]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/btrfs/inode.c
Btrfs: add datacow flag in inode flag
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
4b4e25f2 40#include "compat.h"
39279cc3
CM
41#include "ctree.h"
42#include "disk-io.h"
43#include "transaction.h"
44#include "btrfs_inode.h"
45#include "ioctl.h"
46#include "print-tree.h"
0b86a832 47#include "volumes.h"
e6dcd2dc 48#include "ordered-data.h"
95819c05 49#include "xattr.h"
e02119d5 50#include "tree-log.h"
c8b97818 51#include "compression.h"
b4ce94de 52#include "locking.h"
dc89e982 53#include "free-space-cache.h"
39279cc3
CM
54
55struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
58};
59
6e1d5dcc
AD
60static const struct inode_operations btrfs_dir_inode_operations;
61static const struct inode_operations btrfs_symlink_inode_operations;
62static const struct inode_operations btrfs_dir_ro_inode_operations;
63static const struct inode_operations btrfs_special_inode_operations;
64static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
65static const struct address_space_operations btrfs_aops;
66static const struct address_space_operations btrfs_symlink_aops;
828c0950 67static const struct file_operations btrfs_dir_file_operations;
d1310b2e 68static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
69
70static struct kmem_cache *btrfs_inode_cachep;
71struct kmem_cache *btrfs_trans_handle_cachep;
72struct kmem_cache *btrfs_transaction_cachep;
39279cc3 73struct kmem_cache *btrfs_path_cachep;
dc89e982 74struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
75
76#define S_SHIFT 12
77static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85};
86
a41ad394
JB
87static int btrfs_setsize(struct inode *inode, loff_t newsize);
88static int btrfs_truncate(struct inode *inode);
c8b97818 89static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
90static noinline int cow_file_range(struct inode *inode,
91 struct page *locked_page,
92 u64 start, u64 end, int *page_started,
93 unsigned long *nr_written, int unlock);
7b128766 94
f34f57a3
YZ
95static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
96 struct inode *inode, struct inode *dir)
0279b4cd
JO
97{
98 int err;
99
f34f57a3 100 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 101 if (!err)
f34f57a3 102 err = btrfs_xattr_security_init(trans, inode, dir);
0279b4cd
JO
103 return err;
104}
105
c8b97818
CM
106/*
107 * this does all the hard work for inserting an inline extent into
108 * the btree. The caller should have done a btrfs_drop_extents so that
109 * no overlapping inline items exist in the btree
110 */
d397712b 111static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
112 struct btrfs_root *root, struct inode *inode,
113 u64 start, size_t size, size_t compressed_size,
114 struct page **compressed_pages)
115{
116 struct btrfs_key key;
117 struct btrfs_path *path;
118 struct extent_buffer *leaf;
119 struct page *page = NULL;
120 char *kaddr;
121 unsigned long ptr;
122 struct btrfs_file_extent_item *ei;
123 int err = 0;
124 int ret;
125 size_t cur_size = size;
126 size_t datasize;
127 unsigned long offset;
261507a0 128 int compress_type = BTRFS_COMPRESS_NONE;
c8b97818
CM
129
130 if (compressed_size && compressed_pages) {
261507a0 131 compress_type = root->fs_info->compress_type;
c8b97818
CM
132 cur_size = compressed_size;
133 }
134
d397712b
CM
135 path = btrfs_alloc_path();
136 if (!path)
c8b97818
CM
137 return -ENOMEM;
138
b9473439 139 path->leave_spinning = 1;
c8b97818
CM
140 btrfs_set_trans_block_group(trans, inode);
141
142 key.objectid = inode->i_ino;
143 key.offset = start;
144 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
145 datasize = btrfs_file_extent_calc_inline_size(cur_size);
146
147 inode_add_bytes(inode, size);
148 ret = btrfs_insert_empty_item(trans, root, path, &key,
149 datasize);
150 BUG_ON(ret);
151 if (ret) {
152 err = ret;
c8b97818
CM
153 goto fail;
154 }
155 leaf = path->nodes[0];
156 ei = btrfs_item_ptr(leaf, path->slots[0],
157 struct btrfs_file_extent_item);
158 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160 btrfs_set_file_extent_encryption(leaf, ei, 0);
161 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163 ptr = btrfs_file_extent_inline_start(ei);
164
261507a0 165 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
166 struct page *cpage;
167 int i = 0;
d397712b 168 while (compressed_size > 0) {
c8b97818 169 cpage = compressed_pages[i];
5b050f04 170 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
171 PAGE_CACHE_SIZE);
172
b9473439 173 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 174 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 175 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
176
177 i++;
178 ptr += cur_size;
179 compressed_size -= cur_size;
180 }
181 btrfs_set_file_extent_compression(leaf, ei,
261507a0 182 compress_type);
c8b97818
CM
183 } else {
184 page = find_get_page(inode->i_mapping,
185 start >> PAGE_CACHE_SHIFT);
186 btrfs_set_file_extent_compression(leaf, ei, 0);
187 kaddr = kmap_atomic(page, KM_USER0);
188 offset = start & (PAGE_CACHE_SIZE - 1);
189 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190 kunmap_atomic(kaddr, KM_USER0);
191 page_cache_release(page);
192 }
193 btrfs_mark_buffer_dirty(leaf);
194 btrfs_free_path(path);
195
c2167754
YZ
196 /*
197 * we're an inline extent, so nobody can
198 * extend the file past i_size without locking
199 * a page we already have locked.
200 *
201 * We must do any isize and inode updates
202 * before we unlock the pages. Otherwise we
203 * could end up racing with unlink.
204 */
c8b97818
CM
205 BTRFS_I(inode)->disk_i_size = inode->i_size;
206 btrfs_update_inode(trans, root, inode);
c2167754 207
c8b97818
CM
208 return 0;
209fail:
210 btrfs_free_path(path);
211 return err;
212}
213
214
215/*
216 * conditionally insert an inline extent into the file. This
217 * does the checks required to make sure the data is small enough
218 * to fit as an inline extent.
219 */
7f366cfe 220static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
221 struct btrfs_root *root,
222 struct inode *inode, u64 start, u64 end,
223 size_t compressed_size,
224 struct page **compressed_pages)
225{
226 u64 isize = i_size_read(inode);
227 u64 actual_end = min(end + 1, isize);
228 u64 inline_len = actual_end - start;
229 u64 aligned_end = (end + root->sectorsize - 1) &
230 ~((u64)root->sectorsize - 1);
231 u64 hint_byte;
232 u64 data_len = inline_len;
233 int ret;
234
235 if (compressed_size)
236 data_len = compressed_size;
237
238 if (start > 0 ||
70b99e69 239 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 (!compressed_size &&
242 (actual_end & (root->sectorsize - 1)) == 0) ||
243 end + 1 < isize ||
244 data_len > root->fs_info->max_inline) {
245 return 1;
246 }
247
920bbbfb 248 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 249 &hint_byte, 1);
c8b97818
CM
250 BUG_ON(ret);
251
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
256 compressed_pages);
257 BUG_ON(ret);
0ca1f7ce 258 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 259 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
260 return 0;
261}
262
771ed689
CM
263struct async_extent {
264 u64 start;
265 u64 ram_size;
266 u64 compressed_size;
267 struct page **pages;
268 unsigned long nr_pages;
261507a0 269 int compress_type;
771ed689
CM
270 struct list_head list;
271};
272
273struct async_cow {
274 struct inode *inode;
275 struct btrfs_root *root;
276 struct page *locked_page;
277 u64 start;
278 u64 end;
279 struct list_head extents;
280 struct btrfs_work work;
281};
282
283static noinline int add_async_extent(struct async_cow *cow,
284 u64 start, u64 ram_size,
285 u64 compressed_size,
286 struct page **pages,
261507a0
LZ
287 unsigned long nr_pages,
288 int compress_type)
771ed689
CM
289{
290 struct async_extent *async_extent;
291
292 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
293 async_extent->start = start;
294 async_extent->ram_size = ram_size;
295 async_extent->compressed_size = compressed_size;
296 async_extent->pages = pages;
297 async_extent->nr_pages = nr_pages;
261507a0 298 async_extent->compress_type = compress_type;
771ed689
CM
299 list_add_tail(&async_extent->list, &cow->extents);
300 return 0;
301}
302
d352ac68 303/*
771ed689
CM
304 * we create compressed extents in two phases. The first
305 * phase compresses a range of pages that have already been
306 * locked (both pages and state bits are locked).
c8b97818 307 *
771ed689
CM
308 * This is done inside an ordered work queue, and the compression
309 * is spread across many cpus. The actual IO submission is step
310 * two, and the ordered work queue takes care of making sure that
311 * happens in the same order things were put onto the queue by
312 * writepages and friends.
c8b97818 313 *
771ed689
CM
314 * If this code finds it can't get good compression, it puts an
315 * entry onto the work queue to write the uncompressed bytes. This
316 * makes sure that both compressed inodes and uncompressed inodes
317 * are written in the same order that pdflush sent them down.
d352ac68 318 */
771ed689
CM
319static noinline int compress_file_range(struct inode *inode,
320 struct page *locked_page,
321 u64 start, u64 end,
322 struct async_cow *async_cow,
323 int *num_added)
b888db2b
CM
324{
325 struct btrfs_root *root = BTRFS_I(inode)->root;
326 struct btrfs_trans_handle *trans;
db94535d 327 u64 num_bytes;
db94535d 328 u64 blocksize = root->sectorsize;
c8b97818 329 u64 actual_end;
42dc7bab 330 u64 isize = i_size_read(inode);
e6dcd2dc 331 int ret = 0;
c8b97818
CM
332 struct page **pages = NULL;
333 unsigned long nr_pages;
334 unsigned long nr_pages_ret = 0;
335 unsigned long total_compressed = 0;
336 unsigned long total_in = 0;
337 unsigned long max_compressed = 128 * 1024;
771ed689 338 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
339 int i;
340 int will_compress;
261507a0 341 int compress_type = root->fs_info->compress_type;
b888db2b 342
42dc7bab 343 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
344again:
345 will_compress = 0;
346 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
347 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 348
f03d9301
CM
349 /*
350 * we don't want to send crud past the end of i_size through
351 * compression, that's just a waste of CPU time. So, if the
352 * end of the file is before the start of our current
353 * requested range of bytes, we bail out to the uncompressed
354 * cleanup code that can deal with all of this.
355 *
356 * It isn't really the fastest way to fix things, but this is a
357 * very uncommon corner.
358 */
359 if (actual_end <= start)
360 goto cleanup_and_bail_uncompressed;
361
c8b97818
CM
362 total_compressed = actual_end - start;
363
364 /* we want to make sure that amount of ram required to uncompress
365 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
366 * of a compressed extent to 128k. This is a crucial number
367 * because it also controls how easily we can spread reads across
368 * cpus for decompression.
369 *
370 * We also want to make sure the amount of IO required to do
371 * a random read is reasonably small, so we limit the size of
372 * a compressed extent to 128k.
c8b97818
CM
373 */
374 total_compressed = min(total_compressed, max_uncompressed);
db94535d 375 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 376 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
377 total_in = 0;
378 ret = 0;
db94535d 379
771ed689
CM
380 /*
381 * we do compression for mount -o compress and when the
382 * inode has not been flagged as nocompress. This flag can
383 * change at any time if we discover bad compression ratios.
c8b97818 384 */
6cbff00f 385 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32
CM
386 (btrfs_test_opt(root, COMPRESS) ||
387 (BTRFS_I(inode)->force_compress))) {
c8b97818 388 WARN_ON(pages);
cfbc246e 389 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
c8b97818 390
261507a0
LZ
391 if (BTRFS_I(inode)->force_compress)
392 compress_type = BTRFS_I(inode)->force_compress;
393
394 ret = btrfs_compress_pages(compress_type,
395 inode->i_mapping, start,
396 total_compressed, pages,
397 nr_pages, &nr_pages_ret,
398 &total_in,
399 &total_compressed,
400 max_compressed);
c8b97818
CM
401
402 if (!ret) {
403 unsigned long offset = total_compressed &
404 (PAGE_CACHE_SIZE - 1);
405 struct page *page = pages[nr_pages_ret - 1];
406 char *kaddr;
407
408 /* zero the tail end of the last page, we might be
409 * sending it down to disk
410 */
411 if (offset) {
412 kaddr = kmap_atomic(page, KM_USER0);
413 memset(kaddr + offset, 0,
414 PAGE_CACHE_SIZE - offset);
415 kunmap_atomic(kaddr, KM_USER0);
416 }
417 will_compress = 1;
418 }
419 }
420 if (start == 0) {
771ed689 421 trans = btrfs_join_transaction(root, 1);
3612b495 422 BUG_ON(IS_ERR(trans));
771ed689 423 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 424 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 425
c8b97818 426 /* lets try to make an inline extent */
771ed689 427 if (ret || total_in < (actual_end - start)) {
c8b97818 428 /* we didn't compress the entire range, try
771ed689 429 * to make an uncompressed inline extent.
c8b97818
CM
430 */
431 ret = cow_file_range_inline(trans, root, inode,
432 start, end, 0, NULL);
433 } else {
771ed689 434 /* try making a compressed inline extent */
c8b97818
CM
435 ret = cow_file_range_inline(trans, root, inode,
436 start, end,
437 total_compressed, pages);
438 }
439 if (ret == 0) {
771ed689
CM
440 /*
441 * inline extent creation worked, we don't need
442 * to create any more async work items. Unlock
443 * and free up our temp pages.
444 */
c8b97818 445 extent_clear_unlock_delalloc(inode,
a791e35e
CM
446 &BTRFS_I(inode)->io_tree,
447 start, end, NULL,
448 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 449 EXTENT_CLEAR_DELALLOC |
a791e35e 450 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
451
452 btrfs_end_transaction(trans, root);
c8b97818
CM
453 goto free_pages_out;
454 }
c2167754 455 btrfs_end_transaction(trans, root);
c8b97818
CM
456 }
457
458 if (will_compress) {
459 /*
460 * we aren't doing an inline extent round the compressed size
461 * up to a block size boundary so the allocator does sane
462 * things
463 */
464 total_compressed = (total_compressed + blocksize - 1) &
465 ~(blocksize - 1);
466
467 /*
468 * one last check to make sure the compression is really a
469 * win, compare the page count read with the blocks on disk
470 */
471 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
472 ~(PAGE_CACHE_SIZE - 1);
473 if (total_compressed >= total_in) {
474 will_compress = 0;
475 } else {
c8b97818
CM
476 num_bytes = total_in;
477 }
478 }
479 if (!will_compress && pages) {
480 /*
481 * the compression code ran but failed to make things smaller,
482 * free any pages it allocated and our page pointer array
483 */
484 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 485 WARN_ON(pages[i]->mapping);
c8b97818
CM
486 page_cache_release(pages[i]);
487 }
488 kfree(pages);
489 pages = NULL;
490 total_compressed = 0;
491 nr_pages_ret = 0;
492
493 /* flag the file so we don't compress in the future */
1e701a32
CM
494 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
495 !(BTRFS_I(inode)->force_compress)) {
a555f810 496 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 497 }
c8b97818 498 }
771ed689
CM
499 if (will_compress) {
500 *num_added += 1;
c8b97818 501
771ed689
CM
502 /* the async work queues will take care of doing actual
503 * allocation on disk for these compressed pages,
504 * and will submit them to the elevator.
505 */
506 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
507 total_compressed, pages, nr_pages_ret,
508 compress_type);
179e29e4 509
24ae6365 510 if (start + num_bytes < end) {
771ed689
CM
511 start += num_bytes;
512 pages = NULL;
513 cond_resched();
514 goto again;
515 }
516 } else {
f03d9301 517cleanup_and_bail_uncompressed:
771ed689
CM
518 /*
519 * No compression, but we still need to write the pages in
520 * the file we've been given so far. redirty the locked
521 * page if it corresponds to our extent and set things up
522 * for the async work queue to run cow_file_range to do
523 * the normal delalloc dance
524 */
525 if (page_offset(locked_page) >= start &&
526 page_offset(locked_page) <= end) {
527 __set_page_dirty_nobuffers(locked_page);
528 /* unlocked later on in the async handlers */
529 }
261507a0
LZ
530 add_async_extent(async_cow, start, end - start + 1,
531 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
532 *num_added += 1;
533 }
3b951516 534
771ed689
CM
535out:
536 return 0;
537
538free_pages_out:
539 for (i = 0; i < nr_pages_ret; i++) {
540 WARN_ON(pages[i]->mapping);
541 page_cache_release(pages[i]);
542 }
d397712b 543 kfree(pages);
771ed689
CM
544
545 goto out;
546}
547
548/*
549 * phase two of compressed writeback. This is the ordered portion
550 * of the code, which only gets called in the order the work was
551 * queued. We walk all the async extents created by compress_file_range
552 * and send them down to the disk.
553 */
554static noinline int submit_compressed_extents(struct inode *inode,
555 struct async_cow *async_cow)
556{
557 struct async_extent *async_extent;
558 u64 alloc_hint = 0;
559 struct btrfs_trans_handle *trans;
560 struct btrfs_key ins;
561 struct extent_map *em;
562 struct btrfs_root *root = BTRFS_I(inode)->root;
563 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
564 struct extent_io_tree *io_tree;
f5a84ee3 565 int ret = 0;
771ed689
CM
566
567 if (list_empty(&async_cow->extents))
568 return 0;
569
771ed689 570
d397712b 571 while (!list_empty(&async_cow->extents)) {
771ed689
CM
572 async_extent = list_entry(async_cow->extents.next,
573 struct async_extent, list);
574 list_del(&async_extent->list);
c8b97818 575
771ed689
CM
576 io_tree = &BTRFS_I(inode)->io_tree;
577
f5a84ee3 578retry:
771ed689
CM
579 /* did the compression code fall back to uncompressed IO? */
580 if (!async_extent->pages) {
581 int page_started = 0;
582 unsigned long nr_written = 0;
583
584 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
585 async_extent->start +
586 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
587
588 /* allocate blocks */
f5a84ee3
JB
589 ret = cow_file_range(inode, async_cow->locked_page,
590 async_extent->start,
591 async_extent->start +
592 async_extent->ram_size - 1,
593 &page_started, &nr_written, 0);
771ed689
CM
594
595 /*
596 * if page_started, cow_file_range inserted an
597 * inline extent and took care of all the unlocking
598 * and IO for us. Otherwise, we need to submit
599 * all those pages down to the drive.
600 */
f5a84ee3 601 if (!page_started && !ret)
771ed689
CM
602 extent_write_locked_range(io_tree,
603 inode, async_extent->start,
d397712b 604 async_extent->start +
771ed689
CM
605 async_extent->ram_size - 1,
606 btrfs_get_extent,
607 WB_SYNC_ALL);
608 kfree(async_extent);
609 cond_resched();
610 continue;
611 }
612
613 lock_extent(io_tree, async_extent->start,
614 async_extent->start + async_extent->ram_size - 1,
615 GFP_NOFS);
771ed689 616
c2167754 617 trans = btrfs_join_transaction(root, 1);
3612b495 618 BUG_ON(IS_ERR(trans));
771ed689
CM
619 ret = btrfs_reserve_extent(trans, root,
620 async_extent->compressed_size,
621 async_extent->compressed_size,
622 0, alloc_hint,
623 (u64)-1, &ins, 1);
c2167754
YZ
624 btrfs_end_transaction(trans, root);
625
f5a84ee3
JB
626 if (ret) {
627 int i;
628 for (i = 0; i < async_extent->nr_pages; i++) {
629 WARN_ON(async_extent->pages[i]->mapping);
630 page_cache_release(async_extent->pages[i]);
631 }
632 kfree(async_extent->pages);
633 async_extent->nr_pages = 0;
634 async_extent->pages = NULL;
635 unlock_extent(io_tree, async_extent->start,
636 async_extent->start +
637 async_extent->ram_size - 1, GFP_NOFS);
638 goto retry;
639 }
640
c2167754
YZ
641 /*
642 * here we're doing allocation and writeback of the
643 * compressed pages
644 */
645 btrfs_drop_extent_cache(inode, async_extent->start,
646 async_extent->start +
647 async_extent->ram_size - 1, 0);
648
771ed689 649 em = alloc_extent_map(GFP_NOFS);
c26a9203 650 BUG_ON(!em);
771ed689
CM
651 em->start = async_extent->start;
652 em->len = async_extent->ram_size;
445a6944 653 em->orig_start = em->start;
c8b97818 654
771ed689
CM
655 em->block_start = ins.objectid;
656 em->block_len = ins.offset;
657 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 658 em->compress_type = async_extent->compress_type;
771ed689
CM
659 set_bit(EXTENT_FLAG_PINNED, &em->flags);
660 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
661
d397712b 662 while (1) {
890871be 663 write_lock(&em_tree->lock);
771ed689 664 ret = add_extent_mapping(em_tree, em);
890871be 665 write_unlock(&em_tree->lock);
771ed689
CM
666 if (ret != -EEXIST) {
667 free_extent_map(em);
668 break;
669 }
670 btrfs_drop_extent_cache(inode, async_extent->start,
671 async_extent->start +
672 async_extent->ram_size - 1, 0);
673 }
674
261507a0
LZ
675 ret = btrfs_add_ordered_extent_compress(inode,
676 async_extent->start,
677 ins.objectid,
678 async_extent->ram_size,
679 ins.offset,
680 BTRFS_ORDERED_COMPRESSED,
681 async_extent->compress_type);
771ed689
CM
682 BUG_ON(ret);
683
771ed689
CM
684 /*
685 * clear dirty, set writeback and unlock the pages.
686 */
687 extent_clear_unlock_delalloc(inode,
a791e35e
CM
688 &BTRFS_I(inode)->io_tree,
689 async_extent->start,
690 async_extent->start +
691 async_extent->ram_size - 1,
692 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
693 EXTENT_CLEAR_UNLOCK |
a3429ab7 694 EXTENT_CLEAR_DELALLOC |
a791e35e 695 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
696
697 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
698 async_extent->start,
699 async_extent->ram_size,
700 ins.objectid,
701 ins.offset, async_extent->pages,
702 async_extent->nr_pages);
771ed689
CM
703
704 BUG_ON(ret);
771ed689
CM
705 alloc_hint = ins.objectid + ins.offset;
706 kfree(async_extent);
707 cond_resched();
708 }
709
771ed689
CM
710 return 0;
711}
712
4b46fce2
JB
713static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
714 u64 num_bytes)
715{
716 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
717 struct extent_map *em;
718 u64 alloc_hint = 0;
719
720 read_lock(&em_tree->lock);
721 em = search_extent_mapping(em_tree, start, num_bytes);
722 if (em) {
723 /*
724 * if block start isn't an actual block number then find the
725 * first block in this inode and use that as a hint. If that
726 * block is also bogus then just don't worry about it.
727 */
728 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
729 free_extent_map(em);
730 em = search_extent_mapping(em_tree, 0, 0);
731 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
732 alloc_hint = em->block_start;
733 if (em)
734 free_extent_map(em);
735 } else {
736 alloc_hint = em->block_start;
737 free_extent_map(em);
738 }
739 }
740 read_unlock(&em_tree->lock);
741
742 return alloc_hint;
743}
744
771ed689
CM
745/*
746 * when extent_io.c finds a delayed allocation range in the file,
747 * the call backs end up in this code. The basic idea is to
748 * allocate extents on disk for the range, and create ordered data structs
749 * in ram to track those extents.
750 *
751 * locked_page is the page that writepage had locked already. We use
752 * it to make sure we don't do extra locks or unlocks.
753 *
754 * *page_started is set to one if we unlock locked_page and do everything
755 * required to start IO on it. It may be clean and already done with
756 * IO when we return.
757 */
758static noinline int cow_file_range(struct inode *inode,
759 struct page *locked_page,
760 u64 start, u64 end, int *page_started,
761 unsigned long *nr_written,
762 int unlock)
763{
764 struct btrfs_root *root = BTRFS_I(inode)->root;
765 struct btrfs_trans_handle *trans;
766 u64 alloc_hint = 0;
767 u64 num_bytes;
768 unsigned long ram_size;
769 u64 disk_num_bytes;
770 u64 cur_alloc_size;
771 u64 blocksize = root->sectorsize;
771ed689
CM
772 struct btrfs_key ins;
773 struct extent_map *em;
774 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
775 int ret = 0;
776
0cb59c99 777 BUG_ON(root == root->fs_info->tree_root);
771ed689 778 trans = btrfs_join_transaction(root, 1);
3612b495 779 BUG_ON(IS_ERR(trans));
771ed689 780 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 781 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 782
771ed689
CM
783 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
784 num_bytes = max(blocksize, num_bytes);
785 disk_num_bytes = num_bytes;
786 ret = 0;
787
788 if (start == 0) {
789 /* lets try to make an inline extent */
790 ret = cow_file_range_inline(trans, root, inode,
791 start, end, 0, NULL);
792 if (ret == 0) {
793 extent_clear_unlock_delalloc(inode,
a791e35e
CM
794 &BTRFS_I(inode)->io_tree,
795 start, end, NULL,
796 EXTENT_CLEAR_UNLOCK_PAGE |
797 EXTENT_CLEAR_UNLOCK |
798 EXTENT_CLEAR_DELALLOC |
799 EXTENT_CLEAR_DIRTY |
800 EXTENT_SET_WRITEBACK |
801 EXTENT_END_WRITEBACK);
c2167754 802
771ed689
CM
803 *nr_written = *nr_written +
804 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
805 *page_started = 1;
806 ret = 0;
807 goto out;
808 }
809 }
810
811 BUG_ON(disk_num_bytes >
812 btrfs_super_total_bytes(&root->fs_info->super_copy));
813
4b46fce2 814 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
815 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
816
d397712b 817 while (disk_num_bytes > 0) {
a791e35e
CM
818 unsigned long op;
819
287a0ab9 820 cur_alloc_size = disk_num_bytes;
e6dcd2dc 821 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 822 root->sectorsize, 0, alloc_hint,
e6dcd2dc 823 (u64)-1, &ins, 1);
d397712b
CM
824 BUG_ON(ret);
825
e6dcd2dc 826 em = alloc_extent_map(GFP_NOFS);
c26a9203 827 BUG_ON(!em);
e6dcd2dc 828 em->start = start;
445a6944 829 em->orig_start = em->start;
771ed689
CM
830 ram_size = ins.offset;
831 em->len = ins.offset;
c8b97818 832
e6dcd2dc 833 em->block_start = ins.objectid;
c8b97818 834 em->block_len = ins.offset;
e6dcd2dc 835 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 836 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 837
d397712b 838 while (1) {
890871be 839 write_lock(&em_tree->lock);
e6dcd2dc 840 ret = add_extent_mapping(em_tree, em);
890871be 841 write_unlock(&em_tree->lock);
e6dcd2dc
CM
842 if (ret != -EEXIST) {
843 free_extent_map(em);
844 break;
845 }
846 btrfs_drop_extent_cache(inode, start,
c8b97818 847 start + ram_size - 1, 0);
e6dcd2dc
CM
848 }
849
98d20f67 850 cur_alloc_size = ins.offset;
e6dcd2dc 851 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 852 ram_size, cur_alloc_size, 0);
e6dcd2dc 853 BUG_ON(ret);
c8b97818 854
17d217fe
YZ
855 if (root->root_key.objectid ==
856 BTRFS_DATA_RELOC_TREE_OBJECTID) {
857 ret = btrfs_reloc_clone_csums(inode, start,
858 cur_alloc_size);
859 BUG_ON(ret);
860 }
861
d397712b 862 if (disk_num_bytes < cur_alloc_size)
3b951516 863 break;
d397712b 864
c8b97818
CM
865 /* we're not doing compressed IO, don't unlock the first
866 * page (which the caller expects to stay locked), don't
867 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
868 *
869 * Do set the Private2 bit so we know this page was properly
870 * setup for writepage
c8b97818 871 */
a791e35e
CM
872 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
873 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
874 EXTENT_SET_PRIVATE2;
875
c8b97818
CM
876 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
877 start, start + ram_size - 1,
a791e35e 878 locked_page, op);
c8b97818 879 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
880 num_bytes -= cur_alloc_size;
881 alloc_hint = ins.objectid + ins.offset;
882 start += cur_alloc_size;
b888db2b 883 }
b888db2b 884out:
771ed689 885 ret = 0;
b888db2b 886 btrfs_end_transaction(trans, root);
c8b97818 887
be20aa9d 888 return ret;
771ed689 889}
c8b97818 890
771ed689
CM
891/*
892 * work queue call back to started compression on a file and pages
893 */
894static noinline void async_cow_start(struct btrfs_work *work)
895{
896 struct async_cow *async_cow;
897 int num_added = 0;
898 async_cow = container_of(work, struct async_cow, work);
899
900 compress_file_range(async_cow->inode, async_cow->locked_page,
901 async_cow->start, async_cow->end, async_cow,
902 &num_added);
903 if (num_added == 0)
904 async_cow->inode = NULL;
905}
906
907/*
908 * work queue call back to submit previously compressed pages
909 */
910static noinline void async_cow_submit(struct btrfs_work *work)
911{
912 struct async_cow *async_cow;
913 struct btrfs_root *root;
914 unsigned long nr_pages;
915
916 async_cow = container_of(work, struct async_cow, work);
917
918 root = async_cow->root;
919 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
920 PAGE_CACHE_SHIFT;
921
922 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
923
924 if (atomic_read(&root->fs_info->async_delalloc_pages) <
925 5 * 1042 * 1024 &&
926 waitqueue_active(&root->fs_info->async_submit_wait))
927 wake_up(&root->fs_info->async_submit_wait);
928
d397712b 929 if (async_cow->inode)
771ed689 930 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 931}
c8b97818 932
771ed689
CM
933static noinline void async_cow_free(struct btrfs_work *work)
934{
935 struct async_cow *async_cow;
936 async_cow = container_of(work, struct async_cow, work);
937 kfree(async_cow);
938}
939
940static int cow_file_range_async(struct inode *inode, struct page *locked_page,
941 u64 start, u64 end, int *page_started,
942 unsigned long *nr_written)
943{
944 struct async_cow *async_cow;
945 struct btrfs_root *root = BTRFS_I(inode)->root;
946 unsigned long nr_pages;
947 u64 cur_end;
948 int limit = 10 * 1024 * 1042;
949
a3429ab7
CM
950 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
951 1, 0, NULL, GFP_NOFS);
d397712b 952 while (start < end) {
771ed689
CM
953 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
954 async_cow->inode = inode;
955 async_cow->root = root;
956 async_cow->locked_page = locked_page;
957 async_cow->start = start;
958
6cbff00f 959 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
960 cur_end = end;
961 else
962 cur_end = min(end, start + 512 * 1024 - 1);
963
964 async_cow->end = cur_end;
965 INIT_LIST_HEAD(&async_cow->extents);
966
967 async_cow->work.func = async_cow_start;
968 async_cow->work.ordered_func = async_cow_submit;
969 async_cow->work.ordered_free = async_cow_free;
970 async_cow->work.flags = 0;
971
771ed689
CM
972 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
973 PAGE_CACHE_SHIFT;
974 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
975
976 btrfs_queue_worker(&root->fs_info->delalloc_workers,
977 &async_cow->work);
978
979 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
980 wait_event(root->fs_info->async_submit_wait,
981 (atomic_read(&root->fs_info->async_delalloc_pages) <
982 limit));
983 }
984
d397712b 985 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
986 atomic_read(&root->fs_info->async_delalloc_pages)) {
987 wait_event(root->fs_info->async_submit_wait,
988 (atomic_read(&root->fs_info->async_delalloc_pages) ==
989 0));
990 }
991
992 *nr_written += nr_pages;
993 start = cur_end + 1;
994 }
995 *page_started = 1;
996 return 0;
be20aa9d
CM
997}
998
d397712b 999static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1000 u64 bytenr, u64 num_bytes)
1001{
1002 int ret;
1003 struct btrfs_ordered_sum *sums;
1004 LIST_HEAD(list);
1005
07d400a6
YZ
1006 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1007 bytenr + num_bytes - 1, &list);
17d217fe
YZ
1008 if (ret == 0 && list_empty(&list))
1009 return 0;
1010
1011 while (!list_empty(&list)) {
1012 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1013 list_del(&sums->list);
1014 kfree(sums);
1015 }
1016 return 1;
1017}
1018
d352ac68
CM
1019/*
1020 * when nowcow writeback call back. This checks for snapshots or COW copies
1021 * of the extents that exist in the file, and COWs the file as required.
1022 *
1023 * If no cow copies or snapshots exist, we write directly to the existing
1024 * blocks on disk
1025 */
7f366cfe
CM
1026static noinline int run_delalloc_nocow(struct inode *inode,
1027 struct page *locked_page,
771ed689
CM
1028 u64 start, u64 end, int *page_started, int force,
1029 unsigned long *nr_written)
be20aa9d 1030{
be20aa9d 1031 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1032 struct btrfs_trans_handle *trans;
be20aa9d 1033 struct extent_buffer *leaf;
be20aa9d 1034 struct btrfs_path *path;
80ff3856 1035 struct btrfs_file_extent_item *fi;
be20aa9d 1036 struct btrfs_key found_key;
80ff3856
YZ
1037 u64 cow_start;
1038 u64 cur_offset;
1039 u64 extent_end;
5d4f98a2 1040 u64 extent_offset;
80ff3856
YZ
1041 u64 disk_bytenr;
1042 u64 num_bytes;
1043 int extent_type;
1044 int ret;
d899e052 1045 int type;
80ff3856
YZ
1046 int nocow;
1047 int check_prev = 1;
0cb59c99 1048 bool nolock = false;
be20aa9d
CM
1049
1050 path = btrfs_alloc_path();
1051 BUG_ON(!path);
0cb59c99
JB
1052 if (root == root->fs_info->tree_root) {
1053 nolock = true;
1054 trans = btrfs_join_transaction_nolock(root, 1);
1055 } else {
1056 trans = btrfs_join_transaction(root, 1);
1057 }
3612b495 1058 BUG_ON(IS_ERR(trans));
be20aa9d 1059
80ff3856
YZ
1060 cow_start = (u64)-1;
1061 cur_offset = start;
1062 while (1) {
1063 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1064 cur_offset, 0);
1065 BUG_ON(ret < 0);
1066 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1067 leaf = path->nodes[0];
1068 btrfs_item_key_to_cpu(leaf, &found_key,
1069 path->slots[0] - 1);
1070 if (found_key.objectid == inode->i_ino &&
1071 found_key.type == BTRFS_EXTENT_DATA_KEY)
1072 path->slots[0]--;
1073 }
1074 check_prev = 0;
1075next_slot:
1076 leaf = path->nodes[0];
1077 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1078 ret = btrfs_next_leaf(root, path);
1079 if (ret < 0)
1080 BUG_ON(1);
1081 if (ret > 0)
1082 break;
1083 leaf = path->nodes[0];
1084 }
be20aa9d 1085
80ff3856
YZ
1086 nocow = 0;
1087 disk_bytenr = 0;
17d217fe 1088 num_bytes = 0;
80ff3856
YZ
1089 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1090
1091 if (found_key.objectid > inode->i_ino ||
1092 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1093 found_key.offset > end)
1094 break;
1095
1096 if (found_key.offset > cur_offset) {
1097 extent_end = found_key.offset;
e9061e21 1098 extent_type = 0;
80ff3856
YZ
1099 goto out_check;
1100 }
1101
1102 fi = btrfs_item_ptr(leaf, path->slots[0],
1103 struct btrfs_file_extent_item);
1104 extent_type = btrfs_file_extent_type(leaf, fi);
1105
d899e052
YZ
1106 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1107 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1108 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1109 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1110 extent_end = found_key.offset +
1111 btrfs_file_extent_num_bytes(leaf, fi);
1112 if (extent_end <= start) {
1113 path->slots[0]++;
1114 goto next_slot;
1115 }
17d217fe
YZ
1116 if (disk_bytenr == 0)
1117 goto out_check;
80ff3856
YZ
1118 if (btrfs_file_extent_compression(leaf, fi) ||
1119 btrfs_file_extent_encryption(leaf, fi) ||
1120 btrfs_file_extent_other_encoding(leaf, fi))
1121 goto out_check;
d899e052
YZ
1122 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1123 goto out_check;
d2fb3437 1124 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1125 goto out_check;
17d217fe 1126 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1127 found_key.offset -
1128 extent_offset, disk_bytenr))
17d217fe 1129 goto out_check;
5d4f98a2 1130 disk_bytenr += extent_offset;
17d217fe
YZ
1131 disk_bytenr += cur_offset - found_key.offset;
1132 num_bytes = min(end + 1, extent_end) - cur_offset;
1133 /*
1134 * force cow if csum exists in the range.
1135 * this ensure that csum for a given extent are
1136 * either valid or do not exist.
1137 */
1138 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1139 goto out_check;
80ff3856
YZ
1140 nocow = 1;
1141 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1142 extent_end = found_key.offset +
1143 btrfs_file_extent_inline_len(leaf, fi);
1144 extent_end = ALIGN(extent_end, root->sectorsize);
1145 } else {
1146 BUG_ON(1);
1147 }
1148out_check:
1149 if (extent_end <= start) {
1150 path->slots[0]++;
1151 goto next_slot;
1152 }
1153 if (!nocow) {
1154 if (cow_start == (u64)-1)
1155 cow_start = cur_offset;
1156 cur_offset = extent_end;
1157 if (cur_offset > end)
1158 break;
1159 path->slots[0]++;
1160 goto next_slot;
7ea394f1
YZ
1161 }
1162
1163 btrfs_release_path(root, path);
80ff3856
YZ
1164 if (cow_start != (u64)-1) {
1165 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1166 found_key.offset - 1, page_started,
1167 nr_written, 1);
80ff3856
YZ
1168 BUG_ON(ret);
1169 cow_start = (u64)-1;
7ea394f1 1170 }
80ff3856 1171
d899e052
YZ
1172 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1173 struct extent_map *em;
1174 struct extent_map_tree *em_tree;
1175 em_tree = &BTRFS_I(inode)->extent_tree;
1176 em = alloc_extent_map(GFP_NOFS);
c26a9203 1177 BUG_ON(!em);
d899e052 1178 em->start = cur_offset;
445a6944 1179 em->orig_start = em->start;
d899e052
YZ
1180 em->len = num_bytes;
1181 em->block_len = num_bytes;
1182 em->block_start = disk_bytenr;
1183 em->bdev = root->fs_info->fs_devices->latest_bdev;
1184 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1185 while (1) {
890871be 1186 write_lock(&em_tree->lock);
d899e052 1187 ret = add_extent_mapping(em_tree, em);
890871be 1188 write_unlock(&em_tree->lock);
d899e052
YZ
1189 if (ret != -EEXIST) {
1190 free_extent_map(em);
1191 break;
1192 }
1193 btrfs_drop_extent_cache(inode, em->start,
1194 em->start + em->len - 1, 0);
1195 }
1196 type = BTRFS_ORDERED_PREALLOC;
1197 } else {
1198 type = BTRFS_ORDERED_NOCOW;
1199 }
80ff3856
YZ
1200
1201 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1202 num_bytes, num_bytes, type);
1203 BUG_ON(ret);
771ed689 1204
efa56464
YZ
1205 if (root->root_key.objectid ==
1206 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1207 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1208 num_bytes);
1209 BUG_ON(ret);
1210 }
1211
d899e052 1212 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1213 cur_offset, cur_offset + num_bytes - 1,
1214 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1215 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1216 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1217 cur_offset = extent_end;
1218 if (cur_offset > end)
1219 break;
be20aa9d 1220 }
80ff3856
YZ
1221 btrfs_release_path(root, path);
1222
1223 if (cur_offset <= end && cow_start == (u64)-1)
1224 cow_start = cur_offset;
1225 if (cow_start != (u64)-1) {
1226 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1227 page_started, nr_written, 1);
80ff3856
YZ
1228 BUG_ON(ret);
1229 }
1230
0cb59c99
JB
1231 if (nolock) {
1232 ret = btrfs_end_transaction_nolock(trans, root);
1233 BUG_ON(ret);
1234 } else {
1235 ret = btrfs_end_transaction(trans, root);
1236 BUG_ON(ret);
1237 }
7ea394f1 1238 btrfs_free_path(path);
80ff3856 1239 return 0;
be20aa9d
CM
1240}
1241
d352ac68
CM
1242/*
1243 * extent_io.c call back to do delayed allocation processing
1244 */
c8b97818 1245static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1246 u64 start, u64 end, int *page_started,
1247 unsigned long *nr_written)
be20aa9d 1248{
be20aa9d 1249 int ret;
7f366cfe 1250 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1251
6cbff00f 1252 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1253 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1254 page_started, 1, nr_written);
6cbff00f 1255 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1256 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1257 page_started, 0, nr_written);
1e701a32
CM
1258 else if (!btrfs_test_opt(root, COMPRESS) &&
1259 !(BTRFS_I(inode)->force_compress))
7f366cfe
CM
1260 ret = cow_file_range(inode, locked_page, start, end,
1261 page_started, nr_written, 1);
be20aa9d 1262 else
771ed689 1263 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1264 page_started, nr_written);
b888db2b
CM
1265 return ret;
1266}
1267
9ed74f2d 1268static int btrfs_split_extent_hook(struct inode *inode,
0ca1f7ce 1269 struct extent_state *orig, u64 split)
9ed74f2d 1270{
0ca1f7ce 1271 /* not delalloc, ignore it */
9ed74f2d
JB
1272 if (!(orig->state & EXTENT_DELALLOC))
1273 return 0;
1274
0ca1f7ce 1275 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1276 return 0;
1277}
1278
1279/*
1280 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1281 * extents so we can keep track of new extents that are just merged onto old
1282 * extents, such as when we are doing sequential writes, so we can properly
1283 * account for the metadata space we'll need.
1284 */
1285static int btrfs_merge_extent_hook(struct inode *inode,
1286 struct extent_state *new,
1287 struct extent_state *other)
1288{
9ed74f2d
JB
1289 /* not delalloc, ignore it */
1290 if (!(other->state & EXTENT_DELALLOC))
1291 return 0;
1292
0ca1f7ce 1293 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1294 return 0;
1295}
1296
d352ac68
CM
1297/*
1298 * extent_io.c set_bit_hook, used to track delayed allocation
1299 * bytes in this file, and to maintain the list of inodes that
1300 * have pending delalloc work to be done.
1301 */
0ca1f7ce
YZ
1302static int btrfs_set_bit_hook(struct inode *inode,
1303 struct extent_state *state, int *bits)
291d673e 1304{
9ed74f2d 1305
75eff68e
CM
1306 /*
1307 * set_bit and clear bit hooks normally require _irqsave/restore
1308 * but in this case, we are only testeing for the DELALLOC
1309 * bit, which is only set or cleared with irqs on
1310 */
0ca1f7ce 1311 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1312 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1313 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1314 int do_list = (root->root_key.objectid !=
1315 BTRFS_ROOT_TREE_OBJECTID);
9ed74f2d 1316
0ca1f7ce
YZ
1317 if (*bits & EXTENT_FIRST_DELALLOC)
1318 *bits &= ~EXTENT_FIRST_DELALLOC;
1319 else
1320 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
287a0ab9 1321
75eff68e 1322 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1323 BTRFS_I(inode)->delalloc_bytes += len;
1324 root->fs_info->delalloc_bytes += len;
0cb59c99 1325 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1326 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1327 &root->fs_info->delalloc_inodes);
1328 }
75eff68e 1329 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1330 }
1331 return 0;
1332}
1333
d352ac68
CM
1334/*
1335 * extent_io.c clear_bit_hook, see set_bit_hook for why
1336 */
9ed74f2d 1337static int btrfs_clear_bit_hook(struct inode *inode,
0ca1f7ce 1338 struct extent_state *state, int *bits)
291d673e 1339{
75eff68e
CM
1340 /*
1341 * set_bit and clear bit hooks normally require _irqsave/restore
1342 * but in this case, we are only testeing for the DELALLOC
1343 * bit, which is only set or cleared with irqs on
1344 */
0ca1f7ce 1345 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1346 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1347 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1348 int do_list = (root->root_key.objectid !=
1349 BTRFS_ROOT_TREE_OBJECTID);
bcbfce8a 1350
0ca1f7ce
YZ
1351 if (*bits & EXTENT_FIRST_DELALLOC)
1352 *bits &= ~EXTENT_FIRST_DELALLOC;
1353 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1354 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1355
1356 if (*bits & EXTENT_DO_ACCOUNTING)
1357 btrfs_delalloc_release_metadata(inode, len);
1358
0cb59c99
JB
1359 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1360 && do_list)
0ca1f7ce 1361 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1362
75eff68e 1363 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1364 root->fs_info->delalloc_bytes -= len;
1365 BTRFS_I(inode)->delalloc_bytes -= len;
1366
0cb59c99 1367 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1368 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1369 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1370 }
75eff68e 1371 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1372 }
1373 return 0;
1374}
1375
d352ac68
CM
1376/*
1377 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1378 * we don't create bios that span stripes or chunks
1379 */
239b14b3 1380int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1381 size_t size, struct bio *bio,
1382 unsigned long bio_flags)
239b14b3
CM
1383{
1384 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1385 struct btrfs_mapping_tree *map_tree;
a62b9401 1386 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1387 u64 length = 0;
1388 u64 map_length;
239b14b3
CM
1389 int ret;
1390
771ed689
CM
1391 if (bio_flags & EXTENT_BIO_COMPRESSED)
1392 return 0;
1393
f2d8d74d 1394 length = bio->bi_size;
239b14b3
CM
1395 map_tree = &root->fs_info->mapping_tree;
1396 map_length = length;
cea9e445 1397 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1398 &map_length, NULL, 0);
cea9e445 1399
d397712b 1400 if (map_length < length + size)
239b14b3 1401 return 1;
411fc6bc 1402 return ret;
239b14b3
CM
1403}
1404
d352ac68
CM
1405/*
1406 * in order to insert checksums into the metadata in large chunks,
1407 * we wait until bio submission time. All the pages in the bio are
1408 * checksummed and sums are attached onto the ordered extent record.
1409 *
1410 * At IO completion time the cums attached on the ordered extent record
1411 * are inserted into the btree
1412 */
d397712b
CM
1413static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1414 struct bio *bio, int mirror_num,
eaf25d93
CM
1415 unsigned long bio_flags,
1416 u64 bio_offset)
065631f6 1417{
065631f6 1418 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1419 int ret = 0;
e015640f 1420
d20f7043 1421 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1422 BUG_ON(ret);
4a69a410
CM
1423 return 0;
1424}
e015640f 1425
4a69a410
CM
1426/*
1427 * in order to insert checksums into the metadata in large chunks,
1428 * we wait until bio submission time. All the pages in the bio are
1429 * checksummed and sums are attached onto the ordered extent record.
1430 *
1431 * At IO completion time the cums attached on the ordered extent record
1432 * are inserted into the btree
1433 */
b2950863 1434static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1435 int mirror_num, unsigned long bio_flags,
1436 u64 bio_offset)
4a69a410
CM
1437{
1438 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1439 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1440}
1441
d352ac68 1442/*
cad321ad
CM
1443 * extent_io.c submission hook. This does the right thing for csum calculation
1444 * on write, or reading the csums from the tree before a read
d352ac68 1445 */
b2950863 1446static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1447 int mirror_num, unsigned long bio_flags,
1448 u64 bio_offset)
44b8bd7e
CM
1449{
1450 struct btrfs_root *root = BTRFS_I(inode)->root;
1451 int ret = 0;
19b9bdb0 1452 int skip_sum;
44b8bd7e 1453
6cbff00f 1454 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1455
0cb59c99
JB
1456 if (root == root->fs_info->tree_root)
1457 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1458 else
1459 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1460 BUG_ON(ret);
065631f6 1461
7b6d91da 1462 if (!(rw & REQ_WRITE)) {
d20f7043 1463 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1464 return btrfs_submit_compressed_read(inode, bio,
1465 mirror_num, bio_flags);
d20f7043
CM
1466 } else if (!skip_sum)
1467 btrfs_lookup_bio_sums(root, inode, bio, NULL);
4d1b5fb4 1468 goto mapit;
19b9bdb0 1469 } else if (!skip_sum) {
17d217fe
YZ
1470 /* csum items have already been cloned */
1471 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1472 goto mapit;
19b9bdb0
CM
1473 /* we're doing a write, do the async checksumming */
1474 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1475 inode, rw, bio, mirror_num,
eaf25d93
CM
1476 bio_flags, bio_offset,
1477 __btrfs_submit_bio_start,
4a69a410 1478 __btrfs_submit_bio_done);
19b9bdb0
CM
1479 }
1480
0b86a832 1481mapit:
8b712842 1482 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1483}
6885f308 1484
d352ac68
CM
1485/*
1486 * given a list of ordered sums record them in the inode. This happens
1487 * at IO completion time based on sums calculated at bio submission time.
1488 */
ba1da2f4 1489static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1490 struct inode *inode, u64 file_offset,
1491 struct list_head *list)
1492{
e6dcd2dc
CM
1493 struct btrfs_ordered_sum *sum;
1494
1495 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1496
1497 list_for_each_entry(sum, list, list) {
d20f7043
CM
1498 btrfs_csum_file_blocks(trans,
1499 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1500 }
1501 return 0;
1502}
1503
2ac55d41
JB
1504int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1505 struct extent_state **cached_state)
ea8c2819 1506{
d397712b 1507 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1508 WARN_ON(1);
ea8c2819 1509 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1510 cached_state, GFP_NOFS);
ea8c2819
CM
1511}
1512
d352ac68 1513/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1514struct btrfs_writepage_fixup {
1515 struct page *page;
1516 struct btrfs_work work;
1517};
1518
b2950863 1519static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1520{
1521 struct btrfs_writepage_fixup *fixup;
1522 struct btrfs_ordered_extent *ordered;
2ac55d41 1523 struct extent_state *cached_state = NULL;
247e743c
CM
1524 struct page *page;
1525 struct inode *inode;
1526 u64 page_start;
1527 u64 page_end;
1528
1529 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1530 page = fixup->page;
4a096752 1531again:
247e743c
CM
1532 lock_page(page);
1533 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1534 ClearPageChecked(page);
1535 goto out_page;
1536 }
1537
1538 inode = page->mapping->host;
1539 page_start = page_offset(page);
1540 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1541
2ac55d41
JB
1542 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1543 &cached_state, GFP_NOFS);
4a096752
CM
1544
1545 /* already ordered? We're done */
8b62b72b 1546 if (PagePrivate2(page))
247e743c 1547 goto out;
4a096752
CM
1548
1549 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1550 if (ordered) {
2ac55d41
JB
1551 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1552 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1553 unlock_page(page);
1554 btrfs_start_ordered_extent(inode, ordered, 1);
1555 goto again;
1556 }
247e743c 1557
0ca1f7ce 1558 BUG();
2ac55d41 1559 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1560 ClearPageChecked(page);
1561out:
2ac55d41
JB
1562 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1563 &cached_state, GFP_NOFS);
247e743c
CM
1564out_page:
1565 unlock_page(page);
1566 page_cache_release(page);
b897abec 1567 kfree(fixup);
247e743c
CM
1568}
1569
1570/*
1571 * There are a few paths in the higher layers of the kernel that directly
1572 * set the page dirty bit without asking the filesystem if it is a
1573 * good idea. This causes problems because we want to make sure COW
1574 * properly happens and the data=ordered rules are followed.
1575 *
c8b97818 1576 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1577 * hasn't been properly setup for IO. We kick off an async process
1578 * to fix it up. The async helper will wait for ordered extents, set
1579 * the delalloc bit and make it safe to write the page.
1580 */
b2950863 1581static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1582{
1583 struct inode *inode = page->mapping->host;
1584 struct btrfs_writepage_fixup *fixup;
1585 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1586
8b62b72b
CM
1587 /* this page is properly in the ordered list */
1588 if (TestClearPagePrivate2(page))
247e743c
CM
1589 return 0;
1590
1591 if (PageChecked(page))
1592 return -EAGAIN;
1593
1594 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1595 if (!fixup)
1596 return -EAGAIN;
f421950f 1597
247e743c
CM
1598 SetPageChecked(page);
1599 page_cache_get(page);
1600 fixup->work.func = btrfs_writepage_fixup_worker;
1601 fixup->page = page;
1602 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1603 return -EAGAIN;
1604}
1605
d899e052
YZ
1606static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1607 struct inode *inode, u64 file_pos,
1608 u64 disk_bytenr, u64 disk_num_bytes,
1609 u64 num_bytes, u64 ram_bytes,
1610 u8 compression, u8 encryption,
1611 u16 other_encoding, int extent_type)
1612{
1613 struct btrfs_root *root = BTRFS_I(inode)->root;
1614 struct btrfs_file_extent_item *fi;
1615 struct btrfs_path *path;
1616 struct extent_buffer *leaf;
1617 struct btrfs_key ins;
1618 u64 hint;
1619 int ret;
1620
1621 path = btrfs_alloc_path();
1622 BUG_ON(!path);
1623
b9473439 1624 path->leave_spinning = 1;
a1ed835e
CM
1625
1626 /*
1627 * we may be replacing one extent in the tree with another.
1628 * The new extent is pinned in the extent map, and we don't want
1629 * to drop it from the cache until it is completely in the btree.
1630 *
1631 * So, tell btrfs_drop_extents to leave this extent in the cache.
1632 * the caller is expected to unpin it and allow it to be merged
1633 * with the others.
1634 */
920bbbfb
YZ
1635 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1636 &hint, 0);
d899e052
YZ
1637 BUG_ON(ret);
1638
1639 ins.objectid = inode->i_ino;
1640 ins.offset = file_pos;
1641 ins.type = BTRFS_EXTENT_DATA_KEY;
1642 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1643 BUG_ON(ret);
1644 leaf = path->nodes[0];
1645 fi = btrfs_item_ptr(leaf, path->slots[0],
1646 struct btrfs_file_extent_item);
1647 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1648 btrfs_set_file_extent_type(leaf, fi, extent_type);
1649 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1650 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1651 btrfs_set_file_extent_offset(leaf, fi, 0);
1652 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1653 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1654 btrfs_set_file_extent_compression(leaf, fi, compression);
1655 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1656 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1657
1658 btrfs_unlock_up_safe(path, 1);
1659 btrfs_set_lock_blocking(leaf);
1660
d899e052
YZ
1661 btrfs_mark_buffer_dirty(leaf);
1662
1663 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1664
1665 ins.objectid = disk_bytenr;
1666 ins.offset = disk_num_bytes;
1667 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1668 ret = btrfs_alloc_reserved_file_extent(trans, root,
1669 root->root_key.objectid,
1670 inode->i_ino, file_pos, &ins);
d899e052 1671 BUG_ON(ret);
d899e052 1672 btrfs_free_path(path);
b9473439 1673
d899e052
YZ
1674 return 0;
1675}
1676
5d13a98f
CM
1677/*
1678 * helper function for btrfs_finish_ordered_io, this
1679 * just reads in some of the csum leaves to prime them into ram
1680 * before we start the transaction. It limits the amount of btree
1681 * reads required while inside the transaction.
1682 */
d352ac68
CM
1683/* as ordered data IO finishes, this gets called so we can finish
1684 * an ordered extent if the range of bytes in the file it covers are
1685 * fully written.
1686 */
211f90e6 1687static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1688{
e6dcd2dc 1689 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1690 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1691 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1692 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1693 struct extent_state *cached_state = NULL;
261507a0 1694 int compress_type = 0;
e6dcd2dc 1695 int ret;
0cb59c99 1696 bool nolock = false;
e6dcd2dc 1697
5a1a3df1
JB
1698 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1699 end - start + 1);
ba1da2f4 1700 if (!ret)
e6dcd2dc 1701 return 0;
e6dcd2dc 1702 BUG_ON(!ordered_extent);
efd049fb 1703
0cb59c99
JB
1704 nolock = (root == root->fs_info->tree_root);
1705
c2167754
YZ
1706 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1707 BUG_ON(!list_empty(&ordered_extent->list));
1708 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1709 if (!ret) {
0cb59c99
JB
1710 if (nolock)
1711 trans = btrfs_join_transaction_nolock(root, 1);
1712 else
1713 trans = btrfs_join_transaction(root, 1);
3612b495 1714 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1715 btrfs_set_trans_block_group(trans, inode);
1716 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1717 ret = btrfs_update_inode(trans, root, inode);
1718 BUG_ON(ret);
c2167754
YZ
1719 }
1720 goto out;
1721 }
e6dcd2dc 1722
2ac55d41
JB
1723 lock_extent_bits(io_tree, ordered_extent->file_offset,
1724 ordered_extent->file_offset + ordered_extent->len - 1,
1725 0, &cached_state, GFP_NOFS);
e6dcd2dc 1726
0cb59c99
JB
1727 if (nolock)
1728 trans = btrfs_join_transaction_nolock(root, 1);
1729 else
1730 trans = btrfs_join_transaction(root, 1);
3612b495 1731 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1732 btrfs_set_trans_block_group(trans, inode);
1733 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1734
c8b97818 1735 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1736 compress_type = ordered_extent->compress_type;
d899e052 1737 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1738 BUG_ON(compress_type);
920bbbfb 1739 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1740 ordered_extent->file_offset,
1741 ordered_extent->file_offset +
1742 ordered_extent->len);
1743 BUG_ON(ret);
1744 } else {
0af3d00b 1745 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1746 ret = insert_reserved_file_extent(trans, inode,
1747 ordered_extent->file_offset,
1748 ordered_extent->start,
1749 ordered_extent->disk_len,
1750 ordered_extent->len,
1751 ordered_extent->len,
261507a0 1752 compress_type, 0, 0,
d899e052 1753 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1754 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1755 ordered_extent->file_offset,
1756 ordered_extent->len);
d899e052
YZ
1757 BUG_ON(ret);
1758 }
2ac55d41
JB
1759 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1760 ordered_extent->file_offset +
1761 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1762
e6dcd2dc
CM
1763 add_pending_csums(trans, inode, ordered_extent->file_offset,
1764 &ordered_extent->list);
1765
c2167754
YZ
1766 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1767 ret = btrfs_update_inode(trans, root, inode);
1768 BUG_ON(ret);
c2167754 1769out:
0cb59c99
JB
1770 if (nolock) {
1771 if (trans)
1772 btrfs_end_transaction_nolock(trans, root);
1773 } else {
1774 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1775 if (trans)
1776 btrfs_end_transaction(trans, root);
1777 }
1778
e6dcd2dc
CM
1779 /* once for us */
1780 btrfs_put_ordered_extent(ordered_extent);
1781 /* once for the tree */
1782 btrfs_put_ordered_extent(ordered_extent);
1783
e6dcd2dc
CM
1784 return 0;
1785}
1786
b2950863 1787static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1788 struct extent_state *state, int uptodate)
1789{
1abe9b8a 1790 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1791
8b62b72b 1792 ClearPagePrivate2(page);
211f90e6
CM
1793 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1794}
1795
d352ac68
CM
1796/*
1797 * When IO fails, either with EIO or csum verification fails, we
1798 * try other mirrors that might have a good copy of the data. This
1799 * io_failure_record is used to record state as we go through all the
1800 * mirrors. If another mirror has good data, the page is set up to date
1801 * and things continue. If a good mirror can't be found, the original
1802 * bio end_io callback is called to indicate things have failed.
1803 */
7e38326f
CM
1804struct io_failure_record {
1805 struct page *page;
1806 u64 start;
1807 u64 len;
1808 u64 logical;
d20f7043 1809 unsigned long bio_flags;
7e38326f
CM
1810 int last_mirror;
1811};
1812
b2950863 1813static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1814 struct page *page, u64 start, u64 end,
1815 struct extent_state *state)
7e38326f
CM
1816{
1817 struct io_failure_record *failrec = NULL;
1818 u64 private;
1819 struct extent_map *em;
1820 struct inode *inode = page->mapping->host;
1821 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1822 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1823 struct bio *bio;
1824 int num_copies;
1825 int ret;
1259ab75 1826 int rw;
7e38326f
CM
1827 u64 logical;
1828
1829 ret = get_state_private(failure_tree, start, &private);
1830 if (ret) {
7e38326f
CM
1831 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1832 if (!failrec)
1833 return -ENOMEM;
1834 failrec->start = start;
1835 failrec->len = end - start + 1;
1836 failrec->last_mirror = 0;
d20f7043 1837 failrec->bio_flags = 0;
7e38326f 1838
890871be 1839 read_lock(&em_tree->lock);
3b951516
CM
1840 em = lookup_extent_mapping(em_tree, start, failrec->len);
1841 if (em->start > start || em->start + em->len < start) {
1842 free_extent_map(em);
1843 em = NULL;
1844 }
890871be 1845 read_unlock(&em_tree->lock);
7e38326f
CM
1846
1847 if (!em || IS_ERR(em)) {
1848 kfree(failrec);
1849 return -EIO;
1850 }
1851 logical = start - em->start;
1852 logical = em->block_start + logical;
d20f7043
CM
1853 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1854 logical = em->block_start;
1855 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
261507a0
LZ
1856 extent_set_compress_type(&failrec->bio_flags,
1857 em->compress_type);
d20f7043 1858 }
7e38326f
CM
1859 failrec->logical = logical;
1860 free_extent_map(em);
1861 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1862 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1863 set_state_private(failure_tree, start,
1864 (u64)(unsigned long)failrec);
7e38326f 1865 } else {
587f7704 1866 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1867 }
1868 num_copies = btrfs_num_copies(
1869 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1870 failrec->logical, failrec->len);
1871 failrec->last_mirror++;
1872 if (!state) {
cad321ad 1873 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1874 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1875 failrec->start,
1876 EXTENT_LOCKED);
1877 if (state && state->start != failrec->start)
1878 state = NULL;
cad321ad 1879 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1880 }
1881 if (!state || failrec->last_mirror > num_copies) {
1882 set_state_private(failure_tree, failrec->start, 0);
1883 clear_extent_bits(failure_tree, failrec->start,
1884 failrec->start + failrec->len - 1,
1885 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1886 kfree(failrec);
1887 return -EIO;
1888 }
1889 bio = bio_alloc(GFP_NOFS, 1);
1890 bio->bi_private = state;
1891 bio->bi_end_io = failed_bio->bi_end_io;
1892 bio->bi_sector = failrec->logical >> 9;
1893 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1894 bio->bi_size = 0;
d20f7043 1895
7e38326f 1896 bio_add_page(bio, page, failrec->len, start - page_offset(page));
7b6d91da 1897 if (failed_bio->bi_rw & REQ_WRITE)
1259ab75
CM
1898 rw = WRITE;
1899 else
1900 rw = READ;
1901
1902 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1903 failrec->last_mirror,
eaf25d93 1904 failrec->bio_flags, 0);
1259ab75
CM
1905 return 0;
1906}
1907
d352ac68
CM
1908/*
1909 * each time an IO finishes, we do a fast check in the IO failure tree
1910 * to see if we need to process or clean up an io_failure_record
1911 */
b2950863 1912static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1913{
1914 u64 private;
1915 u64 private_failure;
1916 struct io_failure_record *failure;
1917 int ret;
1918
1919 private = 0;
1920 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
ec29ed5b 1921 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1259ab75
CM
1922 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1923 start, &private_failure);
1924 if (ret == 0) {
1925 failure = (struct io_failure_record *)(unsigned long)
1926 private_failure;
1927 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1928 failure->start, 0);
1929 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1930 failure->start,
1931 failure->start + failure->len - 1,
1932 EXTENT_DIRTY | EXTENT_LOCKED,
1933 GFP_NOFS);
1934 kfree(failure);
1935 }
1936 }
7e38326f
CM
1937 return 0;
1938}
1939
d352ac68
CM
1940/*
1941 * when reads are done, we need to check csums to verify the data is correct
1942 * if there's a match, we allow the bio to finish. If not, we go through
1943 * the io_failure_record routines to find good copies
1944 */
b2950863 1945static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1946 struct extent_state *state)
07157aac 1947{
35ebb934 1948 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1949 struct inode *inode = page->mapping->host;
d1310b2e 1950 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1951 char *kaddr;
aadfeb6e 1952 u64 private = ~(u32)0;
07157aac 1953 int ret;
ff79f819
CM
1954 struct btrfs_root *root = BTRFS_I(inode)->root;
1955 u32 csum = ~(u32)0;
d1310b2e 1956
d20f7043
CM
1957 if (PageChecked(page)) {
1958 ClearPageChecked(page);
1959 goto good;
1960 }
6cbff00f
CH
1961
1962 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1963 return 0;
1964
1965 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1966 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1967 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1968 GFP_NOFS);
b6cda9bc 1969 return 0;
17d217fe 1970 }
d20f7043 1971
c2e639f0 1972 if (state && state->start == start) {
70dec807
CM
1973 private = state->private;
1974 ret = 0;
1975 } else {
1976 ret = get_state_private(io_tree, start, &private);
1977 }
9ab86c8e 1978 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1979 if (ret)
07157aac 1980 goto zeroit;
d397712b 1981
ff79f819
CM
1982 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1983 btrfs_csum_final(csum, (char *)&csum);
d397712b 1984 if (csum != private)
07157aac 1985 goto zeroit;
d397712b 1986
9ab86c8e 1987 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1988good:
7e38326f
CM
1989 /* if the io failure tree for this inode is non-empty,
1990 * check to see if we've recovered from a failed IO
1991 */
1259ab75 1992 btrfs_clean_io_failures(inode, start);
07157aac
CM
1993 return 0;
1994
1995zeroit:
193f284d
CM
1996 if (printk_ratelimit()) {
1997 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1998 "private %llu\n", page->mapping->host->i_ino,
1999 (unsigned long long)start, csum,
2000 (unsigned long long)private);
2001 }
db94535d
CM
2002 memset(kaddr + offset, 1, end - start + 1);
2003 flush_dcache_page(page);
9ab86c8e 2004 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2005 if (private == 0)
2006 return 0;
7e38326f 2007 return -EIO;
07157aac 2008}
b888db2b 2009
24bbcf04
YZ
2010struct delayed_iput {
2011 struct list_head list;
2012 struct inode *inode;
2013};
2014
2015void btrfs_add_delayed_iput(struct inode *inode)
2016{
2017 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2018 struct delayed_iput *delayed;
2019
2020 if (atomic_add_unless(&inode->i_count, -1, 1))
2021 return;
2022
2023 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2024 delayed->inode = inode;
2025
2026 spin_lock(&fs_info->delayed_iput_lock);
2027 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2028 spin_unlock(&fs_info->delayed_iput_lock);
2029}
2030
2031void btrfs_run_delayed_iputs(struct btrfs_root *root)
2032{
2033 LIST_HEAD(list);
2034 struct btrfs_fs_info *fs_info = root->fs_info;
2035 struct delayed_iput *delayed;
2036 int empty;
2037
2038 spin_lock(&fs_info->delayed_iput_lock);
2039 empty = list_empty(&fs_info->delayed_iputs);
2040 spin_unlock(&fs_info->delayed_iput_lock);
2041 if (empty)
2042 return;
2043
2044 down_read(&root->fs_info->cleanup_work_sem);
2045 spin_lock(&fs_info->delayed_iput_lock);
2046 list_splice_init(&fs_info->delayed_iputs, &list);
2047 spin_unlock(&fs_info->delayed_iput_lock);
2048
2049 while (!list_empty(&list)) {
2050 delayed = list_entry(list.next, struct delayed_iput, list);
2051 list_del(&delayed->list);
2052 iput(delayed->inode);
2053 kfree(delayed);
2054 }
2055 up_read(&root->fs_info->cleanup_work_sem);
2056}
2057
d68fc57b
YZ
2058/*
2059 * calculate extra metadata reservation when snapshotting a subvolume
2060 * contains orphan files.
2061 */
2062void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2063 struct btrfs_pending_snapshot *pending,
2064 u64 *bytes_to_reserve)
2065{
2066 struct btrfs_root *root;
2067 struct btrfs_block_rsv *block_rsv;
2068 u64 num_bytes;
2069 int index;
2070
2071 root = pending->root;
2072 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2073 return;
2074
2075 block_rsv = root->orphan_block_rsv;
2076
2077 /* orphan block reservation for the snapshot */
2078 num_bytes = block_rsv->size;
2079
2080 /*
2081 * after the snapshot is created, COWing tree blocks may use more
2082 * space than it frees. So we should make sure there is enough
2083 * reserved space.
2084 */
2085 index = trans->transid & 0x1;
2086 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2087 num_bytes += block_rsv->size -
2088 (block_rsv->reserved + block_rsv->freed[index]);
2089 }
2090
2091 *bytes_to_reserve += num_bytes;
2092}
2093
2094void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2095 struct btrfs_pending_snapshot *pending)
2096{
2097 struct btrfs_root *root = pending->root;
2098 struct btrfs_root *snap = pending->snap;
2099 struct btrfs_block_rsv *block_rsv;
2100 u64 num_bytes;
2101 int index;
2102 int ret;
2103
2104 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2105 return;
2106
2107 /* refill source subvolume's orphan block reservation */
2108 block_rsv = root->orphan_block_rsv;
2109 index = trans->transid & 0x1;
2110 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2111 num_bytes = block_rsv->size -
2112 (block_rsv->reserved + block_rsv->freed[index]);
2113 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2114 root->orphan_block_rsv,
2115 num_bytes);
2116 BUG_ON(ret);
2117 }
2118
2119 /* setup orphan block reservation for the snapshot */
2120 block_rsv = btrfs_alloc_block_rsv(snap);
2121 BUG_ON(!block_rsv);
2122
2123 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2124 snap->orphan_block_rsv = block_rsv;
2125
2126 num_bytes = root->orphan_block_rsv->size;
2127 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2128 block_rsv, num_bytes);
2129 BUG_ON(ret);
2130
2131#if 0
2132 /* insert orphan item for the snapshot */
2133 WARN_ON(!root->orphan_item_inserted);
2134 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2135 snap->root_key.objectid);
2136 BUG_ON(ret);
2137 snap->orphan_item_inserted = 1;
2138#endif
2139}
2140
2141enum btrfs_orphan_cleanup_state {
2142 ORPHAN_CLEANUP_STARTED = 1,
2143 ORPHAN_CLEANUP_DONE = 2,
2144};
2145
2146/*
2147 * This is called in transaction commmit time. If there are no orphan
2148 * files in the subvolume, it removes orphan item and frees block_rsv
2149 * structure.
2150 */
2151void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2152 struct btrfs_root *root)
2153{
2154 int ret;
2155
2156 if (!list_empty(&root->orphan_list) ||
2157 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2158 return;
2159
2160 if (root->orphan_item_inserted &&
2161 btrfs_root_refs(&root->root_item) > 0) {
2162 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2163 root->root_key.objectid);
2164 BUG_ON(ret);
2165 root->orphan_item_inserted = 0;
2166 }
2167
2168 if (root->orphan_block_rsv) {
2169 WARN_ON(root->orphan_block_rsv->size > 0);
2170 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2171 root->orphan_block_rsv = NULL;
2172 }
2173}
2174
7b128766
JB
2175/*
2176 * This creates an orphan entry for the given inode in case something goes
2177 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2178 *
2179 * NOTE: caller of this function should reserve 5 units of metadata for
2180 * this function.
7b128766
JB
2181 */
2182int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2183{
2184 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2185 struct btrfs_block_rsv *block_rsv = NULL;
2186 int reserve = 0;
2187 int insert = 0;
2188 int ret;
7b128766 2189
d68fc57b
YZ
2190 if (!root->orphan_block_rsv) {
2191 block_rsv = btrfs_alloc_block_rsv(root);
2192 BUG_ON(!block_rsv);
2193 }
7b128766 2194
d68fc57b
YZ
2195 spin_lock(&root->orphan_lock);
2196 if (!root->orphan_block_rsv) {
2197 root->orphan_block_rsv = block_rsv;
2198 } else if (block_rsv) {
2199 btrfs_free_block_rsv(root, block_rsv);
2200 block_rsv = NULL;
7b128766 2201 }
7b128766 2202
d68fc57b
YZ
2203 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2204 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2205#if 0
2206 /*
2207 * For proper ENOSPC handling, we should do orphan
2208 * cleanup when mounting. But this introduces backward
2209 * compatibility issue.
2210 */
2211 if (!xchg(&root->orphan_item_inserted, 1))
2212 insert = 2;
2213 else
2214 insert = 1;
2215#endif
2216 insert = 1;
2217 } else {
2218 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
7b128766
JB
2219 }
2220
d68fc57b
YZ
2221 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2222 BTRFS_I(inode)->orphan_meta_reserved = 1;
2223 reserve = 1;
2224 }
2225 spin_unlock(&root->orphan_lock);
7b128766 2226
d68fc57b
YZ
2227 if (block_rsv)
2228 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
7b128766 2229
d68fc57b
YZ
2230 /* grab metadata reservation from transaction handle */
2231 if (reserve) {
2232 ret = btrfs_orphan_reserve_metadata(trans, inode);
2233 BUG_ON(ret);
2234 }
7b128766 2235
d68fc57b
YZ
2236 /* insert an orphan item to track this unlinked/truncated file */
2237 if (insert >= 1) {
2238 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2239 BUG_ON(ret);
2240 }
2241
2242 /* insert an orphan item to track subvolume contains orphan files */
2243 if (insert >= 2) {
2244 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2245 root->root_key.objectid);
2246 BUG_ON(ret);
2247 }
2248 return 0;
7b128766
JB
2249}
2250
2251/*
2252 * We have done the truncate/delete so we can go ahead and remove the orphan
2253 * item for this particular inode.
2254 */
2255int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2256{
2257 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2258 int delete_item = 0;
2259 int release_rsv = 0;
7b128766
JB
2260 int ret = 0;
2261
d68fc57b
YZ
2262 spin_lock(&root->orphan_lock);
2263 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2264 list_del_init(&BTRFS_I(inode)->i_orphan);
2265 delete_item = 1;
7b128766
JB
2266 }
2267
d68fc57b
YZ
2268 if (BTRFS_I(inode)->orphan_meta_reserved) {
2269 BTRFS_I(inode)->orphan_meta_reserved = 0;
2270 release_rsv = 1;
7b128766 2271 }
d68fc57b 2272 spin_unlock(&root->orphan_lock);
7b128766 2273
d68fc57b
YZ
2274 if (trans && delete_item) {
2275 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2276 BUG_ON(ret);
2277 }
7b128766 2278
d68fc57b
YZ
2279 if (release_rsv)
2280 btrfs_orphan_release_metadata(inode);
7b128766 2281
d68fc57b 2282 return 0;
7b128766
JB
2283}
2284
2285/*
2286 * this cleans up any orphans that may be left on the list from the last use
2287 * of this root.
2288 */
66b4ffd1 2289int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2290{
2291 struct btrfs_path *path;
2292 struct extent_buffer *leaf;
7b128766
JB
2293 struct btrfs_key key, found_key;
2294 struct btrfs_trans_handle *trans;
2295 struct inode *inode;
2296 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2297
d68fc57b 2298 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2299 return 0;
c71bf099
YZ
2300
2301 path = btrfs_alloc_path();
66b4ffd1
JB
2302 if (!path) {
2303 ret = -ENOMEM;
2304 goto out;
2305 }
7b128766
JB
2306 path->reada = -1;
2307
2308 key.objectid = BTRFS_ORPHAN_OBJECTID;
2309 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2310 key.offset = (u64)-1;
2311
7b128766
JB
2312 while (1) {
2313 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2314 if (ret < 0)
2315 goto out;
7b128766
JB
2316
2317 /*
2318 * if ret == 0 means we found what we were searching for, which
2319 * is weird, but possible, so only screw with path if we didnt
2320 * find the key and see if we have stuff that matches
2321 */
2322 if (ret > 0) {
66b4ffd1 2323 ret = 0;
7b128766
JB
2324 if (path->slots[0] == 0)
2325 break;
2326 path->slots[0]--;
2327 }
2328
2329 /* pull out the item */
2330 leaf = path->nodes[0];
7b128766
JB
2331 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2332
2333 /* make sure the item matches what we want */
2334 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2335 break;
2336 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2337 break;
2338
2339 /* release the path since we're done with it */
2340 btrfs_release_path(root, path);
2341
2342 /*
2343 * this is where we are basically btrfs_lookup, without the
2344 * crossing root thing. we store the inode number in the
2345 * offset of the orphan item.
2346 */
5d4f98a2
YZ
2347 found_key.objectid = found_key.offset;
2348 found_key.type = BTRFS_INODE_ITEM_KEY;
2349 found_key.offset = 0;
73f73415 2350 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
66b4ffd1
JB
2351 if (IS_ERR(inode)) {
2352 ret = PTR_ERR(inode);
2353 goto out;
2354 }
7b128766 2355
7b128766
JB
2356 /*
2357 * add this inode to the orphan list so btrfs_orphan_del does
2358 * the proper thing when we hit it
2359 */
d68fc57b 2360 spin_lock(&root->orphan_lock);
7b128766 2361 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
d68fc57b 2362 spin_unlock(&root->orphan_lock);
7b128766
JB
2363
2364 /*
2365 * if this is a bad inode, means we actually succeeded in
2366 * removing the inode, but not the orphan record, which means
2367 * we need to manually delete the orphan since iput will just
2368 * do a destroy_inode
2369 */
2370 if (is_bad_inode(inode)) {
a22285a6 2371 trans = btrfs_start_transaction(root, 0);
66b4ffd1
JB
2372 if (IS_ERR(trans)) {
2373 ret = PTR_ERR(trans);
2374 goto out;
2375 }
7b128766 2376 btrfs_orphan_del(trans, inode);
5b21f2ed 2377 btrfs_end_transaction(trans, root);
7b128766
JB
2378 iput(inode);
2379 continue;
2380 }
2381
2382 /* if we have links, this was a truncate, lets do that */
2383 if (inode->i_nlink) {
a41ad394
JB
2384 if (!S_ISREG(inode->i_mode)) {
2385 WARN_ON(1);
2386 iput(inode);
2387 continue;
2388 }
7b128766 2389 nr_truncate++;
66b4ffd1 2390 ret = btrfs_truncate(inode);
7b128766
JB
2391 } else {
2392 nr_unlink++;
2393 }
2394
2395 /* this will do delete_inode and everything for us */
2396 iput(inode);
66b4ffd1
JB
2397 if (ret)
2398 goto out;
7b128766 2399 }
d68fc57b
YZ
2400 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2401
2402 if (root->orphan_block_rsv)
2403 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2404 (u64)-1);
2405
2406 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2407 trans = btrfs_join_transaction(root, 1);
66b4ffd1
JB
2408 if (!IS_ERR(trans))
2409 btrfs_end_transaction(trans, root);
d68fc57b 2410 }
7b128766
JB
2411
2412 if (nr_unlink)
2413 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2414 if (nr_truncate)
2415 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2416
2417out:
2418 if (ret)
2419 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2420 btrfs_free_path(path);
2421 return ret;
7b128766
JB
2422}
2423
46a53cca
CM
2424/*
2425 * very simple check to peek ahead in the leaf looking for xattrs. If we
2426 * don't find any xattrs, we know there can't be any acls.
2427 *
2428 * slot is the slot the inode is in, objectid is the objectid of the inode
2429 */
2430static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2431 int slot, u64 objectid)
2432{
2433 u32 nritems = btrfs_header_nritems(leaf);
2434 struct btrfs_key found_key;
2435 int scanned = 0;
2436
2437 slot++;
2438 while (slot < nritems) {
2439 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2440
2441 /* we found a different objectid, there must not be acls */
2442 if (found_key.objectid != objectid)
2443 return 0;
2444
2445 /* we found an xattr, assume we've got an acl */
2446 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2447 return 1;
2448
2449 /*
2450 * we found a key greater than an xattr key, there can't
2451 * be any acls later on
2452 */
2453 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2454 return 0;
2455
2456 slot++;
2457 scanned++;
2458
2459 /*
2460 * it goes inode, inode backrefs, xattrs, extents,
2461 * so if there are a ton of hard links to an inode there can
2462 * be a lot of backrefs. Don't waste time searching too hard,
2463 * this is just an optimization
2464 */
2465 if (scanned >= 8)
2466 break;
2467 }
2468 /* we hit the end of the leaf before we found an xattr or
2469 * something larger than an xattr. We have to assume the inode
2470 * has acls
2471 */
2472 return 1;
2473}
2474
d352ac68
CM
2475/*
2476 * read an inode from the btree into the in-memory inode
2477 */
5d4f98a2 2478static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2479{
2480 struct btrfs_path *path;
5f39d397 2481 struct extent_buffer *leaf;
39279cc3 2482 struct btrfs_inode_item *inode_item;
0b86a832 2483 struct btrfs_timespec *tspec;
39279cc3
CM
2484 struct btrfs_root *root = BTRFS_I(inode)->root;
2485 struct btrfs_key location;
46a53cca 2486 int maybe_acls;
39279cc3 2487 u64 alloc_group_block;
618e21d5 2488 u32 rdev;
39279cc3
CM
2489 int ret;
2490
2491 path = btrfs_alloc_path();
2492 BUG_ON(!path);
39279cc3 2493 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2494
39279cc3 2495 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2496 if (ret)
39279cc3 2497 goto make_bad;
39279cc3 2498
5f39d397
CM
2499 leaf = path->nodes[0];
2500 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2501 struct btrfs_inode_item);
2502
2503 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2504 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2505 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2506 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2507 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2508
2509 tspec = btrfs_inode_atime(inode_item);
2510 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2511 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2512
2513 tspec = btrfs_inode_mtime(inode_item);
2514 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2515 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2516
2517 tspec = btrfs_inode_ctime(inode_item);
2518 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2519 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2520
a76a3cd4 2521 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2522 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2523 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2524 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2525 inode->i_rdev = 0;
5f39d397
CM
2526 rdev = btrfs_inode_rdev(leaf, inode_item);
2527
aec7477b 2528 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2529 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2530
5f39d397 2531 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2532
46a53cca
CM
2533 /*
2534 * try to precache a NULL acl entry for files that don't have
2535 * any xattrs or acls
2536 */
2537 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2538 if (!maybe_acls)
2539 cache_no_acl(inode);
46a53cca 2540
d2fb3437
YZ
2541 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2542 alloc_group_block, 0);
39279cc3
CM
2543 btrfs_free_path(path);
2544 inode_item = NULL;
2545
39279cc3 2546 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2547 case S_IFREG:
2548 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2549 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2550 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2551 inode->i_fop = &btrfs_file_operations;
2552 inode->i_op = &btrfs_file_inode_operations;
2553 break;
2554 case S_IFDIR:
2555 inode->i_fop = &btrfs_dir_file_operations;
2556 if (root == root->fs_info->tree_root)
2557 inode->i_op = &btrfs_dir_ro_inode_operations;
2558 else
2559 inode->i_op = &btrfs_dir_inode_operations;
2560 break;
2561 case S_IFLNK:
2562 inode->i_op = &btrfs_symlink_inode_operations;
2563 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2564 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2565 break;
618e21d5 2566 default:
0279b4cd 2567 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2568 init_special_inode(inode, inode->i_mode, rdev);
2569 break;
39279cc3 2570 }
6cbff00f
CH
2571
2572 btrfs_update_iflags(inode);
39279cc3
CM
2573 return;
2574
2575make_bad:
39279cc3 2576 btrfs_free_path(path);
39279cc3
CM
2577 make_bad_inode(inode);
2578}
2579
d352ac68
CM
2580/*
2581 * given a leaf and an inode, copy the inode fields into the leaf
2582 */
e02119d5
CM
2583static void fill_inode_item(struct btrfs_trans_handle *trans,
2584 struct extent_buffer *leaf,
5f39d397 2585 struct btrfs_inode_item *item,
39279cc3
CM
2586 struct inode *inode)
2587{
5f39d397
CM
2588 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2589 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2590 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2591 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2592 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2593
2594 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2595 inode->i_atime.tv_sec);
2596 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2597 inode->i_atime.tv_nsec);
2598
2599 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2600 inode->i_mtime.tv_sec);
2601 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2602 inode->i_mtime.tv_nsec);
2603
2604 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2605 inode->i_ctime.tv_sec);
2606 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2607 inode->i_ctime.tv_nsec);
2608
a76a3cd4 2609 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2610 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2611 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2612 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2613 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2614 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2615 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2616}
2617
d352ac68
CM
2618/*
2619 * copy everything in the in-memory inode into the btree.
2620 */
d397712b
CM
2621noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2622 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2623{
2624 struct btrfs_inode_item *inode_item;
2625 struct btrfs_path *path;
5f39d397 2626 struct extent_buffer *leaf;
39279cc3
CM
2627 int ret;
2628
2629 path = btrfs_alloc_path();
2630 BUG_ON(!path);
b9473439 2631 path->leave_spinning = 1;
39279cc3
CM
2632 ret = btrfs_lookup_inode(trans, root, path,
2633 &BTRFS_I(inode)->location, 1);
2634 if (ret) {
2635 if (ret > 0)
2636 ret = -ENOENT;
2637 goto failed;
2638 }
2639
b4ce94de 2640 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2641 leaf = path->nodes[0];
2642 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2643 struct btrfs_inode_item);
2644
e02119d5 2645 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2646 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2647 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2648 ret = 0;
2649failed:
39279cc3
CM
2650 btrfs_free_path(path);
2651 return ret;
2652}
2653
2654
d352ac68
CM
2655/*
2656 * unlink helper that gets used here in inode.c and in the tree logging
2657 * recovery code. It remove a link in a directory with a given name, and
2658 * also drops the back refs in the inode to the directory
2659 */
e02119d5
CM
2660int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2661 struct btrfs_root *root,
2662 struct inode *dir, struct inode *inode,
2663 const char *name, int name_len)
39279cc3
CM
2664{
2665 struct btrfs_path *path;
39279cc3 2666 int ret = 0;
5f39d397 2667 struct extent_buffer *leaf;
39279cc3 2668 struct btrfs_dir_item *di;
5f39d397 2669 struct btrfs_key key;
aec7477b 2670 u64 index;
39279cc3
CM
2671
2672 path = btrfs_alloc_path();
54aa1f4d
CM
2673 if (!path) {
2674 ret = -ENOMEM;
554233a6 2675 goto out;
54aa1f4d
CM
2676 }
2677
b9473439 2678 path->leave_spinning = 1;
39279cc3
CM
2679 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2680 name, name_len, -1);
2681 if (IS_ERR(di)) {
2682 ret = PTR_ERR(di);
2683 goto err;
2684 }
2685 if (!di) {
2686 ret = -ENOENT;
2687 goto err;
2688 }
5f39d397
CM
2689 leaf = path->nodes[0];
2690 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2691 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2692 if (ret)
2693 goto err;
39279cc3
CM
2694 btrfs_release_path(root, path);
2695
aec7477b 2696 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2697 inode->i_ino,
2698 dir->i_ino, &index);
aec7477b 2699 if (ret) {
d397712b 2700 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2701 "inode %lu parent %lu\n", name_len, name,
e02119d5 2702 inode->i_ino, dir->i_ino);
aec7477b
JB
2703 goto err;
2704 }
2705
39279cc3 2706 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2707 index, name, name_len, -1);
39279cc3
CM
2708 if (IS_ERR(di)) {
2709 ret = PTR_ERR(di);
2710 goto err;
2711 }
2712 if (!di) {
2713 ret = -ENOENT;
2714 goto err;
2715 }
2716 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2717 btrfs_release_path(root, path);
39279cc3 2718
e02119d5
CM
2719 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2720 inode, dir->i_ino);
49eb7e46 2721 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2722
2723 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2724 dir, index);
6418c961
CM
2725 if (ret == -ENOENT)
2726 ret = 0;
39279cc3
CM
2727err:
2728 btrfs_free_path(path);
e02119d5
CM
2729 if (ret)
2730 goto out;
2731
2732 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2733 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2734 btrfs_update_inode(trans, root, dir);
2735 btrfs_drop_nlink(inode);
2736 ret = btrfs_update_inode(trans, root, inode);
e02119d5 2737out:
39279cc3
CM
2738 return ret;
2739}
2740
a22285a6
YZ
2741/* helper to check if there is any shared block in the path */
2742static int check_path_shared(struct btrfs_root *root,
2743 struct btrfs_path *path)
39279cc3 2744{
a22285a6
YZ
2745 struct extent_buffer *eb;
2746 int level;
0e4dcbef 2747 u64 refs = 1;
5df6a9f6 2748
a22285a6 2749 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2750 int ret;
2751
a22285a6
YZ
2752 if (!path->nodes[level])
2753 break;
2754 eb = path->nodes[level];
2755 if (!btrfs_block_can_be_shared(root, eb))
2756 continue;
2757 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2758 &refs, NULL);
2759 if (refs > 1)
2760 return 1;
5df6a9f6 2761 }
dedefd72 2762 return 0;
39279cc3
CM
2763}
2764
a22285a6
YZ
2765/*
2766 * helper to start transaction for unlink and rmdir.
2767 *
2768 * unlink and rmdir are special in btrfs, they do not always free space.
2769 * so in enospc case, we should make sure they will free space before
2770 * allowing them to use the global metadata reservation.
2771 */
2772static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2773 struct dentry *dentry)
4df27c4d 2774{
39279cc3 2775 struct btrfs_trans_handle *trans;
a22285a6 2776 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2777 struct btrfs_path *path;
a22285a6 2778 struct btrfs_inode_ref *ref;
4df27c4d 2779 struct btrfs_dir_item *di;
7b128766 2780 struct inode *inode = dentry->d_inode;
4df27c4d 2781 u64 index;
a22285a6
YZ
2782 int check_link = 1;
2783 int err = -ENOSPC;
4df27c4d
YZ
2784 int ret;
2785
a22285a6
YZ
2786 trans = btrfs_start_transaction(root, 10);
2787 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2788 return trans;
4df27c4d 2789
a22285a6
YZ
2790 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2791 return ERR_PTR(-ENOSPC);
4df27c4d 2792
a22285a6
YZ
2793 /* check if there is someone else holds reference */
2794 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2795 return ERR_PTR(-ENOSPC);
4df27c4d 2796
a22285a6
YZ
2797 if (atomic_read(&inode->i_count) > 2)
2798 return ERR_PTR(-ENOSPC);
4df27c4d 2799
a22285a6
YZ
2800 if (xchg(&root->fs_info->enospc_unlink, 1))
2801 return ERR_PTR(-ENOSPC);
2802
2803 path = btrfs_alloc_path();
2804 if (!path) {
2805 root->fs_info->enospc_unlink = 0;
2806 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2807 }
2808
a22285a6 2809 trans = btrfs_start_transaction(root, 0);
5df6a9f6 2810 if (IS_ERR(trans)) {
a22285a6
YZ
2811 btrfs_free_path(path);
2812 root->fs_info->enospc_unlink = 0;
2813 return trans;
2814 }
4df27c4d 2815
a22285a6
YZ
2816 path->skip_locking = 1;
2817 path->search_commit_root = 1;
4df27c4d 2818
a22285a6
YZ
2819 ret = btrfs_lookup_inode(trans, root, path,
2820 &BTRFS_I(dir)->location, 0);
2821 if (ret < 0) {
2822 err = ret;
2823 goto out;
2824 }
2825 if (ret == 0) {
2826 if (check_path_shared(root, path))
2827 goto out;
2828 } else {
2829 check_link = 0;
5df6a9f6 2830 }
a22285a6
YZ
2831 btrfs_release_path(root, path);
2832
2833 ret = btrfs_lookup_inode(trans, root, path,
2834 &BTRFS_I(inode)->location, 0);
2835 if (ret < 0) {
2836 err = ret;
2837 goto out;
2838 }
2839 if (ret == 0) {
2840 if (check_path_shared(root, path))
2841 goto out;
2842 } else {
2843 check_link = 0;
2844 }
2845 btrfs_release_path(root, path);
2846
2847 if (ret == 0 && S_ISREG(inode->i_mode)) {
2848 ret = btrfs_lookup_file_extent(trans, root, path,
2849 inode->i_ino, (u64)-1, 0);
2850 if (ret < 0) {
2851 err = ret;
2852 goto out;
2853 }
2854 BUG_ON(ret == 0);
2855 if (check_path_shared(root, path))
2856 goto out;
2857 btrfs_release_path(root, path);
2858 }
2859
2860 if (!check_link) {
2861 err = 0;
2862 goto out;
2863 }
2864
2865 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2866 dentry->d_name.name, dentry->d_name.len, 0);
2867 if (IS_ERR(di)) {
2868 err = PTR_ERR(di);
2869 goto out;
2870 }
2871 if (di) {
2872 if (check_path_shared(root, path))
2873 goto out;
2874 } else {
2875 err = 0;
2876 goto out;
2877 }
2878 btrfs_release_path(root, path);
2879
2880 ref = btrfs_lookup_inode_ref(trans, root, path,
2881 dentry->d_name.name, dentry->d_name.len,
2882 inode->i_ino, dir->i_ino, 0);
2883 if (IS_ERR(ref)) {
2884 err = PTR_ERR(ref);
2885 goto out;
2886 }
2887 BUG_ON(!ref);
2888 if (check_path_shared(root, path))
2889 goto out;
2890 index = btrfs_inode_ref_index(path->nodes[0], ref);
2891 btrfs_release_path(root, path);
2892
2893 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2894 dentry->d_name.name, dentry->d_name.len, 0);
2895 if (IS_ERR(di)) {
2896 err = PTR_ERR(di);
2897 goto out;
2898 }
2899 BUG_ON(ret == -ENOENT);
2900 if (check_path_shared(root, path))
2901 goto out;
2902
2903 err = 0;
2904out:
2905 btrfs_free_path(path);
2906 if (err) {
2907 btrfs_end_transaction(trans, root);
2908 root->fs_info->enospc_unlink = 0;
2909 return ERR_PTR(err);
2910 }
2911
2912 trans->block_rsv = &root->fs_info->global_block_rsv;
2913 return trans;
2914}
2915
2916static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2917 struct btrfs_root *root)
2918{
2919 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2920 BUG_ON(!root->fs_info->enospc_unlink);
2921 root->fs_info->enospc_unlink = 0;
2922 }
2923 btrfs_end_transaction_throttle(trans, root);
2924}
2925
2926static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2927{
2928 struct btrfs_root *root = BTRFS_I(dir)->root;
2929 struct btrfs_trans_handle *trans;
2930 struct inode *inode = dentry->d_inode;
2931 int ret;
2932 unsigned long nr = 0;
2933
2934 trans = __unlink_start_trans(dir, dentry);
2935 if (IS_ERR(trans))
2936 return PTR_ERR(trans);
5f39d397 2937
39279cc3 2938 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2939
2940 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2941
e02119d5
CM
2942 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2943 dentry->d_name.name, dentry->d_name.len);
a22285a6 2944 BUG_ON(ret);
7b128766 2945
a22285a6 2946 if (inode->i_nlink == 0) {
7b128766 2947 ret = btrfs_orphan_add(trans, inode);
a22285a6
YZ
2948 BUG_ON(ret);
2949 }
7b128766 2950
d3c2fdcf 2951 nr = trans->blocks_used;
a22285a6 2952 __unlink_end_trans(trans, root);
d3c2fdcf 2953 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2954 return ret;
2955}
2956
4df27c4d
YZ
2957int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2958 struct btrfs_root *root,
2959 struct inode *dir, u64 objectid,
2960 const char *name, int name_len)
2961{
2962 struct btrfs_path *path;
2963 struct extent_buffer *leaf;
2964 struct btrfs_dir_item *di;
2965 struct btrfs_key key;
2966 u64 index;
2967 int ret;
2968
2969 path = btrfs_alloc_path();
2970 if (!path)
2971 return -ENOMEM;
2972
2973 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2974 name, name_len, -1);
2975 BUG_ON(!di || IS_ERR(di));
2976
2977 leaf = path->nodes[0];
2978 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2979 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2980 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2981 BUG_ON(ret);
2982 btrfs_release_path(root, path);
2983
2984 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2985 objectid, root->root_key.objectid,
2986 dir->i_ino, &index, name, name_len);
2987 if (ret < 0) {
2988 BUG_ON(ret != -ENOENT);
2989 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2990 name, name_len);
2991 BUG_ON(!di || IS_ERR(di));
2992
2993 leaf = path->nodes[0];
2994 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2995 btrfs_release_path(root, path);
2996 index = key.offset;
2997 }
2998
2999 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
3000 index, name, name_len, -1);
3001 BUG_ON(!di || IS_ERR(di));
3002
3003 leaf = path->nodes[0];
3004 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3005 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3006 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3007 BUG_ON(ret);
3008 btrfs_release_path(root, path);
3009
3010 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3011 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3012 ret = btrfs_update_inode(trans, root, dir);
3013 BUG_ON(ret);
4df27c4d
YZ
3014
3015 btrfs_free_path(path);
3016 return 0;
3017}
3018
39279cc3
CM
3019static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3020{
3021 struct inode *inode = dentry->d_inode;
1832a6d5 3022 int err = 0;
39279cc3 3023 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3024 struct btrfs_trans_handle *trans;
1832a6d5 3025 unsigned long nr = 0;
39279cc3 3026
3394e160 3027 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
4df27c4d 3028 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
3029 return -ENOTEMPTY;
3030
a22285a6
YZ
3031 trans = __unlink_start_trans(dir, dentry);
3032 if (IS_ERR(trans))
5df6a9f6 3033 return PTR_ERR(trans);
5df6a9f6 3034
39279cc3 3035 btrfs_set_trans_block_group(trans, dir);
39279cc3 3036
4df27c4d
YZ
3037 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3038 err = btrfs_unlink_subvol(trans, root, dir,
3039 BTRFS_I(inode)->location.objectid,
3040 dentry->d_name.name,
3041 dentry->d_name.len);
3042 goto out;
3043 }
3044
7b128766
JB
3045 err = btrfs_orphan_add(trans, inode);
3046 if (err)
4df27c4d 3047 goto out;
7b128766 3048
39279cc3 3049 /* now the directory is empty */
e02119d5
CM
3050 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3051 dentry->d_name.name, dentry->d_name.len);
d397712b 3052 if (!err)
dbe674a9 3053 btrfs_i_size_write(inode, 0);
4df27c4d 3054out:
d3c2fdcf 3055 nr = trans->blocks_used;
a22285a6 3056 __unlink_end_trans(trans, root);
d3c2fdcf 3057 btrfs_btree_balance_dirty(root, nr);
3954401f 3058
39279cc3
CM
3059 return err;
3060}
3061
d20f7043 3062#if 0
323ac95b
CM
3063/*
3064 * when truncating bytes in a file, it is possible to avoid reading
3065 * the leaves that contain only checksum items. This can be the
3066 * majority of the IO required to delete a large file, but it must
3067 * be done carefully.
3068 *
3069 * The keys in the level just above the leaves are checked to make sure
3070 * the lowest key in a given leaf is a csum key, and starts at an offset
3071 * after the new size.
3072 *
3073 * Then the key for the next leaf is checked to make sure it also has
3074 * a checksum item for the same file. If it does, we know our target leaf
3075 * contains only checksum items, and it can be safely freed without reading
3076 * it.
3077 *
3078 * This is just an optimization targeted at large files. It may do
3079 * nothing. It will return 0 unless things went badly.
3080 */
3081static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3082 struct btrfs_root *root,
3083 struct btrfs_path *path,
3084 struct inode *inode, u64 new_size)
3085{
3086 struct btrfs_key key;
3087 int ret;
3088 int nritems;
3089 struct btrfs_key found_key;
3090 struct btrfs_key other_key;
5b84e8d6
YZ
3091 struct btrfs_leaf_ref *ref;
3092 u64 leaf_gen;
3093 u64 leaf_start;
323ac95b
CM
3094
3095 path->lowest_level = 1;
3096 key.objectid = inode->i_ino;
3097 key.type = BTRFS_CSUM_ITEM_KEY;
3098 key.offset = new_size;
3099again:
3100 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3101 if (ret < 0)
3102 goto out;
3103
3104 if (path->nodes[1] == NULL) {
3105 ret = 0;
3106 goto out;
3107 }
3108 ret = 0;
3109 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3110 nritems = btrfs_header_nritems(path->nodes[1]);
3111
3112 if (!nritems)
3113 goto out;
3114
3115 if (path->slots[1] >= nritems)
3116 goto next_node;
3117
3118 /* did we find a key greater than anything we want to delete? */
3119 if (found_key.objectid > inode->i_ino ||
3120 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3121 goto out;
3122
3123 /* we check the next key in the node to make sure the leave contains
3124 * only checksum items. This comparison doesn't work if our
3125 * leaf is the last one in the node
3126 */
3127 if (path->slots[1] + 1 >= nritems) {
3128next_node:
3129 /* search forward from the last key in the node, this
3130 * will bring us into the next node in the tree
3131 */
3132 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3133
3134 /* unlikely, but we inc below, so check to be safe */
3135 if (found_key.offset == (u64)-1)
3136 goto out;
3137
3138 /* search_forward needs a path with locks held, do the
3139 * search again for the original key. It is possible
3140 * this will race with a balance and return a path that
3141 * we could modify, but this drop is just an optimization
3142 * and is allowed to miss some leaves.
3143 */
3144 btrfs_release_path(root, path);
3145 found_key.offset++;
3146
3147 /* setup a max key for search_forward */
3148 other_key.offset = (u64)-1;
3149 other_key.type = key.type;
3150 other_key.objectid = key.objectid;
3151
3152 path->keep_locks = 1;
3153 ret = btrfs_search_forward(root, &found_key, &other_key,
3154 path, 0, 0);
3155 path->keep_locks = 0;
3156 if (ret || found_key.objectid != key.objectid ||
3157 found_key.type != key.type) {
3158 ret = 0;
3159 goto out;
3160 }
3161
3162 key.offset = found_key.offset;
3163 btrfs_release_path(root, path);
3164 cond_resched();
3165 goto again;
3166 }
3167
3168 /* we know there's one more slot after us in the tree,
3169 * read that key so we can verify it is also a checksum item
3170 */
3171 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3172
3173 if (found_key.objectid < inode->i_ino)
3174 goto next_key;
3175
3176 if (found_key.type != key.type || found_key.offset < new_size)
3177 goto next_key;
3178
3179 /*
3180 * if the key for the next leaf isn't a csum key from this objectid,
3181 * we can't be sure there aren't good items inside this leaf.
3182 * Bail out
3183 */
3184 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3185 goto out;
3186
5b84e8d6
YZ
3187 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3188 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
3189 /*
3190 * it is safe to delete this leaf, it contains only
3191 * csum items from this inode at an offset >= new_size
3192 */
5b84e8d6 3193 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
3194 BUG_ON(ret);
3195
5b84e8d6
YZ
3196 if (root->ref_cows && leaf_gen < trans->transid) {
3197 ref = btrfs_alloc_leaf_ref(root, 0);
3198 if (ref) {
3199 ref->root_gen = root->root_key.offset;
3200 ref->bytenr = leaf_start;
3201 ref->owner = 0;
3202 ref->generation = leaf_gen;
3203 ref->nritems = 0;
3204
bd56b302
CM
3205 btrfs_sort_leaf_ref(ref);
3206
5b84e8d6
YZ
3207 ret = btrfs_add_leaf_ref(root, ref, 0);
3208 WARN_ON(ret);
3209 btrfs_free_leaf_ref(root, ref);
3210 } else {
3211 WARN_ON(1);
3212 }
3213 }
323ac95b
CM
3214next_key:
3215 btrfs_release_path(root, path);
3216
3217 if (other_key.objectid == inode->i_ino &&
3218 other_key.type == key.type && other_key.offset > key.offset) {
3219 key.offset = other_key.offset;
3220 cond_resched();
3221 goto again;
3222 }
3223 ret = 0;
3224out:
3225 /* fixup any changes we've made to the path */
3226 path->lowest_level = 0;
3227 path->keep_locks = 0;
3228 btrfs_release_path(root, path);
3229 return ret;
3230}
3231
d20f7043
CM
3232#endif
3233
39279cc3
CM
3234/*
3235 * this can truncate away extent items, csum items and directory items.
3236 * It starts at a high offset and removes keys until it can't find
d352ac68 3237 * any higher than new_size
39279cc3
CM
3238 *
3239 * csum items that cross the new i_size are truncated to the new size
3240 * as well.
7b128766
JB
3241 *
3242 * min_type is the minimum key type to truncate down to. If set to 0, this
3243 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3244 */
8082510e
YZ
3245int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3246 struct btrfs_root *root,
3247 struct inode *inode,
3248 u64 new_size, u32 min_type)
39279cc3 3249{
39279cc3 3250 struct btrfs_path *path;
5f39d397 3251 struct extent_buffer *leaf;
39279cc3 3252 struct btrfs_file_extent_item *fi;
8082510e
YZ
3253 struct btrfs_key key;
3254 struct btrfs_key found_key;
39279cc3 3255 u64 extent_start = 0;
db94535d 3256 u64 extent_num_bytes = 0;
5d4f98a2 3257 u64 extent_offset = 0;
39279cc3 3258 u64 item_end = 0;
8082510e
YZ
3259 u64 mask = root->sectorsize - 1;
3260 u32 found_type = (u8)-1;
39279cc3
CM
3261 int found_extent;
3262 int del_item;
85e21bac
CM
3263 int pending_del_nr = 0;
3264 int pending_del_slot = 0;
179e29e4 3265 int extent_type = -1;
771ed689 3266 int encoding;
8082510e
YZ
3267 int ret;
3268 int err = 0;
3269
3270 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3271
0af3d00b 3272 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3273 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3274
39279cc3
CM
3275 path = btrfs_alloc_path();
3276 BUG_ON(!path);
33c17ad5 3277 path->reada = -1;
5f39d397 3278
39279cc3
CM
3279 key.objectid = inode->i_ino;
3280 key.offset = (u64)-1;
5f39d397
CM
3281 key.type = (u8)-1;
3282
85e21bac 3283search_again:
b9473439 3284 path->leave_spinning = 1;
85e21bac 3285 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3286 if (ret < 0) {
3287 err = ret;
3288 goto out;
3289 }
d397712b 3290
85e21bac 3291 if (ret > 0) {
e02119d5
CM
3292 /* there are no items in the tree for us to truncate, we're
3293 * done
3294 */
8082510e
YZ
3295 if (path->slots[0] == 0)
3296 goto out;
85e21bac
CM
3297 path->slots[0]--;
3298 }
3299
d397712b 3300 while (1) {
39279cc3 3301 fi = NULL;
5f39d397
CM
3302 leaf = path->nodes[0];
3303 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3304 found_type = btrfs_key_type(&found_key);
771ed689 3305 encoding = 0;
39279cc3 3306
5f39d397 3307 if (found_key.objectid != inode->i_ino)
39279cc3 3308 break;
5f39d397 3309
85e21bac 3310 if (found_type < min_type)
39279cc3
CM
3311 break;
3312
5f39d397 3313 item_end = found_key.offset;
39279cc3 3314 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3315 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3316 struct btrfs_file_extent_item);
179e29e4 3317 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3318 encoding = btrfs_file_extent_compression(leaf, fi);
3319 encoding |= btrfs_file_extent_encryption(leaf, fi);
3320 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3321
179e29e4 3322 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3323 item_end +=
db94535d 3324 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3325 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3326 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3327 fi);
39279cc3 3328 }
008630c1 3329 item_end--;
39279cc3 3330 }
8082510e
YZ
3331 if (found_type > min_type) {
3332 del_item = 1;
3333 } else {
3334 if (item_end < new_size)
b888db2b 3335 break;
8082510e
YZ
3336 if (found_key.offset >= new_size)
3337 del_item = 1;
3338 else
3339 del_item = 0;
39279cc3 3340 }
39279cc3 3341 found_extent = 0;
39279cc3 3342 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3343 if (found_type != BTRFS_EXTENT_DATA_KEY)
3344 goto delete;
3345
3346 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3347 u64 num_dec;
db94535d 3348 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3349 if (!del_item && !encoding) {
db94535d
CM
3350 u64 orig_num_bytes =
3351 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3352 extent_num_bytes = new_size -
5f39d397 3353 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3354 extent_num_bytes = extent_num_bytes &
3355 ~((u64)root->sectorsize - 1);
db94535d
CM
3356 btrfs_set_file_extent_num_bytes(leaf, fi,
3357 extent_num_bytes);
3358 num_dec = (orig_num_bytes -
9069218d 3359 extent_num_bytes);
e02119d5 3360 if (root->ref_cows && extent_start != 0)
a76a3cd4 3361 inode_sub_bytes(inode, num_dec);
5f39d397 3362 btrfs_mark_buffer_dirty(leaf);
39279cc3 3363 } else {
db94535d
CM
3364 extent_num_bytes =
3365 btrfs_file_extent_disk_num_bytes(leaf,
3366 fi);
5d4f98a2
YZ
3367 extent_offset = found_key.offset -
3368 btrfs_file_extent_offset(leaf, fi);
3369
39279cc3 3370 /* FIXME blocksize != 4096 */
9069218d 3371 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3372 if (extent_start != 0) {
3373 found_extent = 1;
e02119d5 3374 if (root->ref_cows)
a76a3cd4 3375 inode_sub_bytes(inode, num_dec);
e02119d5 3376 }
39279cc3 3377 }
9069218d 3378 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3379 /*
3380 * we can't truncate inline items that have had
3381 * special encodings
3382 */
3383 if (!del_item &&
3384 btrfs_file_extent_compression(leaf, fi) == 0 &&
3385 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3386 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3387 u32 size = new_size - found_key.offset;
3388
3389 if (root->ref_cows) {
a76a3cd4
YZ
3390 inode_sub_bytes(inode, item_end + 1 -
3391 new_size);
e02119d5
CM
3392 }
3393 size =
3394 btrfs_file_extent_calc_inline_size(size);
9069218d 3395 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3396 size, 1);
9069218d 3397 BUG_ON(ret);
e02119d5 3398 } else if (root->ref_cows) {
a76a3cd4
YZ
3399 inode_sub_bytes(inode, item_end + 1 -
3400 found_key.offset);
9069218d 3401 }
39279cc3 3402 }
179e29e4 3403delete:
39279cc3 3404 if (del_item) {
85e21bac
CM
3405 if (!pending_del_nr) {
3406 /* no pending yet, add ourselves */
3407 pending_del_slot = path->slots[0];
3408 pending_del_nr = 1;
3409 } else if (pending_del_nr &&
3410 path->slots[0] + 1 == pending_del_slot) {
3411 /* hop on the pending chunk */
3412 pending_del_nr++;
3413 pending_del_slot = path->slots[0];
3414 } else {
d397712b 3415 BUG();
85e21bac 3416 }
39279cc3
CM
3417 } else {
3418 break;
3419 }
0af3d00b
JB
3420 if (found_extent && (root->ref_cows ||
3421 root == root->fs_info->tree_root)) {
b9473439 3422 btrfs_set_path_blocking(path);
39279cc3 3423 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3424 extent_num_bytes, 0,
3425 btrfs_header_owner(leaf),
3426 inode->i_ino, extent_offset);
39279cc3
CM
3427 BUG_ON(ret);
3428 }
85e21bac 3429
8082510e
YZ
3430 if (found_type == BTRFS_INODE_ITEM_KEY)
3431 break;
3432
3433 if (path->slots[0] == 0 ||
3434 path->slots[0] != pending_del_slot) {
3435 if (root->ref_cows) {
3436 err = -EAGAIN;
3437 goto out;
3438 }
3439 if (pending_del_nr) {
3440 ret = btrfs_del_items(trans, root, path,
3441 pending_del_slot,
3442 pending_del_nr);
3443 BUG_ON(ret);
3444 pending_del_nr = 0;
3445 }
85e21bac
CM
3446 btrfs_release_path(root, path);
3447 goto search_again;
8082510e
YZ
3448 } else {
3449 path->slots[0]--;
85e21bac 3450 }
39279cc3 3451 }
8082510e 3452out:
85e21bac
CM
3453 if (pending_del_nr) {
3454 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3455 pending_del_nr);
d68fc57b 3456 BUG_ON(ret);
85e21bac 3457 }
39279cc3 3458 btrfs_free_path(path);
8082510e 3459 return err;
39279cc3
CM
3460}
3461
3462/*
3463 * taken from block_truncate_page, but does cow as it zeros out
3464 * any bytes left in the last page in the file.
3465 */
3466static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3467{
3468 struct inode *inode = mapping->host;
db94535d 3469 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3470 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3471 struct btrfs_ordered_extent *ordered;
2ac55d41 3472 struct extent_state *cached_state = NULL;
e6dcd2dc 3473 char *kaddr;
db94535d 3474 u32 blocksize = root->sectorsize;
39279cc3
CM
3475 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3476 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3477 struct page *page;
39279cc3 3478 int ret = 0;
a52d9a80 3479 u64 page_start;
e6dcd2dc 3480 u64 page_end;
39279cc3
CM
3481
3482 if ((offset & (blocksize - 1)) == 0)
3483 goto out;
0ca1f7ce 3484 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3485 if (ret)
3486 goto out;
39279cc3
CM
3487
3488 ret = -ENOMEM;
211c17f5 3489again:
39279cc3 3490 page = grab_cache_page(mapping, index);
5d5e103a 3491 if (!page) {
0ca1f7ce 3492 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3493 goto out;
5d5e103a 3494 }
e6dcd2dc
CM
3495
3496 page_start = page_offset(page);
3497 page_end = page_start + PAGE_CACHE_SIZE - 1;
3498
39279cc3 3499 if (!PageUptodate(page)) {
9ebefb18 3500 ret = btrfs_readpage(NULL, page);
39279cc3 3501 lock_page(page);
211c17f5
CM
3502 if (page->mapping != mapping) {
3503 unlock_page(page);
3504 page_cache_release(page);
3505 goto again;
3506 }
39279cc3
CM
3507 if (!PageUptodate(page)) {
3508 ret = -EIO;
89642229 3509 goto out_unlock;
39279cc3
CM
3510 }
3511 }
211c17f5 3512 wait_on_page_writeback(page);
e6dcd2dc 3513
2ac55d41
JB
3514 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3515 GFP_NOFS);
e6dcd2dc
CM
3516 set_page_extent_mapped(page);
3517
3518 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3519 if (ordered) {
2ac55d41
JB
3520 unlock_extent_cached(io_tree, page_start, page_end,
3521 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3522 unlock_page(page);
3523 page_cache_release(page);
eb84ae03 3524 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3525 btrfs_put_ordered_extent(ordered);
3526 goto again;
3527 }
3528
2ac55d41 3529 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3530 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3531 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3532
2ac55d41
JB
3533 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3534 &cached_state);
9ed74f2d 3535 if (ret) {
2ac55d41
JB
3536 unlock_extent_cached(io_tree, page_start, page_end,
3537 &cached_state, GFP_NOFS);
9ed74f2d
JB
3538 goto out_unlock;
3539 }
3540
e6dcd2dc
CM
3541 ret = 0;
3542 if (offset != PAGE_CACHE_SIZE) {
3543 kaddr = kmap(page);
3544 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3545 flush_dcache_page(page);
3546 kunmap(page);
3547 }
247e743c 3548 ClearPageChecked(page);
e6dcd2dc 3549 set_page_dirty(page);
2ac55d41
JB
3550 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3551 GFP_NOFS);
39279cc3 3552
89642229 3553out_unlock:
5d5e103a 3554 if (ret)
0ca1f7ce 3555 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3556 unlock_page(page);
3557 page_cache_release(page);
3558out:
3559 return ret;
3560}
3561
695a0d0d
JB
3562/*
3563 * This function puts in dummy file extents for the area we're creating a hole
3564 * for. So if we are truncating this file to a larger size we need to insert
3565 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3566 * the range between oldsize and size
3567 */
a41ad394 3568int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3569{
9036c102
YZ
3570 struct btrfs_trans_handle *trans;
3571 struct btrfs_root *root = BTRFS_I(inode)->root;
3572 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3573 struct extent_map *em = NULL;
2ac55d41 3574 struct extent_state *cached_state = NULL;
9036c102 3575 u64 mask = root->sectorsize - 1;
a41ad394 3576 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3577 u64 block_end = (size + mask) & ~mask;
3578 u64 last_byte;
3579 u64 cur_offset;
3580 u64 hole_size;
9ed74f2d 3581 int err = 0;
39279cc3 3582
9036c102
YZ
3583 if (size <= hole_start)
3584 return 0;
3585
9036c102
YZ
3586 while (1) {
3587 struct btrfs_ordered_extent *ordered;
3588 btrfs_wait_ordered_range(inode, hole_start,
3589 block_end - hole_start);
2ac55d41
JB
3590 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3591 &cached_state, GFP_NOFS);
9036c102
YZ
3592 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3593 if (!ordered)
3594 break;
2ac55d41
JB
3595 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3596 &cached_state, GFP_NOFS);
9036c102
YZ
3597 btrfs_put_ordered_extent(ordered);
3598 }
39279cc3 3599
9036c102
YZ
3600 cur_offset = hole_start;
3601 while (1) {
3602 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3603 block_end - cur_offset, 0);
3604 BUG_ON(IS_ERR(em) || !em);
3605 last_byte = min(extent_map_end(em), block_end);
3606 last_byte = (last_byte + mask) & ~mask;
8082510e 3607 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3608 u64 hint_byte = 0;
9036c102 3609 hole_size = last_byte - cur_offset;
9ed74f2d 3610
a22285a6
YZ
3611 trans = btrfs_start_transaction(root, 2);
3612 if (IS_ERR(trans)) {
3613 err = PTR_ERR(trans);
9ed74f2d 3614 break;
a22285a6 3615 }
8082510e
YZ
3616 btrfs_set_trans_block_group(trans, inode);
3617
3618 err = btrfs_drop_extents(trans, inode, cur_offset,
3619 cur_offset + hole_size,
3620 &hint_byte, 1);
3893e33b
JB
3621 if (err)
3622 break;
8082510e 3623
9036c102
YZ
3624 err = btrfs_insert_file_extent(trans, root,
3625 inode->i_ino, cur_offset, 0,
3626 0, hole_size, 0, hole_size,
3627 0, 0, 0);
3893e33b
JB
3628 if (err)
3629 break;
8082510e 3630
9036c102
YZ
3631 btrfs_drop_extent_cache(inode, hole_start,
3632 last_byte - 1, 0);
8082510e
YZ
3633
3634 btrfs_end_transaction(trans, root);
9036c102
YZ
3635 }
3636 free_extent_map(em);
a22285a6 3637 em = NULL;
9036c102 3638 cur_offset = last_byte;
8082510e 3639 if (cur_offset >= block_end)
9036c102
YZ
3640 break;
3641 }
1832a6d5 3642
a22285a6 3643 free_extent_map(em);
2ac55d41
JB
3644 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3645 GFP_NOFS);
9036c102
YZ
3646 return err;
3647}
39279cc3 3648
a41ad394 3649static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3650{
a41ad394 3651 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3652 int ret;
3653
a41ad394 3654 if (newsize == oldsize)
8082510e
YZ
3655 return 0;
3656
a41ad394
JB
3657 if (newsize > oldsize) {
3658 i_size_write(inode, newsize);
3659 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3660 truncate_pagecache(inode, oldsize, newsize);
3661 ret = btrfs_cont_expand(inode, oldsize, newsize);
8082510e 3662 if (ret) {
a41ad394 3663 btrfs_setsize(inode, oldsize);
8082510e
YZ
3664 return ret;
3665 }
3666
930f028a 3667 mark_inode_dirty(inode);
a41ad394 3668 } else {
8082510e 3669
a41ad394
JB
3670 /*
3671 * We're truncating a file that used to have good data down to
3672 * zero. Make sure it gets into the ordered flush list so that
3673 * any new writes get down to disk quickly.
3674 */
3675 if (newsize == 0)
3676 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3677
a41ad394
JB
3678 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3679 truncate_setsize(inode, newsize);
3680 ret = btrfs_truncate(inode);
3681 }
8082510e 3682
a41ad394 3683 return ret;
8082510e
YZ
3684}
3685
9036c102
YZ
3686static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3687{
3688 struct inode *inode = dentry->d_inode;
b83cc969 3689 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3690 int err;
39279cc3 3691
b83cc969
LZ
3692 if (btrfs_root_readonly(root))
3693 return -EROFS;
3694
9036c102
YZ
3695 err = inode_change_ok(inode, attr);
3696 if (err)
3697 return err;
2bf5a725 3698
5a3f23d5 3699 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3700 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3701 if (err)
3702 return err;
39279cc3 3703 }
9036c102 3704
1025774c
CH
3705 if (attr->ia_valid) {
3706 setattr_copy(inode, attr);
3707 mark_inode_dirty(inode);
3708
3709 if (attr->ia_valid & ATTR_MODE)
3710 err = btrfs_acl_chmod(inode);
3711 }
33268eaf 3712
39279cc3
CM
3713 return err;
3714}
61295eb8 3715
bd555975 3716void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3717{
3718 struct btrfs_trans_handle *trans;
3719 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3720 unsigned long nr;
39279cc3
CM
3721 int ret;
3722
1abe9b8a 3723 trace_btrfs_inode_evict(inode);
3724
39279cc3 3725 truncate_inode_pages(&inode->i_data, 0);
0af3d00b
JB
3726 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3727 root == root->fs_info->tree_root))
bd555975
AV
3728 goto no_delete;
3729
39279cc3 3730 if (is_bad_inode(inode)) {
7b128766 3731 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3732 goto no_delete;
3733 }
bd555975 3734 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3735 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3736
c71bf099
YZ
3737 if (root->fs_info->log_root_recovering) {
3738 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3739 goto no_delete;
3740 }
3741
76dda93c
YZ
3742 if (inode->i_nlink > 0) {
3743 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3744 goto no_delete;
3745 }
3746
dbe674a9 3747 btrfs_i_size_write(inode, 0);
5f39d397 3748
8082510e 3749 while (1) {
d68fc57b
YZ
3750 trans = btrfs_start_transaction(root, 0);
3751 BUG_ON(IS_ERR(trans));
8082510e 3752 btrfs_set_trans_block_group(trans, inode);
d68fc57b
YZ
3753 trans->block_rsv = root->orphan_block_rsv;
3754
3755 ret = btrfs_block_rsv_check(trans, root,
3756 root->orphan_block_rsv, 0, 5);
3757 if (ret) {
3758 BUG_ON(ret != -EAGAIN);
3759 ret = btrfs_commit_transaction(trans, root);
3760 BUG_ON(ret);
3761 continue;
3762 }
7b128766 3763
d68fc57b 3764 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3765 if (ret != -EAGAIN)
3766 break;
85e21bac 3767
8082510e
YZ
3768 nr = trans->blocks_used;
3769 btrfs_end_transaction(trans, root);
3770 trans = NULL;
3771 btrfs_btree_balance_dirty(root, nr);
d68fc57b 3772
8082510e 3773 }
5f39d397 3774
8082510e
YZ
3775 if (ret == 0) {
3776 ret = btrfs_orphan_del(trans, inode);
3777 BUG_ON(ret);
3778 }
54aa1f4d 3779
d3c2fdcf 3780 nr = trans->blocks_used;
54aa1f4d 3781 btrfs_end_transaction(trans, root);
d3c2fdcf 3782 btrfs_btree_balance_dirty(root, nr);
39279cc3 3783no_delete:
bd555975 3784 end_writeback(inode);
8082510e 3785 return;
39279cc3
CM
3786}
3787
3788/*
3789 * this returns the key found in the dir entry in the location pointer.
3790 * If no dir entries were found, location->objectid is 0.
3791 */
3792static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3793 struct btrfs_key *location)
3794{
3795 const char *name = dentry->d_name.name;
3796 int namelen = dentry->d_name.len;
3797 struct btrfs_dir_item *di;
3798 struct btrfs_path *path;
3799 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3800 int ret = 0;
39279cc3
CM
3801
3802 path = btrfs_alloc_path();
3803 BUG_ON(!path);
3954401f 3804
39279cc3
CM
3805 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3806 namelen, 0);
0d9f7f3e
Y
3807 if (IS_ERR(di))
3808 ret = PTR_ERR(di);
d397712b
CM
3809
3810 if (!di || IS_ERR(di))
3954401f 3811 goto out_err;
d397712b 3812
5f39d397 3813 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3814out:
39279cc3
CM
3815 btrfs_free_path(path);
3816 return ret;
3954401f
CM
3817out_err:
3818 location->objectid = 0;
3819 goto out;
39279cc3
CM
3820}
3821
3822/*
3823 * when we hit a tree root in a directory, the btrfs part of the inode
3824 * needs to be changed to reflect the root directory of the tree root. This
3825 * is kind of like crossing a mount point.
3826 */
3827static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3828 struct inode *dir,
3829 struct dentry *dentry,
3830 struct btrfs_key *location,
3831 struct btrfs_root **sub_root)
39279cc3 3832{
4df27c4d
YZ
3833 struct btrfs_path *path;
3834 struct btrfs_root *new_root;
3835 struct btrfs_root_ref *ref;
3836 struct extent_buffer *leaf;
3837 int ret;
3838 int err = 0;
39279cc3 3839
4df27c4d
YZ
3840 path = btrfs_alloc_path();
3841 if (!path) {
3842 err = -ENOMEM;
3843 goto out;
3844 }
39279cc3 3845
4df27c4d
YZ
3846 err = -ENOENT;
3847 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3848 BTRFS_I(dir)->root->root_key.objectid,
3849 location->objectid);
3850 if (ret) {
3851 if (ret < 0)
3852 err = ret;
3853 goto out;
3854 }
39279cc3 3855
4df27c4d
YZ
3856 leaf = path->nodes[0];
3857 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3858 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3859 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3860 goto out;
39279cc3 3861
4df27c4d
YZ
3862 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3863 (unsigned long)(ref + 1),
3864 dentry->d_name.len);
3865 if (ret)
3866 goto out;
3867
3868 btrfs_release_path(root->fs_info->tree_root, path);
3869
3870 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3871 if (IS_ERR(new_root)) {
3872 err = PTR_ERR(new_root);
3873 goto out;
3874 }
3875
3876 if (btrfs_root_refs(&new_root->root_item) == 0) {
3877 err = -ENOENT;
3878 goto out;
3879 }
3880
3881 *sub_root = new_root;
3882 location->objectid = btrfs_root_dirid(&new_root->root_item);
3883 location->type = BTRFS_INODE_ITEM_KEY;
3884 location->offset = 0;
3885 err = 0;
3886out:
3887 btrfs_free_path(path);
3888 return err;
39279cc3
CM
3889}
3890
5d4f98a2
YZ
3891static void inode_tree_add(struct inode *inode)
3892{
3893 struct btrfs_root *root = BTRFS_I(inode)->root;
3894 struct btrfs_inode *entry;
03e860bd
FNP
3895 struct rb_node **p;
3896 struct rb_node *parent;
03e860bd
FNP
3897again:
3898 p = &root->inode_tree.rb_node;
3899 parent = NULL;
5d4f98a2 3900
1d3382cb 3901 if (inode_unhashed(inode))
76dda93c
YZ
3902 return;
3903
5d4f98a2
YZ
3904 spin_lock(&root->inode_lock);
3905 while (*p) {
3906 parent = *p;
3907 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3908
3909 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3910 p = &parent->rb_left;
5d4f98a2 3911 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3912 p = &parent->rb_right;
5d4f98a2
YZ
3913 else {
3914 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3915 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3916 rb_erase(parent, &root->inode_tree);
3917 RB_CLEAR_NODE(parent);
3918 spin_unlock(&root->inode_lock);
3919 goto again;
5d4f98a2
YZ
3920 }
3921 }
3922 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3923 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3924 spin_unlock(&root->inode_lock);
3925}
3926
3927static void inode_tree_del(struct inode *inode)
3928{
3929 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3930 int empty = 0;
5d4f98a2 3931
03e860bd 3932 spin_lock(&root->inode_lock);
5d4f98a2 3933 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3934 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3935 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3936 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3937 }
03e860bd 3938 spin_unlock(&root->inode_lock);
76dda93c 3939
0af3d00b
JB
3940 /*
3941 * Free space cache has inodes in the tree root, but the tree root has a
3942 * root_refs of 0, so this could end up dropping the tree root as a
3943 * snapshot, so we need the extra !root->fs_info->tree_root check to
3944 * make sure we don't drop it.
3945 */
3946 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3947 root != root->fs_info->tree_root) {
76dda93c
YZ
3948 synchronize_srcu(&root->fs_info->subvol_srcu);
3949 spin_lock(&root->inode_lock);
3950 empty = RB_EMPTY_ROOT(&root->inode_tree);
3951 spin_unlock(&root->inode_lock);
3952 if (empty)
3953 btrfs_add_dead_root(root);
3954 }
3955}
3956
3957int btrfs_invalidate_inodes(struct btrfs_root *root)
3958{
3959 struct rb_node *node;
3960 struct rb_node *prev;
3961 struct btrfs_inode *entry;
3962 struct inode *inode;
3963 u64 objectid = 0;
3964
3965 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3966
3967 spin_lock(&root->inode_lock);
3968again:
3969 node = root->inode_tree.rb_node;
3970 prev = NULL;
3971 while (node) {
3972 prev = node;
3973 entry = rb_entry(node, struct btrfs_inode, rb_node);
3974
3975 if (objectid < entry->vfs_inode.i_ino)
3976 node = node->rb_left;
3977 else if (objectid > entry->vfs_inode.i_ino)
3978 node = node->rb_right;
3979 else
3980 break;
3981 }
3982 if (!node) {
3983 while (prev) {
3984 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3985 if (objectid <= entry->vfs_inode.i_ino) {
3986 node = prev;
3987 break;
3988 }
3989 prev = rb_next(prev);
3990 }
3991 }
3992 while (node) {
3993 entry = rb_entry(node, struct btrfs_inode, rb_node);
3994 objectid = entry->vfs_inode.i_ino + 1;
3995 inode = igrab(&entry->vfs_inode);
3996 if (inode) {
3997 spin_unlock(&root->inode_lock);
3998 if (atomic_read(&inode->i_count) > 1)
3999 d_prune_aliases(inode);
4000 /*
45321ac5 4001 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4002 * the inode cache when its usage count
4003 * hits zero.
4004 */
4005 iput(inode);
4006 cond_resched();
4007 spin_lock(&root->inode_lock);
4008 goto again;
4009 }
4010
4011 if (cond_resched_lock(&root->inode_lock))
4012 goto again;
4013
4014 node = rb_next(node);
4015 }
4016 spin_unlock(&root->inode_lock);
4017 return 0;
5d4f98a2
YZ
4018}
4019
e02119d5
CM
4020static int btrfs_init_locked_inode(struct inode *inode, void *p)
4021{
4022 struct btrfs_iget_args *args = p;
4023 inode->i_ino = args->ino;
e02119d5 4024 BTRFS_I(inode)->root = args->root;
6a63209f 4025 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
4026 return 0;
4027}
4028
4029static int btrfs_find_actor(struct inode *inode, void *opaque)
4030{
4031 struct btrfs_iget_args *args = opaque;
d397712b
CM
4032 return args->ino == inode->i_ino &&
4033 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4034}
4035
5d4f98a2
YZ
4036static struct inode *btrfs_iget_locked(struct super_block *s,
4037 u64 objectid,
4038 struct btrfs_root *root)
39279cc3
CM
4039{
4040 struct inode *inode;
4041 struct btrfs_iget_args args;
4042 args.ino = objectid;
4043 args.root = root;
4044
4045 inode = iget5_locked(s, objectid, btrfs_find_actor,
4046 btrfs_init_locked_inode,
4047 (void *)&args);
4048 return inode;
4049}
4050
1a54ef8c
BR
4051/* Get an inode object given its location and corresponding root.
4052 * Returns in *is_new if the inode was read from disk
4053 */
4054struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4055 struct btrfs_root *root, int *new)
1a54ef8c
BR
4056{
4057 struct inode *inode;
4058
4059 inode = btrfs_iget_locked(s, location->objectid, root);
4060 if (!inode)
5d4f98a2 4061 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4062
4063 if (inode->i_state & I_NEW) {
4064 BTRFS_I(inode)->root = root;
4065 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4066 btrfs_read_locked_inode(inode);
5d4f98a2
YZ
4067
4068 inode_tree_add(inode);
1a54ef8c 4069 unlock_new_inode(inode);
73f73415
JB
4070 if (new)
4071 *new = 1;
1a54ef8c
BR
4072 }
4073
4074 return inode;
4075}
4076
4df27c4d
YZ
4077static struct inode *new_simple_dir(struct super_block *s,
4078 struct btrfs_key *key,
4079 struct btrfs_root *root)
4080{
4081 struct inode *inode = new_inode(s);
4082
4083 if (!inode)
4084 return ERR_PTR(-ENOMEM);
4085
4df27c4d
YZ
4086 BTRFS_I(inode)->root = root;
4087 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4088 BTRFS_I(inode)->dummy_inode = 1;
4089
4090 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4091 inode->i_op = &simple_dir_inode_operations;
4092 inode->i_fop = &simple_dir_operations;
4093 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4094 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4095
4096 return inode;
4097}
4098
3de4586c 4099struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4100{
d397712b 4101 struct inode *inode;
4df27c4d 4102 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4103 struct btrfs_root *sub_root = root;
4104 struct btrfs_key location;
76dda93c 4105 int index;
5d4f98a2 4106 int ret;
39279cc3
CM
4107
4108 if (dentry->d_name.len > BTRFS_NAME_LEN)
4109 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4110
39279cc3 4111 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 4112
39279cc3
CM
4113 if (ret < 0)
4114 return ERR_PTR(ret);
5f39d397 4115
4df27c4d
YZ
4116 if (location.objectid == 0)
4117 return NULL;
4118
4119 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4120 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4121 return inode;
4122 }
4123
4124 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4125
76dda93c 4126 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4127 ret = fixup_tree_root_location(root, dir, dentry,
4128 &location, &sub_root);
4129 if (ret < 0) {
4130 if (ret != -ENOENT)
4131 inode = ERR_PTR(ret);
4132 else
4133 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4134 } else {
73f73415 4135 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4136 }
76dda93c
YZ
4137 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4138
34d19bad 4139 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4140 down_read(&root->fs_info->cleanup_work_sem);
4141 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4142 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4143 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4144 if (ret)
4145 inode = ERR_PTR(ret);
c71bf099
YZ
4146 }
4147
3de4586c
CM
4148 return inode;
4149}
4150
fe15ce44 4151static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4152{
4153 struct btrfs_root *root;
4154
efefb143
YZ
4155 if (!dentry->d_inode && !IS_ROOT(dentry))
4156 dentry = dentry->d_parent;
76dda93c 4157
efefb143
YZ
4158 if (dentry->d_inode) {
4159 root = BTRFS_I(dentry->d_inode)->root;
4160 if (btrfs_root_refs(&root->root_item) == 0)
4161 return 1;
4162 }
76dda93c
YZ
4163 return 0;
4164}
4165
3de4586c
CM
4166static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4167 struct nameidata *nd)
4168{
4169 struct inode *inode;
4170
3de4586c
CM
4171 inode = btrfs_lookup_dentry(dir, dentry);
4172 if (IS_ERR(inode))
4173 return ERR_CAST(inode);
7b128766 4174
39279cc3
CM
4175 return d_splice_alias(inode, dentry);
4176}
4177
39279cc3
CM
4178static unsigned char btrfs_filetype_table[] = {
4179 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4180};
4181
cbdf5a24
DW
4182static int btrfs_real_readdir(struct file *filp, void *dirent,
4183 filldir_t filldir)
39279cc3 4184{
6da6abae 4185 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4186 struct btrfs_root *root = BTRFS_I(inode)->root;
4187 struct btrfs_item *item;
4188 struct btrfs_dir_item *di;
4189 struct btrfs_key key;
5f39d397 4190 struct btrfs_key found_key;
39279cc3
CM
4191 struct btrfs_path *path;
4192 int ret;
4193 u32 nritems;
5f39d397 4194 struct extent_buffer *leaf;
39279cc3
CM
4195 int slot;
4196 int advance;
4197 unsigned char d_type;
4198 int over = 0;
4199 u32 di_cur;
4200 u32 di_total;
4201 u32 di_len;
4202 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4203 char tmp_name[32];
4204 char *name_ptr;
4205 int name_len;
39279cc3
CM
4206
4207 /* FIXME, use a real flag for deciding about the key type */
4208 if (root->fs_info->tree_root == root)
4209 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4210
3954401f
CM
4211 /* special case for "." */
4212 if (filp->f_pos == 0) {
4213 over = filldir(dirent, ".", 1,
4214 1, inode->i_ino,
4215 DT_DIR);
4216 if (over)
4217 return 0;
4218 filp->f_pos = 1;
4219 }
3954401f
CM
4220 /* special case for .., just use the back ref */
4221 if (filp->f_pos == 1) {
5ecc7e5d 4222 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4223 over = filldir(dirent, "..", 2,
5ecc7e5d 4224 2, pino, DT_DIR);
3954401f 4225 if (over)
49593bfa 4226 return 0;
3954401f
CM
4227 filp->f_pos = 2;
4228 }
49593bfa
DW
4229 path = btrfs_alloc_path();
4230 path->reada = 2;
4231
39279cc3
CM
4232 btrfs_set_key_type(&key, key_type);
4233 key.offset = filp->f_pos;
49593bfa 4234 key.objectid = inode->i_ino;
5f39d397 4235
39279cc3
CM
4236 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4237 if (ret < 0)
4238 goto err;
4239 advance = 0;
49593bfa
DW
4240
4241 while (1) {
5f39d397
CM
4242 leaf = path->nodes[0];
4243 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
4244 slot = path->slots[0];
4245 if (advance || slot >= nritems) {
49593bfa 4246 if (slot >= nritems - 1) {
39279cc3
CM
4247 ret = btrfs_next_leaf(root, path);
4248 if (ret)
4249 break;
5f39d397
CM
4250 leaf = path->nodes[0];
4251 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
4252 slot = path->slots[0];
4253 } else {
4254 slot++;
4255 path->slots[0]++;
4256 }
4257 }
3de4586c 4258
39279cc3 4259 advance = 1;
5f39d397
CM
4260 item = btrfs_item_nr(leaf, slot);
4261 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4262
4263 if (found_key.objectid != key.objectid)
39279cc3 4264 break;
5f39d397 4265 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4266 break;
5f39d397 4267 if (found_key.offset < filp->f_pos)
39279cc3 4268 continue;
5f39d397
CM
4269
4270 filp->f_pos = found_key.offset;
49593bfa 4271
39279cc3
CM
4272 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4273 di_cur = 0;
5f39d397 4274 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4275
4276 while (di_cur < di_total) {
5f39d397
CM
4277 struct btrfs_key location;
4278
22a94d44
JB
4279 if (verify_dir_item(root, leaf, di))
4280 break;
4281
5f39d397 4282 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4283 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4284 name_ptr = tmp_name;
4285 } else {
4286 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4287 if (!name_ptr) {
4288 ret = -ENOMEM;
4289 goto err;
4290 }
5f39d397
CM
4291 }
4292 read_extent_buffer(leaf, name_ptr,
4293 (unsigned long)(di + 1), name_len);
4294
4295 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4296 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
4297
4298 /* is this a reference to our own snapshot? If so
4299 * skip it
4300 */
4301 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4302 location.objectid == root->root_key.objectid) {
4303 over = 0;
4304 goto skip;
4305 }
5f39d397 4306 over = filldir(dirent, name_ptr, name_len,
49593bfa 4307 found_key.offset, location.objectid,
39279cc3 4308 d_type);
5f39d397 4309
3de4586c 4310skip:
5f39d397
CM
4311 if (name_ptr != tmp_name)
4312 kfree(name_ptr);
4313
39279cc3
CM
4314 if (over)
4315 goto nopos;
5103e947 4316 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4317 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4318 di_cur += di_len;
4319 di = (struct btrfs_dir_item *)((char *)di + di_len);
4320 }
4321 }
49593bfa
DW
4322
4323 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4324 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4325 /*
4326 * 32-bit glibc will use getdents64, but then strtol -
4327 * so the last number we can serve is this.
4328 */
4329 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4330 else
4331 filp->f_pos++;
39279cc3
CM
4332nopos:
4333 ret = 0;
4334err:
39279cc3 4335 btrfs_free_path(path);
39279cc3
CM
4336 return ret;
4337}
4338
a9185b41 4339int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4340{
4341 struct btrfs_root *root = BTRFS_I(inode)->root;
4342 struct btrfs_trans_handle *trans;
4343 int ret = 0;
0af3d00b 4344 bool nolock = false;
39279cc3 4345
8929ecfa 4346 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4347 return 0;
4348
0af3d00b
JB
4349 smp_mb();
4350 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4351
a9185b41 4352 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b
JB
4353 if (nolock)
4354 trans = btrfs_join_transaction_nolock(root, 1);
4355 else
4356 trans = btrfs_join_transaction(root, 1);
3612b495
TI
4357 if (IS_ERR(trans))
4358 return PTR_ERR(trans);
39279cc3 4359 btrfs_set_trans_block_group(trans, inode);
0af3d00b
JB
4360 if (nolock)
4361 ret = btrfs_end_transaction_nolock(trans, root);
4362 else
4363 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4364 }
4365 return ret;
4366}
4367
4368/*
54aa1f4d 4369 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4370 * inode changes. But, it is most likely to find the inode in cache.
4371 * FIXME, needs more benchmarking...there are no reasons other than performance
4372 * to keep or drop this code.
4373 */
4374void btrfs_dirty_inode(struct inode *inode)
4375{
4376 struct btrfs_root *root = BTRFS_I(inode)->root;
4377 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4378 int ret;
4379
4380 if (BTRFS_I(inode)->dummy_inode)
4381 return;
39279cc3 4382
f9295749 4383 trans = btrfs_join_transaction(root, 1);
3612b495 4384 BUG_ON(IS_ERR(trans));
39279cc3 4385 btrfs_set_trans_block_group(trans, inode);
8929ecfa
YZ
4386
4387 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4388 if (ret && ret == -ENOSPC) {
4389 /* whoops, lets try again with the full transaction */
4390 btrfs_end_transaction(trans, root);
4391 trans = btrfs_start_transaction(root, 1);
9aeead73
CM
4392 if (IS_ERR(trans)) {
4393 if (printk_ratelimit()) {
4394 printk(KERN_ERR "btrfs: fail to "
4395 "dirty inode %lu error %ld\n",
4396 inode->i_ino, PTR_ERR(trans));
4397 }
4398 return;
4399 }
94b60442 4400 btrfs_set_trans_block_group(trans, inode);
8929ecfa 4401
94b60442
CM
4402 ret = btrfs_update_inode(trans, root, inode);
4403 if (ret) {
9aeead73
CM
4404 if (printk_ratelimit()) {
4405 printk(KERN_ERR "btrfs: fail to "
4406 "dirty inode %lu error %d\n",
4407 inode->i_ino, ret);
4408 }
94b60442
CM
4409 }
4410 }
39279cc3 4411 btrfs_end_transaction(trans, root);
39279cc3
CM
4412}
4413
d352ac68
CM
4414/*
4415 * find the highest existing sequence number in a directory
4416 * and then set the in-memory index_cnt variable to reflect
4417 * free sequence numbers
4418 */
aec7477b
JB
4419static int btrfs_set_inode_index_count(struct inode *inode)
4420{
4421 struct btrfs_root *root = BTRFS_I(inode)->root;
4422 struct btrfs_key key, found_key;
4423 struct btrfs_path *path;
4424 struct extent_buffer *leaf;
4425 int ret;
4426
4427 key.objectid = inode->i_ino;
4428 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4429 key.offset = (u64)-1;
4430
4431 path = btrfs_alloc_path();
4432 if (!path)
4433 return -ENOMEM;
4434
4435 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4436 if (ret < 0)
4437 goto out;
4438 /* FIXME: we should be able to handle this */
4439 if (ret == 0)
4440 goto out;
4441 ret = 0;
4442
4443 /*
4444 * MAGIC NUMBER EXPLANATION:
4445 * since we search a directory based on f_pos we have to start at 2
4446 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4447 * else has to start at 2
4448 */
4449 if (path->slots[0] == 0) {
4450 BTRFS_I(inode)->index_cnt = 2;
4451 goto out;
4452 }
4453
4454 path->slots[0]--;
4455
4456 leaf = path->nodes[0];
4457 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4458
4459 if (found_key.objectid != inode->i_ino ||
4460 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4461 BTRFS_I(inode)->index_cnt = 2;
4462 goto out;
4463 }
4464
4465 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4466out:
4467 btrfs_free_path(path);
4468 return ret;
4469}
4470
d352ac68
CM
4471/*
4472 * helper to find a free sequence number in a given directory. This current
4473 * code is very simple, later versions will do smarter things in the btree
4474 */
3de4586c 4475int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4476{
4477 int ret = 0;
4478
4479 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4480 ret = btrfs_set_inode_index_count(dir);
d397712b 4481 if (ret)
aec7477b
JB
4482 return ret;
4483 }
4484
00e4e6b3 4485 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4486 BTRFS_I(dir)->index_cnt++;
4487
4488 return ret;
4489}
4490
39279cc3
CM
4491static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4492 struct btrfs_root *root,
aec7477b 4493 struct inode *dir,
9c58309d 4494 const char *name, int name_len,
d2fb3437
YZ
4495 u64 ref_objectid, u64 objectid,
4496 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
4497{
4498 struct inode *inode;
5f39d397 4499 struct btrfs_inode_item *inode_item;
39279cc3 4500 struct btrfs_key *location;
5f39d397 4501 struct btrfs_path *path;
9c58309d
CM
4502 struct btrfs_inode_ref *ref;
4503 struct btrfs_key key[2];
4504 u32 sizes[2];
4505 unsigned long ptr;
39279cc3
CM
4506 int ret;
4507 int owner;
4508
5f39d397
CM
4509 path = btrfs_alloc_path();
4510 BUG_ON(!path);
4511
39279cc3
CM
4512 inode = new_inode(root->fs_info->sb);
4513 if (!inode)
4514 return ERR_PTR(-ENOMEM);
4515
aec7477b 4516 if (dir) {
1abe9b8a 4517 trace_btrfs_inode_request(dir);
4518
3de4586c 4519 ret = btrfs_set_inode_index(dir, index);
09771430
SF
4520 if (ret) {
4521 iput(inode);
aec7477b 4522 return ERR_PTR(ret);
09771430 4523 }
aec7477b
JB
4524 }
4525 /*
4526 * index_cnt is ignored for everything but a dir,
4527 * btrfs_get_inode_index_count has an explanation for the magic
4528 * number
4529 */
4530 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4531 BTRFS_I(inode)->root = root;
e02119d5 4532 BTRFS_I(inode)->generation = trans->transid;
76195853 4533 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4534 btrfs_set_inode_space_info(root, inode);
b888db2b 4535
39279cc3
CM
4536 if (mode & S_IFDIR)
4537 owner = 0;
4538 else
4539 owner = 1;
d2fb3437
YZ
4540 BTRFS_I(inode)->block_group =
4541 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
4542
4543 key[0].objectid = objectid;
4544 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4545 key[0].offset = 0;
4546
4547 key[1].objectid = objectid;
4548 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4549 key[1].offset = ref_objectid;
4550
4551 sizes[0] = sizeof(struct btrfs_inode_item);
4552 sizes[1] = name_len + sizeof(*ref);
4553
b9473439 4554 path->leave_spinning = 1;
9c58309d
CM
4555 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4556 if (ret != 0)
5f39d397
CM
4557 goto fail;
4558
ecc11fab 4559 inode_init_owner(inode, dir, mode);
39279cc3 4560 inode->i_ino = objectid;
a76a3cd4 4561 inode_set_bytes(inode, 0);
39279cc3 4562 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4563 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4564 struct btrfs_inode_item);
e02119d5 4565 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4566
4567 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4568 struct btrfs_inode_ref);
4569 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4570 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4571 ptr = (unsigned long)(ref + 1);
4572 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4573
5f39d397
CM
4574 btrfs_mark_buffer_dirty(path->nodes[0]);
4575 btrfs_free_path(path);
4576
39279cc3
CM
4577 location = &BTRFS_I(inode)->location;
4578 location->objectid = objectid;
39279cc3
CM
4579 location->offset = 0;
4580 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4581
6cbff00f
CH
4582 btrfs_inherit_iflags(inode, dir);
4583
94272164
CM
4584 if ((mode & S_IFREG)) {
4585 if (btrfs_test_opt(root, NODATASUM))
4586 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4587 if (btrfs_test_opt(root, NODATACOW))
4588 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4589 }
4590
39279cc3 4591 insert_inode_hash(inode);
5d4f98a2 4592 inode_tree_add(inode);
1abe9b8a 4593
4594 trace_btrfs_inode_new(inode);
4595
39279cc3 4596 return inode;
5f39d397 4597fail:
aec7477b
JB
4598 if (dir)
4599 BTRFS_I(dir)->index_cnt--;
5f39d397 4600 btrfs_free_path(path);
09771430 4601 iput(inode);
5f39d397 4602 return ERR_PTR(ret);
39279cc3
CM
4603}
4604
4605static inline u8 btrfs_inode_type(struct inode *inode)
4606{
4607 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4608}
4609
d352ac68
CM
4610/*
4611 * utility function to add 'inode' into 'parent_inode' with
4612 * a give name and a given sequence number.
4613 * if 'add_backref' is true, also insert a backref from the
4614 * inode to the parent directory.
4615 */
e02119d5
CM
4616int btrfs_add_link(struct btrfs_trans_handle *trans,
4617 struct inode *parent_inode, struct inode *inode,
4618 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4619{
4df27c4d 4620 int ret = 0;
39279cc3 4621 struct btrfs_key key;
e02119d5 4622 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 4623
4df27c4d
YZ
4624 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4625 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4626 } else {
4627 key.objectid = inode->i_ino;
4628 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4629 key.offset = 0;
4630 }
4631
4632 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4633 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4634 key.objectid, root->root_key.objectid,
4635 parent_inode->i_ino,
4636 index, name, name_len);
4637 } else if (add_backref) {
4638 ret = btrfs_insert_inode_ref(trans, root,
4639 name, name_len, inode->i_ino,
4640 parent_inode->i_ino, index);
4641 }
39279cc3 4642
39279cc3 4643 if (ret == 0) {
4df27c4d
YZ
4644 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4645 parent_inode->i_ino, &key,
4646 btrfs_inode_type(inode), index);
4647 BUG_ON(ret);
4648
dbe674a9 4649 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4650 name_len * 2);
79c44584 4651 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4652 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4653 }
4654 return ret;
4655}
4656
4657static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4658 struct inode *dir, struct dentry *dentry,
4659 struct inode *inode, int backref, u64 index)
39279cc3 4660{
a1b075d2
JB
4661 int err = btrfs_add_link(trans, dir, inode,
4662 dentry->d_name.name, dentry->d_name.len,
4663 backref, index);
39279cc3
CM
4664 if (!err) {
4665 d_instantiate(dentry, inode);
4666 return 0;
4667 }
4668 if (err > 0)
4669 err = -EEXIST;
4670 return err;
4671}
4672
618e21d5
JB
4673static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4674 int mode, dev_t rdev)
4675{
4676 struct btrfs_trans_handle *trans;
4677 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4678 struct inode *inode = NULL;
618e21d5
JB
4679 int err;
4680 int drop_inode = 0;
4681 u64 objectid;
1832a6d5 4682 unsigned long nr = 0;
00e4e6b3 4683 u64 index = 0;
618e21d5
JB
4684
4685 if (!new_valid_dev(rdev))
4686 return -EINVAL;
4687
a22285a6
YZ
4688 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4689 if (err)
4690 return err;
4691
9ed74f2d
JB
4692 /*
4693 * 2 for inode item and ref
4694 * 2 for dir items
4695 * 1 for xattr if selinux is on
4696 */
a22285a6
YZ
4697 trans = btrfs_start_transaction(root, 5);
4698 if (IS_ERR(trans))
4699 return PTR_ERR(trans);
1832a6d5 4700
618e21d5
JB
4701 btrfs_set_trans_block_group(trans, dir);
4702
aec7477b 4703 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 4704 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3 4705 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
4706 err = PTR_ERR(inode);
4707 if (IS_ERR(inode))
4708 goto out_unlock;
4709
f34f57a3 4710 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4711 if (err) {
4712 drop_inode = 1;
4713 goto out_unlock;
4714 }
4715
618e21d5 4716 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4717 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4718 if (err)
4719 drop_inode = 1;
4720 else {
4721 inode->i_op = &btrfs_special_inode_operations;
4722 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4723 btrfs_update_inode(trans, root, inode);
618e21d5 4724 }
618e21d5
JB
4725 btrfs_update_inode_block_group(trans, inode);
4726 btrfs_update_inode_block_group(trans, dir);
4727out_unlock:
d3c2fdcf 4728 nr = trans->blocks_used;
89ce8a63 4729 btrfs_end_transaction_throttle(trans, root);
a22285a6 4730 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4731 if (drop_inode) {
4732 inode_dec_link_count(inode);
4733 iput(inode);
4734 }
618e21d5
JB
4735 return err;
4736}
4737
39279cc3
CM
4738static int btrfs_create(struct inode *dir, struct dentry *dentry,
4739 int mode, struct nameidata *nd)
4740{
4741 struct btrfs_trans_handle *trans;
4742 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4743 struct inode *inode = NULL;
39279cc3 4744 int drop_inode = 0;
a22285a6 4745 int err;
1832a6d5 4746 unsigned long nr = 0;
39279cc3 4747 u64 objectid;
00e4e6b3 4748 u64 index = 0;
39279cc3 4749
a22285a6
YZ
4750 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4751 if (err)
4752 return err;
9ed74f2d
JB
4753 /*
4754 * 2 for inode item and ref
4755 * 2 for dir items
4756 * 1 for xattr if selinux is on
4757 */
a22285a6
YZ
4758 trans = btrfs_start_transaction(root, 5);
4759 if (IS_ERR(trans))
4760 return PTR_ERR(trans);
9ed74f2d 4761
39279cc3
CM
4762 btrfs_set_trans_block_group(trans, dir);
4763
aec7477b 4764 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2
JB
4765 dentry->d_name.len, dir->i_ino, objectid,
4766 BTRFS_I(dir)->block_group, mode, &index);
39279cc3
CM
4767 err = PTR_ERR(inode);
4768 if (IS_ERR(inode))
4769 goto out_unlock;
4770
f34f57a3 4771 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4772 if (err) {
4773 drop_inode = 1;
4774 goto out_unlock;
4775 }
4776
39279cc3 4777 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4778 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4779 if (err)
4780 drop_inode = 1;
4781 else {
4782 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4783 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4784 inode->i_fop = &btrfs_file_operations;
4785 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4786 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4787 }
39279cc3
CM
4788 btrfs_update_inode_block_group(trans, inode);
4789 btrfs_update_inode_block_group(trans, dir);
4790out_unlock:
d3c2fdcf 4791 nr = trans->blocks_used;
ab78c84d 4792 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4793 if (drop_inode) {
4794 inode_dec_link_count(inode);
4795 iput(inode);
4796 }
d3c2fdcf 4797 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4798 return err;
4799}
4800
4801static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4802 struct dentry *dentry)
4803{
4804 struct btrfs_trans_handle *trans;
4805 struct btrfs_root *root = BTRFS_I(dir)->root;
4806 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4807 u64 index;
1832a6d5 4808 unsigned long nr = 0;
39279cc3
CM
4809 int err;
4810 int drop_inode = 0;
4811
4812 if (inode->i_nlink == 0)
4813 return -ENOENT;
4814
4a8be425
TH
4815 /* do not allow sys_link's with other subvols of the same device */
4816 if (root->objectid != BTRFS_I(inode)->root->objectid)
4817 return -EPERM;
4818
9ed74f2d 4819 btrfs_inc_nlink(inode);
bc1cbf1f 4820 inode->i_ctime = CURRENT_TIME;
9ed74f2d 4821
3de4586c 4822 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4823 if (err)
4824 goto fail;
4825
a22285a6 4826 /*
7e6b6465 4827 * 2 items for inode and inode ref
a22285a6 4828 * 2 items for dir items
7e6b6465 4829 * 1 item for parent inode
a22285a6 4830 */
7e6b6465 4831 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4832 if (IS_ERR(trans)) {
4833 err = PTR_ERR(trans);
4834 goto fail;
4835 }
5f39d397 4836
39279cc3 4837 btrfs_set_trans_block_group(trans, dir);
7de9c6ee 4838 ihold(inode);
aec7477b 4839
a1b075d2 4840 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4841
a5719521 4842 if (err) {
54aa1f4d 4843 drop_inode = 1;
a5719521 4844 } else {
6a912213 4845 struct dentry *parent = dget_parent(dentry);
a5719521
YZ
4846 btrfs_update_inode_block_group(trans, dir);
4847 err = btrfs_update_inode(trans, root, inode);
4848 BUG_ON(err);
6a912213
JB
4849 btrfs_log_new_name(trans, inode, NULL, parent);
4850 dput(parent);
a5719521 4851 }
39279cc3 4852
d3c2fdcf 4853 nr = trans->blocks_used;
ab78c84d 4854 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4855fail:
39279cc3
CM
4856 if (drop_inode) {
4857 inode_dec_link_count(inode);
4858 iput(inode);
4859 }
d3c2fdcf 4860 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4861 return err;
4862}
4863
39279cc3
CM
4864static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4865{
b9d86667 4866 struct inode *inode = NULL;
39279cc3
CM
4867 struct btrfs_trans_handle *trans;
4868 struct btrfs_root *root = BTRFS_I(dir)->root;
4869 int err = 0;
4870 int drop_on_err = 0;
b9d86667 4871 u64 objectid = 0;
00e4e6b3 4872 u64 index = 0;
d3c2fdcf 4873 unsigned long nr = 1;
39279cc3 4874
a22285a6
YZ
4875 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4876 if (err)
4877 return err;
4878
9ed74f2d
JB
4879 /*
4880 * 2 items for inode and ref
4881 * 2 items for dir items
4882 * 1 for xattr if selinux is on
4883 */
a22285a6
YZ
4884 trans = btrfs_start_transaction(root, 5);
4885 if (IS_ERR(trans))
4886 return PTR_ERR(trans);
9ed74f2d 4887 btrfs_set_trans_block_group(trans, dir);
39279cc3 4888
aec7477b 4889 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 4890 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3
CM
4891 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4892 &index);
39279cc3
CM
4893 if (IS_ERR(inode)) {
4894 err = PTR_ERR(inode);
4895 goto out_fail;
4896 }
5f39d397 4897
39279cc3 4898 drop_on_err = 1;
33268eaf 4899
f34f57a3 4900 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4901 if (err)
4902 goto out_fail;
4903
39279cc3
CM
4904 inode->i_op = &btrfs_dir_inode_operations;
4905 inode->i_fop = &btrfs_dir_file_operations;
4906 btrfs_set_trans_block_group(trans, inode);
4907
dbe674a9 4908 btrfs_i_size_write(inode, 0);
39279cc3
CM
4909 err = btrfs_update_inode(trans, root, inode);
4910 if (err)
4911 goto out_fail;
5f39d397 4912
a1b075d2
JB
4913 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4914 dentry->d_name.len, 0, index);
39279cc3
CM
4915 if (err)
4916 goto out_fail;
5f39d397 4917
39279cc3
CM
4918 d_instantiate(dentry, inode);
4919 drop_on_err = 0;
39279cc3
CM
4920 btrfs_update_inode_block_group(trans, inode);
4921 btrfs_update_inode_block_group(trans, dir);
4922
4923out_fail:
d3c2fdcf 4924 nr = trans->blocks_used;
ab78c84d 4925 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4926 if (drop_on_err)
4927 iput(inode);
d3c2fdcf 4928 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4929 return err;
4930}
4931
d352ac68
CM
4932/* helper for btfs_get_extent. Given an existing extent in the tree,
4933 * and an extent that you want to insert, deal with overlap and insert
4934 * the new extent into the tree.
4935 */
3b951516
CM
4936static int merge_extent_mapping(struct extent_map_tree *em_tree,
4937 struct extent_map *existing,
e6dcd2dc
CM
4938 struct extent_map *em,
4939 u64 map_start, u64 map_len)
3b951516
CM
4940{
4941 u64 start_diff;
3b951516 4942
e6dcd2dc
CM
4943 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4944 start_diff = map_start - em->start;
4945 em->start = map_start;
4946 em->len = map_len;
c8b97818
CM
4947 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4948 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4949 em->block_start += start_diff;
c8b97818
CM
4950 em->block_len -= start_diff;
4951 }
e6dcd2dc 4952 return add_extent_mapping(em_tree, em);
3b951516
CM
4953}
4954
c8b97818
CM
4955static noinline int uncompress_inline(struct btrfs_path *path,
4956 struct inode *inode, struct page *page,
4957 size_t pg_offset, u64 extent_offset,
4958 struct btrfs_file_extent_item *item)
4959{
4960 int ret;
4961 struct extent_buffer *leaf = path->nodes[0];
4962 char *tmp;
4963 size_t max_size;
4964 unsigned long inline_size;
4965 unsigned long ptr;
261507a0 4966 int compress_type;
c8b97818
CM
4967
4968 WARN_ON(pg_offset != 0);
261507a0 4969 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
4970 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4971 inline_size = btrfs_file_extent_inline_item_len(leaf,
4972 btrfs_item_nr(leaf, path->slots[0]));
4973 tmp = kmalloc(inline_size, GFP_NOFS);
4974 ptr = btrfs_file_extent_inline_start(item);
4975
4976 read_extent_buffer(leaf, tmp, ptr, inline_size);
4977
5b050f04 4978 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
4979 ret = btrfs_decompress(compress_type, tmp, page,
4980 extent_offset, inline_size, max_size);
c8b97818
CM
4981 if (ret) {
4982 char *kaddr = kmap_atomic(page, KM_USER0);
4983 unsigned long copy_size = min_t(u64,
4984 PAGE_CACHE_SIZE - pg_offset,
4985 max_size - extent_offset);
4986 memset(kaddr + pg_offset, 0, copy_size);
4987 kunmap_atomic(kaddr, KM_USER0);
4988 }
4989 kfree(tmp);
4990 return 0;
4991}
4992
d352ac68
CM
4993/*
4994 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4995 * the ugly parts come from merging extents from the disk with the in-ram
4996 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4997 * where the in-ram extents might be locked pending data=ordered completion.
4998 *
4999 * This also copies inline extents directly into the page.
5000 */
d397712b 5001
a52d9a80 5002struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5003 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5004 int create)
5005{
5006 int ret;
5007 int err = 0;
db94535d 5008 u64 bytenr;
a52d9a80
CM
5009 u64 extent_start = 0;
5010 u64 extent_end = 0;
5011 u64 objectid = inode->i_ino;
5012 u32 found_type;
f421950f 5013 struct btrfs_path *path = NULL;
a52d9a80
CM
5014 struct btrfs_root *root = BTRFS_I(inode)->root;
5015 struct btrfs_file_extent_item *item;
5f39d397
CM
5016 struct extent_buffer *leaf;
5017 struct btrfs_key found_key;
a52d9a80
CM
5018 struct extent_map *em = NULL;
5019 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5020 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5021 struct btrfs_trans_handle *trans = NULL;
261507a0 5022 int compress_type;
a52d9a80 5023
a52d9a80 5024again:
890871be 5025 read_lock(&em_tree->lock);
d1310b2e 5026 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5027 if (em)
5028 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5029 read_unlock(&em_tree->lock);
d1310b2e 5030
a52d9a80 5031 if (em) {
e1c4b745
CM
5032 if (em->start > start || em->start + em->len <= start)
5033 free_extent_map(em);
5034 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5035 free_extent_map(em);
5036 else
5037 goto out;
a52d9a80 5038 }
d1310b2e 5039 em = alloc_extent_map(GFP_NOFS);
a52d9a80 5040 if (!em) {
d1310b2e
CM
5041 err = -ENOMEM;
5042 goto out;
a52d9a80 5043 }
e6dcd2dc 5044 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5045 em->start = EXTENT_MAP_HOLE;
445a6944 5046 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5047 em->len = (u64)-1;
c8b97818 5048 em->block_len = (u64)-1;
f421950f
CM
5049
5050 if (!path) {
5051 path = btrfs_alloc_path();
5052 BUG_ON(!path);
5053 }
5054
179e29e4
CM
5055 ret = btrfs_lookup_file_extent(trans, root, path,
5056 objectid, start, trans != NULL);
a52d9a80
CM
5057 if (ret < 0) {
5058 err = ret;
5059 goto out;
5060 }
5061
5062 if (ret != 0) {
5063 if (path->slots[0] == 0)
5064 goto not_found;
5065 path->slots[0]--;
5066 }
5067
5f39d397
CM
5068 leaf = path->nodes[0];
5069 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5070 struct btrfs_file_extent_item);
a52d9a80 5071 /* are we inside the extent that was found? */
5f39d397
CM
5072 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5073 found_type = btrfs_key_type(&found_key);
5074 if (found_key.objectid != objectid ||
a52d9a80
CM
5075 found_type != BTRFS_EXTENT_DATA_KEY) {
5076 goto not_found;
5077 }
5078
5f39d397
CM
5079 found_type = btrfs_file_extent_type(leaf, item);
5080 extent_start = found_key.offset;
261507a0 5081 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5082 if (found_type == BTRFS_FILE_EXTENT_REG ||
5083 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5084 extent_end = extent_start +
db94535d 5085 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5086 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5087 size_t size;
5088 size = btrfs_file_extent_inline_len(leaf, item);
5089 extent_end = (extent_start + size + root->sectorsize - 1) &
5090 ~((u64)root->sectorsize - 1);
5091 }
5092
5093 if (start >= extent_end) {
5094 path->slots[0]++;
5095 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5096 ret = btrfs_next_leaf(root, path);
5097 if (ret < 0) {
5098 err = ret;
5099 goto out;
a52d9a80 5100 }
9036c102
YZ
5101 if (ret > 0)
5102 goto not_found;
5103 leaf = path->nodes[0];
a52d9a80 5104 }
9036c102
YZ
5105 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5106 if (found_key.objectid != objectid ||
5107 found_key.type != BTRFS_EXTENT_DATA_KEY)
5108 goto not_found;
5109 if (start + len <= found_key.offset)
5110 goto not_found;
5111 em->start = start;
5112 em->len = found_key.offset - start;
5113 goto not_found_em;
5114 }
5115
d899e052
YZ
5116 if (found_type == BTRFS_FILE_EXTENT_REG ||
5117 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5118 em->start = extent_start;
5119 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5120 em->orig_start = extent_start -
5121 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5122 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5123 if (bytenr == 0) {
5f39d397 5124 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5125 goto insert;
5126 }
261507a0 5127 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5128 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5129 em->compress_type = compress_type;
c8b97818
CM
5130 em->block_start = bytenr;
5131 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5132 item);
5133 } else {
5134 bytenr += btrfs_file_extent_offset(leaf, item);
5135 em->block_start = bytenr;
5136 em->block_len = em->len;
d899e052
YZ
5137 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5138 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5139 }
a52d9a80
CM
5140 goto insert;
5141 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5142 unsigned long ptr;
a52d9a80 5143 char *map;
3326d1b0
CM
5144 size_t size;
5145 size_t extent_offset;
5146 size_t copy_size;
a52d9a80 5147
689f9346 5148 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5149 if (!page || create) {
689f9346 5150 em->start = extent_start;
9036c102 5151 em->len = extent_end - extent_start;
689f9346
Y
5152 goto out;
5153 }
5f39d397 5154
9036c102
YZ
5155 size = btrfs_file_extent_inline_len(leaf, item);
5156 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5157 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5158 size - extent_offset);
3326d1b0 5159 em->start = extent_start + extent_offset;
70dec807
CM
5160 em->len = (copy_size + root->sectorsize - 1) &
5161 ~((u64)root->sectorsize - 1);
ff5b7ee3 5162 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5163 if (compress_type) {
c8b97818 5164 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5165 em->compress_type = compress_type;
5166 }
689f9346 5167 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5168 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5169 if (btrfs_file_extent_compression(leaf, item) !=
5170 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5171 ret = uncompress_inline(path, inode, page,
5172 pg_offset,
5173 extent_offset, item);
5174 BUG_ON(ret);
5175 } else {
5176 map = kmap(page);
5177 read_extent_buffer(leaf, map + pg_offset, ptr,
5178 copy_size);
93c82d57
CM
5179 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5180 memset(map + pg_offset + copy_size, 0,
5181 PAGE_CACHE_SIZE - pg_offset -
5182 copy_size);
5183 }
c8b97818
CM
5184 kunmap(page);
5185 }
179e29e4
CM
5186 flush_dcache_page(page);
5187 } else if (create && PageUptodate(page)) {
0ca1f7ce 5188 WARN_ON(1);
179e29e4
CM
5189 if (!trans) {
5190 kunmap(page);
5191 free_extent_map(em);
5192 em = NULL;
5193 btrfs_release_path(root, path);
f9295749 5194 trans = btrfs_join_transaction(root, 1);
3612b495
TI
5195 if (IS_ERR(trans))
5196 return ERR_CAST(trans);
179e29e4
CM
5197 goto again;
5198 }
c8b97818 5199 map = kmap(page);
70dec807 5200 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5201 copy_size);
c8b97818 5202 kunmap(page);
179e29e4 5203 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5204 }
d1310b2e
CM
5205 set_extent_uptodate(io_tree, em->start,
5206 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
5207 goto insert;
5208 } else {
d397712b 5209 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5210 WARN_ON(1);
5211 }
5212not_found:
5213 em->start = start;
d1310b2e 5214 em->len = len;
a52d9a80 5215not_found_em:
5f39d397 5216 em->block_start = EXTENT_MAP_HOLE;
9036c102 5217 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
5218insert:
5219 btrfs_release_path(root, path);
d1310b2e 5220 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5221 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5222 "[%llu %llu]\n", (unsigned long long)em->start,
5223 (unsigned long long)em->len,
5224 (unsigned long long)start,
5225 (unsigned long long)len);
a52d9a80
CM
5226 err = -EIO;
5227 goto out;
5228 }
d1310b2e
CM
5229
5230 err = 0;
890871be 5231 write_lock(&em_tree->lock);
a52d9a80 5232 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5233 /* it is possible that someone inserted the extent into the tree
5234 * while we had the lock dropped. It is also possible that
5235 * an overlapping map exists in the tree
5236 */
a52d9a80 5237 if (ret == -EEXIST) {
3b951516 5238 struct extent_map *existing;
e6dcd2dc
CM
5239
5240 ret = 0;
5241
3b951516 5242 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5243 if (existing && (existing->start > start ||
5244 existing->start + existing->len <= start)) {
5245 free_extent_map(existing);
5246 existing = NULL;
5247 }
3b951516
CM
5248 if (!existing) {
5249 existing = lookup_extent_mapping(em_tree, em->start,
5250 em->len);
5251 if (existing) {
5252 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5253 em, start,
5254 root->sectorsize);
3b951516
CM
5255 free_extent_map(existing);
5256 if (err) {
5257 free_extent_map(em);
5258 em = NULL;
5259 }
5260 } else {
5261 err = -EIO;
3b951516
CM
5262 free_extent_map(em);
5263 em = NULL;
5264 }
5265 } else {
5266 free_extent_map(em);
5267 em = existing;
e6dcd2dc 5268 err = 0;
a52d9a80 5269 }
a52d9a80 5270 }
890871be 5271 write_unlock(&em_tree->lock);
a52d9a80 5272out:
1abe9b8a 5273
5274 trace_btrfs_get_extent(root, em);
5275
f421950f
CM
5276 if (path)
5277 btrfs_free_path(path);
a52d9a80
CM
5278 if (trans) {
5279 ret = btrfs_end_transaction(trans, root);
d397712b 5280 if (!err)
a52d9a80
CM
5281 err = ret;
5282 }
a52d9a80
CM
5283 if (err) {
5284 free_extent_map(em);
a52d9a80
CM
5285 return ERR_PTR(err);
5286 }
5287 return em;
5288}
5289
ec29ed5b
CM
5290struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5291 size_t pg_offset, u64 start, u64 len,
5292 int create)
5293{
5294 struct extent_map *em;
5295 struct extent_map *hole_em = NULL;
5296 u64 range_start = start;
5297 u64 end;
5298 u64 found;
5299 u64 found_end;
5300 int err = 0;
5301
5302 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5303 if (IS_ERR(em))
5304 return em;
5305 if (em) {
5306 /*
5307 * if our em maps to a hole, there might
5308 * actually be delalloc bytes behind it
5309 */
5310 if (em->block_start != EXTENT_MAP_HOLE)
5311 return em;
5312 else
5313 hole_em = em;
5314 }
5315
5316 /* check to see if we've wrapped (len == -1 or similar) */
5317 end = start + len;
5318 if (end < start)
5319 end = (u64)-1;
5320 else
5321 end -= 1;
5322
5323 em = NULL;
5324
5325 /* ok, we didn't find anything, lets look for delalloc */
5326 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5327 end, len, EXTENT_DELALLOC, 1);
5328 found_end = range_start + found;
5329 if (found_end < range_start)
5330 found_end = (u64)-1;
5331
5332 /*
5333 * we didn't find anything useful, return
5334 * the original results from get_extent()
5335 */
5336 if (range_start > end || found_end <= start) {
5337 em = hole_em;
5338 hole_em = NULL;
5339 goto out;
5340 }
5341
5342 /* adjust the range_start to make sure it doesn't
5343 * go backwards from the start they passed in
5344 */
5345 range_start = max(start,range_start);
5346 found = found_end - range_start;
5347
5348 if (found > 0) {
5349 u64 hole_start = start;
5350 u64 hole_len = len;
5351
5352 em = alloc_extent_map(GFP_NOFS);
5353 if (!em) {
5354 err = -ENOMEM;
5355 goto out;
5356 }
5357 /*
5358 * when btrfs_get_extent can't find anything it
5359 * returns one huge hole
5360 *
5361 * make sure what it found really fits our range, and
5362 * adjust to make sure it is based on the start from
5363 * the caller
5364 */
5365 if (hole_em) {
5366 u64 calc_end = extent_map_end(hole_em);
5367
5368 if (calc_end <= start || (hole_em->start > end)) {
5369 free_extent_map(hole_em);
5370 hole_em = NULL;
5371 } else {
5372 hole_start = max(hole_em->start, start);
5373 hole_len = calc_end - hole_start;
5374 }
5375 }
5376 em->bdev = NULL;
5377 if (hole_em && range_start > hole_start) {
5378 /* our hole starts before our delalloc, so we
5379 * have to return just the parts of the hole
5380 * that go until the delalloc starts
5381 */
5382 em->len = min(hole_len,
5383 range_start - hole_start);
5384 em->start = hole_start;
5385 em->orig_start = hole_start;
5386 /*
5387 * don't adjust block start at all,
5388 * it is fixed at EXTENT_MAP_HOLE
5389 */
5390 em->block_start = hole_em->block_start;
5391 em->block_len = hole_len;
5392 } else {
5393 em->start = range_start;
5394 em->len = found;
5395 em->orig_start = range_start;
5396 em->block_start = EXTENT_MAP_DELALLOC;
5397 em->block_len = found;
5398 }
5399 } else if (hole_em) {
5400 return hole_em;
5401 }
5402out:
5403
5404 free_extent_map(hole_em);
5405 if (err) {
5406 free_extent_map(em);
5407 return ERR_PTR(err);
5408 }
5409 return em;
5410}
5411
4b46fce2
JB
5412static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5413 u64 start, u64 len)
5414{
5415 struct btrfs_root *root = BTRFS_I(inode)->root;
5416 struct btrfs_trans_handle *trans;
5417 struct extent_map *em;
5418 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5419 struct btrfs_key ins;
5420 u64 alloc_hint;
5421 int ret;
5422
5423 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5424
5425 trans = btrfs_join_transaction(root, 0);
3612b495
TI
5426 if (IS_ERR(trans))
5427 return ERR_CAST(trans);
4b46fce2
JB
5428
5429 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5430
5431 alloc_hint = get_extent_allocation_hint(inode, start, len);
5432 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5433 alloc_hint, (u64)-1, &ins, 1);
5434 if (ret) {
5435 em = ERR_PTR(ret);
5436 goto out;
5437 }
5438
5439 em = alloc_extent_map(GFP_NOFS);
5440 if (!em) {
5441 em = ERR_PTR(-ENOMEM);
5442 goto out;
5443 }
5444
5445 em->start = start;
5446 em->orig_start = em->start;
5447 em->len = ins.offset;
5448
5449 em->block_start = ins.objectid;
5450 em->block_len = ins.offset;
5451 em->bdev = root->fs_info->fs_devices->latest_bdev;
5452 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5453
5454 while (1) {
5455 write_lock(&em_tree->lock);
5456 ret = add_extent_mapping(em_tree, em);
5457 write_unlock(&em_tree->lock);
5458 if (ret != -EEXIST)
5459 break;
5460 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5461 }
5462
5463 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5464 ins.offset, ins.offset, 0);
5465 if (ret) {
5466 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5467 em = ERR_PTR(ret);
5468 }
5469out:
5470 btrfs_end_transaction(trans, root);
5471 return em;
5472}
5473
46bfbb5c
CM
5474/*
5475 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5476 * block must be cow'd
5477 */
5478static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5479 struct inode *inode, u64 offset, u64 len)
5480{
5481 struct btrfs_path *path;
5482 int ret;
5483 struct extent_buffer *leaf;
5484 struct btrfs_root *root = BTRFS_I(inode)->root;
5485 struct btrfs_file_extent_item *fi;
5486 struct btrfs_key key;
5487 u64 disk_bytenr;
5488 u64 backref_offset;
5489 u64 extent_end;
5490 u64 num_bytes;
5491 int slot;
5492 int found_type;
5493
5494 path = btrfs_alloc_path();
5495 if (!path)
5496 return -ENOMEM;
5497
5498 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5499 offset, 0);
5500 if (ret < 0)
5501 goto out;
5502
5503 slot = path->slots[0];
5504 if (ret == 1) {
5505 if (slot == 0) {
5506 /* can't find the item, must cow */
5507 ret = 0;
5508 goto out;
5509 }
5510 slot--;
5511 }
5512 ret = 0;
5513 leaf = path->nodes[0];
5514 btrfs_item_key_to_cpu(leaf, &key, slot);
5515 if (key.objectid != inode->i_ino ||
5516 key.type != BTRFS_EXTENT_DATA_KEY) {
5517 /* not our file or wrong item type, must cow */
5518 goto out;
5519 }
5520
5521 if (key.offset > offset) {
5522 /* Wrong offset, must cow */
5523 goto out;
5524 }
5525
5526 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5527 found_type = btrfs_file_extent_type(leaf, fi);
5528 if (found_type != BTRFS_FILE_EXTENT_REG &&
5529 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5530 /* not a regular extent, must cow */
5531 goto out;
5532 }
5533 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5534 backref_offset = btrfs_file_extent_offset(leaf, fi);
5535
5536 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5537 if (extent_end < offset + len) {
5538 /* extent doesn't include our full range, must cow */
5539 goto out;
5540 }
5541
5542 if (btrfs_extent_readonly(root, disk_bytenr))
5543 goto out;
5544
5545 /*
5546 * look for other files referencing this extent, if we
5547 * find any we must cow
5548 */
5549 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5550 key.offset - backref_offset, disk_bytenr))
5551 goto out;
5552
5553 /*
5554 * adjust disk_bytenr and num_bytes to cover just the bytes
5555 * in this extent we are about to write. If there
5556 * are any csums in that range we have to cow in order
5557 * to keep the csums correct
5558 */
5559 disk_bytenr += backref_offset;
5560 disk_bytenr += offset - key.offset;
5561 num_bytes = min(offset + len, extent_end) - offset;
5562 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5563 goto out;
5564 /*
5565 * all of the above have passed, it is safe to overwrite this extent
5566 * without cow
5567 */
5568 ret = 1;
5569out:
5570 btrfs_free_path(path);
5571 return ret;
5572}
5573
4b46fce2
JB
5574static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5575 struct buffer_head *bh_result, int create)
5576{
5577 struct extent_map *em;
5578 struct btrfs_root *root = BTRFS_I(inode)->root;
5579 u64 start = iblock << inode->i_blkbits;
5580 u64 len = bh_result->b_size;
46bfbb5c 5581 struct btrfs_trans_handle *trans;
4b46fce2
JB
5582
5583 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5584 if (IS_ERR(em))
5585 return PTR_ERR(em);
5586
5587 /*
5588 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5589 * io. INLINE is special, and we could probably kludge it in here, but
5590 * it's still buffered so for safety lets just fall back to the generic
5591 * buffered path.
5592 *
5593 * For COMPRESSED we _have_ to read the entire extent in so we can
5594 * decompress it, so there will be buffering required no matter what we
5595 * do, so go ahead and fallback to buffered.
5596 *
5597 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5598 * to buffered IO. Don't blame me, this is the price we pay for using
5599 * the generic code.
5600 */
5601 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5602 em->block_start == EXTENT_MAP_INLINE) {
5603 free_extent_map(em);
5604 return -ENOTBLK;
5605 }
5606
5607 /* Just a good old fashioned hole, return */
5608 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5609 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5610 free_extent_map(em);
5611 /* DIO will do one hole at a time, so just unlock a sector */
5612 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5613 start + root->sectorsize - 1, GFP_NOFS);
5614 return 0;
5615 }
5616
5617 /*
5618 * We don't allocate a new extent in the following cases
5619 *
5620 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5621 * existing extent.
5622 * 2) The extent is marked as PREALLOC. We're good to go here and can
5623 * just use the extent.
5624 *
5625 */
46bfbb5c
CM
5626 if (!create) {
5627 len = em->len - (start - em->start);
4b46fce2 5628 goto map;
46bfbb5c 5629 }
4b46fce2
JB
5630
5631 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5632 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5633 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5634 int type;
5635 int ret;
46bfbb5c 5636 u64 block_start;
4b46fce2
JB
5637
5638 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5639 type = BTRFS_ORDERED_PREALLOC;
5640 else
5641 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5642 len = min(len, em->len - (start - em->start));
4b46fce2 5643 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5644
5645 /*
5646 * we're not going to log anything, but we do need
5647 * to make sure the current transaction stays open
5648 * while we look for nocow cross refs
5649 */
5650 trans = btrfs_join_transaction(root, 0);
3612b495 5651 if (IS_ERR(trans))
46bfbb5c
CM
5652 goto must_cow;
5653
5654 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5655 ret = btrfs_add_ordered_extent_dio(inode, start,
5656 block_start, len, len, type);
5657 btrfs_end_transaction(trans, root);
5658 if (ret) {
5659 free_extent_map(em);
5660 return ret;
5661 }
5662 goto unlock;
4b46fce2 5663 }
46bfbb5c 5664 btrfs_end_transaction(trans, root);
4b46fce2 5665 }
46bfbb5c
CM
5666must_cow:
5667 /*
5668 * this will cow the extent, reset the len in case we changed
5669 * it above
5670 */
5671 len = bh_result->b_size;
5672 free_extent_map(em);
5673 em = btrfs_new_extent_direct(inode, start, len);
5674 if (IS_ERR(em))
5675 return PTR_ERR(em);
5676 len = min(len, em->len - (start - em->start));
5677unlock:
4845e44f
CM
5678 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5679 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5680 0, NULL, GFP_NOFS);
4b46fce2
JB
5681map:
5682 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5683 inode->i_blkbits;
46bfbb5c 5684 bh_result->b_size = len;
4b46fce2
JB
5685 bh_result->b_bdev = em->bdev;
5686 set_buffer_mapped(bh_result);
5687 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5688 set_buffer_new(bh_result);
5689
5690 free_extent_map(em);
5691
5692 return 0;
5693}
5694
5695struct btrfs_dio_private {
5696 struct inode *inode;
5697 u64 logical_offset;
5698 u64 disk_bytenr;
5699 u64 bytes;
5700 u32 *csums;
5701 void *private;
e65e1535
MX
5702
5703 /* number of bios pending for this dio */
5704 atomic_t pending_bios;
5705
5706 /* IO errors */
5707 int errors;
5708
5709 struct bio *orig_bio;
4b46fce2
JB
5710};
5711
5712static void btrfs_endio_direct_read(struct bio *bio, int err)
5713{
e65e1535 5714 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5715 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5716 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5717 struct inode *inode = dip->inode;
5718 struct btrfs_root *root = BTRFS_I(inode)->root;
5719 u64 start;
5720 u32 *private = dip->csums;
5721
5722 start = dip->logical_offset;
5723 do {
5724 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5725 struct page *page = bvec->bv_page;
5726 char *kaddr;
5727 u32 csum = ~(u32)0;
5728 unsigned long flags;
5729
5730 local_irq_save(flags);
5731 kaddr = kmap_atomic(page, KM_IRQ0);
5732 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5733 csum, bvec->bv_len);
5734 btrfs_csum_final(csum, (char *)&csum);
5735 kunmap_atomic(kaddr, KM_IRQ0);
5736 local_irq_restore(flags);
5737
5738 flush_dcache_page(bvec->bv_page);
5739 if (csum != *private) {
5740 printk(KERN_ERR "btrfs csum failed ino %lu off"
5741 " %llu csum %u private %u\n",
5742 inode->i_ino, (unsigned long long)start,
5743 csum, *private);
5744 err = -EIO;
5745 }
5746 }
5747
5748 start += bvec->bv_len;
5749 private++;
5750 bvec++;
5751 } while (bvec <= bvec_end);
5752
5753 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5754 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5755 bio->bi_private = dip->private;
5756
5757 kfree(dip->csums);
5758 kfree(dip);
c0da7aa1
JB
5759
5760 /* If we had a csum failure make sure to clear the uptodate flag */
5761 if (err)
5762 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5763 dio_end_io(bio, err);
5764}
5765
5766static void btrfs_endio_direct_write(struct bio *bio, int err)
5767{
5768 struct btrfs_dio_private *dip = bio->bi_private;
5769 struct inode *inode = dip->inode;
5770 struct btrfs_root *root = BTRFS_I(inode)->root;
5771 struct btrfs_trans_handle *trans;
5772 struct btrfs_ordered_extent *ordered = NULL;
5773 struct extent_state *cached_state = NULL;
163cf09c
CM
5774 u64 ordered_offset = dip->logical_offset;
5775 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5776 int ret;
5777
5778 if (err)
5779 goto out_done;
163cf09c
CM
5780again:
5781 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5782 &ordered_offset,
5783 ordered_bytes);
4b46fce2 5784 if (!ret)
163cf09c 5785 goto out_test;
4b46fce2
JB
5786
5787 BUG_ON(!ordered);
5788
5789 trans = btrfs_join_transaction(root, 1);
3612b495 5790 if (IS_ERR(trans)) {
4b46fce2
JB
5791 err = -ENOMEM;
5792 goto out;
5793 }
5794 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5795
5796 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5797 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5798 if (!ret)
5799 ret = btrfs_update_inode(trans, root, inode);
5800 err = ret;
5801 goto out;
5802 }
5803
5804 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5805 ordered->file_offset + ordered->len - 1, 0,
5806 &cached_state, GFP_NOFS);
5807
5808 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5809 ret = btrfs_mark_extent_written(trans, inode,
5810 ordered->file_offset,
5811 ordered->file_offset +
5812 ordered->len);
5813 if (ret) {
5814 err = ret;
5815 goto out_unlock;
5816 }
5817 } else {
5818 ret = insert_reserved_file_extent(trans, inode,
5819 ordered->file_offset,
5820 ordered->start,
5821 ordered->disk_len,
5822 ordered->len,
5823 ordered->len,
5824 0, 0, 0,
5825 BTRFS_FILE_EXTENT_REG);
5826 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5827 ordered->file_offset, ordered->len);
5828 if (ret) {
5829 err = ret;
5830 WARN_ON(1);
5831 goto out_unlock;
5832 }
5833 }
5834
5835 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5836 btrfs_ordered_update_i_size(inode, 0, ordered);
5837 btrfs_update_inode(trans, root, inode);
5838out_unlock:
5839 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5840 ordered->file_offset + ordered->len - 1,
5841 &cached_state, GFP_NOFS);
5842out:
5843 btrfs_delalloc_release_metadata(inode, ordered->len);
5844 btrfs_end_transaction(trans, root);
163cf09c 5845 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5846 btrfs_put_ordered_extent(ordered);
5847 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5848
5849out_test:
5850 /*
5851 * our bio might span multiple ordered extents. If we haven't
5852 * completed the accounting for the whole dio, go back and try again
5853 */
5854 if (ordered_offset < dip->logical_offset + dip->bytes) {
5855 ordered_bytes = dip->logical_offset + dip->bytes -
5856 ordered_offset;
5857 goto again;
5858 }
4b46fce2
JB
5859out_done:
5860 bio->bi_private = dip->private;
5861
5862 kfree(dip->csums);
5863 kfree(dip);
c0da7aa1
JB
5864
5865 /* If we had an error make sure to clear the uptodate flag */
5866 if (err)
5867 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5868 dio_end_io(bio, err);
5869}
5870
eaf25d93
CM
5871static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5872 struct bio *bio, int mirror_num,
5873 unsigned long bio_flags, u64 offset)
5874{
5875 int ret;
5876 struct btrfs_root *root = BTRFS_I(inode)->root;
5877 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5878 BUG_ON(ret);
5879 return 0;
5880}
5881
e65e1535
MX
5882static void btrfs_end_dio_bio(struct bio *bio, int err)
5883{
5884 struct btrfs_dio_private *dip = bio->bi_private;
5885
5886 if (err) {
5887 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
3dd1462e
JB
5888 "sector %#Lx len %u err no %d\n",
5889 dip->inode->i_ino, bio->bi_rw,
5890 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5891 dip->errors = 1;
5892
5893 /*
5894 * before atomic variable goto zero, we must make sure
5895 * dip->errors is perceived to be set.
5896 */
5897 smp_mb__before_atomic_dec();
5898 }
5899
5900 /* if there are more bios still pending for this dio, just exit */
5901 if (!atomic_dec_and_test(&dip->pending_bios))
5902 goto out;
5903
5904 if (dip->errors)
5905 bio_io_error(dip->orig_bio);
5906 else {
5907 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5908 bio_endio(dip->orig_bio, 0);
5909 }
5910out:
5911 bio_put(bio);
5912}
5913
5914static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5915 u64 first_sector, gfp_t gfp_flags)
5916{
5917 int nr_vecs = bio_get_nr_vecs(bdev);
5918 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5919}
5920
5921static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5922 int rw, u64 file_offset, int skip_sum,
5923 u32 *csums)
5924{
5925 int write = rw & REQ_WRITE;
5926 struct btrfs_root *root = BTRFS_I(inode)->root;
5927 int ret;
5928
5929 bio_get(bio);
5930 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5931 if (ret)
5932 goto err;
5933
5934 if (write && !skip_sum) {
5935 ret = btrfs_wq_submit_bio(root->fs_info,
5936 inode, rw, bio, 0, 0,
5937 file_offset,
5938 __btrfs_submit_bio_start_direct_io,
5939 __btrfs_submit_bio_done);
5940 goto err;
5941 } else if (!skip_sum)
5942 btrfs_lookup_bio_sums_dio(root, inode, bio,
5943 file_offset, csums);
5944
5945 ret = btrfs_map_bio(root, rw, bio, 0, 1);
5946err:
5947 bio_put(bio);
5948 return ret;
5949}
5950
5951static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5952 int skip_sum)
5953{
5954 struct inode *inode = dip->inode;
5955 struct btrfs_root *root = BTRFS_I(inode)->root;
5956 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5957 struct bio *bio;
5958 struct bio *orig_bio = dip->orig_bio;
5959 struct bio_vec *bvec = orig_bio->bi_io_vec;
5960 u64 start_sector = orig_bio->bi_sector;
5961 u64 file_offset = dip->logical_offset;
5962 u64 submit_len = 0;
5963 u64 map_length;
5964 int nr_pages = 0;
5965 u32 *csums = dip->csums;
5966 int ret = 0;
98bc3149 5967 int write = rw & REQ_WRITE;
e65e1535
MX
5968
5969 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5970 if (!bio)
5971 return -ENOMEM;
5972 bio->bi_private = dip;
5973 bio->bi_end_io = btrfs_end_dio_bio;
5974 atomic_inc(&dip->pending_bios);
5975
5976 map_length = orig_bio->bi_size;
5977 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5978 &map_length, NULL, 0);
5979 if (ret) {
5980 bio_put(bio);
5981 return -EIO;
5982 }
5983
5984 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5985 if (unlikely(map_length < submit_len + bvec->bv_len ||
5986 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5987 bvec->bv_offset) < bvec->bv_len)) {
5988 /*
5989 * inc the count before we submit the bio so
5990 * we know the end IO handler won't happen before
5991 * we inc the count. Otherwise, the dip might get freed
5992 * before we're done setting it up
5993 */
5994 atomic_inc(&dip->pending_bios);
5995 ret = __btrfs_submit_dio_bio(bio, inode, rw,
5996 file_offset, skip_sum,
5997 csums);
5998 if (ret) {
5999 bio_put(bio);
6000 atomic_dec(&dip->pending_bios);
6001 goto out_err;
6002 }
6003
98bc3149
JB
6004 /* Write's use the ordered csums */
6005 if (!write && !skip_sum)
e65e1535
MX
6006 csums = csums + nr_pages;
6007 start_sector += submit_len >> 9;
6008 file_offset += submit_len;
6009
6010 submit_len = 0;
6011 nr_pages = 0;
6012
6013 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6014 start_sector, GFP_NOFS);
6015 if (!bio)
6016 goto out_err;
6017 bio->bi_private = dip;
6018 bio->bi_end_io = btrfs_end_dio_bio;
6019
6020 map_length = orig_bio->bi_size;
6021 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6022 &map_length, NULL, 0);
6023 if (ret) {
6024 bio_put(bio);
6025 goto out_err;
6026 }
6027 } else {
6028 submit_len += bvec->bv_len;
6029 nr_pages ++;
6030 bvec++;
6031 }
6032 }
6033
6034 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6035 csums);
6036 if (!ret)
6037 return 0;
6038
6039 bio_put(bio);
6040out_err:
6041 dip->errors = 1;
6042 /*
6043 * before atomic variable goto zero, we must
6044 * make sure dip->errors is perceived to be set.
6045 */
6046 smp_mb__before_atomic_dec();
6047 if (atomic_dec_and_test(&dip->pending_bios))
6048 bio_io_error(dip->orig_bio);
6049
6050 /* bio_end_io() will handle error, so we needn't return it */
6051 return 0;
6052}
6053
4b46fce2
JB
6054static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6055 loff_t file_offset)
6056{
6057 struct btrfs_root *root = BTRFS_I(inode)->root;
6058 struct btrfs_dio_private *dip;
6059 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6060 int skip_sum;
7b6d91da 6061 int write = rw & REQ_WRITE;
4b46fce2
JB
6062 int ret = 0;
6063
6064 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6065
6066 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6067 if (!dip) {
6068 ret = -ENOMEM;
6069 goto free_ordered;
6070 }
6071 dip->csums = NULL;
6072
98bc3149
JB
6073 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6074 if (!write && !skip_sum) {
4b46fce2
JB
6075 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6076 if (!dip->csums) {
b4966b77 6077 kfree(dip);
4b46fce2
JB
6078 ret = -ENOMEM;
6079 goto free_ordered;
6080 }
6081 }
6082
6083 dip->private = bio->bi_private;
6084 dip->inode = inode;
6085 dip->logical_offset = file_offset;
6086
4b46fce2
JB
6087 dip->bytes = 0;
6088 do {
6089 dip->bytes += bvec->bv_len;
6090 bvec++;
6091 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6092
46bfbb5c 6093 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6094 bio->bi_private = dip;
e65e1535
MX
6095 dip->errors = 0;
6096 dip->orig_bio = bio;
6097 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6098
6099 if (write)
6100 bio->bi_end_io = btrfs_endio_direct_write;
6101 else
6102 bio->bi_end_io = btrfs_endio_direct_read;
6103
e65e1535
MX
6104 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6105 if (!ret)
eaf25d93 6106 return;
4b46fce2
JB
6107free_ordered:
6108 /*
6109 * If this is a write, we need to clean up the reserved space and kill
6110 * the ordered extent.
6111 */
6112 if (write) {
6113 struct btrfs_ordered_extent *ordered;
955256f2 6114 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6115 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6116 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6117 btrfs_free_reserved_extent(root, ordered->start,
6118 ordered->disk_len);
6119 btrfs_put_ordered_extent(ordered);
6120 btrfs_put_ordered_extent(ordered);
6121 }
6122 bio_endio(bio, ret);
6123}
6124
5a5f79b5
CM
6125static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6126 const struct iovec *iov, loff_t offset,
6127 unsigned long nr_segs)
6128{
6129 int seg;
6130 size_t size;
6131 unsigned long addr;
6132 unsigned blocksize_mask = root->sectorsize - 1;
6133 ssize_t retval = -EINVAL;
6134 loff_t end = offset;
6135
6136 if (offset & blocksize_mask)
6137 goto out;
6138
6139 /* Check the memory alignment. Blocks cannot straddle pages */
6140 for (seg = 0; seg < nr_segs; seg++) {
6141 addr = (unsigned long)iov[seg].iov_base;
6142 size = iov[seg].iov_len;
6143 end += size;
6144 if ((addr & blocksize_mask) || (size & blocksize_mask))
6145 goto out;
6146 }
6147 retval = 0;
6148out:
6149 return retval;
6150}
16432985
CM
6151static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6152 const struct iovec *iov, loff_t offset,
6153 unsigned long nr_segs)
6154{
4b46fce2
JB
6155 struct file *file = iocb->ki_filp;
6156 struct inode *inode = file->f_mapping->host;
6157 struct btrfs_ordered_extent *ordered;
4845e44f 6158 struct extent_state *cached_state = NULL;
4b46fce2
JB
6159 u64 lockstart, lockend;
6160 ssize_t ret;
4845e44f
CM
6161 int writing = rw & WRITE;
6162 int write_bits = 0;
3f7c579c 6163 size_t count = iov_length(iov, nr_segs);
4b46fce2 6164
5a5f79b5
CM
6165 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6166 offset, nr_segs)) {
6167 return 0;
6168 }
6169
4b46fce2 6170 lockstart = offset;
3f7c579c
CM
6171 lockend = offset + count - 1;
6172
6173 if (writing) {
6174 ret = btrfs_delalloc_reserve_space(inode, count);
6175 if (ret)
6176 goto out;
6177 }
4845e44f 6178
4b46fce2 6179 while (1) {
4845e44f
CM
6180 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6181 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6182 /*
6183 * We're concerned with the entire range that we're going to be
6184 * doing DIO to, so we need to make sure theres no ordered
6185 * extents in this range.
6186 */
6187 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6188 lockend - lockstart + 1);
6189 if (!ordered)
6190 break;
4845e44f
CM
6191 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6192 &cached_state, GFP_NOFS);
4b46fce2
JB
6193 btrfs_start_ordered_extent(inode, ordered, 1);
6194 btrfs_put_ordered_extent(ordered);
6195 cond_resched();
6196 }
6197
4845e44f
CM
6198 /*
6199 * we don't use btrfs_set_extent_delalloc because we don't want
6200 * the dirty or uptodate bits
6201 */
6202 if (writing) {
6203 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6204 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6205 EXTENT_DELALLOC, 0, NULL, &cached_state,
6206 GFP_NOFS);
6207 if (ret) {
6208 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6209 lockend, EXTENT_LOCKED | write_bits,
6210 1, 0, &cached_state, GFP_NOFS);
6211 goto out;
6212 }
6213 }
6214
6215 free_extent_state(cached_state);
6216 cached_state = NULL;
6217
5a5f79b5
CM
6218 ret = __blockdev_direct_IO(rw, iocb, inode,
6219 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6220 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6221 btrfs_submit_direct, 0);
4b46fce2
JB
6222
6223 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6224 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6225 offset + iov_length(iov, nr_segs) - 1,
6226 EXTENT_LOCKED | write_bits, 1, 0,
6227 &cached_state, GFP_NOFS);
4b46fce2
JB
6228 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6229 /*
6230 * We're falling back to buffered, unlock the section we didn't
6231 * do IO on.
6232 */
4845e44f
CM
6233 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6234 offset + iov_length(iov, nr_segs) - 1,
6235 EXTENT_LOCKED | write_bits, 1, 0,
6236 &cached_state, GFP_NOFS);
4b46fce2 6237 }
4845e44f
CM
6238out:
6239 free_extent_state(cached_state);
4b46fce2 6240 return ret;
16432985
CM
6241}
6242
1506fcc8
YS
6243static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6244 __u64 start, __u64 len)
6245{
ec29ed5b 6246 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6247}
6248
a52d9a80 6249int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6250{
d1310b2e
CM
6251 struct extent_io_tree *tree;
6252 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6253 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 6254}
1832a6d5 6255
a52d9a80 6256static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6257{
d1310b2e 6258 struct extent_io_tree *tree;
b888db2b
CM
6259
6260
6261 if (current->flags & PF_MEMALLOC) {
6262 redirty_page_for_writepage(wbc, page);
6263 unlock_page(page);
6264 return 0;
6265 }
d1310b2e 6266 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6267 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6268}
6269
f421950f
CM
6270int btrfs_writepages(struct address_space *mapping,
6271 struct writeback_control *wbc)
b293f02e 6272{
d1310b2e 6273 struct extent_io_tree *tree;
771ed689 6274
d1310b2e 6275 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6276 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6277}
6278
3ab2fb5a
CM
6279static int
6280btrfs_readpages(struct file *file, struct address_space *mapping,
6281 struct list_head *pages, unsigned nr_pages)
6282{
d1310b2e
CM
6283 struct extent_io_tree *tree;
6284 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6285 return extent_readpages(tree, mapping, pages, nr_pages,
6286 btrfs_get_extent);
6287}
e6dcd2dc 6288static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6289{
d1310b2e
CM
6290 struct extent_io_tree *tree;
6291 struct extent_map_tree *map;
a52d9a80 6292 int ret;
8c2383c3 6293
d1310b2e
CM
6294 tree = &BTRFS_I(page->mapping->host)->io_tree;
6295 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6296 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6297 if (ret == 1) {
6298 ClearPagePrivate(page);
6299 set_page_private(page, 0);
6300 page_cache_release(page);
39279cc3 6301 }
a52d9a80 6302 return ret;
39279cc3
CM
6303}
6304
e6dcd2dc
CM
6305static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6306{
98509cfc
CM
6307 if (PageWriteback(page) || PageDirty(page))
6308 return 0;
b335b003 6309 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6310}
6311
a52d9a80 6312static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6313{
d1310b2e 6314 struct extent_io_tree *tree;
e6dcd2dc 6315 struct btrfs_ordered_extent *ordered;
2ac55d41 6316 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6317 u64 page_start = page_offset(page);
6318 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6319
8b62b72b
CM
6320
6321 /*
6322 * we have the page locked, so new writeback can't start,
6323 * and the dirty bit won't be cleared while we are here.
6324 *
6325 * Wait for IO on this page so that we can safely clear
6326 * the PagePrivate2 bit and do ordered accounting
6327 */
e6dcd2dc 6328 wait_on_page_writeback(page);
8b62b72b 6329
d1310b2e 6330 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6331 if (offset) {
6332 btrfs_releasepage(page, GFP_NOFS);
6333 return;
6334 }
2ac55d41
JB
6335 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6336 GFP_NOFS);
e6dcd2dc
CM
6337 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6338 page_offset(page));
6339 if (ordered) {
eb84ae03
CM
6340 /*
6341 * IO on this page will never be started, so we need
6342 * to account for any ordered extents now
6343 */
e6dcd2dc
CM
6344 clear_extent_bit(tree, page_start, page_end,
6345 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6346 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6347 &cached_state, GFP_NOFS);
8b62b72b
CM
6348 /*
6349 * whoever cleared the private bit is responsible
6350 * for the finish_ordered_io
6351 */
6352 if (TestClearPagePrivate2(page)) {
6353 btrfs_finish_ordered_io(page->mapping->host,
6354 page_start, page_end);
6355 }
e6dcd2dc 6356 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6357 cached_state = NULL;
6358 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6359 GFP_NOFS);
e6dcd2dc
CM
6360 }
6361 clear_extent_bit(tree, page_start, page_end,
32c00aff 6362 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6363 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6364 __btrfs_releasepage(page, GFP_NOFS);
6365
4a096752 6366 ClearPageChecked(page);
9ad6b7bc 6367 if (PagePrivate(page)) {
9ad6b7bc
CM
6368 ClearPagePrivate(page);
6369 set_page_private(page, 0);
6370 page_cache_release(page);
6371 }
39279cc3
CM
6372}
6373
9ebefb18
CM
6374/*
6375 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6376 * called from a page fault handler when a page is first dirtied. Hence we must
6377 * be careful to check for EOF conditions here. We set the page up correctly
6378 * for a written page which means we get ENOSPC checking when writing into
6379 * holes and correct delalloc and unwritten extent mapping on filesystems that
6380 * support these features.
6381 *
6382 * We are not allowed to take the i_mutex here so we have to play games to
6383 * protect against truncate races as the page could now be beyond EOF. Because
6384 * vmtruncate() writes the inode size before removing pages, once we have the
6385 * page lock we can determine safely if the page is beyond EOF. If it is not
6386 * beyond EOF, then the page is guaranteed safe against truncation until we
6387 * unlock the page.
6388 */
c2ec175c 6389int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6390{
c2ec175c 6391 struct page *page = vmf->page;
6da6abae 6392 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6393 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6394 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6395 struct btrfs_ordered_extent *ordered;
2ac55d41 6396 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6397 char *kaddr;
6398 unsigned long zero_start;
9ebefb18 6399 loff_t size;
1832a6d5 6400 int ret;
a52d9a80 6401 u64 page_start;
e6dcd2dc 6402 u64 page_end;
9ebefb18 6403
0ca1f7ce 6404 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
6405 if (ret) {
6406 if (ret == -ENOMEM)
6407 ret = VM_FAULT_OOM;
6408 else /* -ENOSPC, -EIO, etc */
6409 ret = VM_FAULT_SIGBUS;
1832a6d5 6410 goto out;
56a76f82 6411 }
1832a6d5 6412
56a76f82 6413 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6414again:
9ebefb18 6415 lock_page(page);
9ebefb18 6416 size = i_size_read(inode);
e6dcd2dc
CM
6417 page_start = page_offset(page);
6418 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6419
9ebefb18 6420 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6421 (page_start >= size)) {
9ebefb18
CM
6422 /* page got truncated out from underneath us */
6423 goto out_unlock;
6424 }
e6dcd2dc
CM
6425 wait_on_page_writeback(page);
6426
2ac55d41
JB
6427 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6428 GFP_NOFS);
e6dcd2dc
CM
6429 set_page_extent_mapped(page);
6430
eb84ae03
CM
6431 /*
6432 * we can't set the delalloc bits if there are pending ordered
6433 * extents. Drop our locks and wait for them to finish
6434 */
e6dcd2dc
CM
6435 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6436 if (ordered) {
2ac55d41
JB
6437 unlock_extent_cached(io_tree, page_start, page_end,
6438 &cached_state, GFP_NOFS);
e6dcd2dc 6439 unlock_page(page);
eb84ae03 6440 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6441 btrfs_put_ordered_extent(ordered);
6442 goto again;
6443 }
6444
fbf19087
JB
6445 /*
6446 * XXX - page_mkwrite gets called every time the page is dirtied, even
6447 * if it was already dirty, so for space accounting reasons we need to
6448 * clear any delalloc bits for the range we are fixing to save. There
6449 * is probably a better way to do this, but for now keep consistent with
6450 * prepare_pages in the normal write path.
6451 */
2ac55d41 6452 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6453 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6454 0, 0, &cached_state, GFP_NOFS);
fbf19087 6455
2ac55d41
JB
6456 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6457 &cached_state);
9ed74f2d 6458 if (ret) {
2ac55d41
JB
6459 unlock_extent_cached(io_tree, page_start, page_end,
6460 &cached_state, GFP_NOFS);
9ed74f2d
JB
6461 ret = VM_FAULT_SIGBUS;
6462 goto out_unlock;
6463 }
e6dcd2dc 6464 ret = 0;
9ebefb18
CM
6465
6466 /* page is wholly or partially inside EOF */
a52d9a80 6467 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6468 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6469 else
e6dcd2dc 6470 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6471
e6dcd2dc
CM
6472 if (zero_start != PAGE_CACHE_SIZE) {
6473 kaddr = kmap(page);
6474 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6475 flush_dcache_page(page);
6476 kunmap(page);
6477 }
247e743c 6478 ClearPageChecked(page);
e6dcd2dc 6479 set_page_dirty(page);
50a9b214 6480 SetPageUptodate(page);
5a3f23d5 6481
257c62e1
CM
6482 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6483 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6484
2ac55d41 6485 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6486
6487out_unlock:
50a9b214
CM
6488 if (!ret)
6489 return VM_FAULT_LOCKED;
9ebefb18 6490 unlock_page(page);
0ca1f7ce 6491 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 6492out:
9ebefb18
CM
6493 return ret;
6494}
6495
a41ad394 6496static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6497{
6498 struct btrfs_root *root = BTRFS_I(inode)->root;
6499 int ret;
3893e33b 6500 int err = 0;
39279cc3 6501 struct btrfs_trans_handle *trans;
d3c2fdcf 6502 unsigned long nr;
dbe674a9 6503 u64 mask = root->sectorsize - 1;
39279cc3 6504
5d5e103a
JB
6505 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6506 if (ret)
a41ad394 6507 return ret;
8082510e 6508
4a096752 6509 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6510 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6511
f0cd846e
JB
6512 trans = btrfs_start_transaction(root, 5);
6513 if (IS_ERR(trans))
6514 return PTR_ERR(trans);
6515
6516 btrfs_set_trans_block_group(trans, inode);
6517
6518 ret = btrfs_orphan_add(trans, inode);
6519 if (ret) {
6520 btrfs_end_transaction(trans, root);
6521 return ret;
6522 }
6523
6524 nr = trans->blocks_used;
6525 btrfs_end_transaction(trans, root);
6526 btrfs_btree_balance_dirty(root, nr);
6527
6528 /* Now start a transaction for the truncate */
d68fc57b 6529 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
6530 if (IS_ERR(trans))
6531 return PTR_ERR(trans);
8082510e 6532 btrfs_set_trans_block_group(trans, inode);
d68fc57b 6533 trans->block_rsv = root->orphan_block_rsv;
5a3f23d5
CM
6534
6535 /*
6536 * setattr is responsible for setting the ordered_data_close flag,
6537 * but that is only tested during the last file release. That
6538 * could happen well after the next commit, leaving a great big
6539 * window where new writes may get lost if someone chooses to write
6540 * to this file after truncating to zero
6541 *
6542 * The inode doesn't have any dirty data here, and so if we commit
6543 * this is a noop. If someone immediately starts writing to the inode
6544 * it is very likely we'll catch some of their writes in this
6545 * transaction, and the commit will find this file on the ordered
6546 * data list with good things to send down.
6547 *
6548 * This is a best effort solution, there is still a window where
6549 * using truncate to replace the contents of the file will
6550 * end up with a zero length file after a crash.
6551 */
6552 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6553 btrfs_add_ordered_operation(trans, root, inode);
6554
8082510e 6555 while (1) {
d68fc57b
YZ
6556 if (!trans) {
6557 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
6558 if (IS_ERR(trans))
6559 return PTR_ERR(trans);
d68fc57b
YZ
6560 btrfs_set_trans_block_group(trans, inode);
6561 trans->block_rsv = root->orphan_block_rsv;
6562 }
6563
6564 ret = btrfs_block_rsv_check(trans, root,
6565 root->orphan_block_rsv, 0, 5);
3893e33b 6566 if (ret == -EAGAIN) {
d68fc57b 6567 ret = btrfs_commit_transaction(trans, root);
3893e33b
JB
6568 if (ret)
6569 return ret;
d68fc57b
YZ
6570 trans = NULL;
6571 continue;
3893e33b
JB
6572 } else if (ret) {
6573 err = ret;
6574 break;
d68fc57b
YZ
6575 }
6576
8082510e
YZ
6577 ret = btrfs_truncate_inode_items(trans, root, inode,
6578 inode->i_size,
6579 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6580 if (ret != -EAGAIN) {
6581 err = ret;
8082510e 6582 break;
3893e33b 6583 }
39279cc3 6584
8082510e 6585 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6586 if (ret) {
6587 err = ret;
6588 break;
6589 }
5f39d397 6590
8082510e
YZ
6591 nr = trans->blocks_used;
6592 btrfs_end_transaction(trans, root);
d68fc57b 6593 trans = NULL;
8082510e 6594 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6595 }
6596
6597 if (ret == 0 && inode->i_nlink > 0) {
6598 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6599 if (ret)
6600 err = ret;
ded5db9d
JB
6601 } else if (ret && inode->i_nlink > 0) {
6602 /*
6603 * Failed to do the truncate, remove us from the in memory
6604 * orphan list.
6605 */
6606 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6607 }
6608
6609 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6610 if (ret && !err)
6611 err = ret;
7b128766 6612
7b128766 6613 nr = trans->blocks_used;
89ce8a63 6614 ret = btrfs_end_transaction_throttle(trans, root);
3893e33b
JB
6615 if (ret && !err)
6616 err = ret;
d3c2fdcf 6617 btrfs_btree_balance_dirty(root, nr);
a41ad394 6618
3893e33b 6619 return err;
39279cc3
CM
6620}
6621
d352ac68
CM
6622/*
6623 * create a new subvolume directory/inode (helper for the ioctl).
6624 */
d2fb3437 6625int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 6626 struct btrfs_root *new_root,
d2fb3437 6627 u64 new_dirid, u64 alloc_hint)
39279cc3 6628{
39279cc3 6629 struct inode *inode;
76dda93c 6630 int err;
00e4e6b3 6631 u64 index = 0;
39279cc3 6632
aec7477b 6633 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 6634 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 6635 if (IS_ERR(inode))
f46b5a66 6636 return PTR_ERR(inode);
39279cc3
CM
6637 inode->i_op = &btrfs_dir_inode_operations;
6638 inode->i_fop = &btrfs_dir_file_operations;
6639
39279cc3 6640 inode->i_nlink = 1;
dbe674a9 6641 btrfs_i_size_write(inode, 0);
3b96362c 6642
76dda93c
YZ
6643 err = btrfs_update_inode(trans, new_root, inode);
6644 BUG_ON(err);
cb8e7090 6645
76dda93c 6646 iput(inode);
cb8e7090 6647 return 0;
39279cc3
CM
6648}
6649
d352ac68
CM
6650/* helper function for file defrag and space balancing. This
6651 * forces readahead on a given range of bytes in an inode
6652 */
edbd8d4e 6653unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
6654 struct file_ra_state *ra, struct file *file,
6655 pgoff_t offset, pgoff_t last_index)
6656{
8e7bf94f 6657 pgoff_t req_size = last_index - offset + 1;
86479a04 6658
86479a04
CM
6659 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6660 return offset + req_size;
86479a04
CM
6661}
6662
39279cc3
CM
6663struct inode *btrfs_alloc_inode(struct super_block *sb)
6664{
6665 struct btrfs_inode *ei;
2ead6ae7 6666 struct inode *inode;
39279cc3
CM
6667
6668 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6669 if (!ei)
6670 return NULL;
2ead6ae7
YZ
6671
6672 ei->root = NULL;
6673 ei->space_info = NULL;
6674 ei->generation = 0;
6675 ei->sequence = 0;
15ee9bc7 6676 ei->last_trans = 0;
257c62e1 6677 ei->last_sub_trans = 0;
e02119d5 6678 ei->logged_trans = 0;
2ead6ae7
YZ
6679 ei->delalloc_bytes = 0;
6680 ei->reserved_bytes = 0;
6681 ei->disk_i_size = 0;
6682 ei->flags = 0;
6683 ei->index_cnt = (u64)-1;
6684 ei->last_unlink_trans = 0;
6685
0ca1f7ce 6686 atomic_set(&ei->outstanding_extents, 0);
57a45ced 6687 atomic_set(&ei->reserved_extents, 0);
2ead6ae7
YZ
6688
6689 ei->ordered_data_close = 0;
d68fc57b 6690 ei->orphan_meta_reserved = 0;
2ead6ae7 6691 ei->dummy_inode = 0;
261507a0 6692 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7
YZ
6693
6694 inode = &ei->vfs_inode;
6695 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6696 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6697 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6698 mutex_init(&ei->log_mutex);
e6dcd2dc 6699 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6700 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6701 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6702 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6703 RB_CLEAR_NODE(&ei->rb_node);
6704
6705 return inode;
39279cc3
CM
6706}
6707
fa0d7e3d
NP
6708static void btrfs_i_callback(struct rcu_head *head)
6709{
6710 struct inode *inode = container_of(head, struct inode, i_rcu);
6711 INIT_LIST_HEAD(&inode->i_dentry);
6712 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6713}
6714
39279cc3
CM
6715void btrfs_destroy_inode(struct inode *inode)
6716{
e6dcd2dc 6717 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6718 struct btrfs_root *root = BTRFS_I(inode)->root;
6719
39279cc3
CM
6720 WARN_ON(!list_empty(&inode->i_dentry));
6721 WARN_ON(inode->i_data.nrpages);
0ca1f7ce 6722 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
57a45ced 6723 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
39279cc3 6724
a6dbd429
JB
6725 /*
6726 * This can happen where we create an inode, but somebody else also
6727 * created the same inode and we need to destroy the one we already
6728 * created.
6729 */
6730 if (!root)
6731 goto free;
6732
5a3f23d5
CM
6733 /*
6734 * Make sure we're properly removed from the ordered operation
6735 * lists.
6736 */
6737 smp_mb();
6738 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6739 spin_lock(&root->fs_info->ordered_extent_lock);
6740 list_del_init(&BTRFS_I(inode)->ordered_operations);
6741 spin_unlock(&root->fs_info->ordered_extent_lock);
6742 }
6743
0af3d00b
JB
6744 if (root == root->fs_info->tree_root) {
6745 struct btrfs_block_group_cache *block_group;
6746
6747 block_group = btrfs_lookup_block_group(root->fs_info,
6748 BTRFS_I(inode)->block_group);
6749 if (block_group && block_group->inode == inode) {
6750 spin_lock(&block_group->lock);
6751 block_group->inode = NULL;
6752 spin_unlock(&block_group->lock);
6753 btrfs_put_block_group(block_group);
6754 } else if (block_group) {
6755 btrfs_put_block_group(block_group);
6756 }
6757 }
6758
d68fc57b 6759 spin_lock(&root->orphan_lock);
7b128766 6760 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
8082510e
YZ
6761 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6762 inode->i_ino);
6763 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6764 }
d68fc57b 6765 spin_unlock(&root->orphan_lock);
7b128766 6766
d397712b 6767 while (1) {
e6dcd2dc
CM
6768 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6769 if (!ordered)
6770 break;
6771 else {
d397712b
CM
6772 printk(KERN_ERR "btrfs found ordered "
6773 "extent %llu %llu on inode cleanup\n",
6774 (unsigned long long)ordered->file_offset,
6775 (unsigned long long)ordered->len);
e6dcd2dc
CM
6776 btrfs_remove_ordered_extent(inode, ordered);
6777 btrfs_put_ordered_extent(ordered);
6778 btrfs_put_ordered_extent(ordered);
6779 }
6780 }
5d4f98a2 6781 inode_tree_del(inode);
5b21f2ed 6782 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6783free:
fa0d7e3d 6784 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6785}
6786
45321ac5 6787int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6788{
6789 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6790
0af3d00b
JB
6791 if (btrfs_root_refs(&root->root_item) == 0 &&
6792 root != root->fs_info->tree_root)
45321ac5 6793 return 1;
76dda93c 6794 else
45321ac5 6795 return generic_drop_inode(inode);
76dda93c
YZ
6796}
6797
0ee0fda0 6798static void init_once(void *foo)
39279cc3
CM
6799{
6800 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6801
6802 inode_init_once(&ei->vfs_inode);
6803}
6804
6805void btrfs_destroy_cachep(void)
6806{
6807 if (btrfs_inode_cachep)
6808 kmem_cache_destroy(btrfs_inode_cachep);
6809 if (btrfs_trans_handle_cachep)
6810 kmem_cache_destroy(btrfs_trans_handle_cachep);
6811 if (btrfs_transaction_cachep)
6812 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6813 if (btrfs_path_cachep)
6814 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6815 if (btrfs_free_space_cachep)
6816 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6817}
6818
6819int btrfs_init_cachep(void)
6820{
9601e3f6
CH
6821 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6822 sizeof(struct btrfs_inode), 0,
6823 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6824 if (!btrfs_inode_cachep)
6825 goto fail;
9601e3f6
CH
6826
6827 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6828 sizeof(struct btrfs_trans_handle), 0,
6829 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6830 if (!btrfs_trans_handle_cachep)
6831 goto fail;
9601e3f6
CH
6832
6833 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6834 sizeof(struct btrfs_transaction), 0,
6835 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6836 if (!btrfs_transaction_cachep)
6837 goto fail;
9601e3f6
CH
6838
6839 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6840 sizeof(struct btrfs_path), 0,
6841 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6842 if (!btrfs_path_cachep)
6843 goto fail;
9601e3f6 6844
dc89e982
JB
6845 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6846 sizeof(struct btrfs_free_space), 0,
6847 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6848 if (!btrfs_free_space_cachep)
6849 goto fail;
6850
39279cc3
CM
6851 return 0;
6852fail:
6853 btrfs_destroy_cachep();
6854 return -ENOMEM;
6855}
6856
6857static int btrfs_getattr(struct vfsmount *mnt,
6858 struct dentry *dentry, struct kstat *stat)
6859{
6860 struct inode *inode = dentry->d_inode;
6861 generic_fillattr(inode, stat);
3394e160 6862 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 6863 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
6864 stat->blocks = (inode_get_bytes(inode) +
6865 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
6866 return 0;
6867}
6868
d397712b
CM
6869static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6870 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6871{
6872 struct btrfs_trans_handle *trans;
6873 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6874 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6875 struct inode *new_inode = new_dentry->d_inode;
6876 struct inode *old_inode = old_dentry->d_inode;
6877 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6878 u64 index = 0;
4df27c4d 6879 u64 root_objectid;
39279cc3
CM
6880 int ret;
6881
f679a840
YZ
6882 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6883 return -EPERM;
6884
4df27c4d
YZ
6885 /* we only allow rename subvolume link between subvolumes */
6886 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
6887 return -EXDEV;
6888
4df27c4d
YZ
6889 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6890 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 6891 return -ENOTEMPTY;
5f39d397 6892
4df27c4d
YZ
6893 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6894 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6895 return -ENOTEMPTY;
5a3f23d5
CM
6896 /*
6897 * we're using rename to replace one file with another.
6898 * and the replacement file is large. Start IO on it now so
6899 * we don't add too much work to the end of the transaction
6900 */
4baf8c92 6901 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
6902 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6903 filemap_flush(old_inode->i_mapping);
6904
76dda93c
YZ
6905 /* close the racy window with snapshot create/destroy ioctl */
6906 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6907 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
6908 /*
6909 * We want to reserve the absolute worst case amount of items. So if
6910 * both inodes are subvols and we need to unlink them then that would
6911 * require 4 item modifications, but if they are both normal inodes it
6912 * would require 5 item modifications, so we'll assume their normal
6913 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6914 * should cover the worst case number of items we'll modify.
6915 */
6916 trans = btrfs_start_transaction(root, 20);
6917 if (IS_ERR(trans))
6918 return PTR_ERR(trans);
76dda93c 6919
a5719521 6920 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 6921
4df27c4d
YZ
6922 if (dest != root)
6923 btrfs_record_root_in_trans(trans, dest);
5f39d397 6924
a5719521
YZ
6925 ret = btrfs_set_inode_index(new_dir, &index);
6926 if (ret)
6927 goto out_fail;
5a3f23d5 6928
a5719521 6929 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6930 /* force full log commit if subvolume involved. */
6931 root->fs_info->last_trans_log_full_commit = trans->transid;
6932 } else {
a5719521
YZ
6933 ret = btrfs_insert_inode_ref(trans, dest,
6934 new_dentry->d_name.name,
6935 new_dentry->d_name.len,
6936 old_inode->i_ino,
6937 new_dir->i_ino, index);
6938 if (ret)
6939 goto out_fail;
4df27c4d
YZ
6940 /*
6941 * this is an ugly little race, but the rename is required
6942 * to make sure that if we crash, the inode is either at the
6943 * old name or the new one. pinning the log transaction lets
6944 * us make sure we don't allow a log commit to come in after
6945 * we unlink the name but before we add the new name back in.
6946 */
6947 btrfs_pin_log_trans(root);
6948 }
5a3f23d5
CM
6949 /*
6950 * make sure the inode gets flushed if it is replacing
6951 * something.
6952 */
6953 if (new_inode && new_inode->i_size &&
6954 old_inode && S_ISREG(old_inode->i_mode)) {
6955 btrfs_add_ordered_operation(trans, root, old_inode);
6956 }
6957
39279cc3
CM
6958 old_dir->i_ctime = old_dir->i_mtime = ctime;
6959 new_dir->i_ctime = new_dir->i_mtime = ctime;
6960 old_inode->i_ctime = ctime;
5f39d397 6961
12fcfd22
CM
6962 if (old_dentry->d_parent != new_dentry->d_parent)
6963 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6964
4df27c4d
YZ
6965 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6966 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6967 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6968 old_dentry->d_name.name,
6969 old_dentry->d_name.len);
6970 } else {
6971 btrfs_inc_nlink(old_dentry->d_inode);
6972 ret = btrfs_unlink_inode(trans, root, old_dir,
6973 old_dentry->d_inode,
6974 old_dentry->d_name.name,
6975 old_dentry->d_name.len);
6976 }
6977 BUG_ON(ret);
39279cc3
CM
6978
6979 if (new_inode) {
6980 new_inode->i_ctime = CURRENT_TIME;
4df27c4d
YZ
6981 if (unlikely(new_inode->i_ino ==
6982 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6983 root_objectid = BTRFS_I(new_inode)->location.objectid;
6984 ret = btrfs_unlink_subvol(trans, dest, new_dir,
6985 root_objectid,
6986 new_dentry->d_name.name,
6987 new_dentry->d_name.len);
6988 BUG_ON(new_inode->i_nlink == 0);
6989 } else {
6990 ret = btrfs_unlink_inode(trans, dest, new_dir,
6991 new_dentry->d_inode,
6992 new_dentry->d_name.name,
6993 new_dentry->d_name.len);
6994 }
6995 BUG_ON(ret);
7b128766 6996 if (new_inode->i_nlink == 0) {
e02119d5 6997 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 6998 BUG_ON(ret);
7b128766 6999 }
39279cc3 7000 }
aec7477b 7001
4df27c4d
YZ
7002 ret = btrfs_add_link(trans, new_dir, old_inode,
7003 new_dentry->d_name.name,
a5719521 7004 new_dentry->d_name.len, 0, index);
4df27c4d 7005 BUG_ON(ret);
39279cc3 7006
4df27c4d 7007 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6a912213
JB
7008 struct dentry *parent = dget_parent(new_dentry);
7009 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7010 dput(parent);
4df27c4d
YZ
7011 btrfs_end_log_trans(root);
7012 }
39279cc3 7013out_fail:
ab78c84d 7014 btrfs_end_transaction_throttle(trans, root);
4df27c4d 7015
76dda93c
YZ
7016 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7017 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7018
39279cc3
CM
7019 return ret;
7020}
7021
d352ac68
CM
7022/*
7023 * some fairly slow code that needs optimization. This walks the list
7024 * of all the inodes with pending delalloc and forces them to disk.
7025 */
24bbcf04 7026int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7027{
7028 struct list_head *head = &root->fs_info->delalloc_inodes;
7029 struct btrfs_inode *binode;
5b21f2ed 7030 struct inode *inode;
ea8c2819 7031
c146afad
YZ
7032 if (root->fs_info->sb->s_flags & MS_RDONLY)
7033 return -EROFS;
7034
75eff68e 7035 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7036 while (!list_empty(head)) {
ea8c2819
CM
7037 binode = list_entry(head->next, struct btrfs_inode,
7038 delalloc_inodes);
5b21f2ed
ZY
7039 inode = igrab(&binode->vfs_inode);
7040 if (!inode)
7041 list_del_init(&binode->delalloc_inodes);
75eff68e 7042 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7043 if (inode) {
8c8bee1d 7044 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7045 if (delay_iput)
7046 btrfs_add_delayed_iput(inode);
7047 else
7048 iput(inode);
5b21f2ed
ZY
7049 }
7050 cond_resched();
75eff68e 7051 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7052 }
75eff68e 7053 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7054
7055 /* the filemap_flush will queue IO into the worker threads, but
7056 * we have to make sure the IO is actually started and that
7057 * ordered extents get created before we return
7058 */
7059 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7060 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7061 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7062 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7063 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7064 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7065 }
7066 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7067 return 0;
7068}
7069
0019f10d
JB
7070int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7071 int sync)
5da9d01b
YZ
7072{
7073 struct btrfs_inode *binode;
7074 struct inode *inode = NULL;
7075
7076 spin_lock(&root->fs_info->delalloc_lock);
7077 while (!list_empty(&root->fs_info->delalloc_inodes)) {
7078 binode = list_entry(root->fs_info->delalloc_inodes.next,
7079 struct btrfs_inode, delalloc_inodes);
7080 inode = igrab(&binode->vfs_inode);
7081 if (inode) {
7082 list_move_tail(&binode->delalloc_inodes,
7083 &root->fs_info->delalloc_inodes);
7084 break;
7085 }
7086
7087 list_del_init(&binode->delalloc_inodes);
7088 cond_resched_lock(&root->fs_info->delalloc_lock);
7089 }
7090 spin_unlock(&root->fs_info->delalloc_lock);
7091
7092 if (inode) {
0019f10d
JB
7093 if (sync) {
7094 filemap_write_and_wait(inode->i_mapping);
7095 /*
7096 * We have to do this because compression doesn't
7097 * actually set PG_writeback until it submits the pages
7098 * for IO, which happens in an async thread, so we could
7099 * race and not actually wait for any writeback pages
7100 * because they've not been submitted yet. Technically
7101 * this could still be the case for the ordered stuff
7102 * since the async thread may not have started to do its
7103 * work yet. If this becomes the case then we need to
7104 * figure out a way to make sure that in writepage we
7105 * wait for any async pages to be submitted before
7106 * returning so that fdatawait does what its supposed to
7107 * do.
7108 */
7109 btrfs_wait_ordered_range(inode, 0, (u64)-1);
7110 } else {
7111 filemap_flush(inode->i_mapping);
7112 }
5da9d01b
YZ
7113 if (delay_iput)
7114 btrfs_add_delayed_iput(inode);
7115 else
7116 iput(inode);
7117 return 1;
7118 }
7119 return 0;
7120}
7121
39279cc3
CM
7122static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7123 const char *symname)
7124{
7125 struct btrfs_trans_handle *trans;
7126 struct btrfs_root *root = BTRFS_I(dir)->root;
7127 struct btrfs_path *path;
7128 struct btrfs_key key;
1832a6d5 7129 struct inode *inode = NULL;
39279cc3
CM
7130 int err;
7131 int drop_inode = 0;
7132 u64 objectid;
00e4e6b3 7133 u64 index = 0 ;
39279cc3
CM
7134 int name_len;
7135 int datasize;
5f39d397 7136 unsigned long ptr;
39279cc3 7137 struct btrfs_file_extent_item *ei;
5f39d397 7138 struct extent_buffer *leaf;
1832a6d5 7139 unsigned long nr = 0;
39279cc3
CM
7140
7141 name_len = strlen(symname) + 1;
7142 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7143 return -ENAMETOOLONG;
1832a6d5 7144
a22285a6
YZ
7145 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7146 if (err)
7147 return err;
9ed74f2d
JB
7148 /*
7149 * 2 items for inode item and ref
7150 * 2 items for dir items
7151 * 1 item for xattr if selinux is on
7152 */
a22285a6
YZ
7153 trans = btrfs_start_transaction(root, 5);
7154 if (IS_ERR(trans))
7155 return PTR_ERR(trans);
1832a6d5 7156
39279cc3
CM
7157 btrfs_set_trans_block_group(trans, dir);
7158
aec7477b 7159 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 7160 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3
CM
7161 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7162 &index);
39279cc3
CM
7163 err = PTR_ERR(inode);
7164 if (IS_ERR(inode))
7165 goto out_unlock;
7166
f34f57a3 7167 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
7168 if (err) {
7169 drop_inode = 1;
7170 goto out_unlock;
7171 }
7172
39279cc3 7173 btrfs_set_trans_block_group(trans, inode);
a1b075d2 7174 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7175 if (err)
7176 drop_inode = 1;
7177 else {
7178 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7179 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
7180 inode->i_fop = &btrfs_file_operations;
7181 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 7182 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7183 }
39279cc3
CM
7184 btrfs_update_inode_block_group(trans, inode);
7185 btrfs_update_inode_block_group(trans, dir);
7186 if (drop_inode)
7187 goto out_unlock;
7188
7189 path = btrfs_alloc_path();
7190 BUG_ON(!path);
7191 key.objectid = inode->i_ino;
7192 key.offset = 0;
39279cc3
CM
7193 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7194 datasize = btrfs_file_extent_calc_inline_size(name_len);
7195 err = btrfs_insert_empty_item(trans, root, path, &key,
7196 datasize);
54aa1f4d
CM
7197 if (err) {
7198 drop_inode = 1;
7199 goto out_unlock;
7200 }
5f39d397
CM
7201 leaf = path->nodes[0];
7202 ei = btrfs_item_ptr(leaf, path->slots[0],
7203 struct btrfs_file_extent_item);
7204 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7205 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7206 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7207 btrfs_set_file_extent_encryption(leaf, ei, 0);
7208 btrfs_set_file_extent_compression(leaf, ei, 0);
7209 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7210 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7211
39279cc3 7212 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7213 write_extent_buffer(leaf, symname, ptr, name_len);
7214 btrfs_mark_buffer_dirty(leaf);
39279cc3 7215 btrfs_free_path(path);
5f39d397 7216
39279cc3
CM
7217 inode->i_op = &btrfs_symlink_inode_operations;
7218 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7219 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7220 inode_set_bytes(inode, name_len);
dbe674a9 7221 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7222 err = btrfs_update_inode(trans, root, inode);
7223 if (err)
7224 drop_inode = 1;
39279cc3
CM
7225
7226out_unlock:
d3c2fdcf 7227 nr = trans->blocks_used;
ab78c84d 7228 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
7229 if (drop_inode) {
7230 inode_dec_link_count(inode);
7231 iput(inode);
7232 }
d3c2fdcf 7233 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7234 return err;
7235}
16432985 7236
0af3d00b
JB
7237static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7238 u64 start, u64 num_bytes, u64 min_size,
7239 loff_t actual_len, u64 *alloc_hint,
7240 struct btrfs_trans_handle *trans)
d899e052 7241{
d899e052
YZ
7242 struct btrfs_root *root = BTRFS_I(inode)->root;
7243 struct btrfs_key ins;
d899e052 7244 u64 cur_offset = start;
55a61d1d 7245 u64 i_size;
d899e052 7246 int ret = 0;
0af3d00b 7247 bool own_trans = true;
d899e052 7248
0af3d00b
JB
7249 if (trans)
7250 own_trans = false;
d899e052 7251 while (num_bytes > 0) {
0af3d00b
JB
7252 if (own_trans) {
7253 trans = btrfs_start_transaction(root, 3);
7254 if (IS_ERR(trans)) {
7255 ret = PTR_ERR(trans);
7256 break;
7257 }
5a303d5d
YZ
7258 }
7259
efa56464
YZ
7260 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7261 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7262 if (ret) {
0af3d00b
JB
7263 if (own_trans)
7264 btrfs_end_transaction(trans, root);
a22285a6 7265 break;
d899e052 7266 }
5a303d5d 7267
d899e052
YZ
7268 ret = insert_reserved_file_extent(trans, inode,
7269 cur_offset, ins.objectid,
7270 ins.offset, ins.offset,
920bbbfb 7271 ins.offset, 0, 0, 0,
d899e052
YZ
7272 BTRFS_FILE_EXTENT_PREALLOC);
7273 BUG_ON(ret);
a1ed835e
CM
7274 btrfs_drop_extent_cache(inode, cur_offset,
7275 cur_offset + ins.offset -1, 0);
5a303d5d 7276
d899e052
YZ
7277 num_bytes -= ins.offset;
7278 cur_offset += ins.offset;
efa56464 7279 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7280
d899e052 7281 inode->i_ctime = CURRENT_TIME;
6cbff00f 7282 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7283 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7284 (actual_len > inode->i_size) &&
7285 (cur_offset > inode->i_size)) {
d1ea6a61 7286 if (cur_offset > actual_len)
55a61d1d 7287 i_size = actual_len;
d1ea6a61 7288 else
55a61d1d
JB
7289 i_size = cur_offset;
7290 i_size_write(inode, i_size);
7291 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7292 }
7293
d899e052
YZ
7294 ret = btrfs_update_inode(trans, root, inode);
7295 BUG_ON(ret);
d899e052 7296
0af3d00b
JB
7297 if (own_trans)
7298 btrfs_end_transaction(trans, root);
5a303d5d 7299 }
d899e052
YZ
7300 return ret;
7301}
7302
0af3d00b
JB
7303int btrfs_prealloc_file_range(struct inode *inode, int mode,
7304 u64 start, u64 num_bytes, u64 min_size,
7305 loff_t actual_len, u64 *alloc_hint)
7306{
7307 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7308 min_size, actual_len, alloc_hint,
7309 NULL);
7310}
7311
7312int btrfs_prealloc_file_range_trans(struct inode *inode,
7313 struct btrfs_trans_handle *trans, int mode,
7314 u64 start, u64 num_bytes, u64 min_size,
7315 loff_t actual_len, u64 *alloc_hint)
7316{
7317 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7318 min_size, actual_len, alloc_hint, trans);
7319}
7320
e6dcd2dc
CM
7321static int btrfs_set_page_dirty(struct page *page)
7322{
e6dcd2dc
CM
7323 return __set_page_dirty_nobuffers(page);
7324}
7325
b74c79e9 7326static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
fdebe2bd 7327{
b83cc969
LZ
7328 struct btrfs_root *root = BTRFS_I(inode)->root;
7329
7330 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7331 return -EROFS;
6cbff00f 7332 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 7333 return -EACCES;
b74c79e9 7334 return generic_permission(inode, mask, flags, btrfs_check_acl);
fdebe2bd 7335}
39279cc3 7336
6e1d5dcc 7337static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7338 .getattr = btrfs_getattr,
39279cc3
CM
7339 .lookup = btrfs_lookup,
7340 .create = btrfs_create,
7341 .unlink = btrfs_unlink,
7342 .link = btrfs_link,
7343 .mkdir = btrfs_mkdir,
7344 .rmdir = btrfs_rmdir,
7345 .rename = btrfs_rename,
7346 .symlink = btrfs_symlink,
7347 .setattr = btrfs_setattr,
618e21d5 7348 .mknod = btrfs_mknod,
95819c05
CH
7349 .setxattr = btrfs_setxattr,
7350 .getxattr = btrfs_getxattr,
5103e947 7351 .listxattr = btrfs_listxattr,
95819c05 7352 .removexattr = btrfs_removexattr,
fdebe2bd 7353 .permission = btrfs_permission,
39279cc3 7354};
6e1d5dcc 7355static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7356 .lookup = btrfs_lookup,
fdebe2bd 7357 .permission = btrfs_permission,
39279cc3 7358};
76dda93c 7359
828c0950 7360static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7361 .llseek = generic_file_llseek,
7362 .read = generic_read_dir,
cbdf5a24 7363 .readdir = btrfs_real_readdir,
34287aa3 7364 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7365#ifdef CONFIG_COMPAT
34287aa3 7366 .compat_ioctl = btrfs_ioctl,
39279cc3 7367#endif
6bf13c0c 7368 .release = btrfs_release_file,
e02119d5 7369 .fsync = btrfs_sync_file,
39279cc3
CM
7370};
7371
d1310b2e 7372static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7373 .fill_delalloc = run_delalloc_range,
065631f6 7374 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7375 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7376 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7377 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7378 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 7379 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
7380 .set_bit_hook = btrfs_set_bit_hook,
7381 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7382 .merge_extent_hook = btrfs_merge_extent_hook,
7383 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7384};
7385
35054394
CM
7386/*
7387 * btrfs doesn't support the bmap operation because swapfiles
7388 * use bmap to make a mapping of extents in the file. They assume
7389 * these extents won't change over the life of the file and they
7390 * use the bmap result to do IO directly to the drive.
7391 *
7392 * the btrfs bmap call would return logical addresses that aren't
7393 * suitable for IO and they also will change frequently as COW
7394 * operations happen. So, swapfile + btrfs == corruption.
7395 *
7396 * For now we're avoiding this by dropping bmap.
7397 */
7f09410b 7398static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7399 .readpage = btrfs_readpage,
7400 .writepage = btrfs_writepage,
b293f02e 7401 .writepages = btrfs_writepages,
3ab2fb5a 7402 .readpages = btrfs_readpages,
39279cc3 7403 .sync_page = block_sync_page,
16432985 7404 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7405 .invalidatepage = btrfs_invalidatepage,
7406 .releasepage = btrfs_releasepage,
e6dcd2dc 7407 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7408 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7409};
7410
7f09410b 7411static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7412 .readpage = btrfs_readpage,
7413 .writepage = btrfs_writepage,
2bf5a725
CM
7414 .invalidatepage = btrfs_invalidatepage,
7415 .releasepage = btrfs_releasepage,
39279cc3
CM
7416};
7417
6e1d5dcc 7418static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7419 .getattr = btrfs_getattr,
7420 .setattr = btrfs_setattr,
95819c05
CH
7421 .setxattr = btrfs_setxattr,
7422 .getxattr = btrfs_getxattr,
5103e947 7423 .listxattr = btrfs_listxattr,
95819c05 7424 .removexattr = btrfs_removexattr,
fdebe2bd 7425 .permission = btrfs_permission,
1506fcc8 7426 .fiemap = btrfs_fiemap,
39279cc3 7427};
6e1d5dcc 7428static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7429 .getattr = btrfs_getattr,
7430 .setattr = btrfs_setattr,
fdebe2bd 7431 .permission = btrfs_permission,
95819c05
CH
7432 .setxattr = btrfs_setxattr,
7433 .getxattr = btrfs_getxattr,
33268eaf 7434 .listxattr = btrfs_listxattr,
95819c05 7435 .removexattr = btrfs_removexattr,
618e21d5 7436};
6e1d5dcc 7437static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7438 .readlink = generic_readlink,
7439 .follow_link = page_follow_link_light,
7440 .put_link = page_put_link,
f209561a 7441 .getattr = btrfs_getattr,
fdebe2bd 7442 .permission = btrfs_permission,
0279b4cd
JO
7443 .setxattr = btrfs_setxattr,
7444 .getxattr = btrfs_getxattr,
7445 .listxattr = btrfs_listxattr,
7446 .removexattr = btrfs_removexattr,
39279cc3 7447};
76dda93c 7448
82d339d9 7449const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
7450 .d_delete = btrfs_dentry_delete,
7451};