]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/inode.c
btrfs: do not set the full sync flag on the inode during page release
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
8f18cf13 6#include <linux/kernel.h>
065631f6 7#include <linux/bio.h>
55e20bd1 8#include <linux/buffer_head.h>
f2eb0a24 9#include <linux/file.h>
39279cc3
CM
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
39279cc3 16#include <linux/backing-dev.h>
39279cc3 17#include <linux/writeback.h>
39279cc3 18#include <linux/compat.h>
5103e947 19#include <linux/xattr.h>
33268eaf 20#include <linux/posix_acl.h>
d899e052 21#include <linux/falloc.h>
5a0e3ad6 22#include <linux/slab.h>
7a36ddec 23#include <linux/ratelimit.h>
55e301fd 24#include <linux/btrfs.h>
53b381b3 25#include <linux/blkdev.h>
f23b5a59 26#include <linux/posix_acl_xattr.h>
e2e40f2c 27#include <linux/uio.h>
69fe2d75 28#include <linux/magic.h>
ae5e165d 29#include <linux/iversion.h>
ed46ff3d 30#include <linux/swap.h>
f8e66081 31#include <linux/migrate.h>
b1c16ac9 32#include <linux/sched/mm.h>
92d32170 33#include <asm/unaligned.h>
602cbe91 34#include "misc.h"
39279cc3
CM
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39279cc3 39#include "print-tree.h"
e6dcd2dc 40#include "ordered-data.h"
95819c05 41#include "xattr.h"
e02119d5 42#include "tree-log.h"
4a54c8c1 43#include "volumes.h"
c8b97818 44#include "compression.h"
b4ce94de 45#include "locking.h"
dc89e982 46#include "free-space-cache.h"
581bb050 47#include "inode-map.h"
63541927 48#include "props.h"
31193213 49#include "qgroup.h"
86736342 50#include "delalloc-space.h"
aac0023c 51#include "block-group.h"
467dc47e 52#include "space-info.h"
39279cc3
CM
53
54struct btrfs_iget_args {
0202e83f 55 u64 ino;
39279cc3
CM
56 struct btrfs_root *root;
57};
58
f28a4928 59struct btrfs_dio_data {
f28a4928 60 u64 reserve;
55e20bd1
DS
61 u64 unsubmitted_oe_range_start;
62 u64 unsubmitted_oe_range_end;
63 int overwrite;
f28a4928
FM
64};
65
6e1d5dcc
AD
66static const struct inode_operations btrfs_dir_inode_operations;
67static const struct inode_operations btrfs_symlink_inode_operations;
6e1d5dcc
AD
68static const struct inode_operations btrfs_special_inode_operations;
69static const struct inode_operations btrfs_file_inode_operations;
7f09410b 70static const struct address_space_operations btrfs_aops;
828c0950 71static const struct file_operations btrfs_dir_file_operations;
20e5506b 72static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
73
74static struct kmem_cache *btrfs_inode_cachep;
75struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 76struct kmem_cache *btrfs_path_cachep;
dc89e982 77struct kmem_cache *btrfs_free_space_cachep;
3acd4850 78struct kmem_cache *btrfs_free_space_bitmap_cachep;
39279cc3 79
3972f260 80static int btrfs_setsize(struct inode *inode, struct iattr *attr);
213e8c55 81static int btrfs_truncate(struct inode *inode, bool skip_writeback);
5fd02043 82static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
6e26c442 83static noinline int cow_file_range(struct btrfs_inode *inode,
771ed689 84 struct page *locked_page,
74e9194a 85 u64 start, u64 end, int *page_started,
330a5827 86 unsigned long *nr_written, int unlock);
4b67c11d
NB
87static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
88 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
89 u64 block_len, u64 orig_block_len,
90 u64 ram_bytes, int compress_type,
91 int type);
7b128766 92
b672b5c1 93static void __endio_write_update_ordered(struct btrfs_inode *inode,
52427260
QW
94 const u64 offset, const u64 bytes,
95 const bool uptodate);
96
97/*
98 * Cleanup all submitted ordered extents in specified range to handle errors
52042d8e 99 * from the btrfs_run_delalloc_range() callback.
52427260
QW
100 *
101 * NOTE: caller must ensure that when an error happens, it can not call
102 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
103 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
104 * to be released, which we want to happen only when finishing the ordered
d1051d6e 105 * extent (btrfs_finish_ordered_io()).
52427260 106 */
64e1db56 107static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
d1051d6e
NB
108 struct page *locked_page,
109 u64 offset, u64 bytes)
52427260 110{
63d71450
NA
111 unsigned long index = offset >> PAGE_SHIFT;
112 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
d1051d6e
NB
113 u64 page_start = page_offset(locked_page);
114 u64 page_end = page_start + PAGE_SIZE - 1;
115
63d71450
NA
116 struct page *page;
117
118 while (index <= end_index) {
64e1db56 119 page = find_get_page(inode->vfs_inode.i_mapping, index);
63d71450
NA
120 index++;
121 if (!page)
122 continue;
123 ClearPagePrivate2(page);
124 put_page(page);
125 }
d1051d6e
NB
126
127 /*
128 * In case this page belongs to the delalloc range being instantiated
129 * then skip it, since the first page of a range is going to be
130 * properly cleaned up by the caller of run_delalloc_range
131 */
132 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
133 offset += PAGE_SIZE;
134 bytes -= PAGE_SIZE;
135 }
136
64e1db56 137 return __endio_write_update_ordered(inode, offset, bytes, false);
52427260
QW
138}
139
48a3b636 140static int btrfs_dirty_inode(struct inode *inode);
7b128766 141
6a3891c5
JB
142#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
143void btrfs_test_inode_set_ops(struct inode *inode)
144{
145 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
146}
147#endif
148
f34f57a3 149static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
150 struct inode *inode, struct inode *dir,
151 const struct qstr *qstr)
0279b4cd
JO
152{
153 int err;
154
f34f57a3 155 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 156 if (!err)
2a7dba39 157 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
158 return err;
159}
160
c8b97818
CM
161/*
162 * this does all the hard work for inserting an inline extent into
163 * the btree. The caller should have done a btrfs_drop_extents so that
164 * no overlapping inline items exist in the btree
165 */
40f76580 166static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 167 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
168 struct btrfs_root *root, struct inode *inode,
169 u64 start, size_t size, size_t compressed_size,
fe3f566c 170 int compress_type,
c8b97818
CM
171 struct page **compressed_pages)
172{
c8b97818
CM
173 struct extent_buffer *leaf;
174 struct page *page = NULL;
175 char *kaddr;
176 unsigned long ptr;
177 struct btrfs_file_extent_item *ei;
c8b97818
CM
178 int ret;
179 size_t cur_size = size;
c8b97818 180 unsigned long offset;
c8b97818 181
982f1f5d
JJB
182 ASSERT((compressed_size > 0 && compressed_pages) ||
183 (compressed_size == 0 && !compressed_pages));
184
fe3f566c 185 if (compressed_size && compressed_pages)
c8b97818 186 cur_size = compressed_size;
c8b97818 187
1acae57b 188 inode_add_bytes(inode, size);
c8b97818 189
1acae57b
FDBM
190 if (!extent_inserted) {
191 struct btrfs_key key;
192 size_t datasize;
c8b97818 193
4a0cc7ca 194 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 195 key.offset = start;
962a298f 196 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 197
1acae57b
FDBM
198 datasize = btrfs_file_extent_calc_inline_size(cur_size);
199 path->leave_spinning = 1;
200 ret = btrfs_insert_empty_item(trans, root, path, &key,
201 datasize);
79b4f4c6 202 if (ret)
1acae57b 203 goto fail;
c8b97818
CM
204 }
205 leaf = path->nodes[0];
206 ei = btrfs_item_ptr(leaf, path->slots[0],
207 struct btrfs_file_extent_item);
208 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
209 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
210 btrfs_set_file_extent_encryption(leaf, ei, 0);
211 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
212 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
213 ptr = btrfs_file_extent_inline_start(ei);
214
261507a0 215 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
216 struct page *cpage;
217 int i = 0;
d397712b 218 while (compressed_size > 0) {
c8b97818 219 cpage = compressed_pages[i];
5b050f04 220 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 221 PAGE_SIZE);
c8b97818 222
7ac687d9 223 kaddr = kmap_atomic(cpage);
c8b97818 224 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 225 kunmap_atomic(kaddr);
c8b97818
CM
226
227 i++;
228 ptr += cur_size;
229 compressed_size -= cur_size;
230 }
231 btrfs_set_file_extent_compression(leaf, ei,
261507a0 232 compress_type);
c8b97818
CM
233 } else {
234 page = find_get_page(inode->i_mapping,
09cbfeaf 235 start >> PAGE_SHIFT);
c8b97818 236 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 237 kaddr = kmap_atomic(page);
7073017a 238 offset = offset_in_page(start);
c8b97818 239 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 240 kunmap_atomic(kaddr);
09cbfeaf 241 put_page(page);
c8b97818
CM
242 }
243 btrfs_mark_buffer_dirty(leaf);
1acae57b 244 btrfs_release_path(path);
c8b97818 245
9ddc959e
JB
246 /*
247 * We align size to sectorsize for inline extents just for simplicity
248 * sake.
249 */
250 size = ALIGN(size, root->fs_info->sectorsize);
251 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
252 if (ret)
253 goto fail;
254
c2167754
YZ
255 /*
256 * we're an inline extent, so nobody can
257 * extend the file past i_size without locking
258 * a page we already have locked.
259 *
260 * We must do any isize and inode updates
261 * before we unlock the pages. Otherwise we
262 * could end up racing with unlink.
263 */
c8b97818 264 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 265 ret = btrfs_update_inode(trans, root, inode);
c2167754 266
c8b97818 267fail:
79b4f4c6 268 return ret;
c8b97818
CM
269}
270
271
272/*
273 * conditionally insert an inline extent into the file. This
274 * does the checks required to make sure the data is small enough
275 * to fit as an inline extent.
276 */
a0349401 277static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
00361589
JB
278 u64 end, size_t compressed_size,
279 int compress_type,
280 struct page **compressed_pages)
c8b97818 281{
a0349401 282 struct btrfs_root *root = inode->root;
0b246afa 283 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 284 struct btrfs_trans_handle *trans;
a0349401 285 u64 isize = i_size_read(&inode->vfs_inode);
c8b97818
CM
286 u64 actual_end = min(end + 1, isize);
287 u64 inline_len = actual_end - start;
0b246afa 288 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
289 u64 data_len = inline_len;
290 int ret;
1acae57b
FDBM
291 struct btrfs_path *path;
292 int extent_inserted = 0;
293 u32 extent_item_size;
c8b97818
CM
294
295 if (compressed_size)
296 data_len = compressed_size;
297
298 if (start > 0 ||
0b246afa
JM
299 actual_end > fs_info->sectorsize ||
300 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 301 (!compressed_size &&
0b246afa 302 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 303 end + 1 < isize ||
0b246afa 304 data_len > fs_info->max_inline) {
c8b97818
CM
305 return 1;
306 }
307
1acae57b
FDBM
308 path = btrfs_alloc_path();
309 if (!path)
310 return -ENOMEM;
311
00361589 312 trans = btrfs_join_transaction(root);
1acae57b
FDBM
313 if (IS_ERR(trans)) {
314 btrfs_free_path(path);
00361589 315 return PTR_ERR(trans);
1acae57b 316 }
a0349401 317 trans->block_rsv = &inode->block_rsv;
00361589 318
1acae57b
FDBM
319 if (compressed_size && compressed_pages)
320 extent_item_size = btrfs_file_extent_calc_inline_size(
321 compressed_size);
322 else
323 extent_item_size = btrfs_file_extent_calc_inline_size(
324 inline_len);
325
a0349401
NB
326 ret = __btrfs_drop_extents(trans, root, inode, path, start, aligned_end,
327 NULL, 1, 1, extent_item_size,
328 &extent_inserted);
00361589 329 if (ret) {
66642832 330 btrfs_abort_transaction(trans, ret);
00361589
JB
331 goto out;
332 }
c8b97818
CM
333
334 if (isize > actual_end)
335 inline_len = min_t(u64, isize, actual_end);
1acae57b 336 ret = insert_inline_extent(trans, path, extent_inserted,
a0349401 337 root, &inode->vfs_inode, start,
c8b97818 338 inline_len, compressed_size,
fe3f566c 339 compress_type, compressed_pages);
2adcac1a 340 if (ret && ret != -ENOSPC) {
66642832 341 btrfs_abort_transaction(trans, ret);
00361589 342 goto out;
2adcac1a 343 } else if (ret == -ENOSPC) {
00361589
JB
344 ret = 1;
345 goto out;
79787eaa 346 }
2adcac1a 347
a0349401
NB
348 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
349 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 350out:
94ed938a
QW
351 /*
352 * Don't forget to free the reserved space, as for inlined extent
353 * it won't count as data extent, free them directly here.
354 * And at reserve time, it's always aligned to page size, so
355 * just free one page here.
356 */
a0349401 357 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 358 btrfs_free_path(path);
3a45bb20 359 btrfs_end_transaction(trans);
00361589 360 return ret;
c8b97818
CM
361}
362
771ed689
CM
363struct async_extent {
364 u64 start;
365 u64 ram_size;
366 u64 compressed_size;
367 struct page **pages;
368 unsigned long nr_pages;
261507a0 369 int compress_type;
771ed689
CM
370 struct list_head list;
371};
372
97db1204 373struct async_chunk {
771ed689 374 struct inode *inode;
771ed689
CM
375 struct page *locked_page;
376 u64 start;
377 u64 end;
f82b7359 378 unsigned int write_flags;
771ed689 379 struct list_head extents;
ec39f769 380 struct cgroup_subsys_state *blkcg_css;
771ed689 381 struct btrfs_work work;
97db1204 382 atomic_t *pending;
771ed689
CM
383};
384
97db1204
NB
385struct async_cow {
386 /* Number of chunks in flight; must be first in the structure */
387 atomic_t num_chunks;
388 struct async_chunk chunks[];
771ed689
CM
389};
390
97db1204 391static noinline int add_async_extent(struct async_chunk *cow,
771ed689
CM
392 u64 start, u64 ram_size,
393 u64 compressed_size,
394 struct page **pages,
261507a0
LZ
395 unsigned long nr_pages,
396 int compress_type)
771ed689
CM
397{
398 struct async_extent *async_extent;
399
400 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 401 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
402 async_extent->start = start;
403 async_extent->ram_size = ram_size;
404 async_extent->compressed_size = compressed_size;
405 async_extent->pages = pages;
406 async_extent->nr_pages = nr_pages;
261507a0 407 async_extent->compress_type = compress_type;
771ed689
CM
408 list_add_tail(&async_extent->list, &cow->extents);
409 return 0;
410}
411
42c16da6
QW
412/*
413 * Check if the inode has flags compatible with compression
414 */
99c88dc7 415static inline bool inode_can_compress(struct btrfs_inode *inode)
42c16da6 416{
99c88dc7
NB
417 if (inode->flags & BTRFS_INODE_NODATACOW ||
418 inode->flags & BTRFS_INODE_NODATASUM)
42c16da6
QW
419 return false;
420 return true;
421}
422
423/*
424 * Check if the inode needs to be submitted to compression, based on mount
425 * options, defragmentation, properties or heuristics.
426 */
808a1292
NB
427static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
428 u64 end)
f79707b0 429{
808a1292 430 struct btrfs_fs_info *fs_info = inode->root->fs_info;
f79707b0 431
808a1292 432 if (!inode_can_compress(inode)) {
42c16da6
QW
433 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
434 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
808a1292 435 btrfs_ino(inode));
42c16da6
QW
436 return 0;
437 }
f79707b0 438 /* force compress */
0b246afa 439 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 440 return 1;
eec63c65 441 /* defrag ioctl */
808a1292 442 if (inode->defrag_compress)
eec63c65 443 return 1;
f79707b0 444 /* bad compression ratios */
808a1292 445 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
f79707b0 446 return 0;
0b246afa 447 if (btrfs_test_opt(fs_info, COMPRESS) ||
808a1292
NB
448 inode->flags & BTRFS_INODE_COMPRESS ||
449 inode->prop_compress)
450 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
f79707b0
WS
451 return 0;
452}
453
6158e1ce 454static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
455 u64 start, u64 end, u64 num_bytes, u64 small_write)
456{
457 /* If this is a small write inside eof, kick off a defrag */
458 if (num_bytes < small_write &&
6158e1ce 459 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
460 btrfs_add_inode_defrag(NULL, inode);
461}
462
d352ac68 463/*
771ed689
CM
464 * we create compressed extents in two phases. The first
465 * phase compresses a range of pages that have already been
466 * locked (both pages and state bits are locked).
c8b97818 467 *
771ed689
CM
468 * This is done inside an ordered work queue, and the compression
469 * is spread across many cpus. The actual IO submission is step
470 * two, and the ordered work queue takes care of making sure that
471 * happens in the same order things were put onto the queue by
472 * writepages and friends.
c8b97818 473 *
771ed689
CM
474 * If this code finds it can't get good compression, it puts an
475 * entry onto the work queue to write the uncompressed bytes. This
476 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
477 * are written in the same order that the flusher thread sent them
478 * down.
d352ac68 479 */
ac3e9933 480static noinline int compress_file_range(struct async_chunk *async_chunk)
b888db2b 481{
1368c6da 482 struct inode *inode = async_chunk->inode;
0b246afa 483 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0b246afa 484 u64 blocksize = fs_info->sectorsize;
1368c6da
NB
485 u64 start = async_chunk->start;
486 u64 end = async_chunk->end;
c8b97818 487 u64 actual_end;
d98da499 488 u64 i_size;
e6dcd2dc 489 int ret = 0;
c8b97818
CM
490 struct page **pages = NULL;
491 unsigned long nr_pages;
c8b97818
CM
492 unsigned long total_compressed = 0;
493 unsigned long total_in = 0;
c8b97818
CM
494 int i;
495 int will_compress;
0b246afa 496 int compress_type = fs_info->compress_type;
ac3e9933 497 int compressed_extents = 0;
4adaa611 498 int redirty = 0;
b888db2b 499
6158e1ce
NB
500 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
501 SZ_16K);
4cb5300b 502
d98da499
JB
503 /*
504 * We need to save i_size before now because it could change in between
505 * us evaluating the size and assigning it. This is because we lock and
506 * unlock the page in truncate and fallocate, and then modify the i_size
507 * later on.
508 *
509 * The barriers are to emulate READ_ONCE, remove that once i_size_read
510 * does that for us.
511 */
512 barrier();
513 i_size = i_size_read(inode);
514 barrier();
515 actual_end = min_t(u64, i_size, end + 1);
c8b97818
CM
516again:
517 will_compress = 0;
09cbfeaf 518 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
519 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
520 nr_pages = min_t(unsigned long, nr_pages,
521 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 522
f03d9301
CM
523 /*
524 * we don't want to send crud past the end of i_size through
525 * compression, that's just a waste of CPU time. So, if the
526 * end of the file is before the start of our current
527 * requested range of bytes, we bail out to the uncompressed
528 * cleanup code that can deal with all of this.
529 *
530 * It isn't really the fastest way to fix things, but this is a
531 * very uncommon corner.
532 */
533 if (actual_end <= start)
534 goto cleanup_and_bail_uncompressed;
535
c8b97818
CM
536 total_compressed = actual_end - start;
537
4bcbb332
SW
538 /*
539 * skip compression for a small file range(<=blocksize) that
01327610 540 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
541 */
542 if (total_compressed <= blocksize &&
543 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
544 goto cleanup_and_bail_uncompressed;
545
069eac78
DS
546 total_compressed = min_t(unsigned long, total_compressed,
547 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
548 total_in = 0;
549 ret = 0;
db94535d 550
771ed689
CM
551 /*
552 * we do compression for mount -o compress and when the
553 * inode has not been flagged as nocompress. This flag can
554 * change at any time if we discover bad compression ratios.
c8b97818 555 */
808a1292 556 if (inode_need_compress(BTRFS_I(inode), start, end)) {
c8b97818 557 WARN_ON(pages);
31e818fe 558 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
559 if (!pages) {
560 /* just bail out to the uncompressed code */
3527a018 561 nr_pages = 0;
560f7d75
LZ
562 goto cont;
563 }
c8b97818 564
eec63c65
DS
565 if (BTRFS_I(inode)->defrag_compress)
566 compress_type = BTRFS_I(inode)->defrag_compress;
567 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 568 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 569
4adaa611
CM
570 /*
571 * we need to call clear_page_dirty_for_io on each
572 * page in the range. Otherwise applications with the file
573 * mmap'd can wander in and change the page contents while
574 * we are compressing them.
575 *
576 * If the compression fails for any reason, we set the pages
577 * dirty again later on.
e9679de3
TT
578 *
579 * Note that the remaining part is redirtied, the start pointer
580 * has moved, the end is the original one.
4adaa611 581 */
e9679de3
TT
582 if (!redirty) {
583 extent_range_clear_dirty_for_io(inode, start, end);
584 redirty = 1;
585 }
f51d2b59
DS
586
587 /* Compression level is applied here and only here */
588 ret = btrfs_compress_pages(
589 compress_type | (fs_info->compress_level << 4),
261507a0 590 inode->i_mapping, start,
38c31464 591 pages,
4d3a800e 592 &nr_pages,
261507a0 593 &total_in,
e5d74902 594 &total_compressed);
c8b97818
CM
595
596 if (!ret) {
7073017a 597 unsigned long offset = offset_in_page(total_compressed);
4d3a800e 598 struct page *page = pages[nr_pages - 1];
c8b97818
CM
599 char *kaddr;
600
601 /* zero the tail end of the last page, we might be
602 * sending it down to disk
603 */
604 if (offset) {
7ac687d9 605 kaddr = kmap_atomic(page);
c8b97818 606 memset(kaddr + offset, 0,
09cbfeaf 607 PAGE_SIZE - offset);
7ac687d9 608 kunmap_atomic(kaddr);
c8b97818
CM
609 }
610 will_compress = 1;
611 }
612 }
560f7d75 613cont:
c8b97818
CM
614 if (start == 0) {
615 /* lets try to make an inline extent */
6018ba0a 616 if (ret || total_in < actual_end) {
c8b97818 617 /* we didn't compress the entire range, try
771ed689 618 * to make an uncompressed inline extent.
c8b97818 619 */
a0349401
NB
620 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
621 0, BTRFS_COMPRESS_NONE,
622 NULL);
c8b97818 623 } else {
771ed689 624 /* try making a compressed inline extent */
a0349401 625 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
fe3f566c
LZ
626 total_compressed,
627 compress_type, pages);
c8b97818 628 }
79787eaa 629 if (ret <= 0) {
151a41bc 630 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
631 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
632 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
633 unsigned long page_error_op;
634
e6eb4314 635 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 636
771ed689 637 /*
79787eaa
JM
638 * inline extent creation worked or returned error,
639 * we don't need to create any more async work items.
640 * Unlock and free up our temp pages.
8b62f87b
JB
641 *
642 * We use DO_ACCOUNTING here because we need the
643 * delalloc_release_metadata to be done _after_ we drop
644 * our outstanding extent for clearing delalloc for this
645 * range.
771ed689 646 */
ad7ff17b
NB
647 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
648 NULL,
74e9194a 649 clear_flags,
ba8b04c1 650 PAGE_UNLOCK |
c2790a2e
JB
651 PAGE_CLEAR_DIRTY |
652 PAGE_SET_WRITEBACK |
e6eb4314 653 page_error_op |
c2790a2e 654 PAGE_END_WRITEBACK);
cecc8d90
NB
655
656 for (i = 0; i < nr_pages; i++) {
657 WARN_ON(pages[i]->mapping);
658 put_page(pages[i]);
659 }
660 kfree(pages);
661
662 return 0;
c8b97818
CM
663 }
664 }
665
666 if (will_compress) {
667 /*
668 * we aren't doing an inline extent round the compressed size
669 * up to a block size boundary so the allocator does sane
670 * things
671 */
fda2832f 672 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
673
674 /*
675 * one last check to make sure the compression is really a
170607eb
TT
676 * win, compare the page count read with the blocks on disk,
677 * compression must free at least one sector size
c8b97818 678 */
09cbfeaf 679 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 680 if (total_compressed + blocksize <= total_in) {
ac3e9933 681 compressed_extents++;
c8bb0c8b
AS
682
683 /*
684 * The async work queues will take care of doing actual
685 * allocation on disk for these compressed pages, and
686 * will submit them to the elevator.
687 */
b5326271 688 add_async_extent(async_chunk, start, total_in,
4d3a800e 689 total_compressed, pages, nr_pages,
c8bb0c8b
AS
690 compress_type);
691
1170862d
TT
692 if (start + total_in < end) {
693 start += total_in;
c8bb0c8b
AS
694 pages = NULL;
695 cond_resched();
696 goto again;
697 }
ac3e9933 698 return compressed_extents;
c8b97818
CM
699 }
700 }
c8bb0c8b 701 if (pages) {
c8b97818
CM
702 /*
703 * the compression code ran but failed to make things smaller,
704 * free any pages it allocated and our page pointer array
705 */
4d3a800e 706 for (i = 0; i < nr_pages; i++) {
70b99e69 707 WARN_ON(pages[i]->mapping);
09cbfeaf 708 put_page(pages[i]);
c8b97818
CM
709 }
710 kfree(pages);
711 pages = NULL;
712 total_compressed = 0;
4d3a800e 713 nr_pages = 0;
c8b97818
CM
714
715 /* flag the file so we don't compress in the future */
0b246afa 716 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 717 !(BTRFS_I(inode)->prop_compress)) {
a555f810 718 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 719 }
c8b97818 720 }
f03d9301 721cleanup_and_bail_uncompressed:
c8bb0c8b
AS
722 /*
723 * No compression, but we still need to write the pages in the file
724 * we've been given so far. redirty the locked page if it corresponds
725 * to our extent and set things up for the async work queue to run
726 * cow_file_range to do the normal delalloc dance.
727 */
1d53c9e6
CM
728 if (async_chunk->locked_page &&
729 (page_offset(async_chunk->locked_page) >= start &&
730 page_offset(async_chunk->locked_page)) <= end) {
1368c6da 731 __set_page_dirty_nobuffers(async_chunk->locked_page);
c8bb0c8b 732 /* unlocked later on in the async handlers */
1d53c9e6 733 }
c8bb0c8b
AS
734
735 if (redirty)
736 extent_range_redirty_for_io(inode, start, end);
b5326271 737 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
c8bb0c8b 738 BTRFS_COMPRESS_NONE);
ac3e9933 739 compressed_extents++;
3b951516 740
ac3e9933 741 return compressed_extents;
771ed689 742}
771ed689 743
40ae837b
FM
744static void free_async_extent_pages(struct async_extent *async_extent)
745{
746 int i;
747
748 if (!async_extent->pages)
749 return;
750
751 for (i = 0; i < async_extent->nr_pages; i++) {
752 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 753 put_page(async_extent->pages[i]);
40ae837b
FM
754 }
755 kfree(async_extent->pages);
756 async_extent->nr_pages = 0;
757 async_extent->pages = NULL;
771ed689
CM
758}
759
760/*
761 * phase two of compressed writeback. This is the ordered portion
762 * of the code, which only gets called in the order the work was
763 * queued. We walk all the async extents created by compress_file_range
764 * and send them down to the disk.
765 */
b5326271 766static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
771ed689 767{
a0ff10dc
NB
768 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
769 struct btrfs_fs_info *fs_info = inode->root->fs_info;
771ed689
CM
770 struct async_extent *async_extent;
771 u64 alloc_hint = 0;
771ed689
CM
772 struct btrfs_key ins;
773 struct extent_map *em;
a0ff10dc
NB
774 struct btrfs_root *root = inode->root;
775 struct extent_io_tree *io_tree = &inode->io_tree;
f5a84ee3 776 int ret = 0;
771ed689 777
3e04e7f1 778again:
b5326271
NB
779 while (!list_empty(&async_chunk->extents)) {
780 async_extent = list_entry(async_chunk->extents.next,
771ed689
CM
781 struct async_extent, list);
782 list_del(&async_extent->list);
c8b97818 783
f5a84ee3 784retry:
7447555f
NB
785 lock_extent(io_tree, async_extent->start,
786 async_extent->start + async_extent->ram_size - 1);
771ed689
CM
787 /* did the compression code fall back to uncompressed IO? */
788 if (!async_extent->pages) {
789 int page_started = 0;
790 unsigned long nr_written = 0;
791
771ed689 792 /* allocate blocks */
a0ff10dc 793 ret = cow_file_range(inode, async_chunk->locked_page,
f5a84ee3
JB
794 async_extent->start,
795 async_extent->start +
796 async_extent->ram_size - 1,
330a5827 797 &page_started, &nr_written, 0);
771ed689 798
79787eaa
JM
799 /* JDM XXX */
800
771ed689
CM
801 /*
802 * if page_started, cow_file_range inserted an
803 * inline extent and took care of all the unlocking
804 * and IO for us. Otherwise, we need to submit
805 * all those pages down to the drive.
806 */
f5a84ee3 807 if (!page_started && !ret)
a0ff10dc 808 extent_write_locked_range(&inode->vfs_inode,
5e3ee236 809 async_extent->start,
d397712b 810 async_extent->start +
771ed689 811 async_extent->ram_size - 1,
771ed689 812 WB_SYNC_ALL);
1d53c9e6 813 else if (ret && async_chunk->locked_page)
b5326271 814 unlock_page(async_chunk->locked_page);
771ed689
CM
815 kfree(async_extent);
816 cond_resched();
817 continue;
818 }
819
18513091 820 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
821 async_extent->compressed_size,
822 async_extent->compressed_size,
e570fd27 823 0, alloc_hint, &ins, 1, 1);
f5a84ee3 824 if (ret) {
40ae837b 825 free_async_extent_pages(async_extent);
3e04e7f1 826
fdf8e2ea
JB
827 if (ret == -ENOSPC) {
828 unlock_extent(io_tree, async_extent->start,
829 async_extent->start +
830 async_extent->ram_size - 1);
ce62003f
LB
831
832 /*
833 * we need to redirty the pages if we decide to
834 * fallback to uncompressed IO, otherwise we
835 * will not submit these pages down to lower
836 * layers.
837 */
a0ff10dc 838 extent_range_redirty_for_io(&inode->vfs_inode,
ce62003f
LB
839 async_extent->start,
840 async_extent->start +
841 async_extent->ram_size - 1);
842
79787eaa 843 goto retry;
fdf8e2ea 844 }
3e04e7f1 845 goto out_free;
f5a84ee3 846 }
c2167754
YZ
847 /*
848 * here we're doing allocation and writeback of the
849 * compressed pages
850 */
a0ff10dc 851 em = create_io_em(inode, async_extent->start,
6f9994db
LB
852 async_extent->ram_size, /* len */
853 async_extent->start, /* orig_start */
854 ins.objectid, /* block_start */
855 ins.offset, /* block_len */
856 ins.offset, /* orig_block_len */
857 async_extent->ram_size, /* ram_bytes */
858 async_extent->compress_type,
859 BTRFS_ORDERED_COMPRESSED);
860 if (IS_ERR(em))
861 /* ret value is not necessary due to void function */
3e04e7f1 862 goto out_free_reserve;
6f9994db 863 free_extent_map(em);
3e04e7f1 864
a0ff10dc 865 ret = btrfs_add_ordered_extent_compress(inode,
261507a0
LZ
866 async_extent->start,
867 ins.objectid,
868 async_extent->ram_size,
869 ins.offset,
870 BTRFS_ORDERED_COMPRESSED,
871 async_extent->compress_type);
d9f85963 872 if (ret) {
a0ff10dc 873 btrfs_drop_extent_cache(inode, async_extent->start,
d9f85963
FM
874 async_extent->start +
875 async_extent->ram_size - 1, 0);
3e04e7f1 876 goto out_free_reserve;
d9f85963 877 }
0b246afa 878 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 879
771ed689
CM
880 /*
881 * clear dirty, set writeback and unlock the pages.
882 */
a0ff10dc 883 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
884 async_extent->start +
885 async_extent->ram_size - 1,
151a41bc
JB
886 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
887 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 888 PAGE_SET_WRITEBACK);
a0ff10dc 889 if (btrfs_submit_compressed_write(inode, async_extent->start,
d397712b
CM
890 async_extent->ram_size,
891 ins.objectid,
892 ins.offset, async_extent->pages,
f82b7359 893 async_extent->nr_pages,
ec39f769
CM
894 async_chunk->write_flags,
895 async_chunk->blkcg_css)) {
fce2a4e6
FM
896 struct page *p = async_extent->pages[0];
897 const u64 start = async_extent->start;
898 const u64 end = start + async_extent->ram_size - 1;
899
a0ff10dc 900 p->mapping = inode->vfs_inode.i_mapping;
c629732d 901 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
7087a9d8 902
fce2a4e6 903 p->mapping = NULL;
a0ff10dc 904 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
fce2a4e6
FM
905 PAGE_END_WRITEBACK |
906 PAGE_SET_ERROR);
40ae837b 907 free_async_extent_pages(async_extent);
fce2a4e6 908 }
771ed689
CM
909 alloc_hint = ins.objectid + ins.offset;
910 kfree(async_extent);
911 cond_resched();
912 }
dec8f175 913 return;
3e04e7f1 914out_free_reserve:
0b246afa 915 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 916 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 917out_free:
a0ff10dc 918 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
919 async_extent->start +
920 async_extent->ram_size - 1,
c2790a2e 921 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 922 EXTENT_DELALLOC_NEW |
151a41bc
JB
923 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
924 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
925 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
926 PAGE_SET_ERROR);
40ae837b 927 free_async_extent_pages(async_extent);
79787eaa 928 kfree(async_extent);
3e04e7f1 929 goto again;
771ed689
CM
930}
931
43c69849 932static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
4b46fce2
JB
933 u64 num_bytes)
934{
43c69849 935 struct extent_map_tree *em_tree = &inode->extent_tree;
4b46fce2
JB
936 struct extent_map *em;
937 u64 alloc_hint = 0;
938
939 read_lock(&em_tree->lock);
940 em = search_extent_mapping(em_tree, start, num_bytes);
941 if (em) {
942 /*
943 * if block start isn't an actual block number then find the
944 * first block in this inode and use that as a hint. If that
945 * block is also bogus then just don't worry about it.
946 */
947 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
948 free_extent_map(em);
949 em = search_extent_mapping(em_tree, 0, 0);
950 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
951 alloc_hint = em->block_start;
952 if (em)
953 free_extent_map(em);
954 } else {
955 alloc_hint = em->block_start;
956 free_extent_map(em);
957 }
958 }
959 read_unlock(&em_tree->lock);
960
961 return alloc_hint;
962}
963
771ed689
CM
964/*
965 * when extent_io.c finds a delayed allocation range in the file,
966 * the call backs end up in this code. The basic idea is to
967 * allocate extents on disk for the range, and create ordered data structs
968 * in ram to track those extents.
969 *
970 * locked_page is the page that writepage had locked already. We use
971 * it to make sure we don't do extra locks or unlocks.
972 *
973 * *page_started is set to one if we unlock locked_page and do everything
974 * required to start IO on it. It may be clean and already done with
975 * IO when we return.
976 */
6e26c442 977static noinline int cow_file_range(struct btrfs_inode *inode,
00361589 978 struct page *locked_page,
74e9194a 979 u64 start, u64 end, int *page_started,
330a5827 980 unsigned long *nr_written, int unlock)
771ed689 981{
6e26c442
NB
982 struct btrfs_root *root = inode->root;
983 struct btrfs_fs_info *fs_info = root->fs_info;
771ed689
CM
984 u64 alloc_hint = 0;
985 u64 num_bytes;
986 unsigned long ram_size;
a315e68f 987 u64 cur_alloc_size = 0;
432cd2a1 988 u64 min_alloc_size;
0b246afa 989 u64 blocksize = fs_info->sectorsize;
771ed689
CM
990 struct btrfs_key ins;
991 struct extent_map *em;
a315e68f
FM
992 unsigned clear_bits;
993 unsigned long page_ops;
994 bool extent_reserved = false;
771ed689
CM
995 int ret = 0;
996
6e26c442 997 if (btrfs_is_free_space_inode(inode)) {
02ecd2c2 998 WARN_ON_ONCE(1);
29bce2f3
JB
999 ret = -EINVAL;
1000 goto out_unlock;
02ecd2c2 1001 }
771ed689 1002
fda2832f 1003 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 1004 num_bytes = max(blocksize, num_bytes);
566b1760 1005 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 1006
6e26c442 1007 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
4cb5300b 1008
771ed689
CM
1009 if (start == 0) {
1010 /* lets try to make an inline extent */
6e26c442 1011 ret = cow_file_range_inline(inode, start, end, 0,
d02c0e20 1012 BTRFS_COMPRESS_NONE, NULL);
771ed689 1013 if (ret == 0) {
8b62f87b
JB
1014 /*
1015 * We use DO_ACCOUNTING here because we need the
1016 * delalloc_release_metadata to be run _after_ we drop
1017 * our outstanding extent for clearing delalloc for this
1018 * range.
1019 */
6e26c442 1020 extent_clear_unlock_delalloc(inode, start, end, NULL,
c2790a2e 1021 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
1022 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1023 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
1024 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1025 PAGE_END_WRITEBACK);
771ed689 1026 *nr_written = *nr_written +
09cbfeaf 1027 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 1028 *page_started = 1;
771ed689 1029 goto out;
79787eaa 1030 } else if (ret < 0) {
79787eaa 1031 goto out_unlock;
771ed689
CM
1032 }
1033 }
1034
6e26c442
NB
1035 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1036 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
771ed689 1037
432cd2a1
FM
1038 /*
1039 * Relocation relies on the relocated extents to have exactly the same
1040 * size as the original extents. Normally writeback for relocation data
1041 * extents follows a NOCOW path because relocation preallocates the
1042 * extents. However, due to an operation such as scrub turning a block
1043 * group to RO mode, it may fallback to COW mode, so we must make sure
1044 * an extent allocated during COW has exactly the requested size and can
1045 * not be split into smaller extents, otherwise relocation breaks and
1046 * fails during the stage where it updates the bytenr of file extent
1047 * items.
1048 */
1049 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1050 min_alloc_size = num_bytes;
1051 else
1052 min_alloc_size = fs_info->sectorsize;
1053
3752d22f
AJ
1054 while (num_bytes > 0) {
1055 cur_alloc_size = num_bytes;
18513091 1056 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
432cd2a1 1057 min_alloc_size, 0, alloc_hint,
e570fd27 1058 &ins, 1, 1);
00361589 1059 if (ret < 0)
79787eaa 1060 goto out_unlock;
a315e68f
FM
1061 cur_alloc_size = ins.offset;
1062 extent_reserved = true;
d397712b 1063
771ed689 1064 ram_size = ins.offset;
6e26c442 1065 em = create_io_em(inode, start, ins.offset, /* len */
6f9994db
LB
1066 start, /* orig_start */
1067 ins.objectid, /* block_start */
1068 ins.offset, /* block_len */
1069 ins.offset, /* orig_block_len */
1070 ram_size, /* ram_bytes */
1071 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1072 BTRFS_ORDERED_REGULAR /* type */);
090a127a
SY
1073 if (IS_ERR(em)) {
1074 ret = PTR_ERR(em);
ace68bac 1075 goto out_reserve;
090a127a 1076 }
6f9994db 1077 free_extent_map(em);
e6dcd2dc 1078
6e26c442
NB
1079 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1080 ram_size, cur_alloc_size, 0);
ace68bac 1081 if (ret)
d9f85963 1082 goto out_drop_extent_cache;
c8b97818 1083
17d217fe
YZ
1084 if (root->root_key.objectid ==
1085 BTRFS_DATA_RELOC_TREE_OBJECTID) {
6e26c442 1086 ret = btrfs_reloc_clone_csums(inode, start,
17d217fe 1087 cur_alloc_size);
4dbd80fb
QW
1088 /*
1089 * Only drop cache here, and process as normal.
1090 *
1091 * We must not allow extent_clear_unlock_delalloc()
1092 * at out_unlock label to free meta of this ordered
1093 * extent, as its meta should be freed by
1094 * btrfs_finish_ordered_io().
1095 *
1096 * So we must continue until @start is increased to
1097 * skip current ordered extent.
1098 */
00361589 1099 if (ret)
6e26c442 1100 btrfs_drop_extent_cache(inode, start,
4dbd80fb 1101 start + ram_size - 1, 0);
17d217fe
YZ
1102 }
1103
0b246afa 1104 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1105
c8b97818
CM
1106 /* we're not doing compressed IO, don't unlock the first
1107 * page (which the caller expects to stay locked), don't
1108 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1109 *
1110 * Do set the Private2 bit so we know this page was properly
1111 * setup for writepage
c8b97818 1112 */
a315e68f
FM
1113 page_ops = unlock ? PAGE_UNLOCK : 0;
1114 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1115
6e26c442 1116 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
74e9194a 1117 locked_page,
c2790a2e 1118 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1119 page_ops);
3752d22f
AJ
1120 if (num_bytes < cur_alloc_size)
1121 num_bytes = 0;
4dbd80fb 1122 else
3752d22f 1123 num_bytes -= cur_alloc_size;
c59f8951
CM
1124 alloc_hint = ins.objectid + ins.offset;
1125 start += cur_alloc_size;
a315e68f 1126 extent_reserved = false;
4dbd80fb
QW
1127
1128 /*
1129 * btrfs_reloc_clone_csums() error, since start is increased
1130 * extent_clear_unlock_delalloc() at out_unlock label won't
1131 * free metadata of current ordered extent, we're OK to exit.
1132 */
1133 if (ret)
1134 goto out_unlock;
b888db2b 1135 }
79787eaa 1136out:
be20aa9d 1137 return ret;
b7d5b0a8 1138
d9f85963 1139out_drop_extent_cache:
6e26c442 1140 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1141out_reserve:
0b246afa 1142 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1143 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1144out_unlock:
a7e3b975
FM
1145 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1146 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1147 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1148 PAGE_END_WRITEBACK;
1149 /*
1150 * If we reserved an extent for our delalloc range (or a subrange) and
1151 * failed to create the respective ordered extent, then it means that
1152 * when we reserved the extent we decremented the extent's size from
1153 * the data space_info's bytes_may_use counter and incremented the
1154 * space_info's bytes_reserved counter by the same amount. We must make
1155 * sure extent_clear_unlock_delalloc() does not try to decrement again
1156 * the data space_info's bytes_may_use counter, therefore we do not pass
1157 * it the flag EXTENT_CLEAR_DATA_RESV.
1158 */
1159 if (extent_reserved) {
6e26c442 1160 extent_clear_unlock_delalloc(inode, start,
e2c8e92d 1161 start + cur_alloc_size - 1,
a315e68f
FM
1162 locked_page,
1163 clear_bits,
1164 page_ops);
1165 start += cur_alloc_size;
1166 if (start >= end)
1167 goto out;
1168 }
6e26c442 1169 extent_clear_unlock_delalloc(inode, start, end, locked_page,
a315e68f
FM
1170 clear_bits | EXTENT_CLEAR_DATA_RESV,
1171 page_ops);
79787eaa 1172 goto out;
771ed689 1173}
c8b97818 1174
771ed689
CM
1175/*
1176 * work queue call back to started compression on a file and pages
1177 */
1178static noinline void async_cow_start(struct btrfs_work *work)
1179{
b5326271 1180 struct async_chunk *async_chunk;
ac3e9933 1181 int compressed_extents;
771ed689 1182
b5326271 1183 async_chunk = container_of(work, struct async_chunk, work);
771ed689 1184
ac3e9933
NB
1185 compressed_extents = compress_file_range(async_chunk);
1186 if (compressed_extents == 0) {
b5326271
NB
1187 btrfs_add_delayed_iput(async_chunk->inode);
1188 async_chunk->inode = NULL;
8180ef88 1189 }
771ed689
CM
1190}
1191
1192/*
1193 * work queue call back to submit previously compressed pages
1194 */
1195static noinline void async_cow_submit(struct btrfs_work *work)
1196{
c5a68aec
NB
1197 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1198 work);
1199 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
771ed689
CM
1200 unsigned long nr_pages;
1201
b5326271 1202 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
09cbfeaf 1203 PAGE_SHIFT;
771ed689 1204
093258e6 1205 /* atomic_sub_return implies a barrier */
0b246afa 1206 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
093258e6
DS
1207 5 * SZ_1M)
1208 cond_wake_up_nomb(&fs_info->async_submit_wait);
771ed689 1209
4546d178 1210 /*
b5326271 1211 * ->inode could be NULL if async_chunk_start has failed to compress,
4546d178
NB
1212 * in which case we don't have anything to submit, yet we need to
1213 * always adjust ->async_delalloc_pages as its paired with the init
1214 * happening in cow_file_range_async
1215 */
b5326271
NB
1216 if (async_chunk->inode)
1217 submit_compressed_extents(async_chunk);
771ed689 1218}
c8b97818 1219
771ed689
CM
1220static noinline void async_cow_free(struct btrfs_work *work)
1221{
b5326271 1222 struct async_chunk *async_chunk;
97db1204 1223
b5326271
NB
1224 async_chunk = container_of(work, struct async_chunk, work);
1225 if (async_chunk->inode)
1226 btrfs_add_delayed_iput(async_chunk->inode);
ec39f769
CM
1227 if (async_chunk->blkcg_css)
1228 css_put(async_chunk->blkcg_css);
97db1204
NB
1229 /*
1230 * Since the pointer to 'pending' is at the beginning of the array of
b5326271 1231 * async_chunk's, freeing it ensures the whole array has been freed.
97db1204 1232 */
b5326271 1233 if (atomic_dec_and_test(async_chunk->pending))
b1c16ac9 1234 kvfree(async_chunk->pending);
771ed689
CM
1235}
1236
751b6431 1237static int cow_file_range_async(struct btrfs_inode *inode,
ec39f769
CM
1238 struct writeback_control *wbc,
1239 struct page *locked_page,
771ed689 1240 u64 start, u64 end, int *page_started,
fac07d2b 1241 unsigned long *nr_written)
771ed689 1242{
751b6431 1243 struct btrfs_fs_info *fs_info = inode->root->fs_info;
ec39f769 1244 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
97db1204
NB
1245 struct async_cow *ctx;
1246 struct async_chunk *async_chunk;
771ed689
CM
1247 unsigned long nr_pages;
1248 u64 cur_end;
97db1204
NB
1249 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1250 int i;
1251 bool should_compress;
b1c16ac9 1252 unsigned nofs_flag;
fac07d2b 1253 const unsigned int write_flags = wbc_to_write_flags(wbc);
771ed689 1254
751b6431 1255 unlock_extent(&inode->io_tree, start, end);
97db1204 1256
751b6431 1257 if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
97db1204
NB
1258 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1259 num_chunks = 1;
1260 should_compress = false;
1261 } else {
1262 should_compress = true;
1263 }
1264
b1c16ac9
NB
1265 nofs_flag = memalloc_nofs_save();
1266 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1267 memalloc_nofs_restore(nofs_flag);
1268
97db1204
NB
1269 if (!ctx) {
1270 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1271 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1272 EXTENT_DO_ACCOUNTING;
1273 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1274 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1275 PAGE_SET_ERROR;
1276
751b6431
NB
1277 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1278 clear_bits, page_ops);
97db1204
NB
1279 return -ENOMEM;
1280 }
1281
1282 async_chunk = ctx->chunks;
1283 atomic_set(&ctx->num_chunks, num_chunks);
1284
1285 for (i = 0; i < num_chunks; i++) {
1286 if (should_compress)
1287 cur_end = min(end, start + SZ_512K - 1);
1288 else
1289 cur_end = end;
771ed689 1290
bd4691a0
NB
1291 /*
1292 * igrab is called higher up in the call chain, take only the
1293 * lightweight reference for the callback lifetime
1294 */
751b6431 1295 ihold(&inode->vfs_inode);
97db1204 1296 async_chunk[i].pending = &ctx->num_chunks;
751b6431 1297 async_chunk[i].inode = &inode->vfs_inode;
97db1204
NB
1298 async_chunk[i].start = start;
1299 async_chunk[i].end = cur_end;
97db1204
NB
1300 async_chunk[i].write_flags = write_flags;
1301 INIT_LIST_HEAD(&async_chunk[i].extents);
1302
1d53c9e6
CM
1303 /*
1304 * The locked_page comes all the way from writepage and its
1305 * the original page we were actually given. As we spread
1306 * this large delalloc region across multiple async_chunk
1307 * structs, only the first struct needs a pointer to locked_page
1308 *
1309 * This way we don't need racey decisions about who is supposed
1310 * to unlock it.
1311 */
1312 if (locked_page) {
ec39f769
CM
1313 /*
1314 * Depending on the compressibility, the pages might or
1315 * might not go through async. We want all of them to
1316 * be accounted against wbc once. Let's do it here
1317 * before the paths diverge. wbc accounting is used
1318 * only for foreign writeback detection and doesn't
1319 * need full accuracy. Just account the whole thing
1320 * against the first page.
1321 */
1322 wbc_account_cgroup_owner(wbc, locked_page,
1323 cur_end - start);
1d53c9e6
CM
1324 async_chunk[i].locked_page = locked_page;
1325 locked_page = NULL;
1326 } else {
1327 async_chunk[i].locked_page = NULL;
1328 }
1329
ec39f769
CM
1330 if (blkcg_css != blkcg_root_css) {
1331 css_get(blkcg_css);
1332 async_chunk[i].blkcg_css = blkcg_css;
1333 } else {
1334 async_chunk[i].blkcg_css = NULL;
1335 }
1336
a0cac0ec
OS
1337 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1338 async_cow_submit, async_cow_free);
771ed689 1339
97db1204 1340 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
0b246afa 1341 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1342
97db1204 1343 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
771ed689 1344
771ed689
CM
1345 *nr_written += nr_pages;
1346 start = cur_end + 1;
1347 }
1348 *page_started = 1;
1349 return 0;
be20aa9d
CM
1350}
1351
2ff7e61e 1352static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1353 u64 bytenr, u64 num_bytes)
1354{
1355 int ret;
1356 struct btrfs_ordered_sum *sums;
1357 LIST_HEAD(list);
1358
0b246afa 1359 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1360 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1361 if (ret == 0 && list_empty(&list))
1362 return 0;
1363
1364 while (!list_empty(&list)) {
1365 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1366 list_del(&sums->list);
1367 kfree(sums);
1368 }
58113753
LB
1369 if (ret < 0)
1370 return ret;
17d217fe
YZ
1371 return 1;
1372}
1373
8ba96f3d 1374static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
467dc47e
FM
1375 const u64 start, const u64 end,
1376 int *page_started, unsigned long *nr_written)
1377{
8ba96f3d
NB
1378 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1379 const bool is_reloc_ino = (inode->root->root_key.objectid ==
6bd335b4 1380 BTRFS_DATA_RELOC_TREE_OBJECTID);
2166e5ed 1381 const u64 range_bytes = end + 1 - start;
8ba96f3d 1382 struct extent_io_tree *io_tree = &inode->io_tree;
467dc47e
FM
1383 u64 range_start = start;
1384 u64 count;
1385
1386 /*
1387 * If EXTENT_NORESERVE is set it means that when the buffered write was
1388 * made we had not enough available data space and therefore we did not
1389 * reserve data space for it, since we though we could do NOCOW for the
1390 * respective file range (either there is prealloc extent or the inode
1391 * has the NOCOW bit set).
1392 *
1393 * However when we need to fallback to COW mode (because for example the
1394 * block group for the corresponding extent was turned to RO mode by a
1395 * scrub or relocation) we need to do the following:
1396 *
1397 * 1) We increment the bytes_may_use counter of the data space info.
1398 * If COW succeeds, it allocates a new data extent and after doing
1399 * that it decrements the space info's bytes_may_use counter and
1400 * increments its bytes_reserved counter by the same amount (we do
1401 * this at btrfs_add_reserved_bytes()). So we need to increment the
1402 * bytes_may_use counter to compensate (when space is reserved at
1403 * buffered write time, the bytes_may_use counter is incremented);
1404 *
1405 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1406 * that if the COW path fails for any reason, it decrements (through
1407 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1408 * data space info, which we incremented in the step above.
2166e5ed
FM
1409 *
1410 * If we need to fallback to cow and the inode corresponds to a free
6bd335b4
FM
1411 * space cache inode or an inode of the data relocation tree, we must
1412 * also increment bytes_may_use of the data space_info for the same
1413 * reason. Space caches and relocated data extents always get a prealloc
2166e5ed 1414 * extent for them, however scrub or balance may have set the block
6bd335b4
FM
1415 * group that contains that extent to RO mode and therefore force COW
1416 * when starting writeback.
467dc47e 1417 */
2166e5ed 1418 count = count_range_bits(io_tree, &range_start, end, range_bytes,
467dc47e 1419 EXTENT_NORESERVE, 0);
6bd335b4
FM
1420 if (count > 0 || is_space_ino || is_reloc_ino) {
1421 u64 bytes = count;
8ba96f3d 1422 struct btrfs_fs_info *fs_info = inode->root->fs_info;
467dc47e
FM
1423 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1424
6bd335b4
FM
1425 if (is_space_ino || is_reloc_ino)
1426 bytes = range_bytes;
1427
467dc47e 1428 spin_lock(&sinfo->lock);
2166e5ed 1429 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
467dc47e
FM
1430 spin_unlock(&sinfo->lock);
1431
2166e5ed
FM
1432 if (count > 0)
1433 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1434 0, 0, NULL);
467dc47e
FM
1435 }
1436
8ba96f3d
NB
1437 return cow_file_range(inode, locked_page, start, end, page_started,
1438 nr_written, 1);
467dc47e
FM
1439}
1440
d352ac68
CM
1441/*
1442 * when nowcow writeback call back. This checks for snapshots or COW copies
1443 * of the extents that exist in the file, and COWs the file as required.
1444 *
1445 * If no cow copies or snapshots exist, we write directly to the existing
1446 * blocks on disk
1447 */
968322c8 1448static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
7f366cfe 1449 struct page *locked_page,
3e024846
NB
1450 const u64 start, const u64 end,
1451 int *page_started, int force,
1452 unsigned long *nr_written)
be20aa9d 1453{
968322c8
NB
1454 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1455 struct btrfs_root *root = inode->root;
be20aa9d 1456 struct btrfs_path *path;
3e024846
NB
1457 u64 cow_start = (u64)-1;
1458 u64 cur_offset = start;
8ecebf4d 1459 int ret;
3e024846 1460 bool check_prev = true;
968322c8
NB
1461 const bool freespace_inode = btrfs_is_free_space_inode(inode);
1462 u64 ino = btrfs_ino(inode);
762bf098
NB
1463 bool nocow = false;
1464 u64 disk_bytenr = 0;
be20aa9d
CM
1465
1466 path = btrfs_alloc_path();
17ca04af 1467 if (!path) {
968322c8 1468 extent_clear_unlock_delalloc(inode, start, end, locked_page,
c2790a2e 1469 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1470 EXTENT_DO_ACCOUNTING |
1471 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1472 PAGE_CLEAR_DIRTY |
1473 PAGE_SET_WRITEBACK |
1474 PAGE_END_WRITEBACK);
d8926bb3 1475 return -ENOMEM;
17ca04af 1476 }
82d5902d 1477
80ff3856 1478 while (1) {
3e024846
NB
1479 struct btrfs_key found_key;
1480 struct btrfs_file_extent_item *fi;
1481 struct extent_buffer *leaf;
1482 u64 extent_end;
1483 u64 extent_offset;
3e024846
NB
1484 u64 num_bytes = 0;
1485 u64 disk_num_bytes;
3e024846
NB
1486 u64 ram_bytes;
1487 int extent_type;
762bf098
NB
1488
1489 nocow = false;
3e024846 1490
e4c3b2dc 1491 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1492 cur_offset, 0);
d788a349 1493 if (ret < 0)
79787eaa 1494 goto error;
a6bd9cd1
NB
1495
1496 /*
1497 * If there is no extent for our range when doing the initial
1498 * search, then go back to the previous slot as it will be the
1499 * one containing the search offset
1500 */
80ff3856
YZ
1501 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1502 leaf = path->nodes[0];
1503 btrfs_item_key_to_cpu(leaf, &found_key,
1504 path->slots[0] - 1);
33345d01 1505 if (found_key.objectid == ino &&
80ff3856
YZ
1506 found_key.type == BTRFS_EXTENT_DATA_KEY)
1507 path->slots[0]--;
1508 }
3e024846 1509 check_prev = false;
80ff3856 1510next_slot:
a6bd9cd1 1511 /* Go to next leaf if we have exhausted the current one */
80ff3856
YZ
1512 leaf = path->nodes[0];
1513 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1514 ret = btrfs_next_leaf(root, path);
e8916699
LB
1515 if (ret < 0) {
1516 if (cow_start != (u64)-1)
1517 cur_offset = cow_start;
79787eaa 1518 goto error;
e8916699 1519 }
80ff3856
YZ
1520 if (ret > 0)
1521 break;
1522 leaf = path->nodes[0];
1523 }
be20aa9d 1524
80ff3856
YZ
1525 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1526
a6bd9cd1 1527 /* Didn't find anything for our INO */
1d512cb7
FM
1528 if (found_key.objectid > ino)
1529 break;
a6bd9cd1
NB
1530 /*
1531 * Keep searching until we find an EXTENT_ITEM or there are no
1532 * more extents for this inode
1533 */
1d512cb7
FM
1534 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1535 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1536 path->slots[0]++;
1537 goto next_slot;
1538 }
a6bd9cd1
NB
1539
1540 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1d512cb7 1541 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1542 found_key.offset > end)
1543 break;
1544
a6bd9cd1
NB
1545 /*
1546 * If the found extent starts after requested offset, then
1547 * adjust extent_end to be right before this extent begins
1548 */
80ff3856
YZ
1549 if (found_key.offset > cur_offset) {
1550 extent_end = found_key.offset;
e9061e21 1551 extent_type = 0;
80ff3856
YZ
1552 goto out_check;
1553 }
1554
a6bd9cd1
NB
1555 /*
1556 * Found extent which begins before our range and potentially
1557 * intersect it
1558 */
80ff3856
YZ
1559 fi = btrfs_item_ptr(leaf, path->slots[0],
1560 struct btrfs_file_extent_item);
1561 extent_type = btrfs_file_extent_type(leaf, fi);
1562
cc95bef6 1563 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1564 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1565 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1566 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1567 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1568 extent_end = found_key.offset +
1569 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1570 disk_num_bytes =
1571 btrfs_file_extent_disk_num_bytes(leaf, fi);
a6bd9cd1 1572 /*
de7999af
FM
1573 * If the extent we got ends before our current offset,
1574 * skip to the next extent.
a6bd9cd1 1575 */
de7999af 1576 if (extent_end <= cur_offset) {
80ff3856
YZ
1577 path->slots[0]++;
1578 goto next_slot;
1579 }
a6bd9cd1 1580 /* Skip holes */
17d217fe
YZ
1581 if (disk_bytenr == 0)
1582 goto out_check;
a6bd9cd1 1583 /* Skip compressed/encrypted/encoded extents */
80ff3856
YZ
1584 if (btrfs_file_extent_compression(leaf, fi) ||
1585 btrfs_file_extent_encryption(leaf, fi) ||
1586 btrfs_file_extent_other_encoding(leaf, fi))
1587 goto out_check;
78d4295b 1588 /*
a6bd9cd1
NB
1589 * If extent is created before the last volume's snapshot
1590 * this implies the extent is shared, hence we can't do
1591 * nocow. This is the same check as in
1592 * btrfs_cross_ref_exist but without calling
1593 * btrfs_search_slot.
78d4295b 1594 */
3e024846 1595 if (!freespace_inode &&
27a7ff55 1596 btrfs_file_extent_generation(leaf, fi) <=
78d4295b
EL
1597 btrfs_root_last_snapshot(&root->root_item))
1598 goto out_check;
d899e052
YZ
1599 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1600 goto out_check;
a6bd9cd1 1601 /* If extent is RO, we must COW it */
2ff7e61e 1602 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1603 goto out_check;
58113753
LB
1604 ret = btrfs_cross_ref_exist(root, ino,
1605 found_key.offset -
1606 extent_offset, disk_bytenr);
1607 if (ret) {
1608 /*
1609 * ret could be -EIO if the above fails to read
1610 * metadata.
1611 */
1612 if (ret < 0) {
1613 if (cow_start != (u64)-1)
1614 cur_offset = cow_start;
1615 goto error;
1616 }
1617
3e024846 1618 WARN_ON_ONCE(freespace_inode);
17d217fe 1619 goto out_check;
58113753 1620 }
5d4f98a2 1621 disk_bytenr += extent_offset;
17d217fe
YZ
1622 disk_bytenr += cur_offset - found_key.offset;
1623 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3 1624 /*
a6bd9cd1
NB
1625 * If there are pending snapshots for this root, we
1626 * fall into common COW way
e9894fd3 1627 */
3e024846 1628 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
8ecebf4d 1629 goto out_check;
17d217fe
YZ
1630 /*
1631 * force cow if csum exists in the range.
1632 * this ensure that csum for a given extent are
1633 * either valid or do not exist.
1634 */
58113753
LB
1635 ret = csum_exist_in_range(fs_info, disk_bytenr,
1636 num_bytes);
1637 if (ret) {
58113753
LB
1638 /*
1639 * ret could be -EIO if the above fails to read
1640 * metadata.
1641 */
1642 if (ret < 0) {
1643 if (cow_start != (u64)-1)
1644 cur_offset = cow_start;
1645 goto error;
1646 }
3e024846 1647 WARN_ON_ONCE(freespace_inode);
17d217fe 1648 goto out_check;
91e1f56a 1649 }
8ecebf4d 1650 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
f78c436c 1651 goto out_check;
3e024846 1652 nocow = true;
80ff3856 1653 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e8e21007
NB
1654 extent_end = found_key.offset + ram_bytes;
1655 extent_end = ALIGN(extent_end, fs_info->sectorsize);
922f0518
NB
1656 /* Skip extents outside of our requested range */
1657 if (extent_end <= start) {
1658 path->slots[0]++;
1659 goto next_slot;
1660 }
80ff3856 1661 } else {
e8e21007 1662 /* If this triggers then we have a memory corruption */
290342f6 1663 BUG();
80ff3856
YZ
1664 }
1665out_check:
a6bd9cd1
NB
1666 /*
1667 * If nocow is false then record the beginning of the range
1668 * that needs to be COWed
1669 */
80ff3856
YZ
1670 if (!nocow) {
1671 if (cow_start == (u64)-1)
1672 cow_start = cur_offset;
1673 cur_offset = extent_end;
1674 if (cur_offset > end)
1675 break;
1676 path->slots[0]++;
1677 goto next_slot;
7ea394f1
YZ
1678 }
1679
b3b4aa74 1680 btrfs_release_path(path);
a6bd9cd1
NB
1681
1682 /*
1683 * COW range from cow_start to found_key.offset - 1. As the key
1684 * will contain the beginning of the first extent that can be
1685 * NOCOW, following one which needs to be COW'ed
1686 */
80ff3856 1687 if (cow_start != (u64)-1) {
968322c8 1688 ret = fallback_to_cow(inode, locked_page,
8ba96f3d 1689 cow_start, found_key.offset - 1,
467dc47e 1690 page_started, nr_written);
230ed397 1691 if (ret)
79787eaa 1692 goto error;
80ff3856 1693 cow_start = (u64)-1;
7ea394f1 1694 }
80ff3856 1695
d899e052 1696 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db 1697 u64 orig_start = found_key.offset - extent_offset;
3e024846 1698 struct extent_map *em;
6f9994db 1699
968322c8 1700 em = create_io_em(inode, cur_offset, num_bytes,
6f9994db
LB
1701 orig_start,
1702 disk_bytenr, /* block_start */
1703 num_bytes, /* block_len */
1704 disk_num_bytes, /* orig_block_len */
1705 ram_bytes, BTRFS_COMPRESS_NONE,
1706 BTRFS_ORDERED_PREALLOC);
1707 if (IS_ERR(em)) {
6f9994db
LB
1708 ret = PTR_ERR(em);
1709 goto error;
d899e052 1710 }
6f9994db 1711 free_extent_map(em);
968322c8 1712 ret = btrfs_add_ordered_extent(inode, cur_offset,
bb55f626
NB
1713 disk_bytenr, num_bytes,
1714 num_bytes,
1715 BTRFS_ORDERED_PREALLOC);
762bf098 1716 if (ret) {
968322c8 1717 btrfs_drop_extent_cache(inode, cur_offset,
762bf098
NB
1718 cur_offset + num_bytes - 1,
1719 0);
1720 goto error;
1721 }
d899e052 1722 } else {
968322c8 1723 ret = btrfs_add_ordered_extent(inode, cur_offset,
bb55f626
NB
1724 disk_bytenr, num_bytes,
1725 num_bytes,
1726 BTRFS_ORDERED_NOCOW);
762bf098
NB
1727 if (ret)
1728 goto error;
d899e052 1729 }
80ff3856 1730
f78c436c 1731 if (nocow)
0b246afa 1732 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
762bf098 1733 nocow = false;
771ed689 1734
efa56464 1735 if (root->root_key.objectid ==
4dbd80fb
QW
1736 BTRFS_DATA_RELOC_TREE_OBJECTID)
1737 /*
1738 * Error handled later, as we must prevent
1739 * extent_clear_unlock_delalloc() in error handler
1740 * from freeing metadata of created ordered extent.
1741 */
968322c8 1742 ret = btrfs_reloc_clone_csums(inode, cur_offset,
efa56464 1743 num_bytes);
efa56464 1744
968322c8 1745 extent_clear_unlock_delalloc(inode, cur_offset,
74e9194a 1746 cur_offset + num_bytes - 1,
c2790a2e 1747 locked_page, EXTENT_LOCKED |
18513091
WX
1748 EXTENT_DELALLOC |
1749 EXTENT_CLEAR_DATA_RESV,
1750 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1751
80ff3856 1752 cur_offset = extent_end;
4dbd80fb
QW
1753
1754 /*
1755 * btrfs_reloc_clone_csums() error, now we're OK to call error
1756 * handler, as metadata for created ordered extent will only
1757 * be freed by btrfs_finish_ordered_io().
1758 */
1759 if (ret)
1760 goto error;
80ff3856
YZ
1761 if (cur_offset > end)
1762 break;
be20aa9d 1763 }
b3b4aa74 1764 btrfs_release_path(path);
80ff3856 1765
506481b2 1766 if (cur_offset <= end && cow_start == (u64)-1)
80ff3856 1767 cow_start = cur_offset;
17ca04af 1768
80ff3856 1769 if (cow_start != (u64)-1) {
506481b2 1770 cur_offset = end;
968322c8
NB
1771 ret = fallback_to_cow(inode, locked_page, cow_start, end,
1772 page_started, nr_written);
d788a349 1773 if (ret)
79787eaa 1774 goto error;
80ff3856
YZ
1775 }
1776
79787eaa 1777error:
762bf098
NB
1778 if (nocow)
1779 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1780
17ca04af 1781 if (ret && cur_offset < end)
968322c8 1782 extent_clear_unlock_delalloc(inode, cur_offset, end,
c2790a2e 1783 locked_page, EXTENT_LOCKED |
151a41bc
JB
1784 EXTENT_DELALLOC | EXTENT_DEFRAG |
1785 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1786 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1787 PAGE_SET_WRITEBACK |
1788 PAGE_END_WRITEBACK);
7ea394f1 1789 btrfs_free_path(path);
79787eaa 1790 return ret;
be20aa9d
CM
1791}
1792
0c494225 1793static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end)
47059d93
WS
1794{
1795
0c494225
NB
1796 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1797 !(inode->flags & BTRFS_INODE_PREALLOC))
47059d93
WS
1798 return 0;
1799
1800 /*
1801 * @defrag_bytes is a hint value, no spinlock held here,
1802 * if is not zero, it means the file is defragging.
1803 * Force cow if given extent needs to be defragged.
1804 */
0c494225
NB
1805 if (inode->defrag_bytes &&
1806 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL))
47059d93
WS
1807 return 1;
1808
1809 return 0;
1810}
1811
d352ac68 1812/*
5eaad97a
NB
1813 * Function to process delayed allocation (create CoW) for ranges which are
1814 * being touched for the first time.
d352ac68 1815 */
98456b9c 1816int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
5eaad97a
NB
1817 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1818 struct writeback_control *wbc)
be20aa9d 1819{
be20aa9d 1820 int ret;
98456b9c 1821 int force_cow = need_force_cow(inode, start, end);
a2135011 1822
98456b9c
NB
1823 if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1824 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1825 page_started, 1, nr_written);
98456b9c
NB
1826 } else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1827 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1828 page_started, 0, nr_written);
98456b9c
NB
1829 } else if (!inode_can_compress(inode) ||
1830 !inode_need_compress(inode, start, end)) {
1831 ret = cow_file_range(inode, locked_page, start, end,
1832 page_started, nr_written, 1);
7ddf5a42 1833 } else {
98456b9c
NB
1834 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1835 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
fac07d2b 1836 page_started, nr_written);
7ddf5a42 1837 }
52427260 1838 if (ret)
98456b9c 1839 btrfs_cleanup_ordered_extents(inode, locked_page, start,
d1051d6e 1840 end - start + 1);
b888db2b
CM
1841 return ret;
1842}
1843
abbb55f4
NB
1844void btrfs_split_delalloc_extent(struct inode *inode,
1845 struct extent_state *orig, u64 split)
9ed74f2d 1846{
dcab6a3b
JB
1847 u64 size;
1848
0ca1f7ce 1849 /* not delalloc, ignore it */
9ed74f2d 1850 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1851 return;
9ed74f2d 1852
dcab6a3b
JB
1853 size = orig->end - orig->start + 1;
1854 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1855 u32 num_extents;
dcab6a3b
JB
1856 u64 new_size;
1857
1858 /*
5c848198 1859 * See the explanation in btrfs_merge_delalloc_extent, the same
ba117213 1860 * applies here, just in reverse.
dcab6a3b
JB
1861 */
1862 new_size = orig->end - split + 1;
823bb20a 1863 num_extents = count_max_extents(new_size);
ba117213 1864 new_size = split - orig->start;
823bb20a
DS
1865 num_extents += count_max_extents(new_size);
1866 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1867 return;
1868 }
1869
9e0baf60 1870 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1871 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1872 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1873}
1874
1875/*
5c848198
NB
1876 * Handle merged delayed allocation extents so we can keep track of new extents
1877 * that are just merged onto old extents, such as when we are doing sequential
1878 * writes, so we can properly account for the metadata space we'll need.
9ed74f2d 1879 */
5c848198
NB
1880void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1881 struct extent_state *other)
9ed74f2d 1882{
dcab6a3b 1883 u64 new_size, old_size;
823bb20a 1884 u32 num_extents;
dcab6a3b 1885
9ed74f2d
JB
1886 /* not delalloc, ignore it */
1887 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1888 return;
9ed74f2d 1889
8461a3de
JB
1890 if (new->start > other->start)
1891 new_size = new->end - other->start + 1;
1892 else
1893 new_size = other->end - new->start + 1;
dcab6a3b
JB
1894
1895 /* we're not bigger than the max, unreserve the space and go */
1896 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1897 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1898 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1899 spin_unlock(&BTRFS_I(inode)->lock);
1900 return;
1901 }
1902
1903 /*
ba117213
JB
1904 * We have to add up either side to figure out how many extents were
1905 * accounted for before we merged into one big extent. If the number of
1906 * extents we accounted for is <= the amount we need for the new range
1907 * then we can return, otherwise drop. Think of it like this
1908 *
1909 * [ 4k][MAX_SIZE]
1910 *
1911 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1912 * need 2 outstanding extents, on one side we have 1 and the other side
1913 * we have 1 so they are == and we can return. But in this case
1914 *
1915 * [MAX_SIZE+4k][MAX_SIZE+4k]
1916 *
1917 * Each range on their own accounts for 2 extents, but merged together
1918 * they are only 3 extents worth of accounting, so we need to drop in
1919 * this case.
dcab6a3b 1920 */
ba117213 1921 old_size = other->end - other->start + 1;
823bb20a 1922 num_extents = count_max_extents(old_size);
ba117213 1923 old_size = new->end - new->start + 1;
823bb20a
DS
1924 num_extents += count_max_extents(old_size);
1925 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1926 return;
1927
9e0baf60 1928 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1929 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1930 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1931}
1932
eb73c1b7
MX
1933static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1934 struct inode *inode)
1935{
0b246afa
JM
1936 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1937
eb73c1b7
MX
1938 spin_lock(&root->delalloc_lock);
1939 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1940 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1941 &root->delalloc_inodes);
1942 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1943 &BTRFS_I(inode)->runtime_flags);
1944 root->nr_delalloc_inodes++;
1945 if (root->nr_delalloc_inodes == 1) {
0b246afa 1946 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1947 BUG_ON(!list_empty(&root->delalloc_root));
1948 list_add_tail(&root->delalloc_root,
0b246afa
JM
1949 &fs_info->delalloc_roots);
1950 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1951 }
1952 }
1953 spin_unlock(&root->delalloc_lock);
1954}
1955
2b877331
NB
1956
1957void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1958 struct btrfs_inode *inode)
eb73c1b7 1959{
3ffbd68c 1960 struct btrfs_fs_info *fs_info = root->fs_info;
0b246afa 1961
9e3e97f4
NB
1962 if (!list_empty(&inode->delalloc_inodes)) {
1963 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1964 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1965 &inode->runtime_flags);
eb73c1b7
MX
1966 root->nr_delalloc_inodes--;
1967 if (!root->nr_delalloc_inodes) {
7c8a0d36 1968 ASSERT(list_empty(&root->delalloc_inodes));
0b246afa 1969 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1970 BUG_ON(list_empty(&root->delalloc_root));
1971 list_del_init(&root->delalloc_root);
0b246afa 1972 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1973 }
1974 }
2b877331
NB
1975}
1976
1977static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1978 struct btrfs_inode *inode)
1979{
1980 spin_lock(&root->delalloc_lock);
1981 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
1982 spin_unlock(&root->delalloc_lock);
1983}
1984
d352ac68 1985/*
e06a1fc9
NB
1986 * Properly track delayed allocation bytes in the inode and to maintain the
1987 * list of inodes that have pending delalloc work to be done.
d352ac68 1988 */
e06a1fc9
NB
1989void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1990 unsigned *bits)
291d673e 1991{
0b246afa
JM
1992 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1993
47059d93
WS
1994 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1995 WARN_ON(1);
75eff68e
CM
1996 /*
1997 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1998 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1999 * bit, which is only set or cleared with irqs on
2000 */
0ca1f7ce 2001 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 2002 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2003 u64 len = state->end + 1 - state->start;
8b62f87b 2004 u32 num_extents = count_max_extents(len);
70ddc553 2005 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 2006
8b62f87b
JB
2007 spin_lock(&BTRFS_I(inode)->lock);
2008 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2009 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 2010
6a3891c5 2011 /* For sanity tests */
0b246afa 2012 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2013 return;
2014
104b4e51
NB
2015 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2016 fs_info->delalloc_batch);
df0af1a5 2017 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 2018 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
2019 if (*bits & EXTENT_DEFRAG)
2020 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 2021 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
2022 &BTRFS_I(inode)->runtime_flags))
2023 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 2024 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 2025 }
a7e3b975
FM
2026
2027 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2028 (*bits & EXTENT_DELALLOC_NEW)) {
2029 spin_lock(&BTRFS_I(inode)->lock);
2030 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2031 state->start;
2032 spin_unlock(&BTRFS_I(inode)->lock);
2033 }
291d673e
CM
2034}
2035
d352ac68 2036/*
a36bb5f9
NB
2037 * Once a range is no longer delalloc this function ensures that proper
2038 * accounting happens.
d352ac68 2039 */
a36bb5f9
NB
2040void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2041 struct extent_state *state, unsigned *bits)
291d673e 2042{
a36bb5f9
NB
2043 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2044 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
47059d93 2045 u64 len = state->end + 1 - state->start;
823bb20a 2046 u32 num_extents = count_max_extents(len);
47059d93 2047
4a4b964f
FM
2048 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2049 spin_lock(&inode->lock);
6fc0ef68 2050 inode->defrag_bytes -= len;
4a4b964f
FM
2051 spin_unlock(&inode->lock);
2052 }
47059d93 2053
75eff68e
CM
2054 /*
2055 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 2056 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
2057 * bit, which is only set or cleared with irqs on
2058 */
0ca1f7ce 2059 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 2060 struct btrfs_root *root = inode->root;
83eea1f1 2061 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 2062
8b62f87b
JB
2063 spin_lock(&inode->lock);
2064 btrfs_mod_outstanding_extents(inode, -num_extents);
2065 spin_unlock(&inode->lock);
0ca1f7ce 2066
b6d08f06
JB
2067 /*
2068 * We don't reserve metadata space for space cache inodes so we
52042d8e 2069 * don't need to call delalloc_release_metadata if there is an
b6d08f06
JB
2070 * error.
2071 */
a315e68f 2072 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 2073 root != fs_info->tree_root)
43b18595 2074 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 2075
6a3891c5 2076 /* For sanity tests. */
0b246afa 2077 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2078 return;
2079
a315e68f
FM
2080 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2081 do_list && !(state->state & EXTENT_NORESERVE) &&
2082 (*bits & EXTENT_CLEAR_DATA_RESV))
9db5d510 2083 btrfs_free_reserved_data_space_noquota(fs_info, len);
9ed74f2d 2084
104b4e51
NB
2085 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2086 fs_info->delalloc_batch);
6fc0ef68
NB
2087 spin_lock(&inode->lock);
2088 inode->delalloc_bytes -= len;
2089 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 2090 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 2091 &inode->runtime_flags))
eb73c1b7 2092 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 2093 spin_unlock(&inode->lock);
291d673e 2094 }
a7e3b975
FM
2095
2096 if ((state->state & EXTENT_DELALLOC_NEW) &&
2097 (*bits & EXTENT_DELALLOC_NEW)) {
2098 spin_lock(&inode->lock);
2099 ASSERT(inode->new_delalloc_bytes >= len);
2100 inode->new_delalloc_bytes -= len;
2101 spin_unlock(&inode->lock);
2102 }
291d673e
CM
2103}
2104
d352ac68 2105/*
da12fe54
NB
2106 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2107 * in a chunk's stripe. This function ensures that bios do not span a
2108 * stripe/chunk
6f034ece 2109 *
da12fe54
NB
2110 * @page - The page we are about to add to the bio
2111 * @size - size we want to add to the bio
2112 * @bio - bio we want to ensure is smaller than a stripe
2113 * @bio_flags - flags of the bio
2114 *
2115 * return 1 if page cannot be added to the bio
2116 * return 0 if page can be added to the bio
6f034ece 2117 * return error otherwise
d352ac68 2118 */
da12fe54
NB
2119int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2120 unsigned long bio_flags)
239b14b3 2121{
0b246afa
JM
2122 struct inode *inode = page->mapping->host;
2123 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 2124 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
2125 u64 length = 0;
2126 u64 map_length;
239b14b3 2127 int ret;
89b798ad 2128 struct btrfs_io_geometry geom;
239b14b3 2129
771ed689
CM
2130 if (bio_flags & EXTENT_BIO_COMPRESSED)
2131 return 0;
2132
4f024f37 2133 length = bio->bi_iter.bi_size;
239b14b3 2134 map_length = length;
89b798ad
NB
2135 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2136 &geom);
6f034ece
LB
2137 if (ret < 0)
2138 return ret;
89b798ad
NB
2139
2140 if (geom.len < length + size)
239b14b3 2141 return 1;
3444a972 2142 return 0;
239b14b3
CM
2143}
2144
d352ac68
CM
2145/*
2146 * in order to insert checksums into the metadata in large chunks,
2147 * we wait until bio submission time. All the pages in the bio are
2148 * checksummed and sums are attached onto the ordered extent record.
2149 *
2150 * At IO completion time the cums attached on the ordered extent record
2151 * are inserted into the btree
2152 */
d0ee3934 2153static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
eaf25d93 2154 u64 bio_offset)
065631f6 2155{
c6100a4b 2156 struct inode *inode = private_data;
4e4cbee9 2157 blk_status_t ret = 0;
e015640f 2158
bd242a08 2159 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
79787eaa 2160 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
2161 return 0;
2162}
e015640f 2163
d352ac68 2164/*
cad321ad 2165 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
2166 * on write, or reading the csums from the tree before a read.
2167 *
2168 * Rules about async/sync submit,
2169 * a) read: sync submit
2170 *
2171 * b) write without checksum: sync submit
2172 *
2173 * c) write with checksum:
2174 * c-1) if bio is issued by fsync: sync submit
2175 * (sync_writers != 0)
2176 *
2177 * c-2) if root is reloc root: sync submit
2178 * (only in case of buffered IO)
2179 *
2180 * c-3) otherwise: async submit
d352ac68 2181 */
a56b1c7b 2182static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
2183 int mirror_num,
2184 unsigned long bio_flags)
2185
44b8bd7e 2186{
0b246afa 2187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 2188 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 2189 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 2190 blk_status_t ret = 0;
19b9bdb0 2191 int skip_sum;
b812ce28 2192 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 2193
6cbff00f 2194 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 2195
70ddc553 2196 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 2197 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 2198
37226b21 2199 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 2200 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 2201 if (ret)
61891923 2202 goto out;
5fd02043 2203
d20f7043 2204 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
2205 ret = btrfs_submit_compressed_read(inode, bio,
2206 mirror_num,
2207 bio_flags);
2208 goto out;
c2db1073 2209 } else if (!skip_sum) {
db72e47f 2210 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL);
c2db1073 2211 if (ret)
61891923 2212 goto out;
c2db1073 2213 }
4d1b5fb4 2214 goto mapit;
b812ce28 2215 } else if (async && !skip_sum) {
17d217fe
YZ
2216 /* csum items have already been cloned */
2217 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2218 goto mapit;
19b9bdb0 2219 /* we're doing a write, do the async checksumming */
c6100a4b 2220 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
e7681167 2221 0, inode, btrfs_submit_bio_start);
61891923 2222 goto out;
b812ce28 2223 } else if (!skip_sum) {
bd242a08 2224 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
b812ce28
JB
2225 if (ret)
2226 goto out;
19b9bdb0
CM
2227 }
2228
0b86a832 2229mapit:
08635bae 2230 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
2231
2232out:
4e4cbee9
CH
2233 if (ret) {
2234 bio->bi_status = ret;
4246a0b6
CH
2235 bio_endio(bio);
2236 }
61891923 2237 return ret;
065631f6 2238}
6885f308 2239
d352ac68
CM
2240/*
2241 * given a list of ordered sums record them in the inode. This happens
2242 * at IO completion time based on sums calculated at bio submission time.
2243 */
ba1da2f4 2244static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2245 struct inode *inode, struct list_head *list)
e6dcd2dc 2246{
e6dcd2dc 2247 struct btrfs_ordered_sum *sum;
ac01f26a 2248 int ret;
e6dcd2dc 2249
c6e30871 2250 list_for_each_entry(sum, list, list) {
7c2871a2 2251 trans->adding_csums = true;
ac01f26a 2252 ret = btrfs_csum_file_blocks(trans,
d20f7043 2253 BTRFS_I(inode)->root->fs_info->csum_root, sum);
7c2871a2 2254 trans->adding_csums = false;
ac01f26a
NB
2255 if (ret)
2256 return ret;
e6dcd2dc
CM
2257 }
2258 return 0;
2259}
2260
c2566f22 2261int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
e3b8a485 2262 unsigned int extra_bits,
330a5827 2263 struct extent_state **cached_state)
ea8c2819 2264{
fdb1e121 2265 WARN_ON(PAGE_ALIGNED(end));
c2566f22
NB
2266 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2267 cached_state);
ea8c2819
CM
2268}
2269
d352ac68 2270/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2271struct btrfs_writepage_fixup {
2272 struct page *page;
f4b1363c 2273 struct inode *inode;
247e743c
CM
2274 struct btrfs_work work;
2275};
2276
b2950863 2277static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2278{
2279 struct btrfs_writepage_fixup *fixup;
2280 struct btrfs_ordered_extent *ordered;
2ac55d41 2281 struct extent_state *cached_state = NULL;
364ecf36 2282 struct extent_changeset *data_reserved = NULL;
247e743c 2283 struct page *page;
65d87f79 2284 struct btrfs_inode *inode;
247e743c
CM
2285 u64 page_start;
2286 u64 page_end;
25f3c502 2287 int ret = 0;
f4b1363c 2288 bool free_delalloc_space = true;
247e743c
CM
2289
2290 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2291 page = fixup->page;
65d87f79 2292 inode = BTRFS_I(fixup->inode);
f4b1363c
JB
2293 page_start = page_offset(page);
2294 page_end = page_offset(page) + PAGE_SIZE - 1;
2295
2296 /*
2297 * This is similar to page_mkwrite, we need to reserve the space before
2298 * we take the page lock.
2299 */
65d87f79
NB
2300 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2301 PAGE_SIZE);
4a096752 2302again:
247e743c 2303 lock_page(page);
25f3c502
CM
2304
2305 /*
2306 * Before we queued this fixup, we took a reference on the page.
2307 * page->mapping may go NULL, but it shouldn't be moved to a different
2308 * address space.
2309 */
f4b1363c
JB
2310 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2311 /*
2312 * Unfortunately this is a little tricky, either
2313 *
2314 * 1) We got here and our page had already been dealt with and
2315 * we reserved our space, thus ret == 0, so we need to just
2316 * drop our space reservation and bail. This can happen the
2317 * first time we come into the fixup worker, or could happen
2318 * while waiting for the ordered extent.
2319 * 2) Our page was already dealt with, but we happened to get an
2320 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2321 * this case we obviously don't have anything to release, but
2322 * because the page was already dealt with we don't want to
2323 * mark the page with an error, so make sure we're resetting
2324 * ret to 0. This is why we have this check _before_ the ret
2325 * check, because we do not want to have a surprise ENOSPC
2326 * when the page was already properly dealt with.
2327 */
2328 if (!ret) {
65d87f79
NB
2329 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2330 btrfs_delalloc_release_space(inode, data_reserved,
f4b1363c
JB
2331 page_start, PAGE_SIZE,
2332 true);
2333 }
2334 ret = 0;
247e743c 2335 goto out_page;
f4b1363c 2336 }
247e743c 2337
25f3c502 2338 /*
f4b1363c
JB
2339 * We can't mess with the page state unless it is locked, so now that
2340 * it is locked bail if we failed to make our space reservation.
25f3c502 2341 */
f4b1363c
JB
2342 if (ret)
2343 goto out_page;
247e743c 2344
65d87f79 2345 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
4a096752
CM
2346
2347 /* already ordered? We're done */
8b62b72b 2348 if (PagePrivate2(page))
f4b1363c 2349 goto out_reserved;
4a096752 2350
65d87f79 2351 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
4a096752 2352 if (ordered) {
65d87f79
NB
2353 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2354 &cached_state);
4a096752 2355 unlock_page(page);
65d87f79 2356 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
87826df0 2357 btrfs_put_ordered_extent(ordered);
4a096752
CM
2358 goto again;
2359 }
247e743c 2360
65d87f79 2361 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
330a5827 2362 &cached_state);
25f3c502 2363 if (ret)
53687007 2364 goto out_reserved;
f3038ee3 2365
25f3c502
CM
2366 /*
2367 * Everything went as planned, we're now the owner of a dirty page with
2368 * delayed allocation bits set and space reserved for our COW
2369 * destination.
2370 *
2371 * The page was dirty when we started, nothing should have cleaned it.
2372 */
2373 BUG_ON(!PageDirty(page));
f4b1363c 2374 free_delalloc_space = false;
53687007 2375out_reserved:
65d87f79 2376 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
f4b1363c 2377 if (free_delalloc_space)
65d87f79
NB
2378 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2379 PAGE_SIZE, true);
2380 unlock_extent_cached(&inode->io_tree, page_start, page_end,
e43bbe5e 2381 &cached_state);
247e743c 2382out_page:
25f3c502
CM
2383 if (ret) {
2384 /*
2385 * We hit ENOSPC or other errors. Update the mapping and page
2386 * to reflect the errors and clean the page.
2387 */
2388 mapping_set_error(page->mapping, ret);
2389 end_extent_writepage(page, ret, page_start, page_end);
2390 clear_page_dirty_for_io(page);
2391 SetPageError(page);
2392 }
2393 ClearPageChecked(page);
247e743c 2394 unlock_page(page);
09cbfeaf 2395 put_page(page);
b897abec 2396 kfree(fixup);
364ecf36 2397 extent_changeset_free(data_reserved);
f4b1363c
JB
2398 /*
2399 * As a precaution, do a delayed iput in case it would be the last iput
2400 * that could need flushing space. Recursing back to fixup worker would
2401 * deadlock.
2402 */
65d87f79 2403 btrfs_add_delayed_iput(&inode->vfs_inode);
247e743c
CM
2404}
2405
2406/*
2407 * There are a few paths in the higher layers of the kernel that directly
2408 * set the page dirty bit without asking the filesystem if it is a
2409 * good idea. This causes problems because we want to make sure COW
2410 * properly happens and the data=ordered rules are followed.
2411 *
c8b97818 2412 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2413 * hasn't been properly setup for IO. We kick off an async process
2414 * to fix it up. The async helper will wait for ordered extents, set
2415 * the delalloc bit and make it safe to write the page.
2416 */
d75855b4 2417int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
247e743c
CM
2418{
2419 struct inode *inode = page->mapping->host;
0b246afa 2420 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2421 struct btrfs_writepage_fixup *fixup;
247e743c 2422
8b62b72b
CM
2423 /* this page is properly in the ordered list */
2424 if (TestClearPagePrivate2(page))
247e743c
CM
2425 return 0;
2426
25f3c502
CM
2427 /*
2428 * PageChecked is set below when we create a fixup worker for this page,
2429 * don't try to create another one if we're already PageChecked()
2430 *
2431 * The extent_io writepage code will redirty the page if we send back
2432 * EAGAIN.
2433 */
247e743c
CM
2434 if (PageChecked(page))
2435 return -EAGAIN;
2436
2437 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2438 if (!fixup)
2439 return -EAGAIN;
f421950f 2440
f4b1363c
JB
2441 /*
2442 * We are already holding a reference to this inode from
2443 * write_cache_pages. We need to hold it because the space reservation
2444 * takes place outside of the page lock, and we can't trust
2445 * page->mapping outside of the page lock.
2446 */
2447 ihold(inode);
247e743c 2448 SetPageChecked(page);
09cbfeaf 2449 get_page(page);
a0cac0ec 2450 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2451 fixup->page = page;
f4b1363c 2452 fixup->inode = inode;
0b246afa 2453 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
25f3c502
CM
2454
2455 return -EAGAIN;
247e743c
CM
2456}
2457
d899e052 2458static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
c553f94d 2459 struct btrfs_inode *inode, u64 file_pos,
9729f10a
QW
2460 struct btrfs_file_extent_item *stack_fi,
2461 u64 qgroup_reserved)
d899e052 2462{
c553f94d 2463 struct btrfs_root *root = inode->root;
d899e052
YZ
2464 struct btrfs_path *path;
2465 struct extent_buffer *leaf;
2466 struct btrfs_key ins;
203f44c5
QW
2467 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2468 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2469 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2470 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
1acae57b 2471 int extent_inserted = 0;
d899e052
YZ
2472 int ret;
2473
2474 path = btrfs_alloc_path();
d8926bb3
MF
2475 if (!path)
2476 return -ENOMEM;
d899e052 2477
a1ed835e
CM
2478 /*
2479 * we may be replacing one extent in the tree with another.
2480 * The new extent is pinned in the extent map, and we don't want
2481 * to drop it from the cache until it is completely in the btree.
2482 *
2483 * So, tell btrfs_drop_extents to leave this extent in the cache.
2484 * the caller is expected to unpin it and allow it to be merged
2485 * with the others.
2486 */
c553f94d 2487 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1acae57b 2488 file_pos + num_bytes, NULL, 0,
203f44c5 2489 1, sizeof(*stack_fi), &extent_inserted);
79787eaa
JM
2490 if (ret)
2491 goto out;
d899e052 2492
1acae57b 2493 if (!extent_inserted) {
c553f94d 2494 ins.objectid = btrfs_ino(inode);
1acae57b
FDBM
2495 ins.offset = file_pos;
2496 ins.type = BTRFS_EXTENT_DATA_KEY;
2497
2498 path->leave_spinning = 1;
2499 ret = btrfs_insert_empty_item(trans, root, path, &ins,
203f44c5 2500 sizeof(*stack_fi));
1acae57b
FDBM
2501 if (ret)
2502 goto out;
2503 }
d899e052 2504 leaf = path->nodes[0];
203f44c5
QW
2505 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2506 write_extent_buffer(leaf, stack_fi,
2507 btrfs_item_ptr_offset(leaf, path->slots[0]),
2508 sizeof(struct btrfs_file_extent_item));
b9473439 2509
d899e052 2510 btrfs_mark_buffer_dirty(leaf);
ce195332 2511 btrfs_release_path(path);
d899e052 2512
c553f94d 2513 inode_add_bytes(&inode->vfs_inode, num_bytes);
d899e052
YZ
2514
2515 ins.objectid = disk_bytenr;
2516 ins.offset = disk_num_bytes;
2517 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2518
c553f94d 2519 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
9ddc959e
JB
2520 if (ret)
2521 goto out;
2522
c553f94d 2523 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
9729f10a 2524 file_pos, qgroup_reserved, &ins);
79787eaa 2525out:
d899e052 2526 btrfs_free_path(path);
b9473439 2527
79787eaa 2528 return ret;
d899e052
YZ
2529}
2530
2ff7e61e 2531static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2532 u64 start, u64 len)
2533{
32da5386 2534 struct btrfs_block_group *cache;
e570fd27 2535
0b246afa 2536 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2537 ASSERT(cache);
2538
2539 spin_lock(&cache->lock);
2540 cache->delalloc_bytes -= len;
2541 spin_unlock(&cache->lock);
2542
2543 btrfs_put_block_group(cache);
2544}
2545
203f44c5
QW
2546static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2547 struct inode *inode,
2548 struct btrfs_ordered_extent *oe)
2549{
2550 struct btrfs_file_extent_item stack_fi;
2551 u64 logical_len;
2552
2553 memset(&stack_fi, 0, sizeof(stack_fi));
2554 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2555 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2556 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2557 oe->disk_num_bytes);
2558 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2559 logical_len = oe->truncated_len;
2560 else
2561 logical_len = oe->num_bytes;
2562 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2563 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2564 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2565 /* Encryption and other encoding is reserved and all 0 */
2566
c553f94d 2567 return insert_reserved_file_extent(trans, BTRFS_I(inode), oe->file_offset,
7dbeaad0 2568 &stack_fi, oe->qgroup_rsv);
203f44c5
QW
2569}
2570
2571/*
2572 * As ordered data IO finishes, this gets called so we can finish
d352ac68
CM
2573 * an ordered extent if the range of bytes in the file it covers are
2574 * fully written.
2575 */
5fd02043 2576static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2577{
5fd02043 2578 struct inode *inode = ordered_extent->inode;
0b246afa 2579 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2580 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2581 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2582 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2583 struct extent_state *cached_state = NULL;
bffe633e 2584 u64 start, end;
261507a0 2585 int compress_type = 0;
77cef2ec 2586 int ret = 0;
bffe633e 2587 u64 logical_len = ordered_extent->num_bytes;
8d510121 2588 bool freespace_inode;
77cef2ec 2589 bool truncated = false;
a7e3b975
FM
2590 bool range_locked = false;
2591 bool clear_new_delalloc_bytes = false;
49940bdd 2592 bool clear_reserved_extent = true;
313facc5 2593 unsigned int clear_bits;
a7e3b975 2594
bffe633e
OS
2595 start = ordered_extent->file_offset;
2596 end = start + ordered_extent->num_bytes - 1;
2597
a7e3b975
FM
2598 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2599 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2600 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2601 clear_new_delalloc_bytes = true;
e6dcd2dc 2602
8d510121 2603 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2604
5fd02043
JB
2605 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2606 ret = -EIO;
2607 goto out;
2608 }
2609
bffe633e 2610 btrfs_free_io_failure_record(BTRFS_I(inode), start, end);
f612496b 2611
77cef2ec
JB
2612 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2613 truncated = true;
2614 logical_len = ordered_extent->truncated_len;
2615 /* Truncated the entire extent, don't bother adding */
2616 if (!logical_len)
2617 goto out;
2618 }
2619
c2167754 2620 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2621 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a 2622
d923afe9 2623 btrfs_inode_safe_disk_i_size_write(inode, 0);
8d510121
NB
2624 if (freespace_inode)
2625 trans = btrfs_join_transaction_spacecache(root);
6c760c07
JB
2626 else
2627 trans = btrfs_join_transaction(root);
2628 if (IS_ERR(trans)) {
2629 ret = PTR_ERR(trans);
2630 trans = NULL;
2631 goto out;
c2167754 2632 }
69fe2d75 2633 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
2634 ret = btrfs_update_inode_fallback(trans, root, inode);
2635 if (ret) /* -ENOMEM or corruption */
66642832 2636 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2637 goto out;
2638 }
e6dcd2dc 2639
a7e3b975 2640 range_locked = true;
bffe633e 2641 lock_extent_bits(io_tree, start, end, &cached_state);
e6dcd2dc 2642
8d510121
NB
2643 if (freespace_inode)
2644 trans = btrfs_join_transaction_spacecache(root);
0cb59c99 2645 else
7a7eaa40 2646 trans = btrfs_join_transaction(root);
79787eaa
JM
2647 if (IS_ERR(trans)) {
2648 ret = PTR_ERR(trans);
2649 trans = NULL;
a7e3b975 2650 goto out;
79787eaa 2651 }
a79b7d4b 2652
69fe2d75 2653 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 2654
c8b97818 2655 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2656 compress_type = ordered_extent->compress_type;
d899e052 2657 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2658 BUG_ON(compress_type);
7a6d7067 2659 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
2660 ordered_extent->file_offset,
2661 ordered_extent->file_offset +
77cef2ec 2662 logical_len);
d899e052 2663 } else {
0b246afa 2664 BUG_ON(root == fs_info->tree_root);
203f44c5
QW
2665 ret = insert_ordered_extent_file_extent(trans, inode,
2666 ordered_extent);
49940bdd
JB
2667 if (!ret) {
2668 clear_reserved_extent = false;
2ff7e61e 2669 btrfs_release_delalloc_bytes(fs_info,
bffe633e
OS
2670 ordered_extent->disk_bytenr,
2671 ordered_extent->disk_num_bytes);
49940bdd 2672 }
d899e052 2673 }
5dc562c5 2674 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
bffe633e
OS
2675 ordered_extent->file_offset,
2676 ordered_extent->num_bytes, trans->transid);
79787eaa 2677 if (ret < 0) {
66642832 2678 btrfs_abort_transaction(trans, ret);
a7e3b975 2679 goto out;
79787eaa 2680 }
2ac55d41 2681
ac01f26a
NB
2682 ret = add_pending_csums(trans, inode, &ordered_extent->list);
2683 if (ret) {
2684 btrfs_abort_transaction(trans, ret);
2685 goto out;
2686 }
e6dcd2dc 2687
d923afe9 2688 btrfs_inode_safe_disk_i_size_write(inode, 0);
6c760c07
JB
2689 ret = btrfs_update_inode_fallback(trans, root, inode);
2690 if (ret) { /* -ENOMEM or corruption */
66642832 2691 btrfs_abort_transaction(trans, ret);
a7e3b975 2692 goto out;
1ef30be1
JB
2693 }
2694 ret = 0;
c2167754 2695out:
313facc5
OS
2696 clear_bits = EXTENT_DEFRAG;
2697 if (range_locked)
2698 clear_bits |= EXTENT_LOCKED;
2699 if (clear_new_delalloc_bytes)
2700 clear_bits |= EXTENT_DELALLOC_NEW;
bffe633e
OS
2701 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits,
2702 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
313facc5 2703 &cached_state);
a7e3b975 2704
a698d075 2705 if (trans)
3a45bb20 2706 btrfs_end_transaction(trans);
0cb59c99 2707
77cef2ec 2708 if (ret || truncated) {
bffe633e 2709 u64 unwritten_start = start;
77cef2ec
JB
2710
2711 if (truncated)
bffe633e
OS
2712 unwritten_start += logical_len;
2713 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
77cef2ec
JB
2714
2715 /* Drop the cache for the part of the extent we didn't write. */
bffe633e 2716 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0);
5fd02043 2717
0bec9ef5
JB
2718 /*
2719 * If the ordered extent had an IOERR or something else went
2720 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2721 * back to the allocator. We only free the extent in the
2722 * truncated case if we didn't write out the extent at all.
49940bdd
JB
2723 *
2724 * If we made it past insert_reserved_file_extent before we
2725 * errored out then we don't need to do this as the accounting
2726 * has already been done.
0bec9ef5 2727 */
77cef2ec 2728 if ((ret || !logical_len) &&
49940bdd 2729 clear_reserved_extent &&
77cef2ec 2730 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
4eaaec24
NB
2731 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2732 /*
2733 * Discard the range before returning it back to the
2734 * free space pool
2735 */
46b27f50 2736 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
4eaaec24 2737 btrfs_discard_extent(fs_info,
bffe633e
OS
2738 ordered_extent->disk_bytenr,
2739 ordered_extent->disk_num_bytes,
2740 NULL);
2ff7e61e 2741 btrfs_free_reserved_extent(fs_info,
bffe633e
OS
2742 ordered_extent->disk_bytenr,
2743 ordered_extent->disk_num_bytes, 1);
4eaaec24 2744 }
0bec9ef5
JB
2745 }
2746
5fd02043 2747 /*
8bad3c02
LB
2748 * This needs to be done to make sure anybody waiting knows we are done
2749 * updating everything for this ordered extent.
5fd02043
JB
2750 */
2751 btrfs_remove_ordered_extent(inode, ordered_extent);
2752
e6dcd2dc
CM
2753 /* once for us */
2754 btrfs_put_ordered_extent(ordered_extent);
2755 /* once for the tree */
2756 btrfs_put_ordered_extent(ordered_extent);
2757
5fd02043
JB
2758 return ret;
2759}
2760
2761static void finish_ordered_fn(struct btrfs_work *work)
2762{
2763 struct btrfs_ordered_extent *ordered_extent;
2764 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2765 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2766}
2767
c629732d
NB
2768void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
2769 u64 end, int uptodate)
211f90e6 2770{
5fd02043 2771 struct inode *inode = page->mapping->host;
0b246afa 2772 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 2773 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237 2774 struct btrfs_workqueue *wq;
5fd02043 2775
1abe9b8a 2776 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2777
8b62b72b 2778 ClearPagePrivate2(page);
5fd02043
JB
2779 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2780 end - start + 1, uptodate))
c3988d63 2781 return;
5fd02043 2782
a0cac0ec 2783 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0b246afa 2784 wq = fs_info->endio_freespace_worker;
a0cac0ec 2785 else
0b246afa 2786 wq = fs_info->endio_write_workers;
5fd02043 2787
a0cac0ec 2788 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
9e0af237 2789 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
2790}
2791
47df7765
OS
2792static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
2793 int icsum, struct page *page, int pgoff, u64 start,
2794 size_t len)
dc380aea 2795{
d5178578
JT
2796 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2797 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
dc380aea 2798 char *kaddr;
d5178578
JT
2799 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2800 u8 *csum_expected;
2801 u8 csum[BTRFS_CSUM_SIZE];
dc380aea 2802
d5178578 2803 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
dc380aea
MX
2804
2805 kaddr = kmap_atomic(page);
d5178578
JT
2806 shash->tfm = fs_info->csum_shash;
2807
fd08001f 2808 crypto_shash_digest(shash, kaddr + pgoff, len, csum);
d5178578
JT
2809
2810 if (memcmp(csum, csum_expected, csum_size))
dc380aea
MX
2811 goto zeroit;
2812
2813 kunmap_atomic(kaddr);
2814 return 0;
2815zeroit:
ea41d6b2
JT
2816 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
2817 io_bio->mirror_num);
814723e0
NB
2818 if (io_bio->device)
2819 btrfs_dev_stat_inc_and_print(io_bio->device,
2820 BTRFS_DEV_STAT_CORRUPTION_ERRS);
dc380aea
MX
2821 memset(kaddr + pgoff, 1, len);
2822 flush_dcache_page(page);
2823 kunmap_atomic(kaddr);
dc380aea
MX
2824 return -EIO;
2825}
2826
d352ac68
CM
2827/*
2828 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2829 * if there's a match, we allow the bio to finish. If not, the code in
2830 * extent_io.c will try to find good copies for us.
d352ac68 2831 */
facc8a22
MX
2832static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2833 u64 phy_offset, struct page *page,
2834 u64 start, u64 end, int mirror)
07157aac 2835{
4eee4fa4 2836 size_t offset = start - page_offset(page);
07157aac 2837 struct inode *inode = page->mapping->host;
d1310b2e 2838 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 2839 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 2840
d20f7043
CM
2841 if (PageChecked(page)) {
2842 ClearPageChecked(page);
dc380aea 2843 return 0;
d20f7043 2844 }
6cbff00f
CH
2845
2846 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 2847 return 0;
17d217fe
YZ
2848
2849 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2850 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 2851 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 2852 return 0;
17d217fe 2853 }
d20f7043 2854
facc8a22 2855 phy_offset >>= inode->i_sb->s_blocksize_bits;
47df7765
OS
2856 return check_data_csum(inode, io_bio, phy_offset, page, offset, start,
2857 (size_t)(end - start + 1));
07157aac 2858}
b888db2b 2859
c1c3fac2
NB
2860/*
2861 * btrfs_add_delayed_iput - perform a delayed iput on @inode
2862 *
2863 * @inode: The inode we want to perform iput on
2864 *
2865 * This function uses the generic vfs_inode::i_count to track whether we should
2866 * just decrement it (in case it's > 1) or if this is the last iput then link
2867 * the inode to the delayed iput machinery. Delayed iputs are processed at
2868 * transaction commit time/superblock commit/cleaner kthread.
2869 */
24bbcf04
YZ
2870void btrfs_add_delayed_iput(struct inode *inode)
2871{
0b246afa 2872 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 2873 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
2874
2875 if (atomic_add_unless(&inode->i_count, -1, 1))
2876 return;
2877
034f784d 2878 atomic_inc(&fs_info->nr_delayed_iputs);
24bbcf04 2879 spin_lock(&fs_info->delayed_iput_lock);
c1c3fac2
NB
2880 ASSERT(list_empty(&binode->delayed_iput));
2881 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
24bbcf04 2882 spin_unlock(&fs_info->delayed_iput_lock);
fd340d0f
JB
2883 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
2884 wake_up_process(fs_info->cleaner_kthread);
24bbcf04
YZ
2885}
2886
63611e73
JB
2887static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
2888 struct btrfs_inode *inode)
2889{
2890 list_del_init(&inode->delayed_iput);
2891 spin_unlock(&fs_info->delayed_iput_lock);
2892 iput(&inode->vfs_inode);
2893 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
2894 wake_up(&fs_info->delayed_iputs_wait);
2895 spin_lock(&fs_info->delayed_iput_lock);
2896}
2897
2898static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
2899 struct btrfs_inode *inode)
2900{
2901 if (!list_empty(&inode->delayed_iput)) {
2902 spin_lock(&fs_info->delayed_iput_lock);
2903 if (!list_empty(&inode->delayed_iput))
2904 run_delayed_iput_locked(fs_info, inode);
2905 spin_unlock(&fs_info->delayed_iput_lock);
2906 }
2907}
2908
2ff7e61e 2909void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 2910{
24bbcf04 2911
24bbcf04 2912 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
2913 while (!list_empty(&fs_info->delayed_iputs)) {
2914 struct btrfs_inode *inode;
2915
2916 inode = list_first_entry(&fs_info->delayed_iputs,
2917 struct btrfs_inode, delayed_iput);
63611e73 2918 run_delayed_iput_locked(fs_info, inode);
24bbcf04 2919 }
8089fe62 2920 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
2921}
2922
034f784d
JB
2923/**
2924 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
2925 * @fs_info - the fs_info for this fs
2926 * @return - EINTR if we were killed, 0 if nothing's pending
2927 *
2928 * This will wait on any delayed iputs that are currently running with KILLABLE
2929 * set. Once they are all done running we will return, unless we are killed in
2930 * which case we return EINTR. This helps in user operations like fallocate etc
2931 * that might get blocked on the iputs.
2932 */
2933int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
2934{
2935 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
2936 atomic_read(&fs_info->nr_delayed_iputs) == 0);
2937 if (ret)
2938 return -EINTR;
2939 return 0;
2940}
2941
7b128766 2942/*
f7e9e8fc
OS
2943 * This creates an orphan entry for the given inode in case something goes wrong
2944 * in the middle of an unlink.
7b128766 2945 */
73f2e545 2946int btrfs_orphan_add(struct btrfs_trans_handle *trans,
27919067 2947 struct btrfs_inode *inode)
7b128766 2948{
d68fc57b 2949 int ret;
7b128766 2950
27919067
OS
2951 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
2952 if (ret && ret != -EEXIST) {
2953 btrfs_abort_transaction(trans, ret);
2954 return ret;
d68fc57b
YZ
2955 }
2956
d68fc57b 2957 return 0;
7b128766
JB
2958}
2959
2960/*
f7e9e8fc
OS
2961 * We have done the delete so we can go ahead and remove the orphan item for
2962 * this particular inode.
7b128766 2963 */
48a3b636 2964static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 2965 struct btrfs_inode *inode)
7b128766 2966{
27919067 2967 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
7b128766
JB
2968}
2969
2970/*
2971 * this cleans up any orphans that may be left on the list from the last use
2972 * of this root.
2973 */
66b4ffd1 2974int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 2975{
0b246afa 2976 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
2977 struct btrfs_path *path;
2978 struct extent_buffer *leaf;
7b128766
JB
2979 struct btrfs_key key, found_key;
2980 struct btrfs_trans_handle *trans;
2981 struct inode *inode;
8f6d7f4f 2982 u64 last_objectid = 0;
f7e9e8fc 2983 int ret = 0, nr_unlink = 0;
7b128766 2984
d68fc57b 2985 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2986 return 0;
c71bf099
YZ
2987
2988 path = btrfs_alloc_path();
66b4ffd1
JB
2989 if (!path) {
2990 ret = -ENOMEM;
2991 goto out;
2992 }
e4058b54 2993 path->reada = READA_BACK;
7b128766
JB
2994
2995 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 2996 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
2997 key.offset = (u64)-1;
2998
7b128766
JB
2999 while (1) {
3000 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3001 if (ret < 0)
3002 goto out;
7b128766
JB
3003
3004 /*
3005 * if ret == 0 means we found what we were searching for, which
25985edc 3006 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3007 * find the key and see if we have stuff that matches
3008 */
3009 if (ret > 0) {
66b4ffd1 3010 ret = 0;
7b128766
JB
3011 if (path->slots[0] == 0)
3012 break;
3013 path->slots[0]--;
3014 }
3015
3016 /* pull out the item */
3017 leaf = path->nodes[0];
7b128766
JB
3018 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3019
3020 /* make sure the item matches what we want */
3021 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3022 break;
962a298f 3023 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3024 break;
3025
3026 /* release the path since we're done with it */
b3b4aa74 3027 btrfs_release_path(path);
7b128766
JB
3028
3029 /*
3030 * this is where we are basically btrfs_lookup, without the
3031 * crossing root thing. we store the inode number in the
3032 * offset of the orphan item.
3033 */
8f6d7f4f
JB
3034
3035 if (found_key.offset == last_objectid) {
0b246afa
JM
3036 btrfs_err(fs_info,
3037 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3038 ret = -EINVAL;
3039 goto out;
3040 }
3041
3042 last_objectid = found_key.offset;
3043
5d4f98a2
YZ
3044 found_key.objectid = found_key.offset;
3045 found_key.type = BTRFS_INODE_ITEM_KEY;
3046 found_key.offset = 0;
0202e83f 3047 inode = btrfs_iget(fs_info->sb, last_objectid, root);
8c6ffba0 3048 ret = PTR_ERR_OR_ZERO(inode);
67710892 3049 if (ret && ret != -ENOENT)
66b4ffd1 3050 goto out;
7b128766 3051
0b246afa 3052 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3053 struct btrfs_root *dead_root;
3054 struct btrfs_fs_info *fs_info = root->fs_info;
3055 int is_dead_root = 0;
3056
3057 /*
3058 * this is an orphan in the tree root. Currently these
3059 * could come from 2 sources:
3060 * a) a snapshot deletion in progress
3061 * b) a free space cache inode
3062 * We need to distinguish those two, as the snapshot
3063 * orphan must not get deleted.
3064 * find_dead_roots already ran before us, so if this
3065 * is a snapshot deletion, we should find the root
a619b3c7 3066 * in the fs_roots radix tree.
f8e9e0b0 3067 */
a619b3c7
RK
3068
3069 spin_lock(&fs_info->fs_roots_radix_lock);
3070 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3071 (unsigned long)found_key.objectid);
3072 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3073 is_dead_root = 1;
3074 spin_unlock(&fs_info->fs_roots_radix_lock);
3075
f8e9e0b0
AJ
3076 if (is_dead_root) {
3077 /* prevent this orphan from being found again */
3078 key.offset = found_key.objectid - 1;
3079 continue;
3080 }
f7e9e8fc 3081
f8e9e0b0 3082 }
f7e9e8fc 3083
7b128766 3084 /*
f7e9e8fc
OS
3085 * If we have an inode with links, there are a couple of
3086 * possibilities. Old kernels (before v3.12) used to create an
3087 * orphan item for truncate indicating that there were possibly
3088 * extent items past i_size that needed to be deleted. In v3.12,
3089 * truncate was changed to update i_size in sync with the extent
3090 * items, but the (useless) orphan item was still created. Since
3091 * v4.18, we don't create the orphan item for truncate at all.
3092 *
3093 * So, this item could mean that we need to do a truncate, but
3094 * only if this filesystem was last used on a pre-v3.12 kernel
3095 * and was not cleanly unmounted. The odds of that are quite
3096 * slim, and it's a pain to do the truncate now, so just delete
3097 * the orphan item.
3098 *
3099 * It's also possible that this orphan item was supposed to be
3100 * deleted but wasn't. The inode number may have been reused,
3101 * but either way, we can delete the orphan item.
7b128766 3102 */
f7e9e8fc
OS
3103 if (ret == -ENOENT || inode->i_nlink) {
3104 if (!ret)
3105 iput(inode);
a8c9e576 3106 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3107 if (IS_ERR(trans)) {
3108 ret = PTR_ERR(trans);
3109 goto out;
3110 }
0b246afa
JM
3111 btrfs_debug(fs_info, "auto deleting %Lu",
3112 found_key.objectid);
a8c9e576
JB
3113 ret = btrfs_del_orphan_item(trans, root,
3114 found_key.objectid);
3a45bb20 3115 btrfs_end_transaction(trans);
4ef31a45
JB
3116 if (ret)
3117 goto out;
7b128766
JB
3118 continue;
3119 }
3120
f7e9e8fc 3121 nr_unlink++;
7b128766
JB
3122
3123 /* this will do delete_inode and everything for us */
3124 iput(inode);
3125 }
3254c876
MX
3126 /* release the path since we're done with it */
3127 btrfs_release_path(path);
3128
d68fc57b
YZ
3129 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3130
a575ceeb 3131 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3132 trans = btrfs_join_transaction(root);
66b4ffd1 3133 if (!IS_ERR(trans))
3a45bb20 3134 btrfs_end_transaction(trans);
d68fc57b 3135 }
7b128766
JB
3136
3137 if (nr_unlink)
0b246afa 3138 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
66b4ffd1
JB
3139
3140out:
3141 if (ret)
0b246afa 3142 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3143 btrfs_free_path(path);
3144 return ret;
7b128766
JB
3145}
3146
46a53cca
CM
3147/*
3148 * very simple check to peek ahead in the leaf looking for xattrs. If we
3149 * don't find any xattrs, we know there can't be any acls.
3150 *
3151 * slot is the slot the inode is in, objectid is the objectid of the inode
3152 */
3153static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3154 int slot, u64 objectid,
3155 int *first_xattr_slot)
46a53cca
CM
3156{
3157 u32 nritems = btrfs_header_nritems(leaf);
3158 struct btrfs_key found_key;
f23b5a59
JB
3159 static u64 xattr_access = 0;
3160 static u64 xattr_default = 0;
46a53cca
CM
3161 int scanned = 0;
3162
f23b5a59 3163 if (!xattr_access) {
97d79299
AG
3164 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3165 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3166 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3167 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3168 }
3169
46a53cca 3170 slot++;
63541927 3171 *first_xattr_slot = -1;
46a53cca
CM
3172 while (slot < nritems) {
3173 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3174
3175 /* we found a different objectid, there must not be acls */
3176 if (found_key.objectid != objectid)
3177 return 0;
3178
3179 /* we found an xattr, assume we've got an acl */
f23b5a59 3180 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3181 if (*first_xattr_slot == -1)
3182 *first_xattr_slot = slot;
f23b5a59
JB
3183 if (found_key.offset == xattr_access ||
3184 found_key.offset == xattr_default)
3185 return 1;
3186 }
46a53cca
CM
3187
3188 /*
3189 * we found a key greater than an xattr key, there can't
3190 * be any acls later on
3191 */
3192 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3193 return 0;
3194
3195 slot++;
3196 scanned++;
3197
3198 /*
3199 * it goes inode, inode backrefs, xattrs, extents,
3200 * so if there are a ton of hard links to an inode there can
3201 * be a lot of backrefs. Don't waste time searching too hard,
3202 * this is just an optimization
3203 */
3204 if (scanned >= 8)
3205 break;
3206 }
3207 /* we hit the end of the leaf before we found an xattr or
3208 * something larger than an xattr. We have to assume the inode
3209 * has acls
3210 */
63541927
FDBM
3211 if (*first_xattr_slot == -1)
3212 *first_xattr_slot = slot;
46a53cca
CM
3213 return 1;
3214}
3215
d352ac68
CM
3216/*
3217 * read an inode from the btree into the in-memory inode
3218 */
4222ea71
FM
3219static int btrfs_read_locked_inode(struct inode *inode,
3220 struct btrfs_path *in_path)
39279cc3 3221{
0b246afa 3222 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4222ea71 3223 struct btrfs_path *path = in_path;
5f39d397 3224 struct extent_buffer *leaf;
39279cc3
CM
3225 struct btrfs_inode_item *inode_item;
3226 struct btrfs_root *root = BTRFS_I(inode)->root;
3227 struct btrfs_key location;
67de1176 3228 unsigned long ptr;
46a53cca 3229 int maybe_acls;
618e21d5 3230 u32 rdev;
39279cc3 3231 int ret;
2f7e33d4 3232 bool filled = false;
63541927 3233 int first_xattr_slot;
2f7e33d4
MX
3234
3235 ret = btrfs_fill_inode(inode, &rdev);
3236 if (!ret)
3237 filled = true;
39279cc3 3238
4222ea71
FM
3239 if (!path) {
3240 path = btrfs_alloc_path();
3241 if (!path)
3242 return -ENOMEM;
3243 }
1748f843 3244
39279cc3 3245 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3246
39279cc3 3247 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892 3248 if (ret) {
4222ea71
FM
3249 if (path != in_path)
3250 btrfs_free_path(path);
f5b3a417 3251 return ret;
67710892 3252 }
39279cc3 3253
5f39d397 3254 leaf = path->nodes[0];
2f7e33d4
MX
3255
3256 if (filled)
67de1176 3257 goto cache_index;
2f7e33d4 3258
5f39d397
CM
3259 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3260 struct btrfs_inode_item);
5f39d397 3261 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3262 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3263 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3264 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3265 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
41a2ee75
JB
3266 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3267 round_up(i_size_read(inode), fs_info->sectorsize));
5f39d397 3268
a937b979
DS
3269 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3270 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3271
a937b979
DS
3272 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3273 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3274
a937b979
DS
3275 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3276 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3277
9cc97d64 3278 BTRFS_I(inode)->i_otime.tv_sec =
3279 btrfs_timespec_sec(leaf, &inode_item->otime);
3280 BTRFS_I(inode)->i_otime.tv_nsec =
3281 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3282
a76a3cd4 3283 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3284 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3285 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3286
c7f88c4e
JL
3287 inode_set_iversion_queried(inode,
3288 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3289 inode->i_generation = BTRFS_I(inode)->generation;
3290 inode->i_rdev = 0;
3291 rdev = btrfs_inode_rdev(leaf, inode_item);
3292
3293 BTRFS_I(inode)->index_cnt = (u64)-1;
3294 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3295
3296cache_index:
5dc562c5
JB
3297 /*
3298 * If we were modified in the current generation and evicted from memory
3299 * and then re-read we need to do a full sync since we don't have any
3300 * idea about which extents were modified before we were evicted from
3301 * cache.
6e17d30b
YD
3302 *
3303 * This is required for both inode re-read from disk and delayed inode
3304 * in delayed_nodes_tree.
5dc562c5 3305 */
0b246afa 3306 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3307 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3308 &BTRFS_I(inode)->runtime_flags);
3309
bde6c242
FM
3310 /*
3311 * We don't persist the id of the transaction where an unlink operation
3312 * against the inode was last made. So here we assume the inode might
3313 * have been evicted, and therefore the exact value of last_unlink_trans
3314 * lost, and set it to last_trans to avoid metadata inconsistencies
3315 * between the inode and its parent if the inode is fsync'ed and the log
3316 * replayed. For example, in the scenario:
3317 *
3318 * touch mydir/foo
3319 * ln mydir/foo mydir/bar
3320 * sync
3321 * unlink mydir/bar
3322 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3323 * xfs_io -c fsync mydir/foo
3324 * <power failure>
3325 * mount fs, triggers fsync log replay
3326 *
3327 * We must make sure that when we fsync our inode foo we also log its
3328 * parent inode, otherwise after log replay the parent still has the
3329 * dentry with the "bar" name but our inode foo has a link count of 1
3330 * and doesn't have an inode ref with the name "bar" anymore.
3331 *
3332 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3333 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3334 * transaction commits on fsync if our inode is a directory, or if our
3335 * inode is not a directory, logging its parent unnecessarily.
3336 */
3337 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3338
3ebac17c
FM
3339 /*
3340 * Same logic as for last_unlink_trans. We don't persist the generation
3341 * of the last transaction where this inode was used for a reflink
3342 * operation, so after eviction and reloading the inode we must be
3343 * pessimistic and assume the last transaction that modified the inode.
3344 */
3345 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3346
67de1176
MX
3347 path->slots[0]++;
3348 if (inode->i_nlink != 1 ||
3349 path->slots[0] >= btrfs_header_nritems(leaf))
3350 goto cache_acl;
3351
3352 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3353 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3354 goto cache_acl;
3355
3356 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3357 if (location.type == BTRFS_INODE_REF_KEY) {
3358 struct btrfs_inode_ref *ref;
3359
3360 ref = (struct btrfs_inode_ref *)ptr;
3361 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3362 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3363 struct btrfs_inode_extref *extref;
3364
3365 extref = (struct btrfs_inode_extref *)ptr;
3366 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3367 extref);
3368 }
2f7e33d4 3369cache_acl:
46a53cca
CM
3370 /*
3371 * try to precache a NULL acl entry for files that don't have
3372 * any xattrs or acls
3373 */
33345d01 3374 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3375 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3376 if (first_xattr_slot != -1) {
3377 path->slots[0] = first_xattr_slot;
3378 ret = btrfs_load_inode_props(inode, path);
3379 if (ret)
0b246afa 3380 btrfs_err(fs_info,
351fd353 3381 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3382 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3383 root->root_key.objectid, ret);
3384 }
4222ea71
FM
3385 if (path != in_path)
3386 btrfs_free_path(path);
63541927 3387
72c04902
AV
3388 if (!maybe_acls)
3389 cache_no_acl(inode);
46a53cca 3390
39279cc3 3391 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3392 case S_IFREG:
3393 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3394 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3395 inode->i_fop = &btrfs_file_operations;
3396 inode->i_op = &btrfs_file_inode_operations;
3397 break;
3398 case S_IFDIR:
3399 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3400 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3401 break;
3402 case S_IFLNK:
3403 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3404 inode_nohighmem(inode);
4779cc04 3405 inode->i_mapping->a_ops = &btrfs_aops;
39279cc3 3406 break;
618e21d5 3407 default:
0279b4cd 3408 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3409 init_special_inode(inode, inode->i_mode, rdev);
3410 break;
39279cc3 3411 }
6cbff00f 3412
7b6a221e 3413 btrfs_sync_inode_flags_to_i_flags(inode);
67710892 3414 return 0;
39279cc3
CM
3415}
3416
d352ac68
CM
3417/*
3418 * given a leaf and an inode, copy the inode fields into the leaf
3419 */
e02119d5
CM
3420static void fill_inode_item(struct btrfs_trans_handle *trans,
3421 struct extent_buffer *leaf,
5f39d397 3422 struct btrfs_inode_item *item,
39279cc3
CM
3423 struct inode *inode)
3424{
51fab693
LB
3425 struct btrfs_map_token token;
3426
c82f823c 3427 btrfs_init_map_token(&token, leaf);
5f39d397 3428
cc4c13d5
DS
3429 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3430 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3431 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3432 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3433 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3434
3435 btrfs_set_token_timespec_sec(&token, &item->atime,
3436 inode->i_atime.tv_sec);
3437 btrfs_set_token_timespec_nsec(&token, &item->atime,
3438 inode->i_atime.tv_nsec);
3439
3440 btrfs_set_token_timespec_sec(&token, &item->mtime,
3441 inode->i_mtime.tv_sec);
3442 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3443 inode->i_mtime.tv_nsec);
3444
3445 btrfs_set_token_timespec_sec(&token, &item->ctime,
3446 inode->i_ctime.tv_sec);
3447 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3448 inode->i_ctime.tv_nsec);
3449
3450 btrfs_set_token_timespec_sec(&token, &item->otime,
3451 BTRFS_I(inode)->i_otime.tv_sec);
3452 btrfs_set_token_timespec_nsec(&token, &item->otime,
3453 BTRFS_I(inode)->i_otime.tv_nsec);
3454
3455 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3456 btrfs_set_token_inode_generation(&token, item,
3457 BTRFS_I(inode)->generation);
3458 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3459 btrfs_set_token_inode_transid(&token, item, trans->transid);
3460 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3461 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3462 btrfs_set_token_inode_block_group(&token, item, 0);
39279cc3
CM
3463}
3464
d352ac68
CM
3465/*
3466 * copy everything in the in-memory inode into the btree.
3467 */
2115133f 3468static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3469 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3470{
3471 struct btrfs_inode_item *inode_item;
3472 struct btrfs_path *path;
5f39d397 3473 struct extent_buffer *leaf;
39279cc3
CM
3474 int ret;
3475
3476 path = btrfs_alloc_path();
16cdcec7
MX
3477 if (!path)
3478 return -ENOMEM;
3479
b9473439 3480 path->leave_spinning = 1;
16cdcec7
MX
3481 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3482 1);
39279cc3
CM
3483 if (ret) {
3484 if (ret > 0)
3485 ret = -ENOENT;
3486 goto failed;
3487 }
3488
5f39d397
CM
3489 leaf = path->nodes[0];
3490 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3491 struct btrfs_inode_item);
39279cc3 3492
e02119d5 3493 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3494 btrfs_mark_buffer_dirty(leaf);
d9094414 3495 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
39279cc3
CM
3496 ret = 0;
3497failed:
39279cc3
CM
3498 btrfs_free_path(path);
3499 return ret;
3500}
3501
2115133f
CM
3502/*
3503 * copy everything in the in-memory inode into the btree.
3504 */
3505noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3506 struct btrfs_root *root, struct inode *inode)
3507{
0b246afa 3508 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3509 int ret;
3510
3511 /*
3512 * If the inode is a free space inode, we can deadlock during commit
3513 * if we put it into the delayed code.
3514 *
3515 * The data relocation inode should also be directly updated
3516 * without delay
3517 */
70ddc553 3518 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 3519 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 3520 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
3521 btrfs_update_root_times(trans, root);
3522
2115133f
CM
3523 ret = btrfs_delayed_update_inode(trans, root, inode);
3524 if (!ret)
d9094414 3525 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
2115133f
CM
3526 return ret;
3527 }
3528
3529 return btrfs_update_inode_item(trans, root, inode);
3530}
3531
be6aef60
JB
3532noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3533 struct btrfs_root *root,
3534 struct inode *inode)
2115133f
CM
3535{
3536 int ret;
3537
3538 ret = btrfs_update_inode(trans, root, inode);
3539 if (ret == -ENOSPC)
3540 return btrfs_update_inode_item(trans, root, inode);
3541 return ret;
3542}
3543
d352ac68
CM
3544/*
3545 * unlink helper that gets used here in inode.c and in the tree logging
3546 * recovery code. It remove a link in a directory with a given name, and
3547 * also drops the back refs in the inode to the directory
3548 */
92986796
AV
3549static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3550 struct btrfs_root *root,
4ec5934e
NB
3551 struct btrfs_inode *dir,
3552 struct btrfs_inode *inode,
92986796 3553 const char *name, int name_len)
39279cc3 3554{
0b246afa 3555 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 3556 struct btrfs_path *path;
39279cc3 3557 int ret = 0;
39279cc3 3558 struct btrfs_dir_item *di;
aec7477b 3559 u64 index;
33345d01
LZ
3560 u64 ino = btrfs_ino(inode);
3561 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3562
3563 path = btrfs_alloc_path();
54aa1f4d
CM
3564 if (!path) {
3565 ret = -ENOMEM;
554233a6 3566 goto out;
54aa1f4d
CM
3567 }
3568
b9473439 3569 path->leave_spinning = 1;
33345d01 3570 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3 3571 name, name_len, -1);
3cf5068f
LB
3572 if (IS_ERR_OR_NULL(di)) {
3573 ret = di ? PTR_ERR(di) : -ENOENT;
39279cc3
CM
3574 goto err;
3575 }
39279cc3 3576 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3577 if (ret)
3578 goto err;
b3b4aa74 3579 btrfs_release_path(path);
39279cc3 3580
67de1176
MX
3581 /*
3582 * If we don't have dir index, we have to get it by looking up
3583 * the inode ref, since we get the inode ref, remove it directly,
3584 * it is unnecessary to do delayed deletion.
3585 *
3586 * But if we have dir index, needn't search inode ref to get it.
3587 * Since the inode ref is close to the inode item, it is better
3588 * that we delay to delete it, and just do this deletion when
3589 * we update the inode item.
3590 */
4ec5934e 3591 if (inode->dir_index) {
67de1176
MX
3592 ret = btrfs_delayed_delete_inode_ref(inode);
3593 if (!ret) {
4ec5934e 3594 index = inode->dir_index;
67de1176
MX
3595 goto skip_backref;
3596 }
3597 }
3598
33345d01
LZ
3599 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3600 dir_ino, &index);
aec7477b 3601 if (ret) {
0b246afa 3602 btrfs_info(fs_info,
c2cf52eb 3603 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3604 name_len, name, ino, dir_ino);
66642832 3605 btrfs_abort_transaction(trans, ret);
aec7477b
JB
3606 goto err;
3607 }
67de1176 3608skip_backref:
9add2945 3609 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
79787eaa 3610 if (ret) {
66642832 3611 btrfs_abort_transaction(trans, ret);
39279cc3 3612 goto err;
79787eaa 3613 }
39279cc3 3614
4ec5934e
NB
3615 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3616 dir_ino);
79787eaa 3617 if (ret != 0 && ret != -ENOENT) {
66642832 3618 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3619 goto err;
3620 }
e02119d5 3621
4ec5934e
NB
3622 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3623 index);
6418c961
CM
3624 if (ret == -ENOENT)
3625 ret = 0;
d4e3991b 3626 else if (ret)
66642832 3627 btrfs_abort_transaction(trans, ret);
63611e73
JB
3628
3629 /*
3630 * If we have a pending delayed iput we could end up with the final iput
3631 * being run in btrfs-cleaner context. If we have enough of these built
3632 * up we can end up burning a lot of time in btrfs-cleaner without any
3633 * way to throttle the unlinks. Since we're currently holding a ref on
3634 * the inode we can run the delayed iput here without any issues as the
3635 * final iput won't be done until after we drop the ref we're currently
3636 * holding.
3637 */
3638 btrfs_run_delayed_iput(fs_info, inode);
39279cc3
CM
3639err:
3640 btrfs_free_path(path);
e02119d5
CM
3641 if (ret)
3642 goto out;
3643
6ef06d27 3644 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
3645 inode_inc_iversion(&inode->vfs_inode);
3646 inode_inc_iversion(&dir->vfs_inode);
3647 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3648 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3649 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 3650out:
39279cc3
CM
3651 return ret;
3652}
3653
92986796
AV
3654int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3655 struct btrfs_root *root,
4ec5934e 3656 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
3657 const char *name, int name_len)
3658{
3659 int ret;
3660 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3661 if (!ret) {
4ec5934e
NB
3662 drop_nlink(&inode->vfs_inode);
3663 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
3664 }
3665 return ret;
3666}
39279cc3 3667
a22285a6
YZ
3668/*
3669 * helper to start transaction for unlink and rmdir.
3670 *
d52be818
JB
3671 * unlink and rmdir are special in btrfs, they do not always free space, so
3672 * if we cannot make our reservations the normal way try and see if there is
3673 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3674 * allow the unlink to occur.
a22285a6 3675 */
d52be818 3676static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3677{
a22285a6 3678 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 3679
e70bea5f
JB
3680 /*
3681 * 1 for the possible orphan item
3682 * 1 for the dir item
3683 * 1 for the dir index
3684 * 1 for the inode ref
e70bea5f
JB
3685 * 1 for the inode
3686 */
7f9fe614 3687 return btrfs_start_transaction_fallback_global_rsv(root, 5);
a22285a6
YZ
3688}
3689
3690static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3691{
3692 struct btrfs_root *root = BTRFS_I(dir)->root;
3693 struct btrfs_trans_handle *trans;
2b0143b5 3694 struct inode *inode = d_inode(dentry);
a22285a6 3695 int ret;
a22285a6 3696
d52be818 3697 trans = __unlink_start_trans(dir);
a22285a6
YZ
3698 if (IS_ERR(trans))
3699 return PTR_ERR(trans);
5f39d397 3700
4ec5934e
NB
3701 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
3702 0);
12fcfd22 3703
4ec5934e
NB
3704 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
3705 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
3706 dentry->d_name.len);
b532402e
TI
3707 if (ret)
3708 goto out;
7b128766 3709
a22285a6 3710 if (inode->i_nlink == 0) {
73f2e545 3711 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
3712 if (ret)
3713 goto out;
a22285a6 3714 }
7b128766 3715
b532402e 3716out:
3a45bb20 3717 btrfs_end_transaction(trans);
2ff7e61e 3718 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
3719 return ret;
3720}
3721
f60a2364 3722static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
045d3967 3723 struct inode *dir, struct dentry *dentry)
4df27c4d 3724{
401b3b19 3725 struct btrfs_root *root = BTRFS_I(dir)->root;
045d3967 3726 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4df27c4d
YZ
3727 struct btrfs_path *path;
3728 struct extent_buffer *leaf;
3729 struct btrfs_dir_item *di;
3730 struct btrfs_key key;
045d3967
JB
3731 const char *name = dentry->d_name.name;
3732 int name_len = dentry->d_name.len;
4df27c4d
YZ
3733 u64 index;
3734 int ret;
045d3967 3735 u64 objectid;
4a0cc7ca 3736 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d 3737
045d3967
JB
3738 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
3739 objectid = inode->root->root_key.objectid;
3740 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3741 objectid = inode->location.objectid;
3742 } else {
3743 WARN_ON(1);
3744 return -EINVAL;
3745 }
3746
4df27c4d
YZ
3747 path = btrfs_alloc_path();
3748 if (!path)
3749 return -ENOMEM;
3750
33345d01 3751 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3752 name, name_len, -1);
79787eaa 3753 if (IS_ERR_OR_NULL(di)) {
3cf5068f 3754 ret = di ? PTR_ERR(di) : -ENOENT;
79787eaa
JM
3755 goto out;
3756 }
4df27c4d
YZ
3757
3758 leaf = path->nodes[0];
3759 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3760 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3761 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 3762 if (ret) {
66642832 3763 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3764 goto out;
3765 }
b3b4aa74 3766 btrfs_release_path(path);
4df27c4d 3767
d49d3287
JB
3768 /*
3769 * This is a placeholder inode for a subvolume we didn't have a
3770 * reference to at the time of the snapshot creation. In the meantime
3771 * we could have renamed the real subvol link into our snapshot, so
3772 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3773 * Instead simply lookup the dir_index_item for this entry so we can
3774 * remove it. Otherwise we know we have a ref to the root and we can
3775 * call btrfs_del_root_ref, and it _shouldn't_ fail.
3776 */
3777 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
33345d01 3778 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3779 name, name_len);
79787eaa
JM
3780 if (IS_ERR_OR_NULL(di)) {
3781 if (!di)
3782 ret = -ENOENT;
3783 else
3784 ret = PTR_ERR(di);
66642832 3785 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3786 goto out;
3787 }
4df27c4d
YZ
3788
3789 leaf = path->nodes[0];
3790 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4df27c4d 3791 index = key.offset;
d49d3287
JB
3792 btrfs_release_path(path);
3793 } else {
3794 ret = btrfs_del_root_ref(trans, objectid,
3795 root->root_key.objectid, dir_ino,
3796 &index, name, name_len);
3797 if (ret) {
3798 btrfs_abort_transaction(trans, ret);
3799 goto out;
3800 }
4df27c4d
YZ
3801 }
3802
9add2945 3803 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
79787eaa 3804 if (ret) {
66642832 3805 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3806 goto out;
3807 }
4df27c4d 3808
6ef06d27 3809 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 3810 inode_inc_iversion(dir);
c2050a45 3811 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 3812 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 3813 if (ret)
66642832 3814 btrfs_abort_transaction(trans, ret);
79787eaa 3815out:
71d7aed0 3816 btrfs_free_path(path);
79787eaa 3817 return ret;
4df27c4d
YZ
3818}
3819
ec42f167
MT
3820/*
3821 * Helper to check if the subvolume references other subvolumes or if it's
3822 * default.
3823 */
f60a2364 3824static noinline int may_destroy_subvol(struct btrfs_root *root)
ec42f167
MT
3825{
3826 struct btrfs_fs_info *fs_info = root->fs_info;
3827 struct btrfs_path *path;
3828 struct btrfs_dir_item *di;
3829 struct btrfs_key key;
3830 u64 dir_id;
3831 int ret;
3832
3833 path = btrfs_alloc_path();
3834 if (!path)
3835 return -ENOMEM;
3836
3837 /* Make sure this root isn't set as the default subvol */
3838 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3839 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
3840 dir_id, "default", 7, 0);
3841 if (di && !IS_ERR(di)) {
3842 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
3843 if (key.objectid == root->root_key.objectid) {
3844 ret = -EPERM;
3845 btrfs_err(fs_info,
3846 "deleting default subvolume %llu is not allowed",
3847 key.objectid);
3848 goto out;
3849 }
3850 btrfs_release_path(path);
3851 }
3852
3853 key.objectid = root->root_key.objectid;
3854 key.type = BTRFS_ROOT_REF_KEY;
3855 key.offset = (u64)-1;
3856
3857 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3858 if (ret < 0)
3859 goto out;
3860 BUG_ON(ret == 0);
3861
3862 ret = 0;
3863 if (path->slots[0] > 0) {
3864 path->slots[0]--;
3865 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3866 if (key.objectid == root->root_key.objectid &&
3867 key.type == BTRFS_ROOT_REF_KEY)
3868 ret = -ENOTEMPTY;
3869 }
3870out:
3871 btrfs_free_path(path);
3872 return ret;
3873}
3874
20a68004
NB
3875/* Delete all dentries for inodes belonging to the root */
3876static void btrfs_prune_dentries(struct btrfs_root *root)
3877{
3878 struct btrfs_fs_info *fs_info = root->fs_info;
3879 struct rb_node *node;
3880 struct rb_node *prev;
3881 struct btrfs_inode *entry;
3882 struct inode *inode;
3883 u64 objectid = 0;
3884
3885 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3886 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3887
3888 spin_lock(&root->inode_lock);
3889again:
3890 node = root->inode_tree.rb_node;
3891 prev = NULL;
3892 while (node) {
3893 prev = node;
3894 entry = rb_entry(node, struct btrfs_inode, rb_node);
3895
37508515 3896 if (objectid < btrfs_ino(entry))
20a68004 3897 node = node->rb_left;
37508515 3898 else if (objectid > btrfs_ino(entry))
20a68004
NB
3899 node = node->rb_right;
3900 else
3901 break;
3902 }
3903 if (!node) {
3904 while (prev) {
3905 entry = rb_entry(prev, struct btrfs_inode, rb_node);
37508515 3906 if (objectid <= btrfs_ino(entry)) {
20a68004
NB
3907 node = prev;
3908 break;
3909 }
3910 prev = rb_next(prev);
3911 }
3912 }
3913 while (node) {
3914 entry = rb_entry(node, struct btrfs_inode, rb_node);
37508515 3915 objectid = btrfs_ino(entry) + 1;
20a68004
NB
3916 inode = igrab(&entry->vfs_inode);
3917 if (inode) {
3918 spin_unlock(&root->inode_lock);
3919 if (atomic_read(&inode->i_count) > 1)
3920 d_prune_aliases(inode);
3921 /*
3922 * btrfs_drop_inode will have it removed from the inode
3923 * cache when its usage count hits zero.
3924 */
3925 iput(inode);
3926 cond_resched();
3927 spin_lock(&root->inode_lock);
3928 goto again;
3929 }
3930
3931 if (cond_resched_lock(&root->inode_lock))
3932 goto again;
3933
3934 node = rb_next(node);
3935 }
3936 spin_unlock(&root->inode_lock);
3937}
3938
f60a2364
MT
3939int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
3940{
3941 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
3942 struct btrfs_root *root = BTRFS_I(dir)->root;
3943 struct inode *inode = d_inode(dentry);
3944 struct btrfs_root *dest = BTRFS_I(inode)->root;
3945 struct btrfs_trans_handle *trans;
3946 struct btrfs_block_rsv block_rsv;
3947 u64 root_flags;
f60a2364
MT
3948 int ret;
3949 int err;
3950
3951 /*
3952 * Don't allow to delete a subvolume with send in progress. This is
3953 * inside the inode lock so the error handling that has to drop the bit
3954 * again is not run concurrently.
3955 */
3956 spin_lock(&dest->root_item_lock);
a7176f74 3957 if (dest->send_in_progress) {
f60a2364
MT
3958 spin_unlock(&dest->root_item_lock);
3959 btrfs_warn(fs_info,
3960 "attempt to delete subvolume %llu during send",
3961 dest->root_key.objectid);
3962 return -EPERM;
3963 }
a7176f74
LF
3964 root_flags = btrfs_root_flags(&dest->root_item);
3965 btrfs_set_root_flags(&dest->root_item,
3966 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
3967 spin_unlock(&dest->root_item_lock);
f60a2364
MT
3968
3969 down_write(&fs_info->subvol_sem);
3970
3971 err = may_destroy_subvol(dest);
3972 if (err)
3973 goto out_up_write;
3974
3975 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
3976 /*
3977 * One for dir inode,
3978 * two for dir entries,
3979 * two for root ref/backref.
3980 */
c4c129db 3981 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
f60a2364
MT
3982 if (err)
3983 goto out_up_write;
3984
3985 trans = btrfs_start_transaction(root, 0);
3986 if (IS_ERR(trans)) {
3987 err = PTR_ERR(trans);
3988 goto out_release;
3989 }
3990 trans->block_rsv = &block_rsv;
3991 trans->bytes_reserved = block_rsv.size;
3992
3993 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
3994
045d3967 3995 ret = btrfs_unlink_subvol(trans, dir, dentry);
f60a2364
MT
3996 if (ret) {
3997 err = ret;
3998 btrfs_abort_transaction(trans, ret);
3999 goto out_end_trans;
4000 }
4001
4002 btrfs_record_root_in_trans(trans, dest);
4003
4004 memset(&dest->root_item.drop_progress, 0,
4005 sizeof(dest->root_item.drop_progress));
4006 dest->root_item.drop_level = 0;
4007 btrfs_set_root_refs(&dest->root_item, 0);
4008
4009 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4010 ret = btrfs_insert_orphan_item(trans,
4011 fs_info->tree_root,
4012 dest->root_key.objectid);
4013 if (ret) {
4014 btrfs_abort_transaction(trans, ret);
4015 err = ret;
4016 goto out_end_trans;
4017 }
4018 }
4019
d1957791 4020 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
f60a2364
MT
4021 BTRFS_UUID_KEY_SUBVOL,
4022 dest->root_key.objectid);
4023 if (ret && ret != -ENOENT) {
4024 btrfs_abort_transaction(trans, ret);
4025 err = ret;
4026 goto out_end_trans;
4027 }
4028 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
d1957791 4029 ret = btrfs_uuid_tree_remove(trans,
f60a2364
MT
4030 dest->root_item.received_uuid,
4031 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4032 dest->root_key.objectid);
4033 if (ret && ret != -ENOENT) {
4034 btrfs_abort_transaction(trans, ret);
4035 err = ret;
4036 goto out_end_trans;
4037 }
4038 }
4039
082b6c97
QW
4040 free_anon_bdev(dest->anon_dev);
4041 dest->anon_dev = 0;
f60a2364
MT
4042out_end_trans:
4043 trans->block_rsv = NULL;
4044 trans->bytes_reserved = 0;
4045 ret = btrfs_end_transaction(trans);
4046 if (ret && !err)
4047 err = ret;
4048 inode->i_flags |= S_DEAD;
4049out_release:
4050 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4051out_up_write:
4052 up_write(&fs_info->subvol_sem);
4053 if (err) {
4054 spin_lock(&dest->root_item_lock);
4055 root_flags = btrfs_root_flags(&dest->root_item);
4056 btrfs_set_root_flags(&dest->root_item,
4057 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4058 spin_unlock(&dest->root_item_lock);
4059 } else {
4060 d_invalidate(dentry);
20a68004 4061 btrfs_prune_dentries(dest);
f60a2364
MT
4062 ASSERT(dest->send_in_progress == 0);
4063
4064 /* the last ref */
4065 if (dest->ino_cache_inode) {
4066 iput(dest->ino_cache_inode);
4067 dest->ino_cache_inode = NULL;
4068 }
4069 }
4070
4071 return err;
4072}
4073
39279cc3
CM
4074static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4075{
2b0143b5 4076 struct inode *inode = d_inode(dentry);
1832a6d5 4077 int err = 0;
39279cc3 4078 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4079 struct btrfs_trans_handle *trans;
44f714da 4080 u64 last_unlink_trans;
39279cc3 4081
b3ae244e 4082 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4083 return -ENOTEMPTY;
4a0cc7ca 4084 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
a79a464d 4085 return btrfs_delete_subvolume(dir, dentry);
134d4512 4086
d52be818 4087 trans = __unlink_start_trans(dir);
a22285a6 4088 if (IS_ERR(trans))
5df6a9f6 4089 return PTR_ERR(trans);
5df6a9f6 4090
4a0cc7ca 4091 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
045d3967 4092 err = btrfs_unlink_subvol(trans, dir, dentry);
4df27c4d
YZ
4093 goto out;
4094 }
4095
73f2e545 4096 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4097 if (err)
4df27c4d 4098 goto out;
7b128766 4099
44f714da
FM
4100 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4101
39279cc3 4102 /* now the directory is empty */
4ec5934e
NB
4103 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4104 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4105 dentry->d_name.len);
44f714da 4106 if (!err) {
6ef06d27 4107 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4108 /*
4109 * Propagate the last_unlink_trans value of the deleted dir to
4110 * its parent directory. This is to prevent an unrecoverable
4111 * log tree in the case we do something like this:
4112 * 1) create dir foo
4113 * 2) create snapshot under dir foo
4114 * 3) delete the snapshot
4115 * 4) rmdir foo
4116 * 5) mkdir foo
4117 * 6) fsync foo or some file inside foo
4118 */
4119 if (last_unlink_trans >= trans->transid)
4120 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4121 }
4df27c4d 4122out:
3a45bb20 4123 btrfs_end_transaction(trans);
2ff7e61e 4124 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4125
39279cc3
CM
4126 return err;
4127}
4128
ddfae63c
JB
4129/*
4130 * Return this if we need to call truncate_block for the last bit of the
4131 * truncate.
4132 */
4133#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4134
39279cc3
CM
4135/*
4136 * this can truncate away extent items, csum items and directory items.
4137 * It starts at a high offset and removes keys until it can't find
d352ac68 4138 * any higher than new_size
39279cc3
CM
4139 *
4140 * csum items that cross the new i_size are truncated to the new size
4141 * as well.
7b128766
JB
4142 *
4143 * min_type is the minimum key type to truncate down to. If set to 0, this
4144 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4145 */
8082510e
YZ
4146int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4147 struct btrfs_root *root,
4148 struct inode *inode,
4149 u64 new_size, u32 min_type)
39279cc3 4150{
0b246afa 4151 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4152 struct btrfs_path *path;
5f39d397 4153 struct extent_buffer *leaf;
39279cc3 4154 struct btrfs_file_extent_item *fi;
8082510e
YZ
4155 struct btrfs_key key;
4156 struct btrfs_key found_key;
39279cc3 4157 u64 extent_start = 0;
db94535d 4158 u64 extent_num_bytes = 0;
5d4f98a2 4159 u64 extent_offset = 0;
39279cc3 4160 u64 item_end = 0;
c1aa4575 4161 u64 last_size = new_size;
8082510e 4162 u32 found_type = (u8)-1;
39279cc3
CM
4163 int found_extent;
4164 int del_item;
85e21bac
CM
4165 int pending_del_nr = 0;
4166 int pending_del_slot = 0;
179e29e4 4167 int extent_type = -1;
8082510e 4168 int ret;
4a0cc7ca 4169 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4170 u64 bytes_deleted = 0;
897ca819
TM
4171 bool be_nice = false;
4172 bool should_throttle = false;
28553fa9
FM
4173 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4174 struct extent_state *cached_state = NULL;
8082510e
YZ
4175
4176 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4177
28ed1345 4178 /*
92a7cc42
QW
4179 * For non-free space inodes and non-shareable roots, we want to back
4180 * off from time to time. This means all inodes in subvolume roots,
4181 * reloc roots, and data reloc roots.
28ed1345 4182 */
70ddc553 4183 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
92a7cc42 4184 test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
897ca819 4185 be_nice = true;
28ed1345 4186
0eb0e19c
MF
4187 path = btrfs_alloc_path();
4188 if (!path)
4189 return -ENOMEM;
e4058b54 4190 path->reada = READA_BACK;
0eb0e19c 4191
82028e0a 4192 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
a5ae50de
FM
4193 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
4194 &cached_state);
28553fa9 4195
82028e0a
QW
4196 /*
4197 * We want to drop from the next block forward in case this
4198 * new size is not block aligned since we will be keeping the
4199 * last block of the extent just the way it is.
4200 */
dcdbc059 4201 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4202 fs_info->sectorsize),
da17066c 4203 (u64)-1, 0);
82028e0a 4204 }
8082510e 4205
16cdcec7
MX
4206 /*
4207 * This function is also used to drop the items in the log tree before
4208 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
52042d8e 4209 * it is used to drop the logged items. So we shouldn't kill the delayed
16cdcec7
MX
4210 * items.
4211 */
4212 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4213 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4214
33345d01 4215 key.objectid = ino;
39279cc3 4216 key.offset = (u64)-1;
5f39d397
CM
4217 key.type = (u8)-1;
4218
85e21bac 4219search_again:
28ed1345
CM
4220 /*
4221 * with a 16K leaf size and 128MB extents, you can actually queue
4222 * up a huge file in a single leaf. Most of the time that
4223 * bytes_deleted is > 0, it will be huge by the time we get here
4224 */
fd86a3a3
OS
4225 if (be_nice && bytes_deleted > SZ_32M &&
4226 btrfs_should_end_transaction(trans)) {
4227 ret = -EAGAIN;
4228 goto out;
28ed1345
CM
4229 }
4230
85e21bac 4231 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
fd86a3a3 4232 if (ret < 0)
8082510e 4233 goto out;
d397712b 4234
85e21bac 4235 if (ret > 0) {
fd86a3a3 4236 ret = 0;
e02119d5
CM
4237 /* there are no items in the tree for us to truncate, we're
4238 * done
4239 */
8082510e
YZ
4240 if (path->slots[0] == 0)
4241 goto out;
85e21bac
CM
4242 path->slots[0]--;
4243 }
4244
d397712b 4245 while (1) {
9ddc959e
JB
4246 u64 clear_start = 0, clear_len = 0;
4247
39279cc3 4248 fi = NULL;
5f39d397
CM
4249 leaf = path->nodes[0];
4250 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4251 found_type = found_key.type;
39279cc3 4252
33345d01 4253 if (found_key.objectid != ino)
39279cc3 4254 break;
5f39d397 4255
85e21bac 4256 if (found_type < min_type)
39279cc3
CM
4257 break;
4258
5f39d397 4259 item_end = found_key.offset;
39279cc3 4260 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4261 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4262 struct btrfs_file_extent_item);
179e29e4
CM
4263 extent_type = btrfs_file_extent_type(leaf, fi);
4264 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4265 item_end +=
db94535d 4266 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4267
4268 trace_btrfs_truncate_show_fi_regular(
4269 BTRFS_I(inode), leaf, fi,
4270 found_key.offset);
179e29e4 4271 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589
QW
4272 item_end += btrfs_file_extent_ram_bytes(leaf,
4273 fi);
09ed2f16
LB
4274
4275 trace_btrfs_truncate_show_fi_inline(
4276 BTRFS_I(inode), leaf, fi, path->slots[0],
4277 found_key.offset);
39279cc3 4278 }
008630c1 4279 item_end--;
39279cc3 4280 }
8082510e
YZ
4281 if (found_type > min_type) {
4282 del_item = 1;
4283 } else {
76b42abb 4284 if (item_end < new_size)
b888db2b 4285 break;
8082510e
YZ
4286 if (found_key.offset >= new_size)
4287 del_item = 1;
4288 else
4289 del_item = 0;
39279cc3 4290 }
39279cc3 4291 found_extent = 0;
39279cc3 4292 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4293 if (found_type != BTRFS_EXTENT_DATA_KEY)
4294 goto delete;
4295
4296 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4297 u64 num_dec;
9ddc959e
JB
4298
4299 clear_start = found_key.offset;
db94535d 4300 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4301 if (!del_item) {
db94535d
CM
4302 u64 orig_num_bytes =
4303 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4304 extent_num_bytes = ALIGN(new_size -
4305 found_key.offset,
0b246afa 4306 fs_info->sectorsize);
9ddc959e 4307 clear_start = ALIGN(new_size, fs_info->sectorsize);
db94535d
CM
4308 btrfs_set_file_extent_num_bytes(leaf, fi,
4309 extent_num_bytes);
4310 num_dec = (orig_num_bytes -
9069218d 4311 extent_num_bytes);
92a7cc42 4312 if (test_bit(BTRFS_ROOT_SHAREABLE,
27cdeb70
MX
4313 &root->state) &&
4314 extent_start != 0)
a76a3cd4 4315 inode_sub_bytes(inode, num_dec);
5f39d397 4316 btrfs_mark_buffer_dirty(leaf);
39279cc3 4317 } else {
db94535d
CM
4318 extent_num_bytes =
4319 btrfs_file_extent_disk_num_bytes(leaf,
4320 fi);
5d4f98a2
YZ
4321 extent_offset = found_key.offset -
4322 btrfs_file_extent_offset(leaf, fi);
4323
39279cc3 4324 /* FIXME blocksize != 4096 */
9069218d 4325 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4326 if (extent_start != 0) {
4327 found_extent = 1;
92a7cc42 4328 if (test_bit(BTRFS_ROOT_SHAREABLE,
27cdeb70 4329 &root->state))
a76a3cd4 4330 inode_sub_bytes(inode, num_dec);
e02119d5 4331 }
39279cc3 4332 }
9ddc959e 4333 clear_len = num_dec;
9069218d 4334 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4335 /*
4336 * we can't truncate inline items that have had
4337 * special encodings
4338 */
4339 if (!del_item &&
c8b97818 4340 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4341 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4342 btrfs_file_extent_compression(leaf, fi) == 0) {
4343 u32 size = (u32)(new_size - found_key.offset);
4344
4345 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4346 size = btrfs_file_extent_calc_inline_size(size);
78ac4f9e 4347 btrfs_truncate_item(path, size, 1);
ddfae63c 4348 } else if (!del_item) {
514ac8ad 4349 /*
ddfae63c
JB
4350 * We have to bail so the last_size is set to
4351 * just before this extent.
514ac8ad 4352 */
fd86a3a3 4353 ret = NEED_TRUNCATE_BLOCK;
ddfae63c 4354 break;
9ddc959e
JB
4355 } else {
4356 /*
4357 * Inline extents are special, we just treat
4358 * them as a full sector worth in the file
4359 * extent tree just for simplicity sake.
4360 */
4361 clear_len = fs_info->sectorsize;
ddfae63c 4362 }
0305cd5f 4363
92a7cc42 4364 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
0305cd5f 4365 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4366 }
179e29e4 4367delete:
9ddc959e
JB
4368 /*
4369 * We use btrfs_truncate_inode_items() to clean up log trees for
4370 * multiple fsyncs, and in this case we don't want to clear the
4371 * file extent range because it's just the log.
4372 */
4373 if (root == BTRFS_I(inode)->root) {
4374 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
4375 clear_start, clear_len);
4376 if (ret) {
4377 btrfs_abort_transaction(trans, ret);
4378 break;
4379 }
4380 }
4381
ddfae63c
JB
4382 if (del_item)
4383 last_size = found_key.offset;
4384 else
4385 last_size = new_size;
39279cc3 4386 if (del_item) {
85e21bac
CM
4387 if (!pending_del_nr) {
4388 /* no pending yet, add ourselves */
4389 pending_del_slot = path->slots[0];
4390 pending_del_nr = 1;
4391 } else if (pending_del_nr &&
4392 path->slots[0] + 1 == pending_del_slot) {
4393 /* hop on the pending chunk */
4394 pending_del_nr++;
4395 pending_del_slot = path->slots[0];
4396 } else {
d397712b 4397 BUG();
85e21bac 4398 }
39279cc3
CM
4399 } else {
4400 break;
4401 }
897ca819 4402 should_throttle = false;
28f75a0e 4403
27cdeb70 4404 if (found_extent &&
82028e0a 4405 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
ffd4bb2a
QW
4406 struct btrfs_ref ref = { 0 };
4407
28ed1345 4408 bytes_deleted += extent_num_bytes;
ffd4bb2a
QW
4409
4410 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4411 extent_start, extent_num_bytes, 0);
4412 ref.real_root = root->root_key.objectid;
4413 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4414 ino, extent_offset);
4415 ret = btrfs_free_extent(trans, &ref);
05522109
OS
4416 if (ret) {
4417 btrfs_abort_transaction(trans, ret);
4418 break;
4419 }
28f75a0e 4420 if (be_nice) {
7c861627 4421 if (btrfs_should_throttle_delayed_refs(trans))
897ca819 4422 should_throttle = true;
28f75a0e 4423 }
39279cc3 4424 }
85e21bac 4425
8082510e
YZ
4426 if (found_type == BTRFS_INODE_ITEM_KEY)
4427 break;
4428
4429 if (path->slots[0] == 0 ||
1262133b 4430 path->slots[0] != pending_del_slot ||
28bad212 4431 should_throttle) {
8082510e
YZ
4432 if (pending_del_nr) {
4433 ret = btrfs_del_items(trans, root, path,
4434 pending_del_slot,
4435 pending_del_nr);
79787eaa 4436 if (ret) {
66642832 4437 btrfs_abort_transaction(trans, ret);
fd86a3a3 4438 break;
79787eaa 4439 }
8082510e
YZ
4440 pending_del_nr = 0;
4441 }
b3b4aa74 4442 btrfs_release_path(path);
28bad212 4443
28f75a0e 4444 /*
28bad212
JB
4445 * We can generate a lot of delayed refs, so we need to
4446 * throttle every once and a while and make sure we're
4447 * adding enough space to keep up with the work we are
4448 * generating. Since we hold a transaction here we
4449 * can't flush, and we don't want to FLUSH_LIMIT because
4450 * we could have generated too many delayed refs to
4451 * actually allocate, so just bail if we're short and
4452 * let the normal reservation dance happen higher up.
28f75a0e 4453 */
28bad212
JB
4454 if (should_throttle) {
4455 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4456 BTRFS_RESERVE_NO_FLUSH);
4457 if (ret) {
4458 ret = -EAGAIN;
4459 break;
4460 }
28f75a0e 4461 }
85e21bac 4462 goto search_again;
8082510e
YZ
4463 } else {
4464 path->slots[0]--;
85e21bac 4465 }
39279cc3 4466 }
8082510e 4467out:
fd86a3a3
OS
4468 if (ret >= 0 && pending_del_nr) {
4469 int err;
4470
4471 err = btrfs_del_items(trans, root, path, pending_del_slot,
85e21bac 4472 pending_del_nr);
fd86a3a3
OS
4473 if (err) {
4474 btrfs_abort_transaction(trans, err);
4475 ret = err;
4476 }
85e21bac 4477 }
76b42abb
FM
4478 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4479 ASSERT(last_size >= new_size);
fd86a3a3 4480 if (!ret && last_size > new_size)
76b42abb 4481 last_size = new_size;
d923afe9 4482 btrfs_inode_safe_disk_i_size_write(inode, last_size);
a5ae50de
FM
4483 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
4484 (u64)-1, &cached_state);
76b42abb 4485 }
28ed1345 4486
39279cc3 4487 btrfs_free_path(path);
fd86a3a3 4488 return ret;
39279cc3
CM
4489}
4490
4491/*
9703fefe 4492 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4493 * @inode - inode that we're zeroing
4494 * @from - the offset to start zeroing
4495 * @len - the length to zero, 0 to zero the entire range respective to the
4496 * offset
4497 * @front - zero up to the offset instead of from the offset on
4498 *
9703fefe 4499 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4500 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4501 */
9703fefe 4502int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4503 int front)
39279cc3 4504{
0b246afa 4505 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4506 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4507 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4508 struct btrfs_ordered_extent *ordered;
2ac55d41 4509 struct extent_state *cached_state = NULL;
364ecf36 4510 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4511 char *kaddr;
6d4572a9 4512 bool only_release_metadata = false;
0b246afa 4513 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4514 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4515 unsigned offset = from & (blocksize - 1);
39279cc3 4516 struct page *page;
3b16a4e3 4517 gfp_t mask = btrfs_alloc_write_mask(mapping);
6d4572a9 4518 size_t write_bytes = blocksize;
39279cc3 4519 int ret = 0;
9703fefe
CR
4520 u64 block_start;
4521 u64 block_end;
39279cc3 4522
b03ebd99
NB
4523 if (IS_ALIGNED(offset, blocksize) &&
4524 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4525 goto out;
9703fefe 4526
8b62f87b
JB
4527 block_start = round_down(from, blocksize);
4528 block_end = block_start + blocksize - 1;
4529
36ea6f3e
NB
4530 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved,
4531 block_start, blocksize);
6d4572a9 4532 if (ret < 0) {
38d37aa9
QW
4533 if (btrfs_check_nocow_lock(BTRFS_I(inode), block_start,
4534 &write_bytes) > 0) {
6d4572a9
QW
4535 /* For nocow case, no need to reserve data space */
4536 only_release_metadata = true;
4537 } else {
4538 goto out;
4539 }
4540 }
4541 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize);
4542 if (ret < 0) {
4543 if (!only_release_metadata)
25ce28ca
NB
4544 btrfs_free_reserved_data_space(BTRFS_I(inode),
4545 data_reserved, block_start, blocksize);
6d4572a9
QW
4546 goto out;
4547 }
211c17f5 4548again:
3b16a4e3 4549 page = find_or_create_page(mapping, index, mask);
5d5e103a 4550 if (!page) {
86d52921 4551 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
43b18595 4552 block_start, blocksize, true);
8702ba93 4553 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
ac6a2b36 4554 ret = -ENOMEM;
39279cc3 4555 goto out;
5d5e103a 4556 }
e6dcd2dc 4557
39279cc3 4558 if (!PageUptodate(page)) {
9ebefb18 4559 ret = btrfs_readpage(NULL, page);
39279cc3 4560 lock_page(page);
211c17f5
CM
4561 if (page->mapping != mapping) {
4562 unlock_page(page);
09cbfeaf 4563 put_page(page);
211c17f5
CM
4564 goto again;
4565 }
39279cc3
CM
4566 if (!PageUptodate(page)) {
4567 ret = -EIO;
89642229 4568 goto out_unlock;
39279cc3
CM
4569 }
4570 }
211c17f5 4571 wait_on_page_writeback(page);
e6dcd2dc 4572
9703fefe 4573 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4574 set_page_extent_mapped(page);
4575
c3504372 4576 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), block_start);
e6dcd2dc 4577 if (ordered) {
9703fefe 4578 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4579 &cached_state);
e6dcd2dc 4580 unlock_page(page);
09cbfeaf 4581 put_page(page);
eb84ae03 4582 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4583 btrfs_put_ordered_extent(ordered);
4584 goto again;
4585 }
4586
9703fefe 4587 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
e182163d
OS
4588 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4589 0, 0, &cached_state);
5d5e103a 4590
c2566f22 4591 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), block_start, block_end, 0,
330a5827 4592 &cached_state);
9ed74f2d 4593 if (ret) {
9703fefe 4594 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4595 &cached_state);
9ed74f2d
JB
4596 goto out_unlock;
4597 }
4598
9703fefe 4599 if (offset != blocksize) {
2aaa6655 4600 if (!len)
9703fefe 4601 len = blocksize - offset;
e6dcd2dc 4602 kaddr = kmap(page);
2aaa6655 4603 if (front)
9703fefe
CR
4604 memset(kaddr + (block_start - page_offset(page)),
4605 0, offset);
2aaa6655 4606 else
9703fefe
CR
4607 memset(kaddr + (block_start - page_offset(page)) + offset,
4608 0, len);
e6dcd2dc
CM
4609 flush_dcache_page(page);
4610 kunmap(page);
4611 }
247e743c 4612 ClearPageChecked(page);
e6dcd2dc 4613 set_page_dirty(page);
e43bbe5e 4614 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
39279cc3 4615
6d4572a9
QW
4616 if (only_release_metadata)
4617 set_extent_bit(&BTRFS_I(inode)->io_tree, block_start,
4618 block_end, EXTENT_NORESERVE, NULL, NULL,
4619 GFP_NOFS);
4620
89642229 4621out_unlock:
6d4572a9
QW
4622 if (ret) {
4623 if (only_release_metadata)
4624 btrfs_delalloc_release_metadata(BTRFS_I(inode),
4625 blocksize, true);
4626 else
86d52921 4627 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
6d4572a9
QW
4628 block_start, blocksize, true);
4629 }
8702ba93 4630 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
39279cc3 4631 unlock_page(page);
09cbfeaf 4632 put_page(page);
39279cc3 4633out:
6d4572a9 4634 if (only_release_metadata)
38d37aa9 4635 btrfs_check_nocow_unlock(BTRFS_I(inode));
364ecf36 4636 extent_changeset_free(data_reserved);
39279cc3
CM
4637 return ret;
4638}
4639
16e7549f
JB
4640static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4641 u64 offset, u64 len)
4642{
0b246afa 4643 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4644 struct btrfs_trans_handle *trans;
4645 int ret;
4646
4647 /*
4648 * Still need to make sure the inode looks like it's been updated so
4649 * that any holes get logged if we fsync.
4650 */
0b246afa
JM
4651 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4652 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4653 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4654 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4655 return 0;
4656 }
4657
4658 /*
4659 * 1 - for the one we're dropping
4660 * 1 - for the one we're adding
4661 * 1 - for updating the inode.
4662 */
4663 trans = btrfs_start_transaction(root, 3);
4664 if (IS_ERR(trans))
4665 return PTR_ERR(trans);
4666
4667 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4668 if (ret) {
66642832 4669 btrfs_abort_transaction(trans, ret);
3a45bb20 4670 btrfs_end_transaction(trans);
16e7549f
JB
4671 return ret;
4672 }
4673
f85b7379
DS
4674 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4675 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4676 if (ret)
66642832 4677 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4678 else
4679 btrfs_update_inode(trans, root, inode);
3a45bb20 4680 btrfs_end_transaction(trans);
16e7549f
JB
4681 return ret;
4682}
4683
695a0d0d
JB
4684/*
4685 * This function puts in dummy file extents for the area we're creating a hole
4686 * for. So if we are truncating this file to a larger size we need to insert
4687 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4688 * the range between oldsize and size
4689 */
a41ad394 4690int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4691{
0b246afa 4692 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4693 struct btrfs_root *root = BTRFS_I(inode)->root;
4694 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4695 struct extent_map *em = NULL;
2ac55d41 4696 struct extent_state *cached_state = NULL;
5dc562c5 4697 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4698 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4699 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4700 u64 last_byte;
4701 u64 cur_offset;
4702 u64 hole_size;
9ed74f2d 4703 int err = 0;
39279cc3 4704
a71754fc 4705 /*
9703fefe
CR
4706 * If our size started in the middle of a block we need to zero out the
4707 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4708 * expose stale data.
4709 */
9703fefe 4710 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4711 if (err)
4712 return err;
4713
9036c102
YZ
4714 if (size <= hole_start)
4715 return 0;
4716
b272ae22 4717 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start,
23d31bd4 4718 block_end - 1, &cached_state);
9036c102
YZ
4719 cur_offset = hole_start;
4720 while (1) {
fc4f21b1 4721 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
39b07b5d 4722 block_end - cur_offset);
79787eaa
JM
4723 if (IS_ERR(em)) {
4724 err = PTR_ERR(em);
f2767956 4725 em = NULL;
79787eaa
JM
4726 break;
4727 }
9036c102 4728 last_byte = min(extent_map_end(em), block_end);
0b246afa 4729 last_byte = ALIGN(last_byte, fs_info->sectorsize);
9ddc959e
JB
4730 hole_size = last_byte - cur_offset;
4731
8082510e 4732 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4733 struct extent_map *hole_em;
9ed74f2d 4734
16e7549f
JB
4735 err = maybe_insert_hole(root, inode, cur_offset,
4736 hole_size);
4737 if (err)
3893e33b 4738 break;
9ddc959e
JB
4739
4740 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4741 cur_offset, hole_size);
4742 if (err)
4743 break;
4744
dcdbc059 4745 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
4746 cur_offset + hole_size - 1, 0);
4747 hole_em = alloc_extent_map();
4748 if (!hole_em) {
4749 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4750 &BTRFS_I(inode)->runtime_flags);
4751 goto next;
4752 }
4753 hole_em->start = cur_offset;
4754 hole_em->len = hole_size;
4755 hole_em->orig_start = cur_offset;
8082510e 4756
5dc562c5
JB
4757 hole_em->block_start = EXTENT_MAP_HOLE;
4758 hole_em->block_len = 0;
b4939680 4759 hole_em->orig_block_len = 0;
cc95bef6 4760 hole_em->ram_bytes = hole_size;
5dc562c5 4761 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 4762 hole_em->generation = fs_info->generation;
8082510e 4763
5dc562c5
JB
4764 while (1) {
4765 write_lock(&em_tree->lock);
09a2a8f9 4766 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4767 write_unlock(&em_tree->lock);
4768 if (err != -EEXIST)
4769 break;
dcdbc059
NB
4770 btrfs_drop_extent_cache(BTRFS_I(inode),
4771 cur_offset,
5dc562c5
JB
4772 cur_offset +
4773 hole_size - 1, 0);
4774 }
4775 free_extent_map(hole_em);
9ddc959e
JB
4776 } else {
4777 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4778 cur_offset, hole_size);
4779 if (err)
4780 break;
9036c102 4781 }
16e7549f 4782next:
9036c102 4783 free_extent_map(em);
a22285a6 4784 em = NULL;
9036c102 4785 cur_offset = last_byte;
8082510e 4786 if (cur_offset >= block_end)
9036c102
YZ
4787 break;
4788 }
a22285a6 4789 free_extent_map(em);
e43bbe5e 4790 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
4791 return err;
4792}
39279cc3 4793
3972f260 4794static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4795{
f4a2f4c5
MX
4796 struct btrfs_root *root = BTRFS_I(inode)->root;
4797 struct btrfs_trans_handle *trans;
a41ad394 4798 loff_t oldsize = i_size_read(inode);
3972f260
ES
4799 loff_t newsize = attr->ia_size;
4800 int mask = attr->ia_valid;
8082510e
YZ
4801 int ret;
4802
3972f260
ES
4803 /*
4804 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4805 * special case where we need to update the times despite not having
4806 * these flags set. For all other operations the VFS set these flags
4807 * explicitly if it wants a timestamp update.
4808 */
dff6efc3
CH
4809 if (newsize != oldsize) {
4810 inode_inc_iversion(inode);
4811 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4812 inode->i_ctime = inode->i_mtime =
c2050a45 4813 current_time(inode);
dff6efc3 4814 }
3972f260 4815
a41ad394 4816 if (newsize > oldsize) {
9ea24bbe 4817 /*
ea14b57f 4818 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
4819 * This is to ensure the snapshot captures a fully consistent
4820 * state of this file - if the snapshot captures this expanding
4821 * truncation, it must capture all writes that happened before
4822 * this truncation.
4823 */
dcc3eb96 4824 btrfs_drew_write_lock(&root->snapshot_lock);
a41ad394 4825 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 4826 if (ret) {
dcc3eb96 4827 btrfs_drew_write_unlock(&root->snapshot_lock);
8082510e 4828 return ret;
9ea24bbe 4829 }
8082510e 4830
f4a2f4c5 4831 trans = btrfs_start_transaction(root, 1);
9ea24bbe 4832 if (IS_ERR(trans)) {
dcc3eb96 4833 btrfs_drew_write_unlock(&root->snapshot_lock);
f4a2f4c5 4834 return PTR_ERR(trans);
9ea24bbe 4835 }
f4a2f4c5
MX
4836
4837 i_size_write(inode, newsize);
d923afe9 4838 btrfs_inode_safe_disk_i_size_write(inode, 0);
27772b68 4839 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 4840 ret = btrfs_update_inode(trans, root, inode);
dcc3eb96 4841 btrfs_drew_write_unlock(&root->snapshot_lock);
3a45bb20 4842 btrfs_end_transaction(trans);
a41ad394 4843 } else {
8082510e 4844
a41ad394
JB
4845 /*
4846 * We're truncating a file that used to have good data down to
4847 * zero. Make sure it gets into the ordered flush list so that
4848 * any new writes get down to disk quickly.
4849 */
4850 if (newsize == 0)
72ac3c0d
JB
4851 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4852 &BTRFS_I(inode)->runtime_flags);
8082510e 4853
a41ad394 4854 truncate_setsize(inode, newsize);
2e60a51e 4855
8e0fa5d7
DS
4856 /* Disable nonlocked read DIO to avoid the endless truncate */
4857 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 4858 inode_dio_wait(inode);
8e0fa5d7 4859 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 4860
213e8c55 4861 ret = btrfs_truncate(inode, newsize == oldsize);
7f4f6e0a
JB
4862 if (ret && inode->i_nlink) {
4863 int err;
4864
4865 /*
f7e9e8fc
OS
4866 * Truncate failed, so fix up the in-memory size. We
4867 * adjusted disk_i_size down as we removed extents, so
4868 * wait for disk_i_size to be stable and then update the
4869 * in-memory size to match.
7f4f6e0a 4870 */
f7e9e8fc 4871 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
7f4f6e0a 4872 if (err)
f7e9e8fc
OS
4873 return err;
4874 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
7f4f6e0a 4875 }
8082510e
YZ
4876 }
4877
a41ad394 4878 return ret;
8082510e
YZ
4879}
4880
9036c102
YZ
4881static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4882{
2b0143b5 4883 struct inode *inode = d_inode(dentry);
b83cc969 4884 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4885 int err;
39279cc3 4886
b83cc969
LZ
4887 if (btrfs_root_readonly(root))
4888 return -EROFS;
4889
31051c85 4890 err = setattr_prepare(dentry, attr);
9036c102
YZ
4891 if (err)
4892 return err;
2bf5a725 4893
5a3f23d5 4894 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4895 err = btrfs_setsize(inode, attr);
8082510e
YZ
4896 if (err)
4897 return err;
39279cc3 4898 }
9036c102 4899
1025774c
CH
4900 if (attr->ia_valid) {
4901 setattr_copy(inode, attr);
0c4d2d95 4902 inode_inc_iversion(inode);
22c44fe6 4903 err = btrfs_dirty_inode(inode);
1025774c 4904
22c44fe6 4905 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 4906 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 4907 }
33268eaf 4908
39279cc3
CM
4909 return err;
4910}
61295eb8 4911
131e404a
FDBM
4912/*
4913 * While truncating the inode pages during eviction, we get the VFS calling
4914 * btrfs_invalidatepage() against each page of the inode. This is slow because
4915 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4916 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4917 * extent_state structures over and over, wasting lots of time.
4918 *
4919 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4920 * those expensive operations on a per page basis and do only the ordered io
4921 * finishing, while we release here the extent_map and extent_state structures,
4922 * without the excessive merging and splitting.
4923 */
4924static void evict_inode_truncate_pages(struct inode *inode)
4925{
4926 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4927 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4928 struct rb_node *node;
4929
4930 ASSERT(inode->i_state & I_FREEING);
91b0abe3 4931 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
4932
4933 write_lock(&map_tree->lock);
07e1ce09 4934 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
131e404a
FDBM
4935 struct extent_map *em;
4936
07e1ce09 4937 node = rb_first_cached(&map_tree->map);
131e404a 4938 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
4939 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4940 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
4941 remove_extent_mapping(map_tree, em);
4942 free_extent_map(em);
7064dd5c
FM
4943 if (need_resched()) {
4944 write_unlock(&map_tree->lock);
4945 cond_resched();
4946 write_lock(&map_tree->lock);
4947 }
131e404a
FDBM
4948 }
4949 write_unlock(&map_tree->lock);
4950
6ca07097
FM
4951 /*
4952 * Keep looping until we have no more ranges in the io tree.
ba206a02
MWO
4953 * We can have ongoing bios started by readahead that have
4954 * their endio callback (extent_io.c:end_bio_extent_readpage)
9c6429d9
FM
4955 * still in progress (unlocked the pages in the bio but did not yet
4956 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
4957 * ranges can still be locked and eviction started because before
4958 * submitting those bios, which are executed by a separate task (work
4959 * queue kthread), inode references (inode->i_count) were not taken
4960 * (which would be dropped in the end io callback of each bio).
4961 * Therefore here we effectively end up waiting for those bios and
4962 * anyone else holding locked ranges without having bumped the inode's
4963 * reference count - if we don't do it, when they access the inode's
4964 * io_tree to unlock a range it may be too late, leading to an
4965 * use-after-free issue.
4966 */
131e404a
FDBM
4967 spin_lock(&io_tree->lock);
4968 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4969 struct extent_state *state;
4970 struct extent_state *cached_state = NULL;
6ca07097
FM
4971 u64 start;
4972 u64 end;
421f0922 4973 unsigned state_flags;
131e404a
FDBM
4974
4975 node = rb_first(&io_tree->state);
4976 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
4977 start = state->start;
4978 end = state->end;
421f0922 4979 state_flags = state->state;
131e404a
FDBM
4980 spin_unlock(&io_tree->lock);
4981
ff13db41 4982 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
4983
4984 /*
4985 * If still has DELALLOC flag, the extent didn't reach disk,
4986 * and its reserved space won't be freed by delayed_ref.
4987 * So we need to free its reserved space here.
4988 * (Refer to comment in btrfs_invalidatepage, case 2)
4989 *
4990 * Note, end is the bytenr of last byte, so we need + 1 here.
4991 */
421f0922 4992 if (state_flags & EXTENT_DELALLOC)
8b8a979f
NB
4993 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
4994 end - start + 1);
b9d0b389 4995
6ca07097 4996 clear_extent_bit(io_tree, start, end,
e182163d
OS
4997 EXTENT_LOCKED | EXTENT_DELALLOC |
4998 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
4999 &cached_state);
131e404a 5000
7064dd5c 5001 cond_resched();
131e404a
FDBM
5002 spin_lock(&io_tree->lock);
5003 }
5004 spin_unlock(&io_tree->lock);
5005}
5006
4b9d7b59 5007static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
ad80cf50 5008 struct btrfs_block_rsv *rsv)
4b9d7b59
OS
5009{
5010 struct btrfs_fs_info *fs_info = root->fs_info;
5011 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d3984c90 5012 struct btrfs_trans_handle *trans;
2bd36e7b 5013 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
d3984c90 5014 int ret;
4b9d7b59 5015
d3984c90
JB
5016 /*
5017 * Eviction should be taking place at some place safe because of our
5018 * delayed iputs. However the normal flushing code will run delayed
5019 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5020 *
5021 * We reserve the delayed_refs_extra here again because we can't use
5022 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5023 * above. We reserve our extra bit here because we generate a ton of
5024 * delayed refs activity by truncating.
5025 *
5026 * If we cannot make our reservation we'll attempt to steal from the
5027 * global reserve, because we really want to be able to free up space.
5028 */
5029 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5030 BTRFS_RESERVE_FLUSH_EVICT);
5031 if (ret) {
4b9d7b59
OS
5032 /*
5033 * Try to steal from the global reserve if there is space for
5034 * it.
5035 */
d3984c90
JB
5036 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5037 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5038 btrfs_warn(fs_info,
5039 "could not allocate space for delete; will truncate on mount");
5040 return ERR_PTR(-ENOSPC);
5041 }
5042 delayed_refs_extra = 0;
5043 }
4b9d7b59 5044
d3984c90
JB
5045 trans = btrfs_join_transaction(root);
5046 if (IS_ERR(trans))
5047 return trans;
5048
5049 if (delayed_refs_extra) {
5050 trans->block_rsv = &fs_info->trans_block_rsv;
5051 trans->bytes_reserved = delayed_refs_extra;
5052 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5053 delayed_refs_extra, 1);
4b9d7b59 5054 }
d3984c90 5055 return trans;
4b9d7b59
OS
5056}
5057
bd555975 5058void btrfs_evict_inode(struct inode *inode)
39279cc3 5059{
0b246afa 5060 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5061 struct btrfs_trans_handle *trans;
5062 struct btrfs_root *root = BTRFS_I(inode)->root;
4b9d7b59 5063 struct btrfs_block_rsv *rsv;
39279cc3
CM
5064 int ret;
5065
1abe9b8a 5066 trace_btrfs_inode_evict(inode);
5067
3d48d981 5068 if (!root) {
e8f1bc14 5069 clear_inode(inode);
3d48d981
NB
5070 return;
5071 }
5072
131e404a
FDBM
5073 evict_inode_truncate_pages(inode);
5074
69e9c6c6
SB
5075 if (inode->i_nlink &&
5076 ((btrfs_root_refs(&root->root_item) != 0 &&
5077 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5078 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5079 goto no_delete;
5080
27919067 5081 if (is_bad_inode(inode))
39279cc3 5082 goto no_delete;
5f39d397 5083
7ab7956e 5084 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5085
7b40b695 5086 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
c71bf099 5087 goto no_delete;
c71bf099 5088
76dda93c 5089 if (inode->i_nlink > 0) {
69e9c6c6
SB
5090 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5091 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5092 goto no_delete;
5093 }
5094
aa79021f 5095 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
27919067 5096 if (ret)
0e8c36a9 5097 goto no_delete;
0e8c36a9 5098
2ff7e61e 5099 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
27919067 5100 if (!rsv)
4289a667 5101 goto no_delete;
2bd36e7b 5102 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
ca7e70f5 5103 rsv->failfast = 1;
4289a667 5104
6ef06d27 5105 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5106
8082510e 5107 while (1) {
ad80cf50 5108 trans = evict_refill_and_join(root, rsv);
27919067
OS
5109 if (IS_ERR(trans))
5110 goto free_rsv;
7b128766 5111
4289a667
JB
5112 trans->block_rsv = rsv;
5113
d68fc57b 5114 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
27919067
OS
5115 trans->block_rsv = &fs_info->trans_block_rsv;
5116 btrfs_end_transaction(trans);
5117 btrfs_btree_balance_dirty(fs_info);
5118 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5119 goto free_rsv;
5120 else if (!ret)
8082510e 5121 break;
8082510e 5122 }
5f39d397 5123
4ef31a45 5124 /*
27919067
OS
5125 * Errors here aren't a big deal, it just means we leave orphan items in
5126 * the tree. They will be cleaned up on the next mount. If the inode
5127 * number gets reused, cleanup deletes the orphan item without doing
5128 * anything, and unlink reuses the existing orphan item.
5129 *
5130 * If it turns out that we are dropping too many of these, we might want
5131 * to add a mechanism for retrying these after a commit.
4ef31a45 5132 */
ad80cf50 5133 trans = evict_refill_and_join(root, rsv);
27919067
OS
5134 if (!IS_ERR(trans)) {
5135 trans->block_rsv = rsv;
5136 btrfs_orphan_del(trans, BTRFS_I(inode));
5137 trans->block_rsv = &fs_info->trans_block_rsv;
5138 btrfs_end_transaction(trans);
5139 }
54aa1f4d 5140
0b246afa 5141 if (!(root == fs_info->tree_root ||
581bb050 5142 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5143 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5144
27919067
OS
5145free_rsv:
5146 btrfs_free_block_rsv(fs_info, rsv);
39279cc3 5147no_delete:
27919067
OS
5148 /*
5149 * If we didn't successfully delete, the orphan item will still be in
5150 * the tree and we'll retry on the next mount. Again, we might also want
5151 * to retry these periodically in the future.
5152 */
f48d1cf5 5153 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5154 clear_inode(inode);
39279cc3
CM
5155}
5156
5157/*
6bf9e4bd
QW
5158 * Return the key found in the dir entry in the location pointer, fill @type
5159 * with BTRFS_FT_*, and return 0.
5160 *
005d6712
SY
5161 * If no dir entries were found, returns -ENOENT.
5162 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3
CM
5163 */
5164static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
6bf9e4bd 5165 struct btrfs_key *location, u8 *type)
39279cc3
CM
5166{
5167 const char *name = dentry->d_name.name;
5168 int namelen = dentry->d_name.len;
5169 struct btrfs_dir_item *di;
5170 struct btrfs_path *path;
5171 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5172 int ret = 0;
39279cc3
CM
5173
5174 path = btrfs_alloc_path();
d8926bb3
MF
5175 if (!path)
5176 return -ENOMEM;
3954401f 5177
f85b7379
DS
5178 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5179 name, namelen, 0);
3cf5068f
LB
5180 if (IS_ERR_OR_NULL(di)) {
5181 ret = di ? PTR_ERR(di) : -ENOENT;
005d6712
SY
5182 goto out;
5183 }
d397712b 5184
5f39d397 5185 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5186 if (location->type != BTRFS_INODE_ITEM_KEY &&
5187 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5188 ret = -EUCLEAN;
56a0e706
LB
5189 btrfs_warn(root->fs_info,
5190"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5191 __func__, name, btrfs_ino(BTRFS_I(dir)),
5192 location->objectid, location->type, location->offset);
56a0e706 5193 }
6bf9e4bd
QW
5194 if (!ret)
5195 *type = btrfs_dir_type(path->nodes[0], di);
39279cc3 5196out:
39279cc3
CM
5197 btrfs_free_path(path);
5198 return ret;
5199}
5200
5201/*
5202 * when we hit a tree root in a directory, the btrfs part of the inode
5203 * needs to be changed to reflect the root directory of the tree root. This
5204 * is kind of like crossing a mount point.
5205 */
2ff7e61e 5206static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5207 struct inode *dir,
5208 struct dentry *dentry,
5209 struct btrfs_key *location,
5210 struct btrfs_root **sub_root)
39279cc3 5211{
4df27c4d
YZ
5212 struct btrfs_path *path;
5213 struct btrfs_root *new_root;
5214 struct btrfs_root_ref *ref;
5215 struct extent_buffer *leaf;
1d4c08e0 5216 struct btrfs_key key;
4df27c4d
YZ
5217 int ret;
5218 int err = 0;
39279cc3 5219
4df27c4d
YZ
5220 path = btrfs_alloc_path();
5221 if (!path) {
5222 err = -ENOMEM;
5223 goto out;
5224 }
39279cc3 5225
4df27c4d 5226 err = -ENOENT;
1d4c08e0
DS
5227 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5228 key.type = BTRFS_ROOT_REF_KEY;
5229 key.offset = location->objectid;
5230
0b246afa 5231 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5232 if (ret) {
5233 if (ret < 0)
5234 err = ret;
5235 goto out;
5236 }
39279cc3 5237
4df27c4d
YZ
5238 leaf = path->nodes[0];
5239 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5240 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5241 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5242 goto out;
39279cc3 5243
4df27c4d
YZ
5244 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5245 (unsigned long)(ref + 1),
5246 dentry->d_name.len);
5247 if (ret)
5248 goto out;
5249
b3b4aa74 5250 btrfs_release_path(path);
4df27c4d 5251
56e9357a 5252 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
4df27c4d
YZ
5253 if (IS_ERR(new_root)) {
5254 err = PTR_ERR(new_root);
5255 goto out;
5256 }
5257
4df27c4d
YZ
5258 *sub_root = new_root;
5259 location->objectid = btrfs_root_dirid(&new_root->root_item);
5260 location->type = BTRFS_INODE_ITEM_KEY;
5261 location->offset = 0;
5262 err = 0;
5263out:
5264 btrfs_free_path(path);
5265 return err;
39279cc3
CM
5266}
5267
5d4f98a2
YZ
5268static void inode_tree_add(struct inode *inode)
5269{
5270 struct btrfs_root *root = BTRFS_I(inode)->root;
5271 struct btrfs_inode *entry;
03e860bd
NP
5272 struct rb_node **p;
5273 struct rb_node *parent;
cef21937 5274 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5275 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5276
1d3382cb 5277 if (inode_unhashed(inode))
76dda93c 5278 return;
e1409cef 5279 parent = NULL;
5d4f98a2 5280 spin_lock(&root->inode_lock);
e1409cef 5281 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5282 while (*p) {
5283 parent = *p;
5284 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5285
37508515 5286 if (ino < btrfs_ino(entry))
03e860bd 5287 p = &parent->rb_left;
37508515 5288 else if (ino > btrfs_ino(entry))
03e860bd 5289 p = &parent->rb_right;
5d4f98a2
YZ
5290 else {
5291 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5292 (I_WILL_FREE | I_FREEING)));
cef21937 5293 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
NP
5294 RB_CLEAR_NODE(parent);
5295 spin_unlock(&root->inode_lock);
cef21937 5296 return;
5d4f98a2
YZ
5297 }
5298 }
cef21937
FDBM
5299 rb_link_node(new, parent, p);
5300 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5301 spin_unlock(&root->inode_lock);
5302}
5303
5304static void inode_tree_del(struct inode *inode)
5305{
5306 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5307 int empty = 0;
5d4f98a2 5308
03e860bd 5309 spin_lock(&root->inode_lock);
5d4f98a2 5310 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5311 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5312 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5313 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5314 }
03e860bd 5315 spin_unlock(&root->inode_lock);
76dda93c 5316
69e9c6c6 5317 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5318 spin_lock(&root->inode_lock);
5319 empty = RB_EMPTY_ROOT(&root->inode_tree);
5320 spin_unlock(&root->inode_lock);
5321 if (empty)
5322 btrfs_add_dead_root(root);
5323 }
5324}
5325
5d4f98a2 5326
e02119d5
CM
5327static int btrfs_init_locked_inode(struct inode *inode, void *p)
5328{
5329 struct btrfs_iget_args *args = p;
0202e83f
DS
5330
5331 inode->i_ino = args->ino;
5332 BTRFS_I(inode)->location.objectid = args->ino;
5333 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5334 BTRFS_I(inode)->location.offset = 0;
5c8fd99f
JB
5335 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5336 BUG_ON(args->root && !BTRFS_I(inode)->root);
39279cc3
CM
5337 return 0;
5338}
5339
5340static int btrfs_find_actor(struct inode *inode, void *opaque)
5341{
5342 struct btrfs_iget_args *args = opaque;
0202e83f
DS
5343
5344 return args->ino == BTRFS_I(inode)->location.objectid &&
d397712b 5345 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5346}
5347
0202e83f 5348static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5d4f98a2 5349 struct btrfs_root *root)
39279cc3
CM
5350{
5351 struct inode *inode;
5352 struct btrfs_iget_args args;
0202e83f 5353 unsigned long hashval = btrfs_inode_hash(ino, root);
778ba82b 5354
0202e83f 5355 args.ino = ino;
39279cc3
CM
5356 args.root = root;
5357
778ba82b 5358 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5359 btrfs_init_locked_inode,
5360 (void *)&args);
5361 return inode;
5362}
5363
4c66e0d4 5364/*
0202e83f 5365 * Get an inode object given its inode number and corresponding root.
4c66e0d4
DS
5366 * Path can be preallocated to prevent recursing back to iget through
5367 * allocator. NULL is also valid but may require an additional allocation
5368 * later.
1a54ef8c 5369 */
0202e83f 5370struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
4c66e0d4 5371 struct btrfs_root *root, struct btrfs_path *path)
1a54ef8c
BR
5372{
5373 struct inode *inode;
5374
0202e83f 5375 inode = btrfs_iget_locked(s, ino, root);
1a54ef8c 5376 if (!inode)
5d4f98a2 5377 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5378
5379 if (inode->i_state & I_NEW) {
67710892
FM
5380 int ret;
5381
4222ea71 5382 ret = btrfs_read_locked_inode(inode, path);
9bc2ceff 5383 if (!ret) {
1748f843
MF
5384 inode_tree_add(inode);
5385 unlock_new_inode(inode);
1748f843 5386 } else {
f5b3a417
AV
5387 iget_failed(inode);
5388 /*
5389 * ret > 0 can come from btrfs_search_slot called by
5390 * btrfs_read_locked_inode, this means the inode item
5391 * was not found.
5392 */
5393 if (ret > 0)
5394 ret = -ENOENT;
5395 inode = ERR_PTR(ret);
1748f843
MF
5396 }
5397 }
5398
1a54ef8c
BR
5399 return inode;
5400}
5401
0202e83f 5402struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
4222ea71 5403{
0202e83f 5404 return btrfs_iget_path(s, ino, root, NULL);
4222ea71
FM
5405}
5406
4df27c4d
YZ
5407static struct inode *new_simple_dir(struct super_block *s,
5408 struct btrfs_key *key,
5409 struct btrfs_root *root)
5410{
5411 struct inode *inode = new_inode(s);
5412
5413 if (!inode)
5414 return ERR_PTR(-ENOMEM);
5415
5c8fd99f 5416 BTRFS_I(inode)->root = btrfs_grab_root(root);
4df27c4d 5417 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5418 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5419
5420 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
6bb6b514
OS
5421 /*
5422 * We only need lookup, the rest is read-only and there's no inode
5423 * associated with the dentry
5424 */
5425 inode->i_op = &simple_dir_inode_operations;
1fdf4194 5426 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5427 inode->i_fop = &simple_dir_operations;
5428 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5429 inode->i_mtime = current_time(inode);
9cc97d64 5430 inode->i_atime = inode->i_mtime;
5431 inode->i_ctime = inode->i_mtime;
d3c6be6f 5432 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5433
5434 return inode;
5435}
5436
6bf9e4bd
QW
5437static inline u8 btrfs_inode_type(struct inode *inode)
5438{
5439 /*
5440 * Compile-time asserts that generic FT_* types still match
5441 * BTRFS_FT_* types
5442 */
5443 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5444 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5445 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5446 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5447 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5448 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5449 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5450 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5451
5452 return fs_umode_to_ftype(inode->i_mode);
5453}
5454
3de4586c 5455struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5456{
0b246afa 5457 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5458 struct inode *inode;
4df27c4d 5459 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5460 struct btrfs_root *sub_root = root;
5461 struct btrfs_key location;
6bf9e4bd 5462 u8 di_type = 0;
b4aff1f8 5463 int ret = 0;
39279cc3
CM
5464
5465 if (dentry->d_name.len > BTRFS_NAME_LEN)
5466 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5467
6bf9e4bd 5468 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
39279cc3
CM
5469 if (ret < 0)
5470 return ERR_PTR(ret);
5f39d397 5471
4df27c4d 5472 if (location.type == BTRFS_INODE_ITEM_KEY) {
0202e83f 5473 inode = btrfs_iget(dir->i_sb, location.objectid, root);
6bf9e4bd
QW
5474 if (IS_ERR(inode))
5475 return inode;
5476
5477 /* Do extra check against inode mode with di_type */
5478 if (btrfs_inode_type(inode) != di_type) {
5479 btrfs_crit(fs_info,
5480"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5481 inode->i_mode, btrfs_inode_type(inode),
5482 di_type);
5483 iput(inode);
5484 return ERR_PTR(-EUCLEAN);
5485 }
4df27c4d
YZ
5486 return inode;
5487 }
5488
2ff7e61e 5489 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5490 &location, &sub_root);
5491 if (ret < 0) {
5492 if (ret != -ENOENT)
5493 inode = ERR_PTR(ret);
5494 else
5495 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5496 } else {
0202e83f 5497 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
39279cc3 5498 }
8727002f 5499 if (root != sub_root)
00246528 5500 btrfs_put_root(sub_root);
76dda93c 5501
34d19bad 5502 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5503 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5504 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5505 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5506 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5507 if (ret) {
5508 iput(inode);
66b4ffd1 5509 inode = ERR_PTR(ret);
01cd3367 5510 }
c71bf099
YZ
5511 }
5512
3de4586c
CM
5513 return inode;
5514}
5515
fe15ce44 5516static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5517{
5518 struct btrfs_root *root;
2b0143b5 5519 struct inode *inode = d_inode(dentry);
76dda93c 5520
848cce0d 5521 if (!inode && !IS_ROOT(dentry))
2b0143b5 5522 inode = d_inode(dentry->d_parent);
76dda93c 5523
848cce0d
LZ
5524 if (inode) {
5525 root = BTRFS_I(inode)->root;
efefb143
YZ
5526 if (btrfs_root_refs(&root->root_item) == 0)
5527 return 1;
848cce0d 5528
4a0cc7ca 5529 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5530 return 1;
efefb143 5531 }
76dda93c
YZ
5532 return 0;
5533}
5534
3de4586c 5535static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5536 unsigned int flags)
3de4586c 5537{
3837d208 5538 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5662344b 5539
3837d208
AV
5540 if (inode == ERR_PTR(-ENOENT))
5541 inode = NULL;
41d28bca 5542 return d_splice_alias(inode, dentry);
39279cc3
CM
5543}
5544
23b5ec74
JB
5545/*
5546 * All this infrastructure exists because dir_emit can fault, and we are holding
5547 * the tree lock when doing readdir. For now just allocate a buffer and copy
5548 * our information into that, and then dir_emit from the buffer. This is
5549 * similar to what NFS does, only we don't keep the buffer around in pagecache
5550 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5551 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5552 * tree lock.
5553 */
5554static int btrfs_opendir(struct inode *inode, struct file *file)
5555{
5556 struct btrfs_file_private *private;
5557
5558 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5559 if (!private)
5560 return -ENOMEM;
5561 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5562 if (!private->filldir_buf) {
5563 kfree(private);
5564 return -ENOMEM;
5565 }
5566 file->private_data = private;
5567 return 0;
5568}
5569
5570struct dir_entry {
5571 u64 ino;
5572 u64 offset;
5573 unsigned type;
5574 int name_len;
5575};
5576
5577static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5578{
5579 while (entries--) {
5580 struct dir_entry *entry = addr;
5581 char *name = (char *)(entry + 1);
5582
92d32170
DS
5583 ctx->pos = get_unaligned(&entry->offset);
5584 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5585 get_unaligned(&entry->ino),
5586 get_unaligned(&entry->type)))
23b5ec74 5587 return 1;
92d32170
DS
5588 addr += sizeof(struct dir_entry) +
5589 get_unaligned(&entry->name_len);
23b5ec74
JB
5590 ctx->pos++;
5591 }
5592 return 0;
5593}
5594
9cdda8d3 5595static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5596{
9cdda8d3 5597 struct inode *inode = file_inode(file);
39279cc3 5598 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5599 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5600 struct btrfs_dir_item *di;
5601 struct btrfs_key key;
5f39d397 5602 struct btrfs_key found_key;
39279cc3 5603 struct btrfs_path *path;
23b5ec74 5604 void *addr;
16cdcec7
MX
5605 struct list_head ins_list;
5606 struct list_head del_list;
39279cc3 5607 int ret;
5f39d397 5608 struct extent_buffer *leaf;
39279cc3 5609 int slot;
5f39d397
CM
5610 char *name_ptr;
5611 int name_len;
23b5ec74
JB
5612 int entries = 0;
5613 int total_len = 0;
02dbfc99 5614 bool put = false;
c2951f32 5615 struct btrfs_key location;
5f39d397 5616
9cdda8d3
AV
5617 if (!dir_emit_dots(file, ctx))
5618 return 0;
5619
49593bfa 5620 path = btrfs_alloc_path();
16cdcec7
MX
5621 if (!path)
5622 return -ENOMEM;
ff5714cc 5623
23b5ec74 5624 addr = private->filldir_buf;
e4058b54 5625 path->reada = READA_FORWARD;
49593bfa 5626
c2951f32
JM
5627 INIT_LIST_HEAD(&ins_list);
5628 INIT_LIST_HEAD(&del_list);
5629 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5630
23b5ec74 5631again:
c2951f32 5632 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5633 key.offset = ctx->pos;
4a0cc7ca 5634 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5635
39279cc3
CM
5636 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5637 if (ret < 0)
5638 goto err;
49593bfa
DW
5639
5640 while (1) {
23b5ec74
JB
5641 struct dir_entry *entry;
5642
5f39d397 5643 leaf = path->nodes[0];
39279cc3 5644 slot = path->slots[0];
b9e03af0
LZ
5645 if (slot >= btrfs_header_nritems(leaf)) {
5646 ret = btrfs_next_leaf(root, path);
5647 if (ret < 0)
5648 goto err;
5649 else if (ret > 0)
5650 break;
5651 continue;
39279cc3 5652 }
3de4586c 5653
5f39d397
CM
5654 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5655
5656 if (found_key.objectid != key.objectid)
39279cc3 5657 break;
c2951f32 5658 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5659 break;
9cdda8d3 5660 if (found_key.offset < ctx->pos)
b9e03af0 5661 goto next;
c2951f32 5662 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5663 goto next;
39279cc3 5664 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
c2951f32 5665 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5666 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5667 PAGE_SIZE) {
5668 btrfs_release_path(path);
5669 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5670 if (ret)
5671 goto nopos;
5672 addr = private->filldir_buf;
5673 entries = 0;
5674 total_len = 0;
5675 goto again;
c2951f32 5676 }
23b5ec74
JB
5677
5678 entry = addr;
92d32170 5679 put_unaligned(name_len, &entry->name_len);
23b5ec74 5680 name_ptr = (char *)(entry + 1);
c2951f32
JM
5681 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5682 name_len);
7d157c3d 5683 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
92d32170 5684 &entry->type);
c2951f32 5685 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
5686 put_unaligned(location.objectid, &entry->ino);
5687 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
5688 entries++;
5689 addr += sizeof(struct dir_entry) + name_len;
5690 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
5691next:
5692 path->slots[0]++;
39279cc3 5693 }
23b5ec74
JB
5694 btrfs_release_path(path);
5695
5696 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5697 if (ret)
5698 goto nopos;
49593bfa 5699
d2fbb2b5 5700 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5701 if (ret)
bc4ef759
DS
5702 goto nopos;
5703
db62efbb
ZB
5704 /*
5705 * Stop new entries from being returned after we return the last
5706 * entry.
5707 *
5708 * New directory entries are assigned a strictly increasing
5709 * offset. This means that new entries created during readdir
5710 * are *guaranteed* to be seen in the future by that readdir.
5711 * This has broken buggy programs which operate on names as
5712 * they're returned by readdir. Until we re-use freed offsets
5713 * we have this hack to stop new entries from being returned
5714 * under the assumption that they'll never reach this huge
5715 * offset.
5716 *
5717 * This is being careful not to overflow 32bit loff_t unless the
5718 * last entry requires it because doing so has broken 32bit apps
5719 * in the past.
5720 */
c2951f32
JM
5721 if (ctx->pos >= INT_MAX)
5722 ctx->pos = LLONG_MAX;
5723 else
5724 ctx->pos = INT_MAX;
39279cc3
CM
5725nopos:
5726 ret = 0;
5727err:
02dbfc99
OS
5728 if (put)
5729 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5730 btrfs_free_path(path);
39279cc3
CM
5731 return ret;
5732}
5733
39279cc3 5734/*
54aa1f4d 5735 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5736 * inode changes. But, it is most likely to find the inode in cache.
5737 * FIXME, needs more benchmarking...there are no reasons other than performance
5738 * to keep or drop this code.
5739 */
48a3b636 5740static int btrfs_dirty_inode(struct inode *inode)
39279cc3 5741{
2ff7e61e 5742 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5743 struct btrfs_root *root = BTRFS_I(inode)->root;
5744 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5745 int ret;
5746
72ac3c0d 5747 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5748 return 0;
39279cc3 5749
7a7eaa40 5750 trans = btrfs_join_transaction(root);
22c44fe6
JB
5751 if (IS_ERR(trans))
5752 return PTR_ERR(trans);
8929ecfa
YZ
5753
5754 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5755 if (ret && ret == -ENOSPC) {
5756 /* whoops, lets try again with the full transaction */
3a45bb20 5757 btrfs_end_transaction(trans);
94b60442 5758 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5759 if (IS_ERR(trans))
5760 return PTR_ERR(trans);
8929ecfa 5761
94b60442 5762 ret = btrfs_update_inode(trans, root, inode);
94b60442 5763 }
3a45bb20 5764 btrfs_end_transaction(trans);
16cdcec7 5765 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 5766 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
5767
5768 return ret;
5769}
5770
5771/*
5772 * This is a copy of file_update_time. We need this so we can return error on
5773 * ENOSPC for updating the inode in the case of file write and mmap writes.
5774 */
95582b00 5775static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
e41f941a 5776 int flags)
22c44fe6 5777{
2bc55652 5778 struct btrfs_root *root = BTRFS_I(inode)->root;
3a8c7231 5779 bool dirty = flags & ~S_VERSION;
2bc55652
AB
5780
5781 if (btrfs_root_readonly(root))
5782 return -EROFS;
5783
e41f941a 5784 if (flags & S_VERSION)
3a8c7231 5785 dirty |= inode_maybe_inc_iversion(inode, dirty);
e41f941a
JB
5786 if (flags & S_CTIME)
5787 inode->i_ctime = *now;
5788 if (flags & S_MTIME)
5789 inode->i_mtime = *now;
5790 if (flags & S_ATIME)
5791 inode->i_atime = *now;
3a8c7231 5792 return dirty ? btrfs_dirty_inode(inode) : 0;
39279cc3
CM
5793}
5794
d352ac68
CM
5795/*
5796 * find the highest existing sequence number in a directory
5797 * and then set the in-memory index_cnt variable to reflect
5798 * free sequence numbers
5799 */
4c570655 5800static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 5801{
4c570655 5802 struct btrfs_root *root = inode->root;
aec7477b
JB
5803 struct btrfs_key key, found_key;
5804 struct btrfs_path *path;
5805 struct extent_buffer *leaf;
5806 int ret;
5807
4c570655 5808 key.objectid = btrfs_ino(inode);
962a298f 5809 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
5810 key.offset = (u64)-1;
5811
5812 path = btrfs_alloc_path();
5813 if (!path)
5814 return -ENOMEM;
5815
5816 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5817 if (ret < 0)
5818 goto out;
5819 /* FIXME: we should be able to handle this */
5820 if (ret == 0)
5821 goto out;
5822 ret = 0;
5823
5824 /*
5825 * MAGIC NUMBER EXPLANATION:
5826 * since we search a directory based on f_pos we have to start at 2
5827 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5828 * else has to start at 2
5829 */
5830 if (path->slots[0] == 0) {
4c570655 5831 inode->index_cnt = 2;
aec7477b
JB
5832 goto out;
5833 }
5834
5835 path->slots[0]--;
5836
5837 leaf = path->nodes[0];
5838 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5839
4c570655 5840 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 5841 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 5842 inode->index_cnt = 2;
aec7477b
JB
5843 goto out;
5844 }
5845
4c570655 5846 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
5847out:
5848 btrfs_free_path(path);
5849 return ret;
5850}
5851
d352ac68
CM
5852/*
5853 * helper to find a free sequence number in a given directory. This current
5854 * code is very simple, later versions will do smarter things in the btree
5855 */
877574e2 5856int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
5857{
5858 int ret = 0;
5859
877574e2
NB
5860 if (dir->index_cnt == (u64)-1) {
5861 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
5862 if (ret) {
5863 ret = btrfs_set_inode_index_count(dir);
5864 if (ret)
5865 return ret;
5866 }
aec7477b
JB
5867 }
5868
877574e2
NB
5869 *index = dir->index_cnt;
5870 dir->index_cnt++;
aec7477b
JB
5871
5872 return ret;
5873}
5874
b0d5d10f
CM
5875static int btrfs_insert_inode_locked(struct inode *inode)
5876{
5877 struct btrfs_iget_args args;
0202e83f
DS
5878
5879 args.ino = BTRFS_I(inode)->location.objectid;
b0d5d10f
CM
5880 args.root = BTRFS_I(inode)->root;
5881
5882 return insert_inode_locked4(inode,
5883 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5884 btrfs_find_actor, &args);
5885}
5886
19aee8de
AJ
5887/*
5888 * Inherit flags from the parent inode.
5889 *
5890 * Currently only the compression flags and the cow flags are inherited.
5891 */
5892static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
5893{
5894 unsigned int flags;
5895
5896 if (!dir)
5897 return;
5898
5899 flags = BTRFS_I(dir)->flags;
5900
5901 if (flags & BTRFS_INODE_NOCOMPRESS) {
5902 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
5903 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
5904 } else if (flags & BTRFS_INODE_COMPRESS) {
5905 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
5906 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
5907 }
5908
5909 if (flags & BTRFS_INODE_NODATACOW) {
5910 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
5911 if (S_ISREG(inode->i_mode))
5912 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5913 }
5914
7b6a221e 5915 btrfs_sync_inode_flags_to_i_flags(inode);
19aee8de
AJ
5916}
5917
39279cc3
CM
5918static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5919 struct btrfs_root *root,
aec7477b 5920 struct inode *dir,
9c58309d 5921 const char *name, int name_len,
175a4eb7
AV
5922 u64 ref_objectid, u64 objectid,
5923 umode_t mode, u64 *index)
39279cc3 5924{
0b246afa 5925 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 5926 struct inode *inode;
5f39d397 5927 struct btrfs_inode_item *inode_item;
39279cc3 5928 struct btrfs_key *location;
5f39d397 5929 struct btrfs_path *path;
9c58309d
CM
5930 struct btrfs_inode_ref *ref;
5931 struct btrfs_key key[2];
5932 u32 sizes[2];
ef3b9af5 5933 int nitems = name ? 2 : 1;
9c58309d 5934 unsigned long ptr;
11a19a90 5935 unsigned int nofs_flag;
39279cc3 5936 int ret;
39279cc3 5937
5f39d397 5938 path = btrfs_alloc_path();
d8926bb3
MF
5939 if (!path)
5940 return ERR_PTR(-ENOMEM);
5f39d397 5941
11a19a90 5942 nofs_flag = memalloc_nofs_save();
0b246afa 5943 inode = new_inode(fs_info->sb);
11a19a90 5944 memalloc_nofs_restore(nofs_flag);
8fb27640
YS
5945 if (!inode) {
5946 btrfs_free_path(path);
39279cc3 5947 return ERR_PTR(-ENOMEM);
8fb27640 5948 }
39279cc3 5949
5762b5c9
FM
5950 /*
5951 * O_TMPFILE, set link count to 0, so that after this point,
5952 * we fill in an inode item with the correct link count.
5953 */
5954 if (!name)
5955 set_nlink(inode, 0);
5956
581bb050
LZ
5957 /*
5958 * we have to initialize this early, so we can reclaim the inode
5959 * number if we fail afterwards in this function.
5960 */
5961 inode->i_ino = objectid;
5962
ef3b9af5 5963 if (dir && name) {
1abe9b8a 5964 trace_btrfs_inode_request(dir);
5965
877574e2 5966 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 5967 if (ret) {
8fb27640 5968 btrfs_free_path(path);
09771430 5969 iput(inode);
aec7477b 5970 return ERR_PTR(ret);
09771430 5971 }
ef3b9af5
FM
5972 } else if (dir) {
5973 *index = 0;
aec7477b
JB
5974 }
5975 /*
5976 * index_cnt is ignored for everything but a dir,
df6703e1 5977 * btrfs_set_inode_index_count has an explanation for the magic
aec7477b
JB
5978 * number
5979 */
5980 BTRFS_I(inode)->index_cnt = 2;
67de1176 5981 BTRFS_I(inode)->dir_index = *index;
5c8fd99f 5982 BTRFS_I(inode)->root = btrfs_grab_root(root);
e02119d5 5983 BTRFS_I(inode)->generation = trans->transid;
76195853 5984 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5985
5dc562c5
JB
5986 /*
5987 * We could have gotten an inode number from somebody who was fsynced
5988 * and then removed in this same transaction, so let's just set full
5989 * sync since it will be a full sync anyway and this will blow away the
5990 * old info in the log.
5991 */
5992 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5993
9c58309d 5994 key[0].objectid = objectid;
962a298f 5995 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
5996 key[0].offset = 0;
5997
9c58309d 5998 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
5999
6000 if (name) {
6001 /*
6002 * Start new inodes with an inode_ref. This is slightly more
6003 * efficient for small numbers of hard links since they will
6004 * be packed into one item. Extended refs will kick in if we
6005 * add more hard links than can fit in the ref item.
6006 */
6007 key[1].objectid = objectid;
962a298f 6008 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6009 key[1].offset = ref_objectid;
6010
6011 sizes[1] = name_len + sizeof(*ref);
6012 }
9c58309d 6013
b0d5d10f
CM
6014 location = &BTRFS_I(inode)->location;
6015 location->objectid = objectid;
6016 location->offset = 0;
962a298f 6017 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6018
6019 ret = btrfs_insert_inode_locked(inode);
32955c54
AV
6020 if (ret < 0) {
6021 iput(inode);
b0d5d10f 6022 goto fail;
32955c54 6023 }
b0d5d10f 6024
b9473439 6025 path->leave_spinning = 1;
ef3b9af5 6026 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6027 if (ret != 0)
b0d5d10f 6028 goto fail_unlock;
5f39d397 6029
ecc11fab 6030 inode_init_owner(inode, dir, mode);
a76a3cd4 6031 inode_set_bytes(inode, 0);
9cc97d64 6032
c2050a45 6033 inode->i_mtime = current_time(inode);
9cc97d64 6034 inode->i_atime = inode->i_mtime;
6035 inode->i_ctime = inode->i_mtime;
d3c6be6f 6036 BTRFS_I(inode)->i_otime = inode->i_mtime;
9cc97d64 6037
5f39d397
CM
6038 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6039 struct btrfs_inode_item);
b159fa28 6040 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6041 sizeof(*inode_item));
e02119d5 6042 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6043
ef3b9af5
FM
6044 if (name) {
6045 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6046 struct btrfs_inode_ref);
6047 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6048 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6049 ptr = (unsigned long)(ref + 1);
6050 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6051 }
9c58309d 6052
5f39d397
CM
6053 btrfs_mark_buffer_dirty(path->nodes[0]);
6054 btrfs_free_path(path);
6055
6cbff00f
CH
6056 btrfs_inherit_iflags(inode, dir);
6057
569254b0 6058 if (S_ISREG(mode)) {
0b246afa 6059 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6060 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6061 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6062 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6063 BTRFS_INODE_NODATASUM;
94272164
CM
6064 }
6065
5d4f98a2 6066 inode_tree_add(inode);
1abe9b8a 6067
6068 trace_btrfs_inode_new(inode);
d9094414 6069 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
1abe9b8a 6070
8ea05e3a
AB
6071 btrfs_update_root_times(trans, root);
6072
63541927
FDBM
6073 ret = btrfs_inode_inherit_props(trans, inode, dir);
6074 if (ret)
0b246afa 6075 btrfs_err(fs_info,
63541927 6076 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6077 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6078
39279cc3 6079 return inode;
b0d5d10f
CM
6080
6081fail_unlock:
32955c54 6082 discard_new_inode(inode);
5f39d397 6083fail:
ef3b9af5 6084 if (dir && name)
aec7477b 6085 BTRFS_I(dir)->index_cnt--;
5f39d397
CM
6086 btrfs_free_path(path);
6087 return ERR_PTR(ret);
39279cc3
CM
6088}
6089
d352ac68
CM
6090/*
6091 * utility function to add 'inode' into 'parent_inode' with
6092 * a give name and a given sequence number.
6093 * if 'add_backref' is true, also insert a backref from the
6094 * inode to the parent directory.
6095 */
e02119d5 6096int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6097 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6098 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6099{
4df27c4d 6100 int ret = 0;
39279cc3 6101 struct btrfs_key key;
db0a669f
NB
6102 struct btrfs_root *root = parent_inode->root;
6103 u64 ino = btrfs_ino(inode);
6104 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6105
33345d01 6106 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6107 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6108 } else {
33345d01 6109 key.objectid = ino;
962a298f 6110 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6111 key.offset = 0;
6112 }
6113
33345d01 6114 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6025c19f 6115 ret = btrfs_add_root_ref(trans, key.objectid,
0b246afa
JM
6116 root->root_key.objectid, parent_ino,
6117 index, name, name_len);
4df27c4d 6118 } else if (add_backref) {
33345d01
LZ
6119 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6120 parent_ino, index);
4df27c4d 6121 }
39279cc3 6122
79787eaa
JM
6123 /* Nothing to clean up yet */
6124 if (ret)
6125 return ret;
4df27c4d 6126
684572df 6127 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
db0a669f 6128 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6129 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6130 goto fail_dir_item;
6131 else if (ret) {
66642832 6132 btrfs_abort_transaction(trans, ret);
79787eaa 6133 return ret;
39279cc3 6134 }
79787eaa 6135
db0a669f 6136 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6137 name_len * 2);
db0a669f 6138 inode_inc_iversion(&parent_inode->vfs_inode);
5338e43a
FM
6139 /*
6140 * If we are replaying a log tree, we do not want to update the mtime
6141 * and ctime of the parent directory with the current time, since the
6142 * log replay procedure is responsible for setting them to their correct
6143 * values (the ones it had when the fsync was done).
6144 */
6145 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6146 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6147
6148 parent_inode->vfs_inode.i_mtime = now;
6149 parent_inode->vfs_inode.i_ctime = now;
6150 }
db0a669f 6151 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6152 if (ret)
66642832 6153 btrfs_abort_transaction(trans, ret);
39279cc3 6154 return ret;
fe66a05a
CM
6155
6156fail_dir_item:
6157 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6158 u64 local_index;
6159 int err;
3ee1c553 6160 err = btrfs_del_root_ref(trans, key.objectid,
0b246afa
JM
6161 root->root_key.objectid, parent_ino,
6162 &local_index, name, name_len);
1690dd41
JT
6163 if (err)
6164 btrfs_abort_transaction(trans, err);
fe66a05a
CM
6165 } else if (add_backref) {
6166 u64 local_index;
6167 int err;
6168
6169 err = btrfs_del_inode_ref(trans, root, name, name_len,
6170 ino, parent_ino, &local_index);
1690dd41
JT
6171 if (err)
6172 btrfs_abort_transaction(trans, err);
fe66a05a 6173 }
1690dd41
JT
6174
6175 /* Return the original error code */
fe66a05a 6176 return ret;
39279cc3
CM
6177}
6178
6179static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6180 struct btrfs_inode *dir, struct dentry *dentry,
6181 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6182{
a1b075d2
JB
6183 int err = btrfs_add_link(trans, dir, inode,
6184 dentry->d_name.name, dentry->d_name.len,
6185 backref, index);
39279cc3
CM
6186 if (err > 0)
6187 err = -EEXIST;
6188 return err;
6189}
6190
618e21d5 6191static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6192 umode_t mode, dev_t rdev)
618e21d5 6193{
2ff7e61e 6194 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6195 struct btrfs_trans_handle *trans;
6196 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6197 struct inode *inode = NULL;
618e21d5 6198 int err;
618e21d5 6199 u64 objectid;
00e4e6b3 6200 u64 index = 0;
618e21d5 6201
9ed74f2d
JB
6202 /*
6203 * 2 for inode item and ref
6204 * 2 for dir items
6205 * 1 for xattr if selinux is on
6206 */
a22285a6
YZ
6207 trans = btrfs_start_transaction(root, 5);
6208 if (IS_ERR(trans))
6209 return PTR_ERR(trans);
1832a6d5 6210
581bb050
LZ
6211 err = btrfs_find_free_ino(root, &objectid);
6212 if (err)
6213 goto out_unlock;
6214
aec7477b 6215 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6216 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6217 mode, &index);
7cf96da3
TI
6218 if (IS_ERR(inode)) {
6219 err = PTR_ERR(inode);
32955c54 6220 inode = NULL;
618e21d5 6221 goto out_unlock;
7cf96da3 6222 }
618e21d5 6223
ad19db71
CS
6224 /*
6225 * If the active LSM wants to access the inode during
6226 * d_instantiate it needs these. Smack checks to see
6227 * if the filesystem supports xattrs by looking at the
6228 * ops vector.
6229 */
ad19db71 6230 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6231 init_special_inode(inode, inode->i_mode, rdev);
6232
6233 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6234 if (err)
32955c54 6235 goto out_unlock;
b0d5d10f 6236
cef415af
NB
6237 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6238 0, index);
32955c54
AV
6239 if (err)
6240 goto out_unlock;
6241
6242 btrfs_update_inode(trans, root, inode);
6243 d_instantiate_new(dentry, inode);
b0d5d10f 6244
618e21d5 6245out_unlock:
3a45bb20 6246 btrfs_end_transaction(trans);
2ff7e61e 6247 btrfs_btree_balance_dirty(fs_info);
32955c54 6248 if (err && inode) {
618e21d5 6249 inode_dec_link_count(inode);
32955c54 6250 discard_new_inode(inode);
618e21d5 6251 }
618e21d5
JB
6252 return err;
6253}
6254
39279cc3 6255static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6256 umode_t mode, bool excl)
39279cc3 6257{
2ff7e61e 6258 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6259 struct btrfs_trans_handle *trans;
6260 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6261 struct inode *inode = NULL;
a22285a6 6262 int err;
39279cc3 6263 u64 objectid;
00e4e6b3 6264 u64 index = 0;
39279cc3 6265
9ed74f2d
JB
6266 /*
6267 * 2 for inode item and ref
6268 * 2 for dir items
6269 * 1 for xattr if selinux is on
6270 */
a22285a6
YZ
6271 trans = btrfs_start_transaction(root, 5);
6272 if (IS_ERR(trans))
6273 return PTR_ERR(trans);
9ed74f2d 6274
581bb050
LZ
6275 err = btrfs_find_free_ino(root, &objectid);
6276 if (err)
6277 goto out_unlock;
6278
aec7477b 6279 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6280 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6281 mode, &index);
7cf96da3
TI
6282 if (IS_ERR(inode)) {
6283 err = PTR_ERR(inode);
32955c54 6284 inode = NULL;
39279cc3 6285 goto out_unlock;
7cf96da3 6286 }
ad19db71
CS
6287 /*
6288 * If the active LSM wants to access the inode during
6289 * d_instantiate it needs these. Smack checks to see
6290 * if the filesystem supports xattrs by looking at the
6291 * ops vector.
6292 */
6293 inode->i_fop = &btrfs_file_operations;
6294 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6295 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6296
6297 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6298 if (err)
32955c54 6299 goto out_unlock;
b0d5d10f
CM
6300
6301 err = btrfs_update_inode(trans, root, inode);
6302 if (err)
32955c54 6303 goto out_unlock;
ad19db71 6304
cef415af
NB
6305 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6306 0, index);
39279cc3 6307 if (err)
32955c54 6308 goto out_unlock;
43baa579 6309
43baa579 6310 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1e2e547a 6311 d_instantiate_new(dentry, inode);
43baa579 6312
39279cc3 6313out_unlock:
3a45bb20 6314 btrfs_end_transaction(trans);
32955c54 6315 if (err && inode) {
39279cc3 6316 inode_dec_link_count(inode);
32955c54 6317 discard_new_inode(inode);
39279cc3 6318 }
2ff7e61e 6319 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6320 return err;
6321}
6322
6323static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6324 struct dentry *dentry)
6325{
271dba45 6326 struct btrfs_trans_handle *trans = NULL;
39279cc3 6327 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6328 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6329 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6330 u64 index;
39279cc3
CM
6331 int err;
6332 int drop_inode = 0;
6333
4a8be425 6334 /* do not allow sys_link's with other subvols of the same device */
4fd786e6 6335 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
3ab3564f 6336 return -EXDEV;
4a8be425 6337
f186373f 6338 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6339 return -EMLINK;
4a8be425 6340
877574e2 6341 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6342 if (err)
6343 goto fail;
6344
a22285a6 6345 /*
7e6b6465 6346 * 2 items for inode and inode ref
a22285a6 6347 * 2 items for dir items
7e6b6465 6348 * 1 item for parent inode
399b0bbf 6349 * 1 item for orphan item deletion if O_TMPFILE
a22285a6 6350 */
399b0bbf 6351 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
a22285a6
YZ
6352 if (IS_ERR(trans)) {
6353 err = PTR_ERR(trans);
271dba45 6354 trans = NULL;
a22285a6
YZ
6355 goto fail;
6356 }
5f39d397 6357
67de1176
MX
6358 /* There are several dir indexes for this inode, clear the cache. */
6359 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6360 inc_nlink(inode);
0c4d2d95 6361 inode_inc_iversion(inode);
c2050a45 6362 inode->i_ctime = current_time(inode);
7de9c6ee 6363 ihold(inode);
e9976151 6364 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6365
cef415af
NB
6366 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6367 1, index);
5f39d397 6368
a5719521 6369 if (err) {
54aa1f4d 6370 drop_inode = 1;
a5719521 6371 } else {
10d9f309 6372 struct dentry *parent = dentry->d_parent;
d4682ba0
FM
6373 int ret;
6374
a5719521 6375 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6376 if (err)
6377 goto fail;
ef3b9af5
FM
6378 if (inode->i_nlink == 1) {
6379 /*
6380 * If new hard link count is 1, it's a file created
6381 * with open(2) O_TMPFILE flag.
6382 */
3d6ae7bb 6383 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6384 if (err)
6385 goto fail;
6386 }
08c422c2 6387 d_instantiate(dentry, inode);
d4682ba0
FM
6388 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6389 true, NULL);
6390 if (ret == BTRFS_NEED_TRANS_COMMIT) {
6391 err = btrfs_commit_transaction(trans);
6392 trans = NULL;
6393 }
a5719521 6394 }
39279cc3 6395
1832a6d5 6396fail:
271dba45 6397 if (trans)
3a45bb20 6398 btrfs_end_transaction(trans);
39279cc3
CM
6399 if (drop_inode) {
6400 inode_dec_link_count(inode);
6401 iput(inode);
6402 }
2ff7e61e 6403 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6404 return err;
6405}
6406
18bb1db3 6407static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6408{
2ff7e61e 6409 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6410 struct inode *inode = NULL;
39279cc3
CM
6411 struct btrfs_trans_handle *trans;
6412 struct btrfs_root *root = BTRFS_I(dir)->root;
6413 int err = 0;
b9d86667 6414 u64 objectid = 0;
00e4e6b3 6415 u64 index = 0;
39279cc3 6416
9ed74f2d
JB
6417 /*
6418 * 2 items for inode and ref
6419 * 2 items for dir items
6420 * 1 for xattr if selinux is on
6421 */
a22285a6
YZ
6422 trans = btrfs_start_transaction(root, 5);
6423 if (IS_ERR(trans))
6424 return PTR_ERR(trans);
39279cc3 6425
581bb050
LZ
6426 err = btrfs_find_free_ino(root, &objectid);
6427 if (err)
6428 goto out_fail;
6429
aec7477b 6430 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6431 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6432 S_IFDIR | mode, &index);
39279cc3
CM
6433 if (IS_ERR(inode)) {
6434 err = PTR_ERR(inode);
32955c54 6435 inode = NULL;
39279cc3
CM
6436 goto out_fail;
6437 }
5f39d397 6438
b0d5d10f
CM
6439 /* these must be set before we unlock the inode */
6440 inode->i_op = &btrfs_dir_inode_operations;
6441 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6442
2a7dba39 6443 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6444 if (err)
32955c54 6445 goto out_fail;
39279cc3 6446
6ef06d27 6447 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6448 err = btrfs_update_inode(trans, root, inode);
6449 if (err)
32955c54 6450 goto out_fail;
5f39d397 6451
db0a669f
NB
6452 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6453 dentry->d_name.name,
6454 dentry->d_name.len, 0, index);
39279cc3 6455 if (err)
32955c54 6456 goto out_fail;
5f39d397 6457
1e2e547a 6458 d_instantiate_new(dentry, inode);
39279cc3
CM
6459
6460out_fail:
3a45bb20 6461 btrfs_end_transaction(trans);
32955c54 6462 if (err && inode) {
c7cfb8a5 6463 inode_dec_link_count(inode);
32955c54 6464 discard_new_inode(inode);
c7cfb8a5 6465 }
2ff7e61e 6466 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6467 return err;
6468}
6469
c8b97818 6470static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6471 struct page *page,
c8b97818
CM
6472 size_t pg_offset, u64 extent_offset,
6473 struct btrfs_file_extent_item *item)
6474{
6475 int ret;
6476 struct extent_buffer *leaf = path->nodes[0];
6477 char *tmp;
6478 size_t max_size;
6479 unsigned long inline_size;
6480 unsigned long ptr;
261507a0 6481 int compress_type;
c8b97818
CM
6482
6483 WARN_ON(pg_offset != 0);
261507a0 6484 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6485 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6486 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6487 btrfs_item_nr(path->slots[0]));
c8b97818 6488 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6489 if (!tmp)
6490 return -ENOMEM;
c8b97818
CM
6491 ptr = btrfs_file_extent_inline_start(item);
6492
6493 read_extent_buffer(leaf, tmp, ptr, inline_size);
6494
09cbfeaf 6495 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6496 ret = btrfs_decompress(compress_type, tmp, page,
6497 extent_offset, inline_size, max_size);
e1699d2d
ZB
6498
6499 /*
6500 * decompression code contains a memset to fill in any space between the end
6501 * of the uncompressed data and the end of max_size in case the decompressed
6502 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6503 * the end of an inline extent and the beginning of the next block, so we
6504 * cover that region here.
6505 */
6506
6507 if (max_size + pg_offset < PAGE_SIZE) {
6508 char *map = kmap(page);
6509 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6510 kunmap(page);
6511 }
c8b97818 6512 kfree(tmp);
166ae5a4 6513 return ret;
c8b97818
CM
6514}
6515
39b07b5d
OS
6516/**
6517 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6518 * @inode: file to search in
6519 * @page: page to read extent data into if the extent is inline
6520 * @pg_offset: offset into @page to copy to
6521 * @start: file offset
6522 * @len: length of range starting at @start
6523 *
6524 * This returns the first &struct extent_map which overlaps with the given
6525 * range, reading it from the B-tree and caching it if necessary. Note that
6526 * there may be more extents which overlap the given range after the returned
6527 * extent_map.
d352ac68 6528 *
39b07b5d
OS
6529 * If @page is not NULL and the extent is inline, this also reads the extent
6530 * data directly into the page and marks the extent up to date in the io_tree.
6531 *
6532 * Return: ERR_PTR on error, non-NULL extent_map on success.
d352ac68 6533 */
fc4f21b1 6534struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
6535 struct page *page, size_t pg_offset,
6536 u64 start, u64 len)
a52d9a80 6537{
3ffbd68c 6538 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a52d9a80
CM
6539 int ret;
6540 int err = 0;
a52d9a80
CM
6541 u64 extent_start = 0;
6542 u64 extent_end = 0;
fc4f21b1 6543 u64 objectid = btrfs_ino(inode);
7e74e235 6544 int extent_type = -1;
f421950f 6545 struct btrfs_path *path = NULL;
fc4f21b1 6546 struct btrfs_root *root = inode->root;
a52d9a80 6547 struct btrfs_file_extent_item *item;
5f39d397
CM
6548 struct extent_buffer *leaf;
6549 struct btrfs_key found_key;
a52d9a80 6550 struct extent_map *em = NULL;
fc4f21b1
NB
6551 struct extent_map_tree *em_tree = &inode->extent_tree;
6552 struct extent_io_tree *io_tree = &inode->io_tree;
a52d9a80 6553
890871be 6554 read_lock(&em_tree->lock);
d1310b2e 6555 em = lookup_extent_mapping(em_tree, start, len);
890871be 6556 read_unlock(&em_tree->lock);
d1310b2e 6557
a52d9a80 6558 if (em) {
e1c4b745
CM
6559 if (em->start > start || em->start + em->len <= start)
6560 free_extent_map(em);
6561 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6562 free_extent_map(em);
6563 else
6564 goto out;
a52d9a80 6565 }
172ddd60 6566 em = alloc_extent_map();
a52d9a80 6567 if (!em) {
d1310b2e
CM
6568 err = -ENOMEM;
6569 goto out;
a52d9a80 6570 }
d1310b2e 6571 em->start = EXTENT_MAP_HOLE;
445a6944 6572 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6573 em->len = (u64)-1;
c8b97818 6574 em->block_len = (u64)-1;
f421950f 6575
bee6ec82 6576 path = btrfs_alloc_path();
f421950f 6577 if (!path) {
bee6ec82
LB
6578 err = -ENOMEM;
6579 goto out;
f421950f
CM
6580 }
6581
bee6ec82
LB
6582 /* Chances are we'll be called again, so go ahead and do readahead */
6583 path->reada = READA_FORWARD;
6584
e49aabd9
LB
6585 /*
6586 * Unless we're going to uncompress the inline extent, no sleep would
6587 * happen.
6588 */
6589 path->leave_spinning = 1;
6590
5c9a702e 6591 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80
CM
6592 if (ret < 0) {
6593 err = ret;
6594 goto out;
b8eeab7f 6595 } else if (ret > 0) {
a52d9a80
CM
6596 if (path->slots[0] == 0)
6597 goto not_found;
6598 path->slots[0]--;
6599 }
6600
5f39d397
CM
6601 leaf = path->nodes[0];
6602 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6603 struct btrfs_file_extent_item);
5f39d397 6604 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5f39d397 6605 if (found_key.objectid != objectid ||
694c12ed 6606 found_key.type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6607 /*
6608 * If we backup past the first extent we want to move forward
6609 * and see if there is an extent in front of us, otherwise we'll
6610 * say there is a hole for our whole search range which can
6611 * cause problems.
6612 */
6613 extent_end = start;
6614 goto next;
a52d9a80
CM
6615 }
6616
694c12ed 6617 extent_type = btrfs_file_extent_type(leaf, item);
5f39d397 6618 extent_start = found_key.offset;
a5eeb3d1 6619 extent_end = btrfs_file_extent_end(path);
694c12ed
NB
6620 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6621 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6bf9e4bd
QW
6622 /* Only regular file could have regular/prealloc extent */
6623 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6624 ret = -EUCLEAN;
6625 btrfs_crit(fs_info,
6626 "regular/prealloc extent found for non-regular inode %llu",
6627 btrfs_ino(inode));
6628 goto out;
6629 }
09ed2f16
LB
6630 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6631 extent_start);
694c12ed 6632 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
09ed2f16
LB
6633 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6634 path->slots[0],
6635 extent_start);
9036c102 6636 }
25a50341 6637next:
9036c102
YZ
6638 if (start >= extent_end) {
6639 path->slots[0]++;
6640 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6641 ret = btrfs_next_leaf(root, path);
6642 if (ret < 0) {
6643 err = ret;
6644 goto out;
b8eeab7f 6645 } else if (ret > 0) {
9036c102 6646 goto not_found;
b8eeab7f 6647 }
9036c102 6648 leaf = path->nodes[0];
a52d9a80 6649 }
9036c102
YZ
6650 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6651 if (found_key.objectid != objectid ||
6652 found_key.type != BTRFS_EXTENT_DATA_KEY)
6653 goto not_found;
6654 if (start + len <= found_key.offset)
6655 goto not_found;
e2eca69d
WS
6656 if (start > found_key.offset)
6657 goto next;
02a033df
NB
6658
6659 /* New extent overlaps with existing one */
9036c102 6660 em->start = start;
70c8a91c 6661 em->orig_start = start;
9036c102 6662 em->len = found_key.offset - start;
02a033df
NB
6663 em->block_start = EXTENT_MAP_HOLE;
6664 goto insert;
9036c102
YZ
6665 }
6666
39b07b5d 6667 btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
7ffbb598 6668
694c12ed
NB
6669 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6670 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6671 goto insert;
694c12ed 6672 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6673 unsigned long ptr;
a52d9a80 6674 char *map;
3326d1b0
CM
6675 size_t size;
6676 size_t extent_offset;
6677 size_t copy_size;
a52d9a80 6678
39b07b5d 6679 if (!page)
689f9346 6680 goto out;
5f39d397 6681
e41ca589 6682 size = btrfs_file_extent_ram_bytes(leaf, item);
9036c102 6683 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6684 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6685 size - extent_offset);
3326d1b0 6686 em->start = extent_start + extent_offset;
0b246afa 6687 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 6688 em->orig_block_len = em->len;
70c8a91c 6689 em->orig_start = em->start;
689f9346 6690 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
e49aabd9
LB
6691
6692 btrfs_set_path_blocking(path);
bf46f52d 6693 if (!PageUptodate(page)) {
261507a0
LZ
6694 if (btrfs_file_extent_compression(leaf, item) !=
6695 BTRFS_COMPRESS_NONE) {
e40da0e5 6696 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6697 extent_offset, item);
166ae5a4
ZB
6698 if (ret) {
6699 err = ret;
6700 goto out;
6701 }
c8b97818
CM
6702 } else {
6703 map = kmap(page);
6704 read_extent_buffer(leaf, map + pg_offset, ptr,
6705 copy_size);
09cbfeaf 6706 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6707 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6708 PAGE_SIZE - pg_offset -
93c82d57
CM
6709 copy_size);
6710 }
c8b97818
CM
6711 kunmap(page);
6712 }
179e29e4 6713 flush_dcache_page(page);
a52d9a80 6714 }
d1310b2e 6715 set_extent_uptodate(io_tree, em->start,
507903b8 6716 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6717 goto insert;
a52d9a80
CM
6718 }
6719not_found:
6720 em->start = start;
70c8a91c 6721 em->orig_start = start;
d1310b2e 6722 em->len = len;
5f39d397 6723 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 6724insert:
b3b4aa74 6725 btrfs_release_path(path);
d1310b2e 6726 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 6727 btrfs_err(fs_info,
5d163e0e
JM
6728 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6729 em->start, em->len, start, len);
a52d9a80
CM
6730 err = -EIO;
6731 goto out;
6732 }
d1310b2e
CM
6733
6734 err = 0;
890871be 6735 write_lock(&em_tree->lock);
f46b24c9 6736 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
890871be 6737 write_unlock(&em_tree->lock);
a52d9a80 6738out:
c6414280 6739 btrfs_free_path(path);
1abe9b8a 6740
fc4f21b1 6741 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 6742
a52d9a80
CM
6743 if (err) {
6744 free_extent_map(em);
a52d9a80
CM
6745 return ERR_PTR(err);
6746 }
79787eaa 6747 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6748 return em;
6749}
6750
fc4f21b1 6751struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
4ab47a8d 6752 u64 start, u64 len)
ec29ed5b
CM
6753{
6754 struct extent_map *em;
6755 struct extent_map *hole_em = NULL;
f3714ef4 6756 u64 delalloc_start = start;
ec29ed5b 6757 u64 end;
f3714ef4
NB
6758 u64 delalloc_len;
6759 u64 delalloc_end;
ec29ed5b
CM
6760 int err = 0;
6761
39b07b5d 6762 em = btrfs_get_extent(inode, NULL, 0, start, len);
ec29ed5b
CM
6763 if (IS_ERR(em))
6764 return em;
9986277e
DC
6765 /*
6766 * If our em maps to:
6767 * - a hole or
6768 * - a pre-alloc extent,
6769 * there might actually be delalloc bytes behind it.
6770 */
6771 if (em->block_start != EXTENT_MAP_HOLE &&
6772 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6773 return em;
6774 else
6775 hole_em = em;
ec29ed5b
CM
6776
6777 /* check to see if we've wrapped (len == -1 or similar) */
6778 end = start + len;
6779 if (end < start)
6780 end = (u64)-1;
6781 else
6782 end -= 1;
6783
6784 em = NULL;
6785
6786 /* ok, we didn't find anything, lets look for delalloc */
f3714ef4 6787 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
ec29ed5b 6788 end, len, EXTENT_DELALLOC, 1);
f3714ef4
NB
6789 delalloc_end = delalloc_start + delalloc_len;
6790 if (delalloc_end < delalloc_start)
6791 delalloc_end = (u64)-1;
ec29ed5b
CM
6792
6793 /*
f3714ef4
NB
6794 * We didn't find anything useful, return the original results from
6795 * get_extent()
ec29ed5b 6796 */
f3714ef4 6797 if (delalloc_start > end || delalloc_end <= start) {
ec29ed5b
CM
6798 em = hole_em;
6799 hole_em = NULL;
6800 goto out;
6801 }
6802
f3714ef4
NB
6803 /*
6804 * Adjust the delalloc_start to make sure it doesn't go backwards from
6805 * the start they passed in
ec29ed5b 6806 */
f3714ef4
NB
6807 delalloc_start = max(start, delalloc_start);
6808 delalloc_len = delalloc_end - delalloc_start;
ec29ed5b 6809
f3714ef4
NB
6810 if (delalloc_len > 0) {
6811 u64 hole_start;
02950af4 6812 u64 hole_len;
f3714ef4 6813 const u64 hole_end = extent_map_end(hole_em);
ec29ed5b 6814
172ddd60 6815 em = alloc_extent_map();
ec29ed5b
CM
6816 if (!em) {
6817 err = -ENOMEM;
6818 goto out;
6819 }
f3714ef4
NB
6820
6821 ASSERT(hole_em);
ec29ed5b 6822 /*
f3714ef4
NB
6823 * When btrfs_get_extent can't find anything it returns one
6824 * huge hole
ec29ed5b 6825 *
f3714ef4
NB
6826 * Make sure what it found really fits our range, and adjust to
6827 * make sure it is based on the start from the caller
ec29ed5b 6828 */
f3714ef4
NB
6829 if (hole_end <= start || hole_em->start > end) {
6830 free_extent_map(hole_em);
6831 hole_em = NULL;
6832 } else {
6833 hole_start = max(hole_em->start, start);
6834 hole_len = hole_end - hole_start;
ec29ed5b 6835 }
f3714ef4
NB
6836
6837 if (hole_em && delalloc_start > hole_start) {
6838 /*
6839 * Our hole starts before our delalloc, so we have to
6840 * return just the parts of the hole that go until the
6841 * delalloc starts
ec29ed5b 6842 */
f3714ef4 6843 em->len = min(hole_len, delalloc_start - hole_start);
ec29ed5b
CM
6844 em->start = hole_start;
6845 em->orig_start = hole_start;
6846 /*
f3714ef4
NB
6847 * Don't adjust block start at all, it is fixed at
6848 * EXTENT_MAP_HOLE
ec29ed5b
CM
6849 */
6850 em->block_start = hole_em->block_start;
6851 em->block_len = hole_len;
f9e4fb53
LB
6852 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6853 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b 6854 } else {
f3714ef4
NB
6855 /*
6856 * Hole is out of passed range or it starts after
6857 * delalloc range
6858 */
6859 em->start = delalloc_start;
6860 em->len = delalloc_len;
6861 em->orig_start = delalloc_start;
ec29ed5b 6862 em->block_start = EXTENT_MAP_DELALLOC;
f3714ef4 6863 em->block_len = delalloc_len;
ec29ed5b 6864 }
bf8d32b9 6865 } else {
ec29ed5b
CM
6866 return hole_em;
6867 }
6868out:
6869
6870 free_extent_map(hole_em);
6871 if (err) {
6872 free_extent_map(em);
6873 return ERR_PTR(err);
6874 }
6875 return em;
6876}
6877
64f54188 6878static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
5f9a8a51
FM
6879 const u64 start,
6880 const u64 len,
6881 const u64 orig_start,
6882 const u64 block_start,
6883 const u64 block_len,
6884 const u64 orig_block_len,
6885 const u64 ram_bytes,
6886 const int type)
6887{
6888 struct extent_map *em = NULL;
6889 int ret;
6890
5f9a8a51 6891 if (type != BTRFS_ORDERED_NOCOW) {
64f54188
NB
6892 em = create_io_em(inode, start, len, orig_start, block_start,
6893 block_len, orig_block_len, ram_bytes,
6f9994db
LB
6894 BTRFS_COMPRESS_NONE, /* compress_type */
6895 type);
5f9a8a51
FM
6896 if (IS_ERR(em))
6897 goto out;
6898 }
64f54188
NB
6899 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
6900 block_len, type);
5f9a8a51
FM
6901 if (ret) {
6902 if (em) {
6903 free_extent_map(em);
64f54188 6904 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5f9a8a51
FM
6905 }
6906 em = ERR_PTR(ret);
6907 }
6908 out:
5f9a8a51
FM
6909
6910 return em;
6911}
6912
9fc6f911 6913static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
4b46fce2
JB
6914 u64 start, u64 len)
6915{
9fc6f911
NB
6916 struct btrfs_root *root = inode->root;
6917 struct btrfs_fs_info *fs_info = root->fs_info;
70c8a91c 6918 struct extent_map *em;
4b46fce2
JB
6919 struct btrfs_key ins;
6920 u64 alloc_hint;
6921 int ret;
4b46fce2 6922
9fc6f911 6923 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 6924 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 6925 0, alloc_hint, &ins, 1, 1);
00361589
JB
6926 if (ret)
6927 return ERR_PTR(ret);
4b46fce2 6928
9fc6f911 6929 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
5f9a8a51 6930 ins.objectid, ins.offset, ins.offset,
6288d6ea 6931 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 6932 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 6933 if (IS_ERR(em))
9fc6f911
NB
6934 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
6935 1);
de0ee0ed 6936
4b46fce2
JB
6937 return em;
6938}
6939
46bfbb5c 6940/*
e4ecaf90
QW
6941 * Check if we can do nocow write into the range [@offset, @offset + @len)
6942 *
6943 * @offset: File offset
6944 * @len: The length to write, will be updated to the nocow writeable
6945 * range
6946 * @orig_start: (optional) Return the original file offset of the file extent
6947 * @orig_len: (optional) Return the original on-disk length of the file extent
6948 * @ram_bytes: (optional) Return the ram_bytes of the file extent
6949 *
6950 * This function will flush ordered extents in the range to ensure proper
6951 * nocow checks for (nowait == false) case.
6952 *
6953 * Return:
6954 * >0 and update @len if we can do nocow write
6955 * 0 if we can't do nocow write
6956 * <0 if error happened
6957 *
6958 * NOTE: This only checks the file extents, caller is responsible to wait for
6959 * any ordered extents.
46bfbb5c 6960 */
00361589 6961noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
6962 u64 *orig_start, u64 *orig_block_len,
6963 u64 *ram_bytes)
46bfbb5c 6964{
2ff7e61e 6965 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
6966 struct btrfs_path *path;
6967 int ret;
6968 struct extent_buffer *leaf;
6969 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 6970 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
6971 struct btrfs_file_extent_item *fi;
6972 struct btrfs_key key;
6973 u64 disk_bytenr;
6974 u64 backref_offset;
6975 u64 extent_end;
6976 u64 num_bytes;
6977 int slot;
6978 int found_type;
7ee9e440 6979 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 6980
46bfbb5c
CM
6981 path = btrfs_alloc_path();
6982 if (!path)
6983 return -ENOMEM;
6984
f85b7379
DS
6985 ret = btrfs_lookup_file_extent(NULL, root, path,
6986 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
6987 if (ret < 0)
6988 goto out;
6989
6990 slot = path->slots[0];
6991 if (ret == 1) {
6992 if (slot == 0) {
6993 /* can't find the item, must cow */
6994 ret = 0;
6995 goto out;
6996 }
6997 slot--;
6998 }
6999 ret = 0;
7000 leaf = path->nodes[0];
7001 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7002 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7003 key.type != BTRFS_EXTENT_DATA_KEY) {
7004 /* not our file or wrong item type, must cow */
7005 goto out;
7006 }
7007
7008 if (key.offset > offset) {
7009 /* Wrong offset, must cow */
7010 goto out;
7011 }
7012
7013 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7014 found_type = btrfs_file_extent_type(leaf, fi);
7015 if (found_type != BTRFS_FILE_EXTENT_REG &&
7016 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7017 /* not a regular extent, must cow */
7018 goto out;
7019 }
7ee9e440
JB
7020
7021 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7022 goto out;
7023
e77751aa
MX
7024 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7025 if (extent_end <= offset)
7026 goto out;
7027
46bfbb5c 7028 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7029 if (disk_bytenr == 0)
7030 goto out;
7031
7032 if (btrfs_file_extent_compression(leaf, fi) ||
7033 btrfs_file_extent_encryption(leaf, fi) ||
7034 btrfs_file_extent_other_encoding(leaf, fi))
7035 goto out;
7036
78d4295b
EL
7037 /*
7038 * Do the same check as in btrfs_cross_ref_exist but without the
7039 * unnecessary search.
7040 */
7041 if (btrfs_file_extent_generation(leaf, fi) <=
7042 btrfs_root_last_snapshot(&root->root_item))
7043 goto out;
7044
46bfbb5c
CM
7045 backref_offset = btrfs_file_extent_offset(leaf, fi);
7046
7ee9e440
JB
7047 if (orig_start) {
7048 *orig_start = key.offset - backref_offset;
7049 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7050 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7051 }
eb384b55 7052
2ff7e61e 7053 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7054 goto out;
7b2b7085
MX
7055
7056 num_bytes = min(offset + *len, extent_end) - offset;
7057 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7058 u64 range_end;
7059
da17066c
JM
7060 range_end = round_up(offset + num_bytes,
7061 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7062 ret = test_range_bit(io_tree, offset, range_end,
7063 EXTENT_DELALLOC, 0, NULL);
7064 if (ret) {
7065 ret = -EAGAIN;
7066 goto out;
7067 }
7068 }
7069
1bda19eb 7070 btrfs_release_path(path);
46bfbb5c
CM
7071
7072 /*
7073 * look for other files referencing this extent, if we
7074 * find any we must cow
7075 */
00361589 7076
e4c3b2dc 7077 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7078 key.offset - backref_offset, disk_bytenr);
00361589
JB
7079 if (ret) {
7080 ret = 0;
7081 goto out;
7082 }
46bfbb5c
CM
7083
7084 /*
7085 * adjust disk_bytenr and num_bytes to cover just the bytes
7086 * in this extent we are about to write. If there
7087 * are any csums in that range we have to cow in order
7088 * to keep the csums correct
7089 */
7090 disk_bytenr += backref_offset;
7091 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7092 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7093 goto out;
46bfbb5c
CM
7094 /*
7095 * all of the above have passed, it is safe to overwrite this extent
7096 * without cow
7097 */
eb384b55 7098 *len = num_bytes;
46bfbb5c
CM
7099 ret = 1;
7100out:
7101 btrfs_free_path(path);
7102 return ret;
7103}
7104
eb838e73 7105static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
55e20bd1 7106 struct extent_state **cached_state, int writing)
eb838e73
JB
7107{
7108 struct btrfs_ordered_extent *ordered;
7109 int ret = 0;
7110
7111 while (1) {
7112 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7113 cached_state);
eb838e73
JB
7114 /*
7115 * We're concerned with the entire range that we're going to be
01327610 7116 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7117 * extents in this range.
7118 */
a776c6fa 7119 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7120 lockend - lockstart + 1);
7121
7122 /*
7123 * We need to make sure there are no buffered pages in this
7124 * range either, we could have raced between the invalidate in
7125 * generic_file_direct_write and locking the extent. The
7126 * invalidate needs to happen so that reads after a write do not
7127 * get stale data.
7128 */
fc4adbff 7129 if (!ordered &&
051c98eb
DS
7130 (!writing || !filemap_range_has_page(inode->i_mapping,
7131 lockstart, lockend)))
eb838e73
JB
7132 break;
7133
7134 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 7135 cached_state);
eb838e73
JB
7136
7137 if (ordered) {
ade77029
FM
7138 /*
7139 * If we are doing a DIO read and the ordered extent we
7140 * found is for a buffered write, we can not wait for it
7141 * to complete and retry, because if we do so we can
7142 * deadlock with concurrent buffered writes on page
7143 * locks. This happens only if our DIO read covers more
7144 * than one extent map, if at this point has already
7145 * created an ordered extent for a previous extent map
7146 * and locked its range in the inode's io tree, and a
7147 * concurrent write against that previous extent map's
7148 * range and this range started (we unlock the ranges
7149 * in the io tree only when the bios complete and
7150 * buffered writes always lock pages before attempting
7151 * to lock range in the io tree).
7152 */
7153 if (writing ||
7154 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7155 btrfs_start_ordered_extent(inode, ordered, 1);
7156 else
7157 ret = -ENOTBLK;
eb838e73
JB
7158 btrfs_put_ordered_extent(ordered);
7159 } else {
eb838e73 7160 /*
b850ae14
FM
7161 * We could trigger writeback for this range (and wait
7162 * for it to complete) and then invalidate the pages for
7163 * this range (through invalidate_inode_pages2_range()),
7164 * but that can lead us to a deadlock with a concurrent
ba206a02 7165 * call to readahead (a buffered read or a defrag call
b850ae14
FM
7166 * triggered a readahead) on a page lock due to an
7167 * ordered dio extent we created before but did not have
7168 * yet a corresponding bio submitted (whence it can not
ba206a02 7169 * complete), which makes readahead wait for that
b850ae14
FM
7170 * ordered extent to complete while holding a lock on
7171 * that page.
eb838e73 7172 */
b850ae14 7173 ret = -ENOTBLK;
eb838e73
JB
7174 }
7175
ade77029
FM
7176 if (ret)
7177 break;
7178
eb838e73
JB
7179 cond_resched();
7180 }
7181
7182 return ret;
7183}
7184
6f9994db 7185/* The callers of this must take lock_extent() */
4b67c11d
NB
7186static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7187 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
7188 u64 block_len, u64 orig_block_len,
7189 u64 ram_bytes, int compress_type,
7190 int type)
69ffb543
JB
7191{
7192 struct extent_map_tree *em_tree;
7193 struct extent_map *em;
69ffb543
JB
7194 int ret;
7195
6f9994db
LB
7196 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7197 type == BTRFS_ORDERED_COMPRESSED ||
7198 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7199 type == BTRFS_ORDERED_REGULAR);
6f9994db 7200
4b67c11d 7201 em_tree = &inode->extent_tree;
69ffb543
JB
7202 em = alloc_extent_map();
7203 if (!em)
7204 return ERR_PTR(-ENOMEM);
7205
7206 em->start = start;
7207 em->orig_start = orig_start;
7208 em->len = len;
7209 em->block_len = block_len;
7210 em->block_start = block_start;
b4939680 7211 em->orig_block_len = orig_block_len;
cc95bef6 7212 em->ram_bytes = ram_bytes;
70c8a91c 7213 em->generation = -1;
69ffb543 7214 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7215 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7216 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7217 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7218 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7219 em->compress_type = compress_type;
7220 }
69ffb543
JB
7221
7222 do {
4b67c11d
NB
7223 btrfs_drop_extent_cache(inode, em->start,
7224 em->start + em->len - 1, 0);
69ffb543 7225 write_lock(&em_tree->lock);
09a2a8f9 7226 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7227 write_unlock(&em_tree->lock);
6f9994db
LB
7228 /*
7229 * The caller has taken lock_extent(), who could race with us
7230 * to add em?
7231 */
69ffb543
JB
7232 } while (ret == -EEXIST);
7233
7234 if (ret) {
7235 free_extent_map(em);
7236 return ERR_PTR(ret);
7237 }
7238
6f9994db 7239 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7240 return em;
7241}
7242
1c8d0175 7243
55e20bd1
DS
7244static int btrfs_get_blocks_direct_read(struct extent_map *em,
7245 struct buffer_head *bh_result,
7246 struct inode *inode,
7247 u64 start, u64 len)
7248{
7249 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7250
7251 if (em->block_start == EXTENT_MAP_HOLE ||
7252 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7253 return -ENOENT;
7254
7255 len = min(len, em->len - (start - em->start));
7256
7257 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7258 inode->i_blkbits;
7259 bh_result->b_size = len;
7260 bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7261 set_buffer_mapped(bh_result);
7262
7263 return 0;
7264}
7265
c5794e51 7266static int btrfs_get_blocks_direct_write(struct extent_map **map,
55e20bd1 7267 struct buffer_head *bh_result,
c5794e51
NB
7268 struct inode *inode,
7269 struct btrfs_dio_data *dio_data,
7270 u64 start, u64 len)
7271{
7272 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7273 struct extent_map *em = *map;
7274 int ret = 0;
7275
7276 /*
7277 * We don't allocate a new extent in the following cases
7278 *
7279 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7280 * existing extent.
7281 * 2) The extent is marked as PREALLOC. We're good to go here and can
7282 * just use the extent.
7283 *
7284 */
7285 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7286 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7287 em->block_start != EXTENT_MAP_HOLE)) {
7288 int type;
7289 u64 block_start, orig_start, orig_block_len, ram_bytes;
7290
7291 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7292 type = BTRFS_ORDERED_PREALLOC;
7293 else
7294 type = BTRFS_ORDERED_NOCOW;
7295 len = min(len, em->len - (start - em->start));
7296 block_start = em->block_start + (start - em->start);
7297
7298 if (can_nocow_extent(inode, start, &len, &orig_start,
7299 &orig_block_len, &ram_bytes) == 1 &&
7300 btrfs_inc_nocow_writers(fs_info, block_start)) {
7301 struct extent_map *em2;
7302
64f54188 7303 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
c5794e51
NB
7304 orig_start, block_start,
7305 len, orig_block_len,
7306 ram_bytes, type);
7307 btrfs_dec_nocow_writers(fs_info, block_start);
7308 if (type == BTRFS_ORDERED_PREALLOC) {
7309 free_extent_map(em);
7310 *map = em = em2;
7311 }
7312
7313 if (em2 && IS_ERR(em2)) {
7314 ret = PTR_ERR(em2);
7315 goto out;
7316 }
7317 /*
7318 * For inode marked NODATACOW or extent marked PREALLOC,
7319 * use the existing or preallocated extent, so does not
7320 * need to adjust btrfs_space_info's bytes_may_use.
7321 */
9db5d510 7322 btrfs_free_reserved_data_space_noquota(fs_info, len);
c5794e51
NB
7323 goto skip_cow;
7324 }
7325 }
7326
7327 /* this will cow the extent */
55e20bd1 7328 len = bh_result->b_size;
c5794e51 7329 free_extent_map(em);
9fc6f911 7330 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
c5794e51
NB
7331 if (IS_ERR(em)) {
7332 ret = PTR_ERR(em);
7333 goto out;
7334 }
7335
7336 len = min(len, em->len - (start - em->start));
7337
7338skip_cow:
55e20bd1
DS
7339 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7340 inode->i_blkbits;
7341 bh_result->b_size = len;
7342 bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7343 set_buffer_mapped(bh_result);
7344
7345 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7346 set_buffer_new(bh_result);
7347
c5794e51
NB
7348 /*
7349 * Need to update the i_size under the extent lock so buffered
7350 * readers will get the updated i_size when we unlock.
7351 */
55e20bd1 7352 if (!dio_data->overwrite && start + len > i_size_read(inode))
c5794e51
NB
7353 i_size_write(inode, start + len);
7354
55e20bd1 7355 WARN_ON(dio_data->reserve < len);
c5794e51 7356 dio_data->reserve -= len;
55e20bd1
DS
7357 dio_data->unsubmitted_oe_range_end = start + len;
7358 current->journal_info = dio_data;
c5794e51
NB
7359out:
7360 return ret;
7361}
7362
55e20bd1
DS
7363static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7364 struct buffer_head *bh_result, int create)
4b46fce2 7365{
0b246afa 7366 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7367 struct extent_map *em;
eb838e73 7368 struct extent_state *cached_state = NULL;
50745b0a 7369 struct btrfs_dio_data *dio_data = NULL;
55e20bd1 7370 u64 start = iblock << inode->i_blkbits;
eb838e73 7371 u64 lockstart, lockend;
55e20bd1 7372 u64 len = bh_result->b_size;
0934856d 7373 int ret = 0;
eb838e73 7374
55e20bd1 7375 if (!create)
0b246afa 7376 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7377
c329861d
JB
7378 lockstart = start;
7379 lockend = start + len - 1;
7380
55e20bd1
DS
7381 if (current->journal_info) {
7382 /*
7383 * Need to pull our outstanding extents and set journal_info to NULL so
7384 * that anything that needs to check if there's a transaction doesn't get
7385 * confused.
7386 */
7387 dio_data = current->journal_info;
7388 current->journal_info = NULL;
e1cbbfa5
JB
7389 }
7390
eb838e73
JB
7391 /*
7392 * If this errors out it's because we couldn't invalidate pagecache for
7393 * this range and we need to fallback to buffered.
7394 */
55e20bd1
DS
7395 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7396 create)) {
9c9464cc
FM
7397 ret = -ENOTBLK;
7398 goto err;
7399 }
eb838e73 7400
39b07b5d 7401 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
eb838e73
JB
7402 if (IS_ERR(em)) {
7403 ret = PTR_ERR(em);
7404 goto unlock_err;
7405 }
4b46fce2
JB
7406
7407 /*
7408 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7409 * io. INLINE is special, and we could probably kludge it in here, but
7410 * it's still buffered so for safety lets just fall back to the generic
7411 * buffered path.
7412 *
7413 * For COMPRESSED we _have_ to read the entire extent in so we can
7414 * decompress it, so there will be buffering required no matter what we
7415 * do, so go ahead and fallback to buffered.
7416 *
01327610 7417 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7418 * to buffered IO. Don't blame me, this is the price we pay for using
7419 * the generic code.
7420 */
7421 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7422 em->block_start == EXTENT_MAP_INLINE) {
7423 free_extent_map(em);
eb838e73
JB
7424 ret = -ENOTBLK;
7425 goto unlock_err;
4b46fce2
JB
7426 }
7427
55e20bd1
DS
7428 if (create) {
7429 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7430 dio_data, start, len);
c5794e51
NB
7431 if (ret < 0)
7432 goto unlock_err;
55e20bd1
DS
7433
7434 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
7435 lockend, &cached_state);
c5794e51 7436 } else {
55e20bd1
DS
7437 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7438 start, len);
7439 /* Can be negative only if we read from a hole */
7440 if (ret < 0) {
7441 ret = 0;
7442 free_extent_map(em);
7443 goto unlock_err;
7444 }
1c8d0175
NB
7445 /*
7446 * We need to unlock only the end area that we aren't using.
7447 * The rest is going to be unlocked by the endio routine.
7448 */
55e20bd1
DS
7449 lockstart = start + bh_result->b_size;
7450 if (lockstart < lockend) {
7451 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7452 lockstart, lockend, &cached_state);
7453 } else {
7454 free_extent_state(cached_state);
7455 }
a43a67a2 7456 }
a43a67a2 7457
4b46fce2
JB
7458 free_extent_map(em);
7459
7460 return 0;
eb838e73
JB
7461
7462unlock_err:
e182163d
OS
7463 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7464 &cached_state);
9c9464cc 7465err:
55e20bd1
DS
7466 if (dio_data)
7467 current->journal_info = dio_data;
8b110e39
MX
7468 return ret;
7469}
7470
769b4f24 7471static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
8b110e39 7472{
769b4f24
OS
7473 /*
7474 * This implies a barrier so that stores to dio_bio->bi_status before
7475 * this and loads of dio_bio->bi_status after this are fully ordered.
7476 */
7477 if (!refcount_dec_and_test(&dip->refs))
7478 return;
8b110e39 7479
769b4f24 7480 if (bio_op(dip->dio_bio) == REQ_OP_WRITE) {
b672b5c1
NB
7481 __endio_write_update_ordered(BTRFS_I(dip->inode),
7482 dip->logical_offset,
769b4f24
OS
7483 dip->bytes,
7484 !dip->dio_bio->bi_status);
7485 } else {
7486 unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7487 dip->logical_offset,
7488 dip->logical_offset + dip->bytes - 1);
8b110e39
MX
7489 }
7490
55e20bd1 7491 dio_end_io(dip->dio_bio);
769b4f24 7492 kfree(dip);
8b110e39
MX
7493}
7494
77d5d689
OS
7495static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7496 int mirror_num,
7497 unsigned long bio_flags)
8b110e39 7498{
77d5d689 7499 struct btrfs_dio_private *dip = bio->bi_private;
2ff7e61e 7500 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7501 blk_status_t ret;
8b110e39 7502
37226b21 7503 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7504
5c047a69 7505 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8b110e39 7506 if (ret)
ea057f6d 7507 return ret;
8b110e39 7508
77d5d689 7509 refcount_inc(&dip->refs);
08635bae 7510 ret = btrfs_map_bio(fs_info, bio, mirror_num);
8b110e39 7511 if (ret)
fd9d6670 7512 refcount_dec(&dip->refs);
77d5d689 7513 return ret;
8b110e39
MX
7514}
7515
fd9d6670
OS
7516static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7517 struct btrfs_io_bio *io_bio,
7518 const bool uptodate)
4b46fce2 7519{
fd9d6670
OS
7520 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7521 const u32 sectorsize = fs_info->sectorsize;
7522 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7523 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7524 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
17347cec
LB
7525 struct bio_vec bvec;
7526 struct bvec_iter iter;
fd9d6670
OS
7527 u64 start = io_bio->logical;
7528 int icsum = 0;
58efbc9f 7529 blk_status_t err = BLK_STS_OK;
4b46fce2 7530
fd9d6670
OS
7531 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7532 unsigned int i, nr_sectors, pgoff;
8b110e39 7533
17347cec
LB
7534 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7535 pgoff = bvec.bv_offset;
fd9d6670 7536 for (i = 0; i < nr_sectors; i++) {
97bf5a55 7537 ASSERT(pgoff < PAGE_SIZE);
fd9d6670
OS
7538 if (uptodate &&
7539 (!csum || !check_data_csum(inode, io_bio, icsum,
7540 bvec.bv_page, pgoff,
7541 start, sectorsize))) {
7542 clean_io_failure(fs_info, failure_tree, io_tree,
7543 start, bvec.bv_page,
7544 btrfs_ino(BTRFS_I(inode)),
7545 pgoff);
7546 } else {
7547 blk_status_t status;
7548
77d5d689
OS
7549 status = btrfs_submit_read_repair(inode,
7550 &io_bio->bio,
7551 start - io_bio->logical,
fd9d6670
OS
7552 bvec.bv_page, pgoff,
7553 start,
7554 start + sectorsize - 1,
77d5d689
OS
7555 io_bio->mirror_num,
7556 submit_dio_repair_bio);
fd9d6670
OS
7557 if (status)
7558 err = status;
7559 }
7560 start += sectorsize;
7561 icsum++;
2dabb324 7562 pgoff += sectorsize;
2dabb324 7563 }
2c30c71b 7564 }
c1dc0896
MX
7565 return err;
7566}
7567
b672b5c1 7568static void __endio_write_update_ordered(struct btrfs_inode *inode,
52427260
QW
7569 const u64 offset, const u64 bytes,
7570 const bool uptodate)
4b46fce2 7571{
b672b5c1 7572 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4b46fce2 7573 struct btrfs_ordered_extent *ordered = NULL;
52427260 7574 struct btrfs_workqueue *wq;
14543774
FM
7575 u64 ordered_offset = offset;
7576 u64 ordered_bytes = bytes;
67c003f9 7577 u64 last_offset;
4b46fce2 7578
b672b5c1 7579 if (btrfs_is_free_space_inode(inode))
52427260 7580 wq = fs_info->endio_freespace_worker;
a0cac0ec 7581 else
52427260 7582 wq = fs_info->endio_write_workers;
52427260 7583
b25f0d00
NB
7584 while (ordered_offset < offset + bytes) {
7585 last_offset = ordered_offset;
b672b5c1 7586 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7095821e
NB
7587 &ordered_offset,
7588 ordered_bytes,
7589 uptodate)) {
a0cac0ec
OS
7590 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7591 NULL);
b25f0d00
NB
7592 btrfs_queue_work(wq, &ordered->work);
7593 }
7594 /*
7595 * If btrfs_dec_test_ordered_pending does not find any ordered
7596 * extent in the range, we can exit.
7597 */
7598 if (ordered_offset == last_offset)
7599 return;
7600 /*
7601 * Our bio might span multiple ordered extents. In this case
52042d8e 7602 * we keep going until we have accounted the whole dio.
b25f0d00
NB
7603 */
7604 if (ordered_offset < offset + bytes) {
7605 ordered_bytes = offset + bytes - ordered_offset;
7606 ordered = NULL;
7607 }
163cf09c 7608 }
14543774
FM
7609}
7610
d0ee3934 7611static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
d0779291 7612 struct bio *bio, u64 offset)
eaf25d93 7613{
c6100a4b 7614 struct inode *inode = private_data;
4e4cbee9 7615 blk_status_t ret;
bd242a08 7616 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, offset, 1);
79787eaa 7617 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
7618 return 0;
7619}
7620
4246a0b6 7621static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
7622{
7623 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 7624 blk_status_t err = bio->bi_status;
e65e1535 7625
8b110e39
MX
7626 if (err)
7627 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 7628 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
7629 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7630 bio->bi_opf,
8b110e39
MX
7631 (unsigned long long)bio->bi_iter.bi_sector,
7632 bio->bi_iter.bi_size, err);
7633
769b4f24
OS
7634 if (bio_op(bio) == REQ_OP_READ) {
7635 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
fd9d6670 7636 !err);
e65e1535
MX
7637 }
7638
769b4f24
OS
7639 if (err)
7640 dip->dio_bio->bi_status = err;
e65e1535 7641
e65e1535 7642 bio_put(bio);
769b4f24 7643 btrfs_dio_private_put(dip);
c1dc0896
MX
7644}
7645
d0ee3934
DS
7646static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7647 struct inode *inode, u64 file_offset, int async_submit)
e65e1535 7648{
0b246afa 7649 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 7650 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 7651 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 7652 blk_status_t ret;
e65e1535 7653
4c274bc6 7654 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
7655 if (async_submit)
7656 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7657
5fd02043 7658 if (!write) {
0b246afa 7659 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
7660 if (ret)
7661 goto err;
7662 }
e65e1535 7663
e6961cac 7664 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
7665 goto map;
7666
7667 if (write && async_submit) {
c6100a4b
JB
7668 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
7669 file_offset, inode,
e288c080 7670 btrfs_submit_bio_start_direct_io);
e65e1535 7671 goto err;
1ae39938
JB
7672 } else if (write) {
7673 /*
7674 * If we aren't doing async submit, calculate the csum of the
7675 * bio now.
7676 */
bd242a08 7677 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
1ae39938
JB
7678 if (ret)
7679 goto err;
23ea8e5a 7680 } else {
85879573
OS
7681 u64 csum_offset;
7682
7683 csum_offset = file_offset - dip->logical_offset;
7684 csum_offset >>= inode->i_sb->s_blocksize_bits;
7685 csum_offset *= btrfs_super_csum_size(fs_info->super_copy);
7686 btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
c2db1073 7687 }
1ae39938 7688map:
08635bae 7689 ret = btrfs_map_bio(fs_info, bio, 0);
e65e1535 7690err:
e65e1535
MX
7691 return ret;
7692}
7693
c36cac28
OS
7694/*
7695 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7696 * or ordered extents whether or not we submit any bios.
7697 */
7698static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
7699 struct inode *inode,
7700 loff_t file_offset)
e65e1535 7701{
c36cac28 7702 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
85879573
OS
7703 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7704 size_t dip_size;
c36cac28 7705 struct btrfs_dio_private *dip;
c36cac28 7706
85879573
OS
7707 dip_size = sizeof(*dip);
7708 if (!write && csum) {
7709 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7710 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
7711 size_t nblocks;
7712
7713 nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
7714 dip_size += csum_size * nblocks;
7715 }
7716
7717 dip = kzalloc(dip_size, GFP_NOFS);
c36cac28
OS
7718 if (!dip)
7719 return NULL;
7720
c36cac28
OS
7721 dip->inode = inode;
7722 dip->logical_offset = file_offset;
7723 dip->bytes = dio_bio->bi_iter.bi_size;
7724 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
c36cac28 7725 dip->dio_bio = dio_bio;
e3b318d1 7726 refcount_set(&dip->refs, 1);
55e20bd1
DS
7727
7728 if (write) {
7729 struct btrfs_dio_data *dio_data = current->journal_info;
7730
7731 /*
7732 * Setting range start and end to the same value means that
7733 * no cleanup will happen in btrfs_direct_IO
7734 */
7735 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
7736 dip->bytes;
7737 dio_data->unsubmitted_oe_range_start =
7738 dio_data->unsubmitted_oe_range_end;
7739 }
c36cac28
OS
7740 return dip;
7741}
7742
55e20bd1
DS
7743static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
7744 loff_t file_offset)
c36cac28
OS
7745{
7746 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
85879573 7747 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
0b246afa 7748 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
769b4f24
OS
7749 const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7750 BTRFS_BLOCK_GROUP_RAID56_MASK);
c36cac28 7751 struct btrfs_dio_private *dip;
e65e1535 7752 struct bio *bio;
c36cac28 7753 u64 start_sector;
1ae39938 7754 int async_submit = 0;
725130ba
LB
7755 u64 submit_len;
7756 int clone_offset = 0;
7757 int clone_len;
5f4dc8fc 7758 int ret;
58efbc9f 7759 blk_status_t status;
89b798ad 7760 struct btrfs_io_geometry geom;
e65e1535 7761
c36cac28
OS
7762 dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
7763 if (!dip) {
7764 if (!write) {
7765 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
7766 file_offset + dio_bio->bi_iter.bi_size - 1);
7767 }
7768 dio_bio->bi_status = BLK_STS_RESOURCE;
55e20bd1
DS
7769 dio_end_io(dio_bio);
7770 return;
c36cac28 7771 }
facc8a22 7772
85879573
OS
7773 if (!write && csum) {
7774 /*
7775 * Load the csums up front to reduce csum tree searches and
7776 * contention when submitting bios.
7777 */
7778 status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset,
7779 dip->csums);
7780 if (status != BLK_STS_OK)
7781 goto out_err;
02f57c7a
JB
7782 }
7783
769b4f24
OS
7784 start_sector = dio_bio->bi_iter.bi_sector;
7785 submit_len = dio_bio->bi_iter.bi_size;
53b381b3 7786
3c91ee69 7787 do {
769b4f24
OS
7788 ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio),
7789 start_sector << 9, submit_len,
7790 &geom);
7791 if (ret) {
7792 status = errno_to_blk_status(ret);
7793 goto out_err;
7794 }
7795 ASSERT(geom.len <= INT_MAX);
7796
89b798ad 7797 clone_len = min_t(int, submit_len, geom.len);
02f57c7a 7798
725130ba
LB
7799 /*
7800 * This will never fail as it's passing GPF_NOFS and
7801 * the allocation is backed by btrfs_bioset.
7802 */
769b4f24 7803 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
725130ba
LB
7804 bio->bi_private = dip;
7805 bio->bi_end_io = btrfs_end_dio_bio;
7806 btrfs_io_bio(bio)->logical = file_offset;
7807
7808 ASSERT(submit_len >= clone_len);
7809 submit_len -= clone_len;
e65e1535 7810
725130ba
LB
7811 /*
7812 * Increase the count before we submit the bio so we know
7813 * the end IO handler won't happen before we increase the
7814 * count. Otherwise, the dip might get freed before we're
7815 * done setting it up.
769b4f24
OS
7816 *
7817 * We transfer the initial reference to the last bio, so we
7818 * don't need to increment the reference count for the last one.
725130ba 7819 */
769b4f24
OS
7820 if (submit_len > 0) {
7821 refcount_inc(&dip->refs);
7822 /*
7823 * If we are submitting more than one bio, submit them
7824 * all asynchronously. The exception is RAID 5 or 6, as
7825 * asynchronous checksums make it difficult to collect
7826 * full stripe writes.
7827 */
7828 if (!raid56)
7829 async_submit = 1;
7830 }
e65e1535 7831
d0ee3934 7832 status = btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
7833 async_submit);
7834 if (status) {
725130ba 7835 bio_put(bio);
769b4f24
OS
7836 if (submit_len > 0)
7837 refcount_dec(&dip->refs);
725130ba
LB
7838 goto out_err;
7839 }
e65e1535 7840
725130ba
LB
7841 clone_offset += clone_len;
7842 start_sector += clone_len >> 9;
7843 file_offset += clone_len;
3c91ee69 7844 } while (submit_len > 0);
55e20bd1 7845 return;
e65e1535 7846
e65e1535 7847out_err:
769b4f24
OS
7848 dip->dio_bio->bi_status = status;
7849 btrfs_dio_private_put(dip);
4b46fce2
JB
7850}
7851
f4c48b44
DS
7852static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
7853 const struct iov_iter *iter, loff_t offset)
7854{
7855 int seg;
7856 int i;
7857 unsigned int blocksize_mask = fs_info->sectorsize - 1;
7858 ssize_t retval = -EINVAL;
0934856d 7859
f4c48b44
DS
7860 if (offset & blocksize_mask)
7861 goto out;
7862
7863 if (iov_iter_alignment(iter) & blocksize_mask)
7864 goto out;
7865
7866 /* If this is a write we don't need to check anymore */
7867 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
7868 return 0;
7869 /*
7870 * Check to make sure we don't have duplicate iov_base's in this
7871 * iovec, if so return EINVAL, otherwise we'll get csum errors
7872 * when reading back.
7873 */
7874 for (seg = 0; seg < iter->nr_segs; seg++) {
7875 for (i = seg + 1; i < iter->nr_segs; i++) {
7876 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7877 goto out;
7878 }
7879 }
7880 retval = 0;
7881out:
7882 return retval;
7883}
7884
55e20bd1 7885static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
f4c48b44
DS
7886{
7887 struct file *file = iocb->ki_filp;
7888 struct inode *inode = file->f_mapping->host;
7889 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
55e20bd1 7890 struct btrfs_dio_data dio_data = { 0 };
f4c48b44
DS
7891 struct extent_changeset *data_reserved = NULL;
7892 loff_t offset = iocb->ki_pos;
7893 size_t count = 0;
55e20bd1
DS
7894 int flags = 0;
7895 bool wakeup = true;
f4c48b44
DS
7896 bool relock = false;
7897 ssize_t ret;
7898
7899 if (check_direct_IO(fs_info, iter, offset))
7900 return 0;
7901
55e20bd1
DS
7902 inode_dio_begin(inode);
7903
7904 /*
7905 * The generic stuff only does filemap_write_and_wait_range, which
7906 * isn't enough if we've written compressed pages to this area, so
7907 * we need to flush the dirty pages again to make absolutely sure
7908 * that any outstanding dirty pages are on disk.
7909 */
f4c48b44 7910 count = iov_iter_count(iter);
55e20bd1
DS
7911 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7912 &BTRFS_I(inode)->runtime_flags))
7913 filemap_fdatawrite_range(inode->i_mapping, offset,
7914 offset + count - 1);
7915
f4c48b44
DS
7916 if (iov_iter_rw(iter) == WRITE) {
7917 /*
7918 * If the write DIO is beyond the EOF, we need update
7919 * the isize, but it is protected by i_mutex. So we can
7920 * not unlock the i_mutex at this case.
7921 */
7922 if (offset + count <= inode->i_size) {
55e20bd1 7923 dio_data.overwrite = 1;
f4c48b44
DS
7924 inode_unlock(inode);
7925 relock = true;
f4c48b44 7926 }
e5b7231e 7927 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
55e20bd1
DS
7928 offset, count);
7929 if (ret)
7930 goto out;
7931
7932 /*
7933 * We need to know how many extents we reserved so that we can
7934 * do the accounting properly if we go over the number we
7935 * originally calculated. Abuse current->journal_info for this.
7936 */
7937 dio_data.reserve = round_up(count,
7938 fs_info->sectorsize);
7939 dio_data.unsubmitted_oe_range_start = (u64)offset;
7940 dio_data.unsubmitted_oe_range_end = (u64)offset;
7941 current->journal_info = &dio_data;
f4c48b44 7942 down_read(&BTRFS_I(inode)->dio_sem);
55e20bd1
DS
7943 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7944 &BTRFS_I(inode)->runtime_flags)) {
7945 inode_dio_end(inode);
7946 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7947 wakeup = false;
f4c48b44
DS
7948 }
7949
55e20bd1
DS
7950 ret = __blockdev_direct_IO(iocb, inode,
7951 fs_info->fs_devices->latest_bdev,
7952 iter, btrfs_get_blocks_direct, NULL,
7953 btrfs_submit_direct, flags);
f4c48b44
DS
7954 if (iov_iter_rw(iter) == WRITE) {
7955 up_read(&BTRFS_I(inode)->dio_sem);
55e20bd1
DS
7956 current->journal_info = NULL;
7957 if (ret < 0 && ret != -EIOCBQUEUED) {
7958 if (dio_data.reserve)
86d52921
NB
7959 btrfs_delalloc_release_space(BTRFS_I(inode),
7960 data_reserved, offset, dio_data.reserve,
7961 true);
55e20bd1
DS
7962 /*
7963 * On error we might have left some ordered extents
7964 * without submitting corresponding bios for them, so
7965 * cleanup them up to avoid other tasks getting them
7966 * and waiting for them to complete forever.
7967 */
7968 if (dio_data.unsubmitted_oe_range_start <
7969 dio_data.unsubmitted_oe_range_end)
b672b5c1 7970 __endio_write_update_ordered(BTRFS_I(inode),
55e20bd1
DS
7971 dio_data.unsubmitted_oe_range_start,
7972 dio_data.unsubmitted_oe_range_end -
7973 dio_data.unsubmitted_oe_range_start,
7974 false);
7975 } else if (ret >= 0 && (size_t)ret < count)
86d52921 7976 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
55e20bd1
DS
7977 offset, count - (size_t)ret, true);
7978 btrfs_delalloc_release_extents(BTRFS_I(inode), count);
f4c48b44
DS
7979 }
7980out:
55e20bd1
DS
7981 if (wakeup)
7982 inode_dio_end(inode);
f4c48b44
DS
7983 if (relock)
7984 inode_lock(inode);
55e20bd1 7985
f4c48b44
DS
7986 extent_changeset_free(data_reserved);
7987 return ret;
7988}
16432985 7989
1506fcc8 7990static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
bab16e21 7991 u64 start, u64 len)
1506fcc8 7992{
05dadc09
TI
7993 int ret;
7994
45dd052e 7995 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
05dadc09
TI
7996 if (ret)
7997 return ret;
7998
2135fb9b 7999 return extent_fiemap(inode, fieinfo, start, len);
1506fcc8
YS
8000}
8001
a52d9a80 8002int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8003{
71ad38b4 8004 return extent_read_full_page(page, btrfs_get_extent, 0);
9ebefb18 8005}
1832a6d5 8006
a52d9a80 8007static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8008{
be7bd730
JB
8009 struct inode *inode = page->mapping->host;
8010 int ret;
b888db2b
CM
8011
8012 if (current->flags & PF_MEMALLOC) {
8013 redirty_page_for_writepage(wbc, page);
8014 unlock_page(page);
8015 return 0;
8016 }
be7bd730
JB
8017
8018 /*
8019 * If we are under memory pressure we will call this directly from the
8020 * VM, we need to make sure we have the inode referenced for the ordered
8021 * extent. If not just return like we didn't do anything.
8022 */
8023 if (!igrab(inode)) {
8024 redirty_page_for_writepage(wbc, page);
8025 return AOP_WRITEPAGE_ACTIVATE;
8026 }
0a9b0e53 8027 ret = extent_write_full_page(page, wbc);
be7bd730
JB
8028 btrfs_add_delayed_iput(inode);
8029 return ret;
9ebefb18
CM
8030}
8031
48a3b636
ES
8032static int btrfs_writepages(struct address_space *mapping,
8033 struct writeback_control *wbc)
b293f02e 8034{
8ae225a8 8035 return extent_writepages(mapping, wbc);
b293f02e
CM
8036}
8037
ba206a02 8038static void btrfs_readahead(struct readahead_control *rac)
3ab2fb5a 8039{
ba206a02 8040 extent_readahead(rac);
3ab2fb5a 8041}
2a3ff0ad 8042
e6dcd2dc 8043static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8044{
477a30ba 8045 int ret = try_release_extent_mapping(page, gfp_flags);
d1b89bc0
GJ
8046 if (ret == 1)
8047 detach_page_private(page);
a52d9a80 8048 return ret;
39279cc3
CM
8049}
8050
e6dcd2dc
CM
8051static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8052{
98509cfc
CM
8053 if (PageWriteback(page) || PageDirty(page))
8054 return 0;
3ba7ab22 8055 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8056}
8057
f8e66081
RG
8058#ifdef CONFIG_MIGRATION
8059static int btrfs_migratepage(struct address_space *mapping,
8060 struct page *newpage, struct page *page,
8061 enum migrate_mode mode)
8062{
8063 int ret;
8064
8065 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8066 if (ret != MIGRATEPAGE_SUCCESS)
8067 return ret;
8068
d1b89bc0
GJ
8069 if (page_has_private(page))
8070 attach_page_private(newpage, detach_page_private(page));
f8e66081
RG
8071
8072 if (PagePrivate2(page)) {
8073 ClearPagePrivate2(page);
8074 SetPagePrivate2(newpage);
8075 }
8076
8077 if (mode != MIGRATE_SYNC_NO_COPY)
8078 migrate_page_copy(newpage, page);
8079 else
8080 migrate_page_states(newpage, page);
8081 return MIGRATEPAGE_SUCCESS;
8082}
8083#endif
8084
d47992f8
LC
8085static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8086 unsigned int length)
39279cc3 8087{
5fd02043 8088 struct inode *inode = page->mapping->host;
d1310b2e 8089 struct extent_io_tree *tree;
e6dcd2dc 8090 struct btrfs_ordered_extent *ordered;
2ac55d41 8091 struct extent_state *cached_state = NULL;
e6dcd2dc 8092 u64 page_start = page_offset(page);
09cbfeaf 8093 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8094 u64 start;
8095 u64 end;
131e404a 8096 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8097
8b62b72b
CM
8098 /*
8099 * we have the page locked, so new writeback can't start,
8100 * and the dirty bit won't be cleared while we are here.
8101 *
8102 * Wait for IO on this page so that we can safely clear
8103 * the PagePrivate2 bit and do ordered accounting
8104 */
e6dcd2dc 8105 wait_on_page_writeback(page);
8b62b72b 8106
5fd02043 8107 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8108 if (offset) {
8109 btrfs_releasepage(page, GFP_NOFS);
8110 return;
8111 }
131e404a
FDBM
8112
8113 if (!inode_evicting)
ff13db41 8114 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8115again:
8116 start = page_start;
a776c6fa 8117 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8118 page_end - start + 1);
e6dcd2dc 8119 if (ordered) {
bffe633e
OS
8120 end = min(page_end,
8121 ordered->file_offset + ordered->num_bytes - 1);
eb84ae03
CM
8122 /*
8123 * IO on this page will never be started, so we need
8124 * to account for any ordered extents now
8125 */
131e404a 8126 if (!inode_evicting)
dbfdb6d1 8127 clear_extent_bit(tree, start, end,
e182163d 8128 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
131e404a 8129 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8130 EXTENT_DEFRAG, 1, 0, &cached_state);
8b62b72b
CM
8131 /*
8132 * whoever cleared the private bit is responsible
8133 * for the finish_ordered_io
8134 */
77cef2ec
JB
8135 if (TestClearPagePrivate2(page)) {
8136 struct btrfs_ordered_inode_tree *tree;
8137 u64 new_len;
8138
8139 tree = &BTRFS_I(inode)->ordered_tree;
8140
8141 spin_lock_irq(&tree->lock);
8142 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8143 new_len = start - ordered->file_offset;
77cef2ec
JB
8144 if (new_len < ordered->truncated_len)
8145 ordered->truncated_len = new_len;
8146 spin_unlock_irq(&tree->lock);
8147
8148 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8149 start,
8150 end - start + 1, 1))
77cef2ec 8151 btrfs_finish_ordered_io(ordered);
8b62b72b 8152 }
e6dcd2dc 8153 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8154 if (!inode_evicting) {
8155 cached_state = NULL;
dbfdb6d1 8156 lock_extent_bits(tree, start, end,
131e404a
FDBM
8157 &cached_state);
8158 }
dbfdb6d1
CR
8159
8160 start = end + 1;
8161 if (start < page_end)
8162 goto again;
131e404a
FDBM
8163 }
8164
b9d0b389
QW
8165 /*
8166 * Qgroup reserved space handler
8167 * Page here will be either
fa91e4aa
QW
8168 * 1) Already written to disk or ordered extent already submitted
8169 * Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8170 * Qgroup will be handled by its qgroup_record then.
8171 * btrfs_qgroup_free_data() call will do nothing here.
8172 *
8173 * 2) Not written to disk yet
8174 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8175 * bit of its io_tree, and free the qgroup reserved data space.
8176 * Since the IO will never happen for this page.
b9d0b389 8177 */
8b8a979f 8178 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, page_start, PAGE_SIZE);
131e404a 8179 if (!inode_evicting) {
e182163d 8180 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
a7e3b975
FM
8181 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8182 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
ae0f1625 8183 &cached_state);
131e404a
FDBM
8184
8185 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8186 }
e6dcd2dc 8187
4a096752 8188 ClearPageChecked(page);
d1b89bc0 8189 detach_page_private(page);
39279cc3
CM
8190}
8191
9ebefb18
CM
8192/*
8193 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8194 * called from a page fault handler when a page is first dirtied. Hence we must
8195 * be careful to check for EOF conditions here. We set the page up correctly
8196 * for a written page which means we get ENOSPC checking when writing into
8197 * holes and correct delalloc and unwritten extent mapping on filesystems that
8198 * support these features.
8199 *
8200 * We are not allowed to take the i_mutex here so we have to play games to
8201 * protect against truncate races as the page could now be beyond EOF. Because
d1342aad
OS
8202 * truncate_setsize() writes the inode size before removing pages, once we have
8203 * the page lock we can determine safely if the page is beyond EOF. If it is not
9ebefb18
CM
8204 * beyond EOF, then the page is guaranteed safe against truncation until we
8205 * unlock the page.
8206 */
a528a241 8207vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8208{
c2ec175c 8209 struct page *page = vmf->page;
11bac800 8210 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8211 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8212 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8213 struct btrfs_ordered_extent *ordered;
2ac55d41 8214 struct extent_state *cached_state = NULL;
364ecf36 8215 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
8216 char *kaddr;
8217 unsigned long zero_start;
9ebefb18 8218 loff_t size;
a528a241
SJ
8219 vm_fault_t ret;
8220 int ret2;
9998eb70 8221 int reserved = 0;
d0b7da88 8222 u64 reserved_space;
a52d9a80 8223 u64 page_start;
e6dcd2dc 8224 u64 page_end;
d0b7da88
CR
8225 u64 end;
8226
09cbfeaf 8227 reserved_space = PAGE_SIZE;
9ebefb18 8228
b2b5ef5c 8229 sb_start_pagefault(inode->i_sb);
df480633 8230 page_start = page_offset(page);
09cbfeaf 8231 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8232 end = page_end;
df480633 8233
d0b7da88
CR
8234 /*
8235 * Reserving delalloc space after obtaining the page lock can lead to
8236 * deadlock. For example, if a dirty page is locked by this function
8237 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8238 * dirty page write out, then the btrfs_writepage() function could
8239 * end up waiting indefinitely to get a lock on the page currently
8240 * being processed by btrfs_page_mkwrite() function.
8241 */
e5b7231e
NB
8242 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8243 page_start, reserved_space);
a528a241
SJ
8244 if (!ret2) {
8245 ret2 = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8246 reserved = 1;
8247 }
a528a241
SJ
8248 if (ret2) {
8249 ret = vmf_error(ret2);
9998eb70
CM
8250 if (reserved)
8251 goto out;
8252 goto out_noreserve;
56a76f82 8253 }
1832a6d5 8254
56a76f82 8255 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8256again:
9ebefb18 8257 lock_page(page);
9ebefb18 8258 size = i_size_read(inode);
a52d9a80 8259
9ebefb18 8260 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8261 (page_start >= size)) {
9ebefb18
CM
8262 /* page got truncated out from underneath us */
8263 goto out_unlock;
8264 }
e6dcd2dc
CM
8265 wait_on_page_writeback(page);
8266
ff13db41 8267 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8268 set_page_extent_mapped(page);
8269
eb84ae03
CM
8270 /*
8271 * we can't set the delalloc bits if there are pending ordered
8272 * extents. Drop our locks and wait for them to finish
8273 */
a776c6fa
NB
8274 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8275 PAGE_SIZE);
e6dcd2dc 8276 if (ordered) {
2ac55d41 8277 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8278 &cached_state);
e6dcd2dc 8279 unlock_page(page);
eb84ae03 8280 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8281 btrfs_put_ordered_extent(ordered);
8282 goto again;
8283 }
8284
09cbfeaf 8285 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 8286 reserved_space = round_up(size - page_start,
0b246afa 8287 fs_info->sectorsize);
09cbfeaf 8288 if (reserved_space < PAGE_SIZE) {
d0b7da88 8289 end = page_start + reserved_space - 1;
86d52921
NB
8290 btrfs_delalloc_release_space(BTRFS_I(inode),
8291 data_reserved, page_start,
8292 PAGE_SIZE - reserved_space, true);
d0b7da88
CR
8293 }
8294 }
8295
fbf19087 8296 /*
5416034f
LB
8297 * page_mkwrite gets called when the page is firstly dirtied after it's
8298 * faulted in, but write(2) could also dirty a page and set delalloc
8299 * bits, thus in this case for space account reason, we still need to
8300 * clear any delalloc bits within this page range since we have to
8301 * reserve data&meta space before lock_page() (see above comments).
fbf19087 8302 */
d0b7da88 8303 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
e182163d
OS
8304 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8305 EXTENT_DEFRAG, 0, 0, &cached_state);
fbf19087 8306
c2566f22 8307 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
330a5827 8308 &cached_state);
a528a241 8309 if (ret2) {
2ac55d41 8310 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8311 &cached_state);
9ed74f2d
JB
8312 ret = VM_FAULT_SIGBUS;
8313 goto out_unlock;
8314 }
9ebefb18
CM
8315
8316 /* page is wholly or partially inside EOF */
09cbfeaf 8317 if (page_start + PAGE_SIZE > size)
7073017a 8318 zero_start = offset_in_page(size);
9ebefb18 8319 else
09cbfeaf 8320 zero_start = PAGE_SIZE;
9ebefb18 8321
09cbfeaf 8322 if (zero_start != PAGE_SIZE) {
e6dcd2dc 8323 kaddr = kmap(page);
09cbfeaf 8324 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
8325 flush_dcache_page(page);
8326 kunmap(page);
8327 }
247e743c 8328 ClearPageChecked(page);
e6dcd2dc 8329 set_page_dirty(page);
50a9b214 8330 SetPageUptodate(page);
5a3f23d5 8331
0b246afa 8332 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 8333 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8334 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8335
e43bbe5e 8336 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9ebefb18 8337
76de60ed
YY
8338 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8339 sb_end_pagefault(inode->i_sb);
8340 extent_changeset_free(data_reserved);
8341 return VM_FAULT_LOCKED;
717beb96
CM
8342
8343out_unlock:
9ebefb18 8344 unlock_page(page);
1832a6d5 8345out:
8702ba93 8346 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
86d52921 8347 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
43b18595 8348 reserved_space, (ret != 0));
9998eb70 8349out_noreserve:
b2b5ef5c 8350 sb_end_pagefault(inode->i_sb);
364ecf36 8351 extent_changeset_free(data_reserved);
9ebefb18
CM
8352 return ret;
8353}
8354
213e8c55 8355static int btrfs_truncate(struct inode *inode, bool skip_writeback)
39279cc3 8356{
0b246afa 8357 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 8358 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8359 struct btrfs_block_rsv *rsv;
ad7e1a74 8360 int ret;
39279cc3 8361 struct btrfs_trans_handle *trans;
0b246afa 8362 u64 mask = fs_info->sectorsize - 1;
2bd36e7b 8363 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
39279cc3 8364
213e8c55
FM
8365 if (!skip_writeback) {
8366 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8367 (u64)-1);
8368 if (ret)
8369 return ret;
8370 }
39279cc3 8371
fcb80c2a 8372 /*
f7e9e8fc
OS
8373 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8374 * things going on here:
fcb80c2a 8375 *
f7e9e8fc 8376 * 1) We need to reserve space to update our inode.
fcb80c2a 8377 *
f7e9e8fc 8378 * 2) We need to have something to cache all the space that is going to
fcb80c2a
JB
8379 * be free'd up by the truncate operation, but also have some slack
8380 * space reserved in case it uses space during the truncate (thank you
8381 * very much snapshotting).
8382 *
f7e9e8fc 8383 * And we need these to be separate. The fact is we can use a lot of
fcb80c2a 8384 * space doing the truncate, and we have no earthly idea how much space
01327610 8385 * we will use, so we need the truncate reservation to be separate so it
f7e9e8fc
OS
8386 * doesn't end up using space reserved for updating the inode. We also
8387 * need to be able to stop the transaction and start a new one, which
8388 * means we need to be able to update the inode several times, and we
8389 * have no idea of knowing how many times that will be, so we can't just
8390 * reserve 1 item for the entirety of the operation, so that has to be
8391 * done separately as well.
fcb80c2a
JB
8392 *
8393 * So that leaves us with
8394 *
f7e9e8fc 8395 * 1) rsv - for the truncate reservation, which we will steal from the
fcb80c2a 8396 * transaction reservation.
f7e9e8fc 8397 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
fcb80c2a
JB
8398 * updating the inode.
8399 */
2ff7e61e 8400 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8401 if (!rsv)
8402 return -ENOMEM;
4a338542 8403 rsv->size = min_size;
ca7e70f5 8404 rsv->failfast = 1;
f0cd846e 8405
907cbceb 8406 /*
07127184 8407 * 1 for the truncate slack space
907cbceb
JB
8408 * 1 for updating the inode.
8409 */
f3fe820c 8410 trans = btrfs_start_transaction(root, 2);
fcb80c2a 8411 if (IS_ERR(trans)) {
ad7e1a74 8412 ret = PTR_ERR(trans);
fcb80c2a
JB
8413 goto out;
8414 }
f0cd846e 8415
907cbceb 8416 /* Migrate the slack space for the truncate to our reserve */
0b246afa 8417 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
3a584174 8418 min_size, false);
fcb80c2a 8419 BUG_ON(ret);
f0cd846e 8420
5dc562c5
JB
8421 /*
8422 * So if we truncate and then write and fsync we normally would just
8423 * write the extents that changed, which is a problem if we need to
8424 * first truncate that entire inode. So set this flag so we write out
8425 * all of the extents in the inode to the sync log so we're completely
8426 * safe.
8427 */
8428 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 8429 trans->block_rsv = rsv;
907cbceb 8430
8082510e
YZ
8431 while (1) {
8432 ret = btrfs_truncate_inode_items(trans, root, inode,
8433 inode->i_size,
8434 BTRFS_EXTENT_DATA_KEY);
ddfae63c 8435 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74 8436 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 8437 break;
39279cc3 8438
8082510e 8439 ret = btrfs_update_inode(trans, root, inode);
ad7e1a74 8440 if (ret)
3893e33b 8441 break;
ca7e70f5 8442
3a45bb20 8443 btrfs_end_transaction(trans);
2ff7e61e 8444 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
8445
8446 trans = btrfs_start_transaction(root, 2);
8447 if (IS_ERR(trans)) {
ad7e1a74 8448 ret = PTR_ERR(trans);
ca7e70f5
JB
8449 trans = NULL;
8450 break;
8451 }
8452
63f018be 8453 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
0b246afa 8454 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
3a584174 8455 rsv, min_size, false);
ca7e70f5
JB
8456 BUG_ON(ret); /* shouldn't happen */
8457 trans->block_rsv = rsv;
8082510e
YZ
8458 }
8459
ddfae63c
JB
8460 /*
8461 * We can't call btrfs_truncate_block inside a trans handle as we could
8462 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8463 * we've truncated everything except the last little bit, and can do
8464 * btrfs_truncate_block and then update the disk_i_size.
8465 */
8466 if (ret == NEED_TRUNCATE_BLOCK) {
8467 btrfs_end_transaction(trans);
8468 btrfs_btree_balance_dirty(fs_info);
8469
8470 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
8471 if (ret)
8472 goto out;
8473 trans = btrfs_start_transaction(root, 1);
8474 if (IS_ERR(trans)) {
8475 ret = PTR_ERR(trans);
8476 goto out;
8477 }
d923afe9 8478 btrfs_inode_safe_disk_i_size_write(inode, 0);
ddfae63c
JB
8479 }
8480
917c16b2 8481 if (trans) {
ad7e1a74
OS
8482 int ret2;
8483
0b246afa 8484 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74
OS
8485 ret2 = btrfs_update_inode(trans, root, inode);
8486 if (ret2 && !ret)
8487 ret = ret2;
7b128766 8488
ad7e1a74
OS
8489 ret2 = btrfs_end_transaction(trans);
8490 if (ret2 && !ret)
8491 ret = ret2;
2ff7e61e 8492 btrfs_btree_balance_dirty(fs_info);
917c16b2 8493 }
fcb80c2a 8494out:
2ff7e61e 8495 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 8496
ad7e1a74 8497 return ret;
39279cc3
CM
8498}
8499
d352ac68
CM
8500/*
8501 * create a new subvolume directory/inode (helper for the ioctl).
8502 */
d2fb3437 8503int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
8504 struct btrfs_root *new_root,
8505 struct btrfs_root *parent_root,
8506 u64 new_dirid)
39279cc3 8507{
39279cc3 8508 struct inode *inode;
76dda93c 8509 int err;
00e4e6b3 8510 u64 index = 0;
39279cc3 8511
12fc9d09
FA
8512 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8513 new_dirid, new_dirid,
8514 S_IFDIR | (~current_umask() & S_IRWXUGO),
8515 &index);
54aa1f4d 8516 if (IS_ERR(inode))
f46b5a66 8517 return PTR_ERR(inode);
39279cc3
CM
8518 inode->i_op = &btrfs_dir_inode_operations;
8519 inode->i_fop = &btrfs_dir_file_operations;
8520
bfe86848 8521 set_nlink(inode, 1);
6ef06d27 8522 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 8523 unlock_new_inode(inode);
3b96362c 8524
63541927
FDBM
8525 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8526 if (err)
8527 btrfs_err(new_root->fs_info,
351fd353 8528 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
8529 new_root->root_key.objectid, err);
8530
76dda93c 8531 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 8532
76dda93c 8533 iput(inode);
ce598979 8534 return err;
39279cc3
CM
8535}
8536
39279cc3
CM
8537struct inode *btrfs_alloc_inode(struct super_block *sb)
8538{
69fe2d75 8539 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 8540 struct btrfs_inode *ei;
2ead6ae7 8541 struct inode *inode;
39279cc3 8542
712e36c5 8543 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
8544 if (!ei)
8545 return NULL;
2ead6ae7
YZ
8546
8547 ei->root = NULL;
2ead6ae7 8548 ei->generation = 0;
15ee9bc7 8549 ei->last_trans = 0;
257c62e1 8550 ei->last_sub_trans = 0;
e02119d5 8551 ei->logged_trans = 0;
2ead6ae7 8552 ei->delalloc_bytes = 0;
a7e3b975 8553 ei->new_delalloc_bytes = 0;
47059d93 8554 ei->defrag_bytes = 0;
2ead6ae7
YZ
8555 ei->disk_i_size = 0;
8556 ei->flags = 0;
7709cde3 8557 ei->csum_bytes = 0;
2ead6ae7 8558 ei->index_cnt = (u64)-1;
67de1176 8559 ei->dir_index = 0;
2ead6ae7 8560 ei->last_unlink_trans = 0;
3ebac17c 8561 ei->last_reflink_trans = 0;
46d8bc34 8562 ei->last_log_commit = 0;
2ead6ae7 8563
9e0baf60
JB
8564 spin_lock_init(&ei->lock);
8565 ei->outstanding_extents = 0;
69fe2d75
JB
8566 if (sb->s_magic != BTRFS_TEST_MAGIC)
8567 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8568 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 8569 ei->runtime_flags = 0;
b52aa8c9 8570 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 8571 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8572
16cdcec7
MX
8573 ei->delayed_node = NULL;
8574
9cc97d64 8575 ei->i_otime.tv_sec = 0;
8576 ei->i_otime.tv_nsec = 0;
8577
2ead6ae7 8578 inode = &ei->vfs_inode;
a8067e02 8579 extent_map_tree_init(&ei->extent_tree);
43eb5f29
QW
8580 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8581 extent_io_tree_init(fs_info, &ei->io_failure_tree,
8582 IO_TREE_INODE_IO_FAILURE, inode);
41a2ee75
JB
8583 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8584 IO_TREE_INODE_FILE_EXTENT, inode);
7b439738
DS
8585 ei->io_tree.track_uptodate = true;
8586 ei->io_failure_tree.track_uptodate = true;
b812ce28 8587 atomic_set(&ei->sync_writers, 0);
2ead6ae7 8588 mutex_init(&ei->log_mutex);
e6dcd2dc 8589 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 8590 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 8591 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 8592 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 8593 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
8594
8595 return inode;
39279cc3
CM
8596}
8597
aaedb55b
JB
8598#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8599void btrfs_test_destroy_inode(struct inode *inode)
8600{
dcdbc059 8601 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
8602 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8603}
8604#endif
8605
26602cab 8606void btrfs_free_inode(struct inode *inode)
fa0d7e3d 8607{
fa0d7e3d
NP
8608 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8609}
8610
39279cc3
CM
8611void btrfs_destroy_inode(struct inode *inode)
8612{
0b246afa 8613 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 8614 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
8615 struct btrfs_root *root = BTRFS_I(inode)->root;
8616
b3d9b7a3 8617 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 8618 WARN_ON(inode->i_data.nrpages);
69fe2d75
JB
8619 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
8620 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9e0baf60 8621 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7709cde3 8622 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 8623 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 8624 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 8625 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 8626
a6dbd429
JB
8627 /*
8628 * This can happen where we create an inode, but somebody else also
8629 * created the same inode and we need to destroy the one we already
8630 * created.
8631 */
8632 if (!root)
26602cab 8633 return;
a6dbd429 8634
d397712b 8635 while (1) {
e6dcd2dc
CM
8636 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8637 if (!ordered)
8638 break;
8639 else {
0b246afa 8640 btrfs_err(fs_info,
5d163e0e 8641 "found ordered extent %llu %llu on inode cleanup",
bffe633e 8642 ordered->file_offset, ordered->num_bytes);
e6dcd2dc
CM
8643 btrfs_remove_ordered_extent(inode, ordered);
8644 btrfs_put_ordered_extent(ordered);
8645 btrfs_put_ordered_extent(ordered);
8646 }
8647 }
cfdd4592 8648 btrfs_qgroup_check_reserved_leak(BTRFS_I(inode));
5d4f98a2 8649 inode_tree_del(inode);
dcdbc059 8650 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
41a2ee75 8651 btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 0, (u64)-1);
5c8fd99f 8652 btrfs_put_root(BTRFS_I(inode)->root);
39279cc3
CM
8653}
8654
45321ac5 8655int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8656{
8657 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8658
6379ef9f
NA
8659 if (root == NULL)
8660 return 1;
8661
fa6ac876 8662 /* the snap/subvol tree is on deleting */
69e9c6c6 8663 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8664 return 1;
76dda93c 8665 else
45321ac5 8666 return generic_drop_inode(inode);
76dda93c
YZ
8667}
8668
0ee0fda0 8669static void init_once(void *foo)
39279cc3
CM
8670{
8671 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8672
8673 inode_init_once(&ei->vfs_inode);
8674}
8675
e67c718b 8676void __cold btrfs_destroy_cachep(void)
39279cc3 8677{
8c0a8537
KS
8678 /*
8679 * Make sure all delayed rcu free inodes are flushed before we
8680 * destroy cache.
8681 */
8682 rcu_barrier();
5598e900
KM
8683 kmem_cache_destroy(btrfs_inode_cachep);
8684 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
8685 kmem_cache_destroy(btrfs_path_cachep);
8686 kmem_cache_destroy(btrfs_free_space_cachep);
3acd4850 8687 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
39279cc3
CM
8688}
8689
f5c29bd9 8690int __init btrfs_init_cachep(void)
39279cc3 8691{
837e1972 8692 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 8693 sizeof(struct btrfs_inode), 0,
5d097056
VD
8694 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8695 init_once);
39279cc3
CM
8696 if (!btrfs_inode_cachep)
8697 goto fail;
9601e3f6 8698
837e1972 8699 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 8700 sizeof(struct btrfs_trans_handle), 0,
fba4b697 8701 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8702 if (!btrfs_trans_handle_cachep)
8703 goto fail;
9601e3f6 8704
837e1972 8705 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 8706 sizeof(struct btrfs_path), 0,
fba4b697 8707 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8708 if (!btrfs_path_cachep)
8709 goto fail;
9601e3f6 8710
837e1972 8711 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 8712 sizeof(struct btrfs_free_space), 0,
fba4b697 8713 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
8714 if (!btrfs_free_space_cachep)
8715 goto fail;
8716
3acd4850
CL
8717 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
8718 PAGE_SIZE, PAGE_SIZE,
8719 SLAB_RED_ZONE, NULL);
8720 if (!btrfs_free_space_bitmap_cachep)
8721 goto fail;
8722
39279cc3
CM
8723 return 0;
8724fail:
8725 btrfs_destroy_cachep();
8726 return -ENOMEM;
8727}
8728
a528d35e
DH
8729static int btrfs_getattr(const struct path *path, struct kstat *stat,
8730 u32 request_mask, unsigned int flags)
39279cc3 8731{
df0af1a5 8732 u64 delalloc_bytes;
a528d35e 8733 struct inode *inode = d_inode(path->dentry);
fadc0d8b 8734 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
8735 u32 bi_flags = BTRFS_I(inode)->flags;
8736
8737 stat->result_mask |= STATX_BTIME;
8738 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8739 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8740 if (bi_flags & BTRFS_INODE_APPEND)
8741 stat->attributes |= STATX_ATTR_APPEND;
8742 if (bi_flags & BTRFS_INODE_COMPRESS)
8743 stat->attributes |= STATX_ATTR_COMPRESSED;
8744 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8745 stat->attributes |= STATX_ATTR_IMMUTABLE;
8746 if (bi_flags & BTRFS_INODE_NODUMP)
8747 stat->attributes |= STATX_ATTR_NODUMP;
8748
8749 stat->attributes_mask |= (STATX_ATTR_APPEND |
8750 STATX_ATTR_COMPRESSED |
8751 STATX_ATTR_IMMUTABLE |
8752 STATX_ATTR_NODUMP);
fadc0d8b 8753
39279cc3 8754 generic_fillattr(inode, stat);
0ee5dc67 8755 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
8756
8757 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 8758 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 8759 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 8760 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 8761 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
8762 return 0;
8763}
8764
cdd1fedf
DF
8765static int btrfs_rename_exchange(struct inode *old_dir,
8766 struct dentry *old_dentry,
8767 struct inode *new_dir,
8768 struct dentry *new_dentry)
8769{
0b246afa 8770 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
8771 struct btrfs_trans_handle *trans;
8772 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8773 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8774 struct inode *new_inode = new_dentry->d_inode;
8775 struct inode *old_inode = old_dentry->d_inode;
95582b00 8776 struct timespec64 ctime = current_time(old_inode);
cdd1fedf 8777 struct dentry *parent;
4a0cc7ca
NB
8778 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8779 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
8780 u64 old_idx = 0;
8781 u64 new_idx = 0;
cdd1fedf 8782 int ret;
86e8aa0e
FM
8783 bool root_log_pinned = false;
8784 bool dest_log_pinned = false;
d4682ba0
FM
8785 struct btrfs_log_ctx ctx_root;
8786 struct btrfs_log_ctx ctx_dest;
8787 bool sync_log_root = false;
8788 bool sync_log_dest = false;
8789 bool commit_transaction = false;
cdd1fedf
DF
8790
8791 /* we only allow rename subvolume link between subvolumes */
8792 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8793 return -EXDEV;
8794
d4682ba0
FM
8795 btrfs_init_log_ctx(&ctx_root, old_inode);
8796 btrfs_init_log_ctx(&ctx_dest, new_inode);
8797
cdd1fedf 8798 /* close the race window with snapshot create/destroy ioctl */
943eb3bf
JB
8799 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8800 new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 8801 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
8802
8803 /*
8804 * We want to reserve the absolute worst case amount of items. So if
8805 * both inodes are subvols and we need to unlink them then that would
8806 * require 4 item modifications, but if they are both normal inodes it
8807 * would require 5 item modifications, so we'll assume their normal
8808 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
8809 * should cover the worst case number of items we'll modify.
8810 */
8811 trans = btrfs_start_transaction(root, 12);
8812 if (IS_ERR(trans)) {
8813 ret = PTR_ERR(trans);
8814 goto out_notrans;
8815 }
8816
3e174099
JB
8817 if (dest != root)
8818 btrfs_record_root_in_trans(trans, dest);
8819
cdd1fedf
DF
8820 /*
8821 * We need to find a free sequence number both in the source and
8822 * in the destination directory for the exchange.
8823 */
877574e2 8824 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
8825 if (ret)
8826 goto out_fail;
877574e2 8827 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
8828 if (ret)
8829 goto out_fail;
8830
8831 BTRFS_I(old_inode)->dir_index = 0ULL;
8832 BTRFS_I(new_inode)->dir_index = 0ULL;
8833
8834 /* Reference for the source. */
8835 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8836 /* force full log commit if subvolume involved. */
90787766 8837 btrfs_set_log_full_commit(trans);
cdd1fedf 8838 } else {
376e5a57
FM
8839 btrfs_pin_log_trans(root);
8840 root_log_pinned = true;
cdd1fedf
DF
8841 ret = btrfs_insert_inode_ref(trans, dest,
8842 new_dentry->d_name.name,
8843 new_dentry->d_name.len,
8844 old_ino,
f85b7379
DS
8845 btrfs_ino(BTRFS_I(new_dir)),
8846 old_idx);
cdd1fedf
DF
8847 if (ret)
8848 goto out_fail;
cdd1fedf
DF
8849 }
8850
8851 /* And now for the dest. */
8852 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8853 /* force full log commit if subvolume involved. */
90787766 8854 btrfs_set_log_full_commit(trans);
cdd1fedf 8855 } else {
376e5a57
FM
8856 btrfs_pin_log_trans(dest);
8857 dest_log_pinned = true;
cdd1fedf
DF
8858 ret = btrfs_insert_inode_ref(trans, root,
8859 old_dentry->d_name.name,
8860 old_dentry->d_name.len,
8861 new_ino,
f85b7379
DS
8862 btrfs_ino(BTRFS_I(old_dir)),
8863 new_idx);
cdd1fedf
DF
8864 if (ret)
8865 goto out_fail;
cdd1fedf
DF
8866 }
8867
8868 /* Update inode version and ctime/mtime. */
8869 inode_inc_iversion(old_dir);
8870 inode_inc_iversion(new_dir);
8871 inode_inc_iversion(old_inode);
8872 inode_inc_iversion(new_inode);
8873 old_dir->i_ctime = old_dir->i_mtime = ctime;
8874 new_dir->i_ctime = new_dir->i_mtime = ctime;
8875 old_inode->i_ctime = ctime;
8876 new_inode->i_ctime = ctime;
8877
8878 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
8879 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8880 BTRFS_I(old_inode), 1);
8881 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8882 BTRFS_I(new_inode), 1);
cdd1fedf
DF
8883 }
8884
8885 /* src is a subvolume */
8886 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
045d3967 8887 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
cdd1fedf 8888 } else { /* src is an inode */
4ec5934e
NB
8889 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
8890 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
8891 old_dentry->d_name.name,
8892 old_dentry->d_name.len);
8893 if (!ret)
8894 ret = btrfs_update_inode(trans, root, old_inode);
8895 }
8896 if (ret) {
66642832 8897 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8898 goto out_fail;
8899 }
8900
8901 /* dest is a subvolume */
8902 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
045d3967 8903 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
cdd1fedf 8904 } else { /* dest is an inode */
4ec5934e
NB
8905 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
8906 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
8907 new_dentry->d_name.name,
8908 new_dentry->d_name.len);
8909 if (!ret)
8910 ret = btrfs_update_inode(trans, dest, new_inode);
8911 }
8912 if (ret) {
66642832 8913 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8914 goto out_fail;
8915 }
8916
db0a669f 8917 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
8918 new_dentry->d_name.name,
8919 new_dentry->d_name.len, 0, old_idx);
8920 if (ret) {
66642832 8921 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8922 goto out_fail;
8923 }
8924
db0a669f 8925 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
8926 old_dentry->d_name.name,
8927 old_dentry->d_name.len, 0, new_idx);
8928 if (ret) {
66642832 8929 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8930 goto out_fail;
8931 }
8932
8933 if (old_inode->i_nlink == 1)
8934 BTRFS_I(old_inode)->dir_index = old_idx;
8935 if (new_inode->i_nlink == 1)
8936 BTRFS_I(new_inode)->dir_index = new_idx;
8937
86e8aa0e 8938 if (root_log_pinned) {
cdd1fedf 8939 parent = new_dentry->d_parent;
d4682ba0
FM
8940 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
8941 BTRFS_I(old_dir), parent,
8942 false, &ctx_root);
8943 if (ret == BTRFS_NEED_LOG_SYNC)
8944 sync_log_root = true;
8945 else if (ret == BTRFS_NEED_TRANS_COMMIT)
8946 commit_transaction = true;
8947 ret = 0;
cdd1fedf 8948 btrfs_end_log_trans(root);
86e8aa0e 8949 root_log_pinned = false;
cdd1fedf 8950 }
86e8aa0e 8951 if (dest_log_pinned) {
d4682ba0
FM
8952 if (!commit_transaction) {
8953 parent = old_dentry->d_parent;
8954 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
8955 BTRFS_I(new_dir), parent,
8956 false, &ctx_dest);
8957 if (ret == BTRFS_NEED_LOG_SYNC)
8958 sync_log_dest = true;
8959 else if (ret == BTRFS_NEED_TRANS_COMMIT)
8960 commit_transaction = true;
8961 ret = 0;
8962 }
cdd1fedf 8963 btrfs_end_log_trans(dest);
86e8aa0e 8964 dest_log_pinned = false;
cdd1fedf
DF
8965 }
8966out_fail:
86e8aa0e
FM
8967 /*
8968 * If we have pinned a log and an error happened, we unpin tasks
8969 * trying to sync the log and force them to fallback to a transaction
8970 * commit if the log currently contains any of the inodes involved in
8971 * this rename operation (to ensure we do not persist a log with an
8972 * inconsistent state for any of these inodes or leading to any
8973 * inconsistencies when replayed). If the transaction was aborted, the
8974 * abortion reason is propagated to userspace when attempting to commit
8975 * the transaction. If the log does not contain any of these inodes, we
8976 * allow the tasks to sync it.
8977 */
8978 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
8979 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
8980 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
8981 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 8982 (new_inode &&
0f8939b8 8983 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 8984 btrfs_set_log_full_commit(trans);
86e8aa0e
FM
8985
8986 if (root_log_pinned) {
8987 btrfs_end_log_trans(root);
8988 root_log_pinned = false;
8989 }
8990 if (dest_log_pinned) {
8991 btrfs_end_log_trans(dest);
8992 dest_log_pinned = false;
8993 }
8994 }
d4682ba0
FM
8995 if (!ret && sync_log_root && !commit_transaction) {
8996 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
8997 &ctx_root);
8998 if (ret)
8999 commit_transaction = true;
9000 }
9001 if (!ret && sync_log_dest && !commit_transaction) {
9002 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9003 &ctx_dest);
9004 if (ret)
9005 commit_transaction = true;
9006 }
9007 if (commit_transaction) {
e6c61710
FM
9008 /*
9009 * We may have set commit_transaction when logging the new name
9010 * in the destination root, in which case we left the source
9011 * root context in the list of log contextes. So make sure we
9012 * remove it to avoid invalid memory accesses, since the context
9013 * was allocated in our stack frame.
9014 */
9015 if (sync_log_root) {
9016 mutex_lock(&root->log_mutex);
9017 list_del_init(&ctx_root.list);
9018 mutex_unlock(&root->log_mutex);
9019 }
d4682ba0
FM
9020 ret = btrfs_commit_transaction(trans);
9021 } else {
9022 int ret2;
9023
9024 ret2 = btrfs_end_transaction(trans);
9025 ret = ret ? ret : ret2;
9026 }
cdd1fedf 9027out_notrans:
943eb3bf
JB
9028 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9029 old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9030 up_read(&fs_info->subvol_sem);
cdd1fedf 9031
e6c61710
FM
9032 ASSERT(list_empty(&ctx_root.list));
9033 ASSERT(list_empty(&ctx_dest.list));
9034
cdd1fedf
DF
9035 return ret;
9036}
9037
9038static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9039 struct btrfs_root *root,
9040 struct inode *dir,
9041 struct dentry *dentry)
9042{
9043 int ret;
9044 struct inode *inode;
9045 u64 objectid;
9046 u64 index;
9047
9048 ret = btrfs_find_free_ino(root, &objectid);
9049 if (ret)
9050 return ret;
9051
9052 inode = btrfs_new_inode(trans, root, dir,
9053 dentry->d_name.name,
9054 dentry->d_name.len,
4a0cc7ca 9055 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9056 objectid,
9057 S_IFCHR | WHITEOUT_MODE,
9058 &index);
9059
9060 if (IS_ERR(inode)) {
9061 ret = PTR_ERR(inode);
9062 return ret;
9063 }
9064
9065 inode->i_op = &btrfs_special_inode_operations;
9066 init_special_inode(inode, inode->i_mode,
9067 WHITEOUT_DEV);
9068
9069 ret = btrfs_init_inode_security(trans, inode, dir,
9070 &dentry->d_name);
9071 if (ret)
c9901618 9072 goto out;
cdd1fedf 9073
cef415af
NB
9074 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9075 BTRFS_I(inode), 0, index);
cdd1fedf 9076 if (ret)
c9901618 9077 goto out;
cdd1fedf
DF
9078
9079 ret = btrfs_update_inode(trans, root, inode);
c9901618 9080out:
cdd1fedf 9081 unlock_new_inode(inode);
c9901618
FM
9082 if (ret)
9083 inode_dec_link_count(inode);
cdd1fedf
DF
9084 iput(inode);
9085
c9901618 9086 return ret;
cdd1fedf
DF
9087}
9088
d397712b 9089static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9090 struct inode *new_dir, struct dentry *new_dentry,
9091 unsigned int flags)
39279cc3 9092{
0b246afa 9093 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9094 struct btrfs_trans_handle *trans;
5062af35 9095 unsigned int trans_num_items;
39279cc3 9096 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9097 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9098 struct inode *new_inode = d_inode(new_dentry);
9099 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9100 u64 index = 0;
39279cc3 9101 int ret;
4a0cc7ca 9102 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9103 bool log_pinned = false;
d4682ba0
FM
9104 struct btrfs_log_ctx ctx;
9105 bool sync_log = false;
9106 bool commit_transaction = false;
39279cc3 9107
4a0cc7ca 9108 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9109 return -EPERM;
9110
4df27c4d 9111 /* we only allow rename subvolume link between subvolumes */
33345d01 9112 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9113 return -EXDEV;
9114
33345d01 9115 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9116 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9117 return -ENOTEMPTY;
5f39d397 9118
4df27c4d
YZ
9119 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9120 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9121 return -ENOTEMPTY;
9c52057c
CM
9122
9123
9124 /* check for collisions, even if the name isn't there */
4871c158 9125 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9126 new_dentry->d_name.name,
9127 new_dentry->d_name.len);
9128
9129 if (ret) {
9130 if (ret == -EEXIST) {
9131 /* we shouldn't get
9132 * eexist without a new_inode */
fae7f21c 9133 if (WARN_ON(!new_inode)) {
9c52057c
CM
9134 return ret;
9135 }
9136 } else {
9137 /* maybe -EOVERFLOW */
9138 return ret;
9139 }
9140 }
9141 ret = 0;
9142
5a3f23d5 9143 /*
8d875f95
CM
9144 * we're using rename to replace one file with another. Start IO on it
9145 * now so we don't add too much work to the end of the transaction
5a3f23d5 9146 */
8d875f95 9147 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9148 filemap_flush(old_inode->i_mapping);
9149
76dda93c 9150 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9151 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9152 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9153 /*
9154 * We want to reserve the absolute worst case amount of items. So if
9155 * both inodes are subvols and we need to unlink them then that would
9156 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9157 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9158 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9159 * should cover the worst case number of items we'll modify.
5062af35
FM
9160 * If our rename has the whiteout flag, we need more 5 units for the
9161 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9162 * when selinux is enabled).
a22285a6 9163 */
5062af35
FM
9164 trans_num_items = 11;
9165 if (flags & RENAME_WHITEOUT)
9166 trans_num_items += 5;
9167 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9168 if (IS_ERR(trans)) {
cdd1fedf
DF
9169 ret = PTR_ERR(trans);
9170 goto out_notrans;
9171 }
76dda93c 9172
4df27c4d
YZ
9173 if (dest != root)
9174 btrfs_record_root_in_trans(trans, dest);
5f39d397 9175
877574e2 9176 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9177 if (ret)
9178 goto out_fail;
5a3f23d5 9179
67de1176 9180 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9181 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9182 /* force full log commit if subvolume involved. */
90787766 9183 btrfs_set_log_full_commit(trans);
4df27c4d 9184 } else {
c4aba954
FM
9185 btrfs_pin_log_trans(root);
9186 log_pinned = true;
a5719521
YZ
9187 ret = btrfs_insert_inode_ref(trans, dest,
9188 new_dentry->d_name.name,
9189 new_dentry->d_name.len,
33345d01 9190 old_ino,
4a0cc7ca 9191 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9192 if (ret)
9193 goto out_fail;
4df27c4d 9194 }
5a3f23d5 9195
0c4d2d95
JB
9196 inode_inc_iversion(old_dir);
9197 inode_inc_iversion(new_dir);
9198 inode_inc_iversion(old_inode);
04b285f3
DD
9199 old_dir->i_ctime = old_dir->i_mtime =
9200 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9201 old_inode->i_ctime = current_time(old_dir);
5f39d397 9202
12fcfd22 9203 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9204 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9205 BTRFS_I(old_inode), 1);
12fcfd22 9206
33345d01 9207 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
045d3967 9208 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
4df27c4d 9209 } else {
4ec5934e
NB
9210 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9211 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9212 old_dentry->d_name.name,
9213 old_dentry->d_name.len);
9214 if (!ret)
9215 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9216 }
79787eaa 9217 if (ret) {
66642832 9218 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9219 goto out_fail;
9220 }
39279cc3
CM
9221
9222 if (new_inode) {
0c4d2d95 9223 inode_inc_iversion(new_inode);
c2050a45 9224 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9225 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d 9226 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
045d3967 9227 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
4df27c4d
YZ
9228 BUG_ON(new_inode->i_nlink == 0);
9229 } else {
4ec5934e
NB
9230 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9231 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9232 new_dentry->d_name.name,
9233 new_dentry->d_name.len);
9234 }
4ef31a45 9235 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9236 ret = btrfs_orphan_add(trans,
9237 BTRFS_I(d_inode(new_dentry)));
79787eaa 9238 if (ret) {
66642832 9239 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9240 goto out_fail;
9241 }
39279cc3 9242 }
aec7477b 9243
db0a669f 9244 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 9245 new_dentry->d_name.name,
a5719521 9246 new_dentry->d_name.len, 0, index);
79787eaa 9247 if (ret) {
66642832 9248 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9249 goto out_fail;
9250 }
39279cc3 9251
67de1176
MX
9252 if (old_inode->i_nlink == 1)
9253 BTRFS_I(old_inode)->dir_index = index;
9254
3dc9e8f7 9255 if (log_pinned) {
10d9f309 9256 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9257
d4682ba0
FM
9258 btrfs_init_log_ctx(&ctx, old_inode);
9259 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9260 BTRFS_I(old_dir), parent,
9261 false, &ctx);
9262 if (ret == BTRFS_NEED_LOG_SYNC)
9263 sync_log = true;
9264 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9265 commit_transaction = true;
9266 ret = 0;
4df27c4d 9267 btrfs_end_log_trans(root);
3dc9e8f7 9268 log_pinned = false;
4df27c4d 9269 }
cdd1fedf
DF
9270
9271 if (flags & RENAME_WHITEOUT) {
9272 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9273 old_dentry);
9274
9275 if (ret) {
66642832 9276 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9277 goto out_fail;
9278 }
4df27c4d 9279 }
39279cc3 9280out_fail:
3dc9e8f7
FM
9281 /*
9282 * If we have pinned the log and an error happened, we unpin tasks
9283 * trying to sync the log and force them to fallback to a transaction
9284 * commit if the log currently contains any of the inodes involved in
9285 * this rename operation (to ensure we do not persist a log with an
9286 * inconsistent state for any of these inodes or leading to any
9287 * inconsistencies when replayed). If the transaction was aborted, the
9288 * abortion reason is propagated to userspace when attempting to commit
9289 * the transaction. If the log does not contain any of these inodes, we
9290 * allow the tasks to sync it.
9291 */
9292 if (ret && log_pinned) {
0f8939b8
NB
9293 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9294 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9295 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 9296 (new_inode &&
0f8939b8 9297 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 9298 btrfs_set_log_full_commit(trans);
3dc9e8f7
FM
9299
9300 btrfs_end_log_trans(root);
9301 log_pinned = false;
9302 }
d4682ba0
FM
9303 if (!ret && sync_log) {
9304 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9305 if (ret)
9306 commit_transaction = true;
236ebc20
FM
9307 } else if (sync_log) {
9308 mutex_lock(&root->log_mutex);
9309 list_del(&ctx.list);
9310 mutex_unlock(&root->log_mutex);
d4682ba0
FM
9311 }
9312 if (commit_transaction) {
9313 ret = btrfs_commit_transaction(trans);
9314 } else {
9315 int ret2;
9316
9317 ret2 = btrfs_end_transaction(trans);
9318 ret = ret ? ret : ret2;
9319 }
b44c59a8 9320out_notrans:
33345d01 9321 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9322 up_read(&fs_info->subvol_sem);
9ed74f2d 9323
39279cc3
CM
9324 return ret;
9325}
9326
80ace85c
MS
9327static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9328 struct inode *new_dir, struct dentry *new_dentry,
9329 unsigned int flags)
9330{
cdd1fedf 9331 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9332 return -EINVAL;
9333
cdd1fedf
DF
9334 if (flags & RENAME_EXCHANGE)
9335 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9336 new_dentry);
9337
9338 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9339}
9340
3a2f8c07
NB
9341struct btrfs_delalloc_work {
9342 struct inode *inode;
9343 struct completion completion;
9344 struct list_head list;
9345 struct btrfs_work work;
9346};
9347
8ccf6f19
MX
9348static void btrfs_run_delalloc_work(struct btrfs_work *work)
9349{
9350 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9351 struct inode *inode;
8ccf6f19
MX
9352
9353 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9354 work);
9f23e289 9355 inode = delalloc_work->inode;
30424601
DS
9356 filemap_flush(inode->i_mapping);
9357 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9358 &BTRFS_I(inode)->runtime_flags))
9f23e289 9359 filemap_flush(inode->i_mapping);
8ccf6f19 9360
076da91c 9361 iput(inode);
8ccf6f19
MX
9362 complete(&delalloc_work->completion);
9363}
9364
3a2f8c07 9365static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8ccf6f19
MX
9366{
9367 struct btrfs_delalloc_work *work;
9368
100d5702 9369 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9370 if (!work)
9371 return NULL;
9372
9373 init_completion(&work->completion);
9374 INIT_LIST_HEAD(&work->list);
9375 work->inode = inode;
a0cac0ec 9376 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9377
9378 return work;
9379}
9380
d352ac68
CM
9381/*
9382 * some fairly slow code that needs optimization. This walks the list
9383 * of all the inodes with pending delalloc and forces them to disk.
9384 */
3cd24c69 9385static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
ea8c2819 9386{
ea8c2819 9387 struct btrfs_inode *binode;
5b21f2ed 9388 struct inode *inode;
8ccf6f19
MX
9389 struct btrfs_delalloc_work *work, *next;
9390 struct list_head works;
1eafa6c7 9391 struct list_head splice;
8ccf6f19 9392 int ret = 0;
ea8c2819 9393
8ccf6f19 9394 INIT_LIST_HEAD(&works);
1eafa6c7 9395 INIT_LIST_HEAD(&splice);
63607cc8 9396
573bfb72 9397 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9398 spin_lock(&root->delalloc_lock);
9399 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9400 while (!list_empty(&splice)) {
9401 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9402 delalloc_inodes);
1eafa6c7 9403
eb73c1b7
MX
9404 list_move_tail(&binode->delalloc_inodes,
9405 &root->delalloc_inodes);
5b21f2ed 9406 inode = igrab(&binode->vfs_inode);
df0af1a5 9407 if (!inode) {
eb73c1b7 9408 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9409 continue;
df0af1a5 9410 }
eb73c1b7 9411 spin_unlock(&root->delalloc_lock);
1eafa6c7 9412
3cd24c69
EL
9413 if (snapshot)
9414 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9415 &binode->runtime_flags);
076da91c 9416 work = btrfs_alloc_delalloc_work(inode);
5d99a998 9417 if (!work) {
4fbb5147 9418 iput(inode);
1eafa6c7 9419 ret = -ENOMEM;
a1ecaabb 9420 goto out;
5b21f2ed 9421 }
1eafa6c7 9422 list_add_tail(&work->list, &works);
a44903ab
QW
9423 btrfs_queue_work(root->fs_info->flush_workers,
9424 &work->work);
6c255e67
MX
9425 ret++;
9426 if (nr != -1 && ret >= nr)
a1ecaabb 9427 goto out;
5b21f2ed 9428 cond_resched();
eb73c1b7 9429 spin_lock(&root->delalloc_lock);
ea8c2819 9430 }
eb73c1b7 9431 spin_unlock(&root->delalloc_lock);
8c8bee1d 9432
a1ecaabb 9433out:
eb73c1b7
MX
9434 list_for_each_entry_safe(work, next, &works, list) {
9435 list_del_init(&work->list);
40012f96
NB
9436 wait_for_completion(&work->completion);
9437 kfree(work);
eb73c1b7
MX
9438 }
9439
81f1d390 9440 if (!list_empty(&splice)) {
eb73c1b7
MX
9441 spin_lock(&root->delalloc_lock);
9442 list_splice_tail(&splice, &root->delalloc_inodes);
9443 spin_unlock(&root->delalloc_lock);
9444 }
573bfb72 9445 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9446 return ret;
9447}
1eafa6c7 9448
3cd24c69 9449int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
eb73c1b7 9450{
0b246afa 9451 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 9452 int ret;
1eafa6c7 9453
0b246afa 9454 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9455 return -EROFS;
9456
3cd24c69 9457 ret = start_delalloc_inodes(root, -1, true);
6c255e67
MX
9458 if (ret > 0)
9459 ret = 0;
eb73c1b7
MX
9460 return ret;
9461}
9462
82b3e53b 9463int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
eb73c1b7
MX
9464{
9465 struct btrfs_root *root;
9466 struct list_head splice;
9467 int ret;
9468
2c21b4d7 9469 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9470 return -EROFS;
9471
9472 INIT_LIST_HEAD(&splice);
9473
573bfb72 9474 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9475 spin_lock(&fs_info->delalloc_root_lock);
9476 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 9477 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
9478 root = list_first_entry(&splice, struct btrfs_root,
9479 delalloc_root);
00246528 9480 root = btrfs_grab_root(root);
eb73c1b7
MX
9481 BUG_ON(!root);
9482 list_move_tail(&root->delalloc_root,
9483 &fs_info->delalloc_roots);
9484 spin_unlock(&fs_info->delalloc_root_lock);
9485
3cd24c69 9486 ret = start_delalloc_inodes(root, nr, false);
00246528 9487 btrfs_put_root(root);
6c255e67 9488 if (ret < 0)
eb73c1b7
MX
9489 goto out;
9490
6c255e67
MX
9491 if (nr != -1) {
9492 nr -= ret;
9493 WARN_ON(nr < 0);
9494 }
eb73c1b7 9495 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9496 }
eb73c1b7 9497 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9498
6c255e67 9499 ret = 0;
eb73c1b7 9500out:
81f1d390 9501 if (!list_empty(&splice)) {
eb73c1b7
MX
9502 spin_lock(&fs_info->delalloc_root_lock);
9503 list_splice_tail(&splice, &fs_info->delalloc_roots);
9504 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9505 }
573bfb72 9506 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9507 return ret;
ea8c2819
CM
9508}
9509
39279cc3
CM
9510static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9511 const char *symname)
9512{
0b246afa 9513 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
9514 struct btrfs_trans_handle *trans;
9515 struct btrfs_root *root = BTRFS_I(dir)->root;
9516 struct btrfs_path *path;
9517 struct btrfs_key key;
1832a6d5 9518 struct inode *inode = NULL;
39279cc3 9519 int err;
39279cc3 9520 u64 objectid;
67871254 9521 u64 index = 0;
39279cc3
CM
9522 int name_len;
9523 int datasize;
5f39d397 9524 unsigned long ptr;
39279cc3 9525 struct btrfs_file_extent_item *ei;
5f39d397 9526 struct extent_buffer *leaf;
39279cc3 9527
f06becc4 9528 name_len = strlen(symname);
0b246afa 9529 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 9530 return -ENAMETOOLONG;
1832a6d5 9531
9ed74f2d
JB
9532 /*
9533 * 2 items for inode item and ref
9534 * 2 items for dir items
9269d12b
FM
9535 * 1 item for updating parent inode item
9536 * 1 item for the inline extent item
9ed74f2d
JB
9537 * 1 item for xattr if selinux is on
9538 */
9269d12b 9539 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
9540 if (IS_ERR(trans))
9541 return PTR_ERR(trans);
1832a6d5 9542
581bb050
LZ
9543 err = btrfs_find_free_ino(root, &objectid);
9544 if (err)
9545 goto out_unlock;
9546
aec7477b 9547 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
9548 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9549 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
9550 if (IS_ERR(inode)) {
9551 err = PTR_ERR(inode);
32955c54 9552 inode = NULL;
39279cc3 9553 goto out_unlock;
7cf96da3 9554 }
39279cc3 9555
ad19db71
CS
9556 /*
9557 * If the active LSM wants to access the inode during
9558 * d_instantiate it needs these. Smack checks to see
9559 * if the filesystem supports xattrs by looking at the
9560 * ops vector.
9561 */
9562 inode->i_fop = &btrfs_file_operations;
9563 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 9564 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
9565 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9566
9567 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9568 if (err)
32955c54 9569 goto out_unlock;
ad19db71 9570
39279cc3 9571 path = btrfs_alloc_path();
d8926bb3
MF
9572 if (!path) {
9573 err = -ENOMEM;
32955c54 9574 goto out_unlock;
d8926bb3 9575 }
4a0cc7ca 9576 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 9577 key.offset = 0;
962a298f 9578 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9579 datasize = btrfs_file_extent_calc_inline_size(name_len);
9580 err = btrfs_insert_empty_item(trans, root, path, &key,
9581 datasize);
54aa1f4d 9582 if (err) {
b0839166 9583 btrfs_free_path(path);
32955c54 9584 goto out_unlock;
54aa1f4d 9585 }
5f39d397
CM
9586 leaf = path->nodes[0];
9587 ei = btrfs_item_ptr(leaf, path->slots[0],
9588 struct btrfs_file_extent_item);
9589 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9590 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9591 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9592 btrfs_set_file_extent_encryption(leaf, ei, 0);
9593 btrfs_set_file_extent_compression(leaf, ei, 0);
9594 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9595 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9596
39279cc3 9597 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
9598 write_extent_buffer(leaf, symname, ptr, name_len);
9599 btrfs_mark_buffer_dirty(leaf);
39279cc3 9600 btrfs_free_path(path);
5f39d397 9601
39279cc3 9602 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 9603 inode_nohighmem(inode);
d899e052 9604 inode_set_bytes(inode, name_len);
6ef06d27 9605 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 9606 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
9607 /*
9608 * Last step, add directory indexes for our symlink inode. This is the
9609 * last step to avoid extra cleanup of these indexes if an error happens
9610 * elsewhere above.
9611 */
9612 if (!err)
cef415af
NB
9613 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9614 BTRFS_I(inode), 0, index);
32955c54
AV
9615 if (err)
9616 goto out_unlock;
b0d5d10f 9617
1e2e547a 9618 d_instantiate_new(dentry, inode);
39279cc3
CM
9619
9620out_unlock:
3a45bb20 9621 btrfs_end_transaction(trans);
32955c54 9622 if (err && inode) {
39279cc3 9623 inode_dec_link_count(inode);
32955c54 9624 discard_new_inode(inode);
39279cc3 9625 }
2ff7e61e 9626 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
9627 return err;
9628}
16432985 9629
203f44c5
QW
9630static int insert_prealloc_file_extent(struct btrfs_trans_handle *trans,
9631 struct inode *inode, struct btrfs_key *ins,
9632 u64 file_offset)
9633{
9634 struct btrfs_file_extent_item stack_fi;
9635 u64 start = ins->objectid;
9636 u64 len = ins->offset;
9729f10a 9637 int ret;
203f44c5
QW
9638
9639 memset(&stack_fi, 0, sizeof(stack_fi));
9640
9641 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9642 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9643 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9644 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9645 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9646 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9647 /* Encryption and other encoding is reserved and all 0 */
9648
72b7d15b 9649 ret = btrfs_qgroup_release_data(BTRFS_I(inode), file_offset, len);
9729f10a
QW
9650 if (ret < 0)
9651 return ret;
c553f94d 9652 return insert_reserved_file_extent(trans, BTRFS_I(inode), file_offset,
9729f10a 9653 &stack_fi, ret);
203f44c5 9654}
0af3d00b
JB
9655static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9656 u64 start, u64 num_bytes, u64 min_size,
9657 loff_t actual_len, u64 *alloc_hint,
9658 struct btrfs_trans_handle *trans)
d899e052 9659{
0b246afa 9660 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
9661 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9662 struct extent_map *em;
d899e052
YZ
9663 struct btrfs_root *root = BTRFS_I(inode)->root;
9664 struct btrfs_key ins;
d899e052 9665 u64 cur_offset = start;
b778cf96 9666 u64 clear_offset = start;
55a61d1d 9667 u64 i_size;
154ea289 9668 u64 cur_bytes;
0b670dc4 9669 u64 last_alloc = (u64)-1;
d899e052 9670 int ret = 0;
0af3d00b 9671 bool own_trans = true;
18513091 9672 u64 end = start + num_bytes - 1;
d899e052 9673
0af3d00b
JB
9674 if (trans)
9675 own_trans = false;
d899e052 9676 while (num_bytes > 0) {
0af3d00b
JB
9677 if (own_trans) {
9678 trans = btrfs_start_transaction(root, 3);
9679 if (IS_ERR(trans)) {
9680 ret = PTR_ERR(trans);
9681 break;
9682 }
5a303d5d
YZ
9683 }
9684
ee22184b 9685 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 9686 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
9687 /*
9688 * If we are severely fragmented we could end up with really
9689 * small allocations, so if the allocator is returning small
9690 * chunks lets make its job easier by only searching for those
9691 * sized chunks.
9692 */
9693 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
9694 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9695 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 9696 if (ret) {
0af3d00b 9697 if (own_trans)
3a45bb20 9698 btrfs_end_transaction(trans);
a22285a6 9699 break;
d899e052 9700 }
b778cf96
JB
9701
9702 /*
9703 * We've reserved this space, and thus converted it from
9704 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9705 * from here on out we will only need to clear our reservation
9706 * for the remaining unreserved area, so advance our
9707 * clear_offset by our extent size.
9708 */
9709 clear_offset += ins.offset;
0b246afa 9710 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 9711
0b670dc4 9712 last_alloc = ins.offset;
c553f94d 9713 ret = insert_prealloc_file_extent(trans, inode, &ins, cur_offset);
79787eaa 9714 if (ret) {
2ff7e61e 9715 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 9716 ins.offset, 0);
66642832 9717 btrfs_abort_transaction(trans, ret);
79787eaa 9718 if (own_trans)
3a45bb20 9719 btrfs_end_transaction(trans);
79787eaa
JM
9720 break;
9721 }
31193213 9722
dcdbc059 9723 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 9724 cur_offset + ins.offset -1, 0);
5a303d5d 9725
5dc562c5
JB
9726 em = alloc_extent_map();
9727 if (!em) {
9728 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9729 &BTRFS_I(inode)->runtime_flags);
9730 goto next;
9731 }
9732
9733 em->start = cur_offset;
9734 em->orig_start = cur_offset;
9735 em->len = ins.offset;
9736 em->block_start = ins.objectid;
9737 em->block_len = ins.offset;
b4939680 9738 em->orig_block_len = ins.offset;
cc95bef6 9739 em->ram_bytes = ins.offset;
5dc562c5
JB
9740 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9741 em->generation = trans->transid;
9742
9743 while (1) {
9744 write_lock(&em_tree->lock);
09a2a8f9 9745 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
9746 write_unlock(&em_tree->lock);
9747 if (ret != -EEXIST)
9748 break;
dcdbc059 9749 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
9750 cur_offset + ins.offset - 1,
9751 0);
9752 }
9753 free_extent_map(em);
9754next:
d899e052
YZ
9755 num_bytes -= ins.offset;
9756 cur_offset += ins.offset;
efa56464 9757 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9758
0c4d2d95 9759 inode_inc_iversion(inode);
c2050a45 9760 inode->i_ctime = current_time(inode);
6cbff00f 9761 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9762 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9763 (actual_len > inode->i_size) &&
9764 (cur_offset > inode->i_size)) {
d1ea6a61 9765 if (cur_offset > actual_len)
55a61d1d 9766 i_size = actual_len;
d1ea6a61 9767 else
55a61d1d
JB
9768 i_size = cur_offset;
9769 i_size_write(inode, i_size);
d923afe9 9770 btrfs_inode_safe_disk_i_size_write(inode, 0);
5a303d5d
YZ
9771 }
9772
d899e052 9773 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
9774
9775 if (ret) {
66642832 9776 btrfs_abort_transaction(trans, ret);
79787eaa 9777 if (own_trans)
3a45bb20 9778 btrfs_end_transaction(trans);
79787eaa
JM
9779 break;
9780 }
d899e052 9781
0af3d00b 9782 if (own_trans)
3a45bb20 9783 btrfs_end_transaction(trans);
5a303d5d 9784 }
b778cf96 9785 if (clear_offset < end)
25ce28ca 9786 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
b778cf96 9787 end - clear_offset + 1);
d899e052
YZ
9788 return ret;
9789}
9790
0af3d00b
JB
9791int btrfs_prealloc_file_range(struct inode *inode, int mode,
9792 u64 start, u64 num_bytes, u64 min_size,
9793 loff_t actual_len, u64 *alloc_hint)
9794{
9795 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9796 min_size, actual_len, alloc_hint,
9797 NULL);
9798}
9799
9800int btrfs_prealloc_file_range_trans(struct inode *inode,
9801 struct btrfs_trans_handle *trans, int mode,
9802 u64 start, u64 num_bytes, u64 min_size,
9803 loff_t actual_len, u64 *alloc_hint)
9804{
9805 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9806 min_size, actual_len, alloc_hint, trans);
9807}
9808
e6dcd2dc
CM
9809static int btrfs_set_page_dirty(struct page *page)
9810{
e6dcd2dc
CM
9811 return __set_page_dirty_nobuffers(page);
9812}
9813
10556cb2 9814static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 9815{
b83cc969 9816 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9817 umode_t mode = inode->i_mode;
b83cc969 9818
cb6db4e5
JM
9819 if (mask & MAY_WRITE &&
9820 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9821 if (btrfs_root_readonly(root))
9822 return -EROFS;
9823 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9824 return -EACCES;
9825 }
2830ba7f 9826 return generic_permission(inode, mask);
fdebe2bd 9827}
39279cc3 9828
ef3b9af5
FM
9829static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9830{
2ff7e61e 9831 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
9832 struct btrfs_trans_handle *trans;
9833 struct btrfs_root *root = BTRFS_I(dir)->root;
9834 struct inode *inode = NULL;
9835 u64 objectid;
9836 u64 index;
9837 int ret = 0;
9838
9839 /*
9840 * 5 units required for adding orphan entry
9841 */
9842 trans = btrfs_start_transaction(root, 5);
9843 if (IS_ERR(trans))
9844 return PTR_ERR(trans);
9845
9846 ret = btrfs_find_free_ino(root, &objectid);
9847 if (ret)
9848 goto out;
9849
9850 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 9851 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
9852 if (IS_ERR(inode)) {
9853 ret = PTR_ERR(inode);
9854 inode = NULL;
9855 goto out;
9856 }
9857
ef3b9af5
FM
9858 inode->i_fop = &btrfs_file_operations;
9859 inode->i_op = &btrfs_file_inode_operations;
9860
9861 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
9862 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9863
b0d5d10f
CM
9864 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9865 if (ret)
32955c54 9866 goto out;
b0d5d10f
CM
9867
9868 ret = btrfs_update_inode(trans, root, inode);
9869 if (ret)
32955c54 9870 goto out;
73f2e545 9871 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 9872 if (ret)
32955c54 9873 goto out;
ef3b9af5 9874
5762b5c9
FM
9875 /*
9876 * We set number of links to 0 in btrfs_new_inode(), and here we set
9877 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9878 * through:
9879 *
9880 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9881 */
9882 set_nlink(inode, 1);
ef3b9af5 9883 d_tmpfile(dentry, inode);
32955c54 9884 unlock_new_inode(inode);
ef3b9af5 9885 mark_inode_dirty(inode);
ef3b9af5 9886out:
3a45bb20 9887 btrfs_end_transaction(trans);
32955c54
AV
9888 if (ret && inode)
9889 discard_new_inode(inode);
2ff7e61e 9890 btrfs_btree_balance_dirty(fs_info);
ef3b9af5
FM
9891 return ret;
9892}
9893
5cdc84bf 9894void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
c6100a4b 9895{
5cdc84bf 9896 struct inode *inode = tree->private_data;
c6100a4b
JB
9897 unsigned long index = start >> PAGE_SHIFT;
9898 unsigned long end_index = end >> PAGE_SHIFT;
9899 struct page *page;
9900
9901 while (index <= end_index) {
9902 page = find_get_page(inode->i_mapping, index);
9903 ASSERT(page); /* Pages should be in the extent_io_tree */
9904 set_page_writeback(page);
9905 put_page(page);
9906 index++;
9907 }
9908}
9909
ed46ff3d
OS
9910#ifdef CONFIG_SWAP
9911/*
9912 * Add an entry indicating a block group or device which is pinned by a
9913 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9914 * negative errno on failure.
9915 */
9916static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9917 bool is_block_group)
9918{
9919 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9920 struct btrfs_swapfile_pin *sp, *entry;
9921 struct rb_node **p;
9922 struct rb_node *parent = NULL;
9923
9924 sp = kmalloc(sizeof(*sp), GFP_NOFS);
9925 if (!sp)
9926 return -ENOMEM;
9927 sp->ptr = ptr;
9928 sp->inode = inode;
9929 sp->is_block_group = is_block_group;
9930
9931 spin_lock(&fs_info->swapfile_pins_lock);
9932 p = &fs_info->swapfile_pins.rb_node;
9933 while (*p) {
9934 parent = *p;
9935 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9936 if (sp->ptr < entry->ptr ||
9937 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9938 p = &(*p)->rb_left;
9939 } else if (sp->ptr > entry->ptr ||
9940 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9941 p = &(*p)->rb_right;
9942 } else {
9943 spin_unlock(&fs_info->swapfile_pins_lock);
9944 kfree(sp);
9945 return 1;
9946 }
9947 }
9948 rb_link_node(&sp->node, parent, p);
9949 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9950 spin_unlock(&fs_info->swapfile_pins_lock);
9951 return 0;
9952}
9953
9954/* Free all of the entries pinned by this swapfile. */
9955static void btrfs_free_swapfile_pins(struct inode *inode)
9956{
9957 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9958 struct btrfs_swapfile_pin *sp;
9959 struct rb_node *node, *next;
9960
9961 spin_lock(&fs_info->swapfile_pins_lock);
9962 node = rb_first(&fs_info->swapfile_pins);
9963 while (node) {
9964 next = rb_next(node);
9965 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9966 if (sp->inode == inode) {
9967 rb_erase(&sp->node, &fs_info->swapfile_pins);
9968 if (sp->is_block_group)
9969 btrfs_put_block_group(sp->ptr);
9970 kfree(sp);
9971 }
9972 node = next;
9973 }
9974 spin_unlock(&fs_info->swapfile_pins_lock);
9975}
9976
9977struct btrfs_swap_info {
9978 u64 start;
9979 u64 block_start;
9980 u64 block_len;
9981 u64 lowest_ppage;
9982 u64 highest_ppage;
9983 unsigned long nr_pages;
9984 int nr_extents;
9985};
9986
9987static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9988 struct btrfs_swap_info *bsi)
9989{
9990 unsigned long nr_pages;
9991 u64 first_ppage, first_ppage_reported, next_ppage;
9992 int ret;
9993
9994 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
9995 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
9996 PAGE_SIZE) >> PAGE_SHIFT;
9997
9998 if (first_ppage >= next_ppage)
9999 return 0;
10000 nr_pages = next_ppage - first_ppage;
10001
10002 first_ppage_reported = first_ppage;
10003 if (bsi->start == 0)
10004 first_ppage_reported++;
10005 if (bsi->lowest_ppage > first_ppage_reported)
10006 bsi->lowest_ppage = first_ppage_reported;
10007 if (bsi->highest_ppage < (next_ppage - 1))
10008 bsi->highest_ppage = next_ppage - 1;
10009
10010 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10011 if (ret < 0)
10012 return ret;
10013 bsi->nr_extents += ret;
10014 bsi->nr_pages += nr_pages;
10015 return 0;
10016}
10017
10018static void btrfs_swap_deactivate(struct file *file)
10019{
10020 struct inode *inode = file_inode(file);
10021
10022 btrfs_free_swapfile_pins(inode);
10023 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10024}
10025
10026static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10027 sector_t *span)
10028{
10029 struct inode *inode = file_inode(file);
10030 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10031 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10032 struct extent_state *cached_state = NULL;
10033 struct extent_map *em = NULL;
10034 struct btrfs_device *device = NULL;
10035 struct btrfs_swap_info bsi = {
10036 .lowest_ppage = (sector_t)-1ULL,
10037 };
10038 int ret = 0;
10039 u64 isize;
10040 u64 start;
10041
10042 /*
10043 * If the swap file was just created, make sure delalloc is done. If the
10044 * file changes again after this, the user is doing something stupid and
10045 * we don't really care.
10046 */
10047 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10048 if (ret)
10049 return ret;
10050
10051 /*
10052 * The inode is locked, so these flags won't change after we check them.
10053 */
10054 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10055 btrfs_warn(fs_info, "swapfile must not be compressed");
10056 return -EINVAL;
10057 }
10058 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10059 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10060 return -EINVAL;
10061 }
10062 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10063 btrfs_warn(fs_info, "swapfile must not be checksummed");
10064 return -EINVAL;
10065 }
10066
10067 /*
10068 * Balance or device remove/replace/resize can move stuff around from
10069 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10070 * concurrently while we are mapping the swap extents, and
10071 * fs_info->swapfile_pins prevents them from running while the swap file
10072 * is active and moving the extents. Note that this also prevents a
10073 * concurrent device add which isn't actually necessary, but it's not
10074 * really worth the trouble to allow it.
10075 */
10076 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10077 btrfs_warn(fs_info,
10078 "cannot activate swapfile while exclusive operation is running");
10079 return -EBUSY;
10080 }
10081 /*
10082 * Snapshots can create extents which require COW even if NODATACOW is
10083 * set. We use this counter to prevent snapshots. We must increment it
10084 * before walking the extents because we don't want a concurrent
10085 * snapshot to run after we've already checked the extents.
10086 */
10087 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10088
10089 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10090
10091 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10092 start = 0;
10093 while (start < isize) {
10094 u64 logical_block_start, physical_block_start;
32da5386 10095 struct btrfs_block_group *bg;
ed46ff3d
OS
10096 u64 len = isize - start;
10097
39b07b5d 10098 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
ed46ff3d
OS
10099 if (IS_ERR(em)) {
10100 ret = PTR_ERR(em);
10101 goto out;
10102 }
10103
10104 if (em->block_start == EXTENT_MAP_HOLE) {
10105 btrfs_warn(fs_info, "swapfile must not have holes");
10106 ret = -EINVAL;
10107 goto out;
10108 }
10109 if (em->block_start == EXTENT_MAP_INLINE) {
10110 /*
10111 * It's unlikely we'll ever actually find ourselves
10112 * here, as a file small enough to fit inline won't be
10113 * big enough to store more than the swap header, but in
10114 * case something changes in the future, let's catch it
10115 * here rather than later.
10116 */
10117 btrfs_warn(fs_info, "swapfile must not be inline");
10118 ret = -EINVAL;
10119 goto out;
10120 }
10121 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10122 btrfs_warn(fs_info, "swapfile must not be compressed");
10123 ret = -EINVAL;
10124 goto out;
10125 }
10126
10127 logical_block_start = em->block_start + (start - em->start);
10128 len = min(len, em->len - (start - em->start));
10129 free_extent_map(em);
10130 em = NULL;
10131
10132 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10133 if (ret < 0) {
10134 goto out;
10135 } else if (ret) {
10136 ret = 0;
10137 } else {
10138 btrfs_warn(fs_info,
10139 "swapfile must not be copy-on-write");
10140 ret = -EINVAL;
10141 goto out;
10142 }
10143
10144 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10145 if (IS_ERR(em)) {
10146 ret = PTR_ERR(em);
10147 goto out;
10148 }
10149
10150 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10151 btrfs_warn(fs_info,
10152 "swapfile must have single data profile");
10153 ret = -EINVAL;
10154 goto out;
10155 }
10156
10157 if (device == NULL) {
10158 device = em->map_lookup->stripes[0].dev;
10159 ret = btrfs_add_swapfile_pin(inode, device, false);
10160 if (ret == 1)
10161 ret = 0;
10162 else if (ret)
10163 goto out;
10164 } else if (device != em->map_lookup->stripes[0].dev) {
10165 btrfs_warn(fs_info, "swapfile must be on one device");
10166 ret = -EINVAL;
10167 goto out;
10168 }
10169
10170 physical_block_start = (em->map_lookup->stripes[0].physical +
10171 (logical_block_start - em->start));
10172 len = min(len, em->len - (logical_block_start - em->start));
10173 free_extent_map(em);
10174 em = NULL;
10175
10176 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10177 if (!bg) {
10178 btrfs_warn(fs_info,
10179 "could not find block group containing swapfile");
10180 ret = -EINVAL;
10181 goto out;
10182 }
10183
10184 ret = btrfs_add_swapfile_pin(inode, bg, true);
10185 if (ret) {
10186 btrfs_put_block_group(bg);
10187 if (ret == 1)
10188 ret = 0;
10189 else
10190 goto out;
10191 }
10192
10193 if (bsi.block_len &&
10194 bsi.block_start + bsi.block_len == physical_block_start) {
10195 bsi.block_len += len;
10196 } else {
10197 if (bsi.block_len) {
10198 ret = btrfs_add_swap_extent(sis, &bsi);
10199 if (ret)
10200 goto out;
10201 }
10202 bsi.start = start;
10203 bsi.block_start = physical_block_start;
10204 bsi.block_len = len;
10205 }
10206
10207 start += len;
10208 }
10209
10210 if (bsi.block_len)
10211 ret = btrfs_add_swap_extent(sis, &bsi);
10212
10213out:
10214 if (!IS_ERR_OR_NULL(em))
10215 free_extent_map(em);
10216
10217 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10218
10219 if (ret)
10220 btrfs_swap_deactivate(file);
10221
10222 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10223
10224 if (ret)
10225 return ret;
10226
10227 if (device)
10228 sis->bdev = device->bdev;
10229 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10230 sis->max = bsi.nr_pages;
10231 sis->pages = bsi.nr_pages - 1;
10232 sis->highest_bit = bsi.nr_pages - 1;
10233 return bsi.nr_extents;
10234}
10235#else
10236static void btrfs_swap_deactivate(struct file *file)
10237{
10238}
10239
10240static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10241 sector_t *span)
10242{
10243 return -EOPNOTSUPP;
10244}
10245#endif
10246
6e1d5dcc 10247static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10248 .getattr = btrfs_getattr,
39279cc3
CM
10249 .lookup = btrfs_lookup,
10250 .create = btrfs_create,
10251 .unlink = btrfs_unlink,
10252 .link = btrfs_link,
10253 .mkdir = btrfs_mkdir,
10254 .rmdir = btrfs_rmdir,
2773bf00 10255 .rename = btrfs_rename2,
39279cc3
CM
10256 .symlink = btrfs_symlink,
10257 .setattr = btrfs_setattr,
618e21d5 10258 .mknod = btrfs_mknod,
5103e947 10259 .listxattr = btrfs_listxattr,
fdebe2bd 10260 .permission = btrfs_permission,
4e34e719 10261 .get_acl = btrfs_get_acl,
996a710d 10262 .set_acl = btrfs_set_acl,
93fd63c2 10263 .update_time = btrfs_update_time,
ef3b9af5 10264 .tmpfile = btrfs_tmpfile,
39279cc3 10265};
76dda93c 10266
828c0950 10267static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10268 .llseek = generic_file_llseek,
10269 .read = generic_read_dir,
02dbfc99 10270 .iterate_shared = btrfs_real_readdir,
23b5ec74 10271 .open = btrfs_opendir,
34287aa3 10272 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10273#ifdef CONFIG_COMPAT
4c63c245 10274 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10275#endif
6bf13c0c 10276 .release = btrfs_release_file,
e02119d5 10277 .fsync = btrfs_sync_file,
39279cc3
CM
10278};
10279
20e5506b 10280static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10281 /* mandatory callbacks */
065631f6 10282 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac
CM
10283 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10284};
10285
35054394
CM
10286/*
10287 * btrfs doesn't support the bmap operation because swapfiles
10288 * use bmap to make a mapping of extents in the file. They assume
10289 * these extents won't change over the life of the file and they
10290 * use the bmap result to do IO directly to the drive.
10291 *
10292 * the btrfs bmap call would return logical addresses that aren't
10293 * suitable for IO and they also will change frequently as COW
10294 * operations happen. So, swapfile + btrfs == corruption.
10295 *
10296 * For now we're avoiding this by dropping bmap.
10297 */
7f09410b 10298static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10299 .readpage = btrfs_readpage,
10300 .writepage = btrfs_writepage,
b293f02e 10301 .writepages = btrfs_writepages,
ba206a02 10302 .readahead = btrfs_readahead,
55e20bd1 10303 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10304 .invalidatepage = btrfs_invalidatepage,
10305 .releasepage = btrfs_releasepage,
f8e66081
RG
10306#ifdef CONFIG_MIGRATION
10307 .migratepage = btrfs_migratepage,
10308#endif
e6dcd2dc 10309 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10310 .error_remove_page = generic_error_remove_page,
ed46ff3d
OS
10311 .swap_activate = btrfs_swap_activate,
10312 .swap_deactivate = btrfs_swap_deactivate,
39279cc3
CM
10313};
10314
6e1d5dcc 10315static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10316 .getattr = btrfs_getattr,
10317 .setattr = btrfs_setattr,
5103e947 10318 .listxattr = btrfs_listxattr,
fdebe2bd 10319 .permission = btrfs_permission,
1506fcc8 10320 .fiemap = btrfs_fiemap,
4e34e719 10321 .get_acl = btrfs_get_acl,
996a710d 10322 .set_acl = btrfs_set_acl,
e41f941a 10323 .update_time = btrfs_update_time,
39279cc3 10324};
6e1d5dcc 10325static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10326 .getattr = btrfs_getattr,
10327 .setattr = btrfs_setattr,
fdebe2bd 10328 .permission = btrfs_permission,
33268eaf 10329 .listxattr = btrfs_listxattr,
4e34e719 10330 .get_acl = btrfs_get_acl,
996a710d 10331 .set_acl = btrfs_set_acl,
e41f941a 10332 .update_time = btrfs_update_time,
618e21d5 10333};
6e1d5dcc 10334static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10335 .get_link = page_get_link,
f209561a 10336 .getattr = btrfs_getattr,
22c44fe6 10337 .setattr = btrfs_setattr,
fdebe2bd 10338 .permission = btrfs_permission,
0279b4cd 10339 .listxattr = btrfs_listxattr,
e41f941a 10340 .update_time = btrfs_update_time,
39279cc3 10341};
76dda93c 10342
82d339d9 10343const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
10344 .d_delete = btrfs_dentry_delete,
10345};