]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/inode.c
Btrfs: refactor btrfs_evict_inode() reserve refill dance
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
8f18cf13 6#include <linux/kernel.h>
065631f6 7#include <linux/bio.h>
39279cc3 8#include <linux/buffer_head.h>
f2eb0a24 9#include <linux/file.h>
39279cc3
CM
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
39279cc3
CM
16#include <linux/backing-dev.h>
17#include <linux/mpage.h>
18#include <linux/swap.h>
19#include <linux/writeback.h>
39279cc3 20#include <linux/compat.h>
9ebefb18 21#include <linux/bit_spinlock.h>
5103e947 22#include <linux/xattr.h>
33268eaf 23#include <linux/posix_acl.h>
d899e052 24#include <linux/falloc.h>
5a0e3ad6 25#include <linux/slab.h>
7a36ddec 26#include <linux/ratelimit.h>
22c44fe6 27#include <linux/mount.h>
55e301fd 28#include <linux/btrfs.h>
53b381b3 29#include <linux/blkdev.h>
f23b5a59 30#include <linux/posix_acl_xattr.h>
e2e40f2c 31#include <linux/uio.h>
69fe2d75 32#include <linux/magic.h>
ae5e165d 33#include <linux/iversion.h>
92d32170 34#include <asm/unaligned.h>
39279cc3
CM
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39279cc3 39#include "print-tree.h"
e6dcd2dc 40#include "ordered-data.h"
95819c05 41#include "xattr.h"
e02119d5 42#include "tree-log.h"
4a54c8c1 43#include "volumes.h"
c8b97818 44#include "compression.h"
b4ce94de 45#include "locking.h"
dc89e982 46#include "free-space-cache.h"
581bb050 47#include "inode-map.h"
38c227d8 48#include "backref.h"
63541927 49#include "props.h"
31193213 50#include "qgroup.h"
dda3245e 51#include "dedupe.h"
39279cc3
CM
52
53struct btrfs_iget_args {
90d3e592 54 struct btrfs_key *location;
39279cc3
CM
55 struct btrfs_root *root;
56};
57
f28a4928 58struct btrfs_dio_data {
f28a4928
FM
59 u64 reserve;
60 u64 unsubmitted_oe_range_start;
61 u64 unsubmitted_oe_range_end;
4aaedfb0 62 int overwrite;
f28a4928
FM
63};
64
6e1d5dcc
AD
65static const struct inode_operations btrfs_dir_inode_operations;
66static const struct inode_operations btrfs_symlink_inode_operations;
67static const struct inode_operations btrfs_dir_ro_inode_operations;
68static const struct inode_operations btrfs_special_inode_operations;
69static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
70static const struct address_space_operations btrfs_aops;
71static const struct address_space_operations btrfs_symlink_aops;
828c0950 72static const struct file_operations btrfs_dir_file_operations;
20e5506b 73static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
74
75static struct kmem_cache *btrfs_inode_cachep;
76struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 77struct kmem_cache *btrfs_path_cachep;
dc89e982 78struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
79
80#define S_SHIFT 12
4d4ab6d6 81static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
82 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
83 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
84 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
85 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
86 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
87 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
88 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
89};
90
3972f260 91static int btrfs_setsize(struct inode *inode, struct iattr *attr);
213e8c55 92static int btrfs_truncate(struct inode *inode, bool skip_writeback);
5fd02043 93static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
94static noinline int cow_file_range(struct inode *inode,
95 struct page *locked_page,
dda3245e
WX
96 u64 start, u64 end, u64 delalloc_end,
97 int *page_started, unsigned long *nr_written,
98 int unlock, struct btrfs_dedupe_hash *hash);
6f9994db
LB
99static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
100 u64 orig_start, u64 block_start,
101 u64 block_len, u64 orig_block_len,
102 u64 ram_bytes, int compress_type,
103 int type);
7b128766 104
52427260
QW
105static void __endio_write_update_ordered(struct inode *inode,
106 const u64 offset, const u64 bytes,
107 const bool uptodate);
108
109/*
110 * Cleanup all submitted ordered extents in specified range to handle errors
111 * from the fill_dellaloc() callback.
112 *
113 * NOTE: caller must ensure that when an error happens, it can not call
114 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
115 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
116 * to be released, which we want to happen only when finishing the ordered
117 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
118 * fill_delalloc() callback already does proper cleanup for the first page of
119 * the range, that is, it invokes the callback writepage_end_io_hook() for the
120 * range of the first page.
121 */
122static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
123 const u64 offset,
124 const u64 bytes)
125{
63d71450
NA
126 unsigned long index = offset >> PAGE_SHIFT;
127 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
128 struct page *page;
129
130 while (index <= end_index) {
131 page = find_get_page(inode->i_mapping, index);
132 index++;
133 if (!page)
134 continue;
135 ClearPagePrivate2(page);
136 put_page(page);
137 }
52427260
QW
138 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
139 bytes - PAGE_SIZE, false);
140}
141
48a3b636 142static int btrfs_dirty_inode(struct inode *inode);
7b128766 143
6a3891c5
JB
144#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
145void btrfs_test_inode_set_ops(struct inode *inode)
146{
147 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
148}
149#endif
150
f34f57a3 151static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
152 struct inode *inode, struct inode *dir,
153 const struct qstr *qstr)
0279b4cd
JO
154{
155 int err;
156
f34f57a3 157 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 158 if (!err)
2a7dba39 159 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
160 return err;
161}
162
c8b97818
CM
163/*
164 * this does all the hard work for inserting an inline extent into
165 * the btree. The caller should have done a btrfs_drop_extents so that
166 * no overlapping inline items exist in the btree
167 */
40f76580 168static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 169 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
170 struct btrfs_root *root, struct inode *inode,
171 u64 start, size_t size, size_t compressed_size,
fe3f566c 172 int compress_type,
c8b97818
CM
173 struct page **compressed_pages)
174{
c8b97818
CM
175 struct extent_buffer *leaf;
176 struct page *page = NULL;
177 char *kaddr;
178 unsigned long ptr;
179 struct btrfs_file_extent_item *ei;
c8b97818
CM
180 int ret;
181 size_t cur_size = size;
c8b97818 182 unsigned long offset;
c8b97818 183
fe3f566c 184 if (compressed_size && compressed_pages)
c8b97818 185 cur_size = compressed_size;
c8b97818 186
1acae57b 187 inode_add_bytes(inode, size);
c8b97818 188
1acae57b
FDBM
189 if (!extent_inserted) {
190 struct btrfs_key key;
191 size_t datasize;
c8b97818 192
4a0cc7ca 193 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 194 key.offset = start;
962a298f 195 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 196
1acae57b
FDBM
197 datasize = btrfs_file_extent_calc_inline_size(cur_size);
198 path->leave_spinning = 1;
199 ret = btrfs_insert_empty_item(trans, root, path, &key,
200 datasize);
79b4f4c6 201 if (ret)
1acae57b 202 goto fail;
c8b97818
CM
203 }
204 leaf = path->nodes[0];
205 ei = btrfs_item_ptr(leaf, path->slots[0],
206 struct btrfs_file_extent_item);
207 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
208 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
209 btrfs_set_file_extent_encryption(leaf, ei, 0);
210 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
211 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
212 ptr = btrfs_file_extent_inline_start(ei);
213
261507a0 214 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
215 struct page *cpage;
216 int i = 0;
d397712b 217 while (compressed_size > 0) {
c8b97818 218 cpage = compressed_pages[i];
5b050f04 219 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 220 PAGE_SIZE);
c8b97818 221
7ac687d9 222 kaddr = kmap_atomic(cpage);
c8b97818 223 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 224 kunmap_atomic(kaddr);
c8b97818
CM
225
226 i++;
227 ptr += cur_size;
228 compressed_size -= cur_size;
229 }
230 btrfs_set_file_extent_compression(leaf, ei,
261507a0 231 compress_type);
c8b97818
CM
232 } else {
233 page = find_get_page(inode->i_mapping,
09cbfeaf 234 start >> PAGE_SHIFT);
c8b97818 235 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 236 kaddr = kmap_atomic(page);
09cbfeaf 237 offset = start & (PAGE_SIZE - 1);
c8b97818 238 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 239 kunmap_atomic(kaddr);
09cbfeaf 240 put_page(page);
c8b97818
CM
241 }
242 btrfs_mark_buffer_dirty(leaf);
1acae57b 243 btrfs_release_path(path);
c8b97818 244
c2167754
YZ
245 /*
246 * we're an inline extent, so nobody can
247 * extend the file past i_size without locking
248 * a page we already have locked.
249 *
250 * We must do any isize and inode updates
251 * before we unlock the pages. Otherwise we
252 * could end up racing with unlink.
253 */
c8b97818 254 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 255 ret = btrfs_update_inode(trans, root, inode);
c2167754 256
c8b97818 257fail:
79b4f4c6 258 return ret;
c8b97818
CM
259}
260
261
262/*
263 * conditionally insert an inline extent into the file. This
264 * does the checks required to make sure the data is small enough
265 * to fit as an inline extent.
266 */
d02c0e20 267static noinline int cow_file_range_inline(struct inode *inode, u64 start,
00361589
JB
268 u64 end, size_t compressed_size,
269 int compress_type,
270 struct page **compressed_pages)
c8b97818 271{
d02c0e20 272 struct btrfs_root *root = BTRFS_I(inode)->root;
0b246afa 273 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 274 struct btrfs_trans_handle *trans;
c8b97818
CM
275 u64 isize = i_size_read(inode);
276 u64 actual_end = min(end + 1, isize);
277 u64 inline_len = actual_end - start;
0b246afa 278 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
279 u64 data_len = inline_len;
280 int ret;
1acae57b
FDBM
281 struct btrfs_path *path;
282 int extent_inserted = 0;
283 u32 extent_item_size;
c8b97818
CM
284
285 if (compressed_size)
286 data_len = compressed_size;
287
288 if (start > 0 ||
0b246afa
JM
289 actual_end > fs_info->sectorsize ||
290 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 291 (!compressed_size &&
0b246afa 292 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 293 end + 1 < isize ||
0b246afa 294 data_len > fs_info->max_inline) {
c8b97818
CM
295 return 1;
296 }
297
1acae57b
FDBM
298 path = btrfs_alloc_path();
299 if (!path)
300 return -ENOMEM;
301
00361589 302 trans = btrfs_join_transaction(root);
1acae57b
FDBM
303 if (IS_ERR(trans)) {
304 btrfs_free_path(path);
00361589 305 return PTR_ERR(trans);
1acae57b 306 }
69fe2d75 307 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
00361589 308
1acae57b
FDBM
309 if (compressed_size && compressed_pages)
310 extent_item_size = btrfs_file_extent_calc_inline_size(
311 compressed_size);
312 else
313 extent_item_size = btrfs_file_extent_calc_inline_size(
314 inline_len);
315
316 ret = __btrfs_drop_extents(trans, root, inode, path,
317 start, aligned_end, NULL,
318 1, 1, extent_item_size, &extent_inserted);
00361589 319 if (ret) {
66642832 320 btrfs_abort_transaction(trans, ret);
00361589
JB
321 goto out;
322 }
c8b97818
CM
323
324 if (isize > actual_end)
325 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
326 ret = insert_inline_extent(trans, path, extent_inserted,
327 root, inode, start,
c8b97818 328 inline_len, compressed_size,
fe3f566c 329 compress_type, compressed_pages);
2adcac1a 330 if (ret && ret != -ENOSPC) {
66642832 331 btrfs_abort_transaction(trans, ret);
00361589 332 goto out;
2adcac1a 333 } else if (ret == -ENOSPC) {
00361589
JB
334 ret = 1;
335 goto out;
79787eaa 336 }
2adcac1a 337
bdc20e67 338 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
dcdbc059 339 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 340out:
94ed938a
QW
341 /*
342 * Don't forget to free the reserved space, as for inlined extent
343 * it won't count as data extent, free them directly here.
344 * And at reserve time, it's always aligned to page size, so
345 * just free one page here.
346 */
bc42bda2 347 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 348 btrfs_free_path(path);
3a45bb20 349 btrfs_end_transaction(trans);
00361589 350 return ret;
c8b97818
CM
351}
352
771ed689
CM
353struct async_extent {
354 u64 start;
355 u64 ram_size;
356 u64 compressed_size;
357 struct page **pages;
358 unsigned long nr_pages;
261507a0 359 int compress_type;
771ed689
CM
360 struct list_head list;
361};
362
363struct async_cow {
364 struct inode *inode;
365 struct btrfs_root *root;
366 struct page *locked_page;
367 u64 start;
368 u64 end;
f82b7359 369 unsigned int write_flags;
771ed689
CM
370 struct list_head extents;
371 struct btrfs_work work;
372};
373
374static noinline int add_async_extent(struct async_cow *cow,
375 u64 start, u64 ram_size,
376 u64 compressed_size,
377 struct page **pages,
261507a0
LZ
378 unsigned long nr_pages,
379 int compress_type)
771ed689
CM
380{
381 struct async_extent *async_extent;
382
383 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 384 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
385 async_extent->start = start;
386 async_extent->ram_size = ram_size;
387 async_extent->compressed_size = compressed_size;
388 async_extent->pages = pages;
389 async_extent->nr_pages = nr_pages;
261507a0 390 async_extent->compress_type = compress_type;
771ed689
CM
391 list_add_tail(&async_extent->list, &cow->extents);
392 return 0;
393}
394
c2fcdcdf 395static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
f79707b0 396{
0b246afa 397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
398
399 /* force compress */
0b246afa 400 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 401 return 1;
eec63c65
DS
402 /* defrag ioctl */
403 if (BTRFS_I(inode)->defrag_compress)
404 return 1;
f79707b0
WS
405 /* bad compression ratios */
406 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
407 return 0;
0b246afa 408 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0 409 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
b52aa8c9 410 BTRFS_I(inode)->prop_compress)
c2fcdcdf 411 return btrfs_compress_heuristic(inode, start, end);
f79707b0
WS
412 return 0;
413}
414
6158e1ce 415static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
416 u64 start, u64 end, u64 num_bytes, u64 small_write)
417{
418 /* If this is a small write inside eof, kick off a defrag */
419 if (num_bytes < small_write &&
6158e1ce 420 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
421 btrfs_add_inode_defrag(NULL, inode);
422}
423
d352ac68 424/*
771ed689
CM
425 * we create compressed extents in two phases. The first
426 * phase compresses a range of pages that have already been
427 * locked (both pages and state bits are locked).
c8b97818 428 *
771ed689
CM
429 * This is done inside an ordered work queue, and the compression
430 * is spread across many cpus. The actual IO submission is step
431 * two, and the ordered work queue takes care of making sure that
432 * happens in the same order things were put onto the queue by
433 * writepages and friends.
c8b97818 434 *
771ed689
CM
435 * If this code finds it can't get good compression, it puts an
436 * entry onto the work queue to write the uncompressed bytes. This
437 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
438 * are written in the same order that the flusher thread sent them
439 * down.
d352ac68 440 */
c44f649e 441static noinline void compress_file_range(struct inode *inode,
771ed689
CM
442 struct page *locked_page,
443 u64 start, u64 end,
444 struct async_cow *async_cow,
445 int *num_added)
b888db2b 446{
0b246afa 447 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0b246afa 448 u64 blocksize = fs_info->sectorsize;
c8b97818 449 u64 actual_end;
42dc7bab 450 u64 isize = i_size_read(inode);
e6dcd2dc 451 int ret = 0;
c8b97818
CM
452 struct page **pages = NULL;
453 unsigned long nr_pages;
c8b97818
CM
454 unsigned long total_compressed = 0;
455 unsigned long total_in = 0;
c8b97818
CM
456 int i;
457 int will_compress;
0b246afa 458 int compress_type = fs_info->compress_type;
4adaa611 459 int redirty = 0;
b888db2b 460
6158e1ce
NB
461 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
462 SZ_16K);
4cb5300b 463
42dc7bab 464 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
465again:
466 will_compress = 0;
09cbfeaf 467 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
468 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
469 nr_pages = min_t(unsigned long, nr_pages,
470 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 471
f03d9301
CM
472 /*
473 * we don't want to send crud past the end of i_size through
474 * compression, that's just a waste of CPU time. So, if the
475 * end of the file is before the start of our current
476 * requested range of bytes, we bail out to the uncompressed
477 * cleanup code that can deal with all of this.
478 *
479 * It isn't really the fastest way to fix things, but this is a
480 * very uncommon corner.
481 */
482 if (actual_end <= start)
483 goto cleanup_and_bail_uncompressed;
484
c8b97818
CM
485 total_compressed = actual_end - start;
486
4bcbb332
SW
487 /*
488 * skip compression for a small file range(<=blocksize) that
01327610 489 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
490 */
491 if (total_compressed <= blocksize &&
492 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
493 goto cleanup_and_bail_uncompressed;
494
069eac78
DS
495 total_compressed = min_t(unsigned long, total_compressed,
496 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
497 total_in = 0;
498 ret = 0;
db94535d 499
771ed689
CM
500 /*
501 * we do compression for mount -o compress and when the
502 * inode has not been flagged as nocompress. This flag can
503 * change at any time if we discover bad compression ratios.
c8b97818 504 */
c2fcdcdf 505 if (inode_need_compress(inode, start, end)) {
c8b97818 506 WARN_ON(pages);
31e818fe 507 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
508 if (!pages) {
509 /* just bail out to the uncompressed code */
510 goto cont;
511 }
c8b97818 512
eec63c65
DS
513 if (BTRFS_I(inode)->defrag_compress)
514 compress_type = BTRFS_I(inode)->defrag_compress;
515 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 516 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 517
4adaa611
CM
518 /*
519 * we need to call clear_page_dirty_for_io on each
520 * page in the range. Otherwise applications with the file
521 * mmap'd can wander in and change the page contents while
522 * we are compressing them.
523 *
524 * If the compression fails for any reason, we set the pages
525 * dirty again later on.
e9679de3
TT
526 *
527 * Note that the remaining part is redirtied, the start pointer
528 * has moved, the end is the original one.
4adaa611 529 */
e9679de3
TT
530 if (!redirty) {
531 extent_range_clear_dirty_for_io(inode, start, end);
532 redirty = 1;
533 }
f51d2b59
DS
534
535 /* Compression level is applied here and only here */
536 ret = btrfs_compress_pages(
537 compress_type | (fs_info->compress_level << 4),
261507a0 538 inode->i_mapping, start,
38c31464 539 pages,
4d3a800e 540 &nr_pages,
261507a0 541 &total_in,
e5d74902 542 &total_compressed);
c8b97818
CM
543
544 if (!ret) {
545 unsigned long offset = total_compressed &
09cbfeaf 546 (PAGE_SIZE - 1);
4d3a800e 547 struct page *page = pages[nr_pages - 1];
c8b97818
CM
548 char *kaddr;
549
550 /* zero the tail end of the last page, we might be
551 * sending it down to disk
552 */
553 if (offset) {
7ac687d9 554 kaddr = kmap_atomic(page);
c8b97818 555 memset(kaddr + offset, 0,
09cbfeaf 556 PAGE_SIZE - offset);
7ac687d9 557 kunmap_atomic(kaddr);
c8b97818
CM
558 }
559 will_compress = 1;
560 }
561 }
560f7d75 562cont:
c8b97818
CM
563 if (start == 0) {
564 /* lets try to make an inline extent */
6018ba0a 565 if (ret || total_in < actual_end) {
c8b97818 566 /* we didn't compress the entire range, try
771ed689 567 * to make an uncompressed inline extent.
c8b97818 568 */
d02c0e20
NB
569 ret = cow_file_range_inline(inode, start, end, 0,
570 BTRFS_COMPRESS_NONE, NULL);
c8b97818 571 } else {
771ed689 572 /* try making a compressed inline extent */
d02c0e20 573 ret = cow_file_range_inline(inode, start, end,
fe3f566c
LZ
574 total_compressed,
575 compress_type, pages);
c8b97818 576 }
79787eaa 577 if (ret <= 0) {
151a41bc 578 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
579 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
580 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
581 unsigned long page_error_op;
582
e6eb4314 583 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 584
771ed689 585 /*
79787eaa
JM
586 * inline extent creation worked or returned error,
587 * we don't need to create any more async work items.
588 * Unlock and free up our temp pages.
8b62f87b
JB
589 *
590 * We use DO_ACCOUNTING here because we need the
591 * delalloc_release_metadata to be done _after_ we drop
592 * our outstanding extent for clearing delalloc for this
593 * range.
771ed689 594 */
ba8b04c1
QW
595 extent_clear_unlock_delalloc(inode, start, end, end,
596 NULL, clear_flags,
597 PAGE_UNLOCK |
c2790a2e
JB
598 PAGE_CLEAR_DIRTY |
599 PAGE_SET_WRITEBACK |
e6eb4314 600 page_error_op |
c2790a2e 601 PAGE_END_WRITEBACK);
c8b97818
CM
602 goto free_pages_out;
603 }
604 }
605
606 if (will_compress) {
607 /*
608 * we aren't doing an inline extent round the compressed size
609 * up to a block size boundary so the allocator does sane
610 * things
611 */
fda2832f 612 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
613
614 /*
615 * one last check to make sure the compression is really a
170607eb
TT
616 * win, compare the page count read with the blocks on disk,
617 * compression must free at least one sector size
c8b97818 618 */
09cbfeaf 619 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 620 if (total_compressed + blocksize <= total_in) {
c8bb0c8b
AS
621 *num_added += 1;
622
623 /*
624 * The async work queues will take care of doing actual
625 * allocation on disk for these compressed pages, and
626 * will submit them to the elevator.
627 */
1170862d 628 add_async_extent(async_cow, start, total_in,
4d3a800e 629 total_compressed, pages, nr_pages,
c8bb0c8b
AS
630 compress_type);
631
1170862d
TT
632 if (start + total_in < end) {
633 start += total_in;
c8bb0c8b
AS
634 pages = NULL;
635 cond_resched();
636 goto again;
637 }
638 return;
c8b97818
CM
639 }
640 }
c8bb0c8b 641 if (pages) {
c8b97818
CM
642 /*
643 * the compression code ran but failed to make things smaller,
644 * free any pages it allocated and our page pointer array
645 */
4d3a800e 646 for (i = 0; i < nr_pages; i++) {
70b99e69 647 WARN_ON(pages[i]->mapping);
09cbfeaf 648 put_page(pages[i]);
c8b97818
CM
649 }
650 kfree(pages);
651 pages = NULL;
652 total_compressed = 0;
4d3a800e 653 nr_pages = 0;
c8b97818
CM
654
655 /* flag the file so we don't compress in the future */
0b246afa 656 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 657 !(BTRFS_I(inode)->prop_compress)) {
a555f810 658 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 659 }
c8b97818 660 }
f03d9301 661cleanup_and_bail_uncompressed:
c8bb0c8b
AS
662 /*
663 * No compression, but we still need to write the pages in the file
664 * we've been given so far. redirty the locked page if it corresponds
665 * to our extent and set things up for the async work queue to run
666 * cow_file_range to do the normal delalloc dance.
667 */
668 if (page_offset(locked_page) >= start &&
669 page_offset(locked_page) <= end)
670 __set_page_dirty_nobuffers(locked_page);
671 /* unlocked later on in the async handlers */
672
673 if (redirty)
674 extent_range_redirty_for_io(inode, start, end);
675 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
676 BTRFS_COMPRESS_NONE);
677 *num_added += 1;
3b951516 678
c44f649e 679 return;
771ed689
CM
680
681free_pages_out:
4d3a800e 682 for (i = 0; i < nr_pages; i++) {
771ed689 683 WARN_ON(pages[i]->mapping);
09cbfeaf 684 put_page(pages[i]);
771ed689 685 }
d397712b 686 kfree(pages);
771ed689 687}
771ed689 688
40ae837b
FM
689static void free_async_extent_pages(struct async_extent *async_extent)
690{
691 int i;
692
693 if (!async_extent->pages)
694 return;
695
696 for (i = 0; i < async_extent->nr_pages; i++) {
697 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 698 put_page(async_extent->pages[i]);
40ae837b
FM
699 }
700 kfree(async_extent->pages);
701 async_extent->nr_pages = 0;
702 async_extent->pages = NULL;
771ed689
CM
703}
704
705/*
706 * phase two of compressed writeback. This is the ordered portion
707 * of the code, which only gets called in the order the work was
708 * queued. We walk all the async extents created by compress_file_range
709 * and send them down to the disk.
710 */
dec8f175 711static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
712 struct async_cow *async_cow)
713{
0b246afa 714 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
715 struct async_extent *async_extent;
716 u64 alloc_hint = 0;
771ed689
CM
717 struct btrfs_key ins;
718 struct extent_map *em;
719 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689 720 struct extent_io_tree *io_tree;
f5a84ee3 721 int ret = 0;
771ed689 722
3e04e7f1 723again:
d397712b 724 while (!list_empty(&async_cow->extents)) {
771ed689
CM
725 async_extent = list_entry(async_cow->extents.next,
726 struct async_extent, list);
727 list_del(&async_extent->list);
c8b97818 728
771ed689
CM
729 io_tree = &BTRFS_I(inode)->io_tree;
730
f5a84ee3 731retry:
771ed689
CM
732 /* did the compression code fall back to uncompressed IO? */
733 if (!async_extent->pages) {
734 int page_started = 0;
735 unsigned long nr_written = 0;
736
737 lock_extent(io_tree, async_extent->start,
2ac55d41 738 async_extent->start +
d0082371 739 async_extent->ram_size - 1);
771ed689
CM
740
741 /* allocate blocks */
f5a84ee3
JB
742 ret = cow_file_range(inode, async_cow->locked_page,
743 async_extent->start,
744 async_extent->start +
745 async_extent->ram_size - 1,
dda3245e
WX
746 async_extent->start +
747 async_extent->ram_size - 1,
748 &page_started, &nr_written, 0,
749 NULL);
771ed689 750
79787eaa
JM
751 /* JDM XXX */
752
771ed689
CM
753 /*
754 * if page_started, cow_file_range inserted an
755 * inline extent and took care of all the unlocking
756 * and IO for us. Otherwise, we need to submit
757 * all those pages down to the drive.
758 */
f5a84ee3 759 if (!page_started && !ret)
5e3ee236
NB
760 extent_write_locked_range(inode,
761 async_extent->start,
d397712b 762 async_extent->start +
771ed689 763 async_extent->ram_size - 1,
771ed689 764 WB_SYNC_ALL);
3e04e7f1
JB
765 else if (ret)
766 unlock_page(async_cow->locked_page);
771ed689
CM
767 kfree(async_extent);
768 cond_resched();
769 continue;
770 }
771
772 lock_extent(io_tree, async_extent->start,
d0082371 773 async_extent->start + async_extent->ram_size - 1);
771ed689 774
18513091 775 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
776 async_extent->compressed_size,
777 async_extent->compressed_size,
e570fd27 778 0, alloc_hint, &ins, 1, 1);
f5a84ee3 779 if (ret) {
40ae837b 780 free_async_extent_pages(async_extent);
3e04e7f1 781
fdf8e2ea
JB
782 if (ret == -ENOSPC) {
783 unlock_extent(io_tree, async_extent->start,
784 async_extent->start +
785 async_extent->ram_size - 1);
ce62003f
LB
786
787 /*
788 * we need to redirty the pages if we decide to
789 * fallback to uncompressed IO, otherwise we
790 * will not submit these pages down to lower
791 * layers.
792 */
793 extent_range_redirty_for_io(inode,
794 async_extent->start,
795 async_extent->start +
796 async_extent->ram_size - 1);
797
79787eaa 798 goto retry;
fdf8e2ea 799 }
3e04e7f1 800 goto out_free;
f5a84ee3 801 }
c2167754
YZ
802 /*
803 * here we're doing allocation and writeback of the
804 * compressed pages
805 */
6f9994db
LB
806 em = create_io_em(inode, async_extent->start,
807 async_extent->ram_size, /* len */
808 async_extent->start, /* orig_start */
809 ins.objectid, /* block_start */
810 ins.offset, /* block_len */
811 ins.offset, /* orig_block_len */
812 async_extent->ram_size, /* ram_bytes */
813 async_extent->compress_type,
814 BTRFS_ORDERED_COMPRESSED);
815 if (IS_ERR(em))
816 /* ret value is not necessary due to void function */
3e04e7f1 817 goto out_free_reserve;
6f9994db 818 free_extent_map(em);
3e04e7f1 819
261507a0
LZ
820 ret = btrfs_add_ordered_extent_compress(inode,
821 async_extent->start,
822 ins.objectid,
823 async_extent->ram_size,
824 ins.offset,
825 BTRFS_ORDERED_COMPRESSED,
826 async_extent->compress_type);
d9f85963 827 if (ret) {
dcdbc059
NB
828 btrfs_drop_extent_cache(BTRFS_I(inode),
829 async_extent->start,
d9f85963
FM
830 async_extent->start +
831 async_extent->ram_size - 1, 0);
3e04e7f1 832 goto out_free_reserve;
d9f85963 833 }
0b246afa 834 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 835
771ed689
CM
836 /*
837 * clear dirty, set writeback and unlock the pages.
838 */
c2790a2e 839 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
840 async_extent->start +
841 async_extent->ram_size - 1,
a791e35e
CM
842 async_extent->start +
843 async_extent->ram_size - 1,
151a41bc
JB
844 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
845 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 846 PAGE_SET_WRITEBACK);
4e4cbee9 847 if (btrfs_submit_compressed_write(inode,
d397712b
CM
848 async_extent->start,
849 async_extent->ram_size,
850 ins.objectid,
851 ins.offset, async_extent->pages,
f82b7359
LB
852 async_extent->nr_pages,
853 async_cow->write_flags)) {
fce2a4e6
FM
854 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
855 struct page *p = async_extent->pages[0];
856 const u64 start = async_extent->start;
857 const u64 end = start + async_extent->ram_size - 1;
858
859 p->mapping = inode->i_mapping;
860 tree->ops->writepage_end_io_hook(p, start, end,
861 NULL, 0);
862 p->mapping = NULL;
ba8b04c1
QW
863 extent_clear_unlock_delalloc(inode, start, end, end,
864 NULL, 0,
fce2a4e6
FM
865 PAGE_END_WRITEBACK |
866 PAGE_SET_ERROR);
40ae837b 867 free_async_extent_pages(async_extent);
fce2a4e6 868 }
771ed689
CM
869 alloc_hint = ins.objectid + ins.offset;
870 kfree(async_extent);
871 cond_resched();
872 }
dec8f175 873 return;
3e04e7f1 874out_free_reserve:
0b246afa 875 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 876 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 877out_free:
c2790a2e 878 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
879 async_extent->start +
880 async_extent->ram_size - 1,
3e04e7f1
JB
881 async_extent->start +
882 async_extent->ram_size - 1,
c2790a2e 883 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 884 EXTENT_DELALLOC_NEW |
151a41bc
JB
885 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
886 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
887 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
888 PAGE_SET_ERROR);
40ae837b 889 free_async_extent_pages(async_extent);
79787eaa 890 kfree(async_extent);
3e04e7f1 891 goto again;
771ed689
CM
892}
893
4b46fce2
JB
894static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
895 u64 num_bytes)
896{
897 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
898 struct extent_map *em;
899 u64 alloc_hint = 0;
900
901 read_lock(&em_tree->lock);
902 em = search_extent_mapping(em_tree, start, num_bytes);
903 if (em) {
904 /*
905 * if block start isn't an actual block number then find the
906 * first block in this inode and use that as a hint. If that
907 * block is also bogus then just don't worry about it.
908 */
909 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
910 free_extent_map(em);
911 em = search_extent_mapping(em_tree, 0, 0);
912 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
913 alloc_hint = em->block_start;
914 if (em)
915 free_extent_map(em);
916 } else {
917 alloc_hint = em->block_start;
918 free_extent_map(em);
919 }
920 }
921 read_unlock(&em_tree->lock);
922
923 return alloc_hint;
924}
925
771ed689
CM
926/*
927 * when extent_io.c finds a delayed allocation range in the file,
928 * the call backs end up in this code. The basic idea is to
929 * allocate extents on disk for the range, and create ordered data structs
930 * in ram to track those extents.
931 *
932 * locked_page is the page that writepage had locked already. We use
933 * it to make sure we don't do extra locks or unlocks.
934 *
935 * *page_started is set to one if we unlock locked_page and do everything
936 * required to start IO on it. It may be clean and already done with
937 * IO when we return.
938 */
00361589
JB
939static noinline int cow_file_range(struct inode *inode,
940 struct page *locked_page,
dda3245e
WX
941 u64 start, u64 end, u64 delalloc_end,
942 int *page_started, unsigned long *nr_written,
943 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 944{
0b246afa 945 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 946 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
947 u64 alloc_hint = 0;
948 u64 num_bytes;
949 unsigned long ram_size;
a315e68f 950 u64 cur_alloc_size = 0;
0b246afa 951 u64 blocksize = fs_info->sectorsize;
771ed689
CM
952 struct btrfs_key ins;
953 struct extent_map *em;
a315e68f
FM
954 unsigned clear_bits;
955 unsigned long page_ops;
956 bool extent_reserved = false;
771ed689
CM
957 int ret = 0;
958
70ddc553 959 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 960 WARN_ON_ONCE(1);
29bce2f3
JB
961 ret = -EINVAL;
962 goto out_unlock;
02ecd2c2 963 }
771ed689 964
fda2832f 965 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 966 num_bytes = max(blocksize, num_bytes);
566b1760 967 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 968
6158e1ce 969 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 970
771ed689
CM
971 if (start == 0) {
972 /* lets try to make an inline extent */
d02c0e20
NB
973 ret = cow_file_range_inline(inode, start, end, 0,
974 BTRFS_COMPRESS_NONE, NULL);
771ed689 975 if (ret == 0) {
8b62f87b
JB
976 /*
977 * We use DO_ACCOUNTING here because we need the
978 * delalloc_release_metadata to be run _after_ we drop
979 * our outstanding extent for clearing delalloc for this
980 * range.
981 */
ba8b04c1
QW
982 extent_clear_unlock_delalloc(inode, start, end,
983 delalloc_end, NULL,
c2790a2e 984 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
985 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
986 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
987 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
988 PAGE_END_WRITEBACK);
771ed689 989 *nr_written = *nr_written +
09cbfeaf 990 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 991 *page_started = 1;
771ed689 992 goto out;
79787eaa 993 } else if (ret < 0) {
79787eaa 994 goto out_unlock;
771ed689
CM
995 }
996 }
997
4b46fce2 998 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
999 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1000 start + num_bytes - 1, 0);
771ed689 1001
3752d22f
AJ
1002 while (num_bytes > 0) {
1003 cur_alloc_size = num_bytes;
18513091 1004 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 1005 fs_info->sectorsize, 0, alloc_hint,
e570fd27 1006 &ins, 1, 1);
00361589 1007 if (ret < 0)
79787eaa 1008 goto out_unlock;
a315e68f
FM
1009 cur_alloc_size = ins.offset;
1010 extent_reserved = true;
d397712b 1011
771ed689 1012 ram_size = ins.offset;
6f9994db
LB
1013 em = create_io_em(inode, start, ins.offset, /* len */
1014 start, /* orig_start */
1015 ins.objectid, /* block_start */
1016 ins.offset, /* block_len */
1017 ins.offset, /* orig_block_len */
1018 ram_size, /* ram_bytes */
1019 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1020 BTRFS_ORDERED_REGULAR /* type */);
6f9994db 1021 if (IS_ERR(em))
ace68bac 1022 goto out_reserve;
6f9994db 1023 free_extent_map(em);
e6dcd2dc 1024
e6dcd2dc 1025 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1026 ram_size, cur_alloc_size, 0);
ace68bac 1027 if (ret)
d9f85963 1028 goto out_drop_extent_cache;
c8b97818 1029
17d217fe
YZ
1030 if (root->root_key.objectid ==
1031 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1032 ret = btrfs_reloc_clone_csums(inode, start,
1033 cur_alloc_size);
4dbd80fb
QW
1034 /*
1035 * Only drop cache here, and process as normal.
1036 *
1037 * We must not allow extent_clear_unlock_delalloc()
1038 * at out_unlock label to free meta of this ordered
1039 * extent, as its meta should be freed by
1040 * btrfs_finish_ordered_io().
1041 *
1042 * So we must continue until @start is increased to
1043 * skip current ordered extent.
1044 */
00361589 1045 if (ret)
4dbd80fb
QW
1046 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1047 start + ram_size - 1, 0);
17d217fe
YZ
1048 }
1049
0b246afa 1050 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1051
c8b97818
CM
1052 /* we're not doing compressed IO, don't unlock the first
1053 * page (which the caller expects to stay locked), don't
1054 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1055 *
1056 * Do set the Private2 bit so we know this page was properly
1057 * setup for writepage
c8b97818 1058 */
a315e68f
FM
1059 page_ops = unlock ? PAGE_UNLOCK : 0;
1060 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1061
c2790a2e 1062 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1063 start + ram_size - 1,
1064 delalloc_end, locked_page,
c2790a2e 1065 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1066 page_ops);
3752d22f
AJ
1067 if (num_bytes < cur_alloc_size)
1068 num_bytes = 0;
4dbd80fb 1069 else
3752d22f 1070 num_bytes -= cur_alloc_size;
c59f8951
CM
1071 alloc_hint = ins.objectid + ins.offset;
1072 start += cur_alloc_size;
a315e68f 1073 extent_reserved = false;
4dbd80fb
QW
1074
1075 /*
1076 * btrfs_reloc_clone_csums() error, since start is increased
1077 * extent_clear_unlock_delalloc() at out_unlock label won't
1078 * free metadata of current ordered extent, we're OK to exit.
1079 */
1080 if (ret)
1081 goto out_unlock;
b888db2b 1082 }
79787eaa 1083out:
be20aa9d 1084 return ret;
b7d5b0a8 1085
d9f85963 1086out_drop_extent_cache:
dcdbc059 1087 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1088out_reserve:
0b246afa 1089 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1090 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1091out_unlock:
a7e3b975
FM
1092 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1093 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1094 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1095 PAGE_END_WRITEBACK;
1096 /*
1097 * If we reserved an extent for our delalloc range (or a subrange) and
1098 * failed to create the respective ordered extent, then it means that
1099 * when we reserved the extent we decremented the extent's size from
1100 * the data space_info's bytes_may_use counter and incremented the
1101 * space_info's bytes_reserved counter by the same amount. We must make
1102 * sure extent_clear_unlock_delalloc() does not try to decrement again
1103 * the data space_info's bytes_may_use counter, therefore we do not pass
1104 * it the flag EXTENT_CLEAR_DATA_RESV.
1105 */
1106 if (extent_reserved) {
1107 extent_clear_unlock_delalloc(inode, start,
1108 start + cur_alloc_size,
1109 start + cur_alloc_size,
1110 locked_page,
1111 clear_bits,
1112 page_ops);
1113 start += cur_alloc_size;
1114 if (start >= end)
1115 goto out;
1116 }
ba8b04c1
QW
1117 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1118 locked_page,
a315e68f
FM
1119 clear_bits | EXTENT_CLEAR_DATA_RESV,
1120 page_ops);
79787eaa 1121 goto out;
771ed689 1122}
c8b97818 1123
771ed689
CM
1124/*
1125 * work queue call back to started compression on a file and pages
1126 */
1127static noinline void async_cow_start(struct btrfs_work *work)
1128{
1129 struct async_cow *async_cow;
1130 int num_added = 0;
1131 async_cow = container_of(work, struct async_cow, work);
1132
1133 compress_file_range(async_cow->inode, async_cow->locked_page,
1134 async_cow->start, async_cow->end, async_cow,
1135 &num_added);
8180ef88 1136 if (num_added == 0) {
cb77fcd8 1137 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1138 async_cow->inode = NULL;
8180ef88 1139 }
771ed689
CM
1140}
1141
1142/*
1143 * work queue call back to submit previously compressed pages
1144 */
1145static noinline void async_cow_submit(struct btrfs_work *work)
1146{
0b246afa 1147 struct btrfs_fs_info *fs_info;
771ed689
CM
1148 struct async_cow *async_cow;
1149 struct btrfs_root *root;
1150 unsigned long nr_pages;
1151
1152 async_cow = container_of(work, struct async_cow, work);
1153
1154 root = async_cow->root;
0b246afa 1155 fs_info = root->fs_info;
09cbfeaf
KS
1156 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1157 PAGE_SHIFT;
771ed689 1158
093258e6 1159 /* atomic_sub_return implies a barrier */
0b246afa 1160 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
093258e6
DS
1161 5 * SZ_1M)
1162 cond_wake_up_nomb(&fs_info->async_submit_wait);
771ed689 1163
d397712b 1164 if (async_cow->inode)
771ed689 1165 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1166}
c8b97818 1167
771ed689
CM
1168static noinline void async_cow_free(struct btrfs_work *work)
1169{
1170 struct async_cow *async_cow;
1171 async_cow = container_of(work, struct async_cow, work);
8180ef88 1172 if (async_cow->inode)
cb77fcd8 1173 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1174 kfree(async_cow);
1175}
1176
1177static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1178 u64 start, u64 end, int *page_started,
f82b7359
LB
1179 unsigned long *nr_written,
1180 unsigned int write_flags)
771ed689 1181{
0b246afa 1182 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
1183 struct async_cow *async_cow;
1184 struct btrfs_root *root = BTRFS_I(inode)->root;
1185 unsigned long nr_pages;
1186 u64 cur_end;
771ed689 1187
a3429ab7 1188 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
ae0f1625 1189 1, 0, NULL);
d397712b 1190 while (start < end) {
771ed689 1191 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1192 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1193 async_cow->inode = igrab(inode);
771ed689
CM
1194 async_cow->root = root;
1195 async_cow->locked_page = locked_page;
1196 async_cow->start = start;
f82b7359 1197 async_cow->write_flags = write_flags;
771ed689 1198
f79707b0 1199 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
0b246afa 1200 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
771ed689
CM
1201 cur_end = end;
1202 else
ee22184b 1203 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1204
1205 async_cow->end = cur_end;
1206 INIT_LIST_HEAD(&async_cow->extents);
1207
9e0af237
LB
1208 btrfs_init_work(&async_cow->work,
1209 btrfs_delalloc_helper,
1210 async_cow_start, async_cow_submit,
1211 async_cow_free);
771ed689 1212
09cbfeaf
KS
1213 nr_pages = (cur_end - start + PAGE_SIZE) >>
1214 PAGE_SHIFT;
0b246afa 1215 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1216
0b246afa 1217 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
771ed689 1218
771ed689
CM
1219 *nr_written += nr_pages;
1220 start = cur_end + 1;
1221 }
1222 *page_started = 1;
1223 return 0;
be20aa9d
CM
1224}
1225
2ff7e61e 1226static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1227 u64 bytenr, u64 num_bytes)
1228{
1229 int ret;
1230 struct btrfs_ordered_sum *sums;
1231 LIST_HEAD(list);
1232
0b246afa 1233 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1234 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1235 if (ret == 0 && list_empty(&list))
1236 return 0;
1237
1238 while (!list_empty(&list)) {
1239 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1240 list_del(&sums->list);
1241 kfree(sums);
1242 }
58113753
LB
1243 if (ret < 0)
1244 return ret;
17d217fe
YZ
1245 return 1;
1246}
1247
d352ac68
CM
1248/*
1249 * when nowcow writeback call back. This checks for snapshots or COW copies
1250 * of the extents that exist in the file, and COWs the file as required.
1251 *
1252 * If no cow copies or snapshots exist, we write directly to the existing
1253 * blocks on disk
1254 */
7f366cfe
CM
1255static noinline int run_delalloc_nocow(struct inode *inode,
1256 struct page *locked_page,
771ed689
CM
1257 u64 start, u64 end, int *page_started, int force,
1258 unsigned long *nr_written)
be20aa9d 1259{
0b246afa 1260 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d
CM
1261 struct btrfs_root *root = BTRFS_I(inode)->root;
1262 struct extent_buffer *leaf;
be20aa9d 1263 struct btrfs_path *path;
80ff3856 1264 struct btrfs_file_extent_item *fi;
be20aa9d 1265 struct btrfs_key found_key;
6f9994db 1266 struct extent_map *em;
80ff3856
YZ
1267 u64 cow_start;
1268 u64 cur_offset;
1269 u64 extent_end;
5d4f98a2 1270 u64 extent_offset;
80ff3856
YZ
1271 u64 disk_bytenr;
1272 u64 num_bytes;
b4939680 1273 u64 disk_num_bytes;
cc95bef6 1274 u64 ram_bytes;
80ff3856 1275 int extent_type;
79787eaa 1276 int ret, err;
d899e052 1277 int type;
80ff3856
YZ
1278 int nocow;
1279 int check_prev = 1;
82d5902d 1280 bool nolock;
4a0cc7ca 1281 u64 ino = btrfs_ino(BTRFS_I(inode));
be20aa9d
CM
1282
1283 path = btrfs_alloc_path();
17ca04af 1284 if (!path) {
ba8b04c1
QW
1285 extent_clear_unlock_delalloc(inode, start, end, end,
1286 locked_page,
c2790a2e 1287 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1288 EXTENT_DO_ACCOUNTING |
1289 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1290 PAGE_CLEAR_DIRTY |
1291 PAGE_SET_WRITEBACK |
1292 PAGE_END_WRITEBACK);
d8926bb3 1293 return -ENOMEM;
17ca04af 1294 }
82d5902d 1295
70ddc553 1296 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
82d5902d 1297
80ff3856
YZ
1298 cow_start = (u64)-1;
1299 cur_offset = start;
1300 while (1) {
e4c3b2dc 1301 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1302 cur_offset, 0);
d788a349 1303 if (ret < 0)
79787eaa 1304 goto error;
80ff3856
YZ
1305 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1306 leaf = path->nodes[0];
1307 btrfs_item_key_to_cpu(leaf, &found_key,
1308 path->slots[0] - 1);
33345d01 1309 if (found_key.objectid == ino &&
80ff3856
YZ
1310 found_key.type == BTRFS_EXTENT_DATA_KEY)
1311 path->slots[0]--;
1312 }
1313 check_prev = 0;
1314next_slot:
1315 leaf = path->nodes[0];
1316 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1317 ret = btrfs_next_leaf(root, path);
e8916699
LB
1318 if (ret < 0) {
1319 if (cow_start != (u64)-1)
1320 cur_offset = cow_start;
79787eaa 1321 goto error;
e8916699 1322 }
80ff3856
YZ
1323 if (ret > 0)
1324 break;
1325 leaf = path->nodes[0];
1326 }
be20aa9d 1327
80ff3856
YZ
1328 nocow = 0;
1329 disk_bytenr = 0;
17d217fe 1330 num_bytes = 0;
80ff3856
YZ
1331 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1332
1d512cb7
FM
1333 if (found_key.objectid > ino)
1334 break;
1335 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1336 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1337 path->slots[0]++;
1338 goto next_slot;
1339 }
1340 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1341 found_key.offset > end)
1342 break;
1343
1344 if (found_key.offset > cur_offset) {
1345 extent_end = found_key.offset;
e9061e21 1346 extent_type = 0;
80ff3856
YZ
1347 goto out_check;
1348 }
1349
1350 fi = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_file_extent_item);
1352 extent_type = btrfs_file_extent_type(leaf, fi);
1353
cc95bef6 1354 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1355 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1356 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1357 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1358 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1359 extent_end = found_key.offset +
1360 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1361 disk_num_bytes =
1362 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1363 if (extent_end <= start) {
1364 path->slots[0]++;
1365 goto next_slot;
1366 }
17d217fe
YZ
1367 if (disk_bytenr == 0)
1368 goto out_check;
80ff3856
YZ
1369 if (btrfs_file_extent_compression(leaf, fi) ||
1370 btrfs_file_extent_encryption(leaf, fi) ||
1371 btrfs_file_extent_other_encoding(leaf, fi))
1372 goto out_check;
d899e052
YZ
1373 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1374 goto out_check;
2ff7e61e 1375 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1376 goto out_check;
58113753
LB
1377 ret = btrfs_cross_ref_exist(root, ino,
1378 found_key.offset -
1379 extent_offset, disk_bytenr);
1380 if (ret) {
1381 /*
1382 * ret could be -EIO if the above fails to read
1383 * metadata.
1384 */
1385 if (ret < 0) {
1386 if (cow_start != (u64)-1)
1387 cur_offset = cow_start;
1388 goto error;
1389 }
1390
1391 WARN_ON_ONCE(nolock);
17d217fe 1392 goto out_check;
58113753 1393 }
5d4f98a2 1394 disk_bytenr += extent_offset;
17d217fe
YZ
1395 disk_bytenr += cur_offset - found_key.offset;
1396 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1397 /*
1398 * if there are pending snapshots for this root,
1399 * we fall into common COW way.
1400 */
1401 if (!nolock) {
ea14b57f 1402 err = btrfs_start_write_no_snapshotting(root);
e9894fd3
WS
1403 if (!err)
1404 goto out_check;
1405 }
17d217fe
YZ
1406 /*
1407 * force cow if csum exists in the range.
1408 * this ensure that csum for a given extent are
1409 * either valid or do not exist.
1410 */
58113753
LB
1411 ret = csum_exist_in_range(fs_info, disk_bytenr,
1412 num_bytes);
1413 if (ret) {
91e1f56a 1414 if (!nolock)
ea14b57f 1415 btrfs_end_write_no_snapshotting(root);
58113753
LB
1416
1417 /*
1418 * ret could be -EIO if the above fails to read
1419 * metadata.
1420 */
1421 if (ret < 0) {
1422 if (cow_start != (u64)-1)
1423 cur_offset = cow_start;
1424 goto error;
1425 }
1426 WARN_ON_ONCE(nolock);
17d217fe 1427 goto out_check;
91e1f56a
RK
1428 }
1429 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1430 if (!nolock)
ea14b57f 1431 btrfs_end_write_no_snapshotting(root);
f78c436c 1432 goto out_check;
91e1f56a 1433 }
80ff3856
YZ
1434 nocow = 1;
1435 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1436 extent_end = found_key.offset +
514ac8ad
CM
1437 btrfs_file_extent_inline_len(leaf,
1438 path->slots[0], fi);
da17066c 1439 extent_end = ALIGN(extent_end,
0b246afa 1440 fs_info->sectorsize);
80ff3856
YZ
1441 } else {
1442 BUG_ON(1);
1443 }
1444out_check:
1445 if (extent_end <= start) {
1446 path->slots[0]++;
e9894fd3 1447 if (!nolock && nocow)
ea14b57f 1448 btrfs_end_write_no_snapshotting(root);
f78c436c 1449 if (nocow)
0b246afa 1450 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1451 goto next_slot;
1452 }
1453 if (!nocow) {
1454 if (cow_start == (u64)-1)
1455 cow_start = cur_offset;
1456 cur_offset = extent_end;
1457 if (cur_offset > end)
1458 break;
1459 path->slots[0]++;
1460 goto next_slot;
7ea394f1
YZ
1461 }
1462
b3b4aa74 1463 btrfs_release_path(path);
80ff3856 1464 if (cow_start != (u64)-1) {
00361589
JB
1465 ret = cow_file_range(inode, locked_page,
1466 cow_start, found_key.offset - 1,
dda3245e
WX
1467 end, page_started, nr_written, 1,
1468 NULL);
e9894fd3
WS
1469 if (ret) {
1470 if (!nolock && nocow)
ea14b57f 1471 btrfs_end_write_no_snapshotting(root);
f78c436c 1472 if (nocow)
0b246afa 1473 btrfs_dec_nocow_writers(fs_info,
f78c436c 1474 disk_bytenr);
79787eaa 1475 goto error;
e9894fd3 1476 }
80ff3856 1477 cow_start = (u64)-1;
7ea394f1 1478 }
80ff3856 1479
d899e052 1480 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db
LB
1481 u64 orig_start = found_key.offset - extent_offset;
1482
1483 em = create_io_em(inode, cur_offset, num_bytes,
1484 orig_start,
1485 disk_bytenr, /* block_start */
1486 num_bytes, /* block_len */
1487 disk_num_bytes, /* orig_block_len */
1488 ram_bytes, BTRFS_COMPRESS_NONE,
1489 BTRFS_ORDERED_PREALLOC);
1490 if (IS_ERR(em)) {
1491 if (!nolock && nocow)
ea14b57f 1492 btrfs_end_write_no_snapshotting(root);
6f9994db
LB
1493 if (nocow)
1494 btrfs_dec_nocow_writers(fs_info,
1495 disk_bytenr);
1496 ret = PTR_ERR(em);
1497 goto error;
d899e052 1498 }
6f9994db
LB
1499 free_extent_map(em);
1500 }
1501
1502 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
d899e052
YZ
1503 type = BTRFS_ORDERED_PREALLOC;
1504 } else {
1505 type = BTRFS_ORDERED_NOCOW;
1506 }
80ff3856
YZ
1507
1508 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1509 num_bytes, num_bytes, type);
f78c436c 1510 if (nocow)
0b246afa 1511 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1512 BUG_ON(ret); /* -ENOMEM */
771ed689 1513
efa56464 1514 if (root->root_key.objectid ==
4dbd80fb
QW
1515 BTRFS_DATA_RELOC_TREE_OBJECTID)
1516 /*
1517 * Error handled later, as we must prevent
1518 * extent_clear_unlock_delalloc() in error handler
1519 * from freeing metadata of created ordered extent.
1520 */
efa56464
YZ
1521 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1522 num_bytes);
efa56464 1523
c2790a2e 1524 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1525 cur_offset + num_bytes - 1, end,
c2790a2e 1526 locked_page, EXTENT_LOCKED |
18513091
WX
1527 EXTENT_DELALLOC |
1528 EXTENT_CLEAR_DATA_RESV,
1529 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1530
e9894fd3 1531 if (!nolock && nocow)
ea14b57f 1532 btrfs_end_write_no_snapshotting(root);
80ff3856 1533 cur_offset = extent_end;
4dbd80fb
QW
1534
1535 /*
1536 * btrfs_reloc_clone_csums() error, now we're OK to call error
1537 * handler, as metadata for created ordered extent will only
1538 * be freed by btrfs_finish_ordered_io().
1539 */
1540 if (ret)
1541 goto error;
80ff3856
YZ
1542 if (cur_offset > end)
1543 break;
be20aa9d 1544 }
b3b4aa74 1545 btrfs_release_path(path);
80ff3856 1546
17ca04af 1547 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1548 cow_start = cur_offset;
17ca04af
JB
1549 cur_offset = end;
1550 }
1551
80ff3856 1552 if (cow_start != (u64)-1) {
dda3245e
WX
1553 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1554 page_started, nr_written, 1, NULL);
d788a349 1555 if (ret)
79787eaa 1556 goto error;
80ff3856
YZ
1557 }
1558
79787eaa 1559error:
17ca04af 1560 if (ret && cur_offset < end)
ba8b04c1 1561 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1562 locked_page, EXTENT_LOCKED |
151a41bc
JB
1563 EXTENT_DELALLOC | EXTENT_DEFRAG |
1564 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1565 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1566 PAGE_SET_WRITEBACK |
1567 PAGE_END_WRITEBACK);
7ea394f1 1568 btrfs_free_path(path);
79787eaa 1569 return ret;
be20aa9d
CM
1570}
1571
47059d93
WS
1572static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1573{
1574
1575 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1576 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1577 return 0;
1578
1579 /*
1580 * @defrag_bytes is a hint value, no spinlock held here,
1581 * if is not zero, it means the file is defragging.
1582 * Force cow if given extent needs to be defragged.
1583 */
1584 if (BTRFS_I(inode)->defrag_bytes &&
1585 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1586 EXTENT_DEFRAG, 0, NULL))
1587 return 1;
1588
1589 return 0;
1590}
1591
d352ac68
CM
1592/*
1593 * extent_io.c call back to do delayed allocation processing
1594 */
c6100a4b 1595static int run_delalloc_range(void *private_data, struct page *locked_page,
771ed689 1596 u64 start, u64 end, int *page_started,
f82b7359
LB
1597 unsigned long *nr_written,
1598 struct writeback_control *wbc)
be20aa9d 1599{
c6100a4b 1600 struct inode *inode = private_data;
be20aa9d 1601 int ret;
47059d93 1602 int force_cow = need_force_cow(inode, start, end);
f82b7359 1603 unsigned int write_flags = wbc_to_write_flags(wbc);
a2135011 1604
47059d93 1605 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1606 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1607 page_started, 1, nr_written);
47059d93 1608 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1609 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1610 page_started, 0, nr_written);
c2fcdcdf 1611 } else if (!inode_need_compress(inode, start, end)) {
dda3245e
WX
1612 ret = cow_file_range(inode, locked_page, start, end, end,
1613 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1614 } else {
1615 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1616 &BTRFS_I(inode)->runtime_flags);
771ed689 1617 ret = cow_file_range_async(inode, locked_page, start, end,
f82b7359
LB
1618 page_started, nr_written,
1619 write_flags);
7ddf5a42 1620 }
52427260
QW
1621 if (ret)
1622 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
b888db2b
CM
1623 return ret;
1624}
1625
c6100a4b 1626static void btrfs_split_extent_hook(void *private_data,
1bf85046 1627 struct extent_state *orig, u64 split)
9ed74f2d 1628{
c6100a4b 1629 struct inode *inode = private_data;
dcab6a3b
JB
1630 u64 size;
1631
0ca1f7ce 1632 /* not delalloc, ignore it */
9ed74f2d 1633 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1634 return;
9ed74f2d 1635
dcab6a3b
JB
1636 size = orig->end - orig->start + 1;
1637 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1638 u32 num_extents;
dcab6a3b
JB
1639 u64 new_size;
1640
1641 /*
ba117213
JB
1642 * See the explanation in btrfs_merge_extent_hook, the same
1643 * applies here, just in reverse.
dcab6a3b
JB
1644 */
1645 new_size = orig->end - split + 1;
823bb20a 1646 num_extents = count_max_extents(new_size);
ba117213 1647 new_size = split - orig->start;
823bb20a
DS
1648 num_extents += count_max_extents(new_size);
1649 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1650 return;
1651 }
1652
9e0baf60 1653 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1654 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1655 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1656}
1657
1658/*
1659 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1660 * extents so we can keep track of new extents that are just merged onto old
1661 * extents, such as when we are doing sequential writes, so we can properly
1662 * account for the metadata space we'll need.
1663 */
c6100a4b 1664static void btrfs_merge_extent_hook(void *private_data,
1bf85046
JM
1665 struct extent_state *new,
1666 struct extent_state *other)
9ed74f2d 1667{
c6100a4b 1668 struct inode *inode = private_data;
dcab6a3b 1669 u64 new_size, old_size;
823bb20a 1670 u32 num_extents;
dcab6a3b 1671
9ed74f2d
JB
1672 /* not delalloc, ignore it */
1673 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1674 return;
9ed74f2d 1675
8461a3de
JB
1676 if (new->start > other->start)
1677 new_size = new->end - other->start + 1;
1678 else
1679 new_size = other->end - new->start + 1;
dcab6a3b
JB
1680
1681 /* we're not bigger than the max, unreserve the space and go */
1682 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1683 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1684 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1685 spin_unlock(&BTRFS_I(inode)->lock);
1686 return;
1687 }
1688
1689 /*
ba117213
JB
1690 * We have to add up either side to figure out how many extents were
1691 * accounted for before we merged into one big extent. If the number of
1692 * extents we accounted for is <= the amount we need for the new range
1693 * then we can return, otherwise drop. Think of it like this
1694 *
1695 * [ 4k][MAX_SIZE]
1696 *
1697 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1698 * need 2 outstanding extents, on one side we have 1 and the other side
1699 * we have 1 so they are == and we can return. But in this case
1700 *
1701 * [MAX_SIZE+4k][MAX_SIZE+4k]
1702 *
1703 * Each range on their own accounts for 2 extents, but merged together
1704 * they are only 3 extents worth of accounting, so we need to drop in
1705 * this case.
dcab6a3b 1706 */
ba117213 1707 old_size = other->end - other->start + 1;
823bb20a 1708 num_extents = count_max_extents(old_size);
ba117213 1709 old_size = new->end - new->start + 1;
823bb20a
DS
1710 num_extents += count_max_extents(old_size);
1711 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1712 return;
1713
9e0baf60 1714 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1715 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1716 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1717}
1718
eb73c1b7
MX
1719static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1720 struct inode *inode)
1721{
0b246afa
JM
1722 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1723
eb73c1b7
MX
1724 spin_lock(&root->delalloc_lock);
1725 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1726 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1727 &root->delalloc_inodes);
1728 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1729 &BTRFS_I(inode)->runtime_flags);
1730 root->nr_delalloc_inodes++;
1731 if (root->nr_delalloc_inodes == 1) {
0b246afa 1732 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1733 BUG_ON(!list_empty(&root->delalloc_root));
1734 list_add_tail(&root->delalloc_root,
0b246afa
JM
1735 &fs_info->delalloc_roots);
1736 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1737 }
1738 }
1739 spin_unlock(&root->delalloc_lock);
1740}
1741
2b877331
NB
1742
1743void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1744 struct btrfs_inode *inode)
eb73c1b7 1745{
9e3e97f4 1746 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0b246afa 1747
9e3e97f4
NB
1748 if (!list_empty(&inode->delalloc_inodes)) {
1749 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1750 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1751 &inode->runtime_flags);
eb73c1b7
MX
1752 root->nr_delalloc_inodes--;
1753 if (!root->nr_delalloc_inodes) {
7c8a0d36 1754 ASSERT(list_empty(&root->delalloc_inodes));
0b246afa 1755 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1756 BUG_ON(list_empty(&root->delalloc_root));
1757 list_del_init(&root->delalloc_root);
0b246afa 1758 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1759 }
1760 }
2b877331
NB
1761}
1762
1763static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1764 struct btrfs_inode *inode)
1765{
1766 spin_lock(&root->delalloc_lock);
1767 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
1768 spin_unlock(&root->delalloc_lock);
1769}
1770
d352ac68
CM
1771/*
1772 * extent_io.c set_bit_hook, used to track delayed allocation
1773 * bytes in this file, and to maintain the list of inodes that
1774 * have pending delalloc work to be done.
1775 */
c6100a4b 1776static void btrfs_set_bit_hook(void *private_data,
9ee49a04 1777 struct extent_state *state, unsigned *bits)
291d673e 1778{
c6100a4b 1779 struct inode *inode = private_data;
9ed74f2d 1780
0b246afa
JM
1781 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1782
47059d93
WS
1783 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1784 WARN_ON(1);
75eff68e
CM
1785 /*
1786 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1787 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1788 * bit, which is only set or cleared with irqs on
1789 */
0ca1f7ce 1790 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1791 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1792 u64 len = state->end + 1 - state->start;
8b62f87b 1793 u32 num_extents = count_max_extents(len);
70ddc553 1794 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1795
8b62f87b
JB
1796 spin_lock(&BTRFS_I(inode)->lock);
1797 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1798 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 1799
6a3891c5 1800 /* For sanity tests */
0b246afa 1801 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1802 return;
1803
104b4e51
NB
1804 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1805 fs_info->delalloc_batch);
df0af1a5 1806 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1807 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1808 if (*bits & EXTENT_DEFRAG)
1809 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1810 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1811 &BTRFS_I(inode)->runtime_flags))
1812 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1813 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1814 }
a7e3b975
FM
1815
1816 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1817 (*bits & EXTENT_DELALLOC_NEW)) {
1818 spin_lock(&BTRFS_I(inode)->lock);
1819 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1820 state->start;
1821 spin_unlock(&BTRFS_I(inode)->lock);
1822 }
291d673e
CM
1823}
1824
d352ac68
CM
1825/*
1826 * extent_io.c clear_bit_hook, see set_bit_hook for why
1827 */
c6100a4b 1828static void btrfs_clear_bit_hook(void *private_data,
41074888 1829 struct extent_state *state,
9ee49a04 1830 unsigned *bits)
291d673e 1831{
c6100a4b 1832 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
6fc0ef68 1833 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
47059d93 1834 u64 len = state->end + 1 - state->start;
823bb20a 1835 u32 num_extents = count_max_extents(len);
47059d93 1836
4a4b964f
FM
1837 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1838 spin_lock(&inode->lock);
6fc0ef68 1839 inode->defrag_bytes -= len;
4a4b964f
FM
1840 spin_unlock(&inode->lock);
1841 }
47059d93 1842
75eff68e
CM
1843 /*
1844 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1845 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1846 * bit, which is only set or cleared with irqs on
1847 */
0ca1f7ce 1848 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1849 struct btrfs_root *root = inode->root;
83eea1f1 1850 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1851
8b62f87b
JB
1852 spin_lock(&inode->lock);
1853 btrfs_mod_outstanding_extents(inode, -num_extents);
1854 spin_unlock(&inode->lock);
0ca1f7ce 1855
b6d08f06
JB
1856 /*
1857 * We don't reserve metadata space for space cache inodes so we
1858 * don't need to call dellalloc_release_metadata if there is an
1859 * error.
1860 */
a315e68f 1861 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 1862 root != fs_info->tree_root)
43b18595 1863 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 1864
6a3891c5 1865 /* For sanity tests. */
0b246afa 1866 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1867 return;
1868
a315e68f
FM
1869 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1870 do_list && !(state->state & EXTENT_NORESERVE) &&
1871 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
1872 btrfs_free_reserved_data_space_noquota(
1873 &inode->vfs_inode,
51773bec 1874 state->start, len);
9ed74f2d 1875
104b4e51
NB
1876 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1877 fs_info->delalloc_batch);
6fc0ef68
NB
1878 spin_lock(&inode->lock);
1879 inode->delalloc_bytes -= len;
1880 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 1881 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1882 &inode->runtime_flags))
eb73c1b7 1883 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 1884 spin_unlock(&inode->lock);
291d673e 1885 }
a7e3b975
FM
1886
1887 if ((state->state & EXTENT_DELALLOC_NEW) &&
1888 (*bits & EXTENT_DELALLOC_NEW)) {
1889 spin_lock(&inode->lock);
1890 ASSERT(inode->new_delalloc_bytes >= len);
1891 inode->new_delalloc_bytes -= len;
1892 spin_unlock(&inode->lock);
1893 }
291d673e
CM
1894}
1895
d352ac68
CM
1896/*
1897 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1898 * we don't create bios that span stripes or chunks
6f034ece
LB
1899 *
1900 * return 1 if page cannot be merged to bio
1901 * return 0 if page can be merged to bio
1902 * return error otherwise
d352ac68 1903 */
81a75f67 1904int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1905 size_t size, struct bio *bio,
1906 unsigned long bio_flags)
239b14b3 1907{
0b246afa
JM
1908 struct inode *inode = page->mapping->host;
1909 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1910 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1911 u64 length = 0;
1912 u64 map_length;
239b14b3
CM
1913 int ret;
1914
771ed689
CM
1915 if (bio_flags & EXTENT_BIO_COMPRESSED)
1916 return 0;
1917
4f024f37 1918 length = bio->bi_iter.bi_size;
239b14b3 1919 map_length = length;
0b246afa
JM
1920 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1921 NULL, 0);
6f034ece
LB
1922 if (ret < 0)
1923 return ret;
d397712b 1924 if (map_length < length + size)
239b14b3 1925 return 1;
3444a972 1926 return 0;
239b14b3
CM
1927}
1928
d352ac68
CM
1929/*
1930 * in order to insert checksums into the metadata in large chunks,
1931 * we wait until bio submission time. All the pages in the bio are
1932 * checksummed and sums are attached onto the ordered extent record.
1933 *
1934 * At IO completion time the cums attached on the ordered extent record
1935 * are inserted into the btree
1936 */
d0ee3934 1937static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
eaf25d93 1938 u64 bio_offset)
065631f6 1939{
c6100a4b 1940 struct inode *inode = private_data;
4e4cbee9 1941 blk_status_t ret = 0;
e015640f 1942
2ff7e61e 1943 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1944 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1945 return 0;
1946}
e015640f 1947
4a69a410
CM
1948/*
1949 * in order to insert checksums into the metadata in large chunks,
1950 * we wait until bio submission time. All the pages in the bio are
1951 * checksummed and sums are attached onto the ordered extent record.
1952 *
1953 * At IO completion time the cums attached on the ordered extent record
1954 * are inserted into the btree
1955 */
d0ee3934 1956static blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio,
6c553435 1957 int mirror_num)
4a69a410 1958{
c6100a4b 1959 struct inode *inode = private_data;
2ff7e61e 1960 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 1961 blk_status_t ret;
61891923 1962
2ff7e61e 1963 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
4246a0b6 1964 if (ret) {
4e4cbee9 1965 bio->bi_status = ret;
4246a0b6
CH
1966 bio_endio(bio);
1967 }
61891923 1968 return ret;
44b8bd7e
CM
1969}
1970
d352ac68 1971/*
cad321ad 1972 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
1973 * on write, or reading the csums from the tree before a read.
1974 *
1975 * Rules about async/sync submit,
1976 * a) read: sync submit
1977 *
1978 * b) write without checksum: sync submit
1979 *
1980 * c) write with checksum:
1981 * c-1) if bio is issued by fsync: sync submit
1982 * (sync_writers != 0)
1983 *
1984 * c-2) if root is reloc root: sync submit
1985 * (only in case of buffered IO)
1986 *
1987 * c-3) otherwise: async submit
d352ac68 1988 */
8c27cb35 1989static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
c6100a4b
JB
1990 int mirror_num, unsigned long bio_flags,
1991 u64 bio_offset)
44b8bd7e 1992{
c6100a4b 1993 struct inode *inode = private_data;
0b246afa 1994 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 1995 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1996 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 1997 blk_status_t ret = 0;
19b9bdb0 1998 int skip_sum;
b812ce28 1999 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 2000
6cbff00f 2001 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 2002
70ddc553 2003 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 2004 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 2005
37226b21 2006 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 2007 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 2008 if (ret)
61891923 2009 goto out;
5fd02043 2010
d20f7043 2011 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
2012 ret = btrfs_submit_compressed_read(inode, bio,
2013 mirror_num,
2014 bio_flags);
2015 goto out;
c2db1073 2016 } else if (!skip_sum) {
2ff7e61e 2017 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 2018 if (ret)
61891923 2019 goto out;
c2db1073 2020 }
4d1b5fb4 2021 goto mapit;
b812ce28 2022 } else if (async && !skip_sum) {
17d217fe
YZ
2023 /* csum items have already been cloned */
2024 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2025 goto mapit;
19b9bdb0 2026 /* we're doing a write, do the async checksumming */
c6100a4b
JB
2027 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2028 bio_offset, inode,
d0ee3934
DS
2029 btrfs_submit_bio_start,
2030 btrfs_submit_bio_done);
61891923 2031 goto out;
b812ce28 2032 } else if (!skip_sum) {
2ff7e61e 2033 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
2034 if (ret)
2035 goto out;
19b9bdb0
CM
2036 }
2037
0b86a832 2038mapit:
2ff7e61e 2039 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
2040
2041out:
4e4cbee9
CH
2042 if (ret) {
2043 bio->bi_status = ret;
4246a0b6
CH
2044 bio_endio(bio);
2045 }
61891923 2046 return ret;
065631f6 2047}
6885f308 2048
d352ac68
CM
2049/*
2050 * given a list of ordered sums record them in the inode. This happens
2051 * at IO completion time based on sums calculated at bio submission time.
2052 */
ba1da2f4 2053static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2054 struct inode *inode, struct list_head *list)
e6dcd2dc 2055{
e6dcd2dc 2056 struct btrfs_ordered_sum *sum;
ac01f26a 2057 int ret;
e6dcd2dc 2058
c6e30871 2059 list_for_each_entry(sum, list, list) {
7c2871a2 2060 trans->adding_csums = true;
ac01f26a 2061 ret = btrfs_csum_file_blocks(trans,
d20f7043 2062 BTRFS_I(inode)->root->fs_info->csum_root, sum);
7c2871a2 2063 trans->adding_csums = false;
ac01f26a
NB
2064 if (ret)
2065 return ret;
e6dcd2dc
CM
2066 }
2067 return 0;
2068}
2069
2ac55d41 2070int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
e3b8a485 2071 unsigned int extra_bits,
ba8b04c1 2072 struct extent_state **cached_state, int dedupe)
ea8c2819 2073{
09cbfeaf 2074 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 2075 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
e3b8a485 2076 extra_bits, cached_state);
ea8c2819
CM
2077}
2078
d352ac68 2079/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2080struct btrfs_writepage_fixup {
2081 struct page *page;
2082 struct btrfs_work work;
2083};
2084
b2950863 2085static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2086{
2087 struct btrfs_writepage_fixup *fixup;
2088 struct btrfs_ordered_extent *ordered;
2ac55d41 2089 struct extent_state *cached_state = NULL;
364ecf36 2090 struct extent_changeset *data_reserved = NULL;
247e743c
CM
2091 struct page *page;
2092 struct inode *inode;
2093 u64 page_start;
2094 u64 page_end;
87826df0 2095 int ret;
247e743c
CM
2096
2097 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2098 page = fixup->page;
4a096752 2099again:
247e743c
CM
2100 lock_page(page);
2101 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2102 ClearPageChecked(page);
2103 goto out_page;
2104 }
2105
2106 inode = page->mapping->host;
2107 page_start = page_offset(page);
09cbfeaf 2108 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2109
ff13db41 2110 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2111 &cached_state);
4a096752
CM
2112
2113 /* already ordered? We're done */
8b62b72b 2114 if (PagePrivate2(page))
247e743c 2115 goto out;
4a096752 2116
a776c6fa 2117 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2118 PAGE_SIZE);
4a096752 2119 if (ordered) {
2ac55d41 2120 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
e43bbe5e 2121 page_end, &cached_state);
4a096752
CM
2122 unlock_page(page);
2123 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2124 btrfs_put_ordered_extent(ordered);
4a096752
CM
2125 goto again;
2126 }
247e743c 2127
364ecf36 2128 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
09cbfeaf 2129 PAGE_SIZE);
87826df0
JM
2130 if (ret) {
2131 mapping_set_error(page->mapping, ret);
2132 end_extent_writepage(page, ret, page_start, page_end);
2133 ClearPageChecked(page);
2134 goto out;
2135 }
2136
f3038ee3
NB
2137 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2138 &cached_state, 0);
2139 if (ret) {
2140 mapping_set_error(page->mapping, ret);
2141 end_extent_writepage(page, ret, page_start, page_end);
2142 ClearPageChecked(page);
2143 goto out;
2144 }
2145
247e743c 2146 ClearPageChecked(page);
87826df0 2147 set_page_dirty(page);
43b18595 2148 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
247e743c 2149out:
2ac55d41 2150 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
e43bbe5e 2151 &cached_state);
247e743c
CM
2152out_page:
2153 unlock_page(page);
09cbfeaf 2154 put_page(page);
b897abec 2155 kfree(fixup);
364ecf36 2156 extent_changeset_free(data_reserved);
247e743c
CM
2157}
2158
2159/*
2160 * There are a few paths in the higher layers of the kernel that directly
2161 * set the page dirty bit without asking the filesystem if it is a
2162 * good idea. This causes problems because we want to make sure COW
2163 * properly happens and the data=ordered rules are followed.
2164 *
c8b97818 2165 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2166 * hasn't been properly setup for IO. We kick off an async process
2167 * to fix it up. The async helper will wait for ordered extents, set
2168 * the delalloc bit and make it safe to write the page.
2169 */
b2950863 2170static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2171{
2172 struct inode *inode = page->mapping->host;
0b246afa 2173 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2174 struct btrfs_writepage_fixup *fixup;
247e743c 2175
8b62b72b
CM
2176 /* this page is properly in the ordered list */
2177 if (TestClearPagePrivate2(page))
247e743c
CM
2178 return 0;
2179
2180 if (PageChecked(page))
2181 return -EAGAIN;
2182
2183 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2184 if (!fixup)
2185 return -EAGAIN;
f421950f 2186
247e743c 2187 SetPageChecked(page);
09cbfeaf 2188 get_page(page);
9e0af237
LB
2189 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2190 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2191 fixup->page = page;
0b246afa 2192 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2193 return -EBUSY;
247e743c
CM
2194}
2195
d899e052
YZ
2196static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2197 struct inode *inode, u64 file_pos,
2198 u64 disk_bytenr, u64 disk_num_bytes,
2199 u64 num_bytes, u64 ram_bytes,
2200 u8 compression, u8 encryption,
2201 u16 other_encoding, int extent_type)
2202{
2203 struct btrfs_root *root = BTRFS_I(inode)->root;
2204 struct btrfs_file_extent_item *fi;
2205 struct btrfs_path *path;
2206 struct extent_buffer *leaf;
2207 struct btrfs_key ins;
a12b877b 2208 u64 qg_released;
1acae57b 2209 int extent_inserted = 0;
d899e052
YZ
2210 int ret;
2211
2212 path = btrfs_alloc_path();
d8926bb3
MF
2213 if (!path)
2214 return -ENOMEM;
d899e052 2215
a1ed835e
CM
2216 /*
2217 * we may be replacing one extent in the tree with another.
2218 * The new extent is pinned in the extent map, and we don't want
2219 * to drop it from the cache until it is completely in the btree.
2220 *
2221 * So, tell btrfs_drop_extents to leave this extent in the cache.
2222 * the caller is expected to unpin it and allow it to be merged
2223 * with the others.
2224 */
1acae57b
FDBM
2225 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2226 file_pos + num_bytes, NULL, 0,
2227 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2228 if (ret)
2229 goto out;
d899e052 2230
1acae57b 2231 if (!extent_inserted) {
4a0cc7ca 2232 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2233 ins.offset = file_pos;
2234 ins.type = BTRFS_EXTENT_DATA_KEY;
2235
2236 path->leave_spinning = 1;
2237 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2238 sizeof(*fi));
2239 if (ret)
2240 goto out;
2241 }
d899e052
YZ
2242 leaf = path->nodes[0];
2243 fi = btrfs_item_ptr(leaf, path->slots[0],
2244 struct btrfs_file_extent_item);
2245 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2246 btrfs_set_file_extent_type(leaf, fi, extent_type);
2247 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2248 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2249 btrfs_set_file_extent_offset(leaf, fi, 0);
2250 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2251 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2252 btrfs_set_file_extent_compression(leaf, fi, compression);
2253 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2254 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2255
d899e052 2256 btrfs_mark_buffer_dirty(leaf);
ce195332 2257 btrfs_release_path(path);
d899e052
YZ
2258
2259 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2260
2261 ins.objectid = disk_bytenr;
2262 ins.offset = disk_num_bytes;
2263 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2264
297d750b 2265 /*
5846a3c2
QW
2266 * Release the reserved range from inode dirty range map, as it is
2267 * already moved into delayed_ref_head
297d750b 2268 */
a12b877b
QW
2269 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2270 if (ret < 0)
2271 goto out;
2272 qg_released = ret;
84f7d8e6
JB
2273 ret = btrfs_alloc_reserved_file_extent(trans, root,
2274 btrfs_ino(BTRFS_I(inode)),
2275 file_pos, qg_released, &ins);
79787eaa 2276out:
d899e052 2277 btrfs_free_path(path);
b9473439 2278
79787eaa 2279 return ret;
d899e052
YZ
2280}
2281
38c227d8
LB
2282/* snapshot-aware defrag */
2283struct sa_defrag_extent_backref {
2284 struct rb_node node;
2285 struct old_sa_defrag_extent *old;
2286 u64 root_id;
2287 u64 inum;
2288 u64 file_pos;
2289 u64 extent_offset;
2290 u64 num_bytes;
2291 u64 generation;
2292};
2293
2294struct old_sa_defrag_extent {
2295 struct list_head list;
2296 struct new_sa_defrag_extent *new;
2297
2298 u64 extent_offset;
2299 u64 bytenr;
2300 u64 offset;
2301 u64 len;
2302 int count;
2303};
2304
2305struct new_sa_defrag_extent {
2306 struct rb_root root;
2307 struct list_head head;
2308 struct btrfs_path *path;
2309 struct inode *inode;
2310 u64 file_pos;
2311 u64 len;
2312 u64 bytenr;
2313 u64 disk_len;
2314 u8 compress_type;
2315};
2316
2317static int backref_comp(struct sa_defrag_extent_backref *b1,
2318 struct sa_defrag_extent_backref *b2)
2319{
2320 if (b1->root_id < b2->root_id)
2321 return -1;
2322 else if (b1->root_id > b2->root_id)
2323 return 1;
2324
2325 if (b1->inum < b2->inum)
2326 return -1;
2327 else if (b1->inum > b2->inum)
2328 return 1;
2329
2330 if (b1->file_pos < b2->file_pos)
2331 return -1;
2332 else if (b1->file_pos > b2->file_pos)
2333 return 1;
2334
2335 /*
2336 * [------------------------------] ===> (a range of space)
2337 * |<--->| |<---->| =============> (fs/file tree A)
2338 * |<---------------------------->| ===> (fs/file tree B)
2339 *
2340 * A range of space can refer to two file extents in one tree while
2341 * refer to only one file extent in another tree.
2342 *
2343 * So we may process a disk offset more than one time(two extents in A)
2344 * and locate at the same extent(one extent in B), then insert two same
2345 * backrefs(both refer to the extent in B).
2346 */
2347 return 0;
2348}
2349
2350static void backref_insert(struct rb_root *root,
2351 struct sa_defrag_extent_backref *backref)
2352{
2353 struct rb_node **p = &root->rb_node;
2354 struct rb_node *parent = NULL;
2355 struct sa_defrag_extent_backref *entry;
2356 int ret;
2357
2358 while (*p) {
2359 parent = *p;
2360 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2361
2362 ret = backref_comp(backref, entry);
2363 if (ret < 0)
2364 p = &(*p)->rb_left;
2365 else
2366 p = &(*p)->rb_right;
2367 }
2368
2369 rb_link_node(&backref->node, parent, p);
2370 rb_insert_color(&backref->node, root);
2371}
2372
2373/*
2374 * Note the backref might has changed, and in this case we just return 0.
2375 */
2376static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2377 void *ctx)
2378{
2379 struct btrfs_file_extent_item *extent;
38c227d8
LB
2380 struct old_sa_defrag_extent *old = ctx;
2381 struct new_sa_defrag_extent *new = old->new;
2382 struct btrfs_path *path = new->path;
2383 struct btrfs_key key;
2384 struct btrfs_root *root;
2385 struct sa_defrag_extent_backref *backref;
2386 struct extent_buffer *leaf;
2387 struct inode *inode = new->inode;
0b246afa 2388 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2389 int slot;
2390 int ret;
2391 u64 extent_offset;
2392 u64 num_bytes;
2393
2394 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2395 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2396 return 0;
2397
2398 key.objectid = root_id;
2399 key.type = BTRFS_ROOT_ITEM_KEY;
2400 key.offset = (u64)-1;
2401
38c227d8
LB
2402 root = btrfs_read_fs_root_no_name(fs_info, &key);
2403 if (IS_ERR(root)) {
2404 if (PTR_ERR(root) == -ENOENT)
2405 return 0;
2406 WARN_ON(1);
ab8d0fc4 2407 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2408 inum, offset, root_id);
2409 return PTR_ERR(root);
2410 }
2411
2412 key.objectid = inum;
2413 key.type = BTRFS_EXTENT_DATA_KEY;
2414 if (offset > (u64)-1 << 32)
2415 key.offset = 0;
2416 else
2417 key.offset = offset;
2418
2419 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2420 if (WARN_ON(ret < 0))
38c227d8 2421 return ret;
50f1319c 2422 ret = 0;
38c227d8
LB
2423
2424 while (1) {
2425 cond_resched();
2426
2427 leaf = path->nodes[0];
2428 slot = path->slots[0];
2429
2430 if (slot >= btrfs_header_nritems(leaf)) {
2431 ret = btrfs_next_leaf(root, path);
2432 if (ret < 0) {
2433 goto out;
2434 } else if (ret > 0) {
2435 ret = 0;
2436 goto out;
2437 }
2438 continue;
2439 }
2440
2441 path->slots[0]++;
2442
2443 btrfs_item_key_to_cpu(leaf, &key, slot);
2444
2445 if (key.objectid > inum)
2446 goto out;
2447
2448 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2449 continue;
2450
2451 extent = btrfs_item_ptr(leaf, slot,
2452 struct btrfs_file_extent_item);
2453
2454 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2455 continue;
2456
e68afa49
LB
2457 /*
2458 * 'offset' refers to the exact key.offset,
2459 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2460 * (key.offset - extent_offset).
2461 */
2462 if (key.offset != offset)
38c227d8
LB
2463 continue;
2464
e68afa49 2465 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2466 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2467
38c227d8
LB
2468 if (extent_offset >= old->extent_offset + old->offset +
2469 old->len || extent_offset + num_bytes <=
2470 old->extent_offset + old->offset)
2471 continue;
38c227d8
LB
2472 break;
2473 }
2474
2475 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2476 if (!backref) {
2477 ret = -ENOENT;
2478 goto out;
2479 }
2480
2481 backref->root_id = root_id;
2482 backref->inum = inum;
e68afa49 2483 backref->file_pos = offset;
38c227d8
LB
2484 backref->num_bytes = num_bytes;
2485 backref->extent_offset = extent_offset;
2486 backref->generation = btrfs_file_extent_generation(leaf, extent);
2487 backref->old = old;
2488 backref_insert(&new->root, backref);
2489 old->count++;
2490out:
2491 btrfs_release_path(path);
2492 WARN_ON(ret);
2493 return ret;
2494}
2495
2496static noinline bool record_extent_backrefs(struct btrfs_path *path,
2497 struct new_sa_defrag_extent *new)
2498{
0b246afa 2499 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2500 struct old_sa_defrag_extent *old, *tmp;
2501 int ret;
2502
2503 new->path = path;
2504
2505 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2506 ret = iterate_inodes_from_logical(old->bytenr +
2507 old->extent_offset, fs_info,
38c227d8 2508 path, record_one_backref,
c995ab3c 2509 old, false);
4724b106
JB
2510 if (ret < 0 && ret != -ENOENT)
2511 return false;
38c227d8
LB
2512
2513 /* no backref to be processed for this extent */
2514 if (!old->count) {
2515 list_del(&old->list);
2516 kfree(old);
2517 }
2518 }
2519
2520 if (list_empty(&new->head))
2521 return false;
2522
2523 return true;
2524}
2525
2526static int relink_is_mergable(struct extent_buffer *leaf,
2527 struct btrfs_file_extent_item *fi,
116e0024 2528 struct new_sa_defrag_extent *new)
38c227d8 2529{
116e0024 2530 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2531 return 0;
2532
2533 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2534 return 0;
2535
116e0024
LB
2536 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2537 return 0;
2538
2539 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2540 btrfs_file_extent_other_encoding(leaf, fi))
2541 return 0;
2542
2543 return 1;
2544}
2545
2546/*
2547 * Note the backref might has changed, and in this case we just return 0.
2548 */
2549static noinline int relink_extent_backref(struct btrfs_path *path,
2550 struct sa_defrag_extent_backref *prev,
2551 struct sa_defrag_extent_backref *backref)
2552{
2553 struct btrfs_file_extent_item *extent;
2554 struct btrfs_file_extent_item *item;
2555 struct btrfs_ordered_extent *ordered;
2556 struct btrfs_trans_handle *trans;
38c227d8
LB
2557 struct btrfs_root *root;
2558 struct btrfs_key key;
2559 struct extent_buffer *leaf;
2560 struct old_sa_defrag_extent *old = backref->old;
2561 struct new_sa_defrag_extent *new = old->new;
0b246afa 2562 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2563 struct inode *inode;
2564 struct extent_state *cached = NULL;
2565 int ret = 0;
2566 u64 start;
2567 u64 len;
2568 u64 lock_start;
2569 u64 lock_end;
2570 bool merge = false;
2571 int index;
2572
2573 if (prev && prev->root_id == backref->root_id &&
2574 prev->inum == backref->inum &&
2575 prev->file_pos + prev->num_bytes == backref->file_pos)
2576 merge = true;
2577
2578 /* step 1: get root */
2579 key.objectid = backref->root_id;
2580 key.type = BTRFS_ROOT_ITEM_KEY;
2581 key.offset = (u64)-1;
2582
38c227d8
LB
2583 index = srcu_read_lock(&fs_info->subvol_srcu);
2584
2585 root = btrfs_read_fs_root_no_name(fs_info, &key);
2586 if (IS_ERR(root)) {
2587 srcu_read_unlock(&fs_info->subvol_srcu, index);
2588 if (PTR_ERR(root) == -ENOENT)
2589 return 0;
2590 return PTR_ERR(root);
2591 }
38c227d8 2592
bcbba5e6
WS
2593 if (btrfs_root_readonly(root)) {
2594 srcu_read_unlock(&fs_info->subvol_srcu, index);
2595 return 0;
2596 }
2597
38c227d8
LB
2598 /* step 2: get inode */
2599 key.objectid = backref->inum;
2600 key.type = BTRFS_INODE_ITEM_KEY;
2601 key.offset = 0;
2602
2603 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2604 if (IS_ERR(inode)) {
2605 srcu_read_unlock(&fs_info->subvol_srcu, index);
2606 return 0;
2607 }
2608
2609 srcu_read_unlock(&fs_info->subvol_srcu, index);
2610
2611 /* step 3: relink backref */
2612 lock_start = backref->file_pos;
2613 lock_end = backref->file_pos + backref->num_bytes - 1;
2614 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2615 &cached);
38c227d8
LB
2616
2617 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2618 if (ordered) {
2619 btrfs_put_ordered_extent(ordered);
2620 goto out_unlock;
2621 }
2622
2623 trans = btrfs_join_transaction(root);
2624 if (IS_ERR(trans)) {
2625 ret = PTR_ERR(trans);
2626 goto out_unlock;
2627 }
2628
2629 key.objectid = backref->inum;
2630 key.type = BTRFS_EXTENT_DATA_KEY;
2631 key.offset = backref->file_pos;
2632
2633 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2634 if (ret < 0) {
2635 goto out_free_path;
2636 } else if (ret > 0) {
2637 ret = 0;
2638 goto out_free_path;
2639 }
2640
2641 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2642 struct btrfs_file_extent_item);
2643
2644 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2645 backref->generation)
2646 goto out_free_path;
2647
2648 btrfs_release_path(path);
2649
2650 start = backref->file_pos;
2651 if (backref->extent_offset < old->extent_offset + old->offset)
2652 start += old->extent_offset + old->offset -
2653 backref->extent_offset;
2654
2655 len = min(backref->extent_offset + backref->num_bytes,
2656 old->extent_offset + old->offset + old->len);
2657 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2658
2659 ret = btrfs_drop_extents(trans, root, inode, start,
2660 start + len, 1);
2661 if (ret)
2662 goto out_free_path;
2663again:
4a0cc7ca 2664 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2665 key.type = BTRFS_EXTENT_DATA_KEY;
2666 key.offset = start;
2667
a09a0a70 2668 path->leave_spinning = 1;
38c227d8
LB
2669 if (merge) {
2670 struct btrfs_file_extent_item *fi;
2671 u64 extent_len;
2672 struct btrfs_key found_key;
2673
3c9665df 2674 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2675 if (ret < 0)
2676 goto out_free_path;
2677
2678 path->slots[0]--;
2679 leaf = path->nodes[0];
2680 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2681
2682 fi = btrfs_item_ptr(leaf, path->slots[0],
2683 struct btrfs_file_extent_item);
2684 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2685
116e0024
LB
2686 if (extent_len + found_key.offset == start &&
2687 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2688 btrfs_set_file_extent_num_bytes(leaf, fi,
2689 extent_len + len);
2690 btrfs_mark_buffer_dirty(leaf);
2691 inode_add_bytes(inode, len);
2692
2693 ret = 1;
2694 goto out_free_path;
2695 } else {
2696 merge = false;
2697 btrfs_release_path(path);
2698 goto again;
2699 }
2700 }
2701
2702 ret = btrfs_insert_empty_item(trans, root, path, &key,
2703 sizeof(*extent));
2704 if (ret) {
66642832 2705 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2706 goto out_free_path;
2707 }
2708
2709 leaf = path->nodes[0];
2710 item = btrfs_item_ptr(leaf, path->slots[0],
2711 struct btrfs_file_extent_item);
2712 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2713 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2714 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2715 btrfs_set_file_extent_num_bytes(leaf, item, len);
2716 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2717 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2718 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2719 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2720 btrfs_set_file_extent_encryption(leaf, item, 0);
2721 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2722
2723 btrfs_mark_buffer_dirty(leaf);
2724 inode_add_bytes(inode, len);
a09a0a70 2725 btrfs_release_path(path);
38c227d8 2726
84f7d8e6 2727 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
38c227d8
LB
2728 new->disk_len, 0,
2729 backref->root_id, backref->inum,
b06c4bf5 2730 new->file_pos); /* start - extent_offset */
38c227d8 2731 if (ret) {
66642832 2732 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2733 goto out_free_path;
2734 }
2735
2736 ret = 1;
2737out_free_path:
2738 btrfs_release_path(path);
a09a0a70 2739 path->leave_spinning = 0;
3a45bb20 2740 btrfs_end_transaction(trans);
38c227d8
LB
2741out_unlock:
2742 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
e43bbe5e 2743 &cached);
38c227d8
LB
2744 iput(inode);
2745 return ret;
2746}
2747
6f519564
LB
2748static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2749{
2750 struct old_sa_defrag_extent *old, *tmp;
2751
2752 if (!new)
2753 return;
2754
2755 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2756 kfree(old);
2757 }
2758 kfree(new);
2759}
2760
38c227d8
LB
2761static void relink_file_extents(struct new_sa_defrag_extent *new)
2762{
0b246afa 2763 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2764 struct btrfs_path *path;
38c227d8
LB
2765 struct sa_defrag_extent_backref *backref;
2766 struct sa_defrag_extent_backref *prev = NULL;
2767 struct inode *inode;
38c227d8
LB
2768 struct rb_node *node;
2769 int ret;
2770
2771 inode = new->inode;
38c227d8
LB
2772
2773 path = btrfs_alloc_path();
2774 if (!path)
2775 return;
2776
2777 if (!record_extent_backrefs(path, new)) {
2778 btrfs_free_path(path);
2779 goto out;
2780 }
2781 btrfs_release_path(path);
2782
2783 while (1) {
2784 node = rb_first(&new->root);
2785 if (!node)
2786 break;
2787 rb_erase(node, &new->root);
2788
2789 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2790
2791 ret = relink_extent_backref(path, prev, backref);
2792 WARN_ON(ret < 0);
2793
2794 kfree(prev);
2795
2796 if (ret == 1)
2797 prev = backref;
2798 else
2799 prev = NULL;
2800 cond_resched();
2801 }
2802 kfree(prev);
2803
2804 btrfs_free_path(path);
38c227d8 2805out:
6f519564
LB
2806 free_sa_defrag_extent(new);
2807
0b246afa
JM
2808 atomic_dec(&fs_info->defrag_running);
2809 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2810}
2811
2812static struct new_sa_defrag_extent *
2813record_old_file_extents(struct inode *inode,
2814 struct btrfs_ordered_extent *ordered)
2815{
0b246afa 2816 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2817 struct btrfs_root *root = BTRFS_I(inode)->root;
2818 struct btrfs_path *path;
2819 struct btrfs_key key;
6f519564 2820 struct old_sa_defrag_extent *old;
38c227d8
LB
2821 struct new_sa_defrag_extent *new;
2822 int ret;
2823
2824 new = kmalloc(sizeof(*new), GFP_NOFS);
2825 if (!new)
2826 return NULL;
2827
2828 new->inode = inode;
2829 new->file_pos = ordered->file_offset;
2830 new->len = ordered->len;
2831 new->bytenr = ordered->start;
2832 new->disk_len = ordered->disk_len;
2833 new->compress_type = ordered->compress_type;
2834 new->root = RB_ROOT;
2835 INIT_LIST_HEAD(&new->head);
2836
2837 path = btrfs_alloc_path();
2838 if (!path)
2839 goto out_kfree;
2840
4a0cc7ca 2841 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2842 key.type = BTRFS_EXTENT_DATA_KEY;
2843 key.offset = new->file_pos;
2844
2845 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2846 if (ret < 0)
2847 goto out_free_path;
2848 if (ret > 0 && path->slots[0] > 0)
2849 path->slots[0]--;
2850
2851 /* find out all the old extents for the file range */
2852 while (1) {
2853 struct btrfs_file_extent_item *extent;
2854 struct extent_buffer *l;
2855 int slot;
2856 u64 num_bytes;
2857 u64 offset;
2858 u64 end;
2859 u64 disk_bytenr;
2860 u64 extent_offset;
2861
2862 l = path->nodes[0];
2863 slot = path->slots[0];
2864
2865 if (slot >= btrfs_header_nritems(l)) {
2866 ret = btrfs_next_leaf(root, path);
2867 if (ret < 0)
6f519564 2868 goto out_free_path;
38c227d8
LB
2869 else if (ret > 0)
2870 break;
2871 continue;
2872 }
2873
2874 btrfs_item_key_to_cpu(l, &key, slot);
2875
4a0cc7ca 2876 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2877 break;
2878 if (key.type != BTRFS_EXTENT_DATA_KEY)
2879 break;
2880 if (key.offset >= new->file_pos + new->len)
2881 break;
2882
2883 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2884
2885 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2886 if (key.offset + num_bytes < new->file_pos)
2887 goto next;
2888
2889 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2890 if (!disk_bytenr)
2891 goto next;
2892
2893 extent_offset = btrfs_file_extent_offset(l, extent);
2894
2895 old = kmalloc(sizeof(*old), GFP_NOFS);
2896 if (!old)
6f519564 2897 goto out_free_path;
38c227d8
LB
2898
2899 offset = max(new->file_pos, key.offset);
2900 end = min(new->file_pos + new->len, key.offset + num_bytes);
2901
2902 old->bytenr = disk_bytenr;
2903 old->extent_offset = extent_offset;
2904 old->offset = offset - key.offset;
2905 old->len = end - offset;
2906 old->new = new;
2907 old->count = 0;
2908 list_add_tail(&old->list, &new->head);
2909next:
2910 path->slots[0]++;
2911 cond_resched();
2912 }
2913
2914 btrfs_free_path(path);
0b246afa 2915 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2916
2917 return new;
2918
38c227d8
LB
2919out_free_path:
2920 btrfs_free_path(path);
2921out_kfree:
6f519564 2922 free_sa_defrag_extent(new);
38c227d8
LB
2923 return NULL;
2924}
2925
2ff7e61e 2926static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2927 u64 start, u64 len)
2928{
2929 struct btrfs_block_group_cache *cache;
2930
0b246afa 2931 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2932 ASSERT(cache);
2933
2934 spin_lock(&cache->lock);
2935 cache->delalloc_bytes -= len;
2936 spin_unlock(&cache->lock);
2937
2938 btrfs_put_block_group(cache);
2939}
2940
d352ac68
CM
2941/* as ordered data IO finishes, this gets called so we can finish
2942 * an ordered extent if the range of bytes in the file it covers are
2943 * fully written.
2944 */
5fd02043 2945static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2946{
5fd02043 2947 struct inode *inode = ordered_extent->inode;
0b246afa 2948 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2949 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2950 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2951 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2952 struct extent_state *cached_state = NULL;
38c227d8 2953 struct new_sa_defrag_extent *new = NULL;
261507a0 2954 int compress_type = 0;
77cef2ec
JB
2955 int ret = 0;
2956 u64 logical_len = ordered_extent->len;
82d5902d 2957 bool nolock;
77cef2ec 2958 bool truncated = false;
a7e3b975
FM
2959 bool range_locked = false;
2960 bool clear_new_delalloc_bytes = false;
2961
2962 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2963 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2964 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2965 clear_new_delalloc_bytes = true;
e6dcd2dc 2966
70ddc553 2967 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2968
5fd02043
JB
2969 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2970 ret = -EIO;
2971 goto out;
2972 }
2973
7ab7956e
NB
2974 btrfs_free_io_failure_record(BTRFS_I(inode),
2975 ordered_extent->file_offset,
2976 ordered_extent->file_offset +
2977 ordered_extent->len - 1);
f612496b 2978
77cef2ec
JB
2979 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2980 truncated = true;
2981 logical_len = ordered_extent->truncated_len;
2982 /* Truncated the entire extent, don't bother adding */
2983 if (!logical_len)
2984 goto out;
2985 }
2986
c2167754 2987 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2988 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2989
2990 /*
2991 * For mwrite(mmap + memset to write) case, we still reserve
2992 * space for NOCOW range.
2993 * As NOCOW won't cause a new delayed ref, just free the space
2994 */
bc42bda2 2995 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
94ed938a 2996 ordered_extent->len);
6c760c07
JB
2997 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2998 if (nolock)
2999 trans = btrfs_join_transaction_nolock(root);
3000 else
3001 trans = btrfs_join_transaction(root);
3002 if (IS_ERR(trans)) {
3003 ret = PTR_ERR(trans);
3004 trans = NULL;
3005 goto out;
c2167754 3006 }
69fe2d75 3007 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
3008 ret = btrfs_update_inode_fallback(trans, root, inode);
3009 if (ret) /* -ENOMEM or corruption */
66642832 3010 btrfs_abort_transaction(trans, ret);
c2167754
YZ
3011 goto out;
3012 }
e6dcd2dc 3013
a7e3b975 3014 range_locked = true;
2ac55d41
JB
3015 lock_extent_bits(io_tree, ordered_extent->file_offset,
3016 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 3017 &cached_state);
e6dcd2dc 3018
38c227d8
LB
3019 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3020 ordered_extent->file_offset + ordered_extent->len - 1,
452e62b7 3021 EXTENT_DEFRAG, 0, cached_state);
38c227d8
LB
3022 if (ret) {
3023 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 3024 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
3025 /* the inode is shared */
3026 new = record_old_file_extents(inode, ordered_extent);
3027
3028 clear_extent_bit(io_tree, ordered_extent->file_offset,
3029 ordered_extent->file_offset + ordered_extent->len - 1,
ae0f1625 3030 EXTENT_DEFRAG, 0, 0, &cached_state);
38c227d8
LB
3031 }
3032
0cb59c99 3033 if (nolock)
7a7eaa40 3034 trans = btrfs_join_transaction_nolock(root);
0cb59c99 3035 else
7a7eaa40 3036 trans = btrfs_join_transaction(root);
79787eaa
JM
3037 if (IS_ERR(trans)) {
3038 ret = PTR_ERR(trans);
3039 trans = NULL;
a7e3b975 3040 goto out;
79787eaa 3041 }
a79b7d4b 3042
69fe2d75 3043 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 3044
c8b97818 3045 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 3046 compress_type = ordered_extent->compress_type;
d899e052 3047 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 3048 BUG_ON(compress_type);
b430b775
JM
3049 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3050 ordered_extent->len);
7a6d7067 3051 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
3052 ordered_extent->file_offset,
3053 ordered_extent->file_offset +
77cef2ec 3054 logical_len);
d899e052 3055 } else {
0b246afa 3056 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
3057 ret = insert_reserved_file_extent(trans, inode,
3058 ordered_extent->file_offset,
3059 ordered_extent->start,
3060 ordered_extent->disk_len,
77cef2ec 3061 logical_len, logical_len,
261507a0 3062 compress_type, 0, 0,
d899e052 3063 BTRFS_FILE_EXTENT_REG);
e570fd27 3064 if (!ret)
2ff7e61e 3065 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
3066 ordered_extent->start,
3067 ordered_extent->disk_len);
d899e052 3068 }
5dc562c5
JB
3069 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3070 ordered_extent->file_offset, ordered_extent->len,
3071 trans->transid);
79787eaa 3072 if (ret < 0) {
66642832 3073 btrfs_abort_transaction(trans, ret);
a7e3b975 3074 goto out;
79787eaa 3075 }
2ac55d41 3076
ac01f26a
NB
3077 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3078 if (ret) {
3079 btrfs_abort_transaction(trans, ret);
3080 goto out;
3081 }
e6dcd2dc 3082
6c760c07
JB
3083 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3084 ret = btrfs_update_inode_fallback(trans, root, inode);
3085 if (ret) { /* -ENOMEM or corruption */
66642832 3086 btrfs_abort_transaction(trans, ret);
a7e3b975 3087 goto out;
1ef30be1
JB
3088 }
3089 ret = 0;
c2167754 3090out:
a7e3b975
FM
3091 if (range_locked || clear_new_delalloc_bytes) {
3092 unsigned int clear_bits = 0;
3093
3094 if (range_locked)
3095 clear_bits |= EXTENT_LOCKED;
3096 if (clear_new_delalloc_bytes)
3097 clear_bits |= EXTENT_DELALLOC_NEW;
3098 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3099 ordered_extent->file_offset,
3100 ordered_extent->file_offset +
3101 ordered_extent->len - 1,
3102 clear_bits,
3103 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
ae0f1625 3104 0, &cached_state);
a7e3b975
FM
3105 }
3106
a698d075 3107 if (trans)
3a45bb20 3108 btrfs_end_transaction(trans);
0cb59c99 3109
77cef2ec
JB
3110 if (ret || truncated) {
3111 u64 start, end;
3112
3113 if (truncated)
3114 start = ordered_extent->file_offset + logical_len;
3115 else
3116 start = ordered_extent->file_offset;
3117 end = ordered_extent->file_offset + ordered_extent->len - 1;
f08dc36f 3118 clear_extent_uptodate(io_tree, start, end, NULL);
77cef2ec
JB
3119
3120 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 3121 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 3122
0bec9ef5
JB
3123 /*
3124 * If the ordered extent had an IOERR or something else went
3125 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3126 * back to the allocator. We only free the extent in the
3127 * truncated case if we didn't write out the extent at all.
0bec9ef5 3128 */
77cef2ec
JB
3129 if ((ret || !logical_len) &&
3130 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3131 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3132 btrfs_free_reserved_extent(fs_info,
3133 ordered_extent->start,
e570fd27 3134 ordered_extent->disk_len, 1);
0bec9ef5
JB
3135 }
3136
3137
5fd02043 3138 /*
8bad3c02
LB
3139 * This needs to be done to make sure anybody waiting knows we are done
3140 * updating everything for this ordered extent.
5fd02043
JB
3141 */
3142 btrfs_remove_ordered_extent(inode, ordered_extent);
3143
38c227d8 3144 /* for snapshot-aware defrag */
6f519564
LB
3145 if (new) {
3146 if (ret) {
3147 free_sa_defrag_extent(new);
0b246afa 3148 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3149 } else {
3150 relink_file_extents(new);
3151 }
3152 }
38c227d8 3153
e6dcd2dc
CM
3154 /* once for us */
3155 btrfs_put_ordered_extent(ordered_extent);
3156 /* once for the tree */
3157 btrfs_put_ordered_extent(ordered_extent);
3158
5fd02043
JB
3159 return ret;
3160}
3161
3162static void finish_ordered_fn(struct btrfs_work *work)
3163{
3164 struct btrfs_ordered_extent *ordered_extent;
3165 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3166 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3167}
3168
c3988d63 3169static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3170 struct extent_state *state, int uptodate)
3171{
5fd02043 3172 struct inode *inode = page->mapping->host;
0b246afa 3173 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3174 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3175 struct btrfs_workqueue *wq;
3176 btrfs_work_func_t func;
5fd02043 3177
1abe9b8a 3178 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3179
8b62b72b 3180 ClearPagePrivate2(page);
5fd02043
JB
3181 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3182 end - start + 1, uptodate))
c3988d63 3183 return;
5fd02043 3184
70ddc553 3185 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 3186 wq = fs_info->endio_freespace_worker;
9e0af237
LB
3187 func = btrfs_freespace_write_helper;
3188 } else {
0b246afa 3189 wq = fs_info->endio_write_workers;
9e0af237
LB
3190 func = btrfs_endio_write_helper;
3191 }
5fd02043 3192
9e0af237
LB
3193 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3194 NULL);
3195 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3196}
3197
dc380aea
MX
3198static int __readpage_endio_check(struct inode *inode,
3199 struct btrfs_io_bio *io_bio,
3200 int icsum, struct page *page,
3201 int pgoff, u64 start, size_t len)
3202{
3203 char *kaddr;
3204 u32 csum_expected;
3205 u32 csum = ~(u32)0;
dc380aea
MX
3206
3207 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3208
3209 kaddr = kmap_atomic(page);
3210 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
0b5e3daf 3211 btrfs_csum_final(csum, (u8 *)&csum);
dc380aea
MX
3212 if (csum != csum_expected)
3213 goto zeroit;
3214
3215 kunmap_atomic(kaddr);
3216 return 0;
3217zeroit:
0970a22e 3218 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
6f6b643e 3219 io_bio->mirror_num);
dc380aea
MX
3220 memset(kaddr + pgoff, 1, len);
3221 flush_dcache_page(page);
3222 kunmap_atomic(kaddr);
dc380aea
MX
3223 return -EIO;
3224}
3225
d352ac68
CM
3226/*
3227 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3228 * if there's a match, we allow the bio to finish. If not, the code in
3229 * extent_io.c will try to find good copies for us.
d352ac68 3230 */
facc8a22
MX
3231static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3232 u64 phy_offset, struct page *page,
3233 u64 start, u64 end, int mirror)
07157aac 3234{
4eee4fa4 3235 size_t offset = start - page_offset(page);
07157aac 3236 struct inode *inode = page->mapping->host;
d1310b2e 3237 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3238 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3239
d20f7043
CM
3240 if (PageChecked(page)) {
3241 ClearPageChecked(page);
dc380aea 3242 return 0;
d20f7043 3243 }
6cbff00f
CH
3244
3245 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3246 return 0;
17d217fe
YZ
3247
3248 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3249 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3250 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3251 return 0;
17d217fe 3252 }
d20f7043 3253
facc8a22 3254 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3255 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3256 start, (size_t)(end - start + 1));
07157aac 3257}
b888db2b 3258
c1c3fac2
NB
3259/*
3260 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3261 *
3262 * @inode: The inode we want to perform iput on
3263 *
3264 * This function uses the generic vfs_inode::i_count to track whether we should
3265 * just decrement it (in case it's > 1) or if this is the last iput then link
3266 * the inode to the delayed iput machinery. Delayed iputs are processed at
3267 * transaction commit time/superblock commit/cleaner kthread.
3268 */
24bbcf04
YZ
3269void btrfs_add_delayed_iput(struct inode *inode)
3270{
0b246afa 3271 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3272 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3273
3274 if (atomic_add_unless(&inode->i_count, -1, 1))
3275 return;
3276
24bbcf04 3277 spin_lock(&fs_info->delayed_iput_lock);
c1c3fac2
NB
3278 ASSERT(list_empty(&binode->delayed_iput));
3279 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
24bbcf04
YZ
3280 spin_unlock(&fs_info->delayed_iput_lock);
3281}
3282
2ff7e61e 3283void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3284{
24bbcf04 3285
24bbcf04 3286 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3287 while (!list_empty(&fs_info->delayed_iputs)) {
3288 struct btrfs_inode *inode;
3289
3290 inode = list_first_entry(&fs_info->delayed_iputs,
3291 struct btrfs_inode, delayed_iput);
c1c3fac2 3292 list_del_init(&inode->delayed_iput);
8089fe62
DS
3293 spin_unlock(&fs_info->delayed_iput_lock);
3294 iput(&inode->vfs_inode);
3295 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3296 }
8089fe62 3297 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3298}
3299
d68fc57b 3300/*
42b2aa86 3301 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3302 * files in the subvolume, it removes orphan item and frees block_rsv
3303 * structure.
3304 */
3305void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3306 struct btrfs_root *root)
3307{
0b246afa 3308 struct btrfs_fs_info *fs_info = root->fs_info;
90290e19 3309 struct btrfs_block_rsv *block_rsv;
d68fc57b 3310
8a35d95f 3311 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3312 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3313 return;
3314
90290e19 3315 spin_lock(&root->orphan_lock);
8a35d95f 3316 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3317 spin_unlock(&root->orphan_lock);
3318 return;
3319 }
3320
3321 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3322 spin_unlock(&root->orphan_lock);
3323 return;
3324 }
3325
3326 block_rsv = root->orphan_block_rsv;
3327 root->orphan_block_rsv = NULL;
3328 spin_unlock(&root->orphan_lock);
3329
90290e19
JB
3330 if (block_rsv) {
3331 WARN_ON(block_rsv->size > 0);
2ff7e61e 3332 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b
YZ
3333 }
3334}
3335
7b128766 3336/*
f7e9e8fc
OS
3337 * This creates an orphan entry for the given inode in case something goes wrong
3338 * in the middle of an unlink.
d68fc57b
YZ
3339 *
3340 * NOTE: caller of this function should reserve 5 units of metadata for
3341 * this function.
7b128766 3342 */
73f2e545
NB
3343int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3344 struct btrfs_inode *inode)
7b128766 3345{
73f2e545
NB
3346 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3347 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3348 struct btrfs_block_rsv *block_rsv = NULL;
3349 int reserve = 0;
d68fc57b 3350 int ret;
7b128766 3351
d68fc57b 3352 if (!root->orphan_block_rsv) {
2ff7e61e
JM
3353 block_rsv = btrfs_alloc_block_rsv(fs_info,
3354 BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3355 if (!block_rsv)
3356 return -ENOMEM;
d68fc57b 3357 }
7b128766 3358
72ac3c0d 3359 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3360 &inode->runtime_flags))
d68fc57b 3361 reserve = 1;
3d5addaf
LB
3362
3363 spin_lock(&root->orphan_lock);
3364 /* If someone has created ->orphan_block_rsv, be happy to use it. */
3365 if (!root->orphan_block_rsv) {
3366 root->orphan_block_rsv = block_rsv;
3367 } else if (block_rsv) {
3368 btrfs_free_block_rsv(fs_info, block_rsv);
3369 block_rsv = NULL;
3370 }
3371
7b40b695 3372 atomic_inc(&root->orphan_inodes);
d68fc57b 3373 spin_unlock(&root->orphan_lock);
7b128766 3374
d68fc57b
YZ
3375 /* grab metadata reservation from transaction handle */
3376 if (reserve) {
3377 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3378 ASSERT(!ret);
3379 if (ret) {
1a932ef4
LB
3380 /*
3381 * dec doesn't need spin_lock as ->orphan_block_rsv
3382 * would be released only if ->orphan_inodes is
3383 * zero.
3384 */
3b6571c1
JB
3385 atomic_dec(&root->orphan_inodes);
3386 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3387 &inode->runtime_flags);
3b6571c1
JB
3388 return ret;
3389 }
d68fc57b 3390 }
7b128766 3391
f7e9e8fc 3392 /* insert an orphan item to track this unlinked file */
7b40b695
OS
3393 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3394 if (ret) {
3395 if (reserve) {
3396 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3397 &inode->runtime_flags);
3398 btrfs_orphan_release_metadata(inode);
3399 }
3400 /*
3401 * btrfs_orphan_commit_root may race with us and set
3402 * ->orphan_block_rsv to zero, in order to avoid that,
3403 * decrease ->orphan_inodes after everything is done.
3404 */
3405 atomic_dec(&root->orphan_inodes);
3406 if (ret != -EEXIST) {
3407 btrfs_abort_transaction(trans, ret);
3408 return ret;
79787eaa 3409 }
d68fc57b
YZ
3410 }
3411
d68fc57b 3412 return 0;
7b128766
JB
3413}
3414
3415/*
f7e9e8fc
OS
3416 * We have done the delete so we can go ahead and remove the orphan item for
3417 * this particular inode.
7b128766 3418 */
48a3b636 3419static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3420 struct btrfs_inode *inode)
7b128766 3421{
3d6ae7bb 3422 struct btrfs_root *root = inode->root;
7b128766
JB
3423 int ret = 0;
3424
7b40b695 3425 if (trans)
1a932ef4
LB
3426 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
3427
72ac3c0d 3428 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3d6ae7bb 3429 &inode->runtime_flags))
1a932ef4 3430 btrfs_orphan_release_metadata(inode);
7b128766 3431
1a932ef4
LB
3432 /*
3433 * btrfs_orphan_commit_root may race with us and set ->orphan_block_rsv
3434 * to zero, in order to avoid that, decrease ->orphan_inodes after
3435 * everything is done.
3436 */
7b40b695 3437 atomic_dec(&root->orphan_inodes);
703c88e0 3438
4ef31a45 3439 return ret;
7b128766
JB
3440}
3441
3442/*
3443 * this cleans up any orphans that may be left on the list from the last use
3444 * of this root.
3445 */
66b4ffd1 3446int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3447{
0b246afa 3448 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3449 struct btrfs_path *path;
3450 struct extent_buffer *leaf;
7b128766
JB
3451 struct btrfs_key key, found_key;
3452 struct btrfs_trans_handle *trans;
3453 struct inode *inode;
8f6d7f4f 3454 u64 last_objectid = 0;
f7e9e8fc 3455 int ret = 0, nr_unlink = 0;
7b128766 3456
d68fc57b 3457 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3458 return 0;
c71bf099
YZ
3459
3460 path = btrfs_alloc_path();
66b4ffd1
JB
3461 if (!path) {
3462 ret = -ENOMEM;
3463 goto out;
3464 }
e4058b54 3465 path->reada = READA_BACK;
7b128766
JB
3466
3467 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3468 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3469 key.offset = (u64)-1;
3470
7b128766
JB
3471 while (1) {
3472 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3473 if (ret < 0)
3474 goto out;
7b128766
JB
3475
3476 /*
3477 * if ret == 0 means we found what we were searching for, which
25985edc 3478 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3479 * find the key and see if we have stuff that matches
3480 */
3481 if (ret > 0) {
66b4ffd1 3482 ret = 0;
7b128766
JB
3483 if (path->slots[0] == 0)
3484 break;
3485 path->slots[0]--;
3486 }
3487
3488 /* pull out the item */
3489 leaf = path->nodes[0];
7b128766
JB
3490 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3491
3492 /* make sure the item matches what we want */
3493 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3494 break;
962a298f 3495 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3496 break;
3497
3498 /* release the path since we're done with it */
b3b4aa74 3499 btrfs_release_path(path);
7b128766
JB
3500
3501 /*
3502 * this is where we are basically btrfs_lookup, without the
3503 * crossing root thing. we store the inode number in the
3504 * offset of the orphan item.
3505 */
8f6d7f4f
JB
3506
3507 if (found_key.offset == last_objectid) {
0b246afa
JM
3508 btrfs_err(fs_info,
3509 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3510 ret = -EINVAL;
3511 goto out;
3512 }
3513
3514 last_objectid = found_key.offset;
3515
5d4f98a2
YZ
3516 found_key.objectid = found_key.offset;
3517 found_key.type = BTRFS_INODE_ITEM_KEY;
3518 found_key.offset = 0;
0b246afa 3519 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3520 ret = PTR_ERR_OR_ZERO(inode);
67710892 3521 if (ret && ret != -ENOENT)
66b4ffd1 3522 goto out;
7b128766 3523
0b246afa 3524 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3525 struct btrfs_root *dead_root;
3526 struct btrfs_fs_info *fs_info = root->fs_info;
3527 int is_dead_root = 0;
3528
3529 /*
3530 * this is an orphan in the tree root. Currently these
3531 * could come from 2 sources:
3532 * a) a snapshot deletion in progress
3533 * b) a free space cache inode
3534 * We need to distinguish those two, as the snapshot
3535 * orphan must not get deleted.
3536 * find_dead_roots already ran before us, so if this
3537 * is a snapshot deletion, we should find the root
3538 * in the dead_roots list
3539 */
3540 spin_lock(&fs_info->trans_lock);
3541 list_for_each_entry(dead_root, &fs_info->dead_roots,
3542 root_list) {
3543 if (dead_root->root_key.objectid ==
3544 found_key.objectid) {
3545 is_dead_root = 1;
3546 break;
3547 }
3548 }
3549 spin_unlock(&fs_info->trans_lock);
3550 if (is_dead_root) {
3551 /* prevent this orphan from being found again */
3552 key.offset = found_key.objectid - 1;
3553 continue;
3554 }
f7e9e8fc 3555
f8e9e0b0 3556 }
f7e9e8fc 3557
7b128766 3558 /*
f7e9e8fc
OS
3559 * If we have an inode with links, there are a couple of
3560 * possibilities. Old kernels (before v3.12) used to create an
3561 * orphan item for truncate indicating that there were possibly
3562 * extent items past i_size that needed to be deleted. In v3.12,
3563 * truncate was changed to update i_size in sync with the extent
3564 * items, but the (useless) orphan item was still created. Since
3565 * v4.18, we don't create the orphan item for truncate at all.
3566 *
3567 * So, this item could mean that we need to do a truncate, but
3568 * only if this filesystem was last used on a pre-v3.12 kernel
3569 * and was not cleanly unmounted. The odds of that are quite
3570 * slim, and it's a pain to do the truncate now, so just delete
3571 * the orphan item.
3572 *
3573 * It's also possible that this orphan item was supposed to be
3574 * deleted but wasn't. The inode number may have been reused,
3575 * but either way, we can delete the orphan item.
7b128766 3576 */
f7e9e8fc
OS
3577 if (ret == -ENOENT || inode->i_nlink) {
3578 if (!ret)
3579 iput(inode);
a8c9e576 3580 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3581 if (IS_ERR(trans)) {
3582 ret = PTR_ERR(trans);
3583 goto out;
3584 }
0b246afa
JM
3585 btrfs_debug(fs_info, "auto deleting %Lu",
3586 found_key.objectid);
a8c9e576
JB
3587 ret = btrfs_del_orphan_item(trans, root,
3588 found_key.objectid);
3a45bb20 3589 btrfs_end_transaction(trans);
4ef31a45
JB
3590 if (ret)
3591 goto out;
7b128766
JB
3592 continue;
3593 }
3594
925396ec 3595 atomic_inc(&root->orphan_inodes);
a8c9e576 3596
f7e9e8fc 3597 nr_unlink++;
7b128766
JB
3598
3599 /* this will do delete_inode and everything for us */
3600 iput(inode);
66b4ffd1
JB
3601 if (ret)
3602 goto out;
7b128766 3603 }
3254c876
MX
3604 /* release the path since we're done with it */
3605 btrfs_release_path(path);
3606
d68fc57b
YZ
3607 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3608
3609 if (root->orphan_block_rsv)
2ff7e61e 3610 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
d68fc57b
YZ
3611 (u64)-1);
3612
27cdeb70
MX
3613 if (root->orphan_block_rsv ||
3614 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3615 trans = btrfs_join_transaction(root);
66b4ffd1 3616 if (!IS_ERR(trans))
3a45bb20 3617 btrfs_end_transaction(trans);
d68fc57b 3618 }
7b128766
JB
3619
3620 if (nr_unlink)
0b246afa 3621 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
66b4ffd1
JB
3622
3623out:
3624 if (ret)
0b246afa 3625 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3626 btrfs_free_path(path);
3627 return ret;
7b128766
JB
3628}
3629
46a53cca
CM
3630/*
3631 * very simple check to peek ahead in the leaf looking for xattrs. If we
3632 * don't find any xattrs, we know there can't be any acls.
3633 *
3634 * slot is the slot the inode is in, objectid is the objectid of the inode
3635 */
3636static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3637 int slot, u64 objectid,
3638 int *first_xattr_slot)
46a53cca
CM
3639{
3640 u32 nritems = btrfs_header_nritems(leaf);
3641 struct btrfs_key found_key;
f23b5a59
JB
3642 static u64 xattr_access = 0;
3643 static u64 xattr_default = 0;
46a53cca
CM
3644 int scanned = 0;
3645
f23b5a59 3646 if (!xattr_access) {
97d79299
AG
3647 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3648 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3649 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3650 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3651 }
3652
46a53cca 3653 slot++;
63541927 3654 *first_xattr_slot = -1;
46a53cca
CM
3655 while (slot < nritems) {
3656 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3657
3658 /* we found a different objectid, there must not be acls */
3659 if (found_key.objectid != objectid)
3660 return 0;
3661
3662 /* we found an xattr, assume we've got an acl */
f23b5a59 3663 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3664 if (*first_xattr_slot == -1)
3665 *first_xattr_slot = slot;
f23b5a59
JB
3666 if (found_key.offset == xattr_access ||
3667 found_key.offset == xattr_default)
3668 return 1;
3669 }
46a53cca
CM
3670
3671 /*
3672 * we found a key greater than an xattr key, there can't
3673 * be any acls later on
3674 */
3675 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3676 return 0;
3677
3678 slot++;
3679 scanned++;
3680
3681 /*
3682 * it goes inode, inode backrefs, xattrs, extents,
3683 * so if there are a ton of hard links to an inode there can
3684 * be a lot of backrefs. Don't waste time searching too hard,
3685 * this is just an optimization
3686 */
3687 if (scanned >= 8)
3688 break;
3689 }
3690 /* we hit the end of the leaf before we found an xattr or
3691 * something larger than an xattr. We have to assume the inode
3692 * has acls
3693 */
63541927
FDBM
3694 if (*first_xattr_slot == -1)
3695 *first_xattr_slot = slot;
46a53cca
CM
3696 return 1;
3697}
3698
d352ac68
CM
3699/*
3700 * read an inode from the btree into the in-memory inode
3701 */
67710892 3702static int btrfs_read_locked_inode(struct inode *inode)
39279cc3 3703{
0b246afa 3704 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 3705 struct btrfs_path *path;
5f39d397 3706 struct extent_buffer *leaf;
39279cc3
CM
3707 struct btrfs_inode_item *inode_item;
3708 struct btrfs_root *root = BTRFS_I(inode)->root;
3709 struct btrfs_key location;
67de1176 3710 unsigned long ptr;
46a53cca 3711 int maybe_acls;
618e21d5 3712 u32 rdev;
39279cc3 3713 int ret;
2f7e33d4 3714 bool filled = false;
63541927 3715 int first_xattr_slot;
2f7e33d4
MX
3716
3717 ret = btrfs_fill_inode(inode, &rdev);
3718 if (!ret)
3719 filled = true;
39279cc3
CM
3720
3721 path = btrfs_alloc_path();
67710892
FM
3722 if (!path) {
3723 ret = -ENOMEM;
1748f843 3724 goto make_bad;
67710892 3725 }
1748f843 3726
39279cc3 3727 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3728
39279cc3 3729 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3730 if (ret) {
3731 if (ret > 0)
3732 ret = -ENOENT;
39279cc3 3733 goto make_bad;
67710892 3734 }
39279cc3 3735
5f39d397 3736 leaf = path->nodes[0];
2f7e33d4
MX
3737
3738 if (filled)
67de1176 3739 goto cache_index;
2f7e33d4 3740
5f39d397
CM
3741 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3742 struct btrfs_inode_item);
5f39d397 3743 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3744 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3745 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3746 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3747 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3748
a937b979
DS
3749 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3750 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3751
a937b979
DS
3752 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3753 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3754
a937b979
DS
3755 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3756 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3757
9cc97d64 3758 BTRFS_I(inode)->i_otime.tv_sec =
3759 btrfs_timespec_sec(leaf, &inode_item->otime);
3760 BTRFS_I(inode)->i_otime.tv_nsec =
3761 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3762
a76a3cd4 3763 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3764 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3765 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3766
c7f88c4e
JL
3767 inode_set_iversion_queried(inode,
3768 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3769 inode->i_generation = BTRFS_I(inode)->generation;
3770 inode->i_rdev = 0;
3771 rdev = btrfs_inode_rdev(leaf, inode_item);
3772
3773 BTRFS_I(inode)->index_cnt = (u64)-1;
3774 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3775
3776cache_index:
5dc562c5
JB
3777 /*
3778 * If we were modified in the current generation and evicted from memory
3779 * and then re-read we need to do a full sync since we don't have any
3780 * idea about which extents were modified before we were evicted from
3781 * cache.
6e17d30b
YD
3782 *
3783 * This is required for both inode re-read from disk and delayed inode
3784 * in delayed_nodes_tree.
5dc562c5 3785 */
0b246afa 3786 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3787 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3788 &BTRFS_I(inode)->runtime_flags);
3789
bde6c242
FM
3790 /*
3791 * We don't persist the id of the transaction where an unlink operation
3792 * against the inode was last made. So here we assume the inode might
3793 * have been evicted, and therefore the exact value of last_unlink_trans
3794 * lost, and set it to last_trans to avoid metadata inconsistencies
3795 * between the inode and its parent if the inode is fsync'ed and the log
3796 * replayed. For example, in the scenario:
3797 *
3798 * touch mydir/foo
3799 * ln mydir/foo mydir/bar
3800 * sync
3801 * unlink mydir/bar
3802 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3803 * xfs_io -c fsync mydir/foo
3804 * <power failure>
3805 * mount fs, triggers fsync log replay
3806 *
3807 * We must make sure that when we fsync our inode foo we also log its
3808 * parent inode, otherwise after log replay the parent still has the
3809 * dentry with the "bar" name but our inode foo has a link count of 1
3810 * and doesn't have an inode ref with the name "bar" anymore.
3811 *
3812 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3813 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3814 * transaction commits on fsync if our inode is a directory, or if our
3815 * inode is not a directory, logging its parent unnecessarily.
3816 */
3817 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3818
67de1176
MX
3819 path->slots[0]++;
3820 if (inode->i_nlink != 1 ||
3821 path->slots[0] >= btrfs_header_nritems(leaf))
3822 goto cache_acl;
3823
3824 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3825 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3826 goto cache_acl;
3827
3828 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3829 if (location.type == BTRFS_INODE_REF_KEY) {
3830 struct btrfs_inode_ref *ref;
3831
3832 ref = (struct btrfs_inode_ref *)ptr;
3833 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3834 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3835 struct btrfs_inode_extref *extref;
3836
3837 extref = (struct btrfs_inode_extref *)ptr;
3838 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3839 extref);
3840 }
2f7e33d4 3841cache_acl:
46a53cca
CM
3842 /*
3843 * try to precache a NULL acl entry for files that don't have
3844 * any xattrs or acls
3845 */
33345d01 3846 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3847 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3848 if (first_xattr_slot != -1) {
3849 path->slots[0] = first_xattr_slot;
3850 ret = btrfs_load_inode_props(inode, path);
3851 if (ret)
0b246afa 3852 btrfs_err(fs_info,
351fd353 3853 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3854 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3855 root->root_key.objectid, ret);
3856 }
3857 btrfs_free_path(path);
3858
72c04902
AV
3859 if (!maybe_acls)
3860 cache_no_acl(inode);
46a53cca 3861
39279cc3 3862 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3863 case S_IFREG:
3864 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3865 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3866 inode->i_fop = &btrfs_file_operations;
3867 inode->i_op = &btrfs_file_inode_operations;
3868 break;
3869 case S_IFDIR:
3870 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3871 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3872 break;
3873 case S_IFLNK:
3874 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3875 inode_nohighmem(inode);
39279cc3
CM
3876 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3877 break;
618e21d5 3878 default:
0279b4cd 3879 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3880 init_special_inode(inode, inode->i_mode, rdev);
3881 break;
39279cc3 3882 }
6cbff00f 3883
7b6a221e 3884 btrfs_sync_inode_flags_to_i_flags(inode);
67710892 3885 return 0;
39279cc3
CM
3886
3887make_bad:
39279cc3 3888 btrfs_free_path(path);
39279cc3 3889 make_bad_inode(inode);
67710892 3890 return ret;
39279cc3
CM
3891}
3892
d352ac68
CM
3893/*
3894 * given a leaf and an inode, copy the inode fields into the leaf
3895 */
e02119d5
CM
3896static void fill_inode_item(struct btrfs_trans_handle *trans,
3897 struct extent_buffer *leaf,
5f39d397 3898 struct btrfs_inode_item *item,
39279cc3
CM
3899 struct inode *inode)
3900{
51fab693
LB
3901 struct btrfs_map_token token;
3902
3903 btrfs_init_map_token(&token);
5f39d397 3904
51fab693
LB
3905 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3906 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3907 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3908 &token);
3909 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3910 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3911
a937b979 3912 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3913 inode->i_atime.tv_sec, &token);
a937b979 3914 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3915 inode->i_atime.tv_nsec, &token);
5f39d397 3916
a937b979 3917 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3918 inode->i_mtime.tv_sec, &token);
a937b979 3919 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3920 inode->i_mtime.tv_nsec, &token);
5f39d397 3921
a937b979 3922 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3923 inode->i_ctime.tv_sec, &token);
a937b979 3924 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3925 inode->i_ctime.tv_nsec, &token);
5f39d397 3926
9cc97d64 3927 btrfs_set_token_timespec_sec(leaf, &item->otime,
3928 BTRFS_I(inode)->i_otime.tv_sec, &token);
3929 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3930 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3931
51fab693
LB
3932 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3933 &token);
3934 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3935 &token);
c7f88c4e
JL
3936 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3937 &token);
51fab693
LB
3938 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3939 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3940 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3941 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3942}
3943
d352ac68
CM
3944/*
3945 * copy everything in the in-memory inode into the btree.
3946 */
2115133f 3947static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3948 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3949{
3950 struct btrfs_inode_item *inode_item;
3951 struct btrfs_path *path;
5f39d397 3952 struct extent_buffer *leaf;
39279cc3
CM
3953 int ret;
3954
3955 path = btrfs_alloc_path();
16cdcec7
MX
3956 if (!path)
3957 return -ENOMEM;
3958
b9473439 3959 path->leave_spinning = 1;
16cdcec7
MX
3960 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3961 1);
39279cc3
CM
3962 if (ret) {
3963 if (ret > 0)
3964 ret = -ENOENT;
3965 goto failed;
3966 }
3967
5f39d397
CM
3968 leaf = path->nodes[0];
3969 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3970 struct btrfs_inode_item);
39279cc3 3971
e02119d5 3972 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3973 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3974 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3975 ret = 0;
3976failed:
39279cc3
CM
3977 btrfs_free_path(path);
3978 return ret;
3979}
3980
2115133f
CM
3981/*
3982 * copy everything in the in-memory inode into the btree.
3983 */
3984noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3985 struct btrfs_root *root, struct inode *inode)
3986{
0b246afa 3987 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3988 int ret;
3989
3990 /*
3991 * If the inode is a free space inode, we can deadlock during commit
3992 * if we put it into the delayed code.
3993 *
3994 * The data relocation inode should also be directly updated
3995 * without delay
3996 */
70ddc553 3997 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 3998 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 3999 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
4000 btrfs_update_root_times(trans, root);
4001
2115133f
CM
4002 ret = btrfs_delayed_update_inode(trans, root, inode);
4003 if (!ret)
4004 btrfs_set_inode_last_trans(trans, inode);
4005 return ret;
4006 }
4007
4008 return btrfs_update_inode_item(trans, root, inode);
4009}
4010
be6aef60
JB
4011noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4012 struct btrfs_root *root,
4013 struct inode *inode)
2115133f
CM
4014{
4015 int ret;
4016
4017 ret = btrfs_update_inode(trans, root, inode);
4018 if (ret == -ENOSPC)
4019 return btrfs_update_inode_item(trans, root, inode);
4020 return ret;
4021}
4022
d352ac68
CM
4023/*
4024 * unlink helper that gets used here in inode.c and in the tree logging
4025 * recovery code. It remove a link in a directory with a given name, and
4026 * also drops the back refs in the inode to the directory
4027 */
92986796
AV
4028static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4029 struct btrfs_root *root,
4ec5934e
NB
4030 struct btrfs_inode *dir,
4031 struct btrfs_inode *inode,
92986796 4032 const char *name, int name_len)
39279cc3 4033{
0b246afa 4034 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4035 struct btrfs_path *path;
39279cc3 4036 int ret = 0;
5f39d397 4037 struct extent_buffer *leaf;
39279cc3 4038 struct btrfs_dir_item *di;
5f39d397 4039 struct btrfs_key key;
aec7477b 4040 u64 index;
33345d01
LZ
4041 u64 ino = btrfs_ino(inode);
4042 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
4043
4044 path = btrfs_alloc_path();
54aa1f4d
CM
4045 if (!path) {
4046 ret = -ENOMEM;
554233a6 4047 goto out;
54aa1f4d
CM
4048 }
4049
b9473439 4050 path->leave_spinning = 1;
33345d01 4051 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
4052 name, name_len, -1);
4053 if (IS_ERR(di)) {
4054 ret = PTR_ERR(di);
4055 goto err;
4056 }
4057 if (!di) {
4058 ret = -ENOENT;
4059 goto err;
4060 }
5f39d397
CM
4061 leaf = path->nodes[0];
4062 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 4063 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4064 if (ret)
4065 goto err;
b3b4aa74 4066 btrfs_release_path(path);
39279cc3 4067
67de1176
MX
4068 /*
4069 * If we don't have dir index, we have to get it by looking up
4070 * the inode ref, since we get the inode ref, remove it directly,
4071 * it is unnecessary to do delayed deletion.
4072 *
4073 * But if we have dir index, needn't search inode ref to get it.
4074 * Since the inode ref is close to the inode item, it is better
4075 * that we delay to delete it, and just do this deletion when
4076 * we update the inode item.
4077 */
4ec5934e 4078 if (inode->dir_index) {
67de1176
MX
4079 ret = btrfs_delayed_delete_inode_ref(inode);
4080 if (!ret) {
4ec5934e 4081 index = inode->dir_index;
67de1176
MX
4082 goto skip_backref;
4083 }
4084 }
4085
33345d01
LZ
4086 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4087 dir_ino, &index);
aec7477b 4088 if (ret) {
0b246afa 4089 btrfs_info(fs_info,
c2cf52eb 4090 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4091 name_len, name, ino, dir_ino);
66642832 4092 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4093 goto err;
4094 }
67de1176 4095skip_backref:
2ff7e61e 4096 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
79787eaa 4097 if (ret) {
66642832 4098 btrfs_abort_transaction(trans, ret);
39279cc3 4099 goto err;
79787eaa 4100 }
39279cc3 4101
4ec5934e
NB
4102 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4103 dir_ino);
79787eaa 4104 if (ret != 0 && ret != -ENOENT) {
66642832 4105 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4106 goto err;
4107 }
e02119d5 4108
4ec5934e
NB
4109 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4110 index);
6418c961
CM
4111 if (ret == -ENOENT)
4112 ret = 0;
d4e3991b 4113 else if (ret)
66642832 4114 btrfs_abort_transaction(trans, ret);
39279cc3
CM
4115err:
4116 btrfs_free_path(path);
e02119d5
CM
4117 if (ret)
4118 goto out;
4119
6ef06d27 4120 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
4121 inode_inc_iversion(&inode->vfs_inode);
4122 inode_inc_iversion(&dir->vfs_inode);
4123 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4124 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4125 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 4126out:
39279cc3
CM
4127 return ret;
4128}
4129
92986796
AV
4130int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4131 struct btrfs_root *root,
4ec5934e 4132 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
4133 const char *name, int name_len)
4134{
4135 int ret;
4136 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4137 if (!ret) {
4ec5934e
NB
4138 drop_nlink(&inode->vfs_inode);
4139 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4140 }
4141 return ret;
4142}
39279cc3 4143
a22285a6
YZ
4144/*
4145 * helper to start transaction for unlink and rmdir.
4146 *
d52be818
JB
4147 * unlink and rmdir are special in btrfs, they do not always free space, so
4148 * if we cannot make our reservations the normal way try and see if there is
4149 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4150 * allow the unlink to occur.
a22285a6 4151 */
d52be818 4152static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4153{
a22285a6 4154 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4155
e70bea5f
JB
4156 /*
4157 * 1 for the possible orphan item
4158 * 1 for the dir item
4159 * 1 for the dir index
4160 * 1 for the inode ref
e70bea5f
JB
4161 * 1 for the inode
4162 */
8eab77ff 4163 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4164}
4165
4166static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4167{
4168 struct btrfs_root *root = BTRFS_I(dir)->root;
4169 struct btrfs_trans_handle *trans;
2b0143b5 4170 struct inode *inode = d_inode(dentry);
a22285a6 4171 int ret;
a22285a6 4172
d52be818 4173 trans = __unlink_start_trans(dir);
a22285a6
YZ
4174 if (IS_ERR(trans))
4175 return PTR_ERR(trans);
5f39d397 4176
4ec5934e
NB
4177 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4178 0);
12fcfd22 4179
4ec5934e
NB
4180 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4181 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4182 dentry->d_name.len);
b532402e
TI
4183 if (ret)
4184 goto out;
7b128766 4185
a22285a6 4186 if (inode->i_nlink == 0) {
73f2e545 4187 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4188 if (ret)
4189 goto out;
a22285a6 4190 }
7b128766 4191
b532402e 4192out:
3a45bb20 4193 btrfs_end_transaction(trans);
2ff7e61e 4194 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4195 return ret;
4196}
4197
f60a2364 4198static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4df27c4d
YZ
4199 struct btrfs_root *root,
4200 struct inode *dir, u64 objectid,
4201 const char *name, int name_len)
4202{
0b246afa 4203 struct btrfs_fs_info *fs_info = root->fs_info;
4df27c4d
YZ
4204 struct btrfs_path *path;
4205 struct extent_buffer *leaf;
4206 struct btrfs_dir_item *di;
4207 struct btrfs_key key;
4208 u64 index;
4209 int ret;
4a0cc7ca 4210 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4211
4212 path = btrfs_alloc_path();
4213 if (!path)
4214 return -ENOMEM;
4215
33345d01 4216 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4217 name, name_len, -1);
79787eaa
JM
4218 if (IS_ERR_OR_NULL(di)) {
4219 if (!di)
4220 ret = -ENOENT;
4221 else
4222 ret = PTR_ERR(di);
4223 goto out;
4224 }
4df27c4d
YZ
4225
4226 leaf = path->nodes[0];
4227 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4228 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4229 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4230 if (ret) {
66642832 4231 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4232 goto out;
4233 }
b3b4aa74 4234 btrfs_release_path(path);
4df27c4d 4235
0b246afa
JM
4236 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4237 root->root_key.objectid, dir_ino,
4238 &index, name, name_len);
4df27c4d 4239 if (ret < 0) {
79787eaa 4240 if (ret != -ENOENT) {
66642832 4241 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4242 goto out;
4243 }
33345d01 4244 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4245 name, name_len);
79787eaa
JM
4246 if (IS_ERR_OR_NULL(di)) {
4247 if (!di)
4248 ret = -ENOENT;
4249 else
4250 ret = PTR_ERR(di);
66642832 4251 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4252 goto out;
4253 }
4df27c4d
YZ
4254
4255 leaf = path->nodes[0];
4256 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4257 btrfs_release_path(path);
4df27c4d
YZ
4258 index = key.offset;
4259 }
945d8962 4260 btrfs_release_path(path);
4df27c4d 4261
e67bbbb9 4262 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
79787eaa 4263 if (ret) {
66642832 4264 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4265 goto out;
4266 }
4df27c4d 4267
6ef06d27 4268 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4269 inode_inc_iversion(dir);
c2050a45 4270 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4271 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4272 if (ret)
66642832 4273 btrfs_abort_transaction(trans, ret);
79787eaa 4274out:
71d7aed0 4275 btrfs_free_path(path);
79787eaa 4276 return ret;
4df27c4d
YZ
4277}
4278
ec42f167
MT
4279/*
4280 * Helper to check if the subvolume references other subvolumes or if it's
4281 * default.
4282 */
f60a2364 4283static noinline int may_destroy_subvol(struct btrfs_root *root)
ec42f167
MT
4284{
4285 struct btrfs_fs_info *fs_info = root->fs_info;
4286 struct btrfs_path *path;
4287 struct btrfs_dir_item *di;
4288 struct btrfs_key key;
4289 u64 dir_id;
4290 int ret;
4291
4292 path = btrfs_alloc_path();
4293 if (!path)
4294 return -ENOMEM;
4295
4296 /* Make sure this root isn't set as the default subvol */
4297 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4298 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4299 dir_id, "default", 7, 0);
4300 if (di && !IS_ERR(di)) {
4301 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4302 if (key.objectid == root->root_key.objectid) {
4303 ret = -EPERM;
4304 btrfs_err(fs_info,
4305 "deleting default subvolume %llu is not allowed",
4306 key.objectid);
4307 goto out;
4308 }
4309 btrfs_release_path(path);
4310 }
4311
4312 key.objectid = root->root_key.objectid;
4313 key.type = BTRFS_ROOT_REF_KEY;
4314 key.offset = (u64)-1;
4315
4316 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4317 if (ret < 0)
4318 goto out;
4319 BUG_ON(ret == 0);
4320
4321 ret = 0;
4322 if (path->slots[0] > 0) {
4323 path->slots[0]--;
4324 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4325 if (key.objectid == root->root_key.objectid &&
4326 key.type == BTRFS_ROOT_REF_KEY)
4327 ret = -ENOTEMPTY;
4328 }
4329out:
4330 btrfs_free_path(path);
4331 return ret;
4332}
4333
20a68004
NB
4334/* Delete all dentries for inodes belonging to the root */
4335static void btrfs_prune_dentries(struct btrfs_root *root)
4336{
4337 struct btrfs_fs_info *fs_info = root->fs_info;
4338 struct rb_node *node;
4339 struct rb_node *prev;
4340 struct btrfs_inode *entry;
4341 struct inode *inode;
4342 u64 objectid = 0;
4343
4344 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4345 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4346
4347 spin_lock(&root->inode_lock);
4348again:
4349 node = root->inode_tree.rb_node;
4350 prev = NULL;
4351 while (node) {
4352 prev = node;
4353 entry = rb_entry(node, struct btrfs_inode, rb_node);
4354
4355 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
4356 node = node->rb_left;
4357 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
4358 node = node->rb_right;
4359 else
4360 break;
4361 }
4362 if (!node) {
4363 while (prev) {
4364 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4365 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
4366 node = prev;
4367 break;
4368 }
4369 prev = rb_next(prev);
4370 }
4371 }
4372 while (node) {
4373 entry = rb_entry(node, struct btrfs_inode, rb_node);
4374 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
4375 inode = igrab(&entry->vfs_inode);
4376 if (inode) {
4377 spin_unlock(&root->inode_lock);
4378 if (atomic_read(&inode->i_count) > 1)
4379 d_prune_aliases(inode);
4380 /*
4381 * btrfs_drop_inode will have it removed from the inode
4382 * cache when its usage count hits zero.
4383 */
4384 iput(inode);
4385 cond_resched();
4386 spin_lock(&root->inode_lock);
4387 goto again;
4388 }
4389
4390 if (cond_resched_lock(&root->inode_lock))
4391 goto again;
4392
4393 node = rb_next(node);
4394 }
4395 spin_unlock(&root->inode_lock);
4396}
4397
f60a2364
MT
4398int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4399{
4400 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4401 struct btrfs_root *root = BTRFS_I(dir)->root;
4402 struct inode *inode = d_inode(dentry);
4403 struct btrfs_root *dest = BTRFS_I(inode)->root;
4404 struct btrfs_trans_handle *trans;
4405 struct btrfs_block_rsv block_rsv;
4406 u64 root_flags;
4407 u64 qgroup_reserved;
4408 int ret;
4409 int err;
4410
4411 /*
4412 * Don't allow to delete a subvolume with send in progress. This is
4413 * inside the inode lock so the error handling that has to drop the bit
4414 * again is not run concurrently.
4415 */
4416 spin_lock(&dest->root_item_lock);
4417 root_flags = btrfs_root_flags(&dest->root_item);
4418 if (dest->send_in_progress == 0) {
4419 btrfs_set_root_flags(&dest->root_item,
4420 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4421 spin_unlock(&dest->root_item_lock);
4422 } else {
4423 spin_unlock(&dest->root_item_lock);
4424 btrfs_warn(fs_info,
4425 "attempt to delete subvolume %llu during send",
4426 dest->root_key.objectid);
4427 return -EPERM;
4428 }
4429
4430 down_write(&fs_info->subvol_sem);
4431
4432 err = may_destroy_subvol(dest);
4433 if (err)
4434 goto out_up_write;
4435
4436 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4437 /*
4438 * One for dir inode,
4439 * two for dir entries,
4440 * two for root ref/backref.
4441 */
4442 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
4443 5, &qgroup_reserved, true);
4444 if (err)
4445 goto out_up_write;
4446
4447 trans = btrfs_start_transaction(root, 0);
4448 if (IS_ERR(trans)) {
4449 err = PTR_ERR(trans);
4450 goto out_release;
4451 }
4452 trans->block_rsv = &block_rsv;
4453 trans->bytes_reserved = block_rsv.size;
4454
4455 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4456
4457 ret = btrfs_unlink_subvol(trans, root, dir,
4458 dest->root_key.objectid,
4459 dentry->d_name.name,
4460 dentry->d_name.len);
4461 if (ret) {
4462 err = ret;
4463 btrfs_abort_transaction(trans, ret);
4464 goto out_end_trans;
4465 }
4466
4467 btrfs_record_root_in_trans(trans, dest);
4468
4469 memset(&dest->root_item.drop_progress, 0,
4470 sizeof(dest->root_item.drop_progress));
4471 dest->root_item.drop_level = 0;
4472 btrfs_set_root_refs(&dest->root_item, 0);
4473
4474 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4475 ret = btrfs_insert_orphan_item(trans,
4476 fs_info->tree_root,
4477 dest->root_key.objectid);
4478 if (ret) {
4479 btrfs_abort_transaction(trans, ret);
4480 err = ret;
4481 goto out_end_trans;
4482 }
4483 }
4484
4485 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
4486 BTRFS_UUID_KEY_SUBVOL,
4487 dest->root_key.objectid);
4488 if (ret && ret != -ENOENT) {
4489 btrfs_abort_transaction(trans, ret);
4490 err = ret;
4491 goto out_end_trans;
4492 }
4493 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4494 ret = btrfs_uuid_tree_rem(trans, fs_info,
4495 dest->root_item.received_uuid,
4496 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4497 dest->root_key.objectid);
4498 if (ret && ret != -ENOENT) {
4499 btrfs_abort_transaction(trans, ret);
4500 err = ret;
4501 goto out_end_trans;
4502 }
4503 }
4504
4505out_end_trans:
4506 trans->block_rsv = NULL;
4507 trans->bytes_reserved = 0;
4508 ret = btrfs_end_transaction(trans);
4509 if (ret && !err)
4510 err = ret;
4511 inode->i_flags |= S_DEAD;
4512out_release:
4513 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4514out_up_write:
4515 up_write(&fs_info->subvol_sem);
4516 if (err) {
4517 spin_lock(&dest->root_item_lock);
4518 root_flags = btrfs_root_flags(&dest->root_item);
4519 btrfs_set_root_flags(&dest->root_item,
4520 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4521 spin_unlock(&dest->root_item_lock);
4522 } else {
4523 d_invalidate(dentry);
20a68004 4524 btrfs_prune_dentries(dest);
f60a2364
MT
4525 ASSERT(dest->send_in_progress == 0);
4526
4527 /* the last ref */
4528 if (dest->ino_cache_inode) {
4529 iput(dest->ino_cache_inode);
4530 dest->ino_cache_inode = NULL;
4531 }
4532 }
4533
4534 return err;
4535}
4536
39279cc3
CM
4537static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4538{
2b0143b5 4539 struct inode *inode = d_inode(dentry);
1832a6d5 4540 int err = 0;
39279cc3 4541 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4542 struct btrfs_trans_handle *trans;
44f714da 4543 u64 last_unlink_trans;
39279cc3 4544
b3ae244e 4545 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4546 return -ENOTEMPTY;
4a0cc7ca 4547 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
a79a464d 4548 return btrfs_delete_subvolume(dir, dentry);
134d4512 4549
d52be818 4550 trans = __unlink_start_trans(dir);
a22285a6 4551 if (IS_ERR(trans))
5df6a9f6 4552 return PTR_ERR(trans);
5df6a9f6 4553
4a0cc7ca 4554 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4555 err = btrfs_unlink_subvol(trans, root, dir,
4556 BTRFS_I(inode)->location.objectid,
4557 dentry->d_name.name,
4558 dentry->d_name.len);
4559 goto out;
4560 }
4561
73f2e545 4562 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4563 if (err)
4df27c4d 4564 goto out;
7b128766 4565
44f714da
FM
4566 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4567
39279cc3 4568 /* now the directory is empty */
4ec5934e
NB
4569 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4570 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4571 dentry->d_name.len);
44f714da 4572 if (!err) {
6ef06d27 4573 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4574 /*
4575 * Propagate the last_unlink_trans value of the deleted dir to
4576 * its parent directory. This is to prevent an unrecoverable
4577 * log tree in the case we do something like this:
4578 * 1) create dir foo
4579 * 2) create snapshot under dir foo
4580 * 3) delete the snapshot
4581 * 4) rmdir foo
4582 * 5) mkdir foo
4583 * 6) fsync foo or some file inside foo
4584 */
4585 if (last_unlink_trans >= trans->transid)
4586 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4587 }
4df27c4d 4588out:
3a45bb20 4589 btrfs_end_transaction(trans);
2ff7e61e 4590 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4591
39279cc3
CM
4592 return err;
4593}
4594
28f75a0e
CM
4595static int truncate_space_check(struct btrfs_trans_handle *trans,
4596 struct btrfs_root *root,
4597 u64 bytes_deleted)
4598{
0b246afa 4599 struct btrfs_fs_info *fs_info = root->fs_info;
28f75a0e
CM
4600 int ret;
4601
dc95f7bf
JB
4602 /*
4603 * This is only used to apply pressure to the enospc system, we don't
4604 * intend to use this reservation at all.
4605 */
2ff7e61e 4606 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
0b246afa
JM
4607 bytes_deleted *= fs_info->nodesize;
4608 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
28f75a0e 4609 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf 4610 if (!ret) {
0b246afa 4611 trace_btrfs_space_reservation(fs_info, "transaction",
dc95f7bf
JB
4612 trans->transid,
4613 bytes_deleted, 1);
28f75a0e 4614 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4615 }
28f75a0e
CM
4616 return ret;
4617
4618}
4619
ddfae63c
JB
4620/*
4621 * Return this if we need to call truncate_block for the last bit of the
4622 * truncate.
4623 */
4624#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4625
39279cc3
CM
4626/*
4627 * this can truncate away extent items, csum items and directory items.
4628 * It starts at a high offset and removes keys until it can't find
d352ac68 4629 * any higher than new_size
39279cc3
CM
4630 *
4631 * csum items that cross the new i_size are truncated to the new size
4632 * as well.
7b128766
JB
4633 *
4634 * min_type is the minimum key type to truncate down to. If set to 0, this
4635 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4636 */
8082510e
YZ
4637int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4638 struct btrfs_root *root,
4639 struct inode *inode,
4640 u64 new_size, u32 min_type)
39279cc3 4641{
0b246afa 4642 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4643 struct btrfs_path *path;
5f39d397 4644 struct extent_buffer *leaf;
39279cc3 4645 struct btrfs_file_extent_item *fi;
8082510e
YZ
4646 struct btrfs_key key;
4647 struct btrfs_key found_key;
39279cc3 4648 u64 extent_start = 0;
db94535d 4649 u64 extent_num_bytes = 0;
5d4f98a2 4650 u64 extent_offset = 0;
39279cc3 4651 u64 item_end = 0;
c1aa4575 4652 u64 last_size = new_size;
8082510e 4653 u32 found_type = (u8)-1;
39279cc3
CM
4654 int found_extent;
4655 int del_item;
85e21bac
CM
4656 int pending_del_nr = 0;
4657 int pending_del_slot = 0;
179e29e4 4658 int extent_type = -1;
8082510e 4659 int ret;
4a0cc7ca 4660 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4661 u64 bytes_deleted = 0;
897ca819
TM
4662 bool be_nice = false;
4663 bool should_throttle = false;
4664 bool should_end = false;
8082510e
YZ
4665
4666 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4667
28ed1345
CM
4668 /*
4669 * for non-free space inodes and ref cows, we want to back off from
4670 * time to time
4671 */
70ddc553 4672 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345 4673 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
897ca819 4674 be_nice = true;
28ed1345 4675
0eb0e19c
MF
4676 path = btrfs_alloc_path();
4677 if (!path)
4678 return -ENOMEM;
e4058b54 4679 path->reada = READA_BACK;
0eb0e19c 4680
5dc562c5
JB
4681 /*
4682 * We want to drop from the next block forward in case this new size is
4683 * not block aligned since we will be keeping the last block of the
4684 * extent just the way it is.
4685 */
27cdeb70 4686 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4687 root == fs_info->tree_root)
dcdbc059 4688 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4689 fs_info->sectorsize),
da17066c 4690 (u64)-1, 0);
8082510e 4691
16cdcec7
MX
4692 /*
4693 * This function is also used to drop the items in the log tree before
4694 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4695 * it is used to drop the loged items. So we shouldn't kill the delayed
4696 * items.
4697 */
4698 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4699 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4700
33345d01 4701 key.objectid = ino;
39279cc3 4702 key.offset = (u64)-1;
5f39d397
CM
4703 key.type = (u8)-1;
4704
85e21bac 4705search_again:
28ed1345
CM
4706 /*
4707 * with a 16K leaf size and 128MB extents, you can actually queue
4708 * up a huge file in a single leaf. Most of the time that
4709 * bytes_deleted is > 0, it will be huge by the time we get here
4710 */
fd86a3a3
OS
4711 if (be_nice && bytes_deleted > SZ_32M &&
4712 btrfs_should_end_transaction(trans)) {
4713 ret = -EAGAIN;
4714 goto out;
28ed1345
CM
4715 }
4716
b9473439 4717 path->leave_spinning = 1;
85e21bac 4718 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
fd86a3a3 4719 if (ret < 0)
8082510e 4720 goto out;
d397712b 4721
85e21bac 4722 if (ret > 0) {
fd86a3a3 4723 ret = 0;
e02119d5
CM
4724 /* there are no items in the tree for us to truncate, we're
4725 * done
4726 */
8082510e
YZ
4727 if (path->slots[0] == 0)
4728 goto out;
85e21bac
CM
4729 path->slots[0]--;
4730 }
4731
d397712b 4732 while (1) {
39279cc3 4733 fi = NULL;
5f39d397
CM
4734 leaf = path->nodes[0];
4735 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4736 found_type = found_key.type;
39279cc3 4737
33345d01 4738 if (found_key.objectid != ino)
39279cc3 4739 break;
5f39d397 4740
85e21bac 4741 if (found_type < min_type)
39279cc3
CM
4742 break;
4743
5f39d397 4744 item_end = found_key.offset;
39279cc3 4745 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4746 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4747 struct btrfs_file_extent_item);
179e29e4
CM
4748 extent_type = btrfs_file_extent_type(leaf, fi);
4749 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4750 item_end +=
db94535d 4751 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4752
4753 trace_btrfs_truncate_show_fi_regular(
4754 BTRFS_I(inode), leaf, fi,
4755 found_key.offset);
179e29e4 4756 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4757 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4758 path->slots[0], fi);
09ed2f16
LB
4759
4760 trace_btrfs_truncate_show_fi_inline(
4761 BTRFS_I(inode), leaf, fi, path->slots[0],
4762 found_key.offset);
39279cc3 4763 }
008630c1 4764 item_end--;
39279cc3 4765 }
8082510e
YZ
4766 if (found_type > min_type) {
4767 del_item = 1;
4768 } else {
76b42abb 4769 if (item_end < new_size)
b888db2b 4770 break;
8082510e
YZ
4771 if (found_key.offset >= new_size)
4772 del_item = 1;
4773 else
4774 del_item = 0;
39279cc3 4775 }
39279cc3 4776 found_extent = 0;
39279cc3 4777 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4778 if (found_type != BTRFS_EXTENT_DATA_KEY)
4779 goto delete;
4780
4781 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4782 u64 num_dec;
db94535d 4783 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4784 if (!del_item) {
db94535d
CM
4785 u64 orig_num_bytes =
4786 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4787 extent_num_bytes = ALIGN(new_size -
4788 found_key.offset,
0b246afa 4789 fs_info->sectorsize);
db94535d
CM
4790 btrfs_set_file_extent_num_bytes(leaf, fi,
4791 extent_num_bytes);
4792 num_dec = (orig_num_bytes -
9069218d 4793 extent_num_bytes);
27cdeb70
MX
4794 if (test_bit(BTRFS_ROOT_REF_COWS,
4795 &root->state) &&
4796 extent_start != 0)
a76a3cd4 4797 inode_sub_bytes(inode, num_dec);
5f39d397 4798 btrfs_mark_buffer_dirty(leaf);
39279cc3 4799 } else {
db94535d
CM
4800 extent_num_bytes =
4801 btrfs_file_extent_disk_num_bytes(leaf,
4802 fi);
5d4f98a2
YZ
4803 extent_offset = found_key.offset -
4804 btrfs_file_extent_offset(leaf, fi);
4805
39279cc3 4806 /* FIXME blocksize != 4096 */
9069218d 4807 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4808 if (extent_start != 0) {
4809 found_extent = 1;
27cdeb70
MX
4810 if (test_bit(BTRFS_ROOT_REF_COWS,
4811 &root->state))
a76a3cd4 4812 inode_sub_bytes(inode, num_dec);
e02119d5 4813 }
39279cc3 4814 }
9069218d 4815 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4816 /*
4817 * we can't truncate inline items that have had
4818 * special encodings
4819 */
4820 if (!del_item &&
c8b97818 4821 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4822 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4823 btrfs_file_extent_compression(leaf, fi) == 0) {
4824 u32 size = (u32)(new_size - found_key.offset);
4825
4826 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4827 size = btrfs_file_extent_calc_inline_size(size);
4828 btrfs_truncate_item(root->fs_info, path, size, 1);
4829 } else if (!del_item) {
514ac8ad 4830 /*
ddfae63c
JB
4831 * We have to bail so the last_size is set to
4832 * just before this extent.
514ac8ad 4833 */
fd86a3a3 4834 ret = NEED_TRUNCATE_BLOCK;
ddfae63c
JB
4835 break;
4836 }
0305cd5f 4837
ddfae63c 4838 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0305cd5f 4839 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4840 }
179e29e4 4841delete:
ddfae63c
JB
4842 if (del_item)
4843 last_size = found_key.offset;
4844 else
4845 last_size = new_size;
39279cc3 4846 if (del_item) {
85e21bac
CM
4847 if (!pending_del_nr) {
4848 /* no pending yet, add ourselves */
4849 pending_del_slot = path->slots[0];
4850 pending_del_nr = 1;
4851 } else if (pending_del_nr &&
4852 path->slots[0] + 1 == pending_del_slot) {
4853 /* hop on the pending chunk */
4854 pending_del_nr++;
4855 pending_del_slot = path->slots[0];
4856 } else {
d397712b 4857 BUG();
85e21bac 4858 }
39279cc3
CM
4859 } else {
4860 break;
4861 }
897ca819 4862 should_throttle = false;
28f75a0e 4863
27cdeb70
MX
4864 if (found_extent &&
4865 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4866 root == fs_info->tree_root)) {
b9473439 4867 btrfs_set_path_blocking(path);
28ed1345 4868 bytes_deleted += extent_num_bytes;
84f7d8e6 4869 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4870 extent_num_bytes, 0,
4871 btrfs_header_owner(leaf),
b06c4bf5 4872 ino, extent_offset);
05522109
OS
4873 if (ret) {
4874 btrfs_abort_transaction(trans, ret);
4875 break;
4876 }
2ff7e61e
JM
4877 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4878 btrfs_async_run_delayed_refs(fs_info,
dd4b857a
WX
4879 trans->delayed_ref_updates * 2,
4880 trans->transid, 0);
28f75a0e
CM
4881 if (be_nice) {
4882 if (truncate_space_check(trans, root,
4883 extent_num_bytes)) {
897ca819 4884 should_end = true;
28f75a0e
CM
4885 }
4886 if (btrfs_should_throttle_delayed_refs(trans,
2ff7e61e 4887 fs_info))
897ca819 4888 should_throttle = true;
28f75a0e 4889 }
39279cc3 4890 }
85e21bac 4891
8082510e
YZ
4892 if (found_type == BTRFS_INODE_ITEM_KEY)
4893 break;
4894
4895 if (path->slots[0] == 0 ||
1262133b 4896 path->slots[0] != pending_del_slot ||
28f75a0e 4897 should_throttle || should_end) {
8082510e
YZ
4898 if (pending_del_nr) {
4899 ret = btrfs_del_items(trans, root, path,
4900 pending_del_slot,
4901 pending_del_nr);
79787eaa 4902 if (ret) {
66642832 4903 btrfs_abort_transaction(trans, ret);
fd86a3a3 4904 break;
79787eaa 4905 }
8082510e
YZ
4906 pending_del_nr = 0;
4907 }
b3b4aa74 4908 btrfs_release_path(path);
28f75a0e 4909 if (should_throttle) {
1262133b
JB
4910 unsigned long updates = trans->delayed_ref_updates;
4911 if (updates) {
4912 trans->delayed_ref_updates = 0;
2ff7e61e 4913 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 4914 updates * 2);
fd86a3a3
OS
4915 if (ret)
4916 break;
1262133b
JB
4917 }
4918 }
28f75a0e
CM
4919 /*
4920 * if we failed to refill our space rsv, bail out
4921 * and let the transaction restart
4922 */
4923 if (should_end) {
fd86a3a3
OS
4924 ret = -EAGAIN;
4925 break;
28f75a0e 4926 }
85e21bac 4927 goto search_again;
8082510e
YZ
4928 } else {
4929 path->slots[0]--;
85e21bac 4930 }
39279cc3 4931 }
8082510e 4932out:
fd86a3a3
OS
4933 if (ret >= 0 && pending_del_nr) {
4934 int err;
4935
4936 err = btrfs_del_items(trans, root, path, pending_del_slot,
85e21bac 4937 pending_del_nr);
fd86a3a3
OS
4938 if (err) {
4939 btrfs_abort_transaction(trans, err);
4940 ret = err;
4941 }
85e21bac 4942 }
76b42abb
FM
4943 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4944 ASSERT(last_size >= new_size);
fd86a3a3 4945 if (!ret && last_size > new_size)
76b42abb 4946 last_size = new_size;
7f4f6e0a 4947 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4948 }
28ed1345 4949
39279cc3 4950 btrfs_free_path(path);
28ed1345 4951
fd86a3a3 4952 if (be_nice && bytes_deleted > SZ_32M && (ret >= 0 || ret == -EAGAIN)) {
28ed1345 4953 unsigned long updates = trans->delayed_ref_updates;
fd86a3a3
OS
4954 int err;
4955
28ed1345
CM
4956 if (updates) {
4957 trans->delayed_ref_updates = 0;
fd86a3a3
OS
4958 err = btrfs_run_delayed_refs(trans, updates * 2);
4959 if (err)
4960 ret = err;
28ed1345
CM
4961 }
4962 }
fd86a3a3 4963 return ret;
39279cc3
CM
4964}
4965
4966/*
9703fefe 4967 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4968 * @inode - inode that we're zeroing
4969 * @from - the offset to start zeroing
4970 * @len - the length to zero, 0 to zero the entire range respective to the
4971 * offset
4972 * @front - zero up to the offset instead of from the offset on
4973 *
9703fefe 4974 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4975 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4976 */
9703fefe 4977int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4978 int front)
39279cc3 4979{
0b246afa 4980 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4981 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4982 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4983 struct btrfs_ordered_extent *ordered;
2ac55d41 4984 struct extent_state *cached_state = NULL;
364ecf36 4985 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4986 char *kaddr;
0b246afa 4987 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4988 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4989 unsigned offset = from & (blocksize - 1);
39279cc3 4990 struct page *page;
3b16a4e3 4991 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4992 int ret = 0;
9703fefe
CR
4993 u64 block_start;
4994 u64 block_end;
39279cc3 4995
b03ebd99
NB
4996 if (IS_ALIGNED(offset, blocksize) &&
4997 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4998 goto out;
9703fefe 4999
8b62f87b
JB
5000 block_start = round_down(from, blocksize);
5001 block_end = block_start + blocksize - 1;
5002
364ecf36 5003 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8b62f87b 5004 block_start, blocksize);
5d5e103a
JB
5005 if (ret)
5006 goto out;
39279cc3 5007
211c17f5 5008again:
3b16a4e3 5009 page = find_or_create_page(mapping, index, mask);
5d5e103a 5010 if (!page) {
bc42bda2 5011 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
5012 block_start, blocksize, true);
5013 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
ac6a2b36 5014 ret = -ENOMEM;
39279cc3 5015 goto out;
5d5e103a 5016 }
e6dcd2dc 5017
39279cc3 5018 if (!PageUptodate(page)) {
9ebefb18 5019 ret = btrfs_readpage(NULL, page);
39279cc3 5020 lock_page(page);
211c17f5
CM
5021 if (page->mapping != mapping) {
5022 unlock_page(page);
09cbfeaf 5023 put_page(page);
211c17f5
CM
5024 goto again;
5025 }
39279cc3
CM
5026 if (!PageUptodate(page)) {
5027 ret = -EIO;
89642229 5028 goto out_unlock;
39279cc3
CM
5029 }
5030 }
211c17f5 5031 wait_on_page_writeback(page);
e6dcd2dc 5032
9703fefe 5033 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
5034 set_page_extent_mapped(page);
5035
9703fefe 5036 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 5037 if (ordered) {
9703fefe 5038 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 5039 &cached_state);
e6dcd2dc 5040 unlock_page(page);
09cbfeaf 5041 put_page(page);
eb84ae03 5042 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
5043 btrfs_put_ordered_extent(ordered);
5044 goto again;
5045 }
5046
9703fefe 5047 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
5048 EXTENT_DIRTY | EXTENT_DELALLOC |
5049 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 5050 0, 0, &cached_state);
5d5e103a 5051
e3b8a485 5052 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
ba8b04c1 5053 &cached_state, 0);
9ed74f2d 5054 if (ret) {
9703fefe 5055 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 5056 &cached_state);
9ed74f2d
JB
5057 goto out_unlock;
5058 }
5059
9703fefe 5060 if (offset != blocksize) {
2aaa6655 5061 if (!len)
9703fefe 5062 len = blocksize - offset;
e6dcd2dc 5063 kaddr = kmap(page);
2aaa6655 5064 if (front)
9703fefe
CR
5065 memset(kaddr + (block_start - page_offset(page)),
5066 0, offset);
2aaa6655 5067 else
9703fefe
CR
5068 memset(kaddr + (block_start - page_offset(page)) + offset,
5069 0, len);
e6dcd2dc
CM
5070 flush_dcache_page(page);
5071 kunmap(page);
5072 }
247e743c 5073 ClearPageChecked(page);
e6dcd2dc 5074 set_page_dirty(page);
e43bbe5e 5075 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
39279cc3 5076
89642229 5077out_unlock:
5d5e103a 5078 if (ret)
bc42bda2 5079 btrfs_delalloc_release_space(inode, data_reserved, block_start,
43b18595
QW
5080 blocksize, true);
5081 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
39279cc3 5082 unlock_page(page);
09cbfeaf 5083 put_page(page);
39279cc3 5084out:
364ecf36 5085 extent_changeset_free(data_reserved);
39279cc3
CM
5086 return ret;
5087}
5088
16e7549f
JB
5089static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
5090 u64 offset, u64 len)
5091{
0b246afa 5092 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
5093 struct btrfs_trans_handle *trans;
5094 int ret;
5095
5096 /*
5097 * Still need to make sure the inode looks like it's been updated so
5098 * that any holes get logged if we fsync.
5099 */
0b246afa
JM
5100 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
5101 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
5102 BTRFS_I(inode)->last_sub_trans = root->log_transid;
5103 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
5104 return 0;
5105 }
5106
5107 /*
5108 * 1 - for the one we're dropping
5109 * 1 - for the one we're adding
5110 * 1 - for updating the inode.
5111 */
5112 trans = btrfs_start_transaction(root, 3);
5113 if (IS_ERR(trans))
5114 return PTR_ERR(trans);
5115
5116 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
5117 if (ret) {
66642832 5118 btrfs_abort_transaction(trans, ret);
3a45bb20 5119 btrfs_end_transaction(trans);
16e7549f
JB
5120 return ret;
5121 }
5122
f85b7379
DS
5123 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
5124 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 5125 if (ret)
66642832 5126 btrfs_abort_transaction(trans, ret);
16e7549f
JB
5127 else
5128 btrfs_update_inode(trans, root, inode);
3a45bb20 5129 btrfs_end_transaction(trans);
16e7549f
JB
5130 return ret;
5131}
5132
695a0d0d
JB
5133/*
5134 * This function puts in dummy file extents for the area we're creating a hole
5135 * for. So if we are truncating this file to a larger size we need to insert
5136 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5137 * the range between oldsize and size
5138 */
a41ad394 5139int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 5140{
0b246afa 5141 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
5142 struct btrfs_root *root = BTRFS_I(inode)->root;
5143 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 5144 struct extent_map *em = NULL;
2ac55d41 5145 struct extent_state *cached_state = NULL;
5dc562c5 5146 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
5147 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5148 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
5149 u64 last_byte;
5150 u64 cur_offset;
5151 u64 hole_size;
9ed74f2d 5152 int err = 0;
39279cc3 5153
a71754fc 5154 /*
9703fefe
CR
5155 * If our size started in the middle of a block we need to zero out the
5156 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
5157 * expose stale data.
5158 */
9703fefe 5159 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
5160 if (err)
5161 return err;
5162
9036c102
YZ
5163 if (size <= hole_start)
5164 return 0;
5165
9036c102
YZ
5166 while (1) {
5167 struct btrfs_ordered_extent *ordered;
fa7c1494 5168
ff13db41 5169 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 5170 &cached_state);
a776c6fa 5171 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
fa7c1494 5172 block_end - hole_start);
9036c102
YZ
5173 if (!ordered)
5174 break;
2ac55d41 5175 unlock_extent_cached(io_tree, hole_start, block_end - 1,
e43bbe5e 5176 &cached_state);
fa7c1494 5177 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
5178 btrfs_put_ordered_extent(ordered);
5179 }
39279cc3 5180
9036c102
YZ
5181 cur_offset = hole_start;
5182 while (1) {
fc4f21b1 5183 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 5184 block_end - cur_offset, 0);
79787eaa
JM
5185 if (IS_ERR(em)) {
5186 err = PTR_ERR(em);
f2767956 5187 em = NULL;
79787eaa
JM
5188 break;
5189 }
9036c102 5190 last_byte = min(extent_map_end(em), block_end);
0b246afa 5191 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 5192 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 5193 struct extent_map *hole_em;
9036c102 5194 hole_size = last_byte - cur_offset;
9ed74f2d 5195
16e7549f
JB
5196 err = maybe_insert_hole(root, inode, cur_offset,
5197 hole_size);
5198 if (err)
3893e33b 5199 break;
dcdbc059 5200 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
5201 cur_offset + hole_size - 1, 0);
5202 hole_em = alloc_extent_map();
5203 if (!hole_em) {
5204 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5205 &BTRFS_I(inode)->runtime_flags);
5206 goto next;
5207 }
5208 hole_em->start = cur_offset;
5209 hole_em->len = hole_size;
5210 hole_em->orig_start = cur_offset;
8082510e 5211
5dc562c5
JB
5212 hole_em->block_start = EXTENT_MAP_HOLE;
5213 hole_em->block_len = 0;
b4939680 5214 hole_em->orig_block_len = 0;
cc95bef6 5215 hole_em->ram_bytes = hole_size;
0b246afa 5216 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 5217 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 5218 hole_em->generation = fs_info->generation;
8082510e 5219
5dc562c5
JB
5220 while (1) {
5221 write_lock(&em_tree->lock);
09a2a8f9 5222 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
5223 write_unlock(&em_tree->lock);
5224 if (err != -EEXIST)
5225 break;
dcdbc059
NB
5226 btrfs_drop_extent_cache(BTRFS_I(inode),
5227 cur_offset,
5dc562c5
JB
5228 cur_offset +
5229 hole_size - 1, 0);
5230 }
5231 free_extent_map(hole_em);
9036c102 5232 }
16e7549f 5233next:
9036c102 5234 free_extent_map(em);
a22285a6 5235 em = NULL;
9036c102 5236 cur_offset = last_byte;
8082510e 5237 if (cur_offset >= block_end)
9036c102
YZ
5238 break;
5239 }
a22285a6 5240 free_extent_map(em);
e43bbe5e 5241 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
5242 return err;
5243}
39279cc3 5244
3972f260 5245static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 5246{
f4a2f4c5
MX
5247 struct btrfs_root *root = BTRFS_I(inode)->root;
5248 struct btrfs_trans_handle *trans;
a41ad394 5249 loff_t oldsize = i_size_read(inode);
3972f260
ES
5250 loff_t newsize = attr->ia_size;
5251 int mask = attr->ia_valid;
8082510e
YZ
5252 int ret;
5253
3972f260
ES
5254 /*
5255 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5256 * special case where we need to update the times despite not having
5257 * these flags set. For all other operations the VFS set these flags
5258 * explicitly if it wants a timestamp update.
5259 */
dff6efc3
CH
5260 if (newsize != oldsize) {
5261 inode_inc_iversion(inode);
5262 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5263 inode->i_ctime = inode->i_mtime =
c2050a45 5264 current_time(inode);
dff6efc3 5265 }
3972f260 5266
a41ad394 5267 if (newsize > oldsize) {
9ea24bbe 5268 /*
ea14b57f 5269 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
5270 * This is to ensure the snapshot captures a fully consistent
5271 * state of this file - if the snapshot captures this expanding
5272 * truncation, it must capture all writes that happened before
5273 * this truncation.
5274 */
0bc19f90 5275 btrfs_wait_for_snapshot_creation(root);
a41ad394 5276 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 5277 if (ret) {
ea14b57f 5278 btrfs_end_write_no_snapshotting(root);
8082510e 5279 return ret;
9ea24bbe 5280 }
8082510e 5281
f4a2f4c5 5282 trans = btrfs_start_transaction(root, 1);
9ea24bbe 5283 if (IS_ERR(trans)) {
ea14b57f 5284 btrfs_end_write_no_snapshotting(root);
f4a2f4c5 5285 return PTR_ERR(trans);
9ea24bbe 5286 }
f4a2f4c5
MX
5287
5288 i_size_write(inode, newsize);
5289 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5290 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5291 ret = btrfs_update_inode(trans, root, inode);
ea14b57f 5292 btrfs_end_write_no_snapshotting(root);
3a45bb20 5293 btrfs_end_transaction(trans);
a41ad394 5294 } else {
8082510e 5295
a41ad394
JB
5296 /*
5297 * We're truncating a file that used to have good data down to
5298 * zero. Make sure it gets into the ordered flush list so that
5299 * any new writes get down to disk quickly.
5300 */
5301 if (newsize == 0)
72ac3c0d
JB
5302 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5303 &BTRFS_I(inode)->runtime_flags);
8082510e 5304
a41ad394 5305 truncate_setsize(inode, newsize);
2e60a51e
MX
5306
5307 /* Disable nonlocked read DIO to avoid the end less truncate */
abcefb1e 5308 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 5309 inode_dio_wait(inode);
0b581701 5310 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 5311
213e8c55 5312 ret = btrfs_truncate(inode, newsize == oldsize);
7f4f6e0a
JB
5313 if (ret && inode->i_nlink) {
5314 int err;
5315
5316 /*
f7e9e8fc
OS
5317 * Truncate failed, so fix up the in-memory size. We
5318 * adjusted disk_i_size down as we removed extents, so
5319 * wait for disk_i_size to be stable and then update the
5320 * in-memory size to match.
7f4f6e0a 5321 */
f7e9e8fc 5322 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
7f4f6e0a 5323 if (err)
f7e9e8fc
OS
5324 return err;
5325 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
7f4f6e0a 5326 }
8082510e
YZ
5327 }
5328
a41ad394 5329 return ret;
8082510e
YZ
5330}
5331
9036c102
YZ
5332static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5333{
2b0143b5 5334 struct inode *inode = d_inode(dentry);
b83cc969 5335 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5336 int err;
39279cc3 5337
b83cc969
LZ
5338 if (btrfs_root_readonly(root))
5339 return -EROFS;
5340
31051c85 5341 err = setattr_prepare(dentry, attr);
9036c102
YZ
5342 if (err)
5343 return err;
2bf5a725 5344
5a3f23d5 5345 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5346 err = btrfs_setsize(inode, attr);
8082510e
YZ
5347 if (err)
5348 return err;
39279cc3 5349 }
9036c102 5350
1025774c
CH
5351 if (attr->ia_valid) {
5352 setattr_copy(inode, attr);
0c4d2d95 5353 inode_inc_iversion(inode);
22c44fe6 5354 err = btrfs_dirty_inode(inode);
1025774c 5355
22c44fe6 5356 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5357 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5358 }
33268eaf 5359
39279cc3
CM
5360 return err;
5361}
61295eb8 5362
131e404a
FDBM
5363/*
5364 * While truncating the inode pages during eviction, we get the VFS calling
5365 * btrfs_invalidatepage() against each page of the inode. This is slow because
5366 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5367 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5368 * extent_state structures over and over, wasting lots of time.
5369 *
5370 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5371 * those expensive operations on a per page basis and do only the ordered io
5372 * finishing, while we release here the extent_map and extent_state structures,
5373 * without the excessive merging and splitting.
5374 */
5375static void evict_inode_truncate_pages(struct inode *inode)
5376{
5377 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5378 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5379 struct rb_node *node;
5380
5381 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5382 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5383
5384 write_lock(&map_tree->lock);
5385 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5386 struct extent_map *em;
5387
5388 node = rb_first(&map_tree->map);
5389 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5390 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5391 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5392 remove_extent_mapping(map_tree, em);
5393 free_extent_map(em);
7064dd5c
FM
5394 if (need_resched()) {
5395 write_unlock(&map_tree->lock);
5396 cond_resched();
5397 write_lock(&map_tree->lock);
5398 }
131e404a
FDBM
5399 }
5400 write_unlock(&map_tree->lock);
5401
6ca07097
FM
5402 /*
5403 * Keep looping until we have no more ranges in the io tree.
5404 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5405 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5406 * still in progress (unlocked the pages in the bio but did not yet
5407 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5408 * ranges can still be locked and eviction started because before
5409 * submitting those bios, which are executed by a separate task (work
5410 * queue kthread), inode references (inode->i_count) were not taken
5411 * (which would be dropped in the end io callback of each bio).
5412 * Therefore here we effectively end up waiting for those bios and
5413 * anyone else holding locked ranges without having bumped the inode's
5414 * reference count - if we don't do it, when they access the inode's
5415 * io_tree to unlock a range it may be too late, leading to an
5416 * use-after-free issue.
5417 */
131e404a
FDBM
5418 spin_lock(&io_tree->lock);
5419 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5420 struct extent_state *state;
5421 struct extent_state *cached_state = NULL;
6ca07097
FM
5422 u64 start;
5423 u64 end;
131e404a
FDBM
5424
5425 node = rb_first(&io_tree->state);
5426 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5427 start = state->start;
5428 end = state->end;
131e404a
FDBM
5429 spin_unlock(&io_tree->lock);
5430
ff13db41 5431 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5432
5433 /*
5434 * If still has DELALLOC flag, the extent didn't reach disk,
5435 * and its reserved space won't be freed by delayed_ref.
5436 * So we need to free its reserved space here.
5437 * (Refer to comment in btrfs_invalidatepage, case 2)
5438 *
5439 * Note, end is the bytenr of last byte, so we need + 1 here.
5440 */
5441 if (state->state & EXTENT_DELALLOC)
bc42bda2 5442 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
b9d0b389 5443
6ca07097 5444 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5445 EXTENT_LOCKED | EXTENT_DIRTY |
5446 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
ae0f1625 5447 EXTENT_DEFRAG, 1, 1, &cached_state);
131e404a 5448
7064dd5c 5449 cond_resched();
131e404a
FDBM
5450 spin_lock(&io_tree->lock);
5451 }
5452 spin_unlock(&io_tree->lock);
5453}
5454
4b9d7b59
OS
5455static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5456 struct btrfs_block_rsv *rsv,
5457 u64 min_size)
5458{
5459 struct btrfs_fs_info *fs_info = root->fs_info;
5460 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5461 int failures = 0;
5462
5463 for (;;) {
5464 struct btrfs_trans_handle *trans;
5465 int ret;
5466
5467 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5468 BTRFS_RESERVE_FLUSH_LIMIT);
5469
5470 if (ret && ++failures > 2) {
5471 btrfs_warn(fs_info,
5472 "could not allocate space for a delete; will truncate on mount");
5473 return ERR_PTR(-ENOSPC);
5474 }
5475
5476 trans = btrfs_join_transaction(root);
5477 if (IS_ERR(trans) || !ret)
5478 return trans;
5479
5480 /*
5481 * Try to steal from the global reserve if there is space for
5482 * it.
5483 */
5484 if (!btrfs_check_space_for_delayed_refs(trans, fs_info) &&
5485 !btrfs_block_rsv_migrate(global_rsv, rsv, min_size, 0))
5486 return trans;
5487
5488 /* If not, commit and try again. */
5489 ret = btrfs_commit_transaction(trans);
5490 if (ret)
5491 return ERR_PTR(ret);
5492 }
5493}
5494
bd555975 5495void btrfs_evict_inode(struct inode *inode)
39279cc3 5496{
0b246afa 5497 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5498 struct btrfs_trans_handle *trans;
5499 struct btrfs_root *root = BTRFS_I(inode)->root;
4b9d7b59 5500 struct btrfs_block_rsv *rsv;
3d48d981 5501 u64 min_size;
39279cc3
CM
5502 int ret;
5503
1abe9b8a 5504 trace_btrfs_inode_evict(inode);
5505
3d48d981 5506 if (!root) {
e8f1bc14 5507 clear_inode(inode);
3d48d981
NB
5508 return;
5509 }
5510
0b246afa 5511 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
3d48d981 5512
131e404a
FDBM
5513 evict_inode_truncate_pages(inode);
5514
69e9c6c6
SB
5515 if (inode->i_nlink &&
5516 ((btrfs_root_refs(&root->root_item) != 0 &&
5517 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5518 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5519 goto no_delete;
5520
39279cc3 5521 if (is_bad_inode(inode)) {
3d6ae7bb 5522 btrfs_orphan_del(NULL, BTRFS_I(inode));
39279cc3
CM
5523 goto no_delete;
5524 }
bd555975 5525 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5526 if (!special_file(inode->i_mode))
5527 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5528
7ab7956e 5529 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5530
7b40b695 5531 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
c71bf099 5532 goto no_delete;
c71bf099 5533
76dda93c 5534 if (inode->i_nlink > 0) {
69e9c6c6
SB
5535 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5536 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5537 goto no_delete;
5538 }
5539
aa79021f 5540 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
0e8c36a9 5541 if (ret) {
3d6ae7bb 5542 btrfs_orphan_del(NULL, BTRFS_I(inode));
0e8c36a9
MX
5543 goto no_delete;
5544 }
5545
2ff7e61e 5546 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
4289a667 5547 if (!rsv) {
3d6ae7bb 5548 btrfs_orphan_del(NULL, BTRFS_I(inode));
4289a667
JB
5549 goto no_delete;
5550 }
4a338542 5551 rsv->size = min_size;
ca7e70f5 5552 rsv->failfast = 1;
4289a667 5553
6ef06d27 5554 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5555
8082510e 5556 while (1) {
4b9d7b59 5557 trans = evict_refill_and_join(root, rsv, min_size);
4289a667 5558 if (IS_ERR(trans)) {
3d6ae7bb 5559 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5560 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5561 goto no_delete;
d68fc57b 5562 }
7b128766 5563
4289a667
JB
5564 trans->block_rsv = rsv;
5565
d68fc57b 5566 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
c08db7d8
OS
5567 if (ret) {
5568 trans->block_rsv = &fs_info->trans_block_rsv;
5569 btrfs_end_transaction(trans);
5570 btrfs_btree_balance_dirty(fs_info);
5571 if (ret != -ENOSPC && ret != -EAGAIN) {
5572 btrfs_orphan_del(NULL, BTRFS_I(inode));
5573 btrfs_free_block_rsv(fs_info, rsv);
5574 goto no_delete;
5575 }
5576 } else {
8082510e 5577 break;
c08db7d8 5578 }
8082510e 5579 }
5f39d397 5580
2ff7e61e 5581 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5582
4ef31a45
JB
5583 /*
5584 * Errors here aren't a big deal, it just means we leave orphan items
5585 * in the tree. They will be cleaned up on the next mount.
5586 */
c08db7d8
OS
5587 trans->block_rsv = root->orphan_block_rsv;
5588 btrfs_orphan_del(trans, BTRFS_I(inode));
54aa1f4d 5589
0b246afa
JM
5590 trans->block_rsv = &fs_info->trans_block_rsv;
5591 if (!(root == fs_info->tree_root ||
581bb050 5592 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5593 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5594
3a45bb20 5595 btrfs_end_transaction(trans);
2ff7e61e 5596 btrfs_btree_balance_dirty(fs_info);
39279cc3 5597no_delete:
f48d1cf5 5598 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5599 clear_inode(inode);
39279cc3
CM
5600}
5601
5602/*
5603 * this returns the key found in the dir entry in the location pointer.
005d6712
SY
5604 * If no dir entries were found, returns -ENOENT.
5605 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3
CM
5606 */
5607static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5608 struct btrfs_key *location)
5609{
5610 const char *name = dentry->d_name.name;
5611 int namelen = dentry->d_name.len;
5612 struct btrfs_dir_item *di;
5613 struct btrfs_path *path;
5614 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5615 int ret = 0;
39279cc3
CM
5616
5617 path = btrfs_alloc_path();
d8926bb3
MF
5618 if (!path)
5619 return -ENOMEM;
3954401f 5620
f85b7379
DS
5621 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5622 name, namelen, 0);
005d6712
SY
5623 if (!di) {
5624 ret = -ENOENT;
5625 goto out;
5626 }
5627 if (IS_ERR(di)) {
0d9f7f3e 5628 ret = PTR_ERR(di);
005d6712
SY
5629 goto out;
5630 }
d397712b 5631
5f39d397 5632 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5633 if (location->type != BTRFS_INODE_ITEM_KEY &&
5634 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5635 ret = -EUCLEAN;
56a0e706
LB
5636 btrfs_warn(root->fs_info,
5637"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5638 __func__, name, btrfs_ino(BTRFS_I(dir)),
5639 location->objectid, location->type, location->offset);
56a0e706 5640 }
39279cc3 5641out:
39279cc3
CM
5642 btrfs_free_path(path);
5643 return ret;
5644}
5645
5646/*
5647 * when we hit a tree root in a directory, the btrfs part of the inode
5648 * needs to be changed to reflect the root directory of the tree root. This
5649 * is kind of like crossing a mount point.
5650 */
2ff7e61e 5651static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5652 struct inode *dir,
5653 struct dentry *dentry,
5654 struct btrfs_key *location,
5655 struct btrfs_root **sub_root)
39279cc3 5656{
4df27c4d
YZ
5657 struct btrfs_path *path;
5658 struct btrfs_root *new_root;
5659 struct btrfs_root_ref *ref;
5660 struct extent_buffer *leaf;
1d4c08e0 5661 struct btrfs_key key;
4df27c4d
YZ
5662 int ret;
5663 int err = 0;
39279cc3 5664
4df27c4d
YZ
5665 path = btrfs_alloc_path();
5666 if (!path) {
5667 err = -ENOMEM;
5668 goto out;
5669 }
39279cc3 5670
4df27c4d 5671 err = -ENOENT;
1d4c08e0
DS
5672 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5673 key.type = BTRFS_ROOT_REF_KEY;
5674 key.offset = location->objectid;
5675
0b246afa 5676 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5677 if (ret) {
5678 if (ret < 0)
5679 err = ret;
5680 goto out;
5681 }
39279cc3 5682
4df27c4d
YZ
5683 leaf = path->nodes[0];
5684 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5685 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5686 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5687 goto out;
39279cc3 5688
4df27c4d
YZ
5689 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5690 (unsigned long)(ref + 1),
5691 dentry->d_name.len);
5692 if (ret)
5693 goto out;
5694
b3b4aa74 5695 btrfs_release_path(path);
4df27c4d 5696
0b246afa 5697 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5698 if (IS_ERR(new_root)) {
5699 err = PTR_ERR(new_root);
5700 goto out;
5701 }
5702
4df27c4d
YZ
5703 *sub_root = new_root;
5704 location->objectid = btrfs_root_dirid(&new_root->root_item);
5705 location->type = BTRFS_INODE_ITEM_KEY;
5706 location->offset = 0;
5707 err = 0;
5708out:
5709 btrfs_free_path(path);
5710 return err;
39279cc3
CM
5711}
5712
5d4f98a2
YZ
5713static void inode_tree_add(struct inode *inode)
5714{
5715 struct btrfs_root *root = BTRFS_I(inode)->root;
5716 struct btrfs_inode *entry;
03e860bd
NP
5717 struct rb_node **p;
5718 struct rb_node *parent;
cef21937 5719 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5720 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5721
1d3382cb 5722 if (inode_unhashed(inode))
76dda93c 5723 return;
e1409cef 5724 parent = NULL;
5d4f98a2 5725 spin_lock(&root->inode_lock);
e1409cef 5726 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5727 while (*p) {
5728 parent = *p;
5729 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5730
4a0cc7ca 5731 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5732 p = &parent->rb_left;
4a0cc7ca 5733 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5734 p = &parent->rb_right;
5d4f98a2
YZ
5735 else {
5736 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5737 (I_WILL_FREE | I_FREEING)));
cef21937 5738 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
NP
5739 RB_CLEAR_NODE(parent);
5740 spin_unlock(&root->inode_lock);
cef21937 5741 return;
5d4f98a2
YZ
5742 }
5743 }
cef21937
FDBM
5744 rb_link_node(new, parent, p);
5745 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5746 spin_unlock(&root->inode_lock);
5747}
5748
5749static void inode_tree_del(struct inode *inode)
5750{
0b246afa 5751 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5752 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5753 int empty = 0;
5d4f98a2 5754
03e860bd 5755 spin_lock(&root->inode_lock);
5d4f98a2 5756 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5757 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5758 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5759 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5760 }
03e860bd 5761 spin_unlock(&root->inode_lock);
76dda93c 5762
69e9c6c6 5763 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5764 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5765 spin_lock(&root->inode_lock);
5766 empty = RB_EMPTY_ROOT(&root->inode_tree);
5767 spin_unlock(&root->inode_lock);
5768 if (empty)
5769 btrfs_add_dead_root(root);
5770 }
5771}
5772
5d4f98a2 5773
e02119d5
CM
5774static int btrfs_init_locked_inode(struct inode *inode, void *p)
5775{
5776 struct btrfs_iget_args *args = p;
90d3e592
CM
5777 inode->i_ino = args->location->objectid;
5778 memcpy(&BTRFS_I(inode)->location, args->location,
5779 sizeof(*args->location));
e02119d5 5780 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5781 return 0;
5782}
5783
5784static int btrfs_find_actor(struct inode *inode, void *opaque)
5785{
5786 struct btrfs_iget_args *args = opaque;
90d3e592 5787 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5788 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5789}
5790
5d4f98a2 5791static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5792 struct btrfs_key *location,
5d4f98a2 5793 struct btrfs_root *root)
39279cc3
CM
5794{
5795 struct inode *inode;
5796 struct btrfs_iget_args args;
90d3e592 5797 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5798
90d3e592 5799 args.location = location;
39279cc3
CM
5800 args.root = root;
5801
778ba82b 5802 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5803 btrfs_init_locked_inode,
5804 (void *)&args);
5805 return inode;
5806}
5807
1a54ef8c
BR
5808/* Get an inode object given its location and corresponding root.
5809 * Returns in *is_new if the inode was read from disk
5810 */
5811struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5812 struct btrfs_root *root, int *new)
1a54ef8c
BR
5813{
5814 struct inode *inode;
5815
90d3e592 5816 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5817 if (!inode)
5d4f98a2 5818 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5819
5820 if (inode->i_state & I_NEW) {
67710892
FM
5821 int ret;
5822
5823 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5824 if (!is_bad_inode(inode)) {
5825 inode_tree_add(inode);
5826 unlock_new_inode(inode);
5827 if (new)
5828 *new = 1;
5829 } else {
e0b6d65b
ST
5830 unlock_new_inode(inode);
5831 iput(inode);
67710892
FM
5832 ASSERT(ret < 0);
5833 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5834 }
5835 }
5836
1a54ef8c
BR
5837 return inode;
5838}
5839
4df27c4d
YZ
5840static struct inode *new_simple_dir(struct super_block *s,
5841 struct btrfs_key *key,
5842 struct btrfs_root *root)
5843{
5844 struct inode *inode = new_inode(s);
5845
5846 if (!inode)
5847 return ERR_PTR(-ENOMEM);
5848
4df27c4d
YZ
5849 BTRFS_I(inode)->root = root;
5850 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5851 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5852
5853 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5854 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5855 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5856 inode->i_fop = &simple_dir_operations;
5857 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5858 inode->i_mtime = current_time(inode);
9cc97d64 5859 inode->i_atime = inode->i_mtime;
5860 inode->i_ctime = inode->i_mtime;
5861 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5862
5863 return inode;
5864}
5865
3de4586c 5866struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5867{
0b246afa 5868 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5869 struct inode *inode;
4df27c4d 5870 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5871 struct btrfs_root *sub_root = root;
5872 struct btrfs_key location;
76dda93c 5873 int index;
b4aff1f8 5874 int ret = 0;
39279cc3
CM
5875
5876 if (dentry->d_name.len > BTRFS_NAME_LEN)
5877 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5878
39e3c955 5879 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5880 if (ret < 0)
5881 return ERR_PTR(ret);
5f39d397 5882
4df27c4d 5883 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5884 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5885 return inode;
5886 }
5887
0b246afa 5888 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5889 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5890 &location, &sub_root);
5891 if (ret < 0) {
5892 if (ret != -ENOENT)
5893 inode = ERR_PTR(ret);
5894 else
5895 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5896 } else {
73f73415 5897 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5898 }
0b246afa 5899 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5900
34d19bad 5901 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5902 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5903 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5904 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5905 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5906 if (ret) {
5907 iput(inode);
66b4ffd1 5908 inode = ERR_PTR(ret);
01cd3367 5909 }
c71bf099
YZ
5910 }
5911
3de4586c
CM
5912 return inode;
5913}
5914
fe15ce44 5915static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5916{
5917 struct btrfs_root *root;
2b0143b5 5918 struct inode *inode = d_inode(dentry);
76dda93c 5919
848cce0d 5920 if (!inode && !IS_ROOT(dentry))
2b0143b5 5921 inode = d_inode(dentry->d_parent);
76dda93c 5922
848cce0d
LZ
5923 if (inode) {
5924 root = BTRFS_I(inode)->root;
efefb143
YZ
5925 if (btrfs_root_refs(&root->root_item) == 0)
5926 return 1;
848cce0d 5927
4a0cc7ca 5928 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5929 return 1;
efefb143 5930 }
76dda93c
YZ
5931 return 0;
5932}
5933
3de4586c 5934static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5935 unsigned int flags)
3de4586c 5936{
5662344b 5937 struct inode *inode;
a66e7cc6 5938
5662344b
TI
5939 inode = btrfs_lookup_dentry(dir, dentry);
5940 if (IS_ERR(inode)) {
5941 if (PTR_ERR(inode) == -ENOENT)
5942 inode = NULL;
5943 else
5944 return ERR_CAST(inode);
5945 }
5946
41d28bca 5947 return d_splice_alias(inode, dentry);
39279cc3
CM
5948}
5949
16cdcec7 5950unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5951 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5952};
5953
23b5ec74
JB
5954/*
5955 * All this infrastructure exists because dir_emit can fault, and we are holding
5956 * the tree lock when doing readdir. For now just allocate a buffer and copy
5957 * our information into that, and then dir_emit from the buffer. This is
5958 * similar to what NFS does, only we don't keep the buffer around in pagecache
5959 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5960 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5961 * tree lock.
5962 */
5963static int btrfs_opendir(struct inode *inode, struct file *file)
5964{
5965 struct btrfs_file_private *private;
5966
5967 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5968 if (!private)
5969 return -ENOMEM;
5970 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5971 if (!private->filldir_buf) {
5972 kfree(private);
5973 return -ENOMEM;
5974 }
5975 file->private_data = private;
5976 return 0;
5977}
5978
5979struct dir_entry {
5980 u64 ino;
5981 u64 offset;
5982 unsigned type;
5983 int name_len;
5984};
5985
5986static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5987{
5988 while (entries--) {
5989 struct dir_entry *entry = addr;
5990 char *name = (char *)(entry + 1);
5991
92d32170
DS
5992 ctx->pos = get_unaligned(&entry->offset);
5993 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5994 get_unaligned(&entry->ino),
5995 get_unaligned(&entry->type)))
23b5ec74 5996 return 1;
92d32170
DS
5997 addr += sizeof(struct dir_entry) +
5998 get_unaligned(&entry->name_len);
23b5ec74
JB
5999 ctx->pos++;
6000 }
6001 return 0;
6002}
6003
9cdda8d3 6004static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 6005{
9cdda8d3 6006 struct inode *inode = file_inode(file);
39279cc3 6007 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 6008 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
6009 struct btrfs_dir_item *di;
6010 struct btrfs_key key;
5f39d397 6011 struct btrfs_key found_key;
39279cc3 6012 struct btrfs_path *path;
23b5ec74 6013 void *addr;
16cdcec7
MX
6014 struct list_head ins_list;
6015 struct list_head del_list;
39279cc3 6016 int ret;
5f39d397 6017 struct extent_buffer *leaf;
39279cc3 6018 int slot;
5f39d397
CM
6019 char *name_ptr;
6020 int name_len;
23b5ec74
JB
6021 int entries = 0;
6022 int total_len = 0;
02dbfc99 6023 bool put = false;
c2951f32 6024 struct btrfs_key location;
5f39d397 6025
9cdda8d3
AV
6026 if (!dir_emit_dots(file, ctx))
6027 return 0;
6028
49593bfa 6029 path = btrfs_alloc_path();
16cdcec7
MX
6030 if (!path)
6031 return -ENOMEM;
ff5714cc 6032
23b5ec74 6033 addr = private->filldir_buf;
e4058b54 6034 path->reada = READA_FORWARD;
49593bfa 6035
c2951f32
JM
6036 INIT_LIST_HEAD(&ins_list);
6037 INIT_LIST_HEAD(&del_list);
6038 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 6039
23b5ec74 6040again:
c2951f32 6041 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 6042 key.offset = ctx->pos;
4a0cc7ca 6043 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 6044
39279cc3
CM
6045 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6046 if (ret < 0)
6047 goto err;
49593bfa
DW
6048
6049 while (1) {
23b5ec74
JB
6050 struct dir_entry *entry;
6051
5f39d397 6052 leaf = path->nodes[0];
39279cc3 6053 slot = path->slots[0];
b9e03af0
LZ
6054 if (slot >= btrfs_header_nritems(leaf)) {
6055 ret = btrfs_next_leaf(root, path);
6056 if (ret < 0)
6057 goto err;
6058 else if (ret > 0)
6059 break;
6060 continue;
39279cc3 6061 }
3de4586c 6062
5f39d397
CM
6063 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6064
6065 if (found_key.objectid != key.objectid)
39279cc3 6066 break;
c2951f32 6067 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 6068 break;
9cdda8d3 6069 if (found_key.offset < ctx->pos)
b9e03af0 6070 goto next;
c2951f32 6071 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 6072 goto next;
39279cc3 6073 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
c2951f32 6074 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
6075 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6076 PAGE_SIZE) {
6077 btrfs_release_path(path);
6078 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6079 if (ret)
6080 goto nopos;
6081 addr = private->filldir_buf;
6082 entries = 0;
6083 total_len = 0;
6084 goto again;
c2951f32 6085 }
23b5ec74
JB
6086
6087 entry = addr;
92d32170 6088 put_unaligned(name_len, &entry->name_len);
23b5ec74 6089 name_ptr = (char *)(entry + 1);
c2951f32
JM
6090 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6091 name_len);
92d32170
DS
6092 put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
6093 &entry->type);
c2951f32 6094 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
6095 put_unaligned(location.objectid, &entry->ino);
6096 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
6097 entries++;
6098 addr += sizeof(struct dir_entry) + name_len;
6099 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
6100next:
6101 path->slots[0]++;
39279cc3 6102 }
23b5ec74
JB
6103 btrfs_release_path(path);
6104
6105 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6106 if (ret)
6107 goto nopos;
49593bfa 6108
d2fbb2b5 6109 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 6110 if (ret)
bc4ef759
DS
6111 goto nopos;
6112
db62efbb
ZB
6113 /*
6114 * Stop new entries from being returned after we return the last
6115 * entry.
6116 *
6117 * New directory entries are assigned a strictly increasing
6118 * offset. This means that new entries created during readdir
6119 * are *guaranteed* to be seen in the future by that readdir.
6120 * This has broken buggy programs which operate on names as
6121 * they're returned by readdir. Until we re-use freed offsets
6122 * we have this hack to stop new entries from being returned
6123 * under the assumption that they'll never reach this huge
6124 * offset.
6125 *
6126 * This is being careful not to overflow 32bit loff_t unless the
6127 * last entry requires it because doing so has broken 32bit apps
6128 * in the past.
6129 */
c2951f32
JM
6130 if (ctx->pos >= INT_MAX)
6131 ctx->pos = LLONG_MAX;
6132 else
6133 ctx->pos = INT_MAX;
39279cc3
CM
6134nopos:
6135 ret = 0;
6136err:
02dbfc99
OS
6137 if (put)
6138 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 6139 btrfs_free_path(path);
39279cc3
CM
6140 return ret;
6141}
6142
a9185b41 6143int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
6144{
6145 struct btrfs_root *root = BTRFS_I(inode)->root;
6146 struct btrfs_trans_handle *trans;
6147 int ret = 0;
0af3d00b 6148 bool nolock = false;
39279cc3 6149
72ac3c0d 6150 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
6151 return 0;
6152
70ddc553
NB
6153 if (btrfs_fs_closing(root->fs_info) &&
6154 btrfs_is_free_space_inode(BTRFS_I(inode)))
82d5902d 6155 nolock = true;
0af3d00b 6156
a9185b41 6157 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 6158 if (nolock)
7a7eaa40 6159 trans = btrfs_join_transaction_nolock(root);
0af3d00b 6160 else
7a7eaa40 6161 trans = btrfs_join_transaction(root);
3612b495
TI
6162 if (IS_ERR(trans))
6163 return PTR_ERR(trans);
3a45bb20 6164 ret = btrfs_commit_transaction(trans);
39279cc3
CM
6165 }
6166 return ret;
6167}
6168
6169/*
54aa1f4d 6170 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6171 * inode changes. But, it is most likely to find the inode in cache.
6172 * FIXME, needs more benchmarking...there are no reasons other than performance
6173 * to keep or drop this code.
6174 */
48a3b636 6175static int btrfs_dirty_inode(struct inode *inode)
39279cc3 6176{
2ff7e61e 6177 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
6178 struct btrfs_root *root = BTRFS_I(inode)->root;
6179 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6180 int ret;
6181
72ac3c0d 6182 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6183 return 0;
39279cc3 6184
7a7eaa40 6185 trans = btrfs_join_transaction(root);
22c44fe6
JB
6186 if (IS_ERR(trans))
6187 return PTR_ERR(trans);
8929ecfa
YZ
6188
6189 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6190 if (ret && ret == -ENOSPC) {
6191 /* whoops, lets try again with the full transaction */
3a45bb20 6192 btrfs_end_transaction(trans);
94b60442 6193 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6194 if (IS_ERR(trans))
6195 return PTR_ERR(trans);
8929ecfa 6196
94b60442 6197 ret = btrfs_update_inode(trans, root, inode);
94b60442 6198 }
3a45bb20 6199 btrfs_end_transaction(trans);
16cdcec7 6200 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6201 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6202
6203 return ret;
6204}
6205
6206/*
6207 * This is a copy of file_update_time. We need this so we can return error on
6208 * ENOSPC for updating the inode in the case of file write and mmap writes.
6209 */
e41f941a
JB
6210static int btrfs_update_time(struct inode *inode, struct timespec *now,
6211 int flags)
22c44fe6 6212{
2bc55652 6213 struct btrfs_root *root = BTRFS_I(inode)->root;
3a8c7231 6214 bool dirty = flags & ~S_VERSION;
2bc55652
AB
6215
6216 if (btrfs_root_readonly(root))
6217 return -EROFS;
6218
e41f941a 6219 if (flags & S_VERSION)
3a8c7231 6220 dirty |= inode_maybe_inc_iversion(inode, dirty);
e41f941a
JB
6221 if (flags & S_CTIME)
6222 inode->i_ctime = *now;
6223 if (flags & S_MTIME)
6224 inode->i_mtime = *now;
6225 if (flags & S_ATIME)
6226 inode->i_atime = *now;
3a8c7231 6227 return dirty ? btrfs_dirty_inode(inode) : 0;
39279cc3
CM
6228}
6229
d352ac68
CM
6230/*
6231 * find the highest existing sequence number in a directory
6232 * and then set the in-memory index_cnt variable to reflect
6233 * free sequence numbers
6234 */
4c570655 6235static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6236{
4c570655 6237 struct btrfs_root *root = inode->root;
aec7477b
JB
6238 struct btrfs_key key, found_key;
6239 struct btrfs_path *path;
6240 struct extent_buffer *leaf;
6241 int ret;
6242
4c570655 6243 key.objectid = btrfs_ino(inode);
962a298f 6244 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6245 key.offset = (u64)-1;
6246
6247 path = btrfs_alloc_path();
6248 if (!path)
6249 return -ENOMEM;
6250
6251 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6252 if (ret < 0)
6253 goto out;
6254 /* FIXME: we should be able to handle this */
6255 if (ret == 0)
6256 goto out;
6257 ret = 0;
6258
6259 /*
6260 * MAGIC NUMBER EXPLANATION:
6261 * since we search a directory based on f_pos we have to start at 2
6262 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6263 * else has to start at 2
6264 */
6265 if (path->slots[0] == 0) {
4c570655 6266 inode->index_cnt = 2;
aec7477b
JB
6267 goto out;
6268 }
6269
6270 path->slots[0]--;
6271
6272 leaf = path->nodes[0];
6273 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6274
4c570655 6275 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6276 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6277 inode->index_cnt = 2;
aec7477b
JB
6278 goto out;
6279 }
6280
4c570655 6281 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6282out:
6283 btrfs_free_path(path);
6284 return ret;
6285}
6286
d352ac68
CM
6287/*
6288 * helper to find a free sequence number in a given directory. This current
6289 * code is very simple, later versions will do smarter things in the btree
6290 */
877574e2 6291int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6292{
6293 int ret = 0;
6294
877574e2
NB
6295 if (dir->index_cnt == (u64)-1) {
6296 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6297 if (ret) {
6298 ret = btrfs_set_inode_index_count(dir);
6299 if (ret)
6300 return ret;
6301 }
aec7477b
JB
6302 }
6303
877574e2
NB
6304 *index = dir->index_cnt;
6305 dir->index_cnt++;
aec7477b
JB
6306
6307 return ret;
6308}
6309
b0d5d10f
CM
6310static int btrfs_insert_inode_locked(struct inode *inode)
6311{
6312 struct btrfs_iget_args args;
6313 args.location = &BTRFS_I(inode)->location;
6314 args.root = BTRFS_I(inode)->root;
6315
6316 return insert_inode_locked4(inode,
6317 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6318 btrfs_find_actor, &args);
6319}
6320
19aee8de
AJ
6321/*
6322 * Inherit flags from the parent inode.
6323 *
6324 * Currently only the compression flags and the cow flags are inherited.
6325 */
6326static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6327{
6328 unsigned int flags;
6329
6330 if (!dir)
6331 return;
6332
6333 flags = BTRFS_I(dir)->flags;
6334
6335 if (flags & BTRFS_INODE_NOCOMPRESS) {
6336 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6337 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6338 } else if (flags & BTRFS_INODE_COMPRESS) {
6339 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6340 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6341 }
6342
6343 if (flags & BTRFS_INODE_NODATACOW) {
6344 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6345 if (S_ISREG(inode->i_mode))
6346 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6347 }
6348
7b6a221e 6349 btrfs_sync_inode_flags_to_i_flags(inode);
19aee8de
AJ
6350}
6351
39279cc3
CM
6352static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6353 struct btrfs_root *root,
aec7477b 6354 struct inode *dir,
9c58309d 6355 const char *name, int name_len,
175a4eb7
AV
6356 u64 ref_objectid, u64 objectid,
6357 umode_t mode, u64 *index)
39279cc3 6358{
0b246afa 6359 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6360 struct inode *inode;
5f39d397 6361 struct btrfs_inode_item *inode_item;
39279cc3 6362 struct btrfs_key *location;
5f39d397 6363 struct btrfs_path *path;
9c58309d
CM
6364 struct btrfs_inode_ref *ref;
6365 struct btrfs_key key[2];
6366 u32 sizes[2];
ef3b9af5 6367 int nitems = name ? 2 : 1;
9c58309d 6368 unsigned long ptr;
39279cc3 6369 int ret;
39279cc3 6370
5f39d397 6371 path = btrfs_alloc_path();
d8926bb3
MF
6372 if (!path)
6373 return ERR_PTR(-ENOMEM);
5f39d397 6374
0b246afa 6375 inode = new_inode(fs_info->sb);
8fb27640
YS
6376 if (!inode) {
6377 btrfs_free_path(path);
39279cc3 6378 return ERR_PTR(-ENOMEM);
8fb27640 6379 }
39279cc3 6380
5762b5c9
FM
6381 /*
6382 * O_TMPFILE, set link count to 0, so that after this point,
6383 * we fill in an inode item with the correct link count.
6384 */
6385 if (!name)
6386 set_nlink(inode, 0);
6387
581bb050
LZ
6388 /*
6389 * we have to initialize this early, so we can reclaim the inode
6390 * number if we fail afterwards in this function.
6391 */
6392 inode->i_ino = objectid;
6393
ef3b9af5 6394 if (dir && name) {
1abe9b8a 6395 trace_btrfs_inode_request(dir);
6396
877574e2 6397 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6398 if (ret) {
8fb27640 6399 btrfs_free_path(path);
09771430 6400 iput(inode);
aec7477b 6401 return ERR_PTR(ret);
09771430 6402 }
ef3b9af5
FM
6403 } else if (dir) {
6404 *index = 0;
aec7477b
JB
6405 }
6406 /*
6407 * index_cnt is ignored for everything but a dir,
df6703e1 6408 * btrfs_set_inode_index_count has an explanation for the magic
aec7477b
JB
6409 * number
6410 */
6411 BTRFS_I(inode)->index_cnt = 2;
67de1176 6412 BTRFS_I(inode)->dir_index = *index;
39279cc3 6413 BTRFS_I(inode)->root = root;
e02119d5 6414 BTRFS_I(inode)->generation = trans->transid;
76195853 6415 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6416
5dc562c5
JB
6417 /*
6418 * We could have gotten an inode number from somebody who was fsynced
6419 * and then removed in this same transaction, so let's just set full
6420 * sync since it will be a full sync anyway and this will blow away the
6421 * old info in the log.
6422 */
6423 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6424
9c58309d 6425 key[0].objectid = objectid;
962a298f 6426 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6427 key[0].offset = 0;
6428
9c58309d 6429 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6430
6431 if (name) {
6432 /*
6433 * Start new inodes with an inode_ref. This is slightly more
6434 * efficient for small numbers of hard links since they will
6435 * be packed into one item. Extended refs will kick in if we
6436 * add more hard links than can fit in the ref item.
6437 */
6438 key[1].objectid = objectid;
962a298f 6439 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6440 key[1].offset = ref_objectid;
6441
6442 sizes[1] = name_len + sizeof(*ref);
6443 }
9c58309d 6444
b0d5d10f
CM
6445 location = &BTRFS_I(inode)->location;
6446 location->objectid = objectid;
6447 location->offset = 0;
962a298f 6448 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6449
6450 ret = btrfs_insert_inode_locked(inode);
6451 if (ret < 0)
6452 goto fail;
6453
b9473439 6454 path->leave_spinning = 1;
ef3b9af5 6455 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6456 if (ret != 0)
b0d5d10f 6457 goto fail_unlock;
5f39d397 6458
ecc11fab 6459 inode_init_owner(inode, dir, mode);
a76a3cd4 6460 inode_set_bytes(inode, 0);
9cc97d64 6461
c2050a45 6462 inode->i_mtime = current_time(inode);
9cc97d64 6463 inode->i_atime = inode->i_mtime;
6464 inode->i_ctime = inode->i_mtime;
6465 BTRFS_I(inode)->i_otime = inode->i_mtime;
6466
5f39d397
CM
6467 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6468 struct btrfs_inode_item);
b159fa28 6469 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6470 sizeof(*inode_item));
e02119d5 6471 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6472
ef3b9af5
FM
6473 if (name) {
6474 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6475 struct btrfs_inode_ref);
6476 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6477 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6478 ptr = (unsigned long)(ref + 1);
6479 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6480 }
9c58309d 6481
5f39d397
CM
6482 btrfs_mark_buffer_dirty(path->nodes[0]);
6483 btrfs_free_path(path);
6484
6cbff00f
CH
6485 btrfs_inherit_iflags(inode, dir);
6486
569254b0 6487 if (S_ISREG(mode)) {
0b246afa 6488 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6489 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6490 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6491 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6492 BTRFS_INODE_NODATASUM;
94272164
CM
6493 }
6494
5d4f98a2 6495 inode_tree_add(inode);
1abe9b8a 6496
6497 trace_btrfs_inode_new(inode);
1973f0fa 6498 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6499
8ea05e3a
AB
6500 btrfs_update_root_times(trans, root);
6501
63541927
FDBM
6502 ret = btrfs_inode_inherit_props(trans, inode, dir);
6503 if (ret)
0b246afa 6504 btrfs_err(fs_info,
63541927 6505 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6506 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6507
39279cc3 6508 return inode;
b0d5d10f
CM
6509
6510fail_unlock:
6511 unlock_new_inode(inode);
5f39d397 6512fail:
ef3b9af5 6513 if (dir && name)
aec7477b 6514 BTRFS_I(dir)->index_cnt--;
5f39d397 6515 btrfs_free_path(path);
09771430 6516 iput(inode);
5f39d397 6517 return ERR_PTR(ret);
39279cc3
CM
6518}
6519
6520static inline u8 btrfs_inode_type(struct inode *inode)
6521{
6522 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6523}
6524
d352ac68
CM
6525/*
6526 * utility function to add 'inode' into 'parent_inode' with
6527 * a give name and a given sequence number.
6528 * if 'add_backref' is true, also insert a backref from the
6529 * inode to the parent directory.
6530 */
e02119d5 6531int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6532 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6533 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6534{
db0a669f 6535 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
4df27c4d 6536 int ret = 0;
39279cc3 6537 struct btrfs_key key;
db0a669f
NB
6538 struct btrfs_root *root = parent_inode->root;
6539 u64 ino = btrfs_ino(inode);
6540 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6541
33345d01 6542 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6543 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6544 } else {
33345d01 6545 key.objectid = ino;
962a298f 6546 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6547 key.offset = 0;
6548 }
6549
33345d01 6550 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
0b246afa
JM
6551 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6552 root->root_key.objectid, parent_ino,
6553 index, name, name_len);
4df27c4d 6554 } else if (add_backref) {
33345d01
LZ
6555 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6556 parent_ino, index);
4df27c4d 6557 }
39279cc3 6558
79787eaa
JM
6559 /* Nothing to clean up yet */
6560 if (ret)
6561 return ret;
4df27c4d 6562
79787eaa
JM
6563 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6564 parent_inode, &key,
db0a669f 6565 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6566 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6567 goto fail_dir_item;
6568 else if (ret) {
66642832 6569 btrfs_abort_transaction(trans, ret);
79787eaa 6570 return ret;
39279cc3 6571 }
79787eaa 6572
db0a669f 6573 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6574 name_len * 2);
db0a669f
NB
6575 inode_inc_iversion(&parent_inode->vfs_inode);
6576 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6577 current_time(&parent_inode->vfs_inode);
6578 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6579 if (ret)
66642832 6580 btrfs_abort_transaction(trans, ret);
39279cc3 6581 return ret;
fe66a05a
CM
6582
6583fail_dir_item:
6584 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6585 u64 local_index;
6586 int err;
0b246afa
JM
6587 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6588 root->root_key.objectid, parent_ino,
6589 &local_index, name, name_len);
fe66a05a
CM
6590
6591 } else if (add_backref) {
6592 u64 local_index;
6593 int err;
6594
6595 err = btrfs_del_inode_ref(trans, root, name, name_len,
6596 ino, parent_ino, &local_index);
6597 }
6598 return ret;
39279cc3
CM
6599}
6600
6601static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6602 struct btrfs_inode *dir, struct dentry *dentry,
6603 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6604{
a1b075d2
JB
6605 int err = btrfs_add_link(trans, dir, inode,
6606 dentry->d_name.name, dentry->d_name.len,
6607 backref, index);
39279cc3
CM
6608 if (err > 0)
6609 err = -EEXIST;
6610 return err;
6611}
6612
618e21d5 6613static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6614 umode_t mode, dev_t rdev)
618e21d5 6615{
2ff7e61e 6616 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6617 struct btrfs_trans_handle *trans;
6618 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6619 struct inode *inode = NULL;
618e21d5
JB
6620 int err;
6621 int drop_inode = 0;
6622 u64 objectid;
00e4e6b3 6623 u64 index = 0;
618e21d5 6624
9ed74f2d
JB
6625 /*
6626 * 2 for inode item and ref
6627 * 2 for dir items
6628 * 1 for xattr if selinux is on
6629 */
a22285a6
YZ
6630 trans = btrfs_start_transaction(root, 5);
6631 if (IS_ERR(trans))
6632 return PTR_ERR(trans);
1832a6d5 6633
581bb050
LZ
6634 err = btrfs_find_free_ino(root, &objectid);
6635 if (err)
6636 goto out_unlock;
6637
aec7477b 6638 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6639 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6640 mode, &index);
7cf96da3
TI
6641 if (IS_ERR(inode)) {
6642 err = PTR_ERR(inode);
618e21d5 6643 goto out_unlock;
7cf96da3 6644 }
618e21d5 6645
ad19db71
CS
6646 /*
6647 * If the active LSM wants to access the inode during
6648 * d_instantiate it needs these. Smack checks to see
6649 * if the filesystem supports xattrs by looking at the
6650 * ops vector.
6651 */
ad19db71 6652 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6653 init_special_inode(inode, inode->i_mode, rdev);
6654
6655 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6656 if (err)
b0d5d10f
CM
6657 goto out_unlock_inode;
6658
cef415af
NB
6659 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6660 0, index);
b0d5d10f
CM
6661 if (err) {
6662 goto out_unlock_inode;
6663 } else {
1b4ab1bb 6664 btrfs_update_inode(trans, root, inode);
1e2e547a 6665 d_instantiate_new(dentry, inode);
618e21d5 6666 }
b0d5d10f 6667
618e21d5 6668out_unlock:
3a45bb20 6669 btrfs_end_transaction(trans);
2ff7e61e 6670 btrfs_btree_balance_dirty(fs_info);
618e21d5
JB
6671 if (drop_inode) {
6672 inode_dec_link_count(inode);
6673 iput(inode);
6674 }
618e21d5 6675 return err;
b0d5d10f
CM
6676
6677out_unlock_inode:
6678 drop_inode = 1;
6679 unlock_new_inode(inode);
6680 goto out_unlock;
6681
618e21d5
JB
6682}
6683
39279cc3 6684static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6685 umode_t mode, bool excl)
39279cc3 6686{
2ff7e61e 6687 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6688 struct btrfs_trans_handle *trans;
6689 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6690 struct inode *inode = NULL;
43baa579 6691 int drop_inode_on_err = 0;
a22285a6 6692 int err;
39279cc3 6693 u64 objectid;
00e4e6b3 6694 u64 index = 0;
39279cc3 6695
9ed74f2d
JB
6696 /*
6697 * 2 for inode item and ref
6698 * 2 for dir items
6699 * 1 for xattr if selinux is on
6700 */
a22285a6
YZ
6701 trans = btrfs_start_transaction(root, 5);
6702 if (IS_ERR(trans))
6703 return PTR_ERR(trans);
9ed74f2d 6704
581bb050
LZ
6705 err = btrfs_find_free_ino(root, &objectid);
6706 if (err)
6707 goto out_unlock;
6708
aec7477b 6709 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6710 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6711 mode, &index);
7cf96da3
TI
6712 if (IS_ERR(inode)) {
6713 err = PTR_ERR(inode);
39279cc3 6714 goto out_unlock;
7cf96da3 6715 }
43baa579 6716 drop_inode_on_err = 1;
ad19db71
CS
6717 /*
6718 * If the active LSM wants to access the inode during
6719 * d_instantiate it needs these. Smack checks to see
6720 * if the filesystem supports xattrs by looking at the
6721 * ops vector.
6722 */
6723 inode->i_fop = &btrfs_file_operations;
6724 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6725 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6726
6727 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6728 if (err)
6729 goto out_unlock_inode;
6730
6731 err = btrfs_update_inode(trans, root, inode);
6732 if (err)
6733 goto out_unlock_inode;
ad19db71 6734
cef415af
NB
6735 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6736 0, index);
39279cc3 6737 if (err)
b0d5d10f 6738 goto out_unlock_inode;
43baa579 6739
43baa579 6740 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1e2e547a 6741 d_instantiate_new(dentry, inode);
43baa579 6742
39279cc3 6743out_unlock:
3a45bb20 6744 btrfs_end_transaction(trans);
43baa579 6745 if (err && drop_inode_on_err) {
39279cc3
CM
6746 inode_dec_link_count(inode);
6747 iput(inode);
6748 }
2ff7e61e 6749 btrfs_btree_balance_dirty(fs_info);
39279cc3 6750 return err;
b0d5d10f
CM
6751
6752out_unlock_inode:
6753 unlock_new_inode(inode);
6754 goto out_unlock;
6755
39279cc3
CM
6756}
6757
6758static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6759 struct dentry *dentry)
6760{
271dba45 6761 struct btrfs_trans_handle *trans = NULL;
39279cc3 6762 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6763 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6764 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6765 u64 index;
39279cc3
CM
6766 int err;
6767 int drop_inode = 0;
6768
4a8be425
TH
6769 /* do not allow sys_link's with other subvols of the same device */
6770 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6771 return -EXDEV;
4a8be425 6772
f186373f 6773 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6774 return -EMLINK;
4a8be425 6775
877574e2 6776 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6777 if (err)
6778 goto fail;
6779
a22285a6 6780 /*
7e6b6465 6781 * 2 items for inode and inode ref
a22285a6 6782 * 2 items for dir items
7e6b6465 6783 * 1 item for parent inode
a22285a6 6784 */
7e6b6465 6785 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6786 if (IS_ERR(trans)) {
6787 err = PTR_ERR(trans);
271dba45 6788 trans = NULL;
a22285a6
YZ
6789 goto fail;
6790 }
5f39d397 6791
67de1176
MX
6792 /* There are several dir indexes for this inode, clear the cache. */
6793 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6794 inc_nlink(inode);
0c4d2d95 6795 inode_inc_iversion(inode);
c2050a45 6796 inode->i_ctime = current_time(inode);
7de9c6ee 6797 ihold(inode);
e9976151 6798 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6799
cef415af
NB
6800 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6801 1, index);
5f39d397 6802
a5719521 6803 if (err) {
54aa1f4d 6804 drop_inode = 1;
a5719521 6805 } else {
10d9f309 6806 struct dentry *parent = dentry->d_parent;
a5719521 6807 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6808 if (err)
6809 goto fail;
ef3b9af5
FM
6810 if (inode->i_nlink == 1) {
6811 /*
6812 * If new hard link count is 1, it's a file created
6813 * with open(2) O_TMPFILE flag.
6814 */
3d6ae7bb 6815 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6816 if (err)
6817 goto fail;
6818 }
08c422c2 6819 d_instantiate(dentry, inode);
9ca5fbfb 6820 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
a5719521 6821 }
39279cc3 6822
1832a6d5 6823fail:
271dba45 6824 if (trans)
3a45bb20 6825 btrfs_end_transaction(trans);
39279cc3
CM
6826 if (drop_inode) {
6827 inode_dec_link_count(inode);
6828 iput(inode);
6829 }
2ff7e61e 6830 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6831 return err;
6832}
6833
18bb1db3 6834static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6835{
2ff7e61e 6836 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6837 struct inode *inode = NULL;
39279cc3
CM
6838 struct btrfs_trans_handle *trans;
6839 struct btrfs_root *root = BTRFS_I(dir)->root;
6840 int err = 0;
6841 int drop_on_err = 0;
b9d86667 6842 u64 objectid = 0;
00e4e6b3 6843 u64 index = 0;
39279cc3 6844
9ed74f2d
JB
6845 /*
6846 * 2 items for inode and ref
6847 * 2 items for dir items
6848 * 1 for xattr if selinux is on
6849 */
a22285a6
YZ
6850 trans = btrfs_start_transaction(root, 5);
6851 if (IS_ERR(trans))
6852 return PTR_ERR(trans);
39279cc3 6853
581bb050
LZ
6854 err = btrfs_find_free_ino(root, &objectid);
6855 if (err)
6856 goto out_fail;
6857
aec7477b 6858 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6859 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6860 S_IFDIR | mode, &index);
39279cc3
CM
6861 if (IS_ERR(inode)) {
6862 err = PTR_ERR(inode);
6863 goto out_fail;
6864 }
5f39d397 6865
39279cc3 6866 drop_on_err = 1;
b0d5d10f
CM
6867 /* these must be set before we unlock the inode */
6868 inode->i_op = &btrfs_dir_inode_operations;
6869 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6870
2a7dba39 6871 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6872 if (err)
b0d5d10f 6873 goto out_fail_inode;
39279cc3 6874
6ef06d27 6875 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6876 err = btrfs_update_inode(trans, root, inode);
6877 if (err)
b0d5d10f 6878 goto out_fail_inode;
5f39d397 6879
db0a669f
NB
6880 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6881 dentry->d_name.name,
6882 dentry->d_name.len, 0, index);
39279cc3 6883 if (err)
b0d5d10f 6884 goto out_fail_inode;
5f39d397 6885
1e2e547a 6886 d_instantiate_new(dentry, inode);
39279cc3 6887 drop_on_err = 0;
39279cc3
CM
6888
6889out_fail:
3a45bb20 6890 btrfs_end_transaction(trans);
c7cfb8a5
WS
6891 if (drop_on_err) {
6892 inode_dec_link_count(inode);
39279cc3 6893 iput(inode);
c7cfb8a5 6894 }
2ff7e61e 6895 btrfs_btree_balance_dirty(fs_info);
39279cc3 6896 return err;
b0d5d10f
CM
6897
6898out_fail_inode:
6899 unlock_new_inode(inode);
6900 goto out_fail;
39279cc3
CM
6901}
6902
c8b97818 6903static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6904 struct page *page,
c8b97818
CM
6905 size_t pg_offset, u64 extent_offset,
6906 struct btrfs_file_extent_item *item)
6907{
6908 int ret;
6909 struct extent_buffer *leaf = path->nodes[0];
6910 char *tmp;
6911 size_t max_size;
6912 unsigned long inline_size;
6913 unsigned long ptr;
261507a0 6914 int compress_type;
c8b97818
CM
6915
6916 WARN_ON(pg_offset != 0);
261507a0 6917 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6918 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6919 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6920 btrfs_item_nr(path->slots[0]));
c8b97818 6921 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6922 if (!tmp)
6923 return -ENOMEM;
c8b97818
CM
6924 ptr = btrfs_file_extent_inline_start(item);
6925
6926 read_extent_buffer(leaf, tmp, ptr, inline_size);
6927
09cbfeaf 6928 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6929 ret = btrfs_decompress(compress_type, tmp, page,
6930 extent_offset, inline_size, max_size);
e1699d2d
ZB
6931
6932 /*
6933 * decompression code contains a memset to fill in any space between the end
6934 * of the uncompressed data and the end of max_size in case the decompressed
6935 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6936 * the end of an inline extent and the beginning of the next block, so we
6937 * cover that region here.
6938 */
6939
6940 if (max_size + pg_offset < PAGE_SIZE) {
6941 char *map = kmap(page);
6942 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6943 kunmap(page);
6944 }
c8b97818 6945 kfree(tmp);
166ae5a4 6946 return ret;
c8b97818
CM
6947}
6948
d352ac68
CM
6949/*
6950 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6951 * the ugly parts come from merging extents from the disk with the in-ram
6952 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6953 * where the in-ram extents might be locked pending data=ordered completion.
6954 *
6955 * This also copies inline extents directly into the page.
6956 */
fc4f21b1
NB
6957struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6958 struct page *page,
6959 size_t pg_offset, u64 start, u64 len,
6960 int create)
a52d9a80 6961{
fc4f21b1 6962 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
a52d9a80
CM
6963 int ret;
6964 int err = 0;
a52d9a80
CM
6965 u64 extent_start = 0;
6966 u64 extent_end = 0;
fc4f21b1 6967 u64 objectid = btrfs_ino(inode);
a52d9a80 6968 u32 found_type;
f421950f 6969 struct btrfs_path *path = NULL;
fc4f21b1 6970 struct btrfs_root *root = inode->root;
a52d9a80 6971 struct btrfs_file_extent_item *item;
5f39d397
CM
6972 struct extent_buffer *leaf;
6973 struct btrfs_key found_key;
a52d9a80 6974 struct extent_map *em = NULL;
fc4f21b1
NB
6975 struct extent_map_tree *em_tree = &inode->extent_tree;
6976 struct extent_io_tree *io_tree = &inode->io_tree;
7ffbb598 6977 const bool new_inline = !page || create;
a52d9a80 6978
890871be 6979 read_lock(&em_tree->lock);
d1310b2e 6980 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6981 if (em)
0b246afa 6982 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6983 read_unlock(&em_tree->lock);
d1310b2e 6984
a52d9a80 6985 if (em) {
e1c4b745
CM
6986 if (em->start > start || em->start + em->len <= start)
6987 free_extent_map(em);
6988 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6989 free_extent_map(em);
6990 else
6991 goto out;
a52d9a80 6992 }
172ddd60 6993 em = alloc_extent_map();
a52d9a80 6994 if (!em) {
d1310b2e
CM
6995 err = -ENOMEM;
6996 goto out;
a52d9a80 6997 }
0b246afa 6998 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6999 em->start = EXTENT_MAP_HOLE;
445a6944 7000 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 7001 em->len = (u64)-1;
c8b97818 7002 em->block_len = (u64)-1;
f421950f
CM
7003
7004 if (!path) {
7005 path = btrfs_alloc_path();
026fd317
JB
7006 if (!path) {
7007 err = -ENOMEM;
7008 goto out;
7009 }
7010 /*
7011 * Chances are we'll be called again, so go ahead and do
7012 * readahead
7013 */
e4058b54 7014 path->reada = READA_FORWARD;
f421950f
CM
7015 }
7016
5c9a702e 7017 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80
CM
7018 if (ret < 0) {
7019 err = ret;
7020 goto out;
7021 }
7022
7023 if (ret != 0) {
7024 if (path->slots[0] == 0)
7025 goto not_found;
7026 path->slots[0]--;
7027 }
7028
5f39d397
CM
7029 leaf = path->nodes[0];
7030 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 7031 struct btrfs_file_extent_item);
a52d9a80 7032 /* are we inside the extent that was found? */
5f39d397 7033 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 7034 found_type = found_key.type;
5f39d397 7035 if (found_key.objectid != objectid ||
a52d9a80 7036 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
7037 /*
7038 * If we backup past the first extent we want to move forward
7039 * and see if there is an extent in front of us, otherwise we'll
7040 * say there is a hole for our whole search range which can
7041 * cause problems.
7042 */
7043 extent_end = start;
7044 goto next;
a52d9a80
CM
7045 }
7046
5f39d397
CM
7047 found_type = btrfs_file_extent_type(leaf, item);
7048 extent_start = found_key.offset;
d899e052
YZ
7049 if (found_type == BTRFS_FILE_EXTENT_REG ||
7050 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 7051 extent_end = extent_start +
db94535d 7052 btrfs_file_extent_num_bytes(leaf, item);
09ed2f16
LB
7053
7054 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7055 extent_start);
9036c102
YZ
7056 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7057 size_t size;
514ac8ad 7058 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
da17066c 7059 extent_end = ALIGN(extent_start + size,
0b246afa 7060 fs_info->sectorsize);
09ed2f16
LB
7061
7062 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7063 path->slots[0],
7064 extent_start);
9036c102 7065 }
25a50341 7066next:
9036c102
YZ
7067 if (start >= extent_end) {
7068 path->slots[0]++;
7069 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7070 ret = btrfs_next_leaf(root, path);
7071 if (ret < 0) {
7072 err = ret;
7073 goto out;
a52d9a80 7074 }
9036c102
YZ
7075 if (ret > 0)
7076 goto not_found;
7077 leaf = path->nodes[0];
a52d9a80 7078 }
9036c102
YZ
7079 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7080 if (found_key.objectid != objectid ||
7081 found_key.type != BTRFS_EXTENT_DATA_KEY)
7082 goto not_found;
7083 if (start + len <= found_key.offset)
7084 goto not_found;
e2eca69d
WS
7085 if (start > found_key.offset)
7086 goto next;
9036c102 7087 em->start = start;
70c8a91c 7088 em->orig_start = start;
9036c102
YZ
7089 em->len = found_key.offset - start;
7090 goto not_found_em;
7091 }
7092
fc4f21b1 7093 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 7094 new_inline, em);
7ffbb598 7095
d899e052
YZ
7096 if (found_type == BTRFS_FILE_EXTENT_REG ||
7097 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
7098 goto insert;
7099 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 7100 unsigned long ptr;
a52d9a80 7101 char *map;
3326d1b0
CM
7102 size_t size;
7103 size_t extent_offset;
7104 size_t copy_size;
a52d9a80 7105
7ffbb598 7106 if (new_inline)
689f9346 7107 goto out;
5f39d397 7108
514ac8ad 7109 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 7110 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
7111 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7112 size - extent_offset);
3326d1b0 7113 em->start = extent_start + extent_offset;
0b246afa 7114 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 7115 em->orig_block_len = em->len;
70c8a91c 7116 em->orig_start = em->start;
689f9346 7117 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
bf46f52d 7118 if (!PageUptodate(page)) {
261507a0
LZ
7119 if (btrfs_file_extent_compression(leaf, item) !=
7120 BTRFS_COMPRESS_NONE) {
e40da0e5 7121 ret = uncompress_inline(path, page, pg_offset,
c8b97818 7122 extent_offset, item);
166ae5a4
ZB
7123 if (ret) {
7124 err = ret;
7125 goto out;
7126 }
c8b97818
CM
7127 } else {
7128 map = kmap(page);
7129 read_extent_buffer(leaf, map + pg_offset, ptr,
7130 copy_size);
09cbfeaf 7131 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 7132 memset(map + pg_offset + copy_size, 0,
09cbfeaf 7133 PAGE_SIZE - pg_offset -
93c82d57
CM
7134 copy_size);
7135 }
c8b97818
CM
7136 kunmap(page);
7137 }
179e29e4 7138 flush_dcache_page(page);
a52d9a80 7139 }
d1310b2e 7140 set_extent_uptodate(io_tree, em->start,
507903b8 7141 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7142 goto insert;
a52d9a80
CM
7143 }
7144not_found:
7145 em->start = start;
70c8a91c 7146 em->orig_start = start;
d1310b2e 7147 em->len = len;
a52d9a80 7148not_found_em:
5f39d397 7149 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 7150insert:
b3b4aa74 7151 btrfs_release_path(path);
d1310b2e 7152 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 7153 btrfs_err(fs_info,
5d163e0e
JM
7154 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7155 em->start, em->len, start, len);
a52d9a80
CM
7156 err = -EIO;
7157 goto out;
7158 }
d1310b2e
CM
7159
7160 err = 0;
890871be 7161 write_lock(&em_tree->lock);
f46b24c9 7162 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
890871be 7163 write_unlock(&em_tree->lock);
a52d9a80 7164out:
1abe9b8a 7165
fc4f21b1 7166 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 7167
527afb44 7168 btrfs_free_path(path);
a52d9a80
CM
7169 if (err) {
7170 free_extent_map(em);
a52d9a80
CM
7171 return ERR_PTR(err);
7172 }
79787eaa 7173 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7174 return em;
7175}
7176
fc4f21b1
NB
7177struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7178 struct page *page,
7179 size_t pg_offset, u64 start, u64 len,
7180 int create)
ec29ed5b
CM
7181{
7182 struct extent_map *em;
7183 struct extent_map *hole_em = NULL;
7184 u64 range_start = start;
7185 u64 end;
7186 u64 found;
7187 u64 found_end;
7188 int err = 0;
7189
7190 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7191 if (IS_ERR(em))
7192 return em;
9986277e
DC
7193 /*
7194 * If our em maps to:
7195 * - a hole or
7196 * - a pre-alloc extent,
7197 * there might actually be delalloc bytes behind it.
7198 */
7199 if (em->block_start != EXTENT_MAP_HOLE &&
7200 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7201 return em;
7202 else
7203 hole_em = em;
ec29ed5b
CM
7204
7205 /* check to see if we've wrapped (len == -1 or similar) */
7206 end = start + len;
7207 if (end < start)
7208 end = (u64)-1;
7209 else
7210 end -= 1;
7211
7212 em = NULL;
7213
7214 /* ok, we didn't find anything, lets look for delalloc */
fc4f21b1 7215 found = count_range_bits(&inode->io_tree, &range_start,
ec29ed5b
CM
7216 end, len, EXTENT_DELALLOC, 1);
7217 found_end = range_start + found;
7218 if (found_end < range_start)
7219 found_end = (u64)-1;
7220
7221 /*
7222 * we didn't find anything useful, return
7223 * the original results from get_extent()
7224 */
7225 if (range_start > end || found_end <= start) {
7226 em = hole_em;
7227 hole_em = NULL;
7228 goto out;
7229 }
7230
7231 /* adjust the range_start to make sure it doesn't
7232 * go backwards from the start they passed in
7233 */
67871254 7234 range_start = max(start, range_start);
ec29ed5b
CM
7235 found = found_end - range_start;
7236
7237 if (found > 0) {
7238 u64 hole_start = start;
7239 u64 hole_len = len;
7240
172ddd60 7241 em = alloc_extent_map();
ec29ed5b
CM
7242 if (!em) {
7243 err = -ENOMEM;
7244 goto out;
7245 }
7246 /*
7247 * when btrfs_get_extent can't find anything it
7248 * returns one huge hole
7249 *
7250 * make sure what it found really fits our range, and
7251 * adjust to make sure it is based on the start from
7252 * the caller
7253 */
7254 if (hole_em) {
7255 u64 calc_end = extent_map_end(hole_em);
7256
7257 if (calc_end <= start || (hole_em->start > end)) {
7258 free_extent_map(hole_em);
7259 hole_em = NULL;
7260 } else {
7261 hole_start = max(hole_em->start, start);
7262 hole_len = calc_end - hole_start;
7263 }
7264 }
7265 em->bdev = NULL;
7266 if (hole_em && range_start > hole_start) {
7267 /* our hole starts before our delalloc, so we
7268 * have to return just the parts of the hole
7269 * that go until the delalloc starts
7270 */
7271 em->len = min(hole_len,
7272 range_start - hole_start);
7273 em->start = hole_start;
7274 em->orig_start = hole_start;
7275 /*
7276 * don't adjust block start at all,
7277 * it is fixed at EXTENT_MAP_HOLE
7278 */
7279 em->block_start = hole_em->block_start;
7280 em->block_len = hole_len;
f9e4fb53
LB
7281 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7282 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7283 } else {
7284 em->start = range_start;
7285 em->len = found;
7286 em->orig_start = range_start;
7287 em->block_start = EXTENT_MAP_DELALLOC;
7288 em->block_len = found;
7289 }
bf8d32b9 7290 } else {
ec29ed5b
CM
7291 return hole_em;
7292 }
7293out:
7294
7295 free_extent_map(hole_em);
7296 if (err) {
7297 free_extent_map(em);
7298 return ERR_PTR(err);
7299 }
7300 return em;
7301}
7302
5f9a8a51
FM
7303static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7304 const u64 start,
7305 const u64 len,
7306 const u64 orig_start,
7307 const u64 block_start,
7308 const u64 block_len,
7309 const u64 orig_block_len,
7310 const u64 ram_bytes,
7311 const int type)
7312{
7313 struct extent_map *em = NULL;
7314 int ret;
7315
5f9a8a51 7316 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7317 em = create_io_em(inode, start, len, orig_start,
7318 block_start, block_len, orig_block_len,
7319 ram_bytes,
7320 BTRFS_COMPRESS_NONE, /* compress_type */
7321 type);
5f9a8a51
FM
7322 if (IS_ERR(em))
7323 goto out;
7324 }
7325 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7326 len, block_len, type);
7327 if (ret) {
7328 if (em) {
7329 free_extent_map(em);
dcdbc059 7330 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7331 start + len - 1, 0);
7332 }
7333 em = ERR_PTR(ret);
7334 }
7335 out:
5f9a8a51
FM
7336
7337 return em;
7338}
7339
4b46fce2
JB
7340static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7341 u64 start, u64 len)
7342{
0b246afa 7343 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7344 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7345 struct extent_map *em;
4b46fce2
JB
7346 struct btrfs_key ins;
7347 u64 alloc_hint;
7348 int ret;
4b46fce2 7349
4b46fce2 7350 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7351 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7352 0, alloc_hint, &ins, 1, 1);
00361589
JB
7353 if (ret)
7354 return ERR_PTR(ret);
4b46fce2 7355
5f9a8a51
FM
7356 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7357 ins.objectid, ins.offset, ins.offset,
6288d6ea 7358 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7359 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7360 if (IS_ERR(em))
2ff7e61e
JM
7361 btrfs_free_reserved_extent(fs_info, ins.objectid,
7362 ins.offset, 1);
de0ee0ed 7363
4b46fce2
JB
7364 return em;
7365}
7366
46bfbb5c
CM
7367/*
7368 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7369 * block must be cow'd
7370 */
00361589 7371noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7372 u64 *orig_start, u64 *orig_block_len,
7373 u64 *ram_bytes)
46bfbb5c 7374{
2ff7e61e 7375 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7376 struct btrfs_path *path;
7377 int ret;
7378 struct extent_buffer *leaf;
7379 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7380 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7381 struct btrfs_file_extent_item *fi;
7382 struct btrfs_key key;
7383 u64 disk_bytenr;
7384 u64 backref_offset;
7385 u64 extent_end;
7386 u64 num_bytes;
7387 int slot;
7388 int found_type;
7ee9e440 7389 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7390
46bfbb5c
CM
7391 path = btrfs_alloc_path();
7392 if (!path)
7393 return -ENOMEM;
7394
f85b7379
DS
7395 ret = btrfs_lookup_file_extent(NULL, root, path,
7396 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7397 if (ret < 0)
7398 goto out;
7399
7400 slot = path->slots[0];
7401 if (ret == 1) {
7402 if (slot == 0) {
7403 /* can't find the item, must cow */
7404 ret = 0;
7405 goto out;
7406 }
7407 slot--;
7408 }
7409 ret = 0;
7410 leaf = path->nodes[0];
7411 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7412 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7413 key.type != BTRFS_EXTENT_DATA_KEY) {
7414 /* not our file or wrong item type, must cow */
7415 goto out;
7416 }
7417
7418 if (key.offset > offset) {
7419 /* Wrong offset, must cow */
7420 goto out;
7421 }
7422
7423 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7424 found_type = btrfs_file_extent_type(leaf, fi);
7425 if (found_type != BTRFS_FILE_EXTENT_REG &&
7426 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7427 /* not a regular extent, must cow */
7428 goto out;
7429 }
7ee9e440
JB
7430
7431 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7432 goto out;
7433
e77751aa
MX
7434 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7435 if (extent_end <= offset)
7436 goto out;
7437
46bfbb5c 7438 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7439 if (disk_bytenr == 0)
7440 goto out;
7441
7442 if (btrfs_file_extent_compression(leaf, fi) ||
7443 btrfs_file_extent_encryption(leaf, fi) ||
7444 btrfs_file_extent_other_encoding(leaf, fi))
7445 goto out;
7446
46bfbb5c
CM
7447 backref_offset = btrfs_file_extent_offset(leaf, fi);
7448
7ee9e440
JB
7449 if (orig_start) {
7450 *orig_start = key.offset - backref_offset;
7451 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7452 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7453 }
eb384b55 7454
2ff7e61e 7455 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7456 goto out;
7b2b7085
MX
7457
7458 num_bytes = min(offset + *len, extent_end) - offset;
7459 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7460 u64 range_end;
7461
da17066c
JM
7462 range_end = round_up(offset + num_bytes,
7463 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7464 ret = test_range_bit(io_tree, offset, range_end,
7465 EXTENT_DELALLOC, 0, NULL);
7466 if (ret) {
7467 ret = -EAGAIN;
7468 goto out;
7469 }
7470 }
7471
1bda19eb 7472 btrfs_release_path(path);
46bfbb5c
CM
7473
7474 /*
7475 * look for other files referencing this extent, if we
7476 * find any we must cow
7477 */
00361589 7478
e4c3b2dc 7479 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7480 key.offset - backref_offset, disk_bytenr);
00361589
JB
7481 if (ret) {
7482 ret = 0;
7483 goto out;
7484 }
46bfbb5c
CM
7485
7486 /*
7487 * adjust disk_bytenr and num_bytes to cover just the bytes
7488 * in this extent we are about to write. If there
7489 * are any csums in that range we have to cow in order
7490 * to keep the csums correct
7491 */
7492 disk_bytenr += backref_offset;
7493 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7494 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7495 goto out;
46bfbb5c
CM
7496 /*
7497 * all of the above have passed, it is safe to overwrite this extent
7498 * without cow
7499 */
eb384b55 7500 *len = num_bytes;
46bfbb5c
CM
7501 ret = 1;
7502out:
7503 btrfs_free_path(path);
7504 return ret;
7505}
7506
eb838e73
JB
7507static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7508 struct extent_state **cached_state, int writing)
7509{
7510 struct btrfs_ordered_extent *ordered;
7511 int ret = 0;
7512
7513 while (1) {
7514 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7515 cached_state);
eb838e73
JB
7516 /*
7517 * We're concerned with the entire range that we're going to be
01327610 7518 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7519 * extents in this range.
7520 */
a776c6fa 7521 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7522 lockend - lockstart + 1);
7523
7524 /*
7525 * We need to make sure there are no buffered pages in this
7526 * range either, we could have raced between the invalidate in
7527 * generic_file_direct_write and locking the extent. The
7528 * invalidate needs to happen so that reads after a write do not
7529 * get stale data.
7530 */
fc4adbff 7531 if (!ordered &&
051c98eb
DS
7532 (!writing || !filemap_range_has_page(inode->i_mapping,
7533 lockstart, lockend)))
eb838e73
JB
7534 break;
7535
7536 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 7537 cached_state);
eb838e73
JB
7538
7539 if (ordered) {
ade77029
FM
7540 /*
7541 * If we are doing a DIO read and the ordered extent we
7542 * found is for a buffered write, we can not wait for it
7543 * to complete and retry, because if we do so we can
7544 * deadlock with concurrent buffered writes on page
7545 * locks. This happens only if our DIO read covers more
7546 * than one extent map, if at this point has already
7547 * created an ordered extent for a previous extent map
7548 * and locked its range in the inode's io tree, and a
7549 * concurrent write against that previous extent map's
7550 * range and this range started (we unlock the ranges
7551 * in the io tree only when the bios complete and
7552 * buffered writes always lock pages before attempting
7553 * to lock range in the io tree).
7554 */
7555 if (writing ||
7556 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7557 btrfs_start_ordered_extent(inode, ordered, 1);
7558 else
7559 ret = -ENOTBLK;
eb838e73
JB
7560 btrfs_put_ordered_extent(ordered);
7561 } else {
eb838e73 7562 /*
b850ae14
FM
7563 * We could trigger writeback for this range (and wait
7564 * for it to complete) and then invalidate the pages for
7565 * this range (through invalidate_inode_pages2_range()),
7566 * but that can lead us to a deadlock with a concurrent
7567 * call to readpages() (a buffered read or a defrag call
7568 * triggered a readahead) on a page lock due to an
7569 * ordered dio extent we created before but did not have
7570 * yet a corresponding bio submitted (whence it can not
7571 * complete), which makes readpages() wait for that
7572 * ordered extent to complete while holding a lock on
7573 * that page.
eb838e73 7574 */
b850ae14 7575 ret = -ENOTBLK;
eb838e73
JB
7576 }
7577
ade77029
FM
7578 if (ret)
7579 break;
7580
eb838e73
JB
7581 cond_resched();
7582 }
7583
7584 return ret;
7585}
7586
6f9994db
LB
7587/* The callers of this must take lock_extent() */
7588static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7589 u64 orig_start, u64 block_start,
7590 u64 block_len, u64 orig_block_len,
7591 u64 ram_bytes, int compress_type,
7592 int type)
69ffb543
JB
7593{
7594 struct extent_map_tree *em_tree;
7595 struct extent_map *em;
7596 struct btrfs_root *root = BTRFS_I(inode)->root;
7597 int ret;
7598
6f9994db
LB
7599 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7600 type == BTRFS_ORDERED_COMPRESSED ||
7601 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7602 type == BTRFS_ORDERED_REGULAR);
6f9994db 7603
69ffb543
JB
7604 em_tree = &BTRFS_I(inode)->extent_tree;
7605 em = alloc_extent_map();
7606 if (!em)
7607 return ERR_PTR(-ENOMEM);
7608
7609 em->start = start;
7610 em->orig_start = orig_start;
7611 em->len = len;
7612 em->block_len = block_len;
7613 em->block_start = block_start;
7614 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7615 em->orig_block_len = orig_block_len;
cc95bef6 7616 em->ram_bytes = ram_bytes;
70c8a91c 7617 em->generation = -1;
69ffb543 7618 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7619 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7620 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7621 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7622 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7623 em->compress_type = compress_type;
7624 }
69ffb543
JB
7625
7626 do {
dcdbc059 7627 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7628 em->start + em->len - 1, 0);
7629 write_lock(&em_tree->lock);
09a2a8f9 7630 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7631 write_unlock(&em_tree->lock);
6f9994db
LB
7632 /*
7633 * The caller has taken lock_extent(), who could race with us
7634 * to add em?
7635 */
69ffb543
JB
7636 } while (ret == -EEXIST);
7637
7638 if (ret) {
7639 free_extent_map(em);
7640 return ERR_PTR(ret);
7641 }
7642
6f9994db 7643 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7644 return em;
7645}
7646
4b46fce2
JB
7647static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7648 struct buffer_head *bh_result, int create)
7649{
0b246afa 7650 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7651 struct extent_map *em;
eb838e73 7652 struct extent_state *cached_state = NULL;
50745b0a 7653 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7654 u64 start = iblock << inode->i_blkbits;
eb838e73 7655 u64 lockstart, lockend;
4b46fce2 7656 u64 len = bh_result->b_size;
eb838e73 7657 int unlock_bits = EXTENT_LOCKED;
0934856d 7658 int ret = 0;
eb838e73 7659
172a5049 7660 if (create)
3266789f 7661 unlock_bits |= EXTENT_DIRTY;
172a5049 7662 else
0b246afa 7663 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7664
c329861d
JB
7665 lockstart = start;
7666 lockend = start + len - 1;
7667
e1cbbfa5
JB
7668 if (current->journal_info) {
7669 /*
7670 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7671 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7672 * confused.
7673 */
50745b0a 7674 dio_data = current->journal_info;
e1cbbfa5
JB
7675 current->journal_info = NULL;
7676 }
7677
eb838e73
JB
7678 /*
7679 * If this errors out it's because we couldn't invalidate pagecache for
7680 * this range and we need to fallback to buffered.
7681 */
9c9464cc
FM
7682 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7683 create)) {
7684 ret = -ENOTBLK;
7685 goto err;
7686 }
eb838e73 7687
fc4f21b1 7688 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7689 if (IS_ERR(em)) {
7690 ret = PTR_ERR(em);
7691 goto unlock_err;
7692 }
4b46fce2
JB
7693
7694 /*
7695 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7696 * io. INLINE is special, and we could probably kludge it in here, but
7697 * it's still buffered so for safety lets just fall back to the generic
7698 * buffered path.
7699 *
7700 * For COMPRESSED we _have_ to read the entire extent in so we can
7701 * decompress it, so there will be buffering required no matter what we
7702 * do, so go ahead and fallback to buffered.
7703 *
01327610 7704 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7705 * to buffered IO. Don't blame me, this is the price we pay for using
7706 * the generic code.
7707 */
7708 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7709 em->block_start == EXTENT_MAP_INLINE) {
7710 free_extent_map(em);
eb838e73
JB
7711 ret = -ENOTBLK;
7712 goto unlock_err;
4b46fce2
JB
7713 }
7714
7715 /* Just a good old fashioned hole, return */
7716 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7717 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7718 free_extent_map(em);
eb838e73 7719 goto unlock_err;
4b46fce2
JB
7720 }
7721
7722 /*
7723 * We don't allocate a new extent in the following cases
7724 *
7725 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7726 * existing extent.
7727 * 2) The extent is marked as PREALLOC. We're good to go here and can
7728 * just use the extent.
7729 *
7730 */
46bfbb5c 7731 if (!create) {
eb838e73
JB
7732 len = min(len, em->len - (start - em->start));
7733 lockstart = start + len;
7734 goto unlock;
46bfbb5c 7735 }
4b46fce2
JB
7736
7737 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7738 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7739 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7740 int type;
eb384b55 7741 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7742
7743 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7744 type = BTRFS_ORDERED_PREALLOC;
7745 else
7746 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7747 len = min(len, em->len - (start - em->start));
4b46fce2 7748 block_start = em->block_start + (start - em->start);
46bfbb5c 7749
00361589 7750 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c 7751 &orig_block_len, &ram_bytes) == 1 &&
0b246afa 7752 btrfs_inc_nocow_writers(fs_info, block_start)) {
5f9a8a51 7753 struct extent_map *em2;
0b901916 7754
5f9a8a51
FM
7755 em2 = btrfs_create_dio_extent(inode, start, len,
7756 orig_start, block_start,
7757 len, orig_block_len,
7758 ram_bytes, type);
0b246afa 7759 btrfs_dec_nocow_writers(fs_info, block_start);
69ffb543
JB
7760 if (type == BTRFS_ORDERED_PREALLOC) {
7761 free_extent_map(em);
5f9a8a51 7762 em = em2;
69ffb543 7763 }
5f9a8a51
FM
7764 if (em2 && IS_ERR(em2)) {
7765 ret = PTR_ERR(em2);
eb838e73 7766 goto unlock_err;
46bfbb5c 7767 }
18513091
WX
7768 /*
7769 * For inode marked NODATACOW or extent marked PREALLOC,
7770 * use the existing or preallocated extent, so does not
7771 * need to adjust btrfs_space_info's bytes_may_use.
7772 */
7773 btrfs_free_reserved_data_space_noquota(inode,
7774 start, len);
46bfbb5c 7775 goto unlock;
4b46fce2 7776 }
4b46fce2 7777 }
00361589 7778
46bfbb5c
CM
7779 /*
7780 * this will cow the extent, reset the len in case we changed
7781 * it above
7782 */
7783 len = bh_result->b_size;
70c8a91c
JB
7784 free_extent_map(em);
7785 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7786 if (IS_ERR(em)) {
7787 ret = PTR_ERR(em);
7788 goto unlock_err;
7789 }
46bfbb5c
CM
7790 len = min(len, em->len - (start - em->start));
7791unlock:
4b46fce2
JB
7792 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7793 inode->i_blkbits;
46bfbb5c 7794 bh_result->b_size = len;
4b46fce2
JB
7795 bh_result->b_bdev = em->bdev;
7796 set_buffer_mapped(bh_result);
c3473e83
JB
7797 if (create) {
7798 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7799 set_buffer_new(bh_result);
7800
7801 /*
7802 * Need to update the i_size under the extent lock so buffered
7803 * readers will get the updated i_size when we unlock.
7804 */
4aaedfb0 7805 if (!dio_data->overwrite && start + len > i_size_read(inode))
c3473e83 7806 i_size_write(inode, start + len);
0934856d 7807
50745b0a 7808 WARN_ON(dio_data->reserve < len);
7809 dio_data->reserve -= len;
f28a4928 7810 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7811 current->journal_info = dio_data;
c3473e83 7812 }
4b46fce2 7813
eb838e73
JB
7814 /*
7815 * In the case of write we need to clear and unlock the entire range,
7816 * in the case of read we need to unlock only the end area that we
7817 * aren't using if there is any left over space.
7818 */
24c03fa5 7819 if (lockstart < lockend) {
0934856d
MX
7820 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7821 lockend, unlock_bits, 1, 0,
ae0f1625 7822 &cached_state);
24c03fa5 7823 } else {
eb838e73 7824 free_extent_state(cached_state);
24c03fa5 7825 }
eb838e73 7826
4b46fce2
JB
7827 free_extent_map(em);
7828
7829 return 0;
eb838e73
JB
7830
7831unlock_err:
eb838e73 7832 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ae0f1625 7833 unlock_bits, 1, 0, &cached_state);
9c9464cc 7834err:
50745b0a 7835 if (dio_data)
7836 current->journal_info = dio_data;
eb838e73 7837 return ret;
4b46fce2
JB
7838}
7839
58efbc9f
OS
7840static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7841 struct bio *bio,
7842 int mirror_num)
8b110e39 7843{
2ff7e61e 7844 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7845 blk_status_t ret;
8b110e39 7846
37226b21 7847 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7848
2ff7e61e 7849 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39 7850 if (ret)
ea057f6d 7851 return ret;
8b110e39 7852
2ff7e61e 7853 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
ea057f6d 7854
8b110e39
MX
7855 return ret;
7856}
7857
7858static int btrfs_check_dio_repairable(struct inode *inode,
7859 struct bio *failed_bio,
7860 struct io_failure_record *failrec,
7861 int failed_mirror)
7862{
ab8d0fc4 7863 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7864 int num_copies;
7865
ab8d0fc4 7866 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7867 if (num_copies == 1) {
7868 /*
7869 * we only have a single copy of the data, so don't bother with
7870 * all the retry and error correction code that follows. no
7871 * matter what the error is, it is very likely to persist.
7872 */
ab8d0fc4
JM
7873 btrfs_debug(fs_info,
7874 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7875 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7876 return 0;
7877 }
7878
7879 failrec->failed_mirror = failed_mirror;
7880 failrec->this_mirror++;
7881 if (failrec->this_mirror == failed_mirror)
7882 failrec->this_mirror++;
7883
7884 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7885 btrfs_debug(fs_info,
7886 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7887 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7888 return 0;
7889 }
7890
7891 return 1;
7892}
7893
58efbc9f
OS
7894static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7895 struct page *page, unsigned int pgoff,
7896 u64 start, u64 end, int failed_mirror,
7897 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7898{
7899 struct io_failure_record *failrec;
7870d082
JB
7900 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7901 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8b110e39
MX
7902 struct bio *bio;
7903 int isector;
f1c77c55 7904 unsigned int read_mode = 0;
17347cec 7905 int segs;
8b110e39 7906 int ret;
58efbc9f 7907 blk_status_t status;
c16a8ac3 7908 struct bio_vec bvec;
8b110e39 7909
37226b21 7910 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7911
7912 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7913 if (ret)
58efbc9f 7914 return errno_to_blk_status(ret);
8b110e39
MX
7915
7916 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7917 failed_mirror);
7918 if (!ret) {
7870d082 7919 free_io_failure(failure_tree, io_tree, failrec);
58efbc9f 7920 return BLK_STS_IOERR;
8b110e39
MX
7921 }
7922
17347cec 7923 segs = bio_segments(failed_bio);
c16a8ac3 7924 bio_get_first_bvec(failed_bio, &bvec);
17347cec 7925 if (segs > 1 ||
c16a8ac3 7926 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
70fd7614 7927 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
7928
7929 isector = start - btrfs_io_bio(failed_bio)->logical;
7930 isector >>= inode->i_sb->s_blocksize_bits;
7931 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7932 pgoff, isector, repair_endio, repair_arg);
37226b21 7933 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
7934
7935 btrfs_debug(BTRFS_I(inode)->root->fs_info,
913e1535 7936 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8b110e39
MX
7937 read_mode, failrec->this_mirror, failrec->in_validation);
7938
58efbc9f
OS
7939 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7940 if (status) {
7870d082 7941 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
7942 bio_put(bio);
7943 }
7944
58efbc9f 7945 return status;
8b110e39
MX
7946}
7947
7948struct btrfs_retry_complete {
7949 struct completion done;
7950 struct inode *inode;
7951 u64 start;
7952 int uptodate;
7953};
7954
4246a0b6 7955static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7956{
7957 struct btrfs_retry_complete *done = bio->bi_private;
7870d082 7958 struct inode *inode = done->inode;
8b110e39 7959 struct bio_vec *bvec;
7870d082 7960 struct extent_io_tree *io_tree, *failure_tree;
8b110e39
MX
7961 int i;
7962
4e4cbee9 7963 if (bio->bi_status)
8b110e39
MX
7964 goto end;
7965
2dabb324 7966 ASSERT(bio->bi_vcnt == 1);
7870d082
JB
7967 io_tree = &BTRFS_I(inode)->io_tree;
7968 failure_tree = &BTRFS_I(inode)->io_failure_tree;
263663cd 7969 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 7970
8b110e39 7971 done->uptodate = 1;
c09abff8 7972 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 7973 bio_for_each_segment_all(bvec, bio, i)
7870d082
JB
7974 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7975 io_tree, done->start, bvec->bv_page,
7976 btrfs_ino(BTRFS_I(inode)), 0);
8b110e39
MX
7977end:
7978 complete(&done->done);
7979 bio_put(bio);
7980}
7981
58efbc9f
OS
7982static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7983 struct btrfs_io_bio *io_bio)
4b46fce2 7984{
2dabb324 7985 struct btrfs_fs_info *fs_info;
17347cec
LB
7986 struct bio_vec bvec;
7987 struct bvec_iter iter;
8b110e39 7988 struct btrfs_retry_complete done;
4b46fce2 7989 u64 start;
2dabb324
CR
7990 unsigned int pgoff;
7991 u32 sectorsize;
7992 int nr_sectors;
58efbc9f
OS
7993 blk_status_t ret;
7994 blk_status_t err = BLK_STS_OK;
4b46fce2 7995
2dabb324 7996 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 7997 sectorsize = fs_info->sectorsize;
2dabb324 7998
8b110e39
MX
7999 start = io_bio->logical;
8000 done.inode = inode;
17347cec 8001 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8002
17347cec
LB
8003 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8004 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8005 pgoff = bvec.bv_offset;
2dabb324
CR
8006
8007next_block_or_try_again:
8b110e39
MX
8008 done.uptodate = 0;
8009 done.start = start;
8010 init_completion(&done.done);
8011
17347cec 8012 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
8013 pgoff, start, start + sectorsize - 1,
8014 io_bio->mirror_num,
8015 btrfs_retry_endio_nocsum, &done);
629ebf4f
LB
8016 if (ret) {
8017 err = ret;
8018 goto next;
8019 }
8b110e39 8020
9c17f6cd 8021 wait_for_completion_io(&done.done);
8b110e39
MX
8022
8023 if (!done.uptodate) {
8024 /* We might have another mirror, so try again */
2dabb324 8025 goto next_block_or_try_again;
8b110e39
MX
8026 }
8027
629ebf4f 8028next:
2dabb324
CR
8029 start += sectorsize;
8030
97bf5a55
LB
8031 nr_sectors--;
8032 if (nr_sectors) {
2dabb324 8033 pgoff += sectorsize;
97bf5a55 8034 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8035 goto next_block_or_try_again;
8036 }
8b110e39
MX
8037 }
8038
629ebf4f 8039 return err;
8b110e39
MX
8040}
8041
4246a0b6 8042static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
8043{
8044 struct btrfs_retry_complete *done = bio->bi_private;
8045 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082
JB
8046 struct extent_io_tree *io_tree, *failure_tree;
8047 struct inode *inode = done->inode;
8b110e39
MX
8048 struct bio_vec *bvec;
8049 int uptodate;
8050 int ret;
8051 int i;
8052
4e4cbee9 8053 if (bio->bi_status)
8b110e39
MX
8054 goto end;
8055
8056 uptodate = 1;
2dabb324 8057
2dabb324 8058 ASSERT(bio->bi_vcnt == 1);
263663cd 8059 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 8060
7870d082
JB
8061 io_tree = &BTRFS_I(inode)->io_tree;
8062 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8063
c09abff8 8064 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 8065 bio_for_each_segment_all(bvec, bio, i) {
7870d082
JB
8066 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8067 bvec->bv_offset, done->start,
8068 bvec->bv_len);
8b110e39 8069 if (!ret)
7870d082
JB
8070 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8071 failure_tree, io_tree, done->start,
8072 bvec->bv_page,
8073 btrfs_ino(BTRFS_I(inode)),
8074 bvec->bv_offset);
8b110e39
MX
8075 else
8076 uptodate = 0;
8077 }
8078
8079 done->uptodate = uptodate;
8080end:
8081 complete(&done->done);
8082 bio_put(bio);
8083}
8084
4e4cbee9
CH
8085static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8086 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39 8087{
2dabb324 8088 struct btrfs_fs_info *fs_info;
17347cec
LB
8089 struct bio_vec bvec;
8090 struct bvec_iter iter;
8b110e39
MX
8091 struct btrfs_retry_complete done;
8092 u64 start;
8093 u64 offset = 0;
2dabb324
CR
8094 u32 sectorsize;
8095 int nr_sectors;
8096 unsigned int pgoff;
8097 int csum_pos;
ef7cdac1 8098 bool uptodate = (err == 0);
8b110e39 8099 int ret;
58efbc9f 8100 blk_status_t status;
dc380aea 8101
2dabb324 8102 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8103 sectorsize = fs_info->sectorsize;
2dabb324 8104
58efbc9f 8105 err = BLK_STS_OK;
c1dc0896 8106 start = io_bio->logical;
8b110e39 8107 done.inode = inode;
17347cec 8108 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8109
17347cec
LB
8110 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8111 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
2dabb324 8112
17347cec 8113 pgoff = bvec.bv_offset;
2dabb324 8114next_block:
ef7cdac1
LB
8115 if (uptodate) {
8116 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8117 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8118 bvec.bv_page, pgoff, start, sectorsize);
8119 if (likely(!ret))
8120 goto next;
8121 }
8b110e39
MX
8122try_again:
8123 done.uptodate = 0;
8124 done.start = start;
8125 init_completion(&done.done);
8126
58efbc9f
OS
8127 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8128 pgoff, start, start + sectorsize - 1,
8129 io_bio->mirror_num, btrfs_retry_endio,
8130 &done);
8131 if (status) {
8132 err = status;
8b110e39
MX
8133 goto next;
8134 }
8135
9c17f6cd 8136 wait_for_completion_io(&done.done);
8b110e39
MX
8137
8138 if (!done.uptodate) {
8139 /* We might have another mirror, so try again */
8140 goto try_again;
8141 }
8142next:
2dabb324
CR
8143 offset += sectorsize;
8144 start += sectorsize;
8145
8146 ASSERT(nr_sectors);
8147
97bf5a55
LB
8148 nr_sectors--;
8149 if (nr_sectors) {
2dabb324 8150 pgoff += sectorsize;
97bf5a55 8151 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8152 goto next_block;
8153 }
2c30c71b 8154 }
c1dc0896
MX
8155
8156 return err;
8157}
8158
4e4cbee9
CH
8159static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8160 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39
MX
8161{
8162 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8163
8164 if (skip_csum) {
8165 if (unlikely(err))
8166 return __btrfs_correct_data_nocsum(inode, io_bio);
8167 else
58efbc9f 8168 return BLK_STS_OK;
8b110e39
MX
8169 } else {
8170 return __btrfs_subio_endio_read(inode, io_bio, err);
8171 }
8172}
8173
4246a0b6 8174static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8175{
8176 struct btrfs_dio_private *dip = bio->bi_private;
8177 struct inode *inode = dip->inode;
8178 struct bio *dio_bio;
8179 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4e4cbee9 8180 blk_status_t err = bio->bi_status;
c1dc0896 8181
99c4e3b9 8182 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8b110e39 8183 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8184
4b46fce2 8185 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8186 dip->logical_offset + dip->bytes - 1);
9be3395b 8187 dio_bio = dip->dio_bio;
4b46fce2 8188
4b46fce2 8189 kfree(dip);
c0da7aa1 8190
99c4e3b9 8191 dio_bio->bi_status = err;
4055351c 8192 dio_end_io(dio_bio);
23ea8e5a
MX
8193
8194 if (io_bio->end_io)
4e4cbee9 8195 io_bio->end_io(io_bio, blk_status_to_errno(err));
9be3395b 8196 bio_put(bio);
4b46fce2
JB
8197}
8198
52427260
QW
8199static void __endio_write_update_ordered(struct inode *inode,
8200 const u64 offset, const u64 bytes,
8201 const bool uptodate)
4b46fce2 8202{
0b246afa 8203 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8204 struct btrfs_ordered_extent *ordered = NULL;
52427260
QW
8205 struct btrfs_workqueue *wq;
8206 btrfs_work_func_t func;
14543774
FM
8207 u64 ordered_offset = offset;
8208 u64 ordered_bytes = bytes;
67c003f9 8209 u64 last_offset;
4b46fce2 8210
52427260
QW
8211 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8212 wq = fs_info->endio_freespace_worker;
8213 func = btrfs_freespace_write_helper;
8214 } else {
8215 wq = fs_info->endio_write_workers;
8216 func = btrfs_endio_write_helper;
8217 }
8218
b25f0d00
NB
8219 while (ordered_offset < offset + bytes) {
8220 last_offset = ordered_offset;
8221 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8222 &ordered_offset,
8223 ordered_bytes,
8224 uptodate)) {
8225 btrfs_init_work(&ordered->work, func,
8226 finish_ordered_fn,
8227 NULL, NULL);
8228 btrfs_queue_work(wq, &ordered->work);
8229 }
8230 /*
8231 * If btrfs_dec_test_ordered_pending does not find any ordered
8232 * extent in the range, we can exit.
8233 */
8234 if (ordered_offset == last_offset)
8235 return;
8236 /*
8237 * Our bio might span multiple ordered extents. In this case
8238 * we keep goin until we have accounted the whole dio.
8239 */
8240 if (ordered_offset < offset + bytes) {
8241 ordered_bytes = offset + bytes - ordered_offset;
8242 ordered = NULL;
8243 }
163cf09c 8244 }
14543774
FM
8245}
8246
8247static void btrfs_endio_direct_write(struct bio *bio)
8248{
8249 struct btrfs_dio_private *dip = bio->bi_private;
8250 struct bio *dio_bio = dip->dio_bio;
8251
52427260 8252 __endio_write_update_ordered(dip->inode, dip->logical_offset,
4e4cbee9 8253 dip->bytes, !bio->bi_status);
4b46fce2 8254
4b46fce2 8255 kfree(dip);
c0da7aa1 8256
4e4cbee9 8257 dio_bio->bi_status = bio->bi_status;
4055351c 8258 dio_end_io(dio_bio);
9be3395b 8259 bio_put(bio);
4b46fce2
JB
8260}
8261
d0ee3934 8262static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
d0779291 8263 struct bio *bio, u64 offset)
eaf25d93 8264{
c6100a4b 8265 struct inode *inode = private_data;
4e4cbee9 8266 blk_status_t ret;
2ff7e61e 8267 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8268 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8269 return 0;
8270}
8271
4246a0b6 8272static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8273{
8274 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 8275 blk_status_t err = bio->bi_status;
e65e1535 8276
8b110e39
MX
8277 if (err)
8278 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8279 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8280 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8281 bio->bi_opf,
8b110e39
MX
8282 (unsigned long long)bio->bi_iter.bi_sector,
8283 bio->bi_iter.bi_size, err);
8284
8285 if (dip->subio_endio)
8286 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8287
8288 if (err) {
e65e1535 8289 /*
de224b7c
NB
8290 * We want to perceive the errors flag being set before
8291 * decrementing the reference count. We don't need a barrier
8292 * since atomic operations with a return value are fully
8293 * ordered as per atomic_t.txt
e65e1535 8294 */
de224b7c 8295 dip->errors = 1;
e65e1535
MX
8296 }
8297
8298 /* if there are more bios still pending for this dio, just exit */
8299 if (!atomic_dec_and_test(&dip->pending_bios))
8300 goto out;
8301
9be3395b 8302 if (dip->errors) {
e65e1535 8303 bio_io_error(dip->orig_bio);
9be3395b 8304 } else {
2dbe0c77 8305 dip->dio_bio->bi_status = BLK_STS_OK;
4246a0b6 8306 bio_endio(dip->orig_bio);
e65e1535
MX
8307 }
8308out:
8309 bio_put(bio);
8310}
8311
4e4cbee9 8312static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8313 struct btrfs_dio_private *dip,
8314 struct bio *bio,
8315 u64 file_offset)
8316{
8317 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8318 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
4e4cbee9 8319 blk_status_t ret;
c1dc0896
MX
8320
8321 /*
8322 * We load all the csum data we need when we submit
8323 * the first bio to reduce the csum tree search and
8324 * contention.
8325 */
8326 if (dip->logical_offset == file_offset) {
2ff7e61e 8327 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8328 file_offset);
8329 if (ret)
8330 return ret;
8331 }
8332
8333 if (bio == dip->orig_bio)
8334 return 0;
8335
8336 file_offset -= dip->logical_offset;
8337 file_offset >>= inode->i_sb->s_blocksize_bits;
8338 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8339
8340 return 0;
8341}
8342
d0ee3934
DS
8343static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8344 struct inode *inode, u64 file_offset, int async_submit)
e65e1535 8345{
0b246afa 8346 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8347 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8348 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 8349 blk_status_t ret;
e65e1535 8350
4c274bc6 8351 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
8352 if (async_submit)
8353 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8354
5fd02043 8355 if (!write) {
0b246afa 8356 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8357 if (ret)
8358 goto err;
8359 }
e65e1535 8360
e6961cac 8361 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
8362 goto map;
8363
8364 if (write && async_submit) {
c6100a4b
JB
8365 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8366 file_offset, inode,
d0ee3934
DS
8367 btrfs_submit_bio_start_direct_io,
8368 btrfs_submit_bio_done);
e65e1535 8369 goto err;
1ae39938
JB
8370 } else if (write) {
8371 /*
8372 * If we aren't doing async submit, calculate the csum of the
8373 * bio now.
8374 */
2ff7e61e 8375 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8376 if (ret)
8377 goto err;
23ea8e5a 8378 } else {
2ff7e61e 8379 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8380 file_offset);
c2db1073
TI
8381 if (ret)
8382 goto err;
8383 }
1ae39938 8384map:
9b4a9b28 8385 ret = btrfs_map_bio(fs_info, bio, 0, 0);
e65e1535 8386err:
e65e1535
MX
8387 return ret;
8388}
8389
e6961cac 8390static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
e65e1535
MX
8391{
8392 struct inode *inode = dip->inode;
0b246afa 8393 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535
MX
8394 struct bio *bio;
8395 struct bio *orig_bio = dip->orig_bio;
4f024f37 8396 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535 8397 u64 file_offset = dip->logical_offset;
e65e1535 8398 u64 map_length;
1ae39938 8399 int async_submit = 0;
725130ba
LB
8400 u64 submit_len;
8401 int clone_offset = 0;
8402 int clone_len;
5f4dc8fc 8403 int ret;
58efbc9f 8404 blk_status_t status;
e65e1535 8405
4f024f37 8406 map_length = orig_bio->bi_iter.bi_size;
725130ba 8407 submit_len = map_length;
0b246afa
JM
8408 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8409 &map_length, NULL, 0);
7a5c3c9b 8410 if (ret)
e65e1535 8411 return -EIO;
facc8a22 8412
725130ba 8413 if (map_length >= submit_len) {
02f57c7a 8414 bio = orig_bio;
c1dc0896 8415 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8416 goto submit;
8417 }
8418
53b381b3 8419 /* async crcs make it difficult to collect full stripe writes. */
1b86826d 8420 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8421 async_submit = 0;
8422 else
8423 async_submit = 1;
8424
725130ba
LB
8425 /* bio split */
8426 ASSERT(map_length <= INT_MAX);
02f57c7a 8427 atomic_inc(&dip->pending_bios);
3c91ee69 8428 do {
725130ba 8429 clone_len = min_t(int, submit_len, map_length);
02f57c7a 8430
725130ba
LB
8431 /*
8432 * This will never fail as it's passing GPF_NOFS and
8433 * the allocation is backed by btrfs_bioset.
8434 */
e477094f 8435 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
725130ba
LB
8436 clone_len);
8437 bio->bi_private = dip;
8438 bio->bi_end_io = btrfs_end_dio_bio;
8439 btrfs_io_bio(bio)->logical = file_offset;
8440
8441 ASSERT(submit_len >= clone_len);
8442 submit_len -= clone_len;
8443 if (submit_len == 0)
8444 break;
e65e1535 8445
725130ba
LB
8446 /*
8447 * Increase the count before we submit the bio so we know
8448 * the end IO handler won't happen before we increase the
8449 * count. Otherwise, the dip might get freed before we're
8450 * done setting it up.
8451 */
8452 atomic_inc(&dip->pending_bios);
e65e1535 8453
d0ee3934 8454 status = btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
8455 async_submit);
8456 if (status) {
725130ba
LB
8457 bio_put(bio);
8458 atomic_dec(&dip->pending_bios);
8459 goto out_err;
8460 }
e65e1535 8461
725130ba
LB
8462 clone_offset += clone_len;
8463 start_sector += clone_len >> 9;
8464 file_offset += clone_len;
5f4dc8fc 8465
725130ba
LB
8466 map_length = submit_len;
8467 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8468 start_sector << 9, &map_length, NULL, 0);
8469 if (ret)
8470 goto out_err;
3c91ee69 8471 } while (submit_len > 0);
e65e1535 8472
02f57c7a 8473submit:
d0ee3934 8474 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
58efbc9f 8475 if (!status)
e65e1535
MX
8476 return 0;
8477
8478 bio_put(bio);
8479out_err:
8480 dip->errors = 1;
8481 /*
de224b7c
NB
8482 * Before atomic variable goto zero, we must make sure dip->errors is
8483 * perceived to be set. This ordering is ensured by the fact that an
8484 * atomic operations with a return value are fully ordered as per
8485 * atomic_t.txt
e65e1535 8486 */
e65e1535
MX
8487 if (atomic_dec_and_test(&dip->pending_bios))
8488 bio_io_error(dip->orig_bio);
8489
8490 /* bio_end_io() will handle error, so we needn't return it */
8491 return 0;
8492}
8493
8a4c1e42
MC
8494static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8495 loff_t file_offset)
4b46fce2 8496{
61de718f 8497 struct btrfs_dio_private *dip = NULL;
3892ac90
LB
8498 struct bio *bio = NULL;
8499 struct btrfs_io_bio *io_bio;
8a4c1e42 8500 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8501 int ret = 0;
8502
8b6c1d56 8503 bio = btrfs_bio_clone(dio_bio);
9be3395b 8504
c1dc0896 8505 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8506 if (!dip) {
8507 ret = -ENOMEM;
61de718f 8508 goto free_ordered;
4b46fce2 8509 }
4b46fce2 8510
9be3395b 8511 dip->private = dio_bio->bi_private;
4b46fce2
JB
8512 dip->inode = inode;
8513 dip->logical_offset = file_offset;
4f024f37
KO
8514 dip->bytes = dio_bio->bi_iter.bi_size;
8515 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
3892ac90
LB
8516 bio->bi_private = dip;
8517 dip->orig_bio = bio;
9be3395b 8518 dip->dio_bio = dio_bio;
e65e1535 8519 atomic_set(&dip->pending_bios, 0);
3892ac90
LB
8520 io_bio = btrfs_io_bio(bio);
8521 io_bio->logical = file_offset;
4b46fce2 8522
c1dc0896 8523 if (write) {
3892ac90 8524 bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8525 } else {
3892ac90 8526 bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8527 dip->subio_endio = btrfs_subio_endio_read;
8528 }
4b46fce2 8529
f28a4928
FM
8530 /*
8531 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8532 * even if we fail to submit a bio, because in such case we do the
8533 * corresponding error handling below and it must not be done a second
8534 * time by btrfs_direct_IO().
8535 */
8536 if (write) {
8537 struct btrfs_dio_data *dio_data = current->journal_info;
8538
8539 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8540 dip->bytes;
8541 dio_data->unsubmitted_oe_range_start =
8542 dio_data->unsubmitted_oe_range_end;
8543 }
8544
e6961cac 8545 ret = btrfs_submit_direct_hook(dip);
e65e1535 8546 if (!ret)
eaf25d93 8547 return;
9be3395b 8548
3892ac90
LB
8549 if (io_bio->end_io)
8550 io_bio->end_io(io_bio, ret);
9be3395b 8551
4b46fce2
JB
8552free_ordered:
8553 /*
61de718f
FM
8554 * If we arrived here it means either we failed to submit the dip
8555 * or we either failed to clone the dio_bio or failed to allocate the
8556 * dip. If we cloned the dio_bio and allocated the dip, we can just
8557 * call bio_endio against our io_bio so that we get proper resource
8558 * cleanup if we fail to submit the dip, otherwise, we must do the
8559 * same as btrfs_endio_direct_[write|read] because we can't call these
8560 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8561 */
3892ac90 8562 if (bio && dip) {
054ec2f6 8563 bio_io_error(bio);
61de718f 8564 /*
3892ac90 8565 * The end io callbacks free our dip, do the final put on bio
61de718f
FM
8566 * and all the cleanup and final put for dio_bio (through
8567 * dio_end_io()).
8568 */
8569 dip = NULL;
3892ac90 8570 bio = NULL;
61de718f 8571 } else {
14543774 8572 if (write)
52427260 8573 __endio_write_update_ordered(inode,
14543774
FM
8574 file_offset,
8575 dio_bio->bi_iter.bi_size,
52427260 8576 false);
14543774 8577 else
61de718f
FM
8578 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8579 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8580
4e4cbee9 8581 dio_bio->bi_status = BLK_STS_IOERR;
61de718f
FM
8582 /*
8583 * Releases and cleans up our dio_bio, no need to bio_put()
8584 * nor bio_endio()/bio_io_error() against dio_bio.
8585 */
4055351c 8586 dio_end_io(dio_bio);
4b46fce2 8587 }
3892ac90
LB
8588 if (bio)
8589 bio_put(bio);
61de718f 8590 kfree(dip);
4b46fce2
JB
8591}
8592
2ff7e61e 8593static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
2ff7e61e 8594 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8595{
8596 int seg;
a1b75f7d 8597 int i;
0b246afa 8598 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8599 ssize_t retval = -EINVAL;
5a5f79b5
CM
8600
8601 if (offset & blocksize_mask)
8602 goto out;
8603
28060d5d
AV
8604 if (iov_iter_alignment(iter) & blocksize_mask)
8605 goto out;
a1b75f7d 8606
28060d5d 8607 /* If this is a write we don't need to check anymore */
cd27e455 8608 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8609 return 0;
8610 /*
8611 * Check to make sure we don't have duplicate iov_base's in this
8612 * iovec, if so return EINVAL, otherwise we'll get csum errors
8613 * when reading back.
8614 */
8615 for (seg = 0; seg < iter->nr_segs; seg++) {
8616 for (i = seg + 1; i < iter->nr_segs; i++) {
8617 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8618 goto out;
8619 }
5a5f79b5
CM
8620 }
8621 retval = 0;
8622out:
8623 return retval;
8624}
eb838e73 8625
c8b8e32d 8626static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8627{
4b46fce2
JB
8628 struct file *file = iocb->ki_filp;
8629 struct inode *inode = file->f_mapping->host;
0b246afa 8630 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8631 struct btrfs_dio_data dio_data = { 0 };
364ecf36 8632 struct extent_changeset *data_reserved = NULL;
c8b8e32d 8633 loff_t offset = iocb->ki_pos;
0934856d 8634 size_t count = 0;
2e60a51e 8635 int flags = 0;
38851cc1
MX
8636 bool wakeup = true;
8637 bool relock = false;
0934856d 8638 ssize_t ret;
4b46fce2 8639
8c70c9f8 8640 if (check_direct_IO(fs_info, iter, offset))
5a5f79b5 8641 return 0;
3f7c579c 8642
fe0f07d0 8643 inode_dio_begin(inode);
38851cc1 8644
0e267c44 8645 /*
41bd9ca4
MX
8646 * The generic stuff only does filemap_write_and_wait_range, which
8647 * isn't enough if we've written compressed pages to this area, so
8648 * we need to flush the dirty pages again to make absolutely sure
8649 * that any outstanding dirty pages are on disk.
0e267c44 8650 */
a6cbcd4a 8651 count = iov_iter_count(iter);
41bd9ca4
MX
8652 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8653 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8654 filemap_fdatawrite_range(inode->i_mapping, offset,
8655 offset + count - 1);
0e267c44 8656
6f673763 8657 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8658 /*
8659 * If the write DIO is beyond the EOF, we need update
8660 * the isize, but it is protected by i_mutex. So we can
8661 * not unlock the i_mutex at this case.
8662 */
8663 if (offset + count <= inode->i_size) {
4aaedfb0 8664 dio_data.overwrite = 1;
5955102c 8665 inode_unlock(inode);
38851cc1 8666 relock = true;
edf064e7
GR
8667 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8668 ret = -EAGAIN;
8669 goto out;
38851cc1 8670 }
364ecf36
QW
8671 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8672 offset, count);
0934856d 8673 if (ret)
38851cc1 8674 goto out;
e1cbbfa5
JB
8675
8676 /*
8677 * We need to know how many extents we reserved so that we can
8678 * do the accounting properly if we go over the number we
8679 * originally calculated. Abuse current->journal_info for this.
8680 */
da17066c 8681 dio_data.reserve = round_up(count,
0b246afa 8682 fs_info->sectorsize);
f28a4928
FM
8683 dio_data.unsubmitted_oe_range_start = (u64)offset;
8684 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8685 current->journal_info = &dio_data;
97dcdea0 8686 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8687 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8688 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8689 inode_dio_end(inode);
38851cc1
MX
8690 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8691 wakeup = false;
0934856d
MX
8692 }
8693
17f8c842 8694 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8695 fs_info->fs_devices->latest_bdev,
c8b8e32d 8696 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8697 btrfs_submit_direct, flags);
6f673763 8698 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8699 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8700 current->journal_info = NULL;
ddba1bfc 8701 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8702 if (dio_data.reserve)
bc42bda2 8703 btrfs_delalloc_release_space(inode, data_reserved,
43b18595 8704 offset, dio_data.reserve, true);
f28a4928
FM
8705 /*
8706 * On error we might have left some ordered extents
8707 * without submitting corresponding bios for them, so
8708 * cleanup them up to avoid other tasks getting them
8709 * and waiting for them to complete forever.
8710 */
8711 if (dio_data.unsubmitted_oe_range_start <
8712 dio_data.unsubmitted_oe_range_end)
52427260 8713 __endio_write_update_ordered(inode,
f28a4928
FM
8714 dio_data.unsubmitted_oe_range_start,
8715 dio_data.unsubmitted_oe_range_end -
8716 dio_data.unsubmitted_oe_range_start,
52427260 8717 false);
ddba1bfc 8718 } else if (ret >= 0 && (size_t)ret < count)
bc42bda2 8719 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
8720 offset, count - (size_t)ret, true);
8721 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
0934856d 8722 }
38851cc1 8723out:
2e60a51e 8724 if (wakeup)
fe0f07d0 8725 inode_dio_end(inode);
38851cc1 8726 if (relock)
5955102c 8727 inode_lock(inode);
0934856d 8728
364ecf36 8729 extent_changeset_free(data_reserved);
0934856d 8730 return ret;
16432985
CM
8731}
8732
05dadc09
TI
8733#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8734
1506fcc8
YS
8735static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8736 __u64 start, __u64 len)
8737{
05dadc09
TI
8738 int ret;
8739
8740 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8741 if (ret)
8742 return ret;
8743
2135fb9b 8744 return extent_fiemap(inode, fieinfo, start, len);
1506fcc8
YS
8745}
8746
a52d9a80 8747int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8748{
d1310b2e
CM
8749 struct extent_io_tree *tree;
8750 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8751 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8752}
1832a6d5 8753
a52d9a80 8754static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8755{
be7bd730
JB
8756 struct inode *inode = page->mapping->host;
8757 int ret;
b888db2b
CM
8758
8759 if (current->flags & PF_MEMALLOC) {
8760 redirty_page_for_writepage(wbc, page);
8761 unlock_page(page);
8762 return 0;
8763 }
be7bd730
JB
8764
8765 /*
8766 * If we are under memory pressure we will call this directly from the
8767 * VM, we need to make sure we have the inode referenced for the ordered
8768 * extent. If not just return like we didn't do anything.
8769 */
8770 if (!igrab(inode)) {
8771 redirty_page_for_writepage(wbc, page);
8772 return AOP_WRITEPAGE_ACTIVATE;
8773 }
0a9b0e53 8774 ret = extent_write_full_page(page, wbc);
be7bd730
JB
8775 btrfs_add_delayed_iput(inode);
8776 return ret;
9ebefb18
CM
8777}
8778
48a3b636
ES
8779static int btrfs_writepages(struct address_space *mapping,
8780 struct writeback_control *wbc)
b293f02e 8781{
8ae225a8 8782 return extent_writepages(mapping, wbc);
b293f02e
CM
8783}
8784
3ab2fb5a
CM
8785static int
8786btrfs_readpages(struct file *file, struct address_space *mapping,
8787 struct list_head *pages, unsigned nr_pages)
8788{
2a3ff0ad 8789 return extent_readpages(mapping, pages, nr_pages);
3ab2fb5a 8790}
2a3ff0ad 8791
e6dcd2dc 8792static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8793{
477a30ba 8794 int ret = try_release_extent_mapping(page, gfp_flags);
a52d9a80
CM
8795 if (ret == 1) {
8796 ClearPagePrivate(page);
8797 set_page_private(page, 0);
09cbfeaf 8798 put_page(page);
39279cc3 8799 }
a52d9a80 8800 return ret;
39279cc3
CM
8801}
8802
e6dcd2dc
CM
8803static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8804{
98509cfc
CM
8805 if (PageWriteback(page) || PageDirty(page))
8806 return 0;
3ba7ab22 8807 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8808}
8809
d47992f8
LC
8810static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8811 unsigned int length)
39279cc3 8812{
5fd02043 8813 struct inode *inode = page->mapping->host;
d1310b2e 8814 struct extent_io_tree *tree;
e6dcd2dc 8815 struct btrfs_ordered_extent *ordered;
2ac55d41 8816 struct extent_state *cached_state = NULL;
e6dcd2dc 8817 u64 page_start = page_offset(page);
09cbfeaf 8818 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8819 u64 start;
8820 u64 end;
131e404a 8821 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8822
8b62b72b
CM
8823 /*
8824 * we have the page locked, so new writeback can't start,
8825 * and the dirty bit won't be cleared while we are here.
8826 *
8827 * Wait for IO on this page so that we can safely clear
8828 * the PagePrivate2 bit and do ordered accounting
8829 */
e6dcd2dc 8830 wait_on_page_writeback(page);
8b62b72b 8831
5fd02043 8832 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8833 if (offset) {
8834 btrfs_releasepage(page, GFP_NOFS);
8835 return;
8836 }
131e404a
FDBM
8837
8838 if (!inode_evicting)
ff13db41 8839 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8840again:
8841 start = page_start;
a776c6fa 8842 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8843 page_end - start + 1);
e6dcd2dc 8844 if (ordered) {
dbfdb6d1 8845 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8846 /*
8847 * IO on this page will never be started, so we need
8848 * to account for any ordered extents now
8849 */
131e404a 8850 if (!inode_evicting)
dbfdb6d1 8851 clear_extent_bit(tree, start, end,
131e404a 8852 EXTENT_DIRTY | EXTENT_DELALLOC |
a7e3b975 8853 EXTENT_DELALLOC_NEW |
131e404a 8854 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8855 EXTENT_DEFRAG, 1, 0, &cached_state);
8b62b72b
CM
8856 /*
8857 * whoever cleared the private bit is responsible
8858 * for the finish_ordered_io
8859 */
77cef2ec
JB
8860 if (TestClearPagePrivate2(page)) {
8861 struct btrfs_ordered_inode_tree *tree;
8862 u64 new_len;
8863
8864 tree = &BTRFS_I(inode)->ordered_tree;
8865
8866 spin_lock_irq(&tree->lock);
8867 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8868 new_len = start - ordered->file_offset;
77cef2ec
JB
8869 if (new_len < ordered->truncated_len)
8870 ordered->truncated_len = new_len;
8871 spin_unlock_irq(&tree->lock);
8872
8873 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8874 start,
8875 end - start + 1, 1))
77cef2ec 8876 btrfs_finish_ordered_io(ordered);
8b62b72b 8877 }
e6dcd2dc 8878 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8879 if (!inode_evicting) {
8880 cached_state = NULL;
dbfdb6d1 8881 lock_extent_bits(tree, start, end,
131e404a
FDBM
8882 &cached_state);
8883 }
dbfdb6d1
CR
8884
8885 start = end + 1;
8886 if (start < page_end)
8887 goto again;
131e404a
FDBM
8888 }
8889
b9d0b389
QW
8890 /*
8891 * Qgroup reserved space handler
8892 * Page here will be either
8893 * 1) Already written to disk
8894 * In this case, its reserved space is released from data rsv map
8895 * and will be freed by delayed_ref handler finally.
8896 * So even we call qgroup_free_data(), it won't decrease reserved
8897 * space.
8898 * 2) Not written to disk
0b34c261
GR
8899 * This means the reserved space should be freed here. However,
8900 * if a truncate invalidates the page (by clearing PageDirty)
8901 * and the page is accounted for while allocating extent
8902 * in btrfs_check_data_free_space() we let delayed_ref to
8903 * free the entire extent.
b9d0b389 8904 */
0b34c261 8905 if (PageDirty(page))
bc42bda2 8906 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a
FDBM
8907 if (!inode_evicting) {
8908 clear_extent_bit(tree, page_start, page_end,
8909 EXTENT_LOCKED | EXTENT_DIRTY |
a7e3b975
FM
8910 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8911 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
ae0f1625 8912 &cached_state);
131e404a
FDBM
8913
8914 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8915 }
e6dcd2dc 8916
4a096752 8917 ClearPageChecked(page);
9ad6b7bc 8918 if (PagePrivate(page)) {
9ad6b7bc
CM
8919 ClearPagePrivate(page);
8920 set_page_private(page, 0);
09cbfeaf 8921 put_page(page);
9ad6b7bc 8922 }
39279cc3
CM
8923}
8924
9ebefb18
CM
8925/*
8926 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8927 * called from a page fault handler when a page is first dirtied. Hence we must
8928 * be careful to check for EOF conditions here. We set the page up correctly
8929 * for a written page which means we get ENOSPC checking when writing into
8930 * holes and correct delalloc and unwritten extent mapping on filesystems that
8931 * support these features.
8932 *
8933 * We are not allowed to take the i_mutex here so we have to play games to
8934 * protect against truncate races as the page could now be beyond EOF. Because
d1342aad
OS
8935 * truncate_setsize() writes the inode size before removing pages, once we have
8936 * the page lock we can determine safely if the page is beyond EOF. If it is not
9ebefb18
CM
8937 * beyond EOF, then the page is guaranteed safe against truncation until we
8938 * unlock the page.
8939 */
11bac800 8940int btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8941{
c2ec175c 8942 struct page *page = vmf->page;
11bac800 8943 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8944 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8945 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8946 struct btrfs_ordered_extent *ordered;
2ac55d41 8947 struct extent_state *cached_state = NULL;
364ecf36 8948 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
8949 char *kaddr;
8950 unsigned long zero_start;
9ebefb18 8951 loff_t size;
1832a6d5 8952 int ret;
9998eb70 8953 int reserved = 0;
d0b7da88 8954 u64 reserved_space;
a52d9a80 8955 u64 page_start;
e6dcd2dc 8956 u64 page_end;
d0b7da88
CR
8957 u64 end;
8958
09cbfeaf 8959 reserved_space = PAGE_SIZE;
9ebefb18 8960
b2b5ef5c 8961 sb_start_pagefault(inode->i_sb);
df480633 8962 page_start = page_offset(page);
09cbfeaf 8963 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8964 end = page_end;
df480633 8965
d0b7da88
CR
8966 /*
8967 * Reserving delalloc space after obtaining the page lock can lead to
8968 * deadlock. For example, if a dirty page is locked by this function
8969 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8970 * dirty page write out, then the btrfs_writepage() function could
8971 * end up waiting indefinitely to get a lock on the page currently
8972 * being processed by btrfs_page_mkwrite() function.
8973 */
364ecf36 8974 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
d0b7da88 8975 reserved_space);
9998eb70 8976 if (!ret) {
11bac800 8977 ret = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8978 reserved = 1;
8979 }
56a76f82
NP
8980 if (ret) {
8981 if (ret == -ENOMEM)
8982 ret = VM_FAULT_OOM;
8983 else /* -ENOSPC, -EIO, etc */
8984 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8985 if (reserved)
8986 goto out;
8987 goto out_noreserve;
56a76f82 8988 }
1832a6d5 8989
56a76f82 8990 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8991again:
9ebefb18 8992 lock_page(page);
9ebefb18 8993 size = i_size_read(inode);
a52d9a80 8994
9ebefb18 8995 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8996 (page_start >= size)) {
9ebefb18
CM
8997 /* page got truncated out from underneath us */
8998 goto out_unlock;
8999 }
e6dcd2dc
CM
9000 wait_on_page_writeback(page);
9001
ff13db41 9002 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
9003 set_page_extent_mapped(page);
9004
eb84ae03
CM
9005 /*
9006 * we can't set the delalloc bits if there are pending ordered
9007 * extents. Drop our locks and wait for them to finish
9008 */
a776c6fa
NB
9009 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9010 PAGE_SIZE);
e6dcd2dc 9011 if (ordered) {
2ac55d41 9012 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 9013 &cached_state);
e6dcd2dc 9014 unlock_page(page);
eb84ae03 9015 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
9016 btrfs_put_ordered_extent(ordered);
9017 goto again;
9018 }
9019
09cbfeaf 9020 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 9021 reserved_space = round_up(size - page_start,
0b246afa 9022 fs_info->sectorsize);
09cbfeaf 9023 if (reserved_space < PAGE_SIZE) {
d0b7da88 9024 end = page_start + reserved_space - 1;
bc42bda2 9025 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
9026 page_start, PAGE_SIZE - reserved_space,
9027 true);
d0b7da88
CR
9028 }
9029 }
9030
fbf19087 9031 /*
5416034f
LB
9032 * page_mkwrite gets called when the page is firstly dirtied after it's
9033 * faulted in, but write(2) could also dirty a page and set delalloc
9034 * bits, thus in this case for space account reason, we still need to
9035 * clear any delalloc bits within this page range since we have to
9036 * reserve data&meta space before lock_page() (see above comments).
fbf19087 9037 */
d0b7da88 9038 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
9039 EXTENT_DIRTY | EXTENT_DELALLOC |
9040 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 9041 0, 0, &cached_state);
fbf19087 9042
e3b8a485 9043 ret = btrfs_set_extent_delalloc(inode, page_start, end, 0,
ba8b04c1 9044 &cached_state, 0);
9ed74f2d 9045 if (ret) {
2ac55d41 9046 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 9047 &cached_state);
9ed74f2d
JB
9048 ret = VM_FAULT_SIGBUS;
9049 goto out_unlock;
9050 }
e6dcd2dc 9051 ret = 0;
9ebefb18
CM
9052
9053 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9054 if (page_start + PAGE_SIZE > size)
9055 zero_start = size & ~PAGE_MASK;
9ebefb18 9056 else
09cbfeaf 9057 zero_start = PAGE_SIZE;
9ebefb18 9058
09cbfeaf 9059 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9060 kaddr = kmap(page);
09cbfeaf 9061 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9062 flush_dcache_page(page);
9063 kunmap(page);
9064 }
247e743c 9065 ClearPageChecked(page);
e6dcd2dc 9066 set_page_dirty(page);
50a9b214 9067 SetPageUptodate(page);
5a3f23d5 9068
0b246afa 9069 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 9070 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9071 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9072
e43bbe5e 9073 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9ebefb18
CM
9074
9075out_unlock:
b2b5ef5c 9076 if (!ret) {
43b18595 9077 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
b2b5ef5c 9078 sb_end_pagefault(inode->i_sb);
364ecf36 9079 extent_changeset_free(data_reserved);
50a9b214 9080 return VM_FAULT_LOCKED;
b2b5ef5c 9081 }
9ebefb18 9082 unlock_page(page);
1832a6d5 9083out:
43b18595 9084 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
bc42bda2 9085 btrfs_delalloc_release_space(inode, data_reserved, page_start,
43b18595 9086 reserved_space, (ret != 0));
9998eb70 9087out_noreserve:
b2b5ef5c 9088 sb_end_pagefault(inode->i_sb);
364ecf36 9089 extent_changeset_free(data_reserved);
9ebefb18
CM
9090 return ret;
9091}
9092
213e8c55 9093static int btrfs_truncate(struct inode *inode, bool skip_writeback)
39279cc3 9094{
0b246afa 9095 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 9096 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9097 struct btrfs_block_rsv *rsv;
a71754fc 9098 int ret = 0;
3893e33b 9099 int err = 0;
39279cc3 9100 struct btrfs_trans_handle *trans;
0b246afa
JM
9101 u64 mask = fs_info->sectorsize - 1;
9102 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 9103
213e8c55
FM
9104 if (!skip_writeback) {
9105 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9106 (u64)-1);
9107 if (ret)
9108 return ret;
9109 }
39279cc3 9110
fcb80c2a 9111 /*
f7e9e8fc
OS
9112 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
9113 * things going on here:
fcb80c2a 9114 *
f7e9e8fc 9115 * 1) We need to reserve space to update our inode.
fcb80c2a 9116 *
f7e9e8fc 9117 * 2) We need to have something to cache all the space that is going to
fcb80c2a
JB
9118 * be free'd up by the truncate operation, but also have some slack
9119 * space reserved in case it uses space during the truncate (thank you
9120 * very much snapshotting).
9121 *
f7e9e8fc 9122 * And we need these to be separate. The fact is we can use a lot of
fcb80c2a 9123 * space doing the truncate, and we have no earthly idea how much space
01327610 9124 * we will use, so we need the truncate reservation to be separate so it
f7e9e8fc
OS
9125 * doesn't end up using space reserved for updating the inode. We also
9126 * need to be able to stop the transaction and start a new one, which
9127 * means we need to be able to update the inode several times, and we
9128 * have no idea of knowing how many times that will be, so we can't just
9129 * reserve 1 item for the entirety of the operation, so that has to be
9130 * done separately as well.
fcb80c2a
JB
9131 *
9132 * So that leaves us with
9133 *
f7e9e8fc 9134 * 1) rsv - for the truncate reservation, which we will steal from the
fcb80c2a 9135 * transaction reservation.
f7e9e8fc 9136 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
fcb80c2a
JB
9137 * updating the inode.
9138 */
2ff7e61e 9139 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9140 if (!rsv)
9141 return -ENOMEM;
4a338542 9142 rsv->size = min_size;
ca7e70f5 9143 rsv->failfast = 1;
f0cd846e 9144
907cbceb 9145 /*
07127184 9146 * 1 for the truncate slack space
907cbceb
JB
9147 * 1 for updating the inode.
9148 */
f3fe820c 9149 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9150 if (IS_ERR(trans)) {
9151 err = PTR_ERR(trans);
9152 goto out;
9153 }
f0cd846e 9154
907cbceb 9155 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9156 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 9157 min_size, 0);
fcb80c2a 9158 BUG_ON(ret);
f0cd846e 9159
5dc562c5
JB
9160 /*
9161 * So if we truncate and then write and fsync we normally would just
9162 * write the extents that changed, which is a problem if we need to
9163 * first truncate that entire inode. So set this flag so we write out
9164 * all of the extents in the inode to the sync log so we're completely
9165 * safe.
9166 */
9167 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9168 trans->block_rsv = rsv;
907cbceb 9169
8082510e
YZ
9170 while (1) {
9171 ret = btrfs_truncate_inode_items(trans, root, inode,
9172 inode->i_size,
9173 BTRFS_EXTENT_DATA_KEY);
ddfae63c 9174 trans->block_rsv = &fs_info->trans_block_rsv;
28ed1345 9175 if (ret != -ENOSPC && ret != -EAGAIN) {
d5014738
OS
9176 if (ret < 0)
9177 err = ret;
8082510e 9178 break;
3893e33b 9179 }
39279cc3 9180
8082510e 9181 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9182 if (ret) {
9183 err = ret;
9184 break;
9185 }
ca7e70f5 9186
3a45bb20 9187 btrfs_end_transaction(trans);
2ff7e61e 9188 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9189
9190 trans = btrfs_start_transaction(root, 2);
9191 if (IS_ERR(trans)) {
9192 ret = err = PTR_ERR(trans);
9193 trans = NULL;
9194 break;
9195 }
9196
47b5d646 9197 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9198 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 9199 rsv, min_size, 0);
ca7e70f5
JB
9200 BUG_ON(ret); /* shouldn't happen */
9201 trans->block_rsv = rsv;
8082510e
YZ
9202 }
9203
ddfae63c
JB
9204 /*
9205 * We can't call btrfs_truncate_block inside a trans handle as we could
9206 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9207 * we've truncated everything except the last little bit, and can do
9208 * btrfs_truncate_block and then update the disk_i_size.
9209 */
9210 if (ret == NEED_TRUNCATE_BLOCK) {
9211 btrfs_end_transaction(trans);
9212 btrfs_btree_balance_dirty(fs_info);
9213
9214 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9215 if (ret)
9216 goto out;
9217 trans = btrfs_start_transaction(root, 1);
9218 if (IS_ERR(trans)) {
9219 ret = PTR_ERR(trans);
9220 goto out;
9221 }
9222 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9223 }
9224
917c16b2 9225 if (trans) {
0b246afa 9226 trans->block_rsv = &fs_info->trans_block_rsv;
917c16b2
CM
9227 ret = btrfs_update_inode(trans, root, inode);
9228 if (ret && !err)
9229 err = ret;
7b128766 9230
3a45bb20 9231 ret = btrfs_end_transaction(trans);
2ff7e61e 9232 btrfs_btree_balance_dirty(fs_info);
917c16b2 9233 }
fcb80c2a 9234out:
2ff7e61e 9235 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9236
3893e33b
JB
9237 if (ret && !err)
9238 err = ret;
a41ad394 9239
3893e33b 9240 return err;
39279cc3
CM
9241}
9242
d352ac68
CM
9243/*
9244 * create a new subvolume directory/inode (helper for the ioctl).
9245 */
d2fb3437 9246int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9247 struct btrfs_root *new_root,
9248 struct btrfs_root *parent_root,
9249 u64 new_dirid)
39279cc3 9250{
39279cc3 9251 struct inode *inode;
76dda93c 9252 int err;
00e4e6b3 9253 u64 index = 0;
39279cc3 9254
12fc9d09
FA
9255 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9256 new_dirid, new_dirid,
9257 S_IFDIR | (~current_umask() & S_IRWXUGO),
9258 &index);
54aa1f4d 9259 if (IS_ERR(inode))
f46b5a66 9260 return PTR_ERR(inode);
39279cc3
CM
9261 inode->i_op = &btrfs_dir_inode_operations;
9262 inode->i_fop = &btrfs_dir_file_operations;
9263
bfe86848 9264 set_nlink(inode, 1);
6ef06d27 9265 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9266 unlock_new_inode(inode);
3b96362c 9267
63541927
FDBM
9268 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9269 if (err)
9270 btrfs_err(new_root->fs_info,
351fd353 9271 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9272 new_root->root_key.objectid, err);
9273
76dda93c 9274 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9275
76dda93c 9276 iput(inode);
ce598979 9277 return err;
39279cc3
CM
9278}
9279
39279cc3
CM
9280struct inode *btrfs_alloc_inode(struct super_block *sb)
9281{
69fe2d75 9282 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 9283 struct btrfs_inode *ei;
2ead6ae7 9284 struct inode *inode;
39279cc3 9285
712e36c5 9286 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
9287 if (!ei)
9288 return NULL;
2ead6ae7
YZ
9289
9290 ei->root = NULL;
2ead6ae7 9291 ei->generation = 0;
15ee9bc7 9292 ei->last_trans = 0;
257c62e1 9293 ei->last_sub_trans = 0;
e02119d5 9294 ei->logged_trans = 0;
2ead6ae7 9295 ei->delalloc_bytes = 0;
a7e3b975 9296 ei->new_delalloc_bytes = 0;
47059d93 9297 ei->defrag_bytes = 0;
2ead6ae7
YZ
9298 ei->disk_i_size = 0;
9299 ei->flags = 0;
7709cde3 9300 ei->csum_bytes = 0;
2ead6ae7 9301 ei->index_cnt = (u64)-1;
67de1176 9302 ei->dir_index = 0;
2ead6ae7 9303 ei->last_unlink_trans = 0;
46d8bc34 9304 ei->last_log_commit = 0;
2ead6ae7 9305
9e0baf60
JB
9306 spin_lock_init(&ei->lock);
9307 ei->outstanding_extents = 0;
69fe2d75
JB
9308 if (sb->s_magic != BTRFS_TEST_MAGIC)
9309 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9310 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 9311 ei->runtime_flags = 0;
b52aa8c9 9312 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 9313 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9314
16cdcec7
MX
9315 ei->delayed_node = NULL;
9316
9cc97d64 9317 ei->i_otime.tv_sec = 0;
9318 ei->i_otime.tv_nsec = 0;
9319
2ead6ae7 9320 inode = &ei->vfs_inode;
a8067e02 9321 extent_map_tree_init(&ei->extent_tree);
c6100a4b
JB
9322 extent_io_tree_init(&ei->io_tree, inode);
9323 extent_io_tree_init(&ei->io_failure_tree, inode);
0b32f4bb
JB
9324 ei->io_tree.track_uptodate = 1;
9325 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9326 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9327 mutex_init(&ei->log_mutex);
f248679e 9328 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9329 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9330 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9331 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9332 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9333 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9334
9335 return inode;
39279cc3
CM
9336}
9337
aaedb55b
JB
9338#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9339void btrfs_test_destroy_inode(struct inode *inode)
9340{
dcdbc059 9341 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9342 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9343}
9344#endif
9345
fa0d7e3d
NP
9346static void btrfs_i_callback(struct rcu_head *head)
9347{
9348 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9349 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9350}
9351
39279cc3
CM
9352void btrfs_destroy_inode(struct inode *inode)
9353{
0b246afa 9354 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9355 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9356 struct btrfs_root *root = BTRFS_I(inode)->root;
9357
b3d9b7a3 9358 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9359 WARN_ON(inode->i_data.nrpages);
69fe2d75
JB
9360 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9361 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9e0baf60 9362 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7709cde3 9363 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 9364 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 9365 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9366 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9367
a6dbd429
JB
9368 /*
9369 * This can happen where we create an inode, but somebody else also
9370 * created the same inode and we need to destroy the one we already
9371 * created.
9372 */
9373 if (!root)
9374 goto free;
9375
d397712b 9376 while (1) {
e6dcd2dc
CM
9377 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9378 if (!ordered)
9379 break;
9380 else {
0b246afa 9381 btrfs_err(fs_info,
5d163e0e
JM
9382 "found ordered extent %llu %llu on inode cleanup",
9383 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9384 btrfs_remove_ordered_extent(inode, ordered);
9385 btrfs_put_ordered_extent(ordered);
9386 btrfs_put_ordered_extent(ordered);
9387 }
9388 }
56fa9d07 9389 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9390 inode_tree_del(inode);
dcdbc059 9391 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
a6dbd429 9392free:
fa0d7e3d 9393 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9394}
9395
45321ac5 9396int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9397{
9398 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9399
6379ef9f
NA
9400 if (root == NULL)
9401 return 1;
9402
fa6ac876 9403 /* the snap/subvol tree is on deleting */
69e9c6c6 9404 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9405 return 1;
76dda93c 9406 else
45321ac5 9407 return generic_drop_inode(inode);
76dda93c
YZ
9408}
9409
0ee0fda0 9410static void init_once(void *foo)
39279cc3
CM
9411{
9412 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9413
9414 inode_init_once(&ei->vfs_inode);
9415}
9416
e67c718b 9417void __cold btrfs_destroy_cachep(void)
39279cc3 9418{
8c0a8537
KS
9419 /*
9420 * Make sure all delayed rcu free inodes are flushed before we
9421 * destroy cache.
9422 */
9423 rcu_barrier();
5598e900
KM
9424 kmem_cache_destroy(btrfs_inode_cachep);
9425 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
9426 kmem_cache_destroy(btrfs_path_cachep);
9427 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9428}
9429
f5c29bd9 9430int __init btrfs_init_cachep(void)
39279cc3 9431{
837e1972 9432 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9433 sizeof(struct btrfs_inode), 0,
5d097056
VD
9434 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9435 init_once);
39279cc3
CM
9436 if (!btrfs_inode_cachep)
9437 goto fail;
9601e3f6 9438
837e1972 9439 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9440 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9441 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9442 if (!btrfs_trans_handle_cachep)
9443 goto fail;
9601e3f6 9444
837e1972 9445 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9446 sizeof(struct btrfs_path), 0,
fba4b697 9447 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9448 if (!btrfs_path_cachep)
9449 goto fail;
9601e3f6 9450
837e1972 9451 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9452 sizeof(struct btrfs_free_space), 0,
fba4b697 9453 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9454 if (!btrfs_free_space_cachep)
9455 goto fail;
9456
39279cc3
CM
9457 return 0;
9458fail:
9459 btrfs_destroy_cachep();
9460 return -ENOMEM;
9461}
9462
a528d35e
DH
9463static int btrfs_getattr(const struct path *path, struct kstat *stat,
9464 u32 request_mask, unsigned int flags)
39279cc3 9465{
df0af1a5 9466 u64 delalloc_bytes;
a528d35e 9467 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9468 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
9469 u32 bi_flags = BTRFS_I(inode)->flags;
9470
9471 stat->result_mask |= STATX_BTIME;
9472 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9473 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9474 if (bi_flags & BTRFS_INODE_APPEND)
9475 stat->attributes |= STATX_ATTR_APPEND;
9476 if (bi_flags & BTRFS_INODE_COMPRESS)
9477 stat->attributes |= STATX_ATTR_COMPRESSED;
9478 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9479 stat->attributes |= STATX_ATTR_IMMUTABLE;
9480 if (bi_flags & BTRFS_INODE_NODUMP)
9481 stat->attributes |= STATX_ATTR_NODUMP;
9482
9483 stat->attributes_mask |= (STATX_ATTR_APPEND |
9484 STATX_ATTR_COMPRESSED |
9485 STATX_ATTR_IMMUTABLE |
9486 STATX_ATTR_NODUMP);
fadc0d8b 9487
39279cc3 9488 generic_fillattr(inode, stat);
0ee5dc67 9489 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9490
9491 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9492 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 9493 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9494 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9495 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9496 return 0;
9497}
9498
cdd1fedf
DF
9499static int btrfs_rename_exchange(struct inode *old_dir,
9500 struct dentry *old_dentry,
9501 struct inode *new_dir,
9502 struct dentry *new_dentry)
9503{
0b246afa 9504 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9505 struct btrfs_trans_handle *trans;
9506 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9507 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9508 struct inode *new_inode = new_dentry->d_inode;
9509 struct inode *old_inode = old_dentry->d_inode;
c2050a45 9510 struct timespec ctime = current_time(old_inode);
cdd1fedf 9511 struct dentry *parent;
4a0cc7ca
NB
9512 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9513 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9514 u64 old_idx = 0;
9515 u64 new_idx = 0;
9516 u64 root_objectid;
9517 int ret;
86e8aa0e
FM
9518 bool root_log_pinned = false;
9519 bool dest_log_pinned = false;
cdd1fedf
DF
9520
9521 /* we only allow rename subvolume link between subvolumes */
9522 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9523 return -EXDEV;
9524
9525 /* close the race window with snapshot create/destroy ioctl */
9526 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9527 down_read(&fs_info->subvol_sem);
cdd1fedf 9528 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9529 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9530
9531 /*
9532 * We want to reserve the absolute worst case amount of items. So if
9533 * both inodes are subvols and we need to unlink them then that would
9534 * require 4 item modifications, but if they are both normal inodes it
9535 * would require 5 item modifications, so we'll assume their normal
9536 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9537 * should cover the worst case number of items we'll modify.
9538 */
9539 trans = btrfs_start_transaction(root, 12);
9540 if (IS_ERR(trans)) {
9541 ret = PTR_ERR(trans);
9542 goto out_notrans;
9543 }
9544
9545 /*
9546 * We need to find a free sequence number both in the source and
9547 * in the destination directory for the exchange.
9548 */
877574e2 9549 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9550 if (ret)
9551 goto out_fail;
877574e2 9552 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9553 if (ret)
9554 goto out_fail;
9555
9556 BTRFS_I(old_inode)->dir_index = 0ULL;
9557 BTRFS_I(new_inode)->dir_index = 0ULL;
9558
9559 /* Reference for the source. */
9560 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9561 /* force full log commit if subvolume involved. */
0b246afa 9562 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9563 } else {
376e5a57
FM
9564 btrfs_pin_log_trans(root);
9565 root_log_pinned = true;
cdd1fedf
DF
9566 ret = btrfs_insert_inode_ref(trans, dest,
9567 new_dentry->d_name.name,
9568 new_dentry->d_name.len,
9569 old_ino,
f85b7379
DS
9570 btrfs_ino(BTRFS_I(new_dir)),
9571 old_idx);
cdd1fedf
DF
9572 if (ret)
9573 goto out_fail;
cdd1fedf
DF
9574 }
9575
9576 /* And now for the dest. */
9577 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9578 /* force full log commit if subvolume involved. */
0b246afa 9579 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9580 } else {
376e5a57
FM
9581 btrfs_pin_log_trans(dest);
9582 dest_log_pinned = true;
cdd1fedf
DF
9583 ret = btrfs_insert_inode_ref(trans, root,
9584 old_dentry->d_name.name,
9585 old_dentry->d_name.len,
9586 new_ino,
f85b7379
DS
9587 btrfs_ino(BTRFS_I(old_dir)),
9588 new_idx);
cdd1fedf
DF
9589 if (ret)
9590 goto out_fail;
cdd1fedf
DF
9591 }
9592
9593 /* Update inode version and ctime/mtime. */
9594 inode_inc_iversion(old_dir);
9595 inode_inc_iversion(new_dir);
9596 inode_inc_iversion(old_inode);
9597 inode_inc_iversion(new_inode);
9598 old_dir->i_ctime = old_dir->i_mtime = ctime;
9599 new_dir->i_ctime = new_dir->i_mtime = ctime;
9600 old_inode->i_ctime = ctime;
9601 new_inode->i_ctime = ctime;
9602
9603 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9604 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9605 BTRFS_I(old_inode), 1);
9606 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9607 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9608 }
9609
9610 /* src is a subvolume */
9611 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9612 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9613 ret = btrfs_unlink_subvol(trans, root, old_dir,
9614 root_objectid,
9615 old_dentry->d_name.name,
9616 old_dentry->d_name.len);
9617 } else { /* src is an inode */
4ec5934e
NB
9618 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9619 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9620 old_dentry->d_name.name,
9621 old_dentry->d_name.len);
9622 if (!ret)
9623 ret = btrfs_update_inode(trans, root, old_inode);
9624 }
9625 if (ret) {
66642832 9626 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9627 goto out_fail;
9628 }
9629
9630 /* dest is a subvolume */
9631 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9632 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9633 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9634 root_objectid,
9635 new_dentry->d_name.name,
9636 new_dentry->d_name.len);
9637 } else { /* dest is an inode */
4ec5934e
NB
9638 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9639 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9640 new_dentry->d_name.name,
9641 new_dentry->d_name.len);
9642 if (!ret)
9643 ret = btrfs_update_inode(trans, dest, new_inode);
9644 }
9645 if (ret) {
66642832 9646 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9647 goto out_fail;
9648 }
9649
db0a669f 9650 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9651 new_dentry->d_name.name,
9652 new_dentry->d_name.len, 0, old_idx);
9653 if (ret) {
66642832 9654 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9655 goto out_fail;
9656 }
9657
db0a669f 9658 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9659 old_dentry->d_name.name,
9660 old_dentry->d_name.len, 0, new_idx);
9661 if (ret) {
66642832 9662 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9663 goto out_fail;
9664 }
9665
9666 if (old_inode->i_nlink == 1)
9667 BTRFS_I(old_inode)->dir_index = old_idx;
9668 if (new_inode->i_nlink == 1)
9669 BTRFS_I(new_inode)->dir_index = new_idx;
9670
86e8aa0e 9671 if (root_log_pinned) {
cdd1fedf 9672 parent = new_dentry->d_parent;
f85b7379
DS
9673 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9674 parent);
cdd1fedf 9675 btrfs_end_log_trans(root);
86e8aa0e 9676 root_log_pinned = false;
cdd1fedf 9677 }
86e8aa0e 9678 if (dest_log_pinned) {
cdd1fedf 9679 parent = old_dentry->d_parent;
f85b7379
DS
9680 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9681 parent);
cdd1fedf 9682 btrfs_end_log_trans(dest);
86e8aa0e 9683 dest_log_pinned = false;
cdd1fedf
DF
9684 }
9685out_fail:
86e8aa0e
FM
9686 /*
9687 * If we have pinned a log and an error happened, we unpin tasks
9688 * trying to sync the log and force them to fallback to a transaction
9689 * commit if the log currently contains any of the inodes involved in
9690 * this rename operation (to ensure we do not persist a log with an
9691 * inconsistent state for any of these inodes or leading to any
9692 * inconsistencies when replayed). If the transaction was aborted, the
9693 * abortion reason is propagated to userspace when attempting to commit
9694 * the transaction. If the log does not contain any of these inodes, we
9695 * allow the tasks to sync it.
9696 */
9697 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9698 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9699 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9700 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9701 (new_inode &&
0f8939b8 9702 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9703 btrfs_set_log_full_commit(fs_info, trans);
86e8aa0e
FM
9704
9705 if (root_log_pinned) {
9706 btrfs_end_log_trans(root);
9707 root_log_pinned = false;
9708 }
9709 if (dest_log_pinned) {
9710 btrfs_end_log_trans(dest);
9711 dest_log_pinned = false;
9712 }
9713 }
3a45bb20 9714 ret = btrfs_end_transaction(trans);
cdd1fedf
DF
9715out_notrans:
9716 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9717 up_read(&fs_info->subvol_sem);
cdd1fedf 9718 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9719 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9720
9721 return ret;
9722}
9723
9724static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9725 struct btrfs_root *root,
9726 struct inode *dir,
9727 struct dentry *dentry)
9728{
9729 int ret;
9730 struct inode *inode;
9731 u64 objectid;
9732 u64 index;
9733
9734 ret = btrfs_find_free_ino(root, &objectid);
9735 if (ret)
9736 return ret;
9737
9738 inode = btrfs_new_inode(trans, root, dir,
9739 dentry->d_name.name,
9740 dentry->d_name.len,
4a0cc7ca 9741 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9742 objectid,
9743 S_IFCHR | WHITEOUT_MODE,
9744 &index);
9745
9746 if (IS_ERR(inode)) {
9747 ret = PTR_ERR(inode);
9748 return ret;
9749 }
9750
9751 inode->i_op = &btrfs_special_inode_operations;
9752 init_special_inode(inode, inode->i_mode,
9753 WHITEOUT_DEV);
9754
9755 ret = btrfs_init_inode_security(trans, inode, dir,
9756 &dentry->d_name);
9757 if (ret)
c9901618 9758 goto out;
cdd1fedf 9759
cef415af
NB
9760 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9761 BTRFS_I(inode), 0, index);
cdd1fedf 9762 if (ret)
c9901618 9763 goto out;
cdd1fedf
DF
9764
9765 ret = btrfs_update_inode(trans, root, inode);
c9901618 9766out:
cdd1fedf 9767 unlock_new_inode(inode);
c9901618
FM
9768 if (ret)
9769 inode_dec_link_count(inode);
cdd1fedf
DF
9770 iput(inode);
9771
c9901618 9772 return ret;
cdd1fedf
DF
9773}
9774
d397712b 9775static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9776 struct inode *new_dir, struct dentry *new_dentry,
9777 unsigned int flags)
39279cc3 9778{
0b246afa 9779 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9780 struct btrfs_trans_handle *trans;
5062af35 9781 unsigned int trans_num_items;
39279cc3 9782 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9783 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9784 struct inode *new_inode = d_inode(new_dentry);
9785 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9786 u64 index = 0;
4df27c4d 9787 u64 root_objectid;
39279cc3 9788 int ret;
4a0cc7ca 9789 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9790 bool log_pinned = false;
39279cc3 9791
4a0cc7ca 9792 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9793 return -EPERM;
9794
4df27c4d 9795 /* we only allow rename subvolume link between subvolumes */
33345d01 9796 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9797 return -EXDEV;
9798
33345d01 9799 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9800 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9801 return -ENOTEMPTY;
5f39d397 9802
4df27c4d
YZ
9803 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9804 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9805 return -ENOTEMPTY;
9c52057c
CM
9806
9807
9808 /* check for collisions, even if the name isn't there */
4871c158 9809 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9810 new_dentry->d_name.name,
9811 new_dentry->d_name.len);
9812
9813 if (ret) {
9814 if (ret == -EEXIST) {
9815 /* we shouldn't get
9816 * eexist without a new_inode */
fae7f21c 9817 if (WARN_ON(!new_inode)) {
9c52057c
CM
9818 return ret;
9819 }
9820 } else {
9821 /* maybe -EOVERFLOW */
9822 return ret;
9823 }
9824 }
9825 ret = 0;
9826
5a3f23d5 9827 /*
8d875f95
CM
9828 * we're using rename to replace one file with another. Start IO on it
9829 * now so we don't add too much work to the end of the transaction
5a3f23d5 9830 */
8d875f95 9831 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9832 filemap_flush(old_inode->i_mapping);
9833
76dda93c 9834 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9835 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9836 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9837 /*
9838 * We want to reserve the absolute worst case amount of items. So if
9839 * both inodes are subvols and we need to unlink them then that would
9840 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9841 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9842 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9843 * should cover the worst case number of items we'll modify.
5062af35
FM
9844 * If our rename has the whiteout flag, we need more 5 units for the
9845 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9846 * when selinux is enabled).
a22285a6 9847 */
5062af35
FM
9848 trans_num_items = 11;
9849 if (flags & RENAME_WHITEOUT)
9850 trans_num_items += 5;
9851 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9852 if (IS_ERR(trans)) {
cdd1fedf
DF
9853 ret = PTR_ERR(trans);
9854 goto out_notrans;
9855 }
76dda93c 9856
4df27c4d
YZ
9857 if (dest != root)
9858 btrfs_record_root_in_trans(trans, dest);
5f39d397 9859
877574e2 9860 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9861 if (ret)
9862 goto out_fail;
5a3f23d5 9863
67de1176 9864 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9865 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9866 /* force full log commit if subvolume involved. */
0b246afa 9867 btrfs_set_log_full_commit(fs_info, trans);
4df27c4d 9868 } else {
c4aba954
FM
9869 btrfs_pin_log_trans(root);
9870 log_pinned = true;
a5719521
YZ
9871 ret = btrfs_insert_inode_ref(trans, dest,
9872 new_dentry->d_name.name,
9873 new_dentry->d_name.len,
33345d01 9874 old_ino,
4a0cc7ca 9875 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9876 if (ret)
9877 goto out_fail;
4df27c4d 9878 }
5a3f23d5 9879
0c4d2d95
JB
9880 inode_inc_iversion(old_dir);
9881 inode_inc_iversion(new_dir);
9882 inode_inc_iversion(old_inode);
04b285f3
DD
9883 old_dir->i_ctime = old_dir->i_mtime =
9884 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9885 old_inode->i_ctime = current_time(old_dir);
5f39d397 9886
12fcfd22 9887 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9888 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9889 BTRFS_I(old_inode), 1);
12fcfd22 9890
33345d01 9891 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9892 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9893 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9894 old_dentry->d_name.name,
9895 old_dentry->d_name.len);
9896 } else {
4ec5934e
NB
9897 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9898 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9899 old_dentry->d_name.name,
9900 old_dentry->d_name.len);
9901 if (!ret)
9902 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9903 }
79787eaa 9904 if (ret) {
66642832 9905 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9906 goto out_fail;
9907 }
39279cc3
CM
9908
9909 if (new_inode) {
0c4d2d95 9910 inode_inc_iversion(new_inode);
c2050a45 9911 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9912 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
9913 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9914 root_objectid = BTRFS_I(new_inode)->location.objectid;
9915 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9916 root_objectid,
9917 new_dentry->d_name.name,
9918 new_dentry->d_name.len);
9919 BUG_ON(new_inode->i_nlink == 0);
9920 } else {
4ec5934e
NB
9921 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9922 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9923 new_dentry->d_name.name,
9924 new_dentry->d_name.len);
9925 }
4ef31a45 9926 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9927 ret = btrfs_orphan_add(trans,
9928 BTRFS_I(d_inode(new_dentry)));
79787eaa 9929 if (ret) {
66642832 9930 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9931 goto out_fail;
9932 }
39279cc3 9933 }
aec7477b 9934
db0a669f 9935 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 9936 new_dentry->d_name.name,
a5719521 9937 new_dentry->d_name.len, 0, index);
79787eaa 9938 if (ret) {
66642832 9939 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9940 goto out_fail;
9941 }
39279cc3 9942
67de1176
MX
9943 if (old_inode->i_nlink == 1)
9944 BTRFS_I(old_inode)->dir_index = index;
9945
3dc9e8f7 9946 if (log_pinned) {
10d9f309 9947 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9948
f85b7379
DS
9949 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9950 parent);
4df27c4d 9951 btrfs_end_log_trans(root);
3dc9e8f7 9952 log_pinned = false;
4df27c4d 9953 }
cdd1fedf
DF
9954
9955 if (flags & RENAME_WHITEOUT) {
9956 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9957 old_dentry);
9958
9959 if (ret) {
66642832 9960 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9961 goto out_fail;
9962 }
4df27c4d 9963 }
39279cc3 9964out_fail:
3dc9e8f7
FM
9965 /*
9966 * If we have pinned the log and an error happened, we unpin tasks
9967 * trying to sync the log and force them to fallback to a transaction
9968 * commit if the log currently contains any of the inodes involved in
9969 * this rename operation (to ensure we do not persist a log with an
9970 * inconsistent state for any of these inodes or leading to any
9971 * inconsistencies when replayed). If the transaction was aborted, the
9972 * abortion reason is propagated to userspace when attempting to commit
9973 * the transaction. If the log does not contain any of these inodes, we
9974 * allow the tasks to sync it.
9975 */
9976 if (ret && log_pinned) {
0f8939b8
NB
9977 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9978 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9979 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 9980 (new_inode &&
0f8939b8 9981 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9982 btrfs_set_log_full_commit(fs_info, trans);
3dc9e8f7
FM
9983
9984 btrfs_end_log_trans(root);
9985 log_pinned = false;
9986 }
3a45bb20 9987 btrfs_end_transaction(trans);
b44c59a8 9988out_notrans:
33345d01 9989 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9990 up_read(&fs_info->subvol_sem);
9ed74f2d 9991
39279cc3
CM
9992 return ret;
9993}
9994
80ace85c
MS
9995static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9996 struct inode *new_dir, struct dentry *new_dentry,
9997 unsigned int flags)
9998{
cdd1fedf 9999 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
10000 return -EINVAL;
10001
cdd1fedf
DF
10002 if (flags & RENAME_EXCHANGE)
10003 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10004 new_dentry);
10005
10006 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
10007}
10008
3a2f8c07
NB
10009struct btrfs_delalloc_work {
10010 struct inode *inode;
10011 struct completion completion;
10012 struct list_head list;
10013 struct btrfs_work work;
10014};
10015
8ccf6f19
MX
10016static void btrfs_run_delalloc_work(struct btrfs_work *work)
10017{
10018 struct btrfs_delalloc_work *delalloc_work;
9f23e289 10019 struct inode *inode;
8ccf6f19
MX
10020
10021 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10022 work);
9f23e289 10023 inode = delalloc_work->inode;
30424601
DS
10024 filemap_flush(inode->i_mapping);
10025 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10026 &BTRFS_I(inode)->runtime_flags))
9f23e289 10027 filemap_flush(inode->i_mapping);
8ccf6f19 10028
076da91c 10029 iput(inode);
8ccf6f19
MX
10030 complete(&delalloc_work->completion);
10031}
10032
3a2f8c07 10033static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8ccf6f19
MX
10034{
10035 struct btrfs_delalloc_work *work;
10036
100d5702 10037 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
10038 if (!work)
10039 return NULL;
10040
10041 init_completion(&work->completion);
10042 INIT_LIST_HEAD(&work->list);
10043 work->inode = inode;
9e0af237
LB
10044 WARN_ON_ONCE(!inode);
10045 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10046 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
10047
10048 return work;
10049}
10050
d352ac68
CM
10051/*
10052 * some fairly slow code that needs optimization. This walks the list
10053 * of all the inodes with pending delalloc and forces them to disk.
10054 */
4fbb5147 10055static int start_delalloc_inodes(struct btrfs_root *root, int nr)
ea8c2819 10056{
ea8c2819 10057 struct btrfs_inode *binode;
5b21f2ed 10058 struct inode *inode;
8ccf6f19
MX
10059 struct btrfs_delalloc_work *work, *next;
10060 struct list_head works;
1eafa6c7 10061 struct list_head splice;
8ccf6f19 10062 int ret = 0;
ea8c2819 10063
8ccf6f19 10064 INIT_LIST_HEAD(&works);
1eafa6c7 10065 INIT_LIST_HEAD(&splice);
63607cc8 10066
573bfb72 10067 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10068 spin_lock(&root->delalloc_lock);
10069 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10070 while (!list_empty(&splice)) {
10071 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10072 delalloc_inodes);
1eafa6c7 10073
eb73c1b7
MX
10074 list_move_tail(&binode->delalloc_inodes,
10075 &root->delalloc_inodes);
5b21f2ed 10076 inode = igrab(&binode->vfs_inode);
df0af1a5 10077 if (!inode) {
eb73c1b7 10078 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10079 continue;
df0af1a5 10080 }
eb73c1b7 10081 spin_unlock(&root->delalloc_lock);
1eafa6c7 10082
076da91c 10083 work = btrfs_alloc_delalloc_work(inode);
5d99a998 10084 if (!work) {
4fbb5147 10085 iput(inode);
1eafa6c7 10086 ret = -ENOMEM;
a1ecaabb 10087 goto out;
5b21f2ed 10088 }
1eafa6c7 10089 list_add_tail(&work->list, &works);
a44903ab
QW
10090 btrfs_queue_work(root->fs_info->flush_workers,
10091 &work->work);
6c255e67
MX
10092 ret++;
10093 if (nr != -1 && ret >= nr)
a1ecaabb 10094 goto out;
5b21f2ed 10095 cond_resched();
eb73c1b7 10096 spin_lock(&root->delalloc_lock);
ea8c2819 10097 }
eb73c1b7 10098 spin_unlock(&root->delalloc_lock);
8c8bee1d 10099
a1ecaabb 10100out:
eb73c1b7
MX
10101 list_for_each_entry_safe(work, next, &works, list) {
10102 list_del_init(&work->list);
40012f96
NB
10103 wait_for_completion(&work->completion);
10104 kfree(work);
eb73c1b7
MX
10105 }
10106
81f1d390 10107 if (!list_empty(&splice)) {
eb73c1b7
MX
10108 spin_lock(&root->delalloc_lock);
10109 list_splice_tail(&splice, &root->delalloc_inodes);
10110 spin_unlock(&root->delalloc_lock);
10111 }
573bfb72 10112 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10113 return ret;
10114}
1eafa6c7 10115
76f32e24 10116int btrfs_start_delalloc_inodes(struct btrfs_root *root)
eb73c1b7 10117{
0b246afa 10118 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10119 int ret;
1eafa6c7 10120
0b246afa 10121 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10122 return -EROFS;
10123
4fbb5147 10124 ret = start_delalloc_inodes(root, -1);
6c255e67
MX
10125 if (ret > 0)
10126 ret = 0;
eb73c1b7
MX
10127 return ret;
10128}
10129
82b3e53b 10130int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
eb73c1b7
MX
10131{
10132 struct btrfs_root *root;
10133 struct list_head splice;
10134 int ret;
10135
2c21b4d7 10136 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10137 return -EROFS;
10138
10139 INIT_LIST_HEAD(&splice);
10140
573bfb72 10141 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10142 spin_lock(&fs_info->delalloc_root_lock);
10143 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10144 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10145 root = list_first_entry(&splice, struct btrfs_root,
10146 delalloc_root);
10147 root = btrfs_grab_fs_root(root);
10148 BUG_ON(!root);
10149 list_move_tail(&root->delalloc_root,
10150 &fs_info->delalloc_roots);
10151 spin_unlock(&fs_info->delalloc_root_lock);
10152
4fbb5147 10153 ret = start_delalloc_inodes(root, nr);
eb73c1b7 10154 btrfs_put_fs_root(root);
6c255e67 10155 if (ret < 0)
eb73c1b7
MX
10156 goto out;
10157
6c255e67
MX
10158 if (nr != -1) {
10159 nr -= ret;
10160 WARN_ON(nr < 0);
10161 }
eb73c1b7 10162 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10163 }
eb73c1b7 10164 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10165
6c255e67 10166 ret = 0;
eb73c1b7 10167out:
81f1d390 10168 if (!list_empty(&splice)) {
eb73c1b7
MX
10169 spin_lock(&fs_info->delalloc_root_lock);
10170 list_splice_tail(&splice, &fs_info->delalloc_roots);
10171 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10172 }
573bfb72 10173 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10174 return ret;
ea8c2819
CM
10175}
10176
39279cc3
CM
10177static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10178 const char *symname)
10179{
0b246afa 10180 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10181 struct btrfs_trans_handle *trans;
10182 struct btrfs_root *root = BTRFS_I(dir)->root;
10183 struct btrfs_path *path;
10184 struct btrfs_key key;
1832a6d5 10185 struct inode *inode = NULL;
39279cc3
CM
10186 int err;
10187 int drop_inode = 0;
10188 u64 objectid;
67871254 10189 u64 index = 0;
39279cc3
CM
10190 int name_len;
10191 int datasize;
5f39d397 10192 unsigned long ptr;
39279cc3 10193 struct btrfs_file_extent_item *ei;
5f39d397 10194 struct extent_buffer *leaf;
39279cc3 10195
f06becc4 10196 name_len = strlen(symname);
0b246afa 10197 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10198 return -ENAMETOOLONG;
1832a6d5 10199
9ed74f2d
JB
10200 /*
10201 * 2 items for inode item and ref
10202 * 2 items for dir items
9269d12b
FM
10203 * 1 item for updating parent inode item
10204 * 1 item for the inline extent item
9ed74f2d
JB
10205 * 1 item for xattr if selinux is on
10206 */
9269d12b 10207 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10208 if (IS_ERR(trans))
10209 return PTR_ERR(trans);
1832a6d5 10210
581bb050
LZ
10211 err = btrfs_find_free_ino(root, &objectid);
10212 if (err)
10213 goto out_unlock;
10214
aec7477b 10215 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10216 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10217 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10218 if (IS_ERR(inode)) {
10219 err = PTR_ERR(inode);
39279cc3 10220 goto out_unlock;
7cf96da3 10221 }
39279cc3 10222
ad19db71
CS
10223 /*
10224 * If the active LSM wants to access the inode during
10225 * d_instantiate it needs these. Smack checks to see
10226 * if the filesystem supports xattrs by looking at the
10227 * ops vector.
10228 */
10229 inode->i_fop = &btrfs_file_operations;
10230 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10231 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10232 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10233
10234 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10235 if (err)
10236 goto out_unlock_inode;
ad19db71 10237
39279cc3 10238 path = btrfs_alloc_path();
d8926bb3
MF
10239 if (!path) {
10240 err = -ENOMEM;
b0d5d10f 10241 goto out_unlock_inode;
d8926bb3 10242 }
4a0cc7ca 10243 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10244 key.offset = 0;
962a298f 10245 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10246 datasize = btrfs_file_extent_calc_inline_size(name_len);
10247 err = btrfs_insert_empty_item(trans, root, path, &key,
10248 datasize);
54aa1f4d 10249 if (err) {
b0839166 10250 btrfs_free_path(path);
b0d5d10f 10251 goto out_unlock_inode;
54aa1f4d 10252 }
5f39d397
CM
10253 leaf = path->nodes[0];
10254 ei = btrfs_item_ptr(leaf, path->slots[0],
10255 struct btrfs_file_extent_item);
10256 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10257 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10258 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10259 btrfs_set_file_extent_encryption(leaf, ei, 0);
10260 btrfs_set_file_extent_compression(leaf, ei, 0);
10261 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10262 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10263
39279cc3 10264 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10265 write_extent_buffer(leaf, symname, ptr, name_len);
10266 btrfs_mark_buffer_dirty(leaf);
39279cc3 10267 btrfs_free_path(path);
5f39d397 10268
39279cc3 10269 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10270 inode_nohighmem(inode);
39279cc3 10271 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10272 inode_set_bytes(inode, name_len);
6ef06d27 10273 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10274 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10275 /*
10276 * Last step, add directory indexes for our symlink inode. This is the
10277 * last step to avoid extra cleanup of these indexes if an error happens
10278 * elsewhere above.
10279 */
10280 if (!err)
cef415af
NB
10281 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10282 BTRFS_I(inode), 0, index);
b0d5d10f 10283 if (err) {
54aa1f4d 10284 drop_inode = 1;
b0d5d10f
CM
10285 goto out_unlock_inode;
10286 }
10287
1e2e547a 10288 d_instantiate_new(dentry, inode);
39279cc3
CM
10289
10290out_unlock:
3a45bb20 10291 btrfs_end_transaction(trans);
39279cc3
CM
10292 if (drop_inode) {
10293 inode_dec_link_count(inode);
10294 iput(inode);
10295 }
2ff7e61e 10296 btrfs_btree_balance_dirty(fs_info);
39279cc3 10297 return err;
b0d5d10f
CM
10298
10299out_unlock_inode:
10300 drop_inode = 1;
10301 unlock_new_inode(inode);
10302 goto out_unlock;
39279cc3 10303}
16432985 10304
0af3d00b
JB
10305static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10306 u64 start, u64 num_bytes, u64 min_size,
10307 loff_t actual_len, u64 *alloc_hint,
10308 struct btrfs_trans_handle *trans)
d899e052 10309{
0b246afa 10310 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10311 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10312 struct extent_map *em;
d899e052
YZ
10313 struct btrfs_root *root = BTRFS_I(inode)->root;
10314 struct btrfs_key ins;
d899e052 10315 u64 cur_offset = start;
55a61d1d 10316 u64 i_size;
154ea289 10317 u64 cur_bytes;
0b670dc4 10318 u64 last_alloc = (u64)-1;
d899e052 10319 int ret = 0;
0af3d00b 10320 bool own_trans = true;
18513091 10321 u64 end = start + num_bytes - 1;
d899e052 10322
0af3d00b
JB
10323 if (trans)
10324 own_trans = false;
d899e052 10325 while (num_bytes > 0) {
0af3d00b
JB
10326 if (own_trans) {
10327 trans = btrfs_start_transaction(root, 3);
10328 if (IS_ERR(trans)) {
10329 ret = PTR_ERR(trans);
10330 break;
10331 }
5a303d5d
YZ
10332 }
10333
ee22184b 10334 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10335 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10336 /*
10337 * If we are severely fragmented we could end up with really
10338 * small allocations, so if the allocator is returning small
10339 * chunks lets make its job easier by only searching for those
10340 * sized chunks.
10341 */
10342 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10343 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10344 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10345 if (ret) {
0af3d00b 10346 if (own_trans)
3a45bb20 10347 btrfs_end_transaction(trans);
a22285a6 10348 break;
d899e052 10349 }
0b246afa 10350 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10351
0b670dc4 10352 last_alloc = ins.offset;
d899e052
YZ
10353 ret = insert_reserved_file_extent(trans, inode,
10354 cur_offset, ins.objectid,
10355 ins.offset, ins.offset,
920bbbfb 10356 ins.offset, 0, 0, 0,
d899e052 10357 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10358 if (ret) {
2ff7e61e 10359 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10360 ins.offset, 0);
66642832 10361 btrfs_abort_transaction(trans, ret);
79787eaa 10362 if (own_trans)
3a45bb20 10363 btrfs_end_transaction(trans);
79787eaa
JM
10364 break;
10365 }
31193213 10366
dcdbc059 10367 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10368 cur_offset + ins.offset -1, 0);
5a303d5d 10369
5dc562c5
JB
10370 em = alloc_extent_map();
10371 if (!em) {
10372 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10373 &BTRFS_I(inode)->runtime_flags);
10374 goto next;
10375 }
10376
10377 em->start = cur_offset;
10378 em->orig_start = cur_offset;
10379 em->len = ins.offset;
10380 em->block_start = ins.objectid;
10381 em->block_len = ins.offset;
b4939680 10382 em->orig_block_len = ins.offset;
cc95bef6 10383 em->ram_bytes = ins.offset;
0b246afa 10384 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10385 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10386 em->generation = trans->transid;
10387
10388 while (1) {
10389 write_lock(&em_tree->lock);
09a2a8f9 10390 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10391 write_unlock(&em_tree->lock);
10392 if (ret != -EEXIST)
10393 break;
dcdbc059 10394 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10395 cur_offset + ins.offset - 1,
10396 0);
10397 }
10398 free_extent_map(em);
10399next:
d899e052
YZ
10400 num_bytes -= ins.offset;
10401 cur_offset += ins.offset;
efa56464 10402 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10403
0c4d2d95 10404 inode_inc_iversion(inode);
c2050a45 10405 inode->i_ctime = current_time(inode);
6cbff00f 10406 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10407 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10408 (actual_len > inode->i_size) &&
10409 (cur_offset > inode->i_size)) {
d1ea6a61 10410 if (cur_offset > actual_len)
55a61d1d 10411 i_size = actual_len;
d1ea6a61 10412 else
55a61d1d
JB
10413 i_size = cur_offset;
10414 i_size_write(inode, i_size);
10415 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10416 }
10417
d899e052 10418 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10419
10420 if (ret) {
66642832 10421 btrfs_abort_transaction(trans, ret);
79787eaa 10422 if (own_trans)
3a45bb20 10423 btrfs_end_transaction(trans);
79787eaa
JM
10424 break;
10425 }
d899e052 10426
0af3d00b 10427 if (own_trans)
3a45bb20 10428 btrfs_end_transaction(trans);
5a303d5d 10429 }
18513091 10430 if (cur_offset < end)
bc42bda2 10431 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
18513091 10432 end - cur_offset + 1);
d899e052
YZ
10433 return ret;
10434}
10435
0af3d00b
JB
10436int btrfs_prealloc_file_range(struct inode *inode, int mode,
10437 u64 start, u64 num_bytes, u64 min_size,
10438 loff_t actual_len, u64 *alloc_hint)
10439{
10440 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10441 min_size, actual_len, alloc_hint,
10442 NULL);
10443}
10444
10445int btrfs_prealloc_file_range_trans(struct inode *inode,
10446 struct btrfs_trans_handle *trans, int mode,
10447 u64 start, u64 num_bytes, u64 min_size,
10448 loff_t actual_len, u64 *alloc_hint)
10449{
10450 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10451 min_size, actual_len, alloc_hint, trans);
10452}
10453
e6dcd2dc
CM
10454static int btrfs_set_page_dirty(struct page *page)
10455{
e6dcd2dc
CM
10456 return __set_page_dirty_nobuffers(page);
10457}
10458
10556cb2 10459static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10460{
b83cc969 10461 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10462 umode_t mode = inode->i_mode;
b83cc969 10463
cb6db4e5
JM
10464 if (mask & MAY_WRITE &&
10465 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10466 if (btrfs_root_readonly(root))
10467 return -EROFS;
10468 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10469 return -EACCES;
10470 }
2830ba7f 10471 return generic_permission(inode, mask);
fdebe2bd 10472}
39279cc3 10473
ef3b9af5
FM
10474static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10475{
2ff7e61e 10476 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10477 struct btrfs_trans_handle *trans;
10478 struct btrfs_root *root = BTRFS_I(dir)->root;
10479 struct inode *inode = NULL;
10480 u64 objectid;
10481 u64 index;
10482 int ret = 0;
10483
10484 /*
10485 * 5 units required for adding orphan entry
10486 */
10487 trans = btrfs_start_transaction(root, 5);
10488 if (IS_ERR(trans))
10489 return PTR_ERR(trans);
10490
10491 ret = btrfs_find_free_ino(root, &objectid);
10492 if (ret)
10493 goto out;
10494
10495 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10496 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10497 if (IS_ERR(inode)) {
10498 ret = PTR_ERR(inode);
10499 inode = NULL;
10500 goto out;
10501 }
10502
ef3b9af5
FM
10503 inode->i_fop = &btrfs_file_operations;
10504 inode->i_op = &btrfs_file_inode_operations;
10505
10506 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10507 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10508
b0d5d10f
CM
10509 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10510 if (ret)
10511 goto out_inode;
10512
10513 ret = btrfs_update_inode(trans, root, inode);
10514 if (ret)
10515 goto out_inode;
73f2e545 10516 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10517 if (ret)
b0d5d10f 10518 goto out_inode;
ef3b9af5 10519
5762b5c9
FM
10520 /*
10521 * We set number of links to 0 in btrfs_new_inode(), and here we set
10522 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10523 * through:
10524 *
10525 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10526 */
10527 set_nlink(inode, 1);
b0d5d10f 10528 unlock_new_inode(inode);
ef3b9af5
FM
10529 d_tmpfile(dentry, inode);
10530 mark_inode_dirty(inode);
10531
10532out:
3a45bb20 10533 btrfs_end_transaction(trans);
ef3b9af5
FM
10534 if (ret)
10535 iput(inode);
2ff7e61e 10536 btrfs_btree_balance_dirty(fs_info);
ef3b9af5 10537 return ret;
b0d5d10f
CM
10538
10539out_inode:
10540 unlock_new_inode(inode);
10541 goto out;
10542
ef3b9af5
FM
10543}
10544
20a7db8a 10545__attribute__((const))
9d0d1c8b 10546static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
20a7db8a 10547{
9d0d1c8b 10548 return -EAGAIN;
20a7db8a
DS
10549}
10550
c6100a4b
JB
10551static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10552{
10553 struct inode *inode = private_data;
10554 return btrfs_sb(inode->i_sb);
10555}
10556
10557static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10558 u64 start, u64 end)
10559{
10560 struct inode *inode = private_data;
10561 u64 isize;
10562
10563 isize = i_size_read(inode);
10564 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10565 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10566 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10567 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10568 }
10569}
10570
10571void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10572{
10573 struct inode *inode = private_data;
10574 unsigned long index = start >> PAGE_SHIFT;
10575 unsigned long end_index = end >> PAGE_SHIFT;
10576 struct page *page;
10577
10578 while (index <= end_index) {
10579 page = find_get_page(inode->i_mapping, index);
10580 ASSERT(page); /* Pages should be in the extent_io_tree */
10581 set_page_writeback(page);
10582 put_page(page);
10583 index++;
10584 }
10585}
10586
6e1d5dcc 10587static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10588 .getattr = btrfs_getattr,
39279cc3
CM
10589 .lookup = btrfs_lookup,
10590 .create = btrfs_create,
10591 .unlink = btrfs_unlink,
10592 .link = btrfs_link,
10593 .mkdir = btrfs_mkdir,
10594 .rmdir = btrfs_rmdir,
2773bf00 10595 .rename = btrfs_rename2,
39279cc3
CM
10596 .symlink = btrfs_symlink,
10597 .setattr = btrfs_setattr,
618e21d5 10598 .mknod = btrfs_mknod,
5103e947 10599 .listxattr = btrfs_listxattr,
fdebe2bd 10600 .permission = btrfs_permission,
4e34e719 10601 .get_acl = btrfs_get_acl,
996a710d 10602 .set_acl = btrfs_set_acl,
93fd63c2 10603 .update_time = btrfs_update_time,
ef3b9af5 10604 .tmpfile = btrfs_tmpfile,
39279cc3 10605};
6e1d5dcc 10606static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10607 .lookup = btrfs_lookup,
fdebe2bd 10608 .permission = btrfs_permission,
93fd63c2 10609 .update_time = btrfs_update_time,
39279cc3 10610};
76dda93c 10611
828c0950 10612static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10613 .llseek = generic_file_llseek,
10614 .read = generic_read_dir,
02dbfc99 10615 .iterate_shared = btrfs_real_readdir,
23b5ec74 10616 .open = btrfs_opendir,
34287aa3 10617 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10618#ifdef CONFIG_COMPAT
4c63c245 10619 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10620#endif
6bf13c0c 10621 .release = btrfs_release_file,
e02119d5 10622 .fsync = btrfs_sync_file,
39279cc3
CM
10623};
10624
20e5506b 10625static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10626 /* mandatory callbacks */
065631f6 10627 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac 10628 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4d53dddb 10629 .merge_bio_hook = btrfs_merge_bio_hook,
9d0d1c8b 10630 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
c6100a4b
JB
10631 .tree_fs_info = iotree_fs_info,
10632 .set_range_writeback = btrfs_set_range_writeback,
4d53dddb
DS
10633
10634 /* optional callbacks */
10635 .fill_delalloc = run_delalloc_range,
e6dcd2dc 10636 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10637 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10638 .set_bit_hook = btrfs_set_bit_hook,
10639 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10640 .merge_extent_hook = btrfs_merge_extent_hook,
10641 .split_extent_hook = btrfs_split_extent_hook,
c6100a4b 10642 .check_extent_io_range = btrfs_check_extent_io_range,
07157aac
CM
10643};
10644
35054394
CM
10645/*
10646 * btrfs doesn't support the bmap operation because swapfiles
10647 * use bmap to make a mapping of extents in the file. They assume
10648 * these extents won't change over the life of the file and they
10649 * use the bmap result to do IO directly to the drive.
10650 *
10651 * the btrfs bmap call would return logical addresses that aren't
10652 * suitable for IO and they also will change frequently as COW
10653 * operations happen. So, swapfile + btrfs == corruption.
10654 *
10655 * For now we're avoiding this by dropping bmap.
10656 */
7f09410b 10657static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10658 .readpage = btrfs_readpage,
10659 .writepage = btrfs_writepage,
b293f02e 10660 .writepages = btrfs_writepages,
3ab2fb5a 10661 .readpages = btrfs_readpages,
16432985 10662 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10663 .invalidatepage = btrfs_invalidatepage,
10664 .releasepage = btrfs_releasepage,
e6dcd2dc 10665 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10666 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10667};
10668
7f09410b 10669static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10670 .readpage = btrfs_readpage,
10671 .writepage = btrfs_writepage,
2bf5a725
CM
10672 .invalidatepage = btrfs_invalidatepage,
10673 .releasepage = btrfs_releasepage,
39279cc3
CM
10674};
10675
6e1d5dcc 10676static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10677 .getattr = btrfs_getattr,
10678 .setattr = btrfs_setattr,
5103e947 10679 .listxattr = btrfs_listxattr,
fdebe2bd 10680 .permission = btrfs_permission,
1506fcc8 10681 .fiemap = btrfs_fiemap,
4e34e719 10682 .get_acl = btrfs_get_acl,
996a710d 10683 .set_acl = btrfs_set_acl,
e41f941a 10684 .update_time = btrfs_update_time,
39279cc3 10685};
6e1d5dcc 10686static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10687 .getattr = btrfs_getattr,
10688 .setattr = btrfs_setattr,
fdebe2bd 10689 .permission = btrfs_permission,
33268eaf 10690 .listxattr = btrfs_listxattr,
4e34e719 10691 .get_acl = btrfs_get_acl,
996a710d 10692 .set_acl = btrfs_set_acl,
e41f941a 10693 .update_time = btrfs_update_time,
618e21d5 10694};
6e1d5dcc 10695static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10696 .get_link = page_get_link,
f209561a 10697 .getattr = btrfs_getattr,
22c44fe6 10698 .setattr = btrfs_setattr,
fdebe2bd 10699 .permission = btrfs_permission,
0279b4cd 10700 .listxattr = btrfs_listxattr,
e41f941a 10701 .update_time = btrfs_update_time,
39279cc3 10702};
76dda93c 10703
82d339d9 10704const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
10705 .d_delete = btrfs_dentry_delete,
10706};