]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/inode.c
Btrfs: fix ENOSPC caused by orphan items reservations
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
8f18cf13 6#include <linux/kernel.h>
065631f6 7#include <linux/bio.h>
39279cc3 8#include <linux/buffer_head.h>
f2eb0a24 9#include <linux/file.h>
39279cc3
CM
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
39279cc3
CM
16#include <linux/backing-dev.h>
17#include <linux/mpage.h>
18#include <linux/swap.h>
19#include <linux/writeback.h>
39279cc3 20#include <linux/compat.h>
9ebefb18 21#include <linux/bit_spinlock.h>
5103e947 22#include <linux/xattr.h>
33268eaf 23#include <linux/posix_acl.h>
d899e052 24#include <linux/falloc.h>
5a0e3ad6 25#include <linux/slab.h>
7a36ddec 26#include <linux/ratelimit.h>
22c44fe6 27#include <linux/mount.h>
55e301fd 28#include <linux/btrfs.h>
53b381b3 29#include <linux/blkdev.h>
f23b5a59 30#include <linux/posix_acl_xattr.h>
e2e40f2c 31#include <linux/uio.h>
69fe2d75 32#include <linux/magic.h>
ae5e165d 33#include <linux/iversion.h>
92d32170 34#include <asm/unaligned.h>
39279cc3
CM
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39279cc3 39#include "print-tree.h"
e6dcd2dc 40#include "ordered-data.h"
95819c05 41#include "xattr.h"
e02119d5 42#include "tree-log.h"
4a54c8c1 43#include "volumes.h"
c8b97818 44#include "compression.h"
b4ce94de 45#include "locking.h"
dc89e982 46#include "free-space-cache.h"
581bb050 47#include "inode-map.h"
38c227d8 48#include "backref.h"
63541927 49#include "props.h"
31193213 50#include "qgroup.h"
dda3245e 51#include "dedupe.h"
39279cc3
CM
52
53struct btrfs_iget_args {
90d3e592 54 struct btrfs_key *location;
39279cc3
CM
55 struct btrfs_root *root;
56};
57
f28a4928 58struct btrfs_dio_data {
f28a4928
FM
59 u64 reserve;
60 u64 unsubmitted_oe_range_start;
61 u64 unsubmitted_oe_range_end;
4aaedfb0 62 int overwrite;
f28a4928
FM
63};
64
6e1d5dcc
AD
65static const struct inode_operations btrfs_dir_inode_operations;
66static const struct inode_operations btrfs_symlink_inode_operations;
67static const struct inode_operations btrfs_dir_ro_inode_operations;
68static const struct inode_operations btrfs_special_inode_operations;
69static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
70static const struct address_space_operations btrfs_aops;
71static const struct address_space_operations btrfs_symlink_aops;
828c0950 72static const struct file_operations btrfs_dir_file_operations;
20e5506b 73static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
74
75static struct kmem_cache *btrfs_inode_cachep;
76struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 77struct kmem_cache *btrfs_path_cachep;
dc89e982 78struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
79
80#define S_SHIFT 12
4d4ab6d6 81static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
82 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
83 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
84 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
85 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
86 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
87 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
88 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
89};
90
3972f260 91static int btrfs_setsize(struct inode *inode, struct iattr *attr);
213e8c55 92static int btrfs_truncate(struct inode *inode, bool skip_writeback);
5fd02043 93static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
94static noinline int cow_file_range(struct inode *inode,
95 struct page *locked_page,
dda3245e
WX
96 u64 start, u64 end, u64 delalloc_end,
97 int *page_started, unsigned long *nr_written,
98 int unlock, struct btrfs_dedupe_hash *hash);
6f9994db
LB
99static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
100 u64 orig_start, u64 block_start,
101 u64 block_len, u64 orig_block_len,
102 u64 ram_bytes, int compress_type,
103 int type);
7b128766 104
52427260
QW
105static void __endio_write_update_ordered(struct inode *inode,
106 const u64 offset, const u64 bytes,
107 const bool uptodate);
108
109/*
110 * Cleanup all submitted ordered extents in specified range to handle errors
111 * from the fill_dellaloc() callback.
112 *
113 * NOTE: caller must ensure that when an error happens, it can not call
114 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
115 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
116 * to be released, which we want to happen only when finishing the ordered
117 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
118 * fill_delalloc() callback already does proper cleanup for the first page of
119 * the range, that is, it invokes the callback writepage_end_io_hook() for the
120 * range of the first page.
121 */
122static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
123 const u64 offset,
124 const u64 bytes)
125{
63d71450
NA
126 unsigned long index = offset >> PAGE_SHIFT;
127 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
128 struct page *page;
129
130 while (index <= end_index) {
131 page = find_get_page(inode->i_mapping, index);
132 index++;
133 if (!page)
134 continue;
135 ClearPagePrivate2(page);
136 put_page(page);
137 }
52427260
QW
138 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
139 bytes - PAGE_SIZE, false);
140}
141
48a3b636 142static int btrfs_dirty_inode(struct inode *inode);
7b128766 143
6a3891c5
JB
144#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
145void btrfs_test_inode_set_ops(struct inode *inode)
146{
147 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
148}
149#endif
150
f34f57a3 151static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
152 struct inode *inode, struct inode *dir,
153 const struct qstr *qstr)
0279b4cd
JO
154{
155 int err;
156
f34f57a3 157 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 158 if (!err)
2a7dba39 159 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
160 return err;
161}
162
c8b97818
CM
163/*
164 * this does all the hard work for inserting an inline extent into
165 * the btree. The caller should have done a btrfs_drop_extents so that
166 * no overlapping inline items exist in the btree
167 */
40f76580 168static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 169 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
170 struct btrfs_root *root, struct inode *inode,
171 u64 start, size_t size, size_t compressed_size,
fe3f566c 172 int compress_type,
c8b97818
CM
173 struct page **compressed_pages)
174{
c8b97818
CM
175 struct extent_buffer *leaf;
176 struct page *page = NULL;
177 char *kaddr;
178 unsigned long ptr;
179 struct btrfs_file_extent_item *ei;
c8b97818
CM
180 int ret;
181 size_t cur_size = size;
c8b97818 182 unsigned long offset;
c8b97818 183
fe3f566c 184 if (compressed_size && compressed_pages)
c8b97818 185 cur_size = compressed_size;
c8b97818 186
1acae57b 187 inode_add_bytes(inode, size);
c8b97818 188
1acae57b
FDBM
189 if (!extent_inserted) {
190 struct btrfs_key key;
191 size_t datasize;
c8b97818 192
4a0cc7ca 193 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 194 key.offset = start;
962a298f 195 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 196
1acae57b
FDBM
197 datasize = btrfs_file_extent_calc_inline_size(cur_size);
198 path->leave_spinning = 1;
199 ret = btrfs_insert_empty_item(trans, root, path, &key,
200 datasize);
79b4f4c6 201 if (ret)
1acae57b 202 goto fail;
c8b97818
CM
203 }
204 leaf = path->nodes[0];
205 ei = btrfs_item_ptr(leaf, path->slots[0],
206 struct btrfs_file_extent_item);
207 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
208 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
209 btrfs_set_file_extent_encryption(leaf, ei, 0);
210 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
211 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
212 ptr = btrfs_file_extent_inline_start(ei);
213
261507a0 214 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
215 struct page *cpage;
216 int i = 0;
d397712b 217 while (compressed_size > 0) {
c8b97818 218 cpage = compressed_pages[i];
5b050f04 219 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 220 PAGE_SIZE);
c8b97818 221
7ac687d9 222 kaddr = kmap_atomic(cpage);
c8b97818 223 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 224 kunmap_atomic(kaddr);
c8b97818
CM
225
226 i++;
227 ptr += cur_size;
228 compressed_size -= cur_size;
229 }
230 btrfs_set_file_extent_compression(leaf, ei,
261507a0 231 compress_type);
c8b97818
CM
232 } else {
233 page = find_get_page(inode->i_mapping,
09cbfeaf 234 start >> PAGE_SHIFT);
c8b97818 235 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 236 kaddr = kmap_atomic(page);
09cbfeaf 237 offset = start & (PAGE_SIZE - 1);
c8b97818 238 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 239 kunmap_atomic(kaddr);
09cbfeaf 240 put_page(page);
c8b97818
CM
241 }
242 btrfs_mark_buffer_dirty(leaf);
1acae57b 243 btrfs_release_path(path);
c8b97818 244
c2167754
YZ
245 /*
246 * we're an inline extent, so nobody can
247 * extend the file past i_size without locking
248 * a page we already have locked.
249 *
250 * We must do any isize and inode updates
251 * before we unlock the pages. Otherwise we
252 * could end up racing with unlink.
253 */
c8b97818 254 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 255 ret = btrfs_update_inode(trans, root, inode);
c2167754 256
c8b97818 257fail:
79b4f4c6 258 return ret;
c8b97818
CM
259}
260
261
262/*
263 * conditionally insert an inline extent into the file. This
264 * does the checks required to make sure the data is small enough
265 * to fit as an inline extent.
266 */
d02c0e20 267static noinline int cow_file_range_inline(struct inode *inode, u64 start,
00361589
JB
268 u64 end, size_t compressed_size,
269 int compress_type,
270 struct page **compressed_pages)
c8b97818 271{
d02c0e20 272 struct btrfs_root *root = BTRFS_I(inode)->root;
0b246afa 273 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 274 struct btrfs_trans_handle *trans;
c8b97818
CM
275 u64 isize = i_size_read(inode);
276 u64 actual_end = min(end + 1, isize);
277 u64 inline_len = actual_end - start;
0b246afa 278 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
279 u64 data_len = inline_len;
280 int ret;
1acae57b
FDBM
281 struct btrfs_path *path;
282 int extent_inserted = 0;
283 u32 extent_item_size;
c8b97818
CM
284
285 if (compressed_size)
286 data_len = compressed_size;
287
288 if (start > 0 ||
0b246afa
JM
289 actual_end > fs_info->sectorsize ||
290 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 291 (!compressed_size &&
0b246afa 292 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 293 end + 1 < isize ||
0b246afa 294 data_len > fs_info->max_inline) {
c8b97818
CM
295 return 1;
296 }
297
1acae57b
FDBM
298 path = btrfs_alloc_path();
299 if (!path)
300 return -ENOMEM;
301
00361589 302 trans = btrfs_join_transaction(root);
1acae57b
FDBM
303 if (IS_ERR(trans)) {
304 btrfs_free_path(path);
00361589 305 return PTR_ERR(trans);
1acae57b 306 }
69fe2d75 307 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
00361589 308
1acae57b
FDBM
309 if (compressed_size && compressed_pages)
310 extent_item_size = btrfs_file_extent_calc_inline_size(
311 compressed_size);
312 else
313 extent_item_size = btrfs_file_extent_calc_inline_size(
314 inline_len);
315
316 ret = __btrfs_drop_extents(trans, root, inode, path,
317 start, aligned_end, NULL,
318 1, 1, extent_item_size, &extent_inserted);
00361589 319 if (ret) {
66642832 320 btrfs_abort_transaction(trans, ret);
00361589
JB
321 goto out;
322 }
c8b97818
CM
323
324 if (isize > actual_end)
325 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
326 ret = insert_inline_extent(trans, path, extent_inserted,
327 root, inode, start,
c8b97818 328 inline_len, compressed_size,
fe3f566c 329 compress_type, compressed_pages);
2adcac1a 330 if (ret && ret != -ENOSPC) {
66642832 331 btrfs_abort_transaction(trans, ret);
00361589 332 goto out;
2adcac1a 333 } else if (ret == -ENOSPC) {
00361589
JB
334 ret = 1;
335 goto out;
79787eaa 336 }
2adcac1a 337
bdc20e67 338 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
dcdbc059 339 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 340out:
94ed938a
QW
341 /*
342 * Don't forget to free the reserved space, as for inlined extent
343 * it won't count as data extent, free them directly here.
344 * And at reserve time, it's always aligned to page size, so
345 * just free one page here.
346 */
bc42bda2 347 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 348 btrfs_free_path(path);
3a45bb20 349 btrfs_end_transaction(trans);
00361589 350 return ret;
c8b97818
CM
351}
352
771ed689
CM
353struct async_extent {
354 u64 start;
355 u64 ram_size;
356 u64 compressed_size;
357 struct page **pages;
358 unsigned long nr_pages;
261507a0 359 int compress_type;
771ed689
CM
360 struct list_head list;
361};
362
363struct async_cow {
364 struct inode *inode;
365 struct btrfs_root *root;
366 struct page *locked_page;
367 u64 start;
368 u64 end;
f82b7359 369 unsigned int write_flags;
771ed689
CM
370 struct list_head extents;
371 struct btrfs_work work;
372};
373
374static noinline int add_async_extent(struct async_cow *cow,
375 u64 start, u64 ram_size,
376 u64 compressed_size,
377 struct page **pages,
261507a0
LZ
378 unsigned long nr_pages,
379 int compress_type)
771ed689
CM
380{
381 struct async_extent *async_extent;
382
383 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 384 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
385 async_extent->start = start;
386 async_extent->ram_size = ram_size;
387 async_extent->compressed_size = compressed_size;
388 async_extent->pages = pages;
389 async_extent->nr_pages = nr_pages;
261507a0 390 async_extent->compress_type = compress_type;
771ed689
CM
391 list_add_tail(&async_extent->list, &cow->extents);
392 return 0;
393}
394
c2fcdcdf 395static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
f79707b0 396{
0b246afa 397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
398
399 /* force compress */
0b246afa 400 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 401 return 1;
eec63c65
DS
402 /* defrag ioctl */
403 if (BTRFS_I(inode)->defrag_compress)
404 return 1;
f79707b0
WS
405 /* bad compression ratios */
406 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
407 return 0;
0b246afa 408 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0 409 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
b52aa8c9 410 BTRFS_I(inode)->prop_compress)
c2fcdcdf 411 return btrfs_compress_heuristic(inode, start, end);
f79707b0
WS
412 return 0;
413}
414
6158e1ce 415static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
416 u64 start, u64 end, u64 num_bytes, u64 small_write)
417{
418 /* If this is a small write inside eof, kick off a defrag */
419 if (num_bytes < small_write &&
6158e1ce 420 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
421 btrfs_add_inode_defrag(NULL, inode);
422}
423
d352ac68 424/*
771ed689
CM
425 * we create compressed extents in two phases. The first
426 * phase compresses a range of pages that have already been
427 * locked (both pages and state bits are locked).
c8b97818 428 *
771ed689
CM
429 * This is done inside an ordered work queue, and the compression
430 * is spread across many cpus. The actual IO submission is step
431 * two, and the ordered work queue takes care of making sure that
432 * happens in the same order things were put onto the queue by
433 * writepages and friends.
c8b97818 434 *
771ed689
CM
435 * If this code finds it can't get good compression, it puts an
436 * entry onto the work queue to write the uncompressed bytes. This
437 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
438 * are written in the same order that the flusher thread sent them
439 * down.
d352ac68 440 */
c44f649e 441static noinline void compress_file_range(struct inode *inode,
771ed689
CM
442 struct page *locked_page,
443 u64 start, u64 end,
444 struct async_cow *async_cow,
445 int *num_added)
b888db2b 446{
0b246afa 447 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0b246afa 448 u64 blocksize = fs_info->sectorsize;
c8b97818 449 u64 actual_end;
42dc7bab 450 u64 isize = i_size_read(inode);
e6dcd2dc 451 int ret = 0;
c8b97818
CM
452 struct page **pages = NULL;
453 unsigned long nr_pages;
c8b97818
CM
454 unsigned long total_compressed = 0;
455 unsigned long total_in = 0;
c8b97818
CM
456 int i;
457 int will_compress;
0b246afa 458 int compress_type = fs_info->compress_type;
4adaa611 459 int redirty = 0;
b888db2b 460
6158e1ce
NB
461 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
462 SZ_16K);
4cb5300b 463
42dc7bab 464 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
465again:
466 will_compress = 0;
09cbfeaf 467 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
468 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
469 nr_pages = min_t(unsigned long, nr_pages,
470 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 471
f03d9301
CM
472 /*
473 * we don't want to send crud past the end of i_size through
474 * compression, that's just a waste of CPU time. So, if the
475 * end of the file is before the start of our current
476 * requested range of bytes, we bail out to the uncompressed
477 * cleanup code that can deal with all of this.
478 *
479 * It isn't really the fastest way to fix things, but this is a
480 * very uncommon corner.
481 */
482 if (actual_end <= start)
483 goto cleanup_and_bail_uncompressed;
484
c8b97818
CM
485 total_compressed = actual_end - start;
486
4bcbb332
SW
487 /*
488 * skip compression for a small file range(<=blocksize) that
01327610 489 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
490 */
491 if (total_compressed <= blocksize &&
492 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
493 goto cleanup_and_bail_uncompressed;
494
069eac78
DS
495 total_compressed = min_t(unsigned long, total_compressed,
496 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
497 total_in = 0;
498 ret = 0;
db94535d 499
771ed689
CM
500 /*
501 * we do compression for mount -o compress and when the
502 * inode has not been flagged as nocompress. This flag can
503 * change at any time if we discover bad compression ratios.
c8b97818 504 */
c2fcdcdf 505 if (inode_need_compress(inode, start, end)) {
c8b97818 506 WARN_ON(pages);
31e818fe 507 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
508 if (!pages) {
509 /* just bail out to the uncompressed code */
510 goto cont;
511 }
c8b97818 512
eec63c65
DS
513 if (BTRFS_I(inode)->defrag_compress)
514 compress_type = BTRFS_I(inode)->defrag_compress;
515 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 516 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 517
4adaa611
CM
518 /*
519 * we need to call clear_page_dirty_for_io on each
520 * page in the range. Otherwise applications with the file
521 * mmap'd can wander in and change the page contents while
522 * we are compressing them.
523 *
524 * If the compression fails for any reason, we set the pages
525 * dirty again later on.
e9679de3
TT
526 *
527 * Note that the remaining part is redirtied, the start pointer
528 * has moved, the end is the original one.
4adaa611 529 */
e9679de3
TT
530 if (!redirty) {
531 extent_range_clear_dirty_for_io(inode, start, end);
532 redirty = 1;
533 }
f51d2b59
DS
534
535 /* Compression level is applied here and only here */
536 ret = btrfs_compress_pages(
537 compress_type | (fs_info->compress_level << 4),
261507a0 538 inode->i_mapping, start,
38c31464 539 pages,
4d3a800e 540 &nr_pages,
261507a0 541 &total_in,
e5d74902 542 &total_compressed);
c8b97818
CM
543
544 if (!ret) {
545 unsigned long offset = total_compressed &
09cbfeaf 546 (PAGE_SIZE - 1);
4d3a800e 547 struct page *page = pages[nr_pages - 1];
c8b97818
CM
548 char *kaddr;
549
550 /* zero the tail end of the last page, we might be
551 * sending it down to disk
552 */
553 if (offset) {
7ac687d9 554 kaddr = kmap_atomic(page);
c8b97818 555 memset(kaddr + offset, 0,
09cbfeaf 556 PAGE_SIZE - offset);
7ac687d9 557 kunmap_atomic(kaddr);
c8b97818
CM
558 }
559 will_compress = 1;
560 }
561 }
560f7d75 562cont:
c8b97818
CM
563 if (start == 0) {
564 /* lets try to make an inline extent */
6018ba0a 565 if (ret || total_in < actual_end) {
c8b97818 566 /* we didn't compress the entire range, try
771ed689 567 * to make an uncompressed inline extent.
c8b97818 568 */
d02c0e20
NB
569 ret = cow_file_range_inline(inode, start, end, 0,
570 BTRFS_COMPRESS_NONE, NULL);
c8b97818 571 } else {
771ed689 572 /* try making a compressed inline extent */
d02c0e20 573 ret = cow_file_range_inline(inode, start, end,
fe3f566c
LZ
574 total_compressed,
575 compress_type, pages);
c8b97818 576 }
79787eaa 577 if (ret <= 0) {
151a41bc 578 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
579 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
580 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
581 unsigned long page_error_op;
582
e6eb4314 583 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 584
771ed689 585 /*
79787eaa
JM
586 * inline extent creation worked or returned error,
587 * we don't need to create any more async work items.
588 * Unlock and free up our temp pages.
8b62f87b
JB
589 *
590 * We use DO_ACCOUNTING here because we need the
591 * delalloc_release_metadata to be done _after_ we drop
592 * our outstanding extent for clearing delalloc for this
593 * range.
771ed689 594 */
ba8b04c1
QW
595 extent_clear_unlock_delalloc(inode, start, end, end,
596 NULL, clear_flags,
597 PAGE_UNLOCK |
c2790a2e
JB
598 PAGE_CLEAR_DIRTY |
599 PAGE_SET_WRITEBACK |
e6eb4314 600 page_error_op |
c2790a2e 601 PAGE_END_WRITEBACK);
c8b97818
CM
602 goto free_pages_out;
603 }
604 }
605
606 if (will_compress) {
607 /*
608 * we aren't doing an inline extent round the compressed size
609 * up to a block size boundary so the allocator does sane
610 * things
611 */
fda2832f 612 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
613
614 /*
615 * one last check to make sure the compression is really a
170607eb
TT
616 * win, compare the page count read with the blocks on disk,
617 * compression must free at least one sector size
c8b97818 618 */
09cbfeaf 619 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 620 if (total_compressed + blocksize <= total_in) {
c8bb0c8b
AS
621 *num_added += 1;
622
623 /*
624 * The async work queues will take care of doing actual
625 * allocation on disk for these compressed pages, and
626 * will submit them to the elevator.
627 */
1170862d 628 add_async_extent(async_cow, start, total_in,
4d3a800e 629 total_compressed, pages, nr_pages,
c8bb0c8b
AS
630 compress_type);
631
1170862d
TT
632 if (start + total_in < end) {
633 start += total_in;
c8bb0c8b
AS
634 pages = NULL;
635 cond_resched();
636 goto again;
637 }
638 return;
c8b97818
CM
639 }
640 }
c8bb0c8b 641 if (pages) {
c8b97818
CM
642 /*
643 * the compression code ran but failed to make things smaller,
644 * free any pages it allocated and our page pointer array
645 */
4d3a800e 646 for (i = 0; i < nr_pages; i++) {
70b99e69 647 WARN_ON(pages[i]->mapping);
09cbfeaf 648 put_page(pages[i]);
c8b97818
CM
649 }
650 kfree(pages);
651 pages = NULL;
652 total_compressed = 0;
4d3a800e 653 nr_pages = 0;
c8b97818
CM
654
655 /* flag the file so we don't compress in the future */
0b246afa 656 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 657 !(BTRFS_I(inode)->prop_compress)) {
a555f810 658 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 659 }
c8b97818 660 }
f03d9301 661cleanup_and_bail_uncompressed:
c8bb0c8b
AS
662 /*
663 * No compression, but we still need to write the pages in the file
664 * we've been given so far. redirty the locked page if it corresponds
665 * to our extent and set things up for the async work queue to run
666 * cow_file_range to do the normal delalloc dance.
667 */
668 if (page_offset(locked_page) >= start &&
669 page_offset(locked_page) <= end)
670 __set_page_dirty_nobuffers(locked_page);
671 /* unlocked later on in the async handlers */
672
673 if (redirty)
674 extent_range_redirty_for_io(inode, start, end);
675 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
676 BTRFS_COMPRESS_NONE);
677 *num_added += 1;
3b951516 678
c44f649e 679 return;
771ed689
CM
680
681free_pages_out:
4d3a800e 682 for (i = 0; i < nr_pages; i++) {
771ed689 683 WARN_ON(pages[i]->mapping);
09cbfeaf 684 put_page(pages[i]);
771ed689 685 }
d397712b 686 kfree(pages);
771ed689 687}
771ed689 688
40ae837b
FM
689static void free_async_extent_pages(struct async_extent *async_extent)
690{
691 int i;
692
693 if (!async_extent->pages)
694 return;
695
696 for (i = 0; i < async_extent->nr_pages; i++) {
697 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 698 put_page(async_extent->pages[i]);
40ae837b
FM
699 }
700 kfree(async_extent->pages);
701 async_extent->nr_pages = 0;
702 async_extent->pages = NULL;
771ed689
CM
703}
704
705/*
706 * phase two of compressed writeback. This is the ordered portion
707 * of the code, which only gets called in the order the work was
708 * queued. We walk all the async extents created by compress_file_range
709 * and send them down to the disk.
710 */
dec8f175 711static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
712 struct async_cow *async_cow)
713{
0b246afa 714 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
715 struct async_extent *async_extent;
716 u64 alloc_hint = 0;
771ed689
CM
717 struct btrfs_key ins;
718 struct extent_map *em;
719 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689 720 struct extent_io_tree *io_tree;
f5a84ee3 721 int ret = 0;
771ed689 722
3e04e7f1 723again:
d397712b 724 while (!list_empty(&async_cow->extents)) {
771ed689
CM
725 async_extent = list_entry(async_cow->extents.next,
726 struct async_extent, list);
727 list_del(&async_extent->list);
c8b97818 728
771ed689
CM
729 io_tree = &BTRFS_I(inode)->io_tree;
730
f5a84ee3 731retry:
771ed689
CM
732 /* did the compression code fall back to uncompressed IO? */
733 if (!async_extent->pages) {
734 int page_started = 0;
735 unsigned long nr_written = 0;
736
737 lock_extent(io_tree, async_extent->start,
2ac55d41 738 async_extent->start +
d0082371 739 async_extent->ram_size - 1);
771ed689
CM
740
741 /* allocate blocks */
f5a84ee3
JB
742 ret = cow_file_range(inode, async_cow->locked_page,
743 async_extent->start,
744 async_extent->start +
745 async_extent->ram_size - 1,
dda3245e
WX
746 async_extent->start +
747 async_extent->ram_size - 1,
748 &page_started, &nr_written, 0,
749 NULL);
771ed689 750
79787eaa
JM
751 /* JDM XXX */
752
771ed689
CM
753 /*
754 * if page_started, cow_file_range inserted an
755 * inline extent and took care of all the unlocking
756 * and IO for us. Otherwise, we need to submit
757 * all those pages down to the drive.
758 */
f5a84ee3 759 if (!page_started && !ret)
5e3ee236
NB
760 extent_write_locked_range(inode,
761 async_extent->start,
d397712b 762 async_extent->start +
771ed689 763 async_extent->ram_size - 1,
771ed689 764 WB_SYNC_ALL);
3e04e7f1
JB
765 else if (ret)
766 unlock_page(async_cow->locked_page);
771ed689
CM
767 kfree(async_extent);
768 cond_resched();
769 continue;
770 }
771
772 lock_extent(io_tree, async_extent->start,
d0082371 773 async_extent->start + async_extent->ram_size - 1);
771ed689 774
18513091 775 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
776 async_extent->compressed_size,
777 async_extent->compressed_size,
e570fd27 778 0, alloc_hint, &ins, 1, 1);
f5a84ee3 779 if (ret) {
40ae837b 780 free_async_extent_pages(async_extent);
3e04e7f1 781
fdf8e2ea
JB
782 if (ret == -ENOSPC) {
783 unlock_extent(io_tree, async_extent->start,
784 async_extent->start +
785 async_extent->ram_size - 1);
ce62003f
LB
786
787 /*
788 * we need to redirty the pages if we decide to
789 * fallback to uncompressed IO, otherwise we
790 * will not submit these pages down to lower
791 * layers.
792 */
793 extent_range_redirty_for_io(inode,
794 async_extent->start,
795 async_extent->start +
796 async_extent->ram_size - 1);
797
79787eaa 798 goto retry;
fdf8e2ea 799 }
3e04e7f1 800 goto out_free;
f5a84ee3 801 }
c2167754
YZ
802 /*
803 * here we're doing allocation and writeback of the
804 * compressed pages
805 */
6f9994db
LB
806 em = create_io_em(inode, async_extent->start,
807 async_extent->ram_size, /* len */
808 async_extent->start, /* orig_start */
809 ins.objectid, /* block_start */
810 ins.offset, /* block_len */
811 ins.offset, /* orig_block_len */
812 async_extent->ram_size, /* ram_bytes */
813 async_extent->compress_type,
814 BTRFS_ORDERED_COMPRESSED);
815 if (IS_ERR(em))
816 /* ret value is not necessary due to void function */
3e04e7f1 817 goto out_free_reserve;
6f9994db 818 free_extent_map(em);
3e04e7f1 819
261507a0
LZ
820 ret = btrfs_add_ordered_extent_compress(inode,
821 async_extent->start,
822 ins.objectid,
823 async_extent->ram_size,
824 ins.offset,
825 BTRFS_ORDERED_COMPRESSED,
826 async_extent->compress_type);
d9f85963 827 if (ret) {
dcdbc059
NB
828 btrfs_drop_extent_cache(BTRFS_I(inode),
829 async_extent->start,
d9f85963
FM
830 async_extent->start +
831 async_extent->ram_size - 1, 0);
3e04e7f1 832 goto out_free_reserve;
d9f85963 833 }
0b246afa 834 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 835
771ed689
CM
836 /*
837 * clear dirty, set writeback and unlock the pages.
838 */
c2790a2e 839 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
840 async_extent->start +
841 async_extent->ram_size - 1,
a791e35e
CM
842 async_extent->start +
843 async_extent->ram_size - 1,
151a41bc
JB
844 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
845 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 846 PAGE_SET_WRITEBACK);
4e4cbee9 847 if (btrfs_submit_compressed_write(inode,
d397712b
CM
848 async_extent->start,
849 async_extent->ram_size,
850 ins.objectid,
851 ins.offset, async_extent->pages,
f82b7359
LB
852 async_extent->nr_pages,
853 async_cow->write_flags)) {
fce2a4e6
FM
854 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
855 struct page *p = async_extent->pages[0];
856 const u64 start = async_extent->start;
857 const u64 end = start + async_extent->ram_size - 1;
858
859 p->mapping = inode->i_mapping;
860 tree->ops->writepage_end_io_hook(p, start, end,
861 NULL, 0);
862 p->mapping = NULL;
ba8b04c1
QW
863 extent_clear_unlock_delalloc(inode, start, end, end,
864 NULL, 0,
fce2a4e6
FM
865 PAGE_END_WRITEBACK |
866 PAGE_SET_ERROR);
40ae837b 867 free_async_extent_pages(async_extent);
fce2a4e6 868 }
771ed689
CM
869 alloc_hint = ins.objectid + ins.offset;
870 kfree(async_extent);
871 cond_resched();
872 }
dec8f175 873 return;
3e04e7f1 874out_free_reserve:
0b246afa 875 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 876 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 877out_free:
c2790a2e 878 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
879 async_extent->start +
880 async_extent->ram_size - 1,
3e04e7f1
JB
881 async_extent->start +
882 async_extent->ram_size - 1,
c2790a2e 883 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 884 EXTENT_DELALLOC_NEW |
151a41bc
JB
885 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
886 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
887 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
888 PAGE_SET_ERROR);
40ae837b 889 free_async_extent_pages(async_extent);
79787eaa 890 kfree(async_extent);
3e04e7f1 891 goto again;
771ed689
CM
892}
893
4b46fce2
JB
894static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
895 u64 num_bytes)
896{
897 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
898 struct extent_map *em;
899 u64 alloc_hint = 0;
900
901 read_lock(&em_tree->lock);
902 em = search_extent_mapping(em_tree, start, num_bytes);
903 if (em) {
904 /*
905 * if block start isn't an actual block number then find the
906 * first block in this inode and use that as a hint. If that
907 * block is also bogus then just don't worry about it.
908 */
909 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
910 free_extent_map(em);
911 em = search_extent_mapping(em_tree, 0, 0);
912 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
913 alloc_hint = em->block_start;
914 if (em)
915 free_extent_map(em);
916 } else {
917 alloc_hint = em->block_start;
918 free_extent_map(em);
919 }
920 }
921 read_unlock(&em_tree->lock);
922
923 return alloc_hint;
924}
925
771ed689
CM
926/*
927 * when extent_io.c finds a delayed allocation range in the file,
928 * the call backs end up in this code. The basic idea is to
929 * allocate extents on disk for the range, and create ordered data structs
930 * in ram to track those extents.
931 *
932 * locked_page is the page that writepage had locked already. We use
933 * it to make sure we don't do extra locks or unlocks.
934 *
935 * *page_started is set to one if we unlock locked_page and do everything
936 * required to start IO on it. It may be clean and already done with
937 * IO when we return.
938 */
00361589
JB
939static noinline int cow_file_range(struct inode *inode,
940 struct page *locked_page,
dda3245e
WX
941 u64 start, u64 end, u64 delalloc_end,
942 int *page_started, unsigned long *nr_written,
943 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 944{
0b246afa 945 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 946 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
947 u64 alloc_hint = 0;
948 u64 num_bytes;
949 unsigned long ram_size;
a315e68f 950 u64 cur_alloc_size = 0;
0b246afa 951 u64 blocksize = fs_info->sectorsize;
771ed689
CM
952 struct btrfs_key ins;
953 struct extent_map *em;
a315e68f
FM
954 unsigned clear_bits;
955 unsigned long page_ops;
956 bool extent_reserved = false;
771ed689
CM
957 int ret = 0;
958
70ddc553 959 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 960 WARN_ON_ONCE(1);
29bce2f3
JB
961 ret = -EINVAL;
962 goto out_unlock;
02ecd2c2 963 }
771ed689 964
fda2832f 965 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 966 num_bytes = max(blocksize, num_bytes);
566b1760 967 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 968
6158e1ce 969 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 970
771ed689
CM
971 if (start == 0) {
972 /* lets try to make an inline extent */
d02c0e20
NB
973 ret = cow_file_range_inline(inode, start, end, 0,
974 BTRFS_COMPRESS_NONE, NULL);
771ed689 975 if (ret == 0) {
8b62f87b
JB
976 /*
977 * We use DO_ACCOUNTING here because we need the
978 * delalloc_release_metadata to be run _after_ we drop
979 * our outstanding extent for clearing delalloc for this
980 * range.
981 */
ba8b04c1
QW
982 extent_clear_unlock_delalloc(inode, start, end,
983 delalloc_end, NULL,
c2790a2e 984 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
985 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
986 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
987 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
988 PAGE_END_WRITEBACK);
771ed689 989 *nr_written = *nr_written +
09cbfeaf 990 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 991 *page_started = 1;
771ed689 992 goto out;
79787eaa 993 } else if (ret < 0) {
79787eaa 994 goto out_unlock;
771ed689
CM
995 }
996 }
997
4b46fce2 998 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
999 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1000 start + num_bytes - 1, 0);
771ed689 1001
3752d22f
AJ
1002 while (num_bytes > 0) {
1003 cur_alloc_size = num_bytes;
18513091 1004 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 1005 fs_info->sectorsize, 0, alloc_hint,
e570fd27 1006 &ins, 1, 1);
00361589 1007 if (ret < 0)
79787eaa 1008 goto out_unlock;
a315e68f
FM
1009 cur_alloc_size = ins.offset;
1010 extent_reserved = true;
d397712b 1011
771ed689 1012 ram_size = ins.offset;
6f9994db
LB
1013 em = create_io_em(inode, start, ins.offset, /* len */
1014 start, /* orig_start */
1015 ins.objectid, /* block_start */
1016 ins.offset, /* block_len */
1017 ins.offset, /* orig_block_len */
1018 ram_size, /* ram_bytes */
1019 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1020 BTRFS_ORDERED_REGULAR /* type */);
6f9994db 1021 if (IS_ERR(em))
ace68bac 1022 goto out_reserve;
6f9994db 1023 free_extent_map(em);
e6dcd2dc 1024
e6dcd2dc 1025 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1026 ram_size, cur_alloc_size, 0);
ace68bac 1027 if (ret)
d9f85963 1028 goto out_drop_extent_cache;
c8b97818 1029
17d217fe
YZ
1030 if (root->root_key.objectid ==
1031 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1032 ret = btrfs_reloc_clone_csums(inode, start,
1033 cur_alloc_size);
4dbd80fb
QW
1034 /*
1035 * Only drop cache here, and process as normal.
1036 *
1037 * We must not allow extent_clear_unlock_delalloc()
1038 * at out_unlock label to free meta of this ordered
1039 * extent, as its meta should be freed by
1040 * btrfs_finish_ordered_io().
1041 *
1042 * So we must continue until @start is increased to
1043 * skip current ordered extent.
1044 */
00361589 1045 if (ret)
4dbd80fb
QW
1046 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1047 start + ram_size - 1, 0);
17d217fe
YZ
1048 }
1049
0b246afa 1050 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1051
c8b97818
CM
1052 /* we're not doing compressed IO, don't unlock the first
1053 * page (which the caller expects to stay locked), don't
1054 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1055 *
1056 * Do set the Private2 bit so we know this page was properly
1057 * setup for writepage
c8b97818 1058 */
a315e68f
FM
1059 page_ops = unlock ? PAGE_UNLOCK : 0;
1060 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1061
c2790a2e 1062 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1063 start + ram_size - 1,
1064 delalloc_end, locked_page,
c2790a2e 1065 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1066 page_ops);
3752d22f
AJ
1067 if (num_bytes < cur_alloc_size)
1068 num_bytes = 0;
4dbd80fb 1069 else
3752d22f 1070 num_bytes -= cur_alloc_size;
c59f8951
CM
1071 alloc_hint = ins.objectid + ins.offset;
1072 start += cur_alloc_size;
a315e68f 1073 extent_reserved = false;
4dbd80fb
QW
1074
1075 /*
1076 * btrfs_reloc_clone_csums() error, since start is increased
1077 * extent_clear_unlock_delalloc() at out_unlock label won't
1078 * free metadata of current ordered extent, we're OK to exit.
1079 */
1080 if (ret)
1081 goto out_unlock;
b888db2b 1082 }
79787eaa 1083out:
be20aa9d 1084 return ret;
b7d5b0a8 1085
d9f85963 1086out_drop_extent_cache:
dcdbc059 1087 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1088out_reserve:
0b246afa 1089 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1090 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1091out_unlock:
a7e3b975
FM
1092 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1093 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1094 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1095 PAGE_END_WRITEBACK;
1096 /*
1097 * If we reserved an extent for our delalloc range (or a subrange) and
1098 * failed to create the respective ordered extent, then it means that
1099 * when we reserved the extent we decremented the extent's size from
1100 * the data space_info's bytes_may_use counter and incremented the
1101 * space_info's bytes_reserved counter by the same amount. We must make
1102 * sure extent_clear_unlock_delalloc() does not try to decrement again
1103 * the data space_info's bytes_may_use counter, therefore we do not pass
1104 * it the flag EXTENT_CLEAR_DATA_RESV.
1105 */
1106 if (extent_reserved) {
1107 extent_clear_unlock_delalloc(inode, start,
1108 start + cur_alloc_size,
1109 start + cur_alloc_size,
1110 locked_page,
1111 clear_bits,
1112 page_ops);
1113 start += cur_alloc_size;
1114 if (start >= end)
1115 goto out;
1116 }
ba8b04c1
QW
1117 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1118 locked_page,
a315e68f
FM
1119 clear_bits | EXTENT_CLEAR_DATA_RESV,
1120 page_ops);
79787eaa 1121 goto out;
771ed689 1122}
c8b97818 1123
771ed689
CM
1124/*
1125 * work queue call back to started compression on a file and pages
1126 */
1127static noinline void async_cow_start(struct btrfs_work *work)
1128{
1129 struct async_cow *async_cow;
1130 int num_added = 0;
1131 async_cow = container_of(work, struct async_cow, work);
1132
1133 compress_file_range(async_cow->inode, async_cow->locked_page,
1134 async_cow->start, async_cow->end, async_cow,
1135 &num_added);
8180ef88 1136 if (num_added == 0) {
cb77fcd8 1137 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1138 async_cow->inode = NULL;
8180ef88 1139 }
771ed689
CM
1140}
1141
1142/*
1143 * work queue call back to submit previously compressed pages
1144 */
1145static noinline void async_cow_submit(struct btrfs_work *work)
1146{
0b246afa 1147 struct btrfs_fs_info *fs_info;
771ed689
CM
1148 struct async_cow *async_cow;
1149 struct btrfs_root *root;
1150 unsigned long nr_pages;
1151
1152 async_cow = container_of(work, struct async_cow, work);
1153
1154 root = async_cow->root;
0b246afa 1155 fs_info = root->fs_info;
09cbfeaf
KS
1156 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1157 PAGE_SHIFT;
771ed689 1158
093258e6 1159 /* atomic_sub_return implies a barrier */
0b246afa 1160 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
093258e6
DS
1161 5 * SZ_1M)
1162 cond_wake_up_nomb(&fs_info->async_submit_wait);
771ed689 1163
d397712b 1164 if (async_cow->inode)
771ed689 1165 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1166}
c8b97818 1167
771ed689
CM
1168static noinline void async_cow_free(struct btrfs_work *work)
1169{
1170 struct async_cow *async_cow;
1171 async_cow = container_of(work, struct async_cow, work);
8180ef88 1172 if (async_cow->inode)
cb77fcd8 1173 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1174 kfree(async_cow);
1175}
1176
1177static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1178 u64 start, u64 end, int *page_started,
f82b7359
LB
1179 unsigned long *nr_written,
1180 unsigned int write_flags)
771ed689 1181{
0b246afa 1182 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
1183 struct async_cow *async_cow;
1184 struct btrfs_root *root = BTRFS_I(inode)->root;
1185 unsigned long nr_pages;
1186 u64 cur_end;
771ed689 1187
a3429ab7 1188 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
ae0f1625 1189 1, 0, NULL);
d397712b 1190 while (start < end) {
771ed689 1191 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1192 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1193 async_cow->inode = igrab(inode);
771ed689
CM
1194 async_cow->root = root;
1195 async_cow->locked_page = locked_page;
1196 async_cow->start = start;
f82b7359 1197 async_cow->write_flags = write_flags;
771ed689 1198
f79707b0 1199 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
0b246afa 1200 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
771ed689
CM
1201 cur_end = end;
1202 else
ee22184b 1203 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1204
1205 async_cow->end = cur_end;
1206 INIT_LIST_HEAD(&async_cow->extents);
1207
9e0af237
LB
1208 btrfs_init_work(&async_cow->work,
1209 btrfs_delalloc_helper,
1210 async_cow_start, async_cow_submit,
1211 async_cow_free);
771ed689 1212
09cbfeaf
KS
1213 nr_pages = (cur_end - start + PAGE_SIZE) >>
1214 PAGE_SHIFT;
0b246afa 1215 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1216
0b246afa 1217 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
771ed689 1218
771ed689
CM
1219 *nr_written += nr_pages;
1220 start = cur_end + 1;
1221 }
1222 *page_started = 1;
1223 return 0;
be20aa9d
CM
1224}
1225
2ff7e61e 1226static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1227 u64 bytenr, u64 num_bytes)
1228{
1229 int ret;
1230 struct btrfs_ordered_sum *sums;
1231 LIST_HEAD(list);
1232
0b246afa 1233 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1234 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1235 if (ret == 0 && list_empty(&list))
1236 return 0;
1237
1238 while (!list_empty(&list)) {
1239 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1240 list_del(&sums->list);
1241 kfree(sums);
1242 }
58113753
LB
1243 if (ret < 0)
1244 return ret;
17d217fe
YZ
1245 return 1;
1246}
1247
d352ac68
CM
1248/*
1249 * when nowcow writeback call back. This checks for snapshots or COW copies
1250 * of the extents that exist in the file, and COWs the file as required.
1251 *
1252 * If no cow copies or snapshots exist, we write directly to the existing
1253 * blocks on disk
1254 */
7f366cfe
CM
1255static noinline int run_delalloc_nocow(struct inode *inode,
1256 struct page *locked_page,
771ed689
CM
1257 u64 start, u64 end, int *page_started, int force,
1258 unsigned long *nr_written)
be20aa9d 1259{
0b246afa 1260 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d
CM
1261 struct btrfs_root *root = BTRFS_I(inode)->root;
1262 struct extent_buffer *leaf;
be20aa9d 1263 struct btrfs_path *path;
80ff3856 1264 struct btrfs_file_extent_item *fi;
be20aa9d 1265 struct btrfs_key found_key;
6f9994db 1266 struct extent_map *em;
80ff3856
YZ
1267 u64 cow_start;
1268 u64 cur_offset;
1269 u64 extent_end;
5d4f98a2 1270 u64 extent_offset;
80ff3856
YZ
1271 u64 disk_bytenr;
1272 u64 num_bytes;
b4939680 1273 u64 disk_num_bytes;
cc95bef6 1274 u64 ram_bytes;
80ff3856 1275 int extent_type;
79787eaa 1276 int ret, err;
d899e052 1277 int type;
80ff3856
YZ
1278 int nocow;
1279 int check_prev = 1;
82d5902d 1280 bool nolock;
4a0cc7ca 1281 u64 ino = btrfs_ino(BTRFS_I(inode));
be20aa9d
CM
1282
1283 path = btrfs_alloc_path();
17ca04af 1284 if (!path) {
ba8b04c1
QW
1285 extent_clear_unlock_delalloc(inode, start, end, end,
1286 locked_page,
c2790a2e 1287 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1288 EXTENT_DO_ACCOUNTING |
1289 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1290 PAGE_CLEAR_DIRTY |
1291 PAGE_SET_WRITEBACK |
1292 PAGE_END_WRITEBACK);
d8926bb3 1293 return -ENOMEM;
17ca04af 1294 }
82d5902d 1295
70ddc553 1296 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
82d5902d 1297
80ff3856
YZ
1298 cow_start = (u64)-1;
1299 cur_offset = start;
1300 while (1) {
e4c3b2dc 1301 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1302 cur_offset, 0);
d788a349 1303 if (ret < 0)
79787eaa 1304 goto error;
80ff3856
YZ
1305 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1306 leaf = path->nodes[0];
1307 btrfs_item_key_to_cpu(leaf, &found_key,
1308 path->slots[0] - 1);
33345d01 1309 if (found_key.objectid == ino &&
80ff3856
YZ
1310 found_key.type == BTRFS_EXTENT_DATA_KEY)
1311 path->slots[0]--;
1312 }
1313 check_prev = 0;
1314next_slot:
1315 leaf = path->nodes[0];
1316 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1317 ret = btrfs_next_leaf(root, path);
e8916699
LB
1318 if (ret < 0) {
1319 if (cow_start != (u64)-1)
1320 cur_offset = cow_start;
79787eaa 1321 goto error;
e8916699 1322 }
80ff3856
YZ
1323 if (ret > 0)
1324 break;
1325 leaf = path->nodes[0];
1326 }
be20aa9d 1327
80ff3856
YZ
1328 nocow = 0;
1329 disk_bytenr = 0;
17d217fe 1330 num_bytes = 0;
80ff3856
YZ
1331 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1332
1d512cb7
FM
1333 if (found_key.objectid > ino)
1334 break;
1335 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1336 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1337 path->slots[0]++;
1338 goto next_slot;
1339 }
1340 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1341 found_key.offset > end)
1342 break;
1343
1344 if (found_key.offset > cur_offset) {
1345 extent_end = found_key.offset;
e9061e21 1346 extent_type = 0;
80ff3856
YZ
1347 goto out_check;
1348 }
1349
1350 fi = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_file_extent_item);
1352 extent_type = btrfs_file_extent_type(leaf, fi);
1353
cc95bef6 1354 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1355 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1356 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1357 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1358 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1359 extent_end = found_key.offset +
1360 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1361 disk_num_bytes =
1362 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1363 if (extent_end <= start) {
1364 path->slots[0]++;
1365 goto next_slot;
1366 }
17d217fe
YZ
1367 if (disk_bytenr == 0)
1368 goto out_check;
80ff3856
YZ
1369 if (btrfs_file_extent_compression(leaf, fi) ||
1370 btrfs_file_extent_encryption(leaf, fi) ||
1371 btrfs_file_extent_other_encoding(leaf, fi))
1372 goto out_check;
d899e052
YZ
1373 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1374 goto out_check;
2ff7e61e 1375 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1376 goto out_check;
58113753
LB
1377 ret = btrfs_cross_ref_exist(root, ino,
1378 found_key.offset -
1379 extent_offset, disk_bytenr);
1380 if (ret) {
1381 /*
1382 * ret could be -EIO if the above fails to read
1383 * metadata.
1384 */
1385 if (ret < 0) {
1386 if (cow_start != (u64)-1)
1387 cur_offset = cow_start;
1388 goto error;
1389 }
1390
1391 WARN_ON_ONCE(nolock);
17d217fe 1392 goto out_check;
58113753 1393 }
5d4f98a2 1394 disk_bytenr += extent_offset;
17d217fe
YZ
1395 disk_bytenr += cur_offset - found_key.offset;
1396 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1397 /*
1398 * if there are pending snapshots for this root,
1399 * we fall into common COW way.
1400 */
1401 if (!nolock) {
ea14b57f 1402 err = btrfs_start_write_no_snapshotting(root);
e9894fd3
WS
1403 if (!err)
1404 goto out_check;
1405 }
17d217fe
YZ
1406 /*
1407 * force cow if csum exists in the range.
1408 * this ensure that csum for a given extent are
1409 * either valid or do not exist.
1410 */
58113753
LB
1411 ret = csum_exist_in_range(fs_info, disk_bytenr,
1412 num_bytes);
1413 if (ret) {
91e1f56a 1414 if (!nolock)
ea14b57f 1415 btrfs_end_write_no_snapshotting(root);
58113753
LB
1416
1417 /*
1418 * ret could be -EIO if the above fails to read
1419 * metadata.
1420 */
1421 if (ret < 0) {
1422 if (cow_start != (u64)-1)
1423 cur_offset = cow_start;
1424 goto error;
1425 }
1426 WARN_ON_ONCE(nolock);
17d217fe 1427 goto out_check;
91e1f56a
RK
1428 }
1429 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1430 if (!nolock)
ea14b57f 1431 btrfs_end_write_no_snapshotting(root);
f78c436c 1432 goto out_check;
91e1f56a 1433 }
80ff3856
YZ
1434 nocow = 1;
1435 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1436 extent_end = found_key.offset +
514ac8ad
CM
1437 btrfs_file_extent_inline_len(leaf,
1438 path->slots[0], fi);
da17066c 1439 extent_end = ALIGN(extent_end,
0b246afa 1440 fs_info->sectorsize);
80ff3856
YZ
1441 } else {
1442 BUG_ON(1);
1443 }
1444out_check:
1445 if (extent_end <= start) {
1446 path->slots[0]++;
e9894fd3 1447 if (!nolock && nocow)
ea14b57f 1448 btrfs_end_write_no_snapshotting(root);
f78c436c 1449 if (nocow)
0b246afa 1450 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1451 goto next_slot;
1452 }
1453 if (!nocow) {
1454 if (cow_start == (u64)-1)
1455 cow_start = cur_offset;
1456 cur_offset = extent_end;
1457 if (cur_offset > end)
1458 break;
1459 path->slots[0]++;
1460 goto next_slot;
7ea394f1
YZ
1461 }
1462
b3b4aa74 1463 btrfs_release_path(path);
80ff3856 1464 if (cow_start != (u64)-1) {
00361589
JB
1465 ret = cow_file_range(inode, locked_page,
1466 cow_start, found_key.offset - 1,
dda3245e
WX
1467 end, page_started, nr_written, 1,
1468 NULL);
e9894fd3
WS
1469 if (ret) {
1470 if (!nolock && nocow)
ea14b57f 1471 btrfs_end_write_no_snapshotting(root);
f78c436c 1472 if (nocow)
0b246afa 1473 btrfs_dec_nocow_writers(fs_info,
f78c436c 1474 disk_bytenr);
79787eaa 1475 goto error;
e9894fd3 1476 }
80ff3856 1477 cow_start = (u64)-1;
7ea394f1 1478 }
80ff3856 1479
d899e052 1480 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db
LB
1481 u64 orig_start = found_key.offset - extent_offset;
1482
1483 em = create_io_em(inode, cur_offset, num_bytes,
1484 orig_start,
1485 disk_bytenr, /* block_start */
1486 num_bytes, /* block_len */
1487 disk_num_bytes, /* orig_block_len */
1488 ram_bytes, BTRFS_COMPRESS_NONE,
1489 BTRFS_ORDERED_PREALLOC);
1490 if (IS_ERR(em)) {
1491 if (!nolock && nocow)
ea14b57f 1492 btrfs_end_write_no_snapshotting(root);
6f9994db
LB
1493 if (nocow)
1494 btrfs_dec_nocow_writers(fs_info,
1495 disk_bytenr);
1496 ret = PTR_ERR(em);
1497 goto error;
d899e052 1498 }
6f9994db
LB
1499 free_extent_map(em);
1500 }
1501
1502 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
d899e052
YZ
1503 type = BTRFS_ORDERED_PREALLOC;
1504 } else {
1505 type = BTRFS_ORDERED_NOCOW;
1506 }
80ff3856
YZ
1507
1508 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1509 num_bytes, num_bytes, type);
f78c436c 1510 if (nocow)
0b246afa 1511 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1512 BUG_ON(ret); /* -ENOMEM */
771ed689 1513
efa56464 1514 if (root->root_key.objectid ==
4dbd80fb
QW
1515 BTRFS_DATA_RELOC_TREE_OBJECTID)
1516 /*
1517 * Error handled later, as we must prevent
1518 * extent_clear_unlock_delalloc() in error handler
1519 * from freeing metadata of created ordered extent.
1520 */
efa56464
YZ
1521 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1522 num_bytes);
efa56464 1523
c2790a2e 1524 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1525 cur_offset + num_bytes - 1, end,
c2790a2e 1526 locked_page, EXTENT_LOCKED |
18513091
WX
1527 EXTENT_DELALLOC |
1528 EXTENT_CLEAR_DATA_RESV,
1529 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1530
e9894fd3 1531 if (!nolock && nocow)
ea14b57f 1532 btrfs_end_write_no_snapshotting(root);
80ff3856 1533 cur_offset = extent_end;
4dbd80fb
QW
1534
1535 /*
1536 * btrfs_reloc_clone_csums() error, now we're OK to call error
1537 * handler, as metadata for created ordered extent will only
1538 * be freed by btrfs_finish_ordered_io().
1539 */
1540 if (ret)
1541 goto error;
80ff3856
YZ
1542 if (cur_offset > end)
1543 break;
be20aa9d 1544 }
b3b4aa74 1545 btrfs_release_path(path);
80ff3856 1546
17ca04af 1547 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1548 cow_start = cur_offset;
17ca04af
JB
1549 cur_offset = end;
1550 }
1551
80ff3856 1552 if (cow_start != (u64)-1) {
dda3245e
WX
1553 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1554 page_started, nr_written, 1, NULL);
d788a349 1555 if (ret)
79787eaa 1556 goto error;
80ff3856
YZ
1557 }
1558
79787eaa 1559error:
17ca04af 1560 if (ret && cur_offset < end)
ba8b04c1 1561 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1562 locked_page, EXTENT_LOCKED |
151a41bc
JB
1563 EXTENT_DELALLOC | EXTENT_DEFRAG |
1564 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1565 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1566 PAGE_SET_WRITEBACK |
1567 PAGE_END_WRITEBACK);
7ea394f1 1568 btrfs_free_path(path);
79787eaa 1569 return ret;
be20aa9d
CM
1570}
1571
47059d93
WS
1572static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1573{
1574
1575 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1576 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1577 return 0;
1578
1579 /*
1580 * @defrag_bytes is a hint value, no spinlock held here,
1581 * if is not zero, it means the file is defragging.
1582 * Force cow if given extent needs to be defragged.
1583 */
1584 if (BTRFS_I(inode)->defrag_bytes &&
1585 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1586 EXTENT_DEFRAG, 0, NULL))
1587 return 1;
1588
1589 return 0;
1590}
1591
d352ac68
CM
1592/*
1593 * extent_io.c call back to do delayed allocation processing
1594 */
c6100a4b 1595static int run_delalloc_range(void *private_data, struct page *locked_page,
771ed689 1596 u64 start, u64 end, int *page_started,
f82b7359
LB
1597 unsigned long *nr_written,
1598 struct writeback_control *wbc)
be20aa9d 1599{
c6100a4b 1600 struct inode *inode = private_data;
be20aa9d 1601 int ret;
47059d93 1602 int force_cow = need_force_cow(inode, start, end);
f82b7359 1603 unsigned int write_flags = wbc_to_write_flags(wbc);
a2135011 1604
47059d93 1605 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1606 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1607 page_started, 1, nr_written);
47059d93 1608 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1609 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1610 page_started, 0, nr_written);
c2fcdcdf 1611 } else if (!inode_need_compress(inode, start, end)) {
dda3245e
WX
1612 ret = cow_file_range(inode, locked_page, start, end, end,
1613 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1614 } else {
1615 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1616 &BTRFS_I(inode)->runtime_flags);
771ed689 1617 ret = cow_file_range_async(inode, locked_page, start, end,
f82b7359
LB
1618 page_started, nr_written,
1619 write_flags);
7ddf5a42 1620 }
52427260
QW
1621 if (ret)
1622 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
b888db2b
CM
1623 return ret;
1624}
1625
c6100a4b 1626static void btrfs_split_extent_hook(void *private_data,
1bf85046 1627 struct extent_state *orig, u64 split)
9ed74f2d 1628{
c6100a4b 1629 struct inode *inode = private_data;
dcab6a3b
JB
1630 u64 size;
1631
0ca1f7ce 1632 /* not delalloc, ignore it */
9ed74f2d 1633 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1634 return;
9ed74f2d 1635
dcab6a3b
JB
1636 size = orig->end - orig->start + 1;
1637 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1638 u32 num_extents;
dcab6a3b
JB
1639 u64 new_size;
1640
1641 /*
ba117213
JB
1642 * See the explanation in btrfs_merge_extent_hook, the same
1643 * applies here, just in reverse.
dcab6a3b
JB
1644 */
1645 new_size = orig->end - split + 1;
823bb20a 1646 num_extents = count_max_extents(new_size);
ba117213 1647 new_size = split - orig->start;
823bb20a
DS
1648 num_extents += count_max_extents(new_size);
1649 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1650 return;
1651 }
1652
9e0baf60 1653 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1654 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1655 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1656}
1657
1658/*
1659 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1660 * extents so we can keep track of new extents that are just merged onto old
1661 * extents, such as when we are doing sequential writes, so we can properly
1662 * account for the metadata space we'll need.
1663 */
c6100a4b 1664static void btrfs_merge_extent_hook(void *private_data,
1bf85046
JM
1665 struct extent_state *new,
1666 struct extent_state *other)
9ed74f2d 1667{
c6100a4b 1668 struct inode *inode = private_data;
dcab6a3b 1669 u64 new_size, old_size;
823bb20a 1670 u32 num_extents;
dcab6a3b 1671
9ed74f2d
JB
1672 /* not delalloc, ignore it */
1673 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1674 return;
9ed74f2d 1675
8461a3de
JB
1676 if (new->start > other->start)
1677 new_size = new->end - other->start + 1;
1678 else
1679 new_size = other->end - new->start + 1;
dcab6a3b
JB
1680
1681 /* we're not bigger than the max, unreserve the space and go */
1682 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1683 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1684 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1685 spin_unlock(&BTRFS_I(inode)->lock);
1686 return;
1687 }
1688
1689 /*
ba117213
JB
1690 * We have to add up either side to figure out how many extents were
1691 * accounted for before we merged into one big extent. If the number of
1692 * extents we accounted for is <= the amount we need for the new range
1693 * then we can return, otherwise drop. Think of it like this
1694 *
1695 * [ 4k][MAX_SIZE]
1696 *
1697 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1698 * need 2 outstanding extents, on one side we have 1 and the other side
1699 * we have 1 so they are == and we can return. But in this case
1700 *
1701 * [MAX_SIZE+4k][MAX_SIZE+4k]
1702 *
1703 * Each range on their own accounts for 2 extents, but merged together
1704 * they are only 3 extents worth of accounting, so we need to drop in
1705 * this case.
dcab6a3b 1706 */
ba117213 1707 old_size = other->end - other->start + 1;
823bb20a 1708 num_extents = count_max_extents(old_size);
ba117213 1709 old_size = new->end - new->start + 1;
823bb20a
DS
1710 num_extents += count_max_extents(old_size);
1711 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1712 return;
1713
9e0baf60 1714 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1715 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1716 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1717}
1718
eb73c1b7
MX
1719static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1720 struct inode *inode)
1721{
0b246afa
JM
1722 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1723
eb73c1b7
MX
1724 spin_lock(&root->delalloc_lock);
1725 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1726 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1727 &root->delalloc_inodes);
1728 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1729 &BTRFS_I(inode)->runtime_flags);
1730 root->nr_delalloc_inodes++;
1731 if (root->nr_delalloc_inodes == 1) {
0b246afa 1732 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1733 BUG_ON(!list_empty(&root->delalloc_root));
1734 list_add_tail(&root->delalloc_root,
0b246afa
JM
1735 &fs_info->delalloc_roots);
1736 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1737 }
1738 }
1739 spin_unlock(&root->delalloc_lock);
1740}
1741
2b877331
NB
1742
1743void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1744 struct btrfs_inode *inode)
eb73c1b7 1745{
9e3e97f4 1746 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0b246afa 1747
9e3e97f4
NB
1748 if (!list_empty(&inode->delalloc_inodes)) {
1749 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1750 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1751 &inode->runtime_flags);
eb73c1b7
MX
1752 root->nr_delalloc_inodes--;
1753 if (!root->nr_delalloc_inodes) {
7c8a0d36 1754 ASSERT(list_empty(&root->delalloc_inodes));
0b246afa 1755 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1756 BUG_ON(list_empty(&root->delalloc_root));
1757 list_del_init(&root->delalloc_root);
0b246afa 1758 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1759 }
1760 }
2b877331
NB
1761}
1762
1763static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1764 struct btrfs_inode *inode)
1765{
1766 spin_lock(&root->delalloc_lock);
1767 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
1768 spin_unlock(&root->delalloc_lock);
1769}
1770
d352ac68
CM
1771/*
1772 * extent_io.c set_bit_hook, used to track delayed allocation
1773 * bytes in this file, and to maintain the list of inodes that
1774 * have pending delalloc work to be done.
1775 */
c6100a4b 1776static void btrfs_set_bit_hook(void *private_data,
9ee49a04 1777 struct extent_state *state, unsigned *bits)
291d673e 1778{
c6100a4b 1779 struct inode *inode = private_data;
9ed74f2d 1780
0b246afa
JM
1781 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1782
47059d93
WS
1783 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1784 WARN_ON(1);
75eff68e
CM
1785 /*
1786 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1787 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1788 * bit, which is only set or cleared with irqs on
1789 */
0ca1f7ce 1790 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1791 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1792 u64 len = state->end + 1 - state->start;
8b62f87b 1793 u32 num_extents = count_max_extents(len);
70ddc553 1794 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1795
8b62f87b
JB
1796 spin_lock(&BTRFS_I(inode)->lock);
1797 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1798 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 1799
6a3891c5 1800 /* For sanity tests */
0b246afa 1801 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1802 return;
1803
104b4e51
NB
1804 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1805 fs_info->delalloc_batch);
df0af1a5 1806 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1807 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1808 if (*bits & EXTENT_DEFRAG)
1809 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1810 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1811 &BTRFS_I(inode)->runtime_flags))
1812 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1813 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1814 }
a7e3b975
FM
1815
1816 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1817 (*bits & EXTENT_DELALLOC_NEW)) {
1818 spin_lock(&BTRFS_I(inode)->lock);
1819 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1820 state->start;
1821 spin_unlock(&BTRFS_I(inode)->lock);
1822 }
291d673e
CM
1823}
1824
d352ac68
CM
1825/*
1826 * extent_io.c clear_bit_hook, see set_bit_hook for why
1827 */
c6100a4b 1828static void btrfs_clear_bit_hook(void *private_data,
41074888 1829 struct extent_state *state,
9ee49a04 1830 unsigned *bits)
291d673e 1831{
c6100a4b 1832 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
6fc0ef68 1833 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
47059d93 1834 u64 len = state->end + 1 - state->start;
823bb20a 1835 u32 num_extents = count_max_extents(len);
47059d93 1836
4a4b964f
FM
1837 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1838 spin_lock(&inode->lock);
6fc0ef68 1839 inode->defrag_bytes -= len;
4a4b964f
FM
1840 spin_unlock(&inode->lock);
1841 }
47059d93 1842
75eff68e
CM
1843 /*
1844 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1845 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1846 * bit, which is only set or cleared with irqs on
1847 */
0ca1f7ce 1848 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1849 struct btrfs_root *root = inode->root;
83eea1f1 1850 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1851
8b62f87b
JB
1852 spin_lock(&inode->lock);
1853 btrfs_mod_outstanding_extents(inode, -num_extents);
1854 spin_unlock(&inode->lock);
0ca1f7ce 1855
b6d08f06
JB
1856 /*
1857 * We don't reserve metadata space for space cache inodes so we
1858 * don't need to call dellalloc_release_metadata if there is an
1859 * error.
1860 */
a315e68f 1861 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 1862 root != fs_info->tree_root)
43b18595 1863 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 1864
6a3891c5 1865 /* For sanity tests. */
0b246afa 1866 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1867 return;
1868
a315e68f
FM
1869 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1870 do_list && !(state->state & EXTENT_NORESERVE) &&
1871 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
1872 btrfs_free_reserved_data_space_noquota(
1873 &inode->vfs_inode,
51773bec 1874 state->start, len);
9ed74f2d 1875
104b4e51
NB
1876 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1877 fs_info->delalloc_batch);
6fc0ef68
NB
1878 spin_lock(&inode->lock);
1879 inode->delalloc_bytes -= len;
1880 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 1881 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1882 &inode->runtime_flags))
eb73c1b7 1883 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 1884 spin_unlock(&inode->lock);
291d673e 1885 }
a7e3b975
FM
1886
1887 if ((state->state & EXTENT_DELALLOC_NEW) &&
1888 (*bits & EXTENT_DELALLOC_NEW)) {
1889 spin_lock(&inode->lock);
1890 ASSERT(inode->new_delalloc_bytes >= len);
1891 inode->new_delalloc_bytes -= len;
1892 spin_unlock(&inode->lock);
1893 }
291d673e
CM
1894}
1895
d352ac68
CM
1896/*
1897 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1898 * we don't create bios that span stripes or chunks
6f034ece
LB
1899 *
1900 * return 1 if page cannot be merged to bio
1901 * return 0 if page can be merged to bio
1902 * return error otherwise
d352ac68 1903 */
81a75f67 1904int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1905 size_t size, struct bio *bio,
1906 unsigned long bio_flags)
239b14b3 1907{
0b246afa
JM
1908 struct inode *inode = page->mapping->host;
1909 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1910 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1911 u64 length = 0;
1912 u64 map_length;
239b14b3
CM
1913 int ret;
1914
771ed689
CM
1915 if (bio_flags & EXTENT_BIO_COMPRESSED)
1916 return 0;
1917
4f024f37 1918 length = bio->bi_iter.bi_size;
239b14b3 1919 map_length = length;
0b246afa
JM
1920 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1921 NULL, 0);
6f034ece
LB
1922 if (ret < 0)
1923 return ret;
d397712b 1924 if (map_length < length + size)
239b14b3 1925 return 1;
3444a972 1926 return 0;
239b14b3
CM
1927}
1928
d352ac68
CM
1929/*
1930 * in order to insert checksums into the metadata in large chunks,
1931 * we wait until bio submission time. All the pages in the bio are
1932 * checksummed and sums are attached onto the ordered extent record.
1933 *
1934 * At IO completion time the cums attached on the ordered extent record
1935 * are inserted into the btree
1936 */
d0ee3934 1937static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
eaf25d93 1938 u64 bio_offset)
065631f6 1939{
c6100a4b 1940 struct inode *inode = private_data;
4e4cbee9 1941 blk_status_t ret = 0;
e015640f 1942
2ff7e61e 1943 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1944 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1945 return 0;
1946}
e015640f 1947
4a69a410
CM
1948/*
1949 * in order to insert checksums into the metadata in large chunks,
1950 * we wait until bio submission time. All the pages in the bio are
1951 * checksummed and sums are attached onto the ordered extent record.
1952 *
1953 * At IO completion time the cums attached on the ordered extent record
1954 * are inserted into the btree
1955 */
d0ee3934 1956static blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio,
6c553435 1957 int mirror_num)
4a69a410 1958{
c6100a4b 1959 struct inode *inode = private_data;
2ff7e61e 1960 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 1961 blk_status_t ret;
61891923 1962
2ff7e61e 1963 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
4246a0b6 1964 if (ret) {
4e4cbee9 1965 bio->bi_status = ret;
4246a0b6
CH
1966 bio_endio(bio);
1967 }
61891923 1968 return ret;
44b8bd7e
CM
1969}
1970
d352ac68 1971/*
cad321ad 1972 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
1973 * on write, or reading the csums from the tree before a read.
1974 *
1975 * Rules about async/sync submit,
1976 * a) read: sync submit
1977 *
1978 * b) write without checksum: sync submit
1979 *
1980 * c) write with checksum:
1981 * c-1) if bio is issued by fsync: sync submit
1982 * (sync_writers != 0)
1983 *
1984 * c-2) if root is reloc root: sync submit
1985 * (only in case of buffered IO)
1986 *
1987 * c-3) otherwise: async submit
d352ac68 1988 */
8c27cb35 1989static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
c6100a4b
JB
1990 int mirror_num, unsigned long bio_flags,
1991 u64 bio_offset)
44b8bd7e 1992{
c6100a4b 1993 struct inode *inode = private_data;
0b246afa 1994 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 1995 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1996 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 1997 blk_status_t ret = 0;
19b9bdb0 1998 int skip_sum;
b812ce28 1999 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 2000
6cbff00f 2001 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 2002
70ddc553 2003 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 2004 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 2005
37226b21 2006 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 2007 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 2008 if (ret)
61891923 2009 goto out;
5fd02043 2010
d20f7043 2011 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
2012 ret = btrfs_submit_compressed_read(inode, bio,
2013 mirror_num,
2014 bio_flags);
2015 goto out;
c2db1073 2016 } else if (!skip_sum) {
2ff7e61e 2017 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 2018 if (ret)
61891923 2019 goto out;
c2db1073 2020 }
4d1b5fb4 2021 goto mapit;
b812ce28 2022 } else if (async && !skip_sum) {
17d217fe
YZ
2023 /* csum items have already been cloned */
2024 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2025 goto mapit;
19b9bdb0 2026 /* we're doing a write, do the async checksumming */
c6100a4b
JB
2027 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2028 bio_offset, inode,
d0ee3934
DS
2029 btrfs_submit_bio_start,
2030 btrfs_submit_bio_done);
61891923 2031 goto out;
b812ce28 2032 } else if (!skip_sum) {
2ff7e61e 2033 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
2034 if (ret)
2035 goto out;
19b9bdb0
CM
2036 }
2037
0b86a832 2038mapit:
2ff7e61e 2039 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
2040
2041out:
4e4cbee9
CH
2042 if (ret) {
2043 bio->bi_status = ret;
4246a0b6
CH
2044 bio_endio(bio);
2045 }
61891923 2046 return ret;
065631f6 2047}
6885f308 2048
d352ac68
CM
2049/*
2050 * given a list of ordered sums record them in the inode. This happens
2051 * at IO completion time based on sums calculated at bio submission time.
2052 */
ba1da2f4 2053static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2054 struct inode *inode, struct list_head *list)
e6dcd2dc 2055{
e6dcd2dc 2056 struct btrfs_ordered_sum *sum;
ac01f26a 2057 int ret;
e6dcd2dc 2058
c6e30871 2059 list_for_each_entry(sum, list, list) {
7c2871a2 2060 trans->adding_csums = true;
ac01f26a 2061 ret = btrfs_csum_file_blocks(trans,
d20f7043 2062 BTRFS_I(inode)->root->fs_info->csum_root, sum);
7c2871a2 2063 trans->adding_csums = false;
ac01f26a
NB
2064 if (ret)
2065 return ret;
e6dcd2dc
CM
2066 }
2067 return 0;
2068}
2069
2ac55d41 2070int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
e3b8a485 2071 unsigned int extra_bits,
ba8b04c1 2072 struct extent_state **cached_state, int dedupe)
ea8c2819 2073{
09cbfeaf 2074 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 2075 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
e3b8a485 2076 extra_bits, cached_state);
ea8c2819
CM
2077}
2078
d352ac68 2079/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2080struct btrfs_writepage_fixup {
2081 struct page *page;
2082 struct btrfs_work work;
2083};
2084
b2950863 2085static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2086{
2087 struct btrfs_writepage_fixup *fixup;
2088 struct btrfs_ordered_extent *ordered;
2ac55d41 2089 struct extent_state *cached_state = NULL;
364ecf36 2090 struct extent_changeset *data_reserved = NULL;
247e743c
CM
2091 struct page *page;
2092 struct inode *inode;
2093 u64 page_start;
2094 u64 page_end;
87826df0 2095 int ret;
247e743c
CM
2096
2097 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2098 page = fixup->page;
4a096752 2099again:
247e743c
CM
2100 lock_page(page);
2101 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2102 ClearPageChecked(page);
2103 goto out_page;
2104 }
2105
2106 inode = page->mapping->host;
2107 page_start = page_offset(page);
09cbfeaf 2108 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2109
ff13db41 2110 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2111 &cached_state);
4a096752
CM
2112
2113 /* already ordered? We're done */
8b62b72b 2114 if (PagePrivate2(page))
247e743c 2115 goto out;
4a096752 2116
a776c6fa 2117 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2118 PAGE_SIZE);
4a096752 2119 if (ordered) {
2ac55d41 2120 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
e43bbe5e 2121 page_end, &cached_state);
4a096752
CM
2122 unlock_page(page);
2123 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2124 btrfs_put_ordered_extent(ordered);
4a096752
CM
2125 goto again;
2126 }
247e743c 2127
364ecf36 2128 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
09cbfeaf 2129 PAGE_SIZE);
87826df0
JM
2130 if (ret) {
2131 mapping_set_error(page->mapping, ret);
2132 end_extent_writepage(page, ret, page_start, page_end);
2133 ClearPageChecked(page);
2134 goto out;
2135 }
2136
f3038ee3
NB
2137 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2138 &cached_state, 0);
2139 if (ret) {
2140 mapping_set_error(page->mapping, ret);
2141 end_extent_writepage(page, ret, page_start, page_end);
2142 ClearPageChecked(page);
2143 goto out;
2144 }
2145
247e743c 2146 ClearPageChecked(page);
87826df0 2147 set_page_dirty(page);
43b18595 2148 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
247e743c 2149out:
2ac55d41 2150 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
e43bbe5e 2151 &cached_state);
247e743c
CM
2152out_page:
2153 unlock_page(page);
09cbfeaf 2154 put_page(page);
b897abec 2155 kfree(fixup);
364ecf36 2156 extent_changeset_free(data_reserved);
247e743c
CM
2157}
2158
2159/*
2160 * There are a few paths in the higher layers of the kernel that directly
2161 * set the page dirty bit without asking the filesystem if it is a
2162 * good idea. This causes problems because we want to make sure COW
2163 * properly happens and the data=ordered rules are followed.
2164 *
c8b97818 2165 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2166 * hasn't been properly setup for IO. We kick off an async process
2167 * to fix it up. The async helper will wait for ordered extents, set
2168 * the delalloc bit and make it safe to write the page.
2169 */
b2950863 2170static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2171{
2172 struct inode *inode = page->mapping->host;
0b246afa 2173 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2174 struct btrfs_writepage_fixup *fixup;
247e743c 2175
8b62b72b
CM
2176 /* this page is properly in the ordered list */
2177 if (TestClearPagePrivate2(page))
247e743c
CM
2178 return 0;
2179
2180 if (PageChecked(page))
2181 return -EAGAIN;
2182
2183 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2184 if (!fixup)
2185 return -EAGAIN;
f421950f 2186
247e743c 2187 SetPageChecked(page);
09cbfeaf 2188 get_page(page);
9e0af237
LB
2189 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2190 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2191 fixup->page = page;
0b246afa 2192 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2193 return -EBUSY;
247e743c
CM
2194}
2195
d899e052
YZ
2196static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2197 struct inode *inode, u64 file_pos,
2198 u64 disk_bytenr, u64 disk_num_bytes,
2199 u64 num_bytes, u64 ram_bytes,
2200 u8 compression, u8 encryption,
2201 u16 other_encoding, int extent_type)
2202{
2203 struct btrfs_root *root = BTRFS_I(inode)->root;
2204 struct btrfs_file_extent_item *fi;
2205 struct btrfs_path *path;
2206 struct extent_buffer *leaf;
2207 struct btrfs_key ins;
a12b877b 2208 u64 qg_released;
1acae57b 2209 int extent_inserted = 0;
d899e052
YZ
2210 int ret;
2211
2212 path = btrfs_alloc_path();
d8926bb3
MF
2213 if (!path)
2214 return -ENOMEM;
d899e052 2215
a1ed835e
CM
2216 /*
2217 * we may be replacing one extent in the tree with another.
2218 * The new extent is pinned in the extent map, and we don't want
2219 * to drop it from the cache until it is completely in the btree.
2220 *
2221 * So, tell btrfs_drop_extents to leave this extent in the cache.
2222 * the caller is expected to unpin it and allow it to be merged
2223 * with the others.
2224 */
1acae57b
FDBM
2225 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2226 file_pos + num_bytes, NULL, 0,
2227 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2228 if (ret)
2229 goto out;
d899e052 2230
1acae57b 2231 if (!extent_inserted) {
4a0cc7ca 2232 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2233 ins.offset = file_pos;
2234 ins.type = BTRFS_EXTENT_DATA_KEY;
2235
2236 path->leave_spinning = 1;
2237 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2238 sizeof(*fi));
2239 if (ret)
2240 goto out;
2241 }
d899e052
YZ
2242 leaf = path->nodes[0];
2243 fi = btrfs_item_ptr(leaf, path->slots[0],
2244 struct btrfs_file_extent_item);
2245 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2246 btrfs_set_file_extent_type(leaf, fi, extent_type);
2247 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2248 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2249 btrfs_set_file_extent_offset(leaf, fi, 0);
2250 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2251 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2252 btrfs_set_file_extent_compression(leaf, fi, compression);
2253 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2254 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2255
d899e052 2256 btrfs_mark_buffer_dirty(leaf);
ce195332 2257 btrfs_release_path(path);
d899e052
YZ
2258
2259 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2260
2261 ins.objectid = disk_bytenr;
2262 ins.offset = disk_num_bytes;
2263 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2264
297d750b 2265 /*
5846a3c2
QW
2266 * Release the reserved range from inode dirty range map, as it is
2267 * already moved into delayed_ref_head
297d750b 2268 */
a12b877b
QW
2269 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2270 if (ret < 0)
2271 goto out;
2272 qg_released = ret;
84f7d8e6
JB
2273 ret = btrfs_alloc_reserved_file_extent(trans, root,
2274 btrfs_ino(BTRFS_I(inode)),
2275 file_pos, qg_released, &ins);
79787eaa 2276out:
d899e052 2277 btrfs_free_path(path);
b9473439 2278
79787eaa 2279 return ret;
d899e052
YZ
2280}
2281
38c227d8
LB
2282/* snapshot-aware defrag */
2283struct sa_defrag_extent_backref {
2284 struct rb_node node;
2285 struct old_sa_defrag_extent *old;
2286 u64 root_id;
2287 u64 inum;
2288 u64 file_pos;
2289 u64 extent_offset;
2290 u64 num_bytes;
2291 u64 generation;
2292};
2293
2294struct old_sa_defrag_extent {
2295 struct list_head list;
2296 struct new_sa_defrag_extent *new;
2297
2298 u64 extent_offset;
2299 u64 bytenr;
2300 u64 offset;
2301 u64 len;
2302 int count;
2303};
2304
2305struct new_sa_defrag_extent {
2306 struct rb_root root;
2307 struct list_head head;
2308 struct btrfs_path *path;
2309 struct inode *inode;
2310 u64 file_pos;
2311 u64 len;
2312 u64 bytenr;
2313 u64 disk_len;
2314 u8 compress_type;
2315};
2316
2317static int backref_comp(struct sa_defrag_extent_backref *b1,
2318 struct sa_defrag_extent_backref *b2)
2319{
2320 if (b1->root_id < b2->root_id)
2321 return -1;
2322 else if (b1->root_id > b2->root_id)
2323 return 1;
2324
2325 if (b1->inum < b2->inum)
2326 return -1;
2327 else if (b1->inum > b2->inum)
2328 return 1;
2329
2330 if (b1->file_pos < b2->file_pos)
2331 return -1;
2332 else if (b1->file_pos > b2->file_pos)
2333 return 1;
2334
2335 /*
2336 * [------------------------------] ===> (a range of space)
2337 * |<--->| |<---->| =============> (fs/file tree A)
2338 * |<---------------------------->| ===> (fs/file tree B)
2339 *
2340 * A range of space can refer to two file extents in one tree while
2341 * refer to only one file extent in another tree.
2342 *
2343 * So we may process a disk offset more than one time(two extents in A)
2344 * and locate at the same extent(one extent in B), then insert two same
2345 * backrefs(both refer to the extent in B).
2346 */
2347 return 0;
2348}
2349
2350static void backref_insert(struct rb_root *root,
2351 struct sa_defrag_extent_backref *backref)
2352{
2353 struct rb_node **p = &root->rb_node;
2354 struct rb_node *parent = NULL;
2355 struct sa_defrag_extent_backref *entry;
2356 int ret;
2357
2358 while (*p) {
2359 parent = *p;
2360 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2361
2362 ret = backref_comp(backref, entry);
2363 if (ret < 0)
2364 p = &(*p)->rb_left;
2365 else
2366 p = &(*p)->rb_right;
2367 }
2368
2369 rb_link_node(&backref->node, parent, p);
2370 rb_insert_color(&backref->node, root);
2371}
2372
2373/*
2374 * Note the backref might has changed, and in this case we just return 0.
2375 */
2376static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2377 void *ctx)
2378{
2379 struct btrfs_file_extent_item *extent;
38c227d8
LB
2380 struct old_sa_defrag_extent *old = ctx;
2381 struct new_sa_defrag_extent *new = old->new;
2382 struct btrfs_path *path = new->path;
2383 struct btrfs_key key;
2384 struct btrfs_root *root;
2385 struct sa_defrag_extent_backref *backref;
2386 struct extent_buffer *leaf;
2387 struct inode *inode = new->inode;
0b246afa 2388 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2389 int slot;
2390 int ret;
2391 u64 extent_offset;
2392 u64 num_bytes;
2393
2394 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2395 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2396 return 0;
2397
2398 key.objectid = root_id;
2399 key.type = BTRFS_ROOT_ITEM_KEY;
2400 key.offset = (u64)-1;
2401
38c227d8
LB
2402 root = btrfs_read_fs_root_no_name(fs_info, &key);
2403 if (IS_ERR(root)) {
2404 if (PTR_ERR(root) == -ENOENT)
2405 return 0;
2406 WARN_ON(1);
ab8d0fc4 2407 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2408 inum, offset, root_id);
2409 return PTR_ERR(root);
2410 }
2411
2412 key.objectid = inum;
2413 key.type = BTRFS_EXTENT_DATA_KEY;
2414 if (offset > (u64)-1 << 32)
2415 key.offset = 0;
2416 else
2417 key.offset = offset;
2418
2419 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2420 if (WARN_ON(ret < 0))
38c227d8 2421 return ret;
50f1319c 2422 ret = 0;
38c227d8
LB
2423
2424 while (1) {
2425 cond_resched();
2426
2427 leaf = path->nodes[0];
2428 slot = path->slots[0];
2429
2430 if (slot >= btrfs_header_nritems(leaf)) {
2431 ret = btrfs_next_leaf(root, path);
2432 if (ret < 0) {
2433 goto out;
2434 } else if (ret > 0) {
2435 ret = 0;
2436 goto out;
2437 }
2438 continue;
2439 }
2440
2441 path->slots[0]++;
2442
2443 btrfs_item_key_to_cpu(leaf, &key, slot);
2444
2445 if (key.objectid > inum)
2446 goto out;
2447
2448 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2449 continue;
2450
2451 extent = btrfs_item_ptr(leaf, slot,
2452 struct btrfs_file_extent_item);
2453
2454 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2455 continue;
2456
e68afa49
LB
2457 /*
2458 * 'offset' refers to the exact key.offset,
2459 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2460 * (key.offset - extent_offset).
2461 */
2462 if (key.offset != offset)
38c227d8
LB
2463 continue;
2464
e68afa49 2465 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2466 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2467
38c227d8
LB
2468 if (extent_offset >= old->extent_offset + old->offset +
2469 old->len || extent_offset + num_bytes <=
2470 old->extent_offset + old->offset)
2471 continue;
38c227d8
LB
2472 break;
2473 }
2474
2475 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2476 if (!backref) {
2477 ret = -ENOENT;
2478 goto out;
2479 }
2480
2481 backref->root_id = root_id;
2482 backref->inum = inum;
e68afa49 2483 backref->file_pos = offset;
38c227d8
LB
2484 backref->num_bytes = num_bytes;
2485 backref->extent_offset = extent_offset;
2486 backref->generation = btrfs_file_extent_generation(leaf, extent);
2487 backref->old = old;
2488 backref_insert(&new->root, backref);
2489 old->count++;
2490out:
2491 btrfs_release_path(path);
2492 WARN_ON(ret);
2493 return ret;
2494}
2495
2496static noinline bool record_extent_backrefs(struct btrfs_path *path,
2497 struct new_sa_defrag_extent *new)
2498{
0b246afa 2499 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2500 struct old_sa_defrag_extent *old, *tmp;
2501 int ret;
2502
2503 new->path = path;
2504
2505 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2506 ret = iterate_inodes_from_logical(old->bytenr +
2507 old->extent_offset, fs_info,
38c227d8 2508 path, record_one_backref,
c995ab3c 2509 old, false);
4724b106
JB
2510 if (ret < 0 && ret != -ENOENT)
2511 return false;
38c227d8
LB
2512
2513 /* no backref to be processed for this extent */
2514 if (!old->count) {
2515 list_del(&old->list);
2516 kfree(old);
2517 }
2518 }
2519
2520 if (list_empty(&new->head))
2521 return false;
2522
2523 return true;
2524}
2525
2526static int relink_is_mergable(struct extent_buffer *leaf,
2527 struct btrfs_file_extent_item *fi,
116e0024 2528 struct new_sa_defrag_extent *new)
38c227d8 2529{
116e0024 2530 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2531 return 0;
2532
2533 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2534 return 0;
2535
116e0024
LB
2536 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2537 return 0;
2538
2539 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2540 btrfs_file_extent_other_encoding(leaf, fi))
2541 return 0;
2542
2543 return 1;
2544}
2545
2546/*
2547 * Note the backref might has changed, and in this case we just return 0.
2548 */
2549static noinline int relink_extent_backref(struct btrfs_path *path,
2550 struct sa_defrag_extent_backref *prev,
2551 struct sa_defrag_extent_backref *backref)
2552{
2553 struct btrfs_file_extent_item *extent;
2554 struct btrfs_file_extent_item *item;
2555 struct btrfs_ordered_extent *ordered;
2556 struct btrfs_trans_handle *trans;
38c227d8
LB
2557 struct btrfs_root *root;
2558 struct btrfs_key key;
2559 struct extent_buffer *leaf;
2560 struct old_sa_defrag_extent *old = backref->old;
2561 struct new_sa_defrag_extent *new = old->new;
0b246afa 2562 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2563 struct inode *inode;
2564 struct extent_state *cached = NULL;
2565 int ret = 0;
2566 u64 start;
2567 u64 len;
2568 u64 lock_start;
2569 u64 lock_end;
2570 bool merge = false;
2571 int index;
2572
2573 if (prev && prev->root_id == backref->root_id &&
2574 prev->inum == backref->inum &&
2575 prev->file_pos + prev->num_bytes == backref->file_pos)
2576 merge = true;
2577
2578 /* step 1: get root */
2579 key.objectid = backref->root_id;
2580 key.type = BTRFS_ROOT_ITEM_KEY;
2581 key.offset = (u64)-1;
2582
38c227d8
LB
2583 index = srcu_read_lock(&fs_info->subvol_srcu);
2584
2585 root = btrfs_read_fs_root_no_name(fs_info, &key);
2586 if (IS_ERR(root)) {
2587 srcu_read_unlock(&fs_info->subvol_srcu, index);
2588 if (PTR_ERR(root) == -ENOENT)
2589 return 0;
2590 return PTR_ERR(root);
2591 }
38c227d8 2592
bcbba5e6
WS
2593 if (btrfs_root_readonly(root)) {
2594 srcu_read_unlock(&fs_info->subvol_srcu, index);
2595 return 0;
2596 }
2597
38c227d8
LB
2598 /* step 2: get inode */
2599 key.objectid = backref->inum;
2600 key.type = BTRFS_INODE_ITEM_KEY;
2601 key.offset = 0;
2602
2603 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2604 if (IS_ERR(inode)) {
2605 srcu_read_unlock(&fs_info->subvol_srcu, index);
2606 return 0;
2607 }
2608
2609 srcu_read_unlock(&fs_info->subvol_srcu, index);
2610
2611 /* step 3: relink backref */
2612 lock_start = backref->file_pos;
2613 lock_end = backref->file_pos + backref->num_bytes - 1;
2614 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2615 &cached);
38c227d8
LB
2616
2617 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2618 if (ordered) {
2619 btrfs_put_ordered_extent(ordered);
2620 goto out_unlock;
2621 }
2622
2623 trans = btrfs_join_transaction(root);
2624 if (IS_ERR(trans)) {
2625 ret = PTR_ERR(trans);
2626 goto out_unlock;
2627 }
2628
2629 key.objectid = backref->inum;
2630 key.type = BTRFS_EXTENT_DATA_KEY;
2631 key.offset = backref->file_pos;
2632
2633 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2634 if (ret < 0) {
2635 goto out_free_path;
2636 } else if (ret > 0) {
2637 ret = 0;
2638 goto out_free_path;
2639 }
2640
2641 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2642 struct btrfs_file_extent_item);
2643
2644 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2645 backref->generation)
2646 goto out_free_path;
2647
2648 btrfs_release_path(path);
2649
2650 start = backref->file_pos;
2651 if (backref->extent_offset < old->extent_offset + old->offset)
2652 start += old->extent_offset + old->offset -
2653 backref->extent_offset;
2654
2655 len = min(backref->extent_offset + backref->num_bytes,
2656 old->extent_offset + old->offset + old->len);
2657 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2658
2659 ret = btrfs_drop_extents(trans, root, inode, start,
2660 start + len, 1);
2661 if (ret)
2662 goto out_free_path;
2663again:
4a0cc7ca 2664 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2665 key.type = BTRFS_EXTENT_DATA_KEY;
2666 key.offset = start;
2667
a09a0a70 2668 path->leave_spinning = 1;
38c227d8
LB
2669 if (merge) {
2670 struct btrfs_file_extent_item *fi;
2671 u64 extent_len;
2672 struct btrfs_key found_key;
2673
3c9665df 2674 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2675 if (ret < 0)
2676 goto out_free_path;
2677
2678 path->slots[0]--;
2679 leaf = path->nodes[0];
2680 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2681
2682 fi = btrfs_item_ptr(leaf, path->slots[0],
2683 struct btrfs_file_extent_item);
2684 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2685
116e0024
LB
2686 if (extent_len + found_key.offset == start &&
2687 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2688 btrfs_set_file_extent_num_bytes(leaf, fi,
2689 extent_len + len);
2690 btrfs_mark_buffer_dirty(leaf);
2691 inode_add_bytes(inode, len);
2692
2693 ret = 1;
2694 goto out_free_path;
2695 } else {
2696 merge = false;
2697 btrfs_release_path(path);
2698 goto again;
2699 }
2700 }
2701
2702 ret = btrfs_insert_empty_item(trans, root, path, &key,
2703 sizeof(*extent));
2704 if (ret) {
66642832 2705 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2706 goto out_free_path;
2707 }
2708
2709 leaf = path->nodes[0];
2710 item = btrfs_item_ptr(leaf, path->slots[0],
2711 struct btrfs_file_extent_item);
2712 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2713 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2714 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2715 btrfs_set_file_extent_num_bytes(leaf, item, len);
2716 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2717 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2718 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2719 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2720 btrfs_set_file_extent_encryption(leaf, item, 0);
2721 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2722
2723 btrfs_mark_buffer_dirty(leaf);
2724 inode_add_bytes(inode, len);
a09a0a70 2725 btrfs_release_path(path);
38c227d8 2726
84f7d8e6 2727 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
38c227d8
LB
2728 new->disk_len, 0,
2729 backref->root_id, backref->inum,
b06c4bf5 2730 new->file_pos); /* start - extent_offset */
38c227d8 2731 if (ret) {
66642832 2732 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2733 goto out_free_path;
2734 }
2735
2736 ret = 1;
2737out_free_path:
2738 btrfs_release_path(path);
a09a0a70 2739 path->leave_spinning = 0;
3a45bb20 2740 btrfs_end_transaction(trans);
38c227d8
LB
2741out_unlock:
2742 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
e43bbe5e 2743 &cached);
38c227d8
LB
2744 iput(inode);
2745 return ret;
2746}
2747
6f519564
LB
2748static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2749{
2750 struct old_sa_defrag_extent *old, *tmp;
2751
2752 if (!new)
2753 return;
2754
2755 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2756 kfree(old);
2757 }
2758 kfree(new);
2759}
2760
38c227d8
LB
2761static void relink_file_extents(struct new_sa_defrag_extent *new)
2762{
0b246afa 2763 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2764 struct btrfs_path *path;
38c227d8
LB
2765 struct sa_defrag_extent_backref *backref;
2766 struct sa_defrag_extent_backref *prev = NULL;
2767 struct inode *inode;
38c227d8
LB
2768 struct rb_node *node;
2769 int ret;
2770
2771 inode = new->inode;
38c227d8
LB
2772
2773 path = btrfs_alloc_path();
2774 if (!path)
2775 return;
2776
2777 if (!record_extent_backrefs(path, new)) {
2778 btrfs_free_path(path);
2779 goto out;
2780 }
2781 btrfs_release_path(path);
2782
2783 while (1) {
2784 node = rb_first(&new->root);
2785 if (!node)
2786 break;
2787 rb_erase(node, &new->root);
2788
2789 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2790
2791 ret = relink_extent_backref(path, prev, backref);
2792 WARN_ON(ret < 0);
2793
2794 kfree(prev);
2795
2796 if (ret == 1)
2797 prev = backref;
2798 else
2799 prev = NULL;
2800 cond_resched();
2801 }
2802 kfree(prev);
2803
2804 btrfs_free_path(path);
38c227d8 2805out:
6f519564
LB
2806 free_sa_defrag_extent(new);
2807
0b246afa
JM
2808 atomic_dec(&fs_info->defrag_running);
2809 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2810}
2811
2812static struct new_sa_defrag_extent *
2813record_old_file_extents(struct inode *inode,
2814 struct btrfs_ordered_extent *ordered)
2815{
0b246afa 2816 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2817 struct btrfs_root *root = BTRFS_I(inode)->root;
2818 struct btrfs_path *path;
2819 struct btrfs_key key;
6f519564 2820 struct old_sa_defrag_extent *old;
38c227d8
LB
2821 struct new_sa_defrag_extent *new;
2822 int ret;
2823
2824 new = kmalloc(sizeof(*new), GFP_NOFS);
2825 if (!new)
2826 return NULL;
2827
2828 new->inode = inode;
2829 new->file_pos = ordered->file_offset;
2830 new->len = ordered->len;
2831 new->bytenr = ordered->start;
2832 new->disk_len = ordered->disk_len;
2833 new->compress_type = ordered->compress_type;
2834 new->root = RB_ROOT;
2835 INIT_LIST_HEAD(&new->head);
2836
2837 path = btrfs_alloc_path();
2838 if (!path)
2839 goto out_kfree;
2840
4a0cc7ca 2841 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2842 key.type = BTRFS_EXTENT_DATA_KEY;
2843 key.offset = new->file_pos;
2844
2845 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2846 if (ret < 0)
2847 goto out_free_path;
2848 if (ret > 0 && path->slots[0] > 0)
2849 path->slots[0]--;
2850
2851 /* find out all the old extents for the file range */
2852 while (1) {
2853 struct btrfs_file_extent_item *extent;
2854 struct extent_buffer *l;
2855 int slot;
2856 u64 num_bytes;
2857 u64 offset;
2858 u64 end;
2859 u64 disk_bytenr;
2860 u64 extent_offset;
2861
2862 l = path->nodes[0];
2863 slot = path->slots[0];
2864
2865 if (slot >= btrfs_header_nritems(l)) {
2866 ret = btrfs_next_leaf(root, path);
2867 if (ret < 0)
6f519564 2868 goto out_free_path;
38c227d8
LB
2869 else if (ret > 0)
2870 break;
2871 continue;
2872 }
2873
2874 btrfs_item_key_to_cpu(l, &key, slot);
2875
4a0cc7ca 2876 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2877 break;
2878 if (key.type != BTRFS_EXTENT_DATA_KEY)
2879 break;
2880 if (key.offset >= new->file_pos + new->len)
2881 break;
2882
2883 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2884
2885 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2886 if (key.offset + num_bytes < new->file_pos)
2887 goto next;
2888
2889 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2890 if (!disk_bytenr)
2891 goto next;
2892
2893 extent_offset = btrfs_file_extent_offset(l, extent);
2894
2895 old = kmalloc(sizeof(*old), GFP_NOFS);
2896 if (!old)
6f519564 2897 goto out_free_path;
38c227d8
LB
2898
2899 offset = max(new->file_pos, key.offset);
2900 end = min(new->file_pos + new->len, key.offset + num_bytes);
2901
2902 old->bytenr = disk_bytenr;
2903 old->extent_offset = extent_offset;
2904 old->offset = offset - key.offset;
2905 old->len = end - offset;
2906 old->new = new;
2907 old->count = 0;
2908 list_add_tail(&old->list, &new->head);
2909next:
2910 path->slots[0]++;
2911 cond_resched();
2912 }
2913
2914 btrfs_free_path(path);
0b246afa 2915 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2916
2917 return new;
2918
38c227d8
LB
2919out_free_path:
2920 btrfs_free_path(path);
2921out_kfree:
6f519564 2922 free_sa_defrag_extent(new);
38c227d8
LB
2923 return NULL;
2924}
2925
2ff7e61e 2926static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2927 u64 start, u64 len)
2928{
2929 struct btrfs_block_group_cache *cache;
2930
0b246afa 2931 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2932 ASSERT(cache);
2933
2934 spin_lock(&cache->lock);
2935 cache->delalloc_bytes -= len;
2936 spin_unlock(&cache->lock);
2937
2938 btrfs_put_block_group(cache);
2939}
2940
d352ac68
CM
2941/* as ordered data IO finishes, this gets called so we can finish
2942 * an ordered extent if the range of bytes in the file it covers are
2943 * fully written.
2944 */
5fd02043 2945static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2946{
5fd02043 2947 struct inode *inode = ordered_extent->inode;
0b246afa 2948 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2949 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2950 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2951 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2952 struct extent_state *cached_state = NULL;
38c227d8 2953 struct new_sa_defrag_extent *new = NULL;
261507a0 2954 int compress_type = 0;
77cef2ec
JB
2955 int ret = 0;
2956 u64 logical_len = ordered_extent->len;
82d5902d 2957 bool nolock;
77cef2ec 2958 bool truncated = false;
a7e3b975
FM
2959 bool range_locked = false;
2960 bool clear_new_delalloc_bytes = false;
2961
2962 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2963 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2964 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2965 clear_new_delalloc_bytes = true;
e6dcd2dc 2966
70ddc553 2967 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2968
5fd02043
JB
2969 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2970 ret = -EIO;
2971 goto out;
2972 }
2973
7ab7956e
NB
2974 btrfs_free_io_failure_record(BTRFS_I(inode),
2975 ordered_extent->file_offset,
2976 ordered_extent->file_offset +
2977 ordered_extent->len - 1);
f612496b 2978
77cef2ec
JB
2979 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2980 truncated = true;
2981 logical_len = ordered_extent->truncated_len;
2982 /* Truncated the entire extent, don't bother adding */
2983 if (!logical_len)
2984 goto out;
2985 }
2986
c2167754 2987 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2988 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2989
2990 /*
2991 * For mwrite(mmap + memset to write) case, we still reserve
2992 * space for NOCOW range.
2993 * As NOCOW won't cause a new delayed ref, just free the space
2994 */
bc42bda2 2995 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
94ed938a 2996 ordered_extent->len);
6c760c07
JB
2997 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2998 if (nolock)
2999 trans = btrfs_join_transaction_nolock(root);
3000 else
3001 trans = btrfs_join_transaction(root);
3002 if (IS_ERR(trans)) {
3003 ret = PTR_ERR(trans);
3004 trans = NULL;
3005 goto out;
c2167754 3006 }
69fe2d75 3007 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
3008 ret = btrfs_update_inode_fallback(trans, root, inode);
3009 if (ret) /* -ENOMEM or corruption */
66642832 3010 btrfs_abort_transaction(trans, ret);
c2167754
YZ
3011 goto out;
3012 }
e6dcd2dc 3013
a7e3b975 3014 range_locked = true;
2ac55d41
JB
3015 lock_extent_bits(io_tree, ordered_extent->file_offset,
3016 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 3017 &cached_state);
e6dcd2dc 3018
38c227d8
LB
3019 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3020 ordered_extent->file_offset + ordered_extent->len - 1,
452e62b7 3021 EXTENT_DEFRAG, 0, cached_state);
38c227d8
LB
3022 if (ret) {
3023 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 3024 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
3025 /* the inode is shared */
3026 new = record_old_file_extents(inode, ordered_extent);
3027
3028 clear_extent_bit(io_tree, ordered_extent->file_offset,
3029 ordered_extent->file_offset + ordered_extent->len - 1,
ae0f1625 3030 EXTENT_DEFRAG, 0, 0, &cached_state);
38c227d8
LB
3031 }
3032
0cb59c99 3033 if (nolock)
7a7eaa40 3034 trans = btrfs_join_transaction_nolock(root);
0cb59c99 3035 else
7a7eaa40 3036 trans = btrfs_join_transaction(root);
79787eaa
JM
3037 if (IS_ERR(trans)) {
3038 ret = PTR_ERR(trans);
3039 trans = NULL;
a7e3b975 3040 goto out;
79787eaa 3041 }
a79b7d4b 3042
69fe2d75 3043 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 3044
c8b97818 3045 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 3046 compress_type = ordered_extent->compress_type;
d899e052 3047 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 3048 BUG_ON(compress_type);
b430b775
JM
3049 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3050 ordered_extent->len);
7a6d7067 3051 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
3052 ordered_extent->file_offset,
3053 ordered_extent->file_offset +
77cef2ec 3054 logical_len);
d899e052 3055 } else {
0b246afa 3056 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
3057 ret = insert_reserved_file_extent(trans, inode,
3058 ordered_extent->file_offset,
3059 ordered_extent->start,
3060 ordered_extent->disk_len,
77cef2ec 3061 logical_len, logical_len,
261507a0 3062 compress_type, 0, 0,
d899e052 3063 BTRFS_FILE_EXTENT_REG);
e570fd27 3064 if (!ret)
2ff7e61e 3065 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
3066 ordered_extent->start,
3067 ordered_extent->disk_len);
d899e052 3068 }
5dc562c5
JB
3069 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3070 ordered_extent->file_offset, ordered_extent->len,
3071 trans->transid);
79787eaa 3072 if (ret < 0) {
66642832 3073 btrfs_abort_transaction(trans, ret);
a7e3b975 3074 goto out;
79787eaa 3075 }
2ac55d41 3076
ac01f26a
NB
3077 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3078 if (ret) {
3079 btrfs_abort_transaction(trans, ret);
3080 goto out;
3081 }
e6dcd2dc 3082
6c760c07
JB
3083 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3084 ret = btrfs_update_inode_fallback(trans, root, inode);
3085 if (ret) { /* -ENOMEM or corruption */
66642832 3086 btrfs_abort_transaction(trans, ret);
a7e3b975 3087 goto out;
1ef30be1
JB
3088 }
3089 ret = 0;
c2167754 3090out:
a7e3b975
FM
3091 if (range_locked || clear_new_delalloc_bytes) {
3092 unsigned int clear_bits = 0;
3093
3094 if (range_locked)
3095 clear_bits |= EXTENT_LOCKED;
3096 if (clear_new_delalloc_bytes)
3097 clear_bits |= EXTENT_DELALLOC_NEW;
3098 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3099 ordered_extent->file_offset,
3100 ordered_extent->file_offset +
3101 ordered_extent->len - 1,
3102 clear_bits,
3103 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
ae0f1625 3104 0, &cached_state);
a7e3b975
FM
3105 }
3106
a698d075 3107 if (trans)
3a45bb20 3108 btrfs_end_transaction(trans);
0cb59c99 3109
77cef2ec
JB
3110 if (ret || truncated) {
3111 u64 start, end;
3112
3113 if (truncated)
3114 start = ordered_extent->file_offset + logical_len;
3115 else
3116 start = ordered_extent->file_offset;
3117 end = ordered_extent->file_offset + ordered_extent->len - 1;
f08dc36f 3118 clear_extent_uptodate(io_tree, start, end, NULL);
77cef2ec
JB
3119
3120 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 3121 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 3122
0bec9ef5
JB
3123 /*
3124 * If the ordered extent had an IOERR or something else went
3125 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3126 * back to the allocator. We only free the extent in the
3127 * truncated case if we didn't write out the extent at all.
0bec9ef5 3128 */
77cef2ec
JB
3129 if ((ret || !logical_len) &&
3130 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3131 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3132 btrfs_free_reserved_extent(fs_info,
3133 ordered_extent->start,
e570fd27 3134 ordered_extent->disk_len, 1);
0bec9ef5
JB
3135 }
3136
3137
5fd02043 3138 /*
8bad3c02
LB
3139 * This needs to be done to make sure anybody waiting knows we are done
3140 * updating everything for this ordered extent.
5fd02043
JB
3141 */
3142 btrfs_remove_ordered_extent(inode, ordered_extent);
3143
38c227d8 3144 /* for snapshot-aware defrag */
6f519564
LB
3145 if (new) {
3146 if (ret) {
3147 free_sa_defrag_extent(new);
0b246afa 3148 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3149 } else {
3150 relink_file_extents(new);
3151 }
3152 }
38c227d8 3153
e6dcd2dc
CM
3154 /* once for us */
3155 btrfs_put_ordered_extent(ordered_extent);
3156 /* once for the tree */
3157 btrfs_put_ordered_extent(ordered_extent);
3158
5fd02043
JB
3159 return ret;
3160}
3161
3162static void finish_ordered_fn(struct btrfs_work *work)
3163{
3164 struct btrfs_ordered_extent *ordered_extent;
3165 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3166 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3167}
3168
c3988d63 3169static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3170 struct extent_state *state, int uptodate)
3171{
5fd02043 3172 struct inode *inode = page->mapping->host;
0b246afa 3173 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3174 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3175 struct btrfs_workqueue *wq;
3176 btrfs_work_func_t func;
5fd02043 3177
1abe9b8a 3178 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3179
8b62b72b 3180 ClearPagePrivate2(page);
5fd02043
JB
3181 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3182 end - start + 1, uptodate))
c3988d63 3183 return;
5fd02043 3184
70ddc553 3185 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 3186 wq = fs_info->endio_freespace_worker;
9e0af237
LB
3187 func = btrfs_freespace_write_helper;
3188 } else {
0b246afa 3189 wq = fs_info->endio_write_workers;
9e0af237
LB
3190 func = btrfs_endio_write_helper;
3191 }
5fd02043 3192
9e0af237
LB
3193 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3194 NULL);
3195 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3196}
3197
dc380aea
MX
3198static int __readpage_endio_check(struct inode *inode,
3199 struct btrfs_io_bio *io_bio,
3200 int icsum, struct page *page,
3201 int pgoff, u64 start, size_t len)
3202{
3203 char *kaddr;
3204 u32 csum_expected;
3205 u32 csum = ~(u32)0;
dc380aea
MX
3206
3207 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3208
3209 kaddr = kmap_atomic(page);
3210 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
0b5e3daf 3211 btrfs_csum_final(csum, (u8 *)&csum);
dc380aea
MX
3212 if (csum != csum_expected)
3213 goto zeroit;
3214
3215 kunmap_atomic(kaddr);
3216 return 0;
3217zeroit:
0970a22e 3218 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
6f6b643e 3219 io_bio->mirror_num);
dc380aea
MX
3220 memset(kaddr + pgoff, 1, len);
3221 flush_dcache_page(page);
3222 kunmap_atomic(kaddr);
dc380aea
MX
3223 return -EIO;
3224}
3225
d352ac68
CM
3226/*
3227 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3228 * if there's a match, we allow the bio to finish. If not, the code in
3229 * extent_io.c will try to find good copies for us.
d352ac68 3230 */
facc8a22
MX
3231static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3232 u64 phy_offset, struct page *page,
3233 u64 start, u64 end, int mirror)
07157aac 3234{
4eee4fa4 3235 size_t offset = start - page_offset(page);
07157aac 3236 struct inode *inode = page->mapping->host;
d1310b2e 3237 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3238 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3239
d20f7043
CM
3240 if (PageChecked(page)) {
3241 ClearPageChecked(page);
dc380aea 3242 return 0;
d20f7043 3243 }
6cbff00f
CH
3244
3245 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3246 return 0;
17d217fe
YZ
3247
3248 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3249 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3250 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3251 return 0;
17d217fe 3252 }
d20f7043 3253
facc8a22 3254 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3255 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3256 start, (size_t)(end - start + 1));
07157aac 3257}
b888db2b 3258
c1c3fac2
NB
3259/*
3260 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3261 *
3262 * @inode: The inode we want to perform iput on
3263 *
3264 * This function uses the generic vfs_inode::i_count to track whether we should
3265 * just decrement it (in case it's > 1) or if this is the last iput then link
3266 * the inode to the delayed iput machinery. Delayed iputs are processed at
3267 * transaction commit time/superblock commit/cleaner kthread.
3268 */
24bbcf04
YZ
3269void btrfs_add_delayed_iput(struct inode *inode)
3270{
0b246afa 3271 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3272 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3273
3274 if (atomic_add_unless(&inode->i_count, -1, 1))
3275 return;
3276
24bbcf04 3277 spin_lock(&fs_info->delayed_iput_lock);
c1c3fac2
NB
3278 ASSERT(list_empty(&binode->delayed_iput));
3279 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
24bbcf04
YZ
3280 spin_unlock(&fs_info->delayed_iput_lock);
3281}
3282
2ff7e61e 3283void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3284{
24bbcf04 3285
24bbcf04 3286 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3287 while (!list_empty(&fs_info->delayed_iputs)) {
3288 struct btrfs_inode *inode;
3289
3290 inode = list_first_entry(&fs_info->delayed_iputs,
3291 struct btrfs_inode, delayed_iput);
c1c3fac2 3292 list_del_init(&inode->delayed_iput);
8089fe62
DS
3293 spin_unlock(&fs_info->delayed_iput_lock);
3294 iput(&inode->vfs_inode);
3295 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3296 }
8089fe62 3297 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3298}
3299
d68fc57b 3300/*
42b2aa86 3301 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3302 * files in the subvolume, it removes orphan item and frees block_rsv
3303 * structure.
3304 */
3305void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3306 struct btrfs_root *root)
3307{
0b246afa 3308 struct btrfs_fs_info *fs_info = root->fs_info;
90290e19 3309 struct btrfs_block_rsv *block_rsv;
d68fc57b 3310
8a35d95f 3311 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3312 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3313 return;
3314
90290e19 3315 spin_lock(&root->orphan_lock);
8a35d95f 3316 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3317 spin_unlock(&root->orphan_lock);
3318 return;
3319 }
3320
3321 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3322 spin_unlock(&root->orphan_lock);
3323 return;
3324 }
3325
3326 block_rsv = root->orphan_block_rsv;
3327 root->orphan_block_rsv = NULL;
3328 spin_unlock(&root->orphan_lock);
3329
90290e19
JB
3330 if (block_rsv) {
3331 WARN_ON(block_rsv->size > 0);
2ff7e61e 3332 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b
YZ
3333 }
3334}
3335
7b128766 3336/*
f7e9e8fc
OS
3337 * This creates an orphan entry for the given inode in case something goes wrong
3338 * in the middle of an unlink.
7b128766 3339 */
73f2e545 3340int btrfs_orphan_add(struct btrfs_trans_handle *trans,
27919067 3341 struct btrfs_inode *inode)
7b128766 3342{
d68fc57b 3343 int ret;
7b128766 3344
27919067
OS
3345 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3346 if (ret && ret != -EEXIST) {
3347 btrfs_abort_transaction(trans, ret);
3348 return ret;
d68fc57b
YZ
3349 }
3350
d68fc57b 3351 return 0;
7b128766
JB
3352}
3353
3354/*
f7e9e8fc
OS
3355 * We have done the delete so we can go ahead and remove the orphan item for
3356 * this particular inode.
7b128766 3357 */
48a3b636 3358static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3359 struct btrfs_inode *inode)
7b128766 3360{
27919067 3361 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
7b128766
JB
3362}
3363
3364/*
3365 * this cleans up any orphans that may be left on the list from the last use
3366 * of this root.
3367 */
66b4ffd1 3368int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3369{
0b246afa 3370 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3371 struct btrfs_path *path;
3372 struct extent_buffer *leaf;
7b128766
JB
3373 struct btrfs_key key, found_key;
3374 struct btrfs_trans_handle *trans;
3375 struct inode *inode;
8f6d7f4f 3376 u64 last_objectid = 0;
f7e9e8fc 3377 int ret = 0, nr_unlink = 0;
7b128766 3378
d68fc57b 3379 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3380 return 0;
c71bf099
YZ
3381
3382 path = btrfs_alloc_path();
66b4ffd1
JB
3383 if (!path) {
3384 ret = -ENOMEM;
3385 goto out;
3386 }
e4058b54 3387 path->reada = READA_BACK;
7b128766
JB
3388
3389 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3390 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3391 key.offset = (u64)-1;
3392
7b128766
JB
3393 while (1) {
3394 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3395 if (ret < 0)
3396 goto out;
7b128766
JB
3397
3398 /*
3399 * if ret == 0 means we found what we were searching for, which
25985edc 3400 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3401 * find the key and see if we have stuff that matches
3402 */
3403 if (ret > 0) {
66b4ffd1 3404 ret = 0;
7b128766
JB
3405 if (path->slots[0] == 0)
3406 break;
3407 path->slots[0]--;
3408 }
3409
3410 /* pull out the item */
3411 leaf = path->nodes[0];
7b128766
JB
3412 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3413
3414 /* make sure the item matches what we want */
3415 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3416 break;
962a298f 3417 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3418 break;
3419
3420 /* release the path since we're done with it */
b3b4aa74 3421 btrfs_release_path(path);
7b128766
JB
3422
3423 /*
3424 * this is where we are basically btrfs_lookup, without the
3425 * crossing root thing. we store the inode number in the
3426 * offset of the orphan item.
3427 */
8f6d7f4f
JB
3428
3429 if (found_key.offset == last_objectid) {
0b246afa
JM
3430 btrfs_err(fs_info,
3431 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3432 ret = -EINVAL;
3433 goto out;
3434 }
3435
3436 last_objectid = found_key.offset;
3437
5d4f98a2
YZ
3438 found_key.objectid = found_key.offset;
3439 found_key.type = BTRFS_INODE_ITEM_KEY;
3440 found_key.offset = 0;
0b246afa 3441 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3442 ret = PTR_ERR_OR_ZERO(inode);
67710892 3443 if (ret && ret != -ENOENT)
66b4ffd1 3444 goto out;
7b128766 3445
0b246afa 3446 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3447 struct btrfs_root *dead_root;
3448 struct btrfs_fs_info *fs_info = root->fs_info;
3449 int is_dead_root = 0;
3450
3451 /*
3452 * this is an orphan in the tree root. Currently these
3453 * could come from 2 sources:
3454 * a) a snapshot deletion in progress
3455 * b) a free space cache inode
3456 * We need to distinguish those two, as the snapshot
3457 * orphan must not get deleted.
3458 * find_dead_roots already ran before us, so if this
3459 * is a snapshot deletion, we should find the root
3460 * in the dead_roots list
3461 */
3462 spin_lock(&fs_info->trans_lock);
3463 list_for_each_entry(dead_root, &fs_info->dead_roots,
3464 root_list) {
3465 if (dead_root->root_key.objectid ==
3466 found_key.objectid) {
3467 is_dead_root = 1;
3468 break;
3469 }
3470 }
3471 spin_unlock(&fs_info->trans_lock);
3472 if (is_dead_root) {
3473 /* prevent this orphan from being found again */
3474 key.offset = found_key.objectid - 1;
3475 continue;
3476 }
f7e9e8fc 3477
f8e9e0b0 3478 }
f7e9e8fc 3479
7b128766 3480 /*
f7e9e8fc
OS
3481 * If we have an inode with links, there are a couple of
3482 * possibilities. Old kernels (before v3.12) used to create an
3483 * orphan item for truncate indicating that there were possibly
3484 * extent items past i_size that needed to be deleted. In v3.12,
3485 * truncate was changed to update i_size in sync with the extent
3486 * items, but the (useless) orphan item was still created. Since
3487 * v4.18, we don't create the orphan item for truncate at all.
3488 *
3489 * So, this item could mean that we need to do a truncate, but
3490 * only if this filesystem was last used on a pre-v3.12 kernel
3491 * and was not cleanly unmounted. The odds of that are quite
3492 * slim, and it's a pain to do the truncate now, so just delete
3493 * the orphan item.
3494 *
3495 * It's also possible that this orphan item was supposed to be
3496 * deleted but wasn't. The inode number may have been reused,
3497 * but either way, we can delete the orphan item.
7b128766 3498 */
f7e9e8fc
OS
3499 if (ret == -ENOENT || inode->i_nlink) {
3500 if (!ret)
3501 iput(inode);
a8c9e576 3502 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3503 if (IS_ERR(trans)) {
3504 ret = PTR_ERR(trans);
3505 goto out;
3506 }
0b246afa
JM
3507 btrfs_debug(fs_info, "auto deleting %Lu",
3508 found_key.objectid);
a8c9e576
JB
3509 ret = btrfs_del_orphan_item(trans, root,
3510 found_key.objectid);
3a45bb20 3511 btrfs_end_transaction(trans);
4ef31a45
JB
3512 if (ret)
3513 goto out;
7b128766
JB
3514 continue;
3515 }
3516
f7e9e8fc 3517 nr_unlink++;
7b128766
JB
3518
3519 /* this will do delete_inode and everything for us */
3520 iput(inode);
66b4ffd1
JB
3521 if (ret)
3522 goto out;
7b128766 3523 }
3254c876
MX
3524 /* release the path since we're done with it */
3525 btrfs_release_path(path);
3526
d68fc57b
YZ
3527 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3528
3529 if (root->orphan_block_rsv)
2ff7e61e 3530 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
d68fc57b
YZ
3531 (u64)-1);
3532
27cdeb70
MX
3533 if (root->orphan_block_rsv ||
3534 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3535 trans = btrfs_join_transaction(root);
66b4ffd1 3536 if (!IS_ERR(trans))
3a45bb20 3537 btrfs_end_transaction(trans);
d68fc57b 3538 }
7b128766
JB
3539
3540 if (nr_unlink)
0b246afa 3541 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
66b4ffd1
JB
3542
3543out:
3544 if (ret)
0b246afa 3545 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3546 btrfs_free_path(path);
3547 return ret;
7b128766
JB
3548}
3549
46a53cca
CM
3550/*
3551 * very simple check to peek ahead in the leaf looking for xattrs. If we
3552 * don't find any xattrs, we know there can't be any acls.
3553 *
3554 * slot is the slot the inode is in, objectid is the objectid of the inode
3555 */
3556static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3557 int slot, u64 objectid,
3558 int *first_xattr_slot)
46a53cca
CM
3559{
3560 u32 nritems = btrfs_header_nritems(leaf);
3561 struct btrfs_key found_key;
f23b5a59
JB
3562 static u64 xattr_access = 0;
3563 static u64 xattr_default = 0;
46a53cca
CM
3564 int scanned = 0;
3565
f23b5a59 3566 if (!xattr_access) {
97d79299
AG
3567 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3568 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3569 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3570 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3571 }
3572
46a53cca 3573 slot++;
63541927 3574 *first_xattr_slot = -1;
46a53cca
CM
3575 while (slot < nritems) {
3576 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3577
3578 /* we found a different objectid, there must not be acls */
3579 if (found_key.objectid != objectid)
3580 return 0;
3581
3582 /* we found an xattr, assume we've got an acl */
f23b5a59 3583 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3584 if (*first_xattr_slot == -1)
3585 *first_xattr_slot = slot;
f23b5a59
JB
3586 if (found_key.offset == xattr_access ||
3587 found_key.offset == xattr_default)
3588 return 1;
3589 }
46a53cca
CM
3590
3591 /*
3592 * we found a key greater than an xattr key, there can't
3593 * be any acls later on
3594 */
3595 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3596 return 0;
3597
3598 slot++;
3599 scanned++;
3600
3601 /*
3602 * it goes inode, inode backrefs, xattrs, extents,
3603 * so if there are a ton of hard links to an inode there can
3604 * be a lot of backrefs. Don't waste time searching too hard,
3605 * this is just an optimization
3606 */
3607 if (scanned >= 8)
3608 break;
3609 }
3610 /* we hit the end of the leaf before we found an xattr or
3611 * something larger than an xattr. We have to assume the inode
3612 * has acls
3613 */
63541927
FDBM
3614 if (*first_xattr_slot == -1)
3615 *first_xattr_slot = slot;
46a53cca
CM
3616 return 1;
3617}
3618
d352ac68
CM
3619/*
3620 * read an inode from the btree into the in-memory inode
3621 */
67710892 3622static int btrfs_read_locked_inode(struct inode *inode)
39279cc3 3623{
0b246afa 3624 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 3625 struct btrfs_path *path;
5f39d397 3626 struct extent_buffer *leaf;
39279cc3
CM
3627 struct btrfs_inode_item *inode_item;
3628 struct btrfs_root *root = BTRFS_I(inode)->root;
3629 struct btrfs_key location;
67de1176 3630 unsigned long ptr;
46a53cca 3631 int maybe_acls;
618e21d5 3632 u32 rdev;
39279cc3 3633 int ret;
2f7e33d4 3634 bool filled = false;
63541927 3635 int first_xattr_slot;
2f7e33d4
MX
3636
3637 ret = btrfs_fill_inode(inode, &rdev);
3638 if (!ret)
3639 filled = true;
39279cc3
CM
3640
3641 path = btrfs_alloc_path();
67710892
FM
3642 if (!path) {
3643 ret = -ENOMEM;
1748f843 3644 goto make_bad;
67710892 3645 }
1748f843 3646
39279cc3 3647 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3648
39279cc3 3649 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3650 if (ret) {
3651 if (ret > 0)
3652 ret = -ENOENT;
39279cc3 3653 goto make_bad;
67710892 3654 }
39279cc3 3655
5f39d397 3656 leaf = path->nodes[0];
2f7e33d4
MX
3657
3658 if (filled)
67de1176 3659 goto cache_index;
2f7e33d4 3660
5f39d397
CM
3661 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3662 struct btrfs_inode_item);
5f39d397 3663 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3664 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3665 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3666 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3667 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3668
a937b979
DS
3669 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3670 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3671
a937b979
DS
3672 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3673 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3674
a937b979
DS
3675 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3676 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3677
9cc97d64 3678 BTRFS_I(inode)->i_otime.tv_sec =
3679 btrfs_timespec_sec(leaf, &inode_item->otime);
3680 BTRFS_I(inode)->i_otime.tv_nsec =
3681 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3682
a76a3cd4 3683 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3684 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3685 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3686
c7f88c4e
JL
3687 inode_set_iversion_queried(inode,
3688 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3689 inode->i_generation = BTRFS_I(inode)->generation;
3690 inode->i_rdev = 0;
3691 rdev = btrfs_inode_rdev(leaf, inode_item);
3692
3693 BTRFS_I(inode)->index_cnt = (u64)-1;
3694 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3695
3696cache_index:
5dc562c5
JB
3697 /*
3698 * If we were modified in the current generation and evicted from memory
3699 * and then re-read we need to do a full sync since we don't have any
3700 * idea about which extents were modified before we were evicted from
3701 * cache.
6e17d30b
YD
3702 *
3703 * This is required for both inode re-read from disk and delayed inode
3704 * in delayed_nodes_tree.
5dc562c5 3705 */
0b246afa 3706 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3707 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3708 &BTRFS_I(inode)->runtime_flags);
3709
bde6c242
FM
3710 /*
3711 * We don't persist the id of the transaction where an unlink operation
3712 * against the inode was last made. So here we assume the inode might
3713 * have been evicted, and therefore the exact value of last_unlink_trans
3714 * lost, and set it to last_trans to avoid metadata inconsistencies
3715 * between the inode and its parent if the inode is fsync'ed and the log
3716 * replayed. For example, in the scenario:
3717 *
3718 * touch mydir/foo
3719 * ln mydir/foo mydir/bar
3720 * sync
3721 * unlink mydir/bar
3722 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3723 * xfs_io -c fsync mydir/foo
3724 * <power failure>
3725 * mount fs, triggers fsync log replay
3726 *
3727 * We must make sure that when we fsync our inode foo we also log its
3728 * parent inode, otherwise after log replay the parent still has the
3729 * dentry with the "bar" name but our inode foo has a link count of 1
3730 * and doesn't have an inode ref with the name "bar" anymore.
3731 *
3732 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3733 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3734 * transaction commits on fsync if our inode is a directory, or if our
3735 * inode is not a directory, logging its parent unnecessarily.
3736 */
3737 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3738
67de1176
MX
3739 path->slots[0]++;
3740 if (inode->i_nlink != 1 ||
3741 path->slots[0] >= btrfs_header_nritems(leaf))
3742 goto cache_acl;
3743
3744 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3745 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3746 goto cache_acl;
3747
3748 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3749 if (location.type == BTRFS_INODE_REF_KEY) {
3750 struct btrfs_inode_ref *ref;
3751
3752 ref = (struct btrfs_inode_ref *)ptr;
3753 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3754 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3755 struct btrfs_inode_extref *extref;
3756
3757 extref = (struct btrfs_inode_extref *)ptr;
3758 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3759 extref);
3760 }
2f7e33d4 3761cache_acl:
46a53cca
CM
3762 /*
3763 * try to precache a NULL acl entry for files that don't have
3764 * any xattrs or acls
3765 */
33345d01 3766 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3767 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3768 if (first_xattr_slot != -1) {
3769 path->slots[0] = first_xattr_slot;
3770 ret = btrfs_load_inode_props(inode, path);
3771 if (ret)
0b246afa 3772 btrfs_err(fs_info,
351fd353 3773 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3774 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3775 root->root_key.objectid, ret);
3776 }
3777 btrfs_free_path(path);
3778
72c04902
AV
3779 if (!maybe_acls)
3780 cache_no_acl(inode);
46a53cca 3781
39279cc3 3782 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3783 case S_IFREG:
3784 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3785 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3786 inode->i_fop = &btrfs_file_operations;
3787 inode->i_op = &btrfs_file_inode_operations;
3788 break;
3789 case S_IFDIR:
3790 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3791 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3792 break;
3793 case S_IFLNK:
3794 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3795 inode_nohighmem(inode);
39279cc3
CM
3796 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3797 break;
618e21d5 3798 default:
0279b4cd 3799 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3800 init_special_inode(inode, inode->i_mode, rdev);
3801 break;
39279cc3 3802 }
6cbff00f 3803
7b6a221e 3804 btrfs_sync_inode_flags_to_i_flags(inode);
67710892 3805 return 0;
39279cc3
CM
3806
3807make_bad:
39279cc3 3808 btrfs_free_path(path);
39279cc3 3809 make_bad_inode(inode);
67710892 3810 return ret;
39279cc3
CM
3811}
3812
d352ac68
CM
3813/*
3814 * given a leaf and an inode, copy the inode fields into the leaf
3815 */
e02119d5
CM
3816static void fill_inode_item(struct btrfs_trans_handle *trans,
3817 struct extent_buffer *leaf,
5f39d397 3818 struct btrfs_inode_item *item,
39279cc3
CM
3819 struct inode *inode)
3820{
51fab693
LB
3821 struct btrfs_map_token token;
3822
3823 btrfs_init_map_token(&token);
5f39d397 3824
51fab693
LB
3825 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3826 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3827 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3828 &token);
3829 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3830 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3831
a937b979 3832 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3833 inode->i_atime.tv_sec, &token);
a937b979 3834 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3835 inode->i_atime.tv_nsec, &token);
5f39d397 3836
a937b979 3837 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3838 inode->i_mtime.tv_sec, &token);
a937b979 3839 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3840 inode->i_mtime.tv_nsec, &token);
5f39d397 3841
a937b979 3842 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3843 inode->i_ctime.tv_sec, &token);
a937b979 3844 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3845 inode->i_ctime.tv_nsec, &token);
5f39d397 3846
9cc97d64 3847 btrfs_set_token_timespec_sec(leaf, &item->otime,
3848 BTRFS_I(inode)->i_otime.tv_sec, &token);
3849 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3850 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3851
51fab693
LB
3852 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3853 &token);
3854 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3855 &token);
c7f88c4e
JL
3856 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3857 &token);
51fab693
LB
3858 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3859 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3860 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3861 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3862}
3863
d352ac68
CM
3864/*
3865 * copy everything in the in-memory inode into the btree.
3866 */
2115133f 3867static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3868 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3869{
3870 struct btrfs_inode_item *inode_item;
3871 struct btrfs_path *path;
5f39d397 3872 struct extent_buffer *leaf;
39279cc3
CM
3873 int ret;
3874
3875 path = btrfs_alloc_path();
16cdcec7
MX
3876 if (!path)
3877 return -ENOMEM;
3878
b9473439 3879 path->leave_spinning = 1;
16cdcec7
MX
3880 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3881 1);
39279cc3
CM
3882 if (ret) {
3883 if (ret > 0)
3884 ret = -ENOENT;
3885 goto failed;
3886 }
3887
5f39d397
CM
3888 leaf = path->nodes[0];
3889 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3890 struct btrfs_inode_item);
39279cc3 3891
e02119d5 3892 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3893 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3894 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3895 ret = 0;
3896failed:
39279cc3
CM
3897 btrfs_free_path(path);
3898 return ret;
3899}
3900
2115133f
CM
3901/*
3902 * copy everything in the in-memory inode into the btree.
3903 */
3904noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3905 struct btrfs_root *root, struct inode *inode)
3906{
0b246afa 3907 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3908 int ret;
3909
3910 /*
3911 * If the inode is a free space inode, we can deadlock during commit
3912 * if we put it into the delayed code.
3913 *
3914 * The data relocation inode should also be directly updated
3915 * without delay
3916 */
70ddc553 3917 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 3918 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 3919 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
3920 btrfs_update_root_times(trans, root);
3921
2115133f
CM
3922 ret = btrfs_delayed_update_inode(trans, root, inode);
3923 if (!ret)
3924 btrfs_set_inode_last_trans(trans, inode);
3925 return ret;
3926 }
3927
3928 return btrfs_update_inode_item(trans, root, inode);
3929}
3930
be6aef60
JB
3931noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3932 struct btrfs_root *root,
3933 struct inode *inode)
2115133f
CM
3934{
3935 int ret;
3936
3937 ret = btrfs_update_inode(trans, root, inode);
3938 if (ret == -ENOSPC)
3939 return btrfs_update_inode_item(trans, root, inode);
3940 return ret;
3941}
3942
d352ac68
CM
3943/*
3944 * unlink helper that gets used here in inode.c and in the tree logging
3945 * recovery code. It remove a link in a directory with a given name, and
3946 * also drops the back refs in the inode to the directory
3947 */
92986796
AV
3948static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3949 struct btrfs_root *root,
4ec5934e
NB
3950 struct btrfs_inode *dir,
3951 struct btrfs_inode *inode,
92986796 3952 const char *name, int name_len)
39279cc3 3953{
0b246afa 3954 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 3955 struct btrfs_path *path;
39279cc3 3956 int ret = 0;
5f39d397 3957 struct extent_buffer *leaf;
39279cc3 3958 struct btrfs_dir_item *di;
5f39d397 3959 struct btrfs_key key;
aec7477b 3960 u64 index;
33345d01
LZ
3961 u64 ino = btrfs_ino(inode);
3962 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3963
3964 path = btrfs_alloc_path();
54aa1f4d
CM
3965 if (!path) {
3966 ret = -ENOMEM;
554233a6 3967 goto out;
54aa1f4d
CM
3968 }
3969
b9473439 3970 path->leave_spinning = 1;
33345d01 3971 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3972 name, name_len, -1);
3973 if (IS_ERR(di)) {
3974 ret = PTR_ERR(di);
3975 goto err;
3976 }
3977 if (!di) {
3978 ret = -ENOENT;
3979 goto err;
3980 }
5f39d397
CM
3981 leaf = path->nodes[0];
3982 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3983 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3984 if (ret)
3985 goto err;
b3b4aa74 3986 btrfs_release_path(path);
39279cc3 3987
67de1176
MX
3988 /*
3989 * If we don't have dir index, we have to get it by looking up
3990 * the inode ref, since we get the inode ref, remove it directly,
3991 * it is unnecessary to do delayed deletion.
3992 *
3993 * But if we have dir index, needn't search inode ref to get it.
3994 * Since the inode ref is close to the inode item, it is better
3995 * that we delay to delete it, and just do this deletion when
3996 * we update the inode item.
3997 */
4ec5934e 3998 if (inode->dir_index) {
67de1176
MX
3999 ret = btrfs_delayed_delete_inode_ref(inode);
4000 if (!ret) {
4ec5934e 4001 index = inode->dir_index;
67de1176
MX
4002 goto skip_backref;
4003 }
4004 }
4005
33345d01
LZ
4006 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4007 dir_ino, &index);
aec7477b 4008 if (ret) {
0b246afa 4009 btrfs_info(fs_info,
c2cf52eb 4010 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4011 name_len, name, ino, dir_ino);
66642832 4012 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4013 goto err;
4014 }
67de1176 4015skip_backref:
2ff7e61e 4016 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
79787eaa 4017 if (ret) {
66642832 4018 btrfs_abort_transaction(trans, ret);
39279cc3 4019 goto err;
79787eaa 4020 }
39279cc3 4021
4ec5934e
NB
4022 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4023 dir_ino);
79787eaa 4024 if (ret != 0 && ret != -ENOENT) {
66642832 4025 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4026 goto err;
4027 }
e02119d5 4028
4ec5934e
NB
4029 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4030 index);
6418c961
CM
4031 if (ret == -ENOENT)
4032 ret = 0;
d4e3991b 4033 else if (ret)
66642832 4034 btrfs_abort_transaction(trans, ret);
39279cc3
CM
4035err:
4036 btrfs_free_path(path);
e02119d5
CM
4037 if (ret)
4038 goto out;
4039
6ef06d27 4040 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
4041 inode_inc_iversion(&inode->vfs_inode);
4042 inode_inc_iversion(&dir->vfs_inode);
4043 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4044 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4045 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 4046out:
39279cc3
CM
4047 return ret;
4048}
4049
92986796
AV
4050int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4051 struct btrfs_root *root,
4ec5934e 4052 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
4053 const char *name, int name_len)
4054{
4055 int ret;
4056 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4057 if (!ret) {
4ec5934e
NB
4058 drop_nlink(&inode->vfs_inode);
4059 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4060 }
4061 return ret;
4062}
39279cc3 4063
a22285a6
YZ
4064/*
4065 * helper to start transaction for unlink and rmdir.
4066 *
d52be818
JB
4067 * unlink and rmdir are special in btrfs, they do not always free space, so
4068 * if we cannot make our reservations the normal way try and see if there is
4069 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4070 * allow the unlink to occur.
a22285a6 4071 */
d52be818 4072static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4073{
a22285a6 4074 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4075
e70bea5f
JB
4076 /*
4077 * 1 for the possible orphan item
4078 * 1 for the dir item
4079 * 1 for the dir index
4080 * 1 for the inode ref
e70bea5f
JB
4081 * 1 for the inode
4082 */
8eab77ff 4083 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4084}
4085
4086static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4087{
4088 struct btrfs_root *root = BTRFS_I(dir)->root;
4089 struct btrfs_trans_handle *trans;
2b0143b5 4090 struct inode *inode = d_inode(dentry);
a22285a6 4091 int ret;
a22285a6 4092
d52be818 4093 trans = __unlink_start_trans(dir);
a22285a6
YZ
4094 if (IS_ERR(trans))
4095 return PTR_ERR(trans);
5f39d397 4096
4ec5934e
NB
4097 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4098 0);
12fcfd22 4099
4ec5934e
NB
4100 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4101 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4102 dentry->d_name.len);
b532402e
TI
4103 if (ret)
4104 goto out;
7b128766 4105
a22285a6 4106 if (inode->i_nlink == 0) {
73f2e545 4107 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4108 if (ret)
4109 goto out;
a22285a6 4110 }
7b128766 4111
b532402e 4112out:
3a45bb20 4113 btrfs_end_transaction(trans);
2ff7e61e 4114 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4115 return ret;
4116}
4117
f60a2364 4118static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4df27c4d
YZ
4119 struct btrfs_root *root,
4120 struct inode *dir, u64 objectid,
4121 const char *name, int name_len)
4122{
0b246afa 4123 struct btrfs_fs_info *fs_info = root->fs_info;
4df27c4d
YZ
4124 struct btrfs_path *path;
4125 struct extent_buffer *leaf;
4126 struct btrfs_dir_item *di;
4127 struct btrfs_key key;
4128 u64 index;
4129 int ret;
4a0cc7ca 4130 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4131
4132 path = btrfs_alloc_path();
4133 if (!path)
4134 return -ENOMEM;
4135
33345d01 4136 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4137 name, name_len, -1);
79787eaa
JM
4138 if (IS_ERR_OR_NULL(di)) {
4139 if (!di)
4140 ret = -ENOENT;
4141 else
4142 ret = PTR_ERR(di);
4143 goto out;
4144 }
4df27c4d
YZ
4145
4146 leaf = path->nodes[0];
4147 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4148 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4149 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4150 if (ret) {
66642832 4151 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4152 goto out;
4153 }
b3b4aa74 4154 btrfs_release_path(path);
4df27c4d 4155
0b246afa
JM
4156 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4157 root->root_key.objectid, dir_ino,
4158 &index, name, name_len);
4df27c4d 4159 if (ret < 0) {
79787eaa 4160 if (ret != -ENOENT) {
66642832 4161 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4162 goto out;
4163 }
33345d01 4164 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4165 name, name_len);
79787eaa
JM
4166 if (IS_ERR_OR_NULL(di)) {
4167 if (!di)
4168 ret = -ENOENT;
4169 else
4170 ret = PTR_ERR(di);
66642832 4171 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4172 goto out;
4173 }
4df27c4d
YZ
4174
4175 leaf = path->nodes[0];
4176 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4177 btrfs_release_path(path);
4df27c4d
YZ
4178 index = key.offset;
4179 }
945d8962 4180 btrfs_release_path(path);
4df27c4d 4181
e67bbbb9 4182 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
79787eaa 4183 if (ret) {
66642832 4184 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4185 goto out;
4186 }
4df27c4d 4187
6ef06d27 4188 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4189 inode_inc_iversion(dir);
c2050a45 4190 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4191 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4192 if (ret)
66642832 4193 btrfs_abort_transaction(trans, ret);
79787eaa 4194out:
71d7aed0 4195 btrfs_free_path(path);
79787eaa 4196 return ret;
4df27c4d
YZ
4197}
4198
ec42f167
MT
4199/*
4200 * Helper to check if the subvolume references other subvolumes or if it's
4201 * default.
4202 */
f60a2364 4203static noinline int may_destroy_subvol(struct btrfs_root *root)
ec42f167
MT
4204{
4205 struct btrfs_fs_info *fs_info = root->fs_info;
4206 struct btrfs_path *path;
4207 struct btrfs_dir_item *di;
4208 struct btrfs_key key;
4209 u64 dir_id;
4210 int ret;
4211
4212 path = btrfs_alloc_path();
4213 if (!path)
4214 return -ENOMEM;
4215
4216 /* Make sure this root isn't set as the default subvol */
4217 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4218 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4219 dir_id, "default", 7, 0);
4220 if (di && !IS_ERR(di)) {
4221 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4222 if (key.objectid == root->root_key.objectid) {
4223 ret = -EPERM;
4224 btrfs_err(fs_info,
4225 "deleting default subvolume %llu is not allowed",
4226 key.objectid);
4227 goto out;
4228 }
4229 btrfs_release_path(path);
4230 }
4231
4232 key.objectid = root->root_key.objectid;
4233 key.type = BTRFS_ROOT_REF_KEY;
4234 key.offset = (u64)-1;
4235
4236 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4237 if (ret < 0)
4238 goto out;
4239 BUG_ON(ret == 0);
4240
4241 ret = 0;
4242 if (path->slots[0] > 0) {
4243 path->slots[0]--;
4244 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4245 if (key.objectid == root->root_key.objectid &&
4246 key.type == BTRFS_ROOT_REF_KEY)
4247 ret = -ENOTEMPTY;
4248 }
4249out:
4250 btrfs_free_path(path);
4251 return ret;
4252}
4253
20a68004
NB
4254/* Delete all dentries for inodes belonging to the root */
4255static void btrfs_prune_dentries(struct btrfs_root *root)
4256{
4257 struct btrfs_fs_info *fs_info = root->fs_info;
4258 struct rb_node *node;
4259 struct rb_node *prev;
4260 struct btrfs_inode *entry;
4261 struct inode *inode;
4262 u64 objectid = 0;
4263
4264 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4265 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4266
4267 spin_lock(&root->inode_lock);
4268again:
4269 node = root->inode_tree.rb_node;
4270 prev = NULL;
4271 while (node) {
4272 prev = node;
4273 entry = rb_entry(node, struct btrfs_inode, rb_node);
4274
4275 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
4276 node = node->rb_left;
4277 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
4278 node = node->rb_right;
4279 else
4280 break;
4281 }
4282 if (!node) {
4283 while (prev) {
4284 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4285 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
4286 node = prev;
4287 break;
4288 }
4289 prev = rb_next(prev);
4290 }
4291 }
4292 while (node) {
4293 entry = rb_entry(node, struct btrfs_inode, rb_node);
4294 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
4295 inode = igrab(&entry->vfs_inode);
4296 if (inode) {
4297 spin_unlock(&root->inode_lock);
4298 if (atomic_read(&inode->i_count) > 1)
4299 d_prune_aliases(inode);
4300 /*
4301 * btrfs_drop_inode will have it removed from the inode
4302 * cache when its usage count hits zero.
4303 */
4304 iput(inode);
4305 cond_resched();
4306 spin_lock(&root->inode_lock);
4307 goto again;
4308 }
4309
4310 if (cond_resched_lock(&root->inode_lock))
4311 goto again;
4312
4313 node = rb_next(node);
4314 }
4315 spin_unlock(&root->inode_lock);
4316}
4317
f60a2364
MT
4318int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4319{
4320 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4321 struct btrfs_root *root = BTRFS_I(dir)->root;
4322 struct inode *inode = d_inode(dentry);
4323 struct btrfs_root *dest = BTRFS_I(inode)->root;
4324 struct btrfs_trans_handle *trans;
4325 struct btrfs_block_rsv block_rsv;
4326 u64 root_flags;
4327 u64 qgroup_reserved;
4328 int ret;
4329 int err;
4330
4331 /*
4332 * Don't allow to delete a subvolume with send in progress. This is
4333 * inside the inode lock so the error handling that has to drop the bit
4334 * again is not run concurrently.
4335 */
4336 spin_lock(&dest->root_item_lock);
4337 root_flags = btrfs_root_flags(&dest->root_item);
4338 if (dest->send_in_progress == 0) {
4339 btrfs_set_root_flags(&dest->root_item,
4340 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4341 spin_unlock(&dest->root_item_lock);
4342 } else {
4343 spin_unlock(&dest->root_item_lock);
4344 btrfs_warn(fs_info,
4345 "attempt to delete subvolume %llu during send",
4346 dest->root_key.objectid);
4347 return -EPERM;
4348 }
4349
4350 down_write(&fs_info->subvol_sem);
4351
4352 err = may_destroy_subvol(dest);
4353 if (err)
4354 goto out_up_write;
4355
4356 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4357 /*
4358 * One for dir inode,
4359 * two for dir entries,
4360 * two for root ref/backref.
4361 */
4362 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
4363 5, &qgroup_reserved, true);
4364 if (err)
4365 goto out_up_write;
4366
4367 trans = btrfs_start_transaction(root, 0);
4368 if (IS_ERR(trans)) {
4369 err = PTR_ERR(trans);
4370 goto out_release;
4371 }
4372 trans->block_rsv = &block_rsv;
4373 trans->bytes_reserved = block_rsv.size;
4374
4375 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4376
4377 ret = btrfs_unlink_subvol(trans, root, dir,
4378 dest->root_key.objectid,
4379 dentry->d_name.name,
4380 dentry->d_name.len);
4381 if (ret) {
4382 err = ret;
4383 btrfs_abort_transaction(trans, ret);
4384 goto out_end_trans;
4385 }
4386
4387 btrfs_record_root_in_trans(trans, dest);
4388
4389 memset(&dest->root_item.drop_progress, 0,
4390 sizeof(dest->root_item.drop_progress));
4391 dest->root_item.drop_level = 0;
4392 btrfs_set_root_refs(&dest->root_item, 0);
4393
4394 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4395 ret = btrfs_insert_orphan_item(trans,
4396 fs_info->tree_root,
4397 dest->root_key.objectid);
4398 if (ret) {
4399 btrfs_abort_transaction(trans, ret);
4400 err = ret;
4401 goto out_end_trans;
4402 }
4403 }
4404
4405 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
4406 BTRFS_UUID_KEY_SUBVOL,
4407 dest->root_key.objectid);
4408 if (ret && ret != -ENOENT) {
4409 btrfs_abort_transaction(trans, ret);
4410 err = ret;
4411 goto out_end_trans;
4412 }
4413 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4414 ret = btrfs_uuid_tree_rem(trans, fs_info,
4415 dest->root_item.received_uuid,
4416 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4417 dest->root_key.objectid);
4418 if (ret && ret != -ENOENT) {
4419 btrfs_abort_transaction(trans, ret);
4420 err = ret;
4421 goto out_end_trans;
4422 }
4423 }
4424
4425out_end_trans:
4426 trans->block_rsv = NULL;
4427 trans->bytes_reserved = 0;
4428 ret = btrfs_end_transaction(trans);
4429 if (ret && !err)
4430 err = ret;
4431 inode->i_flags |= S_DEAD;
4432out_release:
4433 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4434out_up_write:
4435 up_write(&fs_info->subvol_sem);
4436 if (err) {
4437 spin_lock(&dest->root_item_lock);
4438 root_flags = btrfs_root_flags(&dest->root_item);
4439 btrfs_set_root_flags(&dest->root_item,
4440 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4441 spin_unlock(&dest->root_item_lock);
4442 } else {
4443 d_invalidate(dentry);
20a68004 4444 btrfs_prune_dentries(dest);
f60a2364
MT
4445 ASSERT(dest->send_in_progress == 0);
4446
4447 /* the last ref */
4448 if (dest->ino_cache_inode) {
4449 iput(dest->ino_cache_inode);
4450 dest->ino_cache_inode = NULL;
4451 }
4452 }
4453
4454 return err;
4455}
4456
39279cc3
CM
4457static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4458{
2b0143b5 4459 struct inode *inode = d_inode(dentry);
1832a6d5 4460 int err = 0;
39279cc3 4461 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4462 struct btrfs_trans_handle *trans;
44f714da 4463 u64 last_unlink_trans;
39279cc3 4464
b3ae244e 4465 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4466 return -ENOTEMPTY;
4a0cc7ca 4467 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
a79a464d 4468 return btrfs_delete_subvolume(dir, dentry);
134d4512 4469
d52be818 4470 trans = __unlink_start_trans(dir);
a22285a6 4471 if (IS_ERR(trans))
5df6a9f6 4472 return PTR_ERR(trans);
5df6a9f6 4473
4a0cc7ca 4474 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4475 err = btrfs_unlink_subvol(trans, root, dir,
4476 BTRFS_I(inode)->location.objectid,
4477 dentry->d_name.name,
4478 dentry->d_name.len);
4479 goto out;
4480 }
4481
73f2e545 4482 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4483 if (err)
4df27c4d 4484 goto out;
7b128766 4485
44f714da
FM
4486 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4487
39279cc3 4488 /* now the directory is empty */
4ec5934e
NB
4489 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4490 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4491 dentry->d_name.len);
44f714da 4492 if (!err) {
6ef06d27 4493 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4494 /*
4495 * Propagate the last_unlink_trans value of the deleted dir to
4496 * its parent directory. This is to prevent an unrecoverable
4497 * log tree in the case we do something like this:
4498 * 1) create dir foo
4499 * 2) create snapshot under dir foo
4500 * 3) delete the snapshot
4501 * 4) rmdir foo
4502 * 5) mkdir foo
4503 * 6) fsync foo or some file inside foo
4504 */
4505 if (last_unlink_trans >= trans->transid)
4506 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4507 }
4df27c4d 4508out:
3a45bb20 4509 btrfs_end_transaction(trans);
2ff7e61e 4510 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4511
39279cc3
CM
4512 return err;
4513}
4514
28f75a0e
CM
4515static int truncate_space_check(struct btrfs_trans_handle *trans,
4516 struct btrfs_root *root,
4517 u64 bytes_deleted)
4518{
0b246afa 4519 struct btrfs_fs_info *fs_info = root->fs_info;
28f75a0e
CM
4520 int ret;
4521
dc95f7bf
JB
4522 /*
4523 * This is only used to apply pressure to the enospc system, we don't
4524 * intend to use this reservation at all.
4525 */
2ff7e61e 4526 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
0b246afa
JM
4527 bytes_deleted *= fs_info->nodesize;
4528 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
28f75a0e 4529 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf 4530 if (!ret) {
0b246afa 4531 trace_btrfs_space_reservation(fs_info, "transaction",
dc95f7bf
JB
4532 trans->transid,
4533 bytes_deleted, 1);
28f75a0e 4534 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4535 }
28f75a0e
CM
4536 return ret;
4537
4538}
4539
ddfae63c
JB
4540/*
4541 * Return this if we need to call truncate_block for the last bit of the
4542 * truncate.
4543 */
4544#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4545
39279cc3
CM
4546/*
4547 * this can truncate away extent items, csum items and directory items.
4548 * It starts at a high offset and removes keys until it can't find
d352ac68 4549 * any higher than new_size
39279cc3
CM
4550 *
4551 * csum items that cross the new i_size are truncated to the new size
4552 * as well.
7b128766
JB
4553 *
4554 * min_type is the minimum key type to truncate down to. If set to 0, this
4555 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4556 */
8082510e
YZ
4557int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4558 struct btrfs_root *root,
4559 struct inode *inode,
4560 u64 new_size, u32 min_type)
39279cc3 4561{
0b246afa 4562 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4563 struct btrfs_path *path;
5f39d397 4564 struct extent_buffer *leaf;
39279cc3 4565 struct btrfs_file_extent_item *fi;
8082510e
YZ
4566 struct btrfs_key key;
4567 struct btrfs_key found_key;
39279cc3 4568 u64 extent_start = 0;
db94535d 4569 u64 extent_num_bytes = 0;
5d4f98a2 4570 u64 extent_offset = 0;
39279cc3 4571 u64 item_end = 0;
c1aa4575 4572 u64 last_size = new_size;
8082510e 4573 u32 found_type = (u8)-1;
39279cc3
CM
4574 int found_extent;
4575 int del_item;
85e21bac
CM
4576 int pending_del_nr = 0;
4577 int pending_del_slot = 0;
179e29e4 4578 int extent_type = -1;
8082510e 4579 int ret;
4a0cc7ca 4580 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4581 u64 bytes_deleted = 0;
897ca819
TM
4582 bool be_nice = false;
4583 bool should_throttle = false;
4584 bool should_end = false;
8082510e
YZ
4585
4586 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4587
28ed1345
CM
4588 /*
4589 * for non-free space inodes and ref cows, we want to back off from
4590 * time to time
4591 */
70ddc553 4592 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345 4593 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
897ca819 4594 be_nice = true;
28ed1345 4595
0eb0e19c
MF
4596 path = btrfs_alloc_path();
4597 if (!path)
4598 return -ENOMEM;
e4058b54 4599 path->reada = READA_BACK;
0eb0e19c 4600
5dc562c5
JB
4601 /*
4602 * We want to drop from the next block forward in case this new size is
4603 * not block aligned since we will be keeping the last block of the
4604 * extent just the way it is.
4605 */
27cdeb70 4606 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4607 root == fs_info->tree_root)
dcdbc059 4608 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4609 fs_info->sectorsize),
da17066c 4610 (u64)-1, 0);
8082510e 4611
16cdcec7
MX
4612 /*
4613 * This function is also used to drop the items in the log tree before
4614 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4615 * it is used to drop the loged items. So we shouldn't kill the delayed
4616 * items.
4617 */
4618 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4619 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4620
33345d01 4621 key.objectid = ino;
39279cc3 4622 key.offset = (u64)-1;
5f39d397
CM
4623 key.type = (u8)-1;
4624
85e21bac 4625search_again:
28ed1345
CM
4626 /*
4627 * with a 16K leaf size and 128MB extents, you can actually queue
4628 * up a huge file in a single leaf. Most of the time that
4629 * bytes_deleted is > 0, it will be huge by the time we get here
4630 */
fd86a3a3
OS
4631 if (be_nice && bytes_deleted > SZ_32M &&
4632 btrfs_should_end_transaction(trans)) {
4633 ret = -EAGAIN;
4634 goto out;
28ed1345
CM
4635 }
4636
b9473439 4637 path->leave_spinning = 1;
85e21bac 4638 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
fd86a3a3 4639 if (ret < 0)
8082510e 4640 goto out;
d397712b 4641
85e21bac 4642 if (ret > 0) {
fd86a3a3 4643 ret = 0;
e02119d5
CM
4644 /* there are no items in the tree for us to truncate, we're
4645 * done
4646 */
8082510e
YZ
4647 if (path->slots[0] == 0)
4648 goto out;
85e21bac
CM
4649 path->slots[0]--;
4650 }
4651
d397712b 4652 while (1) {
39279cc3 4653 fi = NULL;
5f39d397
CM
4654 leaf = path->nodes[0];
4655 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4656 found_type = found_key.type;
39279cc3 4657
33345d01 4658 if (found_key.objectid != ino)
39279cc3 4659 break;
5f39d397 4660
85e21bac 4661 if (found_type < min_type)
39279cc3
CM
4662 break;
4663
5f39d397 4664 item_end = found_key.offset;
39279cc3 4665 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4666 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4667 struct btrfs_file_extent_item);
179e29e4
CM
4668 extent_type = btrfs_file_extent_type(leaf, fi);
4669 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4670 item_end +=
db94535d 4671 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4672
4673 trace_btrfs_truncate_show_fi_regular(
4674 BTRFS_I(inode), leaf, fi,
4675 found_key.offset);
179e29e4 4676 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4677 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4678 path->slots[0], fi);
09ed2f16
LB
4679
4680 trace_btrfs_truncate_show_fi_inline(
4681 BTRFS_I(inode), leaf, fi, path->slots[0],
4682 found_key.offset);
39279cc3 4683 }
008630c1 4684 item_end--;
39279cc3 4685 }
8082510e
YZ
4686 if (found_type > min_type) {
4687 del_item = 1;
4688 } else {
76b42abb 4689 if (item_end < new_size)
b888db2b 4690 break;
8082510e
YZ
4691 if (found_key.offset >= new_size)
4692 del_item = 1;
4693 else
4694 del_item = 0;
39279cc3 4695 }
39279cc3 4696 found_extent = 0;
39279cc3 4697 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4698 if (found_type != BTRFS_EXTENT_DATA_KEY)
4699 goto delete;
4700
4701 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4702 u64 num_dec;
db94535d 4703 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4704 if (!del_item) {
db94535d
CM
4705 u64 orig_num_bytes =
4706 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4707 extent_num_bytes = ALIGN(new_size -
4708 found_key.offset,
0b246afa 4709 fs_info->sectorsize);
db94535d
CM
4710 btrfs_set_file_extent_num_bytes(leaf, fi,
4711 extent_num_bytes);
4712 num_dec = (orig_num_bytes -
9069218d 4713 extent_num_bytes);
27cdeb70
MX
4714 if (test_bit(BTRFS_ROOT_REF_COWS,
4715 &root->state) &&
4716 extent_start != 0)
a76a3cd4 4717 inode_sub_bytes(inode, num_dec);
5f39d397 4718 btrfs_mark_buffer_dirty(leaf);
39279cc3 4719 } else {
db94535d
CM
4720 extent_num_bytes =
4721 btrfs_file_extent_disk_num_bytes(leaf,
4722 fi);
5d4f98a2
YZ
4723 extent_offset = found_key.offset -
4724 btrfs_file_extent_offset(leaf, fi);
4725
39279cc3 4726 /* FIXME blocksize != 4096 */
9069218d 4727 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4728 if (extent_start != 0) {
4729 found_extent = 1;
27cdeb70
MX
4730 if (test_bit(BTRFS_ROOT_REF_COWS,
4731 &root->state))
a76a3cd4 4732 inode_sub_bytes(inode, num_dec);
e02119d5 4733 }
39279cc3 4734 }
9069218d 4735 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4736 /*
4737 * we can't truncate inline items that have had
4738 * special encodings
4739 */
4740 if (!del_item &&
c8b97818 4741 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4742 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4743 btrfs_file_extent_compression(leaf, fi) == 0) {
4744 u32 size = (u32)(new_size - found_key.offset);
4745
4746 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4747 size = btrfs_file_extent_calc_inline_size(size);
4748 btrfs_truncate_item(root->fs_info, path, size, 1);
4749 } else if (!del_item) {
514ac8ad 4750 /*
ddfae63c
JB
4751 * We have to bail so the last_size is set to
4752 * just before this extent.
514ac8ad 4753 */
fd86a3a3 4754 ret = NEED_TRUNCATE_BLOCK;
ddfae63c
JB
4755 break;
4756 }
0305cd5f 4757
ddfae63c 4758 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0305cd5f 4759 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4760 }
179e29e4 4761delete:
ddfae63c
JB
4762 if (del_item)
4763 last_size = found_key.offset;
4764 else
4765 last_size = new_size;
39279cc3 4766 if (del_item) {
85e21bac
CM
4767 if (!pending_del_nr) {
4768 /* no pending yet, add ourselves */
4769 pending_del_slot = path->slots[0];
4770 pending_del_nr = 1;
4771 } else if (pending_del_nr &&
4772 path->slots[0] + 1 == pending_del_slot) {
4773 /* hop on the pending chunk */
4774 pending_del_nr++;
4775 pending_del_slot = path->slots[0];
4776 } else {
d397712b 4777 BUG();
85e21bac 4778 }
39279cc3
CM
4779 } else {
4780 break;
4781 }
897ca819 4782 should_throttle = false;
28f75a0e 4783
27cdeb70
MX
4784 if (found_extent &&
4785 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4786 root == fs_info->tree_root)) {
b9473439 4787 btrfs_set_path_blocking(path);
28ed1345 4788 bytes_deleted += extent_num_bytes;
84f7d8e6 4789 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4790 extent_num_bytes, 0,
4791 btrfs_header_owner(leaf),
b06c4bf5 4792 ino, extent_offset);
05522109
OS
4793 if (ret) {
4794 btrfs_abort_transaction(trans, ret);
4795 break;
4796 }
2ff7e61e
JM
4797 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4798 btrfs_async_run_delayed_refs(fs_info,
dd4b857a
WX
4799 trans->delayed_ref_updates * 2,
4800 trans->transid, 0);
28f75a0e
CM
4801 if (be_nice) {
4802 if (truncate_space_check(trans, root,
4803 extent_num_bytes)) {
897ca819 4804 should_end = true;
28f75a0e
CM
4805 }
4806 if (btrfs_should_throttle_delayed_refs(trans,
2ff7e61e 4807 fs_info))
897ca819 4808 should_throttle = true;
28f75a0e 4809 }
39279cc3 4810 }
85e21bac 4811
8082510e
YZ
4812 if (found_type == BTRFS_INODE_ITEM_KEY)
4813 break;
4814
4815 if (path->slots[0] == 0 ||
1262133b 4816 path->slots[0] != pending_del_slot ||
28f75a0e 4817 should_throttle || should_end) {
8082510e
YZ
4818 if (pending_del_nr) {
4819 ret = btrfs_del_items(trans, root, path,
4820 pending_del_slot,
4821 pending_del_nr);
79787eaa 4822 if (ret) {
66642832 4823 btrfs_abort_transaction(trans, ret);
fd86a3a3 4824 break;
79787eaa 4825 }
8082510e
YZ
4826 pending_del_nr = 0;
4827 }
b3b4aa74 4828 btrfs_release_path(path);
28f75a0e 4829 if (should_throttle) {
1262133b
JB
4830 unsigned long updates = trans->delayed_ref_updates;
4831 if (updates) {
4832 trans->delayed_ref_updates = 0;
2ff7e61e 4833 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 4834 updates * 2);
fd86a3a3
OS
4835 if (ret)
4836 break;
1262133b
JB
4837 }
4838 }
28f75a0e
CM
4839 /*
4840 * if we failed to refill our space rsv, bail out
4841 * and let the transaction restart
4842 */
4843 if (should_end) {
fd86a3a3
OS
4844 ret = -EAGAIN;
4845 break;
28f75a0e 4846 }
85e21bac 4847 goto search_again;
8082510e
YZ
4848 } else {
4849 path->slots[0]--;
85e21bac 4850 }
39279cc3 4851 }
8082510e 4852out:
fd86a3a3
OS
4853 if (ret >= 0 && pending_del_nr) {
4854 int err;
4855
4856 err = btrfs_del_items(trans, root, path, pending_del_slot,
85e21bac 4857 pending_del_nr);
fd86a3a3
OS
4858 if (err) {
4859 btrfs_abort_transaction(trans, err);
4860 ret = err;
4861 }
85e21bac 4862 }
76b42abb
FM
4863 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4864 ASSERT(last_size >= new_size);
fd86a3a3 4865 if (!ret && last_size > new_size)
76b42abb 4866 last_size = new_size;
7f4f6e0a 4867 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4868 }
28ed1345 4869
39279cc3 4870 btrfs_free_path(path);
28ed1345 4871
fd86a3a3 4872 if (be_nice && bytes_deleted > SZ_32M && (ret >= 0 || ret == -EAGAIN)) {
28ed1345 4873 unsigned long updates = trans->delayed_ref_updates;
fd86a3a3
OS
4874 int err;
4875
28ed1345
CM
4876 if (updates) {
4877 trans->delayed_ref_updates = 0;
fd86a3a3
OS
4878 err = btrfs_run_delayed_refs(trans, updates * 2);
4879 if (err)
4880 ret = err;
28ed1345
CM
4881 }
4882 }
fd86a3a3 4883 return ret;
39279cc3
CM
4884}
4885
4886/*
9703fefe 4887 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4888 * @inode - inode that we're zeroing
4889 * @from - the offset to start zeroing
4890 * @len - the length to zero, 0 to zero the entire range respective to the
4891 * offset
4892 * @front - zero up to the offset instead of from the offset on
4893 *
9703fefe 4894 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4895 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4896 */
9703fefe 4897int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4898 int front)
39279cc3 4899{
0b246afa 4900 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4901 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4902 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4903 struct btrfs_ordered_extent *ordered;
2ac55d41 4904 struct extent_state *cached_state = NULL;
364ecf36 4905 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4906 char *kaddr;
0b246afa 4907 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4908 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4909 unsigned offset = from & (blocksize - 1);
39279cc3 4910 struct page *page;
3b16a4e3 4911 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4912 int ret = 0;
9703fefe
CR
4913 u64 block_start;
4914 u64 block_end;
39279cc3 4915
b03ebd99
NB
4916 if (IS_ALIGNED(offset, blocksize) &&
4917 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4918 goto out;
9703fefe 4919
8b62f87b
JB
4920 block_start = round_down(from, blocksize);
4921 block_end = block_start + blocksize - 1;
4922
364ecf36 4923 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8b62f87b 4924 block_start, blocksize);
5d5e103a
JB
4925 if (ret)
4926 goto out;
39279cc3 4927
211c17f5 4928again:
3b16a4e3 4929 page = find_or_create_page(mapping, index, mask);
5d5e103a 4930 if (!page) {
bc42bda2 4931 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
4932 block_start, blocksize, true);
4933 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
ac6a2b36 4934 ret = -ENOMEM;
39279cc3 4935 goto out;
5d5e103a 4936 }
e6dcd2dc 4937
39279cc3 4938 if (!PageUptodate(page)) {
9ebefb18 4939 ret = btrfs_readpage(NULL, page);
39279cc3 4940 lock_page(page);
211c17f5
CM
4941 if (page->mapping != mapping) {
4942 unlock_page(page);
09cbfeaf 4943 put_page(page);
211c17f5
CM
4944 goto again;
4945 }
39279cc3
CM
4946 if (!PageUptodate(page)) {
4947 ret = -EIO;
89642229 4948 goto out_unlock;
39279cc3
CM
4949 }
4950 }
211c17f5 4951 wait_on_page_writeback(page);
e6dcd2dc 4952
9703fefe 4953 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4954 set_page_extent_mapped(page);
4955
9703fefe 4956 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4957 if (ordered) {
9703fefe 4958 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4959 &cached_state);
e6dcd2dc 4960 unlock_page(page);
09cbfeaf 4961 put_page(page);
eb84ae03 4962 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4963 btrfs_put_ordered_extent(ordered);
4964 goto again;
4965 }
4966
9703fefe 4967 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4968 EXTENT_DIRTY | EXTENT_DELALLOC |
4969 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 4970 0, 0, &cached_state);
5d5e103a 4971
e3b8a485 4972 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
ba8b04c1 4973 &cached_state, 0);
9ed74f2d 4974 if (ret) {
9703fefe 4975 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4976 &cached_state);
9ed74f2d
JB
4977 goto out_unlock;
4978 }
4979
9703fefe 4980 if (offset != blocksize) {
2aaa6655 4981 if (!len)
9703fefe 4982 len = blocksize - offset;
e6dcd2dc 4983 kaddr = kmap(page);
2aaa6655 4984 if (front)
9703fefe
CR
4985 memset(kaddr + (block_start - page_offset(page)),
4986 0, offset);
2aaa6655 4987 else
9703fefe
CR
4988 memset(kaddr + (block_start - page_offset(page)) + offset,
4989 0, len);
e6dcd2dc
CM
4990 flush_dcache_page(page);
4991 kunmap(page);
4992 }
247e743c 4993 ClearPageChecked(page);
e6dcd2dc 4994 set_page_dirty(page);
e43bbe5e 4995 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
39279cc3 4996
89642229 4997out_unlock:
5d5e103a 4998 if (ret)
bc42bda2 4999 btrfs_delalloc_release_space(inode, data_reserved, block_start,
43b18595
QW
5000 blocksize, true);
5001 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
39279cc3 5002 unlock_page(page);
09cbfeaf 5003 put_page(page);
39279cc3 5004out:
364ecf36 5005 extent_changeset_free(data_reserved);
39279cc3
CM
5006 return ret;
5007}
5008
16e7549f
JB
5009static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
5010 u64 offset, u64 len)
5011{
0b246afa 5012 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
5013 struct btrfs_trans_handle *trans;
5014 int ret;
5015
5016 /*
5017 * Still need to make sure the inode looks like it's been updated so
5018 * that any holes get logged if we fsync.
5019 */
0b246afa
JM
5020 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
5021 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
5022 BTRFS_I(inode)->last_sub_trans = root->log_transid;
5023 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
5024 return 0;
5025 }
5026
5027 /*
5028 * 1 - for the one we're dropping
5029 * 1 - for the one we're adding
5030 * 1 - for updating the inode.
5031 */
5032 trans = btrfs_start_transaction(root, 3);
5033 if (IS_ERR(trans))
5034 return PTR_ERR(trans);
5035
5036 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
5037 if (ret) {
66642832 5038 btrfs_abort_transaction(trans, ret);
3a45bb20 5039 btrfs_end_transaction(trans);
16e7549f
JB
5040 return ret;
5041 }
5042
f85b7379
DS
5043 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
5044 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 5045 if (ret)
66642832 5046 btrfs_abort_transaction(trans, ret);
16e7549f
JB
5047 else
5048 btrfs_update_inode(trans, root, inode);
3a45bb20 5049 btrfs_end_transaction(trans);
16e7549f
JB
5050 return ret;
5051}
5052
695a0d0d
JB
5053/*
5054 * This function puts in dummy file extents for the area we're creating a hole
5055 * for. So if we are truncating this file to a larger size we need to insert
5056 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5057 * the range between oldsize and size
5058 */
a41ad394 5059int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 5060{
0b246afa 5061 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
5062 struct btrfs_root *root = BTRFS_I(inode)->root;
5063 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 5064 struct extent_map *em = NULL;
2ac55d41 5065 struct extent_state *cached_state = NULL;
5dc562c5 5066 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
5067 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5068 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
5069 u64 last_byte;
5070 u64 cur_offset;
5071 u64 hole_size;
9ed74f2d 5072 int err = 0;
39279cc3 5073
a71754fc 5074 /*
9703fefe
CR
5075 * If our size started in the middle of a block we need to zero out the
5076 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
5077 * expose stale data.
5078 */
9703fefe 5079 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
5080 if (err)
5081 return err;
5082
9036c102
YZ
5083 if (size <= hole_start)
5084 return 0;
5085
9036c102
YZ
5086 while (1) {
5087 struct btrfs_ordered_extent *ordered;
fa7c1494 5088
ff13db41 5089 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 5090 &cached_state);
a776c6fa 5091 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
fa7c1494 5092 block_end - hole_start);
9036c102
YZ
5093 if (!ordered)
5094 break;
2ac55d41 5095 unlock_extent_cached(io_tree, hole_start, block_end - 1,
e43bbe5e 5096 &cached_state);
fa7c1494 5097 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
5098 btrfs_put_ordered_extent(ordered);
5099 }
39279cc3 5100
9036c102
YZ
5101 cur_offset = hole_start;
5102 while (1) {
fc4f21b1 5103 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 5104 block_end - cur_offset, 0);
79787eaa
JM
5105 if (IS_ERR(em)) {
5106 err = PTR_ERR(em);
f2767956 5107 em = NULL;
79787eaa
JM
5108 break;
5109 }
9036c102 5110 last_byte = min(extent_map_end(em), block_end);
0b246afa 5111 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 5112 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 5113 struct extent_map *hole_em;
9036c102 5114 hole_size = last_byte - cur_offset;
9ed74f2d 5115
16e7549f
JB
5116 err = maybe_insert_hole(root, inode, cur_offset,
5117 hole_size);
5118 if (err)
3893e33b 5119 break;
dcdbc059 5120 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
5121 cur_offset + hole_size - 1, 0);
5122 hole_em = alloc_extent_map();
5123 if (!hole_em) {
5124 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5125 &BTRFS_I(inode)->runtime_flags);
5126 goto next;
5127 }
5128 hole_em->start = cur_offset;
5129 hole_em->len = hole_size;
5130 hole_em->orig_start = cur_offset;
8082510e 5131
5dc562c5
JB
5132 hole_em->block_start = EXTENT_MAP_HOLE;
5133 hole_em->block_len = 0;
b4939680 5134 hole_em->orig_block_len = 0;
cc95bef6 5135 hole_em->ram_bytes = hole_size;
0b246afa 5136 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 5137 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 5138 hole_em->generation = fs_info->generation;
8082510e 5139
5dc562c5
JB
5140 while (1) {
5141 write_lock(&em_tree->lock);
09a2a8f9 5142 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
5143 write_unlock(&em_tree->lock);
5144 if (err != -EEXIST)
5145 break;
dcdbc059
NB
5146 btrfs_drop_extent_cache(BTRFS_I(inode),
5147 cur_offset,
5dc562c5
JB
5148 cur_offset +
5149 hole_size - 1, 0);
5150 }
5151 free_extent_map(hole_em);
9036c102 5152 }
16e7549f 5153next:
9036c102 5154 free_extent_map(em);
a22285a6 5155 em = NULL;
9036c102 5156 cur_offset = last_byte;
8082510e 5157 if (cur_offset >= block_end)
9036c102
YZ
5158 break;
5159 }
a22285a6 5160 free_extent_map(em);
e43bbe5e 5161 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
5162 return err;
5163}
39279cc3 5164
3972f260 5165static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 5166{
f4a2f4c5
MX
5167 struct btrfs_root *root = BTRFS_I(inode)->root;
5168 struct btrfs_trans_handle *trans;
a41ad394 5169 loff_t oldsize = i_size_read(inode);
3972f260
ES
5170 loff_t newsize = attr->ia_size;
5171 int mask = attr->ia_valid;
8082510e
YZ
5172 int ret;
5173
3972f260
ES
5174 /*
5175 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5176 * special case where we need to update the times despite not having
5177 * these flags set. For all other operations the VFS set these flags
5178 * explicitly if it wants a timestamp update.
5179 */
dff6efc3
CH
5180 if (newsize != oldsize) {
5181 inode_inc_iversion(inode);
5182 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5183 inode->i_ctime = inode->i_mtime =
c2050a45 5184 current_time(inode);
dff6efc3 5185 }
3972f260 5186
a41ad394 5187 if (newsize > oldsize) {
9ea24bbe 5188 /*
ea14b57f 5189 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
5190 * This is to ensure the snapshot captures a fully consistent
5191 * state of this file - if the snapshot captures this expanding
5192 * truncation, it must capture all writes that happened before
5193 * this truncation.
5194 */
0bc19f90 5195 btrfs_wait_for_snapshot_creation(root);
a41ad394 5196 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 5197 if (ret) {
ea14b57f 5198 btrfs_end_write_no_snapshotting(root);
8082510e 5199 return ret;
9ea24bbe 5200 }
8082510e 5201
f4a2f4c5 5202 trans = btrfs_start_transaction(root, 1);
9ea24bbe 5203 if (IS_ERR(trans)) {
ea14b57f 5204 btrfs_end_write_no_snapshotting(root);
f4a2f4c5 5205 return PTR_ERR(trans);
9ea24bbe 5206 }
f4a2f4c5
MX
5207
5208 i_size_write(inode, newsize);
5209 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5210 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5211 ret = btrfs_update_inode(trans, root, inode);
ea14b57f 5212 btrfs_end_write_no_snapshotting(root);
3a45bb20 5213 btrfs_end_transaction(trans);
a41ad394 5214 } else {
8082510e 5215
a41ad394
JB
5216 /*
5217 * We're truncating a file that used to have good data down to
5218 * zero. Make sure it gets into the ordered flush list so that
5219 * any new writes get down to disk quickly.
5220 */
5221 if (newsize == 0)
72ac3c0d
JB
5222 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5223 &BTRFS_I(inode)->runtime_flags);
8082510e 5224
a41ad394 5225 truncate_setsize(inode, newsize);
2e60a51e
MX
5226
5227 /* Disable nonlocked read DIO to avoid the end less truncate */
abcefb1e 5228 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 5229 inode_dio_wait(inode);
0b581701 5230 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 5231
213e8c55 5232 ret = btrfs_truncate(inode, newsize == oldsize);
7f4f6e0a
JB
5233 if (ret && inode->i_nlink) {
5234 int err;
5235
5236 /*
f7e9e8fc
OS
5237 * Truncate failed, so fix up the in-memory size. We
5238 * adjusted disk_i_size down as we removed extents, so
5239 * wait for disk_i_size to be stable and then update the
5240 * in-memory size to match.
7f4f6e0a 5241 */
f7e9e8fc 5242 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
7f4f6e0a 5243 if (err)
f7e9e8fc
OS
5244 return err;
5245 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
7f4f6e0a 5246 }
8082510e
YZ
5247 }
5248
a41ad394 5249 return ret;
8082510e
YZ
5250}
5251
9036c102
YZ
5252static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5253{
2b0143b5 5254 struct inode *inode = d_inode(dentry);
b83cc969 5255 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5256 int err;
39279cc3 5257
b83cc969
LZ
5258 if (btrfs_root_readonly(root))
5259 return -EROFS;
5260
31051c85 5261 err = setattr_prepare(dentry, attr);
9036c102
YZ
5262 if (err)
5263 return err;
2bf5a725 5264
5a3f23d5 5265 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5266 err = btrfs_setsize(inode, attr);
8082510e
YZ
5267 if (err)
5268 return err;
39279cc3 5269 }
9036c102 5270
1025774c
CH
5271 if (attr->ia_valid) {
5272 setattr_copy(inode, attr);
0c4d2d95 5273 inode_inc_iversion(inode);
22c44fe6 5274 err = btrfs_dirty_inode(inode);
1025774c 5275
22c44fe6 5276 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5277 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5278 }
33268eaf 5279
39279cc3
CM
5280 return err;
5281}
61295eb8 5282
131e404a
FDBM
5283/*
5284 * While truncating the inode pages during eviction, we get the VFS calling
5285 * btrfs_invalidatepage() against each page of the inode. This is slow because
5286 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5287 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5288 * extent_state structures over and over, wasting lots of time.
5289 *
5290 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5291 * those expensive operations on a per page basis and do only the ordered io
5292 * finishing, while we release here the extent_map and extent_state structures,
5293 * without the excessive merging and splitting.
5294 */
5295static void evict_inode_truncate_pages(struct inode *inode)
5296{
5297 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5298 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5299 struct rb_node *node;
5300
5301 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5302 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5303
5304 write_lock(&map_tree->lock);
5305 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5306 struct extent_map *em;
5307
5308 node = rb_first(&map_tree->map);
5309 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5310 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5311 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5312 remove_extent_mapping(map_tree, em);
5313 free_extent_map(em);
7064dd5c
FM
5314 if (need_resched()) {
5315 write_unlock(&map_tree->lock);
5316 cond_resched();
5317 write_lock(&map_tree->lock);
5318 }
131e404a
FDBM
5319 }
5320 write_unlock(&map_tree->lock);
5321
6ca07097
FM
5322 /*
5323 * Keep looping until we have no more ranges in the io tree.
5324 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5325 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5326 * still in progress (unlocked the pages in the bio but did not yet
5327 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5328 * ranges can still be locked and eviction started because before
5329 * submitting those bios, which are executed by a separate task (work
5330 * queue kthread), inode references (inode->i_count) were not taken
5331 * (which would be dropped in the end io callback of each bio).
5332 * Therefore here we effectively end up waiting for those bios and
5333 * anyone else holding locked ranges without having bumped the inode's
5334 * reference count - if we don't do it, when they access the inode's
5335 * io_tree to unlock a range it may be too late, leading to an
5336 * use-after-free issue.
5337 */
131e404a
FDBM
5338 spin_lock(&io_tree->lock);
5339 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5340 struct extent_state *state;
5341 struct extent_state *cached_state = NULL;
6ca07097
FM
5342 u64 start;
5343 u64 end;
131e404a
FDBM
5344
5345 node = rb_first(&io_tree->state);
5346 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5347 start = state->start;
5348 end = state->end;
131e404a
FDBM
5349 spin_unlock(&io_tree->lock);
5350
ff13db41 5351 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5352
5353 /*
5354 * If still has DELALLOC flag, the extent didn't reach disk,
5355 * and its reserved space won't be freed by delayed_ref.
5356 * So we need to free its reserved space here.
5357 * (Refer to comment in btrfs_invalidatepage, case 2)
5358 *
5359 * Note, end is the bytenr of last byte, so we need + 1 here.
5360 */
5361 if (state->state & EXTENT_DELALLOC)
bc42bda2 5362 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
b9d0b389 5363
6ca07097 5364 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5365 EXTENT_LOCKED | EXTENT_DIRTY |
5366 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
ae0f1625 5367 EXTENT_DEFRAG, 1, 1, &cached_state);
131e404a 5368
7064dd5c 5369 cond_resched();
131e404a
FDBM
5370 spin_lock(&io_tree->lock);
5371 }
5372 spin_unlock(&io_tree->lock);
5373}
5374
4b9d7b59
OS
5375static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5376 struct btrfs_block_rsv *rsv,
5377 u64 min_size)
5378{
5379 struct btrfs_fs_info *fs_info = root->fs_info;
5380 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5381 int failures = 0;
5382
5383 for (;;) {
5384 struct btrfs_trans_handle *trans;
5385 int ret;
5386
5387 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5388 BTRFS_RESERVE_FLUSH_LIMIT);
5389
5390 if (ret && ++failures > 2) {
5391 btrfs_warn(fs_info,
5392 "could not allocate space for a delete; will truncate on mount");
5393 return ERR_PTR(-ENOSPC);
5394 }
5395
5396 trans = btrfs_join_transaction(root);
5397 if (IS_ERR(trans) || !ret)
5398 return trans;
5399
5400 /*
5401 * Try to steal from the global reserve if there is space for
5402 * it.
5403 */
5404 if (!btrfs_check_space_for_delayed_refs(trans, fs_info) &&
5405 !btrfs_block_rsv_migrate(global_rsv, rsv, min_size, 0))
5406 return trans;
5407
5408 /* If not, commit and try again. */
5409 ret = btrfs_commit_transaction(trans);
5410 if (ret)
5411 return ERR_PTR(ret);
5412 }
5413}
5414
bd555975 5415void btrfs_evict_inode(struct inode *inode)
39279cc3 5416{
0b246afa 5417 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5418 struct btrfs_trans_handle *trans;
5419 struct btrfs_root *root = BTRFS_I(inode)->root;
4b9d7b59 5420 struct btrfs_block_rsv *rsv;
3d48d981 5421 u64 min_size;
39279cc3
CM
5422 int ret;
5423
1abe9b8a 5424 trace_btrfs_inode_evict(inode);
5425
3d48d981 5426 if (!root) {
e8f1bc14 5427 clear_inode(inode);
3d48d981
NB
5428 return;
5429 }
5430
0b246afa 5431 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
3d48d981 5432
131e404a
FDBM
5433 evict_inode_truncate_pages(inode);
5434
69e9c6c6
SB
5435 if (inode->i_nlink &&
5436 ((btrfs_root_refs(&root->root_item) != 0 &&
5437 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5438 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5439 goto no_delete;
5440
27919067 5441 if (is_bad_inode(inode))
39279cc3 5442 goto no_delete;
bd555975 5443 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5444 if (!special_file(inode->i_mode))
5445 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5446
7ab7956e 5447 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5448
7b40b695 5449 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
c71bf099 5450 goto no_delete;
c71bf099 5451
76dda93c 5452 if (inode->i_nlink > 0) {
69e9c6c6
SB
5453 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5454 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5455 goto no_delete;
5456 }
5457
aa79021f 5458 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
27919067 5459 if (ret)
0e8c36a9 5460 goto no_delete;
0e8c36a9 5461
2ff7e61e 5462 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
27919067 5463 if (!rsv)
4289a667 5464 goto no_delete;
4a338542 5465 rsv->size = min_size;
ca7e70f5 5466 rsv->failfast = 1;
4289a667 5467
6ef06d27 5468 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5469
8082510e 5470 while (1) {
4b9d7b59 5471 trans = evict_refill_and_join(root, rsv, min_size);
27919067
OS
5472 if (IS_ERR(trans))
5473 goto free_rsv;
7b128766 5474
4289a667
JB
5475 trans->block_rsv = rsv;
5476
d68fc57b 5477 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
27919067
OS
5478 trans->block_rsv = &fs_info->trans_block_rsv;
5479 btrfs_end_transaction(trans);
5480 btrfs_btree_balance_dirty(fs_info);
5481 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5482 goto free_rsv;
5483 else if (!ret)
8082510e 5484 break;
8082510e 5485 }
5f39d397 5486
4ef31a45 5487 /*
27919067
OS
5488 * Errors here aren't a big deal, it just means we leave orphan items in
5489 * the tree. They will be cleaned up on the next mount. If the inode
5490 * number gets reused, cleanup deletes the orphan item without doing
5491 * anything, and unlink reuses the existing orphan item.
5492 *
5493 * If it turns out that we are dropping too many of these, we might want
5494 * to add a mechanism for retrying these after a commit.
4ef31a45 5495 */
27919067
OS
5496 trans = evict_refill_and_join(root, rsv, min_size);
5497 if (!IS_ERR(trans)) {
5498 trans->block_rsv = rsv;
5499 btrfs_orphan_del(trans, BTRFS_I(inode));
5500 trans->block_rsv = &fs_info->trans_block_rsv;
5501 btrfs_end_transaction(trans);
5502 }
54aa1f4d 5503
0b246afa 5504 if (!(root == fs_info->tree_root ||
581bb050 5505 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5506 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5507
27919067
OS
5508free_rsv:
5509 btrfs_free_block_rsv(fs_info, rsv);
39279cc3 5510no_delete:
27919067
OS
5511 /*
5512 * If we didn't successfully delete, the orphan item will still be in
5513 * the tree and we'll retry on the next mount. Again, we might also want
5514 * to retry these periodically in the future.
5515 */
f48d1cf5 5516 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5517 clear_inode(inode);
39279cc3
CM
5518}
5519
5520/*
5521 * this returns the key found in the dir entry in the location pointer.
005d6712
SY
5522 * If no dir entries were found, returns -ENOENT.
5523 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3
CM
5524 */
5525static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5526 struct btrfs_key *location)
5527{
5528 const char *name = dentry->d_name.name;
5529 int namelen = dentry->d_name.len;
5530 struct btrfs_dir_item *di;
5531 struct btrfs_path *path;
5532 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5533 int ret = 0;
39279cc3
CM
5534
5535 path = btrfs_alloc_path();
d8926bb3
MF
5536 if (!path)
5537 return -ENOMEM;
3954401f 5538
f85b7379
DS
5539 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5540 name, namelen, 0);
005d6712
SY
5541 if (!di) {
5542 ret = -ENOENT;
5543 goto out;
5544 }
5545 if (IS_ERR(di)) {
0d9f7f3e 5546 ret = PTR_ERR(di);
005d6712
SY
5547 goto out;
5548 }
d397712b 5549
5f39d397 5550 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5551 if (location->type != BTRFS_INODE_ITEM_KEY &&
5552 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5553 ret = -EUCLEAN;
56a0e706
LB
5554 btrfs_warn(root->fs_info,
5555"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5556 __func__, name, btrfs_ino(BTRFS_I(dir)),
5557 location->objectid, location->type, location->offset);
56a0e706 5558 }
39279cc3 5559out:
39279cc3
CM
5560 btrfs_free_path(path);
5561 return ret;
5562}
5563
5564/*
5565 * when we hit a tree root in a directory, the btrfs part of the inode
5566 * needs to be changed to reflect the root directory of the tree root. This
5567 * is kind of like crossing a mount point.
5568 */
2ff7e61e 5569static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5570 struct inode *dir,
5571 struct dentry *dentry,
5572 struct btrfs_key *location,
5573 struct btrfs_root **sub_root)
39279cc3 5574{
4df27c4d
YZ
5575 struct btrfs_path *path;
5576 struct btrfs_root *new_root;
5577 struct btrfs_root_ref *ref;
5578 struct extent_buffer *leaf;
1d4c08e0 5579 struct btrfs_key key;
4df27c4d
YZ
5580 int ret;
5581 int err = 0;
39279cc3 5582
4df27c4d
YZ
5583 path = btrfs_alloc_path();
5584 if (!path) {
5585 err = -ENOMEM;
5586 goto out;
5587 }
39279cc3 5588
4df27c4d 5589 err = -ENOENT;
1d4c08e0
DS
5590 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5591 key.type = BTRFS_ROOT_REF_KEY;
5592 key.offset = location->objectid;
5593
0b246afa 5594 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5595 if (ret) {
5596 if (ret < 0)
5597 err = ret;
5598 goto out;
5599 }
39279cc3 5600
4df27c4d
YZ
5601 leaf = path->nodes[0];
5602 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5603 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5604 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5605 goto out;
39279cc3 5606
4df27c4d
YZ
5607 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5608 (unsigned long)(ref + 1),
5609 dentry->d_name.len);
5610 if (ret)
5611 goto out;
5612
b3b4aa74 5613 btrfs_release_path(path);
4df27c4d 5614
0b246afa 5615 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5616 if (IS_ERR(new_root)) {
5617 err = PTR_ERR(new_root);
5618 goto out;
5619 }
5620
4df27c4d
YZ
5621 *sub_root = new_root;
5622 location->objectid = btrfs_root_dirid(&new_root->root_item);
5623 location->type = BTRFS_INODE_ITEM_KEY;
5624 location->offset = 0;
5625 err = 0;
5626out:
5627 btrfs_free_path(path);
5628 return err;
39279cc3
CM
5629}
5630
5d4f98a2
YZ
5631static void inode_tree_add(struct inode *inode)
5632{
5633 struct btrfs_root *root = BTRFS_I(inode)->root;
5634 struct btrfs_inode *entry;
03e860bd
FNP
5635 struct rb_node **p;
5636 struct rb_node *parent;
cef21937 5637 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5638 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5639
1d3382cb 5640 if (inode_unhashed(inode))
76dda93c 5641 return;
e1409cef 5642 parent = NULL;
5d4f98a2 5643 spin_lock(&root->inode_lock);
e1409cef 5644 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5645 while (*p) {
5646 parent = *p;
5647 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5648
4a0cc7ca 5649 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5650 p = &parent->rb_left;
4a0cc7ca 5651 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5652 p = &parent->rb_right;
5d4f98a2
YZ
5653 else {
5654 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5655 (I_WILL_FREE | I_FREEING)));
cef21937 5656 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5657 RB_CLEAR_NODE(parent);
5658 spin_unlock(&root->inode_lock);
cef21937 5659 return;
5d4f98a2
YZ
5660 }
5661 }
cef21937
FDBM
5662 rb_link_node(new, parent, p);
5663 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5664 spin_unlock(&root->inode_lock);
5665}
5666
5667static void inode_tree_del(struct inode *inode)
5668{
0b246afa 5669 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5670 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5671 int empty = 0;
5d4f98a2 5672
03e860bd 5673 spin_lock(&root->inode_lock);
5d4f98a2 5674 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5675 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5676 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5677 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5678 }
03e860bd 5679 spin_unlock(&root->inode_lock);
76dda93c 5680
69e9c6c6 5681 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5682 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5683 spin_lock(&root->inode_lock);
5684 empty = RB_EMPTY_ROOT(&root->inode_tree);
5685 spin_unlock(&root->inode_lock);
5686 if (empty)
5687 btrfs_add_dead_root(root);
5688 }
5689}
5690
5d4f98a2 5691
e02119d5
CM
5692static int btrfs_init_locked_inode(struct inode *inode, void *p)
5693{
5694 struct btrfs_iget_args *args = p;
90d3e592
CM
5695 inode->i_ino = args->location->objectid;
5696 memcpy(&BTRFS_I(inode)->location, args->location,
5697 sizeof(*args->location));
e02119d5 5698 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5699 return 0;
5700}
5701
5702static int btrfs_find_actor(struct inode *inode, void *opaque)
5703{
5704 struct btrfs_iget_args *args = opaque;
90d3e592 5705 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5706 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5707}
5708
5d4f98a2 5709static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5710 struct btrfs_key *location,
5d4f98a2 5711 struct btrfs_root *root)
39279cc3
CM
5712{
5713 struct inode *inode;
5714 struct btrfs_iget_args args;
90d3e592 5715 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5716
90d3e592 5717 args.location = location;
39279cc3
CM
5718 args.root = root;
5719
778ba82b 5720 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5721 btrfs_init_locked_inode,
5722 (void *)&args);
5723 return inode;
5724}
5725
1a54ef8c
BR
5726/* Get an inode object given its location and corresponding root.
5727 * Returns in *is_new if the inode was read from disk
5728 */
5729struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5730 struct btrfs_root *root, int *new)
1a54ef8c
BR
5731{
5732 struct inode *inode;
5733
90d3e592 5734 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5735 if (!inode)
5d4f98a2 5736 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5737
5738 if (inode->i_state & I_NEW) {
67710892
FM
5739 int ret;
5740
5741 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5742 if (!is_bad_inode(inode)) {
5743 inode_tree_add(inode);
5744 unlock_new_inode(inode);
5745 if (new)
5746 *new = 1;
5747 } else {
e0b6d65b
ST
5748 unlock_new_inode(inode);
5749 iput(inode);
67710892
FM
5750 ASSERT(ret < 0);
5751 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5752 }
5753 }
5754
1a54ef8c
BR
5755 return inode;
5756}
5757
4df27c4d
YZ
5758static struct inode *new_simple_dir(struct super_block *s,
5759 struct btrfs_key *key,
5760 struct btrfs_root *root)
5761{
5762 struct inode *inode = new_inode(s);
5763
5764 if (!inode)
5765 return ERR_PTR(-ENOMEM);
5766
4df27c4d
YZ
5767 BTRFS_I(inode)->root = root;
5768 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5769 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5770
5771 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5772 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5773 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5774 inode->i_fop = &simple_dir_operations;
5775 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5776 inode->i_mtime = current_time(inode);
9cc97d64 5777 inode->i_atime = inode->i_mtime;
5778 inode->i_ctime = inode->i_mtime;
5779 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5780
5781 return inode;
5782}
5783
3de4586c 5784struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5785{
0b246afa 5786 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5787 struct inode *inode;
4df27c4d 5788 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5789 struct btrfs_root *sub_root = root;
5790 struct btrfs_key location;
76dda93c 5791 int index;
b4aff1f8 5792 int ret = 0;
39279cc3
CM
5793
5794 if (dentry->d_name.len > BTRFS_NAME_LEN)
5795 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5796
39e3c955 5797 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5798 if (ret < 0)
5799 return ERR_PTR(ret);
5f39d397 5800
4df27c4d 5801 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5802 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5803 return inode;
5804 }
5805
0b246afa 5806 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5807 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5808 &location, &sub_root);
5809 if (ret < 0) {
5810 if (ret != -ENOENT)
5811 inode = ERR_PTR(ret);
5812 else
5813 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5814 } else {
73f73415 5815 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5816 }
0b246afa 5817 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5818
34d19bad 5819 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5820 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5821 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5822 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5823 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5824 if (ret) {
5825 iput(inode);
66b4ffd1 5826 inode = ERR_PTR(ret);
01cd3367 5827 }
c71bf099
YZ
5828 }
5829
3de4586c
CM
5830 return inode;
5831}
5832
fe15ce44 5833static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5834{
5835 struct btrfs_root *root;
2b0143b5 5836 struct inode *inode = d_inode(dentry);
76dda93c 5837
848cce0d 5838 if (!inode && !IS_ROOT(dentry))
2b0143b5 5839 inode = d_inode(dentry->d_parent);
76dda93c 5840
848cce0d
LZ
5841 if (inode) {
5842 root = BTRFS_I(inode)->root;
efefb143
YZ
5843 if (btrfs_root_refs(&root->root_item) == 0)
5844 return 1;
848cce0d 5845
4a0cc7ca 5846 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5847 return 1;
efefb143 5848 }
76dda93c
YZ
5849 return 0;
5850}
5851
3de4586c 5852static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5853 unsigned int flags)
3de4586c 5854{
5662344b 5855 struct inode *inode;
a66e7cc6 5856
5662344b
TI
5857 inode = btrfs_lookup_dentry(dir, dentry);
5858 if (IS_ERR(inode)) {
5859 if (PTR_ERR(inode) == -ENOENT)
5860 inode = NULL;
5861 else
5862 return ERR_CAST(inode);
5863 }
5864
41d28bca 5865 return d_splice_alias(inode, dentry);
39279cc3
CM
5866}
5867
16cdcec7 5868unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5869 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5870};
5871
23b5ec74
JB
5872/*
5873 * All this infrastructure exists because dir_emit can fault, and we are holding
5874 * the tree lock when doing readdir. For now just allocate a buffer and copy
5875 * our information into that, and then dir_emit from the buffer. This is
5876 * similar to what NFS does, only we don't keep the buffer around in pagecache
5877 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5878 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5879 * tree lock.
5880 */
5881static int btrfs_opendir(struct inode *inode, struct file *file)
5882{
5883 struct btrfs_file_private *private;
5884
5885 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5886 if (!private)
5887 return -ENOMEM;
5888 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5889 if (!private->filldir_buf) {
5890 kfree(private);
5891 return -ENOMEM;
5892 }
5893 file->private_data = private;
5894 return 0;
5895}
5896
5897struct dir_entry {
5898 u64 ino;
5899 u64 offset;
5900 unsigned type;
5901 int name_len;
5902};
5903
5904static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5905{
5906 while (entries--) {
5907 struct dir_entry *entry = addr;
5908 char *name = (char *)(entry + 1);
5909
92d32170
DS
5910 ctx->pos = get_unaligned(&entry->offset);
5911 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5912 get_unaligned(&entry->ino),
5913 get_unaligned(&entry->type)))
23b5ec74 5914 return 1;
92d32170
DS
5915 addr += sizeof(struct dir_entry) +
5916 get_unaligned(&entry->name_len);
23b5ec74
JB
5917 ctx->pos++;
5918 }
5919 return 0;
5920}
5921
9cdda8d3 5922static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5923{
9cdda8d3 5924 struct inode *inode = file_inode(file);
39279cc3 5925 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5926 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5927 struct btrfs_dir_item *di;
5928 struct btrfs_key key;
5f39d397 5929 struct btrfs_key found_key;
39279cc3 5930 struct btrfs_path *path;
23b5ec74 5931 void *addr;
16cdcec7
MX
5932 struct list_head ins_list;
5933 struct list_head del_list;
39279cc3 5934 int ret;
5f39d397 5935 struct extent_buffer *leaf;
39279cc3 5936 int slot;
5f39d397
CM
5937 char *name_ptr;
5938 int name_len;
23b5ec74
JB
5939 int entries = 0;
5940 int total_len = 0;
02dbfc99 5941 bool put = false;
c2951f32 5942 struct btrfs_key location;
5f39d397 5943
9cdda8d3
AV
5944 if (!dir_emit_dots(file, ctx))
5945 return 0;
5946
49593bfa 5947 path = btrfs_alloc_path();
16cdcec7
MX
5948 if (!path)
5949 return -ENOMEM;
ff5714cc 5950
23b5ec74 5951 addr = private->filldir_buf;
e4058b54 5952 path->reada = READA_FORWARD;
49593bfa 5953
c2951f32
JM
5954 INIT_LIST_HEAD(&ins_list);
5955 INIT_LIST_HEAD(&del_list);
5956 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5957
23b5ec74 5958again:
c2951f32 5959 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5960 key.offset = ctx->pos;
4a0cc7ca 5961 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5962
39279cc3
CM
5963 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5964 if (ret < 0)
5965 goto err;
49593bfa
DW
5966
5967 while (1) {
23b5ec74
JB
5968 struct dir_entry *entry;
5969
5f39d397 5970 leaf = path->nodes[0];
39279cc3 5971 slot = path->slots[0];
b9e03af0
LZ
5972 if (slot >= btrfs_header_nritems(leaf)) {
5973 ret = btrfs_next_leaf(root, path);
5974 if (ret < 0)
5975 goto err;
5976 else if (ret > 0)
5977 break;
5978 continue;
39279cc3 5979 }
3de4586c 5980
5f39d397
CM
5981 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5982
5983 if (found_key.objectid != key.objectid)
39279cc3 5984 break;
c2951f32 5985 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5986 break;
9cdda8d3 5987 if (found_key.offset < ctx->pos)
b9e03af0 5988 goto next;
c2951f32 5989 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5990 goto next;
39279cc3 5991 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
c2951f32 5992 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5993 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5994 PAGE_SIZE) {
5995 btrfs_release_path(path);
5996 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5997 if (ret)
5998 goto nopos;
5999 addr = private->filldir_buf;
6000 entries = 0;
6001 total_len = 0;
6002 goto again;
c2951f32 6003 }
23b5ec74
JB
6004
6005 entry = addr;
92d32170 6006 put_unaligned(name_len, &entry->name_len);
23b5ec74 6007 name_ptr = (char *)(entry + 1);
c2951f32
JM
6008 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6009 name_len);
92d32170
DS
6010 put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
6011 &entry->type);
c2951f32 6012 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
6013 put_unaligned(location.objectid, &entry->ino);
6014 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
6015 entries++;
6016 addr += sizeof(struct dir_entry) + name_len;
6017 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
6018next:
6019 path->slots[0]++;
39279cc3 6020 }
23b5ec74
JB
6021 btrfs_release_path(path);
6022
6023 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6024 if (ret)
6025 goto nopos;
49593bfa 6026
d2fbb2b5 6027 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 6028 if (ret)
bc4ef759
DS
6029 goto nopos;
6030
db62efbb
ZB
6031 /*
6032 * Stop new entries from being returned after we return the last
6033 * entry.
6034 *
6035 * New directory entries are assigned a strictly increasing
6036 * offset. This means that new entries created during readdir
6037 * are *guaranteed* to be seen in the future by that readdir.
6038 * This has broken buggy programs which operate on names as
6039 * they're returned by readdir. Until we re-use freed offsets
6040 * we have this hack to stop new entries from being returned
6041 * under the assumption that they'll never reach this huge
6042 * offset.
6043 *
6044 * This is being careful not to overflow 32bit loff_t unless the
6045 * last entry requires it because doing so has broken 32bit apps
6046 * in the past.
6047 */
c2951f32
JM
6048 if (ctx->pos >= INT_MAX)
6049 ctx->pos = LLONG_MAX;
6050 else
6051 ctx->pos = INT_MAX;
39279cc3
CM
6052nopos:
6053 ret = 0;
6054err:
02dbfc99
OS
6055 if (put)
6056 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 6057 btrfs_free_path(path);
39279cc3
CM
6058 return ret;
6059}
6060
a9185b41 6061int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
6062{
6063 struct btrfs_root *root = BTRFS_I(inode)->root;
6064 struct btrfs_trans_handle *trans;
6065 int ret = 0;
0af3d00b 6066 bool nolock = false;
39279cc3 6067
72ac3c0d 6068 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
6069 return 0;
6070
70ddc553
NB
6071 if (btrfs_fs_closing(root->fs_info) &&
6072 btrfs_is_free_space_inode(BTRFS_I(inode)))
82d5902d 6073 nolock = true;
0af3d00b 6074
a9185b41 6075 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 6076 if (nolock)
7a7eaa40 6077 trans = btrfs_join_transaction_nolock(root);
0af3d00b 6078 else
7a7eaa40 6079 trans = btrfs_join_transaction(root);
3612b495
TI
6080 if (IS_ERR(trans))
6081 return PTR_ERR(trans);
3a45bb20 6082 ret = btrfs_commit_transaction(trans);
39279cc3
CM
6083 }
6084 return ret;
6085}
6086
6087/*
54aa1f4d 6088 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6089 * inode changes. But, it is most likely to find the inode in cache.
6090 * FIXME, needs more benchmarking...there are no reasons other than performance
6091 * to keep or drop this code.
6092 */
48a3b636 6093static int btrfs_dirty_inode(struct inode *inode)
39279cc3 6094{
2ff7e61e 6095 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
6096 struct btrfs_root *root = BTRFS_I(inode)->root;
6097 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6098 int ret;
6099
72ac3c0d 6100 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6101 return 0;
39279cc3 6102
7a7eaa40 6103 trans = btrfs_join_transaction(root);
22c44fe6
JB
6104 if (IS_ERR(trans))
6105 return PTR_ERR(trans);
8929ecfa
YZ
6106
6107 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6108 if (ret && ret == -ENOSPC) {
6109 /* whoops, lets try again with the full transaction */
3a45bb20 6110 btrfs_end_transaction(trans);
94b60442 6111 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6112 if (IS_ERR(trans))
6113 return PTR_ERR(trans);
8929ecfa 6114
94b60442 6115 ret = btrfs_update_inode(trans, root, inode);
94b60442 6116 }
3a45bb20 6117 btrfs_end_transaction(trans);
16cdcec7 6118 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6119 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6120
6121 return ret;
6122}
6123
6124/*
6125 * This is a copy of file_update_time. We need this so we can return error on
6126 * ENOSPC for updating the inode in the case of file write and mmap writes.
6127 */
e41f941a
JB
6128static int btrfs_update_time(struct inode *inode, struct timespec *now,
6129 int flags)
22c44fe6 6130{
2bc55652 6131 struct btrfs_root *root = BTRFS_I(inode)->root;
3a8c7231 6132 bool dirty = flags & ~S_VERSION;
2bc55652
AB
6133
6134 if (btrfs_root_readonly(root))
6135 return -EROFS;
6136
e41f941a 6137 if (flags & S_VERSION)
3a8c7231 6138 dirty |= inode_maybe_inc_iversion(inode, dirty);
e41f941a
JB
6139 if (flags & S_CTIME)
6140 inode->i_ctime = *now;
6141 if (flags & S_MTIME)
6142 inode->i_mtime = *now;
6143 if (flags & S_ATIME)
6144 inode->i_atime = *now;
3a8c7231 6145 return dirty ? btrfs_dirty_inode(inode) : 0;
39279cc3
CM
6146}
6147
d352ac68
CM
6148/*
6149 * find the highest existing sequence number in a directory
6150 * and then set the in-memory index_cnt variable to reflect
6151 * free sequence numbers
6152 */
4c570655 6153static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6154{
4c570655 6155 struct btrfs_root *root = inode->root;
aec7477b
JB
6156 struct btrfs_key key, found_key;
6157 struct btrfs_path *path;
6158 struct extent_buffer *leaf;
6159 int ret;
6160
4c570655 6161 key.objectid = btrfs_ino(inode);
962a298f 6162 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6163 key.offset = (u64)-1;
6164
6165 path = btrfs_alloc_path();
6166 if (!path)
6167 return -ENOMEM;
6168
6169 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6170 if (ret < 0)
6171 goto out;
6172 /* FIXME: we should be able to handle this */
6173 if (ret == 0)
6174 goto out;
6175 ret = 0;
6176
6177 /*
6178 * MAGIC NUMBER EXPLANATION:
6179 * since we search a directory based on f_pos we have to start at 2
6180 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6181 * else has to start at 2
6182 */
6183 if (path->slots[0] == 0) {
4c570655 6184 inode->index_cnt = 2;
aec7477b
JB
6185 goto out;
6186 }
6187
6188 path->slots[0]--;
6189
6190 leaf = path->nodes[0];
6191 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6192
4c570655 6193 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6194 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6195 inode->index_cnt = 2;
aec7477b
JB
6196 goto out;
6197 }
6198
4c570655 6199 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6200out:
6201 btrfs_free_path(path);
6202 return ret;
6203}
6204
d352ac68
CM
6205/*
6206 * helper to find a free sequence number in a given directory. This current
6207 * code is very simple, later versions will do smarter things in the btree
6208 */
877574e2 6209int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6210{
6211 int ret = 0;
6212
877574e2
NB
6213 if (dir->index_cnt == (u64)-1) {
6214 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6215 if (ret) {
6216 ret = btrfs_set_inode_index_count(dir);
6217 if (ret)
6218 return ret;
6219 }
aec7477b
JB
6220 }
6221
877574e2
NB
6222 *index = dir->index_cnt;
6223 dir->index_cnt++;
aec7477b
JB
6224
6225 return ret;
6226}
6227
b0d5d10f
CM
6228static int btrfs_insert_inode_locked(struct inode *inode)
6229{
6230 struct btrfs_iget_args args;
6231 args.location = &BTRFS_I(inode)->location;
6232 args.root = BTRFS_I(inode)->root;
6233
6234 return insert_inode_locked4(inode,
6235 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6236 btrfs_find_actor, &args);
6237}
6238
19aee8de
AJ
6239/*
6240 * Inherit flags from the parent inode.
6241 *
6242 * Currently only the compression flags and the cow flags are inherited.
6243 */
6244static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6245{
6246 unsigned int flags;
6247
6248 if (!dir)
6249 return;
6250
6251 flags = BTRFS_I(dir)->flags;
6252
6253 if (flags & BTRFS_INODE_NOCOMPRESS) {
6254 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6255 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6256 } else if (flags & BTRFS_INODE_COMPRESS) {
6257 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6258 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6259 }
6260
6261 if (flags & BTRFS_INODE_NODATACOW) {
6262 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6263 if (S_ISREG(inode->i_mode))
6264 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6265 }
6266
7b6a221e 6267 btrfs_sync_inode_flags_to_i_flags(inode);
19aee8de
AJ
6268}
6269
39279cc3
CM
6270static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6271 struct btrfs_root *root,
aec7477b 6272 struct inode *dir,
9c58309d 6273 const char *name, int name_len,
175a4eb7
AV
6274 u64 ref_objectid, u64 objectid,
6275 umode_t mode, u64 *index)
39279cc3 6276{
0b246afa 6277 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6278 struct inode *inode;
5f39d397 6279 struct btrfs_inode_item *inode_item;
39279cc3 6280 struct btrfs_key *location;
5f39d397 6281 struct btrfs_path *path;
9c58309d
CM
6282 struct btrfs_inode_ref *ref;
6283 struct btrfs_key key[2];
6284 u32 sizes[2];
ef3b9af5 6285 int nitems = name ? 2 : 1;
9c58309d 6286 unsigned long ptr;
39279cc3 6287 int ret;
39279cc3 6288
5f39d397 6289 path = btrfs_alloc_path();
d8926bb3
MF
6290 if (!path)
6291 return ERR_PTR(-ENOMEM);
5f39d397 6292
0b246afa 6293 inode = new_inode(fs_info->sb);
8fb27640
YS
6294 if (!inode) {
6295 btrfs_free_path(path);
39279cc3 6296 return ERR_PTR(-ENOMEM);
8fb27640 6297 }
39279cc3 6298
5762b5c9
FM
6299 /*
6300 * O_TMPFILE, set link count to 0, so that after this point,
6301 * we fill in an inode item with the correct link count.
6302 */
6303 if (!name)
6304 set_nlink(inode, 0);
6305
581bb050
LZ
6306 /*
6307 * we have to initialize this early, so we can reclaim the inode
6308 * number if we fail afterwards in this function.
6309 */
6310 inode->i_ino = objectid;
6311
ef3b9af5 6312 if (dir && name) {
1abe9b8a 6313 trace_btrfs_inode_request(dir);
6314
877574e2 6315 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6316 if (ret) {
8fb27640 6317 btrfs_free_path(path);
09771430 6318 iput(inode);
aec7477b 6319 return ERR_PTR(ret);
09771430 6320 }
ef3b9af5
FM
6321 } else if (dir) {
6322 *index = 0;
aec7477b
JB
6323 }
6324 /*
6325 * index_cnt is ignored for everything but a dir,
df6703e1 6326 * btrfs_set_inode_index_count has an explanation for the magic
aec7477b
JB
6327 * number
6328 */
6329 BTRFS_I(inode)->index_cnt = 2;
67de1176 6330 BTRFS_I(inode)->dir_index = *index;
39279cc3 6331 BTRFS_I(inode)->root = root;
e02119d5 6332 BTRFS_I(inode)->generation = trans->transid;
76195853 6333 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6334
5dc562c5
JB
6335 /*
6336 * We could have gotten an inode number from somebody who was fsynced
6337 * and then removed in this same transaction, so let's just set full
6338 * sync since it will be a full sync anyway and this will blow away the
6339 * old info in the log.
6340 */
6341 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6342
9c58309d 6343 key[0].objectid = objectid;
962a298f 6344 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6345 key[0].offset = 0;
6346
9c58309d 6347 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6348
6349 if (name) {
6350 /*
6351 * Start new inodes with an inode_ref. This is slightly more
6352 * efficient for small numbers of hard links since they will
6353 * be packed into one item. Extended refs will kick in if we
6354 * add more hard links than can fit in the ref item.
6355 */
6356 key[1].objectid = objectid;
962a298f 6357 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6358 key[1].offset = ref_objectid;
6359
6360 sizes[1] = name_len + sizeof(*ref);
6361 }
9c58309d 6362
b0d5d10f
CM
6363 location = &BTRFS_I(inode)->location;
6364 location->objectid = objectid;
6365 location->offset = 0;
962a298f 6366 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6367
6368 ret = btrfs_insert_inode_locked(inode);
6369 if (ret < 0)
6370 goto fail;
6371
b9473439 6372 path->leave_spinning = 1;
ef3b9af5 6373 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6374 if (ret != 0)
b0d5d10f 6375 goto fail_unlock;
5f39d397 6376
ecc11fab 6377 inode_init_owner(inode, dir, mode);
a76a3cd4 6378 inode_set_bytes(inode, 0);
9cc97d64 6379
c2050a45 6380 inode->i_mtime = current_time(inode);
9cc97d64 6381 inode->i_atime = inode->i_mtime;
6382 inode->i_ctime = inode->i_mtime;
6383 BTRFS_I(inode)->i_otime = inode->i_mtime;
6384
5f39d397
CM
6385 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6386 struct btrfs_inode_item);
b159fa28 6387 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6388 sizeof(*inode_item));
e02119d5 6389 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6390
ef3b9af5
FM
6391 if (name) {
6392 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6393 struct btrfs_inode_ref);
6394 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6395 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6396 ptr = (unsigned long)(ref + 1);
6397 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6398 }
9c58309d 6399
5f39d397
CM
6400 btrfs_mark_buffer_dirty(path->nodes[0]);
6401 btrfs_free_path(path);
6402
6cbff00f
CH
6403 btrfs_inherit_iflags(inode, dir);
6404
569254b0 6405 if (S_ISREG(mode)) {
0b246afa 6406 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6407 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6408 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6409 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6410 BTRFS_INODE_NODATASUM;
94272164
CM
6411 }
6412
5d4f98a2 6413 inode_tree_add(inode);
1abe9b8a 6414
6415 trace_btrfs_inode_new(inode);
1973f0fa 6416 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6417
8ea05e3a
AB
6418 btrfs_update_root_times(trans, root);
6419
63541927
FDBM
6420 ret = btrfs_inode_inherit_props(trans, inode, dir);
6421 if (ret)
0b246afa 6422 btrfs_err(fs_info,
63541927 6423 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6424 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6425
39279cc3 6426 return inode;
b0d5d10f
CM
6427
6428fail_unlock:
6429 unlock_new_inode(inode);
5f39d397 6430fail:
ef3b9af5 6431 if (dir && name)
aec7477b 6432 BTRFS_I(dir)->index_cnt--;
5f39d397 6433 btrfs_free_path(path);
09771430 6434 iput(inode);
5f39d397 6435 return ERR_PTR(ret);
39279cc3
CM
6436}
6437
6438static inline u8 btrfs_inode_type(struct inode *inode)
6439{
6440 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6441}
6442
d352ac68
CM
6443/*
6444 * utility function to add 'inode' into 'parent_inode' with
6445 * a give name and a given sequence number.
6446 * if 'add_backref' is true, also insert a backref from the
6447 * inode to the parent directory.
6448 */
e02119d5 6449int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6450 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6451 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6452{
db0a669f 6453 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
4df27c4d 6454 int ret = 0;
39279cc3 6455 struct btrfs_key key;
db0a669f
NB
6456 struct btrfs_root *root = parent_inode->root;
6457 u64 ino = btrfs_ino(inode);
6458 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6459
33345d01 6460 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6461 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6462 } else {
33345d01 6463 key.objectid = ino;
962a298f 6464 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6465 key.offset = 0;
6466 }
6467
33345d01 6468 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
0b246afa
JM
6469 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6470 root->root_key.objectid, parent_ino,
6471 index, name, name_len);
4df27c4d 6472 } else if (add_backref) {
33345d01
LZ
6473 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6474 parent_ino, index);
4df27c4d 6475 }
39279cc3 6476
79787eaa
JM
6477 /* Nothing to clean up yet */
6478 if (ret)
6479 return ret;
4df27c4d 6480
79787eaa
JM
6481 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6482 parent_inode, &key,
db0a669f 6483 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6484 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6485 goto fail_dir_item;
6486 else if (ret) {
66642832 6487 btrfs_abort_transaction(trans, ret);
79787eaa 6488 return ret;
39279cc3 6489 }
79787eaa 6490
db0a669f 6491 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6492 name_len * 2);
db0a669f
NB
6493 inode_inc_iversion(&parent_inode->vfs_inode);
6494 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6495 current_time(&parent_inode->vfs_inode);
6496 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6497 if (ret)
66642832 6498 btrfs_abort_transaction(trans, ret);
39279cc3 6499 return ret;
fe66a05a
CM
6500
6501fail_dir_item:
6502 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6503 u64 local_index;
6504 int err;
0b246afa
JM
6505 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6506 root->root_key.objectid, parent_ino,
6507 &local_index, name, name_len);
fe66a05a
CM
6508
6509 } else if (add_backref) {
6510 u64 local_index;
6511 int err;
6512
6513 err = btrfs_del_inode_ref(trans, root, name, name_len,
6514 ino, parent_ino, &local_index);
6515 }
6516 return ret;
39279cc3
CM
6517}
6518
6519static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6520 struct btrfs_inode *dir, struct dentry *dentry,
6521 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6522{
a1b075d2
JB
6523 int err = btrfs_add_link(trans, dir, inode,
6524 dentry->d_name.name, dentry->d_name.len,
6525 backref, index);
39279cc3
CM
6526 if (err > 0)
6527 err = -EEXIST;
6528 return err;
6529}
6530
618e21d5 6531static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6532 umode_t mode, dev_t rdev)
618e21d5 6533{
2ff7e61e 6534 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6535 struct btrfs_trans_handle *trans;
6536 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6537 struct inode *inode = NULL;
618e21d5
JB
6538 int err;
6539 int drop_inode = 0;
6540 u64 objectid;
00e4e6b3 6541 u64 index = 0;
618e21d5 6542
9ed74f2d
JB
6543 /*
6544 * 2 for inode item and ref
6545 * 2 for dir items
6546 * 1 for xattr if selinux is on
6547 */
a22285a6
YZ
6548 trans = btrfs_start_transaction(root, 5);
6549 if (IS_ERR(trans))
6550 return PTR_ERR(trans);
1832a6d5 6551
581bb050
LZ
6552 err = btrfs_find_free_ino(root, &objectid);
6553 if (err)
6554 goto out_unlock;
6555
aec7477b 6556 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6557 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6558 mode, &index);
7cf96da3
TI
6559 if (IS_ERR(inode)) {
6560 err = PTR_ERR(inode);
618e21d5 6561 goto out_unlock;
7cf96da3 6562 }
618e21d5 6563
ad19db71
CS
6564 /*
6565 * If the active LSM wants to access the inode during
6566 * d_instantiate it needs these. Smack checks to see
6567 * if the filesystem supports xattrs by looking at the
6568 * ops vector.
6569 */
ad19db71 6570 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6571 init_special_inode(inode, inode->i_mode, rdev);
6572
6573 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6574 if (err)
b0d5d10f
CM
6575 goto out_unlock_inode;
6576
cef415af
NB
6577 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6578 0, index);
b0d5d10f
CM
6579 if (err) {
6580 goto out_unlock_inode;
6581 } else {
1b4ab1bb 6582 btrfs_update_inode(trans, root, inode);
1e2e547a 6583 d_instantiate_new(dentry, inode);
618e21d5 6584 }
b0d5d10f 6585
618e21d5 6586out_unlock:
3a45bb20 6587 btrfs_end_transaction(trans);
2ff7e61e 6588 btrfs_btree_balance_dirty(fs_info);
618e21d5
JB
6589 if (drop_inode) {
6590 inode_dec_link_count(inode);
6591 iput(inode);
6592 }
618e21d5 6593 return err;
b0d5d10f
CM
6594
6595out_unlock_inode:
6596 drop_inode = 1;
6597 unlock_new_inode(inode);
6598 goto out_unlock;
6599
618e21d5
JB
6600}
6601
39279cc3 6602static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6603 umode_t mode, bool excl)
39279cc3 6604{
2ff7e61e 6605 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6606 struct btrfs_trans_handle *trans;
6607 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6608 struct inode *inode = NULL;
43baa579 6609 int drop_inode_on_err = 0;
a22285a6 6610 int err;
39279cc3 6611 u64 objectid;
00e4e6b3 6612 u64 index = 0;
39279cc3 6613
9ed74f2d
JB
6614 /*
6615 * 2 for inode item and ref
6616 * 2 for dir items
6617 * 1 for xattr if selinux is on
6618 */
a22285a6
YZ
6619 trans = btrfs_start_transaction(root, 5);
6620 if (IS_ERR(trans))
6621 return PTR_ERR(trans);
9ed74f2d 6622
581bb050
LZ
6623 err = btrfs_find_free_ino(root, &objectid);
6624 if (err)
6625 goto out_unlock;
6626
aec7477b 6627 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6628 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6629 mode, &index);
7cf96da3
TI
6630 if (IS_ERR(inode)) {
6631 err = PTR_ERR(inode);
39279cc3 6632 goto out_unlock;
7cf96da3 6633 }
43baa579 6634 drop_inode_on_err = 1;
ad19db71
CS
6635 /*
6636 * If the active LSM wants to access the inode during
6637 * d_instantiate it needs these. Smack checks to see
6638 * if the filesystem supports xattrs by looking at the
6639 * ops vector.
6640 */
6641 inode->i_fop = &btrfs_file_operations;
6642 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6643 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6644
6645 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6646 if (err)
6647 goto out_unlock_inode;
6648
6649 err = btrfs_update_inode(trans, root, inode);
6650 if (err)
6651 goto out_unlock_inode;
ad19db71 6652
cef415af
NB
6653 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6654 0, index);
39279cc3 6655 if (err)
b0d5d10f 6656 goto out_unlock_inode;
43baa579 6657
43baa579 6658 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1e2e547a 6659 d_instantiate_new(dentry, inode);
43baa579 6660
39279cc3 6661out_unlock:
3a45bb20 6662 btrfs_end_transaction(trans);
43baa579 6663 if (err && drop_inode_on_err) {
39279cc3
CM
6664 inode_dec_link_count(inode);
6665 iput(inode);
6666 }
2ff7e61e 6667 btrfs_btree_balance_dirty(fs_info);
39279cc3 6668 return err;
b0d5d10f
CM
6669
6670out_unlock_inode:
6671 unlock_new_inode(inode);
6672 goto out_unlock;
6673
39279cc3
CM
6674}
6675
6676static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6677 struct dentry *dentry)
6678{
271dba45 6679 struct btrfs_trans_handle *trans = NULL;
39279cc3 6680 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6681 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6682 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6683 u64 index;
39279cc3
CM
6684 int err;
6685 int drop_inode = 0;
6686
4a8be425
TH
6687 /* do not allow sys_link's with other subvols of the same device */
6688 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6689 return -EXDEV;
4a8be425 6690
f186373f 6691 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6692 return -EMLINK;
4a8be425 6693
877574e2 6694 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6695 if (err)
6696 goto fail;
6697
a22285a6 6698 /*
7e6b6465 6699 * 2 items for inode and inode ref
a22285a6 6700 * 2 items for dir items
7e6b6465 6701 * 1 item for parent inode
a22285a6 6702 */
7e6b6465 6703 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6704 if (IS_ERR(trans)) {
6705 err = PTR_ERR(trans);
271dba45 6706 trans = NULL;
a22285a6
YZ
6707 goto fail;
6708 }
5f39d397 6709
67de1176
MX
6710 /* There are several dir indexes for this inode, clear the cache. */
6711 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6712 inc_nlink(inode);
0c4d2d95 6713 inode_inc_iversion(inode);
c2050a45 6714 inode->i_ctime = current_time(inode);
7de9c6ee 6715 ihold(inode);
e9976151 6716 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6717
cef415af
NB
6718 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6719 1, index);
5f39d397 6720
a5719521 6721 if (err) {
54aa1f4d 6722 drop_inode = 1;
a5719521 6723 } else {
10d9f309 6724 struct dentry *parent = dentry->d_parent;
a5719521 6725 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6726 if (err)
6727 goto fail;
ef3b9af5
FM
6728 if (inode->i_nlink == 1) {
6729 /*
6730 * If new hard link count is 1, it's a file created
6731 * with open(2) O_TMPFILE flag.
6732 */
3d6ae7bb 6733 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6734 if (err)
6735 goto fail;
6736 }
08c422c2 6737 d_instantiate(dentry, inode);
9ca5fbfb 6738 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
a5719521 6739 }
39279cc3 6740
1832a6d5 6741fail:
271dba45 6742 if (trans)
3a45bb20 6743 btrfs_end_transaction(trans);
39279cc3
CM
6744 if (drop_inode) {
6745 inode_dec_link_count(inode);
6746 iput(inode);
6747 }
2ff7e61e 6748 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6749 return err;
6750}
6751
18bb1db3 6752static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6753{
2ff7e61e 6754 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6755 struct inode *inode = NULL;
39279cc3
CM
6756 struct btrfs_trans_handle *trans;
6757 struct btrfs_root *root = BTRFS_I(dir)->root;
6758 int err = 0;
6759 int drop_on_err = 0;
b9d86667 6760 u64 objectid = 0;
00e4e6b3 6761 u64 index = 0;
39279cc3 6762
9ed74f2d
JB
6763 /*
6764 * 2 items for inode and ref
6765 * 2 items for dir items
6766 * 1 for xattr if selinux is on
6767 */
a22285a6
YZ
6768 trans = btrfs_start_transaction(root, 5);
6769 if (IS_ERR(trans))
6770 return PTR_ERR(trans);
39279cc3 6771
581bb050
LZ
6772 err = btrfs_find_free_ino(root, &objectid);
6773 if (err)
6774 goto out_fail;
6775
aec7477b 6776 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6777 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6778 S_IFDIR | mode, &index);
39279cc3
CM
6779 if (IS_ERR(inode)) {
6780 err = PTR_ERR(inode);
6781 goto out_fail;
6782 }
5f39d397 6783
39279cc3 6784 drop_on_err = 1;
b0d5d10f
CM
6785 /* these must be set before we unlock the inode */
6786 inode->i_op = &btrfs_dir_inode_operations;
6787 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6788
2a7dba39 6789 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6790 if (err)
b0d5d10f 6791 goto out_fail_inode;
39279cc3 6792
6ef06d27 6793 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6794 err = btrfs_update_inode(trans, root, inode);
6795 if (err)
b0d5d10f 6796 goto out_fail_inode;
5f39d397 6797
db0a669f
NB
6798 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6799 dentry->d_name.name,
6800 dentry->d_name.len, 0, index);
39279cc3 6801 if (err)
b0d5d10f 6802 goto out_fail_inode;
5f39d397 6803
1e2e547a 6804 d_instantiate_new(dentry, inode);
39279cc3 6805 drop_on_err = 0;
39279cc3
CM
6806
6807out_fail:
3a45bb20 6808 btrfs_end_transaction(trans);
c7cfb8a5
WS
6809 if (drop_on_err) {
6810 inode_dec_link_count(inode);
39279cc3 6811 iput(inode);
c7cfb8a5 6812 }
2ff7e61e 6813 btrfs_btree_balance_dirty(fs_info);
39279cc3 6814 return err;
b0d5d10f
CM
6815
6816out_fail_inode:
6817 unlock_new_inode(inode);
6818 goto out_fail;
39279cc3
CM
6819}
6820
c8b97818 6821static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6822 struct page *page,
c8b97818
CM
6823 size_t pg_offset, u64 extent_offset,
6824 struct btrfs_file_extent_item *item)
6825{
6826 int ret;
6827 struct extent_buffer *leaf = path->nodes[0];
6828 char *tmp;
6829 size_t max_size;
6830 unsigned long inline_size;
6831 unsigned long ptr;
261507a0 6832 int compress_type;
c8b97818
CM
6833
6834 WARN_ON(pg_offset != 0);
261507a0 6835 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6836 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6837 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6838 btrfs_item_nr(path->slots[0]));
c8b97818 6839 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6840 if (!tmp)
6841 return -ENOMEM;
c8b97818
CM
6842 ptr = btrfs_file_extent_inline_start(item);
6843
6844 read_extent_buffer(leaf, tmp, ptr, inline_size);
6845
09cbfeaf 6846 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6847 ret = btrfs_decompress(compress_type, tmp, page,
6848 extent_offset, inline_size, max_size);
e1699d2d
ZB
6849
6850 /*
6851 * decompression code contains a memset to fill in any space between the end
6852 * of the uncompressed data and the end of max_size in case the decompressed
6853 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6854 * the end of an inline extent and the beginning of the next block, so we
6855 * cover that region here.
6856 */
6857
6858 if (max_size + pg_offset < PAGE_SIZE) {
6859 char *map = kmap(page);
6860 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6861 kunmap(page);
6862 }
c8b97818 6863 kfree(tmp);
166ae5a4 6864 return ret;
c8b97818
CM
6865}
6866
d352ac68
CM
6867/*
6868 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6869 * the ugly parts come from merging extents from the disk with the in-ram
6870 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6871 * where the in-ram extents might be locked pending data=ordered completion.
6872 *
6873 * This also copies inline extents directly into the page.
6874 */
fc4f21b1
NB
6875struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6876 struct page *page,
6877 size_t pg_offset, u64 start, u64 len,
6878 int create)
a52d9a80 6879{
fc4f21b1 6880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
a52d9a80
CM
6881 int ret;
6882 int err = 0;
a52d9a80
CM
6883 u64 extent_start = 0;
6884 u64 extent_end = 0;
fc4f21b1 6885 u64 objectid = btrfs_ino(inode);
a52d9a80 6886 u32 found_type;
f421950f 6887 struct btrfs_path *path = NULL;
fc4f21b1 6888 struct btrfs_root *root = inode->root;
a52d9a80 6889 struct btrfs_file_extent_item *item;
5f39d397
CM
6890 struct extent_buffer *leaf;
6891 struct btrfs_key found_key;
a52d9a80 6892 struct extent_map *em = NULL;
fc4f21b1
NB
6893 struct extent_map_tree *em_tree = &inode->extent_tree;
6894 struct extent_io_tree *io_tree = &inode->io_tree;
7ffbb598 6895 const bool new_inline = !page || create;
a52d9a80 6896
890871be 6897 read_lock(&em_tree->lock);
d1310b2e 6898 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6899 if (em)
0b246afa 6900 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6901 read_unlock(&em_tree->lock);
d1310b2e 6902
a52d9a80 6903 if (em) {
e1c4b745
CM
6904 if (em->start > start || em->start + em->len <= start)
6905 free_extent_map(em);
6906 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6907 free_extent_map(em);
6908 else
6909 goto out;
a52d9a80 6910 }
172ddd60 6911 em = alloc_extent_map();
a52d9a80 6912 if (!em) {
d1310b2e
CM
6913 err = -ENOMEM;
6914 goto out;
a52d9a80 6915 }
0b246afa 6916 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6917 em->start = EXTENT_MAP_HOLE;
445a6944 6918 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6919 em->len = (u64)-1;
c8b97818 6920 em->block_len = (u64)-1;
f421950f
CM
6921
6922 if (!path) {
6923 path = btrfs_alloc_path();
026fd317
JB
6924 if (!path) {
6925 err = -ENOMEM;
6926 goto out;
6927 }
6928 /*
6929 * Chances are we'll be called again, so go ahead and do
6930 * readahead
6931 */
e4058b54 6932 path->reada = READA_FORWARD;
f421950f
CM
6933 }
6934
5c9a702e 6935 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80
CM
6936 if (ret < 0) {
6937 err = ret;
6938 goto out;
6939 }
6940
6941 if (ret != 0) {
6942 if (path->slots[0] == 0)
6943 goto not_found;
6944 path->slots[0]--;
6945 }
6946
5f39d397
CM
6947 leaf = path->nodes[0];
6948 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6949 struct btrfs_file_extent_item);
a52d9a80 6950 /* are we inside the extent that was found? */
5f39d397 6951 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6952 found_type = found_key.type;
5f39d397 6953 if (found_key.objectid != objectid ||
a52d9a80 6954 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6955 /*
6956 * If we backup past the first extent we want to move forward
6957 * and see if there is an extent in front of us, otherwise we'll
6958 * say there is a hole for our whole search range which can
6959 * cause problems.
6960 */
6961 extent_end = start;
6962 goto next;
a52d9a80
CM
6963 }
6964
5f39d397
CM
6965 found_type = btrfs_file_extent_type(leaf, item);
6966 extent_start = found_key.offset;
d899e052
YZ
6967 if (found_type == BTRFS_FILE_EXTENT_REG ||
6968 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6969 extent_end = extent_start +
db94535d 6970 btrfs_file_extent_num_bytes(leaf, item);
09ed2f16
LB
6971
6972 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6973 extent_start);
9036c102
YZ
6974 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6975 size_t size;
514ac8ad 6976 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
da17066c 6977 extent_end = ALIGN(extent_start + size,
0b246afa 6978 fs_info->sectorsize);
09ed2f16
LB
6979
6980 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6981 path->slots[0],
6982 extent_start);
9036c102 6983 }
25a50341 6984next:
9036c102
YZ
6985 if (start >= extent_end) {
6986 path->slots[0]++;
6987 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6988 ret = btrfs_next_leaf(root, path);
6989 if (ret < 0) {
6990 err = ret;
6991 goto out;
a52d9a80 6992 }
9036c102
YZ
6993 if (ret > 0)
6994 goto not_found;
6995 leaf = path->nodes[0];
a52d9a80 6996 }
9036c102
YZ
6997 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6998 if (found_key.objectid != objectid ||
6999 found_key.type != BTRFS_EXTENT_DATA_KEY)
7000 goto not_found;
7001 if (start + len <= found_key.offset)
7002 goto not_found;
e2eca69d
WS
7003 if (start > found_key.offset)
7004 goto next;
9036c102 7005 em->start = start;
70c8a91c 7006 em->orig_start = start;
9036c102
YZ
7007 em->len = found_key.offset - start;
7008 goto not_found_em;
7009 }
7010
fc4f21b1 7011 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 7012 new_inline, em);
7ffbb598 7013
d899e052
YZ
7014 if (found_type == BTRFS_FILE_EXTENT_REG ||
7015 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
7016 goto insert;
7017 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 7018 unsigned long ptr;
a52d9a80 7019 char *map;
3326d1b0
CM
7020 size_t size;
7021 size_t extent_offset;
7022 size_t copy_size;
a52d9a80 7023
7ffbb598 7024 if (new_inline)
689f9346 7025 goto out;
5f39d397 7026
514ac8ad 7027 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 7028 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
7029 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7030 size - extent_offset);
3326d1b0 7031 em->start = extent_start + extent_offset;
0b246afa 7032 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 7033 em->orig_block_len = em->len;
70c8a91c 7034 em->orig_start = em->start;
689f9346 7035 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
bf46f52d 7036 if (!PageUptodate(page)) {
261507a0
LZ
7037 if (btrfs_file_extent_compression(leaf, item) !=
7038 BTRFS_COMPRESS_NONE) {
e40da0e5 7039 ret = uncompress_inline(path, page, pg_offset,
c8b97818 7040 extent_offset, item);
166ae5a4
ZB
7041 if (ret) {
7042 err = ret;
7043 goto out;
7044 }
c8b97818
CM
7045 } else {
7046 map = kmap(page);
7047 read_extent_buffer(leaf, map + pg_offset, ptr,
7048 copy_size);
09cbfeaf 7049 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 7050 memset(map + pg_offset + copy_size, 0,
09cbfeaf 7051 PAGE_SIZE - pg_offset -
93c82d57
CM
7052 copy_size);
7053 }
c8b97818
CM
7054 kunmap(page);
7055 }
179e29e4 7056 flush_dcache_page(page);
a52d9a80 7057 }
d1310b2e 7058 set_extent_uptodate(io_tree, em->start,
507903b8 7059 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7060 goto insert;
a52d9a80
CM
7061 }
7062not_found:
7063 em->start = start;
70c8a91c 7064 em->orig_start = start;
d1310b2e 7065 em->len = len;
a52d9a80 7066not_found_em:
5f39d397 7067 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 7068insert:
b3b4aa74 7069 btrfs_release_path(path);
d1310b2e 7070 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 7071 btrfs_err(fs_info,
5d163e0e
JM
7072 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7073 em->start, em->len, start, len);
a52d9a80
CM
7074 err = -EIO;
7075 goto out;
7076 }
d1310b2e
CM
7077
7078 err = 0;
890871be 7079 write_lock(&em_tree->lock);
f46b24c9 7080 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
890871be 7081 write_unlock(&em_tree->lock);
a52d9a80 7082out:
1abe9b8a 7083
fc4f21b1 7084 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 7085
527afb44 7086 btrfs_free_path(path);
a52d9a80
CM
7087 if (err) {
7088 free_extent_map(em);
a52d9a80
CM
7089 return ERR_PTR(err);
7090 }
79787eaa 7091 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7092 return em;
7093}
7094
fc4f21b1
NB
7095struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7096 struct page *page,
7097 size_t pg_offset, u64 start, u64 len,
7098 int create)
ec29ed5b
CM
7099{
7100 struct extent_map *em;
7101 struct extent_map *hole_em = NULL;
7102 u64 range_start = start;
7103 u64 end;
7104 u64 found;
7105 u64 found_end;
7106 int err = 0;
7107
7108 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7109 if (IS_ERR(em))
7110 return em;
9986277e
DC
7111 /*
7112 * If our em maps to:
7113 * - a hole or
7114 * - a pre-alloc extent,
7115 * there might actually be delalloc bytes behind it.
7116 */
7117 if (em->block_start != EXTENT_MAP_HOLE &&
7118 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7119 return em;
7120 else
7121 hole_em = em;
ec29ed5b
CM
7122
7123 /* check to see if we've wrapped (len == -1 or similar) */
7124 end = start + len;
7125 if (end < start)
7126 end = (u64)-1;
7127 else
7128 end -= 1;
7129
7130 em = NULL;
7131
7132 /* ok, we didn't find anything, lets look for delalloc */
fc4f21b1 7133 found = count_range_bits(&inode->io_tree, &range_start,
ec29ed5b
CM
7134 end, len, EXTENT_DELALLOC, 1);
7135 found_end = range_start + found;
7136 if (found_end < range_start)
7137 found_end = (u64)-1;
7138
7139 /*
7140 * we didn't find anything useful, return
7141 * the original results from get_extent()
7142 */
7143 if (range_start > end || found_end <= start) {
7144 em = hole_em;
7145 hole_em = NULL;
7146 goto out;
7147 }
7148
7149 /* adjust the range_start to make sure it doesn't
7150 * go backwards from the start they passed in
7151 */
67871254 7152 range_start = max(start, range_start);
ec29ed5b
CM
7153 found = found_end - range_start;
7154
7155 if (found > 0) {
7156 u64 hole_start = start;
7157 u64 hole_len = len;
7158
172ddd60 7159 em = alloc_extent_map();
ec29ed5b
CM
7160 if (!em) {
7161 err = -ENOMEM;
7162 goto out;
7163 }
7164 /*
7165 * when btrfs_get_extent can't find anything it
7166 * returns one huge hole
7167 *
7168 * make sure what it found really fits our range, and
7169 * adjust to make sure it is based on the start from
7170 * the caller
7171 */
7172 if (hole_em) {
7173 u64 calc_end = extent_map_end(hole_em);
7174
7175 if (calc_end <= start || (hole_em->start > end)) {
7176 free_extent_map(hole_em);
7177 hole_em = NULL;
7178 } else {
7179 hole_start = max(hole_em->start, start);
7180 hole_len = calc_end - hole_start;
7181 }
7182 }
7183 em->bdev = NULL;
7184 if (hole_em && range_start > hole_start) {
7185 /* our hole starts before our delalloc, so we
7186 * have to return just the parts of the hole
7187 * that go until the delalloc starts
7188 */
7189 em->len = min(hole_len,
7190 range_start - hole_start);
7191 em->start = hole_start;
7192 em->orig_start = hole_start;
7193 /*
7194 * don't adjust block start at all,
7195 * it is fixed at EXTENT_MAP_HOLE
7196 */
7197 em->block_start = hole_em->block_start;
7198 em->block_len = hole_len;
f9e4fb53
LB
7199 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7200 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7201 } else {
7202 em->start = range_start;
7203 em->len = found;
7204 em->orig_start = range_start;
7205 em->block_start = EXTENT_MAP_DELALLOC;
7206 em->block_len = found;
7207 }
bf8d32b9 7208 } else {
ec29ed5b
CM
7209 return hole_em;
7210 }
7211out:
7212
7213 free_extent_map(hole_em);
7214 if (err) {
7215 free_extent_map(em);
7216 return ERR_PTR(err);
7217 }
7218 return em;
7219}
7220
5f9a8a51
FM
7221static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7222 const u64 start,
7223 const u64 len,
7224 const u64 orig_start,
7225 const u64 block_start,
7226 const u64 block_len,
7227 const u64 orig_block_len,
7228 const u64 ram_bytes,
7229 const int type)
7230{
7231 struct extent_map *em = NULL;
7232 int ret;
7233
5f9a8a51 7234 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7235 em = create_io_em(inode, start, len, orig_start,
7236 block_start, block_len, orig_block_len,
7237 ram_bytes,
7238 BTRFS_COMPRESS_NONE, /* compress_type */
7239 type);
5f9a8a51
FM
7240 if (IS_ERR(em))
7241 goto out;
7242 }
7243 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7244 len, block_len, type);
7245 if (ret) {
7246 if (em) {
7247 free_extent_map(em);
dcdbc059 7248 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7249 start + len - 1, 0);
7250 }
7251 em = ERR_PTR(ret);
7252 }
7253 out:
5f9a8a51
FM
7254
7255 return em;
7256}
7257
4b46fce2
JB
7258static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7259 u64 start, u64 len)
7260{
0b246afa 7261 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7262 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7263 struct extent_map *em;
4b46fce2
JB
7264 struct btrfs_key ins;
7265 u64 alloc_hint;
7266 int ret;
4b46fce2 7267
4b46fce2 7268 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7269 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7270 0, alloc_hint, &ins, 1, 1);
00361589
JB
7271 if (ret)
7272 return ERR_PTR(ret);
4b46fce2 7273
5f9a8a51
FM
7274 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7275 ins.objectid, ins.offset, ins.offset,
6288d6ea 7276 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7277 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7278 if (IS_ERR(em))
2ff7e61e
JM
7279 btrfs_free_reserved_extent(fs_info, ins.objectid,
7280 ins.offset, 1);
de0ee0ed 7281
4b46fce2
JB
7282 return em;
7283}
7284
46bfbb5c
CM
7285/*
7286 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7287 * block must be cow'd
7288 */
00361589 7289noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7290 u64 *orig_start, u64 *orig_block_len,
7291 u64 *ram_bytes)
46bfbb5c 7292{
2ff7e61e 7293 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7294 struct btrfs_path *path;
7295 int ret;
7296 struct extent_buffer *leaf;
7297 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7298 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7299 struct btrfs_file_extent_item *fi;
7300 struct btrfs_key key;
7301 u64 disk_bytenr;
7302 u64 backref_offset;
7303 u64 extent_end;
7304 u64 num_bytes;
7305 int slot;
7306 int found_type;
7ee9e440 7307 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7308
46bfbb5c
CM
7309 path = btrfs_alloc_path();
7310 if (!path)
7311 return -ENOMEM;
7312
f85b7379
DS
7313 ret = btrfs_lookup_file_extent(NULL, root, path,
7314 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7315 if (ret < 0)
7316 goto out;
7317
7318 slot = path->slots[0];
7319 if (ret == 1) {
7320 if (slot == 0) {
7321 /* can't find the item, must cow */
7322 ret = 0;
7323 goto out;
7324 }
7325 slot--;
7326 }
7327 ret = 0;
7328 leaf = path->nodes[0];
7329 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7330 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7331 key.type != BTRFS_EXTENT_DATA_KEY) {
7332 /* not our file or wrong item type, must cow */
7333 goto out;
7334 }
7335
7336 if (key.offset > offset) {
7337 /* Wrong offset, must cow */
7338 goto out;
7339 }
7340
7341 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7342 found_type = btrfs_file_extent_type(leaf, fi);
7343 if (found_type != BTRFS_FILE_EXTENT_REG &&
7344 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7345 /* not a regular extent, must cow */
7346 goto out;
7347 }
7ee9e440
JB
7348
7349 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7350 goto out;
7351
e77751aa
MX
7352 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7353 if (extent_end <= offset)
7354 goto out;
7355
46bfbb5c 7356 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7357 if (disk_bytenr == 0)
7358 goto out;
7359
7360 if (btrfs_file_extent_compression(leaf, fi) ||
7361 btrfs_file_extent_encryption(leaf, fi) ||
7362 btrfs_file_extent_other_encoding(leaf, fi))
7363 goto out;
7364
46bfbb5c
CM
7365 backref_offset = btrfs_file_extent_offset(leaf, fi);
7366
7ee9e440
JB
7367 if (orig_start) {
7368 *orig_start = key.offset - backref_offset;
7369 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7370 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7371 }
eb384b55 7372
2ff7e61e 7373 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7374 goto out;
7b2b7085
MX
7375
7376 num_bytes = min(offset + *len, extent_end) - offset;
7377 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7378 u64 range_end;
7379
da17066c
JM
7380 range_end = round_up(offset + num_bytes,
7381 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7382 ret = test_range_bit(io_tree, offset, range_end,
7383 EXTENT_DELALLOC, 0, NULL);
7384 if (ret) {
7385 ret = -EAGAIN;
7386 goto out;
7387 }
7388 }
7389
1bda19eb 7390 btrfs_release_path(path);
46bfbb5c
CM
7391
7392 /*
7393 * look for other files referencing this extent, if we
7394 * find any we must cow
7395 */
00361589 7396
e4c3b2dc 7397 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7398 key.offset - backref_offset, disk_bytenr);
00361589
JB
7399 if (ret) {
7400 ret = 0;
7401 goto out;
7402 }
46bfbb5c
CM
7403
7404 /*
7405 * adjust disk_bytenr and num_bytes to cover just the bytes
7406 * in this extent we are about to write. If there
7407 * are any csums in that range we have to cow in order
7408 * to keep the csums correct
7409 */
7410 disk_bytenr += backref_offset;
7411 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7412 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7413 goto out;
46bfbb5c
CM
7414 /*
7415 * all of the above have passed, it is safe to overwrite this extent
7416 * without cow
7417 */
eb384b55 7418 *len = num_bytes;
46bfbb5c
CM
7419 ret = 1;
7420out:
7421 btrfs_free_path(path);
7422 return ret;
7423}
7424
eb838e73
JB
7425static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7426 struct extent_state **cached_state, int writing)
7427{
7428 struct btrfs_ordered_extent *ordered;
7429 int ret = 0;
7430
7431 while (1) {
7432 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7433 cached_state);
eb838e73
JB
7434 /*
7435 * We're concerned with the entire range that we're going to be
01327610 7436 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7437 * extents in this range.
7438 */
a776c6fa 7439 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7440 lockend - lockstart + 1);
7441
7442 /*
7443 * We need to make sure there are no buffered pages in this
7444 * range either, we could have raced between the invalidate in
7445 * generic_file_direct_write and locking the extent. The
7446 * invalidate needs to happen so that reads after a write do not
7447 * get stale data.
7448 */
fc4adbff 7449 if (!ordered &&
051c98eb
DS
7450 (!writing || !filemap_range_has_page(inode->i_mapping,
7451 lockstart, lockend)))
eb838e73
JB
7452 break;
7453
7454 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 7455 cached_state);
eb838e73
JB
7456
7457 if (ordered) {
ade77029
FM
7458 /*
7459 * If we are doing a DIO read and the ordered extent we
7460 * found is for a buffered write, we can not wait for it
7461 * to complete and retry, because if we do so we can
7462 * deadlock with concurrent buffered writes on page
7463 * locks. This happens only if our DIO read covers more
7464 * than one extent map, if at this point has already
7465 * created an ordered extent for a previous extent map
7466 * and locked its range in the inode's io tree, and a
7467 * concurrent write against that previous extent map's
7468 * range and this range started (we unlock the ranges
7469 * in the io tree only when the bios complete and
7470 * buffered writes always lock pages before attempting
7471 * to lock range in the io tree).
7472 */
7473 if (writing ||
7474 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7475 btrfs_start_ordered_extent(inode, ordered, 1);
7476 else
7477 ret = -ENOTBLK;
eb838e73
JB
7478 btrfs_put_ordered_extent(ordered);
7479 } else {
eb838e73 7480 /*
b850ae14
FM
7481 * We could trigger writeback for this range (and wait
7482 * for it to complete) and then invalidate the pages for
7483 * this range (through invalidate_inode_pages2_range()),
7484 * but that can lead us to a deadlock with a concurrent
7485 * call to readpages() (a buffered read or a defrag call
7486 * triggered a readahead) on a page lock due to an
7487 * ordered dio extent we created before but did not have
7488 * yet a corresponding bio submitted (whence it can not
7489 * complete), which makes readpages() wait for that
7490 * ordered extent to complete while holding a lock on
7491 * that page.
eb838e73 7492 */
b850ae14 7493 ret = -ENOTBLK;
eb838e73
JB
7494 }
7495
ade77029
FM
7496 if (ret)
7497 break;
7498
eb838e73
JB
7499 cond_resched();
7500 }
7501
7502 return ret;
7503}
7504
6f9994db
LB
7505/* The callers of this must take lock_extent() */
7506static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7507 u64 orig_start, u64 block_start,
7508 u64 block_len, u64 orig_block_len,
7509 u64 ram_bytes, int compress_type,
7510 int type)
69ffb543
JB
7511{
7512 struct extent_map_tree *em_tree;
7513 struct extent_map *em;
7514 struct btrfs_root *root = BTRFS_I(inode)->root;
7515 int ret;
7516
6f9994db
LB
7517 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7518 type == BTRFS_ORDERED_COMPRESSED ||
7519 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7520 type == BTRFS_ORDERED_REGULAR);
6f9994db 7521
69ffb543
JB
7522 em_tree = &BTRFS_I(inode)->extent_tree;
7523 em = alloc_extent_map();
7524 if (!em)
7525 return ERR_PTR(-ENOMEM);
7526
7527 em->start = start;
7528 em->orig_start = orig_start;
7529 em->len = len;
7530 em->block_len = block_len;
7531 em->block_start = block_start;
7532 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7533 em->orig_block_len = orig_block_len;
cc95bef6 7534 em->ram_bytes = ram_bytes;
70c8a91c 7535 em->generation = -1;
69ffb543 7536 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7537 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7538 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7539 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7540 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7541 em->compress_type = compress_type;
7542 }
69ffb543
JB
7543
7544 do {
dcdbc059 7545 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7546 em->start + em->len - 1, 0);
7547 write_lock(&em_tree->lock);
09a2a8f9 7548 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7549 write_unlock(&em_tree->lock);
6f9994db
LB
7550 /*
7551 * The caller has taken lock_extent(), who could race with us
7552 * to add em?
7553 */
69ffb543
JB
7554 } while (ret == -EEXIST);
7555
7556 if (ret) {
7557 free_extent_map(em);
7558 return ERR_PTR(ret);
7559 }
7560
6f9994db 7561 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7562 return em;
7563}
7564
4b46fce2
JB
7565static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7566 struct buffer_head *bh_result, int create)
7567{
0b246afa 7568 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7569 struct extent_map *em;
eb838e73 7570 struct extent_state *cached_state = NULL;
50745b0a 7571 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7572 u64 start = iblock << inode->i_blkbits;
eb838e73 7573 u64 lockstart, lockend;
4b46fce2 7574 u64 len = bh_result->b_size;
eb838e73 7575 int unlock_bits = EXTENT_LOCKED;
0934856d 7576 int ret = 0;
eb838e73 7577
172a5049 7578 if (create)
3266789f 7579 unlock_bits |= EXTENT_DIRTY;
172a5049 7580 else
0b246afa 7581 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7582
c329861d
JB
7583 lockstart = start;
7584 lockend = start + len - 1;
7585
e1cbbfa5
JB
7586 if (current->journal_info) {
7587 /*
7588 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7589 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7590 * confused.
7591 */
50745b0a 7592 dio_data = current->journal_info;
e1cbbfa5
JB
7593 current->journal_info = NULL;
7594 }
7595
eb838e73
JB
7596 /*
7597 * If this errors out it's because we couldn't invalidate pagecache for
7598 * this range and we need to fallback to buffered.
7599 */
9c9464cc
FM
7600 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7601 create)) {
7602 ret = -ENOTBLK;
7603 goto err;
7604 }
eb838e73 7605
fc4f21b1 7606 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7607 if (IS_ERR(em)) {
7608 ret = PTR_ERR(em);
7609 goto unlock_err;
7610 }
4b46fce2
JB
7611
7612 /*
7613 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7614 * io. INLINE is special, and we could probably kludge it in here, but
7615 * it's still buffered so for safety lets just fall back to the generic
7616 * buffered path.
7617 *
7618 * For COMPRESSED we _have_ to read the entire extent in so we can
7619 * decompress it, so there will be buffering required no matter what we
7620 * do, so go ahead and fallback to buffered.
7621 *
01327610 7622 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7623 * to buffered IO. Don't blame me, this is the price we pay for using
7624 * the generic code.
7625 */
7626 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7627 em->block_start == EXTENT_MAP_INLINE) {
7628 free_extent_map(em);
eb838e73
JB
7629 ret = -ENOTBLK;
7630 goto unlock_err;
4b46fce2
JB
7631 }
7632
7633 /* Just a good old fashioned hole, return */
7634 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7635 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7636 free_extent_map(em);
eb838e73 7637 goto unlock_err;
4b46fce2
JB
7638 }
7639
7640 /*
7641 * We don't allocate a new extent in the following cases
7642 *
7643 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7644 * existing extent.
7645 * 2) The extent is marked as PREALLOC. We're good to go here and can
7646 * just use the extent.
7647 *
7648 */
46bfbb5c 7649 if (!create) {
eb838e73
JB
7650 len = min(len, em->len - (start - em->start));
7651 lockstart = start + len;
7652 goto unlock;
46bfbb5c 7653 }
4b46fce2
JB
7654
7655 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7656 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7657 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7658 int type;
eb384b55 7659 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7660
7661 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7662 type = BTRFS_ORDERED_PREALLOC;
7663 else
7664 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7665 len = min(len, em->len - (start - em->start));
4b46fce2 7666 block_start = em->block_start + (start - em->start);
46bfbb5c 7667
00361589 7668 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c 7669 &orig_block_len, &ram_bytes) == 1 &&
0b246afa 7670 btrfs_inc_nocow_writers(fs_info, block_start)) {
5f9a8a51 7671 struct extent_map *em2;
0b901916 7672
5f9a8a51
FM
7673 em2 = btrfs_create_dio_extent(inode, start, len,
7674 orig_start, block_start,
7675 len, orig_block_len,
7676 ram_bytes, type);
0b246afa 7677 btrfs_dec_nocow_writers(fs_info, block_start);
69ffb543
JB
7678 if (type == BTRFS_ORDERED_PREALLOC) {
7679 free_extent_map(em);
5f9a8a51 7680 em = em2;
69ffb543 7681 }
5f9a8a51
FM
7682 if (em2 && IS_ERR(em2)) {
7683 ret = PTR_ERR(em2);
eb838e73 7684 goto unlock_err;
46bfbb5c 7685 }
18513091
WX
7686 /*
7687 * For inode marked NODATACOW or extent marked PREALLOC,
7688 * use the existing or preallocated extent, so does not
7689 * need to adjust btrfs_space_info's bytes_may_use.
7690 */
7691 btrfs_free_reserved_data_space_noquota(inode,
7692 start, len);
46bfbb5c 7693 goto unlock;
4b46fce2 7694 }
4b46fce2 7695 }
00361589 7696
46bfbb5c
CM
7697 /*
7698 * this will cow the extent, reset the len in case we changed
7699 * it above
7700 */
7701 len = bh_result->b_size;
70c8a91c
JB
7702 free_extent_map(em);
7703 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7704 if (IS_ERR(em)) {
7705 ret = PTR_ERR(em);
7706 goto unlock_err;
7707 }
46bfbb5c
CM
7708 len = min(len, em->len - (start - em->start));
7709unlock:
4b46fce2
JB
7710 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7711 inode->i_blkbits;
46bfbb5c 7712 bh_result->b_size = len;
4b46fce2
JB
7713 bh_result->b_bdev = em->bdev;
7714 set_buffer_mapped(bh_result);
c3473e83
JB
7715 if (create) {
7716 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7717 set_buffer_new(bh_result);
7718
7719 /*
7720 * Need to update the i_size under the extent lock so buffered
7721 * readers will get the updated i_size when we unlock.
7722 */
4aaedfb0 7723 if (!dio_data->overwrite && start + len > i_size_read(inode))
c3473e83 7724 i_size_write(inode, start + len);
0934856d 7725
50745b0a 7726 WARN_ON(dio_data->reserve < len);
7727 dio_data->reserve -= len;
f28a4928 7728 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7729 current->journal_info = dio_data;
c3473e83 7730 }
4b46fce2 7731
eb838e73
JB
7732 /*
7733 * In the case of write we need to clear and unlock the entire range,
7734 * in the case of read we need to unlock only the end area that we
7735 * aren't using if there is any left over space.
7736 */
24c03fa5 7737 if (lockstart < lockend) {
0934856d
MX
7738 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7739 lockend, unlock_bits, 1, 0,
ae0f1625 7740 &cached_state);
24c03fa5 7741 } else {
eb838e73 7742 free_extent_state(cached_state);
24c03fa5 7743 }
eb838e73 7744
4b46fce2
JB
7745 free_extent_map(em);
7746
7747 return 0;
eb838e73
JB
7748
7749unlock_err:
eb838e73 7750 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ae0f1625 7751 unlock_bits, 1, 0, &cached_state);
9c9464cc 7752err:
50745b0a 7753 if (dio_data)
7754 current->journal_info = dio_data;
eb838e73 7755 return ret;
4b46fce2
JB
7756}
7757
58efbc9f
OS
7758static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7759 struct bio *bio,
7760 int mirror_num)
8b110e39 7761{
2ff7e61e 7762 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7763 blk_status_t ret;
8b110e39 7764
37226b21 7765 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7766
2ff7e61e 7767 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39 7768 if (ret)
ea057f6d 7769 return ret;
8b110e39 7770
2ff7e61e 7771 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
ea057f6d 7772
8b110e39
MX
7773 return ret;
7774}
7775
7776static int btrfs_check_dio_repairable(struct inode *inode,
7777 struct bio *failed_bio,
7778 struct io_failure_record *failrec,
7779 int failed_mirror)
7780{
ab8d0fc4 7781 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7782 int num_copies;
7783
ab8d0fc4 7784 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7785 if (num_copies == 1) {
7786 /*
7787 * we only have a single copy of the data, so don't bother with
7788 * all the retry and error correction code that follows. no
7789 * matter what the error is, it is very likely to persist.
7790 */
ab8d0fc4
JM
7791 btrfs_debug(fs_info,
7792 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7793 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7794 return 0;
7795 }
7796
7797 failrec->failed_mirror = failed_mirror;
7798 failrec->this_mirror++;
7799 if (failrec->this_mirror == failed_mirror)
7800 failrec->this_mirror++;
7801
7802 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7803 btrfs_debug(fs_info,
7804 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7805 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7806 return 0;
7807 }
7808
7809 return 1;
7810}
7811
58efbc9f
OS
7812static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7813 struct page *page, unsigned int pgoff,
7814 u64 start, u64 end, int failed_mirror,
7815 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7816{
7817 struct io_failure_record *failrec;
7870d082
JB
7818 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7819 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8b110e39
MX
7820 struct bio *bio;
7821 int isector;
f1c77c55 7822 unsigned int read_mode = 0;
17347cec 7823 int segs;
8b110e39 7824 int ret;
58efbc9f 7825 blk_status_t status;
c16a8ac3 7826 struct bio_vec bvec;
8b110e39 7827
37226b21 7828 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7829
7830 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7831 if (ret)
58efbc9f 7832 return errno_to_blk_status(ret);
8b110e39
MX
7833
7834 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7835 failed_mirror);
7836 if (!ret) {
7870d082 7837 free_io_failure(failure_tree, io_tree, failrec);
58efbc9f 7838 return BLK_STS_IOERR;
8b110e39
MX
7839 }
7840
17347cec 7841 segs = bio_segments(failed_bio);
c16a8ac3 7842 bio_get_first_bvec(failed_bio, &bvec);
17347cec 7843 if (segs > 1 ||
c16a8ac3 7844 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
70fd7614 7845 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
7846
7847 isector = start - btrfs_io_bio(failed_bio)->logical;
7848 isector >>= inode->i_sb->s_blocksize_bits;
7849 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7850 pgoff, isector, repair_endio, repair_arg);
37226b21 7851 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
7852
7853 btrfs_debug(BTRFS_I(inode)->root->fs_info,
913e1535 7854 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8b110e39
MX
7855 read_mode, failrec->this_mirror, failrec->in_validation);
7856
58efbc9f
OS
7857 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7858 if (status) {
7870d082 7859 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
7860 bio_put(bio);
7861 }
7862
58efbc9f 7863 return status;
8b110e39
MX
7864}
7865
7866struct btrfs_retry_complete {
7867 struct completion done;
7868 struct inode *inode;
7869 u64 start;
7870 int uptodate;
7871};
7872
4246a0b6 7873static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7874{
7875 struct btrfs_retry_complete *done = bio->bi_private;
7870d082 7876 struct inode *inode = done->inode;
8b110e39 7877 struct bio_vec *bvec;
7870d082 7878 struct extent_io_tree *io_tree, *failure_tree;
8b110e39
MX
7879 int i;
7880
4e4cbee9 7881 if (bio->bi_status)
8b110e39
MX
7882 goto end;
7883
2dabb324 7884 ASSERT(bio->bi_vcnt == 1);
7870d082
JB
7885 io_tree = &BTRFS_I(inode)->io_tree;
7886 failure_tree = &BTRFS_I(inode)->io_failure_tree;
263663cd 7887 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 7888
8b110e39 7889 done->uptodate = 1;
c09abff8 7890 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 7891 bio_for_each_segment_all(bvec, bio, i)
7870d082
JB
7892 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7893 io_tree, done->start, bvec->bv_page,
7894 btrfs_ino(BTRFS_I(inode)), 0);
8b110e39
MX
7895end:
7896 complete(&done->done);
7897 bio_put(bio);
7898}
7899
58efbc9f
OS
7900static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7901 struct btrfs_io_bio *io_bio)
4b46fce2 7902{
2dabb324 7903 struct btrfs_fs_info *fs_info;
17347cec
LB
7904 struct bio_vec bvec;
7905 struct bvec_iter iter;
8b110e39 7906 struct btrfs_retry_complete done;
4b46fce2 7907 u64 start;
2dabb324
CR
7908 unsigned int pgoff;
7909 u32 sectorsize;
7910 int nr_sectors;
58efbc9f
OS
7911 blk_status_t ret;
7912 blk_status_t err = BLK_STS_OK;
4b46fce2 7913
2dabb324 7914 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 7915 sectorsize = fs_info->sectorsize;
2dabb324 7916
8b110e39
MX
7917 start = io_bio->logical;
7918 done.inode = inode;
17347cec 7919 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 7920
17347cec
LB
7921 bio_for_each_segment(bvec, &io_bio->bio, iter) {
7922 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7923 pgoff = bvec.bv_offset;
2dabb324
CR
7924
7925next_block_or_try_again:
8b110e39
MX
7926 done.uptodate = 0;
7927 done.start = start;
7928 init_completion(&done.done);
7929
17347cec 7930 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
7931 pgoff, start, start + sectorsize - 1,
7932 io_bio->mirror_num,
7933 btrfs_retry_endio_nocsum, &done);
629ebf4f
LB
7934 if (ret) {
7935 err = ret;
7936 goto next;
7937 }
8b110e39 7938
9c17f6cd 7939 wait_for_completion_io(&done.done);
8b110e39
MX
7940
7941 if (!done.uptodate) {
7942 /* We might have another mirror, so try again */
2dabb324 7943 goto next_block_or_try_again;
8b110e39
MX
7944 }
7945
629ebf4f 7946next:
2dabb324
CR
7947 start += sectorsize;
7948
97bf5a55
LB
7949 nr_sectors--;
7950 if (nr_sectors) {
2dabb324 7951 pgoff += sectorsize;
97bf5a55 7952 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
7953 goto next_block_or_try_again;
7954 }
8b110e39
MX
7955 }
7956
629ebf4f 7957 return err;
8b110e39
MX
7958}
7959
4246a0b6 7960static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7961{
7962 struct btrfs_retry_complete *done = bio->bi_private;
7963 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082
JB
7964 struct extent_io_tree *io_tree, *failure_tree;
7965 struct inode *inode = done->inode;
8b110e39
MX
7966 struct bio_vec *bvec;
7967 int uptodate;
7968 int ret;
7969 int i;
7970
4e4cbee9 7971 if (bio->bi_status)
8b110e39
MX
7972 goto end;
7973
7974 uptodate = 1;
2dabb324 7975
2dabb324 7976 ASSERT(bio->bi_vcnt == 1);
263663cd 7977 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 7978
7870d082
JB
7979 io_tree = &BTRFS_I(inode)->io_tree;
7980 failure_tree = &BTRFS_I(inode)->io_failure_tree;
7981
c09abff8 7982 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 7983 bio_for_each_segment_all(bvec, bio, i) {
7870d082
JB
7984 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7985 bvec->bv_offset, done->start,
7986 bvec->bv_len);
8b110e39 7987 if (!ret)
7870d082
JB
7988 clean_io_failure(BTRFS_I(inode)->root->fs_info,
7989 failure_tree, io_tree, done->start,
7990 bvec->bv_page,
7991 btrfs_ino(BTRFS_I(inode)),
7992 bvec->bv_offset);
8b110e39
MX
7993 else
7994 uptodate = 0;
7995 }
7996
7997 done->uptodate = uptodate;
7998end:
7999 complete(&done->done);
8000 bio_put(bio);
8001}
8002
4e4cbee9
CH
8003static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8004 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39 8005{
2dabb324 8006 struct btrfs_fs_info *fs_info;
17347cec
LB
8007 struct bio_vec bvec;
8008 struct bvec_iter iter;
8b110e39
MX
8009 struct btrfs_retry_complete done;
8010 u64 start;
8011 u64 offset = 0;
2dabb324
CR
8012 u32 sectorsize;
8013 int nr_sectors;
8014 unsigned int pgoff;
8015 int csum_pos;
ef7cdac1 8016 bool uptodate = (err == 0);
8b110e39 8017 int ret;
58efbc9f 8018 blk_status_t status;
dc380aea 8019
2dabb324 8020 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8021 sectorsize = fs_info->sectorsize;
2dabb324 8022
58efbc9f 8023 err = BLK_STS_OK;
c1dc0896 8024 start = io_bio->logical;
8b110e39 8025 done.inode = inode;
17347cec 8026 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8027
17347cec
LB
8028 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8029 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
2dabb324 8030
17347cec 8031 pgoff = bvec.bv_offset;
2dabb324 8032next_block:
ef7cdac1
LB
8033 if (uptodate) {
8034 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8035 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8036 bvec.bv_page, pgoff, start, sectorsize);
8037 if (likely(!ret))
8038 goto next;
8039 }
8b110e39
MX
8040try_again:
8041 done.uptodate = 0;
8042 done.start = start;
8043 init_completion(&done.done);
8044
58efbc9f
OS
8045 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8046 pgoff, start, start + sectorsize - 1,
8047 io_bio->mirror_num, btrfs_retry_endio,
8048 &done);
8049 if (status) {
8050 err = status;
8b110e39
MX
8051 goto next;
8052 }
8053
9c17f6cd 8054 wait_for_completion_io(&done.done);
8b110e39
MX
8055
8056 if (!done.uptodate) {
8057 /* We might have another mirror, so try again */
8058 goto try_again;
8059 }
8060next:
2dabb324
CR
8061 offset += sectorsize;
8062 start += sectorsize;
8063
8064 ASSERT(nr_sectors);
8065
97bf5a55
LB
8066 nr_sectors--;
8067 if (nr_sectors) {
2dabb324 8068 pgoff += sectorsize;
97bf5a55 8069 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8070 goto next_block;
8071 }
2c30c71b 8072 }
c1dc0896
MX
8073
8074 return err;
8075}
8076
4e4cbee9
CH
8077static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8078 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39
MX
8079{
8080 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8081
8082 if (skip_csum) {
8083 if (unlikely(err))
8084 return __btrfs_correct_data_nocsum(inode, io_bio);
8085 else
58efbc9f 8086 return BLK_STS_OK;
8b110e39
MX
8087 } else {
8088 return __btrfs_subio_endio_read(inode, io_bio, err);
8089 }
8090}
8091
4246a0b6 8092static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8093{
8094 struct btrfs_dio_private *dip = bio->bi_private;
8095 struct inode *inode = dip->inode;
8096 struct bio *dio_bio;
8097 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4e4cbee9 8098 blk_status_t err = bio->bi_status;
c1dc0896 8099
99c4e3b9 8100 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8b110e39 8101 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8102
4b46fce2 8103 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8104 dip->logical_offset + dip->bytes - 1);
9be3395b 8105 dio_bio = dip->dio_bio;
4b46fce2 8106
4b46fce2 8107 kfree(dip);
c0da7aa1 8108
99c4e3b9 8109 dio_bio->bi_status = err;
4055351c 8110 dio_end_io(dio_bio);
23ea8e5a
MX
8111
8112 if (io_bio->end_io)
4e4cbee9 8113 io_bio->end_io(io_bio, blk_status_to_errno(err));
9be3395b 8114 bio_put(bio);
4b46fce2
JB
8115}
8116
52427260
QW
8117static void __endio_write_update_ordered(struct inode *inode,
8118 const u64 offset, const u64 bytes,
8119 const bool uptodate)
4b46fce2 8120{
0b246afa 8121 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8122 struct btrfs_ordered_extent *ordered = NULL;
52427260
QW
8123 struct btrfs_workqueue *wq;
8124 btrfs_work_func_t func;
14543774
FM
8125 u64 ordered_offset = offset;
8126 u64 ordered_bytes = bytes;
67c003f9 8127 u64 last_offset;
4b46fce2 8128
52427260
QW
8129 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8130 wq = fs_info->endio_freespace_worker;
8131 func = btrfs_freespace_write_helper;
8132 } else {
8133 wq = fs_info->endio_write_workers;
8134 func = btrfs_endio_write_helper;
8135 }
8136
b25f0d00
NB
8137 while (ordered_offset < offset + bytes) {
8138 last_offset = ordered_offset;
8139 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8140 &ordered_offset,
8141 ordered_bytes,
8142 uptodate)) {
8143 btrfs_init_work(&ordered->work, func,
8144 finish_ordered_fn,
8145 NULL, NULL);
8146 btrfs_queue_work(wq, &ordered->work);
8147 }
8148 /*
8149 * If btrfs_dec_test_ordered_pending does not find any ordered
8150 * extent in the range, we can exit.
8151 */
8152 if (ordered_offset == last_offset)
8153 return;
8154 /*
8155 * Our bio might span multiple ordered extents. In this case
8156 * we keep goin until we have accounted the whole dio.
8157 */
8158 if (ordered_offset < offset + bytes) {
8159 ordered_bytes = offset + bytes - ordered_offset;
8160 ordered = NULL;
8161 }
163cf09c 8162 }
14543774
FM
8163}
8164
8165static void btrfs_endio_direct_write(struct bio *bio)
8166{
8167 struct btrfs_dio_private *dip = bio->bi_private;
8168 struct bio *dio_bio = dip->dio_bio;
8169
52427260 8170 __endio_write_update_ordered(dip->inode, dip->logical_offset,
4e4cbee9 8171 dip->bytes, !bio->bi_status);
4b46fce2 8172
4b46fce2 8173 kfree(dip);
c0da7aa1 8174
4e4cbee9 8175 dio_bio->bi_status = bio->bi_status;
4055351c 8176 dio_end_io(dio_bio);
9be3395b 8177 bio_put(bio);
4b46fce2
JB
8178}
8179
d0ee3934 8180static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
d0779291 8181 struct bio *bio, u64 offset)
eaf25d93 8182{
c6100a4b 8183 struct inode *inode = private_data;
4e4cbee9 8184 blk_status_t ret;
2ff7e61e 8185 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8186 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8187 return 0;
8188}
8189
4246a0b6 8190static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8191{
8192 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 8193 blk_status_t err = bio->bi_status;
e65e1535 8194
8b110e39
MX
8195 if (err)
8196 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8197 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8198 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8199 bio->bi_opf,
8b110e39
MX
8200 (unsigned long long)bio->bi_iter.bi_sector,
8201 bio->bi_iter.bi_size, err);
8202
8203 if (dip->subio_endio)
8204 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8205
8206 if (err) {
e65e1535 8207 /*
de224b7c
NB
8208 * We want to perceive the errors flag being set before
8209 * decrementing the reference count. We don't need a barrier
8210 * since atomic operations with a return value are fully
8211 * ordered as per atomic_t.txt
e65e1535 8212 */
de224b7c 8213 dip->errors = 1;
e65e1535
MX
8214 }
8215
8216 /* if there are more bios still pending for this dio, just exit */
8217 if (!atomic_dec_and_test(&dip->pending_bios))
8218 goto out;
8219
9be3395b 8220 if (dip->errors) {
e65e1535 8221 bio_io_error(dip->orig_bio);
9be3395b 8222 } else {
2dbe0c77 8223 dip->dio_bio->bi_status = BLK_STS_OK;
4246a0b6 8224 bio_endio(dip->orig_bio);
e65e1535
MX
8225 }
8226out:
8227 bio_put(bio);
8228}
8229
4e4cbee9 8230static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8231 struct btrfs_dio_private *dip,
8232 struct bio *bio,
8233 u64 file_offset)
8234{
8235 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8236 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
4e4cbee9 8237 blk_status_t ret;
c1dc0896
MX
8238
8239 /*
8240 * We load all the csum data we need when we submit
8241 * the first bio to reduce the csum tree search and
8242 * contention.
8243 */
8244 if (dip->logical_offset == file_offset) {
2ff7e61e 8245 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8246 file_offset);
8247 if (ret)
8248 return ret;
8249 }
8250
8251 if (bio == dip->orig_bio)
8252 return 0;
8253
8254 file_offset -= dip->logical_offset;
8255 file_offset >>= inode->i_sb->s_blocksize_bits;
8256 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8257
8258 return 0;
8259}
8260
d0ee3934
DS
8261static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8262 struct inode *inode, u64 file_offset, int async_submit)
e65e1535 8263{
0b246afa 8264 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8265 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8266 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 8267 blk_status_t ret;
e65e1535 8268
4c274bc6 8269 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
8270 if (async_submit)
8271 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8272
5fd02043 8273 if (!write) {
0b246afa 8274 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8275 if (ret)
8276 goto err;
8277 }
e65e1535 8278
e6961cac 8279 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
8280 goto map;
8281
8282 if (write && async_submit) {
c6100a4b
JB
8283 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8284 file_offset, inode,
d0ee3934
DS
8285 btrfs_submit_bio_start_direct_io,
8286 btrfs_submit_bio_done);
e65e1535 8287 goto err;
1ae39938
JB
8288 } else if (write) {
8289 /*
8290 * If we aren't doing async submit, calculate the csum of the
8291 * bio now.
8292 */
2ff7e61e 8293 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8294 if (ret)
8295 goto err;
23ea8e5a 8296 } else {
2ff7e61e 8297 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8298 file_offset);
c2db1073
TI
8299 if (ret)
8300 goto err;
8301 }
1ae39938 8302map:
9b4a9b28 8303 ret = btrfs_map_bio(fs_info, bio, 0, 0);
e65e1535 8304err:
e65e1535
MX
8305 return ret;
8306}
8307
e6961cac 8308static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
e65e1535
MX
8309{
8310 struct inode *inode = dip->inode;
0b246afa 8311 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535
MX
8312 struct bio *bio;
8313 struct bio *orig_bio = dip->orig_bio;
4f024f37 8314 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535 8315 u64 file_offset = dip->logical_offset;
e65e1535 8316 u64 map_length;
1ae39938 8317 int async_submit = 0;
725130ba
LB
8318 u64 submit_len;
8319 int clone_offset = 0;
8320 int clone_len;
5f4dc8fc 8321 int ret;
58efbc9f 8322 blk_status_t status;
e65e1535 8323
4f024f37 8324 map_length = orig_bio->bi_iter.bi_size;
725130ba 8325 submit_len = map_length;
0b246afa
JM
8326 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8327 &map_length, NULL, 0);
7a5c3c9b 8328 if (ret)
e65e1535 8329 return -EIO;
facc8a22 8330
725130ba 8331 if (map_length >= submit_len) {
02f57c7a 8332 bio = orig_bio;
c1dc0896 8333 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8334 goto submit;
8335 }
8336
53b381b3 8337 /* async crcs make it difficult to collect full stripe writes. */
1b86826d 8338 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8339 async_submit = 0;
8340 else
8341 async_submit = 1;
8342
725130ba
LB
8343 /* bio split */
8344 ASSERT(map_length <= INT_MAX);
02f57c7a 8345 atomic_inc(&dip->pending_bios);
3c91ee69 8346 do {
725130ba 8347 clone_len = min_t(int, submit_len, map_length);
02f57c7a 8348
725130ba
LB
8349 /*
8350 * This will never fail as it's passing GPF_NOFS and
8351 * the allocation is backed by btrfs_bioset.
8352 */
e477094f 8353 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
725130ba
LB
8354 clone_len);
8355 bio->bi_private = dip;
8356 bio->bi_end_io = btrfs_end_dio_bio;
8357 btrfs_io_bio(bio)->logical = file_offset;
8358
8359 ASSERT(submit_len >= clone_len);
8360 submit_len -= clone_len;
8361 if (submit_len == 0)
8362 break;
e65e1535 8363
725130ba
LB
8364 /*
8365 * Increase the count before we submit the bio so we know
8366 * the end IO handler won't happen before we increase the
8367 * count. Otherwise, the dip might get freed before we're
8368 * done setting it up.
8369 */
8370 atomic_inc(&dip->pending_bios);
e65e1535 8371
d0ee3934 8372 status = btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
8373 async_submit);
8374 if (status) {
725130ba
LB
8375 bio_put(bio);
8376 atomic_dec(&dip->pending_bios);
8377 goto out_err;
8378 }
e65e1535 8379
725130ba
LB
8380 clone_offset += clone_len;
8381 start_sector += clone_len >> 9;
8382 file_offset += clone_len;
5f4dc8fc 8383
725130ba
LB
8384 map_length = submit_len;
8385 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8386 start_sector << 9, &map_length, NULL, 0);
8387 if (ret)
8388 goto out_err;
3c91ee69 8389 } while (submit_len > 0);
e65e1535 8390
02f57c7a 8391submit:
d0ee3934 8392 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
58efbc9f 8393 if (!status)
e65e1535
MX
8394 return 0;
8395
8396 bio_put(bio);
8397out_err:
8398 dip->errors = 1;
8399 /*
de224b7c
NB
8400 * Before atomic variable goto zero, we must make sure dip->errors is
8401 * perceived to be set. This ordering is ensured by the fact that an
8402 * atomic operations with a return value are fully ordered as per
8403 * atomic_t.txt
e65e1535 8404 */
e65e1535
MX
8405 if (atomic_dec_and_test(&dip->pending_bios))
8406 bio_io_error(dip->orig_bio);
8407
8408 /* bio_end_io() will handle error, so we needn't return it */
8409 return 0;
8410}
8411
8a4c1e42
MC
8412static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8413 loff_t file_offset)
4b46fce2 8414{
61de718f 8415 struct btrfs_dio_private *dip = NULL;
3892ac90
LB
8416 struct bio *bio = NULL;
8417 struct btrfs_io_bio *io_bio;
8a4c1e42 8418 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8419 int ret = 0;
8420
8b6c1d56 8421 bio = btrfs_bio_clone(dio_bio);
9be3395b 8422
c1dc0896 8423 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8424 if (!dip) {
8425 ret = -ENOMEM;
61de718f 8426 goto free_ordered;
4b46fce2 8427 }
4b46fce2 8428
9be3395b 8429 dip->private = dio_bio->bi_private;
4b46fce2
JB
8430 dip->inode = inode;
8431 dip->logical_offset = file_offset;
4f024f37
KO
8432 dip->bytes = dio_bio->bi_iter.bi_size;
8433 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
3892ac90
LB
8434 bio->bi_private = dip;
8435 dip->orig_bio = bio;
9be3395b 8436 dip->dio_bio = dio_bio;
e65e1535 8437 atomic_set(&dip->pending_bios, 0);
3892ac90
LB
8438 io_bio = btrfs_io_bio(bio);
8439 io_bio->logical = file_offset;
4b46fce2 8440
c1dc0896 8441 if (write) {
3892ac90 8442 bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8443 } else {
3892ac90 8444 bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8445 dip->subio_endio = btrfs_subio_endio_read;
8446 }
4b46fce2 8447
f28a4928
FM
8448 /*
8449 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8450 * even if we fail to submit a bio, because in such case we do the
8451 * corresponding error handling below and it must not be done a second
8452 * time by btrfs_direct_IO().
8453 */
8454 if (write) {
8455 struct btrfs_dio_data *dio_data = current->journal_info;
8456
8457 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8458 dip->bytes;
8459 dio_data->unsubmitted_oe_range_start =
8460 dio_data->unsubmitted_oe_range_end;
8461 }
8462
e6961cac 8463 ret = btrfs_submit_direct_hook(dip);
e65e1535 8464 if (!ret)
eaf25d93 8465 return;
9be3395b 8466
3892ac90
LB
8467 if (io_bio->end_io)
8468 io_bio->end_io(io_bio, ret);
9be3395b 8469
4b46fce2
JB
8470free_ordered:
8471 /*
61de718f
FM
8472 * If we arrived here it means either we failed to submit the dip
8473 * or we either failed to clone the dio_bio or failed to allocate the
8474 * dip. If we cloned the dio_bio and allocated the dip, we can just
8475 * call bio_endio against our io_bio so that we get proper resource
8476 * cleanup if we fail to submit the dip, otherwise, we must do the
8477 * same as btrfs_endio_direct_[write|read] because we can't call these
8478 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8479 */
3892ac90 8480 if (bio && dip) {
054ec2f6 8481 bio_io_error(bio);
61de718f 8482 /*
3892ac90 8483 * The end io callbacks free our dip, do the final put on bio
61de718f
FM
8484 * and all the cleanup and final put for dio_bio (through
8485 * dio_end_io()).
8486 */
8487 dip = NULL;
3892ac90 8488 bio = NULL;
61de718f 8489 } else {
14543774 8490 if (write)
52427260 8491 __endio_write_update_ordered(inode,
14543774
FM
8492 file_offset,
8493 dio_bio->bi_iter.bi_size,
52427260 8494 false);
14543774 8495 else
61de718f
FM
8496 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8497 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8498
4e4cbee9 8499 dio_bio->bi_status = BLK_STS_IOERR;
61de718f
FM
8500 /*
8501 * Releases and cleans up our dio_bio, no need to bio_put()
8502 * nor bio_endio()/bio_io_error() against dio_bio.
8503 */
4055351c 8504 dio_end_io(dio_bio);
4b46fce2 8505 }
3892ac90
LB
8506 if (bio)
8507 bio_put(bio);
61de718f 8508 kfree(dip);
4b46fce2
JB
8509}
8510
2ff7e61e 8511static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
2ff7e61e 8512 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8513{
8514 int seg;
a1b75f7d 8515 int i;
0b246afa 8516 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8517 ssize_t retval = -EINVAL;
5a5f79b5
CM
8518
8519 if (offset & blocksize_mask)
8520 goto out;
8521
28060d5d
AV
8522 if (iov_iter_alignment(iter) & blocksize_mask)
8523 goto out;
a1b75f7d 8524
28060d5d 8525 /* If this is a write we don't need to check anymore */
cd27e455 8526 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8527 return 0;
8528 /*
8529 * Check to make sure we don't have duplicate iov_base's in this
8530 * iovec, if so return EINVAL, otherwise we'll get csum errors
8531 * when reading back.
8532 */
8533 for (seg = 0; seg < iter->nr_segs; seg++) {
8534 for (i = seg + 1; i < iter->nr_segs; i++) {
8535 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8536 goto out;
8537 }
5a5f79b5
CM
8538 }
8539 retval = 0;
8540out:
8541 return retval;
8542}
eb838e73 8543
c8b8e32d 8544static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8545{
4b46fce2
JB
8546 struct file *file = iocb->ki_filp;
8547 struct inode *inode = file->f_mapping->host;
0b246afa 8548 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8549 struct btrfs_dio_data dio_data = { 0 };
364ecf36 8550 struct extent_changeset *data_reserved = NULL;
c8b8e32d 8551 loff_t offset = iocb->ki_pos;
0934856d 8552 size_t count = 0;
2e60a51e 8553 int flags = 0;
38851cc1
MX
8554 bool wakeup = true;
8555 bool relock = false;
0934856d 8556 ssize_t ret;
4b46fce2 8557
8c70c9f8 8558 if (check_direct_IO(fs_info, iter, offset))
5a5f79b5 8559 return 0;
3f7c579c 8560
fe0f07d0 8561 inode_dio_begin(inode);
38851cc1 8562
0e267c44 8563 /*
41bd9ca4
MX
8564 * The generic stuff only does filemap_write_and_wait_range, which
8565 * isn't enough if we've written compressed pages to this area, so
8566 * we need to flush the dirty pages again to make absolutely sure
8567 * that any outstanding dirty pages are on disk.
0e267c44 8568 */
a6cbcd4a 8569 count = iov_iter_count(iter);
41bd9ca4
MX
8570 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8571 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8572 filemap_fdatawrite_range(inode->i_mapping, offset,
8573 offset + count - 1);
0e267c44 8574
6f673763 8575 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8576 /*
8577 * If the write DIO is beyond the EOF, we need update
8578 * the isize, but it is protected by i_mutex. So we can
8579 * not unlock the i_mutex at this case.
8580 */
8581 if (offset + count <= inode->i_size) {
4aaedfb0 8582 dio_data.overwrite = 1;
5955102c 8583 inode_unlock(inode);
38851cc1 8584 relock = true;
edf064e7
GR
8585 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8586 ret = -EAGAIN;
8587 goto out;
38851cc1 8588 }
364ecf36
QW
8589 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8590 offset, count);
0934856d 8591 if (ret)
38851cc1 8592 goto out;
e1cbbfa5
JB
8593
8594 /*
8595 * We need to know how many extents we reserved so that we can
8596 * do the accounting properly if we go over the number we
8597 * originally calculated. Abuse current->journal_info for this.
8598 */
da17066c 8599 dio_data.reserve = round_up(count,
0b246afa 8600 fs_info->sectorsize);
f28a4928
FM
8601 dio_data.unsubmitted_oe_range_start = (u64)offset;
8602 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8603 current->journal_info = &dio_data;
97dcdea0 8604 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8605 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8606 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8607 inode_dio_end(inode);
38851cc1
MX
8608 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8609 wakeup = false;
0934856d
MX
8610 }
8611
17f8c842 8612 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8613 fs_info->fs_devices->latest_bdev,
c8b8e32d 8614 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8615 btrfs_submit_direct, flags);
6f673763 8616 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8617 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8618 current->journal_info = NULL;
ddba1bfc 8619 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8620 if (dio_data.reserve)
bc42bda2 8621 btrfs_delalloc_release_space(inode, data_reserved,
43b18595 8622 offset, dio_data.reserve, true);
f28a4928
FM
8623 /*
8624 * On error we might have left some ordered extents
8625 * without submitting corresponding bios for them, so
8626 * cleanup them up to avoid other tasks getting them
8627 * and waiting for them to complete forever.
8628 */
8629 if (dio_data.unsubmitted_oe_range_start <
8630 dio_data.unsubmitted_oe_range_end)
52427260 8631 __endio_write_update_ordered(inode,
f28a4928
FM
8632 dio_data.unsubmitted_oe_range_start,
8633 dio_data.unsubmitted_oe_range_end -
8634 dio_data.unsubmitted_oe_range_start,
52427260 8635 false);
ddba1bfc 8636 } else if (ret >= 0 && (size_t)ret < count)
bc42bda2 8637 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
8638 offset, count - (size_t)ret, true);
8639 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
0934856d 8640 }
38851cc1 8641out:
2e60a51e 8642 if (wakeup)
fe0f07d0 8643 inode_dio_end(inode);
38851cc1 8644 if (relock)
5955102c 8645 inode_lock(inode);
0934856d 8646
364ecf36 8647 extent_changeset_free(data_reserved);
0934856d 8648 return ret;
16432985
CM
8649}
8650
05dadc09
TI
8651#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8652
1506fcc8
YS
8653static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8654 __u64 start, __u64 len)
8655{
05dadc09
TI
8656 int ret;
8657
8658 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8659 if (ret)
8660 return ret;
8661
2135fb9b 8662 return extent_fiemap(inode, fieinfo, start, len);
1506fcc8
YS
8663}
8664
a52d9a80 8665int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8666{
d1310b2e
CM
8667 struct extent_io_tree *tree;
8668 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8669 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8670}
1832a6d5 8671
a52d9a80 8672static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8673{
be7bd730
JB
8674 struct inode *inode = page->mapping->host;
8675 int ret;
b888db2b
CM
8676
8677 if (current->flags & PF_MEMALLOC) {
8678 redirty_page_for_writepage(wbc, page);
8679 unlock_page(page);
8680 return 0;
8681 }
be7bd730
JB
8682
8683 /*
8684 * If we are under memory pressure we will call this directly from the
8685 * VM, we need to make sure we have the inode referenced for the ordered
8686 * extent. If not just return like we didn't do anything.
8687 */
8688 if (!igrab(inode)) {
8689 redirty_page_for_writepage(wbc, page);
8690 return AOP_WRITEPAGE_ACTIVATE;
8691 }
0a9b0e53 8692 ret = extent_write_full_page(page, wbc);
be7bd730
JB
8693 btrfs_add_delayed_iput(inode);
8694 return ret;
9ebefb18
CM
8695}
8696
48a3b636
ES
8697static int btrfs_writepages(struct address_space *mapping,
8698 struct writeback_control *wbc)
b293f02e 8699{
8ae225a8 8700 return extent_writepages(mapping, wbc);
b293f02e
CM
8701}
8702
3ab2fb5a
CM
8703static int
8704btrfs_readpages(struct file *file, struct address_space *mapping,
8705 struct list_head *pages, unsigned nr_pages)
8706{
2a3ff0ad 8707 return extent_readpages(mapping, pages, nr_pages);
3ab2fb5a 8708}
2a3ff0ad 8709
e6dcd2dc 8710static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8711{
477a30ba 8712 int ret = try_release_extent_mapping(page, gfp_flags);
a52d9a80
CM
8713 if (ret == 1) {
8714 ClearPagePrivate(page);
8715 set_page_private(page, 0);
09cbfeaf 8716 put_page(page);
39279cc3 8717 }
a52d9a80 8718 return ret;
39279cc3
CM
8719}
8720
e6dcd2dc
CM
8721static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8722{
98509cfc
CM
8723 if (PageWriteback(page) || PageDirty(page))
8724 return 0;
3ba7ab22 8725 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8726}
8727
d47992f8
LC
8728static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8729 unsigned int length)
39279cc3 8730{
5fd02043 8731 struct inode *inode = page->mapping->host;
d1310b2e 8732 struct extent_io_tree *tree;
e6dcd2dc 8733 struct btrfs_ordered_extent *ordered;
2ac55d41 8734 struct extent_state *cached_state = NULL;
e6dcd2dc 8735 u64 page_start = page_offset(page);
09cbfeaf 8736 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8737 u64 start;
8738 u64 end;
131e404a 8739 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8740
8b62b72b
CM
8741 /*
8742 * we have the page locked, so new writeback can't start,
8743 * and the dirty bit won't be cleared while we are here.
8744 *
8745 * Wait for IO on this page so that we can safely clear
8746 * the PagePrivate2 bit and do ordered accounting
8747 */
e6dcd2dc 8748 wait_on_page_writeback(page);
8b62b72b 8749
5fd02043 8750 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8751 if (offset) {
8752 btrfs_releasepage(page, GFP_NOFS);
8753 return;
8754 }
131e404a
FDBM
8755
8756 if (!inode_evicting)
ff13db41 8757 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8758again:
8759 start = page_start;
a776c6fa 8760 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8761 page_end - start + 1);
e6dcd2dc 8762 if (ordered) {
dbfdb6d1 8763 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8764 /*
8765 * IO on this page will never be started, so we need
8766 * to account for any ordered extents now
8767 */
131e404a 8768 if (!inode_evicting)
dbfdb6d1 8769 clear_extent_bit(tree, start, end,
131e404a 8770 EXTENT_DIRTY | EXTENT_DELALLOC |
a7e3b975 8771 EXTENT_DELALLOC_NEW |
131e404a 8772 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8773 EXTENT_DEFRAG, 1, 0, &cached_state);
8b62b72b
CM
8774 /*
8775 * whoever cleared the private bit is responsible
8776 * for the finish_ordered_io
8777 */
77cef2ec
JB
8778 if (TestClearPagePrivate2(page)) {
8779 struct btrfs_ordered_inode_tree *tree;
8780 u64 new_len;
8781
8782 tree = &BTRFS_I(inode)->ordered_tree;
8783
8784 spin_lock_irq(&tree->lock);
8785 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8786 new_len = start - ordered->file_offset;
77cef2ec
JB
8787 if (new_len < ordered->truncated_len)
8788 ordered->truncated_len = new_len;
8789 spin_unlock_irq(&tree->lock);
8790
8791 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8792 start,
8793 end - start + 1, 1))
77cef2ec 8794 btrfs_finish_ordered_io(ordered);
8b62b72b 8795 }
e6dcd2dc 8796 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8797 if (!inode_evicting) {
8798 cached_state = NULL;
dbfdb6d1 8799 lock_extent_bits(tree, start, end,
131e404a
FDBM
8800 &cached_state);
8801 }
dbfdb6d1
CR
8802
8803 start = end + 1;
8804 if (start < page_end)
8805 goto again;
131e404a
FDBM
8806 }
8807
b9d0b389
QW
8808 /*
8809 * Qgroup reserved space handler
8810 * Page here will be either
8811 * 1) Already written to disk
8812 * In this case, its reserved space is released from data rsv map
8813 * and will be freed by delayed_ref handler finally.
8814 * So even we call qgroup_free_data(), it won't decrease reserved
8815 * space.
8816 * 2) Not written to disk
0b34c261
GR
8817 * This means the reserved space should be freed here. However,
8818 * if a truncate invalidates the page (by clearing PageDirty)
8819 * and the page is accounted for while allocating extent
8820 * in btrfs_check_data_free_space() we let delayed_ref to
8821 * free the entire extent.
b9d0b389 8822 */
0b34c261 8823 if (PageDirty(page))
bc42bda2 8824 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a
FDBM
8825 if (!inode_evicting) {
8826 clear_extent_bit(tree, page_start, page_end,
8827 EXTENT_LOCKED | EXTENT_DIRTY |
a7e3b975
FM
8828 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8829 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
ae0f1625 8830 &cached_state);
131e404a
FDBM
8831
8832 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8833 }
e6dcd2dc 8834
4a096752 8835 ClearPageChecked(page);
9ad6b7bc 8836 if (PagePrivate(page)) {
9ad6b7bc
CM
8837 ClearPagePrivate(page);
8838 set_page_private(page, 0);
09cbfeaf 8839 put_page(page);
9ad6b7bc 8840 }
39279cc3
CM
8841}
8842
9ebefb18
CM
8843/*
8844 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8845 * called from a page fault handler when a page is first dirtied. Hence we must
8846 * be careful to check for EOF conditions here. We set the page up correctly
8847 * for a written page which means we get ENOSPC checking when writing into
8848 * holes and correct delalloc and unwritten extent mapping on filesystems that
8849 * support these features.
8850 *
8851 * We are not allowed to take the i_mutex here so we have to play games to
8852 * protect against truncate races as the page could now be beyond EOF. Because
d1342aad
OS
8853 * truncate_setsize() writes the inode size before removing pages, once we have
8854 * the page lock we can determine safely if the page is beyond EOF. If it is not
9ebefb18
CM
8855 * beyond EOF, then the page is guaranteed safe against truncation until we
8856 * unlock the page.
8857 */
11bac800 8858int btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8859{
c2ec175c 8860 struct page *page = vmf->page;
11bac800 8861 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8862 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8863 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8864 struct btrfs_ordered_extent *ordered;
2ac55d41 8865 struct extent_state *cached_state = NULL;
364ecf36 8866 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
8867 char *kaddr;
8868 unsigned long zero_start;
9ebefb18 8869 loff_t size;
1832a6d5 8870 int ret;
9998eb70 8871 int reserved = 0;
d0b7da88 8872 u64 reserved_space;
a52d9a80 8873 u64 page_start;
e6dcd2dc 8874 u64 page_end;
d0b7da88
CR
8875 u64 end;
8876
09cbfeaf 8877 reserved_space = PAGE_SIZE;
9ebefb18 8878
b2b5ef5c 8879 sb_start_pagefault(inode->i_sb);
df480633 8880 page_start = page_offset(page);
09cbfeaf 8881 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8882 end = page_end;
df480633 8883
d0b7da88
CR
8884 /*
8885 * Reserving delalloc space after obtaining the page lock can lead to
8886 * deadlock. For example, if a dirty page is locked by this function
8887 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8888 * dirty page write out, then the btrfs_writepage() function could
8889 * end up waiting indefinitely to get a lock on the page currently
8890 * being processed by btrfs_page_mkwrite() function.
8891 */
364ecf36 8892 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
d0b7da88 8893 reserved_space);
9998eb70 8894 if (!ret) {
11bac800 8895 ret = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8896 reserved = 1;
8897 }
56a76f82
NP
8898 if (ret) {
8899 if (ret == -ENOMEM)
8900 ret = VM_FAULT_OOM;
8901 else /* -ENOSPC, -EIO, etc */
8902 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8903 if (reserved)
8904 goto out;
8905 goto out_noreserve;
56a76f82 8906 }
1832a6d5 8907
56a76f82 8908 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8909again:
9ebefb18 8910 lock_page(page);
9ebefb18 8911 size = i_size_read(inode);
a52d9a80 8912
9ebefb18 8913 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8914 (page_start >= size)) {
9ebefb18
CM
8915 /* page got truncated out from underneath us */
8916 goto out_unlock;
8917 }
e6dcd2dc
CM
8918 wait_on_page_writeback(page);
8919
ff13db41 8920 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8921 set_page_extent_mapped(page);
8922
eb84ae03
CM
8923 /*
8924 * we can't set the delalloc bits if there are pending ordered
8925 * extents. Drop our locks and wait for them to finish
8926 */
a776c6fa
NB
8927 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8928 PAGE_SIZE);
e6dcd2dc 8929 if (ordered) {
2ac55d41 8930 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8931 &cached_state);
e6dcd2dc 8932 unlock_page(page);
eb84ae03 8933 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8934 btrfs_put_ordered_extent(ordered);
8935 goto again;
8936 }
8937
09cbfeaf 8938 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 8939 reserved_space = round_up(size - page_start,
0b246afa 8940 fs_info->sectorsize);
09cbfeaf 8941 if (reserved_space < PAGE_SIZE) {
d0b7da88 8942 end = page_start + reserved_space - 1;
bc42bda2 8943 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
8944 page_start, PAGE_SIZE - reserved_space,
8945 true);
d0b7da88
CR
8946 }
8947 }
8948
fbf19087 8949 /*
5416034f
LB
8950 * page_mkwrite gets called when the page is firstly dirtied after it's
8951 * faulted in, but write(2) could also dirty a page and set delalloc
8952 * bits, thus in this case for space account reason, we still need to
8953 * clear any delalloc bits within this page range since we have to
8954 * reserve data&meta space before lock_page() (see above comments).
fbf19087 8955 */
d0b7da88 8956 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
8957 EXTENT_DIRTY | EXTENT_DELALLOC |
8958 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 8959 0, 0, &cached_state);
fbf19087 8960
e3b8a485 8961 ret = btrfs_set_extent_delalloc(inode, page_start, end, 0,
ba8b04c1 8962 &cached_state, 0);
9ed74f2d 8963 if (ret) {
2ac55d41 8964 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8965 &cached_state);
9ed74f2d
JB
8966 ret = VM_FAULT_SIGBUS;
8967 goto out_unlock;
8968 }
e6dcd2dc 8969 ret = 0;
9ebefb18
CM
8970
8971 /* page is wholly or partially inside EOF */
09cbfeaf
KS
8972 if (page_start + PAGE_SIZE > size)
8973 zero_start = size & ~PAGE_MASK;
9ebefb18 8974 else
09cbfeaf 8975 zero_start = PAGE_SIZE;
9ebefb18 8976
09cbfeaf 8977 if (zero_start != PAGE_SIZE) {
e6dcd2dc 8978 kaddr = kmap(page);
09cbfeaf 8979 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
8980 flush_dcache_page(page);
8981 kunmap(page);
8982 }
247e743c 8983 ClearPageChecked(page);
e6dcd2dc 8984 set_page_dirty(page);
50a9b214 8985 SetPageUptodate(page);
5a3f23d5 8986
0b246afa 8987 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 8988 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8989 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8990
e43bbe5e 8991 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9ebefb18
CM
8992
8993out_unlock:
b2b5ef5c 8994 if (!ret) {
43b18595 8995 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
b2b5ef5c 8996 sb_end_pagefault(inode->i_sb);
364ecf36 8997 extent_changeset_free(data_reserved);
50a9b214 8998 return VM_FAULT_LOCKED;
b2b5ef5c 8999 }
9ebefb18 9000 unlock_page(page);
1832a6d5 9001out:
43b18595 9002 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
bc42bda2 9003 btrfs_delalloc_release_space(inode, data_reserved, page_start,
43b18595 9004 reserved_space, (ret != 0));
9998eb70 9005out_noreserve:
b2b5ef5c 9006 sb_end_pagefault(inode->i_sb);
364ecf36 9007 extent_changeset_free(data_reserved);
9ebefb18
CM
9008 return ret;
9009}
9010
213e8c55 9011static int btrfs_truncate(struct inode *inode, bool skip_writeback)
39279cc3 9012{
0b246afa 9013 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 9014 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9015 struct btrfs_block_rsv *rsv;
a71754fc 9016 int ret = 0;
3893e33b 9017 int err = 0;
39279cc3 9018 struct btrfs_trans_handle *trans;
0b246afa
JM
9019 u64 mask = fs_info->sectorsize - 1;
9020 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 9021
213e8c55
FM
9022 if (!skip_writeback) {
9023 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9024 (u64)-1);
9025 if (ret)
9026 return ret;
9027 }
39279cc3 9028
fcb80c2a 9029 /*
f7e9e8fc
OS
9030 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
9031 * things going on here:
fcb80c2a 9032 *
f7e9e8fc 9033 * 1) We need to reserve space to update our inode.
fcb80c2a 9034 *
f7e9e8fc 9035 * 2) We need to have something to cache all the space that is going to
fcb80c2a
JB
9036 * be free'd up by the truncate operation, but also have some slack
9037 * space reserved in case it uses space during the truncate (thank you
9038 * very much snapshotting).
9039 *
f7e9e8fc 9040 * And we need these to be separate. The fact is we can use a lot of
fcb80c2a 9041 * space doing the truncate, and we have no earthly idea how much space
01327610 9042 * we will use, so we need the truncate reservation to be separate so it
f7e9e8fc
OS
9043 * doesn't end up using space reserved for updating the inode. We also
9044 * need to be able to stop the transaction and start a new one, which
9045 * means we need to be able to update the inode several times, and we
9046 * have no idea of knowing how many times that will be, so we can't just
9047 * reserve 1 item for the entirety of the operation, so that has to be
9048 * done separately as well.
fcb80c2a
JB
9049 *
9050 * So that leaves us with
9051 *
f7e9e8fc 9052 * 1) rsv - for the truncate reservation, which we will steal from the
fcb80c2a 9053 * transaction reservation.
f7e9e8fc 9054 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
fcb80c2a
JB
9055 * updating the inode.
9056 */
2ff7e61e 9057 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9058 if (!rsv)
9059 return -ENOMEM;
4a338542 9060 rsv->size = min_size;
ca7e70f5 9061 rsv->failfast = 1;
f0cd846e 9062
907cbceb 9063 /*
07127184 9064 * 1 for the truncate slack space
907cbceb
JB
9065 * 1 for updating the inode.
9066 */
f3fe820c 9067 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9068 if (IS_ERR(trans)) {
9069 err = PTR_ERR(trans);
9070 goto out;
9071 }
f0cd846e 9072
907cbceb 9073 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9074 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 9075 min_size, 0);
fcb80c2a 9076 BUG_ON(ret);
f0cd846e 9077
5dc562c5
JB
9078 /*
9079 * So if we truncate and then write and fsync we normally would just
9080 * write the extents that changed, which is a problem if we need to
9081 * first truncate that entire inode. So set this flag so we write out
9082 * all of the extents in the inode to the sync log so we're completely
9083 * safe.
9084 */
9085 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9086 trans->block_rsv = rsv;
907cbceb 9087
8082510e
YZ
9088 while (1) {
9089 ret = btrfs_truncate_inode_items(trans, root, inode,
9090 inode->i_size,
9091 BTRFS_EXTENT_DATA_KEY);
ddfae63c 9092 trans->block_rsv = &fs_info->trans_block_rsv;
28ed1345 9093 if (ret != -ENOSPC && ret != -EAGAIN) {
d5014738
OS
9094 if (ret < 0)
9095 err = ret;
8082510e 9096 break;
3893e33b 9097 }
39279cc3 9098
8082510e 9099 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9100 if (ret) {
9101 err = ret;
9102 break;
9103 }
ca7e70f5 9104
3a45bb20 9105 btrfs_end_transaction(trans);
2ff7e61e 9106 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9107
9108 trans = btrfs_start_transaction(root, 2);
9109 if (IS_ERR(trans)) {
9110 ret = err = PTR_ERR(trans);
9111 trans = NULL;
9112 break;
9113 }
9114
47b5d646 9115 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9116 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 9117 rsv, min_size, 0);
ca7e70f5
JB
9118 BUG_ON(ret); /* shouldn't happen */
9119 trans->block_rsv = rsv;
8082510e
YZ
9120 }
9121
ddfae63c
JB
9122 /*
9123 * We can't call btrfs_truncate_block inside a trans handle as we could
9124 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9125 * we've truncated everything except the last little bit, and can do
9126 * btrfs_truncate_block and then update the disk_i_size.
9127 */
9128 if (ret == NEED_TRUNCATE_BLOCK) {
9129 btrfs_end_transaction(trans);
9130 btrfs_btree_balance_dirty(fs_info);
9131
9132 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9133 if (ret)
9134 goto out;
9135 trans = btrfs_start_transaction(root, 1);
9136 if (IS_ERR(trans)) {
9137 ret = PTR_ERR(trans);
9138 goto out;
9139 }
9140 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9141 }
9142
917c16b2 9143 if (trans) {
0b246afa 9144 trans->block_rsv = &fs_info->trans_block_rsv;
917c16b2
CM
9145 ret = btrfs_update_inode(trans, root, inode);
9146 if (ret && !err)
9147 err = ret;
7b128766 9148
3a45bb20 9149 ret = btrfs_end_transaction(trans);
2ff7e61e 9150 btrfs_btree_balance_dirty(fs_info);
917c16b2 9151 }
fcb80c2a 9152out:
2ff7e61e 9153 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9154
3893e33b
JB
9155 if (ret && !err)
9156 err = ret;
a41ad394 9157
3893e33b 9158 return err;
39279cc3
CM
9159}
9160
d352ac68
CM
9161/*
9162 * create a new subvolume directory/inode (helper for the ioctl).
9163 */
d2fb3437 9164int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9165 struct btrfs_root *new_root,
9166 struct btrfs_root *parent_root,
9167 u64 new_dirid)
39279cc3 9168{
39279cc3 9169 struct inode *inode;
76dda93c 9170 int err;
00e4e6b3 9171 u64 index = 0;
39279cc3 9172
12fc9d09
FA
9173 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9174 new_dirid, new_dirid,
9175 S_IFDIR | (~current_umask() & S_IRWXUGO),
9176 &index);
54aa1f4d 9177 if (IS_ERR(inode))
f46b5a66 9178 return PTR_ERR(inode);
39279cc3
CM
9179 inode->i_op = &btrfs_dir_inode_operations;
9180 inode->i_fop = &btrfs_dir_file_operations;
9181
bfe86848 9182 set_nlink(inode, 1);
6ef06d27 9183 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9184 unlock_new_inode(inode);
3b96362c 9185
63541927
FDBM
9186 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9187 if (err)
9188 btrfs_err(new_root->fs_info,
351fd353 9189 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9190 new_root->root_key.objectid, err);
9191
76dda93c 9192 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9193
76dda93c 9194 iput(inode);
ce598979 9195 return err;
39279cc3
CM
9196}
9197
39279cc3
CM
9198struct inode *btrfs_alloc_inode(struct super_block *sb)
9199{
69fe2d75 9200 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 9201 struct btrfs_inode *ei;
2ead6ae7 9202 struct inode *inode;
39279cc3 9203
712e36c5 9204 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
9205 if (!ei)
9206 return NULL;
2ead6ae7
YZ
9207
9208 ei->root = NULL;
2ead6ae7 9209 ei->generation = 0;
15ee9bc7 9210 ei->last_trans = 0;
257c62e1 9211 ei->last_sub_trans = 0;
e02119d5 9212 ei->logged_trans = 0;
2ead6ae7 9213 ei->delalloc_bytes = 0;
a7e3b975 9214 ei->new_delalloc_bytes = 0;
47059d93 9215 ei->defrag_bytes = 0;
2ead6ae7
YZ
9216 ei->disk_i_size = 0;
9217 ei->flags = 0;
7709cde3 9218 ei->csum_bytes = 0;
2ead6ae7 9219 ei->index_cnt = (u64)-1;
67de1176 9220 ei->dir_index = 0;
2ead6ae7 9221 ei->last_unlink_trans = 0;
46d8bc34 9222 ei->last_log_commit = 0;
2ead6ae7 9223
9e0baf60
JB
9224 spin_lock_init(&ei->lock);
9225 ei->outstanding_extents = 0;
69fe2d75
JB
9226 if (sb->s_magic != BTRFS_TEST_MAGIC)
9227 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9228 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 9229 ei->runtime_flags = 0;
b52aa8c9 9230 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 9231 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9232
16cdcec7
MX
9233 ei->delayed_node = NULL;
9234
9cc97d64 9235 ei->i_otime.tv_sec = 0;
9236 ei->i_otime.tv_nsec = 0;
9237
2ead6ae7 9238 inode = &ei->vfs_inode;
a8067e02 9239 extent_map_tree_init(&ei->extent_tree);
c6100a4b
JB
9240 extent_io_tree_init(&ei->io_tree, inode);
9241 extent_io_tree_init(&ei->io_failure_tree, inode);
0b32f4bb
JB
9242 ei->io_tree.track_uptodate = 1;
9243 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9244 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9245 mutex_init(&ei->log_mutex);
f248679e 9246 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9247 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9248 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9249 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9250 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9251 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9252
9253 return inode;
39279cc3
CM
9254}
9255
aaedb55b
JB
9256#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9257void btrfs_test_destroy_inode(struct inode *inode)
9258{
dcdbc059 9259 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9260 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9261}
9262#endif
9263
fa0d7e3d
NP
9264static void btrfs_i_callback(struct rcu_head *head)
9265{
9266 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9267 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9268}
9269
39279cc3
CM
9270void btrfs_destroy_inode(struct inode *inode)
9271{
0b246afa 9272 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9273 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9274 struct btrfs_root *root = BTRFS_I(inode)->root;
9275
b3d9b7a3 9276 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9277 WARN_ON(inode->i_data.nrpages);
69fe2d75
JB
9278 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9279 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9e0baf60 9280 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7709cde3 9281 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 9282 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 9283 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9284 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9285
a6dbd429
JB
9286 /*
9287 * This can happen where we create an inode, but somebody else also
9288 * created the same inode and we need to destroy the one we already
9289 * created.
9290 */
9291 if (!root)
9292 goto free;
9293
d397712b 9294 while (1) {
e6dcd2dc
CM
9295 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9296 if (!ordered)
9297 break;
9298 else {
0b246afa 9299 btrfs_err(fs_info,
5d163e0e
JM
9300 "found ordered extent %llu %llu on inode cleanup",
9301 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9302 btrfs_remove_ordered_extent(inode, ordered);
9303 btrfs_put_ordered_extent(ordered);
9304 btrfs_put_ordered_extent(ordered);
9305 }
9306 }
56fa9d07 9307 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9308 inode_tree_del(inode);
dcdbc059 9309 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
a6dbd429 9310free:
fa0d7e3d 9311 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9312}
9313
45321ac5 9314int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9315{
9316 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9317
6379ef9f
NA
9318 if (root == NULL)
9319 return 1;
9320
fa6ac876 9321 /* the snap/subvol tree is on deleting */
69e9c6c6 9322 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9323 return 1;
76dda93c 9324 else
45321ac5 9325 return generic_drop_inode(inode);
76dda93c
YZ
9326}
9327
0ee0fda0 9328static void init_once(void *foo)
39279cc3
CM
9329{
9330 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9331
9332 inode_init_once(&ei->vfs_inode);
9333}
9334
e67c718b 9335void __cold btrfs_destroy_cachep(void)
39279cc3 9336{
8c0a8537
KS
9337 /*
9338 * Make sure all delayed rcu free inodes are flushed before we
9339 * destroy cache.
9340 */
9341 rcu_barrier();
5598e900
KM
9342 kmem_cache_destroy(btrfs_inode_cachep);
9343 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
9344 kmem_cache_destroy(btrfs_path_cachep);
9345 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9346}
9347
f5c29bd9 9348int __init btrfs_init_cachep(void)
39279cc3 9349{
837e1972 9350 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9351 sizeof(struct btrfs_inode), 0,
5d097056
VD
9352 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9353 init_once);
39279cc3
CM
9354 if (!btrfs_inode_cachep)
9355 goto fail;
9601e3f6 9356
837e1972 9357 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9358 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9359 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9360 if (!btrfs_trans_handle_cachep)
9361 goto fail;
9601e3f6 9362
837e1972 9363 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9364 sizeof(struct btrfs_path), 0,
fba4b697 9365 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9366 if (!btrfs_path_cachep)
9367 goto fail;
9601e3f6 9368
837e1972 9369 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9370 sizeof(struct btrfs_free_space), 0,
fba4b697 9371 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9372 if (!btrfs_free_space_cachep)
9373 goto fail;
9374
39279cc3
CM
9375 return 0;
9376fail:
9377 btrfs_destroy_cachep();
9378 return -ENOMEM;
9379}
9380
a528d35e
DH
9381static int btrfs_getattr(const struct path *path, struct kstat *stat,
9382 u32 request_mask, unsigned int flags)
39279cc3 9383{
df0af1a5 9384 u64 delalloc_bytes;
a528d35e 9385 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9386 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
9387 u32 bi_flags = BTRFS_I(inode)->flags;
9388
9389 stat->result_mask |= STATX_BTIME;
9390 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9391 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9392 if (bi_flags & BTRFS_INODE_APPEND)
9393 stat->attributes |= STATX_ATTR_APPEND;
9394 if (bi_flags & BTRFS_INODE_COMPRESS)
9395 stat->attributes |= STATX_ATTR_COMPRESSED;
9396 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9397 stat->attributes |= STATX_ATTR_IMMUTABLE;
9398 if (bi_flags & BTRFS_INODE_NODUMP)
9399 stat->attributes |= STATX_ATTR_NODUMP;
9400
9401 stat->attributes_mask |= (STATX_ATTR_APPEND |
9402 STATX_ATTR_COMPRESSED |
9403 STATX_ATTR_IMMUTABLE |
9404 STATX_ATTR_NODUMP);
fadc0d8b 9405
39279cc3 9406 generic_fillattr(inode, stat);
0ee5dc67 9407 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9408
9409 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9410 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 9411 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9412 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9413 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9414 return 0;
9415}
9416
cdd1fedf
DF
9417static int btrfs_rename_exchange(struct inode *old_dir,
9418 struct dentry *old_dentry,
9419 struct inode *new_dir,
9420 struct dentry *new_dentry)
9421{
0b246afa 9422 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9423 struct btrfs_trans_handle *trans;
9424 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9425 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9426 struct inode *new_inode = new_dentry->d_inode;
9427 struct inode *old_inode = old_dentry->d_inode;
c2050a45 9428 struct timespec ctime = current_time(old_inode);
cdd1fedf 9429 struct dentry *parent;
4a0cc7ca
NB
9430 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9431 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9432 u64 old_idx = 0;
9433 u64 new_idx = 0;
9434 u64 root_objectid;
9435 int ret;
86e8aa0e
FM
9436 bool root_log_pinned = false;
9437 bool dest_log_pinned = false;
cdd1fedf
DF
9438
9439 /* we only allow rename subvolume link between subvolumes */
9440 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9441 return -EXDEV;
9442
9443 /* close the race window with snapshot create/destroy ioctl */
9444 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9445 down_read(&fs_info->subvol_sem);
cdd1fedf 9446 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9447 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9448
9449 /*
9450 * We want to reserve the absolute worst case amount of items. So if
9451 * both inodes are subvols and we need to unlink them then that would
9452 * require 4 item modifications, but if they are both normal inodes it
9453 * would require 5 item modifications, so we'll assume their normal
9454 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9455 * should cover the worst case number of items we'll modify.
9456 */
9457 trans = btrfs_start_transaction(root, 12);
9458 if (IS_ERR(trans)) {
9459 ret = PTR_ERR(trans);
9460 goto out_notrans;
9461 }
9462
9463 /*
9464 * We need to find a free sequence number both in the source and
9465 * in the destination directory for the exchange.
9466 */
877574e2 9467 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9468 if (ret)
9469 goto out_fail;
877574e2 9470 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9471 if (ret)
9472 goto out_fail;
9473
9474 BTRFS_I(old_inode)->dir_index = 0ULL;
9475 BTRFS_I(new_inode)->dir_index = 0ULL;
9476
9477 /* Reference for the source. */
9478 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9479 /* force full log commit if subvolume involved. */
0b246afa 9480 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9481 } else {
376e5a57
FM
9482 btrfs_pin_log_trans(root);
9483 root_log_pinned = true;
cdd1fedf
DF
9484 ret = btrfs_insert_inode_ref(trans, dest,
9485 new_dentry->d_name.name,
9486 new_dentry->d_name.len,
9487 old_ino,
f85b7379
DS
9488 btrfs_ino(BTRFS_I(new_dir)),
9489 old_idx);
cdd1fedf
DF
9490 if (ret)
9491 goto out_fail;
cdd1fedf
DF
9492 }
9493
9494 /* And now for the dest. */
9495 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9496 /* force full log commit if subvolume involved. */
0b246afa 9497 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9498 } else {
376e5a57
FM
9499 btrfs_pin_log_trans(dest);
9500 dest_log_pinned = true;
cdd1fedf
DF
9501 ret = btrfs_insert_inode_ref(trans, root,
9502 old_dentry->d_name.name,
9503 old_dentry->d_name.len,
9504 new_ino,
f85b7379
DS
9505 btrfs_ino(BTRFS_I(old_dir)),
9506 new_idx);
cdd1fedf
DF
9507 if (ret)
9508 goto out_fail;
cdd1fedf
DF
9509 }
9510
9511 /* Update inode version and ctime/mtime. */
9512 inode_inc_iversion(old_dir);
9513 inode_inc_iversion(new_dir);
9514 inode_inc_iversion(old_inode);
9515 inode_inc_iversion(new_inode);
9516 old_dir->i_ctime = old_dir->i_mtime = ctime;
9517 new_dir->i_ctime = new_dir->i_mtime = ctime;
9518 old_inode->i_ctime = ctime;
9519 new_inode->i_ctime = ctime;
9520
9521 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9522 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9523 BTRFS_I(old_inode), 1);
9524 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9525 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9526 }
9527
9528 /* src is a subvolume */
9529 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9530 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9531 ret = btrfs_unlink_subvol(trans, root, old_dir,
9532 root_objectid,
9533 old_dentry->d_name.name,
9534 old_dentry->d_name.len);
9535 } else { /* src is an inode */
4ec5934e
NB
9536 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9537 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9538 old_dentry->d_name.name,
9539 old_dentry->d_name.len);
9540 if (!ret)
9541 ret = btrfs_update_inode(trans, root, old_inode);
9542 }
9543 if (ret) {
66642832 9544 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9545 goto out_fail;
9546 }
9547
9548 /* dest is a subvolume */
9549 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9550 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9551 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9552 root_objectid,
9553 new_dentry->d_name.name,
9554 new_dentry->d_name.len);
9555 } else { /* dest is an inode */
4ec5934e
NB
9556 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9557 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9558 new_dentry->d_name.name,
9559 new_dentry->d_name.len);
9560 if (!ret)
9561 ret = btrfs_update_inode(trans, dest, new_inode);
9562 }
9563 if (ret) {
66642832 9564 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9565 goto out_fail;
9566 }
9567
db0a669f 9568 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9569 new_dentry->d_name.name,
9570 new_dentry->d_name.len, 0, old_idx);
9571 if (ret) {
66642832 9572 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9573 goto out_fail;
9574 }
9575
db0a669f 9576 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9577 old_dentry->d_name.name,
9578 old_dentry->d_name.len, 0, new_idx);
9579 if (ret) {
66642832 9580 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9581 goto out_fail;
9582 }
9583
9584 if (old_inode->i_nlink == 1)
9585 BTRFS_I(old_inode)->dir_index = old_idx;
9586 if (new_inode->i_nlink == 1)
9587 BTRFS_I(new_inode)->dir_index = new_idx;
9588
86e8aa0e 9589 if (root_log_pinned) {
cdd1fedf 9590 parent = new_dentry->d_parent;
f85b7379
DS
9591 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9592 parent);
cdd1fedf 9593 btrfs_end_log_trans(root);
86e8aa0e 9594 root_log_pinned = false;
cdd1fedf 9595 }
86e8aa0e 9596 if (dest_log_pinned) {
cdd1fedf 9597 parent = old_dentry->d_parent;
f85b7379
DS
9598 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9599 parent);
cdd1fedf 9600 btrfs_end_log_trans(dest);
86e8aa0e 9601 dest_log_pinned = false;
cdd1fedf
DF
9602 }
9603out_fail:
86e8aa0e
FM
9604 /*
9605 * If we have pinned a log and an error happened, we unpin tasks
9606 * trying to sync the log and force them to fallback to a transaction
9607 * commit if the log currently contains any of the inodes involved in
9608 * this rename operation (to ensure we do not persist a log with an
9609 * inconsistent state for any of these inodes or leading to any
9610 * inconsistencies when replayed). If the transaction was aborted, the
9611 * abortion reason is propagated to userspace when attempting to commit
9612 * the transaction. If the log does not contain any of these inodes, we
9613 * allow the tasks to sync it.
9614 */
9615 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9616 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9617 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9618 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9619 (new_inode &&
0f8939b8 9620 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9621 btrfs_set_log_full_commit(fs_info, trans);
86e8aa0e
FM
9622
9623 if (root_log_pinned) {
9624 btrfs_end_log_trans(root);
9625 root_log_pinned = false;
9626 }
9627 if (dest_log_pinned) {
9628 btrfs_end_log_trans(dest);
9629 dest_log_pinned = false;
9630 }
9631 }
3a45bb20 9632 ret = btrfs_end_transaction(trans);
cdd1fedf
DF
9633out_notrans:
9634 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9635 up_read(&fs_info->subvol_sem);
cdd1fedf 9636 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9637 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9638
9639 return ret;
9640}
9641
9642static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9643 struct btrfs_root *root,
9644 struct inode *dir,
9645 struct dentry *dentry)
9646{
9647 int ret;
9648 struct inode *inode;
9649 u64 objectid;
9650 u64 index;
9651
9652 ret = btrfs_find_free_ino(root, &objectid);
9653 if (ret)
9654 return ret;
9655
9656 inode = btrfs_new_inode(trans, root, dir,
9657 dentry->d_name.name,
9658 dentry->d_name.len,
4a0cc7ca 9659 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9660 objectid,
9661 S_IFCHR | WHITEOUT_MODE,
9662 &index);
9663
9664 if (IS_ERR(inode)) {
9665 ret = PTR_ERR(inode);
9666 return ret;
9667 }
9668
9669 inode->i_op = &btrfs_special_inode_operations;
9670 init_special_inode(inode, inode->i_mode,
9671 WHITEOUT_DEV);
9672
9673 ret = btrfs_init_inode_security(trans, inode, dir,
9674 &dentry->d_name);
9675 if (ret)
c9901618 9676 goto out;
cdd1fedf 9677
cef415af
NB
9678 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9679 BTRFS_I(inode), 0, index);
cdd1fedf 9680 if (ret)
c9901618 9681 goto out;
cdd1fedf
DF
9682
9683 ret = btrfs_update_inode(trans, root, inode);
c9901618 9684out:
cdd1fedf 9685 unlock_new_inode(inode);
c9901618
FM
9686 if (ret)
9687 inode_dec_link_count(inode);
cdd1fedf
DF
9688 iput(inode);
9689
c9901618 9690 return ret;
cdd1fedf
DF
9691}
9692
d397712b 9693static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9694 struct inode *new_dir, struct dentry *new_dentry,
9695 unsigned int flags)
39279cc3 9696{
0b246afa 9697 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9698 struct btrfs_trans_handle *trans;
5062af35 9699 unsigned int trans_num_items;
39279cc3 9700 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9701 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9702 struct inode *new_inode = d_inode(new_dentry);
9703 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9704 u64 index = 0;
4df27c4d 9705 u64 root_objectid;
39279cc3 9706 int ret;
4a0cc7ca 9707 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9708 bool log_pinned = false;
39279cc3 9709
4a0cc7ca 9710 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9711 return -EPERM;
9712
4df27c4d 9713 /* we only allow rename subvolume link between subvolumes */
33345d01 9714 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9715 return -EXDEV;
9716
33345d01 9717 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9718 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9719 return -ENOTEMPTY;
5f39d397 9720
4df27c4d
YZ
9721 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9722 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9723 return -ENOTEMPTY;
9c52057c
CM
9724
9725
9726 /* check for collisions, even if the name isn't there */
4871c158 9727 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9728 new_dentry->d_name.name,
9729 new_dentry->d_name.len);
9730
9731 if (ret) {
9732 if (ret == -EEXIST) {
9733 /* we shouldn't get
9734 * eexist without a new_inode */
fae7f21c 9735 if (WARN_ON(!new_inode)) {
9c52057c
CM
9736 return ret;
9737 }
9738 } else {
9739 /* maybe -EOVERFLOW */
9740 return ret;
9741 }
9742 }
9743 ret = 0;
9744
5a3f23d5 9745 /*
8d875f95
CM
9746 * we're using rename to replace one file with another. Start IO on it
9747 * now so we don't add too much work to the end of the transaction
5a3f23d5 9748 */
8d875f95 9749 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9750 filemap_flush(old_inode->i_mapping);
9751
76dda93c 9752 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9753 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9754 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9755 /*
9756 * We want to reserve the absolute worst case amount of items. So if
9757 * both inodes are subvols and we need to unlink them then that would
9758 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9759 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9760 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9761 * should cover the worst case number of items we'll modify.
5062af35
FM
9762 * If our rename has the whiteout flag, we need more 5 units for the
9763 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9764 * when selinux is enabled).
a22285a6 9765 */
5062af35
FM
9766 trans_num_items = 11;
9767 if (flags & RENAME_WHITEOUT)
9768 trans_num_items += 5;
9769 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9770 if (IS_ERR(trans)) {
cdd1fedf
DF
9771 ret = PTR_ERR(trans);
9772 goto out_notrans;
9773 }
76dda93c 9774
4df27c4d
YZ
9775 if (dest != root)
9776 btrfs_record_root_in_trans(trans, dest);
5f39d397 9777
877574e2 9778 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9779 if (ret)
9780 goto out_fail;
5a3f23d5 9781
67de1176 9782 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9783 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9784 /* force full log commit if subvolume involved. */
0b246afa 9785 btrfs_set_log_full_commit(fs_info, trans);
4df27c4d 9786 } else {
c4aba954
FM
9787 btrfs_pin_log_trans(root);
9788 log_pinned = true;
a5719521
YZ
9789 ret = btrfs_insert_inode_ref(trans, dest,
9790 new_dentry->d_name.name,
9791 new_dentry->d_name.len,
33345d01 9792 old_ino,
4a0cc7ca 9793 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9794 if (ret)
9795 goto out_fail;
4df27c4d 9796 }
5a3f23d5 9797
0c4d2d95
JB
9798 inode_inc_iversion(old_dir);
9799 inode_inc_iversion(new_dir);
9800 inode_inc_iversion(old_inode);
04b285f3
DD
9801 old_dir->i_ctime = old_dir->i_mtime =
9802 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9803 old_inode->i_ctime = current_time(old_dir);
5f39d397 9804
12fcfd22 9805 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9806 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9807 BTRFS_I(old_inode), 1);
12fcfd22 9808
33345d01 9809 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9810 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9811 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9812 old_dentry->d_name.name,
9813 old_dentry->d_name.len);
9814 } else {
4ec5934e
NB
9815 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9816 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9817 old_dentry->d_name.name,
9818 old_dentry->d_name.len);
9819 if (!ret)
9820 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9821 }
79787eaa 9822 if (ret) {
66642832 9823 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9824 goto out_fail;
9825 }
39279cc3
CM
9826
9827 if (new_inode) {
0c4d2d95 9828 inode_inc_iversion(new_inode);
c2050a45 9829 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9830 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
9831 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9832 root_objectid = BTRFS_I(new_inode)->location.objectid;
9833 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9834 root_objectid,
9835 new_dentry->d_name.name,
9836 new_dentry->d_name.len);
9837 BUG_ON(new_inode->i_nlink == 0);
9838 } else {
4ec5934e
NB
9839 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9840 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9841 new_dentry->d_name.name,
9842 new_dentry->d_name.len);
9843 }
4ef31a45 9844 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9845 ret = btrfs_orphan_add(trans,
9846 BTRFS_I(d_inode(new_dentry)));
79787eaa 9847 if (ret) {
66642832 9848 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9849 goto out_fail;
9850 }
39279cc3 9851 }
aec7477b 9852
db0a669f 9853 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 9854 new_dentry->d_name.name,
a5719521 9855 new_dentry->d_name.len, 0, index);
79787eaa 9856 if (ret) {
66642832 9857 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9858 goto out_fail;
9859 }
39279cc3 9860
67de1176
MX
9861 if (old_inode->i_nlink == 1)
9862 BTRFS_I(old_inode)->dir_index = index;
9863
3dc9e8f7 9864 if (log_pinned) {
10d9f309 9865 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9866
f85b7379
DS
9867 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9868 parent);
4df27c4d 9869 btrfs_end_log_trans(root);
3dc9e8f7 9870 log_pinned = false;
4df27c4d 9871 }
cdd1fedf
DF
9872
9873 if (flags & RENAME_WHITEOUT) {
9874 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9875 old_dentry);
9876
9877 if (ret) {
66642832 9878 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9879 goto out_fail;
9880 }
4df27c4d 9881 }
39279cc3 9882out_fail:
3dc9e8f7
FM
9883 /*
9884 * If we have pinned the log and an error happened, we unpin tasks
9885 * trying to sync the log and force them to fallback to a transaction
9886 * commit if the log currently contains any of the inodes involved in
9887 * this rename operation (to ensure we do not persist a log with an
9888 * inconsistent state for any of these inodes or leading to any
9889 * inconsistencies when replayed). If the transaction was aborted, the
9890 * abortion reason is propagated to userspace when attempting to commit
9891 * the transaction. If the log does not contain any of these inodes, we
9892 * allow the tasks to sync it.
9893 */
9894 if (ret && log_pinned) {
0f8939b8
NB
9895 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9896 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9897 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 9898 (new_inode &&
0f8939b8 9899 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9900 btrfs_set_log_full_commit(fs_info, trans);
3dc9e8f7
FM
9901
9902 btrfs_end_log_trans(root);
9903 log_pinned = false;
9904 }
3a45bb20 9905 btrfs_end_transaction(trans);
b44c59a8 9906out_notrans:
33345d01 9907 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9908 up_read(&fs_info->subvol_sem);
9ed74f2d 9909
39279cc3
CM
9910 return ret;
9911}
9912
80ace85c
MS
9913static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9914 struct inode *new_dir, struct dentry *new_dentry,
9915 unsigned int flags)
9916{
cdd1fedf 9917 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9918 return -EINVAL;
9919
cdd1fedf
DF
9920 if (flags & RENAME_EXCHANGE)
9921 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9922 new_dentry);
9923
9924 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9925}
9926
3a2f8c07
NB
9927struct btrfs_delalloc_work {
9928 struct inode *inode;
9929 struct completion completion;
9930 struct list_head list;
9931 struct btrfs_work work;
9932};
9933
8ccf6f19
MX
9934static void btrfs_run_delalloc_work(struct btrfs_work *work)
9935{
9936 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9937 struct inode *inode;
8ccf6f19
MX
9938
9939 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9940 work);
9f23e289 9941 inode = delalloc_work->inode;
30424601
DS
9942 filemap_flush(inode->i_mapping);
9943 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9944 &BTRFS_I(inode)->runtime_flags))
9f23e289 9945 filemap_flush(inode->i_mapping);
8ccf6f19 9946
076da91c 9947 iput(inode);
8ccf6f19
MX
9948 complete(&delalloc_work->completion);
9949}
9950
3a2f8c07 9951static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8ccf6f19
MX
9952{
9953 struct btrfs_delalloc_work *work;
9954
100d5702 9955 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9956 if (!work)
9957 return NULL;
9958
9959 init_completion(&work->completion);
9960 INIT_LIST_HEAD(&work->list);
9961 work->inode = inode;
9e0af237
LB
9962 WARN_ON_ONCE(!inode);
9963 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9964 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9965
9966 return work;
9967}
9968
d352ac68
CM
9969/*
9970 * some fairly slow code that needs optimization. This walks the list
9971 * of all the inodes with pending delalloc and forces them to disk.
9972 */
4fbb5147 9973static int start_delalloc_inodes(struct btrfs_root *root, int nr)
ea8c2819 9974{
ea8c2819 9975 struct btrfs_inode *binode;
5b21f2ed 9976 struct inode *inode;
8ccf6f19
MX
9977 struct btrfs_delalloc_work *work, *next;
9978 struct list_head works;
1eafa6c7 9979 struct list_head splice;
8ccf6f19 9980 int ret = 0;
ea8c2819 9981
8ccf6f19 9982 INIT_LIST_HEAD(&works);
1eafa6c7 9983 INIT_LIST_HEAD(&splice);
63607cc8 9984
573bfb72 9985 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9986 spin_lock(&root->delalloc_lock);
9987 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9988 while (!list_empty(&splice)) {
9989 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9990 delalloc_inodes);
1eafa6c7 9991
eb73c1b7
MX
9992 list_move_tail(&binode->delalloc_inodes,
9993 &root->delalloc_inodes);
5b21f2ed 9994 inode = igrab(&binode->vfs_inode);
df0af1a5 9995 if (!inode) {
eb73c1b7 9996 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9997 continue;
df0af1a5 9998 }
eb73c1b7 9999 spin_unlock(&root->delalloc_lock);
1eafa6c7 10000
076da91c 10001 work = btrfs_alloc_delalloc_work(inode);
5d99a998 10002 if (!work) {
4fbb5147 10003 iput(inode);
1eafa6c7 10004 ret = -ENOMEM;
a1ecaabb 10005 goto out;
5b21f2ed 10006 }
1eafa6c7 10007 list_add_tail(&work->list, &works);
a44903ab
QW
10008 btrfs_queue_work(root->fs_info->flush_workers,
10009 &work->work);
6c255e67
MX
10010 ret++;
10011 if (nr != -1 && ret >= nr)
a1ecaabb 10012 goto out;
5b21f2ed 10013 cond_resched();
eb73c1b7 10014 spin_lock(&root->delalloc_lock);
ea8c2819 10015 }
eb73c1b7 10016 spin_unlock(&root->delalloc_lock);
8c8bee1d 10017
a1ecaabb 10018out:
eb73c1b7
MX
10019 list_for_each_entry_safe(work, next, &works, list) {
10020 list_del_init(&work->list);
40012f96
NB
10021 wait_for_completion(&work->completion);
10022 kfree(work);
eb73c1b7
MX
10023 }
10024
81f1d390 10025 if (!list_empty(&splice)) {
eb73c1b7
MX
10026 spin_lock(&root->delalloc_lock);
10027 list_splice_tail(&splice, &root->delalloc_inodes);
10028 spin_unlock(&root->delalloc_lock);
10029 }
573bfb72 10030 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10031 return ret;
10032}
1eafa6c7 10033
76f32e24 10034int btrfs_start_delalloc_inodes(struct btrfs_root *root)
eb73c1b7 10035{
0b246afa 10036 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10037 int ret;
1eafa6c7 10038
0b246afa 10039 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10040 return -EROFS;
10041
4fbb5147 10042 ret = start_delalloc_inodes(root, -1);
6c255e67
MX
10043 if (ret > 0)
10044 ret = 0;
eb73c1b7
MX
10045 return ret;
10046}
10047
82b3e53b 10048int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
eb73c1b7
MX
10049{
10050 struct btrfs_root *root;
10051 struct list_head splice;
10052 int ret;
10053
2c21b4d7 10054 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10055 return -EROFS;
10056
10057 INIT_LIST_HEAD(&splice);
10058
573bfb72 10059 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10060 spin_lock(&fs_info->delalloc_root_lock);
10061 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10062 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10063 root = list_first_entry(&splice, struct btrfs_root,
10064 delalloc_root);
10065 root = btrfs_grab_fs_root(root);
10066 BUG_ON(!root);
10067 list_move_tail(&root->delalloc_root,
10068 &fs_info->delalloc_roots);
10069 spin_unlock(&fs_info->delalloc_root_lock);
10070
4fbb5147 10071 ret = start_delalloc_inodes(root, nr);
eb73c1b7 10072 btrfs_put_fs_root(root);
6c255e67 10073 if (ret < 0)
eb73c1b7
MX
10074 goto out;
10075
6c255e67
MX
10076 if (nr != -1) {
10077 nr -= ret;
10078 WARN_ON(nr < 0);
10079 }
eb73c1b7 10080 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10081 }
eb73c1b7 10082 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10083
6c255e67 10084 ret = 0;
eb73c1b7 10085out:
81f1d390 10086 if (!list_empty(&splice)) {
eb73c1b7
MX
10087 spin_lock(&fs_info->delalloc_root_lock);
10088 list_splice_tail(&splice, &fs_info->delalloc_roots);
10089 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10090 }
573bfb72 10091 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10092 return ret;
ea8c2819
CM
10093}
10094
39279cc3
CM
10095static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10096 const char *symname)
10097{
0b246afa 10098 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10099 struct btrfs_trans_handle *trans;
10100 struct btrfs_root *root = BTRFS_I(dir)->root;
10101 struct btrfs_path *path;
10102 struct btrfs_key key;
1832a6d5 10103 struct inode *inode = NULL;
39279cc3
CM
10104 int err;
10105 int drop_inode = 0;
10106 u64 objectid;
67871254 10107 u64 index = 0;
39279cc3
CM
10108 int name_len;
10109 int datasize;
5f39d397 10110 unsigned long ptr;
39279cc3 10111 struct btrfs_file_extent_item *ei;
5f39d397 10112 struct extent_buffer *leaf;
39279cc3 10113
f06becc4 10114 name_len = strlen(symname);
0b246afa 10115 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10116 return -ENAMETOOLONG;
1832a6d5 10117
9ed74f2d
JB
10118 /*
10119 * 2 items for inode item and ref
10120 * 2 items for dir items
9269d12b
FM
10121 * 1 item for updating parent inode item
10122 * 1 item for the inline extent item
9ed74f2d
JB
10123 * 1 item for xattr if selinux is on
10124 */
9269d12b 10125 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10126 if (IS_ERR(trans))
10127 return PTR_ERR(trans);
1832a6d5 10128
581bb050
LZ
10129 err = btrfs_find_free_ino(root, &objectid);
10130 if (err)
10131 goto out_unlock;
10132
aec7477b 10133 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10134 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10135 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10136 if (IS_ERR(inode)) {
10137 err = PTR_ERR(inode);
39279cc3 10138 goto out_unlock;
7cf96da3 10139 }
39279cc3 10140
ad19db71
CS
10141 /*
10142 * If the active LSM wants to access the inode during
10143 * d_instantiate it needs these. Smack checks to see
10144 * if the filesystem supports xattrs by looking at the
10145 * ops vector.
10146 */
10147 inode->i_fop = &btrfs_file_operations;
10148 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10149 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10150 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10151
10152 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10153 if (err)
10154 goto out_unlock_inode;
ad19db71 10155
39279cc3 10156 path = btrfs_alloc_path();
d8926bb3
MF
10157 if (!path) {
10158 err = -ENOMEM;
b0d5d10f 10159 goto out_unlock_inode;
d8926bb3 10160 }
4a0cc7ca 10161 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10162 key.offset = 0;
962a298f 10163 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10164 datasize = btrfs_file_extent_calc_inline_size(name_len);
10165 err = btrfs_insert_empty_item(trans, root, path, &key,
10166 datasize);
54aa1f4d 10167 if (err) {
b0839166 10168 btrfs_free_path(path);
b0d5d10f 10169 goto out_unlock_inode;
54aa1f4d 10170 }
5f39d397
CM
10171 leaf = path->nodes[0];
10172 ei = btrfs_item_ptr(leaf, path->slots[0],
10173 struct btrfs_file_extent_item);
10174 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10175 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10176 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10177 btrfs_set_file_extent_encryption(leaf, ei, 0);
10178 btrfs_set_file_extent_compression(leaf, ei, 0);
10179 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10180 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10181
39279cc3 10182 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10183 write_extent_buffer(leaf, symname, ptr, name_len);
10184 btrfs_mark_buffer_dirty(leaf);
39279cc3 10185 btrfs_free_path(path);
5f39d397 10186
39279cc3 10187 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10188 inode_nohighmem(inode);
39279cc3 10189 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10190 inode_set_bytes(inode, name_len);
6ef06d27 10191 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10192 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10193 /*
10194 * Last step, add directory indexes for our symlink inode. This is the
10195 * last step to avoid extra cleanup of these indexes if an error happens
10196 * elsewhere above.
10197 */
10198 if (!err)
cef415af
NB
10199 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10200 BTRFS_I(inode), 0, index);
b0d5d10f 10201 if (err) {
54aa1f4d 10202 drop_inode = 1;
b0d5d10f
CM
10203 goto out_unlock_inode;
10204 }
10205
1e2e547a 10206 d_instantiate_new(dentry, inode);
39279cc3
CM
10207
10208out_unlock:
3a45bb20 10209 btrfs_end_transaction(trans);
39279cc3
CM
10210 if (drop_inode) {
10211 inode_dec_link_count(inode);
10212 iput(inode);
10213 }
2ff7e61e 10214 btrfs_btree_balance_dirty(fs_info);
39279cc3 10215 return err;
b0d5d10f
CM
10216
10217out_unlock_inode:
10218 drop_inode = 1;
10219 unlock_new_inode(inode);
10220 goto out_unlock;
39279cc3 10221}
16432985 10222
0af3d00b
JB
10223static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10224 u64 start, u64 num_bytes, u64 min_size,
10225 loff_t actual_len, u64 *alloc_hint,
10226 struct btrfs_trans_handle *trans)
d899e052 10227{
0b246afa 10228 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10229 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10230 struct extent_map *em;
d899e052
YZ
10231 struct btrfs_root *root = BTRFS_I(inode)->root;
10232 struct btrfs_key ins;
d899e052 10233 u64 cur_offset = start;
55a61d1d 10234 u64 i_size;
154ea289 10235 u64 cur_bytes;
0b670dc4 10236 u64 last_alloc = (u64)-1;
d899e052 10237 int ret = 0;
0af3d00b 10238 bool own_trans = true;
18513091 10239 u64 end = start + num_bytes - 1;
d899e052 10240
0af3d00b
JB
10241 if (trans)
10242 own_trans = false;
d899e052 10243 while (num_bytes > 0) {
0af3d00b
JB
10244 if (own_trans) {
10245 trans = btrfs_start_transaction(root, 3);
10246 if (IS_ERR(trans)) {
10247 ret = PTR_ERR(trans);
10248 break;
10249 }
5a303d5d
YZ
10250 }
10251
ee22184b 10252 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10253 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10254 /*
10255 * If we are severely fragmented we could end up with really
10256 * small allocations, so if the allocator is returning small
10257 * chunks lets make its job easier by only searching for those
10258 * sized chunks.
10259 */
10260 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10261 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10262 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10263 if (ret) {
0af3d00b 10264 if (own_trans)
3a45bb20 10265 btrfs_end_transaction(trans);
a22285a6 10266 break;
d899e052 10267 }
0b246afa 10268 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10269
0b670dc4 10270 last_alloc = ins.offset;
d899e052
YZ
10271 ret = insert_reserved_file_extent(trans, inode,
10272 cur_offset, ins.objectid,
10273 ins.offset, ins.offset,
920bbbfb 10274 ins.offset, 0, 0, 0,
d899e052 10275 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10276 if (ret) {
2ff7e61e 10277 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10278 ins.offset, 0);
66642832 10279 btrfs_abort_transaction(trans, ret);
79787eaa 10280 if (own_trans)
3a45bb20 10281 btrfs_end_transaction(trans);
79787eaa
JM
10282 break;
10283 }
31193213 10284
dcdbc059 10285 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10286 cur_offset + ins.offset -1, 0);
5a303d5d 10287
5dc562c5
JB
10288 em = alloc_extent_map();
10289 if (!em) {
10290 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10291 &BTRFS_I(inode)->runtime_flags);
10292 goto next;
10293 }
10294
10295 em->start = cur_offset;
10296 em->orig_start = cur_offset;
10297 em->len = ins.offset;
10298 em->block_start = ins.objectid;
10299 em->block_len = ins.offset;
b4939680 10300 em->orig_block_len = ins.offset;
cc95bef6 10301 em->ram_bytes = ins.offset;
0b246afa 10302 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10303 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10304 em->generation = trans->transid;
10305
10306 while (1) {
10307 write_lock(&em_tree->lock);
09a2a8f9 10308 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10309 write_unlock(&em_tree->lock);
10310 if (ret != -EEXIST)
10311 break;
dcdbc059 10312 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10313 cur_offset + ins.offset - 1,
10314 0);
10315 }
10316 free_extent_map(em);
10317next:
d899e052
YZ
10318 num_bytes -= ins.offset;
10319 cur_offset += ins.offset;
efa56464 10320 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10321
0c4d2d95 10322 inode_inc_iversion(inode);
c2050a45 10323 inode->i_ctime = current_time(inode);
6cbff00f 10324 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10325 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10326 (actual_len > inode->i_size) &&
10327 (cur_offset > inode->i_size)) {
d1ea6a61 10328 if (cur_offset > actual_len)
55a61d1d 10329 i_size = actual_len;
d1ea6a61 10330 else
55a61d1d
JB
10331 i_size = cur_offset;
10332 i_size_write(inode, i_size);
10333 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10334 }
10335
d899e052 10336 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10337
10338 if (ret) {
66642832 10339 btrfs_abort_transaction(trans, ret);
79787eaa 10340 if (own_trans)
3a45bb20 10341 btrfs_end_transaction(trans);
79787eaa
JM
10342 break;
10343 }
d899e052 10344
0af3d00b 10345 if (own_trans)
3a45bb20 10346 btrfs_end_transaction(trans);
5a303d5d 10347 }
18513091 10348 if (cur_offset < end)
bc42bda2 10349 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
18513091 10350 end - cur_offset + 1);
d899e052
YZ
10351 return ret;
10352}
10353
0af3d00b
JB
10354int btrfs_prealloc_file_range(struct inode *inode, int mode,
10355 u64 start, u64 num_bytes, u64 min_size,
10356 loff_t actual_len, u64 *alloc_hint)
10357{
10358 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10359 min_size, actual_len, alloc_hint,
10360 NULL);
10361}
10362
10363int btrfs_prealloc_file_range_trans(struct inode *inode,
10364 struct btrfs_trans_handle *trans, int mode,
10365 u64 start, u64 num_bytes, u64 min_size,
10366 loff_t actual_len, u64 *alloc_hint)
10367{
10368 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10369 min_size, actual_len, alloc_hint, trans);
10370}
10371
e6dcd2dc
CM
10372static int btrfs_set_page_dirty(struct page *page)
10373{
e6dcd2dc
CM
10374 return __set_page_dirty_nobuffers(page);
10375}
10376
10556cb2 10377static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10378{
b83cc969 10379 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10380 umode_t mode = inode->i_mode;
b83cc969 10381
cb6db4e5
JM
10382 if (mask & MAY_WRITE &&
10383 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10384 if (btrfs_root_readonly(root))
10385 return -EROFS;
10386 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10387 return -EACCES;
10388 }
2830ba7f 10389 return generic_permission(inode, mask);
fdebe2bd 10390}
39279cc3 10391
ef3b9af5
FM
10392static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10393{
2ff7e61e 10394 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10395 struct btrfs_trans_handle *trans;
10396 struct btrfs_root *root = BTRFS_I(dir)->root;
10397 struct inode *inode = NULL;
10398 u64 objectid;
10399 u64 index;
10400 int ret = 0;
10401
10402 /*
10403 * 5 units required for adding orphan entry
10404 */
10405 trans = btrfs_start_transaction(root, 5);
10406 if (IS_ERR(trans))
10407 return PTR_ERR(trans);
10408
10409 ret = btrfs_find_free_ino(root, &objectid);
10410 if (ret)
10411 goto out;
10412
10413 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10414 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10415 if (IS_ERR(inode)) {
10416 ret = PTR_ERR(inode);
10417 inode = NULL;
10418 goto out;
10419 }
10420
ef3b9af5
FM
10421 inode->i_fop = &btrfs_file_operations;
10422 inode->i_op = &btrfs_file_inode_operations;
10423
10424 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10425 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10426
b0d5d10f
CM
10427 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10428 if (ret)
10429 goto out_inode;
10430
10431 ret = btrfs_update_inode(trans, root, inode);
10432 if (ret)
10433 goto out_inode;
73f2e545 10434 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10435 if (ret)
b0d5d10f 10436 goto out_inode;
ef3b9af5 10437
5762b5c9
FM
10438 /*
10439 * We set number of links to 0 in btrfs_new_inode(), and here we set
10440 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10441 * through:
10442 *
10443 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10444 */
10445 set_nlink(inode, 1);
b0d5d10f 10446 unlock_new_inode(inode);
ef3b9af5
FM
10447 d_tmpfile(dentry, inode);
10448 mark_inode_dirty(inode);
10449
10450out:
3a45bb20 10451 btrfs_end_transaction(trans);
ef3b9af5
FM
10452 if (ret)
10453 iput(inode);
2ff7e61e 10454 btrfs_btree_balance_dirty(fs_info);
ef3b9af5 10455 return ret;
b0d5d10f
CM
10456
10457out_inode:
10458 unlock_new_inode(inode);
10459 goto out;
10460
ef3b9af5
FM
10461}
10462
20a7db8a 10463__attribute__((const))
9d0d1c8b 10464static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
20a7db8a 10465{
9d0d1c8b 10466 return -EAGAIN;
20a7db8a
DS
10467}
10468
c6100a4b
JB
10469static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10470{
10471 struct inode *inode = private_data;
10472 return btrfs_sb(inode->i_sb);
10473}
10474
10475static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10476 u64 start, u64 end)
10477{
10478 struct inode *inode = private_data;
10479 u64 isize;
10480
10481 isize = i_size_read(inode);
10482 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10483 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10484 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10485 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10486 }
10487}
10488
10489void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10490{
10491 struct inode *inode = private_data;
10492 unsigned long index = start >> PAGE_SHIFT;
10493 unsigned long end_index = end >> PAGE_SHIFT;
10494 struct page *page;
10495
10496 while (index <= end_index) {
10497 page = find_get_page(inode->i_mapping, index);
10498 ASSERT(page); /* Pages should be in the extent_io_tree */
10499 set_page_writeback(page);
10500 put_page(page);
10501 index++;
10502 }
10503}
10504
6e1d5dcc 10505static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10506 .getattr = btrfs_getattr,
39279cc3
CM
10507 .lookup = btrfs_lookup,
10508 .create = btrfs_create,
10509 .unlink = btrfs_unlink,
10510 .link = btrfs_link,
10511 .mkdir = btrfs_mkdir,
10512 .rmdir = btrfs_rmdir,
2773bf00 10513 .rename = btrfs_rename2,
39279cc3
CM
10514 .symlink = btrfs_symlink,
10515 .setattr = btrfs_setattr,
618e21d5 10516 .mknod = btrfs_mknod,
5103e947 10517 .listxattr = btrfs_listxattr,
fdebe2bd 10518 .permission = btrfs_permission,
4e34e719 10519 .get_acl = btrfs_get_acl,
996a710d 10520 .set_acl = btrfs_set_acl,
93fd63c2 10521 .update_time = btrfs_update_time,
ef3b9af5 10522 .tmpfile = btrfs_tmpfile,
39279cc3 10523};
6e1d5dcc 10524static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10525 .lookup = btrfs_lookup,
fdebe2bd 10526 .permission = btrfs_permission,
93fd63c2 10527 .update_time = btrfs_update_time,
39279cc3 10528};
76dda93c 10529
828c0950 10530static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10531 .llseek = generic_file_llseek,
10532 .read = generic_read_dir,
02dbfc99 10533 .iterate_shared = btrfs_real_readdir,
23b5ec74 10534 .open = btrfs_opendir,
34287aa3 10535 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10536#ifdef CONFIG_COMPAT
4c63c245 10537 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10538#endif
6bf13c0c 10539 .release = btrfs_release_file,
e02119d5 10540 .fsync = btrfs_sync_file,
39279cc3
CM
10541};
10542
20e5506b 10543static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10544 /* mandatory callbacks */
065631f6 10545 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac 10546 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4d53dddb 10547 .merge_bio_hook = btrfs_merge_bio_hook,
9d0d1c8b 10548 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
c6100a4b
JB
10549 .tree_fs_info = iotree_fs_info,
10550 .set_range_writeback = btrfs_set_range_writeback,
4d53dddb
DS
10551
10552 /* optional callbacks */
10553 .fill_delalloc = run_delalloc_range,
e6dcd2dc 10554 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10555 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10556 .set_bit_hook = btrfs_set_bit_hook,
10557 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10558 .merge_extent_hook = btrfs_merge_extent_hook,
10559 .split_extent_hook = btrfs_split_extent_hook,
c6100a4b 10560 .check_extent_io_range = btrfs_check_extent_io_range,
07157aac
CM
10561};
10562
35054394
CM
10563/*
10564 * btrfs doesn't support the bmap operation because swapfiles
10565 * use bmap to make a mapping of extents in the file. They assume
10566 * these extents won't change over the life of the file and they
10567 * use the bmap result to do IO directly to the drive.
10568 *
10569 * the btrfs bmap call would return logical addresses that aren't
10570 * suitable for IO and they also will change frequently as COW
10571 * operations happen. So, swapfile + btrfs == corruption.
10572 *
10573 * For now we're avoiding this by dropping bmap.
10574 */
7f09410b 10575static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10576 .readpage = btrfs_readpage,
10577 .writepage = btrfs_writepage,
b293f02e 10578 .writepages = btrfs_writepages,
3ab2fb5a 10579 .readpages = btrfs_readpages,
16432985 10580 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10581 .invalidatepage = btrfs_invalidatepage,
10582 .releasepage = btrfs_releasepage,
e6dcd2dc 10583 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10584 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10585};
10586
7f09410b 10587static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10588 .readpage = btrfs_readpage,
10589 .writepage = btrfs_writepage,
2bf5a725
CM
10590 .invalidatepage = btrfs_invalidatepage,
10591 .releasepage = btrfs_releasepage,
39279cc3
CM
10592};
10593
6e1d5dcc 10594static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10595 .getattr = btrfs_getattr,
10596 .setattr = btrfs_setattr,
5103e947 10597 .listxattr = btrfs_listxattr,
fdebe2bd 10598 .permission = btrfs_permission,
1506fcc8 10599 .fiemap = btrfs_fiemap,
4e34e719 10600 .get_acl = btrfs_get_acl,
996a710d 10601 .set_acl = btrfs_set_acl,
e41f941a 10602 .update_time = btrfs_update_time,
39279cc3 10603};
6e1d5dcc 10604static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10605 .getattr = btrfs_getattr,
10606 .setattr = btrfs_setattr,
fdebe2bd 10607 .permission = btrfs_permission,
33268eaf 10608 .listxattr = btrfs_listxattr,
4e34e719 10609 .get_acl = btrfs_get_acl,
996a710d 10610 .set_acl = btrfs_set_acl,
e41f941a 10611 .update_time = btrfs_update_time,
618e21d5 10612};
6e1d5dcc 10613static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10614 .get_link = page_get_link,
f209561a 10615 .getattr = btrfs_getattr,
22c44fe6 10616 .setattr = btrfs_setattr,
fdebe2bd 10617 .permission = btrfs_permission,
0279b4cd 10618 .listxattr = btrfs_listxattr,
e41f941a 10619 .update_time = btrfs_update_time,
39279cc3 10620};
76dda93c 10621
82d339d9 10622const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
10623 .d_delete = btrfs_dentry_delete,
10624};