]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/inode.c
Btrfs: use token to avoid times mapping extent buffer
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
4b4e25f2 42#include "compat.h"
39279cc3
CM
43#include "ctree.h"
44#include "disk-io.h"
45#include "transaction.h"
46#include "btrfs_inode.h"
47#include "ioctl.h"
48#include "print-tree.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
4a54c8c1 52#include "volumes.h"
c8b97818 53#include "compression.h"
b4ce94de 54#include "locking.h"
dc89e982 55#include "free-space-cache.h"
581bb050 56#include "inode-map.h"
39279cc3
CM
57
58struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61};
62
6e1d5dcc
AD
63static const struct inode_operations btrfs_dir_inode_operations;
64static const struct inode_operations btrfs_symlink_inode_operations;
65static const struct inode_operations btrfs_dir_ro_inode_operations;
66static const struct inode_operations btrfs_special_inode_operations;
67static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
68static const struct address_space_operations btrfs_aops;
69static const struct address_space_operations btrfs_symlink_aops;
828c0950 70static const struct file_operations btrfs_dir_file_operations;
d1310b2e 71static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
72
73static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 74static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
75struct kmem_cache *btrfs_trans_handle_cachep;
76struct kmem_cache *btrfs_transaction_cachep;
39279cc3 77struct kmem_cache *btrfs_path_cachep;
dc89e982 78struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
79
80#define S_SHIFT 12
81static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
82 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
83 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
84 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
85 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
86 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
87 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
88 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
89};
90
3972f260 91static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 92static int btrfs_truncate(struct inode *inode);
5fd02043 93static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
94static noinline int cow_file_range(struct inode *inode,
95 struct page *locked_page,
96 u64 start, u64 end, int *page_started,
97 unsigned long *nr_written, int unlock);
70c8a91c
JB
98static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
99 u64 len, u64 orig_start,
100 u64 block_start, u64 block_len,
101 u64 orig_block_len, int type);
7b128766 102
f34f57a3 103static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
104 struct inode *inode, struct inode *dir,
105 const struct qstr *qstr)
0279b4cd
JO
106{
107 int err;
108
f34f57a3 109 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 110 if (!err)
2a7dba39 111 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
112 return err;
113}
114
c8b97818
CM
115/*
116 * this does all the hard work for inserting an inline extent into
117 * the btree. The caller should have done a btrfs_drop_extents so that
118 * no overlapping inline items exist in the btree
119 */
d397712b 120static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
121 struct btrfs_root *root, struct inode *inode,
122 u64 start, size_t size, size_t compressed_size,
fe3f566c 123 int compress_type,
c8b97818
CM
124 struct page **compressed_pages)
125{
126 struct btrfs_key key;
127 struct btrfs_path *path;
128 struct extent_buffer *leaf;
129 struct page *page = NULL;
130 char *kaddr;
131 unsigned long ptr;
132 struct btrfs_file_extent_item *ei;
133 int err = 0;
134 int ret;
135 size_t cur_size = size;
136 size_t datasize;
137 unsigned long offset;
c8b97818 138
fe3f566c 139 if (compressed_size && compressed_pages)
c8b97818 140 cur_size = compressed_size;
c8b97818 141
d397712b
CM
142 path = btrfs_alloc_path();
143 if (!path)
c8b97818
CM
144 return -ENOMEM;
145
b9473439 146 path->leave_spinning = 1;
c8b97818 147
33345d01 148 key.objectid = btrfs_ino(inode);
c8b97818
CM
149 key.offset = start;
150 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
151 datasize = btrfs_file_extent_calc_inline_size(cur_size);
152
153 inode_add_bytes(inode, size);
154 ret = btrfs_insert_empty_item(trans, root, path, &key,
155 datasize);
c8b97818
CM
156 if (ret) {
157 err = ret;
c8b97818
CM
158 goto fail;
159 }
160 leaf = path->nodes[0];
161 ei = btrfs_item_ptr(leaf, path->slots[0],
162 struct btrfs_file_extent_item);
163 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
164 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
165 btrfs_set_file_extent_encryption(leaf, ei, 0);
166 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
167 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
168 ptr = btrfs_file_extent_inline_start(ei);
169
261507a0 170 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
171 struct page *cpage;
172 int i = 0;
d397712b 173 while (compressed_size > 0) {
c8b97818 174 cpage = compressed_pages[i];
5b050f04 175 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
176 PAGE_CACHE_SIZE);
177
7ac687d9 178 kaddr = kmap_atomic(cpage);
c8b97818 179 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 180 kunmap_atomic(kaddr);
c8b97818
CM
181
182 i++;
183 ptr += cur_size;
184 compressed_size -= cur_size;
185 }
186 btrfs_set_file_extent_compression(leaf, ei,
261507a0 187 compress_type);
c8b97818
CM
188 } else {
189 page = find_get_page(inode->i_mapping,
190 start >> PAGE_CACHE_SHIFT);
191 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 192 kaddr = kmap_atomic(page);
c8b97818
CM
193 offset = start & (PAGE_CACHE_SIZE - 1);
194 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 195 kunmap_atomic(kaddr);
c8b97818
CM
196 page_cache_release(page);
197 }
198 btrfs_mark_buffer_dirty(leaf);
199 btrfs_free_path(path);
200
c2167754
YZ
201 /*
202 * we're an inline extent, so nobody can
203 * extend the file past i_size without locking
204 * a page we already have locked.
205 *
206 * We must do any isize and inode updates
207 * before we unlock the pages. Otherwise we
208 * could end up racing with unlink.
209 */
c8b97818 210 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 211 ret = btrfs_update_inode(trans, root, inode);
c2167754 212
79787eaa 213 return ret;
c8b97818
CM
214fail:
215 btrfs_free_path(path);
216 return err;
217}
218
219
220/*
221 * conditionally insert an inline extent into the file. This
222 * does the checks required to make sure the data is small enough
223 * to fit as an inline extent.
224 */
7f366cfe 225static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
226 struct btrfs_root *root,
227 struct inode *inode, u64 start, u64 end,
fe3f566c 228 size_t compressed_size, int compress_type,
c8b97818
CM
229 struct page **compressed_pages)
230{
231 u64 isize = i_size_read(inode);
232 u64 actual_end = min(end + 1, isize);
233 u64 inline_len = actual_end - start;
234 u64 aligned_end = (end + root->sectorsize - 1) &
235 ~((u64)root->sectorsize - 1);
c8b97818
CM
236 u64 data_len = inline_len;
237 int ret;
238
239 if (compressed_size)
240 data_len = compressed_size;
241
242 if (start > 0 ||
70b99e69 243 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
244 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
245 (!compressed_size &&
246 (actual_end & (root->sectorsize - 1)) == 0) ||
247 end + 1 < isize ||
248 data_len > root->fs_info->max_inline) {
249 return 1;
250 }
251
2671485d 252 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
79787eaa
JM
253 if (ret)
254 return ret;
c8b97818
CM
255
256 if (isize > actual_end)
257 inline_len = min_t(u64, isize, actual_end);
258 ret = insert_inline_extent(trans, root, inode, start,
259 inline_len, compressed_size,
fe3f566c 260 compress_type, compressed_pages);
2adcac1a 261 if (ret && ret != -ENOSPC) {
79787eaa
JM
262 btrfs_abort_transaction(trans, root, ret);
263 return ret;
2adcac1a
JB
264 } else if (ret == -ENOSPC) {
265 return 1;
79787eaa 266 }
2adcac1a 267
0ca1f7ce 268 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 269 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
270 return 0;
271}
272
771ed689
CM
273struct async_extent {
274 u64 start;
275 u64 ram_size;
276 u64 compressed_size;
277 struct page **pages;
278 unsigned long nr_pages;
261507a0 279 int compress_type;
771ed689
CM
280 struct list_head list;
281};
282
283struct async_cow {
284 struct inode *inode;
285 struct btrfs_root *root;
286 struct page *locked_page;
287 u64 start;
288 u64 end;
289 struct list_head extents;
290 struct btrfs_work work;
291};
292
293static noinline int add_async_extent(struct async_cow *cow,
294 u64 start, u64 ram_size,
295 u64 compressed_size,
296 struct page **pages,
261507a0
LZ
297 unsigned long nr_pages,
298 int compress_type)
771ed689
CM
299{
300 struct async_extent *async_extent;
301
302 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 303 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
304 async_extent->start = start;
305 async_extent->ram_size = ram_size;
306 async_extent->compressed_size = compressed_size;
307 async_extent->pages = pages;
308 async_extent->nr_pages = nr_pages;
261507a0 309 async_extent->compress_type = compress_type;
771ed689
CM
310 list_add_tail(&async_extent->list, &cow->extents);
311 return 0;
312}
313
d352ac68 314/*
771ed689
CM
315 * we create compressed extents in two phases. The first
316 * phase compresses a range of pages that have already been
317 * locked (both pages and state bits are locked).
c8b97818 318 *
771ed689
CM
319 * This is done inside an ordered work queue, and the compression
320 * is spread across many cpus. The actual IO submission is step
321 * two, and the ordered work queue takes care of making sure that
322 * happens in the same order things were put onto the queue by
323 * writepages and friends.
c8b97818 324 *
771ed689
CM
325 * If this code finds it can't get good compression, it puts an
326 * entry onto the work queue to write the uncompressed bytes. This
327 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
328 * are written in the same order that the flusher thread sent them
329 * down.
d352ac68 330 */
771ed689
CM
331static noinline int compress_file_range(struct inode *inode,
332 struct page *locked_page,
333 u64 start, u64 end,
334 struct async_cow *async_cow,
335 int *num_added)
b888db2b
CM
336{
337 struct btrfs_root *root = BTRFS_I(inode)->root;
338 struct btrfs_trans_handle *trans;
db94535d 339 u64 num_bytes;
db94535d 340 u64 blocksize = root->sectorsize;
c8b97818 341 u64 actual_end;
42dc7bab 342 u64 isize = i_size_read(inode);
e6dcd2dc 343 int ret = 0;
c8b97818
CM
344 struct page **pages = NULL;
345 unsigned long nr_pages;
346 unsigned long nr_pages_ret = 0;
347 unsigned long total_compressed = 0;
348 unsigned long total_in = 0;
349 unsigned long max_compressed = 128 * 1024;
771ed689 350 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
351 int i;
352 int will_compress;
261507a0 353 int compress_type = root->fs_info->compress_type;
b888db2b 354
4cb13e5d
LB
355 /* if this is a small write inside eof, kick off a defrag */
356 if ((end - start + 1) < 16 * 1024 &&
357 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
358 btrfs_add_inode_defrag(NULL, inode);
359
42dc7bab 360 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
361again:
362 will_compress = 0;
363 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
364 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 365
f03d9301
CM
366 /*
367 * we don't want to send crud past the end of i_size through
368 * compression, that's just a waste of CPU time. So, if the
369 * end of the file is before the start of our current
370 * requested range of bytes, we bail out to the uncompressed
371 * cleanup code that can deal with all of this.
372 *
373 * It isn't really the fastest way to fix things, but this is a
374 * very uncommon corner.
375 */
376 if (actual_end <= start)
377 goto cleanup_and_bail_uncompressed;
378
c8b97818
CM
379 total_compressed = actual_end - start;
380
381 /* we want to make sure that amount of ram required to uncompress
382 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
383 * of a compressed extent to 128k. This is a crucial number
384 * because it also controls how easily we can spread reads across
385 * cpus for decompression.
386 *
387 * We also want to make sure the amount of IO required to do
388 * a random read is reasonably small, so we limit the size of
389 * a compressed extent to 128k.
c8b97818
CM
390 */
391 total_compressed = min(total_compressed, max_uncompressed);
db94535d 392 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 393 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
394 total_in = 0;
395 ret = 0;
db94535d 396
771ed689
CM
397 /*
398 * we do compression for mount -o compress and when the
399 * inode has not been flagged as nocompress. This flag can
400 * change at any time if we discover bad compression ratios.
c8b97818 401 */
6cbff00f 402 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 403 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
404 (BTRFS_I(inode)->force_compress) ||
405 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 406 WARN_ON(pages);
cfbc246e 407 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
408 if (!pages) {
409 /* just bail out to the uncompressed code */
410 goto cont;
411 }
c8b97818 412
261507a0
LZ
413 if (BTRFS_I(inode)->force_compress)
414 compress_type = BTRFS_I(inode)->force_compress;
415
416 ret = btrfs_compress_pages(compress_type,
417 inode->i_mapping, start,
418 total_compressed, pages,
419 nr_pages, &nr_pages_ret,
420 &total_in,
421 &total_compressed,
422 max_compressed);
c8b97818
CM
423
424 if (!ret) {
425 unsigned long offset = total_compressed &
426 (PAGE_CACHE_SIZE - 1);
427 struct page *page = pages[nr_pages_ret - 1];
428 char *kaddr;
429
430 /* zero the tail end of the last page, we might be
431 * sending it down to disk
432 */
433 if (offset) {
7ac687d9 434 kaddr = kmap_atomic(page);
c8b97818
CM
435 memset(kaddr + offset, 0,
436 PAGE_CACHE_SIZE - offset);
7ac687d9 437 kunmap_atomic(kaddr);
c8b97818
CM
438 }
439 will_compress = 1;
440 }
441 }
560f7d75 442cont:
c8b97818 443 if (start == 0) {
7a7eaa40 444 trans = btrfs_join_transaction(root);
79787eaa
JM
445 if (IS_ERR(trans)) {
446 ret = PTR_ERR(trans);
447 trans = NULL;
448 goto cleanup_and_out;
449 }
0ca1f7ce 450 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 451
c8b97818 452 /* lets try to make an inline extent */
771ed689 453 if (ret || total_in < (actual_end - start)) {
c8b97818 454 /* we didn't compress the entire range, try
771ed689 455 * to make an uncompressed inline extent.
c8b97818
CM
456 */
457 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 458 start, end, 0, 0, NULL);
c8b97818 459 } else {
771ed689 460 /* try making a compressed inline extent */
c8b97818
CM
461 ret = cow_file_range_inline(trans, root, inode,
462 start, end,
fe3f566c
LZ
463 total_compressed,
464 compress_type, pages);
c8b97818 465 }
79787eaa 466 if (ret <= 0) {
771ed689 467 /*
79787eaa
JM
468 * inline extent creation worked or returned error,
469 * we don't need to create any more async work items.
470 * Unlock and free up our temp pages.
771ed689 471 */
c8b97818 472 extent_clear_unlock_delalloc(inode,
a791e35e
CM
473 &BTRFS_I(inode)->io_tree,
474 start, end, NULL,
475 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 476 EXTENT_CLEAR_DELALLOC |
a791e35e 477 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
478
479 btrfs_end_transaction(trans, root);
c8b97818
CM
480 goto free_pages_out;
481 }
c2167754 482 btrfs_end_transaction(trans, root);
c8b97818
CM
483 }
484
485 if (will_compress) {
486 /*
487 * we aren't doing an inline extent round the compressed size
488 * up to a block size boundary so the allocator does sane
489 * things
490 */
491 total_compressed = (total_compressed + blocksize - 1) &
492 ~(blocksize - 1);
493
494 /*
495 * one last check to make sure the compression is really a
496 * win, compare the page count read with the blocks on disk
497 */
498 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
499 ~(PAGE_CACHE_SIZE - 1);
500 if (total_compressed >= total_in) {
501 will_compress = 0;
502 } else {
c8b97818
CM
503 num_bytes = total_in;
504 }
505 }
506 if (!will_compress && pages) {
507 /*
508 * the compression code ran but failed to make things smaller,
509 * free any pages it allocated and our page pointer array
510 */
511 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 512 WARN_ON(pages[i]->mapping);
c8b97818
CM
513 page_cache_release(pages[i]);
514 }
515 kfree(pages);
516 pages = NULL;
517 total_compressed = 0;
518 nr_pages_ret = 0;
519
520 /* flag the file so we don't compress in the future */
1e701a32
CM
521 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
522 !(BTRFS_I(inode)->force_compress)) {
a555f810 523 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 524 }
c8b97818 525 }
771ed689
CM
526 if (will_compress) {
527 *num_added += 1;
c8b97818 528
771ed689
CM
529 /* the async work queues will take care of doing actual
530 * allocation on disk for these compressed pages,
531 * and will submit them to the elevator.
532 */
533 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
534 total_compressed, pages, nr_pages_ret,
535 compress_type);
179e29e4 536
24ae6365 537 if (start + num_bytes < end) {
771ed689
CM
538 start += num_bytes;
539 pages = NULL;
540 cond_resched();
541 goto again;
542 }
543 } else {
f03d9301 544cleanup_and_bail_uncompressed:
771ed689
CM
545 /*
546 * No compression, but we still need to write the pages in
547 * the file we've been given so far. redirty the locked
548 * page if it corresponds to our extent and set things up
549 * for the async work queue to run cow_file_range to do
550 * the normal delalloc dance
551 */
552 if (page_offset(locked_page) >= start &&
553 page_offset(locked_page) <= end) {
554 __set_page_dirty_nobuffers(locked_page);
555 /* unlocked later on in the async handlers */
556 }
261507a0
LZ
557 add_async_extent(async_cow, start, end - start + 1,
558 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
559 *num_added += 1;
560 }
3b951516 561
771ed689 562out:
79787eaa 563 return ret;
771ed689
CM
564
565free_pages_out:
566 for (i = 0; i < nr_pages_ret; i++) {
567 WARN_ON(pages[i]->mapping);
568 page_cache_release(pages[i]);
569 }
d397712b 570 kfree(pages);
771ed689
CM
571
572 goto out;
79787eaa
JM
573
574cleanup_and_out:
575 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
576 start, end, NULL,
577 EXTENT_CLEAR_UNLOCK_PAGE |
578 EXTENT_CLEAR_DIRTY |
579 EXTENT_CLEAR_DELALLOC |
580 EXTENT_SET_WRITEBACK |
581 EXTENT_END_WRITEBACK);
582 if (!trans || IS_ERR(trans))
583 btrfs_error(root->fs_info, ret, "Failed to join transaction");
584 else
585 btrfs_abort_transaction(trans, root, ret);
586 goto free_pages_out;
771ed689
CM
587}
588
589/*
590 * phase two of compressed writeback. This is the ordered portion
591 * of the code, which only gets called in the order the work was
592 * queued. We walk all the async extents created by compress_file_range
593 * and send them down to the disk.
594 */
595static noinline int submit_compressed_extents(struct inode *inode,
596 struct async_cow *async_cow)
597{
598 struct async_extent *async_extent;
599 u64 alloc_hint = 0;
600 struct btrfs_trans_handle *trans;
601 struct btrfs_key ins;
602 struct extent_map *em;
603 struct btrfs_root *root = BTRFS_I(inode)->root;
604 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
605 struct extent_io_tree *io_tree;
f5a84ee3 606 int ret = 0;
771ed689
CM
607
608 if (list_empty(&async_cow->extents))
609 return 0;
610
771ed689 611
d397712b 612 while (!list_empty(&async_cow->extents)) {
771ed689
CM
613 async_extent = list_entry(async_cow->extents.next,
614 struct async_extent, list);
615 list_del(&async_extent->list);
c8b97818 616
771ed689
CM
617 io_tree = &BTRFS_I(inode)->io_tree;
618
f5a84ee3 619retry:
771ed689
CM
620 /* did the compression code fall back to uncompressed IO? */
621 if (!async_extent->pages) {
622 int page_started = 0;
623 unsigned long nr_written = 0;
624
625 lock_extent(io_tree, async_extent->start,
2ac55d41 626 async_extent->start +
d0082371 627 async_extent->ram_size - 1);
771ed689
CM
628
629 /* allocate blocks */
f5a84ee3
JB
630 ret = cow_file_range(inode, async_cow->locked_page,
631 async_extent->start,
632 async_extent->start +
633 async_extent->ram_size - 1,
634 &page_started, &nr_written, 0);
771ed689 635
79787eaa
JM
636 /* JDM XXX */
637
771ed689
CM
638 /*
639 * if page_started, cow_file_range inserted an
640 * inline extent and took care of all the unlocking
641 * and IO for us. Otherwise, we need to submit
642 * all those pages down to the drive.
643 */
f5a84ee3 644 if (!page_started && !ret)
771ed689
CM
645 extent_write_locked_range(io_tree,
646 inode, async_extent->start,
d397712b 647 async_extent->start +
771ed689
CM
648 async_extent->ram_size - 1,
649 btrfs_get_extent,
650 WB_SYNC_ALL);
651 kfree(async_extent);
652 cond_resched();
653 continue;
654 }
655
656 lock_extent(io_tree, async_extent->start,
d0082371 657 async_extent->start + async_extent->ram_size - 1);
771ed689 658
7a7eaa40 659 trans = btrfs_join_transaction(root);
79787eaa
JM
660 if (IS_ERR(trans)) {
661 ret = PTR_ERR(trans);
662 } else {
663 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
664 ret = btrfs_reserve_extent(trans, root,
771ed689
CM
665 async_extent->compressed_size,
666 async_extent->compressed_size,
81c9ad23 667 0, alloc_hint, &ins, 1);
962197ba 668 if (ret && ret != -ENOSPC)
79787eaa
JM
669 btrfs_abort_transaction(trans, root, ret);
670 btrfs_end_transaction(trans, root);
671 }
c2167754 672
f5a84ee3
JB
673 if (ret) {
674 int i;
675 for (i = 0; i < async_extent->nr_pages; i++) {
676 WARN_ON(async_extent->pages[i]->mapping);
677 page_cache_release(async_extent->pages[i]);
678 }
679 kfree(async_extent->pages);
680 async_extent->nr_pages = 0;
681 async_extent->pages = NULL;
682 unlock_extent(io_tree, async_extent->start,
683 async_extent->start +
d0082371 684 async_extent->ram_size - 1);
79787eaa
JM
685 if (ret == -ENOSPC)
686 goto retry;
687 goto out_free; /* JDM: Requeue? */
f5a84ee3
JB
688 }
689
c2167754
YZ
690 /*
691 * here we're doing allocation and writeback of the
692 * compressed pages
693 */
694 btrfs_drop_extent_cache(inode, async_extent->start,
695 async_extent->start +
696 async_extent->ram_size - 1, 0);
697
172ddd60 698 em = alloc_extent_map();
79787eaa 699 BUG_ON(!em); /* -ENOMEM */
771ed689
CM
700 em->start = async_extent->start;
701 em->len = async_extent->ram_size;
445a6944 702 em->orig_start = em->start;
2ab28f32
JB
703 em->mod_start = em->start;
704 em->mod_len = em->len;
c8b97818 705
771ed689
CM
706 em->block_start = ins.objectid;
707 em->block_len = ins.offset;
b4939680 708 em->orig_block_len = ins.offset;
771ed689 709 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 710 em->compress_type = async_extent->compress_type;
771ed689
CM
711 set_bit(EXTENT_FLAG_PINNED, &em->flags);
712 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 713 em->generation = -1;
771ed689 714
d397712b 715 while (1) {
890871be 716 write_lock(&em_tree->lock);
771ed689 717 ret = add_extent_mapping(em_tree, em);
70c8a91c
JB
718 if (!ret)
719 list_move(&em->list,
720 &em_tree->modified_extents);
890871be 721 write_unlock(&em_tree->lock);
771ed689
CM
722 if (ret != -EEXIST) {
723 free_extent_map(em);
724 break;
725 }
726 btrfs_drop_extent_cache(inode, async_extent->start,
727 async_extent->start +
728 async_extent->ram_size - 1, 0);
729 }
730
261507a0
LZ
731 ret = btrfs_add_ordered_extent_compress(inode,
732 async_extent->start,
733 ins.objectid,
734 async_extent->ram_size,
735 ins.offset,
736 BTRFS_ORDERED_COMPRESSED,
737 async_extent->compress_type);
79787eaa 738 BUG_ON(ret); /* -ENOMEM */
771ed689 739
771ed689
CM
740 /*
741 * clear dirty, set writeback and unlock the pages.
742 */
743 extent_clear_unlock_delalloc(inode,
a791e35e
CM
744 &BTRFS_I(inode)->io_tree,
745 async_extent->start,
746 async_extent->start +
747 async_extent->ram_size - 1,
748 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
749 EXTENT_CLEAR_UNLOCK |
a3429ab7 750 EXTENT_CLEAR_DELALLOC |
a791e35e 751 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
752
753 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
754 async_extent->start,
755 async_extent->ram_size,
756 ins.objectid,
757 ins.offset, async_extent->pages,
758 async_extent->nr_pages);
771ed689 759
79787eaa 760 BUG_ON(ret); /* -ENOMEM */
771ed689
CM
761 alloc_hint = ins.objectid + ins.offset;
762 kfree(async_extent);
763 cond_resched();
764 }
79787eaa
JM
765 ret = 0;
766out:
767 return ret;
768out_free:
769 kfree(async_extent);
770 goto out;
771ed689
CM
771}
772
4b46fce2
JB
773static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
774 u64 num_bytes)
775{
776 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
777 struct extent_map *em;
778 u64 alloc_hint = 0;
779
780 read_lock(&em_tree->lock);
781 em = search_extent_mapping(em_tree, start, num_bytes);
782 if (em) {
783 /*
784 * if block start isn't an actual block number then find the
785 * first block in this inode and use that as a hint. If that
786 * block is also bogus then just don't worry about it.
787 */
788 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
789 free_extent_map(em);
790 em = search_extent_mapping(em_tree, 0, 0);
791 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
792 alloc_hint = em->block_start;
793 if (em)
794 free_extent_map(em);
795 } else {
796 alloc_hint = em->block_start;
797 free_extent_map(em);
798 }
799 }
800 read_unlock(&em_tree->lock);
801
802 return alloc_hint;
803}
804
771ed689
CM
805/*
806 * when extent_io.c finds a delayed allocation range in the file,
807 * the call backs end up in this code. The basic idea is to
808 * allocate extents on disk for the range, and create ordered data structs
809 * in ram to track those extents.
810 *
811 * locked_page is the page that writepage had locked already. We use
812 * it to make sure we don't do extra locks or unlocks.
813 *
814 * *page_started is set to one if we unlock locked_page and do everything
815 * required to start IO on it. It may be clean and already done with
816 * IO when we return.
817 */
b7d5b0a8
MX
818static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
819 struct inode *inode,
820 struct btrfs_root *root,
821 struct page *locked_page,
822 u64 start, u64 end, int *page_started,
823 unsigned long *nr_written,
824 int unlock)
771ed689 825{
771ed689
CM
826 u64 alloc_hint = 0;
827 u64 num_bytes;
828 unsigned long ram_size;
829 u64 disk_num_bytes;
830 u64 cur_alloc_size;
831 u64 blocksize = root->sectorsize;
771ed689
CM
832 struct btrfs_key ins;
833 struct extent_map *em;
834 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
835 int ret = 0;
836
83eea1f1 837 BUG_ON(btrfs_is_free_space_inode(inode));
771ed689 838
771ed689
CM
839 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
840 num_bytes = max(blocksize, num_bytes);
841 disk_num_bytes = num_bytes;
771ed689 842
4cb5300b 843 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
844 if (num_bytes < 64 * 1024 &&
845 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
846 btrfs_add_inode_defrag(trans, inode);
847
771ed689
CM
848 if (start == 0) {
849 /* lets try to make an inline extent */
850 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 851 start, end, 0, 0, NULL);
771ed689
CM
852 if (ret == 0) {
853 extent_clear_unlock_delalloc(inode,
a791e35e
CM
854 &BTRFS_I(inode)->io_tree,
855 start, end, NULL,
856 EXTENT_CLEAR_UNLOCK_PAGE |
857 EXTENT_CLEAR_UNLOCK |
858 EXTENT_CLEAR_DELALLOC |
859 EXTENT_CLEAR_DIRTY |
860 EXTENT_SET_WRITEBACK |
861 EXTENT_END_WRITEBACK);
c2167754 862
771ed689
CM
863 *nr_written = *nr_written +
864 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
865 *page_started = 1;
771ed689 866 goto out;
79787eaa
JM
867 } else if (ret < 0) {
868 btrfs_abort_transaction(trans, root, ret);
869 goto out_unlock;
771ed689
CM
870 }
871 }
872
873 BUG_ON(disk_num_bytes >
6c41761f 874 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 875
4b46fce2 876 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
877 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
878
d397712b 879 while (disk_num_bytes > 0) {
a791e35e
CM
880 unsigned long op;
881
287a0ab9 882 cur_alloc_size = disk_num_bytes;
e6dcd2dc 883 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 884 root->sectorsize, 0, alloc_hint,
81c9ad23 885 &ins, 1);
79787eaa
JM
886 if (ret < 0) {
887 btrfs_abort_transaction(trans, root, ret);
888 goto out_unlock;
889 }
d397712b 890
172ddd60 891 em = alloc_extent_map();
79787eaa 892 BUG_ON(!em); /* -ENOMEM */
e6dcd2dc 893 em->start = start;
445a6944 894 em->orig_start = em->start;
771ed689
CM
895 ram_size = ins.offset;
896 em->len = ins.offset;
2ab28f32
JB
897 em->mod_start = em->start;
898 em->mod_len = em->len;
c8b97818 899
e6dcd2dc 900 em->block_start = ins.objectid;
c8b97818 901 em->block_len = ins.offset;
b4939680 902 em->orig_block_len = ins.offset;
e6dcd2dc 903 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 904 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 905 em->generation = -1;
c8b97818 906
d397712b 907 while (1) {
890871be 908 write_lock(&em_tree->lock);
e6dcd2dc 909 ret = add_extent_mapping(em_tree, em);
70c8a91c
JB
910 if (!ret)
911 list_move(&em->list,
912 &em_tree->modified_extents);
890871be 913 write_unlock(&em_tree->lock);
e6dcd2dc
CM
914 if (ret != -EEXIST) {
915 free_extent_map(em);
916 break;
917 }
918 btrfs_drop_extent_cache(inode, start,
c8b97818 919 start + ram_size - 1, 0);
e6dcd2dc
CM
920 }
921
98d20f67 922 cur_alloc_size = ins.offset;
e6dcd2dc 923 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 924 ram_size, cur_alloc_size, 0);
79787eaa 925 BUG_ON(ret); /* -ENOMEM */
c8b97818 926
17d217fe
YZ
927 if (root->root_key.objectid ==
928 BTRFS_DATA_RELOC_TREE_OBJECTID) {
929 ret = btrfs_reloc_clone_csums(inode, start,
930 cur_alloc_size);
79787eaa
JM
931 if (ret) {
932 btrfs_abort_transaction(trans, root, ret);
933 goto out_unlock;
934 }
17d217fe
YZ
935 }
936
d397712b 937 if (disk_num_bytes < cur_alloc_size)
3b951516 938 break;
d397712b 939
c8b97818
CM
940 /* we're not doing compressed IO, don't unlock the first
941 * page (which the caller expects to stay locked), don't
942 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
943 *
944 * Do set the Private2 bit so we know this page was properly
945 * setup for writepage
c8b97818 946 */
a791e35e
CM
947 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
948 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
949 EXTENT_SET_PRIVATE2;
950
c8b97818
CM
951 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
952 start, start + ram_size - 1,
a791e35e 953 locked_page, op);
c8b97818 954 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
955 num_bytes -= cur_alloc_size;
956 alloc_hint = ins.objectid + ins.offset;
957 start += cur_alloc_size;
b888db2b 958 }
79787eaa 959out:
be20aa9d 960 return ret;
b7d5b0a8 961
79787eaa
JM
962out_unlock:
963 extent_clear_unlock_delalloc(inode,
964 &BTRFS_I(inode)->io_tree,
beb42dd7 965 start, end, locked_page,
79787eaa
JM
966 EXTENT_CLEAR_UNLOCK_PAGE |
967 EXTENT_CLEAR_UNLOCK |
968 EXTENT_CLEAR_DELALLOC |
969 EXTENT_CLEAR_DIRTY |
970 EXTENT_SET_WRITEBACK |
971 EXTENT_END_WRITEBACK);
972
973 goto out;
771ed689 974}
c8b97818 975
b7d5b0a8
MX
976static noinline int cow_file_range(struct inode *inode,
977 struct page *locked_page,
978 u64 start, u64 end, int *page_started,
979 unsigned long *nr_written,
980 int unlock)
981{
982 struct btrfs_trans_handle *trans;
983 struct btrfs_root *root = BTRFS_I(inode)->root;
984 int ret;
985
986 trans = btrfs_join_transaction(root);
987 if (IS_ERR(trans)) {
988 extent_clear_unlock_delalloc(inode,
989 &BTRFS_I(inode)->io_tree,
990 start, end, locked_page,
991 EXTENT_CLEAR_UNLOCK_PAGE |
992 EXTENT_CLEAR_UNLOCK |
993 EXTENT_CLEAR_DELALLOC |
994 EXTENT_CLEAR_DIRTY |
995 EXTENT_SET_WRITEBACK |
996 EXTENT_END_WRITEBACK);
997 return PTR_ERR(trans);
998 }
999 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1000
1001 ret = __cow_file_range(trans, inode, root, locked_page, start, end,
1002 page_started, nr_written, unlock);
1003
1004 btrfs_end_transaction(trans, root);
1005
1006 return ret;
1007}
1008
771ed689
CM
1009/*
1010 * work queue call back to started compression on a file and pages
1011 */
1012static noinline void async_cow_start(struct btrfs_work *work)
1013{
1014 struct async_cow *async_cow;
1015 int num_added = 0;
1016 async_cow = container_of(work, struct async_cow, work);
1017
1018 compress_file_range(async_cow->inode, async_cow->locked_page,
1019 async_cow->start, async_cow->end, async_cow,
1020 &num_added);
8180ef88 1021 if (num_added == 0) {
cb77fcd8 1022 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1023 async_cow->inode = NULL;
8180ef88 1024 }
771ed689
CM
1025}
1026
1027/*
1028 * work queue call back to submit previously compressed pages
1029 */
1030static noinline void async_cow_submit(struct btrfs_work *work)
1031{
1032 struct async_cow *async_cow;
1033 struct btrfs_root *root;
1034 unsigned long nr_pages;
1035
1036 async_cow = container_of(work, struct async_cow, work);
1037
1038 root = async_cow->root;
1039 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1040 PAGE_CACHE_SHIFT;
1041
66657b31 1042 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1043 5 * 1024 * 1024 &&
771ed689
CM
1044 waitqueue_active(&root->fs_info->async_submit_wait))
1045 wake_up(&root->fs_info->async_submit_wait);
1046
d397712b 1047 if (async_cow->inode)
771ed689 1048 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1049}
c8b97818 1050
771ed689
CM
1051static noinline void async_cow_free(struct btrfs_work *work)
1052{
1053 struct async_cow *async_cow;
1054 async_cow = container_of(work, struct async_cow, work);
8180ef88 1055 if (async_cow->inode)
cb77fcd8 1056 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1057 kfree(async_cow);
1058}
1059
1060static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1061 u64 start, u64 end, int *page_started,
1062 unsigned long *nr_written)
1063{
1064 struct async_cow *async_cow;
1065 struct btrfs_root *root = BTRFS_I(inode)->root;
1066 unsigned long nr_pages;
1067 u64 cur_end;
287082b0 1068 int limit = 10 * 1024 * 1024;
771ed689 1069
a3429ab7
CM
1070 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1071 1, 0, NULL, GFP_NOFS);
d397712b 1072 while (start < end) {
771ed689 1073 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1074 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1075 async_cow->inode = igrab(inode);
771ed689
CM
1076 async_cow->root = root;
1077 async_cow->locked_page = locked_page;
1078 async_cow->start = start;
1079
6cbff00f 1080 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1081 cur_end = end;
1082 else
1083 cur_end = min(end, start + 512 * 1024 - 1);
1084
1085 async_cow->end = cur_end;
1086 INIT_LIST_HEAD(&async_cow->extents);
1087
1088 async_cow->work.func = async_cow_start;
1089 async_cow->work.ordered_func = async_cow_submit;
1090 async_cow->work.ordered_free = async_cow_free;
1091 async_cow->work.flags = 0;
1092
771ed689
CM
1093 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1094 PAGE_CACHE_SHIFT;
1095 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1096
1097 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1098 &async_cow->work);
1099
1100 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1101 wait_event(root->fs_info->async_submit_wait,
1102 (atomic_read(&root->fs_info->async_delalloc_pages) <
1103 limit));
1104 }
1105
d397712b 1106 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1107 atomic_read(&root->fs_info->async_delalloc_pages)) {
1108 wait_event(root->fs_info->async_submit_wait,
1109 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1110 0));
1111 }
1112
1113 *nr_written += nr_pages;
1114 start = cur_end + 1;
1115 }
1116 *page_started = 1;
1117 return 0;
be20aa9d
CM
1118}
1119
d397712b 1120static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1121 u64 bytenr, u64 num_bytes)
1122{
1123 int ret;
1124 struct btrfs_ordered_sum *sums;
1125 LIST_HEAD(list);
1126
07d400a6 1127 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1128 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1129 if (ret == 0 && list_empty(&list))
1130 return 0;
1131
1132 while (!list_empty(&list)) {
1133 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1134 list_del(&sums->list);
1135 kfree(sums);
1136 }
1137 return 1;
1138}
1139
d352ac68
CM
1140/*
1141 * when nowcow writeback call back. This checks for snapshots or COW copies
1142 * of the extents that exist in the file, and COWs the file as required.
1143 *
1144 * If no cow copies or snapshots exist, we write directly to the existing
1145 * blocks on disk
1146 */
7f366cfe
CM
1147static noinline int run_delalloc_nocow(struct inode *inode,
1148 struct page *locked_page,
771ed689
CM
1149 u64 start, u64 end, int *page_started, int force,
1150 unsigned long *nr_written)
be20aa9d 1151{
be20aa9d 1152 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1153 struct btrfs_trans_handle *trans;
be20aa9d 1154 struct extent_buffer *leaf;
be20aa9d 1155 struct btrfs_path *path;
80ff3856 1156 struct btrfs_file_extent_item *fi;
be20aa9d 1157 struct btrfs_key found_key;
80ff3856
YZ
1158 u64 cow_start;
1159 u64 cur_offset;
1160 u64 extent_end;
5d4f98a2 1161 u64 extent_offset;
80ff3856
YZ
1162 u64 disk_bytenr;
1163 u64 num_bytes;
b4939680 1164 u64 disk_num_bytes;
80ff3856 1165 int extent_type;
79787eaa 1166 int ret, err;
d899e052 1167 int type;
80ff3856
YZ
1168 int nocow;
1169 int check_prev = 1;
82d5902d 1170 bool nolock;
33345d01 1171 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1172
1173 path = btrfs_alloc_path();
17ca04af
JB
1174 if (!path) {
1175 extent_clear_unlock_delalloc(inode,
1176 &BTRFS_I(inode)->io_tree,
1177 start, end, locked_page,
1178 EXTENT_CLEAR_UNLOCK_PAGE |
1179 EXTENT_CLEAR_UNLOCK |
1180 EXTENT_CLEAR_DELALLOC |
1181 EXTENT_CLEAR_DIRTY |
1182 EXTENT_SET_WRITEBACK |
1183 EXTENT_END_WRITEBACK);
d8926bb3 1184 return -ENOMEM;
17ca04af 1185 }
82d5902d 1186
83eea1f1 1187 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1188
1189 if (nolock)
7a7eaa40 1190 trans = btrfs_join_transaction_nolock(root);
82d5902d 1191 else
7a7eaa40 1192 trans = btrfs_join_transaction(root);
ff5714cc 1193
79787eaa 1194 if (IS_ERR(trans)) {
17ca04af
JB
1195 extent_clear_unlock_delalloc(inode,
1196 &BTRFS_I(inode)->io_tree,
1197 start, end, locked_page,
1198 EXTENT_CLEAR_UNLOCK_PAGE |
1199 EXTENT_CLEAR_UNLOCK |
1200 EXTENT_CLEAR_DELALLOC |
1201 EXTENT_CLEAR_DIRTY |
1202 EXTENT_SET_WRITEBACK |
1203 EXTENT_END_WRITEBACK);
79787eaa
JM
1204 btrfs_free_path(path);
1205 return PTR_ERR(trans);
1206 }
1207
74b21075 1208 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1209
80ff3856
YZ
1210 cow_start = (u64)-1;
1211 cur_offset = start;
1212 while (1) {
33345d01 1213 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1214 cur_offset, 0);
79787eaa
JM
1215 if (ret < 0) {
1216 btrfs_abort_transaction(trans, root, ret);
1217 goto error;
1218 }
80ff3856
YZ
1219 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1220 leaf = path->nodes[0];
1221 btrfs_item_key_to_cpu(leaf, &found_key,
1222 path->slots[0] - 1);
33345d01 1223 if (found_key.objectid == ino &&
80ff3856
YZ
1224 found_key.type == BTRFS_EXTENT_DATA_KEY)
1225 path->slots[0]--;
1226 }
1227 check_prev = 0;
1228next_slot:
1229 leaf = path->nodes[0];
1230 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1231 ret = btrfs_next_leaf(root, path);
79787eaa
JM
1232 if (ret < 0) {
1233 btrfs_abort_transaction(trans, root, ret);
1234 goto error;
1235 }
80ff3856
YZ
1236 if (ret > 0)
1237 break;
1238 leaf = path->nodes[0];
1239 }
be20aa9d 1240
80ff3856
YZ
1241 nocow = 0;
1242 disk_bytenr = 0;
17d217fe 1243 num_bytes = 0;
80ff3856
YZ
1244 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1245
33345d01 1246 if (found_key.objectid > ino ||
80ff3856
YZ
1247 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1248 found_key.offset > end)
1249 break;
1250
1251 if (found_key.offset > cur_offset) {
1252 extent_end = found_key.offset;
e9061e21 1253 extent_type = 0;
80ff3856
YZ
1254 goto out_check;
1255 }
1256
1257 fi = btrfs_item_ptr(leaf, path->slots[0],
1258 struct btrfs_file_extent_item);
1259 extent_type = btrfs_file_extent_type(leaf, fi);
1260
d899e052
YZ
1261 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1262 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1263 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1264 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1265 extent_end = found_key.offset +
1266 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1267 disk_num_bytes =
1268 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1269 if (extent_end <= start) {
1270 path->slots[0]++;
1271 goto next_slot;
1272 }
17d217fe
YZ
1273 if (disk_bytenr == 0)
1274 goto out_check;
80ff3856
YZ
1275 if (btrfs_file_extent_compression(leaf, fi) ||
1276 btrfs_file_extent_encryption(leaf, fi) ||
1277 btrfs_file_extent_other_encoding(leaf, fi))
1278 goto out_check;
d899e052
YZ
1279 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1280 goto out_check;
d2fb3437 1281 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1282 goto out_check;
33345d01 1283 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1284 found_key.offset -
1285 extent_offset, disk_bytenr))
17d217fe 1286 goto out_check;
5d4f98a2 1287 disk_bytenr += extent_offset;
17d217fe
YZ
1288 disk_bytenr += cur_offset - found_key.offset;
1289 num_bytes = min(end + 1, extent_end) - cur_offset;
1290 /*
1291 * force cow if csum exists in the range.
1292 * this ensure that csum for a given extent are
1293 * either valid or do not exist.
1294 */
1295 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1296 goto out_check;
80ff3856
YZ
1297 nocow = 1;
1298 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1299 extent_end = found_key.offset +
1300 btrfs_file_extent_inline_len(leaf, fi);
1301 extent_end = ALIGN(extent_end, root->sectorsize);
1302 } else {
1303 BUG_ON(1);
1304 }
1305out_check:
1306 if (extent_end <= start) {
1307 path->slots[0]++;
1308 goto next_slot;
1309 }
1310 if (!nocow) {
1311 if (cow_start == (u64)-1)
1312 cow_start = cur_offset;
1313 cur_offset = extent_end;
1314 if (cur_offset > end)
1315 break;
1316 path->slots[0]++;
1317 goto next_slot;
7ea394f1
YZ
1318 }
1319
b3b4aa74 1320 btrfs_release_path(path);
80ff3856 1321 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1322 ret = __cow_file_range(trans, inode, root, locked_page,
1323 cow_start, found_key.offset - 1,
1324 page_started, nr_written, 1);
79787eaa
JM
1325 if (ret) {
1326 btrfs_abort_transaction(trans, root, ret);
1327 goto error;
1328 }
80ff3856 1329 cow_start = (u64)-1;
7ea394f1 1330 }
80ff3856 1331
d899e052
YZ
1332 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1333 struct extent_map *em;
1334 struct extent_map_tree *em_tree;
1335 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1336 em = alloc_extent_map();
79787eaa 1337 BUG_ON(!em); /* -ENOMEM */
d899e052 1338 em->start = cur_offset;
70c8a91c 1339 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1340 em->len = num_bytes;
1341 em->block_len = num_bytes;
1342 em->block_start = disk_bytenr;
b4939680 1343 em->orig_block_len = disk_num_bytes;
d899e052 1344 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1345 em->mod_start = em->start;
1346 em->mod_len = em->len;
d899e052 1347 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1348 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1349 em->generation = -1;
d899e052 1350 while (1) {
890871be 1351 write_lock(&em_tree->lock);
d899e052 1352 ret = add_extent_mapping(em_tree, em);
70c8a91c
JB
1353 if (!ret)
1354 list_move(&em->list,
1355 &em_tree->modified_extents);
890871be 1356 write_unlock(&em_tree->lock);
d899e052
YZ
1357 if (ret != -EEXIST) {
1358 free_extent_map(em);
1359 break;
1360 }
1361 btrfs_drop_extent_cache(inode, em->start,
1362 em->start + em->len - 1, 0);
1363 }
1364 type = BTRFS_ORDERED_PREALLOC;
1365 } else {
1366 type = BTRFS_ORDERED_NOCOW;
1367 }
80ff3856
YZ
1368
1369 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1370 num_bytes, num_bytes, type);
79787eaa 1371 BUG_ON(ret); /* -ENOMEM */
771ed689 1372
efa56464
YZ
1373 if (root->root_key.objectid ==
1374 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1375 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1376 num_bytes);
79787eaa
JM
1377 if (ret) {
1378 btrfs_abort_transaction(trans, root, ret);
1379 goto error;
1380 }
efa56464
YZ
1381 }
1382
d899e052 1383 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1384 cur_offset, cur_offset + num_bytes - 1,
1385 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1386 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1387 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1388 cur_offset = extent_end;
1389 if (cur_offset > end)
1390 break;
be20aa9d 1391 }
b3b4aa74 1392 btrfs_release_path(path);
80ff3856 1393
17ca04af 1394 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1395 cow_start = cur_offset;
17ca04af
JB
1396 cur_offset = end;
1397 }
1398
80ff3856 1399 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1400 ret = __cow_file_range(trans, inode, root, locked_page,
1401 cow_start, end,
1402 page_started, nr_written, 1);
79787eaa
JM
1403 if (ret) {
1404 btrfs_abort_transaction(trans, root, ret);
1405 goto error;
1406 }
80ff3856
YZ
1407 }
1408
79787eaa 1409error:
a698d075 1410 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1411 if (!ret)
1412 ret = err;
1413
17ca04af
JB
1414 if (ret && cur_offset < end)
1415 extent_clear_unlock_delalloc(inode,
1416 &BTRFS_I(inode)->io_tree,
1417 cur_offset, end, locked_page,
1418 EXTENT_CLEAR_UNLOCK_PAGE |
1419 EXTENT_CLEAR_UNLOCK |
1420 EXTENT_CLEAR_DELALLOC |
1421 EXTENT_CLEAR_DIRTY |
1422 EXTENT_SET_WRITEBACK |
1423 EXTENT_END_WRITEBACK);
1424
7ea394f1 1425 btrfs_free_path(path);
79787eaa 1426 return ret;
be20aa9d
CM
1427}
1428
d352ac68
CM
1429/*
1430 * extent_io.c call back to do delayed allocation processing
1431 */
c8b97818 1432static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1433 u64 start, u64 end, int *page_started,
1434 unsigned long *nr_written)
be20aa9d 1435{
be20aa9d 1436 int ret;
7f366cfe 1437 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1438
7ddf5a42 1439 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1440 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1441 page_started, 1, nr_written);
7ddf5a42 1442 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1443 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1444 page_started, 0, nr_written);
7ddf5a42
JB
1445 } else if (!btrfs_test_opt(root, COMPRESS) &&
1446 !(BTRFS_I(inode)->force_compress) &&
1447 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1448 ret = cow_file_range(inode, locked_page, start, end,
1449 page_started, nr_written, 1);
7ddf5a42
JB
1450 } else {
1451 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1452 &BTRFS_I(inode)->runtime_flags);
771ed689 1453 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1454 page_started, nr_written);
7ddf5a42 1455 }
b888db2b
CM
1456 return ret;
1457}
1458
1bf85046
JM
1459static void btrfs_split_extent_hook(struct inode *inode,
1460 struct extent_state *orig, u64 split)
9ed74f2d 1461{
0ca1f7ce 1462 /* not delalloc, ignore it */
9ed74f2d 1463 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1464 return;
9ed74f2d 1465
9e0baf60
JB
1466 spin_lock(&BTRFS_I(inode)->lock);
1467 BTRFS_I(inode)->outstanding_extents++;
1468 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1469}
1470
1471/*
1472 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1473 * extents so we can keep track of new extents that are just merged onto old
1474 * extents, such as when we are doing sequential writes, so we can properly
1475 * account for the metadata space we'll need.
1476 */
1bf85046
JM
1477static void btrfs_merge_extent_hook(struct inode *inode,
1478 struct extent_state *new,
1479 struct extent_state *other)
9ed74f2d 1480{
9ed74f2d
JB
1481 /* not delalloc, ignore it */
1482 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1483 return;
9ed74f2d 1484
9e0baf60
JB
1485 spin_lock(&BTRFS_I(inode)->lock);
1486 BTRFS_I(inode)->outstanding_extents--;
1487 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1488}
1489
d352ac68
CM
1490/*
1491 * extent_io.c set_bit_hook, used to track delayed allocation
1492 * bytes in this file, and to maintain the list of inodes that
1493 * have pending delalloc work to be done.
1494 */
1bf85046
JM
1495static void btrfs_set_bit_hook(struct inode *inode,
1496 struct extent_state *state, int *bits)
291d673e 1497{
9ed74f2d 1498
75eff68e
CM
1499 /*
1500 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1501 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1502 * bit, which is only set or cleared with irqs on
1503 */
0ca1f7ce 1504 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1505 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1506 u64 len = state->end + 1 - state->start;
83eea1f1 1507 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1508
9e0baf60 1509 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1510 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1511 } else {
1512 spin_lock(&BTRFS_I(inode)->lock);
1513 BTRFS_I(inode)->outstanding_extents++;
1514 spin_unlock(&BTRFS_I(inode)->lock);
1515 }
287a0ab9 1516
75eff68e 1517 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1518 BTRFS_I(inode)->delalloc_bytes += len;
1519 root->fs_info->delalloc_bytes += len;
0cb59c99 1520 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1521 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1522 &root->fs_info->delalloc_inodes);
1523 }
75eff68e 1524 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1525 }
291d673e
CM
1526}
1527
d352ac68
CM
1528/*
1529 * extent_io.c clear_bit_hook, see set_bit_hook for why
1530 */
1bf85046
JM
1531static void btrfs_clear_bit_hook(struct inode *inode,
1532 struct extent_state *state, int *bits)
291d673e 1533{
75eff68e
CM
1534 /*
1535 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1536 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1537 * bit, which is only set or cleared with irqs on
1538 */
0ca1f7ce 1539 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1540 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1541 u64 len = state->end + 1 - state->start;
83eea1f1 1542 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1543
9e0baf60 1544 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1545 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1546 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1547 spin_lock(&BTRFS_I(inode)->lock);
1548 BTRFS_I(inode)->outstanding_extents--;
1549 spin_unlock(&BTRFS_I(inode)->lock);
1550 }
0ca1f7ce
YZ
1551
1552 if (*bits & EXTENT_DO_ACCOUNTING)
1553 btrfs_delalloc_release_metadata(inode, len);
1554
0cb59c99
JB
1555 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1556 && do_list)
0ca1f7ce 1557 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1558
75eff68e 1559 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1560 root->fs_info->delalloc_bytes -= len;
1561 BTRFS_I(inode)->delalloc_bytes -= len;
1562
0cb59c99 1563 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1564 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1565 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1566 }
75eff68e 1567 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1568 }
291d673e
CM
1569}
1570
d352ac68
CM
1571/*
1572 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1573 * we don't create bios that span stripes or chunks
1574 */
239b14b3 1575int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1576 size_t size, struct bio *bio,
1577 unsigned long bio_flags)
239b14b3
CM
1578{
1579 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
a62b9401 1580 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1581 u64 length = 0;
1582 u64 map_length;
239b14b3
CM
1583 int ret;
1584
771ed689
CM
1585 if (bio_flags & EXTENT_BIO_COMPRESSED)
1586 return 0;
1587
f2d8d74d 1588 length = bio->bi_size;
239b14b3 1589 map_length = length;
3ec706c8 1590 ret = btrfs_map_block(root->fs_info, READ, logical,
f188591e 1591 &map_length, NULL, 0);
3ec706c8 1592 /* Will always return 0 with map_multi == NULL */
3444a972 1593 BUG_ON(ret < 0);
d397712b 1594 if (map_length < length + size)
239b14b3 1595 return 1;
3444a972 1596 return 0;
239b14b3
CM
1597}
1598
d352ac68
CM
1599/*
1600 * in order to insert checksums into the metadata in large chunks,
1601 * we wait until bio submission time. All the pages in the bio are
1602 * checksummed and sums are attached onto the ordered extent record.
1603 *
1604 * At IO completion time the cums attached on the ordered extent record
1605 * are inserted into the btree
1606 */
d397712b
CM
1607static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1608 struct bio *bio, int mirror_num,
eaf25d93
CM
1609 unsigned long bio_flags,
1610 u64 bio_offset)
065631f6 1611{
065631f6 1612 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1613 int ret = 0;
e015640f 1614
d20f7043 1615 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1616 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1617 return 0;
1618}
e015640f 1619
4a69a410
CM
1620/*
1621 * in order to insert checksums into the metadata in large chunks,
1622 * we wait until bio submission time. All the pages in the bio are
1623 * checksummed and sums are attached onto the ordered extent record.
1624 *
1625 * At IO completion time the cums attached on the ordered extent record
1626 * are inserted into the btree
1627 */
b2950863 1628static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1629 int mirror_num, unsigned long bio_flags,
1630 u64 bio_offset)
4a69a410
CM
1631{
1632 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1633 int ret;
1634
1635 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1636 if (ret)
1637 bio_endio(bio, ret);
1638 return ret;
44b8bd7e
CM
1639}
1640
d352ac68 1641/*
cad321ad
CM
1642 * extent_io.c submission hook. This does the right thing for csum calculation
1643 * on write, or reading the csums from the tree before a read
d352ac68 1644 */
b2950863 1645static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1646 int mirror_num, unsigned long bio_flags,
1647 u64 bio_offset)
44b8bd7e
CM
1648{
1649 struct btrfs_root *root = BTRFS_I(inode)->root;
1650 int ret = 0;
19b9bdb0 1651 int skip_sum;
0417341e 1652 int metadata = 0;
b812ce28 1653 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1654
6cbff00f 1655 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1656
83eea1f1 1657 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1658 metadata = 2;
1659
7b6d91da 1660 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1661 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1662 if (ret)
61891923 1663 goto out;
5fd02043 1664
d20f7043 1665 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1666 ret = btrfs_submit_compressed_read(inode, bio,
1667 mirror_num,
1668 bio_flags);
1669 goto out;
c2db1073
TI
1670 } else if (!skip_sum) {
1671 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1672 if (ret)
61891923 1673 goto out;
c2db1073 1674 }
4d1b5fb4 1675 goto mapit;
b812ce28 1676 } else if (async && !skip_sum) {
17d217fe
YZ
1677 /* csum items have already been cloned */
1678 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1679 goto mapit;
19b9bdb0 1680 /* we're doing a write, do the async checksumming */
61891923 1681 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1682 inode, rw, bio, mirror_num,
eaf25d93
CM
1683 bio_flags, bio_offset,
1684 __btrfs_submit_bio_start,
4a69a410 1685 __btrfs_submit_bio_done);
61891923 1686 goto out;
b812ce28
JB
1687 } else if (!skip_sum) {
1688 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1689 if (ret)
1690 goto out;
19b9bdb0
CM
1691 }
1692
0b86a832 1693mapit:
61891923
SB
1694 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1695
1696out:
1697 if (ret < 0)
1698 bio_endio(bio, ret);
1699 return ret;
065631f6 1700}
6885f308 1701
d352ac68
CM
1702/*
1703 * given a list of ordered sums record them in the inode. This happens
1704 * at IO completion time based on sums calculated at bio submission time.
1705 */
ba1da2f4 1706static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1707 struct inode *inode, u64 file_offset,
1708 struct list_head *list)
1709{
e6dcd2dc
CM
1710 struct btrfs_ordered_sum *sum;
1711
c6e30871 1712 list_for_each_entry(sum, list, list) {
d20f7043
CM
1713 btrfs_csum_file_blocks(trans,
1714 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1715 }
1716 return 0;
1717}
1718
2ac55d41
JB
1719int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1720 struct extent_state **cached_state)
ea8c2819 1721{
6c1500f2 1722 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1723 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1724 cached_state, GFP_NOFS);
ea8c2819
CM
1725}
1726
d352ac68 1727/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1728struct btrfs_writepage_fixup {
1729 struct page *page;
1730 struct btrfs_work work;
1731};
1732
b2950863 1733static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1734{
1735 struct btrfs_writepage_fixup *fixup;
1736 struct btrfs_ordered_extent *ordered;
2ac55d41 1737 struct extent_state *cached_state = NULL;
247e743c
CM
1738 struct page *page;
1739 struct inode *inode;
1740 u64 page_start;
1741 u64 page_end;
87826df0 1742 int ret;
247e743c
CM
1743
1744 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1745 page = fixup->page;
4a096752 1746again:
247e743c
CM
1747 lock_page(page);
1748 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1749 ClearPageChecked(page);
1750 goto out_page;
1751 }
1752
1753 inode = page->mapping->host;
1754 page_start = page_offset(page);
1755 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1756
2ac55d41 1757 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1758 &cached_state);
4a096752
CM
1759
1760 /* already ordered? We're done */
8b62b72b 1761 if (PagePrivate2(page))
247e743c 1762 goto out;
4a096752
CM
1763
1764 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1765 if (ordered) {
2ac55d41
JB
1766 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1767 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1768 unlock_page(page);
1769 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1770 btrfs_put_ordered_extent(ordered);
4a096752
CM
1771 goto again;
1772 }
247e743c 1773
87826df0
JM
1774 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1775 if (ret) {
1776 mapping_set_error(page->mapping, ret);
1777 end_extent_writepage(page, ret, page_start, page_end);
1778 ClearPageChecked(page);
1779 goto out;
1780 }
1781
2ac55d41 1782 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1783 ClearPageChecked(page);
87826df0 1784 set_page_dirty(page);
247e743c 1785out:
2ac55d41
JB
1786 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1787 &cached_state, GFP_NOFS);
247e743c
CM
1788out_page:
1789 unlock_page(page);
1790 page_cache_release(page);
b897abec 1791 kfree(fixup);
247e743c
CM
1792}
1793
1794/*
1795 * There are a few paths in the higher layers of the kernel that directly
1796 * set the page dirty bit without asking the filesystem if it is a
1797 * good idea. This causes problems because we want to make sure COW
1798 * properly happens and the data=ordered rules are followed.
1799 *
c8b97818 1800 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1801 * hasn't been properly setup for IO. We kick off an async process
1802 * to fix it up. The async helper will wait for ordered extents, set
1803 * the delalloc bit and make it safe to write the page.
1804 */
b2950863 1805static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1806{
1807 struct inode *inode = page->mapping->host;
1808 struct btrfs_writepage_fixup *fixup;
1809 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1810
8b62b72b
CM
1811 /* this page is properly in the ordered list */
1812 if (TestClearPagePrivate2(page))
247e743c
CM
1813 return 0;
1814
1815 if (PageChecked(page))
1816 return -EAGAIN;
1817
1818 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1819 if (!fixup)
1820 return -EAGAIN;
f421950f 1821
247e743c
CM
1822 SetPageChecked(page);
1823 page_cache_get(page);
1824 fixup->work.func = btrfs_writepage_fixup_worker;
1825 fixup->page = page;
1826 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1827 return -EBUSY;
247e743c
CM
1828}
1829
d899e052
YZ
1830static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1831 struct inode *inode, u64 file_pos,
1832 u64 disk_bytenr, u64 disk_num_bytes,
1833 u64 num_bytes, u64 ram_bytes,
1834 u8 compression, u8 encryption,
1835 u16 other_encoding, int extent_type)
1836{
1837 struct btrfs_root *root = BTRFS_I(inode)->root;
1838 struct btrfs_file_extent_item *fi;
1839 struct btrfs_path *path;
1840 struct extent_buffer *leaf;
1841 struct btrfs_key ins;
d899e052
YZ
1842 int ret;
1843
1844 path = btrfs_alloc_path();
d8926bb3
MF
1845 if (!path)
1846 return -ENOMEM;
d899e052 1847
b9473439 1848 path->leave_spinning = 1;
a1ed835e
CM
1849
1850 /*
1851 * we may be replacing one extent in the tree with another.
1852 * The new extent is pinned in the extent map, and we don't want
1853 * to drop it from the cache until it is completely in the btree.
1854 *
1855 * So, tell btrfs_drop_extents to leave this extent in the cache.
1856 * the caller is expected to unpin it and allow it to be merged
1857 * with the others.
1858 */
5dc562c5 1859 ret = btrfs_drop_extents(trans, root, inode, file_pos,
2671485d 1860 file_pos + num_bytes, 0);
79787eaa
JM
1861 if (ret)
1862 goto out;
d899e052 1863
33345d01 1864 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1865 ins.offset = file_pos;
1866 ins.type = BTRFS_EXTENT_DATA_KEY;
1867 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
79787eaa
JM
1868 if (ret)
1869 goto out;
d899e052
YZ
1870 leaf = path->nodes[0];
1871 fi = btrfs_item_ptr(leaf, path->slots[0],
1872 struct btrfs_file_extent_item);
1873 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1874 btrfs_set_file_extent_type(leaf, fi, extent_type);
1875 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1876 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1877 btrfs_set_file_extent_offset(leaf, fi, 0);
1878 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1879 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1880 btrfs_set_file_extent_compression(leaf, fi, compression);
1881 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1882 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1883
d899e052 1884 btrfs_mark_buffer_dirty(leaf);
ce195332 1885 btrfs_release_path(path);
d899e052
YZ
1886
1887 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1888
1889 ins.objectid = disk_bytenr;
1890 ins.offset = disk_num_bytes;
1891 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1892 ret = btrfs_alloc_reserved_file_extent(trans, root,
1893 root->root_key.objectid,
33345d01 1894 btrfs_ino(inode), file_pos, &ins);
79787eaa 1895out:
d899e052 1896 btrfs_free_path(path);
b9473439 1897
79787eaa 1898 return ret;
d899e052
YZ
1899}
1900
5d13a98f
CM
1901/*
1902 * helper function for btrfs_finish_ordered_io, this
1903 * just reads in some of the csum leaves to prime them into ram
1904 * before we start the transaction. It limits the amount of btree
1905 * reads required while inside the transaction.
1906 */
d352ac68
CM
1907/* as ordered data IO finishes, this gets called so we can finish
1908 * an ordered extent if the range of bytes in the file it covers are
1909 * fully written.
1910 */
5fd02043 1911static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 1912{
5fd02043 1913 struct inode *inode = ordered_extent->inode;
e6dcd2dc 1914 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1915 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 1916 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1917 struct extent_state *cached_state = NULL;
261507a0 1918 int compress_type = 0;
e6dcd2dc 1919 int ret;
82d5902d 1920 bool nolock;
e6dcd2dc 1921
83eea1f1 1922 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 1923
5fd02043
JB
1924 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
1925 ret = -EIO;
1926 goto out;
1927 }
1928
c2167754 1929 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 1930 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
1931 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1932 if (nolock)
1933 trans = btrfs_join_transaction_nolock(root);
1934 else
1935 trans = btrfs_join_transaction(root);
1936 if (IS_ERR(trans)) {
1937 ret = PTR_ERR(trans);
1938 trans = NULL;
1939 goto out;
c2167754 1940 }
6c760c07
JB
1941 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1942 ret = btrfs_update_inode_fallback(trans, root, inode);
1943 if (ret) /* -ENOMEM or corruption */
1944 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
1945 goto out;
1946 }
e6dcd2dc 1947
2ac55d41
JB
1948 lock_extent_bits(io_tree, ordered_extent->file_offset,
1949 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 1950 0, &cached_state);
e6dcd2dc 1951
0cb59c99 1952 if (nolock)
7a7eaa40 1953 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1954 else
7a7eaa40 1955 trans = btrfs_join_transaction(root);
79787eaa
JM
1956 if (IS_ERR(trans)) {
1957 ret = PTR_ERR(trans);
1958 trans = NULL;
1959 goto out_unlock;
1960 }
0ca1f7ce 1961 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1962
c8b97818 1963 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1964 compress_type = ordered_extent->compress_type;
d899e052 1965 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1966 BUG_ON(compress_type);
920bbbfb 1967 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1968 ordered_extent->file_offset,
1969 ordered_extent->file_offset +
1970 ordered_extent->len);
d899e052 1971 } else {
0af3d00b 1972 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1973 ret = insert_reserved_file_extent(trans, inode,
1974 ordered_extent->file_offset,
1975 ordered_extent->start,
1976 ordered_extent->disk_len,
1977 ordered_extent->len,
1978 ordered_extent->len,
261507a0 1979 compress_type, 0, 0,
d899e052 1980 BTRFS_FILE_EXTENT_REG);
d899e052 1981 }
5dc562c5
JB
1982 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1983 ordered_extent->file_offset, ordered_extent->len,
1984 trans->transid);
79787eaa
JM
1985 if (ret < 0) {
1986 btrfs_abort_transaction(trans, root, ret);
5fd02043 1987 goto out_unlock;
79787eaa 1988 }
2ac55d41 1989
e6dcd2dc
CM
1990 add_pending_csums(trans, inode, ordered_extent->file_offset,
1991 &ordered_extent->list);
1992
6c760c07
JB
1993 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1994 ret = btrfs_update_inode_fallback(trans, root, inode);
1995 if (ret) { /* -ENOMEM or corruption */
1996 btrfs_abort_transaction(trans, root, ret);
1997 goto out_unlock;
1ef30be1
JB
1998 }
1999 ret = 0;
5fd02043
JB
2000out_unlock:
2001 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2002 ordered_extent->file_offset +
2003 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2004out:
5b0e95bf 2005 if (root != root->fs_info->tree_root)
0cb59c99 2006 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2007 if (trans)
2008 btrfs_end_transaction(trans, root);
0cb59c99 2009
5fd02043
JB
2010 if (ret)
2011 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
2012 ordered_extent->file_offset +
2013 ordered_extent->len - 1, NULL, GFP_NOFS);
2014
2015 /*
8bad3c02
LB
2016 * This needs to be done to make sure anybody waiting knows we are done
2017 * updating everything for this ordered extent.
5fd02043
JB
2018 */
2019 btrfs_remove_ordered_extent(inode, ordered_extent);
2020
e6dcd2dc
CM
2021 /* once for us */
2022 btrfs_put_ordered_extent(ordered_extent);
2023 /* once for the tree */
2024 btrfs_put_ordered_extent(ordered_extent);
2025
5fd02043
JB
2026 return ret;
2027}
2028
2029static void finish_ordered_fn(struct btrfs_work *work)
2030{
2031 struct btrfs_ordered_extent *ordered_extent;
2032 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2033 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2034}
2035
b2950863 2036static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2037 struct extent_state *state, int uptodate)
2038{
5fd02043
JB
2039 struct inode *inode = page->mapping->host;
2040 struct btrfs_root *root = BTRFS_I(inode)->root;
2041 struct btrfs_ordered_extent *ordered_extent = NULL;
2042 struct btrfs_workers *workers;
2043
1abe9b8a 2044 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2045
8b62b72b 2046 ClearPagePrivate2(page);
5fd02043
JB
2047 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2048 end - start + 1, uptodate))
2049 return 0;
2050
2051 ordered_extent->work.func = finish_ordered_fn;
2052 ordered_extent->work.flags = 0;
2053
83eea1f1 2054 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2055 workers = &root->fs_info->endio_freespace_worker;
2056 else
2057 workers = &root->fs_info->endio_write_workers;
2058 btrfs_queue_worker(workers, &ordered_extent->work);
2059
2060 return 0;
211f90e6
CM
2061}
2062
d352ac68
CM
2063/*
2064 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2065 * if there's a match, we allow the bio to finish. If not, the code in
2066 * extent_io.c will try to find good copies for us.
d352ac68 2067 */
b2950863 2068static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 2069 struct extent_state *state, int mirror)
07157aac 2070{
4eee4fa4 2071 size_t offset = start - page_offset(page);
07157aac 2072 struct inode *inode = page->mapping->host;
d1310b2e 2073 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2074 char *kaddr;
aadfeb6e 2075 u64 private = ~(u32)0;
07157aac 2076 int ret;
ff79f819
CM
2077 struct btrfs_root *root = BTRFS_I(inode)->root;
2078 u32 csum = ~(u32)0;
d1310b2e 2079
d20f7043
CM
2080 if (PageChecked(page)) {
2081 ClearPageChecked(page);
2082 goto good;
2083 }
6cbff00f
CH
2084
2085 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2086 goto good;
17d217fe
YZ
2087
2088 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2089 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2090 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2091 GFP_NOFS);
b6cda9bc 2092 return 0;
17d217fe 2093 }
d20f7043 2094
c2e639f0 2095 if (state && state->start == start) {
70dec807
CM
2096 private = state->private;
2097 ret = 0;
2098 } else {
2099 ret = get_state_private(io_tree, start, &private);
2100 }
7ac687d9 2101 kaddr = kmap_atomic(page);
d397712b 2102 if (ret)
07157aac 2103 goto zeroit;
d397712b 2104
ff79f819
CM
2105 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2106 btrfs_csum_final(csum, (char *)&csum);
d397712b 2107 if (csum != private)
07157aac 2108 goto zeroit;
d397712b 2109
7ac687d9 2110 kunmap_atomic(kaddr);
d20f7043 2111good:
07157aac
CM
2112 return 0;
2113
2114zeroit:
945d8962 2115 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
2116 "private %llu\n",
2117 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
2118 (unsigned long long)start, csum,
2119 (unsigned long long)private);
db94535d
CM
2120 memset(kaddr + offset, 1, end - start + 1);
2121 flush_dcache_page(page);
7ac687d9 2122 kunmap_atomic(kaddr);
3b951516
CM
2123 if (private == 0)
2124 return 0;
7e38326f 2125 return -EIO;
07157aac 2126}
b888db2b 2127
24bbcf04
YZ
2128struct delayed_iput {
2129 struct list_head list;
2130 struct inode *inode;
2131};
2132
79787eaa
JM
2133/* JDM: If this is fs-wide, why can't we add a pointer to
2134 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2135void btrfs_add_delayed_iput(struct inode *inode)
2136{
2137 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2138 struct delayed_iput *delayed;
2139
2140 if (atomic_add_unless(&inode->i_count, -1, 1))
2141 return;
2142
2143 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2144 delayed->inode = inode;
2145
2146 spin_lock(&fs_info->delayed_iput_lock);
2147 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2148 spin_unlock(&fs_info->delayed_iput_lock);
2149}
2150
2151void btrfs_run_delayed_iputs(struct btrfs_root *root)
2152{
2153 LIST_HEAD(list);
2154 struct btrfs_fs_info *fs_info = root->fs_info;
2155 struct delayed_iput *delayed;
2156 int empty;
2157
2158 spin_lock(&fs_info->delayed_iput_lock);
2159 empty = list_empty(&fs_info->delayed_iputs);
2160 spin_unlock(&fs_info->delayed_iput_lock);
2161 if (empty)
2162 return;
2163
24bbcf04
YZ
2164 spin_lock(&fs_info->delayed_iput_lock);
2165 list_splice_init(&fs_info->delayed_iputs, &list);
2166 spin_unlock(&fs_info->delayed_iput_lock);
2167
2168 while (!list_empty(&list)) {
2169 delayed = list_entry(list.next, struct delayed_iput, list);
2170 list_del(&delayed->list);
2171 iput(delayed->inode);
2172 kfree(delayed);
2173 }
24bbcf04
YZ
2174}
2175
d68fc57b
YZ
2176enum btrfs_orphan_cleanup_state {
2177 ORPHAN_CLEANUP_STARTED = 1,
2178 ORPHAN_CLEANUP_DONE = 2,
2179};
2180
2181/*
42b2aa86 2182 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2183 * files in the subvolume, it removes orphan item and frees block_rsv
2184 * structure.
2185 */
2186void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2187 struct btrfs_root *root)
2188{
90290e19 2189 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2190 int ret;
2191
8a35d95f 2192 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2193 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2194 return;
2195
90290e19 2196 spin_lock(&root->orphan_lock);
8a35d95f 2197 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2198 spin_unlock(&root->orphan_lock);
2199 return;
2200 }
2201
2202 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2203 spin_unlock(&root->orphan_lock);
2204 return;
2205 }
2206
2207 block_rsv = root->orphan_block_rsv;
2208 root->orphan_block_rsv = NULL;
2209 spin_unlock(&root->orphan_lock);
2210
d68fc57b
YZ
2211 if (root->orphan_item_inserted &&
2212 btrfs_root_refs(&root->root_item) > 0) {
2213 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2214 root->root_key.objectid);
2215 BUG_ON(ret);
2216 root->orphan_item_inserted = 0;
2217 }
2218
90290e19
JB
2219 if (block_rsv) {
2220 WARN_ON(block_rsv->size > 0);
2221 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2222 }
2223}
2224
7b128766
JB
2225/*
2226 * This creates an orphan entry for the given inode in case something goes
2227 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2228 *
2229 * NOTE: caller of this function should reserve 5 units of metadata for
2230 * this function.
7b128766
JB
2231 */
2232int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2233{
2234 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2235 struct btrfs_block_rsv *block_rsv = NULL;
2236 int reserve = 0;
2237 int insert = 0;
2238 int ret;
7b128766 2239
d68fc57b 2240 if (!root->orphan_block_rsv) {
66d8f3dd 2241 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
2242 if (!block_rsv)
2243 return -ENOMEM;
d68fc57b 2244 }
7b128766 2245
d68fc57b
YZ
2246 spin_lock(&root->orphan_lock);
2247 if (!root->orphan_block_rsv) {
2248 root->orphan_block_rsv = block_rsv;
2249 } else if (block_rsv) {
2250 btrfs_free_block_rsv(root, block_rsv);
2251 block_rsv = NULL;
7b128766 2252 }
7b128766 2253
8a35d95f
JB
2254 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2255 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2256#if 0
2257 /*
2258 * For proper ENOSPC handling, we should do orphan
2259 * cleanup when mounting. But this introduces backward
2260 * compatibility issue.
2261 */
2262 if (!xchg(&root->orphan_item_inserted, 1))
2263 insert = 2;
2264 else
2265 insert = 1;
2266#endif
2267 insert = 1;
321f0e70 2268 atomic_inc(&root->orphan_inodes);
7b128766
JB
2269 }
2270
72ac3c0d
JB
2271 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2272 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2273 reserve = 1;
d68fc57b 2274 spin_unlock(&root->orphan_lock);
7b128766 2275
d68fc57b
YZ
2276 /* grab metadata reservation from transaction handle */
2277 if (reserve) {
2278 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 2279 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 2280 }
7b128766 2281
d68fc57b
YZ
2282 /* insert an orphan item to track this unlinked/truncated file */
2283 if (insert >= 1) {
33345d01 2284 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 2285 if (ret && ret != -EEXIST) {
8a35d95f
JB
2286 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2287 &BTRFS_I(inode)->runtime_flags);
79787eaa
JM
2288 btrfs_abort_transaction(trans, root, ret);
2289 return ret;
2290 }
2291 ret = 0;
d68fc57b
YZ
2292 }
2293
2294 /* insert an orphan item to track subvolume contains orphan files */
2295 if (insert >= 2) {
2296 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2297 root->root_key.objectid);
79787eaa
JM
2298 if (ret && ret != -EEXIST) {
2299 btrfs_abort_transaction(trans, root, ret);
2300 return ret;
2301 }
d68fc57b
YZ
2302 }
2303 return 0;
7b128766
JB
2304}
2305
2306/*
2307 * We have done the truncate/delete so we can go ahead and remove the orphan
2308 * item for this particular inode.
2309 */
2310int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2311{
2312 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2313 int delete_item = 0;
2314 int release_rsv = 0;
7b128766
JB
2315 int ret = 0;
2316
d68fc57b 2317 spin_lock(&root->orphan_lock);
8a35d95f
JB
2318 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2319 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2320 delete_item = 1;
7b128766 2321
72ac3c0d
JB
2322 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2323 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2324 release_rsv = 1;
d68fc57b 2325 spin_unlock(&root->orphan_lock);
7b128766 2326
d68fc57b 2327 if (trans && delete_item) {
33345d01 2328 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 2329 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
d68fc57b 2330 }
7b128766 2331
8a35d95f 2332 if (release_rsv) {
d68fc57b 2333 btrfs_orphan_release_metadata(inode);
8a35d95f
JB
2334 atomic_dec(&root->orphan_inodes);
2335 }
7b128766 2336
d68fc57b 2337 return 0;
7b128766
JB
2338}
2339
2340/*
2341 * this cleans up any orphans that may be left on the list from the last use
2342 * of this root.
2343 */
66b4ffd1 2344int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2345{
2346 struct btrfs_path *path;
2347 struct extent_buffer *leaf;
7b128766
JB
2348 struct btrfs_key key, found_key;
2349 struct btrfs_trans_handle *trans;
2350 struct inode *inode;
8f6d7f4f 2351 u64 last_objectid = 0;
7b128766
JB
2352 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2353
d68fc57b 2354 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2355 return 0;
c71bf099
YZ
2356
2357 path = btrfs_alloc_path();
66b4ffd1
JB
2358 if (!path) {
2359 ret = -ENOMEM;
2360 goto out;
2361 }
7b128766
JB
2362 path->reada = -1;
2363
2364 key.objectid = BTRFS_ORPHAN_OBJECTID;
2365 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2366 key.offset = (u64)-1;
2367
7b128766
JB
2368 while (1) {
2369 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2370 if (ret < 0)
2371 goto out;
7b128766
JB
2372
2373 /*
2374 * if ret == 0 means we found what we were searching for, which
25985edc 2375 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2376 * find the key and see if we have stuff that matches
2377 */
2378 if (ret > 0) {
66b4ffd1 2379 ret = 0;
7b128766
JB
2380 if (path->slots[0] == 0)
2381 break;
2382 path->slots[0]--;
2383 }
2384
2385 /* pull out the item */
2386 leaf = path->nodes[0];
7b128766
JB
2387 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2388
2389 /* make sure the item matches what we want */
2390 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2391 break;
2392 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2393 break;
2394
2395 /* release the path since we're done with it */
b3b4aa74 2396 btrfs_release_path(path);
7b128766
JB
2397
2398 /*
2399 * this is where we are basically btrfs_lookup, without the
2400 * crossing root thing. we store the inode number in the
2401 * offset of the orphan item.
2402 */
8f6d7f4f
JB
2403
2404 if (found_key.offset == last_objectid) {
2405 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2406 "stopping orphan cleanup\n");
2407 ret = -EINVAL;
2408 goto out;
2409 }
2410
2411 last_objectid = found_key.offset;
2412
5d4f98a2
YZ
2413 found_key.objectid = found_key.offset;
2414 found_key.type = BTRFS_INODE_ITEM_KEY;
2415 found_key.offset = 0;
73f73415 2416 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
2417 ret = PTR_RET(inode);
2418 if (ret && ret != -ESTALE)
66b4ffd1 2419 goto out;
7b128766 2420
f8e9e0b0
AJ
2421 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2422 struct btrfs_root *dead_root;
2423 struct btrfs_fs_info *fs_info = root->fs_info;
2424 int is_dead_root = 0;
2425
2426 /*
2427 * this is an orphan in the tree root. Currently these
2428 * could come from 2 sources:
2429 * a) a snapshot deletion in progress
2430 * b) a free space cache inode
2431 * We need to distinguish those two, as the snapshot
2432 * orphan must not get deleted.
2433 * find_dead_roots already ran before us, so if this
2434 * is a snapshot deletion, we should find the root
2435 * in the dead_roots list
2436 */
2437 spin_lock(&fs_info->trans_lock);
2438 list_for_each_entry(dead_root, &fs_info->dead_roots,
2439 root_list) {
2440 if (dead_root->root_key.objectid ==
2441 found_key.objectid) {
2442 is_dead_root = 1;
2443 break;
2444 }
2445 }
2446 spin_unlock(&fs_info->trans_lock);
2447 if (is_dead_root) {
2448 /* prevent this orphan from being found again */
2449 key.offset = found_key.objectid - 1;
2450 continue;
2451 }
2452 }
7b128766 2453 /*
a8c9e576
JB
2454 * Inode is already gone but the orphan item is still there,
2455 * kill the orphan item.
7b128766 2456 */
a8c9e576
JB
2457 if (ret == -ESTALE) {
2458 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
2459 if (IS_ERR(trans)) {
2460 ret = PTR_ERR(trans);
2461 goto out;
2462 }
8a35d95f
JB
2463 printk(KERN_ERR "auto deleting %Lu\n",
2464 found_key.objectid);
a8c9e576
JB
2465 ret = btrfs_del_orphan_item(trans, root,
2466 found_key.objectid);
79787eaa 2467 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
5b21f2ed 2468 btrfs_end_transaction(trans, root);
7b128766
JB
2469 continue;
2470 }
2471
a8c9e576
JB
2472 /*
2473 * add this inode to the orphan list so btrfs_orphan_del does
2474 * the proper thing when we hit it
2475 */
8a35d95f
JB
2476 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2477 &BTRFS_I(inode)->runtime_flags);
a8c9e576 2478
7b128766
JB
2479 /* if we have links, this was a truncate, lets do that */
2480 if (inode->i_nlink) {
a41ad394
JB
2481 if (!S_ISREG(inode->i_mode)) {
2482 WARN_ON(1);
2483 iput(inode);
2484 continue;
2485 }
7b128766 2486 nr_truncate++;
f3fe820c
JB
2487
2488 /* 1 for the orphan item deletion. */
2489 trans = btrfs_start_transaction(root, 1);
2490 if (IS_ERR(trans)) {
2491 ret = PTR_ERR(trans);
2492 goto out;
2493 }
2494 ret = btrfs_orphan_add(trans, inode);
2495 btrfs_end_transaction(trans, root);
2496 if (ret)
2497 goto out;
2498
66b4ffd1 2499 ret = btrfs_truncate(inode);
7b128766
JB
2500 } else {
2501 nr_unlink++;
2502 }
2503
2504 /* this will do delete_inode and everything for us */
2505 iput(inode);
66b4ffd1
JB
2506 if (ret)
2507 goto out;
7b128766 2508 }
3254c876
MX
2509 /* release the path since we're done with it */
2510 btrfs_release_path(path);
2511
d68fc57b
YZ
2512 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2513
2514 if (root->orphan_block_rsv)
2515 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2516 (u64)-1);
2517
2518 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2519 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2520 if (!IS_ERR(trans))
2521 btrfs_end_transaction(trans, root);
d68fc57b 2522 }
7b128766
JB
2523
2524 if (nr_unlink)
2525 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2526 if (nr_truncate)
2527 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2528
2529out:
2530 if (ret)
2531 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2532 btrfs_free_path(path);
2533 return ret;
7b128766
JB
2534}
2535
46a53cca
CM
2536/*
2537 * very simple check to peek ahead in the leaf looking for xattrs. If we
2538 * don't find any xattrs, we know there can't be any acls.
2539 *
2540 * slot is the slot the inode is in, objectid is the objectid of the inode
2541 */
2542static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2543 int slot, u64 objectid)
2544{
2545 u32 nritems = btrfs_header_nritems(leaf);
2546 struct btrfs_key found_key;
2547 int scanned = 0;
2548
2549 slot++;
2550 while (slot < nritems) {
2551 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2552
2553 /* we found a different objectid, there must not be acls */
2554 if (found_key.objectid != objectid)
2555 return 0;
2556
2557 /* we found an xattr, assume we've got an acl */
2558 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2559 return 1;
2560
2561 /*
2562 * we found a key greater than an xattr key, there can't
2563 * be any acls later on
2564 */
2565 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2566 return 0;
2567
2568 slot++;
2569 scanned++;
2570
2571 /*
2572 * it goes inode, inode backrefs, xattrs, extents,
2573 * so if there are a ton of hard links to an inode there can
2574 * be a lot of backrefs. Don't waste time searching too hard,
2575 * this is just an optimization
2576 */
2577 if (scanned >= 8)
2578 break;
2579 }
2580 /* we hit the end of the leaf before we found an xattr or
2581 * something larger than an xattr. We have to assume the inode
2582 * has acls
2583 */
2584 return 1;
2585}
2586
d352ac68
CM
2587/*
2588 * read an inode from the btree into the in-memory inode
2589 */
5d4f98a2 2590static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2591{
2592 struct btrfs_path *path;
5f39d397 2593 struct extent_buffer *leaf;
39279cc3 2594 struct btrfs_inode_item *inode_item;
0b86a832 2595 struct btrfs_timespec *tspec;
39279cc3
CM
2596 struct btrfs_root *root = BTRFS_I(inode)->root;
2597 struct btrfs_key location;
46a53cca 2598 int maybe_acls;
618e21d5 2599 u32 rdev;
39279cc3 2600 int ret;
2f7e33d4
MX
2601 bool filled = false;
2602
2603 ret = btrfs_fill_inode(inode, &rdev);
2604 if (!ret)
2605 filled = true;
39279cc3
CM
2606
2607 path = btrfs_alloc_path();
1748f843
MF
2608 if (!path)
2609 goto make_bad;
2610
d90c7321 2611 path->leave_spinning = 1;
39279cc3 2612 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2613
39279cc3 2614 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2615 if (ret)
39279cc3 2616 goto make_bad;
39279cc3 2617
5f39d397 2618 leaf = path->nodes[0];
2f7e33d4
MX
2619
2620 if (filled)
2621 goto cache_acl;
2622
5f39d397
CM
2623 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2624 struct btrfs_inode_item);
5f39d397 2625 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 2626 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
2627 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
2628 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 2629 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2630
2631 tspec = btrfs_inode_atime(inode_item);
2632 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2633 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2634
2635 tspec = btrfs_inode_mtime(inode_item);
2636 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2637 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2638
2639 tspec = btrfs_inode_ctime(inode_item);
2640 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2641 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2642
a76a3cd4 2643 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2644 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
2645 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
2646
2647 /*
2648 * If we were modified in the current generation and evicted from memory
2649 * and then re-read we need to do a full sync since we don't have any
2650 * idea about which extents were modified before we were evicted from
2651 * cache.
2652 */
2653 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
2654 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2655 &BTRFS_I(inode)->runtime_flags);
2656
0c4d2d95 2657 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2658 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2659 inode->i_rdev = 0;
5f39d397
CM
2660 rdev = btrfs_inode_rdev(leaf, inode_item);
2661
aec7477b 2662 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2663 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 2664cache_acl:
46a53cca
CM
2665 /*
2666 * try to precache a NULL acl entry for files that don't have
2667 * any xattrs or acls
2668 */
33345d01
LZ
2669 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2670 btrfs_ino(inode));
72c04902
AV
2671 if (!maybe_acls)
2672 cache_no_acl(inode);
46a53cca 2673
39279cc3 2674 btrfs_free_path(path);
39279cc3 2675
39279cc3 2676 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2677 case S_IFREG:
2678 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2679 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2680 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2681 inode->i_fop = &btrfs_file_operations;
2682 inode->i_op = &btrfs_file_inode_operations;
2683 break;
2684 case S_IFDIR:
2685 inode->i_fop = &btrfs_dir_file_operations;
2686 if (root == root->fs_info->tree_root)
2687 inode->i_op = &btrfs_dir_ro_inode_operations;
2688 else
2689 inode->i_op = &btrfs_dir_inode_operations;
2690 break;
2691 case S_IFLNK:
2692 inode->i_op = &btrfs_symlink_inode_operations;
2693 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2694 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2695 break;
618e21d5 2696 default:
0279b4cd 2697 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2698 init_special_inode(inode, inode->i_mode, rdev);
2699 break;
39279cc3 2700 }
6cbff00f
CH
2701
2702 btrfs_update_iflags(inode);
39279cc3
CM
2703 return;
2704
2705make_bad:
39279cc3 2706 btrfs_free_path(path);
39279cc3
CM
2707 make_bad_inode(inode);
2708}
2709
d352ac68
CM
2710/*
2711 * given a leaf and an inode, copy the inode fields into the leaf
2712 */
e02119d5
CM
2713static void fill_inode_item(struct btrfs_trans_handle *trans,
2714 struct extent_buffer *leaf,
5f39d397 2715 struct btrfs_inode_item *item,
39279cc3
CM
2716 struct inode *inode)
2717{
51fab693
LB
2718 struct btrfs_map_token token;
2719
2720 btrfs_init_map_token(&token);
2721
2722 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
2723 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
2724 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
2725 &token);
2726 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
2727 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
2728
2729 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
2730 inode->i_atime.tv_sec, &token);
2731 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
2732 inode->i_atime.tv_nsec, &token);
2733
2734 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
2735 inode->i_mtime.tv_sec, &token);
2736 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
2737 inode->i_mtime.tv_nsec, &token);
2738
2739 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
2740 inode->i_ctime.tv_sec, &token);
2741 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
2742 inode->i_ctime.tv_nsec, &token);
2743
2744 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
2745 &token);
2746 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
2747 &token);
2748 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
2749 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
2750 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
2751 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
2752 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
2753}
2754
d352ac68
CM
2755/*
2756 * copy everything in the in-memory inode into the btree.
2757 */
2115133f 2758static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 2759 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2760{
2761 struct btrfs_inode_item *inode_item;
2762 struct btrfs_path *path;
5f39d397 2763 struct extent_buffer *leaf;
39279cc3
CM
2764 int ret;
2765
2766 path = btrfs_alloc_path();
16cdcec7
MX
2767 if (!path)
2768 return -ENOMEM;
2769
b9473439 2770 path->leave_spinning = 1;
16cdcec7
MX
2771 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2772 1);
39279cc3
CM
2773 if (ret) {
2774 if (ret > 0)
2775 ret = -ENOENT;
2776 goto failed;
2777 }
2778
b4ce94de 2779 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2780 leaf = path->nodes[0];
2781 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2782 struct btrfs_inode_item);
39279cc3 2783
e02119d5 2784 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2785 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2786 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2787 ret = 0;
2788failed:
39279cc3
CM
2789 btrfs_free_path(path);
2790 return ret;
2791}
2792
2115133f
CM
2793/*
2794 * copy everything in the in-memory inode into the btree.
2795 */
2796noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2797 struct btrfs_root *root, struct inode *inode)
2798{
2799 int ret;
2800
2801 /*
2802 * If the inode is a free space inode, we can deadlock during commit
2803 * if we put it into the delayed code.
2804 *
2805 * The data relocation inode should also be directly updated
2806 * without delay
2807 */
83eea1f1 2808 if (!btrfs_is_free_space_inode(inode)
2115133f 2809 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
2810 btrfs_update_root_times(trans, root);
2811
2115133f
CM
2812 ret = btrfs_delayed_update_inode(trans, root, inode);
2813 if (!ret)
2814 btrfs_set_inode_last_trans(trans, inode);
2815 return ret;
2816 }
2817
2818 return btrfs_update_inode_item(trans, root, inode);
2819}
2820
be6aef60
JB
2821noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2822 struct btrfs_root *root,
2823 struct inode *inode)
2115133f
CM
2824{
2825 int ret;
2826
2827 ret = btrfs_update_inode(trans, root, inode);
2828 if (ret == -ENOSPC)
2829 return btrfs_update_inode_item(trans, root, inode);
2830 return ret;
2831}
2832
d352ac68
CM
2833/*
2834 * unlink helper that gets used here in inode.c and in the tree logging
2835 * recovery code. It remove a link in a directory with a given name, and
2836 * also drops the back refs in the inode to the directory
2837 */
92986796
AV
2838static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2839 struct btrfs_root *root,
2840 struct inode *dir, struct inode *inode,
2841 const char *name, int name_len)
39279cc3
CM
2842{
2843 struct btrfs_path *path;
39279cc3 2844 int ret = 0;
5f39d397 2845 struct extent_buffer *leaf;
39279cc3 2846 struct btrfs_dir_item *di;
5f39d397 2847 struct btrfs_key key;
aec7477b 2848 u64 index;
33345d01
LZ
2849 u64 ino = btrfs_ino(inode);
2850 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2851
2852 path = btrfs_alloc_path();
54aa1f4d
CM
2853 if (!path) {
2854 ret = -ENOMEM;
554233a6 2855 goto out;
54aa1f4d
CM
2856 }
2857
b9473439 2858 path->leave_spinning = 1;
33345d01 2859 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2860 name, name_len, -1);
2861 if (IS_ERR(di)) {
2862 ret = PTR_ERR(di);
2863 goto err;
2864 }
2865 if (!di) {
2866 ret = -ENOENT;
2867 goto err;
2868 }
5f39d397
CM
2869 leaf = path->nodes[0];
2870 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2871 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2872 if (ret)
2873 goto err;
b3b4aa74 2874 btrfs_release_path(path);
39279cc3 2875
33345d01
LZ
2876 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2877 dir_ino, &index);
aec7477b 2878 if (ret) {
d397712b 2879 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2880 "inode %llu parent %llu\n", name_len, name,
2881 (unsigned long long)ino, (unsigned long long)dir_ino);
79787eaa 2882 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
2883 goto err;
2884 }
2885
16cdcec7 2886 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
2887 if (ret) {
2888 btrfs_abort_transaction(trans, root, ret);
39279cc3 2889 goto err;
79787eaa 2890 }
39279cc3 2891
e02119d5 2892 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2893 inode, dir_ino);
79787eaa
JM
2894 if (ret != 0 && ret != -ENOENT) {
2895 btrfs_abort_transaction(trans, root, ret);
2896 goto err;
2897 }
e02119d5
CM
2898
2899 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2900 dir, index);
6418c961
CM
2901 if (ret == -ENOENT)
2902 ret = 0;
39279cc3
CM
2903err:
2904 btrfs_free_path(path);
e02119d5
CM
2905 if (ret)
2906 goto out;
2907
2908 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
2909 inode_inc_iversion(inode);
2910 inode_inc_iversion(dir);
e02119d5 2911 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 2912 ret = btrfs_update_inode(trans, root, dir);
e02119d5 2913out:
39279cc3
CM
2914 return ret;
2915}
2916
92986796
AV
2917int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2918 struct btrfs_root *root,
2919 struct inode *dir, struct inode *inode,
2920 const char *name, int name_len)
2921{
2922 int ret;
2923 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2924 if (!ret) {
2925 btrfs_drop_nlink(inode);
2926 ret = btrfs_update_inode(trans, root, inode);
2927 }
2928 return ret;
2929}
2930
2931
a22285a6
YZ
2932/* helper to check if there is any shared block in the path */
2933static int check_path_shared(struct btrfs_root *root,
2934 struct btrfs_path *path)
39279cc3 2935{
a22285a6
YZ
2936 struct extent_buffer *eb;
2937 int level;
0e4dcbef 2938 u64 refs = 1;
5df6a9f6 2939
a22285a6 2940 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2941 int ret;
2942
a22285a6
YZ
2943 if (!path->nodes[level])
2944 break;
2945 eb = path->nodes[level];
2946 if (!btrfs_block_can_be_shared(root, eb))
2947 continue;
2948 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2949 &refs, NULL);
2950 if (refs > 1)
2951 return 1;
5df6a9f6 2952 }
dedefd72 2953 return 0;
39279cc3
CM
2954}
2955
a22285a6
YZ
2956/*
2957 * helper to start transaction for unlink and rmdir.
2958 *
2959 * unlink and rmdir are special in btrfs, they do not always free space.
2960 * so in enospc case, we should make sure they will free space before
2961 * allowing them to use the global metadata reservation.
2962 */
2963static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2964 struct dentry *dentry)
4df27c4d 2965{
39279cc3 2966 struct btrfs_trans_handle *trans;
a22285a6 2967 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2968 struct btrfs_path *path;
4df27c4d 2969 struct btrfs_dir_item *di;
7b128766 2970 struct inode *inode = dentry->d_inode;
4df27c4d 2971 u64 index;
a22285a6
YZ
2972 int check_link = 1;
2973 int err = -ENOSPC;
4df27c4d 2974 int ret;
33345d01
LZ
2975 u64 ino = btrfs_ino(inode);
2976 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2977
e70bea5f
JB
2978 /*
2979 * 1 for the possible orphan item
2980 * 1 for the dir item
2981 * 1 for the dir index
2982 * 1 for the inode ref
2983 * 1 for the inode ref in the tree log
2984 * 2 for the dir entries in the log
2985 * 1 for the inode
2986 */
2987 trans = btrfs_start_transaction(root, 8);
a22285a6
YZ
2988 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2989 return trans;
4df27c4d 2990
33345d01 2991 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2992 return ERR_PTR(-ENOSPC);
4df27c4d 2993
a22285a6
YZ
2994 /* check if there is someone else holds reference */
2995 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2996 return ERR_PTR(-ENOSPC);
4df27c4d 2997
a22285a6
YZ
2998 if (atomic_read(&inode->i_count) > 2)
2999 return ERR_PTR(-ENOSPC);
4df27c4d 3000
a22285a6
YZ
3001 if (xchg(&root->fs_info->enospc_unlink, 1))
3002 return ERR_PTR(-ENOSPC);
3003
3004 path = btrfs_alloc_path();
3005 if (!path) {
3006 root->fs_info->enospc_unlink = 0;
3007 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
3008 }
3009
3880a1b4
JB
3010 /* 1 for the orphan item */
3011 trans = btrfs_start_transaction(root, 1);
5df6a9f6 3012 if (IS_ERR(trans)) {
a22285a6
YZ
3013 btrfs_free_path(path);
3014 root->fs_info->enospc_unlink = 0;
3015 return trans;
3016 }
4df27c4d 3017
a22285a6
YZ
3018 path->skip_locking = 1;
3019 path->search_commit_root = 1;
4df27c4d 3020
a22285a6
YZ
3021 ret = btrfs_lookup_inode(trans, root, path,
3022 &BTRFS_I(dir)->location, 0);
3023 if (ret < 0) {
3024 err = ret;
3025 goto out;
3026 }
3027 if (ret == 0) {
3028 if (check_path_shared(root, path))
3029 goto out;
3030 } else {
3031 check_link = 0;
5df6a9f6 3032 }
b3b4aa74 3033 btrfs_release_path(path);
a22285a6
YZ
3034
3035 ret = btrfs_lookup_inode(trans, root, path,
3036 &BTRFS_I(inode)->location, 0);
3037 if (ret < 0) {
3038 err = ret;
3039 goto out;
3040 }
3041 if (ret == 0) {
3042 if (check_path_shared(root, path))
3043 goto out;
3044 } else {
3045 check_link = 0;
3046 }
b3b4aa74 3047 btrfs_release_path(path);
a22285a6
YZ
3048
3049 if (ret == 0 && S_ISREG(inode->i_mode)) {
3050 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 3051 ino, (u64)-1, 0);
a22285a6
YZ
3052 if (ret < 0) {
3053 err = ret;
3054 goto out;
3055 }
79787eaa 3056 BUG_ON(ret == 0); /* Corruption */
a22285a6
YZ
3057 if (check_path_shared(root, path))
3058 goto out;
b3b4aa74 3059 btrfs_release_path(path);
a22285a6
YZ
3060 }
3061
3062 if (!check_link) {
3063 err = 0;
3064 goto out;
3065 }
3066
33345d01 3067 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
3068 dentry->d_name.name, dentry->d_name.len, 0);
3069 if (IS_ERR(di)) {
3070 err = PTR_ERR(di);
3071 goto out;
3072 }
3073 if (di) {
3074 if (check_path_shared(root, path))
3075 goto out;
3076 } else {
3077 err = 0;
3078 goto out;
3079 }
b3b4aa74 3080 btrfs_release_path(path);
a22285a6 3081
f186373f
MF
3082 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name,
3083 dentry->d_name.len, ino, dir_ino, 0,
3084 &index);
3085 if (ret) {
3086 err = ret;
a22285a6
YZ
3087 goto out;
3088 }
f186373f 3089
a22285a6
YZ
3090 if (check_path_shared(root, path))
3091 goto out;
f186373f 3092
b3b4aa74 3093 btrfs_release_path(path);
a22285a6 3094
16cdcec7
MX
3095 /*
3096 * This is a commit root search, if we can lookup inode item and other
3097 * relative items in the commit root, it means the transaction of
3098 * dir/file creation has been committed, and the dir index item that we
3099 * delay to insert has also been inserted into the commit root. So
3100 * we needn't worry about the delayed insertion of the dir index item
3101 * here.
3102 */
33345d01 3103 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
3104 dentry->d_name.name, dentry->d_name.len, 0);
3105 if (IS_ERR(di)) {
3106 err = PTR_ERR(di);
3107 goto out;
3108 }
3109 BUG_ON(ret == -ENOENT);
3110 if (check_path_shared(root, path))
3111 goto out;
3112
3113 err = 0;
3114out:
3115 btrfs_free_path(path);
3880a1b4
JB
3116 /* Migrate the orphan reservation over */
3117 if (!err)
3118 err = btrfs_block_rsv_migrate(trans->block_rsv,
3119 &root->fs_info->global_block_rsv,
5a77d76c 3120 trans->bytes_reserved);
3880a1b4 3121
a22285a6
YZ
3122 if (err) {
3123 btrfs_end_transaction(trans, root);
3124 root->fs_info->enospc_unlink = 0;
3125 return ERR_PTR(err);
3126 }
3127
3128 trans->block_rsv = &root->fs_info->global_block_rsv;
3129 return trans;
3130}
3131
3132static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3133 struct btrfs_root *root)
3134{
66d8f3dd 3135 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) {
5a77d76c
JB
3136 btrfs_block_rsv_release(root, trans->block_rsv,
3137 trans->bytes_reserved);
3138 trans->block_rsv = &root->fs_info->trans_block_rsv;
a22285a6
YZ
3139 BUG_ON(!root->fs_info->enospc_unlink);
3140 root->fs_info->enospc_unlink = 0;
3141 }
7ad85bb7 3142 btrfs_end_transaction(trans, root);
a22285a6
YZ
3143}
3144
3145static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3146{
3147 struct btrfs_root *root = BTRFS_I(dir)->root;
3148 struct btrfs_trans_handle *trans;
3149 struct inode *inode = dentry->d_inode;
3150 int ret;
a22285a6
YZ
3151
3152 trans = __unlink_start_trans(dir, dentry);
3153 if (IS_ERR(trans))
3154 return PTR_ERR(trans);
5f39d397 3155
12fcfd22
CM
3156 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3157
e02119d5
CM
3158 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3159 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3160 if (ret)
3161 goto out;
7b128766 3162
a22285a6 3163 if (inode->i_nlink == 0) {
7b128766 3164 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3165 if (ret)
3166 goto out;
a22285a6 3167 }
7b128766 3168
b532402e 3169out:
a22285a6 3170 __unlink_end_trans(trans, root);
b53d3f5d 3171 btrfs_btree_balance_dirty(root);
39279cc3
CM
3172 return ret;
3173}
3174
4df27c4d
YZ
3175int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3176 struct btrfs_root *root,
3177 struct inode *dir, u64 objectid,
3178 const char *name, int name_len)
3179{
3180 struct btrfs_path *path;
3181 struct extent_buffer *leaf;
3182 struct btrfs_dir_item *di;
3183 struct btrfs_key key;
3184 u64 index;
3185 int ret;
33345d01 3186 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3187
3188 path = btrfs_alloc_path();
3189 if (!path)
3190 return -ENOMEM;
3191
33345d01 3192 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3193 name, name_len, -1);
79787eaa
JM
3194 if (IS_ERR_OR_NULL(di)) {
3195 if (!di)
3196 ret = -ENOENT;
3197 else
3198 ret = PTR_ERR(di);
3199 goto out;
3200 }
4df27c4d
YZ
3201
3202 leaf = path->nodes[0];
3203 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3204 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3205 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3206 if (ret) {
3207 btrfs_abort_transaction(trans, root, ret);
3208 goto out;
3209 }
b3b4aa74 3210 btrfs_release_path(path);
4df27c4d
YZ
3211
3212 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3213 objectid, root->root_key.objectid,
33345d01 3214 dir_ino, &index, name, name_len);
4df27c4d 3215 if (ret < 0) {
79787eaa
JM
3216 if (ret != -ENOENT) {
3217 btrfs_abort_transaction(trans, root, ret);
3218 goto out;
3219 }
33345d01 3220 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3221 name, name_len);
79787eaa
JM
3222 if (IS_ERR_OR_NULL(di)) {
3223 if (!di)
3224 ret = -ENOENT;
3225 else
3226 ret = PTR_ERR(di);
3227 btrfs_abort_transaction(trans, root, ret);
3228 goto out;
3229 }
4df27c4d
YZ
3230
3231 leaf = path->nodes[0];
3232 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3233 btrfs_release_path(path);
4df27c4d
YZ
3234 index = key.offset;
3235 }
945d8962 3236 btrfs_release_path(path);
4df27c4d 3237
16cdcec7 3238 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3239 if (ret) {
3240 btrfs_abort_transaction(trans, root, ret);
3241 goto out;
3242 }
4df27c4d
YZ
3243
3244 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3245 inode_inc_iversion(dir);
4df27c4d 3246 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3247 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3248 if (ret)
3249 btrfs_abort_transaction(trans, root, ret);
3250out:
71d7aed0 3251 btrfs_free_path(path);
79787eaa 3252 return ret;
4df27c4d
YZ
3253}
3254
39279cc3
CM
3255static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3256{
3257 struct inode *inode = dentry->d_inode;
1832a6d5 3258 int err = 0;
39279cc3 3259 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3260 struct btrfs_trans_handle *trans;
39279cc3 3261
b3ae244e 3262 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3263 return -ENOTEMPTY;
b3ae244e
DS
3264 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3265 return -EPERM;
134d4512 3266
a22285a6
YZ
3267 trans = __unlink_start_trans(dir, dentry);
3268 if (IS_ERR(trans))
5df6a9f6 3269 return PTR_ERR(trans);
5df6a9f6 3270
33345d01 3271 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3272 err = btrfs_unlink_subvol(trans, root, dir,
3273 BTRFS_I(inode)->location.objectid,
3274 dentry->d_name.name,
3275 dentry->d_name.len);
3276 goto out;
3277 }
3278
7b128766
JB
3279 err = btrfs_orphan_add(trans, inode);
3280 if (err)
4df27c4d 3281 goto out;
7b128766 3282
39279cc3 3283 /* now the directory is empty */
e02119d5
CM
3284 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3285 dentry->d_name.name, dentry->d_name.len);
d397712b 3286 if (!err)
dbe674a9 3287 btrfs_i_size_write(inode, 0);
4df27c4d 3288out:
a22285a6 3289 __unlink_end_trans(trans, root);
b53d3f5d 3290 btrfs_btree_balance_dirty(root);
3954401f 3291
39279cc3
CM
3292 return err;
3293}
3294
39279cc3
CM
3295/*
3296 * this can truncate away extent items, csum items and directory items.
3297 * It starts at a high offset and removes keys until it can't find
d352ac68 3298 * any higher than new_size
39279cc3
CM
3299 *
3300 * csum items that cross the new i_size are truncated to the new size
3301 * as well.
7b128766
JB
3302 *
3303 * min_type is the minimum key type to truncate down to. If set to 0, this
3304 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3305 */
8082510e
YZ
3306int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3307 struct btrfs_root *root,
3308 struct inode *inode,
3309 u64 new_size, u32 min_type)
39279cc3 3310{
39279cc3 3311 struct btrfs_path *path;
5f39d397 3312 struct extent_buffer *leaf;
39279cc3 3313 struct btrfs_file_extent_item *fi;
8082510e
YZ
3314 struct btrfs_key key;
3315 struct btrfs_key found_key;
39279cc3 3316 u64 extent_start = 0;
db94535d 3317 u64 extent_num_bytes = 0;
5d4f98a2 3318 u64 extent_offset = 0;
39279cc3 3319 u64 item_end = 0;
8082510e
YZ
3320 u64 mask = root->sectorsize - 1;
3321 u32 found_type = (u8)-1;
39279cc3
CM
3322 int found_extent;
3323 int del_item;
85e21bac
CM
3324 int pending_del_nr = 0;
3325 int pending_del_slot = 0;
179e29e4 3326 int extent_type = -1;
8082510e
YZ
3327 int ret;
3328 int err = 0;
33345d01 3329 u64 ino = btrfs_ino(inode);
8082510e
YZ
3330
3331 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3332
0eb0e19c
MF
3333 path = btrfs_alloc_path();
3334 if (!path)
3335 return -ENOMEM;
3336 path->reada = -1;
3337
5dc562c5
JB
3338 /*
3339 * We want to drop from the next block forward in case this new size is
3340 * not block aligned since we will be keeping the last block of the
3341 * extent just the way it is.
3342 */
0af3d00b 3343 if (root->ref_cows || root == root->fs_info->tree_root)
5dc562c5 3344 btrfs_drop_extent_cache(inode, (new_size + mask) & (~mask), (u64)-1, 0);
8082510e 3345
16cdcec7
MX
3346 /*
3347 * This function is also used to drop the items in the log tree before
3348 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3349 * it is used to drop the loged items. So we shouldn't kill the delayed
3350 * items.
3351 */
3352 if (min_type == 0 && root == BTRFS_I(inode)->root)
3353 btrfs_kill_delayed_inode_items(inode);
3354
33345d01 3355 key.objectid = ino;
39279cc3 3356 key.offset = (u64)-1;
5f39d397
CM
3357 key.type = (u8)-1;
3358
85e21bac 3359search_again:
b9473439 3360 path->leave_spinning = 1;
85e21bac 3361 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3362 if (ret < 0) {
3363 err = ret;
3364 goto out;
3365 }
d397712b 3366
85e21bac 3367 if (ret > 0) {
e02119d5
CM
3368 /* there are no items in the tree for us to truncate, we're
3369 * done
3370 */
8082510e
YZ
3371 if (path->slots[0] == 0)
3372 goto out;
85e21bac
CM
3373 path->slots[0]--;
3374 }
3375
d397712b 3376 while (1) {
39279cc3 3377 fi = NULL;
5f39d397
CM
3378 leaf = path->nodes[0];
3379 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3380 found_type = btrfs_key_type(&found_key);
39279cc3 3381
33345d01 3382 if (found_key.objectid != ino)
39279cc3 3383 break;
5f39d397 3384
85e21bac 3385 if (found_type < min_type)
39279cc3
CM
3386 break;
3387
5f39d397 3388 item_end = found_key.offset;
39279cc3 3389 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3390 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3391 struct btrfs_file_extent_item);
179e29e4
CM
3392 extent_type = btrfs_file_extent_type(leaf, fi);
3393 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3394 item_end +=
db94535d 3395 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3396 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3397 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3398 fi);
39279cc3 3399 }
008630c1 3400 item_end--;
39279cc3 3401 }
8082510e
YZ
3402 if (found_type > min_type) {
3403 del_item = 1;
3404 } else {
3405 if (item_end < new_size)
b888db2b 3406 break;
8082510e
YZ
3407 if (found_key.offset >= new_size)
3408 del_item = 1;
3409 else
3410 del_item = 0;
39279cc3 3411 }
39279cc3 3412 found_extent = 0;
39279cc3 3413 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3414 if (found_type != BTRFS_EXTENT_DATA_KEY)
3415 goto delete;
3416
3417 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3418 u64 num_dec;
db94535d 3419 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 3420 if (!del_item) {
db94535d
CM
3421 u64 orig_num_bytes =
3422 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3423 extent_num_bytes = new_size -
5f39d397 3424 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3425 extent_num_bytes = extent_num_bytes &
3426 ~((u64)root->sectorsize - 1);
db94535d
CM
3427 btrfs_set_file_extent_num_bytes(leaf, fi,
3428 extent_num_bytes);
3429 num_dec = (orig_num_bytes -
9069218d 3430 extent_num_bytes);
e02119d5 3431 if (root->ref_cows && extent_start != 0)
a76a3cd4 3432 inode_sub_bytes(inode, num_dec);
5f39d397 3433 btrfs_mark_buffer_dirty(leaf);
39279cc3 3434 } else {
db94535d
CM
3435 extent_num_bytes =
3436 btrfs_file_extent_disk_num_bytes(leaf,
3437 fi);
5d4f98a2
YZ
3438 extent_offset = found_key.offset -
3439 btrfs_file_extent_offset(leaf, fi);
3440
39279cc3 3441 /* FIXME blocksize != 4096 */
9069218d 3442 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3443 if (extent_start != 0) {
3444 found_extent = 1;
e02119d5 3445 if (root->ref_cows)
a76a3cd4 3446 inode_sub_bytes(inode, num_dec);
e02119d5 3447 }
39279cc3 3448 }
9069218d 3449 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3450 /*
3451 * we can't truncate inline items that have had
3452 * special encodings
3453 */
3454 if (!del_item &&
3455 btrfs_file_extent_compression(leaf, fi) == 0 &&
3456 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3457 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3458 u32 size = new_size - found_key.offset;
3459
3460 if (root->ref_cows) {
a76a3cd4
YZ
3461 inode_sub_bytes(inode, item_end + 1 -
3462 new_size);
e02119d5
CM
3463 }
3464 size =
3465 btrfs_file_extent_calc_inline_size(size);
143bede5
JM
3466 btrfs_truncate_item(trans, root, path,
3467 size, 1);
e02119d5 3468 } else if (root->ref_cows) {
a76a3cd4
YZ
3469 inode_sub_bytes(inode, item_end + 1 -
3470 found_key.offset);
9069218d 3471 }
39279cc3 3472 }
179e29e4 3473delete:
39279cc3 3474 if (del_item) {
85e21bac
CM
3475 if (!pending_del_nr) {
3476 /* no pending yet, add ourselves */
3477 pending_del_slot = path->slots[0];
3478 pending_del_nr = 1;
3479 } else if (pending_del_nr &&
3480 path->slots[0] + 1 == pending_del_slot) {
3481 /* hop on the pending chunk */
3482 pending_del_nr++;
3483 pending_del_slot = path->slots[0];
3484 } else {
d397712b 3485 BUG();
85e21bac 3486 }
39279cc3
CM
3487 } else {
3488 break;
3489 }
0af3d00b
JB
3490 if (found_extent && (root->ref_cows ||
3491 root == root->fs_info->tree_root)) {
b9473439 3492 btrfs_set_path_blocking(path);
39279cc3 3493 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3494 extent_num_bytes, 0,
3495 btrfs_header_owner(leaf),
66d7e7f0 3496 ino, extent_offset, 0);
39279cc3
CM
3497 BUG_ON(ret);
3498 }
85e21bac 3499
8082510e
YZ
3500 if (found_type == BTRFS_INODE_ITEM_KEY)
3501 break;
3502
3503 if (path->slots[0] == 0 ||
3504 path->slots[0] != pending_del_slot) {
8082510e
YZ
3505 if (pending_del_nr) {
3506 ret = btrfs_del_items(trans, root, path,
3507 pending_del_slot,
3508 pending_del_nr);
79787eaa
JM
3509 if (ret) {
3510 btrfs_abort_transaction(trans,
3511 root, ret);
3512 goto error;
3513 }
8082510e
YZ
3514 pending_del_nr = 0;
3515 }
b3b4aa74 3516 btrfs_release_path(path);
85e21bac 3517 goto search_again;
8082510e
YZ
3518 } else {
3519 path->slots[0]--;
85e21bac 3520 }
39279cc3 3521 }
8082510e 3522out:
85e21bac
CM
3523 if (pending_del_nr) {
3524 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3525 pending_del_nr);
79787eaa
JM
3526 if (ret)
3527 btrfs_abort_transaction(trans, root, ret);
85e21bac 3528 }
79787eaa 3529error:
39279cc3 3530 btrfs_free_path(path);
8082510e 3531 return err;
39279cc3
CM
3532}
3533
3534/*
2aaa6655
JB
3535 * btrfs_truncate_page - read, zero a chunk and write a page
3536 * @inode - inode that we're zeroing
3537 * @from - the offset to start zeroing
3538 * @len - the length to zero, 0 to zero the entire range respective to the
3539 * offset
3540 * @front - zero up to the offset instead of from the offset on
3541 *
3542 * This will find the page for the "from" offset and cow the page and zero the
3543 * part we want to zero. This is used with truncate and hole punching.
39279cc3 3544 */
2aaa6655
JB
3545int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3546 int front)
39279cc3 3547{
2aaa6655 3548 struct address_space *mapping = inode->i_mapping;
db94535d 3549 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3550 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3551 struct btrfs_ordered_extent *ordered;
2ac55d41 3552 struct extent_state *cached_state = NULL;
e6dcd2dc 3553 char *kaddr;
db94535d 3554 u32 blocksize = root->sectorsize;
39279cc3
CM
3555 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3556 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3557 struct page *page;
3b16a4e3 3558 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 3559 int ret = 0;
a52d9a80 3560 u64 page_start;
e6dcd2dc 3561 u64 page_end;
39279cc3 3562
2aaa6655
JB
3563 if ((offset & (blocksize - 1)) == 0 &&
3564 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 3565 goto out;
0ca1f7ce 3566 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3567 if (ret)
3568 goto out;
39279cc3 3569
211c17f5 3570again:
3b16a4e3 3571 page = find_or_create_page(mapping, index, mask);
5d5e103a 3572 if (!page) {
0ca1f7ce 3573 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 3574 ret = -ENOMEM;
39279cc3 3575 goto out;
5d5e103a 3576 }
e6dcd2dc
CM
3577
3578 page_start = page_offset(page);
3579 page_end = page_start + PAGE_CACHE_SIZE - 1;
3580
39279cc3 3581 if (!PageUptodate(page)) {
9ebefb18 3582 ret = btrfs_readpage(NULL, page);
39279cc3 3583 lock_page(page);
211c17f5
CM
3584 if (page->mapping != mapping) {
3585 unlock_page(page);
3586 page_cache_release(page);
3587 goto again;
3588 }
39279cc3
CM
3589 if (!PageUptodate(page)) {
3590 ret = -EIO;
89642229 3591 goto out_unlock;
39279cc3
CM
3592 }
3593 }
211c17f5 3594 wait_on_page_writeback(page);
e6dcd2dc 3595
d0082371 3596 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
3597 set_page_extent_mapped(page);
3598
3599 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3600 if (ordered) {
2ac55d41
JB
3601 unlock_extent_cached(io_tree, page_start, page_end,
3602 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3603 unlock_page(page);
3604 page_cache_release(page);
eb84ae03 3605 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3606 btrfs_put_ordered_extent(ordered);
3607 goto again;
3608 }
3609
2ac55d41 3610 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
3611 EXTENT_DIRTY | EXTENT_DELALLOC |
3612 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 3613 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3614
2ac55d41
JB
3615 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3616 &cached_state);
9ed74f2d 3617 if (ret) {
2ac55d41
JB
3618 unlock_extent_cached(io_tree, page_start, page_end,
3619 &cached_state, GFP_NOFS);
9ed74f2d
JB
3620 goto out_unlock;
3621 }
3622
e6dcd2dc 3623 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
3624 if (!len)
3625 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 3626 kaddr = kmap(page);
2aaa6655
JB
3627 if (front)
3628 memset(kaddr, 0, offset);
3629 else
3630 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
3631 flush_dcache_page(page);
3632 kunmap(page);
3633 }
247e743c 3634 ClearPageChecked(page);
e6dcd2dc 3635 set_page_dirty(page);
2ac55d41
JB
3636 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3637 GFP_NOFS);
39279cc3 3638
89642229 3639out_unlock:
5d5e103a 3640 if (ret)
0ca1f7ce 3641 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3642 unlock_page(page);
3643 page_cache_release(page);
3644out:
3645 return ret;
3646}
3647
695a0d0d
JB
3648/*
3649 * This function puts in dummy file extents for the area we're creating a hole
3650 * for. So if we are truncating this file to a larger size we need to insert
3651 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3652 * the range between oldsize and size
3653 */
a41ad394 3654int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3655{
9036c102
YZ
3656 struct btrfs_trans_handle *trans;
3657 struct btrfs_root *root = BTRFS_I(inode)->root;
3658 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3659 struct extent_map *em = NULL;
2ac55d41 3660 struct extent_state *cached_state = NULL;
5dc562c5 3661 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9036c102 3662 u64 mask = root->sectorsize - 1;
a41ad394 3663 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3664 u64 block_end = (size + mask) & ~mask;
3665 u64 last_byte;
3666 u64 cur_offset;
3667 u64 hole_size;
9ed74f2d 3668 int err = 0;
39279cc3 3669
9036c102
YZ
3670 if (size <= hole_start)
3671 return 0;
3672
9036c102
YZ
3673 while (1) {
3674 struct btrfs_ordered_extent *ordered;
3675 btrfs_wait_ordered_range(inode, hole_start,
3676 block_end - hole_start);
2ac55d41 3677 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 3678 &cached_state);
9036c102
YZ
3679 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3680 if (!ordered)
3681 break;
2ac55d41
JB
3682 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3683 &cached_state, GFP_NOFS);
9036c102
YZ
3684 btrfs_put_ordered_extent(ordered);
3685 }
39279cc3 3686
9036c102
YZ
3687 cur_offset = hole_start;
3688 while (1) {
3689 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3690 block_end - cur_offset, 0);
79787eaa
JM
3691 if (IS_ERR(em)) {
3692 err = PTR_ERR(em);
f2767956 3693 em = NULL;
79787eaa
JM
3694 break;
3695 }
9036c102
YZ
3696 last_byte = min(extent_map_end(em), block_end);
3697 last_byte = (last_byte + mask) & ~mask;
8082510e 3698 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 3699 struct extent_map *hole_em;
9036c102 3700 hole_size = last_byte - cur_offset;
9ed74f2d 3701
3642320e 3702 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
3703 if (IS_ERR(trans)) {
3704 err = PTR_ERR(trans);
9ed74f2d 3705 break;
a22285a6 3706 }
8082510e 3707
5dc562c5
JB
3708 err = btrfs_drop_extents(trans, root, inode,
3709 cur_offset,
2671485d 3710 cur_offset + hole_size, 1);
5b397377 3711 if (err) {
79787eaa 3712 btrfs_abort_transaction(trans, root, err);
5b397377 3713 btrfs_end_transaction(trans, root);
3893e33b 3714 break;
5b397377 3715 }
8082510e 3716
9036c102 3717 err = btrfs_insert_file_extent(trans, root,
33345d01 3718 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3719 0, hole_size, 0, hole_size,
3720 0, 0, 0);
5b397377 3721 if (err) {
79787eaa 3722 btrfs_abort_transaction(trans, root, err);
5b397377 3723 btrfs_end_transaction(trans, root);
3893e33b 3724 break;
5b397377 3725 }
8082510e 3726
5dc562c5
JB
3727 btrfs_drop_extent_cache(inode, cur_offset,
3728 cur_offset + hole_size - 1, 0);
3729 hole_em = alloc_extent_map();
3730 if (!hole_em) {
3731 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3732 &BTRFS_I(inode)->runtime_flags);
3733 goto next;
3734 }
3735 hole_em->start = cur_offset;
3736 hole_em->len = hole_size;
3737 hole_em->orig_start = cur_offset;
8082510e 3738
5dc562c5
JB
3739 hole_em->block_start = EXTENT_MAP_HOLE;
3740 hole_em->block_len = 0;
b4939680 3741 hole_em->orig_block_len = 0;
5dc562c5
JB
3742 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
3743 hole_em->compress_type = BTRFS_COMPRESS_NONE;
3744 hole_em->generation = trans->transid;
8082510e 3745
5dc562c5
JB
3746 while (1) {
3747 write_lock(&em_tree->lock);
3748 err = add_extent_mapping(em_tree, hole_em);
3749 if (!err)
3750 list_move(&hole_em->list,
3751 &em_tree->modified_extents);
3752 write_unlock(&em_tree->lock);
3753 if (err != -EEXIST)
3754 break;
3755 btrfs_drop_extent_cache(inode, cur_offset,
3756 cur_offset +
3757 hole_size - 1, 0);
3758 }
3759 free_extent_map(hole_em);
3760next:
3642320e 3761 btrfs_update_inode(trans, root, inode);
8082510e 3762 btrfs_end_transaction(trans, root);
9036c102
YZ
3763 }
3764 free_extent_map(em);
a22285a6 3765 em = NULL;
9036c102 3766 cur_offset = last_byte;
8082510e 3767 if (cur_offset >= block_end)
9036c102
YZ
3768 break;
3769 }
1832a6d5 3770
a22285a6 3771 free_extent_map(em);
2ac55d41
JB
3772 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3773 GFP_NOFS);
9036c102
YZ
3774 return err;
3775}
39279cc3 3776
3972f260 3777static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 3778{
f4a2f4c5
MX
3779 struct btrfs_root *root = BTRFS_I(inode)->root;
3780 struct btrfs_trans_handle *trans;
a41ad394 3781 loff_t oldsize = i_size_read(inode);
3972f260
ES
3782 loff_t newsize = attr->ia_size;
3783 int mask = attr->ia_valid;
8082510e
YZ
3784 int ret;
3785
a41ad394 3786 if (newsize == oldsize)
8082510e
YZ
3787 return 0;
3788
3972f260
ES
3789 /*
3790 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
3791 * special case where we need to update the times despite not having
3792 * these flags set. For all other operations the VFS set these flags
3793 * explicitly if it wants a timestamp update.
3794 */
3795 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
3796 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
3797
a41ad394 3798 if (newsize > oldsize) {
a41ad394
JB
3799 truncate_pagecache(inode, oldsize, newsize);
3800 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 3801 if (ret)
8082510e 3802 return ret;
8082510e 3803
f4a2f4c5
MX
3804 trans = btrfs_start_transaction(root, 1);
3805 if (IS_ERR(trans))
3806 return PTR_ERR(trans);
3807
3808 i_size_write(inode, newsize);
3809 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3810 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 3811 btrfs_end_transaction(trans, root);
a41ad394 3812 } else {
8082510e 3813
a41ad394
JB
3814 /*
3815 * We're truncating a file that used to have good data down to
3816 * zero. Make sure it gets into the ordered flush list so that
3817 * any new writes get down to disk quickly.
3818 */
3819 if (newsize == 0)
72ac3c0d
JB
3820 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
3821 &BTRFS_I(inode)->runtime_flags);
8082510e 3822
f3fe820c
JB
3823 /*
3824 * 1 for the orphan item we're going to add
3825 * 1 for the orphan item deletion.
3826 */
3827 trans = btrfs_start_transaction(root, 2);
3828 if (IS_ERR(trans))
3829 return PTR_ERR(trans);
3830
3831 /*
3832 * We need to do this in case we fail at _any_ point during the
3833 * actual truncate. Once we do the truncate_setsize we could
3834 * invalidate pages which forces any outstanding ordered io to
3835 * be instantly completed which will give us extents that need
3836 * to be truncated. If we fail to get an orphan inode down we
3837 * could have left over extents that were never meant to live,
3838 * so we need to garuntee from this point on that everything
3839 * will be consistent.
3840 */
3841 ret = btrfs_orphan_add(trans, inode);
3842 btrfs_end_transaction(trans, root);
3843 if (ret)
3844 return ret;
3845
a41ad394
JB
3846 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3847 truncate_setsize(inode, newsize);
3848 ret = btrfs_truncate(inode);
f3fe820c
JB
3849 if (ret && inode->i_nlink)
3850 btrfs_orphan_del(NULL, inode);
8082510e
YZ
3851 }
3852
a41ad394 3853 return ret;
8082510e
YZ
3854}
3855
9036c102
YZ
3856static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3857{
3858 struct inode *inode = dentry->d_inode;
b83cc969 3859 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3860 int err;
39279cc3 3861
b83cc969
LZ
3862 if (btrfs_root_readonly(root))
3863 return -EROFS;
3864
9036c102
YZ
3865 err = inode_change_ok(inode, attr);
3866 if (err)
3867 return err;
2bf5a725 3868
5a3f23d5 3869 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 3870 err = btrfs_setsize(inode, attr);
8082510e
YZ
3871 if (err)
3872 return err;
39279cc3 3873 }
9036c102 3874
1025774c
CH
3875 if (attr->ia_valid) {
3876 setattr_copy(inode, attr);
0c4d2d95 3877 inode_inc_iversion(inode);
22c44fe6 3878 err = btrfs_dirty_inode(inode);
1025774c 3879
22c44fe6 3880 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
3881 err = btrfs_acl_chmod(inode);
3882 }
33268eaf 3883
39279cc3
CM
3884 return err;
3885}
61295eb8 3886
bd555975 3887void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3888{
3889 struct btrfs_trans_handle *trans;
3890 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 3891 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 3892 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
3893 int ret;
3894
1abe9b8a 3895 trace_btrfs_inode_evict(inode);
3896
39279cc3 3897 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3898 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
83eea1f1 3899 btrfs_is_free_space_inode(inode)))
bd555975
AV
3900 goto no_delete;
3901
39279cc3 3902 if (is_bad_inode(inode)) {
7b128766 3903 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3904 goto no_delete;
3905 }
bd555975 3906 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3907 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3908
c71bf099 3909 if (root->fs_info->log_root_recovering) {
6bf02314 3910 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 3911 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
3912 goto no_delete;
3913 }
3914
76dda93c
YZ
3915 if (inode->i_nlink > 0) {
3916 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3917 goto no_delete;
3918 }
3919
0e8c36a9
MX
3920 ret = btrfs_commit_inode_delayed_inode(inode);
3921 if (ret) {
3922 btrfs_orphan_del(NULL, inode);
3923 goto no_delete;
3924 }
3925
66d8f3dd 3926 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
3927 if (!rsv) {
3928 btrfs_orphan_del(NULL, inode);
3929 goto no_delete;
3930 }
4a338542 3931 rsv->size = min_size;
ca7e70f5 3932 rsv->failfast = 1;
726c35fa 3933 global_rsv = &root->fs_info->global_block_rsv;
4289a667 3934
dbe674a9 3935 btrfs_i_size_write(inode, 0);
5f39d397 3936
4289a667 3937 /*
8407aa46
MX
3938 * This is a bit simpler than btrfs_truncate since we've already
3939 * reserved our space for our orphan item in the unlink, so we just
3940 * need to reserve some slack space in case we add bytes and update
3941 * inode item when doing the truncate.
4289a667 3942 */
8082510e 3943 while (1) {
08e007d2
MX
3944 ret = btrfs_block_rsv_refill(root, rsv, min_size,
3945 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
3946
3947 /*
3948 * Try and steal from the global reserve since we will
3949 * likely not use this space anyway, we want to try as
3950 * hard as possible to get this to work.
3951 */
3952 if (ret)
3953 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 3954
d68fc57b 3955 if (ret) {
4289a667 3956 printk(KERN_WARNING "Could not get space for a "
482e6dc5 3957 "delete, will truncate on mount %d\n", ret);
4289a667
JB
3958 btrfs_orphan_del(NULL, inode);
3959 btrfs_free_block_rsv(root, rsv);
3960 goto no_delete;
d68fc57b 3961 }
7b128766 3962
0e8c36a9 3963 trans = btrfs_join_transaction(root);
4289a667
JB
3964 if (IS_ERR(trans)) {
3965 btrfs_orphan_del(NULL, inode);
3966 btrfs_free_block_rsv(root, rsv);
3967 goto no_delete;
d68fc57b 3968 }
7b128766 3969
4289a667
JB
3970 trans->block_rsv = rsv;
3971
d68fc57b 3972 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 3973 if (ret != -ENOSPC)
8082510e 3974 break;
85e21bac 3975
8407aa46 3976 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
3977 btrfs_end_transaction(trans, root);
3978 trans = NULL;
b53d3f5d 3979 btrfs_btree_balance_dirty(root);
8082510e 3980 }
5f39d397 3981
4289a667
JB
3982 btrfs_free_block_rsv(root, rsv);
3983
8082510e 3984 if (ret == 0) {
4289a667 3985 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
3986 ret = btrfs_orphan_del(trans, inode);
3987 BUG_ON(ret);
3988 }
54aa1f4d 3989
4289a667 3990 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
3991 if (!(root == root->fs_info->tree_root ||
3992 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3993 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3994
54aa1f4d 3995 btrfs_end_transaction(trans, root);
b53d3f5d 3996 btrfs_btree_balance_dirty(root);
39279cc3 3997no_delete:
dbd5768f 3998 clear_inode(inode);
8082510e 3999 return;
39279cc3
CM
4000}
4001
4002/*
4003 * this returns the key found in the dir entry in the location pointer.
4004 * If no dir entries were found, location->objectid is 0.
4005 */
4006static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4007 struct btrfs_key *location)
4008{
4009 const char *name = dentry->d_name.name;
4010 int namelen = dentry->d_name.len;
4011 struct btrfs_dir_item *di;
4012 struct btrfs_path *path;
4013 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4014 int ret = 0;
39279cc3
CM
4015
4016 path = btrfs_alloc_path();
d8926bb3
MF
4017 if (!path)
4018 return -ENOMEM;
3954401f 4019
33345d01 4020 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4021 namelen, 0);
0d9f7f3e
Y
4022 if (IS_ERR(di))
4023 ret = PTR_ERR(di);
d397712b 4024
c704005d 4025 if (IS_ERR_OR_NULL(di))
3954401f 4026 goto out_err;
d397712b 4027
5f39d397 4028 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4029out:
39279cc3
CM
4030 btrfs_free_path(path);
4031 return ret;
3954401f
CM
4032out_err:
4033 location->objectid = 0;
4034 goto out;
39279cc3
CM
4035}
4036
4037/*
4038 * when we hit a tree root in a directory, the btrfs part of the inode
4039 * needs to be changed to reflect the root directory of the tree root. This
4040 * is kind of like crossing a mount point.
4041 */
4042static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
4043 struct inode *dir,
4044 struct dentry *dentry,
4045 struct btrfs_key *location,
4046 struct btrfs_root **sub_root)
39279cc3 4047{
4df27c4d
YZ
4048 struct btrfs_path *path;
4049 struct btrfs_root *new_root;
4050 struct btrfs_root_ref *ref;
4051 struct extent_buffer *leaf;
4052 int ret;
4053 int err = 0;
39279cc3 4054
4df27c4d
YZ
4055 path = btrfs_alloc_path();
4056 if (!path) {
4057 err = -ENOMEM;
4058 goto out;
4059 }
39279cc3 4060
4df27c4d
YZ
4061 err = -ENOENT;
4062 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4063 BTRFS_I(dir)->root->root_key.objectid,
4064 location->objectid);
4065 if (ret) {
4066 if (ret < 0)
4067 err = ret;
4068 goto out;
4069 }
39279cc3 4070
4df27c4d
YZ
4071 leaf = path->nodes[0];
4072 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4073 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4074 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4075 goto out;
39279cc3 4076
4df27c4d
YZ
4077 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4078 (unsigned long)(ref + 1),
4079 dentry->d_name.len);
4080 if (ret)
4081 goto out;
4082
b3b4aa74 4083 btrfs_release_path(path);
4df27c4d
YZ
4084
4085 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4086 if (IS_ERR(new_root)) {
4087 err = PTR_ERR(new_root);
4088 goto out;
4089 }
4090
4091 if (btrfs_root_refs(&new_root->root_item) == 0) {
4092 err = -ENOENT;
4093 goto out;
4094 }
4095
4096 *sub_root = new_root;
4097 location->objectid = btrfs_root_dirid(&new_root->root_item);
4098 location->type = BTRFS_INODE_ITEM_KEY;
4099 location->offset = 0;
4100 err = 0;
4101out:
4102 btrfs_free_path(path);
4103 return err;
39279cc3
CM
4104}
4105
5d4f98a2
YZ
4106static void inode_tree_add(struct inode *inode)
4107{
4108 struct btrfs_root *root = BTRFS_I(inode)->root;
4109 struct btrfs_inode *entry;
03e860bd
NP
4110 struct rb_node **p;
4111 struct rb_node *parent;
33345d01 4112 u64 ino = btrfs_ino(inode);
03e860bd
NP
4113again:
4114 p = &root->inode_tree.rb_node;
4115 parent = NULL;
5d4f98a2 4116
1d3382cb 4117 if (inode_unhashed(inode))
76dda93c
YZ
4118 return;
4119
5d4f98a2
YZ
4120 spin_lock(&root->inode_lock);
4121 while (*p) {
4122 parent = *p;
4123 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4124
33345d01 4125 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4126 p = &parent->rb_left;
33345d01 4127 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4128 p = &parent->rb_right;
5d4f98a2
YZ
4129 else {
4130 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4131 (I_WILL_FREE | I_FREEING)));
03e860bd
NP
4132 rb_erase(parent, &root->inode_tree);
4133 RB_CLEAR_NODE(parent);
4134 spin_unlock(&root->inode_lock);
4135 goto again;
5d4f98a2
YZ
4136 }
4137 }
4138 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4139 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4140 spin_unlock(&root->inode_lock);
4141}
4142
4143static void inode_tree_del(struct inode *inode)
4144{
4145 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4146 int empty = 0;
5d4f98a2 4147
03e860bd 4148 spin_lock(&root->inode_lock);
5d4f98a2 4149 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4150 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4151 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4152 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4153 }
03e860bd 4154 spin_unlock(&root->inode_lock);
76dda93c 4155
0af3d00b
JB
4156 /*
4157 * Free space cache has inodes in the tree root, but the tree root has a
4158 * root_refs of 0, so this could end up dropping the tree root as a
4159 * snapshot, so we need the extra !root->fs_info->tree_root check to
4160 * make sure we don't drop it.
4161 */
4162 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4163 root != root->fs_info->tree_root) {
76dda93c
YZ
4164 synchronize_srcu(&root->fs_info->subvol_srcu);
4165 spin_lock(&root->inode_lock);
4166 empty = RB_EMPTY_ROOT(&root->inode_tree);
4167 spin_unlock(&root->inode_lock);
4168 if (empty)
4169 btrfs_add_dead_root(root);
4170 }
4171}
4172
143bede5 4173void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4174{
4175 struct rb_node *node;
4176 struct rb_node *prev;
4177 struct btrfs_inode *entry;
4178 struct inode *inode;
4179 u64 objectid = 0;
4180
4181 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4182
4183 spin_lock(&root->inode_lock);
4184again:
4185 node = root->inode_tree.rb_node;
4186 prev = NULL;
4187 while (node) {
4188 prev = node;
4189 entry = rb_entry(node, struct btrfs_inode, rb_node);
4190
33345d01 4191 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4192 node = node->rb_left;
33345d01 4193 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4194 node = node->rb_right;
4195 else
4196 break;
4197 }
4198 if (!node) {
4199 while (prev) {
4200 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4201 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4202 node = prev;
4203 break;
4204 }
4205 prev = rb_next(prev);
4206 }
4207 }
4208 while (node) {
4209 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4210 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4211 inode = igrab(&entry->vfs_inode);
4212 if (inode) {
4213 spin_unlock(&root->inode_lock);
4214 if (atomic_read(&inode->i_count) > 1)
4215 d_prune_aliases(inode);
4216 /*
45321ac5 4217 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4218 * the inode cache when its usage count
4219 * hits zero.
4220 */
4221 iput(inode);
4222 cond_resched();
4223 spin_lock(&root->inode_lock);
4224 goto again;
4225 }
4226
4227 if (cond_resched_lock(&root->inode_lock))
4228 goto again;
4229
4230 node = rb_next(node);
4231 }
4232 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4233}
4234
e02119d5
CM
4235static int btrfs_init_locked_inode(struct inode *inode, void *p)
4236{
4237 struct btrfs_iget_args *args = p;
4238 inode->i_ino = args->ino;
e02119d5 4239 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4240 return 0;
4241}
4242
4243static int btrfs_find_actor(struct inode *inode, void *opaque)
4244{
4245 struct btrfs_iget_args *args = opaque;
33345d01 4246 return args->ino == btrfs_ino(inode) &&
d397712b 4247 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4248}
4249
5d4f98a2
YZ
4250static struct inode *btrfs_iget_locked(struct super_block *s,
4251 u64 objectid,
4252 struct btrfs_root *root)
39279cc3
CM
4253{
4254 struct inode *inode;
4255 struct btrfs_iget_args args;
4256 args.ino = objectid;
4257 args.root = root;
4258
4259 inode = iget5_locked(s, objectid, btrfs_find_actor,
4260 btrfs_init_locked_inode,
4261 (void *)&args);
4262 return inode;
4263}
4264
1a54ef8c
BR
4265/* Get an inode object given its location and corresponding root.
4266 * Returns in *is_new if the inode was read from disk
4267 */
4268struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4269 struct btrfs_root *root, int *new)
1a54ef8c
BR
4270{
4271 struct inode *inode;
4272
4273 inode = btrfs_iget_locked(s, location->objectid, root);
4274 if (!inode)
5d4f98a2 4275 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4276
4277 if (inode->i_state & I_NEW) {
4278 BTRFS_I(inode)->root = root;
4279 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4280 btrfs_read_locked_inode(inode);
1748f843
MF
4281 if (!is_bad_inode(inode)) {
4282 inode_tree_add(inode);
4283 unlock_new_inode(inode);
4284 if (new)
4285 *new = 1;
4286 } else {
e0b6d65b
ST
4287 unlock_new_inode(inode);
4288 iput(inode);
4289 inode = ERR_PTR(-ESTALE);
1748f843
MF
4290 }
4291 }
4292
1a54ef8c
BR
4293 return inode;
4294}
4295
4df27c4d
YZ
4296static struct inode *new_simple_dir(struct super_block *s,
4297 struct btrfs_key *key,
4298 struct btrfs_root *root)
4299{
4300 struct inode *inode = new_inode(s);
4301
4302 if (!inode)
4303 return ERR_PTR(-ENOMEM);
4304
4df27c4d
YZ
4305 BTRFS_I(inode)->root = root;
4306 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 4307 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
4308
4309 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 4310 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
4311 inode->i_fop = &simple_dir_operations;
4312 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4313 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4314
4315 return inode;
4316}
4317
3de4586c 4318struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4319{
d397712b 4320 struct inode *inode;
4df27c4d 4321 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4322 struct btrfs_root *sub_root = root;
4323 struct btrfs_key location;
76dda93c 4324 int index;
b4aff1f8 4325 int ret = 0;
39279cc3
CM
4326
4327 if (dentry->d_name.len > BTRFS_NAME_LEN)
4328 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4329
b4aff1f8
JB
4330 if (unlikely(d_need_lookup(dentry))) {
4331 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4332 kfree(dentry->d_fsdata);
4333 dentry->d_fsdata = NULL;
a66e7cc6
JB
4334 /* This thing is hashed, drop it for now */
4335 d_drop(dentry);
b4aff1f8
JB
4336 } else {
4337 ret = btrfs_inode_by_name(dir, dentry, &location);
4338 }
5f39d397 4339
39279cc3
CM
4340 if (ret < 0)
4341 return ERR_PTR(ret);
5f39d397 4342
4df27c4d
YZ
4343 if (location.objectid == 0)
4344 return NULL;
4345
4346 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4347 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4348 return inode;
4349 }
4350
4351 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4352
76dda93c 4353 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4354 ret = fixup_tree_root_location(root, dir, dentry,
4355 &location, &sub_root);
4356 if (ret < 0) {
4357 if (ret != -ENOENT)
4358 inode = ERR_PTR(ret);
4359 else
4360 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4361 } else {
73f73415 4362 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4363 }
76dda93c
YZ
4364 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4365
34d19bad 4366 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4367 down_read(&root->fs_info->cleanup_work_sem);
4368 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4369 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4370 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4371 if (ret)
4372 inode = ERR_PTR(ret);
c71bf099
YZ
4373 }
4374
3de4586c
CM
4375 return inode;
4376}
4377
fe15ce44 4378static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4379{
4380 struct btrfs_root *root;
848cce0d 4381 struct inode *inode = dentry->d_inode;
76dda93c 4382
848cce0d
LZ
4383 if (!inode && !IS_ROOT(dentry))
4384 inode = dentry->d_parent->d_inode;
76dda93c 4385
848cce0d
LZ
4386 if (inode) {
4387 root = BTRFS_I(inode)->root;
efefb143
YZ
4388 if (btrfs_root_refs(&root->root_item) == 0)
4389 return 1;
848cce0d
LZ
4390
4391 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4392 return 1;
efefb143 4393 }
76dda93c
YZ
4394 return 0;
4395}
4396
b4aff1f8
JB
4397static void btrfs_dentry_release(struct dentry *dentry)
4398{
4399 if (dentry->d_fsdata)
4400 kfree(dentry->d_fsdata);
4401}
4402
3de4586c 4403static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 4404 unsigned int flags)
3de4586c 4405{
a66e7cc6
JB
4406 struct dentry *ret;
4407
4408 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4409 if (unlikely(d_need_lookup(dentry))) {
4410 spin_lock(&dentry->d_lock);
4411 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4412 spin_unlock(&dentry->d_lock);
4413 }
4414 return ret;
39279cc3
CM
4415}
4416
16cdcec7 4417unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4418 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4419};
4420
cbdf5a24
DW
4421static int btrfs_real_readdir(struct file *filp, void *dirent,
4422 filldir_t filldir)
39279cc3 4423{
6da6abae 4424 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4425 struct btrfs_root *root = BTRFS_I(inode)->root;
4426 struct btrfs_item *item;
4427 struct btrfs_dir_item *di;
4428 struct btrfs_key key;
5f39d397 4429 struct btrfs_key found_key;
39279cc3 4430 struct btrfs_path *path;
16cdcec7
MX
4431 struct list_head ins_list;
4432 struct list_head del_list;
39279cc3 4433 int ret;
5f39d397 4434 struct extent_buffer *leaf;
39279cc3 4435 int slot;
39279cc3
CM
4436 unsigned char d_type;
4437 int over = 0;
4438 u32 di_cur;
4439 u32 di_total;
4440 u32 di_len;
4441 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4442 char tmp_name[32];
4443 char *name_ptr;
4444 int name_len;
16cdcec7 4445 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4446
4447 /* FIXME, use a real flag for deciding about the key type */
4448 if (root->fs_info->tree_root == root)
4449 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4450
3954401f
CM
4451 /* special case for "." */
4452 if (filp->f_pos == 0) {
3765fefa
HS
4453 over = filldir(dirent, ".", 1,
4454 filp->f_pos, btrfs_ino(inode), DT_DIR);
3954401f
CM
4455 if (over)
4456 return 0;
4457 filp->f_pos = 1;
4458 }
3954401f
CM
4459 /* special case for .., just use the back ref */
4460 if (filp->f_pos == 1) {
5ecc7e5d 4461 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4462 over = filldir(dirent, "..", 2,
3765fefa 4463 filp->f_pos, pino, DT_DIR);
3954401f 4464 if (over)
49593bfa 4465 return 0;
3954401f
CM
4466 filp->f_pos = 2;
4467 }
49593bfa 4468 path = btrfs_alloc_path();
16cdcec7
MX
4469 if (!path)
4470 return -ENOMEM;
ff5714cc 4471
026fd317 4472 path->reada = 1;
49593bfa 4473
16cdcec7
MX
4474 if (key_type == BTRFS_DIR_INDEX_KEY) {
4475 INIT_LIST_HEAD(&ins_list);
4476 INIT_LIST_HEAD(&del_list);
4477 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4478 }
4479
39279cc3
CM
4480 btrfs_set_key_type(&key, key_type);
4481 key.offset = filp->f_pos;
33345d01 4482 key.objectid = btrfs_ino(inode);
5f39d397 4483
39279cc3
CM
4484 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4485 if (ret < 0)
4486 goto err;
49593bfa
DW
4487
4488 while (1) {
5f39d397 4489 leaf = path->nodes[0];
39279cc3 4490 slot = path->slots[0];
b9e03af0
LZ
4491 if (slot >= btrfs_header_nritems(leaf)) {
4492 ret = btrfs_next_leaf(root, path);
4493 if (ret < 0)
4494 goto err;
4495 else if (ret > 0)
4496 break;
4497 continue;
39279cc3 4498 }
3de4586c 4499
5f39d397
CM
4500 item = btrfs_item_nr(leaf, slot);
4501 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4502
4503 if (found_key.objectid != key.objectid)
39279cc3 4504 break;
5f39d397 4505 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4506 break;
5f39d397 4507 if (found_key.offset < filp->f_pos)
b9e03af0 4508 goto next;
16cdcec7
MX
4509 if (key_type == BTRFS_DIR_INDEX_KEY &&
4510 btrfs_should_delete_dir_index(&del_list,
4511 found_key.offset))
4512 goto next;
5f39d397
CM
4513
4514 filp->f_pos = found_key.offset;
16cdcec7 4515 is_curr = 1;
49593bfa 4516
39279cc3
CM
4517 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4518 di_cur = 0;
5f39d397 4519 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4520
4521 while (di_cur < di_total) {
5f39d397
CM
4522 struct btrfs_key location;
4523
22a94d44
JB
4524 if (verify_dir_item(root, leaf, di))
4525 break;
4526
5f39d397 4527 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4528 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4529 name_ptr = tmp_name;
4530 } else {
4531 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4532 if (!name_ptr) {
4533 ret = -ENOMEM;
4534 goto err;
4535 }
5f39d397
CM
4536 }
4537 read_extent_buffer(leaf, name_ptr,
4538 (unsigned long)(di + 1), name_len);
4539
4540 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4541 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 4542
fede766f 4543
3de4586c 4544 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
4545 * skip it.
4546 *
4547 * In contrast to old kernels, we insert the snapshot's
4548 * dir item and dir index after it has been created, so
4549 * we won't find a reference to our own snapshot. We
4550 * still keep the following code for backward
4551 * compatibility.
3de4586c
CM
4552 */
4553 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4554 location.objectid == root->root_key.objectid) {
4555 over = 0;
4556 goto skip;
4557 }
5f39d397 4558 over = filldir(dirent, name_ptr, name_len,
49593bfa 4559 found_key.offset, location.objectid,
39279cc3 4560 d_type);
5f39d397 4561
3de4586c 4562skip:
5f39d397
CM
4563 if (name_ptr != tmp_name)
4564 kfree(name_ptr);
4565
39279cc3
CM
4566 if (over)
4567 goto nopos;
5103e947 4568 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4569 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4570 di_cur += di_len;
4571 di = (struct btrfs_dir_item *)((char *)di + di_len);
4572 }
b9e03af0
LZ
4573next:
4574 path->slots[0]++;
39279cc3 4575 }
49593bfa 4576
16cdcec7
MX
4577 if (key_type == BTRFS_DIR_INDEX_KEY) {
4578 if (is_curr)
4579 filp->f_pos++;
4580 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4581 &ins_list);
4582 if (ret)
4583 goto nopos;
4584 }
4585
49593bfa 4586 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4587 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4588 /*
4589 * 32-bit glibc will use getdents64, but then strtol -
4590 * so the last number we can serve is this.
4591 */
4592 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4593 else
4594 filp->f_pos++;
39279cc3
CM
4595nopos:
4596 ret = 0;
4597err:
16cdcec7
MX
4598 if (key_type == BTRFS_DIR_INDEX_KEY)
4599 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4600 btrfs_free_path(path);
39279cc3
CM
4601 return ret;
4602}
4603
a9185b41 4604int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4605{
4606 struct btrfs_root *root = BTRFS_I(inode)->root;
4607 struct btrfs_trans_handle *trans;
4608 int ret = 0;
0af3d00b 4609 bool nolock = false;
39279cc3 4610
72ac3c0d 4611 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
4612 return 0;
4613
83eea1f1 4614 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 4615 nolock = true;
0af3d00b 4616
a9185b41 4617 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4618 if (nolock)
7a7eaa40 4619 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4620 else
7a7eaa40 4621 trans = btrfs_join_transaction(root);
3612b495
TI
4622 if (IS_ERR(trans))
4623 return PTR_ERR(trans);
a698d075 4624 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4625 }
4626 return ret;
4627}
4628
4629/*
54aa1f4d 4630 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4631 * inode changes. But, it is most likely to find the inode in cache.
4632 * FIXME, needs more benchmarking...there are no reasons other than performance
4633 * to keep or drop this code.
4634 */
22c44fe6 4635int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
4636{
4637 struct btrfs_root *root = BTRFS_I(inode)->root;
4638 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4639 int ret;
4640
72ac3c0d 4641 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 4642 return 0;
39279cc3 4643
7a7eaa40 4644 trans = btrfs_join_transaction(root);
22c44fe6
JB
4645 if (IS_ERR(trans))
4646 return PTR_ERR(trans);
8929ecfa
YZ
4647
4648 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4649 if (ret && ret == -ENOSPC) {
4650 /* whoops, lets try again with the full transaction */
4651 btrfs_end_transaction(trans, root);
4652 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
4653 if (IS_ERR(trans))
4654 return PTR_ERR(trans);
8929ecfa 4655
94b60442 4656 ret = btrfs_update_inode(trans, root, inode);
94b60442 4657 }
39279cc3 4658 btrfs_end_transaction(trans, root);
16cdcec7
MX
4659 if (BTRFS_I(inode)->delayed_node)
4660 btrfs_balance_delayed_items(root);
22c44fe6
JB
4661
4662 return ret;
4663}
4664
4665/*
4666 * This is a copy of file_update_time. We need this so we can return error on
4667 * ENOSPC for updating the inode in the case of file write and mmap writes.
4668 */
e41f941a
JB
4669static int btrfs_update_time(struct inode *inode, struct timespec *now,
4670 int flags)
22c44fe6 4671{
2bc55652
AB
4672 struct btrfs_root *root = BTRFS_I(inode)->root;
4673
4674 if (btrfs_root_readonly(root))
4675 return -EROFS;
4676
e41f941a 4677 if (flags & S_VERSION)
22c44fe6 4678 inode_inc_iversion(inode);
e41f941a
JB
4679 if (flags & S_CTIME)
4680 inode->i_ctime = *now;
4681 if (flags & S_MTIME)
4682 inode->i_mtime = *now;
4683 if (flags & S_ATIME)
4684 inode->i_atime = *now;
4685 return btrfs_dirty_inode(inode);
39279cc3
CM
4686}
4687
d352ac68
CM
4688/*
4689 * find the highest existing sequence number in a directory
4690 * and then set the in-memory index_cnt variable to reflect
4691 * free sequence numbers
4692 */
aec7477b
JB
4693static int btrfs_set_inode_index_count(struct inode *inode)
4694{
4695 struct btrfs_root *root = BTRFS_I(inode)->root;
4696 struct btrfs_key key, found_key;
4697 struct btrfs_path *path;
4698 struct extent_buffer *leaf;
4699 int ret;
4700
33345d01 4701 key.objectid = btrfs_ino(inode);
aec7477b
JB
4702 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4703 key.offset = (u64)-1;
4704
4705 path = btrfs_alloc_path();
4706 if (!path)
4707 return -ENOMEM;
4708
4709 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4710 if (ret < 0)
4711 goto out;
4712 /* FIXME: we should be able to handle this */
4713 if (ret == 0)
4714 goto out;
4715 ret = 0;
4716
4717 /*
4718 * MAGIC NUMBER EXPLANATION:
4719 * since we search a directory based on f_pos we have to start at 2
4720 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4721 * else has to start at 2
4722 */
4723 if (path->slots[0] == 0) {
4724 BTRFS_I(inode)->index_cnt = 2;
4725 goto out;
4726 }
4727
4728 path->slots[0]--;
4729
4730 leaf = path->nodes[0];
4731 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4732
33345d01 4733 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4734 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4735 BTRFS_I(inode)->index_cnt = 2;
4736 goto out;
4737 }
4738
4739 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4740out:
4741 btrfs_free_path(path);
4742 return ret;
4743}
4744
d352ac68
CM
4745/*
4746 * helper to find a free sequence number in a given directory. This current
4747 * code is very simple, later versions will do smarter things in the btree
4748 */
3de4586c 4749int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4750{
4751 int ret = 0;
4752
4753 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4754 ret = btrfs_inode_delayed_dir_index_count(dir);
4755 if (ret) {
4756 ret = btrfs_set_inode_index_count(dir);
4757 if (ret)
4758 return ret;
4759 }
aec7477b
JB
4760 }
4761
00e4e6b3 4762 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4763 BTRFS_I(dir)->index_cnt++;
4764
4765 return ret;
4766}
4767
39279cc3
CM
4768static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4769 struct btrfs_root *root,
aec7477b 4770 struct inode *dir,
9c58309d 4771 const char *name, int name_len,
175a4eb7
AV
4772 u64 ref_objectid, u64 objectid,
4773 umode_t mode, u64 *index)
39279cc3
CM
4774{
4775 struct inode *inode;
5f39d397 4776 struct btrfs_inode_item *inode_item;
39279cc3 4777 struct btrfs_key *location;
5f39d397 4778 struct btrfs_path *path;
9c58309d
CM
4779 struct btrfs_inode_ref *ref;
4780 struct btrfs_key key[2];
4781 u32 sizes[2];
4782 unsigned long ptr;
39279cc3
CM
4783 int ret;
4784 int owner;
4785
5f39d397 4786 path = btrfs_alloc_path();
d8926bb3
MF
4787 if (!path)
4788 return ERR_PTR(-ENOMEM);
5f39d397 4789
39279cc3 4790 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4791 if (!inode) {
4792 btrfs_free_path(path);
39279cc3 4793 return ERR_PTR(-ENOMEM);
8fb27640 4794 }
39279cc3 4795
581bb050
LZ
4796 /*
4797 * we have to initialize this early, so we can reclaim the inode
4798 * number if we fail afterwards in this function.
4799 */
4800 inode->i_ino = objectid;
4801
aec7477b 4802 if (dir) {
1abe9b8a 4803 trace_btrfs_inode_request(dir);
4804
3de4586c 4805 ret = btrfs_set_inode_index(dir, index);
09771430 4806 if (ret) {
8fb27640 4807 btrfs_free_path(path);
09771430 4808 iput(inode);
aec7477b 4809 return ERR_PTR(ret);
09771430 4810 }
aec7477b
JB
4811 }
4812 /*
4813 * index_cnt is ignored for everything but a dir,
4814 * btrfs_get_inode_index_count has an explanation for the magic
4815 * number
4816 */
4817 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4818 BTRFS_I(inode)->root = root;
e02119d5 4819 BTRFS_I(inode)->generation = trans->transid;
76195853 4820 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 4821
5dc562c5
JB
4822 /*
4823 * We could have gotten an inode number from somebody who was fsynced
4824 * and then removed in this same transaction, so let's just set full
4825 * sync since it will be a full sync anyway and this will blow away the
4826 * old info in the log.
4827 */
4828 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
4829
569254b0 4830 if (S_ISDIR(mode))
39279cc3
CM
4831 owner = 0;
4832 else
4833 owner = 1;
9c58309d
CM
4834
4835 key[0].objectid = objectid;
4836 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4837 key[0].offset = 0;
4838
f186373f
MF
4839 /*
4840 * Start new inodes with an inode_ref. This is slightly more
4841 * efficient for small numbers of hard links since they will
4842 * be packed into one item. Extended refs will kick in if we
4843 * add more hard links than can fit in the ref item.
4844 */
9c58309d
CM
4845 key[1].objectid = objectid;
4846 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4847 key[1].offset = ref_objectid;
4848
4849 sizes[0] = sizeof(struct btrfs_inode_item);
4850 sizes[1] = name_len + sizeof(*ref);
4851
b9473439 4852 path->leave_spinning = 1;
9c58309d
CM
4853 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4854 if (ret != 0)
5f39d397
CM
4855 goto fail;
4856
ecc11fab 4857 inode_init_owner(inode, dir, mode);
a76a3cd4 4858 inode_set_bytes(inode, 0);
39279cc3 4859 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4860 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4861 struct btrfs_inode_item);
293f7e07
LZ
4862 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
4863 sizeof(*inode_item));
e02119d5 4864 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4865
4866 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4867 struct btrfs_inode_ref);
4868 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4869 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4870 ptr = (unsigned long)(ref + 1);
4871 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4872
5f39d397
CM
4873 btrfs_mark_buffer_dirty(path->nodes[0]);
4874 btrfs_free_path(path);
4875
39279cc3
CM
4876 location = &BTRFS_I(inode)->location;
4877 location->objectid = objectid;
39279cc3
CM
4878 location->offset = 0;
4879 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4880
6cbff00f
CH
4881 btrfs_inherit_iflags(inode, dir);
4882
569254b0 4883 if (S_ISREG(mode)) {
94272164
CM
4884 if (btrfs_test_opt(root, NODATASUM))
4885 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 4886 if (btrfs_test_opt(root, NODATACOW))
94272164
CM
4887 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4888 }
4889
39279cc3 4890 insert_inode_hash(inode);
5d4f98a2 4891 inode_tree_add(inode);
1abe9b8a 4892
4893 trace_btrfs_inode_new(inode);
1973f0fa 4894 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 4895
8ea05e3a
AB
4896 btrfs_update_root_times(trans, root);
4897
39279cc3 4898 return inode;
5f39d397 4899fail:
aec7477b
JB
4900 if (dir)
4901 BTRFS_I(dir)->index_cnt--;
5f39d397 4902 btrfs_free_path(path);
09771430 4903 iput(inode);
5f39d397 4904 return ERR_PTR(ret);
39279cc3
CM
4905}
4906
4907static inline u8 btrfs_inode_type(struct inode *inode)
4908{
4909 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4910}
4911
d352ac68
CM
4912/*
4913 * utility function to add 'inode' into 'parent_inode' with
4914 * a give name and a given sequence number.
4915 * if 'add_backref' is true, also insert a backref from the
4916 * inode to the parent directory.
4917 */
e02119d5
CM
4918int btrfs_add_link(struct btrfs_trans_handle *trans,
4919 struct inode *parent_inode, struct inode *inode,
4920 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4921{
4df27c4d 4922 int ret = 0;
39279cc3 4923 struct btrfs_key key;
e02119d5 4924 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4925 u64 ino = btrfs_ino(inode);
4926 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4927
33345d01 4928 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4929 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4930 } else {
33345d01 4931 key.objectid = ino;
4df27c4d
YZ
4932 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4933 key.offset = 0;
4934 }
4935
33345d01 4936 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4937 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4938 key.objectid, root->root_key.objectid,
33345d01 4939 parent_ino, index, name, name_len);
4df27c4d 4940 } else if (add_backref) {
33345d01
LZ
4941 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4942 parent_ino, index);
4df27c4d 4943 }
39279cc3 4944
79787eaa
JM
4945 /* Nothing to clean up yet */
4946 if (ret)
4947 return ret;
4df27c4d 4948
79787eaa
JM
4949 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4950 parent_inode, &key,
4951 btrfs_inode_type(inode), index);
9c52057c 4952 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
4953 goto fail_dir_item;
4954 else if (ret) {
4955 btrfs_abort_transaction(trans, root, ret);
4956 return ret;
39279cc3 4957 }
79787eaa
JM
4958
4959 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4960 name_len * 2);
0c4d2d95 4961 inode_inc_iversion(parent_inode);
79787eaa
JM
4962 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4963 ret = btrfs_update_inode(trans, root, parent_inode);
4964 if (ret)
4965 btrfs_abort_transaction(trans, root, ret);
39279cc3 4966 return ret;
fe66a05a
CM
4967
4968fail_dir_item:
4969 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4970 u64 local_index;
4971 int err;
4972 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4973 key.objectid, root->root_key.objectid,
4974 parent_ino, &local_index, name, name_len);
4975
4976 } else if (add_backref) {
4977 u64 local_index;
4978 int err;
4979
4980 err = btrfs_del_inode_ref(trans, root, name, name_len,
4981 ino, parent_ino, &local_index);
4982 }
4983 return ret;
39279cc3
CM
4984}
4985
4986static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4987 struct inode *dir, struct dentry *dentry,
4988 struct inode *inode, int backref, u64 index)
39279cc3 4989{
a1b075d2
JB
4990 int err = btrfs_add_link(trans, dir, inode,
4991 dentry->d_name.name, dentry->d_name.len,
4992 backref, index);
39279cc3
CM
4993 if (err > 0)
4994 err = -EEXIST;
4995 return err;
4996}
4997
618e21d5 4998static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 4999 umode_t mode, dev_t rdev)
618e21d5
JB
5000{
5001 struct btrfs_trans_handle *trans;
5002 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5003 struct inode *inode = NULL;
618e21d5
JB
5004 int err;
5005 int drop_inode = 0;
5006 u64 objectid;
00e4e6b3 5007 u64 index = 0;
618e21d5
JB
5008
5009 if (!new_valid_dev(rdev))
5010 return -EINVAL;
5011
9ed74f2d
JB
5012 /*
5013 * 2 for inode item and ref
5014 * 2 for dir items
5015 * 1 for xattr if selinux is on
5016 */
a22285a6
YZ
5017 trans = btrfs_start_transaction(root, 5);
5018 if (IS_ERR(trans))
5019 return PTR_ERR(trans);
1832a6d5 5020
581bb050
LZ
5021 err = btrfs_find_free_ino(root, &objectid);
5022 if (err)
5023 goto out_unlock;
5024
aec7477b 5025 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5026 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5027 mode, &index);
7cf96da3
TI
5028 if (IS_ERR(inode)) {
5029 err = PTR_ERR(inode);
618e21d5 5030 goto out_unlock;
7cf96da3 5031 }
618e21d5 5032
2a7dba39 5033 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5034 if (err) {
5035 drop_inode = 1;
5036 goto out_unlock;
5037 }
5038
2794ed01
FB
5039 err = btrfs_update_inode(trans, root, inode);
5040 if (err) {
5041 drop_inode = 1;
5042 goto out_unlock;
5043 }
5044
ad19db71
CS
5045 /*
5046 * If the active LSM wants to access the inode during
5047 * d_instantiate it needs these. Smack checks to see
5048 * if the filesystem supports xattrs by looking at the
5049 * ops vector.
5050 */
5051
5052 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 5053 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
5054 if (err)
5055 drop_inode = 1;
5056 else {
618e21d5 5057 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 5058 btrfs_update_inode(trans, root, inode);
08c422c2 5059 d_instantiate(dentry, inode);
618e21d5 5060 }
618e21d5 5061out_unlock:
7ad85bb7 5062 btrfs_end_transaction(trans, root);
b53d3f5d 5063 btrfs_btree_balance_dirty(root);
618e21d5
JB
5064 if (drop_inode) {
5065 inode_dec_link_count(inode);
5066 iput(inode);
5067 }
618e21d5
JB
5068 return err;
5069}
5070
39279cc3 5071static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 5072 umode_t mode, bool excl)
39279cc3
CM
5073{
5074 struct btrfs_trans_handle *trans;
5075 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5076 struct inode *inode = NULL;
43baa579 5077 int drop_inode_on_err = 0;
a22285a6 5078 int err;
39279cc3 5079 u64 objectid;
00e4e6b3 5080 u64 index = 0;
39279cc3 5081
9ed74f2d
JB
5082 /*
5083 * 2 for inode item and ref
5084 * 2 for dir items
5085 * 1 for xattr if selinux is on
5086 */
a22285a6
YZ
5087 trans = btrfs_start_transaction(root, 5);
5088 if (IS_ERR(trans))
5089 return PTR_ERR(trans);
9ed74f2d 5090
581bb050
LZ
5091 err = btrfs_find_free_ino(root, &objectid);
5092 if (err)
5093 goto out_unlock;
5094
aec7477b 5095 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5096 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5097 mode, &index);
7cf96da3
TI
5098 if (IS_ERR(inode)) {
5099 err = PTR_ERR(inode);
39279cc3 5100 goto out_unlock;
7cf96da3 5101 }
43baa579 5102 drop_inode_on_err = 1;
39279cc3 5103
2a7dba39 5104 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
43baa579 5105 if (err)
33268eaf 5106 goto out_unlock;
33268eaf 5107
9185aa58
FB
5108 err = btrfs_update_inode(trans, root, inode);
5109 if (err)
5110 goto out_unlock;
5111
ad19db71
CS
5112 /*
5113 * If the active LSM wants to access the inode during
5114 * d_instantiate it needs these. Smack checks to see
5115 * if the filesystem supports xattrs by looking at the
5116 * ops vector.
5117 */
5118 inode->i_fop = &btrfs_file_operations;
5119 inode->i_op = &btrfs_file_inode_operations;
5120
a1b075d2 5121 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 5122 if (err)
43baa579
FB
5123 goto out_unlock;
5124
5125 inode->i_mapping->a_ops = &btrfs_aops;
5126 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5127 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5128 d_instantiate(dentry, inode);
5129
39279cc3 5130out_unlock:
7ad85bb7 5131 btrfs_end_transaction(trans, root);
43baa579 5132 if (err && drop_inode_on_err) {
39279cc3
CM
5133 inode_dec_link_count(inode);
5134 iput(inode);
5135 }
b53d3f5d 5136 btrfs_btree_balance_dirty(root);
39279cc3
CM
5137 return err;
5138}
5139
5140static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5141 struct dentry *dentry)
5142{
5143 struct btrfs_trans_handle *trans;
5144 struct btrfs_root *root = BTRFS_I(dir)->root;
5145 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5146 u64 index;
39279cc3
CM
5147 int err;
5148 int drop_inode = 0;
5149
4a8be425
TH
5150 /* do not allow sys_link's with other subvols of the same device */
5151 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5152 return -EXDEV;
4a8be425 5153
f186373f 5154 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5155 return -EMLINK;
4a8be425 5156
3de4586c 5157 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5158 if (err)
5159 goto fail;
5160
a22285a6 5161 /*
7e6b6465 5162 * 2 items for inode and inode ref
a22285a6 5163 * 2 items for dir items
7e6b6465 5164 * 1 item for parent inode
a22285a6 5165 */
7e6b6465 5166 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5167 if (IS_ERR(trans)) {
5168 err = PTR_ERR(trans);
5169 goto fail;
5170 }
5f39d397 5171
3153495d 5172 btrfs_inc_nlink(inode);
0c4d2d95 5173 inode_inc_iversion(inode);
3153495d 5174 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5175 ihold(inode);
e9976151 5176 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 5177
a1b075d2 5178 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5179
a5719521 5180 if (err) {
54aa1f4d 5181 drop_inode = 1;
a5719521 5182 } else {
10d9f309 5183 struct dentry *parent = dentry->d_parent;
a5719521 5184 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5185 if (err)
5186 goto fail;
08c422c2 5187 d_instantiate(dentry, inode);
6a912213 5188 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5189 }
39279cc3 5190
7ad85bb7 5191 btrfs_end_transaction(trans, root);
1832a6d5 5192fail:
39279cc3
CM
5193 if (drop_inode) {
5194 inode_dec_link_count(inode);
5195 iput(inode);
5196 }
b53d3f5d 5197 btrfs_btree_balance_dirty(root);
39279cc3
CM
5198 return err;
5199}
5200
18bb1db3 5201static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5202{
b9d86667 5203 struct inode *inode = NULL;
39279cc3
CM
5204 struct btrfs_trans_handle *trans;
5205 struct btrfs_root *root = BTRFS_I(dir)->root;
5206 int err = 0;
5207 int drop_on_err = 0;
b9d86667 5208 u64 objectid = 0;
00e4e6b3 5209 u64 index = 0;
39279cc3 5210
9ed74f2d
JB
5211 /*
5212 * 2 items for inode and ref
5213 * 2 items for dir items
5214 * 1 for xattr if selinux is on
5215 */
a22285a6
YZ
5216 trans = btrfs_start_transaction(root, 5);
5217 if (IS_ERR(trans))
5218 return PTR_ERR(trans);
39279cc3 5219
581bb050
LZ
5220 err = btrfs_find_free_ino(root, &objectid);
5221 if (err)
5222 goto out_fail;
5223
aec7477b 5224 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5225 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5226 S_IFDIR | mode, &index);
39279cc3
CM
5227 if (IS_ERR(inode)) {
5228 err = PTR_ERR(inode);
5229 goto out_fail;
5230 }
5f39d397 5231
39279cc3 5232 drop_on_err = 1;
33268eaf 5233
2a7dba39 5234 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5235 if (err)
5236 goto out_fail;
5237
39279cc3
CM
5238 inode->i_op = &btrfs_dir_inode_operations;
5239 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5240
dbe674a9 5241 btrfs_i_size_write(inode, 0);
39279cc3
CM
5242 err = btrfs_update_inode(trans, root, inode);
5243 if (err)
5244 goto out_fail;
5f39d397 5245
a1b075d2
JB
5246 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5247 dentry->d_name.len, 0, index);
39279cc3
CM
5248 if (err)
5249 goto out_fail;
5f39d397 5250
39279cc3
CM
5251 d_instantiate(dentry, inode);
5252 drop_on_err = 0;
39279cc3
CM
5253
5254out_fail:
7ad85bb7 5255 btrfs_end_transaction(trans, root);
39279cc3
CM
5256 if (drop_on_err)
5257 iput(inode);
b53d3f5d 5258 btrfs_btree_balance_dirty(root);
39279cc3
CM
5259 return err;
5260}
5261
d352ac68
CM
5262/* helper for btfs_get_extent. Given an existing extent in the tree,
5263 * and an extent that you want to insert, deal with overlap and insert
5264 * the new extent into the tree.
5265 */
3b951516
CM
5266static int merge_extent_mapping(struct extent_map_tree *em_tree,
5267 struct extent_map *existing,
e6dcd2dc
CM
5268 struct extent_map *em,
5269 u64 map_start, u64 map_len)
3b951516
CM
5270{
5271 u64 start_diff;
3b951516 5272
e6dcd2dc
CM
5273 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5274 start_diff = map_start - em->start;
5275 em->start = map_start;
5276 em->len = map_len;
c8b97818
CM
5277 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5278 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5279 em->block_start += start_diff;
c8b97818
CM
5280 em->block_len -= start_diff;
5281 }
e6dcd2dc 5282 return add_extent_mapping(em_tree, em);
3b951516
CM
5283}
5284
c8b97818
CM
5285static noinline int uncompress_inline(struct btrfs_path *path,
5286 struct inode *inode, struct page *page,
5287 size_t pg_offset, u64 extent_offset,
5288 struct btrfs_file_extent_item *item)
5289{
5290 int ret;
5291 struct extent_buffer *leaf = path->nodes[0];
5292 char *tmp;
5293 size_t max_size;
5294 unsigned long inline_size;
5295 unsigned long ptr;
261507a0 5296 int compress_type;
c8b97818
CM
5297
5298 WARN_ON(pg_offset != 0);
261507a0 5299 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5300 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5301 inline_size = btrfs_file_extent_inline_item_len(leaf,
5302 btrfs_item_nr(leaf, path->slots[0]));
5303 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5304 if (!tmp)
5305 return -ENOMEM;
c8b97818
CM
5306 ptr = btrfs_file_extent_inline_start(item);
5307
5308 read_extent_buffer(leaf, tmp, ptr, inline_size);
5309
5b050f04 5310 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5311 ret = btrfs_decompress(compress_type, tmp, page,
5312 extent_offset, inline_size, max_size);
c8b97818 5313 if (ret) {
7ac687d9 5314 char *kaddr = kmap_atomic(page);
c8b97818
CM
5315 unsigned long copy_size = min_t(u64,
5316 PAGE_CACHE_SIZE - pg_offset,
5317 max_size - extent_offset);
5318 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 5319 kunmap_atomic(kaddr);
c8b97818
CM
5320 }
5321 kfree(tmp);
5322 return 0;
5323}
5324
d352ac68
CM
5325/*
5326 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5327 * the ugly parts come from merging extents from the disk with the in-ram
5328 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5329 * where the in-ram extents might be locked pending data=ordered completion.
5330 *
5331 * This also copies inline extents directly into the page.
5332 */
d397712b 5333
a52d9a80 5334struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5335 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5336 int create)
5337{
5338 int ret;
5339 int err = 0;
db94535d 5340 u64 bytenr;
a52d9a80
CM
5341 u64 extent_start = 0;
5342 u64 extent_end = 0;
33345d01 5343 u64 objectid = btrfs_ino(inode);
a52d9a80 5344 u32 found_type;
f421950f 5345 struct btrfs_path *path = NULL;
a52d9a80
CM
5346 struct btrfs_root *root = BTRFS_I(inode)->root;
5347 struct btrfs_file_extent_item *item;
5f39d397
CM
5348 struct extent_buffer *leaf;
5349 struct btrfs_key found_key;
a52d9a80
CM
5350 struct extent_map *em = NULL;
5351 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5352 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5353 struct btrfs_trans_handle *trans = NULL;
261507a0 5354 int compress_type;
a52d9a80 5355
a52d9a80 5356again:
890871be 5357 read_lock(&em_tree->lock);
d1310b2e 5358 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5359 if (em)
5360 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5361 read_unlock(&em_tree->lock);
d1310b2e 5362
a52d9a80 5363 if (em) {
e1c4b745
CM
5364 if (em->start > start || em->start + em->len <= start)
5365 free_extent_map(em);
5366 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5367 free_extent_map(em);
5368 else
5369 goto out;
a52d9a80 5370 }
172ddd60 5371 em = alloc_extent_map();
a52d9a80 5372 if (!em) {
d1310b2e
CM
5373 err = -ENOMEM;
5374 goto out;
a52d9a80 5375 }
e6dcd2dc 5376 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5377 em->start = EXTENT_MAP_HOLE;
445a6944 5378 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5379 em->len = (u64)-1;
c8b97818 5380 em->block_len = (u64)-1;
f421950f
CM
5381
5382 if (!path) {
5383 path = btrfs_alloc_path();
026fd317
JB
5384 if (!path) {
5385 err = -ENOMEM;
5386 goto out;
5387 }
5388 /*
5389 * Chances are we'll be called again, so go ahead and do
5390 * readahead
5391 */
5392 path->reada = 1;
f421950f
CM
5393 }
5394
179e29e4
CM
5395 ret = btrfs_lookup_file_extent(trans, root, path,
5396 objectid, start, trans != NULL);
a52d9a80
CM
5397 if (ret < 0) {
5398 err = ret;
5399 goto out;
5400 }
5401
5402 if (ret != 0) {
5403 if (path->slots[0] == 0)
5404 goto not_found;
5405 path->slots[0]--;
5406 }
5407
5f39d397
CM
5408 leaf = path->nodes[0];
5409 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5410 struct btrfs_file_extent_item);
a52d9a80 5411 /* are we inside the extent that was found? */
5f39d397
CM
5412 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5413 found_type = btrfs_key_type(&found_key);
5414 if (found_key.objectid != objectid ||
a52d9a80
CM
5415 found_type != BTRFS_EXTENT_DATA_KEY) {
5416 goto not_found;
5417 }
5418
5f39d397
CM
5419 found_type = btrfs_file_extent_type(leaf, item);
5420 extent_start = found_key.offset;
261507a0 5421 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5422 if (found_type == BTRFS_FILE_EXTENT_REG ||
5423 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5424 extent_end = extent_start +
db94535d 5425 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5426 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5427 size_t size;
5428 size = btrfs_file_extent_inline_len(leaf, item);
5429 extent_end = (extent_start + size + root->sectorsize - 1) &
5430 ~((u64)root->sectorsize - 1);
5431 }
5432
5433 if (start >= extent_end) {
5434 path->slots[0]++;
5435 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5436 ret = btrfs_next_leaf(root, path);
5437 if (ret < 0) {
5438 err = ret;
5439 goto out;
a52d9a80 5440 }
9036c102
YZ
5441 if (ret > 0)
5442 goto not_found;
5443 leaf = path->nodes[0];
a52d9a80 5444 }
9036c102
YZ
5445 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5446 if (found_key.objectid != objectid ||
5447 found_key.type != BTRFS_EXTENT_DATA_KEY)
5448 goto not_found;
5449 if (start + len <= found_key.offset)
5450 goto not_found;
5451 em->start = start;
70c8a91c 5452 em->orig_start = start;
9036c102
YZ
5453 em->len = found_key.offset - start;
5454 goto not_found_em;
5455 }
5456
d899e052
YZ
5457 if (found_type == BTRFS_FILE_EXTENT_REG ||
5458 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5459 em->start = extent_start;
5460 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5461 em->orig_start = extent_start -
5462 btrfs_file_extent_offset(leaf, item);
b4939680
JB
5463 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
5464 item);
db94535d
CM
5465 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5466 if (bytenr == 0) {
5f39d397 5467 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5468 goto insert;
5469 }
261507a0 5470 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5471 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5472 em->compress_type = compress_type;
c8b97818 5473 em->block_start = bytenr;
b4939680 5474 em->block_len = em->orig_block_len;
c8b97818
CM
5475 } else {
5476 bytenr += btrfs_file_extent_offset(leaf, item);
5477 em->block_start = bytenr;
5478 em->block_len = em->len;
d899e052
YZ
5479 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5480 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5481 }
a52d9a80
CM
5482 goto insert;
5483 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5484 unsigned long ptr;
a52d9a80 5485 char *map;
3326d1b0
CM
5486 size_t size;
5487 size_t extent_offset;
5488 size_t copy_size;
a52d9a80 5489
689f9346 5490 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5491 if (!page || create) {
689f9346 5492 em->start = extent_start;
9036c102 5493 em->len = extent_end - extent_start;
689f9346
Y
5494 goto out;
5495 }
5f39d397 5496
9036c102
YZ
5497 size = btrfs_file_extent_inline_len(leaf, item);
5498 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5499 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5500 size - extent_offset);
3326d1b0 5501 em->start = extent_start + extent_offset;
70dec807
CM
5502 em->len = (copy_size + root->sectorsize - 1) &
5503 ~((u64)root->sectorsize - 1);
b4939680 5504 em->orig_block_len = em->len;
70c8a91c 5505 em->orig_start = em->start;
261507a0 5506 if (compress_type) {
c8b97818 5507 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5508 em->compress_type = compress_type;
5509 }
689f9346 5510 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5511 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5512 if (btrfs_file_extent_compression(leaf, item) !=
5513 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5514 ret = uncompress_inline(path, inode, page,
5515 pg_offset,
5516 extent_offset, item);
79787eaa 5517 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
5518 } else {
5519 map = kmap(page);
5520 read_extent_buffer(leaf, map + pg_offset, ptr,
5521 copy_size);
93c82d57
CM
5522 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5523 memset(map + pg_offset + copy_size, 0,
5524 PAGE_CACHE_SIZE - pg_offset -
5525 copy_size);
5526 }
c8b97818
CM
5527 kunmap(page);
5528 }
179e29e4
CM
5529 flush_dcache_page(page);
5530 } else if (create && PageUptodate(page)) {
6bf7e080 5531 BUG();
179e29e4
CM
5532 if (!trans) {
5533 kunmap(page);
5534 free_extent_map(em);
5535 em = NULL;
ff5714cc 5536
b3b4aa74 5537 btrfs_release_path(path);
7a7eaa40 5538 trans = btrfs_join_transaction(root);
ff5714cc 5539
3612b495
TI
5540 if (IS_ERR(trans))
5541 return ERR_CAST(trans);
179e29e4
CM
5542 goto again;
5543 }
c8b97818 5544 map = kmap(page);
70dec807 5545 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5546 copy_size);
c8b97818 5547 kunmap(page);
179e29e4 5548 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5549 }
d1310b2e 5550 set_extent_uptodate(io_tree, em->start,
507903b8 5551 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5552 goto insert;
5553 } else {
31b1a2bd 5554 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5555 }
5556not_found:
5557 em->start = start;
70c8a91c 5558 em->orig_start = start;
d1310b2e 5559 em->len = len;
a52d9a80 5560not_found_em:
5f39d397 5561 em->block_start = EXTENT_MAP_HOLE;
9036c102 5562 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5563insert:
b3b4aa74 5564 btrfs_release_path(path);
d1310b2e 5565 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5566 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5567 "[%llu %llu]\n", (unsigned long long)em->start,
5568 (unsigned long long)em->len,
5569 (unsigned long long)start,
5570 (unsigned long long)len);
a52d9a80
CM
5571 err = -EIO;
5572 goto out;
5573 }
d1310b2e
CM
5574
5575 err = 0;
890871be 5576 write_lock(&em_tree->lock);
a52d9a80 5577 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5578 /* it is possible that someone inserted the extent into the tree
5579 * while we had the lock dropped. It is also possible that
5580 * an overlapping map exists in the tree
5581 */
a52d9a80 5582 if (ret == -EEXIST) {
3b951516 5583 struct extent_map *existing;
e6dcd2dc
CM
5584
5585 ret = 0;
5586
3b951516 5587 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5588 if (existing && (existing->start > start ||
5589 existing->start + existing->len <= start)) {
5590 free_extent_map(existing);
5591 existing = NULL;
5592 }
3b951516
CM
5593 if (!existing) {
5594 existing = lookup_extent_mapping(em_tree, em->start,
5595 em->len);
5596 if (existing) {
5597 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5598 em, start,
5599 root->sectorsize);
3b951516
CM
5600 free_extent_map(existing);
5601 if (err) {
5602 free_extent_map(em);
5603 em = NULL;
5604 }
5605 } else {
5606 err = -EIO;
3b951516
CM
5607 free_extent_map(em);
5608 em = NULL;
5609 }
5610 } else {
5611 free_extent_map(em);
5612 em = existing;
e6dcd2dc 5613 err = 0;
a52d9a80 5614 }
a52d9a80 5615 }
890871be 5616 write_unlock(&em_tree->lock);
a52d9a80 5617out:
1abe9b8a 5618
f0bd95ea
TI
5619 if (em)
5620 trace_btrfs_get_extent(root, em);
1abe9b8a 5621
f421950f
CM
5622 if (path)
5623 btrfs_free_path(path);
a52d9a80
CM
5624 if (trans) {
5625 ret = btrfs_end_transaction(trans, root);
d397712b 5626 if (!err)
a52d9a80
CM
5627 err = ret;
5628 }
a52d9a80
CM
5629 if (err) {
5630 free_extent_map(em);
a52d9a80
CM
5631 return ERR_PTR(err);
5632 }
79787eaa 5633 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
5634 return em;
5635}
5636
ec29ed5b
CM
5637struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5638 size_t pg_offset, u64 start, u64 len,
5639 int create)
5640{
5641 struct extent_map *em;
5642 struct extent_map *hole_em = NULL;
5643 u64 range_start = start;
5644 u64 end;
5645 u64 found;
5646 u64 found_end;
5647 int err = 0;
5648
5649 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5650 if (IS_ERR(em))
5651 return em;
5652 if (em) {
5653 /*
f9e4fb53
LB
5654 * if our em maps to
5655 * - a hole or
5656 * - a pre-alloc extent,
5657 * there might actually be delalloc bytes behind it.
ec29ed5b 5658 */
f9e4fb53
LB
5659 if (em->block_start != EXTENT_MAP_HOLE &&
5660 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
5661 return em;
5662 else
5663 hole_em = em;
5664 }
5665
5666 /* check to see if we've wrapped (len == -1 or similar) */
5667 end = start + len;
5668 if (end < start)
5669 end = (u64)-1;
5670 else
5671 end -= 1;
5672
5673 em = NULL;
5674
5675 /* ok, we didn't find anything, lets look for delalloc */
5676 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5677 end, len, EXTENT_DELALLOC, 1);
5678 found_end = range_start + found;
5679 if (found_end < range_start)
5680 found_end = (u64)-1;
5681
5682 /*
5683 * we didn't find anything useful, return
5684 * the original results from get_extent()
5685 */
5686 if (range_start > end || found_end <= start) {
5687 em = hole_em;
5688 hole_em = NULL;
5689 goto out;
5690 }
5691
5692 /* adjust the range_start to make sure it doesn't
5693 * go backwards from the start they passed in
5694 */
5695 range_start = max(start,range_start);
5696 found = found_end - range_start;
5697
5698 if (found > 0) {
5699 u64 hole_start = start;
5700 u64 hole_len = len;
5701
172ddd60 5702 em = alloc_extent_map();
ec29ed5b
CM
5703 if (!em) {
5704 err = -ENOMEM;
5705 goto out;
5706 }
5707 /*
5708 * when btrfs_get_extent can't find anything it
5709 * returns one huge hole
5710 *
5711 * make sure what it found really fits our range, and
5712 * adjust to make sure it is based on the start from
5713 * the caller
5714 */
5715 if (hole_em) {
5716 u64 calc_end = extent_map_end(hole_em);
5717
5718 if (calc_end <= start || (hole_em->start > end)) {
5719 free_extent_map(hole_em);
5720 hole_em = NULL;
5721 } else {
5722 hole_start = max(hole_em->start, start);
5723 hole_len = calc_end - hole_start;
5724 }
5725 }
5726 em->bdev = NULL;
5727 if (hole_em && range_start > hole_start) {
5728 /* our hole starts before our delalloc, so we
5729 * have to return just the parts of the hole
5730 * that go until the delalloc starts
5731 */
5732 em->len = min(hole_len,
5733 range_start - hole_start);
5734 em->start = hole_start;
5735 em->orig_start = hole_start;
5736 /*
5737 * don't adjust block start at all,
5738 * it is fixed at EXTENT_MAP_HOLE
5739 */
5740 em->block_start = hole_em->block_start;
5741 em->block_len = hole_len;
f9e4fb53
LB
5742 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
5743 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
5744 } else {
5745 em->start = range_start;
5746 em->len = found;
5747 em->orig_start = range_start;
5748 em->block_start = EXTENT_MAP_DELALLOC;
5749 em->block_len = found;
5750 }
5751 } else if (hole_em) {
5752 return hole_em;
5753 }
5754out:
5755
5756 free_extent_map(hole_em);
5757 if (err) {
5758 free_extent_map(em);
5759 return ERR_PTR(err);
5760 }
5761 return em;
5762}
5763
4b46fce2
JB
5764static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5765 u64 start, u64 len)
5766{
5767 struct btrfs_root *root = BTRFS_I(inode)->root;
5768 struct btrfs_trans_handle *trans;
70c8a91c 5769 struct extent_map *em;
4b46fce2
JB
5770 struct btrfs_key ins;
5771 u64 alloc_hint;
5772 int ret;
4b46fce2 5773
7a7eaa40 5774 trans = btrfs_join_transaction(root);
3612b495
TI
5775 if (IS_ERR(trans))
5776 return ERR_CAST(trans);
4b46fce2
JB
5777
5778 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5779
5780 alloc_hint = get_extent_allocation_hint(inode, start, len);
5781 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
81c9ad23 5782 alloc_hint, &ins, 1);
4b46fce2
JB
5783 if (ret) {
5784 em = ERR_PTR(ret);
5785 goto out;
5786 }
5787
70c8a91c
JB
5788 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
5789 ins.offset, ins.offset, 0);
5790 if (IS_ERR(em))
5791 goto out;
4b46fce2
JB
5792
5793 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5794 ins.offset, ins.offset, 0);
5795 if (ret) {
5796 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5797 em = ERR_PTR(ret);
5798 }
5799out:
5800 btrfs_end_transaction(trans, root);
5801 return em;
5802}
5803
46bfbb5c
CM
5804/*
5805 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5806 * block must be cow'd
5807 */
5808static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5809 struct inode *inode, u64 offset, u64 len)
5810{
5811 struct btrfs_path *path;
5812 int ret;
5813 struct extent_buffer *leaf;
5814 struct btrfs_root *root = BTRFS_I(inode)->root;
5815 struct btrfs_file_extent_item *fi;
5816 struct btrfs_key key;
5817 u64 disk_bytenr;
5818 u64 backref_offset;
5819 u64 extent_end;
5820 u64 num_bytes;
5821 int slot;
5822 int found_type;
5823
5824 path = btrfs_alloc_path();
5825 if (!path)
5826 return -ENOMEM;
5827
33345d01 5828 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5829 offset, 0);
5830 if (ret < 0)
5831 goto out;
5832
5833 slot = path->slots[0];
5834 if (ret == 1) {
5835 if (slot == 0) {
5836 /* can't find the item, must cow */
5837 ret = 0;
5838 goto out;
5839 }
5840 slot--;
5841 }
5842 ret = 0;
5843 leaf = path->nodes[0];
5844 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5845 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5846 key.type != BTRFS_EXTENT_DATA_KEY) {
5847 /* not our file or wrong item type, must cow */
5848 goto out;
5849 }
5850
5851 if (key.offset > offset) {
5852 /* Wrong offset, must cow */
5853 goto out;
5854 }
5855
5856 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5857 found_type = btrfs_file_extent_type(leaf, fi);
5858 if (found_type != BTRFS_FILE_EXTENT_REG &&
5859 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5860 /* not a regular extent, must cow */
5861 goto out;
5862 }
5863 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5864 backref_offset = btrfs_file_extent_offset(leaf, fi);
5865
5866 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5867 if (extent_end < offset + len) {
5868 /* extent doesn't include our full range, must cow */
5869 goto out;
5870 }
5871
5872 if (btrfs_extent_readonly(root, disk_bytenr))
5873 goto out;
5874
5875 /*
5876 * look for other files referencing this extent, if we
5877 * find any we must cow
5878 */
33345d01 5879 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5880 key.offset - backref_offset, disk_bytenr))
5881 goto out;
5882
5883 /*
5884 * adjust disk_bytenr and num_bytes to cover just the bytes
5885 * in this extent we are about to write. If there
5886 * are any csums in that range we have to cow in order
5887 * to keep the csums correct
5888 */
5889 disk_bytenr += backref_offset;
5890 disk_bytenr += offset - key.offset;
5891 num_bytes = min(offset + len, extent_end) - offset;
5892 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5893 goto out;
5894 /*
5895 * all of the above have passed, it is safe to overwrite this extent
5896 * without cow
5897 */
5898 ret = 1;
5899out:
5900 btrfs_free_path(path);
5901 return ret;
5902}
5903
eb838e73
JB
5904static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
5905 struct extent_state **cached_state, int writing)
5906{
5907 struct btrfs_ordered_extent *ordered;
5908 int ret = 0;
5909
5910 while (1) {
5911 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5912 0, cached_state);
5913 /*
5914 * We're concerned with the entire range that we're going to be
5915 * doing DIO to, so we need to make sure theres no ordered
5916 * extents in this range.
5917 */
5918 ordered = btrfs_lookup_ordered_range(inode, lockstart,
5919 lockend - lockstart + 1);
5920
5921 /*
5922 * We need to make sure there are no buffered pages in this
5923 * range either, we could have raced between the invalidate in
5924 * generic_file_direct_write and locking the extent. The
5925 * invalidate needs to happen so that reads after a write do not
5926 * get stale data.
5927 */
5928 if (!ordered && (!writing ||
5929 !test_range_bit(&BTRFS_I(inode)->io_tree,
5930 lockstart, lockend, EXTENT_UPTODATE, 0,
5931 *cached_state)))
5932 break;
5933
5934 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5935 cached_state, GFP_NOFS);
5936
5937 if (ordered) {
5938 btrfs_start_ordered_extent(inode, ordered, 1);
5939 btrfs_put_ordered_extent(ordered);
5940 } else {
5941 /* Screw you mmap */
5942 ret = filemap_write_and_wait_range(inode->i_mapping,
5943 lockstart,
5944 lockend);
5945 if (ret)
5946 break;
5947
5948 /*
5949 * If we found a page that couldn't be invalidated just
5950 * fall back to buffered.
5951 */
5952 ret = invalidate_inode_pages2_range(inode->i_mapping,
5953 lockstart >> PAGE_CACHE_SHIFT,
5954 lockend >> PAGE_CACHE_SHIFT);
5955 if (ret)
5956 break;
5957 }
5958
5959 cond_resched();
5960 }
5961
5962 return ret;
5963}
5964
69ffb543
JB
5965static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
5966 u64 len, u64 orig_start,
5967 u64 block_start, u64 block_len,
b4939680 5968 u64 orig_block_len, int type)
69ffb543
JB
5969{
5970 struct extent_map_tree *em_tree;
5971 struct extent_map *em;
5972 struct btrfs_root *root = BTRFS_I(inode)->root;
5973 int ret;
5974
5975 em_tree = &BTRFS_I(inode)->extent_tree;
5976 em = alloc_extent_map();
5977 if (!em)
5978 return ERR_PTR(-ENOMEM);
5979
5980 em->start = start;
5981 em->orig_start = orig_start;
2ab28f32
JB
5982 em->mod_start = start;
5983 em->mod_len = len;
69ffb543
JB
5984 em->len = len;
5985 em->block_len = block_len;
5986 em->block_start = block_start;
5987 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 5988 em->orig_block_len = orig_block_len;
70c8a91c 5989 em->generation = -1;
69ffb543
JB
5990 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5991 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 5992 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
5993
5994 do {
5995 btrfs_drop_extent_cache(inode, em->start,
5996 em->start + em->len - 1, 0);
5997 write_lock(&em_tree->lock);
5998 ret = add_extent_mapping(em_tree, em);
70c8a91c
JB
5999 if (!ret)
6000 list_move(&em->list,
6001 &em_tree->modified_extents);
69ffb543
JB
6002 write_unlock(&em_tree->lock);
6003 } while (ret == -EEXIST);
6004
6005 if (ret) {
6006 free_extent_map(em);
6007 return ERR_PTR(ret);
6008 }
6009
6010 return em;
6011}
6012
6013
4b46fce2
JB
6014static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6015 struct buffer_head *bh_result, int create)
6016{
6017 struct extent_map *em;
6018 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 6019 struct extent_state *cached_state = NULL;
4b46fce2 6020 u64 start = iblock << inode->i_blkbits;
eb838e73 6021 u64 lockstart, lockend;
4b46fce2 6022 u64 len = bh_result->b_size;
46bfbb5c 6023 struct btrfs_trans_handle *trans;
eb838e73
JB
6024 int unlock_bits = EXTENT_LOCKED;
6025 int ret;
6026
eb838e73
JB
6027 if (create) {
6028 ret = btrfs_delalloc_reserve_space(inode, len);
6029 if (ret)
6030 return ret;
6031 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
c329861d
JB
6032 } else {
6033 len = min_t(u64, len, root->sectorsize);
eb838e73
JB
6034 }
6035
c329861d
JB
6036 lockstart = start;
6037 lockend = start + len - 1;
6038
eb838e73
JB
6039 /*
6040 * If this errors out it's because we couldn't invalidate pagecache for
6041 * this range and we need to fallback to buffered.
6042 */
6043 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6044 return -ENOTBLK;
6045
6046 if (create) {
6047 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6048 lockend, EXTENT_DELALLOC, NULL,
6049 &cached_state, GFP_NOFS);
6050 if (ret)
6051 goto unlock_err;
6052 }
4b46fce2
JB
6053
6054 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
6055 if (IS_ERR(em)) {
6056 ret = PTR_ERR(em);
6057 goto unlock_err;
6058 }
4b46fce2
JB
6059
6060 /*
6061 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6062 * io. INLINE is special, and we could probably kludge it in here, but
6063 * it's still buffered so for safety lets just fall back to the generic
6064 * buffered path.
6065 *
6066 * For COMPRESSED we _have_ to read the entire extent in so we can
6067 * decompress it, so there will be buffering required no matter what we
6068 * do, so go ahead and fallback to buffered.
6069 *
6070 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6071 * to buffered IO. Don't blame me, this is the price we pay for using
6072 * the generic code.
6073 */
6074 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6075 em->block_start == EXTENT_MAP_INLINE) {
6076 free_extent_map(em);
eb838e73
JB
6077 ret = -ENOTBLK;
6078 goto unlock_err;
4b46fce2
JB
6079 }
6080
6081 /* Just a good old fashioned hole, return */
6082 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6083 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6084 free_extent_map(em);
eb838e73
JB
6085 ret = 0;
6086 goto unlock_err;
4b46fce2
JB
6087 }
6088
6089 /*
6090 * We don't allocate a new extent in the following cases
6091 *
6092 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6093 * existing extent.
6094 * 2) The extent is marked as PREALLOC. We're good to go here and can
6095 * just use the extent.
6096 *
6097 */
46bfbb5c 6098 if (!create) {
eb838e73
JB
6099 len = min(len, em->len - (start - em->start));
6100 lockstart = start + len;
6101 goto unlock;
46bfbb5c 6102 }
4b46fce2
JB
6103
6104 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6105 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6106 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6107 int type;
6108 int ret;
46bfbb5c 6109 u64 block_start;
4b46fce2
JB
6110
6111 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6112 type = BTRFS_ORDERED_PREALLOC;
6113 else
6114 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6115 len = min(len, em->len - (start - em->start));
4b46fce2 6116 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
6117
6118 /*
6119 * we're not going to log anything, but we do need
6120 * to make sure the current transaction stays open
6121 * while we look for nocow cross refs
6122 */
7a7eaa40 6123 trans = btrfs_join_transaction(root);
3612b495 6124 if (IS_ERR(trans))
46bfbb5c
CM
6125 goto must_cow;
6126
6127 if (can_nocow_odirect(trans, inode, start, len) == 1) {
70c8a91c 6128 u64 orig_start = em->orig_start;
b4939680 6129 u64 orig_block_len = em->orig_block_len;
69ffb543
JB
6130
6131 if (type == BTRFS_ORDERED_PREALLOC) {
6132 free_extent_map(em);
6133 em = create_pinned_em(inode, start, len,
6134 orig_start,
b4939680
JB
6135 block_start, len,
6136 orig_block_len, type);
69ffb543
JB
6137 if (IS_ERR(em)) {
6138 btrfs_end_transaction(trans, root);
6139 goto unlock_err;
6140 }
6141 }
6142
46bfbb5c
CM
6143 ret = btrfs_add_ordered_extent_dio(inode, start,
6144 block_start, len, len, type);
6145 btrfs_end_transaction(trans, root);
6146 if (ret) {
6147 free_extent_map(em);
eb838e73 6148 goto unlock_err;
46bfbb5c
CM
6149 }
6150 goto unlock;
4b46fce2 6151 }
46bfbb5c 6152 btrfs_end_transaction(trans, root);
4b46fce2 6153 }
46bfbb5c
CM
6154must_cow:
6155 /*
6156 * this will cow the extent, reset the len in case we changed
6157 * it above
6158 */
6159 len = bh_result->b_size;
70c8a91c
JB
6160 free_extent_map(em);
6161 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
6162 if (IS_ERR(em)) {
6163 ret = PTR_ERR(em);
6164 goto unlock_err;
6165 }
46bfbb5c
CM
6166 len = min(len, em->len - (start - em->start));
6167unlock:
4b46fce2
JB
6168 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6169 inode->i_blkbits;
46bfbb5c 6170 bh_result->b_size = len;
4b46fce2
JB
6171 bh_result->b_bdev = em->bdev;
6172 set_buffer_mapped(bh_result);
c3473e83
JB
6173 if (create) {
6174 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6175 set_buffer_new(bh_result);
6176
6177 /*
6178 * Need to update the i_size under the extent lock so buffered
6179 * readers will get the updated i_size when we unlock.
6180 */
6181 if (start + len > i_size_read(inode))
6182 i_size_write(inode, start + len);
6183 }
4b46fce2 6184
eb838e73
JB
6185 /*
6186 * In the case of write we need to clear and unlock the entire range,
6187 * in the case of read we need to unlock only the end area that we
6188 * aren't using if there is any left over space.
6189 */
24c03fa5
LB
6190 if (lockstart < lockend) {
6191 if (create && len < lockend - lockstart) {
6192 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
9e8a4a8b
LB
6193 lockstart + len - 1,
6194 unlock_bits | EXTENT_DEFRAG, 1, 0,
24c03fa5
LB
6195 &cached_state, GFP_NOFS);
6196 /*
6197 * Beside unlock, we also need to cleanup reserved space
6198 * for the left range by attaching EXTENT_DO_ACCOUNTING.
6199 */
6200 clear_extent_bit(&BTRFS_I(inode)->io_tree,
6201 lockstart + len, lockend,
9e8a4a8b
LB
6202 unlock_bits | EXTENT_DO_ACCOUNTING |
6203 EXTENT_DEFRAG, 1, 0, NULL, GFP_NOFS);
24c03fa5
LB
6204 } else {
6205 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6206 lockend, unlock_bits, 1, 0,
6207 &cached_state, GFP_NOFS);
6208 }
6209 } else {
eb838e73 6210 free_extent_state(cached_state);
24c03fa5 6211 }
eb838e73 6212
4b46fce2
JB
6213 free_extent_map(em);
6214
6215 return 0;
eb838e73
JB
6216
6217unlock_err:
6218 if (create)
6219 unlock_bits |= EXTENT_DO_ACCOUNTING;
6220
6221 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6222 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6223 return ret;
4b46fce2
JB
6224}
6225
6226struct btrfs_dio_private {
6227 struct inode *inode;
6228 u64 logical_offset;
6229 u64 disk_bytenr;
6230 u64 bytes;
4b46fce2 6231 void *private;
e65e1535
MX
6232
6233 /* number of bios pending for this dio */
6234 atomic_t pending_bios;
6235
6236 /* IO errors */
6237 int errors;
6238
6239 struct bio *orig_bio;
4b46fce2
JB
6240};
6241
6242static void btrfs_endio_direct_read(struct bio *bio, int err)
6243{
e65e1535 6244 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6245 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6246 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
6247 struct inode *inode = dip->inode;
6248 struct btrfs_root *root = BTRFS_I(inode)->root;
6249 u64 start;
4b46fce2
JB
6250
6251 start = dip->logical_offset;
6252 do {
6253 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6254 struct page *page = bvec->bv_page;
6255 char *kaddr;
6256 u32 csum = ~(u32)0;
c329861d 6257 u64 private = ~(u32)0;
4b46fce2
JB
6258 unsigned long flags;
6259
c329861d
JB
6260 if (get_state_private(&BTRFS_I(inode)->io_tree,
6261 start, &private))
6262 goto failed;
4b46fce2 6263 local_irq_save(flags);
7ac687d9 6264 kaddr = kmap_atomic(page);
4b46fce2
JB
6265 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
6266 csum, bvec->bv_len);
6267 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6268 kunmap_atomic(kaddr);
4b46fce2
JB
6269 local_irq_restore(flags);
6270
6271 flush_dcache_page(bvec->bv_page);
c329861d
JB
6272 if (csum != private) {
6273failed:
33345d01 6274 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 6275 " %llu csum %u private %u\n",
33345d01
LZ
6276 (unsigned long long)btrfs_ino(inode),
6277 (unsigned long long)start,
c329861d 6278 csum, (unsigned)private);
4b46fce2
JB
6279 err = -EIO;
6280 }
6281 }
6282
6283 start += bvec->bv_len;
4b46fce2
JB
6284 bvec++;
6285 } while (bvec <= bvec_end);
6286
6287 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 6288 dip->logical_offset + dip->bytes - 1);
4b46fce2
JB
6289 bio->bi_private = dip->private;
6290
4b46fce2 6291 kfree(dip);
c0da7aa1
JB
6292
6293 /* If we had a csum failure make sure to clear the uptodate flag */
6294 if (err)
6295 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
6296 dio_end_io(bio, err);
6297}
6298
6299static void btrfs_endio_direct_write(struct bio *bio, int err)
6300{
6301 struct btrfs_dio_private *dip = bio->bi_private;
6302 struct inode *inode = dip->inode;
6303 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 6304 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
6305 u64 ordered_offset = dip->logical_offset;
6306 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
6307 int ret;
6308
6309 if (err)
6310 goto out_done;
163cf09c
CM
6311again:
6312 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6313 &ordered_offset,
5fd02043 6314 ordered_bytes, !err);
4b46fce2 6315 if (!ret)
163cf09c 6316 goto out_test;
4b46fce2 6317
5fd02043
JB
6318 ordered->work.func = finish_ordered_fn;
6319 ordered->work.flags = 0;
6320 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6321 &ordered->work);
163cf09c
CM
6322out_test:
6323 /*
6324 * our bio might span multiple ordered extents. If we haven't
6325 * completed the accounting for the whole dio, go back and try again
6326 */
6327 if (ordered_offset < dip->logical_offset + dip->bytes) {
6328 ordered_bytes = dip->logical_offset + dip->bytes -
6329 ordered_offset;
5fd02043 6330 ordered = NULL;
163cf09c
CM
6331 goto again;
6332 }
4b46fce2
JB
6333out_done:
6334 bio->bi_private = dip->private;
6335
4b46fce2 6336 kfree(dip);
c0da7aa1
JB
6337
6338 /* If we had an error make sure to clear the uptodate flag */
6339 if (err)
6340 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
6341 dio_end_io(bio, err);
6342}
6343
eaf25d93
CM
6344static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6345 struct bio *bio, int mirror_num,
6346 unsigned long bio_flags, u64 offset)
6347{
6348 int ret;
6349 struct btrfs_root *root = BTRFS_I(inode)->root;
6350 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 6351 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
6352 return 0;
6353}
6354
e65e1535
MX
6355static void btrfs_end_dio_bio(struct bio *bio, int err)
6356{
6357 struct btrfs_dio_private *dip = bio->bi_private;
6358
6359 if (err) {
33345d01 6360 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 6361 "sector %#Lx len %u err no %d\n",
33345d01 6362 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 6363 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
6364 dip->errors = 1;
6365
6366 /*
6367 * before atomic variable goto zero, we must make sure
6368 * dip->errors is perceived to be set.
6369 */
6370 smp_mb__before_atomic_dec();
6371 }
6372
6373 /* if there are more bios still pending for this dio, just exit */
6374 if (!atomic_dec_and_test(&dip->pending_bios))
6375 goto out;
6376
6377 if (dip->errors)
6378 bio_io_error(dip->orig_bio);
6379 else {
6380 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6381 bio_endio(dip->orig_bio, 0);
6382 }
6383out:
6384 bio_put(bio);
6385}
6386
6387static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6388 u64 first_sector, gfp_t gfp_flags)
6389{
6390 int nr_vecs = bio_get_nr_vecs(bdev);
6391 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6392}
6393
6394static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6395 int rw, u64 file_offset, int skip_sum,
c329861d 6396 int async_submit)
e65e1535
MX
6397{
6398 int write = rw & REQ_WRITE;
6399 struct btrfs_root *root = BTRFS_I(inode)->root;
6400 int ret;
6401
b812ce28
JB
6402 if (async_submit)
6403 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
6404
e65e1535 6405 bio_get(bio);
5fd02043
JB
6406
6407 if (!write) {
6408 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6409 if (ret)
6410 goto err;
6411 }
e65e1535 6412
1ae39938
JB
6413 if (skip_sum)
6414 goto map;
6415
6416 if (write && async_submit) {
e65e1535
MX
6417 ret = btrfs_wq_submit_bio(root->fs_info,
6418 inode, rw, bio, 0, 0,
6419 file_offset,
6420 __btrfs_submit_bio_start_direct_io,
6421 __btrfs_submit_bio_done);
6422 goto err;
1ae39938
JB
6423 } else if (write) {
6424 /*
6425 * If we aren't doing async submit, calculate the csum of the
6426 * bio now.
6427 */
6428 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6429 if (ret)
6430 goto err;
c2db1073 6431 } else if (!skip_sum) {
c329861d 6432 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
c2db1073
TI
6433 if (ret)
6434 goto err;
6435 }
e65e1535 6436
1ae39938
JB
6437map:
6438 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
6439err:
6440 bio_put(bio);
6441 return ret;
6442}
6443
6444static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6445 int skip_sum)
6446{
6447 struct inode *inode = dip->inode;
6448 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
6449 struct bio *bio;
6450 struct bio *orig_bio = dip->orig_bio;
6451 struct bio_vec *bvec = orig_bio->bi_io_vec;
6452 u64 start_sector = orig_bio->bi_sector;
6453 u64 file_offset = dip->logical_offset;
6454 u64 submit_len = 0;
6455 u64 map_length;
6456 int nr_pages = 0;
e65e1535 6457 int ret = 0;
1ae39938 6458 int async_submit = 0;
e65e1535 6459
e65e1535 6460 map_length = orig_bio->bi_size;
3ec706c8 6461 ret = btrfs_map_block(root->fs_info, READ, start_sector << 9,
e65e1535
MX
6462 &map_length, NULL, 0);
6463 if (ret) {
64728bbb 6464 bio_put(orig_bio);
e65e1535
MX
6465 return -EIO;
6466 }
6467
02f57c7a
JB
6468 if (map_length >= orig_bio->bi_size) {
6469 bio = orig_bio;
6470 goto submit;
6471 }
6472
1ae39938 6473 async_submit = 1;
02f57c7a
JB
6474 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6475 if (!bio)
6476 return -ENOMEM;
6477 bio->bi_private = dip;
6478 bio->bi_end_io = btrfs_end_dio_bio;
6479 atomic_inc(&dip->pending_bios);
6480
e65e1535
MX
6481 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6482 if (unlikely(map_length < submit_len + bvec->bv_len ||
6483 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6484 bvec->bv_offset) < bvec->bv_len)) {
6485 /*
6486 * inc the count before we submit the bio so
6487 * we know the end IO handler won't happen before
6488 * we inc the count. Otherwise, the dip might get freed
6489 * before we're done setting it up
6490 */
6491 atomic_inc(&dip->pending_bios);
6492 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6493 file_offset, skip_sum,
c329861d 6494 async_submit);
e65e1535
MX
6495 if (ret) {
6496 bio_put(bio);
6497 atomic_dec(&dip->pending_bios);
6498 goto out_err;
6499 }
6500
e65e1535
MX
6501 start_sector += submit_len >> 9;
6502 file_offset += submit_len;
6503
6504 submit_len = 0;
6505 nr_pages = 0;
6506
6507 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6508 start_sector, GFP_NOFS);
6509 if (!bio)
6510 goto out_err;
6511 bio->bi_private = dip;
6512 bio->bi_end_io = btrfs_end_dio_bio;
6513
6514 map_length = orig_bio->bi_size;
3ec706c8
SB
6515 ret = btrfs_map_block(root->fs_info, READ,
6516 start_sector << 9,
e65e1535
MX
6517 &map_length, NULL, 0);
6518 if (ret) {
6519 bio_put(bio);
6520 goto out_err;
6521 }
6522 } else {
6523 submit_len += bvec->bv_len;
6524 nr_pages ++;
6525 bvec++;
6526 }
6527 }
6528
02f57c7a 6529submit:
e65e1535 6530 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 6531 async_submit);
e65e1535
MX
6532 if (!ret)
6533 return 0;
6534
6535 bio_put(bio);
6536out_err:
6537 dip->errors = 1;
6538 /*
6539 * before atomic variable goto zero, we must
6540 * make sure dip->errors is perceived to be set.
6541 */
6542 smp_mb__before_atomic_dec();
6543 if (atomic_dec_and_test(&dip->pending_bios))
6544 bio_io_error(dip->orig_bio);
6545
6546 /* bio_end_io() will handle error, so we needn't return it */
6547 return 0;
6548}
6549
4b46fce2
JB
6550static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6551 loff_t file_offset)
6552{
6553 struct btrfs_root *root = BTRFS_I(inode)->root;
6554 struct btrfs_dio_private *dip;
6555 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6556 int skip_sum;
7b6d91da 6557 int write = rw & REQ_WRITE;
4b46fce2
JB
6558 int ret = 0;
6559
6560 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6561
6562 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6563 if (!dip) {
6564 ret = -ENOMEM;
6565 goto free_ordered;
6566 }
4b46fce2
JB
6567
6568 dip->private = bio->bi_private;
6569 dip->inode = inode;
6570 dip->logical_offset = file_offset;
6571
4b46fce2
JB
6572 dip->bytes = 0;
6573 do {
6574 dip->bytes += bvec->bv_len;
6575 bvec++;
6576 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6577
46bfbb5c 6578 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6579 bio->bi_private = dip;
e65e1535
MX
6580 dip->errors = 0;
6581 dip->orig_bio = bio;
6582 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6583
6584 if (write)
6585 bio->bi_end_io = btrfs_endio_direct_write;
6586 else
6587 bio->bi_end_io = btrfs_endio_direct_read;
6588
e65e1535
MX
6589 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6590 if (!ret)
eaf25d93 6591 return;
4b46fce2
JB
6592free_ordered:
6593 /*
6594 * If this is a write, we need to clean up the reserved space and kill
6595 * the ordered extent.
6596 */
6597 if (write) {
6598 struct btrfs_ordered_extent *ordered;
955256f2 6599 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6600 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6601 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6602 btrfs_free_reserved_extent(root, ordered->start,
6603 ordered->disk_len);
6604 btrfs_put_ordered_extent(ordered);
6605 btrfs_put_ordered_extent(ordered);
6606 }
6607 bio_endio(bio, ret);
6608}
6609
5a5f79b5
CM
6610static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6611 const struct iovec *iov, loff_t offset,
6612 unsigned long nr_segs)
6613{
6614 int seg;
a1b75f7d 6615 int i;
5a5f79b5
CM
6616 size_t size;
6617 unsigned long addr;
6618 unsigned blocksize_mask = root->sectorsize - 1;
6619 ssize_t retval = -EINVAL;
6620 loff_t end = offset;
6621
6622 if (offset & blocksize_mask)
6623 goto out;
6624
6625 /* Check the memory alignment. Blocks cannot straddle pages */
6626 for (seg = 0; seg < nr_segs; seg++) {
6627 addr = (unsigned long)iov[seg].iov_base;
6628 size = iov[seg].iov_len;
6629 end += size;
a1b75f7d 6630 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6631 goto out;
a1b75f7d
JB
6632
6633 /* If this is a write we don't need to check anymore */
6634 if (rw & WRITE)
6635 continue;
6636
6637 /*
6638 * Check to make sure we don't have duplicate iov_base's in this
6639 * iovec, if so return EINVAL, otherwise we'll get csum errors
6640 * when reading back.
6641 */
6642 for (i = seg + 1; i < nr_segs; i++) {
6643 if (iov[seg].iov_base == iov[i].iov_base)
6644 goto out;
6645 }
5a5f79b5
CM
6646 }
6647 retval = 0;
6648out:
6649 return retval;
6650}
eb838e73 6651
16432985
CM
6652static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6653 const struct iovec *iov, loff_t offset,
6654 unsigned long nr_segs)
6655{
4b46fce2
JB
6656 struct file *file = iocb->ki_filp;
6657 struct inode *inode = file->f_mapping->host;
4b46fce2 6658
5a5f79b5 6659 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 6660 offset, nr_segs))
5a5f79b5 6661 return 0;
3f7c579c 6662
eb838e73 6663 return __blockdev_direct_IO(rw, iocb, inode,
5a5f79b5
CM
6664 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6665 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6666 btrfs_submit_direct, 0);
16432985
CM
6667}
6668
05dadc09
TI
6669#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
6670
1506fcc8
YS
6671static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6672 __u64 start, __u64 len)
6673{
05dadc09
TI
6674 int ret;
6675
6676 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
6677 if (ret)
6678 return ret;
6679
ec29ed5b 6680 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6681}
6682
a52d9a80 6683int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6684{
d1310b2e
CM
6685 struct extent_io_tree *tree;
6686 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 6687 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 6688}
1832a6d5 6689
a52d9a80 6690static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6691{
d1310b2e 6692 struct extent_io_tree *tree;
b888db2b
CM
6693
6694
6695 if (current->flags & PF_MEMALLOC) {
6696 redirty_page_for_writepage(wbc, page);
6697 unlock_page(page);
6698 return 0;
6699 }
d1310b2e 6700 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6701 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6702}
6703
f421950f
CM
6704int btrfs_writepages(struct address_space *mapping,
6705 struct writeback_control *wbc)
b293f02e 6706{
d1310b2e 6707 struct extent_io_tree *tree;
771ed689 6708
d1310b2e 6709 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6710 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6711}
6712
3ab2fb5a
CM
6713static int
6714btrfs_readpages(struct file *file, struct address_space *mapping,
6715 struct list_head *pages, unsigned nr_pages)
6716{
d1310b2e
CM
6717 struct extent_io_tree *tree;
6718 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6719 return extent_readpages(tree, mapping, pages, nr_pages,
6720 btrfs_get_extent);
6721}
e6dcd2dc 6722static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6723{
d1310b2e
CM
6724 struct extent_io_tree *tree;
6725 struct extent_map_tree *map;
a52d9a80 6726 int ret;
8c2383c3 6727
d1310b2e
CM
6728 tree = &BTRFS_I(page->mapping->host)->io_tree;
6729 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6730 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6731 if (ret == 1) {
6732 ClearPagePrivate(page);
6733 set_page_private(page, 0);
6734 page_cache_release(page);
39279cc3 6735 }
a52d9a80 6736 return ret;
39279cc3
CM
6737}
6738
e6dcd2dc
CM
6739static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6740{
98509cfc
CM
6741 if (PageWriteback(page) || PageDirty(page))
6742 return 0;
b335b003 6743 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6744}
6745
a52d9a80 6746static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6747{
5fd02043 6748 struct inode *inode = page->mapping->host;
d1310b2e 6749 struct extent_io_tree *tree;
e6dcd2dc 6750 struct btrfs_ordered_extent *ordered;
2ac55d41 6751 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6752 u64 page_start = page_offset(page);
6753 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6754
8b62b72b
CM
6755 /*
6756 * we have the page locked, so new writeback can't start,
6757 * and the dirty bit won't be cleared while we are here.
6758 *
6759 * Wait for IO on this page so that we can safely clear
6760 * the PagePrivate2 bit and do ordered accounting
6761 */
e6dcd2dc 6762 wait_on_page_writeback(page);
8b62b72b 6763
5fd02043 6764 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
6765 if (offset) {
6766 btrfs_releasepage(page, GFP_NOFS);
6767 return;
6768 }
d0082371 6769 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
4eee4fa4 6770 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
e6dcd2dc 6771 if (ordered) {
eb84ae03
CM
6772 /*
6773 * IO on this page will never be started, so we need
6774 * to account for any ordered extents now
6775 */
e6dcd2dc
CM
6776 clear_extent_bit(tree, page_start, page_end,
6777 EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
6778 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
6779 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
8b62b72b
CM
6780 /*
6781 * whoever cleared the private bit is responsible
6782 * for the finish_ordered_io
6783 */
5fd02043
JB
6784 if (TestClearPagePrivate2(page) &&
6785 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
6786 PAGE_CACHE_SIZE, 1)) {
6787 btrfs_finish_ordered_io(ordered);
8b62b72b 6788 }
e6dcd2dc 6789 btrfs_put_ordered_extent(ordered);
2ac55d41 6790 cached_state = NULL;
d0082371 6791 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6792 }
6793 clear_extent_bit(tree, page_start, page_end,
32c00aff 6794 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
6795 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
6796 &cached_state, GFP_NOFS);
e6dcd2dc
CM
6797 __btrfs_releasepage(page, GFP_NOFS);
6798
4a096752 6799 ClearPageChecked(page);
9ad6b7bc 6800 if (PagePrivate(page)) {
9ad6b7bc
CM
6801 ClearPagePrivate(page);
6802 set_page_private(page, 0);
6803 page_cache_release(page);
6804 }
39279cc3
CM
6805}
6806
9ebefb18
CM
6807/*
6808 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6809 * called from a page fault handler when a page is first dirtied. Hence we must
6810 * be careful to check for EOF conditions here. We set the page up correctly
6811 * for a written page which means we get ENOSPC checking when writing into
6812 * holes and correct delalloc and unwritten extent mapping on filesystems that
6813 * support these features.
6814 *
6815 * We are not allowed to take the i_mutex here so we have to play games to
6816 * protect against truncate races as the page could now be beyond EOF. Because
6817 * vmtruncate() writes the inode size before removing pages, once we have the
6818 * page lock we can determine safely if the page is beyond EOF. If it is not
6819 * beyond EOF, then the page is guaranteed safe against truncation until we
6820 * unlock the page.
6821 */
c2ec175c 6822int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6823{
c2ec175c 6824 struct page *page = vmf->page;
6da6abae 6825 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6826 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6827 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6828 struct btrfs_ordered_extent *ordered;
2ac55d41 6829 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6830 char *kaddr;
6831 unsigned long zero_start;
9ebefb18 6832 loff_t size;
1832a6d5 6833 int ret;
9998eb70 6834 int reserved = 0;
a52d9a80 6835 u64 page_start;
e6dcd2dc 6836 u64 page_end;
9ebefb18 6837
b2b5ef5c 6838 sb_start_pagefault(inode->i_sb);
0ca1f7ce 6839 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 6840 if (!ret) {
e41f941a 6841 ret = file_update_time(vma->vm_file);
9998eb70
CM
6842 reserved = 1;
6843 }
56a76f82
NP
6844 if (ret) {
6845 if (ret == -ENOMEM)
6846 ret = VM_FAULT_OOM;
6847 else /* -ENOSPC, -EIO, etc */
6848 ret = VM_FAULT_SIGBUS;
9998eb70
CM
6849 if (reserved)
6850 goto out;
6851 goto out_noreserve;
56a76f82 6852 }
1832a6d5 6853
56a76f82 6854 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6855again:
9ebefb18 6856 lock_page(page);
9ebefb18 6857 size = i_size_read(inode);
e6dcd2dc
CM
6858 page_start = page_offset(page);
6859 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6860
9ebefb18 6861 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6862 (page_start >= size)) {
9ebefb18
CM
6863 /* page got truncated out from underneath us */
6864 goto out_unlock;
6865 }
e6dcd2dc
CM
6866 wait_on_page_writeback(page);
6867
d0082371 6868 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6869 set_page_extent_mapped(page);
6870
eb84ae03
CM
6871 /*
6872 * we can't set the delalloc bits if there are pending ordered
6873 * extents. Drop our locks and wait for them to finish
6874 */
e6dcd2dc
CM
6875 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6876 if (ordered) {
2ac55d41
JB
6877 unlock_extent_cached(io_tree, page_start, page_end,
6878 &cached_state, GFP_NOFS);
e6dcd2dc 6879 unlock_page(page);
eb84ae03 6880 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6881 btrfs_put_ordered_extent(ordered);
6882 goto again;
6883 }
6884
fbf19087
JB
6885 /*
6886 * XXX - page_mkwrite gets called every time the page is dirtied, even
6887 * if it was already dirty, so for space accounting reasons we need to
6888 * clear any delalloc bits for the range we are fixing to save. There
6889 * is probably a better way to do this, but for now keep consistent with
6890 * prepare_pages in the normal write path.
6891 */
2ac55d41 6892 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
6893 EXTENT_DIRTY | EXTENT_DELALLOC |
6894 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 6895 0, 0, &cached_state, GFP_NOFS);
fbf19087 6896
2ac55d41
JB
6897 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6898 &cached_state);
9ed74f2d 6899 if (ret) {
2ac55d41
JB
6900 unlock_extent_cached(io_tree, page_start, page_end,
6901 &cached_state, GFP_NOFS);
9ed74f2d
JB
6902 ret = VM_FAULT_SIGBUS;
6903 goto out_unlock;
6904 }
e6dcd2dc 6905 ret = 0;
9ebefb18
CM
6906
6907 /* page is wholly or partially inside EOF */
a52d9a80 6908 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6909 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6910 else
e6dcd2dc 6911 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6912
e6dcd2dc
CM
6913 if (zero_start != PAGE_CACHE_SIZE) {
6914 kaddr = kmap(page);
6915 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6916 flush_dcache_page(page);
6917 kunmap(page);
6918 }
247e743c 6919 ClearPageChecked(page);
e6dcd2dc 6920 set_page_dirty(page);
50a9b214 6921 SetPageUptodate(page);
5a3f23d5 6922
257c62e1
CM
6923 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6924 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 6925 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 6926
2ac55d41 6927 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6928
6929out_unlock:
b2b5ef5c
JK
6930 if (!ret) {
6931 sb_end_pagefault(inode->i_sb);
50a9b214 6932 return VM_FAULT_LOCKED;
b2b5ef5c 6933 }
9ebefb18 6934 unlock_page(page);
1832a6d5 6935out:
ec39e180 6936 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 6937out_noreserve:
b2b5ef5c 6938 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
6939 return ret;
6940}
6941
a41ad394 6942static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6943{
6944 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6945 struct btrfs_block_rsv *rsv;
39279cc3 6946 int ret;
3893e33b 6947 int err = 0;
39279cc3 6948 struct btrfs_trans_handle *trans;
dbe674a9 6949 u64 mask = root->sectorsize - 1;
07127184 6950 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 6951
2aaa6655 6952 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
5d5e103a 6953 if (ret)
a41ad394 6954 return ret;
8082510e 6955
4a096752 6956 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6957 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6958
fcb80c2a
JB
6959 /*
6960 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6961 * 3 things going on here
6962 *
6963 * 1) We need to reserve space for our orphan item and the space to
6964 * delete our orphan item. Lord knows we don't want to have a dangling
6965 * orphan item because we didn't reserve space to remove it.
6966 *
6967 * 2) We need to reserve space to update our inode.
6968 *
6969 * 3) We need to have something to cache all the space that is going to
6970 * be free'd up by the truncate operation, but also have some slack
6971 * space reserved in case it uses space during the truncate (thank you
6972 * very much snapshotting).
6973 *
6974 * And we need these to all be seperate. The fact is we can use alot of
6975 * space doing the truncate, and we have no earthly idea how much space
6976 * we will use, so we need the truncate reservation to be seperate so it
6977 * doesn't end up using space reserved for updating the inode or
6978 * removing the orphan item. We also need to be able to stop the
6979 * transaction and start a new one, which means we need to be able to
6980 * update the inode several times, and we have no idea of knowing how
6981 * many times that will be, so we can't just reserve 1 item for the
6982 * entirety of the opration, so that has to be done seperately as well.
6983 * Then there is the orphan item, which does indeed need to be held on
6984 * to for the whole operation, and we need nobody to touch this reserved
6985 * space except the orphan code.
6986 *
6987 * So that leaves us with
6988 *
6989 * 1) root->orphan_block_rsv - for the orphan deletion.
6990 * 2) rsv - for the truncate reservation, which we will steal from the
6991 * transaction reservation.
6992 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6993 * updating the inode.
6994 */
66d8f3dd 6995 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
6996 if (!rsv)
6997 return -ENOMEM;
4a338542 6998 rsv->size = min_size;
ca7e70f5 6999 rsv->failfast = 1;
f0cd846e 7000
907cbceb 7001 /*
07127184 7002 * 1 for the truncate slack space
907cbceb
JB
7003 * 1 for updating the inode.
7004 */
f3fe820c 7005 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
7006 if (IS_ERR(trans)) {
7007 err = PTR_ERR(trans);
7008 goto out;
7009 }
f0cd846e 7010
907cbceb
JB
7011 /* Migrate the slack space for the truncate to our reserve */
7012 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7013 min_size);
fcb80c2a 7014 BUG_ON(ret);
f0cd846e 7015
5a3f23d5
CM
7016 /*
7017 * setattr is responsible for setting the ordered_data_close flag,
7018 * but that is only tested during the last file release. That
7019 * could happen well after the next commit, leaving a great big
7020 * window where new writes may get lost if someone chooses to write
7021 * to this file after truncating to zero
7022 *
7023 * The inode doesn't have any dirty data here, and so if we commit
7024 * this is a noop. If someone immediately starts writing to the inode
7025 * it is very likely we'll catch some of their writes in this
7026 * transaction, and the commit will find this file on the ordered
7027 * data list with good things to send down.
7028 *
7029 * This is a best effort solution, there is still a window where
7030 * using truncate to replace the contents of the file will
7031 * end up with a zero length file after a crash.
7032 */
72ac3c0d
JB
7033 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7034 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
7035 btrfs_add_ordered_operation(trans, root, inode);
7036
5dc562c5
JB
7037 /*
7038 * So if we truncate and then write and fsync we normally would just
7039 * write the extents that changed, which is a problem if we need to
7040 * first truncate that entire inode. So set this flag so we write out
7041 * all of the extents in the inode to the sync log so we're completely
7042 * safe.
7043 */
7044 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 7045 trans->block_rsv = rsv;
907cbceb 7046
8082510e
YZ
7047 while (1) {
7048 ret = btrfs_truncate_inode_items(trans, root, inode,
7049 inode->i_size,
7050 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 7051 if (ret != -ENOSPC) {
3893e33b 7052 err = ret;
8082510e 7053 break;
3893e33b 7054 }
39279cc3 7055
fcb80c2a 7056 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 7057 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
7058 if (ret) {
7059 err = ret;
7060 break;
7061 }
ca7e70f5 7062
8082510e 7063 btrfs_end_transaction(trans, root);
b53d3f5d 7064 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
7065
7066 trans = btrfs_start_transaction(root, 2);
7067 if (IS_ERR(trans)) {
7068 ret = err = PTR_ERR(trans);
7069 trans = NULL;
7070 break;
7071 }
7072
7073 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7074 rsv, min_size);
7075 BUG_ON(ret); /* shouldn't happen */
7076 trans->block_rsv = rsv;
8082510e
YZ
7077 }
7078
7079 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 7080 trans->block_rsv = root->orphan_block_rsv;
8082510e 7081 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7082 if (ret)
7083 err = ret;
8082510e
YZ
7084 }
7085
917c16b2
CM
7086 if (trans) {
7087 trans->block_rsv = &root->fs_info->trans_block_rsv;
7088 ret = btrfs_update_inode(trans, root, inode);
7089 if (ret && !err)
7090 err = ret;
7b128766 7091
7ad85bb7 7092 ret = btrfs_end_transaction(trans, root);
b53d3f5d 7093 btrfs_btree_balance_dirty(root);
917c16b2 7094 }
fcb80c2a
JB
7095
7096out:
7097 btrfs_free_block_rsv(root, rsv);
7098
3893e33b
JB
7099 if (ret && !err)
7100 err = ret;
a41ad394 7101
3893e33b 7102 return err;
39279cc3
CM
7103}
7104
d352ac68
CM
7105/*
7106 * create a new subvolume directory/inode (helper for the ioctl).
7107 */
d2fb3437 7108int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 7109 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 7110{
39279cc3 7111 struct inode *inode;
76dda93c 7112 int err;
00e4e6b3 7113 u64 index = 0;
39279cc3 7114
12fc9d09
FA
7115 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7116 new_dirid, new_dirid,
7117 S_IFDIR | (~current_umask() & S_IRWXUGO),
7118 &index);
54aa1f4d 7119 if (IS_ERR(inode))
f46b5a66 7120 return PTR_ERR(inode);
39279cc3
CM
7121 inode->i_op = &btrfs_dir_inode_operations;
7122 inode->i_fop = &btrfs_dir_file_operations;
7123
bfe86848 7124 set_nlink(inode, 1);
dbe674a9 7125 btrfs_i_size_write(inode, 0);
3b96362c 7126
76dda93c 7127 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 7128
76dda93c 7129 iput(inode);
ce598979 7130 return err;
39279cc3
CM
7131}
7132
39279cc3
CM
7133struct inode *btrfs_alloc_inode(struct super_block *sb)
7134{
7135 struct btrfs_inode *ei;
2ead6ae7 7136 struct inode *inode;
39279cc3
CM
7137
7138 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7139 if (!ei)
7140 return NULL;
2ead6ae7
YZ
7141
7142 ei->root = NULL;
2ead6ae7 7143 ei->generation = 0;
15ee9bc7 7144 ei->last_trans = 0;
257c62e1 7145 ei->last_sub_trans = 0;
e02119d5 7146 ei->logged_trans = 0;
2ead6ae7 7147 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7148 ei->disk_i_size = 0;
7149 ei->flags = 0;
7709cde3 7150 ei->csum_bytes = 0;
2ead6ae7
YZ
7151 ei->index_cnt = (u64)-1;
7152 ei->last_unlink_trans = 0;
46d8bc34 7153 ei->last_log_commit = 0;
2ead6ae7 7154
9e0baf60
JB
7155 spin_lock_init(&ei->lock);
7156 ei->outstanding_extents = 0;
7157 ei->reserved_extents = 0;
2ead6ae7 7158
72ac3c0d 7159 ei->runtime_flags = 0;
261507a0 7160 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 7161
16cdcec7
MX
7162 ei->delayed_node = NULL;
7163
2ead6ae7 7164 inode = &ei->vfs_inode;
a8067e02 7165 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
7166 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7167 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
7168 ei->io_tree.track_uptodate = 1;
7169 ei->io_failure_tree.track_uptodate = 1;
b812ce28 7170 atomic_set(&ei->sync_writers, 0);
2ead6ae7 7171 mutex_init(&ei->log_mutex);
f248679e 7172 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 7173 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 7174 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 7175 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
7176 RB_CLEAR_NODE(&ei->rb_node);
7177
7178 return inode;
39279cc3
CM
7179}
7180
fa0d7e3d
NP
7181static void btrfs_i_callback(struct rcu_head *head)
7182{
7183 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
7184 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7185}
7186
39279cc3
CM
7187void btrfs_destroy_inode(struct inode *inode)
7188{
e6dcd2dc 7189 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
7190 struct btrfs_root *root = BTRFS_I(inode)->root;
7191
b3d9b7a3 7192 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 7193 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
7194 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7195 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
7196 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7197 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 7198
a6dbd429
JB
7199 /*
7200 * This can happen where we create an inode, but somebody else also
7201 * created the same inode and we need to destroy the one we already
7202 * created.
7203 */
7204 if (!root)
7205 goto free;
7206
5a3f23d5
CM
7207 /*
7208 * Make sure we're properly removed from the ordered operation
7209 * lists.
7210 */
7211 smp_mb();
7212 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7213 spin_lock(&root->fs_info->ordered_extent_lock);
7214 list_del_init(&BTRFS_I(inode)->ordered_operations);
7215 spin_unlock(&root->fs_info->ordered_extent_lock);
7216 }
7217
8a35d95f
JB
7218 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7219 &BTRFS_I(inode)->runtime_flags)) {
33345d01
LZ
7220 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7221 (unsigned long long)btrfs_ino(inode));
8a35d95f 7222 atomic_dec(&root->orphan_inodes);
7b128766 7223 }
7b128766 7224
d397712b 7225 while (1) {
e6dcd2dc
CM
7226 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7227 if (!ordered)
7228 break;
7229 else {
d397712b
CM
7230 printk(KERN_ERR "btrfs found ordered "
7231 "extent %llu %llu on inode cleanup\n",
7232 (unsigned long long)ordered->file_offset,
7233 (unsigned long long)ordered->len);
e6dcd2dc
CM
7234 btrfs_remove_ordered_extent(inode, ordered);
7235 btrfs_put_ordered_extent(ordered);
7236 btrfs_put_ordered_extent(ordered);
7237 }
7238 }
5d4f98a2 7239 inode_tree_del(inode);
5b21f2ed 7240 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 7241free:
16cdcec7 7242 btrfs_remove_delayed_node(inode);
fa0d7e3d 7243 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
7244}
7245
45321ac5 7246int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
7247{
7248 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 7249
0af3d00b 7250 if (btrfs_root_refs(&root->root_item) == 0 &&
83eea1f1 7251 !btrfs_is_free_space_inode(inode))
45321ac5 7252 return 1;
76dda93c 7253 else
45321ac5 7254 return generic_drop_inode(inode);
76dda93c
YZ
7255}
7256
0ee0fda0 7257static void init_once(void *foo)
39279cc3
CM
7258{
7259 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7260
7261 inode_init_once(&ei->vfs_inode);
7262}
7263
7264void btrfs_destroy_cachep(void)
7265{
8c0a8537
KS
7266 /*
7267 * Make sure all delayed rcu free inodes are flushed before we
7268 * destroy cache.
7269 */
7270 rcu_barrier();
39279cc3
CM
7271 if (btrfs_inode_cachep)
7272 kmem_cache_destroy(btrfs_inode_cachep);
7273 if (btrfs_trans_handle_cachep)
7274 kmem_cache_destroy(btrfs_trans_handle_cachep);
7275 if (btrfs_transaction_cachep)
7276 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
7277 if (btrfs_path_cachep)
7278 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
7279 if (btrfs_free_space_cachep)
7280 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
7281 if (btrfs_delalloc_work_cachep)
7282 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
7283}
7284
7285int btrfs_init_cachep(void)
7286{
837e1972 7287 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
7288 sizeof(struct btrfs_inode), 0,
7289 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
7290 if (!btrfs_inode_cachep)
7291 goto fail;
9601e3f6 7292
837e1972 7293 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
7294 sizeof(struct btrfs_trans_handle), 0,
7295 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7296 if (!btrfs_trans_handle_cachep)
7297 goto fail;
9601e3f6 7298
837e1972 7299 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
7300 sizeof(struct btrfs_transaction), 0,
7301 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7302 if (!btrfs_transaction_cachep)
7303 goto fail;
9601e3f6 7304
837e1972 7305 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
7306 sizeof(struct btrfs_path), 0,
7307 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7308 if (!btrfs_path_cachep)
7309 goto fail;
9601e3f6 7310
837e1972 7311 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
7312 sizeof(struct btrfs_free_space), 0,
7313 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7314 if (!btrfs_free_space_cachep)
7315 goto fail;
7316
8ccf6f19
MX
7317 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7318 sizeof(struct btrfs_delalloc_work), 0,
7319 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7320 NULL);
7321 if (!btrfs_delalloc_work_cachep)
7322 goto fail;
7323
39279cc3
CM
7324 return 0;
7325fail:
7326 btrfs_destroy_cachep();
7327 return -ENOMEM;
7328}
7329
7330static int btrfs_getattr(struct vfsmount *mnt,
7331 struct dentry *dentry, struct kstat *stat)
7332{
7333 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
7334 u32 blocksize = inode->i_sb->s_blocksize;
7335
39279cc3 7336 generic_fillattr(inode, stat);
0ee5dc67 7337 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 7338 stat->blksize = PAGE_CACHE_SIZE;
fadc0d8b
DS
7339 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7340 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
7341 return 0;
7342}
7343
75e7cb7f
LB
7344/*
7345 * If a file is moved, it will inherit the cow and compression flags of the new
7346 * directory.
7347 */
7348static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7349{
7350 struct btrfs_inode *b_dir = BTRFS_I(dir);
7351 struct btrfs_inode *b_inode = BTRFS_I(inode);
7352
7353 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7354 b_inode->flags |= BTRFS_INODE_NODATACOW;
7355 else
7356 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7357
bc178237 7358 if (b_dir->flags & BTRFS_INODE_COMPRESS) {
75e7cb7f 7359 b_inode->flags |= BTRFS_INODE_COMPRESS;
bc178237
LB
7360 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
7361 } else {
7362 b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
7363 BTRFS_INODE_NOCOMPRESS);
7364 }
75e7cb7f
LB
7365}
7366
d397712b
CM
7367static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7368 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
7369{
7370 struct btrfs_trans_handle *trans;
7371 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 7372 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
7373 struct inode *new_inode = new_dentry->d_inode;
7374 struct inode *old_inode = old_dentry->d_inode;
7375 struct timespec ctime = CURRENT_TIME;
00e4e6b3 7376 u64 index = 0;
4df27c4d 7377 u64 root_objectid;
39279cc3 7378 int ret;
33345d01 7379 u64 old_ino = btrfs_ino(old_inode);
39279cc3 7380
33345d01 7381 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
7382 return -EPERM;
7383
4df27c4d 7384 /* we only allow rename subvolume link between subvolumes */
33345d01 7385 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
7386 return -EXDEV;
7387
33345d01
LZ
7388 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7389 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 7390 return -ENOTEMPTY;
5f39d397 7391
4df27c4d
YZ
7392 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7393 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7394 return -ENOTEMPTY;
9c52057c
CM
7395
7396
7397 /* check for collisions, even if the name isn't there */
7398 ret = btrfs_check_dir_item_collision(root, new_dir->i_ino,
7399 new_dentry->d_name.name,
7400 new_dentry->d_name.len);
7401
7402 if (ret) {
7403 if (ret == -EEXIST) {
7404 /* we shouldn't get
7405 * eexist without a new_inode */
7406 if (!new_inode) {
7407 WARN_ON(1);
7408 return ret;
7409 }
7410 } else {
7411 /* maybe -EOVERFLOW */
7412 return ret;
7413 }
7414 }
7415 ret = 0;
7416
5a3f23d5
CM
7417 /*
7418 * we're using rename to replace one file with another.
7419 * and the replacement file is large. Start IO on it now so
7420 * we don't add too much work to the end of the transaction
7421 */
4baf8c92 7422 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
7423 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7424 filemap_flush(old_inode->i_mapping);
7425
76dda93c 7426 /* close the racy window with snapshot create/destroy ioctl */
33345d01 7427 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7428 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
7429 /*
7430 * We want to reserve the absolute worst case amount of items. So if
7431 * both inodes are subvols and we need to unlink them then that would
7432 * require 4 item modifications, but if they are both normal inodes it
7433 * would require 5 item modifications, so we'll assume their normal
7434 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7435 * should cover the worst case number of items we'll modify.
7436 */
7437 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
7438 if (IS_ERR(trans)) {
7439 ret = PTR_ERR(trans);
7440 goto out_notrans;
7441 }
76dda93c 7442
4df27c4d
YZ
7443 if (dest != root)
7444 btrfs_record_root_in_trans(trans, dest);
5f39d397 7445
a5719521
YZ
7446 ret = btrfs_set_inode_index(new_dir, &index);
7447 if (ret)
7448 goto out_fail;
5a3f23d5 7449
33345d01 7450 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7451 /* force full log commit if subvolume involved. */
7452 root->fs_info->last_trans_log_full_commit = trans->transid;
7453 } else {
a5719521
YZ
7454 ret = btrfs_insert_inode_ref(trans, dest,
7455 new_dentry->d_name.name,
7456 new_dentry->d_name.len,
33345d01
LZ
7457 old_ino,
7458 btrfs_ino(new_dir), index);
a5719521
YZ
7459 if (ret)
7460 goto out_fail;
4df27c4d
YZ
7461 /*
7462 * this is an ugly little race, but the rename is required
7463 * to make sure that if we crash, the inode is either at the
7464 * old name or the new one. pinning the log transaction lets
7465 * us make sure we don't allow a log commit to come in after
7466 * we unlink the name but before we add the new name back in.
7467 */
7468 btrfs_pin_log_trans(root);
7469 }
5a3f23d5
CM
7470 /*
7471 * make sure the inode gets flushed if it is replacing
7472 * something.
7473 */
33345d01 7474 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 7475 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 7476
0c4d2d95
JB
7477 inode_inc_iversion(old_dir);
7478 inode_inc_iversion(new_dir);
7479 inode_inc_iversion(old_inode);
39279cc3
CM
7480 old_dir->i_ctime = old_dir->i_mtime = ctime;
7481 new_dir->i_ctime = new_dir->i_mtime = ctime;
7482 old_inode->i_ctime = ctime;
5f39d397 7483
12fcfd22
CM
7484 if (old_dentry->d_parent != new_dentry->d_parent)
7485 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7486
33345d01 7487 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7488 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7489 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7490 old_dentry->d_name.name,
7491 old_dentry->d_name.len);
7492 } else {
92986796
AV
7493 ret = __btrfs_unlink_inode(trans, root, old_dir,
7494 old_dentry->d_inode,
7495 old_dentry->d_name.name,
7496 old_dentry->d_name.len);
7497 if (!ret)
7498 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 7499 }
79787eaa
JM
7500 if (ret) {
7501 btrfs_abort_transaction(trans, root, ret);
7502 goto out_fail;
7503 }
39279cc3
CM
7504
7505 if (new_inode) {
0c4d2d95 7506 inode_inc_iversion(new_inode);
39279cc3 7507 new_inode->i_ctime = CURRENT_TIME;
33345d01 7508 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7509 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7510 root_objectid = BTRFS_I(new_inode)->location.objectid;
7511 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7512 root_objectid,
7513 new_dentry->d_name.name,
7514 new_dentry->d_name.len);
7515 BUG_ON(new_inode->i_nlink == 0);
7516 } else {
7517 ret = btrfs_unlink_inode(trans, dest, new_dir,
7518 new_dentry->d_inode,
7519 new_dentry->d_name.name,
7520 new_dentry->d_name.len);
7521 }
79787eaa 7522 if (!ret && new_inode->i_nlink == 0) {
e02119d5 7523 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7524 BUG_ON(ret);
7b128766 7525 }
79787eaa
JM
7526 if (ret) {
7527 btrfs_abort_transaction(trans, root, ret);
7528 goto out_fail;
7529 }
39279cc3 7530 }
aec7477b 7531
75e7cb7f
LB
7532 fixup_inode_flags(new_dir, old_inode);
7533
4df27c4d
YZ
7534 ret = btrfs_add_link(trans, new_dir, old_inode,
7535 new_dentry->d_name.name,
a5719521 7536 new_dentry->d_name.len, 0, index);
79787eaa
JM
7537 if (ret) {
7538 btrfs_abort_transaction(trans, root, ret);
7539 goto out_fail;
7540 }
39279cc3 7541
33345d01 7542 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 7543 struct dentry *parent = new_dentry->d_parent;
6a912213 7544 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
7545 btrfs_end_log_trans(root);
7546 }
39279cc3 7547out_fail:
7ad85bb7 7548 btrfs_end_transaction(trans, root);
b44c59a8 7549out_notrans:
33345d01 7550 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7551 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7552
39279cc3
CM
7553 return ret;
7554}
7555
8ccf6f19
MX
7556static void btrfs_run_delalloc_work(struct btrfs_work *work)
7557{
7558 struct btrfs_delalloc_work *delalloc_work;
7559
7560 delalloc_work = container_of(work, struct btrfs_delalloc_work,
7561 work);
7562 if (delalloc_work->wait)
7563 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
7564 else
7565 filemap_flush(delalloc_work->inode->i_mapping);
7566
7567 if (delalloc_work->delay_iput)
7568 btrfs_add_delayed_iput(delalloc_work->inode);
7569 else
7570 iput(delalloc_work->inode);
7571 complete(&delalloc_work->completion);
7572}
7573
7574struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
7575 int wait, int delay_iput)
7576{
7577 struct btrfs_delalloc_work *work;
7578
7579 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
7580 if (!work)
7581 return NULL;
7582
7583 init_completion(&work->completion);
7584 INIT_LIST_HEAD(&work->list);
7585 work->inode = inode;
7586 work->wait = wait;
7587 work->delay_iput = delay_iput;
7588 work->work.func = btrfs_run_delalloc_work;
7589
7590 return work;
7591}
7592
7593void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
7594{
7595 wait_for_completion(&work->completion);
7596 kmem_cache_free(btrfs_delalloc_work_cachep, work);
7597}
7598
d352ac68
CM
7599/*
7600 * some fairly slow code that needs optimization. This walks the list
7601 * of all the inodes with pending delalloc and forces them to disk.
7602 */
24bbcf04 7603int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819 7604{
ea8c2819 7605 struct btrfs_inode *binode;
5b21f2ed 7606 struct inode *inode;
8ccf6f19
MX
7607 struct btrfs_delalloc_work *work, *next;
7608 struct list_head works;
1eafa6c7 7609 struct list_head splice;
8ccf6f19 7610 int ret = 0;
ea8c2819 7611
c146afad
YZ
7612 if (root->fs_info->sb->s_flags & MS_RDONLY)
7613 return -EROFS;
7614
8ccf6f19 7615 INIT_LIST_HEAD(&works);
1eafa6c7
MX
7616 INIT_LIST_HEAD(&splice);
7617again:
75eff68e 7618 spin_lock(&root->fs_info->delalloc_lock);
1eafa6c7
MX
7619 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
7620 while (!list_empty(&splice)) {
7621 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 7622 delalloc_inodes);
1eafa6c7
MX
7623
7624 list_del_init(&binode->delalloc_inodes);
7625
5b21f2ed
ZY
7626 inode = igrab(&binode->vfs_inode);
7627 if (!inode)
1eafa6c7
MX
7628 continue;
7629
7630 list_add_tail(&binode->delalloc_inodes,
7631 &root->fs_info->delalloc_inodes);
75eff68e 7632 spin_unlock(&root->fs_info->delalloc_lock);
1eafa6c7
MX
7633
7634 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
7635 if (unlikely(!work)) {
7636 ret = -ENOMEM;
7637 goto out;
5b21f2ed 7638 }
1eafa6c7
MX
7639 list_add_tail(&work->list, &works);
7640 btrfs_queue_worker(&root->fs_info->flush_workers,
7641 &work->work);
7642
5b21f2ed 7643 cond_resched();
75eff68e 7644 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7645 }
75eff68e 7646 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d 7647
1eafa6c7
MX
7648 list_for_each_entry_safe(work, next, &works, list) {
7649 list_del_init(&work->list);
7650 btrfs_wait_and_free_delalloc_work(work);
7651 }
7652
7653 spin_lock(&root->fs_info->delalloc_lock);
7654 if (!list_empty(&root->fs_info->delalloc_inodes)) {
7655 spin_unlock(&root->fs_info->delalloc_lock);
7656 goto again;
7657 }
7658 spin_unlock(&root->fs_info->delalloc_lock);
7659
8c8bee1d
CM
7660 /* the filemap_flush will queue IO into the worker threads, but
7661 * we have to make sure the IO is actually started and that
7662 * ordered extents get created before we return
7663 */
7664 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7665 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7666 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7667 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7668 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7669 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7670 }
7671 atomic_dec(&root->fs_info->async_submit_draining);
1eafa6c7 7672 return 0;
8ccf6f19
MX
7673out:
7674 list_for_each_entry_safe(work, next, &works, list) {
7675 list_del_init(&work->list);
7676 btrfs_wait_and_free_delalloc_work(work);
7677 }
1eafa6c7
MX
7678
7679 if (!list_empty_careful(&splice)) {
7680 spin_lock(&root->fs_info->delalloc_lock);
7681 list_splice_tail(&splice, &root->fs_info->delalloc_inodes);
7682 spin_unlock(&root->fs_info->delalloc_lock);
7683 }
8ccf6f19 7684 return ret;
ea8c2819
CM
7685}
7686
39279cc3
CM
7687static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7688 const char *symname)
7689{
7690 struct btrfs_trans_handle *trans;
7691 struct btrfs_root *root = BTRFS_I(dir)->root;
7692 struct btrfs_path *path;
7693 struct btrfs_key key;
1832a6d5 7694 struct inode *inode = NULL;
39279cc3
CM
7695 int err;
7696 int drop_inode = 0;
7697 u64 objectid;
00e4e6b3 7698 u64 index = 0 ;
39279cc3
CM
7699 int name_len;
7700 int datasize;
5f39d397 7701 unsigned long ptr;
39279cc3 7702 struct btrfs_file_extent_item *ei;
5f39d397 7703 struct extent_buffer *leaf;
39279cc3
CM
7704
7705 name_len = strlen(symname) + 1;
7706 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7707 return -ENAMETOOLONG;
1832a6d5 7708
9ed74f2d
JB
7709 /*
7710 * 2 items for inode item and ref
7711 * 2 items for dir items
7712 * 1 item for xattr if selinux is on
7713 */
a22285a6
YZ
7714 trans = btrfs_start_transaction(root, 5);
7715 if (IS_ERR(trans))
7716 return PTR_ERR(trans);
1832a6d5 7717
581bb050
LZ
7718 err = btrfs_find_free_ino(root, &objectid);
7719 if (err)
7720 goto out_unlock;
7721
aec7477b 7722 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7723 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7724 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7725 if (IS_ERR(inode)) {
7726 err = PTR_ERR(inode);
39279cc3 7727 goto out_unlock;
7cf96da3 7728 }
39279cc3 7729
2a7dba39 7730 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7731 if (err) {
7732 drop_inode = 1;
7733 goto out_unlock;
7734 }
7735
ad19db71
CS
7736 /*
7737 * If the active LSM wants to access the inode during
7738 * d_instantiate it needs these. Smack checks to see
7739 * if the filesystem supports xattrs by looking at the
7740 * ops vector.
7741 */
7742 inode->i_fop = &btrfs_file_operations;
7743 inode->i_op = &btrfs_file_inode_operations;
7744
a1b075d2 7745 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7746 if (err)
7747 drop_inode = 1;
7748 else {
7749 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7750 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 7751 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7752 }
39279cc3
CM
7753 if (drop_inode)
7754 goto out_unlock;
7755
7756 path = btrfs_alloc_path();
d8926bb3
MF
7757 if (!path) {
7758 err = -ENOMEM;
7759 drop_inode = 1;
7760 goto out_unlock;
7761 }
33345d01 7762 key.objectid = btrfs_ino(inode);
39279cc3 7763 key.offset = 0;
39279cc3
CM
7764 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7765 datasize = btrfs_file_extent_calc_inline_size(name_len);
7766 err = btrfs_insert_empty_item(trans, root, path, &key,
7767 datasize);
54aa1f4d
CM
7768 if (err) {
7769 drop_inode = 1;
b0839166 7770 btrfs_free_path(path);
54aa1f4d
CM
7771 goto out_unlock;
7772 }
5f39d397
CM
7773 leaf = path->nodes[0];
7774 ei = btrfs_item_ptr(leaf, path->slots[0],
7775 struct btrfs_file_extent_item);
7776 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7777 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7778 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7779 btrfs_set_file_extent_encryption(leaf, ei, 0);
7780 btrfs_set_file_extent_compression(leaf, ei, 0);
7781 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7782 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7783
39279cc3 7784 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7785 write_extent_buffer(leaf, symname, ptr, name_len);
7786 btrfs_mark_buffer_dirty(leaf);
39279cc3 7787 btrfs_free_path(path);
5f39d397 7788
39279cc3
CM
7789 inode->i_op = &btrfs_symlink_inode_operations;
7790 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7791 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7792 inode_set_bytes(inode, name_len);
dbe674a9 7793 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7794 err = btrfs_update_inode(trans, root, inode);
7795 if (err)
7796 drop_inode = 1;
39279cc3
CM
7797
7798out_unlock:
08c422c2
AV
7799 if (!err)
7800 d_instantiate(dentry, inode);
7ad85bb7 7801 btrfs_end_transaction(trans, root);
39279cc3
CM
7802 if (drop_inode) {
7803 inode_dec_link_count(inode);
7804 iput(inode);
7805 }
b53d3f5d 7806 btrfs_btree_balance_dirty(root);
39279cc3
CM
7807 return err;
7808}
16432985 7809
0af3d00b
JB
7810static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7811 u64 start, u64 num_bytes, u64 min_size,
7812 loff_t actual_len, u64 *alloc_hint,
7813 struct btrfs_trans_handle *trans)
d899e052 7814{
5dc562c5
JB
7815 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7816 struct extent_map *em;
d899e052
YZ
7817 struct btrfs_root *root = BTRFS_I(inode)->root;
7818 struct btrfs_key ins;
d899e052 7819 u64 cur_offset = start;
55a61d1d 7820 u64 i_size;
d899e052 7821 int ret = 0;
0af3d00b 7822 bool own_trans = true;
d899e052 7823
0af3d00b
JB
7824 if (trans)
7825 own_trans = false;
d899e052 7826 while (num_bytes > 0) {
0af3d00b
JB
7827 if (own_trans) {
7828 trans = btrfs_start_transaction(root, 3);
7829 if (IS_ERR(trans)) {
7830 ret = PTR_ERR(trans);
7831 break;
7832 }
5a303d5d
YZ
7833 }
7834
efa56464 7835 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
81c9ad23 7836 0, *alloc_hint, &ins, 1);
5a303d5d 7837 if (ret) {
0af3d00b
JB
7838 if (own_trans)
7839 btrfs_end_transaction(trans, root);
a22285a6 7840 break;
d899e052 7841 }
5a303d5d 7842
d899e052
YZ
7843 ret = insert_reserved_file_extent(trans, inode,
7844 cur_offset, ins.objectid,
7845 ins.offset, ins.offset,
920bbbfb 7846 ins.offset, 0, 0, 0,
d899e052 7847 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa
JM
7848 if (ret) {
7849 btrfs_abort_transaction(trans, root, ret);
7850 if (own_trans)
7851 btrfs_end_transaction(trans, root);
7852 break;
7853 }
a1ed835e
CM
7854 btrfs_drop_extent_cache(inode, cur_offset,
7855 cur_offset + ins.offset -1, 0);
5a303d5d 7856
5dc562c5
JB
7857 em = alloc_extent_map();
7858 if (!em) {
7859 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
7860 &BTRFS_I(inode)->runtime_flags);
7861 goto next;
7862 }
7863
7864 em->start = cur_offset;
7865 em->orig_start = cur_offset;
7866 em->len = ins.offset;
7867 em->block_start = ins.objectid;
7868 em->block_len = ins.offset;
b4939680 7869 em->orig_block_len = ins.offset;
5dc562c5
JB
7870 em->bdev = root->fs_info->fs_devices->latest_bdev;
7871 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7872 em->generation = trans->transid;
7873
7874 while (1) {
7875 write_lock(&em_tree->lock);
7876 ret = add_extent_mapping(em_tree, em);
7877 if (!ret)
7878 list_move(&em->list,
7879 &em_tree->modified_extents);
7880 write_unlock(&em_tree->lock);
7881 if (ret != -EEXIST)
7882 break;
7883 btrfs_drop_extent_cache(inode, cur_offset,
7884 cur_offset + ins.offset - 1,
7885 0);
7886 }
7887 free_extent_map(em);
7888next:
d899e052
YZ
7889 num_bytes -= ins.offset;
7890 cur_offset += ins.offset;
efa56464 7891 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7892
0c4d2d95 7893 inode_inc_iversion(inode);
d899e052 7894 inode->i_ctime = CURRENT_TIME;
6cbff00f 7895 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7896 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7897 (actual_len > inode->i_size) &&
7898 (cur_offset > inode->i_size)) {
d1ea6a61 7899 if (cur_offset > actual_len)
55a61d1d 7900 i_size = actual_len;
d1ea6a61 7901 else
55a61d1d
JB
7902 i_size = cur_offset;
7903 i_size_write(inode, i_size);
7904 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7905 }
7906
d899e052 7907 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
7908
7909 if (ret) {
7910 btrfs_abort_transaction(trans, root, ret);
7911 if (own_trans)
7912 btrfs_end_transaction(trans, root);
7913 break;
7914 }
d899e052 7915
0af3d00b
JB
7916 if (own_trans)
7917 btrfs_end_transaction(trans, root);
5a303d5d 7918 }
d899e052
YZ
7919 return ret;
7920}
7921
0af3d00b
JB
7922int btrfs_prealloc_file_range(struct inode *inode, int mode,
7923 u64 start, u64 num_bytes, u64 min_size,
7924 loff_t actual_len, u64 *alloc_hint)
7925{
7926 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7927 min_size, actual_len, alloc_hint,
7928 NULL);
7929}
7930
7931int btrfs_prealloc_file_range_trans(struct inode *inode,
7932 struct btrfs_trans_handle *trans, int mode,
7933 u64 start, u64 num_bytes, u64 min_size,
7934 loff_t actual_len, u64 *alloc_hint)
7935{
7936 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7937 min_size, actual_len, alloc_hint, trans);
7938}
7939
e6dcd2dc
CM
7940static int btrfs_set_page_dirty(struct page *page)
7941{
e6dcd2dc
CM
7942 return __set_page_dirty_nobuffers(page);
7943}
7944
10556cb2 7945static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 7946{
b83cc969 7947 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 7948 umode_t mode = inode->i_mode;
b83cc969 7949
cb6db4e5
JM
7950 if (mask & MAY_WRITE &&
7951 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7952 if (btrfs_root_readonly(root))
7953 return -EROFS;
7954 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7955 return -EACCES;
7956 }
2830ba7f 7957 return generic_permission(inode, mask);
fdebe2bd 7958}
39279cc3 7959
6e1d5dcc 7960static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7961 .getattr = btrfs_getattr,
39279cc3
CM
7962 .lookup = btrfs_lookup,
7963 .create = btrfs_create,
7964 .unlink = btrfs_unlink,
7965 .link = btrfs_link,
7966 .mkdir = btrfs_mkdir,
7967 .rmdir = btrfs_rmdir,
7968 .rename = btrfs_rename,
7969 .symlink = btrfs_symlink,
7970 .setattr = btrfs_setattr,
618e21d5 7971 .mknod = btrfs_mknod,
95819c05
CH
7972 .setxattr = btrfs_setxattr,
7973 .getxattr = btrfs_getxattr,
5103e947 7974 .listxattr = btrfs_listxattr,
95819c05 7975 .removexattr = btrfs_removexattr,
fdebe2bd 7976 .permission = btrfs_permission,
4e34e719 7977 .get_acl = btrfs_get_acl,
39279cc3 7978};
6e1d5dcc 7979static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7980 .lookup = btrfs_lookup,
fdebe2bd 7981 .permission = btrfs_permission,
4e34e719 7982 .get_acl = btrfs_get_acl,
39279cc3 7983};
76dda93c 7984
828c0950 7985static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7986 .llseek = generic_file_llseek,
7987 .read = generic_read_dir,
cbdf5a24 7988 .readdir = btrfs_real_readdir,
34287aa3 7989 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7990#ifdef CONFIG_COMPAT
34287aa3 7991 .compat_ioctl = btrfs_ioctl,
39279cc3 7992#endif
6bf13c0c 7993 .release = btrfs_release_file,
e02119d5 7994 .fsync = btrfs_sync_file,
39279cc3
CM
7995};
7996
d1310b2e 7997static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7998 .fill_delalloc = run_delalloc_range,
065631f6 7999 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 8000 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 8001 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 8002 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 8003 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
8004 .set_bit_hook = btrfs_set_bit_hook,
8005 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
8006 .merge_extent_hook = btrfs_merge_extent_hook,
8007 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
8008};
8009
35054394
CM
8010/*
8011 * btrfs doesn't support the bmap operation because swapfiles
8012 * use bmap to make a mapping of extents in the file. They assume
8013 * these extents won't change over the life of the file and they
8014 * use the bmap result to do IO directly to the drive.
8015 *
8016 * the btrfs bmap call would return logical addresses that aren't
8017 * suitable for IO and they also will change frequently as COW
8018 * operations happen. So, swapfile + btrfs == corruption.
8019 *
8020 * For now we're avoiding this by dropping bmap.
8021 */
7f09410b 8022static const struct address_space_operations btrfs_aops = {
39279cc3
CM
8023 .readpage = btrfs_readpage,
8024 .writepage = btrfs_writepage,
b293f02e 8025 .writepages = btrfs_writepages,
3ab2fb5a 8026 .readpages = btrfs_readpages,
16432985 8027 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
8028 .invalidatepage = btrfs_invalidatepage,
8029 .releasepage = btrfs_releasepage,
e6dcd2dc 8030 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 8031 .error_remove_page = generic_error_remove_page,
39279cc3
CM
8032};
8033
7f09410b 8034static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
8035 .readpage = btrfs_readpage,
8036 .writepage = btrfs_writepage,
2bf5a725
CM
8037 .invalidatepage = btrfs_invalidatepage,
8038 .releasepage = btrfs_releasepage,
39279cc3
CM
8039};
8040
6e1d5dcc 8041static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
8042 .getattr = btrfs_getattr,
8043 .setattr = btrfs_setattr,
95819c05
CH
8044 .setxattr = btrfs_setxattr,
8045 .getxattr = btrfs_getxattr,
5103e947 8046 .listxattr = btrfs_listxattr,
95819c05 8047 .removexattr = btrfs_removexattr,
fdebe2bd 8048 .permission = btrfs_permission,
1506fcc8 8049 .fiemap = btrfs_fiemap,
4e34e719 8050 .get_acl = btrfs_get_acl,
e41f941a 8051 .update_time = btrfs_update_time,
39279cc3 8052};
6e1d5dcc 8053static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
8054 .getattr = btrfs_getattr,
8055 .setattr = btrfs_setattr,
fdebe2bd 8056 .permission = btrfs_permission,
95819c05
CH
8057 .setxattr = btrfs_setxattr,
8058 .getxattr = btrfs_getxattr,
33268eaf 8059 .listxattr = btrfs_listxattr,
95819c05 8060 .removexattr = btrfs_removexattr,
4e34e719 8061 .get_acl = btrfs_get_acl,
e41f941a 8062 .update_time = btrfs_update_time,
618e21d5 8063};
6e1d5dcc 8064static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
8065 .readlink = generic_readlink,
8066 .follow_link = page_follow_link_light,
8067 .put_link = page_put_link,
f209561a 8068 .getattr = btrfs_getattr,
22c44fe6 8069 .setattr = btrfs_setattr,
fdebe2bd 8070 .permission = btrfs_permission,
0279b4cd
JO
8071 .setxattr = btrfs_setxattr,
8072 .getxattr = btrfs_getxattr,
8073 .listxattr = btrfs_listxattr,
8074 .removexattr = btrfs_removexattr,
4e34e719 8075 .get_acl = btrfs_get_acl,
e41f941a 8076 .update_time = btrfs_update_time,
39279cc3 8077};
76dda93c 8078
82d339d9 8079const struct dentry_operations btrfs_dentry_operations = {
76dda93c 8080 .d_delete = btrfs_dentry_delete,
b4aff1f8 8081 .d_release = btrfs_dentry_release,
76dda93c 8082};