]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/inode.c
Merge remote-tracking branches 'spi/fix/armada', 'spi/fix/atmel', 'spi/fix/doc',...
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
39279cc3 33#include <linux/compat.h>
9ebefb18 34#include <linux/bit_spinlock.h>
5103e947 35#include <linux/xattr.h>
33268eaf 36#include <linux/posix_acl.h>
d899e052 37#include <linux/falloc.h>
5a0e3ad6 38#include <linux/slab.h>
7a36ddec 39#include <linux/ratelimit.h>
22c44fe6 40#include <linux/mount.h>
55e301fd 41#include <linux/btrfs.h>
53b381b3 42#include <linux/blkdev.h>
f23b5a59 43#include <linux/posix_acl_xattr.h>
e2e40f2c 44#include <linux/uio.h>
69fe2d75 45#include <linux/magic.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
dda3245e 63#include "dedupe.h"
39279cc3
CM
64
65struct btrfs_iget_args {
90d3e592 66 struct btrfs_key *location;
39279cc3
CM
67 struct btrfs_root *root;
68};
69
f28a4928 70struct btrfs_dio_data {
f28a4928
FM
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
4aaedfb0 74 int overwrite;
f28a4928
FM
75};
76
6e1d5dcc
AD
77static const struct inode_operations btrfs_dir_inode_operations;
78static const struct inode_operations btrfs_symlink_inode_operations;
79static const struct inode_operations btrfs_dir_ro_inode_operations;
80static const struct inode_operations btrfs_special_inode_operations;
81static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
82static const struct address_space_operations btrfs_aops;
83static const struct address_space_operations btrfs_symlink_aops;
828c0950 84static const struct file_operations btrfs_dir_file_operations;
20e5506b 85static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
86
87static struct kmem_cache *btrfs_inode_cachep;
88struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 89struct kmem_cache *btrfs_path_cachep;
dc89e982 90struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
91
92#define S_SHIFT 12
4d4ab6d6 93static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101};
102
3972f260 103static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 104static int btrfs_truncate(struct inode *inode);
5fd02043 105static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
106static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
dda3245e
WX
108 u64 start, u64 end, u64 delalloc_end,
109 int *page_started, unsigned long *nr_written,
110 int unlock, struct btrfs_dedupe_hash *hash);
6f9994db
LB
111static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
112 u64 orig_start, u64 block_start,
113 u64 block_len, u64 orig_block_len,
114 u64 ram_bytes, int compress_type,
115 int type);
7b128766 116
52427260
QW
117static void __endio_write_update_ordered(struct inode *inode,
118 const u64 offset, const u64 bytes,
119 const bool uptodate);
120
121/*
122 * Cleanup all submitted ordered extents in specified range to handle errors
123 * from the fill_dellaloc() callback.
124 *
125 * NOTE: caller must ensure that when an error happens, it can not call
126 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
127 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
128 * to be released, which we want to happen only when finishing the ordered
129 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
130 * fill_delalloc() callback already does proper cleanup for the first page of
131 * the range, that is, it invokes the callback writepage_end_io_hook() for the
132 * range of the first page.
133 */
134static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
135 const u64 offset,
136 const u64 bytes)
137{
63d71450
NA
138 unsigned long index = offset >> PAGE_SHIFT;
139 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
140 struct page *page;
141
142 while (index <= end_index) {
143 page = find_get_page(inode->i_mapping, index);
144 index++;
145 if (!page)
146 continue;
147 ClearPagePrivate2(page);
148 put_page(page);
149 }
52427260
QW
150 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
151 bytes - PAGE_SIZE, false);
152}
153
48a3b636 154static int btrfs_dirty_inode(struct inode *inode);
7b128766 155
6a3891c5
JB
156#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
157void btrfs_test_inode_set_ops(struct inode *inode)
158{
159 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
160}
161#endif
162
f34f57a3 163static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
164 struct inode *inode, struct inode *dir,
165 const struct qstr *qstr)
0279b4cd
JO
166{
167 int err;
168
f34f57a3 169 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 170 if (!err)
2a7dba39 171 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
172 return err;
173}
174
c8b97818
CM
175/*
176 * this does all the hard work for inserting an inline extent into
177 * the btree. The caller should have done a btrfs_drop_extents so that
178 * no overlapping inline items exist in the btree
179 */
40f76580 180static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 181 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
182 struct btrfs_root *root, struct inode *inode,
183 u64 start, size_t size, size_t compressed_size,
fe3f566c 184 int compress_type,
c8b97818
CM
185 struct page **compressed_pages)
186{
c8b97818
CM
187 struct extent_buffer *leaf;
188 struct page *page = NULL;
189 char *kaddr;
190 unsigned long ptr;
191 struct btrfs_file_extent_item *ei;
c8b97818
CM
192 int ret;
193 size_t cur_size = size;
c8b97818 194 unsigned long offset;
c8b97818 195
fe3f566c 196 if (compressed_size && compressed_pages)
c8b97818 197 cur_size = compressed_size;
c8b97818 198
1acae57b 199 inode_add_bytes(inode, size);
c8b97818 200
1acae57b
FDBM
201 if (!extent_inserted) {
202 struct btrfs_key key;
203 size_t datasize;
c8b97818 204
4a0cc7ca 205 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 206 key.offset = start;
962a298f 207 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 208
1acae57b
FDBM
209 datasize = btrfs_file_extent_calc_inline_size(cur_size);
210 path->leave_spinning = 1;
211 ret = btrfs_insert_empty_item(trans, root, path, &key,
212 datasize);
79b4f4c6 213 if (ret)
1acae57b 214 goto fail;
c8b97818
CM
215 }
216 leaf = path->nodes[0];
217 ei = btrfs_item_ptr(leaf, path->slots[0],
218 struct btrfs_file_extent_item);
219 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
220 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
221 btrfs_set_file_extent_encryption(leaf, ei, 0);
222 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
223 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
224 ptr = btrfs_file_extent_inline_start(ei);
225
261507a0 226 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
227 struct page *cpage;
228 int i = 0;
d397712b 229 while (compressed_size > 0) {
c8b97818 230 cpage = compressed_pages[i];
5b050f04 231 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 232 PAGE_SIZE);
c8b97818 233
7ac687d9 234 kaddr = kmap_atomic(cpage);
c8b97818 235 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 236 kunmap_atomic(kaddr);
c8b97818
CM
237
238 i++;
239 ptr += cur_size;
240 compressed_size -= cur_size;
241 }
242 btrfs_set_file_extent_compression(leaf, ei,
261507a0 243 compress_type);
c8b97818
CM
244 } else {
245 page = find_get_page(inode->i_mapping,
09cbfeaf 246 start >> PAGE_SHIFT);
c8b97818 247 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 248 kaddr = kmap_atomic(page);
09cbfeaf 249 offset = start & (PAGE_SIZE - 1);
c8b97818 250 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 251 kunmap_atomic(kaddr);
09cbfeaf 252 put_page(page);
c8b97818
CM
253 }
254 btrfs_mark_buffer_dirty(leaf);
1acae57b 255 btrfs_release_path(path);
c8b97818 256
c2167754
YZ
257 /*
258 * we're an inline extent, so nobody can
259 * extend the file past i_size without locking
260 * a page we already have locked.
261 *
262 * We must do any isize and inode updates
263 * before we unlock the pages. Otherwise we
264 * could end up racing with unlink.
265 */
c8b97818 266 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 267 ret = btrfs_update_inode(trans, root, inode);
c2167754 268
c8b97818 269fail:
79b4f4c6 270 return ret;
c8b97818
CM
271}
272
273
274/*
275 * conditionally insert an inline extent into the file. This
276 * does the checks required to make sure the data is small enough
277 * to fit as an inline extent.
278 */
00361589
JB
279static noinline int cow_file_range_inline(struct btrfs_root *root,
280 struct inode *inode, u64 start,
281 u64 end, size_t compressed_size,
282 int compress_type,
283 struct page **compressed_pages)
c8b97818 284{
0b246afa 285 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 286 struct btrfs_trans_handle *trans;
c8b97818
CM
287 u64 isize = i_size_read(inode);
288 u64 actual_end = min(end + 1, isize);
289 u64 inline_len = actual_end - start;
0b246afa 290 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
291 u64 data_len = inline_len;
292 int ret;
1acae57b
FDBM
293 struct btrfs_path *path;
294 int extent_inserted = 0;
295 u32 extent_item_size;
c8b97818
CM
296
297 if (compressed_size)
298 data_len = compressed_size;
299
300 if (start > 0 ||
0b246afa
JM
301 actual_end > fs_info->sectorsize ||
302 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 303 (!compressed_size &&
0b246afa 304 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 305 end + 1 < isize ||
0b246afa 306 data_len > fs_info->max_inline) {
c8b97818
CM
307 return 1;
308 }
309
1acae57b
FDBM
310 path = btrfs_alloc_path();
311 if (!path)
312 return -ENOMEM;
313
00361589 314 trans = btrfs_join_transaction(root);
1acae57b
FDBM
315 if (IS_ERR(trans)) {
316 btrfs_free_path(path);
00361589 317 return PTR_ERR(trans);
1acae57b 318 }
69fe2d75 319 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
00361589 320
1acae57b
FDBM
321 if (compressed_size && compressed_pages)
322 extent_item_size = btrfs_file_extent_calc_inline_size(
323 compressed_size);
324 else
325 extent_item_size = btrfs_file_extent_calc_inline_size(
326 inline_len);
327
328 ret = __btrfs_drop_extents(trans, root, inode, path,
329 start, aligned_end, NULL,
330 1, 1, extent_item_size, &extent_inserted);
00361589 331 if (ret) {
66642832 332 btrfs_abort_transaction(trans, ret);
00361589
JB
333 goto out;
334 }
c8b97818
CM
335
336 if (isize > actual_end)
337 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
338 ret = insert_inline_extent(trans, path, extent_inserted,
339 root, inode, start,
c8b97818 340 inline_len, compressed_size,
fe3f566c 341 compress_type, compressed_pages);
2adcac1a 342 if (ret && ret != -ENOSPC) {
66642832 343 btrfs_abort_transaction(trans, ret);
00361589 344 goto out;
2adcac1a 345 } else if (ret == -ENOSPC) {
00361589
JB
346 ret = 1;
347 goto out;
79787eaa 348 }
2adcac1a 349
bdc20e67 350 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
dcdbc059 351 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 352out:
94ed938a
QW
353 /*
354 * Don't forget to free the reserved space, as for inlined extent
355 * it won't count as data extent, free them directly here.
356 * And at reserve time, it's always aligned to page size, so
357 * just free one page here.
358 */
bc42bda2 359 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 360 btrfs_free_path(path);
3a45bb20 361 btrfs_end_transaction(trans);
00361589 362 return ret;
c8b97818
CM
363}
364
771ed689
CM
365struct async_extent {
366 u64 start;
367 u64 ram_size;
368 u64 compressed_size;
369 struct page **pages;
370 unsigned long nr_pages;
261507a0 371 int compress_type;
771ed689
CM
372 struct list_head list;
373};
374
375struct async_cow {
376 struct inode *inode;
377 struct btrfs_root *root;
378 struct page *locked_page;
379 u64 start;
380 u64 end;
f82b7359 381 unsigned int write_flags;
771ed689
CM
382 struct list_head extents;
383 struct btrfs_work work;
384};
385
386static noinline int add_async_extent(struct async_cow *cow,
387 u64 start, u64 ram_size,
388 u64 compressed_size,
389 struct page **pages,
261507a0
LZ
390 unsigned long nr_pages,
391 int compress_type)
771ed689
CM
392{
393 struct async_extent *async_extent;
394
395 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 396 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
397 async_extent->start = start;
398 async_extent->ram_size = ram_size;
399 async_extent->compressed_size = compressed_size;
400 async_extent->pages = pages;
401 async_extent->nr_pages = nr_pages;
261507a0 402 async_extent->compress_type = compress_type;
771ed689
CM
403 list_add_tail(&async_extent->list, &cow->extents);
404 return 0;
405}
406
c2fcdcdf 407static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
f79707b0 408{
0b246afa 409 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
410
411 /* force compress */
0b246afa 412 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 413 return 1;
eec63c65
DS
414 /* defrag ioctl */
415 if (BTRFS_I(inode)->defrag_compress)
416 return 1;
f79707b0
WS
417 /* bad compression ratios */
418 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
419 return 0;
0b246afa 420 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0 421 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
b52aa8c9 422 BTRFS_I(inode)->prop_compress)
c2fcdcdf 423 return btrfs_compress_heuristic(inode, start, end);
f79707b0
WS
424 return 0;
425}
426
6158e1ce 427static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
428 u64 start, u64 end, u64 num_bytes, u64 small_write)
429{
430 /* If this is a small write inside eof, kick off a defrag */
431 if (num_bytes < small_write &&
6158e1ce 432 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
433 btrfs_add_inode_defrag(NULL, inode);
434}
435
d352ac68 436/*
771ed689
CM
437 * we create compressed extents in two phases. The first
438 * phase compresses a range of pages that have already been
439 * locked (both pages and state bits are locked).
c8b97818 440 *
771ed689
CM
441 * This is done inside an ordered work queue, and the compression
442 * is spread across many cpus. The actual IO submission is step
443 * two, and the ordered work queue takes care of making sure that
444 * happens in the same order things were put onto the queue by
445 * writepages and friends.
c8b97818 446 *
771ed689
CM
447 * If this code finds it can't get good compression, it puts an
448 * entry onto the work queue to write the uncompressed bytes. This
449 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
450 * are written in the same order that the flusher thread sent them
451 * down.
d352ac68 452 */
c44f649e 453static noinline void compress_file_range(struct inode *inode,
771ed689
CM
454 struct page *locked_page,
455 u64 start, u64 end,
456 struct async_cow *async_cow,
457 int *num_added)
b888db2b 458{
0b246afa 459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
b888db2b 460 struct btrfs_root *root = BTRFS_I(inode)->root;
0b246afa 461 u64 blocksize = fs_info->sectorsize;
c8b97818 462 u64 actual_end;
42dc7bab 463 u64 isize = i_size_read(inode);
e6dcd2dc 464 int ret = 0;
c8b97818
CM
465 struct page **pages = NULL;
466 unsigned long nr_pages;
c8b97818
CM
467 unsigned long total_compressed = 0;
468 unsigned long total_in = 0;
c8b97818
CM
469 int i;
470 int will_compress;
0b246afa 471 int compress_type = fs_info->compress_type;
4adaa611 472 int redirty = 0;
b888db2b 473
6158e1ce
NB
474 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
475 SZ_16K);
4cb5300b 476
42dc7bab 477 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
478again:
479 will_compress = 0;
09cbfeaf 480 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
481 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
482 nr_pages = min_t(unsigned long, nr_pages,
483 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 484
f03d9301
CM
485 /*
486 * we don't want to send crud past the end of i_size through
487 * compression, that's just a waste of CPU time. So, if the
488 * end of the file is before the start of our current
489 * requested range of bytes, we bail out to the uncompressed
490 * cleanup code that can deal with all of this.
491 *
492 * It isn't really the fastest way to fix things, but this is a
493 * very uncommon corner.
494 */
495 if (actual_end <= start)
496 goto cleanup_and_bail_uncompressed;
497
c8b97818
CM
498 total_compressed = actual_end - start;
499
4bcbb332
SW
500 /*
501 * skip compression for a small file range(<=blocksize) that
01327610 502 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
503 */
504 if (total_compressed <= blocksize &&
505 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
506 goto cleanup_and_bail_uncompressed;
507
069eac78
DS
508 total_compressed = min_t(unsigned long, total_compressed,
509 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
510 total_in = 0;
511 ret = 0;
db94535d 512
771ed689
CM
513 /*
514 * we do compression for mount -o compress and when the
515 * inode has not been flagged as nocompress. This flag can
516 * change at any time if we discover bad compression ratios.
c8b97818 517 */
c2fcdcdf 518 if (inode_need_compress(inode, start, end)) {
c8b97818 519 WARN_ON(pages);
31e818fe 520 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
521 if (!pages) {
522 /* just bail out to the uncompressed code */
523 goto cont;
524 }
c8b97818 525
eec63c65
DS
526 if (BTRFS_I(inode)->defrag_compress)
527 compress_type = BTRFS_I(inode)->defrag_compress;
528 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 529 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 530
4adaa611
CM
531 /*
532 * we need to call clear_page_dirty_for_io on each
533 * page in the range. Otherwise applications with the file
534 * mmap'd can wander in and change the page contents while
535 * we are compressing them.
536 *
537 * If the compression fails for any reason, we set the pages
538 * dirty again later on.
539 */
540 extent_range_clear_dirty_for_io(inode, start, end);
541 redirty = 1;
f51d2b59
DS
542
543 /* Compression level is applied here and only here */
544 ret = btrfs_compress_pages(
545 compress_type | (fs_info->compress_level << 4),
261507a0 546 inode->i_mapping, start,
38c31464 547 pages,
4d3a800e 548 &nr_pages,
261507a0 549 &total_in,
e5d74902 550 &total_compressed);
c8b97818
CM
551
552 if (!ret) {
553 unsigned long offset = total_compressed &
09cbfeaf 554 (PAGE_SIZE - 1);
4d3a800e 555 struct page *page = pages[nr_pages - 1];
c8b97818
CM
556 char *kaddr;
557
558 /* zero the tail end of the last page, we might be
559 * sending it down to disk
560 */
561 if (offset) {
7ac687d9 562 kaddr = kmap_atomic(page);
c8b97818 563 memset(kaddr + offset, 0,
09cbfeaf 564 PAGE_SIZE - offset);
7ac687d9 565 kunmap_atomic(kaddr);
c8b97818
CM
566 }
567 will_compress = 1;
568 }
569 }
560f7d75 570cont:
c8b97818
CM
571 if (start == 0) {
572 /* lets try to make an inline extent */
6018ba0a 573 if (ret || total_in < actual_end) {
c8b97818 574 /* we didn't compress the entire range, try
771ed689 575 * to make an uncompressed inline extent.
c8b97818 576 */
00361589 577 ret = cow_file_range_inline(root, inode, start, end,
f74670f7 578 0, BTRFS_COMPRESS_NONE, NULL);
c8b97818 579 } else {
771ed689 580 /* try making a compressed inline extent */
00361589 581 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
582 total_compressed,
583 compress_type, pages);
c8b97818 584 }
79787eaa 585 if (ret <= 0) {
151a41bc 586 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
587 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
588 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
589 unsigned long page_error_op;
590
e6eb4314 591 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 592
771ed689 593 /*
79787eaa
JM
594 * inline extent creation worked or returned error,
595 * we don't need to create any more async work items.
596 * Unlock and free up our temp pages.
8b62f87b
JB
597 *
598 * We use DO_ACCOUNTING here because we need the
599 * delalloc_release_metadata to be done _after_ we drop
600 * our outstanding extent for clearing delalloc for this
601 * range.
771ed689 602 */
ba8b04c1
QW
603 extent_clear_unlock_delalloc(inode, start, end, end,
604 NULL, clear_flags,
605 PAGE_UNLOCK |
c2790a2e
JB
606 PAGE_CLEAR_DIRTY |
607 PAGE_SET_WRITEBACK |
e6eb4314 608 page_error_op |
c2790a2e 609 PAGE_END_WRITEBACK);
c8b97818
CM
610 goto free_pages_out;
611 }
612 }
613
614 if (will_compress) {
615 /*
616 * we aren't doing an inline extent round the compressed size
617 * up to a block size boundary so the allocator does sane
618 * things
619 */
fda2832f 620 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
621
622 /*
623 * one last check to make sure the compression is really a
170607eb
TT
624 * win, compare the page count read with the blocks on disk,
625 * compression must free at least one sector size
c8b97818 626 */
09cbfeaf 627 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 628 if (total_compressed + blocksize <= total_in) {
c8bb0c8b
AS
629 *num_added += 1;
630
631 /*
632 * The async work queues will take care of doing actual
633 * allocation on disk for these compressed pages, and
634 * will submit them to the elevator.
635 */
1170862d 636 add_async_extent(async_cow, start, total_in,
4d3a800e 637 total_compressed, pages, nr_pages,
c8bb0c8b
AS
638 compress_type);
639
1170862d
TT
640 if (start + total_in < end) {
641 start += total_in;
c8bb0c8b
AS
642 pages = NULL;
643 cond_resched();
644 goto again;
645 }
646 return;
c8b97818
CM
647 }
648 }
c8bb0c8b 649 if (pages) {
c8b97818
CM
650 /*
651 * the compression code ran but failed to make things smaller,
652 * free any pages it allocated and our page pointer array
653 */
4d3a800e 654 for (i = 0; i < nr_pages; i++) {
70b99e69 655 WARN_ON(pages[i]->mapping);
09cbfeaf 656 put_page(pages[i]);
c8b97818
CM
657 }
658 kfree(pages);
659 pages = NULL;
660 total_compressed = 0;
4d3a800e 661 nr_pages = 0;
c8b97818
CM
662
663 /* flag the file so we don't compress in the future */
0b246afa 664 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 665 !(BTRFS_I(inode)->prop_compress)) {
a555f810 666 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 667 }
c8b97818 668 }
f03d9301 669cleanup_and_bail_uncompressed:
c8bb0c8b
AS
670 /*
671 * No compression, but we still need to write the pages in the file
672 * we've been given so far. redirty the locked page if it corresponds
673 * to our extent and set things up for the async work queue to run
674 * cow_file_range to do the normal delalloc dance.
675 */
676 if (page_offset(locked_page) >= start &&
677 page_offset(locked_page) <= end)
678 __set_page_dirty_nobuffers(locked_page);
679 /* unlocked later on in the async handlers */
680
681 if (redirty)
682 extent_range_redirty_for_io(inode, start, end);
683 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
684 BTRFS_COMPRESS_NONE);
685 *num_added += 1;
3b951516 686
c44f649e 687 return;
771ed689
CM
688
689free_pages_out:
4d3a800e 690 for (i = 0; i < nr_pages; i++) {
771ed689 691 WARN_ON(pages[i]->mapping);
09cbfeaf 692 put_page(pages[i]);
771ed689 693 }
d397712b 694 kfree(pages);
771ed689 695}
771ed689 696
40ae837b
FM
697static void free_async_extent_pages(struct async_extent *async_extent)
698{
699 int i;
700
701 if (!async_extent->pages)
702 return;
703
704 for (i = 0; i < async_extent->nr_pages; i++) {
705 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 706 put_page(async_extent->pages[i]);
40ae837b
FM
707 }
708 kfree(async_extent->pages);
709 async_extent->nr_pages = 0;
710 async_extent->pages = NULL;
771ed689
CM
711}
712
713/*
714 * phase two of compressed writeback. This is the ordered portion
715 * of the code, which only gets called in the order the work was
716 * queued. We walk all the async extents created by compress_file_range
717 * and send them down to the disk.
718 */
dec8f175 719static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
720 struct async_cow *async_cow)
721{
0b246afa 722 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
723 struct async_extent *async_extent;
724 u64 alloc_hint = 0;
771ed689
CM
725 struct btrfs_key ins;
726 struct extent_map *em;
727 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689 728 struct extent_io_tree *io_tree;
f5a84ee3 729 int ret = 0;
771ed689 730
3e04e7f1 731again:
d397712b 732 while (!list_empty(&async_cow->extents)) {
771ed689
CM
733 async_extent = list_entry(async_cow->extents.next,
734 struct async_extent, list);
735 list_del(&async_extent->list);
c8b97818 736
771ed689
CM
737 io_tree = &BTRFS_I(inode)->io_tree;
738
f5a84ee3 739retry:
771ed689
CM
740 /* did the compression code fall back to uncompressed IO? */
741 if (!async_extent->pages) {
742 int page_started = 0;
743 unsigned long nr_written = 0;
744
745 lock_extent(io_tree, async_extent->start,
2ac55d41 746 async_extent->start +
d0082371 747 async_extent->ram_size - 1);
771ed689
CM
748
749 /* allocate blocks */
f5a84ee3
JB
750 ret = cow_file_range(inode, async_cow->locked_page,
751 async_extent->start,
752 async_extent->start +
753 async_extent->ram_size - 1,
dda3245e
WX
754 async_extent->start +
755 async_extent->ram_size - 1,
756 &page_started, &nr_written, 0,
757 NULL);
771ed689 758
79787eaa
JM
759 /* JDM XXX */
760
771ed689
CM
761 /*
762 * if page_started, cow_file_range inserted an
763 * inline extent and took care of all the unlocking
764 * and IO for us. Otherwise, we need to submit
765 * all those pages down to the drive.
766 */
f5a84ee3 767 if (!page_started && !ret)
771ed689
CM
768 extent_write_locked_range(io_tree,
769 inode, async_extent->start,
d397712b 770 async_extent->start +
771ed689
CM
771 async_extent->ram_size - 1,
772 btrfs_get_extent,
773 WB_SYNC_ALL);
3e04e7f1
JB
774 else if (ret)
775 unlock_page(async_cow->locked_page);
771ed689
CM
776 kfree(async_extent);
777 cond_resched();
778 continue;
779 }
780
781 lock_extent(io_tree, async_extent->start,
d0082371 782 async_extent->start + async_extent->ram_size - 1);
771ed689 783
18513091 784 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
785 async_extent->compressed_size,
786 async_extent->compressed_size,
e570fd27 787 0, alloc_hint, &ins, 1, 1);
f5a84ee3 788 if (ret) {
40ae837b 789 free_async_extent_pages(async_extent);
3e04e7f1 790
fdf8e2ea
JB
791 if (ret == -ENOSPC) {
792 unlock_extent(io_tree, async_extent->start,
793 async_extent->start +
794 async_extent->ram_size - 1);
ce62003f
LB
795
796 /*
797 * we need to redirty the pages if we decide to
798 * fallback to uncompressed IO, otherwise we
799 * will not submit these pages down to lower
800 * layers.
801 */
802 extent_range_redirty_for_io(inode,
803 async_extent->start,
804 async_extent->start +
805 async_extent->ram_size - 1);
806
79787eaa 807 goto retry;
fdf8e2ea 808 }
3e04e7f1 809 goto out_free;
f5a84ee3 810 }
c2167754
YZ
811 /*
812 * here we're doing allocation and writeback of the
813 * compressed pages
814 */
6f9994db
LB
815 em = create_io_em(inode, async_extent->start,
816 async_extent->ram_size, /* len */
817 async_extent->start, /* orig_start */
818 ins.objectid, /* block_start */
819 ins.offset, /* block_len */
820 ins.offset, /* orig_block_len */
821 async_extent->ram_size, /* ram_bytes */
822 async_extent->compress_type,
823 BTRFS_ORDERED_COMPRESSED);
824 if (IS_ERR(em))
825 /* ret value is not necessary due to void function */
3e04e7f1 826 goto out_free_reserve;
6f9994db 827 free_extent_map(em);
3e04e7f1 828
261507a0
LZ
829 ret = btrfs_add_ordered_extent_compress(inode,
830 async_extent->start,
831 ins.objectid,
832 async_extent->ram_size,
833 ins.offset,
834 BTRFS_ORDERED_COMPRESSED,
835 async_extent->compress_type);
d9f85963 836 if (ret) {
dcdbc059
NB
837 btrfs_drop_extent_cache(BTRFS_I(inode),
838 async_extent->start,
d9f85963
FM
839 async_extent->start +
840 async_extent->ram_size - 1, 0);
3e04e7f1 841 goto out_free_reserve;
d9f85963 842 }
0b246afa 843 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 844
771ed689
CM
845 /*
846 * clear dirty, set writeback and unlock the pages.
847 */
c2790a2e 848 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
849 async_extent->start +
850 async_extent->ram_size - 1,
a791e35e
CM
851 async_extent->start +
852 async_extent->ram_size - 1,
151a41bc
JB
853 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
854 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 855 PAGE_SET_WRITEBACK);
4e4cbee9 856 if (btrfs_submit_compressed_write(inode,
d397712b
CM
857 async_extent->start,
858 async_extent->ram_size,
859 ins.objectid,
860 ins.offset, async_extent->pages,
f82b7359
LB
861 async_extent->nr_pages,
862 async_cow->write_flags)) {
fce2a4e6
FM
863 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
864 struct page *p = async_extent->pages[0];
865 const u64 start = async_extent->start;
866 const u64 end = start + async_extent->ram_size - 1;
867
868 p->mapping = inode->i_mapping;
869 tree->ops->writepage_end_io_hook(p, start, end,
870 NULL, 0);
871 p->mapping = NULL;
ba8b04c1
QW
872 extent_clear_unlock_delalloc(inode, start, end, end,
873 NULL, 0,
fce2a4e6
FM
874 PAGE_END_WRITEBACK |
875 PAGE_SET_ERROR);
40ae837b 876 free_async_extent_pages(async_extent);
fce2a4e6 877 }
771ed689
CM
878 alloc_hint = ins.objectid + ins.offset;
879 kfree(async_extent);
880 cond_resched();
881 }
dec8f175 882 return;
3e04e7f1 883out_free_reserve:
0b246afa 884 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 885 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 886out_free:
c2790a2e 887 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
888 async_extent->start +
889 async_extent->ram_size - 1,
3e04e7f1
JB
890 async_extent->start +
891 async_extent->ram_size - 1,
c2790a2e 892 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 893 EXTENT_DELALLOC_NEW |
151a41bc
JB
894 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
895 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
896 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
897 PAGE_SET_ERROR);
40ae837b 898 free_async_extent_pages(async_extent);
79787eaa 899 kfree(async_extent);
3e04e7f1 900 goto again;
771ed689
CM
901}
902
4b46fce2
JB
903static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
904 u64 num_bytes)
905{
906 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
907 struct extent_map *em;
908 u64 alloc_hint = 0;
909
910 read_lock(&em_tree->lock);
911 em = search_extent_mapping(em_tree, start, num_bytes);
912 if (em) {
913 /*
914 * if block start isn't an actual block number then find the
915 * first block in this inode and use that as a hint. If that
916 * block is also bogus then just don't worry about it.
917 */
918 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
919 free_extent_map(em);
920 em = search_extent_mapping(em_tree, 0, 0);
921 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
922 alloc_hint = em->block_start;
923 if (em)
924 free_extent_map(em);
925 } else {
926 alloc_hint = em->block_start;
927 free_extent_map(em);
928 }
929 }
930 read_unlock(&em_tree->lock);
931
932 return alloc_hint;
933}
934
771ed689
CM
935/*
936 * when extent_io.c finds a delayed allocation range in the file,
937 * the call backs end up in this code. The basic idea is to
938 * allocate extents on disk for the range, and create ordered data structs
939 * in ram to track those extents.
940 *
941 * locked_page is the page that writepage had locked already. We use
942 * it to make sure we don't do extra locks or unlocks.
943 *
944 * *page_started is set to one if we unlock locked_page and do everything
945 * required to start IO on it. It may be clean and already done with
946 * IO when we return.
947 */
00361589
JB
948static noinline int cow_file_range(struct inode *inode,
949 struct page *locked_page,
dda3245e
WX
950 u64 start, u64 end, u64 delalloc_end,
951 int *page_started, unsigned long *nr_written,
952 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 953{
0b246afa 954 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 955 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
956 u64 alloc_hint = 0;
957 u64 num_bytes;
958 unsigned long ram_size;
959 u64 disk_num_bytes;
a315e68f 960 u64 cur_alloc_size = 0;
0b246afa 961 u64 blocksize = fs_info->sectorsize;
771ed689
CM
962 struct btrfs_key ins;
963 struct extent_map *em;
a315e68f
FM
964 unsigned clear_bits;
965 unsigned long page_ops;
966 bool extent_reserved = false;
771ed689
CM
967 int ret = 0;
968
70ddc553 969 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 970 WARN_ON_ONCE(1);
29bce2f3
JB
971 ret = -EINVAL;
972 goto out_unlock;
02ecd2c2 973 }
771ed689 974
fda2832f 975 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
976 num_bytes = max(blocksize, num_bytes);
977 disk_num_bytes = num_bytes;
771ed689 978
6158e1ce 979 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 980
771ed689
CM
981 if (start == 0) {
982 /* lets try to make an inline extent */
f74670f7
AJ
983 ret = cow_file_range_inline(root, inode, start, end, 0,
984 BTRFS_COMPRESS_NONE, NULL);
771ed689 985 if (ret == 0) {
8b62f87b
JB
986 /*
987 * We use DO_ACCOUNTING here because we need the
988 * delalloc_release_metadata to be run _after_ we drop
989 * our outstanding extent for clearing delalloc for this
990 * range.
991 */
ba8b04c1
QW
992 extent_clear_unlock_delalloc(inode, start, end,
993 delalloc_end, NULL,
c2790a2e 994 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
995 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
996 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
997 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
998 PAGE_END_WRITEBACK);
771ed689 999 *nr_written = *nr_written +
09cbfeaf 1000 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 1001 *page_started = 1;
771ed689 1002 goto out;
79787eaa 1003 } else if (ret < 0) {
79787eaa 1004 goto out_unlock;
771ed689
CM
1005 }
1006 }
1007
1008 BUG_ON(disk_num_bytes >
0b246afa 1009 btrfs_super_total_bytes(fs_info->super_copy));
771ed689 1010
4b46fce2 1011 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
1012 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1013 start + num_bytes - 1, 0);
771ed689 1014
d397712b 1015 while (disk_num_bytes > 0) {
287a0ab9 1016 cur_alloc_size = disk_num_bytes;
18513091 1017 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 1018 fs_info->sectorsize, 0, alloc_hint,
e570fd27 1019 &ins, 1, 1);
00361589 1020 if (ret < 0)
79787eaa 1021 goto out_unlock;
a315e68f
FM
1022 cur_alloc_size = ins.offset;
1023 extent_reserved = true;
d397712b 1024
771ed689 1025 ram_size = ins.offset;
6f9994db
LB
1026 em = create_io_em(inode, start, ins.offset, /* len */
1027 start, /* orig_start */
1028 ins.objectid, /* block_start */
1029 ins.offset, /* block_len */
1030 ins.offset, /* orig_block_len */
1031 ram_size, /* ram_bytes */
1032 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1033 BTRFS_ORDERED_REGULAR /* type */);
6f9994db 1034 if (IS_ERR(em))
ace68bac 1035 goto out_reserve;
6f9994db 1036 free_extent_map(em);
e6dcd2dc 1037
e6dcd2dc 1038 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1039 ram_size, cur_alloc_size, 0);
ace68bac 1040 if (ret)
d9f85963 1041 goto out_drop_extent_cache;
c8b97818 1042
17d217fe
YZ
1043 if (root->root_key.objectid ==
1044 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1045 ret = btrfs_reloc_clone_csums(inode, start,
1046 cur_alloc_size);
4dbd80fb
QW
1047 /*
1048 * Only drop cache here, and process as normal.
1049 *
1050 * We must not allow extent_clear_unlock_delalloc()
1051 * at out_unlock label to free meta of this ordered
1052 * extent, as its meta should be freed by
1053 * btrfs_finish_ordered_io().
1054 *
1055 * So we must continue until @start is increased to
1056 * skip current ordered extent.
1057 */
00361589 1058 if (ret)
4dbd80fb
QW
1059 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1060 start + ram_size - 1, 0);
17d217fe
YZ
1061 }
1062
0b246afa 1063 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1064
c8b97818
CM
1065 /* we're not doing compressed IO, don't unlock the first
1066 * page (which the caller expects to stay locked), don't
1067 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1068 *
1069 * Do set the Private2 bit so we know this page was properly
1070 * setup for writepage
c8b97818 1071 */
a315e68f
FM
1072 page_ops = unlock ? PAGE_UNLOCK : 0;
1073 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1074
c2790a2e 1075 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1076 start + ram_size - 1,
1077 delalloc_end, locked_page,
c2790a2e 1078 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1079 page_ops);
4dbd80fb
QW
1080 if (disk_num_bytes < cur_alloc_size)
1081 disk_num_bytes = 0;
1082 else
1083 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1084 num_bytes -= cur_alloc_size;
1085 alloc_hint = ins.objectid + ins.offset;
1086 start += cur_alloc_size;
a315e68f 1087 extent_reserved = false;
4dbd80fb
QW
1088
1089 /*
1090 * btrfs_reloc_clone_csums() error, since start is increased
1091 * extent_clear_unlock_delalloc() at out_unlock label won't
1092 * free metadata of current ordered extent, we're OK to exit.
1093 */
1094 if (ret)
1095 goto out_unlock;
b888db2b 1096 }
79787eaa 1097out:
be20aa9d 1098 return ret;
b7d5b0a8 1099
d9f85963 1100out_drop_extent_cache:
dcdbc059 1101 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1102out_reserve:
0b246afa 1103 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1104 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1105out_unlock:
a7e3b975
FM
1106 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1107 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1108 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1109 PAGE_END_WRITEBACK;
1110 /*
1111 * If we reserved an extent for our delalloc range (or a subrange) and
1112 * failed to create the respective ordered extent, then it means that
1113 * when we reserved the extent we decremented the extent's size from
1114 * the data space_info's bytes_may_use counter and incremented the
1115 * space_info's bytes_reserved counter by the same amount. We must make
1116 * sure extent_clear_unlock_delalloc() does not try to decrement again
1117 * the data space_info's bytes_may_use counter, therefore we do not pass
1118 * it the flag EXTENT_CLEAR_DATA_RESV.
1119 */
1120 if (extent_reserved) {
1121 extent_clear_unlock_delalloc(inode, start,
1122 start + cur_alloc_size,
1123 start + cur_alloc_size,
1124 locked_page,
1125 clear_bits,
1126 page_ops);
1127 start += cur_alloc_size;
1128 if (start >= end)
1129 goto out;
1130 }
ba8b04c1
QW
1131 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1132 locked_page,
a315e68f
FM
1133 clear_bits | EXTENT_CLEAR_DATA_RESV,
1134 page_ops);
79787eaa 1135 goto out;
771ed689 1136}
c8b97818 1137
771ed689
CM
1138/*
1139 * work queue call back to started compression on a file and pages
1140 */
1141static noinline void async_cow_start(struct btrfs_work *work)
1142{
1143 struct async_cow *async_cow;
1144 int num_added = 0;
1145 async_cow = container_of(work, struct async_cow, work);
1146
1147 compress_file_range(async_cow->inode, async_cow->locked_page,
1148 async_cow->start, async_cow->end, async_cow,
1149 &num_added);
8180ef88 1150 if (num_added == 0) {
cb77fcd8 1151 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1152 async_cow->inode = NULL;
8180ef88 1153 }
771ed689
CM
1154}
1155
1156/*
1157 * work queue call back to submit previously compressed pages
1158 */
1159static noinline void async_cow_submit(struct btrfs_work *work)
1160{
0b246afa 1161 struct btrfs_fs_info *fs_info;
771ed689
CM
1162 struct async_cow *async_cow;
1163 struct btrfs_root *root;
1164 unsigned long nr_pages;
1165
1166 async_cow = container_of(work, struct async_cow, work);
1167
1168 root = async_cow->root;
0b246afa 1169 fs_info = root->fs_info;
09cbfeaf
KS
1170 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1171 PAGE_SHIFT;
771ed689 1172
ee863954
DS
1173 /*
1174 * atomic_sub_return implies a barrier for waitqueue_active
1175 */
0b246afa 1176 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
ee22184b 1177 5 * SZ_1M &&
0b246afa
JM
1178 waitqueue_active(&fs_info->async_submit_wait))
1179 wake_up(&fs_info->async_submit_wait);
771ed689 1180
d397712b 1181 if (async_cow->inode)
771ed689 1182 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1183}
c8b97818 1184
771ed689
CM
1185static noinline void async_cow_free(struct btrfs_work *work)
1186{
1187 struct async_cow *async_cow;
1188 async_cow = container_of(work, struct async_cow, work);
8180ef88 1189 if (async_cow->inode)
cb77fcd8 1190 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1191 kfree(async_cow);
1192}
1193
1194static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1195 u64 start, u64 end, int *page_started,
f82b7359
LB
1196 unsigned long *nr_written,
1197 unsigned int write_flags)
771ed689 1198{
0b246afa 1199 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
1200 struct async_cow *async_cow;
1201 struct btrfs_root *root = BTRFS_I(inode)->root;
1202 unsigned long nr_pages;
1203 u64 cur_end;
771ed689 1204
a3429ab7
CM
1205 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1206 1, 0, NULL, GFP_NOFS);
d397712b 1207 while (start < end) {
771ed689 1208 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1209 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1210 async_cow->inode = igrab(inode);
771ed689
CM
1211 async_cow->root = root;
1212 async_cow->locked_page = locked_page;
1213 async_cow->start = start;
f82b7359 1214 async_cow->write_flags = write_flags;
771ed689 1215
f79707b0 1216 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
0b246afa 1217 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
771ed689
CM
1218 cur_end = end;
1219 else
ee22184b 1220 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1221
1222 async_cow->end = cur_end;
1223 INIT_LIST_HEAD(&async_cow->extents);
1224
9e0af237
LB
1225 btrfs_init_work(&async_cow->work,
1226 btrfs_delalloc_helper,
1227 async_cow_start, async_cow_submit,
1228 async_cow_free);
771ed689 1229
09cbfeaf
KS
1230 nr_pages = (cur_end - start + PAGE_SIZE) >>
1231 PAGE_SHIFT;
0b246afa 1232 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1233
0b246afa 1234 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
771ed689 1235
771ed689
CM
1236 *nr_written += nr_pages;
1237 start = cur_end + 1;
1238 }
1239 *page_started = 1;
1240 return 0;
be20aa9d
CM
1241}
1242
2ff7e61e 1243static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1244 u64 bytenr, u64 num_bytes)
1245{
1246 int ret;
1247 struct btrfs_ordered_sum *sums;
1248 LIST_HEAD(list);
1249
0b246afa 1250 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1251 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1252 if (ret == 0 && list_empty(&list))
1253 return 0;
1254
1255 while (!list_empty(&list)) {
1256 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1257 list_del(&sums->list);
1258 kfree(sums);
1259 }
1260 return 1;
1261}
1262
d352ac68
CM
1263/*
1264 * when nowcow writeback call back. This checks for snapshots or COW copies
1265 * of the extents that exist in the file, and COWs the file as required.
1266 *
1267 * If no cow copies or snapshots exist, we write directly to the existing
1268 * blocks on disk
1269 */
7f366cfe
CM
1270static noinline int run_delalloc_nocow(struct inode *inode,
1271 struct page *locked_page,
771ed689
CM
1272 u64 start, u64 end, int *page_started, int force,
1273 unsigned long *nr_written)
be20aa9d 1274{
0b246afa 1275 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d
CM
1276 struct btrfs_root *root = BTRFS_I(inode)->root;
1277 struct extent_buffer *leaf;
be20aa9d 1278 struct btrfs_path *path;
80ff3856 1279 struct btrfs_file_extent_item *fi;
be20aa9d 1280 struct btrfs_key found_key;
6f9994db 1281 struct extent_map *em;
80ff3856
YZ
1282 u64 cow_start;
1283 u64 cur_offset;
1284 u64 extent_end;
5d4f98a2 1285 u64 extent_offset;
80ff3856
YZ
1286 u64 disk_bytenr;
1287 u64 num_bytes;
b4939680 1288 u64 disk_num_bytes;
cc95bef6 1289 u64 ram_bytes;
80ff3856 1290 int extent_type;
79787eaa 1291 int ret, err;
d899e052 1292 int type;
80ff3856
YZ
1293 int nocow;
1294 int check_prev = 1;
82d5902d 1295 bool nolock;
4a0cc7ca 1296 u64 ino = btrfs_ino(BTRFS_I(inode));
be20aa9d
CM
1297
1298 path = btrfs_alloc_path();
17ca04af 1299 if (!path) {
ba8b04c1
QW
1300 extent_clear_unlock_delalloc(inode, start, end, end,
1301 locked_page,
c2790a2e 1302 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1303 EXTENT_DO_ACCOUNTING |
1304 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1305 PAGE_CLEAR_DIRTY |
1306 PAGE_SET_WRITEBACK |
1307 PAGE_END_WRITEBACK);
d8926bb3 1308 return -ENOMEM;
17ca04af 1309 }
82d5902d 1310
70ddc553 1311 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
82d5902d 1312
80ff3856
YZ
1313 cow_start = (u64)-1;
1314 cur_offset = start;
1315 while (1) {
e4c3b2dc 1316 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1317 cur_offset, 0);
d788a349 1318 if (ret < 0)
79787eaa 1319 goto error;
80ff3856
YZ
1320 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1321 leaf = path->nodes[0];
1322 btrfs_item_key_to_cpu(leaf, &found_key,
1323 path->slots[0] - 1);
33345d01 1324 if (found_key.objectid == ino &&
80ff3856
YZ
1325 found_key.type == BTRFS_EXTENT_DATA_KEY)
1326 path->slots[0]--;
1327 }
1328 check_prev = 0;
1329next_slot:
1330 leaf = path->nodes[0];
1331 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1332 ret = btrfs_next_leaf(root, path);
d788a349 1333 if (ret < 0)
79787eaa 1334 goto error;
80ff3856
YZ
1335 if (ret > 0)
1336 break;
1337 leaf = path->nodes[0];
1338 }
be20aa9d 1339
80ff3856
YZ
1340 nocow = 0;
1341 disk_bytenr = 0;
17d217fe 1342 num_bytes = 0;
80ff3856
YZ
1343 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1344
1d512cb7
FM
1345 if (found_key.objectid > ino)
1346 break;
1347 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1348 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1349 path->slots[0]++;
1350 goto next_slot;
1351 }
1352 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1353 found_key.offset > end)
1354 break;
1355
1356 if (found_key.offset > cur_offset) {
1357 extent_end = found_key.offset;
e9061e21 1358 extent_type = 0;
80ff3856
YZ
1359 goto out_check;
1360 }
1361
1362 fi = btrfs_item_ptr(leaf, path->slots[0],
1363 struct btrfs_file_extent_item);
1364 extent_type = btrfs_file_extent_type(leaf, fi);
1365
cc95bef6 1366 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1367 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1368 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1369 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1370 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1371 extent_end = found_key.offset +
1372 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1373 disk_num_bytes =
1374 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1375 if (extent_end <= start) {
1376 path->slots[0]++;
1377 goto next_slot;
1378 }
17d217fe
YZ
1379 if (disk_bytenr == 0)
1380 goto out_check;
80ff3856
YZ
1381 if (btrfs_file_extent_compression(leaf, fi) ||
1382 btrfs_file_extent_encryption(leaf, fi) ||
1383 btrfs_file_extent_other_encoding(leaf, fi))
1384 goto out_check;
d899e052
YZ
1385 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1386 goto out_check;
2ff7e61e 1387 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1388 goto out_check;
e4c3b2dc 1389 if (btrfs_cross_ref_exist(root, ino,
5d4f98a2
YZ
1390 found_key.offset -
1391 extent_offset, disk_bytenr))
17d217fe 1392 goto out_check;
5d4f98a2 1393 disk_bytenr += extent_offset;
17d217fe
YZ
1394 disk_bytenr += cur_offset - found_key.offset;
1395 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1396 /*
1397 * if there are pending snapshots for this root,
1398 * we fall into common COW way.
1399 */
1400 if (!nolock) {
ea14b57f 1401 err = btrfs_start_write_no_snapshotting(root);
e9894fd3
WS
1402 if (!err)
1403 goto out_check;
1404 }
17d217fe
YZ
1405 /*
1406 * force cow if csum exists in the range.
1407 * this ensure that csum for a given extent are
1408 * either valid or do not exist.
1409 */
2ff7e61e 1410 if (csum_exist_in_range(fs_info, disk_bytenr,
91e1f56a
RK
1411 num_bytes)) {
1412 if (!nolock)
ea14b57f 1413 btrfs_end_write_no_snapshotting(root);
17d217fe 1414 goto out_check;
91e1f56a
RK
1415 }
1416 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1417 if (!nolock)
ea14b57f 1418 btrfs_end_write_no_snapshotting(root);
f78c436c 1419 goto out_check;
91e1f56a 1420 }
80ff3856
YZ
1421 nocow = 1;
1422 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1423 extent_end = found_key.offset +
514ac8ad
CM
1424 btrfs_file_extent_inline_len(leaf,
1425 path->slots[0], fi);
da17066c 1426 extent_end = ALIGN(extent_end,
0b246afa 1427 fs_info->sectorsize);
80ff3856
YZ
1428 } else {
1429 BUG_ON(1);
1430 }
1431out_check:
1432 if (extent_end <= start) {
1433 path->slots[0]++;
e9894fd3 1434 if (!nolock && nocow)
ea14b57f 1435 btrfs_end_write_no_snapshotting(root);
f78c436c 1436 if (nocow)
0b246afa 1437 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1438 goto next_slot;
1439 }
1440 if (!nocow) {
1441 if (cow_start == (u64)-1)
1442 cow_start = cur_offset;
1443 cur_offset = extent_end;
1444 if (cur_offset > end)
1445 break;
1446 path->slots[0]++;
1447 goto next_slot;
7ea394f1
YZ
1448 }
1449
b3b4aa74 1450 btrfs_release_path(path);
80ff3856 1451 if (cow_start != (u64)-1) {
00361589
JB
1452 ret = cow_file_range(inode, locked_page,
1453 cow_start, found_key.offset - 1,
dda3245e
WX
1454 end, page_started, nr_written, 1,
1455 NULL);
e9894fd3
WS
1456 if (ret) {
1457 if (!nolock && nocow)
ea14b57f 1458 btrfs_end_write_no_snapshotting(root);
f78c436c 1459 if (nocow)
0b246afa 1460 btrfs_dec_nocow_writers(fs_info,
f78c436c 1461 disk_bytenr);
79787eaa 1462 goto error;
e9894fd3 1463 }
80ff3856 1464 cow_start = (u64)-1;
7ea394f1 1465 }
80ff3856 1466
d899e052 1467 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db
LB
1468 u64 orig_start = found_key.offset - extent_offset;
1469
1470 em = create_io_em(inode, cur_offset, num_bytes,
1471 orig_start,
1472 disk_bytenr, /* block_start */
1473 num_bytes, /* block_len */
1474 disk_num_bytes, /* orig_block_len */
1475 ram_bytes, BTRFS_COMPRESS_NONE,
1476 BTRFS_ORDERED_PREALLOC);
1477 if (IS_ERR(em)) {
1478 if (!nolock && nocow)
ea14b57f 1479 btrfs_end_write_no_snapshotting(root);
6f9994db
LB
1480 if (nocow)
1481 btrfs_dec_nocow_writers(fs_info,
1482 disk_bytenr);
1483 ret = PTR_ERR(em);
1484 goto error;
d899e052 1485 }
6f9994db
LB
1486 free_extent_map(em);
1487 }
1488
1489 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
d899e052
YZ
1490 type = BTRFS_ORDERED_PREALLOC;
1491 } else {
1492 type = BTRFS_ORDERED_NOCOW;
1493 }
80ff3856
YZ
1494
1495 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1496 num_bytes, num_bytes, type);
f78c436c 1497 if (nocow)
0b246afa 1498 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1499 BUG_ON(ret); /* -ENOMEM */
771ed689 1500
efa56464 1501 if (root->root_key.objectid ==
4dbd80fb
QW
1502 BTRFS_DATA_RELOC_TREE_OBJECTID)
1503 /*
1504 * Error handled later, as we must prevent
1505 * extent_clear_unlock_delalloc() in error handler
1506 * from freeing metadata of created ordered extent.
1507 */
efa56464
YZ
1508 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1509 num_bytes);
efa56464 1510
c2790a2e 1511 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1512 cur_offset + num_bytes - 1, end,
c2790a2e 1513 locked_page, EXTENT_LOCKED |
18513091
WX
1514 EXTENT_DELALLOC |
1515 EXTENT_CLEAR_DATA_RESV,
1516 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1517
e9894fd3 1518 if (!nolock && nocow)
ea14b57f 1519 btrfs_end_write_no_snapshotting(root);
80ff3856 1520 cur_offset = extent_end;
4dbd80fb
QW
1521
1522 /*
1523 * btrfs_reloc_clone_csums() error, now we're OK to call error
1524 * handler, as metadata for created ordered extent will only
1525 * be freed by btrfs_finish_ordered_io().
1526 */
1527 if (ret)
1528 goto error;
80ff3856
YZ
1529 if (cur_offset > end)
1530 break;
be20aa9d 1531 }
b3b4aa74 1532 btrfs_release_path(path);
80ff3856 1533
17ca04af 1534 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1535 cow_start = cur_offset;
17ca04af
JB
1536 cur_offset = end;
1537 }
1538
80ff3856 1539 if (cow_start != (u64)-1) {
dda3245e
WX
1540 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1541 page_started, nr_written, 1, NULL);
d788a349 1542 if (ret)
79787eaa 1543 goto error;
80ff3856
YZ
1544 }
1545
79787eaa 1546error:
17ca04af 1547 if (ret && cur_offset < end)
ba8b04c1 1548 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1549 locked_page, EXTENT_LOCKED |
151a41bc
JB
1550 EXTENT_DELALLOC | EXTENT_DEFRAG |
1551 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1552 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1553 PAGE_SET_WRITEBACK |
1554 PAGE_END_WRITEBACK);
7ea394f1 1555 btrfs_free_path(path);
79787eaa 1556 return ret;
be20aa9d
CM
1557}
1558
47059d93
WS
1559static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1560{
1561
1562 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1563 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1564 return 0;
1565
1566 /*
1567 * @defrag_bytes is a hint value, no spinlock held here,
1568 * if is not zero, it means the file is defragging.
1569 * Force cow if given extent needs to be defragged.
1570 */
1571 if (BTRFS_I(inode)->defrag_bytes &&
1572 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1573 EXTENT_DEFRAG, 0, NULL))
1574 return 1;
1575
1576 return 0;
1577}
1578
d352ac68
CM
1579/*
1580 * extent_io.c call back to do delayed allocation processing
1581 */
c6100a4b 1582static int run_delalloc_range(void *private_data, struct page *locked_page,
771ed689 1583 u64 start, u64 end, int *page_started,
f82b7359
LB
1584 unsigned long *nr_written,
1585 struct writeback_control *wbc)
be20aa9d 1586{
c6100a4b 1587 struct inode *inode = private_data;
be20aa9d 1588 int ret;
47059d93 1589 int force_cow = need_force_cow(inode, start, end);
f82b7359 1590 unsigned int write_flags = wbc_to_write_flags(wbc);
a2135011 1591
47059d93 1592 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1593 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1594 page_started, 1, nr_written);
47059d93 1595 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1596 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1597 page_started, 0, nr_written);
c2fcdcdf 1598 } else if (!inode_need_compress(inode, start, end)) {
dda3245e
WX
1599 ret = cow_file_range(inode, locked_page, start, end, end,
1600 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1601 } else {
1602 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1603 &BTRFS_I(inode)->runtime_flags);
771ed689 1604 ret = cow_file_range_async(inode, locked_page, start, end,
f82b7359
LB
1605 page_started, nr_written,
1606 write_flags);
7ddf5a42 1607 }
52427260
QW
1608 if (ret)
1609 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
b888db2b
CM
1610 return ret;
1611}
1612
c6100a4b 1613static void btrfs_split_extent_hook(void *private_data,
1bf85046 1614 struct extent_state *orig, u64 split)
9ed74f2d 1615{
c6100a4b 1616 struct inode *inode = private_data;
dcab6a3b
JB
1617 u64 size;
1618
0ca1f7ce 1619 /* not delalloc, ignore it */
9ed74f2d 1620 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1621 return;
9ed74f2d 1622
dcab6a3b
JB
1623 size = orig->end - orig->start + 1;
1624 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1625 u32 num_extents;
dcab6a3b
JB
1626 u64 new_size;
1627
1628 /*
ba117213
JB
1629 * See the explanation in btrfs_merge_extent_hook, the same
1630 * applies here, just in reverse.
dcab6a3b
JB
1631 */
1632 new_size = orig->end - split + 1;
823bb20a 1633 num_extents = count_max_extents(new_size);
ba117213 1634 new_size = split - orig->start;
823bb20a
DS
1635 num_extents += count_max_extents(new_size);
1636 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1637 return;
1638 }
1639
9e0baf60 1640 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1641 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1642 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1643}
1644
1645/*
1646 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1647 * extents so we can keep track of new extents that are just merged onto old
1648 * extents, such as when we are doing sequential writes, so we can properly
1649 * account for the metadata space we'll need.
1650 */
c6100a4b 1651static void btrfs_merge_extent_hook(void *private_data,
1bf85046
JM
1652 struct extent_state *new,
1653 struct extent_state *other)
9ed74f2d 1654{
c6100a4b 1655 struct inode *inode = private_data;
dcab6a3b 1656 u64 new_size, old_size;
823bb20a 1657 u32 num_extents;
dcab6a3b 1658
9ed74f2d
JB
1659 /* not delalloc, ignore it */
1660 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1661 return;
9ed74f2d 1662
8461a3de
JB
1663 if (new->start > other->start)
1664 new_size = new->end - other->start + 1;
1665 else
1666 new_size = other->end - new->start + 1;
dcab6a3b
JB
1667
1668 /* we're not bigger than the max, unreserve the space and go */
1669 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1670 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1671 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1672 spin_unlock(&BTRFS_I(inode)->lock);
1673 return;
1674 }
1675
1676 /*
ba117213
JB
1677 * We have to add up either side to figure out how many extents were
1678 * accounted for before we merged into one big extent. If the number of
1679 * extents we accounted for is <= the amount we need for the new range
1680 * then we can return, otherwise drop. Think of it like this
1681 *
1682 * [ 4k][MAX_SIZE]
1683 *
1684 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1685 * need 2 outstanding extents, on one side we have 1 and the other side
1686 * we have 1 so they are == and we can return. But in this case
1687 *
1688 * [MAX_SIZE+4k][MAX_SIZE+4k]
1689 *
1690 * Each range on their own accounts for 2 extents, but merged together
1691 * they are only 3 extents worth of accounting, so we need to drop in
1692 * this case.
dcab6a3b 1693 */
ba117213 1694 old_size = other->end - other->start + 1;
823bb20a 1695 num_extents = count_max_extents(old_size);
ba117213 1696 old_size = new->end - new->start + 1;
823bb20a
DS
1697 num_extents += count_max_extents(old_size);
1698 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1699 return;
1700
9e0baf60 1701 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1702 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1703 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1704}
1705
eb73c1b7
MX
1706static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1707 struct inode *inode)
1708{
0b246afa
JM
1709 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1710
eb73c1b7
MX
1711 spin_lock(&root->delalloc_lock);
1712 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1713 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1714 &root->delalloc_inodes);
1715 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1716 &BTRFS_I(inode)->runtime_flags);
1717 root->nr_delalloc_inodes++;
1718 if (root->nr_delalloc_inodes == 1) {
0b246afa 1719 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1720 BUG_ON(!list_empty(&root->delalloc_root));
1721 list_add_tail(&root->delalloc_root,
0b246afa
JM
1722 &fs_info->delalloc_roots);
1723 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1724 }
1725 }
1726 spin_unlock(&root->delalloc_lock);
1727}
1728
1729static void btrfs_del_delalloc_inode(struct btrfs_root *root,
9e3e97f4 1730 struct btrfs_inode *inode)
eb73c1b7 1731{
9e3e97f4 1732 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0b246afa 1733
eb73c1b7 1734 spin_lock(&root->delalloc_lock);
9e3e97f4
NB
1735 if (!list_empty(&inode->delalloc_inodes)) {
1736 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1737 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1738 &inode->runtime_flags);
eb73c1b7
MX
1739 root->nr_delalloc_inodes--;
1740 if (!root->nr_delalloc_inodes) {
0b246afa 1741 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1742 BUG_ON(list_empty(&root->delalloc_root));
1743 list_del_init(&root->delalloc_root);
0b246afa 1744 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1745 }
1746 }
1747 spin_unlock(&root->delalloc_lock);
1748}
1749
d352ac68
CM
1750/*
1751 * extent_io.c set_bit_hook, used to track delayed allocation
1752 * bytes in this file, and to maintain the list of inodes that
1753 * have pending delalloc work to be done.
1754 */
c6100a4b 1755static void btrfs_set_bit_hook(void *private_data,
9ee49a04 1756 struct extent_state *state, unsigned *bits)
291d673e 1757{
c6100a4b 1758 struct inode *inode = private_data;
9ed74f2d 1759
0b246afa
JM
1760 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1761
47059d93
WS
1762 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1763 WARN_ON(1);
75eff68e
CM
1764 /*
1765 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1766 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1767 * bit, which is only set or cleared with irqs on
1768 */
0ca1f7ce 1769 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1770 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1771 u64 len = state->end + 1 - state->start;
8b62f87b 1772 u32 num_extents = count_max_extents(len);
70ddc553 1773 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1774
8b62f87b
JB
1775 spin_lock(&BTRFS_I(inode)->lock);
1776 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1777 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 1778
6a3891c5 1779 /* For sanity tests */
0b246afa 1780 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1781 return;
1782
104b4e51
NB
1783 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1784 fs_info->delalloc_batch);
df0af1a5 1785 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1786 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1787 if (*bits & EXTENT_DEFRAG)
1788 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1789 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1790 &BTRFS_I(inode)->runtime_flags))
1791 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1792 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1793 }
a7e3b975
FM
1794
1795 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1796 (*bits & EXTENT_DELALLOC_NEW)) {
1797 spin_lock(&BTRFS_I(inode)->lock);
1798 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1799 state->start;
1800 spin_unlock(&BTRFS_I(inode)->lock);
1801 }
291d673e
CM
1802}
1803
d352ac68
CM
1804/*
1805 * extent_io.c clear_bit_hook, see set_bit_hook for why
1806 */
c6100a4b 1807static void btrfs_clear_bit_hook(void *private_data,
41074888 1808 struct extent_state *state,
9ee49a04 1809 unsigned *bits)
291d673e 1810{
c6100a4b 1811 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
6fc0ef68 1812 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
47059d93 1813 u64 len = state->end + 1 - state->start;
823bb20a 1814 u32 num_extents = count_max_extents(len);
47059d93 1815
4a4b964f
FM
1816 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1817 spin_lock(&inode->lock);
6fc0ef68 1818 inode->defrag_bytes -= len;
4a4b964f
FM
1819 spin_unlock(&inode->lock);
1820 }
47059d93 1821
75eff68e
CM
1822 /*
1823 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1824 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1825 * bit, which is only set or cleared with irqs on
1826 */
0ca1f7ce 1827 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1828 struct btrfs_root *root = inode->root;
83eea1f1 1829 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1830
8b62f87b
JB
1831 spin_lock(&inode->lock);
1832 btrfs_mod_outstanding_extents(inode, -num_extents);
1833 spin_unlock(&inode->lock);
0ca1f7ce 1834
b6d08f06
JB
1835 /*
1836 * We don't reserve metadata space for space cache inodes so we
1837 * don't need to call dellalloc_release_metadata if there is an
1838 * error.
1839 */
a315e68f 1840 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 1841 root != fs_info->tree_root)
0ca1f7ce
YZ
1842 btrfs_delalloc_release_metadata(inode, len);
1843
6a3891c5 1844 /* For sanity tests. */
0b246afa 1845 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1846 return;
1847
a315e68f
FM
1848 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1849 do_list && !(state->state & EXTENT_NORESERVE) &&
1850 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
1851 btrfs_free_reserved_data_space_noquota(
1852 &inode->vfs_inode,
51773bec 1853 state->start, len);
9ed74f2d 1854
104b4e51
NB
1855 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1856 fs_info->delalloc_batch);
6fc0ef68
NB
1857 spin_lock(&inode->lock);
1858 inode->delalloc_bytes -= len;
1859 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 1860 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1861 &inode->runtime_flags))
eb73c1b7 1862 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 1863 spin_unlock(&inode->lock);
291d673e 1864 }
a7e3b975
FM
1865
1866 if ((state->state & EXTENT_DELALLOC_NEW) &&
1867 (*bits & EXTENT_DELALLOC_NEW)) {
1868 spin_lock(&inode->lock);
1869 ASSERT(inode->new_delalloc_bytes >= len);
1870 inode->new_delalloc_bytes -= len;
1871 spin_unlock(&inode->lock);
1872 }
291d673e
CM
1873}
1874
d352ac68
CM
1875/*
1876 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1877 * we don't create bios that span stripes or chunks
6f034ece
LB
1878 *
1879 * return 1 if page cannot be merged to bio
1880 * return 0 if page can be merged to bio
1881 * return error otherwise
d352ac68 1882 */
81a75f67 1883int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1884 size_t size, struct bio *bio,
1885 unsigned long bio_flags)
239b14b3 1886{
0b246afa
JM
1887 struct inode *inode = page->mapping->host;
1888 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1889 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1890 u64 length = 0;
1891 u64 map_length;
239b14b3
CM
1892 int ret;
1893
771ed689
CM
1894 if (bio_flags & EXTENT_BIO_COMPRESSED)
1895 return 0;
1896
4f024f37 1897 length = bio->bi_iter.bi_size;
239b14b3 1898 map_length = length;
0b246afa
JM
1899 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1900 NULL, 0);
6f034ece
LB
1901 if (ret < 0)
1902 return ret;
d397712b 1903 if (map_length < length + size)
239b14b3 1904 return 1;
3444a972 1905 return 0;
239b14b3
CM
1906}
1907
d352ac68
CM
1908/*
1909 * in order to insert checksums into the metadata in large chunks,
1910 * we wait until bio submission time. All the pages in the bio are
1911 * checksummed and sums are attached onto the ordered extent record.
1912 *
1913 * At IO completion time the cums attached on the ordered extent record
1914 * are inserted into the btree
1915 */
8c27cb35 1916static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio,
81a75f67 1917 int mirror_num, unsigned long bio_flags,
eaf25d93 1918 u64 bio_offset)
065631f6 1919{
c6100a4b 1920 struct inode *inode = private_data;
4e4cbee9 1921 blk_status_t ret = 0;
e015640f 1922
2ff7e61e 1923 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1924 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1925 return 0;
1926}
e015640f 1927
4a69a410
CM
1928/*
1929 * in order to insert checksums into the metadata in large chunks,
1930 * we wait until bio submission time. All the pages in the bio are
1931 * checksummed and sums are attached onto the ordered extent record.
1932 *
1933 * At IO completion time the cums attached on the ordered extent record
1934 * are inserted into the btree
1935 */
8c27cb35 1936static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio,
eaf25d93
CM
1937 int mirror_num, unsigned long bio_flags,
1938 u64 bio_offset)
4a69a410 1939{
c6100a4b 1940 struct inode *inode = private_data;
2ff7e61e 1941 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 1942 blk_status_t ret;
61891923 1943
2ff7e61e 1944 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
4246a0b6 1945 if (ret) {
4e4cbee9 1946 bio->bi_status = ret;
4246a0b6
CH
1947 bio_endio(bio);
1948 }
61891923 1949 return ret;
44b8bd7e
CM
1950}
1951
d352ac68 1952/*
cad321ad
CM
1953 * extent_io.c submission hook. This does the right thing for csum calculation
1954 * on write, or reading the csums from the tree before a read
d352ac68 1955 */
8c27cb35 1956static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
c6100a4b
JB
1957 int mirror_num, unsigned long bio_flags,
1958 u64 bio_offset)
44b8bd7e 1959{
c6100a4b 1960 struct inode *inode = private_data;
0b246afa 1961 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 1962 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1963 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 1964 blk_status_t ret = 0;
19b9bdb0 1965 int skip_sum;
b812ce28 1966 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1967
6cbff00f 1968 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1969
70ddc553 1970 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 1971 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1972
37226b21 1973 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 1974 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 1975 if (ret)
61891923 1976 goto out;
5fd02043 1977
d20f7043 1978 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1979 ret = btrfs_submit_compressed_read(inode, bio,
1980 mirror_num,
1981 bio_flags);
1982 goto out;
c2db1073 1983 } else if (!skip_sum) {
2ff7e61e 1984 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 1985 if (ret)
61891923 1986 goto out;
c2db1073 1987 }
4d1b5fb4 1988 goto mapit;
b812ce28 1989 } else if (async && !skip_sum) {
17d217fe
YZ
1990 /* csum items have already been cloned */
1991 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1992 goto mapit;
19b9bdb0 1993 /* we're doing a write, do the async checksumming */
c6100a4b
JB
1994 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
1995 bio_offset, inode,
0b246afa
JM
1996 __btrfs_submit_bio_start,
1997 __btrfs_submit_bio_done);
61891923 1998 goto out;
b812ce28 1999 } else if (!skip_sum) {
2ff7e61e 2000 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
2001 if (ret)
2002 goto out;
19b9bdb0
CM
2003 }
2004
0b86a832 2005mapit:
2ff7e61e 2006 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
2007
2008out:
4e4cbee9
CH
2009 if (ret) {
2010 bio->bi_status = ret;
4246a0b6
CH
2011 bio_endio(bio);
2012 }
61891923 2013 return ret;
065631f6 2014}
6885f308 2015
d352ac68
CM
2016/*
2017 * given a list of ordered sums record them in the inode. This happens
2018 * at IO completion time based on sums calculated at bio submission time.
2019 */
ba1da2f4 2020static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2021 struct inode *inode, struct list_head *list)
e6dcd2dc 2022{
e6dcd2dc
CM
2023 struct btrfs_ordered_sum *sum;
2024
c6e30871 2025 list_for_each_entry(sum, list, list) {
39847c4d 2026 trans->adding_csums = 1;
d20f7043
CM
2027 btrfs_csum_file_blocks(trans,
2028 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 2029 trans->adding_csums = 0;
e6dcd2dc
CM
2030 }
2031 return 0;
2032}
2033
2ac55d41 2034int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
e3b8a485 2035 unsigned int extra_bits,
ba8b04c1 2036 struct extent_state **cached_state, int dedupe)
ea8c2819 2037{
09cbfeaf 2038 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 2039 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
e3b8a485 2040 extra_bits, cached_state);
ea8c2819
CM
2041}
2042
d352ac68 2043/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2044struct btrfs_writepage_fixup {
2045 struct page *page;
2046 struct btrfs_work work;
2047};
2048
b2950863 2049static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2050{
2051 struct btrfs_writepage_fixup *fixup;
2052 struct btrfs_ordered_extent *ordered;
2ac55d41 2053 struct extent_state *cached_state = NULL;
364ecf36 2054 struct extent_changeset *data_reserved = NULL;
247e743c
CM
2055 struct page *page;
2056 struct inode *inode;
2057 u64 page_start;
2058 u64 page_end;
87826df0 2059 int ret;
247e743c
CM
2060
2061 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2062 page = fixup->page;
4a096752 2063again:
247e743c
CM
2064 lock_page(page);
2065 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2066 ClearPageChecked(page);
2067 goto out_page;
2068 }
2069
2070 inode = page->mapping->host;
2071 page_start = page_offset(page);
09cbfeaf 2072 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2073
ff13db41 2074 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2075 &cached_state);
4a096752
CM
2076
2077 /* already ordered? We're done */
8b62b72b 2078 if (PagePrivate2(page))
247e743c 2079 goto out;
4a096752 2080
a776c6fa 2081 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2082 PAGE_SIZE);
4a096752 2083 if (ordered) {
2ac55d41
JB
2084 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2085 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2086 unlock_page(page);
2087 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2088 btrfs_put_ordered_extent(ordered);
4a096752
CM
2089 goto again;
2090 }
247e743c 2091
364ecf36 2092 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
09cbfeaf 2093 PAGE_SIZE);
87826df0
JM
2094 if (ret) {
2095 mapping_set_error(page->mapping, ret);
2096 end_extent_writepage(page, ret, page_start, page_end);
2097 ClearPageChecked(page);
2098 goto out;
2099 }
2100
e3b8a485 2101 btrfs_set_extent_delalloc(inode, page_start, page_end, 0, &cached_state,
ba8b04c1 2102 0);
247e743c 2103 ClearPageChecked(page);
87826df0 2104 set_page_dirty(page);
8b62f87b 2105 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
247e743c 2106out:
2ac55d41
JB
2107 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2108 &cached_state, GFP_NOFS);
247e743c
CM
2109out_page:
2110 unlock_page(page);
09cbfeaf 2111 put_page(page);
b897abec 2112 kfree(fixup);
364ecf36 2113 extent_changeset_free(data_reserved);
247e743c
CM
2114}
2115
2116/*
2117 * There are a few paths in the higher layers of the kernel that directly
2118 * set the page dirty bit without asking the filesystem if it is a
2119 * good idea. This causes problems because we want to make sure COW
2120 * properly happens and the data=ordered rules are followed.
2121 *
c8b97818 2122 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2123 * hasn't been properly setup for IO. We kick off an async process
2124 * to fix it up. The async helper will wait for ordered extents, set
2125 * the delalloc bit and make it safe to write the page.
2126 */
b2950863 2127static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2128{
2129 struct inode *inode = page->mapping->host;
0b246afa 2130 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2131 struct btrfs_writepage_fixup *fixup;
247e743c 2132
8b62b72b
CM
2133 /* this page is properly in the ordered list */
2134 if (TestClearPagePrivate2(page))
247e743c
CM
2135 return 0;
2136
2137 if (PageChecked(page))
2138 return -EAGAIN;
2139
2140 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2141 if (!fixup)
2142 return -EAGAIN;
f421950f 2143
247e743c 2144 SetPageChecked(page);
09cbfeaf 2145 get_page(page);
9e0af237
LB
2146 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2147 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2148 fixup->page = page;
0b246afa 2149 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2150 return -EBUSY;
247e743c
CM
2151}
2152
d899e052
YZ
2153static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2154 struct inode *inode, u64 file_pos,
2155 u64 disk_bytenr, u64 disk_num_bytes,
2156 u64 num_bytes, u64 ram_bytes,
2157 u8 compression, u8 encryption,
2158 u16 other_encoding, int extent_type)
2159{
2160 struct btrfs_root *root = BTRFS_I(inode)->root;
2161 struct btrfs_file_extent_item *fi;
2162 struct btrfs_path *path;
2163 struct extent_buffer *leaf;
2164 struct btrfs_key ins;
a12b877b 2165 u64 qg_released;
1acae57b 2166 int extent_inserted = 0;
d899e052
YZ
2167 int ret;
2168
2169 path = btrfs_alloc_path();
d8926bb3
MF
2170 if (!path)
2171 return -ENOMEM;
d899e052 2172
a1ed835e
CM
2173 /*
2174 * we may be replacing one extent in the tree with another.
2175 * The new extent is pinned in the extent map, and we don't want
2176 * to drop it from the cache until it is completely in the btree.
2177 *
2178 * So, tell btrfs_drop_extents to leave this extent in the cache.
2179 * the caller is expected to unpin it and allow it to be merged
2180 * with the others.
2181 */
1acae57b
FDBM
2182 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2183 file_pos + num_bytes, NULL, 0,
2184 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2185 if (ret)
2186 goto out;
d899e052 2187
1acae57b 2188 if (!extent_inserted) {
4a0cc7ca 2189 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2190 ins.offset = file_pos;
2191 ins.type = BTRFS_EXTENT_DATA_KEY;
2192
2193 path->leave_spinning = 1;
2194 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2195 sizeof(*fi));
2196 if (ret)
2197 goto out;
2198 }
d899e052
YZ
2199 leaf = path->nodes[0];
2200 fi = btrfs_item_ptr(leaf, path->slots[0],
2201 struct btrfs_file_extent_item);
2202 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2203 btrfs_set_file_extent_type(leaf, fi, extent_type);
2204 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2205 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2206 btrfs_set_file_extent_offset(leaf, fi, 0);
2207 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2208 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2209 btrfs_set_file_extent_compression(leaf, fi, compression);
2210 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2211 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2212
d899e052 2213 btrfs_mark_buffer_dirty(leaf);
ce195332 2214 btrfs_release_path(path);
d899e052
YZ
2215
2216 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2217
2218 ins.objectid = disk_bytenr;
2219 ins.offset = disk_num_bytes;
2220 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2221
297d750b 2222 /*
5846a3c2
QW
2223 * Release the reserved range from inode dirty range map, as it is
2224 * already moved into delayed_ref_head
297d750b 2225 */
a12b877b
QW
2226 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2227 if (ret < 0)
2228 goto out;
2229 qg_released = ret;
84f7d8e6
JB
2230 ret = btrfs_alloc_reserved_file_extent(trans, root,
2231 btrfs_ino(BTRFS_I(inode)),
2232 file_pos, qg_released, &ins);
79787eaa 2233out:
d899e052 2234 btrfs_free_path(path);
b9473439 2235
79787eaa 2236 return ret;
d899e052
YZ
2237}
2238
38c227d8
LB
2239/* snapshot-aware defrag */
2240struct sa_defrag_extent_backref {
2241 struct rb_node node;
2242 struct old_sa_defrag_extent *old;
2243 u64 root_id;
2244 u64 inum;
2245 u64 file_pos;
2246 u64 extent_offset;
2247 u64 num_bytes;
2248 u64 generation;
2249};
2250
2251struct old_sa_defrag_extent {
2252 struct list_head list;
2253 struct new_sa_defrag_extent *new;
2254
2255 u64 extent_offset;
2256 u64 bytenr;
2257 u64 offset;
2258 u64 len;
2259 int count;
2260};
2261
2262struct new_sa_defrag_extent {
2263 struct rb_root root;
2264 struct list_head head;
2265 struct btrfs_path *path;
2266 struct inode *inode;
2267 u64 file_pos;
2268 u64 len;
2269 u64 bytenr;
2270 u64 disk_len;
2271 u8 compress_type;
2272};
2273
2274static int backref_comp(struct sa_defrag_extent_backref *b1,
2275 struct sa_defrag_extent_backref *b2)
2276{
2277 if (b1->root_id < b2->root_id)
2278 return -1;
2279 else if (b1->root_id > b2->root_id)
2280 return 1;
2281
2282 if (b1->inum < b2->inum)
2283 return -1;
2284 else if (b1->inum > b2->inum)
2285 return 1;
2286
2287 if (b1->file_pos < b2->file_pos)
2288 return -1;
2289 else if (b1->file_pos > b2->file_pos)
2290 return 1;
2291
2292 /*
2293 * [------------------------------] ===> (a range of space)
2294 * |<--->| |<---->| =============> (fs/file tree A)
2295 * |<---------------------------->| ===> (fs/file tree B)
2296 *
2297 * A range of space can refer to two file extents in one tree while
2298 * refer to only one file extent in another tree.
2299 *
2300 * So we may process a disk offset more than one time(two extents in A)
2301 * and locate at the same extent(one extent in B), then insert two same
2302 * backrefs(both refer to the extent in B).
2303 */
2304 return 0;
2305}
2306
2307static void backref_insert(struct rb_root *root,
2308 struct sa_defrag_extent_backref *backref)
2309{
2310 struct rb_node **p = &root->rb_node;
2311 struct rb_node *parent = NULL;
2312 struct sa_defrag_extent_backref *entry;
2313 int ret;
2314
2315 while (*p) {
2316 parent = *p;
2317 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2318
2319 ret = backref_comp(backref, entry);
2320 if (ret < 0)
2321 p = &(*p)->rb_left;
2322 else
2323 p = &(*p)->rb_right;
2324 }
2325
2326 rb_link_node(&backref->node, parent, p);
2327 rb_insert_color(&backref->node, root);
2328}
2329
2330/*
2331 * Note the backref might has changed, and in this case we just return 0.
2332 */
2333static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2334 void *ctx)
2335{
2336 struct btrfs_file_extent_item *extent;
38c227d8
LB
2337 struct old_sa_defrag_extent *old = ctx;
2338 struct new_sa_defrag_extent *new = old->new;
2339 struct btrfs_path *path = new->path;
2340 struct btrfs_key key;
2341 struct btrfs_root *root;
2342 struct sa_defrag_extent_backref *backref;
2343 struct extent_buffer *leaf;
2344 struct inode *inode = new->inode;
0b246afa 2345 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2346 int slot;
2347 int ret;
2348 u64 extent_offset;
2349 u64 num_bytes;
2350
2351 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2352 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2353 return 0;
2354
2355 key.objectid = root_id;
2356 key.type = BTRFS_ROOT_ITEM_KEY;
2357 key.offset = (u64)-1;
2358
38c227d8
LB
2359 root = btrfs_read_fs_root_no_name(fs_info, &key);
2360 if (IS_ERR(root)) {
2361 if (PTR_ERR(root) == -ENOENT)
2362 return 0;
2363 WARN_ON(1);
ab8d0fc4 2364 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2365 inum, offset, root_id);
2366 return PTR_ERR(root);
2367 }
2368
2369 key.objectid = inum;
2370 key.type = BTRFS_EXTENT_DATA_KEY;
2371 if (offset > (u64)-1 << 32)
2372 key.offset = 0;
2373 else
2374 key.offset = offset;
2375
2376 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2377 if (WARN_ON(ret < 0))
38c227d8 2378 return ret;
50f1319c 2379 ret = 0;
38c227d8
LB
2380
2381 while (1) {
2382 cond_resched();
2383
2384 leaf = path->nodes[0];
2385 slot = path->slots[0];
2386
2387 if (slot >= btrfs_header_nritems(leaf)) {
2388 ret = btrfs_next_leaf(root, path);
2389 if (ret < 0) {
2390 goto out;
2391 } else if (ret > 0) {
2392 ret = 0;
2393 goto out;
2394 }
2395 continue;
2396 }
2397
2398 path->slots[0]++;
2399
2400 btrfs_item_key_to_cpu(leaf, &key, slot);
2401
2402 if (key.objectid > inum)
2403 goto out;
2404
2405 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2406 continue;
2407
2408 extent = btrfs_item_ptr(leaf, slot,
2409 struct btrfs_file_extent_item);
2410
2411 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2412 continue;
2413
e68afa49
LB
2414 /*
2415 * 'offset' refers to the exact key.offset,
2416 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2417 * (key.offset - extent_offset).
2418 */
2419 if (key.offset != offset)
38c227d8
LB
2420 continue;
2421
e68afa49 2422 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2423 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2424
38c227d8
LB
2425 if (extent_offset >= old->extent_offset + old->offset +
2426 old->len || extent_offset + num_bytes <=
2427 old->extent_offset + old->offset)
2428 continue;
38c227d8
LB
2429 break;
2430 }
2431
2432 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2433 if (!backref) {
2434 ret = -ENOENT;
2435 goto out;
2436 }
2437
2438 backref->root_id = root_id;
2439 backref->inum = inum;
e68afa49 2440 backref->file_pos = offset;
38c227d8
LB
2441 backref->num_bytes = num_bytes;
2442 backref->extent_offset = extent_offset;
2443 backref->generation = btrfs_file_extent_generation(leaf, extent);
2444 backref->old = old;
2445 backref_insert(&new->root, backref);
2446 old->count++;
2447out:
2448 btrfs_release_path(path);
2449 WARN_ON(ret);
2450 return ret;
2451}
2452
2453static noinline bool record_extent_backrefs(struct btrfs_path *path,
2454 struct new_sa_defrag_extent *new)
2455{
0b246afa 2456 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2457 struct old_sa_defrag_extent *old, *tmp;
2458 int ret;
2459
2460 new->path = path;
2461
2462 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2463 ret = iterate_inodes_from_logical(old->bytenr +
2464 old->extent_offset, fs_info,
38c227d8 2465 path, record_one_backref,
c995ab3c 2466 old, false);
4724b106
JB
2467 if (ret < 0 && ret != -ENOENT)
2468 return false;
38c227d8
LB
2469
2470 /* no backref to be processed for this extent */
2471 if (!old->count) {
2472 list_del(&old->list);
2473 kfree(old);
2474 }
2475 }
2476
2477 if (list_empty(&new->head))
2478 return false;
2479
2480 return true;
2481}
2482
2483static int relink_is_mergable(struct extent_buffer *leaf,
2484 struct btrfs_file_extent_item *fi,
116e0024 2485 struct new_sa_defrag_extent *new)
38c227d8 2486{
116e0024 2487 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2488 return 0;
2489
2490 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2491 return 0;
2492
116e0024
LB
2493 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2494 return 0;
2495
2496 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2497 btrfs_file_extent_other_encoding(leaf, fi))
2498 return 0;
2499
2500 return 1;
2501}
2502
2503/*
2504 * Note the backref might has changed, and in this case we just return 0.
2505 */
2506static noinline int relink_extent_backref(struct btrfs_path *path,
2507 struct sa_defrag_extent_backref *prev,
2508 struct sa_defrag_extent_backref *backref)
2509{
2510 struct btrfs_file_extent_item *extent;
2511 struct btrfs_file_extent_item *item;
2512 struct btrfs_ordered_extent *ordered;
2513 struct btrfs_trans_handle *trans;
38c227d8
LB
2514 struct btrfs_root *root;
2515 struct btrfs_key key;
2516 struct extent_buffer *leaf;
2517 struct old_sa_defrag_extent *old = backref->old;
2518 struct new_sa_defrag_extent *new = old->new;
0b246afa 2519 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2520 struct inode *inode;
2521 struct extent_state *cached = NULL;
2522 int ret = 0;
2523 u64 start;
2524 u64 len;
2525 u64 lock_start;
2526 u64 lock_end;
2527 bool merge = false;
2528 int index;
2529
2530 if (prev && prev->root_id == backref->root_id &&
2531 prev->inum == backref->inum &&
2532 prev->file_pos + prev->num_bytes == backref->file_pos)
2533 merge = true;
2534
2535 /* step 1: get root */
2536 key.objectid = backref->root_id;
2537 key.type = BTRFS_ROOT_ITEM_KEY;
2538 key.offset = (u64)-1;
2539
38c227d8
LB
2540 index = srcu_read_lock(&fs_info->subvol_srcu);
2541
2542 root = btrfs_read_fs_root_no_name(fs_info, &key);
2543 if (IS_ERR(root)) {
2544 srcu_read_unlock(&fs_info->subvol_srcu, index);
2545 if (PTR_ERR(root) == -ENOENT)
2546 return 0;
2547 return PTR_ERR(root);
2548 }
38c227d8 2549
bcbba5e6
WS
2550 if (btrfs_root_readonly(root)) {
2551 srcu_read_unlock(&fs_info->subvol_srcu, index);
2552 return 0;
2553 }
2554
38c227d8
LB
2555 /* step 2: get inode */
2556 key.objectid = backref->inum;
2557 key.type = BTRFS_INODE_ITEM_KEY;
2558 key.offset = 0;
2559
2560 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2561 if (IS_ERR(inode)) {
2562 srcu_read_unlock(&fs_info->subvol_srcu, index);
2563 return 0;
2564 }
2565
2566 srcu_read_unlock(&fs_info->subvol_srcu, index);
2567
2568 /* step 3: relink backref */
2569 lock_start = backref->file_pos;
2570 lock_end = backref->file_pos + backref->num_bytes - 1;
2571 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2572 &cached);
38c227d8
LB
2573
2574 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2575 if (ordered) {
2576 btrfs_put_ordered_extent(ordered);
2577 goto out_unlock;
2578 }
2579
2580 trans = btrfs_join_transaction(root);
2581 if (IS_ERR(trans)) {
2582 ret = PTR_ERR(trans);
2583 goto out_unlock;
2584 }
2585
2586 key.objectid = backref->inum;
2587 key.type = BTRFS_EXTENT_DATA_KEY;
2588 key.offset = backref->file_pos;
2589
2590 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2591 if (ret < 0) {
2592 goto out_free_path;
2593 } else if (ret > 0) {
2594 ret = 0;
2595 goto out_free_path;
2596 }
2597
2598 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2599 struct btrfs_file_extent_item);
2600
2601 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2602 backref->generation)
2603 goto out_free_path;
2604
2605 btrfs_release_path(path);
2606
2607 start = backref->file_pos;
2608 if (backref->extent_offset < old->extent_offset + old->offset)
2609 start += old->extent_offset + old->offset -
2610 backref->extent_offset;
2611
2612 len = min(backref->extent_offset + backref->num_bytes,
2613 old->extent_offset + old->offset + old->len);
2614 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2615
2616 ret = btrfs_drop_extents(trans, root, inode, start,
2617 start + len, 1);
2618 if (ret)
2619 goto out_free_path;
2620again:
4a0cc7ca 2621 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2622 key.type = BTRFS_EXTENT_DATA_KEY;
2623 key.offset = start;
2624
a09a0a70 2625 path->leave_spinning = 1;
38c227d8
LB
2626 if (merge) {
2627 struct btrfs_file_extent_item *fi;
2628 u64 extent_len;
2629 struct btrfs_key found_key;
2630
3c9665df 2631 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2632 if (ret < 0)
2633 goto out_free_path;
2634
2635 path->slots[0]--;
2636 leaf = path->nodes[0];
2637 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2638
2639 fi = btrfs_item_ptr(leaf, path->slots[0],
2640 struct btrfs_file_extent_item);
2641 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2642
116e0024
LB
2643 if (extent_len + found_key.offset == start &&
2644 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2645 btrfs_set_file_extent_num_bytes(leaf, fi,
2646 extent_len + len);
2647 btrfs_mark_buffer_dirty(leaf);
2648 inode_add_bytes(inode, len);
2649
2650 ret = 1;
2651 goto out_free_path;
2652 } else {
2653 merge = false;
2654 btrfs_release_path(path);
2655 goto again;
2656 }
2657 }
2658
2659 ret = btrfs_insert_empty_item(trans, root, path, &key,
2660 sizeof(*extent));
2661 if (ret) {
66642832 2662 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2663 goto out_free_path;
2664 }
2665
2666 leaf = path->nodes[0];
2667 item = btrfs_item_ptr(leaf, path->slots[0],
2668 struct btrfs_file_extent_item);
2669 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2670 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2671 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2672 btrfs_set_file_extent_num_bytes(leaf, item, len);
2673 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2674 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2675 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2676 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2677 btrfs_set_file_extent_encryption(leaf, item, 0);
2678 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2679
2680 btrfs_mark_buffer_dirty(leaf);
2681 inode_add_bytes(inode, len);
a09a0a70 2682 btrfs_release_path(path);
38c227d8 2683
84f7d8e6 2684 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
38c227d8
LB
2685 new->disk_len, 0,
2686 backref->root_id, backref->inum,
b06c4bf5 2687 new->file_pos); /* start - extent_offset */
38c227d8 2688 if (ret) {
66642832 2689 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2690 goto out_free_path;
2691 }
2692
2693 ret = 1;
2694out_free_path:
2695 btrfs_release_path(path);
a09a0a70 2696 path->leave_spinning = 0;
3a45bb20 2697 btrfs_end_transaction(trans);
38c227d8
LB
2698out_unlock:
2699 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2700 &cached, GFP_NOFS);
2701 iput(inode);
2702 return ret;
2703}
2704
6f519564
LB
2705static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2706{
2707 struct old_sa_defrag_extent *old, *tmp;
2708
2709 if (!new)
2710 return;
2711
2712 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2713 kfree(old);
2714 }
2715 kfree(new);
2716}
2717
38c227d8
LB
2718static void relink_file_extents(struct new_sa_defrag_extent *new)
2719{
0b246afa 2720 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2721 struct btrfs_path *path;
38c227d8
LB
2722 struct sa_defrag_extent_backref *backref;
2723 struct sa_defrag_extent_backref *prev = NULL;
2724 struct inode *inode;
2725 struct btrfs_root *root;
2726 struct rb_node *node;
2727 int ret;
2728
2729 inode = new->inode;
2730 root = BTRFS_I(inode)->root;
2731
2732 path = btrfs_alloc_path();
2733 if (!path)
2734 return;
2735
2736 if (!record_extent_backrefs(path, new)) {
2737 btrfs_free_path(path);
2738 goto out;
2739 }
2740 btrfs_release_path(path);
2741
2742 while (1) {
2743 node = rb_first(&new->root);
2744 if (!node)
2745 break;
2746 rb_erase(node, &new->root);
2747
2748 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2749
2750 ret = relink_extent_backref(path, prev, backref);
2751 WARN_ON(ret < 0);
2752
2753 kfree(prev);
2754
2755 if (ret == 1)
2756 prev = backref;
2757 else
2758 prev = NULL;
2759 cond_resched();
2760 }
2761 kfree(prev);
2762
2763 btrfs_free_path(path);
38c227d8 2764out:
6f519564
LB
2765 free_sa_defrag_extent(new);
2766
0b246afa
JM
2767 atomic_dec(&fs_info->defrag_running);
2768 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2769}
2770
2771static struct new_sa_defrag_extent *
2772record_old_file_extents(struct inode *inode,
2773 struct btrfs_ordered_extent *ordered)
2774{
0b246afa 2775 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2776 struct btrfs_root *root = BTRFS_I(inode)->root;
2777 struct btrfs_path *path;
2778 struct btrfs_key key;
6f519564 2779 struct old_sa_defrag_extent *old;
38c227d8
LB
2780 struct new_sa_defrag_extent *new;
2781 int ret;
2782
2783 new = kmalloc(sizeof(*new), GFP_NOFS);
2784 if (!new)
2785 return NULL;
2786
2787 new->inode = inode;
2788 new->file_pos = ordered->file_offset;
2789 new->len = ordered->len;
2790 new->bytenr = ordered->start;
2791 new->disk_len = ordered->disk_len;
2792 new->compress_type = ordered->compress_type;
2793 new->root = RB_ROOT;
2794 INIT_LIST_HEAD(&new->head);
2795
2796 path = btrfs_alloc_path();
2797 if (!path)
2798 goto out_kfree;
2799
4a0cc7ca 2800 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2801 key.type = BTRFS_EXTENT_DATA_KEY;
2802 key.offset = new->file_pos;
2803
2804 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2805 if (ret < 0)
2806 goto out_free_path;
2807 if (ret > 0 && path->slots[0] > 0)
2808 path->slots[0]--;
2809
2810 /* find out all the old extents for the file range */
2811 while (1) {
2812 struct btrfs_file_extent_item *extent;
2813 struct extent_buffer *l;
2814 int slot;
2815 u64 num_bytes;
2816 u64 offset;
2817 u64 end;
2818 u64 disk_bytenr;
2819 u64 extent_offset;
2820
2821 l = path->nodes[0];
2822 slot = path->slots[0];
2823
2824 if (slot >= btrfs_header_nritems(l)) {
2825 ret = btrfs_next_leaf(root, path);
2826 if (ret < 0)
6f519564 2827 goto out_free_path;
38c227d8
LB
2828 else if (ret > 0)
2829 break;
2830 continue;
2831 }
2832
2833 btrfs_item_key_to_cpu(l, &key, slot);
2834
4a0cc7ca 2835 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2836 break;
2837 if (key.type != BTRFS_EXTENT_DATA_KEY)
2838 break;
2839 if (key.offset >= new->file_pos + new->len)
2840 break;
2841
2842 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2843
2844 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2845 if (key.offset + num_bytes < new->file_pos)
2846 goto next;
2847
2848 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2849 if (!disk_bytenr)
2850 goto next;
2851
2852 extent_offset = btrfs_file_extent_offset(l, extent);
2853
2854 old = kmalloc(sizeof(*old), GFP_NOFS);
2855 if (!old)
6f519564 2856 goto out_free_path;
38c227d8
LB
2857
2858 offset = max(new->file_pos, key.offset);
2859 end = min(new->file_pos + new->len, key.offset + num_bytes);
2860
2861 old->bytenr = disk_bytenr;
2862 old->extent_offset = extent_offset;
2863 old->offset = offset - key.offset;
2864 old->len = end - offset;
2865 old->new = new;
2866 old->count = 0;
2867 list_add_tail(&old->list, &new->head);
2868next:
2869 path->slots[0]++;
2870 cond_resched();
2871 }
2872
2873 btrfs_free_path(path);
0b246afa 2874 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2875
2876 return new;
2877
38c227d8
LB
2878out_free_path:
2879 btrfs_free_path(path);
2880out_kfree:
6f519564 2881 free_sa_defrag_extent(new);
38c227d8
LB
2882 return NULL;
2883}
2884
2ff7e61e 2885static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2886 u64 start, u64 len)
2887{
2888 struct btrfs_block_group_cache *cache;
2889
0b246afa 2890 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2891 ASSERT(cache);
2892
2893 spin_lock(&cache->lock);
2894 cache->delalloc_bytes -= len;
2895 spin_unlock(&cache->lock);
2896
2897 btrfs_put_block_group(cache);
2898}
2899
d352ac68
CM
2900/* as ordered data IO finishes, this gets called so we can finish
2901 * an ordered extent if the range of bytes in the file it covers are
2902 * fully written.
2903 */
5fd02043 2904static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2905{
5fd02043 2906 struct inode *inode = ordered_extent->inode;
0b246afa 2907 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2908 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2909 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2910 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2911 struct extent_state *cached_state = NULL;
38c227d8 2912 struct new_sa_defrag_extent *new = NULL;
261507a0 2913 int compress_type = 0;
77cef2ec
JB
2914 int ret = 0;
2915 u64 logical_len = ordered_extent->len;
82d5902d 2916 bool nolock;
77cef2ec 2917 bool truncated = false;
a7e3b975
FM
2918 bool range_locked = false;
2919 bool clear_new_delalloc_bytes = false;
2920
2921 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2922 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2923 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2924 clear_new_delalloc_bytes = true;
e6dcd2dc 2925
70ddc553 2926 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2927
5fd02043
JB
2928 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2929 ret = -EIO;
2930 goto out;
2931 }
2932
7ab7956e
NB
2933 btrfs_free_io_failure_record(BTRFS_I(inode),
2934 ordered_extent->file_offset,
2935 ordered_extent->file_offset +
2936 ordered_extent->len - 1);
f612496b 2937
77cef2ec
JB
2938 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2939 truncated = true;
2940 logical_len = ordered_extent->truncated_len;
2941 /* Truncated the entire extent, don't bother adding */
2942 if (!logical_len)
2943 goto out;
2944 }
2945
c2167754 2946 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2947 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2948
2949 /*
2950 * For mwrite(mmap + memset to write) case, we still reserve
2951 * space for NOCOW range.
2952 * As NOCOW won't cause a new delayed ref, just free the space
2953 */
bc42bda2 2954 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
94ed938a 2955 ordered_extent->len);
6c760c07
JB
2956 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2957 if (nolock)
2958 trans = btrfs_join_transaction_nolock(root);
2959 else
2960 trans = btrfs_join_transaction(root);
2961 if (IS_ERR(trans)) {
2962 ret = PTR_ERR(trans);
2963 trans = NULL;
2964 goto out;
c2167754 2965 }
69fe2d75 2966 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
2967 ret = btrfs_update_inode_fallback(trans, root, inode);
2968 if (ret) /* -ENOMEM or corruption */
66642832 2969 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2970 goto out;
2971 }
e6dcd2dc 2972
a7e3b975 2973 range_locked = true;
2ac55d41
JB
2974 lock_extent_bits(io_tree, ordered_extent->file_offset,
2975 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2976 &cached_state);
e6dcd2dc 2977
38c227d8
LB
2978 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2979 ordered_extent->file_offset + ordered_extent->len - 1,
452e62b7 2980 EXTENT_DEFRAG, 0, cached_state);
38c227d8
LB
2981 if (ret) {
2982 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2983 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2984 /* the inode is shared */
2985 new = record_old_file_extents(inode, ordered_extent);
2986
2987 clear_extent_bit(io_tree, ordered_extent->file_offset,
2988 ordered_extent->file_offset + ordered_extent->len - 1,
2989 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2990 }
2991
0cb59c99 2992 if (nolock)
7a7eaa40 2993 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2994 else
7a7eaa40 2995 trans = btrfs_join_transaction(root);
79787eaa
JM
2996 if (IS_ERR(trans)) {
2997 ret = PTR_ERR(trans);
2998 trans = NULL;
a7e3b975 2999 goto out;
79787eaa 3000 }
a79b7d4b 3001
69fe2d75 3002 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 3003
c8b97818 3004 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 3005 compress_type = ordered_extent->compress_type;
d899e052 3006 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 3007 BUG_ON(compress_type);
b430b775
JM
3008 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3009 ordered_extent->len);
7a6d7067 3010 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
3011 ordered_extent->file_offset,
3012 ordered_extent->file_offset +
77cef2ec 3013 logical_len);
d899e052 3014 } else {
0b246afa 3015 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
3016 ret = insert_reserved_file_extent(trans, inode,
3017 ordered_extent->file_offset,
3018 ordered_extent->start,
3019 ordered_extent->disk_len,
77cef2ec 3020 logical_len, logical_len,
261507a0 3021 compress_type, 0, 0,
d899e052 3022 BTRFS_FILE_EXTENT_REG);
e570fd27 3023 if (!ret)
2ff7e61e 3024 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
3025 ordered_extent->start,
3026 ordered_extent->disk_len);
d899e052 3027 }
5dc562c5
JB
3028 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3029 ordered_extent->file_offset, ordered_extent->len,
3030 trans->transid);
79787eaa 3031 if (ret < 0) {
66642832 3032 btrfs_abort_transaction(trans, ret);
a7e3b975 3033 goto out;
79787eaa 3034 }
2ac55d41 3035
df9f628e 3036 add_pending_csums(trans, inode, &ordered_extent->list);
e6dcd2dc 3037
6c760c07
JB
3038 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3039 ret = btrfs_update_inode_fallback(trans, root, inode);
3040 if (ret) { /* -ENOMEM or corruption */
66642832 3041 btrfs_abort_transaction(trans, ret);
a7e3b975 3042 goto out;
1ef30be1
JB
3043 }
3044 ret = 0;
c2167754 3045out:
a7e3b975
FM
3046 if (range_locked || clear_new_delalloc_bytes) {
3047 unsigned int clear_bits = 0;
3048
3049 if (range_locked)
3050 clear_bits |= EXTENT_LOCKED;
3051 if (clear_new_delalloc_bytes)
3052 clear_bits |= EXTENT_DELALLOC_NEW;
3053 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3054 ordered_extent->file_offset,
3055 ordered_extent->file_offset +
3056 ordered_extent->len - 1,
3057 clear_bits,
3058 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3059 0, &cached_state, GFP_NOFS);
3060 }
3061
a698d075 3062 if (trans)
3a45bb20 3063 btrfs_end_transaction(trans);
0cb59c99 3064
77cef2ec
JB
3065 if (ret || truncated) {
3066 u64 start, end;
3067
3068 if (truncated)
3069 start = ordered_extent->file_offset + logical_len;
3070 else
3071 start = ordered_extent->file_offset;
3072 end = ordered_extent->file_offset + ordered_extent->len - 1;
3073 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3074
3075 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 3076 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 3077
0bec9ef5
JB
3078 /*
3079 * If the ordered extent had an IOERR or something else went
3080 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3081 * back to the allocator. We only free the extent in the
3082 * truncated case if we didn't write out the extent at all.
0bec9ef5 3083 */
77cef2ec
JB
3084 if ((ret || !logical_len) &&
3085 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3086 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3087 btrfs_free_reserved_extent(fs_info,
3088 ordered_extent->start,
e570fd27 3089 ordered_extent->disk_len, 1);
0bec9ef5
JB
3090 }
3091
3092
5fd02043 3093 /*
8bad3c02
LB
3094 * This needs to be done to make sure anybody waiting knows we are done
3095 * updating everything for this ordered extent.
5fd02043
JB
3096 */
3097 btrfs_remove_ordered_extent(inode, ordered_extent);
3098
38c227d8 3099 /* for snapshot-aware defrag */
6f519564
LB
3100 if (new) {
3101 if (ret) {
3102 free_sa_defrag_extent(new);
0b246afa 3103 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3104 } else {
3105 relink_file_extents(new);
3106 }
3107 }
38c227d8 3108
e6dcd2dc
CM
3109 /* once for us */
3110 btrfs_put_ordered_extent(ordered_extent);
3111 /* once for the tree */
3112 btrfs_put_ordered_extent(ordered_extent);
3113
5fd02043
JB
3114 return ret;
3115}
3116
3117static void finish_ordered_fn(struct btrfs_work *work)
3118{
3119 struct btrfs_ordered_extent *ordered_extent;
3120 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3121 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3122}
3123
c3988d63 3124static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3125 struct extent_state *state, int uptodate)
3126{
5fd02043 3127 struct inode *inode = page->mapping->host;
0b246afa 3128 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3129 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3130 struct btrfs_workqueue *wq;
3131 btrfs_work_func_t func;
5fd02043 3132
1abe9b8a 3133 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3134
8b62b72b 3135 ClearPagePrivate2(page);
5fd02043
JB
3136 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3137 end - start + 1, uptodate))
c3988d63 3138 return;
5fd02043 3139
70ddc553 3140 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 3141 wq = fs_info->endio_freespace_worker;
9e0af237
LB
3142 func = btrfs_freespace_write_helper;
3143 } else {
0b246afa 3144 wq = fs_info->endio_write_workers;
9e0af237
LB
3145 func = btrfs_endio_write_helper;
3146 }
5fd02043 3147
9e0af237
LB
3148 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3149 NULL);
3150 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3151}
3152
dc380aea
MX
3153static int __readpage_endio_check(struct inode *inode,
3154 struct btrfs_io_bio *io_bio,
3155 int icsum, struct page *page,
3156 int pgoff, u64 start, size_t len)
3157{
3158 char *kaddr;
3159 u32 csum_expected;
3160 u32 csum = ~(u32)0;
dc380aea
MX
3161
3162 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3163
3164 kaddr = kmap_atomic(page);
3165 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
0b5e3daf 3166 btrfs_csum_final(csum, (u8 *)&csum);
dc380aea
MX
3167 if (csum != csum_expected)
3168 goto zeroit;
3169
3170 kunmap_atomic(kaddr);
3171 return 0;
3172zeroit:
0970a22e 3173 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
6f6b643e 3174 io_bio->mirror_num);
dc380aea
MX
3175 memset(kaddr + pgoff, 1, len);
3176 flush_dcache_page(page);
3177 kunmap_atomic(kaddr);
dc380aea
MX
3178 return -EIO;
3179}
3180
d352ac68
CM
3181/*
3182 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3183 * if there's a match, we allow the bio to finish. If not, the code in
3184 * extent_io.c will try to find good copies for us.
d352ac68 3185 */
facc8a22
MX
3186static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3187 u64 phy_offset, struct page *page,
3188 u64 start, u64 end, int mirror)
07157aac 3189{
4eee4fa4 3190 size_t offset = start - page_offset(page);
07157aac 3191 struct inode *inode = page->mapping->host;
d1310b2e 3192 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3193 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3194
d20f7043
CM
3195 if (PageChecked(page)) {
3196 ClearPageChecked(page);
dc380aea 3197 return 0;
d20f7043 3198 }
6cbff00f
CH
3199
3200 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3201 return 0;
17d217fe
YZ
3202
3203 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3204 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3205 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3206 return 0;
17d217fe 3207 }
d20f7043 3208
facc8a22 3209 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3210 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3211 start, (size_t)(end - start + 1));
07157aac 3212}
b888db2b 3213
24bbcf04
YZ
3214void btrfs_add_delayed_iput(struct inode *inode)
3215{
0b246afa 3216 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3217 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3218
3219 if (atomic_add_unless(&inode->i_count, -1, 1))
3220 return;
3221
24bbcf04 3222 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3223 if (binode->delayed_iput_count == 0) {
3224 ASSERT(list_empty(&binode->delayed_iput));
3225 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3226 } else {
3227 binode->delayed_iput_count++;
3228 }
24bbcf04
YZ
3229 spin_unlock(&fs_info->delayed_iput_lock);
3230}
3231
2ff7e61e 3232void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3233{
24bbcf04 3234
24bbcf04 3235 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3236 while (!list_empty(&fs_info->delayed_iputs)) {
3237 struct btrfs_inode *inode;
3238
3239 inode = list_first_entry(&fs_info->delayed_iputs,
3240 struct btrfs_inode, delayed_iput);
3241 if (inode->delayed_iput_count) {
3242 inode->delayed_iput_count--;
3243 list_move_tail(&inode->delayed_iput,
3244 &fs_info->delayed_iputs);
3245 } else {
3246 list_del_init(&inode->delayed_iput);
3247 }
3248 spin_unlock(&fs_info->delayed_iput_lock);
3249 iput(&inode->vfs_inode);
3250 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3251 }
8089fe62 3252 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3253}
3254
d68fc57b 3255/*
42b2aa86 3256 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3257 * files in the subvolume, it removes orphan item and frees block_rsv
3258 * structure.
3259 */
3260void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3261 struct btrfs_root *root)
3262{
0b246afa 3263 struct btrfs_fs_info *fs_info = root->fs_info;
90290e19 3264 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3265 int ret;
3266
8a35d95f 3267 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3268 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3269 return;
3270
90290e19 3271 spin_lock(&root->orphan_lock);
8a35d95f 3272 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3273 spin_unlock(&root->orphan_lock);
3274 return;
3275 }
3276
3277 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3278 spin_unlock(&root->orphan_lock);
3279 return;
3280 }
3281
3282 block_rsv = root->orphan_block_rsv;
3283 root->orphan_block_rsv = NULL;
3284 spin_unlock(&root->orphan_lock);
3285
27cdeb70 3286 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b 3287 btrfs_root_refs(&root->root_item) > 0) {
0b246afa 3288 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
d68fc57b 3289 root->root_key.objectid);
4ef31a45 3290 if (ret)
66642832 3291 btrfs_abort_transaction(trans, ret);
4ef31a45 3292 else
27cdeb70
MX
3293 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3294 &root->state);
d68fc57b
YZ
3295 }
3296
90290e19
JB
3297 if (block_rsv) {
3298 WARN_ON(block_rsv->size > 0);
2ff7e61e 3299 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b
YZ
3300 }
3301}
3302
7b128766
JB
3303/*
3304 * This creates an orphan entry for the given inode in case something goes
3305 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3306 *
3307 * NOTE: caller of this function should reserve 5 units of metadata for
3308 * this function.
7b128766 3309 */
73f2e545
NB
3310int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3311 struct btrfs_inode *inode)
7b128766 3312{
73f2e545
NB
3313 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3314 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3315 struct btrfs_block_rsv *block_rsv = NULL;
3316 int reserve = 0;
3317 int insert = 0;
3318 int ret;
7b128766 3319
d68fc57b 3320 if (!root->orphan_block_rsv) {
2ff7e61e
JM
3321 block_rsv = btrfs_alloc_block_rsv(fs_info,
3322 BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3323 if (!block_rsv)
3324 return -ENOMEM;
d68fc57b 3325 }
7b128766 3326
d68fc57b
YZ
3327 spin_lock(&root->orphan_lock);
3328 if (!root->orphan_block_rsv) {
3329 root->orphan_block_rsv = block_rsv;
3330 } else if (block_rsv) {
2ff7e61e 3331 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b 3332 block_rsv = NULL;
7b128766 3333 }
7b128766 3334
8a35d95f 3335 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3336 &inode->runtime_flags)) {
d68fc57b
YZ
3337#if 0
3338 /*
3339 * For proper ENOSPC handling, we should do orphan
3340 * cleanup when mounting. But this introduces backward
3341 * compatibility issue.
3342 */
3343 if (!xchg(&root->orphan_item_inserted, 1))
3344 insert = 2;
3345 else
3346 insert = 1;
3347#endif
3348 insert = 1;
321f0e70 3349 atomic_inc(&root->orphan_inodes);
7b128766
JB
3350 }
3351
72ac3c0d 3352 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3353 &inode->runtime_flags))
d68fc57b 3354 reserve = 1;
d68fc57b 3355 spin_unlock(&root->orphan_lock);
7b128766 3356
d68fc57b
YZ
3357 /* grab metadata reservation from transaction handle */
3358 if (reserve) {
3359 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3360 ASSERT(!ret);
3361 if (ret) {
3362 atomic_dec(&root->orphan_inodes);
3363 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3364 &inode->runtime_flags);
3b6571c1
JB
3365 if (insert)
3366 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3367 &inode->runtime_flags);
3b6571c1
JB
3368 return ret;
3369 }
d68fc57b 3370 }
7b128766 3371
d68fc57b
YZ
3372 /* insert an orphan item to track this unlinked/truncated file */
3373 if (insert >= 1) {
73f2e545 3374 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3375 if (ret) {
703c88e0 3376 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3377 if (reserve) {
3378 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3379 &inode->runtime_flags);
4ef31a45
JB
3380 btrfs_orphan_release_metadata(inode);
3381 }
3382 if (ret != -EEXIST) {
e8e7cff6 3383 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3384 &inode->runtime_flags);
66642832 3385 btrfs_abort_transaction(trans, ret);
4ef31a45
JB
3386 return ret;
3387 }
79787eaa
JM
3388 }
3389 ret = 0;
d68fc57b
YZ
3390 }
3391
3392 /* insert an orphan item to track subvolume contains orphan files */
3393 if (insert >= 2) {
0b246afa 3394 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
d68fc57b 3395 root->root_key.objectid);
79787eaa 3396 if (ret && ret != -EEXIST) {
66642832 3397 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3398 return ret;
3399 }
d68fc57b
YZ
3400 }
3401 return 0;
7b128766
JB
3402}
3403
3404/*
3405 * We have done the truncate/delete so we can go ahead and remove the orphan
3406 * item for this particular inode.
3407 */
48a3b636 3408static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3409 struct btrfs_inode *inode)
7b128766 3410{
3d6ae7bb 3411 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3412 int delete_item = 0;
3413 int release_rsv = 0;
7b128766
JB
3414 int ret = 0;
3415
d68fc57b 3416 spin_lock(&root->orphan_lock);
8a35d95f 3417 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3d6ae7bb 3418 &inode->runtime_flags))
d68fc57b 3419 delete_item = 1;
7b128766 3420
72ac3c0d 3421 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3d6ae7bb 3422 &inode->runtime_flags))
d68fc57b 3423 release_rsv = 1;
d68fc57b 3424 spin_unlock(&root->orphan_lock);
7b128766 3425
703c88e0 3426 if (delete_item) {
8a35d95f 3427 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3428 if (trans)
3429 ret = btrfs_del_orphan_item(trans, root,
3d6ae7bb 3430 btrfs_ino(inode));
8a35d95f 3431 }
7b128766 3432
703c88e0
FDBM
3433 if (release_rsv)
3434 btrfs_orphan_release_metadata(inode);
3435
4ef31a45 3436 return ret;
7b128766
JB
3437}
3438
3439/*
3440 * this cleans up any orphans that may be left on the list from the last use
3441 * of this root.
3442 */
66b4ffd1 3443int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3444{
0b246afa 3445 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3446 struct btrfs_path *path;
3447 struct extent_buffer *leaf;
7b128766
JB
3448 struct btrfs_key key, found_key;
3449 struct btrfs_trans_handle *trans;
3450 struct inode *inode;
8f6d7f4f 3451 u64 last_objectid = 0;
7b128766
JB
3452 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3453
d68fc57b 3454 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3455 return 0;
c71bf099
YZ
3456
3457 path = btrfs_alloc_path();
66b4ffd1
JB
3458 if (!path) {
3459 ret = -ENOMEM;
3460 goto out;
3461 }
e4058b54 3462 path->reada = READA_BACK;
7b128766
JB
3463
3464 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3465 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3466 key.offset = (u64)-1;
3467
7b128766
JB
3468 while (1) {
3469 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3470 if (ret < 0)
3471 goto out;
7b128766
JB
3472
3473 /*
3474 * if ret == 0 means we found what we were searching for, which
25985edc 3475 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3476 * find the key and see if we have stuff that matches
3477 */
3478 if (ret > 0) {
66b4ffd1 3479 ret = 0;
7b128766
JB
3480 if (path->slots[0] == 0)
3481 break;
3482 path->slots[0]--;
3483 }
3484
3485 /* pull out the item */
3486 leaf = path->nodes[0];
7b128766
JB
3487 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3488
3489 /* make sure the item matches what we want */
3490 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3491 break;
962a298f 3492 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3493 break;
3494
3495 /* release the path since we're done with it */
b3b4aa74 3496 btrfs_release_path(path);
7b128766
JB
3497
3498 /*
3499 * this is where we are basically btrfs_lookup, without the
3500 * crossing root thing. we store the inode number in the
3501 * offset of the orphan item.
3502 */
8f6d7f4f
JB
3503
3504 if (found_key.offset == last_objectid) {
0b246afa
JM
3505 btrfs_err(fs_info,
3506 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3507 ret = -EINVAL;
3508 goto out;
3509 }
3510
3511 last_objectid = found_key.offset;
3512
5d4f98a2
YZ
3513 found_key.objectid = found_key.offset;
3514 found_key.type = BTRFS_INODE_ITEM_KEY;
3515 found_key.offset = 0;
0b246afa 3516 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3517 ret = PTR_ERR_OR_ZERO(inode);
67710892 3518 if (ret && ret != -ENOENT)
66b4ffd1 3519 goto out;
7b128766 3520
0b246afa 3521 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3522 struct btrfs_root *dead_root;
3523 struct btrfs_fs_info *fs_info = root->fs_info;
3524 int is_dead_root = 0;
3525
3526 /*
3527 * this is an orphan in the tree root. Currently these
3528 * could come from 2 sources:
3529 * a) a snapshot deletion in progress
3530 * b) a free space cache inode
3531 * We need to distinguish those two, as the snapshot
3532 * orphan must not get deleted.
3533 * find_dead_roots already ran before us, so if this
3534 * is a snapshot deletion, we should find the root
3535 * in the dead_roots list
3536 */
3537 spin_lock(&fs_info->trans_lock);
3538 list_for_each_entry(dead_root, &fs_info->dead_roots,
3539 root_list) {
3540 if (dead_root->root_key.objectid ==
3541 found_key.objectid) {
3542 is_dead_root = 1;
3543 break;
3544 }
3545 }
3546 spin_unlock(&fs_info->trans_lock);
3547 if (is_dead_root) {
3548 /* prevent this orphan from being found again */
3549 key.offset = found_key.objectid - 1;
3550 continue;
3551 }
3552 }
7b128766 3553 /*
a8c9e576
JB
3554 * Inode is already gone but the orphan item is still there,
3555 * kill the orphan item.
7b128766 3556 */
67710892 3557 if (ret == -ENOENT) {
a8c9e576 3558 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3559 if (IS_ERR(trans)) {
3560 ret = PTR_ERR(trans);
3561 goto out;
3562 }
0b246afa
JM
3563 btrfs_debug(fs_info, "auto deleting %Lu",
3564 found_key.objectid);
a8c9e576
JB
3565 ret = btrfs_del_orphan_item(trans, root,
3566 found_key.objectid);
3a45bb20 3567 btrfs_end_transaction(trans);
4ef31a45
JB
3568 if (ret)
3569 goto out;
7b128766
JB
3570 continue;
3571 }
3572
a8c9e576
JB
3573 /*
3574 * add this inode to the orphan list so btrfs_orphan_del does
3575 * the proper thing when we hit it
3576 */
8a35d95f
JB
3577 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3578 &BTRFS_I(inode)->runtime_flags);
925396ec 3579 atomic_inc(&root->orphan_inodes);
a8c9e576 3580
7b128766
JB
3581 /* if we have links, this was a truncate, lets do that */
3582 if (inode->i_nlink) {
fae7f21c 3583 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3584 iput(inode);
3585 continue;
3586 }
7b128766 3587 nr_truncate++;
f3fe820c
JB
3588
3589 /* 1 for the orphan item deletion. */
3590 trans = btrfs_start_transaction(root, 1);
3591 if (IS_ERR(trans)) {
c69b26b0 3592 iput(inode);
f3fe820c
JB
3593 ret = PTR_ERR(trans);
3594 goto out;
3595 }
73f2e545 3596 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 3597 btrfs_end_transaction(trans);
c69b26b0
JB
3598 if (ret) {
3599 iput(inode);
f3fe820c 3600 goto out;
c69b26b0 3601 }
f3fe820c 3602
66b4ffd1 3603 ret = btrfs_truncate(inode);
4a7d0f68 3604 if (ret)
3d6ae7bb 3605 btrfs_orphan_del(NULL, BTRFS_I(inode));
7b128766
JB
3606 } else {
3607 nr_unlink++;
3608 }
3609
3610 /* this will do delete_inode and everything for us */
3611 iput(inode);
66b4ffd1
JB
3612 if (ret)
3613 goto out;
7b128766 3614 }
3254c876
MX
3615 /* release the path since we're done with it */
3616 btrfs_release_path(path);
3617
d68fc57b
YZ
3618 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3619
3620 if (root->orphan_block_rsv)
2ff7e61e 3621 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
d68fc57b
YZ
3622 (u64)-1);
3623
27cdeb70
MX
3624 if (root->orphan_block_rsv ||
3625 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3626 trans = btrfs_join_transaction(root);
66b4ffd1 3627 if (!IS_ERR(trans))
3a45bb20 3628 btrfs_end_transaction(trans);
d68fc57b 3629 }
7b128766
JB
3630
3631 if (nr_unlink)
0b246afa 3632 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3633 if (nr_truncate)
0b246afa 3634 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3635
3636out:
3637 if (ret)
0b246afa 3638 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3639 btrfs_free_path(path);
3640 return ret;
7b128766
JB
3641}
3642
46a53cca
CM
3643/*
3644 * very simple check to peek ahead in the leaf looking for xattrs. If we
3645 * don't find any xattrs, we know there can't be any acls.
3646 *
3647 * slot is the slot the inode is in, objectid is the objectid of the inode
3648 */
3649static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3650 int slot, u64 objectid,
3651 int *first_xattr_slot)
46a53cca
CM
3652{
3653 u32 nritems = btrfs_header_nritems(leaf);
3654 struct btrfs_key found_key;
f23b5a59
JB
3655 static u64 xattr_access = 0;
3656 static u64 xattr_default = 0;
46a53cca
CM
3657 int scanned = 0;
3658
f23b5a59 3659 if (!xattr_access) {
97d79299
AG
3660 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3661 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3662 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3663 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3664 }
3665
46a53cca 3666 slot++;
63541927 3667 *first_xattr_slot = -1;
46a53cca
CM
3668 while (slot < nritems) {
3669 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3670
3671 /* we found a different objectid, there must not be acls */
3672 if (found_key.objectid != objectid)
3673 return 0;
3674
3675 /* we found an xattr, assume we've got an acl */
f23b5a59 3676 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3677 if (*first_xattr_slot == -1)
3678 *first_xattr_slot = slot;
f23b5a59
JB
3679 if (found_key.offset == xattr_access ||
3680 found_key.offset == xattr_default)
3681 return 1;
3682 }
46a53cca
CM
3683
3684 /*
3685 * we found a key greater than an xattr key, there can't
3686 * be any acls later on
3687 */
3688 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3689 return 0;
3690
3691 slot++;
3692 scanned++;
3693
3694 /*
3695 * it goes inode, inode backrefs, xattrs, extents,
3696 * so if there are a ton of hard links to an inode there can
3697 * be a lot of backrefs. Don't waste time searching too hard,
3698 * this is just an optimization
3699 */
3700 if (scanned >= 8)
3701 break;
3702 }
3703 /* we hit the end of the leaf before we found an xattr or
3704 * something larger than an xattr. We have to assume the inode
3705 * has acls
3706 */
63541927
FDBM
3707 if (*first_xattr_slot == -1)
3708 *first_xattr_slot = slot;
46a53cca
CM
3709 return 1;
3710}
3711
d352ac68
CM
3712/*
3713 * read an inode from the btree into the in-memory inode
3714 */
67710892 3715static int btrfs_read_locked_inode(struct inode *inode)
39279cc3 3716{
0b246afa 3717 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 3718 struct btrfs_path *path;
5f39d397 3719 struct extent_buffer *leaf;
39279cc3
CM
3720 struct btrfs_inode_item *inode_item;
3721 struct btrfs_root *root = BTRFS_I(inode)->root;
3722 struct btrfs_key location;
67de1176 3723 unsigned long ptr;
46a53cca 3724 int maybe_acls;
618e21d5 3725 u32 rdev;
39279cc3 3726 int ret;
2f7e33d4 3727 bool filled = false;
63541927 3728 int first_xattr_slot;
2f7e33d4
MX
3729
3730 ret = btrfs_fill_inode(inode, &rdev);
3731 if (!ret)
3732 filled = true;
39279cc3
CM
3733
3734 path = btrfs_alloc_path();
67710892
FM
3735 if (!path) {
3736 ret = -ENOMEM;
1748f843 3737 goto make_bad;
67710892 3738 }
1748f843 3739
39279cc3 3740 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3741
39279cc3 3742 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3743 if (ret) {
3744 if (ret > 0)
3745 ret = -ENOENT;
39279cc3 3746 goto make_bad;
67710892 3747 }
39279cc3 3748
5f39d397 3749 leaf = path->nodes[0];
2f7e33d4
MX
3750
3751 if (filled)
67de1176 3752 goto cache_index;
2f7e33d4 3753
5f39d397
CM
3754 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3755 struct btrfs_inode_item);
5f39d397 3756 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3757 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3758 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3759 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3760 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3761
a937b979
DS
3762 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3763 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3764
a937b979
DS
3765 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3766 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3767
a937b979
DS
3768 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3769 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3770
9cc97d64 3771 BTRFS_I(inode)->i_otime.tv_sec =
3772 btrfs_timespec_sec(leaf, &inode_item->otime);
3773 BTRFS_I(inode)->i_otime.tv_nsec =
3774 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3775
a76a3cd4 3776 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3777 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3778 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3779
6e17d30b
YD
3780 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3781 inode->i_generation = BTRFS_I(inode)->generation;
3782 inode->i_rdev = 0;
3783 rdev = btrfs_inode_rdev(leaf, inode_item);
3784
3785 BTRFS_I(inode)->index_cnt = (u64)-1;
3786 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3787
3788cache_index:
5dc562c5
JB
3789 /*
3790 * If we were modified in the current generation and evicted from memory
3791 * and then re-read we need to do a full sync since we don't have any
3792 * idea about which extents were modified before we were evicted from
3793 * cache.
6e17d30b
YD
3794 *
3795 * This is required for both inode re-read from disk and delayed inode
3796 * in delayed_nodes_tree.
5dc562c5 3797 */
0b246afa 3798 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3799 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3800 &BTRFS_I(inode)->runtime_flags);
3801
bde6c242
FM
3802 /*
3803 * We don't persist the id of the transaction where an unlink operation
3804 * against the inode was last made. So here we assume the inode might
3805 * have been evicted, and therefore the exact value of last_unlink_trans
3806 * lost, and set it to last_trans to avoid metadata inconsistencies
3807 * between the inode and its parent if the inode is fsync'ed and the log
3808 * replayed. For example, in the scenario:
3809 *
3810 * touch mydir/foo
3811 * ln mydir/foo mydir/bar
3812 * sync
3813 * unlink mydir/bar
3814 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3815 * xfs_io -c fsync mydir/foo
3816 * <power failure>
3817 * mount fs, triggers fsync log replay
3818 *
3819 * We must make sure that when we fsync our inode foo we also log its
3820 * parent inode, otherwise after log replay the parent still has the
3821 * dentry with the "bar" name but our inode foo has a link count of 1
3822 * and doesn't have an inode ref with the name "bar" anymore.
3823 *
3824 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3825 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3826 * transaction commits on fsync if our inode is a directory, or if our
3827 * inode is not a directory, logging its parent unnecessarily.
3828 */
3829 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3830
67de1176
MX
3831 path->slots[0]++;
3832 if (inode->i_nlink != 1 ||
3833 path->slots[0] >= btrfs_header_nritems(leaf))
3834 goto cache_acl;
3835
3836 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3837 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3838 goto cache_acl;
3839
3840 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3841 if (location.type == BTRFS_INODE_REF_KEY) {
3842 struct btrfs_inode_ref *ref;
3843
3844 ref = (struct btrfs_inode_ref *)ptr;
3845 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3846 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3847 struct btrfs_inode_extref *extref;
3848
3849 extref = (struct btrfs_inode_extref *)ptr;
3850 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3851 extref);
3852 }
2f7e33d4 3853cache_acl:
46a53cca
CM
3854 /*
3855 * try to precache a NULL acl entry for files that don't have
3856 * any xattrs or acls
3857 */
33345d01 3858 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3859 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3860 if (first_xattr_slot != -1) {
3861 path->slots[0] = first_xattr_slot;
3862 ret = btrfs_load_inode_props(inode, path);
3863 if (ret)
0b246afa 3864 btrfs_err(fs_info,
351fd353 3865 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3866 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3867 root->root_key.objectid, ret);
3868 }
3869 btrfs_free_path(path);
3870
72c04902
AV
3871 if (!maybe_acls)
3872 cache_no_acl(inode);
46a53cca 3873
39279cc3 3874 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3875 case S_IFREG:
3876 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3877 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3878 inode->i_fop = &btrfs_file_operations;
3879 inode->i_op = &btrfs_file_inode_operations;
3880 break;
3881 case S_IFDIR:
3882 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3883 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3884 break;
3885 case S_IFLNK:
3886 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3887 inode_nohighmem(inode);
39279cc3
CM
3888 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3889 break;
618e21d5 3890 default:
0279b4cd 3891 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3892 init_special_inode(inode, inode->i_mode, rdev);
3893 break;
39279cc3 3894 }
6cbff00f
CH
3895
3896 btrfs_update_iflags(inode);
67710892 3897 return 0;
39279cc3
CM
3898
3899make_bad:
39279cc3 3900 btrfs_free_path(path);
39279cc3 3901 make_bad_inode(inode);
67710892 3902 return ret;
39279cc3
CM
3903}
3904
d352ac68
CM
3905/*
3906 * given a leaf and an inode, copy the inode fields into the leaf
3907 */
e02119d5
CM
3908static void fill_inode_item(struct btrfs_trans_handle *trans,
3909 struct extent_buffer *leaf,
5f39d397 3910 struct btrfs_inode_item *item,
39279cc3
CM
3911 struct inode *inode)
3912{
51fab693
LB
3913 struct btrfs_map_token token;
3914
3915 btrfs_init_map_token(&token);
5f39d397 3916
51fab693
LB
3917 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3918 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3919 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3920 &token);
3921 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3922 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3923
a937b979 3924 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3925 inode->i_atime.tv_sec, &token);
a937b979 3926 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3927 inode->i_atime.tv_nsec, &token);
5f39d397 3928
a937b979 3929 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3930 inode->i_mtime.tv_sec, &token);
a937b979 3931 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3932 inode->i_mtime.tv_nsec, &token);
5f39d397 3933
a937b979 3934 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3935 inode->i_ctime.tv_sec, &token);
a937b979 3936 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3937 inode->i_ctime.tv_nsec, &token);
5f39d397 3938
9cc97d64 3939 btrfs_set_token_timespec_sec(leaf, &item->otime,
3940 BTRFS_I(inode)->i_otime.tv_sec, &token);
3941 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3942 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3943
51fab693
LB
3944 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3945 &token);
3946 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3947 &token);
3948 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3949 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3950 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3951 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3952 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3953}
3954
d352ac68
CM
3955/*
3956 * copy everything in the in-memory inode into the btree.
3957 */
2115133f 3958static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3959 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3960{
3961 struct btrfs_inode_item *inode_item;
3962 struct btrfs_path *path;
5f39d397 3963 struct extent_buffer *leaf;
39279cc3
CM
3964 int ret;
3965
3966 path = btrfs_alloc_path();
16cdcec7
MX
3967 if (!path)
3968 return -ENOMEM;
3969
b9473439 3970 path->leave_spinning = 1;
16cdcec7
MX
3971 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3972 1);
39279cc3
CM
3973 if (ret) {
3974 if (ret > 0)
3975 ret = -ENOENT;
3976 goto failed;
3977 }
3978
5f39d397
CM
3979 leaf = path->nodes[0];
3980 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3981 struct btrfs_inode_item);
39279cc3 3982
e02119d5 3983 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3984 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3985 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3986 ret = 0;
3987failed:
39279cc3
CM
3988 btrfs_free_path(path);
3989 return ret;
3990}
3991
2115133f
CM
3992/*
3993 * copy everything in the in-memory inode into the btree.
3994 */
3995noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3996 struct btrfs_root *root, struct inode *inode)
3997{
0b246afa 3998 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3999 int ret;
4000
4001 /*
4002 * If the inode is a free space inode, we can deadlock during commit
4003 * if we put it into the delayed code.
4004 *
4005 * The data relocation inode should also be directly updated
4006 * without delay
4007 */
70ddc553 4008 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 4009 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 4010 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
4011 btrfs_update_root_times(trans, root);
4012
2115133f
CM
4013 ret = btrfs_delayed_update_inode(trans, root, inode);
4014 if (!ret)
4015 btrfs_set_inode_last_trans(trans, inode);
4016 return ret;
4017 }
4018
4019 return btrfs_update_inode_item(trans, root, inode);
4020}
4021
be6aef60
JB
4022noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4023 struct btrfs_root *root,
4024 struct inode *inode)
2115133f
CM
4025{
4026 int ret;
4027
4028 ret = btrfs_update_inode(trans, root, inode);
4029 if (ret == -ENOSPC)
4030 return btrfs_update_inode_item(trans, root, inode);
4031 return ret;
4032}
4033
d352ac68
CM
4034/*
4035 * unlink helper that gets used here in inode.c and in the tree logging
4036 * recovery code. It remove a link in a directory with a given name, and
4037 * also drops the back refs in the inode to the directory
4038 */
92986796
AV
4039static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4040 struct btrfs_root *root,
4ec5934e
NB
4041 struct btrfs_inode *dir,
4042 struct btrfs_inode *inode,
92986796 4043 const char *name, int name_len)
39279cc3 4044{
0b246afa 4045 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4046 struct btrfs_path *path;
39279cc3 4047 int ret = 0;
5f39d397 4048 struct extent_buffer *leaf;
39279cc3 4049 struct btrfs_dir_item *di;
5f39d397 4050 struct btrfs_key key;
aec7477b 4051 u64 index;
33345d01
LZ
4052 u64 ino = btrfs_ino(inode);
4053 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
4054
4055 path = btrfs_alloc_path();
54aa1f4d
CM
4056 if (!path) {
4057 ret = -ENOMEM;
554233a6 4058 goto out;
54aa1f4d
CM
4059 }
4060
b9473439 4061 path->leave_spinning = 1;
33345d01 4062 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
4063 name, name_len, -1);
4064 if (IS_ERR(di)) {
4065 ret = PTR_ERR(di);
4066 goto err;
4067 }
4068 if (!di) {
4069 ret = -ENOENT;
4070 goto err;
4071 }
5f39d397
CM
4072 leaf = path->nodes[0];
4073 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 4074 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4075 if (ret)
4076 goto err;
b3b4aa74 4077 btrfs_release_path(path);
39279cc3 4078
67de1176
MX
4079 /*
4080 * If we don't have dir index, we have to get it by looking up
4081 * the inode ref, since we get the inode ref, remove it directly,
4082 * it is unnecessary to do delayed deletion.
4083 *
4084 * But if we have dir index, needn't search inode ref to get it.
4085 * Since the inode ref is close to the inode item, it is better
4086 * that we delay to delete it, and just do this deletion when
4087 * we update the inode item.
4088 */
4ec5934e 4089 if (inode->dir_index) {
67de1176
MX
4090 ret = btrfs_delayed_delete_inode_ref(inode);
4091 if (!ret) {
4ec5934e 4092 index = inode->dir_index;
67de1176
MX
4093 goto skip_backref;
4094 }
4095 }
4096
33345d01
LZ
4097 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4098 dir_ino, &index);
aec7477b 4099 if (ret) {
0b246afa 4100 btrfs_info(fs_info,
c2cf52eb 4101 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4102 name_len, name, ino, dir_ino);
66642832 4103 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4104 goto err;
4105 }
67de1176 4106skip_backref:
2ff7e61e 4107 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
79787eaa 4108 if (ret) {
66642832 4109 btrfs_abort_transaction(trans, ret);
39279cc3 4110 goto err;
79787eaa 4111 }
39279cc3 4112
4ec5934e
NB
4113 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4114 dir_ino);
79787eaa 4115 if (ret != 0 && ret != -ENOENT) {
66642832 4116 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4117 goto err;
4118 }
e02119d5 4119
4ec5934e
NB
4120 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4121 index);
6418c961
CM
4122 if (ret == -ENOENT)
4123 ret = 0;
d4e3991b 4124 else if (ret)
66642832 4125 btrfs_abort_transaction(trans, ret);
39279cc3
CM
4126err:
4127 btrfs_free_path(path);
e02119d5
CM
4128 if (ret)
4129 goto out;
4130
6ef06d27 4131 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
4132 inode_inc_iversion(&inode->vfs_inode);
4133 inode_inc_iversion(&dir->vfs_inode);
4134 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4135 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4136 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 4137out:
39279cc3
CM
4138 return ret;
4139}
4140
92986796
AV
4141int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4142 struct btrfs_root *root,
4ec5934e 4143 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
4144 const char *name, int name_len)
4145{
4146 int ret;
4147 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4148 if (!ret) {
4ec5934e
NB
4149 drop_nlink(&inode->vfs_inode);
4150 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4151 }
4152 return ret;
4153}
39279cc3 4154
a22285a6
YZ
4155/*
4156 * helper to start transaction for unlink and rmdir.
4157 *
d52be818
JB
4158 * unlink and rmdir are special in btrfs, they do not always free space, so
4159 * if we cannot make our reservations the normal way try and see if there is
4160 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4161 * allow the unlink to occur.
a22285a6 4162 */
d52be818 4163static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4164{
a22285a6 4165 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4166
e70bea5f
JB
4167 /*
4168 * 1 for the possible orphan item
4169 * 1 for the dir item
4170 * 1 for the dir index
4171 * 1 for the inode ref
e70bea5f
JB
4172 * 1 for the inode
4173 */
8eab77ff 4174 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4175}
4176
4177static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4178{
4179 struct btrfs_root *root = BTRFS_I(dir)->root;
4180 struct btrfs_trans_handle *trans;
2b0143b5 4181 struct inode *inode = d_inode(dentry);
a22285a6 4182 int ret;
a22285a6 4183
d52be818 4184 trans = __unlink_start_trans(dir);
a22285a6
YZ
4185 if (IS_ERR(trans))
4186 return PTR_ERR(trans);
5f39d397 4187
4ec5934e
NB
4188 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4189 0);
12fcfd22 4190
4ec5934e
NB
4191 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4192 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4193 dentry->d_name.len);
b532402e
TI
4194 if (ret)
4195 goto out;
7b128766 4196
a22285a6 4197 if (inode->i_nlink == 0) {
73f2e545 4198 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4199 if (ret)
4200 goto out;
a22285a6 4201 }
7b128766 4202
b532402e 4203out:
3a45bb20 4204 btrfs_end_transaction(trans);
2ff7e61e 4205 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4206 return ret;
4207}
4208
4df27c4d
YZ
4209int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4210 struct btrfs_root *root,
4211 struct inode *dir, u64 objectid,
4212 const char *name, int name_len)
4213{
0b246afa 4214 struct btrfs_fs_info *fs_info = root->fs_info;
4df27c4d
YZ
4215 struct btrfs_path *path;
4216 struct extent_buffer *leaf;
4217 struct btrfs_dir_item *di;
4218 struct btrfs_key key;
4219 u64 index;
4220 int ret;
4a0cc7ca 4221 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4222
4223 path = btrfs_alloc_path();
4224 if (!path)
4225 return -ENOMEM;
4226
33345d01 4227 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4228 name, name_len, -1);
79787eaa
JM
4229 if (IS_ERR_OR_NULL(di)) {
4230 if (!di)
4231 ret = -ENOENT;
4232 else
4233 ret = PTR_ERR(di);
4234 goto out;
4235 }
4df27c4d
YZ
4236
4237 leaf = path->nodes[0];
4238 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4239 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4240 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4241 if (ret) {
66642832 4242 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4243 goto out;
4244 }
b3b4aa74 4245 btrfs_release_path(path);
4df27c4d 4246
0b246afa
JM
4247 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4248 root->root_key.objectid, dir_ino,
4249 &index, name, name_len);
4df27c4d 4250 if (ret < 0) {
79787eaa 4251 if (ret != -ENOENT) {
66642832 4252 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4253 goto out;
4254 }
33345d01 4255 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4256 name, name_len);
79787eaa
JM
4257 if (IS_ERR_OR_NULL(di)) {
4258 if (!di)
4259 ret = -ENOENT;
4260 else
4261 ret = PTR_ERR(di);
66642832 4262 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4263 goto out;
4264 }
4df27c4d
YZ
4265
4266 leaf = path->nodes[0];
4267 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4268 btrfs_release_path(path);
4df27c4d
YZ
4269 index = key.offset;
4270 }
945d8962 4271 btrfs_release_path(path);
4df27c4d 4272
e67bbbb9 4273 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
79787eaa 4274 if (ret) {
66642832 4275 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4276 goto out;
4277 }
4df27c4d 4278
6ef06d27 4279 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4280 inode_inc_iversion(dir);
c2050a45 4281 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4282 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4283 if (ret)
66642832 4284 btrfs_abort_transaction(trans, ret);
79787eaa 4285out:
71d7aed0 4286 btrfs_free_path(path);
79787eaa 4287 return ret;
4df27c4d
YZ
4288}
4289
39279cc3
CM
4290static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4291{
2b0143b5 4292 struct inode *inode = d_inode(dentry);
1832a6d5 4293 int err = 0;
39279cc3 4294 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4295 struct btrfs_trans_handle *trans;
44f714da 4296 u64 last_unlink_trans;
39279cc3 4297
b3ae244e 4298 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4299 return -ENOTEMPTY;
4a0cc7ca 4300 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
b3ae244e 4301 return -EPERM;
134d4512 4302
d52be818 4303 trans = __unlink_start_trans(dir);
a22285a6 4304 if (IS_ERR(trans))
5df6a9f6 4305 return PTR_ERR(trans);
5df6a9f6 4306
4a0cc7ca 4307 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4308 err = btrfs_unlink_subvol(trans, root, dir,
4309 BTRFS_I(inode)->location.objectid,
4310 dentry->d_name.name,
4311 dentry->d_name.len);
4312 goto out;
4313 }
4314
73f2e545 4315 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4316 if (err)
4df27c4d 4317 goto out;
7b128766 4318
44f714da
FM
4319 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4320
39279cc3 4321 /* now the directory is empty */
4ec5934e
NB
4322 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4323 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4324 dentry->d_name.len);
44f714da 4325 if (!err) {
6ef06d27 4326 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4327 /*
4328 * Propagate the last_unlink_trans value of the deleted dir to
4329 * its parent directory. This is to prevent an unrecoverable
4330 * log tree in the case we do something like this:
4331 * 1) create dir foo
4332 * 2) create snapshot under dir foo
4333 * 3) delete the snapshot
4334 * 4) rmdir foo
4335 * 5) mkdir foo
4336 * 6) fsync foo or some file inside foo
4337 */
4338 if (last_unlink_trans >= trans->transid)
4339 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4340 }
4df27c4d 4341out:
3a45bb20 4342 btrfs_end_transaction(trans);
2ff7e61e 4343 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4344
39279cc3
CM
4345 return err;
4346}
4347
28f75a0e
CM
4348static int truncate_space_check(struct btrfs_trans_handle *trans,
4349 struct btrfs_root *root,
4350 u64 bytes_deleted)
4351{
0b246afa 4352 struct btrfs_fs_info *fs_info = root->fs_info;
28f75a0e
CM
4353 int ret;
4354
dc95f7bf
JB
4355 /*
4356 * This is only used to apply pressure to the enospc system, we don't
4357 * intend to use this reservation at all.
4358 */
2ff7e61e 4359 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
0b246afa
JM
4360 bytes_deleted *= fs_info->nodesize;
4361 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
28f75a0e 4362 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf 4363 if (!ret) {
0b246afa 4364 trace_btrfs_space_reservation(fs_info, "transaction",
dc95f7bf
JB
4365 trans->transid,
4366 bytes_deleted, 1);
28f75a0e 4367 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4368 }
28f75a0e
CM
4369 return ret;
4370
4371}
4372
ddfae63c
JB
4373/*
4374 * Return this if we need to call truncate_block for the last bit of the
4375 * truncate.
4376 */
4377#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4378
39279cc3
CM
4379/*
4380 * this can truncate away extent items, csum items and directory items.
4381 * It starts at a high offset and removes keys until it can't find
d352ac68 4382 * any higher than new_size
39279cc3
CM
4383 *
4384 * csum items that cross the new i_size are truncated to the new size
4385 * as well.
7b128766
JB
4386 *
4387 * min_type is the minimum key type to truncate down to. If set to 0, this
4388 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4389 */
8082510e
YZ
4390int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4391 struct btrfs_root *root,
4392 struct inode *inode,
4393 u64 new_size, u32 min_type)
39279cc3 4394{
0b246afa 4395 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4396 struct btrfs_path *path;
5f39d397 4397 struct extent_buffer *leaf;
39279cc3 4398 struct btrfs_file_extent_item *fi;
8082510e
YZ
4399 struct btrfs_key key;
4400 struct btrfs_key found_key;
39279cc3 4401 u64 extent_start = 0;
db94535d 4402 u64 extent_num_bytes = 0;
5d4f98a2 4403 u64 extent_offset = 0;
39279cc3 4404 u64 item_end = 0;
c1aa4575 4405 u64 last_size = new_size;
8082510e 4406 u32 found_type = (u8)-1;
39279cc3
CM
4407 int found_extent;
4408 int del_item;
85e21bac
CM
4409 int pending_del_nr = 0;
4410 int pending_del_slot = 0;
179e29e4 4411 int extent_type = -1;
8082510e
YZ
4412 int ret;
4413 int err = 0;
4a0cc7ca 4414 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4415 u64 bytes_deleted = 0;
897ca819
TM
4416 bool be_nice = false;
4417 bool should_throttle = false;
4418 bool should_end = false;
8082510e
YZ
4419
4420 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4421
28ed1345
CM
4422 /*
4423 * for non-free space inodes and ref cows, we want to back off from
4424 * time to time
4425 */
70ddc553 4426 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345 4427 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
897ca819 4428 be_nice = true;
28ed1345 4429
0eb0e19c
MF
4430 path = btrfs_alloc_path();
4431 if (!path)
4432 return -ENOMEM;
e4058b54 4433 path->reada = READA_BACK;
0eb0e19c 4434
5dc562c5
JB
4435 /*
4436 * We want to drop from the next block forward in case this new size is
4437 * not block aligned since we will be keeping the last block of the
4438 * extent just the way it is.
4439 */
27cdeb70 4440 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4441 root == fs_info->tree_root)
dcdbc059 4442 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4443 fs_info->sectorsize),
da17066c 4444 (u64)-1, 0);
8082510e 4445
16cdcec7
MX
4446 /*
4447 * This function is also used to drop the items in the log tree before
4448 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4449 * it is used to drop the loged items. So we shouldn't kill the delayed
4450 * items.
4451 */
4452 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4453 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4454
33345d01 4455 key.objectid = ino;
39279cc3 4456 key.offset = (u64)-1;
5f39d397
CM
4457 key.type = (u8)-1;
4458
85e21bac 4459search_again:
28ed1345
CM
4460 /*
4461 * with a 16K leaf size and 128MB extents, you can actually queue
4462 * up a huge file in a single leaf. Most of the time that
4463 * bytes_deleted is > 0, it will be huge by the time we get here
4464 */
ee22184b 4465 if (be_nice && bytes_deleted > SZ_32M) {
3a45bb20 4466 if (btrfs_should_end_transaction(trans)) {
28ed1345
CM
4467 err = -EAGAIN;
4468 goto error;
4469 }
4470 }
4471
4472
b9473439 4473 path->leave_spinning = 1;
85e21bac 4474 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4475 if (ret < 0) {
4476 err = ret;
4477 goto out;
4478 }
d397712b 4479
85e21bac 4480 if (ret > 0) {
e02119d5
CM
4481 /* there are no items in the tree for us to truncate, we're
4482 * done
4483 */
8082510e
YZ
4484 if (path->slots[0] == 0)
4485 goto out;
85e21bac
CM
4486 path->slots[0]--;
4487 }
4488
d397712b 4489 while (1) {
39279cc3 4490 fi = NULL;
5f39d397
CM
4491 leaf = path->nodes[0];
4492 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4493 found_type = found_key.type;
39279cc3 4494
33345d01 4495 if (found_key.objectid != ino)
39279cc3 4496 break;
5f39d397 4497
85e21bac 4498 if (found_type < min_type)
39279cc3
CM
4499 break;
4500
5f39d397 4501 item_end = found_key.offset;
39279cc3 4502 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4503 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4504 struct btrfs_file_extent_item);
179e29e4
CM
4505 extent_type = btrfs_file_extent_type(leaf, fi);
4506 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4507 item_end +=
db94535d 4508 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4509
4510 trace_btrfs_truncate_show_fi_regular(
4511 BTRFS_I(inode), leaf, fi,
4512 found_key.offset);
179e29e4 4513 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4514 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4515 path->slots[0], fi);
09ed2f16
LB
4516
4517 trace_btrfs_truncate_show_fi_inline(
4518 BTRFS_I(inode), leaf, fi, path->slots[0],
4519 found_key.offset);
39279cc3 4520 }
008630c1 4521 item_end--;
39279cc3 4522 }
8082510e
YZ
4523 if (found_type > min_type) {
4524 del_item = 1;
4525 } else {
76b42abb 4526 if (item_end < new_size)
b888db2b 4527 break;
8082510e
YZ
4528 if (found_key.offset >= new_size)
4529 del_item = 1;
4530 else
4531 del_item = 0;
39279cc3 4532 }
39279cc3 4533 found_extent = 0;
39279cc3 4534 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4535 if (found_type != BTRFS_EXTENT_DATA_KEY)
4536 goto delete;
4537
4538 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4539 u64 num_dec;
db94535d 4540 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4541 if (!del_item) {
db94535d
CM
4542 u64 orig_num_bytes =
4543 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4544 extent_num_bytes = ALIGN(new_size -
4545 found_key.offset,
0b246afa 4546 fs_info->sectorsize);
db94535d
CM
4547 btrfs_set_file_extent_num_bytes(leaf, fi,
4548 extent_num_bytes);
4549 num_dec = (orig_num_bytes -
9069218d 4550 extent_num_bytes);
27cdeb70
MX
4551 if (test_bit(BTRFS_ROOT_REF_COWS,
4552 &root->state) &&
4553 extent_start != 0)
a76a3cd4 4554 inode_sub_bytes(inode, num_dec);
5f39d397 4555 btrfs_mark_buffer_dirty(leaf);
39279cc3 4556 } else {
db94535d
CM
4557 extent_num_bytes =
4558 btrfs_file_extent_disk_num_bytes(leaf,
4559 fi);
5d4f98a2
YZ
4560 extent_offset = found_key.offset -
4561 btrfs_file_extent_offset(leaf, fi);
4562
39279cc3 4563 /* FIXME blocksize != 4096 */
9069218d 4564 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4565 if (extent_start != 0) {
4566 found_extent = 1;
27cdeb70
MX
4567 if (test_bit(BTRFS_ROOT_REF_COWS,
4568 &root->state))
a76a3cd4 4569 inode_sub_bytes(inode, num_dec);
e02119d5 4570 }
39279cc3 4571 }
9069218d 4572 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4573 /*
4574 * we can't truncate inline items that have had
4575 * special encodings
4576 */
4577 if (!del_item &&
c8b97818 4578 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4579 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4580 btrfs_file_extent_compression(leaf, fi) == 0) {
4581 u32 size = (u32)(new_size - found_key.offset);
4582
4583 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4584 size = btrfs_file_extent_calc_inline_size(size);
4585 btrfs_truncate_item(root->fs_info, path, size, 1);
4586 } else if (!del_item) {
514ac8ad 4587 /*
ddfae63c
JB
4588 * We have to bail so the last_size is set to
4589 * just before this extent.
514ac8ad 4590 */
ddfae63c
JB
4591 err = NEED_TRUNCATE_BLOCK;
4592 break;
4593 }
0305cd5f 4594
ddfae63c 4595 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0305cd5f 4596 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4597 }
179e29e4 4598delete:
ddfae63c
JB
4599 if (del_item)
4600 last_size = found_key.offset;
4601 else
4602 last_size = new_size;
39279cc3 4603 if (del_item) {
85e21bac
CM
4604 if (!pending_del_nr) {
4605 /* no pending yet, add ourselves */
4606 pending_del_slot = path->slots[0];
4607 pending_del_nr = 1;
4608 } else if (pending_del_nr &&
4609 path->slots[0] + 1 == pending_del_slot) {
4610 /* hop on the pending chunk */
4611 pending_del_nr++;
4612 pending_del_slot = path->slots[0];
4613 } else {
d397712b 4614 BUG();
85e21bac 4615 }
39279cc3
CM
4616 } else {
4617 break;
4618 }
897ca819 4619 should_throttle = false;
28f75a0e 4620
27cdeb70
MX
4621 if (found_extent &&
4622 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4623 root == fs_info->tree_root)) {
b9473439 4624 btrfs_set_path_blocking(path);
28ed1345 4625 bytes_deleted += extent_num_bytes;
84f7d8e6 4626 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4627 extent_num_bytes, 0,
4628 btrfs_header_owner(leaf),
b06c4bf5 4629 ino, extent_offset);
39279cc3 4630 BUG_ON(ret);
2ff7e61e
JM
4631 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4632 btrfs_async_run_delayed_refs(fs_info,
dd4b857a
WX
4633 trans->delayed_ref_updates * 2,
4634 trans->transid, 0);
28f75a0e
CM
4635 if (be_nice) {
4636 if (truncate_space_check(trans, root,
4637 extent_num_bytes)) {
897ca819 4638 should_end = true;
28f75a0e
CM
4639 }
4640 if (btrfs_should_throttle_delayed_refs(trans,
2ff7e61e 4641 fs_info))
897ca819 4642 should_throttle = true;
28f75a0e 4643 }
39279cc3 4644 }
85e21bac 4645
8082510e
YZ
4646 if (found_type == BTRFS_INODE_ITEM_KEY)
4647 break;
4648
4649 if (path->slots[0] == 0 ||
1262133b 4650 path->slots[0] != pending_del_slot ||
28f75a0e 4651 should_throttle || should_end) {
8082510e
YZ
4652 if (pending_del_nr) {
4653 ret = btrfs_del_items(trans, root, path,
4654 pending_del_slot,
4655 pending_del_nr);
79787eaa 4656 if (ret) {
66642832 4657 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4658 goto error;
4659 }
8082510e
YZ
4660 pending_del_nr = 0;
4661 }
b3b4aa74 4662 btrfs_release_path(path);
28f75a0e 4663 if (should_throttle) {
1262133b
JB
4664 unsigned long updates = trans->delayed_ref_updates;
4665 if (updates) {
4666 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4667 ret = btrfs_run_delayed_refs(trans,
4668 fs_info,
4669 updates * 2);
1262133b
JB
4670 if (ret && !err)
4671 err = ret;
4672 }
4673 }
28f75a0e
CM
4674 /*
4675 * if we failed to refill our space rsv, bail out
4676 * and let the transaction restart
4677 */
4678 if (should_end) {
4679 err = -EAGAIN;
4680 goto error;
4681 }
85e21bac 4682 goto search_again;
8082510e
YZ
4683 } else {
4684 path->slots[0]--;
85e21bac 4685 }
39279cc3 4686 }
8082510e 4687out:
85e21bac
CM
4688 if (pending_del_nr) {
4689 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4690 pending_del_nr);
79787eaa 4691 if (ret)
66642832 4692 btrfs_abort_transaction(trans, ret);
85e21bac 4693 }
79787eaa 4694error:
76b42abb
FM
4695 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4696 ASSERT(last_size >= new_size);
4697 if (!err && last_size > new_size)
4698 last_size = new_size;
7f4f6e0a 4699 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4700 }
28ed1345 4701
39279cc3 4702 btrfs_free_path(path);
28ed1345 4703
ee22184b 4704 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4705 unsigned long updates = trans->delayed_ref_updates;
4706 if (updates) {
4707 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4708 ret = btrfs_run_delayed_refs(trans, fs_info,
4709 updates * 2);
28ed1345
CM
4710 if (ret && !err)
4711 err = ret;
4712 }
4713 }
8082510e 4714 return err;
39279cc3
CM
4715}
4716
4717/*
9703fefe 4718 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4719 * @inode - inode that we're zeroing
4720 * @from - the offset to start zeroing
4721 * @len - the length to zero, 0 to zero the entire range respective to the
4722 * offset
4723 * @front - zero up to the offset instead of from the offset on
4724 *
9703fefe 4725 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4726 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4727 */
9703fefe 4728int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4729 int front)
39279cc3 4730{
0b246afa 4731 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4732 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4733 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4734 struct btrfs_ordered_extent *ordered;
2ac55d41 4735 struct extent_state *cached_state = NULL;
364ecf36 4736 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4737 char *kaddr;
0b246afa 4738 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4739 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4740 unsigned offset = from & (blocksize - 1);
39279cc3 4741 struct page *page;
3b16a4e3 4742 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4743 int ret = 0;
9703fefe
CR
4744 u64 block_start;
4745 u64 block_end;
39279cc3 4746
2aaa6655
JB
4747 if ((offset & (blocksize - 1)) == 0 &&
4748 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4749 goto out;
9703fefe 4750
8b62f87b
JB
4751 block_start = round_down(from, blocksize);
4752 block_end = block_start + blocksize - 1;
4753
364ecf36 4754 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8b62f87b 4755 block_start, blocksize);
5d5e103a
JB
4756 if (ret)
4757 goto out;
39279cc3 4758
211c17f5 4759again:
3b16a4e3 4760 page = find_or_create_page(mapping, index, mask);
5d5e103a 4761 if (!page) {
bc42bda2 4762 btrfs_delalloc_release_space(inode, data_reserved,
8b62f87b
JB
4763 block_start, blocksize);
4764 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
ac6a2b36 4765 ret = -ENOMEM;
39279cc3 4766 goto out;
5d5e103a 4767 }
e6dcd2dc 4768
39279cc3 4769 if (!PageUptodate(page)) {
9ebefb18 4770 ret = btrfs_readpage(NULL, page);
39279cc3 4771 lock_page(page);
211c17f5
CM
4772 if (page->mapping != mapping) {
4773 unlock_page(page);
09cbfeaf 4774 put_page(page);
211c17f5
CM
4775 goto again;
4776 }
39279cc3
CM
4777 if (!PageUptodate(page)) {
4778 ret = -EIO;
89642229 4779 goto out_unlock;
39279cc3
CM
4780 }
4781 }
211c17f5 4782 wait_on_page_writeback(page);
e6dcd2dc 4783
9703fefe 4784 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4785 set_page_extent_mapped(page);
4786
9703fefe 4787 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4788 if (ordered) {
9703fefe 4789 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4790 &cached_state, GFP_NOFS);
e6dcd2dc 4791 unlock_page(page);
09cbfeaf 4792 put_page(page);
eb84ae03 4793 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4794 btrfs_put_ordered_extent(ordered);
4795 goto again;
4796 }
4797
9703fefe 4798 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4799 EXTENT_DIRTY | EXTENT_DELALLOC |
4800 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4801 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4802
e3b8a485 4803 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
ba8b04c1 4804 &cached_state, 0);
9ed74f2d 4805 if (ret) {
9703fefe 4806 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4807 &cached_state, GFP_NOFS);
9ed74f2d
JB
4808 goto out_unlock;
4809 }
4810
9703fefe 4811 if (offset != blocksize) {
2aaa6655 4812 if (!len)
9703fefe 4813 len = blocksize - offset;
e6dcd2dc 4814 kaddr = kmap(page);
2aaa6655 4815 if (front)
9703fefe
CR
4816 memset(kaddr + (block_start - page_offset(page)),
4817 0, offset);
2aaa6655 4818 else
9703fefe
CR
4819 memset(kaddr + (block_start - page_offset(page)) + offset,
4820 0, len);
e6dcd2dc
CM
4821 flush_dcache_page(page);
4822 kunmap(page);
4823 }
247e743c 4824 ClearPageChecked(page);
e6dcd2dc 4825 set_page_dirty(page);
9703fefe 4826 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4827 GFP_NOFS);
39279cc3 4828
89642229 4829out_unlock:
5d5e103a 4830 if (ret)
bc42bda2 4831 btrfs_delalloc_release_space(inode, data_reserved, block_start,
9703fefe 4832 blocksize);
8b62f87b 4833 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
39279cc3 4834 unlock_page(page);
09cbfeaf 4835 put_page(page);
39279cc3 4836out:
364ecf36 4837 extent_changeset_free(data_reserved);
39279cc3
CM
4838 return ret;
4839}
4840
16e7549f
JB
4841static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4842 u64 offset, u64 len)
4843{
0b246afa 4844 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4845 struct btrfs_trans_handle *trans;
4846 int ret;
4847
4848 /*
4849 * Still need to make sure the inode looks like it's been updated so
4850 * that any holes get logged if we fsync.
4851 */
0b246afa
JM
4852 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4853 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4854 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4855 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4856 return 0;
4857 }
4858
4859 /*
4860 * 1 - for the one we're dropping
4861 * 1 - for the one we're adding
4862 * 1 - for updating the inode.
4863 */
4864 trans = btrfs_start_transaction(root, 3);
4865 if (IS_ERR(trans))
4866 return PTR_ERR(trans);
4867
4868 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4869 if (ret) {
66642832 4870 btrfs_abort_transaction(trans, ret);
3a45bb20 4871 btrfs_end_transaction(trans);
16e7549f
JB
4872 return ret;
4873 }
4874
f85b7379
DS
4875 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4876 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4877 if (ret)
66642832 4878 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4879 else
4880 btrfs_update_inode(trans, root, inode);
3a45bb20 4881 btrfs_end_transaction(trans);
16e7549f
JB
4882 return ret;
4883}
4884
695a0d0d
JB
4885/*
4886 * This function puts in dummy file extents for the area we're creating a hole
4887 * for. So if we are truncating this file to a larger size we need to insert
4888 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4889 * the range between oldsize and size
4890 */
a41ad394 4891int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4892{
0b246afa 4893 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4894 struct btrfs_root *root = BTRFS_I(inode)->root;
4895 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4896 struct extent_map *em = NULL;
2ac55d41 4897 struct extent_state *cached_state = NULL;
5dc562c5 4898 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4899 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4900 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4901 u64 last_byte;
4902 u64 cur_offset;
4903 u64 hole_size;
9ed74f2d 4904 int err = 0;
39279cc3 4905
a71754fc 4906 /*
9703fefe
CR
4907 * If our size started in the middle of a block we need to zero out the
4908 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4909 * expose stale data.
4910 */
9703fefe 4911 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4912 if (err)
4913 return err;
4914
9036c102
YZ
4915 if (size <= hole_start)
4916 return 0;
4917
9036c102
YZ
4918 while (1) {
4919 struct btrfs_ordered_extent *ordered;
fa7c1494 4920
ff13db41 4921 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4922 &cached_state);
a776c6fa 4923 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
fa7c1494 4924 block_end - hole_start);
9036c102
YZ
4925 if (!ordered)
4926 break;
2ac55d41
JB
4927 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4928 &cached_state, GFP_NOFS);
fa7c1494 4929 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4930 btrfs_put_ordered_extent(ordered);
4931 }
39279cc3 4932
9036c102
YZ
4933 cur_offset = hole_start;
4934 while (1) {
fc4f21b1 4935 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 4936 block_end - cur_offset, 0);
79787eaa
JM
4937 if (IS_ERR(em)) {
4938 err = PTR_ERR(em);
f2767956 4939 em = NULL;
79787eaa
JM
4940 break;
4941 }
9036c102 4942 last_byte = min(extent_map_end(em), block_end);
0b246afa 4943 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 4944 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4945 struct extent_map *hole_em;
9036c102 4946 hole_size = last_byte - cur_offset;
9ed74f2d 4947
16e7549f
JB
4948 err = maybe_insert_hole(root, inode, cur_offset,
4949 hole_size);
4950 if (err)
3893e33b 4951 break;
dcdbc059 4952 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
4953 cur_offset + hole_size - 1, 0);
4954 hole_em = alloc_extent_map();
4955 if (!hole_em) {
4956 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4957 &BTRFS_I(inode)->runtime_flags);
4958 goto next;
4959 }
4960 hole_em->start = cur_offset;
4961 hole_em->len = hole_size;
4962 hole_em->orig_start = cur_offset;
8082510e 4963
5dc562c5
JB
4964 hole_em->block_start = EXTENT_MAP_HOLE;
4965 hole_em->block_len = 0;
b4939680 4966 hole_em->orig_block_len = 0;
cc95bef6 4967 hole_em->ram_bytes = hole_size;
0b246afa 4968 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 4969 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 4970 hole_em->generation = fs_info->generation;
8082510e 4971
5dc562c5
JB
4972 while (1) {
4973 write_lock(&em_tree->lock);
09a2a8f9 4974 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4975 write_unlock(&em_tree->lock);
4976 if (err != -EEXIST)
4977 break;
dcdbc059
NB
4978 btrfs_drop_extent_cache(BTRFS_I(inode),
4979 cur_offset,
5dc562c5
JB
4980 cur_offset +
4981 hole_size - 1, 0);
4982 }
4983 free_extent_map(hole_em);
9036c102 4984 }
16e7549f 4985next:
9036c102 4986 free_extent_map(em);
a22285a6 4987 em = NULL;
9036c102 4988 cur_offset = last_byte;
8082510e 4989 if (cur_offset >= block_end)
9036c102
YZ
4990 break;
4991 }
a22285a6 4992 free_extent_map(em);
2ac55d41
JB
4993 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4994 GFP_NOFS);
9036c102
YZ
4995 return err;
4996}
39279cc3 4997
3972f260 4998static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4999{
f4a2f4c5
MX
5000 struct btrfs_root *root = BTRFS_I(inode)->root;
5001 struct btrfs_trans_handle *trans;
a41ad394 5002 loff_t oldsize = i_size_read(inode);
3972f260
ES
5003 loff_t newsize = attr->ia_size;
5004 int mask = attr->ia_valid;
8082510e
YZ
5005 int ret;
5006
3972f260
ES
5007 /*
5008 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5009 * special case where we need to update the times despite not having
5010 * these flags set. For all other operations the VFS set these flags
5011 * explicitly if it wants a timestamp update.
5012 */
dff6efc3
CH
5013 if (newsize != oldsize) {
5014 inode_inc_iversion(inode);
5015 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5016 inode->i_ctime = inode->i_mtime =
c2050a45 5017 current_time(inode);
dff6efc3 5018 }
3972f260 5019
a41ad394 5020 if (newsize > oldsize) {
9ea24bbe 5021 /*
ea14b57f 5022 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
5023 * This is to ensure the snapshot captures a fully consistent
5024 * state of this file - if the snapshot captures this expanding
5025 * truncation, it must capture all writes that happened before
5026 * this truncation.
5027 */
0bc19f90 5028 btrfs_wait_for_snapshot_creation(root);
a41ad394 5029 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 5030 if (ret) {
ea14b57f 5031 btrfs_end_write_no_snapshotting(root);
8082510e 5032 return ret;
9ea24bbe 5033 }
8082510e 5034
f4a2f4c5 5035 trans = btrfs_start_transaction(root, 1);
9ea24bbe 5036 if (IS_ERR(trans)) {
ea14b57f 5037 btrfs_end_write_no_snapshotting(root);
f4a2f4c5 5038 return PTR_ERR(trans);
9ea24bbe 5039 }
f4a2f4c5
MX
5040
5041 i_size_write(inode, newsize);
5042 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5043 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5044 ret = btrfs_update_inode(trans, root, inode);
ea14b57f 5045 btrfs_end_write_no_snapshotting(root);
3a45bb20 5046 btrfs_end_transaction(trans);
a41ad394 5047 } else {
8082510e 5048
a41ad394
JB
5049 /*
5050 * We're truncating a file that used to have good data down to
5051 * zero. Make sure it gets into the ordered flush list so that
5052 * any new writes get down to disk quickly.
5053 */
5054 if (newsize == 0)
72ac3c0d
JB
5055 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5056 &BTRFS_I(inode)->runtime_flags);
8082510e 5057
f3fe820c
JB
5058 /*
5059 * 1 for the orphan item we're going to add
5060 * 1 for the orphan item deletion.
5061 */
5062 trans = btrfs_start_transaction(root, 2);
5063 if (IS_ERR(trans))
5064 return PTR_ERR(trans);
5065
5066 /*
5067 * We need to do this in case we fail at _any_ point during the
5068 * actual truncate. Once we do the truncate_setsize we could
5069 * invalidate pages which forces any outstanding ordered io to
5070 * be instantly completed which will give us extents that need
5071 * to be truncated. If we fail to get an orphan inode down we
5072 * could have left over extents that were never meant to live,
01327610 5073 * so we need to guarantee from this point on that everything
f3fe820c
JB
5074 * will be consistent.
5075 */
73f2e545 5076 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 5077 btrfs_end_transaction(trans);
f3fe820c
JB
5078 if (ret)
5079 return ret;
5080
a41ad394
JB
5081 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5082 truncate_setsize(inode, newsize);
2e60a51e
MX
5083
5084 /* Disable nonlocked read DIO to avoid the end less truncate */
abcefb1e 5085 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 5086 inode_dio_wait(inode);
0b581701 5087 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 5088
a41ad394 5089 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5090 if (ret && inode->i_nlink) {
5091 int err;
5092
19fd2df5
LB
5093 /* To get a stable disk_i_size */
5094 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5095 if (err) {
3d6ae7bb 5096 btrfs_orphan_del(NULL, BTRFS_I(inode));
19fd2df5
LB
5097 return err;
5098 }
5099
7f4f6e0a
JB
5100 /*
5101 * failed to truncate, disk_i_size is only adjusted down
5102 * as we remove extents, so it should represent the true
5103 * size of the inode, so reset the in memory size and
5104 * delete our orphan entry.
5105 */
5106 trans = btrfs_join_transaction(root);
5107 if (IS_ERR(trans)) {
3d6ae7bb 5108 btrfs_orphan_del(NULL, BTRFS_I(inode));
7f4f6e0a
JB
5109 return ret;
5110 }
5111 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
3d6ae7bb 5112 err = btrfs_orphan_del(trans, BTRFS_I(inode));
7f4f6e0a 5113 if (err)
66642832 5114 btrfs_abort_transaction(trans, err);
3a45bb20 5115 btrfs_end_transaction(trans);
7f4f6e0a 5116 }
8082510e
YZ
5117 }
5118
a41ad394 5119 return ret;
8082510e
YZ
5120}
5121
9036c102
YZ
5122static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5123{
2b0143b5 5124 struct inode *inode = d_inode(dentry);
b83cc969 5125 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5126 int err;
39279cc3 5127
b83cc969
LZ
5128 if (btrfs_root_readonly(root))
5129 return -EROFS;
5130
31051c85 5131 err = setattr_prepare(dentry, attr);
9036c102
YZ
5132 if (err)
5133 return err;
2bf5a725 5134
5a3f23d5 5135 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5136 err = btrfs_setsize(inode, attr);
8082510e
YZ
5137 if (err)
5138 return err;
39279cc3 5139 }
9036c102 5140
1025774c
CH
5141 if (attr->ia_valid) {
5142 setattr_copy(inode, attr);
0c4d2d95 5143 inode_inc_iversion(inode);
22c44fe6 5144 err = btrfs_dirty_inode(inode);
1025774c 5145
22c44fe6 5146 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5147 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5148 }
33268eaf 5149
39279cc3
CM
5150 return err;
5151}
61295eb8 5152
131e404a
FDBM
5153/*
5154 * While truncating the inode pages during eviction, we get the VFS calling
5155 * btrfs_invalidatepage() against each page of the inode. This is slow because
5156 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5157 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5158 * extent_state structures over and over, wasting lots of time.
5159 *
5160 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5161 * those expensive operations on a per page basis and do only the ordered io
5162 * finishing, while we release here the extent_map and extent_state structures,
5163 * without the excessive merging and splitting.
5164 */
5165static void evict_inode_truncate_pages(struct inode *inode)
5166{
5167 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5168 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5169 struct rb_node *node;
5170
5171 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5172 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5173
5174 write_lock(&map_tree->lock);
5175 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5176 struct extent_map *em;
5177
5178 node = rb_first(&map_tree->map);
5179 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5180 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5181 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5182 remove_extent_mapping(map_tree, em);
5183 free_extent_map(em);
7064dd5c
FM
5184 if (need_resched()) {
5185 write_unlock(&map_tree->lock);
5186 cond_resched();
5187 write_lock(&map_tree->lock);
5188 }
131e404a
FDBM
5189 }
5190 write_unlock(&map_tree->lock);
5191
6ca07097
FM
5192 /*
5193 * Keep looping until we have no more ranges in the io tree.
5194 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5195 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5196 * still in progress (unlocked the pages in the bio but did not yet
5197 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5198 * ranges can still be locked and eviction started because before
5199 * submitting those bios, which are executed by a separate task (work
5200 * queue kthread), inode references (inode->i_count) were not taken
5201 * (which would be dropped in the end io callback of each bio).
5202 * Therefore here we effectively end up waiting for those bios and
5203 * anyone else holding locked ranges without having bumped the inode's
5204 * reference count - if we don't do it, when they access the inode's
5205 * io_tree to unlock a range it may be too late, leading to an
5206 * use-after-free issue.
5207 */
131e404a
FDBM
5208 spin_lock(&io_tree->lock);
5209 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5210 struct extent_state *state;
5211 struct extent_state *cached_state = NULL;
6ca07097
FM
5212 u64 start;
5213 u64 end;
131e404a
FDBM
5214
5215 node = rb_first(&io_tree->state);
5216 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5217 start = state->start;
5218 end = state->end;
131e404a
FDBM
5219 spin_unlock(&io_tree->lock);
5220
ff13db41 5221 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5222
5223 /*
5224 * If still has DELALLOC flag, the extent didn't reach disk,
5225 * and its reserved space won't be freed by delayed_ref.
5226 * So we need to free its reserved space here.
5227 * (Refer to comment in btrfs_invalidatepage, case 2)
5228 *
5229 * Note, end is the bytenr of last byte, so we need + 1 here.
5230 */
5231 if (state->state & EXTENT_DELALLOC)
bc42bda2 5232 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
b9d0b389 5233
6ca07097 5234 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5235 EXTENT_LOCKED | EXTENT_DIRTY |
5236 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5237 EXTENT_DEFRAG, 1, 1,
5238 &cached_state, GFP_NOFS);
131e404a 5239
7064dd5c 5240 cond_resched();
131e404a
FDBM
5241 spin_lock(&io_tree->lock);
5242 }
5243 spin_unlock(&io_tree->lock);
5244}
5245
bd555975 5246void btrfs_evict_inode(struct inode *inode)
39279cc3 5247{
0b246afa 5248 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5249 struct btrfs_trans_handle *trans;
5250 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5251 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5252 int steal_from_global = 0;
3d48d981 5253 u64 min_size;
39279cc3
CM
5254 int ret;
5255
1abe9b8a 5256 trace_btrfs_inode_evict(inode);
5257
3d48d981
NB
5258 if (!root) {
5259 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5260 return;
5261 }
5262
0b246afa 5263 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
3d48d981 5264
131e404a
FDBM
5265 evict_inode_truncate_pages(inode);
5266
69e9c6c6
SB
5267 if (inode->i_nlink &&
5268 ((btrfs_root_refs(&root->root_item) != 0 &&
5269 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5270 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5271 goto no_delete;
5272
39279cc3 5273 if (is_bad_inode(inode)) {
3d6ae7bb 5274 btrfs_orphan_del(NULL, BTRFS_I(inode));
39279cc3
CM
5275 goto no_delete;
5276 }
bd555975 5277 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5278 if (!special_file(inode->i_mode))
5279 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5280
7ab7956e 5281 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5282
0b246afa 5283 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
6bf02314 5284 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5285 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5286 goto no_delete;
5287 }
5288
76dda93c 5289 if (inode->i_nlink > 0) {
69e9c6c6
SB
5290 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5291 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5292 goto no_delete;
5293 }
5294
aa79021f 5295 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
0e8c36a9 5296 if (ret) {
3d6ae7bb 5297 btrfs_orphan_del(NULL, BTRFS_I(inode));
0e8c36a9
MX
5298 goto no_delete;
5299 }
5300
2ff7e61e 5301 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
4289a667 5302 if (!rsv) {
3d6ae7bb 5303 btrfs_orphan_del(NULL, BTRFS_I(inode));
4289a667
JB
5304 goto no_delete;
5305 }
4a338542 5306 rsv->size = min_size;
ca7e70f5 5307 rsv->failfast = 1;
0b246afa 5308 global_rsv = &fs_info->global_block_rsv;
4289a667 5309
6ef06d27 5310 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5311
4289a667 5312 /*
8407aa46
MX
5313 * This is a bit simpler than btrfs_truncate since we've already
5314 * reserved our space for our orphan item in the unlink, so we just
5315 * need to reserve some slack space in case we add bytes and update
5316 * inode item when doing the truncate.
4289a667 5317 */
8082510e 5318 while (1) {
08e007d2
MX
5319 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5320 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5321
5322 /*
5323 * Try and steal from the global reserve since we will
5324 * likely not use this space anyway, we want to try as
5325 * hard as possible to get this to work.
5326 */
5327 if (ret)
3bce876f
JB
5328 steal_from_global++;
5329 else
5330 steal_from_global = 0;
5331 ret = 0;
d68fc57b 5332
3bce876f
JB
5333 /*
5334 * steal_from_global == 0: we reserved stuff, hooray!
5335 * steal_from_global == 1: we didn't reserve stuff, boo!
5336 * steal_from_global == 2: we've committed, still not a lot of
5337 * room but maybe we'll have room in the global reserve this
5338 * time.
5339 * steal_from_global == 3: abandon all hope!
5340 */
5341 if (steal_from_global > 2) {
0b246afa
JM
5342 btrfs_warn(fs_info,
5343 "Could not get space for a delete, will truncate on mount %d",
5344 ret);
3d6ae7bb 5345 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5346 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5347 goto no_delete;
d68fc57b 5348 }
7b128766 5349
0e8c36a9 5350 trans = btrfs_join_transaction(root);
4289a667 5351 if (IS_ERR(trans)) {
3d6ae7bb 5352 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5353 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5354 goto no_delete;
d68fc57b 5355 }
7b128766 5356
3bce876f 5357 /*
01327610 5358 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5359 * sure there is room to do it, if not we need to commit and try
5360 * again.
5361 */
5362 if (steal_from_global) {
2ff7e61e 5363 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
3bce876f 5364 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
25d609f8 5365 min_size, 0);
3bce876f
JB
5366 else
5367 ret = -ENOSPC;
5368 }
5369
5370 /*
5371 * Couldn't steal from the global reserve, we have too much
5372 * pending stuff built up, commit the transaction and try it
5373 * again.
5374 */
5375 if (ret) {
3a45bb20 5376 ret = btrfs_commit_transaction(trans);
3bce876f 5377 if (ret) {
3d6ae7bb 5378 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5379 btrfs_free_block_rsv(fs_info, rsv);
3bce876f
JB
5380 goto no_delete;
5381 }
5382 continue;
5383 } else {
5384 steal_from_global = 0;
5385 }
5386
4289a667
JB
5387 trans->block_rsv = rsv;
5388
d68fc57b 5389 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5390 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5391 break;
85e21bac 5392
0b246afa 5393 trans->block_rsv = &fs_info->trans_block_rsv;
3a45bb20 5394 btrfs_end_transaction(trans);
8082510e 5395 trans = NULL;
2ff7e61e 5396 btrfs_btree_balance_dirty(fs_info);
8082510e 5397 }
5f39d397 5398
2ff7e61e 5399 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5400
4ef31a45
JB
5401 /*
5402 * Errors here aren't a big deal, it just means we leave orphan items
5403 * in the tree. They will be cleaned up on the next mount.
5404 */
8082510e 5405 if (ret == 0) {
4289a667 5406 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 5407 btrfs_orphan_del(trans, BTRFS_I(inode));
4ef31a45 5408 } else {
3d6ae7bb 5409 btrfs_orphan_del(NULL, BTRFS_I(inode));
8082510e 5410 }
54aa1f4d 5411
0b246afa
JM
5412 trans->block_rsv = &fs_info->trans_block_rsv;
5413 if (!(root == fs_info->tree_root ||
581bb050 5414 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5415 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5416
3a45bb20 5417 btrfs_end_transaction(trans);
2ff7e61e 5418 btrfs_btree_balance_dirty(fs_info);
39279cc3 5419no_delete:
f48d1cf5 5420 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5421 clear_inode(inode);
39279cc3
CM
5422}
5423
5424/*
5425 * this returns the key found in the dir entry in the location pointer.
5426 * If no dir entries were found, location->objectid is 0.
5427 */
5428static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5429 struct btrfs_key *location)
5430{
5431 const char *name = dentry->d_name.name;
5432 int namelen = dentry->d_name.len;
5433 struct btrfs_dir_item *di;
5434 struct btrfs_path *path;
5435 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5436 int ret = 0;
39279cc3
CM
5437
5438 path = btrfs_alloc_path();
d8926bb3
MF
5439 if (!path)
5440 return -ENOMEM;
3954401f 5441
f85b7379
DS
5442 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5443 name, namelen, 0);
0d9f7f3e
Y
5444 if (IS_ERR(di))
5445 ret = PTR_ERR(di);
d397712b 5446
c704005d 5447 if (IS_ERR_OR_NULL(di))
3954401f 5448 goto out_err;
d397712b 5449
5f39d397 5450 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5451 if (location->type != BTRFS_INODE_ITEM_KEY &&
5452 location->type != BTRFS_ROOT_ITEM_KEY) {
5453 btrfs_warn(root->fs_info,
5454"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5455 __func__, name, btrfs_ino(BTRFS_I(dir)),
5456 location->objectid, location->type, location->offset);
5457 goto out_err;
5458 }
39279cc3 5459out:
39279cc3
CM
5460 btrfs_free_path(path);
5461 return ret;
3954401f
CM
5462out_err:
5463 location->objectid = 0;
5464 goto out;
39279cc3
CM
5465}
5466
5467/*
5468 * when we hit a tree root in a directory, the btrfs part of the inode
5469 * needs to be changed to reflect the root directory of the tree root. This
5470 * is kind of like crossing a mount point.
5471 */
2ff7e61e 5472static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5473 struct inode *dir,
5474 struct dentry *dentry,
5475 struct btrfs_key *location,
5476 struct btrfs_root **sub_root)
39279cc3 5477{
4df27c4d
YZ
5478 struct btrfs_path *path;
5479 struct btrfs_root *new_root;
5480 struct btrfs_root_ref *ref;
5481 struct extent_buffer *leaf;
1d4c08e0 5482 struct btrfs_key key;
4df27c4d
YZ
5483 int ret;
5484 int err = 0;
39279cc3 5485
4df27c4d
YZ
5486 path = btrfs_alloc_path();
5487 if (!path) {
5488 err = -ENOMEM;
5489 goto out;
5490 }
39279cc3 5491
4df27c4d 5492 err = -ENOENT;
1d4c08e0
DS
5493 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5494 key.type = BTRFS_ROOT_REF_KEY;
5495 key.offset = location->objectid;
5496
0b246afa 5497 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5498 if (ret) {
5499 if (ret < 0)
5500 err = ret;
5501 goto out;
5502 }
39279cc3 5503
4df27c4d
YZ
5504 leaf = path->nodes[0];
5505 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5506 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5507 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5508 goto out;
39279cc3 5509
4df27c4d
YZ
5510 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5511 (unsigned long)(ref + 1),
5512 dentry->d_name.len);
5513 if (ret)
5514 goto out;
5515
b3b4aa74 5516 btrfs_release_path(path);
4df27c4d 5517
0b246afa 5518 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5519 if (IS_ERR(new_root)) {
5520 err = PTR_ERR(new_root);
5521 goto out;
5522 }
5523
4df27c4d
YZ
5524 *sub_root = new_root;
5525 location->objectid = btrfs_root_dirid(&new_root->root_item);
5526 location->type = BTRFS_INODE_ITEM_KEY;
5527 location->offset = 0;
5528 err = 0;
5529out:
5530 btrfs_free_path(path);
5531 return err;
39279cc3
CM
5532}
5533
5d4f98a2
YZ
5534static void inode_tree_add(struct inode *inode)
5535{
5536 struct btrfs_root *root = BTRFS_I(inode)->root;
5537 struct btrfs_inode *entry;
03e860bd
FNP
5538 struct rb_node **p;
5539 struct rb_node *parent;
cef21937 5540 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5541 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5542
1d3382cb 5543 if (inode_unhashed(inode))
76dda93c 5544 return;
e1409cef 5545 parent = NULL;
5d4f98a2 5546 spin_lock(&root->inode_lock);
e1409cef 5547 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5548 while (*p) {
5549 parent = *p;
5550 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5551
4a0cc7ca 5552 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5553 p = &parent->rb_left;
4a0cc7ca 5554 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5555 p = &parent->rb_right;
5d4f98a2
YZ
5556 else {
5557 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5558 (I_WILL_FREE | I_FREEING)));
cef21937 5559 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5560 RB_CLEAR_NODE(parent);
5561 spin_unlock(&root->inode_lock);
cef21937 5562 return;
5d4f98a2
YZ
5563 }
5564 }
cef21937
FDBM
5565 rb_link_node(new, parent, p);
5566 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5567 spin_unlock(&root->inode_lock);
5568}
5569
5570static void inode_tree_del(struct inode *inode)
5571{
0b246afa 5572 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5573 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5574 int empty = 0;
5d4f98a2 5575
03e860bd 5576 spin_lock(&root->inode_lock);
5d4f98a2 5577 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5578 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5579 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5580 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5581 }
03e860bd 5582 spin_unlock(&root->inode_lock);
76dda93c 5583
69e9c6c6 5584 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5585 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5586 spin_lock(&root->inode_lock);
5587 empty = RB_EMPTY_ROOT(&root->inode_tree);
5588 spin_unlock(&root->inode_lock);
5589 if (empty)
5590 btrfs_add_dead_root(root);
5591 }
5592}
5593
143bede5 5594void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c 5595{
0b246afa 5596 struct btrfs_fs_info *fs_info = root->fs_info;
76dda93c
YZ
5597 struct rb_node *node;
5598 struct rb_node *prev;
5599 struct btrfs_inode *entry;
5600 struct inode *inode;
5601 u64 objectid = 0;
5602
0b246afa 5603 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
7813b3db 5604 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5605
5606 spin_lock(&root->inode_lock);
5607again:
5608 node = root->inode_tree.rb_node;
5609 prev = NULL;
5610 while (node) {
5611 prev = node;
5612 entry = rb_entry(node, struct btrfs_inode, rb_node);
5613
4a0cc7ca 5614 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c 5615 node = node->rb_left;
4a0cc7ca 5616 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c
YZ
5617 node = node->rb_right;
5618 else
5619 break;
5620 }
5621 if (!node) {
5622 while (prev) {
5623 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4a0cc7ca 5624 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
76dda93c
YZ
5625 node = prev;
5626 break;
5627 }
5628 prev = rb_next(prev);
5629 }
5630 }
5631 while (node) {
5632 entry = rb_entry(node, struct btrfs_inode, rb_node);
4a0cc7ca 5633 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
76dda93c
YZ
5634 inode = igrab(&entry->vfs_inode);
5635 if (inode) {
5636 spin_unlock(&root->inode_lock);
5637 if (atomic_read(&inode->i_count) > 1)
5638 d_prune_aliases(inode);
5639 /*
45321ac5 5640 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5641 * the inode cache when its usage count
5642 * hits zero.
5643 */
5644 iput(inode);
5645 cond_resched();
5646 spin_lock(&root->inode_lock);
5647 goto again;
5648 }
5649
5650 if (cond_resched_lock(&root->inode_lock))
5651 goto again;
5652
5653 node = rb_next(node);
5654 }
5655 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5656}
5657
e02119d5
CM
5658static int btrfs_init_locked_inode(struct inode *inode, void *p)
5659{
5660 struct btrfs_iget_args *args = p;
90d3e592
CM
5661 inode->i_ino = args->location->objectid;
5662 memcpy(&BTRFS_I(inode)->location, args->location,
5663 sizeof(*args->location));
e02119d5 5664 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5665 return 0;
5666}
5667
5668static int btrfs_find_actor(struct inode *inode, void *opaque)
5669{
5670 struct btrfs_iget_args *args = opaque;
90d3e592 5671 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5672 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5673}
5674
5d4f98a2 5675static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5676 struct btrfs_key *location,
5d4f98a2 5677 struct btrfs_root *root)
39279cc3
CM
5678{
5679 struct inode *inode;
5680 struct btrfs_iget_args args;
90d3e592 5681 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5682
90d3e592 5683 args.location = location;
39279cc3
CM
5684 args.root = root;
5685
778ba82b 5686 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5687 btrfs_init_locked_inode,
5688 (void *)&args);
5689 return inode;
5690}
5691
1a54ef8c
BR
5692/* Get an inode object given its location and corresponding root.
5693 * Returns in *is_new if the inode was read from disk
5694 */
5695struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5696 struct btrfs_root *root, int *new)
1a54ef8c
BR
5697{
5698 struct inode *inode;
5699
90d3e592 5700 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5701 if (!inode)
5d4f98a2 5702 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5703
5704 if (inode->i_state & I_NEW) {
67710892
FM
5705 int ret;
5706
5707 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5708 if (!is_bad_inode(inode)) {
5709 inode_tree_add(inode);
5710 unlock_new_inode(inode);
5711 if (new)
5712 *new = 1;
5713 } else {
e0b6d65b
ST
5714 unlock_new_inode(inode);
5715 iput(inode);
67710892
FM
5716 ASSERT(ret < 0);
5717 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5718 }
5719 }
5720
1a54ef8c
BR
5721 return inode;
5722}
5723
4df27c4d
YZ
5724static struct inode *new_simple_dir(struct super_block *s,
5725 struct btrfs_key *key,
5726 struct btrfs_root *root)
5727{
5728 struct inode *inode = new_inode(s);
5729
5730 if (!inode)
5731 return ERR_PTR(-ENOMEM);
5732
4df27c4d
YZ
5733 BTRFS_I(inode)->root = root;
5734 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5735 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5736
5737 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5738 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5739 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5740 inode->i_fop = &simple_dir_operations;
5741 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5742 inode->i_mtime = current_time(inode);
9cc97d64 5743 inode->i_atime = inode->i_mtime;
5744 inode->i_ctime = inode->i_mtime;
5745 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5746
5747 return inode;
5748}
5749
3de4586c 5750struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5751{
0b246afa 5752 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5753 struct inode *inode;
4df27c4d 5754 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5755 struct btrfs_root *sub_root = root;
5756 struct btrfs_key location;
76dda93c 5757 int index;
b4aff1f8 5758 int ret = 0;
39279cc3
CM
5759
5760 if (dentry->d_name.len > BTRFS_NAME_LEN)
5761 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5762
39e3c955 5763 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5764 if (ret < 0)
5765 return ERR_PTR(ret);
5f39d397 5766
4df27c4d 5767 if (location.objectid == 0)
5662344b 5768 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5769
5770 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5771 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5772 return inode;
5773 }
5774
0b246afa 5775 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5776 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5777 &location, &sub_root);
5778 if (ret < 0) {
5779 if (ret != -ENOENT)
5780 inode = ERR_PTR(ret);
5781 else
5782 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5783 } else {
73f73415 5784 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5785 }
0b246afa 5786 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5787
34d19bad 5788 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5789 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5790 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5791 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5792 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5793 if (ret) {
5794 iput(inode);
66b4ffd1 5795 inode = ERR_PTR(ret);
01cd3367 5796 }
c71bf099
YZ
5797 }
5798
3de4586c
CM
5799 return inode;
5800}
5801
fe15ce44 5802static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5803{
5804 struct btrfs_root *root;
2b0143b5 5805 struct inode *inode = d_inode(dentry);
76dda93c 5806
848cce0d 5807 if (!inode && !IS_ROOT(dentry))
2b0143b5 5808 inode = d_inode(dentry->d_parent);
76dda93c 5809
848cce0d
LZ
5810 if (inode) {
5811 root = BTRFS_I(inode)->root;
efefb143
YZ
5812 if (btrfs_root_refs(&root->root_item) == 0)
5813 return 1;
848cce0d 5814
4a0cc7ca 5815 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5816 return 1;
efefb143 5817 }
76dda93c
YZ
5818 return 0;
5819}
5820
b4aff1f8
JB
5821static void btrfs_dentry_release(struct dentry *dentry)
5822{
944a4515 5823 kfree(dentry->d_fsdata);
b4aff1f8
JB
5824}
5825
3de4586c 5826static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5827 unsigned int flags)
3de4586c 5828{
5662344b 5829 struct inode *inode;
a66e7cc6 5830
5662344b
TI
5831 inode = btrfs_lookup_dentry(dir, dentry);
5832 if (IS_ERR(inode)) {
5833 if (PTR_ERR(inode) == -ENOENT)
5834 inode = NULL;
5835 else
5836 return ERR_CAST(inode);
5837 }
5838
41d28bca 5839 return d_splice_alias(inode, dentry);
39279cc3
CM
5840}
5841
16cdcec7 5842unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5843 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5844};
5845
23b5ec74
JB
5846/*
5847 * All this infrastructure exists because dir_emit can fault, and we are holding
5848 * the tree lock when doing readdir. For now just allocate a buffer and copy
5849 * our information into that, and then dir_emit from the buffer. This is
5850 * similar to what NFS does, only we don't keep the buffer around in pagecache
5851 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5852 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5853 * tree lock.
5854 */
5855static int btrfs_opendir(struct inode *inode, struct file *file)
5856{
5857 struct btrfs_file_private *private;
5858
5859 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5860 if (!private)
5861 return -ENOMEM;
5862 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5863 if (!private->filldir_buf) {
5864 kfree(private);
5865 return -ENOMEM;
5866 }
5867 file->private_data = private;
5868 return 0;
5869}
5870
5871struct dir_entry {
5872 u64 ino;
5873 u64 offset;
5874 unsigned type;
5875 int name_len;
5876};
5877
5878static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5879{
5880 while (entries--) {
5881 struct dir_entry *entry = addr;
5882 char *name = (char *)(entry + 1);
5883
5884 ctx->pos = entry->offset;
5885 if (!dir_emit(ctx, name, entry->name_len, entry->ino,
5886 entry->type))
5887 return 1;
5888 addr += sizeof(struct dir_entry) + entry->name_len;
5889 ctx->pos++;
5890 }
5891 return 0;
5892}
5893
9cdda8d3 5894static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5895{
9cdda8d3 5896 struct inode *inode = file_inode(file);
2ff7e61e 5897 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 5898 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5899 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5900 struct btrfs_dir_item *di;
5901 struct btrfs_key key;
5f39d397 5902 struct btrfs_key found_key;
39279cc3 5903 struct btrfs_path *path;
23b5ec74 5904 void *addr;
16cdcec7
MX
5905 struct list_head ins_list;
5906 struct list_head del_list;
39279cc3 5907 int ret;
5f39d397 5908 struct extent_buffer *leaf;
39279cc3 5909 int slot;
5f39d397
CM
5910 char *name_ptr;
5911 int name_len;
23b5ec74
JB
5912 int entries = 0;
5913 int total_len = 0;
02dbfc99 5914 bool put = false;
c2951f32 5915 struct btrfs_key location;
5f39d397 5916
9cdda8d3
AV
5917 if (!dir_emit_dots(file, ctx))
5918 return 0;
5919
49593bfa 5920 path = btrfs_alloc_path();
16cdcec7
MX
5921 if (!path)
5922 return -ENOMEM;
ff5714cc 5923
23b5ec74 5924 addr = private->filldir_buf;
e4058b54 5925 path->reada = READA_FORWARD;
49593bfa 5926
c2951f32
JM
5927 INIT_LIST_HEAD(&ins_list);
5928 INIT_LIST_HEAD(&del_list);
5929 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5930
23b5ec74 5931again:
c2951f32 5932 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5933 key.offset = ctx->pos;
4a0cc7ca 5934 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5935
39279cc3
CM
5936 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5937 if (ret < 0)
5938 goto err;
49593bfa
DW
5939
5940 while (1) {
23b5ec74
JB
5941 struct dir_entry *entry;
5942
5f39d397 5943 leaf = path->nodes[0];
39279cc3 5944 slot = path->slots[0];
b9e03af0
LZ
5945 if (slot >= btrfs_header_nritems(leaf)) {
5946 ret = btrfs_next_leaf(root, path);
5947 if (ret < 0)
5948 goto err;
5949 else if (ret > 0)
5950 break;
5951 continue;
39279cc3 5952 }
3de4586c 5953
5f39d397
CM
5954 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5955
5956 if (found_key.objectid != key.objectid)
39279cc3 5957 break;
c2951f32 5958 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5959 break;
9cdda8d3 5960 if (found_key.offset < ctx->pos)
b9e03af0 5961 goto next;
c2951f32 5962 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5963 goto next;
39279cc3 5964 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
e79a3327 5965 if (verify_dir_item(fs_info, leaf, slot, di))
c2951f32 5966 goto next;
22a94d44 5967
c2951f32 5968 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5969 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5970 PAGE_SIZE) {
5971 btrfs_release_path(path);
5972 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5973 if (ret)
5974 goto nopos;
5975 addr = private->filldir_buf;
5976 entries = 0;
5977 total_len = 0;
5978 goto again;
c2951f32 5979 }
23b5ec74
JB
5980
5981 entry = addr;
5982 entry->name_len = name_len;
5983 name_ptr = (char *)(entry + 1);
c2951f32
JM
5984 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5985 name_len);
23b5ec74 5986 entry->type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
c2951f32 5987 btrfs_dir_item_key_to_cpu(leaf, di, &location);
23b5ec74
JB
5988 entry->ino = location.objectid;
5989 entry->offset = found_key.offset;
5990 entries++;
5991 addr += sizeof(struct dir_entry) + name_len;
5992 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
5993next:
5994 path->slots[0]++;
39279cc3 5995 }
23b5ec74
JB
5996 btrfs_release_path(path);
5997
5998 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5999 if (ret)
6000 goto nopos;
49593bfa 6001
d2fbb2b5 6002 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 6003 if (ret)
bc4ef759
DS
6004 goto nopos;
6005
db62efbb
ZB
6006 /*
6007 * Stop new entries from being returned after we return the last
6008 * entry.
6009 *
6010 * New directory entries are assigned a strictly increasing
6011 * offset. This means that new entries created during readdir
6012 * are *guaranteed* to be seen in the future by that readdir.
6013 * This has broken buggy programs which operate on names as
6014 * they're returned by readdir. Until we re-use freed offsets
6015 * we have this hack to stop new entries from being returned
6016 * under the assumption that they'll never reach this huge
6017 * offset.
6018 *
6019 * This is being careful not to overflow 32bit loff_t unless the
6020 * last entry requires it because doing so has broken 32bit apps
6021 * in the past.
6022 */
c2951f32
JM
6023 if (ctx->pos >= INT_MAX)
6024 ctx->pos = LLONG_MAX;
6025 else
6026 ctx->pos = INT_MAX;
39279cc3
CM
6027nopos:
6028 ret = 0;
6029err:
02dbfc99
OS
6030 if (put)
6031 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 6032 btrfs_free_path(path);
39279cc3
CM
6033 return ret;
6034}
6035
a9185b41 6036int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
6037{
6038 struct btrfs_root *root = BTRFS_I(inode)->root;
6039 struct btrfs_trans_handle *trans;
6040 int ret = 0;
0af3d00b 6041 bool nolock = false;
39279cc3 6042
72ac3c0d 6043 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
6044 return 0;
6045
70ddc553
NB
6046 if (btrfs_fs_closing(root->fs_info) &&
6047 btrfs_is_free_space_inode(BTRFS_I(inode)))
82d5902d 6048 nolock = true;
0af3d00b 6049
a9185b41 6050 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 6051 if (nolock)
7a7eaa40 6052 trans = btrfs_join_transaction_nolock(root);
0af3d00b 6053 else
7a7eaa40 6054 trans = btrfs_join_transaction(root);
3612b495
TI
6055 if (IS_ERR(trans))
6056 return PTR_ERR(trans);
3a45bb20 6057 ret = btrfs_commit_transaction(trans);
39279cc3
CM
6058 }
6059 return ret;
6060}
6061
6062/*
54aa1f4d 6063 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6064 * inode changes. But, it is most likely to find the inode in cache.
6065 * FIXME, needs more benchmarking...there are no reasons other than performance
6066 * to keep or drop this code.
6067 */
48a3b636 6068static int btrfs_dirty_inode(struct inode *inode)
39279cc3 6069{
2ff7e61e 6070 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
6071 struct btrfs_root *root = BTRFS_I(inode)->root;
6072 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6073 int ret;
6074
72ac3c0d 6075 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6076 return 0;
39279cc3 6077
7a7eaa40 6078 trans = btrfs_join_transaction(root);
22c44fe6
JB
6079 if (IS_ERR(trans))
6080 return PTR_ERR(trans);
8929ecfa
YZ
6081
6082 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6083 if (ret && ret == -ENOSPC) {
6084 /* whoops, lets try again with the full transaction */
3a45bb20 6085 btrfs_end_transaction(trans);
94b60442 6086 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6087 if (IS_ERR(trans))
6088 return PTR_ERR(trans);
8929ecfa 6089
94b60442 6090 ret = btrfs_update_inode(trans, root, inode);
94b60442 6091 }
3a45bb20 6092 btrfs_end_transaction(trans);
16cdcec7 6093 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6094 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6095
6096 return ret;
6097}
6098
6099/*
6100 * This is a copy of file_update_time. We need this so we can return error on
6101 * ENOSPC for updating the inode in the case of file write and mmap writes.
6102 */
e41f941a
JB
6103static int btrfs_update_time(struct inode *inode, struct timespec *now,
6104 int flags)
22c44fe6 6105{
2bc55652
AB
6106 struct btrfs_root *root = BTRFS_I(inode)->root;
6107
6108 if (btrfs_root_readonly(root))
6109 return -EROFS;
6110
e41f941a 6111 if (flags & S_VERSION)
22c44fe6 6112 inode_inc_iversion(inode);
e41f941a
JB
6113 if (flags & S_CTIME)
6114 inode->i_ctime = *now;
6115 if (flags & S_MTIME)
6116 inode->i_mtime = *now;
6117 if (flags & S_ATIME)
6118 inode->i_atime = *now;
6119 return btrfs_dirty_inode(inode);
39279cc3
CM
6120}
6121
d352ac68
CM
6122/*
6123 * find the highest existing sequence number in a directory
6124 * and then set the in-memory index_cnt variable to reflect
6125 * free sequence numbers
6126 */
4c570655 6127static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6128{
4c570655 6129 struct btrfs_root *root = inode->root;
aec7477b
JB
6130 struct btrfs_key key, found_key;
6131 struct btrfs_path *path;
6132 struct extent_buffer *leaf;
6133 int ret;
6134
4c570655 6135 key.objectid = btrfs_ino(inode);
962a298f 6136 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6137 key.offset = (u64)-1;
6138
6139 path = btrfs_alloc_path();
6140 if (!path)
6141 return -ENOMEM;
6142
6143 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6144 if (ret < 0)
6145 goto out;
6146 /* FIXME: we should be able to handle this */
6147 if (ret == 0)
6148 goto out;
6149 ret = 0;
6150
6151 /*
6152 * MAGIC NUMBER EXPLANATION:
6153 * since we search a directory based on f_pos we have to start at 2
6154 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6155 * else has to start at 2
6156 */
6157 if (path->slots[0] == 0) {
4c570655 6158 inode->index_cnt = 2;
aec7477b
JB
6159 goto out;
6160 }
6161
6162 path->slots[0]--;
6163
6164 leaf = path->nodes[0];
6165 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6166
4c570655 6167 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6168 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6169 inode->index_cnt = 2;
aec7477b
JB
6170 goto out;
6171 }
6172
4c570655 6173 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6174out:
6175 btrfs_free_path(path);
6176 return ret;
6177}
6178
d352ac68
CM
6179/*
6180 * helper to find a free sequence number in a given directory. This current
6181 * code is very simple, later versions will do smarter things in the btree
6182 */
877574e2 6183int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6184{
6185 int ret = 0;
6186
877574e2
NB
6187 if (dir->index_cnt == (u64)-1) {
6188 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6189 if (ret) {
6190 ret = btrfs_set_inode_index_count(dir);
6191 if (ret)
6192 return ret;
6193 }
aec7477b
JB
6194 }
6195
877574e2
NB
6196 *index = dir->index_cnt;
6197 dir->index_cnt++;
aec7477b
JB
6198
6199 return ret;
6200}
6201
b0d5d10f
CM
6202static int btrfs_insert_inode_locked(struct inode *inode)
6203{
6204 struct btrfs_iget_args args;
6205 args.location = &BTRFS_I(inode)->location;
6206 args.root = BTRFS_I(inode)->root;
6207
6208 return insert_inode_locked4(inode,
6209 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6210 btrfs_find_actor, &args);
6211}
6212
19aee8de
AJ
6213/*
6214 * Inherit flags from the parent inode.
6215 *
6216 * Currently only the compression flags and the cow flags are inherited.
6217 */
6218static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6219{
6220 unsigned int flags;
6221
6222 if (!dir)
6223 return;
6224
6225 flags = BTRFS_I(dir)->flags;
6226
6227 if (flags & BTRFS_INODE_NOCOMPRESS) {
6228 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6229 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6230 } else if (flags & BTRFS_INODE_COMPRESS) {
6231 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6232 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6233 }
6234
6235 if (flags & BTRFS_INODE_NODATACOW) {
6236 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6237 if (S_ISREG(inode->i_mode))
6238 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6239 }
6240
6241 btrfs_update_iflags(inode);
6242}
6243
39279cc3
CM
6244static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6245 struct btrfs_root *root,
aec7477b 6246 struct inode *dir,
9c58309d 6247 const char *name, int name_len,
175a4eb7
AV
6248 u64 ref_objectid, u64 objectid,
6249 umode_t mode, u64 *index)
39279cc3 6250{
0b246afa 6251 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6252 struct inode *inode;
5f39d397 6253 struct btrfs_inode_item *inode_item;
39279cc3 6254 struct btrfs_key *location;
5f39d397 6255 struct btrfs_path *path;
9c58309d
CM
6256 struct btrfs_inode_ref *ref;
6257 struct btrfs_key key[2];
6258 u32 sizes[2];
ef3b9af5 6259 int nitems = name ? 2 : 1;
9c58309d 6260 unsigned long ptr;
39279cc3 6261 int ret;
39279cc3 6262
5f39d397 6263 path = btrfs_alloc_path();
d8926bb3
MF
6264 if (!path)
6265 return ERR_PTR(-ENOMEM);
5f39d397 6266
0b246afa 6267 inode = new_inode(fs_info->sb);
8fb27640
YS
6268 if (!inode) {
6269 btrfs_free_path(path);
39279cc3 6270 return ERR_PTR(-ENOMEM);
8fb27640 6271 }
39279cc3 6272
5762b5c9
FM
6273 /*
6274 * O_TMPFILE, set link count to 0, so that after this point,
6275 * we fill in an inode item with the correct link count.
6276 */
6277 if (!name)
6278 set_nlink(inode, 0);
6279
581bb050
LZ
6280 /*
6281 * we have to initialize this early, so we can reclaim the inode
6282 * number if we fail afterwards in this function.
6283 */
6284 inode->i_ino = objectid;
6285
ef3b9af5 6286 if (dir && name) {
1abe9b8a 6287 trace_btrfs_inode_request(dir);
6288
877574e2 6289 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6290 if (ret) {
8fb27640 6291 btrfs_free_path(path);
09771430 6292 iput(inode);
aec7477b 6293 return ERR_PTR(ret);
09771430 6294 }
ef3b9af5
FM
6295 } else if (dir) {
6296 *index = 0;
aec7477b
JB
6297 }
6298 /*
6299 * index_cnt is ignored for everything but a dir,
6300 * btrfs_get_inode_index_count has an explanation for the magic
6301 * number
6302 */
6303 BTRFS_I(inode)->index_cnt = 2;
67de1176 6304 BTRFS_I(inode)->dir_index = *index;
39279cc3 6305 BTRFS_I(inode)->root = root;
e02119d5 6306 BTRFS_I(inode)->generation = trans->transid;
76195853 6307 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6308
5dc562c5
JB
6309 /*
6310 * We could have gotten an inode number from somebody who was fsynced
6311 * and then removed in this same transaction, so let's just set full
6312 * sync since it will be a full sync anyway and this will blow away the
6313 * old info in the log.
6314 */
6315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6316
9c58309d 6317 key[0].objectid = objectid;
962a298f 6318 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6319 key[0].offset = 0;
6320
9c58309d 6321 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6322
6323 if (name) {
6324 /*
6325 * Start new inodes with an inode_ref. This is slightly more
6326 * efficient for small numbers of hard links since they will
6327 * be packed into one item. Extended refs will kick in if we
6328 * add more hard links than can fit in the ref item.
6329 */
6330 key[1].objectid = objectid;
962a298f 6331 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6332 key[1].offset = ref_objectid;
6333
6334 sizes[1] = name_len + sizeof(*ref);
6335 }
9c58309d 6336
b0d5d10f
CM
6337 location = &BTRFS_I(inode)->location;
6338 location->objectid = objectid;
6339 location->offset = 0;
962a298f 6340 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6341
6342 ret = btrfs_insert_inode_locked(inode);
6343 if (ret < 0)
6344 goto fail;
6345
b9473439 6346 path->leave_spinning = 1;
ef3b9af5 6347 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6348 if (ret != 0)
b0d5d10f 6349 goto fail_unlock;
5f39d397 6350
ecc11fab 6351 inode_init_owner(inode, dir, mode);
a76a3cd4 6352 inode_set_bytes(inode, 0);
9cc97d64 6353
c2050a45 6354 inode->i_mtime = current_time(inode);
9cc97d64 6355 inode->i_atime = inode->i_mtime;
6356 inode->i_ctime = inode->i_mtime;
6357 BTRFS_I(inode)->i_otime = inode->i_mtime;
6358
5f39d397
CM
6359 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6360 struct btrfs_inode_item);
b159fa28 6361 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6362 sizeof(*inode_item));
e02119d5 6363 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6364
ef3b9af5
FM
6365 if (name) {
6366 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6367 struct btrfs_inode_ref);
6368 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6369 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6370 ptr = (unsigned long)(ref + 1);
6371 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6372 }
9c58309d 6373
5f39d397
CM
6374 btrfs_mark_buffer_dirty(path->nodes[0]);
6375 btrfs_free_path(path);
6376
6cbff00f
CH
6377 btrfs_inherit_iflags(inode, dir);
6378
569254b0 6379 if (S_ISREG(mode)) {
0b246afa 6380 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6381 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6382 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6383 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6384 BTRFS_INODE_NODATASUM;
94272164
CM
6385 }
6386
5d4f98a2 6387 inode_tree_add(inode);
1abe9b8a 6388
6389 trace_btrfs_inode_new(inode);
1973f0fa 6390 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6391
8ea05e3a
AB
6392 btrfs_update_root_times(trans, root);
6393
63541927
FDBM
6394 ret = btrfs_inode_inherit_props(trans, inode, dir);
6395 if (ret)
0b246afa 6396 btrfs_err(fs_info,
63541927 6397 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6398 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6399
39279cc3 6400 return inode;
b0d5d10f
CM
6401
6402fail_unlock:
6403 unlock_new_inode(inode);
5f39d397 6404fail:
ef3b9af5 6405 if (dir && name)
aec7477b 6406 BTRFS_I(dir)->index_cnt--;
5f39d397 6407 btrfs_free_path(path);
09771430 6408 iput(inode);
5f39d397 6409 return ERR_PTR(ret);
39279cc3
CM
6410}
6411
6412static inline u8 btrfs_inode_type(struct inode *inode)
6413{
6414 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6415}
6416
d352ac68
CM
6417/*
6418 * utility function to add 'inode' into 'parent_inode' with
6419 * a give name and a given sequence number.
6420 * if 'add_backref' is true, also insert a backref from the
6421 * inode to the parent directory.
6422 */
e02119d5 6423int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6424 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6425 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6426{
db0a669f 6427 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
4df27c4d 6428 int ret = 0;
39279cc3 6429 struct btrfs_key key;
db0a669f
NB
6430 struct btrfs_root *root = parent_inode->root;
6431 u64 ino = btrfs_ino(inode);
6432 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6433
33345d01 6434 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6435 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6436 } else {
33345d01 6437 key.objectid = ino;
962a298f 6438 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6439 key.offset = 0;
6440 }
6441
33345d01 6442 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
0b246afa
JM
6443 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6444 root->root_key.objectid, parent_ino,
6445 index, name, name_len);
4df27c4d 6446 } else if (add_backref) {
33345d01
LZ
6447 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6448 parent_ino, index);
4df27c4d 6449 }
39279cc3 6450
79787eaa
JM
6451 /* Nothing to clean up yet */
6452 if (ret)
6453 return ret;
4df27c4d 6454
79787eaa
JM
6455 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6456 parent_inode, &key,
db0a669f 6457 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6458 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6459 goto fail_dir_item;
6460 else if (ret) {
66642832 6461 btrfs_abort_transaction(trans, ret);
79787eaa 6462 return ret;
39279cc3 6463 }
79787eaa 6464
db0a669f 6465 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6466 name_len * 2);
db0a669f
NB
6467 inode_inc_iversion(&parent_inode->vfs_inode);
6468 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6469 current_time(&parent_inode->vfs_inode);
6470 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6471 if (ret)
66642832 6472 btrfs_abort_transaction(trans, ret);
39279cc3 6473 return ret;
fe66a05a
CM
6474
6475fail_dir_item:
6476 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6477 u64 local_index;
6478 int err;
0b246afa
JM
6479 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6480 root->root_key.objectid, parent_ino,
6481 &local_index, name, name_len);
fe66a05a
CM
6482
6483 } else if (add_backref) {
6484 u64 local_index;
6485 int err;
6486
6487 err = btrfs_del_inode_ref(trans, root, name, name_len,
6488 ino, parent_ino, &local_index);
6489 }
6490 return ret;
39279cc3
CM
6491}
6492
6493static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6494 struct btrfs_inode *dir, struct dentry *dentry,
6495 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6496{
a1b075d2
JB
6497 int err = btrfs_add_link(trans, dir, inode,
6498 dentry->d_name.name, dentry->d_name.len,
6499 backref, index);
39279cc3
CM
6500 if (err > 0)
6501 err = -EEXIST;
6502 return err;
6503}
6504
618e21d5 6505static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6506 umode_t mode, dev_t rdev)
618e21d5 6507{
2ff7e61e 6508 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6509 struct btrfs_trans_handle *trans;
6510 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6511 struct inode *inode = NULL;
618e21d5
JB
6512 int err;
6513 int drop_inode = 0;
6514 u64 objectid;
00e4e6b3 6515 u64 index = 0;
618e21d5 6516
9ed74f2d
JB
6517 /*
6518 * 2 for inode item and ref
6519 * 2 for dir items
6520 * 1 for xattr if selinux is on
6521 */
a22285a6
YZ
6522 trans = btrfs_start_transaction(root, 5);
6523 if (IS_ERR(trans))
6524 return PTR_ERR(trans);
1832a6d5 6525
581bb050
LZ
6526 err = btrfs_find_free_ino(root, &objectid);
6527 if (err)
6528 goto out_unlock;
6529
aec7477b 6530 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6531 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6532 mode, &index);
7cf96da3
TI
6533 if (IS_ERR(inode)) {
6534 err = PTR_ERR(inode);
618e21d5 6535 goto out_unlock;
7cf96da3 6536 }
618e21d5 6537
ad19db71
CS
6538 /*
6539 * If the active LSM wants to access the inode during
6540 * d_instantiate it needs these. Smack checks to see
6541 * if the filesystem supports xattrs by looking at the
6542 * ops vector.
6543 */
ad19db71 6544 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6545 init_special_inode(inode, inode->i_mode, rdev);
6546
6547 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6548 if (err)
b0d5d10f
CM
6549 goto out_unlock_inode;
6550
cef415af
NB
6551 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6552 0, index);
b0d5d10f
CM
6553 if (err) {
6554 goto out_unlock_inode;
6555 } else {
1b4ab1bb 6556 btrfs_update_inode(trans, root, inode);
b0d5d10f 6557 unlock_new_inode(inode);
08c422c2 6558 d_instantiate(dentry, inode);
618e21d5 6559 }
b0d5d10f 6560
618e21d5 6561out_unlock:
3a45bb20 6562 btrfs_end_transaction(trans);
2ff7e61e
JM
6563 btrfs_balance_delayed_items(fs_info);
6564 btrfs_btree_balance_dirty(fs_info);
618e21d5
JB
6565 if (drop_inode) {
6566 inode_dec_link_count(inode);
6567 iput(inode);
6568 }
618e21d5 6569 return err;
b0d5d10f
CM
6570
6571out_unlock_inode:
6572 drop_inode = 1;
6573 unlock_new_inode(inode);
6574 goto out_unlock;
6575
618e21d5
JB
6576}
6577
39279cc3 6578static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6579 umode_t mode, bool excl)
39279cc3 6580{
2ff7e61e 6581 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6582 struct btrfs_trans_handle *trans;
6583 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6584 struct inode *inode = NULL;
43baa579 6585 int drop_inode_on_err = 0;
a22285a6 6586 int err;
39279cc3 6587 u64 objectid;
00e4e6b3 6588 u64 index = 0;
39279cc3 6589
9ed74f2d
JB
6590 /*
6591 * 2 for inode item and ref
6592 * 2 for dir items
6593 * 1 for xattr if selinux is on
6594 */
a22285a6
YZ
6595 trans = btrfs_start_transaction(root, 5);
6596 if (IS_ERR(trans))
6597 return PTR_ERR(trans);
9ed74f2d 6598
581bb050
LZ
6599 err = btrfs_find_free_ino(root, &objectid);
6600 if (err)
6601 goto out_unlock;
6602
aec7477b 6603 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6604 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6605 mode, &index);
7cf96da3
TI
6606 if (IS_ERR(inode)) {
6607 err = PTR_ERR(inode);
39279cc3 6608 goto out_unlock;
7cf96da3 6609 }
43baa579 6610 drop_inode_on_err = 1;
ad19db71
CS
6611 /*
6612 * If the active LSM wants to access the inode during
6613 * d_instantiate it needs these. Smack checks to see
6614 * if the filesystem supports xattrs by looking at the
6615 * ops vector.
6616 */
6617 inode->i_fop = &btrfs_file_operations;
6618 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6619 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6620
6621 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6622 if (err)
6623 goto out_unlock_inode;
6624
6625 err = btrfs_update_inode(trans, root, inode);
6626 if (err)
6627 goto out_unlock_inode;
ad19db71 6628
cef415af
NB
6629 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6630 0, index);
39279cc3 6631 if (err)
b0d5d10f 6632 goto out_unlock_inode;
43baa579 6633
43baa579 6634 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6635 unlock_new_inode(inode);
43baa579
FB
6636 d_instantiate(dentry, inode);
6637
39279cc3 6638out_unlock:
3a45bb20 6639 btrfs_end_transaction(trans);
43baa579 6640 if (err && drop_inode_on_err) {
39279cc3
CM
6641 inode_dec_link_count(inode);
6642 iput(inode);
6643 }
2ff7e61e
JM
6644 btrfs_balance_delayed_items(fs_info);
6645 btrfs_btree_balance_dirty(fs_info);
39279cc3 6646 return err;
b0d5d10f
CM
6647
6648out_unlock_inode:
6649 unlock_new_inode(inode);
6650 goto out_unlock;
6651
39279cc3
CM
6652}
6653
6654static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6655 struct dentry *dentry)
6656{
271dba45 6657 struct btrfs_trans_handle *trans = NULL;
39279cc3 6658 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6659 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6660 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6661 u64 index;
39279cc3
CM
6662 int err;
6663 int drop_inode = 0;
6664
4a8be425
TH
6665 /* do not allow sys_link's with other subvols of the same device */
6666 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6667 return -EXDEV;
4a8be425 6668
f186373f 6669 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6670 return -EMLINK;
4a8be425 6671
877574e2 6672 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6673 if (err)
6674 goto fail;
6675
a22285a6 6676 /*
7e6b6465 6677 * 2 items for inode and inode ref
a22285a6 6678 * 2 items for dir items
7e6b6465 6679 * 1 item for parent inode
a22285a6 6680 */
7e6b6465 6681 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6682 if (IS_ERR(trans)) {
6683 err = PTR_ERR(trans);
271dba45 6684 trans = NULL;
a22285a6
YZ
6685 goto fail;
6686 }
5f39d397 6687
67de1176
MX
6688 /* There are several dir indexes for this inode, clear the cache. */
6689 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6690 inc_nlink(inode);
0c4d2d95 6691 inode_inc_iversion(inode);
c2050a45 6692 inode->i_ctime = current_time(inode);
7de9c6ee 6693 ihold(inode);
e9976151 6694 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6695
cef415af
NB
6696 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6697 1, index);
5f39d397 6698
a5719521 6699 if (err) {
54aa1f4d 6700 drop_inode = 1;
a5719521 6701 } else {
10d9f309 6702 struct dentry *parent = dentry->d_parent;
a5719521 6703 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6704 if (err)
6705 goto fail;
ef3b9af5
FM
6706 if (inode->i_nlink == 1) {
6707 /*
6708 * If new hard link count is 1, it's a file created
6709 * with open(2) O_TMPFILE flag.
6710 */
3d6ae7bb 6711 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6712 if (err)
6713 goto fail;
6714 }
08c422c2 6715 d_instantiate(dentry, inode);
9ca5fbfb 6716 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
a5719521 6717 }
39279cc3 6718
2ff7e61e 6719 btrfs_balance_delayed_items(fs_info);
1832a6d5 6720fail:
271dba45 6721 if (trans)
3a45bb20 6722 btrfs_end_transaction(trans);
39279cc3
CM
6723 if (drop_inode) {
6724 inode_dec_link_count(inode);
6725 iput(inode);
6726 }
2ff7e61e 6727 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6728 return err;
6729}
6730
18bb1db3 6731static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6732{
2ff7e61e 6733 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6734 struct inode *inode = NULL;
39279cc3
CM
6735 struct btrfs_trans_handle *trans;
6736 struct btrfs_root *root = BTRFS_I(dir)->root;
6737 int err = 0;
6738 int drop_on_err = 0;
b9d86667 6739 u64 objectid = 0;
00e4e6b3 6740 u64 index = 0;
39279cc3 6741
9ed74f2d
JB
6742 /*
6743 * 2 items for inode and ref
6744 * 2 items for dir items
6745 * 1 for xattr if selinux is on
6746 */
a22285a6
YZ
6747 trans = btrfs_start_transaction(root, 5);
6748 if (IS_ERR(trans))
6749 return PTR_ERR(trans);
39279cc3 6750
581bb050
LZ
6751 err = btrfs_find_free_ino(root, &objectid);
6752 if (err)
6753 goto out_fail;
6754
aec7477b 6755 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6756 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6757 S_IFDIR | mode, &index);
39279cc3
CM
6758 if (IS_ERR(inode)) {
6759 err = PTR_ERR(inode);
6760 goto out_fail;
6761 }
5f39d397 6762
39279cc3 6763 drop_on_err = 1;
b0d5d10f
CM
6764 /* these must be set before we unlock the inode */
6765 inode->i_op = &btrfs_dir_inode_operations;
6766 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6767
2a7dba39 6768 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6769 if (err)
b0d5d10f 6770 goto out_fail_inode;
39279cc3 6771
6ef06d27 6772 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6773 err = btrfs_update_inode(trans, root, inode);
6774 if (err)
b0d5d10f 6775 goto out_fail_inode;
5f39d397 6776
db0a669f
NB
6777 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6778 dentry->d_name.name,
6779 dentry->d_name.len, 0, index);
39279cc3 6780 if (err)
b0d5d10f 6781 goto out_fail_inode;
5f39d397 6782
39279cc3 6783 d_instantiate(dentry, inode);
b0d5d10f
CM
6784 /*
6785 * mkdir is special. We're unlocking after we call d_instantiate
6786 * to avoid a race with nfsd calling d_instantiate.
6787 */
6788 unlock_new_inode(inode);
39279cc3 6789 drop_on_err = 0;
39279cc3
CM
6790
6791out_fail:
3a45bb20 6792 btrfs_end_transaction(trans);
c7cfb8a5
WS
6793 if (drop_on_err) {
6794 inode_dec_link_count(inode);
39279cc3 6795 iput(inode);
c7cfb8a5 6796 }
2ff7e61e
JM
6797 btrfs_balance_delayed_items(fs_info);
6798 btrfs_btree_balance_dirty(fs_info);
39279cc3 6799 return err;
b0d5d10f
CM
6800
6801out_fail_inode:
6802 unlock_new_inode(inode);
6803 goto out_fail;
39279cc3
CM
6804}
6805
e6c4efd8
QW
6806/* Find next extent map of a given extent map, caller needs to ensure locks */
6807static struct extent_map *next_extent_map(struct extent_map *em)
6808{
6809 struct rb_node *next;
6810
6811 next = rb_next(&em->rb_node);
6812 if (!next)
6813 return NULL;
6814 return container_of(next, struct extent_map, rb_node);
6815}
6816
6817static struct extent_map *prev_extent_map(struct extent_map *em)
6818{
6819 struct rb_node *prev;
6820
6821 prev = rb_prev(&em->rb_node);
6822 if (!prev)
6823 return NULL;
6824 return container_of(prev, struct extent_map, rb_node);
6825}
6826
d352ac68 6827/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6828 * the existing extent is the nearest extent to map_start,
d352ac68 6829 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6830 * the best fitted new extent into the tree.
d352ac68 6831 */
3b951516
CM
6832static int merge_extent_mapping(struct extent_map_tree *em_tree,
6833 struct extent_map *existing,
e6dcd2dc 6834 struct extent_map *em,
51f395ad 6835 u64 map_start)
3b951516 6836{
e6c4efd8
QW
6837 struct extent_map *prev;
6838 struct extent_map *next;
6839 u64 start;
6840 u64 end;
3b951516 6841 u64 start_diff;
3b951516 6842
e6dcd2dc 6843 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6844
6845 if (existing->start > map_start) {
6846 next = existing;
6847 prev = prev_extent_map(next);
6848 } else {
6849 prev = existing;
6850 next = next_extent_map(prev);
6851 }
6852
6853 start = prev ? extent_map_end(prev) : em->start;
6854 start = max_t(u64, start, em->start);
6855 end = next ? next->start : extent_map_end(em);
6856 end = min_t(u64, end, extent_map_end(em));
6857 start_diff = start - em->start;
6858 em->start = start;
6859 em->len = end - start;
c8b97818
CM
6860 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6861 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6862 em->block_start += start_diff;
c8b97818
CM
6863 em->block_len -= start_diff;
6864 }
09a2a8f9 6865 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6866}
6867
c8b97818 6868static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6869 struct page *page,
c8b97818
CM
6870 size_t pg_offset, u64 extent_offset,
6871 struct btrfs_file_extent_item *item)
6872{
6873 int ret;
6874 struct extent_buffer *leaf = path->nodes[0];
6875 char *tmp;
6876 size_t max_size;
6877 unsigned long inline_size;
6878 unsigned long ptr;
261507a0 6879 int compress_type;
c8b97818
CM
6880
6881 WARN_ON(pg_offset != 0);
261507a0 6882 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6883 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6884 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6885 btrfs_item_nr(path->slots[0]));
c8b97818 6886 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6887 if (!tmp)
6888 return -ENOMEM;
c8b97818
CM
6889 ptr = btrfs_file_extent_inline_start(item);
6890
6891 read_extent_buffer(leaf, tmp, ptr, inline_size);
6892
09cbfeaf 6893 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6894 ret = btrfs_decompress(compress_type, tmp, page,
6895 extent_offset, inline_size, max_size);
e1699d2d
ZB
6896
6897 /*
6898 * decompression code contains a memset to fill in any space between the end
6899 * of the uncompressed data and the end of max_size in case the decompressed
6900 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6901 * the end of an inline extent and the beginning of the next block, so we
6902 * cover that region here.
6903 */
6904
6905 if (max_size + pg_offset < PAGE_SIZE) {
6906 char *map = kmap(page);
6907 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6908 kunmap(page);
6909 }
c8b97818 6910 kfree(tmp);
166ae5a4 6911 return ret;
c8b97818
CM
6912}
6913
d352ac68
CM
6914/*
6915 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6916 * the ugly parts come from merging extents from the disk with the in-ram
6917 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6918 * where the in-ram extents might be locked pending data=ordered completion.
6919 *
6920 * This also copies inline extents directly into the page.
6921 */
fc4f21b1
NB
6922struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6923 struct page *page,
6924 size_t pg_offset, u64 start, u64 len,
6925 int create)
a52d9a80 6926{
fc4f21b1 6927 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
a52d9a80
CM
6928 int ret;
6929 int err = 0;
a52d9a80
CM
6930 u64 extent_start = 0;
6931 u64 extent_end = 0;
fc4f21b1 6932 u64 objectid = btrfs_ino(inode);
a52d9a80 6933 u32 found_type;
f421950f 6934 struct btrfs_path *path = NULL;
fc4f21b1 6935 struct btrfs_root *root = inode->root;
a52d9a80 6936 struct btrfs_file_extent_item *item;
5f39d397
CM
6937 struct extent_buffer *leaf;
6938 struct btrfs_key found_key;
a52d9a80 6939 struct extent_map *em = NULL;
fc4f21b1
NB
6940 struct extent_map_tree *em_tree = &inode->extent_tree;
6941 struct extent_io_tree *io_tree = &inode->io_tree;
a52d9a80 6942 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6943 const bool new_inline = !page || create;
a52d9a80 6944
a52d9a80 6945again:
890871be 6946 read_lock(&em_tree->lock);
d1310b2e 6947 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6948 if (em)
0b246afa 6949 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6950 read_unlock(&em_tree->lock);
d1310b2e 6951
a52d9a80 6952 if (em) {
e1c4b745
CM
6953 if (em->start > start || em->start + em->len <= start)
6954 free_extent_map(em);
6955 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6956 free_extent_map(em);
6957 else
6958 goto out;
a52d9a80 6959 }
172ddd60 6960 em = alloc_extent_map();
a52d9a80 6961 if (!em) {
d1310b2e
CM
6962 err = -ENOMEM;
6963 goto out;
a52d9a80 6964 }
0b246afa 6965 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6966 em->start = EXTENT_MAP_HOLE;
445a6944 6967 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6968 em->len = (u64)-1;
c8b97818 6969 em->block_len = (u64)-1;
f421950f
CM
6970
6971 if (!path) {
6972 path = btrfs_alloc_path();
026fd317
JB
6973 if (!path) {
6974 err = -ENOMEM;
6975 goto out;
6976 }
6977 /*
6978 * Chances are we'll be called again, so go ahead and do
6979 * readahead
6980 */
e4058b54 6981 path->reada = READA_FORWARD;
f421950f
CM
6982 }
6983
179e29e4
CM
6984 ret = btrfs_lookup_file_extent(trans, root, path,
6985 objectid, start, trans != NULL);
a52d9a80
CM
6986 if (ret < 0) {
6987 err = ret;
6988 goto out;
6989 }
6990
6991 if (ret != 0) {
6992 if (path->slots[0] == 0)
6993 goto not_found;
6994 path->slots[0]--;
6995 }
6996
5f39d397
CM
6997 leaf = path->nodes[0];
6998 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6999 struct btrfs_file_extent_item);
a52d9a80 7000 /* are we inside the extent that was found? */
5f39d397 7001 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 7002 found_type = found_key.type;
5f39d397 7003 if (found_key.objectid != objectid ||
a52d9a80 7004 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
7005 /*
7006 * If we backup past the first extent we want to move forward
7007 * and see if there is an extent in front of us, otherwise we'll
7008 * say there is a hole for our whole search range which can
7009 * cause problems.
7010 */
7011 extent_end = start;
7012 goto next;
a52d9a80
CM
7013 }
7014
5f39d397
CM
7015 found_type = btrfs_file_extent_type(leaf, item);
7016 extent_start = found_key.offset;
d899e052
YZ
7017 if (found_type == BTRFS_FILE_EXTENT_REG ||
7018 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 7019 extent_end = extent_start +
db94535d 7020 btrfs_file_extent_num_bytes(leaf, item);
09ed2f16
LB
7021
7022 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7023 extent_start);
9036c102
YZ
7024 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7025 size_t size;
514ac8ad 7026 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
da17066c 7027 extent_end = ALIGN(extent_start + size,
0b246afa 7028 fs_info->sectorsize);
09ed2f16
LB
7029
7030 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7031 path->slots[0],
7032 extent_start);
9036c102 7033 }
25a50341 7034next:
9036c102
YZ
7035 if (start >= extent_end) {
7036 path->slots[0]++;
7037 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7038 ret = btrfs_next_leaf(root, path);
7039 if (ret < 0) {
7040 err = ret;
7041 goto out;
a52d9a80 7042 }
9036c102
YZ
7043 if (ret > 0)
7044 goto not_found;
7045 leaf = path->nodes[0];
a52d9a80 7046 }
9036c102
YZ
7047 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7048 if (found_key.objectid != objectid ||
7049 found_key.type != BTRFS_EXTENT_DATA_KEY)
7050 goto not_found;
7051 if (start + len <= found_key.offset)
7052 goto not_found;
e2eca69d
WS
7053 if (start > found_key.offset)
7054 goto next;
9036c102 7055 em->start = start;
70c8a91c 7056 em->orig_start = start;
9036c102
YZ
7057 em->len = found_key.offset - start;
7058 goto not_found_em;
7059 }
7060
fc4f21b1 7061 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 7062 new_inline, em);
7ffbb598 7063
d899e052
YZ
7064 if (found_type == BTRFS_FILE_EXTENT_REG ||
7065 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
7066 goto insert;
7067 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 7068 unsigned long ptr;
a52d9a80 7069 char *map;
3326d1b0
CM
7070 size_t size;
7071 size_t extent_offset;
7072 size_t copy_size;
a52d9a80 7073
7ffbb598 7074 if (new_inline)
689f9346 7075 goto out;
5f39d397 7076
514ac8ad 7077 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 7078 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
7079 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7080 size - extent_offset);
3326d1b0 7081 em->start = extent_start + extent_offset;
0b246afa 7082 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 7083 em->orig_block_len = em->len;
70c8a91c 7084 em->orig_start = em->start;
689f9346 7085 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 7086 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
7087 if (btrfs_file_extent_compression(leaf, item) !=
7088 BTRFS_COMPRESS_NONE) {
e40da0e5 7089 ret = uncompress_inline(path, page, pg_offset,
c8b97818 7090 extent_offset, item);
166ae5a4
ZB
7091 if (ret) {
7092 err = ret;
7093 goto out;
7094 }
c8b97818
CM
7095 } else {
7096 map = kmap(page);
7097 read_extent_buffer(leaf, map + pg_offset, ptr,
7098 copy_size);
09cbfeaf 7099 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 7100 memset(map + pg_offset + copy_size, 0,
09cbfeaf 7101 PAGE_SIZE - pg_offset -
93c82d57
CM
7102 copy_size);
7103 }
c8b97818
CM
7104 kunmap(page);
7105 }
179e29e4
CM
7106 flush_dcache_page(page);
7107 } else if (create && PageUptodate(page)) {
6bf7e080 7108 BUG();
179e29e4
CM
7109 if (!trans) {
7110 kunmap(page);
7111 free_extent_map(em);
7112 em = NULL;
ff5714cc 7113
b3b4aa74 7114 btrfs_release_path(path);
7a7eaa40 7115 trans = btrfs_join_transaction(root);
ff5714cc 7116
3612b495
TI
7117 if (IS_ERR(trans))
7118 return ERR_CAST(trans);
179e29e4
CM
7119 goto again;
7120 }
c8b97818 7121 map = kmap(page);
70dec807 7122 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 7123 copy_size);
c8b97818 7124 kunmap(page);
179e29e4 7125 btrfs_mark_buffer_dirty(leaf);
a52d9a80 7126 }
d1310b2e 7127 set_extent_uptodate(io_tree, em->start,
507903b8 7128 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7129 goto insert;
a52d9a80
CM
7130 }
7131not_found:
7132 em->start = start;
70c8a91c 7133 em->orig_start = start;
d1310b2e 7134 em->len = len;
a52d9a80 7135not_found_em:
5f39d397 7136 em->block_start = EXTENT_MAP_HOLE;
9036c102 7137 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 7138insert:
b3b4aa74 7139 btrfs_release_path(path);
d1310b2e 7140 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 7141 btrfs_err(fs_info,
5d163e0e
JM
7142 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7143 em->start, em->len, start, len);
a52d9a80
CM
7144 err = -EIO;
7145 goto out;
7146 }
d1310b2e
CM
7147
7148 err = 0;
890871be 7149 write_lock(&em_tree->lock);
09a2a8f9 7150 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
7151 /* it is possible that someone inserted the extent into the tree
7152 * while we had the lock dropped. It is also possible that
7153 * an overlapping map exists in the tree
7154 */
a52d9a80 7155 if (ret == -EEXIST) {
3b951516 7156 struct extent_map *existing;
e6dcd2dc
CM
7157
7158 ret = 0;
7159
e6c4efd8
QW
7160 existing = search_extent_mapping(em_tree, start, len);
7161 /*
7162 * existing will always be non-NULL, since there must be
7163 * extent causing the -EEXIST.
7164 */
8dff9c85 7165 if (existing->start == em->start &&
8e2bd3b7 7166 extent_map_end(existing) >= extent_map_end(em) &&
8dff9c85
CM
7167 em->block_start == existing->block_start) {
7168 /*
8e2bd3b7
OS
7169 * The existing extent map already encompasses the
7170 * entire extent map we tried to add.
8dff9c85
CM
7171 */
7172 free_extent_map(em);
7173 em = existing;
7174 err = 0;
7175
7176 } else if (start >= extent_map_end(existing) ||
32be3a1a 7177 start <= existing->start) {
e6c4efd8
QW
7178 /*
7179 * The existing extent map is the one nearest to
7180 * the [start, start + len) range which overlaps
7181 */
7182 err = merge_extent_mapping(em_tree, existing,
7183 em, start);
e1c4b745 7184 free_extent_map(existing);
e6c4efd8 7185 if (err) {
3b951516
CM
7186 free_extent_map(em);
7187 em = NULL;
7188 }
7189 } else {
7190 free_extent_map(em);
7191 em = existing;
e6dcd2dc 7192 err = 0;
a52d9a80 7193 }
a52d9a80 7194 }
890871be 7195 write_unlock(&em_tree->lock);
a52d9a80 7196out:
1abe9b8a 7197
fc4f21b1 7198 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 7199
527afb44 7200 btrfs_free_path(path);
a52d9a80 7201 if (trans) {
3a45bb20 7202 ret = btrfs_end_transaction(trans);
d397712b 7203 if (!err)
a52d9a80
CM
7204 err = ret;
7205 }
a52d9a80
CM
7206 if (err) {
7207 free_extent_map(em);
a52d9a80
CM
7208 return ERR_PTR(err);
7209 }
79787eaa 7210 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7211 return em;
7212}
7213
fc4f21b1
NB
7214struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7215 struct page *page,
7216 size_t pg_offset, u64 start, u64 len,
7217 int create)
ec29ed5b
CM
7218{
7219 struct extent_map *em;
7220 struct extent_map *hole_em = NULL;
7221 u64 range_start = start;
7222 u64 end;
7223 u64 found;
7224 u64 found_end;
7225 int err = 0;
7226
7227 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7228 if (IS_ERR(em))
7229 return em;
9986277e
DC
7230 /*
7231 * If our em maps to:
7232 * - a hole or
7233 * - a pre-alloc extent,
7234 * there might actually be delalloc bytes behind it.
7235 */
7236 if (em->block_start != EXTENT_MAP_HOLE &&
7237 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7238 return em;
7239 else
7240 hole_em = em;
ec29ed5b
CM
7241
7242 /* check to see if we've wrapped (len == -1 or similar) */
7243 end = start + len;
7244 if (end < start)
7245 end = (u64)-1;
7246 else
7247 end -= 1;
7248
7249 em = NULL;
7250
7251 /* ok, we didn't find anything, lets look for delalloc */
fc4f21b1 7252 found = count_range_bits(&inode->io_tree, &range_start,
ec29ed5b
CM
7253 end, len, EXTENT_DELALLOC, 1);
7254 found_end = range_start + found;
7255 if (found_end < range_start)
7256 found_end = (u64)-1;
7257
7258 /*
7259 * we didn't find anything useful, return
7260 * the original results from get_extent()
7261 */
7262 if (range_start > end || found_end <= start) {
7263 em = hole_em;
7264 hole_em = NULL;
7265 goto out;
7266 }
7267
7268 /* adjust the range_start to make sure it doesn't
7269 * go backwards from the start they passed in
7270 */
67871254 7271 range_start = max(start, range_start);
ec29ed5b
CM
7272 found = found_end - range_start;
7273
7274 if (found > 0) {
7275 u64 hole_start = start;
7276 u64 hole_len = len;
7277
172ddd60 7278 em = alloc_extent_map();
ec29ed5b
CM
7279 if (!em) {
7280 err = -ENOMEM;
7281 goto out;
7282 }
7283 /*
7284 * when btrfs_get_extent can't find anything it
7285 * returns one huge hole
7286 *
7287 * make sure what it found really fits our range, and
7288 * adjust to make sure it is based on the start from
7289 * the caller
7290 */
7291 if (hole_em) {
7292 u64 calc_end = extent_map_end(hole_em);
7293
7294 if (calc_end <= start || (hole_em->start > end)) {
7295 free_extent_map(hole_em);
7296 hole_em = NULL;
7297 } else {
7298 hole_start = max(hole_em->start, start);
7299 hole_len = calc_end - hole_start;
7300 }
7301 }
7302 em->bdev = NULL;
7303 if (hole_em && range_start > hole_start) {
7304 /* our hole starts before our delalloc, so we
7305 * have to return just the parts of the hole
7306 * that go until the delalloc starts
7307 */
7308 em->len = min(hole_len,
7309 range_start - hole_start);
7310 em->start = hole_start;
7311 em->orig_start = hole_start;
7312 /*
7313 * don't adjust block start at all,
7314 * it is fixed at EXTENT_MAP_HOLE
7315 */
7316 em->block_start = hole_em->block_start;
7317 em->block_len = hole_len;
f9e4fb53
LB
7318 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7319 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7320 } else {
7321 em->start = range_start;
7322 em->len = found;
7323 em->orig_start = range_start;
7324 em->block_start = EXTENT_MAP_DELALLOC;
7325 em->block_len = found;
7326 }
7327 } else if (hole_em) {
7328 return hole_em;
7329 }
7330out:
7331
7332 free_extent_map(hole_em);
7333 if (err) {
7334 free_extent_map(em);
7335 return ERR_PTR(err);
7336 }
7337 return em;
7338}
7339
5f9a8a51
FM
7340static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7341 const u64 start,
7342 const u64 len,
7343 const u64 orig_start,
7344 const u64 block_start,
7345 const u64 block_len,
7346 const u64 orig_block_len,
7347 const u64 ram_bytes,
7348 const int type)
7349{
7350 struct extent_map *em = NULL;
7351 int ret;
7352
5f9a8a51 7353 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7354 em = create_io_em(inode, start, len, orig_start,
7355 block_start, block_len, orig_block_len,
7356 ram_bytes,
7357 BTRFS_COMPRESS_NONE, /* compress_type */
7358 type);
5f9a8a51
FM
7359 if (IS_ERR(em))
7360 goto out;
7361 }
7362 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7363 len, block_len, type);
7364 if (ret) {
7365 if (em) {
7366 free_extent_map(em);
dcdbc059 7367 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7368 start + len - 1, 0);
7369 }
7370 em = ERR_PTR(ret);
7371 }
7372 out:
5f9a8a51
FM
7373
7374 return em;
7375}
7376
4b46fce2
JB
7377static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7378 u64 start, u64 len)
7379{
0b246afa 7380 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7381 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7382 struct extent_map *em;
4b46fce2
JB
7383 struct btrfs_key ins;
7384 u64 alloc_hint;
7385 int ret;
4b46fce2 7386
4b46fce2 7387 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7388 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7389 0, alloc_hint, &ins, 1, 1);
00361589
JB
7390 if (ret)
7391 return ERR_PTR(ret);
4b46fce2 7392
5f9a8a51
FM
7393 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7394 ins.objectid, ins.offset, ins.offset,
6288d6ea 7395 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7396 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7397 if (IS_ERR(em))
2ff7e61e
JM
7398 btrfs_free_reserved_extent(fs_info, ins.objectid,
7399 ins.offset, 1);
de0ee0ed 7400
4b46fce2
JB
7401 return em;
7402}
7403
46bfbb5c
CM
7404/*
7405 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7406 * block must be cow'd
7407 */
00361589 7408noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7409 u64 *orig_start, u64 *orig_block_len,
7410 u64 *ram_bytes)
46bfbb5c 7411{
2ff7e61e 7412 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7413 struct btrfs_path *path;
7414 int ret;
7415 struct extent_buffer *leaf;
7416 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7417 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7418 struct btrfs_file_extent_item *fi;
7419 struct btrfs_key key;
7420 u64 disk_bytenr;
7421 u64 backref_offset;
7422 u64 extent_end;
7423 u64 num_bytes;
7424 int slot;
7425 int found_type;
7ee9e440 7426 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7427
46bfbb5c
CM
7428 path = btrfs_alloc_path();
7429 if (!path)
7430 return -ENOMEM;
7431
f85b7379
DS
7432 ret = btrfs_lookup_file_extent(NULL, root, path,
7433 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7434 if (ret < 0)
7435 goto out;
7436
7437 slot = path->slots[0];
7438 if (ret == 1) {
7439 if (slot == 0) {
7440 /* can't find the item, must cow */
7441 ret = 0;
7442 goto out;
7443 }
7444 slot--;
7445 }
7446 ret = 0;
7447 leaf = path->nodes[0];
7448 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7449 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7450 key.type != BTRFS_EXTENT_DATA_KEY) {
7451 /* not our file or wrong item type, must cow */
7452 goto out;
7453 }
7454
7455 if (key.offset > offset) {
7456 /* Wrong offset, must cow */
7457 goto out;
7458 }
7459
7460 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7461 found_type = btrfs_file_extent_type(leaf, fi);
7462 if (found_type != BTRFS_FILE_EXTENT_REG &&
7463 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7464 /* not a regular extent, must cow */
7465 goto out;
7466 }
7ee9e440
JB
7467
7468 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7469 goto out;
7470
e77751aa
MX
7471 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7472 if (extent_end <= offset)
7473 goto out;
7474
46bfbb5c 7475 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7476 if (disk_bytenr == 0)
7477 goto out;
7478
7479 if (btrfs_file_extent_compression(leaf, fi) ||
7480 btrfs_file_extent_encryption(leaf, fi) ||
7481 btrfs_file_extent_other_encoding(leaf, fi))
7482 goto out;
7483
46bfbb5c
CM
7484 backref_offset = btrfs_file_extent_offset(leaf, fi);
7485
7ee9e440
JB
7486 if (orig_start) {
7487 *orig_start = key.offset - backref_offset;
7488 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7489 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7490 }
eb384b55 7491
2ff7e61e 7492 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7493 goto out;
7b2b7085
MX
7494
7495 num_bytes = min(offset + *len, extent_end) - offset;
7496 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7497 u64 range_end;
7498
da17066c
JM
7499 range_end = round_up(offset + num_bytes,
7500 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7501 ret = test_range_bit(io_tree, offset, range_end,
7502 EXTENT_DELALLOC, 0, NULL);
7503 if (ret) {
7504 ret = -EAGAIN;
7505 goto out;
7506 }
7507 }
7508
1bda19eb 7509 btrfs_release_path(path);
46bfbb5c
CM
7510
7511 /*
7512 * look for other files referencing this extent, if we
7513 * find any we must cow
7514 */
00361589 7515
e4c3b2dc 7516 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7517 key.offset - backref_offset, disk_bytenr);
00361589
JB
7518 if (ret) {
7519 ret = 0;
7520 goto out;
7521 }
46bfbb5c
CM
7522
7523 /*
7524 * adjust disk_bytenr and num_bytes to cover just the bytes
7525 * in this extent we are about to write. If there
7526 * are any csums in that range we have to cow in order
7527 * to keep the csums correct
7528 */
7529 disk_bytenr += backref_offset;
7530 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7531 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7532 goto out;
46bfbb5c
CM
7533 /*
7534 * all of the above have passed, it is safe to overwrite this extent
7535 * without cow
7536 */
eb384b55 7537 *len = num_bytes;
46bfbb5c
CM
7538 ret = 1;
7539out:
7540 btrfs_free_path(path);
7541 return ret;
7542}
7543
fc4adbff
AG
7544bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7545{
7546 struct radix_tree_root *root = &inode->i_mapping->page_tree;
e03733da 7547 bool found = false;
fc4adbff
AG
7548 void **pagep = NULL;
7549 struct page *page = NULL;
cc2b702c
DS
7550 unsigned long start_idx;
7551 unsigned long end_idx;
fc4adbff 7552
09cbfeaf 7553 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7554
7555 /*
7556 * end is the last byte in the last page. end == start is legal
7557 */
09cbfeaf 7558 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7559
7560 rcu_read_lock();
7561
7562 /* Most of the code in this while loop is lifted from
7563 * find_get_page. It's been modified to begin searching from a
7564 * page and return just the first page found in that range. If the
7565 * found idx is less than or equal to the end idx then we know that
7566 * a page exists. If no pages are found or if those pages are
7567 * outside of the range then we're fine (yay!) */
7568 while (page == NULL &&
7569 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7570 page = radix_tree_deref_slot(pagep);
7571 if (unlikely(!page))
7572 break;
7573
7574 if (radix_tree_exception(page)) {
809f9016
FM
7575 if (radix_tree_deref_retry(page)) {
7576 page = NULL;
fc4adbff 7577 continue;
809f9016 7578 }
fc4adbff
AG
7579 /*
7580 * Otherwise, shmem/tmpfs must be storing a swap entry
7581 * here as an exceptional entry: so return it without
7582 * attempting to raise page count.
7583 */
6fdef6d4 7584 page = NULL;
fc4adbff
AG
7585 break; /* TODO: Is this relevant for this use case? */
7586 }
7587
91405151
FM
7588 if (!page_cache_get_speculative(page)) {
7589 page = NULL;
fc4adbff 7590 continue;
91405151 7591 }
fc4adbff
AG
7592
7593 /*
7594 * Has the page moved?
7595 * This is part of the lockless pagecache protocol. See
7596 * include/linux/pagemap.h for details.
7597 */
7598 if (unlikely(page != *pagep)) {
09cbfeaf 7599 put_page(page);
fc4adbff
AG
7600 page = NULL;
7601 }
7602 }
7603
7604 if (page) {
7605 if (page->index <= end_idx)
7606 found = true;
09cbfeaf 7607 put_page(page);
fc4adbff
AG
7608 }
7609
7610 rcu_read_unlock();
7611 return found;
7612}
7613
eb838e73
JB
7614static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7615 struct extent_state **cached_state, int writing)
7616{
7617 struct btrfs_ordered_extent *ordered;
7618 int ret = 0;
7619
7620 while (1) {
7621 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7622 cached_state);
eb838e73
JB
7623 /*
7624 * We're concerned with the entire range that we're going to be
01327610 7625 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7626 * extents in this range.
7627 */
a776c6fa 7628 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7629 lockend - lockstart + 1);
7630
7631 /*
7632 * We need to make sure there are no buffered pages in this
7633 * range either, we could have raced between the invalidate in
7634 * generic_file_direct_write and locking the extent. The
7635 * invalidate needs to happen so that reads after a write do not
7636 * get stale data.
7637 */
fc4adbff
AG
7638 if (!ordered &&
7639 (!writing ||
7640 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7641 break;
7642
7643 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7644 cached_state, GFP_NOFS);
7645
7646 if (ordered) {
ade77029
FM
7647 /*
7648 * If we are doing a DIO read and the ordered extent we
7649 * found is for a buffered write, we can not wait for it
7650 * to complete and retry, because if we do so we can
7651 * deadlock with concurrent buffered writes on page
7652 * locks. This happens only if our DIO read covers more
7653 * than one extent map, if at this point has already
7654 * created an ordered extent for a previous extent map
7655 * and locked its range in the inode's io tree, and a
7656 * concurrent write against that previous extent map's
7657 * range and this range started (we unlock the ranges
7658 * in the io tree only when the bios complete and
7659 * buffered writes always lock pages before attempting
7660 * to lock range in the io tree).
7661 */
7662 if (writing ||
7663 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7664 btrfs_start_ordered_extent(inode, ordered, 1);
7665 else
7666 ret = -ENOTBLK;
eb838e73
JB
7667 btrfs_put_ordered_extent(ordered);
7668 } else {
eb838e73 7669 /*
b850ae14
FM
7670 * We could trigger writeback for this range (and wait
7671 * for it to complete) and then invalidate the pages for
7672 * this range (through invalidate_inode_pages2_range()),
7673 * but that can lead us to a deadlock with a concurrent
7674 * call to readpages() (a buffered read or a defrag call
7675 * triggered a readahead) on a page lock due to an
7676 * ordered dio extent we created before but did not have
7677 * yet a corresponding bio submitted (whence it can not
7678 * complete), which makes readpages() wait for that
7679 * ordered extent to complete while holding a lock on
7680 * that page.
eb838e73 7681 */
b850ae14 7682 ret = -ENOTBLK;
eb838e73
JB
7683 }
7684
ade77029
FM
7685 if (ret)
7686 break;
7687
eb838e73
JB
7688 cond_resched();
7689 }
7690
7691 return ret;
7692}
7693
6f9994db
LB
7694/* The callers of this must take lock_extent() */
7695static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7696 u64 orig_start, u64 block_start,
7697 u64 block_len, u64 orig_block_len,
7698 u64 ram_bytes, int compress_type,
7699 int type)
69ffb543
JB
7700{
7701 struct extent_map_tree *em_tree;
7702 struct extent_map *em;
7703 struct btrfs_root *root = BTRFS_I(inode)->root;
7704 int ret;
7705
6f9994db
LB
7706 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7707 type == BTRFS_ORDERED_COMPRESSED ||
7708 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7709 type == BTRFS_ORDERED_REGULAR);
6f9994db 7710
69ffb543
JB
7711 em_tree = &BTRFS_I(inode)->extent_tree;
7712 em = alloc_extent_map();
7713 if (!em)
7714 return ERR_PTR(-ENOMEM);
7715
7716 em->start = start;
7717 em->orig_start = orig_start;
7718 em->len = len;
7719 em->block_len = block_len;
7720 em->block_start = block_start;
7721 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7722 em->orig_block_len = orig_block_len;
cc95bef6 7723 em->ram_bytes = ram_bytes;
70c8a91c 7724 em->generation = -1;
69ffb543 7725 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7726 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7727 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7728 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7729 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7730 em->compress_type = compress_type;
7731 }
69ffb543
JB
7732
7733 do {
dcdbc059 7734 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7735 em->start + em->len - 1, 0);
7736 write_lock(&em_tree->lock);
09a2a8f9 7737 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7738 write_unlock(&em_tree->lock);
6f9994db
LB
7739 /*
7740 * The caller has taken lock_extent(), who could race with us
7741 * to add em?
7742 */
69ffb543
JB
7743 } while (ret == -EEXIST);
7744
7745 if (ret) {
7746 free_extent_map(em);
7747 return ERR_PTR(ret);
7748 }
7749
6f9994db 7750 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7751 return em;
7752}
7753
4b46fce2
JB
7754static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7755 struct buffer_head *bh_result, int create)
7756{
0b246afa 7757 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7758 struct extent_map *em;
eb838e73 7759 struct extent_state *cached_state = NULL;
50745b0a 7760 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7761 u64 start = iblock << inode->i_blkbits;
eb838e73 7762 u64 lockstart, lockend;
4b46fce2 7763 u64 len = bh_result->b_size;
eb838e73 7764 int unlock_bits = EXTENT_LOCKED;
0934856d 7765 int ret = 0;
eb838e73 7766
172a5049 7767 if (create)
3266789f 7768 unlock_bits |= EXTENT_DIRTY;
172a5049 7769 else
0b246afa 7770 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7771
c329861d
JB
7772 lockstart = start;
7773 lockend = start + len - 1;
7774
e1cbbfa5
JB
7775 if (current->journal_info) {
7776 /*
7777 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7778 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7779 * confused.
7780 */
50745b0a 7781 dio_data = current->journal_info;
e1cbbfa5
JB
7782 current->journal_info = NULL;
7783 }
7784
eb838e73
JB
7785 /*
7786 * If this errors out it's because we couldn't invalidate pagecache for
7787 * this range and we need to fallback to buffered.
7788 */
9c9464cc
FM
7789 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7790 create)) {
7791 ret = -ENOTBLK;
7792 goto err;
7793 }
eb838e73 7794
fc4f21b1 7795 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7796 if (IS_ERR(em)) {
7797 ret = PTR_ERR(em);
7798 goto unlock_err;
7799 }
4b46fce2
JB
7800
7801 /*
7802 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7803 * io. INLINE is special, and we could probably kludge it in here, but
7804 * it's still buffered so for safety lets just fall back to the generic
7805 * buffered path.
7806 *
7807 * For COMPRESSED we _have_ to read the entire extent in so we can
7808 * decompress it, so there will be buffering required no matter what we
7809 * do, so go ahead and fallback to buffered.
7810 *
01327610 7811 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7812 * to buffered IO. Don't blame me, this is the price we pay for using
7813 * the generic code.
7814 */
7815 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7816 em->block_start == EXTENT_MAP_INLINE) {
7817 free_extent_map(em);
eb838e73
JB
7818 ret = -ENOTBLK;
7819 goto unlock_err;
4b46fce2
JB
7820 }
7821
7822 /* Just a good old fashioned hole, return */
7823 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7824 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7825 free_extent_map(em);
eb838e73 7826 goto unlock_err;
4b46fce2
JB
7827 }
7828
7829 /*
7830 * We don't allocate a new extent in the following cases
7831 *
7832 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7833 * existing extent.
7834 * 2) The extent is marked as PREALLOC. We're good to go here and can
7835 * just use the extent.
7836 *
7837 */
46bfbb5c 7838 if (!create) {
eb838e73
JB
7839 len = min(len, em->len - (start - em->start));
7840 lockstart = start + len;
7841 goto unlock;
46bfbb5c 7842 }
4b46fce2
JB
7843
7844 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7845 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7846 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7847 int type;
eb384b55 7848 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7849
7850 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7851 type = BTRFS_ORDERED_PREALLOC;
7852 else
7853 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7854 len = min(len, em->len - (start - em->start));
4b46fce2 7855 block_start = em->block_start + (start - em->start);
46bfbb5c 7856
00361589 7857 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c 7858 &orig_block_len, &ram_bytes) == 1 &&
0b246afa 7859 btrfs_inc_nocow_writers(fs_info, block_start)) {
5f9a8a51 7860 struct extent_map *em2;
0b901916 7861
5f9a8a51
FM
7862 em2 = btrfs_create_dio_extent(inode, start, len,
7863 orig_start, block_start,
7864 len, orig_block_len,
7865 ram_bytes, type);
0b246afa 7866 btrfs_dec_nocow_writers(fs_info, block_start);
69ffb543
JB
7867 if (type == BTRFS_ORDERED_PREALLOC) {
7868 free_extent_map(em);
5f9a8a51 7869 em = em2;
69ffb543 7870 }
5f9a8a51
FM
7871 if (em2 && IS_ERR(em2)) {
7872 ret = PTR_ERR(em2);
eb838e73 7873 goto unlock_err;
46bfbb5c 7874 }
18513091
WX
7875 /*
7876 * For inode marked NODATACOW or extent marked PREALLOC,
7877 * use the existing or preallocated extent, so does not
7878 * need to adjust btrfs_space_info's bytes_may_use.
7879 */
7880 btrfs_free_reserved_data_space_noquota(inode,
7881 start, len);
46bfbb5c 7882 goto unlock;
4b46fce2 7883 }
4b46fce2 7884 }
00361589 7885
46bfbb5c
CM
7886 /*
7887 * this will cow the extent, reset the len in case we changed
7888 * it above
7889 */
7890 len = bh_result->b_size;
70c8a91c
JB
7891 free_extent_map(em);
7892 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7893 if (IS_ERR(em)) {
7894 ret = PTR_ERR(em);
7895 goto unlock_err;
7896 }
46bfbb5c
CM
7897 len = min(len, em->len - (start - em->start));
7898unlock:
4b46fce2
JB
7899 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7900 inode->i_blkbits;
46bfbb5c 7901 bh_result->b_size = len;
4b46fce2
JB
7902 bh_result->b_bdev = em->bdev;
7903 set_buffer_mapped(bh_result);
c3473e83
JB
7904 if (create) {
7905 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7906 set_buffer_new(bh_result);
7907
7908 /*
7909 * Need to update the i_size under the extent lock so buffered
7910 * readers will get the updated i_size when we unlock.
7911 */
4aaedfb0 7912 if (!dio_data->overwrite && start + len > i_size_read(inode))
c3473e83 7913 i_size_write(inode, start + len);
0934856d 7914
50745b0a 7915 WARN_ON(dio_data->reserve < len);
7916 dio_data->reserve -= len;
f28a4928 7917 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7918 current->journal_info = dio_data;
c3473e83 7919 }
4b46fce2 7920
eb838e73
JB
7921 /*
7922 * In the case of write we need to clear and unlock the entire range,
7923 * in the case of read we need to unlock only the end area that we
7924 * aren't using if there is any left over space.
7925 */
24c03fa5 7926 if (lockstart < lockend) {
0934856d
MX
7927 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7928 lockend, unlock_bits, 1, 0,
7929 &cached_state, GFP_NOFS);
24c03fa5 7930 } else {
eb838e73 7931 free_extent_state(cached_state);
24c03fa5 7932 }
eb838e73 7933
4b46fce2
JB
7934 free_extent_map(em);
7935
7936 return 0;
eb838e73
JB
7937
7938unlock_err:
eb838e73
JB
7939 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7940 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7941err:
50745b0a 7942 if (dio_data)
7943 current->journal_info = dio_data;
eb838e73 7944 return ret;
4b46fce2
JB
7945}
7946
58efbc9f
OS
7947static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7948 struct bio *bio,
7949 int mirror_num)
8b110e39 7950{
2ff7e61e 7951 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7952 blk_status_t ret;
8b110e39 7953
37226b21 7954 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39
MX
7955
7956 bio_get(bio);
7957
2ff7e61e 7958 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39
MX
7959 if (ret)
7960 goto err;
7961
2ff7e61e 7962 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
8b110e39
MX
7963err:
7964 bio_put(bio);
7965 return ret;
7966}
7967
7968static int btrfs_check_dio_repairable(struct inode *inode,
7969 struct bio *failed_bio,
7970 struct io_failure_record *failrec,
7971 int failed_mirror)
7972{
ab8d0fc4 7973 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7974 int num_copies;
7975
ab8d0fc4 7976 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7977 if (num_copies == 1) {
7978 /*
7979 * we only have a single copy of the data, so don't bother with
7980 * all the retry and error correction code that follows. no
7981 * matter what the error is, it is very likely to persist.
7982 */
ab8d0fc4
JM
7983 btrfs_debug(fs_info,
7984 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7985 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7986 return 0;
7987 }
7988
7989 failrec->failed_mirror = failed_mirror;
7990 failrec->this_mirror++;
7991 if (failrec->this_mirror == failed_mirror)
7992 failrec->this_mirror++;
7993
7994 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7995 btrfs_debug(fs_info,
7996 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7997 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7998 return 0;
7999 }
8000
8001 return 1;
8002}
8003
58efbc9f
OS
8004static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
8005 struct page *page, unsigned int pgoff,
8006 u64 start, u64 end, int failed_mirror,
8007 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
8008{
8009 struct io_failure_record *failrec;
7870d082
JB
8010 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8011 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8b110e39
MX
8012 struct bio *bio;
8013 int isector;
f1c77c55 8014 unsigned int read_mode = 0;
17347cec 8015 int segs;
8b110e39 8016 int ret;
58efbc9f 8017 blk_status_t status;
8b110e39 8018
37226b21 8019 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
8020
8021 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
8022 if (ret)
58efbc9f 8023 return errno_to_blk_status(ret);
8b110e39
MX
8024
8025 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
8026 failed_mirror);
8027 if (!ret) {
7870d082 8028 free_io_failure(failure_tree, io_tree, failrec);
58efbc9f 8029 return BLK_STS_IOERR;
8b110e39
MX
8030 }
8031
17347cec
LB
8032 segs = bio_segments(failed_bio);
8033 if (segs > 1 ||
8034 (failed_bio->bi_io_vec->bv_len > btrfs_inode_sectorsize(inode)))
70fd7614 8035 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
8036
8037 isector = start - btrfs_io_bio(failed_bio)->logical;
8038 isector >>= inode->i_sb->s_blocksize_bits;
8039 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 8040 pgoff, isector, repair_endio, repair_arg);
37226b21 8041 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
8042
8043 btrfs_debug(BTRFS_I(inode)->root->fs_info,
913e1535 8044 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8b110e39
MX
8045 read_mode, failrec->this_mirror, failrec->in_validation);
8046
58efbc9f
OS
8047 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8048 if (status) {
7870d082 8049 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
8050 bio_put(bio);
8051 }
8052
58efbc9f 8053 return status;
8b110e39
MX
8054}
8055
8056struct btrfs_retry_complete {
8057 struct completion done;
8058 struct inode *inode;
8059 u64 start;
8060 int uptodate;
8061};
8062
4246a0b6 8063static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
8064{
8065 struct btrfs_retry_complete *done = bio->bi_private;
7870d082 8066 struct inode *inode = done->inode;
8b110e39 8067 struct bio_vec *bvec;
7870d082 8068 struct extent_io_tree *io_tree, *failure_tree;
8b110e39
MX
8069 int i;
8070
4e4cbee9 8071 if (bio->bi_status)
8b110e39
MX
8072 goto end;
8073
2dabb324 8074 ASSERT(bio->bi_vcnt == 1);
7870d082
JB
8075 io_tree = &BTRFS_I(inode)->io_tree;
8076 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8077 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 8078
8b110e39 8079 done->uptodate = 1;
c09abff8 8080 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 8081 bio_for_each_segment_all(bvec, bio, i)
7870d082
JB
8082 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8083 io_tree, done->start, bvec->bv_page,
8084 btrfs_ino(BTRFS_I(inode)), 0);
8b110e39
MX
8085end:
8086 complete(&done->done);
8087 bio_put(bio);
8088}
8089
58efbc9f
OS
8090static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
8091 struct btrfs_io_bio *io_bio)
4b46fce2 8092{
2dabb324 8093 struct btrfs_fs_info *fs_info;
17347cec
LB
8094 struct bio_vec bvec;
8095 struct bvec_iter iter;
8b110e39 8096 struct btrfs_retry_complete done;
4b46fce2 8097 u64 start;
2dabb324
CR
8098 unsigned int pgoff;
8099 u32 sectorsize;
8100 int nr_sectors;
58efbc9f
OS
8101 blk_status_t ret;
8102 blk_status_t err = BLK_STS_OK;
4b46fce2 8103
2dabb324 8104 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8105 sectorsize = fs_info->sectorsize;
2dabb324 8106
8b110e39
MX
8107 start = io_bio->logical;
8108 done.inode = inode;
17347cec 8109 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8110
17347cec
LB
8111 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8112 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8113 pgoff = bvec.bv_offset;
2dabb324
CR
8114
8115next_block_or_try_again:
8b110e39
MX
8116 done.uptodate = 0;
8117 done.start = start;
8118 init_completion(&done.done);
8119
17347cec 8120 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
8121 pgoff, start, start + sectorsize - 1,
8122 io_bio->mirror_num,
8123 btrfs_retry_endio_nocsum, &done);
629ebf4f
LB
8124 if (ret) {
8125 err = ret;
8126 goto next;
8127 }
8b110e39 8128
9c17f6cd 8129 wait_for_completion_io(&done.done);
8b110e39
MX
8130
8131 if (!done.uptodate) {
8132 /* We might have another mirror, so try again */
2dabb324 8133 goto next_block_or_try_again;
8b110e39
MX
8134 }
8135
629ebf4f 8136next:
2dabb324
CR
8137 start += sectorsize;
8138
97bf5a55
LB
8139 nr_sectors--;
8140 if (nr_sectors) {
2dabb324 8141 pgoff += sectorsize;
97bf5a55 8142 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8143 goto next_block_or_try_again;
8144 }
8b110e39
MX
8145 }
8146
629ebf4f 8147 return err;
8b110e39
MX
8148}
8149
4246a0b6 8150static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
8151{
8152 struct btrfs_retry_complete *done = bio->bi_private;
8153 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082
JB
8154 struct extent_io_tree *io_tree, *failure_tree;
8155 struct inode *inode = done->inode;
8b110e39
MX
8156 struct bio_vec *bvec;
8157 int uptodate;
8158 int ret;
8159 int i;
8160
4e4cbee9 8161 if (bio->bi_status)
8b110e39
MX
8162 goto end;
8163
8164 uptodate = 1;
2dabb324 8165
2dabb324 8166 ASSERT(bio->bi_vcnt == 1);
2e949b0a 8167 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 8168
7870d082
JB
8169 io_tree = &BTRFS_I(inode)->io_tree;
8170 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8171
c09abff8 8172 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 8173 bio_for_each_segment_all(bvec, bio, i) {
7870d082
JB
8174 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8175 bvec->bv_offset, done->start,
8176 bvec->bv_len);
8b110e39 8177 if (!ret)
7870d082
JB
8178 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8179 failure_tree, io_tree, done->start,
8180 bvec->bv_page,
8181 btrfs_ino(BTRFS_I(inode)),
8182 bvec->bv_offset);
8b110e39
MX
8183 else
8184 uptodate = 0;
8185 }
8186
8187 done->uptodate = uptodate;
8188end:
8189 complete(&done->done);
8190 bio_put(bio);
8191}
8192
4e4cbee9
CH
8193static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8194 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39 8195{
2dabb324 8196 struct btrfs_fs_info *fs_info;
17347cec
LB
8197 struct bio_vec bvec;
8198 struct bvec_iter iter;
8b110e39
MX
8199 struct btrfs_retry_complete done;
8200 u64 start;
8201 u64 offset = 0;
2dabb324
CR
8202 u32 sectorsize;
8203 int nr_sectors;
8204 unsigned int pgoff;
8205 int csum_pos;
ef7cdac1 8206 bool uptodate = (err == 0);
8b110e39 8207 int ret;
58efbc9f 8208 blk_status_t status;
dc380aea 8209
2dabb324 8210 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8211 sectorsize = fs_info->sectorsize;
2dabb324 8212
58efbc9f 8213 err = BLK_STS_OK;
c1dc0896 8214 start = io_bio->logical;
8b110e39 8215 done.inode = inode;
17347cec 8216 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8217
17347cec
LB
8218 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8219 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
2dabb324 8220
17347cec 8221 pgoff = bvec.bv_offset;
2dabb324 8222next_block:
ef7cdac1
LB
8223 if (uptodate) {
8224 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8225 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8226 bvec.bv_page, pgoff, start, sectorsize);
8227 if (likely(!ret))
8228 goto next;
8229 }
8b110e39
MX
8230try_again:
8231 done.uptodate = 0;
8232 done.start = start;
8233 init_completion(&done.done);
8234
58efbc9f
OS
8235 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8236 pgoff, start, start + sectorsize - 1,
8237 io_bio->mirror_num, btrfs_retry_endio,
8238 &done);
8239 if (status) {
8240 err = status;
8b110e39
MX
8241 goto next;
8242 }
8243
9c17f6cd 8244 wait_for_completion_io(&done.done);
8b110e39
MX
8245
8246 if (!done.uptodate) {
8247 /* We might have another mirror, so try again */
8248 goto try_again;
8249 }
8250next:
2dabb324
CR
8251 offset += sectorsize;
8252 start += sectorsize;
8253
8254 ASSERT(nr_sectors);
8255
97bf5a55
LB
8256 nr_sectors--;
8257 if (nr_sectors) {
2dabb324 8258 pgoff += sectorsize;
97bf5a55 8259 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8260 goto next_block;
8261 }
2c30c71b 8262 }
c1dc0896
MX
8263
8264 return err;
8265}
8266
4e4cbee9
CH
8267static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8268 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39
MX
8269{
8270 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8271
8272 if (skip_csum) {
8273 if (unlikely(err))
8274 return __btrfs_correct_data_nocsum(inode, io_bio);
8275 else
58efbc9f 8276 return BLK_STS_OK;
8b110e39
MX
8277 } else {
8278 return __btrfs_subio_endio_read(inode, io_bio, err);
8279 }
8280}
8281
4246a0b6 8282static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8283{
8284 struct btrfs_dio_private *dip = bio->bi_private;
8285 struct inode *inode = dip->inode;
8286 struct bio *dio_bio;
8287 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4e4cbee9 8288 blk_status_t err = bio->bi_status;
c1dc0896 8289
99c4e3b9 8290 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8b110e39 8291 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8292
4b46fce2 8293 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8294 dip->logical_offset + dip->bytes - 1);
9be3395b 8295 dio_bio = dip->dio_bio;
4b46fce2 8296
4b46fce2 8297 kfree(dip);
c0da7aa1 8298
99c4e3b9 8299 dio_bio->bi_status = err;
4055351c 8300 dio_end_io(dio_bio);
23ea8e5a
MX
8301
8302 if (io_bio->end_io)
4e4cbee9 8303 io_bio->end_io(io_bio, blk_status_to_errno(err));
9be3395b 8304 bio_put(bio);
4b46fce2
JB
8305}
8306
52427260
QW
8307static void __endio_write_update_ordered(struct inode *inode,
8308 const u64 offset, const u64 bytes,
8309 const bool uptodate)
4b46fce2 8310{
0b246afa 8311 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8312 struct btrfs_ordered_extent *ordered = NULL;
52427260
QW
8313 struct btrfs_workqueue *wq;
8314 btrfs_work_func_t func;
14543774
FM
8315 u64 ordered_offset = offset;
8316 u64 ordered_bytes = bytes;
67c003f9 8317 u64 last_offset;
4b46fce2
JB
8318 int ret;
8319
52427260
QW
8320 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8321 wq = fs_info->endio_freespace_worker;
8322 func = btrfs_freespace_write_helper;
8323 } else {
8324 wq = fs_info->endio_write_workers;
8325 func = btrfs_endio_write_helper;
8326 }
8327
163cf09c 8328again:
67c003f9 8329 last_offset = ordered_offset;
163cf09c
CM
8330 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8331 &ordered_offset,
4246a0b6 8332 ordered_bytes,
14543774 8333 uptodate);
4b46fce2 8334 if (!ret)
163cf09c 8335 goto out_test;
4b46fce2 8336
52427260
QW
8337 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8338 btrfs_queue_work(wq, &ordered->work);
163cf09c 8339out_test:
67c003f9
NA
8340 /*
8341 * If btrfs_dec_test_ordered_pending does not find any ordered extent
8342 * in the range, we can exit.
8343 */
8344 if (ordered_offset == last_offset)
8345 return;
163cf09c
CM
8346 /*
8347 * our bio might span multiple ordered extents. If we haven't
8348 * completed the accounting for the whole dio, go back and try again
8349 */
14543774
FM
8350 if (ordered_offset < offset + bytes) {
8351 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8352 ordered = NULL;
163cf09c
CM
8353 goto again;
8354 }
14543774
FM
8355}
8356
8357static void btrfs_endio_direct_write(struct bio *bio)
8358{
8359 struct btrfs_dio_private *dip = bio->bi_private;
8360 struct bio *dio_bio = dip->dio_bio;
8361
52427260 8362 __endio_write_update_ordered(dip->inode, dip->logical_offset,
4e4cbee9 8363 dip->bytes, !bio->bi_status);
4b46fce2 8364
4b46fce2 8365 kfree(dip);
c0da7aa1 8366
4e4cbee9 8367 dio_bio->bi_status = bio->bi_status;
4055351c 8368 dio_end_io(dio_bio);
9be3395b 8369 bio_put(bio);
4b46fce2
JB
8370}
8371
8c27cb35 8372static blk_status_t __btrfs_submit_bio_start_direct_io(void *private_data,
eaf25d93
CM
8373 struct bio *bio, int mirror_num,
8374 unsigned long bio_flags, u64 offset)
8375{
c6100a4b 8376 struct inode *inode = private_data;
4e4cbee9 8377 blk_status_t ret;
2ff7e61e 8378 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8379 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8380 return 0;
8381}
8382
4246a0b6 8383static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8384{
8385 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 8386 blk_status_t err = bio->bi_status;
e65e1535 8387
8b110e39
MX
8388 if (err)
8389 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8390 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8391 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8392 bio->bi_opf,
8b110e39
MX
8393 (unsigned long long)bio->bi_iter.bi_sector,
8394 bio->bi_iter.bi_size, err);
8395
8396 if (dip->subio_endio)
8397 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8398
8399 if (err) {
e65e1535
MX
8400 dip->errors = 1;
8401
8402 /*
8403 * before atomic variable goto zero, we must make sure
8404 * dip->errors is perceived to be set.
8405 */
4e857c58 8406 smp_mb__before_atomic();
e65e1535
MX
8407 }
8408
8409 /* if there are more bios still pending for this dio, just exit */
8410 if (!atomic_dec_and_test(&dip->pending_bios))
8411 goto out;
8412
9be3395b 8413 if (dip->errors) {
e65e1535 8414 bio_io_error(dip->orig_bio);
9be3395b 8415 } else {
2dbe0c77 8416 dip->dio_bio->bi_status = BLK_STS_OK;
4246a0b6 8417 bio_endio(dip->orig_bio);
e65e1535
MX
8418 }
8419out:
8420 bio_put(bio);
8421}
8422
4e4cbee9 8423static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8424 struct btrfs_dio_private *dip,
8425 struct bio *bio,
8426 u64 file_offset)
8427{
8428 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8429 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
4e4cbee9 8430 blk_status_t ret;
c1dc0896
MX
8431
8432 /*
8433 * We load all the csum data we need when we submit
8434 * the first bio to reduce the csum tree search and
8435 * contention.
8436 */
8437 if (dip->logical_offset == file_offset) {
2ff7e61e 8438 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8439 file_offset);
8440 if (ret)
8441 return ret;
8442 }
8443
8444 if (bio == dip->orig_bio)
8445 return 0;
8446
8447 file_offset -= dip->logical_offset;
8448 file_offset >>= inode->i_sb->s_blocksize_bits;
8449 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8450
8451 return 0;
8452}
8453
58efbc9f
OS
8454static inline blk_status_t
8455__btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, u64 file_offset,
66ba772e 8456 int async_submit)
e65e1535 8457{
0b246afa 8458 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8459 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8460 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 8461 blk_status_t ret;
e65e1535 8462
b812ce28
JB
8463 if (async_submit)
8464 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8465
e65e1535 8466 bio_get(bio);
5fd02043
JB
8467
8468 if (!write) {
0b246afa 8469 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8470 if (ret)
8471 goto err;
8472 }
e65e1535 8473
e6961cac 8474 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
8475 goto map;
8476
8477 if (write && async_submit) {
c6100a4b
JB
8478 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8479 file_offset, inode,
0b246afa
JM
8480 __btrfs_submit_bio_start_direct_io,
8481 __btrfs_submit_bio_done);
e65e1535 8482 goto err;
1ae39938
JB
8483 } else if (write) {
8484 /*
8485 * If we aren't doing async submit, calculate the csum of the
8486 * bio now.
8487 */
2ff7e61e 8488 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8489 if (ret)
8490 goto err;
23ea8e5a 8491 } else {
2ff7e61e 8492 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8493 file_offset);
c2db1073
TI
8494 if (ret)
8495 goto err;
8496 }
1ae39938 8497map:
9b4a9b28 8498 ret = btrfs_map_bio(fs_info, bio, 0, 0);
e65e1535
MX
8499err:
8500 bio_put(bio);
8501 return ret;
8502}
8503
e6961cac 8504static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
e65e1535
MX
8505{
8506 struct inode *inode = dip->inode;
0b246afa 8507 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535
MX
8508 struct bio *bio;
8509 struct bio *orig_bio = dip->orig_bio;
4f024f37 8510 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535 8511 u64 file_offset = dip->logical_offset;
e65e1535 8512 u64 map_length;
1ae39938 8513 int async_submit = 0;
725130ba
LB
8514 u64 submit_len;
8515 int clone_offset = 0;
8516 int clone_len;
5f4dc8fc 8517 int ret;
58efbc9f 8518 blk_status_t status;
e65e1535 8519
4f024f37 8520 map_length = orig_bio->bi_iter.bi_size;
725130ba 8521 submit_len = map_length;
0b246afa
JM
8522 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8523 &map_length, NULL, 0);
7a5c3c9b 8524 if (ret)
e65e1535 8525 return -EIO;
facc8a22 8526
725130ba 8527 if (map_length >= submit_len) {
02f57c7a 8528 bio = orig_bio;
c1dc0896 8529 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8530 goto submit;
8531 }
8532
53b381b3 8533 /* async crcs make it difficult to collect full stripe writes. */
1b86826d 8534 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8535 async_submit = 0;
8536 else
8537 async_submit = 1;
8538
725130ba
LB
8539 /* bio split */
8540 ASSERT(map_length <= INT_MAX);
02f57c7a 8541 atomic_inc(&dip->pending_bios);
3c91ee69 8542 do {
725130ba 8543 clone_len = min_t(int, submit_len, map_length);
02f57c7a 8544
725130ba
LB
8545 /*
8546 * This will never fail as it's passing GPF_NOFS and
8547 * the allocation is backed by btrfs_bioset.
8548 */
e477094f 8549 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
725130ba
LB
8550 clone_len);
8551 bio->bi_private = dip;
8552 bio->bi_end_io = btrfs_end_dio_bio;
8553 btrfs_io_bio(bio)->logical = file_offset;
8554
8555 ASSERT(submit_len >= clone_len);
8556 submit_len -= clone_len;
8557 if (submit_len == 0)
8558 break;
e65e1535 8559
725130ba
LB
8560 /*
8561 * Increase the count before we submit the bio so we know
8562 * the end IO handler won't happen before we increase the
8563 * count. Otherwise, the dip might get freed before we're
8564 * done setting it up.
8565 */
8566 atomic_inc(&dip->pending_bios);
e65e1535 8567
66ba772e 8568 status = __btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
8569 async_submit);
8570 if (status) {
725130ba
LB
8571 bio_put(bio);
8572 atomic_dec(&dip->pending_bios);
8573 goto out_err;
8574 }
e65e1535 8575
725130ba
LB
8576 clone_offset += clone_len;
8577 start_sector += clone_len >> 9;
8578 file_offset += clone_len;
5f4dc8fc 8579
725130ba
LB
8580 map_length = submit_len;
8581 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8582 start_sector << 9, &map_length, NULL, 0);
8583 if (ret)
8584 goto out_err;
3c91ee69 8585 } while (submit_len > 0);
e65e1535 8586
02f57c7a 8587submit:
66ba772e 8588 status = __btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
58efbc9f 8589 if (!status)
e65e1535
MX
8590 return 0;
8591
8592 bio_put(bio);
8593out_err:
8594 dip->errors = 1;
8595 /*
8596 * before atomic variable goto zero, we must
8597 * make sure dip->errors is perceived to be set.
8598 */
4e857c58 8599 smp_mb__before_atomic();
e65e1535
MX
8600 if (atomic_dec_and_test(&dip->pending_bios))
8601 bio_io_error(dip->orig_bio);
8602
8603 /* bio_end_io() will handle error, so we needn't return it */
8604 return 0;
8605}
8606
8a4c1e42
MC
8607static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8608 loff_t file_offset)
4b46fce2 8609{
61de718f 8610 struct btrfs_dio_private *dip = NULL;
3892ac90
LB
8611 struct bio *bio = NULL;
8612 struct btrfs_io_bio *io_bio;
8a4c1e42 8613 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8614 int ret = 0;
8615
8b6c1d56 8616 bio = btrfs_bio_clone(dio_bio);
9be3395b 8617
c1dc0896 8618 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8619 if (!dip) {
8620 ret = -ENOMEM;
61de718f 8621 goto free_ordered;
4b46fce2 8622 }
4b46fce2 8623
9be3395b 8624 dip->private = dio_bio->bi_private;
4b46fce2
JB
8625 dip->inode = inode;
8626 dip->logical_offset = file_offset;
4f024f37
KO
8627 dip->bytes = dio_bio->bi_iter.bi_size;
8628 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
3892ac90
LB
8629 bio->bi_private = dip;
8630 dip->orig_bio = bio;
9be3395b 8631 dip->dio_bio = dio_bio;
e65e1535 8632 atomic_set(&dip->pending_bios, 0);
3892ac90
LB
8633 io_bio = btrfs_io_bio(bio);
8634 io_bio->logical = file_offset;
4b46fce2 8635
c1dc0896 8636 if (write) {
3892ac90 8637 bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8638 } else {
3892ac90 8639 bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8640 dip->subio_endio = btrfs_subio_endio_read;
8641 }
4b46fce2 8642
f28a4928
FM
8643 /*
8644 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8645 * even if we fail to submit a bio, because in such case we do the
8646 * corresponding error handling below and it must not be done a second
8647 * time by btrfs_direct_IO().
8648 */
8649 if (write) {
8650 struct btrfs_dio_data *dio_data = current->journal_info;
8651
8652 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8653 dip->bytes;
8654 dio_data->unsubmitted_oe_range_start =
8655 dio_data->unsubmitted_oe_range_end;
8656 }
8657
e6961cac 8658 ret = btrfs_submit_direct_hook(dip);
e65e1535 8659 if (!ret)
eaf25d93 8660 return;
9be3395b 8661
3892ac90
LB
8662 if (io_bio->end_io)
8663 io_bio->end_io(io_bio, ret);
9be3395b 8664
4b46fce2
JB
8665free_ordered:
8666 /*
61de718f
FM
8667 * If we arrived here it means either we failed to submit the dip
8668 * or we either failed to clone the dio_bio or failed to allocate the
8669 * dip. If we cloned the dio_bio and allocated the dip, we can just
8670 * call bio_endio against our io_bio so that we get proper resource
8671 * cleanup if we fail to submit the dip, otherwise, we must do the
8672 * same as btrfs_endio_direct_[write|read] because we can't call these
8673 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8674 */
3892ac90 8675 if (bio && dip) {
054ec2f6 8676 bio_io_error(bio);
61de718f 8677 /*
3892ac90 8678 * The end io callbacks free our dip, do the final put on bio
61de718f
FM
8679 * and all the cleanup and final put for dio_bio (through
8680 * dio_end_io()).
8681 */
8682 dip = NULL;
3892ac90 8683 bio = NULL;
61de718f 8684 } else {
14543774 8685 if (write)
52427260 8686 __endio_write_update_ordered(inode,
14543774
FM
8687 file_offset,
8688 dio_bio->bi_iter.bi_size,
52427260 8689 false);
14543774 8690 else
61de718f
FM
8691 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8692 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8693
4e4cbee9 8694 dio_bio->bi_status = BLK_STS_IOERR;
61de718f
FM
8695 /*
8696 * Releases and cleans up our dio_bio, no need to bio_put()
8697 * nor bio_endio()/bio_io_error() against dio_bio.
8698 */
4055351c 8699 dio_end_io(dio_bio);
4b46fce2 8700 }
3892ac90
LB
8701 if (bio)
8702 bio_put(bio);
61de718f 8703 kfree(dip);
4b46fce2
JB
8704}
8705
2ff7e61e 8706static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
2ff7e61e 8707 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8708{
8709 int seg;
a1b75f7d 8710 int i;
0b246afa 8711 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8712 ssize_t retval = -EINVAL;
5a5f79b5
CM
8713
8714 if (offset & blocksize_mask)
8715 goto out;
8716
28060d5d
AV
8717 if (iov_iter_alignment(iter) & blocksize_mask)
8718 goto out;
a1b75f7d 8719
28060d5d 8720 /* If this is a write we don't need to check anymore */
cd27e455 8721 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8722 return 0;
8723 /*
8724 * Check to make sure we don't have duplicate iov_base's in this
8725 * iovec, if so return EINVAL, otherwise we'll get csum errors
8726 * when reading back.
8727 */
8728 for (seg = 0; seg < iter->nr_segs; seg++) {
8729 for (i = seg + 1; i < iter->nr_segs; i++) {
8730 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8731 goto out;
8732 }
5a5f79b5
CM
8733 }
8734 retval = 0;
8735out:
8736 return retval;
8737}
eb838e73 8738
c8b8e32d 8739static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8740{
4b46fce2
JB
8741 struct file *file = iocb->ki_filp;
8742 struct inode *inode = file->f_mapping->host;
0b246afa 8743 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8744 struct btrfs_dio_data dio_data = { 0 };
364ecf36 8745 struct extent_changeset *data_reserved = NULL;
c8b8e32d 8746 loff_t offset = iocb->ki_pos;
0934856d 8747 size_t count = 0;
2e60a51e 8748 int flags = 0;
38851cc1
MX
8749 bool wakeup = true;
8750 bool relock = false;
0934856d 8751 ssize_t ret;
4b46fce2 8752
8c70c9f8 8753 if (check_direct_IO(fs_info, iter, offset))
5a5f79b5 8754 return 0;
3f7c579c 8755
fe0f07d0 8756 inode_dio_begin(inode);
38851cc1 8757
0e267c44 8758 /*
41bd9ca4
MX
8759 * The generic stuff only does filemap_write_and_wait_range, which
8760 * isn't enough if we've written compressed pages to this area, so
8761 * we need to flush the dirty pages again to make absolutely sure
8762 * that any outstanding dirty pages are on disk.
0e267c44 8763 */
a6cbcd4a 8764 count = iov_iter_count(iter);
41bd9ca4
MX
8765 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8766 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8767 filemap_fdatawrite_range(inode->i_mapping, offset,
8768 offset + count - 1);
0e267c44 8769
6f673763 8770 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8771 /*
8772 * If the write DIO is beyond the EOF, we need update
8773 * the isize, but it is protected by i_mutex. So we can
8774 * not unlock the i_mutex at this case.
8775 */
8776 if (offset + count <= inode->i_size) {
4aaedfb0 8777 dio_data.overwrite = 1;
5955102c 8778 inode_unlock(inode);
38851cc1 8779 relock = true;
edf064e7
GR
8780 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8781 ret = -EAGAIN;
8782 goto out;
38851cc1 8783 }
364ecf36
QW
8784 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8785 offset, count);
0934856d 8786 if (ret)
38851cc1 8787 goto out;
e1cbbfa5
JB
8788
8789 /*
8790 * We need to know how many extents we reserved so that we can
8791 * do the accounting properly if we go over the number we
8792 * originally calculated. Abuse current->journal_info for this.
8793 */
da17066c 8794 dio_data.reserve = round_up(count,
0b246afa 8795 fs_info->sectorsize);
f28a4928
FM
8796 dio_data.unsubmitted_oe_range_start = (u64)offset;
8797 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8798 current->journal_info = &dio_data;
97dcdea0 8799 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8800 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8801 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8802 inode_dio_end(inode);
38851cc1
MX
8803 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8804 wakeup = false;
0934856d
MX
8805 }
8806
17f8c842 8807 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8808 fs_info->fs_devices->latest_bdev,
c8b8e32d 8809 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8810 btrfs_submit_direct, flags);
6f673763 8811 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8812 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8813 current->journal_info = NULL;
ddba1bfc 8814 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8815 if (dio_data.reserve)
bc42bda2
QW
8816 btrfs_delalloc_release_space(inode, data_reserved,
8817 offset, dio_data.reserve);
f28a4928
FM
8818 /*
8819 * On error we might have left some ordered extents
8820 * without submitting corresponding bios for them, so
8821 * cleanup them up to avoid other tasks getting them
8822 * and waiting for them to complete forever.
8823 */
8824 if (dio_data.unsubmitted_oe_range_start <
8825 dio_data.unsubmitted_oe_range_end)
52427260 8826 __endio_write_update_ordered(inode,
f28a4928
FM
8827 dio_data.unsubmitted_oe_range_start,
8828 dio_data.unsubmitted_oe_range_end -
8829 dio_data.unsubmitted_oe_range_start,
52427260 8830 false);
ddba1bfc 8831 } else if (ret >= 0 && (size_t)ret < count)
bc42bda2
QW
8832 btrfs_delalloc_release_space(inode, data_reserved,
8833 offset, count - (size_t)ret);
69fe2d75 8834 btrfs_delalloc_release_extents(BTRFS_I(inode), count);
0934856d 8835 }
38851cc1 8836out:
2e60a51e 8837 if (wakeup)
fe0f07d0 8838 inode_dio_end(inode);
38851cc1 8839 if (relock)
5955102c 8840 inode_lock(inode);
0934856d 8841
364ecf36 8842 extent_changeset_free(data_reserved);
0934856d 8843 return ret;
16432985
CM
8844}
8845
05dadc09
TI
8846#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8847
1506fcc8
YS
8848static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8849 __u64 start, __u64 len)
8850{
05dadc09
TI
8851 int ret;
8852
8853 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8854 if (ret)
8855 return ret;
8856
ec29ed5b 8857 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8858}
8859
a52d9a80 8860int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8861{
d1310b2e
CM
8862 struct extent_io_tree *tree;
8863 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8864 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8865}
1832a6d5 8866
a52d9a80 8867static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8868{
d1310b2e 8869 struct extent_io_tree *tree;
be7bd730
JB
8870 struct inode *inode = page->mapping->host;
8871 int ret;
b888db2b
CM
8872
8873 if (current->flags & PF_MEMALLOC) {
8874 redirty_page_for_writepage(wbc, page);
8875 unlock_page(page);
8876 return 0;
8877 }
be7bd730
JB
8878
8879 /*
8880 * If we are under memory pressure we will call this directly from the
8881 * VM, we need to make sure we have the inode referenced for the ordered
8882 * extent. If not just return like we didn't do anything.
8883 */
8884 if (!igrab(inode)) {
8885 redirty_page_for_writepage(wbc, page);
8886 return AOP_WRITEPAGE_ACTIVATE;
8887 }
d1310b2e 8888 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8889 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8890 btrfs_add_delayed_iput(inode);
8891 return ret;
9ebefb18
CM
8892}
8893
48a3b636
ES
8894static int btrfs_writepages(struct address_space *mapping,
8895 struct writeback_control *wbc)
b293f02e 8896{
d1310b2e 8897 struct extent_io_tree *tree;
771ed689 8898
d1310b2e 8899 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8900 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8901}
8902
3ab2fb5a
CM
8903static int
8904btrfs_readpages(struct file *file, struct address_space *mapping,
8905 struct list_head *pages, unsigned nr_pages)
8906{
d1310b2e
CM
8907 struct extent_io_tree *tree;
8908 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8909 return extent_readpages(tree, mapping, pages, nr_pages,
8910 btrfs_get_extent);
8911}
e6dcd2dc 8912static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8913{
d1310b2e
CM
8914 struct extent_io_tree *tree;
8915 struct extent_map_tree *map;
a52d9a80 8916 int ret;
8c2383c3 8917
d1310b2e
CM
8918 tree = &BTRFS_I(page->mapping->host)->io_tree;
8919 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8920 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8921 if (ret == 1) {
8922 ClearPagePrivate(page);
8923 set_page_private(page, 0);
09cbfeaf 8924 put_page(page);
39279cc3 8925 }
a52d9a80 8926 return ret;
39279cc3
CM
8927}
8928
e6dcd2dc
CM
8929static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8930{
98509cfc
CM
8931 if (PageWriteback(page) || PageDirty(page))
8932 return 0;
3ba7ab22 8933 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8934}
8935
d47992f8
LC
8936static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8937 unsigned int length)
39279cc3 8938{
5fd02043 8939 struct inode *inode = page->mapping->host;
d1310b2e 8940 struct extent_io_tree *tree;
e6dcd2dc 8941 struct btrfs_ordered_extent *ordered;
2ac55d41 8942 struct extent_state *cached_state = NULL;
e6dcd2dc 8943 u64 page_start = page_offset(page);
09cbfeaf 8944 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8945 u64 start;
8946 u64 end;
131e404a 8947 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8948
8b62b72b
CM
8949 /*
8950 * we have the page locked, so new writeback can't start,
8951 * and the dirty bit won't be cleared while we are here.
8952 *
8953 * Wait for IO on this page so that we can safely clear
8954 * the PagePrivate2 bit and do ordered accounting
8955 */
e6dcd2dc 8956 wait_on_page_writeback(page);
8b62b72b 8957
5fd02043 8958 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8959 if (offset) {
8960 btrfs_releasepage(page, GFP_NOFS);
8961 return;
8962 }
131e404a
FDBM
8963
8964 if (!inode_evicting)
ff13db41 8965 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8966again:
8967 start = page_start;
a776c6fa 8968 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8969 page_end - start + 1);
e6dcd2dc 8970 if (ordered) {
dbfdb6d1 8971 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8972 /*
8973 * IO on this page will never be started, so we need
8974 * to account for any ordered extents now
8975 */
131e404a 8976 if (!inode_evicting)
dbfdb6d1 8977 clear_extent_bit(tree, start, end,
131e404a 8978 EXTENT_DIRTY | EXTENT_DELALLOC |
a7e3b975 8979 EXTENT_DELALLOC_NEW |
131e404a
FDBM
8980 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8981 EXTENT_DEFRAG, 1, 0, &cached_state,
8982 GFP_NOFS);
8b62b72b
CM
8983 /*
8984 * whoever cleared the private bit is responsible
8985 * for the finish_ordered_io
8986 */
77cef2ec
JB
8987 if (TestClearPagePrivate2(page)) {
8988 struct btrfs_ordered_inode_tree *tree;
8989 u64 new_len;
8990
8991 tree = &BTRFS_I(inode)->ordered_tree;
8992
8993 spin_lock_irq(&tree->lock);
8994 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8995 new_len = start - ordered->file_offset;
77cef2ec
JB
8996 if (new_len < ordered->truncated_len)
8997 ordered->truncated_len = new_len;
8998 spin_unlock_irq(&tree->lock);
8999
9000 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
9001 start,
9002 end - start + 1, 1))
77cef2ec 9003 btrfs_finish_ordered_io(ordered);
8b62b72b 9004 }
e6dcd2dc 9005 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
9006 if (!inode_evicting) {
9007 cached_state = NULL;
dbfdb6d1 9008 lock_extent_bits(tree, start, end,
131e404a
FDBM
9009 &cached_state);
9010 }
dbfdb6d1
CR
9011
9012 start = end + 1;
9013 if (start < page_end)
9014 goto again;
131e404a
FDBM
9015 }
9016
b9d0b389
QW
9017 /*
9018 * Qgroup reserved space handler
9019 * Page here will be either
9020 * 1) Already written to disk
9021 * In this case, its reserved space is released from data rsv map
9022 * and will be freed by delayed_ref handler finally.
9023 * So even we call qgroup_free_data(), it won't decrease reserved
9024 * space.
9025 * 2) Not written to disk
0b34c261
GR
9026 * This means the reserved space should be freed here. However,
9027 * if a truncate invalidates the page (by clearing PageDirty)
9028 * and the page is accounted for while allocating extent
9029 * in btrfs_check_data_free_space() we let delayed_ref to
9030 * free the entire extent.
b9d0b389 9031 */
0b34c261 9032 if (PageDirty(page))
bc42bda2 9033 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a
FDBM
9034 if (!inode_evicting) {
9035 clear_extent_bit(tree, page_start, page_end,
9036 EXTENT_LOCKED | EXTENT_DIRTY |
a7e3b975
FM
9037 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
9038 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
131e404a
FDBM
9039 &cached_state, GFP_NOFS);
9040
9041 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 9042 }
e6dcd2dc 9043
4a096752 9044 ClearPageChecked(page);
9ad6b7bc 9045 if (PagePrivate(page)) {
9ad6b7bc
CM
9046 ClearPagePrivate(page);
9047 set_page_private(page, 0);
09cbfeaf 9048 put_page(page);
9ad6b7bc 9049 }
39279cc3
CM
9050}
9051
9ebefb18
CM
9052/*
9053 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9054 * called from a page fault handler when a page is first dirtied. Hence we must
9055 * be careful to check for EOF conditions here. We set the page up correctly
9056 * for a written page which means we get ENOSPC checking when writing into
9057 * holes and correct delalloc and unwritten extent mapping on filesystems that
9058 * support these features.
9059 *
9060 * We are not allowed to take the i_mutex here so we have to play games to
9061 * protect against truncate races as the page could now be beyond EOF. Because
9062 * vmtruncate() writes the inode size before removing pages, once we have the
9063 * page lock we can determine safely if the page is beyond EOF. If it is not
9064 * beyond EOF, then the page is guaranteed safe against truncation until we
9065 * unlock the page.
9066 */
11bac800 9067int btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 9068{
c2ec175c 9069 struct page *page = vmf->page;
11bac800 9070 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 9071 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
9072 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9073 struct btrfs_ordered_extent *ordered;
2ac55d41 9074 struct extent_state *cached_state = NULL;
364ecf36 9075 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
9076 char *kaddr;
9077 unsigned long zero_start;
9ebefb18 9078 loff_t size;
1832a6d5 9079 int ret;
9998eb70 9080 int reserved = 0;
d0b7da88 9081 u64 reserved_space;
a52d9a80 9082 u64 page_start;
e6dcd2dc 9083 u64 page_end;
d0b7da88
CR
9084 u64 end;
9085
09cbfeaf 9086 reserved_space = PAGE_SIZE;
9ebefb18 9087
b2b5ef5c 9088 sb_start_pagefault(inode->i_sb);
df480633 9089 page_start = page_offset(page);
09cbfeaf 9090 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 9091 end = page_end;
df480633 9092
d0b7da88
CR
9093 /*
9094 * Reserving delalloc space after obtaining the page lock can lead to
9095 * deadlock. For example, if a dirty page is locked by this function
9096 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9097 * dirty page write out, then the btrfs_writepage() function could
9098 * end up waiting indefinitely to get a lock on the page currently
9099 * being processed by btrfs_page_mkwrite() function.
9100 */
364ecf36 9101 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
d0b7da88 9102 reserved_space);
9998eb70 9103 if (!ret) {
11bac800 9104 ret = file_update_time(vmf->vma->vm_file);
9998eb70
CM
9105 reserved = 1;
9106 }
56a76f82
NP
9107 if (ret) {
9108 if (ret == -ENOMEM)
9109 ret = VM_FAULT_OOM;
9110 else /* -ENOSPC, -EIO, etc */
9111 ret = VM_FAULT_SIGBUS;
9998eb70
CM
9112 if (reserved)
9113 goto out;
9114 goto out_noreserve;
56a76f82 9115 }
1832a6d5 9116
56a76f82 9117 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 9118again:
9ebefb18 9119 lock_page(page);
9ebefb18 9120 size = i_size_read(inode);
a52d9a80 9121
9ebefb18 9122 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 9123 (page_start >= size)) {
9ebefb18
CM
9124 /* page got truncated out from underneath us */
9125 goto out_unlock;
9126 }
e6dcd2dc
CM
9127 wait_on_page_writeback(page);
9128
ff13db41 9129 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
9130 set_page_extent_mapped(page);
9131
eb84ae03
CM
9132 /*
9133 * we can't set the delalloc bits if there are pending ordered
9134 * extents. Drop our locks and wait for them to finish
9135 */
a776c6fa
NB
9136 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9137 PAGE_SIZE);
e6dcd2dc 9138 if (ordered) {
2ac55d41
JB
9139 unlock_extent_cached(io_tree, page_start, page_end,
9140 &cached_state, GFP_NOFS);
e6dcd2dc 9141 unlock_page(page);
eb84ae03 9142 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
9143 btrfs_put_ordered_extent(ordered);
9144 goto again;
9145 }
9146
09cbfeaf 9147 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 9148 reserved_space = round_up(size - page_start,
0b246afa 9149 fs_info->sectorsize);
09cbfeaf 9150 if (reserved_space < PAGE_SIZE) {
d0b7da88 9151 end = page_start + reserved_space - 1;
bc42bda2
QW
9152 btrfs_delalloc_release_space(inode, data_reserved,
9153 page_start, PAGE_SIZE - reserved_space);
d0b7da88
CR
9154 }
9155 }
9156
fbf19087 9157 /*
5416034f
LB
9158 * page_mkwrite gets called when the page is firstly dirtied after it's
9159 * faulted in, but write(2) could also dirty a page and set delalloc
9160 * bits, thus in this case for space account reason, we still need to
9161 * clear any delalloc bits within this page range since we have to
9162 * reserve data&meta space before lock_page() (see above comments).
fbf19087 9163 */
d0b7da88 9164 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
9165 EXTENT_DIRTY | EXTENT_DELALLOC |
9166 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 9167 0, 0, &cached_state, GFP_NOFS);
fbf19087 9168
e3b8a485 9169 ret = btrfs_set_extent_delalloc(inode, page_start, end, 0,
ba8b04c1 9170 &cached_state, 0);
9ed74f2d 9171 if (ret) {
2ac55d41
JB
9172 unlock_extent_cached(io_tree, page_start, page_end,
9173 &cached_state, GFP_NOFS);
9ed74f2d
JB
9174 ret = VM_FAULT_SIGBUS;
9175 goto out_unlock;
9176 }
e6dcd2dc 9177 ret = 0;
9ebefb18
CM
9178
9179 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9180 if (page_start + PAGE_SIZE > size)
9181 zero_start = size & ~PAGE_MASK;
9ebefb18 9182 else
09cbfeaf 9183 zero_start = PAGE_SIZE;
9ebefb18 9184
09cbfeaf 9185 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9186 kaddr = kmap(page);
09cbfeaf 9187 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9188 flush_dcache_page(page);
9189 kunmap(page);
9190 }
247e743c 9191 ClearPageChecked(page);
e6dcd2dc 9192 set_page_dirty(page);
50a9b214 9193 SetPageUptodate(page);
5a3f23d5 9194
0b246afa 9195 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 9196 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9197 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9198
2ac55d41 9199 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
9200
9201out_unlock:
b2b5ef5c 9202 if (!ret) {
8b62f87b 9203 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
b2b5ef5c 9204 sb_end_pagefault(inode->i_sb);
364ecf36 9205 extent_changeset_free(data_reserved);
50a9b214 9206 return VM_FAULT_LOCKED;
b2b5ef5c 9207 }
9ebefb18 9208 unlock_page(page);
1832a6d5 9209out:
8b62f87b 9210 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
bc42bda2
QW
9211 btrfs_delalloc_release_space(inode, data_reserved, page_start,
9212 reserved_space);
9998eb70 9213out_noreserve:
b2b5ef5c 9214 sb_end_pagefault(inode->i_sb);
364ecf36 9215 extent_changeset_free(data_reserved);
9ebefb18
CM
9216 return ret;
9217}
9218
a41ad394 9219static int btrfs_truncate(struct inode *inode)
39279cc3 9220{
0b246afa 9221 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 9222 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9223 struct btrfs_block_rsv *rsv;
a71754fc 9224 int ret = 0;
3893e33b 9225 int err = 0;
39279cc3 9226 struct btrfs_trans_handle *trans;
0b246afa
JM
9227 u64 mask = fs_info->sectorsize - 1;
9228 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 9229
0ef8b726
JB
9230 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9231 (u64)-1);
9232 if (ret)
9233 return ret;
39279cc3 9234
fcb80c2a 9235 /*
01327610 9236 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9237 * 3 things going on here
9238 *
9239 * 1) We need to reserve space for our orphan item and the space to
9240 * delete our orphan item. Lord knows we don't want to have a dangling
9241 * orphan item because we didn't reserve space to remove it.
9242 *
9243 * 2) We need to reserve space to update our inode.
9244 *
9245 * 3) We need to have something to cache all the space that is going to
9246 * be free'd up by the truncate operation, but also have some slack
9247 * space reserved in case it uses space during the truncate (thank you
9248 * very much snapshotting).
9249 *
01327610 9250 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9251 * space doing the truncate, and we have no earthly idea how much space
01327610 9252 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9253 * doesn't end up using space reserved for updating the inode or
9254 * removing the orphan item. We also need to be able to stop the
9255 * transaction and start a new one, which means we need to be able to
9256 * update the inode several times, and we have no idea of knowing how
9257 * many times that will be, so we can't just reserve 1 item for the
01327610 9258 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9259 * Then there is the orphan item, which does indeed need to be held on
9260 * to for the whole operation, and we need nobody to touch this reserved
9261 * space except the orphan code.
9262 *
9263 * So that leaves us with
9264 *
9265 * 1) root->orphan_block_rsv - for the orphan deletion.
9266 * 2) rsv - for the truncate reservation, which we will steal from the
9267 * transaction reservation.
9268 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9269 * updating the inode.
9270 */
2ff7e61e 9271 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9272 if (!rsv)
9273 return -ENOMEM;
4a338542 9274 rsv->size = min_size;
ca7e70f5 9275 rsv->failfast = 1;
f0cd846e 9276
907cbceb 9277 /*
07127184 9278 * 1 for the truncate slack space
907cbceb
JB
9279 * 1 for updating the inode.
9280 */
f3fe820c 9281 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9282 if (IS_ERR(trans)) {
9283 err = PTR_ERR(trans);
9284 goto out;
9285 }
f0cd846e 9286
907cbceb 9287 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9288 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 9289 min_size, 0);
fcb80c2a 9290 BUG_ON(ret);
f0cd846e 9291
5dc562c5
JB
9292 /*
9293 * So if we truncate and then write and fsync we normally would just
9294 * write the extents that changed, which is a problem if we need to
9295 * first truncate that entire inode. So set this flag so we write out
9296 * all of the extents in the inode to the sync log so we're completely
9297 * safe.
9298 */
9299 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9300 trans->block_rsv = rsv;
907cbceb 9301
8082510e
YZ
9302 while (1) {
9303 ret = btrfs_truncate_inode_items(trans, root, inode,
9304 inode->i_size,
9305 BTRFS_EXTENT_DATA_KEY);
ddfae63c 9306 trans->block_rsv = &fs_info->trans_block_rsv;
28ed1345 9307 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9308 err = ret;
8082510e 9309 break;
3893e33b 9310 }
39279cc3 9311
8082510e 9312 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9313 if (ret) {
9314 err = ret;
9315 break;
9316 }
ca7e70f5 9317
3a45bb20 9318 btrfs_end_transaction(trans);
2ff7e61e 9319 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9320
9321 trans = btrfs_start_transaction(root, 2);
9322 if (IS_ERR(trans)) {
9323 ret = err = PTR_ERR(trans);
9324 trans = NULL;
9325 break;
9326 }
9327
47b5d646 9328 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9329 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 9330 rsv, min_size, 0);
ca7e70f5
JB
9331 BUG_ON(ret); /* shouldn't happen */
9332 trans->block_rsv = rsv;
8082510e
YZ
9333 }
9334
ddfae63c
JB
9335 /*
9336 * We can't call btrfs_truncate_block inside a trans handle as we could
9337 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9338 * we've truncated everything except the last little bit, and can do
9339 * btrfs_truncate_block and then update the disk_i_size.
9340 */
9341 if (ret == NEED_TRUNCATE_BLOCK) {
9342 btrfs_end_transaction(trans);
9343 btrfs_btree_balance_dirty(fs_info);
9344
9345 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9346 if (ret)
9347 goto out;
9348 trans = btrfs_start_transaction(root, 1);
9349 if (IS_ERR(trans)) {
9350 ret = PTR_ERR(trans);
9351 goto out;
9352 }
9353 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9354 }
9355
8082510e 9356 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9357 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 9358 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
3893e33b
JB
9359 if (ret)
9360 err = ret;
8082510e
YZ
9361 }
9362
917c16b2 9363 if (trans) {
0b246afa 9364 trans->block_rsv = &fs_info->trans_block_rsv;
917c16b2
CM
9365 ret = btrfs_update_inode(trans, root, inode);
9366 if (ret && !err)
9367 err = ret;
7b128766 9368
3a45bb20 9369 ret = btrfs_end_transaction(trans);
2ff7e61e 9370 btrfs_btree_balance_dirty(fs_info);
917c16b2 9371 }
fcb80c2a 9372out:
2ff7e61e 9373 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9374
3893e33b
JB
9375 if (ret && !err)
9376 err = ret;
a41ad394 9377
3893e33b 9378 return err;
39279cc3
CM
9379}
9380
d352ac68
CM
9381/*
9382 * create a new subvolume directory/inode (helper for the ioctl).
9383 */
d2fb3437 9384int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9385 struct btrfs_root *new_root,
9386 struct btrfs_root *parent_root,
9387 u64 new_dirid)
39279cc3 9388{
39279cc3 9389 struct inode *inode;
76dda93c 9390 int err;
00e4e6b3 9391 u64 index = 0;
39279cc3 9392
12fc9d09
FA
9393 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9394 new_dirid, new_dirid,
9395 S_IFDIR | (~current_umask() & S_IRWXUGO),
9396 &index);
54aa1f4d 9397 if (IS_ERR(inode))
f46b5a66 9398 return PTR_ERR(inode);
39279cc3
CM
9399 inode->i_op = &btrfs_dir_inode_operations;
9400 inode->i_fop = &btrfs_dir_file_operations;
9401
bfe86848 9402 set_nlink(inode, 1);
6ef06d27 9403 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9404 unlock_new_inode(inode);
3b96362c 9405
63541927
FDBM
9406 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9407 if (err)
9408 btrfs_err(new_root->fs_info,
351fd353 9409 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9410 new_root->root_key.objectid, err);
9411
76dda93c 9412 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9413
76dda93c 9414 iput(inode);
ce598979 9415 return err;
39279cc3
CM
9416}
9417
39279cc3
CM
9418struct inode *btrfs_alloc_inode(struct super_block *sb)
9419{
69fe2d75 9420 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 9421 struct btrfs_inode *ei;
2ead6ae7 9422 struct inode *inode;
39279cc3
CM
9423
9424 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9425 if (!ei)
9426 return NULL;
2ead6ae7
YZ
9427
9428 ei->root = NULL;
2ead6ae7 9429 ei->generation = 0;
15ee9bc7 9430 ei->last_trans = 0;
257c62e1 9431 ei->last_sub_trans = 0;
e02119d5 9432 ei->logged_trans = 0;
2ead6ae7 9433 ei->delalloc_bytes = 0;
a7e3b975 9434 ei->new_delalloc_bytes = 0;
47059d93 9435 ei->defrag_bytes = 0;
2ead6ae7
YZ
9436 ei->disk_i_size = 0;
9437 ei->flags = 0;
7709cde3 9438 ei->csum_bytes = 0;
2ead6ae7 9439 ei->index_cnt = (u64)-1;
67de1176 9440 ei->dir_index = 0;
2ead6ae7 9441 ei->last_unlink_trans = 0;
46d8bc34 9442 ei->last_log_commit = 0;
8089fe62 9443 ei->delayed_iput_count = 0;
2ead6ae7 9444
9e0baf60
JB
9445 spin_lock_init(&ei->lock);
9446 ei->outstanding_extents = 0;
69fe2d75
JB
9447 if (sb->s_magic != BTRFS_TEST_MAGIC)
9448 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9449 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 9450 ei->runtime_flags = 0;
b52aa8c9 9451 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 9452 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9453
16cdcec7
MX
9454 ei->delayed_node = NULL;
9455
9cc97d64 9456 ei->i_otime.tv_sec = 0;
9457 ei->i_otime.tv_nsec = 0;
9458
2ead6ae7 9459 inode = &ei->vfs_inode;
a8067e02 9460 extent_map_tree_init(&ei->extent_tree);
c6100a4b
JB
9461 extent_io_tree_init(&ei->io_tree, inode);
9462 extent_io_tree_init(&ei->io_failure_tree, inode);
0b32f4bb
JB
9463 ei->io_tree.track_uptodate = 1;
9464 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9465 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9466 mutex_init(&ei->log_mutex);
f248679e 9467 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9468 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9469 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9470 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9471 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9472 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9473
9474 return inode;
39279cc3
CM
9475}
9476
aaedb55b
JB
9477#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9478void btrfs_test_destroy_inode(struct inode *inode)
9479{
dcdbc059 9480 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9481 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9482}
9483#endif
9484
fa0d7e3d
NP
9485static void btrfs_i_callback(struct rcu_head *head)
9486{
9487 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9488 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9489}
9490
39279cc3
CM
9491void btrfs_destroy_inode(struct inode *inode)
9492{
0b246afa 9493 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9494 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9495 struct btrfs_root *root = BTRFS_I(inode)->root;
9496
b3d9b7a3 9497 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9498 WARN_ON(inode->i_data.nrpages);
69fe2d75
JB
9499 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9500 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9e0baf60 9501 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7709cde3 9502 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 9503 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 9504 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9505 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9506
a6dbd429
JB
9507 /*
9508 * This can happen where we create an inode, but somebody else also
9509 * created the same inode and we need to destroy the one we already
9510 * created.
9511 */
9512 if (!root)
9513 goto free;
9514
8a35d95f
JB
9515 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9516 &BTRFS_I(inode)->runtime_flags)) {
0b246afa 9517 btrfs_info(fs_info, "inode %llu still on the orphan list",
4a0cc7ca 9518 btrfs_ino(BTRFS_I(inode)));
8a35d95f 9519 atomic_dec(&root->orphan_inodes);
7b128766 9520 }
7b128766 9521
d397712b 9522 while (1) {
e6dcd2dc
CM
9523 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9524 if (!ordered)
9525 break;
9526 else {
0b246afa 9527 btrfs_err(fs_info,
5d163e0e
JM
9528 "found ordered extent %llu %llu on inode cleanup",
9529 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9530 btrfs_remove_ordered_extent(inode, ordered);
9531 btrfs_put_ordered_extent(ordered);
9532 btrfs_put_ordered_extent(ordered);
9533 }
9534 }
56fa9d07 9535 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9536 inode_tree_del(inode);
dcdbc059 9537 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
a6dbd429 9538free:
fa0d7e3d 9539 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9540}
9541
45321ac5 9542int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9543{
9544 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9545
6379ef9f
NA
9546 if (root == NULL)
9547 return 1;
9548
fa6ac876 9549 /* the snap/subvol tree is on deleting */
69e9c6c6 9550 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9551 return 1;
76dda93c 9552 else
45321ac5 9553 return generic_drop_inode(inode);
76dda93c
YZ
9554}
9555
0ee0fda0 9556static void init_once(void *foo)
39279cc3
CM
9557{
9558 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9559
9560 inode_init_once(&ei->vfs_inode);
9561}
9562
9563void btrfs_destroy_cachep(void)
9564{
8c0a8537
KS
9565 /*
9566 * Make sure all delayed rcu free inodes are flushed before we
9567 * destroy cache.
9568 */
9569 rcu_barrier();
5598e900
KM
9570 kmem_cache_destroy(btrfs_inode_cachep);
9571 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
9572 kmem_cache_destroy(btrfs_path_cachep);
9573 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9574}
9575
9576int btrfs_init_cachep(void)
9577{
837e1972 9578 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9579 sizeof(struct btrfs_inode), 0,
5d097056
VD
9580 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9581 init_once);
39279cc3
CM
9582 if (!btrfs_inode_cachep)
9583 goto fail;
9601e3f6 9584
837e1972 9585 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9586 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9587 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9588 if (!btrfs_trans_handle_cachep)
9589 goto fail;
9601e3f6 9590
837e1972 9591 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9592 sizeof(struct btrfs_path), 0,
fba4b697 9593 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9594 if (!btrfs_path_cachep)
9595 goto fail;
9601e3f6 9596
837e1972 9597 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9598 sizeof(struct btrfs_free_space), 0,
fba4b697 9599 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9600 if (!btrfs_free_space_cachep)
9601 goto fail;
9602
39279cc3
CM
9603 return 0;
9604fail:
9605 btrfs_destroy_cachep();
9606 return -ENOMEM;
9607}
9608
a528d35e
DH
9609static int btrfs_getattr(const struct path *path, struct kstat *stat,
9610 u32 request_mask, unsigned int flags)
39279cc3 9611{
df0af1a5 9612 u64 delalloc_bytes;
a528d35e 9613 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9614 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
9615 u32 bi_flags = BTRFS_I(inode)->flags;
9616
9617 stat->result_mask |= STATX_BTIME;
9618 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9619 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9620 if (bi_flags & BTRFS_INODE_APPEND)
9621 stat->attributes |= STATX_ATTR_APPEND;
9622 if (bi_flags & BTRFS_INODE_COMPRESS)
9623 stat->attributes |= STATX_ATTR_COMPRESSED;
9624 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9625 stat->attributes |= STATX_ATTR_IMMUTABLE;
9626 if (bi_flags & BTRFS_INODE_NODUMP)
9627 stat->attributes |= STATX_ATTR_NODUMP;
9628
9629 stat->attributes_mask |= (STATX_ATTR_APPEND |
9630 STATX_ATTR_COMPRESSED |
9631 STATX_ATTR_IMMUTABLE |
9632 STATX_ATTR_NODUMP);
fadc0d8b 9633
39279cc3 9634 generic_fillattr(inode, stat);
0ee5dc67 9635 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9636
9637 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9638 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 9639 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9640 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9641 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9642 return 0;
9643}
9644
cdd1fedf
DF
9645static int btrfs_rename_exchange(struct inode *old_dir,
9646 struct dentry *old_dentry,
9647 struct inode *new_dir,
9648 struct dentry *new_dentry)
9649{
0b246afa 9650 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9651 struct btrfs_trans_handle *trans;
9652 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9653 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9654 struct inode *new_inode = new_dentry->d_inode;
9655 struct inode *old_inode = old_dentry->d_inode;
c2050a45 9656 struct timespec ctime = current_time(old_inode);
cdd1fedf 9657 struct dentry *parent;
4a0cc7ca
NB
9658 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9659 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9660 u64 old_idx = 0;
9661 u64 new_idx = 0;
9662 u64 root_objectid;
9663 int ret;
86e8aa0e
FM
9664 bool root_log_pinned = false;
9665 bool dest_log_pinned = false;
cdd1fedf
DF
9666
9667 /* we only allow rename subvolume link between subvolumes */
9668 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9669 return -EXDEV;
9670
9671 /* close the race window with snapshot create/destroy ioctl */
9672 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9673 down_read(&fs_info->subvol_sem);
cdd1fedf 9674 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9675 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9676
9677 /*
9678 * We want to reserve the absolute worst case amount of items. So if
9679 * both inodes are subvols and we need to unlink them then that would
9680 * require 4 item modifications, but if they are both normal inodes it
9681 * would require 5 item modifications, so we'll assume their normal
9682 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9683 * should cover the worst case number of items we'll modify.
9684 */
9685 trans = btrfs_start_transaction(root, 12);
9686 if (IS_ERR(trans)) {
9687 ret = PTR_ERR(trans);
9688 goto out_notrans;
9689 }
9690
9691 /*
9692 * We need to find a free sequence number both in the source and
9693 * in the destination directory for the exchange.
9694 */
877574e2 9695 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9696 if (ret)
9697 goto out_fail;
877574e2 9698 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9699 if (ret)
9700 goto out_fail;
9701
9702 BTRFS_I(old_inode)->dir_index = 0ULL;
9703 BTRFS_I(new_inode)->dir_index = 0ULL;
9704
9705 /* Reference for the source. */
9706 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9707 /* force full log commit if subvolume involved. */
0b246afa 9708 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9709 } else {
376e5a57
FM
9710 btrfs_pin_log_trans(root);
9711 root_log_pinned = true;
cdd1fedf
DF
9712 ret = btrfs_insert_inode_ref(trans, dest,
9713 new_dentry->d_name.name,
9714 new_dentry->d_name.len,
9715 old_ino,
f85b7379
DS
9716 btrfs_ino(BTRFS_I(new_dir)),
9717 old_idx);
cdd1fedf
DF
9718 if (ret)
9719 goto out_fail;
cdd1fedf
DF
9720 }
9721
9722 /* And now for the dest. */
9723 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9724 /* force full log commit if subvolume involved. */
0b246afa 9725 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9726 } else {
376e5a57
FM
9727 btrfs_pin_log_trans(dest);
9728 dest_log_pinned = true;
cdd1fedf
DF
9729 ret = btrfs_insert_inode_ref(trans, root,
9730 old_dentry->d_name.name,
9731 old_dentry->d_name.len,
9732 new_ino,
f85b7379
DS
9733 btrfs_ino(BTRFS_I(old_dir)),
9734 new_idx);
cdd1fedf
DF
9735 if (ret)
9736 goto out_fail;
cdd1fedf
DF
9737 }
9738
9739 /* Update inode version and ctime/mtime. */
9740 inode_inc_iversion(old_dir);
9741 inode_inc_iversion(new_dir);
9742 inode_inc_iversion(old_inode);
9743 inode_inc_iversion(new_inode);
9744 old_dir->i_ctime = old_dir->i_mtime = ctime;
9745 new_dir->i_ctime = new_dir->i_mtime = ctime;
9746 old_inode->i_ctime = ctime;
9747 new_inode->i_ctime = ctime;
9748
9749 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9750 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9751 BTRFS_I(old_inode), 1);
9752 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9753 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9754 }
9755
9756 /* src is a subvolume */
9757 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9758 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9759 ret = btrfs_unlink_subvol(trans, root, old_dir,
9760 root_objectid,
9761 old_dentry->d_name.name,
9762 old_dentry->d_name.len);
9763 } else { /* src is an inode */
4ec5934e
NB
9764 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9765 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9766 old_dentry->d_name.name,
9767 old_dentry->d_name.len);
9768 if (!ret)
9769 ret = btrfs_update_inode(trans, root, old_inode);
9770 }
9771 if (ret) {
66642832 9772 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9773 goto out_fail;
9774 }
9775
9776 /* dest is a subvolume */
9777 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9778 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9779 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9780 root_objectid,
9781 new_dentry->d_name.name,
9782 new_dentry->d_name.len);
9783 } else { /* dest is an inode */
4ec5934e
NB
9784 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9785 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9786 new_dentry->d_name.name,
9787 new_dentry->d_name.len);
9788 if (!ret)
9789 ret = btrfs_update_inode(trans, dest, new_inode);
9790 }
9791 if (ret) {
66642832 9792 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9793 goto out_fail;
9794 }
9795
db0a669f 9796 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9797 new_dentry->d_name.name,
9798 new_dentry->d_name.len, 0, old_idx);
9799 if (ret) {
66642832 9800 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9801 goto out_fail;
9802 }
9803
db0a669f 9804 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9805 old_dentry->d_name.name,
9806 old_dentry->d_name.len, 0, new_idx);
9807 if (ret) {
66642832 9808 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9809 goto out_fail;
9810 }
9811
9812 if (old_inode->i_nlink == 1)
9813 BTRFS_I(old_inode)->dir_index = old_idx;
9814 if (new_inode->i_nlink == 1)
9815 BTRFS_I(new_inode)->dir_index = new_idx;
9816
86e8aa0e 9817 if (root_log_pinned) {
cdd1fedf 9818 parent = new_dentry->d_parent;
f85b7379
DS
9819 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9820 parent);
cdd1fedf 9821 btrfs_end_log_trans(root);
86e8aa0e 9822 root_log_pinned = false;
cdd1fedf 9823 }
86e8aa0e 9824 if (dest_log_pinned) {
cdd1fedf 9825 parent = old_dentry->d_parent;
f85b7379
DS
9826 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9827 parent);
cdd1fedf 9828 btrfs_end_log_trans(dest);
86e8aa0e 9829 dest_log_pinned = false;
cdd1fedf
DF
9830 }
9831out_fail:
86e8aa0e
FM
9832 /*
9833 * If we have pinned a log and an error happened, we unpin tasks
9834 * trying to sync the log and force them to fallback to a transaction
9835 * commit if the log currently contains any of the inodes involved in
9836 * this rename operation (to ensure we do not persist a log with an
9837 * inconsistent state for any of these inodes or leading to any
9838 * inconsistencies when replayed). If the transaction was aborted, the
9839 * abortion reason is propagated to userspace when attempting to commit
9840 * the transaction. If the log does not contain any of these inodes, we
9841 * allow the tasks to sync it.
9842 */
9843 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9844 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9845 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9846 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9847 (new_inode &&
0f8939b8 9848 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9849 btrfs_set_log_full_commit(fs_info, trans);
86e8aa0e
FM
9850
9851 if (root_log_pinned) {
9852 btrfs_end_log_trans(root);
9853 root_log_pinned = false;
9854 }
9855 if (dest_log_pinned) {
9856 btrfs_end_log_trans(dest);
9857 dest_log_pinned = false;
9858 }
9859 }
3a45bb20 9860 ret = btrfs_end_transaction(trans);
cdd1fedf
DF
9861out_notrans:
9862 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9863 up_read(&fs_info->subvol_sem);
cdd1fedf 9864 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9865 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9866
9867 return ret;
9868}
9869
9870static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9871 struct btrfs_root *root,
9872 struct inode *dir,
9873 struct dentry *dentry)
9874{
9875 int ret;
9876 struct inode *inode;
9877 u64 objectid;
9878 u64 index;
9879
9880 ret = btrfs_find_free_ino(root, &objectid);
9881 if (ret)
9882 return ret;
9883
9884 inode = btrfs_new_inode(trans, root, dir,
9885 dentry->d_name.name,
9886 dentry->d_name.len,
4a0cc7ca 9887 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9888 objectid,
9889 S_IFCHR | WHITEOUT_MODE,
9890 &index);
9891
9892 if (IS_ERR(inode)) {
9893 ret = PTR_ERR(inode);
9894 return ret;
9895 }
9896
9897 inode->i_op = &btrfs_special_inode_operations;
9898 init_special_inode(inode, inode->i_mode,
9899 WHITEOUT_DEV);
9900
9901 ret = btrfs_init_inode_security(trans, inode, dir,
9902 &dentry->d_name);
9903 if (ret)
c9901618 9904 goto out;
cdd1fedf 9905
cef415af
NB
9906 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9907 BTRFS_I(inode), 0, index);
cdd1fedf 9908 if (ret)
c9901618 9909 goto out;
cdd1fedf
DF
9910
9911 ret = btrfs_update_inode(trans, root, inode);
c9901618 9912out:
cdd1fedf 9913 unlock_new_inode(inode);
c9901618
FM
9914 if (ret)
9915 inode_dec_link_count(inode);
cdd1fedf
DF
9916 iput(inode);
9917
c9901618 9918 return ret;
cdd1fedf
DF
9919}
9920
d397712b 9921static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9922 struct inode *new_dir, struct dentry *new_dentry,
9923 unsigned int flags)
39279cc3 9924{
0b246afa 9925 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9926 struct btrfs_trans_handle *trans;
5062af35 9927 unsigned int trans_num_items;
39279cc3 9928 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9929 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9930 struct inode *new_inode = d_inode(new_dentry);
9931 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9932 u64 index = 0;
4df27c4d 9933 u64 root_objectid;
39279cc3 9934 int ret;
4a0cc7ca 9935 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9936 bool log_pinned = false;
39279cc3 9937
4a0cc7ca 9938 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9939 return -EPERM;
9940
4df27c4d 9941 /* we only allow rename subvolume link between subvolumes */
33345d01 9942 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9943 return -EXDEV;
9944
33345d01 9945 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9946 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9947 return -ENOTEMPTY;
5f39d397 9948
4df27c4d
YZ
9949 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9950 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9951 return -ENOTEMPTY;
9c52057c
CM
9952
9953
9954 /* check for collisions, even if the name isn't there */
4871c158 9955 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9956 new_dentry->d_name.name,
9957 new_dentry->d_name.len);
9958
9959 if (ret) {
9960 if (ret == -EEXIST) {
9961 /* we shouldn't get
9962 * eexist without a new_inode */
fae7f21c 9963 if (WARN_ON(!new_inode)) {
9c52057c
CM
9964 return ret;
9965 }
9966 } else {
9967 /* maybe -EOVERFLOW */
9968 return ret;
9969 }
9970 }
9971 ret = 0;
9972
5a3f23d5 9973 /*
8d875f95
CM
9974 * we're using rename to replace one file with another. Start IO on it
9975 * now so we don't add too much work to the end of the transaction
5a3f23d5 9976 */
8d875f95 9977 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9978 filemap_flush(old_inode->i_mapping);
9979
76dda93c 9980 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9981 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9982 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9983 /*
9984 * We want to reserve the absolute worst case amount of items. So if
9985 * both inodes are subvols and we need to unlink them then that would
9986 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9987 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9988 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9989 * should cover the worst case number of items we'll modify.
5062af35
FM
9990 * If our rename has the whiteout flag, we need more 5 units for the
9991 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9992 * when selinux is enabled).
a22285a6 9993 */
5062af35
FM
9994 trans_num_items = 11;
9995 if (flags & RENAME_WHITEOUT)
9996 trans_num_items += 5;
9997 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9998 if (IS_ERR(trans)) {
cdd1fedf
DF
9999 ret = PTR_ERR(trans);
10000 goto out_notrans;
10001 }
76dda93c 10002
4df27c4d
YZ
10003 if (dest != root)
10004 btrfs_record_root_in_trans(trans, dest);
5f39d397 10005
877574e2 10006 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
10007 if (ret)
10008 goto out_fail;
5a3f23d5 10009
67de1176 10010 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 10011 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 10012 /* force full log commit if subvolume involved. */
0b246afa 10013 btrfs_set_log_full_commit(fs_info, trans);
4df27c4d 10014 } else {
c4aba954
FM
10015 btrfs_pin_log_trans(root);
10016 log_pinned = true;
a5719521
YZ
10017 ret = btrfs_insert_inode_ref(trans, dest,
10018 new_dentry->d_name.name,
10019 new_dentry->d_name.len,
33345d01 10020 old_ino,
4a0cc7ca 10021 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
10022 if (ret)
10023 goto out_fail;
4df27c4d 10024 }
5a3f23d5 10025
0c4d2d95
JB
10026 inode_inc_iversion(old_dir);
10027 inode_inc_iversion(new_dir);
10028 inode_inc_iversion(old_inode);
04b285f3
DD
10029 old_dir->i_ctime = old_dir->i_mtime =
10030 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 10031 old_inode->i_ctime = current_time(old_dir);
5f39d397 10032
12fcfd22 10033 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
10034 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
10035 BTRFS_I(old_inode), 1);
12fcfd22 10036
33345d01 10037 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
10038 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
10039 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
10040 old_dentry->d_name.name,
10041 old_dentry->d_name.len);
10042 } else {
4ec5934e
NB
10043 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
10044 BTRFS_I(d_inode(old_dentry)),
92986796
AV
10045 old_dentry->d_name.name,
10046 old_dentry->d_name.len);
10047 if (!ret)
10048 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 10049 }
79787eaa 10050 if (ret) {
66642832 10051 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10052 goto out_fail;
10053 }
39279cc3
CM
10054
10055 if (new_inode) {
0c4d2d95 10056 inode_inc_iversion(new_inode);
c2050a45 10057 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 10058 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
10059 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
10060 root_objectid = BTRFS_I(new_inode)->location.objectid;
10061 ret = btrfs_unlink_subvol(trans, dest, new_dir,
10062 root_objectid,
10063 new_dentry->d_name.name,
10064 new_dentry->d_name.len);
10065 BUG_ON(new_inode->i_nlink == 0);
10066 } else {
4ec5934e
NB
10067 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10068 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
10069 new_dentry->d_name.name,
10070 new_dentry->d_name.len);
10071 }
4ef31a45 10072 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
10073 ret = btrfs_orphan_add(trans,
10074 BTRFS_I(d_inode(new_dentry)));
79787eaa 10075 if (ret) {
66642832 10076 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10077 goto out_fail;
10078 }
39279cc3 10079 }
aec7477b 10080
db0a669f 10081 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 10082 new_dentry->d_name.name,
a5719521 10083 new_dentry->d_name.len, 0, index);
79787eaa 10084 if (ret) {
66642832 10085 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10086 goto out_fail;
10087 }
39279cc3 10088
67de1176
MX
10089 if (old_inode->i_nlink == 1)
10090 BTRFS_I(old_inode)->dir_index = index;
10091
3dc9e8f7 10092 if (log_pinned) {
10d9f309 10093 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 10094
f85b7379
DS
10095 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
10096 parent);
4df27c4d 10097 btrfs_end_log_trans(root);
3dc9e8f7 10098 log_pinned = false;
4df27c4d 10099 }
cdd1fedf
DF
10100
10101 if (flags & RENAME_WHITEOUT) {
10102 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10103 old_dentry);
10104
10105 if (ret) {
66642832 10106 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
10107 goto out_fail;
10108 }
4df27c4d 10109 }
39279cc3 10110out_fail:
3dc9e8f7
FM
10111 /*
10112 * If we have pinned the log and an error happened, we unpin tasks
10113 * trying to sync the log and force them to fallback to a transaction
10114 * commit if the log currently contains any of the inodes involved in
10115 * this rename operation (to ensure we do not persist a log with an
10116 * inconsistent state for any of these inodes or leading to any
10117 * inconsistencies when replayed). If the transaction was aborted, the
10118 * abortion reason is propagated to userspace when attempting to commit
10119 * the transaction. If the log does not contain any of these inodes, we
10120 * allow the tasks to sync it.
10121 */
10122 if (ret && log_pinned) {
0f8939b8
NB
10123 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10124 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10125 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 10126 (new_inode &&
0f8939b8 10127 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 10128 btrfs_set_log_full_commit(fs_info, trans);
3dc9e8f7
FM
10129
10130 btrfs_end_log_trans(root);
10131 log_pinned = false;
10132 }
3a45bb20 10133 btrfs_end_transaction(trans);
b44c59a8 10134out_notrans:
33345d01 10135 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 10136 up_read(&fs_info->subvol_sem);
9ed74f2d 10137
39279cc3
CM
10138 return ret;
10139}
10140
80ace85c
MS
10141static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10142 struct inode *new_dir, struct dentry *new_dentry,
10143 unsigned int flags)
10144{
cdd1fedf 10145 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
10146 return -EINVAL;
10147
cdd1fedf
DF
10148 if (flags & RENAME_EXCHANGE)
10149 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10150 new_dentry);
10151
10152 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
10153}
10154
8ccf6f19
MX
10155static void btrfs_run_delalloc_work(struct btrfs_work *work)
10156{
10157 struct btrfs_delalloc_work *delalloc_work;
9f23e289 10158 struct inode *inode;
8ccf6f19
MX
10159
10160 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10161 work);
9f23e289 10162 inode = delalloc_work->inode;
30424601
DS
10163 filemap_flush(inode->i_mapping);
10164 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10165 &BTRFS_I(inode)->runtime_flags))
9f23e289 10166 filemap_flush(inode->i_mapping);
8ccf6f19
MX
10167
10168 if (delalloc_work->delay_iput)
9f23e289 10169 btrfs_add_delayed_iput(inode);
8ccf6f19 10170 else
9f23e289 10171 iput(inode);
8ccf6f19
MX
10172 complete(&delalloc_work->completion);
10173}
10174
10175struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 10176 int delay_iput)
8ccf6f19
MX
10177{
10178 struct btrfs_delalloc_work *work;
10179
100d5702 10180 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
10181 if (!work)
10182 return NULL;
10183
10184 init_completion(&work->completion);
10185 INIT_LIST_HEAD(&work->list);
10186 work->inode = inode;
8ccf6f19 10187 work->delay_iput = delay_iput;
9e0af237
LB
10188 WARN_ON_ONCE(!inode);
10189 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10190 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
10191
10192 return work;
10193}
10194
10195void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10196{
10197 wait_for_completion(&work->completion);
100d5702 10198 kfree(work);
8ccf6f19
MX
10199}
10200
d352ac68
CM
10201/*
10202 * some fairly slow code that needs optimization. This walks the list
10203 * of all the inodes with pending delalloc and forces them to disk.
10204 */
6c255e67
MX
10205static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10206 int nr)
ea8c2819 10207{
ea8c2819 10208 struct btrfs_inode *binode;
5b21f2ed 10209 struct inode *inode;
8ccf6f19
MX
10210 struct btrfs_delalloc_work *work, *next;
10211 struct list_head works;
1eafa6c7 10212 struct list_head splice;
8ccf6f19 10213 int ret = 0;
ea8c2819 10214
8ccf6f19 10215 INIT_LIST_HEAD(&works);
1eafa6c7 10216 INIT_LIST_HEAD(&splice);
63607cc8 10217
573bfb72 10218 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10219 spin_lock(&root->delalloc_lock);
10220 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10221 while (!list_empty(&splice)) {
10222 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10223 delalloc_inodes);
1eafa6c7 10224
eb73c1b7
MX
10225 list_move_tail(&binode->delalloc_inodes,
10226 &root->delalloc_inodes);
5b21f2ed 10227 inode = igrab(&binode->vfs_inode);
df0af1a5 10228 if (!inode) {
eb73c1b7 10229 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10230 continue;
df0af1a5 10231 }
eb73c1b7 10232 spin_unlock(&root->delalloc_lock);
1eafa6c7 10233
651d494a 10234 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10235 if (!work) {
f4ab9ea7
JB
10236 if (delay_iput)
10237 btrfs_add_delayed_iput(inode);
10238 else
10239 iput(inode);
1eafa6c7 10240 ret = -ENOMEM;
a1ecaabb 10241 goto out;
5b21f2ed 10242 }
1eafa6c7 10243 list_add_tail(&work->list, &works);
a44903ab
QW
10244 btrfs_queue_work(root->fs_info->flush_workers,
10245 &work->work);
6c255e67
MX
10246 ret++;
10247 if (nr != -1 && ret >= nr)
a1ecaabb 10248 goto out;
5b21f2ed 10249 cond_resched();
eb73c1b7 10250 spin_lock(&root->delalloc_lock);
ea8c2819 10251 }
eb73c1b7 10252 spin_unlock(&root->delalloc_lock);
8c8bee1d 10253
a1ecaabb 10254out:
eb73c1b7
MX
10255 list_for_each_entry_safe(work, next, &works, list) {
10256 list_del_init(&work->list);
10257 btrfs_wait_and_free_delalloc_work(work);
10258 }
10259
10260 if (!list_empty_careful(&splice)) {
10261 spin_lock(&root->delalloc_lock);
10262 list_splice_tail(&splice, &root->delalloc_inodes);
10263 spin_unlock(&root->delalloc_lock);
10264 }
573bfb72 10265 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10266 return ret;
10267}
1eafa6c7 10268
eb73c1b7
MX
10269int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10270{
0b246afa 10271 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10272 int ret;
1eafa6c7 10273
0b246afa 10274 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10275 return -EROFS;
10276
6c255e67
MX
10277 ret = __start_delalloc_inodes(root, delay_iput, -1);
10278 if (ret > 0)
10279 ret = 0;
eb73c1b7
MX
10280 return ret;
10281}
10282
6c255e67
MX
10283int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10284 int nr)
eb73c1b7
MX
10285{
10286 struct btrfs_root *root;
10287 struct list_head splice;
10288 int ret;
10289
2c21b4d7 10290 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10291 return -EROFS;
10292
10293 INIT_LIST_HEAD(&splice);
10294
573bfb72 10295 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10296 spin_lock(&fs_info->delalloc_root_lock);
10297 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10298 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10299 root = list_first_entry(&splice, struct btrfs_root,
10300 delalloc_root);
10301 root = btrfs_grab_fs_root(root);
10302 BUG_ON(!root);
10303 list_move_tail(&root->delalloc_root,
10304 &fs_info->delalloc_roots);
10305 spin_unlock(&fs_info->delalloc_root_lock);
10306
6c255e67 10307 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10308 btrfs_put_fs_root(root);
6c255e67 10309 if (ret < 0)
eb73c1b7
MX
10310 goto out;
10311
6c255e67
MX
10312 if (nr != -1) {
10313 nr -= ret;
10314 WARN_ON(nr < 0);
10315 }
eb73c1b7 10316 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10317 }
eb73c1b7 10318 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10319
6c255e67 10320 ret = 0;
eb73c1b7 10321out:
1eafa6c7 10322 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10323 spin_lock(&fs_info->delalloc_root_lock);
10324 list_splice_tail(&splice, &fs_info->delalloc_roots);
10325 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10326 }
573bfb72 10327 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10328 return ret;
ea8c2819
CM
10329}
10330
39279cc3
CM
10331static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10332 const char *symname)
10333{
0b246afa 10334 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10335 struct btrfs_trans_handle *trans;
10336 struct btrfs_root *root = BTRFS_I(dir)->root;
10337 struct btrfs_path *path;
10338 struct btrfs_key key;
1832a6d5 10339 struct inode *inode = NULL;
39279cc3
CM
10340 int err;
10341 int drop_inode = 0;
10342 u64 objectid;
67871254 10343 u64 index = 0;
39279cc3
CM
10344 int name_len;
10345 int datasize;
5f39d397 10346 unsigned long ptr;
39279cc3 10347 struct btrfs_file_extent_item *ei;
5f39d397 10348 struct extent_buffer *leaf;
39279cc3 10349
f06becc4 10350 name_len = strlen(symname);
0b246afa 10351 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10352 return -ENAMETOOLONG;
1832a6d5 10353
9ed74f2d
JB
10354 /*
10355 * 2 items for inode item and ref
10356 * 2 items for dir items
9269d12b
FM
10357 * 1 item for updating parent inode item
10358 * 1 item for the inline extent item
9ed74f2d
JB
10359 * 1 item for xattr if selinux is on
10360 */
9269d12b 10361 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10362 if (IS_ERR(trans))
10363 return PTR_ERR(trans);
1832a6d5 10364
581bb050
LZ
10365 err = btrfs_find_free_ino(root, &objectid);
10366 if (err)
10367 goto out_unlock;
10368
aec7477b 10369 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10370 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10371 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10372 if (IS_ERR(inode)) {
10373 err = PTR_ERR(inode);
39279cc3 10374 goto out_unlock;
7cf96da3 10375 }
39279cc3 10376
ad19db71
CS
10377 /*
10378 * If the active LSM wants to access the inode during
10379 * d_instantiate it needs these. Smack checks to see
10380 * if the filesystem supports xattrs by looking at the
10381 * ops vector.
10382 */
10383 inode->i_fop = &btrfs_file_operations;
10384 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10385 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10386 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10387
10388 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10389 if (err)
10390 goto out_unlock_inode;
ad19db71 10391
39279cc3 10392 path = btrfs_alloc_path();
d8926bb3
MF
10393 if (!path) {
10394 err = -ENOMEM;
b0d5d10f 10395 goto out_unlock_inode;
d8926bb3 10396 }
4a0cc7ca 10397 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10398 key.offset = 0;
962a298f 10399 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10400 datasize = btrfs_file_extent_calc_inline_size(name_len);
10401 err = btrfs_insert_empty_item(trans, root, path, &key,
10402 datasize);
54aa1f4d 10403 if (err) {
b0839166 10404 btrfs_free_path(path);
b0d5d10f 10405 goto out_unlock_inode;
54aa1f4d 10406 }
5f39d397
CM
10407 leaf = path->nodes[0];
10408 ei = btrfs_item_ptr(leaf, path->slots[0],
10409 struct btrfs_file_extent_item);
10410 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10411 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10412 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10413 btrfs_set_file_extent_encryption(leaf, ei, 0);
10414 btrfs_set_file_extent_compression(leaf, ei, 0);
10415 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10416 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10417
39279cc3 10418 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10419 write_extent_buffer(leaf, symname, ptr, name_len);
10420 btrfs_mark_buffer_dirty(leaf);
39279cc3 10421 btrfs_free_path(path);
5f39d397 10422
39279cc3 10423 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10424 inode_nohighmem(inode);
39279cc3 10425 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10426 inode_set_bytes(inode, name_len);
6ef06d27 10427 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10428 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10429 /*
10430 * Last step, add directory indexes for our symlink inode. This is the
10431 * last step to avoid extra cleanup of these indexes if an error happens
10432 * elsewhere above.
10433 */
10434 if (!err)
cef415af
NB
10435 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10436 BTRFS_I(inode), 0, index);
b0d5d10f 10437 if (err) {
54aa1f4d 10438 drop_inode = 1;
b0d5d10f
CM
10439 goto out_unlock_inode;
10440 }
10441
10442 unlock_new_inode(inode);
10443 d_instantiate(dentry, inode);
39279cc3
CM
10444
10445out_unlock:
3a45bb20 10446 btrfs_end_transaction(trans);
39279cc3
CM
10447 if (drop_inode) {
10448 inode_dec_link_count(inode);
10449 iput(inode);
10450 }
2ff7e61e 10451 btrfs_btree_balance_dirty(fs_info);
39279cc3 10452 return err;
b0d5d10f
CM
10453
10454out_unlock_inode:
10455 drop_inode = 1;
10456 unlock_new_inode(inode);
10457 goto out_unlock;
39279cc3 10458}
16432985 10459
0af3d00b
JB
10460static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10461 u64 start, u64 num_bytes, u64 min_size,
10462 loff_t actual_len, u64 *alloc_hint,
10463 struct btrfs_trans_handle *trans)
d899e052 10464{
0b246afa 10465 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10466 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10467 struct extent_map *em;
d899e052
YZ
10468 struct btrfs_root *root = BTRFS_I(inode)->root;
10469 struct btrfs_key ins;
d899e052 10470 u64 cur_offset = start;
55a61d1d 10471 u64 i_size;
154ea289 10472 u64 cur_bytes;
0b670dc4 10473 u64 last_alloc = (u64)-1;
d899e052 10474 int ret = 0;
0af3d00b 10475 bool own_trans = true;
18513091 10476 u64 end = start + num_bytes - 1;
d899e052 10477
0af3d00b
JB
10478 if (trans)
10479 own_trans = false;
d899e052 10480 while (num_bytes > 0) {
0af3d00b
JB
10481 if (own_trans) {
10482 trans = btrfs_start_transaction(root, 3);
10483 if (IS_ERR(trans)) {
10484 ret = PTR_ERR(trans);
10485 break;
10486 }
5a303d5d
YZ
10487 }
10488
ee22184b 10489 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10490 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10491 /*
10492 * If we are severely fragmented we could end up with really
10493 * small allocations, so if the allocator is returning small
10494 * chunks lets make its job easier by only searching for those
10495 * sized chunks.
10496 */
10497 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10498 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10499 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10500 if (ret) {
0af3d00b 10501 if (own_trans)
3a45bb20 10502 btrfs_end_transaction(trans);
a22285a6 10503 break;
d899e052 10504 }
0b246afa 10505 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10506
0b670dc4 10507 last_alloc = ins.offset;
d899e052
YZ
10508 ret = insert_reserved_file_extent(trans, inode,
10509 cur_offset, ins.objectid,
10510 ins.offset, ins.offset,
920bbbfb 10511 ins.offset, 0, 0, 0,
d899e052 10512 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10513 if (ret) {
2ff7e61e 10514 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10515 ins.offset, 0);
66642832 10516 btrfs_abort_transaction(trans, ret);
79787eaa 10517 if (own_trans)
3a45bb20 10518 btrfs_end_transaction(trans);
79787eaa
JM
10519 break;
10520 }
31193213 10521
dcdbc059 10522 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10523 cur_offset + ins.offset -1, 0);
5a303d5d 10524
5dc562c5
JB
10525 em = alloc_extent_map();
10526 if (!em) {
10527 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10528 &BTRFS_I(inode)->runtime_flags);
10529 goto next;
10530 }
10531
10532 em->start = cur_offset;
10533 em->orig_start = cur_offset;
10534 em->len = ins.offset;
10535 em->block_start = ins.objectid;
10536 em->block_len = ins.offset;
b4939680 10537 em->orig_block_len = ins.offset;
cc95bef6 10538 em->ram_bytes = ins.offset;
0b246afa 10539 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10540 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10541 em->generation = trans->transid;
10542
10543 while (1) {
10544 write_lock(&em_tree->lock);
09a2a8f9 10545 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10546 write_unlock(&em_tree->lock);
10547 if (ret != -EEXIST)
10548 break;
dcdbc059 10549 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10550 cur_offset + ins.offset - 1,
10551 0);
10552 }
10553 free_extent_map(em);
10554next:
d899e052
YZ
10555 num_bytes -= ins.offset;
10556 cur_offset += ins.offset;
efa56464 10557 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10558
0c4d2d95 10559 inode_inc_iversion(inode);
c2050a45 10560 inode->i_ctime = current_time(inode);
6cbff00f 10561 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10562 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10563 (actual_len > inode->i_size) &&
10564 (cur_offset > inode->i_size)) {
d1ea6a61 10565 if (cur_offset > actual_len)
55a61d1d 10566 i_size = actual_len;
d1ea6a61 10567 else
55a61d1d
JB
10568 i_size = cur_offset;
10569 i_size_write(inode, i_size);
10570 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10571 }
10572
d899e052 10573 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10574
10575 if (ret) {
66642832 10576 btrfs_abort_transaction(trans, ret);
79787eaa 10577 if (own_trans)
3a45bb20 10578 btrfs_end_transaction(trans);
79787eaa
JM
10579 break;
10580 }
d899e052 10581
0af3d00b 10582 if (own_trans)
3a45bb20 10583 btrfs_end_transaction(trans);
5a303d5d 10584 }
18513091 10585 if (cur_offset < end)
bc42bda2 10586 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
18513091 10587 end - cur_offset + 1);
d899e052
YZ
10588 return ret;
10589}
10590
0af3d00b
JB
10591int btrfs_prealloc_file_range(struct inode *inode, int mode,
10592 u64 start, u64 num_bytes, u64 min_size,
10593 loff_t actual_len, u64 *alloc_hint)
10594{
10595 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10596 min_size, actual_len, alloc_hint,
10597 NULL);
10598}
10599
10600int btrfs_prealloc_file_range_trans(struct inode *inode,
10601 struct btrfs_trans_handle *trans, int mode,
10602 u64 start, u64 num_bytes, u64 min_size,
10603 loff_t actual_len, u64 *alloc_hint)
10604{
10605 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10606 min_size, actual_len, alloc_hint, trans);
10607}
10608
e6dcd2dc
CM
10609static int btrfs_set_page_dirty(struct page *page)
10610{
e6dcd2dc
CM
10611 return __set_page_dirty_nobuffers(page);
10612}
10613
10556cb2 10614static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10615{
b83cc969 10616 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10617 umode_t mode = inode->i_mode;
b83cc969 10618
cb6db4e5
JM
10619 if (mask & MAY_WRITE &&
10620 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10621 if (btrfs_root_readonly(root))
10622 return -EROFS;
10623 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10624 return -EACCES;
10625 }
2830ba7f 10626 return generic_permission(inode, mask);
fdebe2bd 10627}
39279cc3 10628
ef3b9af5
FM
10629static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10630{
2ff7e61e 10631 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10632 struct btrfs_trans_handle *trans;
10633 struct btrfs_root *root = BTRFS_I(dir)->root;
10634 struct inode *inode = NULL;
10635 u64 objectid;
10636 u64 index;
10637 int ret = 0;
10638
10639 /*
10640 * 5 units required for adding orphan entry
10641 */
10642 trans = btrfs_start_transaction(root, 5);
10643 if (IS_ERR(trans))
10644 return PTR_ERR(trans);
10645
10646 ret = btrfs_find_free_ino(root, &objectid);
10647 if (ret)
10648 goto out;
10649
10650 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10651 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10652 if (IS_ERR(inode)) {
10653 ret = PTR_ERR(inode);
10654 inode = NULL;
10655 goto out;
10656 }
10657
ef3b9af5
FM
10658 inode->i_fop = &btrfs_file_operations;
10659 inode->i_op = &btrfs_file_inode_operations;
10660
10661 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10662 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10663
b0d5d10f
CM
10664 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10665 if (ret)
10666 goto out_inode;
10667
10668 ret = btrfs_update_inode(trans, root, inode);
10669 if (ret)
10670 goto out_inode;
73f2e545 10671 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10672 if (ret)
b0d5d10f 10673 goto out_inode;
ef3b9af5 10674
5762b5c9
FM
10675 /*
10676 * We set number of links to 0 in btrfs_new_inode(), and here we set
10677 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10678 * through:
10679 *
10680 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10681 */
10682 set_nlink(inode, 1);
b0d5d10f 10683 unlock_new_inode(inode);
ef3b9af5
FM
10684 d_tmpfile(dentry, inode);
10685 mark_inode_dirty(inode);
10686
10687out:
3a45bb20 10688 btrfs_end_transaction(trans);
ef3b9af5
FM
10689 if (ret)
10690 iput(inode);
2ff7e61e
JM
10691 btrfs_balance_delayed_items(fs_info);
10692 btrfs_btree_balance_dirty(fs_info);
ef3b9af5 10693 return ret;
b0d5d10f
CM
10694
10695out_inode:
10696 unlock_new_inode(inode);
10697 goto out;
10698
ef3b9af5
FM
10699}
10700
20a7db8a 10701__attribute__((const))
9d0d1c8b 10702static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
20a7db8a 10703{
9d0d1c8b 10704 return -EAGAIN;
20a7db8a
DS
10705}
10706
c6100a4b
JB
10707static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10708{
10709 struct inode *inode = private_data;
10710 return btrfs_sb(inode->i_sb);
10711}
10712
10713static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10714 u64 start, u64 end)
10715{
10716 struct inode *inode = private_data;
10717 u64 isize;
10718
10719 isize = i_size_read(inode);
10720 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10721 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10722 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10723 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10724 }
10725}
10726
10727void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10728{
10729 struct inode *inode = private_data;
10730 unsigned long index = start >> PAGE_SHIFT;
10731 unsigned long end_index = end >> PAGE_SHIFT;
10732 struct page *page;
10733
10734 while (index <= end_index) {
10735 page = find_get_page(inode->i_mapping, index);
10736 ASSERT(page); /* Pages should be in the extent_io_tree */
10737 set_page_writeback(page);
10738 put_page(page);
10739 index++;
10740 }
10741}
10742
6e1d5dcc 10743static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10744 .getattr = btrfs_getattr,
39279cc3
CM
10745 .lookup = btrfs_lookup,
10746 .create = btrfs_create,
10747 .unlink = btrfs_unlink,
10748 .link = btrfs_link,
10749 .mkdir = btrfs_mkdir,
10750 .rmdir = btrfs_rmdir,
2773bf00 10751 .rename = btrfs_rename2,
39279cc3
CM
10752 .symlink = btrfs_symlink,
10753 .setattr = btrfs_setattr,
618e21d5 10754 .mknod = btrfs_mknod,
5103e947 10755 .listxattr = btrfs_listxattr,
fdebe2bd 10756 .permission = btrfs_permission,
4e34e719 10757 .get_acl = btrfs_get_acl,
996a710d 10758 .set_acl = btrfs_set_acl,
93fd63c2 10759 .update_time = btrfs_update_time,
ef3b9af5 10760 .tmpfile = btrfs_tmpfile,
39279cc3 10761};
6e1d5dcc 10762static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10763 .lookup = btrfs_lookup,
fdebe2bd 10764 .permission = btrfs_permission,
93fd63c2 10765 .update_time = btrfs_update_time,
39279cc3 10766};
76dda93c 10767
828c0950 10768static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10769 .llseek = generic_file_llseek,
10770 .read = generic_read_dir,
02dbfc99 10771 .iterate_shared = btrfs_real_readdir,
23b5ec74 10772 .open = btrfs_opendir,
34287aa3 10773 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10774#ifdef CONFIG_COMPAT
4c63c245 10775 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10776#endif
6bf13c0c 10777 .release = btrfs_release_file,
e02119d5 10778 .fsync = btrfs_sync_file,
39279cc3
CM
10779};
10780
20e5506b 10781static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10782 /* mandatory callbacks */
065631f6 10783 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac 10784 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4d53dddb 10785 .merge_bio_hook = btrfs_merge_bio_hook,
9d0d1c8b 10786 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
c6100a4b
JB
10787 .tree_fs_info = iotree_fs_info,
10788 .set_range_writeback = btrfs_set_range_writeback,
4d53dddb
DS
10789
10790 /* optional callbacks */
10791 .fill_delalloc = run_delalloc_range,
e6dcd2dc 10792 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10793 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10794 .set_bit_hook = btrfs_set_bit_hook,
10795 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10796 .merge_extent_hook = btrfs_merge_extent_hook,
10797 .split_extent_hook = btrfs_split_extent_hook,
c6100a4b 10798 .check_extent_io_range = btrfs_check_extent_io_range,
07157aac
CM
10799};
10800
35054394
CM
10801/*
10802 * btrfs doesn't support the bmap operation because swapfiles
10803 * use bmap to make a mapping of extents in the file. They assume
10804 * these extents won't change over the life of the file and they
10805 * use the bmap result to do IO directly to the drive.
10806 *
10807 * the btrfs bmap call would return logical addresses that aren't
10808 * suitable for IO and they also will change frequently as COW
10809 * operations happen. So, swapfile + btrfs == corruption.
10810 *
10811 * For now we're avoiding this by dropping bmap.
10812 */
7f09410b 10813static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10814 .readpage = btrfs_readpage,
10815 .writepage = btrfs_writepage,
b293f02e 10816 .writepages = btrfs_writepages,
3ab2fb5a 10817 .readpages = btrfs_readpages,
16432985 10818 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10819 .invalidatepage = btrfs_invalidatepage,
10820 .releasepage = btrfs_releasepage,
e6dcd2dc 10821 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10822 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10823};
10824
7f09410b 10825static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10826 .readpage = btrfs_readpage,
10827 .writepage = btrfs_writepage,
2bf5a725
CM
10828 .invalidatepage = btrfs_invalidatepage,
10829 .releasepage = btrfs_releasepage,
39279cc3
CM
10830};
10831
6e1d5dcc 10832static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10833 .getattr = btrfs_getattr,
10834 .setattr = btrfs_setattr,
5103e947 10835 .listxattr = btrfs_listxattr,
fdebe2bd 10836 .permission = btrfs_permission,
1506fcc8 10837 .fiemap = btrfs_fiemap,
4e34e719 10838 .get_acl = btrfs_get_acl,
996a710d 10839 .set_acl = btrfs_set_acl,
e41f941a 10840 .update_time = btrfs_update_time,
39279cc3 10841};
6e1d5dcc 10842static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10843 .getattr = btrfs_getattr,
10844 .setattr = btrfs_setattr,
fdebe2bd 10845 .permission = btrfs_permission,
33268eaf 10846 .listxattr = btrfs_listxattr,
4e34e719 10847 .get_acl = btrfs_get_acl,
996a710d 10848 .set_acl = btrfs_set_acl,
e41f941a 10849 .update_time = btrfs_update_time,
618e21d5 10850};
6e1d5dcc 10851static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10852 .get_link = page_get_link,
f209561a 10853 .getattr = btrfs_getattr,
22c44fe6 10854 .setattr = btrfs_setattr,
fdebe2bd 10855 .permission = btrfs_permission,
0279b4cd 10856 .listxattr = btrfs_listxattr,
e41f941a 10857 .update_time = btrfs_update_time,
39279cc3 10858};
76dda93c 10859
82d339d9 10860const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10861 .d_delete = btrfs_dentry_delete,
b4aff1f8 10862 .d_release = btrfs_dentry_release,
76dda93c 10863};