]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/inode.c
Merge remote-tracking branches 'asoc/topic/sta529', 'asoc/topic/sti', 'asoc/topic...
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
39279cc3 33#include <linux/compat.h>
9ebefb18 34#include <linux/bit_spinlock.h>
5103e947 35#include <linux/xattr.h>
33268eaf 36#include <linux/posix_acl.h>
d899e052 37#include <linux/falloc.h>
5a0e3ad6 38#include <linux/slab.h>
7a36ddec 39#include <linux/ratelimit.h>
22c44fe6 40#include <linux/mount.h>
55e301fd 41#include <linux/btrfs.h>
53b381b3 42#include <linux/blkdev.h>
f23b5a59 43#include <linux/posix_acl_xattr.h>
e2e40f2c 44#include <linux/uio.h>
39279cc3
CM
45#include "ctree.h"
46#include "disk-io.h"
47#include "transaction.h"
48#include "btrfs_inode.h"
39279cc3 49#include "print-tree.h"
e6dcd2dc 50#include "ordered-data.h"
95819c05 51#include "xattr.h"
e02119d5 52#include "tree-log.h"
4a54c8c1 53#include "volumes.h"
c8b97818 54#include "compression.h"
b4ce94de 55#include "locking.h"
dc89e982 56#include "free-space-cache.h"
581bb050 57#include "inode-map.h"
38c227d8 58#include "backref.h"
f23b5a59 59#include "hash.h"
63541927 60#include "props.h"
31193213 61#include "qgroup.h"
dda3245e 62#include "dedupe.h"
39279cc3
CM
63
64struct btrfs_iget_args {
90d3e592 65 struct btrfs_key *location;
39279cc3
CM
66 struct btrfs_root *root;
67};
68
f28a4928
FM
69struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
4aaedfb0 74 int overwrite;
f28a4928
FM
75};
76
6e1d5dcc
AD
77static const struct inode_operations btrfs_dir_inode_operations;
78static const struct inode_operations btrfs_symlink_inode_operations;
79static const struct inode_operations btrfs_dir_ro_inode_operations;
80static const struct inode_operations btrfs_special_inode_operations;
81static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
82static const struct address_space_operations btrfs_aops;
83static const struct address_space_operations btrfs_symlink_aops;
828c0950 84static const struct file_operations btrfs_dir_file_operations;
20e5506b 85static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
86
87static struct kmem_cache *btrfs_inode_cachep;
88struct kmem_cache *btrfs_trans_handle_cachep;
89struct kmem_cache *btrfs_transaction_cachep;
39279cc3 90struct kmem_cache *btrfs_path_cachep;
dc89e982 91struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
92
93#define S_SHIFT 12
4d4ab6d6 94static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
102};
103
3972f260 104static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 105static int btrfs_truncate(struct inode *inode);
5fd02043 106static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
107static noinline int cow_file_range(struct inode *inode,
108 struct page *locked_page,
dda3245e
WX
109 u64 start, u64 end, u64 delalloc_end,
110 int *page_started, unsigned long *nr_written,
111 int unlock, struct btrfs_dedupe_hash *hash);
6f9994db
LB
112static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
113 u64 orig_start, u64 block_start,
114 u64 block_len, u64 orig_block_len,
115 u64 ram_bytes, int compress_type,
116 int type);
7b128766 117
48a3b636 118static int btrfs_dirty_inode(struct inode *inode);
7b128766 119
6a3891c5
JB
120#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
121void btrfs_test_inode_set_ops(struct inode *inode)
122{
123 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
124}
125#endif
126
f34f57a3 127static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
128 struct inode *inode, struct inode *dir,
129 const struct qstr *qstr)
0279b4cd
JO
130{
131 int err;
132
f34f57a3 133 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 134 if (!err)
2a7dba39 135 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
136 return err;
137}
138
c8b97818
CM
139/*
140 * this does all the hard work for inserting an inline extent into
141 * the btree. The caller should have done a btrfs_drop_extents so that
142 * no overlapping inline items exist in the btree
143 */
40f76580 144static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 145 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
146 struct btrfs_root *root, struct inode *inode,
147 u64 start, size_t size, size_t compressed_size,
fe3f566c 148 int compress_type,
c8b97818
CM
149 struct page **compressed_pages)
150{
c8b97818
CM
151 struct extent_buffer *leaf;
152 struct page *page = NULL;
153 char *kaddr;
154 unsigned long ptr;
155 struct btrfs_file_extent_item *ei;
156 int err = 0;
157 int ret;
158 size_t cur_size = size;
c8b97818 159 unsigned long offset;
c8b97818 160
fe3f566c 161 if (compressed_size && compressed_pages)
c8b97818 162 cur_size = compressed_size;
c8b97818 163
1acae57b 164 inode_add_bytes(inode, size);
c8b97818 165
1acae57b
FDBM
166 if (!extent_inserted) {
167 struct btrfs_key key;
168 size_t datasize;
c8b97818 169
4a0cc7ca 170 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 171 key.offset = start;
962a298f 172 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 173
1acae57b
FDBM
174 datasize = btrfs_file_extent_calc_inline_size(cur_size);
175 path->leave_spinning = 1;
176 ret = btrfs_insert_empty_item(trans, root, path, &key,
177 datasize);
178 if (ret) {
179 err = ret;
180 goto fail;
181 }
c8b97818
CM
182 }
183 leaf = path->nodes[0];
184 ei = btrfs_item_ptr(leaf, path->slots[0],
185 struct btrfs_file_extent_item);
186 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
187 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
188 btrfs_set_file_extent_encryption(leaf, ei, 0);
189 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
190 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
191 ptr = btrfs_file_extent_inline_start(ei);
192
261507a0 193 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
194 struct page *cpage;
195 int i = 0;
d397712b 196 while (compressed_size > 0) {
c8b97818 197 cpage = compressed_pages[i];
5b050f04 198 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 199 PAGE_SIZE);
c8b97818 200
7ac687d9 201 kaddr = kmap_atomic(cpage);
c8b97818 202 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 203 kunmap_atomic(kaddr);
c8b97818
CM
204
205 i++;
206 ptr += cur_size;
207 compressed_size -= cur_size;
208 }
209 btrfs_set_file_extent_compression(leaf, ei,
261507a0 210 compress_type);
c8b97818
CM
211 } else {
212 page = find_get_page(inode->i_mapping,
09cbfeaf 213 start >> PAGE_SHIFT);
c8b97818 214 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 215 kaddr = kmap_atomic(page);
09cbfeaf 216 offset = start & (PAGE_SIZE - 1);
c8b97818 217 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 218 kunmap_atomic(kaddr);
09cbfeaf 219 put_page(page);
c8b97818
CM
220 }
221 btrfs_mark_buffer_dirty(leaf);
1acae57b 222 btrfs_release_path(path);
c8b97818 223
c2167754
YZ
224 /*
225 * we're an inline extent, so nobody can
226 * extend the file past i_size without locking
227 * a page we already have locked.
228 *
229 * We must do any isize and inode updates
230 * before we unlock the pages. Otherwise we
231 * could end up racing with unlink.
232 */
c8b97818 233 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 234 ret = btrfs_update_inode(trans, root, inode);
c2167754 235
79787eaa 236 return ret;
c8b97818 237fail:
c8b97818
CM
238 return err;
239}
240
241
242/*
243 * conditionally insert an inline extent into the file. This
244 * does the checks required to make sure the data is small enough
245 * to fit as an inline extent.
246 */
00361589
JB
247static noinline int cow_file_range_inline(struct btrfs_root *root,
248 struct inode *inode, u64 start,
249 u64 end, size_t compressed_size,
250 int compress_type,
251 struct page **compressed_pages)
c8b97818 252{
0b246afa 253 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 254 struct btrfs_trans_handle *trans;
c8b97818
CM
255 u64 isize = i_size_read(inode);
256 u64 actual_end = min(end + 1, isize);
257 u64 inline_len = actual_end - start;
0b246afa 258 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
259 u64 data_len = inline_len;
260 int ret;
1acae57b
FDBM
261 struct btrfs_path *path;
262 int extent_inserted = 0;
263 u32 extent_item_size;
c8b97818
CM
264
265 if (compressed_size)
266 data_len = compressed_size;
267
268 if (start > 0 ||
0b246afa
JM
269 actual_end > fs_info->sectorsize ||
270 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 271 (!compressed_size &&
0b246afa 272 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 273 end + 1 < isize ||
0b246afa 274 data_len > fs_info->max_inline) {
c8b97818
CM
275 return 1;
276 }
277
1acae57b
FDBM
278 path = btrfs_alloc_path();
279 if (!path)
280 return -ENOMEM;
281
00361589 282 trans = btrfs_join_transaction(root);
1acae57b
FDBM
283 if (IS_ERR(trans)) {
284 btrfs_free_path(path);
00361589 285 return PTR_ERR(trans);
1acae57b 286 }
0b246afa 287 trans->block_rsv = &fs_info->delalloc_block_rsv;
00361589 288
1acae57b
FDBM
289 if (compressed_size && compressed_pages)
290 extent_item_size = btrfs_file_extent_calc_inline_size(
291 compressed_size);
292 else
293 extent_item_size = btrfs_file_extent_calc_inline_size(
294 inline_len);
295
296 ret = __btrfs_drop_extents(trans, root, inode, path,
297 start, aligned_end, NULL,
298 1, 1, extent_item_size, &extent_inserted);
00361589 299 if (ret) {
66642832 300 btrfs_abort_transaction(trans, ret);
00361589
JB
301 goto out;
302 }
c8b97818
CM
303
304 if (isize > actual_end)
305 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
306 ret = insert_inline_extent(trans, path, extent_inserted,
307 root, inode, start,
c8b97818 308 inline_len, compressed_size,
fe3f566c 309 compress_type, compressed_pages);
2adcac1a 310 if (ret && ret != -ENOSPC) {
66642832 311 btrfs_abort_transaction(trans, ret);
00361589 312 goto out;
2adcac1a 313 } else if (ret == -ENOSPC) {
00361589
JB
314 ret = 1;
315 goto out;
79787eaa 316 }
2adcac1a 317
bdc20e67 318 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
691fa059 319 btrfs_delalloc_release_metadata(BTRFS_I(inode), end + 1 - start);
dcdbc059 320 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 321out:
94ed938a
QW
322 /*
323 * Don't forget to free the reserved space, as for inlined extent
324 * it won't count as data extent, free them directly here.
325 * And at reserve time, it's always aligned to page size, so
326 * just free one page here.
327 */
09cbfeaf 328 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
1acae57b 329 btrfs_free_path(path);
3a45bb20 330 btrfs_end_transaction(trans);
00361589 331 return ret;
c8b97818
CM
332}
333
771ed689
CM
334struct async_extent {
335 u64 start;
336 u64 ram_size;
337 u64 compressed_size;
338 struct page **pages;
339 unsigned long nr_pages;
261507a0 340 int compress_type;
771ed689
CM
341 struct list_head list;
342};
343
344struct async_cow {
345 struct inode *inode;
346 struct btrfs_root *root;
347 struct page *locked_page;
348 u64 start;
349 u64 end;
350 struct list_head extents;
351 struct btrfs_work work;
352};
353
354static noinline int add_async_extent(struct async_cow *cow,
355 u64 start, u64 ram_size,
356 u64 compressed_size,
357 struct page **pages,
261507a0
LZ
358 unsigned long nr_pages,
359 int compress_type)
771ed689
CM
360{
361 struct async_extent *async_extent;
362
363 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 364 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
365 async_extent->start = start;
366 async_extent->ram_size = ram_size;
367 async_extent->compressed_size = compressed_size;
368 async_extent->pages = pages;
369 async_extent->nr_pages = nr_pages;
261507a0 370 async_extent->compress_type = compress_type;
771ed689
CM
371 list_add_tail(&async_extent->list, &cow->extents);
372 return 0;
373}
374
f79707b0
WS
375static inline int inode_need_compress(struct inode *inode)
376{
0b246afa 377 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
378
379 /* force compress */
0b246afa 380 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0
WS
381 return 1;
382 /* bad compression ratios */
383 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
384 return 0;
0b246afa 385 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0
WS
386 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
387 BTRFS_I(inode)->force_compress)
388 return 1;
389 return 0;
390}
391
6158e1ce 392static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
393 u64 start, u64 end, u64 num_bytes, u64 small_write)
394{
395 /* If this is a small write inside eof, kick off a defrag */
396 if (num_bytes < small_write &&
6158e1ce 397 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
398 btrfs_add_inode_defrag(NULL, inode);
399}
400
d352ac68 401/*
771ed689
CM
402 * we create compressed extents in two phases. The first
403 * phase compresses a range of pages that have already been
404 * locked (both pages and state bits are locked).
c8b97818 405 *
771ed689
CM
406 * This is done inside an ordered work queue, and the compression
407 * is spread across many cpus. The actual IO submission is step
408 * two, and the ordered work queue takes care of making sure that
409 * happens in the same order things were put onto the queue by
410 * writepages and friends.
c8b97818 411 *
771ed689
CM
412 * If this code finds it can't get good compression, it puts an
413 * entry onto the work queue to write the uncompressed bytes. This
414 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
415 * are written in the same order that the flusher thread sent them
416 * down.
d352ac68 417 */
c44f649e 418static noinline void compress_file_range(struct inode *inode,
771ed689
CM
419 struct page *locked_page,
420 u64 start, u64 end,
421 struct async_cow *async_cow,
422 int *num_added)
b888db2b 423{
0b246afa 424 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
b888db2b 425 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 426 u64 num_bytes;
0b246afa 427 u64 blocksize = fs_info->sectorsize;
c8b97818 428 u64 actual_end;
42dc7bab 429 u64 isize = i_size_read(inode);
e6dcd2dc 430 int ret = 0;
c8b97818
CM
431 struct page **pages = NULL;
432 unsigned long nr_pages;
c8b97818
CM
433 unsigned long total_compressed = 0;
434 unsigned long total_in = 0;
c8b97818
CM
435 int i;
436 int will_compress;
0b246afa 437 int compress_type = fs_info->compress_type;
4adaa611 438 int redirty = 0;
b888db2b 439
6158e1ce
NB
440 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
441 SZ_16K);
4cb5300b 442
42dc7bab 443 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
444again:
445 will_compress = 0;
09cbfeaf 446 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
447 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
448 nr_pages = min_t(unsigned long, nr_pages,
449 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 450
f03d9301
CM
451 /*
452 * we don't want to send crud past the end of i_size through
453 * compression, that's just a waste of CPU time. So, if the
454 * end of the file is before the start of our current
455 * requested range of bytes, we bail out to the uncompressed
456 * cleanup code that can deal with all of this.
457 *
458 * It isn't really the fastest way to fix things, but this is a
459 * very uncommon corner.
460 */
461 if (actual_end <= start)
462 goto cleanup_and_bail_uncompressed;
463
c8b97818
CM
464 total_compressed = actual_end - start;
465
4bcbb332
SW
466 /*
467 * skip compression for a small file range(<=blocksize) that
01327610 468 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
469 */
470 if (total_compressed <= blocksize &&
471 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
472 goto cleanup_and_bail_uncompressed;
473
069eac78
DS
474 total_compressed = min_t(unsigned long, total_compressed,
475 BTRFS_MAX_UNCOMPRESSED);
fda2832f 476 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 477 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
478 total_in = 0;
479 ret = 0;
db94535d 480
771ed689
CM
481 /*
482 * we do compression for mount -o compress and when the
483 * inode has not been flagged as nocompress. This flag can
484 * change at any time if we discover bad compression ratios.
c8b97818 485 */
f79707b0 486 if (inode_need_compress(inode)) {
c8b97818 487 WARN_ON(pages);
31e818fe 488 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
489 if (!pages) {
490 /* just bail out to the uncompressed code */
491 goto cont;
492 }
c8b97818 493
261507a0
LZ
494 if (BTRFS_I(inode)->force_compress)
495 compress_type = BTRFS_I(inode)->force_compress;
496
4adaa611
CM
497 /*
498 * we need to call clear_page_dirty_for_io on each
499 * page in the range. Otherwise applications with the file
500 * mmap'd can wander in and change the page contents while
501 * we are compressing them.
502 *
503 * If the compression fails for any reason, we set the pages
504 * dirty again later on.
505 */
506 extent_range_clear_dirty_for_io(inode, start, end);
507 redirty = 1;
261507a0
LZ
508 ret = btrfs_compress_pages(compress_type,
509 inode->i_mapping, start,
38c31464 510 pages,
4d3a800e 511 &nr_pages,
261507a0 512 &total_in,
e5d74902 513 &total_compressed);
c8b97818
CM
514
515 if (!ret) {
516 unsigned long offset = total_compressed &
09cbfeaf 517 (PAGE_SIZE - 1);
4d3a800e 518 struct page *page = pages[nr_pages - 1];
c8b97818
CM
519 char *kaddr;
520
521 /* zero the tail end of the last page, we might be
522 * sending it down to disk
523 */
524 if (offset) {
7ac687d9 525 kaddr = kmap_atomic(page);
c8b97818 526 memset(kaddr + offset, 0,
09cbfeaf 527 PAGE_SIZE - offset);
7ac687d9 528 kunmap_atomic(kaddr);
c8b97818
CM
529 }
530 will_compress = 1;
531 }
532 }
560f7d75 533cont:
c8b97818
CM
534 if (start == 0) {
535 /* lets try to make an inline extent */
771ed689 536 if (ret || total_in < (actual_end - start)) {
c8b97818 537 /* we didn't compress the entire range, try
771ed689 538 * to make an uncompressed inline extent.
c8b97818 539 */
00361589 540 ret = cow_file_range_inline(root, inode, start, end,
f74670f7 541 0, BTRFS_COMPRESS_NONE, NULL);
c8b97818 542 } else {
771ed689 543 /* try making a compressed inline extent */
00361589 544 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
545 total_compressed,
546 compress_type, pages);
c8b97818 547 }
79787eaa 548 if (ret <= 0) {
151a41bc
JB
549 unsigned long clear_flags = EXTENT_DELALLOC |
550 EXTENT_DEFRAG;
e6eb4314
FM
551 unsigned long page_error_op;
552
151a41bc 553 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 554 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 555
771ed689 556 /*
79787eaa
JM
557 * inline extent creation worked or returned error,
558 * we don't need to create any more async work items.
559 * Unlock and free up our temp pages.
771ed689 560 */
ba8b04c1
QW
561 extent_clear_unlock_delalloc(inode, start, end, end,
562 NULL, clear_flags,
563 PAGE_UNLOCK |
c2790a2e
JB
564 PAGE_CLEAR_DIRTY |
565 PAGE_SET_WRITEBACK |
e6eb4314 566 page_error_op |
c2790a2e 567 PAGE_END_WRITEBACK);
18513091
WX
568 btrfs_free_reserved_data_space_noquota(inode, start,
569 end - start + 1);
c8b97818
CM
570 goto free_pages_out;
571 }
572 }
573
574 if (will_compress) {
575 /*
576 * we aren't doing an inline extent round the compressed size
577 * up to a block size boundary so the allocator does sane
578 * things
579 */
fda2832f 580 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
581
582 /*
583 * one last check to make sure the compression is really a
584 * win, compare the page count read with the blocks on disk
585 */
09cbfeaf 586 total_in = ALIGN(total_in, PAGE_SIZE);
c8b97818
CM
587 if (total_compressed >= total_in) {
588 will_compress = 0;
589 } else {
c8b97818 590 num_bytes = total_in;
c8bb0c8b
AS
591 *num_added += 1;
592
593 /*
594 * The async work queues will take care of doing actual
595 * allocation on disk for these compressed pages, and
596 * will submit them to the elevator.
597 */
598 add_async_extent(async_cow, start, num_bytes,
4d3a800e 599 total_compressed, pages, nr_pages,
c8bb0c8b
AS
600 compress_type);
601
602 if (start + num_bytes < end) {
603 start += num_bytes;
604 pages = NULL;
605 cond_resched();
606 goto again;
607 }
608 return;
c8b97818
CM
609 }
610 }
c8bb0c8b 611 if (pages) {
c8b97818
CM
612 /*
613 * the compression code ran but failed to make things smaller,
614 * free any pages it allocated and our page pointer array
615 */
4d3a800e 616 for (i = 0; i < nr_pages; i++) {
70b99e69 617 WARN_ON(pages[i]->mapping);
09cbfeaf 618 put_page(pages[i]);
c8b97818
CM
619 }
620 kfree(pages);
621 pages = NULL;
622 total_compressed = 0;
4d3a800e 623 nr_pages = 0;
c8b97818
CM
624
625 /* flag the file so we don't compress in the future */
0b246afa 626 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
1e701a32 627 !(BTRFS_I(inode)->force_compress)) {
a555f810 628 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 629 }
c8b97818 630 }
f03d9301 631cleanup_and_bail_uncompressed:
c8bb0c8b
AS
632 /*
633 * No compression, but we still need to write the pages in the file
634 * we've been given so far. redirty the locked page if it corresponds
635 * to our extent and set things up for the async work queue to run
636 * cow_file_range to do the normal delalloc dance.
637 */
638 if (page_offset(locked_page) >= start &&
639 page_offset(locked_page) <= end)
640 __set_page_dirty_nobuffers(locked_page);
641 /* unlocked later on in the async handlers */
642
643 if (redirty)
644 extent_range_redirty_for_io(inode, start, end);
645 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
646 BTRFS_COMPRESS_NONE);
647 *num_added += 1;
3b951516 648
c44f649e 649 return;
771ed689
CM
650
651free_pages_out:
4d3a800e 652 for (i = 0; i < nr_pages; i++) {
771ed689 653 WARN_ON(pages[i]->mapping);
09cbfeaf 654 put_page(pages[i]);
771ed689 655 }
d397712b 656 kfree(pages);
771ed689 657}
771ed689 658
40ae837b
FM
659static void free_async_extent_pages(struct async_extent *async_extent)
660{
661 int i;
662
663 if (!async_extent->pages)
664 return;
665
666 for (i = 0; i < async_extent->nr_pages; i++) {
667 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 668 put_page(async_extent->pages[i]);
40ae837b
FM
669 }
670 kfree(async_extent->pages);
671 async_extent->nr_pages = 0;
672 async_extent->pages = NULL;
771ed689
CM
673}
674
675/*
676 * phase two of compressed writeback. This is the ordered portion
677 * of the code, which only gets called in the order the work was
678 * queued. We walk all the async extents created by compress_file_range
679 * and send them down to the disk.
680 */
dec8f175 681static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
682 struct async_cow *async_cow)
683{
0b246afa 684 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
685 struct async_extent *async_extent;
686 u64 alloc_hint = 0;
771ed689
CM
687 struct btrfs_key ins;
688 struct extent_map *em;
689 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689 690 struct extent_io_tree *io_tree;
f5a84ee3 691 int ret = 0;
771ed689 692
3e04e7f1 693again:
d397712b 694 while (!list_empty(&async_cow->extents)) {
771ed689
CM
695 async_extent = list_entry(async_cow->extents.next,
696 struct async_extent, list);
697 list_del(&async_extent->list);
c8b97818 698
771ed689
CM
699 io_tree = &BTRFS_I(inode)->io_tree;
700
f5a84ee3 701retry:
771ed689
CM
702 /* did the compression code fall back to uncompressed IO? */
703 if (!async_extent->pages) {
704 int page_started = 0;
705 unsigned long nr_written = 0;
706
707 lock_extent(io_tree, async_extent->start,
2ac55d41 708 async_extent->start +
d0082371 709 async_extent->ram_size - 1);
771ed689
CM
710
711 /* allocate blocks */
f5a84ee3
JB
712 ret = cow_file_range(inode, async_cow->locked_page,
713 async_extent->start,
714 async_extent->start +
715 async_extent->ram_size - 1,
dda3245e
WX
716 async_extent->start +
717 async_extent->ram_size - 1,
718 &page_started, &nr_written, 0,
719 NULL);
771ed689 720
79787eaa
JM
721 /* JDM XXX */
722
771ed689
CM
723 /*
724 * if page_started, cow_file_range inserted an
725 * inline extent and took care of all the unlocking
726 * and IO for us. Otherwise, we need to submit
727 * all those pages down to the drive.
728 */
f5a84ee3 729 if (!page_started && !ret)
771ed689
CM
730 extent_write_locked_range(io_tree,
731 inode, async_extent->start,
d397712b 732 async_extent->start +
771ed689
CM
733 async_extent->ram_size - 1,
734 btrfs_get_extent,
735 WB_SYNC_ALL);
3e04e7f1
JB
736 else if (ret)
737 unlock_page(async_cow->locked_page);
771ed689
CM
738 kfree(async_extent);
739 cond_resched();
740 continue;
741 }
742
743 lock_extent(io_tree, async_extent->start,
d0082371 744 async_extent->start + async_extent->ram_size - 1);
771ed689 745
18513091 746 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
747 async_extent->compressed_size,
748 async_extent->compressed_size,
e570fd27 749 0, alloc_hint, &ins, 1, 1);
f5a84ee3 750 if (ret) {
40ae837b 751 free_async_extent_pages(async_extent);
3e04e7f1 752
fdf8e2ea
JB
753 if (ret == -ENOSPC) {
754 unlock_extent(io_tree, async_extent->start,
755 async_extent->start +
756 async_extent->ram_size - 1);
ce62003f
LB
757
758 /*
759 * we need to redirty the pages if we decide to
760 * fallback to uncompressed IO, otherwise we
761 * will not submit these pages down to lower
762 * layers.
763 */
764 extent_range_redirty_for_io(inode,
765 async_extent->start,
766 async_extent->start +
767 async_extent->ram_size - 1);
768
79787eaa 769 goto retry;
fdf8e2ea 770 }
3e04e7f1 771 goto out_free;
f5a84ee3 772 }
c2167754
YZ
773 /*
774 * here we're doing allocation and writeback of the
775 * compressed pages
776 */
6f9994db
LB
777 em = create_io_em(inode, async_extent->start,
778 async_extent->ram_size, /* len */
779 async_extent->start, /* orig_start */
780 ins.objectid, /* block_start */
781 ins.offset, /* block_len */
782 ins.offset, /* orig_block_len */
783 async_extent->ram_size, /* ram_bytes */
784 async_extent->compress_type,
785 BTRFS_ORDERED_COMPRESSED);
786 if (IS_ERR(em))
787 /* ret value is not necessary due to void function */
3e04e7f1 788 goto out_free_reserve;
6f9994db 789 free_extent_map(em);
3e04e7f1 790
261507a0
LZ
791 ret = btrfs_add_ordered_extent_compress(inode,
792 async_extent->start,
793 ins.objectid,
794 async_extent->ram_size,
795 ins.offset,
796 BTRFS_ORDERED_COMPRESSED,
797 async_extent->compress_type);
d9f85963 798 if (ret) {
dcdbc059
NB
799 btrfs_drop_extent_cache(BTRFS_I(inode),
800 async_extent->start,
d9f85963
FM
801 async_extent->start +
802 async_extent->ram_size - 1, 0);
3e04e7f1 803 goto out_free_reserve;
d9f85963 804 }
0b246afa 805 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 806
771ed689
CM
807 /*
808 * clear dirty, set writeback and unlock the pages.
809 */
c2790a2e 810 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
811 async_extent->start +
812 async_extent->ram_size - 1,
a791e35e
CM
813 async_extent->start +
814 async_extent->ram_size - 1,
151a41bc
JB
815 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
816 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 817 PAGE_SET_WRITEBACK);
771ed689 818 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
819 async_extent->start,
820 async_extent->ram_size,
821 ins.objectid,
822 ins.offset, async_extent->pages,
823 async_extent->nr_pages);
fce2a4e6
FM
824 if (ret) {
825 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
826 struct page *p = async_extent->pages[0];
827 const u64 start = async_extent->start;
828 const u64 end = start + async_extent->ram_size - 1;
829
830 p->mapping = inode->i_mapping;
831 tree->ops->writepage_end_io_hook(p, start, end,
832 NULL, 0);
833 p->mapping = NULL;
ba8b04c1
QW
834 extent_clear_unlock_delalloc(inode, start, end, end,
835 NULL, 0,
fce2a4e6
FM
836 PAGE_END_WRITEBACK |
837 PAGE_SET_ERROR);
40ae837b 838 free_async_extent_pages(async_extent);
fce2a4e6 839 }
771ed689
CM
840 alloc_hint = ins.objectid + ins.offset;
841 kfree(async_extent);
842 cond_resched();
843 }
dec8f175 844 return;
3e04e7f1 845out_free_reserve:
0b246afa 846 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 847 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 848out_free:
c2790a2e 849 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
850 async_extent->start +
851 async_extent->ram_size - 1,
3e04e7f1
JB
852 async_extent->start +
853 async_extent->ram_size - 1,
c2790a2e 854 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
855 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
856 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
857 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
858 PAGE_SET_ERROR);
40ae837b 859 free_async_extent_pages(async_extent);
79787eaa 860 kfree(async_extent);
3e04e7f1 861 goto again;
771ed689
CM
862}
863
4b46fce2
JB
864static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
865 u64 num_bytes)
866{
867 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
868 struct extent_map *em;
869 u64 alloc_hint = 0;
870
871 read_lock(&em_tree->lock);
872 em = search_extent_mapping(em_tree, start, num_bytes);
873 if (em) {
874 /*
875 * if block start isn't an actual block number then find the
876 * first block in this inode and use that as a hint. If that
877 * block is also bogus then just don't worry about it.
878 */
879 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
880 free_extent_map(em);
881 em = search_extent_mapping(em_tree, 0, 0);
882 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
883 alloc_hint = em->block_start;
884 if (em)
885 free_extent_map(em);
886 } else {
887 alloc_hint = em->block_start;
888 free_extent_map(em);
889 }
890 }
891 read_unlock(&em_tree->lock);
892
893 return alloc_hint;
894}
895
771ed689
CM
896/*
897 * when extent_io.c finds a delayed allocation range in the file,
898 * the call backs end up in this code. The basic idea is to
899 * allocate extents on disk for the range, and create ordered data structs
900 * in ram to track those extents.
901 *
902 * locked_page is the page that writepage had locked already. We use
903 * it to make sure we don't do extra locks or unlocks.
904 *
905 * *page_started is set to one if we unlock locked_page and do everything
906 * required to start IO on it. It may be clean and already done with
907 * IO when we return.
908 */
00361589
JB
909static noinline int cow_file_range(struct inode *inode,
910 struct page *locked_page,
dda3245e
WX
911 u64 start, u64 end, u64 delalloc_end,
912 int *page_started, unsigned long *nr_written,
913 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 914{
0b246afa 915 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 916 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
917 u64 alloc_hint = 0;
918 u64 num_bytes;
919 unsigned long ram_size;
920 u64 disk_num_bytes;
921 u64 cur_alloc_size;
0b246afa 922 u64 blocksize = fs_info->sectorsize;
771ed689
CM
923 struct btrfs_key ins;
924 struct extent_map *em;
771ed689
CM
925 int ret = 0;
926
70ddc553 927 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 928 WARN_ON_ONCE(1);
29bce2f3
JB
929 ret = -EINVAL;
930 goto out_unlock;
02ecd2c2 931 }
771ed689 932
fda2832f 933 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
934 num_bytes = max(blocksize, num_bytes);
935 disk_num_bytes = num_bytes;
771ed689 936
6158e1ce 937 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 938
771ed689
CM
939 if (start == 0) {
940 /* lets try to make an inline extent */
f74670f7
AJ
941 ret = cow_file_range_inline(root, inode, start, end, 0,
942 BTRFS_COMPRESS_NONE, NULL);
771ed689 943 if (ret == 0) {
ba8b04c1
QW
944 extent_clear_unlock_delalloc(inode, start, end,
945 delalloc_end, NULL,
c2790a2e 946 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 947 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
948 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
949 PAGE_END_WRITEBACK);
18513091
WX
950 btrfs_free_reserved_data_space_noquota(inode, start,
951 end - start + 1);
771ed689 952 *nr_written = *nr_written +
09cbfeaf 953 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 954 *page_started = 1;
771ed689 955 goto out;
79787eaa 956 } else if (ret < 0) {
79787eaa 957 goto out_unlock;
771ed689
CM
958 }
959 }
960
961 BUG_ON(disk_num_bytes >
0b246afa 962 btrfs_super_total_bytes(fs_info->super_copy));
771ed689 963
4b46fce2 964 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
965 btrfs_drop_extent_cache(BTRFS_I(inode), start,
966 start + num_bytes - 1, 0);
771ed689 967
d397712b 968 while (disk_num_bytes > 0) {
a791e35e
CM
969 unsigned long op;
970
287a0ab9 971 cur_alloc_size = disk_num_bytes;
18513091 972 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 973 fs_info->sectorsize, 0, alloc_hint,
e570fd27 974 &ins, 1, 1);
00361589 975 if (ret < 0)
79787eaa 976 goto out_unlock;
d397712b 977
771ed689 978 ram_size = ins.offset;
6f9994db
LB
979 em = create_io_em(inode, start, ins.offset, /* len */
980 start, /* orig_start */
981 ins.objectid, /* block_start */
982 ins.offset, /* block_len */
983 ins.offset, /* orig_block_len */
984 ram_size, /* ram_bytes */
985 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 986 BTRFS_ORDERED_REGULAR /* type */);
6f9994db 987 if (IS_ERR(em))
ace68bac 988 goto out_reserve;
6f9994db 989 free_extent_map(em);
e6dcd2dc 990
98d20f67 991 cur_alloc_size = ins.offset;
e6dcd2dc 992 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 993 ram_size, cur_alloc_size, 0);
ace68bac 994 if (ret)
d9f85963 995 goto out_drop_extent_cache;
c8b97818 996
17d217fe
YZ
997 if (root->root_key.objectid ==
998 BTRFS_DATA_RELOC_TREE_OBJECTID) {
999 ret = btrfs_reloc_clone_csums(inode, start,
1000 cur_alloc_size);
00361589 1001 if (ret)
d9f85963 1002 goto out_drop_extent_cache;
17d217fe
YZ
1003 }
1004
0b246afa 1005 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1006
d397712b 1007 if (disk_num_bytes < cur_alloc_size)
3b951516 1008 break;
d397712b 1009
c8b97818
CM
1010 /* we're not doing compressed IO, don't unlock the first
1011 * page (which the caller expects to stay locked), don't
1012 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1013 *
1014 * Do set the Private2 bit so we know this page was properly
1015 * setup for writepage
c8b97818 1016 */
c2790a2e
JB
1017 op = unlock ? PAGE_UNLOCK : 0;
1018 op |= PAGE_SET_PRIVATE2;
a791e35e 1019
c2790a2e 1020 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1021 start + ram_size - 1,
1022 delalloc_end, locked_page,
c2790a2e
JB
1023 EXTENT_LOCKED | EXTENT_DELALLOC,
1024 op);
c8b97818 1025 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1026 num_bytes -= cur_alloc_size;
1027 alloc_hint = ins.objectid + ins.offset;
1028 start += cur_alloc_size;
b888db2b 1029 }
79787eaa 1030out:
be20aa9d 1031 return ret;
b7d5b0a8 1032
d9f85963 1033out_drop_extent_cache:
dcdbc059 1034 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1035out_reserve:
0b246afa 1036 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1037 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1038out_unlock:
ba8b04c1
QW
1039 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1040 locked_page,
151a41bc
JB
1041 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1042 EXTENT_DELALLOC | EXTENT_DEFRAG,
1043 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1044 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1045 goto out;
771ed689 1046}
c8b97818 1047
771ed689
CM
1048/*
1049 * work queue call back to started compression on a file and pages
1050 */
1051static noinline void async_cow_start(struct btrfs_work *work)
1052{
1053 struct async_cow *async_cow;
1054 int num_added = 0;
1055 async_cow = container_of(work, struct async_cow, work);
1056
1057 compress_file_range(async_cow->inode, async_cow->locked_page,
1058 async_cow->start, async_cow->end, async_cow,
1059 &num_added);
8180ef88 1060 if (num_added == 0) {
cb77fcd8 1061 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1062 async_cow->inode = NULL;
8180ef88 1063 }
771ed689
CM
1064}
1065
1066/*
1067 * work queue call back to submit previously compressed pages
1068 */
1069static noinline void async_cow_submit(struct btrfs_work *work)
1070{
0b246afa 1071 struct btrfs_fs_info *fs_info;
771ed689
CM
1072 struct async_cow *async_cow;
1073 struct btrfs_root *root;
1074 unsigned long nr_pages;
1075
1076 async_cow = container_of(work, struct async_cow, work);
1077
1078 root = async_cow->root;
0b246afa 1079 fs_info = root->fs_info;
09cbfeaf
KS
1080 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1081 PAGE_SHIFT;
771ed689 1082
ee863954
DS
1083 /*
1084 * atomic_sub_return implies a barrier for waitqueue_active
1085 */
0b246afa 1086 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
ee22184b 1087 5 * SZ_1M &&
0b246afa
JM
1088 waitqueue_active(&fs_info->async_submit_wait))
1089 wake_up(&fs_info->async_submit_wait);
771ed689 1090
d397712b 1091 if (async_cow->inode)
771ed689 1092 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1093}
c8b97818 1094
771ed689
CM
1095static noinline void async_cow_free(struct btrfs_work *work)
1096{
1097 struct async_cow *async_cow;
1098 async_cow = container_of(work, struct async_cow, work);
8180ef88 1099 if (async_cow->inode)
cb77fcd8 1100 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1101 kfree(async_cow);
1102}
1103
1104static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1105 u64 start, u64 end, int *page_started,
1106 unsigned long *nr_written)
1107{
0b246afa 1108 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
1109 struct async_cow *async_cow;
1110 struct btrfs_root *root = BTRFS_I(inode)->root;
1111 unsigned long nr_pages;
1112 u64 cur_end;
771ed689 1113
a3429ab7
CM
1114 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1115 1, 0, NULL, GFP_NOFS);
d397712b 1116 while (start < end) {
771ed689 1117 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1118 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1119 async_cow->inode = igrab(inode);
771ed689
CM
1120 async_cow->root = root;
1121 async_cow->locked_page = locked_page;
1122 async_cow->start = start;
1123
f79707b0 1124 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
0b246afa 1125 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
771ed689
CM
1126 cur_end = end;
1127 else
ee22184b 1128 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1129
1130 async_cow->end = cur_end;
1131 INIT_LIST_HEAD(&async_cow->extents);
1132
9e0af237
LB
1133 btrfs_init_work(&async_cow->work,
1134 btrfs_delalloc_helper,
1135 async_cow_start, async_cow_submit,
1136 async_cow_free);
771ed689 1137
09cbfeaf
KS
1138 nr_pages = (cur_end - start + PAGE_SIZE) >>
1139 PAGE_SHIFT;
0b246afa 1140 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1141
0b246afa 1142 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
771ed689 1143
0b246afa
JM
1144 while (atomic_read(&fs_info->async_submit_draining) &&
1145 atomic_read(&fs_info->async_delalloc_pages)) {
1146 wait_event(fs_info->async_submit_wait,
1147 (atomic_read(&fs_info->async_delalloc_pages) ==
1148 0));
771ed689
CM
1149 }
1150
1151 *nr_written += nr_pages;
1152 start = cur_end + 1;
1153 }
1154 *page_started = 1;
1155 return 0;
be20aa9d
CM
1156}
1157
2ff7e61e 1158static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1159 u64 bytenr, u64 num_bytes)
1160{
1161 int ret;
1162 struct btrfs_ordered_sum *sums;
1163 LIST_HEAD(list);
1164
0b246afa 1165 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1166 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1167 if (ret == 0 && list_empty(&list))
1168 return 0;
1169
1170 while (!list_empty(&list)) {
1171 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1172 list_del(&sums->list);
1173 kfree(sums);
1174 }
1175 return 1;
1176}
1177
d352ac68
CM
1178/*
1179 * when nowcow writeback call back. This checks for snapshots or COW copies
1180 * of the extents that exist in the file, and COWs the file as required.
1181 *
1182 * If no cow copies or snapshots exist, we write directly to the existing
1183 * blocks on disk
1184 */
7f366cfe
CM
1185static noinline int run_delalloc_nocow(struct inode *inode,
1186 struct page *locked_page,
771ed689
CM
1187 u64 start, u64 end, int *page_started, int force,
1188 unsigned long *nr_written)
be20aa9d 1189{
0b246afa 1190 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d
CM
1191 struct btrfs_root *root = BTRFS_I(inode)->root;
1192 struct extent_buffer *leaf;
be20aa9d 1193 struct btrfs_path *path;
80ff3856 1194 struct btrfs_file_extent_item *fi;
be20aa9d 1195 struct btrfs_key found_key;
6f9994db 1196 struct extent_map *em;
80ff3856
YZ
1197 u64 cow_start;
1198 u64 cur_offset;
1199 u64 extent_end;
5d4f98a2 1200 u64 extent_offset;
80ff3856
YZ
1201 u64 disk_bytenr;
1202 u64 num_bytes;
b4939680 1203 u64 disk_num_bytes;
cc95bef6 1204 u64 ram_bytes;
80ff3856 1205 int extent_type;
79787eaa 1206 int ret, err;
d899e052 1207 int type;
80ff3856
YZ
1208 int nocow;
1209 int check_prev = 1;
82d5902d 1210 bool nolock;
4a0cc7ca 1211 u64 ino = btrfs_ino(BTRFS_I(inode));
be20aa9d
CM
1212
1213 path = btrfs_alloc_path();
17ca04af 1214 if (!path) {
ba8b04c1
QW
1215 extent_clear_unlock_delalloc(inode, start, end, end,
1216 locked_page,
c2790a2e 1217 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1218 EXTENT_DO_ACCOUNTING |
1219 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1220 PAGE_CLEAR_DIRTY |
1221 PAGE_SET_WRITEBACK |
1222 PAGE_END_WRITEBACK);
d8926bb3 1223 return -ENOMEM;
17ca04af 1224 }
82d5902d 1225
70ddc553 1226 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
82d5902d 1227
80ff3856
YZ
1228 cow_start = (u64)-1;
1229 cur_offset = start;
1230 while (1) {
e4c3b2dc 1231 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1232 cur_offset, 0);
d788a349 1233 if (ret < 0)
79787eaa 1234 goto error;
80ff3856
YZ
1235 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1236 leaf = path->nodes[0];
1237 btrfs_item_key_to_cpu(leaf, &found_key,
1238 path->slots[0] - 1);
33345d01 1239 if (found_key.objectid == ino &&
80ff3856
YZ
1240 found_key.type == BTRFS_EXTENT_DATA_KEY)
1241 path->slots[0]--;
1242 }
1243 check_prev = 0;
1244next_slot:
1245 leaf = path->nodes[0];
1246 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1247 ret = btrfs_next_leaf(root, path);
d788a349 1248 if (ret < 0)
79787eaa 1249 goto error;
80ff3856
YZ
1250 if (ret > 0)
1251 break;
1252 leaf = path->nodes[0];
1253 }
be20aa9d 1254
80ff3856
YZ
1255 nocow = 0;
1256 disk_bytenr = 0;
17d217fe 1257 num_bytes = 0;
80ff3856
YZ
1258 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1259
1d512cb7
FM
1260 if (found_key.objectid > ino)
1261 break;
1262 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1263 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1264 path->slots[0]++;
1265 goto next_slot;
1266 }
1267 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1268 found_key.offset > end)
1269 break;
1270
1271 if (found_key.offset > cur_offset) {
1272 extent_end = found_key.offset;
e9061e21 1273 extent_type = 0;
80ff3856
YZ
1274 goto out_check;
1275 }
1276
1277 fi = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_file_extent_item);
1279 extent_type = btrfs_file_extent_type(leaf, fi);
1280
cc95bef6 1281 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1282 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1283 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1284 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1285 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1286 extent_end = found_key.offset +
1287 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1288 disk_num_bytes =
1289 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1290 if (extent_end <= start) {
1291 path->slots[0]++;
1292 goto next_slot;
1293 }
17d217fe
YZ
1294 if (disk_bytenr == 0)
1295 goto out_check;
80ff3856
YZ
1296 if (btrfs_file_extent_compression(leaf, fi) ||
1297 btrfs_file_extent_encryption(leaf, fi) ||
1298 btrfs_file_extent_other_encoding(leaf, fi))
1299 goto out_check;
d899e052
YZ
1300 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1301 goto out_check;
2ff7e61e 1302 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1303 goto out_check;
e4c3b2dc 1304 if (btrfs_cross_ref_exist(root, ino,
5d4f98a2
YZ
1305 found_key.offset -
1306 extent_offset, disk_bytenr))
17d217fe 1307 goto out_check;
5d4f98a2 1308 disk_bytenr += extent_offset;
17d217fe
YZ
1309 disk_bytenr += cur_offset - found_key.offset;
1310 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1311 /*
1312 * if there are pending snapshots for this root,
1313 * we fall into common COW way.
1314 */
1315 if (!nolock) {
9ea24bbe 1316 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1317 if (!err)
1318 goto out_check;
1319 }
17d217fe
YZ
1320 /*
1321 * force cow if csum exists in the range.
1322 * this ensure that csum for a given extent are
1323 * either valid or do not exist.
1324 */
2ff7e61e 1325 if (csum_exist_in_range(fs_info, disk_bytenr,
91e1f56a
RK
1326 num_bytes)) {
1327 if (!nolock)
1328 btrfs_end_write_no_snapshoting(root);
17d217fe 1329 goto out_check;
91e1f56a
RK
1330 }
1331 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1332 if (!nolock)
1333 btrfs_end_write_no_snapshoting(root);
f78c436c 1334 goto out_check;
91e1f56a 1335 }
80ff3856
YZ
1336 nocow = 1;
1337 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1338 extent_end = found_key.offset +
514ac8ad
CM
1339 btrfs_file_extent_inline_len(leaf,
1340 path->slots[0], fi);
da17066c 1341 extent_end = ALIGN(extent_end,
0b246afa 1342 fs_info->sectorsize);
80ff3856
YZ
1343 } else {
1344 BUG_ON(1);
1345 }
1346out_check:
1347 if (extent_end <= start) {
1348 path->slots[0]++;
e9894fd3 1349 if (!nolock && nocow)
9ea24bbe 1350 btrfs_end_write_no_snapshoting(root);
f78c436c 1351 if (nocow)
0b246afa 1352 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1353 goto next_slot;
1354 }
1355 if (!nocow) {
1356 if (cow_start == (u64)-1)
1357 cow_start = cur_offset;
1358 cur_offset = extent_end;
1359 if (cur_offset > end)
1360 break;
1361 path->slots[0]++;
1362 goto next_slot;
7ea394f1
YZ
1363 }
1364
b3b4aa74 1365 btrfs_release_path(path);
80ff3856 1366 if (cow_start != (u64)-1) {
00361589
JB
1367 ret = cow_file_range(inode, locked_page,
1368 cow_start, found_key.offset - 1,
dda3245e
WX
1369 end, page_started, nr_written, 1,
1370 NULL);
e9894fd3
WS
1371 if (ret) {
1372 if (!nolock && nocow)
9ea24bbe 1373 btrfs_end_write_no_snapshoting(root);
f78c436c 1374 if (nocow)
0b246afa 1375 btrfs_dec_nocow_writers(fs_info,
f78c436c 1376 disk_bytenr);
79787eaa 1377 goto error;
e9894fd3 1378 }
80ff3856 1379 cow_start = (u64)-1;
7ea394f1 1380 }
80ff3856 1381
d899e052 1382 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db
LB
1383 u64 orig_start = found_key.offset - extent_offset;
1384
1385 em = create_io_em(inode, cur_offset, num_bytes,
1386 orig_start,
1387 disk_bytenr, /* block_start */
1388 num_bytes, /* block_len */
1389 disk_num_bytes, /* orig_block_len */
1390 ram_bytes, BTRFS_COMPRESS_NONE,
1391 BTRFS_ORDERED_PREALLOC);
1392 if (IS_ERR(em)) {
1393 if (!nolock && nocow)
1394 btrfs_end_write_no_snapshoting(root);
1395 if (nocow)
1396 btrfs_dec_nocow_writers(fs_info,
1397 disk_bytenr);
1398 ret = PTR_ERR(em);
1399 goto error;
d899e052 1400 }
6f9994db
LB
1401 free_extent_map(em);
1402 }
1403
1404 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
d899e052
YZ
1405 type = BTRFS_ORDERED_PREALLOC;
1406 } else {
1407 type = BTRFS_ORDERED_NOCOW;
1408 }
80ff3856
YZ
1409
1410 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1411 num_bytes, num_bytes, type);
f78c436c 1412 if (nocow)
0b246afa 1413 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1414 BUG_ON(ret); /* -ENOMEM */
771ed689 1415
efa56464
YZ
1416 if (root->root_key.objectid ==
1417 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1418 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1419 num_bytes);
e9894fd3
WS
1420 if (ret) {
1421 if (!nolock && nocow)
9ea24bbe 1422 btrfs_end_write_no_snapshoting(root);
79787eaa 1423 goto error;
e9894fd3 1424 }
efa56464
YZ
1425 }
1426
c2790a2e 1427 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1428 cur_offset + num_bytes - 1, end,
c2790a2e 1429 locked_page, EXTENT_LOCKED |
18513091
WX
1430 EXTENT_DELALLOC |
1431 EXTENT_CLEAR_DATA_RESV,
1432 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1433
e9894fd3 1434 if (!nolock && nocow)
9ea24bbe 1435 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1436 cur_offset = extent_end;
1437 if (cur_offset > end)
1438 break;
be20aa9d 1439 }
b3b4aa74 1440 btrfs_release_path(path);
80ff3856 1441
17ca04af 1442 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1443 cow_start = cur_offset;
17ca04af
JB
1444 cur_offset = end;
1445 }
1446
80ff3856 1447 if (cow_start != (u64)-1) {
dda3245e
WX
1448 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1449 page_started, nr_written, 1, NULL);
d788a349 1450 if (ret)
79787eaa 1451 goto error;
80ff3856
YZ
1452 }
1453
79787eaa 1454error:
17ca04af 1455 if (ret && cur_offset < end)
ba8b04c1 1456 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1457 locked_page, EXTENT_LOCKED |
151a41bc
JB
1458 EXTENT_DELALLOC | EXTENT_DEFRAG |
1459 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1460 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1461 PAGE_SET_WRITEBACK |
1462 PAGE_END_WRITEBACK);
7ea394f1 1463 btrfs_free_path(path);
79787eaa 1464 return ret;
be20aa9d
CM
1465}
1466
47059d93
WS
1467static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1468{
1469
1470 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1471 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1472 return 0;
1473
1474 /*
1475 * @defrag_bytes is a hint value, no spinlock held here,
1476 * if is not zero, it means the file is defragging.
1477 * Force cow if given extent needs to be defragged.
1478 */
1479 if (BTRFS_I(inode)->defrag_bytes &&
1480 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1481 EXTENT_DEFRAG, 0, NULL))
1482 return 1;
1483
1484 return 0;
1485}
1486
d352ac68
CM
1487/*
1488 * extent_io.c call back to do delayed allocation processing
1489 */
c8b97818 1490static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1491 u64 start, u64 end, int *page_started,
1492 unsigned long *nr_written)
be20aa9d 1493{
be20aa9d 1494 int ret;
47059d93 1495 int force_cow = need_force_cow(inode, start, end);
a2135011 1496
47059d93 1497 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1498 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1499 page_started, 1, nr_written);
47059d93 1500 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1501 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1502 page_started, 0, nr_written);
7816030e 1503 } else if (!inode_need_compress(inode)) {
dda3245e
WX
1504 ret = cow_file_range(inode, locked_page, start, end, end,
1505 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1506 } else {
1507 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1508 &BTRFS_I(inode)->runtime_flags);
771ed689 1509 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1510 page_started, nr_written);
7ddf5a42 1511 }
b888db2b
CM
1512 return ret;
1513}
1514
1bf85046
JM
1515static void btrfs_split_extent_hook(struct inode *inode,
1516 struct extent_state *orig, u64 split)
9ed74f2d 1517{
dcab6a3b
JB
1518 u64 size;
1519
0ca1f7ce 1520 /* not delalloc, ignore it */
9ed74f2d 1521 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1522 return;
9ed74f2d 1523
dcab6a3b
JB
1524 size = orig->end - orig->start + 1;
1525 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1526 u32 num_extents;
dcab6a3b
JB
1527 u64 new_size;
1528
1529 /*
ba117213
JB
1530 * See the explanation in btrfs_merge_extent_hook, the same
1531 * applies here, just in reverse.
dcab6a3b
JB
1532 */
1533 new_size = orig->end - split + 1;
823bb20a 1534 num_extents = count_max_extents(new_size);
ba117213 1535 new_size = split - orig->start;
823bb20a
DS
1536 num_extents += count_max_extents(new_size);
1537 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1538 return;
1539 }
1540
9e0baf60
JB
1541 spin_lock(&BTRFS_I(inode)->lock);
1542 BTRFS_I(inode)->outstanding_extents++;
1543 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1544}
1545
1546/*
1547 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1548 * extents so we can keep track of new extents that are just merged onto old
1549 * extents, such as when we are doing sequential writes, so we can properly
1550 * account for the metadata space we'll need.
1551 */
1bf85046
JM
1552static void btrfs_merge_extent_hook(struct inode *inode,
1553 struct extent_state *new,
1554 struct extent_state *other)
9ed74f2d 1555{
dcab6a3b 1556 u64 new_size, old_size;
823bb20a 1557 u32 num_extents;
dcab6a3b 1558
9ed74f2d
JB
1559 /* not delalloc, ignore it */
1560 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1561 return;
9ed74f2d 1562
8461a3de
JB
1563 if (new->start > other->start)
1564 new_size = new->end - other->start + 1;
1565 else
1566 new_size = other->end - new->start + 1;
dcab6a3b
JB
1567
1568 /* we're not bigger than the max, unreserve the space and go */
1569 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1570 spin_lock(&BTRFS_I(inode)->lock);
1571 BTRFS_I(inode)->outstanding_extents--;
1572 spin_unlock(&BTRFS_I(inode)->lock);
1573 return;
1574 }
1575
1576 /*
ba117213
JB
1577 * We have to add up either side to figure out how many extents were
1578 * accounted for before we merged into one big extent. If the number of
1579 * extents we accounted for is <= the amount we need for the new range
1580 * then we can return, otherwise drop. Think of it like this
1581 *
1582 * [ 4k][MAX_SIZE]
1583 *
1584 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1585 * need 2 outstanding extents, on one side we have 1 and the other side
1586 * we have 1 so they are == and we can return. But in this case
1587 *
1588 * [MAX_SIZE+4k][MAX_SIZE+4k]
1589 *
1590 * Each range on their own accounts for 2 extents, but merged together
1591 * they are only 3 extents worth of accounting, so we need to drop in
1592 * this case.
dcab6a3b 1593 */
ba117213 1594 old_size = other->end - other->start + 1;
823bb20a 1595 num_extents = count_max_extents(old_size);
ba117213 1596 old_size = new->end - new->start + 1;
823bb20a
DS
1597 num_extents += count_max_extents(old_size);
1598 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1599 return;
1600
9e0baf60
JB
1601 spin_lock(&BTRFS_I(inode)->lock);
1602 BTRFS_I(inode)->outstanding_extents--;
1603 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1604}
1605
eb73c1b7
MX
1606static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1607 struct inode *inode)
1608{
0b246afa
JM
1609 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1610
eb73c1b7
MX
1611 spin_lock(&root->delalloc_lock);
1612 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1613 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1614 &root->delalloc_inodes);
1615 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1616 &BTRFS_I(inode)->runtime_flags);
1617 root->nr_delalloc_inodes++;
1618 if (root->nr_delalloc_inodes == 1) {
0b246afa 1619 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1620 BUG_ON(!list_empty(&root->delalloc_root));
1621 list_add_tail(&root->delalloc_root,
0b246afa
JM
1622 &fs_info->delalloc_roots);
1623 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1624 }
1625 }
1626 spin_unlock(&root->delalloc_lock);
1627}
1628
1629static void btrfs_del_delalloc_inode(struct btrfs_root *root,
9e3e97f4 1630 struct btrfs_inode *inode)
eb73c1b7 1631{
9e3e97f4 1632 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0b246afa 1633
eb73c1b7 1634 spin_lock(&root->delalloc_lock);
9e3e97f4
NB
1635 if (!list_empty(&inode->delalloc_inodes)) {
1636 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1637 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1638 &inode->runtime_flags);
eb73c1b7
MX
1639 root->nr_delalloc_inodes--;
1640 if (!root->nr_delalloc_inodes) {
0b246afa 1641 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1642 BUG_ON(list_empty(&root->delalloc_root));
1643 list_del_init(&root->delalloc_root);
0b246afa 1644 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1645 }
1646 }
1647 spin_unlock(&root->delalloc_lock);
1648}
1649
d352ac68
CM
1650/*
1651 * extent_io.c set_bit_hook, used to track delayed allocation
1652 * bytes in this file, and to maintain the list of inodes that
1653 * have pending delalloc work to be done.
1654 */
1bf85046 1655static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1656 struct extent_state *state, unsigned *bits)
291d673e 1657{
9ed74f2d 1658
0b246afa
JM
1659 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1660
47059d93
WS
1661 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1662 WARN_ON(1);
75eff68e
CM
1663 /*
1664 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1665 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1666 * bit, which is only set or cleared with irqs on
1667 */
0ca1f7ce 1668 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1669 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1670 u64 len = state->end + 1 - state->start;
70ddc553 1671 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1672
9e0baf60 1673 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1674 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1675 } else {
1676 spin_lock(&BTRFS_I(inode)->lock);
1677 BTRFS_I(inode)->outstanding_extents++;
1678 spin_unlock(&BTRFS_I(inode)->lock);
1679 }
287a0ab9 1680
6a3891c5 1681 /* For sanity tests */
0b246afa 1682 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1683 return;
1684
0b246afa
JM
1685 __percpu_counter_add(&fs_info->delalloc_bytes, len,
1686 fs_info->delalloc_batch);
df0af1a5 1687 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1688 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1689 if (*bits & EXTENT_DEFRAG)
1690 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1691 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1692 &BTRFS_I(inode)->runtime_flags))
1693 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1694 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1695 }
291d673e
CM
1696}
1697
d352ac68
CM
1698/*
1699 * extent_io.c clear_bit_hook, see set_bit_hook for why
1700 */
6fc0ef68 1701static void btrfs_clear_bit_hook(struct btrfs_inode *inode,
41074888 1702 struct extent_state *state,
9ee49a04 1703 unsigned *bits)
291d673e 1704{
6fc0ef68 1705 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
47059d93 1706 u64 len = state->end + 1 - state->start;
823bb20a 1707 u32 num_extents = count_max_extents(len);
47059d93 1708
6fc0ef68 1709 spin_lock(&inode->lock);
47059d93 1710 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
6fc0ef68
NB
1711 inode->defrag_bytes -= len;
1712 spin_unlock(&inode->lock);
47059d93 1713
75eff68e
CM
1714 /*
1715 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1716 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1717 * bit, which is only set or cleared with irqs on
1718 */
0ca1f7ce 1719 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1720 struct btrfs_root *root = inode->root;
83eea1f1 1721 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1722
9e0baf60 1723 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1724 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60 1725 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
6fc0ef68
NB
1726 spin_lock(&inode->lock);
1727 inode->outstanding_extents -= num_extents;
1728 spin_unlock(&inode->lock);
9e0baf60 1729 }
0ca1f7ce 1730
b6d08f06
JB
1731 /*
1732 * We don't reserve metadata space for space cache inodes so we
1733 * don't need to call dellalloc_release_metadata if there is an
1734 * error.
1735 */
1736 if (*bits & EXTENT_DO_ACCOUNTING &&
0b246afa 1737 root != fs_info->tree_root)
0ca1f7ce
YZ
1738 btrfs_delalloc_release_metadata(inode, len);
1739
6a3891c5 1740 /* For sanity tests. */
0b246afa 1741 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1742 return;
1743
0cb59c99 1744 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
18513091
WX
1745 && do_list && !(state->state & EXTENT_NORESERVE)
1746 && (*bits & (EXTENT_DO_ACCOUNTING |
1747 EXTENT_CLEAR_DATA_RESV)))
6fc0ef68
NB
1748 btrfs_free_reserved_data_space_noquota(
1749 &inode->vfs_inode,
51773bec 1750 state->start, len);
9ed74f2d 1751
0b246afa
JM
1752 __percpu_counter_add(&fs_info->delalloc_bytes, -len,
1753 fs_info->delalloc_batch);
6fc0ef68
NB
1754 spin_lock(&inode->lock);
1755 inode->delalloc_bytes -= len;
1756 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 1757 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1758 &inode->runtime_flags))
eb73c1b7 1759 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 1760 spin_unlock(&inode->lock);
291d673e 1761 }
291d673e
CM
1762}
1763
d352ac68
CM
1764/*
1765 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1766 * we don't create bios that span stripes or chunks
6f034ece
LB
1767 *
1768 * return 1 if page cannot be merged to bio
1769 * return 0 if page can be merged to bio
1770 * return error otherwise
d352ac68 1771 */
81a75f67 1772int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1773 size_t size, struct bio *bio,
1774 unsigned long bio_flags)
239b14b3 1775{
0b246afa
JM
1776 struct inode *inode = page->mapping->host;
1777 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1778 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1779 u64 length = 0;
1780 u64 map_length;
239b14b3
CM
1781 int ret;
1782
771ed689
CM
1783 if (bio_flags & EXTENT_BIO_COMPRESSED)
1784 return 0;
1785
4f024f37 1786 length = bio->bi_iter.bi_size;
239b14b3 1787 map_length = length;
0b246afa
JM
1788 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1789 NULL, 0);
6f034ece
LB
1790 if (ret < 0)
1791 return ret;
d397712b 1792 if (map_length < length + size)
239b14b3 1793 return 1;
3444a972 1794 return 0;
239b14b3
CM
1795}
1796
d352ac68
CM
1797/*
1798 * in order to insert checksums into the metadata in large chunks,
1799 * we wait until bio submission time. All the pages in the bio are
1800 * checksummed and sums are attached onto the ordered extent record.
1801 *
1802 * At IO completion time the cums attached on the ordered extent record
1803 * are inserted into the btree
1804 */
81a75f67
MC
1805static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
1806 int mirror_num, unsigned long bio_flags,
eaf25d93 1807 u64 bio_offset)
065631f6 1808{
065631f6 1809 int ret = 0;
e015640f 1810
2ff7e61e 1811 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1812 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1813 return 0;
1814}
e015640f 1815
4a69a410
CM
1816/*
1817 * in order to insert checksums into the metadata in large chunks,
1818 * we wait until bio submission time. All the pages in the bio are
1819 * checksummed and sums are attached onto the ordered extent record.
1820 *
1821 * At IO completion time the cums attached on the ordered extent record
1822 * are inserted into the btree
1823 */
81a75f67 1824static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio,
eaf25d93
CM
1825 int mirror_num, unsigned long bio_flags,
1826 u64 bio_offset)
4a69a410 1827{
2ff7e61e 1828 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
61891923
SB
1829 int ret;
1830
2ff7e61e 1831 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
4246a0b6
CH
1832 if (ret) {
1833 bio->bi_error = ret;
1834 bio_endio(bio);
1835 }
61891923 1836 return ret;
44b8bd7e
CM
1837}
1838
d352ac68 1839/*
cad321ad
CM
1840 * extent_io.c submission hook. This does the right thing for csum calculation
1841 * on write, or reading the csums from the tree before a read
d352ac68 1842 */
81a75f67 1843static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
eaf25d93
CM
1844 int mirror_num, unsigned long bio_flags,
1845 u64 bio_offset)
44b8bd7e 1846{
0b246afa 1847 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 1848 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1849 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1850 int ret = 0;
19b9bdb0 1851 int skip_sum;
b812ce28 1852 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1853
6cbff00f 1854 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1855
70ddc553 1856 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 1857 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1858
37226b21 1859 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 1860 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 1861 if (ret)
61891923 1862 goto out;
5fd02043 1863
d20f7043 1864 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1865 ret = btrfs_submit_compressed_read(inode, bio,
1866 mirror_num,
1867 bio_flags);
1868 goto out;
c2db1073 1869 } else if (!skip_sum) {
2ff7e61e 1870 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 1871 if (ret)
61891923 1872 goto out;
c2db1073 1873 }
4d1b5fb4 1874 goto mapit;
b812ce28 1875 } else if (async && !skip_sum) {
17d217fe
YZ
1876 /* csum items have already been cloned */
1877 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1878 goto mapit;
19b9bdb0 1879 /* we're doing a write, do the async checksumming */
0b246afa
JM
1880 ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num,
1881 bio_flags, bio_offset,
1882 __btrfs_submit_bio_start,
1883 __btrfs_submit_bio_done);
61891923 1884 goto out;
b812ce28 1885 } else if (!skip_sum) {
2ff7e61e 1886 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
1887 if (ret)
1888 goto out;
19b9bdb0
CM
1889 }
1890
0b86a832 1891mapit:
2ff7e61e 1892 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
1893
1894out:
4246a0b6
CH
1895 if (ret < 0) {
1896 bio->bi_error = ret;
1897 bio_endio(bio);
1898 }
61891923 1899 return ret;
065631f6 1900}
6885f308 1901
d352ac68
CM
1902/*
1903 * given a list of ordered sums record them in the inode. This happens
1904 * at IO completion time based on sums calculated at bio submission time.
1905 */
ba1da2f4 1906static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 1907 struct inode *inode, struct list_head *list)
e6dcd2dc 1908{
e6dcd2dc
CM
1909 struct btrfs_ordered_sum *sum;
1910
c6e30871 1911 list_for_each_entry(sum, list, list) {
39847c4d 1912 trans->adding_csums = 1;
d20f7043
CM
1913 btrfs_csum_file_blocks(trans,
1914 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1915 trans->adding_csums = 0;
e6dcd2dc
CM
1916 }
1917 return 0;
1918}
1919
2ac55d41 1920int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
ba8b04c1 1921 struct extent_state **cached_state, int dedupe)
ea8c2819 1922{
09cbfeaf 1923 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 1924 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
7cd8c752 1925 cached_state);
ea8c2819
CM
1926}
1927
d352ac68 1928/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1929struct btrfs_writepage_fixup {
1930 struct page *page;
1931 struct btrfs_work work;
1932};
1933
b2950863 1934static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1935{
1936 struct btrfs_writepage_fixup *fixup;
1937 struct btrfs_ordered_extent *ordered;
2ac55d41 1938 struct extent_state *cached_state = NULL;
247e743c
CM
1939 struct page *page;
1940 struct inode *inode;
1941 u64 page_start;
1942 u64 page_end;
87826df0 1943 int ret;
247e743c
CM
1944
1945 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1946 page = fixup->page;
4a096752 1947again:
247e743c
CM
1948 lock_page(page);
1949 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1950 ClearPageChecked(page);
1951 goto out_page;
1952 }
1953
1954 inode = page->mapping->host;
1955 page_start = page_offset(page);
09cbfeaf 1956 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 1957
ff13db41 1958 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 1959 &cached_state);
4a096752
CM
1960
1961 /* already ordered? We're done */
8b62b72b 1962 if (PagePrivate2(page))
247e743c 1963 goto out;
4a096752 1964
a776c6fa 1965 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 1966 PAGE_SIZE);
4a096752 1967 if (ordered) {
2ac55d41
JB
1968 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1969 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1970 unlock_page(page);
1971 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1972 btrfs_put_ordered_extent(ordered);
4a096752
CM
1973 goto again;
1974 }
247e743c 1975
7cf5b976 1976 ret = btrfs_delalloc_reserve_space(inode, page_start,
09cbfeaf 1977 PAGE_SIZE);
87826df0
JM
1978 if (ret) {
1979 mapping_set_error(page->mapping, ret);
1980 end_extent_writepage(page, ret, page_start, page_end);
1981 ClearPageChecked(page);
1982 goto out;
1983 }
1984
ba8b04c1
QW
1985 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
1986 0);
247e743c 1987 ClearPageChecked(page);
87826df0 1988 set_page_dirty(page);
247e743c 1989out:
2ac55d41
JB
1990 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1991 &cached_state, GFP_NOFS);
247e743c
CM
1992out_page:
1993 unlock_page(page);
09cbfeaf 1994 put_page(page);
b897abec 1995 kfree(fixup);
247e743c
CM
1996}
1997
1998/*
1999 * There are a few paths in the higher layers of the kernel that directly
2000 * set the page dirty bit without asking the filesystem if it is a
2001 * good idea. This causes problems because we want to make sure COW
2002 * properly happens and the data=ordered rules are followed.
2003 *
c8b97818 2004 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2005 * hasn't been properly setup for IO. We kick off an async process
2006 * to fix it up. The async helper will wait for ordered extents, set
2007 * the delalloc bit and make it safe to write the page.
2008 */
b2950863 2009static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2010{
2011 struct inode *inode = page->mapping->host;
0b246afa 2012 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2013 struct btrfs_writepage_fixup *fixup;
247e743c 2014
8b62b72b
CM
2015 /* this page is properly in the ordered list */
2016 if (TestClearPagePrivate2(page))
247e743c
CM
2017 return 0;
2018
2019 if (PageChecked(page))
2020 return -EAGAIN;
2021
2022 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2023 if (!fixup)
2024 return -EAGAIN;
f421950f 2025
247e743c 2026 SetPageChecked(page);
09cbfeaf 2027 get_page(page);
9e0af237
LB
2028 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2029 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2030 fixup->page = page;
0b246afa 2031 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2032 return -EBUSY;
247e743c
CM
2033}
2034
d899e052
YZ
2035static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2036 struct inode *inode, u64 file_pos,
2037 u64 disk_bytenr, u64 disk_num_bytes,
2038 u64 num_bytes, u64 ram_bytes,
2039 u8 compression, u8 encryption,
2040 u16 other_encoding, int extent_type)
2041{
2042 struct btrfs_root *root = BTRFS_I(inode)->root;
2043 struct btrfs_file_extent_item *fi;
2044 struct btrfs_path *path;
2045 struct extent_buffer *leaf;
2046 struct btrfs_key ins;
1acae57b 2047 int extent_inserted = 0;
d899e052
YZ
2048 int ret;
2049
2050 path = btrfs_alloc_path();
d8926bb3
MF
2051 if (!path)
2052 return -ENOMEM;
d899e052 2053
a1ed835e
CM
2054 /*
2055 * we may be replacing one extent in the tree with another.
2056 * The new extent is pinned in the extent map, and we don't want
2057 * to drop it from the cache until it is completely in the btree.
2058 *
2059 * So, tell btrfs_drop_extents to leave this extent in the cache.
2060 * the caller is expected to unpin it and allow it to be merged
2061 * with the others.
2062 */
1acae57b
FDBM
2063 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2064 file_pos + num_bytes, NULL, 0,
2065 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2066 if (ret)
2067 goto out;
d899e052 2068
1acae57b 2069 if (!extent_inserted) {
4a0cc7ca 2070 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2071 ins.offset = file_pos;
2072 ins.type = BTRFS_EXTENT_DATA_KEY;
2073
2074 path->leave_spinning = 1;
2075 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2076 sizeof(*fi));
2077 if (ret)
2078 goto out;
2079 }
d899e052
YZ
2080 leaf = path->nodes[0];
2081 fi = btrfs_item_ptr(leaf, path->slots[0],
2082 struct btrfs_file_extent_item);
2083 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2084 btrfs_set_file_extent_type(leaf, fi, extent_type);
2085 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2086 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2087 btrfs_set_file_extent_offset(leaf, fi, 0);
2088 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2089 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2090 btrfs_set_file_extent_compression(leaf, fi, compression);
2091 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2092 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2093
d899e052 2094 btrfs_mark_buffer_dirty(leaf);
ce195332 2095 btrfs_release_path(path);
d899e052
YZ
2096
2097 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2098
2099 ins.objectid = disk_bytenr;
2100 ins.offset = disk_num_bytes;
2101 ins.type = BTRFS_EXTENT_ITEM_KEY;
2ff7e61e 2102 ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid,
f85b7379 2103 btrfs_ino(BTRFS_I(inode)), file_pos, ram_bytes, &ins);
297d750b 2104 /*
5846a3c2
QW
2105 * Release the reserved range from inode dirty range map, as it is
2106 * already moved into delayed_ref_head
297d750b
QW
2107 */
2108 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
79787eaa 2109out:
d899e052 2110 btrfs_free_path(path);
b9473439 2111
79787eaa 2112 return ret;
d899e052
YZ
2113}
2114
38c227d8
LB
2115/* snapshot-aware defrag */
2116struct sa_defrag_extent_backref {
2117 struct rb_node node;
2118 struct old_sa_defrag_extent *old;
2119 u64 root_id;
2120 u64 inum;
2121 u64 file_pos;
2122 u64 extent_offset;
2123 u64 num_bytes;
2124 u64 generation;
2125};
2126
2127struct old_sa_defrag_extent {
2128 struct list_head list;
2129 struct new_sa_defrag_extent *new;
2130
2131 u64 extent_offset;
2132 u64 bytenr;
2133 u64 offset;
2134 u64 len;
2135 int count;
2136};
2137
2138struct new_sa_defrag_extent {
2139 struct rb_root root;
2140 struct list_head head;
2141 struct btrfs_path *path;
2142 struct inode *inode;
2143 u64 file_pos;
2144 u64 len;
2145 u64 bytenr;
2146 u64 disk_len;
2147 u8 compress_type;
2148};
2149
2150static int backref_comp(struct sa_defrag_extent_backref *b1,
2151 struct sa_defrag_extent_backref *b2)
2152{
2153 if (b1->root_id < b2->root_id)
2154 return -1;
2155 else if (b1->root_id > b2->root_id)
2156 return 1;
2157
2158 if (b1->inum < b2->inum)
2159 return -1;
2160 else if (b1->inum > b2->inum)
2161 return 1;
2162
2163 if (b1->file_pos < b2->file_pos)
2164 return -1;
2165 else if (b1->file_pos > b2->file_pos)
2166 return 1;
2167
2168 /*
2169 * [------------------------------] ===> (a range of space)
2170 * |<--->| |<---->| =============> (fs/file tree A)
2171 * |<---------------------------->| ===> (fs/file tree B)
2172 *
2173 * A range of space can refer to two file extents in one tree while
2174 * refer to only one file extent in another tree.
2175 *
2176 * So we may process a disk offset more than one time(two extents in A)
2177 * and locate at the same extent(one extent in B), then insert two same
2178 * backrefs(both refer to the extent in B).
2179 */
2180 return 0;
2181}
2182
2183static void backref_insert(struct rb_root *root,
2184 struct sa_defrag_extent_backref *backref)
2185{
2186 struct rb_node **p = &root->rb_node;
2187 struct rb_node *parent = NULL;
2188 struct sa_defrag_extent_backref *entry;
2189 int ret;
2190
2191 while (*p) {
2192 parent = *p;
2193 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2194
2195 ret = backref_comp(backref, entry);
2196 if (ret < 0)
2197 p = &(*p)->rb_left;
2198 else
2199 p = &(*p)->rb_right;
2200 }
2201
2202 rb_link_node(&backref->node, parent, p);
2203 rb_insert_color(&backref->node, root);
2204}
2205
2206/*
2207 * Note the backref might has changed, and in this case we just return 0.
2208 */
2209static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2210 void *ctx)
2211{
2212 struct btrfs_file_extent_item *extent;
38c227d8
LB
2213 struct old_sa_defrag_extent *old = ctx;
2214 struct new_sa_defrag_extent *new = old->new;
2215 struct btrfs_path *path = new->path;
2216 struct btrfs_key key;
2217 struct btrfs_root *root;
2218 struct sa_defrag_extent_backref *backref;
2219 struct extent_buffer *leaf;
2220 struct inode *inode = new->inode;
0b246afa 2221 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2222 int slot;
2223 int ret;
2224 u64 extent_offset;
2225 u64 num_bytes;
2226
2227 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2228 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2229 return 0;
2230
2231 key.objectid = root_id;
2232 key.type = BTRFS_ROOT_ITEM_KEY;
2233 key.offset = (u64)-1;
2234
38c227d8
LB
2235 root = btrfs_read_fs_root_no_name(fs_info, &key);
2236 if (IS_ERR(root)) {
2237 if (PTR_ERR(root) == -ENOENT)
2238 return 0;
2239 WARN_ON(1);
ab8d0fc4 2240 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2241 inum, offset, root_id);
2242 return PTR_ERR(root);
2243 }
2244
2245 key.objectid = inum;
2246 key.type = BTRFS_EXTENT_DATA_KEY;
2247 if (offset > (u64)-1 << 32)
2248 key.offset = 0;
2249 else
2250 key.offset = offset;
2251
2252 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2253 if (WARN_ON(ret < 0))
38c227d8 2254 return ret;
50f1319c 2255 ret = 0;
38c227d8
LB
2256
2257 while (1) {
2258 cond_resched();
2259
2260 leaf = path->nodes[0];
2261 slot = path->slots[0];
2262
2263 if (slot >= btrfs_header_nritems(leaf)) {
2264 ret = btrfs_next_leaf(root, path);
2265 if (ret < 0) {
2266 goto out;
2267 } else if (ret > 0) {
2268 ret = 0;
2269 goto out;
2270 }
2271 continue;
2272 }
2273
2274 path->slots[0]++;
2275
2276 btrfs_item_key_to_cpu(leaf, &key, slot);
2277
2278 if (key.objectid > inum)
2279 goto out;
2280
2281 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2282 continue;
2283
2284 extent = btrfs_item_ptr(leaf, slot,
2285 struct btrfs_file_extent_item);
2286
2287 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2288 continue;
2289
e68afa49
LB
2290 /*
2291 * 'offset' refers to the exact key.offset,
2292 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2293 * (key.offset - extent_offset).
2294 */
2295 if (key.offset != offset)
38c227d8
LB
2296 continue;
2297
e68afa49 2298 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2299 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2300
38c227d8
LB
2301 if (extent_offset >= old->extent_offset + old->offset +
2302 old->len || extent_offset + num_bytes <=
2303 old->extent_offset + old->offset)
2304 continue;
38c227d8
LB
2305 break;
2306 }
2307
2308 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2309 if (!backref) {
2310 ret = -ENOENT;
2311 goto out;
2312 }
2313
2314 backref->root_id = root_id;
2315 backref->inum = inum;
e68afa49 2316 backref->file_pos = offset;
38c227d8
LB
2317 backref->num_bytes = num_bytes;
2318 backref->extent_offset = extent_offset;
2319 backref->generation = btrfs_file_extent_generation(leaf, extent);
2320 backref->old = old;
2321 backref_insert(&new->root, backref);
2322 old->count++;
2323out:
2324 btrfs_release_path(path);
2325 WARN_ON(ret);
2326 return ret;
2327}
2328
2329static noinline bool record_extent_backrefs(struct btrfs_path *path,
2330 struct new_sa_defrag_extent *new)
2331{
0b246afa 2332 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2333 struct old_sa_defrag_extent *old, *tmp;
2334 int ret;
2335
2336 new->path = path;
2337
2338 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2339 ret = iterate_inodes_from_logical(old->bytenr +
2340 old->extent_offset, fs_info,
38c227d8
LB
2341 path, record_one_backref,
2342 old);
4724b106
JB
2343 if (ret < 0 && ret != -ENOENT)
2344 return false;
38c227d8
LB
2345
2346 /* no backref to be processed for this extent */
2347 if (!old->count) {
2348 list_del(&old->list);
2349 kfree(old);
2350 }
2351 }
2352
2353 if (list_empty(&new->head))
2354 return false;
2355
2356 return true;
2357}
2358
2359static int relink_is_mergable(struct extent_buffer *leaf,
2360 struct btrfs_file_extent_item *fi,
116e0024 2361 struct new_sa_defrag_extent *new)
38c227d8 2362{
116e0024 2363 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2364 return 0;
2365
2366 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2367 return 0;
2368
116e0024
LB
2369 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2370 return 0;
2371
2372 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2373 btrfs_file_extent_other_encoding(leaf, fi))
2374 return 0;
2375
2376 return 1;
2377}
2378
2379/*
2380 * Note the backref might has changed, and in this case we just return 0.
2381 */
2382static noinline int relink_extent_backref(struct btrfs_path *path,
2383 struct sa_defrag_extent_backref *prev,
2384 struct sa_defrag_extent_backref *backref)
2385{
2386 struct btrfs_file_extent_item *extent;
2387 struct btrfs_file_extent_item *item;
2388 struct btrfs_ordered_extent *ordered;
2389 struct btrfs_trans_handle *trans;
38c227d8
LB
2390 struct btrfs_root *root;
2391 struct btrfs_key key;
2392 struct extent_buffer *leaf;
2393 struct old_sa_defrag_extent *old = backref->old;
2394 struct new_sa_defrag_extent *new = old->new;
0b246afa 2395 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2396 struct inode *inode;
2397 struct extent_state *cached = NULL;
2398 int ret = 0;
2399 u64 start;
2400 u64 len;
2401 u64 lock_start;
2402 u64 lock_end;
2403 bool merge = false;
2404 int index;
2405
2406 if (prev && prev->root_id == backref->root_id &&
2407 prev->inum == backref->inum &&
2408 prev->file_pos + prev->num_bytes == backref->file_pos)
2409 merge = true;
2410
2411 /* step 1: get root */
2412 key.objectid = backref->root_id;
2413 key.type = BTRFS_ROOT_ITEM_KEY;
2414 key.offset = (u64)-1;
2415
38c227d8
LB
2416 index = srcu_read_lock(&fs_info->subvol_srcu);
2417
2418 root = btrfs_read_fs_root_no_name(fs_info, &key);
2419 if (IS_ERR(root)) {
2420 srcu_read_unlock(&fs_info->subvol_srcu, index);
2421 if (PTR_ERR(root) == -ENOENT)
2422 return 0;
2423 return PTR_ERR(root);
2424 }
38c227d8 2425
bcbba5e6
WS
2426 if (btrfs_root_readonly(root)) {
2427 srcu_read_unlock(&fs_info->subvol_srcu, index);
2428 return 0;
2429 }
2430
38c227d8
LB
2431 /* step 2: get inode */
2432 key.objectid = backref->inum;
2433 key.type = BTRFS_INODE_ITEM_KEY;
2434 key.offset = 0;
2435
2436 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2437 if (IS_ERR(inode)) {
2438 srcu_read_unlock(&fs_info->subvol_srcu, index);
2439 return 0;
2440 }
2441
2442 srcu_read_unlock(&fs_info->subvol_srcu, index);
2443
2444 /* step 3: relink backref */
2445 lock_start = backref->file_pos;
2446 lock_end = backref->file_pos + backref->num_bytes - 1;
2447 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2448 &cached);
38c227d8
LB
2449
2450 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2451 if (ordered) {
2452 btrfs_put_ordered_extent(ordered);
2453 goto out_unlock;
2454 }
2455
2456 trans = btrfs_join_transaction(root);
2457 if (IS_ERR(trans)) {
2458 ret = PTR_ERR(trans);
2459 goto out_unlock;
2460 }
2461
2462 key.objectid = backref->inum;
2463 key.type = BTRFS_EXTENT_DATA_KEY;
2464 key.offset = backref->file_pos;
2465
2466 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2467 if (ret < 0) {
2468 goto out_free_path;
2469 } else if (ret > 0) {
2470 ret = 0;
2471 goto out_free_path;
2472 }
2473
2474 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2475 struct btrfs_file_extent_item);
2476
2477 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2478 backref->generation)
2479 goto out_free_path;
2480
2481 btrfs_release_path(path);
2482
2483 start = backref->file_pos;
2484 if (backref->extent_offset < old->extent_offset + old->offset)
2485 start += old->extent_offset + old->offset -
2486 backref->extent_offset;
2487
2488 len = min(backref->extent_offset + backref->num_bytes,
2489 old->extent_offset + old->offset + old->len);
2490 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2491
2492 ret = btrfs_drop_extents(trans, root, inode, start,
2493 start + len, 1);
2494 if (ret)
2495 goto out_free_path;
2496again:
4a0cc7ca 2497 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2498 key.type = BTRFS_EXTENT_DATA_KEY;
2499 key.offset = start;
2500
a09a0a70 2501 path->leave_spinning = 1;
38c227d8
LB
2502 if (merge) {
2503 struct btrfs_file_extent_item *fi;
2504 u64 extent_len;
2505 struct btrfs_key found_key;
2506
3c9665df 2507 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2508 if (ret < 0)
2509 goto out_free_path;
2510
2511 path->slots[0]--;
2512 leaf = path->nodes[0];
2513 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2514
2515 fi = btrfs_item_ptr(leaf, path->slots[0],
2516 struct btrfs_file_extent_item);
2517 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2518
116e0024
LB
2519 if (extent_len + found_key.offset == start &&
2520 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2521 btrfs_set_file_extent_num_bytes(leaf, fi,
2522 extent_len + len);
2523 btrfs_mark_buffer_dirty(leaf);
2524 inode_add_bytes(inode, len);
2525
2526 ret = 1;
2527 goto out_free_path;
2528 } else {
2529 merge = false;
2530 btrfs_release_path(path);
2531 goto again;
2532 }
2533 }
2534
2535 ret = btrfs_insert_empty_item(trans, root, path, &key,
2536 sizeof(*extent));
2537 if (ret) {
66642832 2538 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2539 goto out_free_path;
2540 }
2541
2542 leaf = path->nodes[0];
2543 item = btrfs_item_ptr(leaf, path->slots[0],
2544 struct btrfs_file_extent_item);
2545 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2546 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2547 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2548 btrfs_set_file_extent_num_bytes(leaf, item, len);
2549 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2550 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2551 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2552 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2553 btrfs_set_file_extent_encryption(leaf, item, 0);
2554 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2555
2556 btrfs_mark_buffer_dirty(leaf);
2557 inode_add_bytes(inode, len);
a09a0a70 2558 btrfs_release_path(path);
38c227d8 2559
2ff7e61e 2560 ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr,
38c227d8
LB
2561 new->disk_len, 0,
2562 backref->root_id, backref->inum,
b06c4bf5 2563 new->file_pos); /* start - extent_offset */
38c227d8 2564 if (ret) {
66642832 2565 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2566 goto out_free_path;
2567 }
2568
2569 ret = 1;
2570out_free_path:
2571 btrfs_release_path(path);
a09a0a70 2572 path->leave_spinning = 0;
3a45bb20 2573 btrfs_end_transaction(trans);
38c227d8
LB
2574out_unlock:
2575 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2576 &cached, GFP_NOFS);
2577 iput(inode);
2578 return ret;
2579}
2580
6f519564
LB
2581static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2582{
2583 struct old_sa_defrag_extent *old, *tmp;
2584
2585 if (!new)
2586 return;
2587
2588 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2589 kfree(old);
2590 }
2591 kfree(new);
2592}
2593
38c227d8
LB
2594static void relink_file_extents(struct new_sa_defrag_extent *new)
2595{
0b246afa 2596 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2597 struct btrfs_path *path;
38c227d8
LB
2598 struct sa_defrag_extent_backref *backref;
2599 struct sa_defrag_extent_backref *prev = NULL;
2600 struct inode *inode;
2601 struct btrfs_root *root;
2602 struct rb_node *node;
2603 int ret;
2604
2605 inode = new->inode;
2606 root = BTRFS_I(inode)->root;
2607
2608 path = btrfs_alloc_path();
2609 if (!path)
2610 return;
2611
2612 if (!record_extent_backrefs(path, new)) {
2613 btrfs_free_path(path);
2614 goto out;
2615 }
2616 btrfs_release_path(path);
2617
2618 while (1) {
2619 node = rb_first(&new->root);
2620 if (!node)
2621 break;
2622 rb_erase(node, &new->root);
2623
2624 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2625
2626 ret = relink_extent_backref(path, prev, backref);
2627 WARN_ON(ret < 0);
2628
2629 kfree(prev);
2630
2631 if (ret == 1)
2632 prev = backref;
2633 else
2634 prev = NULL;
2635 cond_resched();
2636 }
2637 kfree(prev);
2638
2639 btrfs_free_path(path);
38c227d8 2640out:
6f519564
LB
2641 free_sa_defrag_extent(new);
2642
0b246afa
JM
2643 atomic_dec(&fs_info->defrag_running);
2644 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2645}
2646
2647static struct new_sa_defrag_extent *
2648record_old_file_extents(struct inode *inode,
2649 struct btrfs_ordered_extent *ordered)
2650{
0b246afa 2651 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2652 struct btrfs_root *root = BTRFS_I(inode)->root;
2653 struct btrfs_path *path;
2654 struct btrfs_key key;
6f519564 2655 struct old_sa_defrag_extent *old;
38c227d8
LB
2656 struct new_sa_defrag_extent *new;
2657 int ret;
2658
2659 new = kmalloc(sizeof(*new), GFP_NOFS);
2660 if (!new)
2661 return NULL;
2662
2663 new->inode = inode;
2664 new->file_pos = ordered->file_offset;
2665 new->len = ordered->len;
2666 new->bytenr = ordered->start;
2667 new->disk_len = ordered->disk_len;
2668 new->compress_type = ordered->compress_type;
2669 new->root = RB_ROOT;
2670 INIT_LIST_HEAD(&new->head);
2671
2672 path = btrfs_alloc_path();
2673 if (!path)
2674 goto out_kfree;
2675
4a0cc7ca 2676 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2677 key.type = BTRFS_EXTENT_DATA_KEY;
2678 key.offset = new->file_pos;
2679
2680 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2681 if (ret < 0)
2682 goto out_free_path;
2683 if (ret > 0 && path->slots[0] > 0)
2684 path->slots[0]--;
2685
2686 /* find out all the old extents for the file range */
2687 while (1) {
2688 struct btrfs_file_extent_item *extent;
2689 struct extent_buffer *l;
2690 int slot;
2691 u64 num_bytes;
2692 u64 offset;
2693 u64 end;
2694 u64 disk_bytenr;
2695 u64 extent_offset;
2696
2697 l = path->nodes[0];
2698 slot = path->slots[0];
2699
2700 if (slot >= btrfs_header_nritems(l)) {
2701 ret = btrfs_next_leaf(root, path);
2702 if (ret < 0)
6f519564 2703 goto out_free_path;
38c227d8
LB
2704 else if (ret > 0)
2705 break;
2706 continue;
2707 }
2708
2709 btrfs_item_key_to_cpu(l, &key, slot);
2710
4a0cc7ca 2711 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2712 break;
2713 if (key.type != BTRFS_EXTENT_DATA_KEY)
2714 break;
2715 if (key.offset >= new->file_pos + new->len)
2716 break;
2717
2718 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2719
2720 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2721 if (key.offset + num_bytes < new->file_pos)
2722 goto next;
2723
2724 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2725 if (!disk_bytenr)
2726 goto next;
2727
2728 extent_offset = btrfs_file_extent_offset(l, extent);
2729
2730 old = kmalloc(sizeof(*old), GFP_NOFS);
2731 if (!old)
6f519564 2732 goto out_free_path;
38c227d8
LB
2733
2734 offset = max(new->file_pos, key.offset);
2735 end = min(new->file_pos + new->len, key.offset + num_bytes);
2736
2737 old->bytenr = disk_bytenr;
2738 old->extent_offset = extent_offset;
2739 old->offset = offset - key.offset;
2740 old->len = end - offset;
2741 old->new = new;
2742 old->count = 0;
2743 list_add_tail(&old->list, &new->head);
2744next:
2745 path->slots[0]++;
2746 cond_resched();
2747 }
2748
2749 btrfs_free_path(path);
0b246afa 2750 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2751
2752 return new;
2753
38c227d8
LB
2754out_free_path:
2755 btrfs_free_path(path);
2756out_kfree:
6f519564 2757 free_sa_defrag_extent(new);
38c227d8
LB
2758 return NULL;
2759}
2760
2ff7e61e 2761static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2762 u64 start, u64 len)
2763{
2764 struct btrfs_block_group_cache *cache;
2765
0b246afa 2766 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2767 ASSERT(cache);
2768
2769 spin_lock(&cache->lock);
2770 cache->delalloc_bytes -= len;
2771 spin_unlock(&cache->lock);
2772
2773 btrfs_put_block_group(cache);
2774}
2775
d352ac68
CM
2776/* as ordered data IO finishes, this gets called so we can finish
2777 * an ordered extent if the range of bytes in the file it covers are
2778 * fully written.
2779 */
5fd02043 2780static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2781{
5fd02043 2782 struct inode *inode = ordered_extent->inode;
0b246afa 2783 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2784 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2785 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2786 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2787 struct extent_state *cached_state = NULL;
38c227d8 2788 struct new_sa_defrag_extent *new = NULL;
261507a0 2789 int compress_type = 0;
77cef2ec
JB
2790 int ret = 0;
2791 u64 logical_len = ordered_extent->len;
82d5902d 2792 bool nolock;
77cef2ec 2793 bool truncated = false;
e6dcd2dc 2794
70ddc553 2795 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2796
5fd02043
JB
2797 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2798 ret = -EIO;
2799 goto out;
2800 }
2801
7ab7956e
NB
2802 btrfs_free_io_failure_record(BTRFS_I(inode),
2803 ordered_extent->file_offset,
2804 ordered_extent->file_offset +
2805 ordered_extent->len - 1);
f612496b 2806
77cef2ec
JB
2807 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2808 truncated = true;
2809 logical_len = ordered_extent->truncated_len;
2810 /* Truncated the entire extent, don't bother adding */
2811 if (!logical_len)
2812 goto out;
2813 }
2814
c2167754 2815 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2816 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2817
2818 /*
2819 * For mwrite(mmap + memset to write) case, we still reserve
2820 * space for NOCOW range.
2821 * As NOCOW won't cause a new delayed ref, just free the space
2822 */
2823 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2824 ordered_extent->len);
6c760c07
JB
2825 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2826 if (nolock)
2827 trans = btrfs_join_transaction_nolock(root);
2828 else
2829 trans = btrfs_join_transaction(root);
2830 if (IS_ERR(trans)) {
2831 ret = PTR_ERR(trans);
2832 trans = NULL;
2833 goto out;
c2167754 2834 }
0b246afa 2835 trans->block_rsv = &fs_info->delalloc_block_rsv;
6c760c07
JB
2836 ret = btrfs_update_inode_fallback(trans, root, inode);
2837 if (ret) /* -ENOMEM or corruption */
66642832 2838 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2839 goto out;
2840 }
e6dcd2dc 2841
2ac55d41
JB
2842 lock_extent_bits(io_tree, ordered_extent->file_offset,
2843 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2844 &cached_state);
e6dcd2dc 2845
38c227d8
LB
2846 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2847 ordered_extent->file_offset + ordered_extent->len - 1,
2848 EXTENT_DEFRAG, 1, cached_state);
2849 if (ret) {
2850 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2851 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2852 /* the inode is shared */
2853 new = record_old_file_extents(inode, ordered_extent);
2854
2855 clear_extent_bit(io_tree, ordered_extent->file_offset,
2856 ordered_extent->file_offset + ordered_extent->len - 1,
2857 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2858 }
2859
0cb59c99 2860 if (nolock)
7a7eaa40 2861 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2862 else
7a7eaa40 2863 trans = btrfs_join_transaction(root);
79787eaa
JM
2864 if (IS_ERR(trans)) {
2865 ret = PTR_ERR(trans);
2866 trans = NULL;
2867 goto out_unlock;
2868 }
a79b7d4b 2869
0b246afa 2870 trans->block_rsv = &fs_info->delalloc_block_rsv;
c2167754 2871
c8b97818 2872 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2873 compress_type = ordered_extent->compress_type;
d899e052 2874 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2875 BUG_ON(compress_type);
7a6d7067 2876 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
2877 ordered_extent->file_offset,
2878 ordered_extent->file_offset +
77cef2ec 2879 logical_len);
d899e052 2880 } else {
0b246afa 2881 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
2882 ret = insert_reserved_file_extent(trans, inode,
2883 ordered_extent->file_offset,
2884 ordered_extent->start,
2885 ordered_extent->disk_len,
77cef2ec 2886 logical_len, logical_len,
261507a0 2887 compress_type, 0, 0,
d899e052 2888 BTRFS_FILE_EXTENT_REG);
e570fd27 2889 if (!ret)
2ff7e61e 2890 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
2891 ordered_extent->start,
2892 ordered_extent->disk_len);
d899e052 2893 }
5dc562c5
JB
2894 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2895 ordered_extent->file_offset, ordered_extent->len,
2896 trans->transid);
79787eaa 2897 if (ret < 0) {
66642832 2898 btrfs_abort_transaction(trans, ret);
5fd02043 2899 goto out_unlock;
79787eaa 2900 }
2ac55d41 2901
df9f628e 2902 add_pending_csums(trans, inode, &ordered_extent->list);
e6dcd2dc 2903
6c760c07
JB
2904 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2905 ret = btrfs_update_inode_fallback(trans, root, inode);
2906 if (ret) { /* -ENOMEM or corruption */
66642832 2907 btrfs_abort_transaction(trans, ret);
6c760c07 2908 goto out_unlock;
1ef30be1
JB
2909 }
2910 ret = 0;
5fd02043
JB
2911out_unlock:
2912 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2913 ordered_extent->file_offset +
2914 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2915out:
0b246afa 2916 if (root != fs_info->tree_root)
691fa059
NB
2917 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2918 ordered_extent->len);
a698d075 2919 if (trans)
3a45bb20 2920 btrfs_end_transaction(trans);
0cb59c99 2921
77cef2ec
JB
2922 if (ret || truncated) {
2923 u64 start, end;
2924
2925 if (truncated)
2926 start = ordered_extent->file_offset + logical_len;
2927 else
2928 start = ordered_extent->file_offset;
2929 end = ordered_extent->file_offset + ordered_extent->len - 1;
2930 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2931
2932 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 2933 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 2934
0bec9ef5
JB
2935 /*
2936 * If the ordered extent had an IOERR or something else went
2937 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2938 * back to the allocator. We only free the extent in the
2939 * truncated case if we didn't write out the extent at all.
0bec9ef5 2940 */
77cef2ec
JB
2941 if ((ret || !logical_len) &&
2942 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 2943 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
2944 btrfs_free_reserved_extent(fs_info,
2945 ordered_extent->start,
e570fd27 2946 ordered_extent->disk_len, 1);
0bec9ef5
JB
2947 }
2948
2949
5fd02043 2950 /*
8bad3c02
LB
2951 * This needs to be done to make sure anybody waiting knows we are done
2952 * updating everything for this ordered extent.
5fd02043
JB
2953 */
2954 btrfs_remove_ordered_extent(inode, ordered_extent);
2955
38c227d8 2956 /* for snapshot-aware defrag */
6f519564
LB
2957 if (new) {
2958 if (ret) {
2959 free_sa_defrag_extent(new);
0b246afa 2960 atomic_dec(&fs_info->defrag_running);
6f519564
LB
2961 } else {
2962 relink_file_extents(new);
2963 }
2964 }
38c227d8 2965
e6dcd2dc
CM
2966 /* once for us */
2967 btrfs_put_ordered_extent(ordered_extent);
2968 /* once for the tree */
2969 btrfs_put_ordered_extent(ordered_extent);
2970
5fd02043
JB
2971 return ret;
2972}
2973
2974static void finish_ordered_fn(struct btrfs_work *work)
2975{
2976 struct btrfs_ordered_extent *ordered_extent;
2977 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2978 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2979}
2980
c3988d63 2981static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2982 struct extent_state *state, int uptodate)
2983{
5fd02043 2984 struct inode *inode = page->mapping->host;
0b246afa 2985 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 2986 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
2987 struct btrfs_workqueue *wq;
2988 btrfs_work_func_t func;
5fd02043 2989
1abe9b8a 2990 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2991
8b62b72b 2992 ClearPagePrivate2(page);
5fd02043
JB
2993 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2994 end - start + 1, uptodate))
c3988d63 2995 return;
5fd02043 2996
70ddc553 2997 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 2998 wq = fs_info->endio_freespace_worker;
9e0af237
LB
2999 func = btrfs_freespace_write_helper;
3000 } else {
0b246afa 3001 wq = fs_info->endio_write_workers;
9e0af237
LB
3002 func = btrfs_endio_write_helper;
3003 }
5fd02043 3004
9e0af237
LB
3005 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3006 NULL);
3007 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3008}
3009
dc380aea
MX
3010static int __readpage_endio_check(struct inode *inode,
3011 struct btrfs_io_bio *io_bio,
3012 int icsum, struct page *page,
3013 int pgoff, u64 start, size_t len)
3014{
3015 char *kaddr;
3016 u32 csum_expected;
3017 u32 csum = ~(u32)0;
dc380aea
MX
3018
3019 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3020
3021 kaddr = kmap_atomic(page);
3022 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
0b5e3daf 3023 btrfs_csum_final(csum, (u8 *)&csum);
dc380aea
MX
3024 if (csum != csum_expected)
3025 goto zeroit;
3026
3027 kunmap_atomic(kaddr);
3028 return 0;
3029zeroit:
0970a22e 3030 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
6f6b643e 3031 io_bio->mirror_num);
dc380aea
MX
3032 memset(kaddr + pgoff, 1, len);
3033 flush_dcache_page(page);
3034 kunmap_atomic(kaddr);
3035 if (csum_expected == 0)
3036 return 0;
3037 return -EIO;
3038}
3039
d352ac68
CM
3040/*
3041 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3042 * if there's a match, we allow the bio to finish. If not, the code in
3043 * extent_io.c will try to find good copies for us.
d352ac68 3044 */
facc8a22
MX
3045static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3046 u64 phy_offset, struct page *page,
3047 u64 start, u64 end, int mirror)
07157aac 3048{
4eee4fa4 3049 size_t offset = start - page_offset(page);
07157aac 3050 struct inode *inode = page->mapping->host;
d1310b2e 3051 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3052 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3053
d20f7043
CM
3054 if (PageChecked(page)) {
3055 ClearPageChecked(page);
dc380aea 3056 return 0;
d20f7043 3057 }
6cbff00f
CH
3058
3059 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3060 return 0;
17d217fe
YZ
3061
3062 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3063 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3064 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3065 return 0;
17d217fe 3066 }
d20f7043 3067
facc8a22 3068 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3069 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3070 start, (size_t)(end - start + 1));
07157aac 3071}
b888db2b 3072
24bbcf04
YZ
3073void btrfs_add_delayed_iput(struct inode *inode)
3074{
0b246afa 3075 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3076 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3077
3078 if (atomic_add_unless(&inode->i_count, -1, 1))
3079 return;
3080
24bbcf04 3081 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3082 if (binode->delayed_iput_count == 0) {
3083 ASSERT(list_empty(&binode->delayed_iput));
3084 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3085 } else {
3086 binode->delayed_iput_count++;
3087 }
24bbcf04
YZ
3088 spin_unlock(&fs_info->delayed_iput_lock);
3089}
3090
2ff7e61e 3091void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3092{
24bbcf04 3093
24bbcf04 3094 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3095 while (!list_empty(&fs_info->delayed_iputs)) {
3096 struct btrfs_inode *inode;
3097
3098 inode = list_first_entry(&fs_info->delayed_iputs,
3099 struct btrfs_inode, delayed_iput);
3100 if (inode->delayed_iput_count) {
3101 inode->delayed_iput_count--;
3102 list_move_tail(&inode->delayed_iput,
3103 &fs_info->delayed_iputs);
3104 } else {
3105 list_del_init(&inode->delayed_iput);
3106 }
3107 spin_unlock(&fs_info->delayed_iput_lock);
3108 iput(&inode->vfs_inode);
3109 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3110 }
8089fe62 3111 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3112}
3113
d68fc57b 3114/*
42b2aa86 3115 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3116 * files in the subvolume, it removes orphan item and frees block_rsv
3117 * structure.
3118 */
3119void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3120 struct btrfs_root *root)
3121{
0b246afa 3122 struct btrfs_fs_info *fs_info = root->fs_info;
90290e19 3123 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3124 int ret;
3125
8a35d95f 3126 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3127 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3128 return;
3129
90290e19 3130 spin_lock(&root->orphan_lock);
8a35d95f 3131 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3132 spin_unlock(&root->orphan_lock);
3133 return;
3134 }
3135
3136 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3137 spin_unlock(&root->orphan_lock);
3138 return;
3139 }
3140
3141 block_rsv = root->orphan_block_rsv;
3142 root->orphan_block_rsv = NULL;
3143 spin_unlock(&root->orphan_lock);
3144
27cdeb70 3145 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b 3146 btrfs_root_refs(&root->root_item) > 0) {
0b246afa 3147 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
d68fc57b 3148 root->root_key.objectid);
4ef31a45 3149 if (ret)
66642832 3150 btrfs_abort_transaction(trans, ret);
4ef31a45 3151 else
27cdeb70
MX
3152 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3153 &root->state);
d68fc57b
YZ
3154 }
3155
90290e19
JB
3156 if (block_rsv) {
3157 WARN_ON(block_rsv->size > 0);
2ff7e61e 3158 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b
YZ
3159 }
3160}
3161
7b128766
JB
3162/*
3163 * This creates an orphan entry for the given inode in case something goes
3164 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3165 *
3166 * NOTE: caller of this function should reserve 5 units of metadata for
3167 * this function.
7b128766 3168 */
73f2e545
NB
3169int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3170 struct btrfs_inode *inode)
7b128766 3171{
73f2e545
NB
3172 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3173 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3174 struct btrfs_block_rsv *block_rsv = NULL;
3175 int reserve = 0;
3176 int insert = 0;
3177 int ret;
7b128766 3178
d68fc57b 3179 if (!root->orphan_block_rsv) {
2ff7e61e
JM
3180 block_rsv = btrfs_alloc_block_rsv(fs_info,
3181 BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3182 if (!block_rsv)
3183 return -ENOMEM;
d68fc57b 3184 }
7b128766 3185
d68fc57b
YZ
3186 spin_lock(&root->orphan_lock);
3187 if (!root->orphan_block_rsv) {
3188 root->orphan_block_rsv = block_rsv;
3189 } else if (block_rsv) {
2ff7e61e 3190 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b 3191 block_rsv = NULL;
7b128766 3192 }
7b128766 3193
8a35d95f 3194 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3195 &inode->runtime_flags)) {
d68fc57b
YZ
3196#if 0
3197 /*
3198 * For proper ENOSPC handling, we should do orphan
3199 * cleanup when mounting. But this introduces backward
3200 * compatibility issue.
3201 */
3202 if (!xchg(&root->orphan_item_inserted, 1))
3203 insert = 2;
3204 else
3205 insert = 1;
3206#endif
3207 insert = 1;
321f0e70 3208 atomic_inc(&root->orphan_inodes);
7b128766
JB
3209 }
3210
72ac3c0d 3211 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3212 &inode->runtime_flags))
d68fc57b 3213 reserve = 1;
d68fc57b 3214 spin_unlock(&root->orphan_lock);
7b128766 3215
d68fc57b
YZ
3216 /* grab metadata reservation from transaction handle */
3217 if (reserve) {
3218 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3219 ASSERT(!ret);
3220 if (ret) {
3221 atomic_dec(&root->orphan_inodes);
3222 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3223 &inode->runtime_flags);
3b6571c1
JB
3224 if (insert)
3225 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3226 &inode->runtime_flags);
3b6571c1
JB
3227 return ret;
3228 }
d68fc57b 3229 }
7b128766 3230
d68fc57b
YZ
3231 /* insert an orphan item to track this unlinked/truncated file */
3232 if (insert >= 1) {
73f2e545 3233 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3234 if (ret) {
703c88e0 3235 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3236 if (reserve) {
3237 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3238 &inode->runtime_flags);
4ef31a45
JB
3239 btrfs_orphan_release_metadata(inode);
3240 }
3241 if (ret != -EEXIST) {
e8e7cff6 3242 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3243 &inode->runtime_flags);
66642832 3244 btrfs_abort_transaction(trans, ret);
4ef31a45
JB
3245 return ret;
3246 }
79787eaa
JM
3247 }
3248 ret = 0;
d68fc57b
YZ
3249 }
3250
3251 /* insert an orphan item to track subvolume contains orphan files */
3252 if (insert >= 2) {
0b246afa 3253 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
d68fc57b 3254 root->root_key.objectid);
79787eaa 3255 if (ret && ret != -EEXIST) {
66642832 3256 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3257 return ret;
3258 }
d68fc57b
YZ
3259 }
3260 return 0;
7b128766
JB
3261}
3262
3263/*
3264 * We have done the truncate/delete so we can go ahead and remove the orphan
3265 * item for this particular inode.
3266 */
48a3b636 3267static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3268 struct btrfs_inode *inode)
7b128766 3269{
3d6ae7bb 3270 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3271 int delete_item = 0;
3272 int release_rsv = 0;
7b128766
JB
3273 int ret = 0;
3274
d68fc57b 3275 spin_lock(&root->orphan_lock);
8a35d95f 3276 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3d6ae7bb 3277 &inode->runtime_flags))
d68fc57b 3278 delete_item = 1;
7b128766 3279
72ac3c0d 3280 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3d6ae7bb 3281 &inode->runtime_flags))
d68fc57b 3282 release_rsv = 1;
d68fc57b 3283 spin_unlock(&root->orphan_lock);
7b128766 3284
703c88e0 3285 if (delete_item) {
8a35d95f 3286 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3287 if (trans)
3288 ret = btrfs_del_orphan_item(trans, root,
3d6ae7bb 3289 btrfs_ino(inode));
8a35d95f 3290 }
7b128766 3291
703c88e0
FDBM
3292 if (release_rsv)
3293 btrfs_orphan_release_metadata(inode);
3294
4ef31a45 3295 return ret;
7b128766
JB
3296}
3297
3298/*
3299 * this cleans up any orphans that may be left on the list from the last use
3300 * of this root.
3301 */
66b4ffd1 3302int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3303{
0b246afa 3304 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3305 struct btrfs_path *path;
3306 struct extent_buffer *leaf;
7b128766
JB
3307 struct btrfs_key key, found_key;
3308 struct btrfs_trans_handle *trans;
3309 struct inode *inode;
8f6d7f4f 3310 u64 last_objectid = 0;
7b128766
JB
3311 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3312
d68fc57b 3313 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3314 return 0;
c71bf099
YZ
3315
3316 path = btrfs_alloc_path();
66b4ffd1
JB
3317 if (!path) {
3318 ret = -ENOMEM;
3319 goto out;
3320 }
e4058b54 3321 path->reada = READA_BACK;
7b128766
JB
3322
3323 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3324 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3325 key.offset = (u64)-1;
3326
7b128766
JB
3327 while (1) {
3328 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3329 if (ret < 0)
3330 goto out;
7b128766
JB
3331
3332 /*
3333 * if ret == 0 means we found what we were searching for, which
25985edc 3334 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3335 * find the key and see if we have stuff that matches
3336 */
3337 if (ret > 0) {
66b4ffd1 3338 ret = 0;
7b128766
JB
3339 if (path->slots[0] == 0)
3340 break;
3341 path->slots[0]--;
3342 }
3343
3344 /* pull out the item */
3345 leaf = path->nodes[0];
7b128766
JB
3346 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3347
3348 /* make sure the item matches what we want */
3349 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3350 break;
962a298f 3351 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3352 break;
3353
3354 /* release the path since we're done with it */
b3b4aa74 3355 btrfs_release_path(path);
7b128766
JB
3356
3357 /*
3358 * this is where we are basically btrfs_lookup, without the
3359 * crossing root thing. we store the inode number in the
3360 * offset of the orphan item.
3361 */
8f6d7f4f
JB
3362
3363 if (found_key.offset == last_objectid) {
0b246afa
JM
3364 btrfs_err(fs_info,
3365 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3366 ret = -EINVAL;
3367 goto out;
3368 }
3369
3370 last_objectid = found_key.offset;
3371
5d4f98a2
YZ
3372 found_key.objectid = found_key.offset;
3373 found_key.type = BTRFS_INODE_ITEM_KEY;
3374 found_key.offset = 0;
0b246afa 3375 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3376 ret = PTR_ERR_OR_ZERO(inode);
67710892 3377 if (ret && ret != -ENOENT)
66b4ffd1 3378 goto out;
7b128766 3379
0b246afa 3380 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3381 struct btrfs_root *dead_root;
3382 struct btrfs_fs_info *fs_info = root->fs_info;
3383 int is_dead_root = 0;
3384
3385 /*
3386 * this is an orphan in the tree root. Currently these
3387 * could come from 2 sources:
3388 * a) a snapshot deletion in progress
3389 * b) a free space cache inode
3390 * We need to distinguish those two, as the snapshot
3391 * orphan must not get deleted.
3392 * find_dead_roots already ran before us, so if this
3393 * is a snapshot deletion, we should find the root
3394 * in the dead_roots list
3395 */
3396 spin_lock(&fs_info->trans_lock);
3397 list_for_each_entry(dead_root, &fs_info->dead_roots,
3398 root_list) {
3399 if (dead_root->root_key.objectid ==
3400 found_key.objectid) {
3401 is_dead_root = 1;
3402 break;
3403 }
3404 }
3405 spin_unlock(&fs_info->trans_lock);
3406 if (is_dead_root) {
3407 /* prevent this orphan from being found again */
3408 key.offset = found_key.objectid - 1;
3409 continue;
3410 }
3411 }
7b128766 3412 /*
a8c9e576
JB
3413 * Inode is already gone but the orphan item is still there,
3414 * kill the orphan item.
7b128766 3415 */
67710892 3416 if (ret == -ENOENT) {
a8c9e576 3417 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3418 if (IS_ERR(trans)) {
3419 ret = PTR_ERR(trans);
3420 goto out;
3421 }
0b246afa
JM
3422 btrfs_debug(fs_info, "auto deleting %Lu",
3423 found_key.objectid);
a8c9e576
JB
3424 ret = btrfs_del_orphan_item(trans, root,
3425 found_key.objectid);
3a45bb20 3426 btrfs_end_transaction(trans);
4ef31a45
JB
3427 if (ret)
3428 goto out;
7b128766
JB
3429 continue;
3430 }
3431
a8c9e576
JB
3432 /*
3433 * add this inode to the orphan list so btrfs_orphan_del does
3434 * the proper thing when we hit it
3435 */
8a35d95f
JB
3436 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3437 &BTRFS_I(inode)->runtime_flags);
925396ec 3438 atomic_inc(&root->orphan_inodes);
a8c9e576 3439
7b128766
JB
3440 /* if we have links, this was a truncate, lets do that */
3441 if (inode->i_nlink) {
fae7f21c 3442 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3443 iput(inode);
3444 continue;
3445 }
7b128766 3446 nr_truncate++;
f3fe820c
JB
3447
3448 /* 1 for the orphan item deletion. */
3449 trans = btrfs_start_transaction(root, 1);
3450 if (IS_ERR(trans)) {
c69b26b0 3451 iput(inode);
f3fe820c
JB
3452 ret = PTR_ERR(trans);
3453 goto out;
3454 }
73f2e545 3455 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 3456 btrfs_end_transaction(trans);
c69b26b0
JB
3457 if (ret) {
3458 iput(inode);
f3fe820c 3459 goto out;
c69b26b0 3460 }
f3fe820c 3461
66b4ffd1 3462 ret = btrfs_truncate(inode);
4a7d0f68 3463 if (ret)
3d6ae7bb 3464 btrfs_orphan_del(NULL, BTRFS_I(inode));
7b128766
JB
3465 } else {
3466 nr_unlink++;
3467 }
3468
3469 /* this will do delete_inode and everything for us */
3470 iput(inode);
66b4ffd1
JB
3471 if (ret)
3472 goto out;
7b128766 3473 }
3254c876
MX
3474 /* release the path since we're done with it */
3475 btrfs_release_path(path);
3476
d68fc57b
YZ
3477 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3478
3479 if (root->orphan_block_rsv)
2ff7e61e 3480 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
d68fc57b
YZ
3481 (u64)-1);
3482
27cdeb70
MX
3483 if (root->orphan_block_rsv ||
3484 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3485 trans = btrfs_join_transaction(root);
66b4ffd1 3486 if (!IS_ERR(trans))
3a45bb20 3487 btrfs_end_transaction(trans);
d68fc57b 3488 }
7b128766
JB
3489
3490 if (nr_unlink)
0b246afa 3491 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3492 if (nr_truncate)
0b246afa 3493 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3494
3495out:
3496 if (ret)
0b246afa 3497 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3498 btrfs_free_path(path);
3499 return ret;
7b128766
JB
3500}
3501
46a53cca
CM
3502/*
3503 * very simple check to peek ahead in the leaf looking for xattrs. If we
3504 * don't find any xattrs, we know there can't be any acls.
3505 *
3506 * slot is the slot the inode is in, objectid is the objectid of the inode
3507 */
3508static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3509 int slot, u64 objectid,
3510 int *first_xattr_slot)
46a53cca
CM
3511{
3512 u32 nritems = btrfs_header_nritems(leaf);
3513 struct btrfs_key found_key;
f23b5a59
JB
3514 static u64 xattr_access = 0;
3515 static u64 xattr_default = 0;
46a53cca
CM
3516 int scanned = 0;
3517
f23b5a59 3518 if (!xattr_access) {
97d79299
AG
3519 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3520 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3521 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3522 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3523 }
3524
46a53cca 3525 slot++;
63541927 3526 *first_xattr_slot = -1;
46a53cca
CM
3527 while (slot < nritems) {
3528 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3529
3530 /* we found a different objectid, there must not be acls */
3531 if (found_key.objectid != objectid)
3532 return 0;
3533
3534 /* we found an xattr, assume we've got an acl */
f23b5a59 3535 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3536 if (*first_xattr_slot == -1)
3537 *first_xattr_slot = slot;
f23b5a59
JB
3538 if (found_key.offset == xattr_access ||
3539 found_key.offset == xattr_default)
3540 return 1;
3541 }
46a53cca
CM
3542
3543 /*
3544 * we found a key greater than an xattr key, there can't
3545 * be any acls later on
3546 */
3547 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3548 return 0;
3549
3550 slot++;
3551 scanned++;
3552
3553 /*
3554 * it goes inode, inode backrefs, xattrs, extents,
3555 * so if there are a ton of hard links to an inode there can
3556 * be a lot of backrefs. Don't waste time searching too hard,
3557 * this is just an optimization
3558 */
3559 if (scanned >= 8)
3560 break;
3561 }
3562 /* we hit the end of the leaf before we found an xattr or
3563 * something larger than an xattr. We have to assume the inode
3564 * has acls
3565 */
63541927
FDBM
3566 if (*first_xattr_slot == -1)
3567 *first_xattr_slot = slot;
46a53cca
CM
3568 return 1;
3569}
3570
d352ac68
CM
3571/*
3572 * read an inode from the btree into the in-memory inode
3573 */
67710892 3574static int btrfs_read_locked_inode(struct inode *inode)
39279cc3 3575{
0b246afa 3576 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 3577 struct btrfs_path *path;
5f39d397 3578 struct extent_buffer *leaf;
39279cc3
CM
3579 struct btrfs_inode_item *inode_item;
3580 struct btrfs_root *root = BTRFS_I(inode)->root;
3581 struct btrfs_key location;
67de1176 3582 unsigned long ptr;
46a53cca 3583 int maybe_acls;
618e21d5 3584 u32 rdev;
39279cc3 3585 int ret;
2f7e33d4 3586 bool filled = false;
63541927 3587 int first_xattr_slot;
2f7e33d4
MX
3588
3589 ret = btrfs_fill_inode(inode, &rdev);
3590 if (!ret)
3591 filled = true;
39279cc3
CM
3592
3593 path = btrfs_alloc_path();
67710892
FM
3594 if (!path) {
3595 ret = -ENOMEM;
1748f843 3596 goto make_bad;
67710892 3597 }
1748f843 3598
39279cc3 3599 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3600
39279cc3 3601 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3602 if (ret) {
3603 if (ret > 0)
3604 ret = -ENOENT;
39279cc3 3605 goto make_bad;
67710892 3606 }
39279cc3 3607
5f39d397 3608 leaf = path->nodes[0];
2f7e33d4
MX
3609
3610 if (filled)
67de1176 3611 goto cache_index;
2f7e33d4 3612
5f39d397
CM
3613 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3614 struct btrfs_inode_item);
5f39d397 3615 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3616 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3617 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3618 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3619 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3620
a937b979
DS
3621 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3622 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3623
a937b979
DS
3624 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3625 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3626
a937b979
DS
3627 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3628 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3629
9cc97d64 3630 BTRFS_I(inode)->i_otime.tv_sec =
3631 btrfs_timespec_sec(leaf, &inode_item->otime);
3632 BTRFS_I(inode)->i_otime.tv_nsec =
3633 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3634
a76a3cd4 3635 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3636 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3637 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3638
6e17d30b
YD
3639 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3640 inode->i_generation = BTRFS_I(inode)->generation;
3641 inode->i_rdev = 0;
3642 rdev = btrfs_inode_rdev(leaf, inode_item);
3643
3644 BTRFS_I(inode)->index_cnt = (u64)-1;
3645 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3646
3647cache_index:
5dc562c5
JB
3648 /*
3649 * If we were modified in the current generation and evicted from memory
3650 * and then re-read we need to do a full sync since we don't have any
3651 * idea about which extents were modified before we were evicted from
3652 * cache.
6e17d30b
YD
3653 *
3654 * This is required for both inode re-read from disk and delayed inode
3655 * in delayed_nodes_tree.
5dc562c5 3656 */
0b246afa 3657 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3658 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3659 &BTRFS_I(inode)->runtime_flags);
3660
bde6c242
FM
3661 /*
3662 * We don't persist the id of the transaction where an unlink operation
3663 * against the inode was last made. So here we assume the inode might
3664 * have been evicted, and therefore the exact value of last_unlink_trans
3665 * lost, and set it to last_trans to avoid metadata inconsistencies
3666 * between the inode and its parent if the inode is fsync'ed and the log
3667 * replayed. For example, in the scenario:
3668 *
3669 * touch mydir/foo
3670 * ln mydir/foo mydir/bar
3671 * sync
3672 * unlink mydir/bar
3673 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3674 * xfs_io -c fsync mydir/foo
3675 * <power failure>
3676 * mount fs, triggers fsync log replay
3677 *
3678 * We must make sure that when we fsync our inode foo we also log its
3679 * parent inode, otherwise after log replay the parent still has the
3680 * dentry with the "bar" name but our inode foo has a link count of 1
3681 * and doesn't have an inode ref with the name "bar" anymore.
3682 *
3683 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3684 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3685 * transaction commits on fsync if our inode is a directory, or if our
3686 * inode is not a directory, logging its parent unnecessarily.
3687 */
3688 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3689
67de1176
MX
3690 path->slots[0]++;
3691 if (inode->i_nlink != 1 ||
3692 path->slots[0] >= btrfs_header_nritems(leaf))
3693 goto cache_acl;
3694
3695 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3696 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3697 goto cache_acl;
3698
3699 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3700 if (location.type == BTRFS_INODE_REF_KEY) {
3701 struct btrfs_inode_ref *ref;
3702
3703 ref = (struct btrfs_inode_ref *)ptr;
3704 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3705 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3706 struct btrfs_inode_extref *extref;
3707
3708 extref = (struct btrfs_inode_extref *)ptr;
3709 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3710 extref);
3711 }
2f7e33d4 3712cache_acl:
46a53cca
CM
3713 /*
3714 * try to precache a NULL acl entry for files that don't have
3715 * any xattrs or acls
3716 */
33345d01 3717 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3718 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3719 if (first_xattr_slot != -1) {
3720 path->slots[0] = first_xattr_slot;
3721 ret = btrfs_load_inode_props(inode, path);
3722 if (ret)
0b246afa 3723 btrfs_err(fs_info,
351fd353 3724 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3725 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3726 root->root_key.objectid, ret);
3727 }
3728 btrfs_free_path(path);
3729
72c04902
AV
3730 if (!maybe_acls)
3731 cache_no_acl(inode);
46a53cca 3732
39279cc3 3733 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3734 case S_IFREG:
3735 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3736 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3737 inode->i_fop = &btrfs_file_operations;
3738 inode->i_op = &btrfs_file_inode_operations;
3739 break;
3740 case S_IFDIR:
3741 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3742 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3743 break;
3744 case S_IFLNK:
3745 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3746 inode_nohighmem(inode);
39279cc3
CM
3747 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3748 break;
618e21d5 3749 default:
0279b4cd 3750 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3751 init_special_inode(inode, inode->i_mode, rdev);
3752 break;
39279cc3 3753 }
6cbff00f
CH
3754
3755 btrfs_update_iflags(inode);
67710892 3756 return 0;
39279cc3
CM
3757
3758make_bad:
39279cc3 3759 btrfs_free_path(path);
39279cc3 3760 make_bad_inode(inode);
67710892 3761 return ret;
39279cc3
CM
3762}
3763
d352ac68
CM
3764/*
3765 * given a leaf and an inode, copy the inode fields into the leaf
3766 */
e02119d5
CM
3767static void fill_inode_item(struct btrfs_trans_handle *trans,
3768 struct extent_buffer *leaf,
5f39d397 3769 struct btrfs_inode_item *item,
39279cc3
CM
3770 struct inode *inode)
3771{
51fab693
LB
3772 struct btrfs_map_token token;
3773
3774 btrfs_init_map_token(&token);
5f39d397 3775
51fab693
LB
3776 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3777 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3778 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3779 &token);
3780 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3781 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3782
a937b979 3783 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3784 inode->i_atime.tv_sec, &token);
a937b979 3785 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3786 inode->i_atime.tv_nsec, &token);
5f39d397 3787
a937b979 3788 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3789 inode->i_mtime.tv_sec, &token);
a937b979 3790 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3791 inode->i_mtime.tv_nsec, &token);
5f39d397 3792
a937b979 3793 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3794 inode->i_ctime.tv_sec, &token);
a937b979 3795 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3796 inode->i_ctime.tv_nsec, &token);
5f39d397 3797
9cc97d64 3798 btrfs_set_token_timespec_sec(leaf, &item->otime,
3799 BTRFS_I(inode)->i_otime.tv_sec, &token);
3800 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3801 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3802
51fab693
LB
3803 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3804 &token);
3805 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3806 &token);
3807 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3808 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3809 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3810 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3811 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3812}
3813
d352ac68
CM
3814/*
3815 * copy everything in the in-memory inode into the btree.
3816 */
2115133f 3817static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3818 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3819{
3820 struct btrfs_inode_item *inode_item;
3821 struct btrfs_path *path;
5f39d397 3822 struct extent_buffer *leaf;
39279cc3
CM
3823 int ret;
3824
3825 path = btrfs_alloc_path();
16cdcec7
MX
3826 if (!path)
3827 return -ENOMEM;
3828
b9473439 3829 path->leave_spinning = 1;
16cdcec7
MX
3830 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3831 1);
39279cc3
CM
3832 if (ret) {
3833 if (ret > 0)
3834 ret = -ENOENT;
3835 goto failed;
3836 }
3837
5f39d397
CM
3838 leaf = path->nodes[0];
3839 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3840 struct btrfs_inode_item);
39279cc3 3841
e02119d5 3842 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3843 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3844 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3845 ret = 0;
3846failed:
39279cc3
CM
3847 btrfs_free_path(path);
3848 return ret;
3849}
3850
2115133f
CM
3851/*
3852 * copy everything in the in-memory inode into the btree.
3853 */
3854noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3855 struct btrfs_root *root, struct inode *inode)
3856{
0b246afa 3857 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3858 int ret;
3859
3860 /*
3861 * If the inode is a free space inode, we can deadlock during commit
3862 * if we put it into the delayed code.
3863 *
3864 * The data relocation inode should also be directly updated
3865 * without delay
3866 */
70ddc553 3867 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 3868 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 3869 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
3870 btrfs_update_root_times(trans, root);
3871
2115133f
CM
3872 ret = btrfs_delayed_update_inode(trans, root, inode);
3873 if (!ret)
3874 btrfs_set_inode_last_trans(trans, inode);
3875 return ret;
3876 }
3877
3878 return btrfs_update_inode_item(trans, root, inode);
3879}
3880
be6aef60
JB
3881noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3882 struct btrfs_root *root,
3883 struct inode *inode)
2115133f
CM
3884{
3885 int ret;
3886
3887 ret = btrfs_update_inode(trans, root, inode);
3888 if (ret == -ENOSPC)
3889 return btrfs_update_inode_item(trans, root, inode);
3890 return ret;
3891}
3892
d352ac68
CM
3893/*
3894 * unlink helper that gets used here in inode.c and in the tree logging
3895 * recovery code. It remove a link in a directory with a given name, and
3896 * also drops the back refs in the inode to the directory
3897 */
92986796
AV
3898static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3899 struct btrfs_root *root,
4ec5934e
NB
3900 struct btrfs_inode *dir,
3901 struct btrfs_inode *inode,
92986796 3902 const char *name, int name_len)
39279cc3 3903{
0b246afa 3904 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 3905 struct btrfs_path *path;
39279cc3 3906 int ret = 0;
5f39d397 3907 struct extent_buffer *leaf;
39279cc3 3908 struct btrfs_dir_item *di;
5f39d397 3909 struct btrfs_key key;
aec7477b 3910 u64 index;
33345d01
LZ
3911 u64 ino = btrfs_ino(inode);
3912 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3913
3914 path = btrfs_alloc_path();
54aa1f4d
CM
3915 if (!path) {
3916 ret = -ENOMEM;
554233a6 3917 goto out;
54aa1f4d
CM
3918 }
3919
b9473439 3920 path->leave_spinning = 1;
33345d01 3921 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3922 name, name_len, -1);
3923 if (IS_ERR(di)) {
3924 ret = PTR_ERR(di);
3925 goto err;
3926 }
3927 if (!di) {
3928 ret = -ENOENT;
3929 goto err;
3930 }
5f39d397
CM
3931 leaf = path->nodes[0];
3932 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3933 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3934 if (ret)
3935 goto err;
b3b4aa74 3936 btrfs_release_path(path);
39279cc3 3937
67de1176
MX
3938 /*
3939 * If we don't have dir index, we have to get it by looking up
3940 * the inode ref, since we get the inode ref, remove it directly,
3941 * it is unnecessary to do delayed deletion.
3942 *
3943 * But if we have dir index, needn't search inode ref to get it.
3944 * Since the inode ref is close to the inode item, it is better
3945 * that we delay to delete it, and just do this deletion when
3946 * we update the inode item.
3947 */
4ec5934e 3948 if (inode->dir_index) {
67de1176
MX
3949 ret = btrfs_delayed_delete_inode_ref(inode);
3950 if (!ret) {
4ec5934e 3951 index = inode->dir_index;
67de1176
MX
3952 goto skip_backref;
3953 }
3954 }
3955
33345d01
LZ
3956 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3957 dir_ino, &index);
aec7477b 3958 if (ret) {
0b246afa 3959 btrfs_info(fs_info,
c2cf52eb 3960 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3961 name_len, name, ino, dir_ino);
66642832 3962 btrfs_abort_transaction(trans, ret);
aec7477b
JB
3963 goto err;
3964 }
67de1176 3965skip_backref:
2ff7e61e 3966 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
79787eaa 3967 if (ret) {
66642832 3968 btrfs_abort_transaction(trans, ret);
39279cc3 3969 goto err;
79787eaa 3970 }
39279cc3 3971
4ec5934e
NB
3972 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3973 dir_ino);
79787eaa 3974 if (ret != 0 && ret != -ENOENT) {
66642832 3975 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3976 goto err;
3977 }
e02119d5 3978
4ec5934e
NB
3979 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3980 index);
6418c961
CM
3981 if (ret == -ENOENT)
3982 ret = 0;
d4e3991b 3983 else if (ret)
66642832 3984 btrfs_abort_transaction(trans, ret);
39279cc3
CM
3985err:
3986 btrfs_free_path(path);
e02119d5
CM
3987 if (ret)
3988 goto out;
3989
6ef06d27 3990 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
3991 inode_inc_iversion(&inode->vfs_inode);
3992 inode_inc_iversion(&dir->vfs_inode);
3993 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3994 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3995 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 3996out:
39279cc3
CM
3997 return ret;
3998}
3999
92986796
AV
4000int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4001 struct btrfs_root *root,
4ec5934e 4002 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
4003 const char *name, int name_len)
4004{
4005 int ret;
4006 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4007 if (!ret) {
4ec5934e
NB
4008 drop_nlink(&inode->vfs_inode);
4009 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4010 }
4011 return ret;
4012}
39279cc3 4013
a22285a6
YZ
4014/*
4015 * helper to start transaction for unlink and rmdir.
4016 *
d52be818
JB
4017 * unlink and rmdir are special in btrfs, they do not always free space, so
4018 * if we cannot make our reservations the normal way try and see if there is
4019 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4020 * allow the unlink to occur.
a22285a6 4021 */
d52be818 4022static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4023{
a22285a6 4024 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4025
e70bea5f
JB
4026 /*
4027 * 1 for the possible orphan item
4028 * 1 for the dir item
4029 * 1 for the dir index
4030 * 1 for the inode ref
e70bea5f
JB
4031 * 1 for the inode
4032 */
8eab77ff 4033 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4034}
4035
4036static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4037{
4038 struct btrfs_root *root = BTRFS_I(dir)->root;
4039 struct btrfs_trans_handle *trans;
2b0143b5 4040 struct inode *inode = d_inode(dentry);
a22285a6 4041 int ret;
a22285a6 4042
d52be818 4043 trans = __unlink_start_trans(dir);
a22285a6
YZ
4044 if (IS_ERR(trans))
4045 return PTR_ERR(trans);
5f39d397 4046
4ec5934e
NB
4047 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4048 0);
12fcfd22 4049
4ec5934e
NB
4050 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4051 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4052 dentry->d_name.len);
b532402e
TI
4053 if (ret)
4054 goto out;
7b128766 4055
a22285a6 4056 if (inode->i_nlink == 0) {
73f2e545 4057 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4058 if (ret)
4059 goto out;
a22285a6 4060 }
7b128766 4061
b532402e 4062out:
3a45bb20 4063 btrfs_end_transaction(trans);
2ff7e61e 4064 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4065 return ret;
4066}
4067
4df27c4d
YZ
4068int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4069 struct btrfs_root *root,
4070 struct inode *dir, u64 objectid,
4071 const char *name, int name_len)
4072{
0b246afa 4073 struct btrfs_fs_info *fs_info = root->fs_info;
4df27c4d
YZ
4074 struct btrfs_path *path;
4075 struct extent_buffer *leaf;
4076 struct btrfs_dir_item *di;
4077 struct btrfs_key key;
4078 u64 index;
4079 int ret;
4a0cc7ca 4080 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4081
4082 path = btrfs_alloc_path();
4083 if (!path)
4084 return -ENOMEM;
4085
33345d01 4086 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4087 name, name_len, -1);
79787eaa
JM
4088 if (IS_ERR_OR_NULL(di)) {
4089 if (!di)
4090 ret = -ENOENT;
4091 else
4092 ret = PTR_ERR(di);
4093 goto out;
4094 }
4df27c4d
YZ
4095
4096 leaf = path->nodes[0];
4097 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4098 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4099 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4100 if (ret) {
66642832 4101 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4102 goto out;
4103 }
b3b4aa74 4104 btrfs_release_path(path);
4df27c4d 4105
0b246afa
JM
4106 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4107 root->root_key.objectid, dir_ino,
4108 &index, name, name_len);
4df27c4d 4109 if (ret < 0) {
79787eaa 4110 if (ret != -ENOENT) {
66642832 4111 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4112 goto out;
4113 }
33345d01 4114 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4115 name, name_len);
79787eaa
JM
4116 if (IS_ERR_OR_NULL(di)) {
4117 if (!di)
4118 ret = -ENOENT;
4119 else
4120 ret = PTR_ERR(di);
66642832 4121 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4122 goto out;
4123 }
4df27c4d
YZ
4124
4125 leaf = path->nodes[0];
4126 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4127 btrfs_release_path(path);
4df27c4d
YZ
4128 index = key.offset;
4129 }
945d8962 4130 btrfs_release_path(path);
4df27c4d 4131
e67bbbb9 4132 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
79787eaa 4133 if (ret) {
66642832 4134 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4135 goto out;
4136 }
4df27c4d 4137
6ef06d27 4138 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4139 inode_inc_iversion(dir);
c2050a45 4140 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4141 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4142 if (ret)
66642832 4143 btrfs_abort_transaction(trans, ret);
79787eaa 4144out:
71d7aed0 4145 btrfs_free_path(path);
79787eaa 4146 return ret;
4df27c4d
YZ
4147}
4148
39279cc3
CM
4149static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4150{
2b0143b5 4151 struct inode *inode = d_inode(dentry);
1832a6d5 4152 int err = 0;
39279cc3 4153 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4154 struct btrfs_trans_handle *trans;
44f714da 4155 u64 last_unlink_trans;
39279cc3 4156
b3ae244e 4157 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4158 return -ENOTEMPTY;
4a0cc7ca 4159 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
b3ae244e 4160 return -EPERM;
134d4512 4161
d52be818 4162 trans = __unlink_start_trans(dir);
a22285a6 4163 if (IS_ERR(trans))
5df6a9f6 4164 return PTR_ERR(trans);
5df6a9f6 4165
4a0cc7ca 4166 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4167 err = btrfs_unlink_subvol(trans, root, dir,
4168 BTRFS_I(inode)->location.objectid,
4169 dentry->d_name.name,
4170 dentry->d_name.len);
4171 goto out;
4172 }
4173
73f2e545 4174 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4175 if (err)
4df27c4d 4176 goto out;
7b128766 4177
44f714da
FM
4178 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4179
39279cc3 4180 /* now the directory is empty */
4ec5934e
NB
4181 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4182 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4183 dentry->d_name.len);
44f714da 4184 if (!err) {
6ef06d27 4185 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4186 /*
4187 * Propagate the last_unlink_trans value of the deleted dir to
4188 * its parent directory. This is to prevent an unrecoverable
4189 * log tree in the case we do something like this:
4190 * 1) create dir foo
4191 * 2) create snapshot under dir foo
4192 * 3) delete the snapshot
4193 * 4) rmdir foo
4194 * 5) mkdir foo
4195 * 6) fsync foo or some file inside foo
4196 */
4197 if (last_unlink_trans >= trans->transid)
4198 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4199 }
4df27c4d 4200out:
3a45bb20 4201 btrfs_end_transaction(trans);
2ff7e61e 4202 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4203
39279cc3
CM
4204 return err;
4205}
4206
28f75a0e
CM
4207static int truncate_space_check(struct btrfs_trans_handle *trans,
4208 struct btrfs_root *root,
4209 u64 bytes_deleted)
4210{
0b246afa 4211 struct btrfs_fs_info *fs_info = root->fs_info;
28f75a0e
CM
4212 int ret;
4213
dc95f7bf
JB
4214 /*
4215 * This is only used to apply pressure to the enospc system, we don't
4216 * intend to use this reservation at all.
4217 */
2ff7e61e 4218 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
0b246afa
JM
4219 bytes_deleted *= fs_info->nodesize;
4220 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
28f75a0e 4221 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf 4222 if (!ret) {
0b246afa 4223 trace_btrfs_space_reservation(fs_info, "transaction",
dc95f7bf
JB
4224 trans->transid,
4225 bytes_deleted, 1);
28f75a0e 4226 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4227 }
28f75a0e
CM
4228 return ret;
4229
4230}
4231
0305cd5f
FM
4232static int truncate_inline_extent(struct inode *inode,
4233 struct btrfs_path *path,
4234 struct btrfs_key *found_key,
4235 const u64 item_end,
4236 const u64 new_size)
4237{
4238 struct extent_buffer *leaf = path->nodes[0];
4239 int slot = path->slots[0];
4240 struct btrfs_file_extent_item *fi;
4241 u32 size = (u32)(new_size - found_key->offset);
4242 struct btrfs_root *root = BTRFS_I(inode)->root;
4243
4244 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4245
4246 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4247 loff_t offset = new_size;
09cbfeaf 4248 loff_t page_end = ALIGN(offset, PAGE_SIZE);
0305cd5f
FM
4249
4250 /*
4251 * Zero out the remaining of the last page of our inline extent,
4252 * instead of directly truncating our inline extent here - that
4253 * would be much more complex (decompressing all the data, then
4254 * compressing the truncated data, which might be bigger than
4255 * the size of the inline extent, resize the extent, etc).
4256 * We release the path because to get the page we might need to
4257 * read the extent item from disk (data not in the page cache).
4258 */
4259 btrfs_release_path(path);
9703fefe
CR
4260 return btrfs_truncate_block(inode, offset, page_end - offset,
4261 0);
0305cd5f
FM
4262 }
4263
4264 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4265 size = btrfs_file_extent_calc_inline_size(size);
2ff7e61e 4266 btrfs_truncate_item(root->fs_info, path, size, 1);
0305cd5f
FM
4267
4268 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4269 inode_sub_bytes(inode, item_end + 1 - new_size);
4270
4271 return 0;
4272}
4273
39279cc3
CM
4274/*
4275 * this can truncate away extent items, csum items and directory items.
4276 * It starts at a high offset and removes keys until it can't find
d352ac68 4277 * any higher than new_size
39279cc3
CM
4278 *
4279 * csum items that cross the new i_size are truncated to the new size
4280 * as well.
7b128766
JB
4281 *
4282 * min_type is the minimum key type to truncate down to. If set to 0, this
4283 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4284 */
8082510e
YZ
4285int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4286 struct btrfs_root *root,
4287 struct inode *inode,
4288 u64 new_size, u32 min_type)
39279cc3 4289{
0b246afa 4290 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4291 struct btrfs_path *path;
5f39d397 4292 struct extent_buffer *leaf;
39279cc3 4293 struct btrfs_file_extent_item *fi;
8082510e
YZ
4294 struct btrfs_key key;
4295 struct btrfs_key found_key;
39279cc3 4296 u64 extent_start = 0;
db94535d 4297 u64 extent_num_bytes = 0;
5d4f98a2 4298 u64 extent_offset = 0;
39279cc3 4299 u64 item_end = 0;
c1aa4575 4300 u64 last_size = new_size;
8082510e 4301 u32 found_type = (u8)-1;
39279cc3
CM
4302 int found_extent;
4303 int del_item;
85e21bac
CM
4304 int pending_del_nr = 0;
4305 int pending_del_slot = 0;
179e29e4 4306 int extent_type = -1;
8082510e
YZ
4307 int ret;
4308 int err = 0;
4a0cc7ca 4309 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4310 u64 bytes_deleted = 0;
1262133b
JB
4311 bool be_nice = 0;
4312 bool should_throttle = 0;
28f75a0e 4313 bool should_end = 0;
8082510e
YZ
4314
4315 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4316
28ed1345
CM
4317 /*
4318 * for non-free space inodes and ref cows, we want to back off from
4319 * time to time
4320 */
70ddc553 4321 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345
CM
4322 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4323 be_nice = 1;
4324
0eb0e19c
MF
4325 path = btrfs_alloc_path();
4326 if (!path)
4327 return -ENOMEM;
e4058b54 4328 path->reada = READA_BACK;
0eb0e19c 4329
5dc562c5
JB
4330 /*
4331 * We want to drop from the next block forward in case this new size is
4332 * not block aligned since we will be keeping the last block of the
4333 * extent just the way it is.
4334 */
27cdeb70 4335 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4336 root == fs_info->tree_root)
dcdbc059 4337 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4338 fs_info->sectorsize),
da17066c 4339 (u64)-1, 0);
8082510e 4340
16cdcec7
MX
4341 /*
4342 * This function is also used to drop the items in the log tree before
4343 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4344 * it is used to drop the loged items. So we shouldn't kill the delayed
4345 * items.
4346 */
4347 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4348 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4349
33345d01 4350 key.objectid = ino;
39279cc3 4351 key.offset = (u64)-1;
5f39d397
CM
4352 key.type = (u8)-1;
4353
85e21bac 4354search_again:
28ed1345
CM
4355 /*
4356 * with a 16K leaf size and 128MB extents, you can actually queue
4357 * up a huge file in a single leaf. Most of the time that
4358 * bytes_deleted is > 0, it will be huge by the time we get here
4359 */
ee22184b 4360 if (be_nice && bytes_deleted > SZ_32M) {
3a45bb20 4361 if (btrfs_should_end_transaction(trans)) {
28ed1345
CM
4362 err = -EAGAIN;
4363 goto error;
4364 }
4365 }
4366
4367
b9473439 4368 path->leave_spinning = 1;
85e21bac 4369 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4370 if (ret < 0) {
4371 err = ret;
4372 goto out;
4373 }
d397712b 4374
85e21bac 4375 if (ret > 0) {
e02119d5
CM
4376 /* there are no items in the tree for us to truncate, we're
4377 * done
4378 */
8082510e
YZ
4379 if (path->slots[0] == 0)
4380 goto out;
85e21bac
CM
4381 path->slots[0]--;
4382 }
4383
d397712b 4384 while (1) {
39279cc3 4385 fi = NULL;
5f39d397
CM
4386 leaf = path->nodes[0];
4387 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4388 found_type = found_key.type;
39279cc3 4389
33345d01 4390 if (found_key.objectid != ino)
39279cc3 4391 break;
5f39d397 4392
85e21bac 4393 if (found_type < min_type)
39279cc3
CM
4394 break;
4395
5f39d397 4396 item_end = found_key.offset;
39279cc3 4397 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4398 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4399 struct btrfs_file_extent_item);
179e29e4
CM
4400 extent_type = btrfs_file_extent_type(leaf, fi);
4401 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4402 item_end +=
db94535d 4403 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4404 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4405 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4406 path->slots[0], fi);
39279cc3 4407 }
008630c1 4408 item_end--;
39279cc3 4409 }
8082510e
YZ
4410 if (found_type > min_type) {
4411 del_item = 1;
4412 } else {
76b42abb 4413 if (item_end < new_size)
b888db2b 4414 break;
8082510e
YZ
4415 if (found_key.offset >= new_size)
4416 del_item = 1;
4417 else
4418 del_item = 0;
39279cc3 4419 }
39279cc3 4420 found_extent = 0;
39279cc3 4421 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4422 if (found_type != BTRFS_EXTENT_DATA_KEY)
4423 goto delete;
4424
7f4f6e0a
JB
4425 if (del_item)
4426 last_size = found_key.offset;
4427 else
4428 last_size = new_size;
4429
179e29e4 4430 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4431 u64 num_dec;
db94535d 4432 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4433 if (!del_item) {
db94535d
CM
4434 u64 orig_num_bytes =
4435 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4436 extent_num_bytes = ALIGN(new_size -
4437 found_key.offset,
0b246afa 4438 fs_info->sectorsize);
db94535d
CM
4439 btrfs_set_file_extent_num_bytes(leaf, fi,
4440 extent_num_bytes);
4441 num_dec = (orig_num_bytes -
9069218d 4442 extent_num_bytes);
27cdeb70
MX
4443 if (test_bit(BTRFS_ROOT_REF_COWS,
4444 &root->state) &&
4445 extent_start != 0)
a76a3cd4 4446 inode_sub_bytes(inode, num_dec);
5f39d397 4447 btrfs_mark_buffer_dirty(leaf);
39279cc3 4448 } else {
db94535d
CM
4449 extent_num_bytes =
4450 btrfs_file_extent_disk_num_bytes(leaf,
4451 fi);
5d4f98a2
YZ
4452 extent_offset = found_key.offset -
4453 btrfs_file_extent_offset(leaf, fi);
4454
39279cc3 4455 /* FIXME blocksize != 4096 */
9069218d 4456 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4457 if (extent_start != 0) {
4458 found_extent = 1;
27cdeb70
MX
4459 if (test_bit(BTRFS_ROOT_REF_COWS,
4460 &root->state))
a76a3cd4 4461 inode_sub_bytes(inode, num_dec);
e02119d5 4462 }
39279cc3 4463 }
9069218d 4464 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4465 /*
4466 * we can't truncate inline items that have had
4467 * special encodings
4468 */
4469 if (!del_item &&
c8b97818
CM
4470 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4471 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4472
4473 /*
0305cd5f
FM
4474 * Need to release path in order to truncate a
4475 * compressed extent. So delete any accumulated
4476 * extent items so far.
514ac8ad 4477 */
0305cd5f
FM
4478 if (btrfs_file_extent_compression(leaf, fi) !=
4479 BTRFS_COMPRESS_NONE && pending_del_nr) {
4480 err = btrfs_del_items(trans, root, path,
4481 pending_del_slot,
4482 pending_del_nr);
4483 if (err) {
4484 btrfs_abort_transaction(trans,
0305cd5f
FM
4485 err);
4486 goto error;
4487 }
4488 pending_del_nr = 0;
4489 }
4490
4491 err = truncate_inline_extent(inode, path,
4492 &found_key,
4493 item_end,
4494 new_size);
4495 if (err) {
66642832 4496 btrfs_abort_transaction(trans, err);
0305cd5f
FM
4497 goto error;
4498 }
27cdeb70
MX
4499 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4500 &root->state)) {
0305cd5f 4501 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4502 }
39279cc3 4503 }
179e29e4 4504delete:
39279cc3 4505 if (del_item) {
85e21bac
CM
4506 if (!pending_del_nr) {
4507 /* no pending yet, add ourselves */
4508 pending_del_slot = path->slots[0];
4509 pending_del_nr = 1;
4510 } else if (pending_del_nr &&
4511 path->slots[0] + 1 == pending_del_slot) {
4512 /* hop on the pending chunk */
4513 pending_del_nr++;
4514 pending_del_slot = path->slots[0];
4515 } else {
d397712b 4516 BUG();
85e21bac 4517 }
39279cc3
CM
4518 } else {
4519 break;
4520 }
28f75a0e
CM
4521 should_throttle = 0;
4522
27cdeb70
MX
4523 if (found_extent &&
4524 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4525 root == fs_info->tree_root)) {
b9473439 4526 btrfs_set_path_blocking(path);
28ed1345 4527 bytes_deleted += extent_num_bytes;
2ff7e61e 4528 ret = btrfs_free_extent(trans, fs_info, extent_start,
5d4f98a2
YZ
4529 extent_num_bytes, 0,
4530 btrfs_header_owner(leaf),
b06c4bf5 4531 ino, extent_offset);
39279cc3 4532 BUG_ON(ret);
2ff7e61e
JM
4533 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4534 btrfs_async_run_delayed_refs(fs_info,
dd4b857a
WX
4535 trans->delayed_ref_updates * 2,
4536 trans->transid, 0);
28f75a0e
CM
4537 if (be_nice) {
4538 if (truncate_space_check(trans, root,
4539 extent_num_bytes)) {
4540 should_end = 1;
4541 }
4542 if (btrfs_should_throttle_delayed_refs(trans,
2ff7e61e 4543 fs_info))
28f75a0e 4544 should_throttle = 1;
28f75a0e 4545 }
39279cc3 4546 }
85e21bac 4547
8082510e
YZ
4548 if (found_type == BTRFS_INODE_ITEM_KEY)
4549 break;
4550
4551 if (path->slots[0] == 0 ||
1262133b 4552 path->slots[0] != pending_del_slot ||
28f75a0e 4553 should_throttle || should_end) {
8082510e
YZ
4554 if (pending_del_nr) {
4555 ret = btrfs_del_items(trans, root, path,
4556 pending_del_slot,
4557 pending_del_nr);
79787eaa 4558 if (ret) {
66642832 4559 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4560 goto error;
4561 }
8082510e
YZ
4562 pending_del_nr = 0;
4563 }
b3b4aa74 4564 btrfs_release_path(path);
28f75a0e 4565 if (should_throttle) {
1262133b
JB
4566 unsigned long updates = trans->delayed_ref_updates;
4567 if (updates) {
4568 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4569 ret = btrfs_run_delayed_refs(trans,
4570 fs_info,
4571 updates * 2);
1262133b
JB
4572 if (ret && !err)
4573 err = ret;
4574 }
4575 }
28f75a0e
CM
4576 /*
4577 * if we failed to refill our space rsv, bail out
4578 * and let the transaction restart
4579 */
4580 if (should_end) {
4581 err = -EAGAIN;
4582 goto error;
4583 }
85e21bac 4584 goto search_again;
8082510e
YZ
4585 } else {
4586 path->slots[0]--;
85e21bac 4587 }
39279cc3 4588 }
8082510e 4589out:
85e21bac
CM
4590 if (pending_del_nr) {
4591 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4592 pending_del_nr);
79787eaa 4593 if (ret)
66642832 4594 btrfs_abort_transaction(trans, ret);
85e21bac 4595 }
79787eaa 4596error:
76b42abb
FM
4597 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4598 ASSERT(last_size >= new_size);
4599 if (!err && last_size > new_size)
4600 last_size = new_size;
7f4f6e0a 4601 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4602 }
28ed1345 4603
39279cc3 4604 btrfs_free_path(path);
28ed1345 4605
19fd2df5
LB
4606 if (err == 0) {
4607 /* only inline file may have last_size != new_size */
4608 if (new_size >= fs_info->sectorsize ||
4609 new_size > fs_info->max_inline)
4610 ASSERT(last_size == new_size);
4611 }
4612
ee22184b 4613 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4614 unsigned long updates = trans->delayed_ref_updates;
4615 if (updates) {
4616 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4617 ret = btrfs_run_delayed_refs(trans, fs_info,
4618 updates * 2);
28ed1345
CM
4619 if (ret && !err)
4620 err = ret;
4621 }
4622 }
8082510e 4623 return err;
39279cc3
CM
4624}
4625
4626/*
9703fefe 4627 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4628 * @inode - inode that we're zeroing
4629 * @from - the offset to start zeroing
4630 * @len - the length to zero, 0 to zero the entire range respective to the
4631 * offset
4632 * @front - zero up to the offset instead of from the offset on
4633 *
9703fefe 4634 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4635 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4636 */
9703fefe 4637int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4638 int front)
39279cc3 4639{
0b246afa 4640 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4641 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4642 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4643 struct btrfs_ordered_extent *ordered;
2ac55d41 4644 struct extent_state *cached_state = NULL;
e6dcd2dc 4645 char *kaddr;
0b246afa 4646 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4647 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4648 unsigned offset = from & (blocksize - 1);
39279cc3 4649 struct page *page;
3b16a4e3 4650 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4651 int ret = 0;
9703fefe
CR
4652 u64 block_start;
4653 u64 block_end;
39279cc3 4654
2aaa6655
JB
4655 if ((offset & (blocksize - 1)) == 0 &&
4656 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4657 goto out;
9703fefe 4658
7cf5b976 4659 ret = btrfs_delalloc_reserve_space(inode,
9703fefe 4660 round_down(from, blocksize), blocksize);
5d5e103a
JB
4661 if (ret)
4662 goto out;
39279cc3 4663
211c17f5 4664again:
3b16a4e3 4665 page = find_or_create_page(mapping, index, mask);
5d5e103a 4666 if (!page) {
7cf5b976 4667 btrfs_delalloc_release_space(inode,
9703fefe
CR
4668 round_down(from, blocksize),
4669 blocksize);
ac6a2b36 4670 ret = -ENOMEM;
39279cc3 4671 goto out;
5d5e103a 4672 }
e6dcd2dc 4673
9703fefe
CR
4674 block_start = round_down(from, blocksize);
4675 block_end = block_start + blocksize - 1;
e6dcd2dc 4676
39279cc3 4677 if (!PageUptodate(page)) {
9ebefb18 4678 ret = btrfs_readpage(NULL, page);
39279cc3 4679 lock_page(page);
211c17f5
CM
4680 if (page->mapping != mapping) {
4681 unlock_page(page);
09cbfeaf 4682 put_page(page);
211c17f5
CM
4683 goto again;
4684 }
39279cc3
CM
4685 if (!PageUptodate(page)) {
4686 ret = -EIO;
89642229 4687 goto out_unlock;
39279cc3
CM
4688 }
4689 }
211c17f5 4690 wait_on_page_writeback(page);
e6dcd2dc 4691
9703fefe 4692 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4693 set_page_extent_mapped(page);
4694
9703fefe 4695 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4696 if (ordered) {
9703fefe 4697 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4698 &cached_state, GFP_NOFS);
e6dcd2dc 4699 unlock_page(page);
09cbfeaf 4700 put_page(page);
eb84ae03 4701 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4702 btrfs_put_ordered_extent(ordered);
4703 goto again;
4704 }
4705
9703fefe 4706 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4707 EXTENT_DIRTY | EXTENT_DELALLOC |
4708 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4709 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4710
9703fefe 4711 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
ba8b04c1 4712 &cached_state, 0);
9ed74f2d 4713 if (ret) {
9703fefe 4714 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4715 &cached_state, GFP_NOFS);
9ed74f2d
JB
4716 goto out_unlock;
4717 }
4718
9703fefe 4719 if (offset != blocksize) {
2aaa6655 4720 if (!len)
9703fefe 4721 len = blocksize - offset;
e6dcd2dc 4722 kaddr = kmap(page);
2aaa6655 4723 if (front)
9703fefe
CR
4724 memset(kaddr + (block_start - page_offset(page)),
4725 0, offset);
2aaa6655 4726 else
9703fefe
CR
4727 memset(kaddr + (block_start - page_offset(page)) + offset,
4728 0, len);
e6dcd2dc
CM
4729 flush_dcache_page(page);
4730 kunmap(page);
4731 }
247e743c 4732 ClearPageChecked(page);
e6dcd2dc 4733 set_page_dirty(page);
9703fefe 4734 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4735 GFP_NOFS);
39279cc3 4736
89642229 4737out_unlock:
5d5e103a 4738 if (ret)
9703fefe
CR
4739 btrfs_delalloc_release_space(inode, block_start,
4740 blocksize);
39279cc3 4741 unlock_page(page);
09cbfeaf 4742 put_page(page);
39279cc3
CM
4743out:
4744 return ret;
4745}
4746
16e7549f
JB
4747static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4748 u64 offset, u64 len)
4749{
0b246afa 4750 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4751 struct btrfs_trans_handle *trans;
4752 int ret;
4753
4754 /*
4755 * Still need to make sure the inode looks like it's been updated so
4756 * that any holes get logged if we fsync.
4757 */
0b246afa
JM
4758 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4759 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4760 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4761 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4762 return 0;
4763 }
4764
4765 /*
4766 * 1 - for the one we're dropping
4767 * 1 - for the one we're adding
4768 * 1 - for updating the inode.
4769 */
4770 trans = btrfs_start_transaction(root, 3);
4771 if (IS_ERR(trans))
4772 return PTR_ERR(trans);
4773
4774 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4775 if (ret) {
66642832 4776 btrfs_abort_transaction(trans, ret);
3a45bb20 4777 btrfs_end_transaction(trans);
16e7549f
JB
4778 return ret;
4779 }
4780
f85b7379
DS
4781 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4782 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4783 if (ret)
66642832 4784 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4785 else
4786 btrfs_update_inode(trans, root, inode);
3a45bb20 4787 btrfs_end_transaction(trans);
16e7549f
JB
4788 return ret;
4789}
4790
695a0d0d
JB
4791/*
4792 * This function puts in dummy file extents for the area we're creating a hole
4793 * for. So if we are truncating this file to a larger size we need to insert
4794 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4795 * the range between oldsize and size
4796 */
a41ad394 4797int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4798{
0b246afa 4799 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4800 struct btrfs_root *root = BTRFS_I(inode)->root;
4801 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4802 struct extent_map *em = NULL;
2ac55d41 4803 struct extent_state *cached_state = NULL;
5dc562c5 4804 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4805 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4806 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4807 u64 last_byte;
4808 u64 cur_offset;
4809 u64 hole_size;
9ed74f2d 4810 int err = 0;
39279cc3 4811
a71754fc 4812 /*
9703fefe
CR
4813 * If our size started in the middle of a block we need to zero out the
4814 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4815 * expose stale data.
4816 */
9703fefe 4817 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4818 if (err)
4819 return err;
4820
9036c102
YZ
4821 if (size <= hole_start)
4822 return 0;
4823
9036c102
YZ
4824 while (1) {
4825 struct btrfs_ordered_extent *ordered;
fa7c1494 4826
ff13db41 4827 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4828 &cached_state);
a776c6fa 4829 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
fa7c1494 4830 block_end - hole_start);
9036c102
YZ
4831 if (!ordered)
4832 break;
2ac55d41
JB
4833 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4834 &cached_state, GFP_NOFS);
fa7c1494 4835 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4836 btrfs_put_ordered_extent(ordered);
4837 }
39279cc3 4838
9036c102
YZ
4839 cur_offset = hole_start;
4840 while (1) {
fc4f21b1 4841 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 4842 block_end - cur_offset, 0);
79787eaa
JM
4843 if (IS_ERR(em)) {
4844 err = PTR_ERR(em);
f2767956 4845 em = NULL;
79787eaa
JM
4846 break;
4847 }
9036c102 4848 last_byte = min(extent_map_end(em), block_end);
0b246afa 4849 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 4850 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4851 struct extent_map *hole_em;
9036c102 4852 hole_size = last_byte - cur_offset;
9ed74f2d 4853
16e7549f
JB
4854 err = maybe_insert_hole(root, inode, cur_offset,
4855 hole_size);
4856 if (err)
3893e33b 4857 break;
dcdbc059 4858 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
4859 cur_offset + hole_size - 1, 0);
4860 hole_em = alloc_extent_map();
4861 if (!hole_em) {
4862 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4863 &BTRFS_I(inode)->runtime_flags);
4864 goto next;
4865 }
4866 hole_em->start = cur_offset;
4867 hole_em->len = hole_size;
4868 hole_em->orig_start = cur_offset;
8082510e 4869
5dc562c5
JB
4870 hole_em->block_start = EXTENT_MAP_HOLE;
4871 hole_em->block_len = 0;
b4939680 4872 hole_em->orig_block_len = 0;
cc95bef6 4873 hole_em->ram_bytes = hole_size;
0b246afa 4874 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 4875 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 4876 hole_em->generation = fs_info->generation;
8082510e 4877
5dc562c5
JB
4878 while (1) {
4879 write_lock(&em_tree->lock);
09a2a8f9 4880 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4881 write_unlock(&em_tree->lock);
4882 if (err != -EEXIST)
4883 break;
dcdbc059
NB
4884 btrfs_drop_extent_cache(BTRFS_I(inode),
4885 cur_offset,
5dc562c5
JB
4886 cur_offset +
4887 hole_size - 1, 0);
4888 }
4889 free_extent_map(hole_em);
9036c102 4890 }
16e7549f 4891next:
9036c102 4892 free_extent_map(em);
a22285a6 4893 em = NULL;
9036c102 4894 cur_offset = last_byte;
8082510e 4895 if (cur_offset >= block_end)
9036c102
YZ
4896 break;
4897 }
a22285a6 4898 free_extent_map(em);
2ac55d41
JB
4899 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4900 GFP_NOFS);
9036c102
YZ
4901 return err;
4902}
39279cc3 4903
3972f260 4904static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4905{
f4a2f4c5
MX
4906 struct btrfs_root *root = BTRFS_I(inode)->root;
4907 struct btrfs_trans_handle *trans;
a41ad394 4908 loff_t oldsize = i_size_read(inode);
3972f260
ES
4909 loff_t newsize = attr->ia_size;
4910 int mask = attr->ia_valid;
8082510e
YZ
4911 int ret;
4912
3972f260
ES
4913 /*
4914 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4915 * special case where we need to update the times despite not having
4916 * these flags set. For all other operations the VFS set these flags
4917 * explicitly if it wants a timestamp update.
4918 */
dff6efc3
CH
4919 if (newsize != oldsize) {
4920 inode_inc_iversion(inode);
4921 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4922 inode->i_ctime = inode->i_mtime =
c2050a45 4923 current_time(inode);
dff6efc3 4924 }
3972f260 4925
a41ad394 4926 if (newsize > oldsize) {
9ea24bbe
FM
4927 /*
4928 * Don't do an expanding truncate while snapshoting is ongoing.
4929 * This is to ensure the snapshot captures a fully consistent
4930 * state of this file - if the snapshot captures this expanding
4931 * truncation, it must capture all writes that happened before
4932 * this truncation.
4933 */
0bc19f90 4934 btrfs_wait_for_snapshot_creation(root);
a41ad394 4935 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4936 if (ret) {
4937 btrfs_end_write_no_snapshoting(root);
8082510e 4938 return ret;
9ea24bbe 4939 }
8082510e 4940
f4a2f4c5 4941 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4942 if (IS_ERR(trans)) {
4943 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 4944 return PTR_ERR(trans);
9ea24bbe 4945 }
f4a2f4c5
MX
4946
4947 i_size_write(inode, newsize);
4948 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 4949 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 4950 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 4951 btrfs_end_write_no_snapshoting(root);
3a45bb20 4952 btrfs_end_transaction(trans);
a41ad394 4953 } else {
8082510e 4954
a41ad394
JB
4955 /*
4956 * We're truncating a file that used to have good data down to
4957 * zero. Make sure it gets into the ordered flush list so that
4958 * any new writes get down to disk quickly.
4959 */
4960 if (newsize == 0)
72ac3c0d
JB
4961 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4962 &BTRFS_I(inode)->runtime_flags);
8082510e 4963
f3fe820c
JB
4964 /*
4965 * 1 for the orphan item we're going to add
4966 * 1 for the orphan item deletion.
4967 */
4968 trans = btrfs_start_transaction(root, 2);
4969 if (IS_ERR(trans))
4970 return PTR_ERR(trans);
4971
4972 /*
4973 * We need to do this in case we fail at _any_ point during the
4974 * actual truncate. Once we do the truncate_setsize we could
4975 * invalidate pages which forces any outstanding ordered io to
4976 * be instantly completed which will give us extents that need
4977 * to be truncated. If we fail to get an orphan inode down we
4978 * could have left over extents that were never meant to live,
01327610 4979 * so we need to guarantee from this point on that everything
f3fe820c
JB
4980 * will be consistent.
4981 */
73f2e545 4982 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 4983 btrfs_end_transaction(trans);
f3fe820c
JB
4984 if (ret)
4985 return ret;
4986
a41ad394
JB
4987 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4988 truncate_setsize(inode, newsize);
2e60a51e
MX
4989
4990 /* Disable nonlocked read DIO to avoid the end less truncate */
abcefb1e 4991 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 4992 inode_dio_wait(inode);
0b581701 4993 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 4994
a41ad394 4995 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4996 if (ret && inode->i_nlink) {
4997 int err;
4998
19fd2df5
LB
4999 /* To get a stable disk_i_size */
5000 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5001 if (err) {
3d6ae7bb 5002 btrfs_orphan_del(NULL, BTRFS_I(inode));
19fd2df5
LB
5003 return err;
5004 }
5005
7f4f6e0a
JB
5006 /*
5007 * failed to truncate, disk_i_size is only adjusted down
5008 * as we remove extents, so it should represent the true
5009 * size of the inode, so reset the in memory size and
5010 * delete our orphan entry.
5011 */
5012 trans = btrfs_join_transaction(root);
5013 if (IS_ERR(trans)) {
3d6ae7bb 5014 btrfs_orphan_del(NULL, BTRFS_I(inode));
7f4f6e0a
JB
5015 return ret;
5016 }
5017 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
3d6ae7bb 5018 err = btrfs_orphan_del(trans, BTRFS_I(inode));
7f4f6e0a 5019 if (err)
66642832 5020 btrfs_abort_transaction(trans, err);
3a45bb20 5021 btrfs_end_transaction(trans);
7f4f6e0a 5022 }
8082510e
YZ
5023 }
5024
a41ad394 5025 return ret;
8082510e
YZ
5026}
5027
9036c102
YZ
5028static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5029{
2b0143b5 5030 struct inode *inode = d_inode(dentry);
b83cc969 5031 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5032 int err;
39279cc3 5033
b83cc969
LZ
5034 if (btrfs_root_readonly(root))
5035 return -EROFS;
5036
31051c85 5037 err = setattr_prepare(dentry, attr);
9036c102
YZ
5038 if (err)
5039 return err;
2bf5a725 5040
5a3f23d5 5041 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5042 err = btrfs_setsize(inode, attr);
8082510e
YZ
5043 if (err)
5044 return err;
39279cc3 5045 }
9036c102 5046
1025774c
CH
5047 if (attr->ia_valid) {
5048 setattr_copy(inode, attr);
0c4d2d95 5049 inode_inc_iversion(inode);
22c44fe6 5050 err = btrfs_dirty_inode(inode);
1025774c 5051
22c44fe6 5052 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5053 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5054 }
33268eaf 5055
39279cc3
CM
5056 return err;
5057}
61295eb8 5058
131e404a
FDBM
5059/*
5060 * While truncating the inode pages during eviction, we get the VFS calling
5061 * btrfs_invalidatepage() against each page of the inode. This is slow because
5062 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5063 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5064 * extent_state structures over and over, wasting lots of time.
5065 *
5066 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5067 * those expensive operations on a per page basis and do only the ordered io
5068 * finishing, while we release here the extent_map and extent_state structures,
5069 * without the excessive merging and splitting.
5070 */
5071static void evict_inode_truncate_pages(struct inode *inode)
5072{
5073 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5074 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5075 struct rb_node *node;
5076
5077 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5078 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5079
5080 write_lock(&map_tree->lock);
5081 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5082 struct extent_map *em;
5083
5084 node = rb_first(&map_tree->map);
5085 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5086 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5087 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5088 remove_extent_mapping(map_tree, em);
5089 free_extent_map(em);
7064dd5c
FM
5090 if (need_resched()) {
5091 write_unlock(&map_tree->lock);
5092 cond_resched();
5093 write_lock(&map_tree->lock);
5094 }
131e404a
FDBM
5095 }
5096 write_unlock(&map_tree->lock);
5097
6ca07097
FM
5098 /*
5099 * Keep looping until we have no more ranges in the io tree.
5100 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5101 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5102 * still in progress (unlocked the pages in the bio but did not yet
5103 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5104 * ranges can still be locked and eviction started because before
5105 * submitting those bios, which are executed by a separate task (work
5106 * queue kthread), inode references (inode->i_count) were not taken
5107 * (which would be dropped in the end io callback of each bio).
5108 * Therefore here we effectively end up waiting for those bios and
5109 * anyone else holding locked ranges without having bumped the inode's
5110 * reference count - if we don't do it, when they access the inode's
5111 * io_tree to unlock a range it may be too late, leading to an
5112 * use-after-free issue.
5113 */
131e404a
FDBM
5114 spin_lock(&io_tree->lock);
5115 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5116 struct extent_state *state;
5117 struct extent_state *cached_state = NULL;
6ca07097
FM
5118 u64 start;
5119 u64 end;
131e404a
FDBM
5120
5121 node = rb_first(&io_tree->state);
5122 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5123 start = state->start;
5124 end = state->end;
131e404a
FDBM
5125 spin_unlock(&io_tree->lock);
5126
ff13db41 5127 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5128
5129 /*
5130 * If still has DELALLOC flag, the extent didn't reach disk,
5131 * and its reserved space won't be freed by delayed_ref.
5132 * So we need to free its reserved space here.
5133 * (Refer to comment in btrfs_invalidatepage, case 2)
5134 *
5135 * Note, end is the bytenr of last byte, so we need + 1 here.
5136 */
5137 if (state->state & EXTENT_DELALLOC)
5138 btrfs_qgroup_free_data(inode, start, end - start + 1);
5139
6ca07097 5140 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5141 EXTENT_LOCKED | EXTENT_DIRTY |
5142 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5143 EXTENT_DEFRAG, 1, 1,
5144 &cached_state, GFP_NOFS);
131e404a 5145
7064dd5c 5146 cond_resched();
131e404a
FDBM
5147 spin_lock(&io_tree->lock);
5148 }
5149 spin_unlock(&io_tree->lock);
5150}
5151
bd555975 5152void btrfs_evict_inode(struct inode *inode)
39279cc3 5153{
0b246afa 5154 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5155 struct btrfs_trans_handle *trans;
5156 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5157 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5158 int steal_from_global = 0;
3d48d981 5159 u64 min_size;
39279cc3
CM
5160 int ret;
5161
1abe9b8a 5162 trace_btrfs_inode_evict(inode);
5163
3d48d981
NB
5164 if (!root) {
5165 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5166 return;
5167 }
5168
0b246afa 5169 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
3d48d981 5170
131e404a
FDBM
5171 evict_inode_truncate_pages(inode);
5172
69e9c6c6
SB
5173 if (inode->i_nlink &&
5174 ((btrfs_root_refs(&root->root_item) != 0 &&
5175 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5176 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5177 goto no_delete;
5178
39279cc3 5179 if (is_bad_inode(inode)) {
3d6ae7bb 5180 btrfs_orphan_del(NULL, BTRFS_I(inode));
39279cc3
CM
5181 goto no_delete;
5182 }
bd555975 5183 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5184 if (!special_file(inode->i_mode))
5185 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5186
7ab7956e 5187 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5188
0b246afa 5189 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
6bf02314 5190 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5191 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5192 goto no_delete;
5193 }
5194
76dda93c 5195 if (inode->i_nlink > 0) {
69e9c6c6
SB
5196 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5197 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5198 goto no_delete;
5199 }
5200
aa79021f 5201 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
0e8c36a9 5202 if (ret) {
3d6ae7bb 5203 btrfs_orphan_del(NULL, BTRFS_I(inode));
0e8c36a9
MX
5204 goto no_delete;
5205 }
5206
2ff7e61e 5207 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
4289a667 5208 if (!rsv) {
3d6ae7bb 5209 btrfs_orphan_del(NULL, BTRFS_I(inode));
4289a667
JB
5210 goto no_delete;
5211 }
4a338542 5212 rsv->size = min_size;
ca7e70f5 5213 rsv->failfast = 1;
0b246afa 5214 global_rsv = &fs_info->global_block_rsv;
4289a667 5215
6ef06d27 5216 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5217
4289a667 5218 /*
8407aa46
MX
5219 * This is a bit simpler than btrfs_truncate since we've already
5220 * reserved our space for our orphan item in the unlink, so we just
5221 * need to reserve some slack space in case we add bytes and update
5222 * inode item when doing the truncate.
4289a667 5223 */
8082510e 5224 while (1) {
08e007d2
MX
5225 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5226 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5227
5228 /*
5229 * Try and steal from the global reserve since we will
5230 * likely not use this space anyway, we want to try as
5231 * hard as possible to get this to work.
5232 */
5233 if (ret)
3bce876f
JB
5234 steal_from_global++;
5235 else
5236 steal_from_global = 0;
5237 ret = 0;
d68fc57b 5238
3bce876f
JB
5239 /*
5240 * steal_from_global == 0: we reserved stuff, hooray!
5241 * steal_from_global == 1: we didn't reserve stuff, boo!
5242 * steal_from_global == 2: we've committed, still not a lot of
5243 * room but maybe we'll have room in the global reserve this
5244 * time.
5245 * steal_from_global == 3: abandon all hope!
5246 */
5247 if (steal_from_global > 2) {
0b246afa
JM
5248 btrfs_warn(fs_info,
5249 "Could not get space for a delete, will truncate on mount %d",
5250 ret);
3d6ae7bb 5251 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5252 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5253 goto no_delete;
d68fc57b 5254 }
7b128766 5255
0e8c36a9 5256 trans = btrfs_join_transaction(root);
4289a667 5257 if (IS_ERR(trans)) {
3d6ae7bb 5258 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5259 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5260 goto no_delete;
d68fc57b 5261 }
7b128766 5262
3bce876f 5263 /*
01327610 5264 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5265 * sure there is room to do it, if not we need to commit and try
5266 * again.
5267 */
5268 if (steal_from_global) {
2ff7e61e 5269 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
3bce876f 5270 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
25d609f8 5271 min_size, 0);
3bce876f
JB
5272 else
5273 ret = -ENOSPC;
5274 }
5275
5276 /*
5277 * Couldn't steal from the global reserve, we have too much
5278 * pending stuff built up, commit the transaction and try it
5279 * again.
5280 */
5281 if (ret) {
3a45bb20 5282 ret = btrfs_commit_transaction(trans);
3bce876f 5283 if (ret) {
3d6ae7bb 5284 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5285 btrfs_free_block_rsv(fs_info, rsv);
3bce876f
JB
5286 goto no_delete;
5287 }
5288 continue;
5289 } else {
5290 steal_from_global = 0;
5291 }
5292
4289a667
JB
5293 trans->block_rsv = rsv;
5294
d68fc57b 5295 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5296 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5297 break;
85e21bac 5298
0b246afa 5299 trans->block_rsv = &fs_info->trans_block_rsv;
3a45bb20 5300 btrfs_end_transaction(trans);
8082510e 5301 trans = NULL;
2ff7e61e 5302 btrfs_btree_balance_dirty(fs_info);
8082510e 5303 }
5f39d397 5304
2ff7e61e 5305 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5306
4ef31a45
JB
5307 /*
5308 * Errors here aren't a big deal, it just means we leave orphan items
5309 * in the tree. They will be cleaned up on the next mount.
5310 */
8082510e 5311 if (ret == 0) {
4289a667 5312 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 5313 btrfs_orphan_del(trans, BTRFS_I(inode));
4ef31a45 5314 } else {
3d6ae7bb 5315 btrfs_orphan_del(NULL, BTRFS_I(inode));
8082510e 5316 }
54aa1f4d 5317
0b246afa
JM
5318 trans->block_rsv = &fs_info->trans_block_rsv;
5319 if (!(root == fs_info->tree_root ||
581bb050 5320 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5321 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5322
3a45bb20 5323 btrfs_end_transaction(trans);
2ff7e61e 5324 btrfs_btree_balance_dirty(fs_info);
39279cc3 5325no_delete:
f48d1cf5 5326 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5327 clear_inode(inode);
39279cc3
CM
5328}
5329
5330/*
5331 * this returns the key found in the dir entry in the location pointer.
5332 * If no dir entries were found, location->objectid is 0.
5333 */
5334static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5335 struct btrfs_key *location)
5336{
5337 const char *name = dentry->d_name.name;
5338 int namelen = dentry->d_name.len;
5339 struct btrfs_dir_item *di;
5340 struct btrfs_path *path;
5341 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5342 int ret = 0;
39279cc3
CM
5343
5344 path = btrfs_alloc_path();
d8926bb3
MF
5345 if (!path)
5346 return -ENOMEM;
3954401f 5347
f85b7379
DS
5348 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5349 name, namelen, 0);
0d9f7f3e
Y
5350 if (IS_ERR(di))
5351 ret = PTR_ERR(di);
d397712b 5352
c704005d 5353 if (IS_ERR_OR_NULL(di))
3954401f 5354 goto out_err;
d397712b 5355
5f39d397 5356 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5357out:
39279cc3
CM
5358 btrfs_free_path(path);
5359 return ret;
3954401f
CM
5360out_err:
5361 location->objectid = 0;
5362 goto out;
39279cc3
CM
5363}
5364
5365/*
5366 * when we hit a tree root in a directory, the btrfs part of the inode
5367 * needs to be changed to reflect the root directory of the tree root. This
5368 * is kind of like crossing a mount point.
5369 */
2ff7e61e 5370static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5371 struct inode *dir,
5372 struct dentry *dentry,
5373 struct btrfs_key *location,
5374 struct btrfs_root **sub_root)
39279cc3 5375{
4df27c4d
YZ
5376 struct btrfs_path *path;
5377 struct btrfs_root *new_root;
5378 struct btrfs_root_ref *ref;
5379 struct extent_buffer *leaf;
1d4c08e0 5380 struct btrfs_key key;
4df27c4d
YZ
5381 int ret;
5382 int err = 0;
39279cc3 5383
4df27c4d
YZ
5384 path = btrfs_alloc_path();
5385 if (!path) {
5386 err = -ENOMEM;
5387 goto out;
5388 }
39279cc3 5389
4df27c4d 5390 err = -ENOENT;
1d4c08e0
DS
5391 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5392 key.type = BTRFS_ROOT_REF_KEY;
5393 key.offset = location->objectid;
5394
0b246afa 5395 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5396 if (ret) {
5397 if (ret < 0)
5398 err = ret;
5399 goto out;
5400 }
39279cc3 5401
4df27c4d
YZ
5402 leaf = path->nodes[0];
5403 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5404 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5405 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5406 goto out;
39279cc3 5407
4df27c4d
YZ
5408 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5409 (unsigned long)(ref + 1),
5410 dentry->d_name.len);
5411 if (ret)
5412 goto out;
5413
b3b4aa74 5414 btrfs_release_path(path);
4df27c4d 5415
0b246afa 5416 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5417 if (IS_ERR(new_root)) {
5418 err = PTR_ERR(new_root);
5419 goto out;
5420 }
5421
4df27c4d
YZ
5422 *sub_root = new_root;
5423 location->objectid = btrfs_root_dirid(&new_root->root_item);
5424 location->type = BTRFS_INODE_ITEM_KEY;
5425 location->offset = 0;
5426 err = 0;
5427out:
5428 btrfs_free_path(path);
5429 return err;
39279cc3
CM
5430}
5431
5d4f98a2
YZ
5432static void inode_tree_add(struct inode *inode)
5433{
5434 struct btrfs_root *root = BTRFS_I(inode)->root;
5435 struct btrfs_inode *entry;
03e860bd
FNP
5436 struct rb_node **p;
5437 struct rb_node *parent;
cef21937 5438 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5439 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5440
1d3382cb 5441 if (inode_unhashed(inode))
76dda93c 5442 return;
e1409cef 5443 parent = NULL;
5d4f98a2 5444 spin_lock(&root->inode_lock);
e1409cef 5445 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5446 while (*p) {
5447 parent = *p;
5448 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5449
4a0cc7ca 5450 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5451 p = &parent->rb_left;
4a0cc7ca 5452 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5453 p = &parent->rb_right;
5d4f98a2
YZ
5454 else {
5455 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5456 (I_WILL_FREE | I_FREEING)));
cef21937 5457 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5458 RB_CLEAR_NODE(parent);
5459 spin_unlock(&root->inode_lock);
cef21937 5460 return;
5d4f98a2
YZ
5461 }
5462 }
cef21937
FDBM
5463 rb_link_node(new, parent, p);
5464 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5465 spin_unlock(&root->inode_lock);
5466}
5467
5468static void inode_tree_del(struct inode *inode)
5469{
0b246afa 5470 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5471 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5472 int empty = 0;
5d4f98a2 5473
03e860bd 5474 spin_lock(&root->inode_lock);
5d4f98a2 5475 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5476 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5477 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5478 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5479 }
03e860bd 5480 spin_unlock(&root->inode_lock);
76dda93c 5481
69e9c6c6 5482 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5483 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5484 spin_lock(&root->inode_lock);
5485 empty = RB_EMPTY_ROOT(&root->inode_tree);
5486 spin_unlock(&root->inode_lock);
5487 if (empty)
5488 btrfs_add_dead_root(root);
5489 }
5490}
5491
143bede5 5492void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c 5493{
0b246afa 5494 struct btrfs_fs_info *fs_info = root->fs_info;
76dda93c
YZ
5495 struct rb_node *node;
5496 struct rb_node *prev;
5497 struct btrfs_inode *entry;
5498 struct inode *inode;
5499 u64 objectid = 0;
5500
0b246afa 5501 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
7813b3db 5502 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5503
5504 spin_lock(&root->inode_lock);
5505again:
5506 node = root->inode_tree.rb_node;
5507 prev = NULL;
5508 while (node) {
5509 prev = node;
5510 entry = rb_entry(node, struct btrfs_inode, rb_node);
5511
4a0cc7ca 5512 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c 5513 node = node->rb_left;
4a0cc7ca 5514 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c
YZ
5515 node = node->rb_right;
5516 else
5517 break;
5518 }
5519 if (!node) {
5520 while (prev) {
5521 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4a0cc7ca 5522 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
76dda93c
YZ
5523 node = prev;
5524 break;
5525 }
5526 prev = rb_next(prev);
5527 }
5528 }
5529 while (node) {
5530 entry = rb_entry(node, struct btrfs_inode, rb_node);
4a0cc7ca 5531 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
76dda93c
YZ
5532 inode = igrab(&entry->vfs_inode);
5533 if (inode) {
5534 spin_unlock(&root->inode_lock);
5535 if (atomic_read(&inode->i_count) > 1)
5536 d_prune_aliases(inode);
5537 /*
45321ac5 5538 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5539 * the inode cache when its usage count
5540 * hits zero.
5541 */
5542 iput(inode);
5543 cond_resched();
5544 spin_lock(&root->inode_lock);
5545 goto again;
5546 }
5547
5548 if (cond_resched_lock(&root->inode_lock))
5549 goto again;
5550
5551 node = rb_next(node);
5552 }
5553 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5554}
5555
e02119d5
CM
5556static int btrfs_init_locked_inode(struct inode *inode, void *p)
5557{
5558 struct btrfs_iget_args *args = p;
90d3e592
CM
5559 inode->i_ino = args->location->objectid;
5560 memcpy(&BTRFS_I(inode)->location, args->location,
5561 sizeof(*args->location));
e02119d5 5562 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5563 return 0;
5564}
5565
5566static int btrfs_find_actor(struct inode *inode, void *opaque)
5567{
5568 struct btrfs_iget_args *args = opaque;
90d3e592 5569 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5570 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5571}
5572
5d4f98a2 5573static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5574 struct btrfs_key *location,
5d4f98a2 5575 struct btrfs_root *root)
39279cc3
CM
5576{
5577 struct inode *inode;
5578 struct btrfs_iget_args args;
90d3e592 5579 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5580
90d3e592 5581 args.location = location;
39279cc3
CM
5582 args.root = root;
5583
778ba82b 5584 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5585 btrfs_init_locked_inode,
5586 (void *)&args);
5587 return inode;
5588}
5589
1a54ef8c
BR
5590/* Get an inode object given its location and corresponding root.
5591 * Returns in *is_new if the inode was read from disk
5592 */
5593struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5594 struct btrfs_root *root, int *new)
1a54ef8c
BR
5595{
5596 struct inode *inode;
5597
90d3e592 5598 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5599 if (!inode)
5d4f98a2 5600 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5601
5602 if (inode->i_state & I_NEW) {
67710892
FM
5603 int ret;
5604
5605 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5606 if (!is_bad_inode(inode)) {
5607 inode_tree_add(inode);
5608 unlock_new_inode(inode);
5609 if (new)
5610 *new = 1;
5611 } else {
e0b6d65b
ST
5612 unlock_new_inode(inode);
5613 iput(inode);
67710892
FM
5614 ASSERT(ret < 0);
5615 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5616 }
5617 }
5618
1a54ef8c
BR
5619 return inode;
5620}
5621
4df27c4d
YZ
5622static struct inode *new_simple_dir(struct super_block *s,
5623 struct btrfs_key *key,
5624 struct btrfs_root *root)
5625{
5626 struct inode *inode = new_inode(s);
5627
5628 if (!inode)
5629 return ERR_PTR(-ENOMEM);
5630
4df27c4d
YZ
5631 BTRFS_I(inode)->root = root;
5632 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5633 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5634
5635 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5636 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5637 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5638 inode->i_fop = &simple_dir_operations;
5639 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5640 inode->i_mtime = current_time(inode);
9cc97d64 5641 inode->i_atime = inode->i_mtime;
5642 inode->i_ctime = inode->i_mtime;
5643 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5644
5645 return inode;
5646}
5647
3de4586c 5648struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5649{
0b246afa 5650 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5651 struct inode *inode;
4df27c4d 5652 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5653 struct btrfs_root *sub_root = root;
5654 struct btrfs_key location;
76dda93c 5655 int index;
b4aff1f8 5656 int ret = 0;
39279cc3
CM
5657
5658 if (dentry->d_name.len > BTRFS_NAME_LEN)
5659 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5660
39e3c955 5661 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5662 if (ret < 0)
5663 return ERR_PTR(ret);
5f39d397 5664
4df27c4d 5665 if (location.objectid == 0)
5662344b 5666 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5667
5668 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5669 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5670 return inode;
5671 }
5672
5673 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5674
0b246afa 5675 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5676 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5677 &location, &sub_root);
5678 if (ret < 0) {
5679 if (ret != -ENOENT)
5680 inode = ERR_PTR(ret);
5681 else
5682 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5683 } else {
73f73415 5684 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5685 }
0b246afa 5686 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5687
34d19bad 5688 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5689 down_read(&fs_info->cleanup_work_sem);
c71bf099 5690 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5691 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5692 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5693 if (ret) {
5694 iput(inode);
66b4ffd1 5695 inode = ERR_PTR(ret);
01cd3367 5696 }
c71bf099
YZ
5697 }
5698
3de4586c
CM
5699 return inode;
5700}
5701
fe15ce44 5702static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5703{
5704 struct btrfs_root *root;
2b0143b5 5705 struct inode *inode = d_inode(dentry);
76dda93c 5706
848cce0d 5707 if (!inode && !IS_ROOT(dentry))
2b0143b5 5708 inode = d_inode(dentry->d_parent);
76dda93c 5709
848cce0d
LZ
5710 if (inode) {
5711 root = BTRFS_I(inode)->root;
efefb143
YZ
5712 if (btrfs_root_refs(&root->root_item) == 0)
5713 return 1;
848cce0d 5714
4a0cc7ca 5715 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5716 return 1;
efefb143 5717 }
76dda93c
YZ
5718 return 0;
5719}
5720
b4aff1f8
JB
5721static void btrfs_dentry_release(struct dentry *dentry)
5722{
944a4515 5723 kfree(dentry->d_fsdata);
b4aff1f8
JB
5724}
5725
3de4586c 5726static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5727 unsigned int flags)
3de4586c 5728{
5662344b 5729 struct inode *inode;
a66e7cc6 5730
5662344b
TI
5731 inode = btrfs_lookup_dentry(dir, dentry);
5732 if (IS_ERR(inode)) {
5733 if (PTR_ERR(inode) == -ENOENT)
5734 inode = NULL;
5735 else
5736 return ERR_CAST(inode);
5737 }
5738
41d28bca 5739 return d_splice_alias(inode, dentry);
39279cc3
CM
5740}
5741
16cdcec7 5742unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5743 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5744};
5745
9cdda8d3 5746static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5747{
9cdda8d3 5748 struct inode *inode = file_inode(file);
2ff7e61e 5749 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5750 struct btrfs_root *root = BTRFS_I(inode)->root;
5751 struct btrfs_item *item;
5752 struct btrfs_dir_item *di;
5753 struct btrfs_key key;
5f39d397 5754 struct btrfs_key found_key;
39279cc3 5755 struct btrfs_path *path;
16cdcec7
MX
5756 struct list_head ins_list;
5757 struct list_head del_list;
39279cc3 5758 int ret;
5f39d397 5759 struct extent_buffer *leaf;
39279cc3 5760 int slot;
39279cc3
CM
5761 unsigned char d_type;
5762 int over = 0;
5f39d397
CM
5763 char tmp_name[32];
5764 char *name_ptr;
5765 int name_len;
02dbfc99 5766 bool put = false;
c2951f32 5767 struct btrfs_key location;
5f39d397 5768
9cdda8d3
AV
5769 if (!dir_emit_dots(file, ctx))
5770 return 0;
5771
49593bfa 5772 path = btrfs_alloc_path();
16cdcec7
MX
5773 if (!path)
5774 return -ENOMEM;
ff5714cc 5775
e4058b54 5776 path->reada = READA_FORWARD;
49593bfa 5777
c2951f32
JM
5778 INIT_LIST_HEAD(&ins_list);
5779 INIT_LIST_HEAD(&del_list);
5780 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5781
c2951f32 5782 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5783 key.offset = ctx->pos;
4a0cc7ca 5784 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5785
39279cc3
CM
5786 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5787 if (ret < 0)
5788 goto err;
49593bfa
DW
5789
5790 while (1) {
5f39d397 5791 leaf = path->nodes[0];
39279cc3 5792 slot = path->slots[0];
b9e03af0
LZ
5793 if (slot >= btrfs_header_nritems(leaf)) {
5794 ret = btrfs_next_leaf(root, path);
5795 if (ret < 0)
5796 goto err;
5797 else if (ret > 0)
5798 break;
5799 continue;
39279cc3 5800 }
3de4586c 5801
dd3cc16b 5802 item = btrfs_item_nr(slot);
5f39d397
CM
5803 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5804
5805 if (found_key.objectid != key.objectid)
39279cc3 5806 break;
c2951f32 5807 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5808 break;
9cdda8d3 5809 if (found_key.offset < ctx->pos)
b9e03af0 5810 goto next;
c2951f32 5811 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5812 goto next;
5f39d397 5813
9cdda8d3 5814 ctx->pos = found_key.offset;
49593bfa 5815
39279cc3 5816 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2ff7e61e 5817 if (verify_dir_item(fs_info, leaf, di))
c2951f32 5818 goto next;
22a94d44 5819
c2951f32
JM
5820 name_len = btrfs_dir_name_len(leaf, di);
5821 if (name_len <= sizeof(tmp_name)) {
5822 name_ptr = tmp_name;
5823 } else {
5824 name_ptr = kmalloc(name_len, GFP_KERNEL);
5825 if (!name_ptr) {
5826 ret = -ENOMEM;
5827 goto err;
5f39d397 5828 }
c2951f32
JM
5829 }
5830 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5831 name_len);
3de4586c 5832
c2951f32
JM
5833 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5834 btrfs_dir_item_key_to_cpu(leaf, di, &location);
fede766f 5835
c2951f32
JM
5836 over = !dir_emit(ctx, name_ptr, name_len, location.objectid,
5837 d_type);
5f39d397 5838
c2951f32
JM
5839 if (name_ptr != tmp_name)
5840 kfree(name_ptr);
5f39d397 5841
c2951f32
JM
5842 if (over)
5843 goto nopos;
d2fbb2b5 5844 ctx->pos++;
b9e03af0
LZ
5845next:
5846 path->slots[0]++;
39279cc3 5847 }
49593bfa 5848
d2fbb2b5 5849 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5850 if (ret)
bc4ef759
DS
5851 goto nopos;
5852
db62efbb
ZB
5853 /*
5854 * Stop new entries from being returned after we return the last
5855 * entry.
5856 *
5857 * New directory entries are assigned a strictly increasing
5858 * offset. This means that new entries created during readdir
5859 * are *guaranteed* to be seen in the future by that readdir.
5860 * This has broken buggy programs which operate on names as
5861 * they're returned by readdir. Until we re-use freed offsets
5862 * we have this hack to stop new entries from being returned
5863 * under the assumption that they'll never reach this huge
5864 * offset.
5865 *
5866 * This is being careful not to overflow 32bit loff_t unless the
5867 * last entry requires it because doing so has broken 32bit apps
5868 * in the past.
5869 */
c2951f32
JM
5870 if (ctx->pos >= INT_MAX)
5871 ctx->pos = LLONG_MAX;
5872 else
5873 ctx->pos = INT_MAX;
39279cc3
CM
5874nopos:
5875 ret = 0;
5876err:
02dbfc99
OS
5877 if (put)
5878 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5879 btrfs_free_path(path);
39279cc3
CM
5880 return ret;
5881}
5882
a9185b41 5883int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5884{
5885 struct btrfs_root *root = BTRFS_I(inode)->root;
5886 struct btrfs_trans_handle *trans;
5887 int ret = 0;
0af3d00b 5888 bool nolock = false;
39279cc3 5889
72ac3c0d 5890 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5891 return 0;
5892
70ddc553
NB
5893 if (btrfs_fs_closing(root->fs_info) &&
5894 btrfs_is_free_space_inode(BTRFS_I(inode)))
82d5902d 5895 nolock = true;
0af3d00b 5896
a9185b41 5897 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5898 if (nolock)
7a7eaa40 5899 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5900 else
7a7eaa40 5901 trans = btrfs_join_transaction(root);
3612b495
TI
5902 if (IS_ERR(trans))
5903 return PTR_ERR(trans);
3a45bb20 5904 ret = btrfs_commit_transaction(trans);
39279cc3
CM
5905 }
5906 return ret;
5907}
5908
5909/*
54aa1f4d 5910 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5911 * inode changes. But, it is most likely to find the inode in cache.
5912 * FIXME, needs more benchmarking...there are no reasons other than performance
5913 * to keep or drop this code.
5914 */
48a3b636 5915static int btrfs_dirty_inode(struct inode *inode)
39279cc3 5916{
2ff7e61e 5917 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5918 struct btrfs_root *root = BTRFS_I(inode)->root;
5919 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5920 int ret;
5921
72ac3c0d 5922 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5923 return 0;
39279cc3 5924
7a7eaa40 5925 trans = btrfs_join_transaction(root);
22c44fe6
JB
5926 if (IS_ERR(trans))
5927 return PTR_ERR(trans);
8929ecfa
YZ
5928
5929 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5930 if (ret && ret == -ENOSPC) {
5931 /* whoops, lets try again with the full transaction */
3a45bb20 5932 btrfs_end_transaction(trans);
94b60442 5933 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5934 if (IS_ERR(trans))
5935 return PTR_ERR(trans);
8929ecfa 5936
94b60442 5937 ret = btrfs_update_inode(trans, root, inode);
94b60442 5938 }
3a45bb20 5939 btrfs_end_transaction(trans);
16cdcec7 5940 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 5941 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
5942
5943 return ret;
5944}
5945
5946/*
5947 * This is a copy of file_update_time. We need this so we can return error on
5948 * ENOSPC for updating the inode in the case of file write and mmap writes.
5949 */
e41f941a
JB
5950static int btrfs_update_time(struct inode *inode, struct timespec *now,
5951 int flags)
22c44fe6 5952{
2bc55652
AB
5953 struct btrfs_root *root = BTRFS_I(inode)->root;
5954
5955 if (btrfs_root_readonly(root))
5956 return -EROFS;
5957
e41f941a 5958 if (flags & S_VERSION)
22c44fe6 5959 inode_inc_iversion(inode);
e41f941a
JB
5960 if (flags & S_CTIME)
5961 inode->i_ctime = *now;
5962 if (flags & S_MTIME)
5963 inode->i_mtime = *now;
5964 if (flags & S_ATIME)
5965 inode->i_atime = *now;
5966 return btrfs_dirty_inode(inode);
39279cc3
CM
5967}
5968
d352ac68
CM
5969/*
5970 * find the highest existing sequence number in a directory
5971 * and then set the in-memory index_cnt variable to reflect
5972 * free sequence numbers
5973 */
4c570655 5974static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 5975{
4c570655 5976 struct btrfs_root *root = inode->root;
aec7477b
JB
5977 struct btrfs_key key, found_key;
5978 struct btrfs_path *path;
5979 struct extent_buffer *leaf;
5980 int ret;
5981
4c570655 5982 key.objectid = btrfs_ino(inode);
962a298f 5983 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
5984 key.offset = (u64)-1;
5985
5986 path = btrfs_alloc_path();
5987 if (!path)
5988 return -ENOMEM;
5989
5990 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5991 if (ret < 0)
5992 goto out;
5993 /* FIXME: we should be able to handle this */
5994 if (ret == 0)
5995 goto out;
5996 ret = 0;
5997
5998 /*
5999 * MAGIC NUMBER EXPLANATION:
6000 * since we search a directory based on f_pos we have to start at 2
6001 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6002 * else has to start at 2
6003 */
6004 if (path->slots[0] == 0) {
4c570655 6005 inode->index_cnt = 2;
aec7477b
JB
6006 goto out;
6007 }
6008
6009 path->slots[0]--;
6010
6011 leaf = path->nodes[0];
6012 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6013
4c570655 6014 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6015 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6016 inode->index_cnt = 2;
aec7477b
JB
6017 goto out;
6018 }
6019
4c570655 6020 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6021out:
6022 btrfs_free_path(path);
6023 return ret;
6024}
6025
d352ac68
CM
6026/*
6027 * helper to find a free sequence number in a given directory. This current
6028 * code is very simple, later versions will do smarter things in the btree
6029 */
877574e2 6030int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6031{
6032 int ret = 0;
6033
877574e2
NB
6034 if (dir->index_cnt == (u64)-1) {
6035 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6036 if (ret) {
6037 ret = btrfs_set_inode_index_count(dir);
6038 if (ret)
6039 return ret;
6040 }
aec7477b
JB
6041 }
6042
877574e2
NB
6043 *index = dir->index_cnt;
6044 dir->index_cnt++;
aec7477b
JB
6045
6046 return ret;
6047}
6048
b0d5d10f
CM
6049static int btrfs_insert_inode_locked(struct inode *inode)
6050{
6051 struct btrfs_iget_args args;
6052 args.location = &BTRFS_I(inode)->location;
6053 args.root = BTRFS_I(inode)->root;
6054
6055 return insert_inode_locked4(inode,
6056 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6057 btrfs_find_actor, &args);
6058}
6059
39279cc3
CM
6060static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6061 struct btrfs_root *root,
aec7477b 6062 struct inode *dir,
9c58309d 6063 const char *name, int name_len,
175a4eb7
AV
6064 u64 ref_objectid, u64 objectid,
6065 umode_t mode, u64 *index)
39279cc3 6066{
0b246afa 6067 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6068 struct inode *inode;
5f39d397 6069 struct btrfs_inode_item *inode_item;
39279cc3 6070 struct btrfs_key *location;
5f39d397 6071 struct btrfs_path *path;
9c58309d
CM
6072 struct btrfs_inode_ref *ref;
6073 struct btrfs_key key[2];
6074 u32 sizes[2];
ef3b9af5 6075 int nitems = name ? 2 : 1;
9c58309d 6076 unsigned long ptr;
39279cc3 6077 int ret;
39279cc3 6078
5f39d397 6079 path = btrfs_alloc_path();
d8926bb3
MF
6080 if (!path)
6081 return ERR_PTR(-ENOMEM);
5f39d397 6082
0b246afa 6083 inode = new_inode(fs_info->sb);
8fb27640
YS
6084 if (!inode) {
6085 btrfs_free_path(path);
39279cc3 6086 return ERR_PTR(-ENOMEM);
8fb27640 6087 }
39279cc3 6088
5762b5c9
FM
6089 /*
6090 * O_TMPFILE, set link count to 0, so that after this point,
6091 * we fill in an inode item with the correct link count.
6092 */
6093 if (!name)
6094 set_nlink(inode, 0);
6095
581bb050
LZ
6096 /*
6097 * we have to initialize this early, so we can reclaim the inode
6098 * number if we fail afterwards in this function.
6099 */
6100 inode->i_ino = objectid;
6101
ef3b9af5 6102 if (dir && name) {
1abe9b8a 6103 trace_btrfs_inode_request(dir);
6104
877574e2 6105 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6106 if (ret) {
8fb27640 6107 btrfs_free_path(path);
09771430 6108 iput(inode);
aec7477b 6109 return ERR_PTR(ret);
09771430 6110 }
ef3b9af5
FM
6111 } else if (dir) {
6112 *index = 0;
aec7477b
JB
6113 }
6114 /*
6115 * index_cnt is ignored for everything but a dir,
6116 * btrfs_get_inode_index_count has an explanation for the magic
6117 * number
6118 */
6119 BTRFS_I(inode)->index_cnt = 2;
67de1176 6120 BTRFS_I(inode)->dir_index = *index;
39279cc3 6121 BTRFS_I(inode)->root = root;
e02119d5 6122 BTRFS_I(inode)->generation = trans->transid;
76195853 6123 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6124
5dc562c5
JB
6125 /*
6126 * We could have gotten an inode number from somebody who was fsynced
6127 * and then removed in this same transaction, so let's just set full
6128 * sync since it will be a full sync anyway and this will blow away the
6129 * old info in the log.
6130 */
6131 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6132
9c58309d 6133 key[0].objectid = objectid;
962a298f 6134 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6135 key[0].offset = 0;
6136
9c58309d 6137 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6138
6139 if (name) {
6140 /*
6141 * Start new inodes with an inode_ref. This is slightly more
6142 * efficient for small numbers of hard links since they will
6143 * be packed into one item. Extended refs will kick in if we
6144 * add more hard links than can fit in the ref item.
6145 */
6146 key[1].objectid = objectid;
962a298f 6147 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6148 key[1].offset = ref_objectid;
6149
6150 sizes[1] = name_len + sizeof(*ref);
6151 }
9c58309d 6152
b0d5d10f
CM
6153 location = &BTRFS_I(inode)->location;
6154 location->objectid = objectid;
6155 location->offset = 0;
962a298f 6156 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6157
6158 ret = btrfs_insert_inode_locked(inode);
6159 if (ret < 0)
6160 goto fail;
6161
b9473439 6162 path->leave_spinning = 1;
ef3b9af5 6163 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6164 if (ret != 0)
b0d5d10f 6165 goto fail_unlock;
5f39d397 6166
ecc11fab 6167 inode_init_owner(inode, dir, mode);
a76a3cd4 6168 inode_set_bytes(inode, 0);
9cc97d64 6169
c2050a45 6170 inode->i_mtime = current_time(inode);
9cc97d64 6171 inode->i_atime = inode->i_mtime;
6172 inode->i_ctime = inode->i_mtime;
6173 BTRFS_I(inode)->i_otime = inode->i_mtime;
6174
5f39d397
CM
6175 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6176 struct btrfs_inode_item);
b159fa28 6177 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6178 sizeof(*inode_item));
e02119d5 6179 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6180
ef3b9af5
FM
6181 if (name) {
6182 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6183 struct btrfs_inode_ref);
6184 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6185 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6186 ptr = (unsigned long)(ref + 1);
6187 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6188 }
9c58309d 6189
5f39d397
CM
6190 btrfs_mark_buffer_dirty(path->nodes[0]);
6191 btrfs_free_path(path);
6192
6cbff00f
CH
6193 btrfs_inherit_iflags(inode, dir);
6194
569254b0 6195 if (S_ISREG(mode)) {
0b246afa 6196 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6197 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6198 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6199 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6200 BTRFS_INODE_NODATASUM;
94272164
CM
6201 }
6202
5d4f98a2 6203 inode_tree_add(inode);
1abe9b8a 6204
6205 trace_btrfs_inode_new(inode);
1973f0fa 6206 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6207
8ea05e3a
AB
6208 btrfs_update_root_times(trans, root);
6209
63541927
FDBM
6210 ret = btrfs_inode_inherit_props(trans, inode, dir);
6211 if (ret)
0b246afa 6212 btrfs_err(fs_info,
63541927 6213 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6214 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6215
39279cc3 6216 return inode;
b0d5d10f
CM
6217
6218fail_unlock:
6219 unlock_new_inode(inode);
5f39d397 6220fail:
ef3b9af5 6221 if (dir && name)
aec7477b 6222 BTRFS_I(dir)->index_cnt--;
5f39d397 6223 btrfs_free_path(path);
09771430 6224 iput(inode);
5f39d397 6225 return ERR_PTR(ret);
39279cc3
CM
6226}
6227
6228static inline u8 btrfs_inode_type(struct inode *inode)
6229{
6230 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6231}
6232
d352ac68
CM
6233/*
6234 * utility function to add 'inode' into 'parent_inode' with
6235 * a give name and a given sequence number.
6236 * if 'add_backref' is true, also insert a backref from the
6237 * inode to the parent directory.
6238 */
e02119d5 6239int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6240 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6241 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6242{
db0a669f 6243 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
4df27c4d 6244 int ret = 0;
39279cc3 6245 struct btrfs_key key;
db0a669f
NB
6246 struct btrfs_root *root = parent_inode->root;
6247 u64 ino = btrfs_ino(inode);
6248 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6249
33345d01 6250 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6251 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6252 } else {
33345d01 6253 key.objectid = ino;
962a298f 6254 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6255 key.offset = 0;
6256 }
6257
33345d01 6258 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
0b246afa
JM
6259 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6260 root->root_key.objectid, parent_ino,
6261 index, name, name_len);
4df27c4d 6262 } else if (add_backref) {
33345d01
LZ
6263 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6264 parent_ino, index);
4df27c4d 6265 }
39279cc3 6266
79787eaa
JM
6267 /* Nothing to clean up yet */
6268 if (ret)
6269 return ret;
4df27c4d 6270
79787eaa
JM
6271 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6272 parent_inode, &key,
db0a669f 6273 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6274 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6275 goto fail_dir_item;
6276 else if (ret) {
66642832 6277 btrfs_abort_transaction(trans, ret);
79787eaa 6278 return ret;
39279cc3 6279 }
79787eaa 6280
db0a669f 6281 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6282 name_len * 2);
db0a669f
NB
6283 inode_inc_iversion(&parent_inode->vfs_inode);
6284 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6285 current_time(&parent_inode->vfs_inode);
6286 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6287 if (ret)
66642832 6288 btrfs_abort_transaction(trans, ret);
39279cc3 6289 return ret;
fe66a05a
CM
6290
6291fail_dir_item:
6292 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6293 u64 local_index;
6294 int err;
0b246afa
JM
6295 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6296 root->root_key.objectid, parent_ino,
6297 &local_index, name, name_len);
fe66a05a
CM
6298
6299 } else if (add_backref) {
6300 u64 local_index;
6301 int err;
6302
6303 err = btrfs_del_inode_ref(trans, root, name, name_len,
6304 ino, parent_ino, &local_index);
6305 }
6306 return ret;
39279cc3
CM
6307}
6308
6309static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6310 struct btrfs_inode *dir, struct dentry *dentry,
6311 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6312{
a1b075d2
JB
6313 int err = btrfs_add_link(trans, dir, inode,
6314 dentry->d_name.name, dentry->d_name.len,
6315 backref, index);
39279cc3
CM
6316 if (err > 0)
6317 err = -EEXIST;
6318 return err;
6319}
6320
618e21d5 6321static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6322 umode_t mode, dev_t rdev)
618e21d5 6323{
2ff7e61e 6324 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6325 struct btrfs_trans_handle *trans;
6326 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6327 struct inode *inode = NULL;
618e21d5
JB
6328 int err;
6329 int drop_inode = 0;
6330 u64 objectid;
00e4e6b3 6331 u64 index = 0;
618e21d5 6332
9ed74f2d
JB
6333 /*
6334 * 2 for inode item and ref
6335 * 2 for dir items
6336 * 1 for xattr if selinux is on
6337 */
a22285a6
YZ
6338 trans = btrfs_start_transaction(root, 5);
6339 if (IS_ERR(trans))
6340 return PTR_ERR(trans);
1832a6d5 6341
581bb050
LZ
6342 err = btrfs_find_free_ino(root, &objectid);
6343 if (err)
6344 goto out_unlock;
6345
aec7477b 6346 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6347 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6348 mode, &index);
7cf96da3
TI
6349 if (IS_ERR(inode)) {
6350 err = PTR_ERR(inode);
618e21d5 6351 goto out_unlock;
7cf96da3 6352 }
618e21d5 6353
ad19db71
CS
6354 /*
6355 * If the active LSM wants to access the inode during
6356 * d_instantiate it needs these. Smack checks to see
6357 * if the filesystem supports xattrs by looking at the
6358 * ops vector.
6359 */
ad19db71 6360 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6361 init_special_inode(inode, inode->i_mode, rdev);
6362
6363 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6364 if (err)
b0d5d10f
CM
6365 goto out_unlock_inode;
6366
cef415af
NB
6367 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6368 0, index);
b0d5d10f
CM
6369 if (err) {
6370 goto out_unlock_inode;
6371 } else {
1b4ab1bb 6372 btrfs_update_inode(trans, root, inode);
b0d5d10f 6373 unlock_new_inode(inode);
08c422c2 6374 d_instantiate(dentry, inode);
618e21d5 6375 }
b0d5d10f 6376
618e21d5 6377out_unlock:
3a45bb20 6378 btrfs_end_transaction(trans);
2ff7e61e
JM
6379 btrfs_balance_delayed_items(fs_info);
6380 btrfs_btree_balance_dirty(fs_info);
618e21d5
JB
6381 if (drop_inode) {
6382 inode_dec_link_count(inode);
6383 iput(inode);
6384 }
618e21d5 6385 return err;
b0d5d10f
CM
6386
6387out_unlock_inode:
6388 drop_inode = 1;
6389 unlock_new_inode(inode);
6390 goto out_unlock;
6391
618e21d5
JB
6392}
6393
39279cc3 6394static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6395 umode_t mode, bool excl)
39279cc3 6396{
2ff7e61e 6397 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6398 struct btrfs_trans_handle *trans;
6399 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6400 struct inode *inode = NULL;
43baa579 6401 int drop_inode_on_err = 0;
a22285a6 6402 int err;
39279cc3 6403 u64 objectid;
00e4e6b3 6404 u64 index = 0;
39279cc3 6405
9ed74f2d
JB
6406 /*
6407 * 2 for inode item and ref
6408 * 2 for dir items
6409 * 1 for xattr if selinux is on
6410 */
a22285a6
YZ
6411 trans = btrfs_start_transaction(root, 5);
6412 if (IS_ERR(trans))
6413 return PTR_ERR(trans);
9ed74f2d 6414
581bb050
LZ
6415 err = btrfs_find_free_ino(root, &objectid);
6416 if (err)
6417 goto out_unlock;
6418
aec7477b 6419 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6420 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6421 mode, &index);
7cf96da3
TI
6422 if (IS_ERR(inode)) {
6423 err = PTR_ERR(inode);
39279cc3 6424 goto out_unlock;
7cf96da3 6425 }
43baa579 6426 drop_inode_on_err = 1;
ad19db71
CS
6427 /*
6428 * If the active LSM wants to access the inode during
6429 * d_instantiate it needs these. Smack checks to see
6430 * if the filesystem supports xattrs by looking at the
6431 * ops vector.
6432 */
6433 inode->i_fop = &btrfs_file_operations;
6434 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6435 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6436
6437 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6438 if (err)
6439 goto out_unlock_inode;
6440
6441 err = btrfs_update_inode(trans, root, inode);
6442 if (err)
6443 goto out_unlock_inode;
ad19db71 6444
cef415af
NB
6445 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6446 0, index);
39279cc3 6447 if (err)
b0d5d10f 6448 goto out_unlock_inode;
43baa579 6449
43baa579 6450 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6451 unlock_new_inode(inode);
43baa579
FB
6452 d_instantiate(dentry, inode);
6453
39279cc3 6454out_unlock:
3a45bb20 6455 btrfs_end_transaction(trans);
43baa579 6456 if (err && drop_inode_on_err) {
39279cc3
CM
6457 inode_dec_link_count(inode);
6458 iput(inode);
6459 }
2ff7e61e
JM
6460 btrfs_balance_delayed_items(fs_info);
6461 btrfs_btree_balance_dirty(fs_info);
39279cc3 6462 return err;
b0d5d10f
CM
6463
6464out_unlock_inode:
6465 unlock_new_inode(inode);
6466 goto out_unlock;
6467
39279cc3
CM
6468}
6469
6470static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6471 struct dentry *dentry)
6472{
271dba45 6473 struct btrfs_trans_handle *trans = NULL;
39279cc3 6474 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6475 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6476 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6477 u64 index;
39279cc3
CM
6478 int err;
6479 int drop_inode = 0;
6480
4a8be425
TH
6481 /* do not allow sys_link's with other subvols of the same device */
6482 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6483 return -EXDEV;
4a8be425 6484
f186373f 6485 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6486 return -EMLINK;
4a8be425 6487
877574e2 6488 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6489 if (err)
6490 goto fail;
6491
a22285a6 6492 /*
7e6b6465 6493 * 2 items for inode and inode ref
a22285a6 6494 * 2 items for dir items
7e6b6465 6495 * 1 item for parent inode
a22285a6 6496 */
7e6b6465 6497 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6498 if (IS_ERR(trans)) {
6499 err = PTR_ERR(trans);
271dba45 6500 trans = NULL;
a22285a6
YZ
6501 goto fail;
6502 }
5f39d397 6503
67de1176
MX
6504 /* There are several dir indexes for this inode, clear the cache. */
6505 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6506 inc_nlink(inode);
0c4d2d95 6507 inode_inc_iversion(inode);
c2050a45 6508 inode->i_ctime = current_time(inode);
7de9c6ee 6509 ihold(inode);
e9976151 6510 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6511
cef415af
NB
6512 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6513 1, index);
5f39d397 6514
a5719521 6515 if (err) {
54aa1f4d 6516 drop_inode = 1;
a5719521 6517 } else {
10d9f309 6518 struct dentry *parent = dentry->d_parent;
a5719521 6519 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6520 if (err)
6521 goto fail;
ef3b9af5
FM
6522 if (inode->i_nlink == 1) {
6523 /*
6524 * If new hard link count is 1, it's a file created
6525 * with open(2) O_TMPFILE flag.
6526 */
3d6ae7bb 6527 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6528 if (err)
6529 goto fail;
6530 }
08c422c2 6531 d_instantiate(dentry, inode);
9ca5fbfb 6532 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
a5719521 6533 }
39279cc3 6534
2ff7e61e 6535 btrfs_balance_delayed_items(fs_info);
1832a6d5 6536fail:
271dba45 6537 if (trans)
3a45bb20 6538 btrfs_end_transaction(trans);
39279cc3
CM
6539 if (drop_inode) {
6540 inode_dec_link_count(inode);
6541 iput(inode);
6542 }
2ff7e61e 6543 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6544 return err;
6545}
6546
18bb1db3 6547static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6548{
2ff7e61e 6549 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6550 struct inode *inode = NULL;
39279cc3
CM
6551 struct btrfs_trans_handle *trans;
6552 struct btrfs_root *root = BTRFS_I(dir)->root;
6553 int err = 0;
6554 int drop_on_err = 0;
b9d86667 6555 u64 objectid = 0;
00e4e6b3 6556 u64 index = 0;
39279cc3 6557
9ed74f2d
JB
6558 /*
6559 * 2 items for inode and ref
6560 * 2 items for dir items
6561 * 1 for xattr if selinux is on
6562 */
a22285a6
YZ
6563 trans = btrfs_start_transaction(root, 5);
6564 if (IS_ERR(trans))
6565 return PTR_ERR(trans);
39279cc3 6566
581bb050
LZ
6567 err = btrfs_find_free_ino(root, &objectid);
6568 if (err)
6569 goto out_fail;
6570
aec7477b 6571 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6572 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6573 S_IFDIR | mode, &index);
39279cc3
CM
6574 if (IS_ERR(inode)) {
6575 err = PTR_ERR(inode);
6576 goto out_fail;
6577 }
5f39d397 6578
39279cc3 6579 drop_on_err = 1;
b0d5d10f
CM
6580 /* these must be set before we unlock the inode */
6581 inode->i_op = &btrfs_dir_inode_operations;
6582 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6583
2a7dba39 6584 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6585 if (err)
b0d5d10f 6586 goto out_fail_inode;
39279cc3 6587
6ef06d27 6588 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6589 err = btrfs_update_inode(trans, root, inode);
6590 if (err)
b0d5d10f 6591 goto out_fail_inode;
5f39d397 6592
db0a669f
NB
6593 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6594 dentry->d_name.name,
6595 dentry->d_name.len, 0, index);
39279cc3 6596 if (err)
b0d5d10f 6597 goto out_fail_inode;
5f39d397 6598
39279cc3 6599 d_instantiate(dentry, inode);
b0d5d10f
CM
6600 /*
6601 * mkdir is special. We're unlocking after we call d_instantiate
6602 * to avoid a race with nfsd calling d_instantiate.
6603 */
6604 unlock_new_inode(inode);
39279cc3 6605 drop_on_err = 0;
39279cc3
CM
6606
6607out_fail:
3a45bb20 6608 btrfs_end_transaction(trans);
c7cfb8a5
WS
6609 if (drop_on_err) {
6610 inode_dec_link_count(inode);
39279cc3 6611 iput(inode);
c7cfb8a5 6612 }
2ff7e61e
JM
6613 btrfs_balance_delayed_items(fs_info);
6614 btrfs_btree_balance_dirty(fs_info);
39279cc3 6615 return err;
b0d5d10f
CM
6616
6617out_fail_inode:
6618 unlock_new_inode(inode);
6619 goto out_fail;
39279cc3
CM
6620}
6621
e6c4efd8
QW
6622/* Find next extent map of a given extent map, caller needs to ensure locks */
6623static struct extent_map *next_extent_map(struct extent_map *em)
6624{
6625 struct rb_node *next;
6626
6627 next = rb_next(&em->rb_node);
6628 if (!next)
6629 return NULL;
6630 return container_of(next, struct extent_map, rb_node);
6631}
6632
6633static struct extent_map *prev_extent_map(struct extent_map *em)
6634{
6635 struct rb_node *prev;
6636
6637 prev = rb_prev(&em->rb_node);
6638 if (!prev)
6639 return NULL;
6640 return container_of(prev, struct extent_map, rb_node);
6641}
6642
d352ac68 6643/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6644 * the existing extent is the nearest extent to map_start,
d352ac68 6645 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6646 * the best fitted new extent into the tree.
d352ac68 6647 */
3b951516
CM
6648static int merge_extent_mapping(struct extent_map_tree *em_tree,
6649 struct extent_map *existing,
e6dcd2dc 6650 struct extent_map *em,
51f395ad 6651 u64 map_start)
3b951516 6652{
e6c4efd8
QW
6653 struct extent_map *prev;
6654 struct extent_map *next;
6655 u64 start;
6656 u64 end;
3b951516 6657 u64 start_diff;
3b951516 6658
e6dcd2dc 6659 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6660
6661 if (existing->start > map_start) {
6662 next = existing;
6663 prev = prev_extent_map(next);
6664 } else {
6665 prev = existing;
6666 next = next_extent_map(prev);
6667 }
6668
6669 start = prev ? extent_map_end(prev) : em->start;
6670 start = max_t(u64, start, em->start);
6671 end = next ? next->start : extent_map_end(em);
6672 end = min_t(u64, end, extent_map_end(em));
6673 start_diff = start - em->start;
6674 em->start = start;
6675 em->len = end - start;
c8b97818
CM
6676 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6677 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6678 em->block_start += start_diff;
c8b97818
CM
6679 em->block_len -= start_diff;
6680 }
09a2a8f9 6681 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6682}
6683
c8b97818 6684static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6685 struct page *page,
c8b97818
CM
6686 size_t pg_offset, u64 extent_offset,
6687 struct btrfs_file_extent_item *item)
6688{
6689 int ret;
6690 struct extent_buffer *leaf = path->nodes[0];
6691 char *tmp;
6692 size_t max_size;
6693 unsigned long inline_size;
6694 unsigned long ptr;
261507a0 6695 int compress_type;
c8b97818
CM
6696
6697 WARN_ON(pg_offset != 0);
261507a0 6698 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6699 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6700 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6701 btrfs_item_nr(path->slots[0]));
c8b97818 6702 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6703 if (!tmp)
6704 return -ENOMEM;
c8b97818
CM
6705 ptr = btrfs_file_extent_inline_start(item);
6706
6707 read_extent_buffer(leaf, tmp, ptr, inline_size);
6708
09cbfeaf 6709 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6710 ret = btrfs_decompress(compress_type, tmp, page,
6711 extent_offset, inline_size, max_size);
e1699d2d
ZB
6712
6713 /*
6714 * decompression code contains a memset to fill in any space between the end
6715 * of the uncompressed data and the end of max_size in case the decompressed
6716 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6717 * the end of an inline extent and the beginning of the next block, so we
6718 * cover that region here.
6719 */
6720
6721 if (max_size + pg_offset < PAGE_SIZE) {
6722 char *map = kmap(page);
6723 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6724 kunmap(page);
6725 }
c8b97818 6726 kfree(tmp);
166ae5a4 6727 return ret;
c8b97818
CM
6728}
6729
d352ac68
CM
6730/*
6731 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6732 * the ugly parts come from merging extents from the disk with the in-ram
6733 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6734 * where the in-ram extents might be locked pending data=ordered completion.
6735 *
6736 * This also copies inline extents directly into the page.
6737 */
d397712b 6738
fc4f21b1
NB
6739struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6740 struct page *page,
6741 size_t pg_offset, u64 start, u64 len,
6742 int create)
a52d9a80 6743{
fc4f21b1 6744 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
a52d9a80
CM
6745 int ret;
6746 int err = 0;
a52d9a80
CM
6747 u64 extent_start = 0;
6748 u64 extent_end = 0;
fc4f21b1 6749 u64 objectid = btrfs_ino(inode);
a52d9a80 6750 u32 found_type;
f421950f 6751 struct btrfs_path *path = NULL;
fc4f21b1 6752 struct btrfs_root *root = inode->root;
a52d9a80 6753 struct btrfs_file_extent_item *item;
5f39d397
CM
6754 struct extent_buffer *leaf;
6755 struct btrfs_key found_key;
a52d9a80 6756 struct extent_map *em = NULL;
fc4f21b1
NB
6757 struct extent_map_tree *em_tree = &inode->extent_tree;
6758 struct extent_io_tree *io_tree = &inode->io_tree;
a52d9a80 6759 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6760 const bool new_inline = !page || create;
a52d9a80 6761
a52d9a80 6762again:
890871be 6763 read_lock(&em_tree->lock);
d1310b2e 6764 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6765 if (em)
0b246afa 6766 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6767 read_unlock(&em_tree->lock);
d1310b2e 6768
a52d9a80 6769 if (em) {
e1c4b745
CM
6770 if (em->start > start || em->start + em->len <= start)
6771 free_extent_map(em);
6772 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6773 free_extent_map(em);
6774 else
6775 goto out;
a52d9a80 6776 }
172ddd60 6777 em = alloc_extent_map();
a52d9a80 6778 if (!em) {
d1310b2e
CM
6779 err = -ENOMEM;
6780 goto out;
a52d9a80 6781 }
0b246afa 6782 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6783 em->start = EXTENT_MAP_HOLE;
445a6944 6784 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6785 em->len = (u64)-1;
c8b97818 6786 em->block_len = (u64)-1;
f421950f
CM
6787
6788 if (!path) {
6789 path = btrfs_alloc_path();
026fd317
JB
6790 if (!path) {
6791 err = -ENOMEM;
6792 goto out;
6793 }
6794 /*
6795 * Chances are we'll be called again, so go ahead and do
6796 * readahead
6797 */
e4058b54 6798 path->reada = READA_FORWARD;
f421950f
CM
6799 }
6800
179e29e4
CM
6801 ret = btrfs_lookup_file_extent(trans, root, path,
6802 objectid, start, trans != NULL);
a52d9a80
CM
6803 if (ret < 0) {
6804 err = ret;
6805 goto out;
6806 }
6807
6808 if (ret != 0) {
6809 if (path->slots[0] == 0)
6810 goto not_found;
6811 path->slots[0]--;
6812 }
6813
5f39d397
CM
6814 leaf = path->nodes[0];
6815 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6816 struct btrfs_file_extent_item);
a52d9a80 6817 /* are we inside the extent that was found? */
5f39d397 6818 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6819 found_type = found_key.type;
5f39d397 6820 if (found_key.objectid != objectid ||
a52d9a80 6821 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6822 /*
6823 * If we backup past the first extent we want to move forward
6824 * and see if there is an extent in front of us, otherwise we'll
6825 * say there is a hole for our whole search range which can
6826 * cause problems.
6827 */
6828 extent_end = start;
6829 goto next;
a52d9a80
CM
6830 }
6831
5f39d397
CM
6832 found_type = btrfs_file_extent_type(leaf, item);
6833 extent_start = found_key.offset;
d899e052
YZ
6834 if (found_type == BTRFS_FILE_EXTENT_REG ||
6835 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6836 extent_end = extent_start +
db94535d 6837 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6838 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6839 size_t size;
514ac8ad 6840 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
da17066c 6841 extent_end = ALIGN(extent_start + size,
0b246afa 6842 fs_info->sectorsize);
9036c102 6843 }
25a50341 6844next:
9036c102
YZ
6845 if (start >= extent_end) {
6846 path->slots[0]++;
6847 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6848 ret = btrfs_next_leaf(root, path);
6849 if (ret < 0) {
6850 err = ret;
6851 goto out;
a52d9a80 6852 }
9036c102
YZ
6853 if (ret > 0)
6854 goto not_found;
6855 leaf = path->nodes[0];
a52d9a80 6856 }
9036c102
YZ
6857 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6858 if (found_key.objectid != objectid ||
6859 found_key.type != BTRFS_EXTENT_DATA_KEY)
6860 goto not_found;
6861 if (start + len <= found_key.offset)
6862 goto not_found;
e2eca69d
WS
6863 if (start > found_key.offset)
6864 goto next;
9036c102 6865 em->start = start;
70c8a91c 6866 em->orig_start = start;
9036c102
YZ
6867 em->len = found_key.offset - start;
6868 goto not_found_em;
6869 }
6870
fc4f21b1 6871 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 6872 new_inline, em);
7ffbb598 6873
d899e052
YZ
6874 if (found_type == BTRFS_FILE_EXTENT_REG ||
6875 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6876 goto insert;
6877 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6878 unsigned long ptr;
a52d9a80 6879 char *map;
3326d1b0
CM
6880 size_t size;
6881 size_t extent_offset;
6882 size_t copy_size;
a52d9a80 6883
7ffbb598 6884 if (new_inline)
689f9346 6885 goto out;
5f39d397 6886
514ac8ad 6887 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6888 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6889 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6890 size - extent_offset);
3326d1b0 6891 em->start = extent_start + extent_offset;
0b246afa 6892 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 6893 em->orig_block_len = em->len;
70c8a91c 6894 em->orig_start = em->start;
689f9346 6895 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6896 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6897 if (btrfs_file_extent_compression(leaf, item) !=
6898 BTRFS_COMPRESS_NONE) {
e40da0e5 6899 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6900 extent_offset, item);
166ae5a4
ZB
6901 if (ret) {
6902 err = ret;
6903 goto out;
6904 }
c8b97818
CM
6905 } else {
6906 map = kmap(page);
6907 read_extent_buffer(leaf, map + pg_offset, ptr,
6908 copy_size);
09cbfeaf 6909 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6910 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6911 PAGE_SIZE - pg_offset -
93c82d57
CM
6912 copy_size);
6913 }
c8b97818
CM
6914 kunmap(page);
6915 }
179e29e4
CM
6916 flush_dcache_page(page);
6917 } else if (create && PageUptodate(page)) {
6bf7e080 6918 BUG();
179e29e4
CM
6919 if (!trans) {
6920 kunmap(page);
6921 free_extent_map(em);
6922 em = NULL;
ff5714cc 6923
b3b4aa74 6924 btrfs_release_path(path);
7a7eaa40 6925 trans = btrfs_join_transaction(root);
ff5714cc 6926
3612b495
TI
6927 if (IS_ERR(trans))
6928 return ERR_CAST(trans);
179e29e4
CM
6929 goto again;
6930 }
c8b97818 6931 map = kmap(page);
70dec807 6932 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6933 copy_size);
c8b97818 6934 kunmap(page);
179e29e4 6935 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6936 }
d1310b2e 6937 set_extent_uptodate(io_tree, em->start,
507903b8 6938 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6939 goto insert;
a52d9a80
CM
6940 }
6941not_found:
6942 em->start = start;
70c8a91c 6943 em->orig_start = start;
d1310b2e 6944 em->len = len;
a52d9a80 6945not_found_em:
5f39d397 6946 em->block_start = EXTENT_MAP_HOLE;
9036c102 6947 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6948insert:
b3b4aa74 6949 btrfs_release_path(path);
d1310b2e 6950 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 6951 btrfs_err(fs_info,
5d163e0e
JM
6952 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6953 em->start, em->len, start, len);
a52d9a80
CM
6954 err = -EIO;
6955 goto out;
6956 }
d1310b2e
CM
6957
6958 err = 0;
890871be 6959 write_lock(&em_tree->lock);
09a2a8f9 6960 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6961 /* it is possible that someone inserted the extent into the tree
6962 * while we had the lock dropped. It is also possible that
6963 * an overlapping map exists in the tree
6964 */
a52d9a80 6965 if (ret == -EEXIST) {
3b951516 6966 struct extent_map *existing;
e6dcd2dc
CM
6967
6968 ret = 0;
6969
e6c4efd8
QW
6970 existing = search_extent_mapping(em_tree, start, len);
6971 /*
6972 * existing will always be non-NULL, since there must be
6973 * extent causing the -EEXIST.
6974 */
8dff9c85 6975 if (existing->start == em->start &&
8e2bd3b7 6976 extent_map_end(existing) >= extent_map_end(em) &&
8dff9c85
CM
6977 em->block_start == existing->block_start) {
6978 /*
8e2bd3b7
OS
6979 * The existing extent map already encompasses the
6980 * entire extent map we tried to add.
8dff9c85
CM
6981 */
6982 free_extent_map(em);
6983 em = existing;
6984 err = 0;
6985
6986 } else if (start >= extent_map_end(existing) ||
32be3a1a 6987 start <= existing->start) {
e6c4efd8
QW
6988 /*
6989 * The existing extent map is the one nearest to
6990 * the [start, start + len) range which overlaps
6991 */
6992 err = merge_extent_mapping(em_tree, existing,
6993 em, start);
e1c4b745 6994 free_extent_map(existing);
e6c4efd8 6995 if (err) {
3b951516
CM
6996 free_extent_map(em);
6997 em = NULL;
6998 }
6999 } else {
7000 free_extent_map(em);
7001 em = existing;
e6dcd2dc 7002 err = 0;
a52d9a80 7003 }
a52d9a80 7004 }
890871be 7005 write_unlock(&em_tree->lock);
a52d9a80 7006out:
1abe9b8a 7007
fc4f21b1 7008 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 7009
527afb44 7010 btrfs_free_path(path);
a52d9a80 7011 if (trans) {
3a45bb20 7012 ret = btrfs_end_transaction(trans);
d397712b 7013 if (!err)
a52d9a80
CM
7014 err = ret;
7015 }
a52d9a80
CM
7016 if (err) {
7017 free_extent_map(em);
a52d9a80
CM
7018 return ERR_PTR(err);
7019 }
79787eaa 7020 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7021 return em;
7022}
7023
fc4f21b1
NB
7024struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7025 struct page *page,
7026 size_t pg_offset, u64 start, u64 len,
7027 int create)
ec29ed5b
CM
7028{
7029 struct extent_map *em;
7030 struct extent_map *hole_em = NULL;
7031 u64 range_start = start;
7032 u64 end;
7033 u64 found;
7034 u64 found_end;
7035 int err = 0;
7036
7037 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7038 if (IS_ERR(em))
7039 return em;
7040 if (em) {
7041 /*
f9e4fb53
LB
7042 * if our em maps to
7043 * - a hole or
7044 * - a pre-alloc extent,
7045 * there might actually be delalloc bytes behind it.
ec29ed5b 7046 */
f9e4fb53
LB
7047 if (em->block_start != EXTENT_MAP_HOLE &&
7048 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
7049 return em;
7050 else
7051 hole_em = em;
7052 }
7053
7054 /* check to see if we've wrapped (len == -1 or similar) */
7055 end = start + len;
7056 if (end < start)
7057 end = (u64)-1;
7058 else
7059 end -= 1;
7060
7061 em = NULL;
7062
7063 /* ok, we didn't find anything, lets look for delalloc */
fc4f21b1 7064 found = count_range_bits(&inode->io_tree, &range_start,
ec29ed5b
CM
7065 end, len, EXTENT_DELALLOC, 1);
7066 found_end = range_start + found;
7067 if (found_end < range_start)
7068 found_end = (u64)-1;
7069
7070 /*
7071 * we didn't find anything useful, return
7072 * the original results from get_extent()
7073 */
7074 if (range_start > end || found_end <= start) {
7075 em = hole_em;
7076 hole_em = NULL;
7077 goto out;
7078 }
7079
7080 /* adjust the range_start to make sure it doesn't
7081 * go backwards from the start they passed in
7082 */
67871254 7083 range_start = max(start, range_start);
ec29ed5b
CM
7084 found = found_end - range_start;
7085
7086 if (found > 0) {
7087 u64 hole_start = start;
7088 u64 hole_len = len;
7089
172ddd60 7090 em = alloc_extent_map();
ec29ed5b
CM
7091 if (!em) {
7092 err = -ENOMEM;
7093 goto out;
7094 }
7095 /*
7096 * when btrfs_get_extent can't find anything it
7097 * returns one huge hole
7098 *
7099 * make sure what it found really fits our range, and
7100 * adjust to make sure it is based on the start from
7101 * the caller
7102 */
7103 if (hole_em) {
7104 u64 calc_end = extent_map_end(hole_em);
7105
7106 if (calc_end <= start || (hole_em->start > end)) {
7107 free_extent_map(hole_em);
7108 hole_em = NULL;
7109 } else {
7110 hole_start = max(hole_em->start, start);
7111 hole_len = calc_end - hole_start;
7112 }
7113 }
7114 em->bdev = NULL;
7115 if (hole_em && range_start > hole_start) {
7116 /* our hole starts before our delalloc, so we
7117 * have to return just the parts of the hole
7118 * that go until the delalloc starts
7119 */
7120 em->len = min(hole_len,
7121 range_start - hole_start);
7122 em->start = hole_start;
7123 em->orig_start = hole_start;
7124 /*
7125 * don't adjust block start at all,
7126 * it is fixed at EXTENT_MAP_HOLE
7127 */
7128 em->block_start = hole_em->block_start;
7129 em->block_len = hole_len;
f9e4fb53
LB
7130 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7131 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7132 } else {
7133 em->start = range_start;
7134 em->len = found;
7135 em->orig_start = range_start;
7136 em->block_start = EXTENT_MAP_DELALLOC;
7137 em->block_len = found;
7138 }
7139 } else if (hole_em) {
7140 return hole_em;
7141 }
7142out:
7143
7144 free_extent_map(hole_em);
7145 if (err) {
7146 free_extent_map(em);
7147 return ERR_PTR(err);
7148 }
7149 return em;
7150}
7151
5f9a8a51
FM
7152static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7153 const u64 start,
7154 const u64 len,
7155 const u64 orig_start,
7156 const u64 block_start,
7157 const u64 block_len,
7158 const u64 orig_block_len,
7159 const u64 ram_bytes,
7160 const int type)
7161{
7162 struct extent_map *em = NULL;
7163 int ret;
7164
5f9a8a51 7165 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7166 em = create_io_em(inode, start, len, orig_start,
7167 block_start, block_len, orig_block_len,
7168 ram_bytes,
7169 BTRFS_COMPRESS_NONE, /* compress_type */
7170 type);
5f9a8a51
FM
7171 if (IS_ERR(em))
7172 goto out;
7173 }
7174 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7175 len, block_len, type);
7176 if (ret) {
7177 if (em) {
7178 free_extent_map(em);
dcdbc059 7179 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7180 start + len - 1, 0);
7181 }
7182 em = ERR_PTR(ret);
7183 }
7184 out:
5f9a8a51
FM
7185
7186 return em;
7187}
7188
4b46fce2
JB
7189static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7190 u64 start, u64 len)
7191{
0b246afa 7192 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7193 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7194 struct extent_map *em;
4b46fce2
JB
7195 struct btrfs_key ins;
7196 u64 alloc_hint;
7197 int ret;
4b46fce2 7198
4b46fce2 7199 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7200 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7201 0, alloc_hint, &ins, 1, 1);
00361589
JB
7202 if (ret)
7203 return ERR_PTR(ret);
4b46fce2 7204
5f9a8a51
FM
7205 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7206 ins.objectid, ins.offset, ins.offset,
6288d6ea 7207 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7208 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7209 if (IS_ERR(em))
2ff7e61e
JM
7210 btrfs_free_reserved_extent(fs_info, ins.objectid,
7211 ins.offset, 1);
de0ee0ed 7212
4b46fce2
JB
7213 return em;
7214}
7215
46bfbb5c
CM
7216/*
7217 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7218 * block must be cow'd
7219 */
00361589 7220noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7221 u64 *orig_start, u64 *orig_block_len,
7222 u64 *ram_bytes)
46bfbb5c 7223{
2ff7e61e 7224 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7225 struct btrfs_path *path;
7226 int ret;
7227 struct extent_buffer *leaf;
7228 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7229 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7230 struct btrfs_file_extent_item *fi;
7231 struct btrfs_key key;
7232 u64 disk_bytenr;
7233 u64 backref_offset;
7234 u64 extent_end;
7235 u64 num_bytes;
7236 int slot;
7237 int found_type;
7ee9e440 7238 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7239
46bfbb5c
CM
7240 path = btrfs_alloc_path();
7241 if (!path)
7242 return -ENOMEM;
7243
f85b7379
DS
7244 ret = btrfs_lookup_file_extent(NULL, root, path,
7245 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7246 if (ret < 0)
7247 goto out;
7248
7249 slot = path->slots[0];
7250 if (ret == 1) {
7251 if (slot == 0) {
7252 /* can't find the item, must cow */
7253 ret = 0;
7254 goto out;
7255 }
7256 slot--;
7257 }
7258 ret = 0;
7259 leaf = path->nodes[0];
7260 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7261 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7262 key.type != BTRFS_EXTENT_DATA_KEY) {
7263 /* not our file or wrong item type, must cow */
7264 goto out;
7265 }
7266
7267 if (key.offset > offset) {
7268 /* Wrong offset, must cow */
7269 goto out;
7270 }
7271
7272 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7273 found_type = btrfs_file_extent_type(leaf, fi);
7274 if (found_type != BTRFS_FILE_EXTENT_REG &&
7275 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7276 /* not a regular extent, must cow */
7277 goto out;
7278 }
7ee9e440
JB
7279
7280 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7281 goto out;
7282
e77751aa
MX
7283 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7284 if (extent_end <= offset)
7285 goto out;
7286
46bfbb5c 7287 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7288 if (disk_bytenr == 0)
7289 goto out;
7290
7291 if (btrfs_file_extent_compression(leaf, fi) ||
7292 btrfs_file_extent_encryption(leaf, fi) ||
7293 btrfs_file_extent_other_encoding(leaf, fi))
7294 goto out;
7295
46bfbb5c
CM
7296 backref_offset = btrfs_file_extent_offset(leaf, fi);
7297
7ee9e440
JB
7298 if (orig_start) {
7299 *orig_start = key.offset - backref_offset;
7300 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7301 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7302 }
eb384b55 7303
2ff7e61e 7304 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7305 goto out;
7b2b7085
MX
7306
7307 num_bytes = min(offset + *len, extent_end) - offset;
7308 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7309 u64 range_end;
7310
da17066c
JM
7311 range_end = round_up(offset + num_bytes,
7312 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7313 ret = test_range_bit(io_tree, offset, range_end,
7314 EXTENT_DELALLOC, 0, NULL);
7315 if (ret) {
7316 ret = -EAGAIN;
7317 goto out;
7318 }
7319 }
7320
1bda19eb 7321 btrfs_release_path(path);
46bfbb5c
CM
7322
7323 /*
7324 * look for other files referencing this extent, if we
7325 * find any we must cow
7326 */
00361589 7327
e4c3b2dc 7328 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7329 key.offset - backref_offset, disk_bytenr);
00361589
JB
7330 if (ret) {
7331 ret = 0;
7332 goto out;
7333 }
46bfbb5c
CM
7334
7335 /*
7336 * adjust disk_bytenr and num_bytes to cover just the bytes
7337 * in this extent we are about to write. If there
7338 * are any csums in that range we have to cow in order
7339 * to keep the csums correct
7340 */
7341 disk_bytenr += backref_offset;
7342 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7343 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7344 goto out;
46bfbb5c
CM
7345 /*
7346 * all of the above have passed, it is safe to overwrite this extent
7347 * without cow
7348 */
eb384b55 7349 *len = num_bytes;
46bfbb5c
CM
7350 ret = 1;
7351out:
7352 btrfs_free_path(path);
7353 return ret;
7354}
7355
fc4adbff
AG
7356bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7357{
7358 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7359 int found = false;
7360 void **pagep = NULL;
7361 struct page *page = NULL;
7362 int start_idx;
7363 int end_idx;
7364
09cbfeaf 7365 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7366
7367 /*
7368 * end is the last byte in the last page. end == start is legal
7369 */
09cbfeaf 7370 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7371
7372 rcu_read_lock();
7373
7374 /* Most of the code in this while loop is lifted from
7375 * find_get_page. It's been modified to begin searching from a
7376 * page and return just the first page found in that range. If the
7377 * found idx is less than or equal to the end idx then we know that
7378 * a page exists. If no pages are found or if those pages are
7379 * outside of the range then we're fine (yay!) */
7380 while (page == NULL &&
7381 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7382 page = radix_tree_deref_slot(pagep);
7383 if (unlikely(!page))
7384 break;
7385
7386 if (radix_tree_exception(page)) {
809f9016
FM
7387 if (radix_tree_deref_retry(page)) {
7388 page = NULL;
fc4adbff 7389 continue;
809f9016 7390 }
fc4adbff
AG
7391 /*
7392 * Otherwise, shmem/tmpfs must be storing a swap entry
7393 * here as an exceptional entry: so return it without
7394 * attempting to raise page count.
7395 */
6fdef6d4 7396 page = NULL;
fc4adbff
AG
7397 break; /* TODO: Is this relevant for this use case? */
7398 }
7399
91405151
FM
7400 if (!page_cache_get_speculative(page)) {
7401 page = NULL;
fc4adbff 7402 continue;
91405151 7403 }
fc4adbff
AG
7404
7405 /*
7406 * Has the page moved?
7407 * This is part of the lockless pagecache protocol. See
7408 * include/linux/pagemap.h for details.
7409 */
7410 if (unlikely(page != *pagep)) {
09cbfeaf 7411 put_page(page);
fc4adbff
AG
7412 page = NULL;
7413 }
7414 }
7415
7416 if (page) {
7417 if (page->index <= end_idx)
7418 found = true;
09cbfeaf 7419 put_page(page);
fc4adbff
AG
7420 }
7421
7422 rcu_read_unlock();
7423 return found;
7424}
7425
eb838e73
JB
7426static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7427 struct extent_state **cached_state, int writing)
7428{
7429 struct btrfs_ordered_extent *ordered;
7430 int ret = 0;
7431
7432 while (1) {
7433 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7434 cached_state);
eb838e73
JB
7435 /*
7436 * We're concerned with the entire range that we're going to be
01327610 7437 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7438 * extents in this range.
7439 */
a776c6fa 7440 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7441 lockend - lockstart + 1);
7442
7443 /*
7444 * We need to make sure there are no buffered pages in this
7445 * range either, we could have raced between the invalidate in
7446 * generic_file_direct_write and locking the extent. The
7447 * invalidate needs to happen so that reads after a write do not
7448 * get stale data.
7449 */
fc4adbff
AG
7450 if (!ordered &&
7451 (!writing ||
7452 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7453 break;
7454
7455 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7456 cached_state, GFP_NOFS);
7457
7458 if (ordered) {
ade77029
FM
7459 /*
7460 * If we are doing a DIO read and the ordered extent we
7461 * found is for a buffered write, we can not wait for it
7462 * to complete and retry, because if we do so we can
7463 * deadlock with concurrent buffered writes on page
7464 * locks. This happens only if our DIO read covers more
7465 * than one extent map, if at this point has already
7466 * created an ordered extent for a previous extent map
7467 * and locked its range in the inode's io tree, and a
7468 * concurrent write against that previous extent map's
7469 * range and this range started (we unlock the ranges
7470 * in the io tree only when the bios complete and
7471 * buffered writes always lock pages before attempting
7472 * to lock range in the io tree).
7473 */
7474 if (writing ||
7475 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7476 btrfs_start_ordered_extent(inode, ordered, 1);
7477 else
7478 ret = -ENOTBLK;
eb838e73
JB
7479 btrfs_put_ordered_extent(ordered);
7480 } else {
eb838e73 7481 /*
b850ae14
FM
7482 * We could trigger writeback for this range (and wait
7483 * for it to complete) and then invalidate the pages for
7484 * this range (through invalidate_inode_pages2_range()),
7485 * but that can lead us to a deadlock with a concurrent
7486 * call to readpages() (a buffered read or a defrag call
7487 * triggered a readahead) on a page lock due to an
7488 * ordered dio extent we created before but did not have
7489 * yet a corresponding bio submitted (whence it can not
7490 * complete), which makes readpages() wait for that
7491 * ordered extent to complete while holding a lock on
7492 * that page.
eb838e73 7493 */
b850ae14 7494 ret = -ENOTBLK;
eb838e73
JB
7495 }
7496
ade77029
FM
7497 if (ret)
7498 break;
7499
eb838e73
JB
7500 cond_resched();
7501 }
7502
7503 return ret;
7504}
7505
6f9994db
LB
7506/* The callers of this must take lock_extent() */
7507static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7508 u64 orig_start, u64 block_start,
7509 u64 block_len, u64 orig_block_len,
7510 u64 ram_bytes, int compress_type,
7511 int type)
69ffb543
JB
7512{
7513 struct extent_map_tree *em_tree;
7514 struct extent_map *em;
7515 struct btrfs_root *root = BTRFS_I(inode)->root;
7516 int ret;
7517
6f9994db
LB
7518 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7519 type == BTRFS_ORDERED_COMPRESSED ||
7520 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7521 type == BTRFS_ORDERED_REGULAR);
6f9994db 7522
69ffb543
JB
7523 em_tree = &BTRFS_I(inode)->extent_tree;
7524 em = alloc_extent_map();
7525 if (!em)
7526 return ERR_PTR(-ENOMEM);
7527
7528 em->start = start;
7529 em->orig_start = orig_start;
7530 em->len = len;
7531 em->block_len = block_len;
7532 em->block_start = block_start;
7533 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7534 em->orig_block_len = orig_block_len;
cc95bef6 7535 em->ram_bytes = ram_bytes;
70c8a91c 7536 em->generation = -1;
69ffb543 7537 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7538 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7539 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7540 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7541 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7542 em->compress_type = compress_type;
7543 }
69ffb543
JB
7544
7545 do {
dcdbc059 7546 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7547 em->start + em->len - 1, 0);
7548 write_lock(&em_tree->lock);
09a2a8f9 7549 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7550 write_unlock(&em_tree->lock);
6f9994db
LB
7551 /*
7552 * The caller has taken lock_extent(), who could race with us
7553 * to add em?
7554 */
69ffb543
JB
7555 } while (ret == -EEXIST);
7556
7557 if (ret) {
7558 free_extent_map(em);
7559 return ERR_PTR(ret);
7560 }
7561
6f9994db 7562 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7563 return em;
7564}
7565
9c9464cc
FM
7566static void adjust_dio_outstanding_extents(struct inode *inode,
7567 struct btrfs_dio_data *dio_data,
7568 const u64 len)
7569{
823bb20a 7570 unsigned num_extents = count_max_extents(len);
9c9464cc 7571
9c9464cc
FM
7572 /*
7573 * If we have an outstanding_extents count still set then we're
7574 * within our reservation, otherwise we need to adjust our inode
7575 * counter appropriately.
7576 */
c2931667 7577 if (dio_data->outstanding_extents >= num_extents) {
9c9464cc
FM
7578 dio_data->outstanding_extents -= num_extents;
7579 } else {
c2931667
LB
7580 /*
7581 * If dio write length has been split due to no large enough
7582 * contiguous space, we need to compensate our inode counter
7583 * appropriately.
7584 */
7585 u64 num_needed = num_extents - dio_data->outstanding_extents;
7586
9c9464cc 7587 spin_lock(&BTRFS_I(inode)->lock);
c2931667 7588 BTRFS_I(inode)->outstanding_extents += num_needed;
9c9464cc
FM
7589 spin_unlock(&BTRFS_I(inode)->lock);
7590 }
7591}
7592
4b46fce2
JB
7593static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7594 struct buffer_head *bh_result, int create)
7595{
0b246afa 7596 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7597 struct extent_map *em;
eb838e73 7598 struct extent_state *cached_state = NULL;
50745b0a 7599 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7600 u64 start = iblock << inode->i_blkbits;
eb838e73 7601 u64 lockstart, lockend;
4b46fce2 7602 u64 len = bh_result->b_size;
eb838e73 7603 int unlock_bits = EXTENT_LOCKED;
0934856d 7604 int ret = 0;
eb838e73 7605
172a5049 7606 if (create)
3266789f 7607 unlock_bits |= EXTENT_DIRTY;
172a5049 7608 else
0b246afa 7609 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7610
c329861d
JB
7611 lockstart = start;
7612 lockend = start + len - 1;
7613
e1cbbfa5
JB
7614 if (current->journal_info) {
7615 /*
7616 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7617 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7618 * confused.
7619 */
50745b0a 7620 dio_data = current->journal_info;
e1cbbfa5
JB
7621 current->journal_info = NULL;
7622 }
7623
eb838e73
JB
7624 /*
7625 * If this errors out it's because we couldn't invalidate pagecache for
7626 * this range and we need to fallback to buffered.
7627 */
9c9464cc
FM
7628 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7629 create)) {
7630 ret = -ENOTBLK;
7631 goto err;
7632 }
eb838e73 7633
fc4f21b1 7634 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7635 if (IS_ERR(em)) {
7636 ret = PTR_ERR(em);
7637 goto unlock_err;
7638 }
4b46fce2
JB
7639
7640 /*
7641 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7642 * io. INLINE is special, and we could probably kludge it in here, but
7643 * it's still buffered so for safety lets just fall back to the generic
7644 * buffered path.
7645 *
7646 * For COMPRESSED we _have_ to read the entire extent in so we can
7647 * decompress it, so there will be buffering required no matter what we
7648 * do, so go ahead and fallback to buffered.
7649 *
01327610 7650 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7651 * to buffered IO. Don't blame me, this is the price we pay for using
7652 * the generic code.
7653 */
7654 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7655 em->block_start == EXTENT_MAP_INLINE) {
7656 free_extent_map(em);
eb838e73
JB
7657 ret = -ENOTBLK;
7658 goto unlock_err;
4b46fce2
JB
7659 }
7660
7661 /* Just a good old fashioned hole, return */
7662 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7663 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7664 free_extent_map(em);
eb838e73 7665 goto unlock_err;
4b46fce2
JB
7666 }
7667
7668 /*
7669 * We don't allocate a new extent in the following cases
7670 *
7671 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7672 * existing extent.
7673 * 2) The extent is marked as PREALLOC. We're good to go here and can
7674 * just use the extent.
7675 *
7676 */
46bfbb5c 7677 if (!create) {
eb838e73
JB
7678 len = min(len, em->len - (start - em->start));
7679 lockstart = start + len;
7680 goto unlock;
46bfbb5c 7681 }
4b46fce2
JB
7682
7683 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7684 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7685 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7686 int type;
eb384b55 7687 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7688
7689 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7690 type = BTRFS_ORDERED_PREALLOC;
7691 else
7692 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7693 len = min(len, em->len - (start - em->start));
4b46fce2 7694 block_start = em->block_start + (start - em->start);
46bfbb5c 7695
00361589 7696 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c 7697 &orig_block_len, &ram_bytes) == 1 &&
0b246afa 7698 btrfs_inc_nocow_writers(fs_info, block_start)) {
5f9a8a51 7699 struct extent_map *em2;
0b901916 7700
5f9a8a51
FM
7701 em2 = btrfs_create_dio_extent(inode, start, len,
7702 orig_start, block_start,
7703 len, orig_block_len,
7704 ram_bytes, type);
0b246afa 7705 btrfs_dec_nocow_writers(fs_info, block_start);
69ffb543
JB
7706 if (type == BTRFS_ORDERED_PREALLOC) {
7707 free_extent_map(em);
5f9a8a51 7708 em = em2;
69ffb543 7709 }
5f9a8a51
FM
7710 if (em2 && IS_ERR(em2)) {
7711 ret = PTR_ERR(em2);
eb838e73 7712 goto unlock_err;
46bfbb5c 7713 }
18513091
WX
7714 /*
7715 * For inode marked NODATACOW or extent marked PREALLOC,
7716 * use the existing or preallocated extent, so does not
7717 * need to adjust btrfs_space_info's bytes_may_use.
7718 */
7719 btrfs_free_reserved_data_space_noquota(inode,
7720 start, len);
46bfbb5c 7721 goto unlock;
4b46fce2 7722 }
4b46fce2 7723 }
00361589 7724
46bfbb5c
CM
7725 /*
7726 * this will cow the extent, reset the len in case we changed
7727 * it above
7728 */
7729 len = bh_result->b_size;
70c8a91c
JB
7730 free_extent_map(em);
7731 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7732 if (IS_ERR(em)) {
7733 ret = PTR_ERR(em);
7734 goto unlock_err;
7735 }
46bfbb5c
CM
7736 len = min(len, em->len - (start - em->start));
7737unlock:
4b46fce2
JB
7738 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7739 inode->i_blkbits;
46bfbb5c 7740 bh_result->b_size = len;
4b46fce2
JB
7741 bh_result->b_bdev = em->bdev;
7742 set_buffer_mapped(bh_result);
c3473e83
JB
7743 if (create) {
7744 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7745 set_buffer_new(bh_result);
7746
7747 /*
7748 * Need to update the i_size under the extent lock so buffered
7749 * readers will get the updated i_size when we unlock.
7750 */
4aaedfb0 7751 if (!dio_data->overwrite && start + len > i_size_read(inode))
c3473e83 7752 i_size_write(inode, start + len);
0934856d 7753
9c9464cc 7754 adjust_dio_outstanding_extents(inode, dio_data, len);
50745b0a 7755 WARN_ON(dio_data->reserve < len);
7756 dio_data->reserve -= len;
f28a4928 7757 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7758 current->journal_info = dio_data;
c3473e83 7759 }
4b46fce2 7760
eb838e73
JB
7761 /*
7762 * In the case of write we need to clear and unlock the entire range,
7763 * in the case of read we need to unlock only the end area that we
7764 * aren't using if there is any left over space.
7765 */
24c03fa5 7766 if (lockstart < lockend) {
0934856d
MX
7767 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7768 lockend, unlock_bits, 1, 0,
7769 &cached_state, GFP_NOFS);
24c03fa5 7770 } else {
eb838e73 7771 free_extent_state(cached_state);
24c03fa5 7772 }
eb838e73 7773
4b46fce2
JB
7774 free_extent_map(em);
7775
7776 return 0;
eb838e73
JB
7777
7778unlock_err:
eb838e73
JB
7779 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7780 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7781err:
50745b0a 7782 if (dio_data)
7783 current->journal_info = dio_data;
9c9464cc
FM
7784 /*
7785 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7786 * write less data then expected, so that we don't underflow our inode's
7787 * outstanding extents counter.
7788 */
7789 if (create && dio_data)
7790 adjust_dio_outstanding_extents(inode, dio_data, len);
7791
eb838e73 7792 return ret;
4b46fce2
JB
7793}
7794
8b110e39 7795static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
81a75f67 7796 int mirror_num)
8b110e39 7797{
2ff7e61e 7798 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7799 int ret;
7800
37226b21 7801 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39
MX
7802
7803 bio_get(bio);
7804
2ff7e61e 7805 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39
MX
7806 if (ret)
7807 goto err;
7808
2ff7e61e 7809 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
8b110e39
MX
7810err:
7811 bio_put(bio);
7812 return ret;
7813}
7814
7815static int btrfs_check_dio_repairable(struct inode *inode,
7816 struct bio *failed_bio,
7817 struct io_failure_record *failrec,
7818 int failed_mirror)
7819{
ab8d0fc4 7820 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7821 int num_copies;
7822
ab8d0fc4 7823 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7824 if (num_copies == 1) {
7825 /*
7826 * we only have a single copy of the data, so don't bother with
7827 * all the retry and error correction code that follows. no
7828 * matter what the error is, it is very likely to persist.
7829 */
ab8d0fc4
JM
7830 btrfs_debug(fs_info,
7831 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7832 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7833 return 0;
7834 }
7835
7836 failrec->failed_mirror = failed_mirror;
7837 failrec->this_mirror++;
7838 if (failrec->this_mirror == failed_mirror)
7839 failrec->this_mirror++;
7840
7841 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7842 btrfs_debug(fs_info,
7843 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7844 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7845 return 0;
7846 }
7847
7848 return 1;
7849}
7850
7851static int dio_read_error(struct inode *inode, struct bio *failed_bio,
2dabb324
CR
7852 struct page *page, unsigned int pgoff,
7853 u64 start, u64 end, int failed_mirror,
7854 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7855{
7856 struct io_failure_record *failrec;
7857 struct bio *bio;
7858 int isector;
70fd7614 7859 int read_mode = 0;
8b110e39
MX
7860 int ret;
7861
37226b21 7862 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7863
7864 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7865 if (ret)
7866 return ret;
7867
7868 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7869 failed_mirror);
7870 if (!ret) {
4ac1f4ac 7871 free_io_failure(BTRFS_I(inode), failrec);
8b110e39
MX
7872 return -EIO;
7873 }
7874
2dabb324
CR
7875 if ((failed_bio->bi_vcnt > 1)
7876 || (failed_bio->bi_io_vec->bv_len
da17066c 7877 > btrfs_inode_sectorsize(inode)))
70fd7614 7878 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
7879
7880 isector = start - btrfs_io_bio(failed_bio)->logical;
7881 isector >>= inode->i_sb->s_blocksize_bits;
7882 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7883 pgoff, isector, repair_endio, repair_arg);
8b110e39 7884 if (!bio) {
4ac1f4ac 7885 free_io_failure(BTRFS_I(inode), failrec);
8b110e39
MX
7886 return -EIO;
7887 }
37226b21 7888 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
7889
7890 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7891 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7892 read_mode, failrec->this_mirror, failrec->in_validation);
7893
81a75f67 7894 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8b110e39 7895 if (ret) {
4ac1f4ac 7896 free_io_failure(BTRFS_I(inode), failrec);
8b110e39
MX
7897 bio_put(bio);
7898 }
7899
7900 return ret;
7901}
7902
7903struct btrfs_retry_complete {
7904 struct completion done;
7905 struct inode *inode;
7906 u64 start;
7907 int uptodate;
7908};
7909
4246a0b6 7910static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7911{
7912 struct btrfs_retry_complete *done = bio->bi_private;
7913 struct bio_vec *bvec;
7914 int i;
7915
4246a0b6 7916 if (bio->bi_error)
8b110e39
MX
7917 goto end;
7918
2dabb324 7919 ASSERT(bio->bi_vcnt == 1);
2e949b0a 7920 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 7921
8b110e39
MX
7922 done->uptodate = 1;
7923 bio_for_each_segment_all(bvec, bio, i)
2e949b0a
LB
7924 clean_io_failure(BTRFS_I(done->inode), done->start,
7925 bvec->bv_page, 0);
8b110e39
MX
7926end:
7927 complete(&done->done);
7928 bio_put(bio);
7929}
7930
7931static int __btrfs_correct_data_nocsum(struct inode *inode,
7932 struct btrfs_io_bio *io_bio)
4b46fce2 7933{
2dabb324 7934 struct btrfs_fs_info *fs_info;
2c30c71b 7935 struct bio_vec *bvec;
8b110e39 7936 struct btrfs_retry_complete done;
4b46fce2 7937 u64 start;
2dabb324
CR
7938 unsigned int pgoff;
7939 u32 sectorsize;
7940 int nr_sectors;
2c30c71b 7941 int i;
c1dc0896 7942 int ret;
4b46fce2 7943
2dabb324 7944 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 7945 sectorsize = fs_info->sectorsize;
2dabb324 7946
8b110e39
MX
7947 start = io_bio->logical;
7948 done.inode = inode;
7949
7950 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
7951 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7952 pgoff = bvec->bv_offset;
7953
7954next_block_or_try_again:
8b110e39
MX
7955 done.uptodate = 0;
7956 done.start = start;
7957 init_completion(&done.done);
7958
2dabb324
CR
7959 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7960 pgoff, start, start + sectorsize - 1,
7961 io_bio->mirror_num,
7962 btrfs_retry_endio_nocsum, &done);
8b110e39
MX
7963 if (ret)
7964 return ret;
7965
7966 wait_for_completion(&done.done);
7967
7968 if (!done.uptodate) {
7969 /* We might have another mirror, so try again */
2dabb324 7970 goto next_block_or_try_again;
8b110e39
MX
7971 }
7972
2dabb324
CR
7973 start += sectorsize;
7974
97bf5a55
LB
7975 nr_sectors--;
7976 if (nr_sectors) {
2dabb324 7977 pgoff += sectorsize;
97bf5a55 7978 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
7979 goto next_block_or_try_again;
7980 }
8b110e39
MX
7981 }
7982
7983 return 0;
7984}
7985
4246a0b6 7986static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7987{
7988 struct btrfs_retry_complete *done = bio->bi_private;
7989 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7990 struct bio_vec *bvec;
7991 int uptodate;
7992 int ret;
7993 int i;
7994
4246a0b6 7995 if (bio->bi_error)
8b110e39
MX
7996 goto end;
7997
7998 uptodate = 1;
2dabb324 7999
2dabb324 8000 ASSERT(bio->bi_vcnt == 1);
2e949b0a 8001 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 8002
8b110e39
MX
8003 bio_for_each_segment_all(bvec, bio, i) {
8004 ret = __readpage_endio_check(done->inode, io_bio, i,
2dabb324
CR
8005 bvec->bv_page, bvec->bv_offset,
8006 done->start, bvec->bv_len);
8b110e39 8007 if (!ret)
b30cb441 8008 clean_io_failure(BTRFS_I(done->inode), done->start,
2dabb324 8009 bvec->bv_page, bvec->bv_offset);
8b110e39
MX
8010 else
8011 uptodate = 0;
8012 }
8013
8014 done->uptodate = uptodate;
8015end:
8016 complete(&done->done);
8017 bio_put(bio);
8018}
8019
8020static int __btrfs_subio_endio_read(struct inode *inode,
8021 struct btrfs_io_bio *io_bio, int err)
8022{
2dabb324 8023 struct btrfs_fs_info *fs_info;
8b110e39
MX
8024 struct bio_vec *bvec;
8025 struct btrfs_retry_complete done;
8026 u64 start;
8027 u64 offset = 0;
2dabb324
CR
8028 u32 sectorsize;
8029 int nr_sectors;
8030 unsigned int pgoff;
8031 int csum_pos;
8b110e39
MX
8032 int i;
8033 int ret;
dc380aea 8034
2dabb324 8035 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8036 sectorsize = fs_info->sectorsize;
2dabb324 8037
8b110e39 8038 err = 0;
c1dc0896 8039 start = io_bio->logical;
8b110e39
MX
8040 done.inode = inode;
8041
c1dc0896 8042 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
8043 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8044
8045 pgoff = bvec->bv_offset;
8046next_block:
8047 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8048 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8049 bvec->bv_page, pgoff, start,
8050 sectorsize);
8b110e39
MX
8051 if (likely(!ret))
8052 goto next;
8053try_again:
8054 done.uptodate = 0;
8055 done.start = start;
8056 init_completion(&done.done);
8057
2dabb324
CR
8058 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8059 pgoff, start, start + sectorsize - 1,
8060 io_bio->mirror_num,
8061 btrfs_retry_endio, &done);
8b110e39
MX
8062 if (ret) {
8063 err = ret;
8064 goto next;
8065 }
8066
8067 wait_for_completion(&done.done);
8068
8069 if (!done.uptodate) {
8070 /* We might have another mirror, so try again */
8071 goto try_again;
8072 }
8073next:
2dabb324
CR
8074 offset += sectorsize;
8075 start += sectorsize;
8076
8077 ASSERT(nr_sectors);
8078
97bf5a55
LB
8079 nr_sectors--;
8080 if (nr_sectors) {
2dabb324 8081 pgoff += sectorsize;
97bf5a55 8082 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8083 goto next_block;
8084 }
2c30c71b 8085 }
c1dc0896
MX
8086
8087 return err;
8088}
8089
8b110e39
MX
8090static int btrfs_subio_endio_read(struct inode *inode,
8091 struct btrfs_io_bio *io_bio, int err)
8092{
8093 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8094
8095 if (skip_csum) {
8096 if (unlikely(err))
8097 return __btrfs_correct_data_nocsum(inode, io_bio);
8098 else
8099 return 0;
8100 } else {
8101 return __btrfs_subio_endio_read(inode, io_bio, err);
8102 }
8103}
8104
4246a0b6 8105static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8106{
8107 struct btrfs_dio_private *dip = bio->bi_private;
8108 struct inode *inode = dip->inode;
8109 struct bio *dio_bio;
8110 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 8111 int err = bio->bi_error;
c1dc0896 8112
8b110e39
MX
8113 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8114 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8115
4b46fce2 8116 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8117 dip->logical_offset + dip->bytes - 1);
9be3395b 8118 dio_bio = dip->dio_bio;
4b46fce2 8119
4b46fce2 8120 kfree(dip);
c0da7aa1 8121
1636d1d7 8122 dio_bio->bi_error = bio->bi_error;
4246a0b6 8123 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
8124
8125 if (io_bio->end_io)
8126 io_bio->end_io(io_bio, err);
9be3395b 8127 bio_put(bio);
4b46fce2
JB
8128}
8129
14543774
FM
8130static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8131 const u64 offset,
8132 const u64 bytes,
8133 const int uptodate)
4b46fce2 8134{
0b246afa 8135 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8136 struct btrfs_ordered_extent *ordered = NULL;
14543774
FM
8137 u64 ordered_offset = offset;
8138 u64 ordered_bytes = bytes;
4b46fce2
JB
8139 int ret;
8140
163cf09c
CM
8141again:
8142 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8143 &ordered_offset,
4246a0b6 8144 ordered_bytes,
14543774 8145 uptodate);
4b46fce2 8146 if (!ret)
163cf09c 8147 goto out_test;
4b46fce2 8148
9e0af237
LB
8149 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8150 finish_ordered_fn, NULL, NULL);
0b246afa 8151 btrfs_queue_work(fs_info->endio_write_workers, &ordered->work);
163cf09c
CM
8152out_test:
8153 /*
8154 * our bio might span multiple ordered extents. If we haven't
8155 * completed the accounting for the whole dio, go back and try again
8156 */
14543774
FM
8157 if (ordered_offset < offset + bytes) {
8158 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8159 ordered = NULL;
163cf09c
CM
8160 goto again;
8161 }
14543774
FM
8162}
8163
8164static void btrfs_endio_direct_write(struct bio *bio)
8165{
8166 struct btrfs_dio_private *dip = bio->bi_private;
8167 struct bio *dio_bio = dip->dio_bio;
8168
8169 btrfs_endio_direct_write_update_ordered(dip->inode,
8170 dip->logical_offset,
8171 dip->bytes,
8172 !bio->bi_error);
4b46fce2 8173
4b46fce2 8174 kfree(dip);
c0da7aa1 8175
1636d1d7 8176 dio_bio->bi_error = bio->bi_error;
4246a0b6 8177 dio_end_io(dio_bio, bio->bi_error);
9be3395b 8178 bio_put(bio);
4b46fce2
JB
8179}
8180
81a75f67 8181static int __btrfs_submit_bio_start_direct_io(struct inode *inode,
eaf25d93
CM
8182 struct bio *bio, int mirror_num,
8183 unsigned long bio_flags, u64 offset)
8184{
8185 int ret;
2ff7e61e 8186 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8187 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8188 return 0;
8189}
8190
4246a0b6 8191static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8192{
8193 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8194 int err = bio->bi_error;
e65e1535 8195
8b110e39
MX
8196 if (err)
8197 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8198 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8199 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8200 bio->bi_opf,
8b110e39
MX
8201 (unsigned long long)bio->bi_iter.bi_sector,
8202 bio->bi_iter.bi_size, err);
8203
8204 if (dip->subio_endio)
8205 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8206
8207 if (err) {
e65e1535
MX
8208 dip->errors = 1;
8209
8210 /*
8211 * before atomic variable goto zero, we must make sure
8212 * dip->errors is perceived to be set.
8213 */
4e857c58 8214 smp_mb__before_atomic();
e65e1535
MX
8215 }
8216
8217 /* if there are more bios still pending for this dio, just exit */
8218 if (!atomic_dec_and_test(&dip->pending_bios))
8219 goto out;
8220
9be3395b 8221 if (dip->errors) {
e65e1535 8222 bio_io_error(dip->orig_bio);
9be3395b 8223 } else {
4246a0b6
CH
8224 dip->dio_bio->bi_error = 0;
8225 bio_endio(dip->orig_bio);
e65e1535
MX
8226 }
8227out:
8228 bio_put(bio);
8229}
8230
8231static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8232 u64 first_sector, gfp_t gfp_flags)
8233{
da2f0f74 8234 struct bio *bio;
22365979 8235 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
da2f0f74
CM
8236 if (bio)
8237 bio_associate_current(bio);
8238 return bio;
e65e1535
MX
8239}
8240
2ff7e61e 8241static inline int btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8242 struct btrfs_dio_private *dip,
8243 struct bio *bio,
8244 u64 file_offset)
8245{
8246 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8247 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8248 int ret;
8249
8250 /*
8251 * We load all the csum data we need when we submit
8252 * the first bio to reduce the csum tree search and
8253 * contention.
8254 */
8255 if (dip->logical_offset == file_offset) {
2ff7e61e 8256 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8257 file_offset);
8258 if (ret)
8259 return ret;
8260 }
8261
8262 if (bio == dip->orig_bio)
8263 return 0;
8264
8265 file_offset -= dip->logical_offset;
8266 file_offset >>= inode->i_sb->s_blocksize_bits;
8267 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8268
8269 return 0;
8270}
8271
e65e1535 8272static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
81a75f67 8273 u64 file_offset, int skip_sum,
c329861d 8274 int async_submit)
e65e1535 8275{
0b246afa 8276 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8277 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8278 bool write = bio_op(bio) == REQ_OP_WRITE;
e65e1535
MX
8279 int ret;
8280
b812ce28
JB
8281 if (async_submit)
8282 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8283
e65e1535 8284 bio_get(bio);
5fd02043
JB
8285
8286 if (!write) {
0b246afa 8287 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8288 if (ret)
8289 goto err;
8290 }
e65e1535 8291
1ae39938
JB
8292 if (skip_sum)
8293 goto map;
8294
8295 if (write && async_submit) {
0b246afa
JM
8296 ret = btrfs_wq_submit_bio(fs_info, inode, bio, 0, 0,
8297 file_offset,
8298 __btrfs_submit_bio_start_direct_io,
8299 __btrfs_submit_bio_done);
e65e1535 8300 goto err;
1ae39938
JB
8301 } else if (write) {
8302 /*
8303 * If we aren't doing async submit, calculate the csum of the
8304 * bio now.
8305 */
2ff7e61e 8306 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8307 if (ret)
8308 goto err;
23ea8e5a 8309 } else {
2ff7e61e 8310 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8311 file_offset);
c2db1073
TI
8312 if (ret)
8313 goto err;
8314 }
1ae39938 8315map:
2ff7e61e 8316 ret = btrfs_map_bio(fs_info, bio, 0, async_submit);
e65e1535
MX
8317err:
8318 bio_put(bio);
8319 return ret;
8320}
8321
81a75f67 8322static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
e65e1535
MX
8323 int skip_sum)
8324{
8325 struct inode *inode = dip->inode;
0b246afa 8326 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535 8327 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
8328 struct bio *bio;
8329 struct bio *orig_bio = dip->orig_bio;
6a2de22f 8330 struct bio_vec *bvec;
4f024f37 8331 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
8332 u64 file_offset = dip->logical_offset;
8333 u64 submit_len = 0;
8334 u64 map_length;
0b246afa 8335 u32 blocksize = fs_info->sectorsize;
1ae39938 8336 int async_submit = 0;
5f4dc8fc
CR
8337 int nr_sectors;
8338 int ret;
6a2de22f 8339 int i, j;
e65e1535 8340
4f024f37 8341 map_length = orig_bio->bi_iter.bi_size;
0b246afa
JM
8342 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8343 &map_length, NULL, 0);
7a5c3c9b 8344 if (ret)
e65e1535 8345 return -EIO;
facc8a22 8346
4f024f37 8347 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 8348 bio = orig_bio;
c1dc0896 8349 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8350 goto submit;
8351 }
8352
53b381b3 8353 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 8354 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8355 async_submit = 0;
8356 else
8357 async_submit = 1;
8358
02f57c7a
JB
8359 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8360 if (!bio)
8361 return -ENOMEM;
7a5c3c9b 8362
ef295ecf 8363 bio->bi_opf = orig_bio->bi_opf;
02f57c7a
JB
8364 bio->bi_private = dip;
8365 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8366 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
8367 atomic_inc(&dip->pending_bios);
8368
6a2de22f 8369 bio_for_each_segment_all(bvec, orig_bio, j) {
0b246afa 8370 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
5f4dc8fc
CR
8371 i = 0;
8372next_block:
8373 if (unlikely(map_length < submit_len + blocksize ||
8374 bio_add_page(bio, bvec->bv_page, blocksize,
8375 bvec->bv_offset + (i * blocksize)) < blocksize)) {
e65e1535
MX
8376 /*
8377 * inc the count before we submit the bio so
8378 * we know the end IO handler won't happen before
8379 * we inc the count. Otherwise, the dip might get freed
8380 * before we're done setting it up
8381 */
8382 atomic_inc(&dip->pending_bios);
81a75f67 8383 ret = __btrfs_submit_dio_bio(bio, inode,
e65e1535 8384 file_offset, skip_sum,
c329861d 8385 async_submit);
e65e1535
MX
8386 if (ret) {
8387 bio_put(bio);
8388 atomic_dec(&dip->pending_bios);
8389 goto out_err;
8390 }
8391
e65e1535
MX
8392 start_sector += submit_len >> 9;
8393 file_offset += submit_len;
8394
8395 submit_len = 0;
e65e1535
MX
8396
8397 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8398 start_sector, GFP_NOFS);
8399 if (!bio)
8400 goto out_err;
ef295ecf 8401 bio->bi_opf = orig_bio->bi_opf;
e65e1535
MX
8402 bio->bi_private = dip;
8403 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8404 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 8405
4f024f37 8406 map_length = orig_bio->bi_iter.bi_size;
0b246afa 8407 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
3ec706c8 8408 start_sector << 9,
e65e1535
MX
8409 &map_length, NULL, 0);
8410 if (ret) {
8411 bio_put(bio);
8412 goto out_err;
8413 }
5f4dc8fc
CR
8414
8415 goto next_block;
e65e1535 8416 } else {
5f4dc8fc
CR
8417 submit_len += blocksize;
8418 if (--nr_sectors) {
8419 i++;
8420 goto next_block;
8421 }
e65e1535
MX
8422 }
8423 }
8424
02f57c7a 8425submit:
81a75f67 8426 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
c329861d 8427 async_submit);
e65e1535
MX
8428 if (!ret)
8429 return 0;
8430
8431 bio_put(bio);
8432out_err:
8433 dip->errors = 1;
8434 /*
8435 * before atomic variable goto zero, we must
8436 * make sure dip->errors is perceived to be set.
8437 */
4e857c58 8438 smp_mb__before_atomic();
e65e1535
MX
8439 if (atomic_dec_and_test(&dip->pending_bios))
8440 bio_io_error(dip->orig_bio);
8441
8442 /* bio_end_io() will handle error, so we needn't return it */
8443 return 0;
8444}
8445
8a4c1e42
MC
8446static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8447 loff_t file_offset)
4b46fce2 8448{
61de718f
FM
8449 struct btrfs_dio_private *dip = NULL;
8450 struct bio *io_bio = NULL;
23ea8e5a 8451 struct btrfs_io_bio *btrfs_bio;
4b46fce2 8452 int skip_sum;
8a4c1e42 8453 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8454 int ret = 0;
8455
8456 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8457
9be3395b 8458 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
8459 if (!io_bio) {
8460 ret = -ENOMEM;
8461 goto free_ordered;
8462 }
8463
c1dc0896 8464 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8465 if (!dip) {
8466 ret = -ENOMEM;
61de718f 8467 goto free_ordered;
4b46fce2 8468 }
4b46fce2 8469
9be3395b 8470 dip->private = dio_bio->bi_private;
4b46fce2
JB
8471 dip->inode = inode;
8472 dip->logical_offset = file_offset;
4f024f37
KO
8473 dip->bytes = dio_bio->bi_iter.bi_size;
8474 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8475 io_bio->bi_private = dip;
9be3395b
CM
8476 dip->orig_bio = io_bio;
8477 dip->dio_bio = dio_bio;
e65e1535 8478 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8479 btrfs_bio = btrfs_io_bio(io_bio);
8480 btrfs_bio->logical = file_offset;
4b46fce2 8481
c1dc0896 8482 if (write) {
9be3395b 8483 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8484 } else {
9be3395b 8485 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8486 dip->subio_endio = btrfs_subio_endio_read;
8487 }
4b46fce2 8488
f28a4928
FM
8489 /*
8490 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8491 * even if we fail to submit a bio, because in such case we do the
8492 * corresponding error handling below and it must not be done a second
8493 * time by btrfs_direct_IO().
8494 */
8495 if (write) {
8496 struct btrfs_dio_data *dio_data = current->journal_info;
8497
8498 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8499 dip->bytes;
8500 dio_data->unsubmitted_oe_range_start =
8501 dio_data->unsubmitted_oe_range_end;
8502 }
8503
81a75f67 8504 ret = btrfs_submit_direct_hook(dip, skip_sum);
e65e1535 8505 if (!ret)
eaf25d93 8506 return;
9be3395b 8507
23ea8e5a
MX
8508 if (btrfs_bio->end_io)
8509 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b 8510
4b46fce2
JB
8511free_ordered:
8512 /*
61de718f
FM
8513 * If we arrived here it means either we failed to submit the dip
8514 * or we either failed to clone the dio_bio or failed to allocate the
8515 * dip. If we cloned the dio_bio and allocated the dip, we can just
8516 * call bio_endio against our io_bio so that we get proper resource
8517 * cleanup if we fail to submit the dip, otherwise, we must do the
8518 * same as btrfs_endio_direct_[write|read] because we can't call these
8519 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8520 */
61de718f 8521 if (io_bio && dip) {
4246a0b6
CH
8522 io_bio->bi_error = -EIO;
8523 bio_endio(io_bio);
61de718f
FM
8524 /*
8525 * The end io callbacks free our dip, do the final put on io_bio
8526 * and all the cleanup and final put for dio_bio (through
8527 * dio_end_io()).
8528 */
8529 dip = NULL;
8530 io_bio = NULL;
8531 } else {
14543774
FM
8532 if (write)
8533 btrfs_endio_direct_write_update_ordered(inode,
8534 file_offset,
8535 dio_bio->bi_iter.bi_size,
8536 0);
8537 else
61de718f
FM
8538 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8539 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8540
4246a0b6 8541 dio_bio->bi_error = -EIO;
61de718f
FM
8542 /*
8543 * Releases and cleans up our dio_bio, no need to bio_put()
8544 * nor bio_endio()/bio_io_error() against dio_bio.
8545 */
8546 dio_end_io(dio_bio, ret);
4b46fce2 8547 }
61de718f
FM
8548 if (io_bio)
8549 bio_put(io_bio);
8550 kfree(dip);
4b46fce2
JB
8551}
8552
2ff7e61e
JM
8553static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8554 struct kiocb *iocb,
8555 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8556{
8557 int seg;
a1b75f7d 8558 int i;
0b246afa 8559 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8560 ssize_t retval = -EINVAL;
5a5f79b5
CM
8561
8562 if (offset & blocksize_mask)
8563 goto out;
8564
28060d5d
AV
8565 if (iov_iter_alignment(iter) & blocksize_mask)
8566 goto out;
a1b75f7d 8567
28060d5d 8568 /* If this is a write we don't need to check anymore */
cd27e455 8569 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8570 return 0;
8571 /*
8572 * Check to make sure we don't have duplicate iov_base's in this
8573 * iovec, if so return EINVAL, otherwise we'll get csum errors
8574 * when reading back.
8575 */
8576 for (seg = 0; seg < iter->nr_segs; seg++) {
8577 for (i = seg + 1; i < iter->nr_segs; i++) {
8578 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8579 goto out;
8580 }
5a5f79b5
CM
8581 }
8582 retval = 0;
8583out:
8584 return retval;
8585}
eb838e73 8586
c8b8e32d 8587static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8588{
4b46fce2
JB
8589 struct file *file = iocb->ki_filp;
8590 struct inode *inode = file->f_mapping->host;
0b246afa 8591 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8592 struct btrfs_dio_data dio_data = { 0 };
c8b8e32d 8593 loff_t offset = iocb->ki_pos;
0934856d 8594 size_t count = 0;
2e60a51e 8595 int flags = 0;
38851cc1
MX
8596 bool wakeup = true;
8597 bool relock = false;
0934856d 8598 ssize_t ret;
4b46fce2 8599
2ff7e61e 8600 if (check_direct_IO(fs_info, iocb, iter, offset))
5a5f79b5 8601 return 0;
3f7c579c 8602
fe0f07d0 8603 inode_dio_begin(inode);
4e857c58 8604 smp_mb__after_atomic();
38851cc1 8605
0e267c44 8606 /*
41bd9ca4
MX
8607 * The generic stuff only does filemap_write_and_wait_range, which
8608 * isn't enough if we've written compressed pages to this area, so
8609 * we need to flush the dirty pages again to make absolutely sure
8610 * that any outstanding dirty pages are on disk.
0e267c44 8611 */
a6cbcd4a 8612 count = iov_iter_count(iter);
41bd9ca4
MX
8613 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8614 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8615 filemap_fdatawrite_range(inode->i_mapping, offset,
8616 offset + count - 1);
0e267c44 8617
6f673763 8618 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8619 /*
8620 * If the write DIO is beyond the EOF, we need update
8621 * the isize, but it is protected by i_mutex. So we can
8622 * not unlock the i_mutex at this case.
8623 */
8624 if (offset + count <= inode->i_size) {
4aaedfb0 8625 dio_data.overwrite = 1;
5955102c 8626 inode_unlock(inode);
38851cc1
MX
8627 relock = true;
8628 }
7cf5b976 8629 ret = btrfs_delalloc_reserve_space(inode, offset, count);
0934856d 8630 if (ret)
38851cc1 8631 goto out;
823bb20a 8632 dio_data.outstanding_extents = count_max_extents(count);
e1cbbfa5
JB
8633
8634 /*
8635 * We need to know how many extents we reserved so that we can
8636 * do the accounting properly if we go over the number we
8637 * originally calculated. Abuse current->journal_info for this.
8638 */
da17066c 8639 dio_data.reserve = round_up(count,
0b246afa 8640 fs_info->sectorsize);
f28a4928
FM
8641 dio_data.unsubmitted_oe_range_start = (u64)offset;
8642 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8643 current->journal_info = &dio_data;
97dcdea0 8644 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8645 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8646 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8647 inode_dio_end(inode);
38851cc1
MX
8648 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8649 wakeup = false;
0934856d
MX
8650 }
8651
17f8c842 8652 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8653 fs_info->fs_devices->latest_bdev,
c8b8e32d 8654 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8655 btrfs_submit_direct, flags);
6f673763 8656 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8657 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8658 current->journal_info = NULL;
ddba1bfc 8659 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8660 if (dio_data.reserve)
7cf5b976
QW
8661 btrfs_delalloc_release_space(inode, offset,
8662 dio_data.reserve);
f28a4928
FM
8663 /*
8664 * On error we might have left some ordered extents
8665 * without submitting corresponding bios for them, so
8666 * cleanup them up to avoid other tasks getting them
8667 * and waiting for them to complete forever.
8668 */
8669 if (dio_data.unsubmitted_oe_range_start <
8670 dio_data.unsubmitted_oe_range_end)
8671 btrfs_endio_direct_write_update_ordered(inode,
8672 dio_data.unsubmitted_oe_range_start,
8673 dio_data.unsubmitted_oe_range_end -
8674 dio_data.unsubmitted_oe_range_start,
8675 0);
ddba1bfc 8676 } else if (ret >= 0 && (size_t)ret < count)
7cf5b976
QW
8677 btrfs_delalloc_release_space(inode, offset,
8678 count - (size_t)ret);
0934856d 8679 }
38851cc1 8680out:
2e60a51e 8681 if (wakeup)
fe0f07d0 8682 inode_dio_end(inode);
38851cc1 8683 if (relock)
5955102c 8684 inode_lock(inode);
0934856d
MX
8685
8686 return ret;
16432985
CM
8687}
8688
05dadc09
TI
8689#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8690
1506fcc8
YS
8691static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8692 __u64 start, __u64 len)
8693{
05dadc09
TI
8694 int ret;
8695
8696 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8697 if (ret)
8698 return ret;
8699
ec29ed5b 8700 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8701}
8702
a52d9a80 8703int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8704{
d1310b2e
CM
8705 struct extent_io_tree *tree;
8706 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8707 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8708}
1832a6d5 8709
a52d9a80 8710static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8711{
d1310b2e 8712 struct extent_io_tree *tree;
be7bd730
JB
8713 struct inode *inode = page->mapping->host;
8714 int ret;
b888db2b
CM
8715
8716 if (current->flags & PF_MEMALLOC) {
8717 redirty_page_for_writepage(wbc, page);
8718 unlock_page(page);
8719 return 0;
8720 }
be7bd730
JB
8721
8722 /*
8723 * If we are under memory pressure we will call this directly from the
8724 * VM, we need to make sure we have the inode referenced for the ordered
8725 * extent. If not just return like we didn't do anything.
8726 */
8727 if (!igrab(inode)) {
8728 redirty_page_for_writepage(wbc, page);
8729 return AOP_WRITEPAGE_ACTIVATE;
8730 }
d1310b2e 8731 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8732 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8733 btrfs_add_delayed_iput(inode);
8734 return ret;
9ebefb18
CM
8735}
8736
48a3b636
ES
8737static int btrfs_writepages(struct address_space *mapping,
8738 struct writeback_control *wbc)
b293f02e 8739{
d1310b2e 8740 struct extent_io_tree *tree;
771ed689 8741
d1310b2e 8742 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8743 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8744}
8745
3ab2fb5a
CM
8746static int
8747btrfs_readpages(struct file *file, struct address_space *mapping,
8748 struct list_head *pages, unsigned nr_pages)
8749{
d1310b2e
CM
8750 struct extent_io_tree *tree;
8751 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8752 return extent_readpages(tree, mapping, pages, nr_pages,
8753 btrfs_get_extent);
8754}
e6dcd2dc 8755static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8756{
d1310b2e
CM
8757 struct extent_io_tree *tree;
8758 struct extent_map_tree *map;
a52d9a80 8759 int ret;
8c2383c3 8760
d1310b2e
CM
8761 tree = &BTRFS_I(page->mapping->host)->io_tree;
8762 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8763 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8764 if (ret == 1) {
8765 ClearPagePrivate(page);
8766 set_page_private(page, 0);
09cbfeaf 8767 put_page(page);
39279cc3 8768 }
a52d9a80 8769 return ret;
39279cc3
CM
8770}
8771
e6dcd2dc
CM
8772static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8773{
98509cfc
CM
8774 if (PageWriteback(page) || PageDirty(page))
8775 return 0;
3ba7ab22 8776 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8777}
8778
d47992f8
LC
8779static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8780 unsigned int length)
39279cc3 8781{
5fd02043 8782 struct inode *inode = page->mapping->host;
d1310b2e 8783 struct extent_io_tree *tree;
e6dcd2dc 8784 struct btrfs_ordered_extent *ordered;
2ac55d41 8785 struct extent_state *cached_state = NULL;
e6dcd2dc 8786 u64 page_start = page_offset(page);
09cbfeaf 8787 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8788 u64 start;
8789 u64 end;
131e404a 8790 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8791
8b62b72b
CM
8792 /*
8793 * we have the page locked, so new writeback can't start,
8794 * and the dirty bit won't be cleared while we are here.
8795 *
8796 * Wait for IO on this page so that we can safely clear
8797 * the PagePrivate2 bit and do ordered accounting
8798 */
e6dcd2dc 8799 wait_on_page_writeback(page);
8b62b72b 8800
5fd02043 8801 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8802 if (offset) {
8803 btrfs_releasepage(page, GFP_NOFS);
8804 return;
8805 }
131e404a
FDBM
8806
8807 if (!inode_evicting)
ff13db41 8808 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8809again:
8810 start = page_start;
a776c6fa 8811 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8812 page_end - start + 1);
e6dcd2dc 8813 if (ordered) {
dbfdb6d1 8814 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8815 /*
8816 * IO on this page will never be started, so we need
8817 * to account for any ordered extents now
8818 */
131e404a 8819 if (!inode_evicting)
dbfdb6d1 8820 clear_extent_bit(tree, start, end,
131e404a
FDBM
8821 EXTENT_DIRTY | EXTENT_DELALLOC |
8822 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8823 EXTENT_DEFRAG, 1, 0, &cached_state,
8824 GFP_NOFS);
8b62b72b
CM
8825 /*
8826 * whoever cleared the private bit is responsible
8827 * for the finish_ordered_io
8828 */
77cef2ec
JB
8829 if (TestClearPagePrivate2(page)) {
8830 struct btrfs_ordered_inode_tree *tree;
8831 u64 new_len;
8832
8833 tree = &BTRFS_I(inode)->ordered_tree;
8834
8835 spin_lock_irq(&tree->lock);
8836 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8837 new_len = start - ordered->file_offset;
77cef2ec
JB
8838 if (new_len < ordered->truncated_len)
8839 ordered->truncated_len = new_len;
8840 spin_unlock_irq(&tree->lock);
8841
8842 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8843 start,
8844 end - start + 1, 1))
77cef2ec 8845 btrfs_finish_ordered_io(ordered);
8b62b72b 8846 }
e6dcd2dc 8847 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8848 if (!inode_evicting) {
8849 cached_state = NULL;
dbfdb6d1 8850 lock_extent_bits(tree, start, end,
131e404a
FDBM
8851 &cached_state);
8852 }
dbfdb6d1
CR
8853
8854 start = end + 1;
8855 if (start < page_end)
8856 goto again;
131e404a
FDBM
8857 }
8858
b9d0b389
QW
8859 /*
8860 * Qgroup reserved space handler
8861 * Page here will be either
8862 * 1) Already written to disk
8863 * In this case, its reserved space is released from data rsv map
8864 * and will be freed by delayed_ref handler finally.
8865 * So even we call qgroup_free_data(), it won't decrease reserved
8866 * space.
8867 * 2) Not written to disk
0b34c261
GR
8868 * This means the reserved space should be freed here. However,
8869 * if a truncate invalidates the page (by clearing PageDirty)
8870 * and the page is accounted for while allocating extent
8871 * in btrfs_check_data_free_space() we let delayed_ref to
8872 * free the entire extent.
b9d0b389 8873 */
0b34c261
GR
8874 if (PageDirty(page))
8875 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
131e404a
FDBM
8876 if (!inode_evicting) {
8877 clear_extent_bit(tree, page_start, page_end,
8878 EXTENT_LOCKED | EXTENT_DIRTY |
8879 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8880 EXTENT_DEFRAG, 1, 1,
8881 &cached_state, GFP_NOFS);
8882
8883 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8884 }
e6dcd2dc 8885
4a096752 8886 ClearPageChecked(page);
9ad6b7bc 8887 if (PagePrivate(page)) {
9ad6b7bc
CM
8888 ClearPagePrivate(page);
8889 set_page_private(page, 0);
09cbfeaf 8890 put_page(page);
9ad6b7bc 8891 }
39279cc3
CM
8892}
8893
9ebefb18
CM
8894/*
8895 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8896 * called from a page fault handler when a page is first dirtied. Hence we must
8897 * be careful to check for EOF conditions here. We set the page up correctly
8898 * for a written page which means we get ENOSPC checking when writing into
8899 * holes and correct delalloc and unwritten extent mapping on filesystems that
8900 * support these features.
8901 *
8902 * We are not allowed to take the i_mutex here so we have to play games to
8903 * protect against truncate races as the page could now be beyond EOF. Because
8904 * vmtruncate() writes the inode size before removing pages, once we have the
8905 * page lock we can determine safely if the page is beyond EOF. If it is not
8906 * beyond EOF, then the page is guaranteed safe against truncation until we
8907 * unlock the page.
8908 */
11bac800 8909int btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8910{
c2ec175c 8911 struct page *page = vmf->page;
11bac800 8912 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8913 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8914 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8915 struct btrfs_ordered_extent *ordered;
2ac55d41 8916 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8917 char *kaddr;
8918 unsigned long zero_start;
9ebefb18 8919 loff_t size;
1832a6d5 8920 int ret;
9998eb70 8921 int reserved = 0;
d0b7da88 8922 u64 reserved_space;
a52d9a80 8923 u64 page_start;
e6dcd2dc 8924 u64 page_end;
d0b7da88
CR
8925 u64 end;
8926
09cbfeaf 8927 reserved_space = PAGE_SIZE;
9ebefb18 8928
b2b5ef5c 8929 sb_start_pagefault(inode->i_sb);
df480633 8930 page_start = page_offset(page);
09cbfeaf 8931 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8932 end = page_end;
df480633 8933
d0b7da88
CR
8934 /*
8935 * Reserving delalloc space after obtaining the page lock can lead to
8936 * deadlock. For example, if a dirty page is locked by this function
8937 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8938 * dirty page write out, then the btrfs_writepage() function could
8939 * end up waiting indefinitely to get a lock on the page currently
8940 * being processed by btrfs_page_mkwrite() function.
8941 */
7cf5b976 8942 ret = btrfs_delalloc_reserve_space(inode, page_start,
d0b7da88 8943 reserved_space);
9998eb70 8944 if (!ret) {
11bac800 8945 ret = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8946 reserved = 1;
8947 }
56a76f82
NP
8948 if (ret) {
8949 if (ret == -ENOMEM)
8950 ret = VM_FAULT_OOM;
8951 else /* -ENOSPC, -EIO, etc */
8952 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8953 if (reserved)
8954 goto out;
8955 goto out_noreserve;
56a76f82 8956 }
1832a6d5 8957
56a76f82 8958 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8959again:
9ebefb18 8960 lock_page(page);
9ebefb18 8961 size = i_size_read(inode);
a52d9a80 8962
9ebefb18 8963 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8964 (page_start >= size)) {
9ebefb18
CM
8965 /* page got truncated out from underneath us */
8966 goto out_unlock;
8967 }
e6dcd2dc
CM
8968 wait_on_page_writeback(page);
8969
ff13db41 8970 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8971 set_page_extent_mapped(page);
8972
eb84ae03
CM
8973 /*
8974 * we can't set the delalloc bits if there are pending ordered
8975 * extents. Drop our locks and wait for them to finish
8976 */
a776c6fa
NB
8977 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8978 PAGE_SIZE);
e6dcd2dc 8979 if (ordered) {
2ac55d41
JB
8980 unlock_extent_cached(io_tree, page_start, page_end,
8981 &cached_state, GFP_NOFS);
e6dcd2dc 8982 unlock_page(page);
eb84ae03 8983 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8984 btrfs_put_ordered_extent(ordered);
8985 goto again;
8986 }
8987
09cbfeaf 8988 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 8989 reserved_space = round_up(size - page_start,
0b246afa 8990 fs_info->sectorsize);
09cbfeaf 8991 if (reserved_space < PAGE_SIZE) {
d0b7da88
CR
8992 end = page_start + reserved_space - 1;
8993 spin_lock(&BTRFS_I(inode)->lock);
8994 BTRFS_I(inode)->outstanding_extents++;
8995 spin_unlock(&BTRFS_I(inode)->lock);
8996 btrfs_delalloc_release_space(inode, page_start,
09cbfeaf 8997 PAGE_SIZE - reserved_space);
d0b7da88
CR
8998 }
8999 }
9000
fbf19087 9001 /*
5416034f
LB
9002 * page_mkwrite gets called when the page is firstly dirtied after it's
9003 * faulted in, but write(2) could also dirty a page and set delalloc
9004 * bits, thus in this case for space account reason, we still need to
9005 * clear any delalloc bits within this page range since we have to
9006 * reserve data&meta space before lock_page() (see above comments).
fbf19087 9007 */
d0b7da88 9008 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
9009 EXTENT_DIRTY | EXTENT_DELALLOC |
9010 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 9011 0, 0, &cached_state, GFP_NOFS);
fbf19087 9012
d0b7da88 9013 ret = btrfs_set_extent_delalloc(inode, page_start, end,
ba8b04c1 9014 &cached_state, 0);
9ed74f2d 9015 if (ret) {
2ac55d41
JB
9016 unlock_extent_cached(io_tree, page_start, page_end,
9017 &cached_state, GFP_NOFS);
9ed74f2d
JB
9018 ret = VM_FAULT_SIGBUS;
9019 goto out_unlock;
9020 }
e6dcd2dc 9021 ret = 0;
9ebefb18
CM
9022
9023 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9024 if (page_start + PAGE_SIZE > size)
9025 zero_start = size & ~PAGE_MASK;
9ebefb18 9026 else
09cbfeaf 9027 zero_start = PAGE_SIZE;
9ebefb18 9028
09cbfeaf 9029 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9030 kaddr = kmap(page);
09cbfeaf 9031 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9032 flush_dcache_page(page);
9033 kunmap(page);
9034 }
247e743c 9035 ClearPageChecked(page);
e6dcd2dc 9036 set_page_dirty(page);
50a9b214 9037 SetPageUptodate(page);
5a3f23d5 9038
0b246afa 9039 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 9040 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9041 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9042
2ac55d41 9043 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
9044
9045out_unlock:
b2b5ef5c
JK
9046 if (!ret) {
9047 sb_end_pagefault(inode->i_sb);
50a9b214 9048 return VM_FAULT_LOCKED;
b2b5ef5c 9049 }
9ebefb18 9050 unlock_page(page);
1832a6d5 9051out:
d0b7da88 9052 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9998eb70 9053out_noreserve:
b2b5ef5c 9054 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
9055 return ret;
9056}
9057
a41ad394 9058static int btrfs_truncate(struct inode *inode)
39279cc3 9059{
0b246afa 9060 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 9061 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9062 struct btrfs_block_rsv *rsv;
a71754fc 9063 int ret = 0;
3893e33b 9064 int err = 0;
39279cc3 9065 struct btrfs_trans_handle *trans;
0b246afa
JM
9066 u64 mask = fs_info->sectorsize - 1;
9067 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 9068
0ef8b726
JB
9069 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9070 (u64)-1);
9071 if (ret)
9072 return ret;
39279cc3 9073
fcb80c2a 9074 /*
01327610 9075 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9076 * 3 things going on here
9077 *
9078 * 1) We need to reserve space for our orphan item and the space to
9079 * delete our orphan item. Lord knows we don't want to have a dangling
9080 * orphan item because we didn't reserve space to remove it.
9081 *
9082 * 2) We need to reserve space to update our inode.
9083 *
9084 * 3) We need to have something to cache all the space that is going to
9085 * be free'd up by the truncate operation, but also have some slack
9086 * space reserved in case it uses space during the truncate (thank you
9087 * very much snapshotting).
9088 *
01327610 9089 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9090 * space doing the truncate, and we have no earthly idea how much space
01327610 9091 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9092 * doesn't end up using space reserved for updating the inode or
9093 * removing the orphan item. We also need to be able to stop the
9094 * transaction and start a new one, which means we need to be able to
9095 * update the inode several times, and we have no idea of knowing how
9096 * many times that will be, so we can't just reserve 1 item for the
01327610 9097 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9098 * Then there is the orphan item, which does indeed need to be held on
9099 * to for the whole operation, and we need nobody to touch this reserved
9100 * space except the orphan code.
9101 *
9102 * So that leaves us with
9103 *
9104 * 1) root->orphan_block_rsv - for the orphan deletion.
9105 * 2) rsv - for the truncate reservation, which we will steal from the
9106 * transaction reservation.
9107 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9108 * updating the inode.
9109 */
2ff7e61e 9110 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9111 if (!rsv)
9112 return -ENOMEM;
4a338542 9113 rsv->size = min_size;
ca7e70f5 9114 rsv->failfast = 1;
f0cd846e 9115
907cbceb 9116 /*
07127184 9117 * 1 for the truncate slack space
907cbceb
JB
9118 * 1 for updating the inode.
9119 */
f3fe820c 9120 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9121 if (IS_ERR(trans)) {
9122 err = PTR_ERR(trans);
9123 goto out;
9124 }
f0cd846e 9125
907cbceb 9126 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9127 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 9128 min_size, 0);
fcb80c2a 9129 BUG_ON(ret);
f0cd846e 9130
5dc562c5
JB
9131 /*
9132 * So if we truncate and then write and fsync we normally would just
9133 * write the extents that changed, which is a problem if we need to
9134 * first truncate that entire inode. So set this flag so we write out
9135 * all of the extents in the inode to the sync log so we're completely
9136 * safe.
9137 */
9138 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9139 trans->block_rsv = rsv;
907cbceb 9140
8082510e
YZ
9141 while (1) {
9142 ret = btrfs_truncate_inode_items(trans, root, inode,
9143 inode->i_size,
9144 BTRFS_EXTENT_DATA_KEY);
28ed1345 9145 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9146 err = ret;
8082510e 9147 break;
3893e33b 9148 }
39279cc3 9149
0b246afa 9150 trans->block_rsv = &fs_info->trans_block_rsv;
8082510e 9151 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9152 if (ret) {
9153 err = ret;
9154 break;
9155 }
ca7e70f5 9156
3a45bb20 9157 btrfs_end_transaction(trans);
2ff7e61e 9158 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9159
9160 trans = btrfs_start_transaction(root, 2);
9161 if (IS_ERR(trans)) {
9162 ret = err = PTR_ERR(trans);
9163 trans = NULL;
9164 break;
9165 }
9166
47b5d646 9167 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9168 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 9169 rsv, min_size, 0);
ca7e70f5
JB
9170 BUG_ON(ret); /* shouldn't happen */
9171 trans->block_rsv = rsv;
8082510e
YZ
9172 }
9173
9174 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9175 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 9176 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
3893e33b
JB
9177 if (ret)
9178 err = ret;
8082510e
YZ
9179 }
9180
917c16b2 9181 if (trans) {
0b246afa 9182 trans->block_rsv = &fs_info->trans_block_rsv;
917c16b2
CM
9183 ret = btrfs_update_inode(trans, root, inode);
9184 if (ret && !err)
9185 err = ret;
7b128766 9186
3a45bb20 9187 ret = btrfs_end_transaction(trans);
2ff7e61e 9188 btrfs_btree_balance_dirty(fs_info);
917c16b2 9189 }
fcb80c2a 9190out:
2ff7e61e 9191 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9192
3893e33b
JB
9193 if (ret && !err)
9194 err = ret;
a41ad394 9195
3893e33b 9196 return err;
39279cc3
CM
9197}
9198
d352ac68
CM
9199/*
9200 * create a new subvolume directory/inode (helper for the ioctl).
9201 */
d2fb3437 9202int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9203 struct btrfs_root *new_root,
9204 struct btrfs_root *parent_root,
9205 u64 new_dirid)
39279cc3 9206{
39279cc3 9207 struct inode *inode;
76dda93c 9208 int err;
00e4e6b3 9209 u64 index = 0;
39279cc3 9210
12fc9d09
FA
9211 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9212 new_dirid, new_dirid,
9213 S_IFDIR | (~current_umask() & S_IRWXUGO),
9214 &index);
54aa1f4d 9215 if (IS_ERR(inode))
f46b5a66 9216 return PTR_ERR(inode);
39279cc3
CM
9217 inode->i_op = &btrfs_dir_inode_operations;
9218 inode->i_fop = &btrfs_dir_file_operations;
9219
bfe86848 9220 set_nlink(inode, 1);
6ef06d27 9221 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9222 unlock_new_inode(inode);
3b96362c 9223
63541927
FDBM
9224 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9225 if (err)
9226 btrfs_err(new_root->fs_info,
351fd353 9227 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9228 new_root->root_key.objectid, err);
9229
76dda93c 9230 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9231
76dda93c 9232 iput(inode);
ce598979 9233 return err;
39279cc3
CM
9234}
9235
39279cc3
CM
9236struct inode *btrfs_alloc_inode(struct super_block *sb)
9237{
9238 struct btrfs_inode *ei;
2ead6ae7 9239 struct inode *inode;
39279cc3
CM
9240
9241 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9242 if (!ei)
9243 return NULL;
2ead6ae7
YZ
9244
9245 ei->root = NULL;
2ead6ae7 9246 ei->generation = 0;
15ee9bc7 9247 ei->last_trans = 0;
257c62e1 9248 ei->last_sub_trans = 0;
e02119d5 9249 ei->logged_trans = 0;
2ead6ae7 9250 ei->delalloc_bytes = 0;
47059d93 9251 ei->defrag_bytes = 0;
2ead6ae7
YZ
9252 ei->disk_i_size = 0;
9253 ei->flags = 0;
7709cde3 9254 ei->csum_bytes = 0;
2ead6ae7 9255 ei->index_cnt = (u64)-1;
67de1176 9256 ei->dir_index = 0;
2ead6ae7 9257 ei->last_unlink_trans = 0;
46d8bc34 9258 ei->last_log_commit = 0;
8089fe62 9259 ei->delayed_iput_count = 0;
2ead6ae7 9260
9e0baf60
JB
9261 spin_lock_init(&ei->lock);
9262 ei->outstanding_extents = 0;
9263 ei->reserved_extents = 0;
2ead6ae7 9264
72ac3c0d 9265 ei->runtime_flags = 0;
261507a0 9266 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9267
16cdcec7
MX
9268 ei->delayed_node = NULL;
9269
9cc97d64 9270 ei->i_otime.tv_sec = 0;
9271 ei->i_otime.tv_nsec = 0;
9272
2ead6ae7 9273 inode = &ei->vfs_inode;
a8067e02 9274 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
9275 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9276 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
9277 ei->io_tree.track_uptodate = 1;
9278 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9279 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9280 mutex_init(&ei->log_mutex);
f248679e 9281 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9282 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9283 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9284 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9285 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9286 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9287
9288 return inode;
39279cc3
CM
9289}
9290
aaedb55b
JB
9291#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9292void btrfs_test_destroy_inode(struct inode *inode)
9293{
dcdbc059 9294 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9295 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9296}
9297#endif
9298
fa0d7e3d
NP
9299static void btrfs_i_callback(struct rcu_head *head)
9300{
9301 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9302 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9303}
9304
39279cc3
CM
9305void btrfs_destroy_inode(struct inode *inode)
9306{
0b246afa 9307 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9308 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9309 struct btrfs_root *root = BTRFS_I(inode)->root;
9310
b3d9b7a3 9311 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9312 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9313 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9314 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
9315 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9316 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9317 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9318
a6dbd429
JB
9319 /*
9320 * This can happen where we create an inode, but somebody else also
9321 * created the same inode and we need to destroy the one we already
9322 * created.
9323 */
9324 if (!root)
9325 goto free;
9326
8a35d95f
JB
9327 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9328 &BTRFS_I(inode)->runtime_flags)) {
0b246afa 9329 btrfs_info(fs_info, "inode %llu still on the orphan list",
4a0cc7ca 9330 btrfs_ino(BTRFS_I(inode)));
8a35d95f 9331 atomic_dec(&root->orphan_inodes);
7b128766 9332 }
7b128766 9333
d397712b 9334 while (1) {
e6dcd2dc
CM
9335 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9336 if (!ordered)
9337 break;
9338 else {
0b246afa 9339 btrfs_err(fs_info,
5d163e0e
JM
9340 "found ordered extent %llu %llu on inode cleanup",
9341 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9342 btrfs_remove_ordered_extent(inode, ordered);
9343 btrfs_put_ordered_extent(ordered);
9344 btrfs_put_ordered_extent(ordered);
9345 }
9346 }
56fa9d07 9347 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9348 inode_tree_del(inode);
dcdbc059 9349 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
a6dbd429 9350free:
fa0d7e3d 9351 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9352}
9353
45321ac5 9354int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9355{
9356 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9357
6379ef9f
NA
9358 if (root == NULL)
9359 return 1;
9360
fa6ac876 9361 /* the snap/subvol tree is on deleting */
69e9c6c6 9362 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9363 return 1;
76dda93c 9364 else
45321ac5 9365 return generic_drop_inode(inode);
76dda93c
YZ
9366}
9367
0ee0fda0 9368static void init_once(void *foo)
39279cc3
CM
9369{
9370 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9371
9372 inode_init_once(&ei->vfs_inode);
9373}
9374
9375void btrfs_destroy_cachep(void)
9376{
8c0a8537
KS
9377 /*
9378 * Make sure all delayed rcu free inodes are flushed before we
9379 * destroy cache.
9380 */
9381 rcu_barrier();
5598e900
KM
9382 kmem_cache_destroy(btrfs_inode_cachep);
9383 kmem_cache_destroy(btrfs_trans_handle_cachep);
9384 kmem_cache_destroy(btrfs_transaction_cachep);
9385 kmem_cache_destroy(btrfs_path_cachep);
9386 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9387}
9388
9389int btrfs_init_cachep(void)
9390{
837e1972 9391 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9392 sizeof(struct btrfs_inode), 0,
5d097056
VD
9393 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9394 init_once);
39279cc3
CM
9395 if (!btrfs_inode_cachep)
9396 goto fail;
9601e3f6 9397
837e1972 9398 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9399 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9400 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9401 if (!btrfs_trans_handle_cachep)
9402 goto fail;
9601e3f6 9403
837e1972 9404 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6 9405 sizeof(struct btrfs_transaction), 0,
fba4b697 9406 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9407 if (!btrfs_transaction_cachep)
9408 goto fail;
9601e3f6 9409
837e1972 9410 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9411 sizeof(struct btrfs_path), 0,
fba4b697 9412 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9413 if (!btrfs_path_cachep)
9414 goto fail;
9601e3f6 9415
837e1972 9416 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9417 sizeof(struct btrfs_free_space), 0,
fba4b697 9418 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9419 if (!btrfs_free_space_cachep)
9420 goto fail;
9421
39279cc3
CM
9422 return 0;
9423fail:
9424 btrfs_destroy_cachep();
9425 return -ENOMEM;
9426}
9427
a528d35e
DH
9428static int btrfs_getattr(const struct path *path, struct kstat *stat,
9429 u32 request_mask, unsigned int flags)
39279cc3 9430{
df0af1a5 9431 u64 delalloc_bytes;
a528d35e 9432 struct inode *inode = d_inode(path->dentry);
fadc0d8b
DS
9433 u32 blocksize = inode->i_sb->s_blocksize;
9434
39279cc3 9435 generic_fillattr(inode, stat);
0ee5dc67 9436 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9437
9438 spin_lock(&BTRFS_I(inode)->lock);
9439 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9440 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9441 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9442 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9443 return 0;
9444}
9445
cdd1fedf
DF
9446static int btrfs_rename_exchange(struct inode *old_dir,
9447 struct dentry *old_dentry,
9448 struct inode *new_dir,
9449 struct dentry *new_dentry)
9450{
0b246afa 9451 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9452 struct btrfs_trans_handle *trans;
9453 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9454 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9455 struct inode *new_inode = new_dentry->d_inode;
9456 struct inode *old_inode = old_dentry->d_inode;
c2050a45 9457 struct timespec ctime = current_time(old_inode);
cdd1fedf 9458 struct dentry *parent;
4a0cc7ca
NB
9459 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9460 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9461 u64 old_idx = 0;
9462 u64 new_idx = 0;
9463 u64 root_objectid;
9464 int ret;
86e8aa0e
FM
9465 bool root_log_pinned = false;
9466 bool dest_log_pinned = false;
cdd1fedf
DF
9467
9468 /* we only allow rename subvolume link between subvolumes */
9469 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9470 return -EXDEV;
9471
9472 /* close the race window with snapshot create/destroy ioctl */
9473 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9474 down_read(&fs_info->subvol_sem);
cdd1fedf 9475 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9476 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9477
9478 /*
9479 * We want to reserve the absolute worst case amount of items. So if
9480 * both inodes are subvols and we need to unlink them then that would
9481 * require 4 item modifications, but if they are both normal inodes it
9482 * would require 5 item modifications, so we'll assume their normal
9483 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9484 * should cover the worst case number of items we'll modify.
9485 */
9486 trans = btrfs_start_transaction(root, 12);
9487 if (IS_ERR(trans)) {
9488 ret = PTR_ERR(trans);
9489 goto out_notrans;
9490 }
9491
9492 /*
9493 * We need to find a free sequence number both in the source and
9494 * in the destination directory for the exchange.
9495 */
877574e2 9496 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9497 if (ret)
9498 goto out_fail;
877574e2 9499 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9500 if (ret)
9501 goto out_fail;
9502
9503 BTRFS_I(old_inode)->dir_index = 0ULL;
9504 BTRFS_I(new_inode)->dir_index = 0ULL;
9505
9506 /* Reference for the source. */
9507 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9508 /* force full log commit if subvolume involved. */
0b246afa 9509 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9510 } else {
376e5a57
FM
9511 btrfs_pin_log_trans(root);
9512 root_log_pinned = true;
cdd1fedf
DF
9513 ret = btrfs_insert_inode_ref(trans, dest,
9514 new_dentry->d_name.name,
9515 new_dentry->d_name.len,
9516 old_ino,
f85b7379
DS
9517 btrfs_ino(BTRFS_I(new_dir)),
9518 old_idx);
cdd1fedf
DF
9519 if (ret)
9520 goto out_fail;
cdd1fedf
DF
9521 }
9522
9523 /* And now for the dest. */
9524 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9525 /* force full log commit if subvolume involved. */
0b246afa 9526 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9527 } else {
376e5a57
FM
9528 btrfs_pin_log_trans(dest);
9529 dest_log_pinned = true;
cdd1fedf
DF
9530 ret = btrfs_insert_inode_ref(trans, root,
9531 old_dentry->d_name.name,
9532 old_dentry->d_name.len,
9533 new_ino,
f85b7379
DS
9534 btrfs_ino(BTRFS_I(old_dir)),
9535 new_idx);
cdd1fedf
DF
9536 if (ret)
9537 goto out_fail;
cdd1fedf
DF
9538 }
9539
9540 /* Update inode version and ctime/mtime. */
9541 inode_inc_iversion(old_dir);
9542 inode_inc_iversion(new_dir);
9543 inode_inc_iversion(old_inode);
9544 inode_inc_iversion(new_inode);
9545 old_dir->i_ctime = old_dir->i_mtime = ctime;
9546 new_dir->i_ctime = new_dir->i_mtime = ctime;
9547 old_inode->i_ctime = ctime;
9548 new_inode->i_ctime = ctime;
9549
9550 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9551 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9552 BTRFS_I(old_inode), 1);
9553 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9554 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9555 }
9556
9557 /* src is a subvolume */
9558 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9559 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9560 ret = btrfs_unlink_subvol(trans, root, old_dir,
9561 root_objectid,
9562 old_dentry->d_name.name,
9563 old_dentry->d_name.len);
9564 } else { /* src is an inode */
4ec5934e
NB
9565 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9566 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9567 old_dentry->d_name.name,
9568 old_dentry->d_name.len);
9569 if (!ret)
9570 ret = btrfs_update_inode(trans, root, old_inode);
9571 }
9572 if (ret) {
66642832 9573 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9574 goto out_fail;
9575 }
9576
9577 /* dest is a subvolume */
9578 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9579 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9580 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9581 root_objectid,
9582 new_dentry->d_name.name,
9583 new_dentry->d_name.len);
9584 } else { /* dest is an inode */
4ec5934e
NB
9585 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9586 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9587 new_dentry->d_name.name,
9588 new_dentry->d_name.len);
9589 if (!ret)
9590 ret = btrfs_update_inode(trans, dest, new_inode);
9591 }
9592 if (ret) {
66642832 9593 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9594 goto out_fail;
9595 }
9596
db0a669f 9597 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9598 new_dentry->d_name.name,
9599 new_dentry->d_name.len, 0, old_idx);
9600 if (ret) {
66642832 9601 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9602 goto out_fail;
9603 }
9604
db0a669f 9605 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9606 old_dentry->d_name.name,
9607 old_dentry->d_name.len, 0, new_idx);
9608 if (ret) {
66642832 9609 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9610 goto out_fail;
9611 }
9612
9613 if (old_inode->i_nlink == 1)
9614 BTRFS_I(old_inode)->dir_index = old_idx;
9615 if (new_inode->i_nlink == 1)
9616 BTRFS_I(new_inode)->dir_index = new_idx;
9617
86e8aa0e 9618 if (root_log_pinned) {
cdd1fedf 9619 parent = new_dentry->d_parent;
f85b7379
DS
9620 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9621 parent);
cdd1fedf 9622 btrfs_end_log_trans(root);
86e8aa0e 9623 root_log_pinned = false;
cdd1fedf 9624 }
86e8aa0e 9625 if (dest_log_pinned) {
cdd1fedf 9626 parent = old_dentry->d_parent;
f85b7379
DS
9627 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9628 parent);
cdd1fedf 9629 btrfs_end_log_trans(dest);
86e8aa0e 9630 dest_log_pinned = false;
cdd1fedf
DF
9631 }
9632out_fail:
86e8aa0e
FM
9633 /*
9634 * If we have pinned a log and an error happened, we unpin tasks
9635 * trying to sync the log and force them to fallback to a transaction
9636 * commit if the log currently contains any of the inodes involved in
9637 * this rename operation (to ensure we do not persist a log with an
9638 * inconsistent state for any of these inodes or leading to any
9639 * inconsistencies when replayed). If the transaction was aborted, the
9640 * abortion reason is propagated to userspace when attempting to commit
9641 * the transaction. If the log does not contain any of these inodes, we
9642 * allow the tasks to sync it.
9643 */
9644 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9645 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9646 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9647 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9648 (new_inode &&
0f8939b8 9649 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9650 btrfs_set_log_full_commit(fs_info, trans);
86e8aa0e
FM
9651
9652 if (root_log_pinned) {
9653 btrfs_end_log_trans(root);
9654 root_log_pinned = false;
9655 }
9656 if (dest_log_pinned) {
9657 btrfs_end_log_trans(dest);
9658 dest_log_pinned = false;
9659 }
9660 }
3a45bb20 9661 ret = btrfs_end_transaction(trans);
cdd1fedf
DF
9662out_notrans:
9663 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9664 up_read(&fs_info->subvol_sem);
cdd1fedf 9665 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9666 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9667
9668 return ret;
9669}
9670
9671static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9672 struct btrfs_root *root,
9673 struct inode *dir,
9674 struct dentry *dentry)
9675{
9676 int ret;
9677 struct inode *inode;
9678 u64 objectid;
9679 u64 index;
9680
9681 ret = btrfs_find_free_ino(root, &objectid);
9682 if (ret)
9683 return ret;
9684
9685 inode = btrfs_new_inode(trans, root, dir,
9686 dentry->d_name.name,
9687 dentry->d_name.len,
4a0cc7ca 9688 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9689 objectid,
9690 S_IFCHR | WHITEOUT_MODE,
9691 &index);
9692
9693 if (IS_ERR(inode)) {
9694 ret = PTR_ERR(inode);
9695 return ret;
9696 }
9697
9698 inode->i_op = &btrfs_special_inode_operations;
9699 init_special_inode(inode, inode->i_mode,
9700 WHITEOUT_DEV);
9701
9702 ret = btrfs_init_inode_security(trans, inode, dir,
9703 &dentry->d_name);
9704 if (ret)
c9901618 9705 goto out;
cdd1fedf 9706
cef415af
NB
9707 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9708 BTRFS_I(inode), 0, index);
cdd1fedf 9709 if (ret)
c9901618 9710 goto out;
cdd1fedf
DF
9711
9712 ret = btrfs_update_inode(trans, root, inode);
c9901618 9713out:
cdd1fedf 9714 unlock_new_inode(inode);
c9901618
FM
9715 if (ret)
9716 inode_dec_link_count(inode);
cdd1fedf
DF
9717 iput(inode);
9718
c9901618 9719 return ret;
cdd1fedf
DF
9720}
9721
d397712b 9722static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9723 struct inode *new_dir, struct dentry *new_dentry,
9724 unsigned int flags)
39279cc3 9725{
0b246afa 9726 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9727 struct btrfs_trans_handle *trans;
5062af35 9728 unsigned int trans_num_items;
39279cc3 9729 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9730 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9731 struct inode *new_inode = d_inode(new_dentry);
9732 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9733 u64 index = 0;
4df27c4d 9734 u64 root_objectid;
39279cc3 9735 int ret;
4a0cc7ca 9736 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9737 bool log_pinned = false;
39279cc3 9738
4a0cc7ca 9739 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9740 return -EPERM;
9741
4df27c4d 9742 /* we only allow rename subvolume link between subvolumes */
33345d01 9743 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9744 return -EXDEV;
9745
33345d01 9746 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9747 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9748 return -ENOTEMPTY;
5f39d397 9749
4df27c4d
YZ
9750 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9751 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9752 return -ENOTEMPTY;
9c52057c
CM
9753
9754
9755 /* check for collisions, even if the name isn't there */
4871c158 9756 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9757 new_dentry->d_name.name,
9758 new_dentry->d_name.len);
9759
9760 if (ret) {
9761 if (ret == -EEXIST) {
9762 /* we shouldn't get
9763 * eexist without a new_inode */
fae7f21c 9764 if (WARN_ON(!new_inode)) {
9c52057c
CM
9765 return ret;
9766 }
9767 } else {
9768 /* maybe -EOVERFLOW */
9769 return ret;
9770 }
9771 }
9772 ret = 0;
9773
5a3f23d5 9774 /*
8d875f95
CM
9775 * we're using rename to replace one file with another. Start IO on it
9776 * now so we don't add too much work to the end of the transaction
5a3f23d5 9777 */
8d875f95 9778 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9779 filemap_flush(old_inode->i_mapping);
9780
76dda93c 9781 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9782 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9783 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9784 /*
9785 * We want to reserve the absolute worst case amount of items. So if
9786 * both inodes are subvols and we need to unlink them then that would
9787 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9788 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9789 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9790 * should cover the worst case number of items we'll modify.
5062af35
FM
9791 * If our rename has the whiteout flag, we need more 5 units for the
9792 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9793 * when selinux is enabled).
a22285a6 9794 */
5062af35
FM
9795 trans_num_items = 11;
9796 if (flags & RENAME_WHITEOUT)
9797 trans_num_items += 5;
9798 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9799 if (IS_ERR(trans)) {
cdd1fedf
DF
9800 ret = PTR_ERR(trans);
9801 goto out_notrans;
9802 }
76dda93c 9803
4df27c4d
YZ
9804 if (dest != root)
9805 btrfs_record_root_in_trans(trans, dest);
5f39d397 9806
877574e2 9807 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9808 if (ret)
9809 goto out_fail;
5a3f23d5 9810
67de1176 9811 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9812 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9813 /* force full log commit if subvolume involved. */
0b246afa 9814 btrfs_set_log_full_commit(fs_info, trans);
4df27c4d 9815 } else {
c4aba954
FM
9816 btrfs_pin_log_trans(root);
9817 log_pinned = true;
a5719521
YZ
9818 ret = btrfs_insert_inode_ref(trans, dest,
9819 new_dentry->d_name.name,
9820 new_dentry->d_name.len,
33345d01 9821 old_ino,
4a0cc7ca 9822 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9823 if (ret)
9824 goto out_fail;
4df27c4d 9825 }
5a3f23d5 9826
0c4d2d95
JB
9827 inode_inc_iversion(old_dir);
9828 inode_inc_iversion(new_dir);
9829 inode_inc_iversion(old_inode);
04b285f3
DD
9830 old_dir->i_ctime = old_dir->i_mtime =
9831 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9832 old_inode->i_ctime = current_time(old_dir);
5f39d397 9833
12fcfd22 9834 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9835 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9836 BTRFS_I(old_inode), 1);
12fcfd22 9837
33345d01 9838 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9839 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9840 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9841 old_dentry->d_name.name,
9842 old_dentry->d_name.len);
9843 } else {
4ec5934e
NB
9844 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9845 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9846 old_dentry->d_name.name,
9847 old_dentry->d_name.len);
9848 if (!ret)
9849 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9850 }
79787eaa 9851 if (ret) {
66642832 9852 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9853 goto out_fail;
9854 }
39279cc3
CM
9855
9856 if (new_inode) {
0c4d2d95 9857 inode_inc_iversion(new_inode);
c2050a45 9858 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9859 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
9860 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9861 root_objectid = BTRFS_I(new_inode)->location.objectid;
9862 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9863 root_objectid,
9864 new_dentry->d_name.name,
9865 new_dentry->d_name.len);
9866 BUG_ON(new_inode->i_nlink == 0);
9867 } else {
4ec5934e
NB
9868 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9869 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9870 new_dentry->d_name.name,
9871 new_dentry->d_name.len);
9872 }
4ef31a45 9873 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9874 ret = btrfs_orphan_add(trans,
9875 BTRFS_I(d_inode(new_dentry)));
79787eaa 9876 if (ret) {
66642832 9877 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9878 goto out_fail;
9879 }
39279cc3 9880 }
aec7477b 9881
db0a669f 9882 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 9883 new_dentry->d_name.name,
a5719521 9884 new_dentry->d_name.len, 0, index);
79787eaa 9885 if (ret) {
66642832 9886 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9887 goto out_fail;
9888 }
39279cc3 9889
67de1176
MX
9890 if (old_inode->i_nlink == 1)
9891 BTRFS_I(old_inode)->dir_index = index;
9892
3dc9e8f7 9893 if (log_pinned) {
10d9f309 9894 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9895
f85b7379
DS
9896 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9897 parent);
4df27c4d 9898 btrfs_end_log_trans(root);
3dc9e8f7 9899 log_pinned = false;
4df27c4d 9900 }
cdd1fedf
DF
9901
9902 if (flags & RENAME_WHITEOUT) {
9903 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9904 old_dentry);
9905
9906 if (ret) {
66642832 9907 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9908 goto out_fail;
9909 }
4df27c4d 9910 }
39279cc3 9911out_fail:
3dc9e8f7
FM
9912 /*
9913 * If we have pinned the log and an error happened, we unpin tasks
9914 * trying to sync the log and force them to fallback to a transaction
9915 * commit if the log currently contains any of the inodes involved in
9916 * this rename operation (to ensure we do not persist a log with an
9917 * inconsistent state for any of these inodes or leading to any
9918 * inconsistencies when replayed). If the transaction was aborted, the
9919 * abortion reason is propagated to userspace when attempting to commit
9920 * the transaction. If the log does not contain any of these inodes, we
9921 * allow the tasks to sync it.
9922 */
9923 if (ret && log_pinned) {
0f8939b8
NB
9924 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9925 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9926 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 9927 (new_inode &&
0f8939b8 9928 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9929 btrfs_set_log_full_commit(fs_info, trans);
3dc9e8f7
FM
9930
9931 btrfs_end_log_trans(root);
9932 log_pinned = false;
9933 }
3a45bb20 9934 btrfs_end_transaction(trans);
b44c59a8 9935out_notrans:
33345d01 9936 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9937 up_read(&fs_info->subvol_sem);
9ed74f2d 9938
39279cc3
CM
9939 return ret;
9940}
9941
80ace85c
MS
9942static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9943 struct inode *new_dir, struct dentry *new_dentry,
9944 unsigned int flags)
9945{
cdd1fedf 9946 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9947 return -EINVAL;
9948
cdd1fedf
DF
9949 if (flags & RENAME_EXCHANGE)
9950 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9951 new_dentry);
9952
9953 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9954}
9955
8ccf6f19
MX
9956static void btrfs_run_delalloc_work(struct btrfs_work *work)
9957{
9958 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9959 struct inode *inode;
8ccf6f19
MX
9960
9961 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9962 work);
9f23e289 9963 inode = delalloc_work->inode;
30424601
DS
9964 filemap_flush(inode->i_mapping);
9965 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9966 &BTRFS_I(inode)->runtime_flags))
9f23e289 9967 filemap_flush(inode->i_mapping);
8ccf6f19
MX
9968
9969 if (delalloc_work->delay_iput)
9f23e289 9970 btrfs_add_delayed_iput(inode);
8ccf6f19 9971 else
9f23e289 9972 iput(inode);
8ccf6f19
MX
9973 complete(&delalloc_work->completion);
9974}
9975
9976struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 9977 int delay_iput)
8ccf6f19
MX
9978{
9979 struct btrfs_delalloc_work *work;
9980
100d5702 9981 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9982 if (!work)
9983 return NULL;
9984
9985 init_completion(&work->completion);
9986 INIT_LIST_HEAD(&work->list);
9987 work->inode = inode;
8ccf6f19 9988 work->delay_iput = delay_iput;
9e0af237
LB
9989 WARN_ON_ONCE(!inode);
9990 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9991 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9992
9993 return work;
9994}
9995
9996void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9997{
9998 wait_for_completion(&work->completion);
100d5702 9999 kfree(work);
8ccf6f19
MX
10000}
10001
d352ac68
CM
10002/*
10003 * some fairly slow code that needs optimization. This walks the list
10004 * of all the inodes with pending delalloc and forces them to disk.
10005 */
6c255e67
MX
10006static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10007 int nr)
ea8c2819 10008{
ea8c2819 10009 struct btrfs_inode *binode;
5b21f2ed 10010 struct inode *inode;
8ccf6f19
MX
10011 struct btrfs_delalloc_work *work, *next;
10012 struct list_head works;
1eafa6c7 10013 struct list_head splice;
8ccf6f19 10014 int ret = 0;
ea8c2819 10015
8ccf6f19 10016 INIT_LIST_HEAD(&works);
1eafa6c7 10017 INIT_LIST_HEAD(&splice);
63607cc8 10018
573bfb72 10019 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10020 spin_lock(&root->delalloc_lock);
10021 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10022 while (!list_empty(&splice)) {
10023 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10024 delalloc_inodes);
1eafa6c7 10025
eb73c1b7
MX
10026 list_move_tail(&binode->delalloc_inodes,
10027 &root->delalloc_inodes);
5b21f2ed 10028 inode = igrab(&binode->vfs_inode);
df0af1a5 10029 if (!inode) {
eb73c1b7 10030 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10031 continue;
df0af1a5 10032 }
eb73c1b7 10033 spin_unlock(&root->delalloc_lock);
1eafa6c7 10034
651d494a 10035 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10036 if (!work) {
f4ab9ea7
JB
10037 if (delay_iput)
10038 btrfs_add_delayed_iput(inode);
10039 else
10040 iput(inode);
1eafa6c7 10041 ret = -ENOMEM;
a1ecaabb 10042 goto out;
5b21f2ed 10043 }
1eafa6c7 10044 list_add_tail(&work->list, &works);
a44903ab
QW
10045 btrfs_queue_work(root->fs_info->flush_workers,
10046 &work->work);
6c255e67
MX
10047 ret++;
10048 if (nr != -1 && ret >= nr)
a1ecaabb 10049 goto out;
5b21f2ed 10050 cond_resched();
eb73c1b7 10051 spin_lock(&root->delalloc_lock);
ea8c2819 10052 }
eb73c1b7 10053 spin_unlock(&root->delalloc_lock);
8c8bee1d 10054
a1ecaabb 10055out:
eb73c1b7
MX
10056 list_for_each_entry_safe(work, next, &works, list) {
10057 list_del_init(&work->list);
10058 btrfs_wait_and_free_delalloc_work(work);
10059 }
10060
10061 if (!list_empty_careful(&splice)) {
10062 spin_lock(&root->delalloc_lock);
10063 list_splice_tail(&splice, &root->delalloc_inodes);
10064 spin_unlock(&root->delalloc_lock);
10065 }
573bfb72 10066 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10067 return ret;
10068}
1eafa6c7 10069
eb73c1b7
MX
10070int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10071{
0b246afa 10072 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10073 int ret;
1eafa6c7 10074
0b246afa 10075 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10076 return -EROFS;
10077
6c255e67
MX
10078 ret = __start_delalloc_inodes(root, delay_iput, -1);
10079 if (ret > 0)
10080 ret = 0;
eb73c1b7
MX
10081 /*
10082 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
10083 * we have to make sure the IO is actually started and that
10084 * ordered extents get created before we return
10085 */
0b246afa
JM
10086 atomic_inc(&fs_info->async_submit_draining);
10087 while (atomic_read(&fs_info->nr_async_submits) ||
10088 atomic_read(&fs_info->async_delalloc_pages)) {
10089 wait_event(fs_info->async_submit_wait,
10090 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10091 atomic_read(&fs_info->async_delalloc_pages) == 0));
10092 }
10093 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7
MX
10094 return ret;
10095}
10096
6c255e67
MX
10097int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10098 int nr)
eb73c1b7
MX
10099{
10100 struct btrfs_root *root;
10101 struct list_head splice;
10102 int ret;
10103
2c21b4d7 10104 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10105 return -EROFS;
10106
10107 INIT_LIST_HEAD(&splice);
10108
573bfb72 10109 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10110 spin_lock(&fs_info->delalloc_root_lock);
10111 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10112 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10113 root = list_first_entry(&splice, struct btrfs_root,
10114 delalloc_root);
10115 root = btrfs_grab_fs_root(root);
10116 BUG_ON(!root);
10117 list_move_tail(&root->delalloc_root,
10118 &fs_info->delalloc_roots);
10119 spin_unlock(&fs_info->delalloc_root_lock);
10120
6c255e67 10121 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10122 btrfs_put_fs_root(root);
6c255e67 10123 if (ret < 0)
eb73c1b7
MX
10124 goto out;
10125
6c255e67
MX
10126 if (nr != -1) {
10127 nr -= ret;
10128 WARN_ON(nr < 0);
10129 }
eb73c1b7 10130 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10131 }
eb73c1b7 10132 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10133
6c255e67 10134 ret = 0;
eb73c1b7
MX
10135 atomic_inc(&fs_info->async_submit_draining);
10136 while (atomic_read(&fs_info->nr_async_submits) ||
10137 atomic_read(&fs_info->async_delalloc_pages)) {
10138 wait_event(fs_info->async_submit_wait,
10139 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10140 atomic_read(&fs_info->async_delalloc_pages) == 0));
10141 }
10142 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 10143out:
1eafa6c7 10144 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10145 spin_lock(&fs_info->delalloc_root_lock);
10146 list_splice_tail(&splice, &fs_info->delalloc_roots);
10147 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10148 }
573bfb72 10149 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10150 return ret;
ea8c2819
CM
10151}
10152
39279cc3
CM
10153static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10154 const char *symname)
10155{
0b246afa 10156 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10157 struct btrfs_trans_handle *trans;
10158 struct btrfs_root *root = BTRFS_I(dir)->root;
10159 struct btrfs_path *path;
10160 struct btrfs_key key;
1832a6d5 10161 struct inode *inode = NULL;
39279cc3
CM
10162 int err;
10163 int drop_inode = 0;
10164 u64 objectid;
67871254 10165 u64 index = 0;
39279cc3
CM
10166 int name_len;
10167 int datasize;
5f39d397 10168 unsigned long ptr;
39279cc3 10169 struct btrfs_file_extent_item *ei;
5f39d397 10170 struct extent_buffer *leaf;
39279cc3 10171
f06becc4 10172 name_len = strlen(symname);
0b246afa 10173 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10174 return -ENAMETOOLONG;
1832a6d5 10175
9ed74f2d
JB
10176 /*
10177 * 2 items for inode item and ref
10178 * 2 items for dir items
9269d12b
FM
10179 * 1 item for updating parent inode item
10180 * 1 item for the inline extent item
9ed74f2d
JB
10181 * 1 item for xattr if selinux is on
10182 */
9269d12b 10183 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10184 if (IS_ERR(trans))
10185 return PTR_ERR(trans);
1832a6d5 10186
581bb050
LZ
10187 err = btrfs_find_free_ino(root, &objectid);
10188 if (err)
10189 goto out_unlock;
10190
aec7477b 10191 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10192 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10193 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10194 if (IS_ERR(inode)) {
10195 err = PTR_ERR(inode);
39279cc3 10196 goto out_unlock;
7cf96da3 10197 }
39279cc3 10198
ad19db71
CS
10199 /*
10200 * If the active LSM wants to access the inode during
10201 * d_instantiate it needs these. Smack checks to see
10202 * if the filesystem supports xattrs by looking at the
10203 * ops vector.
10204 */
10205 inode->i_fop = &btrfs_file_operations;
10206 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10207 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10208 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10209
10210 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10211 if (err)
10212 goto out_unlock_inode;
ad19db71 10213
39279cc3 10214 path = btrfs_alloc_path();
d8926bb3
MF
10215 if (!path) {
10216 err = -ENOMEM;
b0d5d10f 10217 goto out_unlock_inode;
d8926bb3 10218 }
4a0cc7ca 10219 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10220 key.offset = 0;
962a298f 10221 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10222 datasize = btrfs_file_extent_calc_inline_size(name_len);
10223 err = btrfs_insert_empty_item(trans, root, path, &key,
10224 datasize);
54aa1f4d 10225 if (err) {
b0839166 10226 btrfs_free_path(path);
b0d5d10f 10227 goto out_unlock_inode;
54aa1f4d 10228 }
5f39d397
CM
10229 leaf = path->nodes[0];
10230 ei = btrfs_item_ptr(leaf, path->slots[0],
10231 struct btrfs_file_extent_item);
10232 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10233 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10234 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10235 btrfs_set_file_extent_encryption(leaf, ei, 0);
10236 btrfs_set_file_extent_compression(leaf, ei, 0);
10237 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10238 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10239
39279cc3 10240 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10241 write_extent_buffer(leaf, symname, ptr, name_len);
10242 btrfs_mark_buffer_dirty(leaf);
39279cc3 10243 btrfs_free_path(path);
5f39d397 10244
39279cc3 10245 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10246 inode_nohighmem(inode);
39279cc3 10247 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10248 inode_set_bytes(inode, name_len);
6ef06d27 10249 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10250 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10251 /*
10252 * Last step, add directory indexes for our symlink inode. This is the
10253 * last step to avoid extra cleanup of these indexes if an error happens
10254 * elsewhere above.
10255 */
10256 if (!err)
cef415af
NB
10257 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10258 BTRFS_I(inode), 0, index);
b0d5d10f 10259 if (err) {
54aa1f4d 10260 drop_inode = 1;
b0d5d10f
CM
10261 goto out_unlock_inode;
10262 }
10263
10264 unlock_new_inode(inode);
10265 d_instantiate(dentry, inode);
39279cc3
CM
10266
10267out_unlock:
3a45bb20 10268 btrfs_end_transaction(trans);
39279cc3
CM
10269 if (drop_inode) {
10270 inode_dec_link_count(inode);
10271 iput(inode);
10272 }
2ff7e61e 10273 btrfs_btree_balance_dirty(fs_info);
39279cc3 10274 return err;
b0d5d10f
CM
10275
10276out_unlock_inode:
10277 drop_inode = 1;
10278 unlock_new_inode(inode);
10279 goto out_unlock;
39279cc3 10280}
16432985 10281
0af3d00b
JB
10282static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10283 u64 start, u64 num_bytes, u64 min_size,
10284 loff_t actual_len, u64 *alloc_hint,
10285 struct btrfs_trans_handle *trans)
d899e052 10286{
0b246afa 10287 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10288 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10289 struct extent_map *em;
d899e052
YZ
10290 struct btrfs_root *root = BTRFS_I(inode)->root;
10291 struct btrfs_key ins;
d899e052 10292 u64 cur_offset = start;
55a61d1d 10293 u64 i_size;
154ea289 10294 u64 cur_bytes;
0b670dc4 10295 u64 last_alloc = (u64)-1;
d899e052 10296 int ret = 0;
0af3d00b 10297 bool own_trans = true;
18513091 10298 u64 end = start + num_bytes - 1;
d899e052 10299
0af3d00b
JB
10300 if (trans)
10301 own_trans = false;
d899e052 10302 while (num_bytes > 0) {
0af3d00b
JB
10303 if (own_trans) {
10304 trans = btrfs_start_transaction(root, 3);
10305 if (IS_ERR(trans)) {
10306 ret = PTR_ERR(trans);
10307 break;
10308 }
5a303d5d
YZ
10309 }
10310
ee22184b 10311 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10312 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10313 /*
10314 * If we are severely fragmented we could end up with really
10315 * small allocations, so if the allocator is returning small
10316 * chunks lets make its job easier by only searching for those
10317 * sized chunks.
10318 */
10319 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10320 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10321 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10322 if (ret) {
0af3d00b 10323 if (own_trans)
3a45bb20 10324 btrfs_end_transaction(trans);
a22285a6 10325 break;
d899e052 10326 }
0b246afa 10327 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10328
0b670dc4 10329 last_alloc = ins.offset;
d899e052
YZ
10330 ret = insert_reserved_file_extent(trans, inode,
10331 cur_offset, ins.objectid,
10332 ins.offset, ins.offset,
920bbbfb 10333 ins.offset, 0, 0, 0,
d899e052 10334 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10335 if (ret) {
2ff7e61e 10336 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10337 ins.offset, 0);
66642832 10338 btrfs_abort_transaction(trans, ret);
79787eaa 10339 if (own_trans)
3a45bb20 10340 btrfs_end_transaction(trans);
79787eaa
JM
10341 break;
10342 }
31193213 10343
dcdbc059 10344 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10345 cur_offset + ins.offset -1, 0);
5a303d5d 10346
5dc562c5
JB
10347 em = alloc_extent_map();
10348 if (!em) {
10349 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10350 &BTRFS_I(inode)->runtime_flags);
10351 goto next;
10352 }
10353
10354 em->start = cur_offset;
10355 em->orig_start = cur_offset;
10356 em->len = ins.offset;
10357 em->block_start = ins.objectid;
10358 em->block_len = ins.offset;
b4939680 10359 em->orig_block_len = ins.offset;
cc95bef6 10360 em->ram_bytes = ins.offset;
0b246afa 10361 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10362 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10363 em->generation = trans->transid;
10364
10365 while (1) {
10366 write_lock(&em_tree->lock);
09a2a8f9 10367 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10368 write_unlock(&em_tree->lock);
10369 if (ret != -EEXIST)
10370 break;
dcdbc059 10371 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10372 cur_offset + ins.offset - 1,
10373 0);
10374 }
10375 free_extent_map(em);
10376next:
d899e052
YZ
10377 num_bytes -= ins.offset;
10378 cur_offset += ins.offset;
efa56464 10379 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10380
0c4d2d95 10381 inode_inc_iversion(inode);
c2050a45 10382 inode->i_ctime = current_time(inode);
6cbff00f 10383 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10384 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10385 (actual_len > inode->i_size) &&
10386 (cur_offset > inode->i_size)) {
d1ea6a61 10387 if (cur_offset > actual_len)
55a61d1d 10388 i_size = actual_len;
d1ea6a61 10389 else
55a61d1d
JB
10390 i_size = cur_offset;
10391 i_size_write(inode, i_size);
10392 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10393 }
10394
d899e052 10395 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10396
10397 if (ret) {
66642832 10398 btrfs_abort_transaction(trans, ret);
79787eaa 10399 if (own_trans)
3a45bb20 10400 btrfs_end_transaction(trans);
79787eaa
JM
10401 break;
10402 }
d899e052 10403
0af3d00b 10404 if (own_trans)
3a45bb20 10405 btrfs_end_transaction(trans);
5a303d5d 10406 }
18513091
WX
10407 if (cur_offset < end)
10408 btrfs_free_reserved_data_space(inode, cur_offset,
10409 end - cur_offset + 1);
d899e052
YZ
10410 return ret;
10411}
10412
0af3d00b
JB
10413int btrfs_prealloc_file_range(struct inode *inode, int mode,
10414 u64 start, u64 num_bytes, u64 min_size,
10415 loff_t actual_len, u64 *alloc_hint)
10416{
10417 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10418 min_size, actual_len, alloc_hint,
10419 NULL);
10420}
10421
10422int btrfs_prealloc_file_range_trans(struct inode *inode,
10423 struct btrfs_trans_handle *trans, int mode,
10424 u64 start, u64 num_bytes, u64 min_size,
10425 loff_t actual_len, u64 *alloc_hint)
10426{
10427 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10428 min_size, actual_len, alloc_hint, trans);
10429}
10430
e6dcd2dc
CM
10431static int btrfs_set_page_dirty(struct page *page)
10432{
e6dcd2dc
CM
10433 return __set_page_dirty_nobuffers(page);
10434}
10435
10556cb2 10436static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10437{
b83cc969 10438 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10439 umode_t mode = inode->i_mode;
b83cc969 10440
cb6db4e5
JM
10441 if (mask & MAY_WRITE &&
10442 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10443 if (btrfs_root_readonly(root))
10444 return -EROFS;
10445 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10446 return -EACCES;
10447 }
2830ba7f 10448 return generic_permission(inode, mask);
fdebe2bd 10449}
39279cc3 10450
ef3b9af5
FM
10451static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10452{
2ff7e61e 10453 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10454 struct btrfs_trans_handle *trans;
10455 struct btrfs_root *root = BTRFS_I(dir)->root;
10456 struct inode *inode = NULL;
10457 u64 objectid;
10458 u64 index;
10459 int ret = 0;
10460
10461 /*
10462 * 5 units required for adding orphan entry
10463 */
10464 trans = btrfs_start_transaction(root, 5);
10465 if (IS_ERR(trans))
10466 return PTR_ERR(trans);
10467
10468 ret = btrfs_find_free_ino(root, &objectid);
10469 if (ret)
10470 goto out;
10471
10472 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10473 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10474 if (IS_ERR(inode)) {
10475 ret = PTR_ERR(inode);
10476 inode = NULL;
10477 goto out;
10478 }
10479
ef3b9af5
FM
10480 inode->i_fop = &btrfs_file_operations;
10481 inode->i_op = &btrfs_file_inode_operations;
10482
10483 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10484 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10485
b0d5d10f
CM
10486 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10487 if (ret)
10488 goto out_inode;
10489
10490 ret = btrfs_update_inode(trans, root, inode);
10491 if (ret)
10492 goto out_inode;
73f2e545 10493 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10494 if (ret)
b0d5d10f 10495 goto out_inode;
ef3b9af5 10496
5762b5c9
FM
10497 /*
10498 * We set number of links to 0 in btrfs_new_inode(), and here we set
10499 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10500 * through:
10501 *
10502 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10503 */
10504 set_nlink(inode, 1);
b0d5d10f 10505 unlock_new_inode(inode);
ef3b9af5
FM
10506 d_tmpfile(dentry, inode);
10507 mark_inode_dirty(inode);
10508
10509out:
3a45bb20 10510 btrfs_end_transaction(trans);
ef3b9af5
FM
10511 if (ret)
10512 iput(inode);
2ff7e61e
JM
10513 btrfs_balance_delayed_items(fs_info);
10514 btrfs_btree_balance_dirty(fs_info);
ef3b9af5 10515 return ret;
b0d5d10f
CM
10516
10517out_inode:
10518 unlock_new_inode(inode);
10519 goto out;
10520
ef3b9af5
FM
10521}
10522
20a7db8a 10523__attribute__((const))
9d0d1c8b 10524static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
20a7db8a 10525{
9d0d1c8b 10526 return -EAGAIN;
20a7db8a
DS
10527}
10528
6e1d5dcc 10529static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10530 .getattr = btrfs_getattr,
39279cc3
CM
10531 .lookup = btrfs_lookup,
10532 .create = btrfs_create,
10533 .unlink = btrfs_unlink,
10534 .link = btrfs_link,
10535 .mkdir = btrfs_mkdir,
10536 .rmdir = btrfs_rmdir,
2773bf00 10537 .rename = btrfs_rename2,
39279cc3
CM
10538 .symlink = btrfs_symlink,
10539 .setattr = btrfs_setattr,
618e21d5 10540 .mknod = btrfs_mknod,
5103e947 10541 .listxattr = btrfs_listxattr,
fdebe2bd 10542 .permission = btrfs_permission,
4e34e719 10543 .get_acl = btrfs_get_acl,
996a710d 10544 .set_acl = btrfs_set_acl,
93fd63c2 10545 .update_time = btrfs_update_time,
ef3b9af5 10546 .tmpfile = btrfs_tmpfile,
39279cc3 10547};
6e1d5dcc 10548static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10549 .lookup = btrfs_lookup,
fdebe2bd 10550 .permission = btrfs_permission,
93fd63c2 10551 .update_time = btrfs_update_time,
39279cc3 10552};
76dda93c 10553
828c0950 10554static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10555 .llseek = generic_file_llseek,
10556 .read = generic_read_dir,
02dbfc99 10557 .iterate_shared = btrfs_real_readdir,
34287aa3 10558 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10559#ifdef CONFIG_COMPAT
4c63c245 10560 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10561#endif
6bf13c0c 10562 .release = btrfs_release_file,
e02119d5 10563 .fsync = btrfs_sync_file,
39279cc3
CM
10564};
10565
20e5506b 10566static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10567 /* mandatory callbacks */
065631f6 10568 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac 10569 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4d53dddb 10570 .merge_bio_hook = btrfs_merge_bio_hook,
9d0d1c8b 10571 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
4d53dddb
DS
10572
10573 /* optional callbacks */
10574 .fill_delalloc = run_delalloc_range,
e6dcd2dc 10575 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10576 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10577 .set_bit_hook = btrfs_set_bit_hook,
10578 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10579 .merge_extent_hook = btrfs_merge_extent_hook,
10580 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
10581};
10582
35054394
CM
10583/*
10584 * btrfs doesn't support the bmap operation because swapfiles
10585 * use bmap to make a mapping of extents in the file. They assume
10586 * these extents won't change over the life of the file and they
10587 * use the bmap result to do IO directly to the drive.
10588 *
10589 * the btrfs bmap call would return logical addresses that aren't
10590 * suitable for IO and they also will change frequently as COW
10591 * operations happen. So, swapfile + btrfs == corruption.
10592 *
10593 * For now we're avoiding this by dropping bmap.
10594 */
7f09410b 10595static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10596 .readpage = btrfs_readpage,
10597 .writepage = btrfs_writepage,
b293f02e 10598 .writepages = btrfs_writepages,
3ab2fb5a 10599 .readpages = btrfs_readpages,
16432985 10600 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10601 .invalidatepage = btrfs_invalidatepage,
10602 .releasepage = btrfs_releasepage,
e6dcd2dc 10603 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10604 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10605};
10606
7f09410b 10607static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10608 .readpage = btrfs_readpage,
10609 .writepage = btrfs_writepage,
2bf5a725
CM
10610 .invalidatepage = btrfs_invalidatepage,
10611 .releasepage = btrfs_releasepage,
39279cc3
CM
10612};
10613
6e1d5dcc 10614static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10615 .getattr = btrfs_getattr,
10616 .setattr = btrfs_setattr,
5103e947 10617 .listxattr = btrfs_listxattr,
fdebe2bd 10618 .permission = btrfs_permission,
1506fcc8 10619 .fiemap = btrfs_fiemap,
4e34e719 10620 .get_acl = btrfs_get_acl,
996a710d 10621 .set_acl = btrfs_set_acl,
e41f941a 10622 .update_time = btrfs_update_time,
39279cc3 10623};
6e1d5dcc 10624static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10625 .getattr = btrfs_getattr,
10626 .setattr = btrfs_setattr,
fdebe2bd 10627 .permission = btrfs_permission,
33268eaf 10628 .listxattr = btrfs_listxattr,
4e34e719 10629 .get_acl = btrfs_get_acl,
996a710d 10630 .set_acl = btrfs_set_acl,
e41f941a 10631 .update_time = btrfs_update_time,
618e21d5 10632};
6e1d5dcc 10633static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10634 .get_link = page_get_link,
f209561a 10635 .getattr = btrfs_getattr,
22c44fe6 10636 .setattr = btrfs_setattr,
fdebe2bd 10637 .permission = btrfs_permission,
0279b4cd 10638 .listxattr = btrfs_listxattr,
e41f941a 10639 .update_time = btrfs_update_time,
39279cc3 10640};
76dda93c 10641
82d339d9 10642const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10643 .d_delete = btrfs_dentry_delete,
b4aff1f8 10644 .d_release = btrfs_dentry_release,
76dda93c 10645};