]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/inode.c
btrfs: Introduce btrfs_io_geometry infrastructure
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
8f18cf13 6#include <linux/kernel.h>
065631f6 7#include <linux/bio.h>
39279cc3 8#include <linux/buffer_head.h>
f2eb0a24 9#include <linux/file.h>
39279cc3
CM
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
39279cc3 16#include <linux/backing-dev.h>
39279cc3 17#include <linux/writeback.h>
39279cc3 18#include <linux/compat.h>
5103e947 19#include <linux/xattr.h>
33268eaf 20#include <linux/posix_acl.h>
d899e052 21#include <linux/falloc.h>
5a0e3ad6 22#include <linux/slab.h>
7a36ddec 23#include <linux/ratelimit.h>
55e301fd 24#include <linux/btrfs.h>
53b381b3 25#include <linux/blkdev.h>
f23b5a59 26#include <linux/posix_acl_xattr.h>
e2e40f2c 27#include <linux/uio.h>
69fe2d75 28#include <linux/magic.h>
ae5e165d 29#include <linux/iversion.h>
ed46ff3d 30#include <linux/swap.h>
b1c16ac9 31#include <linux/sched/mm.h>
92d32170 32#include <asm/unaligned.h>
39279cc3
CM
33#include "ctree.h"
34#include "disk-io.h"
35#include "transaction.h"
36#include "btrfs_inode.h"
39279cc3 37#include "print-tree.h"
e6dcd2dc 38#include "ordered-data.h"
95819c05 39#include "xattr.h"
e02119d5 40#include "tree-log.h"
4a54c8c1 41#include "volumes.h"
c8b97818 42#include "compression.h"
b4ce94de 43#include "locking.h"
dc89e982 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
38c227d8 46#include "backref.h"
63541927 47#include "props.h"
31193213 48#include "qgroup.h"
dda3245e 49#include "dedupe.h"
39279cc3
CM
50
51struct btrfs_iget_args {
90d3e592 52 struct btrfs_key *location;
39279cc3
CM
53 struct btrfs_root *root;
54};
55
f28a4928 56struct btrfs_dio_data {
f28a4928
FM
57 u64 reserve;
58 u64 unsubmitted_oe_range_start;
59 u64 unsubmitted_oe_range_end;
4aaedfb0 60 int overwrite;
f28a4928
FM
61};
62
6e1d5dcc
AD
63static const struct inode_operations btrfs_dir_inode_operations;
64static const struct inode_operations btrfs_symlink_inode_operations;
65static const struct inode_operations btrfs_dir_ro_inode_operations;
66static const struct inode_operations btrfs_special_inode_operations;
67static const struct inode_operations btrfs_file_inode_operations;
7f09410b 68static const struct address_space_operations btrfs_aops;
828c0950 69static const struct file_operations btrfs_dir_file_operations;
20e5506b 70static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
71
72static struct kmem_cache *btrfs_inode_cachep;
73struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 74struct kmem_cache *btrfs_path_cachep;
dc89e982 75struct kmem_cache *btrfs_free_space_cachep;
39279cc3 76
3972f260 77static int btrfs_setsize(struct inode *inode, struct iattr *attr);
213e8c55 78static int btrfs_truncate(struct inode *inode, bool skip_writeback);
5fd02043 79static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
80static noinline int cow_file_range(struct inode *inode,
81 struct page *locked_page,
dda3245e
WX
82 u64 start, u64 end, u64 delalloc_end,
83 int *page_started, unsigned long *nr_written,
84 int unlock, struct btrfs_dedupe_hash *hash);
6f9994db
LB
85static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
86 u64 orig_start, u64 block_start,
87 u64 block_len, u64 orig_block_len,
88 u64 ram_bytes, int compress_type,
89 int type);
7b128766 90
52427260
QW
91static void __endio_write_update_ordered(struct inode *inode,
92 const u64 offset, const u64 bytes,
93 const bool uptodate);
94
95/*
96 * Cleanup all submitted ordered extents in specified range to handle errors
52042d8e 97 * from the btrfs_run_delalloc_range() callback.
52427260
QW
98 *
99 * NOTE: caller must ensure that when an error happens, it can not call
100 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
101 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
102 * to be released, which we want to happen only when finishing the ordered
d1051d6e 103 * extent (btrfs_finish_ordered_io()).
52427260
QW
104 */
105static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
d1051d6e
NB
106 struct page *locked_page,
107 u64 offset, u64 bytes)
52427260 108{
63d71450
NA
109 unsigned long index = offset >> PAGE_SHIFT;
110 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
d1051d6e
NB
111 u64 page_start = page_offset(locked_page);
112 u64 page_end = page_start + PAGE_SIZE - 1;
113
63d71450
NA
114 struct page *page;
115
116 while (index <= end_index) {
117 page = find_get_page(inode->i_mapping, index);
118 index++;
119 if (!page)
120 continue;
121 ClearPagePrivate2(page);
122 put_page(page);
123 }
d1051d6e
NB
124
125 /*
126 * In case this page belongs to the delalloc range being instantiated
127 * then skip it, since the first page of a range is going to be
128 * properly cleaned up by the caller of run_delalloc_range
129 */
130 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
131 offset += PAGE_SIZE;
132 bytes -= PAGE_SIZE;
133 }
134
135 return __endio_write_update_ordered(inode, offset, bytes, false);
52427260
QW
136}
137
48a3b636 138static int btrfs_dirty_inode(struct inode *inode);
7b128766 139
6a3891c5
JB
140#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
141void btrfs_test_inode_set_ops(struct inode *inode)
142{
143 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
144}
145#endif
146
f34f57a3 147static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
148 struct inode *inode, struct inode *dir,
149 const struct qstr *qstr)
0279b4cd
JO
150{
151 int err;
152
f34f57a3 153 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 154 if (!err)
2a7dba39 155 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
156 return err;
157}
158
c8b97818
CM
159/*
160 * this does all the hard work for inserting an inline extent into
161 * the btree. The caller should have done a btrfs_drop_extents so that
162 * no overlapping inline items exist in the btree
163 */
40f76580 164static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 165 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
166 struct btrfs_root *root, struct inode *inode,
167 u64 start, size_t size, size_t compressed_size,
fe3f566c 168 int compress_type,
c8b97818
CM
169 struct page **compressed_pages)
170{
c8b97818
CM
171 struct extent_buffer *leaf;
172 struct page *page = NULL;
173 char *kaddr;
174 unsigned long ptr;
175 struct btrfs_file_extent_item *ei;
c8b97818
CM
176 int ret;
177 size_t cur_size = size;
c8b97818 178 unsigned long offset;
c8b97818 179
fe3f566c 180 if (compressed_size && compressed_pages)
c8b97818 181 cur_size = compressed_size;
c8b97818 182
1acae57b 183 inode_add_bytes(inode, size);
c8b97818 184
1acae57b
FDBM
185 if (!extent_inserted) {
186 struct btrfs_key key;
187 size_t datasize;
c8b97818 188
4a0cc7ca 189 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 190 key.offset = start;
962a298f 191 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 192
1acae57b
FDBM
193 datasize = btrfs_file_extent_calc_inline_size(cur_size);
194 path->leave_spinning = 1;
195 ret = btrfs_insert_empty_item(trans, root, path, &key,
196 datasize);
79b4f4c6 197 if (ret)
1acae57b 198 goto fail;
c8b97818
CM
199 }
200 leaf = path->nodes[0];
201 ei = btrfs_item_ptr(leaf, path->slots[0],
202 struct btrfs_file_extent_item);
203 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
204 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
205 btrfs_set_file_extent_encryption(leaf, ei, 0);
206 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
207 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
208 ptr = btrfs_file_extent_inline_start(ei);
209
261507a0 210 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
211 struct page *cpage;
212 int i = 0;
d397712b 213 while (compressed_size > 0) {
c8b97818 214 cpage = compressed_pages[i];
5b050f04 215 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 216 PAGE_SIZE);
c8b97818 217
7ac687d9 218 kaddr = kmap_atomic(cpage);
c8b97818 219 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 220 kunmap_atomic(kaddr);
c8b97818
CM
221
222 i++;
223 ptr += cur_size;
224 compressed_size -= cur_size;
225 }
226 btrfs_set_file_extent_compression(leaf, ei,
261507a0 227 compress_type);
c8b97818
CM
228 } else {
229 page = find_get_page(inode->i_mapping,
09cbfeaf 230 start >> PAGE_SHIFT);
c8b97818 231 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 232 kaddr = kmap_atomic(page);
7073017a 233 offset = offset_in_page(start);
c8b97818 234 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 235 kunmap_atomic(kaddr);
09cbfeaf 236 put_page(page);
c8b97818
CM
237 }
238 btrfs_mark_buffer_dirty(leaf);
1acae57b 239 btrfs_release_path(path);
c8b97818 240
c2167754
YZ
241 /*
242 * we're an inline extent, so nobody can
243 * extend the file past i_size without locking
244 * a page we already have locked.
245 *
246 * We must do any isize and inode updates
247 * before we unlock the pages. Otherwise we
248 * could end up racing with unlink.
249 */
c8b97818 250 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 251 ret = btrfs_update_inode(trans, root, inode);
c2167754 252
c8b97818 253fail:
79b4f4c6 254 return ret;
c8b97818
CM
255}
256
257
258/*
259 * conditionally insert an inline extent into the file. This
260 * does the checks required to make sure the data is small enough
261 * to fit as an inline extent.
262 */
d02c0e20 263static noinline int cow_file_range_inline(struct inode *inode, u64 start,
00361589
JB
264 u64 end, size_t compressed_size,
265 int compress_type,
266 struct page **compressed_pages)
c8b97818 267{
d02c0e20 268 struct btrfs_root *root = BTRFS_I(inode)->root;
0b246afa 269 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 270 struct btrfs_trans_handle *trans;
c8b97818
CM
271 u64 isize = i_size_read(inode);
272 u64 actual_end = min(end + 1, isize);
273 u64 inline_len = actual_end - start;
0b246afa 274 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
275 u64 data_len = inline_len;
276 int ret;
1acae57b
FDBM
277 struct btrfs_path *path;
278 int extent_inserted = 0;
279 u32 extent_item_size;
c8b97818
CM
280
281 if (compressed_size)
282 data_len = compressed_size;
283
284 if (start > 0 ||
0b246afa
JM
285 actual_end > fs_info->sectorsize ||
286 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 287 (!compressed_size &&
0b246afa 288 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 289 end + 1 < isize ||
0b246afa 290 data_len > fs_info->max_inline) {
c8b97818
CM
291 return 1;
292 }
293
1acae57b
FDBM
294 path = btrfs_alloc_path();
295 if (!path)
296 return -ENOMEM;
297
00361589 298 trans = btrfs_join_transaction(root);
1acae57b
FDBM
299 if (IS_ERR(trans)) {
300 btrfs_free_path(path);
00361589 301 return PTR_ERR(trans);
1acae57b 302 }
69fe2d75 303 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
00361589 304
1acae57b
FDBM
305 if (compressed_size && compressed_pages)
306 extent_item_size = btrfs_file_extent_calc_inline_size(
307 compressed_size);
308 else
309 extent_item_size = btrfs_file_extent_calc_inline_size(
310 inline_len);
311
312 ret = __btrfs_drop_extents(trans, root, inode, path,
313 start, aligned_end, NULL,
314 1, 1, extent_item_size, &extent_inserted);
00361589 315 if (ret) {
66642832 316 btrfs_abort_transaction(trans, ret);
00361589
JB
317 goto out;
318 }
c8b97818
CM
319
320 if (isize > actual_end)
321 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
322 ret = insert_inline_extent(trans, path, extent_inserted,
323 root, inode, start,
c8b97818 324 inline_len, compressed_size,
fe3f566c 325 compress_type, compressed_pages);
2adcac1a 326 if (ret && ret != -ENOSPC) {
66642832 327 btrfs_abort_transaction(trans, ret);
00361589 328 goto out;
2adcac1a 329 } else if (ret == -ENOSPC) {
00361589
JB
330 ret = 1;
331 goto out;
79787eaa 332 }
2adcac1a 333
bdc20e67 334 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
dcdbc059 335 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 336out:
94ed938a
QW
337 /*
338 * Don't forget to free the reserved space, as for inlined extent
339 * it won't count as data extent, free them directly here.
340 * And at reserve time, it's always aligned to page size, so
341 * just free one page here.
342 */
bc42bda2 343 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 344 btrfs_free_path(path);
3a45bb20 345 btrfs_end_transaction(trans);
00361589 346 return ret;
c8b97818
CM
347}
348
771ed689
CM
349struct async_extent {
350 u64 start;
351 u64 ram_size;
352 u64 compressed_size;
353 struct page **pages;
354 unsigned long nr_pages;
261507a0 355 int compress_type;
771ed689
CM
356 struct list_head list;
357};
358
97db1204 359struct async_chunk {
771ed689 360 struct inode *inode;
771ed689
CM
361 struct page *locked_page;
362 u64 start;
363 u64 end;
f82b7359 364 unsigned int write_flags;
771ed689
CM
365 struct list_head extents;
366 struct btrfs_work work;
97db1204 367 atomic_t *pending;
771ed689
CM
368};
369
97db1204
NB
370struct async_cow {
371 /* Number of chunks in flight; must be first in the structure */
372 atomic_t num_chunks;
373 struct async_chunk chunks[];
771ed689
CM
374};
375
97db1204 376static noinline int add_async_extent(struct async_chunk *cow,
771ed689
CM
377 u64 start, u64 ram_size,
378 u64 compressed_size,
379 struct page **pages,
261507a0
LZ
380 unsigned long nr_pages,
381 int compress_type)
771ed689
CM
382{
383 struct async_extent *async_extent;
384
385 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 386 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
387 async_extent->start = start;
388 async_extent->ram_size = ram_size;
389 async_extent->compressed_size = compressed_size;
390 async_extent->pages = pages;
391 async_extent->nr_pages = nr_pages;
261507a0 392 async_extent->compress_type = compress_type;
771ed689
CM
393 list_add_tail(&async_extent->list, &cow->extents);
394 return 0;
395}
396
c2fcdcdf 397static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
f79707b0 398{
0b246afa 399 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
400
401 /* force compress */
0b246afa 402 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 403 return 1;
eec63c65
DS
404 /* defrag ioctl */
405 if (BTRFS_I(inode)->defrag_compress)
406 return 1;
f79707b0
WS
407 /* bad compression ratios */
408 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
409 return 0;
0b246afa 410 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0 411 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
b52aa8c9 412 BTRFS_I(inode)->prop_compress)
c2fcdcdf 413 return btrfs_compress_heuristic(inode, start, end);
f79707b0
WS
414 return 0;
415}
416
6158e1ce 417static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
418 u64 start, u64 end, u64 num_bytes, u64 small_write)
419{
420 /* If this is a small write inside eof, kick off a defrag */
421 if (num_bytes < small_write &&
6158e1ce 422 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
423 btrfs_add_inode_defrag(NULL, inode);
424}
425
d352ac68 426/*
771ed689
CM
427 * we create compressed extents in two phases. The first
428 * phase compresses a range of pages that have already been
429 * locked (both pages and state bits are locked).
c8b97818 430 *
771ed689
CM
431 * This is done inside an ordered work queue, and the compression
432 * is spread across many cpus. The actual IO submission is step
433 * two, and the ordered work queue takes care of making sure that
434 * happens in the same order things were put onto the queue by
435 * writepages and friends.
c8b97818 436 *
771ed689
CM
437 * If this code finds it can't get good compression, it puts an
438 * entry onto the work queue to write the uncompressed bytes. This
439 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
440 * are written in the same order that the flusher thread sent them
441 * down.
d352ac68 442 */
1368c6da
NB
443static noinline void compress_file_range(struct async_chunk *async_chunk,
444 int *num_added)
b888db2b 445{
1368c6da 446 struct inode *inode = async_chunk->inode;
0b246afa 447 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0b246afa 448 u64 blocksize = fs_info->sectorsize;
1368c6da
NB
449 u64 start = async_chunk->start;
450 u64 end = async_chunk->end;
c8b97818 451 u64 actual_end;
e6dcd2dc 452 int ret = 0;
c8b97818
CM
453 struct page **pages = NULL;
454 unsigned long nr_pages;
c8b97818
CM
455 unsigned long total_compressed = 0;
456 unsigned long total_in = 0;
c8b97818
CM
457 int i;
458 int will_compress;
0b246afa 459 int compress_type = fs_info->compress_type;
4adaa611 460 int redirty = 0;
b888db2b 461
6158e1ce
NB
462 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
463 SZ_16K);
4cb5300b 464
62b37622 465 actual_end = min_t(u64, i_size_read(inode), end + 1);
c8b97818
CM
466again:
467 will_compress = 0;
09cbfeaf 468 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
469 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
470 nr_pages = min_t(unsigned long, nr_pages,
471 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 472
f03d9301
CM
473 /*
474 * we don't want to send crud past the end of i_size through
475 * compression, that's just a waste of CPU time. So, if the
476 * end of the file is before the start of our current
477 * requested range of bytes, we bail out to the uncompressed
478 * cleanup code that can deal with all of this.
479 *
480 * It isn't really the fastest way to fix things, but this is a
481 * very uncommon corner.
482 */
483 if (actual_end <= start)
484 goto cleanup_and_bail_uncompressed;
485
c8b97818
CM
486 total_compressed = actual_end - start;
487
4bcbb332
SW
488 /*
489 * skip compression for a small file range(<=blocksize) that
01327610 490 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
491 */
492 if (total_compressed <= blocksize &&
493 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
494 goto cleanup_and_bail_uncompressed;
495
069eac78
DS
496 total_compressed = min_t(unsigned long, total_compressed,
497 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
498 total_in = 0;
499 ret = 0;
db94535d 500
771ed689
CM
501 /*
502 * we do compression for mount -o compress and when the
503 * inode has not been flagged as nocompress. This flag can
504 * change at any time if we discover bad compression ratios.
c8b97818 505 */
c2fcdcdf 506 if (inode_need_compress(inode, start, end)) {
c8b97818 507 WARN_ON(pages);
31e818fe 508 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
509 if (!pages) {
510 /* just bail out to the uncompressed code */
3527a018 511 nr_pages = 0;
560f7d75
LZ
512 goto cont;
513 }
c8b97818 514
eec63c65
DS
515 if (BTRFS_I(inode)->defrag_compress)
516 compress_type = BTRFS_I(inode)->defrag_compress;
517 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 518 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 519
4adaa611
CM
520 /*
521 * we need to call clear_page_dirty_for_io on each
522 * page in the range. Otherwise applications with the file
523 * mmap'd can wander in and change the page contents while
524 * we are compressing them.
525 *
526 * If the compression fails for any reason, we set the pages
527 * dirty again later on.
e9679de3
TT
528 *
529 * Note that the remaining part is redirtied, the start pointer
530 * has moved, the end is the original one.
4adaa611 531 */
e9679de3
TT
532 if (!redirty) {
533 extent_range_clear_dirty_for_io(inode, start, end);
534 redirty = 1;
535 }
f51d2b59
DS
536
537 /* Compression level is applied here and only here */
538 ret = btrfs_compress_pages(
539 compress_type | (fs_info->compress_level << 4),
261507a0 540 inode->i_mapping, start,
38c31464 541 pages,
4d3a800e 542 &nr_pages,
261507a0 543 &total_in,
e5d74902 544 &total_compressed);
c8b97818
CM
545
546 if (!ret) {
7073017a 547 unsigned long offset = offset_in_page(total_compressed);
4d3a800e 548 struct page *page = pages[nr_pages - 1];
c8b97818
CM
549 char *kaddr;
550
551 /* zero the tail end of the last page, we might be
552 * sending it down to disk
553 */
554 if (offset) {
7ac687d9 555 kaddr = kmap_atomic(page);
c8b97818 556 memset(kaddr + offset, 0,
09cbfeaf 557 PAGE_SIZE - offset);
7ac687d9 558 kunmap_atomic(kaddr);
c8b97818
CM
559 }
560 will_compress = 1;
561 }
562 }
560f7d75 563cont:
c8b97818
CM
564 if (start == 0) {
565 /* lets try to make an inline extent */
6018ba0a 566 if (ret || total_in < actual_end) {
c8b97818 567 /* we didn't compress the entire range, try
771ed689 568 * to make an uncompressed inline extent.
c8b97818 569 */
d02c0e20
NB
570 ret = cow_file_range_inline(inode, start, end, 0,
571 BTRFS_COMPRESS_NONE, NULL);
c8b97818 572 } else {
771ed689 573 /* try making a compressed inline extent */
d02c0e20 574 ret = cow_file_range_inline(inode, start, end,
fe3f566c
LZ
575 total_compressed,
576 compress_type, pages);
c8b97818 577 }
79787eaa 578 if (ret <= 0) {
151a41bc 579 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
580 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
581 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
582 unsigned long page_error_op;
583
e6eb4314 584 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 585
771ed689 586 /*
79787eaa
JM
587 * inline extent creation worked or returned error,
588 * we don't need to create any more async work items.
589 * Unlock and free up our temp pages.
8b62f87b
JB
590 *
591 * We use DO_ACCOUNTING here because we need the
592 * delalloc_release_metadata to be done _after_ we drop
593 * our outstanding extent for clearing delalloc for this
594 * range.
771ed689 595 */
ba8b04c1
QW
596 extent_clear_unlock_delalloc(inode, start, end, end,
597 NULL, clear_flags,
598 PAGE_UNLOCK |
c2790a2e
JB
599 PAGE_CLEAR_DIRTY |
600 PAGE_SET_WRITEBACK |
e6eb4314 601 page_error_op |
c2790a2e 602 PAGE_END_WRITEBACK);
c8b97818
CM
603 goto free_pages_out;
604 }
605 }
606
607 if (will_compress) {
608 /*
609 * we aren't doing an inline extent round the compressed size
610 * up to a block size boundary so the allocator does sane
611 * things
612 */
fda2832f 613 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
614
615 /*
616 * one last check to make sure the compression is really a
170607eb
TT
617 * win, compare the page count read with the blocks on disk,
618 * compression must free at least one sector size
c8b97818 619 */
09cbfeaf 620 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 621 if (total_compressed + blocksize <= total_in) {
c8bb0c8b
AS
622 *num_added += 1;
623
624 /*
625 * The async work queues will take care of doing actual
626 * allocation on disk for these compressed pages, and
627 * will submit them to the elevator.
628 */
b5326271 629 add_async_extent(async_chunk, start, total_in,
4d3a800e 630 total_compressed, pages, nr_pages,
c8bb0c8b
AS
631 compress_type);
632
1170862d
TT
633 if (start + total_in < end) {
634 start += total_in;
c8bb0c8b
AS
635 pages = NULL;
636 cond_resched();
637 goto again;
638 }
639 return;
c8b97818
CM
640 }
641 }
c8bb0c8b 642 if (pages) {
c8b97818
CM
643 /*
644 * the compression code ran but failed to make things smaller,
645 * free any pages it allocated and our page pointer array
646 */
4d3a800e 647 for (i = 0; i < nr_pages; i++) {
70b99e69 648 WARN_ON(pages[i]->mapping);
09cbfeaf 649 put_page(pages[i]);
c8b97818
CM
650 }
651 kfree(pages);
652 pages = NULL;
653 total_compressed = 0;
4d3a800e 654 nr_pages = 0;
c8b97818
CM
655
656 /* flag the file so we don't compress in the future */
0b246afa 657 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 658 !(BTRFS_I(inode)->prop_compress)) {
a555f810 659 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 660 }
c8b97818 661 }
f03d9301 662cleanup_and_bail_uncompressed:
c8bb0c8b
AS
663 /*
664 * No compression, but we still need to write the pages in the file
665 * we've been given so far. redirty the locked page if it corresponds
666 * to our extent and set things up for the async work queue to run
667 * cow_file_range to do the normal delalloc dance.
668 */
1368c6da
NB
669 if (page_offset(async_chunk->locked_page) >= start &&
670 page_offset(async_chunk->locked_page) <= end)
671 __set_page_dirty_nobuffers(async_chunk->locked_page);
c8bb0c8b
AS
672 /* unlocked later on in the async handlers */
673
674 if (redirty)
675 extent_range_redirty_for_io(inode, start, end);
b5326271 676 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
c8bb0c8b
AS
677 BTRFS_COMPRESS_NONE);
678 *num_added += 1;
3b951516 679
c44f649e 680 return;
771ed689
CM
681
682free_pages_out:
4d3a800e 683 for (i = 0; i < nr_pages; i++) {
771ed689 684 WARN_ON(pages[i]->mapping);
09cbfeaf 685 put_page(pages[i]);
771ed689 686 }
d397712b 687 kfree(pages);
771ed689 688}
771ed689 689
40ae837b
FM
690static void free_async_extent_pages(struct async_extent *async_extent)
691{
692 int i;
693
694 if (!async_extent->pages)
695 return;
696
697 for (i = 0; i < async_extent->nr_pages; i++) {
698 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 699 put_page(async_extent->pages[i]);
40ae837b
FM
700 }
701 kfree(async_extent->pages);
702 async_extent->nr_pages = 0;
703 async_extent->pages = NULL;
771ed689
CM
704}
705
706/*
707 * phase two of compressed writeback. This is the ordered portion
708 * of the code, which only gets called in the order the work was
709 * queued. We walk all the async extents created by compress_file_range
710 * and send them down to the disk.
711 */
b5326271 712static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
771ed689 713{
b5326271 714 struct inode *inode = async_chunk->inode;
0b246afa 715 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
716 struct async_extent *async_extent;
717 u64 alloc_hint = 0;
771ed689
CM
718 struct btrfs_key ins;
719 struct extent_map *em;
720 struct btrfs_root *root = BTRFS_I(inode)->root;
4336650a 721 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
f5a84ee3 722 int ret = 0;
771ed689 723
3e04e7f1 724again:
b5326271
NB
725 while (!list_empty(&async_chunk->extents)) {
726 async_extent = list_entry(async_chunk->extents.next,
771ed689
CM
727 struct async_extent, list);
728 list_del(&async_extent->list);
c8b97818 729
f5a84ee3 730retry:
7447555f
NB
731 lock_extent(io_tree, async_extent->start,
732 async_extent->start + async_extent->ram_size - 1);
771ed689
CM
733 /* did the compression code fall back to uncompressed IO? */
734 if (!async_extent->pages) {
735 int page_started = 0;
736 unsigned long nr_written = 0;
737
771ed689 738 /* allocate blocks */
b5326271 739 ret = cow_file_range(inode, async_chunk->locked_page,
f5a84ee3
JB
740 async_extent->start,
741 async_extent->start +
742 async_extent->ram_size - 1,
dda3245e
WX
743 async_extent->start +
744 async_extent->ram_size - 1,
745 &page_started, &nr_written, 0,
746 NULL);
771ed689 747
79787eaa
JM
748 /* JDM XXX */
749
771ed689
CM
750 /*
751 * if page_started, cow_file_range inserted an
752 * inline extent and took care of all the unlocking
753 * and IO for us. Otherwise, we need to submit
754 * all those pages down to the drive.
755 */
f5a84ee3 756 if (!page_started && !ret)
5e3ee236
NB
757 extent_write_locked_range(inode,
758 async_extent->start,
d397712b 759 async_extent->start +
771ed689 760 async_extent->ram_size - 1,
771ed689 761 WB_SYNC_ALL);
3e04e7f1 762 else if (ret)
b5326271 763 unlock_page(async_chunk->locked_page);
771ed689
CM
764 kfree(async_extent);
765 cond_resched();
766 continue;
767 }
768
18513091 769 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
770 async_extent->compressed_size,
771 async_extent->compressed_size,
e570fd27 772 0, alloc_hint, &ins, 1, 1);
f5a84ee3 773 if (ret) {
40ae837b 774 free_async_extent_pages(async_extent);
3e04e7f1 775
fdf8e2ea
JB
776 if (ret == -ENOSPC) {
777 unlock_extent(io_tree, async_extent->start,
778 async_extent->start +
779 async_extent->ram_size - 1);
ce62003f
LB
780
781 /*
782 * we need to redirty the pages if we decide to
783 * fallback to uncompressed IO, otherwise we
784 * will not submit these pages down to lower
785 * layers.
786 */
787 extent_range_redirty_for_io(inode,
788 async_extent->start,
789 async_extent->start +
790 async_extent->ram_size - 1);
791
79787eaa 792 goto retry;
fdf8e2ea 793 }
3e04e7f1 794 goto out_free;
f5a84ee3 795 }
c2167754
YZ
796 /*
797 * here we're doing allocation and writeback of the
798 * compressed pages
799 */
6f9994db
LB
800 em = create_io_em(inode, async_extent->start,
801 async_extent->ram_size, /* len */
802 async_extent->start, /* orig_start */
803 ins.objectid, /* block_start */
804 ins.offset, /* block_len */
805 ins.offset, /* orig_block_len */
806 async_extent->ram_size, /* ram_bytes */
807 async_extent->compress_type,
808 BTRFS_ORDERED_COMPRESSED);
809 if (IS_ERR(em))
810 /* ret value is not necessary due to void function */
3e04e7f1 811 goto out_free_reserve;
6f9994db 812 free_extent_map(em);
3e04e7f1 813
261507a0
LZ
814 ret = btrfs_add_ordered_extent_compress(inode,
815 async_extent->start,
816 ins.objectid,
817 async_extent->ram_size,
818 ins.offset,
819 BTRFS_ORDERED_COMPRESSED,
820 async_extent->compress_type);
d9f85963 821 if (ret) {
dcdbc059
NB
822 btrfs_drop_extent_cache(BTRFS_I(inode),
823 async_extent->start,
d9f85963
FM
824 async_extent->start +
825 async_extent->ram_size - 1, 0);
3e04e7f1 826 goto out_free_reserve;
d9f85963 827 }
0b246afa 828 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 829
771ed689
CM
830 /*
831 * clear dirty, set writeback and unlock the pages.
832 */
c2790a2e 833 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
834 async_extent->start +
835 async_extent->ram_size - 1,
a791e35e
CM
836 async_extent->start +
837 async_extent->ram_size - 1,
151a41bc
JB
838 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
839 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 840 PAGE_SET_WRITEBACK);
4e4cbee9 841 if (btrfs_submit_compressed_write(inode,
d397712b
CM
842 async_extent->start,
843 async_extent->ram_size,
844 ins.objectid,
845 ins.offset, async_extent->pages,
f82b7359 846 async_extent->nr_pages,
b5326271 847 async_chunk->write_flags)) {
fce2a4e6
FM
848 struct page *p = async_extent->pages[0];
849 const u64 start = async_extent->start;
850 const u64 end = start + async_extent->ram_size - 1;
851
852 p->mapping = inode->i_mapping;
c629732d 853 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
7087a9d8 854
fce2a4e6 855 p->mapping = NULL;
ba8b04c1
QW
856 extent_clear_unlock_delalloc(inode, start, end, end,
857 NULL, 0,
fce2a4e6
FM
858 PAGE_END_WRITEBACK |
859 PAGE_SET_ERROR);
40ae837b 860 free_async_extent_pages(async_extent);
fce2a4e6 861 }
771ed689
CM
862 alloc_hint = ins.objectid + ins.offset;
863 kfree(async_extent);
864 cond_resched();
865 }
dec8f175 866 return;
3e04e7f1 867out_free_reserve:
0b246afa 868 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 869 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 870out_free:
c2790a2e 871 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
872 async_extent->start +
873 async_extent->ram_size - 1,
3e04e7f1
JB
874 async_extent->start +
875 async_extent->ram_size - 1,
c2790a2e 876 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 877 EXTENT_DELALLOC_NEW |
151a41bc
JB
878 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
879 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
880 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
881 PAGE_SET_ERROR);
40ae837b 882 free_async_extent_pages(async_extent);
79787eaa 883 kfree(async_extent);
3e04e7f1 884 goto again;
771ed689
CM
885}
886
4b46fce2
JB
887static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
888 u64 num_bytes)
889{
890 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
891 struct extent_map *em;
892 u64 alloc_hint = 0;
893
894 read_lock(&em_tree->lock);
895 em = search_extent_mapping(em_tree, start, num_bytes);
896 if (em) {
897 /*
898 * if block start isn't an actual block number then find the
899 * first block in this inode and use that as a hint. If that
900 * block is also bogus then just don't worry about it.
901 */
902 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
903 free_extent_map(em);
904 em = search_extent_mapping(em_tree, 0, 0);
905 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
906 alloc_hint = em->block_start;
907 if (em)
908 free_extent_map(em);
909 } else {
910 alloc_hint = em->block_start;
911 free_extent_map(em);
912 }
913 }
914 read_unlock(&em_tree->lock);
915
916 return alloc_hint;
917}
918
771ed689
CM
919/*
920 * when extent_io.c finds a delayed allocation range in the file,
921 * the call backs end up in this code. The basic idea is to
922 * allocate extents on disk for the range, and create ordered data structs
923 * in ram to track those extents.
924 *
925 * locked_page is the page that writepage had locked already. We use
926 * it to make sure we don't do extra locks or unlocks.
927 *
928 * *page_started is set to one if we unlock locked_page and do everything
929 * required to start IO on it. It may be clean and already done with
930 * IO when we return.
931 */
00361589
JB
932static noinline int cow_file_range(struct inode *inode,
933 struct page *locked_page,
dda3245e
WX
934 u64 start, u64 end, u64 delalloc_end,
935 int *page_started, unsigned long *nr_written,
936 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 937{
0b246afa 938 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 939 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
940 u64 alloc_hint = 0;
941 u64 num_bytes;
942 unsigned long ram_size;
a315e68f 943 u64 cur_alloc_size = 0;
0b246afa 944 u64 blocksize = fs_info->sectorsize;
771ed689
CM
945 struct btrfs_key ins;
946 struct extent_map *em;
a315e68f
FM
947 unsigned clear_bits;
948 unsigned long page_ops;
949 bool extent_reserved = false;
771ed689
CM
950 int ret = 0;
951
70ddc553 952 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 953 WARN_ON_ONCE(1);
29bce2f3
JB
954 ret = -EINVAL;
955 goto out_unlock;
02ecd2c2 956 }
771ed689 957
fda2832f 958 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 959 num_bytes = max(blocksize, num_bytes);
566b1760 960 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 961
6158e1ce 962 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 963
771ed689
CM
964 if (start == 0) {
965 /* lets try to make an inline extent */
d02c0e20
NB
966 ret = cow_file_range_inline(inode, start, end, 0,
967 BTRFS_COMPRESS_NONE, NULL);
771ed689 968 if (ret == 0) {
8b62f87b
JB
969 /*
970 * We use DO_ACCOUNTING here because we need the
971 * delalloc_release_metadata to be run _after_ we drop
972 * our outstanding extent for clearing delalloc for this
973 * range.
974 */
ba8b04c1
QW
975 extent_clear_unlock_delalloc(inode, start, end,
976 delalloc_end, NULL,
c2790a2e 977 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
978 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
979 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
980 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
981 PAGE_END_WRITEBACK);
771ed689 982 *nr_written = *nr_written +
09cbfeaf 983 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 984 *page_started = 1;
771ed689 985 goto out;
79787eaa 986 } else if (ret < 0) {
79787eaa 987 goto out_unlock;
771ed689
CM
988 }
989 }
990
4b46fce2 991 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
992 btrfs_drop_extent_cache(BTRFS_I(inode), start,
993 start + num_bytes - 1, 0);
771ed689 994
3752d22f
AJ
995 while (num_bytes > 0) {
996 cur_alloc_size = num_bytes;
18513091 997 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 998 fs_info->sectorsize, 0, alloc_hint,
e570fd27 999 &ins, 1, 1);
00361589 1000 if (ret < 0)
79787eaa 1001 goto out_unlock;
a315e68f
FM
1002 cur_alloc_size = ins.offset;
1003 extent_reserved = true;
d397712b 1004
771ed689 1005 ram_size = ins.offset;
6f9994db
LB
1006 em = create_io_em(inode, start, ins.offset, /* len */
1007 start, /* orig_start */
1008 ins.objectid, /* block_start */
1009 ins.offset, /* block_len */
1010 ins.offset, /* orig_block_len */
1011 ram_size, /* ram_bytes */
1012 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1013 BTRFS_ORDERED_REGULAR /* type */);
090a127a
SY
1014 if (IS_ERR(em)) {
1015 ret = PTR_ERR(em);
ace68bac 1016 goto out_reserve;
090a127a 1017 }
6f9994db 1018 free_extent_map(em);
e6dcd2dc 1019
e6dcd2dc 1020 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1021 ram_size, cur_alloc_size, 0);
ace68bac 1022 if (ret)
d9f85963 1023 goto out_drop_extent_cache;
c8b97818 1024
17d217fe
YZ
1025 if (root->root_key.objectid ==
1026 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1027 ret = btrfs_reloc_clone_csums(inode, start,
1028 cur_alloc_size);
4dbd80fb
QW
1029 /*
1030 * Only drop cache here, and process as normal.
1031 *
1032 * We must not allow extent_clear_unlock_delalloc()
1033 * at out_unlock label to free meta of this ordered
1034 * extent, as its meta should be freed by
1035 * btrfs_finish_ordered_io().
1036 *
1037 * So we must continue until @start is increased to
1038 * skip current ordered extent.
1039 */
00361589 1040 if (ret)
4dbd80fb
QW
1041 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1042 start + ram_size - 1, 0);
17d217fe
YZ
1043 }
1044
0b246afa 1045 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1046
c8b97818
CM
1047 /* we're not doing compressed IO, don't unlock the first
1048 * page (which the caller expects to stay locked), don't
1049 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1050 *
1051 * Do set the Private2 bit so we know this page was properly
1052 * setup for writepage
c8b97818 1053 */
a315e68f
FM
1054 page_ops = unlock ? PAGE_UNLOCK : 0;
1055 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1056
c2790a2e 1057 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1058 start + ram_size - 1,
1059 delalloc_end, locked_page,
c2790a2e 1060 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1061 page_ops);
3752d22f
AJ
1062 if (num_bytes < cur_alloc_size)
1063 num_bytes = 0;
4dbd80fb 1064 else
3752d22f 1065 num_bytes -= cur_alloc_size;
c59f8951
CM
1066 alloc_hint = ins.objectid + ins.offset;
1067 start += cur_alloc_size;
a315e68f 1068 extent_reserved = false;
4dbd80fb
QW
1069
1070 /*
1071 * btrfs_reloc_clone_csums() error, since start is increased
1072 * extent_clear_unlock_delalloc() at out_unlock label won't
1073 * free metadata of current ordered extent, we're OK to exit.
1074 */
1075 if (ret)
1076 goto out_unlock;
b888db2b 1077 }
79787eaa 1078out:
be20aa9d 1079 return ret;
b7d5b0a8 1080
d9f85963 1081out_drop_extent_cache:
dcdbc059 1082 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1083out_reserve:
0b246afa 1084 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1085 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1086out_unlock:
a7e3b975
FM
1087 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1088 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1089 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1090 PAGE_END_WRITEBACK;
1091 /*
1092 * If we reserved an extent for our delalloc range (or a subrange) and
1093 * failed to create the respective ordered extent, then it means that
1094 * when we reserved the extent we decremented the extent's size from
1095 * the data space_info's bytes_may_use counter and incremented the
1096 * space_info's bytes_reserved counter by the same amount. We must make
1097 * sure extent_clear_unlock_delalloc() does not try to decrement again
1098 * the data space_info's bytes_may_use counter, therefore we do not pass
1099 * it the flag EXTENT_CLEAR_DATA_RESV.
1100 */
1101 if (extent_reserved) {
1102 extent_clear_unlock_delalloc(inode, start,
1103 start + cur_alloc_size,
1104 start + cur_alloc_size,
1105 locked_page,
1106 clear_bits,
1107 page_ops);
1108 start += cur_alloc_size;
1109 if (start >= end)
1110 goto out;
1111 }
ba8b04c1
QW
1112 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1113 locked_page,
a315e68f
FM
1114 clear_bits | EXTENT_CLEAR_DATA_RESV,
1115 page_ops);
79787eaa 1116 goto out;
771ed689 1117}
c8b97818 1118
771ed689
CM
1119/*
1120 * work queue call back to started compression on a file and pages
1121 */
1122static noinline void async_cow_start(struct btrfs_work *work)
1123{
b5326271 1124 struct async_chunk *async_chunk;
771ed689 1125 int num_added = 0;
771ed689 1126
b5326271 1127 async_chunk = container_of(work, struct async_chunk, work);
771ed689 1128
1368c6da 1129 compress_file_range(async_chunk, &num_added);
8180ef88 1130 if (num_added == 0) {
b5326271
NB
1131 btrfs_add_delayed_iput(async_chunk->inode);
1132 async_chunk->inode = NULL;
8180ef88 1133 }
771ed689
CM
1134}
1135
1136/*
1137 * work queue call back to submit previously compressed pages
1138 */
1139static noinline void async_cow_submit(struct btrfs_work *work)
1140{
c5a68aec
NB
1141 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1142 work);
1143 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
771ed689
CM
1144 unsigned long nr_pages;
1145
b5326271 1146 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
09cbfeaf 1147 PAGE_SHIFT;
771ed689 1148
093258e6 1149 /* atomic_sub_return implies a barrier */
0b246afa 1150 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
093258e6
DS
1151 5 * SZ_1M)
1152 cond_wake_up_nomb(&fs_info->async_submit_wait);
771ed689 1153
4546d178 1154 /*
b5326271 1155 * ->inode could be NULL if async_chunk_start has failed to compress,
4546d178
NB
1156 * in which case we don't have anything to submit, yet we need to
1157 * always adjust ->async_delalloc_pages as its paired with the init
1158 * happening in cow_file_range_async
1159 */
b5326271
NB
1160 if (async_chunk->inode)
1161 submit_compressed_extents(async_chunk);
771ed689 1162}
c8b97818 1163
771ed689
CM
1164static noinline void async_cow_free(struct btrfs_work *work)
1165{
b5326271 1166 struct async_chunk *async_chunk;
97db1204 1167
b5326271
NB
1168 async_chunk = container_of(work, struct async_chunk, work);
1169 if (async_chunk->inode)
1170 btrfs_add_delayed_iput(async_chunk->inode);
97db1204
NB
1171 /*
1172 * Since the pointer to 'pending' is at the beginning of the array of
b5326271 1173 * async_chunk's, freeing it ensures the whole array has been freed.
97db1204 1174 */
b5326271 1175 if (atomic_dec_and_test(async_chunk->pending))
b1c16ac9 1176 kvfree(async_chunk->pending);
771ed689
CM
1177}
1178
1179static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1180 u64 start, u64 end, int *page_started,
f82b7359
LB
1181 unsigned long *nr_written,
1182 unsigned int write_flags)
771ed689 1183{
0b246afa 1184 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
97db1204
NB
1185 struct async_cow *ctx;
1186 struct async_chunk *async_chunk;
771ed689
CM
1187 unsigned long nr_pages;
1188 u64 cur_end;
97db1204
NB
1189 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1190 int i;
1191 bool should_compress;
b1c16ac9 1192 unsigned nofs_flag;
771ed689 1193
69684c5a 1194 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
97db1204
NB
1195
1196 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1197 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1198 num_chunks = 1;
1199 should_compress = false;
1200 } else {
1201 should_compress = true;
1202 }
1203
b1c16ac9
NB
1204 nofs_flag = memalloc_nofs_save();
1205 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1206 memalloc_nofs_restore(nofs_flag);
1207
97db1204
NB
1208 if (!ctx) {
1209 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1210 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1211 EXTENT_DO_ACCOUNTING;
1212 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1213 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1214 PAGE_SET_ERROR;
1215
1216 extent_clear_unlock_delalloc(inode, start, end, 0, locked_page,
1217 clear_bits, page_ops);
1218 return -ENOMEM;
1219 }
1220
1221 async_chunk = ctx->chunks;
1222 atomic_set(&ctx->num_chunks, num_chunks);
1223
1224 for (i = 0; i < num_chunks; i++) {
1225 if (should_compress)
1226 cur_end = min(end, start + SZ_512K - 1);
1227 else
1228 cur_end = end;
771ed689 1229
bd4691a0
NB
1230 /*
1231 * igrab is called higher up in the call chain, take only the
1232 * lightweight reference for the callback lifetime
1233 */
1234 ihold(inode);
97db1204
NB
1235 async_chunk[i].pending = &ctx->num_chunks;
1236 async_chunk[i].inode = inode;
1237 async_chunk[i].start = start;
1238 async_chunk[i].end = cur_end;
97db1204
NB
1239 async_chunk[i].locked_page = locked_page;
1240 async_chunk[i].write_flags = write_flags;
1241 INIT_LIST_HEAD(&async_chunk[i].extents);
1242
1243 btrfs_init_work(&async_chunk[i].work,
9e0af237
LB
1244 btrfs_delalloc_helper,
1245 async_cow_start, async_cow_submit,
1246 async_cow_free);
771ed689 1247
97db1204 1248 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
0b246afa 1249 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1250
97db1204 1251 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
771ed689 1252
771ed689
CM
1253 *nr_written += nr_pages;
1254 start = cur_end + 1;
1255 }
1256 *page_started = 1;
1257 return 0;
be20aa9d
CM
1258}
1259
2ff7e61e 1260static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1261 u64 bytenr, u64 num_bytes)
1262{
1263 int ret;
1264 struct btrfs_ordered_sum *sums;
1265 LIST_HEAD(list);
1266
0b246afa 1267 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1268 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1269 if (ret == 0 && list_empty(&list))
1270 return 0;
1271
1272 while (!list_empty(&list)) {
1273 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1274 list_del(&sums->list);
1275 kfree(sums);
1276 }
58113753
LB
1277 if (ret < 0)
1278 return ret;
17d217fe
YZ
1279 return 1;
1280}
1281
d352ac68
CM
1282/*
1283 * when nowcow writeback call back. This checks for snapshots or COW copies
1284 * of the extents that exist in the file, and COWs the file as required.
1285 *
1286 * If no cow copies or snapshots exist, we write directly to the existing
1287 * blocks on disk
1288 */
7f366cfe
CM
1289static noinline int run_delalloc_nocow(struct inode *inode,
1290 struct page *locked_page,
771ed689
CM
1291 u64 start, u64 end, int *page_started, int force,
1292 unsigned long *nr_written)
be20aa9d 1293{
0b246afa 1294 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d
CM
1295 struct btrfs_root *root = BTRFS_I(inode)->root;
1296 struct extent_buffer *leaf;
be20aa9d 1297 struct btrfs_path *path;
80ff3856 1298 struct btrfs_file_extent_item *fi;
be20aa9d 1299 struct btrfs_key found_key;
6f9994db 1300 struct extent_map *em;
80ff3856
YZ
1301 u64 cow_start;
1302 u64 cur_offset;
1303 u64 extent_end;
5d4f98a2 1304 u64 extent_offset;
80ff3856
YZ
1305 u64 disk_bytenr;
1306 u64 num_bytes;
b4939680 1307 u64 disk_num_bytes;
cc95bef6 1308 u64 ram_bytes;
80ff3856 1309 int extent_type;
8ecebf4d 1310 int ret;
d899e052 1311 int type;
80ff3856
YZ
1312 int nocow;
1313 int check_prev = 1;
82d5902d 1314 bool nolock;
4a0cc7ca 1315 u64 ino = btrfs_ino(BTRFS_I(inode));
be20aa9d
CM
1316
1317 path = btrfs_alloc_path();
17ca04af 1318 if (!path) {
ba8b04c1
QW
1319 extent_clear_unlock_delalloc(inode, start, end, end,
1320 locked_page,
c2790a2e 1321 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1322 EXTENT_DO_ACCOUNTING |
1323 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1324 PAGE_CLEAR_DIRTY |
1325 PAGE_SET_WRITEBACK |
1326 PAGE_END_WRITEBACK);
d8926bb3 1327 return -ENOMEM;
17ca04af 1328 }
82d5902d 1329
70ddc553 1330 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
82d5902d 1331
80ff3856
YZ
1332 cow_start = (u64)-1;
1333 cur_offset = start;
1334 while (1) {
e4c3b2dc 1335 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1336 cur_offset, 0);
d788a349 1337 if (ret < 0)
79787eaa 1338 goto error;
80ff3856
YZ
1339 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1340 leaf = path->nodes[0];
1341 btrfs_item_key_to_cpu(leaf, &found_key,
1342 path->slots[0] - 1);
33345d01 1343 if (found_key.objectid == ino &&
80ff3856
YZ
1344 found_key.type == BTRFS_EXTENT_DATA_KEY)
1345 path->slots[0]--;
1346 }
1347 check_prev = 0;
1348next_slot:
1349 leaf = path->nodes[0];
1350 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1351 ret = btrfs_next_leaf(root, path);
e8916699
LB
1352 if (ret < 0) {
1353 if (cow_start != (u64)-1)
1354 cur_offset = cow_start;
79787eaa 1355 goto error;
e8916699 1356 }
80ff3856
YZ
1357 if (ret > 0)
1358 break;
1359 leaf = path->nodes[0];
1360 }
be20aa9d 1361
80ff3856
YZ
1362 nocow = 0;
1363 disk_bytenr = 0;
17d217fe 1364 num_bytes = 0;
80ff3856
YZ
1365 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1366
1d512cb7
FM
1367 if (found_key.objectid > ino)
1368 break;
1369 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1370 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1371 path->slots[0]++;
1372 goto next_slot;
1373 }
1374 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1375 found_key.offset > end)
1376 break;
1377
1378 if (found_key.offset > cur_offset) {
1379 extent_end = found_key.offset;
e9061e21 1380 extent_type = 0;
80ff3856
YZ
1381 goto out_check;
1382 }
1383
1384 fi = btrfs_item_ptr(leaf, path->slots[0],
1385 struct btrfs_file_extent_item);
1386 extent_type = btrfs_file_extent_type(leaf, fi);
1387
cc95bef6 1388 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1389 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1390 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1391 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1392 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1393 extent_end = found_key.offset +
1394 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1395 disk_num_bytes =
1396 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1397 if (extent_end <= start) {
1398 path->slots[0]++;
1399 goto next_slot;
1400 }
17d217fe
YZ
1401 if (disk_bytenr == 0)
1402 goto out_check;
80ff3856
YZ
1403 if (btrfs_file_extent_compression(leaf, fi) ||
1404 btrfs_file_extent_encryption(leaf, fi) ||
1405 btrfs_file_extent_other_encoding(leaf, fi))
1406 goto out_check;
78d4295b
EL
1407 /*
1408 * Do the same check as in btrfs_cross_ref_exist but
1409 * without the unnecessary search.
1410 */
27a7ff55
LF
1411 if (!nolock &&
1412 btrfs_file_extent_generation(leaf, fi) <=
78d4295b
EL
1413 btrfs_root_last_snapshot(&root->root_item))
1414 goto out_check;
d899e052
YZ
1415 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1416 goto out_check;
2ff7e61e 1417 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1418 goto out_check;
58113753
LB
1419 ret = btrfs_cross_ref_exist(root, ino,
1420 found_key.offset -
1421 extent_offset, disk_bytenr);
1422 if (ret) {
1423 /*
1424 * ret could be -EIO if the above fails to read
1425 * metadata.
1426 */
1427 if (ret < 0) {
1428 if (cow_start != (u64)-1)
1429 cur_offset = cow_start;
1430 goto error;
1431 }
1432
1433 WARN_ON_ONCE(nolock);
17d217fe 1434 goto out_check;
58113753 1435 }
5d4f98a2 1436 disk_bytenr += extent_offset;
17d217fe
YZ
1437 disk_bytenr += cur_offset - found_key.offset;
1438 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1439 /*
1440 * if there are pending snapshots for this root,
1441 * we fall into common COW way.
1442 */
8ecebf4d
RK
1443 if (!nolock && atomic_read(&root->snapshot_force_cow))
1444 goto out_check;
17d217fe
YZ
1445 /*
1446 * force cow if csum exists in the range.
1447 * this ensure that csum for a given extent are
1448 * either valid or do not exist.
1449 */
58113753
LB
1450 ret = csum_exist_in_range(fs_info, disk_bytenr,
1451 num_bytes);
1452 if (ret) {
58113753
LB
1453 /*
1454 * ret could be -EIO if the above fails to read
1455 * metadata.
1456 */
1457 if (ret < 0) {
1458 if (cow_start != (u64)-1)
1459 cur_offset = cow_start;
1460 goto error;
1461 }
1462 WARN_ON_ONCE(nolock);
17d217fe 1463 goto out_check;
91e1f56a 1464 }
8ecebf4d 1465 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
f78c436c 1466 goto out_check;
80ff3856
YZ
1467 nocow = 1;
1468 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1469 extent_end = found_key.offset +
e41ca589 1470 btrfs_file_extent_ram_bytes(leaf, fi);
da17066c 1471 extent_end = ALIGN(extent_end,
0b246afa 1472 fs_info->sectorsize);
80ff3856 1473 } else {
290342f6 1474 BUG();
80ff3856
YZ
1475 }
1476out_check:
1477 if (extent_end <= start) {
1478 path->slots[0]++;
f78c436c 1479 if (nocow)
0b246afa 1480 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1481 goto next_slot;
1482 }
1483 if (!nocow) {
1484 if (cow_start == (u64)-1)
1485 cow_start = cur_offset;
1486 cur_offset = extent_end;
1487 if (cur_offset > end)
1488 break;
1489 path->slots[0]++;
1490 goto next_slot;
7ea394f1
YZ
1491 }
1492
b3b4aa74 1493 btrfs_release_path(path);
80ff3856 1494 if (cow_start != (u64)-1) {
00361589
JB
1495 ret = cow_file_range(inode, locked_page,
1496 cow_start, found_key.offset - 1,
dda3245e
WX
1497 end, page_started, nr_written, 1,
1498 NULL);
e9894fd3 1499 if (ret) {
f78c436c 1500 if (nocow)
0b246afa 1501 btrfs_dec_nocow_writers(fs_info,
f78c436c 1502 disk_bytenr);
79787eaa 1503 goto error;
e9894fd3 1504 }
80ff3856 1505 cow_start = (u64)-1;
7ea394f1 1506 }
80ff3856 1507
d899e052 1508 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db
LB
1509 u64 orig_start = found_key.offset - extent_offset;
1510
1511 em = create_io_em(inode, cur_offset, num_bytes,
1512 orig_start,
1513 disk_bytenr, /* block_start */
1514 num_bytes, /* block_len */
1515 disk_num_bytes, /* orig_block_len */
1516 ram_bytes, BTRFS_COMPRESS_NONE,
1517 BTRFS_ORDERED_PREALLOC);
1518 if (IS_ERR(em)) {
6f9994db
LB
1519 if (nocow)
1520 btrfs_dec_nocow_writers(fs_info,
1521 disk_bytenr);
1522 ret = PTR_ERR(em);
1523 goto error;
d899e052 1524 }
6f9994db
LB
1525 free_extent_map(em);
1526 }
1527
1528 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
d899e052
YZ
1529 type = BTRFS_ORDERED_PREALLOC;
1530 } else {
1531 type = BTRFS_ORDERED_NOCOW;
1532 }
80ff3856
YZ
1533
1534 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1535 num_bytes, num_bytes, type);
f78c436c 1536 if (nocow)
0b246afa 1537 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1538 BUG_ON(ret); /* -ENOMEM */
771ed689 1539
efa56464 1540 if (root->root_key.objectid ==
4dbd80fb
QW
1541 BTRFS_DATA_RELOC_TREE_OBJECTID)
1542 /*
1543 * Error handled later, as we must prevent
1544 * extent_clear_unlock_delalloc() in error handler
1545 * from freeing metadata of created ordered extent.
1546 */
efa56464
YZ
1547 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1548 num_bytes);
efa56464 1549
c2790a2e 1550 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1551 cur_offset + num_bytes - 1, end,
c2790a2e 1552 locked_page, EXTENT_LOCKED |
18513091
WX
1553 EXTENT_DELALLOC |
1554 EXTENT_CLEAR_DATA_RESV,
1555 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1556
80ff3856 1557 cur_offset = extent_end;
4dbd80fb
QW
1558
1559 /*
1560 * btrfs_reloc_clone_csums() error, now we're OK to call error
1561 * handler, as metadata for created ordered extent will only
1562 * be freed by btrfs_finish_ordered_io().
1563 */
1564 if (ret)
1565 goto error;
80ff3856
YZ
1566 if (cur_offset > end)
1567 break;
be20aa9d 1568 }
b3b4aa74 1569 btrfs_release_path(path);
80ff3856 1570
506481b2 1571 if (cur_offset <= end && cow_start == (u64)-1)
80ff3856 1572 cow_start = cur_offset;
17ca04af 1573
80ff3856 1574 if (cow_start != (u64)-1) {
506481b2 1575 cur_offset = end;
dda3245e
WX
1576 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1577 page_started, nr_written, 1, NULL);
d788a349 1578 if (ret)
79787eaa 1579 goto error;
80ff3856
YZ
1580 }
1581
79787eaa 1582error:
17ca04af 1583 if (ret && cur_offset < end)
ba8b04c1 1584 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1585 locked_page, EXTENT_LOCKED |
151a41bc
JB
1586 EXTENT_DELALLOC | EXTENT_DEFRAG |
1587 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1588 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1589 PAGE_SET_WRITEBACK |
1590 PAGE_END_WRITEBACK);
7ea394f1 1591 btrfs_free_path(path);
79787eaa 1592 return ret;
be20aa9d
CM
1593}
1594
47059d93
WS
1595static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1596{
1597
1598 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1599 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1600 return 0;
1601
1602 /*
1603 * @defrag_bytes is a hint value, no spinlock held here,
1604 * if is not zero, it means the file is defragging.
1605 * Force cow if given extent needs to be defragged.
1606 */
1607 if (BTRFS_I(inode)->defrag_bytes &&
1608 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1609 EXTENT_DEFRAG, 0, NULL))
1610 return 1;
1611
1612 return 0;
1613}
1614
d352ac68 1615/*
5eaad97a
NB
1616 * Function to process delayed allocation (create CoW) for ranges which are
1617 * being touched for the first time.
d352ac68 1618 */
bc9a8bf7 1619int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page,
5eaad97a
NB
1620 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1621 struct writeback_control *wbc)
be20aa9d 1622{
be20aa9d 1623 int ret;
47059d93 1624 int force_cow = need_force_cow(inode, start, end);
f82b7359 1625 unsigned int write_flags = wbc_to_write_flags(wbc);
a2135011 1626
47059d93 1627 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1628 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1629 page_started, 1, nr_written);
47059d93 1630 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1631 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1632 page_started, 0, nr_written);
c2fcdcdf 1633 } else if (!inode_need_compress(inode, start, end)) {
dda3245e
WX
1634 ret = cow_file_range(inode, locked_page, start, end, end,
1635 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1636 } else {
1637 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1638 &BTRFS_I(inode)->runtime_flags);
771ed689 1639 ret = cow_file_range_async(inode, locked_page, start, end,
f82b7359
LB
1640 page_started, nr_written,
1641 write_flags);
7ddf5a42 1642 }
52427260 1643 if (ret)
d1051d6e
NB
1644 btrfs_cleanup_ordered_extents(inode, locked_page, start,
1645 end - start + 1);
b888db2b
CM
1646 return ret;
1647}
1648
abbb55f4
NB
1649void btrfs_split_delalloc_extent(struct inode *inode,
1650 struct extent_state *orig, u64 split)
9ed74f2d 1651{
dcab6a3b
JB
1652 u64 size;
1653
0ca1f7ce 1654 /* not delalloc, ignore it */
9ed74f2d 1655 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1656 return;
9ed74f2d 1657
dcab6a3b
JB
1658 size = orig->end - orig->start + 1;
1659 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1660 u32 num_extents;
dcab6a3b
JB
1661 u64 new_size;
1662
1663 /*
5c848198 1664 * See the explanation in btrfs_merge_delalloc_extent, the same
ba117213 1665 * applies here, just in reverse.
dcab6a3b
JB
1666 */
1667 new_size = orig->end - split + 1;
823bb20a 1668 num_extents = count_max_extents(new_size);
ba117213 1669 new_size = split - orig->start;
823bb20a
DS
1670 num_extents += count_max_extents(new_size);
1671 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1672 return;
1673 }
1674
9e0baf60 1675 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1676 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1677 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1678}
1679
1680/*
5c848198
NB
1681 * Handle merged delayed allocation extents so we can keep track of new extents
1682 * that are just merged onto old extents, such as when we are doing sequential
1683 * writes, so we can properly account for the metadata space we'll need.
9ed74f2d 1684 */
5c848198
NB
1685void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1686 struct extent_state *other)
9ed74f2d 1687{
dcab6a3b 1688 u64 new_size, old_size;
823bb20a 1689 u32 num_extents;
dcab6a3b 1690
9ed74f2d
JB
1691 /* not delalloc, ignore it */
1692 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1693 return;
9ed74f2d 1694
8461a3de
JB
1695 if (new->start > other->start)
1696 new_size = new->end - other->start + 1;
1697 else
1698 new_size = other->end - new->start + 1;
dcab6a3b
JB
1699
1700 /* we're not bigger than the max, unreserve the space and go */
1701 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1702 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1703 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1704 spin_unlock(&BTRFS_I(inode)->lock);
1705 return;
1706 }
1707
1708 /*
ba117213
JB
1709 * We have to add up either side to figure out how many extents were
1710 * accounted for before we merged into one big extent. If the number of
1711 * extents we accounted for is <= the amount we need for the new range
1712 * then we can return, otherwise drop. Think of it like this
1713 *
1714 * [ 4k][MAX_SIZE]
1715 *
1716 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1717 * need 2 outstanding extents, on one side we have 1 and the other side
1718 * we have 1 so they are == and we can return. But in this case
1719 *
1720 * [MAX_SIZE+4k][MAX_SIZE+4k]
1721 *
1722 * Each range on their own accounts for 2 extents, but merged together
1723 * they are only 3 extents worth of accounting, so we need to drop in
1724 * this case.
dcab6a3b 1725 */
ba117213 1726 old_size = other->end - other->start + 1;
823bb20a 1727 num_extents = count_max_extents(old_size);
ba117213 1728 old_size = new->end - new->start + 1;
823bb20a
DS
1729 num_extents += count_max_extents(old_size);
1730 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1731 return;
1732
9e0baf60 1733 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1734 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1735 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1736}
1737
eb73c1b7
MX
1738static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1739 struct inode *inode)
1740{
0b246afa
JM
1741 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1742
eb73c1b7
MX
1743 spin_lock(&root->delalloc_lock);
1744 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1745 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1746 &root->delalloc_inodes);
1747 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1748 &BTRFS_I(inode)->runtime_flags);
1749 root->nr_delalloc_inodes++;
1750 if (root->nr_delalloc_inodes == 1) {
0b246afa 1751 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1752 BUG_ON(!list_empty(&root->delalloc_root));
1753 list_add_tail(&root->delalloc_root,
0b246afa
JM
1754 &fs_info->delalloc_roots);
1755 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1756 }
1757 }
1758 spin_unlock(&root->delalloc_lock);
1759}
1760
2b877331
NB
1761
1762void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1763 struct btrfs_inode *inode)
eb73c1b7 1764{
3ffbd68c 1765 struct btrfs_fs_info *fs_info = root->fs_info;
0b246afa 1766
9e3e97f4
NB
1767 if (!list_empty(&inode->delalloc_inodes)) {
1768 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1769 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1770 &inode->runtime_flags);
eb73c1b7
MX
1771 root->nr_delalloc_inodes--;
1772 if (!root->nr_delalloc_inodes) {
7c8a0d36 1773 ASSERT(list_empty(&root->delalloc_inodes));
0b246afa 1774 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1775 BUG_ON(list_empty(&root->delalloc_root));
1776 list_del_init(&root->delalloc_root);
0b246afa 1777 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1778 }
1779 }
2b877331
NB
1780}
1781
1782static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1783 struct btrfs_inode *inode)
1784{
1785 spin_lock(&root->delalloc_lock);
1786 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
1787 spin_unlock(&root->delalloc_lock);
1788}
1789
d352ac68 1790/*
e06a1fc9
NB
1791 * Properly track delayed allocation bytes in the inode and to maintain the
1792 * list of inodes that have pending delalloc work to be done.
d352ac68 1793 */
e06a1fc9
NB
1794void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1795 unsigned *bits)
291d673e 1796{
0b246afa
JM
1797 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1798
47059d93
WS
1799 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1800 WARN_ON(1);
75eff68e
CM
1801 /*
1802 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1803 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1804 * bit, which is only set or cleared with irqs on
1805 */
0ca1f7ce 1806 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1807 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1808 u64 len = state->end + 1 - state->start;
8b62f87b 1809 u32 num_extents = count_max_extents(len);
70ddc553 1810 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1811
8b62f87b
JB
1812 spin_lock(&BTRFS_I(inode)->lock);
1813 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1814 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 1815
6a3891c5 1816 /* For sanity tests */
0b246afa 1817 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1818 return;
1819
104b4e51
NB
1820 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1821 fs_info->delalloc_batch);
df0af1a5 1822 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1823 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1824 if (*bits & EXTENT_DEFRAG)
1825 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1826 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1827 &BTRFS_I(inode)->runtime_flags))
1828 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1829 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1830 }
a7e3b975
FM
1831
1832 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1833 (*bits & EXTENT_DELALLOC_NEW)) {
1834 spin_lock(&BTRFS_I(inode)->lock);
1835 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1836 state->start;
1837 spin_unlock(&BTRFS_I(inode)->lock);
1838 }
291d673e
CM
1839}
1840
d352ac68 1841/*
a36bb5f9
NB
1842 * Once a range is no longer delalloc this function ensures that proper
1843 * accounting happens.
d352ac68 1844 */
a36bb5f9
NB
1845void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
1846 struct extent_state *state, unsigned *bits)
291d673e 1847{
a36bb5f9
NB
1848 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1849 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
47059d93 1850 u64 len = state->end + 1 - state->start;
823bb20a 1851 u32 num_extents = count_max_extents(len);
47059d93 1852
4a4b964f
FM
1853 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1854 spin_lock(&inode->lock);
6fc0ef68 1855 inode->defrag_bytes -= len;
4a4b964f
FM
1856 spin_unlock(&inode->lock);
1857 }
47059d93 1858
75eff68e
CM
1859 /*
1860 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1861 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1862 * bit, which is only set or cleared with irqs on
1863 */
0ca1f7ce 1864 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1865 struct btrfs_root *root = inode->root;
83eea1f1 1866 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1867
8b62f87b
JB
1868 spin_lock(&inode->lock);
1869 btrfs_mod_outstanding_extents(inode, -num_extents);
1870 spin_unlock(&inode->lock);
0ca1f7ce 1871
b6d08f06
JB
1872 /*
1873 * We don't reserve metadata space for space cache inodes so we
52042d8e 1874 * don't need to call delalloc_release_metadata if there is an
b6d08f06
JB
1875 * error.
1876 */
a315e68f 1877 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 1878 root != fs_info->tree_root)
43b18595 1879 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 1880
6a3891c5 1881 /* For sanity tests. */
0b246afa 1882 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1883 return;
1884
a315e68f
FM
1885 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1886 do_list && !(state->state & EXTENT_NORESERVE) &&
1887 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
1888 btrfs_free_reserved_data_space_noquota(
1889 &inode->vfs_inode,
51773bec 1890 state->start, len);
9ed74f2d 1891
104b4e51
NB
1892 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1893 fs_info->delalloc_batch);
6fc0ef68
NB
1894 spin_lock(&inode->lock);
1895 inode->delalloc_bytes -= len;
1896 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 1897 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1898 &inode->runtime_flags))
eb73c1b7 1899 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 1900 spin_unlock(&inode->lock);
291d673e 1901 }
a7e3b975
FM
1902
1903 if ((state->state & EXTENT_DELALLOC_NEW) &&
1904 (*bits & EXTENT_DELALLOC_NEW)) {
1905 spin_lock(&inode->lock);
1906 ASSERT(inode->new_delalloc_bytes >= len);
1907 inode->new_delalloc_bytes -= len;
1908 spin_unlock(&inode->lock);
1909 }
291d673e
CM
1910}
1911
d352ac68 1912/*
da12fe54
NB
1913 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
1914 * in a chunk's stripe. This function ensures that bios do not span a
1915 * stripe/chunk
6f034ece 1916 *
da12fe54
NB
1917 * @page - The page we are about to add to the bio
1918 * @size - size we want to add to the bio
1919 * @bio - bio we want to ensure is smaller than a stripe
1920 * @bio_flags - flags of the bio
1921 *
1922 * return 1 if page cannot be added to the bio
1923 * return 0 if page can be added to the bio
6f034ece 1924 * return error otherwise
d352ac68 1925 */
da12fe54
NB
1926int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
1927 unsigned long bio_flags)
239b14b3 1928{
0b246afa
JM
1929 struct inode *inode = page->mapping->host;
1930 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1931 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1932 u64 length = 0;
1933 u64 map_length;
239b14b3
CM
1934 int ret;
1935
771ed689
CM
1936 if (bio_flags & EXTENT_BIO_COMPRESSED)
1937 return 0;
1938
4f024f37 1939 length = bio->bi_iter.bi_size;
239b14b3 1940 map_length = length;
0b246afa
JM
1941 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1942 NULL, 0);
6f034ece
LB
1943 if (ret < 0)
1944 return ret;
d397712b 1945 if (map_length < length + size)
239b14b3 1946 return 1;
3444a972 1947 return 0;
239b14b3
CM
1948}
1949
d352ac68
CM
1950/*
1951 * in order to insert checksums into the metadata in large chunks,
1952 * we wait until bio submission time. All the pages in the bio are
1953 * checksummed and sums are attached onto the ordered extent record.
1954 *
1955 * At IO completion time the cums attached on the ordered extent record
1956 * are inserted into the btree
1957 */
d0ee3934 1958static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
eaf25d93 1959 u64 bio_offset)
065631f6 1960{
c6100a4b 1961 struct inode *inode = private_data;
4e4cbee9 1962 blk_status_t ret = 0;
e015640f 1963
2ff7e61e 1964 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1965 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1966 return 0;
1967}
e015640f 1968
d352ac68 1969/*
cad321ad 1970 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
1971 * on write, or reading the csums from the tree before a read.
1972 *
1973 * Rules about async/sync submit,
1974 * a) read: sync submit
1975 *
1976 * b) write without checksum: sync submit
1977 *
1978 * c) write with checksum:
1979 * c-1) if bio is issued by fsync: sync submit
1980 * (sync_writers != 0)
1981 *
1982 * c-2) if root is reloc root: sync submit
1983 * (only in case of buffered IO)
1984 *
1985 * c-3) otherwise: async submit
d352ac68 1986 */
a56b1c7b 1987static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
1988 int mirror_num,
1989 unsigned long bio_flags)
1990
44b8bd7e 1991{
0b246afa 1992 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 1993 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1994 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 1995 blk_status_t ret = 0;
19b9bdb0 1996 int skip_sum;
b812ce28 1997 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1998
6cbff00f 1999 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 2000
70ddc553 2001 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 2002 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 2003
37226b21 2004 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 2005 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 2006 if (ret)
61891923 2007 goto out;
5fd02043 2008
d20f7043 2009 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
2010 ret = btrfs_submit_compressed_read(inode, bio,
2011 mirror_num,
2012 bio_flags);
2013 goto out;
c2db1073 2014 } else if (!skip_sum) {
2ff7e61e 2015 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 2016 if (ret)
61891923 2017 goto out;
c2db1073 2018 }
4d1b5fb4 2019 goto mapit;
b812ce28 2020 } else if (async && !skip_sum) {
17d217fe
YZ
2021 /* csum items have already been cloned */
2022 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2023 goto mapit;
19b9bdb0 2024 /* we're doing a write, do the async checksumming */
c6100a4b 2025 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
e7681167 2026 0, inode, btrfs_submit_bio_start);
61891923 2027 goto out;
b812ce28 2028 } else if (!skip_sum) {
2ff7e61e 2029 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
2030 if (ret)
2031 goto out;
19b9bdb0
CM
2032 }
2033
0b86a832 2034mapit:
2ff7e61e 2035 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
2036
2037out:
4e4cbee9
CH
2038 if (ret) {
2039 bio->bi_status = ret;
4246a0b6
CH
2040 bio_endio(bio);
2041 }
61891923 2042 return ret;
065631f6 2043}
6885f308 2044
d352ac68
CM
2045/*
2046 * given a list of ordered sums record them in the inode. This happens
2047 * at IO completion time based on sums calculated at bio submission time.
2048 */
ba1da2f4 2049static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2050 struct inode *inode, struct list_head *list)
e6dcd2dc 2051{
e6dcd2dc 2052 struct btrfs_ordered_sum *sum;
ac01f26a 2053 int ret;
e6dcd2dc 2054
c6e30871 2055 list_for_each_entry(sum, list, list) {
7c2871a2 2056 trans->adding_csums = true;
ac01f26a 2057 ret = btrfs_csum_file_blocks(trans,
d20f7043 2058 BTRFS_I(inode)->root->fs_info->csum_root, sum);
7c2871a2 2059 trans->adding_csums = false;
ac01f26a
NB
2060 if (ret)
2061 return ret;
e6dcd2dc
CM
2062 }
2063 return 0;
2064}
2065
2ac55d41 2066int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
e3b8a485 2067 unsigned int extra_bits,
ba8b04c1 2068 struct extent_state **cached_state, int dedupe)
ea8c2819 2069{
fdb1e121 2070 WARN_ON(PAGE_ALIGNED(end));
ea8c2819 2071 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
e3b8a485 2072 extra_bits, cached_state);
ea8c2819
CM
2073}
2074
d352ac68 2075/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2076struct btrfs_writepage_fixup {
2077 struct page *page;
2078 struct btrfs_work work;
2079};
2080
b2950863 2081static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2082{
2083 struct btrfs_writepage_fixup *fixup;
2084 struct btrfs_ordered_extent *ordered;
2ac55d41 2085 struct extent_state *cached_state = NULL;
364ecf36 2086 struct extent_changeset *data_reserved = NULL;
247e743c
CM
2087 struct page *page;
2088 struct inode *inode;
2089 u64 page_start;
2090 u64 page_end;
87826df0 2091 int ret;
247e743c
CM
2092
2093 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2094 page = fixup->page;
4a096752 2095again:
247e743c
CM
2096 lock_page(page);
2097 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2098 ClearPageChecked(page);
2099 goto out_page;
2100 }
2101
2102 inode = page->mapping->host;
2103 page_start = page_offset(page);
09cbfeaf 2104 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2105
ff13db41 2106 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2107 &cached_state);
4a096752
CM
2108
2109 /* already ordered? We're done */
8b62b72b 2110 if (PagePrivate2(page))
247e743c 2111 goto out;
4a096752 2112
a776c6fa 2113 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2114 PAGE_SIZE);
4a096752 2115 if (ordered) {
2ac55d41 2116 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
e43bbe5e 2117 page_end, &cached_state);
4a096752
CM
2118 unlock_page(page);
2119 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2120 btrfs_put_ordered_extent(ordered);
4a096752
CM
2121 goto again;
2122 }
247e743c 2123
364ecf36 2124 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
09cbfeaf 2125 PAGE_SIZE);
87826df0
JM
2126 if (ret) {
2127 mapping_set_error(page->mapping, ret);
2128 end_extent_writepage(page, ret, page_start, page_end);
2129 ClearPageChecked(page);
2130 goto out;
2131 }
2132
f3038ee3
NB
2133 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2134 &cached_state, 0);
2135 if (ret) {
2136 mapping_set_error(page->mapping, ret);
2137 end_extent_writepage(page, ret, page_start, page_end);
2138 ClearPageChecked(page);
2139 goto out;
2140 }
2141
247e743c 2142 ClearPageChecked(page);
87826df0 2143 set_page_dirty(page);
43b18595 2144 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
247e743c 2145out:
2ac55d41 2146 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
e43bbe5e 2147 &cached_state);
247e743c
CM
2148out_page:
2149 unlock_page(page);
09cbfeaf 2150 put_page(page);
b897abec 2151 kfree(fixup);
364ecf36 2152 extent_changeset_free(data_reserved);
247e743c
CM
2153}
2154
2155/*
2156 * There are a few paths in the higher layers of the kernel that directly
2157 * set the page dirty bit without asking the filesystem if it is a
2158 * good idea. This causes problems because we want to make sure COW
2159 * properly happens and the data=ordered rules are followed.
2160 *
c8b97818 2161 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2162 * hasn't been properly setup for IO. We kick off an async process
2163 * to fix it up. The async helper will wait for ordered extents, set
2164 * the delalloc bit and make it safe to write the page.
2165 */
d75855b4 2166int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
247e743c
CM
2167{
2168 struct inode *inode = page->mapping->host;
0b246afa 2169 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2170 struct btrfs_writepage_fixup *fixup;
247e743c 2171
8b62b72b
CM
2172 /* this page is properly in the ordered list */
2173 if (TestClearPagePrivate2(page))
247e743c
CM
2174 return 0;
2175
2176 if (PageChecked(page))
2177 return -EAGAIN;
2178
2179 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2180 if (!fixup)
2181 return -EAGAIN;
f421950f 2182
247e743c 2183 SetPageChecked(page);
09cbfeaf 2184 get_page(page);
9e0af237
LB
2185 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2186 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2187 fixup->page = page;
0b246afa 2188 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2189 return -EBUSY;
247e743c
CM
2190}
2191
d899e052
YZ
2192static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2193 struct inode *inode, u64 file_pos,
2194 u64 disk_bytenr, u64 disk_num_bytes,
2195 u64 num_bytes, u64 ram_bytes,
2196 u8 compression, u8 encryption,
2197 u16 other_encoding, int extent_type)
2198{
2199 struct btrfs_root *root = BTRFS_I(inode)->root;
2200 struct btrfs_file_extent_item *fi;
2201 struct btrfs_path *path;
2202 struct extent_buffer *leaf;
2203 struct btrfs_key ins;
a12b877b 2204 u64 qg_released;
1acae57b 2205 int extent_inserted = 0;
d899e052
YZ
2206 int ret;
2207
2208 path = btrfs_alloc_path();
d8926bb3
MF
2209 if (!path)
2210 return -ENOMEM;
d899e052 2211
a1ed835e
CM
2212 /*
2213 * we may be replacing one extent in the tree with another.
2214 * The new extent is pinned in the extent map, and we don't want
2215 * to drop it from the cache until it is completely in the btree.
2216 *
2217 * So, tell btrfs_drop_extents to leave this extent in the cache.
2218 * the caller is expected to unpin it and allow it to be merged
2219 * with the others.
2220 */
1acae57b
FDBM
2221 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2222 file_pos + num_bytes, NULL, 0,
2223 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2224 if (ret)
2225 goto out;
d899e052 2226
1acae57b 2227 if (!extent_inserted) {
4a0cc7ca 2228 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2229 ins.offset = file_pos;
2230 ins.type = BTRFS_EXTENT_DATA_KEY;
2231
2232 path->leave_spinning = 1;
2233 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2234 sizeof(*fi));
2235 if (ret)
2236 goto out;
2237 }
d899e052
YZ
2238 leaf = path->nodes[0];
2239 fi = btrfs_item_ptr(leaf, path->slots[0],
2240 struct btrfs_file_extent_item);
2241 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2242 btrfs_set_file_extent_type(leaf, fi, extent_type);
2243 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2244 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2245 btrfs_set_file_extent_offset(leaf, fi, 0);
2246 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2247 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2248 btrfs_set_file_extent_compression(leaf, fi, compression);
2249 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2250 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2251
d899e052 2252 btrfs_mark_buffer_dirty(leaf);
ce195332 2253 btrfs_release_path(path);
d899e052
YZ
2254
2255 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2256
2257 ins.objectid = disk_bytenr;
2258 ins.offset = disk_num_bytes;
2259 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2260
297d750b 2261 /*
5846a3c2
QW
2262 * Release the reserved range from inode dirty range map, as it is
2263 * already moved into delayed_ref_head
297d750b 2264 */
a12b877b
QW
2265 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2266 if (ret < 0)
2267 goto out;
2268 qg_released = ret;
84f7d8e6
JB
2269 ret = btrfs_alloc_reserved_file_extent(trans, root,
2270 btrfs_ino(BTRFS_I(inode)),
2271 file_pos, qg_released, &ins);
79787eaa 2272out:
d899e052 2273 btrfs_free_path(path);
b9473439 2274
79787eaa 2275 return ret;
d899e052
YZ
2276}
2277
38c227d8
LB
2278/* snapshot-aware defrag */
2279struct sa_defrag_extent_backref {
2280 struct rb_node node;
2281 struct old_sa_defrag_extent *old;
2282 u64 root_id;
2283 u64 inum;
2284 u64 file_pos;
2285 u64 extent_offset;
2286 u64 num_bytes;
2287 u64 generation;
2288};
2289
2290struct old_sa_defrag_extent {
2291 struct list_head list;
2292 struct new_sa_defrag_extent *new;
2293
2294 u64 extent_offset;
2295 u64 bytenr;
2296 u64 offset;
2297 u64 len;
2298 int count;
2299};
2300
2301struct new_sa_defrag_extent {
2302 struct rb_root root;
2303 struct list_head head;
2304 struct btrfs_path *path;
2305 struct inode *inode;
2306 u64 file_pos;
2307 u64 len;
2308 u64 bytenr;
2309 u64 disk_len;
2310 u8 compress_type;
2311};
2312
2313static int backref_comp(struct sa_defrag_extent_backref *b1,
2314 struct sa_defrag_extent_backref *b2)
2315{
2316 if (b1->root_id < b2->root_id)
2317 return -1;
2318 else if (b1->root_id > b2->root_id)
2319 return 1;
2320
2321 if (b1->inum < b2->inum)
2322 return -1;
2323 else if (b1->inum > b2->inum)
2324 return 1;
2325
2326 if (b1->file_pos < b2->file_pos)
2327 return -1;
2328 else if (b1->file_pos > b2->file_pos)
2329 return 1;
2330
2331 /*
2332 * [------------------------------] ===> (a range of space)
2333 * |<--->| |<---->| =============> (fs/file tree A)
2334 * |<---------------------------->| ===> (fs/file tree B)
2335 *
2336 * A range of space can refer to two file extents in one tree while
2337 * refer to only one file extent in another tree.
2338 *
2339 * So we may process a disk offset more than one time(two extents in A)
2340 * and locate at the same extent(one extent in B), then insert two same
2341 * backrefs(both refer to the extent in B).
2342 */
2343 return 0;
2344}
2345
2346static void backref_insert(struct rb_root *root,
2347 struct sa_defrag_extent_backref *backref)
2348{
2349 struct rb_node **p = &root->rb_node;
2350 struct rb_node *parent = NULL;
2351 struct sa_defrag_extent_backref *entry;
2352 int ret;
2353
2354 while (*p) {
2355 parent = *p;
2356 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2357
2358 ret = backref_comp(backref, entry);
2359 if (ret < 0)
2360 p = &(*p)->rb_left;
2361 else
2362 p = &(*p)->rb_right;
2363 }
2364
2365 rb_link_node(&backref->node, parent, p);
2366 rb_insert_color(&backref->node, root);
2367}
2368
2369/*
2370 * Note the backref might has changed, and in this case we just return 0.
2371 */
2372static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2373 void *ctx)
2374{
2375 struct btrfs_file_extent_item *extent;
38c227d8
LB
2376 struct old_sa_defrag_extent *old = ctx;
2377 struct new_sa_defrag_extent *new = old->new;
2378 struct btrfs_path *path = new->path;
2379 struct btrfs_key key;
2380 struct btrfs_root *root;
2381 struct sa_defrag_extent_backref *backref;
2382 struct extent_buffer *leaf;
2383 struct inode *inode = new->inode;
0b246afa 2384 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2385 int slot;
2386 int ret;
2387 u64 extent_offset;
2388 u64 num_bytes;
2389
2390 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2391 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2392 return 0;
2393
2394 key.objectid = root_id;
2395 key.type = BTRFS_ROOT_ITEM_KEY;
2396 key.offset = (u64)-1;
2397
38c227d8
LB
2398 root = btrfs_read_fs_root_no_name(fs_info, &key);
2399 if (IS_ERR(root)) {
2400 if (PTR_ERR(root) == -ENOENT)
2401 return 0;
2402 WARN_ON(1);
ab8d0fc4 2403 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2404 inum, offset, root_id);
2405 return PTR_ERR(root);
2406 }
2407
2408 key.objectid = inum;
2409 key.type = BTRFS_EXTENT_DATA_KEY;
2410 if (offset > (u64)-1 << 32)
2411 key.offset = 0;
2412 else
2413 key.offset = offset;
2414
2415 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2416 if (WARN_ON(ret < 0))
38c227d8 2417 return ret;
50f1319c 2418 ret = 0;
38c227d8
LB
2419
2420 while (1) {
2421 cond_resched();
2422
2423 leaf = path->nodes[0];
2424 slot = path->slots[0];
2425
2426 if (slot >= btrfs_header_nritems(leaf)) {
2427 ret = btrfs_next_leaf(root, path);
2428 if (ret < 0) {
2429 goto out;
2430 } else if (ret > 0) {
2431 ret = 0;
2432 goto out;
2433 }
2434 continue;
2435 }
2436
2437 path->slots[0]++;
2438
2439 btrfs_item_key_to_cpu(leaf, &key, slot);
2440
2441 if (key.objectid > inum)
2442 goto out;
2443
2444 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2445 continue;
2446
2447 extent = btrfs_item_ptr(leaf, slot,
2448 struct btrfs_file_extent_item);
2449
2450 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2451 continue;
2452
e68afa49
LB
2453 /*
2454 * 'offset' refers to the exact key.offset,
2455 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2456 * (key.offset - extent_offset).
2457 */
2458 if (key.offset != offset)
38c227d8
LB
2459 continue;
2460
e68afa49 2461 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2462 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2463
38c227d8
LB
2464 if (extent_offset >= old->extent_offset + old->offset +
2465 old->len || extent_offset + num_bytes <=
2466 old->extent_offset + old->offset)
2467 continue;
38c227d8
LB
2468 break;
2469 }
2470
2471 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2472 if (!backref) {
2473 ret = -ENOENT;
2474 goto out;
2475 }
2476
2477 backref->root_id = root_id;
2478 backref->inum = inum;
e68afa49 2479 backref->file_pos = offset;
38c227d8
LB
2480 backref->num_bytes = num_bytes;
2481 backref->extent_offset = extent_offset;
2482 backref->generation = btrfs_file_extent_generation(leaf, extent);
2483 backref->old = old;
2484 backref_insert(&new->root, backref);
2485 old->count++;
2486out:
2487 btrfs_release_path(path);
2488 WARN_ON(ret);
2489 return ret;
2490}
2491
2492static noinline bool record_extent_backrefs(struct btrfs_path *path,
2493 struct new_sa_defrag_extent *new)
2494{
0b246afa 2495 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2496 struct old_sa_defrag_extent *old, *tmp;
2497 int ret;
2498
2499 new->path = path;
2500
2501 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2502 ret = iterate_inodes_from_logical(old->bytenr +
2503 old->extent_offset, fs_info,
38c227d8 2504 path, record_one_backref,
c995ab3c 2505 old, false);
4724b106
JB
2506 if (ret < 0 && ret != -ENOENT)
2507 return false;
38c227d8
LB
2508
2509 /* no backref to be processed for this extent */
2510 if (!old->count) {
2511 list_del(&old->list);
2512 kfree(old);
2513 }
2514 }
2515
2516 if (list_empty(&new->head))
2517 return false;
2518
2519 return true;
2520}
2521
2522static int relink_is_mergable(struct extent_buffer *leaf,
2523 struct btrfs_file_extent_item *fi,
116e0024 2524 struct new_sa_defrag_extent *new)
38c227d8 2525{
116e0024 2526 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2527 return 0;
2528
2529 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2530 return 0;
2531
116e0024
LB
2532 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2533 return 0;
2534
2535 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2536 btrfs_file_extent_other_encoding(leaf, fi))
2537 return 0;
2538
2539 return 1;
2540}
2541
2542/*
2543 * Note the backref might has changed, and in this case we just return 0.
2544 */
2545static noinline int relink_extent_backref(struct btrfs_path *path,
2546 struct sa_defrag_extent_backref *prev,
2547 struct sa_defrag_extent_backref *backref)
2548{
2549 struct btrfs_file_extent_item *extent;
2550 struct btrfs_file_extent_item *item;
2551 struct btrfs_ordered_extent *ordered;
2552 struct btrfs_trans_handle *trans;
82fa113f 2553 struct btrfs_ref ref = { 0 };
38c227d8
LB
2554 struct btrfs_root *root;
2555 struct btrfs_key key;
2556 struct extent_buffer *leaf;
2557 struct old_sa_defrag_extent *old = backref->old;
2558 struct new_sa_defrag_extent *new = old->new;
0b246afa 2559 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2560 struct inode *inode;
2561 struct extent_state *cached = NULL;
2562 int ret = 0;
2563 u64 start;
2564 u64 len;
2565 u64 lock_start;
2566 u64 lock_end;
2567 bool merge = false;
2568 int index;
2569
2570 if (prev && prev->root_id == backref->root_id &&
2571 prev->inum == backref->inum &&
2572 prev->file_pos + prev->num_bytes == backref->file_pos)
2573 merge = true;
2574
2575 /* step 1: get root */
2576 key.objectid = backref->root_id;
2577 key.type = BTRFS_ROOT_ITEM_KEY;
2578 key.offset = (u64)-1;
2579
38c227d8
LB
2580 index = srcu_read_lock(&fs_info->subvol_srcu);
2581
2582 root = btrfs_read_fs_root_no_name(fs_info, &key);
2583 if (IS_ERR(root)) {
2584 srcu_read_unlock(&fs_info->subvol_srcu, index);
2585 if (PTR_ERR(root) == -ENOENT)
2586 return 0;
2587 return PTR_ERR(root);
2588 }
38c227d8 2589
bcbba5e6
WS
2590 if (btrfs_root_readonly(root)) {
2591 srcu_read_unlock(&fs_info->subvol_srcu, index);
2592 return 0;
2593 }
2594
38c227d8
LB
2595 /* step 2: get inode */
2596 key.objectid = backref->inum;
2597 key.type = BTRFS_INODE_ITEM_KEY;
2598 key.offset = 0;
2599
2600 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2601 if (IS_ERR(inode)) {
2602 srcu_read_unlock(&fs_info->subvol_srcu, index);
2603 return 0;
2604 }
2605
2606 srcu_read_unlock(&fs_info->subvol_srcu, index);
2607
2608 /* step 3: relink backref */
2609 lock_start = backref->file_pos;
2610 lock_end = backref->file_pos + backref->num_bytes - 1;
2611 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2612 &cached);
38c227d8
LB
2613
2614 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2615 if (ordered) {
2616 btrfs_put_ordered_extent(ordered);
2617 goto out_unlock;
2618 }
2619
2620 trans = btrfs_join_transaction(root);
2621 if (IS_ERR(trans)) {
2622 ret = PTR_ERR(trans);
2623 goto out_unlock;
2624 }
2625
2626 key.objectid = backref->inum;
2627 key.type = BTRFS_EXTENT_DATA_KEY;
2628 key.offset = backref->file_pos;
2629
2630 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2631 if (ret < 0) {
2632 goto out_free_path;
2633 } else if (ret > 0) {
2634 ret = 0;
2635 goto out_free_path;
2636 }
2637
2638 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2639 struct btrfs_file_extent_item);
2640
2641 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2642 backref->generation)
2643 goto out_free_path;
2644
2645 btrfs_release_path(path);
2646
2647 start = backref->file_pos;
2648 if (backref->extent_offset < old->extent_offset + old->offset)
2649 start += old->extent_offset + old->offset -
2650 backref->extent_offset;
2651
2652 len = min(backref->extent_offset + backref->num_bytes,
2653 old->extent_offset + old->offset + old->len);
2654 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2655
2656 ret = btrfs_drop_extents(trans, root, inode, start,
2657 start + len, 1);
2658 if (ret)
2659 goto out_free_path;
2660again:
4a0cc7ca 2661 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2662 key.type = BTRFS_EXTENT_DATA_KEY;
2663 key.offset = start;
2664
a09a0a70 2665 path->leave_spinning = 1;
38c227d8
LB
2666 if (merge) {
2667 struct btrfs_file_extent_item *fi;
2668 u64 extent_len;
2669 struct btrfs_key found_key;
2670
3c9665df 2671 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2672 if (ret < 0)
2673 goto out_free_path;
2674
2675 path->slots[0]--;
2676 leaf = path->nodes[0];
2677 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2678
2679 fi = btrfs_item_ptr(leaf, path->slots[0],
2680 struct btrfs_file_extent_item);
2681 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2682
116e0024
LB
2683 if (extent_len + found_key.offset == start &&
2684 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2685 btrfs_set_file_extent_num_bytes(leaf, fi,
2686 extent_len + len);
2687 btrfs_mark_buffer_dirty(leaf);
2688 inode_add_bytes(inode, len);
2689
2690 ret = 1;
2691 goto out_free_path;
2692 } else {
2693 merge = false;
2694 btrfs_release_path(path);
2695 goto again;
2696 }
2697 }
2698
2699 ret = btrfs_insert_empty_item(trans, root, path, &key,
2700 sizeof(*extent));
2701 if (ret) {
66642832 2702 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2703 goto out_free_path;
2704 }
2705
2706 leaf = path->nodes[0];
2707 item = btrfs_item_ptr(leaf, path->slots[0],
2708 struct btrfs_file_extent_item);
2709 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2710 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2711 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2712 btrfs_set_file_extent_num_bytes(leaf, item, len);
2713 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2714 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2715 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2716 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2717 btrfs_set_file_extent_encryption(leaf, item, 0);
2718 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2719
2720 btrfs_mark_buffer_dirty(leaf);
2721 inode_add_bytes(inode, len);
a09a0a70 2722 btrfs_release_path(path);
38c227d8 2723
82fa113f
QW
2724 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new->bytenr,
2725 new->disk_len, 0);
2726 btrfs_init_data_ref(&ref, backref->root_id, backref->inum,
2727 new->file_pos); /* start - extent_offset */
2728 ret = btrfs_inc_extent_ref(trans, &ref);
38c227d8 2729 if (ret) {
66642832 2730 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2731 goto out_free_path;
2732 }
2733
2734 ret = 1;
2735out_free_path:
2736 btrfs_release_path(path);
a09a0a70 2737 path->leave_spinning = 0;
3a45bb20 2738 btrfs_end_transaction(trans);
38c227d8
LB
2739out_unlock:
2740 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
e43bbe5e 2741 &cached);
38c227d8
LB
2742 iput(inode);
2743 return ret;
2744}
2745
6f519564
LB
2746static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2747{
2748 struct old_sa_defrag_extent *old, *tmp;
2749
2750 if (!new)
2751 return;
2752
2753 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2754 kfree(old);
2755 }
2756 kfree(new);
2757}
2758
38c227d8
LB
2759static void relink_file_extents(struct new_sa_defrag_extent *new)
2760{
0b246afa 2761 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2762 struct btrfs_path *path;
38c227d8
LB
2763 struct sa_defrag_extent_backref *backref;
2764 struct sa_defrag_extent_backref *prev = NULL;
38c227d8
LB
2765 struct rb_node *node;
2766 int ret;
2767
38c227d8
LB
2768 path = btrfs_alloc_path();
2769 if (!path)
2770 return;
2771
2772 if (!record_extent_backrefs(path, new)) {
2773 btrfs_free_path(path);
2774 goto out;
2775 }
2776 btrfs_release_path(path);
2777
2778 while (1) {
2779 node = rb_first(&new->root);
2780 if (!node)
2781 break;
2782 rb_erase(node, &new->root);
2783
2784 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2785
2786 ret = relink_extent_backref(path, prev, backref);
2787 WARN_ON(ret < 0);
2788
2789 kfree(prev);
2790
2791 if (ret == 1)
2792 prev = backref;
2793 else
2794 prev = NULL;
2795 cond_resched();
2796 }
2797 kfree(prev);
2798
2799 btrfs_free_path(path);
38c227d8 2800out:
6f519564
LB
2801 free_sa_defrag_extent(new);
2802
0b246afa
JM
2803 atomic_dec(&fs_info->defrag_running);
2804 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2805}
2806
2807static struct new_sa_defrag_extent *
2808record_old_file_extents(struct inode *inode,
2809 struct btrfs_ordered_extent *ordered)
2810{
0b246afa 2811 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2812 struct btrfs_root *root = BTRFS_I(inode)->root;
2813 struct btrfs_path *path;
2814 struct btrfs_key key;
6f519564 2815 struct old_sa_defrag_extent *old;
38c227d8
LB
2816 struct new_sa_defrag_extent *new;
2817 int ret;
2818
2819 new = kmalloc(sizeof(*new), GFP_NOFS);
2820 if (!new)
2821 return NULL;
2822
2823 new->inode = inode;
2824 new->file_pos = ordered->file_offset;
2825 new->len = ordered->len;
2826 new->bytenr = ordered->start;
2827 new->disk_len = ordered->disk_len;
2828 new->compress_type = ordered->compress_type;
2829 new->root = RB_ROOT;
2830 INIT_LIST_HEAD(&new->head);
2831
2832 path = btrfs_alloc_path();
2833 if (!path)
2834 goto out_kfree;
2835
4a0cc7ca 2836 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2837 key.type = BTRFS_EXTENT_DATA_KEY;
2838 key.offset = new->file_pos;
2839
2840 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2841 if (ret < 0)
2842 goto out_free_path;
2843 if (ret > 0 && path->slots[0] > 0)
2844 path->slots[0]--;
2845
2846 /* find out all the old extents for the file range */
2847 while (1) {
2848 struct btrfs_file_extent_item *extent;
2849 struct extent_buffer *l;
2850 int slot;
2851 u64 num_bytes;
2852 u64 offset;
2853 u64 end;
2854 u64 disk_bytenr;
2855 u64 extent_offset;
2856
2857 l = path->nodes[0];
2858 slot = path->slots[0];
2859
2860 if (slot >= btrfs_header_nritems(l)) {
2861 ret = btrfs_next_leaf(root, path);
2862 if (ret < 0)
6f519564 2863 goto out_free_path;
38c227d8
LB
2864 else if (ret > 0)
2865 break;
2866 continue;
2867 }
2868
2869 btrfs_item_key_to_cpu(l, &key, slot);
2870
4a0cc7ca 2871 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2872 break;
2873 if (key.type != BTRFS_EXTENT_DATA_KEY)
2874 break;
2875 if (key.offset >= new->file_pos + new->len)
2876 break;
2877
2878 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2879
2880 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2881 if (key.offset + num_bytes < new->file_pos)
2882 goto next;
2883
2884 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2885 if (!disk_bytenr)
2886 goto next;
2887
2888 extent_offset = btrfs_file_extent_offset(l, extent);
2889
2890 old = kmalloc(sizeof(*old), GFP_NOFS);
2891 if (!old)
6f519564 2892 goto out_free_path;
38c227d8
LB
2893
2894 offset = max(new->file_pos, key.offset);
2895 end = min(new->file_pos + new->len, key.offset + num_bytes);
2896
2897 old->bytenr = disk_bytenr;
2898 old->extent_offset = extent_offset;
2899 old->offset = offset - key.offset;
2900 old->len = end - offset;
2901 old->new = new;
2902 old->count = 0;
2903 list_add_tail(&old->list, &new->head);
2904next:
2905 path->slots[0]++;
2906 cond_resched();
2907 }
2908
2909 btrfs_free_path(path);
0b246afa 2910 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2911
2912 return new;
2913
38c227d8
LB
2914out_free_path:
2915 btrfs_free_path(path);
2916out_kfree:
6f519564 2917 free_sa_defrag_extent(new);
38c227d8
LB
2918 return NULL;
2919}
2920
2ff7e61e 2921static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2922 u64 start, u64 len)
2923{
2924 struct btrfs_block_group_cache *cache;
2925
0b246afa 2926 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2927 ASSERT(cache);
2928
2929 spin_lock(&cache->lock);
2930 cache->delalloc_bytes -= len;
2931 spin_unlock(&cache->lock);
2932
2933 btrfs_put_block_group(cache);
2934}
2935
d352ac68
CM
2936/* as ordered data IO finishes, this gets called so we can finish
2937 * an ordered extent if the range of bytes in the file it covers are
2938 * fully written.
2939 */
5fd02043 2940static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2941{
5fd02043 2942 struct inode *inode = ordered_extent->inode;
0b246afa 2943 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2944 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2945 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2946 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2947 struct extent_state *cached_state = NULL;
38c227d8 2948 struct new_sa_defrag_extent *new = NULL;
261507a0 2949 int compress_type = 0;
77cef2ec
JB
2950 int ret = 0;
2951 u64 logical_len = ordered_extent->len;
82d5902d 2952 bool nolock;
77cef2ec 2953 bool truncated = false;
a7e3b975
FM
2954 bool range_locked = false;
2955 bool clear_new_delalloc_bytes = false;
49940bdd 2956 bool clear_reserved_extent = true;
a7e3b975
FM
2957
2958 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2959 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2960 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2961 clear_new_delalloc_bytes = true;
e6dcd2dc 2962
70ddc553 2963 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2964
5fd02043
JB
2965 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2966 ret = -EIO;
2967 goto out;
2968 }
2969
7ab7956e
NB
2970 btrfs_free_io_failure_record(BTRFS_I(inode),
2971 ordered_extent->file_offset,
2972 ordered_extent->file_offset +
2973 ordered_extent->len - 1);
f612496b 2974
77cef2ec
JB
2975 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2976 truncated = true;
2977 logical_len = ordered_extent->truncated_len;
2978 /* Truncated the entire extent, don't bother adding */
2979 if (!logical_len)
2980 goto out;
2981 }
2982
c2167754 2983 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2984 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2985
2986 /*
2987 * For mwrite(mmap + memset to write) case, we still reserve
2988 * space for NOCOW range.
2989 * As NOCOW won't cause a new delayed ref, just free the space
2990 */
bc42bda2 2991 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
94ed938a 2992 ordered_extent->len);
6c760c07
JB
2993 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2994 if (nolock)
2995 trans = btrfs_join_transaction_nolock(root);
2996 else
2997 trans = btrfs_join_transaction(root);
2998 if (IS_ERR(trans)) {
2999 ret = PTR_ERR(trans);
3000 trans = NULL;
3001 goto out;
c2167754 3002 }
69fe2d75 3003 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
3004 ret = btrfs_update_inode_fallback(trans, root, inode);
3005 if (ret) /* -ENOMEM or corruption */
66642832 3006 btrfs_abort_transaction(trans, ret);
c2167754
YZ
3007 goto out;
3008 }
e6dcd2dc 3009
a7e3b975 3010 range_locked = true;
2ac55d41
JB
3011 lock_extent_bits(io_tree, ordered_extent->file_offset,
3012 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 3013 &cached_state);
e6dcd2dc 3014
38c227d8
LB
3015 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3016 ordered_extent->file_offset + ordered_extent->len - 1,
452e62b7 3017 EXTENT_DEFRAG, 0, cached_state);
38c227d8
LB
3018 if (ret) {
3019 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 3020 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
3021 /* the inode is shared */
3022 new = record_old_file_extents(inode, ordered_extent);
3023
3024 clear_extent_bit(io_tree, ordered_extent->file_offset,
3025 ordered_extent->file_offset + ordered_extent->len - 1,
ae0f1625 3026 EXTENT_DEFRAG, 0, 0, &cached_state);
38c227d8
LB
3027 }
3028
0cb59c99 3029 if (nolock)
7a7eaa40 3030 trans = btrfs_join_transaction_nolock(root);
0cb59c99 3031 else
7a7eaa40 3032 trans = btrfs_join_transaction(root);
79787eaa
JM
3033 if (IS_ERR(trans)) {
3034 ret = PTR_ERR(trans);
3035 trans = NULL;
a7e3b975 3036 goto out;
79787eaa 3037 }
a79b7d4b 3038
69fe2d75 3039 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 3040
c8b97818 3041 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 3042 compress_type = ordered_extent->compress_type;
d899e052 3043 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 3044 BUG_ON(compress_type);
b430b775
JM
3045 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3046 ordered_extent->len);
7a6d7067 3047 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
3048 ordered_extent->file_offset,
3049 ordered_extent->file_offset +
77cef2ec 3050 logical_len);
d899e052 3051 } else {
0b246afa 3052 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
3053 ret = insert_reserved_file_extent(trans, inode,
3054 ordered_extent->file_offset,
3055 ordered_extent->start,
3056 ordered_extent->disk_len,
77cef2ec 3057 logical_len, logical_len,
261507a0 3058 compress_type, 0, 0,
d899e052 3059 BTRFS_FILE_EXTENT_REG);
49940bdd
JB
3060 if (!ret) {
3061 clear_reserved_extent = false;
2ff7e61e 3062 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
3063 ordered_extent->start,
3064 ordered_extent->disk_len);
49940bdd 3065 }
d899e052 3066 }
5dc562c5
JB
3067 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3068 ordered_extent->file_offset, ordered_extent->len,
3069 trans->transid);
79787eaa 3070 if (ret < 0) {
66642832 3071 btrfs_abort_transaction(trans, ret);
a7e3b975 3072 goto out;
79787eaa 3073 }
2ac55d41 3074
ac01f26a
NB
3075 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3076 if (ret) {
3077 btrfs_abort_transaction(trans, ret);
3078 goto out;
3079 }
e6dcd2dc 3080
6c760c07
JB
3081 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3082 ret = btrfs_update_inode_fallback(trans, root, inode);
3083 if (ret) { /* -ENOMEM or corruption */
66642832 3084 btrfs_abort_transaction(trans, ret);
a7e3b975 3085 goto out;
1ef30be1
JB
3086 }
3087 ret = 0;
c2167754 3088out:
a7e3b975
FM
3089 if (range_locked || clear_new_delalloc_bytes) {
3090 unsigned int clear_bits = 0;
3091
3092 if (range_locked)
3093 clear_bits |= EXTENT_LOCKED;
3094 if (clear_new_delalloc_bytes)
3095 clear_bits |= EXTENT_DELALLOC_NEW;
3096 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3097 ordered_extent->file_offset,
3098 ordered_extent->file_offset +
3099 ordered_extent->len - 1,
3100 clear_bits,
3101 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
ae0f1625 3102 0, &cached_state);
a7e3b975
FM
3103 }
3104
a698d075 3105 if (trans)
3a45bb20 3106 btrfs_end_transaction(trans);
0cb59c99 3107
77cef2ec
JB
3108 if (ret || truncated) {
3109 u64 start, end;
3110
3111 if (truncated)
3112 start = ordered_extent->file_offset + logical_len;
3113 else
3114 start = ordered_extent->file_offset;
3115 end = ordered_extent->file_offset + ordered_extent->len - 1;
f08dc36f 3116 clear_extent_uptodate(io_tree, start, end, NULL);
77cef2ec
JB
3117
3118 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 3119 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 3120
0bec9ef5
JB
3121 /*
3122 * If the ordered extent had an IOERR or something else went
3123 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3124 * back to the allocator. We only free the extent in the
3125 * truncated case if we didn't write out the extent at all.
49940bdd
JB
3126 *
3127 * If we made it past insert_reserved_file_extent before we
3128 * errored out then we don't need to do this as the accounting
3129 * has already been done.
0bec9ef5 3130 */
77cef2ec 3131 if ((ret || !logical_len) &&
49940bdd 3132 clear_reserved_extent &&
77cef2ec 3133 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3134 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3135 btrfs_free_reserved_extent(fs_info,
3136 ordered_extent->start,
e570fd27 3137 ordered_extent->disk_len, 1);
0bec9ef5
JB
3138 }
3139
3140
5fd02043 3141 /*
8bad3c02
LB
3142 * This needs to be done to make sure anybody waiting knows we are done
3143 * updating everything for this ordered extent.
5fd02043
JB
3144 */
3145 btrfs_remove_ordered_extent(inode, ordered_extent);
3146
38c227d8 3147 /* for snapshot-aware defrag */
6f519564
LB
3148 if (new) {
3149 if (ret) {
3150 free_sa_defrag_extent(new);
0b246afa 3151 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3152 } else {
3153 relink_file_extents(new);
3154 }
3155 }
38c227d8 3156
e6dcd2dc
CM
3157 /* once for us */
3158 btrfs_put_ordered_extent(ordered_extent);
3159 /* once for the tree */
3160 btrfs_put_ordered_extent(ordered_extent);
3161
5fd02043
JB
3162 return ret;
3163}
3164
3165static void finish_ordered_fn(struct btrfs_work *work)
3166{
3167 struct btrfs_ordered_extent *ordered_extent;
3168 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3169 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3170}
3171
c629732d
NB
3172void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3173 u64 end, int uptodate)
211f90e6 3174{
5fd02043 3175 struct inode *inode = page->mapping->host;
0b246afa 3176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3177 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3178 struct btrfs_workqueue *wq;
3179 btrfs_work_func_t func;
5fd02043 3180
1abe9b8a 3181 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3182
8b62b72b 3183 ClearPagePrivate2(page);
5fd02043
JB
3184 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3185 end - start + 1, uptodate))
c3988d63 3186 return;
5fd02043 3187
70ddc553 3188 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 3189 wq = fs_info->endio_freespace_worker;
9e0af237
LB
3190 func = btrfs_freespace_write_helper;
3191 } else {
0b246afa 3192 wq = fs_info->endio_write_workers;
9e0af237
LB
3193 func = btrfs_endio_write_helper;
3194 }
5fd02043 3195
9e0af237
LB
3196 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3197 NULL);
3198 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3199}
3200
dc380aea
MX
3201static int __readpage_endio_check(struct inode *inode,
3202 struct btrfs_io_bio *io_bio,
3203 int icsum, struct page *page,
3204 int pgoff, u64 start, size_t len)
3205{
d5178578
JT
3206 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3207 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
dc380aea 3208 char *kaddr;
d5178578
JT
3209 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
3210 u8 *csum_expected;
3211 u8 csum[BTRFS_CSUM_SIZE];
dc380aea 3212
d5178578 3213 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
dc380aea
MX
3214
3215 kaddr = kmap_atomic(page);
d5178578
JT
3216 shash->tfm = fs_info->csum_shash;
3217
3218 crypto_shash_init(shash);
3219 crypto_shash_update(shash, kaddr + pgoff, len);
3220 crypto_shash_final(shash, csum);
3221
3222 if (memcmp(csum, csum_expected, csum_size))
dc380aea
MX
3223 goto zeroit;
3224
3225 kunmap_atomic(kaddr);
3226 return 0;
3227zeroit:
ea41d6b2
JT
3228 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3229 io_bio->mirror_num);
dc380aea
MX
3230 memset(kaddr + pgoff, 1, len);
3231 flush_dcache_page(page);
3232 kunmap_atomic(kaddr);
dc380aea
MX
3233 return -EIO;
3234}
3235
d352ac68
CM
3236/*
3237 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3238 * if there's a match, we allow the bio to finish. If not, the code in
3239 * extent_io.c will try to find good copies for us.
d352ac68 3240 */
facc8a22
MX
3241static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3242 u64 phy_offset, struct page *page,
3243 u64 start, u64 end, int mirror)
07157aac 3244{
4eee4fa4 3245 size_t offset = start - page_offset(page);
07157aac 3246 struct inode *inode = page->mapping->host;
d1310b2e 3247 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3248 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3249
d20f7043
CM
3250 if (PageChecked(page)) {
3251 ClearPageChecked(page);
dc380aea 3252 return 0;
d20f7043 3253 }
6cbff00f
CH
3254
3255 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3256 return 0;
17d217fe
YZ
3257
3258 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3259 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3260 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3261 return 0;
17d217fe 3262 }
d20f7043 3263
facc8a22 3264 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3265 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3266 start, (size_t)(end - start + 1));
07157aac 3267}
b888db2b 3268
c1c3fac2
NB
3269/*
3270 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3271 *
3272 * @inode: The inode we want to perform iput on
3273 *
3274 * This function uses the generic vfs_inode::i_count to track whether we should
3275 * just decrement it (in case it's > 1) or if this is the last iput then link
3276 * the inode to the delayed iput machinery. Delayed iputs are processed at
3277 * transaction commit time/superblock commit/cleaner kthread.
3278 */
24bbcf04
YZ
3279void btrfs_add_delayed_iput(struct inode *inode)
3280{
0b246afa 3281 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3282 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3283
3284 if (atomic_add_unless(&inode->i_count, -1, 1))
3285 return;
3286
034f784d 3287 atomic_inc(&fs_info->nr_delayed_iputs);
24bbcf04 3288 spin_lock(&fs_info->delayed_iput_lock);
c1c3fac2
NB
3289 ASSERT(list_empty(&binode->delayed_iput));
3290 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
24bbcf04 3291 spin_unlock(&fs_info->delayed_iput_lock);
fd340d0f
JB
3292 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3293 wake_up_process(fs_info->cleaner_kthread);
24bbcf04
YZ
3294}
3295
2ff7e61e 3296void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3297{
24bbcf04 3298
24bbcf04 3299 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3300 while (!list_empty(&fs_info->delayed_iputs)) {
3301 struct btrfs_inode *inode;
3302
3303 inode = list_first_entry(&fs_info->delayed_iputs,
3304 struct btrfs_inode, delayed_iput);
c1c3fac2 3305 list_del_init(&inode->delayed_iput);
8089fe62
DS
3306 spin_unlock(&fs_info->delayed_iput_lock);
3307 iput(&inode->vfs_inode);
034f784d
JB
3308 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3309 wake_up(&fs_info->delayed_iputs_wait);
8089fe62 3310 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3311 }
8089fe62 3312 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3313}
3314
034f784d
JB
3315/**
3316 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
3317 * @fs_info - the fs_info for this fs
3318 * @return - EINTR if we were killed, 0 if nothing's pending
3319 *
3320 * This will wait on any delayed iputs that are currently running with KILLABLE
3321 * set. Once they are all done running we will return, unless we are killed in
3322 * which case we return EINTR. This helps in user operations like fallocate etc
3323 * that might get blocked on the iputs.
3324 */
3325int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3326{
3327 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3328 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3329 if (ret)
3330 return -EINTR;
3331 return 0;
3332}
3333
7b128766 3334/*
f7e9e8fc
OS
3335 * This creates an orphan entry for the given inode in case something goes wrong
3336 * in the middle of an unlink.
7b128766 3337 */
73f2e545 3338int btrfs_orphan_add(struct btrfs_trans_handle *trans,
27919067 3339 struct btrfs_inode *inode)
7b128766 3340{
d68fc57b 3341 int ret;
7b128766 3342
27919067
OS
3343 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3344 if (ret && ret != -EEXIST) {
3345 btrfs_abort_transaction(trans, ret);
3346 return ret;
d68fc57b
YZ
3347 }
3348
d68fc57b 3349 return 0;
7b128766
JB
3350}
3351
3352/*
f7e9e8fc
OS
3353 * We have done the delete so we can go ahead and remove the orphan item for
3354 * this particular inode.
7b128766 3355 */
48a3b636 3356static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3357 struct btrfs_inode *inode)
7b128766 3358{
27919067 3359 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
7b128766
JB
3360}
3361
3362/*
3363 * this cleans up any orphans that may be left on the list from the last use
3364 * of this root.
3365 */
66b4ffd1 3366int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3367{
0b246afa 3368 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3369 struct btrfs_path *path;
3370 struct extent_buffer *leaf;
7b128766
JB
3371 struct btrfs_key key, found_key;
3372 struct btrfs_trans_handle *trans;
3373 struct inode *inode;
8f6d7f4f 3374 u64 last_objectid = 0;
f7e9e8fc 3375 int ret = 0, nr_unlink = 0;
7b128766 3376
d68fc57b 3377 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3378 return 0;
c71bf099
YZ
3379
3380 path = btrfs_alloc_path();
66b4ffd1
JB
3381 if (!path) {
3382 ret = -ENOMEM;
3383 goto out;
3384 }
e4058b54 3385 path->reada = READA_BACK;
7b128766
JB
3386
3387 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3388 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3389 key.offset = (u64)-1;
3390
7b128766
JB
3391 while (1) {
3392 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3393 if (ret < 0)
3394 goto out;
7b128766
JB
3395
3396 /*
3397 * if ret == 0 means we found what we were searching for, which
25985edc 3398 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3399 * find the key and see if we have stuff that matches
3400 */
3401 if (ret > 0) {
66b4ffd1 3402 ret = 0;
7b128766
JB
3403 if (path->slots[0] == 0)
3404 break;
3405 path->slots[0]--;
3406 }
3407
3408 /* pull out the item */
3409 leaf = path->nodes[0];
7b128766
JB
3410 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3411
3412 /* make sure the item matches what we want */
3413 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3414 break;
962a298f 3415 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3416 break;
3417
3418 /* release the path since we're done with it */
b3b4aa74 3419 btrfs_release_path(path);
7b128766
JB
3420
3421 /*
3422 * this is where we are basically btrfs_lookup, without the
3423 * crossing root thing. we store the inode number in the
3424 * offset of the orphan item.
3425 */
8f6d7f4f
JB
3426
3427 if (found_key.offset == last_objectid) {
0b246afa
JM
3428 btrfs_err(fs_info,
3429 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3430 ret = -EINVAL;
3431 goto out;
3432 }
3433
3434 last_objectid = found_key.offset;
3435
5d4f98a2
YZ
3436 found_key.objectid = found_key.offset;
3437 found_key.type = BTRFS_INODE_ITEM_KEY;
3438 found_key.offset = 0;
0b246afa 3439 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3440 ret = PTR_ERR_OR_ZERO(inode);
67710892 3441 if (ret && ret != -ENOENT)
66b4ffd1 3442 goto out;
7b128766 3443
0b246afa 3444 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3445 struct btrfs_root *dead_root;
3446 struct btrfs_fs_info *fs_info = root->fs_info;
3447 int is_dead_root = 0;
3448
3449 /*
3450 * this is an orphan in the tree root. Currently these
3451 * could come from 2 sources:
3452 * a) a snapshot deletion in progress
3453 * b) a free space cache inode
3454 * We need to distinguish those two, as the snapshot
3455 * orphan must not get deleted.
3456 * find_dead_roots already ran before us, so if this
3457 * is a snapshot deletion, we should find the root
3458 * in the dead_roots list
3459 */
3460 spin_lock(&fs_info->trans_lock);
3461 list_for_each_entry(dead_root, &fs_info->dead_roots,
3462 root_list) {
3463 if (dead_root->root_key.objectid ==
3464 found_key.objectid) {
3465 is_dead_root = 1;
3466 break;
3467 }
3468 }
3469 spin_unlock(&fs_info->trans_lock);
3470 if (is_dead_root) {
3471 /* prevent this orphan from being found again */
3472 key.offset = found_key.objectid - 1;
3473 continue;
3474 }
f7e9e8fc 3475
f8e9e0b0 3476 }
f7e9e8fc 3477
7b128766 3478 /*
f7e9e8fc
OS
3479 * If we have an inode with links, there are a couple of
3480 * possibilities. Old kernels (before v3.12) used to create an
3481 * orphan item for truncate indicating that there were possibly
3482 * extent items past i_size that needed to be deleted. In v3.12,
3483 * truncate was changed to update i_size in sync with the extent
3484 * items, but the (useless) orphan item was still created. Since
3485 * v4.18, we don't create the orphan item for truncate at all.
3486 *
3487 * So, this item could mean that we need to do a truncate, but
3488 * only if this filesystem was last used on a pre-v3.12 kernel
3489 * and was not cleanly unmounted. The odds of that are quite
3490 * slim, and it's a pain to do the truncate now, so just delete
3491 * the orphan item.
3492 *
3493 * It's also possible that this orphan item was supposed to be
3494 * deleted but wasn't. The inode number may have been reused,
3495 * but either way, we can delete the orphan item.
7b128766 3496 */
f7e9e8fc
OS
3497 if (ret == -ENOENT || inode->i_nlink) {
3498 if (!ret)
3499 iput(inode);
a8c9e576 3500 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3501 if (IS_ERR(trans)) {
3502 ret = PTR_ERR(trans);
3503 goto out;
3504 }
0b246afa
JM
3505 btrfs_debug(fs_info, "auto deleting %Lu",
3506 found_key.objectid);
a8c9e576
JB
3507 ret = btrfs_del_orphan_item(trans, root,
3508 found_key.objectid);
3a45bb20 3509 btrfs_end_transaction(trans);
4ef31a45
JB
3510 if (ret)
3511 goto out;
7b128766
JB
3512 continue;
3513 }
3514
f7e9e8fc 3515 nr_unlink++;
7b128766
JB
3516
3517 /* this will do delete_inode and everything for us */
3518 iput(inode);
3519 }
3254c876
MX
3520 /* release the path since we're done with it */
3521 btrfs_release_path(path);
3522
d68fc57b
YZ
3523 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3524
a575ceeb 3525 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3526 trans = btrfs_join_transaction(root);
66b4ffd1 3527 if (!IS_ERR(trans))
3a45bb20 3528 btrfs_end_transaction(trans);
d68fc57b 3529 }
7b128766
JB
3530
3531 if (nr_unlink)
0b246afa 3532 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
66b4ffd1
JB
3533
3534out:
3535 if (ret)
0b246afa 3536 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3537 btrfs_free_path(path);
3538 return ret;
7b128766
JB
3539}
3540
46a53cca
CM
3541/*
3542 * very simple check to peek ahead in the leaf looking for xattrs. If we
3543 * don't find any xattrs, we know there can't be any acls.
3544 *
3545 * slot is the slot the inode is in, objectid is the objectid of the inode
3546 */
3547static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3548 int slot, u64 objectid,
3549 int *first_xattr_slot)
46a53cca
CM
3550{
3551 u32 nritems = btrfs_header_nritems(leaf);
3552 struct btrfs_key found_key;
f23b5a59
JB
3553 static u64 xattr_access = 0;
3554 static u64 xattr_default = 0;
46a53cca
CM
3555 int scanned = 0;
3556
f23b5a59 3557 if (!xattr_access) {
97d79299
AG
3558 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3559 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3560 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3561 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3562 }
3563
46a53cca 3564 slot++;
63541927 3565 *first_xattr_slot = -1;
46a53cca
CM
3566 while (slot < nritems) {
3567 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3568
3569 /* we found a different objectid, there must not be acls */
3570 if (found_key.objectid != objectid)
3571 return 0;
3572
3573 /* we found an xattr, assume we've got an acl */
f23b5a59 3574 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3575 if (*first_xattr_slot == -1)
3576 *first_xattr_slot = slot;
f23b5a59
JB
3577 if (found_key.offset == xattr_access ||
3578 found_key.offset == xattr_default)
3579 return 1;
3580 }
46a53cca
CM
3581
3582 /*
3583 * we found a key greater than an xattr key, there can't
3584 * be any acls later on
3585 */
3586 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3587 return 0;
3588
3589 slot++;
3590 scanned++;
3591
3592 /*
3593 * it goes inode, inode backrefs, xattrs, extents,
3594 * so if there are a ton of hard links to an inode there can
3595 * be a lot of backrefs. Don't waste time searching too hard,
3596 * this is just an optimization
3597 */
3598 if (scanned >= 8)
3599 break;
3600 }
3601 /* we hit the end of the leaf before we found an xattr or
3602 * something larger than an xattr. We have to assume the inode
3603 * has acls
3604 */
63541927
FDBM
3605 if (*first_xattr_slot == -1)
3606 *first_xattr_slot = slot;
46a53cca
CM
3607 return 1;
3608}
3609
d352ac68
CM
3610/*
3611 * read an inode from the btree into the in-memory inode
3612 */
4222ea71
FM
3613static int btrfs_read_locked_inode(struct inode *inode,
3614 struct btrfs_path *in_path)
39279cc3 3615{
0b246afa 3616 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4222ea71 3617 struct btrfs_path *path = in_path;
5f39d397 3618 struct extent_buffer *leaf;
39279cc3
CM
3619 struct btrfs_inode_item *inode_item;
3620 struct btrfs_root *root = BTRFS_I(inode)->root;
3621 struct btrfs_key location;
67de1176 3622 unsigned long ptr;
46a53cca 3623 int maybe_acls;
618e21d5 3624 u32 rdev;
39279cc3 3625 int ret;
2f7e33d4 3626 bool filled = false;
63541927 3627 int first_xattr_slot;
2f7e33d4
MX
3628
3629 ret = btrfs_fill_inode(inode, &rdev);
3630 if (!ret)
3631 filled = true;
39279cc3 3632
4222ea71
FM
3633 if (!path) {
3634 path = btrfs_alloc_path();
3635 if (!path)
3636 return -ENOMEM;
3637 }
1748f843 3638
39279cc3 3639 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3640
39279cc3 3641 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892 3642 if (ret) {
4222ea71
FM
3643 if (path != in_path)
3644 btrfs_free_path(path);
f5b3a417 3645 return ret;
67710892 3646 }
39279cc3 3647
5f39d397 3648 leaf = path->nodes[0];
2f7e33d4
MX
3649
3650 if (filled)
67de1176 3651 goto cache_index;
2f7e33d4 3652
5f39d397
CM
3653 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3654 struct btrfs_inode_item);
5f39d397 3655 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3656 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3657 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3658 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3659 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3660
a937b979
DS
3661 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3662 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3663
a937b979
DS
3664 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3665 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3666
a937b979
DS
3667 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3668 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3669
9cc97d64 3670 BTRFS_I(inode)->i_otime.tv_sec =
3671 btrfs_timespec_sec(leaf, &inode_item->otime);
3672 BTRFS_I(inode)->i_otime.tv_nsec =
3673 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3674
a76a3cd4 3675 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3676 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3677 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3678
c7f88c4e
JL
3679 inode_set_iversion_queried(inode,
3680 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3681 inode->i_generation = BTRFS_I(inode)->generation;
3682 inode->i_rdev = 0;
3683 rdev = btrfs_inode_rdev(leaf, inode_item);
3684
3685 BTRFS_I(inode)->index_cnt = (u64)-1;
3686 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3687
3688cache_index:
5dc562c5
JB
3689 /*
3690 * If we were modified in the current generation and evicted from memory
3691 * and then re-read we need to do a full sync since we don't have any
3692 * idea about which extents were modified before we were evicted from
3693 * cache.
6e17d30b
YD
3694 *
3695 * This is required for both inode re-read from disk and delayed inode
3696 * in delayed_nodes_tree.
5dc562c5 3697 */
0b246afa 3698 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3699 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3700 &BTRFS_I(inode)->runtime_flags);
3701
bde6c242
FM
3702 /*
3703 * We don't persist the id of the transaction where an unlink operation
3704 * against the inode was last made. So here we assume the inode might
3705 * have been evicted, and therefore the exact value of last_unlink_trans
3706 * lost, and set it to last_trans to avoid metadata inconsistencies
3707 * between the inode and its parent if the inode is fsync'ed and the log
3708 * replayed. For example, in the scenario:
3709 *
3710 * touch mydir/foo
3711 * ln mydir/foo mydir/bar
3712 * sync
3713 * unlink mydir/bar
3714 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3715 * xfs_io -c fsync mydir/foo
3716 * <power failure>
3717 * mount fs, triggers fsync log replay
3718 *
3719 * We must make sure that when we fsync our inode foo we also log its
3720 * parent inode, otherwise after log replay the parent still has the
3721 * dentry with the "bar" name but our inode foo has a link count of 1
3722 * and doesn't have an inode ref with the name "bar" anymore.
3723 *
3724 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3725 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3726 * transaction commits on fsync if our inode is a directory, or if our
3727 * inode is not a directory, logging its parent unnecessarily.
3728 */
3729 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3730
67de1176
MX
3731 path->slots[0]++;
3732 if (inode->i_nlink != 1 ||
3733 path->slots[0] >= btrfs_header_nritems(leaf))
3734 goto cache_acl;
3735
3736 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3737 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3738 goto cache_acl;
3739
3740 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3741 if (location.type == BTRFS_INODE_REF_KEY) {
3742 struct btrfs_inode_ref *ref;
3743
3744 ref = (struct btrfs_inode_ref *)ptr;
3745 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3746 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3747 struct btrfs_inode_extref *extref;
3748
3749 extref = (struct btrfs_inode_extref *)ptr;
3750 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3751 extref);
3752 }
2f7e33d4 3753cache_acl:
46a53cca
CM
3754 /*
3755 * try to precache a NULL acl entry for files that don't have
3756 * any xattrs or acls
3757 */
33345d01 3758 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3759 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3760 if (first_xattr_slot != -1) {
3761 path->slots[0] = first_xattr_slot;
3762 ret = btrfs_load_inode_props(inode, path);
3763 if (ret)
0b246afa 3764 btrfs_err(fs_info,
351fd353 3765 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3766 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3767 root->root_key.objectid, ret);
3768 }
4222ea71
FM
3769 if (path != in_path)
3770 btrfs_free_path(path);
63541927 3771
72c04902
AV
3772 if (!maybe_acls)
3773 cache_no_acl(inode);
46a53cca 3774
39279cc3 3775 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3776 case S_IFREG:
3777 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3778 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3779 inode->i_fop = &btrfs_file_operations;
3780 inode->i_op = &btrfs_file_inode_operations;
3781 break;
3782 case S_IFDIR:
3783 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3784 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3785 break;
3786 case S_IFLNK:
3787 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3788 inode_nohighmem(inode);
4779cc04 3789 inode->i_mapping->a_ops = &btrfs_aops;
39279cc3 3790 break;
618e21d5 3791 default:
0279b4cd 3792 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3793 init_special_inode(inode, inode->i_mode, rdev);
3794 break;
39279cc3 3795 }
6cbff00f 3796
7b6a221e 3797 btrfs_sync_inode_flags_to_i_flags(inode);
67710892 3798 return 0;
39279cc3
CM
3799}
3800
d352ac68
CM
3801/*
3802 * given a leaf and an inode, copy the inode fields into the leaf
3803 */
e02119d5
CM
3804static void fill_inode_item(struct btrfs_trans_handle *trans,
3805 struct extent_buffer *leaf,
5f39d397 3806 struct btrfs_inode_item *item,
39279cc3
CM
3807 struct inode *inode)
3808{
51fab693
LB
3809 struct btrfs_map_token token;
3810
3811 btrfs_init_map_token(&token);
5f39d397 3812
51fab693
LB
3813 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3814 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3815 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3816 &token);
3817 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3818 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3819
a937b979 3820 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3821 inode->i_atime.tv_sec, &token);
a937b979 3822 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3823 inode->i_atime.tv_nsec, &token);
5f39d397 3824
a937b979 3825 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3826 inode->i_mtime.tv_sec, &token);
a937b979 3827 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3828 inode->i_mtime.tv_nsec, &token);
5f39d397 3829
a937b979 3830 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3831 inode->i_ctime.tv_sec, &token);
a937b979 3832 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3833 inode->i_ctime.tv_nsec, &token);
5f39d397 3834
9cc97d64 3835 btrfs_set_token_timespec_sec(leaf, &item->otime,
3836 BTRFS_I(inode)->i_otime.tv_sec, &token);
3837 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3838 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3839
51fab693
LB
3840 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3841 &token);
3842 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3843 &token);
c7f88c4e
JL
3844 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3845 &token);
51fab693
LB
3846 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3847 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3848 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3849 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3850}
3851
d352ac68
CM
3852/*
3853 * copy everything in the in-memory inode into the btree.
3854 */
2115133f 3855static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3856 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3857{
3858 struct btrfs_inode_item *inode_item;
3859 struct btrfs_path *path;
5f39d397 3860 struct extent_buffer *leaf;
39279cc3
CM
3861 int ret;
3862
3863 path = btrfs_alloc_path();
16cdcec7
MX
3864 if (!path)
3865 return -ENOMEM;
3866
b9473439 3867 path->leave_spinning = 1;
16cdcec7
MX
3868 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3869 1);
39279cc3
CM
3870 if (ret) {
3871 if (ret > 0)
3872 ret = -ENOENT;
3873 goto failed;
3874 }
3875
5f39d397
CM
3876 leaf = path->nodes[0];
3877 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3878 struct btrfs_inode_item);
39279cc3 3879
e02119d5 3880 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3881 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3882 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3883 ret = 0;
3884failed:
39279cc3
CM
3885 btrfs_free_path(path);
3886 return ret;
3887}
3888
2115133f
CM
3889/*
3890 * copy everything in the in-memory inode into the btree.
3891 */
3892noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3893 struct btrfs_root *root, struct inode *inode)
3894{
0b246afa 3895 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3896 int ret;
3897
3898 /*
3899 * If the inode is a free space inode, we can deadlock during commit
3900 * if we put it into the delayed code.
3901 *
3902 * The data relocation inode should also be directly updated
3903 * without delay
3904 */
70ddc553 3905 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 3906 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 3907 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
3908 btrfs_update_root_times(trans, root);
3909
2115133f
CM
3910 ret = btrfs_delayed_update_inode(trans, root, inode);
3911 if (!ret)
3912 btrfs_set_inode_last_trans(trans, inode);
3913 return ret;
3914 }
3915
3916 return btrfs_update_inode_item(trans, root, inode);
3917}
3918
be6aef60
JB
3919noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3920 struct btrfs_root *root,
3921 struct inode *inode)
2115133f
CM
3922{
3923 int ret;
3924
3925 ret = btrfs_update_inode(trans, root, inode);
3926 if (ret == -ENOSPC)
3927 return btrfs_update_inode_item(trans, root, inode);
3928 return ret;
3929}
3930
d352ac68
CM
3931/*
3932 * unlink helper that gets used here in inode.c and in the tree logging
3933 * recovery code. It remove a link in a directory with a given name, and
3934 * also drops the back refs in the inode to the directory
3935 */
92986796
AV
3936static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3937 struct btrfs_root *root,
4ec5934e
NB
3938 struct btrfs_inode *dir,
3939 struct btrfs_inode *inode,
92986796 3940 const char *name, int name_len)
39279cc3 3941{
0b246afa 3942 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 3943 struct btrfs_path *path;
39279cc3 3944 int ret = 0;
39279cc3 3945 struct btrfs_dir_item *di;
aec7477b 3946 u64 index;
33345d01
LZ
3947 u64 ino = btrfs_ino(inode);
3948 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3949
3950 path = btrfs_alloc_path();
54aa1f4d
CM
3951 if (!path) {
3952 ret = -ENOMEM;
554233a6 3953 goto out;
54aa1f4d
CM
3954 }
3955
b9473439 3956 path->leave_spinning = 1;
33345d01 3957 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3 3958 name, name_len, -1);
3cf5068f
LB
3959 if (IS_ERR_OR_NULL(di)) {
3960 ret = di ? PTR_ERR(di) : -ENOENT;
39279cc3
CM
3961 goto err;
3962 }
39279cc3 3963 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3964 if (ret)
3965 goto err;
b3b4aa74 3966 btrfs_release_path(path);
39279cc3 3967
67de1176
MX
3968 /*
3969 * If we don't have dir index, we have to get it by looking up
3970 * the inode ref, since we get the inode ref, remove it directly,
3971 * it is unnecessary to do delayed deletion.
3972 *
3973 * But if we have dir index, needn't search inode ref to get it.
3974 * Since the inode ref is close to the inode item, it is better
3975 * that we delay to delete it, and just do this deletion when
3976 * we update the inode item.
3977 */
4ec5934e 3978 if (inode->dir_index) {
67de1176
MX
3979 ret = btrfs_delayed_delete_inode_ref(inode);
3980 if (!ret) {
4ec5934e 3981 index = inode->dir_index;
67de1176
MX
3982 goto skip_backref;
3983 }
3984 }
3985
33345d01
LZ
3986 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3987 dir_ino, &index);
aec7477b 3988 if (ret) {
0b246afa 3989 btrfs_info(fs_info,
c2cf52eb 3990 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3991 name_len, name, ino, dir_ino);
66642832 3992 btrfs_abort_transaction(trans, ret);
aec7477b
JB
3993 goto err;
3994 }
67de1176 3995skip_backref:
9add2945 3996 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
79787eaa 3997 if (ret) {
66642832 3998 btrfs_abort_transaction(trans, ret);
39279cc3 3999 goto err;
79787eaa 4000 }
39279cc3 4001
4ec5934e
NB
4002 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4003 dir_ino);
79787eaa 4004 if (ret != 0 && ret != -ENOENT) {
66642832 4005 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4006 goto err;
4007 }
e02119d5 4008
4ec5934e
NB
4009 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4010 index);
6418c961
CM
4011 if (ret == -ENOENT)
4012 ret = 0;
d4e3991b 4013 else if (ret)
66642832 4014 btrfs_abort_transaction(trans, ret);
39279cc3
CM
4015err:
4016 btrfs_free_path(path);
e02119d5
CM
4017 if (ret)
4018 goto out;
4019
6ef06d27 4020 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
4021 inode_inc_iversion(&inode->vfs_inode);
4022 inode_inc_iversion(&dir->vfs_inode);
4023 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4024 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4025 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 4026out:
39279cc3
CM
4027 return ret;
4028}
4029
92986796
AV
4030int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4031 struct btrfs_root *root,
4ec5934e 4032 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
4033 const char *name, int name_len)
4034{
4035 int ret;
4036 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4037 if (!ret) {
4ec5934e
NB
4038 drop_nlink(&inode->vfs_inode);
4039 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4040 }
4041 return ret;
4042}
39279cc3 4043
a22285a6
YZ
4044/*
4045 * helper to start transaction for unlink and rmdir.
4046 *
d52be818
JB
4047 * unlink and rmdir are special in btrfs, they do not always free space, so
4048 * if we cannot make our reservations the normal way try and see if there is
4049 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4050 * allow the unlink to occur.
a22285a6 4051 */
d52be818 4052static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4053{
a22285a6 4054 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4055
e70bea5f
JB
4056 /*
4057 * 1 for the possible orphan item
4058 * 1 for the dir item
4059 * 1 for the dir index
4060 * 1 for the inode ref
e70bea5f
JB
4061 * 1 for the inode
4062 */
8eab77ff 4063 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4064}
4065
4066static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4067{
4068 struct btrfs_root *root = BTRFS_I(dir)->root;
4069 struct btrfs_trans_handle *trans;
2b0143b5 4070 struct inode *inode = d_inode(dentry);
a22285a6 4071 int ret;
a22285a6 4072
d52be818 4073 trans = __unlink_start_trans(dir);
a22285a6
YZ
4074 if (IS_ERR(trans))
4075 return PTR_ERR(trans);
5f39d397 4076
4ec5934e
NB
4077 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4078 0);
12fcfd22 4079
4ec5934e
NB
4080 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4081 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4082 dentry->d_name.len);
b532402e
TI
4083 if (ret)
4084 goto out;
7b128766 4085
a22285a6 4086 if (inode->i_nlink == 0) {
73f2e545 4087 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4088 if (ret)
4089 goto out;
a22285a6 4090 }
7b128766 4091
b532402e 4092out:
3a45bb20 4093 btrfs_end_transaction(trans);
2ff7e61e 4094 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4095 return ret;
4096}
4097
f60a2364 4098static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
401b3b19
LF
4099 struct inode *dir, u64 objectid,
4100 const char *name, int name_len)
4df27c4d 4101{
401b3b19 4102 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
4103 struct btrfs_path *path;
4104 struct extent_buffer *leaf;
4105 struct btrfs_dir_item *di;
4106 struct btrfs_key key;
4107 u64 index;
4108 int ret;
4a0cc7ca 4109 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4110
4111 path = btrfs_alloc_path();
4112 if (!path)
4113 return -ENOMEM;
4114
33345d01 4115 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4116 name, name_len, -1);
79787eaa 4117 if (IS_ERR_OR_NULL(di)) {
3cf5068f 4118 ret = di ? PTR_ERR(di) : -ENOENT;
79787eaa
JM
4119 goto out;
4120 }
4df27c4d
YZ
4121
4122 leaf = path->nodes[0];
4123 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4124 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4125 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4126 if (ret) {
66642832 4127 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4128 goto out;
4129 }
b3b4aa74 4130 btrfs_release_path(path);
4df27c4d 4131
3ee1c553
LF
4132 ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4133 dir_ino, &index, name, name_len);
4df27c4d 4134 if (ret < 0) {
79787eaa 4135 if (ret != -ENOENT) {
66642832 4136 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4137 goto out;
4138 }
33345d01 4139 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4140 name, name_len);
79787eaa
JM
4141 if (IS_ERR_OR_NULL(di)) {
4142 if (!di)
4143 ret = -ENOENT;
4144 else
4145 ret = PTR_ERR(di);
66642832 4146 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4147 goto out;
4148 }
4df27c4d
YZ
4149
4150 leaf = path->nodes[0];
4151 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4df27c4d
YZ
4152 index = key.offset;
4153 }
945d8962 4154 btrfs_release_path(path);
4df27c4d 4155
9add2945 4156 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
79787eaa 4157 if (ret) {
66642832 4158 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4159 goto out;
4160 }
4df27c4d 4161
6ef06d27 4162 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4163 inode_inc_iversion(dir);
c2050a45 4164 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4165 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4166 if (ret)
66642832 4167 btrfs_abort_transaction(trans, ret);
79787eaa 4168out:
71d7aed0 4169 btrfs_free_path(path);
79787eaa 4170 return ret;
4df27c4d
YZ
4171}
4172
ec42f167
MT
4173/*
4174 * Helper to check if the subvolume references other subvolumes or if it's
4175 * default.
4176 */
f60a2364 4177static noinline int may_destroy_subvol(struct btrfs_root *root)
ec42f167
MT
4178{
4179 struct btrfs_fs_info *fs_info = root->fs_info;
4180 struct btrfs_path *path;
4181 struct btrfs_dir_item *di;
4182 struct btrfs_key key;
4183 u64 dir_id;
4184 int ret;
4185
4186 path = btrfs_alloc_path();
4187 if (!path)
4188 return -ENOMEM;
4189
4190 /* Make sure this root isn't set as the default subvol */
4191 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4192 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4193 dir_id, "default", 7, 0);
4194 if (di && !IS_ERR(di)) {
4195 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4196 if (key.objectid == root->root_key.objectid) {
4197 ret = -EPERM;
4198 btrfs_err(fs_info,
4199 "deleting default subvolume %llu is not allowed",
4200 key.objectid);
4201 goto out;
4202 }
4203 btrfs_release_path(path);
4204 }
4205
4206 key.objectid = root->root_key.objectid;
4207 key.type = BTRFS_ROOT_REF_KEY;
4208 key.offset = (u64)-1;
4209
4210 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4211 if (ret < 0)
4212 goto out;
4213 BUG_ON(ret == 0);
4214
4215 ret = 0;
4216 if (path->slots[0] > 0) {
4217 path->slots[0]--;
4218 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4219 if (key.objectid == root->root_key.objectid &&
4220 key.type == BTRFS_ROOT_REF_KEY)
4221 ret = -ENOTEMPTY;
4222 }
4223out:
4224 btrfs_free_path(path);
4225 return ret;
4226}
4227
20a68004
NB
4228/* Delete all dentries for inodes belonging to the root */
4229static void btrfs_prune_dentries(struct btrfs_root *root)
4230{
4231 struct btrfs_fs_info *fs_info = root->fs_info;
4232 struct rb_node *node;
4233 struct rb_node *prev;
4234 struct btrfs_inode *entry;
4235 struct inode *inode;
4236 u64 objectid = 0;
4237
4238 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4239 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4240
4241 spin_lock(&root->inode_lock);
4242again:
4243 node = root->inode_tree.rb_node;
4244 prev = NULL;
4245 while (node) {
4246 prev = node;
4247 entry = rb_entry(node, struct btrfs_inode, rb_node);
4248
37508515 4249 if (objectid < btrfs_ino(entry))
20a68004 4250 node = node->rb_left;
37508515 4251 else if (objectid > btrfs_ino(entry))
20a68004
NB
4252 node = node->rb_right;
4253 else
4254 break;
4255 }
4256 if (!node) {
4257 while (prev) {
4258 entry = rb_entry(prev, struct btrfs_inode, rb_node);
37508515 4259 if (objectid <= btrfs_ino(entry)) {
20a68004
NB
4260 node = prev;
4261 break;
4262 }
4263 prev = rb_next(prev);
4264 }
4265 }
4266 while (node) {
4267 entry = rb_entry(node, struct btrfs_inode, rb_node);
37508515 4268 objectid = btrfs_ino(entry) + 1;
20a68004
NB
4269 inode = igrab(&entry->vfs_inode);
4270 if (inode) {
4271 spin_unlock(&root->inode_lock);
4272 if (atomic_read(&inode->i_count) > 1)
4273 d_prune_aliases(inode);
4274 /*
4275 * btrfs_drop_inode will have it removed from the inode
4276 * cache when its usage count hits zero.
4277 */
4278 iput(inode);
4279 cond_resched();
4280 spin_lock(&root->inode_lock);
4281 goto again;
4282 }
4283
4284 if (cond_resched_lock(&root->inode_lock))
4285 goto again;
4286
4287 node = rb_next(node);
4288 }
4289 spin_unlock(&root->inode_lock);
4290}
4291
f60a2364
MT
4292int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4293{
4294 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4295 struct btrfs_root *root = BTRFS_I(dir)->root;
4296 struct inode *inode = d_inode(dentry);
4297 struct btrfs_root *dest = BTRFS_I(inode)->root;
4298 struct btrfs_trans_handle *trans;
4299 struct btrfs_block_rsv block_rsv;
4300 u64 root_flags;
f60a2364
MT
4301 int ret;
4302 int err;
4303
4304 /*
4305 * Don't allow to delete a subvolume with send in progress. This is
4306 * inside the inode lock so the error handling that has to drop the bit
4307 * again is not run concurrently.
4308 */
4309 spin_lock(&dest->root_item_lock);
a7176f74 4310 if (dest->send_in_progress) {
f60a2364
MT
4311 spin_unlock(&dest->root_item_lock);
4312 btrfs_warn(fs_info,
4313 "attempt to delete subvolume %llu during send",
4314 dest->root_key.objectid);
4315 return -EPERM;
4316 }
a7176f74
LF
4317 root_flags = btrfs_root_flags(&dest->root_item);
4318 btrfs_set_root_flags(&dest->root_item,
4319 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4320 spin_unlock(&dest->root_item_lock);
f60a2364
MT
4321
4322 down_write(&fs_info->subvol_sem);
4323
4324 err = may_destroy_subvol(dest);
4325 if (err)
4326 goto out_up_write;
4327
4328 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4329 /*
4330 * One for dir inode,
4331 * two for dir entries,
4332 * two for root ref/backref.
4333 */
c4c129db 4334 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
f60a2364
MT
4335 if (err)
4336 goto out_up_write;
4337
4338 trans = btrfs_start_transaction(root, 0);
4339 if (IS_ERR(trans)) {
4340 err = PTR_ERR(trans);
4341 goto out_release;
4342 }
4343 trans->block_rsv = &block_rsv;
4344 trans->bytes_reserved = block_rsv.size;
4345
4346 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4347
401b3b19
LF
4348 ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4349 dentry->d_name.name, dentry->d_name.len);
f60a2364
MT
4350 if (ret) {
4351 err = ret;
4352 btrfs_abort_transaction(trans, ret);
4353 goto out_end_trans;
4354 }
4355
4356 btrfs_record_root_in_trans(trans, dest);
4357
4358 memset(&dest->root_item.drop_progress, 0,
4359 sizeof(dest->root_item.drop_progress));
4360 dest->root_item.drop_level = 0;
4361 btrfs_set_root_refs(&dest->root_item, 0);
4362
4363 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4364 ret = btrfs_insert_orphan_item(trans,
4365 fs_info->tree_root,
4366 dest->root_key.objectid);
4367 if (ret) {
4368 btrfs_abort_transaction(trans, ret);
4369 err = ret;
4370 goto out_end_trans;
4371 }
4372 }
4373
d1957791 4374 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
f60a2364
MT
4375 BTRFS_UUID_KEY_SUBVOL,
4376 dest->root_key.objectid);
4377 if (ret && ret != -ENOENT) {
4378 btrfs_abort_transaction(trans, ret);
4379 err = ret;
4380 goto out_end_trans;
4381 }
4382 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
d1957791 4383 ret = btrfs_uuid_tree_remove(trans,
f60a2364
MT
4384 dest->root_item.received_uuid,
4385 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4386 dest->root_key.objectid);
4387 if (ret && ret != -ENOENT) {
4388 btrfs_abort_transaction(trans, ret);
4389 err = ret;
4390 goto out_end_trans;
4391 }
4392 }
4393
4394out_end_trans:
4395 trans->block_rsv = NULL;
4396 trans->bytes_reserved = 0;
4397 ret = btrfs_end_transaction(trans);
4398 if (ret && !err)
4399 err = ret;
4400 inode->i_flags |= S_DEAD;
4401out_release:
4402 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4403out_up_write:
4404 up_write(&fs_info->subvol_sem);
4405 if (err) {
4406 spin_lock(&dest->root_item_lock);
4407 root_flags = btrfs_root_flags(&dest->root_item);
4408 btrfs_set_root_flags(&dest->root_item,
4409 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4410 spin_unlock(&dest->root_item_lock);
4411 } else {
4412 d_invalidate(dentry);
20a68004 4413 btrfs_prune_dentries(dest);
f60a2364
MT
4414 ASSERT(dest->send_in_progress == 0);
4415
4416 /* the last ref */
4417 if (dest->ino_cache_inode) {
4418 iput(dest->ino_cache_inode);
4419 dest->ino_cache_inode = NULL;
4420 }
4421 }
4422
4423 return err;
4424}
4425
39279cc3
CM
4426static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4427{
2b0143b5 4428 struct inode *inode = d_inode(dentry);
1832a6d5 4429 int err = 0;
39279cc3 4430 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4431 struct btrfs_trans_handle *trans;
44f714da 4432 u64 last_unlink_trans;
39279cc3 4433
b3ae244e 4434 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4435 return -ENOTEMPTY;
4a0cc7ca 4436 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
a79a464d 4437 return btrfs_delete_subvolume(dir, dentry);
134d4512 4438
d52be818 4439 trans = __unlink_start_trans(dir);
a22285a6 4440 if (IS_ERR(trans))
5df6a9f6 4441 return PTR_ERR(trans);
5df6a9f6 4442
4a0cc7ca 4443 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
401b3b19 4444 err = btrfs_unlink_subvol(trans, dir,
4df27c4d
YZ
4445 BTRFS_I(inode)->location.objectid,
4446 dentry->d_name.name,
4447 dentry->d_name.len);
4448 goto out;
4449 }
4450
73f2e545 4451 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4452 if (err)
4df27c4d 4453 goto out;
7b128766 4454
44f714da
FM
4455 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4456
39279cc3 4457 /* now the directory is empty */
4ec5934e
NB
4458 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4459 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4460 dentry->d_name.len);
44f714da 4461 if (!err) {
6ef06d27 4462 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4463 /*
4464 * Propagate the last_unlink_trans value of the deleted dir to
4465 * its parent directory. This is to prevent an unrecoverable
4466 * log tree in the case we do something like this:
4467 * 1) create dir foo
4468 * 2) create snapshot under dir foo
4469 * 3) delete the snapshot
4470 * 4) rmdir foo
4471 * 5) mkdir foo
4472 * 6) fsync foo or some file inside foo
4473 */
4474 if (last_unlink_trans >= trans->transid)
4475 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4476 }
4df27c4d 4477out:
3a45bb20 4478 btrfs_end_transaction(trans);
2ff7e61e 4479 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4480
39279cc3
CM
4481 return err;
4482}
4483
ddfae63c
JB
4484/*
4485 * Return this if we need to call truncate_block for the last bit of the
4486 * truncate.
4487 */
4488#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4489
39279cc3
CM
4490/*
4491 * this can truncate away extent items, csum items and directory items.
4492 * It starts at a high offset and removes keys until it can't find
d352ac68 4493 * any higher than new_size
39279cc3
CM
4494 *
4495 * csum items that cross the new i_size are truncated to the new size
4496 * as well.
7b128766
JB
4497 *
4498 * min_type is the minimum key type to truncate down to. If set to 0, this
4499 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4500 */
8082510e
YZ
4501int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4502 struct btrfs_root *root,
4503 struct inode *inode,
4504 u64 new_size, u32 min_type)
39279cc3 4505{
0b246afa 4506 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4507 struct btrfs_path *path;
5f39d397 4508 struct extent_buffer *leaf;
39279cc3 4509 struct btrfs_file_extent_item *fi;
8082510e
YZ
4510 struct btrfs_key key;
4511 struct btrfs_key found_key;
39279cc3 4512 u64 extent_start = 0;
db94535d 4513 u64 extent_num_bytes = 0;
5d4f98a2 4514 u64 extent_offset = 0;
39279cc3 4515 u64 item_end = 0;
c1aa4575 4516 u64 last_size = new_size;
8082510e 4517 u32 found_type = (u8)-1;
39279cc3
CM
4518 int found_extent;
4519 int del_item;
85e21bac
CM
4520 int pending_del_nr = 0;
4521 int pending_del_slot = 0;
179e29e4 4522 int extent_type = -1;
8082510e 4523 int ret;
4a0cc7ca 4524 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4525 u64 bytes_deleted = 0;
897ca819
TM
4526 bool be_nice = false;
4527 bool should_throttle = false;
8082510e
YZ
4528
4529 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4530
28ed1345
CM
4531 /*
4532 * for non-free space inodes and ref cows, we want to back off from
4533 * time to time
4534 */
70ddc553 4535 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345 4536 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
897ca819 4537 be_nice = true;
28ed1345 4538
0eb0e19c
MF
4539 path = btrfs_alloc_path();
4540 if (!path)
4541 return -ENOMEM;
e4058b54 4542 path->reada = READA_BACK;
0eb0e19c 4543
5dc562c5
JB
4544 /*
4545 * We want to drop from the next block forward in case this new size is
4546 * not block aligned since we will be keeping the last block of the
4547 * extent just the way it is.
4548 */
27cdeb70 4549 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4550 root == fs_info->tree_root)
dcdbc059 4551 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4552 fs_info->sectorsize),
da17066c 4553 (u64)-1, 0);
8082510e 4554
16cdcec7
MX
4555 /*
4556 * This function is also used to drop the items in the log tree before
4557 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
52042d8e 4558 * it is used to drop the logged items. So we shouldn't kill the delayed
16cdcec7
MX
4559 * items.
4560 */
4561 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4562 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4563
33345d01 4564 key.objectid = ino;
39279cc3 4565 key.offset = (u64)-1;
5f39d397
CM
4566 key.type = (u8)-1;
4567
85e21bac 4568search_again:
28ed1345
CM
4569 /*
4570 * with a 16K leaf size and 128MB extents, you can actually queue
4571 * up a huge file in a single leaf. Most of the time that
4572 * bytes_deleted is > 0, it will be huge by the time we get here
4573 */
fd86a3a3
OS
4574 if (be_nice && bytes_deleted > SZ_32M &&
4575 btrfs_should_end_transaction(trans)) {
4576 ret = -EAGAIN;
4577 goto out;
28ed1345
CM
4578 }
4579
b9473439 4580 path->leave_spinning = 1;
85e21bac 4581 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
fd86a3a3 4582 if (ret < 0)
8082510e 4583 goto out;
d397712b 4584
85e21bac 4585 if (ret > 0) {
fd86a3a3 4586 ret = 0;
e02119d5
CM
4587 /* there are no items in the tree for us to truncate, we're
4588 * done
4589 */
8082510e
YZ
4590 if (path->slots[0] == 0)
4591 goto out;
85e21bac
CM
4592 path->slots[0]--;
4593 }
4594
d397712b 4595 while (1) {
39279cc3 4596 fi = NULL;
5f39d397
CM
4597 leaf = path->nodes[0];
4598 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4599 found_type = found_key.type;
39279cc3 4600
33345d01 4601 if (found_key.objectid != ino)
39279cc3 4602 break;
5f39d397 4603
85e21bac 4604 if (found_type < min_type)
39279cc3
CM
4605 break;
4606
5f39d397 4607 item_end = found_key.offset;
39279cc3 4608 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4609 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4610 struct btrfs_file_extent_item);
179e29e4
CM
4611 extent_type = btrfs_file_extent_type(leaf, fi);
4612 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4613 item_end +=
db94535d 4614 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4615
4616 trace_btrfs_truncate_show_fi_regular(
4617 BTRFS_I(inode), leaf, fi,
4618 found_key.offset);
179e29e4 4619 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589
QW
4620 item_end += btrfs_file_extent_ram_bytes(leaf,
4621 fi);
09ed2f16
LB
4622
4623 trace_btrfs_truncate_show_fi_inline(
4624 BTRFS_I(inode), leaf, fi, path->slots[0],
4625 found_key.offset);
39279cc3 4626 }
008630c1 4627 item_end--;
39279cc3 4628 }
8082510e
YZ
4629 if (found_type > min_type) {
4630 del_item = 1;
4631 } else {
76b42abb 4632 if (item_end < new_size)
b888db2b 4633 break;
8082510e
YZ
4634 if (found_key.offset >= new_size)
4635 del_item = 1;
4636 else
4637 del_item = 0;
39279cc3 4638 }
39279cc3 4639 found_extent = 0;
39279cc3 4640 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4641 if (found_type != BTRFS_EXTENT_DATA_KEY)
4642 goto delete;
4643
4644 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4645 u64 num_dec;
db94535d 4646 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4647 if (!del_item) {
db94535d
CM
4648 u64 orig_num_bytes =
4649 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4650 extent_num_bytes = ALIGN(new_size -
4651 found_key.offset,
0b246afa 4652 fs_info->sectorsize);
db94535d
CM
4653 btrfs_set_file_extent_num_bytes(leaf, fi,
4654 extent_num_bytes);
4655 num_dec = (orig_num_bytes -
9069218d 4656 extent_num_bytes);
27cdeb70
MX
4657 if (test_bit(BTRFS_ROOT_REF_COWS,
4658 &root->state) &&
4659 extent_start != 0)
a76a3cd4 4660 inode_sub_bytes(inode, num_dec);
5f39d397 4661 btrfs_mark_buffer_dirty(leaf);
39279cc3 4662 } else {
db94535d
CM
4663 extent_num_bytes =
4664 btrfs_file_extent_disk_num_bytes(leaf,
4665 fi);
5d4f98a2
YZ
4666 extent_offset = found_key.offset -
4667 btrfs_file_extent_offset(leaf, fi);
4668
39279cc3 4669 /* FIXME blocksize != 4096 */
9069218d 4670 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4671 if (extent_start != 0) {
4672 found_extent = 1;
27cdeb70
MX
4673 if (test_bit(BTRFS_ROOT_REF_COWS,
4674 &root->state))
a76a3cd4 4675 inode_sub_bytes(inode, num_dec);
e02119d5 4676 }
39279cc3 4677 }
9069218d 4678 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4679 /*
4680 * we can't truncate inline items that have had
4681 * special encodings
4682 */
4683 if (!del_item &&
c8b97818 4684 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4685 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4686 btrfs_file_extent_compression(leaf, fi) == 0) {
4687 u32 size = (u32)(new_size - found_key.offset);
4688
4689 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4690 size = btrfs_file_extent_calc_inline_size(size);
78ac4f9e 4691 btrfs_truncate_item(path, size, 1);
ddfae63c 4692 } else if (!del_item) {
514ac8ad 4693 /*
ddfae63c
JB
4694 * We have to bail so the last_size is set to
4695 * just before this extent.
514ac8ad 4696 */
fd86a3a3 4697 ret = NEED_TRUNCATE_BLOCK;
ddfae63c
JB
4698 break;
4699 }
0305cd5f 4700
ddfae63c 4701 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0305cd5f 4702 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4703 }
179e29e4 4704delete:
ddfae63c
JB
4705 if (del_item)
4706 last_size = found_key.offset;
4707 else
4708 last_size = new_size;
39279cc3 4709 if (del_item) {
85e21bac
CM
4710 if (!pending_del_nr) {
4711 /* no pending yet, add ourselves */
4712 pending_del_slot = path->slots[0];
4713 pending_del_nr = 1;
4714 } else if (pending_del_nr &&
4715 path->slots[0] + 1 == pending_del_slot) {
4716 /* hop on the pending chunk */
4717 pending_del_nr++;
4718 pending_del_slot = path->slots[0];
4719 } else {
d397712b 4720 BUG();
85e21bac 4721 }
39279cc3
CM
4722 } else {
4723 break;
4724 }
897ca819 4725 should_throttle = false;
28f75a0e 4726
27cdeb70
MX
4727 if (found_extent &&
4728 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4729 root == fs_info->tree_root)) {
ffd4bb2a
QW
4730 struct btrfs_ref ref = { 0 };
4731
b9473439 4732 btrfs_set_path_blocking(path);
28ed1345 4733 bytes_deleted += extent_num_bytes;
ffd4bb2a
QW
4734
4735 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4736 extent_start, extent_num_bytes, 0);
4737 ref.real_root = root->root_key.objectid;
4738 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4739 ino, extent_offset);
4740 ret = btrfs_free_extent(trans, &ref);
05522109
OS
4741 if (ret) {
4742 btrfs_abort_transaction(trans, ret);
4743 break;
4744 }
28f75a0e 4745 if (be_nice) {
7c861627 4746 if (btrfs_should_throttle_delayed_refs(trans))
897ca819 4747 should_throttle = true;
28f75a0e 4748 }
39279cc3 4749 }
85e21bac 4750
8082510e
YZ
4751 if (found_type == BTRFS_INODE_ITEM_KEY)
4752 break;
4753
4754 if (path->slots[0] == 0 ||
1262133b 4755 path->slots[0] != pending_del_slot ||
28bad212 4756 should_throttle) {
8082510e
YZ
4757 if (pending_del_nr) {
4758 ret = btrfs_del_items(trans, root, path,
4759 pending_del_slot,
4760 pending_del_nr);
79787eaa 4761 if (ret) {
66642832 4762 btrfs_abort_transaction(trans, ret);
fd86a3a3 4763 break;
79787eaa 4764 }
8082510e
YZ
4765 pending_del_nr = 0;
4766 }
b3b4aa74 4767 btrfs_release_path(path);
28bad212 4768
28f75a0e 4769 /*
28bad212
JB
4770 * We can generate a lot of delayed refs, so we need to
4771 * throttle every once and a while and make sure we're
4772 * adding enough space to keep up with the work we are
4773 * generating. Since we hold a transaction here we
4774 * can't flush, and we don't want to FLUSH_LIMIT because
4775 * we could have generated too many delayed refs to
4776 * actually allocate, so just bail if we're short and
4777 * let the normal reservation dance happen higher up.
28f75a0e 4778 */
28bad212
JB
4779 if (should_throttle) {
4780 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4781 BTRFS_RESERVE_NO_FLUSH);
4782 if (ret) {
4783 ret = -EAGAIN;
4784 break;
4785 }
28f75a0e 4786 }
85e21bac 4787 goto search_again;
8082510e
YZ
4788 } else {
4789 path->slots[0]--;
85e21bac 4790 }
39279cc3 4791 }
8082510e 4792out:
fd86a3a3
OS
4793 if (ret >= 0 && pending_del_nr) {
4794 int err;
4795
4796 err = btrfs_del_items(trans, root, path, pending_del_slot,
85e21bac 4797 pending_del_nr);
fd86a3a3
OS
4798 if (err) {
4799 btrfs_abort_transaction(trans, err);
4800 ret = err;
4801 }
85e21bac 4802 }
76b42abb
FM
4803 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4804 ASSERT(last_size >= new_size);
fd86a3a3 4805 if (!ret && last_size > new_size)
76b42abb 4806 last_size = new_size;
7f4f6e0a 4807 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4808 }
28ed1345 4809
39279cc3 4810 btrfs_free_path(path);
fd86a3a3 4811 return ret;
39279cc3
CM
4812}
4813
4814/*
9703fefe 4815 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4816 * @inode - inode that we're zeroing
4817 * @from - the offset to start zeroing
4818 * @len - the length to zero, 0 to zero the entire range respective to the
4819 * offset
4820 * @front - zero up to the offset instead of from the offset on
4821 *
9703fefe 4822 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4823 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4824 */
9703fefe 4825int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4826 int front)
39279cc3 4827{
0b246afa 4828 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4829 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4830 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4831 struct btrfs_ordered_extent *ordered;
2ac55d41 4832 struct extent_state *cached_state = NULL;
364ecf36 4833 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4834 char *kaddr;
0b246afa 4835 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4836 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4837 unsigned offset = from & (blocksize - 1);
39279cc3 4838 struct page *page;
3b16a4e3 4839 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4840 int ret = 0;
9703fefe
CR
4841 u64 block_start;
4842 u64 block_end;
39279cc3 4843
b03ebd99
NB
4844 if (IS_ALIGNED(offset, blocksize) &&
4845 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4846 goto out;
9703fefe 4847
8b62f87b
JB
4848 block_start = round_down(from, blocksize);
4849 block_end = block_start + blocksize - 1;
4850
364ecf36 4851 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8b62f87b 4852 block_start, blocksize);
5d5e103a
JB
4853 if (ret)
4854 goto out;
39279cc3 4855
211c17f5 4856again:
3b16a4e3 4857 page = find_or_create_page(mapping, index, mask);
5d5e103a 4858 if (!page) {
bc42bda2 4859 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
4860 block_start, blocksize, true);
4861 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
ac6a2b36 4862 ret = -ENOMEM;
39279cc3 4863 goto out;
5d5e103a 4864 }
e6dcd2dc 4865
39279cc3 4866 if (!PageUptodate(page)) {
9ebefb18 4867 ret = btrfs_readpage(NULL, page);
39279cc3 4868 lock_page(page);
211c17f5
CM
4869 if (page->mapping != mapping) {
4870 unlock_page(page);
09cbfeaf 4871 put_page(page);
211c17f5
CM
4872 goto again;
4873 }
39279cc3
CM
4874 if (!PageUptodate(page)) {
4875 ret = -EIO;
89642229 4876 goto out_unlock;
39279cc3
CM
4877 }
4878 }
211c17f5 4879 wait_on_page_writeback(page);
e6dcd2dc 4880
9703fefe 4881 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4882 set_page_extent_mapped(page);
4883
9703fefe 4884 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4885 if (ordered) {
9703fefe 4886 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4887 &cached_state);
e6dcd2dc 4888 unlock_page(page);
09cbfeaf 4889 put_page(page);
eb84ae03 4890 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4891 btrfs_put_ordered_extent(ordered);
4892 goto again;
4893 }
4894
9703fefe 4895 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4896 EXTENT_DIRTY | EXTENT_DELALLOC |
4897 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 4898 0, 0, &cached_state);
5d5e103a 4899
e3b8a485 4900 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
ba8b04c1 4901 &cached_state, 0);
9ed74f2d 4902 if (ret) {
9703fefe 4903 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4904 &cached_state);
9ed74f2d
JB
4905 goto out_unlock;
4906 }
4907
9703fefe 4908 if (offset != blocksize) {
2aaa6655 4909 if (!len)
9703fefe 4910 len = blocksize - offset;
e6dcd2dc 4911 kaddr = kmap(page);
2aaa6655 4912 if (front)
9703fefe
CR
4913 memset(kaddr + (block_start - page_offset(page)),
4914 0, offset);
2aaa6655 4915 else
9703fefe
CR
4916 memset(kaddr + (block_start - page_offset(page)) + offset,
4917 0, len);
e6dcd2dc
CM
4918 flush_dcache_page(page);
4919 kunmap(page);
4920 }
247e743c 4921 ClearPageChecked(page);
e6dcd2dc 4922 set_page_dirty(page);
e43bbe5e 4923 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
39279cc3 4924
89642229 4925out_unlock:
5d5e103a 4926 if (ret)
bc42bda2 4927 btrfs_delalloc_release_space(inode, data_reserved, block_start,
43b18595
QW
4928 blocksize, true);
4929 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
39279cc3 4930 unlock_page(page);
09cbfeaf 4931 put_page(page);
39279cc3 4932out:
364ecf36 4933 extent_changeset_free(data_reserved);
39279cc3
CM
4934 return ret;
4935}
4936
16e7549f
JB
4937static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4938 u64 offset, u64 len)
4939{
0b246afa 4940 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4941 struct btrfs_trans_handle *trans;
4942 int ret;
4943
4944 /*
4945 * Still need to make sure the inode looks like it's been updated so
4946 * that any holes get logged if we fsync.
4947 */
0b246afa
JM
4948 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4949 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4950 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4951 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4952 return 0;
4953 }
4954
4955 /*
4956 * 1 - for the one we're dropping
4957 * 1 - for the one we're adding
4958 * 1 - for updating the inode.
4959 */
4960 trans = btrfs_start_transaction(root, 3);
4961 if (IS_ERR(trans))
4962 return PTR_ERR(trans);
4963
4964 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4965 if (ret) {
66642832 4966 btrfs_abort_transaction(trans, ret);
3a45bb20 4967 btrfs_end_transaction(trans);
16e7549f
JB
4968 return ret;
4969 }
4970
f85b7379
DS
4971 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4972 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4973 if (ret)
66642832 4974 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4975 else
4976 btrfs_update_inode(trans, root, inode);
3a45bb20 4977 btrfs_end_transaction(trans);
16e7549f
JB
4978 return ret;
4979}
4980
695a0d0d
JB
4981/*
4982 * This function puts in dummy file extents for the area we're creating a hole
4983 * for. So if we are truncating this file to a larger size we need to insert
4984 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4985 * the range between oldsize and size
4986 */
a41ad394 4987int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4988{
0b246afa 4989 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4990 struct btrfs_root *root = BTRFS_I(inode)->root;
4991 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4992 struct extent_map *em = NULL;
2ac55d41 4993 struct extent_state *cached_state = NULL;
5dc562c5 4994 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4995 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4996 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4997 u64 last_byte;
4998 u64 cur_offset;
4999 u64 hole_size;
9ed74f2d 5000 int err = 0;
39279cc3 5001
a71754fc 5002 /*
9703fefe
CR
5003 * If our size started in the middle of a block we need to zero out the
5004 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
5005 * expose stale data.
5006 */
9703fefe 5007 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
5008 if (err)
5009 return err;
5010
9036c102
YZ
5011 if (size <= hole_start)
5012 return 0;
5013
23d31bd4
NB
5014 btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start,
5015 block_end - 1, &cached_state);
9036c102
YZ
5016 cur_offset = hole_start;
5017 while (1) {
fc4f21b1 5018 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 5019 block_end - cur_offset, 0);
79787eaa
JM
5020 if (IS_ERR(em)) {
5021 err = PTR_ERR(em);
f2767956 5022 em = NULL;
79787eaa
JM
5023 break;
5024 }
9036c102 5025 last_byte = min(extent_map_end(em), block_end);
0b246afa 5026 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 5027 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 5028 struct extent_map *hole_em;
9036c102 5029 hole_size = last_byte - cur_offset;
9ed74f2d 5030
16e7549f
JB
5031 err = maybe_insert_hole(root, inode, cur_offset,
5032 hole_size);
5033 if (err)
3893e33b 5034 break;
dcdbc059 5035 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
5036 cur_offset + hole_size - 1, 0);
5037 hole_em = alloc_extent_map();
5038 if (!hole_em) {
5039 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5040 &BTRFS_I(inode)->runtime_flags);
5041 goto next;
5042 }
5043 hole_em->start = cur_offset;
5044 hole_em->len = hole_size;
5045 hole_em->orig_start = cur_offset;
8082510e 5046
5dc562c5
JB
5047 hole_em->block_start = EXTENT_MAP_HOLE;
5048 hole_em->block_len = 0;
b4939680 5049 hole_em->orig_block_len = 0;
cc95bef6 5050 hole_em->ram_bytes = hole_size;
0b246afa 5051 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 5052 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 5053 hole_em->generation = fs_info->generation;
8082510e 5054
5dc562c5
JB
5055 while (1) {
5056 write_lock(&em_tree->lock);
09a2a8f9 5057 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
5058 write_unlock(&em_tree->lock);
5059 if (err != -EEXIST)
5060 break;
dcdbc059
NB
5061 btrfs_drop_extent_cache(BTRFS_I(inode),
5062 cur_offset,
5dc562c5
JB
5063 cur_offset +
5064 hole_size - 1, 0);
5065 }
5066 free_extent_map(hole_em);
9036c102 5067 }
16e7549f 5068next:
9036c102 5069 free_extent_map(em);
a22285a6 5070 em = NULL;
9036c102 5071 cur_offset = last_byte;
8082510e 5072 if (cur_offset >= block_end)
9036c102
YZ
5073 break;
5074 }
a22285a6 5075 free_extent_map(em);
e43bbe5e 5076 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
5077 return err;
5078}
39279cc3 5079
3972f260 5080static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 5081{
f4a2f4c5
MX
5082 struct btrfs_root *root = BTRFS_I(inode)->root;
5083 struct btrfs_trans_handle *trans;
a41ad394 5084 loff_t oldsize = i_size_read(inode);
3972f260
ES
5085 loff_t newsize = attr->ia_size;
5086 int mask = attr->ia_valid;
8082510e
YZ
5087 int ret;
5088
3972f260
ES
5089 /*
5090 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5091 * special case where we need to update the times despite not having
5092 * these flags set. For all other operations the VFS set these flags
5093 * explicitly if it wants a timestamp update.
5094 */
dff6efc3
CH
5095 if (newsize != oldsize) {
5096 inode_inc_iversion(inode);
5097 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5098 inode->i_ctime = inode->i_mtime =
c2050a45 5099 current_time(inode);
dff6efc3 5100 }
3972f260 5101
a41ad394 5102 if (newsize > oldsize) {
9ea24bbe 5103 /*
ea14b57f 5104 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
5105 * This is to ensure the snapshot captures a fully consistent
5106 * state of this file - if the snapshot captures this expanding
5107 * truncation, it must capture all writes that happened before
5108 * this truncation.
5109 */
0bc19f90 5110 btrfs_wait_for_snapshot_creation(root);
a41ad394 5111 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 5112 if (ret) {
ea14b57f 5113 btrfs_end_write_no_snapshotting(root);
8082510e 5114 return ret;
9ea24bbe 5115 }
8082510e 5116
f4a2f4c5 5117 trans = btrfs_start_transaction(root, 1);
9ea24bbe 5118 if (IS_ERR(trans)) {
ea14b57f 5119 btrfs_end_write_no_snapshotting(root);
f4a2f4c5 5120 return PTR_ERR(trans);
9ea24bbe 5121 }
f4a2f4c5
MX
5122
5123 i_size_write(inode, newsize);
5124 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5125 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5126 ret = btrfs_update_inode(trans, root, inode);
ea14b57f 5127 btrfs_end_write_no_snapshotting(root);
3a45bb20 5128 btrfs_end_transaction(trans);
a41ad394 5129 } else {
8082510e 5130
a41ad394
JB
5131 /*
5132 * We're truncating a file that used to have good data down to
5133 * zero. Make sure it gets into the ordered flush list so that
5134 * any new writes get down to disk quickly.
5135 */
5136 if (newsize == 0)
72ac3c0d
JB
5137 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5138 &BTRFS_I(inode)->runtime_flags);
8082510e 5139
a41ad394 5140 truncate_setsize(inode, newsize);
2e60a51e 5141
52042d8e 5142 /* Disable nonlocked read DIO to avoid the endless truncate */
abcefb1e 5143 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 5144 inode_dio_wait(inode);
0b581701 5145 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 5146
213e8c55 5147 ret = btrfs_truncate(inode, newsize == oldsize);
7f4f6e0a
JB
5148 if (ret && inode->i_nlink) {
5149 int err;
5150
5151 /*
f7e9e8fc
OS
5152 * Truncate failed, so fix up the in-memory size. We
5153 * adjusted disk_i_size down as we removed extents, so
5154 * wait for disk_i_size to be stable and then update the
5155 * in-memory size to match.
7f4f6e0a 5156 */
f7e9e8fc 5157 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
7f4f6e0a 5158 if (err)
f7e9e8fc
OS
5159 return err;
5160 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
7f4f6e0a 5161 }
8082510e
YZ
5162 }
5163
a41ad394 5164 return ret;
8082510e
YZ
5165}
5166
9036c102
YZ
5167static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5168{
2b0143b5 5169 struct inode *inode = d_inode(dentry);
b83cc969 5170 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5171 int err;
39279cc3 5172
b83cc969
LZ
5173 if (btrfs_root_readonly(root))
5174 return -EROFS;
5175
31051c85 5176 err = setattr_prepare(dentry, attr);
9036c102
YZ
5177 if (err)
5178 return err;
2bf5a725 5179
5a3f23d5 5180 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5181 err = btrfs_setsize(inode, attr);
8082510e
YZ
5182 if (err)
5183 return err;
39279cc3 5184 }
9036c102 5185
1025774c
CH
5186 if (attr->ia_valid) {
5187 setattr_copy(inode, attr);
0c4d2d95 5188 inode_inc_iversion(inode);
22c44fe6 5189 err = btrfs_dirty_inode(inode);
1025774c 5190
22c44fe6 5191 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5192 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5193 }
33268eaf 5194
39279cc3
CM
5195 return err;
5196}
61295eb8 5197
131e404a
FDBM
5198/*
5199 * While truncating the inode pages during eviction, we get the VFS calling
5200 * btrfs_invalidatepage() against each page of the inode. This is slow because
5201 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5202 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5203 * extent_state structures over and over, wasting lots of time.
5204 *
5205 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5206 * those expensive operations on a per page basis and do only the ordered io
5207 * finishing, while we release here the extent_map and extent_state structures,
5208 * without the excessive merging and splitting.
5209 */
5210static void evict_inode_truncate_pages(struct inode *inode)
5211{
5212 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5213 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5214 struct rb_node *node;
5215
5216 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5217 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5218
5219 write_lock(&map_tree->lock);
07e1ce09 5220 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
131e404a
FDBM
5221 struct extent_map *em;
5222
07e1ce09 5223 node = rb_first_cached(&map_tree->map);
131e404a 5224 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5225 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5226 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5227 remove_extent_mapping(map_tree, em);
5228 free_extent_map(em);
7064dd5c
FM
5229 if (need_resched()) {
5230 write_unlock(&map_tree->lock);
5231 cond_resched();
5232 write_lock(&map_tree->lock);
5233 }
131e404a
FDBM
5234 }
5235 write_unlock(&map_tree->lock);
5236
6ca07097
FM
5237 /*
5238 * Keep looping until we have no more ranges in the io tree.
5239 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5240 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5241 * still in progress (unlocked the pages in the bio but did not yet
5242 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5243 * ranges can still be locked and eviction started because before
5244 * submitting those bios, which are executed by a separate task (work
5245 * queue kthread), inode references (inode->i_count) were not taken
5246 * (which would be dropped in the end io callback of each bio).
5247 * Therefore here we effectively end up waiting for those bios and
5248 * anyone else holding locked ranges without having bumped the inode's
5249 * reference count - if we don't do it, when they access the inode's
5250 * io_tree to unlock a range it may be too late, leading to an
5251 * use-after-free issue.
5252 */
131e404a
FDBM
5253 spin_lock(&io_tree->lock);
5254 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5255 struct extent_state *state;
5256 struct extent_state *cached_state = NULL;
6ca07097
FM
5257 u64 start;
5258 u64 end;
421f0922 5259 unsigned state_flags;
131e404a
FDBM
5260
5261 node = rb_first(&io_tree->state);
5262 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5263 start = state->start;
5264 end = state->end;
421f0922 5265 state_flags = state->state;
131e404a
FDBM
5266 spin_unlock(&io_tree->lock);
5267
ff13db41 5268 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5269
5270 /*
5271 * If still has DELALLOC flag, the extent didn't reach disk,
5272 * and its reserved space won't be freed by delayed_ref.
5273 * So we need to free its reserved space here.
5274 * (Refer to comment in btrfs_invalidatepage, case 2)
5275 *
5276 * Note, end is the bytenr of last byte, so we need + 1 here.
5277 */
421f0922 5278 if (state_flags & EXTENT_DELALLOC)
bc42bda2 5279 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
b9d0b389 5280
6ca07097 5281 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5282 EXTENT_LOCKED | EXTENT_DIRTY |
5283 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
ae0f1625 5284 EXTENT_DEFRAG, 1, 1, &cached_state);
131e404a 5285
7064dd5c 5286 cond_resched();
131e404a
FDBM
5287 spin_lock(&io_tree->lock);
5288 }
5289 spin_unlock(&io_tree->lock);
5290}
5291
4b9d7b59 5292static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
ad80cf50 5293 struct btrfs_block_rsv *rsv)
4b9d7b59
OS
5294{
5295 struct btrfs_fs_info *fs_info = root->fs_info;
5296 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
260e7702 5297 u64 delayed_refs_extra = btrfs_calc_trans_metadata_size(fs_info, 1);
4b9d7b59
OS
5298 int failures = 0;
5299
5300 for (;;) {
5301 struct btrfs_trans_handle *trans;
5302 int ret;
5303
260e7702
JB
5304 ret = btrfs_block_rsv_refill(root, rsv,
5305 rsv->size + delayed_refs_extra,
4b9d7b59
OS
5306 BTRFS_RESERVE_FLUSH_LIMIT);
5307
5308 if (ret && ++failures > 2) {
5309 btrfs_warn(fs_info,
5310 "could not allocate space for a delete; will truncate on mount");
5311 return ERR_PTR(-ENOSPC);
5312 }
5313
260e7702
JB
5314 /*
5315 * Evict can generate a large amount of delayed refs without
5316 * having a way to add space back since we exhaust our temporary
5317 * block rsv. We aren't allowed to do FLUSH_ALL in this case
5318 * because we could deadlock with so many things in the flushing
5319 * code, so we have to try and hold some extra space to
5320 * compensate for our delayed ref generation. If we can't get
5321 * that space then we need see if we can steal our minimum from
5322 * the global reserve. We will be ratelimited by the amount of
5323 * space we have for the delayed refs rsv, so we'll end up
5324 * committing and trying again.
5325 */
4b9d7b59 5326 trans = btrfs_join_transaction(root);
260e7702
JB
5327 if (IS_ERR(trans) || !ret) {
5328 if (!IS_ERR(trans)) {
5329 trans->block_rsv = &fs_info->trans_block_rsv;
5330 trans->bytes_reserved = delayed_refs_extra;
5331 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5332 delayed_refs_extra, 1);
5333 }
4b9d7b59 5334 return trans;
260e7702 5335 }
4b9d7b59
OS
5336
5337 /*
5338 * Try to steal from the global reserve if there is space for
5339 * it.
5340 */
64403612
JB
5341 if (!btrfs_check_space_for_delayed_refs(fs_info) &&
5342 !btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0))
4b9d7b59
OS
5343 return trans;
5344
5345 /* If not, commit and try again. */
5346 ret = btrfs_commit_transaction(trans);
5347 if (ret)
5348 return ERR_PTR(ret);
5349 }
5350}
5351
bd555975 5352void btrfs_evict_inode(struct inode *inode)
39279cc3 5353{
0b246afa 5354 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5355 struct btrfs_trans_handle *trans;
5356 struct btrfs_root *root = BTRFS_I(inode)->root;
4b9d7b59 5357 struct btrfs_block_rsv *rsv;
39279cc3
CM
5358 int ret;
5359
1abe9b8a 5360 trace_btrfs_inode_evict(inode);
5361
3d48d981 5362 if (!root) {
e8f1bc14 5363 clear_inode(inode);
3d48d981
NB
5364 return;
5365 }
5366
131e404a
FDBM
5367 evict_inode_truncate_pages(inode);
5368
69e9c6c6
SB
5369 if (inode->i_nlink &&
5370 ((btrfs_root_refs(&root->root_item) != 0 &&
5371 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5372 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5373 goto no_delete;
5374
27919067 5375 if (is_bad_inode(inode))
39279cc3 5376 goto no_delete;
5f39d397 5377
7ab7956e 5378 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5379
7b40b695 5380 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
c71bf099 5381 goto no_delete;
c71bf099 5382
76dda93c 5383 if (inode->i_nlink > 0) {
69e9c6c6
SB
5384 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5385 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5386 goto no_delete;
5387 }
5388
aa79021f 5389 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
27919067 5390 if (ret)
0e8c36a9 5391 goto no_delete;
0e8c36a9 5392
2ff7e61e 5393 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
27919067 5394 if (!rsv)
4289a667 5395 goto no_delete;
ad80cf50 5396 rsv->size = btrfs_calc_trunc_metadata_size(fs_info, 1);
ca7e70f5 5397 rsv->failfast = 1;
4289a667 5398
6ef06d27 5399 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5400
8082510e 5401 while (1) {
ad80cf50 5402 trans = evict_refill_and_join(root, rsv);
27919067
OS
5403 if (IS_ERR(trans))
5404 goto free_rsv;
7b128766 5405
4289a667
JB
5406 trans->block_rsv = rsv;
5407
d68fc57b 5408 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
27919067
OS
5409 trans->block_rsv = &fs_info->trans_block_rsv;
5410 btrfs_end_transaction(trans);
5411 btrfs_btree_balance_dirty(fs_info);
5412 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5413 goto free_rsv;
5414 else if (!ret)
8082510e 5415 break;
8082510e 5416 }
5f39d397 5417
4ef31a45 5418 /*
27919067
OS
5419 * Errors here aren't a big deal, it just means we leave orphan items in
5420 * the tree. They will be cleaned up on the next mount. If the inode
5421 * number gets reused, cleanup deletes the orphan item without doing
5422 * anything, and unlink reuses the existing orphan item.
5423 *
5424 * If it turns out that we are dropping too many of these, we might want
5425 * to add a mechanism for retrying these after a commit.
4ef31a45 5426 */
ad80cf50 5427 trans = evict_refill_and_join(root, rsv);
27919067
OS
5428 if (!IS_ERR(trans)) {
5429 trans->block_rsv = rsv;
5430 btrfs_orphan_del(trans, BTRFS_I(inode));
5431 trans->block_rsv = &fs_info->trans_block_rsv;
5432 btrfs_end_transaction(trans);
5433 }
54aa1f4d 5434
0b246afa 5435 if (!(root == fs_info->tree_root ||
581bb050 5436 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5437 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5438
27919067
OS
5439free_rsv:
5440 btrfs_free_block_rsv(fs_info, rsv);
39279cc3 5441no_delete:
27919067
OS
5442 /*
5443 * If we didn't successfully delete, the orphan item will still be in
5444 * the tree and we'll retry on the next mount. Again, we might also want
5445 * to retry these periodically in the future.
5446 */
f48d1cf5 5447 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5448 clear_inode(inode);
39279cc3
CM
5449}
5450
5451/*
6bf9e4bd
QW
5452 * Return the key found in the dir entry in the location pointer, fill @type
5453 * with BTRFS_FT_*, and return 0.
5454 *
005d6712
SY
5455 * If no dir entries were found, returns -ENOENT.
5456 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3
CM
5457 */
5458static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
6bf9e4bd 5459 struct btrfs_key *location, u8 *type)
39279cc3
CM
5460{
5461 const char *name = dentry->d_name.name;
5462 int namelen = dentry->d_name.len;
5463 struct btrfs_dir_item *di;
5464 struct btrfs_path *path;
5465 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5466 int ret = 0;
39279cc3
CM
5467
5468 path = btrfs_alloc_path();
d8926bb3
MF
5469 if (!path)
5470 return -ENOMEM;
3954401f 5471
f85b7379
DS
5472 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5473 name, namelen, 0);
3cf5068f
LB
5474 if (IS_ERR_OR_NULL(di)) {
5475 ret = di ? PTR_ERR(di) : -ENOENT;
005d6712
SY
5476 goto out;
5477 }
d397712b 5478
5f39d397 5479 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5480 if (location->type != BTRFS_INODE_ITEM_KEY &&
5481 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5482 ret = -EUCLEAN;
56a0e706
LB
5483 btrfs_warn(root->fs_info,
5484"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5485 __func__, name, btrfs_ino(BTRFS_I(dir)),
5486 location->objectid, location->type, location->offset);
56a0e706 5487 }
6bf9e4bd
QW
5488 if (!ret)
5489 *type = btrfs_dir_type(path->nodes[0], di);
39279cc3 5490out:
39279cc3
CM
5491 btrfs_free_path(path);
5492 return ret;
5493}
5494
5495/*
5496 * when we hit a tree root in a directory, the btrfs part of the inode
5497 * needs to be changed to reflect the root directory of the tree root. This
5498 * is kind of like crossing a mount point.
5499 */
2ff7e61e 5500static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5501 struct inode *dir,
5502 struct dentry *dentry,
5503 struct btrfs_key *location,
5504 struct btrfs_root **sub_root)
39279cc3 5505{
4df27c4d
YZ
5506 struct btrfs_path *path;
5507 struct btrfs_root *new_root;
5508 struct btrfs_root_ref *ref;
5509 struct extent_buffer *leaf;
1d4c08e0 5510 struct btrfs_key key;
4df27c4d
YZ
5511 int ret;
5512 int err = 0;
39279cc3 5513
4df27c4d
YZ
5514 path = btrfs_alloc_path();
5515 if (!path) {
5516 err = -ENOMEM;
5517 goto out;
5518 }
39279cc3 5519
4df27c4d 5520 err = -ENOENT;
1d4c08e0
DS
5521 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5522 key.type = BTRFS_ROOT_REF_KEY;
5523 key.offset = location->objectid;
5524
0b246afa 5525 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5526 if (ret) {
5527 if (ret < 0)
5528 err = ret;
5529 goto out;
5530 }
39279cc3 5531
4df27c4d
YZ
5532 leaf = path->nodes[0];
5533 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5534 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5535 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5536 goto out;
39279cc3 5537
4df27c4d
YZ
5538 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5539 (unsigned long)(ref + 1),
5540 dentry->d_name.len);
5541 if (ret)
5542 goto out;
5543
b3b4aa74 5544 btrfs_release_path(path);
4df27c4d 5545
0b246afa 5546 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5547 if (IS_ERR(new_root)) {
5548 err = PTR_ERR(new_root);
5549 goto out;
5550 }
5551
4df27c4d
YZ
5552 *sub_root = new_root;
5553 location->objectid = btrfs_root_dirid(&new_root->root_item);
5554 location->type = BTRFS_INODE_ITEM_KEY;
5555 location->offset = 0;
5556 err = 0;
5557out:
5558 btrfs_free_path(path);
5559 return err;
39279cc3
CM
5560}
5561
5d4f98a2
YZ
5562static void inode_tree_add(struct inode *inode)
5563{
5564 struct btrfs_root *root = BTRFS_I(inode)->root;
5565 struct btrfs_inode *entry;
03e860bd
NP
5566 struct rb_node **p;
5567 struct rb_node *parent;
cef21937 5568 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5569 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5570
1d3382cb 5571 if (inode_unhashed(inode))
76dda93c 5572 return;
e1409cef 5573 parent = NULL;
5d4f98a2 5574 spin_lock(&root->inode_lock);
e1409cef 5575 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5576 while (*p) {
5577 parent = *p;
5578 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5579
37508515 5580 if (ino < btrfs_ino(entry))
03e860bd 5581 p = &parent->rb_left;
37508515 5582 else if (ino > btrfs_ino(entry))
03e860bd 5583 p = &parent->rb_right;
5d4f98a2
YZ
5584 else {
5585 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5586 (I_WILL_FREE | I_FREEING)));
cef21937 5587 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
NP
5588 RB_CLEAR_NODE(parent);
5589 spin_unlock(&root->inode_lock);
cef21937 5590 return;
5d4f98a2
YZ
5591 }
5592 }
cef21937
FDBM
5593 rb_link_node(new, parent, p);
5594 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5595 spin_unlock(&root->inode_lock);
5596}
5597
5598static void inode_tree_del(struct inode *inode)
5599{
0b246afa 5600 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5601 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5602 int empty = 0;
5d4f98a2 5603
03e860bd 5604 spin_lock(&root->inode_lock);
5d4f98a2 5605 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5606 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5607 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5608 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5609 }
03e860bd 5610 spin_unlock(&root->inode_lock);
76dda93c 5611
69e9c6c6 5612 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5613 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5614 spin_lock(&root->inode_lock);
5615 empty = RB_EMPTY_ROOT(&root->inode_tree);
5616 spin_unlock(&root->inode_lock);
5617 if (empty)
5618 btrfs_add_dead_root(root);
5619 }
5620}
5621
5d4f98a2 5622
e02119d5
CM
5623static int btrfs_init_locked_inode(struct inode *inode, void *p)
5624{
5625 struct btrfs_iget_args *args = p;
90d3e592
CM
5626 inode->i_ino = args->location->objectid;
5627 memcpy(&BTRFS_I(inode)->location, args->location,
5628 sizeof(*args->location));
e02119d5 5629 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5630 return 0;
5631}
5632
5633static int btrfs_find_actor(struct inode *inode, void *opaque)
5634{
5635 struct btrfs_iget_args *args = opaque;
90d3e592 5636 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5637 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5638}
5639
5d4f98a2 5640static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5641 struct btrfs_key *location,
5d4f98a2 5642 struct btrfs_root *root)
39279cc3
CM
5643{
5644 struct inode *inode;
5645 struct btrfs_iget_args args;
90d3e592 5646 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5647
90d3e592 5648 args.location = location;
39279cc3
CM
5649 args.root = root;
5650
778ba82b 5651 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5652 btrfs_init_locked_inode,
5653 (void *)&args);
5654 return inode;
5655}
5656
1a54ef8c
BR
5657/* Get an inode object given its location and corresponding root.
5658 * Returns in *is_new if the inode was read from disk
5659 */
4222ea71
FM
5660struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5661 struct btrfs_root *root, int *new,
5662 struct btrfs_path *path)
1a54ef8c
BR
5663{
5664 struct inode *inode;
5665
90d3e592 5666 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5667 if (!inode)
5d4f98a2 5668 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5669
5670 if (inode->i_state & I_NEW) {
67710892
FM
5671 int ret;
5672
4222ea71 5673 ret = btrfs_read_locked_inode(inode, path);
9bc2ceff 5674 if (!ret) {
1748f843
MF
5675 inode_tree_add(inode);
5676 unlock_new_inode(inode);
5677 if (new)
5678 *new = 1;
5679 } else {
f5b3a417
AV
5680 iget_failed(inode);
5681 /*
5682 * ret > 0 can come from btrfs_search_slot called by
5683 * btrfs_read_locked_inode, this means the inode item
5684 * was not found.
5685 */
5686 if (ret > 0)
5687 ret = -ENOENT;
5688 inode = ERR_PTR(ret);
1748f843
MF
5689 }
5690 }
5691
1a54ef8c
BR
5692 return inode;
5693}
5694
4222ea71
FM
5695struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5696 struct btrfs_root *root, int *new)
5697{
5698 return btrfs_iget_path(s, location, root, new, NULL);
5699}
5700
4df27c4d
YZ
5701static struct inode *new_simple_dir(struct super_block *s,
5702 struct btrfs_key *key,
5703 struct btrfs_root *root)
5704{
5705 struct inode *inode = new_inode(s);
5706
5707 if (!inode)
5708 return ERR_PTR(-ENOMEM);
5709
4df27c4d
YZ
5710 BTRFS_I(inode)->root = root;
5711 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5712 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5713
5714 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5715 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5716 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5717 inode->i_fop = &simple_dir_operations;
5718 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5719 inode->i_mtime = current_time(inode);
9cc97d64 5720 inode->i_atime = inode->i_mtime;
5721 inode->i_ctime = inode->i_mtime;
d3c6be6f 5722 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5723
5724 return inode;
5725}
5726
6bf9e4bd
QW
5727static inline u8 btrfs_inode_type(struct inode *inode)
5728{
5729 /*
5730 * Compile-time asserts that generic FT_* types still match
5731 * BTRFS_FT_* types
5732 */
5733 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5734 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5735 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5736 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5737 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5738 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5739 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5740 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5741
5742 return fs_umode_to_ftype(inode->i_mode);
5743}
5744
3de4586c 5745struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5746{
0b246afa 5747 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5748 struct inode *inode;
4df27c4d 5749 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5750 struct btrfs_root *sub_root = root;
5751 struct btrfs_key location;
6bf9e4bd 5752 u8 di_type = 0;
76dda93c 5753 int index;
b4aff1f8 5754 int ret = 0;
39279cc3
CM
5755
5756 if (dentry->d_name.len > BTRFS_NAME_LEN)
5757 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5758
6bf9e4bd 5759 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
39279cc3
CM
5760 if (ret < 0)
5761 return ERR_PTR(ret);
5f39d397 5762
4df27c4d 5763 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5764 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
6bf9e4bd
QW
5765 if (IS_ERR(inode))
5766 return inode;
5767
5768 /* Do extra check against inode mode with di_type */
5769 if (btrfs_inode_type(inode) != di_type) {
5770 btrfs_crit(fs_info,
5771"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5772 inode->i_mode, btrfs_inode_type(inode),
5773 di_type);
5774 iput(inode);
5775 return ERR_PTR(-EUCLEAN);
5776 }
4df27c4d
YZ
5777 return inode;
5778 }
5779
0b246afa 5780 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5781 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5782 &location, &sub_root);
5783 if (ret < 0) {
5784 if (ret != -ENOENT)
5785 inode = ERR_PTR(ret);
5786 else
5787 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5788 } else {
73f73415 5789 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5790 }
0b246afa 5791 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5792
34d19bad 5793 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5794 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5795 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5796 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5797 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5798 if (ret) {
5799 iput(inode);
66b4ffd1 5800 inode = ERR_PTR(ret);
01cd3367 5801 }
c71bf099
YZ
5802 }
5803
3de4586c
CM
5804 return inode;
5805}
5806
fe15ce44 5807static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5808{
5809 struct btrfs_root *root;
2b0143b5 5810 struct inode *inode = d_inode(dentry);
76dda93c 5811
848cce0d 5812 if (!inode && !IS_ROOT(dentry))
2b0143b5 5813 inode = d_inode(dentry->d_parent);
76dda93c 5814
848cce0d
LZ
5815 if (inode) {
5816 root = BTRFS_I(inode)->root;
efefb143
YZ
5817 if (btrfs_root_refs(&root->root_item) == 0)
5818 return 1;
848cce0d 5819
4a0cc7ca 5820 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5821 return 1;
efefb143 5822 }
76dda93c
YZ
5823 return 0;
5824}
5825
3de4586c 5826static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5827 unsigned int flags)
3de4586c 5828{
3837d208 5829 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5662344b 5830
3837d208
AV
5831 if (inode == ERR_PTR(-ENOENT))
5832 inode = NULL;
41d28bca 5833 return d_splice_alias(inode, dentry);
39279cc3
CM
5834}
5835
23b5ec74
JB
5836/*
5837 * All this infrastructure exists because dir_emit can fault, and we are holding
5838 * the tree lock when doing readdir. For now just allocate a buffer and copy
5839 * our information into that, and then dir_emit from the buffer. This is
5840 * similar to what NFS does, only we don't keep the buffer around in pagecache
5841 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5842 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5843 * tree lock.
5844 */
5845static int btrfs_opendir(struct inode *inode, struct file *file)
5846{
5847 struct btrfs_file_private *private;
5848
5849 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5850 if (!private)
5851 return -ENOMEM;
5852 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5853 if (!private->filldir_buf) {
5854 kfree(private);
5855 return -ENOMEM;
5856 }
5857 file->private_data = private;
5858 return 0;
5859}
5860
5861struct dir_entry {
5862 u64 ino;
5863 u64 offset;
5864 unsigned type;
5865 int name_len;
5866};
5867
5868static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5869{
5870 while (entries--) {
5871 struct dir_entry *entry = addr;
5872 char *name = (char *)(entry + 1);
5873
92d32170
DS
5874 ctx->pos = get_unaligned(&entry->offset);
5875 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5876 get_unaligned(&entry->ino),
5877 get_unaligned(&entry->type)))
23b5ec74 5878 return 1;
92d32170
DS
5879 addr += sizeof(struct dir_entry) +
5880 get_unaligned(&entry->name_len);
23b5ec74
JB
5881 ctx->pos++;
5882 }
5883 return 0;
5884}
5885
9cdda8d3 5886static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5887{
9cdda8d3 5888 struct inode *inode = file_inode(file);
39279cc3 5889 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5890 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5891 struct btrfs_dir_item *di;
5892 struct btrfs_key key;
5f39d397 5893 struct btrfs_key found_key;
39279cc3 5894 struct btrfs_path *path;
23b5ec74 5895 void *addr;
16cdcec7
MX
5896 struct list_head ins_list;
5897 struct list_head del_list;
39279cc3 5898 int ret;
5f39d397 5899 struct extent_buffer *leaf;
39279cc3 5900 int slot;
5f39d397
CM
5901 char *name_ptr;
5902 int name_len;
23b5ec74
JB
5903 int entries = 0;
5904 int total_len = 0;
02dbfc99 5905 bool put = false;
c2951f32 5906 struct btrfs_key location;
5f39d397 5907
9cdda8d3
AV
5908 if (!dir_emit_dots(file, ctx))
5909 return 0;
5910
49593bfa 5911 path = btrfs_alloc_path();
16cdcec7
MX
5912 if (!path)
5913 return -ENOMEM;
ff5714cc 5914
23b5ec74 5915 addr = private->filldir_buf;
e4058b54 5916 path->reada = READA_FORWARD;
49593bfa 5917
c2951f32
JM
5918 INIT_LIST_HEAD(&ins_list);
5919 INIT_LIST_HEAD(&del_list);
5920 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5921
23b5ec74 5922again:
c2951f32 5923 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5924 key.offset = ctx->pos;
4a0cc7ca 5925 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5926
39279cc3
CM
5927 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5928 if (ret < 0)
5929 goto err;
49593bfa
DW
5930
5931 while (1) {
23b5ec74
JB
5932 struct dir_entry *entry;
5933
5f39d397 5934 leaf = path->nodes[0];
39279cc3 5935 slot = path->slots[0];
b9e03af0
LZ
5936 if (slot >= btrfs_header_nritems(leaf)) {
5937 ret = btrfs_next_leaf(root, path);
5938 if (ret < 0)
5939 goto err;
5940 else if (ret > 0)
5941 break;
5942 continue;
39279cc3 5943 }
3de4586c 5944
5f39d397
CM
5945 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5946
5947 if (found_key.objectid != key.objectid)
39279cc3 5948 break;
c2951f32 5949 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5950 break;
9cdda8d3 5951 if (found_key.offset < ctx->pos)
b9e03af0 5952 goto next;
c2951f32 5953 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5954 goto next;
39279cc3 5955 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
c2951f32 5956 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5957 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5958 PAGE_SIZE) {
5959 btrfs_release_path(path);
5960 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5961 if (ret)
5962 goto nopos;
5963 addr = private->filldir_buf;
5964 entries = 0;
5965 total_len = 0;
5966 goto again;
c2951f32 5967 }
23b5ec74
JB
5968
5969 entry = addr;
92d32170 5970 put_unaligned(name_len, &entry->name_len);
23b5ec74 5971 name_ptr = (char *)(entry + 1);
c2951f32
JM
5972 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5973 name_len);
7d157c3d 5974 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
92d32170 5975 &entry->type);
c2951f32 5976 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
5977 put_unaligned(location.objectid, &entry->ino);
5978 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
5979 entries++;
5980 addr += sizeof(struct dir_entry) + name_len;
5981 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
5982next:
5983 path->slots[0]++;
39279cc3 5984 }
23b5ec74
JB
5985 btrfs_release_path(path);
5986
5987 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5988 if (ret)
5989 goto nopos;
49593bfa 5990
d2fbb2b5 5991 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5992 if (ret)
bc4ef759
DS
5993 goto nopos;
5994
db62efbb
ZB
5995 /*
5996 * Stop new entries from being returned after we return the last
5997 * entry.
5998 *
5999 * New directory entries are assigned a strictly increasing
6000 * offset. This means that new entries created during readdir
6001 * are *guaranteed* to be seen in the future by that readdir.
6002 * This has broken buggy programs which operate on names as
6003 * they're returned by readdir. Until we re-use freed offsets
6004 * we have this hack to stop new entries from being returned
6005 * under the assumption that they'll never reach this huge
6006 * offset.
6007 *
6008 * This is being careful not to overflow 32bit loff_t unless the
6009 * last entry requires it because doing so has broken 32bit apps
6010 * in the past.
6011 */
c2951f32
JM
6012 if (ctx->pos >= INT_MAX)
6013 ctx->pos = LLONG_MAX;
6014 else
6015 ctx->pos = INT_MAX;
39279cc3
CM
6016nopos:
6017 ret = 0;
6018err:
02dbfc99
OS
6019 if (put)
6020 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 6021 btrfs_free_path(path);
39279cc3
CM
6022 return ret;
6023}
6024
39279cc3 6025/*
54aa1f4d 6026 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6027 * inode changes. But, it is most likely to find the inode in cache.
6028 * FIXME, needs more benchmarking...there are no reasons other than performance
6029 * to keep or drop this code.
6030 */
48a3b636 6031static int btrfs_dirty_inode(struct inode *inode)
39279cc3 6032{
2ff7e61e 6033 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
6034 struct btrfs_root *root = BTRFS_I(inode)->root;
6035 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6036 int ret;
6037
72ac3c0d 6038 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6039 return 0;
39279cc3 6040
7a7eaa40 6041 trans = btrfs_join_transaction(root);
22c44fe6
JB
6042 if (IS_ERR(trans))
6043 return PTR_ERR(trans);
8929ecfa
YZ
6044
6045 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6046 if (ret && ret == -ENOSPC) {
6047 /* whoops, lets try again with the full transaction */
3a45bb20 6048 btrfs_end_transaction(trans);
94b60442 6049 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6050 if (IS_ERR(trans))
6051 return PTR_ERR(trans);
8929ecfa 6052
94b60442 6053 ret = btrfs_update_inode(trans, root, inode);
94b60442 6054 }
3a45bb20 6055 btrfs_end_transaction(trans);
16cdcec7 6056 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6057 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6058
6059 return ret;
6060}
6061
6062/*
6063 * This is a copy of file_update_time. We need this so we can return error on
6064 * ENOSPC for updating the inode in the case of file write and mmap writes.
6065 */
95582b00 6066static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
e41f941a 6067 int flags)
22c44fe6 6068{
2bc55652 6069 struct btrfs_root *root = BTRFS_I(inode)->root;
3a8c7231 6070 bool dirty = flags & ~S_VERSION;
2bc55652
AB
6071
6072 if (btrfs_root_readonly(root))
6073 return -EROFS;
6074
e41f941a 6075 if (flags & S_VERSION)
3a8c7231 6076 dirty |= inode_maybe_inc_iversion(inode, dirty);
e41f941a
JB
6077 if (flags & S_CTIME)
6078 inode->i_ctime = *now;
6079 if (flags & S_MTIME)
6080 inode->i_mtime = *now;
6081 if (flags & S_ATIME)
6082 inode->i_atime = *now;
3a8c7231 6083 return dirty ? btrfs_dirty_inode(inode) : 0;
39279cc3
CM
6084}
6085
d352ac68
CM
6086/*
6087 * find the highest existing sequence number in a directory
6088 * and then set the in-memory index_cnt variable to reflect
6089 * free sequence numbers
6090 */
4c570655 6091static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6092{
4c570655 6093 struct btrfs_root *root = inode->root;
aec7477b
JB
6094 struct btrfs_key key, found_key;
6095 struct btrfs_path *path;
6096 struct extent_buffer *leaf;
6097 int ret;
6098
4c570655 6099 key.objectid = btrfs_ino(inode);
962a298f 6100 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6101 key.offset = (u64)-1;
6102
6103 path = btrfs_alloc_path();
6104 if (!path)
6105 return -ENOMEM;
6106
6107 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6108 if (ret < 0)
6109 goto out;
6110 /* FIXME: we should be able to handle this */
6111 if (ret == 0)
6112 goto out;
6113 ret = 0;
6114
6115 /*
6116 * MAGIC NUMBER EXPLANATION:
6117 * since we search a directory based on f_pos we have to start at 2
6118 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6119 * else has to start at 2
6120 */
6121 if (path->slots[0] == 0) {
4c570655 6122 inode->index_cnt = 2;
aec7477b
JB
6123 goto out;
6124 }
6125
6126 path->slots[0]--;
6127
6128 leaf = path->nodes[0];
6129 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6130
4c570655 6131 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6132 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6133 inode->index_cnt = 2;
aec7477b
JB
6134 goto out;
6135 }
6136
4c570655 6137 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6138out:
6139 btrfs_free_path(path);
6140 return ret;
6141}
6142
d352ac68
CM
6143/*
6144 * helper to find a free sequence number in a given directory. This current
6145 * code is very simple, later versions will do smarter things in the btree
6146 */
877574e2 6147int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6148{
6149 int ret = 0;
6150
877574e2
NB
6151 if (dir->index_cnt == (u64)-1) {
6152 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6153 if (ret) {
6154 ret = btrfs_set_inode_index_count(dir);
6155 if (ret)
6156 return ret;
6157 }
aec7477b
JB
6158 }
6159
877574e2
NB
6160 *index = dir->index_cnt;
6161 dir->index_cnt++;
aec7477b
JB
6162
6163 return ret;
6164}
6165
b0d5d10f
CM
6166static int btrfs_insert_inode_locked(struct inode *inode)
6167{
6168 struct btrfs_iget_args args;
6169 args.location = &BTRFS_I(inode)->location;
6170 args.root = BTRFS_I(inode)->root;
6171
6172 return insert_inode_locked4(inode,
6173 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6174 btrfs_find_actor, &args);
6175}
6176
19aee8de
AJ
6177/*
6178 * Inherit flags from the parent inode.
6179 *
6180 * Currently only the compression flags and the cow flags are inherited.
6181 */
6182static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6183{
6184 unsigned int flags;
6185
6186 if (!dir)
6187 return;
6188
6189 flags = BTRFS_I(dir)->flags;
6190
6191 if (flags & BTRFS_INODE_NOCOMPRESS) {
6192 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6193 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6194 } else if (flags & BTRFS_INODE_COMPRESS) {
6195 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6196 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6197 }
6198
6199 if (flags & BTRFS_INODE_NODATACOW) {
6200 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6201 if (S_ISREG(inode->i_mode))
6202 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6203 }
6204
7b6a221e 6205 btrfs_sync_inode_flags_to_i_flags(inode);
19aee8de
AJ
6206}
6207
39279cc3
CM
6208static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6209 struct btrfs_root *root,
aec7477b 6210 struct inode *dir,
9c58309d 6211 const char *name, int name_len,
175a4eb7
AV
6212 u64 ref_objectid, u64 objectid,
6213 umode_t mode, u64 *index)
39279cc3 6214{
0b246afa 6215 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6216 struct inode *inode;
5f39d397 6217 struct btrfs_inode_item *inode_item;
39279cc3 6218 struct btrfs_key *location;
5f39d397 6219 struct btrfs_path *path;
9c58309d
CM
6220 struct btrfs_inode_ref *ref;
6221 struct btrfs_key key[2];
6222 u32 sizes[2];
ef3b9af5 6223 int nitems = name ? 2 : 1;
9c58309d 6224 unsigned long ptr;
39279cc3 6225 int ret;
39279cc3 6226
5f39d397 6227 path = btrfs_alloc_path();
d8926bb3
MF
6228 if (!path)
6229 return ERR_PTR(-ENOMEM);
5f39d397 6230
0b246afa 6231 inode = new_inode(fs_info->sb);
8fb27640
YS
6232 if (!inode) {
6233 btrfs_free_path(path);
39279cc3 6234 return ERR_PTR(-ENOMEM);
8fb27640 6235 }
39279cc3 6236
5762b5c9
FM
6237 /*
6238 * O_TMPFILE, set link count to 0, so that after this point,
6239 * we fill in an inode item with the correct link count.
6240 */
6241 if (!name)
6242 set_nlink(inode, 0);
6243
581bb050
LZ
6244 /*
6245 * we have to initialize this early, so we can reclaim the inode
6246 * number if we fail afterwards in this function.
6247 */
6248 inode->i_ino = objectid;
6249
ef3b9af5 6250 if (dir && name) {
1abe9b8a 6251 trace_btrfs_inode_request(dir);
6252
877574e2 6253 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6254 if (ret) {
8fb27640 6255 btrfs_free_path(path);
09771430 6256 iput(inode);
aec7477b 6257 return ERR_PTR(ret);
09771430 6258 }
ef3b9af5
FM
6259 } else if (dir) {
6260 *index = 0;
aec7477b
JB
6261 }
6262 /*
6263 * index_cnt is ignored for everything but a dir,
df6703e1 6264 * btrfs_set_inode_index_count has an explanation for the magic
aec7477b
JB
6265 * number
6266 */
6267 BTRFS_I(inode)->index_cnt = 2;
67de1176 6268 BTRFS_I(inode)->dir_index = *index;
39279cc3 6269 BTRFS_I(inode)->root = root;
e02119d5 6270 BTRFS_I(inode)->generation = trans->transid;
76195853 6271 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6272
5dc562c5
JB
6273 /*
6274 * We could have gotten an inode number from somebody who was fsynced
6275 * and then removed in this same transaction, so let's just set full
6276 * sync since it will be a full sync anyway and this will blow away the
6277 * old info in the log.
6278 */
6279 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6280
9c58309d 6281 key[0].objectid = objectid;
962a298f 6282 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6283 key[0].offset = 0;
6284
9c58309d 6285 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6286
6287 if (name) {
6288 /*
6289 * Start new inodes with an inode_ref. This is slightly more
6290 * efficient for small numbers of hard links since they will
6291 * be packed into one item. Extended refs will kick in if we
6292 * add more hard links than can fit in the ref item.
6293 */
6294 key[1].objectid = objectid;
962a298f 6295 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6296 key[1].offset = ref_objectid;
6297
6298 sizes[1] = name_len + sizeof(*ref);
6299 }
9c58309d 6300
b0d5d10f
CM
6301 location = &BTRFS_I(inode)->location;
6302 location->objectid = objectid;
6303 location->offset = 0;
962a298f 6304 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6305
6306 ret = btrfs_insert_inode_locked(inode);
32955c54
AV
6307 if (ret < 0) {
6308 iput(inode);
b0d5d10f 6309 goto fail;
32955c54 6310 }
b0d5d10f 6311
b9473439 6312 path->leave_spinning = 1;
ef3b9af5 6313 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6314 if (ret != 0)
b0d5d10f 6315 goto fail_unlock;
5f39d397 6316
ecc11fab 6317 inode_init_owner(inode, dir, mode);
a76a3cd4 6318 inode_set_bytes(inode, 0);
9cc97d64 6319
c2050a45 6320 inode->i_mtime = current_time(inode);
9cc97d64 6321 inode->i_atime = inode->i_mtime;
6322 inode->i_ctime = inode->i_mtime;
d3c6be6f 6323 BTRFS_I(inode)->i_otime = inode->i_mtime;
9cc97d64 6324
5f39d397
CM
6325 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6326 struct btrfs_inode_item);
b159fa28 6327 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6328 sizeof(*inode_item));
e02119d5 6329 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6330
ef3b9af5
FM
6331 if (name) {
6332 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6333 struct btrfs_inode_ref);
6334 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6335 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6336 ptr = (unsigned long)(ref + 1);
6337 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6338 }
9c58309d 6339
5f39d397
CM
6340 btrfs_mark_buffer_dirty(path->nodes[0]);
6341 btrfs_free_path(path);
6342
6cbff00f
CH
6343 btrfs_inherit_iflags(inode, dir);
6344
569254b0 6345 if (S_ISREG(mode)) {
0b246afa 6346 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6347 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6348 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6349 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6350 BTRFS_INODE_NODATASUM;
94272164
CM
6351 }
6352
5d4f98a2 6353 inode_tree_add(inode);
1abe9b8a 6354
6355 trace_btrfs_inode_new(inode);
1973f0fa 6356 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6357
8ea05e3a
AB
6358 btrfs_update_root_times(trans, root);
6359
63541927
FDBM
6360 ret = btrfs_inode_inherit_props(trans, inode, dir);
6361 if (ret)
0b246afa 6362 btrfs_err(fs_info,
63541927 6363 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6364 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6365
39279cc3 6366 return inode;
b0d5d10f
CM
6367
6368fail_unlock:
32955c54 6369 discard_new_inode(inode);
5f39d397 6370fail:
ef3b9af5 6371 if (dir && name)
aec7477b 6372 BTRFS_I(dir)->index_cnt--;
5f39d397
CM
6373 btrfs_free_path(path);
6374 return ERR_PTR(ret);
39279cc3
CM
6375}
6376
d352ac68
CM
6377/*
6378 * utility function to add 'inode' into 'parent_inode' with
6379 * a give name and a given sequence number.
6380 * if 'add_backref' is true, also insert a backref from the
6381 * inode to the parent directory.
6382 */
e02119d5 6383int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6384 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6385 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6386{
4df27c4d 6387 int ret = 0;
39279cc3 6388 struct btrfs_key key;
db0a669f
NB
6389 struct btrfs_root *root = parent_inode->root;
6390 u64 ino = btrfs_ino(inode);
6391 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6392
33345d01 6393 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6394 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6395 } else {
33345d01 6396 key.objectid = ino;
962a298f 6397 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6398 key.offset = 0;
6399 }
6400
33345d01 6401 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6025c19f 6402 ret = btrfs_add_root_ref(trans, key.objectid,
0b246afa
JM
6403 root->root_key.objectid, parent_ino,
6404 index, name, name_len);
4df27c4d 6405 } else if (add_backref) {
33345d01
LZ
6406 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6407 parent_ino, index);
4df27c4d 6408 }
39279cc3 6409
79787eaa
JM
6410 /* Nothing to clean up yet */
6411 if (ret)
6412 return ret;
4df27c4d 6413
684572df 6414 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
db0a669f 6415 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6416 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6417 goto fail_dir_item;
6418 else if (ret) {
66642832 6419 btrfs_abort_transaction(trans, ret);
79787eaa 6420 return ret;
39279cc3 6421 }
79787eaa 6422
db0a669f 6423 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6424 name_len * 2);
db0a669f 6425 inode_inc_iversion(&parent_inode->vfs_inode);
5338e43a
FM
6426 /*
6427 * If we are replaying a log tree, we do not want to update the mtime
6428 * and ctime of the parent directory with the current time, since the
6429 * log replay procedure is responsible for setting them to their correct
6430 * values (the ones it had when the fsync was done).
6431 */
6432 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6433 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6434
6435 parent_inode->vfs_inode.i_mtime = now;
6436 parent_inode->vfs_inode.i_ctime = now;
6437 }
db0a669f 6438 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6439 if (ret)
66642832 6440 btrfs_abort_transaction(trans, ret);
39279cc3 6441 return ret;
fe66a05a
CM
6442
6443fail_dir_item:
6444 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6445 u64 local_index;
6446 int err;
3ee1c553 6447 err = btrfs_del_root_ref(trans, key.objectid,
0b246afa
JM
6448 root->root_key.objectid, parent_ino,
6449 &local_index, name, name_len);
1690dd41
JT
6450 if (err)
6451 btrfs_abort_transaction(trans, err);
fe66a05a
CM
6452 } else if (add_backref) {
6453 u64 local_index;
6454 int err;
6455
6456 err = btrfs_del_inode_ref(trans, root, name, name_len,
6457 ino, parent_ino, &local_index);
1690dd41
JT
6458 if (err)
6459 btrfs_abort_transaction(trans, err);
fe66a05a 6460 }
1690dd41
JT
6461
6462 /* Return the original error code */
fe66a05a 6463 return ret;
39279cc3
CM
6464}
6465
6466static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6467 struct btrfs_inode *dir, struct dentry *dentry,
6468 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6469{
a1b075d2
JB
6470 int err = btrfs_add_link(trans, dir, inode,
6471 dentry->d_name.name, dentry->d_name.len,
6472 backref, index);
39279cc3
CM
6473 if (err > 0)
6474 err = -EEXIST;
6475 return err;
6476}
6477
618e21d5 6478static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6479 umode_t mode, dev_t rdev)
618e21d5 6480{
2ff7e61e 6481 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6482 struct btrfs_trans_handle *trans;
6483 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6484 struct inode *inode = NULL;
618e21d5 6485 int err;
618e21d5 6486 u64 objectid;
00e4e6b3 6487 u64 index = 0;
618e21d5 6488
9ed74f2d
JB
6489 /*
6490 * 2 for inode item and ref
6491 * 2 for dir items
6492 * 1 for xattr if selinux is on
6493 */
a22285a6
YZ
6494 trans = btrfs_start_transaction(root, 5);
6495 if (IS_ERR(trans))
6496 return PTR_ERR(trans);
1832a6d5 6497
581bb050
LZ
6498 err = btrfs_find_free_ino(root, &objectid);
6499 if (err)
6500 goto out_unlock;
6501
aec7477b 6502 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6503 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6504 mode, &index);
7cf96da3
TI
6505 if (IS_ERR(inode)) {
6506 err = PTR_ERR(inode);
32955c54 6507 inode = NULL;
618e21d5 6508 goto out_unlock;
7cf96da3 6509 }
618e21d5 6510
ad19db71
CS
6511 /*
6512 * If the active LSM wants to access the inode during
6513 * d_instantiate it needs these. Smack checks to see
6514 * if the filesystem supports xattrs by looking at the
6515 * ops vector.
6516 */
ad19db71 6517 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6518 init_special_inode(inode, inode->i_mode, rdev);
6519
6520 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6521 if (err)
32955c54 6522 goto out_unlock;
b0d5d10f 6523
cef415af
NB
6524 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6525 0, index);
32955c54
AV
6526 if (err)
6527 goto out_unlock;
6528
6529 btrfs_update_inode(trans, root, inode);
6530 d_instantiate_new(dentry, inode);
b0d5d10f 6531
618e21d5 6532out_unlock:
3a45bb20 6533 btrfs_end_transaction(trans);
2ff7e61e 6534 btrfs_btree_balance_dirty(fs_info);
32955c54 6535 if (err && inode) {
618e21d5 6536 inode_dec_link_count(inode);
32955c54 6537 discard_new_inode(inode);
618e21d5 6538 }
618e21d5
JB
6539 return err;
6540}
6541
39279cc3 6542static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6543 umode_t mode, bool excl)
39279cc3 6544{
2ff7e61e 6545 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6546 struct btrfs_trans_handle *trans;
6547 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6548 struct inode *inode = NULL;
a22285a6 6549 int err;
39279cc3 6550 u64 objectid;
00e4e6b3 6551 u64 index = 0;
39279cc3 6552
9ed74f2d
JB
6553 /*
6554 * 2 for inode item and ref
6555 * 2 for dir items
6556 * 1 for xattr if selinux is on
6557 */
a22285a6
YZ
6558 trans = btrfs_start_transaction(root, 5);
6559 if (IS_ERR(trans))
6560 return PTR_ERR(trans);
9ed74f2d 6561
581bb050
LZ
6562 err = btrfs_find_free_ino(root, &objectid);
6563 if (err)
6564 goto out_unlock;
6565
aec7477b 6566 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6567 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6568 mode, &index);
7cf96da3
TI
6569 if (IS_ERR(inode)) {
6570 err = PTR_ERR(inode);
32955c54 6571 inode = NULL;
39279cc3 6572 goto out_unlock;
7cf96da3 6573 }
ad19db71
CS
6574 /*
6575 * If the active LSM wants to access the inode during
6576 * d_instantiate it needs these. Smack checks to see
6577 * if the filesystem supports xattrs by looking at the
6578 * ops vector.
6579 */
6580 inode->i_fop = &btrfs_file_operations;
6581 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6582 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6583
6584 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6585 if (err)
32955c54 6586 goto out_unlock;
b0d5d10f
CM
6587
6588 err = btrfs_update_inode(trans, root, inode);
6589 if (err)
32955c54 6590 goto out_unlock;
ad19db71 6591
cef415af
NB
6592 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6593 0, index);
39279cc3 6594 if (err)
32955c54 6595 goto out_unlock;
43baa579 6596
43baa579 6597 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1e2e547a 6598 d_instantiate_new(dentry, inode);
43baa579 6599
39279cc3 6600out_unlock:
3a45bb20 6601 btrfs_end_transaction(trans);
32955c54 6602 if (err && inode) {
39279cc3 6603 inode_dec_link_count(inode);
32955c54 6604 discard_new_inode(inode);
39279cc3 6605 }
2ff7e61e 6606 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6607 return err;
6608}
6609
6610static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6611 struct dentry *dentry)
6612{
271dba45 6613 struct btrfs_trans_handle *trans = NULL;
39279cc3 6614 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6615 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6616 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6617 u64 index;
39279cc3
CM
6618 int err;
6619 int drop_inode = 0;
6620
4a8be425 6621 /* do not allow sys_link's with other subvols of the same device */
4fd786e6 6622 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
3ab3564f 6623 return -EXDEV;
4a8be425 6624
f186373f 6625 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6626 return -EMLINK;
4a8be425 6627
877574e2 6628 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6629 if (err)
6630 goto fail;
6631
a22285a6 6632 /*
7e6b6465 6633 * 2 items for inode and inode ref
a22285a6 6634 * 2 items for dir items
7e6b6465 6635 * 1 item for parent inode
399b0bbf 6636 * 1 item for orphan item deletion if O_TMPFILE
a22285a6 6637 */
399b0bbf 6638 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
a22285a6
YZ
6639 if (IS_ERR(trans)) {
6640 err = PTR_ERR(trans);
271dba45 6641 trans = NULL;
a22285a6
YZ
6642 goto fail;
6643 }
5f39d397 6644
67de1176
MX
6645 /* There are several dir indexes for this inode, clear the cache. */
6646 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6647 inc_nlink(inode);
0c4d2d95 6648 inode_inc_iversion(inode);
c2050a45 6649 inode->i_ctime = current_time(inode);
7de9c6ee 6650 ihold(inode);
e9976151 6651 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6652
cef415af
NB
6653 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6654 1, index);
5f39d397 6655
a5719521 6656 if (err) {
54aa1f4d 6657 drop_inode = 1;
a5719521 6658 } else {
10d9f309 6659 struct dentry *parent = dentry->d_parent;
d4682ba0
FM
6660 int ret;
6661
a5719521 6662 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6663 if (err)
6664 goto fail;
ef3b9af5
FM
6665 if (inode->i_nlink == 1) {
6666 /*
6667 * If new hard link count is 1, it's a file created
6668 * with open(2) O_TMPFILE flag.
6669 */
3d6ae7bb 6670 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6671 if (err)
6672 goto fail;
6673 }
08c422c2 6674 d_instantiate(dentry, inode);
d4682ba0
FM
6675 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6676 true, NULL);
6677 if (ret == BTRFS_NEED_TRANS_COMMIT) {
6678 err = btrfs_commit_transaction(trans);
6679 trans = NULL;
6680 }
a5719521 6681 }
39279cc3 6682
1832a6d5 6683fail:
271dba45 6684 if (trans)
3a45bb20 6685 btrfs_end_transaction(trans);
39279cc3
CM
6686 if (drop_inode) {
6687 inode_dec_link_count(inode);
6688 iput(inode);
6689 }
2ff7e61e 6690 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6691 return err;
6692}
6693
18bb1db3 6694static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6695{
2ff7e61e 6696 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6697 struct inode *inode = NULL;
39279cc3
CM
6698 struct btrfs_trans_handle *trans;
6699 struct btrfs_root *root = BTRFS_I(dir)->root;
6700 int err = 0;
b9d86667 6701 u64 objectid = 0;
00e4e6b3 6702 u64 index = 0;
39279cc3 6703
9ed74f2d
JB
6704 /*
6705 * 2 items for inode and ref
6706 * 2 items for dir items
6707 * 1 for xattr if selinux is on
6708 */
a22285a6
YZ
6709 trans = btrfs_start_transaction(root, 5);
6710 if (IS_ERR(trans))
6711 return PTR_ERR(trans);
39279cc3 6712
581bb050
LZ
6713 err = btrfs_find_free_ino(root, &objectid);
6714 if (err)
6715 goto out_fail;
6716
aec7477b 6717 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6718 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6719 S_IFDIR | mode, &index);
39279cc3
CM
6720 if (IS_ERR(inode)) {
6721 err = PTR_ERR(inode);
32955c54 6722 inode = NULL;
39279cc3
CM
6723 goto out_fail;
6724 }
5f39d397 6725
b0d5d10f
CM
6726 /* these must be set before we unlock the inode */
6727 inode->i_op = &btrfs_dir_inode_operations;
6728 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6729
2a7dba39 6730 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6731 if (err)
32955c54 6732 goto out_fail;
39279cc3 6733
6ef06d27 6734 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6735 err = btrfs_update_inode(trans, root, inode);
6736 if (err)
32955c54 6737 goto out_fail;
5f39d397 6738
db0a669f
NB
6739 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6740 dentry->d_name.name,
6741 dentry->d_name.len, 0, index);
39279cc3 6742 if (err)
32955c54 6743 goto out_fail;
5f39d397 6744
1e2e547a 6745 d_instantiate_new(dentry, inode);
39279cc3
CM
6746
6747out_fail:
3a45bb20 6748 btrfs_end_transaction(trans);
32955c54 6749 if (err && inode) {
c7cfb8a5 6750 inode_dec_link_count(inode);
32955c54 6751 discard_new_inode(inode);
c7cfb8a5 6752 }
2ff7e61e 6753 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6754 return err;
6755}
6756
c8b97818 6757static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6758 struct page *page,
c8b97818
CM
6759 size_t pg_offset, u64 extent_offset,
6760 struct btrfs_file_extent_item *item)
6761{
6762 int ret;
6763 struct extent_buffer *leaf = path->nodes[0];
6764 char *tmp;
6765 size_t max_size;
6766 unsigned long inline_size;
6767 unsigned long ptr;
261507a0 6768 int compress_type;
c8b97818
CM
6769
6770 WARN_ON(pg_offset != 0);
261507a0 6771 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6772 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6773 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6774 btrfs_item_nr(path->slots[0]));
c8b97818 6775 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6776 if (!tmp)
6777 return -ENOMEM;
c8b97818
CM
6778 ptr = btrfs_file_extent_inline_start(item);
6779
6780 read_extent_buffer(leaf, tmp, ptr, inline_size);
6781
09cbfeaf 6782 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6783 ret = btrfs_decompress(compress_type, tmp, page,
6784 extent_offset, inline_size, max_size);
e1699d2d
ZB
6785
6786 /*
6787 * decompression code contains a memset to fill in any space between the end
6788 * of the uncompressed data and the end of max_size in case the decompressed
6789 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6790 * the end of an inline extent and the beginning of the next block, so we
6791 * cover that region here.
6792 */
6793
6794 if (max_size + pg_offset < PAGE_SIZE) {
6795 char *map = kmap(page);
6796 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6797 kunmap(page);
6798 }
c8b97818 6799 kfree(tmp);
166ae5a4 6800 return ret;
c8b97818
CM
6801}
6802
d352ac68
CM
6803/*
6804 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6805 * the ugly parts come from merging extents from the disk with the in-ram
6806 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6807 * where the in-ram extents might be locked pending data=ordered completion.
6808 *
6809 * This also copies inline extents directly into the page.
6810 */
fc4f21b1 6811struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
de2c6615
LB
6812 struct page *page,
6813 size_t pg_offset, u64 start, u64 len,
6814 int create)
a52d9a80 6815{
3ffbd68c 6816 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a52d9a80
CM
6817 int ret;
6818 int err = 0;
a52d9a80
CM
6819 u64 extent_start = 0;
6820 u64 extent_end = 0;
fc4f21b1 6821 u64 objectid = btrfs_ino(inode);
7e74e235 6822 int extent_type = -1;
f421950f 6823 struct btrfs_path *path = NULL;
fc4f21b1 6824 struct btrfs_root *root = inode->root;
a52d9a80 6825 struct btrfs_file_extent_item *item;
5f39d397
CM
6826 struct extent_buffer *leaf;
6827 struct btrfs_key found_key;
a52d9a80 6828 struct extent_map *em = NULL;
fc4f21b1
NB
6829 struct extent_map_tree *em_tree = &inode->extent_tree;
6830 struct extent_io_tree *io_tree = &inode->io_tree;
7ffbb598 6831 const bool new_inline = !page || create;
a52d9a80 6832
890871be 6833 read_lock(&em_tree->lock);
d1310b2e 6834 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6835 if (em)
0b246afa 6836 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6837 read_unlock(&em_tree->lock);
d1310b2e 6838
a52d9a80 6839 if (em) {
e1c4b745
CM
6840 if (em->start > start || em->start + em->len <= start)
6841 free_extent_map(em);
6842 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6843 free_extent_map(em);
6844 else
6845 goto out;
a52d9a80 6846 }
172ddd60 6847 em = alloc_extent_map();
a52d9a80 6848 if (!em) {
d1310b2e
CM
6849 err = -ENOMEM;
6850 goto out;
a52d9a80 6851 }
0b246afa 6852 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6853 em->start = EXTENT_MAP_HOLE;
445a6944 6854 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6855 em->len = (u64)-1;
c8b97818 6856 em->block_len = (u64)-1;
f421950f 6857
bee6ec82 6858 path = btrfs_alloc_path();
f421950f 6859 if (!path) {
bee6ec82
LB
6860 err = -ENOMEM;
6861 goto out;
f421950f
CM
6862 }
6863
bee6ec82
LB
6864 /* Chances are we'll be called again, so go ahead and do readahead */
6865 path->reada = READA_FORWARD;
6866
e49aabd9
LB
6867 /*
6868 * Unless we're going to uncompress the inline extent, no sleep would
6869 * happen.
6870 */
6871 path->leave_spinning = 1;
6872
5c9a702e 6873 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80
CM
6874 if (ret < 0) {
6875 err = ret;
6876 goto out;
b8eeab7f 6877 } else if (ret > 0) {
a52d9a80
CM
6878 if (path->slots[0] == 0)
6879 goto not_found;
6880 path->slots[0]--;
6881 }
6882
5f39d397
CM
6883 leaf = path->nodes[0];
6884 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6885 struct btrfs_file_extent_item);
5f39d397 6886 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5f39d397 6887 if (found_key.objectid != objectid ||
694c12ed 6888 found_key.type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6889 /*
6890 * If we backup past the first extent we want to move forward
6891 * and see if there is an extent in front of us, otherwise we'll
6892 * say there is a hole for our whole search range which can
6893 * cause problems.
6894 */
6895 extent_end = start;
6896 goto next;
a52d9a80
CM
6897 }
6898
694c12ed 6899 extent_type = btrfs_file_extent_type(leaf, item);
5f39d397 6900 extent_start = found_key.offset;
694c12ed
NB
6901 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6902 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6bf9e4bd
QW
6903 /* Only regular file could have regular/prealloc extent */
6904 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6905 ret = -EUCLEAN;
6906 btrfs_crit(fs_info,
6907 "regular/prealloc extent found for non-regular inode %llu",
6908 btrfs_ino(inode));
6909 goto out;
6910 }
a52d9a80 6911 extent_end = extent_start +
db94535d 6912 btrfs_file_extent_num_bytes(leaf, item);
09ed2f16
LB
6913
6914 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6915 extent_start);
694c12ed 6916 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
9036c102 6917 size_t size;
e41ca589
QW
6918
6919 size = btrfs_file_extent_ram_bytes(leaf, item);
da17066c 6920 extent_end = ALIGN(extent_start + size,
0b246afa 6921 fs_info->sectorsize);
09ed2f16
LB
6922
6923 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6924 path->slots[0],
6925 extent_start);
9036c102 6926 }
25a50341 6927next:
9036c102
YZ
6928 if (start >= extent_end) {
6929 path->slots[0]++;
6930 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6931 ret = btrfs_next_leaf(root, path);
6932 if (ret < 0) {
6933 err = ret;
6934 goto out;
b8eeab7f 6935 } else if (ret > 0) {
9036c102 6936 goto not_found;
b8eeab7f 6937 }
9036c102 6938 leaf = path->nodes[0];
a52d9a80 6939 }
9036c102
YZ
6940 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6941 if (found_key.objectid != objectid ||
6942 found_key.type != BTRFS_EXTENT_DATA_KEY)
6943 goto not_found;
6944 if (start + len <= found_key.offset)
6945 goto not_found;
e2eca69d
WS
6946 if (start > found_key.offset)
6947 goto next;
02a033df
NB
6948
6949 /* New extent overlaps with existing one */
9036c102 6950 em->start = start;
70c8a91c 6951 em->orig_start = start;
9036c102 6952 em->len = found_key.offset - start;
02a033df
NB
6953 em->block_start = EXTENT_MAP_HOLE;
6954 goto insert;
9036c102
YZ
6955 }
6956
fc4f21b1 6957 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 6958 new_inline, em);
7ffbb598 6959
694c12ed
NB
6960 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6961 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6962 goto insert;
694c12ed 6963 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6964 unsigned long ptr;
a52d9a80 6965 char *map;
3326d1b0
CM
6966 size_t size;
6967 size_t extent_offset;
6968 size_t copy_size;
a52d9a80 6969
7ffbb598 6970 if (new_inline)
689f9346 6971 goto out;
5f39d397 6972
e41ca589 6973 size = btrfs_file_extent_ram_bytes(leaf, item);
9036c102 6974 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6975 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6976 size - extent_offset);
3326d1b0 6977 em->start = extent_start + extent_offset;
0b246afa 6978 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 6979 em->orig_block_len = em->len;
70c8a91c 6980 em->orig_start = em->start;
689f9346 6981 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
e49aabd9
LB
6982
6983 btrfs_set_path_blocking(path);
bf46f52d 6984 if (!PageUptodate(page)) {
261507a0
LZ
6985 if (btrfs_file_extent_compression(leaf, item) !=
6986 BTRFS_COMPRESS_NONE) {
e40da0e5 6987 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6988 extent_offset, item);
166ae5a4
ZB
6989 if (ret) {
6990 err = ret;
6991 goto out;
6992 }
c8b97818
CM
6993 } else {
6994 map = kmap(page);
6995 read_extent_buffer(leaf, map + pg_offset, ptr,
6996 copy_size);
09cbfeaf 6997 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6998 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6999 PAGE_SIZE - pg_offset -
93c82d57
CM
7000 copy_size);
7001 }
c8b97818
CM
7002 kunmap(page);
7003 }
179e29e4 7004 flush_dcache_page(page);
a52d9a80 7005 }
d1310b2e 7006 set_extent_uptodate(io_tree, em->start,
507903b8 7007 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7008 goto insert;
a52d9a80
CM
7009 }
7010not_found:
7011 em->start = start;
70c8a91c 7012 em->orig_start = start;
d1310b2e 7013 em->len = len;
5f39d397 7014 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 7015insert:
b3b4aa74 7016 btrfs_release_path(path);
d1310b2e 7017 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 7018 btrfs_err(fs_info,
5d163e0e
JM
7019 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7020 em->start, em->len, start, len);
a52d9a80
CM
7021 err = -EIO;
7022 goto out;
7023 }
d1310b2e
CM
7024
7025 err = 0;
890871be 7026 write_lock(&em_tree->lock);
f46b24c9 7027 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
890871be 7028 write_unlock(&em_tree->lock);
a52d9a80 7029out:
c6414280 7030 btrfs_free_path(path);
1abe9b8a 7031
fc4f21b1 7032 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 7033
a52d9a80
CM
7034 if (err) {
7035 free_extent_map(em);
a52d9a80
CM
7036 return ERR_PTR(err);
7037 }
79787eaa 7038 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7039 return em;
7040}
7041
fc4f21b1 7042struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
4ab47a8d 7043 u64 start, u64 len)
ec29ed5b
CM
7044{
7045 struct extent_map *em;
7046 struct extent_map *hole_em = NULL;
f3714ef4 7047 u64 delalloc_start = start;
ec29ed5b 7048 u64 end;
f3714ef4
NB
7049 u64 delalloc_len;
7050 u64 delalloc_end;
ec29ed5b
CM
7051 int err = 0;
7052
4ab47a8d 7053 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
ec29ed5b
CM
7054 if (IS_ERR(em))
7055 return em;
9986277e
DC
7056 /*
7057 * If our em maps to:
7058 * - a hole or
7059 * - a pre-alloc extent,
7060 * there might actually be delalloc bytes behind it.
7061 */
7062 if (em->block_start != EXTENT_MAP_HOLE &&
7063 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7064 return em;
7065 else
7066 hole_em = em;
ec29ed5b
CM
7067
7068 /* check to see if we've wrapped (len == -1 or similar) */
7069 end = start + len;
7070 if (end < start)
7071 end = (u64)-1;
7072 else
7073 end -= 1;
7074
7075 em = NULL;
7076
7077 /* ok, we didn't find anything, lets look for delalloc */
f3714ef4 7078 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
ec29ed5b 7079 end, len, EXTENT_DELALLOC, 1);
f3714ef4
NB
7080 delalloc_end = delalloc_start + delalloc_len;
7081 if (delalloc_end < delalloc_start)
7082 delalloc_end = (u64)-1;
ec29ed5b
CM
7083
7084 /*
f3714ef4
NB
7085 * We didn't find anything useful, return the original results from
7086 * get_extent()
ec29ed5b 7087 */
f3714ef4 7088 if (delalloc_start > end || delalloc_end <= start) {
ec29ed5b
CM
7089 em = hole_em;
7090 hole_em = NULL;
7091 goto out;
7092 }
7093
f3714ef4
NB
7094 /*
7095 * Adjust the delalloc_start to make sure it doesn't go backwards from
7096 * the start they passed in
ec29ed5b 7097 */
f3714ef4
NB
7098 delalloc_start = max(start, delalloc_start);
7099 delalloc_len = delalloc_end - delalloc_start;
ec29ed5b 7100
f3714ef4
NB
7101 if (delalloc_len > 0) {
7102 u64 hole_start;
02950af4 7103 u64 hole_len;
f3714ef4 7104 const u64 hole_end = extent_map_end(hole_em);
ec29ed5b 7105
172ddd60 7106 em = alloc_extent_map();
ec29ed5b
CM
7107 if (!em) {
7108 err = -ENOMEM;
7109 goto out;
7110 }
f3714ef4
NB
7111 em->bdev = NULL;
7112
7113 ASSERT(hole_em);
ec29ed5b 7114 /*
f3714ef4
NB
7115 * When btrfs_get_extent can't find anything it returns one
7116 * huge hole
ec29ed5b 7117 *
f3714ef4
NB
7118 * Make sure what it found really fits our range, and adjust to
7119 * make sure it is based on the start from the caller
ec29ed5b 7120 */
f3714ef4
NB
7121 if (hole_end <= start || hole_em->start > end) {
7122 free_extent_map(hole_em);
7123 hole_em = NULL;
7124 } else {
7125 hole_start = max(hole_em->start, start);
7126 hole_len = hole_end - hole_start;
ec29ed5b 7127 }
f3714ef4
NB
7128
7129 if (hole_em && delalloc_start > hole_start) {
7130 /*
7131 * Our hole starts before our delalloc, so we have to
7132 * return just the parts of the hole that go until the
7133 * delalloc starts
ec29ed5b 7134 */
f3714ef4 7135 em->len = min(hole_len, delalloc_start - hole_start);
ec29ed5b
CM
7136 em->start = hole_start;
7137 em->orig_start = hole_start;
7138 /*
f3714ef4
NB
7139 * Don't adjust block start at all, it is fixed at
7140 * EXTENT_MAP_HOLE
ec29ed5b
CM
7141 */
7142 em->block_start = hole_em->block_start;
7143 em->block_len = hole_len;
f9e4fb53
LB
7144 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7145 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b 7146 } else {
f3714ef4
NB
7147 /*
7148 * Hole is out of passed range or it starts after
7149 * delalloc range
7150 */
7151 em->start = delalloc_start;
7152 em->len = delalloc_len;
7153 em->orig_start = delalloc_start;
ec29ed5b 7154 em->block_start = EXTENT_MAP_DELALLOC;
f3714ef4 7155 em->block_len = delalloc_len;
ec29ed5b 7156 }
bf8d32b9 7157 } else {
ec29ed5b
CM
7158 return hole_em;
7159 }
7160out:
7161
7162 free_extent_map(hole_em);
7163 if (err) {
7164 free_extent_map(em);
7165 return ERR_PTR(err);
7166 }
7167 return em;
7168}
7169
5f9a8a51
FM
7170static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7171 const u64 start,
7172 const u64 len,
7173 const u64 orig_start,
7174 const u64 block_start,
7175 const u64 block_len,
7176 const u64 orig_block_len,
7177 const u64 ram_bytes,
7178 const int type)
7179{
7180 struct extent_map *em = NULL;
7181 int ret;
7182
5f9a8a51 7183 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7184 em = create_io_em(inode, start, len, orig_start,
7185 block_start, block_len, orig_block_len,
7186 ram_bytes,
7187 BTRFS_COMPRESS_NONE, /* compress_type */
7188 type);
5f9a8a51
FM
7189 if (IS_ERR(em))
7190 goto out;
7191 }
7192 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7193 len, block_len, type);
7194 if (ret) {
7195 if (em) {
7196 free_extent_map(em);
dcdbc059 7197 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7198 start + len - 1, 0);
7199 }
7200 em = ERR_PTR(ret);
7201 }
7202 out:
5f9a8a51
FM
7203
7204 return em;
7205}
7206
4b46fce2
JB
7207static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7208 u64 start, u64 len)
7209{
0b246afa 7210 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7211 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7212 struct extent_map *em;
4b46fce2
JB
7213 struct btrfs_key ins;
7214 u64 alloc_hint;
7215 int ret;
4b46fce2 7216
4b46fce2 7217 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7218 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7219 0, alloc_hint, &ins, 1, 1);
00361589
JB
7220 if (ret)
7221 return ERR_PTR(ret);
4b46fce2 7222
5f9a8a51
FM
7223 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7224 ins.objectid, ins.offset, ins.offset,
6288d6ea 7225 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7226 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7227 if (IS_ERR(em))
2ff7e61e
JM
7228 btrfs_free_reserved_extent(fs_info, ins.objectid,
7229 ins.offset, 1);
de0ee0ed 7230
4b46fce2
JB
7231 return em;
7232}
7233
46bfbb5c
CM
7234/*
7235 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7236 * block must be cow'd
7237 */
00361589 7238noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7239 u64 *orig_start, u64 *orig_block_len,
7240 u64 *ram_bytes)
46bfbb5c 7241{
2ff7e61e 7242 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7243 struct btrfs_path *path;
7244 int ret;
7245 struct extent_buffer *leaf;
7246 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7247 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7248 struct btrfs_file_extent_item *fi;
7249 struct btrfs_key key;
7250 u64 disk_bytenr;
7251 u64 backref_offset;
7252 u64 extent_end;
7253 u64 num_bytes;
7254 int slot;
7255 int found_type;
7ee9e440 7256 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7257
46bfbb5c
CM
7258 path = btrfs_alloc_path();
7259 if (!path)
7260 return -ENOMEM;
7261
f85b7379
DS
7262 ret = btrfs_lookup_file_extent(NULL, root, path,
7263 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7264 if (ret < 0)
7265 goto out;
7266
7267 slot = path->slots[0];
7268 if (ret == 1) {
7269 if (slot == 0) {
7270 /* can't find the item, must cow */
7271 ret = 0;
7272 goto out;
7273 }
7274 slot--;
7275 }
7276 ret = 0;
7277 leaf = path->nodes[0];
7278 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7279 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7280 key.type != BTRFS_EXTENT_DATA_KEY) {
7281 /* not our file or wrong item type, must cow */
7282 goto out;
7283 }
7284
7285 if (key.offset > offset) {
7286 /* Wrong offset, must cow */
7287 goto out;
7288 }
7289
7290 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7291 found_type = btrfs_file_extent_type(leaf, fi);
7292 if (found_type != BTRFS_FILE_EXTENT_REG &&
7293 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7294 /* not a regular extent, must cow */
7295 goto out;
7296 }
7ee9e440
JB
7297
7298 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7299 goto out;
7300
e77751aa
MX
7301 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7302 if (extent_end <= offset)
7303 goto out;
7304
46bfbb5c 7305 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7306 if (disk_bytenr == 0)
7307 goto out;
7308
7309 if (btrfs_file_extent_compression(leaf, fi) ||
7310 btrfs_file_extent_encryption(leaf, fi) ||
7311 btrfs_file_extent_other_encoding(leaf, fi))
7312 goto out;
7313
78d4295b
EL
7314 /*
7315 * Do the same check as in btrfs_cross_ref_exist but without the
7316 * unnecessary search.
7317 */
7318 if (btrfs_file_extent_generation(leaf, fi) <=
7319 btrfs_root_last_snapshot(&root->root_item))
7320 goto out;
7321
46bfbb5c
CM
7322 backref_offset = btrfs_file_extent_offset(leaf, fi);
7323
7ee9e440
JB
7324 if (orig_start) {
7325 *orig_start = key.offset - backref_offset;
7326 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7327 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7328 }
eb384b55 7329
2ff7e61e 7330 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7331 goto out;
7b2b7085
MX
7332
7333 num_bytes = min(offset + *len, extent_end) - offset;
7334 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7335 u64 range_end;
7336
da17066c
JM
7337 range_end = round_up(offset + num_bytes,
7338 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7339 ret = test_range_bit(io_tree, offset, range_end,
7340 EXTENT_DELALLOC, 0, NULL);
7341 if (ret) {
7342 ret = -EAGAIN;
7343 goto out;
7344 }
7345 }
7346
1bda19eb 7347 btrfs_release_path(path);
46bfbb5c
CM
7348
7349 /*
7350 * look for other files referencing this extent, if we
7351 * find any we must cow
7352 */
00361589 7353
e4c3b2dc 7354 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7355 key.offset - backref_offset, disk_bytenr);
00361589
JB
7356 if (ret) {
7357 ret = 0;
7358 goto out;
7359 }
46bfbb5c
CM
7360
7361 /*
7362 * adjust disk_bytenr and num_bytes to cover just the bytes
7363 * in this extent we are about to write. If there
7364 * are any csums in that range we have to cow in order
7365 * to keep the csums correct
7366 */
7367 disk_bytenr += backref_offset;
7368 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7369 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7370 goto out;
46bfbb5c
CM
7371 /*
7372 * all of the above have passed, it is safe to overwrite this extent
7373 * without cow
7374 */
eb384b55 7375 *len = num_bytes;
46bfbb5c
CM
7376 ret = 1;
7377out:
7378 btrfs_free_path(path);
7379 return ret;
7380}
7381
eb838e73
JB
7382static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7383 struct extent_state **cached_state, int writing)
7384{
7385 struct btrfs_ordered_extent *ordered;
7386 int ret = 0;
7387
7388 while (1) {
7389 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7390 cached_state);
eb838e73
JB
7391 /*
7392 * We're concerned with the entire range that we're going to be
01327610 7393 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7394 * extents in this range.
7395 */
a776c6fa 7396 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7397 lockend - lockstart + 1);
7398
7399 /*
7400 * We need to make sure there are no buffered pages in this
7401 * range either, we could have raced between the invalidate in
7402 * generic_file_direct_write and locking the extent. The
7403 * invalidate needs to happen so that reads after a write do not
7404 * get stale data.
7405 */
fc4adbff 7406 if (!ordered &&
051c98eb
DS
7407 (!writing || !filemap_range_has_page(inode->i_mapping,
7408 lockstart, lockend)))
eb838e73
JB
7409 break;
7410
7411 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 7412 cached_state);
eb838e73
JB
7413
7414 if (ordered) {
ade77029
FM
7415 /*
7416 * If we are doing a DIO read and the ordered extent we
7417 * found is for a buffered write, we can not wait for it
7418 * to complete and retry, because if we do so we can
7419 * deadlock with concurrent buffered writes on page
7420 * locks. This happens only if our DIO read covers more
7421 * than one extent map, if at this point has already
7422 * created an ordered extent for a previous extent map
7423 * and locked its range in the inode's io tree, and a
7424 * concurrent write against that previous extent map's
7425 * range and this range started (we unlock the ranges
7426 * in the io tree only when the bios complete and
7427 * buffered writes always lock pages before attempting
7428 * to lock range in the io tree).
7429 */
7430 if (writing ||
7431 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7432 btrfs_start_ordered_extent(inode, ordered, 1);
7433 else
7434 ret = -ENOTBLK;
eb838e73
JB
7435 btrfs_put_ordered_extent(ordered);
7436 } else {
eb838e73 7437 /*
b850ae14
FM
7438 * We could trigger writeback for this range (and wait
7439 * for it to complete) and then invalidate the pages for
7440 * this range (through invalidate_inode_pages2_range()),
7441 * but that can lead us to a deadlock with a concurrent
7442 * call to readpages() (a buffered read or a defrag call
7443 * triggered a readahead) on a page lock due to an
7444 * ordered dio extent we created before but did not have
7445 * yet a corresponding bio submitted (whence it can not
7446 * complete), which makes readpages() wait for that
7447 * ordered extent to complete while holding a lock on
7448 * that page.
eb838e73 7449 */
b850ae14 7450 ret = -ENOTBLK;
eb838e73
JB
7451 }
7452
ade77029
FM
7453 if (ret)
7454 break;
7455
eb838e73
JB
7456 cond_resched();
7457 }
7458
7459 return ret;
7460}
7461
6f9994db
LB
7462/* The callers of this must take lock_extent() */
7463static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7464 u64 orig_start, u64 block_start,
7465 u64 block_len, u64 orig_block_len,
7466 u64 ram_bytes, int compress_type,
7467 int type)
69ffb543
JB
7468{
7469 struct extent_map_tree *em_tree;
7470 struct extent_map *em;
7471 struct btrfs_root *root = BTRFS_I(inode)->root;
7472 int ret;
7473
6f9994db
LB
7474 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7475 type == BTRFS_ORDERED_COMPRESSED ||
7476 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7477 type == BTRFS_ORDERED_REGULAR);
6f9994db 7478
69ffb543
JB
7479 em_tree = &BTRFS_I(inode)->extent_tree;
7480 em = alloc_extent_map();
7481 if (!em)
7482 return ERR_PTR(-ENOMEM);
7483
7484 em->start = start;
7485 em->orig_start = orig_start;
7486 em->len = len;
7487 em->block_len = block_len;
7488 em->block_start = block_start;
7489 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7490 em->orig_block_len = orig_block_len;
cc95bef6 7491 em->ram_bytes = ram_bytes;
70c8a91c 7492 em->generation = -1;
69ffb543 7493 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7494 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7495 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7496 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7497 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7498 em->compress_type = compress_type;
7499 }
69ffb543
JB
7500
7501 do {
dcdbc059 7502 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7503 em->start + em->len - 1, 0);
7504 write_lock(&em_tree->lock);
09a2a8f9 7505 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7506 write_unlock(&em_tree->lock);
6f9994db
LB
7507 /*
7508 * The caller has taken lock_extent(), who could race with us
7509 * to add em?
7510 */
69ffb543
JB
7511 } while (ret == -EEXIST);
7512
7513 if (ret) {
7514 free_extent_map(em);
7515 return ERR_PTR(ret);
7516 }
7517
6f9994db 7518 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7519 return em;
7520}
7521
1c8d0175
NB
7522
7523static int btrfs_get_blocks_direct_read(struct extent_map *em,
7524 struct buffer_head *bh_result,
7525 struct inode *inode,
7526 u64 start, u64 len)
7527{
7528 if (em->block_start == EXTENT_MAP_HOLE ||
7529 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7530 return -ENOENT;
7531
7532 len = min(len, em->len - (start - em->start));
7533
7534 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7535 inode->i_blkbits;
7536 bh_result->b_size = len;
7537 bh_result->b_bdev = em->bdev;
7538 set_buffer_mapped(bh_result);
7539
7540 return 0;
7541}
7542
c5794e51
NB
7543static int btrfs_get_blocks_direct_write(struct extent_map **map,
7544 struct buffer_head *bh_result,
7545 struct inode *inode,
7546 struct btrfs_dio_data *dio_data,
7547 u64 start, u64 len)
7548{
7549 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7550 struct extent_map *em = *map;
7551 int ret = 0;
7552
7553 /*
7554 * We don't allocate a new extent in the following cases
7555 *
7556 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7557 * existing extent.
7558 * 2) The extent is marked as PREALLOC. We're good to go here and can
7559 * just use the extent.
7560 *
7561 */
7562 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7563 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7564 em->block_start != EXTENT_MAP_HOLE)) {
7565 int type;
7566 u64 block_start, orig_start, orig_block_len, ram_bytes;
7567
7568 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7569 type = BTRFS_ORDERED_PREALLOC;
7570 else
7571 type = BTRFS_ORDERED_NOCOW;
7572 len = min(len, em->len - (start - em->start));
7573 block_start = em->block_start + (start - em->start);
7574
7575 if (can_nocow_extent(inode, start, &len, &orig_start,
7576 &orig_block_len, &ram_bytes) == 1 &&
7577 btrfs_inc_nocow_writers(fs_info, block_start)) {
7578 struct extent_map *em2;
7579
7580 em2 = btrfs_create_dio_extent(inode, start, len,
7581 orig_start, block_start,
7582 len, orig_block_len,
7583 ram_bytes, type);
7584 btrfs_dec_nocow_writers(fs_info, block_start);
7585 if (type == BTRFS_ORDERED_PREALLOC) {
7586 free_extent_map(em);
7587 *map = em = em2;
7588 }
7589
7590 if (em2 && IS_ERR(em2)) {
7591 ret = PTR_ERR(em2);
7592 goto out;
7593 }
7594 /*
7595 * For inode marked NODATACOW or extent marked PREALLOC,
7596 * use the existing or preallocated extent, so does not
7597 * need to adjust btrfs_space_info's bytes_may_use.
7598 */
7599 btrfs_free_reserved_data_space_noquota(inode, start,
7600 len);
7601 goto skip_cow;
7602 }
7603 }
7604
7605 /* this will cow the extent */
7606 len = bh_result->b_size;
7607 free_extent_map(em);
7608 *map = em = btrfs_new_extent_direct(inode, start, len);
7609 if (IS_ERR(em)) {
7610 ret = PTR_ERR(em);
7611 goto out;
7612 }
7613
7614 len = min(len, em->len - (start - em->start));
7615
7616skip_cow:
7617 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7618 inode->i_blkbits;
7619 bh_result->b_size = len;
7620 bh_result->b_bdev = em->bdev;
7621 set_buffer_mapped(bh_result);
7622
7623 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7624 set_buffer_new(bh_result);
7625
7626 /*
7627 * Need to update the i_size under the extent lock so buffered
7628 * readers will get the updated i_size when we unlock.
7629 */
7630 if (!dio_data->overwrite && start + len > i_size_read(inode))
7631 i_size_write(inode, start + len);
7632
7633 WARN_ON(dio_data->reserve < len);
7634 dio_data->reserve -= len;
7635 dio_data->unsubmitted_oe_range_end = start + len;
7636 current->journal_info = dio_data;
7637out:
7638 return ret;
7639}
7640
4b46fce2
JB
7641static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7642 struct buffer_head *bh_result, int create)
7643{
0b246afa 7644 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7645 struct extent_map *em;
eb838e73 7646 struct extent_state *cached_state = NULL;
50745b0a 7647 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7648 u64 start = iblock << inode->i_blkbits;
eb838e73 7649 u64 lockstart, lockend;
4b46fce2 7650 u64 len = bh_result->b_size;
eb838e73 7651 int unlock_bits = EXTENT_LOCKED;
0934856d 7652 int ret = 0;
eb838e73 7653
172a5049 7654 if (create)
3266789f 7655 unlock_bits |= EXTENT_DIRTY;
172a5049 7656 else
0b246afa 7657 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7658
c329861d
JB
7659 lockstart = start;
7660 lockend = start + len - 1;
7661
e1cbbfa5
JB
7662 if (current->journal_info) {
7663 /*
7664 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7665 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7666 * confused.
7667 */
50745b0a 7668 dio_data = current->journal_info;
e1cbbfa5
JB
7669 current->journal_info = NULL;
7670 }
7671
eb838e73
JB
7672 /*
7673 * If this errors out it's because we couldn't invalidate pagecache for
7674 * this range and we need to fallback to buffered.
7675 */
9c9464cc
FM
7676 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7677 create)) {
7678 ret = -ENOTBLK;
7679 goto err;
7680 }
eb838e73 7681
fc4f21b1 7682 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7683 if (IS_ERR(em)) {
7684 ret = PTR_ERR(em);
7685 goto unlock_err;
7686 }
4b46fce2
JB
7687
7688 /*
7689 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7690 * io. INLINE is special, and we could probably kludge it in here, but
7691 * it's still buffered so for safety lets just fall back to the generic
7692 * buffered path.
7693 *
7694 * For COMPRESSED we _have_ to read the entire extent in so we can
7695 * decompress it, so there will be buffering required no matter what we
7696 * do, so go ahead and fallback to buffered.
7697 *
01327610 7698 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7699 * to buffered IO. Don't blame me, this is the price we pay for using
7700 * the generic code.
7701 */
7702 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7703 em->block_start == EXTENT_MAP_INLINE) {
7704 free_extent_map(em);
eb838e73
JB
7705 ret = -ENOTBLK;
7706 goto unlock_err;
4b46fce2
JB
7707 }
7708
c5794e51
NB
7709 if (create) {
7710 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7711 dio_data, start, len);
7712 if (ret < 0)
7713 goto unlock_err;
7714
7715 /* clear and unlock the entire range */
7716 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7717 unlock_bits, 1, 0, &cached_state);
7718 } else {
1c8d0175
NB
7719 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7720 start, len);
7721 /* Can be negative only if we read from a hole */
7722 if (ret < 0) {
7723 ret = 0;
7724 free_extent_map(em);
7725 goto unlock_err;
7726 }
7727 /*
7728 * We need to unlock only the end area that we aren't using.
7729 * The rest is going to be unlocked by the endio routine.
7730 */
7731 lockstart = start + bh_result->b_size;
7732 if (lockstart < lockend) {
7733 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7734 lockend, unlock_bits, 1, 0,
7735 &cached_state);
7736 } else {
7737 free_extent_state(cached_state);
7738 }
4b46fce2
JB
7739 }
7740
4b46fce2
JB
7741 free_extent_map(em);
7742
7743 return 0;
eb838e73
JB
7744
7745unlock_err:
eb838e73 7746 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ae0f1625 7747 unlock_bits, 1, 0, &cached_state);
9c9464cc 7748err:
50745b0a 7749 if (dio_data)
7750 current->journal_info = dio_data;
eb838e73 7751 return ret;
4b46fce2
JB
7752}
7753
58efbc9f
OS
7754static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7755 struct bio *bio,
7756 int mirror_num)
8b110e39 7757{
2ff7e61e 7758 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7759 blk_status_t ret;
8b110e39 7760
37226b21 7761 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7762
2ff7e61e 7763 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39 7764 if (ret)
ea057f6d 7765 return ret;
8b110e39 7766
2ff7e61e 7767 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
ea057f6d 7768
8b110e39
MX
7769 return ret;
7770}
7771
7772static int btrfs_check_dio_repairable(struct inode *inode,
7773 struct bio *failed_bio,
7774 struct io_failure_record *failrec,
7775 int failed_mirror)
7776{
ab8d0fc4 7777 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7778 int num_copies;
7779
ab8d0fc4 7780 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7781 if (num_copies == 1) {
7782 /*
7783 * we only have a single copy of the data, so don't bother with
7784 * all the retry and error correction code that follows. no
7785 * matter what the error is, it is very likely to persist.
7786 */
ab8d0fc4
JM
7787 btrfs_debug(fs_info,
7788 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7789 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7790 return 0;
7791 }
7792
7793 failrec->failed_mirror = failed_mirror;
7794 failrec->this_mirror++;
7795 if (failrec->this_mirror == failed_mirror)
7796 failrec->this_mirror++;
7797
7798 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7799 btrfs_debug(fs_info,
7800 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7801 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7802 return 0;
7803 }
7804
7805 return 1;
7806}
7807
58efbc9f
OS
7808static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7809 struct page *page, unsigned int pgoff,
7810 u64 start, u64 end, int failed_mirror,
7811 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7812{
7813 struct io_failure_record *failrec;
7870d082
JB
7814 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7815 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8b110e39
MX
7816 struct bio *bio;
7817 int isector;
f1c77c55 7818 unsigned int read_mode = 0;
17347cec 7819 int segs;
8b110e39 7820 int ret;
58efbc9f 7821 blk_status_t status;
c16a8ac3 7822 struct bio_vec bvec;
8b110e39 7823
37226b21 7824 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7825
7826 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7827 if (ret)
58efbc9f 7828 return errno_to_blk_status(ret);
8b110e39
MX
7829
7830 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7831 failed_mirror);
7832 if (!ret) {
7870d082 7833 free_io_failure(failure_tree, io_tree, failrec);
58efbc9f 7834 return BLK_STS_IOERR;
8b110e39
MX
7835 }
7836
17347cec 7837 segs = bio_segments(failed_bio);
c16a8ac3 7838 bio_get_first_bvec(failed_bio, &bvec);
17347cec 7839 if (segs > 1 ||
c16a8ac3 7840 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
70fd7614 7841 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
7842
7843 isector = start - btrfs_io_bio(failed_bio)->logical;
7844 isector >>= inode->i_sb->s_blocksize_bits;
7845 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7846 pgoff, isector, repair_endio, repair_arg);
ebcc3263 7847 bio->bi_opf = REQ_OP_READ | read_mode;
8b110e39
MX
7848
7849 btrfs_debug(BTRFS_I(inode)->root->fs_info,
913e1535 7850 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8b110e39
MX
7851 read_mode, failrec->this_mirror, failrec->in_validation);
7852
58efbc9f
OS
7853 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7854 if (status) {
7870d082 7855 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
7856 bio_put(bio);
7857 }
7858
58efbc9f 7859 return status;
8b110e39
MX
7860}
7861
7862struct btrfs_retry_complete {
7863 struct completion done;
7864 struct inode *inode;
7865 u64 start;
7866 int uptodate;
7867};
7868
4246a0b6 7869static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7870{
7871 struct btrfs_retry_complete *done = bio->bi_private;
7870d082 7872 struct inode *inode = done->inode;
8b110e39 7873 struct bio_vec *bvec;
7870d082 7874 struct extent_io_tree *io_tree, *failure_tree;
6dc4f100 7875 struct bvec_iter_all iter_all;
8b110e39 7876
4e4cbee9 7877 if (bio->bi_status)
8b110e39
MX
7878 goto end;
7879
2dabb324 7880 ASSERT(bio->bi_vcnt == 1);
7870d082
JB
7881 io_tree = &BTRFS_I(inode)->io_tree;
7882 failure_tree = &BTRFS_I(inode)->io_failure_tree;
263663cd 7883 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 7884
8b110e39 7885 done->uptodate = 1;
c09abff8 7886 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 7887 bio_for_each_segment_all(bvec, bio, iter_all)
7870d082
JB
7888 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7889 io_tree, done->start, bvec->bv_page,
7890 btrfs_ino(BTRFS_I(inode)), 0);
8b110e39
MX
7891end:
7892 complete(&done->done);
7893 bio_put(bio);
7894}
7895
58efbc9f
OS
7896static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7897 struct btrfs_io_bio *io_bio)
4b46fce2 7898{
2dabb324 7899 struct btrfs_fs_info *fs_info;
17347cec
LB
7900 struct bio_vec bvec;
7901 struct bvec_iter iter;
8b110e39 7902 struct btrfs_retry_complete done;
4b46fce2 7903 u64 start;
2dabb324
CR
7904 unsigned int pgoff;
7905 u32 sectorsize;
7906 int nr_sectors;
58efbc9f
OS
7907 blk_status_t ret;
7908 blk_status_t err = BLK_STS_OK;
4b46fce2 7909
2dabb324 7910 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 7911 sectorsize = fs_info->sectorsize;
2dabb324 7912
8b110e39
MX
7913 start = io_bio->logical;
7914 done.inode = inode;
17347cec 7915 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 7916
17347cec
LB
7917 bio_for_each_segment(bvec, &io_bio->bio, iter) {
7918 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7919 pgoff = bvec.bv_offset;
2dabb324
CR
7920
7921next_block_or_try_again:
8b110e39
MX
7922 done.uptodate = 0;
7923 done.start = start;
7924 init_completion(&done.done);
7925
17347cec 7926 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
7927 pgoff, start, start + sectorsize - 1,
7928 io_bio->mirror_num,
7929 btrfs_retry_endio_nocsum, &done);
629ebf4f
LB
7930 if (ret) {
7931 err = ret;
7932 goto next;
7933 }
8b110e39 7934
9c17f6cd 7935 wait_for_completion_io(&done.done);
8b110e39
MX
7936
7937 if (!done.uptodate) {
7938 /* We might have another mirror, so try again */
2dabb324 7939 goto next_block_or_try_again;
8b110e39
MX
7940 }
7941
629ebf4f 7942next:
2dabb324
CR
7943 start += sectorsize;
7944
97bf5a55
LB
7945 nr_sectors--;
7946 if (nr_sectors) {
2dabb324 7947 pgoff += sectorsize;
97bf5a55 7948 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
7949 goto next_block_or_try_again;
7950 }
8b110e39
MX
7951 }
7952
629ebf4f 7953 return err;
8b110e39
MX
7954}
7955
4246a0b6 7956static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7957{
7958 struct btrfs_retry_complete *done = bio->bi_private;
7959 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082
JB
7960 struct extent_io_tree *io_tree, *failure_tree;
7961 struct inode *inode = done->inode;
8b110e39
MX
7962 struct bio_vec *bvec;
7963 int uptodate;
7964 int ret;
2b070cfe 7965 int i = 0;
6dc4f100 7966 struct bvec_iter_all iter_all;
8b110e39 7967
4e4cbee9 7968 if (bio->bi_status)
8b110e39
MX
7969 goto end;
7970
7971 uptodate = 1;
2dabb324 7972
2dabb324 7973 ASSERT(bio->bi_vcnt == 1);
263663cd 7974 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 7975
7870d082
JB
7976 io_tree = &BTRFS_I(inode)->io_tree;
7977 failure_tree = &BTRFS_I(inode)->io_failure_tree;
7978
c09abff8 7979 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 7980 bio_for_each_segment_all(bvec, bio, iter_all) {
7870d082
JB
7981 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7982 bvec->bv_offset, done->start,
7983 bvec->bv_len);
8b110e39 7984 if (!ret)
7870d082
JB
7985 clean_io_failure(BTRFS_I(inode)->root->fs_info,
7986 failure_tree, io_tree, done->start,
7987 bvec->bv_page,
7988 btrfs_ino(BTRFS_I(inode)),
7989 bvec->bv_offset);
8b110e39
MX
7990 else
7991 uptodate = 0;
2b070cfe 7992 i++;
8b110e39
MX
7993 }
7994
7995 done->uptodate = uptodate;
7996end:
7997 complete(&done->done);
7998 bio_put(bio);
7999}
8000
4e4cbee9
CH
8001static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8002 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39 8003{
2dabb324 8004 struct btrfs_fs_info *fs_info;
17347cec
LB
8005 struct bio_vec bvec;
8006 struct bvec_iter iter;
8b110e39
MX
8007 struct btrfs_retry_complete done;
8008 u64 start;
8009 u64 offset = 0;
2dabb324
CR
8010 u32 sectorsize;
8011 int nr_sectors;
8012 unsigned int pgoff;
8013 int csum_pos;
ef7cdac1 8014 bool uptodate = (err == 0);
8b110e39 8015 int ret;
58efbc9f 8016 blk_status_t status;
dc380aea 8017
2dabb324 8018 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8019 sectorsize = fs_info->sectorsize;
2dabb324 8020
58efbc9f 8021 err = BLK_STS_OK;
c1dc0896 8022 start = io_bio->logical;
8b110e39 8023 done.inode = inode;
17347cec 8024 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8025
17347cec
LB
8026 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8027 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
2dabb324 8028
17347cec 8029 pgoff = bvec.bv_offset;
2dabb324 8030next_block:
ef7cdac1
LB
8031 if (uptodate) {
8032 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8033 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8034 bvec.bv_page, pgoff, start, sectorsize);
8035 if (likely(!ret))
8036 goto next;
8037 }
8b110e39
MX
8038try_again:
8039 done.uptodate = 0;
8040 done.start = start;
8041 init_completion(&done.done);
8042
58efbc9f
OS
8043 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8044 pgoff, start, start + sectorsize - 1,
8045 io_bio->mirror_num, btrfs_retry_endio,
8046 &done);
8047 if (status) {
8048 err = status;
8b110e39
MX
8049 goto next;
8050 }
8051
9c17f6cd 8052 wait_for_completion_io(&done.done);
8b110e39
MX
8053
8054 if (!done.uptodate) {
8055 /* We might have another mirror, so try again */
8056 goto try_again;
8057 }
8058next:
2dabb324
CR
8059 offset += sectorsize;
8060 start += sectorsize;
8061
8062 ASSERT(nr_sectors);
8063
97bf5a55
LB
8064 nr_sectors--;
8065 if (nr_sectors) {
2dabb324 8066 pgoff += sectorsize;
97bf5a55 8067 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8068 goto next_block;
8069 }
2c30c71b 8070 }
c1dc0896
MX
8071
8072 return err;
8073}
8074
4e4cbee9
CH
8075static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8076 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39
MX
8077{
8078 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8079
8080 if (skip_csum) {
8081 if (unlikely(err))
8082 return __btrfs_correct_data_nocsum(inode, io_bio);
8083 else
58efbc9f 8084 return BLK_STS_OK;
8b110e39
MX
8085 } else {
8086 return __btrfs_subio_endio_read(inode, io_bio, err);
8087 }
8088}
8089
4246a0b6 8090static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8091{
8092 struct btrfs_dio_private *dip = bio->bi_private;
8093 struct inode *inode = dip->inode;
8094 struct bio *dio_bio;
8095 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4e4cbee9 8096 blk_status_t err = bio->bi_status;
c1dc0896 8097
99c4e3b9 8098 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8b110e39 8099 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8100
4b46fce2 8101 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8102 dip->logical_offset + dip->bytes - 1);
9be3395b 8103 dio_bio = dip->dio_bio;
4b46fce2 8104
4b46fce2 8105 kfree(dip);
c0da7aa1 8106
99c4e3b9 8107 dio_bio->bi_status = err;
4055351c 8108 dio_end_io(dio_bio);
b3a0dd50 8109 btrfs_io_bio_free_csum(io_bio);
9be3395b 8110 bio_put(bio);
4b46fce2
JB
8111}
8112
52427260
QW
8113static void __endio_write_update_ordered(struct inode *inode,
8114 const u64 offset, const u64 bytes,
8115 const bool uptodate)
4b46fce2 8116{
0b246afa 8117 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8118 struct btrfs_ordered_extent *ordered = NULL;
52427260
QW
8119 struct btrfs_workqueue *wq;
8120 btrfs_work_func_t func;
14543774
FM
8121 u64 ordered_offset = offset;
8122 u64 ordered_bytes = bytes;
67c003f9 8123 u64 last_offset;
4b46fce2 8124
52427260
QW
8125 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8126 wq = fs_info->endio_freespace_worker;
8127 func = btrfs_freespace_write_helper;
8128 } else {
8129 wq = fs_info->endio_write_workers;
8130 func = btrfs_endio_write_helper;
8131 }
8132
b25f0d00
NB
8133 while (ordered_offset < offset + bytes) {
8134 last_offset = ordered_offset;
8135 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8136 &ordered_offset,
8137 ordered_bytes,
8138 uptodate)) {
8139 btrfs_init_work(&ordered->work, func,
8140 finish_ordered_fn,
8141 NULL, NULL);
8142 btrfs_queue_work(wq, &ordered->work);
8143 }
8144 /*
8145 * If btrfs_dec_test_ordered_pending does not find any ordered
8146 * extent in the range, we can exit.
8147 */
8148 if (ordered_offset == last_offset)
8149 return;
8150 /*
8151 * Our bio might span multiple ordered extents. In this case
52042d8e 8152 * we keep going until we have accounted the whole dio.
b25f0d00
NB
8153 */
8154 if (ordered_offset < offset + bytes) {
8155 ordered_bytes = offset + bytes - ordered_offset;
8156 ordered = NULL;
8157 }
163cf09c 8158 }
14543774
FM
8159}
8160
8161static void btrfs_endio_direct_write(struct bio *bio)
8162{
8163 struct btrfs_dio_private *dip = bio->bi_private;
8164 struct bio *dio_bio = dip->dio_bio;
8165
52427260 8166 __endio_write_update_ordered(dip->inode, dip->logical_offset,
4e4cbee9 8167 dip->bytes, !bio->bi_status);
4b46fce2 8168
4b46fce2 8169 kfree(dip);
c0da7aa1 8170
4e4cbee9 8171 dio_bio->bi_status = bio->bi_status;
4055351c 8172 dio_end_io(dio_bio);
9be3395b 8173 bio_put(bio);
4b46fce2
JB
8174}
8175
d0ee3934 8176static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
d0779291 8177 struct bio *bio, u64 offset)
eaf25d93 8178{
c6100a4b 8179 struct inode *inode = private_data;
4e4cbee9 8180 blk_status_t ret;
2ff7e61e 8181 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8182 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8183 return 0;
8184}
8185
4246a0b6 8186static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8187{
8188 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 8189 blk_status_t err = bio->bi_status;
e65e1535 8190
8b110e39
MX
8191 if (err)
8192 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8193 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8194 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8195 bio->bi_opf,
8b110e39
MX
8196 (unsigned long long)bio->bi_iter.bi_sector,
8197 bio->bi_iter.bi_size, err);
8198
8199 if (dip->subio_endio)
8200 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8201
8202 if (err) {
e65e1535 8203 /*
de224b7c
NB
8204 * We want to perceive the errors flag being set before
8205 * decrementing the reference count. We don't need a barrier
8206 * since atomic operations with a return value are fully
8207 * ordered as per atomic_t.txt
e65e1535 8208 */
de224b7c 8209 dip->errors = 1;
e65e1535
MX
8210 }
8211
8212 /* if there are more bios still pending for this dio, just exit */
8213 if (!atomic_dec_and_test(&dip->pending_bios))
8214 goto out;
8215
9be3395b 8216 if (dip->errors) {
e65e1535 8217 bio_io_error(dip->orig_bio);
9be3395b 8218 } else {
2dbe0c77 8219 dip->dio_bio->bi_status = BLK_STS_OK;
4246a0b6 8220 bio_endio(dip->orig_bio);
e65e1535
MX
8221 }
8222out:
8223 bio_put(bio);
8224}
8225
4e4cbee9 8226static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8227 struct btrfs_dio_private *dip,
8228 struct bio *bio,
8229 u64 file_offset)
8230{
8231 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8232 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
4e4cbee9 8233 blk_status_t ret;
c1dc0896
MX
8234
8235 /*
8236 * We load all the csum data we need when we submit
8237 * the first bio to reduce the csum tree search and
8238 * contention.
8239 */
8240 if (dip->logical_offset == file_offset) {
2ff7e61e 8241 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8242 file_offset);
8243 if (ret)
8244 return ret;
8245 }
8246
8247 if (bio == dip->orig_bio)
8248 return 0;
8249
8250 file_offset -= dip->logical_offset;
8251 file_offset >>= inode->i_sb->s_blocksize_bits;
8252 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8253
8254 return 0;
8255}
8256
d0ee3934
DS
8257static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8258 struct inode *inode, u64 file_offset, int async_submit)
e65e1535 8259{
0b246afa 8260 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8261 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8262 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 8263 blk_status_t ret;
e65e1535 8264
4c274bc6 8265 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
8266 if (async_submit)
8267 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8268
5fd02043 8269 if (!write) {
0b246afa 8270 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8271 if (ret)
8272 goto err;
8273 }
e65e1535 8274
e6961cac 8275 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
8276 goto map;
8277
8278 if (write && async_submit) {
c6100a4b
JB
8279 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8280 file_offset, inode,
e288c080 8281 btrfs_submit_bio_start_direct_io);
e65e1535 8282 goto err;
1ae39938
JB
8283 } else if (write) {
8284 /*
8285 * If we aren't doing async submit, calculate the csum of the
8286 * bio now.
8287 */
2ff7e61e 8288 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8289 if (ret)
8290 goto err;
23ea8e5a 8291 } else {
2ff7e61e 8292 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8293 file_offset);
c2db1073
TI
8294 if (ret)
8295 goto err;
8296 }
1ae39938 8297map:
9b4a9b28 8298 ret = btrfs_map_bio(fs_info, bio, 0, 0);
e65e1535 8299err:
e65e1535
MX
8300 return ret;
8301}
8302
e6961cac 8303static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
e65e1535
MX
8304{
8305 struct inode *inode = dip->inode;
0b246afa 8306 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535
MX
8307 struct bio *bio;
8308 struct bio *orig_bio = dip->orig_bio;
4f024f37 8309 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535 8310 u64 file_offset = dip->logical_offset;
e65e1535 8311 u64 map_length;
1ae39938 8312 int async_submit = 0;
725130ba
LB
8313 u64 submit_len;
8314 int clone_offset = 0;
8315 int clone_len;
5f4dc8fc 8316 int ret;
58efbc9f 8317 blk_status_t status;
e65e1535 8318
4f024f37 8319 map_length = orig_bio->bi_iter.bi_size;
725130ba 8320 submit_len = map_length;
0b246afa
JM
8321 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8322 &map_length, NULL, 0);
7a5c3c9b 8323 if (ret)
e65e1535 8324 return -EIO;
facc8a22 8325
725130ba 8326 if (map_length >= submit_len) {
02f57c7a 8327 bio = orig_bio;
c1dc0896 8328 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8329 goto submit;
8330 }
8331
53b381b3 8332 /* async crcs make it difficult to collect full stripe writes. */
1b86826d 8333 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8334 async_submit = 0;
8335 else
8336 async_submit = 1;
8337
725130ba
LB
8338 /* bio split */
8339 ASSERT(map_length <= INT_MAX);
02f57c7a 8340 atomic_inc(&dip->pending_bios);
3c91ee69 8341 do {
725130ba 8342 clone_len = min_t(int, submit_len, map_length);
02f57c7a 8343
725130ba
LB
8344 /*
8345 * This will never fail as it's passing GPF_NOFS and
8346 * the allocation is backed by btrfs_bioset.
8347 */
e477094f 8348 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
725130ba
LB
8349 clone_len);
8350 bio->bi_private = dip;
8351 bio->bi_end_io = btrfs_end_dio_bio;
8352 btrfs_io_bio(bio)->logical = file_offset;
8353
8354 ASSERT(submit_len >= clone_len);
8355 submit_len -= clone_len;
8356 if (submit_len == 0)
8357 break;
e65e1535 8358
725130ba
LB
8359 /*
8360 * Increase the count before we submit the bio so we know
8361 * the end IO handler won't happen before we increase the
8362 * count. Otherwise, the dip might get freed before we're
8363 * done setting it up.
8364 */
8365 atomic_inc(&dip->pending_bios);
e65e1535 8366
d0ee3934 8367 status = btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
8368 async_submit);
8369 if (status) {
725130ba
LB
8370 bio_put(bio);
8371 atomic_dec(&dip->pending_bios);
8372 goto out_err;
8373 }
e65e1535 8374
725130ba
LB
8375 clone_offset += clone_len;
8376 start_sector += clone_len >> 9;
8377 file_offset += clone_len;
5f4dc8fc 8378
725130ba
LB
8379 map_length = submit_len;
8380 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8381 start_sector << 9, &map_length, NULL, 0);
8382 if (ret)
8383 goto out_err;
3c91ee69 8384 } while (submit_len > 0);
e65e1535 8385
02f57c7a 8386submit:
d0ee3934 8387 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
58efbc9f 8388 if (!status)
e65e1535
MX
8389 return 0;
8390
8391 bio_put(bio);
8392out_err:
8393 dip->errors = 1;
8394 /*
de224b7c
NB
8395 * Before atomic variable goto zero, we must make sure dip->errors is
8396 * perceived to be set. This ordering is ensured by the fact that an
8397 * atomic operations with a return value are fully ordered as per
8398 * atomic_t.txt
e65e1535 8399 */
e65e1535
MX
8400 if (atomic_dec_and_test(&dip->pending_bios))
8401 bio_io_error(dip->orig_bio);
8402
8403 /* bio_end_io() will handle error, so we needn't return it */
8404 return 0;
8405}
8406
8a4c1e42
MC
8407static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8408 loff_t file_offset)
4b46fce2 8409{
61de718f 8410 struct btrfs_dio_private *dip = NULL;
3892ac90
LB
8411 struct bio *bio = NULL;
8412 struct btrfs_io_bio *io_bio;
8a4c1e42 8413 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8414 int ret = 0;
8415
8b6c1d56 8416 bio = btrfs_bio_clone(dio_bio);
9be3395b 8417
c1dc0896 8418 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8419 if (!dip) {
8420 ret = -ENOMEM;
61de718f 8421 goto free_ordered;
4b46fce2 8422 }
4b46fce2 8423
9be3395b 8424 dip->private = dio_bio->bi_private;
4b46fce2
JB
8425 dip->inode = inode;
8426 dip->logical_offset = file_offset;
4f024f37
KO
8427 dip->bytes = dio_bio->bi_iter.bi_size;
8428 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
3892ac90
LB
8429 bio->bi_private = dip;
8430 dip->orig_bio = bio;
9be3395b 8431 dip->dio_bio = dio_bio;
e65e1535 8432 atomic_set(&dip->pending_bios, 0);
3892ac90
LB
8433 io_bio = btrfs_io_bio(bio);
8434 io_bio->logical = file_offset;
4b46fce2 8435
c1dc0896 8436 if (write) {
3892ac90 8437 bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8438 } else {
3892ac90 8439 bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8440 dip->subio_endio = btrfs_subio_endio_read;
8441 }
4b46fce2 8442
f28a4928
FM
8443 /*
8444 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8445 * even if we fail to submit a bio, because in such case we do the
8446 * corresponding error handling below and it must not be done a second
8447 * time by btrfs_direct_IO().
8448 */
8449 if (write) {
8450 struct btrfs_dio_data *dio_data = current->journal_info;
8451
8452 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8453 dip->bytes;
8454 dio_data->unsubmitted_oe_range_start =
8455 dio_data->unsubmitted_oe_range_end;
8456 }
8457
e6961cac 8458 ret = btrfs_submit_direct_hook(dip);
e65e1535 8459 if (!ret)
eaf25d93 8460 return;
9be3395b 8461
b3a0dd50 8462 btrfs_io_bio_free_csum(io_bio);
9be3395b 8463
4b46fce2
JB
8464free_ordered:
8465 /*
61de718f
FM
8466 * If we arrived here it means either we failed to submit the dip
8467 * or we either failed to clone the dio_bio or failed to allocate the
8468 * dip. If we cloned the dio_bio and allocated the dip, we can just
8469 * call bio_endio against our io_bio so that we get proper resource
8470 * cleanup if we fail to submit the dip, otherwise, we must do the
8471 * same as btrfs_endio_direct_[write|read] because we can't call these
8472 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8473 */
3892ac90 8474 if (bio && dip) {
054ec2f6 8475 bio_io_error(bio);
61de718f 8476 /*
3892ac90 8477 * The end io callbacks free our dip, do the final put on bio
61de718f
FM
8478 * and all the cleanup and final put for dio_bio (through
8479 * dio_end_io()).
8480 */
8481 dip = NULL;
3892ac90 8482 bio = NULL;
61de718f 8483 } else {
14543774 8484 if (write)
52427260 8485 __endio_write_update_ordered(inode,
14543774
FM
8486 file_offset,
8487 dio_bio->bi_iter.bi_size,
52427260 8488 false);
14543774 8489 else
61de718f
FM
8490 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8491 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8492
4e4cbee9 8493 dio_bio->bi_status = BLK_STS_IOERR;
61de718f
FM
8494 /*
8495 * Releases and cleans up our dio_bio, no need to bio_put()
8496 * nor bio_endio()/bio_io_error() against dio_bio.
8497 */
4055351c 8498 dio_end_io(dio_bio);
4b46fce2 8499 }
3892ac90
LB
8500 if (bio)
8501 bio_put(bio);
61de718f 8502 kfree(dip);
4b46fce2
JB
8503}
8504
2ff7e61e 8505static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
2ff7e61e 8506 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8507{
8508 int seg;
a1b75f7d 8509 int i;
0b246afa 8510 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8511 ssize_t retval = -EINVAL;
5a5f79b5
CM
8512
8513 if (offset & blocksize_mask)
8514 goto out;
8515
28060d5d
AV
8516 if (iov_iter_alignment(iter) & blocksize_mask)
8517 goto out;
a1b75f7d 8518
28060d5d 8519 /* If this is a write we don't need to check anymore */
cd27e455 8520 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8521 return 0;
8522 /*
8523 * Check to make sure we don't have duplicate iov_base's in this
8524 * iovec, if so return EINVAL, otherwise we'll get csum errors
8525 * when reading back.
8526 */
8527 for (seg = 0; seg < iter->nr_segs; seg++) {
8528 for (i = seg + 1; i < iter->nr_segs; i++) {
8529 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8530 goto out;
8531 }
5a5f79b5
CM
8532 }
8533 retval = 0;
8534out:
8535 return retval;
8536}
eb838e73 8537
c8b8e32d 8538static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8539{
4b46fce2
JB
8540 struct file *file = iocb->ki_filp;
8541 struct inode *inode = file->f_mapping->host;
0b246afa 8542 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8543 struct btrfs_dio_data dio_data = { 0 };
364ecf36 8544 struct extent_changeset *data_reserved = NULL;
c8b8e32d 8545 loff_t offset = iocb->ki_pos;
0934856d 8546 size_t count = 0;
2e60a51e 8547 int flags = 0;
38851cc1
MX
8548 bool wakeup = true;
8549 bool relock = false;
0934856d 8550 ssize_t ret;
4b46fce2 8551
8c70c9f8 8552 if (check_direct_IO(fs_info, iter, offset))
5a5f79b5 8553 return 0;
3f7c579c 8554
fe0f07d0 8555 inode_dio_begin(inode);
38851cc1 8556
0e267c44 8557 /*
41bd9ca4
MX
8558 * The generic stuff only does filemap_write_and_wait_range, which
8559 * isn't enough if we've written compressed pages to this area, so
8560 * we need to flush the dirty pages again to make absolutely sure
8561 * that any outstanding dirty pages are on disk.
0e267c44 8562 */
a6cbcd4a 8563 count = iov_iter_count(iter);
41bd9ca4
MX
8564 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8565 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8566 filemap_fdatawrite_range(inode->i_mapping, offset,
8567 offset + count - 1);
0e267c44 8568
6f673763 8569 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8570 /*
8571 * If the write DIO is beyond the EOF, we need update
8572 * the isize, but it is protected by i_mutex. So we can
8573 * not unlock the i_mutex at this case.
8574 */
8575 if (offset + count <= inode->i_size) {
4aaedfb0 8576 dio_data.overwrite = 1;
5955102c 8577 inode_unlock(inode);
38851cc1 8578 relock = true;
edf064e7
GR
8579 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8580 ret = -EAGAIN;
8581 goto out;
38851cc1 8582 }
364ecf36
QW
8583 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8584 offset, count);
0934856d 8585 if (ret)
38851cc1 8586 goto out;
e1cbbfa5
JB
8587
8588 /*
8589 * We need to know how many extents we reserved so that we can
8590 * do the accounting properly if we go over the number we
8591 * originally calculated. Abuse current->journal_info for this.
8592 */
da17066c 8593 dio_data.reserve = round_up(count,
0b246afa 8594 fs_info->sectorsize);
f28a4928
FM
8595 dio_data.unsubmitted_oe_range_start = (u64)offset;
8596 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8597 current->journal_info = &dio_data;
97dcdea0 8598 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8599 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8600 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8601 inode_dio_end(inode);
38851cc1
MX
8602 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8603 wakeup = false;
0934856d
MX
8604 }
8605
17f8c842 8606 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8607 fs_info->fs_devices->latest_bdev,
c8b8e32d 8608 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8609 btrfs_submit_direct, flags);
6f673763 8610 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8611 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8612 current->journal_info = NULL;
ddba1bfc 8613 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8614 if (dio_data.reserve)
bc42bda2 8615 btrfs_delalloc_release_space(inode, data_reserved,
43b18595 8616 offset, dio_data.reserve, true);
f28a4928
FM
8617 /*
8618 * On error we might have left some ordered extents
8619 * without submitting corresponding bios for them, so
8620 * cleanup them up to avoid other tasks getting them
8621 * and waiting for them to complete forever.
8622 */
8623 if (dio_data.unsubmitted_oe_range_start <
8624 dio_data.unsubmitted_oe_range_end)
52427260 8625 __endio_write_update_ordered(inode,
f28a4928
FM
8626 dio_data.unsubmitted_oe_range_start,
8627 dio_data.unsubmitted_oe_range_end -
8628 dio_data.unsubmitted_oe_range_start,
52427260 8629 false);
ddba1bfc 8630 } else if (ret >= 0 && (size_t)ret < count)
bc42bda2 8631 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
8632 offset, count - (size_t)ret, true);
8633 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
0934856d 8634 }
38851cc1 8635out:
2e60a51e 8636 if (wakeup)
fe0f07d0 8637 inode_dio_end(inode);
38851cc1 8638 if (relock)
5955102c 8639 inode_lock(inode);
0934856d 8640
364ecf36 8641 extent_changeset_free(data_reserved);
0934856d 8642 return ret;
16432985
CM
8643}
8644
05dadc09
TI
8645#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8646
1506fcc8
YS
8647static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8648 __u64 start, __u64 len)
8649{
05dadc09
TI
8650 int ret;
8651
8652 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8653 if (ret)
8654 return ret;
8655
2135fb9b 8656 return extent_fiemap(inode, fieinfo, start, len);
1506fcc8
YS
8657}
8658
a52d9a80 8659int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8660{
d1310b2e
CM
8661 struct extent_io_tree *tree;
8662 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8663 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8664}
1832a6d5 8665
a52d9a80 8666static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8667{
be7bd730
JB
8668 struct inode *inode = page->mapping->host;
8669 int ret;
b888db2b
CM
8670
8671 if (current->flags & PF_MEMALLOC) {
8672 redirty_page_for_writepage(wbc, page);
8673 unlock_page(page);
8674 return 0;
8675 }
be7bd730
JB
8676
8677 /*
8678 * If we are under memory pressure we will call this directly from the
8679 * VM, we need to make sure we have the inode referenced for the ordered
8680 * extent. If not just return like we didn't do anything.
8681 */
8682 if (!igrab(inode)) {
8683 redirty_page_for_writepage(wbc, page);
8684 return AOP_WRITEPAGE_ACTIVATE;
8685 }
0a9b0e53 8686 ret = extent_write_full_page(page, wbc);
be7bd730
JB
8687 btrfs_add_delayed_iput(inode);
8688 return ret;
9ebefb18
CM
8689}
8690
48a3b636
ES
8691static int btrfs_writepages(struct address_space *mapping,
8692 struct writeback_control *wbc)
b293f02e 8693{
8ae225a8 8694 return extent_writepages(mapping, wbc);
b293f02e
CM
8695}
8696
3ab2fb5a
CM
8697static int
8698btrfs_readpages(struct file *file, struct address_space *mapping,
8699 struct list_head *pages, unsigned nr_pages)
8700{
2a3ff0ad 8701 return extent_readpages(mapping, pages, nr_pages);
3ab2fb5a 8702}
2a3ff0ad 8703
e6dcd2dc 8704static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8705{
477a30ba 8706 int ret = try_release_extent_mapping(page, gfp_flags);
a52d9a80
CM
8707 if (ret == 1) {
8708 ClearPagePrivate(page);
8709 set_page_private(page, 0);
09cbfeaf 8710 put_page(page);
39279cc3 8711 }
a52d9a80 8712 return ret;
39279cc3
CM
8713}
8714
e6dcd2dc
CM
8715static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8716{
98509cfc
CM
8717 if (PageWriteback(page) || PageDirty(page))
8718 return 0;
3ba7ab22 8719 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8720}
8721
d47992f8
LC
8722static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8723 unsigned int length)
39279cc3 8724{
5fd02043 8725 struct inode *inode = page->mapping->host;
d1310b2e 8726 struct extent_io_tree *tree;
e6dcd2dc 8727 struct btrfs_ordered_extent *ordered;
2ac55d41 8728 struct extent_state *cached_state = NULL;
e6dcd2dc 8729 u64 page_start = page_offset(page);
09cbfeaf 8730 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8731 u64 start;
8732 u64 end;
131e404a 8733 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8734
8b62b72b
CM
8735 /*
8736 * we have the page locked, so new writeback can't start,
8737 * and the dirty bit won't be cleared while we are here.
8738 *
8739 * Wait for IO on this page so that we can safely clear
8740 * the PagePrivate2 bit and do ordered accounting
8741 */
e6dcd2dc 8742 wait_on_page_writeback(page);
8b62b72b 8743
5fd02043 8744 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8745 if (offset) {
8746 btrfs_releasepage(page, GFP_NOFS);
8747 return;
8748 }
131e404a
FDBM
8749
8750 if (!inode_evicting)
ff13db41 8751 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8752again:
8753 start = page_start;
a776c6fa 8754 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8755 page_end - start + 1);
e6dcd2dc 8756 if (ordered) {
dbfdb6d1 8757 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8758 /*
8759 * IO on this page will never be started, so we need
8760 * to account for any ordered extents now
8761 */
131e404a 8762 if (!inode_evicting)
dbfdb6d1 8763 clear_extent_bit(tree, start, end,
131e404a 8764 EXTENT_DIRTY | EXTENT_DELALLOC |
a7e3b975 8765 EXTENT_DELALLOC_NEW |
131e404a 8766 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8767 EXTENT_DEFRAG, 1, 0, &cached_state);
8b62b72b
CM
8768 /*
8769 * whoever cleared the private bit is responsible
8770 * for the finish_ordered_io
8771 */
77cef2ec
JB
8772 if (TestClearPagePrivate2(page)) {
8773 struct btrfs_ordered_inode_tree *tree;
8774 u64 new_len;
8775
8776 tree = &BTRFS_I(inode)->ordered_tree;
8777
8778 spin_lock_irq(&tree->lock);
8779 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8780 new_len = start - ordered->file_offset;
77cef2ec
JB
8781 if (new_len < ordered->truncated_len)
8782 ordered->truncated_len = new_len;
8783 spin_unlock_irq(&tree->lock);
8784
8785 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8786 start,
8787 end - start + 1, 1))
77cef2ec 8788 btrfs_finish_ordered_io(ordered);
8b62b72b 8789 }
e6dcd2dc 8790 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8791 if (!inode_evicting) {
8792 cached_state = NULL;
dbfdb6d1 8793 lock_extent_bits(tree, start, end,
131e404a
FDBM
8794 &cached_state);
8795 }
dbfdb6d1
CR
8796
8797 start = end + 1;
8798 if (start < page_end)
8799 goto again;
131e404a
FDBM
8800 }
8801
b9d0b389
QW
8802 /*
8803 * Qgroup reserved space handler
8804 * Page here will be either
8805 * 1) Already written to disk
8806 * In this case, its reserved space is released from data rsv map
8807 * and will be freed by delayed_ref handler finally.
8808 * So even we call qgroup_free_data(), it won't decrease reserved
8809 * space.
8810 * 2) Not written to disk
0b34c261
GR
8811 * This means the reserved space should be freed here. However,
8812 * if a truncate invalidates the page (by clearing PageDirty)
8813 * and the page is accounted for while allocating extent
8814 * in btrfs_check_data_free_space() we let delayed_ref to
8815 * free the entire extent.
b9d0b389 8816 */
0b34c261 8817 if (PageDirty(page))
bc42bda2 8818 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a
FDBM
8819 if (!inode_evicting) {
8820 clear_extent_bit(tree, page_start, page_end,
8821 EXTENT_LOCKED | EXTENT_DIRTY |
a7e3b975
FM
8822 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8823 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
ae0f1625 8824 &cached_state);
131e404a
FDBM
8825
8826 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8827 }
e6dcd2dc 8828
4a096752 8829 ClearPageChecked(page);
9ad6b7bc 8830 if (PagePrivate(page)) {
9ad6b7bc
CM
8831 ClearPagePrivate(page);
8832 set_page_private(page, 0);
09cbfeaf 8833 put_page(page);
9ad6b7bc 8834 }
39279cc3
CM
8835}
8836
9ebefb18
CM
8837/*
8838 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8839 * called from a page fault handler when a page is first dirtied. Hence we must
8840 * be careful to check for EOF conditions here. We set the page up correctly
8841 * for a written page which means we get ENOSPC checking when writing into
8842 * holes and correct delalloc and unwritten extent mapping on filesystems that
8843 * support these features.
8844 *
8845 * We are not allowed to take the i_mutex here so we have to play games to
8846 * protect against truncate races as the page could now be beyond EOF. Because
d1342aad
OS
8847 * truncate_setsize() writes the inode size before removing pages, once we have
8848 * the page lock we can determine safely if the page is beyond EOF. If it is not
9ebefb18
CM
8849 * beyond EOF, then the page is guaranteed safe against truncation until we
8850 * unlock the page.
8851 */
a528a241 8852vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8853{
c2ec175c 8854 struct page *page = vmf->page;
11bac800 8855 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8856 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8857 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8858 struct btrfs_ordered_extent *ordered;
2ac55d41 8859 struct extent_state *cached_state = NULL;
364ecf36 8860 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
8861 char *kaddr;
8862 unsigned long zero_start;
9ebefb18 8863 loff_t size;
a528a241
SJ
8864 vm_fault_t ret;
8865 int ret2;
9998eb70 8866 int reserved = 0;
d0b7da88 8867 u64 reserved_space;
a52d9a80 8868 u64 page_start;
e6dcd2dc 8869 u64 page_end;
d0b7da88
CR
8870 u64 end;
8871
09cbfeaf 8872 reserved_space = PAGE_SIZE;
9ebefb18 8873
b2b5ef5c 8874 sb_start_pagefault(inode->i_sb);
df480633 8875 page_start = page_offset(page);
09cbfeaf 8876 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8877 end = page_end;
df480633 8878
d0b7da88
CR
8879 /*
8880 * Reserving delalloc space after obtaining the page lock can lead to
8881 * deadlock. For example, if a dirty page is locked by this function
8882 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8883 * dirty page write out, then the btrfs_writepage() function could
8884 * end up waiting indefinitely to get a lock on the page currently
8885 * being processed by btrfs_page_mkwrite() function.
8886 */
a528a241 8887 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
d0b7da88 8888 reserved_space);
a528a241
SJ
8889 if (!ret2) {
8890 ret2 = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8891 reserved = 1;
8892 }
a528a241
SJ
8893 if (ret2) {
8894 ret = vmf_error(ret2);
9998eb70
CM
8895 if (reserved)
8896 goto out;
8897 goto out_noreserve;
56a76f82 8898 }
1832a6d5 8899
56a76f82 8900 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8901again:
9ebefb18 8902 lock_page(page);
9ebefb18 8903 size = i_size_read(inode);
a52d9a80 8904
9ebefb18 8905 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8906 (page_start >= size)) {
9ebefb18
CM
8907 /* page got truncated out from underneath us */
8908 goto out_unlock;
8909 }
e6dcd2dc
CM
8910 wait_on_page_writeback(page);
8911
ff13db41 8912 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8913 set_page_extent_mapped(page);
8914
eb84ae03
CM
8915 /*
8916 * we can't set the delalloc bits if there are pending ordered
8917 * extents. Drop our locks and wait for them to finish
8918 */
a776c6fa
NB
8919 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8920 PAGE_SIZE);
e6dcd2dc 8921 if (ordered) {
2ac55d41 8922 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8923 &cached_state);
e6dcd2dc 8924 unlock_page(page);
eb84ae03 8925 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8926 btrfs_put_ordered_extent(ordered);
8927 goto again;
8928 }
8929
09cbfeaf 8930 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 8931 reserved_space = round_up(size - page_start,
0b246afa 8932 fs_info->sectorsize);
09cbfeaf 8933 if (reserved_space < PAGE_SIZE) {
d0b7da88 8934 end = page_start + reserved_space - 1;
bc42bda2 8935 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
8936 page_start, PAGE_SIZE - reserved_space,
8937 true);
d0b7da88
CR
8938 }
8939 }
8940
fbf19087 8941 /*
5416034f
LB
8942 * page_mkwrite gets called when the page is firstly dirtied after it's
8943 * faulted in, but write(2) could also dirty a page and set delalloc
8944 * bits, thus in this case for space account reason, we still need to
8945 * clear any delalloc bits within this page range since we have to
8946 * reserve data&meta space before lock_page() (see above comments).
fbf19087 8947 */
d0b7da88 8948 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
8949 EXTENT_DIRTY | EXTENT_DELALLOC |
8950 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 8951 0, 0, &cached_state);
fbf19087 8952
a528a241 8953 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
ba8b04c1 8954 &cached_state, 0);
a528a241 8955 if (ret2) {
2ac55d41 8956 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8957 &cached_state);
9ed74f2d
JB
8958 ret = VM_FAULT_SIGBUS;
8959 goto out_unlock;
8960 }
a528a241 8961 ret2 = 0;
9ebefb18
CM
8962
8963 /* page is wholly or partially inside EOF */
09cbfeaf 8964 if (page_start + PAGE_SIZE > size)
7073017a 8965 zero_start = offset_in_page(size);
9ebefb18 8966 else
09cbfeaf 8967 zero_start = PAGE_SIZE;
9ebefb18 8968
09cbfeaf 8969 if (zero_start != PAGE_SIZE) {
e6dcd2dc 8970 kaddr = kmap(page);
09cbfeaf 8971 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
8972 flush_dcache_page(page);
8973 kunmap(page);
8974 }
247e743c 8975 ClearPageChecked(page);
e6dcd2dc 8976 set_page_dirty(page);
50a9b214 8977 SetPageUptodate(page);
5a3f23d5 8978
0b246afa 8979 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 8980 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8981 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8982
e43bbe5e 8983 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9ebefb18 8984
a528a241 8985 if (!ret2) {
43b18595 8986 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
b2b5ef5c 8987 sb_end_pagefault(inode->i_sb);
364ecf36 8988 extent_changeset_free(data_reserved);
50a9b214 8989 return VM_FAULT_LOCKED;
b2b5ef5c 8990 }
717beb96
CM
8991
8992out_unlock:
9ebefb18 8993 unlock_page(page);
1832a6d5 8994out:
43b18595 8995 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
bc42bda2 8996 btrfs_delalloc_release_space(inode, data_reserved, page_start,
43b18595 8997 reserved_space, (ret != 0));
9998eb70 8998out_noreserve:
b2b5ef5c 8999 sb_end_pagefault(inode->i_sb);
364ecf36 9000 extent_changeset_free(data_reserved);
9ebefb18
CM
9001 return ret;
9002}
9003
213e8c55 9004static int btrfs_truncate(struct inode *inode, bool skip_writeback)
39279cc3 9005{
0b246afa 9006 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 9007 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9008 struct btrfs_block_rsv *rsv;
ad7e1a74 9009 int ret;
39279cc3 9010 struct btrfs_trans_handle *trans;
0b246afa
JM
9011 u64 mask = fs_info->sectorsize - 1;
9012 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 9013
213e8c55
FM
9014 if (!skip_writeback) {
9015 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9016 (u64)-1);
9017 if (ret)
9018 return ret;
9019 }
39279cc3 9020
fcb80c2a 9021 /*
f7e9e8fc
OS
9022 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
9023 * things going on here:
fcb80c2a 9024 *
f7e9e8fc 9025 * 1) We need to reserve space to update our inode.
fcb80c2a 9026 *
f7e9e8fc 9027 * 2) We need to have something to cache all the space that is going to
fcb80c2a
JB
9028 * be free'd up by the truncate operation, but also have some slack
9029 * space reserved in case it uses space during the truncate (thank you
9030 * very much snapshotting).
9031 *
f7e9e8fc 9032 * And we need these to be separate. The fact is we can use a lot of
fcb80c2a 9033 * space doing the truncate, and we have no earthly idea how much space
01327610 9034 * we will use, so we need the truncate reservation to be separate so it
f7e9e8fc
OS
9035 * doesn't end up using space reserved for updating the inode. We also
9036 * need to be able to stop the transaction and start a new one, which
9037 * means we need to be able to update the inode several times, and we
9038 * have no idea of knowing how many times that will be, so we can't just
9039 * reserve 1 item for the entirety of the operation, so that has to be
9040 * done separately as well.
fcb80c2a
JB
9041 *
9042 * So that leaves us with
9043 *
f7e9e8fc 9044 * 1) rsv - for the truncate reservation, which we will steal from the
fcb80c2a 9045 * transaction reservation.
f7e9e8fc 9046 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
fcb80c2a
JB
9047 * updating the inode.
9048 */
2ff7e61e 9049 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9050 if (!rsv)
9051 return -ENOMEM;
4a338542 9052 rsv->size = min_size;
ca7e70f5 9053 rsv->failfast = 1;
f0cd846e 9054
907cbceb 9055 /*
07127184 9056 * 1 for the truncate slack space
907cbceb
JB
9057 * 1 for updating the inode.
9058 */
f3fe820c 9059 trans = btrfs_start_transaction(root, 2);
fcb80c2a 9060 if (IS_ERR(trans)) {
ad7e1a74 9061 ret = PTR_ERR(trans);
fcb80c2a
JB
9062 goto out;
9063 }
f0cd846e 9064
907cbceb 9065 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9066 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
3a584174 9067 min_size, false);
fcb80c2a 9068 BUG_ON(ret);
f0cd846e 9069
5dc562c5
JB
9070 /*
9071 * So if we truncate and then write and fsync we normally would just
9072 * write the extents that changed, which is a problem if we need to
9073 * first truncate that entire inode. So set this flag so we write out
9074 * all of the extents in the inode to the sync log so we're completely
9075 * safe.
9076 */
9077 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9078 trans->block_rsv = rsv;
907cbceb 9079
8082510e
YZ
9080 while (1) {
9081 ret = btrfs_truncate_inode_items(trans, root, inode,
9082 inode->i_size,
9083 BTRFS_EXTENT_DATA_KEY);
ddfae63c 9084 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74 9085 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 9086 break;
39279cc3 9087
8082510e 9088 ret = btrfs_update_inode(trans, root, inode);
ad7e1a74 9089 if (ret)
3893e33b 9090 break;
ca7e70f5 9091
3a45bb20 9092 btrfs_end_transaction(trans);
2ff7e61e 9093 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9094
9095 trans = btrfs_start_transaction(root, 2);
9096 if (IS_ERR(trans)) {
ad7e1a74 9097 ret = PTR_ERR(trans);
ca7e70f5
JB
9098 trans = NULL;
9099 break;
9100 }
9101
47b5d646 9102 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9103 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
3a584174 9104 rsv, min_size, false);
ca7e70f5
JB
9105 BUG_ON(ret); /* shouldn't happen */
9106 trans->block_rsv = rsv;
8082510e
YZ
9107 }
9108
ddfae63c
JB
9109 /*
9110 * We can't call btrfs_truncate_block inside a trans handle as we could
9111 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9112 * we've truncated everything except the last little bit, and can do
9113 * btrfs_truncate_block and then update the disk_i_size.
9114 */
9115 if (ret == NEED_TRUNCATE_BLOCK) {
9116 btrfs_end_transaction(trans);
9117 btrfs_btree_balance_dirty(fs_info);
9118
9119 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9120 if (ret)
9121 goto out;
9122 trans = btrfs_start_transaction(root, 1);
9123 if (IS_ERR(trans)) {
9124 ret = PTR_ERR(trans);
9125 goto out;
9126 }
9127 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9128 }
9129
917c16b2 9130 if (trans) {
ad7e1a74
OS
9131 int ret2;
9132
0b246afa 9133 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74
OS
9134 ret2 = btrfs_update_inode(trans, root, inode);
9135 if (ret2 && !ret)
9136 ret = ret2;
7b128766 9137
ad7e1a74
OS
9138 ret2 = btrfs_end_transaction(trans);
9139 if (ret2 && !ret)
9140 ret = ret2;
2ff7e61e 9141 btrfs_btree_balance_dirty(fs_info);
917c16b2 9142 }
fcb80c2a 9143out:
2ff7e61e 9144 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9145
ad7e1a74 9146 return ret;
39279cc3
CM
9147}
9148
d352ac68
CM
9149/*
9150 * create a new subvolume directory/inode (helper for the ioctl).
9151 */
d2fb3437 9152int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9153 struct btrfs_root *new_root,
9154 struct btrfs_root *parent_root,
9155 u64 new_dirid)
39279cc3 9156{
39279cc3 9157 struct inode *inode;
76dda93c 9158 int err;
00e4e6b3 9159 u64 index = 0;
39279cc3 9160
12fc9d09
FA
9161 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9162 new_dirid, new_dirid,
9163 S_IFDIR | (~current_umask() & S_IRWXUGO),
9164 &index);
54aa1f4d 9165 if (IS_ERR(inode))
f46b5a66 9166 return PTR_ERR(inode);
39279cc3
CM
9167 inode->i_op = &btrfs_dir_inode_operations;
9168 inode->i_fop = &btrfs_dir_file_operations;
9169
bfe86848 9170 set_nlink(inode, 1);
6ef06d27 9171 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9172 unlock_new_inode(inode);
3b96362c 9173
63541927
FDBM
9174 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9175 if (err)
9176 btrfs_err(new_root->fs_info,
351fd353 9177 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9178 new_root->root_key.objectid, err);
9179
76dda93c 9180 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9181
76dda93c 9182 iput(inode);
ce598979 9183 return err;
39279cc3
CM
9184}
9185
39279cc3
CM
9186struct inode *btrfs_alloc_inode(struct super_block *sb)
9187{
69fe2d75 9188 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 9189 struct btrfs_inode *ei;
2ead6ae7 9190 struct inode *inode;
39279cc3 9191
712e36c5 9192 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
9193 if (!ei)
9194 return NULL;
2ead6ae7
YZ
9195
9196 ei->root = NULL;
2ead6ae7 9197 ei->generation = 0;
15ee9bc7 9198 ei->last_trans = 0;
257c62e1 9199 ei->last_sub_trans = 0;
e02119d5 9200 ei->logged_trans = 0;
2ead6ae7 9201 ei->delalloc_bytes = 0;
a7e3b975 9202 ei->new_delalloc_bytes = 0;
47059d93 9203 ei->defrag_bytes = 0;
2ead6ae7
YZ
9204 ei->disk_i_size = 0;
9205 ei->flags = 0;
7709cde3 9206 ei->csum_bytes = 0;
2ead6ae7 9207 ei->index_cnt = (u64)-1;
67de1176 9208 ei->dir_index = 0;
2ead6ae7 9209 ei->last_unlink_trans = 0;
46d8bc34 9210 ei->last_log_commit = 0;
2ead6ae7 9211
9e0baf60
JB
9212 spin_lock_init(&ei->lock);
9213 ei->outstanding_extents = 0;
69fe2d75
JB
9214 if (sb->s_magic != BTRFS_TEST_MAGIC)
9215 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9216 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 9217 ei->runtime_flags = 0;
b52aa8c9 9218 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 9219 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9220
16cdcec7
MX
9221 ei->delayed_node = NULL;
9222
9cc97d64 9223 ei->i_otime.tv_sec = 0;
9224 ei->i_otime.tv_nsec = 0;
9225
2ead6ae7 9226 inode = &ei->vfs_inode;
a8067e02 9227 extent_map_tree_init(&ei->extent_tree);
43eb5f29
QW
9228 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
9229 extent_io_tree_init(fs_info, &ei->io_failure_tree,
9230 IO_TREE_INODE_IO_FAILURE, inode);
7b439738
DS
9231 ei->io_tree.track_uptodate = true;
9232 ei->io_failure_tree.track_uptodate = true;
b812ce28 9233 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9234 mutex_init(&ei->log_mutex);
f248679e 9235 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9236 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9237 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9238 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9239 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9240 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9241
9242 return inode;
39279cc3
CM
9243}
9244
aaedb55b
JB
9245#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9246void btrfs_test_destroy_inode(struct inode *inode)
9247{
dcdbc059 9248 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9249 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9250}
9251#endif
9252
26602cab 9253void btrfs_free_inode(struct inode *inode)
fa0d7e3d 9254{
fa0d7e3d
NP
9255 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9256}
9257
39279cc3
CM
9258void btrfs_destroy_inode(struct inode *inode)
9259{
0b246afa 9260 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9261 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9262 struct btrfs_root *root = BTRFS_I(inode)->root;
9263
b3d9b7a3 9264 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9265 WARN_ON(inode->i_data.nrpages);
69fe2d75
JB
9266 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9267 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9e0baf60 9268 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7709cde3 9269 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 9270 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 9271 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9272 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9273
a6dbd429
JB
9274 /*
9275 * This can happen where we create an inode, but somebody else also
9276 * created the same inode and we need to destroy the one we already
9277 * created.
9278 */
9279 if (!root)
26602cab 9280 return;
a6dbd429 9281
d397712b 9282 while (1) {
e6dcd2dc
CM
9283 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9284 if (!ordered)
9285 break;
9286 else {
0b246afa 9287 btrfs_err(fs_info,
5d163e0e
JM
9288 "found ordered extent %llu %llu on inode cleanup",
9289 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9290 btrfs_remove_ordered_extent(inode, ordered);
9291 btrfs_put_ordered_extent(ordered);
9292 btrfs_put_ordered_extent(ordered);
9293 }
9294 }
56fa9d07 9295 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9296 inode_tree_del(inode);
dcdbc059 9297 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
39279cc3
CM
9298}
9299
45321ac5 9300int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9301{
9302 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9303
6379ef9f
NA
9304 if (root == NULL)
9305 return 1;
9306
fa6ac876 9307 /* the snap/subvol tree is on deleting */
69e9c6c6 9308 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9309 return 1;
76dda93c 9310 else
45321ac5 9311 return generic_drop_inode(inode);
76dda93c
YZ
9312}
9313
0ee0fda0 9314static void init_once(void *foo)
39279cc3
CM
9315{
9316 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9317
9318 inode_init_once(&ei->vfs_inode);
9319}
9320
e67c718b 9321void __cold btrfs_destroy_cachep(void)
39279cc3 9322{
8c0a8537
KS
9323 /*
9324 * Make sure all delayed rcu free inodes are flushed before we
9325 * destroy cache.
9326 */
9327 rcu_barrier();
5598e900
KM
9328 kmem_cache_destroy(btrfs_inode_cachep);
9329 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
9330 kmem_cache_destroy(btrfs_path_cachep);
9331 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9332}
9333
f5c29bd9 9334int __init btrfs_init_cachep(void)
39279cc3 9335{
837e1972 9336 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9337 sizeof(struct btrfs_inode), 0,
5d097056
VD
9338 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9339 init_once);
39279cc3
CM
9340 if (!btrfs_inode_cachep)
9341 goto fail;
9601e3f6 9342
837e1972 9343 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9344 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9345 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9346 if (!btrfs_trans_handle_cachep)
9347 goto fail;
9601e3f6 9348
837e1972 9349 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9350 sizeof(struct btrfs_path), 0,
fba4b697 9351 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9352 if (!btrfs_path_cachep)
9353 goto fail;
9601e3f6 9354
837e1972 9355 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9356 sizeof(struct btrfs_free_space), 0,
fba4b697 9357 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9358 if (!btrfs_free_space_cachep)
9359 goto fail;
9360
39279cc3
CM
9361 return 0;
9362fail:
9363 btrfs_destroy_cachep();
9364 return -ENOMEM;
9365}
9366
a528d35e
DH
9367static int btrfs_getattr(const struct path *path, struct kstat *stat,
9368 u32 request_mask, unsigned int flags)
39279cc3 9369{
df0af1a5 9370 u64 delalloc_bytes;
a528d35e 9371 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9372 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
9373 u32 bi_flags = BTRFS_I(inode)->flags;
9374
9375 stat->result_mask |= STATX_BTIME;
9376 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9377 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9378 if (bi_flags & BTRFS_INODE_APPEND)
9379 stat->attributes |= STATX_ATTR_APPEND;
9380 if (bi_flags & BTRFS_INODE_COMPRESS)
9381 stat->attributes |= STATX_ATTR_COMPRESSED;
9382 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9383 stat->attributes |= STATX_ATTR_IMMUTABLE;
9384 if (bi_flags & BTRFS_INODE_NODUMP)
9385 stat->attributes |= STATX_ATTR_NODUMP;
9386
9387 stat->attributes_mask |= (STATX_ATTR_APPEND |
9388 STATX_ATTR_COMPRESSED |
9389 STATX_ATTR_IMMUTABLE |
9390 STATX_ATTR_NODUMP);
fadc0d8b 9391
39279cc3 9392 generic_fillattr(inode, stat);
0ee5dc67 9393 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9394
9395 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9396 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 9397 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9398 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9399 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9400 return 0;
9401}
9402
cdd1fedf
DF
9403static int btrfs_rename_exchange(struct inode *old_dir,
9404 struct dentry *old_dentry,
9405 struct inode *new_dir,
9406 struct dentry *new_dentry)
9407{
0b246afa 9408 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9409 struct btrfs_trans_handle *trans;
9410 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9411 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9412 struct inode *new_inode = new_dentry->d_inode;
9413 struct inode *old_inode = old_dentry->d_inode;
95582b00 9414 struct timespec64 ctime = current_time(old_inode);
cdd1fedf 9415 struct dentry *parent;
4a0cc7ca
NB
9416 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9417 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9418 u64 old_idx = 0;
9419 u64 new_idx = 0;
9420 u64 root_objectid;
9421 int ret;
86e8aa0e
FM
9422 bool root_log_pinned = false;
9423 bool dest_log_pinned = false;
d4682ba0
FM
9424 struct btrfs_log_ctx ctx_root;
9425 struct btrfs_log_ctx ctx_dest;
9426 bool sync_log_root = false;
9427 bool sync_log_dest = false;
9428 bool commit_transaction = false;
cdd1fedf
DF
9429
9430 /* we only allow rename subvolume link between subvolumes */
9431 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9432 return -EXDEV;
9433
d4682ba0
FM
9434 btrfs_init_log_ctx(&ctx_root, old_inode);
9435 btrfs_init_log_ctx(&ctx_dest, new_inode);
9436
cdd1fedf
DF
9437 /* close the race window with snapshot create/destroy ioctl */
9438 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9439 down_read(&fs_info->subvol_sem);
cdd1fedf 9440 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9441 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9442
9443 /*
9444 * We want to reserve the absolute worst case amount of items. So if
9445 * both inodes are subvols and we need to unlink them then that would
9446 * require 4 item modifications, but if they are both normal inodes it
9447 * would require 5 item modifications, so we'll assume their normal
9448 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9449 * should cover the worst case number of items we'll modify.
9450 */
9451 trans = btrfs_start_transaction(root, 12);
9452 if (IS_ERR(trans)) {
9453 ret = PTR_ERR(trans);
9454 goto out_notrans;
9455 }
9456
9457 /*
9458 * We need to find a free sequence number both in the source and
9459 * in the destination directory for the exchange.
9460 */
877574e2 9461 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9462 if (ret)
9463 goto out_fail;
877574e2 9464 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9465 if (ret)
9466 goto out_fail;
9467
9468 BTRFS_I(old_inode)->dir_index = 0ULL;
9469 BTRFS_I(new_inode)->dir_index = 0ULL;
9470
9471 /* Reference for the source. */
9472 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9473 /* force full log commit if subvolume involved. */
90787766 9474 btrfs_set_log_full_commit(trans);
cdd1fedf 9475 } else {
376e5a57
FM
9476 btrfs_pin_log_trans(root);
9477 root_log_pinned = true;
cdd1fedf
DF
9478 ret = btrfs_insert_inode_ref(trans, dest,
9479 new_dentry->d_name.name,
9480 new_dentry->d_name.len,
9481 old_ino,
f85b7379
DS
9482 btrfs_ino(BTRFS_I(new_dir)),
9483 old_idx);
cdd1fedf
DF
9484 if (ret)
9485 goto out_fail;
cdd1fedf
DF
9486 }
9487
9488 /* And now for the dest. */
9489 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9490 /* force full log commit if subvolume involved. */
90787766 9491 btrfs_set_log_full_commit(trans);
cdd1fedf 9492 } else {
376e5a57
FM
9493 btrfs_pin_log_trans(dest);
9494 dest_log_pinned = true;
cdd1fedf
DF
9495 ret = btrfs_insert_inode_ref(trans, root,
9496 old_dentry->d_name.name,
9497 old_dentry->d_name.len,
9498 new_ino,
f85b7379
DS
9499 btrfs_ino(BTRFS_I(old_dir)),
9500 new_idx);
cdd1fedf
DF
9501 if (ret)
9502 goto out_fail;
cdd1fedf
DF
9503 }
9504
9505 /* Update inode version and ctime/mtime. */
9506 inode_inc_iversion(old_dir);
9507 inode_inc_iversion(new_dir);
9508 inode_inc_iversion(old_inode);
9509 inode_inc_iversion(new_inode);
9510 old_dir->i_ctime = old_dir->i_mtime = ctime;
9511 new_dir->i_ctime = new_dir->i_mtime = ctime;
9512 old_inode->i_ctime = ctime;
9513 new_inode->i_ctime = ctime;
9514
9515 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9516 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9517 BTRFS_I(old_inode), 1);
9518 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9519 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9520 }
9521
9522 /* src is a subvolume */
9523 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9524 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
401b3b19 9525 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
cdd1fedf
DF
9526 old_dentry->d_name.name,
9527 old_dentry->d_name.len);
9528 } else { /* src is an inode */
4ec5934e
NB
9529 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9530 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9531 old_dentry->d_name.name,
9532 old_dentry->d_name.len);
9533 if (!ret)
9534 ret = btrfs_update_inode(trans, root, old_inode);
9535 }
9536 if (ret) {
66642832 9537 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9538 goto out_fail;
9539 }
9540
9541 /* dest is a subvolume */
9542 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9543 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
401b3b19 9544 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
cdd1fedf
DF
9545 new_dentry->d_name.name,
9546 new_dentry->d_name.len);
9547 } else { /* dest is an inode */
4ec5934e
NB
9548 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9549 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9550 new_dentry->d_name.name,
9551 new_dentry->d_name.len);
9552 if (!ret)
9553 ret = btrfs_update_inode(trans, dest, new_inode);
9554 }
9555 if (ret) {
66642832 9556 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9557 goto out_fail;
9558 }
9559
db0a669f 9560 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9561 new_dentry->d_name.name,
9562 new_dentry->d_name.len, 0, old_idx);
9563 if (ret) {
66642832 9564 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9565 goto out_fail;
9566 }
9567
db0a669f 9568 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9569 old_dentry->d_name.name,
9570 old_dentry->d_name.len, 0, new_idx);
9571 if (ret) {
66642832 9572 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9573 goto out_fail;
9574 }
9575
9576 if (old_inode->i_nlink == 1)
9577 BTRFS_I(old_inode)->dir_index = old_idx;
9578 if (new_inode->i_nlink == 1)
9579 BTRFS_I(new_inode)->dir_index = new_idx;
9580
86e8aa0e 9581 if (root_log_pinned) {
cdd1fedf 9582 parent = new_dentry->d_parent;
d4682ba0
FM
9583 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9584 BTRFS_I(old_dir), parent,
9585 false, &ctx_root);
9586 if (ret == BTRFS_NEED_LOG_SYNC)
9587 sync_log_root = true;
9588 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9589 commit_transaction = true;
9590 ret = 0;
cdd1fedf 9591 btrfs_end_log_trans(root);
86e8aa0e 9592 root_log_pinned = false;
cdd1fedf 9593 }
86e8aa0e 9594 if (dest_log_pinned) {
d4682ba0
FM
9595 if (!commit_transaction) {
9596 parent = old_dentry->d_parent;
9597 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9598 BTRFS_I(new_dir), parent,
9599 false, &ctx_dest);
9600 if (ret == BTRFS_NEED_LOG_SYNC)
9601 sync_log_dest = true;
9602 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9603 commit_transaction = true;
9604 ret = 0;
9605 }
cdd1fedf 9606 btrfs_end_log_trans(dest);
86e8aa0e 9607 dest_log_pinned = false;
cdd1fedf
DF
9608 }
9609out_fail:
86e8aa0e
FM
9610 /*
9611 * If we have pinned a log and an error happened, we unpin tasks
9612 * trying to sync the log and force them to fallback to a transaction
9613 * commit if the log currently contains any of the inodes involved in
9614 * this rename operation (to ensure we do not persist a log with an
9615 * inconsistent state for any of these inodes or leading to any
9616 * inconsistencies when replayed). If the transaction was aborted, the
9617 * abortion reason is propagated to userspace when attempting to commit
9618 * the transaction. If the log does not contain any of these inodes, we
9619 * allow the tasks to sync it.
9620 */
9621 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9622 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9623 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9624 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9625 (new_inode &&
0f8939b8 9626 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 9627 btrfs_set_log_full_commit(trans);
86e8aa0e
FM
9628
9629 if (root_log_pinned) {
9630 btrfs_end_log_trans(root);
9631 root_log_pinned = false;
9632 }
9633 if (dest_log_pinned) {
9634 btrfs_end_log_trans(dest);
9635 dest_log_pinned = false;
9636 }
9637 }
d4682ba0
FM
9638 if (!ret && sync_log_root && !commit_transaction) {
9639 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9640 &ctx_root);
9641 if (ret)
9642 commit_transaction = true;
9643 }
9644 if (!ret && sync_log_dest && !commit_transaction) {
9645 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9646 &ctx_dest);
9647 if (ret)
9648 commit_transaction = true;
9649 }
9650 if (commit_transaction) {
9651 ret = btrfs_commit_transaction(trans);
9652 } else {
9653 int ret2;
9654
9655 ret2 = btrfs_end_transaction(trans);
9656 ret = ret ? ret : ret2;
9657 }
cdd1fedf
DF
9658out_notrans:
9659 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9660 up_read(&fs_info->subvol_sem);
cdd1fedf 9661 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9662 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9663
9664 return ret;
9665}
9666
9667static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9668 struct btrfs_root *root,
9669 struct inode *dir,
9670 struct dentry *dentry)
9671{
9672 int ret;
9673 struct inode *inode;
9674 u64 objectid;
9675 u64 index;
9676
9677 ret = btrfs_find_free_ino(root, &objectid);
9678 if (ret)
9679 return ret;
9680
9681 inode = btrfs_new_inode(trans, root, dir,
9682 dentry->d_name.name,
9683 dentry->d_name.len,
4a0cc7ca 9684 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9685 objectid,
9686 S_IFCHR | WHITEOUT_MODE,
9687 &index);
9688
9689 if (IS_ERR(inode)) {
9690 ret = PTR_ERR(inode);
9691 return ret;
9692 }
9693
9694 inode->i_op = &btrfs_special_inode_operations;
9695 init_special_inode(inode, inode->i_mode,
9696 WHITEOUT_DEV);
9697
9698 ret = btrfs_init_inode_security(trans, inode, dir,
9699 &dentry->d_name);
9700 if (ret)
c9901618 9701 goto out;
cdd1fedf 9702
cef415af
NB
9703 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9704 BTRFS_I(inode), 0, index);
cdd1fedf 9705 if (ret)
c9901618 9706 goto out;
cdd1fedf
DF
9707
9708 ret = btrfs_update_inode(trans, root, inode);
c9901618 9709out:
cdd1fedf 9710 unlock_new_inode(inode);
c9901618
FM
9711 if (ret)
9712 inode_dec_link_count(inode);
cdd1fedf
DF
9713 iput(inode);
9714
c9901618 9715 return ret;
cdd1fedf
DF
9716}
9717
d397712b 9718static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9719 struct inode *new_dir, struct dentry *new_dentry,
9720 unsigned int flags)
39279cc3 9721{
0b246afa 9722 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9723 struct btrfs_trans_handle *trans;
5062af35 9724 unsigned int trans_num_items;
39279cc3 9725 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9726 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9727 struct inode *new_inode = d_inode(new_dentry);
9728 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9729 u64 index = 0;
4df27c4d 9730 u64 root_objectid;
39279cc3 9731 int ret;
4a0cc7ca 9732 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9733 bool log_pinned = false;
d4682ba0
FM
9734 struct btrfs_log_ctx ctx;
9735 bool sync_log = false;
9736 bool commit_transaction = false;
39279cc3 9737
4a0cc7ca 9738 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9739 return -EPERM;
9740
4df27c4d 9741 /* we only allow rename subvolume link between subvolumes */
33345d01 9742 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9743 return -EXDEV;
9744
33345d01 9745 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9746 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9747 return -ENOTEMPTY;
5f39d397 9748
4df27c4d
YZ
9749 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9750 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9751 return -ENOTEMPTY;
9c52057c
CM
9752
9753
9754 /* check for collisions, even if the name isn't there */
4871c158 9755 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9756 new_dentry->d_name.name,
9757 new_dentry->d_name.len);
9758
9759 if (ret) {
9760 if (ret == -EEXIST) {
9761 /* we shouldn't get
9762 * eexist without a new_inode */
fae7f21c 9763 if (WARN_ON(!new_inode)) {
9c52057c
CM
9764 return ret;
9765 }
9766 } else {
9767 /* maybe -EOVERFLOW */
9768 return ret;
9769 }
9770 }
9771 ret = 0;
9772
5a3f23d5 9773 /*
8d875f95
CM
9774 * we're using rename to replace one file with another. Start IO on it
9775 * now so we don't add too much work to the end of the transaction
5a3f23d5 9776 */
8d875f95 9777 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9778 filemap_flush(old_inode->i_mapping);
9779
76dda93c 9780 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9781 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9782 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9783 /*
9784 * We want to reserve the absolute worst case amount of items. So if
9785 * both inodes are subvols and we need to unlink them then that would
9786 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9787 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9788 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9789 * should cover the worst case number of items we'll modify.
5062af35
FM
9790 * If our rename has the whiteout flag, we need more 5 units for the
9791 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9792 * when selinux is enabled).
a22285a6 9793 */
5062af35
FM
9794 trans_num_items = 11;
9795 if (flags & RENAME_WHITEOUT)
9796 trans_num_items += 5;
9797 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9798 if (IS_ERR(trans)) {
cdd1fedf
DF
9799 ret = PTR_ERR(trans);
9800 goto out_notrans;
9801 }
76dda93c 9802
4df27c4d
YZ
9803 if (dest != root)
9804 btrfs_record_root_in_trans(trans, dest);
5f39d397 9805
877574e2 9806 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9807 if (ret)
9808 goto out_fail;
5a3f23d5 9809
67de1176 9810 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9811 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9812 /* force full log commit if subvolume involved. */
90787766 9813 btrfs_set_log_full_commit(trans);
4df27c4d 9814 } else {
c4aba954
FM
9815 btrfs_pin_log_trans(root);
9816 log_pinned = true;
a5719521
YZ
9817 ret = btrfs_insert_inode_ref(trans, dest,
9818 new_dentry->d_name.name,
9819 new_dentry->d_name.len,
33345d01 9820 old_ino,
4a0cc7ca 9821 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9822 if (ret)
9823 goto out_fail;
4df27c4d 9824 }
5a3f23d5 9825
0c4d2d95
JB
9826 inode_inc_iversion(old_dir);
9827 inode_inc_iversion(new_dir);
9828 inode_inc_iversion(old_inode);
04b285f3
DD
9829 old_dir->i_ctime = old_dir->i_mtime =
9830 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9831 old_inode->i_ctime = current_time(old_dir);
5f39d397 9832
12fcfd22 9833 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9834 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9835 BTRFS_I(old_inode), 1);
12fcfd22 9836
33345d01 9837 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9838 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
401b3b19 9839 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
4df27c4d
YZ
9840 old_dentry->d_name.name,
9841 old_dentry->d_name.len);
9842 } else {
4ec5934e
NB
9843 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9844 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9845 old_dentry->d_name.name,
9846 old_dentry->d_name.len);
9847 if (!ret)
9848 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9849 }
79787eaa 9850 if (ret) {
66642832 9851 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9852 goto out_fail;
9853 }
39279cc3
CM
9854
9855 if (new_inode) {
0c4d2d95 9856 inode_inc_iversion(new_inode);
c2050a45 9857 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9858 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
9859 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9860 root_objectid = BTRFS_I(new_inode)->location.objectid;
401b3b19 9861 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
4df27c4d
YZ
9862 new_dentry->d_name.name,
9863 new_dentry->d_name.len);
9864 BUG_ON(new_inode->i_nlink == 0);
9865 } else {
4ec5934e
NB
9866 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9867 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9868 new_dentry->d_name.name,
9869 new_dentry->d_name.len);
9870 }
4ef31a45 9871 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9872 ret = btrfs_orphan_add(trans,
9873 BTRFS_I(d_inode(new_dentry)));
79787eaa 9874 if (ret) {
66642832 9875 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9876 goto out_fail;
9877 }
39279cc3 9878 }
aec7477b 9879
db0a669f 9880 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 9881 new_dentry->d_name.name,
a5719521 9882 new_dentry->d_name.len, 0, index);
79787eaa 9883 if (ret) {
66642832 9884 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9885 goto out_fail;
9886 }
39279cc3 9887
67de1176
MX
9888 if (old_inode->i_nlink == 1)
9889 BTRFS_I(old_inode)->dir_index = index;
9890
3dc9e8f7 9891 if (log_pinned) {
10d9f309 9892 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9893
d4682ba0
FM
9894 btrfs_init_log_ctx(&ctx, old_inode);
9895 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9896 BTRFS_I(old_dir), parent,
9897 false, &ctx);
9898 if (ret == BTRFS_NEED_LOG_SYNC)
9899 sync_log = true;
9900 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9901 commit_transaction = true;
9902 ret = 0;
4df27c4d 9903 btrfs_end_log_trans(root);
3dc9e8f7 9904 log_pinned = false;
4df27c4d 9905 }
cdd1fedf
DF
9906
9907 if (flags & RENAME_WHITEOUT) {
9908 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9909 old_dentry);
9910
9911 if (ret) {
66642832 9912 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9913 goto out_fail;
9914 }
4df27c4d 9915 }
39279cc3 9916out_fail:
3dc9e8f7
FM
9917 /*
9918 * If we have pinned the log and an error happened, we unpin tasks
9919 * trying to sync the log and force them to fallback to a transaction
9920 * commit if the log currently contains any of the inodes involved in
9921 * this rename operation (to ensure we do not persist a log with an
9922 * inconsistent state for any of these inodes or leading to any
9923 * inconsistencies when replayed). If the transaction was aborted, the
9924 * abortion reason is propagated to userspace when attempting to commit
9925 * the transaction. If the log does not contain any of these inodes, we
9926 * allow the tasks to sync it.
9927 */
9928 if (ret && log_pinned) {
0f8939b8
NB
9929 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9930 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9931 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 9932 (new_inode &&
0f8939b8 9933 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 9934 btrfs_set_log_full_commit(trans);
3dc9e8f7
FM
9935
9936 btrfs_end_log_trans(root);
9937 log_pinned = false;
9938 }
d4682ba0
FM
9939 if (!ret && sync_log) {
9940 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9941 if (ret)
9942 commit_transaction = true;
9943 }
9944 if (commit_transaction) {
9945 ret = btrfs_commit_transaction(trans);
9946 } else {
9947 int ret2;
9948
9949 ret2 = btrfs_end_transaction(trans);
9950 ret = ret ? ret : ret2;
9951 }
b44c59a8 9952out_notrans:
33345d01 9953 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9954 up_read(&fs_info->subvol_sem);
9ed74f2d 9955
39279cc3
CM
9956 return ret;
9957}
9958
80ace85c
MS
9959static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9960 struct inode *new_dir, struct dentry *new_dentry,
9961 unsigned int flags)
9962{
cdd1fedf 9963 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9964 return -EINVAL;
9965
cdd1fedf
DF
9966 if (flags & RENAME_EXCHANGE)
9967 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9968 new_dentry);
9969
9970 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9971}
9972
3a2f8c07
NB
9973struct btrfs_delalloc_work {
9974 struct inode *inode;
9975 struct completion completion;
9976 struct list_head list;
9977 struct btrfs_work work;
9978};
9979
8ccf6f19
MX
9980static void btrfs_run_delalloc_work(struct btrfs_work *work)
9981{
9982 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9983 struct inode *inode;
8ccf6f19
MX
9984
9985 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9986 work);
9f23e289 9987 inode = delalloc_work->inode;
30424601
DS
9988 filemap_flush(inode->i_mapping);
9989 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9990 &BTRFS_I(inode)->runtime_flags))
9f23e289 9991 filemap_flush(inode->i_mapping);
8ccf6f19 9992
076da91c 9993 iput(inode);
8ccf6f19
MX
9994 complete(&delalloc_work->completion);
9995}
9996
3a2f8c07 9997static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8ccf6f19
MX
9998{
9999 struct btrfs_delalloc_work *work;
10000
100d5702 10001 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
10002 if (!work)
10003 return NULL;
10004
10005 init_completion(&work->completion);
10006 INIT_LIST_HEAD(&work->list);
10007 work->inode = inode;
9e0af237
LB
10008 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10009 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
10010
10011 return work;
10012}
10013
d352ac68
CM
10014/*
10015 * some fairly slow code that needs optimization. This walks the list
10016 * of all the inodes with pending delalloc and forces them to disk.
10017 */
3cd24c69 10018static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
ea8c2819 10019{
ea8c2819 10020 struct btrfs_inode *binode;
5b21f2ed 10021 struct inode *inode;
8ccf6f19
MX
10022 struct btrfs_delalloc_work *work, *next;
10023 struct list_head works;
1eafa6c7 10024 struct list_head splice;
8ccf6f19 10025 int ret = 0;
ea8c2819 10026
8ccf6f19 10027 INIT_LIST_HEAD(&works);
1eafa6c7 10028 INIT_LIST_HEAD(&splice);
63607cc8 10029
573bfb72 10030 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10031 spin_lock(&root->delalloc_lock);
10032 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10033 while (!list_empty(&splice)) {
10034 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10035 delalloc_inodes);
1eafa6c7 10036
eb73c1b7
MX
10037 list_move_tail(&binode->delalloc_inodes,
10038 &root->delalloc_inodes);
5b21f2ed 10039 inode = igrab(&binode->vfs_inode);
df0af1a5 10040 if (!inode) {
eb73c1b7 10041 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10042 continue;
df0af1a5 10043 }
eb73c1b7 10044 spin_unlock(&root->delalloc_lock);
1eafa6c7 10045
3cd24c69
EL
10046 if (snapshot)
10047 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
10048 &binode->runtime_flags);
076da91c 10049 work = btrfs_alloc_delalloc_work(inode);
5d99a998 10050 if (!work) {
4fbb5147 10051 iput(inode);
1eafa6c7 10052 ret = -ENOMEM;
a1ecaabb 10053 goto out;
5b21f2ed 10054 }
1eafa6c7 10055 list_add_tail(&work->list, &works);
a44903ab
QW
10056 btrfs_queue_work(root->fs_info->flush_workers,
10057 &work->work);
6c255e67
MX
10058 ret++;
10059 if (nr != -1 && ret >= nr)
a1ecaabb 10060 goto out;
5b21f2ed 10061 cond_resched();
eb73c1b7 10062 spin_lock(&root->delalloc_lock);
ea8c2819 10063 }
eb73c1b7 10064 spin_unlock(&root->delalloc_lock);
8c8bee1d 10065
a1ecaabb 10066out:
eb73c1b7
MX
10067 list_for_each_entry_safe(work, next, &works, list) {
10068 list_del_init(&work->list);
40012f96
NB
10069 wait_for_completion(&work->completion);
10070 kfree(work);
eb73c1b7
MX
10071 }
10072
81f1d390 10073 if (!list_empty(&splice)) {
eb73c1b7
MX
10074 spin_lock(&root->delalloc_lock);
10075 list_splice_tail(&splice, &root->delalloc_inodes);
10076 spin_unlock(&root->delalloc_lock);
10077 }
573bfb72 10078 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10079 return ret;
10080}
1eafa6c7 10081
3cd24c69 10082int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
eb73c1b7 10083{
0b246afa 10084 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10085 int ret;
1eafa6c7 10086
0b246afa 10087 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10088 return -EROFS;
10089
3cd24c69 10090 ret = start_delalloc_inodes(root, -1, true);
6c255e67
MX
10091 if (ret > 0)
10092 ret = 0;
eb73c1b7
MX
10093 return ret;
10094}
10095
82b3e53b 10096int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
eb73c1b7
MX
10097{
10098 struct btrfs_root *root;
10099 struct list_head splice;
10100 int ret;
10101
2c21b4d7 10102 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10103 return -EROFS;
10104
10105 INIT_LIST_HEAD(&splice);
10106
573bfb72 10107 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10108 spin_lock(&fs_info->delalloc_root_lock);
10109 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10110 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10111 root = list_first_entry(&splice, struct btrfs_root,
10112 delalloc_root);
10113 root = btrfs_grab_fs_root(root);
10114 BUG_ON(!root);
10115 list_move_tail(&root->delalloc_root,
10116 &fs_info->delalloc_roots);
10117 spin_unlock(&fs_info->delalloc_root_lock);
10118
3cd24c69 10119 ret = start_delalloc_inodes(root, nr, false);
eb73c1b7 10120 btrfs_put_fs_root(root);
6c255e67 10121 if (ret < 0)
eb73c1b7
MX
10122 goto out;
10123
6c255e67
MX
10124 if (nr != -1) {
10125 nr -= ret;
10126 WARN_ON(nr < 0);
10127 }
eb73c1b7 10128 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10129 }
eb73c1b7 10130 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10131
6c255e67 10132 ret = 0;
eb73c1b7 10133out:
81f1d390 10134 if (!list_empty(&splice)) {
eb73c1b7
MX
10135 spin_lock(&fs_info->delalloc_root_lock);
10136 list_splice_tail(&splice, &fs_info->delalloc_roots);
10137 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10138 }
573bfb72 10139 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10140 return ret;
ea8c2819
CM
10141}
10142
39279cc3
CM
10143static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10144 const char *symname)
10145{
0b246afa 10146 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10147 struct btrfs_trans_handle *trans;
10148 struct btrfs_root *root = BTRFS_I(dir)->root;
10149 struct btrfs_path *path;
10150 struct btrfs_key key;
1832a6d5 10151 struct inode *inode = NULL;
39279cc3 10152 int err;
39279cc3 10153 u64 objectid;
67871254 10154 u64 index = 0;
39279cc3
CM
10155 int name_len;
10156 int datasize;
5f39d397 10157 unsigned long ptr;
39279cc3 10158 struct btrfs_file_extent_item *ei;
5f39d397 10159 struct extent_buffer *leaf;
39279cc3 10160
f06becc4 10161 name_len = strlen(symname);
0b246afa 10162 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10163 return -ENAMETOOLONG;
1832a6d5 10164
9ed74f2d
JB
10165 /*
10166 * 2 items for inode item and ref
10167 * 2 items for dir items
9269d12b
FM
10168 * 1 item for updating parent inode item
10169 * 1 item for the inline extent item
9ed74f2d
JB
10170 * 1 item for xattr if selinux is on
10171 */
9269d12b 10172 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10173 if (IS_ERR(trans))
10174 return PTR_ERR(trans);
1832a6d5 10175
581bb050
LZ
10176 err = btrfs_find_free_ino(root, &objectid);
10177 if (err)
10178 goto out_unlock;
10179
aec7477b 10180 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10181 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10182 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10183 if (IS_ERR(inode)) {
10184 err = PTR_ERR(inode);
32955c54 10185 inode = NULL;
39279cc3 10186 goto out_unlock;
7cf96da3 10187 }
39279cc3 10188
ad19db71
CS
10189 /*
10190 * If the active LSM wants to access the inode during
10191 * d_instantiate it needs these. Smack checks to see
10192 * if the filesystem supports xattrs by looking at the
10193 * ops vector.
10194 */
10195 inode->i_fop = &btrfs_file_operations;
10196 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10197 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10198 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10199
10200 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10201 if (err)
32955c54 10202 goto out_unlock;
ad19db71 10203
39279cc3 10204 path = btrfs_alloc_path();
d8926bb3
MF
10205 if (!path) {
10206 err = -ENOMEM;
32955c54 10207 goto out_unlock;
d8926bb3 10208 }
4a0cc7ca 10209 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10210 key.offset = 0;
962a298f 10211 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10212 datasize = btrfs_file_extent_calc_inline_size(name_len);
10213 err = btrfs_insert_empty_item(trans, root, path, &key,
10214 datasize);
54aa1f4d 10215 if (err) {
b0839166 10216 btrfs_free_path(path);
32955c54 10217 goto out_unlock;
54aa1f4d 10218 }
5f39d397
CM
10219 leaf = path->nodes[0];
10220 ei = btrfs_item_ptr(leaf, path->slots[0],
10221 struct btrfs_file_extent_item);
10222 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10223 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10224 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10225 btrfs_set_file_extent_encryption(leaf, ei, 0);
10226 btrfs_set_file_extent_compression(leaf, ei, 0);
10227 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10228 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10229
39279cc3 10230 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10231 write_extent_buffer(leaf, symname, ptr, name_len);
10232 btrfs_mark_buffer_dirty(leaf);
39279cc3 10233 btrfs_free_path(path);
5f39d397 10234
39279cc3 10235 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10236 inode_nohighmem(inode);
d899e052 10237 inode_set_bytes(inode, name_len);
6ef06d27 10238 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10239 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10240 /*
10241 * Last step, add directory indexes for our symlink inode. This is the
10242 * last step to avoid extra cleanup of these indexes if an error happens
10243 * elsewhere above.
10244 */
10245 if (!err)
cef415af
NB
10246 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10247 BTRFS_I(inode), 0, index);
32955c54
AV
10248 if (err)
10249 goto out_unlock;
b0d5d10f 10250
1e2e547a 10251 d_instantiate_new(dentry, inode);
39279cc3
CM
10252
10253out_unlock:
3a45bb20 10254 btrfs_end_transaction(trans);
32955c54 10255 if (err && inode) {
39279cc3 10256 inode_dec_link_count(inode);
32955c54 10257 discard_new_inode(inode);
39279cc3 10258 }
2ff7e61e 10259 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
10260 return err;
10261}
16432985 10262
0af3d00b
JB
10263static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10264 u64 start, u64 num_bytes, u64 min_size,
10265 loff_t actual_len, u64 *alloc_hint,
10266 struct btrfs_trans_handle *trans)
d899e052 10267{
0b246afa 10268 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10269 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10270 struct extent_map *em;
d899e052
YZ
10271 struct btrfs_root *root = BTRFS_I(inode)->root;
10272 struct btrfs_key ins;
d899e052 10273 u64 cur_offset = start;
55a61d1d 10274 u64 i_size;
154ea289 10275 u64 cur_bytes;
0b670dc4 10276 u64 last_alloc = (u64)-1;
d899e052 10277 int ret = 0;
0af3d00b 10278 bool own_trans = true;
18513091 10279 u64 end = start + num_bytes - 1;
d899e052 10280
0af3d00b
JB
10281 if (trans)
10282 own_trans = false;
d899e052 10283 while (num_bytes > 0) {
0af3d00b
JB
10284 if (own_trans) {
10285 trans = btrfs_start_transaction(root, 3);
10286 if (IS_ERR(trans)) {
10287 ret = PTR_ERR(trans);
10288 break;
10289 }
5a303d5d
YZ
10290 }
10291
ee22184b 10292 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10293 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10294 /*
10295 * If we are severely fragmented we could end up with really
10296 * small allocations, so if the allocator is returning small
10297 * chunks lets make its job easier by only searching for those
10298 * sized chunks.
10299 */
10300 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10301 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10302 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10303 if (ret) {
0af3d00b 10304 if (own_trans)
3a45bb20 10305 btrfs_end_transaction(trans);
a22285a6 10306 break;
d899e052 10307 }
0b246afa 10308 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10309
0b670dc4 10310 last_alloc = ins.offset;
d899e052
YZ
10311 ret = insert_reserved_file_extent(trans, inode,
10312 cur_offset, ins.objectid,
10313 ins.offset, ins.offset,
920bbbfb 10314 ins.offset, 0, 0, 0,
d899e052 10315 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10316 if (ret) {
2ff7e61e 10317 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10318 ins.offset, 0);
66642832 10319 btrfs_abort_transaction(trans, ret);
79787eaa 10320 if (own_trans)
3a45bb20 10321 btrfs_end_transaction(trans);
79787eaa
JM
10322 break;
10323 }
31193213 10324
dcdbc059 10325 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10326 cur_offset + ins.offset -1, 0);
5a303d5d 10327
5dc562c5
JB
10328 em = alloc_extent_map();
10329 if (!em) {
10330 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10331 &BTRFS_I(inode)->runtime_flags);
10332 goto next;
10333 }
10334
10335 em->start = cur_offset;
10336 em->orig_start = cur_offset;
10337 em->len = ins.offset;
10338 em->block_start = ins.objectid;
10339 em->block_len = ins.offset;
b4939680 10340 em->orig_block_len = ins.offset;
cc95bef6 10341 em->ram_bytes = ins.offset;
0b246afa 10342 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10343 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10344 em->generation = trans->transid;
10345
10346 while (1) {
10347 write_lock(&em_tree->lock);
09a2a8f9 10348 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10349 write_unlock(&em_tree->lock);
10350 if (ret != -EEXIST)
10351 break;
dcdbc059 10352 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10353 cur_offset + ins.offset - 1,
10354 0);
10355 }
10356 free_extent_map(em);
10357next:
d899e052
YZ
10358 num_bytes -= ins.offset;
10359 cur_offset += ins.offset;
efa56464 10360 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10361
0c4d2d95 10362 inode_inc_iversion(inode);
c2050a45 10363 inode->i_ctime = current_time(inode);
6cbff00f 10364 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10365 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10366 (actual_len > inode->i_size) &&
10367 (cur_offset > inode->i_size)) {
d1ea6a61 10368 if (cur_offset > actual_len)
55a61d1d 10369 i_size = actual_len;
d1ea6a61 10370 else
55a61d1d
JB
10371 i_size = cur_offset;
10372 i_size_write(inode, i_size);
10373 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10374 }
10375
d899e052 10376 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10377
10378 if (ret) {
66642832 10379 btrfs_abort_transaction(trans, ret);
79787eaa 10380 if (own_trans)
3a45bb20 10381 btrfs_end_transaction(trans);
79787eaa
JM
10382 break;
10383 }
d899e052 10384
0af3d00b 10385 if (own_trans)
3a45bb20 10386 btrfs_end_transaction(trans);
5a303d5d 10387 }
18513091 10388 if (cur_offset < end)
bc42bda2 10389 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
18513091 10390 end - cur_offset + 1);
d899e052
YZ
10391 return ret;
10392}
10393
0af3d00b
JB
10394int btrfs_prealloc_file_range(struct inode *inode, int mode,
10395 u64 start, u64 num_bytes, u64 min_size,
10396 loff_t actual_len, u64 *alloc_hint)
10397{
10398 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10399 min_size, actual_len, alloc_hint,
10400 NULL);
10401}
10402
10403int btrfs_prealloc_file_range_trans(struct inode *inode,
10404 struct btrfs_trans_handle *trans, int mode,
10405 u64 start, u64 num_bytes, u64 min_size,
10406 loff_t actual_len, u64 *alloc_hint)
10407{
10408 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10409 min_size, actual_len, alloc_hint, trans);
10410}
10411
e6dcd2dc
CM
10412static int btrfs_set_page_dirty(struct page *page)
10413{
e6dcd2dc
CM
10414 return __set_page_dirty_nobuffers(page);
10415}
10416
10556cb2 10417static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10418{
b83cc969 10419 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10420 umode_t mode = inode->i_mode;
b83cc969 10421
cb6db4e5
JM
10422 if (mask & MAY_WRITE &&
10423 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10424 if (btrfs_root_readonly(root))
10425 return -EROFS;
10426 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10427 return -EACCES;
10428 }
2830ba7f 10429 return generic_permission(inode, mask);
fdebe2bd 10430}
39279cc3 10431
ef3b9af5
FM
10432static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10433{
2ff7e61e 10434 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10435 struct btrfs_trans_handle *trans;
10436 struct btrfs_root *root = BTRFS_I(dir)->root;
10437 struct inode *inode = NULL;
10438 u64 objectid;
10439 u64 index;
10440 int ret = 0;
10441
10442 /*
10443 * 5 units required for adding orphan entry
10444 */
10445 trans = btrfs_start_transaction(root, 5);
10446 if (IS_ERR(trans))
10447 return PTR_ERR(trans);
10448
10449 ret = btrfs_find_free_ino(root, &objectid);
10450 if (ret)
10451 goto out;
10452
10453 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10454 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10455 if (IS_ERR(inode)) {
10456 ret = PTR_ERR(inode);
10457 inode = NULL;
10458 goto out;
10459 }
10460
ef3b9af5
FM
10461 inode->i_fop = &btrfs_file_operations;
10462 inode->i_op = &btrfs_file_inode_operations;
10463
10464 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10465 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10466
b0d5d10f
CM
10467 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10468 if (ret)
32955c54 10469 goto out;
b0d5d10f
CM
10470
10471 ret = btrfs_update_inode(trans, root, inode);
10472 if (ret)
32955c54 10473 goto out;
73f2e545 10474 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10475 if (ret)
32955c54 10476 goto out;
ef3b9af5 10477
5762b5c9
FM
10478 /*
10479 * We set number of links to 0 in btrfs_new_inode(), and here we set
10480 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10481 * through:
10482 *
10483 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10484 */
10485 set_nlink(inode, 1);
ef3b9af5 10486 d_tmpfile(dentry, inode);
32955c54 10487 unlock_new_inode(inode);
ef3b9af5 10488 mark_inode_dirty(inode);
ef3b9af5 10489out:
3a45bb20 10490 btrfs_end_transaction(trans);
32955c54
AV
10491 if (ret && inode)
10492 discard_new_inode(inode);
2ff7e61e 10493 btrfs_btree_balance_dirty(fs_info);
ef3b9af5
FM
10494 return ret;
10495}
10496
5cdc84bf 10497void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
c6100a4b 10498{
5cdc84bf 10499 struct inode *inode = tree->private_data;
c6100a4b
JB
10500 unsigned long index = start >> PAGE_SHIFT;
10501 unsigned long end_index = end >> PAGE_SHIFT;
10502 struct page *page;
10503
10504 while (index <= end_index) {
10505 page = find_get_page(inode->i_mapping, index);
10506 ASSERT(page); /* Pages should be in the extent_io_tree */
10507 set_page_writeback(page);
10508 put_page(page);
10509 index++;
10510 }
10511}
10512
ed46ff3d
OS
10513#ifdef CONFIG_SWAP
10514/*
10515 * Add an entry indicating a block group or device which is pinned by a
10516 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10517 * negative errno on failure.
10518 */
10519static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10520 bool is_block_group)
10521{
10522 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10523 struct btrfs_swapfile_pin *sp, *entry;
10524 struct rb_node **p;
10525 struct rb_node *parent = NULL;
10526
10527 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10528 if (!sp)
10529 return -ENOMEM;
10530 sp->ptr = ptr;
10531 sp->inode = inode;
10532 sp->is_block_group = is_block_group;
10533
10534 spin_lock(&fs_info->swapfile_pins_lock);
10535 p = &fs_info->swapfile_pins.rb_node;
10536 while (*p) {
10537 parent = *p;
10538 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10539 if (sp->ptr < entry->ptr ||
10540 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10541 p = &(*p)->rb_left;
10542 } else if (sp->ptr > entry->ptr ||
10543 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10544 p = &(*p)->rb_right;
10545 } else {
10546 spin_unlock(&fs_info->swapfile_pins_lock);
10547 kfree(sp);
10548 return 1;
10549 }
10550 }
10551 rb_link_node(&sp->node, parent, p);
10552 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10553 spin_unlock(&fs_info->swapfile_pins_lock);
10554 return 0;
10555}
10556
10557/* Free all of the entries pinned by this swapfile. */
10558static void btrfs_free_swapfile_pins(struct inode *inode)
10559{
10560 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10561 struct btrfs_swapfile_pin *sp;
10562 struct rb_node *node, *next;
10563
10564 spin_lock(&fs_info->swapfile_pins_lock);
10565 node = rb_first(&fs_info->swapfile_pins);
10566 while (node) {
10567 next = rb_next(node);
10568 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10569 if (sp->inode == inode) {
10570 rb_erase(&sp->node, &fs_info->swapfile_pins);
10571 if (sp->is_block_group)
10572 btrfs_put_block_group(sp->ptr);
10573 kfree(sp);
10574 }
10575 node = next;
10576 }
10577 spin_unlock(&fs_info->swapfile_pins_lock);
10578}
10579
10580struct btrfs_swap_info {
10581 u64 start;
10582 u64 block_start;
10583 u64 block_len;
10584 u64 lowest_ppage;
10585 u64 highest_ppage;
10586 unsigned long nr_pages;
10587 int nr_extents;
10588};
10589
10590static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10591 struct btrfs_swap_info *bsi)
10592{
10593 unsigned long nr_pages;
10594 u64 first_ppage, first_ppage_reported, next_ppage;
10595 int ret;
10596
10597 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10598 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10599 PAGE_SIZE) >> PAGE_SHIFT;
10600
10601 if (first_ppage >= next_ppage)
10602 return 0;
10603 nr_pages = next_ppage - first_ppage;
10604
10605 first_ppage_reported = first_ppage;
10606 if (bsi->start == 0)
10607 first_ppage_reported++;
10608 if (bsi->lowest_ppage > first_ppage_reported)
10609 bsi->lowest_ppage = first_ppage_reported;
10610 if (bsi->highest_ppage < (next_ppage - 1))
10611 bsi->highest_ppage = next_ppage - 1;
10612
10613 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10614 if (ret < 0)
10615 return ret;
10616 bsi->nr_extents += ret;
10617 bsi->nr_pages += nr_pages;
10618 return 0;
10619}
10620
10621static void btrfs_swap_deactivate(struct file *file)
10622{
10623 struct inode *inode = file_inode(file);
10624
10625 btrfs_free_swapfile_pins(inode);
10626 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10627}
10628
10629static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10630 sector_t *span)
10631{
10632 struct inode *inode = file_inode(file);
10633 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10634 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10635 struct extent_state *cached_state = NULL;
10636 struct extent_map *em = NULL;
10637 struct btrfs_device *device = NULL;
10638 struct btrfs_swap_info bsi = {
10639 .lowest_ppage = (sector_t)-1ULL,
10640 };
10641 int ret = 0;
10642 u64 isize;
10643 u64 start;
10644
10645 /*
10646 * If the swap file was just created, make sure delalloc is done. If the
10647 * file changes again after this, the user is doing something stupid and
10648 * we don't really care.
10649 */
10650 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10651 if (ret)
10652 return ret;
10653
10654 /*
10655 * The inode is locked, so these flags won't change after we check them.
10656 */
10657 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10658 btrfs_warn(fs_info, "swapfile must not be compressed");
10659 return -EINVAL;
10660 }
10661 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10662 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10663 return -EINVAL;
10664 }
10665 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10666 btrfs_warn(fs_info, "swapfile must not be checksummed");
10667 return -EINVAL;
10668 }
10669
10670 /*
10671 * Balance or device remove/replace/resize can move stuff around from
10672 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10673 * concurrently while we are mapping the swap extents, and
10674 * fs_info->swapfile_pins prevents them from running while the swap file
10675 * is active and moving the extents. Note that this also prevents a
10676 * concurrent device add which isn't actually necessary, but it's not
10677 * really worth the trouble to allow it.
10678 */
10679 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10680 btrfs_warn(fs_info,
10681 "cannot activate swapfile while exclusive operation is running");
10682 return -EBUSY;
10683 }
10684 /*
10685 * Snapshots can create extents which require COW even if NODATACOW is
10686 * set. We use this counter to prevent snapshots. We must increment it
10687 * before walking the extents because we don't want a concurrent
10688 * snapshot to run after we've already checked the extents.
10689 */
10690 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10691
10692 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10693
10694 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10695 start = 0;
10696 while (start < isize) {
10697 u64 logical_block_start, physical_block_start;
10698 struct btrfs_block_group_cache *bg;
10699 u64 len = isize - start;
10700
10701 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
10702 if (IS_ERR(em)) {
10703 ret = PTR_ERR(em);
10704 goto out;
10705 }
10706
10707 if (em->block_start == EXTENT_MAP_HOLE) {
10708 btrfs_warn(fs_info, "swapfile must not have holes");
10709 ret = -EINVAL;
10710 goto out;
10711 }
10712 if (em->block_start == EXTENT_MAP_INLINE) {
10713 /*
10714 * It's unlikely we'll ever actually find ourselves
10715 * here, as a file small enough to fit inline won't be
10716 * big enough to store more than the swap header, but in
10717 * case something changes in the future, let's catch it
10718 * here rather than later.
10719 */
10720 btrfs_warn(fs_info, "swapfile must not be inline");
10721 ret = -EINVAL;
10722 goto out;
10723 }
10724 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10725 btrfs_warn(fs_info, "swapfile must not be compressed");
10726 ret = -EINVAL;
10727 goto out;
10728 }
10729
10730 logical_block_start = em->block_start + (start - em->start);
10731 len = min(len, em->len - (start - em->start));
10732 free_extent_map(em);
10733 em = NULL;
10734
10735 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10736 if (ret < 0) {
10737 goto out;
10738 } else if (ret) {
10739 ret = 0;
10740 } else {
10741 btrfs_warn(fs_info,
10742 "swapfile must not be copy-on-write");
10743 ret = -EINVAL;
10744 goto out;
10745 }
10746
10747 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10748 if (IS_ERR(em)) {
10749 ret = PTR_ERR(em);
10750 goto out;
10751 }
10752
10753 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10754 btrfs_warn(fs_info,
10755 "swapfile must have single data profile");
10756 ret = -EINVAL;
10757 goto out;
10758 }
10759
10760 if (device == NULL) {
10761 device = em->map_lookup->stripes[0].dev;
10762 ret = btrfs_add_swapfile_pin(inode, device, false);
10763 if (ret == 1)
10764 ret = 0;
10765 else if (ret)
10766 goto out;
10767 } else if (device != em->map_lookup->stripes[0].dev) {
10768 btrfs_warn(fs_info, "swapfile must be on one device");
10769 ret = -EINVAL;
10770 goto out;
10771 }
10772
10773 physical_block_start = (em->map_lookup->stripes[0].physical +
10774 (logical_block_start - em->start));
10775 len = min(len, em->len - (logical_block_start - em->start));
10776 free_extent_map(em);
10777 em = NULL;
10778
10779 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10780 if (!bg) {
10781 btrfs_warn(fs_info,
10782 "could not find block group containing swapfile");
10783 ret = -EINVAL;
10784 goto out;
10785 }
10786
10787 ret = btrfs_add_swapfile_pin(inode, bg, true);
10788 if (ret) {
10789 btrfs_put_block_group(bg);
10790 if (ret == 1)
10791 ret = 0;
10792 else
10793 goto out;
10794 }
10795
10796 if (bsi.block_len &&
10797 bsi.block_start + bsi.block_len == physical_block_start) {
10798 bsi.block_len += len;
10799 } else {
10800 if (bsi.block_len) {
10801 ret = btrfs_add_swap_extent(sis, &bsi);
10802 if (ret)
10803 goto out;
10804 }
10805 bsi.start = start;
10806 bsi.block_start = physical_block_start;
10807 bsi.block_len = len;
10808 }
10809
10810 start += len;
10811 }
10812
10813 if (bsi.block_len)
10814 ret = btrfs_add_swap_extent(sis, &bsi);
10815
10816out:
10817 if (!IS_ERR_OR_NULL(em))
10818 free_extent_map(em);
10819
10820 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10821
10822 if (ret)
10823 btrfs_swap_deactivate(file);
10824
10825 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10826
10827 if (ret)
10828 return ret;
10829
10830 if (device)
10831 sis->bdev = device->bdev;
10832 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10833 sis->max = bsi.nr_pages;
10834 sis->pages = bsi.nr_pages - 1;
10835 sis->highest_bit = bsi.nr_pages - 1;
10836 return bsi.nr_extents;
10837}
10838#else
10839static void btrfs_swap_deactivate(struct file *file)
10840{
10841}
10842
10843static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10844 sector_t *span)
10845{
10846 return -EOPNOTSUPP;
10847}
10848#endif
10849
6e1d5dcc 10850static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10851 .getattr = btrfs_getattr,
39279cc3
CM
10852 .lookup = btrfs_lookup,
10853 .create = btrfs_create,
10854 .unlink = btrfs_unlink,
10855 .link = btrfs_link,
10856 .mkdir = btrfs_mkdir,
10857 .rmdir = btrfs_rmdir,
2773bf00 10858 .rename = btrfs_rename2,
39279cc3
CM
10859 .symlink = btrfs_symlink,
10860 .setattr = btrfs_setattr,
618e21d5 10861 .mknod = btrfs_mknod,
5103e947 10862 .listxattr = btrfs_listxattr,
fdebe2bd 10863 .permission = btrfs_permission,
4e34e719 10864 .get_acl = btrfs_get_acl,
996a710d 10865 .set_acl = btrfs_set_acl,
93fd63c2 10866 .update_time = btrfs_update_time,
ef3b9af5 10867 .tmpfile = btrfs_tmpfile,
39279cc3 10868};
6e1d5dcc 10869static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10870 .lookup = btrfs_lookup,
fdebe2bd 10871 .permission = btrfs_permission,
93fd63c2 10872 .update_time = btrfs_update_time,
39279cc3 10873};
76dda93c 10874
828c0950 10875static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10876 .llseek = generic_file_llseek,
10877 .read = generic_read_dir,
02dbfc99 10878 .iterate_shared = btrfs_real_readdir,
23b5ec74 10879 .open = btrfs_opendir,
34287aa3 10880 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10881#ifdef CONFIG_COMPAT
4c63c245 10882 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10883#endif
6bf13c0c 10884 .release = btrfs_release_file,
e02119d5 10885 .fsync = btrfs_sync_file,
39279cc3
CM
10886};
10887
20e5506b 10888static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10889 /* mandatory callbacks */
065631f6 10890 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac
CM
10891 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10892};
10893
35054394
CM
10894/*
10895 * btrfs doesn't support the bmap operation because swapfiles
10896 * use bmap to make a mapping of extents in the file. They assume
10897 * these extents won't change over the life of the file and they
10898 * use the bmap result to do IO directly to the drive.
10899 *
10900 * the btrfs bmap call would return logical addresses that aren't
10901 * suitable for IO and they also will change frequently as COW
10902 * operations happen. So, swapfile + btrfs == corruption.
10903 *
10904 * For now we're avoiding this by dropping bmap.
10905 */
7f09410b 10906static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10907 .readpage = btrfs_readpage,
10908 .writepage = btrfs_writepage,
b293f02e 10909 .writepages = btrfs_writepages,
3ab2fb5a 10910 .readpages = btrfs_readpages,
16432985 10911 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10912 .invalidatepage = btrfs_invalidatepage,
10913 .releasepage = btrfs_releasepage,
e6dcd2dc 10914 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10915 .error_remove_page = generic_error_remove_page,
ed46ff3d
OS
10916 .swap_activate = btrfs_swap_activate,
10917 .swap_deactivate = btrfs_swap_deactivate,
39279cc3
CM
10918};
10919
6e1d5dcc 10920static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10921 .getattr = btrfs_getattr,
10922 .setattr = btrfs_setattr,
5103e947 10923 .listxattr = btrfs_listxattr,
fdebe2bd 10924 .permission = btrfs_permission,
1506fcc8 10925 .fiemap = btrfs_fiemap,
4e34e719 10926 .get_acl = btrfs_get_acl,
996a710d 10927 .set_acl = btrfs_set_acl,
e41f941a 10928 .update_time = btrfs_update_time,
39279cc3 10929};
6e1d5dcc 10930static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10931 .getattr = btrfs_getattr,
10932 .setattr = btrfs_setattr,
fdebe2bd 10933 .permission = btrfs_permission,
33268eaf 10934 .listxattr = btrfs_listxattr,
4e34e719 10935 .get_acl = btrfs_get_acl,
996a710d 10936 .set_acl = btrfs_set_acl,
e41f941a 10937 .update_time = btrfs_update_time,
618e21d5 10938};
6e1d5dcc 10939static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10940 .get_link = page_get_link,
f209561a 10941 .getattr = btrfs_getattr,
22c44fe6 10942 .setattr = btrfs_setattr,
fdebe2bd 10943 .permission = btrfs_permission,
0279b4cd 10944 .listxattr = btrfs_listxattr,
e41f941a 10945 .update_time = btrfs_update_time,
39279cc3 10946};
76dda93c 10947
82d339d9 10948const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
10949 .d_delete = btrfs_dentry_delete,
10950};