
7f4f6e0a 5147 if (err)
66642832 5148 btrfs_abort_transaction(trans, err);
3a45bb20 5149 btrfs_end_transaction(trans);
7f4f6e0a 5150 }
8082510e
YZ
5151 }
5152
a41ad394 5153 return ret;
8082510e
YZ
5154}
5155
9036c102
YZ
5156static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5157{
2b0143b5 5158 struct inode *inode = d_inode(dentry);
b83cc969 5159 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5160 int err;
39279cc3 5161
b83cc969
LZ
5162 if (btrfs_root_readonly(root))
5163 return -EROFS;
5164
31051c85 5165 err = setattr_prepare(dentry, attr);
9036c102
YZ
5166 if (err)
5167 return err;
2bf5a725 5168
5a3f23d5 5169 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5170 err = btrfs_setsize(inode, attr);
8082510e
YZ
5171 if (err)
5172 return err;
39279cc3 5173 }
9036c102 5174
1025774c
CH
5175 if (attr->ia_valid) {
5176 setattr_copy(inode, attr);
0c4d2d95 5177 inode_inc_iversion(inode);
22c44fe6 5178 err = btrfs_dirty_inode(inode);
1025774c 5179
22c44fe6 5180 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5181 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5182 }
33268eaf 5183
39279cc3
CM
5184 return err;
5185}
61295eb8 5186
131e404a
FDBM
5187/*
5188 * While truncating the inode pages during eviction, we get the VFS calling
5189 * btrfs_invalidatepage() against each page of the inode. This is slow because
5190 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5191 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5192 * extent_state structures over and over, wasting lots of time.
5193 *
5194 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5195 * those expensive operations on a per page basis and do only the ordered io
5196 * finishing, while we release here the extent_map and extent_state structures,
5197 * without the excessive merging and splitting.
5198 */
5199static void evict_inode_truncate_pages(struct inode *inode)
5200{
5201 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5202 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5203 struct rb_node *node;
5204
5205 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5206 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5207
5208 write_lock(&map_tree->lock);
5209 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5210 struct extent_map *em;
5211
5212 node = rb_first(&map_tree->map);
5213 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5214 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5215 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5216 remove_extent_mapping(map_tree, em);
5217 free_extent_map(em);
7064dd5c
FM
5218 if (need_resched()) {
5219 write_unlock(&map_tree->lock);
5220 cond_resched();
5221 write_lock(&map_tree->lock);
5222 }
131e404a
FDBM
5223 }
5224 write_unlock(&map_tree->lock);
5225
6ca07097
FM
5226 /*
5227 * Keep looping until we have no more ranges in the io tree.
5228 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5229 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5230 * still in progress (unlocked the pages in the bio but did not yet
5231 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5232 * ranges can still be locked and eviction started because before
5233 * submitting those bios, which are executed by a separate task (work
5234 * queue kthread), inode references (inode->i_count) were not taken
5235 * (which would be dropped in the end io callback of each bio).
5236 * Therefore here we effectively end up waiting for those bios and
5237 * anyone else holding locked ranges without having bumped the inode's
5238 * reference count - if we don't do it, when they access the inode's
5239 * io_tree to unlock a range it may be too late, leading to an
5240 * use-after-free issue.
5241 */
131e404a
FDBM
5242 spin_lock(&io_tree->lock);
5243 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5244 struct extent_state *state;
5245 struct extent_state *cached_state = NULL;
6ca07097
FM
5246 u64 start;
5247 u64 end;
131e404a
FDBM
5248
5249 node = rb_first(&io_tree->state);
5250 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5251 start = state->start;
5252 end = state->end;
131e404a
FDBM
5253 spin_unlock(&io_tree->lock);
5254
ff13db41 5255 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5256
5257 /*
5258 * If still has DELALLOC flag, the extent didn't reach disk,
5259 * and its reserved space won't be freed by delayed_ref.
5260 * So we need to free its reserved space here.
5261 * (Refer to comment in btrfs_invalidatepage, case 2)
5262 *
5263 * Note, end is the bytenr of last byte, so we need + 1 here.
5264 */
5265 if (state->state & EXTENT_DELALLOC)
bc42bda2 5266 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
b9d0b389 5267
6ca07097 5268 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5269 EXTENT_LOCKED | EXTENT_DIRTY |
5270 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5271 EXTENT_DEFRAG, 1, 1,
5272 &cached_state, GFP_NOFS);
131e404a 5273
7064dd5c 5274 cond_resched();
131e404a
FDBM
5275 spin_lock(&io_tree->lock);
5276 }
5277 spin_unlock(&io_tree->lock);
5278}
5279
bd555975 5280void btrfs_evict_inode(struct inode *inode)
39279cc3 5281{
0b246afa 5282 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5283 struct btrfs_trans_handle *trans;
5284 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5285 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5286 int steal_from_global = 0;
3d48d981 5287 u64 min_size;
39279cc3
CM
5288 int ret;
5289
1abe9b8a 5290 trace_btrfs_inode_evict(inode);
5291
3d48d981
NB
5292 if (!root) {
5293 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5294 return;
5295 }
5296
0b246afa 5297 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
3d48d981 5298
131e404a
FDBM
5299 evict_inode_truncate_pages(inode);
5300
69e9c6c6
SB
5301 if (inode->i_nlink &&
5302 ((btrfs_root_refs(&root->root_item) != 0 &&
5303 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5304 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5305 goto no_delete;
5306
39279cc3 5307 if (is_bad_inode(inode)) {
3d6ae7bb 5308 btrfs_orphan_del(NULL, BTRFS_I(inode));
39279cc3
CM
5309 goto no_delete;
5310 }
bd555975 5311 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5312 if (!special_file(inode->i_mode))
5313 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5314
7ab7956e 5315 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5316
0b246afa 5317 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
6bf02314 5318 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5319 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5320 goto no_delete;
5321 }
5322
76dda93c 5323 if (inode->i_nlink > 0) {
69e9c6c6
SB
5324 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5325 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5326 goto no_delete;
5327 }
5328
aa79021f 5329 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
0e8c36a9 5330 if (ret) {
3d6ae7bb 5331 btrfs_orphan_del(NULL, BTRFS_I(inode));
0e8c36a9
MX
5332 goto no_delete;
5333 }
5334
2ff7e61e 5335 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
4289a667 5336 if (!rsv) {
3d6ae7bb 5337 btrfs_orphan_del(NULL, BTRFS_I(inode));
4289a667
JB
5338 goto no_delete;
5339 }
4a338542 5340 rsv->size = min_size;
ca7e70f5 5341 rsv->failfast = 1;
0b246afa 5342 global_rsv = &fs_info->global_block_rsv;
4289a667 5343
6ef06d27 5344 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5345
4289a667 5346 /*
8407aa46
MX
5347 * This is a bit simpler than btrfs_truncate since we've already
5348 * reserved our space for our orphan item in the unlink, so we just
5349 * need to reserve some slack space in case we add bytes and update
5350 * inode item when doing the truncate.
4289a667 5351 */
8082510e 5352 while (1) {
08e007d2
MX
5353 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5354 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5355
5356 /*
5357 * Try and steal from the global reserve since we will
5358 * likely not use this space anyway, we want to try as
5359 * hard as possible to get this to work.
5360 */
5361 if (ret)
3bce876f
JB
5362 steal_from_global++;
5363 else
5364 steal_from_global = 0;
5365 ret = 0;
d68fc57b 5366
3bce876f
JB
5367 /*
5368 * steal_from_global == 0: we reserved stuff, hooray!
5369 * steal_from_global == 1: we didn't reserve stuff, boo!
5370 * steal_from_global == 2: we've committed, still not a lot of
5371 * room but maybe we'll have room in the global reserve this
5372 * time.
5373 * steal_from_global == 3: abandon all hope!
5374 */
5375 if (steal_from_global > 2) {
0b246afa
JM
5376 btrfs_warn(fs_info,
5377 "Could not get space for a delete, will truncate on mount %d",
5378 ret);
3d6ae7bb 5379 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5380 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5381 goto no_delete;
d68fc57b 5382 }
7b128766 5383
0e8c36a9 5384 trans = btrfs_join_transaction(root);
4289a667 5385 if (IS_ERR(trans)) {
3d6ae7bb 5386 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5387 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5388 goto no_delete;
d68fc57b 5389 }
7b128766 5390
3bce876f 5391 /*
01327610 5392 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5393 * sure there is room to do it, if not we need to commit and try
5394 * again.
5395 */
5396 if (steal_from_global) {
2ff7e61e 5397 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
3bce876f 5398 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
25d609f8 5399 min_size, 0);
3bce876f
JB
5400 else
5401 ret = -ENOSPC;
5402 }
5403
5404 /*
5405 * Couldn't steal from the global reserve, we have too much
5406 * pending stuff built up, commit the transaction and try it
5407 * again.
5408 */
5409 if (ret) {
3a45bb20 5410 ret = btrfs_commit_transaction(trans);
3bce876f 5411 if (ret) {
3d6ae7bb 5412 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5413 btrfs_free_block_rsv(fs_info, rsv);
3bce876f
JB
5414 goto no_delete;
5415 }
5416 continue;
5417 } else {
5418 steal_from_global = 0;
5419 }
5420
4289a667
JB
5421 trans->block_rsv = rsv;
5422
d68fc57b 5423 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5424 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5425 break;
85e21bac 5426
0b246afa 5427 trans->block_rsv = &fs_info->trans_block_rsv;
3a45bb20 5428 btrfs_end_transaction(trans);
8082510e 5429 trans = NULL;
2ff7e61e 5430 btrfs_btree_balance_dirty(fs_info);
8082510e 5431 }
5f39d397 5432
2ff7e61e 5433 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5434
4ef31a45
JB
5435 /*
5436 * Errors here aren't a big deal, it just means we leave orphan items
5437 * in the tree. They will be cleaned up on the next mount.
5438 */
8082510e 5439 if (ret == 0) {
4289a667 5440 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 5441 btrfs_orphan_del(trans, BTRFS_I(inode));
4ef31a45 5442 } else {
3d6ae7bb 5443 btrfs_orphan_del(NULL, BTRFS_I(inode));
8082510e 5444 }
54aa1f4d 5445
0b246afa
JM
5446 trans->block_rsv = &fs_info->trans_block_rsv;
5447 if (!(root == fs_info->tree_root ||
581bb050 5448 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5449 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5450
3a45bb20 5451 btrfs_end_transaction(trans);
2ff7e61e 5452 btrfs_btree_balance_dirty(fs_info);
39279cc3 5453no_delete:
f48d1cf5 5454 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5455 clear_inode(inode);
39279cc3
CM
5456}
5457
5458/*
5459 * this returns the key found in the dir entry in the location pointer.
5460 * If no dir entries were found, location->objectid is 0.
5461 */
5462static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5463 struct btrfs_key *location)
5464{
5465 const char *name = dentry->d_name.name;
5466 int namelen = dentry->d_name.len;
5467 struct btrfs_dir_item *di;
5468 struct btrfs_path *path;
5469 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5470 int ret = 0;
39279cc3
CM
5471
5472 path = btrfs_alloc_path();
d8926bb3
MF
5473 if (!path)
5474 return -ENOMEM;
3954401f 5475
f85b7379
DS
5476 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5477 name, namelen, 0);
0d9f7f3e
Y
5478 if (IS_ERR(di))
5479 ret = PTR_ERR(di);
d397712b 5480
c704005d 5481 if (IS_ERR_OR_NULL(di))
3954401f 5482 goto out_err;
d397712b 5483
5f39d397 5484 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5485out:
39279cc3
CM
5486 btrfs_free_path(path);
5487 return ret;
3954401f
CM
5488out_err:
5489 location->objectid = 0;
5490 goto out;
39279cc3
CM
5491}
5492
5493/*
5494 * when we hit a tree root in a directory, the btrfs part of the inode
5495 * needs to be changed to reflect the root directory of the tree root. This
5496 * is kind of like crossing a mount point.
5497 */
2ff7e61e 5498static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5499 struct inode *dir,
5500 struct dentry *dentry,
5501 struct btrfs_key *location,
5502 struct btrfs_root **sub_root)
39279cc3 5503{
4df27c4d
YZ
5504 struct btrfs_path *path;
5505 struct btrfs_root *new_root;
5506 struct btrfs_root_ref *ref;
5507 struct extent_buffer *leaf;
1d4c08e0 5508 struct btrfs_key key;
4df27c4d
YZ
5509 int ret;
5510 int err = 0;
39279cc3 5511
4df27c4d
YZ
5512 path = btrfs_alloc_path();
5513 if (!path) {
5514 err = -ENOMEM;
5515 goto out;
5516 }
39279cc3 5517
4df27c4d 5518 err = -ENOENT;
1d4c08e0
DS
5519 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5520 key.type = BTRFS_ROOT_REF_KEY;
5521 key.offset = location->objectid;
5522
0b246afa 5523 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5524 if (ret) {
5525 if (ret < 0)
5526 err = ret;
5527 goto out;
5528 }
39279cc3 5529
4df27c4d
YZ
5530 leaf = path->nodes[0];
5531 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5532 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5533 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5534 goto out;
39279cc3 5535
4df27c4d
YZ
5536 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5537 (unsigned long)(ref + 1),
5538 dentry->d_name.len);
5539 if (ret)
5540 goto out;
5541
b3b4aa74 5542 btrfs_release_path(path);
4df27c4d 5543
0b246afa 5544 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5545 if (IS_ERR(new_root)) {
5546 err = PTR_ERR(new_root);
5547 goto out;
5548 }
5549
4df27c4d
YZ
5550 *sub_root = new_root;
5551 location->objectid = btrfs_root_dirid(&new_root->root_item);
5552 location->type = BTRFS_INODE_ITEM_KEY;
5553 location->offset = 0;
5554 err = 0;
5555out:
5556 btrfs_free_path(path);
5557 return err;
39279cc3
CM
5558}
5559
5d4f98a2
YZ
5560static void inode_tree_add(struct inode *inode)
5561{
5562 struct btrfs_root *root = BTRFS_I(inode)->root;
5563 struct btrfs_inode *entry;
03e860bd
NP
5564 struct rb_node **p;
5565 struct rb_node *parent;
cef21937 5566 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5567 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5568
1d3382cb 5569 if (inode_unhashed(inode))
76dda93c 5570 return;
e1409cef 5571 parent = NULL;
5d4f98a2 5572 spin_lock(&root->inode_lock);
e1409cef 5573 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5574 while (*p) {
5575 parent = *p;
5576 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5577
4a0cc7ca 5578 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5579 p = &parent->rb_left;
4a0cc7ca 5580 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5581 p = &parent->rb_right;
5d4f98a2
YZ
5582 else {
5583 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5584 (I_WILL_FREE | I_FREEING)));
cef21937 5585 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
NP
5586 RB_CLEAR_NODE(parent);
5587 spin_unlock(&root->inode_lock);
cef21937 5588 return;
5d4f98a2
YZ
5589 }
5590 }
cef21937
FDBM
5591 rb_link_node(new, parent, p);
5592 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5593 spin_unlock(&root->inode_lock);
5594}
5595
5596static void inode_tree_del(struct inode *inode)
5597{
0b246afa 5598 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5599 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5600 int empty = 0;
5d4f98a2 5601
03e860bd 5602 spin_lock(&root->inode_lock);
5d4f98a2 5603 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5604 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5605 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5606 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5607 }
03e860bd 5608 spin_unlock(&root->inode_lock);
76dda93c 5609
69e9c6c6 5610 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5611 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5612 spin_lock(&root->inode_lock);
5613 empty = RB_EMPTY_ROOT(&root->inode_tree);
5614 spin_unlock(&root->inode_lock);
5615 if (empty)
5616 btrfs_add_dead_root(root);
5617 }
5618}
5619
143bede5 5620void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c 5621{
0b246afa 5622 struct btrfs_fs_info *fs_info = root->fs_info;
76dda93c
YZ
5623 struct rb_node *node;
5624 struct rb_node *prev;
5625 struct btrfs_inode *entry;
5626 struct inode *inode;
5627 u64 objectid = 0;
5628
0b246afa 5629 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
7813b3db 5630 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5631
5632 spin_lock(&root->inode_lock);
5633again:
5634 node = root->inode_tree.rb_node;
5635 prev = NULL;
5636 while (node) {
5637 prev = node;
5638 entry = rb_entry(node, struct btrfs_inode, rb_node);
5639
4a0cc7ca 5640 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c 5641 node = node->rb_left;
4a0cc7ca 5642 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c
YZ
5643 node = node->rb_right;
5644 else
5645 break;
5646 }
5647 if (!node) {
5648 while (prev) {
5649 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4a0cc7ca 5650 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
76dda93c
YZ
5651 node = prev;
5652 break;
5653 }
5654 prev = rb_next(prev);
5655 }
5656 }
5657 while (node) {
5658 entry = rb_entry(node, struct btrfs_inode, rb_node);
4a0cc7ca 5659 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
76dda93c
YZ
5660 inode = igrab(&entry->vfs_inode);
5661 if (inode) {
5662 spin_unlock(&root->inode_lock);
5663 if (atomic_read(&inode->i_count) > 1)
5664 d_prune_aliases(inode);
5665 /*
45321ac5 5666 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5667 * the inode cache when its usage count
5668 * hits zero.
5669 */
5670 iput(inode);
5671 cond_resched();
5672 spin_lock(&root->inode_lock);
5673 goto again;
5674 }
5675
5676 if (cond_resched_lock(&root->inode_lock))
5677 goto again;
5678
5679 node = rb_next(node);
5680 }
5681 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5682}
5683
e02119d5
CM
5684static int btrfs_init_locked_inode(struct inode *inode, void *p)
5685{
5686 struct btrfs_iget_args *args = p;
90d3e592
CM
5687 inode->i_ino = args->location->objectid;
5688 memcpy(&BTRFS_I(inode)->location, args->location,
5689 sizeof(*args->location));
e02119d5 5690 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5691 return 0;
5692}
5693
5694static int btrfs_find_actor(struct inode *inode, void *opaque)
5695{
5696 struct btrfs_iget_args *args = opaque;
90d3e592 5697 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5698 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5699}
5700
5d4f98a2 5701static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5702 struct btrfs_key *location,
5d4f98a2 5703 struct btrfs_root *root)
39279cc3
CM
5704{
5705 struct inode *inode;
5706 struct btrfs_iget_args args;
90d3e592 5707 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5708
90d3e592 5709 args.location = location;
39279cc3
CM
5710 args.root = root;
5711
778ba82b 5712 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5713 btrfs_init_locked_inode,
5714 (void *)&args);
5715 return inode;
5716}
5717
1a54ef8c
BR
5718/* Get an inode object given its location and corresponding root.
5719 * Returns in *is_new if the inode was read from disk
5720 */
5721struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5722 struct btrfs_root *root, int *new)
1a54ef8c
BR
5723{
5724 struct inode *inode;
5725
90d3e592 5726 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5727 if (!inode)
5d4f98a2 5728 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5729
5730 if (inode->i_state & I_NEW) {
67710892
FM
5731 int ret;
5732
5733 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5734 if (!is_bad_inode(inode)) {
5735 inode_tree_add(inode);
5736 unlock_new_inode(inode);
5737 if (new)
5738 *new = 1;
5739 } else {
e0b6d65b
ST
5740 unlock_new_inode(inode);
5741 iput(inode);
67710892
FM
5742 ASSERT(ret < 0);
5743 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5744 }
5745 }
5746
1a54ef8c
BR
5747 return inode;
5748}
5749
4df27c4d
YZ
5750static struct inode *new_simple_dir(struct super_block *s,
5751 struct btrfs_key *key,
5752 struct btrfs_root *root)
5753{
5754 struct inode *inode = new_inode(s);
5755
5756 if (!inode)
5757 return ERR_PTR(-ENOMEM);
5758
4df27c4d
YZ
5759 BTRFS_I(inode)->root = root;
5760 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5761 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5762
5763 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5764 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5765 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5766 inode->i_fop = &simple_dir_operations;
5767 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5768 inode->i_mtime = current_time(inode);
9cc97d64 5769 inode->i_atime = inode->i_mtime;
5770 inode->i_ctime = inode->i_mtime;
5771 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5772
5773 return inode;
5774}
5775
3de4586c 5776struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5777{
0b246afa 5778 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5779 struct inode *inode;
4df27c4d 5780 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5781 struct btrfs_root *sub_root = root;
5782 struct btrfs_key location;
76dda93c 5783 int index;
b4aff1f8 5784 int ret = 0;
39279cc3
CM
5785
5786 if (dentry->d_name.len > BTRFS_NAME_LEN)
5787 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5788
39e3c955 5789 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5790 if (ret < 0)
5791 return ERR_PTR(ret);
5f39d397 5792
4df27c4d 5793 if (location.objectid == 0)
5662344b 5794 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5795
5796 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5797 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5798 return inode;
5799 }
5800
5801 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5802
0b246afa 5803 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5804 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5805 &location, &sub_root);
5806 if (ret < 0) {
5807 if (ret != -ENOENT)
5808 inode = ERR_PTR(ret);
5809 else
5810 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5811 } else {
73f73415 5812 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5813 }
0b246afa 5814 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5815
34d19bad 5816 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5817 down_read(&fs_info->cleanup_work_sem);
c71bf099 5818 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5819 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5820 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5821 if (ret) {
5822 iput(inode);
66b4ffd1 5823 inode = ERR_PTR(ret);
01cd3367 5824 }
c71bf099
YZ
5825 }
5826
3de4586c
CM
5827 return inode;
5828}
5829
fe15ce44 5830static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5831{
5832 struct btrfs_root *root;
2b0143b5 5833 struct inode *inode = d_inode(dentry);
76dda93c 5834
848cce0d 5835 if (!inode && !IS_ROOT(dentry))
2b0143b5 5836 inode = d_inode(dentry->d_parent);
76dda93c 5837
848cce0d
LZ
5838 if (inode) {
5839 root = BTRFS_I(inode)->root;
efefb143
YZ
5840 if (btrfs_root_refs(&root->root_item) == 0)
5841 return 1;
848cce0d 5842
4a0cc7ca 5843 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5844 return 1;
efefb143 5845 }
76dda93c
YZ
5846 return 0;
5847}
5848
b4aff1f8
JB
5849static void btrfs_dentry_release(struct dentry *dentry)
5850{
944a4515 5851 kfree(dentry->d_fsdata);
b4aff1f8
JB
5852}
5853
3de4586c 5854static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5855 unsigned int flags)
3de4586c 5856{
5662344b 5857 struct inode *inode;
a66e7cc6 5858
5662344b
TI
5859 inode = btrfs_lookup_dentry(dir, dentry);
5860 if (IS_ERR(inode)) {
5861 if (PTR_ERR(inode) == -ENOENT)
5862 inode = NULL;
5863 else
5864 return ERR_CAST(inode);
5865 }
5866
41d28bca 5867 return d_splice_alias(inode, dentry);
39279cc3
CM
5868}
5869
16cdcec7 5870unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5871 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5872};
5873
9cdda8d3 5874static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5875{
9cdda8d3 5876 struct inode *inode = file_inode(file);
2ff7e61e 5877 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 5878 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3
CM
5879 struct btrfs_dir_item *di;
5880 struct btrfs_key key;
5f39d397 5881 struct btrfs_key found_key;
39279cc3 5882 struct btrfs_path *path;
16cdcec7
MX
5883 struct list_head ins_list;
5884 struct list_head del_list;
39279cc3 5885 int ret;
5f39d397 5886 struct extent_buffer *leaf;
39279cc3 5887 int slot;
39279cc3
CM
5888 unsigned char d_type;
5889 int over = 0;
5f39d397
CM
5890 char tmp_name[32];
5891 char *name_ptr;
5892 int name_len;
02dbfc99 5893 bool put = false;
c2951f32 5894 struct btrfs_key location;
5f39d397 5895
9cdda8d3
AV
5896 if (!dir_emit_dots(file, ctx))
5897 return 0;
5898
49593bfa 5899 path = btrfs_alloc_path();
16cdcec7
MX
5900 if (!path)
5901 return -ENOMEM;
ff5714cc 5902
e4058b54 5903 path->reada = READA_FORWARD;
49593bfa 5904
c2951f32
JM
5905 INIT_LIST_HEAD(&ins_list);
5906 INIT_LIST_HEAD(&del_list);
5907 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5908
c2951f32 5909 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5910 key.offset = ctx->pos;
4a0cc7ca 5911 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5912
39279cc3
CM
5913 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5914 if (ret < 0)
5915 goto err;
49593bfa
DW
5916
5917 while (1) {
5f39d397 5918 leaf = path->nodes[0];
39279cc3 5919 slot = path->slots[0];
b9e03af0
LZ
5920 if (slot >= btrfs_header_nritems(leaf)) {
5921 ret = btrfs_next_leaf(root, path);
5922 if (ret < 0)
5923 goto err;
5924 else if (ret > 0)
5925 break;
5926 continue;
39279cc3 5927 }
3de4586c 5928
5f39d397
CM
5929 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5930
5931 if (found_key.objectid != key.objectid)
39279cc3 5932 break;
c2951f32 5933 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5934 break;
9cdda8d3 5935 if (found_key.offset < ctx->pos)
b9e03af0 5936 goto next;
c2951f32 5937 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5938 goto next;
5f39d397 5939
9cdda8d3 5940 ctx->pos = found_key.offset;
49593bfa 5941
39279cc3 5942 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
e79a3327 5943 if (verify_dir_item(fs_info, leaf, slot, di))
c2951f32 5944 goto next;
22a94d44 5945
c2951f32
JM
5946 name_len = btrfs_dir_name_len(leaf, di);
5947 if (name_len <= sizeof(tmp_name)) {
5948 name_ptr = tmp_name;
5949 } else {
5950 name_ptr = kmalloc(name_len, GFP_KERNEL);
5951 if (!name_ptr) {
5952 ret = -ENOMEM;
5953 goto err;
5f39d397 5954 }
c2951f32
JM
5955 }
5956 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5957 name_len);
3de4586c 5958
c2951f32
JM
5959 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5960 btrfs_dir_item_key_to_cpu(leaf, di, &location);
fede766f 5961
c2951f32
JM
5962 over = !dir_emit(ctx, name_ptr, name_len, location.objectid,
5963 d_type);
5f39d397 5964
c2951f32
JM
5965 if (name_ptr != tmp_name)
5966 kfree(name_ptr);
5f39d397 5967
c2951f32
JM
5968 if (over)
5969 goto nopos;
d2fbb2b5 5970 ctx->pos++;
b9e03af0
LZ
5971next:
5972 path->slots[0]++;
39279cc3 5973 }
49593bfa 5974
d2fbb2b5 5975 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5976 if (ret)
bc4ef759
DS
5977 goto nopos;
5978
db62efbb
ZB
5979 /*
5980 * Stop new entries from being returned after we return the last
5981 * entry.
5982 *
5983 * New directory entries are assigned a strictly increasing
5984 * offset. This means that new entries created during readdir
5985 * are *guaranteed* to be seen in the future by that readdir.
5986 * This has broken buggy programs which operate on names as
5987 * they're returned by readdir. Until we re-use freed offsets
5988 * we have this hack to stop new entries from being returned
5989 * under the assumption that they'll never reach this huge
5990 * offset.
5991 *
5992 * This is being careful not to overflow 32bit loff_t unless the
5993 * last entry requires it because doing so has broken 32bit apps
5994 * in the past.
5995 */
c2951f32
JM
5996 if (ctx->pos >= INT_MAX)
5997 ctx->pos = LLONG_MAX;
5998 else
5999 ctx->pos = INT_MAX;
39279cc3
CM
6000nopos:
6001 ret = 0;
6002err:
02dbfc99
OS
6003 if (put)
6004 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 6005 btrfs_free_path(path);
39279cc3
CM
6006 return ret;
6007}
6008
a9185b41 6009int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
6010{
6011 struct btrfs_root *root = BTRFS_I(inode)->root;
6012 struct btrfs_trans_handle *trans;
6013 int ret = 0;
0af3d00b 6014 bool nolock = false;
39279cc3 6015
72ac3c0d 6016 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
6017 return 0;
6018
70ddc553
NB
6019 if (btrfs_fs_closing(root->fs_info) &&
6020 btrfs_is_free_space_inode(BTRFS_I(inode)))
82d5902d 6021 nolock = true;
0af3d00b 6022
a9185b41 6023 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 6024 if (nolock)
7a7eaa40 6025 trans = btrfs_join_transaction_nolock(root);
0af3d00b 6026 else
7a7eaa40 6027 trans = btrfs_join_transaction(root);
3612b495
TI
6028 if (IS_ERR(trans))
6029 return PTR_ERR(trans);
3a45bb20 6030 ret = btrfs_commit_transaction(trans);
39279cc3
CM
6031 }
6032 return ret;
6033}
6034
6035/*
54aa1f4d 6036 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6037 * inode changes. But, it is most likely to find the inode in cache.
6038 * FIXME, needs more benchmarking...there are no reasons other than performance
6039 * to keep or drop this code.
6040 */
48a3b636 6041static int btrfs_dirty_inode(struct inode *inode)
39279cc3 6042{
2ff7e61e 6043 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
6044 struct btrfs_root *root = BTRFS_I(inode)->root;
6045 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6046 int ret;
6047
72ac3c0d 6048 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6049 return 0;
39279cc3 6050
7a7eaa40 6051 trans = btrfs_join_transaction(root);
22c44fe6
JB
6052 if (IS_ERR(trans))
6053 return PTR_ERR(trans);
8929ecfa
YZ
6054
6055 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6056 if (ret && ret == -ENOSPC) {
6057 /* whoops, lets try again with the full transaction */
3a45bb20 6058 btrfs_end_transaction(trans);
94b60442 6059 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6060 if (IS_ERR(trans))
6061 return PTR_ERR(trans);
8929ecfa 6062
94b60442 6063 ret = btrfs_update_inode(trans, root, inode);
94b60442 6064 }
3a45bb20 6065 btrfs_end_transaction(trans);
16cdcec7 6066 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6067 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6068
6069 return ret;
6070}
6071
6072/*
6073 * This is a copy of file_update_time. We need this so we can return error on
6074 * ENOSPC for updating the inode in the case of file write and mmap writes.
6075 */
e41f941a
JB
6076static int btrfs_update_time(struct inode *inode, struct timespec *now,
6077 int flags)
22c44fe6 6078{
2bc55652
AB
6079 struct btrfs_root *root = BTRFS_I(inode)->root;
6080
6081 if (btrfs_root_readonly(root))
6082 return -EROFS;
6083
e41f941a 6084 if (flags & S_VERSION)
22c44fe6 6085 inode_inc_iversion(inode);
e41f941a
JB
6086 if (flags & S_CTIME)
6087 inode->i_ctime = *now;
6088 if (flags & S_MTIME)
6089 inode->i_mtime = *now;
6090 if (flags & S_ATIME)
6091 inode->i_atime = *now;
6092 return btrfs_dirty_inode(inode);
39279cc3
CM
6093}
6094
d352ac68
CM
6095/*
6096 * find the highest existing sequence number in a directory
6097 * and then set the in-memory index_cnt variable to reflect
6098 * free sequence numbers
6099 */
4c570655 6100static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6101{
4c570655 6102 struct btrfs_root *root = inode->root;
aec7477b
JB
6103 struct btrfs_key key, found_key;
6104 struct btrfs_path *path;
6105 struct extent_buffer *leaf;
6106 int ret;
6107
4c570655 6108 key.objectid = btrfs_ino(inode);
962a298f 6109 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6110 key.offset = (u64)-1;
6111
6112 path = btrfs_alloc_path();
6113 if (!path)
6114 return -ENOMEM;
6115
6116 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6117 if (ret < 0)
6118 goto out;
6119 /* FIXME: we should be able to handle this */
6120 if (ret == 0)
6121 goto out;
6122 ret = 0;
6123
6124 /*
6125 * MAGIC NUMBER EXPLANATION:
6126 * since we search a directory based on f_pos we have to start at 2
6127 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6128 * else has to start at 2
6129 */
6130 if (path->slots[0] == 0) {
4c570655 6131 inode->index_cnt = 2;
aec7477b
JB
6132 goto out;
6133 }
6134
6135 path->slots[0]--;
6136
6137 leaf = path->nodes[0];
6138 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6139
4c570655 6140 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6141 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6142 inode->index_cnt = 2;
aec7477b
JB
6143 goto out;
6144 }
6145
4c570655 6146 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6147out:
6148 btrfs_free_path(path);
6149 return ret;
6150}
6151
d352ac68
CM
6152/*
6153 * helper to find a free sequence number in a given directory. This current
6154 * code is very simple, later versions will do smarter things in the btree
6155 */
877574e2 6156int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6157{
6158 int ret = 0;
6159
877574e2
NB
6160 if (dir->index_cnt == (u64)-1) {
6161 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6162 if (ret) {
6163 ret = btrfs_set_inode_index_count(dir);
6164 if (ret)
6165 return ret;
6166 }
aec7477b
JB
6167 }
6168
877574e2
NB
6169 *index = dir->index_cnt;
6170 dir->index_cnt++;
aec7477b
JB
6171
6172 return ret;
6173}
6174
b0d5d10f
CM
6175static int btrfs_insert_inode_locked(struct inode *inode)
6176{
6177 struct btrfs_iget_args args;
6178 args.location = &BTRFS_I(inode)->location;
6179 args.root = BTRFS_I(inode)->root;
6180
6181 return insert_inode_locked4(inode,
6182 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6183 btrfs_find_actor, &args);
6184}
6185
39279cc3
CM
6186static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6187 struct btrfs_root *root,
aec7477b 6188 struct inode *dir,
9c58309d 6189 const char *name, int name_len,
175a4eb7
AV
6190 u64 ref_objectid, u64 objectid,
6191 umode_t mode, u64 *index)
39279cc3 6192{
0b246afa 6193 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6194 struct inode *inode;
5f39d397 6195 struct btrfs_inode_item *inode_item;
39279cc3 6196 struct btrfs_key *location;
5f39d397 6197 struct btrfs_path *path;
9c58309d
CM
6198 struct btrfs_inode_ref *ref;
6199 struct btrfs_key key[2];
6200 u32 sizes[2];
ef3b9af5 6201 int nitems = name ? 2 : 1;
9c58309d 6202 unsigned long ptr;
39279cc3 6203 int ret;
39279cc3 6204
5f39d397 6205 path = btrfs_alloc_path();
d8926bb3
MF
6206 if (!path)
6207 return ERR_PTR(-ENOMEM);
5f39d397 6208
0b246afa 6209 inode = new_inode(fs_info->sb);
8fb27640
YS
6210 if (!inode) {
6211 btrfs_free_path(path);
39279cc3 6212 return ERR_PTR(-ENOMEM);
8fb27640 6213 }
39279cc3 6214
5762b5c9
FM
6215 /*
6216 * O_TMPFILE, set link count to 0, so that after this point,
6217 * we fill in an inode item with the correct link count.
6218 */
6219 if (!name)
6220 set_nlink(inode, 0);
6221
581bb050
LZ
6222 /*
6223 * we have to initialize this early, so we can reclaim the inode
6224 * number if we fail afterwards in this function.
6225 */
6226 inode->i_ino = objectid;
6227
ef3b9af5 6228 if (dir && name) {
1abe9b8a 6229 trace_btrfs_inode_request(dir);
6230
877574e2 6231 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6232 if (ret) {
8fb27640 6233 btrfs_free_path(path);
09771430 6234 iput(inode);
aec7477b 6235 return ERR_PTR(ret);
09771430 6236 }
ef3b9af5
FM
6237 } else if (dir) {
6238 *index = 0;
aec7477b
JB
6239 }
6240 /*
6241 * index_cnt is ignored for everything but a dir,
6242 * btrfs_get_inode_index_count has an explanation for the magic
6243 * number
6244 */
6245 BTRFS_I(inode)->index_cnt = 2;
67de1176 6246 BTRFS_I(inode)->dir_index = *index;
39279cc3 6247 BTRFS_I(inode)->root = root;
e02119d5 6248 BTRFS_I(inode)->generation = trans->transid;
76195853 6249 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6250
5dc562c5
JB
6251 /*
6252 * We could have gotten an inode number from somebody who was fsynced
6253 * and then removed in this same transaction, so let's just set full
6254 * sync since it will be a full sync anyway and this will blow away the
6255 * old info in the log.
6256 */
6257 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6258
9c58309d 6259 key[0].objectid = objectid;
962a298f 6260 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6261 key[0].offset = 0;
6262
9c58309d 6263 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6264
6265 if (name) {
6266 /*
6267 * Start new inodes with an inode_ref. This is slightly more
6268 * efficient for small numbers of hard links since they will
6269 * be packed into one item. Extended refs will kick in if we
6270 * add more hard links than can fit in the ref item.
6271 */
6272 key[1].objectid = objectid;
962a298f 6273 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6274 key[1].offset = ref_objectid;
6275
6276 sizes[1] = name_len + sizeof(*ref);
6277 }
9c58309d 6278
b0d5d10f
CM
6279 location = &BTRFS_I(inode)->location;
6280 location->objectid = objectid;
6281 location->offset = 0;
962a298f 6282 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6283
6284 ret = btrfs_insert_inode_locked(inode);
6285 if (ret < 0)
6286 goto fail;
6287
b9473439 6288 path->leave_spinning = 1;
ef3b9af5 6289 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6290 if (ret != 0)
b0d5d10f 6291 goto fail_unlock;
5f39d397 6292
ecc11fab 6293 inode_init_owner(inode, dir, mode);
a76a3cd4 6294 inode_set_bytes(inode, 0);
9cc97d64 6295
c2050a45 6296 inode->i_mtime = current_time(inode);
9cc97d64 6297 inode->i_atime = inode->i_mtime;
6298 inode->i_ctime = inode->i_mtime;
6299 BTRFS_I(inode)->i_otime = inode->i_mtime;
6300
5f39d397
CM
6301 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6302 struct btrfs_inode_item);
b159fa28 6303 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6304 sizeof(*inode_item));
e02119d5 6305 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6306
ef3b9af5
FM
6307 if (name) {
6308 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6309 struct btrfs_inode_ref);
6310 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6311 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6312 ptr = (unsigned long)(ref + 1);
6313 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6314 }
9c58309d 6315
5f39d397
CM
6316 btrfs_mark_buffer_dirty(path->nodes[0]);
6317 btrfs_free_path(path);
6318
6cbff00f
CH
6319 btrfs_inherit_iflags(inode, dir);
6320
569254b0 6321 if (S_ISREG(mode)) {
0b246afa 6322 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6323 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6324 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6325 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6326 BTRFS_INODE_NODATASUM;
94272164
CM
6327 }
6328
5d4f98a2 6329 inode_tree_add(inode);
1abe9b8a 6330
6331 trace_btrfs_inode_new(inode);
1973f0fa 6332 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6333
8ea05e3a
AB
6334 btrfs_update_root_times(trans, root);
6335
63541927
FDBM
6336 ret = btrfs_inode_inherit_props(trans, inode, dir);
6337 if (ret)
0b246afa 6338 btrfs_err(fs_info,
63541927 6339 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6340 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6341
39279cc3 6342 return inode;
b0d5d10f
CM
6343
6344fail_unlock:
6345 unlock_new_inode(inode);
5f39d397 6346fail:
ef3b9af5 6347 if (dir && name)
aec7477b 6348 BTRFS_I(dir)->index_cnt--;
5f39d397 6349 btrfs_free_path(path);
09771430 6350 iput(inode);
5f39d397 6351 return ERR_PTR(ret);
39279cc3
CM
6352}
6353
6354static inline u8 btrfs_inode_type(struct inode *inode)
6355{
6356 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6357}
6358
d352ac68
CM
6359/*
6360 * utility function to add 'inode' into 'parent_inode' with
6361 * a give name and a given sequence number.
6362 * if 'add_backref' is true, also insert a backref from the
6363 * inode to the parent directory.
6364 */
e02119d5 6365int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6366 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6367 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6368{
db0a669f 6369 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
4df27c4d 6370 int ret = 0;
39279cc3 6371 struct btrfs_key key;
db0a669f
NB
6372 struct btrfs_root *root = parent_inode->root;
6373 u64 ino = btrfs_ino(inode);
6374 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6375
33345d01 6376 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6377 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6378 } else {
33345d01 6379 key.objectid = ino;
962a298f 6380 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6381 key.offset = 0;
6382 }
6383
33345d01 6384 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
0b246afa
JM
6385 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6386 root->root_key.objectid, parent_ino,
6387 index, name, name_len);
4df27c4d 6388 } else if (add_backref) {
33345d01
LZ
6389 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6390 parent_ino, index);
4df27c4d 6391 }
39279cc3 6392
79787eaa
JM
6393 /* Nothing to clean up yet */
6394 if (ret)
6395 return ret;
4df27c4d 6396
79787eaa
JM
6397 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6398 parent_inode, &key,
db0a669f 6399 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6400 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6401 goto fail_dir_item;
6402 else if (ret) {
66642832 6403 btrfs_abort_transaction(trans, ret);
79787eaa 6404 return ret;
39279cc3 6405 }
79787eaa 6406
db0a669f 6407 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6408 name_len * 2);
db0a669f
NB
6409 inode_inc_iversion(&parent_inode->vfs_inode);
6410 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6411 current_time(&parent_inode->vfs_inode);
6412 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6413 if (ret)
66642832 6414 btrfs_abort_transaction(trans, ret);
39279cc3 6415 return ret;
fe66a05a
CM
6416
6417fail_dir_item:
6418 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6419 u64 local_index;
6420 int err;
0b246afa
JM
6421 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6422 root->root_key.objectid, parent_ino,
6423 &local_index, name, name_len);
fe66a05a
CM
6424
6425 } else if (add_backref) {
6426 u64 local_index;
6427 int err;
6428
6429 err = btrfs_del_inode_ref(trans, root, name, name_len,
6430 ino, parent_ino, &local_index);
6431 }
6432 return ret;
39279cc3
CM
6433}
6434
6435static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6436 struct btrfs_inode *dir, struct dentry *dentry,
6437 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6438{
a1b075d2
JB
6439 int err = btrfs_add_link(trans, dir, inode,
6440 dentry->d_name.name, dentry->d_name.len,
6441 backref, index);
39279cc3
CM
6442 if (err > 0)
6443 err = -EEXIST;
6444 return err;
6445}
6446
618e21d5 6447static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6448 umode_t mode, dev_t rdev)
618e21d5 6449{
2ff7e61e 6450 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6451 struct btrfs_trans_handle *trans;
6452 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6453 struct inode *inode = NULL;
618e21d5
JB
6454 int err;
6455 int drop_inode = 0;
6456 u64 objectid;
00e4e6b3 6457 u64 index = 0;
618e21d5 6458
9ed74f2d
JB
6459 /*
6460 * 2 for inode item and ref
6461 * 2 for dir items
6462 * 1 for xattr if selinux is on
6463 */
a22285a6
YZ
6464 trans = btrfs_start_transaction(root, 5);
6465 if (IS_ERR(trans))
6466 return PTR_ERR(trans);
1832a6d5 6467
581bb050
LZ
6468 err = btrfs_find_free_ino(root, &objectid);
6469 if (err)
6470 goto out_unlock;
6471
aec7477b 6472 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6473 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6474 mode, &index);
7cf96da3
TI
6475 if (IS_ERR(inode)) {
6476 err = PTR_ERR(inode);
618e21d5 6477 goto out_unlock;
7cf96da3 6478 }
618e21d5 6479
ad19db71
CS
6480 /*
6481 * If the active LSM wants to access the inode during
6482 * d_instantiate it needs these. Smack checks to see
6483 * if the filesystem supports xattrs by looking at the
6484 * ops vector.
6485 */
ad19db71 6486 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6487 init_special_inode(inode, inode->i_mode, rdev);
6488
6489 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6490 if (err)
b0d5d10f
CM
6491 goto out_unlock_inode;
6492
cef415af
NB
6493 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6494 0, index);
b0d5d10f
CM
6495 if (err) {
6496 goto out_unlock_inode;
6497 } else {
1b4ab1bb 6498 btrfs_update_inode(trans, root, inode);
b0d5d10f 6499 unlock_new_inode(inode);
08c422c2 6500 d_instantiate(dentry, inode);
618e21d5 6501 }
b0d5d10f 6502
618e21d5 6503out_unlock:
3a45bb20 6504 btrfs_end_transaction(trans);
2ff7e61e
JM
6505 btrfs_balance_delayed_items(fs_info);
6506 btrfs_btree_balance_dirty(fs_info);
618e21d5
JB
6507 if (drop_inode) {
6508 inode_dec_link_count(inode);
6509 iput(inode);
6510 }
618e21d5 6511 return err;
b0d5d10f
CM
6512
6513out_unlock_inode:
6514 drop_inode = 1;
6515 unlock_new_inode(inode);
6516 goto out_unlock;
6517
618e21d5
JB
6518}
6519
39279cc3 6520static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6521 umode_t mode, bool excl)
39279cc3 6522{
2ff7e61e 6523 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6524 struct btrfs_trans_handle *trans;
6525 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6526 struct inode *inode = NULL;
43baa579 6527 int drop_inode_on_err = 0;
a22285a6 6528 int err;
39279cc3 6529 u64 objectid;
00e4e6b3 6530 u64 index = 0;
39279cc3 6531
9ed74f2d
JB
6532 /*
6533 * 2 for inode item and ref
6534 * 2 for dir items
6535 * 1 for xattr if selinux is on
6536 */
a22285a6
YZ
6537 trans = btrfs_start_transaction(root, 5);
6538 if (IS_ERR(trans))
6539 return PTR_ERR(trans);
9ed74f2d 6540
581bb050
LZ
6541 err = btrfs_find_free_ino(root, &objectid);
6542 if (err)
6543 goto out_unlock;
6544
aec7477b 6545 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6546 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6547 mode, &index);
7cf96da3
TI
6548 if (IS_ERR(inode)) {
6549 err = PTR_ERR(inode);
39279cc3 6550 goto out_unlock;
7cf96da3 6551 }
43baa579 6552 drop_inode_on_err = 1;
ad19db71
CS
6553 /*
6554 * If the active LSM wants to access the inode during
6555 * d_instantiate it needs these. Smack checks to see
6556 * if the filesystem supports xattrs by looking at the
6557 * ops vector.
6558 */
6559 inode->i_fop = &btrfs_file_operations;
6560 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6561 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6562
6563 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6564 if (err)
6565 goto out_unlock_inode;
6566
6567 err = btrfs_update_inode(trans, root, inode);
6568 if (err)
6569 goto out_unlock_inode;
ad19db71 6570
cef415af
NB
6571 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6572 0, index);
39279cc3 6573 if (err)
b0d5d10f 6574 goto out_unlock_inode;
43baa579 6575
43baa579 6576 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6577 unlock_new_inode(inode);
43baa579
FB
6578 d_instantiate(dentry, inode);
6579
39279cc3 6580out_unlock:
3a45bb20 6581 btrfs_end_transaction(trans);
43baa579 6582 if (err && drop_inode_on_err) {
39279cc3
CM
6583 inode_dec_link_count(inode);
6584 iput(inode);
6585 }
2ff7e61e
JM
6586 btrfs_balance_delayed_items(fs_info);
6587 btrfs_btree_balance_dirty(fs_info);
39279cc3 6588 return err;
b0d5d10f
CM
6589
6590out_unlock_inode:
6591 unlock_new_inode(inode);
6592 goto out_unlock;
6593
39279cc3
CM
6594}
6595
6596static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6597 struct dentry *dentry)
6598{
271dba45 6599 struct btrfs_trans_handle *trans = NULL;
39279cc3 6600 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6601 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6602 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6603 u64 index;
39279cc3
CM
6604 int err;
6605 int drop_inode = 0;
6606
4a8be425
TH
6607 /* do not allow sys_link's with other subvols of the same device */
6608 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6609 return -EXDEV;
4a8be425 6610
f186373f 6611 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6612 return -EMLINK;
4a8be425 6613
877574e2 6614 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6615 if (err)
6616 goto fail;
6617
a22285a6 6618 /*
7e6b6465 6619 * 2 items for inode and inode ref
a22285a6 6620 * 2 items for dir items
7e6b6465 6621 * 1 item for parent inode
a22285a6 6622 */
7e6b6465 6623 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6624 if (IS_ERR(trans)) {
6625 err = PTR_ERR(trans);
271dba45 6626 trans = NULL;
a22285a6
YZ
6627 goto fail;
6628 }
5f39d397 6629
67de1176
MX
6630 /* There are several dir indexes for this inode, clear the cache. */
6631 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6632 inc_nlink(inode);
0c4d2d95 6633 inode_inc_iversion(inode);
c2050a45 6634 inode->i_ctime = current_time(inode);
7de9c6ee 6635 ihold(inode);
e9976151 6636 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6637
cef415af
NB
6638 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6639 1, index);
5f39d397 6640
a5719521 6641 if (err) {
54aa1f4d 6642 drop_inode = 1;
a5719521 6643 } else {
10d9f309 6644 struct dentry *parent = dentry->d_parent;
a5719521 6645 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6646 if (err)
6647 goto fail;
ef3b9af5
FM
6648 if (inode->i_nlink == 1) {
6649 /*
6650 * If new hard link count is 1, it's a file created
6651 * with open(2) O_TMPFILE flag.
6652 */
3d6ae7bb 6653 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6654 if (err)
6655 goto fail;
6656 }
08c422c2 6657 d_instantiate(dentry, inode);
9ca5fbfb 6658 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
a5719521 6659 }
39279cc3 6660
2ff7e61e 6661 btrfs_balance_delayed_items(fs_info);
1832a6d5 6662fail:
271dba45 6663 if (trans)
3a45bb20 6664 btrfs_end_transaction(trans);
39279cc3
CM
6665 if (drop_inode) {
6666 inode_dec_link_count(inode);
6667 iput(inode);
6668 }
2ff7e61e 6669 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6670 return err;
6671}
6672
18bb1db3 6673static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6674{
2ff7e61e 6675 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6676 struct inode *inode = NULL;
39279cc3
CM
6677 struct btrfs_trans_handle *trans;
6678 struct btrfs_root *root = BTRFS_I(dir)->root;
6679 int err = 0;
6680 int drop_on_err = 0;
b9d86667 6681 u64 objectid = 0;
00e4e6b3 6682 u64 index = 0;
39279cc3 6683
9ed74f2d
JB
6684 /*
6685 * 2 items for inode and ref
6686 * 2 items for dir items
6687 * 1 for xattr if selinux is on
6688 */
a22285a6
YZ
6689 trans = btrfs_start_transaction(root, 5);
6690 if (IS_ERR(trans))
6691 return PTR_ERR(trans);
39279cc3 6692
581bb050
LZ
6693 err = btrfs_find_free_ino(root, &objectid);
6694 if (err)
6695 goto out_fail;
6696
aec7477b 6697 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6698 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6699 S_IFDIR | mode, &index);
39279cc3
CM
6700 if (IS_ERR(inode)) {
6701 err = PTR_ERR(inode);
6702 goto out_fail;
6703 }
5f39d397 6704
39279cc3 6705 drop_on_err = 1;
b0d5d10f
CM
6706 /* these must be set before we unlock the inode */
6707 inode->i_op = &btrfs_dir_inode_operations;
6708 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6709
2a7dba39 6710 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6711 if (err)
b0d5d10f 6712 goto out_fail_inode;
39279cc3 6713
6ef06d27 6714 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6715 err = btrfs_update_inode(trans, root, inode);
6716 if (err)
b0d5d10f 6717 goto out_fail_inode;
5f39d397 6718
db0a669f
NB
6719 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6720 dentry->d_name.name,
6721 dentry->d_name.len, 0, index);
39279cc3 6722 if (err)
b0d5d10f 6723 goto out_fail_inode;
5f39d397 6724
39279cc3 6725 d_instantiate(dentry, inode);
b0d5d10f
CM
6726 /*
6727 * mkdir is special. We're unlocking after we call d_instantiate
6728 * to avoid a race with nfsd calling d_instantiate.
6729 */
6730 unlock_new_inode(inode);
39279cc3 6731 drop_on_err = 0;
39279cc3
CM
6732
6733out_fail:
3a45bb20 6734 btrfs_end_transaction(trans);
c7cfb8a5
WS
6735 if (drop_on_err) {
6736 inode_dec_link_count(inode);
39279cc3 6737 iput(inode);
c7cfb8a5 6738 }
2ff7e61e
JM
6739 btrfs_balance_delayed_items(fs_info);
6740 btrfs_btree_balance_dirty(fs_info);
39279cc3 6741 return err;
b0d5d10f
CM
6742
6743out_fail_inode:
6744 unlock_new_inode(inode);
6745 goto out_fail;
39279cc3
CM
6746}
6747
e6c4efd8
QW
6748/* Find next extent map of a given extent map, caller needs to ensure locks */
6749static struct extent_map *next_extent_map(struct extent_map *em)
6750{
6751 struct rb_node *next;
6752
6753 next = rb_next(&em->rb_node);
6754 if (!next)
6755 return NULL;
6756 return container_of(next, struct extent_map, rb_node);
6757}
6758
6759static struct extent_map *prev_extent_map(struct extent_map *em)
6760{
6761 struct rb_node *prev;
6762
6763 prev = rb_prev(&em->rb_node);
6764 if (!prev)
6765 return NULL;
6766 return container_of(prev, struct extent_map, rb_node);
6767}
6768
d352ac68 6769/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6770 * the existing extent is the nearest extent to map_start,
d352ac68 6771 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6772 * the best fitted new extent into the tree.
d352ac68 6773 */
3b951516
CM
6774static int merge_extent_mapping(struct extent_map_tree *em_tree,
6775 struct extent_map *existing,
e6dcd2dc 6776 struct extent_map *em,
51f395ad 6777 u64 map_start)
3b951516 6778{
e6c4efd8
QW
6779 struct extent_map *prev;
6780 struct extent_map *next;
6781 u64 start;
6782 u64 end;
3b951516 6783 u64 start_diff;
3b951516 6784
e6dcd2dc 6785 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6786
6787 if (existing->start > map_start) {
6788 next = existing;
6789 prev = prev_extent_map(next);
6790 } else {
6791 prev = existing;
6792 next = next_extent_map(prev);
6793 }
6794
6795 start = prev ? extent_map_end(prev) : em->start;
6796 start = max_t(u64, start, em->start);
6797 end = next ? next->start : extent_map_end(em);
6798 end = min_t(u64, end, extent_map_end(em));
6799 start_diff = start - em->start;
6800 em->start = start;
6801 em->len = end - start;
c8b97818
CM
6802 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6803 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6804 em->block_start += start_diff;
c8b97818
CM
6805 em->block_len -= start_diff;
6806 }
09a2a8f9 6807 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6808}
6809
c8b97818 6810static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6811 struct page *page,
c8b97818
CM
6812 size_t pg_offset, u64 extent_offset,
6813 struct btrfs_file_extent_item *item)
6814{
6815 int ret;
6816 struct extent_buffer *leaf = path->nodes[0];
6817 char *tmp;
6818 size_t max_size;
6819 unsigned long inline_size;
6820 unsigned long ptr;
261507a0 6821 int compress_type;
c8b97818
CM
6822
6823 WARN_ON(pg_offset != 0);
261507a0 6824 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6825 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6826 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6827 btrfs_item_nr(path->slots[0]));
c8b97818 6828 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6829 if (!tmp)
6830 return -ENOMEM;
c8b97818
CM
6831 ptr = btrfs_file_extent_inline_start(item);
6832
6833 read_extent_buffer(leaf, tmp, ptr, inline_size);
6834
09cbfeaf 6835 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6836 ret = btrfs_decompress(compress_type, tmp, page,
6837 extent_offset, inline_size, max_size);
e1699d2d
ZB
6838
6839 /*
6840 * decompression code contains a memset to fill in any space between the end
6841 * of the uncompressed data and the end of max_size in case the decompressed
6842 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6843 * the end of an inline extent and the beginning of the next block, so we
6844 * cover that region here.
6845 */
6846
6847 if (max_size + pg_offset < PAGE_SIZE) {
6848 char *map = kmap(page);
6849 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6850 kunmap(page);
6851 }
c8b97818 6852 kfree(tmp);
166ae5a4 6853 return ret;
c8b97818
CM
6854}
6855
d352ac68
CM
6856/*
6857 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6858 * the ugly parts come from merging extents from the disk with the in-ram
6859 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6860 * where the in-ram extents might be locked pending data=ordered completion.
6861 *
6862 * This also copies inline extents directly into the page.
6863 */
fc4f21b1
NB
6864struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6865 struct page *page,
6866 size_t pg_offset, u64 start, u64 len,
6867 int create)
a52d9a80 6868{
fc4f21b1 6869 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
a52d9a80
CM
6870 int ret;
6871 int err = 0;
a52d9a80
CM
6872 u64 extent_start = 0;
6873 u64 extent_end = 0;
fc4f21b1 6874 u64 objectid = btrfs_ino(inode);
a52d9a80 6875 u32 found_type;
f421950f 6876 struct btrfs_path *path = NULL;
fc4f21b1 6877 struct btrfs_root *root = inode->root;
a52d9a80 6878 struct btrfs_file_extent_item *item;
5f39d397
CM
6879 struct extent_buffer *leaf;
6880 struct btrfs_key found_key;
a52d9a80 6881 struct extent_map *em = NULL;
fc4f21b1
NB
6882 struct extent_map_tree *em_tree = &inode->extent_tree;
6883 struct extent_io_tree *io_tree = &inode->io_tree;
a52d9a80 6884 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6885 const bool new_inline = !page || create;
a52d9a80 6886
a52d9a80 6887again:
890871be 6888 read_lock(&em_tree->lock);
d1310b2e 6889 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6890 if (em)
0b246afa 6891 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6892 read_unlock(&em_tree->lock);
d1310b2e 6893
a52d9a80 6894 if (em) {
e1c4b745
CM
6895 if (em->start > start || em->start + em->len <= start)
6896 free_extent_map(em);
6897 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6898 free_extent_map(em);
6899 else
6900 goto out;
a52d9a80 6901 }
172ddd60 6902 em = alloc_extent_map();
a52d9a80 6903 if (!em) {
d1310b2e
CM
6904 err = -ENOMEM;
6905 goto out;
a52d9a80 6906 }
0b246afa 6907 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6908 em->start = EXTENT_MAP_HOLE;
445a6944 6909 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6910 em->len = (u64)-1;
c8b97818 6911 em->block_len = (u64)-1;
f421950f
CM
6912
6913 if (!path) {
6914 path = btrfs_alloc_path();
026fd317
JB
6915 if (!path) {
6916 err = -ENOMEM;
6917 goto out;
6918 }
6919 /*
6920 * Chances are we'll be called again, so go ahead and do
6921 * readahead
6922 */
e4058b54 6923 path->reada = READA_FORWARD;
f421950f
CM
6924 }
6925
179e29e4
CM
6926 ret = btrfs_lookup_file_extent(trans, root, path,
6927 objectid, start, trans != NULL);
a52d9a80
CM
6928 if (ret < 0) {
6929 err = ret;
6930 goto out;
6931 }
6932
6933 if (ret != 0) {
6934 if (path->slots[0] == 0)
6935 goto not_found;
6936 path->slots[0]--;
6937 }
6938
5f39d397
CM
6939 leaf = path->nodes[0];
6940 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6941 struct btrfs_file_extent_item);
a52d9a80 6942 /* are we inside the extent that was found? */
5f39d397 6943 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6944 found_type = found_key.type;
5f39d397 6945 if (found_key.objectid != objectid ||
a52d9a80 6946 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6947 /*
6948 * If we backup past the first extent we want to move forward
6949 * and see if there is an extent in front of us, otherwise we'll
6950 * say there is a hole for our whole search range which can
6951 * cause problems.
6952 */
6953 extent_end = start;
6954 goto next;
a52d9a80
CM
6955 }
6956
5f39d397
CM
6957 found_type = btrfs_file_extent_type(leaf, item);
6958 extent_start = found_key.offset;
d899e052
YZ
6959 if (found_type == BTRFS_FILE_EXTENT_REG ||
6960 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6961 extent_end = extent_start +
db94535d 6962 btrfs_file_extent_num_bytes(leaf, item);
09ed2f16
LB
6963
6964 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6965 extent_start);
9036c102
YZ
6966 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6967 size_t size;
514ac8ad 6968 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
da17066c 6969 extent_end = ALIGN(extent_start + size,
0b246afa 6970 fs_info->sectorsize);
09ed2f16
LB
6971
6972 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6973 path->slots[0],
6974 extent_start);
9036c102 6975 }
25a50341 6976next:
9036c102
YZ
6977 if (start >= extent_end) {
6978 path->slots[0]++;
6979 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6980 ret = btrfs_next_leaf(root, path);
6981 if (ret < 0) {
6982 err = ret;
6983 goto out;
a52d9a80 6984 }
9036c102
YZ
6985 if (ret > 0)
6986 goto not_found;
6987 leaf = path->nodes[0];
a52d9a80 6988 }
9036c102
YZ
6989 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6990 if (found_key.objectid != objectid ||
6991 found_key.type != BTRFS_EXTENT_DATA_KEY)
6992 goto not_found;
6993 if (start + len <= found_key.offset)
6994 goto not_found;
e2eca69d
WS
6995 if (start > found_key.offset)
6996 goto next;
9036c102 6997 em->start = start;
70c8a91c 6998 em->orig_start = start;
9036c102
YZ
6999 em->len = found_key.offset - start;
7000 goto not_found_em;
7001 }
7002
fc4f21b1 7003 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 7004 new_inline, em);
7ffbb598 7005
d899e052
YZ
7006 if (found_type == BTRFS_FILE_EXTENT_REG ||
7007 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
7008 goto insert;
7009 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 7010 unsigned long ptr;
a52d9a80 7011 char *map;
3326d1b0
CM
7012 size_t size;
7013 size_t extent_offset;
7014 size_t copy_size;
a52d9a80 7015
7ffbb598 7016 if (new_inline)
689f9346 7017 goto out;
5f39d397 7018
514ac8ad 7019 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 7020 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
7021 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7022 size - extent_offset);
3326d1b0 7023 em->start = extent_start + extent_offset;
0b246afa 7024 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 7025 em->orig_block_len = em->len;
70c8a91c 7026 em->orig_start = em->start;
689f9346 7027 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 7028 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
7029 if (btrfs_file_extent_compression(leaf, item) !=
7030 BTRFS_COMPRESS_NONE) {
e40da0e5 7031 ret = uncompress_inline(path, page, pg_offset,
c8b97818 7032 extent_offset, item);
166ae5a4
ZB
7033 if (ret) {
7034 err = ret;
7035 goto out;
7036 }
c8b97818
CM
7037 } else {
7038 map = kmap(page);
7039 read_extent_buffer(leaf, map + pg_offset, ptr,
7040 copy_size);
09cbfeaf 7041 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 7042 memset(map + pg_offset + copy_size, 0,
09cbfeaf 7043 PAGE_SIZE - pg_offset -
93c82d57
CM
7044 copy_size);
7045 }
c8b97818
CM
7046 kunmap(page);
7047 }
179e29e4
CM
7048 flush_dcache_page(page);
7049 } else if (create && PageUptodate(page)) {
6bf7e080 7050 BUG();
179e29e4
CM
7051 if (!trans) {
7052 kunmap(page);
7053 free_extent_map(em);
7054 em = NULL;
ff5714cc 7055
b3b4aa74 7056 btrfs_release_path(path);
7a7eaa40 7057 trans = btrfs_join_transaction(root);
ff5714cc 7058
3612b495
TI
7059 if (IS_ERR(trans))
7060 return ERR_CAST(trans);
179e29e4
CM
7061 goto again;
7062 }
c8b97818 7063 map = kmap(page);
70dec807 7064 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 7065 copy_size);
c8b97818 7066 kunmap(page);
179e29e4 7067 btrfs_mark_buffer_dirty(leaf);
a52d9a80 7068 }
d1310b2e 7069 set_extent_uptodate(io_tree, em->start,
507903b8 7070 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7071 goto insert;
a52d9a80
CM
7072 }
7073not_found:
7074 em->start = start;
70c8a91c 7075 em->orig_start = start;
d1310b2e 7076 em->len = len;
a52d9a80 7077not_found_em:
5f39d397 7078 em->block_start = EXTENT_MAP_HOLE;
9036c102 7079 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 7080insert:
b3b4aa74 7081 btrfs_release_path(path);
d1310b2e 7082 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 7083 btrfs_err(fs_info,
5d163e0e
JM
7084 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7085 em->start, em->len, start, len);
a52d9a80
CM
7086 err = -EIO;
7087 goto out;
7088 }
d1310b2e
CM
7089
7090 err = 0;
890871be 7091 write_lock(&em_tree->lock);
09a2a8f9 7092 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
7093 /* it is possible that someone inserted the extent into the tree
7094 * while we had the lock dropped. It is also possible that
7095 * an overlapping map exists in the tree
7096 */
a52d9a80 7097 if (ret == -EEXIST) {
3b951516 7098 struct extent_map *existing;
e6dcd2dc
CM
7099
7100 ret = 0;
7101
e6c4efd8
QW
7102 existing = search_extent_mapping(em_tree, start, len);
7103 /*
7104 * existing will always be non-NULL, since there must be
7105 * extent causing the -EEXIST.
7106 */
8dff9c85 7107 if (existing->start == em->start &&
8e2bd3b7 7108 extent_map_end(existing) >= extent_map_end(em) &&
8dff9c85
CM
7109 em->block_start == existing->block_start) {
7110 /*
8e2bd3b7
OS
7111 * The existing extent map already encompasses the
7112 * entire extent map we tried to add.
8dff9c85
CM
7113 */
7114 free_extent_map(em);
7115 em = existing;
7116 err = 0;
7117
7118 } else if (start >= extent_map_end(existing) ||
32be3a1a 7119 start <= existing->start) {
e6c4efd8
QW
7120 /*
7121 * The existing extent map is the one nearest to
7122 * the [start, start + len) range which overlaps
7123 */
7124 err = merge_extent_mapping(em_tree, existing,
7125 em, start);
e1c4b745 7126 free_extent_map(existing);
e6c4efd8 7127 if (err) {
3b951516
CM
7128 free_extent_map(em);
7129 em = NULL;
7130 }
7131 } else {
7132 free_extent_map(em);
7133 em = existing;
e6dcd2dc 7134 err = 0;
a52d9a80 7135 }
a52d9a80 7136 }
890871be 7137 write_unlock(&em_tree->lock);
a52d9a80 7138out:
1abe9b8a 7139
fc4f21b1 7140 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 7141
527afb44 7142 btrfs_free_path(path);
a52d9a80 7143 if (trans) {
3a45bb20 7144 ret = btrfs_end_transaction(trans);
d397712b 7145 if (!err)
a52d9a80
CM
7146 err = ret;
7147 }
a52d9a80
CM
7148 if (err) {
7149 free_extent_map(em);
a52d9a80
CM
7150 return ERR_PTR(err);
7151 }
79787eaa 7152 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7153 return em;
7154}
7155
fc4f21b1
NB
7156struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7157 struct page *page,
7158 size_t pg_offset, u64 start, u64 len,
7159 int create)
ec29ed5b
CM
7160{
7161 struct extent_map *em;
7162 struct extent_map *hole_em = NULL;
7163 u64 range_start = start;
7164 u64 end;
7165 u64 found;
7166 u64 found_end;
7167 int err = 0;
7168
7169 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7170 if (IS_ERR(em))
7171 return em;
9986277e
DC
7172 /*
7173 * If our em maps to:
7174 * - a hole or
7175 * - a pre-alloc extent,
7176 * there might actually be delalloc bytes behind it.
7177 */
7178 if (em->block_start != EXTENT_MAP_HOLE &&
7179 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7180 return em;
7181 else
7182 hole_em = em;
ec29ed5b
CM
7183
7184 /* check to see if we've wrapped (len == -1 or similar) */
7185 end = start + len;
7186 if (end < start)
7187 end = (u64)-1;
7188 else
7189 end -= 1;
7190
7191 em = NULL;
7192
7193 /* ok, we didn't find anything, lets look for delalloc */
fc4f21b1 7194 found = count_range_bits(&inode->io_tree, &range_start,
ec29ed5b
CM
7195 end, len, EXTENT_DELALLOC, 1);
7196 found_end = range_start + found;
7197 if (found_end < range_start)
7198 found_end = (u64)-1;
7199
7200 /*
7201 * we didn't find anything useful, return
7202 * the original results from get_extent()
7203 */
7204 if (range_start > end || found_end <= start) {
7205 em = hole_em;
7206 hole_em = NULL;
7207 goto out;
7208 }
7209
7210 /* adjust the range_start to make sure it doesn't
7211 * go backwards from the start they passed in
7212 */
67871254 7213 range_start = max(start, range_start);
ec29ed5b
CM
7214 found = found_end - range_start;
7215
7216 if (found > 0) {
7217 u64 hole_start = start;
7218 u64 hole_len = len;
7219
172ddd60 7220 em = alloc_extent_map();
ec29ed5b
CM
7221 if (!em) {
7222 err = -ENOMEM;
7223 goto out;
7224 }
7225 /*
7226 * when btrfs_get_extent can't find anything it
7227 * returns one huge hole
7228 *
7229 * make sure what it found really fits our range, and
7230 * adjust to make sure it is based on the start from
7231 * the caller
7232 */
7233 if (hole_em) {
7234 u64 calc_end = extent_map_end(hole_em);
7235
7236 if (calc_end <= start || (hole_em->start > end)) {
7237 free_extent_map(hole_em);
7238 hole_em = NULL;
7239 } else {
7240 hole_start = max(hole_em->start, start);
7241 hole_len = calc_end - hole_start;
7242 }
7243 }
7244 em->bdev = NULL;
7245 if (hole_em && range_start > hole_start) {
7246 /* our hole starts before our delalloc, so we
7247 * have to return just the parts of the hole
7248 * that go until the delalloc starts
7249 */
7250 em->len = min(hole_len,
7251 range_start - hole_start);
7252 em->start = hole_start;
7253 em->orig_start = hole_start;
7254 /*
7255 * don't adjust block start at all,
7256 * it is fixed at EXTENT_MAP_HOLE
7257 */
7258 em->block_start = hole_em->block_start;
7259 em->block_len = hole_len;
f9e4fb53
LB
7260 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7261 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7262 } else {
7263 em->start = range_start;
7264 em->len = found;
7265 em->orig_start = range_start;
7266 em->block_start = EXTENT_MAP_DELALLOC;
7267 em->block_len = found;
7268 }
7269 } else if (hole_em) {
7270 return hole_em;
7271 }
7272out:
7273
7274 free_extent_map(hole_em);
7275 if (err) {
7276 free_extent_map(em);
7277 return ERR_PTR(err);
7278 }
7279 return em;
7280}
7281
5f9a8a51
FM
7282static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7283 const u64 start,
7284 const u64 len,
7285 const u64 orig_start,
7286 const u64 block_start,
7287 const u64 block_len,
7288 const u64 orig_block_len,
7289 const u64 ram_bytes,
7290 const int type)
7291{
7292 struct extent_map *em = NULL;
7293 int ret;
7294
5f9a8a51 7295 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7296 em = create_io_em(inode, start, len, orig_start,
7297 block_start, block_len, orig_block_len,
7298 ram_bytes,
7299 BTRFS_COMPRESS_NONE, /* compress_type */
7300 type);
5f9a8a51
FM
7301 if (IS_ERR(em))
7302 goto out;
7303 }
7304 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7305 len, block_len, type);
7306 if (ret) {
7307 if (em) {
7308 free_extent_map(em);
dcdbc059 7309 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7310 start + len - 1, 0);
7311 }
7312 em = ERR_PTR(ret);
7313 }
7314 out:
5f9a8a51
FM
7315
7316 return em;
7317}
7318
4b46fce2
JB
7319static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7320 u64 start, u64 len)
7321{
0b246afa 7322 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7323 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7324 struct extent_map *em;
4b46fce2
JB
7325 struct btrfs_key ins;
7326 u64 alloc_hint;
7327 int ret;
4b46fce2 7328
4b46fce2 7329 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7330 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7331 0, alloc_hint, &ins, 1, 1);
00361589
JB
7332 if (ret)
7333 return ERR_PTR(ret);
4b46fce2 7334
5f9a8a51
FM
7335 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7336 ins.objectid, ins.offset, ins.offset,
6288d6ea 7337 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7338 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7339 if (IS_ERR(em))
2ff7e61e
JM
7340 btrfs_free_reserved_extent(fs_info, ins.objectid,
7341 ins.offset, 1);
de0ee0ed 7342
4b46fce2
JB
7343 return em;
7344}
7345
46bfbb5c
CM
7346/*
7347 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7348 * block must be cow'd
7349 */
00361589 7350noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7351 u64 *orig_start, u64 *orig_block_len,
7352 u64 *ram_bytes)
46bfbb5c 7353{
2ff7e61e 7354 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7355 struct btrfs_path *path;
7356 int ret;
7357 struct extent_buffer *leaf;
7358 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7359 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7360 struct btrfs_file_extent_item *fi;
7361 struct btrfs_key key;
7362 u64 disk_bytenr;
7363 u64 backref_offset;
7364 u64 extent_end;
7365 u64 num_bytes;
7366 int slot;
7367 int found_type;
7ee9e440 7368 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7369
46bfbb5c
CM
7370 path = btrfs_alloc_path();
7371 if (!path)
7372 return -ENOMEM;
7373
f85b7379
DS
7374 ret = btrfs_lookup_file_extent(NULL, root, path,
7375 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7376 if (ret < 0)
7377 goto out;
7378
7379 slot = path->slots[0];
7380 if (ret == 1) {
7381 if (slot == 0) {
7382 /* can't find the item, must cow */
7383 ret = 0;
7384 goto out;
7385 }
7386 slot--;
7387 }
7388 ret = 0;
7389 leaf = path->nodes[0];
7390 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7391 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7392 key.type != BTRFS_EXTENT_DATA_KEY) {
7393 /* not our file or wrong item type, must cow */
7394 goto out;
7395 }
7396
7397 if (key.offset > offset) {
7398 /* Wrong offset, must cow */
7399 goto out;
7400 }
7401
7402 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7403 found_type = btrfs_file_extent_type(leaf, fi);
7404 if (found_type != BTRFS_FILE_EXTENT_REG &&
7405 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7406 /* not a regular extent, must cow */
7407 goto out;
7408 }
7ee9e440
JB
7409
7410 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7411 goto out;
7412
e77751aa
MX
7413 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7414 if (extent_end <= offset)
7415 goto out;
7416
46bfbb5c 7417 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7418 if (disk_bytenr == 0)
7419 goto out;
7420
7421 if (btrfs_file_extent_compression(leaf, fi) ||
7422 btrfs_file_extent_encryption(leaf, fi) ||
7423 btrfs_file_extent_other_encoding(leaf, fi))
7424 goto out;
7425
46bfbb5c
CM
7426 backref_offset = btrfs_file_extent_offset(leaf, fi);
7427
7ee9e440
JB
7428 if (orig_start) {
7429 *orig_start = key.offset - backref_offset;
7430 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7431 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7432 }
eb384b55 7433
2ff7e61e 7434 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7435 goto out;
7b2b7085
MX
7436
7437 num_bytes = min(offset + *len, extent_end) - offset;
7438 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7439 u64 range_end;
7440
da17066c
JM
7441 range_end = round_up(offset + num_bytes,
7442 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7443 ret = test_range_bit(io_tree, offset, range_end,
7444 EXTENT_DELALLOC, 0, NULL);
7445 if (ret) {
7446 ret = -EAGAIN;
7447 goto out;
7448 }
7449 }
7450
1bda19eb 7451 btrfs_release_path(path);
46bfbb5c
CM
7452
7453 /*
7454 * look for other files referencing this extent, if we
7455 * find any we must cow
7456 */
00361589 7457
e4c3b2dc 7458 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7459 key.offset - backref_offset, disk_bytenr);
00361589
JB
7460 if (ret) {
7461 ret = 0;
7462 goto out;
7463 }
46bfbb5c
CM
7464
7465 /*
7466 * adjust disk_bytenr and num_bytes to cover just the bytes
7467 * in this extent we are about to write. If there
7468 * are any csums in that range we have to cow in order
7469 * to keep the csums correct
7470 */
7471 disk_bytenr += backref_offset;
7472 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7473 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7474 goto out;
46bfbb5c
CM
7475 /*
7476 * all of the above have passed, it is safe to overwrite this extent
7477 * without cow
7478 */
eb384b55 7479 *len = num_bytes;
46bfbb5c
CM
7480 ret = 1;
7481out:
7482 btrfs_free_path(path);
7483 return ret;
7484}
7485
fc4adbff
AG
7486bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7487{
7488 struct radix_tree_root *root = &inode->i_mapping->page_tree;
e03733da 7489 bool found = false;
fc4adbff
AG
7490 void **pagep = NULL;
7491 struct page *page = NULL;
cc2b702c
DS
7492 unsigned long start_idx;
7493 unsigned long end_idx;
fc4adbff 7494
09cbfeaf 7495 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7496
7497 /*
7498 * end is the last byte in the last page. end == start is legal
7499 */
09cbfeaf 7500 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7501
7502 rcu_read_lock();
7503
7504 /* Most of the code in this while loop is lifted from
7505 * find_get_page. It's been modified to begin searching from a
7506 * page and return just the first page found in that range. If the
7507 * found idx is less than or equal to the end idx then we know that
7508 * a page exists. If no pages are found or if those pages are
7509 * outside of the range then we're fine (yay!) */
7510 while (page == NULL &&
7511 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7512 page = radix_tree_deref_slot(pagep);
7513 if (unlikely(!page))
7514 break;
7515
7516 if (radix_tree_exception(page)) {
809f9016
FM
7517 if (radix_tree_deref_retry(page)) {
7518 page = NULL;
fc4adbff 7519 continue;
809f9016 7520 }
fc4adbff
AG
7521 /*
7522 * Otherwise, shmem/tmpfs must be storing a swap entry
7523 * here as an exceptional entry: so return it without
7524 * attempting to raise page count.
7525 */
6fdef6d4 7526 page = NULL;
fc4adbff
AG
7527 break; /* TODO: Is this relevant for this use case? */
7528 }
7529
91405151
FM
7530 if (!page_cache_get_speculative(page)) {
7531 page = NULL;
fc4adbff 7532 continue;
91405151 7533 }
fc4adbff
AG
7534
7535 /*
7536 * Has the page moved?
7537 * This is part of the lockless pagecache protocol. See
7538 * include/linux/pagemap.h for details.
7539 */
7540 if (unlikely(page != *pagep)) {
09cbfeaf 7541 put_page(page);
fc4adbff
AG
7542 page = NULL;
7543 }
7544 }
7545
7546 if (page) {
7547 if (page->index <= end_idx)
7548 found = true;
09cbfeaf 7549 put_page(page);
fc4adbff
AG
7550 }
7551
7552 rcu_read_unlock();
7553 return found;
7554}
7555
eb838e73
JB
7556static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7557 struct extent_state **cached_state, int writing)
7558{
7559 struct btrfs_ordered_extent *ordered;
7560 int ret = 0;
7561
7562 while (1) {
7563 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7564 cached_state);
eb838e73
JB
7565 /*
7566 * We're concerned with the entire range that we're going to be
01327610 7567 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7568 * extents in this range.
7569 */
a776c6fa 7570 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7571 lockend - lockstart + 1);
7572
7573 /*
7574 * We need to make sure there are no buffered pages in this
7575 * range either, we could have raced between the invalidate in
7576 * generic_file_direct_write and locking the extent. The
7577 * invalidate needs to happen so that reads after a write do not
7578 * get stale data.
7579 */
fc4adbff
AG
7580 if (!ordered &&
7581 (!writing ||
7582 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7583 break;
7584
7585 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7586 cached_state, GFP_NOFS);
7587
7588 if (ordered) {
ade77029
FM
7589 /*
7590 * If we are doing a DIO read and the ordered extent we
7591 * found is for a buffered write, we can not wait for it
7592 * to complete and retry, because if we do so we can
7593 * deadlock with concurrent buffered writes on page
7594 * locks. This happens only if our DIO read covers more
7595 * than one extent map, if at this point has already
7596 * created an ordered extent for a previous extent map
7597 * and locked its range in the inode's io tree, and a
7598 * concurrent write against that previous extent map's
7599 * range and this range started (we unlock the ranges
7600 * in the io tree only when the bios complete and
7601 * buffered writes always lock pages before attempting
7602 * to lock range in the io tree).
7603 */
7604 if (writing ||
7605 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7606 btrfs_start_ordered_extent(inode, ordered, 1);
7607 else
7608 ret = -ENOTBLK;
eb838e73
JB
7609 btrfs_put_ordered_extent(ordered);
7610 } else {
eb838e73 7611 /*
b850ae14
FM
7612 * We could trigger writeback for this range (and wait
7613 * for it to complete) and then invalidate the pages for
7614 * this range (through invalidate_inode_pages2_range()),
7615 * but that can lead us to a deadlock with a concurrent
7616 * call to readpages() (a buffered read or a defrag call
7617 * triggered a readahead) on a page lock due to an
7618 * ordered dio extent we created before but did not have
7619 * yet a corresponding bio submitted (whence it can not
7620 * complete), which makes readpages() wait for that
7621 * ordered extent to complete while holding a lock on
7622 * that page.
eb838e73 7623 */
b850ae14 7624 ret = -ENOTBLK;
eb838e73
JB
7625 }
7626
ade77029
FM
7627 if (ret)
7628 break;
7629
eb838e73
JB
7630 cond_resched();
7631 }
7632
7633 return ret;
7634}
7635
6f9994db
LB
7636/* The callers of this must take lock_extent() */
7637static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7638 u64 orig_start, u64 block_start,
7639 u64 block_len, u64 orig_block_len,
7640 u64 ram_bytes, int compress_type,
7641 int type)
69ffb543
JB
7642{
7643 struct extent_map_tree *em_tree;
7644 struct extent_map *em;
7645 struct btrfs_root *root = BTRFS_I(inode)->root;
7646 int ret;
7647
6f9994db
LB
7648 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7649 type == BTRFS_ORDERED_COMPRESSED ||
7650 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7651 type == BTRFS_ORDERED_REGULAR);
6f9994db 7652
69ffb543
JB
7653 em_tree = &BTRFS_I(inode)->extent_tree;
7654 em = alloc_extent_map();
7655 if (!em)
7656 return ERR_PTR(-ENOMEM);
7657
7658 em->start = start;
7659 em->orig_start = orig_start;
7660 em->len = len;
7661 em->block_len = block_len;
7662 em->block_start = block_start;
7663 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7664 em->orig_block_len = orig_block_len;
cc95bef6 7665 em->ram_bytes = ram_bytes;
70c8a91c 7666 em->generation = -1;
69ffb543 7667 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7668 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7669 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7670 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7671 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7672 em->compress_type = compress_type;
7673 }
69ffb543
JB
7674
7675 do {
dcdbc059 7676 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7677 em->start + em->len - 1, 0);
7678 write_lock(&em_tree->lock);
09a2a8f9 7679 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7680 write_unlock(&em_tree->lock);
6f9994db
LB
7681 /*
7682 * The caller has taken lock_extent(), who could race with us
7683 * to add em?
7684 */
69ffb543
JB
7685 } while (ret == -EEXIST);
7686
7687 if (ret) {
7688 free_extent_map(em);
7689 return ERR_PTR(ret);
7690 }
7691
6f9994db 7692 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7693 return em;
7694}
7695
9c9464cc
FM
7696static void adjust_dio_outstanding_extents(struct inode *inode,
7697 struct btrfs_dio_data *dio_data,
7698 const u64 len)
7699{
823bb20a 7700 unsigned num_extents = count_max_extents(len);
9c9464cc 7701
9c9464cc
FM
7702 /*
7703 * If we have an outstanding_extents count still set then we're
7704 * within our reservation, otherwise we need to adjust our inode
7705 * counter appropriately.
7706 */
c2931667 7707 if (dio_data->outstanding_extents >= num_extents) {
9c9464cc
FM
7708 dio_data->outstanding_extents -= num_extents;
7709 } else {
c2931667
LB
7710 /*
7711 * If dio write length has been split due to no large enough
7712 * contiguous space, we need to compensate our inode counter
7713 * appropriately.
7714 */
7715 u64 num_needed = num_extents - dio_data->outstanding_extents;
7716
9c9464cc 7717 spin_lock(&BTRFS_I(inode)->lock);
c2931667 7718 BTRFS_I(inode)->outstanding_extents += num_needed;
9c9464cc
FM
7719 spin_unlock(&BTRFS_I(inode)->lock);
7720 }
7721}
7722
4b46fce2
JB
7723static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7724 struct buffer_head *bh_result, int create)
7725{
0b246afa 7726 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7727 struct extent_map *em;
eb838e73 7728 struct extent_state *cached_state = NULL;
50745b0a 7729 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7730 u64 start = iblock << inode->i_blkbits;
eb838e73 7731 u64 lockstart, lockend;
4b46fce2 7732 u64 len = bh_result->b_size;
eb838e73 7733 int unlock_bits = EXTENT_LOCKED;
0934856d 7734 int ret = 0;
eb838e73 7735
172a5049 7736 if (create)
3266789f 7737 unlock_bits |= EXTENT_DIRTY;
172a5049 7738 else
0b246afa 7739 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7740
c329861d
JB
7741 lockstart = start;
7742 lockend = start + len - 1;
7743
e1cbbfa5
JB
7744 if (current->journal_info) {
7745 /*
7746 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7747 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7748 * confused.
7749 */
50745b0a 7750 dio_data = current->journal_info;
e1cbbfa5
JB
7751 current->journal_info = NULL;
7752 }
7753
eb838e73
JB
7754 /*
7755 * If this errors out it's because we couldn't invalidate pagecache for
7756 * this range and we need to fallback to buffered.
7757 */
9c9464cc
FM
7758 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7759 create)) {
7760 ret = -ENOTBLK;
7761 goto err;
7762 }
eb838e73 7763
fc4f21b1 7764 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7765 if (IS_ERR(em)) {
7766 ret = PTR_ERR(em);
7767 goto unlock_err;
7768 }
4b46fce2
JB
7769
7770 /*
7771 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7772 * io. INLINE is special, and we could probably kludge it in here, but
7773 * it's still buffered so for safety lets just fall back to the generic
7774 * buffered path.
7775 *
7776 * For COMPRESSED we _have_ to read the entire extent in so we can
7777 * decompress it, so there will be buffering required no matter what we
7778 * do, so go ahead and fallback to buffered.
7779 *
01327610 7780 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7781 * to buffered IO. Don't blame me, this is the price we pay for using
7782 * the generic code.
7783 */
7784 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7785 em->block_start == EXTENT_MAP_INLINE) {
7786 free_extent_map(em);
eb838e73
JB
7787 ret = -ENOTBLK;
7788 goto unlock_err;
4b46fce2
JB
7789 }
7790
7791 /* Just a good old fashioned hole, return */
7792 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7793 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7794 free_extent_map(em);
eb838e73 7795 goto unlock_err;
4b46fce2
JB
7796 }
7797
7798 /*
7799 * We don't allocate a new extent in the following cases
7800 *
7801 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7802 * existing extent.
7803 * 2) The extent is marked as PREALLOC. We're good to go here and can
7804 * just use the extent.
7805 *
7806 */
46bfbb5c 7807 if (!create) {
eb838e73
JB
7808 len = min(len, em->len - (start - em->start));
7809 lockstart = start + len;
7810 goto unlock;
46bfbb5c 7811 }
4b46fce2
JB
7812
7813 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7814 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7815 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7816 int type;
eb384b55 7817 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7818
7819 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7820 type = BTRFS_ORDERED_PREALLOC;
7821 else
7822 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7823 len = min(len, em->len - (start - em->start));
4b46fce2 7824 block_start = em->block_start + (start - em->start);
46bfbb5c 7825
00361589 7826 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c 7827 &orig_block_len, &ram_bytes) == 1 &&
0b246afa 7828 btrfs_inc_nocow_writers(fs_info, block_start)) {
5f9a8a51 7829 struct extent_map *em2;
0b901916 7830
5f9a8a51
FM
7831 em2 = btrfs_create_dio_extent(inode, start, len,
7832 orig_start, block_start,
7833 len, orig_block_len,
7834 ram_bytes, type);
0b246afa 7835 btrfs_dec_nocow_writers(fs_info, block_start);
69ffb543
JB
7836 if (type == BTRFS_ORDERED_PREALLOC) {
7837 free_extent_map(em);
5f9a8a51 7838 em = em2;
69ffb543 7839 }
5f9a8a51
FM
7840 if (em2 && IS_ERR(em2)) {
7841 ret = PTR_ERR(em2);
eb838e73 7842 goto unlock_err;
46bfbb5c 7843 }
18513091
WX
7844 /*
7845 * For inode marked NODATACOW or extent marked PREALLOC,
7846 * use the existing or preallocated extent, so does not
7847 * need to adjust btrfs_space_info's bytes_may_use.
7848 */
7849 btrfs_free_reserved_data_space_noquota(inode,
7850 start, len);
46bfbb5c 7851 goto unlock;
4b46fce2 7852 }
4b46fce2 7853 }
00361589 7854
46bfbb5c
CM
7855 /*
7856 * this will cow the extent, reset the len in case we changed
7857 * it above
7858 */
7859 len = bh_result->b_size;
70c8a91c
JB
7860 free_extent_map(em);
7861 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7862 if (IS_ERR(em)) {
7863 ret = PTR_ERR(em);
7864 goto unlock_err;
7865 }
46bfbb5c
CM
7866 len = min(len, em->len - (start - em->start));
7867unlock:
4b46fce2
JB
7868 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7869 inode->i_blkbits;
46bfbb5c 7870 bh_result->b_size = len;
4b46fce2
JB
7871 bh_result->b_bdev = em->bdev;
7872 set_buffer_mapped(bh_result);
c3473e83
JB
7873 if (create) {
7874 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7875 set_buffer_new(bh_result);
7876
7877 /*
7878 * Need to update the i_size under the extent lock so buffered
7879 * readers will get the updated i_size when we unlock.
7880 */
4aaedfb0 7881 if (!dio_data->overwrite && start + len > i_size_read(inode))
c3473e83 7882 i_size_write(inode, start + len);
0934856d 7883
9c9464cc 7884 adjust_dio_outstanding_extents(inode, dio_data, len);
50745b0a 7885 WARN_ON(dio_data->reserve < len);
7886 dio_data->reserve -= len;
f28a4928 7887 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7888 current->journal_info = dio_data;
c3473e83 7889 }
4b46fce2 7890
eb838e73
JB
7891 /*
7892 * In the case of write we need to clear and unlock the entire range,
7893 * in the case of read we need to unlock only the end area that we
7894 * aren't using if there is any left over space.
7895 */
24c03fa5 7896 if (lockstart < lockend) {
0934856d
MX
7897 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7898 lockend, unlock_bits, 1, 0,
7899 &cached_state, GFP_NOFS);
24c03fa5 7900 } else {
eb838e73 7901 free_extent_state(cached_state);
24c03fa5 7902 }
eb838e73 7903
4b46fce2
JB
7904 free_extent_map(em);
7905
7906 return 0;
eb838e73
JB
7907
7908unlock_err:
eb838e73
JB
7909 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7910 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7911err:
50745b0a 7912 if (dio_data)
7913 current->journal_info = dio_data;
9c9464cc
FM
7914 /*
7915 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7916 * write less data then expected, so that we don't underflow our inode's
7917 * outstanding extents counter.
7918 */
7919 if (create && dio_data)
7920 adjust_dio_outstanding_extents(inode, dio_data, len);
7921
eb838e73 7922 return ret;
4b46fce2
JB
7923}
7924
8b110e39 7925static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
81a75f67 7926 int mirror_num)
8b110e39 7927{
2ff7e61e 7928 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7929 int ret;
7930
37226b21 7931 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39
MX
7932
7933 bio_get(bio);
7934
2ff7e61e 7935 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39
MX
7936 if (ret)
7937 goto err;
7938
2ff7e61e 7939 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
8b110e39
MX
7940err:
7941 bio_put(bio);
7942 return ret;
7943}
7944
7945static int btrfs_check_dio_repairable(struct inode *inode,
7946 struct bio *failed_bio,
7947 struct io_failure_record *failrec,
7948 int failed_mirror)
7949{
ab8d0fc4 7950 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7951 int num_copies;
7952
ab8d0fc4 7953 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7954 if (num_copies == 1) {
7955 /*
7956 * we only have a single copy of the data, so don't bother with
7957 * all the retry and error correction code that follows. no
7958 * matter what the error is, it is very likely to persist.
7959 */
ab8d0fc4
JM
7960 btrfs_debug(fs_info,
7961 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7962 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7963 return 0;
7964 }
7965
7966 failrec->failed_mirror = failed_mirror;
7967 failrec->this_mirror++;
7968 if (failrec->this_mirror == failed_mirror)
7969 failrec->this_mirror++;
7970
7971 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7972 btrfs_debug(fs_info,
7973 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7974 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7975 return 0;
7976 }
7977
7978 return 1;
7979}
7980
7981static int dio_read_error(struct inode *inode, struct bio *failed_bio,
2dabb324
CR
7982 struct page *page, unsigned int pgoff,
7983 u64 start, u64 end, int failed_mirror,
7984 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7985{
7986 struct io_failure_record *failrec;
7870d082
JB
7987 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7988 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8b110e39
MX
7989 struct bio *bio;
7990 int isector;
70fd7614 7991 int read_mode = 0;
17347cec 7992 int segs;
8b110e39
MX
7993 int ret;
7994
37226b21 7995 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7996
7997 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7998 if (ret)
7999 return ret;
8000
8001 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
8002 failed_mirror);
8003 if (!ret) {
7870d082 8004 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
8005 return -EIO;
8006 }
8007
17347cec
LB
8008 segs = bio_segments(failed_bio);
8009 if (segs > 1 ||
8010 (failed_bio->bi_io_vec->bv_len > btrfs_inode_sectorsize(inode)))
70fd7614 8011 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
8012
8013 isector = start - btrfs_io_bio(failed_bio)->logical;
8014 isector >>= inode->i_sb->s_blocksize_bits;
8015 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 8016 pgoff, isector, repair_endio, repair_arg);
37226b21 8017 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
8018
8019 btrfs_debug(BTRFS_I(inode)->root->fs_info,
913e1535 8020 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8b110e39
MX
8021 read_mode, failrec->this_mirror, failrec->in_validation);
8022
81a75f67 8023 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8b110e39 8024 if (ret) {
7870d082 8025 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
8026 bio_put(bio);
8027 }
8028
8029 return ret;
8030}
8031
8032struct btrfs_retry_complete {
8033 struct completion done;
8034 struct inode *inode;
8035 u64 start;
8036 int uptodate;
8037};
8038
4246a0b6 8039static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
8040{
8041 struct btrfs_retry_complete *done = bio->bi_private;
7870d082 8042 struct inode *inode = done->inode;
8b110e39 8043 struct bio_vec *bvec;
7870d082 8044 struct extent_io_tree *io_tree, *failure_tree;
8b110e39
MX
8045 int i;
8046
4e4cbee9 8047 if (bio->bi_status)
8b110e39
MX
8048 goto end;
8049
2dabb324 8050 ASSERT(bio->bi_vcnt == 1);
7870d082
JB
8051 io_tree = &BTRFS_I(inode)->io_tree;
8052 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8053 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 8054
8b110e39 8055 done->uptodate = 1;
c09abff8 8056 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 8057 bio_for_each_segment_all(bvec, bio, i)
7870d082
JB
8058 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8059 io_tree, done->start, bvec->bv_page,
8060 btrfs_ino(BTRFS_I(inode)), 0);
8b110e39
MX
8061end:
8062 complete(&done->done);
8063 bio_put(bio);
8064}
8065
8066static int __btrfs_correct_data_nocsum(struct inode *inode,
8067 struct btrfs_io_bio *io_bio)
4b46fce2 8068{
2dabb324 8069 struct btrfs_fs_info *fs_info;
17347cec
LB
8070 struct bio_vec bvec;
8071 struct bvec_iter iter;
8b110e39 8072 struct btrfs_retry_complete done;
4b46fce2 8073 u64 start;
2dabb324
CR
8074 unsigned int pgoff;
8075 u32 sectorsize;
8076 int nr_sectors;
c1dc0896 8077 int ret;
629ebf4f 8078 int err = 0;
4b46fce2 8079
2dabb324 8080 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8081 sectorsize = fs_info->sectorsize;
2dabb324 8082
8b110e39
MX
8083 start = io_bio->logical;
8084 done.inode = inode;
17347cec 8085 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8086
17347cec
LB
8087 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8088 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8089 pgoff = bvec.bv_offset;
2dabb324
CR
8090
8091next_block_or_try_again:
8b110e39
MX
8092 done.uptodate = 0;
8093 done.start = start;
8094 init_completion(&done.done);
8095
17347cec 8096 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
8097 pgoff, start, start + sectorsize - 1,
8098 io_bio->mirror_num,
8099 btrfs_retry_endio_nocsum, &done);
629ebf4f
LB
8100 if (ret) {
8101 err = ret;
8102 goto next;
8103 }
8b110e39
MX
8104
8105 wait_for_completion(&done.done);
8106
8107 if (!done.uptodate) {
8108 /* We might have another mirror, so try again */
2dabb324 8109 goto next_block_or_try_again;
8b110e39
MX
8110 }
8111
629ebf4f 8112next:
2dabb324
CR
8113 start += sectorsize;
8114
97bf5a55
LB
8115 nr_sectors--;
8116 if (nr_sectors) {
2dabb324 8117 pgoff += sectorsize;
97bf5a55 8118 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8119 goto next_block_or_try_again;
8120 }
8b110e39
MX
8121 }
8122
629ebf4f 8123 return err;
8b110e39
MX
8124}
8125
4246a0b6 8126static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
8127{
8128 struct btrfs_retry_complete *done = bio->bi_private;
8129 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082
JB
8130 struct extent_io_tree *io_tree, *failure_tree;
8131 struct inode *inode = done->inode;
8b110e39
MX
8132 struct bio_vec *bvec;
8133 int uptodate;
8134 int ret;
8135 int i;
8136
4e4cbee9 8137 if (bio->bi_status)
8b110e39
MX
8138 goto end;
8139
8140 uptodate = 1;
2dabb324 8141
2dabb324 8142 ASSERT(bio->bi_vcnt == 1);
2e949b0a 8143 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 8144
7870d082
JB
8145 io_tree = &BTRFS_I(inode)->io_tree;
8146 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8147
c09abff8 8148 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 8149 bio_for_each_segment_all(bvec, bio, i) {
7870d082
JB
8150 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8151 bvec->bv_offset, done->start,
8152 bvec->bv_len);
8b110e39 8153 if (!ret)
7870d082
JB
8154 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8155 failure_tree, io_tree, done->start,
8156 bvec->bv_page,
8157 btrfs_ino(BTRFS_I(inode)),
8158 bvec->bv_offset);
8b110e39
MX
8159 else
8160 uptodate = 0;
8161 }
8162
8163 done->uptodate = uptodate;
8164end:
8165 complete(&done->done);
8166 bio_put(bio);
8167}
8168
4e4cbee9
CH
8169static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8170 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39 8171{
2dabb324 8172 struct btrfs_fs_info *fs_info;
17347cec
LB
8173 struct bio_vec bvec;
8174 struct bvec_iter iter;
8b110e39
MX
8175 struct btrfs_retry_complete done;
8176 u64 start;
8177 u64 offset = 0;
2dabb324
CR
8178 u32 sectorsize;
8179 int nr_sectors;
8180 unsigned int pgoff;
8181 int csum_pos;
ef7cdac1 8182 bool uptodate = (err == 0);
8b110e39 8183 int ret;
dc380aea 8184
2dabb324 8185 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8186 sectorsize = fs_info->sectorsize;
2dabb324 8187
8b110e39 8188 err = 0;
c1dc0896 8189 start = io_bio->logical;
8b110e39 8190 done.inode = inode;
17347cec 8191 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8192
17347cec
LB
8193 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8194 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
2dabb324 8195
17347cec 8196 pgoff = bvec.bv_offset;
2dabb324 8197next_block:
ef7cdac1
LB
8198 if (uptodate) {
8199 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8200 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8201 bvec.bv_page, pgoff, start, sectorsize);
8202 if (likely(!ret))
8203 goto next;
8204 }
8b110e39
MX
8205try_again:
8206 done.uptodate = 0;
8207 done.start = start;
8208 init_completion(&done.done);
8209
17347cec 8210 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
8211 pgoff, start, start + sectorsize - 1,
8212 io_bio->mirror_num,
8213 btrfs_retry_endio, &done);
8b110e39 8214 if (ret) {
4e4cbee9 8215 err = errno_to_blk_status(ret);
8b110e39
MX
8216 goto next;
8217 }
8218
8219 wait_for_completion(&done.done);
8220
8221 if (!done.uptodate) {
8222 /* We might have another mirror, so try again */
8223 goto try_again;
8224 }
8225next:
2dabb324
CR
8226 offset += sectorsize;
8227 start += sectorsize;
8228
8229 ASSERT(nr_sectors);
8230
97bf5a55
LB
8231 nr_sectors--;
8232 if (nr_sectors) {
2dabb324 8233 pgoff += sectorsize;
97bf5a55 8234 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8235 goto next_block;
8236 }
2c30c71b 8237 }
c1dc0896
MX
8238
8239 return err;
8240}
8241
4e4cbee9
CH
8242static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8243 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39
MX
8244{
8245 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8246
8247 if (skip_csum) {
8248 if (unlikely(err))
8249 return __btrfs_correct_data_nocsum(inode, io_bio);
8250 else
8251 return 0;
8252 } else {
8253 return __btrfs_subio_endio_read(inode, io_bio, err);
8254 }
8255}
8256
4246a0b6 8257static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8258{
8259 struct btrfs_dio_private *dip = bio->bi_private;
8260 struct inode *inode = dip->inode;
8261 struct bio *dio_bio;
8262 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4e4cbee9 8263 blk_status_t err = bio->bi_status;
c1dc0896 8264
e3d37fab 8265 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) {
8b110e39 8266 err = btrfs_subio_endio_read(inode, io_bio, err);
e3d37fab 8267 if (!err)
8c27cb35 8268 bio->bi_status = 0;
e3d37fab 8269 }
c1dc0896 8270
4b46fce2 8271 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8272 dip->logical_offset + dip->bytes - 1);
9be3395b 8273 dio_bio = dip->dio_bio;
4b46fce2 8274
4b46fce2 8275 kfree(dip);
c0da7aa1 8276
4e4cbee9 8277 dio_bio->bi_status = bio->bi_status;
4055351c 8278 dio_end_io(dio_bio);
23ea8e5a
MX
8279
8280 if (io_bio->end_io)
4e4cbee9 8281 io_bio->end_io(io_bio, blk_status_to_errno(err));
9be3395b 8282 bio_put(bio);
4b46fce2
JB
8283}
8284
52427260
QW
8285static void __endio_write_update_ordered(struct inode *inode,
8286 const u64 offset, const u64 bytes,
8287 const bool uptodate)
4b46fce2 8288{
0b246afa 8289 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8290 struct btrfs_ordered_extent *ordered = NULL;
52427260
QW
8291 struct btrfs_workqueue *wq;
8292 btrfs_work_func_t func;
14543774
FM
8293 u64 ordered_offset = offset;
8294 u64 ordered_bytes = bytes;
4b46fce2
JB
8295 int ret;
8296
52427260
QW
8297 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8298 wq = fs_info->endio_freespace_worker;
8299 func = btrfs_freespace_write_helper;
8300 } else {
8301 wq = fs_info->endio_write_workers;
8302 func = btrfs_endio_write_helper;
8303 }
8304
163cf09c
CM
8305again:
8306 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8307 &ordered_offset,
4246a0b6 8308 ordered_bytes,
14543774 8309 uptodate);
4b46fce2 8310 if (!ret)
163cf09c 8311 goto out_test;
4b46fce2 8312
52427260
QW
8313 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8314 btrfs_queue_work(wq, &ordered->work);
163cf09c
CM
8315out_test:
8316 /*
8317 * our bio might span multiple ordered extents. If we haven't
8318 * completed the accounting for the whole dio, go back and try again
8319 */
14543774
FM
8320 if (ordered_offset < offset + bytes) {
8321 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8322 ordered = NULL;
163cf09c
CM
8323 goto again;
8324 }
14543774
FM
8325}
8326
8327static void btrfs_endio_direct_write(struct bio *bio)
8328{
8329 struct btrfs_dio_private *dip = bio->bi_private;
8330 struct bio *dio_bio = dip->dio_bio;
8331
52427260 8332 __endio_write_update_ordered(dip->inode, dip->logical_offset,
4e4cbee9 8333 dip->bytes, !bio->bi_status);
4b46fce2 8334
4b46fce2 8335 kfree(dip);
c0da7aa1 8336
4e4cbee9 8337 dio_bio->bi_status = bio->bi_status;
4055351c 8338 dio_end_io(dio_bio);
9be3395b 8339 bio_put(bio);
4b46fce2
JB
8340}
8341
8c27cb35 8342static blk_status_t __btrfs_submit_bio_start_direct_io(void *private_data,
eaf25d93
CM
8343 struct bio *bio, int mirror_num,
8344 unsigned long bio_flags, u64 offset)
8345{
c6100a4b 8346 struct inode *inode = private_data;
4e4cbee9 8347 blk_status_t ret;
2ff7e61e 8348 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8349 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8350 return 0;
8351}
8352
4246a0b6 8353static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8354{
8355 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 8356 blk_status_t err = bio->bi_status;
e65e1535 8357
8b110e39
MX
8358 if (err)
8359 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8360 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8361 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8362 bio->bi_opf,
8b110e39
MX
8363 (unsigned long long)bio->bi_iter.bi_sector,
8364 bio->bi_iter.bi_size, err);
8365
8366 if (dip->subio_endio)
8367 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8368
8369 if (err) {
e65e1535
MX
8370 dip->errors = 1;
8371
8372 /*
8373 * before atomic variable goto zero, we must make sure
8374 * dip->errors is perceived to be set.
8375 */
4e857c58 8376 smp_mb__before_atomic();
e65e1535
MX
8377 }
8378
8379 /* if there are more bios still pending for this dio, just exit */
8380 if (!atomic_dec_and_test(&dip->pending_bios))
8381 goto out;
8382
9be3395b 8383 if (dip->errors) {
e65e1535 8384 bio_io_error(dip->orig_bio);
9be3395b 8385 } else {
4e4cbee9 8386 dip->dio_bio->bi_status = 0;
4246a0b6 8387 bio_endio(dip->orig_bio);
e65e1535
MX
8388 }
8389out:
8390 bio_put(bio);
8391}
8392
4e4cbee9 8393static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8394 struct btrfs_dio_private *dip,
8395 struct bio *bio,
8396 u64 file_offset)
8397{
8398 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8399 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
4e4cbee9 8400 blk_status_t ret;
c1dc0896
MX
8401
8402 /*
8403 * We load all the csum data we need when we submit
8404 * the first bio to reduce the csum tree search and
8405 * contention.
8406 */
8407 if (dip->logical_offset == file_offset) {
2ff7e61e 8408 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8409 file_offset);
8410 if (ret)
8411 return ret;
8412 }
8413
8414 if (bio == dip->orig_bio)
8415 return 0;
8416
8417 file_offset -= dip->logical_offset;
8418 file_offset >>= inode->i_sb->s_blocksize_bits;
8419 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8420
8421 return 0;
8422}
8423
e65e1535 8424static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
81a75f67 8425 u64 file_offset, int skip_sum,
c329861d 8426 int async_submit)
e65e1535 8427{
0b246afa 8428 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8429 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8430 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 8431 blk_status_t ret;
e65e1535 8432
b812ce28
JB
8433 if (async_submit)
8434 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8435
e65e1535 8436 bio_get(bio);
5fd02043
JB
8437
8438 if (!write) {
0b246afa 8439 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8440 if (ret)
8441 goto err;
8442 }
e65e1535 8443
1ae39938
JB
8444 if (skip_sum)
8445 goto map;
8446
8447 if (write && async_submit) {
c6100a4b
JB
8448 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8449 file_offset, inode,
0b246afa
JM
8450 __btrfs_submit_bio_start_direct_io,
8451 __btrfs_submit_bio_done);
e65e1535 8452 goto err;
1ae39938
JB
8453 } else if (write) {
8454 /*
8455 * If we aren't doing async submit, calculate the csum of the
8456 * bio now.
8457 */
2ff7e61e 8458 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8459 if (ret)
8460 goto err;
23ea8e5a 8461 } else {
2ff7e61e 8462 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8463 file_offset);
c2db1073
TI
8464 if (ret)
8465 goto err;
8466 }
1ae39938 8467map:
2ff7e61e 8468 ret = btrfs_map_bio(fs_info, bio, 0, async_submit);
e65e1535
MX
8469err:
8470 bio_put(bio);
8471 return ret;
8472}
8473
81a75f67 8474static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
e65e1535
MX
8475 int skip_sum)
8476{
8477 struct inode *inode = dip->inode;
0b246afa 8478 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535
MX
8479 struct bio *bio;
8480 struct bio *orig_bio = dip->orig_bio;
4f024f37 8481 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535 8482 u64 file_offset = dip->logical_offset;
e65e1535 8483 u64 map_length;
1ae39938 8484 int async_submit = 0;
725130ba
LB
8485 u64 submit_len;
8486 int clone_offset = 0;
8487 int clone_len;
5f4dc8fc 8488 int ret;
e65e1535 8489
4f024f37 8490 map_length = orig_bio->bi_iter.bi_size;
725130ba 8491 submit_len = map_length;
0b246afa
JM
8492 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8493 &map_length, NULL, 0);
7a5c3c9b 8494 if (ret)
e65e1535 8495 return -EIO;
facc8a22 8496
725130ba 8497 if (map_length >= submit_len) {
02f57c7a 8498 bio = orig_bio;
c1dc0896 8499 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8500 goto submit;
8501 }
8502
53b381b3 8503 /* async crcs make it difficult to collect full stripe writes. */
1b86826d 8504 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8505 async_submit = 0;
8506 else
8507 async_submit = 1;
8508
725130ba
LB
8509 /* bio split */
8510 ASSERT(map_length <= INT_MAX);
02f57c7a 8511 atomic_inc(&dip->pending_bios);
3c91ee69 8512 do {
725130ba 8513 clone_len = min_t(int, submit_len, map_length);
02f57c7a 8514
725130ba
LB
8515 /*
8516 * This will never fail as it's passing GPF_NOFS and
8517 * the allocation is backed by btrfs_bioset.
8518 */
e477094f 8519 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
725130ba
LB
8520 clone_len);
8521 bio->bi_private = dip;
8522 bio->bi_end_io = btrfs_end_dio_bio;
8523 btrfs_io_bio(bio)->logical = file_offset;
8524
8525 ASSERT(submit_len >= clone_len);
8526 submit_len -= clone_len;
8527 if (submit_len == 0)
8528 break;
e65e1535 8529
725130ba
LB
8530 /*
8531 * Increase the count before we submit the bio so we know
8532 * the end IO handler won't happen before we increase the
8533 * count. Otherwise, the dip might get freed before we're
8534 * done setting it up.
8535 */
8536 atomic_inc(&dip->pending_bios);
e65e1535 8537
725130ba
LB
8538 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
8539 async_submit);
8540 if (ret) {
8541 bio_put(bio);
8542 atomic_dec(&dip->pending_bios);
8543 goto out_err;
8544 }
e65e1535 8545
725130ba
LB
8546 clone_offset += clone_len;
8547 start_sector += clone_len >> 9;
8548 file_offset += clone_len;
5f4dc8fc 8549
725130ba
LB
8550 map_length = submit_len;
8551 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8552 start_sector << 9, &map_length, NULL, 0);
8553 if (ret)
8554 goto out_err;
3c91ee69 8555 } while (submit_len > 0);
e65e1535 8556
02f57c7a 8557submit:
81a75f67 8558 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
c329861d 8559 async_submit);
e65e1535
MX
8560 if (!ret)
8561 return 0;
8562
8563 bio_put(bio);
8564out_err:
8565 dip->errors = 1;
8566 /*
8567 * before atomic variable goto zero, we must
8568 * make sure dip->errors is perceived to be set.
8569 */
4e857c58 8570 smp_mb__before_atomic();
e65e1535
MX
8571 if (atomic_dec_and_test(&dip->pending_bios))
8572 bio_io_error(dip->orig_bio);
8573
8574 /* bio_end_io() will handle error, so we needn't return it */
8575 return 0;
8576}
8577
8a4c1e42
MC
8578static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8579 loff_t file_offset)
4b46fce2 8580{
61de718f 8581 struct btrfs_dio_private *dip = NULL;
3892ac90
LB
8582 struct bio *bio = NULL;
8583 struct btrfs_io_bio *io_bio;
4b46fce2 8584 int skip_sum;
8a4c1e42 8585 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8586 int ret = 0;
8587
8588 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8589
8b6c1d56 8590 bio = btrfs_bio_clone(dio_bio);
9be3395b 8591
c1dc0896 8592 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8593 if (!dip) {
8594 ret = -ENOMEM;
61de718f 8595 goto free_ordered;
4b46fce2 8596 }
4b46fce2 8597
9be3395b 8598 dip->private = dio_bio->bi_private;
4b46fce2
JB
8599 dip->inode = inode;
8600 dip->logical_offset = file_offset;
4f024f37
KO
8601 dip->bytes = dio_bio->bi_iter.bi_size;
8602 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
3892ac90
LB
8603 bio->bi_private = dip;
8604 dip->orig_bio = bio;
9be3395b 8605 dip->dio_bio = dio_bio;
e65e1535 8606 atomic_set(&dip->pending_bios, 0);
3892ac90
LB
8607 io_bio = btrfs_io_bio(bio);
8608 io_bio->logical = file_offset;
4b46fce2 8609
c1dc0896 8610 if (write) {
3892ac90 8611 bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8612 } else {
3892ac90 8613 bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8614 dip->subio_endio = btrfs_subio_endio_read;
8615 }
4b46fce2 8616
f28a4928
FM
8617 /*
8618 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8619 * even if we fail to submit a bio, because in such case we do the
8620 * corresponding error handling below and it must not be done a second
8621 * time by btrfs_direct_IO().
8622 */
8623 if (write) {
8624 struct btrfs_dio_data *dio_data = current->journal_info;
8625
8626 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8627 dip->bytes;
8628 dio_data->unsubmitted_oe_range_start =
8629 dio_data->unsubmitted_oe_range_end;
8630 }
8631
81a75f67 8632 ret = btrfs_submit_direct_hook(dip, skip_sum);
e65e1535 8633 if (!ret)
eaf25d93 8634 return;
9be3395b 8635
3892ac90
LB
8636 if (io_bio->end_io)
8637 io_bio->end_io(io_bio, ret);
9be3395b 8638
4b46fce2
JB
8639free_ordered:
8640 /*
61de718f
FM
8641 * If we arrived here it means either we failed to submit the dip
8642 * or we either failed to clone the dio_bio or failed to allocate the
8643 * dip. If we cloned the dio_bio and allocated the dip, we can just
8644 * call bio_endio against our io_bio so that we get proper resource
8645 * cleanup if we fail to submit the dip, otherwise, we must do the
8646 * same as btrfs_endio_direct_[write|read] because we can't call these
8647 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8648 */
3892ac90 8649 if (bio && dip) {
054ec2f6 8650 bio_io_error(bio);
61de718f 8651 /*
3892ac90 8652 * The end io callbacks free our dip, do the final put on bio
61de718f
FM
8653 * and all the cleanup and final put for dio_bio (through
8654 * dio_end_io()).
8655 */
8656 dip = NULL;
3892ac90 8657 bio = NULL;
61de718f 8658 } else {
14543774 8659 if (write)
52427260 8660 __endio_write_update_ordered(inode,
14543774
FM
8661 file_offset,
8662 dio_bio->bi_iter.bi_size,
52427260 8663 false);
14543774 8664 else
61de718f
FM
8665 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8666 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8667
4e4cbee9 8668 dio_bio->bi_status = BLK_STS_IOERR;
61de718f
FM
8669 /*
8670 * Releases and cleans up our dio_bio, no need to bio_put()
8671 * nor bio_endio()/bio_io_error() against dio_bio.
8672 */
4055351c 8673 dio_end_io(dio_bio);
4b46fce2 8674 }
3892ac90
LB
8675 if (bio)
8676 bio_put(bio);
61de718f 8677 kfree(dip);
4b46fce2
JB
8678}
8679
2ff7e61e
JM
8680static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8681 struct kiocb *iocb,
8682 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8683{
8684 int seg;
a1b75f7d 8685 int i;
0b246afa 8686 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8687 ssize_t retval = -EINVAL;
5a5f79b5
CM
8688
8689 if (offset & blocksize_mask)
8690 goto out;
8691
28060d5d
AV
8692 if (iov_iter_alignment(iter) & blocksize_mask)
8693 goto out;
a1b75f7d 8694
28060d5d 8695 /* If this is a write we don't need to check anymore */
cd27e455 8696 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8697 return 0;
8698 /*
8699 * Check to make sure we don't have duplicate iov_base's in this
8700 * iovec, if so return EINVAL, otherwise we'll get csum errors
8701 * when reading back.
8702 */
8703 for (seg = 0; seg < iter->nr_segs; seg++) {
8704 for (i = seg + 1; i < iter->nr_segs; i++) {
8705 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8706 goto out;
8707 }
5a5f79b5
CM
8708 }
8709 retval = 0;
8710out:
8711 return retval;
8712}
eb838e73 8713
c8b8e32d 8714static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8715{
4b46fce2
JB
8716 struct file *file = iocb->ki_filp;
8717 struct inode *inode = file->f_mapping->host;
0b246afa 8718 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8719 struct btrfs_dio_data dio_data = { 0 };
364ecf36 8720 struct extent_changeset *data_reserved = NULL;
c8b8e32d 8721 loff_t offset = iocb->ki_pos;
0934856d 8722 size_t count = 0;
2e60a51e 8723 int flags = 0;
38851cc1
MX
8724 bool wakeup = true;
8725 bool relock = false;
0934856d 8726 ssize_t ret;
4b46fce2 8727
2ff7e61e 8728 if (check_direct_IO(fs_info, iocb, iter, offset))
5a5f79b5 8729 return 0;
3f7c579c 8730
fe0f07d0 8731 inode_dio_begin(inode);
4e857c58 8732 smp_mb__after_atomic();
38851cc1 8733
0e267c44 8734 /*
41bd9ca4
MX
8735 * The generic stuff only does filemap_write_and_wait_range, which
8736 * isn't enough if we've written compressed pages to this area, so
8737 * we need to flush the dirty pages again to make absolutely sure
8738 * that any outstanding dirty pages are on disk.
0e267c44 8739 */
a6cbcd4a 8740 count = iov_iter_count(iter);
41bd9ca4
MX
8741 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8742 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8743 filemap_fdatawrite_range(inode->i_mapping, offset,
8744 offset + count - 1);
0e267c44 8745
6f673763 8746 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8747 /*
8748 * If the write DIO is beyond the EOF, we need update
8749 * the isize, but it is protected by i_mutex. So we can
8750 * not unlock the i_mutex at this case.
8751 */
8752 if (offset + count <= inode->i_size) {
4aaedfb0 8753 dio_data.overwrite = 1;
5955102c 8754 inode_unlock(inode);
38851cc1 8755 relock = true;
edf064e7
GR
8756 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8757 ret = -EAGAIN;
8758 goto out;
38851cc1 8759 }
364ecf36
QW
8760 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8761 offset, count);
0934856d 8762 if (ret)
38851cc1 8763 goto out;
823bb20a 8764 dio_data.outstanding_extents = count_max_extents(count);
e1cbbfa5
JB
8765
8766 /*
8767 * We need to know how many extents we reserved so that we can
8768 * do the accounting properly if we go over the number we
8769 * originally calculated. Abuse current->journal_info for this.
8770 */
da17066c 8771 dio_data.reserve = round_up(count,
0b246afa 8772 fs_info->sectorsize);
f28a4928
FM
8773 dio_data.unsubmitted_oe_range_start = (u64)offset;
8774 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8775 current->journal_info = &dio_data;
97dcdea0 8776 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8777 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8778 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8779 inode_dio_end(inode);
38851cc1
MX
8780 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8781 wakeup = false;
0934856d
MX
8782 }
8783
17f8c842 8784 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8785 fs_info->fs_devices->latest_bdev,
c8b8e32d 8786 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8787 btrfs_submit_direct, flags);
6f673763 8788 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8789 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8790 current->journal_info = NULL;
ddba1bfc 8791 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8792 if (dio_data.reserve)
bc42bda2
QW
8793 btrfs_delalloc_release_space(inode, data_reserved,
8794 offset, dio_data.reserve);
f28a4928
FM
8795 /*
8796 * On error we might have left some ordered extents
8797 * without submitting corresponding bios for them, so
8798 * cleanup them up to avoid other tasks getting them
8799 * and waiting for them to complete forever.
8800 */
8801 if (dio_data.unsubmitted_oe_range_start <
8802 dio_data.unsubmitted_oe_range_end)
52427260 8803 __endio_write_update_ordered(inode,
f28a4928
FM
8804 dio_data.unsubmitted_oe_range_start,
8805 dio_data.unsubmitted_oe_range_end -
8806 dio_data.unsubmitted_oe_range_start,
52427260 8807 false);
ddba1bfc 8808 } else if (ret >= 0 && (size_t)ret < count)
bc42bda2
QW
8809 btrfs_delalloc_release_space(inode, data_reserved,
8810 offset, count - (size_t)ret);
0934856d 8811 }
38851cc1 8812out:
2e60a51e 8813 if (wakeup)
fe0f07d0 8814 inode_dio_end(inode);
38851cc1 8815 if (relock)
5955102c 8816 inode_lock(inode);
0934856d 8817
364ecf36 8818 extent_changeset_free(data_reserved);
0934856d 8819 return ret;
16432985
CM
8820}
8821
05dadc09
TI
8822#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8823
1506fcc8
YS
8824static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8825 __u64 start, __u64 len)
8826{
05dadc09
TI
8827 int ret;
8828
8829 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8830 if (ret)
8831 return ret;
8832
ec29ed5b 8833 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8834}
8835
a52d9a80 8836int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8837{
d1310b2e
CM
8838 struct extent_io_tree *tree;
8839 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8840 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8841}
1832a6d5 8842
a52d9a80 8843static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8844{
d1310b2e 8845 struct extent_io_tree *tree;
be7bd730
JB
8846 struct inode *inode = page->mapping->host;
8847 int ret;
b888db2b
CM
8848
8849 if (current->flags & PF_MEMALLOC) {
8850 redirty_page_for_writepage(wbc, page);
8851 unlock_page(page);
8852 return 0;
8853 }
be7bd730
JB
8854
8855 /*
8856 * If we are under memory pressure we will call this directly from the
8857 * VM, we need to make sure we have the inode referenced for the ordered
8858 * extent. If not just return like we didn't do anything.
8859 */
8860 if (!igrab(inode)) {
8861 redirty_page_for_writepage(wbc, page);
8862 return AOP_WRITEPAGE_ACTIVATE;
8863 }
d1310b2e 8864 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8865 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8866 btrfs_add_delayed_iput(inode);
8867 return ret;
9ebefb18
CM
8868}
8869
48a3b636
ES
8870static int btrfs_writepages(struct address_space *mapping,
8871 struct writeback_control *wbc)
b293f02e 8872{
d1310b2e 8873 struct extent_io_tree *tree;
771ed689 8874
d1310b2e 8875 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8876 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8877}
8878
3ab2fb5a
CM
8879static int
8880btrfs_readpages(struct file *file, struct address_space *mapping,
8881 struct list_head *pages, unsigned nr_pages)
8882{
d1310b2e
CM
8883 struct extent_io_tree *tree;
8884 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8885 return extent_readpages(tree, mapping, pages, nr_pages,
8886 btrfs_get_extent);
8887}
e6dcd2dc 8888static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8889{
d1310b2e
CM
8890 struct extent_io_tree *tree;
8891 struct extent_map_tree *map;
a52d9a80 8892 int ret;
8c2383c3 8893
d1310b2e
CM
8894 tree = &BTRFS_I(page->mapping->host)->io_tree;
8895 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8896 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8897 if (ret == 1) {
8898 ClearPagePrivate(page);
8899 set_page_private(page, 0);
09cbfeaf 8900 put_page(page);
39279cc3 8901 }
a52d9a80 8902 return ret;
39279cc3
CM
8903}
8904
e6dcd2dc
CM
8905static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8906{
98509cfc
CM
8907 if (PageWriteback(page) || PageDirty(page))
8908 return 0;
3ba7ab22 8909 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8910}
8911
d47992f8
LC
8912static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8913 unsigned int length)
39279cc3 8914{
5fd02043 8915 struct inode *inode = page->mapping->host;
d1310b2e 8916 struct extent_io_tree *tree;
e6dcd2dc 8917 struct btrfs_ordered_extent *ordered;
2ac55d41 8918 struct extent_state *cached_state = NULL;
e6dcd2dc 8919 u64 page_start = page_offset(page);
09cbfeaf 8920 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8921 u64 start;
8922 u64 end;
131e404a 8923 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8924
8b62b72b
CM
8925 /*
8926 * we have the page locked, so new writeback can't start,
8927 * and the dirty bit won't be cleared while we are here.
8928 *
8929 * Wait for IO on this page so that we can safely clear
8930 * the PagePrivate2 bit and do ordered accounting
8931 */
e6dcd2dc 8932 wait_on_page_writeback(page);
8b62b72b 8933
5fd02043 8934 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8935 if (offset) {
8936 btrfs_releasepage(page, GFP_NOFS);
8937 return;
8938 }
131e404a
FDBM
8939
8940 if (!inode_evicting)
ff13db41 8941 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8942again:
8943 start = page_start;
a776c6fa 8944 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8945 page_end - start + 1);
e6dcd2dc 8946 if (ordered) {
dbfdb6d1 8947 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8948 /*
8949 * IO on this page will never be started, so we need
8950 * to account for any ordered extents now
8951 */
131e404a 8952 if (!inode_evicting)
dbfdb6d1 8953 clear_extent_bit(tree, start, end,
131e404a 8954 EXTENT_DIRTY | EXTENT_DELALLOC |
a7e3b975 8955 EXTENT_DELALLOC_NEW |
131e404a
FDBM
8956 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8957 EXTENT_DEFRAG, 1, 0, &cached_state,
8958 GFP_NOFS);
8b62b72b
CM
8959 /*
8960 * whoever cleared the private bit is responsible
8961 * for the finish_ordered_io
8962 */
77cef2ec
JB
8963 if (TestClearPagePrivate2(page)) {
8964 struct btrfs_ordered_inode_tree *tree;
8965 u64 new_len;
8966
8967 tree = &BTRFS_I(inode)->ordered_tree;
8968
8969 spin_lock_irq(&tree->lock);
8970 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8971 new_len = start - ordered->file_offset;
77cef2ec
JB
8972 if (new_len < ordered->truncated_len)
8973 ordered->truncated_len = new_len;
8974 spin_unlock_irq(&tree->lock);
8975
8976 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8977 start,
8978 end - start + 1, 1))
77cef2ec 8979 btrfs_finish_ordered_io(ordered);
8b62b72b 8980 }
e6dcd2dc 8981 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8982 if (!inode_evicting) {
8983 cached_state = NULL;
dbfdb6d1 8984 lock_extent_bits(tree, start, end,
131e404a
FDBM
8985 &cached_state);
8986 }
dbfdb6d1
CR
8987
8988 start = end + 1;
8989 if (start < page_end)
8990 goto again;
131e404a
FDBM
8991 }
8992
b9d0b389
QW
8993 /*
8994 * Qgroup reserved space handler
8995 * Page here will be either
8996 * 1) Already written to disk
8997 * In this case, its reserved space is released from data rsv map
8998 * and will be freed by delayed_ref handler finally.
8999 * So even we call qgroup_free_data(), it won't decrease reserved
9000 * space.
9001 * 2) Not written to disk
0b34c261
GR
9002 * This means the reserved space should be freed here. However,
9003 * if a truncate invalidates the page (by clearing PageDirty)
9004 * and the page is accounted for while allocating extent
9005 * in btrfs_check_data_free_space() we let delayed_ref to
9006 * free the entire extent.
b9d0b389 9007 */
0b34c261 9008 if (PageDirty(page))
bc42bda2 9009 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a
FDBM
9010 if (!inode_evicting) {
9011 clear_extent_bit(tree, page_start, page_end,
9012 EXTENT_LOCKED | EXTENT_DIRTY |
a7e3b975
FM
9013 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
9014 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
131e404a
FDBM
9015 &cached_state, GFP_NOFS);
9016
9017 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 9018 }
e6dcd2dc 9019
4a096752 9020 ClearPageChecked(page);
9ad6b7bc 9021 if (PagePrivate(page)) {
9ad6b7bc
CM
9022 ClearPagePrivate(page);
9023 set_page_private(page, 0);
09cbfeaf 9024 put_page(page);
9ad6b7bc 9025 }
39279cc3
CM
9026}
9027
9ebefb18
CM
9028/*
9029 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9030 * called from a page fault handler when a page is first dirtied. Hence we must
9031 * be careful to check for EOF conditions here. We set the page up correctly
9032 * for a written page which means we get ENOSPC checking when writing into
9033 * holes and correct delalloc and unwritten extent mapping on filesystems that
9034 * support these features.
9035 *
9036 * We are not allowed to take the i_mutex here so we have to play games to
9037 * protect against truncate races as the page could now be beyond EOF. Because
9038 * vmtruncate() writes the inode size before removing pages, once we have the
9039 * page lock we can determine safely if the page is beyond EOF. If it is not
9040 * beyond EOF, then the page is guaranteed safe against truncation until we
9041 * unlock the page.
9042 */
11bac800 9043int btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 9044{
c2ec175c 9045 struct page *page = vmf->page;
11bac800 9046 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 9047 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
9048 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9049 struct btrfs_ordered_extent *ordered;
2ac55d41 9050 struct extent_state *cached_state = NULL;
364ecf36 9051 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
9052 char *kaddr;
9053 unsigned long zero_start;
9ebefb18 9054 loff_t size;
1832a6d5 9055 int ret;
9998eb70 9056 int reserved = 0;
d0b7da88 9057 u64 reserved_space;
a52d9a80 9058 u64 page_start;
e6dcd2dc 9059 u64 page_end;
d0b7da88
CR
9060 u64 end;
9061
09cbfeaf 9062 reserved_space = PAGE_SIZE;
9ebefb18 9063
b2b5ef5c 9064 sb_start_pagefault(inode->i_sb);
df480633 9065 page_start = page_offset(page);
09cbfeaf 9066 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 9067 end = page_end;
df480633 9068
d0b7da88
CR
9069 /*
9070 * Reserving delalloc space after obtaining the page lock can lead to
9071 * deadlock. For example, if a dirty page is locked by this function
9072 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9073 * dirty page write out, then the btrfs_writepage() function could
9074 * end up waiting indefinitely to get a lock on the page currently
9075 * being processed by btrfs_page_mkwrite() function.
9076 */
364ecf36 9077 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
d0b7da88 9078 reserved_space);
9998eb70 9079 if (!ret) {
11bac800 9080 ret = file_update_time(vmf->vma->vm_file);
9998eb70
CM
9081 reserved = 1;
9082 }
56a76f82
NP
9083 if (ret) {
9084 if (ret == -ENOMEM)
9085 ret = VM_FAULT_OOM;
9086 else /* -ENOSPC, -EIO, etc */
9087 ret = VM_FAULT_SIGBUS;
9998eb70
CM
9088 if (reserved)
9089 goto out;
9090 goto out_noreserve;
56a76f82 9091 }
1832a6d5 9092
56a76f82 9093 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 9094again:
9ebefb18 9095 lock_page(page);
9ebefb18 9096 size = i_size_read(inode);
a52d9a80 9097
9ebefb18 9098 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 9099 (page_start >= size)) {
9ebefb18
CM
9100 /* page got truncated out from underneath us */
9101 goto out_unlock;
9102 }
e6dcd2dc
CM
9103 wait_on_page_writeback(page);
9104
ff13db41 9105 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
9106 set_page_extent_mapped(page);
9107
eb84ae03
CM
9108 /*
9109 * we can't set the delalloc bits if there are pending ordered
9110 * extents. Drop our locks and wait for them to finish
9111 */
a776c6fa
NB
9112 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9113 PAGE_SIZE);
e6dcd2dc 9114 if (ordered) {
2ac55d41
JB
9115 unlock_extent_cached(io_tree, page_start, page_end,
9116 &cached_state, GFP_NOFS);
e6dcd2dc 9117 unlock_page(page);
eb84ae03 9118 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
9119 btrfs_put_ordered_extent(ordered);
9120 goto again;
9121 }
9122
09cbfeaf 9123 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 9124 reserved_space = round_up(size - page_start,
0b246afa 9125 fs_info->sectorsize);
09cbfeaf 9126 if (reserved_space < PAGE_SIZE) {
d0b7da88
CR
9127 end = page_start + reserved_space - 1;
9128 spin_lock(&BTRFS_I(inode)->lock);
9129 BTRFS_I(inode)->outstanding_extents++;
9130 spin_unlock(&BTRFS_I(inode)->lock);
bc42bda2
QW
9131 btrfs_delalloc_release_space(inode, data_reserved,
9132 page_start, PAGE_SIZE - reserved_space);
d0b7da88
CR
9133 }
9134 }
9135
fbf19087 9136 /*
5416034f
LB
9137 * page_mkwrite gets called when the page is firstly dirtied after it's
9138 * faulted in, but write(2) could also dirty a page and set delalloc
9139 * bits, thus in this case for space account reason, we still need to
9140 * clear any delalloc bits within this page range since we have to
9141 * reserve data&meta space before lock_page() (see above comments).
fbf19087 9142 */
d0b7da88 9143 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
9144 EXTENT_DIRTY | EXTENT_DELALLOC |
9145 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 9146 0, 0, &cached_state, GFP_NOFS);
fbf19087 9147
d0b7da88 9148 ret = btrfs_set_extent_delalloc(inode, page_start, end,
ba8b04c1 9149 &cached_state, 0);
9ed74f2d 9150 if (ret) {
2ac55d41
JB
9151 unlock_extent_cached(io_tree, page_start, page_end,
9152 &cached_state, GFP_NOFS);
9ed74f2d
JB
9153 ret = VM_FAULT_SIGBUS;
9154 goto out_unlock;
9155 }
e6dcd2dc 9156 ret = 0;
9ebefb18
CM
9157
9158 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9159 if (page_start + PAGE_SIZE > size)
9160 zero_start = size & ~PAGE_MASK;
9ebefb18 9161 else
09cbfeaf 9162 zero_start = PAGE_SIZE;
9ebefb18 9163
09cbfeaf 9164 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9165 kaddr = kmap(page);
09cbfeaf 9166 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9167 flush_dcache_page(page);
9168 kunmap(page);
9169 }
247e743c 9170 ClearPageChecked(page);
e6dcd2dc 9171 set_page_dirty(page);
50a9b214 9172 SetPageUptodate(page);
5a3f23d5 9173
0b246afa 9174 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 9175 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9176 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9177
2ac55d41 9178 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
9179
9180out_unlock:
b2b5ef5c
JK
9181 if (!ret) {
9182 sb_end_pagefault(inode->i_sb);
364ecf36 9183 extent_changeset_free(data_reserved);
50a9b214 9184 return VM_FAULT_LOCKED;
b2b5ef5c 9185 }
9ebefb18 9186 unlock_page(page);
1832a6d5 9187out:
bc42bda2
QW
9188 btrfs_delalloc_release_space(inode, data_reserved, page_start,
9189 reserved_space);
9998eb70 9190out_noreserve:
b2b5ef5c 9191 sb_end_pagefault(inode->i_sb);
364ecf36 9192 extent_changeset_free(data_reserved);
9ebefb18
CM
9193 return ret;
9194}
9195
a41ad394 9196static int btrfs_truncate(struct inode *inode)
39279cc3 9197{
0b246afa 9198 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 9199 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9200 struct btrfs_block_rsv *rsv;
a71754fc 9201 int ret = 0;
3893e33b 9202 int err = 0;
39279cc3 9203 struct btrfs_trans_handle *trans;
0b246afa
JM
9204 u64 mask = fs_info->sectorsize - 1;
9205 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 9206
0ef8b726
JB
9207 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9208 (u64)-1);
9209 if (ret)
9210 return ret;
39279cc3 9211
fcb80c2a 9212 /*
01327610 9213 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9214 * 3 things going on here
9215 *
9216 * 1) We need to reserve space for our orphan item and the space to
9217 * delete our orphan item. Lord knows we don't want to have a dangling
9218 * orphan item because we didn't reserve space to remove it.
9219 *
9220 * 2) We need to reserve space to update our inode.
9221 *
9222 * 3) We need to have something to cache all the space that is going to
9223 * be free'd up by the truncate operation, but also have some slack
9224 * space reserved in case it uses space during the truncate (thank you
9225 * very much snapshotting).
9226 *
01327610 9227 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9228 * space doing the truncate, and we have no earthly idea how much space
01327610 9229 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9230 * doesn't end up using space reserved for updating the inode or
9231 * removing the orphan item. We also need to be able to stop the
9232 * transaction and start a new one, which means we need to be able to
9233 * update the inode several times, and we have no idea of knowing how
9234 * many times that will be, so we can't just reserve 1 item for the
01327610 9235 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9236 * Then there is the orphan item, which does indeed need to be held on
9237 * to for the whole operation, and we need nobody to touch this reserved
9238 * space except the orphan code.
9239 *
9240 * So that leaves us with
9241 *
9242 * 1) root->orphan_block_rsv - for the orphan deletion.
9243 * 2) rsv - for the truncate reservation, which we will steal from the
9244 * transaction reservation.
9245 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9246 * updating the inode.
9247 */
2ff7e61e 9248 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9249 if (!rsv)
9250 return -ENOMEM;
4a338542 9251 rsv->size = min_size;
ca7e70f5 9252 rsv->failfast = 1;
f0cd846e 9253
907cbceb 9254 /*
07127184 9255 * 1 for the truncate slack space
907cbceb
JB
9256 * 1 for updating the inode.
9257 */
f3fe820c 9258 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9259 if (IS_ERR(trans)) {
9260 err = PTR_ERR(trans);
9261 goto out;
9262 }
f0cd846e 9263
907cbceb 9264 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9265 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 9266 min_size, 0);
fcb80c2a 9267 BUG_ON(ret);
f0cd846e 9268
5dc562c5
JB
9269 /*
9270 * So if we truncate and then write and fsync we normally would just
9271 * write the extents that changed, which is a problem if we need to
9272 * first truncate that entire inode. So set this flag so we write out
9273 * all of the extents in the inode to the sync log so we're completely
9274 * safe.
9275 */
9276 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9277 trans->block_rsv = rsv;
907cbceb 9278
8082510e
YZ
9279 while (1) {
9280 ret = btrfs_truncate_inode_items(trans, root, inode,
9281 inode->i_size,
9282 BTRFS_EXTENT_DATA_KEY);
28ed1345 9283 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9284 err = ret;
8082510e 9285 break;
3893e33b 9286 }
39279cc3 9287
0b246afa 9288 trans->block_rsv = &fs_info->trans_block_rsv;
8082510e 9289 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9290 if (ret) {
9291 err = ret;
9292 break;
9293 }
ca7e70f5 9294
3a45bb20 9295 btrfs_end_transaction(trans);
2ff7e61e 9296 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9297
9298 trans = btrfs_start_transaction(root, 2);
9299 if (IS_ERR(trans)) {
9300 ret = err = PTR_ERR(trans);
9301 trans = NULL;
9302 break;
9303 }
9304
47b5d646 9305 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9306 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 9307 rsv, min_size, 0);
ca7e70f5
JB
9308 BUG_ON(ret); /* shouldn't happen */
9309 trans->block_rsv = rsv;
8082510e
YZ
9310 }
9311
9312 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9313 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 9314 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
3893e33b
JB
9315 if (ret)
9316 err = ret;
8082510e
YZ
9317 }
9318
917c16b2 9319 if (trans) {
0b246afa 9320 trans->block_rsv = &fs_info->trans_block_rsv;
917c16b2
CM
9321 ret = btrfs_update_inode(trans, root, inode);
9322 if (ret && !err)
9323 err = ret;
7b128766 9324
3a45bb20 9325 ret = btrfs_end_transaction(trans);
2ff7e61e 9326 btrfs_btree_balance_dirty(fs_info);
917c16b2 9327 }
fcb80c2a 9328out:
2ff7e61e 9329 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9330
3893e33b
JB
9331 if (ret && !err)
9332 err = ret;
a41ad394 9333
3893e33b 9334 return err;
39279cc3
CM
9335}
9336
d352ac68
CM
9337/*
9338 * create a new subvolume directory/inode (helper for the ioctl).
9339 */
d2fb3437 9340int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9341 struct btrfs_root *new_root,
9342 struct btrfs_root *parent_root,
9343 u64 new_dirid)
39279cc3 9344{
39279cc3 9345 struct inode *inode;
76dda93c 9346 int err;
00e4e6b3 9347 u64 index = 0;
39279cc3 9348
12fc9d09
FA
9349 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9350 new_dirid, new_dirid,
9351 S_IFDIR | (~current_umask() & S_IRWXUGO),
9352 &index);
54aa1f4d 9353 if (IS_ERR(inode))
f46b5a66 9354 return PTR_ERR(inode);
39279cc3
CM
9355 inode->i_op = &btrfs_dir_inode_operations;
9356 inode->i_fop = &btrfs_dir_file_operations;
9357
bfe86848 9358 set_nlink(inode, 1);
6ef06d27 9359 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9360 unlock_new_inode(inode);
3b96362c 9361
63541927
FDBM
9362 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9363 if (err)
9364 btrfs_err(new_root->fs_info,
351fd353 9365 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9366 new_root->root_key.objectid, err);
9367
76dda93c 9368 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9369
76dda93c 9370 iput(inode);
ce598979 9371 return err;
39279cc3
CM
9372}
9373
39279cc3
CM
9374struct inode *btrfs_alloc_inode(struct super_block *sb)
9375{
9376 struct btrfs_inode *ei;
2ead6ae7 9377 struct inode *inode;
39279cc3
CM
9378
9379 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9380 if (!ei)
9381 return NULL;
2ead6ae7
YZ
9382
9383 ei->root = NULL;
2ead6ae7 9384 ei->generation = 0;
15ee9bc7 9385 ei->last_trans = 0;
257c62e1 9386 ei->last_sub_trans = 0;
e02119d5 9387 ei->logged_trans = 0;
2ead6ae7 9388 ei->delalloc_bytes = 0;
a7e3b975 9389 ei->new_delalloc_bytes = 0;
47059d93 9390 ei->defrag_bytes = 0;
2ead6ae7
YZ
9391 ei->disk_i_size = 0;
9392 ei->flags = 0;
7709cde3 9393 ei->csum_bytes = 0;
2ead6ae7 9394 ei->index_cnt = (u64)-1;
67de1176 9395 ei->dir_index = 0;
2ead6ae7 9396 ei->last_unlink_trans = 0;
46d8bc34 9397 ei->last_log_commit = 0;
8089fe62 9398 ei->delayed_iput_count = 0;
2ead6ae7 9399
9e0baf60
JB
9400 spin_lock_init(&ei->lock);
9401 ei->outstanding_extents = 0;
9402 ei->reserved_extents = 0;
2ead6ae7 9403
72ac3c0d 9404 ei->runtime_flags = 0;
261507a0 9405 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9406
16cdcec7
MX
9407 ei->delayed_node = NULL;
9408
9cc97d64 9409 ei->i_otime.tv_sec = 0;
9410 ei->i_otime.tv_nsec = 0;
9411
2ead6ae7 9412 inode = &ei->vfs_inode;
a8067e02 9413 extent_map_tree_init(&ei->extent_tree);
c6100a4b
JB
9414 extent_io_tree_init(&ei->io_tree, inode);
9415 extent_io_tree_init(&ei->io_failure_tree, inode);
0b32f4bb
JB
9416 ei->io_tree.track_uptodate = 1;
9417 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9418 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9419 mutex_init(&ei->log_mutex);
f248679e 9420 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9421 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9422 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9423 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9424 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9425 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9426
9427 return inode;
39279cc3
CM
9428}
9429
aaedb55b
JB
9430#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9431void btrfs_test_destroy_inode(struct inode *inode)
9432{
dcdbc059 9433 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9434 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9435}
9436#endif
9437
fa0d7e3d
NP
9438static void btrfs_i_callback(struct rcu_head *head)
9439{
9440 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9441 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9442}
9443
39279cc3
CM
9444void btrfs_destroy_inode(struct inode *inode)
9445{
0b246afa 9446 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9447 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9448 struct btrfs_root *root = BTRFS_I(inode)->root;
9449
b3d9b7a3 9450 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9451 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9452 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9453 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3 9454 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 9455 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 9456 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9457 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9458
a6dbd429
JB
9459 /*
9460 * This can happen where we create an inode, but somebody else also
9461 * created the same inode and we need to destroy the one we already
9462 * created.
9463 */
9464 if (!root)
9465 goto free;
9466
8a35d95f
JB
9467 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9468 &BTRFS_I(inode)->runtime_flags)) {
0b246afa 9469 btrfs_info(fs_info, "inode %llu still on the orphan list",
4a0cc7ca 9470 btrfs_ino(BTRFS_I(inode)));
8a35d95f 9471 atomic_dec(&root->orphan_inodes);
7b128766 9472 }
7b128766 9473
d397712b 9474 while (1) {
e6dcd2dc
CM
9475 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9476 if (!ordered)
9477 break;
9478 else {
0b246afa 9479 btrfs_err(fs_info,
5d163e0e
JM
9480 "found ordered extent %llu %llu on inode cleanup",
9481 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9482 btrfs_remove_ordered_extent(inode, ordered);
9483 btrfs_put_ordered_extent(ordered);
9484 btrfs_put_ordered_extent(ordered);
9485 }
9486 }
56fa9d07 9487 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9488 inode_tree_del(inode);
dcdbc059 9489 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
a6dbd429 9490free:
fa0d7e3d 9491 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9492}
9493
45321ac5 9494int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9495{
9496 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9497
6379ef9f
NA
9498 if (root == NULL)
9499 return 1;
9500
fa6ac876 9501 /* the snap/subvol tree is on deleting */
69e9c6c6 9502 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9503 return 1;
76dda93c 9504 else
45321ac5 9505 return generic_drop_inode(inode);
76dda93c
YZ
9506}
9507
0ee0fda0 9508static void init_once(void *foo)
39279cc3
CM
9509{
9510 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9511
9512 inode_init_once(&ei->vfs_inode);
9513}
9514
9515void btrfs_destroy_cachep(void)
9516{
8c0a8537
KS
9517 /*
9518 * Make sure all delayed rcu free inodes are flushed before we
9519 * destroy cache.
9520 */
9521 rcu_barrier();
5598e900
KM
9522 kmem_cache_destroy(btrfs_inode_cachep);
9523 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
9524 kmem_cache_destroy(btrfs_path_cachep);
9525 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9526}
9527
9528int btrfs_init_cachep(void)
9529{
837e1972 9530 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9531 sizeof(struct btrfs_inode), 0,
5d097056
VD
9532 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9533 init_once);
39279cc3
CM
9534 if (!btrfs_inode_cachep)
9535 goto fail;
9601e3f6 9536
837e1972 9537 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9538 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9539 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9540 if (!btrfs_trans_handle_cachep)
9541 goto fail;
9601e3f6 9542
837e1972 9543 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9544 sizeof(struct btrfs_path), 0,
fba4b697 9545 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9546 if (!btrfs_path_cachep)
9547 goto fail;
9601e3f6 9548
837e1972 9549 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9550 sizeof(struct btrfs_free_space), 0,
fba4b697 9551 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9552 if (!btrfs_free_space_cachep)
9553 goto fail;
9554
39279cc3
CM
9555 return 0;
9556fail:
9557 btrfs_destroy_cachep();
9558 return -ENOMEM;
9559}
9560
a528d35e
DH
9561static int btrfs_getattr(const struct path *path, struct kstat *stat,
9562 u32 request_mask, unsigned int flags)
39279cc3 9563{
df0af1a5 9564 u64 delalloc_bytes;
a528d35e 9565 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9566 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
9567 u32 bi_flags = BTRFS_I(inode)->flags;
9568
9569 stat->result_mask |= STATX_BTIME;
9570 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9571 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9572 if (bi_flags & BTRFS_INODE_APPEND)
9573 stat->attributes |= STATX_ATTR_APPEND;
9574 if (bi_flags & BTRFS_INODE_COMPRESS)
9575 stat->attributes |= STATX_ATTR_COMPRESSED;
9576 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9577 stat->attributes |= STATX_ATTR_IMMUTABLE;
9578 if (bi_flags & BTRFS_INODE_NODUMP)
9579 stat->attributes |= STATX_ATTR_NODUMP;
9580
9581 stat->attributes_mask |= (STATX_ATTR_APPEND |
9582 STATX_ATTR_COMPRESSED |
9583 STATX_ATTR_IMMUTABLE |
9584 STATX_ATTR_NODUMP);
fadc0d8b 9585
39279cc3 9586 generic_fillattr(inode, stat);
0ee5dc67 9587 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9588
9589 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9590 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 9591 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9592 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9593 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9594 return 0;
9595}
9596
cdd1fedf
DF
9597static int btrfs_rename_exchange(struct inode *old_dir,
9598 struct dentry *old_dentry,
9599 struct inode *new_dir,
9600 struct dentry *new_dentry)
9601{
0b246afa 9602 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9603 struct btrfs_trans_handle *trans;
9604 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9605 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9606 struct inode *new_inode = new_dentry->d_inode;
9607 struct inode *old_inode = old_dentry->d_inode;
c2050a45 9608 struct timespec ctime = current_time(old_inode);
cdd1fedf 9609 struct dentry *parent;
4a0cc7ca
NB
9610 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9611 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9612 u64 old_idx = 0;
9613 u64 new_idx = 0;
9614 u64 root_objectid;
9615 int ret;
86e8aa0e
FM
9616 bool root_log_pinned = false;
9617 bool dest_log_pinned = false;
cdd1fedf
DF
9618
9619 /* we only allow rename subvolume link between subvolumes */
9620 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9621 return -EXDEV;
9622
9623 /* close the race window with snapshot create/destroy ioctl */
9624 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9625 down_read(&fs_info->subvol_sem);
cdd1fedf 9626 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9627 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9628
9629 /*
9630 * We want to reserve the absolute worst case amount of items. So if
9631 * both inodes are subvols and we need to unlink them then that would
9632 * require 4 item modifications, but if they are both normal inodes it
9633 * would require 5 item modifications, so we'll assume their normal
9634 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9635 * should cover the worst case number of items we'll modify.
9636 */
9637 trans = btrfs_start_transaction(root, 12);
9638 if (IS_ERR(trans)) {
9639 ret = PTR_ERR(trans);
9640 goto out_notrans;
9641 }
9642
9643 /*
9644 * We need to find a free sequence number both in the source and
9645 * in the destination directory for the exchange.
9646 */
877574e2 9647 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9648 if (ret)
9649 goto out_fail;
877574e2 9650 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9651 if (ret)
9652 goto out_fail;
9653
9654 BTRFS_I(old_inode)->dir_index = 0ULL;
9655 BTRFS_I(new_inode)->dir_index = 0ULL;
9656
9657 /* Reference for the source. */
9658 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9659 /* force full log commit if subvolume involved. */
0b246afa 9660 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9661 } else {
376e5a57
FM
9662 btrfs_pin_log_trans(root);
9663 root_log_pinned = true;
cdd1fedf
DF
9664 ret = btrfs_insert_inode_ref(trans, dest,
9665 new_dentry->d_name.name,
9666 new_dentry->d_name.len,
9667 old_ino,
f85b7379
DS
9668 btrfs_ino(BTRFS_I(new_dir)),
9669 old_idx);
cdd1fedf
DF
9670 if (ret)
9671 goto out_fail;
cdd1fedf
DF
9672 }
9673
9674 /* And now for the dest. */
9675 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9676 /* force full log commit if subvolume involved. */
0b246afa 9677 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9678 } else {
376e5a57
FM
9679 btrfs_pin_log_trans(dest);
9680 dest_log_pinned = true;
cdd1fedf
DF
9681 ret = btrfs_insert_inode_ref(trans, root,
9682 old_dentry->d_name.name,
9683 old_dentry->d_name.len,
9684 new_ino,
f85b7379
DS
9685 btrfs_ino(BTRFS_I(old_dir)),
9686 new_idx);
cdd1fedf
DF
9687 if (ret)
9688 goto out_fail;
cdd1fedf
DF
9689 }
9690
9691 /* Update inode version and ctime/mtime. */
9692 inode_inc_iversion(old_dir);
9693 inode_inc_iversion(new_dir);
9694 inode_inc_iversion(old_inode);
9695 inode_inc_iversion(new_inode);
9696 old_dir->i_ctime = old_dir->i_mtime = ctime;
9697 new_dir->i_ctime = new_dir->i_mtime = ctime;
9698 old_inode->i_ctime = ctime;
9699 new_inode->i_ctime = ctime;
9700
9701 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9702 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9703 BTRFS_I(old_inode), 1);
9704 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9705 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9706 }
9707
9708 /* src is a subvolume */
9709 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9710 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9711 ret = btrfs_unlink_subvol(trans, root, old_dir,
9712 root_objectid,
9713 old_dentry->d_name.name,
9714 old_dentry->d_name.len);
9715 } else { /* src is an inode */
4ec5934e
NB
9716 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9717 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9718 old_dentry->d_name.name,
9719 old_dentry->d_name.len);
9720 if (!ret)
9721 ret = btrfs_update_inode(trans, root, old_inode);
9722 }
9723 if (ret) {
66642832 9724 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9725 goto out_fail;
9726 }
9727
9728 /* dest is a subvolume */
9729 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9730 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9731 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9732 root_objectid,
9733 new_dentry->d_name.name,
9734 new_dentry->d_name.len);
9735 } else { /* dest is an inode */
4ec5934e
NB
9736 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9737 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9738 new_dentry->d_name.name,
9739 new_dentry->d_name.len);
9740 if (!ret)
9741 ret = btrfs_update_inode(trans, dest, new_inode);
9742 }
9743 if (ret) {
66642832 9744 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9745 goto out_fail;
9746 }
9747
db0a669f 9748 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9749 new_dentry->d_name.name,
9750 new_dentry->d_name.len, 0, old_idx);
9751 if (ret) {
66642832 9752 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9753 goto out_fail;
9754 }
9755
db0a669f 9756 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9757 old_dentry->d_name.name,
9758 old_dentry->d_name.len, 0, new_idx);
9759 if (ret) {
66642832 9760 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9761 goto out_fail;
9762 }
9763
9764 if (old_inode->i_nlink == 1)
9765 BTRFS_I(old_inode)->dir_index = old_idx;
9766 if (new_inode->i_nlink == 1)
9767 BTRFS_I(new_inode)->dir_index = new_idx;
9768
86e8aa0e 9769 if (root_log_pinned) {
cdd1fedf 9770 parent = new_dentry->d_parent;
f85b7379
DS
9771 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9772 parent);
cdd1fedf 9773 btrfs_end_log_trans(root);
86e8aa0e 9774 root_log_pinned = false;
cdd1fedf 9775 }
86e8aa0e 9776 if (dest_log_pinned) {
cdd1fedf 9777 parent = old_dentry->d_parent;
f85b7379
DS
9778 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9779 parent);
cdd1fedf 9780 btrfs_end_log_trans(dest);
86e8aa0e 9781 dest_log_pinned = false;
cdd1fedf
DF
9782 }
9783out_fail:
86e8aa0e
FM
9784 /*
9785 * If we have pinned a log and an error happened, we unpin tasks
9786 * trying to sync the log and force them to fallback to a transaction
9787 * commit if the log currently contains any of the inodes involved in
9788 * this rename operation (to ensure we do not persist a log with an
9789 * inconsistent state for any of these inodes or leading to any
9790 * inconsistencies when replayed). If the transaction was aborted, the
9791 * abortion reason is propagated to userspace when attempting to commit
9792 * the transaction. If the log does not contain any of these inodes, we
9793 * allow the tasks to sync it.
9794 */
9795 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9796 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9797 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9798 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9799 (new_inode &&
0f8939b8 9800 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9801 btrfs_set_log_full_commit(fs_info, trans);
86e8aa0e
FM
9802
9803 if (root_log_pinned) {
9804 btrfs_end_log_trans(root);
9805 root_log_pinned = false;
9806 }
9807 if (dest_log_pinned) {
9808 btrfs_end_log_trans(dest);
9809 dest_log_pinned = false;
9810 }
9811 }
3a45bb20 9812 ret = btrfs_end_transaction(trans);
cdd1fedf
DF
9813out_notrans:
9814 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9815 up_read(&fs_info->subvol_sem);
cdd1fedf 9816 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9817 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9818
9819 return ret;
9820}
9821
9822static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9823 struct btrfs_root *root,
9824 struct inode *dir,
9825 struct dentry *dentry)
9826{
9827 int ret;
9828 struct inode *inode;
9829 u64 objectid;
9830 u64 index;
9831
9832 ret = btrfs_find_free_ino(root, &objectid);
9833 if (ret)
9834 return ret;
9835
9836 inode = btrfs_new_inode(trans, root, dir,
9837 dentry->d_name.name,
9838 dentry->d_name.len,
4a0cc7ca 9839 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9840 objectid,
9841 S_IFCHR | WHITEOUT_MODE,
9842 &index);
9843
9844 if (IS_ERR(inode)) {
9845 ret = PTR_ERR(inode);
9846 return ret;
9847 }
9848
9849 inode->i_op = &btrfs_special_inode_operations;
9850 init_special_inode(inode, inode->i_mode,
9851 WHITEOUT_DEV);
9852
9853 ret = btrfs_init_inode_security(trans, inode, dir,
9854 &dentry->d_name);
9855 if (ret)
c9901618 9856 goto out;
cdd1fedf 9857
cef415af
NB
9858 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9859 BTRFS_I(inode), 0, index);
cdd1fedf 9860 if (ret)
c9901618 9861 goto out;
cdd1fedf
DF
9862
9863 ret = btrfs_update_inode(trans, root, inode);
c9901618 9864out:
cdd1fedf 9865 unlock_new_inode(inode);
c9901618
FM
9866 if (ret)
9867 inode_dec_link_count(inode);
cdd1fedf
DF
9868 iput(inode);
9869
c9901618 9870 return ret;
cdd1fedf
DF
9871}
9872
d397712b 9873static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9874 struct inode *new_dir, struct dentry *new_dentry,
9875 unsigned int flags)
39279cc3 9876{
0b246afa 9877 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9878 struct btrfs_trans_handle *trans;
5062af35 9879 unsigned int trans_num_items;
39279cc3 9880 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9881 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9882 struct inode *new_inode = d_inode(new_dentry);
9883 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9884 u64 index = 0;
4df27c4d 9885 u64 root_objectid;
39279cc3 9886 int ret;
4a0cc7ca 9887 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9888 bool log_pinned = false;
39279cc3 9889
4a0cc7ca 9890 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9891 return -EPERM;
9892
4df27c4d 9893 /* we only allow rename subvolume link between subvolumes */
33345d01 9894 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9895 return -EXDEV;
9896
33345d01 9897 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9898 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9899 return -ENOTEMPTY;
5f39d397 9900
4df27c4d
YZ
9901 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9902 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9903 return -ENOTEMPTY;
9c52057c
CM
9904
9905
9906 /* check for collisions, even if the name isn't there */
4871c158 9907 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9908 new_dentry->d_name.name,
9909 new_dentry->d_name.len);
9910
9911 if (ret) {
9912 if (ret == -EEXIST) {
9913 /* we shouldn't get
9914 * eexist without a new_inode */
fae7f21c 9915 if (WARN_ON(!new_inode)) {
9c52057c
CM
9916 return ret;
9917 }
9918 } else {
9919 /* maybe -EOVERFLOW */
9920 return ret;
9921 }
9922 }
9923 ret = 0;
9924
5a3f23d5 9925 /*
8d875f95
CM
9926 * we're using rename to replace one file with another. Start IO on it
9927 * now so we don't add too much work to the end of the transaction
5a3f23d5 9928 */
8d875f95 9929 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9930 filemap_flush(old_inode->i_mapping);
9931
76dda93c 9932 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9933 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9934 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9935 /*
9936 * We want to reserve the absolute worst case amount of items. So if
9937 * both inodes are subvols and we need to unlink them then that would
9938 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9939 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9940 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9941 * should cover the worst case number of items we'll modify.
5062af35
FM
9942 * If our rename has the whiteout flag, we need more 5 units for the
9943 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9944 * when selinux is enabled).
a22285a6 9945 */
5062af35
FM
9946 trans_num_items = 11;
9947 if (flags & RENAME_WHITEOUT)
9948 trans_num_items += 5;
9949 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9950 if (IS_ERR(trans)) {
cdd1fedf
DF
9951 ret = PTR_ERR(trans);
9952 goto out_notrans;
9953 }
76dda93c 9954
4df27c4d
YZ
9955 if (dest != root)
9956 btrfs_record_root_in_trans(trans, dest);
5f39d397 9957
877574e2 9958 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9959 if (ret)
9960 goto out_fail;
5a3f23d5 9961
67de1176 9962 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9963 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9964 /* force full log commit if subvolume involved. */
0b246afa 9965 btrfs_set_log_full_commit(fs_info, trans);
4df27c4d 9966 } else {
c4aba954
FM
9967 btrfs_pin_log_trans(root);
9968 log_pinned = true;
a5719521
YZ
9969 ret = btrfs_insert_inode_ref(trans, dest,
9970 new_dentry->d_name.name,
9971 new_dentry->d_name.len,
33345d01 9972 old_ino,
4a0cc7ca 9973 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9974 if (ret)
9975 goto out_fail;
4df27c4d 9976 }
5a3f23d5 9977
0c4d2d95
JB
9978 inode_inc_iversion(old_dir);
9979 inode_inc_iversion(new_dir);
9980 inode_inc_iversion(old_inode);
04b285f3
DD
9981 old_dir->i_ctime = old_dir->i_mtime =
9982 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9983 old_inode->i_ctime = current_time(old_dir);
5f39d397 9984
12fcfd22 9985 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9986 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9987 BTRFS_I(old_inode), 1);
12fcfd22 9988
33345d01 9989 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9990 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9991 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9992 old_dentry->d_name.name,
9993 old_dentry->d_name.len);
9994 } else {
4ec5934e
NB
9995 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9996 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9997 old_dentry->d_name.name,
9998 old_dentry->d_name.len);
9999 if (!ret)
10000 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 10001 }
79787eaa 10002 if (ret) {
66642832 10003 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10004 goto out_fail;
10005 }
39279cc3
CM
10006
10007 if (new_inode) {
0c4d2d95 10008 inode_inc_iversion(new_inode);
c2050a45 10009 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 10010 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
10011 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
10012 root_objectid = BTRFS_I(new_inode)->location.objectid;
10013 ret = btrfs_unlink_subvol(trans, dest, new_dir,
10014 root_objectid,
10015 new_dentry->d_name.name,
10016 new_dentry->d_name.len);
10017 BUG_ON(new_inode->i_nlink == 0);
10018 } else {
4ec5934e
NB
10019 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10020 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
10021 new_dentry->d_name.name,
10022 new_dentry->d_name.len);
10023 }
4ef31a45 10024 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
10025 ret = btrfs_orphan_add(trans,
10026 BTRFS_I(d_inode(new_dentry)));
79787eaa 10027 if (ret) {
66642832 10028 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10029 goto out_fail;
10030 }
39279cc3 10031 }
aec7477b 10032
db0a669f 10033 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 10034 new_dentry->d_name.name,
a5719521 10035 new_dentry->d_name.len, 0, index);
79787eaa 10036 if (ret) {
66642832 10037 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10038 goto out_fail;
10039 }
39279cc3 10040
67de1176
MX
10041 if (old_inode->i_nlink == 1)
10042 BTRFS_I(old_inode)->dir_index = index;
10043
3dc9e8f7 10044 if (log_pinned) {
10d9f309 10045 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 10046
f85b7379
DS
10047 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
10048 parent);
4df27c4d 10049 btrfs_end_log_trans(root);
3dc9e8f7 10050 log_pinned = false;
4df27c4d 10051 }
cdd1fedf
DF
10052
10053 if (flags & RENAME_WHITEOUT) {
10054 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10055 old_dentry);
10056
10057 if (ret) {
66642832 10058 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
10059 goto out_fail;
10060 }
4df27c4d 10061 }
39279cc3 10062out_fail:
3dc9e8f7
FM
10063 /*
10064 * If we have pinned the log and an error happened, we unpin tasks
10065 * trying to sync the log and force them to fallback to a transaction
10066 * commit if the log currently contains any of the inodes involved in
10067 * this rename operation (to ensure we do not persist a log with an
10068 * inconsistent state for any of these inodes or leading to any
10069 * inconsistencies when replayed). If the transaction was aborted, the
10070 * abortion reason is propagated to userspace when attempting to commit
10071 * the transaction. If the log does not contain any of these inodes, we
10072 * allow the tasks to sync it.
10073 */
10074 if (ret && log_pinned) {
0f8939b8
NB
10075 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10076 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10077 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 10078 (new_inode &&
0f8939b8 10079 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 10080 btrfs_set_log_full_commit(fs_info, trans);
3dc9e8f7
FM
10081
10082 btrfs_end_log_trans(root);
10083 log_pinned = false;
10084 }
3a45bb20 10085 btrfs_end_transaction(trans);
b44c59a8 10086out_notrans:
33345d01 10087 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 10088 up_read(&fs_info->subvol_sem);
9ed74f2d 10089
39279cc3
CM
10090 return ret;
10091}
10092
80ace85c
MS
10093static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10094 struct inode *new_dir, struct dentry *new_dentry,
10095 unsigned int flags)
10096{
cdd1fedf 10097 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
10098 return -EINVAL;
10099
cdd1fedf
DF
10100 if (flags & RENAME_EXCHANGE)
10101 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10102 new_dentry);
10103
10104 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
10105}
10106
8ccf6f19
MX
10107static void btrfs_run_delalloc_work(struct btrfs_work *work)
10108{
10109 struct btrfs_delalloc_work *delalloc_work;
9f23e289 10110 struct inode *inode;
8ccf6f19
MX
10111
10112 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10113 work);
9f23e289 10114 inode = delalloc_work->inode;
30424601
DS
10115 filemap_flush(inode->i_mapping);
10116 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10117 &BTRFS_I(inode)->runtime_flags))
9f23e289 10118 filemap_flush(inode->i_mapping);
8ccf6f19
MX
10119
10120 if (delalloc_work->delay_iput)
9f23e289 10121 btrfs_add_delayed_iput(inode);
8ccf6f19 10122 else
9f23e289 10123 iput(inode);
8ccf6f19
MX
10124 complete(&delalloc_work->completion);
10125}
10126
10127struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 10128 int delay_iput)
8ccf6f19
MX
10129{
10130 struct btrfs_delalloc_work *work;
10131
100d5702 10132 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
10133 if (!work)
10134 return NULL;
10135
10136 init_completion(&work->completion);
10137 INIT_LIST_HEAD(&work->list);
10138 work->inode = inode;
8ccf6f19 10139 work->delay_iput = delay_iput;
9e0af237
LB
10140 WARN_ON_ONCE(!inode);
10141 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10142 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
10143
10144 return work;
10145}
10146
10147void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10148{
10149 wait_for_completion(&work->completion);
100d5702 10150 kfree(work);
8ccf6f19
MX
10151}
10152
d352ac68
CM
10153/*
10154 * some fairly slow code that needs optimization. This walks the list
10155 * of all the inodes with pending delalloc and forces them to disk.
10156 */
6c255e67
MX
10157static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10158 int nr)
ea8c2819 10159{
ea8c2819 10160 struct btrfs_inode *binode;
5b21f2ed 10161 struct inode *inode;
8ccf6f19
MX
10162 struct btrfs_delalloc_work *work, *next;
10163 struct list_head works;
1eafa6c7 10164 struct list_head splice;
8ccf6f19 10165 int ret = 0;
ea8c2819 10166
8ccf6f19 10167 INIT_LIST_HEAD(&works);
1eafa6c7 10168 INIT_LIST_HEAD(&splice);
63607cc8 10169
573bfb72 10170 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10171 spin_lock(&root->delalloc_lock);
10172 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10173 while (!list_empty(&splice)) {
10174 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10175 delalloc_inodes);
1eafa6c7 10176
eb73c1b7
MX
10177 list_move_tail(&binode->delalloc_inodes,
10178 &root->delalloc_inodes);
5b21f2ed 10179 inode = igrab(&binode->vfs_inode);
df0af1a5 10180 if (!inode) {
eb73c1b7 10181 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10182 continue;
df0af1a5 10183 }
eb73c1b7 10184 spin_unlock(&root->delalloc_lock);
1eafa6c7 10185
651d494a 10186 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10187 if (!work) {
f4ab9ea7
JB
10188 if (delay_iput)
10189 btrfs_add_delayed_iput(inode);
10190 else
10191 iput(inode);
1eafa6c7 10192 ret = -ENOMEM;
a1ecaabb 10193 goto out;
5b21f2ed 10194 }
1eafa6c7 10195 list_add_tail(&work->list, &works);
a44903ab
QW
10196 btrfs_queue_work(root->fs_info->flush_workers,
10197 &work->work);
6c255e67
MX
10198 ret++;
10199 if (nr != -1 && ret >= nr)
a1ecaabb 10200 goto out;
5b21f2ed 10201 cond_resched();
eb73c1b7 10202 spin_lock(&root->delalloc_lock);
ea8c2819 10203 }
eb73c1b7 10204 spin_unlock(&root->delalloc_lock);
8c8bee1d 10205
a1ecaabb 10206out:
eb73c1b7
MX
10207 list_for_each_entry_safe(work, next, &works, list) {
10208 list_del_init(&work->list);
10209 btrfs_wait_and_free_delalloc_work(work);
10210 }
10211
10212 if (!list_empty_careful(&splice)) {
10213 spin_lock(&root->delalloc_lock);
10214 list_splice_tail(&splice, &root->delalloc_inodes);
10215 spin_unlock(&root->delalloc_lock);
10216 }
573bfb72 10217 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10218 return ret;
10219}
1eafa6c7 10220
eb73c1b7
MX
10221int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10222{
0b246afa 10223 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10224 int ret;
1eafa6c7 10225
0b246afa 10226 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10227 return -EROFS;
10228
6c255e67
MX
10229 ret = __start_delalloc_inodes(root, delay_iput, -1);
10230 if (ret > 0)
10231 ret = 0;
eb73c1b7
MX
10232 /*
10233 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
10234 * we have to make sure the IO is actually started and that
10235 * ordered extents get created before we return
10236 */
0b246afa
JM
10237 atomic_inc(&fs_info->async_submit_draining);
10238 while (atomic_read(&fs_info->nr_async_submits) ||
10239 atomic_read(&fs_info->async_delalloc_pages)) {
10240 wait_event(fs_info->async_submit_wait,
10241 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10242 atomic_read(&fs_info->async_delalloc_pages) == 0));
10243 }
10244 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7
MX
10245 return ret;
10246}
10247
6c255e67
MX
10248int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10249 int nr)
eb73c1b7
MX
10250{
10251 struct btrfs_root *root;
10252 struct list_head splice;
10253 int ret;
10254
2c21b4d7 10255 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10256 return -EROFS;
10257
10258 INIT_LIST_HEAD(&splice);
10259
573bfb72 10260 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10261 spin_lock(&fs_info->delalloc_root_lock);
10262 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10263 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10264 root = list_first_entry(&splice, struct btrfs_root,
10265 delalloc_root);
10266 root = btrfs_grab_fs_root(root);
10267 BUG_ON(!root);
10268 list_move_tail(&root->delalloc_root,
10269 &fs_info->delalloc_roots);
10270 spin_unlock(&fs_info->delalloc_root_lock);
10271
6c255e67 10272 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10273 btrfs_put_fs_root(root);
6c255e67 10274 if (ret < 0)
eb73c1b7
MX
10275 goto out;
10276
6c255e67
MX
10277 if (nr != -1) {
10278 nr -= ret;
10279 WARN_ON(nr < 0);
10280 }
eb73c1b7 10281 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10282 }
eb73c1b7 10283 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10284
6c255e67 10285 ret = 0;
eb73c1b7
MX
10286 atomic_inc(&fs_info->async_submit_draining);
10287 while (atomic_read(&fs_info->nr_async_submits) ||
10288 atomic_read(&fs_info->async_delalloc_pages)) {
10289 wait_event(fs_info->async_submit_wait,
10290 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10291 atomic_read(&fs_info->async_delalloc_pages) == 0));
10292 }
10293 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 10294out:
1eafa6c7 10295 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10296 spin_lock(&fs_info->delalloc_root_lock);
10297 list_splice_tail(&splice, &fs_info->delalloc_roots);
10298 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10299 }
573bfb72 10300 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10301 return ret;
ea8c2819
CM
10302}
10303
39279cc3
CM
10304static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10305 const char *symname)
10306{
0b246afa 10307 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10308 struct btrfs_trans_handle *trans;
10309 struct btrfs_root *root = BTRFS_I(dir)->root;
10310 struct btrfs_path *path;
10311 struct btrfs_key key;
1832a6d5 10312 struct inode *inode = NULL;
39279cc3
CM
10313 int err;
10314 int drop_inode = 0;
10315 u64 objectid;
67871254 10316 u64 index = 0;
39279cc3
CM
10317 int name_len;
10318 int datasize;
5f39d397 10319 unsigned long ptr;
39279cc3 10320 struct btrfs_file_extent_item *ei;
5f39d397 10321 struct extent_buffer *leaf;
39279cc3 10322
f06becc4 10323 name_len = strlen(symname);
0b246afa 10324 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10325 return -ENAMETOOLONG;
1832a6d5 10326
9ed74f2d
JB
10327 /*
10328 * 2 items for inode item and ref
10329 * 2 items for dir items
9269d12b
FM
10330 * 1 item for updating parent inode item
10331 * 1 item for the inline extent item
9ed74f2d
JB
10332 * 1 item for xattr if selinux is on
10333 */
9269d12b 10334 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10335 if (IS_ERR(trans))
10336 return PTR_ERR(trans);
1832a6d5 10337
581bb050
LZ
10338 err = btrfs_find_free_ino(root, &objectid);
10339 if (err)
10340 goto out_unlock;
10341
aec7477b 10342 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10343 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10344 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10345 if (IS_ERR(inode)) {
10346 err = PTR_ERR(inode);
39279cc3 10347 goto out_unlock;
7cf96da3 10348 }
39279cc3 10349
ad19db71
CS
10350 /*
10351 * If the active LSM wants to access the inode during
10352 * d_instantiate it needs these. Smack checks to see
10353 * if the filesystem supports xattrs by looking at the
10354 * ops vector.
10355 */
10356 inode->i_fop = &btrfs_file_operations;
10357 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10358 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10359 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10360
10361 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10362 if (err)
10363 goto out_unlock_inode;
ad19db71 10364
39279cc3 10365 path = btrfs_alloc_path();
d8926bb3
MF
10366 if (!path) {
10367 err = -ENOMEM;
b0d5d10f 10368 goto out_unlock_inode;
d8926bb3 10369 }
4a0cc7ca 10370 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10371 key.offset = 0;
962a298f 10372 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10373 datasize = btrfs_file_extent_calc_inline_size(name_len);
10374 err = btrfs_insert_empty_item(trans, root, path, &key,
10375 datasize);
54aa1f4d 10376 if (err) {
b0839166 10377 btrfs_free_path(path);
b0d5d10f 10378 goto out_unlock_inode;
54aa1f4d 10379 }
5f39d397
CM
10380 leaf = path->nodes[0];
10381 ei = btrfs_item_ptr(leaf, path->slots[0],
10382 struct btrfs_file_extent_item);
10383 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10384 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10385 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10386 btrfs_set_file_extent_encryption(leaf, ei, 0);
10387 btrfs_set_file_extent_compression(leaf, ei, 0);
10388 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10389 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10390
39279cc3 10391 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10392 write_extent_buffer(leaf, symname, ptr, name_len);
10393 btrfs_mark_buffer_dirty(leaf);
39279cc3 10394 btrfs_free_path(path);
5f39d397 10395
39279cc3 10396 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10397 inode_nohighmem(inode);
39279cc3 10398 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10399 inode_set_bytes(inode, name_len);
6ef06d27 10400 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10401 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10402 /*
10403 * Last step, add directory indexes for our symlink inode. This is the
10404 * last step to avoid extra cleanup of these indexes if an error happens
10405 * elsewhere above.
10406 */
10407 if (!err)
cef415af
NB
10408 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10409 BTRFS_I(inode), 0, index);
b0d5d10f 10410 if (err) {
54aa1f4d 10411 drop_inode = 1;
b0d5d10f
CM
10412 goto out_unlock_inode;
10413 }
10414
10415 unlock_new_inode(inode);
10416 d_instantiate(dentry, inode);
39279cc3
CM
10417
10418out_unlock:
3a45bb20 10419 btrfs_end_transaction(trans);
39279cc3
CM
10420 if (drop_inode) {
10421 inode_dec_link_count(inode);
10422 iput(inode);
10423 }
2ff7e61e 10424 btrfs_btree_balance_dirty(fs_info);
39279cc3 10425 return err;
b0d5d10f
CM
10426
10427out_unlock_inode:
10428 drop_inode = 1;
10429 unlock_new_inode(inode);
10430 goto out_unlock;
39279cc3 10431}
16432985 10432
0af3d00b
JB
10433static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10434 u64 start, u64 num_bytes, u64 min_size,
10435 loff_t actual_len, u64 *alloc_hint,
10436 struct btrfs_trans_handle *trans)
d899e052 10437{
0b246afa 10438 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10439 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10440 struct extent_map *em;
d899e052
YZ
10441 struct btrfs_root *root = BTRFS_I(inode)->root;
10442 struct btrfs_key ins;
d899e052 10443 u64 cur_offset = start;
55a61d1d 10444 u64 i_size;
154ea289 10445 u64 cur_bytes;
0b670dc4 10446 u64 last_alloc = (u64)-1;
d899e052 10447 int ret = 0;
0af3d00b 10448 bool own_trans = true;
18513091 10449 u64 end = start + num_bytes - 1;
d899e052 10450
0af3d00b
JB
10451 if (trans)
10452 own_trans = false;
d899e052 10453 while (num_bytes > 0) {
0af3d00b
JB
10454 if (own_trans) {
10455 trans = btrfs_start_transaction(root, 3);
10456 if (IS_ERR(trans)) {
10457 ret = PTR_ERR(trans);
10458 break;
10459 }
5a303d5d
YZ
10460 }
10461
ee22184b 10462 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10463 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10464 /*
10465 * If we are severely fragmented we could end up with really
10466 * small allocations, so if the allocator is returning small
10467 * chunks lets make its job easier by only searching for those
10468 * sized chunks.
10469 */
10470 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10471 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10472 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10473 if (ret) {
0af3d00b 10474 if (own_trans)
3a45bb20 10475 btrfs_end_transaction(trans);
a22285a6 10476 break;
d899e052 10477 }
0b246afa 10478 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10479
0b670dc4 10480 last_alloc = ins.offset;
d899e052
YZ
10481 ret = insert_reserved_file_extent(trans, inode,
10482 cur_offset, ins.objectid,
10483 ins.offset, ins.offset,
920bbbfb 10484 ins.offset, 0, 0, 0,
d899e052 10485 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10486 if (ret) {
2ff7e61e 10487 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10488 ins.offset, 0);
66642832 10489 btrfs_abort_transaction(trans, ret);
79787eaa 10490 if (own_trans)
3a45bb20 10491 btrfs_end_transaction(trans);
79787eaa
JM
10492 break;
10493 }
31193213 10494
dcdbc059 10495 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10496 cur_offset + ins.offset -1, 0);
5a303d5d 10497
5dc562c5
JB
10498 em = alloc_extent_map();
10499 if (!em) {
10500 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10501 &BTRFS_I(inode)->runtime_flags);
10502 goto next;
10503 }
10504
10505 em->start = cur_offset;
10506 em->orig_start = cur_offset;
10507 em->len = ins.offset;
10508 em->block_start = ins.objectid;
10509 em->block_len = ins.offset;
b4939680 10510 em->orig_block_len = ins.offset;
cc95bef6 10511 em->ram_bytes = ins.offset;
0b246afa 10512 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10513 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10514 em->generation = trans->transid;
10515
10516 while (1) {
10517 write_lock(&em_tree->lock);
09a2a8f9 10518 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10519 write_unlock(&em_tree->lock);
10520 if (ret != -EEXIST)
10521 break;
dcdbc059 10522 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10523 cur_offset + ins.offset - 1,
10524 0);
10525 }
10526 free_extent_map(em);
10527next:
d899e052
YZ
10528 num_bytes -= ins.offset;
10529 cur_offset += ins.offset;
efa56464 10530 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10531
0c4d2d95 10532 inode_inc_iversion(inode);
c2050a45 10533 inode->i_ctime = current_time(inode);
6cbff00f 10534 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10535 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10536 (actual_len > inode->i_size) &&
10537 (cur_offset > inode->i_size)) {
d1ea6a61 10538 if (cur_offset > actual_len)
55a61d1d 10539 i_size = actual_len;
d1ea6a61 10540 else
55a61d1d
JB
10541 i_size = cur_offset;
10542 i_size_write(inode, i_size);
10543 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10544 }
10545
d899e052 10546 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10547
10548 if (ret) {
66642832 10549 btrfs_abort_transaction(trans, ret);
79787eaa 10550 if (own_trans)
3a45bb20 10551 btrfs_end_transaction(trans);
79787eaa
JM
10552 break;
10553 }
d899e052 10554
0af3d00b 10555 if (own_trans)
3a45bb20 10556 btrfs_end_transaction(trans);
5a303d5d 10557 }
18513091 10558 if (cur_offset < end)
bc42bda2 10559 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
18513091 10560 end - cur_offset + 1);
d899e052
YZ
10561 return ret;
10562}
10563
0af3d00b
JB
10564int btrfs_prealloc_file_range(struct inode *inode, int mode,
10565 u64 start, u64 num_bytes, u64 min_size,
10566 loff_t actual_len, u64 *alloc_hint)
10567{
10568 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10569 min_size, actual_len, alloc_hint,
10570 NULL);
10571}
10572
10573int btrfs_prealloc_file_range_trans(struct inode *inode,
10574 struct btrfs_trans_handle *trans, int mode,
10575 u64 start, u64 num_bytes, u64 min_size,
10576 loff_t actual_len, u64 *alloc_hint)
10577{
10578 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10579 min_size, actual_len, alloc_hint, trans);
10580}
10581
e6dcd2dc
CM
10582static int btrfs_set_page_dirty(struct page *page)
10583{
e6dcd2dc
CM
10584 return __set_page_dirty_nobuffers(page);
10585}
10586
10556cb2 10587static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10588{
b83cc969 10589 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10590 umode_t mode = inode->i_mode;
b83cc969 10591
cb6db4e5
JM
10592 if (mask & MAY_WRITE &&
10593 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10594 if (btrfs_root_readonly(root))
10595 return -EROFS;
10596 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10597 return -EACCES;
10598 }
2830ba7f 10599 return generic_permission(inode, mask);
fdebe2bd 10600}
39279cc3 10601
ef3b9af5
FM
10602static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10603{
2ff7e61e 10604 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10605 struct btrfs_trans_handle *trans;
10606 struct btrfs_root *root = BTRFS_I(dir)->root;
10607 struct inode *inode = NULL;
10608 u64 objectid;
10609 u64 index;
10610 int ret = 0;
10611
10612 /*
10613 * 5 units required for adding orphan entry
10614 */
10615 trans = btrfs_start_transaction(root, 5);
10616 if (IS_ERR(trans))
10617 return PTR_ERR(trans);
10618
10619 ret = btrfs_find_free_ino(root, &objectid);
10620 if (ret)
10621 goto out;
10622
10623 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10624 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10625 if (IS_ERR(inode)) {
10626 ret = PTR_ERR(inode);
10627 inode = NULL;
10628 goto out;
10629 }
10630
ef3b9af5
FM
10631 inode->i_fop = &btrfs_file_operations;
10632 inode->i_op = &btrfs_file_inode_operations;
10633
10634 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10635 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10636
b0d5d10f
CM
10637 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10638 if (ret)
10639 goto out_inode;
10640
10641 ret = btrfs_update_inode(trans, root, inode);
10642 if (ret)
10643 goto out_inode;
73f2e545 10644 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10645 if (ret)
b0d5d10f 10646 goto out_inode;
ef3b9af5 10647
5762b5c9
FM
10648 /*
10649 * We set number of links to 0 in btrfs_new_inode(), and here we set
10650 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10651 * through:
10652 *
10653 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10654 */
10655 set_nlink(inode, 1);
b0d5d10f 10656 unlock_new_inode(inode);
ef3b9af5
FM
10657 d_tmpfile(dentry, inode);
10658 mark_inode_dirty(inode);
10659
10660out:
3a45bb20 10661 btrfs_end_transaction(trans);
ef3b9af5
FM
10662 if (ret)
10663 iput(inode);
2ff7e61e
JM
10664 btrfs_balance_delayed_items(fs_info);
10665 btrfs_btree_balance_dirty(fs_info);
ef3b9af5 10666 return ret;
b0d5d10f
CM
10667
10668out_inode:
10669 unlock_new_inode(inode);
10670 goto out;
10671
ef3b9af5
FM
10672}
10673
20a7db8a 10674__attribute__((const))
9d0d1c8b 10675static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
20a7db8a 10676{
9d0d1c8b 10677 return -EAGAIN;
20a7db8a
DS
10678}
10679
c6100a4b
JB
10680static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10681{
10682 struct inode *inode = private_data;
10683 return btrfs_sb(inode->i_sb);
10684}
10685
10686static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10687 u64 start, u64 end)
10688{
10689 struct inode *inode = private_data;
10690 u64 isize;
10691
10692 isize = i_size_read(inode);
10693 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10694 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10695 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10696 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10697 }
10698}
10699
10700void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10701{
10702 struct inode *inode = private_data;
10703 unsigned long index = start >> PAGE_SHIFT;
10704 unsigned long end_index = end >> PAGE_SHIFT;
10705 struct page *page;
10706
10707 while (index <= end_index) {
10708 page = find_get_page(inode->i_mapping, index);
10709 ASSERT(page); /* Pages should be in the extent_io_tree */
10710 set_page_writeback(page);
10711 put_page(page);
10712 index++;
10713 }
10714}
10715
6e1d5dcc 10716static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10717 .getattr = btrfs_getattr,
39279cc3
CM
10718 .lookup = btrfs_lookup,
10719 .create = btrfs_create,
10720 .unlink = btrfs_unlink,
10721 .link = btrfs_link,
10722 .mkdir = btrfs_mkdir,
10723 .rmdir = btrfs_rmdir,
2773bf00 10724 .rename = btrfs_rename2,
39279cc3
CM
10725 .symlink = btrfs_symlink,
10726 .setattr = btrfs_setattr,
618e21d5 10727 .mknod = btrfs_mknod,
5103e947 10728 .listxattr = btrfs_listxattr,
fdebe2bd 10729 .permission = btrfs_permission,
4e34e719 10730 .get_acl = btrfs_get_acl,
996a710d 10731 .set_acl = btrfs_set_acl,
93fd63c2 10732 .update_time = btrfs_update_time,
ef3b9af5 10733 .tmpfile = btrfs_tmpfile,
39279cc3 10734};
6e1d5dcc 10735static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10736 .lookup = btrfs_lookup,
fdebe2bd 10737 .permission = btrfs_permission,
93fd63c2 10738 .update_time = btrfs_update_time,
39279cc3 10739};
76dda93c 10740
828c0950 10741static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10742 .llseek = generic_file_llseek,
10743 .read = generic_read_dir,
02dbfc99 10744 .iterate_shared = btrfs_real_readdir,
34287aa3 10745 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10746#ifdef CONFIG_COMPAT
4c63c245 10747 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10748#endif
6bf13c0c 10749 .release = btrfs_release_file,
e02119d5 10750 .fsync = btrfs_sync_file,
39279cc3
CM
10751};
10752
20e5506b 10753static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10754 /* mandatory callbacks */
065631f6 10755 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac 10756 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4d53dddb 10757 .merge_bio_hook = btrfs_merge_bio_hook,
9d0d1c8b 10758 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
c6100a4b
JB
10759 .tree_fs_info = iotree_fs_info,
10760 .set_range_writeback = btrfs_set_range_writeback,
4d53dddb
DS
10761
10762 /* optional callbacks */
10763 .fill_delalloc = run_delalloc_range,
e6dcd2dc 10764 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10765 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10766 .set_bit_hook = btrfs_set_bit_hook,
10767 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10768 .merge_extent_hook = btrfs_merge_extent_hook,
10769 .split_extent_hook = btrfs_split_extent_hook,
c6100a4b 10770 .check_extent_io_range = btrfs_check_extent_io_range,
07157aac
CM
10771};
10772
35054394
CM
10773/*
10774 * btrfs doesn't support the bmap operation because swapfiles
10775 * use bmap to make a mapping of extents in the file. They assume
10776 * these extents won't change over the life of the file and they
10777 * use the bmap result to do IO directly to the drive.
10778 *
10779 * the btrfs bmap call would return logical addresses that aren't
10780 * suitable for IO and they also will change frequently as COW
10781 * operations happen. So, swapfile + btrfs == corruption.
10782 *
10783 * For now we're avoiding this by dropping bmap.
10784 */
7f09410b 10785static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10786 .readpage = btrfs_readpage,
10787 .writepage = btrfs_writepage,
b293f02e 10788 .writepages = btrfs_writepages,
3ab2fb5a 10789 .readpages = btrfs_readpages,
16432985 10790 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10791 .invalidatepage = btrfs_invalidatepage,
10792 .releasepage = btrfs_releasepage,
e6dcd2dc 10793 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10794 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10795};
10796
7f09410b 10797static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10798 .readpage = btrfs_readpage,
10799 .writepage = btrfs_writepage,
2bf5a725
CM
10800 .invalidatepage = btrfs_invalidatepage,
10801 .releasepage = btrfs_releasepage,
39279cc3
CM
10802};
10803
6e1d5dcc 10804static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10805 .getattr = btrfs_getattr,
10806 .setattr = btrfs_setattr,
5103e947 10807 .listxattr = btrfs_listxattr,
fdebe2bd 10808 .permission = btrfs_permission,
1506fcc8 10809 .fiemap = btrfs_fiemap,
4e34e719 10810 .get_acl = btrfs_get_acl,
996a710d 10811 .set_acl = btrfs_set_acl,
e41f941a 10812 .update_time = btrfs_update_time,
39279cc3 10813};
6e1d5dcc 10814static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10815 .getattr = btrfs_getattr,
10816 .setattr = btrfs_setattr,
fdebe2bd 10817 .permission = btrfs_permission,
33268eaf 10818 .listxattr = btrfs_listxattr,
4e34e719 10819 .get_acl = btrfs_get_acl,
996a710d 10820 .set_acl = btrfs_set_acl,
e41f941a 10821 .update_time = btrfs_update_time,
618e21d5 10822};
6e1d5dcc 10823static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10824 .get_link = page_get_link,
f209561a 10825 .getattr = btrfs_getattr,
22c44fe6 10826 .setattr = btrfs_setattr,
fdebe2bd 10827 .permission = btrfs_permission,
0279b4cd 10828 .listxattr = btrfs_listxattr,
e41f941a 10829 .update_time = btrfs_update_time,
39279cc3 10830};
76dda93c 10831
82d339d9 10832const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10833 .d_delete = btrfs_dentry_delete,
b4aff1f8 10834 .d_release = btrfs_dentry_release,
76dda93c 10835};