]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - fs/btrfs/inode.c
Btrfs: Make fallocate(2) more ENOSPC friendly
[mirror_ubuntu-eoan-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
4b4e25f2 39#include "compat.h"
39279cc3
CM
40#include "ctree.h"
41#include "disk-io.h"
42#include "transaction.h"
43#include "btrfs_inode.h"
44#include "ioctl.h"
45#include "print-tree.h"
0b86a832 46#include "volumes.h"
e6dcd2dc 47#include "ordered-data.h"
95819c05 48#include "xattr.h"
e02119d5 49#include "tree-log.h"
c8b97818 50#include "compression.h"
b4ce94de 51#include "locking.h"
39279cc3
CM
52
53struct btrfs_iget_args {
54 u64 ino;
55 struct btrfs_root *root;
56};
57
6e1d5dcc
AD
58static const struct inode_operations btrfs_dir_inode_operations;
59static const struct inode_operations btrfs_symlink_inode_operations;
60static const struct inode_operations btrfs_dir_ro_inode_operations;
61static const struct inode_operations btrfs_special_inode_operations;
62static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
63static const struct address_space_operations btrfs_aops;
64static const struct address_space_operations btrfs_symlink_aops;
828c0950 65static const struct file_operations btrfs_dir_file_operations;
d1310b2e 66static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
67
68static struct kmem_cache *btrfs_inode_cachep;
69struct kmem_cache *btrfs_trans_handle_cachep;
70struct kmem_cache *btrfs_transaction_cachep;
39279cc3
CM
71struct kmem_cache *btrfs_path_cachep;
72
73#define S_SHIFT 12
74static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
82};
83
7b128766 84static void btrfs_truncate(struct inode *inode);
c8b97818 85static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
86static noinline int cow_file_range(struct inode *inode,
87 struct page *locked_page,
88 u64 start, u64 end, int *page_started,
89 unsigned long *nr_written, int unlock);
7b128766 90
0279b4cd
JO
91static int btrfs_init_inode_security(struct inode *inode, struct inode *dir)
92{
93 int err;
94
95 err = btrfs_init_acl(inode, dir);
96 if (!err)
97 err = btrfs_xattr_security_init(inode, dir);
98 return err;
99}
100
c8b97818
CM
101/*
102 * this does all the hard work for inserting an inline extent into
103 * the btree. The caller should have done a btrfs_drop_extents so that
104 * no overlapping inline items exist in the btree
105 */
d397712b 106static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
107 struct btrfs_root *root, struct inode *inode,
108 u64 start, size_t size, size_t compressed_size,
109 struct page **compressed_pages)
110{
111 struct btrfs_key key;
112 struct btrfs_path *path;
113 struct extent_buffer *leaf;
114 struct page *page = NULL;
115 char *kaddr;
116 unsigned long ptr;
117 struct btrfs_file_extent_item *ei;
118 int err = 0;
119 int ret;
120 size_t cur_size = size;
121 size_t datasize;
122 unsigned long offset;
123 int use_compress = 0;
124
125 if (compressed_size && compressed_pages) {
126 use_compress = 1;
127 cur_size = compressed_size;
128 }
129
d397712b
CM
130 path = btrfs_alloc_path();
131 if (!path)
c8b97818
CM
132 return -ENOMEM;
133
b9473439 134 path->leave_spinning = 1;
c8b97818
CM
135 btrfs_set_trans_block_group(trans, inode);
136
137 key.objectid = inode->i_ino;
138 key.offset = start;
139 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
140 datasize = btrfs_file_extent_calc_inline_size(cur_size);
141
142 inode_add_bytes(inode, size);
143 ret = btrfs_insert_empty_item(trans, root, path, &key,
144 datasize);
145 BUG_ON(ret);
146 if (ret) {
147 err = ret;
c8b97818
CM
148 goto fail;
149 }
150 leaf = path->nodes[0];
151 ei = btrfs_item_ptr(leaf, path->slots[0],
152 struct btrfs_file_extent_item);
153 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
154 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
155 btrfs_set_file_extent_encryption(leaf, ei, 0);
156 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
157 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
158 ptr = btrfs_file_extent_inline_start(ei);
159
160 if (use_compress) {
161 struct page *cpage;
162 int i = 0;
d397712b 163 while (compressed_size > 0) {
c8b97818 164 cpage = compressed_pages[i];
5b050f04 165 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
166 PAGE_CACHE_SIZE);
167
b9473439 168 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 169 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 170 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
171
172 i++;
173 ptr += cur_size;
174 compressed_size -= cur_size;
175 }
176 btrfs_set_file_extent_compression(leaf, ei,
177 BTRFS_COMPRESS_ZLIB);
178 } else {
179 page = find_get_page(inode->i_mapping,
180 start >> PAGE_CACHE_SHIFT);
181 btrfs_set_file_extent_compression(leaf, ei, 0);
182 kaddr = kmap_atomic(page, KM_USER0);
183 offset = start & (PAGE_CACHE_SIZE - 1);
184 write_extent_buffer(leaf, kaddr + offset, ptr, size);
185 kunmap_atomic(kaddr, KM_USER0);
186 page_cache_release(page);
187 }
188 btrfs_mark_buffer_dirty(leaf);
189 btrfs_free_path(path);
190
c2167754
YZ
191 /*
192 * we're an inline extent, so nobody can
193 * extend the file past i_size without locking
194 * a page we already have locked.
195 *
196 * We must do any isize and inode updates
197 * before we unlock the pages. Otherwise we
198 * could end up racing with unlink.
199 */
c8b97818
CM
200 BTRFS_I(inode)->disk_i_size = inode->i_size;
201 btrfs_update_inode(trans, root, inode);
c2167754 202
c8b97818
CM
203 return 0;
204fail:
205 btrfs_free_path(path);
206 return err;
207}
208
209
210/*
211 * conditionally insert an inline extent into the file. This
212 * does the checks required to make sure the data is small enough
213 * to fit as an inline extent.
214 */
7f366cfe 215static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
216 struct btrfs_root *root,
217 struct inode *inode, u64 start, u64 end,
218 size_t compressed_size,
219 struct page **compressed_pages)
220{
221 u64 isize = i_size_read(inode);
222 u64 actual_end = min(end + 1, isize);
223 u64 inline_len = actual_end - start;
224 u64 aligned_end = (end + root->sectorsize - 1) &
225 ~((u64)root->sectorsize - 1);
226 u64 hint_byte;
227 u64 data_len = inline_len;
228 int ret;
229
230 if (compressed_size)
231 data_len = compressed_size;
232
233 if (start > 0 ||
70b99e69 234 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
235 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
236 (!compressed_size &&
237 (actual_end & (root->sectorsize - 1)) == 0) ||
238 end + 1 < isize ||
239 data_len > root->fs_info->max_inline) {
240 return 1;
241 }
242
920bbbfb 243 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 244 &hint_byte, 1);
c8b97818
CM
245 BUG_ON(ret);
246
247 if (isize > actual_end)
248 inline_len = min_t(u64, isize, actual_end);
249 ret = insert_inline_extent(trans, root, inode, start,
250 inline_len, compressed_size,
251 compressed_pages);
252 BUG_ON(ret);
a1ed835e 253 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
254 return 0;
255}
256
771ed689
CM
257struct async_extent {
258 u64 start;
259 u64 ram_size;
260 u64 compressed_size;
261 struct page **pages;
262 unsigned long nr_pages;
263 struct list_head list;
264};
265
266struct async_cow {
267 struct inode *inode;
268 struct btrfs_root *root;
269 struct page *locked_page;
270 u64 start;
271 u64 end;
272 struct list_head extents;
273 struct btrfs_work work;
274};
275
276static noinline int add_async_extent(struct async_cow *cow,
277 u64 start, u64 ram_size,
278 u64 compressed_size,
279 struct page **pages,
280 unsigned long nr_pages)
281{
282 struct async_extent *async_extent;
283
284 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
285 async_extent->start = start;
286 async_extent->ram_size = ram_size;
287 async_extent->compressed_size = compressed_size;
288 async_extent->pages = pages;
289 async_extent->nr_pages = nr_pages;
290 list_add_tail(&async_extent->list, &cow->extents);
291 return 0;
292}
293
d352ac68 294/*
771ed689
CM
295 * we create compressed extents in two phases. The first
296 * phase compresses a range of pages that have already been
297 * locked (both pages and state bits are locked).
c8b97818 298 *
771ed689
CM
299 * This is done inside an ordered work queue, and the compression
300 * is spread across many cpus. The actual IO submission is step
301 * two, and the ordered work queue takes care of making sure that
302 * happens in the same order things were put onto the queue by
303 * writepages and friends.
c8b97818 304 *
771ed689
CM
305 * If this code finds it can't get good compression, it puts an
306 * entry onto the work queue to write the uncompressed bytes. This
307 * makes sure that both compressed inodes and uncompressed inodes
308 * are written in the same order that pdflush sent them down.
d352ac68 309 */
771ed689
CM
310static noinline int compress_file_range(struct inode *inode,
311 struct page *locked_page,
312 u64 start, u64 end,
313 struct async_cow *async_cow,
314 int *num_added)
b888db2b
CM
315{
316 struct btrfs_root *root = BTRFS_I(inode)->root;
317 struct btrfs_trans_handle *trans;
db94535d 318 u64 num_bytes;
c8b97818
CM
319 u64 orig_start;
320 u64 disk_num_bytes;
db94535d 321 u64 blocksize = root->sectorsize;
c8b97818 322 u64 actual_end;
42dc7bab 323 u64 isize = i_size_read(inode);
e6dcd2dc 324 int ret = 0;
c8b97818
CM
325 struct page **pages = NULL;
326 unsigned long nr_pages;
327 unsigned long nr_pages_ret = 0;
328 unsigned long total_compressed = 0;
329 unsigned long total_in = 0;
330 unsigned long max_compressed = 128 * 1024;
771ed689 331 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
332 int i;
333 int will_compress;
b888db2b 334
c8b97818
CM
335 orig_start = start;
336
42dc7bab 337 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
338again:
339 will_compress = 0;
340 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
341 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 342
f03d9301
CM
343 /*
344 * we don't want to send crud past the end of i_size through
345 * compression, that's just a waste of CPU time. So, if the
346 * end of the file is before the start of our current
347 * requested range of bytes, we bail out to the uncompressed
348 * cleanup code that can deal with all of this.
349 *
350 * It isn't really the fastest way to fix things, but this is a
351 * very uncommon corner.
352 */
353 if (actual_end <= start)
354 goto cleanup_and_bail_uncompressed;
355
c8b97818
CM
356 total_compressed = actual_end - start;
357
358 /* we want to make sure that amount of ram required to uncompress
359 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
360 * of a compressed extent to 128k. This is a crucial number
361 * because it also controls how easily we can spread reads across
362 * cpus for decompression.
363 *
364 * We also want to make sure the amount of IO required to do
365 * a random read is reasonably small, so we limit the size of
366 * a compressed extent to 128k.
c8b97818
CM
367 */
368 total_compressed = min(total_compressed, max_uncompressed);
db94535d 369 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 370 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
371 disk_num_bytes = num_bytes;
372 total_in = 0;
373 ret = 0;
db94535d 374
771ed689
CM
375 /*
376 * we do compression for mount -o compress and when the
377 * inode has not been flagged as nocompress. This flag can
378 * change at any time if we discover bad compression ratios.
c8b97818 379 */
6cbff00f 380 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
c8b97818
CM
381 btrfs_test_opt(root, COMPRESS)) {
382 WARN_ON(pages);
cfbc246e 383 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
c8b97818 384
c8b97818
CM
385 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
386 total_compressed, pages,
387 nr_pages, &nr_pages_ret,
388 &total_in,
389 &total_compressed,
390 max_compressed);
391
392 if (!ret) {
393 unsigned long offset = total_compressed &
394 (PAGE_CACHE_SIZE - 1);
395 struct page *page = pages[nr_pages_ret - 1];
396 char *kaddr;
397
398 /* zero the tail end of the last page, we might be
399 * sending it down to disk
400 */
401 if (offset) {
402 kaddr = kmap_atomic(page, KM_USER0);
403 memset(kaddr + offset, 0,
404 PAGE_CACHE_SIZE - offset);
405 kunmap_atomic(kaddr, KM_USER0);
406 }
407 will_compress = 1;
408 }
409 }
410 if (start == 0) {
771ed689
CM
411 trans = btrfs_join_transaction(root, 1);
412 BUG_ON(!trans);
413 btrfs_set_trans_block_group(trans, inode);
414
c8b97818 415 /* lets try to make an inline extent */
771ed689 416 if (ret || total_in < (actual_end - start)) {
c8b97818 417 /* we didn't compress the entire range, try
771ed689 418 * to make an uncompressed inline extent.
c8b97818
CM
419 */
420 ret = cow_file_range_inline(trans, root, inode,
421 start, end, 0, NULL);
422 } else {
771ed689 423 /* try making a compressed inline extent */
c8b97818
CM
424 ret = cow_file_range_inline(trans, root, inode,
425 start, end,
426 total_compressed, pages);
427 }
428 if (ret == 0) {
771ed689
CM
429 /*
430 * inline extent creation worked, we don't need
431 * to create any more async work items. Unlock
432 * and free up our temp pages.
433 */
c8b97818 434 extent_clear_unlock_delalloc(inode,
a791e35e
CM
435 &BTRFS_I(inode)->io_tree,
436 start, end, NULL,
437 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 438 EXTENT_CLEAR_DELALLOC |
32c00aff 439 EXTENT_CLEAR_ACCOUNTING |
a791e35e 440 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
441
442 btrfs_end_transaction(trans, root);
c8b97818
CM
443 goto free_pages_out;
444 }
c2167754 445 btrfs_end_transaction(trans, root);
c8b97818
CM
446 }
447
448 if (will_compress) {
449 /*
450 * we aren't doing an inline extent round the compressed size
451 * up to a block size boundary so the allocator does sane
452 * things
453 */
454 total_compressed = (total_compressed + blocksize - 1) &
455 ~(blocksize - 1);
456
457 /*
458 * one last check to make sure the compression is really a
459 * win, compare the page count read with the blocks on disk
460 */
461 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
462 ~(PAGE_CACHE_SIZE - 1);
463 if (total_compressed >= total_in) {
464 will_compress = 0;
465 } else {
466 disk_num_bytes = total_compressed;
467 num_bytes = total_in;
468 }
469 }
470 if (!will_compress && pages) {
471 /*
472 * the compression code ran but failed to make things smaller,
473 * free any pages it allocated and our page pointer array
474 */
475 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 476 WARN_ON(pages[i]->mapping);
c8b97818
CM
477 page_cache_release(pages[i]);
478 }
479 kfree(pages);
480 pages = NULL;
481 total_compressed = 0;
482 nr_pages_ret = 0;
483
484 /* flag the file so we don't compress in the future */
6cbff00f 485 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
c8b97818 486 }
771ed689
CM
487 if (will_compress) {
488 *num_added += 1;
c8b97818 489
771ed689
CM
490 /* the async work queues will take care of doing actual
491 * allocation on disk for these compressed pages,
492 * and will submit them to the elevator.
493 */
494 add_async_extent(async_cow, start, num_bytes,
495 total_compressed, pages, nr_pages_ret);
179e29e4 496
42dc7bab 497 if (start + num_bytes < end && start + num_bytes < actual_end) {
771ed689
CM
498 start += num_bytes;
499 pages = NULL;
500 cond_resched();
501 goto again;
502 }
503 } else {
f03d9301 504cleanup_and_bail_uncompressed:
771ed689
CM
505 /*
506 * No compression, but we still need to write the pages in
507 * the file we've been given so far. redirty the locked
508 * page if it corresponds to our extent and set things up
509 * for the async work queue to run cow_file_range to do
510 * the normal delalloc dance
511 */
512 if (page_offset(locked_page) >= start &&
513 page_offset(locked_page) <= end) {
514 __set_page_dirty_nobuffers(locked_page);
515 /* unlocked later on in the async handlers */
516 }
517 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
518 *num_added += 1;
519 }
3b951516 520
771ed689
CM
521out:
522 return 0;
523
524free_pages_out:
525 for (i = 0; i < nr_pages_ret; i++) {
526 WARN_ON(pages[i]->mapping);
527 page_cache_release(pages[i]);
528 }
d397712b 529 kfree(pages);
771ed689
CM
530
531 goto out;
532}
533
534/*
535 * phase two of compressed writeback. This is the ordered portion
536 * of the code, which only gets called in the order the work was
537 * queued. We walk all the async extents created by compress_file_range
538 * and send them down to the disk.
539 */
540static noinline int submit_compressed_extents(struct inode *inode,
541 struct async_cow *async_cow)
542{
543 struct async_extent *async_extent;
544 u64 alloc_hint = 0;
545 struct btrfs_trans_handle *trans;
546 struct btrfs_key ins;
547 struct extent_map *em;
548 struct btrfs_root *root = BTRFS_I(inode)->root;
549 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
550 struct extent_io_tree *io_tree;
f5a84ee3 551 int ret = 0;
771ed689
CM
552
553 if (list_empty(&async_cow->extents))
554 return 0;
555
771ed689 556
d397712b 557 while (!list_empty(&async_cow->extents)) {
771ed689
CM
558 async_extent = list_entry(async_cow->extents.next,
559 struct async_extent, list);
560 list_del(&async_extent->list);
c8b97818 561
771ed689
CM
562 io_tree = &BTRFS_I(inode)->io_tree;
563
f5a84ee3 564retry:
771ed689
CM
565 /* did the compression code fall back to uncompressed IO? */
566 if (!async_extent->pages) {
567 int page_started = 0;
568 unsigned long nr_written = 0;
569
570 lock_extent(io_tree, async_extent->start,
d397712b
CM
571 async_extent->start +
572 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
573
574 /* allocate blocks */
f5a84ee3
JB
575 ret = cow_file_range(inode, async_cow->locked_page,
576 async_extent->start,
577 async_extent->start +
578 async_extent->ram_size - 1,
579 &page_started, &nr_written, 0);
771ed689
CM
580
581 /*
582 * if page_started, cow_file_range inserted an
583 * inline extent and took care of all the unlocking
584 * and IO for us. Otherwise, we need to submit
585 * all those pages down to the drive.
586 */
f5a84ee3 587 if (!page_started && !ret)
771ed689
CM
588 extent_write_locked_range(io_tree,
589 inode, async_extent->start,
d397712b 590 async_extent->start +
771ed689
CM
591 async_extent->ram_size - 1,
592 btrfs_get_extent,
593 WB_SYNC_ALL);
594 kfree(async_extent);
595 cond_resched();
596 continue;
597 }
598
599 lock_extent(io_tree, async_extent->start,
600 async_extent->start + async_extent->ram_size - 1,
601 GFP_NOFS);
771ed689 602
c2167754 603 trans = btrfs_join_transaction(root, 1);
771ed689
CM
604 ret = btrfs_reserve_extent(trans, root,
605 async_extent->compressed_size,
606 async_extent->compressed_size,
607 0, alloc_hint,
608 (u64)-1, &ins, 1);
c2167754
YZ
609 btrfs_end_transaction(trans, root);
610
f5a84ee3
JB
611 if (ret) {
612 int i;
613 for (i = 0; i < async_extent->nr_pages; i++) {
614 WARN_ON(async_extent->pages[i]->mapping);
615 page_cache_release(async_extent->pages[i]);
616 }
617 kfree(async_extent->pages);
618 async_extent->nr_pages = 0;
619 async_extent->pages = NULL;
620 unlock_extent(io_tree, async_extent->start,
621 async_extent->start +
622 async_extent->ram_size - 1, GFP_NOFS);
623 goto retry;
624 }
625
c2167754
YZ
626 /*
627 * here we're doing allocation and writeback of the
628 * compressed pages
629 */
630 btrfs_drop_extent_cache(inode, async_extent->start,
631 async_extent->start +
632 async_extent->ram_size - 1, 0);
633
771ed689
CM
634 em = alloc_extent_map(GFP_NOFS);
635 em->start = async_extent->start;
636 em->len = async_extent->ram_size;
445a6944 637 em->orig_start = em->start;
c8b97818 638
771ed689
CM
639 em->block_start = ins.objectid;
640 em->block_len = ins.offset;
641 em->bdev = root->fs_info->fs_devices->latest_bdev;
642 set_bit(EXTENT_FLAG_PINNED, &em->flags);
643 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
644
d397712b 645 while (1) {
890871be 646 write_lock(&em_tree->lock);
771ed689 647 ret = add_extent_mapping(em_tree, em);
890871be 648 write_unlock(&em_tree->lock);
771ed689
CM
649 if (ret != -EEXIST) {
650 free_extent_map(em);
651 break;
652 }
653 btrfs_drop_extent_cache(inode, async_extent->start,
654 async_extent->start +
655 async_extent->ram_size - 1, 0);
656 }
657
658 ret = btrfs_add_ordered_extent(inode, async_extent->start,
659 ins.objectid,
660 async_extent->ram_size,
661 ins.offset,
662 BTRFS_ORDERED_COMPRESSED);
663 BUG_ON(ret);
664
771ed689
CM
665 /*
666 * clear dirty, set writeback and unlock the pages.
667 */
668 extent_clear_unlock_delalloc(inode,
a791e35e
CM
669 &BTRFS_I(inode)->io_tree,
670 async_extent->start,
671 async_extent->start +
672 async_extent->ram_size - 1,
673 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
674 EXTENT_CLEAR_UNLOCK |
a3429ab7 675 EXTENT_CLEAR_DELALLOC |
a791e35e 676 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
677
678 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
679 async_extent->start,
680 async_extent->ram_size,
681 ins.objectid,
682 ins.offset, async_extent->pages,
683 async_extent->nr_pages);
771ed689
CM
684
685 BUG_ON(ret);
771ed689
CM
686 alloc_hint = ins.objectid + ins.offset;
687 kfree(async_extent);
688 cond_resched();
689 }
690
771ed689
CM
691 return 0;
692}
693
694/*
695 * when extent_io.c finds a delayed allocation range in the file,
696 * the call backs end up in this code. The basic idea is to
697 * allocate extents on disk for the range, and create ordered data structs
698 * in ram to track those extents.
699 *
700 * locked_page is the page that writepage had locked already. We use
701 * it to make sure we don't do extra locks or unlocks.
702 *
703 * *page_started is set to one if we unlock locked_page and do everything
704 * required to start IO on it. It may be clean and already done with
705 * IO when we return.
706 */
707static noinline int cow_file_range(struct inode *inode,
708 struct page *locked_page,
709 u64 start, u64 end, int *page_started,
710 unsigned long *nr_written,
711 int unlock)
712{
713 struct btrfs_root *root = BTRFS_I(inode)->root;
714 struct btrfs_trans_handle *trans;
715 u64 alloc_hint = 0;
716 u64 num_bytes;
717 unsigned long ram_size;
718 u64 disk_num_bytes;
719 u64 cur_alloc_size;
720 u64 blocksize = root->sectorsize;
721 u64 actual_end;
42dc7bab 722 u64 isize = i_size_read(inode);
771ed689
CM
723 struct btrfs_key ins;
724 struct extent_map *em;
725 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
726 int ret = 0;
727
728 trans = btrfs_join_transaction(root, 1);
729 BUG_ON(!trans);
730 btrfs_set_trans_block_group(trans, inode);
731
42dc7bab 732 actual_end = min_t(u64, isize, end + 1);
771ed689
CM
733
734 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
735 num_bytes = max(blocksize, num_bytes);
736 disk_num_bytes = num_bytes;
737 ret = 0;
738
739 if (start == 0) {
740 /* lets try to make an inline extent */
741 ret = cow_file_range_inline(trans, root, inode,
742 start, end, 0, NULL);
743 if (ret == 0) {
744 extent_clear_unlock_delalloc(inode,
a791e35e
CM
745 &BTRFS_I(inode)->io_tree,
746 start, end, NULL,
747 EXTENT_CLEAR_UNLOCK_PAGE |
748 EXTENT_CLEAR_UNLOCK |
749 EXTENT_CLEAR_DELALLOC |
32c00aff 750 EXTENT_CLEAR_ACCOUNTING |
a791e35e
CM
751 EXTENT_CLEAR_DIRTY |
752 EXTENT_SET_WRITEBACK |
753 EXTENT_END_WRITEBACK);
c2167754 754
771ed689
CM
755 *nr_written = *nr_written +
756 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
757 *page_started = 1;
758 ret = 0;
759 goto out;
760 }
761 }
762
763 BUG_ON(disk_num_bytes >
764 btrfs_super_total_bytes(&root->fs_info->super_copy));
765
b917b7c3
CM
766
767 read_lock(&BTRFS_I(inode)->extent_tree.lock);
768 em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
769 start, num_bytes);
770 if (em) {
6346c939
JB
771 /*
772 * if block start isn't an actual block number then find the
773 * first block in this inode and use that as a hint. If that
774 * block is also bogus then just don't worry about it.
775 */
776 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
777 free_extent_map(em);
778 em = search_extent_mapping(em_tree, 0, 0);
779 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
780 alloc_hint = em->block_start;
781 if (em)
782 free_extent_map(em);
783 } else {
784 alloc_hint = em->block_start;
785 free_extent_map(em);
786 }
b917b7c3
CM
787 }
788 read_unlock(&BTRFS_I(inode)->extent_tree.lock);
771ed689
CM
789 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
790
d397712b 791 while (disk_num_bytes > 0) {
a791e35e
CM
792 unsigned long op;
793
c8b97818 794 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
e6dcd2dc 795 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 796 root->sectorsize, 0, alloc_hint,
e6dcd2dc 797 (u64)-1, &ins, 1);
d397712b
CM
798 BUG_ON(ret);
799
e6dcd2dc
CM
800 em = alloc_extent_map(GFP_NOFS);
801 em->start = start;
445a6944 802 em->orig_start = em->start;
771ed689
CM
803 ram_size = ins.offset;
804 em->len = ins.offset;
c8b97818 805
e6dcd2dc 806 em->block_start = ins.objectid;
c8b97818 807 em->block_len = ins.offset;
e6dcd2dc 808 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 809 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 810
d397712b 811 while (1) {
890871be 812 write_lock(&em_tree->lock);
e6dcd2dc 813 ret = add_extent_mapping(em_tree, em);
890871be 814 write_unlock(&em_tree->lock);
e6dcd2dc
CM
815 if (ret != -EEXIST) {
816 free_extent_map(em);
817 break;
818 }
819 btrfs_drop_extent_cache(inode, start,
c8b97818 820 start + ram_size - 1, 0);
e6dcd2dc
CM
821 }
822
98d20f67 823 cur_alloc_size = ins.offset;
e6dcd2dc 824 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 825 ram_size, cur_alloc_size, 0);
e6dcd2dc 826 BUG_ON(ret);
c8b97818 827
17d217fe
YZ
828 if (root->root_key.objectid ==
829 BTRFS_DATA_RELOC_TREE_OBJECTID) {
830 ret = btrfs_reloc_clone_csums(inode, start,
831 cur_alloc_size);
832 BUG_ON(ret);
833 }
834
d397712b 835 if (disk_num_bytes < cur_alloc_size)
3b951516 836 break;
d397712b 837
c8b97818
CM
838 /* we're not doing compressed IO, don't unlock the first
839 * page (which the caller expects to stay locked), don't
840 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
841 *
842 * Do set the Private2 bit so we know this page was properly
843 * setup for writepage
c8b97818 844 */
a791e35e
CM
845 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
846 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
847 EXTENT_SET_PRIVATE2;
848
c8b97818
CM
849 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
850 start, start + ram_size - 1,
a791e35e 851 locked_page, op);
c8b97818 852 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
853 num_bytes -= cur_alloc_size;
854 alloc_hint = ins.objectid + ins.offset;
855 start += cur_alloc_size;
b888db2b 856 }
b888db2b 857out:
771ed689 858 ret = 0;
b888db2b 859 btrfs_end_transaction(trans, root);
c8b97818 860
be20aa9d 861 return ret;
771ed689 862}
c8b97818 863
771ed689
CM
864/*
865 * work queue call back to started compression on a file and pages
866 */
867static noinline void async_cow_start(struct btrfs_work *work)
868{
869 struct async_cow *async_cow;
870 int num_added = 0;
871 async_cow = container_of(work, struct async_cow, work);
872
873 compress_file_range(async_cow->inode, async_cow->locked_page,
874 async_cow->start, async_cow->end, async_cow,
875 &num_added);
876 if (num_added == 0)
877 async_cow->inode = NULL;
878}
879
880/*
881 * work queue call back to submit previously compressed pages
882 */
883static noinline void async_cow_submit(struct btrfs_work *work)
884{
885 struct async_cow *async_cow;
886 struct btrfs_root *root;
887 unsigned long nr_pages;
888
889 async_cow = container_of(work, struct async_cow, work);
890
891 root = async_cow->root;
892 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
893 PAGE_CACHE_SHIFT;
894
895 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
896
897 if (atomic_read(&root->fs_info->async_delalloc_pages) <
898 5 * 1042 * 1024 &&
899 waitqueue_active(&root->fs_info->async_submit_wait))
900 wake_up(&root->fs_info->async_submit_wait);
901
d397712b 902 if (async_cow->inode)
771ed689 903 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 904}
c8b97818 905
771ed689
CM
906static noinline void async_cow_free(struct btrfs_work *work)
907{
908 struct async_cow *async_cow;
909 async_cow = container_of(work, struct async_cow, work);
910 kfree(async_cow);
911}
912
913static int cow_file_range_async(struct inode *inode, struct page *locked_page,
914 u64 start, u64 end, int *page_started,
915 unsigned long *nr_written)
916{
917 struct async_cow *async_cow;
918 struct btrfs_root *root = BTRFS_I(inode)->root;
919 unsigned long nr_pages;
920 u64 cur_end;
921 int limit = 10 * 1024 * 1042;
922
a3429ab7
CM
923 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
924 1, 0, NULL, GFP_NOFS);
d397712b 925 while (start < end) {
771ed689
CM
926 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
927 async_cow->inode = inode;
928 async_cow->root = root;
929 async_cow->locked_page = locked_page;
930 async_cow->start = start;
931
6cbff00f 932 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
933 cur_end = end;
934 else
935 cur_end = min(end, start + 512 * 1024 - 1);
936
937 async_cow->end = cur_end;
938 INIT_LIST_HEAD(&async_cow->extents);
939
940 async_cow->work.func = async_cow_start;
941 async_cow->work.ordered_func = async_cow_submit;
942 async_cow->work.ordered_free = async_cow_free;
943 async_cow->work.flags = 0;
944
771ed689
CM
945 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
946 PAGE_CACHE_SHIFT;
947 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
948
949 btrfs_queue_worker(&root->fs_info->delalloc_workers,
950 &async_cow->work);
951
952 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
953 wait_event(root->fs_info->async_submit_wait,
954 (atomic_read(&root->fs_info->async_delalloc_pages) <
955 limit));
956 }
957
d397712b 958 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
959 atomic_read(&root->fs_info->async_delalloc_pages)) {
960 wait_event(root->fs_info->async_submit_wait,
961 (atomic_read(&root->fs_info->async_delalloc_pages) ==
962 0));
963 }
964
965 *nr_written += nr_pages;
966 start = cur_end + 1;
967 }
968 *page_started = 1;
969 return 0;
be20aa9d
CM
970}
971
d397712b 972static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
973 u64 bytenr, u64 num_bytes)
974{
975 int ret;
976 struct btrfs_ordered_sum *sums;
977 LIST_HEAD(list);
978
07d400a6
YZ
979 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
980 bytenr + num_bytes - 1, &list);
17d217fe
YZ
981 if (ret == 0 && list_empty(&list))
982 return 0;
983
984 while (!list_empty(&list)) {
985 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
986 list_del(&sums->list);
987 kfree(sums);
988 }
989 return 1;
990}
991
d352ac68
CM
992/*
993 * when nowcow writeback call back. This checks for snapshots or COW copies
994 * of the extents that exist in the file, and COWs the file as required.
995 *
996 * If no cow copies or snapshots exist, we write directly to the existing
997 * blocks on disk
998 */
7f366cfe
CM
999static noinline int run_delalloc_nocow(struct inode *inode,
1000 struct page *locked_page,
771ed689
CM
1001 u64 start, u64 end, int *page_started, int force,
1002 unsigned long *nr_written)
be20aa9d 1003{
be20aa9d 1004 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1005 struct btrfs_trans_handle *trans;
be20aa9d 1006 struct extent_buffer *leaf;
be20aa9d 1007 struct btrfs_path *path;
80ff3856 1008 struct btrfs_file_extent_item *fi;
be20aa9d 1009 struct btrfs_key found_key;
80ff3856
YZ
1010 u64 cow_start;
1011 u64 cur_offset;
1012 u64 extent_end;
5d4f98a2 1013 u64 extent_offset;
80ff3856
YZ
1014 u64 disk_bytenr;
1015 u64 num_bytes;
1016 int extent_type;
1017 int ret;
d899e052 1018 int type;
80ff3856
YZ
1019 int nocow;
1020 int check_prev = 1;
be20aa9d
CM
1021
1022 path = btrfs_alloc_path();
1023 BUG_ON(!path);
7ea394f1
YZ
1024 trans = btrfs_join_transaction(root, 1);
1025 BUG_ON(!trans);
be20aa9d 1026
80ff3856
YZ
1027 cow_start = (u64)-1;
1028 cur_offset = start;
1029 while (1) {
1030 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1031 cur_offset, 0);
1032 BUG_ON(ret < 0);
1033 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1034 leaf = path->nodes[0];
1035 btrfs_item_key_to_cpu(leaf, &found_key,
1036 path->slots[0] - 1);
1037 if (found_key.objectid == inode->i_ino &&
1038 found_key.type == BTRFS_EXTENT_DATA_KEY)
1039 path->slots[0]--;
1040 }
1041 check_prev = 0;
1042next_slot:
1043 leaf = path->nodes[0];
1044 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1045 ret = btrfs_next_leaf(root, path);
1046 if (ret < 0)
1047 BUG_ON(1);
1048 if (ret > 0)
1049 break;
1050 leaf = path->nodes[0];
1051 }
be20aa9d 1052
80ff3856
YZ
1053 nocow = 0;
1054 disk_bytenr = 0;
17d217fe 1055 num_bytes = 0;
80ff3856
YZ
1056 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1057
1058 if (found_key.objectid > inode->i_ino ||
1059 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1060 found_key.offset > end)
1061 break;
1062
1063 if (found_key.offset > cur_offset) {
1064 extent_end = found_key.offset;
e9061e21 1065 extent_type = 0;
80ff3856
YZ
1066 goto out_check;
1067 }
1068
1069 fi = btrfs_item_ptr(leaf, path->slots[0],
1070 struct btrfs_file_extent_item);
1071 extent_type = btrfs_file_extent_type(leaf, fi);
1072
d899e052
YZ
1073 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1074 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1075 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1076 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1077 extent_end = found_key.offset +
1078 btrfs_file_extent_num_bytes(leaf, fi);
1079 if (extent_end <= start) {
1080 path->slots[0]++;
1081 goto next_slot;
1082 }
17d217fe
YZ
1083 if (disk_bytenr == 0)
1084 goto out_check;
80ff3856
YZ
1085 if (btrfs_file_extent_compression(leaf, fi) ||
1086 btrfs_file_extent_encryption(leaf, fi) ||
1087 btrfs_file_extent_other_encoding(leaf, fi))
1088 goto out_check;
d899e052
YZ
1089 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1090 goto out_check;
d2fb3437 1091 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1092 goto out_check;
17d217fe 1093 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1094 found_key.offset -
1095 extent_offset, disk_bytenr))
17d217fe 1096 goto out_check;
5d4f98a2 1097 disk_bytenr += extent_offset;
17d217fe
YZ
1098 disk_bytenr += cur_offset - found_key.offset;
1099 num_bytes = min(end + 1, extent_end) - cur_offset;
1100 /*
1101 * force cow if csum exists in the range.
1102 * this ensure that csum for a given extent are
1103 * either valid or do not exist.
1104 */
1105 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1106 goto out_check;
80ff3856
YZ
1107 nocow = 1;
1108 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1109 extent_end = found_key.offset +
1110 btrfs_file_extent_inline_len(leaf, fi);
1111 extent_end = ALIGN(extent_end, root->sectorsize);
1112 } else {
1113 BUG_ON(1);
1114 }
1115out_check:
1116 if (extent_end <= start) {
1117 path->slots[0]++;
1118 goto next_slot;
1119 }
1120 if (!nocow) {
1121 if (cow_start == (u64)-1)
1122 cow_start = cur_offset;
1123 cur_offset = extent_end;
1124 if (cur_offset > end)
1125 break;
1126 path->slots[0]++;
1127 goto next_slot;
7ea394f1
YZ
1128 }
1129
1130 btrfs_release_path(root, path);
80ff3856
YZ
1131 if (cow_start != (u64)-1) {
1132 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1133 found_key.offset - 1, page_started,
1134 nr_written, 1);
80ff3856
YZ
1135 BUG_ON(ret);
1136 cow_start = (u64)-1;
7ea394f1 1137 }
80ff3856 1138
d899e052
YZ
1139 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1140 struct extent_map *em;
1141 struct extent_map_tree *em_tree;
1142 em_tree = &BTRFS_I(inode)->extent_tree;
1143 em = alloc_extent_map(GFP_NOFS);
1144 em->start = cur_offset;
445a6944 1145 em->orig_start = em->start;
d899e052
YZ
1146 em->len = num_bytes;
1147 em->block_len = num_bytes;
1148 em->block_start = disk_bytenr;
1149 em->bdev = root->fs_info->fs_devices->latest_bdev;
1150 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1151 while (1) {
890871be 1152 write_lock(&em_tree->lock);
d899e052 1153 ret = add_extent_mapping(em_tree, em);
890871be 1154 write_unlock(&em_tree->lock);
d899e052
YZ
1155 if (ret != -EEXIST) {
1156 free_extent_map(em);
1157 break;
1158 }
1159 btrfs_drop_extent_cache(inode, em->start,
1160 em->start + em->len - 1, 0);
1161 }
1162 type = BTRFS_ORDERED_PREALLOC;
1163 } else {
1164 type = BTRFS_ORDERED_NOCOW;
1165 }
80ff3856
YZ
1166
1167 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1168 num_bytes, num_bytes, type);
1169 BUG_ON(ret);
771ed689 1170
d899e052 1171 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1172 cur_offset, cur_offset + num_bytes - 1,
1173 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1174 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1175 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1176 cur_offset = extent_end;
1177 if (cur_offset > end)
1178 break;
be20aa9d 1179 }
80ff3856
YZ
1180 btrfs_release_path(root, path);
1181
1182 if (cur_offset <= end && cow_start == (u64)-1)
1183 cow_start = cur_offset;
1184 if (cow_start != (u64)-1) {
1185 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1186 page_started, nr_written, 1);
80ff3856
YZ
1187 BUG_ON(ret);
1188 }
1189
1190 ret = btrfs_end_transaction(trans, root);
1191 BUG_ON(ret);
7ea394f1 1192 btrfs_free_path(path);
80ff3856 1193 return 0;
be20aa9d
CM
1194}
1195
d352ac68
CM
1196/*
1197 * extent_io.c call back to do delayed allocation processing
1198 */
c8b97818 1199static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1200 u64 start, u64 end, int *page_started,
1201 unsigned long *nr_written)
be20aa9d 1202{
be20aa9d 1203 int ret;
7f366cfe 1204 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1205
6cbff00f 1206 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1207 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1208 page_started, 1, nr_written);
6cbff00f 1209 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1210 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1211 page_started, 0, nr_written);
7f366cfe
CM
1212 else if (!btrfs_test_opt(root, COMPRESS))
1213 ret = cow_file_range(inode, locked_page, start, end,
1214 page_started, nr_written, 1);
be20aa9d 1215 else
771ed689 1216 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1217 page_started, nr_written);
b888db2b
CM
1218 return ret;
1219}
1220
9ed74f2d
JB
1221static int btrfs_split_extent_hook(struct inode *inode,
1222 struct extent_state *orig, u64 split)
1223{
1224 struct btrfs_root *root = BTRFS_I(inode)->root;
1225 u64 size;
1226
1227 if (!(orig->state & EXTENT_DELALLOC))
1228 return 0;
1229
1230 size = orig->end - orig->start + 1;
1231 if (size > root->fs_info->max_extent) {
1232 u64 num_extents;
1233 u64 new_size;
1234
1235 new_size = orig->end - split + 1;
1236 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1237 root->fs_info->max_extent);
1238
1239 /*
32c00aff
JB
1240 * if we break a large extent up then leave oustanding_extents
1241 * be, since we've already accounted for the large extent.
9ed74f2d
JB
1242 */
1243 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1244 root->fs_info->max_extent) < num_extents)
1245 return 0;
1246 }
1247
32c00aff
JB
1248 spin_lock(&BTRFS_I(inode)->accounting_lock);
1249 BTRFS_I(inode)->outstanding_extents++;
1250 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1251
1252 return 0;
1253}
1254
1255/*
1256 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1257 * extents so we can keep track of new extents that are just merged onto old
1258 * extents, such as when we are doing sequential writes, so we can properly
1259 * account for the metadata space we'll need.
1260 */
1261static int btrfs_merge_extent_hook(struct inode *inode,
1262 struct extent_state *new,
1263 struct extent_state *other)
1264{
1265 struct btrfs_root *root = BTRFS_I(inode)->root;
1266 u64 new_size, old_size;
1267 u64 num_extents;
1268
1269 /* not delalloc, ignore it */
1270 if (!(other->state & EXTENT_DELALLOC))
1271 return 0;
1272
1273 old_size = other->end - other->start + 1;
1274 if (new->start < other->start)
1275 new_size = other->end - new->start + 1;
1276 else
1277 new_size = new->end - other->start + 1;
1278
1279 /* we're not bigger than the max, unreserve the space and go */
1280 if (new_size <= root->fs_info->max_extent) {
32c00aff
JB
1281 spin_lock(&BTRFS_I(inode)->accounting_lock);
1282 BTRFS_I(inode)->outstanding_extents--;
1283 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1284 return 0;
1285 }
1286
1287 /*
1288 * If we grew by another max_extent, just return, we want to keep that
1289 * reserved amount.
1290 */
1291 num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1292 root->fs_info->max_extent);
1293 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1294 root->fs_info->max_extent) > num_extents)
1295 return 0;
1296
32c00aff
JB
1297 spin_lock(&BTRFS_I(inode)->accounting_lock);
1298 BTRFS_I(inode)->outstanding_extents--;
1299 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1300
1301 return 0;
1302}
1303
d352ac68
CM
1304/*
1305 * extent_io.c set_bit_hook, used to track delayed allocation
1306 * bytes in this file, and to maintain the list of inodes that
1307 * have pending delalloc work to be done.
1308 */
b2950863 1309static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
b0c68f8b 1310 unsigned long old, unsigned long bits)
291d673e 1311{
9ed74f2d 1312
75eff68e
CM
1313 /*
1314 * set_bit and clear bit hooks normally require _irqsave/restore
1315 * but in this case, we are only testeing for the DELALLOC
1316 * bit, which is only set or cleared with irqs on
1317 */
b0c68f8b 1318 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1319 struct btrfs_root *root = BTRFS_I(inode)->root;
9ed74f2d 1320
32c00aff
JB
1321 spin_lock(&BTRFS_I(inode)->accounting_lock);
1322 BTRFS_I(inode)->outstanding_extents++;
1323 spin_unlock(&BTRFS_I(inode)->accounting_lock);
6a63209f 1324 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
75eff68e 1325 spin_lock(&root->fs_info->delalloc_lock);
9069218d 1326 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
291d673e 1327 root->fs_info->delalloc_bytes += end - start + 1;
ea8c2819
CM
1328 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1329 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1330 &root->fs_info->delalloc_inodes);
1331 }
75eff68e 1332 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1333 }
1334 return 0;
1335}
1336
d352ac68
CM
1337/*
1338 * extent_io.c clear_bit_hook, see set_bit_hook for why
1339 */
9ed74f2d
JB
1340static int btrfs_clear_bit_hook(struct inode *inode,
1341 struct extent_state *state, unsigned long bits)
291d673e 1342{
75eff68e
CM
1343 /*
1344 * set_bit and clear bit hooks normally require _irqsave/restore
1345 * but in this case, we are only testeing for the DELALLOC
1346 * bit, which is only set or cleared with irqs on
1347 */
9ed74f2d 1348 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1349 struct btrfs_root *root = BTRFS_I(inode)->root;
bcbfce8a 1350
32c00aff
JB
1351 if (bits & EXTENT_DO_ACCOUNTING) {
1352 spin_lock(&BTRFS_I(inode)->accounting_lock);
1353 BTRFS_I(inode)->outstanding_extents--;
1354 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1355 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1356 }
9ed74f2d 1357
75eff68e 1358 spin_lock(&root->fs_info->delalloc_lock);
9ed74f2d
JB
1359 if (state->end - state->start + 1 >
1360 root->fs_info->delalloc_bytes) {
d397712b
CM
1361 printk(KERN_INFO "btrfs warning: delalloc account "
1362 "%llu %llu\n",
9ed74f2d
JB
1363 (unsigned long long)
1364 state->end - state->start + 1,
d397712b
CM
1365 (unsigned long long)
1366 root->fs_info->delalloc_bytes);
6a63209f 1367 btrfs_delalloc_free_space(root, inode, (u64)-1);
b0c68f8b 1368 root->fs_info->delalloc_bytes = 0;
9069218d 1369 BTRFS_I(inode)->delalloc_bytes = 0;
b0c68f8b 1370 } else {
6a63209f 1371 btrfs_delalloc_free_space(root, inode,
9ed74f2d
JB
1372 state->end -
1373 state->start + 1);
1374 root->fs_info->delalloc_bytes -= state->end -
1375 state->start + 1;
1376 BTRFS_I(inode)->delalloc_bytes -= state->end -
1377 state->start + 1;
b0c68f8b 1378 }
ea8c2819
CM
1379 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1380 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1381 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1382 }
75eff68e 1383 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1384 }
1385 return 0;
1386}
1387
d352ac68
CM
1388/*
1389 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1390 * we don't create bios that span stripes or chunks
1391 */
239b14b3 1392int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1393 size_t size, struct bio *bio,
1394 unsigned long bio_flags)
239b14b3
CM
1395{
1396 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1397 struct btrfs_mapping_tree *map_tree;
a62b9401 1398 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1399 u64 length = 0;
1400 u64 map_length;
239b14b3
CM
1401 int ret;
1402
771ed689
CM
1403 if (bio_flags & EXTENT_BIO_COMPRESSED)
1404 return 0;
1405
f2d8d74d 1406 length = bio->bi_size;
239b14b3
CM
1407 map_tree = &root->fs_info->mapping_tree;
1408 map_length = length;
cea9e445 1409 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1410 &map_length, NULL, 0);
cea9e445 1411
d397712b 1412 if (map_length < length + size)
239b14b3 1413 return 1;
239b14b3
CM
1414 return 0;
1415}
1416
d352ac68
CM
1417/*
1418 * in order to insert checksums into the metadata in large chunks,
1419 * we wait until bio submission time. All the pages in the bio are
1420 * checksummed and sums are attached onto the ordered extent record.
1421 *
1422 * At IO completion time the cums attached on the ordered extent record
1423 * are inserted into the btree
1424 */
d397712b
CM
1425static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1426 struct bio *bio, int mirror_num,
1427 unsigned long bio_flags)
065631f6 1428{
065631f6 1429 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1430 int ret = 0;
e015640f 1431
d20f7043 1432 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1433 BUG_ON(ret);
4a69a410
CM
1434 return 0;
1435}
e015640f 1436
4a69a410
CM
1437/*
1438 * in order to insert checksums into the metadata in large chunks,
1439 * we wait until bio submission time. All the pages in the bio are
1440 * checksummed and sums are attached onto the ordered extent record.
1441 *
1442 * At IO completion time the cums attached on the ordered extent record
1443 * are inserted into the btree
1444 */
b2950863 1445static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
4a69a410
CM
1446 int mirror_num, unsigned long bio_flags)
1447{
1448 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1449 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1450}
1451
d352ac68 1452/*
cad321ad
CM
1453 * extent_io.c submission hook. This does the right thing for csum calculation
1454 * on write, or reading the csums from the tree before a read
d352ac68 1455 */
b2950863 1456static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
c8b97818 1457 int mirror_num, unsigned long bio_flags)
44b8bd7e
CM
1458{
1459 struct btrfs_root *root = BTRFS_I(inode)->root;
1460 int ret = 0;
19b9bdb0 1461 int skip_sum;
44b8bd7e 1462
6cbff00f 1463 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1464
e6dcd2dc
CM
1465 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1466 BUG_ON(ret);
065631f6 1467
4d1b5fb4 1468 if (!(rw & (1 << BIO_RW))) {
d20f7043 1469 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1470 return btrfs_submit_compressed_read(inode, bio,
1471 mirror_num, bio_flags);
d20f7043
CM
1472 } else if (!skip_sum)
1473 btrfs_lookup_bio_sums(root, inode, bio, NULL);
4d1b5fb4 1474 goto mapit;
19b9bdb0 1475 } else if (!skip_sum) {
17d217fe
YZ
1476 /* csum items have already been cloned */
1477 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1478 goto mapit;
19b9bdb0
CM
1479 /* we're doing a write, do the async checksumming */
1480 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1481 inode, rw, bio, mirror_num,
4a69a410
CM
1482 bio_flags, __btrfs_submit_bio_start,
1483 __btrfs_submit_bio_done);
19b9bdb0
CM
1484 }
1485
0b86a832 1486mapit:
8b712842 1487 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1488}
6885f308 1489
d352ac68
CM
1490/*
1491 * given a list of ordered sums record them in the inode. This happens
1492 * at IO completion time based on sums calculated at bio submission time.
1493 */
ba1da2f4 1494static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1495 struct inode *inode, u64 file_offset,
1496 struct list_head *list)
1497{
e6dcd2dc
CM
1498 struct btrfs_ordered_sum *sum;
1499
1500 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1501
1502 list_for_each_entry(sum, list, list) {
d20f7043
CM
1503 btrfs_csum_file_blocks(trans,
1504 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1505 }
1506 return 0;
1507}
1508
ea8c2819
CM
1509int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1510{
d397712b 1511 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1512 WARN_ON(1);
ea8c2819
CM
1513 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1514 GFP_NOFS);
1515}
1516
d352ac68 1517/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1518struct btrfs_writepage_fixup {
1519 struct page *page;
1520 struct btrfs_work work;
1521};
1522
b2950863 1523static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1524{
1525 struct btrfs_writepage_fixup *fixup;
1526 struct btrfs_ordered_extent *ordered;
1527 struct page *page;
1528 struct inode *inode;
1529 u64 page_start;
1530 u64 page_end;
1531
1532 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1533 page = fixup->page;
4a096752 1534again:
247e743c
CM
1535 lock_page(page);
1536 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1537 ClearPageChecked(page);
1538 goto out_page;
1539 }
1540
1541 inode = page->mapping->host;
1542 page_start = page_offset(page);
1543 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1544
1545 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
4a096752
CM
1546
1547 /* already ordered? We're done */
8b62b72b 1548 if (PagePrivate2(page))
247e743c 1549 goto out;
4a096752
CM
1550
1551 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1552 if (ordered) {
1553 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1554 page_end, GFP_NOFS);
1555 unlock_page(page);
1556 btrfs_start_ordered_extent(inode, ordered, 1);
1557 goto again;
1558 }
247e743c 1559
ea8c2819 1560 btrfs_set_extent_delalloc(inode, page_start, page_end);
247e743c
CM
1561 ClearPageChecked(page);
1562out:
1563 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1564out_page:
1565 unlock_page(page);
1566 page_cache_release(page);
1567}
1568
1569/*
1570 * There are a few paths in the higher layers of the kernel that directly
1571 * set the page dirty bit without asking the filesystem if it is a
1572 * good idea. This causes problems because we want to make sure COW
1573 * properly happens and the data=ordered rules are followed.
1574 *
c8b97818 1575 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1576 * hasn't been properly setup for IO. We kick off an async process
1577 * to fix it up. The async helper will wait for ordered extents, set
1578 * the delalloc bit and make it safe to write the page.
1579 */
b2950863 1580static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1581{
1582 struct inode *inode = page->mapping->host;
1583 struct btrfs_writepage_fixup *fixup;
1584 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1585
8b62b72b
CM
1586 /* this page is properly in the ordered list */
1587 if (TestClearPagePrivate2(page))
247e743c
CM
1588 return 0;
1589
1590 if (PageChecked(page))
1591 return -EAGAIN;
1592
1593 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1594 if (!fixup)
1595 return -EAGAIN;
f421950f 1596
247e743c
CM
1597 SetPageChecked(page);
1598 page_cache_get(page);
1599 fixup->work.func = btrfs_writepage_fixup_worker;
1600 fixup->page = page;
1601 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1602 return -EAGAIN;
1603}
1604
d899e052
YZ
1605static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1606 struct inode *inode, u64 file_pos,
1607 u64 disk_bytenr, u64 disk_num_bytes,
1608 u64 num_bytes, u64 ram_bytes,
1609 u8 compression, u8 encryption,
1610 u16 other_encoding, int extent_type)
1611{
1612 struct btrfs_root *root = BTRFS_I(inode)->root;
1613 struct btrfs_file_extent_item *fi;
1614 struct btrfs_path *path;
1615 struct extent_buffer *leaf;
1616 struct btrfs_key ins;
1617 u64 hint;
1618 int ret;
1619
1620 path = btrfs_alloc_path();
1621 BUG_ON(!path);
1622
b9473439 1623 path->leave_spinning = 1;
a1ed835e
CM
1624
1625 /*
1626 * we may be replacing one extent in the tree with another.
1627 * The new extent is pinned in the extent map, and we don't want
1628 * to drop it from the cache until it is completely in the btree.
1629 *
1630 * So, tell btrfs_drop_extents to leave this extent in the cache.
1631 * the caller is expected to unpin it and allow it to be merged
1632 * with the others.
1633 */
920bbbfb
YZ
1634 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1635 &hint, 0);
d899e052
YZ
1636 BUG_ON(ret);
1637
1638 ins.objectid = inode->i_ino;
1639 ins.offset = file_pos;
1640 ins.type = BTRFS_EXTENT_DATA_KEY;
1641 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1642 BUG_ON(ret);
1643 leaf = path->nodes[0];
1644 fi = btrfs_item_ptr(leaf, path->slots[0],
1645 struct btrfs_file_extent_item);
1646 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1647 btrfs_set_file_extent_type(leaf, fi, extent_type);
1648 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1649 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1650 btrfs_set_file_extent_offset(leaf, fi, 0);
1651 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1652 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1653 btrfs_set_file_extent_compression(leaf, fi, compression);
1654 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1655 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1656
1657 btrfs_unlock_up_safe(path, 1);
1658 btrfs_set_lock_blocking(leaf);
1659
d899e052
YZ
1660 btrfs_mark_buffer_dirty(leaf);
1661
1662 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1663
1664 ins.objectid = disk_bytenr;
1665 ins.offset = disk_num_bytes;
1666 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1667 ret = btrfs_alloc_reserved_file_extent(trans, root,
1668 root->root_key.objectid,
1669 inode->i_ino, file_pos, &ins);
d899e052 1670 BUG_ON(ret);
d899e052 1671 btrfs_free_path(path);
b9473439 1672
d899e052
YZ
1673 return 0;
1674}
1675
5d13a98f
CM
1676/*
1677 * helper function for btrfs_finish_ordered_io, this
1678 * just reads in some of the csum leaves to prime them into ram
1679 * before we start the transaction. It limits the amount of btree
1680 * reads required while inside the transaction.
1681 */
1682static noinline void reada_csum(struct btrfs_root *root,
1683 struct btrfs_path *path,
1684 struct btrfs_ordered_extent *ordered_extent)
1685{
1686 struct btrfs_ordered_sum *sum;
1687 u64 bytenr;
1688
1689 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1690 list);
1691 bytenr = sum->sums[0].bytenr;
1692
1693 /*
1694 * we don't care about the results, the point of this search is
1695 * just to get the btree leaves into ram
1696 */
1697 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1698}
1699
d352ac68
CM
1700/* as ordered data IO finishes, this gets called so we can finish
1701 * an ordered extent if the range of bytes in the file it covers are
1702 * fully written.
1703 */
211f90e6 1704static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1705{
e6dcd2dc
CM
1706 struct btrfs_root *root = BTRFS_I(inode)->root;
1707 struct btrfs_trans_handle *trans;
5d13a98f 1708 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1709 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
b7ec40d7 1710 struct btrfs_path *path;
d899e052 1711 int compressed = 0;
e6dcd2dc
CM
1712 int ret;
1713
1714 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
ba1da2f4 1715 if (!ret)
e6dcd2dc 1716 return 0;
e6dcd2dc 1717
b7ec40d7
CM
1718 /*
1719 * before we join the transaction, try to do some of our IO.
1720 * This will limit the amount of IO that we have to do with
1721 * the transaction running. We're unlikely to need to do any
1722 * IO if the file extents are new, the disk_i_size checks
1723 * covers the most common case.
1724 */
1725 if (start < BTRFS_I(inode)->disk_i_size) {
1726 path = btrfs_alloc_path();
1727 if (path) {
1728 ret = btrfs_lookup_file_extent(NULL, root, path,
1729 inode->i_ino,
1730 start, 0);
5d13a98f
CM
1731 ordered_extent = btrfs_lookup_ordered_extent(inode,
1732 start);
1733 if (!list_empty(&ordered_extent->list)) {
1734 btrfs_release_path(root, path);
1735 reada_csum(root, path, ordered_extent);
1736 }
b7ec40d7
CM
1737 btrfs_free_path(path);
1738 }
1739 }
1740
5d13a98f
CM
1741 if (!ordered_extent)
1742 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
e6dcd2dc 1743 BUG_ON(!ordered_extent);
c2167754
YZ
1744 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1745 BUG_ON(!list_empty(&ordered_extent->list));
1746 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1747 if (!ret) {
1748 trans = btrfs_join_transaction(root, 1);
1749 ret = btrfs_update_inode(trans, root, inode);
1750 BUG_ON(ret);
1751 btrfs_end_transaction(trans, root);
1752 }
1753 goto out;
1754 }
e6dcd2dc
CM
1755
1756 lock_extent(io_tree, ordered_extent->file_offset,
1757 ordered_extent->file_offset + ordered_extent->len - 1,
1758 GFP_NOFS);
1759
c2167754
YZ
1760 trans = btrfs_join_transaction(root, 1);
1761
c8b97818 1762 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
d899e052
YZ
1763 compressed = 1;
1764 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1765 BUG_ON(compressed);
920bbbfb 1766 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1767 ordered_extent->file_offset,
1768 ordered_extent->file_offset +
1769 ordered_extent->len);
1770 BUG_ON(ret);
1771 } else {
1772 ret = insert_reserved_file_extent(trans, inode,
1773 ordered_extent->file_offset,
1774 ordered_extent->start,
1775 ordered_extent->disk_len,
1776 ordered_extent->len,
1777 ordered_extent->len,
1778 compressed, 0, 0,
1779 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1780 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1781 ordered_extent->file_offset,
1782 ordered_extent->len);
d899e052
YZ
1783 BUG_ON(ret);
1784 }
e6dcd2dc
CM
1785 unlock_extent(io_tree, ordered_extent->file_offset,
1786 ordered_extent->file_offset + ordered_extent->len - 1,
1787 GFP_NOFS);
1788 add_pending_csums(trans, inode, ordered_extent->file_offset,
1789 &ordered_extent->list);
1790
c2167754
YZ
1791 /* this also removes the ordered extent from the tree */
1792 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1793 ret = btrfs_update_inode(trans, root, inode);
1794 BUG_ON(ret);
1795 btrfs_end_transaction(trans, root);
1796out:
e6dcd2dc
CM
1797 /* once for us */
1798 btrfs_put_ordered_extent(ordered_extent);
1799 /* once for the tree */
1800 btrfs_put_ordered_extent(ordered_extent);
1801
e6dcd2dc
CM
1802 return 0;
1803}
1804
b2950863 1805static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1806 struct extent_state *state, int uptodate)
1807{
8b62b72b 1808 ClearPagePrivate2(page);
211f90e6
CM
1809 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1810}
1811
d352ac68
CM
1812/*
1813 * When IO fails, either with EIO or csum verification fails, we
1814 * try other mirrors that might have a good copy of the data. This
1815 * io_failure_record is used to record state as we go through all the
1816 * mirrors. If another mirror has good data, the page is set up to date
1817 * and things continue. If a good mirror can't be found, the original
1818 * bio end_io callback is called to indicate things have failed.
1819 */
7e38326f
CM
1820struct io_failure_record {
1821 struct page *page;
1822 u64 start;
1823 u64 len;
1824 u64 logical;
d20f7043 1825 unsigned long bio_flags;
7e38326f
CM
1826 int last_mirror;
1827};
1828
b2950863 1829static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1830 struct page *page, u64 start, u64 end,
1831 struct extent_state *state)
7e38326f
CM
1832{
1833 struct io_failure_record *failrec = NULL;
1834 u64 private;
1835 struct extent_map *em;
1836 struct inode *inode = page->mapping->host;
1837 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1838 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1839 struct bio *bio;
1840 int num_copies;
1841 int ret;
1259ab75 1842 int rw;
7e38326f
CM
1843 u64 logical;
1844
1845 ret = get_state_private(failure_tree, start, &private);
1846 if (ret) {
7e38326f
CM
1847 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1848 if (!failrec)
1849 return -ENOMEM;
1850 failrec->start = start;
1851 failrec->len = end - start + 1;
1852 failrec->last_mirror = 0;
d20f7043 1853 failrec->bio_flags = 0;
7e38326f 1854
890871be 1855 read_lock(&em_tree->lock);
3b951516
CM
1856 em = lookup_extent_mapping(em_tree, start, failrec->len);
1857 if (em->start > start || em->start + em->len < start) {
1858 free_extent_map(em);
1859 em = NULL;
1860 }
890871be 1861 read_unlock(&em_tree->lock);
7e38326f
CM
1862
1863 if (!em || IS_ERR(em)) {
1864 kfree(failrec);
1865 return -EIO;
1866 }
1867 logical = start - em->start;
1868 logical = em->block_start + logical;
d20f7043
CM
1869 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1870 logical = em->block_start;
1871 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1872 }
7e38326f
CM
1873 failrec->logical = logical;
1874 free_extent_map(em);
1875 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1876 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1877 set_state_private(failure_tree, start,
1878 (u64)(unsigned long)failrec);
7e38326f 1879 } else {
587f7704 1880 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1881 }
1882 num_copies = btrfs_num_copies(
1883 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1884 failrec->logical, failrec->len);
1885 failrec->last_mirror++;
1886 if (!state) {
cad321ad 1887 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1888 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1889 failrec->start,
1890 EXTENT_LOCKED);
1891 if (state && state->start != failrec->start)
1892 state = NULL;
cad321ad 1893 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1894 }
1895 if (!state || failrec->last_mirror > num_copies) {
1896 set_state_private(failure_tree, failrec->start, 0);
1897 clear_extent_bits(failure_tree, failrec->start,
1898 failrec->start + failrec->len - 1,
1899 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1900 kfree(failrec);
1901 return -EIO;
1902 }
1903 bio = bio_alloc(GFP_NOFS, 1);
1904 bio->bi_private = state;
1905 bio->bi_end_io = failed_bio->bi_end_io;
1906 bio->bi_sector = failrec->logical >> 9;
1907 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1908 bio->bi_size = 0;
d20f7043 1909
7e38326f 1910 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1259ab75
CM
1911 if (failed_bio->bi_rw & (1 << BIO_RW))
1912 rw = WRITE;
1913 else
1914 rw = READ;
1915
1916 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1917 failrec->last_mirror,
d20f7043 1918 failrec->bio_flags);
1259ab75
CM
1919 return 0;
1920}
1921
d352ac68
CM
1922/*
1923 * each time an IO finishes, we do a fast check in the IO failure tree
1924 * to see if we need to process or clean up an io_failure_record
1925 */
b2950863 1926static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1927{
1928 u64 private;
1929 u64 private_failure;
1930 struct io_failure_record *failure;
1931 int ret;
1932
1933 private = 0;
1934 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1935 (u64)-1, 1, EXTENT_DIRTY)) {
1936 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1937 start, &private_failure);
1938 if (ret == 0) {
1939 failure = (struct io_failure_record *)(unsigned long)
1940 private_failure;
1941 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1942 failure->start, 0);
1943 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1944 failure->start,
1945 failure->start + failure->len - 1,
1946 EXTENT_DIRTY | EXTENT_LOCKED,
1947 GFP_NOFS);
1948 kfree(failure);
1949 }
1950 }
7e38326f
CM
1951 return 0;
1952}
1953
d352ac68
CM
1954/*
1955 * when reads are done, we need to check csums to verify the data is correct
1956 * if there's a match, we allow the bio to finish. If not, we go through
1957 * the io_failure_record routines to find good copies
1958 */
b2950863 1959static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1960 struct extent_state *state)
07157aac 1961{
35ebb934 1962 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1963 struct inode *inode = page->mapping->host;
d1310b2e 1964 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1965 char *kaddr;
aadfeb6e 1966 u64 private = ~(u32)0;
07157aac 1967 int ret;
ff79f819
CM
1968 struct btrfs_root *root = BTRFS_I(inode)->root;
1969 u32 csum = ~(u32)0;
d1310b2e 1970
d20f7043
CM
1971 if (PageChecked(page)) {
1972 ClearPageChecked(page);
1973 goto good;
1974 }
6cbff00f
CH
1975
1976 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1977 return 0;
1978
1979 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1980 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1981 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1982 GFP_NOFS);
b6cda9bc 1983 return 0;
17d217fe 1984 }
d20f7043 1985
c2e639f0 1986 if (state && state->start == start) {
70dec807
CM
1987 private = state->private;
1988 ret = 0;
1989 } else {
1990 ret = get_state_private(io_tree, start, &private);
1991 }
9ab86c8e 1992 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1993 if (ret)
07157aac 1994 goto zeroit;
d397712b 1995
ff79f819
CM
1996 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1997 btrfs_csum_final(csum, (char *)&csum);
d397712b 1998 if (csum != private)
07157aac 1999 goto zeroit;
d397712b 2000
9ab86c8e 2001 kunmap_atomic(kaddr, KM_USER0);
d20f7043 2002good:
7e38326f
CM
2003 /* if the io failure tree for this inode is non-empty,
2004 * check to see if we've recovered from a failed IO
2005 */
1259ab75 2006 btrfs_clean_io_failures(inode, start);
07157aac
CM
2007 return 0;
2008
2009zeroit:
193f284d
CM
2010 if (printk_ratelimit()) {
2011 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2012 "private %llu\n", page->mapping->host->i_ino,
2013 (unsigned long long)start, csum,
2014 (unsigned long long)private);
2015 }
db94535d
CM
2016 memset(kaddr + offset, 1, end - start + 1);
2017 flush_dcache_page(page);
9ab86c8e 2018 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2019 if (private == 0)
2020 return 0;
7e38326f 2021 return -EIO;
07157aac 2022}
b888db2b 2023
7b128766
JB
2024/*
2025 * This creates an orphan entry for the given inode in case something goes
2026 * wrong in the middle of an unlink/truncate.
2027 */
2028int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2029{
2030 struct btrfs_root *root = BTRFS_I(inode)->root;
2031 int ret = 0;
2032
bcc63abb 2033 spin_lock(&root->list_lock);
7b128766
JB
2034
2035 /* already on the orphan list, we're good */
2036 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 2037 spin_unlock(&root->list_lock);
7b128766
JB
2038 return 0;
2039 }
2040
2041 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2042
bcc63abb 2043 spin_unlock(&root->list_lock);
7b128766
JB
2044
2045 /*
2046 * insert an orphan item to track this unlinked/truncated file
2047 */
2048 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2049
2050 return ret;
2051}
2052
2053/*
2054 * We have done the truncate/delete so we can go ahead and remove the orphan
2055 * item for this particular inode.
2056 */
2057int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2058{
2059 struct btrfs_root *root = BTRFS_I(inode)->root;
2060 int ret = 0;
2061
bcc63abb 2062 spin_lock(&root->list_lock);
7b128766
JB
2063
2064 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 2065 spin_unlock(&root->list_lock);
7b128766
JB
2066 return 0;
2067 }
2068
2069 list_del_init(&BTRFS_I(inode)->i_orphan);
2070 if (!trans) {
bcc63abb 2071 spin_unlock(&root->list_lock);
7b128766
JB
2072 return 0;
2073 }
2074
bcc63abb 2075 spin_unlock(&root->list_lock);
7b128766
JB
2076
2077 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2078
2079 return ret;
2080}
2081
2082/*
2083 * this cleans up any orphans that may be left on the list from the last use
2084 * of this root.
2085 */
2086void btrfs_orphan_cleanup(struct btrfs_root *root)
2087{
2088 struct btrfs_path *path;
2089 struct extent_buffer *leaf;
2090 struct btrfs_item *item;
2091 struct btrfs_key key, found_key;
2092 struct btrfs_trans_handle *trans;
2093 struct inode *inode;
2094 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2095
c71bf099 2096 if (!xchg(&root->clean_orphans, 0))
7b128766 2097 return;
c71bf099
YZ
2098
2099 path = btrfs_alloc_path();
2100 BUG_ON(!path);
7b128766
JB
2101 path->reada = -1;
2102
2103 key.objectid = BTRFS_ORPHAN_OBJECTID;
2104 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2105 key.offset = (u64)-1;
2106
7b128766
JB
2107 while (1) {
2108 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2109 if (ret < 0) {
2110 printk(KERN_ERR "Error searching slot for orphan: %d"
2111 "\n", ret);
2112 break;
2113 }
2114
2115 /*
2116 * if ret == 0 means we found what we were searching for, which
2117 * is weird, but possible, so only screw with path if we didnt
2118 * find the key and see if we have stuff that matches
2119 */
2120 if (ret > 0) {
2121 if (path->slots[0] == 0)
2122 break;
2123 path->slots[0]--;
2124 }
2125
2126 /* pull out the item */
2127 leaf = path->nodes[0];
2128 item = btrfs_item_nr(leaf, path->slots[0]);
2129 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2130
2131 /* make sure the item matches what we want */
2132 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2133 break;
2134 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2135 break;
2136
2137 /* release the path since we're done with it */
2138 btrfs_release_path(root, path);
2139
2140 /*
2141 * this is where we are basically btrfs_lookup, without the
2142 * crossing root thing. we store the inode number in the
2143 * offset of the orphan item.
2144 */
5d4f98a2
YZ
2145 found_key.objectid = found_key.offset;
2146 found_key.type = BTRFS_INODE_ITEM_KEY;
2147 found_key.offset = 0;
2148 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
2149 if (IS_ERR(inode))
7b128766
JB
2150 break;
2151
7b128766
JB
2152 /*
2153 * add this inode to the orphan list so btrfs_orphan_del does
2154 * the proper thing when we hit it
2155 */
bcc63abb 2156 spin_lock(&root->list_lock);
7b128766 2157 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
bcc63abb 2158 spin_unlock(&root->list_lock);
7b128766
JB
2159
2160 /*
2161 * if this is a bad inode, means we actually succeeded in
2162 * removing the inode, but not the orphan record, which means
2163 * we need to manually delete the orphan since iput will just
2164 * do a destroy_inode
2165 */
2166 if (is_bad_inode(inode)) {
5b21f2ed 2167 trans = btrfs_start_transaction(root, 1);
7b128766 2168 btrfs_orphan_del(trans, inode);
5b21f2ed 2169 btrfs_end_transaction(trans, root);
7b128766
JB
2170 iput(inode);
2171 continue;
2172 }
2173
2174 /* if we have links, this was a truncate, lets do that */
2175 if (inode->i_nlink) {
2176 nr_truncate++;
2177 btrfs_truncate(inode);
2178 } else {
2179 nr_unlink++;
2180 }
2181
2182 /* this will do delete_inode and everything for us */
2183 iput(inode);
2184 }
2185
2186 if (nr_unlink)
2187 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2188 if (nr_truncate)
2189 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2190
2191 btrfs_free_path(path);
7b128766
JB
2192}
2193
46a53cca
CM
2194/*
2195 * very simple check to peek ahead in the leaf looking for xattrs. If we
2196 * don't find any xattrs, we know there can't be any acls.
2197 *
2198 * slot is the slot the inode is in, objectid is the objectid of the inode
2199 */
2200static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2201 int slot, u64 objectid)
2202{
2203 u32 nritems = btrfs_header_nritems(leaf);
2204 struct btrfs_key found_key;
2205 int scanned = 0;
2206
2207 slot++;
2208 while (slot < nritems) {
2209 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2210
2211 /* we found a different objectid, there must not be acls */
2212 if (found_key.objectid != objectid)
2213 return 0;
2214
2215 /* we found an xattr, assume we've got an acl */
2216 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2217 return 1;
2218
2219 /*
2220 * we found a key greater than an xattr key, there can't
2221 * be any acls later on
2222 */
2223 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2224 return 0;
2225
2226 slot++;
2227 scanned++;
2228
2229 /*
2230 * it goes inode, inode backrefs, xattrs, extents,
2231 * so if there are a ton of hard links to an inode there can
2232 * be a lot of backrefs. Don't waste time searching too hard,
2233 * this is just an optimization
2234 */
2235 if (scanned >= 8)
2236 break;
2237 }
2238 /* we hit the end of the leaf before we found an xattr or
2239 * something larger than an xattr. We have to assume the inode
2240 * has acls
2241 */
2242 return 1;
2243}
2244
d352ac68
CM
2245/*
2246 * read an inode from the btree into the in-memory inode
2247 */
5d4f98a2 2248static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2249{
2250 struct btrfs_path *path;
5f39d397 2251 struct extent_buffer *leaf;
39279cc3 2252 struct btrfs_inode_item *inode_item;
0b86a832 2253 struct btrfs_timespec *tspec;
39279cc3
CM
2254 struct btrfs_root *root = BTRFS_I(inode)->root;
2255 struct btrfs_key location;
46a53cca 2256 int maybe_acls;
39279cc3 2257 u64 alloc_group_block;
618e21d5 2258 u32 rdev;
39279cc3
CM
2259 int ret;
2260
2261 path = btrfs_alloc_path();
2262 BUG_ON(!path);
39279cc3 2263 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2264
39279cc3 2265 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2266 if (ret)
39279cc3 2267 goto make_bad;
39279cc3 2268
5f39d397
CM
2269 leaf = path->nodes[0];
2270 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2271 struct btrfs_inode_item);
2272
2273 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2274 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2275 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2276 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2277 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2278
2279 tspec = btrfs_inode_atime(inode_item);
2280 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2281 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2282
2283 tspec = btrfs_inode_mtime(inode_item);
2284 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2285 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2286
2287 tspec = btrfs_inode_ctime(inode_item);
2288 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2289 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2290
a76a3cd4 2291 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2292 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2293 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2294 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2295 inode->i_rdev = 0;
5f39d397
CM
2296 rdev = btrfs_inode_rdev(leaf, inode_item);
2297
aec7477b 2298 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2299 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2300
5f39d397 2301 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2302
46a53cca
CM
2303 /*
2304 * try to precache a NULL acl entry for files that don't have
2305 * any xattrs or acls
2306 */
2307 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2308 if (!maybe_acls)
2309 cache_no_acl(inode);
46a53cca 2310
d2fb3437
YZ
2311 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2312 alloc_group_block, 0);
39279cc3
CM
2313 btrfs_free_path(path);
2314 inode_item = NULL;
2315
39279cc3 2316 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2317 case S_IFREG:
2318 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2319 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2320 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2321 inode->i_fop = &btrfs_file_operations;
2322 inode->i_op = &btrfs_file_inode_operations;
2323 break;
2324 case S_IFDIR:
2325 inode->i_fop = &btrfs_dir_file_operations;
2326 if (root == root->fs_info->tree_root)
2327 inode->i_op = &btrfs_dir_ro_inode_operations;
2328 else
2329 inode->i_op = &btrfs_dir_inode_operations;
2330 break;
2331 case S_IFLNK:
2332 inode->i_op = &btrfs_symlink_inode_operations;
2333 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2334 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2335 break;
618e21d5 2336 default:
0279b4cd 2337 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2338 init_special_inode(inode, inode->i_mode, rdev);
2339 break;
39279cc3 2340 }
6cbff00f
CH
2341
2342 btrfs_update_iflags(inode);
39279cc3
CM
2343 return;
2344
2345make_bad:
39279cc3 2346 btrfs_free_path(path);
39279cc3
CM
2347 make_bad_inode(inode);
2348}
2349
d352ac68
CM
2350/*
2351 * given a leaf and an inode, copy the inode fields into the leaf
2352 */
e02119d5
CM
2353static void fill_inode_item(struct btrfs_trans_handle *trans,
2354 struct extent_buffer *leaf,
5f39d397 2355 struct btrfs_inode_item *item,
39279cc3
CM
2356 struct inode *inode)
2357{
5f39d397
CM
2358 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2359 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2360 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2361 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2362 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2363
2364 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2365 inode->i_atime.tv_sec);
2366 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2367 inode->i_atime.tv_nsec);
2368
2369 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2370 inode->i_mtime.tv_sec);
2371 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2372 inode->i_mtime.tv_nsec);
2373
2374 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2375 inode->i_ctime.tv_sec);
2376 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2377 inode->i_ctime.tv_nsec);
2378
a76a3cd4 2379 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2380 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2381 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2382 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2383 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2384 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2385 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2386}
2387
d352ac68
CM
2388/*
2389 * copy everything in the in-memory inode into the btree.
2390 */
d397712b
CM
2391noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2392 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2393{
2394 struct btrfs_inode_item *inode_item;
2395 struct btrfs_path *path;
5f39d397 2396 struct extent_buffer *leaf;
39279cc3
CM
2397 int ret;
2398
2399 path = btrfs_alloc_path();
2400 BUG_ON(!path);
b9473439 2401 path->leave_spinning = 1;
39279cc3
CM
2402 ret = btrfs_lookup_inode(trans, root, path,
2403 &BTRFS_I(inode)->location, 1);
2404 if (ret) {
2405 if (ret > 0)
2406 ret = -ENOENT;
2407 goto failed;
2408 }
2409
b4ce94de 2410 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2411 leaf = path->nodes[0];
2412 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2413 struct btrfs_inode_item);
2414
e02119d5 2415 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2416 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2417 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2418 ret = 0;
2419failed:
39279cc3
CM
2420 btrfs_free_path(path);
2421 return ret;
2422}
2423
2424
d352ac68
CM
2425/*
2426 * unlink helper that gets used here in inode.c and in the tree logging
2427 * recovery code. It remove a link in a directory with a given name, and
2428 * also drops the back refs in the inode to the directory
2429 */
e02119d5
CM
2430int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2431 struct btrfs_root *root,
2432 struct inode *dir, struct inode *inode,
2433 const char *name, int name_len)
39279cc3
CM
2434{
2435 struct btrfs_path *path;
39279cc3 2436 int ret = 0;
5f39d397 2437 struct extent_buffer *leaf;
39279cc3 2438 struct btrfs_dir_item *di;
5f39d397 2439 struct btrfs_key key;
aec7477b 2440 u64 index;
39279cc3
CM
2441
2442 path = btrfs_alloc_path();
54aa1f4d
CM
2443 if (!path) {
2444 ret = -ENOMEM;
2445 goto err;
2446 }
2447
b9473439 2448 path->leave_spinning = 1;
39279cc3
CM
2449 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2450 name, name_len, -1);
2451 if (IS_ERR(di)) {
2452 ret = PTR_ERR(di);
2453 goto err;
2454 }
2455 if (!di) {
2456 ret = -ENOENT;
2457 goto err;
2458 }
5f39d397
CM
2459 leaf = path->nodes[0];
2460 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2461 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2462 if (ret)
2463 goto err;
39279cc3
CM
2464 btrfs_release_path(root, path);
2465
aec7477b 2466 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2467 inode->i_ino,
2468 dir->i_ino, &index);
aec7477b 2469 if (ret) {
d397712b 2470 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2471 "inode %lu parent %lu\n", name_len, name,
e02119d5 2472 inode->i_ino, dir->i_ino);
aec7477b
JB
2473 goto err;
2474 }
2475
39279cc3 2476 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2477 index, name, name_len, -1);
39279cc3
CM
2478 if (IS_ERR(di)) {
2479 ret = PTR_ERR(di);
2480 goto err;
2481 }
2482 if (!di) {
2483 ret = -ENOENT;
2484 goto err;
2485 }
2486 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2487 btrfs_release_path(root, path);
39279cc3 2488
e02119d5
CM
2489 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2490 inode, dir->i_ino);
49eb7e46 2491 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2492
2493 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2494 dir, index);
2495 BUG_ON(ret);
39279cc3
CM
2496err:
2497 btrfs_free_path(path);
e02119d5
CM
2498 if (ret)
2499 goto out;
2500
2501 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2502 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2503 btrfs_update_inode(trans, root, dir);
2504 btrfs_drop_nlink(inode);
2505 ret = btrfs_update_inode(trans, root, inode);
e02119d5 2506out:
39279cc3
CM
2507 return ret;
2508}
2509
2510static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2511{
2512 struct btrfs_root *root;
2513 struct btrfs_trans_handle *trans;
7b128766 2514 struct inode *inode = dentry->d_inode;
39279cc3 2515 int ret;
1832a6d5 2516 unsigned long nr = 0;
39279cc3
CM
2517
2518 root = BTRFS_I(dir)->root;
1832a6d5 2519
5df6a9f6
JB
2520 /*
2521 * 5 items for unlink inode
2522 * 1 for orphan
2523 */
2524 ret = btrfs_reserve_metadata_space(root, 6);
2525 if (ret)
2526 return ret;
2527
39279cc3 2528 trans = btrfs_start_transaction(root, 1);
5df6a9f6
JB
2529 if (IS_ERR(trans)) {
2530 btrfs_unreserve_metadata_space(root, 6);
2531 return PTR_ERR(trans);
2532 }
5f39d397 2533
39279cc3 2534 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2535
2536 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2537
e02119d5
CM
2538 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2539 dentry->d_name.name, dentry->d_name.len);
7b128766
JB
2540
2541 if (inode->i_nlink == 0)
2542 ret = btrfs_orphan_add(trans, inode);
2543
d3c2fdcf 2544 nr = trans->blocks_used;
5f39d397 2545
89ce8a63 2546 btrfs_end_transaction_throttle(trans, root);
5df6a9f6 2547 btrfs_unreserve_metadata_space(root, 6);
d3c2fdcf 2548 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2549 return ret;
2550}
2551
4df27c4d
YZ
2552int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2553 struct btrfs_root *root,
2554 struct inode *dir, u64 objectid,
2555 const char *name, int name_len)
2556{
2557 struct btrfs_path *path;
2558 struct extent_buffer *leaf;
2559 struct btrfs_dir_item *di;
2560 struct btrfs_key key;
2561 u64 index;
2562 int ret;
2563
2564 path = btrfs_alloc_path();
2565 if (!path)
2566 return -ENOMEM;
2567
2568 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2569 name, name_len, -1);
2570 BUG_ON(!di || IS_ERR(di));
2571
2572 leaf = path->nodes[0];
2573 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2574 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2575 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2576 BUG_ON(ret);
2577 btrfs_release_path(root, path);
2578
2579 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2580 objectid, root->root_key.objectid,
2581 dir->i_ino, &index, name, name_len);
2582 if (ret < 0) {
2583 BUG_ON(ret != -ENOENT);
2584 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2585 name, name_len);
2586 BUG_ON(!di || IS_ERR(di));
2587
2588 leaf = path->nodes[0];
2589 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2590 btrfs_release_path(root, path);
2591 index = key.offset;
2592 }
2593
2594 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2595 index, name, name_len, -1);
2596 BUG_ON(!di || IS_ERR(di));
2597
2598 leaf = path->nodes[0];
2599 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2600 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2601 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2602 BUG_ON(ret);
2603 btrfs_release_path(root, path);
2604
2605 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2606 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2607 ret = btrfs_update_inode(trans, root, dir);
2608 BUG_ON(ret);
2609 dir->i_sb->s_dirt = 1;
2610
2611 btrfs_free_path(path);
2612 return 0;
2613}
2614
39279cc3
CM
2615static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2616{
2617 struct inode *inode = dentry->d_inode;
1832a6d5 2618 int err = 0;
39279cc3
CM
2619 int ret;
2620 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2621 struct btrfs_trans_handle *trans;
1832a6d5 2622 unsigned long nr = 0;
39279cc3 2623
3394e160 2624 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
4df27c4d 2625 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
2626 return -ENOTEMPTY;
2627
5df6a9f6
JB
2628 ret = btrfs_reserve_metadata_space(root, 5);
2629 if (ret)
2630 return ret;
2631
39279cc3 2632 trans = btrfs_start_transaction(root, 1);
5df6a9f6
JB
2633 if (IS_ERR(trans)) {
2634 btrfs_unreserve_metadata_space(root, 5);
2635 return PTR_ERR(trans);
2636 }
2637
39279cc3 2638 btrfs_set_trans_block_group(trans, dir);
39279cc3 2639
4df27c4d
YZ
2640 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2641 err = btrfs_unlink_subvol(trans, root, dir,
2642 BTRFS_I(inode)->location.objectid,
2643 dentry->d_name.name,
2644 dentry->d_name.len);
2645 goto out;
2646 }
2647
7b128766
JB
2648 err = btrfs_orphan_add(trans, inode);
2649 if (err)
4df27c4d 2650 goto out;
7b128766 2651
39279cc3 2652 /* now the directory is empty */
e02119d5
CM
2653 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2654 dentry->d_name.name, dentry->d_name.len);
d397712b 2655 if (!err)
dbe674a9 2656 btrfs_i_size_write(inode, 0);
4df27c4d 2657out:
d3c2fdcf 2658 nr = trans->blocks_used;
89ce8a63 2659 ret = btrfs_end_transaction_throttle(trans, root);
5df6a9f6 2660 btrfs_unreserve_metadata_space(root, 5);
d3c2fdcf 2661 btrfs_btree_balance_dirty(root, nr);
3954401f 2662
39279cc3
CM
2663 if (ret && !err)
2664 err = ret;
2665 return err;
2666}
2667
d20f7043 2668#if 0
323ac95b
CM
2669/*
2670 * when truncating bytes in a file, it is possible to avoid reading
2671 * the leaves that contain only checksum items. This can be the
2672 * majority of the IO required to delete a large file, but it must
2673 * be done carefully.
2674 *
2675 * The keys in the level just above the leaves are checked to make sure
2676 * the lowest key in a given leaf is a csum key, and starts at an offset
2677 * after the new size.
2678 *
2679 * Then the key for the next leaf is checked to make sure it also has
2680 * a checksum item for the same file. If it does, we know our target leaf
2681 * contains only checksum items, and it can be safely freed without reading
2682 * it.
2683 *
2684 * This is just an optimization targeted at large files. It may do
2685 * nothing. It will return 0 unless things went badly.
2686 */
2687static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2688 struct btrfs_root *root,
2689 struct btrfs_path *path,
2690 struct inode *inode, u64 new_size)
2691{
2692 struct btrfs_key key;
2693 int ret;
2694 int nritems;
2695 struct btrfs_key found_key;
2696 struct btrfs_key other_key;
5b84e8d6
YZ
2697 struct btrfs_leaf_ref *ref;
2698 u64 leaf_gen;
2699 u64 leaf_start;
323ac95b
CM
2700
2701 path->lowest_level = 1;
2702 key.objectid = inode->i_ino;
2703 key.type = BTRFS_CSUM_ITEM_KEY;
2704 key.offset = new_size;
2705again:
2706 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2707 if (ret < 0)
2708 goto out;
2709
2710 if (path->nodes[1] == NULL) {
2711 ret = 0;
2712 goto out;
2713 }
2714 ret = 0;
2715 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2716 nritems = btrfs_header_nritems(path->nodes[1]);
2717
2718 if (!nritems)
2719 goto out;
2720
2721 if (path->slots[1] >= nritems)
2722 goto next_node;
2723
2724 /* did we find a key greater than anything we want to delete? */
2725 if (found_key.objectid > inode->i_ino ||
2726 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2727 goto out;
2728
2729 /* we check the next key in the node to make sure the leave contains
2730 * only checksum items. This comparison doesn't work if our
2731 * leaf is the last one in the node
2732 */
2733 if (path->slots[1] + 1 >= nritems) {
2734next_node:
2735 /* search forward from the last key in the node, this
2736 * will bring us into the next node in the tree
2737 */
2738 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2739
2740 /* unlikely, but we inc below, so check to be safe */
2741 if (found_key.offset == (u64)-1)
2742 goto out;
2743
2744 /* search_forward needs a path with locks held, do the
2745 * search again for the original key. It is possible
2746 * this will race with a balance and return a path that
2747 * we could modify, but this drop is just an optimization
2748 * and is allowed to miss some leaves.
2749 */
2750 btrfs_release_path(root, path);
2751 found_key.offset++;
2752
2753 /* setup a max key for search_forward */
2754 other_key.offset = (u64)-1;
2755 other_key.type = key.type;
2756 other_key.objectid = key.objectid;
2757
2758 path->keep_locks = 1;
2759 ret = btrfs_search_forward(root, &found_key, &other_key,
2760 path, 0, 0);
2761 path->keep_locks = 0;
2762 if (ret || found_key.objectid != key.objectid ||
2763 found_key.type != key.type) {
2764 ret = 0;
2765 goto out;
2766 }
2767
2768 key.offset = found_key.offset;
2769 btrfs_release_path(root, path);
2770 cond_resched();
2771 goto again;
2772 }
2773
2774 /* we know there's one more slot after us in the tree,
2775 * read that key so we can verify it is also a checksum item
2776 */
2777 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2778
2779 if (found_key.objectid < inode->i_ino)
2780 goto next_key;
2781
2782 if (found_key.type != key.type || found_key.offset < new_size)
2783 goto next_key;
2784
2785 /*
2786 * if the key for the next leaf isn't a csum key from this objectid,
2787 * we can't be sure there aren't good items inside this leaf.
2788 * Bail out
2789 */
2790 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2791 goto out;
2792
5b84e8d6
YZ
2793 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2794 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
2795 /*
2796 * it is safe to delete this leaf, it contains only
2797 * csum items from this inode at an offset >= new_size
2798 */
5b84e8d6 2799 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
2800 BUG_ON(ret);
2801
5b84e8d6
YZ
2802 if (root->ref_cows && leaf_gen < trans->transid) {
2803 ref = btrfs_alloc_leaf_ref(root, 0);
2804 if (ref) {
2805 ref->root_gen = root->root_key.offset;
2806 ref->bytenr = leaf_start;
2807 ref->owner = 0;
2808 ref->generation = leaf_gen;
2809 ref->nritems = 0;
2810
bd56b302
CM
2811 btrfs_sort_leaf_ref(ref);
2812
5b84e8d6
YZ
2813 ret = btrfs_add_leaf_ref(root, ref, 0);
2814 WARN_ON(ret);
2815 btrfs_free_leaf_ref(root, ref);
2816 } else {
2817 WARN_ON(1);
2818 }
2819 }
323ac95b
CM
2820next_key:
2821 btrfs_release_path(root, path);
2822
2823 if (other_key.objectid == inode->i_ino &&
2824 other_key.type == key.type && other_key.offset > key.offset) {
2825 key.offset = other_key.offset;
2826 cond_resched();
2827 goto again;
2828 }
2829 ret = 0;
2830out:
2831 /* fixup any changes we've made to the path */
2832 path->lowest_level = 0;
2833 path->keep_locks = 0;
2834 btrfs_release_path(root, path);
2835 return ret;
2836}
2837
d20f7043
CM
2838#endif
2839
39279cc3
CM
2840/*
2841 * this can truncate away extent items, csum items and directory items.
2842 * It starts at a high offset and removes keys until it can't find
d352ac68 2843 * any higher than new_size
39279cc3
CM
2844 *
2845 * csum items that cross the new i_size are truncated to the new size
2846 * as well.
7b128766
JB
2847 *
2848 * min_type is the minimum key type to truncate down to. If set to 0, this
2849 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 2850 */
e02119d5
CM
2851noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2852 struct btrfs_root *root,
2853 struct inode *inode,
2854 u64 new_size, u32 min_type)
39279cc3
CM
2855{
2856 int ret;
2857 struct btrfs_path *path;
2858 struct btrfs_key key;
5f39d397 2859 struct btrfs_key found_key;
06d9a8d7 2860 u32 found_type = (u8)-1;
5f39d397 2861 struct extent_buffer *leaf;
39279cc3
CM
2862 struct btrfs_file_extent_item *fi;
2863 u64 extent_start = 0;
db94535d 2864 u64 extent_num_bytes = 0;
5d4f98a2 2865 u64 extent_offset = 0;
39279cc3
CM
2866 u64 item_end = 0;
2867 int found_extent;
2868 int del_item;
85e21bac
CM
2869 int pending_del_nr = 0;
2870 int pending_del_slot = 0;
179e29e4 2871 int extent_type = -1;
771ed689 2872 int encoding;
3b951516 2873 u64 mask = root->sectorsize - 1;
39279cc3 2874
e02119d5 2875 if (root->ref_cows)
5b21f2ed 2876 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
39279cc3
CM
2877 path = btrfs_alloc_path();
2878 BUG_ON(!path);
33c17ad5 2879 path->reada = -1;
5f39d397 2880
39279cc3
CM
2881 /* FIXME, add redo link to tree so we don't leak on crash */
2882 key.objectid = inode->i_ino;
2883 key.offset = (u64)-1;
5f39d397
CM
2884 key.type = (u8)-1;
2885
85e21bac 2886search_again:
b9473439 2887 path->leave_spinning = 1;
85e21bac 2888 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
d397712b 2889 if (ret < 0)
85e21bac 2890 goto error;
d397712b 2891
85e21bac 2892 if (ret > 0) {
e02119d5
CM
2893 /* there are no items in the tree for us to truncate, we're
2894 * done
2895 */
2896 if (path->slots[0] == 0) {
2897 ret = 0;
2898 goto error;
2899 }
85e21bac
CM
2900 path->slots[0]--;
2901 }
2902
d397712b 2903 while (1) {
39279cc3 2904 fi = NULL;
5f39d397
CM
2905 leaf = path->nodes[0];
2906 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2907 found_type = btrfs_key_type(&found_key);
771ed689 2908 encoding = 0;
39279cc3 2909
5f39d397 2910 if (found_key.objectid != inode->i_ino)
39279cc3 2911 break;
5f39d397 2912
85e21bac 2913 if (found_type < min_type)
39279cc3
CM
2914 break;
2915
5f39d397 2916 item_end = found_key.offset;
39279cc3 2917 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 2918 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 2919 struct btrfs_file_extent_item);
179e29e4 2920 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
2921 encoding = btrfs_file_extent_compression(leaf, fi);
2922 encoding |= btrfs_file_extent_encryption(leaf, fi);
2923 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2924
179e29e4 2925 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 2926 item_end +=
db94535d 2927 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 2928 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 2929 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 2930 fi);
39279cc3 2931 }
008630c1 2932 item_end--;
39279cc3 2933 }
e02119d5 2934 if (item_end < new_size) {
d397712b 2935 if (found_type == BTRFS_DIR_ITEM_KEY)
b888db2b 2936 found_type = BTRFS_INODE_ITEM_KEY;
d397712b 2937 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
d20f7043 2938 found_type = BTRFS_EXTENT_DATA_KEY;
d397712b 2939 else if (found_type == BTRFS_EXTENT_DATA_KEY)
85e21bac 2940 found_type = BTRFS_XATTR_ITEM_KEY;
d397712b 2941 else if (found_type == BTRFS_XATTR_ITEM_KEY)
85e21bac 2942 found_type = BTRFS_INODE_REF_KEY;
d397712b 2943 else if (found_type)
b888db2b 2944 found_type--;
d397712b 2945 else
b888db2b 2946 break;
a61721d5 2947 btrfs_set_key_type(&key, found_type);
85e21bac 2948 goto next;
39279cc3 2949 }
e02119d5 2950 if (found_key.offset >= new_size)
39279cc3
CM
2951 del_item = 1;
2952 else
2953 del_item = 0;
2954 found_extent = 0;
2955
2956 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
2957 if (found_type != BTRFS_EXTENT_DATA_KEY)
2958 goto delete;
2959
2960 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 2961 u64 num_dec;
db94535d 2962 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 2963 if (!del_item && !encoding) {
db94535d
CM
2964 u64 orig_num_bytes =
2965 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 2966 extent_num_bytes = new_size -
5f39d397 2967 found_key.offset + root->sectorsize - 1;
b1632b10
Y
2968 extent_num_bytes = extent_num_bytes &
2969 ~((u64)root->sectorsize - 1);
db94535d
CM
2970 btrfs_set_file_extent_num_bytes(leaf, fi,
2971 extent_num_bytes);
2972 num_dec = (orig_num_bytes -
9069218d 2973 extent_num_bytes);
e02119d5 2974 if (root->ref_cows && extent_start != 0)
a76a3cd4 2975 inode_sub_bytes(inode, num_dec);
5f39d397 2976 btrfs_mark_buffer_dirty(leaf);
39279cc3 2977 } else {
db94535d
CM
2978 extent_num_bytes =
2979 btrfs_file_extent_disk_num_bytes(leaf,
2980 fi);
5d4f98a2
YZ
2981 extent_offset = found_key.offset -
2982 btrfs_file_extent_offset(leaf, fi);
2983
39279cc3 2984 /* FIXME blocksize != 4096 */
9069218d 2985 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
2986 if (extent_start != 0) {
2987 found_extent = 1;
e02119d5 2988 if (root->ref_cows)
a76a3cd4 2989 inode_sub_bytes(inode, num_dec);
e02119d5 2990 }
39279cc3 2991 }
9069218d 2992 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
2993 /*
2994 * we can't truncate inline items that have had
2995 * special encodings
2996 */
2997 if (!del_item &&
2998 btrfs_file_extent_compression(leaf, fi) == 0 &&
2999 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3000 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3001 u32 size = new_size - found_key.offset;
3002
3003 if (root->ref_cows) {
a76a3cd4
YZ
3004 inode_sub_bytes(inode, item_end + 1 -
3005 new_size);
e02119d5
CM
3006 }
3007 size =
3008 btrfs_file_extent_calc_inline_size(size);
9069218d 3009 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3010 size, 1);
9069218d 3011 BUG_ON(ret);
e02119d5 3012 } else if (root->ref_cows) {
a76a3cd4
YZ
3013 inode_sub_bytes(inode, item_end + 1 -
3014 found_key.offset);
9069218d 3015 }
39279cc3 3016 }
179e29e4 3017delete:
39279cc3 3018 if (del_item) {
85e21bac
CM
3019 if (!pending_del_nr) {
3020 /* no pending yet, add ourselves */
3021 pending_del_slot = path->slots[0];
3022 pending_del_nr = 1;
3023 } else if (pending_del_nr &&
3024 path->slots[0] + 1 == pending_del_slot) {
3025 /* hop on the pending chunk */
3026 pending_del_nr++;
3027 pending_del_slot = path->slots[0];
3028 } else {
d397712b 3029 BUG();
85e21bac 3030 }
39279cc3
CM
3031 } else {
3032 break;
3033 }
5d4f98a2 3034 if (found_extent && root->ref_cows) {
b9473439 3035 btrfs_set_path_blocking(path);
39279cc3 3036 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3037 extent_num_bytes, 0,
3038 btrfs_header_owner(leaf),
3039 inode->i_ino, extent_offset);
39279cc3
CM
3040 BUG_ON(ret);
3041 }
85e21bac
CM
3042next:
3043 if (path->slots[0] == 0) {
3044 if (pending_del_nr)
3045 goto del_pending;
3046 btrfs_release_path(root, path);
06d9a8d7
CM
3047 if (found_type == BTRFS_INODE_ITEM_KEY)
3048 break;
85e21bac
CM
3049 goto search_again;
3050 }
3051
3052 path->slots[0]--;
3053 if (pending_del_nr &&
3054 path->slots[0] + 1 != pending_del_slot) {
3055 struct btrfs_key debug;
3056del_pending:
3057 btrfs_item_key_to_cpu(path->nodes[0], &debug,
3058 pending_del_slot);
3059 ret = btrfs_del_items(trans, root, path,
3060 pending_del_slot,
3061 pending_del_nr);
3062 BUG_ON(ret);
3063 pending_del_nr = 0;
3064 btrfs_release_path(root, path);
06d9a8d7
CM
3065 if (found_type == BTRFS_INODE_ITEM_KEY)
3066 break;
85e21bac
CM
3067 goto search_again;
3068 }
39279cc3
CM
3069 }
3070 ret = 0;
3071error:
85e21bac
CM
3072 if (pending_del_nr) {
3073 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3074 pending_del_nr);
3075 }
39279cc3 3076 btrfs_free_path(path);
39279cc3
CM
3077 return ret;
3078}
3079
3080/*
3081 * taken from block_truncate_page, but does cow as it zeros out
3082 * any bytes left in the last page in the file.
3083 */
3084static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3085{
3086 struct inode *inode = mapping->host;
db94535d 3087 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3088 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3089 struct btrfs_ordered_extent *ordered;
3090 char *kaddr;
db94535d 3091 u32 blocksize = root->sectorsize;
39279cc3
CM
3092 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3093 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3094 struct page *page;
39279cc3 3095 int ret = 0;
a52d9a80 3096 u64 page_start;
e6dcd2dc 3097 u64 page_end;
39279cc3
CM
3098
3099 if ((offset & (blocksize - 1)) == 0)
3100 goto out;
5d5e103a
JB
3101 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
3102 if (ret)
3103 goto out;
3104
3105 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
3106 if (ret)
3107 goto out;
39279cc3
CM
3108
3109 ret = -ENOMEM;
211c17f5 3110again:
39279cc3 3111 page = grab_cache_page(mapping, index);
5d5e103a
JB
3112 if (!page) {
3113 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3114 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
39279cc3 3115 goto out;
5d5e103a 3116 }
e6dcd2dc
CM
3117
3118 page_start = page_offset(page);
3119 page_end = page_start + PAGE_CACHE_SIZE - 1;
3120
39279cc3 3121 if (!PageUptodate(page)) {
9ebefb18 3122 ret = btrfs_readpage(NULL, page);
39279cc3 3123 lock_page(page);
211c17f5
CM
3124 if (page->mapping != mapping) {
3125 unlock_page(page);
3126 page_cache_release(page);
3127 goto again;
3128 }
39279cc3
CM
3129 if (!PageUptodate(page)) {
3130 ret = -EIO;
89642229 3131 goto out_unlock;
39279cc3
CM
3132 }
3133 }
211c17f5 3134 wait_on_page_writeback(page);
e6dcd2dc
CM
3135
3136 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3137 set_page_extent_mapped(page);
3138
3139 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3140 if (ordered) {
3141 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3142 unlock_page(page);
3143 page_cache_release(page);
eb84ae03 3144 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3145 btrfs_put_ordered_extent(ordered);
3146 goto again;
3147 }
3148
5d5e103a
JB
3149 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
3150 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3151 GFP_NOFS);
3152
9ed74f2d
JB
3153 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3154 if (ret) {
3155 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3156 goto out_unlock;
3157 }
3158
e6dcd2dc
CM
3159 ret = 0;
3160 if (offset != PAGE_CACHE_SIZE) {
3161 kaddr = kmap(page);
3162 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3163 flush_dcache_page(page);
3164 kunmap(page);
3165 }
247e743c 3166 ClearPageChecked(page);
e6dcd2dc
CM
3167 set_page_dirty(page);
3168 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
39279cc3 3169
89642229 3170out_unlock:
5d5e103a
JB
3171 if (ret)
3172 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3173 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
39279cc3
CM
3174 unlock_page(page);
3175 page_cache_release(page);
3176out:
3177 return ret;
3178}
3179
9036c102 3180int btrfs_cont_expand(struct inode *inode, loff_t size)
39279cc3 3181{
9036c102
YZ
3182 struct btrfs_trans_handle *trans;
3183 struct btrfs_root *root = BTRFS_I(inode)->root;
3184 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3185 struct extent_map *em;
3186 u64 mask = root->sectorsize - 1;
3187 u64 hole_start = (inode->i_size + mask) & ~mask;
3188 u64 block_end = (size + mask) & ~mask;
3189 u64 last_byte;
3190 u64 cur_offset;
3191 u64 hole_size;
9ed74f2d 3192 int err = 0;
39279cc3 3193
9036c102
YZ
3194 if (size <= hole_start)
3195 return 0;
3196
5d5e103a
JB
3197 err = btrfs_truncate_page(inode->i_mapping, inode->i_size);
3198 if (err)
3199 return err;
2bf5a725 3200
9036c102
YZ
3201 while (1) {
3202 struct btrfs_ordered_extent *ordered;
3203 btrfs_wait_ordered_range(inode, hole_start,
3204 block_end - hole_start);
3205 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3206 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3207 if (!ordered)
3208 break;
3209 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3210 btrfs_put_ordered_extent(ordered);
3211 }
39279cc3 3212
9036c102
YZ
3213 trans = btrfs_start_transaction(root, 1);
3214 btrfs_set_trans_block_group(trans, inode);
39279cc3 3215
9036c102
YZ
3216 cur_offset = hole_start;
3217 while (1) {
3218 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3219 block_end - cur_offset, 0);
3220 BUG_ON(IS_ERR(em) || !em);
3221 last_byte = min(extent_map_end(em), block_end);
3222 last_byte = (last_byte + mask) & ~mask;
3223 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
771ed689 3224 u64 hint_byte = 0;
9036c102 3225 hole_size = last_byte - cur_offset;
920bbbfb 3226 err = btrfs_drop_extents(trans, inode, cur_offset,
771ed689 3227 cur_offset + hole_size,
920bbbfb 3228 &hint_byte, 1);
771ed689
CM
3229 if (err)
3230 break;
9ed74f2d
JB
3231
3232 err = btrfs_reserve_metadata_space(root, 1);
3233 if (err)
3234 break;
3235
9036c102
YZ
3236 err = btrfs_insert_file_extent(trans, root,
3237 inode->i_ino, cur_offset, 0,
3238 0, hole_size, 0, hole_size,
3239 0, 0, 0);
3240 btrfs_drop_extent_cache(inode, hole_start,
3241 last_byte - 1, 0);
9ed74f2d 3242 btrfs_unreserve_metadata_space(root, 1);
9036c102
YZ
3243 }
3244 free_extent_map(em);
3245 cur_offset = last_byte;
3246 if (err || cur_offset >= block_end)
3247 break;
3248 }
1832a6d5 3249
9036c102
YZ
3250 btrfs_end_transaction(trans, root);
3251 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3252 return err;
3253}
39279cc3 3254
9036c102
YZ
3255static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3256{
3257 struct inode *inode = dentry->d_inode;
3258 int err;
39279cc3 3259
9036c102
YZ
3260 err = inode_change_ok(inode, attr);
3261 if (err)
3262 return err;
2bf5a725 3263
5a3f23d5
CM
3264 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3265 if (attr->ia_size > inode->i_size) {
3266 err = btrfs_cont_expand(inode, attr->ia_size);
3267 if (err)
3268 return err;
3269 } else if (inode->i_size > 0 &&
3270 attr->ia_size == 0) {
3271
3272 /* we're truncating a file that used to have good
3273 * data down to zero. Make sure it gets into
3274 * the ordered flush list so that any new writes
3275 * get down to disk quickly.
3276 */
3277 BTRFS_I(inode)->ordered_data_close = 1;
3278 }
39279cc3 3279 }
9036c102 3280
39279cc3 3281 err = inode_setattr(inode, attr);
33268eaf
JB
3282
3283 if (!err && ((attr->ia_valid & ATTR_MODE)))
3284 err = btrfs_acl_chmod(inode);
39279cc3
CM
3285 return err;
3286}
61295eb8 3287
39279cc3
CM
3288void btrfs_delete_inode(struct inode *inode)
3289{
3290 struct btrfs_trans_handle *trans;
3291 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3292 unsigned long nr;
39279cc3
CM
3293 int ret;
3294
3295 truncate_inode_pages(&inode->i_data, 0);
3296 if (is_bad_inode(inode)) {
7b128766 3297 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3298 goto no_delete;
3299 }
4a096752 3300 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3301
c71bf099
YZ
3302 if (root->fs_info->log_root_recovering) {
3303 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3304 goto no_delete;
3305 }
3306
76dda93c
YZ
3307 if (inode->i_nlink > 0) {
3308 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3309 goto no_delete;
3310 }
3311
dbe674a9 3312 btrfs_i_size_write(inode, 0);
180591bc 3313 trans = btrfs_join_transaction(root, 1);
5f39d397 3314
39279cc3 3315 btrfs_set_trans_block_group(trans, inode);
e02119d5 3316 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
7b128766
JB
3317 if (ret) {
3318 btrfs_orphan_del(NULL, inode);
54aa1f4d 3319 goto no_delete_lock;
7b128766
JB
3320 }
3321
3322 btrfs_orphan_del(trans, inode);
85e21bac 3323
d3c2fdcf 3324 nr = trans->blocks_used;
85e21bac 3325 clear_inode(inode);
5f39d397 3326
39279cc3 3327 btrfs_end_transaction(trans, root);
d3c2fdcf 3328 btrfs_btree_balance_dirty(root, nr);
39279cc3 3329 return;
54aa1f4d
CM
3330
3331no_delete_lock:
d3c2fdcf 3332 nr = trans->blocks_used;
54aa1f4d 3333 btrfs_end_transaction(trans, root);
d3c2fdcf 3334 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3335no_delete:
3336 clear_inode(inode);
3337}
3338
3339/*
3340 * this returns the key found in the dir entry in the location pointer.
3341 * If no dir entries were found, location->objectid is 0.
3342 */
3343static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3344 struct btrfs_key *location)
3345{
3346 const char *name = dentry->d_name.name;
3347 int namelen = dentry->d_name.len;
3348 struct btrfs_dir_item *di;
3349 struct btrfs_path *path;
3350 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3351 int ret = 0;
39279cc3
CM
3352
3353 path = btrfs_alloc_path();
3354 BUG_ON(!path);
3954401f 3355
39279cc3
CM
3356 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3357 namelen, 0);
0d9f7f3e
Y
3358 if (IS_ERR(di))
3359 ret = PTR_ERR(di);
d397712b
CM
3360
3361 if (!di || IS_ERR(di))
3954401f 3362 goto out_err;
d397712b 3363
5f39d397 3364 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3365out:
39279cc3
CM
3366 btrfs_free_path(path);
3367 return ret;
3954401f
CM
3368out_err:
3369 location->objectid = 0;
3370 goto out;
39279cc3
CM
3371}
3372
3373/*
3374 * when we hit a tree root in a directory, the btrfs part of the inode
3375 * needs to be changed to reflect the root directory of the tree root. This
3376 * is kind of like crossing a mount point.
3377 */
3378static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3379 struct inode *dir,
3380 struct dentry *dentry,
3381 struct btrfs_key *location,
3382 struct btrfs_root **sub_root)
39279cc3 3383{
4df27c4d
YZ
3384 struct btrfs_path *path;
3385 struct btrfs_root *new_root;
3386 struct btrfs_root_ref *ref;
3387 struct extent_buffer *leaf;
3388 int ret;
3389 int err = 0;
39279cc3 3390
4df27c4d
YZ
3391 path = btrfs_alloc_path();
3392 if (!path) {
3393 err = -ENOMEM;
3394 goto out;
3395 }
39279cc3 3396
4df27c4d
YZ
3397 err = -ENOENT;
3398 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3399 BTRFS_I(dir)->root->root_key.objectid,
3400 location->objectid);
3401 if (ret) {
3402 if (ret < 0)
3403 err = ret;
3404 goto out;
3405 }
39279cc3 3406
4df27c4d
YZ
3407 leaf = path->nodes[0];
3408 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3409 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3410 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3411 goto out;
39279cc3 3412
4df27c4d
YZ
3413 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3414 (unsigned long)(ref + 1),
3415 dentry->d_name.len);
3416 if (ret)
3417 goto out;
3418
3419 btrfs_release_path(root->fs_info->tree_root, path);
3420
3421 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3422 if (IS_ERR(new_root)) {
3423 err = PTR_ERR(new_root);
3424 goto out;
3425 }
3426
3427 if (btrfs_root_refs(&new_root->root_item) == 0) {
3428 err = -ENOENT;
3429 goto out;
3430 }
3431
3432 *sub_root = new_root;
3433 location->objectid = btrfs_root_dirid(&new_root->root_item);
3434 location->type = BTRFS_INODE_ITEM_KEY;
3435 location->offset = 0;
3436 err = 0;
3437out:
3438 btrfs_free_path(path);
3439 return err;
39279cc3
CM
3440}
3441
5d4f98a2
YZ
3442static void inode_tree_add(struct inode *inode)
3443{
3444 struct btrfs_root *root = BTRFS_I(inode)->root;
3445 struct btrfs_inode *entry;
03e860bd
FNP
3446 struct rb_node **p;
3447 struct rb_node *parent;
03e860bd
FNP
3448again:
3449 p = &root->inode_tree.rb_node;
3450 parent = NULL;
5d4f98a2 3451
76dda93c
YZ
3452 if (hlist_unhashed(&inode->i_hash))
3453 return;
3454
5d4f98a2
YZ
3455 spin_lock(&root->inode_lock);
3456 while (*p) {
3457 parent = *p;
3458 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3459
3460 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3461 p = &parent->rb_left;
5d4f98a2 3462 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3463 p = &parent->rb_right;
5d4f98a2
YZ
3464 else {
3465 WARN_ON(!(entry->vfs_inode.i_state &
3466 (I_WILL_FREE | I_FREEING | I_CLEAR)));
03e860bd
FNP
3467 rb_erase(parent, &root->inode_tree);
3468 RB_CLEAR_NODE(parent);
3469 spin_unlock(&root->inode_lock);
3470 goto again;
5d4f98a2
YZ
3471 }
3472 }
3473 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3474 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3475 spin_unlock(&root->inode_lock);
3476}
3477
3478static void inode_tree_del(struct inode *inode)
3479{
3480 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3481 int empty = 0;
5d4f98a2 3482
03e860bd 3483 spin_lock(&root->inode_lock);
5d4f98a2 3484 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3485 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3486 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3487 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3488 }
03e860bd 3489 spin_unlock(&root->inode_lock);
76dda93c
YZ
3490
3491 if (empty && btrfs_root_refs(&root->root_item) == 0) {
3492 synchronize_srcu(&root->fs_info->subvol_srcu);
3493 spin_lock(&root->inode_lock);
3494 empty = RB_EMPTY_ROOT(&root->inode_tree);
3495 spin_unlock(&root->inode_lock);
3496 if (empty)
3497 btrfs_add_dead_root(root);
3498 }
3499}
3500
3501int btrfs_invalidate_inodes(struct btrfs_root *root)
3502{
3503 struct rb_node *node;
3504 struct rb_node *prev;
3505 struct btrfs_inode *entry;
3506 struct inode *inode;
3507 u64 objectid = 0;
3508
3509 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3510
3511 spin_lock(&root->inode_lock);
3512again:
3513 node = root->inode_tree.rb_node;
3514 prev = NULL;
3515 while (node) {
3516 prev = node;
3517 entry = rb_entry(node, struct btrfs_inode, rb_node);
3518
3519 if (objectid < entry->vfs_inode.i_ino)
3520 node = node->rb_left;
3521 else if (objectid > entry->vfs_inode.i_ino)
3522 node = node->rb_right;
3523 else
3524 break;
3525 }
3526 if (!node) {
3527 while (prev) {
3528 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3529 if (objectid <= entry->vfs_inode.i_ino) {
3530 node = prev;
3531 break;
3532 }
3533 prev = rb_next(prev);
3534 }
3535 }
3536 while (node) {
3537 entry = rb_entry(node, struct btrfs_inode, rb_node);
3538 objectid = entry->vfs_inode.i_ino + 1;
3539 inode = igrab(&entry->vfs_inode);
3540 if (inode) {
3541 spin_unlock(&root->inode_lock);
3542 if (atomic_read(&inode->i_count) > 1)
3543 d_prune_aliases(inode);
3544 /*
3545 * btrfs_drop_inode will remove it from
3546 * the inode cache when its usage count
3547 * hits zero.
3548 */
3549 iput(inode);
3550 cond_resched();
3551 spin_lock(&root->inode_lock);
3552 goto again;
3553 }
3554
3555 if (cond_resched_lock(&root->inode_lock))
3556 goto again;
3557
3558 node = rb_next(node);
3559 }
3560 spin_unlock(&root->inode_lock);
3561 return 0;
5d4f98a2
YZ
3562}
3563
e02119d5 3564static noinline void init_btrfs_i(struct inode *inode)
39279cc3 3565{
e02119d5
CM
3566 struct btrfs_inode *bi = BTRFS_I(inode);
3567
e02119d5 3568 bi->generation = 0;
c3027eb5 3569 bi->sequence = 0;
e02119d5 3570 bi->last_trans = 0;
257c62e1 3571 bi->last_sub_trans = 0;
e02119d5
CM
3572 bi->logged_trans = 0;
3573 bi->delalloc_bytes = 0;
6a63209f 3574 bi->reserved_bytes = 0;
e02119d5
CM
3575 bi->disk_i_size = 0;
3576 bi->flags = 0;
3577 bi->index_cnt = (u64)-1;
12fcfd22 3578 bi->last_unlink_trans = 0;
2757495c 3579 bi->ordered_data_close = 0;
d1310b2e
CM
3580 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3581 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
b888db2b 3582 inode->i_mapping, GFP_NOFS);
7e38326f
CM
3583 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3584 inode->i_mapping, GFP_NOFS);
ea8c2819 3585 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
5a3f23d5 3586 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
5d4f98a2 3587 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
ba1da2f4 3588 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
e02119d5
CM
3589 mutex_init(&BTRFS_I(inode)->log_mutex);
3590}
3591
3592static int btrfs_init_locked_inode(struct inode *inode, void *p)
3593{
3594 struct btrfs_iget_args *args = p;
3595 inode->i_ino = args->ino;
3596 init_btrfs_i(inode);
3597 BTRFS_I(inode)->root = args->root;
6a63209f 3598 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3599 return 0;
3600}
3601
3602static int btrfs_find_actor(struct inode *inode, void *opaque)
3603{
3604 struct btrfs_iget_args *args = opaque;
d397712b
CM
3605 return args->ino == inode->i_ino &&
3606 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3607}
3608
5d4f98a2
YZ
3609static struct inode *btrfs_iget_locked(struct super_block *s,
3610 u64 objectid,
3611 struct btrfs_root *root)
39279cc3
CM
3612{
3613 struct inode *inode;
3614 struct btrfs_iget_args args;
3615 args.ino = objectid;
3616 args.root = root;
3617
3618 inode = iget5_locked(s, objectid, btrfs_find_actor,
3619 btrfs_init_locked_inode,
3620 (void *)&args);
3621 return inode;
3622}
3623
1a54ef8c
BR
3624/* Get an inode object given its location and corresponding root.
3625 * Returns in *is_new if the inode was read from disk
3626 */
3627struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5d4f98a2 3628 struct btrfs_root *root)
1a54ef8c
BR
3629{
3630 struct inode *inode;
3631
3632 inode = btrfs_iget_locked(s, location->objectid, root);
3633 if (!inode)
5d4f98a2 3634 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3635
3636 if (inode->i_state & I_NEW) {
3637 BTRFS_I(inode)->root = root;
3638 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3639 btrfs_read_locked_inode(inode);
5d4f98a2
YZ
3640
3641 inode_tree_add(inode);
1a54ef8c 3642 unlock_new_inode(inode);
1a54ef8c
BR
3643 }
3644
3645 return inode;
3646}
3647
4df27c4d
YZ
3648static struct inode *new_simple_dir(struct super_block *s,
3649 struct btrfs_key *key,
3650 struct btrfs_root *root)
3651{
3652 struct inode *inode = new_inode(s);
3653
3654 if (!inode)
3655 return ERR_PTR(-ENOMEM);
3656
3657 init_btrfs_i(inode);
3658
3659 BTRFS_I(inode)->root = root;
3660 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3661 BTRFS_I(inode)->dummy_inode = 1;
3662
3663 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3664 inode->i_op = &simple_dir_inode_operations;
3665 inode->i_fop = &simple_dir_operations;
3666 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3667 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3668
3669 return inode;
3670}
3671
3de4586c 3672struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3673{
d397712b 3674 struct inode *inode;
4df27c4d 3675 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
3676 struct btrfs_root *sub_root = root;
3677 struct btrfs_key location;
76dda93c 3678 int index;
5d4f98a2 3679 int ret;
39279cc3 3680
76dda93c
YZ
3681 dentry->d_op = &btrfs_dentry_operations;
3682
39279cc3
CM
3683 if (dentry->d_name.len > BTRFS_NAME_LEN)
3684 return ERR_PTR(-ENAMETOOLONG);
5f39d397 3685
39279cc3 3686 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 3687
39279cc3
CM
3688 if (ret < 0)
3689 return ERR_PTR(ret);
5f39d397 3690
4df27c4d
YZ
3691 if (location.objectid == 0)
3692 return NULL;
3693
3694 if (location.type == BTRFS_INODE_ITEM_KEY) {
3695 inode = btrfs_iget(dir->i_sb, &location, root);
3696 return inode;
3697 }
3698
3699 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3700
76dda93c 3701 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
3702 ret = fixup_tree_root_location(root, dir, dentry,
3703 &location, &sub_root);
3704 if (ret < 0) {
3705 if (ret != -ENOENT)
3706 inode = ERR_PTR(ret);
3707 else
3708 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3709 } else {
5d4f98a2 3710 inode = btrfs_iget(dir->i_sb, &location, sub_root);
39279cc3 3711 }
76dda93c
YZ
3712 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3713
c71bf099
YZ
3714 if (root != sub_root) {
3715 down_read(&root->fs_info->cleanup_work_sem);
3716 if (!(inode->i_sb->s_flags & MS_RDONLY))
3717 btrfs_orphan_cleanup(sub_root);
3718 up_read(&root->fs_info->cleanup_work_sem);
3719 }
3720
3de4586c
CM
3721 return inode;
3722}
3723
76dda93c
YZ
3724static int btrfs_dentry_delete(struct dentry *dentry)
3725{
3726 struct btrfs_root *root;
3727
efefb143
YZ
3728 if (!dentry->d_inode && !IS_ROOT(dentry))
3729 dentry = dentry->d_parent;
76dda93c 3730
efefb143
YZ
3731 if (dentry->d_inode) {
3732 root = BTRFS_I(dentry->d_inode)->root;
3733 if (btrfs_root_refs(&root->root_item) == 0)
3734 return 1;
3735 }
76dda93c
YZ
3736 return 0;
3737}
3738
3de4586c
CM
3739static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3740 struct nameidata *nd)
3741{
3742 struct inode *inode;
3743
3de4586c
CM
3744 inode = btrfs_lookup_dentry(dir, dentry);
3745 if (IS_ERR(inode))
3746 return ERR_CAST(inode);
7b128766 3747
39279cc3
CM
3748 return d_splice_alias(inode, dentry);
3749}
3750
39279cc3
CM
3751static unsigned char btrfs_filetype_table[] = {
3752 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3753};
3754
cbdf5a24
DW
3755static int btrfs_real_readdir(struct file *filp, void *dirent,
3756 filldir_t filldir)
39279cc3 3757{
6da6abae 3758 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
3759 struct btrfs_root *root = BTRFS_I(inode)->root;
3760 struct btrfs_item *item;
3761 struct btrfs_dir_item *di;
3762 struct btrfs_key key;
5f39d397 3763 struct btrfs_key found_key;
39279cc3
CM
3764 struct btrfs_path *path;
3765 int ret;
3766 u32 nritems;
5f39d397 3767 struct extent_buffer *leaf;
39279cc3
CM
3768 int slot;
3769 int advance;
3770 unsigned char d_type;
3771 int over = 0;
3772 u32 di_cur;
3773 u32 di_total;
3774 u32 di_len;
3775 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
3776 char tmp_name[32];
3777 char *name_ptr;
3778 int name_len;
39279cc3
CM
3779
3780 /* FIXME, use a real flag for deciding about the key type */
3781 if (root->fs_info->tree_root == root)
3782 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 3783
3954401f
CM
3784 /* special case for "." */
3785 if (filp->f_pos == 0) {
3786 over = filldir(dirent, ".", 1,
3787 1, inode->i_ino,
3788 DT_DIR);
3789 if (over)
3790 return 0;
3791 filp->f_pos = 1;
3792 }
3954401f
CM
3793 /* special case for .., just use the back ref */
3794 if (filp->f_pos == 1) {
5ecc7e5d 3795 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 3796 over = filldir(dirent, "..", 2,
5ecc7e5d 3797 2, pino, DT_DIR);
3954401f 3798 if (over)
49593bfa 3799 return 0;
3954401f
CM
3800 filp->f_pos = 2;
3801 }
49593bfa
DW
3802 path = btrfs_alloc_path();
3803 path->reada = 2;
3804
39279cc3
CM
3805 btrfs_set_key_type(&key, key_type);
3806 key.offset = filp->f_pos;
49593bfa 3807 key.objectid = inode->i_ino;
5f39d397 3808
39279cc3
CM
3809 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3810 if (ret < 0)
3811 goto err;
3812 advance = 0;
49593bfa
DW
3813
3814 while (1) {
5f39d397
CM
3815 leaf = path->nodes[0];
3816 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3817 slot = path->slots[0];
3818 if (advance || slot >= nritems) {
49593bfa 3819 if (slot >= nritems - 1) {
39279cc3
CM
3820 ret = btrfs_next_leaf(root, path);
3821 if (ret)
3822 break;
5f39d397
CM
3823 leaf = path->nodes[0];
3824 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3825 slot = path->slots[0];
3826 } else {
3827 slot++;
3828 path->slots[0]++;
3829 }
3830 }
3de4586c 3831
39279cc3 3832 advance = 1;
5f39d397
CM
3833 item = btrfs_item_nr(leaf, slot);
3834 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3835
3836 if (found_key.objectid != key.objectid)
39279cc3 3837 break;
5f39d397 3838 if (btrfs_key_type(&found_key) != key_type)
39279cc3 3839 break;
5f39d397 3840 if (found_key.offset < filp->f_pos)
39279cc3 3841 continue;
5f39d397
CM
3842
3843 filp->f_pos = found_key.offset;
49593bfa 3844
39279cc3
CM
3845 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3846 di_cur = 0;
5f39d397 3847 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
3848
3849 while (di_cur < di_total) {
5f39d397
CM
3850 struct btrfs_key location;
3851
3852 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 3853 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
3854 name_ptr = tmp_name;
3855 } else {
3856 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
3857 if (!name_ptr) {
3858 ret = -ENOMEM;
3859 goto err;
3860 }
5f39d397
CM
3861 }
3862 read_extent_buffer(leaf, name_ptr,
3863 (unsigned long)(di + 1), name_len);
3864
3865 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3866 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
3867
3868 /* is this a reference to our own snapshot? If so
3869 * skip it
3870 */
3871 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3872 location.objectid == root->root_key.objectid) {
3873 over = 0;
3874 goto skip;
3875 }
5f39d397 3876 over = filldir(dirent, name_ptr, name_len,
49593bfa 3877 found_key.offset, location.objectid,
39279cc3 3878 d_type);
5f39d397 3879
3de4586c 3880skip:
5f39d397
CM
3881 if (name_ptr != tmp_name)
3882 kfree(name_ptr);
3883
39279cc3
CM
3884 if (over)
3885 goto nopos;
5103e947 3886 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 3887 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
3888 di_cur += di_len;
3889 di = (struct btrfs_dir_item *)((char *)di + di_len);
3890 }
3891 }
49593bfa
DW
3892
3893 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 3894 if (key_type == BTRFS_DIR_INDEX_KEY)
89f135d8 3895 filp->f_pos = INT_LIMIT(off_t);
5e591a07
YZ
3896 else
3897 filp->f_pos++;
39279cc3
CM
3898nopos:
3899 ret = 0;
3900err:
39279cc3 3901 btrfs_free_path(path);
39279cc3
CM
3902 return ret;
3903}
3904
3905int btrfs_write_inode(struct inode *inode, int wait)
3906{
3907 struct btrfs_root *root = BTRFS_I(inode)->root;
3908 struct btrfs_trans_handle *trans;
3909 int ret = 0;
3910
c146afad 3911 if (root->fs_info->btree_inode == inode)
4ca8b41e
CM
3912 return 0;
3913
39279cc3 3914 if (wait) {
f9295749 3915 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
3916 btrfs_set_trans_block_group(trans, inode);
3917 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
3918 }
3919 return ret;
3920}
3921
3922/*
54aa1f4d 3923 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
3924 * inode changes. But, it is most likely to find the inode in cache.
3925 * FIXME, needs more benchmarking...there are no reasons other than performance
3926 * to keep or drop this code.
3927 */
3928void btrfs_dirty_inode(struct inode *inode)
3929{
3930 struct btrfs_root *root = BTRFS_I(inode)->root;
3931 struct btrfs_trans_handle *trans;
3932
f9295749 3933 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
3934 btrfs_set_trans_block_group(trans, inode);
3935 btrfs_update_inode(trans, root, inode);
3936 btrfs_end_transaction(trans, root);
39279cc3
CM
3937}
3938
d352ac68
CM
3939/*
3940 * find the highest existing sequence number in a directory
3941 * and then set the in-memory index_cnt variable to reflect
3942 * free sequence numbers
3943 */
aec7477b
JB
3944static int btrfs_set_inode_index_count(struct inode *inode)
3945{
3946 struct btrfs_root *root = BTRFS_I(inode)->root;
3947 struct btrfs_key key, found_key;
3948 struct btrfs_path *path;
3949 struct extent_buffer *leaf;
3950 int ret;
3951
3952 key.objectid = inode->i_ino;
3953 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3954 key.offset = (u64)-1;
3955
3956 path = btrfs_alloc_path();
3957 if (!path)
3958 return -ENOMEM;
3959
3960 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3961 if (ret < 0)
3962 goto out;
3963 /* FIXME: we should be able to handle this */
3964 if (ret == 0)
3965 goto out;
3966 ret = 0;
3967
3968 /*
3969 * MAGIC NUMBER EXPLANATION:
3970 * since we search a directory based on f_pos we have to start at 2
3971 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3972 * else has to start at 2
3973 */
3974 if (path->slots[0] == 0) {
3975 BTRFS_I(inode)->index_cnt = 2;
3976 goto out;
3977 }
3978
3979 path->slots[0]--;
3980
3981 leaf = path->nodes[0];
3982 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3983
3984 if (found_key.objectid != inode->i_ino ||
3985 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3986 BTRFS_I(inode)->index_cnt = 2;
3987 goto out;
3988 }
3989
3990 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3991out:
3992 btrfs_free_path(path);
3993 return ret;
3994}
3995
d352ac68
CM
3996/*
3997 * helper to find a free sequence number in a given directory. This current
3998 * code is very simple, later versions will do smarter things in the btree
3999 */
3de4586c 4000int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4001{
4002 int ret = 0;
4003
4004 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4005 ret = btrfs_set_inode_index_count(dir);
d397712b 4006 if (ret)
aec7477b
JB
4007 return ret;
4008 }
4009
00e4e6b3 4010 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4011 BTRFS_I(dir)->index_cnt++;
4012
4013 return ret;
4014}
4015
39279cc3
CM
4016static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4017 struct btrfs_root *root,
aec7477b 4018 struct inode *dir,
9c58309d 4019 const char *name, int name_len,
d2fb3437
YZ
4020 u64 ref_objectid, u64 objectid,
4021 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
4022{
4023 struct inode *inode;
5f39d397 4024 struct btrfs_inode_item *inode_item;
39279cc3 4025 struct btrfs_key *location;
5f39d397 4026 struct btrfs_path *path;
9c58309d
CM
4027 struct btrfs_inode_ref *ref;
4028 struct btrfs_key key[2];
4029 u32 sizes[2];
4030 unsigned long ptr;
39279cc3
CM
4031 int ret;
4032 int owner;
4033
5f39d397
CM
4034 path = btrfs_alloc_path();
4035 BUG_ON(!path);
4036
39279cc3
CM
4037 inode = new_inode(root->fs_info->sb);
4038 if (!inode)
4039 return ERR_PTR(-ENOMEM);
4040
aec7477b 4041 if (dir) {
3de4586c 4042 ret = btrfs_set_inode_index(dir, index);
09771430
SF
4043 if (ret) {
4044 iput(inode);
aec7477b 4045 return ERR_PTR(ret);
09771430 4046 }
aec7477b
JB
4047 }
4048 /*
4049 * index_cnt is ignored for everything but a dir,
4050 * btrfs_get_inode_index_count has an explanation for the magic
4051 * number
4052 */
e02119d5 4053 init_btrfs_i(inode);
aec7477b 4054 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4055 BTRFS_I(inode)->root = root;
e02119d5 4056 BTRFS_I(inode)->generation = trans->transid;
6a63209f 4057 btrfs_set_inode_space_info(root, inode);
b888db2b 4058
39279cc3
CM
4059 if (mode & S_IFDIR)
4060 owner = 0;
4061 else
4062 owner = 1;
d2fb3437
YZ
4063 BTRFS_I(inode)->block_group =
4064 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
4065
4066 key[0].objectid = objectid;
4067 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4068 key[0].offset = 0;
4069
4070 key[1].objectid = objectid;
4071 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4072 key[1].offset = ref_objectid;
4073
4074 sizes[0] = sizeof(struct btrfs_inode_item);
4075 sizes[1] = name_len + sizeof(*ref);
4076
b9473439 4077 path->leave_spinning = 1;
9c58309d
CM
4078 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4079 if (ret != 0)
5f39d397
CM
4080 goto fail;
4081
79683f2d 4082 inode->i_uid = current_fsuid();
8c087b51 4083
42f15d77 4084 if (dir && (dir->i_mode & S_ISGID)) {
8c087b51
CB
4085 inode->i_gid = dir->i_gid;
4086 if (S_ISDIR(mode))
4087 mode |= S_ISGID;
4088 } else
4089 inode->i_gid = current_fsgid();
4090
39279cc3
CM
4091 inode->i_mode = mode;
4092 inode->i_ino = objectid;
a76a3cd4 4093 inode_set_bytes(inode, 0);
39279cc3 4094 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4095 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4096 struct btrfs_inode_item);
e02119d5 4097 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4098
4099 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4100 struct btrfs_inode_ref);
4101 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4102 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4103 ptr = (unsigned long)(ref + 1);
4104 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4105
5f39d397
CM
4106 btrfs_mark_buffer_dirty(path->nodes[0]);
4107 btrfs_free_path(path);
4108
39279cc3
CM
4109 location = &BTRFS_I(inode)->location;
4110 location->objectid = objectid;
39279cc3
CM
4111 location->offset = 0;
4112 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4113
6cbff00f
CH
4114 btrfs_inherit_iflags(inode, dir);
4115
94272164
CM
4116 if ((mode & S_IFREG)) {
4117 if (btrfs_test_opt(root, NODATASUM))
4118 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4119 if (btrfs_test_opt(root, NODATACOW))
4120 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4121 }
4122
39279cc3 4123 insert_inode_hash(inode);
5d4f98a2 4124 inode_tree_add(inode);
39279cc3 4125 return inode;
5f39d397 4126fail:
aec7477b
JB
4127 if (dir)
4128 BTRFS_I(dir)->index_cnt--;
5f39d397 4129 btrfs_free_path(path);
09771430 4130 iput(inode);
5f39d397 4131 return ERR_PTR(ret);
39279cc3
CM
4132}
4133
4134static inline u8 btrfs_inode_type(struct inode *inode)
4135{
4136 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4137}
4138
d352ac68
CM
4139/*
4140 * utility function to add 'inode' into 'parent_inode' with
4141 * a give name and a given sequence number.
4142 * if 'add_backref' is true, also insert a backref from the
4143 * inode to the parent directory.
4144 */
e02119d5
CM
4145int btrfs_add_link(struct btrfs_trans_handle *trans,
4146 struct inode *parent_inode, struct inode *inode,
4147 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4148{
4df27c4d 4149 int ret = 0;
39279cc3 4150 struct btrfs_key key;
e02119d5 4151 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 4152
4df27c4d
YZ
4153 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4154 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4155 } else {
4156 key.objectid = inode->i_ino;
4157 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4158 key.offset = 0;
4159 }
4160
4161 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4162 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4163 key.objectid, root->root_key.objectid,
4164 parent_inode->i_ino,
4165 index, name, name_len);
4166 } else if (add_backref) {
4167 ret = btrfs_insert_inode_ref(trans, root,
4168 name, name_len, inode->i_ino,
4169 parent_inode->i_ino, index);
4170 }
39279cc3 4171
39279cc3 4172 if (ret == 0) {
4df27c4d
YZ
4173 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4174 parent_inode->i_ino, &key,
4175 btrfs_inode_type(inode), index);
4176 BUG_ON(ret);
4177
dbe674a9 4178 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4179 name_len * 2);
79c44584 4180 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4181 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4182 }
4183 return ret;
4184}
4185
4186static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
9c58309d 4187 struct dentry *dentry, struct inode *inode,
00e4e6b3 4188 int backref, u64 index)
39279cc3 4189{
e02119d5
CM
4190 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4191 inode, dentry->d_name.name,
4192 dentry->d_name.len, backref, index);
39279cc3
CM
4193 if (!err) {
4194 d_instantiate(dentry, inode);
4195 return 0;
4196 }
4197 if (err > 0)
4198 err = -EEXIST;
4199 return err;
4200}
4201
618e21d5
JB
4202static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4203 int mode, dev_t rdev)
4204{
4205 struct btrfs_trans_handle *trans;
4206 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4207 struct inode *inode = NULL;
618e21d5
JB
4208 int err;
4209 int drop_inode = 0;
4210 u64 objectid;
1832a6d5 4211 unsigned long nr = 0;
00e4e6b3 4212 u64 index = 0;
618e21d5
JB
4213
4214 if (!new_valid_dev(rdev))
4215 return -EINVAL;
4216
9ed74f2d
JB
4217 /*
4218 * 2 for inode item and ref
4219 * 2 for dir items
4220 * 1 for xattr if selinux is on
4221 */
4222 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4223 if (err)
9ed74f2d 4224 return err;
1832a6d5 4225
618e21d5 4226 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4227 if (!trans)
4228 goto fail;
618e21d5
JB
4229 btrfs_set_trans_block_group(trans, dir);
4230
4231 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4232 if (err) {
4233 err = -ENOSPC;
4234 goto out_unlock;
4235 }
4236
aec7477b 4237 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4238 dentry->d_name.len,
4239 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3 4240 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
4241 err = PTR_ERR(inode);
4242 if (IS_ERR(inode))
4243 goto out_unlock;
4244
0279b4cd 4245 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
4246 if (err) {
4247 drop_inode = 1;
4248 goto out_unlock;
4249 }
4250
618e21d5 4251 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4252 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
618e21d5
JB
4253 if (err)
4254 drop_inode = 1;
4255 else {
4256 inode->i_op = &btrfs_special_inode_operations;
4257 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4258 btrfs_update_inode(trans, root, inode);
618e21d5 4259 }
618e21d5
JB
4260 btrfs_update_inode_block_group(trans, inode);
4261 btrfs_update_inode_block_group(trans, dir);
4262out_unlock:
d3c2fdcf 4263 nr = trans->blocks_used;
89ce8a63 4264 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4265fail:
9ed74f2d 4266 btrfs_unreserve_metadata_space(root, 5);
618e21d5
JB
4267 if (drop_inode) {
4268 inode_dec_link_count(inode);
4269 iput(inode);
4270 }
d3c2fdcf 4271 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4272 return err;
4273}
4274
39279cc3
CM
4275static int btrfs_create(struct inode *dir, struct dentry *dentry,
4276 int mode, struct nameidata *nd)
4277{
4278 struct btrfs_trans_handle *trans;
4279 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4280 struct inode *inode = NULL;
39279cc3
CM
4281 int err;
4282 int drop_inode = 0;
1832a6d5 4283 unsigned long nr = 0;
39279cc3 4284 u64 objectid;
00e4e6b3 4285 u64 index = 0;
39279cc3 4286
9ed74f2d
JB
4287 /*
4288 * 2 for inode item and ref
4289 * 2 for dir items
4290 * 1 for xattr if selinux is on
4291 */
4292 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4293 if (err)
9ed74f2d
JB
4294 return err;
4295
39279cc3 4296 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4297 if (!trans)
4298 goto fail;
39279cc3
CM
4299 btrfs_set_trans_block_group(trans, dir);
4300
4301 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4302 if (err) {
4303 err = -ENOSPC;
4304 goto out_unlock;
4305 }
4306
aec7477b 4307 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4308 dentry->d_name.len,
4309 dentry->d_parent->d_inode->i_ino,
00e4e6b3
CM
4310 objectid, BTRFS_I(dir)->block_group, mode,
4311 &index);
39279cc3
CM
4312 err = PTR_ERR(inode);
4313 if (IS_ERR(inode))
4314 goto out_unlock;
4315
0279b4cd 4316 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
4317 if (err) {
4318 drop_inode = 1;
4319 goto out_unlock;
4320 }
4321
39279cc3 4322 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4323 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
4324 if (err)
4325 drop_inode = 1;
4326 else {
4327 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4328 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4329 inode->i_fop = &btrfs_file_operations;
4330 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4331 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4332 }
39279cc3
CM
4333 btrfs_update_inode_block_group(trans, inode);
4334 btrfs_update_inode_block_group(trans, dir);
4335out_unlock:
d3c2fdcf 4336 nr = trans->blocks_used;
ab78c84d 4337 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4338fail:
9ed74f2d 4339 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
4340 if (drop_inode) {
4341 inode_dec_link_count(inode);
4342 iput(inode);
4343 }
d3c2fdcf 4344 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4345 return err;
4346}
4347
4348static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4349 struct dentry *dentry)
4350{
4351 struct btrfs_trans_handle *trans;
4352 struct btrfs_root *root = BTRFS_I(dir)->root;
4353 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4354 u64 index;
1832a6d5 4355 unsigned long nr = 0;
39279cc3
CM
4356 int err;
4357 int drop_inode = 0;
4358
4359 if (inode->i_nlink == 0)
4360 return -ENOENT;
4361
9ed74f2d
JB
4362 /*
4363 * 1 item for inode ref
4364 * 2 items for dir items
4365 */
4366 err = btrfs_reserve_metadata_space(root, 3);
1832a6d5 4367 if (err)
9ed74f2d
JB
4368 return err;
4369
4370 btrfs_inc_nlink(inode);
4371
3de4586c 4372 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4373 if (err)
4374 goto fail;
4375
39279cc3 4376 trans = btrfs_start_transaction(root, 1);
5f39d397 4377
39279cc3
CM
4378 btrfs_set_trans_block_group(trans, dir);
4379 atomic_inc(&inode->i_count);
aec7477b 4380
00e4e6b3 4381 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
5f39d397 4382
a5719521 4383 if (err) {
54aa1f4d 4384 drop_inode = 1;
a5719521
YZ
4385 } else {
4386 btrfs_update_inode_block_group(trans, dir);
4387 err = btrfs_update_inode(trans, root, inode);
4388 BUG_ON(err);
4389 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4390 }
39279cc3 4391
d3c2fdcf 4392 nr = trans->blocks_used;
ab78c84d 4393 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4394fail:
9ed74f2d 4395 btrfs_unreserve_metadata_space(root, 3);
39279cc3
CM
4396 if (drop_inode) {
4397 inode_dec_link_count(inode);
4398 iput(inode);
4399 }
d3c2fdcf 4400 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4401 return err;
4402}
4403
39279cc3
CM
4404static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4405{
b9d86667 4406 struct inode *inode = NULL;
39279cc3
CM
4407 struct btrfs_trans_handle *trans;
4408 struct btrfs_root *root = BTRFS_I(dir)->root;
4409 int err = 0;
4410 int drop_on_err = 0;
b9d86667 4411 u64 objectid = 0;
00e4e6b3 4412 u64 index = 0;
d3c2fdcf 4413 unsigned long nr = 1;
39279cc3 4414
9ed74f2d
JB
4415 /*
4416 * 2 items for inode and ref
4417 * 2 items for dir items
4418 * 1 for xattr if selinux is on
4419 */
4420 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4421 if (err)
9ed74f2d 4422 return err;
1832a6d5 4423
39279cc3 4424 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4425 if (!trans) {
4426 err = -ENOMEM;
39279cc3
CM
4427 goto out_unlock;
4428 }
9ed74f2d 4429 btrfs_set_trans_block_group(trans, dir);
39279cc3
CM
4430
4431 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4432 if (err) {
4433 err = -ENOSPC;
4434 goto out_unlock;
4435 }
4436
aec7477b 4437 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4438 dentry->d_name.len,
4439 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
4440 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4441 &index);
39279cc3
CM
4442 if (IS_ERR(inode)) {
4443 err = PTR_ERR(inode);
4444 goto out_fail;
4445 }
5f39d397 4446
39279cc3 4447 drop_on_err = 1;
33268eaf 4448
0279b4cd 4449 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
4450 if (err)
4451 goto out_fail;
4452
39279cc3
CM
4453 inode->i_op = &btrfs_dir_inode_operations;
4454 inode->i_fop = &btrfs_dir_file_operations;
4455 btrfs_set_trans_block_group(trans, inode);
4456
dbe674a9 4457 btrfs_i_size_write(inode, 0);
39279cc3
CM
4458 err = btrfs_update_inode(trans, root, inode);
4459 if (err)
4460 goto out_fail;
5f39d397 4461
e02119d5
CM
4462 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4463 inode, dentry->d_name.name,
4464 dentry->d_name.len, 0, index);
39279cc3
CM
4465 if (err)
4466 goto out_fail;
5f39d397 4467
39279cc3
CM
4468 d_instantiate(dentry, inode);
4469 drop_on_err = 0;
39279cc3
CM
4470 btrfs_update_inode_block_group(trans, inode);
4471 btrfs_update_inode_block_group(trans, dir);
4472
4473out_fail:
d3c2fdcf 4474 nr = trans->blocks_used;
ab78c84d 4475 btrfs_end_transaction_throttle(trans, root);
5f39d397 4476
39279cc3 4477out_unlock:
9ed74f2d 4478 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
4479 if (drop_on_err)
4480 iput(inode);
d3c2fdcf 4481 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4482 return err;
4483}
4484
d352ac68
CM
4485/* helper for btfs_get_extent. Given an existing extent in the tree,
4486 * and an extent that you want to insert, deal with overlap and insert
4487 * the new extent into the tree.
4488 */
3b951516
CM
4489static int merge_extent_mapping(struct extent_map_tree *em_tree,
4490 struct extent_map *existing,
e6dcd2dc
CM
4491 struct extent_map *em,
4492 u64 map_start, u64 map_len)
3b951516
CM
4493{
4494 u64 start_diff;
3b951516 4495
e6dcd2dc
CM
4496 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4497 start_diff = map_start - em->start;
4498 em->start = map_start;
4499 em->len = map_len;
c8b97818
CM
4500 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4501 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4502 em->block_start += start_diff;
c8b97818
CM
4503 em->block_len -= start_diff;
4504 }
e6dcd2dc 4505 return add_extent_mapping(em_tree, em);
3b951516
CM
4506}
4507
c8b97818
CM
4508static noinline int uncompress_inline(struct btrfs_path *path,
4509 struct inode *inode, struct page *page,
4510 size_t pg_offset, u64 extent_offset,
4511 struct btrfs_file_extent_item *item)
4512{
4513 int ret;
4514 struct extent_buffer *leaf = path->nodes[0];
4515 char *tmp;
4516 size_t max_size;
4517 unsigned long inline_size;
4518 unsigned long ptr;
4519
4520 WARN_ON(pg_offset != 0);
4521 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4522 inline_size = btrfs_file_extent_inline_item_len(leaf,
4523 btrfs_item_nr(leaf, path->slots[0]));
4524 tmp = kmalloc(inline_size, GFP_NOFS);
4525 ptr = btrfs_file_extent_inline_start(item);
4526
4527 read_extent_buffer(leaf, tmp, ptr, inline_size);
4528
5b050f04 4529 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
c8b97818
CM
4530 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4531 inline_size, max_size);
4532 if (ret) {
4533 char *kaddr = kmap_atomic(page, KM_USER0);
4534 unsigned long copy_size = min_t(u64,
4535 PAGE_CACHE_SIZE - pg_offset,
4536 max_size - extent_offset);
4537 memset(kaddr + pg_offset, 0, copy_size);
4538 kunmap_atomic(kaddr, KM_USER0);
4539 }
4540 kfree(tmp);
4541 return 0;
4542}
4543
d352ac68
CM
4544/*
4545 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4546 * the ugly parts come from merging extents from the disk with the in-ram
4547 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4548 * where the in-ram extents might be locked pending data=ordered completion.
4549 *
4550 * This also copies inline extents directly into the page.
4551 */
d397712b 4552
a52d9a80 4553struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4554 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4555 int create)
4556{
4557 int ret;
4558 int err = 0;
db94535d 4559 u64 bytenr;
a52d9a80
CM
4560 u64 extent_start = 0;
4561 u64 extent_end = 0;
4562 u64 objectid = inode->i_ino;
4563 u32 found_type;
f421950f 4564 struct btrfs_path *path = NULL;
a52d9a80
CM
4565 struct btrfs_root *root = BTRFS_I(inode)->root;
4566 struct btrfs_file_extent_item *item;
5f39d397
CM
4567 struct extent_buffer *leaf;
4568 struct btrfs_key found_key;
a52d9a80
CM
4569 struct extent_map *em = NULL;
4570 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4571 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4572 struct btrfs_trans_handle *trans = NULL;
c8b97818 4573 int compressed;
a52d9a80 4574
a52d9a80 4575again:
890871be 4576 read_lock(&em_tree->lock);
d1310b2e 4577 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4578 if (em)
4579 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4580 read_unlock(&em_tree->lock);
d1310b2e 4581
a52d9a80 4582 if (em) {
e1c4b745
CM
4583 if (em->start > start || em->start + em->len <= start)
4584 free_extent_map(em);
4585 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4586 free_extent_map(em);
4587 else
4588 goto out;
a52d9a80 4589 }
d1310b2e 4590 em = alloc_extent_map(GFP_NOFS);
a52d9a80 4591 if (!em) {
d1310b2e
CM
4592 err = -ENOMEM;
4593 goto out;
a52d9a80 4594 }
e6dcd2dc 4595 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4596 em->start = EXTENT_MAP_HOLE;
445a6944 4597 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4598 em->len = (u64)-1;
c8b97818 4599 em->block_len = (u64)-1;
f421950f
CM
4600
4601 if (!path) {
4602 path = btrfs_alloc_path();
4603 BUG_ON(!path);
4604 }
4605
179e29e4
CM
4606 ret = btrfs_lookup_file_extent(trans, root, path,
4607 objectid, start, trans != NULL);
a52d9a80
CM
4608 if (ret < 0) {
4609 err = ret;
4610 goto out;
4611 }
4612
4613 if (ret != 0) {
4614 if (path->slots[0] == 0)
4615 goto not_found;
4616 path->slots[0]--;
4617 }
4618
5f39d397
CM
4619 leaf = path->nodes[0];
4620 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 4621 struct btrfs_file_extent_item);
a52d9a80 4622 /* are we inside the extent that was found? */
5f39d397
CM
4623 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4624 found_type = btrfs_key_type(&found_key);
4625 if (found_key.objectid != objectid ||
a52d9a80
CM
4626 found_type != BTRFS_EXTENT_DATA_KEY) {
4627 goto not_found;
4628 }
4629
5f39d397
CM
4630 found_type = btrfs_file_extent_type(leaf, item);
4631 extent_start = found_key.offset;
c8b97818 4632 compressed = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
4633 if (found_type == BTRFS_FILE_EXTENT_REG ||
4634 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 4635 extent_end = extent_start +
db94535d 4636 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
4637 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4638 size_t size;
4639 size = btrfs_file_extent_inline_len(leaf, item);
4640 extent_end = (extent_start + size + root->sectorsize - 1) &
4641 ~((u64)root->sectorsize - 1);
4642 }
4643
4644 if (start >= extent_end) {
4645 path->slots[0]++;
4646 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4647 ret = btrfs_next_leaf(root, path);
4648 if (ret < 0) {
4649 err = ret;
4650 goto out;
a52d9a80 4651 }
9036c102
YZ
4652 if (ret > 0)
4653 goto not_found;
4654 leaf = path->nodes[0];
a52d9a80 4655 }
9036c102
YZ
4656 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4657 if (found_key.objectid != objectid ||
4658 found_key.type != BTRFS_EXTENT_DATA_KEY)
4659 goto not_found;
4660 if (start + len <= found_key.offset)
4661 goto not_found;
4662 em->start = start;
4663 em->len = found_key.offset - start;
4664 goto not_found_em;
4665 }
4666
d899e052
YZ
4667 if (found_type == BTRFS_FILE_EXTENT_REG ||
4668 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
4669 em->start = extent_start;
4670 em->len = extent_end - extent_start;
ff5b7ee3
YZ
4671 em->orig_start = extent_start -
4672 btrfs_file_extent_offset(leaf, item);
db94535d
CM
4673 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4674 if (bytenr == 0) {
5f39d397 4675 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
4676 goto insert;
4677 }
c8b97818
CM
4678 if (compressed) {
4679 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4680 em->block_start = bytenr;
4681 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4682 item);
4683 } else {
4684 bytenr += btrfs_file_extent_offset(leaf, item);
4685 em->block_start = bytenr;
4686 em->block_len = em->len;
d899e052
YZ
4687 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4688 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 4689 }
a52d9a80
CM
4690 goto insert;
4691 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4692 unsigned long ptr;
a52d9a80 4693 char *map;
3326d1b0
CM
4694 size_t size;
4695 size_t extent_offset;
4696 size_t copy_size;
a52d9a80 4697
689f9346 4698 em->block_start = EXTENT_MAP_INLINE;
c8b97818 4699 if (!page || create) {
689f9346 4700 em->start = extent_start;
9036c102 4701 em->len = extent_end - extent_start;
689f9346
Y
4702 goto out;
4703 }
5f39d397 4704
9036c102
YZ
4705 size = btrfs_file_extent_inline_len(leaf, item);
4706 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 4707 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 4708 size - extent_offset);
3326d1b0 4709 em->start = extent_start + extent_offset;
70dec807
CM
4710 em->len = (copy_size + root->sectorsize - 1) &
4711 ~((u64)root->sectorsize - 1);
ff5b7ee3 4712 em->orig_start = EXTENT_MAP_INLINE;
c8b97818
CM
4713 if (compressed)
4714 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
689f9346 4715 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 4716 if (create == 0 && !PageUptodate(page)) {
c8b97818
CM
4717 if (btrfs_file_extent_compression(leaf, item) ==
4718 BTRFS_COMPRESS_ZLIB) {
4719 ret = uncompress_inline(path, inode, page,
4720 pg_offset,
4721 extent_offset, item);
4722 BUG_ON(ret);
4723 } else {
4724 map = kmap(page);
4725 read_extent_buffer(leaf, map + pg_offset, ptr,
4726 copy_size);
93c82d57
CM
4727 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4728 memset(map + pg_offset + copy_size, 0,
4729 PAGE_CACHE_SIZE - pg_offset -
4730 copy_size);
4731 }
c8b97818
CM
4732 kunmap(page);
4733 }
179e29e4
CM
4734 flush_dcache_page(page);
4735 } else if (create && PageUptodate(page)) {
4736 if (!trans) {
4737 kunmap(page);
4738 free_extent_map(em);
4739 em = NULL;
4740 btrfs_release_path(root, path);
f9295749 4741 trans = btrfs_join_transaction(root, 1);
179e29e4
CM
4742 goto again;
4743 }
c8b97818 4744 map = kmap(page);
70dec807 4745 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 4746 copy_size);
c8b97818 4747 kunmap(page);
179e29e4 4748 btrfs_mark_buffer_dirty(leaf);
a52d9a80 4749 }
d1310b2e
CM
4750 set_extent_uptodate(io_tree, em->start,
4751 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
4752 goto insert;
4753 } else {
d397712b 4754 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
4755 WARN_ON(1);
4756 }
4757not_found:
4758 em->start = start;
d1310b2e 4759 em->len = len;
a52d9a80 4760not_found_em:
5f39d397 4761 em->block_start = EXTENT_MAP_HOLE;
9036c102 4762 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
4763insert:
4764 btrfs_release_path(root, path);
d1310b2e 4765 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
4766 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4767 "[%llu %llu]\n", (unsigned long long)em->start,
4768 (unsigned long long)em->len,
4769 (unsigned long long)start,
4770 (unsigned long long)len);
a52d9a80
CM
4771 err = -EIO;
4772 goto out;
4773 }
d1310b2e
CM
4774
4775 err = 0;
890871be 4776 write_lock(&em_tree->lock);
a52d9a80 4777 ret = add_extent_mapping(em_tree, em);
3b951516
CM
4778 /* it is possible that someone inserted the extent into the tree
4779 * while we had the lock dropped. It is also possible that
4780 * an overlapping map exists in the tree
4781 */
a52d9a80 4782 if (ret == -EEXIST) {
3b951516 4783 struct extent_map *existing;
e6dcd2dc
CM
4784
4785 ret = 0;
4786
3b951516 4787 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
4788 if (existing && (existing->start > start ||
4789 existing->start + existing->len <= start)) {
4790 free_extent_map(existing);
4791 existing = NULL;
4792 }
3b951516
CM
4793 if (!existing) {
4794 existing = lookup_extent_mapping(em_tree, em->start,
4795 em->len);
4796 if (existing) {
4797 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
4798 em, start,
4799 root->sectorsize);
3b951516
CM
4800 free_extent_map(existing);
4801 if (err) {
4802 free_extent_map(em);
4803 em = NULL;
4804 }
4805 } else {
4806 err = -EIO;
3b951516
CM
4807 free_extent_map(em);
4808 em = NULL;
4809 }
4810 } else {
4811 free_extent_map(em);
4812 em = existing;
e6dcd2dc 4813 err = 0;
a52d9a80 4814 }
a52d9a80 4815 }
890871be 4816 write_unlock(&em_tree->lock);
a52d9a80 4817out:
f421950f
CM
4818 if (path)
4819 btrfs_free_path(path);
a52d9a80
CM
4820 if (trans) {
4821 ret = btrfs_end_transaction(trans, root);
d397712b 4822 if (!err)
a52d9a80
CM
4823 err = ret;
4824 }
a52d9a80
CM
4825 if (err) {
4826 free_extent_map(em);
a52d9a80
CM
4827 return ERR_PTR(err);
4828 }
4829 return em;
4830}
4831
16432985
CM
4832static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4833 const struct iovec *iov, loff_t offset,
4834 unsigned long nr_segs)
4835{
e1c4b745 4836 return -EINVAL;
16432985
CM
4837}
4838
1506fcc8
YS
4839static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4840 __u64 start, __u64 len)
4841{
4842 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4843}
4844
a52d9a80 4845int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 4846{
d1310b2e
CM
4847 struct extent_io_tree *tree;
4848 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4849 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 4850}
1832a6d5 4851
a52d9a80 4852static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 4853{
d1310b2e 4854 struct extent_io_tree *tree;
b888db2b
CM
4855
4856
4857 if (current->flags & PF_MEMALLOC) {
4858 redirty_page_for_writepage(wbc, page);
4859 unlock_page(page);
4860 return 0;
4861 }
d1310b2e 4862 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4863 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
4864}
4865
f421950f
CM
4866int btrfs_writepages(struct address_space *mapping,
4867 struct writeback_control *wbc)
b293f02e 4868{
d1310b2e 4869 struct extent_io_tree *tree;
771ed689 4870
d1310b2e 4871 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
4872 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4873}
4874
3ab2fb5a
CM
4875static int
4876btrfs_readpages(struct file *file, struct address_space *mapping,
4877 struct list_head *pages, unsigned nr_pages)
4878{
d1310b2e
CM
4879 struct extent_io_tree *tree;
4880 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
4881 return extent_readpages(tree, mapping, pages, nr_pages,
4882 btrfs_get_extent);
4883}
e6dcd2dc 4884static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 4885{
d1310b2e
CM
4886 struct extent_io_tree *tree;
4887 struct extent_map_tree *map;
a52d9a80 4888 int ret;
8c2383c3 4889
d1310b2e
CM
4890 tree = &BTRFS_I(page->mapping->host)->io_tree;
4891 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 4892 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
4893 if (ret == 1) {
4894 ClearPagePrivate(page);
4895 set_page_private(page, 0);
4896 page_cache_release(page);
39279cc3 4897 }
a52d9a80 4898 return ret;
39279cc3
CM
4899}
4900
e6dcd2dc
CM
4901static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4902{
98509cfc
CM
4903 if (PageWriteback(page) || PageDirty(page))
4904 return 0;
b335b003 4905 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
4906}
4907
a52d9a80 4908static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 4909{
d1310b2e 4910 struct extent_io_tree *tree;
e6dcd2dc
CM
4911 struct btrfs_ordered_extent *ordered;
4912 u64 page_start = page_offset(page);
4913 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 4914
8b62b72b
CM
4915
4916 /*
4917 * we have the page locked, so new writeback can't start,
4918 * and the dirty bit won't be cleared while we are here.
4919 *
4920 * Wait for IO on this page so that we can safely clear
4921 * the PagePrivate2 bit and do ordered accounting
4922 */
e6dcd2dc 4923 wait_on_page_writeback(page);
8b62b72b 4924
d1310b2e 4925 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
4926 if (offset) {
4927 btrfs_releasepage(page, GFP_NOFS);
4928 return;
4929 }
e6dcd2dc
CM
4930 lock_extent(tree, page_start, page_end, GFP_NOFS);
4931 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4932 page_offset(page));
4933 if (ordered) {
eb84ae03
CM
4934 /*
4935 * IO on this page will never be started, so we need
4936 * to account for any ordered extents now
4937 */
e6dcd2dc
CM
4938 clear_extent_bit(tree, page_start, page_end,
4939 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff
JB
4940 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
4941 NULL, GFP_NOFS);
8b62b72b
CM
4942 /*
4943 * whoever cleared the private bit is responsible
4944 * for the finish_ordered_io
4945 */
4946 if (TestClearPagePrivate2(page)) {
4947 btrfs_finish_ordered_io(page->mapping->host,
4948 page_start, page_end);
4949 }
e6dcd2dc
CM
4950 btrfs_put_ordered_extent(ordered);
4951 lock_extent(tree, page_start, page_end, GFP_NOFS);
4952 }
4953 clear_extent_bit(tree, page_start, page_end,
32c00aff
JB
4954 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4955 EXTENT_DO_ACCOUNTING, 1, 1, NULL, GFP_NOFS);
e6dcd2dc
CM
4956 __btrfs_releasepage(page, GFP_NOFS);
4957
4a096752 4958 ClearPageChecked(page);
9ad6b7bc 4959 if (PagePrivate(page)) {
9ad6b7bc
CM
4960 ClearPagePrivate(page);
4961 set_page_private(page, 0);
4962 page_cache_release(page);
4963 }
39279cc3
CM
4964}
4965
9ebefb18
CM
4966/*
4967 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4968 * called from a page fault handler when a page is first dirtied. Hence we must
4969 * be careful to check for EOF conditions here. We set the page up correctly
4970 * for a written page which means we get ENOSPC checking when writing into
4971 * holes and correct delalloc and unwritten extent mapping on filesystems that
4972 * support these features.
4973 *
4974 * We are not allowed to take the i_mutex here so we have to play games to
4975 * protect against truncate races as the page could now be beyond EOF. Because
4976 * vmtruncate() writes the inode size before removing pages, once we have the
4977 * page lock we can determine safely if the page is beyond EOF. If it is not
4978 * beyond EOF, then the page is guaranteed safe against truncation until we
4979 * unlock the page.
4980 */
c2ec175c 4981int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 4982{
c2ec175c 4983 struct page *page = vmf->page;
6da6abae 4984 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 4985 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4986 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4987 struct btrfs_ordered_extent *ordered;
4988 char *kaddr;
4989 unsigned long zero_start;
9ebefb18 4990 loff_t size;
1832a6d5 4991 int ret;
a52d9a80 4992 u64 page_start;
e6dcd2dc 4993 u64 page_end;
9ebefb18 4994
6a63209f 4995 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
56a76f82
NP
4996 if (ret) {
4997 if (ret == -ENOMEM)
4998 ret = VM_FAULT_OOM;
4999 else /* -ENOSPC, -EIO, etc */
5000 ret = VM_FAULT_SIGBUS;
1832a6d5 5001 goto out;
56a76f82 5002 }
1832a6d5 5003
9ed74f2d
JB
5004 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
5005 if (ret) {
5006 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5007 ret = VM_FAULT_SIGBUS;
5008 goto out;
5009 }
5010
56a76f82 5011 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 5012again:
9ebefb18 5013 lock_page(page);
9ebefb18 5014 size = i_size_read(inode);
e6dcd2dc
CM
5015 page_start = page_offset(page);
5016 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 5017
9ebefb18 5018 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 5019 (page_start >= size)) {
6a63209f 5020 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ebefb18
CM
5021 /* page got truncated out from underneath us */
5022 goto out_unlock;
5023 }
e6dcd2dc
CM
5024 wait_on_page_writeback(page);
5025
5026 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
5027 set_page_extent_mapped(page);
5028
eb84ae03
CM
5029 /*
5030 * we can't set the delalloc bits if there are pending ordered
5031 * extents. Drop our locks and wait for them to finish
5032 */
e6dcd2dc
CM
5033 ordered = btrfs_lookup_ordered_extent(inode, page_start);
5034 if (ordered) {
5035 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5036 unlock_page(page);
eb84ae03 5037 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
5038 btrfs_put_ordered_extent(ordered);
5039 goto again;
5040 }
5041
fbf19087
JB
5042 /*
5043 * XXX - page_mkwrite gets called every time the page is dirtied, even
5044 * if it was already dirty, so for space accounting reasons we need to
5045 * clear any delalloc bits for the range we are fixing to save. There
5046 * is probably a better way to do this, but for now keep consistent with
5047 * prepare_pages in the normal write path.
5048 */
5049 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff
JB
5050 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
5051 GFP_NOFS);
fbf19087 5052
9ed74f2d
JB
5053 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
5054 if (ret) {
5055 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5056 ret = VM_FAULT_SIGBUS;
fbf19087 5057 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ed74f2d
JB
5058 goto out_unlock;
5059 }
e6dcd2dc 5060 ret = 0;
9ebefb18
CM
5061
5062 /* page is wholly or partially inside EOF */
a52d9a80 5063 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 5064 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 5065 else
e6dcd2dc 5066 zero_start = PAGE_CACHE_SIZE;
9ebefb18 5067
e6dcd2dc
CM
5068 if (zero_start != PAGE_CACHE_SIZE) {
5069 kaddr = kmap(page);
5070 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
5071 flush_dcache_page(page);
5072 kunmap(page);
5073 }
247e743c 5074 ClearPageChecked(page);
e6dcd2dc 5075 set_page_dirty(page);
50a9b214 5076 SetPageUptodate(page);
5a3f23d5 5077
257c62e1
CM
5078 BTRFS_I(inode)->last_trans = root->fs_info->generation;
5079 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5080
e6dcd2dc 5081 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
9ebefb18
CM
5082
5083out_unlock:
9ed74f2d 5084 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
50a9b214
CM
5085 if (!ret)
5086 return VM_FAULT_LOCKED;
9ebefb18 5087 unlock_page(page);
1832a6d5 5088out:
9ebefb18
CM
5089 return ret;
5090}
5091
39279cc3
CM
5092static void btrfs_truncate(struct inode *inode)
5093{
5094 struct btrfs_root *root = BTRFS_I(inode)->root;
5095 int ret;
5096 struct btrfs_trans_handle *trans;
d3c2fdcf 5097 unsigned long nr;
dbe674a9 5098 u64 mask = root->sectorsize - 1;
39279cc3
CM
5099
5100 if (!S_ISREG(inode->i_mode))
5101 return;
5102 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
5103 return;
5104
5d5e103a
JB
5105 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5106 if (ret)
5107 return;
4a096752 5108 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
39279cc3 5109
39279cc3 5110 trans = btrfs_start_transaction(root, 1);
5a3f23d5
CM
5111
5112 /*
5113 * setattr is responsible for setting the ordered_data_close flag,
5114 * but that is only tested during the last file release. That
5115 * could happen well after the next commit, leaving a great big
5116 * window where new writes may get lost if someone chooses to write
5117 * to this file after truncating to zero
5118 *
5119 * The inode doesn't have any dirty data here, and so if we commit
5120 * this is a noop. If someone immediately starts writing to the inode
5121 * it is very likely we'll catch some of their writes in this
5122 * transaction, and the commit will find this file on the ordered
5123 * data list with good things to send down.
5124 *
5125 * This is a best effort solution, there is still a window where
5126 * using truncate to replace the contents of the file will
5127 * end up with a zero length file after a crash.
5128 */
5129 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5130 btrfs_add_ordered_operation(trans, root, inode);
5131
39279cc3 5132 btrfs_set_trans_block_group(trans, inode);
dbe674a9 5133 btrfs_i_size_write(inode, inode->i_size);
39279cc3 5134
7b128766
JB
5135 ret = btrfs_orphan_add(trans, inode);
5136 if (ret)
5137 goto out;
39279cc3 5138 /* FIXME, add redo link to tree so we don't leak on crash */
e02119d5 5139 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
85e21bac 5140 BTRFS_EXTENT_DATA_KEY);
39279cc3 5141 btrfs_update_inode(trans, root, inode);
5f39d397 5142
7b128766
JB
5143 ret = btrfs_orphan_del(trans, inode);
5144 BUG_ON(ret);
5145
5146out:
5147 nr = trans->blocks_used;
89ce8a63 5148 ret = btrfs_end_transaction_throttle(trans, root);
39279cc3 5149 BUG_ON(ret);
d3c2fdcf 5150 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5151}
5152
d352ac68
CM
5153/*
5154 * create a new subvolume directory/inode (helper for the ioctl).
5155 */
d2fb3437 5156int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 5157 struct btrfs_root *new_root,
d2fb3437 5158 u64 new_dirid, u64 alloc_hint)
39279cc3 5159{
39279cc3 5160 struct inode *inode;
76dda93c 5161 int err;
00e4e6b3 5162 u64 index = 0;
39279cc3 5163
aec7477b 5164 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 5165 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 5166 if (IS_ERR(inode))
f46b5a66 5167 return PTR_ERR(inode);
39279cc3
CM
5168 inode->i_op = &btrfs_dir_inode_operations;
5169 inode->i_fop = &btrfs_dir_file_operations;
5170
39279cc3 5171 inode->i_nlink = 1;
dbe674a9 5172 btrfs_i_size_write(inode, 0);
3b96362c 5173
76dda93c
YZ
5174 err = btrfs_update_inode(trans, new_root, inode);
5175 BUG_ON(err);
cb8e7090 5176
76dda93c 5177 iput(inode);
cb8e7090 5178 return 0;
39279cc3
CM
5179}
5180
d352ac68
CM
5181/* helper function for file defrag and space balancing. This
5182 * forces readahead on a given range of bytes in an inode
5183 */
edbd8d4e 5184unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
5185 struct file_ra_state *ra, struct file *file,
5186 pgoff_t offset, pgoff_t last_index)
5187{
8e7bf94f 5188 pgoff_t req_size = last_index - offset + 1;
86479a04 5189
86479a04
CM
5190 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5191 return offset + req_size;
86479a04
CM
5192}
5193
39279cc3
CM
5194struct inode *btrfs_alloc_inode(struct super_block *sb)
5195{
5196 struct btrfs_inode *ei;
5197
5198 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5199 if (!ei)
5200 return NULL;
15ee9bc7 5201 ei->last_trans = 0;
257c62e1 5202 ei->last_sub_trans = 0;
e02119d5 5203 ei->logged_trans = 0;
32c00aff
JB
5204 ei->outstanding_extents = 0;
5205 ei->reserved_extents = 0;
a6dbd429 5206 ei->root = NULL;
32c00aff 5207 spin_lock_init(&ei->accounting_lock);
e6dcd2dc 5208 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 5209 INIT_LIST_HEAD(&ei->i_orphan);
5a3f23d5 5210 INIT_LIST_HEAD(&ei->ordered_operations);
39279cc3
CM
5211 return &ei->vfs_inode;
5212}
5213
5214void btrfs_destroy_inode(struct inode *inode)
5215{
e6dcd2dc 5216 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
5217 struct btrfs_root *root = BTRFS_I(inode)->root;
5218
39279cc3
CM
5219 WARN_ON(!list_empty(&inode->i_dentry));
5220 WARN_ON(inode->i_data.nrpages);
5221
a6dbd429
JB
5222 /*
5223 * This can happen where we create an inode, but somebody else also
5224 * created the same inode and we need to destroy the one we already
5225 * created.
5226 */
5227 if (!root)
5228 goto free;
5229
5a3f23d5
CM
5230 /*
5231 * Make sure we're properly removed from the ordered operation
5232 * lists.
5233 */
5234 smp_mb();
5235 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5236 spin_lock(&root->fs_info->ordered_extent_lock);
5237 list_del_init(&BTRFS_I(inode)->ordered_operations);
5238 spin_unlock(&root->fs_info->ordered_extent_lock);
5239 }
5240
5241 spin_lock(&root->list_lock);
7b128766
JB
5242 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5243 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
5244 " list\n", inode->i_ino);
5245 dump_stack();
5246 }
5a3f23d5 5247 spin_unlock(&root->list_lock);
7b128766 5248
d397712b 5249 while (1) {
e6dcd2dc
CM
5250 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5251 if (!ordered)
5252 break;
5253 else {
d397712b
CM
5254 printk(KERN_ERR "btrfs found ordered "
5255 "extent %llu %llu on inode cleanup\n",
5256 (unsigned long long)ordered->file_offset,
5257 (unsigned long long)ordered->len);
e6dcd2dc
CM
5258 btrfs_remove_ordered_extent(inode, ordered);
5259 btrfs_put_ordered_extent(ordered);
5260 btrfs_put_ordered_extent(ordered);
5261 }
5262 }
5d4f98a2 5263 inode_tree_del(inode);
5b21f2ed 5264 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 5265free:
39279cc3
CM
5266 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5267}
5268
76dda93c
YZ
5269void btrfs_drop_inode(struct inode *inode)
5270{
5271 struct btrfs_root *root = BTRFS_I(inode)->root;
5272
5273 if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5274 generic_delete_inode(inode);
5275 else
5276 generic_drop_inode(inode);
5277}
5278
0ee0fda0 5279static void init_once(void *foo)
39279cc3
CM
5280{
5281 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5282
5283 inode_init_once(&ei->vfs_inode);
5284}
5285
5286void btrfs_destroy_cachep(void)
5287{
5288 if (btrfs_inode_cachep)
5289 kmem_cache_destroy(btrfs_inode_cachep);
5290 if (btrfs_trans_handle_cachep)
5291 kmem_cache_destroy(btrfs_trans_handle_cachep);
5292 if (btrfs_transaction_cachep)
5293 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
5294 if (btrfs_path_cachep)
5295 kmem_cache_destroy(btrfs_path_cachep);
5296}
5297
5298int btrfs_init_cachep(void)
5299{
9601e3f6
CH
5300 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5301 sizeof(struct btrfs_inode), 0,
5302 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
5303 if (!btrfs_inode_cachep)
5304 goto fail;
9601e3f6
CH
5305
5306 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5307 sizeof(struct btrfs_trans_handle), 0,
5308 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5309 if (!btrfs_trans_handle_cachep)
5310 goto fail;
9601e3f6
CH
5311
5312 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5313 sizeof(struct btrfs_transaction), 0,
5314 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5315 if (!btrfs_transaction_cachep)
5316 goto fail;
9601e3f6
CH
5317
5318 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5319 sizeof(struct btrfs_path), 0,
5320 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5321 if (!btrfs_path_cachep)
5322 goto fail;
9601e3f6 5323
39279cc3
CM
5324 return 0;
5325fail:
5326 btrfs_destroy_cachep();
5327 return -ENOMEM;
5328}
5329
5330static int btrfs_getattr(struct vfsmount *mnt,
5331 struct dentry *dentry, struct kstat *stat)
5332{
5333 struct inode *inode = dentry->d_inode;
5334 generic_fillattr(inode, stat);
3394e160 5335 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 5336 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
5337 stat->blocks = (inode_get_bytes(inode) +
5338 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
5339 return 0;
5340}
5341
d397712b
CM
5342static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5343 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
5344{
5345 struct btrfs_trans_handle *trans;
5346 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 5347 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
5348 struct inode *new_inode = new_dentry->d_inode;
5349 struct inode *old_inode = old_dentry->d_inode;
5350 struct timespec ctime = CURRENT_TIME;
00e4e6b3 5351 u64 index = 0;
4df27c4d 5352 u64 root_objectid;
39279cc3
CM
5353 int ret;
5354
f679a840
YZ
5355 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5356 return -EPERM;
5357
4df27c4d
YZ
5358 /* we only allow rename subvolume link between subvolumes */
5359 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
5360 return -EXDEV;
5361
4df27c4d
YZ
5362 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5363 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 5364 return -ENOTEMPTY;
5f39d397 5365
4df27c4d
YZ
5366 if (S_ISDIR(old_inode->i_mode) && new_inode &&
5367 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5368 return -ENOTEMPTY;
0660b5af 5369
9ed74f2d 5370 /*
5df6a9f6
JB
5371 * We want to reserve the absolute worst case amount of items. So if
5372 * both inodes are subvols and we need to unlink them then that would
5373 * require 4 item modifications, but if they are both normal inodes it
5374 * would require 5 item modifications, so we'll assume their normal
5375 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5376 * should cover the worst case number of items we'll modify.
9ed74f2d 5377 */
5df6a9f6 5378 ret = btrfs_reserve_metadata_space(root, 11);
1832a6d5 5379 if (ret)
4df27c4d 5380 return ret;
1832a6d5 5381
5a3f23d5
CM
5382 /*
5383 * we're using rename to replace one file with another.
5384 * and the replacement file is large. Start IO on it now so
5385 * we don't add too much work to the end of the transaction
5386 */
4baf8c92 5387 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
5388 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5389 filemap_flush(old_inode->i_mapping);
5390
76dda93c
YZ
5391 /* close the racy window with snapshot create/destroy ioctl */
5392 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5393 down_read(&root->fs_info->subvol_sem);
5394
39279cc3 5395 trans = btrfs_start_transaction(root, 1);
a5719521 5396 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 5397
4df27c4d
YZ
5398 if (dest != root)
5399 btrfs_record_root_in_trans(trans, dest);
5f39d397 5400
a5719521
YZ
5401 ret = btrfs_set_inode_index(new_dir, &index);
5402 if (ret)
5403 goto out_fail;
5a3f23d5 5404
a5719521 5405 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5406 /* force full log commit if subvolume involved. */
5407 root->fs_info->last_trans_log_full_commit = trans->transid;
5408 } else {
a5719521
YZ
5409 ret = btrfs_insert_inode_ref(trans, dest,
5410 new_dentry->d_name.name,
5411 new_dentry->d_name.len,
5412 old_inode->i_ino,
5413 new_dir->i_ino, index);
5414 if (ret)
5415 goto out_fail;
4df27c4d
YZ
5416 /*
5417 * this is an ugly little race, but the rename is required
5418 * to make sure that if we crash, the inode is either at the
5419 * old name or the new one. pinning the log transaction lets
5420 * us make sure we don't allow a log commit to come in after
5421 * we unlink the name but before we add the new name back in.
5422 */
5423 btrfs_pin_log_trans(root);
5424 }
5a3f23d5
CM
5425 /*
5426 * make sure the inode gets flushed if it is replacing
5427 * something.
5428 */
5429 if (new_inode && new_inode->i_size &&
5430 old_inode && S_ISREG(old_inode->i_mode)) {
5431 btrfs_add_ordered_operation(trans, root, old_inode);
5432 }
5433
39279cc3
CM
5434 old_dir->i_ctime = old_dir->i_mtime = ctime;
5435 new_dir->i_ctime = new_dir->i_mtime = ctime;
5436 old_inode->i_ctime = ctime;
5f39d397 5437
12fcfd22
CM
5438 if (old_dentry->d_parent != new_dentry->d_parent)
5439 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5440
4df27c4d
YZ
5441 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5442 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5443 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5444 old_dentry->d_name.name,
5445 old_dentry->d_name.len);
5446 } else {
5447 btrfs_inc_nlink(old_dentry->d_inode);
5448 ret = btrfs_unlink_inode(trans, root, old_dir,
5449 old_dentry->d_inode,
5450 old_dentry->d_name.name,
5451 old_dentry->d_name.len);
5452 }
5453 BUG_ON(ret);
39279cc3
CM
5454
5455 if (new_inode) {
5456 new_inode->i_ctime = CURRENT_TIME;
4df27c4d
YZ
5457 if (unlikely(new_inode->i_ino ==
5458 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5459 root_objectid = BTRFS_I(new_inode)->location.objectid;
5460 ret = btrfs_unlink_subvol(trans, dest, new_dir,
5461 root_objectid,
5462 new_dentry->d_name.name,
5463 new_dentry->d_name.len);
5464 BUG_ON(new_inode->i_nlink == 0);
5465 } else {
5466 ret = btrfs_unlink_inode(trans, dest, new_dir,
5467 new_dentry->d_inode,
5468 new_dentry->d_name.name,
5469 new_dentry->d_name.len);
5470 }
5471 BUG_ON(ret);
7b128766 5472 if (new_inode->i_nlink == 0) {
e02119d5 5473 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 5474 BUG_ON(ret);
7b128766 5475 }
39279cc3 5476 }
aec7477b 5477
4df27c4d
YZ
5478 ret = btrfs_add_link(trans, new_dir, old_inode,
5479 new_dentry->d_name.name,
a5719521 5480 new_dentry->d_name.len, 0, index);
4df27c4d 5481 BUG_ON(ret);
39279cc3 5482
4df27c4d
YZ
5483 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5484 btrfs_log_new_name(trans, old_inode, old_dir,
5485 new_dentry->d_parent);
5486 btrfs_end_log_trans(root);
5487 }
39279cc3 5488out_fail:
ab78c84d 5489 btrfs_end_transaction_throttle(trans, root);
4df27c4d 5490
76dda93c
YZ
5491 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5492 up_read(&root->fs_info->subvol_sem);
9ed74f2d 5493
5df6a9f6 5494 btrfs_unreserve_metadata_space(root, 11);
39279cc3
CM
5495 return ret;
5496}
5497
d352ac68
CM
5498/*
5499 * some fairly slow code that needs optimization. This walks the list
5500 * of all the inodes with pending delalloc and forces them to disk.
5501 */
ea8c2819
CM
5502int btrfs_start_delalloc_inodes(struct btrfs_root *root)
5503{
5504 struct list_head *head = &root->fs_info->delalloc_inodes;
5505 struct btrfs_inode *binode;
5b21f2ed 5506 struct inode *inode;
ea8c2819 5507
c146afad
YZ
5508 if (root->fs_info->sb->s_flags & MS_RDONLY)
5509 return -EROFS;
5510
75eff68e 5511 spin_lock(&root->fs_info->delalloc_lock);
d397712b 5512 while (!list_empty(head)) {
ea8c2819
CM
5513 binode = list_entry(head->next, struct btrfs_inode,
5514 delalloc_inodes);
5b21f2ed
ZY
5515 inode = igrab(&binode->vfs_inode);
5516 if (!inode)
5517 list_del_init(&binode->delalloc_inodes);
75eff68e 5518 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 5519 if (inode) {
8c8bee1d 5520 filemap_flush(inode->i_mapping);
5b21f2ed
ZY
5521 iput(inode);
5522 }
5523 cond_resched();
75eff68e 5524 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 5525 }
75eff68e 5526 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
5527
5528 /* the filemap_flush will queue IO into the worker threads, but
5529 * we have to make sure the IO is actually started and that
5530 * ordered extents get created before we return
5531 */
5532 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 5533 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 5534 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 5535 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
5536 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5537 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
5538 }
5539 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
5540 return 0;
5541}
5542
39279cc3
CM
5543static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5544 const char *symname)
5545{
5546 struct btrfs_trans_handle *trans;
5547 struct btrfs_root *root = BTRFS_I(dir)->root;
5548 struct btrfs_path *path;
5549 struct btrfs_key key;
1832a6d5 5550 struct inode *inode = NULL;
39279cc3
CM
5551 int err;
5552 int drop_inode = 0;
5553 u64 objectid;
00e4e6b3 5554 u64 index = 0 ;
39279cc3
CM
5555 int name_len;
5556 int datasize;
5f39d397 5557 unsigned long ptr;
39279cc3 5558 struct btrfs_file_extent_item *ei;
5f39d397 5559 struct extent_buffer *leaf;
1832a6d5 5560 unsigned long nr = 0;
39279cc3
CM
5561
5562 name_len = strlen(symname) + 1;
5563 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5564 return -ENAMETOOLONG;
1832a6d5 5565
9ed74f2d
JB
5566 /*
5567 * 2 items for inode item and ref
5568 * 2 items for dir items
5569 * 1 item for xattr if selinux is on
5570 */
5571 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 5572 if (err)
9ed74f2d 5573 return err;
1832a6d5 5574
39279cc3 5575 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
5576 if (!trans)
5577 goto out_fail;
39279cc3
CM
5578 btrfs_set_trans_block_group(trans, dir);
5579
5580 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5581 if (err) {
5582 err = -ENOSPC;
5583 goto out_unlock;
5584 }
5585
aec7477b 5586 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
5587 dentry->d_name.len,
5588 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
5589 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5590 &index);
39279cc3
CM
5591 err = PTR_ERR(inode);
5592 if (IS_ERR(inode))
5593 goto out_unlock;
5594
0279b4cd 5595 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
5596 if (err) {
5597 drop_inode = 1;
5598 goto out_unlock;
5599 }
5600
39279cc3 5601 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 5602 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
5603 if (err)
5604 drop_inode = 1;
5605 else {
5606 inode->i_mapping->a_ops = &btrfs_aops;
04160088 5607 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
5608 inode->i_fop = &btrfs_file_operations;
5609 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 5610 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 5611 }
39279cc3
CM
5612 btrfs_update_inode_block_group(trans, inode);
5613 btrfs_update_inode_block_group(trans, dir);
5614 if (drop_inode)
5615 goto out_unlock;
5616
5617 path = btrfs_alloc_path();
5618 BUG_ON(!path);
5619 key.objectid = inode->i_ino;
5620 key.offset = 0;
39279cc3
CM
5621 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5622 datasize = btrfs_file_extent_calc_inline_size(name_len);
5623 err = btrfs_insert_empty_item(trans, root, path, &key,
5624 datasize);
54aa1f4d
CM
5625 if (err) {
5626 drop_inode = 1;
5627 goto out_unlock;
5628 }
5f39d397
CM
5629 leaf = path->nodes[0];
5630 ei = btrfs_item_ptr(leaf, path->slots[0],
5631 struct btrfs_file_extent_item);
5632 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5633 btrfs_set_file_extent_type(leaf, ei,
39279cc3 5634 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
5635 btrfs_set_file_extent_encryption(leaf, ei, 0);
5636 btrfs_set_file_extent_compression(leaf, ei, 0);
5637 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5638 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5639
39279cc3 5640 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
5641 write_extent_buffer(leaf, symname, ptr, name_len);
5642 btrfs_mark_buffer_dirty(leaf);
39279cc3 5643 btrfs_free_path(path);
5f39d397 5644
39279cc3
CM
5645 inode->i_op = &btrfs_symlink_inode_operations;
5646 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 5647 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 5648 inode_set_bytes(inode, name_len);
dbe674a9 5649 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
5650 err = btrfs_update_inode(trans, root, inode);
5651 if (err)
5652 drop_inode = 1;
39279cc3
CM
5653
5654out_unlock:
d3c2fdcf 5655 nr = trans->blocks_used;
ab78c84d 5656 btrfs_end_transaction_throttle(trans, root);
1832a6d5 5657out_fail:
9ed74f2d 5658 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
5659 if (drop_inode) {
5660 inode_dec_link_count(inode);
5661 iput(inode);
5662 }
d3c2fdcf 5663 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5664 return err;
5665}
16432985 5666
5a303d5d 5667static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
920bbbfb 5668 u64 alloc_hint, int mode)
d899e052 5669{
5a303d5d 5670 struct btrfs_trans_handle *trans;
d899e052
YZ
5671 struct btrfs_root *root = BTRFS_I(inode)->root;
5672 struct btrfs_key ins;
5673 u64 alloc_size;
5674 u64 cur_offset = start;
5675 u64 num_bytes = end - start;
5676 int ret = 0;
5677
d899e052
YZ
5678 while (num_bytes > 0) {
5679 alloc_size = min(num_bytes, root->fs_info->max_extent);
9ed74f2d 5680
d899e052
YZ
5681 ret = btrfs_reserve_extent(trans, root, alloc_size,
5682 root->sectorsize, 0, alloc_hint,
5683 (u64)-1, &ins, 1);
5684 if (ret) {
5685 WARN_ON(1);
5a303d5d
YZ
5686 break;
5687 }
5688
5689 ret = btrfs_reserve_metadata_space(root, 3);
5690 if (ret) {
5691 btrfs_free_reserved_extent(root, ins.objectid,
5692 ins.offset);
5693 break;
d899e052 5694 }
5a303d5d
YZ
5695
5696 trans = btrfs_start_transaction(root, 1);
5697
d899e052
YZ
5698 ret = insert_reserved_file_extent(trans, inode,
5699 cur_offset, ins.objectid,
5700 ins.offset, ins.offset,
920bbbfb 5701 ins.offset, 0, 0, 0,
d899e052
YZ
5702 BTRFS_FILE_EXTENT_PREALLOC);
5703 BUG_ON(ret);
a1ed835e
CM
5704 btrfs_drop_extent_cache(inode, cur_offset,
5705 cur_offset + ins.offset -1, 0);
5a303d5d 5706
d899e052
YZ
5707 num_bytes -= ins.offset;
5708 cur_offset += ins.offset;
5709 alloc_hint = ins.objectid + ins.offset;
5a303d5d 5710
d899e052 5711 inode->i_ctime = CURRENT_TIME;
6cbff00f 5712 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 5713 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5a303d5d
YZ
5714 cur_offset > inode->i_size) {
5715 i_size_write(inode, cur_offset);
5716 btrfs_ordered_update_i_size(inode, cur_offset, NULL);
5717 }
5718
d899e052
YZ
5719 ret = btrfs_update_inode(trans, root, inode);
5720 BUG_ON(ret);
d899e052 5721
5a303d5d
YZ
5722 btrfs_end_transaction(trans, root);
5723 btrfs_unreserve_metadata_space(root, 3);
5724 }
d899e052
YZ
5725 return ret;
5726}
5727
5728static long btrfs_fallocate(struct inode *inode, int mode,
5729 loff_t offset, loff_t len)
5730{
5731 u64 cur_offset;
5732 u64 last_byte;
5733 u64 alloc_start;
5734 u64 alloc_end;
5735 u64 alloc_hint = 0;
e980b50c 5736 u64 locked_end;
d899e052
YZ
5737 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5738 struct extent_map *em;
5739 int ret;
5740
5741 alloc_start = offset & ~mask;
5742 alloc_end = (offset + len + mask) & ~mask;
5743
546888da
CM
5744 /*
5745 * wait for ordered IO before we have any locks. We'll loop again
5746 * below with the locks held.
5747 */
5748 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5749
d899e052
YZ
5750 mutex_lock(&inode->i_mutex);
5751 if (alloc_start > inode->i_size) {
5752 ret = btrfs_cont_expand(inode, alloc_start);
5753 if (ret)
5754 goto out;
5755 }
5756
5a303d5d 5757 ret = btrfs_check_data_free_space(BTRFS_I(inode)->root, inode,
a970b0a1
JB
5758 alloc_end - alloc_start);
5759 if (ret)
5760 goto out;
5761
e980b50c 5762 locked_end = alloc_end - 1;
d899e052
YZ
5763 while (1) {
5764 struct btrfs_ordered_extent *ordered;
546888da 5765
546888da
CM
5766 /* the extent lock is ordered inside the running
5767 * transaction
5768 */
e980b50c
CM
5769 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5770 GFP_NOFS);
d899e052
YZ
5771 ordered = btrfs_lookup_first_ordered_extent(inode,
5772 alloc_end - 1);
5773 if (ordered &&
5774 ordered->file_offset + ordered->len > alloc_start &&
5775 ordered->file_offset < alloc_end) {
5776 btrfs_put_ordered_extent(ordered);
5777 unlock_extent(&BTRFS_I(inode)->io_tree,
e980b50c 5778 alloc_start, locked_end, GFP_NOFS);
546888da
CM
5779 /*
5780 * we can't wait on the range with the transaction
5781 * running or with the extent lock held
5782 */
d899e052
YZ
5783 btrfs_wait_ordered_range(inode, alloc_start,
5784 alloc_end - alloc_start);
5785 } else {
5786 if (ordered)
5787 btrfs_put_ordered_extent(ordered);
5788 break;
5789 }
5790 }
5791
5792 cur_offset = alloc_start;
5793 while (1) {
5794 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5795 alloc_end - cur_offset, 0);
5796 BUG_ON(IS_ERR(em) || !em);
5797 last_byte = min(extent_map_end(em), alloc_end);
5798 last_byte = (last_byte + mask) & ~mask;
5a303d5d
YZ
5799 if (em->block_start == EXTENT_MAP_HOLE ||
5800 (cur_offset >= inode->i_size &&
5801 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5802 ret = prealloc_file_range(inode,
5803 cur_offset, last_byte,
5804 alloc_hint, mode);
d899e052
YZ
5805 if (ret < 0) {
5806 free_extent_map(em);
5807 break;
5808 }
5809 }
5810 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5811 alloc_hint = em->block_start;
5812 free_extent_map(em);
5813
5814 cur_offset = last_byte;
5815 if (cur_offset >= alloc_end) {
5816 ret = 0;
5817 break;
5818 }
5819 }
e980b50c 5820 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
d899e052 5821 GFP_NOFS);
546888da 5822
5a303d5d
YZ
5823 btrfs_free_reserved_data_space(BTRFS_I(inode)->root, inode,
5824 alloc_end - alloc_start);
d899e052
YZ
5825out:
5826 mutex_unlock(&inode->i_mutex);
5827 return ret;
5828}
5829
e6dcd2dc
CM
5830static int btrfs_set_page_dirty(struct page *page)
5831{
e6dcd2dc
CM
5832 return __set_page_dirty_nobuffers(page);
5833}
5834
0ee0fda0 5835static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 5836{
6cbff00f 5837 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 5838 return -EACCES;
33268eaf 5839 return generic_permission(inode, mask, btrfs_check_acl);
fdebe2bd 5840}
39279cc3 5841
6e1d5dcc 5842static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 5843 .getattr = btrfs_getattr,
39279cc3
CM
5844 .lookup = btrfs_lookup,
5845 .create = btrfs_create,
5846 .unlink = btrfs_unlink,
5847 .link = btrfs_link,
5848 .mkdir = btrfs_mkdir,
5849 .rmdir = btrfs_rmdir,
5850 .rename = btrfs_rename,
5851 .symlink = btrfs_symlink,
5852 .setattr = btrfs_setattr,
618e21d5 5853 .mknod = btrfs_mknod,
95819c05
CH
5854 .setxattr = btrfs_setxattr,
5855 .getxattr = btrfs_getxattr,
5103e947 5856 .listxattr = btrfs_listxattr,
95819c05 5857 .removexattr = btrfs_removexattr,
fdebe2bd 5858 .permission = btrfs_permission,
39279cc3 5859};
6e1d5dcc 5860static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 5861 .lookup = btrfs_lookup,
fdebe2bd 5862 .permission = btrfs_permission,
39279cc3 5863};
76dda93c 5864
828c0950 5865static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
5866 .llseek = generic_file_llseek,
5867 .read = generic_read_dir,
cbdf5a24 5868 .readdir = btrfs_real_readdir,
34287aa3 5869 .unlocked_ioctl = btrfs_ioctl,
39279cc3 5870#ifdef CONFIG_COMPAT
34287aa3 5871 .compat_ioctl = btrfs_ioctl,
39279cc3 5872#endif
6bf13c0c 5873 .release = btrfs_release_file,
e02119d5 5874 .fsync = btrfs_sync_file,
39279cc3
CM
5875};
5876
d1310b2e 5877static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 5878 .fill_delalloc = run_delalloc_range,
065631f6 5879 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 5880 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 5881 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 5882 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 5883 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 5884 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
5885 .set_bit_hook = btrfs_set_bit_hook,
5886 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
5887 .merge_extent_hook = btrfs_merge_extent_hook,
5888 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
5889};
5890
35054394
CM
5891/*
5892 * btrfs doesn't support the bmap operation because swapfiles
5893 * use bmap to make a mapping of extents in the file. They assume
5894 * these extents won't change over the life of the file and they
5895 * use the bmap result to do IO directly to the drive.
5896 *
5897 * the btrfs bmap call would return logical addresses that aren't
5898 * suitable for IO and they also will change frequently as COW
5899 * operations happen. So, swapfile + btrfs == corruption.
5900 *
5901 * For now we're avoiding this by dropping bmap.
5902 */
7f09410b 5903static const struct address_space_operations btrfs_aops = {
39279cc3
CM
5904 .readpage = btrfs_readpage,
5905 .writepage = btrfs_writepage,
b293f02e 5906 .writepages = btrfs_writepages,
3ab2fb5a 5907 .readpages = btrfs_readpages,
39279cc3 5908 .sync_page = block_sync_page,
16432985 5909 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
5910 .invalidatepage = btrfs_invalidatepage,
5911 .releasepage = btrfs_releasepage,
e6dcd2dc 5912 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 5913 .error_remove_page = generic_error_remove_page,
39279cc3
CM
5914};
5915
7f09410b 5916static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
5917 .readpage = btrfs_readpage,
5918 .writepage = btrfs_writepage,
2bf5a725
CM
5919 .invalidatepage = btrfs_invalidatepage,
5920 .releasepage = btrfs_releasepage,
39279cc3
CM
5921};
5922
6e1d5dcc 5923static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
5924 .truncate = btrfs_truncate,
5925 .getattr = btrfs_getattr,
5926 .setattr = btrfs_setattr,
95819c05
CH
5927 .setxattr = btrfs_setxattr,
5928 .getxattr = btrfs_getxattr,
5103e947 5929 .listxattr = btrfs_listxattr,
95819c05 5930 .removexattr = btrfs_removexattr,
fdebe2bd 5931 .permission = btrfs_permission,
d899e052 5932 .fallocate = btrfs_fallocate,
1506fcc8 5933 .fiemap = btrfs_fiemap,
39279cc3 5934};
6e1d5dcc 5935static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
5936 .getattr = btrfs_getattr,
5937 .setattr = btrfs_setattr,
fdebe2bd 5938 .permission = btrfs_permission,
95819c05
CH
5939 .setxattr = btrfs_setxattr,
5940 .getxattr = btrfs_getxattr,
33268eaf 5941 .listxattr = btrfs_listxattr,
95819c05 5942 .removexattr = btrfs_removexattr,
618e21d5 5943};
6e1d5dcc 5944static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
5945 .readlink = generic_readlink,
5946 .follow_link = page_follow_link_light,
5947 .put_link = page_put_link,
fdebe2bd 5948 .permission = btrfs_permission,
0279b4cd
JO
5949 .setxattr = btrfs_setxattr,
5950 .getxattr = btrfs_getxattr,
5951 .listxattr = btrfs_listxattr,
5952 .removexattr = btrfs_removexattr,
39279cc3 5953};
76dda93c 5954
82d339d9 5955const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
5956 .d_delete = btrfs_dentry_delete,
5957};