]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/inode.c
btrfs: btrfs_abort_transaction, drop root parameter
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
55e301fd 42#include <linux/btrfs.h>
53b381b3 43#include <linux/blkdev.h>
f23b5a59 44#include <linux/posix_acl_xattr.h>
e2e40f2c 45#include <linux/uio.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
dda3245e 63#include "dedupe.h"
39279cc3
CM
64
65struct btrfs_iget_args {
90d3e592 66 struct btrfs_key *location;
39279cc3
CM
67 struct btrfs_root *root;
68};
69
f28a4928
FM
70struct btrfs_dio_data {
71 u64 outstanding_extents;
72 u64 reserve;
73 u64 unsubmitted_oe_range_start;
74 u64 unsubmitted_oe_range_end;
75};
76
6e1d5dcc
AD
77static const struct inode_operations btrfs_dir_inode_operations;
78static const struct inode_operations btrfs_symlink_inode_operations;
79static const struct inode_operations btrfs_dir_ro_inode_operations;
80static const struct inode_operations btrfs_special_inode_operations;
81static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
82static const struct address_space_operations btrfs_aops;
83static const struct address_space_operations btrfs_symlink_aops;
828c0950 84static const struct file_operations btrfs_dir_file_operations;
20e5506b 85static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
86
87static struct kmem_cache *btrfs_inode_cachep;
88struct kmem_cache *btrfs_trans_handle_cachep;
89struct kmem_cache *btrfs_transaction_cachep;
39279cc3 90struct kmem_cache *btrfs_path_cachep;
dc89e982 91struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
92
93#define S_SHIFT 12
4d4ab6d6 94static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
102};
103
3972f260 104static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 105static int btrfs_truncate(struct inode *inode);
5fd02043 106static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
107static noinline int cow_file_range(struct inode *inode,
108 struct page *locked_page,
dda3245e
WX
109 u64 start, u64 end, u64 delalloc_end,
110 int *page_started, unsigned long *nr_written,
111 int unlock, struct btrfs_dedupe_hash *hash);
70c8a91c
JB
112static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
113 u64 len, u64 orig_start,
114 u64 block_start, u64 block_len,
cc95bef6
JB
115 u64 orig_block_len, u64 ram_bytes,
116 int type);
7b128766 117
48a3b636 118static int btrfs_dirty_inode(struct inode *inode);
7b128766 119
6a3891c5
JB
120#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
121void btrfs_test_inode_set_ops(struct inode *inode)
122{
123 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
124}
125#endif
126
f34f57a3 127static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
128 struct inode *inode, struct inode *dir,
129 const struct qstr *qstr)
0279b4cd
JO
130{
131 int err;
132
f34f57a3 133 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 134 if (!err)
2a7dba39 135 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
136 return err;
137}
138
c8b97818
CM
139/*
140 * this does all the hard work for inserting an inline extent into
141 * the btree. The caller should have done a btrfs_drop_extents so that
142 * no overlapping inline items exist in the btree
143 */
40f76580 144static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 145 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
146 struct btrfs_root *root, struct inode *inode,
147 u64 start, size_t size, size_t compressed_size,
fe3f566c 148 int compress_type,
c8b97818
CM
149 struct page **compressed_pages)
150{
c8b97818
CM
151 struct extent_buffer *leaf;
152 struct page *page = NULL;
153 char *kaddr;
154 unsigned long ptr;
155 struct btrfs_file_extent_item *ei;
156 int err = 0;
157 int ret;
158 size_t cur_size = size;
c8b97818 159 unsigned long offset;
c8b97818 160
fe3f566c 161 if (compressed_size && compressed_pages)
c8b97818 162 cur_size = compressed_size;
c8b97818 163
1acae57b 164 inode_add_bytes(inode, size);
c8b97818 165
1acae57b
FDBM
166 if (!extent_inserted) {
167 struct btrfs_key key;
168 size_t datasize;
c8b97818 169
1acae57b
FDBM
170 key.objectid = btrfs_ino(inode);
171 key.offset = start;
962a298f 172 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 173
1acae57b
FDBM
174 datasize = btrfs_file_extent_calc_inline_size(cur_size);
175 path->leave_spinning = 1;
176 ret = btrfs_insert_empty_item(trans, root, path, &key,
177 datasize);
178 if (ret) {
179 err = ret;
180 goto fail;
181 }
c8b97818
CM
182 }
183 leaf = path->nodes[0];
184 ei = btrfs_item_ptr(leaf, path->slots[0],
185 struct btrfs_file_extent_item);
186 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
187 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
188 btrfs_set_file_extent_encryption(leaf, ei, 0);
189 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
190 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
191 ptr = btrfs_file_extent_inline_start(ei);
192
261507a0 193 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
194 struct page *cpage;
195 int i = 0;
d397712b 196 while (compressed_size > 0) {
c8b97818 197 cpage = compressed_pages[i];
5b050f04 198 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 199 PAGE_SIZE);
c8b97818 200
7ac687d9 201 kaddr = kmap_atomic(cpage);
c8b97818 202 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 203 kunmap_atomic(kaddr);
c8b97818
CM
204
205 i++;
206 ptr += cur_size;
207 compressed_size -= cur_size;
208 }
209 btrfs_set_file_extent_compression(leaf, ei,
261507a0 210 compress_type);
c8b97818
CM
211 } else {
212 page = find_get_page(inode->i_mapping,
09cbfeaf 213 start >> PAGE_SHIFT);
c8b97818 214 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 215 kaddr = kmap_atomic(page);
09cbfeaf 216 offset = start & (PAGE_SIZE - 1);
c8b97818 217 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 218 kunmap_atomic(kaddr);
09cbfeaf 219 put_page(page);
c8b97818
CM
220 }
221 btrfs_mark_buffer_dirty(leaf);
1acae57b 222 btrfs_release_path(path);
c8b97818 223
c2167754
YZ
224 /*
225 * we're an inline extent, so nobody can
226 * extend the file past i_size without locking
227 * a page we already have locked.
228 *
229 * We must do any isize and inode updates
230 * before we unlock the pages. Otherwise we
231 * could end up racing with unlink.
232 */
c8b97818 233 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 234 ret = btrfs_update_inode(trans, root, inode);
c2167754 235
79787eaa 236 return ret;
c8b97818 237fail:
c8b97818
CM
238 return err;
239}
240
241
242/*
243 * conditionally insert an inline extent into the file. This
244 * does the checks required to make sure the data is small enough
245 * to fit as an inline extent.
246 */
00361589
JB
247static noinline int cow_file_range_inline(struct btrfs_root *root,
248 struct inode *inode, u64 start,
249 u64 end, size_t compressed_size,
250 int compress_type,
251 struct page **compressed_pages)
c8b97818 252{
00361589 253 struct btrfs_trans_handle *trans;
c8b97818
CM
254 u64 isize = i_size_read(inode);
255 u64 actual_end = min(end + 1, isize);
256 u64 inline_len = actual_end - start;
fda2832f 257 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
258 u64 data_len = inline_len;
259 int ret;
1acae57b
FDBM
260 struct btrfs_path *path;
261 int extent_inserted = 0;
262 u32 extent_item_size;
c8b97818
CM
263
264 if (compressed_size)
265 data_len = compressed_size;
266
267 if (start > 0 ||
0c29ba99 268 actual_end > root->sectorsize ||
354877be 269 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
270 (!compressed_size &&
271 (actual_end & (root->sectorsize - 1)) == 0) ||
272 end + 1 < isize ||
273 data_len > root->fs_info->max_inline) {
274 return 1;
275 }
276
1acae57b
FDBM
277 path = btrfs_alloc_path();
278 if (!path)
279 return -ENOMEM;
280
00361589 281 trans = btrfs_join_transaction(root);
1acae57b
FDBM
282 if (IS_ERR(trans)) {
283 btrfs_free_path(path);
00361589 284 return PTR_ERR(trans);
1acae57b 285 }
00361589
JB
286 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
287
1acae57b
FDBM
288 if (compressed_size && compressed_pages)
289 extent_item_size = btrfs_file_extent_calc_inline_size(
290 compressed_size);
291 else
292 extent_item_size = btrfs_file_extent_calc_inline_size(
293 inline_len);
294
295 ret = __btrfs_drop_extents(trans, root, inode, path,
296 start, aligned_end, NULL,
297 1, 1, extent_item_size, &extent_inserted);
00361589 298 if (ret) {
66642832 299 btrfs_abort_transaction(trans, ret);
00361589
JB
300 goto out;
301 }
c8b97818
CM
302
303 if (isize > actual_end)
304 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
305 ret = insert_inline_extent(trans, path, extent_inserted,
306 root, inode, start,
c8b97818 307 inline_len, compressed_size,
fe3f566c 308 compress_type, compressed_pages);
2adcac1a 309 if (ret && ret != -ENOSPC) {
66642832 310 btrfs_abort_transaction(trans, ret);
00361589 311 goto out;
2adcac1a 312 } else if (ret == -ENOSPC) {
00361589
JB
313 ret = 1;
314 goto out;
79787eaa 315 }
2adcac1a 316
bdc20e67 317 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 318 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 319 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 320out:
94ed938a
QW
321 /*
322 * Don't forget to free the reserved space, as for inlined extent
323 * it won't count as data extent, free them directly here.
324 * And at reserve time, it's always aligned to page size, so
325 * just free one page here.
326 */
09cbfeaf 327 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
1acae57b 328 btrfs_free_path(path);
00361589
JB
329 btrfs_end_transaction(trans, root);
330 return ret;
c8b97818
CM
331}
332
771ed689
CM
333struct async_extent {
334 u64 start;
335 u64 ram_size;
336 u64 compressed_size;
337 struct page **pages;
338 unsigned long nr_pages;
261507a0 339 int compress_type;
771ed689
CM
340 struct list_head list;
341};
342
343struct async_cow {
344 struct inode *inode;
345 struct btrfs_root *root;
346 struct page *locked_page;
347 u64 start;
348 u64 end;
349 struct list_head extents;
350 struct btrfs_work work;
351};
352
353static noinline int add_async_extent(struct async_cow *cow,
354 u64 start, u64 ram_size,
355 u64 compressed_size,
356 struct page **pages,
261507a0
LZ
357 unsigned long nr_pages,
358 int compress_type)
771ed689
CM
359{
360 struct async_extent *async_extent;
361
362 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 363 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
364 async_extent->start = start;
365 async_extent->ram_size = ram_size;
366 async_extent->compressed_size = compressed_size;
367 async_extent->pages = pages;
368 async_extent->nr_pages = nr_pages;
261507a0 369 async_extent->compress_type = compress_type;
771ed689
CM
370 list_add_tail(&async_extent->list, &cow->extents);
371 return 0;
372}
373
f79707b0
WS
374static inline int inode_need_compress(struct inode *inode)
375{
376 struct btrfs_root *root = BTRFS_I(inode)->root;
377
378 /* force compress */
3cdde224 379 if (btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
f79707b0
WS
380 return 1;
381 /* bad compression ratios */
382 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
383 return 0;
3cdde224 384 if (btrfs_test_opt(root->fs_info, COMPRESS) ||
f79707b0
WS
385 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
386 BTRFS_I(inode)->force_compress)
387 return 1;
388 return 0;
389}
390
d352ac68 391/*
771ed689
CM
392 * we create compressed extents in two phases. The first
393 * phase compresses a range of pages that have already been
394 * locked (both pages and state bits are locked).
c8b97818 395 *
771ed689
CM
396 * This is done inside an ordered work queue, and the compression
397 * is spread across many cpus. The actual IO submission is step
398 * two, and the ordered work queue takes care of making sure that
399 * happens in the same order things were put onto the queue by
400 * writepages and friends.
c8b97818 401 *
771ed689
CM
402 * If this code finds it can't get good compression, it puts an
403 * entry onto the work queue to write the uncompressed bytes. This
404 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
405 * are written in the same order that the flusher thread sent them
406 * down.
d352ac68 407 */
c44f649e 408static noinline void compress_file_range(struct inode *inode,
771ed689
CM
409 struct page *locked_page,
410 u64 start, u64 end,
411 struct async_cow *async_cow,
412 int *num_added)
b888db2b
CM
413{
414 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 415 u64 num_bytes;
db94535d 416 u64 blocksize = root->sectorsize;
c8b97818 417 u64 actual_end;
42dc7bab 418 u64 isize = i_size_read(inode);
e6dcd2dc 419 int ret = 0;
c8b97818
CM
420 struct page **pages = NULL;
421 unsigned long nr_pages;
422 unsigned long nr_pages_ret = 0;
423 unsigned long total_compressed = 0;
424 unsigned long total_in = 0;
ee22184b
BL
425 unsigned long max_compressed = SZ_128K;
426 unsigned long max_uncompressed = SZ_128K;
c8b97818
CM
427 int i;
428 int will_compress;
261507a0 429 int compress_type = root->fs_info->compress_type;
4adaa611 430 int redirty = 0;
b888db2b 431
4cb13e5d 432 /* if this is a small write inside eof, kick off a defrag */
ee22184b 433 if ((end - start + 1) < SZ_16K &&
4cb13e5d 434 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
435 btrfs_add_inode_defrag(NULL, inode);
436
42dc7bab 437 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
438again:
439 will_compress = 0;
09cbfeaf
KS
440 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
441 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
be20aa9d 442
f03d9301
CM
443 /*
444 * we don't want to send crud past the end of i_size through
445 * compression, that's just a waste of CPU time. So, if the
446 * end of the file is before the start of our current
447 * requested range of bytes, we bail out to the uncompressed
448 * cleanup code that can deal with all of this.
449 *
450 * It isn't really the fastest way to fix things, but this is a
451 * very uncommon corner.
452 */
453 if (actual_end <= start)
454 goto cleanup_and_bail_uncompressed;
455
c8b97818
CM
456 total_compressed = actual_end - start;
457
4bcbb332
SW
458 /*
459 * skip compression for a small file range(<=blocksize) that
01327610 460 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
461 */
462 if (total_compressed <= blocksize &&
463 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
464 goto cleanup_and_bail_uncompressed;
465
c8b97818
CM
466 /* we want to make sure that amount of ram required to uncompress
467 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
468 * of a compressed extent to 128k. This is a crucial number
469 * because it also controls how easily we can spread reads across
470 * cpus for decompression.
471 *
472 * We also want to make sure the amount of IO required to do
473 * a random read is reasonably small, so we limit the size of
474 * a compressed extent to 128k.
c8b97818
CM
475 */
476 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 477 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 478 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
479 total_in = 0;
480 ret = 0;
db94535d 481
771ed689
CM
482 /*
483 * we do compression for mount -o compress and when the
484 * inode has not been flagged as nocompress. This flag can
485 * change at any time if we discover bad compression ratios.
c8b97818 486 */
f79707b0 487 if (inode_need_compress(inode)) {
c8b97818 488 WARN_ON(pages);
31e818fe 489 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
490 if (!pages) {
491 /* just bail out to the uncompressed code */
492 goto cont;
493 }
c8b97818 494
261507a0
LZ
495 if (BTRFS_I(inode)->force_compress)
496 compress_type = BTRFS_I(inode)->force_compress;
497
4adaa611
CM
498 /*
499 * we need to call clear_page_dirty_for_io on each
500 * page in the range. Otherwise applications with the file
501 * mmap'd can wander in and change the page contents while
502 * we are compressing them.
503 *
504 * If the compression fails for any reason, we set the pages
505 * dirty again later on.
506 */
507 extent_range_clear_dirty_for_io(inode, start, end);
508 redirty = 1;
261507a0
LZ
509 ret = btrfs_compress_pages(compress_type,
510 inode->i_mapping, start,
511 total_compressed, pages,
512 nr_pages, &nr_pages_ret,
513 &total_in,
514 &total_compressed,
515 max_compressed);
c8b97818
CM
516
517 if (!ret) {
518 unsigned long offset = total_compressed &
09cbfeaf 519 (PAGE_SIZE - 1);
c8b97818
CM
520 struct page *page = pages[nr_pages_ret - 1];
521 char *kaddr;
522
523 /* zero the tail end of the last page, we might be
524 * sending it down to disk
525 */
526 if (offset) {
7ac687d9 527 kaddr = kmap_atomic(page);
c8b97818 528 memset(kaddr + offset, 0,
09cbfeaf 529 PAGE_SIZE - offset);
7ac687d9 530 kunmap_atomic(kaddr);
c8b97818
CM
531 }
532 will_compress = 1;
533 }
534 }
560f7d75 535cont:
c8b97818
CM
536 if (start == 0) {
537 /* lets try to make an inline extent */
771ed689 538 if (ret || total_in < (actual_end - start)) {
c8b97818 539 /* we didn't compress the entire range, try
771ed689 540 * to make an uncompressed inline extent.
c8b97818 541 */
00361589
JB
542 ret = cow_file_range_inline(root, inode, start, end,
543 0, 0, NULL);
c8b97818 544 } else {
771ed689 545 /* try making a compressed inline extent */
00361589 546 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
547 total_compressed,
548 compress_type, pages);
c8b97818 549 }
79787eaa 550 if (ret <= 0) {
151a41bc
JB
551 unsigned long clear_flags = EXTENT_DELALLOC |
552 EXTENT_DEFRAG;
e6eb4314
FM
553 unsigned long page_error_op;
554
151a41bc 555 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 556 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 557
771ed689 558 /*
79787eaa
JM
559 * inline extent creation worked or returned error,
560 * we don't need to create any more async work items.
561 * Unlock and free up our temp pages.
771ed689 562 */
c2790a2e 563 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 564 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
565 PAGE_CLEAR_DIRTY |
566 PAGE_SET_WRITEBACK |
e6eb4314 567 page_error_op |
c2790a2e 568 PAGE_END_WRITEBACK);
c8b97818
CM
569 goto free_pages_out;
570 }
571 }
572
573 if (will_compress) {
574 /*
575 * we aren't doing an inline extent round the compressed size
576 * up to a block size boundary so the allocator does sane
577 * things
578 */
fda2832f 579 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
580
581 /*
582 * one last check to make sure the compression is really a
583 * win, compare the page count read with the blocks on disk
584 */
09cbfeaf 585 total_in = ALIGN(total_in, PAGE_SIZE);
c8b97818
CM
586 if (total_compressed >= total_in) {
587 will_compress = 0;
588 } else {
c8b97818 589 num_bytes = total_in;
c8bb0c8b
AS
590 *num_added += 1;
591
592 /*
593 * The async work queues will take care of doing actual
594 * allocation on disk for these compressed pages, and
595 * will submit them to the elevator.
596 */
597 add_async_extent(async_cow, start, num_bytes,
598 total_compressed, pages, nr_pages_ret,
599 compress_type);
600
601 if (start + num_bytes < end) {
602 start += num_bytes;
603 pages = NULL;
604 cond_resched();
605 goto again;
606 }
607 return;
c8b97818
CM
608 }
609 }
c8bb0c8b 610 if (pages) {
c8b97818
CM
611 /*
612 * the compression code ran but failed to make things smaller,
613 * free any pages it allocated and our page pointer array
614 */
615 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 616 WARN_ON(pages[i]->mapping);
09cbfeaf 617 put_page(pages[i]);
c8b97818
CM
618 }
619 kfree(pages);
620 pages = NULL;
621 total_compressed = 0;
622 nr_pages_ret = 0;
623
624 /* flag the file so we don't compress in the future */
3cdde224 625 if (!btrfs_test_opt(root->fs_info, FORCE_COMPRESS) &&
1e701a32 626 !(BTRFS_I(inode)->force_compress)) {
a555f810 627 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 628 }
c8b97818 629 }
f03d9301 630cleanup_and_bail_uncompressed:
c8bb0c8b
AS
631 /*
632 * No compression, but we still need to write the pages in the file
633 * we've been given so far. redirty the locked page if it corresponds
634 * to our extent and set things up for the async work queue to run
635 * cow_file_range to do the normal delalloc dance.
636 */
637 if (page_offset(locked_page) >= start &&
638 page_offset(locked_page) <= end)
639 __set_page_dirty_nobuffers(locked_page);
640 /* unlocked later on in the async handlers */
641
642 if (redirty)
643 extent_range_redirty_for_io(inode, start, end);
644 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
645 BTRFS_COMPRESS_NONE);
646 *num_added += 1;
3b951516 647
c44f649e 648 return;
771ed689
CM
649
650free_pages_out:
651 for (i = 0; i < nr_pages_ret; i++) {
652 WARN_ON(pages[i]->mapping);
09cbfeaf 653 put_page(pages[i]);
771ed689 654 }
d397712b 655 kfree(pages);
771ed689 656}
771ed689 657
40ae837b
FM
658static void free_async_extent_pages(struct async_extent *async_extent)
659{
660 int i;
661
662 if (!async_extent->pages)
663 return;
664
665 for (i = 0; i < async_extent->nr_pages; i++) {
666 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 667 put_page(async_extent->pages[i]);
40ae837b
FM
668 }
669 kfree(async_extent->pages);
670 async_extent->nr_pages = 0;
671 async_extent->pages = NULL;
771ed689
CM
672}
673
674/*
675 * phase two of compressed writeback. This is the ordered portion
676 * of the code, which only gets called in the order the work was
677 * queued. We walk all the async extents created by compress_file_range
678 * and send them down to the disk.
679 */
dec8f175 680static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
681 struct async_cow *async_cow)
682{
683 struct async_extent *async_extent;
684 u64 alloc_hint = 0;
771ed689
CM
685 struct btrfs_key ins;
686 struct extent_map *em;
687 struct btrfs_root *root = BTRFS_I(inode)->root;
688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
689 struct extent_io_tree *io_tree;
f5a84ee3 690 int ret = 0;
771ed689 691
3e04e7f1 692again:
d397712b 693 while (!list_empty(&async_cow->extents)) {
771ed689
CM
694 async_extent = list_entry(async_cow->extents.next,
695 struct async_extent, list);
696 list_del(&async_extent->list);
c8b97818 697
771ed689
CM
698 io_tree = &BTRFS_I(inode)->io_tree;
699
f5a84ee3 700retry:
771ed689
CM
701 /* did the compression code fall back to uncompressed IO? */
702 if (!async_extent->pages) {
703 int page_started = 0;
704 unsigned long nr_written = 0;
705
706 lock_extent(io_tree, async_extent->start,
2ac55d41 707 async_extent->start +
d0082371 708 async_extent->ram_size - 1);
771ed689
CM
709
710 /* allocate blocks */
f5a84ee3
JB
711 ret = cow_file_range(inode, async_cow->locked_page,
712 async_extent->start,
713 async_extent->start +
714 async_extent->ram_size - 1,
dda3245e
WX
715 async_extent->start +
716 async_extent->ram_size - 1,
717 &page_started, &nr_written, 0,
718 NULL);
771ed689 719
79787eaa
JM
720 /* JDM XXX */
721
771ed689
CM
722 /*
723 * if page_started, cow_file_range inserted an
724 * inline extent and took care of all the unlocking
725 * and IO for us. Otherwise, we need to submit
726 * all those pages down to the drive.
727 */
f5a84ee3 728 if (!page_started && !ret)
771ed689
CM
729 extent_write_locked_range(io_tree,
730 inode, async_extent->start,
d397712b 731 async_extent->start +
771ed689
CM
732 async_extent->ram_size - 1,
733 btrfs_get_extent,
734 WB_SYNC_ALL);
3e04e7f1
JB
735 else if (ret)
736 unlock_page(async_cow->locked_page);
771ed689
CM
737 kfree(async_extent);
738 cond_resched();
739 continue;
740 }
741
742 lock_extent(io_tree, async_extent->start,
d0082371 743 async_extent->start + async_extent->ram_size - 1);
771ed689 744
00361589 745 ret = btrfs_reserve_extent(root,
771ed689
CM
746 async_extent->compressed_size,
747 async_extent->compressed_size,
e570fd27 748 0, alloc_hint, &ins, 1, 1);
f5a84ee3 749 if (ret) {
40ae837b 750 free_async_extent_pages(async_extent);
3e04e7f1 751
fdf8e2ea
JB
752 if (ret == -ENOSPC) {
753 unlock_extent(io_tree, async_extent->start,
754 async_extent->start +
755 async_extent->ram_size - 1);
ce62003f
LB
756
757 /*
758 * we need to redirty the pages if we decide to
759 * fallback to uncompressed IO, otherwise we
760 * will not submit these pages down to lower
761 * layers.
762 */
763 extent_range_redirty_for_io(inode,
764 async_extent->start,
765 async_extent->start +
766 async_extent->ram_size - 1);
767
79787eaa 768 goto retry;
fdf8e2ea 769 }
3e04e7f1 770 goto out_free;
f5a84ee3 771 }
c2167754
YZ
772 /*
773 * here we're doing allocation and writeback of the
774 * compressed pages
775 */
776 btrfs_drop_extent_cache(inode, async_extent->start,
777 async_extent->start +
778 async_extent->ram_size - 1, 0);
779
172ddd60 780 em = alloc_extent_map();
b9aa55be
LB
781 if (!em) {
782 ret = -ENOMEM;
3e04e7f1 783 goto out_free_reserve;
b9aa55be 784 }
771ed689
CM
785 em->start = async_extent->start;
786 em->len = async_extent->ram_size;
445a6944 787 em->orig_start = em->start;
2ab28f32
JB
788 em->mod_start = em->start;
789 em->mod_len = em->len;
c8b97818 790
771ed689
CM
791 em->block_start = ins.objectid;
792 em->block_len = ins.offset;
b4939680 793 em->orig_block_len = ins.offset;
cc95bef6 794 em->ram_bytes = async_extent->ram_size;
771ed689 795 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 796 em->compress_type = async_extent->compress_type;
771ed689
CM
797 set_bit(EXTENT_FLAG_PINNED, &em->flags);
798 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 799 em->generation = -1;
771ed689 800
d397712b 801 while (1) {
890871be 802 write_lock(&em_tree->lock);
09a2a8f9 803 ret = add_extent_mapping(em_tree, em, 1);
890871be 804 write_unlock(&em_tree->lock);
771ed689
CM
805 if (ret != -EEXIST) {
806 free_extent_map(em);
807 break;
808 }
809 btrfs_drop_extent_cache(inode, async_extent->start,
810 async_extent->start +
811 async_extent->ram_size - 1, 0);
812 }
813
3e04e7f1
JB
814 if (ret)
815 goto out_free_reserve;
816
261507a0
LZ
817 ret = btrfs_add_ordered_extent_compress(inode,
818 async_extent->start,
819 ins.objectid,
820 async_extent->ram_size,
821 ins.offset,
822 BTRFS_ORDERED_COMPRESSED,
823 async_extent->compress_type);
d9f85963
FM
824 if (ret) {
825 btrfs_drop_extent_cache(inode, async_extent->start,
826 async_extent->start +
827 async_extent->ram_size - 1, 0);
3e04e7f1 828 goto out_free_reserve;
d9f85963 829 }
9cfa3e34 830 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
771ed689 831
771ed689
CM
832 /*
833 * clear dirty, set writeback and unlock the pages.
834 */
c2790a2e 835 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
836 async_extent->start +
837 async_extent->ram_size - 1,
151a41bc
JB
838 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
839 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 840 PAGE_SET_WRITEBACK);
771ed689 841 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
842 async_extent->start,
843 async_extent->ram_size,
844 ins.objectid,
845 ins.offset, async_extent->pages,
846 async_extent->nr_pages);
fce2a4e6
FM
847 if (ret) {
848 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
849 struct page *p = async_extent->pages[0];
850 const u64 start = async_extent->start;
851 const u64 end = start + async_extent->ram_size - 1;
852
853 p->mapping = inode->i_mapping;
854 tree->ops->writepage_end_io_hook(p, start, end,
855 NULL, 0);
856 p->mapping = NULL;
857 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
858 PAGE_END_WRITEBACK |
859 PAGE_SET_ERROR);
40ae837b 860 free_async_extent_pages(async_extent);
fce2a4e6 861 }
771ed689
CM
862 alloc_hint = ins.objectid + ins.offset;
863 kfree(async_extent);
864 cond_resched();
865 }
dec8f175 866 return;
3e04e7f1 867out_free_reserve:
9cfa3e34 868 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
e570fd27 869 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 870out_free:
c2790a2e 871 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
872 async_extent->start +
873 async_extent->ram_size - 1,
c2790a2e 874 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
875 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
876 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
877 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
878 PAGE_SET_ERROR);
40ae837b 879 free_async_extent_pages(async_extent);
79787eaa 880 kfree(async_extent);
3e04e7f1 881 goto again;
771ed689
CM
882}
883
4b46fce2
JB
884static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
885 u64 num_bytes)
886{
887 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
888 struct extent_map *em;
889 u64 alloc_hint = 0;
890
891 read_lock(&em_tree->lock);
892 em = search_extent_mapping(em_tree, start, num_bytes);
893 if (em) {
894 /*
895 * if block start isn't an actual block number then find the
896 * first block in this inode and use that as a hint. If that
897 * block is also bogus then just don't worry about it.
898 */
899 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
900 free_extent_map(em);
901 em = search_extent_mapping(em_tree, 0, 0);
902 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
903 alloc_hint = em->block_start;
904 if (em)
905 free_extent_map(em);
906 } else {
907 alloc_hint = em->block_start;
908 free_extent_map(em);
909 }
910 }
911 read_unlock(&em_tree->lock);
912
913 return alloc_hint;
914}
915
771ed689
CM
916/*
917 * when extent_io.c finds a delayed allocation range in the file,
918 * the call backs end up in this code. The basic idea is to
919 * allocate extents on disk for the range, and create ordered data structs
920 * in ram to track those extents.
921 *
922 * locked_page is the page that writepage had locked already. We use
923 * it to make sure we don't do extra locks or unlocks.
924 *
925 * *page_started is set to one if we unlock locked_page and do everything
926 * required to start IO on it. It may be clean and already done with
927 * IO when we return.
928 */
00361589
JB
929static noinline int cow_file_range(struct inode *inode,
930 struct page *locked_page,
dda3245e
WX
931 u64 start, u64 end, u64 delalloc_end,
932 int *page_started, unsigned long *nr_written,
933 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 934{
00361589 935 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
936 u64 alloc_hint = 0;
937 u64 num_bytes;
938 unsigned long ram_size;
939 u64 disk_num_bytes;
940 u64 cur_alloc_size;
941 u64 blocksize = root->sectorsize;
771ed689
CM
942 struct btrfs_key ins;
943 struct extent_map *em;
944 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
945 int ret = 0;
946
02ecd2c2
JB
947 if (btrfs_is_free_space_inode(inode)) {
948 WARN_ON_ONCE(1);
29bce2f3
JB
949 ret = -EINVAL;
950 goto out_unlock;
02ecd2c2 951 }
771ed689 952
fda2832f 953 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
954 num_bytes = max(blocksize, num_bytes);
955 disk_num_bytes = num_bytes;
771ed689 956
4cb5300b 957 /* if this is a small write inside eof, kick off defrag */
ee22184b 958 if (num_bytes < SZ_64K &&
4cb13e5d 959 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 960 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 961
771ed689
CM
962 if (start == 0) {
963 /* lets try to make an inline extent */
00361589
JB
964 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
965 NULL);
771ed689 966 if (ret == 0) {
c2790a2e
JB
967 extent_clear_unlock_delalloc(inode, start, end, NULL,
968 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 969 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
970 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
971 PAGE_END_WRITEBACK);
c2167754 972
771ed689 973 *nr_written = *nr_written +
09cbfeaf 974 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 975 *page_started = 1;
771ed689 976 goto out;
79787eaa 977 } else if (ret < 0) {
79787eaa 978 goto out_unlock;
771ed689
CM
979 }
980 }
981
982 BUG_ON(disk_num_bytes >
6c41761f 983 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 984
4b46fce2 985 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
986 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
987
d397712b 988 while (disk_num_bytes > 0) {
a791e35e
CM
989 unsigned long op;
990
287a0ab9 991 cur_alloc_size = disk_num_bytes;
00361589 992 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 993 root->sectorsize, 0, alloc_hint,
e570fd27 994 &ins, 1, 1);
00361589 995 if (ret < 0)
79787eaa 996 goto out_unlock;
d397712b 997
172ddd60 998 em = alloc_extent_map();
b9aa55be
LB
999 if (!em) {
1000 ret = -ENOMEM;
ace68bac 1001 goto out_reserve;
b9aa55be 1002 }
e6dcd2dc 1003 em->start = start;
445a6944 1004 em->orig_start = em->start;
771ed689
CM
1005 ram_size = ins.offset;
1006 em->len = ins.offset;
2ab28f32
JB
1007 em->mod_start = em->start;
1008 em->mod_len = em->len;
c8b97818 1009
e6dcd2dc 1010 em->block_start = ins.objectid;
c8b97818 1011 em->block_len = ins.offset;
b4939680 1012 em->orig_block_len = ins.offset;
cc95bef6 1013 em->ram_bytes = ram_size;
e6dcd2dc 1014 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 1015 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 1016 em->generation = -1;
c8b97818 1017
d397712b 1018 while (1) {
890871be 1019 write_lock(&em_tree->lock);
09a2a8f9 1020 ret = add_extent_mapping(em_tree, em, 1);
890871be 1021 write_unlock(&em_tree->lock);
e6dcd2dc
CM
1022 if (ret != -EEXIST) {
1023 free_extent_map(em);
1024 break;
1025 }
1026 btrfs_drop_extent_cache(inode, start,
c8b97818 1027 start + ram_size - 1, 0);
e6dcd2dc 1028 }
ace68bac
LB
1029 if (ret)
1030 goto out_reserve;
e6dcd2dc 1031
98d20f67 1032 cur_alloc_size = ins.offset;
e6dcd2dc 1033 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1034 ram_size, cur_alloc_size, 0);
ace68bac 1035 if (ret)
d9f85963 1036 goto out_drop_extent_cache;
c8b97818 1037
17d217fe
YZ
1038 if (root->root_key.objectid ==
1039 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1040 ret = btrfs_reloc_clone_csums(inode, start,
1041 cur_alloc_size);
00361589 1042 if (ret)
d9f85963 1043 goto out_drop_extent_cache;
17d217fe
YZ
1044 }
1045
9cfa3e34
FM
1046 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1047
d397712b 1048 if (disk_num_bytes < cur_alloc_size)
3b951516 1049 break;
d397712b 1050
c8b97818
CM
1051 /* we're not doing compressed IO, don't unlock the first
1052 * page (which the caller expects to stay locked), don't
1053 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1054 *
1055 * Do set the Private2 bit so we know this page was properly
1056 * setup for writepage
c8b97818 1057 */
c2790a2e
JB
1058 op = unlock ? PAGE_UNLOCK : 0;
1059 op |= PAGE_SET_PRIVATE2;
a791e35e 1060
c2790a2e
JB
1061 extent_clear_unlock_delalloc(inode, start,
1062 start + ram_size - 1, locked_page,
1063 EXTENT_LOCKED | EXTENT_DELALLOC,
1064 op);
c8b97818 1065 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1066 num_bytes -= cur_alloc_size;
1067 alloc_hint = ins.objectid + ins.offset;
1068 start += cur_alloc_size;
b888db2b 1069 }
79787eaa 1070out:
be20aa9d 1071 return ret;
b7d5b0a8 1072
d9f85963
FM
1073out_drop_extent_cache:
1074 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1075out_reserve:
9cfa3e34 1076 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
e570fd27 1077 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1078out_unlock:
c2790a2e 1079 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1080 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1081 EXTENT_DELALLOC | EXTENT_DEFRAG,
1082 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1083 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1084 goto out;
771ed689 1085}
c8b97818 1086
771ed689
CM
1087/*
1088 * work queue call back to started compression on a file and pages
1089 */
1090static noinline void async_cow_start(struct btrfs_work *work)
1091{
1092 struct async_cow *async_cow;
1093 int num_added = 0;
1094 async_cow = container_of(work, struct async_cow, work);
1095
1096 compress_file_range(async_cow->inode, async_cow->locked_page,
1097 async_cow->start, async_cow->end, async_cow,
1098 &num_added);
8180ef88 1099 if (num_added == 0) {
cb77fcd8 1100 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1101 async_cow->inode = NULL;
8180ef88 1102 }
771ed689
CM
1103}
1104
1105/*
1106 * work queue call back to submit previously compressed pages
1107 */
1108static noinline void async_cow_submit(struct btrfs_work *work)
1109{
1110 struct async_cow *async_cow;
1111 struct btrfs_root *root;
1112 unsigned long nr_pages;
1113
1114 async_cow = container_of(work, struct async_cow, work);
1115
1116 root = async_cow->root;
09cbfeaf
KS
1117 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1118 PAGE_SHIFT;
771ed689 1119
ee863954
DS
1120 /*
1121 * atomic_sub_return implies a barrier for waitqueue_active
1122 */
66657b31 1123 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
ee22184b 1124 5 * SZ_1M &&
771ed689
CM
1125 waitqueue_active(&root->fs_info->async_submit_wait))
1126 wake_up(&root->fs_info->async_submit_wait);
1127
d397712b 1128 if (async_cow->inode)
771ed689 1129 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1130}
c8b97818 1131
771ed689
CM
1132static noinline void async_cow_free(struct btrfs_work *work)
1133{
1134 struct async_cow *async_cow;
1135 async_cow = container_of(work, struct async_cow, work);
8180ef88 1136 if (async_cow->inode)
cb77fcd8 1137 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1138 kfree(async_cow);
1139}
1140
1141static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1142 u64 start, u64 end, int *page_started,
1143 unsigned long *nr_written)
1144{
1145 struct async_cow *async_cow;
1146 struct btrfs_root *root = BTRFS_I(inode)->root;
1147 unsigned long nr_pages;
1148 u64 cur_end;
ee22184b 1149 int limit = 10 * SZ_1M;
771ed689 1150
a3429ab7
CM
1151 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1152 1, 0, NULL, GFP_NOFS);
d397712b 1153 while (start < end) {
771ed689 1154 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1155 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1156 async_cow->inode = igrab(inode);
771ed689
CM
1157 async_cow->root = root;
1158 async_cow->locked_page = locked_page;
1159 async_cow->start = start;
1160
f79707b0 1161 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
3cdde224 1162 !btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
771ed689
CM
1163 cur_end = end;
1164 else
ee22184b 1165 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1166
1167 async_cow->end = cur_end;
1168 INIT_LIST_HEAD(&async_cow->extents);
1169
9e0af237
LB
1170 btrfs_init_work(&async_cow->work,
1171 btrfs_delalloc_helper,
1172 async_cow_start, async_cow_submit,
1173 async_cow_free);
771ed689 1174
09cbfeaf
KS
1175 nr_pages = (cur_end - start + PAGE_SIZE) >>
1176 PAGE_SHIFT;
771ed689
CM
1177 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1178
afe3d242
QW
1179 btrfs_queue_work(root->fs_info->delalloc_workers,
1180 &async_cow->work);
771ed689
CM
1181
1182 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1183 wait_event(root->fs_info->async_submit_wait,
1184 (atomic_read(&root->fs_info->async_delalloc_pages) <
1185 limit));
1186 }
1187
d397712b 1188 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1189 atomic_read(&root->fs_info->async_delalloc_pages)) {
1190 wait_event(root->fs_info->async_submit_wait,
1191 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1192 0));
1193 }
1194
1195 *nr_written += nr_pages;
1196 start = cur_end + 1;
1197 }
1198 *page_started = 1;
1199 return 0;
be20aa9d
CM
1200}
1201
d397712b 1202static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1203 u64 bytenr, u64 num_bytes)
1204{
1205 int ret;
1206 struct btrfs_ordered_sum *sums;
1207 LIST_HEAD(list);
1208
07d400a6 1209 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1210 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1211 if (ret == 0 && list_empty(&list))
1212 return 0;
1213
1214 while (!list_empty(&list)) {
1215 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1216 list_del(&sums->list);
1217 kfree(sums);
1218 }
1219 return 1;
1220}
1221
d352ac68
CM
1222/*
1223 * when nowcow writeback call back. This checks for snapshots or COW copies
1224 * of the extents that exist in the file, and COWs the file as required.
1225 *
1226 * If no cow copies or snapshots exist, we write directly to the existing
1227 * blocks on disk
1228 */
7f366cfe
CM
1229static noinline int run_delalloc_nocow(struct inode *inode,
1230 struct page *locked_page,
771ed689
CM
1231 u64 start, u64 end, int *page_started, int force,
1232 unsigned long *nr_written)
be20aa9d 1233{
be20aa9d 1234 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1235 struct btrfs_trans_handle *trans;
be20aa9d 1236 struct extent_buffer *leaf;
be20aa9d 1237 struct btrfs_path *path;
80ff3856 1238 struct btrfs_file_extent_item *fi;
be20aa9d 1239 struct btrfs_key found_key;
80ff3856
YZ
1240 u64 cow_start;
1241 u64 cur_offset;
1242 u64 extent_end;
5d4f98a2 1243 u64 extent_offset;
80ff3856
YZ
1244 u64 disk_bytenr;
1245 u64 num_bytes;
b4939680 1246 u64 disk_num_bytes;
cc95bef6 1247 u64 ram_bytes;
80ff3856 1248 int extent_type;
79787eaa 1249 int ret, err;
d899e052 1250 int type;
80ff3856
YZ
1251 int nocow;
1252 int check_prev = 1;
82d5902d 1253 bool nolock;
33345d01 1254 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1255
1256 path = btrfs_alloc_path();
17ca04af 1257 if (!path) {
c2790a2e
JB
1258 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1259 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1260 EXTENT_DO_ACCOUNTING |
1261 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1262 PAGE_CLEAR_DIRTY |
1263 PAGE_SET_WRITEBACK |
1264 PAGE_END_WRITEBACK);
d8926bb3 1265 return -ENOMEM;
17ca04af 1266 }
82d5902d 1267
83eea1f1 1268 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1269
1270 if (nolock)
7a7eaa40 1271 trans = btrfs_join_transaction_nolock(root);
82d5902d 1272 else
7a7eaa40 1273 trans = btrfs_join_transaction(root);
ff5714cc 1274
79787eaa 1275 if (IS_ERR(trans)) {
c2790a2e
JB
1276 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1277 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1278 EXTENT_DO_ACCOUNTING |
1279 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1280 PAGE_CLEAR_DIRTY |
1281 PAGE_SET_WRITEBACK |
1282 PAGE_END_WRITEBACK);
79787eaa
JM
1283 btrfs_free_path(path);
1284 return PTR_ERR(trans);
1285 }
1286
74b21075 1287 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1288
80ff3856
YZ
1289 cow_start = (u64)-1;
1290 cur_offset = start;
1291 while (1) {
33345d01 1292 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1293 cur_offset, 0);
d788a349 1294 if (ret < 0)
79787eaa 1295 goto error;
80ff3856
YZ
1296 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1297 leaf = path->nodes[0];
1298 btrfs_item_key_to_cpu(leaf, &found_key,
1299 path->slots[0] - 1);
33345d01 1300 if (found_key.objectid == ino &&
80ff3856
YZ
1301 found_key.type == BTRFS_EXTENT_DATA_KEY)
1302 path->slots[0]--;
1303 }
1304 check_prev = 0;
1305next_slot:
1306 leaf = path->nodes[0];
1307 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1308 ret = btrfs_next_leaf(root, path);
d788a349 1309 if (ret < 0)
79787eaa 1310 goto error;
80ff3856
YZ
1311 if (ret > 0)
1312 break;
1313 leaf = path->nodes[0];
1314 }
be20aa9d 1315
80ff3856
YZ
1316 nocow = 0;
1317 disk_bytenr = 0;
17d217fe 1318 num_bytes = 0;
80ff3856
YZ
1319 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1320
1d512cb7
FM
1321 if (found_key.objectid > ino)
1322 break;
1323 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1324 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1325 path->slots[0]++;
1326 goto next_slot;
1327 }
1328 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1329 found_key.offset > end)
1330 break;
1331
1332 if (found_key.offset > cur_offset) {
1333 extent_end = found_key.offset;
e9061e21 1334 extent_type = 0;
80ff3856
YZ
1335 goto out_check;
1336 }
1337
1338 fi = btrfs_item_ptr(leaf, path->slots[0],
1339 struct btrfs_file_extent_item);
1340 extent_type = btrfs_file_extent_type(leaf, fi);
1341
cc95bef6 1342 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1343 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1344 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1345 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1346 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1347 extent_end = found_key.offset +
1348 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1349 disk_num_bytes =
1350 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1351 if (extent_end <= start) {
1352 path->slots[0]++;
1353 goto next_slot;
1354 }
17d217fe
YZ
1355 if (disk_bytenr == 0)
1356 goto out_check;
80ff3856
YZ
1357 if (btrfs_file_extent_compression(leaf, fi) ||
1358 btrfs_file_extent_encryption(leaf, fi) ||
1359 btrfs_file_extent_other_encoding(leaf, fi))
1360 goto out_check;
d899e052
YZ
1361 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1362 goto out_check;
d2fb3437 1363 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1364 goto out_check;
33345d01 1365 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1366 found_key.offset -
1367 extent_offset, disk_bytenr))
17d217fe 1368 goto out_check;
5d4f98a2 1369 disk_bytenr += extent_offset;
17d217fe
YZ
1370 disk_bytenr += cur_offset - found_key.offset;
1371 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1372 /*
1373 * if there are pending snapshots for this root,
1374 * we fall into common COW way.
1375 */
1376 if (!nolock) {
9ea24bbe 1377 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1378 if (!err)
1379 goto out_check;
1380 }
17d217fe
YZ
1381 /*
1382 * force cow if csum exists in the range.
1383 * this ensure that csum for a given extent are
1384 * either valid or do not exist.
1385 */
1386 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1387 goto out_check;
f78c436c
FM
1388 if (!btrfs_inc_nocow_writers(root->fs_info,
1389 disk_bytenr))
1390 goto out_check;
80ff3856
YZ
1391 nocow = 1;
1392 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1393 extent_end = found_key.offset +
514ac8ad
CM
1394 btrfs_file_extent_inline_len(leaf,
1395 path->slots[0], fi);
80ff3856
YZ
1396 extent_end = ALIGN(extent_end, root->sectorsize);
1397 } else {
1398 BUG_ON(1);
1399 }
1400out_check:
1401 if (extent_end <= start) {
1402 path->slots[0]++;
e9894fd3 1403 if (!nolock && nocow)
9ea24bbe 1404 btrfs_end_write_no_snapshoting(root);
f78c436c
FM
1405 if (nocow)
1406 btrfs_dec_nocow_writers(root->fs_info,
1407 disk_bytenr);
80ff3856
YZ
1408 goto next_slot;
1409 }
1410 if (!nocow) {
1411 if (cow_start == (u64)-1)
1412 cow_start = cur_offset;
1413 cur_offset = extent_end;
1414 if (cur_offset > end)
1415 break;
1416 path->slots[0]++;
1417 goto next_slot;
7ea394f1
YZ
1418 }
1419
b3b4aa74 1420 btrfs_release_path(path);
80ff3856 1421 if (cow_start != (u64)-1) {
00361589
JB
1422 ret = cow_file_range(inode, locked_page,
1423 cow_start, found_key.offset - 1,
dda3245e
WX
1424 end, page_started, nr_written, 1,
1425 NULL);
e9894fd3
WS
1426 if (ret) {
1427 if (!nolock && nocow)
9ea24bbe 1428 btrfs_end_write_no_snapshoting(root);
f78c436c
FM
1429 if (nocow)
1430 btrfs_dec_nocow_writers(root->fs_info,
1431 disk_bytenr);
79787eaa 1432 goto error;
e9894fd3 1433 }
80ff3856 1434 cow_start = (u64)-1;
7ea394f1 1435 }
80ff3856 1436
d899e052
YZ
1437 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1438 struct extent_map *em;
1439 struct extent_map_tree *em_tree;
1440 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1441 em = alloc_extent_map();
79787eaa 1442 BUG_ON(!em); /* -ENOMEM */
d899e052 1443 em->start = cur_offset;
70c8a91c 1444 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1445 em->len = num_bytes;
1446 em->block_len = num_bytes;
1447 em->block_start = disk_bytenr;
b4939680 1448 em->orig_block_len = disk_num_bytes;
cc95bef6 1449 em->ram_bytes = ram_bytes;
d899e052 1450 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1451 em->mod_start = em->start;
1452 em->mod_len = em->len;
d899e052 1453 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1454 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1455 em->generation = -1;
d899e052 1456 while (1) {
890871be 1457 write_lock(&em_tree->lock);
09a2a8f9 1458 ret = add_extent_mapping(em_tree, em, 1);
890871be 1459 write_unlock(&em_tree->lock);
d899e052
YZ
1460 if (ret != -EEXIST) {
1461 free_extent_map(em);
1462 break;
1463 }
1464 btrfs_drop_extent_cache(inode, em->start,
1465 em->start + em->len - 1, 0);
1466 }
1467 type = BTRFS_ORDERED_PREALLOC;
1468 } else {
1469 type = BTRFS_ORDERED_NOCOW;
1470 }
80ff3856
YZ
1471
1472 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1473 num_bytes, num_bytes, type);
f78c436c
FM
1474 if (nocow)
1475 btrfs_dec_nocow_writers(root->fs_info, disk_bytenr);
79787eaa 1476 BUG_ON(ret); /* -ENOMEM */
771ed689 1477
efa56464
YZ
1478 if (root->root_key.objectid ==
1479 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1480 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1481 num_bytes);
e9894fd3
WS
1482 if (ret) {
1483 if (!nolock && nocow)
9ea24bbe 1484 btrfs_end_write_no_snapshoting(root);
79787eaa 1485 goto error;
e9894fd3 1486 }
efa56464
YZ
1487 }
1488
c2790a2e
JB
1489 extent_clear_unlock_delalloc(inode, cur_offset,
1490 cur_offset + num_bytes - 1,
1491 locked_page, EXTENT_LOCKED |
1492 EXTENT_DELALLOC, PAGE_UNLOCK |
1493 PAGE_SET_PRIVATE2);
e9894fd3 1494 if (!nolock && nocow)
9ea24bbe 1495 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1496 cur_offset = extent_end;
1497 if (cur_offset > end)
1498 break;
be20aa9d 1499 }
b3b4aa74 1500 btrfs_release_path(path);
80ff3856 1501
17ca04af 1502 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1503 cow_start = cur_offset;
17ca04af
JB
1504 cur_offset = end;
1505 }
1506
80ff3856 1507 if (cow_start != (u64)-1) {
dda3245e
WX
1508 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1509 page_started, nr_written, 1, NULL);
d788a349 1510 if (ret)
79787eaa 1511 goto error;
80ff3856
YZ
1512 }
1513
79787eaa 1514error:
a698d075 1515 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1516 if (!ret)
1517 ret = err;
1518
17ca04af 1519 if (ret && cur_offset < end)
c2790a2e
JB
1520 extent_clear_unlock_delalloc(inode, cur_offset, end,
1521 locked_page, EXTENT_LOCKED |
151a41bc
JB
1522 EXTENT_DELALLOC | EXTENT_DEFRAG |
1523 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1524 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1525 PAGE_SET_WRITEBACK |
1526 PAGE_END_WRITEBACK);
7ea394f1 1527 btrfs_free_path(path);
79787eaa 1528 return ret;
be20aa9d
CM
1529}
1530
47059d93
WS
1531static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1532{
1533
1534 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1535 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1536 return 0;
1537
1538 /*
1539 * @defrag_bytes is a hint value, no spinlock held here,
1540 * if is not zero, it means the file is defragging.
1541 * Force cow if given extent needs to be defragged.
1542 */
1543 if (BTRFS_I(inode)->defrag_bytes &&
1544 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1545 EXTENT_DEFRAG, 0, NULL))
1546 return 1;
1547
1548 return 0;
1549}
1550
d352ac68
CM
1551/*
1552 * extent_io.c call back to do delayed allocation processing
1553 */
c8b97818 1554static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1555 u64 start, u64 end, int *page_started,
1556 unsigned long *nr_written)
be20aa9d 1557{
be20aa9d 1558 int ret;
47059d93 1559 int force_cow = need_force_cow(inode, start, end);
a2135011 1560
47059d93 1561 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1562 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1563 page_started, 1, nr_written);
47059d93 1564 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1565 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1566 page_started, 0, nr_written);
7816030e 1567 } else if (!inode_need_compress(inode)) {
dda3245e
WX
1568 ret = cow_file_range(inode, locked_page, start, end, end,
1569 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1570 } else {
1571 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1572 &BTRFS_I(inode)->runtime_flags);
771ed689 1573 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1574 page_started, nr_written);
7ddf5a42 1575 }
b888db2b
CM
1576 return ret;
1577}
1578
1bf85046
JM
1579static void btrfs_split_extent_hook(struct inode *inode,
1580 struct extent_state *orig, u64 split)
9ed74f2d 1581{
dcab6a3b
JB
1582 u64 size;
1583
0ca1f7ce 1584 /* not delalloc, ignore it */
9ed74f2d 1585 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1586 return;
9ed74f2d 1587
dcab6a3b
JB
1588 size = orig->end - orig->start + 1;
1589 if (size > BTRFS_MAX_EXTENT_SIZE) {
1590 u64 num_extents;
1591 u64 new_size;
1592
1593 /*
ba117213
JB
1594 * See the explanation in btrfs_merge_extent_hook, the same
1595 * applies here, just in reverse.
dcab6a3b
JB
1596 */
1597 new_size = orig->end - split + 1;
ba117213 1598 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
dcab6a3b 1599 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1600 new_size = split - orig->start;
1601 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1602 BTRFS_MAX_EXTENT_SIZE);
1603 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1604 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1605 return;
1606 }
1607
9e0baf60
JB
1608 spin_lock(&BTRFS_I(inode)->lock);
1609 BTRFS_I(inode)->outstanding_extents++;
1610 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1611}
1612
1613/*
1614 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1615 * extents so we can keep track of new extents that are just merged onto old
1616 * extents, such as when we are doing sequential writes, so we can properly
1617 * account for the metadata space we'll need.
1618 */
1bf85046
JM
1619static void btrfs_merge_extent_hook(struct inode *inode,
1620 struct extent_state *new,
1621 struct extent_state *other)
9ed74f2d 1622{
dcab6a3b
JB
1623 u64 new_size, old_size;
1624 u64 num_extents;
1625
9ed74f2d
JB
1626 /* not delalloc, ignore it */
1627 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1628 return;
9ed74f2d 1629
8461a3de
JB
1630 if (new->start > other->start)
1631 new_size = new->end - other->start + 1;
1632 else
1633 new_size = other->end - new->start + 1;
dcab6a3b
JB
1634
1635 /* we're not bigger than the max, unreserve the space and go */
1636 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1637 spin_lock(&BTRFS_I(inode)->lock);
1638 BTRFS_I(inode)->outstanding_extents--;
1639 spin_unlock(&BTRFS_I(inode)->lock);
1640 return;
1641 }
1642
1643 /*
ba117213
JB
1644 * We have to add up either side to figure out how many extents were
1645 * accounted for before we merged into one big extent. If the number of
1646 * extents we accounted for is <= the amount we need for the new range
1647 * then we can return, otherwise drop. Think of it like this
1648 *
1649 * [ 4k][MAX_SIZE]
1650 *
1651 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1652 * need 2 outstanding extents, on one side we have 1 and the other side
1653 * we have 1 so they are == and we can return. But in this case
1654 *
1655 * [MAX_SIZE+4k][MAX_SIZE+4k]
1656 *
1657 * Each range on their own accounts for 2 extents, but merged together
1658 * they are only 3 extents worth of accounting, so we need to drop in
1659 * this case.
dcab6a3b 1660 */
ba117213 1661 old_size = other->end - other->start + 1;
dcab6a3b
JB
1662 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1663 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1664 old_size = new->end - new->start + 1;
1665 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1666 BTRFS_MAX_EXTENT_SIZE);
1667
dcab6a3b 1668 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
ba117213 1669 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1670 return;
1671
9e0baf60
JB
1672 spin_lock(&BTRFS_I(inode)->lock);
1673 BTRFS_I(inode)->outstanding_extents--;
1674 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1675}
1676
eb73c1b7
MX
1677static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1678 struct inode *inode)
1679{
1680 spin_lock(&root->delalloc_lock);
1681 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1682 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1683 &root->delalloc_inodes);
1684 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1685 &BTRFS_I(inode)->runtime_flags);
1686 root->nr_delalloc_inodes++;
1687 if (root->nr_delalloc_inodes == 1) {
1688 spin_lock(&root->fs_info->delalloc_root_lock);
1689 BUG_ON(!list_empty(&root->delalloc_root));
1690 list_add_tail(&root->delalloc_root,
1691 &root->fs_info->delalloc_roots);
1692 spin_unlock(&root->fs_info->delalloc_root_lock);
1693 }
1694 }
1695 spin_unlock(&root->delalloc_lock);
1696}
1697
1698static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1699 struct inode *inode)
1700{
1701 spin_lock(&root->delalloc_lock);
1702 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1703 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1704 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1705 &BTRFS_I(inode)->runtime_flags);
1706 root->nr_delalloc_inodes--;
1707 if (!root->nr_delalloc_inodes) {
1708 spin_lock(&root->fs_info->delalloc_root_lock);
1709 BUG_ON(list_empty(&root->delalloc_root));
1710 list_del_init(&root->delalloc_root);
1711 spin_unlock(&root->fs_info->delalloc_root_lock);
1712 }
1713 }
1714 spin_unlock(&root->delalloc_lock);
1715}
1716
d352ac68
CM
1717/*
1718 * extent_io.c set_bit_hook, used to track delayed allocation
1719 * bytes in this file, and to maintain the list of inodes that
1720 * have pending delalloc work to be done.
1721 */
1bf85046 1722static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1723 struct extent_state *state, unsigned *bits)
291d673e 1724{
9ed74f2d 1725
47059d93
WS
1726 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1727 WARN_ON(1);
75eff68e
CM
1728 /*
1729 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1730 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1731 * bit, which is only set or cleared with irqs on
1732 */
0ca1f7ce 1733 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1734 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1735 u64 len = state->end + 1 - state->start;
83eea1f1 1736 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1737
9e0baf60 1738 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1739 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1740 } else {
1741 spin_lock(&BTRFS_I(inode)->lock);
1742 BTRFS_I(inode)->outstanding_extents++;
1743 spin_unlock(&BTRFS_I(inode)->lock);
1744 }
287a0ab9 1745
6a3891c5 1746 /* For sanity tests */
f5ee5c9a 1747 if (btrfs_is_testing(root->fs_info))
6a3891c5
JB
1748 return;
1749
963d678b
MX
1750 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1751 root->fs_info->delalloc_batch);
df0af1a5 1752 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1753 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1754 if (*bits & EXTENT_DEFRAG)
1755 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1756 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1757 &BTRFS_I(inode)->runtime_flags))
1758 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1759 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1760 }
291d673e
CM
1761}
1762
d352ac68
CM
1763/*
1764 * extent_io.c clear_bit_hook, see set_bit_hook for why
1765 */
1bf85046 1766static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1767 struct extent_state *state,
9ee49a04 1768 unsigned *bits)
291d673e 1769{
47059d93 1770 u64 len = state->end + 1 - state->start;
dcab6a3b
JB
1771 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1772 BTRFS_MAX_EXTENT_SIZE);
47059d93
WS
1773
1774 spin_lock(&BTRFS_I(inode)->lock);
1775 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1776 BTRFS_I(inode)->defrag_bytes -= len;
1777 spin_unlock(&BTRFS_I(inode)->lock);
1778
75eff68e
CM
1779 /*
1780 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1781 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1782 * bit, which is only set or cleared with irqs on
1783 */
0ca1f7ce 1784 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1785 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1786 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1787
9e0baf60 1788 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1789 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1790 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1791 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 1792 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60
JB
1793 spin_unlock(&BTRFS_I(inode)->lock);
1794 }
0ca1f7ce 1795
b6d08f06
JB
1796 /*
1797 * We don't reserve metadata space for space cache inodes so we
1798 * don't need to call dellalloc_release_metadata if there is an
1799 * error.
1800 */
1801 if (*bits & EXTENT_DO_ACCOUNTING &&
1802 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1803 btrfs_delalloc_release_metadata(inode, len);
1804
6a3891c5 1805 /* For sanity tests. */
f5ee5c9a 1806 if (btrfs_is_testing(root->fs_info))
6a3891c5
JB
1807 return;
1808
0cb59c99 1809 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1810 && do_list && !(state->state & EXTENT_NORESERVE))
51773bec
QW
1811 btrfs_free_reserved_data_space_noquota(inode,
1812 state->start, len);
9ed74f2d 1813
963d678b
MX
1814 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1815 root->fs_info->delalloc_batch);
df0af1a5 1816 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1817 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1818 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1819 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1820 &BTRFS_I(inode)->runtime_flags))
1821 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1822 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1823 }
291d673e
CM
1824}
1825
d352ac68
CM
1826/*
1827 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1828 * we don't create bios that span stripes or chunks
6f034ece
LB
1829 *
1830 * return 1 if page cannot be merged to bio
1831 * return 0 if page can be merged to bio
1832 * return error otherwise
d352ac68 1833 */
64a16701 1834int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1835 size_t size, struct bio *bio,
1836 unsigned long bio_flags)
239b14b3
CM
1837{
1838 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1839 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1840 u64 length = 0;
1841 u64 map_length;
239b14b3
CM
1842 int ret;
1843
771ed689
CM
1844 if (bio_flags & EXTENT_BIO_COMPRESSED)
1845 return 0;
1846
4f024f37 1847 length = bio->bi_iter.bi_size;
239b14b3 1848 map_length = length;
64a16701 1849 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1850 &map_length, NULL, 0);
6f034ece
LB
1851 if (ret < 0)
1852 return ret;
d397712b 1853 if (map_length < length + size)
239b14b3 1854 return 1;
3444a972 1855 return 0;
239b14b3
CM
1856}
1857
d352ac68
CM
1858/*
1859 * in order to insert checksums into the metadata in large chunks,
1860 * we wait until bio submission time. All the pages in the bio are
1861 * checksummed and sums are attached onto the ordered extent record.
1862 *
1863 * At IO completion time the cums attached on the ordered extent record
1864 * are inserted into the btree
1865 */
d397712b
CM
1866static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1867 struct bio *bio, int mirror_num,
eaf25d93
CM
1868 unsigned long bio_flags,
1869 u64 bio_offset)
065631f6 1870{
065631f6 1871 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1872 int ret = 0;
e015640f 1873
d20f7043 1874 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1875 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1876 return 0;
1877}
e015640f 1878
4a69a410
CM
1879/*
1880 * in order to insert checksums into the metadata in large chunks,
1881 * we wait until bio submission time. All the pages in the bio are
1882 * checksummed and sums are attached onto the ordered extent record.
1883 *
1884 * At IO completion time the cums attached on the ordered extent record
1885 * are inserted into the btree
1886 */
b2950863 1887static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1888 int mirror_num, unsigned long bio_flags,
1889 u64 bio_offset)
4a69a410
CM
1890{
1891 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1892 int ret;
1893
1894 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
4246a0b6
CH
1895 if (ret) {
1896 bio->bi_error = ret;
1897 bio_endio(bio);
1898 }
61891923 1899 return ret;
44b8bd7e
CM
1900}
1901
d352ac68 1902/*
cad321ad
CM
1903 * extent_io.c submission hook. This does the right thing for csum calculation
1904 * on write, or reading the csums from the tree before a read
d352ac68 1905 */
b2950863 1906static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1907 int mirror_num, unsigned long bio_flags,
1908 u64 bio_offset)
44b8bd7e
CM
1909{
1910 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1911 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1912 int ret = 0;
19b9bdb0 1913 int skip_sum;
b812ce28 1914 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1915
6cbff00f 1916 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1917
83eea1f1 1918 if (btrfs_is_free_space_inode(inode))
0d51e28a 1919 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1920
7b6d91da 1921 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1922 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1923 if (ret)
61891923 1924 goto out;
5fd02043 1925
d20f7043 1926 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1927 ret = btrfs_submit_compressed_read(inode, bio,
1928 mirror_num,
1929 bio_flags);
1930 goto out;
c2db1073
TI
1931 } else if (!skip_sum) {
1932 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1933 if (ret)
61891923 1934 goto out;
c2db1073 1935 }
4d1b5fb4 1936 goto mapit;
b812ce28 1937 } else if (async && !skip_sum) {
17d217fe
YZ
1938 /* csum items have already been cloned */
1939 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1940 goto mapit;
19b9bdb0 1941 /* we're doing a write, do the async checksumming */
61891923 1942 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1943 inode, rw, bio, mirror_num,
eaf25d93
CM
1944 bio_flags, bio_offset,
1945 __btrfs_submit_bio_start,
4a69a410 1946 __btrfs_submit_bio_done);
61891923 1947 goto out;
b812ce28
JB
1948 } else if (!skip_sum) {
1949 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1950 if (ret)
1951 goto out;
19b9bdb0
CM
1952 }
1953
0b86a832 1954mapit:
61891923
SB
1955 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1956
1957out:
4246a0b6
CH
1958 if (ret < 0) {
1959 bio->bi_error = ret;
1960 bio_endio(bio);
1961 }
61891923 1962 return ret;
065631f6 1963}
6885f308 1964
d352ac68
CM
1965/*
1966 * given a list of ordered sums record them in the inode. This happens
1967 * at IO completion time based on sums calculated at bio submission time.
1968 */
ba1da2f4 1969static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1970 struct inode *inode, u64 file_offset,
1971 struct list_head *list)
1972{
e6dcd2dc
CM
1973 struct btrfs_ordered_sum *sum;
1974
c6e30871 1975 list_for_each_entry(sum, list, list) {
39847c4d 1976 trans->adding_csums = 1;
d20f7043
CM
1977 btrfs_csum_file_blocks(trans,
1978 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1979 trans->adding_csums = 0;
e6dcd2dc
CM
1980 }
1981 return 0;
1982}
1983
2ac55d41
JB
1984int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1985 struct extent_state **cached_state)
ea8c2819 1986{
09cbfeaf 1987 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 1988 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
7cd8c752 1989 cached_state);
ea8c2819
CM
1990}
1991
d352ac68 1992/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1993struct btrfs_writepage_fixup {
1994 struct page *page;
1995 struct btrfs_work work;
1996};
1997
b2950863 1998static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1999{
2000 struct btrfs_writepage_fixup *fixup;
2001 struct btrfs_ordered_extent *ordered;
2ac55d41 2002 struct extent_state *cached_state = NULL;
247e743c
CM
2003 struct page *page;
2004 struct inode *inode;
2005 u64 page_start;
2006 u64 page_end;
87826df0 2007 int ret;
247e743c
CM
2008
2009 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2010 page = fixup->page;
4a096752 2011again:
247e743c
CM
2012 lock_page(page);
2013 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2014 ClearPageChecked(page);
2015 goto out_page;
2016 }
2017
2018 inode = page->mapping->host;
2019 page_start = page_offset(page);
09cbfeaf 2020 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2021
ff13db41 2022 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2023 &cached_state);
4a096752
CM
2024
2025 /* already ordered? We're done */
8b62b72b 2026 if (PagePrivate2(page))
247e743c 2027 goto out;
4a096752 2028
dbfdb6d1 2029 ordered = btrfs_lookup_ordered_range(inode, page_start,
09cbfeaf 2030 PAGE_SIZE);
4a096752 2031 if (ordered) {
2ac55d41
JB
2032 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2033 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2034 unlock_page(page);
2035 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2036 btrfs_put_ordered_extent(ordered);
4a096752
CM
2037 goto again;
2038 }
247e743c 2039
7cf5b976 2040 ret = btrfs_delalloc_reserve_space(inode, page_start,
09cbfeaf 2041 PAGE_SIZE);
87826df0
JM
2042 if (ret) {
2043 mapping_set_error(page->mapping, ret);
2044 end_extent_writepage(page, ret, page_start, page_end);
2045 ClearPageChecked(page);
2046 goto out;
2047 }
2048
2ac55d41 2049 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 2050 ClearPageChecked(page);
87826df0 2051 set_page_dirty(page);
247e743c 2052out:
2ac55d41
JB
2053 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2054 &cached_state, GFP_NOFS);
247e743c
CM
2055out_page:
2056 unlock_page(page);
09cbfeaf 2057 put_page(page);
b897abec 2058 kfree(fixup);
247e743c
CM
2059}
2060
2061/*
2062 * There are a few paths in the higher layers of the kernel that directly
2063 * set the page dirty bit without asking the filesystem if it is a
2064 * good idea. This causes problems because we want to make sure COW
2065 * properly happens and the data=ordered rules are followed.
2066 *
c8b97818 2067 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2068 * hasn't been properly setup for IO. We kick off an async process
2069 * to fix it up. The async helper will wait for ordered extents, set
2070 * the delalloc bit and make it safe to write the page.
2071 */
b2950863 2072static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2073{
2074 struct inode *inode = page->mapping->host;
2075 struct btrfs_writepage_fixup *fixup;
2076 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 2077
8b62b72b
CM
2078 /* this page is properly in the ordered list */
2079 if (TestClearPagePrivate2(page))
247e743c
CM
2080 return 0;
2081
2082 if (PageChecked(page))
2083 return -EAGAIN;
2084
2085 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2086 if (!fixup)
2087 return -EAGAIN;
f421950f 2088
247e743c 2089 SetPageChecked(page);
09cbfeaf 2090 get_page(page);
9e0af237
LB
2091 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2092 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2093 fixup->page = page;
dc6e3209 2094 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 2095 return -EBUSY;
247e743c
CM
2096}
2097
d899e052
YZ
2098static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2099 struct inode *inode, u64 file_pos,
2100 u64 disk_bytenr, u64 disk_num_bytes,
2101 u64 num_bytes, u64 ram_bytes,
2102 u8 compression, u8 encryption,
2103 u16 other_encoding, int extent_type)
2104{
2105 struct btrfs_root *root = BTRFS_I(inode)->root;
2106 struct btrfs_file_extent_item *fi;
2107 struct btrfs_path *path;
2108 struct extent_buffer *leaf;
2109 struct btrfs_key ins;
1acae57b 2110 int extent_inserted = 0;
d899e052
YZ
2111 int ret;
2112
2113 path = btrfs_alloc_path();
d8926bb3
MF
2114 if (!path)
2115 return -ENOMEM;
d899e052 2116
a1ed835e
CM
2117 /*
2118 * we may be replacing one extent in the tree with another.
2119 * The new extent is pinned in the extent map, and we don't want
2120 * to drop it from the cache until it is completely in the btree.
2121 *
2122 * So, tell btrfs_drop_extents to leave this extent in the cache.
2123 * the caller is expected to unpin it and allow it to be merged
2124 * with the others.
2125 */
1acae57b
FDBM
2126 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2127 file_pos + num_bytes, NULL, 0,
2128 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2129 if (ret)
2130 goto out;
d899e052 2131
1acae57b
FDBM
2132 if (!extent_inserted) {
2133 ins.objectid = btrfs_ino(inode);
2134 ins.offset = file_pos;
2135 ins.type = BTRFS_EXTENT_DATA_KEY;
2136
2137 path->leave_spinning = 1;
2138 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2139 sizeof(*fi));
2140 if (ret)
2141 goto out;
2142 }
d899e052
YZ
2143 leaf = path->nodes[0];
2144 fi = btrfs_item_ptr(leaf, path->slots[0],
2145 struct btrfs_file_extent_item);
2146 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2147 btrfs_set_file_extent_type(leaf, fi, extent_type);
2148 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2149 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2150 btrfs_set_file_extent_offset(leaf, fi, 0);
2151 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2152 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2153 btrfs_set_file_extent_compression(leaf, fi, compression);
2154 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2155 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2156
d899e052 2157 btrfs_mark_buffer_dirty(leaf);
ce195332 2158 btrfs_release_path(path);
d899e052
YZ
2159
2160 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2161
2162 ins.objectid = disk_bytenr;
2163 ins.offset = disk_num_bytes;
2164 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2165 ret = btrfs_alloc_reserved_file_extent(trans, root,
2166 root->root_key.objectid,
5846a3c2
QW
2167 btrfs_ino(inode), file_pos,
2168 ram_bytes, &ins);
297d750b 2169 /*
5846a3c2
QW
2170 * Release the reserved range from inode dirty range map, as it is
2171 * already moved into delayed_ref_head
297d750b
QW
2172 */
2173 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
79787eaa 2174out:
d899e052 2175 btrfs_free_path(path);
b9473439 2176
79787eaa 2177 return ret;
d899e052
YZ
2178}
2179
38c227d8
LB
2180/* snapshot-aware defrag */
2181struct sa_defrag_extent_backref {
2182 struct rb_node node;
2183 struct old_sa_defrag_extent *old;
2184 u64 root_id;
2185 u64 inum;
2186 u64 file_pos;
2187 u64 extent_offset;
2188 u64 num_bytes;
2189 u64 generation;
2190};
2191
2192struct old_sa_defrag_extent {
2193 struct list_head list;
2194 struct new_sa_defrag_extent *new;
2195
2196 u64 extent_offset;
2197 u64 bytenr;
2198 u64 offset;
2199 u64 len;
2200 int count;
2201};
2202
2203struct new_sa_defrag_extent {
2204 struct rb_root root;
2205 struct list_head head;
2206 struct btrfs_path *path;
2207 struct inode *inode;
2208 u64 file_pos;
2209 u64 len;
2210 u64 bytenr;
2211 u64 disk_len;
2212 u8 compress_type;
2213};
2214
2215static int backref_comp(struct sa_defrag_extent_backref *b1,
2216 struct sa_defrag_extent_backref *b2)
2217{
2218 if (b1->root_id < b2->root_id)
2219 return -1;
2220 else if (b1->root_id > b2->root_id)
2221 return 1;
2222
2223 if (b1->inum < b2->inum)
2224 return -1;
2225 else if (b1->inum > b2->inum)
2226 return 1;
2227
2228 if (b1->file_pos < b2->file_pos)
2229 return -1;
2230 else if (b1->file_pos > b2->file_pos)
2231 return 1;
2232
2233 /*
2234 * [------------------------------] ===> (a range of space)
2235 * |<--->| |<---->| =============> (fs/file tree A)
2236 * |<---------------------------->| ===> (fs/file tree B)
2237 *
2238 * A range of space can refer to two file extents in one tree while
2239 * refer to only one file extent in another tree.
2240 *
2241 * So we may process a disk offset more than one time(two extents in A)
2242 * and locate at the same extent(one extent in B), then insert two same
2243 * backrefs(both refer to the extent in B).
2244 */
2245 return 0;
2246}
2247
2248static void backref_insert(struct rb_root *root,
2249 struct sa_defrag_extent_backref *backref)
2250{
2251 struct rb_node **p = &root->rb_node;
2252 struct rb_node *parent = NULL;
2253 struct sa_defrag_extent_backref *entry;
2254 int ret;
2255
2256 while (*p) {
2257 parent = *p;
2258 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2259
2260 ret = backref_comp(backref, entry);
2261 if (ret < 0)
2262 p = &(*p)->rb_left;
2263 else
2264 p = &(*p)->rb_right;
2265 }
2266
2267 rb_link_node(&backref->node, parent, p);
2268 rb_insert_color(&backref->node, root);
2269}
2270
2271/*
2272 * Note the backref might has changed, and in this case we just return 0.
2273 */
2274static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2275 void *ctx)
2276{
2277 struct btrfs_file_extent_item *extent;
2278 struct btrfs_fs_info *fs_info;
2279 struct old_sa_defrag_extent *old = ctx;
2280 struct new_sa_defrag_extent *new = old->new;
2281 struct btrfs_path *path = new->path;
2282 struct btrfs_key key;
2283 struct btrfs_root *root;
2284 struct sa_defrag_extent_backref *backref;
2285 struct extent_buffer *leaf;
2286 struct inode *inode = new->inode;
2287 int slot;
2288 int ret;
2289 u64 extent_offset;
2290 u64 num_bytes;
2291
2292 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2293 inum == btrfs_ino(inode))
2294 return 0;
2295
2296 key.objectid = root_id;
2297 key.type = BTRFS_ROOT_ITEM_KEY;
2298 key.offset = (u64)-1;
2299
2300 fs_info = BTRFS_I(inode)->root->fs_info;
2301 root = btrfs_read_fs_root_no_name(fs_info, &key);
2302 if (IS_ERR(root)) {
2303 if (PTR_ERR(root) == -ENOENT)
2304 return 0;
2305 WARN_ON(1);
2306 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2307 inum, offset, root_id);
2308 return PTR_ERR(root);
2309 }
2310
2311 key.objectid = inum;
2312 key.type = BTRFS_EXTENT_DATA_KEY;
2313 if (offset > (u64)-1 << 32)
2314 key.offset = 0;
2315 else
2316 key.offset = offset;
2317
2318 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2319 if (WARN_ON(ret < 0))
38c227d8 2320 return ret;
50f1319c 2321 ret = 0;
38c227d8
LB
2322
2323 while (1) {
2324 cond_resched();
2325
2326 leaf = path->nodes[0];
2327 slot = path->slots[0];
2328
2329 if (slot >= btrfs_header_nritems(leaf)) {
2330 ret = btrfs_next_leaf(root, path);
2331 if (ret < 0) {
2332 goto out;
2333 } else if (ret > 0) {
2334 ret = 0;
2335 goto out;
2336 }
2337 continue;
2338 }
2339
2340 path->slots[0]++;
2341
2342 btrfs_item_key_to_cpu(leaf, &key, slot);
2343
2344 if (key.objectid > inum)
2345 goto out;
2346
2347 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2348 continue;
2349
2350 extent = btrfs_item_ptr(leaf, slot,
2351 struct btrfs_file_extent_item);
2352
2353 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2354 continue;
2355
e68afa49
LB
2356 /*
2357 * 'offset' refers to the exact key.offset,
2358 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2359 * (key.offset - extent_offset).
2360 */
2361 if (key.offset != offset)
38c227d8
LB
2362 continue;
2363
e68afa49 2364 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2365 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2366
38c227d8
LB
2367 if (extent_offset >= old->extent_offset + old->offset +
2368 old->len || extent_offset + num_bytes <=
2369 old->extent_offset + old->offset)
2370 continue;
38c227d8
LB
2371 break;
2372 }
2373
2374 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2375 if (!backref) {
2376 ret = -ENOENT;
2377 goto out;
2378 }
2379
2380 backref->root_id = root_id;
2381 backref->inum = inum;
e68afa49 2382 backref->file_pos = offset;
38c227d8
LB
2383 backref->num_bytes = num_bytes;
2384 backref->extent_offset = extent_offset;
2385 backref->generation = btrfs_file_extent_generation(leaf, extent);
2386 backref->old = old;
2387 backref_insert(&new->root, backref);
2388 old->count++;
2389out:
2390 btrfs_release_path(path);
2391 WARN_ON(ret);
2392 return ret;
2393}
2394
2395static noinline bool record_extent_backrefs(struct btrfs_path *path,
2396 struct new_sa_defrag_extent *new)
2397{
2398 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2399 struct old_sa_defrag_extent *old, *tmp;
2400 int ret;
2401
2402 new->path = path;
2403
2404 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2405 ret = iterate_inodes_from_logical(old->bytenr +
2406 old->extent_offset, fs_info,
38c227d8
LB
2407 path, record_one_backref,
2408 old);
4724b106
JB
2409 if (ret < 0 && ret != -ENOENT)
2410 return false;
38c227d8
LB
2411
2412 /* no backref to be processed for this extent */
2413 if (!old->count) {
2414 list_del(&old->list);
2415 kfree(old);
2416 }
2417 }
2418
2419 if (list_empty(&new->head))
2420 return false;
2421
2422 return true;
2423}
2424
2425static int relink_is_mergable(struct extent_buffer *leaf,
2426 struct btrfs_file_extent_item *fi,
116e0024 2427 struct new_sa_defrag_extent *new)
38c227d8 2428{
116e0024 2429 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2430 return 0;
2431
2432 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2433 return 0;
2434
116e0024
LB
2435 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2436 return 0;
2437
2438 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2439 btrfs_file_extent_other_encoding(leaf, fi))
2440 return 0;
2441
2442 return 1;
2443}
2444
2445/*
2446 * Note the backref might has changed, and in this case we just return 0.
2447 */
2448static noinline int relink_extent_backref(struct btrfs_path *path,
2449 struct sa_defrag_extent_backref *prev,
2450 struct sa_defrag_extent_backref *backref)
2451{
2452 struct btrfs_file_extent_item *extent;
2453 struct btrfs_file_extent_item *item;
2454 struct btrfs_ordered_extent *ordered;
2455 struct btrfs_trans_handle *trans;
2456 struct btrfs_fs_info *fs_info;
2457 struct btrfs_root *root;
2458 struct btrfs_key key;
2459 struct extent_buffer *leaf;
2460 struct old_sa_defrag_extent *old = backref->old;
2461 struct new_sa_defrag_extent *new = old->new;
2462 struct inode *src_inode = new->inode;
2463 struct inode *inode;
2464 struct extent_state *cached = NULL;
2465 int ret = 0;
2466 u64 start;
2467 u64 len;
2468 u64 lock_start;
2469 u64 lock_end;
2470 bool merge = false;
2471 int index;
2472
2473 if (prev && prev->root_id == backref->root_id &&
2474 prev->inum == backref->inum &&
2475 prev->file_pos + prev->num_bytes == backref->file_pos)
2476 merge = true;
2477
2478 /* step 1: get root */
2479 key.objectid = backref->root_id;
2480 key.type = BTRFS_ROOT_ITEM_KEY;
2481 key.offset = (u64)-1;
2482
2483 fs_info = BTRFS_I(src_inode)->root->fs_info;
2484 index = srcu_read_lock(&fs_info->subvol_srcu);
2485
2486 root = btrfs_read_fs_root_no_name(fs_info, &key);
2487 if (IS_ERR(root)) {
2488 srcu_read_unlock(&fs_info->subvol_srcu, index);
2489 if (PTR_ERR(root) == -ENOENT)
2490 return 0;
2491 return PTR_ERR(root);
2492 }
38c227d8 2493
bcbba5e6
WS
2494 if (btrfs_root_readonly(root)) {
2495 srcu_read_unlock(&fs_info->subvol_srcu, index);
2496 return 0;
2497 }
2498
38c227d8
LB
2499 /* step 2: get inode */
2500 key.objectid = backref->inum;
2501 key.type = BTRFS_INODE_ITEM_KEY;
2502 key.offset = 0;
2503
2504 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2505 if (IS_ERR(inode)) {
2506 srcu_read_unlock(&fs_info->subvol_srcu, index);
2507 return 0;
2508 }
2509
2510 srcu_read_unlock(&fs_info->subvol_srcu, index);
2511
2512 /* step 3: relink backref */
2513 lock_start = backref->file_pos;
2514 lock_end = backref->file_pos + backref->num_bytes - 1;
2515 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2516 &cached);
38c227d8
LB
2517
2518 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2519 if (ordered) {
2520 btrfs_put_ordered_extent(ordered);
2521 goto out_unlock;
2522 }
2523
2524 trans = btrfs_join_transaction(root);
2525 if (IS_ERR(trans)) {
2526 ret = PTR_ERR(trans);
2527 goto out_unlock;
2528 }
2529
2530 key.objectid = backref->inum;
2531 key.type = BTRFS_EXTENT_DATA_KEY;
2532 key.offset = backref->file_pos;
2533
2534 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2535 if (ret < 0) {
2536 goto out_free_path;
2537 } else if (ret > 0) {
2538 ret = 0;
2539 goto out_free_path;
2540 }
2541
2542 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2543 struct btrfs_file_extent_item);
2544
2545 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2546 backref->generation)
2547 goto out_free_path;
2548
2549 btrfs_release_path(path);
2550
2551 start = backref->file_pos;
2552 if (backref->extent_offset < old->extent_offset + old->offset)
2553 start += old->extent_offset + old->offset -
2554 backref->extent_offset;
2555
2556 len = min(backref->extent_offset + backref->num_bytes,
2557 old->extent_offset + old->offset + old->len);
2558 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2559
2560 ret = btrfs_drop_extents(trans, root, inode, start,
2561 start + len, 1);
2562 if (ret)
2563 goto out_free_path;
2564again:
2565 key.objectid = btrfs_ino(inode);
2566 key.type = BTRFS_EXTENT_DATA_KEY;
2567 key.offset = start;
2568
a09a0a70 2569 path->leave_spinning = 1;
38c227d8
LB
2570 if (merge) {
2571 struct btrfs_file_extent_item *fi;
2572 u64 extent_len;
2573 struct btrfs_key found_key;
2574
3c9665df 2575 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2576 if (ret < 0)
2577 goto out_free_path;
2578
2579 path->slots[0]--;
2580 leaf = path->nodes[0];
2581 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2582
2583 fi = btrfs_item_ptr(leaf, path->slots[0],
2584 struct btrfs_file_extent_item);
2585 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2586
116e0024
LB
2587 if (extent_len + found_key.offset == start &&
2588 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2589 btrfs_set_file_extent_num_bytes(leaf, fi,
2590 extent_len + len);
2591 btrfs_mark_buffer_dirty(leaf);
2592 inode_add_bytes(inode, len);
2593
2594 ret = 1;
2595 goto out_free_path;
2596 } else {
2597 merge = false;
2598 btrfs_release_path(path);
2599 goto again;
2600 }
2601 }
2602
2603 ret = btrfs_insert_empty_item(trans, root, path, &key,
2604 sizeof(*extent));
2605 if (ret) {
66642832 2606 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2607 goto out_free_path;
2608 }
2609
2610 leaf = path->nodes[0];
2611 item = btrfs_item_ptr(leaf, path->slots[0],
2612 struct btrfs_file_extent_item);
2613 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2614 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2615 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2616 btrfs_set_file_extent_num_bytes(leaf, item, len);
2617 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2618 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2619 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2620 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2621 btrfs_set_file_extent_encryption(leaf, item, 0);
2622 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2623
2624 btrfs_mark_buffer_dirty(leaf);
2625 inode_add_bytes(inode, len);
a09a0a70 2626 btrfs_release_path(path);
38c227d8
LB
2627
2628 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2629 new->disk_len, 0,
2630 backref->root_id, backref->inum,
b06c4bf5 2631 new->file_pos); /* start - extent_offset */
38c227d8 2632 if (ret) {
66642832 2633 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2634 goto out_free_path;
2635 }
2636
2637 ret = 1;
2638out_free_path:
2639 btrfs_release_path(path);
a09a0a70 2640 path->leave_spinning = 0;
38c227d8
LB
2641 btrfs_end_transaction(trans, root);
2642out_unlock:
2643 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2644 &cached, GFP_NOFS);
2645 iput(inode);
2646 return ret;
2647}
2648
6f519564
LB
2649static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2650{
2651 struct old_sa_defrag_extent *old, *tmp;
2652
2653 if (!new)
2654 return;
2655
2656 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2657 kfree(old);
2658 }
2659 kfree(new);
2660}
2661
38c227d8
LB
2662static void relink_file_extents(struct new_sa_defrag_extent *new)
2663{
2664 struct btrfs_path *path;
38c227d8
LB
2665 struct sa_defrag_extent_backref *backref;
2666 struct sa_defrag_extent_backref *prev = NULL;
2667 struct inode *inode;
2668 struct btrfs_root *root;
2669 struct rb_node *node;
2670 int ret;
2671
2672 inode = new->inode;
2673 root = BTRFS_I(inode)->root;
2674
2675 path = btrfs_alloc_path();
2676 if (!path)
2677 return;
2678
2679 if (!record_extent_backrefs(path, new)) {
2680 btrfs_free_path(path);
2681 goto out;
2682 }
2683 btrfs_release_path(path);
2684
2685 while (1) {
2686 node = rb_first(&new->root);
2687 if (!node)
2688 break;
2689 rb_erase(node, &new->root);
2690
2691 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2692
2693 ret = relink_extent_backref(path, prev, backref);
2694 WARN_ON(ret < 0);
2695
2696 kfree(prev);
2697
2698 if (ret == 1)
2699 prev = backref;
2700 else
2701 prev = NULL;
2702 cond_resched();
2703 }
2704 kfree(prev);
2705
2706 btrfs_free_path(path);
38c227d8 2707out:
6f519564
LB
2708 free_sa_defrag_extent(new);
2709
38c227d8
LB
2710 atomic_dec(&root->fs_info->defrag_running);
2711 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2712}
2713
2714static struct new_sa_defrag_extent *
2715record_old_file_extents(struct inode *inode,
2716 struct btrfs_ordered_extent *ordered)
2717{
2718 struct btrfs_root *root = BTRFS_I(inode)->root;
2719 struct btrfs_path *path;
2720 struct btrfs_key key;
6f519564 2721 struct old_sa_defrag_extent *old;
38c227d8
LB
2722 struct new_sa_defrag_extent *new;
2723 int ret;
2724
2725 new = kmalloc(sizeof(*new), GFP_NOFS);
2726 if (!new)
2727 return NULL;
2728
2729 new->inode = inode;
2730 new->file_pos = ordered->file_offset;
2731 new->len = ordered->len;
2732 new->bytenr = ordered->start;
2733 new->disk_len = ordered->disk_len;
2734 new->compress_type = ordered->compress_type;
2735 new->root = RB_ROOT;
2736 INIT_LIST_HEAD(&new->head);
2737
2738 path = btrfs_alloc_path();
2739 if (!path)
2740 goto out_kfree;
2741
2742 key.objectid = btrfs_ino(inode);
2743 key.type = BTRFS_EXTENT_DATA_KEY;
2744 key.offset = new->file_pos;
2745
2746 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2747 if (ret < 0)
2748 goto out_free_path;
2749 if (ret > 0 && path->slots[0] > 0)
2750 path->slots[0]--;
2751
2752 /* find out all the old extents for the file range */
2753 while (1) {
2754 struct btrfs_file_extent_item *extent;
2755 struct extent_buffer *l;
2756 int slot;
2757 u64 num_bytes;
2758 u64 offset;
2759 u64 end;
2760 u64 disk_bytenr;
2761 u64 extent_offset;
2762
2763 l = path->nodes[0];
2764 slot = path->slots[0];
2765
2766 if (slot >= btrfs_header_nritems(l)) {
2767 ret = btrfs_next_leaf(root, path);
2768 if (ret < 0)
6f519564 2769 goto out_free_path;
38c227d8
LB
2770 else if (ret > 0)
2771 break;
2772 continue;
2773 }
2774
2775 btrfs_item_key_to_cpu(l, &key, slot);
2776
2777 if (key.objectid != btrfs_ino(inode))
2778 break;
2779 if (key.type != BTRFS_EXTENT_DATA_KEY)
2780 break;
2781 if (key.offset >= new->file_pos + new->len)
2782 break;
2783
2784 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2785
2786 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2787 if (key.offset + num_bytes < new->file_pos)
2788 goto next;
2789
2790 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2791 if (!disk_bytenr)
2792 goto next;
2793
2794 extent_offset = btrfs_file_extent_offset(l, extent);
2795
2796 old = kmalloc(sizeof(*old), GFP_NOFS);
2797 if (!old)
6f519564 2798 goto out_free_path;
38c227d8
LB
2799
2800 offset = max(new->file_pos, key.offset);
2801 end = min(new->file_pos + new->len, key.offset + num_bytes);
2802
2803 old->bytenr = disk_bytenr;
2804 old->extent_offset = extent_offset;
2805 old->offset = offset - key.offset;
2806 old->len = end - offset;
2807 old->new = new;
2808 old->count = 0;
2809 list_add_tail(&old->list, &new->head);
2810next:
2811 path->slots[0]++;
2812 cond_resched();
2813 }
2814
2815 btrfs_free_path(path);
2816 atomic_inc(&root->fs_info->defrag_running);
2817
2818 return new;
2819
38c227d8
LB
2820out_free_path:
2821 btrfs_free_path(path);
2822out_kfree:
6f519564 2823 free_sa_defrag_extent(new);
38c227d8
LB
2824 return NULL;
2825}
2826
e570fd27
MX
2827static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2828 u64 start, u64 len)
2829{
2830 struct btrfs_block_group_cache *cache;
2831
2832 cache = btrfs_lookup_block_group(root->fs_info, start);
2833 ASSERT(cache);
2834
2835 spin_lock(&cache->lock);
2836 cache->delalloc_bytes -= len;
2837 spin_unlock(&cache->lock);
2838
2839 btrfs_put_block_group(cache);
2840}
2841
d352ac68
CM
2842/* as ordered data IO finishes, this gets called so we can finish
2843 * an ordered extent if the range of bytes in the file it covers are
2844 * fully written.
2845 */
5fd02043 2846static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2847{
5fd02043 2848 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2849 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2850 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2851 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2852 struct extent_state *cached_state = NULL;
38c227d8 2853 struct new_sa_defrag_extent *new = NULL;
261507a0 2854 int compress_type = 0;
77cef2ec
JB
2855 int ret = 0;
2856 u64 logical_len = ordered_extent->len;
82d5902d 2857 bool nolock;
77cef2ec 2858 bool truncated = false;
e6dcd2dc 2859
83eea1f1 2860 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2861
5fd02043
JB
2862 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2863 ret = -EIO;
2864 goto out;
2865 }
2866
f612496b
MX
2867 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2868 ordered_extent->file_offset +
2869 ordered_extent->len - 1);
2870
77cef2ec
JB
2871 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2872 truncated = true;
2873 logical_len = ordered_extent->truncated_len;
2874 /* Truncated the entire extent, don't bother adding */
2875 if (!logical_len)
2876 goto out;
2877 }
2878
c2167754 2879 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2880 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2881
2882 /*
2883 * For mwrite(mmap + memset to write) case, we still reserve
2884 * space for NOCOW range.
2885 * As NOCOW won't cause a new delayed ref, just free the space
2886 */
2887 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2888 ordered_extent->len);
6c760c07
JB
2889 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2890 if (nolock)
2891 trans = btrfs_join_transaction_nolock(root);
2892 else
2893 trans = btrfs_join_transaction(root);
2894 if (IS_ERR(trans)) {
2895 ret = PTR_ERR(trans);
2896 trans = NULL;
2897 goto out;
c2167754 2898 }
6c760c07
JB
2899 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2900 ret = btrfs_update_inode_fallback(trans, root, inode);
2901 if (ret) /* -ENOMEM or corruption */
66642832 2902 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2903 goto out;
2904 }
e6dcd2dc 2905
2ac55d41
JB
2906 lock_extent_bits(io_tree, ordered_extent->file_offset,
2907 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2908 &cached_state);
e6dcd2dc 2909
38c227d8
LB
2910 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2911 ordered_extent->file_offset + ordered_extent->len - 1,
2912 EXTENT_DEFRAG, 1, cached_state);
2913 if (ret) {
2914 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2915 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2916 /* the inode is shared */
2917 new = record_old_file_extents(inode, ordered_extent);
2918
2919 clear_extent_bit(io_tree, ordered_extent->file_offset,
2920 ordered_extent->file_offset + ordered_extent->len - 1,
2921 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2922 }
2923
0cb59c99 2924 if (nolock)
7a7eaa40 2925 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2926 else
7a7eaa40 2927 trans = btrfs_join_transaction(root);
79787eaa
JM
2928 if (IS_ERR(trans)) {
2929 ret = PTR_ERR(trans);
2930 trans = NULL;
2931 goto out_unlock;
2932 }
a79b7d4b 2933
0ca1f7ce 2934 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2935
c8b97818 2936 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2937 compress_type = ordered_extent->compress_type;
d899e052 2938 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2939 BUG_ON(compress_type);
920bbbfb 2940 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2941 ordered_extent->file_offset,
2942 ordered_extent->file_offset +
77cef2ec 2943 logical_len);
d899e052 2944 } else {
0af3d00b 2945 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2946 ret = insert_reserved_file_extent(trans, inode,
2947 ordered_extent->file_offset,
2948 ordered_extent->start,
2949 ordered_extent->disk_len,
77cef2ec 2950 logical_len, logical_len,
261507a0 2951 compress_type, 0, 0,
d899e052 2952 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2953 if (!ret)
2954 btrfs_release_delalloc_bytes(root,
2955 ordered_extent->start,
2956 ordered_extent->disk_len);
d899e052 2957 }
5dc562c5
JB
2958 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2959 ordered_extent->file_offset, ordered_extent->len,
2960 trans->transid);
79787eaa 2961 if (ret < 0) {
66642832 2962 btrfs_abort_transaction(trans, ret);
5fd02043 2963 goto out_unlock;
79787eaa 2964 }
2ac55d41 2965
e6dcd2dc
CM
2966 add_pending_csums(trans, inode, ordered_extent->file_offset,
2967 &ordered_extent->list);
2968
6c760c07
JB
2969 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2970 ret = btrfs_update_inode_fallback(trans, root, inode);
2971 if (ret) { /* -ENOMEM or corruption */
66642832 2972 btrfs_abort_transaction(trans, ret);
6c760c07 2973 goto out_unlock;
1ef30be1
JB
2974 }
2975 ret = 0;
5fd02043
JB
2976out_unlock:
2977 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2978 ordered_extent->file_offset +
2979 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2980out:
5b0e95bf 2981 if (root != root->fs_info->tree_root)
0cb59c99 2982 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2983 if (trans)
2984 btrfs_end_transaction(trans, root);
0cb59c99 2985
77cef2ec
JB
2986 if (ret || truncated) {
2987 u64 start, end;
2988
2989 if (truncated)
2990 start = ordered_extent->file_offset + logical_len;
2991 else
2992 start = ordered_extent->file_offset;
2993 end = ordered_extent->file_offset + ordered_extent->len - 1;
2994 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2995
2996 /* Drop the cache for the part of the extent we didn't write. */
2997 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2998
0bec9ef5
JB
2999 /*
3000 * If the ordered extent had an IOERR or something else went
3001 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3002 * back to the allocator. We only free the extent in the
3003 * truncated case if we didn't write out the extent at all.
0bec9ef5 3004 */
77cef2ec
JB
3005 if ((ret || !logical_len) &&
3006 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
3007 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3008 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 3009 ordered_extent->disk_len, 1);
0bec9ef5
JB
3010 }
3011
3012
5fd02043 3013 /*
8bad3c02
LB
3014 * This needs to be done to make sure anybody waiting knows we are done
3015 * updating everything for this ordered extent.
5fd02043
JB
3016 */
3017 btrfs_remove_ordered_extent(inode, ordered_extent);
3018
38c227d8 3019 /* for snapshot-aware defrag */
6f519564
LB
3020 if (new) {
3021 if (ret) {
3022 free_sa_defrag_extent(new);
3023 atomic_dec(&root->fs_info->defrag_running);
3024 } else {
3025 relink_file_extents(new);
3026 }
3027 }
38c227d8 3028
e6dcd2dc
CM
3029 /* once for us */
3030 btrfs_put_ordered_extent(ordered_extent);
3031 /* once for the tree */
3032 btrfs_put_ordered_extent(ordered_extent);
3033
5fd02043
JB
3034 return ret;
3035}
3036
3037static void finish_ordered_fn(struct btrfs_work *work)
3038{
3039 struct btrfs_ordered_extent *ordered_extent;
3040 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3041 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3042}
3043
b2950863 3044static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3045 struct extent_state *state, int uptodate)
3046{
5fd02043
JB
3047 struct inode *inode = page->mapping->host;
3048 struct btrfs_root *root = BTRFS_I(inode)->root;
3049 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3050 struct btrfs_workqueue *wq;
3051 btrfs_work_func_t func;
5fd02043 3052
1abe9b8a 3053 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3054
8b62b72b 3055 ClearPagePrivate2(page);
5fd02043
JB
3056 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3057 end - start + 1, uptodate))
3058 return 0;
3059
9e0af237
LB
3060 if (btrfs_is_free_space_inode(inode)) {
3061 wq = root->fs_info->endio_freespace_worker;
3062 func = btrfs_freespace_write_helper;
3063 } else {
3064 wq = root->fs_info->endio_write_workers;
3065 func = btrfs_endio_write_helper;
3066 }
5fd02043 3067
9e0af237
LB
3068 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3069 NULL);
3070 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
3071
3072 return 0;
211f90e6
CM
3073}
3074
dc380aea
MX
3075static int __readpage_endio_check(struct inode *inode,
3076 struct btrfs_io_bio *io_bio,
3077 int icsum, struct page *page,
3078 int pgoff, u64 start, size_t len)
3079{
3080 char *kaddr;
3081 u32 csum_expected;
3082 u32 csum = ~(u32)0;
dc380aea
MX
3083
3084 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3085
3086 kaddr = kmap_atomic(page);
3087 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3088 btrfs_csum_final(csum, (char *)&csum);
3089 if (csum != csum_expected)
3090 goto zeroit;
3091
3092 kunmap_atomic(kaddr);
3093 return 0;
3094zeroit:
94647322
DS
3095 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3096 "csum failed ino %llu off %llu csum %u expected csum %u",
dc380aea
MX
3097 btrfs_ino(inode), start, csum, csum_expected);
3098 memset(kaddr + pgoff, 1, len);
3099 flush_dcache_page(page);
3100 kunmap_atomic(kaddr);
3101 if (csum_expected == 0)
3102 return 0;
3103 return -EIO;
3104}
3105
d352ac68
CM
3106/*
3107 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3108 * if there's a match, we allow the bio to finish. If not, the code in
3109 * extent_io.c will try to find good copies for us.
d352ac68 3110 */
facc8a22
MX
3111static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3112 u64 phy_offset, struct page *page,
3113 u64 start, u64 end, int mirror)
07157aac 3114{
4eee4fa4 3115 size_t offset = start - page_offset(page);
07157aac 3116 struct inode *inode = page->mapping->host;
d1310b2e 3117 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3118 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3119
d20f7043
CM
3120 if (PageChecked(page)) {
3121 ClearPageChecked(page);
dc380aea 3122 return 0;
d20f7043 3123 }
6cbff00f
CH
3124
3125 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3126 return 0;
17d217fe
YZ
3127
3128 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3129 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3130 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3131 return 0;
17d217fe 3132 }
d20f7043 3133
facc8a22 3134 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3135 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3136 start, (size_t)(end - start + 1));
07157aac 3137}
b888db2b 3138
24bbcf04
YZ
3139void btrfs_add_delayed_iput(struct inode *inode)
3140{
3141 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
8089fe62 3142 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3143
3144 if (atomic_add_unless(&inode->i_count, -1, 1))
3145 return;
3146
24bbcf04 3147 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3148 if (binode->delayed_iput_count == 0) {
3149 ASSERT(list_empty(&binode->delayed_iput));
3150 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3151 } else {
3152 binode->delayed_iput_count++;
3153 }
24bbcf04
YZ
3154 spin_unlock(&fs_info->delayed_iput_lock);
3155}
3156
3157void btrfs_run_delayed_iputs(struct btrfs_root *root)
3158{
24bbcf04 3159 struct btrfs_fs_info *fs_info = root->fs_info;
24bbcf04 3160
24bbcf04 3161 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3162 while (!list_empty(&fs_info->delayed_iputs)) {
3163 struct btrfs_inode *inode;
3164
3165 inode = list_first_entry(&fs_info->delayed_iputs,
3166 struct btrfs_inode, delayed_iput);
3167 if (inode->delayed_iput_count) {
3168 inode->delayed_iput_count--;
3169 list_move_tail(&inode->delayed_iput,
3170 &fs_info->delayed_iputs);
3171 } else {
3172 list_del_init(&inode->delayed_iput);
3173 }
3174 spin_unlock(&fs_info->delayed_iput_lock);
3175 iput(&inode->vfs_inode);
3176 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3177 }
8089fe62 3178 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3179}
3180
d68fc57b 3181/*
42b2aa86 3182 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3183 * files in the subvolume, it removes orphan item and frees block_rsv
3184 * structure.
3185 */
3186void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3187 struct btrfs_root *root)
3188{
90290e19 3189 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3190 int ret;
3191
8a35d95f 3192 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3193 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3194 return;
3195
90290e19 3196 spin_lock(&root->orphan_lock);
8a35d95f 3197 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3198 spin_unlock(&root->orphan_lock);
3199 return;
3200 }
3201
3202 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3203 spin_unlock(&root->orphan_lock);
3204 return;
3205 }
3206
3207 block_rsv = root->orphan_block_rsv;
3208 root->orphan_block_rsv = NULL;
3209 spin_unlock(&root->orphan_lock);
3210
27cdeb70 3211 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3212 btrfs_root_refs(&root->root_item) > 0) {
3213 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3214 root->root_key.objectid);
4ef31a45 3215 if (ret)
66642832 3216 btrfs_abort_transaction(trans, ret);
4ef31a45 3217 else
27cdeb70
MX
3218 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3219 &root->state);
d68fc57b
YZ
3220 }
3221
90290e19
JB
3222 if (block_rsv) {
3223 WARN_ON(block_rsv->size > 0);
3224 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3225 }
3226}
3227
7b128766
JB
3228/*
3229 * This creates an orphan entry for the given inode in case something goes
3230 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3231 *
3232 * NOTE: caller of this function should reserve 5 units of metadata for
3233 * this function.
7b128766
JB
3234 */
3235int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3236{
3237 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3238 struct btrfs_block_rsv *block_rsv = NULL;
3239 int reserve = 0;
3240 int insert = 0;
3241 int ret;
7b128766 3242
d68fc57b 3243 if (!root->orphan_block_rsv) {
66d8f3dd 3244 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3245 if (!block_rsv)
3246 return -ENOMEM;
d68fc57b 3247 }
7b128766 3248
d68fc57b
YZ
3249 spin_lock(&root->orphan_lock);
3250 if (!root->orphan_block_rsv) {
3251 root->orphan_block_rsv = block_rsv;
3252 } else if (block_rsv) {
3253 btrfs_free_block_rsv(root, block_rsv);
3254 block_rsv = NULL;
7b128766 3255 }
7b128766 3256
8a35d95f
JB
3257 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3258 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3259#if 0
3260 /*
3261 * For proper ENOSPC handling, we should do orphan
3262 * cleanup when mounting. But this introduces backward
3263 * compatibility issue.
3264 */
3265 if (!xchg(&root->orphan_item_inserted, 1))
3266 insert = 2;
3267 else
3268 insert = 1;
3269#endif
3270 insert = 1;
321f0e70 3271 atomic_inc(&root->orphan_inodes);
7b128766
JB
3272 }
3273
72ac3c0d
JB
3274 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3275 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3276 reserve = 1;
d68fc57b 3277 spin_unlock(&root->orphan_lock);
7b128766 3278
d68fc57b
YZ
3279 /* grab metadata reservation from transaction handle */
3280 if (reserve) {
3281 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3282 ASSERT(!ret);
3283 if (ret) {
3284 atomic_dec(&root->orphan_inodes);
3285 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3286 &BTRFS_I(inode)->runtime_flags);
3287 if (insert)
3288 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3289 &BTRFS_I(inode)->runtime_flags);
3290 return ret;
3291 }
d68fc57b 3292 }
7b128766 3293
d68fc57b
YZ
3294 /* insert an orphan item to track this unlinked/truncated file */
3295 if (insert >= 1) {
33345d01 3296 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3297 if (ret) {
703c88e0 3298 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3299 if (reserve) {
3300 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3301 &BTRFS_I(inode)->runtime_flags);
3302 btrfs_orphan_release_metadata(inode);
3303 }
3304 if (ret != -EEXIST) {
e8e7cff6
JB
3305 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3306 &BTRFS_I(inode)->runtime_flags);
66642832 3307 btrfs_abort_transaction(trans, ret);
4ef31a45
JB
3308 return ret;
3309 }
79787eaa
JM
3310 }
3311 ret = 0;
d68fc57b
YZ
3312 }
3313
3314 /* insert an orphan item to track subvolume contains orphan files */
3315 if (insert >= 2) {
3316 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3317 root->root_key.objectid);
79787eaa 3318 if (ret && ret != -EEXIST) {
66642832 3319 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3320 return ret;
3321 }
d68fc57b
YZ
3322 }
3323 return 0;
7b128766
JB
3324}
3325
3326/*
3327 * We have done the truncate/delete so we can go ahead and remove the orphan
3328 * item for this particular inode.
3329 */
48a3b636
ES
3330static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3331 struct inode *inode)
7b128766
JB
3332{
3333 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3334 int delete_item = 0;
3335 int release_rsv = 0;
7b128766
JB
3336 int ret = 0;
3337
d68fc57b 3338 spin_lock(&root->orphan_lock);
8a35d95f
JB
3339 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3340 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3341 delete_item = 1;
7b128766 3342
72ac3c0d
JB
3343 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3344 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3345 release_rsv = 1;
d68fc57b 3346 spin_unlock(&root->orphan_lock);
7b128766 3347
703c88e0 3348 if (delete_item) {
8a35d95f 3349 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3350 if (trans)
3351 ret = btrfs_del_orphan_item(trans, root,
3352 btrfs_ino(inode));
8a35d95f 3353 }
7b128766 3354
703c88e0
FDBM
3355 if (release_rsv)
3356 btrfs_orphan_release_metadata(inode);
3357
4ef31a45 3358 return ret;
7b128766
JB
3359}
3360
3361/*
3362 * this cleans up any orphans that may be left on the list from the last use
3363 * of this root.
3364 */
66b4ffd1 3365int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3366{
3367 struct btrfs_path *path;
3368 struct extent_buffer *leaf;
7b128766
JB
3369 struct btrfs_key key, found_key;
3370 struct btrfs_trans_handle *trans;
3371 struct inode *inode;
8f6d7f4f 3372 u64 last_objectid = 0;
7b128766
JB
3373 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3374
d68fc57b 3375 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3376 return 0;
c71bf099
YZ
3377
3378 path = btrfs_alloc_path();
66b4ffd1
JB
3379 if (!path) {
3380 ret = -ENOMEM;
3381 goto out;
3382 }
e4058b54 3383 path->reada = READA_BACK;
7b128766
JB
3384
3385 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3386 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3387 key.offset = (u64)-1;
3388
7b128766
JB
3389 while (1) {
3390 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3391 if (ret < 0)
3392 goto out;
7b128766
JB
3393
3394 /*
3395 * if ret == 0 means we found what we were searching for, which
25985edc 3396 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3397 * find the key and see if we have stuff that matches
3398 */
3399 if (ret > 0) {
66b4ffd1 3400 ret = 0;
7b128766
JB
3401 if (path->slots[0] == 0)
3402 break;
3403 path->slots[0]--;
3404 }
3405
3406 /* pull out the item */
3407 leaf = path->nodes[0];
7b128766
JB
3408 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3409
3410 /* make sure the item matches what we want */
3411 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3412 break;
962a298f 3413 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3414 break;
3415
3416 /* release the path since we're done with it */
b3b4aa74 3417 btrfs_release_path(path);
7b128766
JB
3418
3419 /*
3420 * this is where we are basically btrfs_lookup, without the
3421 * crossing root thing. we store the inode number in the
3422 * offset of the orphan item.
3423 */
8f6d7f4f
JB
3424
3425 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3426 btrfs_err(root->fs_info,
3427 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3428 ret = -EINVAL;
3429 goto out;
3430 }
3431
3432 last_objectid = found_key.offset;
3433
5d4f98a2
YZ
3434 found_key.objectid = found_key.offset;
3435 found_key.type = BTRFS_INODE_ITEM_KEY;
3436 found_key.offset = 0;
73f73415 3437 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3438 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3439 if (ret && ret != -ESTALE)
66b4ffd1 3440 goto out;
7b128766 3441
f8e9e0b0
AJ
3442 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3443 struct btrfs_root *dead_root;
3444 struct btrfs_fs_info *fs_info = root->fs_info;
3445 int is_dead_root = 0;
3446
3447 /*
3448 * this is an orphan in the tree root. Currently these
3449 * could come from 2 sources:
3450 * a) a snapshot deletion in progress
3451 * b) a free space cache inode
3452 * We need to distinguish those two, as the snapshot
3453 * orphan must not get deleted.
3454 * find_dead_roots already ran before us, so if this
3455 * is a snapshot deletion, we should find the root
3456 * in the dead_roots list
3457 */
3458 spin_lock(&fs_info->trans_lock);
3459 list_for_each_entry(dead_root, &fs_info->dead_roots,
3460 root_list) {
3461 if (dead_root->root_key.objectid ==
3462 found_key.objectid) {
3463 is_dead_root = 1;
3464 break;
3465 }
3466 }
3467 spin_unlock(&fs_info->trans_lock);
3468 if (is_dead_root) {
3469 /* prevent this orphan from being found again */
3470 key.offset = found_key.objectid - 1;
3471 continue;
3472 }
3473 }
7b128766 3474 /*
a8c9e576
JB
3475 * Inode is already gone but the orphan item is still there,
3476 * kill the orphan item.
7b128766 3477 */
a8c9e576
JB
3478 if (ret == -ESTALE) {
3479 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3480 if (IS_ERR(trans)) {
3481 ret = PTR_ERR(trans);
3482 goto out;
3483 }
c2cf52eb
SK
3484 btrfs_debug(root->fs_info, "auto deleting %Lu",
3485 found_key.objectid);
a8c9e576
JB
3486 ret = btrfs_del_orphan_item(trans, root,
3487 found_key.objectid);
5b21f2ed 3488 btrfs_end_transaction(trans, root);
4ef31a45
JB
3489 if (ret)
3490 goto out;
7b128766
JB
3491 continue;
3492 }
3493
a8c9e576
JB
3494 /*
3495 * add this inode to the orphan list so btrfs_orphan_del does
3496 * the proper thing when we hit it
3497 */
8a35d95f
JB
3498 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3499 &BTRFS_I(inode)->runtime_flags);
925396ec 3500 atomic_inc(&root->orphan_inodes);
a8c9e576 3501
7b128766
JB
3502 /* if we have links, this was a truncate, lets do that */
3503 if (inode->i_nlink) {
fae7f21c 3504 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3505 iput(inode);
3506 continue;
3507 }
7b128766 3508 nr_truncate++;
f3fe820c
JB
3509
3510 /* 1 for the orphan item deletion. */
3511 trans = btrfs_start_transaction(root, 1);
3512 if (IS_ERR(trans)) {
c69b26b0 3513 iput(inode);
f3fe820c
JB
3514 ret = PTR_ERR(trans);
3515 goto out;
3516 }
3517 ret = btrfs_orphan_add(trans, inode);
3518 btrfs_end_transaction(trans, root);
c69b26b0
JB
3519 if (ret) {
3520 iput(inode);
f3fe820c 3521 goto out;
c69b26b0 3522 }
f3fe820c 3523
66b4ffd1 3524 ret = btrfs_truncate(inode);
4a7d0f68
JB
3525 if (ret)
3526 btrfs_orphan_del(NULL, inode);
7b128766
JB
3527 } else {
3528 nr_unlink++;
3529 }
3530
3531 /* this will do delete_inode and everything for us */
3532 iput(inode);
66b4ffd1
JB
3533 if (ret)
3534 goto out;
7b128766 3535 }
3254c876
MX
3536 /* release the path since we're done with it */
3537 btrfs_release_path(path);
3538
d68fc57b
YZ
3539 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3540
3541 if (root->orphan_block_rsv)
3542 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3543 (u64)-1);
3544
27cdeb70
MX
3545 if (root->orphan_block_rsv ||
3546 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3547 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3548 if (!IS_ERR(trans))
3549 btrfs_end_transaction(trans, root);
d68fc57b 3550 }
7b128766
JB
3551
3552 if (nr_unlink)
4884b476 3553 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3554 if (nr_truncate)
4884b476 3555 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3556
3557out:
3558 if (ret)
68b663d1 3559 btrfs_err(root->fs_info,
c2cf52eb 3560 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3561 btrfs_free_path(path);
3562 return ret;
7b128766
JB
3563}
3564
46a53cca
CM
3565/*
3566 * very simple check to peek ahead in the leaf looking for xattrs. If we
3567 * don't find any xattrs, we know there can't be any acls.
3568 *
3569 * slot is the slot the inode is in, objectid is the objectid of the inode
3570 */
3571static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3572 int slot, u64 objectid,
3573 int *first_xattr_slot)
46a53cca
CM
3574{
3575 u32 nritems = btrfs_header_nritems(leaf);
3576 struct btrfs_key found_key;
f23b5a59
JB
3577 static u64 xattr_access = 0;
3578 static u64 xattr_default = 0;
46a53cca
CM
3579 int scanned = 0;
3580
f23b5a59 3581 if (!xattr_access) {
97d79299
AG
3582 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3583 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3584 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3585 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3586 }
3587
46a53cca 3588 slot++;
63541927 3589 *first_xattr_slot = -1;
46a53cca
CM
3590 while (slot < nritems) {
3591 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3592
3593 /* we found a different objectid, there must not be acls */
3594 if (found_key.objectid != objectid)
3595 return 0;
3596
3597 /* we found an xattr, assume we've got an acl */
f23b5a59 3598 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3599 if (*first_xattr_slot == -1)
3600 *first_xattr_slot = slot;
f23b5a59
JB
3601 if (found_key.offset == xattr_access ||
3602 found_key.offset == xattr_default)
3603 return 1;
3604 }
46a53cca
CM
3605
3606 /*
3607 * we found a key greater than an xattr key, there can't
3608 * be any acls later on
3609 */
3610 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3611 return 0;
3612
3613 slot++;
3614 scanned++;
3615
3616 /*
3617 * it goes inode, inode backrefs, xattrs, extents,
3618 * so if there are a ton of hard links to an inode there can
3619 * be a lot of backrefs. Don't waste time searching too hard,
3620 * this is just an optimization
3621 */
3622 if (scanned >= 8)
3623 break;
3624 }
3625 /* we hit the end of the leaf before we found an xattr or
3626 * something larger than an xattr. We have to assume the inode
3627 * has acls
3628 */
63541927
FDBM
3629 if (*first_xattr_slot == -1)
3630 *first_xattr_slot = slot;
46a53cca
CM
3631 return 1;
3632}
3633
d352ac68
CM
3634/*
3635 * read an inode from the btree into the in-memory inode
3636 */
5d4f98a2 3637static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3638{
3639 struct btrfs_path *path;
5f39d397 3640 struct extent_buffer *leaf;
39279cc3
CM
3641 struct btrfs_inode_item *inode_item;
3642 struct btrfs_root *root = BTRFS_I(inode)->root;
3643 struct btrfs_key location;
67de1176 3644 unsigned long ptr;
46a53cca 3645 int maybe_acls;
618e21d5 3646 u32 rdev;
39279cc3 3647 int ret;
2f7e33d4 3648 bool filled = false;
63541927 3649 int first_xattr_slot;
2f7e33d4
MX
3650
3651 ret = btrfs_fill_inode(inode, &rdev);
3652 if (!ret)
3653 filled = true;
39279cc3
CM
3654
3655 path = btrfs_alloc_path();
1748f843
MF
3656 if (!path)
3657 goto make_bad;
3658
39279cc3 3659 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3660
39279cc3 3661 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3662 if (ret)
39279cc3 3663 goto make_bad;
39279cc3 3664
5f39d397 3665 leaf = path->nodes[0];
2f7e33d4
MX
3666
3667 if (filled)
67de1176 3668 goto cache_index;
2f7e33d4 3669
5f39d397
CM
3670 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3671 struct btrfs_inode_item);
5f39d397 3672 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3673 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3674 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3675 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3676 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397 3677
a937b979
DS
3678 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3679 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3680
a937b979
DS
3681 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3682 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3683
a937b979
DS
3684 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3685 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3686
9cc97d64 3687 BTRFS_I(inode)->i_otime.tv_sec =
3688 btrfs_timespec_sec(leaf, &inode_item->otime);
3689 BTRFS_I(inode)->i_otime.tv_nsec =
3690 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3691
a76a3cd4 3692 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3693 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3694 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3695
6e17d30b
YD
3696 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3697 inode->i_generation = BTRFS_I(inode)->generation;
3698 inode->i_rdev = 0;
3699 rdev = btrfs_inode_rdev(leaf, inode_item);
3700
3701 BTRFS_I(inode)->index_cnt = (u64)-1;
3702 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3703
3704cache_index:
5dc562c5
JB
3705 /*
3706 * If we were modified in the current generation and evicted from memory
3707 * and then re-read we need to do a full sync since we don't have any
3708 * idea about which extents were modified before we were evicted from
3709 * cache.
6e17d30b
YD
3710 *
3711 * This is required for both inode re-read from disk and delayed inode
3712 * in delayed_nodes_tree.
5dc562c5
JB
3713 */
3714 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3715 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3716 &BTRFS_I(inode)->runtime_flags);
3717
bde6c242
FM
3718 /*
3719 * We don't persist the id of the transaction where an unlink operation
3720 * against the inode was last made. So here we assume the inode might
3721 * have been evicted, and therefore the exact value of last_unlink_trans
3722 * lost, and set it to last_trans to avoid metadata inconsistencies
3723 * between the inode and its parent if the inode is fsync'ed and the log
3724 * replayed. For example, in the scenario:
3725 *
3726 * touch mydir/foo
3727 * ln mydir/foo mydir/bar
3728 * sync
3729 * unlink mydir/bar
3730 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3731 * xfs_io -c fsync mydir/foo
3732 * <power failure>
3733 * mount fs, triggers fsync log replay
3734 *
3735 * We must make sure that when we fsync our inode foo we also log its
3736 * parent inode, otherwise after log replay the parent still has the
3737 * dentry with the "bar" name but our inode foo has a link count of 1
3738 * and doesn't have an inode ref with the name "bar" anymore.
3739 *
3740 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3741 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3742 * transaction commits on fsync if our inode is a directory, or if our
3743 * inode is not a directory, logging its parent unnecessarily.
3744 */
3745 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3746
67de1176
MX
3747 path->slots[0]++;
3748 if (inode->i_nlink != 1 ||
3749 path->slots[0] >= btrfs_header_nritems(leaf))
3750 goto cache_acl;
3751
3752 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3753 if (location.objectid != btrfs_ino(inode))
3754 goto cache_acl;
3755
3756 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3757 if (location.type == BTRFS_INODE_REF_KEY) {
3758 struct btrfs_inode_ref *ref;
3759
3760 ref = (struct btrfs_inode_ref *)ptr;
3761 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3762 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3763 struct btrfs_inode_extref *extref;
3764
3765 extref = (struct btrfs_inode_extref *)ptr;
3766 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3767 extref);
3768 }
2f7e33d4 3769cache_acl:
46a53cca
CM
3770 /*
3771 * try to precache a NULL acl entry for files that don't have
3772 * any xattrs or acls
3773 */
33345d01 3774 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3775 btrfs_ino(inode), &first_xattr_slot);
3776 if (first_xattr_slot != -1) {
3777 path->slots[0] = first_xattr_slot;
3778 ret = btrfs_load_inode_props(inode, path);
3779 if (ret)
3780 btrfs_err(root->fs_info,
351fd353 3781 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3782 btrfs_ino(inode),
3783 root->root_key.objectid, ret);
3784 }
3785 btrfs_free_path(path);
3786
72c04902
AV
3787 if (!maybe_acls)
3788 cache_no_acl(inode);
46a53cca 3789
39279cc3 3790 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3791 case S_IFREG:
3792 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3793 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3794 inode->i_fop = &btrfs_file_operations;
3795 inode->i_op = &btrfs_file_inode_operations;
3796 break;
3797 case S_IFDIR:
3798 inode->i_fop = &btrfs_dir_file_operations;
3799 if (root == root->fs_info->tree_root)
3800 inode->i_op = &btrfs_dir_ro_inode_operations;
3801 else
3802 inode->i_op = &btrfs_dir_inode_operations;
3803 break;
3804 case S_IFLNK:
3805 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3806 inode_nohighmem(inode);
39279cc3
CM
3807 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3808 break;
618e21d5 3809 default:
0279b4cd 3810 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3811 init_special_inode(inode, inode->i_mode, rdev);
3812 break;
39279cc3 3813 }
6cbff00f
CH
3814
3815 btrfs_update_iflags(inode);
39279cc3
CM
3816 return;
3817
3818make_bad:
39279cc3 3819 btrfs_free_path(path);
39279cc3
CM
3820 make_bad_inode(inode);
3821}
3822
d352ac68
CM
3823/*
3824 * given a leaf and an inode, copy the inode fields into the leaf
3825 */
e02119d5
CM
3826static void fill_inode_item(struct btrfs_trans_handle *trans,
3827 struct extent_buffer *leaf,
5f39d397 3828 struct btrfs_inode_item *item,
39279cc3
CM
3829 struct inode *inode)
3830{
51fab693
LB
3831 struct btrfs_map_token token;
3832
3833 btrfs_init_map_token(&token);
5f39d397 3834
51fab693
LB
3835 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3836 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3837 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3838 &token);
3839 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3840 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3841
a937b979 3842 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3843 inode->i_atime.tv_sec, &token);
a937b979 3844 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3845 inode->i_atime.tv_nsec, &token);
5f39d397 3846
a937b979 3847 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3848 inode->i_mtime.tv_sec, &token);
a937b979 3849 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3850 inode->i_mtime.tv_nsec, &token);
5f39d397 3851
a937b979 3852 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3853 inode->i_ctime.tv_sec, &token);
a937b979 3854 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3855 inode->i_ctime.tv_nsec, &token);
5f39d397 3856
9cc97d64 3857 btrfs_set_token_timespec_sec(leaf, &item->otime,
3858 BTRFS_I(inode)->i_otime.tv_sec, &token);
3859 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3860 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3861
51fab693
LB
3862 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3863 &token);
3864 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3865 &token);
3866 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3867 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3868 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3869 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3870 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3871}
3872
d352ac68
CM
3873/*
3874 * copy everything in the in-memory inode into the btree.
3875 */
2115133f 3876static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3877 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3878{
3879 struct btrfs_inode_item *inode_item;
3880 struct btrfs_path *path;
5f39d397 3881 struct extent_buffer *leaf;
39279cc3
CM
3882 int ret;
3883
3884 path = btrfs_alloc_path();
16cdcec7
MX
3885 if (!path)
3886 return -ENOMEM;
3887
b9473439 3888 path->leave_spinning = 1;
16cdcec7
MX
3889 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3890 1);
39279cc3
CM
3891 if (ret) {
3892 if (ret > 0)
3893 ret = -ENOENT;
3894 goto failed;
3895 }
3896
5f39d397
CM
3897 leaf = path->nodes[0];
3898 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3899 struct btrfs_inode_item);
39279cc3 3900
e02119d5 3901 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3902 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3903 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3904 ret = 0;
3905failed:
39279cc3
CM
3906 btrfs_free_path(path);
3907 return ret;
3908}
3909
2115133f
CM
3910/*
3911 * copy everything in the in-memory inode into the btree.
3912 */
3913noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3914 struct btrfs_root *root, struct inode *inode)
3915{
3916 int ret;
3917
3918 /*
3919 * If the inode is a free space inode, we can deadlock during commit
3920 * if we put it into the delayed code.
3921 *
3922 * The data relocation inode should also be directly updated
3923 * without delay
3924 */
83eea1f1 3925 if (!btrfs_is_free_space_inode(inode)
1d52c78a
JB
3926 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3927 && !root->fs_info->log_root_recovering) {
8ea05e3a
AB
3928 btrfs_update_root_times(trans, root);
3929
2115133f
CM
3930 ret = btrfs_delayed_update_inode(trans, root, inode);
3931 if (!ret)
3932 btrfs_set_inode_last_trans(trans, inode);
3933 return ret;
3934 }
3935
3936 return btrfs_update_inode_item(trans, root, inode);
3937}
3938
be6aef60
JB
3939noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3940 struct btrfs_root *root,
3941 struct inode *inode)
2115133f
CM
3942{
3943 int ret;
3944
3945 ret = btrfs_update_inode(trans, root, inode);
3946 if (ret == -ENOSPC)
3947 return btrfs_update_inode_item(trans, root, inode);
3948 return ret;
3949}
3950
d352ac68
CM
3951/*
3952 * unlink helper that gets used here in inode.c and in the tree logging
3953 * recovery code. It remove a link in a directory with a given name, and
3954 * also drops the back refs in the inode to the directory
3955 */
92986796
AV
3956static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3957 struct btrfs_root *root,
3958 struct inode *dir, struct inode *inode,
3959 const char *name, int name_len)
39279cc3
CM
3960{
3961 struct btrfs_path *path;
39279cc3 3962 int ret = 0;
5f39d397 3963 struct extent_buffer *leaf;
39279cc3 3964 struct btrfs_dir_item *di;
5f39d397 3965 struct btrfs_key key;
aec7477b 3966 u64 index;
33345d01
LZ
3967 u64 ino = btrfs_ino(inode);
3968 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3969
3970 path = btrfs_alloc_path();
54aa1f4d
CM
3971 if (!path) {
3972 ret = -ENOMEM;
554233a6 3973 goto out;
54aa1f4d
CM
3974 }
3975
b9473439 3976 path->leave_spinning = 1;
33345d01 3977 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3978 name, name_len, -1);
3979 if (IS_ERR(di)) {
3980 ret = PTR_ERR(di);
3981 goto err;
3982 }
3983 if (!di) {
3984 ret = -ENOENT;
3985 goto err;
3986 }
5f39d397
CM
3987 leaf = path->nodes[0];
3988 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3989 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3990 if (ret)
3991 goto err;
b3b4aa74 3992 btrfs_release_path(path);
39279cc3 3993
67de1176
MX
3994 /*
3995 * If we don't have dir index, we have to get it by looking up
3996 * the inode ref, since we get the inode ref, remove it directly,
3997 * it is unnecessary to do delayed deletion.
3998 *
3999 * But if we have dir index, needn't search inode ref to get it.
4000 * Since the inode ref is close to the inode item, it is better
4001 * that we delay to delete it, and just do this deletion when
4002 * we update the inode item.
4003 */
4004 if (BTRFS_I(inode)->dir_index) {
4005 ret = btrfs_delayed_delete_inode_ref(inode);
4006 if (!ret) {
4007 index = BTRFS_I(inode)->dir_index;
4008 goto skip_backref;
4009 }
4010 }
4011
33345d01
LZ
4012 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4013 dir_ino, &index);
aec7477b 4014 if (ret) {
c2cf52eb
SK
4015 btrfs_info(root->fs_info,
4016 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4017 name_len, name, ino, dir_ino);
66642832 4018 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4019 goto err;
4020 }
67de1176 4021skip_backref:
16cdcec7 4022 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa 4023 if (ret) {
66642832 4024 btrfs_abort_transaction(trans, ret);
39279cc3 4025 goto err;
79787eaa 4026 }
39279cc3 4027
e02119d5 4028 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 4029 inode, dir_ino);
79787eaa 4030 if (ret != 0 && ret != -ENOENT) {
66642832 4031 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4032 goto err;
4033 }
e02119d5
CM
4034
4035 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4036 dir, index);
6418c961
CM
4037 if (ret == -ENOENT)
4038 ret = 0;
d4e3991b 4039 else if (ret)
66642832 4040 btrfs_abort_transaction(trans, ret);
39279cc3
CM
4041err:
4042 btrfs_free_path(path);
e02119d5
CM
4043 if (ret)
4044 goto out;
4045
4046 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
4047 inode_inc_iversion(inode);
4048 inode_inc_iversion(dir);
04b285f3
DD
4049 inode->i_ctime = dir->i_mtime =
4050 dir->i_ctime = current_fs_time(inode->i_sb);
b9959295 4051 ret = btrfs_update_inode(trans, root, dir);
e02119d5 4052out:
39279cc3
CM
4053 return ret;
4054}
4055
92986796
AV
4056int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4057 struct btrfs_root *root,
4058 struct inode *dir, struct inode *inode,
4059 const char *name, int name_len)
4060{
4061 int ret;
4062 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4063 if (!ret) {
8b558c5f 4064 drop_nlink(inode);
92986796
AV
4065 ret = btrfs_update_inode(trans, root, inode);
4066 }
4067 return ret;
4068}
39279cc3 4069
a22285a6
YZ
4070/*
4071 * helper to start transaction for unlink and rmdir.
4072 *
d52be818
JB
4073 * unlink and rmdir are special in btrfs, they do not always free space, so
4074 * if we cannot make our reservations the normal way try and see if there is
4075 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4076 * allow the unlink to occur.
a22285a6 4077 */
d52be818 4078static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4079{
a22285a6 4080 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4081
e70bea5f
JB
4082 /*
4083 * 1 for the possible orphan item
4084 * 1 for the dir item
4085 * 1 for the dir index
4086 * 1 for the inode ref
e70bea5f
JB
4087 * 1 for the inode
4088 */
8eab77ff 4089 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4090}
4091
4092static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4093{
4094 struct btrfs_root *root = BTRFS_I(dir)->root;
4095 struct btrfs_trans_handle *trans;
2b0143b5 4096 struct inode *inode = d_inode(dentry);
a22285a6 4097 int ret;
a22285a6 4098
d52be818 4099 trans = __unlink_start_trans(dir);
a22285a6
YZ
4100 if (IS_ERR(trans))
4101 return PTR_ERR(trans);
5f39d397 4102
2b0143b5 4103 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
12fcfd22 4104
2b0143b5 4105 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4106 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
4107 if (ret)
4108 goto out;
7b128766 4109
a22285a6 4110 if (inode->i_nlink == 0) {
7b128766 4111 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
4112 if (ret)
4113 goto out;
a22285a6 4114 }
7b128766 4115
b532402e 4116out:
d52be818 4117 btrfs_end_transaction(trans, root);
b53d3f5d 4118 btrfs_btree_balance_dirty(root);
39279cc3
CM
4119 return ret;
4120}
4121
4df27c4d
YZ
4122int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4123 struct btrfs_root *root,
4124 struct inode *dir, u64 objectid,
4125 const char *name, int name_len)
4126{
4127 struct btrfs_path *path;
4128 struct extent_buffer *leaf;
4129 struct btrfs_dir_item *di;
4130 struct btrfs_key key;
4131 u64 index;
4132 int ret;
33345d01 4133 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
4134
4135 path = btrfs_alloc_path();
4136 if (!path)
4137 return -ENOMEM;
4138
33345d01 4139 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4140 name, name_len, -1);
79787eaa
JM
4141 if (IS_ERR_OR_NULL(di)) {
4142 if (!di)
4143 ret = -ENOENT;
4144 else
4145 ret = PTR_ERR(di);
4146 goto out;
4147 }
4df27c4d
YZ
4148
4149 leaf = path->nodes[0];
4150 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4151 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4152 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4153 if (ret) {
66642832 4154 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4155 goto out;
4156 }
b3b4aa74 4157 btrfs_release_path(path);
4df27c4d
YZ
4158
4159 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4160 objectid, root->root_key.objectid,
33345d01 4161 dir_ino, &index, name, name_len);
4df27c4d 4162 if (ret < 0) {
79787eaa 4163 if (ret != -ENOENT) {
66642832 4164 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4165 goto out;
4166 }
33345d01 4167 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4168 name, name_len);
79787eaa
JM
4169 if (IS_ERR_OR_NULL(di)) {
4170 if (!di)
4171 ret = -ENOENT;
4172 else
4173 ret = PTR_ERR(di);
66642832 4174 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4175 goto out;
4176 }
4df27c4d
YZ
4177
4178 leaf = path->nodes[0];
4179 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4180 btrfs_release_path(path);
4df27c4d
YZ
4181 index = key.offset;
4182 }
945d8962 4183 btrfs_release_path(path);
4df27c4d 4184
16cdcec7 4185 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa 4186 if (ret) {
66642832 4187 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4188 goto out;
4189 }
4df27c4d
YZ
4190
4191 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4192 inode_inc_iversion(dir);
04b285f3 4193 dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb);
5a24e84c 4194 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4195 if (ret)
66642832 4196 btrfs_abort_transaction(trans, ret);
79787eaa 4197out:
71d7aed0 4198 btrfs_free_path(path);
79787eaa 4199 return ret;
4df27c4d
YZ
4200}
4201
39279cc3
CM
4202static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4203{
2b0143b5 4204 struct inode *inode = d_inode(dentry);
1832a6d5 4205 int err = 0;
39279cc3 4206 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4207 struct btrfs_trans_handle *trans;
39279cc3 4208
b3ae244e 4209 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4210 return -ENOTEMPTY;
b3ae244e
DS
4211 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4212 return -EPERM;
134d4512 4213
d52be818 4214 trans = __unlink_start_trans(dir);
a22285a6 4215 if (IS_ERR(trans))
5df6a9f6 4216 return PTR_ERR(trans);
5df6a9f6 4217
33345d01 4218 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4219 err = btrfs_unlink_subvol(trans, root, dir,
4220 BTRFS_I(inode)->location.objectid,
4221 dentry->d_name.name,
4222 dentry->d_name.len);
4223 goto out;
4224 }
4225
7b128766
JB
4226 err = btrfs_orphan_add(trans, inode);
4227 if (err)
4df27c4d 4228 goto out;
7b128766 4229
39279cc3 4230 /* now the directory is empty */
2b0143b5 4231 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4232 dentry->d_name.name, dentry->d_name.len);
d397712b 4233 if (!err)
dbe674a9 4234 btrfs_i_size_write(inode, 0);
4df27c4d 4235out:
d52be818 4236 btrfs_end_transaction(trans, root);
b53d3f5d 4237 btrfs_btree_balance_dirty(root);
3954401f 4238
39279cc3
CM
4239 return err;
4240}
4241
28f75a0e
CM
4242static int truncate_space_check(struct btrfs_trans_handle *trans,
4243 struct btrfs_root *root,
4244 u64 bytes_deleted)
4245{
4246 int ret;
4247
dc95f7bf
JB
4248 /*
4249 * This is only used to apply pressure to the enospc system, we don't
4250 * intend to use this reservation at all.
4251 */
28f75a0e 4252 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
dc95f7bf 4253 bytes_deleted *= root->nodesize;
28f75a0e
CM
4254 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4255 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf
JB
4256 if (!ret) {
4257 trace_btrfs_space_reservation(root->fs_info, "transaction",
4258 trans->transid,
4259 bytes_deleted, 1);
28f75a0e 4260 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4261 }
28f75a0e
CM
4262 return ret;
4263
4264}
4265
0305cd5f
FM
4266static int truncate_inline_extent(struct inode *inode,
4267 struct btrfs_path *path,
4268 struct btrfs_key *found_key,
4269 const u64 item_end,
4270 const u64 new_size)
4271{
4272 struct extent_buffer *leaf = path->nodes[0];
4273 int slot = path->slots[0];
4274 struct btrfs_file_extent_item *fi;
4275 u32 size = (u32)(new_size - found_key->offset);
4276 struct btrfs_root *root = BTRFS_I(inode)->root;
4277
4278 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4279
4280 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4281 loff_t offset = new_size;
09cbfeaf 4282 loff_t page_end = ALIGN(offset, PAGE_SIZE);
0305cd5f
FM
4283
4284 /*
4285 * Zero out the remaining of the last page of our inline extent,
4286 * instead of directly truncating our inline extent here - that
4287 * would be much more complex (decompressing all the data, then
4288 * compressing the truncated data, which might be bigger than
4289 * the size of the inline extent, resize the extent, etc).
4290 * We release the path because to get the page we might need to
4291 * read the extent item from disk (data not in the page cache).
4292 */
4293 btrfs_release_path(path);
9703fefe
CR
4294 return btrfs_truncate_block(inode, offset, page_end - offset,
4295 0);
0305cd5f
FM
4296 }
4297
4298 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4299 size = btrfs_file_extent_calc_inline_size(size);
4300 btrfs_truncate_item(root, path, size, 1);
4301
4302 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4303 inode_sub_bytes(inode, item_end + 1 - new_size);
4304
4305 return 0;
4306}
4307
39279cc3
CM
4308/*
4309 * this can truncate away extent items, csum items and directory items.
4310 * It starts at a high offset and removes keys until it can't find
d352ac68 4311 * any higher than new_size
39279cc3
CM
4312 *
4313 * csum items that cross the new i_size are truncated to the new size
4314 * as well.
7b128766
JB
4315 *
4316 * min_type is the minimum key type to truncate down to. If set to 0, this
4317 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4318 */
8082510e
YZ
4319int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4320 struct btrfs_root *root,
4321 struct inode *inode,
4322 u64 new_size, u32 min_type)
39279cc3 4323{
39279cc3 4324 struct btrfs_path *path;
5f39d397 4325 struct extent_buffer *leaf;
39279cc3 4326 struct btrfs_file_extent_item *fi;
8082510e
YZ
4327 struct btrfs_key key;
4328 struct btrfs_key found_key;
39279cc3 4329 u64 extent_start = 0;
db94535d 4330 u64 extent_num_bytes = 0;
5d4f98a2 4331 u64 extent_offset = 0;
39279cc3 4332 u64 item_end = 0;
c1aa4575 4333 u64 last_size = new_size;
8082510e 4334 u32 found_type = (u8)-1;
39279cc3
CM
4335 int found_extent;
4336 int del_item;
85e21bac
CM
4337 int pending_del_nr = 0;
4338 int pending_del_slot = 0;
179e29e4 4339 int extent_type = -1;
8082510e
YZ
4340 int ret;
4341 int err = 0;
33345d01 4342 u64 ino = btrfs_ino(inode);
28ed1345 4343 u64 bytes_deleted = 0;
1262133b
JB
4344 bool be_nice = 0;
4345 bool should_throttle = 0;
28f75a0e 4346 bool should_end = 0;
8082510e
YZ
4347
4348 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4349
28ed1345
CM
4350 /*
4351 * for non-free space inodes and ref cows, we want to back off from
4352 * time to time
4353 */
4354 if (!btrfs_is_free_space_inode(inode) &&
4355 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4356 be_nice = 1;
4357
0eb0e19c
MF
4358 path = btrfs_alloc_path();
4359 if (!path)
4360 return -ENOMEM;
e4058b54 4361 path->reada = READA_BACK;
0eb0e19c 4362
5dc562c5
JB
4363 /*
4364 * We want to drop from the next block forward in case this new size is
4365 * not block aligned since we will be keeping the last block of the
4366 * extent just the way it is.
4367 */
27cdeb70
MX
4368 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4369 root == root->fs_info->tree_root)
fda2832f
QW
4370 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4371 root->sectorsize), (u64)-1, 0);
8082510e 4372
16cdcec7
MX
4373 /*
4374 * This function is also used to drop the items in the log tree before
4375 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4376 * it is used to drop the loged items. So we shouldn't kill the delayed
4377 * items.
4378 */
4379 if (min_type == 0 && root == BTRFS_I(inode)->root)
4380 btrfs_kill_delayed_inode_items(inode);
4381
33345d01 4382 key.objectid = ino;
39279cc3 4383 key.offset = (u64)-1;
5f39d397
CM
4384 key.type = (u8)-1;
4385
85e21bac 4386search_again:
28ed1345
CM
4387 /*
4388 * with a 16K leaf size and 128MB extents, you can actually queue
4389 * up a huge file in a single leaf. Most of the time that
4390 * bytes_deleted is > 0, it will be huge by the time we get here
4391 */
ee22184b 4392 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4393 if (btrfs_should_end_transaction(trans, root)) {
4394 err = -EAGAIN;
4395 goto error;
4396 }
4397 }
4398
4399
b9473439 4400 path->leave_spinning = 1;
85e21bac 4401 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4402 if (ret < 0) {
4403 err = ret;
4404 goto out;
4405 }
d397712b 4406
85e21bac 4407 if (ret > 0) {
e02119d5
CM
4408 /* there are no items in the tree for us to truncate, we're
4409 * done
4410 */
8082510e
YZ
4411 if (path->slots[0] == 0)
4412 goto out;
85e21bac
CM
4413 path->slots[0]--;
4414 }
4415
d397712b 4416 while (1) {
39279cc3 4417 fi = NULL;
5f39d397
CM
4418 leaf = path->nodes[0];
4419 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4420 found_type = found_key.type;
39279cc3 4421
33345d01 4422 if (found_key.objectid != ino)
39279cc3 4423 break;
5f39d397 4424
85e21bac 4425 if (found_type < min_type)
39279cc3
CM
4426 break;
4427
5f39d397 4428 item_end = found_key.offset;
39279cc3 4429 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4430 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4431 struct btrfs_file_extent_item);
179e29e4
CM
4432 extent_type = btrfs_file_extent_type(leaf, fi);
4433 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4434 item_end +=
db94535d 4435 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4436 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4437 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4438 path->slots[0], fi);
39279cc3 4439 }
008630c1 4440 item_end--;
39279cc3 4441 }
8082510e
YZ
4442 if (found_type > min_type) {
4443 del_item = 1;
4444 } else {
4445 if (item_end < new_size)
b888db2b 4446 break;
8082510e
YZ
4447 if (found_key.offset >= new_size)
4448 del_item = 1;
4449 else
4450 del_item = 0;
39279cc3 4451 }
39279cc3 4452 found_extent = 0;
39279cc3 4453 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4454 if (found_type != BTRFS_EXTENT_DATA_KEY)
4455 goto delete;
4456
7f4f6e0a
JB
4457 if (del_item)
4458 last_size = found_key.offset;
4459 else
4460 last_size = new_size;
4461
179e29e4 4462 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4463 u64 num_dec;
db94535d 4464 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4465 if (!del_item) {
db94535d
CM
4466 u64 orig_num_bytes =
4467 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4468 extent_num_bytes = ALIGN(new_size -
4469 found_key.offset,
4470 root->sectorsize);
db94535d
CM
4471 btrfs_set_file_extent_num_bytes(leaf, fi,
4472 extent_num_bytes);
4473 num_dec = (orig_num_bytes -
9069218d 4474 extent_num_bytes);
27cdeb70
MX
4475 if (test_bit(BTRFS_ROOT_REF_COWS,
4476 &root->state) &&
4477 extent_start != 0)
a76a3cd4 4478 inode_sub_bytes(inode, num_dec);
5f39d397 4479 btrfs_mark_buffer_dirty(leaf);
39279cc3 4480 } else {
db94535d
CM
4481 extent_num_bytes =
4482 btrfs_file_extent_disk_num_bytes(leaf,
4483 fi);
5d4f98a2
YZ
4484 extent_offset = found_key.offset -
4485 btrfs_file_extent_offset(leaf, fi);
4486
39279cc3 4487 /* FIXME blocksize != 4096 */
9069218d 4488 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4489 if (extent_start != 0) {
4490 found_extent = 1;
27cdeb70
MX
4491 if (test_bit(BTRFS_ROOT_REF_COWS,
4492 &root->state))
a76a3cd4 4493 inode_sub_bytes(inode, num_dec);
e02119d5 4494 }
39279cc3 4495 }
9069218d 4496 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4497 /*
4498 * we can't truncate inline items that have had
4499 * special encodings
4500 */
4501 if (!del_item &&
c8b97818
CM
4502 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4503 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4504
4505 /*
0305cd5f
FM
4506 * Need to release path in order to truncate a
4507 * compressed extent. So delete any accumulated
4508 * extent items so far.
514ac8ad 4509 */
0305cd5f
FM
4510 if (btrfs_file_extent_compression(leaf, fi) !=
4511 BTRFS_COMPRESS_NONE && pending_del_nr) {
4512 err = btrfs_del_items(trans, root, path,
4513 pending_del_slot,
4514 pending_del_nr);
4515 if (err) {
4516 btrfs_abort_transaction(trans,
0305cd5f
FM
4517 err);
4518 goto error;
4519 }
4520 pending_del_nr = 0;
4521 }
4522
4523 err = truncate_inline_extent(inode, path,
4524 &found_key,
4525 item_end,
4526 new_size);
4527 if (err) {
66642832 4528 btrfs_abort_transaction(trans, err);
0305cd5f
FM
4529 goto error;
4530 }
27cdeb70
MX
4531 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4532 &root->state)) {
0305cd5f 4533 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4534 }
39279cc3 4535 }
179e29e4 4536delete:
39279cc3 4537 if (del_item) {
85e21bac
CM
4538 if (!pending_del_nr) {
4539 /* no pending yet, add ourselves */
4540 pending_del_slot = path->slots[0];
4541 pending_del_nr = 1;
4542 } else if (pending_del_nr &&
4543 path->slots[0] + 1 == pending_del_slot) {
4544 /* hop on the pending chunk */
4545 pending_del_nr++;
4546 pending_del_slot = path->slots[0];
4547 } else {
d397712b 4548 BUG();
85e21bac 4549 }
39279cc3
CM
4550 } else {
4551 break;
4552 }
28f75a0e
CM
4553 should_throttle = 0;
4554
27cdeb70
MX
4555 if (found_extent &&
4556 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4557 root == root->fs_info->tree_root)) {
b9473439 4558 btrfs_set_path_blocking(path);
28ed1345 4559 bytes_deleted += extent_num_bytes;
39279cc3 4560 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4561 extent_num_bytes, 0,
4562 btrfs_header_owner(leaf),
b06c4bf5 4563 ino, extent_offset);
39279cc3 4564 BUG_ON(ret);
1262133b 4565 if (btrfs_should_throttle_delayed_refs(trans, root))
28ed1345 4566 btrfs_async_run_delayed_refs(root,
31b9655f 4567 trans->transid,
28ed1345 4568 trans->delayed_ref_updates * 2, 0);
28f75a0e
CM
4569 if (be_nice) {
4570 if (truncate_space_check(trans, root,
4571 extent_num_bytes)) {
4572 should_end = 1;
4573 }
4574 if (btrfs_should_throttle_delayed_refs(trans,
4575 root)) {
4576 should_throttle = 1;
4577 }
4578 }
39279cc3 4579 }
85e21bac 4580
8082510e
YZ
4581 if (found_type == BTRFS_INODE_ITEM_KEY)
4582 break;
4583
4584 if (path->slots[0] == 0 ||
1262133b 4585 path->slots[0] != pending_del_slot ||
28f75a0e 4586 should_throttle || should_end) {
8082510e
YZ
4587 if (pending_del_nr) {
4588 ret = btrfs_del_items(trans, root, path,
4589 pending_del_slot,
4590 pending_del_nr);
79787eaa 4591 if (ret) {
66642832 4592 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4593 goto error;
4594 }
8082510e
YZ
4595 pending_del_nr = 0;
4596 }
b3b4aa74 4597 btrfs_release_path(path);
28f75a0e 4598 if (should_throttle) {
1262133b
JB
4599 unsigned long updates = trans->delayed_ref_updates;
4600 if (updates) {
4601 trans->delayed_ref_updates = 0;
4602 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4603 if (ret && !err)
4604 err = ret;
4605 }
4606 }
28f75a0e
CM
4607 /*
4608 * if we failed to refill our space rsv, bail out
4609 * and let the transaction restart
4610 */
4611 if (should_end) {
4612 err = -EAGAIN;
4613 goto error;
4614 }
85e21bac 4615 goto search_again;
8082510e
YZ
4616 } else {
4617 path->slots[0]--;
85e21bac 4618 }
39279cc3 4619 }
8082510e 4620out:
85e21bac
CM
4621 if (pending_del_nr) {
4622 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4623 pending_del_nr);
79787eaa 4624 if (ret)
66642832 4625 btrfs_abort_transaction(trans, ret);
85e21bac 4626 }
79787eaa 4627error:
c1aa4575 4628 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4629 btrfs_ordered_update_i_size(inode, last_size, NULL);
28ed1345 4630
39279cc3 4631 btrfs_free_path(path);
28ed1345 4632
ee22184b 4633 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4634 unsigned long updates = trans->delayed_ref_updates;
4635 if (updates) {
4636 trans->delayed_ref_updates = 0;
4637 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4638 if (ret && !err)
4639 err = ret;
4640 }
4641 }
8082510e 4642 return err;
39279cc3
CM
4643}
4644
4645/*
9703fefe 4646 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4647 * @inode - inode that we're zeroing
4648 * @from - the offset to start zeroing
4649 * @len - the length to zero, 0 to zero the entire range respective to the
4650 * offset
4651 * @front - zero up to the offset instead of from the offset on
4652 *
9703fefe 4653 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4654 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4655 */
9703fefe 4656int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4657 int front)
39279cc3 4658{
2aaa6655 4659 struct address_space *mapping = inode->i_mapping;
db94535d 4660 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4661 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4662 struct btrfs_ordered_extent *ordered;
2ac55d41 4663 struct extent_state *cached_state = NULL;
e6dcd2dc 4664 char *kaddr;
db94535d 4665 u32 blocksize = root->sectorsize;
09cbfeaf 4666 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4667 unsigned offset = from & (blocksize - 1);
39279cc3 4668 struct page *page;
3b16a4e3 4669 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4670 int ret = 0;
9703fefe
CR
4671 u64 block_start;
4672 u64 block_end;
39279cc3 4673
2aaa6655
JB
4674 if ((offset & (blocksize - 1)) == 0 &&
4675 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4676 goto out;
9703fefe 4677
7cf5b976 4678 ret = btrfs_delalloc_reserve_space(inode,
9703fefe 4679 round_down(from, blocksize), blocksize);
5d5e103a
JB
4680 if (ret)
4681 goto out;
39279cc3 4682
211c17f5 4683again:
3b16a4e3 4684 page = find_or_create_page(mapping, index, mask);
5d5e103a 4685 if (!page) {
7cf5b976 4686 btrfs_delalloc_release_space(inode,
9703fefe
CR
4687 round_down(from, blocksize),
4688 blocksize);
ac6a2b36 4689 ret = -ENOMEM;
39279cc3 4690 goto out;
5d5e103a 4691 }
e6dcd2dc 4692
9703fefe
CR
4693 block_start = round_down(from, blocksize);
4694 block_end = block_start + blocksize - 1;
e6dcd2dc 4695
39279cc3 4696 if (!PageUptodate(page)) {
9ebefb18 4697 ret = btrfs_readpage(NULL, page);
39279cc3 4698 lock_page(page);
211c17f5
CM
4699 if (page->mapping != mapping) {
4700 unlock_page(page);
09cbfeaf 4701 put_page(page);
211c17f5
CM
4702 goto again;
4703 }
39279cc3
CM
4704 if (!PageUptodate(page)) {
4705 ret = -EIO;
89642229 4706 goto out_unlock;
39279cc3
CM
4707 }
4708 }
211c17f5 4709 wait_on_page_writeback(page);
e6dcd2dc 4710
9703fefe 4711 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4712 set_page_extent_mapped(page);
4713
9703fefe 4714 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4715 if (ordered) {
9703fefe 4716 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4717 &cached_state, GFP_NOFS);
e6dcd2dc 4718 unlock_page(page);
09cbfeaf 4719 put_page(page);
eb84ae03 4720 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4721 btrfs_put_ordered_extent(ordered);
4722 goto again;
4723 }
4724
9703fefe 4725 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4726 EXTENT_DIRTY | EXTENT_DELALLOC |
4727 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4728 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4729
9703fefe 4730 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
2ac55d41 4731 &cached_state);
9ed74f2d 4732 if (ret) {
9703fefe 4733 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4734 &cached_state, GFP_NOFS);
9ed74f2d
JB
4735 goto out_unlock;
4736 }
4737
9703fefe 4738 if (offset != blocksize) {
2aaa6655 4739 if (!len)
9703fefe 4740 len = blocksize - offset;
e6dcd2dc 4741 kaddr = kmap(page);
2aaa6655 4742 if (front)
9703fefe
CR
4743 memset(kaddr + (block_start - page_offset(page)),
4744 0, offset);
2aaa6655 4745 else
9703fefe
CR
4746 memset(kaddr + (block_start - page_offset(page)) + offset,
4747 0, len);
e6dcd2dc
CM
4748 flush_dcache_page(page);
4749 kunmap(page);
4750 }
247e743c 4751 ClearPageChecked(page);
e6dcd2dc 4752 set_page_dirty(page);
9703fefe 4753 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4754 GFP_NOFS);
39279cc3 4755
89642229 4756out_unlock:
5d5e103a 4757 if (ret)
9703fefe
CR
4758 btrfs_delalloc_release_space(inode, block_start,
4759 blocksize);
39279cc3 4760 unlock_page(page);
09cbfeaf 4761 put_page(page);
39279cc3
CM
4762out:
4763 return ret;
4764}
4765
16e7549f
JB
4766static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4767 u64 offset, u64 len)
4768{
4769 struct btrfs_trans_handle *trans;
4770 int ret;
4771
4772 /*
4773 * Still need to make sure the inode looks like it's been updated so
4774 * that any holes get logged if we fsync.
4775 */
4776 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4777 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4778 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4779 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4780 return 0;
4781 }
4782
4783 /*
4784 * 1 - for the one we're dropping
4785 * 1 - for the one we're adding
4786 * 1 - for updating the inode.
4787 */
4788 trans = btrfs_start_transaction(root, 3);
4789 if (IS_ERR(trans))
4790 return PTR_ERR(trans);
4791
4792 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4793 if (ret) {
66642832 4794 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4795 btrfs_end_transaction(trans, root);
4796 return ret;
4797 }
4798
4799 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4800 0, 0, len, 0, len, 0, 0, 0);
4801 if (ret)
66642832 4802 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4803 else
4804 btrfs_update_inode(trans, root, inode);
4805 btrfs_end_transaction(trans, root);
4806 return ret;
4807}
4808
695a0d0d
JB
4809/*
4810 * This function puts in dummy file extents for the area we're creating a hole
4811 * for. So if we are truncating this file to a larger size we need to insert
4812 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4813 * the range between oldsize and size
4814 */
a41ad394 4815int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4816{
9036c102
YZ
4817 struct btrfs_root *root = BTRFS_I(inode)->root;
4818 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4819 struct extent_map *em = NULL;
2ac55d41 4820 struct extent_state *cached_state = NULL;
5dc562c5 4821 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4822 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4823 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4824 u64 last_byte;
4825 u64 cur_offset;
4826 u64 hole_size;
9ed74f2d 4827 int err = 0;
39279cc3 4828
a71754fc 4829 /*
9703fefe
CR
4830 * If our size started in the middle of a block we need to zero out the
4831 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4832 * expose stale data.
4833 */
9703fefe 4834 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4835 if (err)
4836 return err;
4837
9036c102
YZ
4838 if (size <= hole_start)
4839 return 0;
4840
9036c102
YZ
4841 while (1) {
4842 struct btrfs_ordered_extent *ordered;
fa7c1494 4843
ff13db41 4844 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4845 &cached_state);
fa7c1494
MX
4846 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4847 block_end - hole_start);
9036c102
YZ
4848 if (!ordered)
4849 break;
2ac55d41
JB
4850 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4851 &cached_state, GFP_NOFS);
fa7c1494 4852 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4853 btrfs_put_ordered_extent(ordered);
4854 }
39279cc3 4855
9036c102
YZ
4856 cur_offset = hole_start;
4857 while (1) {
4858 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4859 block_end - cur_offset, 0);
79787eaa
JM
4860 if (IS_ERR(em)) {
4861 err = PTR_ERR(em);
f2767956 4862 em = NULL;
79787eaa
JM
4863 break;
4864 }
9036c102 4865 last_byte = min(extent_map_end(em), block_end);
fda2832f 4866 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4867 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4868 struct extent_map *hole_em;
9036c102 4869 hole_size = last_byte - cur_offset;
9ed74f2d 4870
16e7549f
JB
4871 err = maybe_insert_hole(root, inode, cur_offset,
4872 hole_size);
4873 if (err)
3893e33b 4874 break;
5dc562c5
JB
4875 btrfs_drop_extent_cache(inode, cur_offset,
4876 cur_offset + hole_size - 1, 0);
4877 hole_em = alloc_extent_map();
4878 if (!hole_em) {
4879 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4880 &BTRFS_I(inode)->runtime_flags);
4881 goto next;
4882 }
4883 hole_em->start = cur_offset;
4884 hole_em->len = hole_size;
4885 hole_em->orig_start = cur_offset;
8082510e 4886
5dc562c5
JB
4887 hole_em->block_start = EXTENT_MAP_HOLE;
4888 hole_em->block_len = 0;
b4939680 4889 hole_em->orig_block_len = 0;
cc95bef6 4890 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4891 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4892 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4893 hole_em->generation = root->fs_info->generation;
8082510e 4894
5dc562c5
JB
4895 while (1) {
4896 write_lock(&em_tree->lock);
09a2a8f9 4897 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4898 write_unlock(&em_tree->lock);
4899 if (err != -EEXIST)
4900 break;
4901 btrfs_drop_extent_cache(inode, cur_offset,
4902 cur_offset +
4903 hole_size - 1, 0);
4904 }
4905 free_extent_map(hole_em);
9036c102 4906 }
16e7549f 4907next:
9036c102 4908 free_extent_map(em);
a22285a6 4909 em = NULL;
9036c102 4910 cur_offset = last_byte;
8082510e 4911 if (cur_offset >= block_end)
9036c102
YZ
4912 break;
4913 }
a22285a6 4914 free_extent_map(em);
2ac55d41
JB
4915 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4916 GFP_NOFS);
9036c102
YZ
4917 return err;
4918}
39279cc3 4919
3972f260 4920static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4921{
f4a2f4c5
MX
4922 struct btrfs_root *root = BTRFS_I(inode)->root;
4923 struct btrfs_trans_handle *trans;
a41ad394 4924 loff_t oldsize = i_size_read(inode);
3972f260
ES
4925 loff_t newsize = attr->ia_size;
4926 int mask = attr->ia_valid;
8082510e
YZ
4927 int ret;
4928
3972f260
ES
4929 /*
4930 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4931 * special case where we need to update the times despite not having
4932 * these flags set. For all other operations the VFS set these flags
4933 * explicitly if it wants a timestamp update.
4934 */
dff6efc3
CH
4935 if (newsize != oldsize) {
4936 inode_inc_iversion(inode);
4937 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4938 inode->i_ctime = inode->i_mtime =
4939 current_fs_time(inode->i_sb);
4940 }
3972f260 4941
a41ad394 4942 if (newsize > oldsize) {
9ea24bbe
FM
4943 /*
4944 * Don't do an expanding truncate while snapshoting is ongoing.
4945 * This is to ensure the snapshot captures a fully consistent
4946 * state of this file - if the snapshot captures this expanding
4947 * truncation, it must capture all writes that happened before
4948 * this truncation.
4949 */
0bc19f90 4950 btrfs_wait_for_snapshot_creation(root);
a41ad394 4951 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4952 if (ret) {
4953 btrfs_end_write_no_snapshoting(root);
8082510e 4954 return ret;
9ea24bbe 4955 }
8082510e 4956
f4a2f4c5 4957 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4958 if (IS_ERR(trans)) {
4959 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 4960 return PTR_ERR(trans);
9ea24bbe 4961 }
f4a2f4c5
MX
4962
4963 i_size_write(inode, newsize);
4964 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 4965 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 4966 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 4967 btrfs_end_write_no_snapshoting(root);
7ad85bb7 4968 btrfs_end_transaction(trans, root);
a41ad394 4969 } else {
8082510e 4970
a41ad394
JB
4971 /*
4972 * We're truncating a file that used to have good data down to
4973 * zero. Make sure it gets into the ordered flush list so that
4974 * any new writes get down to disk quickly.
4975 */
4976 if (newsize == 0)
72ac3c0d
JB
4977 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4978 &BTRFS_I(inode)->runtime_flags);
8082510e 4979
f3fe820c
JB
4980 /*
4981 * 1 for the orphan item we're going to add
4982 * 1 for the orphan item deletion.
4983 */
4984 trans = btrfs_start_transaction(root, 2);
4985 if (IS_ERR(trans))
4986 return PTR_ERR(trans);
4987
4988 /*
4989 * We need to do this in case we fail at _any_ point during the
4990 * actual truncate. Once we do the truncate_setsize we could
4991 * invalidate pages which forces any outstanding ordered io to
4992 * be instantly completed which will give us extents that need
4993 * to be truncated. If we fail to get an orphan inode down we
4994 * could have left over extents that were never meant to live,
01327610 4995 * so we need to guarantee from this point on that everything
f3fe820c
JB
4996 * will be consistent.
4997 */
4998 ret = btrfs_orphan_add(trans, inode);
4999 btrfs_end_transaction(trans, root);
5000 if (ret)
5001 return ret;
5002
a41ad394
JB
5003 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5004 truncate_setsize(inode, newsize);
2e60a51e
MX
5005
5006 /* Disable nonlocked read DIO to avoid the end less truncate */
5007 btrfs_inode_block_unlocked_dio(inode);
5008 inode_dio_wait(inode);
5009 btrfs_inode_resume_unlocked_dio(inode);
5010
a41ad394 5011 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5012 if (ret && inode->i_nlink) {
5013 int err;
5014
5015 /*
5016 * failed to truncate, disk_i_size is only adjusted down
5017 * as we remove extents, so it should represent the true
5018 * size of the inode, so reset the in memory size and
5019 * delete our orphan entry.
5020 */
5021 trans = btrfs_join_transaction(root);
5022 if (IS_ERR(trans)) {
5023 btrfs_orphan_del(NULL, inode);
5024 return ret;
5025 }
5026 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5027 err = btrfs_orphan_del(trans, inode);
5028 if (err)
66642832 5029 btrfs_abort_transaction(trans, err);
7f4f6e0a
JB
5030 btrfs_end_transaction(trans, root);
5031 }
8082510e
YZ
5032 }
5033
a41ad394 5034 return ret;
8082510e
YZ
5035}
5036
9036c102
YZ
5037static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5038{
2b0143b5 5039 struct inode *inode = d_inode(dentry);
b83cc969 5040 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5041 int err;
39279cc3 5042
b83cc969
LZ
5043 if (btrfs_root_readonly(root))
5044 return -EROFS;
5045
9036c102
YZ
5046 err = inode_change_ok(inode, attr);
5047 if (err)
5048 return err;
2bf5a725 5049
5a3f23d5 5050 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5051 err = btrfs_setsize(inode, attr);
8082510e
YZ
5052 if (err)
5053 return err;
39279cc3 5054 }
9036c102 5055
1025774c
CH
5056 if (attr->ia_valid) {
5057 setattr_copy(inode, attr);
0c4d2d95 5058 inode_inc_iversion(inode);
22c44fe6 5059 err = btrfs_dirty_inode(inode);
1025774c 5060
22c44fe6 5061 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5062 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5063 }
33268eaf 5064
39279cc3
CM
5065 return err;
5066}
61295eb8 5067
131e404a
FDBM
5068/*
5069 * While truncating the inode pages during eviction, we get the VFS calling
5070 * btrfs_invalidatepage() against each page of the inode. This is slow because
5071 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5072 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5073 * extent_state structures over and over, wasting lots of time.
5074 *
5075 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5076 * those expensive operations on a per page basis and do only the ordered io
5077 * finishing, while we release here the extent_map and extent_state structures,
5078 * without the excessive merging and splitting.
5079 */
5080static void evict_inode_truncate_pages(struct inode *inode)
5081{
5082 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5083 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5084 struct rb_node *node;
5085
5086 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5087 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5088
5089 write_lock(&map_tree->lock);
5090 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5091 struct extent_map *em;
5092
5093 node = rb_first(&map_tree->map);
5094 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5095 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5096 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5097 remove_extent_mapping(map_tree, em);
5098 free_extent_map(em);
7064dd5c
FM
5099 if (need_resched()) {
5100 write_unlock(&map_tree->lock);
5101 cond_resched();
5102 write_lock(&map_tree->lock);
5103 }
131e404a
FDBM
5104 }
5105 write_unlock(&map_tree->lock);
5106
6ca07097
FM
5107 /*
5108 * Keep looping until we have no more ranges in the io tree.
5109 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5110 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5111 * still in progress (unlocked the pages in the bio but did not yet
5112 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5113 * ranges can still be locked and eviction started because before
5114 * submitting those bios, which are executed by a separate task (work
5115 * queue kthread), inode references (inode->i_count) were not taken
5116 * (which would be dropped in the end io callback of each bio).
5117 * Therefore here we effectively end up waiting for those bios and
5118 * anyone else holding locked ranges without having bumped the inode's
5119 * reference count - if we don't do it, when they access the inode's
5120 * io_tree to unlock a range it may be too late, leading to an
5121 * use-after-free issue.
5122 */
131e404a
FDBM
5123 spin_lock(&io_tree->lock);
5124 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5125 struct extent_state *state;
5126 struct extent_state *cached_state = NULL;
6ca07097
FM
5127 u64 start;
5128 u64 end;
131e404a
FDBM
5129
5130 node = rb_first(&io_tree->state);
5131 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5132 start = state->start;
5133 end = state->end;
131e404a
FDBM
5134 spin_unlock(&io_tree->lock);
5135
ff13db41 5136 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5137
5138 /*
5139 * If still has DELALLOC flag, the extent didn't reach disk,
5140 * and its reserved space won't be freed by delayed_ref.
5141 * So we need to free its reserved space here.
5142 * (Refer to comment in btrfs_invalidatepage, case 2)
5143 *
5144 * Note, end is the bytenr of last byte, so we need + 1 here.
5145 */
5146 if (state->state & EXTENT_DELALLOC)
5147 btrfs_qgroup_free_data(inode, start, end - start + 1);
5148
6ca07097 5149 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5150 EXTENT_LOCKED | EXTENT_DIRTY |
5151 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5152 EXTENT_DEFRAG, 1, 1,
5153 &cached_state, GFP_NOFS);
131e404a 5154
7064dd5c 5155 cond_resched();
131e404a
FDBM
5156 spin_lock(&io_tree->lock);
5157 }
5158 spin_unlock(&io_tree->lock);
5159}
5160
bd555975 5161void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
5162{
5163 struct btrfs_trans_handle *trans;
5164 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5165 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5166 int steal_from_global = 0;
3d48d981 5167 u64 min_size;
39279cc3
CM
5168 int ret;
5169
1abe9b8a 5170 trace_btrfs_inode_evict(inode);
5171
3d48d981
NB
5172 if (!root) {
5173 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5174 return;
5175 }
5176
5177 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5178
131e404a
FDBM
5179 evict_inode_truncate_pages(inode);
5180
69e9c6c6
SB
5181 if (inode->i_nlink &&
5182 ((btrfs_root_refs(&root->root_item) != 0 &&
5183 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5184 btrfs_is_free_space_inode(inode)))
bd555975
AV
5185 goto no_delete;
5186
39279cc3 5187 if (is_bad_inode(inode)) {
7b128766 5188 btrfs_orphan_del(NULL, inode);
39279cc3
CM
5189 goto no_delete;
5190 }
bd555975 5191 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5192 if (!special_file(inode->i_mode))
5193 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5194
f612496b
MX
5195 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5196
c71bf099 5197 if (root->fs_info->log_root_recovering) {
6bf02314 5198 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5199 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5200 goto no_delete;
5201 }
5202
76dda93c 5203 if (inode->i_nlink > 0) {
69e9c6c6
SB
5204 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5205 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5206 goto no_delete;
5207 }
5208
0e8c36a9
MX
5209 ret = btrfs_commit_inode_delayed_inode(inode);
5210 if (ret) {
5211 btrfs_orphan_del(NULL, inode);
5212 goto no_delete;
5213 }
5214
66d8f3dd 5215 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
5216 if (!rsv) {
5217 btrfs_orphan_del(NULL, inode);
5218 goto no_delete;
5219 }
4a338542 5220 rsv->size = min_size;
ca7e70f5 5221 rsv->failfast = 1;
726c35fa 5222 global_rsv = &root->fs_info->global_block_rsv;
4289a667 5223
dbe674a9 5224 btrfs_i_size_write(inode, 0);
5f39d397 5225
4289a667 5226 /*
8407aa46
MX
5227 * This is a bit simpler than btrfs_truncate since we've already
5228 * reserved our space for our orphan item in the unlink, so we just
5229 * need to reserve some slack space in case we add bytes and update
5230 * inode item when doing the truncate.
4289a667 5231 */
8082510e 5232 while (1) {
08e007d2
MX
5233 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5234 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5235
5236 /*
5237 * Try and steal from the global reserve since we will
5238 * likely not use this space anyway, we want to try as
5239 * hard as possible to get this to work.
5240 */
5241 if (ret)
3bce876f
JB
5242 steal_from_global++;
5243 else
5244 steal_from_global = 0;
5245 ret = 0;
d68fc57b 5246
3bce876f
JB
5247 /*
5248 * steal_from_global == 0: we reserved stuff, hooray!
5249 * steal_from_global == 1: we didn't reserve stuff, boo!
5250 * steal_from_global == 2: we've committed, still not a lot of
5251 * room but maybe we'll have room in the global reserve this
5252 * time.
5253 * steal_from_global == 3: abandon all hope!
5254 */
5255 if (steal_from_global > 2) {
c2cf52eb
SK
5256 btrfs_warn(root->fs_info,
5257 "Could not get space for a delete, will truncate on mount %d",
5258 ret);
4289a667
JB
5259 btrfs_orphan_del(NULL, inode);
5260 btrfs_free_block_rsv(root, rsv);
5261 goto no_delete;
d68fc57b 5262 }
7b128766 5263
0e8c36a9 5264 trans = btrfs_join_transaction(root);
4289a667
JB
5265 if (IS_ERR(trans)) {
5266 btrfs_orphan_del(NULL, inode);
5267 btrfs_free_block_rsv(root, rsv);
5268 goto no_delete;
d68fc57b 5269 }
7b128766 5270
3bce876f 5271 /*
01327610 5272 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5273 * sure there is room to do it, if not we need to commit and try
5274 * again.
5275 */
5276 if (steal_from_global) {
5277 if (!btrfs_check_space_for_delayed_refs(trans, root))
5278 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
25d609f8 5279 min_size, 0);
3bce876f
JB
5280 else
5281 ret = -ENOSPC;
5282 }
5283
5284 /*
5285 * Couldn't steal from the global reserve, we have too much
5286 * pending stuff built up, commit the transaction and try it
5287 * again.
5288 */
5289 if (ret) {
5290 ret = btrfs_commit_transaction(trans, root);
5291 if (ret) {
5292 btrfs_orphan_del(NULL, inode);
5293 btrfs_free_block_rsv(root, rsv);
5294 goto no_delete;
5295 }
5296 continue;
5297 } else {
5298 steal_from_global = 0;
5299 }
5300
4289a667
JB
5301 trans->block_rsv = rsv;
5302
d68fc57b 5303 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5304 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5305 break;
85e21bac 5306
8407aa46 5307 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
5308 btrfs_end_transaction(trans, root);
5309 trans = NULL;
b53d3f5d 5310 btrfs_btree_balance_dirty(root);
8082510e 5311 }
5f39d397 5312
4289a667
JB
5313 btrfs_free_block_rsv(root, rsv);
5314
4ef31a45
JB
5315 /*
5316 * Errors here aren't a big deal, it just means we leave orphan items
5317 * in the tree. They will be cleaned up on the next mount.
5318 */
8082510e 5319 if (ret == 0) {
4289a667 5320 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
5321 btrfs_orphan_del(trans, inode);
5322 } else {
5323 btrfs_orphan_del(NULL, inode);
8082510e 5324 }
54aa1f4d 5325
4289a667 5326 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
5327 if (!(root == root->fs_info->tree_root ||
5328 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 5329 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 5330
54aa1f4d 5331 btrfs_end_transaction(trans, root);
b53d3f5d 5332 btrfs_btree_balance_dirty(root);
39279cc3 5333no_delete:
89042e5a 5334 btrfs_remove_delayed_node(inode);
dbd5768f 5335 clear_inode(inode);
39279cc3
CM
5336}
5337
5338/*
5339 * this returns the key found in the dir entry in the location pointer.
5340 * If no dir entries were found, location->objectid is 0.
5341 */
5342static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5343 struct btrfs_key *location)
5344{
5345 const char *name = dentry->d_name.name;
5346 int namelen = dentry->d_name.len;
5347 struct btrfs_dir_item *di;
5348 struct btrfs_path *path;
5349 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5350 int ret = 0;
39279cc3
CM
5351
5352 path = btrfs_alloc_path();
d8926bb3
MF
5353 if (!path)
5354 return -ENOMEM;
3954401f 5355
33345d01 5356 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 5357 namelen, 0);
0d9f7f3e
Y
5358 if (IS_ERR(di))
5359 ret = PTR_ERR(di);
d397712b 5360
c704005d 5361 if (IS_ERR_OR_NULL(di))
3954401f 5362 goto out_err;
d397712b 5363
5f39d397 5364 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5365out:
39279cc3
CM
5366 btrfs_free_path(path);
5367 return ret;
3954401f
CM
5368out_err:
5369 location->objectid = 0;
5370 goto out;
39279cc3
CM
5371}
5372
5373/*
5374 * when we hit a tree root in a directory, the btrfs part of the inode
5375 * needs to be changed to reflect the root directory of the tree root. This
5376 * is kind of like crossing a mount point.
5377 */
5378static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
5379 struct inode *dir,
5380 struct dentry *dentry,
5381 struct btrfs_key *location,
5382 struct btrfs_root **sub_root)
39279cc3 5383{
4df27c4d
YZ
5384 struct btrfs_path *path;
5385 struct btrfs_root *new_root;
5386 struct btrfs_root_ref *ref;
5387 struct extent_buffer *leaf;
1d4c08e0 5388 struct btrfs_key key;
4df27c4d
YZ
5389 int ret;
5390 int err = 0;
39279cc3 5391
4df27c4d
YZ
5392 path = btrfs_alloc_path();
5393 if (!path) {
5394 err = -ENOMEM;
5395 goto out;
5396 }
39279cc3 5397
4df27c4d 5398 err = -ENOENT;
1d4c08e0
DS
5399 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5400 key.type = BTRFS_ROOT_REF_KEY;
5401 key.offset = location->objectid;
5402
5403 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5404 0, 0);
4df27c4d
YZ
5405 if (ret) {
5406 if (ret < 0)
5407 err = ret;
5408 goto out;
5409 }
39279cc3 5410
4df27c4d
YZ
5411 leaf = path->nodes[0];
5412 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 5413 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
5414 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5415 goto out;
39279cc3 5416
4df27c4d
YZ
5417 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5418 (unsigned long)(ref + 1),
5419 dentry->d_name.len);
5420 if (ret)
5421 goto out;
5422
b3b4aa74 5423 btrfs_release_path(path);
4df27c4d
YZ
5424
5425 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5426 if (IS_ERR(new_root)) {
5427 err = PTR_ERR(new_root);
5428 goto out;
5429 }
5430
4df27c4d
YZ
5431 *sub_root = new_root;
5432 location->objectid = btrfs_root_dirid(&new_root->root_item);
5433 location->type = BTRFS_INODE_ITEM_KEY;
5434 location->offset = 0;
5435 err = 0;
5436out:
5437 btrfs_free_path(path);
5438 return err;
39279cc3
CM
5439}
5440
5d4f98a2
YZ
5441static void inode_tree_add(struct inode *inode)
5442{
5443 struct btrfs_root *root = BTRFS_I(inode)->root;
5444 struct btrfs_inode *entry;
03e860bd
FNP
5445 struct rb_node **p;
5446 struct rb_node *parent;
cef21937 5447 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5448 u64 ino = btrfs_ino(inode);
5d4f98a2 5449
1d3382cb 5450 if (inode_unhashed(inode))
76dda93c 5451 return;
e1409cef 5452 parent = NULL;
5d4f98a2 5453 spin_lock(&root->inode_lock);
e1409cef 5454 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5455 while (*p) {
5456 parent = *p;
5457 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5458
33345d01 5459 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5460 p = &parent->rb_left;
33345d01 5461 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5462 p = &parent->rb_right;
5d4f98a2
YZ
5463 else {
5464 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5465 (I_WILL_FREE | I_FREEING)));
cef21937 5466 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5467 RB_CLEAR_NODE(parent);
5468 spin_unlock(&root->inode_lock);
cef21937 5469 return;
5d4f98a2
YZ
5470 }
5471 }
cef21937
FDBM
5472 rb_link_node(new, parent, p);
5473 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5474 spin_unlock(&root->inode_lock);
5475}
5476
5477static void inode_tree_del(struct inode *inode)
5478{
5479 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5480 int empty = 0;
5d4f98a2 5481
03e860bd 5482 spin_lock(&root->inode_lock);
5d4f98a2 5483 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5484 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5485 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5486 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5487 }
03e860bd 5488 spin_unlock(&root->inode_lock);
76dda93c 5489
69e9c6c6 5490 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5491 synchronize_srcu(&root->fs_info->subvol_srcu);
5492 spin_lock(&root->inode_lock);
5493 empty = RB_EMPTY_ROOT(&root->inode_tree);
5494 spin_unlock(&root->inode_lock);
5495 if (empty)
5496 btrfs_add_dead_root(root);
5497 }
5498}
5499
143bede5 5500void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5501{
5502 struct rb_node *node;
5503 struct rb_node *prev;
5504 struct btrfs_inode *entry;
5505 struct inode *inode;
5506 u64 objectid = 0;
5507
7813b3db
LB
5508 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5509 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5510
5511 spin_lock(&root->inode_lock);
5512again:
5513 node = root->inode_tree.rb_node;
5514 prev = NULL;
5515 while (node) {
5516 prev = node;
5517 entry = rb_entry(node, struct btrfs_inode, rb_node);
5518
33345d01 5519 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5520 node = node->rb_left;
33345d01 5521 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5522 node = node->rb_right;
5523 else
5524 break;
5525 }
5526 if (!node) {
5527 while (prev) {
5528 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5529 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5530 node = prev;
5531 break;
5532 }
5533 prev = rb_next(prev);
5534 }
5535 }
5536 while (node) {
5537 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5538 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5539 inode = igrab(&entry->vfs_inode);
5540 if (inode) {
5541 spin_unlock(&root->inode_lock);
5542 if (atomic_read(&inode->i_count) > 1)
5543 d_prune_aliases(inode);
5544 /*
45321ac5 5545 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5546 * the inode cache when its usage count
5547 * hits zero.
5548 */
5549 iput(inode);
5550 cond_resched();
5551 spin_lock(&root->inode_lock);
5552 goto again;
5553 }
5554
5555 if (cond_resched_lock(&root->inode_lock))
5556 goto again;
5557
5558 node = rb_next(node);
5559 }
5560 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5561}
5562
e02119d5
CM
5563static int btrfs_init_locked_inode(struct inode *inode, void *p)
5564{
5565 struct btrfs_iget_args *args = p;
90d3e592
CM
5566 inode->i_ino = args->location->objectid;
5567 memcpy(&BTRFS_I(inode)->location, args->location,
5568 sizeof(*args->location));
e02119d5 5569 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5570 return 0;
5571}
5572
5573static int btrfs_find_actor(struct inode *inode, void *opaque)
5574{
5575 struct btrfs_iget_args *args = opaque;
90d3e592 5576 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5577 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5578}
5579
5d4f98a2 5580static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5581 struct btrfs_key *location,
5d4f98a2 5582 struct btrfs_root *root)
39279cc3
CM
5583{
5584 struct inode *inode;
5585 struct btrfs_iget_args args;
90d3e592 5586 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5587
90d3e592 5588 args.location = location;
39279cc3
CM
5589 args.root = root;
5590
778ba82b 5591 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5592 btrfs_init_locked_inode,
5593 (void *)&args);
5594 return inode;
5595}
5596
1a54ef8c
BR
5597/* Get an inode object given its location and corresponding root.
5598 * Returns in *is_new if the inode was read from disk
5599 */
5600struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5601 struct btrfs_root *root, int *new)
1a54ef8c
BR
5602{
5603 struct inode *inode;
5604
90d3e592 5605 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5606 if (!inode)
5d4f98a2 5607 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5608
5609 if (inode->i_state & I_NEW) {
1a54ef8c 5610 btrfs_read_locked_inode(inode);
1748f843
MF
5611 if (!is_bad_inode(inode)) {
5612 inode_tree_add(inode);
5613 unlock_new_inode(inode);
5614 if (new)
5615 *new = 1;
5616 } else {
e0b6d65b
ST
5617 unlock_new_inode(inode);
5618 iput(inode);
5619 inode = ERR_PTR(-ESTALE);
1748f843
MF
5620 }
5621 }
5622
1a54ef8c
BR
5623 return inode;
5624}
5625
4df27c4d
YZ
5626static struct inode *new_simple_dir(struct super_block *s,
5627 struct btrfs_key *key,
5628 struct btrfs_root *root)
5629{
5630 struct inode *inode = new_inode(s);
5631
5632 if (!inode)
5633 return ERR_PTR(-ENOMEM);
5634
4df27c4d
YZ
5635 BTRFS_I(inode)->root = root;
5636 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5637 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5638
5639 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5640 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5641 inode->i_fop = &simple_dir_operations;
5642 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
04b285f3 5643 inode->i_mtime = current_fs_time(inode->i_sb);
9cc97d64 5644 inode->i_atime = inode->i_mtime;
5645 inode->i_ctime = inode->i_mtime;
5646 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5647
5648 return inode;
5649}
5650
3de4586c 5651struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5652{
d397712b 5653 struct inode *inode;
4df27c4d 5654 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5655 struct btrfs_root *sub_root = root;
5656 struct btrfs_key location;
76dda93c 5657 int index;
b4aff1f8 5658 int ret = 0;
39279cc3
CM
5659
5660 if (dentry->d_name.len > BTRFS_NAME_LEN)
5661 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5662
39e3c955 5663 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5664 if (ret < 0)
5665 return ERR_PTR(ret);
5f39d397 5666
4df27c4d 5667 if (location.objectid == 0)
5662344b 5668 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5669
5670 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5671 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5672 return inode;
5673 }
5674
5675 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5676
76dda93c 5677 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5678 ret = fixup_tree_root_location(root, dir, dentry,
5679 &location, &sub_root);
5680 if (ret < 0) {
5681 if (ret != -ENOENT)
5682 inode = ERR_PTR(ret);
5683 else
5684 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5685 } else {
73f73415 5686 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5687 }
76dda93c
YZ
5688 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5689
34d19bad 5690 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5691 down_read(&root->fs_info->cleanup_work_sem);
5692 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5693 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5694 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5695 if (ret) {
5696 iput(inode);
66b4ffd1 5697 inode = ERR_PTR(ret);
01cd3367 5698 }
c71bf099
YZ
5699 }
5700
3de4586c
CM
5701 return inode;
5702}
5703
fe15ce44 5704static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5705{
5706 struct btrfs_root *root;
2b0143b5 5707 struct inode *inode = d_inode(dentry);
76dda93c 5708
848cce0d 5709 if (!inode && !IS_ROOT(dentry))
2b0143b5 5710 inode = d_inode(dentry->d_parent);
76dda93c 5711
848cce0d
LZ
5712 if (inode) {
5713 root = BTRFS_I(inode)->root;
efefb143
YZ
5714 if (btrfs_root_refs(&root->root_item) == 0)
5715 return 1;
848cce0d
LZ
5716
5717 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5718 return 1;
efefb143 5719 }
76dda93c
YZ
5720 return 0;
5721}
5722
b4aff1f8
JB
5723static void btrfs_dentry_release(struct dentry *dentry)
5724{
944a4515 5725 kfree(dentry->d_fsdata);
b4aff1f8
JB
5726}
5727
3de4586c 5728static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5729 unsigned int flags)
3de4586c 5730{
5662344b 5731 struct inode *inode;
a66e7cc6 5732
5662344b
TI
5733 inode = btrfs_lookup_dentry(dir, dentry);
5734 if (IS_ERR(inode)) {
5735 if (PTR_ERR(inode) == -ENOENT)
5736 inode = NULL;
5737 else
5738 return ERR_CAST(inode);
5739 }
5740
41d28bca 5741 return d_splice_alias(inode, dentry);
39279cc3
CM
5742}
5743
16cdcec7 5744unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5745 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5746};
5747
9cdda8d3 5748static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5749{
9cdda8d3 5750 struct inode *inode = file_inode(file);
39279cc3
CM
5751 struct btrfs_root *root = BTRFS_I(inode)->root;
5752 struct btrfs_item *item;
5753 struct btrfs_dir_item *di;
5754 struct btrfs_key key;
5f39d397 5755 struct btrfs_key found_key;
39279cc3 5756 struct btrfs_path *path;
16cdcec7
MX
5757 struct list_head ins_list;
5758 struct list_head del_list;
39279cc3 5759 int ret;
5f39d397 5760 struct extent_buffer *leaf;
39279cc3 5761 int slot;
39279cc3
CM
5762 unsigned char d_type;
5763 int over = 0;
5764 u32 di_cur;
5765 u32 di_total;
5766 u32 di_len;
5767 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5768 char tmp_name[32];
5769 char *name_ptr;
5770 int name_len;
9cdda8d3 5771 int is_curr = 0; /* ctx->pos points to the current index? */
bc4ef759 5772 bool emitted;
02dbfc99 5773 bool put = false;
39279cc3
CM
5774
5775 /* FIXME, use a real flag for deciding about the key type */
5776 if (root->fs_info->tree_root == root)
5777 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5778
9cdda8d3
AV
5779 if (!dir_emit_dots(file, ctx))
5780 return 0;
5781
49593bfa 5782 path = btrfs_alloc_path();
16cdcec7
MX
5783 if (!path)
5784 return -ENOMEM;
ff5714cc 5785
e4058b54 5786 path->reada = READA_FORWARD;
49593bfa 5787
16cdcec7
MX
5788 if (key_type == BTRFS_DIR_INDEX_KEY) {
5789 INIT_LIST_HEAD(&ins_list);
5790 INIT_LIST_HEAD(&del_list);
02dbfc99
OS
5791 put = btrfs_readdir_get_delayed_items(inode, &ins_list,
5792 &del_list);
16cdcec7
MX
5793 }
5794
962a298f 5795 key.type = key_type;
9cdda8d3 5796 key.offset = ctx->pos;
33345d01 5797 key.objectid = btrfs_ino(inode);
5f39d397 5798
39279cc3
CM
5799 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5800 if (ret < 0)
5801 goto err;
49593bfa 5802
bc4ef759 5803 emitted = false;
49593bfa 5804 while (1) {
5f39d397 5805 leaf = path->nodes[0];
39279cc3 5806 slot = path->slots[0];
b9e03af0
LZ
5807 if (slot >= btrfs_header_nritems(leaf)) {
5808 ret = btrfs_next_leaf(root, path);
5809 if (ret < 0)
5810 goto err;
5811 else if (ret > 0)
5812 break;
5813 continue;
39279cc3 5814 }
3de4586c 5815
dd3cc16b 5816 item = btrfs_item_nr(slot);
5f39d397
CM
5817 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5818
5819 if (found_key.objectid != key.objectid)
39279cc3 5820 break;
962a298f 5821 if (found_key.type != key_type)
39279cc3 5822 break;
9cdda8d3 5823 if (found_key.offset < ctx->pos)
b9e03af0 5824 goto next;
16cdcec7
MX
5825 if (key_type == BTRFS_DIR_INDEX_KEY &&
5826 btrfs_should_delete_dir_index(&del_list,
5827 found_key.offset))
5828 goto next;
5f39d397 5829
9cdda8d3 5830 ctx->pos = found_key.offset;
16cdcec7 5831 is_curr = 1;
49593bfa 5832
39279cc3
CM
5833 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5834 di_cur = 0;
5f39d397 5835 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5836
5837 while (di_cur < di_total) {
5f39d397
CM
5838 struct btrfs_key location;
5839
22a94d44
JB
5840 if (verify_dir_item(root, leaf, di))
5841 break;
5842
5f39d397 5843 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5844 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5845 name_ptr = tmp_name;
5846 } else {
49e350a4 5847 name_ptr = kmalloc(name_len, GFP_KERNEL);
49593bfa
DW
5848 if (!name_ptr) {
5849 ret = -ENOMEM;
5850 goto err;
5851 }
5f39d397
CM
5852 }
5853 read_extent_buffer(leaf, name_ptr,
5854 (unsigned long)(di + 1), name_len);
5855
5856 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5857 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5858
fede766f 5859
3de4586c 5860 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5861 * skip it.
5862 *
5863 * In contrast to old kernels, we insert the snapshot's
5864 * dir item and dir index after it has been created, so
5865 * we won't find a reference to our own snapshot. We
5866 * still keep the following code for backward
5867 * compatibility.
3de4586c
CM
5868 */
5869 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5870 location.objectid == root->root_key.objectid) {
5871 over = 0;
5872 goto skip;
5873 }
9cdda8d3
AV
5874 over = !dir_emit(ctx, name_ptr, name_len,
5875 location.objectid, d_type);
5f39d397 5876
3de4586c 5877skip:
5f39d397
CM
5878 if (name_ptr != tmp_name)
5879 kfree(name_ptr);
5880
39279cc3
CM
5881 if (over)
5882 goto nopos;
bc4ef759 5883 emitted = true;
5103e947 5884 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5885 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5886 di_cur += di_len;
5887 di = (struct btrfs_dir_item *)((char *)di + di_len);
5888 }
b9e03af0
LZ
5889next:
5890 path->slots[0]++;
39279cc3 5891 }
49593bfa 5892
16cdcec7
MX
5893 if (key_type == BTRFS_DIR_INDEX_KEY) {
5894 if (is_curr)
9cdda8d3 5895 ctx->pos++;
bc4ef759 5896 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
16cdcec7
MX
5897 if (ret)
5898 goto nopos;
5899 }
5900
bc4ef759
DS
5901 /*
5902 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5903 * it was was set to the termination value in previous call. We assume
5904 * that "." and ".." were emitted if we reach this point and set the
5905 * termination value as well for an empty directory.
5906 */
5907 if (ctx->pos > 2 && !emitted)
5908 goto nopos;
5909
49593bfa 5910 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5911 ctx->pos++;
5912
5913 /*
5914 * Stop new entries from being returned after we return the last
5915 * entry.
5916 *
5917 * New directory entries are assigned a strictly increasing
5918 * offset. This means that new entries created during readdir
5919 * are *guaranteed* to be seen in the future by that readdir.
5920 * This has broken buggy programs which operate on names as
5921 * they're returned by readdir. Until we re-use freed offsets
5922 * we have this hack to stop new entries from being returned
5923 * under the assumption that they'll never reach this huge
5924 * offset.
5925 *
5926 * This is being careful not to overflow 32bit loff_t unless the
5927 * last entry requires it because doing so has broken 32bit apps
5928 * in the past.
5929 */
5930 if (key_type == BTRFS_DIR_INDEX_KEY) {
5931 if (ctx->pos >= INT_MAX)
5932 ctx->pos = LLONG_MAX;
5933 else
5934 ctx->pos = INT_MAX;
5935 }
39279cc3
CM
5936nopos:
5937 ret = 0;
5938err:
02dbfc99
OS
5939 if (put)
5940 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5941 btrfs_free_path(path);
39279cc3
CM
5942 return ret;
5943}
5944
a9185b41 5945int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5946{
5947 struct btrfs_root *root = BTRFS_I(inode)->root;
5948 struct btrfs_trans_handle *trans;
5949 int ret = 0;
0af3d00b 5950 bool nolock = false;
39279cc3 5951
72ac3c0d 5952 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5953 return 0;
5954
83eea1f1 5955 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5956 nolock = true;
0af3d00b 5957
a9185b41 5958 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5959 if (nolock)
7a7eaa40 5960 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5961 else
7a7eaa40 5962 trans = btrfs_join_transaction(root);
3612b495
TI
5963 if (IS_ERR(trans))
5964 return PTR_ERR(trans);
a698d075 5965 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5966 }
5967 return ret;
5968}
5969
5970/*
54aa1f4d 5971 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5972 * inode changes. But, it is most likely to find the inode in cache.
5973 * FIXME, needs more benchmarking...there are no reasons other than performance
5974 * to keep or drop this code.
5975 */
48a3b636 5976static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5977{
5978 struct btrfs_root *root = BTRFS_I(inode)->root;
5979 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5980 int ret;
5981
72ac3c0d 5982 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5983 return 0;
39279cc3 5984
7a7eaa40 5985 trans = btrfs_join_transaction(root);
22c44fe6
JB
5986 if (IS_ERR(trans))
5987 return PTR_ERR(trans);
8929ecfa
YZ
5988
5989 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5990 if (ret && ret == -ENOSPC) {
5991 /* whoops, lets try again with the full transaction */
5992 btrfs_end_transaction(trans, root);
5993 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5994 if (IS_ERR(trans))
5995 return PTR_ERR(trans);
8929ecfa 5996
94b60442 5997 ret = btrfs_update_inode(trans, root, inode);
94b60442 5998 }
39279cc3 5999 btrfs_end_transaction(trans, root);
16cdcec7
MX
6000 if (BTRFS_I(inode)->delayed_node)
6001 btrfs_balance_delayed_items(root);
22c44fe6
JB
6002
6003 return ret;
6004}
6005
6006/*
6007 * This is a copy of file_update_time. We need this so we can return error on
6008 * ENOSPC for updating the inode in the case of file write and mmap writes.
6009 */
e41f941a
JB
6010static int btrfs_update_time(struct inode *inode, struct timespec *now,
6011 int flags)
22c44fe6 6012{
2bc55652
AB
6013 struct btrfs_root *root = BTRFS_I(inode)->root;
6014
6015 if (btrfs_root_readonly(root))
6016 return -EROFS;
6017
e41f941a 6018 if (flags & S_VERSION)
22c44fe6 6019 inode_inc_iversion(inode);
e41f941a
JB
6020 if (flags & S_CTIME)
6021 inode->i_ctime = *now;
6022 if (flags & S_MTIME)
6023 inode->i_mtime = *now;
6024 if (flags & S_ATIME)
6025 inode->i_atime = *now;
6026 return btrfs_dirty_inode(inode);
39279cc3
CM
6027}
6028
d352ac68
CM
6029/*
6030 * find the highest existing sequence number in a directory
6031 * and then set the in-memory index_cnt variable to reflect
6032 * free sequence numbers
6033 */
aec7477b
JB
6034static int btrfs_set_inode_index_count(struct inode *inode)
6035{
6036 struct btrfs_root *root = BTRFS_I(inode)->root;
6037 struct btrfs_key key, found_key;
6038 struct btrfs_path *path;
6039 struct extent_buffer *leaf;
6040 int ret;
6041
33345d01 6042 key.objectid = btrfs_ino(inode);
962a298f 6043 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6044 key.offset = (u64)-1;
6045
6046 path = btrfs_alloc_path();
6047 if (!path)
6048 return -ENOMEM;
6049
6050 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6051 if (ret < 0)
6052 goto out;
6053 /* FIXME: we should be able to handle this */
6054 if (ret == 0)
6055 goto out;
6056 ret = 0;
6057
6058 /*
6059 * MAGIC NUMBER EXPLANATION:
6060 * since we search a directory based on f_pos we have to start at 2
6061 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6062 * else has to start at 2
6063 */
6064 if (path->slots[0] == 0) {
6065 BTRFS_I(inode)->index_cnt = 2;
6066 goto out;
6067 }
6068
6069 path->slots[0]--;
6070
6071 leaf = path->nodes[0];
6072 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6073
33345d01 6074 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6075 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
6076 BTRFS_I(inode)->index_cnt = 2;
6077 goto out;
6078 }
6079
6080 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6081out:
6082 btrfs_free_path(path);
6083 return ret;
6084}
6085
d352ac68
CM
6086/*
6087 * helper to find a free sequence number in a given directory. This current
6088 * code is very simple, later versions will do smarter things in the btree
6089 */
3de4586c 6090int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
6091{
6092 int ret = 0;
6093
6094 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
6095 ret = btrfs_inode_delayed_dir_index_count(dir);
6096 if (ret) {
6097 ret = btrfs_set_inode_index_count(dir);
6098 if (ret)
6099 return ret;
6100 }
aec7477b
JB
6101 }
6102
00e4e6b3 6103 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
6104 BTRFS_I(dir)->index_cnt++;
6105
6106 return ret;
6107}
6108
b0d5d10f
CM
6109static int btrfs_insert_inode_locked(struct inode *inode)
6110{
6111 struct btrfs_iget_args args;
6112 args.location = &BTRFS_I(inode)->location;
6113 args.root = BTRFS_I(inode)->root;
6114
6115 return insert_inode_locked4(inode,
6116 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6117 btrfs_find_actor, &args);
6118}
6119
39279cc3
CM
6120static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6121 struct btrfs_root *root,
aec7477b 6122 struct inode *dir,
9c58309d 6123 const char *name, int name_len,
175a4eb7
AV
6124 u64 ref_objectid, u64 objectid,
6125 umode_t mode, u64 *index)
39279cc3
CM
6126{
6127 struct inode *inode;
5f39d397 6128 struct btrfs_inode_item *inode_item;
39279cc3 6129 struct btrfs_key *location;
5f39d397 6130 struct btrfs_path *path;
9c58309d
CM
6131 struct btrfs_inode_ref *ref;
6132 struct btrfs_key key[2];
6133 u32 sizes[2];
ef3b9af5 6134 int nitems = name ? 2 : 1;
9c58309d 6135 unsigned long ptr;
39279cc3 6136 int ret;
39279cc3 6137
5f39d397 6138 path = btrfs_alloc_path();
d8926bb3
MF
6139 if (!path)
6140 return ERR_PTR(-ENOMEM);
5f39d397 6141
39279cc3 6142 inode = new_inode(root->fs_info->sb);
8fb27640
YS
6143 if (!inode) {
6144 btrfs_free_path(path);
39279cc3 6145 return ERR_PTR(-ENOMEM);
8fb27640 6146 }
39279cc3 6147
5762b5c9
FM
6148 /*
6149 * O_TMPFILE, set link count to 0, so that after this point,
6150 * we fill in an inode item with the correct link count.
6151 */
6152 if (!name)
6153 set_nlink(inode, 0);
6154
581bb050
LZ
6155 /*
6156 * we have to initialize this early, so we can reclaim the inode
6157 * number if we fail afterwards in this function.
6158 */
6159 inode->i_ino = objectid;
6160
ef3b9af5 6161 if (dir && name) {
1abe9b8a 6162 trace_btrfs_inode_request(dir);
6163
3de4586c 6164 ret = btrfs_set_inode_index(dir, index);
09771430 6165 if (ret) {
8fb27640 6166 btrfs_free_path(path);
09771430 6167 iput(inode);
aec7477b 6168 return ERR_PTR(ret);
09771430 6169 }
ef3b9af5
FM
6170 } else if (dir) {
6171 *index = 0;
aec7477b
JB
6172 }
6173 /*
6174 * index_cnt is ignored for everything but a dir,
6175 * btrfs_get_inode_index_count has an explanation for the magic
6176 * number
6177 */
6178 BTRFS_I(inode)->index_cnt = 2;
67de1176 6179 BTRFS_I(inode)->dir_index = *index;
39279cc3 6180 BTRFS_I(inode)->root = root;
e02119d5 6181 BTRFS_I(inode)->generation = trans->transid;
76195853 6182 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6183
5dc562c5
JB
6184 /*
6185 * We could have gotten an inode number from somebody who was fsynced
6186 * and then removed in this same transaction, so let's just set full
6187 * sync since it will be a full sync anyway and this will blow away the
6188 * old info in the log.
6189 */
6190 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6191
9c58309d 6192 key[0].objectid = objectid;
962a298f 6193 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6194 key[0].offset = 0;
6195
9c58309d 6196 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6197
6198 if (name) {
6199 /*
6200 * Start new inodes with an inode_ref. This is slightly more
6201 * efficient for small numbers of hard links since they will
6202 * be packed into one item. Extended refs will kick in if we
6203 * add more hard links than can fit in the ref item.
6204 */
6205 key[1].objectid = objectid;
962a298f 6206 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6207 key[1].offset = ref_objectid;
6208
6209 sizes[1] = name_len + sizeof(*ref);
6210 }
9c58309d 6211
b0d5d10f
CM
6212 location = &BTRFS_I(inode)->location;
6213 location->objectid = objectid;
6214 location->offset = 0;
962a298f 6215 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6216
6217 ret = btrfs_insert_inode_locked(inode);
6218 if (ret < 0)
6219 goto fail;
6220
b9473439 6221 path->leave_spinning = 1;
ef3b9af5 6222 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6223 if (ret != 0)
b0d5d10f 6224 goto fail_unlock;
5f39d397 6225
ecc11fab 6226 inode_init_owner(inode, dir, mode);
a76a3cd4 6227 inode_set_bytes(inode, 0);
9cc97d64 6228
04b285f3 6229 inode->i_mtime = current_fs_time(inode->i_sb);
9cc97d64 6230 inode->i_atime = inode->i_mtime;
6231 inode->i_ctime = inode->i_mtime;
6232 BTRFS_I(inode)->i_otime = inode->i_mtime;
6233
5f39d397
CM
6234 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6235 struct btrfs_inode_item);
293f7e07
LZ
6236 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6237 sizeof(*inode_item));
e02119d5 6238 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6239
ef3b9af5
FM
6240 if (name) {
6241 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6242 struct btrfs_inode_ref);
6243 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6244 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6245 ptr = (unsigned long)(ref + 1);
6246 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6247 }
9c58309d 6248
5f39d397
CM
6249 btrfs_mark_buffer_dirty(path->nodes[0]);
6250 btrfs_free_path(path);
6251
6cbff00f
CH
6252 btrfs_inherit_iflags(inode, dir);
6253
569254b0 6254 if (S_ISREG(mode)) {
3cdde224 6255 if (btrfs_test_opt(root->fs_info, NODATASUM))
94272164 6256 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
3cdde224 6257 if (btrfs_test_opt(root->fs_info, NODATACOW))
f2bdf9a8
JB
6258 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6259 BTRFS_INODE_NODATASUM;
94272164
CM
6260 }
6261
5d4f98a2 6262 inode_tree_add(inode);
1abe9b8a 6263
6264 trace_btrfs_inode_new(inode);
1973f0fa 6265 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6266
8ea05e3a
AB
6267 btrfs_update_root_times(trans, root);
6268
63541927
FDBM
6269 ret = btrfs_inode_inherit_props(trans, inode, dir);
6270 if (ret)
6271 btrfs_err(root->fs_info,
6272 "error inheriting props for ino %llu (root %llu): %d",
6273 btrfs_ino(inode), root->root_key.objectid, ret);
6274
39279cc3 6275 return inode;
b0d5d10f
CM
6276
6277fail_unlock:
6278 unlock_new_inode(inode);
5f39d397 6279fail:
ef3b9af5 6280 if (dir && name)
aec7477b 6281 BTRFS_I(dir)->index_cnt--;
5f39d397 6282 btrfs_free_path(path);
09771430 6283 iput(inode);
5f39d397 6284 return ERR_PTR(ret);
39279cc3
CM
6285}
6286
6287static inline u8 btrfs_inode_type(struct inode *inode)
6288{
6289 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6290}
6291
d352ac68
CM
6292/*
6293 * utility function to add 'inode' into 'parent_inode' with
6294 * a give name and a given sequence number.
6295 * if 'add_backref' is true, also insert a backref from the
6296 * inode to the parent directory.
6297 */
e02119d5
CM
6298int btrfs_add_link(struct btrfs_trans_handle *trans,
6299 struct inode *parent_inode, struct inode *inode,
6300 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6301{
4df27c4d 6302 int ret = 0;
39279cc3 6303 struct btrfs_key key;
e02119d5 6304 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
6305 u64 ino = btrfs_ino(inode);
6306 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6307
33345d01 6308 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6309 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6310 } else {
33345d01 6311 key.objectid = ino;
962a298f 6312 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6313 key.offset = 0;
6314 }
6315
33345d01 6316 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6317 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6318 key.objectid, root->root_key.objectid,
33345d01 6319 parent_ino, index, name, name_len);
4df27c4d 6320 } else if (add_backref) {
33345d01
LZ
6321 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6322 parent_ino, index);
4df27c4d 6323 }
39279cc3 6324
79787eaa
JM
6325 /* Nothing to clean up yet */
6326 if (ret)
6327 return ret;
4df27c4d 6328
79787eaa
JM
6329 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6330 parent_inode, &key,
6331 btrfs_inode_type(inode), index);
9c52057c 6332 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6333 goto fail_dir_item;
6334 else if (ret) {
66642832 6335 btrfs_abort_transaction(trans, ret);
79787eaa 6336 return ret;
39279cc3 6337 }
79787eaa
JM
6338
6339 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6340 name_len * 2);
0c4d2d95 6341 inode_inc_iversion(parent_inode);
04b285f3
DD
6342 parent_inode->i_mtime = parent_inode->i_ctime =
6343 current_fs_time(parent_inode->i_sb);
79787eaa
JM
6344 ret = btrfs_update_inode(trans, root, parent_inode);
6345 if (ret)
66642832 6346 btrfs_abort_transaction(trans, ret);
39279cc3 6347 return ret;
fe66a05a
CM
6348
6349fail_dir_item:
6350 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6351 u64 local_index;
6352 int err;
6353 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6354 key.objectid, root->root_key.objectid,
6355 parent_ino, &local_index, name, name_len);
6356
6357 } else if (add_backref) {
6358 u64 local_index;
6359 int err;
6360
6361 err = btrfs_del_inode_ref(trans, root, name, name_len,
6362 ino, parent_ino, &local_index);
6363 }
6364 return ret;
39279cc3
CM
6365}
6366
6367static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
6368 struct inode *dir, struct dentry *dentry,
6369 struct inode *inode, int backref, u64 index)
39279cc3 6370{
a1b075d2
JB
6371 int err = btrfs_add_link(trans, dir, inode,
6372 dentry->d_name.name, dentry->d_name.len,
6373 backref, index);
39279cc3
CM
6374 if (err > 0)
6375 err = -EEXIST;
6376 return err;
6377}
6378
618e21d5 6379static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6380 umode_t mode, dev_t rdev)
618e21d5
JB
6381{
6382 struct btrfs_trans_handle *trans;
6383 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6384 struct inode *inode = NULL;
618e21d5
JB
6385 int err;
6386 int drop_inode = 0;
6387 u64 objectid;
00e4e6b3 6388 u64 index = 0;
618e21d5 6389
9ed74f2d
JB
6390 /*
6391 * 2 for inode item and ref
6392 * 2 for dir items
6393 * 1 for xattr if selinux is on
6394 */
a22285a6
YZ
6395 trans = btrfs_start_transaction(root, 5);
6396 if (IS_ERR(trans))
6397 return PTR_ERR(trans);
1832a6d5 6398
581bb050
LZ
6399 err = btrfs_find_free_ino(root, &objectid);
6400 if (err)
6401 goto out_unlock;
6402
aec7477b 6403 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6404 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6405 mode, &index);
7cf96da3
TI
6406 if (IS_ERR(inode)) {
6407 err = PTR_ERR(inode);
618e21d5 6408 goto out_unlock;
7cf96da3 6409 }
618e21d5 6410
ad19db71
CS
6411 /*
6412 * If the active LSM wants to access the inode during
6413 * d_instantiate it needs these. Smack checks to see
6414 * if the filesystem supports xattrs by looking at the
6415 * ops vector.
6416 */
ad19db71 6417 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6418 init_special_inode(inode, inode->i_mode, rdev);
6419
6420 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6421 if (err)
b0d5d10f
CM
6422 goto out_unlock_inode;
6423
6424 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6425 if (err) {
6426 goto out_unlock_inode;
6427 } else {
1b4ab1bb 6428 btrfs_update_inode(trans, root, inode);
b0d5d10f 6429 unlock_new_inode(inode);
08c422c2 6430 d_instantiate(dentry, inode);
618e21d5 6431 }
b0d5d10f 6432
618e21d5 6433out_unlock:
7ad85bb7 6434 btrfs_end_transaction(trans, root);
c581afc8 6435 btrfs_balance_delayed_items(root);
b53d3f5d 6436 btrfs_btree_balance_dirty(root);
618e21d5
JB
6437 if (drop_inode) {
6438 inode_dec_link_count(inode);
6439 iput(inode);
6440 }
618e21d5 6441 return err;
b0d5d10f
CM
6442
6443out_unlock_inode:
6444 drop_inode = 1;
6445 unlock_new_inode(inode);
6446 goto out_unlock;
6447
618e21d5
JB
6448}
6449
39279cc3 6450static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6451 umode_t mode, bool excl)
39279cc3
CM
6452{
6453 struct btrfs_trans_handle *trans;
6454 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6455 struct inode *inode = NULL;
43baa579 6456 int drop_inode_on_err = 0;
a22285a6 6457 int err;
39279cc3 6458 u64 objectid;
00e4e6b3 6459 u64 index = 0;
39279cc3 6460
9ed74f2d
JB
6461 /*
6462 * 2 for inode item and ref
6463 * 2 for dir items
6464 * 1 for xattr if selinux is on
6465 */
a22285a6
YZ
6466 trans = btrfs_start_transaction(root, 5);
6467 if (IS_ERR(trans))
6468 return PTR_ERR(trans);
9ed74f2d 6469
581bb050
LZ
6470 err = btrfs_find_free_ino(root, &objectid);
6471 if (err)
6472 goto out_unlock;
6473
aec7477b 6474 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6475 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6476 mode, &index);
7cf96da3
TI
6477 if (IS_ERR(inode)) {
6478 err = PTR_ERR(inode);
39279cc3 6479 goto out_unlock;
7cf96da3 6480 }
43baa579 6481 drop_inode_on_err = 1;
ad19db71
CS
6482 /*
6483 * If the active LSM wants to access the inode during
6484 * d_instantiate it needs these. Smack checks to see
6485 * if the filesystem supports xattrs by looking at the
6486 * ops vector.
6487 */
6488 inode->i_fop = &btrfs_file_operations;
6489 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6490 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6491
6492 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6493 if (err)
6494 goto out_unlock_inode;
6495
6496 err = btrfs_update_inode(trans, root, inode);
6497 if (err)
6498 goto out_unlock_inode;
ad19db71 6499
a1b075d2 6500 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6501 if (err)
b0d5d10f 6502 goto out_unlock_inode;
43baa579 6503
43baa579 6504 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6505 unlock_new_inode(inode);
43baa579
FB
6506 d_instantiate(dentry, inode);
6507
39279cc3 6508out_unlock:
7ad85bb7 6509 btrfs_end_transaction(trans, root);
43baa579 6510 if (err && drop_inode_on_err) {
39279cc3
CM
6511 inode_dec_link_count(inode);
6512 iput(inode);
6513 }
c581afc8 6514 btrfs_balance_delayed_items(root);
b53d3f5d 6515 btrfs_btree_balance_dirty(root);
39279cc3 6516 return err;
b0d5d10f
CM
6517
6518out_unlock_inode:
6519 unlock_new_inode(inode);
6520 goto out_unlock;
6521
39279cc3
CM
6522}
6523
6524static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6525 struct dentry *dentry)
6526{
271dba45 6527 struct btrfs_trans_handle *trans = NULL;
39279cc3 6528 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6529 struct inode *inode = d_inode(old_dentry);
00e4e6b3 6530 u64 index;
39279cc3
CM
6531 int err;
6532 int drop_inode = 0;
6533
4a8be425
TH
6534 /* do not allow sys_link's with other subvols of the same device */
6535 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6536 return -EXDEV;
4a8be425 6537
f186373f 6538 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6539 return -EMLINK;
4a8be425 6540
3de4586c 6541 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6542 if (err)
6543 goto fail;
6544
a22285a6 6545 /*
7e6b6465 6546 * 2 items for inode and inode ref
a22285a6 6547 * 2 items for dir items
7e6b6465 6548 * 1 item for parent inode
a22285a6 6549 */
7e6b6465 6550 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6551 if (IS_ERR(trans)) {
6552 err = PTR_ERR(trans);
271dba45 6553 trans = NULL;
a22285a6
YZ
6554 goto fail;
6555 }
5f39d397 6556
67de1176
MX
6557 /* There are several dir indexes for this inode, clear the cache. */
6558 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6559 inc_nlink(inode);
0c4d2d95 6560 inode_inc_iversion(inode);
04b285f3 6561 inode->i_ctime = current_fs_time(inode->i_sb);
7de9c6ee 6562 ihold(inode);
e9976151 6563 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6564
a1b075d2 6565 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6566
a5719521 6567 if (err) {
54aa1f4d 6568 drop_inode = 1;
a5719521 6569 } else {
10d9f309 6570 struct dentry *parent = dentry->d_parent;
a5719521 6571 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6572 if (err)
6573 goto fail;
ef3b9af5
FM
6574 if (inode->i_nlink == 1) {
6575 /*
6576 * If new hard link count is 1, it's a file created
6577 * with open(2) O_TMPFILE flag.
6578 */
6579 err = btrfs_orphan_del(trans, inode);
6580 if (err)
6581 goto fail;
6582 }
08c422c2 6583 d_instantiate(dentry, inode);
6a912213 6584 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6585 }
39279cc3 6586
c581afc8 6587 btrfs_balance_delayed_items(root);
1832a6d5 6588fail:
271dba45
FM
6589 if (trans)
6590 btrfs_end_transaction(trans, root);
39279cc3
CM
6591 if (drop_inode) {
6592 inode_dec_link_count(inode);
6593 iput(inode);
6594 }
b53d3f5d 6595 btrfs_btree_balance_dirty(root);
39279cc3
CM
6596 return err;
6597}
6598
18bb1db3 6599static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6600{
b9d86667 6601 struct inode *inode = NULL;
39279cc3
CM
6602 struct btrfs_trans_handle *trans;
6603 struct btrfs_root *root = BTRFS_I(dir)->root;
6604 int err = 0;
6605 int drop_on_err = 0;
b9d86667 6606 u64 objectid = 0;
00e4e6b3 6607 u64 index = 0;
39279cc3 6608
9ed74f2d
JB
6609 /*
6610 * 2 items for inode and ref
6611 * 2 items for dir items
6612 * 1 for xattr if selinux is on
6613 */
a22285a6
YZ
6614 trans = btrfs_start_transaction(root, 5);
6615 if (IS_ERR(trans))
6616 return PTR_ERR(trans);
39279cc3 6617
581bb050
LZ
6618 err = btrfs_find_free_ino(root, &objectid);
6619 if (err)
6620 goto out_fail;
6621
aec7477b 6622 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6623 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6624 S_IFDIR | mode, &index);
39279cc3
CM
6625 if (IS_ERR(inode)) {
6626 err = PTR_ERR(inode);
6627 goto out_fail;
6628 }
5f39d397 6629
39279cc3 6630 drop_on_err = 1;
b0d5d10f
CM
6631 /* these must be set before we unlock the inode */
6632 inode->i_op = &btrfs_dir_inode_operations;
6633 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6634
2a7dba39 6635 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6636 if (err)
b0d5d10f 6637 goto out_fail_inode;
39279cc3 6638
dbe674a9 6639 btrfs_i_size_write(inode, 0);
39279cc3
CM
6640 err = btrfs_update_inode(trans, root, inode);
6641 if (err)
b0d5d10f 6642 goto out_fail_inode;
5f39d397 6643
a1b075d2
JB
6644 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6645 dentry->d_name.len, 0, index);
39279cc3 6646 if (err)
b0d5d10f 6647 goto out_fail_inode;
5f39d397 6648
39279cc3 6649 d_instantiate(dentry, inode);
b0d5d10f
CM
6650 /*
6651 * mkdir is special. We're unlocking after we call d_instantiate
6652 * to avoid a race with nfsd calling d_instantiate.
6653 */
6654 unlock_new_inode(inode);
39279cc3 6655 drop_on_err = 0;
39279cc3
CM
6656
6657out_fail:
7ad85bb7 6658 btrfs_end_transaction(trans, root);
c7cfb8a5
WS
6659 if (drop_on_err) {
6660 inode_dec_link_count(inode);
39279cc3 6661 iput(inode);
c7cfb8a5 6662 }
c581afc8 6663 btrfs_balance_delayed_items(root);
b53d3f5d 6664 btrfs_btree_balance_dirty(root);
39279cc3 6665 return err;
b0d5d10f
CM
6666
6667out_fail_inode:
6668 unlock_new_inode(inode);
6669 goto out_fail;
39279cc3
CM
6670}
6671
e6c4efd8
QW
6672/* Find next extent map of a given extent map, caller needs to ensure locks */
6673static struct extent_map *next_extent_map(struct extent_map *em)
6674{
6675 struct rb_node *next;
6676
6677 next = rb_next(&em->rb_node);
6678 if (!next)
6679 return NULL;
6680 return container_of(next, struct extent_map, rb_node);
6681}
6682
6683static struct extent_map *prev_extent_map(struct extent_map *em)
6684{
6685 struct rb_node *prev;
6686
6687 prev = rb_prev(&em->rb_node);
6688 if (!prev)
6689 return NULL;
6690 return container_of(prev, struct extent_map, rb_node);
6691}
6692
d352ac68 6693/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6694 * the existing extent is the nearest extent to map_start,
d352ac68 6695 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6696 * the best fitted new extent into the tree.
d352ac68 6697 */
3b951516
CM
6698static int merge_extent_mapping(struct extent_map_tree *em_tree,
6699 struct extent_map *existing,
e6dcd2dc 6700 struct extent_map *em,
51f395ad 6701 u64 map_start)
3b951516 6702{
e6c4efd8
QW
6703 struct extent_map *prev;
6704 struct extent_map *next;
6705 u64 start;
6706 u64 end;
3b951516 6707 u64 start_diff;
3b951516 6708
e6dcd2dc 6709 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6710
6711 if (existing->start > map_start) {
6712 next = existing;
6713 prev = prev_extent_map(next);
6714 } else {
6715 prev = existing;
6716 next = next_extent_map(prev);
6717 }
6718
6719 start = prev ? extent_map_end(prev) : em->start;
6720 start = max_t(u64, start, em->start);
6721 end = next ? next->start : extent_map_end(em);
6722 end = min_t(u64, end, extent_map_end(em));
6723 start_diff = start - em->start;
6724 em->start = start;
6725 em->len = end - start;
c8b97818
CM
6726 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6727 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6728 em->block_start += start_diff;
c8b97818
CM
6729 em->block_len -= start_diff;
6730 }
09a2a8f9 6731 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6732}
6733
c8b97818 6734static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6735 struct page *page,
c8b97818
CM
6736 size_t pg_offset, u64 extent_offset,
6737 struct btrfs_file_extent_item *item)
6738{
6739 int ret;
6740 struct extent_buffer *leaf = path->nodes[0];
6741 char *tmp;
6742 size_t max_size;
6743 unsigned long inline_size;
6744 unsigned long ptr;
261507a0 6745 int compress_type;
c8b97818
CM
6746
6747 WARN_ON(pg_offset != 0);
261507a0 6748 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6749 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6750 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6751 btrfs_item_nr(path->slots[0]));
c8b97818 6752 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6753 if (!tmp)
6754 return -ENOMEM;
c8b97818
CM
6755 ptr = btrfs_file_extent_inline_start(item);
6756
6757 read_extent_buffer(leaf, tmp, ptr, inline_size);
6758
09cbfeaf 6759 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6760 ret = btrfs_decompress(compress_type, tmp, page,
6761 extent_offset, inline_size, max_size);
c8b97818 6762 kfree(tmp);
166ae5a4 6763 return ret;
c8b97818
CM
6764}
6765
d352ac68
CM
6766/*
6767 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6768 * the ugly parts come from merging extents from the disk with the in-ram
6769 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6770 * where the in-ram extents might be locked pending data=ordered completion.
6771 *
6772 * This also copies inline extents directly into the page.
6773 */
d397712b 6774
a52d9a80 6775struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6776 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6777 int create)
6778{
6779 int ret;
6780 int err = 0;
a52d9a80
CM
6781 u64 extent_start = 0;
6782 u64 extent_end = 0;
33345d01 6783 u64 objectid = btrfs_ino(inode);
a52d9a80 6784 u32 found_type;
f421950f 6785 struct btrfs_path *path = NULL;
a52d9a80
CM
6786 struct btrfs_root *root = BTRFS_I(inode)->root;
6787 struct btrfs_file_extent_item *item;
5f39d397
CM
6788 struct extent_buffer *leaf;
6789 struct btrfs_key found_key;
a52d9a80
CM
6790 struct extent_map *em = NULL;
6791 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6792 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6793 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6794 const bool new_inline = !page || create;
a52d9a80 6795
a52d9a80 6796again:
890871be 6797 read_lock(&em_tree->lock);
d1310b2e 6798 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6799 if (em)
6800 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6801 read_unlock(&em_tree->lock);
d1310b2e 6802
a52d9a80 6803 if (em) {
e1c4b745
CM
6804 if (em->start > start || em->start + em->len <= start)
6805 free_extent_map(em);
6806 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6807 free_extent_map(em);
6808 else
6809 goto out;
a52d9a80 6810 }
172ddd60 6811 em = alloc_extent_map();
a52d9a80 6812 if (!em) {
d1310b2e
CM
6813 err = -ENOMEM;
6814 goto out;
a52d9a80 6815 }
e6dcd2dc 6816 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6817 em->start = EXTENT_MAP_HOLE;
445a6944 6818 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6819 em->len = (u64)-1;
c8b97818 6820 em->block_len = (u64)-1;
f421950f
CM
6821
6822 if (!path) {
6823 path = btrfs_alloc_path();
026fd317
JB
6824 if (!path) {
6825 err = -ENOMEM;
6826 goto out;
6827 }
6828 /*
6829 * Chances are we'll be called again, so go ahead and do
6830 * readahead
6831 */
e4058b54 6832 path->reada = READA_FORWARD;
f421950f
CM
6833 }
6834
179e29e4
CM
6835 ret = btrfs_lookup_file_extent(trans, root, path,
6836 objectid, start, trans != NULL);
a52d9a80
CM
6837 if (ret < 0) {
6838 err = ret;
6839 goto out;
6840 }
6841
6842 if (ret != 0) {
6843 if (path->slots[0] == 0)
6844 goto not_found;
6845 path->slots[0]--;
6846 }
6847
5f39d397
CM
6848 leaf = path->nodes[0];
6849 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6850 struct btrfs_file_extent_item);
a52d9a80 6851 /* are we inside the extent that was found? */
5f39d397 6852 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6853 found_type = found_key.type;
5f39d397 6854 if (found_key.objectid != objectid ||
a52d9a80 6855 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6856 /*
6857 * If we backup past the first extent we want to move forward
6858 * and see if there is an extent in front of us, otherwise we'll
6859 * say there is a hole for our whole search range which can
6860 * cause problems.
6861 */
6862 extent_end = start;
6863 goto next;
a52d9a80
CM
6864 }
6865
5f39d397
CM
6866 found_type = btrfs_file_extent_type(leaf, item);
6867 extent_start = found_key.offset;
d899e052
YZ
6868 if (found_type == BTRFS_FILE_EXTENT_REG ||
6869 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6870 extent_end = extent_start +
db94535d 6871 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6872 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6873 size_t size;
514ac8ad 6874 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6875 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6876 }
25a50341 6877next:
9036c102
YZ
6878 if (start >= extent_end) {
6879 path->slots[0]++;
6880 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6881 ret = btrfs_next_leaf(root, path);
6882 if (ret < 0) {
6883 err = ret;
6884 goto out;
a52d9a80 6885 }
9036c102
YZ
6886 if (ret > 0)
6887 goto not_found;
6888 leaf = path->nodes[0];
a52d9a80 6889 }
9036c102
YZ
6890 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6891 if (found_key.objectid != objectid ||
6892 found_key.type != BTRFS_EXTENT_DATA_KEY)
6893 goto not_found;
6894 if (start + len <= found_key.offset)
6895 goto not_found;
e2eca69d
WS
6896 if (start > found_key.offset)
6897 goto next;
9036c102 6898 em->start = start;
70c8a91c 6899 em->orig_start = start;
9036c102
YZ
6900 em->len = found_key.offset - start;
6901 goto not_found_em;
6902 }
6903
7ffbb598
FM
6904 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6905
d899e052
YZ
6906 if (found_type == BTRFS_FILE_EXTENT_REG ||
6907 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6908 goto insert;
6909 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6910 unsigned long ptr;
a52d9a80 6911 char *map;
3326d1b0
CM
6912 size_t size;
6913 size_t extent_offset;
6914 size_t copy_size;
a52d9a80 6915
7ffbb598 6916 if (new_inline)
689f9346 6917 goto out;
5f39d397 6918
514ac8ad 6919 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6920 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6921 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6922 size - extent_offset);
3326d1b0 6923 em->start = extent_start + extent_offset;
fda2832f 6924 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6925 em->orig_block_len = em->len;
70c8a91c 6926 em->orig_start = em->start;
689f9346 6927 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6928 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6929 if (btrfs_file_extent_compression(leaf, item) !=
6930 BTRFS_COMPRESS_NONE) {
e40da0e5 6931 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6932 extent_offset, item);
166ae5a4
ZB
6933 if (ret) {
6934 err = ret;
6935 goto out;
6936 }
c8b97818
CM
6937 } else {
6938 map = kmap(page);
6939 read_extent_buffer(leaf, map + pg_offset, ptr,
6940 copy_size);
09cbfeaf 6941 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6942 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6943 PAGE_SIZE - pg_offset -
93c82d57
CM
6944 copy_size);
6945 }
c8b97818
CM
6946 kunmap(page);
6947 }
179e29e4
CM
6948 flush_dcache_page(page);
6949 } else if (create && PageUptodate(page)) {
6bf7e080 6950 BUG();
179e29e4
CM
6951 if (!trans) {
6952 kunmap(page);
6953 free_extent_map(em);
6954 em = NULL;
ff5714cc 6955
b3b4aa74 6956 btrfs_release_path(path);
7a7eaa40 6957 trans = btrfs_join_transaction(root);
ff5714cc 6958
3612b495
TI
6959 if (IS_ERR(trans))
6960 return ERR_CAST(trans);
179e29e4
CM
6961 goto again;
6962 }
c8b97818 6963 map = kmap(page);
70dec807 6964 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6965 copy_size);
c8b97818 6966 kunmap(page);
179e29e4 6967 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6968 }
d1310b2e 6969 set_extent_uptodate(io_tree, em->start,
507903b8 6970 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6971 goto insert;
a52d9a80
CM
6972 }
6973not_found:
6974 em->start = start;
70c8a91c 6975 em->orig_start = start;
d1310b2e 6976 em->len = len;
a52d9a80 6977not_found_em:
5f39d397 6978 em->block_start = EXTENT_MAP_HOLE;
9036c102 6979 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6980insert:
b3b4aa74 6981 btrfs_release_path(path);
d1310b2e 6982 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6983 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6984 em->start, em->len, start, len);
a52d9a80
CM
6985 err = -EIO;
6986 goto out;
6987 }
d1310b2e
CM
6988
6989 err = 0;
890871be 6990 write_lock(&em_tree->lock);
09a2a8f9 6991 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6992 /* it is possible that someone inserted the extent into the tree
6993 * while we had the lock dropped. It is also possible that
6994 * an overlapping map exists in the tree
6995 */
a52d9a80 6996 if (ret == -EEXIST) {
3b951516 6997 struct extent_map *existing;
e6dcd2dc
CM
6998
6999 ret = 0;
7000
e6c4efd8
QW
7001 existing = search_extent_mapping(em_tree, start, len);
7002 /*
7003 * existing will always be non-NULL, since there must be
7004 * extent causing the -EEXIST.
7005 */
8dff9c85
CM
7006 if (existing->start == em->start &&
7007 extent_map_end(existing) == extent_map_end(em) &&
7008 em->block_start == existing->block_start) {
7009 /*
7010 * these two extents are the same, it happens
7011 * with inlines especially
7012 */
7013 free_extent_map(em);
7014 em = existing;
7015 err = 0;
7016
7017 } else if (start >= extent_map_end(existing) ||
32be3a1a 7018 start <= existing->start) {
e6c4efd8
QW
7019 /*
7020 * The existing extent map is the one nearest to
7021 * the [start, start + len) range which overlaps
7022 */
7023 err = merge_extent_mapping(em_tree, existing,
7024 em, start);
e1c4b745 7025 free_extent_map(existing);
e6c4efd8 7026 if (err) {
3b951516
CM
7027 free_extent_map(em);
7028 em = NULL;
7029 }
7030 } else {
7031 free_extent_map(em);
7032 em = existing;
e6dcd2dc 7033 err = 0;
a52d9a80 7034 }
a52d9a80 7035 }
890871be 7036 write_unlock(&em_tree->lock);
a52d9a80 7037out:
1abe9b8a 7038
4cd8587c 7039 trace_btrfs_get_extent(root, em);
1abe9b8a 7040
527afb44 7041 btrfs_free_path(path);
a52d9a80
CM
7042 if (trans) {
7043 ret = btrfs_end_transaction(trans, root);
d397712b 7044 if (!err)
a52d9a80
CM
7045 err = ret;
7046 }
a52d9a80
CM
7047 if (err) {
7048 free_extent_map(em);
a52d9a80
CM
7049 return ERR_PTR(err);
7050 }
79787eaa 7051 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7052 return em;
7053}
7054
ec29ed5b
CM
7055struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7056 size_t pg_offset, u64 start, u64 len,
7057 int create)
7058{
7059 struct extent_map *em;
7060 struct extent_map *hole_em = NULL;
7061 u64 range_start = start;
7062 u64 end;
7063 u64 found;
7064 u64 found_end;
7065 int err = 0;
7066
7067 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7068 if (IS_ERR(em))
7069 return em;
7070 if (em) {
7071 /*
f9e4fb53
LB
7072 * if our em maps to
7073 * - a hole or
7074 * - a pre-alloc extent,
7075 * there might actually be delalloc bytes behind it.
ec29ed5b 7076 */
f9e4fb53
LB
7077 if (em->block_start != EXTENT_MAP_HOLE &&
7078 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
7079 return em;
7080 else
7081 hole_em = em;
7082 }
7083
7084 /* check to see if we've wrapped (len == -1 or similar) */
7085 end = start + len;
7086 if (end < start)
7087 end = (u64)-1;
7088 else
7089 end -= 1;
7090
7091 em = NULL;
7092
7093 /* ok, we didn't find anything, lets look for delalloc */
7094 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7095 end, len, EXTENT_DELALLOC, 1);
7096 found_end = range_start + found;
7097 if (found_end < range_start)
7098 found_end = (u64)-1;
7099
7100 /*
7101 * we didn't find anything useful, return
7102 * the original results from get_extent()
7103 */
7104 if (range_start > end || found_end <= start) {
7105 em = hole_em;
7106 hole_em = NULL;
7107 goto out;
7108 }
7109
7110 /* adjust the range_start to make sure it doesn't
7111 * go backwards from the start they passed in
7112 */
67871254 7113 range_start = max(start, range_start);
ec29ed5b
CM
7114 found = found_end - range_start;
7115
7116 if (found > 0) {
7117 u64 hole_start = start;
7118 u64 hole_len = len;
7119
172ddd60 7120 em = alloc_extent_map();
ec29ed5b
CM
7121 if (!em) {
7122 err = -ENOMEM;
7123 goto out;
7124 }
7125 /*
7126 * when btrfs_get_extent can't find anything it
7127 * returns one huge hole
7128 *
7129 * make sure what it found really fits our range, and
7130 * adjust to make sure it is based on the start from
7131 * the caller
7132 */
7133 if (hole_em) {
7134 u64 calc_end = extent_map_end(hole_em);
7135
7136 if (calc_end <= start || (hole_em->start > end)) {
7137 free_extent_map(hole_em);
7138 hole_em = NULL;
7139 } else {
7140 hole_start = max(hole_em->start, start);
7141 hole_len = calc_end - hole_start;
7142 }
7143 }
7144 em->bdev = NULL;
7145 if (hole_em && range_start > hole_start) {
7146 /* our hole starts before our delalloc, so we
7147 * have to return just the parts of the hole
7148 * that go until the delalloc starts
7149 */
7150 em->len = min(hole_len,
7151 range_start - hole_start);
7152 em->start = hole_start;
7153 em->orig_start = hole_start;
7154 /*
7155 * don't adjust block start at all,
7156 * it is fixed at EXTENT_MAP_HOLE
7157 */
7158 em->block_start = hole_em->block_start;
7159 em->block_len = hole_len;
f9e4fb53
LB
7160 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7161 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7162 } else {
7163 em->start = range_start;
7164 em->len = found;
7165 em->orig_start = range_start;
7166 em->block_start = EXTENT_MAP_DELALLOC;
7167 em->block_len = found;
7168 }
7169 } else if (hole_em) {
7170 return hole_em;
7171 }
7172out:
7173
7174 free_extent_map(hole_em);
7175 if (err) {
7176 free_extent_map(em);
7177 return ERR_PTR(err);
7178 }
7179 return em;
7180}
7181
5f9a8a51
FM
7182static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7183 const u64 start,
7184 const u64 len,
7185 const u64 orig_start,
7186 const u64 block_start,
7187 const u64 block_len,
7188 const u64 orig_block_len,
7189 const u64 ram_bytes,
7190 const int type)
7191{
7192 struct extent_map *em = NULL;
7193 int ret;
7194
7195 down_read(&BTRFS_I(inode)->dio_sem);
7196 if (type != BTRFS_ORDERED_NOCOW) {
7197 em = create_pinned_em(inode, start, len, orig_start,
7198 block_start, block_len, orig_block_len,
7199 ram_bytes, type);
7200 if (IS_ERR(em))
7201 goto out;
7202 }
7203 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7204 len, block_len, type);
7205 if (ret) {
7206 if (em) {
7207 free_extent_map(em);
7208 btrfs_drop_extent_cache(inode, start,
7209 start + len - 1, 0);
7210 }
7211 em = ERR_PTR(ret);
7212 }
7213 out:
7214 up_read(&BTRFS_I(inode)->dio_sem);
7215
7216 return em;
7217}
7218
4b46fce2
JB
7219static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7220 u64 start, u64 len)
7221{
7222 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7223 struct extent_map *em;
4b46fce2
JB
7224 struct btrfs_key ins;
7225 u64 alloc_hint;
7226 int ret;
4b46fce2 7227
4b46fce2 7228 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 7229 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
e570fd27 7230 alloc_hint, &ins, 1, 1);
00361589
JB
7231 if (ret)
7232 return ERR_PTR(ret);
4b46fce2 7233
5f9a8a51
FM
7234 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7235 ins.objectid, ins.offset, ins.offset,
7236 ins.offset, 0);
9cfa3e34 7237 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
5f9a8a51 7238 if (IS_ERR(em))
e570fd27 7239 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
de0ee0ed 7240
4b46fce2
JB
7241 return em;
7242}
7243
46bfbb5c
CM
7244/*
7245 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7246 * block must be cow'd
7247 */
00361589 7248noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7249 u64 *orig_start, u64 *orig_block_len,
7250 u64 *ram_bytes)
46bfbb5c 7251{
00361589 7252 struct btrfs_trans_handle *trans;
46bfbb5c
CM
7253 struct btrfs_path *path;
7254 int ret;
7255 struct extent_buffer *leaf;
7256 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7257 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7258 struct btrfs_file_extent_item *fi;
7259 struct btrfs_key key;
7260 u64 disk_bytenr;
7261 u64 backref_offset;
7262 u64 extent_end;
7263 u64 num_bytes;
7264 int slot;
7265 int found_type;
7ee9e440 7266 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7267
46bfbb5c
CM
7268 path = btrfs_alloc_path();
7269 if (!path)
7270 return -ENOMEM;
7271
00361589 7272 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
7273 offset, 0);
7274 if (ret < 0)
7275 goto out;
7276
7277 slot = path->slots[0];
7278 if (ret == 1) {
7279 if (slot == 0) {
7280 /* can't find the item, must cow */
7281 ret = 0;
7282 goto out;
7283 }
7284 slot--;
7285 }
7286 ret = 0;
7287 leaf = path->nodes[0];
7288 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 7289 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
7290 key.type != BTRFS_EXTENT_DATA_KEY) {
7291 /* not our file or wrong item type, must cow */
7292 goto out;
7293 }
7294
7295 if (key.offset > offset) {
7296 /* Wrong offset, must cow */
7297 goto out;
7298 }
7299
7300 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7301 found_type = btrfs_file_extent_type(leaf, fi);
7302 if (found_type != BTRFS_FILE_EXTENT_REG &&
7303 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7304 /* not a regular extent, must cow */
7305 goto out;
7306 }
7ee9e440
JB
7307
7308 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7309 goto out;
7310
e77751aa
MX
7311 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7312 if (extent_end <= offset)
7313 goto out;
7314
46bfbb5c 7315 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7316 if (disk_bytenr == 0)
7317 goto out;
7318
7319 if (btrfs_file_extent_compression(leaf, fi) ||
7320 btrfs_file_extent_encryption(leaf, fi) ||
7321 btrfs_file_extent_other_encoding(leaf, fi))
7322 goto out;
7323
46bfbb5c
CM
7324 backref_offset = btrfs_file_extent_offset(leaf, fi);
7325
7ee9e440
JB
7326 if (orig_start) {
7327 *orig_start = key.offset - backref_offset;
7328 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7329 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7330 }
eb384b55 7331
46bfbb5c
CM
7332 if (btrfs_extent_readonly(root, disk_bytenr))
7333 goto out;
7b2b7085
MX
7334
7335 num_bytes = min(offset + *len, extent_end) - offset;
7336 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7337 u64 range_end;
7338
7339 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7340 ret = test_range_bit(io_tree, offset, range_end,
7341 EXTENT_DELALLOC, 0, NULL);
7342 if (ret) {
7343 ret = -EAGAIN;
7344 goto out;
7345 }
7346 }
7347
1bda19eb 7348 btrfs_release_path(path);
46bfbb5c
CM
7349
7350 /*
7351 * look for other files referencing this extent, if we
7352 * find any we must cow
7353 */
00361589
JB
7354 trans = btrfs_join_transaction(root);
7355 if (IS_ERR(trans)) {
7356 ret = 0;
46bfbb5c 7357 goto out;
00361589
JB
7358 }
7359
7360 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7361 key.offset - backref_offset, disk_bytenr);
7362 btrfs_end_transaction(trans, root);
7363 if (ret) {
7364 ret = 0;
7365 goto out;
7366 }
46bfbb5c
CM
7367
7368 /*
7369 * adjust disk_bytenr and num_bytes to cover just the bytes
7370 * in this extent we are about to write. If there
7371 * are any csums in that range we have to cow in order
7372 * to keep the csums correct
7373 */
7374 disk_bytenr += backref_offset;
7375 disk_bytenr += offset - key.offset;
46bfbb5c
CM
7376 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7377 goto out;
7378 /*
7379 * all of the above have passed, it is safe to overwrite this extent
7380 * without cow
7381 */
eb384b55 7382 *len = num_bytes;
46bfbb5c
CM
7383 ret = 1;
7384out:
7385 btrfs_free_path(path);
7386 return ret;
7387}
7388
fc4adbff
AG
7389bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7390{
7391 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7392 int found = false;
7393 void **pagep = NULL;
7394 struct page *page = NULL;
7395 int start_idx;
7396 int end_idx;
7397
09cbfeaf 7398 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7399
7400 /*
7401 * end is the last byte in the last page. end == start is legal
7402 */
09cbfeaf 7403 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7404
7405 rcu_read_lock();
7406
7407 /* Most of the code in this while loop is lifted from
7408 * find_get_page. It's been modified to begin searching from a
7409 * page and return just the first page found in that range. If the
7410 * found idx is less than or equal to the end idx then we know that
7411 * a page exists. If no pages are found or if those pages are
7412 * outside of the range then we're fine (yay!) */
7413 while (page == NULL &&
7414 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7415 page = radix_tree_deref_slot(pagep);
7416 if (unlikely(!page))
7417 break;
7418
7419 if (radix_tree_exception(page)) {
809f9016
FM
7420 if (radix_tree_deref_retry(page)) {
7421 page = NULL;
fc4adbff 7422 continue;
809f9016 7423 }
fc4adbff
AG
7424 /*
7425 * Otherwise, shmem/tmpfs must be storing a swap entry
7426 * here as an exceptional entry: so return it without
7427 * attempting to raise page count.
7428 */
6fdef6d4 7429 page = NULL;
fc4adbff
AG
7430 break; /* TODO: Is this relevant for this use case? */
7431 }
7432
91405151
FM
7433 if (!page_cache_get_speculative(page)) {
7434 page = NULL;
fc4adbff 7435 continue;
91405151 7436 }
fc4adbff
AG
7437
7438 /*
7439 * Has the page moved?
7440 * This is part of the lockless pagecache protocol. See
7441 * include/linux/pagemap.h for details.
7442 */
7443 if (unlikely(page != *pagep)) {
09cbfeaf 7444 put_page(page);
fc4adbff
AG
7445 page = NULL;
7446 }
7447 }
7448
7449 if (page) {
7450 if (page->index <= end_idx)
7451 found = true;
09cbfeaf 7452 put_page(page);
fc4adbff
AG
7453 }
7454
7455 rcu_read_unlock();
7456 return found;
7457}
7458
eb838e73
JB
7459static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7460 struct extent_state **cached_state, int writing)
7461{
7462 struct btrfs_ordered_extent *ordered;
7463 int ret = 0;
7464
7465 while (1) {
7466 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7467 cached_state);
eb838e73
JB
7468 /*
7469 * We're concerned with the entire range that we're going to be
01327610 7470 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7471 * extents in this range.
7472 */
7473 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7474 lockend - lockstart + 1);
7475
7476 /*
7477 * We need to make sure there are no buffered pages in this
7478 * range either, we could have raced between the invalidate in
7479 * generic_file_direct_write and locking the extent. The
7480 * invalidate needs to happen so that reads after a write do not
7481 * get stale data.
7482 */
fc4adbff
AG
7483 if (!ordered &&
7484 (!writing ||
7485 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7486 break;
7487
7488 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7489 cached_state, GFP_NOFS);
7490
7491 if (ordered) {
ade77029
FM
7492 /*
7493 * If we are doing a DIO read and the ordered extent we
7494 * found is for a buffered write, we can not wait for it
7495 * to complete and retry, because if we do so we can
7496 * deadlock with concurrent buffered writes on page
7497 * locks. This happens only if our DIO read covers more
7498 * than one extent map, if at this point has already
7499 * created an ordered extent for a previous extent map
7500 * and locked its range in the inode's io tree, and a
7501 * concurrent write against that previous extent map's
7502 * range and this range started (we unlock the ranges
7503 * in the io tree only when the bios complete and
7504 * buffered writes always lock pages before attempting
7505 * to lock range in the io tree).
7506 */
7507 if (writing ||
7508 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7509 btrfs_start_ordered_extent(inode, ordered, 1);
7510 else
7511 ret = -ENOTBLK;
eb838e73
JB
7512 btrfs_put_ordered_extent(ordered);
7513 } else {
eb838e73 7514 /*
b850ae14
FM
7515 * We could trigger writeback for this range (and wait
7516 * for it to complete) and then invalidate the pages for
7517 * this range (through invalidate_inode_pages2_range()),
7518 * but that can lead us to a deadlock with a concurrent
7519 * call to readpages() (a buffered read or a defrag call
7520 * triggered a readahead) on a page lock due to an
7521 * ordered dio extent we created before but did not have
7522 * yet a corresponding bio submitted (whence it can not
7523 * complete), which makes readpages() wait for that
7524 * ordered extent to complete while holding a lock on
7525 * that page.
eb838e73 7526 */
b850ae14 7527 ret = -ENOTBLK;
eb838e73
JB
7528 }
7529
ade77029
FM
7530 if (ret)
7531 break;
7532
eb838e73
JB
7533 cond_resched();
7534 }
7535
7536 return ret;
7537}
7538
69ffb543
JB
7539static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7540 u64 len, u64 orig_start,
7541 u64 block_start, u64 block_len,
cc95bef6
JB
7542 u64 orig_block_len, u64 ram_bytes,
7543 int type)
69ffb543
JB
7544{
7545 struct extent_map_tree *em_tree;
7546 struct extent_map *em;
7547 struct btrfs_root *root = BTRFS_I(inode)->root;
7548 int ret;
7549
7550 em_tree = &BTRFS_I(inode)->extent_tree;
7551 em = alloc_extent_map();
7552 if (!em)
7553 return ERR_PTR(-ENOMEM);
7554
7555 em->start = start;
7556 em->orig_start = orig_start;
2ab28f32
JB
7557 em->mod_start = start;
7558 em->mod_len = len;
69ffb543
JB
7559 em->len = len;
7560 em->block_len = block_len;
7561 em->block_start = block_start;
7562 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7563 em->orig_block_len = orig_block_len;
cc95bef6 7564 em->ram_bytes = ram_bytes;
70c8a91c 7565 em->generation = -1;
69ffb543
JB
7566 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7567 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7568 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7569
7570 do {
7571 btrfs_drop_extent_cache(inode, em->start,
7572 em->start + em->len - 1, 0);
7573 write_lock(&em_tree->lock);
09a2a8f9 7574 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7575 write_unlock(&em_tree->lock);
7576 } while (ret == -EEXIST);
7577
7578 if (ret) {
7579 free_extent_map(em);
7580 return ERR_PTR(ret);
7581 }
7582
7583 return em;
7584}
7585
9c9464cc
FM
7586static void adjust_dio_outstanding_extents(struct inode *inode,
7587 struct btrfs_dio_data *dio_data,
7588 const u64 len)
7589{
7590 unsigned num_extents;
7591
7592 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7593 BTRFS_MAX_EXTENT_SIZE);
7594 /*
7595 * If we have an outstanding_extents count still set then we're
7596 * within our reservation, otherwise we need to adjust our inode
7597 * counter appropriately.
7598 */
7599 if (dio_data->outstanding_extents) {
7600 dio_data->outstanding_extents -= num_extents;
7601 } else {
7602 spin_lock(&BTRFS_I(inode)->lock);
7603 BTRFS_I(inode)->outstanding_extents += num_extents;
7604 spin_unlock(&BTRFS_I(inode)->lock);
7605 }
7606}
7607
4b46fce2
JB
7608static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7609 struct buffer_head *bh_result, int create)
7610{
7611 struct extent_map *em;
7612 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7613 struct extent_state *cached_state = NULL;
50745b0a 7614 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7615 u64 start = iblock << inode->i_blkbits;
eb838e73 7616 u64 lockstart, lockend;
4b46fce2 7617 u64 len = bh_result->b_size;
eb838e73 7618 int unlock_bits = EXTENT_LOCKED;
0934856d 7619 int ret = 0;
eb838e73 7620
172a5049 7621 if (create)
3266789f 7622 unlock_bits |= EXTENT_DIRTY;
172a5049 7623 else
c329861d 7624 len = min_t(u64, len, root->sectorsize);
eb838e73 7625
c329861d
JB
7626 lockstart = start;
7627 lockend = start + len - 1;
7628
e1cbbfa5
JB
7629 if (current->journal_info) {
7630 /*
7631 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7632 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7633 * confused.
7634 */
50745b0a 7635 dio_data = current->journal_info;
e1cbbfa5
JB
7636 current->journal_info = NULL;
7637 }
7638
eb838e73
JB
7639 /*
7640 * If this errors out it's because we couldn't invalidate pagecache for
7641 * this range and we need to fallback to buffered.
7642 */
9c9464cc
FM
7643 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7644 create)) {
7645 ret = -ENOTBLK;
7646 goto err;
7647 }
eb838e73 7648
4b46fce2 7649 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7650 if (IS_ERR(em)) {
7651 ret = PTR_ERR(em);
7652 goto unlock_err;
7653 }
4b46fce2
JB
7654
7655 /*
7656 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7657 * io. INLINE is special, and we could probably kludge it in here, but
7658 * it's still buffered so for safety lets just fall back to the generic
7659 * buffered path.
7660 *
7661 * For COMPRESSED we _have_ to read the entire extent in so we can
7662 * decompress it, so there will be buffering required no matter what we
7663 * do, so go ahead and fallback to buffered.
7664 *
01327610 7665 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7666 * to buffered IO. Don't blame me, this is the price we pay for using
7667 * the generic code.
7668 */
7669 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7670 em->block_start == EXTENT_MAP_INLINE) {
7671 free_extent_map(em);
eb838e73
JB
7672 ret = -ENOTBLK;
7673 goto unlock_err;
4b46fce2
JB
7674 }
7675
7676 /* Just a good old fashioned hole, return */
7677 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7678 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7679 free_extent_map(em);
eb838e73 7680 goto unlock_err;
4b46fce2
JB
7681 }
7682
7683 /*
7684 * We don't allocate a new extent in the following cases
7685 *
7686 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7687 * existing extent.
7688 * 2) The extent is marked as PREALLOC. We're good to go here and can
7689 * just use the extent.
7690 *
7691 */
46bfbb5c 7692 if (!create) {
eb838e73
JB
7693 len = min(len, em->len - (start - em->start));
7694 lockstart = start + len;
7695 goto unlock;
46bfbb5c 7696 }
4b46fce2
JB
7697
7698 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7699 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7700 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7701 int type;
eb384b55 7702 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7703
7704 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7705 type = BTRFS_ORDERED_PREALLOC;
7706 else
7707 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7708 len = min(len, em->len - (start - em->start));
4b46fce2 7709 block_start = em->block_start + (start - em->start);
46bfbb5c 7710
00361589 7711 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c
FM
7712 &orig_block_len, &ram_bytes) == 1 &&
7713 btrfs_inc_nocow_writers(root->fs_info, block_start)) {
5f9a8a51 7714 struct extent_map *em2;
0b901916 7715
5f9a8a51
FM
7716 em2 = btrfs_create_dio_extent(inode, start, len,
7717 orig_start, block_start,
7718 len, orig_block_len,
7719 ram_bytes, type);
f78c436c 7720 btrfs_dec_nocow_writers(root->fs_info, block_start);
69ffb543
JB
7721 if (type == BTRFS_ORDERED_PREALLOC) {
7722 free_extent_map(em);
5f9a8a51 7723 em = em2;
69ffb543 7724 }
5f9a8a51
FM
7725 if (em2 && IS_ERR(em2)) {
7726 ret = PTR_ERR(em2);
eb838e73 7727 goto unlock_err;
46bfbb5c
CM
7728 }
7729 goto unlock;
4b46fce2 7730 }
4b46fce2 7731 }
00361589 7732
46bfbb5c
CM
7733 /*
7734 * this will cow the extent, reset the len in case we changed
7735 * it above
7736 */
7737 len = bh_result->b_size;
70c8a91c
JB
7738 free_extent_map(em);
7739 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7740 if (IS_ERR(em)) {
7741 ret = PTR_ERR(em);
7742 goto unlock_err;
7743 }
46bfbb5c
CM
7744 len = min(len, em->len - (start - em->start));
7745unlock:
4b46fce2
JB
7746 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7747 inode->i_blkbits;
46bfbb5c 7748 bh_result->b_size = len;
4b46fce2
JB
7749 bh_result->b_bdev = em->bdev;
7750 set_buffer_mapped(bh_result);
c3473e83
JB
7751 if (create) {
7752 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7753 set_buffer_new(bh_result);
7754
7755 /*
7756 * Need to update the i_size under the extent lock so buffered
7757 * readers will get the updated i_size when we unlock.
7758 */
7759 if (start + len > i_size_read(inode))
7760 i_size_write(inode, start + len);
0934856d 7761
9c9464cc 7762 adjust_dio_outstanding_extents(inode, dio_data, len);
7cf5b976 7763 btrfs_free_reserved_data_space(inode, start, len);
50745b0a 7764 WARN_ON(dio_data->reserve < len);
7765 dio_data->reserve -= len;
f28a4928 7766 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7767 current->journal_info = dio_data;
c3473e83 7768 }
4b46fce2 7769
eb838e73
JB
7770 /*
7771 * In the case of write we need to clear and unlock the entire range,
7772 * in the case of read we need to unlock only the end area that we
7773 * aren't using if there is any left over space.
7774 */
24c03fa5 7775 if (lockstart < lockend) {
0934856d
MX
7776 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7777 lockend, unlock_bits, 1, 0,
7778 &cached_state, GFP_NOFS);
24c03fa5 7779 } else {
eb838e73 7780 free_extent_state(cached_state);
24c03fa5 7781 }
eb838e73 7782
4b46fce2
JB
7783 free_extent_map(em);
7784
7785 return 0;
eb838e73
JB
7786
7787unlock_err:
eb838e73
JB
7788 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7789 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7790err:
50745b0a 7791 if (dio_data)
7792 current->journal_info = dio_data;
9c9464cc
FM
7793 /*
7794 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7795 * write less data then expected, so that we don't underflow our inode's
7796 * outstanding extents counter.
7797 */
7798 if (create && dio_data)
7799 adjust_dio_outstanding_extents(inode, dio_data, len);
7800
eb838e73 7801 return ret;
4b46fce2
JB
7802}
7803
8b110e39
MX
7804static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7805 int rw, int mirror_num)
7806{
7807 struct btrfs_root *root = BTRFS_I(inode)->root;
7808 int ret;
7809
7810 BUG_ON(rw & REQ_WRITE);
7811
7812 bio_get(bio);
7813
7814 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7815 BTRFS_WQ_ENDIO_DIO_REPAIR);
7816 if (ret)
7817 goto err;
7818
7819 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7820err:
7821 bio_put(bio);
7822 return ret;
7823}
7824
7825static int btrfs_check_dio_repairable(struct inode *inode,
7826 struct bio *failed_bio,
7827 struct io_failure_record *failrec,
7828 int failed_mirror)
7829{
7830 int num_copies;
7831
7832 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7833 failrec->logical, failrec->len);
7834 if (num_copies == 1) {
7835 /*
7836 * we only have a single copy of the data, so don't bother with
7837 * all the retry and error correction code that follows. no
7838 * matter what the error is, it is very likely to persist.
7839 */
7840 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7841 num_copies, failrec->this_mirror, failed_mirror);
7842 return 0;
7843 }
7844
7845 failrec->failed_mirror = failed_mirror;
7846 failrec->this_mirror++;
7847 if (failrec->this_mirror == failed_mirror)
7848 failrec->this_mirror++;
7849
7850 if (failrec->this_mirror > num_copies) {
7851 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7852 num_copies, failrec->this_mirror, failed_mirror);
7853 return 0;
7854 }
7855
7856 return 1;
7857}
7858
7859static int dio_read_error(struct inode *inode, struct bio *failed_bio,
2dabb324
CR
7860 struct page *page, unsigned int pgoff,
7861 u64 start, u64 end, int failed_mirror,
7862 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7863{
7864 struct io_failure_record *failrec;
7865 struct bio *bio;
7866 int isector;
7867 int read_mode;
7868 int ret;
7869
7870 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7871
7872 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7873 if (ret)
7874 return ret;
7875
7876 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7877 failed_mirror);
7878 if (!ret) {
7879 free_io_failure(inode, failrec);
7880 return -EIO;
7881 }
7882
2dabb324
CR
7883 if ((failed_bio->bi_vcnt > 1)
7884 || (failed_bio->bi_io_vec->bv_len
7885 > BTRFS_I(inode)->root->sectorsize))
8b110e39
MX
7886 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7887 else
7888 read_mode = READ_SYNC;
7889
7890 isector = start - btrfs_io_bio(failed_bio)->logical;
7891 isector >>= inode->i_sb->s_blocksize_bits;
7892 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7893 pgoff, isector, repair_endio, repair_arg);
8b110e39
MX
7894 if (!bio) {
7895 free_io_failure(inode, failrec);
7896 return -EIO;
7897 }
7898
7899 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7900 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7901 read_mode, failrec->this_mirror, failrec->in_validation);
7902
7903 ret = submit_dio_repair_bio(inode, bio, read_mode,
7904 failrec->this_mirror);
7905 if (ret) {
7906 free_io_failure(inode, failrec);
7907 bio_put(bio);
7908 }
7909
7910 return ret;
7911}
7912
7913struct btrfs_retry_complete {
7914 struct completion done;
7915 struct inode *inode;
7916 u64 start;
7917 int uptodate;
7918};
7919
4246a0b6 7920static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7921{
7922 struct btrfs_retry_complete *done = bio->bi_private;
2dabb324 7923 struct inode *inode;
8b110e39
MX
7924 struct bio_vec *bvec;
7925 int i;
7926
4246a0b6 7927 if (bio->bi_error)
8b110e39
MX
7928 goto end;
7929
2dabb324
CR
7930 ASSERT(bio->bi_vcnt == 1);
7931 inode = bio->bi_io_vec->bv_page->mapping->host;
7932 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7933
8b110e39
MX
7934 done->uptodate = 1;
7935 bio_for_each_segment_all(bvec, bio, i)
7936 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7937end:
7938 complete(&done->done);
7939 bio_put(bio);
7940}
7941
7942static int __btrfs_correct_data_nocsum(struct inode *inode,
7943 struct btrfs_io_bio *io_bio)
4b46fce2 7944{
2dabb324 7945 struct btrfs_fs_info *fs_info;
2c30c71b 7946 struct bio_vec *bvec;
8b110e39 7947 struct btrfs_retry_complete done;
4b46fce2 7948 u64 start;
2dabb324
CR
7949 unsigned int pgoff;
7950 u32 sectorsize;
7951 int nr_sectors;
2c30c71b 7952 int i;
c1dc0896 7953 int ret;
4b46fce2 7954
2dabb324
CR
7955 fs_info = BTRFS_I(inode)->root->fs_info;
7956 sectorsize = BTRFS_I(inode)->root->sectorsize;
7957
8b110e39
MX
7958 start = io_bio->logical;
7959 done.inode = inode;
7960
7961 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
7962 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7963 pgoff = bvec->bv_offset;
7964
7965next_block_or_try_again:
8b110e39
MX
7966 done.uptodate = 0;
7967 done.start = start;
7968 init_completion(&done.done);
7969
2dabb324
CR
7970 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7971 pgoff, start, start + sectorsize - 1,
7972 io_bio->mirror_num,
7973 btrfs_retry_endio_nocsum, &done);
8b110e39
MX
7974 if (ret)
7975 return ret;
7976
7977 wait_for_completion(&done.done);
7978
7979 if (!done.uptodate) {
7980 /* We might have another mirror, so try again */
2dabb324 7981 goto next_block_or_try_again;
8b110e39
MX
7982 }
7983
2dabb324
CR
7984 start += sectorsize;
7985
7986 if (nr_sectors--) {
7987 pgoff += sectorsize;
7988 goto next_block_or_try_again;
7989 }
8b110e39
MX
7990 }
7991
7992 return 0;
7993}
7994
4246a0b6 7995static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7996{
7997 struct btrfs_retry_complete *done = bio->bi_private;
7998 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2dabb324 7999 struct inode *inode;
8b110e39 8000 struct bio_vec *bvec;
2dabb324 8001 u64 start;
8b110e39
MX
8002 int uptodate;
8003 int ret;
8004 int i;
8005
4246a0b6 8006 if (bio->bi_error)
8b110e39
MX
8007 goto end;
8008
8009 uptodate = 1;
2dabb324
CR
8010
8011 start = done->start;
8012
8013 ASSERT(bio->bi_vcnt == 1);
8014 inode = bio->bi_io_vec->bv_page->mapping->host;
8015 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
8016
8b110e39
MX
8017 bio_for_each_segment_all(bvec, bio, i) {
8018 ret = __readpage_endio_check(done->inode, io_bio, i,
2dabb324
CR
8019 bvec->bv_page, bvec->bv_offset,
8020 done->start, bvec->bv_len);
8b110e39
MX
8021 if (!ret)
8022 clean_io_failure(done->inode, done->start,
2dabb324 8023 bvec->bv_page, bvec->bv_offset);
8b110e39
MX
8024 else
8025 uptodate = 0;
8026 }
8027
8028 done->uptodate = uptodate;
8029end:
8030 complete(&done->done);
8031 bio_put(bio);
8032}
8033
8034static int __btrfs_subio_endio_read(struct inode *inode,
8035 struct btrfs_io_bio *io_bio, int err)
8036{
2dabb324 8037 struct btrfs_fs_info *fs_info;
8b110e39
MX
8038 struct bio_vec *bvec;
8039 struct btrfs_retry_complete done;
8040 u64 start;
8041 u64 offset = 0;
2dabb324
CR
8042 u32 sectorsize;
8043 int nr_sectors;
8044 unsigned int pgoff;
8045 int csum_pos;
8b110e39
MX
8046 int i;
8047 int ret;
dc380aea 8048
2dabb324
CR
8049 fs_info = BTRFS_I(inode)->root->fs_info;
8050 sectorsize = BTRFS_I(inode)->root->sectorsize;
8051
8b110e39 8052 err = 0;
c1dc0896 8053 start = io_bio->logical;
8b110e39
MX
8054 done.inode = inode;
8055
c1dc0896 8056 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
8057 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8058
8059 pgoff = bvec->bv_offset;
8060next_block:
8061 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8062 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8063 bvec->bv_page, pgoff, start,
8064 sectorsize);
8b110e39
MX
8065 if (likely(!ret))
8066 goto next;
8067try_again:
8068 done.uptodate = 0;
8069 done.start = start;
8070 init_completion(&done.done);
8071
2dabb324
CR
8072 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8073 pgoff, start, start + sectorsize - 1,
8074 io_bio->mirror_num,
8075 btrfs_retry_endio, &done);
8b110e39
MX
8076 if (ret) {
8077 err = ret;
8078 goto next;
8079 }
8080
8081 wait_for_completion(&done.done);
8082
8083 if (!done.uptodate) {
8084 /* We might have another mirror, so try again */
8085 goto try_again;
8086 }
8087next:
2dabb324
CR
8088 offset += sectorsize;
8089 start += sectorsize;
8090
8091 ASSERT(nr_sectors);
8092
8093 if (--nr_sectors) {
8094 pgoff += sectorsize;
8095 goto next_block;
8096 }
2c30c71b 8097 }
c1dc0896
MX
8098
8099 return err;
8100}
8101
8b110e39
MX
8102static int btrfs_subio_endio_read(struct inode *inode,
8103 struct btrfs_io_bio *io_bio, int err)
8104{
8105 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8106
8107 if (skip_csum) {
8108 if (unlikely(err))
8109 return __btrfs_correct_data_nocsum(inode, io_bio);
8110 else
8111 return 0;
8112 } else {
8113 return __btrfs_subio_endio_read(inode, io_bio, err);
8114 }
8115}
8116
4246a0b6 8117static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8118{
8119 struct btrfs_dio_private *dip = bio->bi_private;
8120 struct inode *inode = dip->inode;
8121 struct bio *dio_bio;
8122 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 8123 int err = bio->bi_error;
c1dc0896 8124
8b110e39
MX
8125 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8126 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8127
4b46fce2 8128 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8129 dip->logical_offset + dip->bytes - 1);
9be3395b 8130 dio_bio = dip->dio_bio;
4b46fce2 8131
4b46fce2 8132 kfree(dip);
c0da7aa1 8133
1636d1d7 8134 dio_bio->bi_error = bio->bi_error;
4246a0b6 8135 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
8136
8137 if (io_bio->end_io)
8138 io_bio->end_io(io_bio, err);
9be3395b 8139 bio_put(bio);
4b46fce2
JB
8140}
8141
14543774
FM
8142static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8143 const u64 offset,
8144 const u64 bytes,
8145 const int uptodate)
4b46fce2 8146{
4b46fce2 8147 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 8148 struct btrfs_ordered_extent *ordered = NULL;
14543774
FM
8149 u64 ordered_offset = offset;
8150 u64 ordered_bytes = bytes;
4b46fce2
JB
8151 int ret;
8152
163cf09c
CM
8153again:
8154 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8155 &ordered_offset,
4246a0b6 8156 ordered_bytes,
14543774 8157 uptodate);
4b46fce2 8158 if (!ret)
163cf09c 8159 goto out_test;
4b46fce2 8160
9e0af237
LB
8161 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8162 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
8163 btrfs_queue_work(root->fs_info->endio_write_workers,
8164 &ordered->work);
163cf09c
CM
8165out_test:
8166 /*
8167 * our bio might span multiple ordered extents. If we haven't
8168 * completed the accounting for the whole dio, go back and try again
8169 */
14543774
FM
8170 if (ordered_offset < offset + bytes) {
8171 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8172 ordered = NULL;
163cf09c
CM
8173 goto again;
8174 }
14543774
FM
8175}
8176
8177static void btrfs_endio_direct_write(struct bio *bio)
8178{
8179 struct btrfs_dio_private *dip = bio->bi_private;
8180 struct bio *dio_bio = dip->dio_bio;
8181
8182 btrfs_endio_direct_write_update_ordered(dip->inode,
8183 dip->logical_offset,
8184 dip->bytes,
8185 !bio->bi_error);
4b46fce2 8186
4b46fce2 8187 kfree(dip);
c0da7aa1 8188
1636d1d7 8189 dio_bio->bi_error = bio->bi_error;
4246a0b6 8190 dio_end_io(dio_bio, bio->bi_error);
9be3395b 8191 bio_put(bio);
4b46fce2
JB
8192}
8193
eaf25d93
CM
8194static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8195 struct bio *bio, int mirror_num,
8196 unsigned long bio_flags, u64 offset)
8197{
8198 int ret;
8199 struct btrfs_root *root = BTRFS_I(inode)->root;
8200 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 8201 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8202 return 0;
8203}
8204
4246a0b6 8205static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8206{
8207 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8208 int err = bio->bi_error;
e65e1535 8209
8b110e39
MX
8210 if (err)
8211 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8212 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8213 btrfs_ino(dip->inode), bio->bi_rw,
8214 (unsigned long long)bio->bi_iter.bi_sector,
8215 bio->bi_iter.bi_size, err);
8216
8217 if (dip->subio_endio)
8218 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8219
8220 if (err) {
e65e1535
MX
8221 dip->errors = 1;
8222
8223 /*
8224 * before atomic variable goto zero, we must make sure
8225 * dip->errors is perceived to be set.
8226 */
4e857c58 8227 smp_mb__before_atomic();
e65e1535
MX
8228 }
8229
8230 /* if there are more bios still pending for this dio, just exit */
8231 if (!atomic_dec_and_test(&dip->pending_bios))
8232 goto out;
8233
9be3395b 8234 if (dip->errors) {
e65e1535 8235 bio_io_error(dip->orig_bio);
9be3395b 8236 } else {
4246a0b6
CH
8237 dip->dio_bio->bi_error = 0;
8238 bio_endio(dip->orig_bio);
e65e1535
MX
8239 }
8240out:
8241 bio_put(bio);
8242}
8243
8244static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8245 u64 first_sector, gfp_t gfp_flags)
8246{
da2f0f74 8247 struct bio *bio;
22365979 8248 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
da2f0f74
CM
8249 if (bio)
8250 bio_associate_current(bio);
8251 return bio;
e65e1535
MX
8252}
8253
c1dc0896
MX
8254static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8255 struct inode *inode,
8256 struct btrfs_dio_private *dip,
8257 struct bio *bio,
8258 u64 file_offset)
8259{
8260 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8261 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8262 int ret;
8263
8264 /*
8265 * We load all the csum data we need when we submit
8266 * the first bio to reduce the csum tree search and
8267 * contention.
8268 */
8269 if (dip->logical_offset == file_offset) {
8270 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8271 file_offset);
8272 if (ret)
8273 return ret;
8274 }
8275
8276 if (bio == dip->orig_bio)
8277 return 0;
8278
8279 file_offset -= dip->logical_offset;
8280 file_offset >>= inode->i_sb->s_blocksize_bits;
8281 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8282
8283 return 0;
8284}
8285
e65e1535
MX
8286static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8287 int rw, u64 file_offset, int skip_sum,
c329861d 8288 int async_submit)
e65e1535 8289{
facc8a22 8290 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
8291 int write = rw & REQ_WRITE;
8292 struct btrfs_root *root = BTRFS_I(inode)->root;
8293 int ret;
8294
b812ce28
JB
8295 if (async_submit)
8296 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8297
e65e1535 8298 bio_get(bio);
5fd02043
JB
8299
8300 if (!write) {
bfebd8b5
DS
8301 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8302 BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8303 if (ret)
8304 goto err;
8305 }
e65e1535 8306
1ae39938
JB
8307 if (skip_sum)
8308 goto map;
8309
8310 if (write && async_submit) {
e65e1535
MX
8311 ret = btrfs_wq_submit_bio(root->fs_info,
8312 inode, rw, bio, 0, 0,
8313 file_offset,
8314 __btrfs_submit_bio_start_direct_io,
8315 __btrfs_submit_bio_done);
8316 goto err;
1ae39938
JB
8317 } else if (write) {
8318 /*
8319 * If we aren't doing async submit, calculate the csum of the
8320 * bio now.
8321 */
8322 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8323 if (ret)
8324 goto err;
23ea8e5a 8325 } else {
c1dc0896
MX
8326 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8327 file_offset);
c2db1073
TI
8328 if (ret)
8329 goto err;
8330 }
1ae39938
JB
8331map:
8332 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
8333err:
8334 bio_put(bio);
8335 return ret;
8336}
8337
8338static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8339 int skip_sum)
8340{
8341 struct inode *inode = dip->inode;
8342 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
8343 struct bio *bio;
8344 struct bio *orig_bio = dip->orig_bio;
8345 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 8346 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
8347 u64 file_offset = dip->logical_offset;
8348 u64 submit_len = 0;
8349 u64 map_length;
5f4dc8fc 8350 u32 blocksize = root->sectorsize;
1ae39938 8351 int async_submit = 0;
5f4dc8fc
CR
8352 int nr_sectors;
8353 int ret;
8354 int i;
e65e1535 8355
4f024f37 8356 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8357 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535 8358 &map_length, NULL, 0);
7a5c3c9b 8359 if (ret)
e65e1535 8360 return -EIO;
facc8a22 8361
4f024f37 8362 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 8363 bio = orig_bio;
c1dc0896 8364 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8365 goto submit;
8366 }
8367
53b381b3 8368 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 8369 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8370 async_submit = 0;
8371 else
8372 async_submit = 1;
8373
02f57c7a
JB
8374 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8375 if (!bio)
8376 return -ENOMEM;
7a5c3c9b 8377
02f57c7a
JB
8378 bio->bi_private = dip;
8379 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8380 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
8381 atomic_inc(&dip->pending_bios);
8382
e65e1535 8383 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5f4dc8fc
CR
8384 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8385 i = 0;
8386next_block:
8387 if (unlikely(map_length < submit_len + blocksize ||
8388 bio_add_page(bio, bvec->bv_page, blocksize,
8389 bvec->bv_offset + (i * blocksize)) < blocksize)) {
e65e1535
MX
8390 /*
8391 * inc the count before we submit the bio so
8392 * we know the end IO handler won't happen before
8393 * we inc the count. Otherwise, the dip might get freed
8394 * before we're done setting it up
8395 */
8396 atomic_inc(&dip->pending_bios);
8397 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8398 file_offset, skip_sum,
c329861d 8399 async_submit);
e65e1535
MX
8400 if (ret) {
8401 bio_put(bio);
8402 atomic_dec(&dip->pending_bios);
8403 goto out_err;
8404 }
8405
e65e1535
MX
8406 start_sector += submit_len >> 9;
8407 file_offset += submit_len;
8408
8409 submit_len = 0;
e65e1535
MX
8410
8411 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8412 start_sector, GFP_NOFS);
8413 if (!bio)
8414 goto out_err;
8415 bio->bi_private = dip;
8416 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8417 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 8418
4f024f37 8419 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8420 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 8421 start_sector << 9,
e65e1535
MX
8422 &map_length, NULL, 0);
8423 if (ret) {
8424 bio_put(bio);
8425 goto out_err;
8426 }
5f4dc8fc
CR
8427
8428 goto next_block;
e65e1535 8429 } else {
5f4dc8fc
CR
8430 submit_len += blocksize;
8431 if (--nr_sectors) {
8432 i++;
8433 goto next_block;
8434 }
e65e1535
MX
8435 bvec++;
8436 }
8437 }
8438
02f57c7a 8439submit:
e65e1535 8440 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 8441 async_submit);
e65e1535
MX
8442 if (!ret)
8443 return 0;
8444
8445 bio_put(bio);
8446out_err:
8447 dip->errors = 1;
8448 /*
8449 * before atomic variable goto zero, we must
8450 * make sure dip->errors is perceived to be set.
8451 */
4e857c58 8452 smp_mb__before_atomic();
e65e1535
MX
8453 if (atomic_dec_and_test(&dip->pending_bios))
8454 bio_io_error(dip->orig_bio);
8455
8456 /* bio_end_io() will handle error, so we needn't return it */
8457 return 0;
8458}
8459
9be3395b
CM
8460static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8461 struct inode *inode, loff_t file_offset)
4b46fce2 8462{
61de718f
FM
8463 struct btrfs_dio_private *dip = NULL;
8464 struct bio *io_bio = NULL;
23ea8e5a 8465 struct btrfs_io_bio *btrfs_bio;
4b46fce2 8466 int skip_sum;
7b6d91da 8467 int write = rw & REQ_WRITE;
4b46fce2
JB
8468 int ret = 0;
8469
8470 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8471
9be3395b 8472 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
8473 if (!io_bio) {
8474 ret = -ENOMEM;
8475 goto free_ordered;
8476 }
8477
c1dc0896 8478 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8479 if (!dip) {
8480 ret = -ENOMEM;
61de718f 8481 goto free_ordered;
4b46fce2 8482 }
4b46fce2 8483
9be3395b 8484 dip->private = dio_bio->bi_private;
4b46fce2
JB
8485 dip->inode = inode;
8486 dip->logical_offset = file_offset;
4f024f37
KO
8487 dip->bytes = dio_bio->bi_iter.bi_size;
8488 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8489 io_bio->bi_private = dip;
9be3395b
CM
8490 dip->orig_bio = io_bio;
8491 dip->dio_bio = dio_bio;
e65e1535 8492 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8493 btrfs_bio = btrfs_io_bio(io_bio);
8494 btrfs_bio->logical = file_offset;
4b46fce2 8495
c1dc0896 8496 if (write) {
9be3395b 8497 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8498 } else {
9be3395b 8499 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8500 dip->subio_endio = btrfs_subio_endio_read;
8501 }
4b46fce2 8502
f28a4928
FM
8503 /*
8504 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8505 * even if we fail to submit a bio, because in such case we do the
8506 * corresponding error handling below and it must not be done a second
8507 * time by btrfs_direct_IO().
8508 */
8509 if (write) {
8510 struct btrfs_dio_data *dio_data = current->journal_info;
8511
8512 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8513 dip->bytes;
8514 dio_data->unsubmitted_oe_range_start =
8515 dio_data->unsubmitted_oe_range_end;
8516 }
8517
e65e1535
MX
8518 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8519 if (!ret)
eaf25d93 8520 return;
9be3395b 8521
23ea8e5a
MX
8522 if (btrfs_bio->end_io)
8523 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b 8524
4b46fce2
JB
8525free_ordered:
8526 /*
61de718f
FM
8527 * If we arrived here it means either we failed to submit the dip
8528 * or we either failed to clone the dio_bio or failed to allocate the
8529 * dip. If we cloned the dio_bio and allocated the dip, we can just
8530 * call bio_endio against our io_bio so that we get proper resource
8531 * cleanup if we fail to submit the dip, otherwise, we must do the
8532 * same as btrfs_endio_direct_[write|read] because we can't call these
8533 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8534 */
61de718f 8535 if (io_bio && dip) {
4246a0b6
CH
8536 io_bio->bi_error = -EIO;
8537 bio_endio(io_bio);
61de718f
FM
8538 /*
8539 * The end io callbacks free our dip, do the final put on io_bio
8540 * and all the cleanup and final put for dio_bio (through
8541 * dio_end_io()).
8542 */
8543 dip = NULL;
8544 io_bio = NULL;
8545 } else {
14543774
FM
8546 if (write)
8547 btrfs_endio_direct_write_update_ordered(inode,
8548 file_offset,
8549 dio_bio->bi_iter.bi_size,
8550 0);
8551 else
61de718f
FM
8552 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8553 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8554
4246a0b6 8555 dio_bio->bi_error = -EIO;
61de718f
FM
8556 /*
8557 * Releases and cleans up our dio_bio, no need to bio_put()
8558 * nor bio_endio()/bio_io_error() against dio_bio.
8559 */
8560 dio_end_io(dio_bio, ret);
4b46fce2 8561 }
61de718f
FM
8562 if (io_bio)
8563 bio_put(io_bio);
8564 kfree(dip);
4b46fce2
JB
8565}
8566
6f673763 8567static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
28060d5d 8568 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8569{
8570 int seg;
a1b75f7d 8571 int i;
5a5f79b5
CM
8572 unsigned blocksize_mask = root->sectorsize - 1;
8573 ssize_t retval = -EINVAL;
5a5f79b5
CM
8574
8575 if (offset & blocksize_mask)
8576 goto out;
8577
28060d5d
AV
8578 if (iov_iter_alignment(iter) & blocksize_mask)
8579 goto out;
a1b75f7d 8580
28060d5d 8581 /* If this is a write we don't need to check anymore */
6f673763 8582 if (iov_iter_rw(iter) == WRITE)
28060d5d
AV
8583 return 0;
8584 /*
8585 * Check to make sure we don't have duplicate iov_base's in this
8586 * iovec, if so return EINVAL, otherwise we'll get csum errors
8587 * when reading back.
8588 */
8589 for (seg = 0; seg < iter->nr_segs; seg++) {
8590 for (i = seg + 1; i < iter->nr_segs; i++) {
8591 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8592 goto out;
8593 }
5a5f79b5
CM
8594 }
8595 retval = 0;
8596out:
8597 return retval;
8598}
eb838e73 8599
c8b8e32d 8600static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8601{
4b46fce2
JB
8602 struct file *file = iocb->ki_filp;
8603 struct inode *inode = file->f_mapping->host;
50745b0a 8604 struct btrfs_root *root = BTRFS_I(inode)->root;
8605 struct btrfs_dio_data dio_data = { 0 };
c8b8e32d 8606 loff_t offset = iocb->ki_pos;
0934856d 8607 size_t count = 0;
2e60a51e 8608 int flags = 0;
38851cc1
MX
8609 bool wakeup = true;
8610 bool relock = false;
0934856d 8611 ssize_t ret;
4b46fce2 8612
6f673763 8613 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
5a5f79b5 8614 return 0;
3f7c579c 8615
fe0f07d0 8616 inode_dio_begin(inode);
4e857c58 8617 smp_mb__after_atomic();
38851cc1 8618
0e267c44 8619 /*
41bd9ca4
MX
8620 * The generic stuff only does filemap_write_and_wait_range, which
8621 * isn't enough if we've written compressed pages to this area, so
8622 * we need to flush the dirty pages again to make absolutely sure
8623 * that any outstanding dirty pages are on disk.
0e267c44 8624 */
a6cbcd4a 8625 count = iov_iter_count(iter);
41bd9ca4
MX
8626 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8627 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8628 filemap_fdatawrite_range(inode->i_mapping, offset,
8629 offset + count - 1);
0e267c44 8630
6f673763 8631 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8632 /*
8633 * If the write DIO is beyond the EOF, we need update
8634 * the isize, but it is protected by i_mutex. So we can
8635 * not unlock the i_mutex at this case.
8636 */
8637 if (offset + count <= inode->i_size) {
5955102c 8638 inode_unlock(inode);
38851cc1
MX
8639 relock = true;
8640 }
7cf5b976 8641 ret = btrfs_delalloc_reserve_space(inode, offset, count);
0934856d 8642 if (ret)
38851cc1 8643 goto out;
50745b0a 8644 dio_data.outstanding_extents = div64_u64(count +
e1cbbfa5
JB
8645 BTRFS_MAX_EXTENT_SIZE - 1,
8646 BTRFS_MAX_EXTENT_SIZE);
8647
8648 /*
8649 * We need to know how many extents we reserved so that we can
8650 * do the accounting properly if we go over the number we
8651 * originally calculated. Abuse current->journal_info for this.
8652 */
50745b0a 8653 dio_data.reserve = round_up(count, root->sectorsize);
f28a4928
FM
8654 dio_data.unsubmitted_oe_range_start = (u64)offset;
8655 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8656 current->journal_info = &dio_data;
ee39b432
DS
8657 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8658 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8659 inode_dio_end(inode);
38851cc1
MX
8660 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8661 wakeup = false;
0934856d
MX
8662 }
8663
17f8c842
OS
8664 ret = __blockdev_direct_IO(iocb, inode,
8665 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
c8b8e32d 8666 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8667 btrfs_submit_direct, flags);
6f673763 8668 if (iov_iter_rw(iter) == WRITE) {
e1cbbfa5 8669 current->journal_info = NULL;
ddba1bfc 8670 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8671 if (dio_data.reserve)
7cf5b976
QW
8672 btrfs_delalloc_release_space(inode, offset,
8673 dio_data.reserve);
f28a4928
FM
8674 /*
8675 * On error we might have left some ordered extents
8676 * without submitting corresponding bios for them, so
8677 * cleanup them up to avoid other tasks getting them
8678 * and waiting for them to complete forever.
8679 */
8680 if (dio_data.unsubmitted_oe_range_start <
8681 dio_data.unsubmitted_oe_range_end)
8682 btrfs_endio_direct_write_update_ordered(inode,
8683 dio_data.unsubmitted_oe_range_start,
8684 dio_data.unsubmitted_oe_range_end -
8685 dio_data.unsubmitted_oe_range_start,
8686 0);
ddba1bfc 8687 } else if (ret >= 0 && (size_t)ret < count)
7cf5b976
QW
8688 btrfs_delalloc_release_space(inode, offset,
8689 count - (size_t)ret);
0934856d 8690 }
38851cc1 8691out:
2e60a51e 8692 if (wakeup)
fe0f07d0 8693 inode_dio_end(inode);
38851cc1 8694 if (relock)
5955102c 8695 inode_lock(inode);
0934856d
MX
8696
8697 return ret;
16432985
CM
8698}
8699
05dadc09
TI
8700#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8701
1506fcc8
YS
8702static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8703 __u64 start, __u64 len)
8704{
05dadc09
TI
8705 int ret;
8706
8707 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8708 if (ret)
8709 return ret;
8710
ec29ed5b 8711 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8712}
8713
a52d9a80 8714int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8715{
d1310b2e
CM
8716 struct extent_io_tree *tree;
8717 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8718 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8719}
1832a6d5 8720
a52d9a80 8721static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8722{
d1310b2e 8723 struct extent_io_tree *tree;
be7bd730
JB
8724 struct inode *inode = page->mapping->host;
8725 int ret;
b888db2b
CM
8726
8727 if (current->flags & PF_MEMALLOC) {
8728 redirty_page_for_writepage(wbc, page);
8729 unlock_page(page);
8730 return 0;
8731 }
be7bd730
JB
8732
8733 /*
8734 * If we are under memory pressure we will call this directly from the
8735 * VM, we need to make sure we have the inode referenced for the ordered
8736 * extent. If not just return like we didn't do anything.
8737 */
8738 if (!igrab(inode)) {
8739 redirty_page_for_writepage(wbc, page);
8740 return AOP_WRITEPAGE_ACTIVATE;
8741 }
d1310b2e 8742 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8743 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8744 btrfs_add_delayed_iput(inode);
8745 return ret;
9ebefb18
CM
8746}
8747
48a3b636
ES
8748static int btrfs_writepages(struct address_space *mapping,
8749 struct writeback_control *wbc)
b293f02e 8750{
d1310b2e 8751 struct extent_io_tree *tree;
771ed689 8752
d1310b2e 8753 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8754 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8755}
8756
3ab2fb5a
CM
8757static int
8758btrfs_readpages(struct file *file, struct address_space *mapping,
8759 struct list_head *pages, unsigned nr_pages)
8760{
d1310b2e
CM
8761 struct extent_io_tree *tree;
8762 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8763 return extent_readpages(tree, mapping, pages, nr_pages,
8764 btrfs_get_extent);
8765}
e6dcd2dc 8766static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8767{
d1310b2e
CM
8768 struct extent_io_tree *tree;
8769 struct extent_map_tree *map;
a52d9a80 8770 int ret;
8c2383c3 8771
d1310b2e
CM
8772 tree = &BTRFS_I(page->mapping->host)->io_tree;
8773 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8774 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8775 if (ret == 1) {
8776 ClearPagePrivate(page);
8777 set_page_private(page, 0);
09cbfeaf 8778 put_page(page);
39279cc3 8779 }
a52d9a80 8780 return ret;
39279cc3
CM
8781}
8782
e6dcd2dc
CM
8783static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8784{
98509cfc
CM
8785 if (PageWriteback(page) || PageDirty(page))
8786 return 0;
b335b003 8787 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8788}
8789
d47992f8
LC
8790static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8791 unsigned int length)
39279cc3 8792{
5fd02043 8793 struct inode *inode = page->mapping->host;
d1310b2e 8794 struct extent_io_tree *tree;
e6dcd2dc 8795 struct btrfs_ordered_extent *ordered;
2ac55d41 8796 struct extent_state *cached_state = NULL;
e6dcd2dc 8797 u64 page_start = page_offset(page);
09cbfeaf 8798 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8799 u64 start;
8800 u64 end;
131e404a 8801 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8802
8b62b72b
CM
8803 /*
8804 * we have the page locked, so new writeback can't start,
8805 * and the dirty bit won't be cleared while we are here.
8806 *
8807 * Wait for IO on this page so that we can safely clear
8808 * the PagePrivate2 bit and do ordered accounting
8809 */
e6dcd2dc 8810 wait_on_page_writeback(page);
8b62b72b 8811
5fd02043 8812 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8813 if (offset) {
8814 btrfs_releasepage(page, GFP_NOFS);
8815 return;
8816 }
131e404a
FDBM
8817
8818 if (!inode_evicting)
ff13db41 8819 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8820again:
8821 start = page_start;
8822 ordered = btrfs_lookup_ordered_range(inode, start,
8823 page_end - start + 1);
e6dcd2dc 8824 if (ordered) {
dbfdb6d1 8825 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8826 /*
8827 * IO on this page will never be started, so we need
8828 * to account for any ordered extents now
8829 */
131e404a 8830 if (!inode_evicting)
dbfdb6d1 8831 clear_extent_bit(tree, start, end,
131e404a
FDBM
8832 EXTENT_DIRTY | EXTENT_DELALLOC |
8833 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8834 EXTENT_DEFRAG, 1, 0, &cached_state,
8835 GFP_NOFS);
8b62b72b
CM
8836 /*
8837 * whoever cleared the private bit is responsible
8838 * for the finish_ordered_io
8839 */
77cef2ec
JB
8840 if (TestClearPagePrivate2(page)) {
8841 struct btrfs_ordered_inode_tree *tree;
8842 u64 new_len;
8843
8844 tree = &BTRFS_I(inode)->ordered_tree;
8845
8846 spin_lock_irq(&tree->lock);
8847 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8848 new_len = start - ordered->file_offset;
77cef2ec
JB
8849 if (new_len < ordered->truncated_len)
8850 ordered->truncated_len = new_len;
8851 spin_unlock_irq(&tree->lock);
8852
8853 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8854 start,
8855 end - start + 1, 1))
77cef2ec 8856 btrfs_finish_ordered_io(ordered);
8b62b72b 8857 }
e6dcd2dc 8858 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8859 if (!inode_evicting) {
8860 cached_state = NULL;
dbfdb6d1 8861 lock_extent_bits(tree, start, end,
131e404a
FDBM
8862 &cached_state);
8863 }
dbfdb6d1
CR
8864
8865 start = end + 1;
8866 if (start < page_end)
8867 goto again;
131e404a
FDBM
8868 }
8869
b9d0b389
QW
8870 /*
8871 * Qgroup reserved space handler
8872 * Page here will be either
8873 * 1) Already written to disk
8874 * In this case, its reserved space is released from data rsv map
8875 * and will be freed by delayed_ref handler finally.
8876 * So even we call qgroup_free_data(), it won't decrease reserved
8877 * space.
8878 * 2) Not written to disk
8879 * This means the reserved space should be freed here.
8880 */
09cbfeaf 8881 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
131e404a
FDBM
8882 if (!inode_evicting) {
8883 clear_extent_bit(tree, page_start, page_end,
8884 EXTENT_LOCKED | EXTENT_DIRTY |
8885 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8886 EXTENT_DEFRAG, 1, 1,
8887 &cached_state, GFP_NOFS);
8888
8889 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8890 }
e6dcd2dc 8891
4a096752 8892 ClearPageChecked(page);
9ad6b7bc 8893 if (PagePrivate(page)) {
9ad6b7bc
CM
8894 ClearPagePrivate(page);
8895 set_page_private(page, 0);
09cbfeaf 8896 put_page(page);
9ad6b7bc 8897 }
39279cc3
CM
8898}
8899
9ebefb18
CM
8900/*
8901 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8902 * called from a page fault handler when a page is first dirtied. Hence we must
8903 * be careful to check for EOF conditions here. We set the page up correctly
8904 * for a written page which means we get ENOSPC checking when writing into
8905 * holes and correct delalloc and unwritten extent mapping on filesystems that
8906 * support these features.
8907 *
8908 * We are not allowed to take the i_mutex here so we have to play games to
8909 * protect against truncate races as the page could now be beyond EOF. Because
8910 * vmtruncate() writes the inode size before removing pages, once we have the
8911 * page lock we can determine safely if the page is beyond EOF. If it is not
8912 * beyond EOF, then the page is guaranteed safe against truncation until we
8913 * unlock the page.
8914 */
c2ec175c 8915int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8916{
c2ec175c 8917 struct page *page = vmf->page;
496ad9aa 8918 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8919 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8920 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8921 struct btrfs_ordered_extent *ordered;
2ac55d41 8922 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8923 char *kaddr;
8924 unsigned long zero_start;
9ebefb18 8925 loff_t size;
1832a6d5 8926 int ret;
9998eb70 8927 int reserved = 0;
d0b7da88 8928 u64 reserved_space;
a52d9a80 8929 u64 page_start;
e6dcd2dc 8930 u64 page_end;
d0b7da88
CR
8931 u64 end;
8932
09cbfeaf 8933 reserved_space = PAGE_SIZE;
9ebefb18 8934
b2b5ef5c 8935 sb_start_pagefault(inode->i_sb);
df480633 8936 page_start = page_offset(page);
09cbfeaf 8937 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8938 end = page_end;
df480633 8939
d0b7da88
CR
8940 /*
8941 * Reserving delalloc space after obtaining the page lock can lead to
8942 * deadlock. For example, if a dirty page is locked by this function
8943 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8944 * dirty page write out, then the btrfs_writepage() function could
8945 * end up waiting indefinitely to get a lock on the page currently
8946 * being processed by btrfs_page_mkwrite() function.
8947 */
7cf5b976 8948 ret = btrfs_delalloc_reserve_space(inode, page_start,
d0b7da88 8949 reserved_space);
9998eb70 8950 if (!ret) {
e41f941a 8951 ret = file_update_time(vma->vm_file);
9998eb70
CM
8952 reserved = 1;
8953 }
56a76f82
NP
8954 if (ret) {
8955 if (ret == -ENOMEM)
8956 ret = VM_FAULT_OOM;
8957 else /* -ENOSPC, -EIO, etc */
8958 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8959 if (reserved)
8960 goto out;
8961 goto out_noreserve;
56a76f82 8962 }
1832a6d5 8963
56a76f82 8964 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8965again:
9ebefb18 8966 lock_page(page);
9ebefb18 8967 size = i_size_read(inode);
a52d9a80 8968
9ebefb18 8969 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8970 (page_start >= size)) {
9ebefb18
CM
8971 /* page got truncated out from underneath us */
8972 goto out_unlock;
8973 }
e6dcd2dc
CM
8974 wait_on_page_writeback(page);
8975
ff13db41 8976 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8977 set_page_extent_mapped(page);
8978
eb84ae03
CM
8979 /*
8980 * we can't set the delalloc bits if there are pending ordered
8981 * extents. Drop our locks and wait for them to finish
8982 */
d0b7da88 8983 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
e6dcd2dc 8984 if (ordered) {
2ac55d41
JB
8985 unlock_extent_cached(io_tree, page_start, page_end,
8986 &cached_state, GFP_NOFS);
e6dcd2dc 8987 unlock_page(page);
eb84ae03 8988 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8989 btrfs_put_ordered_extent(ordered);
8990 goto again;
8991 }
8992
09cbfeaf 8993 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
d0b7da88 8994 reserved_space = round_up(size - page_start, root->sectorsize);
09cbfeaf 8995 if (reserved_space < PAGE_SIZE) {
d0b7da88
CR
8996 end = page_start + reserved_space - 1;
8997 spin_lock(&BTRFS_I(inode)->lock);
8998 BTRFS_I(inode)->outstanding_extents++;
8999 spin_unlock(&BTRFS_I(inode)->lock);
9000 btrfs_delalloc_release_space(inode, page_start,
09cbfeaf 9001 PAGE_SIZE - reserved_space);
d0b7da88
CR
9002 }
9003 }
9004
fbf19087
JB
9005 /*
9006 * XXX - page_mkwrite gets called every time the page is dirtied, even
9007 * if it was already dirty, so for space accounting reasons we need to
9008 * clear any delalloc bits for the range we are fixing to save. There
9009 * is probably a better way to do this, but for now keep consistent with
9010 * prepare_pages in the normal write path.
9011 */
d0b7da88 9012 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
9013 EXTENT_DIRTY | EXTENT_DELALLOC |
9014 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 9015 0, 0, &cached_state, GFP_NOFS);
fbf19087 9016
d0b7da88 9017 ret = btrfs_set_extent_delalloc(inode, page_start, end,
2ac55d41 9018 &cached_state);
9ed74f2d 9019 if (ret) {
2ac55d41
JB
9020 unlock_extent_cached(io_tree, page_start, page_end,
9021 &cached_state, GFP_NOFS);
9ed74f2d
JB
9022 ret = VM_FAULT_SIGBUS;
9023 goto out_unlock;
9024 }
e6dcd2dc 9025 ret = 0;
9ebefb18
CM
9026
9027 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9028 if (page_start + PAGE_SIZE > size)
9029 zero_start = size & ~PAGE_MASK;
9ebefb18 9030 else
09cbfeaf 9031 zero_start = PAGE_SIZE;
9ebefb18 9032
09cbfeaf 9033 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9034 kaddr = kmap(page);
09cbfeaf 9035 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9036 flush_dcache_page(page);
9037 kunmap(page);
9038 }
247e743c 9039 ClearPageChecked(page);
e6dcd2dc 9040 set_page_dirty(page);
50a9b214 9041 SetPageUptodate(page);
5a3f23d5 9042
257c62e1
CM
9043 BTRFS_I(inode)->last_trans = root->fs_info->generation;
9044 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9045 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9046
2ac55d41 9047 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
9048
9049out_unlock:
b2b5ef5c
JK
9050 if (!ret) {
9051 sb_end_pagefault(inode->i_sb);
50a9b214 9052 return VM_FAULT_LOCKED;
b2b5ef5c 9053 }
9ebefb18 9054 unlock_page(page);
1832a6d5 9055out:
d0b7da88 9056 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9998eb70 9057out_noreserve:
b2b5ef5c 9058 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
9059 return ret;
9060}
9061
a41ad394 9062static int btrfs_truncate(struct inode *inode)
39279cc3
CM
9063{
9064 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9065 struct btrfs_block_rsv *rsv;
a71754fc 9066 int ret = 0;
3893e33b 9067 int err = 0;
39279cc3 9068 struct btrfs_trans_handle *trans;
dbe674a9 9069 u64 mask = root->sectorsize - 1;
07127184 9070 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 9071
0ef8b726
JB
9072 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9073 (u64)-1);
9074 if (ret)
9075 return ret;
39279cc3 9076
fcb80c2a 9077 /*
01327610 9078 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9079 * 3 things going on here
9080 *
9081 * 1) We need to reserve space for our orphan item and the space to
9082 * delete our orphan item. Lord knows we don't want to have a dangling
9083 * orphan item because we didn't reserve space to remove it.
9084 *
9085 * 2) We need to reserve space to update our inode.
9086 *
9087 * 3) We need to have something to cache all the space that is going to
9088 * be free'd up by the truncate operation, but also have some slack
9089 * space reserved in case it uses space during the truncate (thank you
9090 * very much snapshotting).
9091 *
01327610 9092 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9093 * space doing the truncate, and we have no earthly idea how much space
01327610 9094 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9095 * doesn't end up using space reserved for updating the inode or
9096 * removing the orphan item. We also need to be able to stop the
9097 * transaction and start a new one, which means we need to be able to
9098 * update the inode several times, and we have no idea of knowing how
9099 * many times that will be, so we can't just reserve 1 item for the
01327610 9100 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9101 * Then there is the orphan item, which does indeed need to be held on
9102 * to for the whole operation, and we need nobody to touch this reserved
9103 * space except the orphan code.
9104 *
9105 * So that leaves us with
9106 *
9107 * 1) root->orphan_block_rsv - for the orphan deletion.
9108 * 2) rsv - for the truncate reservation, which we will steal from the
9109 * transaction reservation.
9110 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9111 * updating the inode.
9112 */
66d8f3dd 9113 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9114 if (!rsv)
9115 return -ENOMEM;
4a338542 9116 rsv->size = min_size;
ca7e70f5 9117 rsv->failfast = 1;
f0cd846e 9118
907cbceb 9119 /*
07127184 9120 * 1 for the truncate slack space
907cbceb
JB
9121 * 1 for updating the inode.
9122 */
f3fe820c 9123 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9124 if (IS_ERR(trans)) {
9125 err = PTR_ERR(trans);
9126 goto out;
9127 }
f0cd846e 9128
907cbceb
JB
9129 /* Migrate the slack space for the truncate to our reserve */
9130 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
25d609f8 9131 min_size, 0);
fcb80c2a 9132 BUG_ON(ret);
f0cd846e 9133
5dc562c5
JB
9134 /*
9135 * So if we truncate and then write and fsync we normally would just
9136 * write the extents that changed, which is a problem if we need to
9137 * first truncate that entire inode. So set this flag so we write out
9138 * all of the extents in the inode to the sync log so we're completely
9139 * safe.
9140 */
9141 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9142 trans->block_rsv = rsv;
907cbceb 9143
8082510e
YZ
9144 while (1) {
9145 ret = btrfs_truncate_inode_items(trans, root, inode,
9146 inode->i_size,
9147 BTRFS_EXTENT_DATA_KEY);
28ed1345 9148 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9149 err = ret;
8082510e 9150 break;
3893e33b 9151 }
39279cc3 9152
fcb80c2a 9153 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 9154 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9155 if (ret) {
9156 err = ret;
9157 break;
9158 }
ca7e70f5 9159
8082510e 9160 btrfs_end_transaction(trans, root);
b53d3f5d 9161 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
9162
9163 trans = btrfs_start_transaction(root, 2);
9164 if (IS_ERR(trans)) {
9165 ret = err = PTR_ERR(trans);
9166 trans = NULL;
9167 break;
9168 }
9169
9170 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
25d609f8 9171 rsv, min_size, 0);
ca7e70f5
JB
9172 BUG_ON(ret); /* shouldn't happen */
9173 trans->block_rsv = rsv;
8082510e
YZ
9174 }
9175
9176 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9177 trans->block_rsv = root->orphan_block_rsv;
8082510e 9178 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
9179 if (ret)
9180 err = ret;
8082510e
YZ
9181 }
9182
917c16b2
CM
9183 if (trans) {
9184 trans->block_rsv = &root->fs_info->trans_block_rsv;
9185 ret = btrfs_update_inode(trans, root, inode);
9186 if (ret && !err)
9187 err = ret;
7b128766 9188
7ad85bb7 9189 ret = btrfs_end_transaction(trans, root);
b53d3f5d 9190 btrfs_btree_balance_dirty(root);
917c16b2 9191 }
fcb80c2a
JB
9192out:
9193 btrfs_free_block_rsv(root, rsv);
9194
3893e33b
JB
9195 if (ret && !err)
9196 err = ret;
a41ad394 9197
3893e33b 9198 return err;
39279cc3
CM
9199}
9200
d352ac68
CM
9201/*
9202 * create a new subvolume directory/inode (helper for the ioctl).
9203 */
d2fb3437 9204int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9205 struct btrfs_root *new_root,
9206 struct btrfs_root *parent_root,
9207 u64 new_dirid)
39279cc3 9208{
39279cc3 9209 struct inode *inode;
76dda93c 9210 int err;
00e4e6b3 9211 u64 index = 0;
39279cc3 9212
12fc9d09
FA
9213 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9214 new_dirid, new_dirid,
9215 S_IFDIR | (~current_umask() & S_IRWXUGO),
9216 &index);
54aa1f4d 9217 if (IS_ERR(inode))
f46b5a66 9218 return PTR_ERR(inode);
39279cc3
CM
9219 inode->i_op = &btrfs_dir_inode_operations;
9220 inode->i_fop = &btrfs_dir_file_operations;
9221
bfe86848 9222 set_nlink(inode, 1);
dbe674a9 9223 btrfs_i_size_write(inode, 0);
b0d5d10f 9224 unlock_new_inode(inode);
3b96362c 9225
63541927
FDBM
9226 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9227 if (err)
9228 btrfs_err(new_root->fs_info,
351fd353 9229 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9230 new_root->root_key.objectid, err);
9231
76dda93c 9232 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9233
76dda93c 9234 iput(inode);
ce598979 9235 return err;
39279cc3
CM
9236}
9237
39279cc3
CM
9238struct inode *btrfs_alloc_inode(struct super_block *sb)
9239{
9240 struct btrfs_inode *ei;
2ead6ae7 9241 struct inode *inode;
39279cc3
CM
9242
9243 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9244 if (!ei)
9245 return NULL;
2ead6ae7
YZ
9246
9247 ei->root = NULL;
2ead6ae7 9248 ei->generation = 0;
15ee9bc7 9249 ei->last_trans = 0;
257c62e1 9250 ei->last_sub_trans = 0;
e02119d5 9251 ei->logged_trans = 0;
2ead6ae7 9252 ei->delalloc_bytes = 0;
47059d93 9253 ei->defrag_bytes = 0;
2ead6ae7
YZ
9254 ei->disk_i_size = 0;
9255 ei->flags = 0;
7709cde3 9256 ei->csum_bytes = 0;
2ead6ae7 9257 ei->index_cnt = (u64)-1;
67de1176 9258 ei->dir_index = 0;
2ead6ae7 9259 ei->last_unlink_trans = 0;
46d8bc34 9260 ei->last_log_commit = 0;
8089fe62 9261 ei->delayed_iput_count = 0;
2ead6ae7 9262
9e0baf60
JB
9263 spin_lock_init(&ei->lock);
9264 ei->outstanding_extents = 0;
9265 ei->reserved_extents = 0;
2ead6ae7 9266
72ac3c0d 9267 ei->runtime_flags = 0;
261507a0 9268 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9269
16cdcec7
MX
9270 ei->delayed_node = NULL;
9271
9cc97d64 9272 ei->i_otime.tv_sec = 0;
9273 ei->i_otime.tv_nsec = 0;
9274
2ead6ae7 9275 inode = &ei->vfs_inode;
a8067e02 9276 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
9277 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9278 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
9279 ei->io_tree.track_uptodate = 1;
9280 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9281 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9282 mutex_init(&ei->log_mutex);
f248679e 9283 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9284 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9285 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9286 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9287 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9288 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9289
9290 return inode;
39279cc3
CM
9291}
9292
aaedb55b
JB
9293#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9294void btrfs_test_destroy_inode(struct inode *inode)
9295{
9296 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9297 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9298}
9299#endif
9300
fa0d7e3d
NP
9301static void btrfs_i_callback(struct rcu_head *head)
9302{
9303 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9304 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9305}
9306
39279cc3
CM
9307void btrfs_destroy_inode(struct inode *inode)
9308{
e6dcd2dc 9309 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9310 struct btrfs_root *root = BTRFS_I(inode)->root;
9311
b3d9b7a3 9312 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9313 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9314 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9315 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
9316 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9317 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9318 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9319
a6dbd429
JB
9320 /*
9321 * This can happen where we create an inode, but somebody else also
9322 * created the same inode and we need to destroy the one we already
9323 * created.
9324 */
9325 if (!root)
9326 goto free;
9327
8a35d95f
JB
9328 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9329 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 9330 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 9331 btrfs_ino(inode));
8a35d95f 9332 atomic_dec(&root->orphan_inodes);
7b128766 9333 }
7b128766 9334
d397712b 9335 while (1) {
e6dcd2dc
CM
9336 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9337 if (!ordered)
9338 break;
9339 else {
c2cf52eb 9340 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 9341 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9342 btrfs_remove_ordered_extent(inode, ordered);
9343 btrfs_put_ordered_extent(ordered);
9344 btrfs_put_ordered_extent(ordered);
9345 }
9346 }
56fa9d07 9347 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9348 inode_tree_del(inode);
5b21f2ed 9349 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 9350free:
fa0d7e3d 9351 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9352}
9353
45321ac5 9354int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9355{
9356 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9357
6379ef9f
NA
9358 if (root == NULL)
9359 return 1;
9360
fa6ac876 9361 /* the snap/subvol tree is on deleting */
69e9c6c6 9362 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9363 return 1;
76dda93c 9364 else
45321ac5 9365 return generic_drop_inode(inode);
76dda93c
YZ
9366}
9367
0ee0fda0 9368static void init_once(void *foo)
39279cc3
CM
9369{
9370 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9371
9372 inode_init_once(&ei->vfs_inode);
9373}
9374
9375void btrfs_destroy_cachep(void)
9376{
8c0a8537
KS
9377 /*
9378 * Make sure all delayed rcu free inodes are flushed before we
9379 * destroy cache.
9380 */
9381 rcu_barrier();
5598e900
KM
9382 kmem_cache_destroy(btrfs_inode_cachep);
9383 kmem_cache_destroy(btrfs_trans_handle_cachep);
9384 kmem_cache_destroy(btrfs_transaction_cachep);
9385 kmem_cache_destroy(btrfs_path_cachep);
9386 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9387}
9388
9389int btrfs_init_cachep(void)
9390{
837e1972 9391 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9392 sizeof(struct btrfs_inode), 0,
5d097056
VD
9393 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9394 init_once);
39279cc3
CM
9395 if (!btrfs_inode_cachep)
9396 goto fail;
9601e3f6 9397
837e1972 9398 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9399 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9400 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9401 if (!btrfs_trans_handle_cachep)
9402 goto fail;
9601e3f6 9403
837e1972 9404 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6 9405 sizeof(struct btrfs_transaction), 0,
fba4b697 9406 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9407 if (!btrfs_transaction_cachep)
9408 goto fail;
9601e3f6 9409
837e1972 9410 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9411 sizeof(struct btrfs_path), 0,
fba4b697 9412 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9413 if (!btrfs_path_cachep)
9414 goto fail;
9601e3f6 9415
837e1972 9416 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9417 sizeof(struct btrfs_free_space), 0,
fba4b697 9418 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9419 if (!btrfs_free_space_cachep)
9420 goto fail;
9421
39279cc3
CM
9422 return 0;
9423fail:
9424 btrfs_destroy_cachep();
9425 return -ENOMEM;
9426}
9427
9428static int btrfs_getattr(struct vfsmount *mnt,
9429 struct dentry *dentry, struct kstat *stat)
9430{
df0af1a5 9431 u64 delalloc_bytes;
2b0143b5 9432 struct inode *inode = d_inode(dentry);
fadc0d8b
DS
9433 u32 blocksize = inode->i_sb->s_blocksize;
9434
39279cc3 9435 generic_fillattr(inode, stat);
0ee5dc67 9436 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9437
9438 spin_lock(&BTRFS_I(inode)->lock);
9439 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9440 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9441 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9442 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9443 return 0;
9444}
9445
cdd1fedf
DF
9446static int btrfs_rename_exchange(struct inode *old_dir,
9447 struct dentry *old_dentry,
9448 struct inode *new_dir,
9449 struct dentry *new_dentry)
9450{
9451 struct btrfs_trans_handle *trans;
9452 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9453 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9454 struct inode *new_inode = new_dentry->d_inode;
9455 struct inode *old_inode = old_dentry->d_inode;
9456 struct timespec ctime = CURRENT_TIME;
9457 struct dentry *parent;
9458 u64 old_ino = btrfs_ino(old_inode);
9459 u64 new_ino = btrfs_ino(new_inode);
9460 u64 old_idx = 0;
9461 u64 new_idx = 0;
9462 u64 root_objectid;
9463 int ret;
86e8aa0e
FM
9464 bool root_log_pinned = false;
9465 bool dest_log_pinned = false;
cdd1fedf
DF
9466
9467 /* we only allow rename subvolume link between subvolumes */
9468 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9469 return -EXDEV;
9470
9471 /* close the race window with snapshot create/destroy ioctl */
9472 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9473 down_read(&root->fs_info->subvol_sem);
9474 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9475 down_read(&dest->fs_info->subvol_sem);
9476
9477 /*
9478 * We want to reserve the absolute worst case amount of items. So if
9479 * both inodes are subvols and we need to unlink them then that would
9480 * require 4 item modifications, but if they are both normal inodes it
9481 * would require 5 item modifications, so we'll assume their normal
9482 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9483 * should cover the worst case number of items we'll modify.
9484 */
9485 trans = btrfs_start_transaction(root, 12);
9486 if (IS_ERR(trans)) {
9487 ret = PTR_ERR(trans);
9488 goto out_notrans;
9489 }
9490
9491 /*
9492 * We need to find a free sequence number both in the source and
9493 * in the destination directory for the exchange.
9494 */
9495 ret = btrfs_set_inode_index(new_dir, &old_idx);
9496 if (ret)
9497 goto out_fail;
9498 ret = btrfs_set_inode_index(old_dir, &new_idx);
9499 if (ret)
9500 goto out_fail;
9501
9502 BTRFS_I(old_inode)->dir_index = 0ULL;
9503 BTRFS_I(new_inode)->dir_index = 0ULL;
9504
9505 /* Reference for the source. */
9506 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9507 /* force full log commit if subvolume involved. */
9508 btrfs_set_log_full_commit(root->fs_info, trans);
9509 } else {
376e5a57
FM
9510 btrfs_pin_log_trans(root);
9511 root_log_pinned = true;
cdd1fedf
DF
9512 ret = btrfs_insert_inode_ref(trans, dest,
9513 new_dentry->d_name.name,
9514 new_dentry->d_name.len,
9515 old_ino,
9516 btrfs_ino(new_dir), old_idx);
9517 if (ret)
9518 goto out_fail;
cdd1fedf
DF
9519 }
9520
9521 /* And now for the dest. */
9522 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9523 /* force full log commit if subvolume involved. */
9524 btrfs_set_log_full_commit(dest->fs_info, trans);
9525 } else {
376e5a57
FM
9526 btrfs_pin_log_trans(dest);
9527 dest_log_pinned = true;
cdd1fedf
DF
9528 ret = btrfs_insert_inode_ref(trans, root,
9529 old_dentry->d_name.name,
9530 old_dentry->d_name.len,
9531 new_ino,
9532 btrfs_ino(old_dir), new_idx);
9533 if (ret)
9534 goto out_fail;
cdd1fedf
DF
9535 }
9536
9537 /* Update inode version and ctime/mtime. */
9538 inode_inc_iversion(old_dir);
9539 inode_inc_iversion(new_dir);
9540 inode_inc_iversion(old_inode);
9541 inode_inc_iversion(new_inode);
9542 old_dir->i_ctime = old_dir->i_mtime = ctime;
9543 new_dir->i_ctime = new_dir->i_mtime = ctime;
9544 old_inode->i_ctime = ctime;
9545 new_inode->i_ctime = ctime;
9546
9547 if (old_dentry->d_parent != new_dentry->d_parent) {
9548 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9549 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9550 }
9551
9552 /* src is a subvolume */
9553 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9554 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9555 ret = btrfs_unlink_subvol(trans, root, old_dir,
9556 root_objectid,
9557 old_dentry->d_name.name,
9558 old_dentry->d_name.len);
9559 } else { /* src is an inode */
9560 ret = __btrfs_unlink_inode(trans, root, old_dir,
9561 old_dentry->d_inode,
9562 old_dentry->d_name.name,
9563 old_dentry->d_name.len);
9564 if (!ret)
9565 ret = btrfs_update_inode(trans, root, old_inode);
9566 }
9567 if (ret) {
66642832 9568 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9569 goto out_fail;
9570 }
9571
9572 /* dest is a subvolume */
9573 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9574 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9575 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9576 root_objectid,
9577 new_dentry->d_name.name,
9578 new_dentry->d_name.len);
9579 } else { /* dest is an inode */
9580 ret = __btrfs_unlink_inode(trans, dest, new_dir,
9581 new_dentry->d_inode,
9582 new_dentry->d_name.name,
9583 new_dentry->d_name.len);
9584 if (!ret)
9585 ret = btrfs_update_inode(trans, dest, new_inode);
9586 }
9587 if (ret) {
66642832 9588 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9589 goto out_fail;
9590 }
9591
9592 ret = btrfs_add_link(trans, new_dir, old_inode,
9593 new_dentry->d_name.name,
9594 new_dentry->d_name.len, 0, old_idx);
9595 if (ret) {
66642832 9596 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9597 goto out_fail;
9598 }
9599
9600 ret = btrfs_add_link(trans, old_dir, new_inode,
9601 old_dentry->d_name.name,
9602 old_dentry->d_name.len, 0, new_idx);
9603 if (ret) {
66642832 9604 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9605 goto out_fail;
9606 }
9607
9608 if (old_inode->i_nlink == 1)
9609 BTRFS_I(old_inode)->dir_index = old_idx;
9610 if (new_inode->i_nlink == 1)
9611 BTRFS_I(new_inode)->dir_index = new_idx;
9612
86e8aa0e 9613 if (root_log_pinned) {
cdd1fedf
DF
9614 parent = new_dentry->d_parent;
9615 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9616 btrfs_end_log_trans(root);
86e8aa0e 9617 root_log_pinned = false;
cdd1fedf 9618 }
86e8aa0e 9619 if (dest_log_pinned) {
cdd1fedf
DF
9620 parent = old_dentry->d_parent;
9621 btrfs_log_new_name(trans, new_inode, new_dir, parent);
9622 btrfs_end_log_trans(dest);
86e8aa0e 9623 dest_log_pinned = false;
cdd1fedf
DF
9624 }
9625out_fail:
86e8aa0e
FM
9626 /*
9627 * If we have pinned a log and an error happened, we unpin tasks
9628 * trying to sync the log and force them to fallback to a transaction
9629 * commit if the log currently contains any of the inodes involved in
9630 * this rename operation (to ensure we do not persist a log with an
9631 * inconsistent state for any of these inodes or leading to any
9632 * inconsistencies when replayed). If the transaction was aborted, the
9633 * abortion reason is propagated to userspace when attempting to commit
9634 * the transaction. If the log does not contain any of these inodes, we
9635 * allow the tasks to sync it.
9636 */
9637 if (ret && (root_log_pinned || dest_log_pinned)) {
9638 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9639 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9640 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9641 (new_inode &&
9642 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9643 btrfs_set_log_full_commit(root->fs_info, trans);
9644
9645 if (root_log_pinned) {
9646 btrfs_end_log_trans(root);
9647 root_log_pinned = false;
9648 }
9649 if (dest_log_pinned) {
9650 btrfs_end_log_trans(dest);
9651 dest_log_pinned = false;
9652 }
9653 }
cdd1fedf
DF
9654 ret = btrfs_end_transaction(trans, root);
9655out_notrans:
9656 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9657 up_read(&dest->fs_info->subvol_sem);
9658 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9659 up_read(&root->fs_info->subvol_sem);
9660
9661 return ret;
9662}
9663
9664static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9665 struct btrfs_root *root,
9666 struct inode *dir,
9667 struct dentry *dentry)
9668{
9669 int ret;
9670 struct inode *inode;
9671 u64 objectid;
9672 u64 index;
9673
9674 ret = btrfs_find_free_ino(root, &objectid);
9675 if (ret)
9676 return ret;
9677
9678 inode = btrfs_new_inode(trans, root, dir,
9679 dentry->d_name.name,
9680 dentry->d_name.len,
9681 btrfs_ino(dir),
9682 objectid,
9683 S_IFCHR | WHITEOUT_MODE,
9684 &index);
9685
9686 if (IS_ERR(inode)) {
9687 ret = PTR_ERR(inode);
9688 return ret;
9689 }
9690
9691 inode->i_op = &btrfs_special_inode_operations;
9692 init_special_inode(inode, inode->i_mode,
9693 WHITEOUT_DEV);
9694
9695 ret = btrfs_init_inode_security(trans, inode, dir,
9696 &dentry->d_name);
9697 if (ret)
c9901618 9698 goto out;
cdd1fedf
DF
9699
9700 ret = btrfs_add_nondir(trans, dir, dentry,
9701 inode, 0, index);
9702 if (ret)
c9901618 9703 goto out;
cdd1fedf
DF
9704
9705 ret = btrfs_update_inode(trans, root, inode);
c9901618 9706out:
cdd1fedf 9707 unlock_new_inode(inode);
c9901618
FM
9708 if (ret)
9709 inode_dec_link_count(inode);
cdd1fedf
DF
9710 iput(inode);
9711
c9901618 9712 return ret;
cdd1fedf
DF
9713}
9714
d397712b 9715static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9716 struct inode *new_dir, struct dentry *new_dentry,
9717 unsigned int flags)
39279cc3
CM
9718{
9719 struct btrfs_trans_handle *trans;
5062af35 9720 unsigned int trans_num_items;
39279cc3 9721 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9722 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9723 struct inode *new_inode = d_inode(new_dentry);
9724 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9725 u64 index = 0;
4df27c4d 9726 u64 root_objectid;
39279cc3 9727 int ret;
33345d01 9728 u64 old_ino = btrfs_ino(old_inode);
3dc9e8f7 9729 bool log_pinned = false;
39279cc3 9730
33345d01 9731 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9732 return -EPERM;
9733
4df27c4d 9734 /* we only allow rename subvolume link between subvolumes */
33345d01 9735 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9736 return -EXDEV;
9737
33345d01
LZ
9738 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9739 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9740 return -ENOTEMPTY;
5f39d397 9741
4df27c4d
YZ
9742 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9743 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9744 return -ENOTEMPTY;
9c52057c
CM
9745
9746
9747 /* check for collisions, even if the name isn't there */
4871c158 9748 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9749 new_dentry->d_name.name,
9750 new_dentry->d_name.len);
9751
9752 if (ret) {
9753 if (ret == -EEXIST) {
9754 /* we shouldn't get
9755 * eexist without a new_inode */
fae7f21c 9756 if (WARN_ON(!new_inode)) {
9c52057c
CM
9757 return ret;
9758 }
9759 } else {
9760 /* maybe -EOVERFLOW */
9761 return ret;
9762 }
9763 }
9764 ret = 0;
9765
5a3f23d5 9766 /*
8d875f95
CM
9767 * we're using rename to replace one file with another. Start IO on it
9768 * now so we don't add too much work to the end of the transaction
5a3f23d5 9769 */
8d875f95 9770 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9771 filemap_flush(old_inode->i_mapping);
9772
76dda93c 9773 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9774 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9775 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
9776 /*
9777 * We want to reserve the absolute worst case amount of items. So if
9778 * both inodes are subvols and we need to unlink them then that would
9779 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9780 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9781 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9782 * should cover the worst case number of items we'll modify.
5062af35
FM
9783 * If our rename has the whiteout flag, we need more 5 units for the
9784 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9785 * when selinux is enabled).
a22285a6 9786 */
5062af35
FM
9787 trans_num_items = 11;
9788 if (flags & RENAME_WHITEOUT)
9789 trans_num_items += 5;
9790 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9791 if (IS_ERR(trans)) {
cdd1fedf
DF
9792 ret = PTR_ERR(trans);
9793 goto out_notrans;
9794 }
76dda93c 9795
4df27c4d
YZ
9796 if (dest != root)
9797 btrfs_record_root_in_trans(trans, dest);
5f39d397 9798
a5719521
YZ
9799 ret = btrfs_set_inode_index(new_dir, &index);
9800 if (ret)
9801 goto out_fail;
5a3f23d5 9802
67de1176 9803 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9804 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9805 /* force full log commit if subvolume involved. */
995946dd 9806 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 9807 } else {
c4aba954
FM
9808 btrfs_pin_log_trans(root);
9809 log_pinned = true;
a5719521
YZ
9810 ret = btrfs_insert_inode_ref(trans, dest,
9811 new_dentry->d_name.name,
9812 new_dentry->d_name.len,
33345d01
LZ
9813 old_ino,
9814 btrfs_ino(new_dir), index);
a5719521
YZ
9815 if (ret)
9816 goto out_fail;
4df27c4d 9817 }
5a3f23d5 9818
0c4d2d95
JB
9819 inode_inc_iversion(old_dir);
9820 inode_inc_iversion(new_dir);
9821 inode_inc_iversion(old_inode);
04b285f3
DD
9822 old_dir->i_ctime = old_dir->i_mtime =
9823 new_dir->i_ctime = new_dir->i_mtime =
9824 old_inode->i_ctime = current_fs_time(old_dir->i_sb);
5f39d397 9825
12fcfd22
CM
9826 if (old_dentry->d_parent != new_dentry->d_parent)
9827 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9828
33345d01 9829 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9830 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9831 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9832 old_dentry->d_name.name,
9833 old_dentry->d_name.len);
9834 } else {
92986796 9835 ret = __btrfs_unlink_inode(trans, root, old_dir,
2b0143b5 9836 d_inode(old_dentry),
92986796
AV
9837 old_dentry->d_name.name,
9838 old_dentry->d_name.len);
9839 if (!ret)
9840 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9841 }
79787eaa 9842 if (ret) {
66642832 9843 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9844 goto out_fail;
9845 }
39279cc3
CM
9846
9847 if (new_inode) {
0c4d2d95 9848 inode_inc_iversion(new_inode);
04b285f3 9849 new_inode->i_ctime = current_fs_time(new_inode->i_sb);
33345d01 9850 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
9851 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9852 root_objectid = BTRFS_I(new_inode)->location.objectid;
9853 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9854 root_objectid,
9855 new_dentry->d_name.name,
9856 new_dentry->d_name.len);
9857 BUG_ON(new_inode->i_nlink == 0);
9858 } else {
9859 ret = btrfs_unlink_inode(trans, dest, new_dir,
2b0143b5 9860 d_inode(new_dentry),
4df27c4d
YZ
9861 new_dentry->d_name.name,
9862 new_dentry->d_name.len);
9863 }
4ef31a45 9864 if (!ret && new_inode->i_nlink == 0)
2b0143b5 9865 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
79787eaa 9866 if (ret) {
66642832 9867 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9868 goto out_fail;
9869 }
39279cc3 9870 }
aec7477b 9871
4df27c4d
YZ
9872 ret = btrfs_add_link(trans, new_dir, old_inode,
9873 new_dentry->d_name.name,
a5719521 9874 new_dentry->d_name.len, 0, index);
79787eaa 9875 if (ret) {
66642832 9876 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9877 goto out_fail;
9878 }
39279cc3 9879
67de1176
MX
9880 if (old_inode->i_nlink == 1)
9881 BTRFS_I(old_inode)->dir_index = index;
9882
3dc9e8f7 9883 if (log_pinned) {
10d9f309 9884 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9885
6a912213 9886 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d 9887 btrfs_end_log_trans(root);
3dc9e8f7 9888 log_pinned = false;
4df27c4d 9889 }
cdd1fedf
DF
9890
9891 if (flags & RENAME_WHITEOUT) {
9892 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9893 old_dentry);
9894
9895 if (ret) {
66642832 9896 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9897 goto out_fail;
9898 }
4df27c4d 9899 }
39279cc3 9900out_fail:
3dc9e8f7
FM
9901 /*
9902 * If we have pinned the log and an error happened, we unpin tasks
9903 * trying to sync the log and force them to fallback to a transaction
9904 * commit if the log currently contains any of the inodes involved in
9905 * this rename operation (to ensure we do not persist a log with an
9906 * inconsistent state for any of these inodes or leading to any
9907 * inconsistencies when replayed). If the transaction was aborted, the
9908 * abortion reason is propagated to userspace when attempting to commit
9909 * the transaction. If the log does not contain any of these inodes, we
9910 * allow the tasks to sync it.
9911 */
9912 if (ret && log_pinned) {
9913 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9914 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9915 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9916 (new_inode &&
9917 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9918 btrfs_set_log_full_commit(root->fs_info, trans);
9919
9920 btrfs_end_log_trans(root);
9921 log_pinned = false;
9922 }
7ad85bb7 9923 btrfs_end_transaction(trans, root);
b44c59a8 9924out_notrans:
33345d01 9925 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9926 up_read(&root->fs_info->subvol_sem);
9ed74f2d 9927
39279cc3
CM
9928 return ret;
9929}
9930
80ace85c
MS
9931static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9932 struct inode *new_dir, struct dentry *new_dentry,
9933 unsigned int flags)
9934{
cdd1fedf 9935 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9936 return -EINVAL;
9937
cdd1fedf
DF
9938 if (flags & RENAME_EXCHANGE)
9939 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9940 new_dentry);
9941
9942 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9943}
9944
8ccf6f19
MX
9945static void btrfs_run_delalloc_work(struct btrfs_work *work)
9946{
9947 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9948 struct inode *inode;
8ccf6f19
MX
9949
9950 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9951 work);
9f23e289 9952 inode = delalloc_work->inode;
30424601
DS
9953 filemap_flush(inode->i_mapping);
9954 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9955 &BTRFS_I(inode)->runtime_flags))
9f23e289 9956 filemap_flush(inode->i_mapping);
8ccf6f19
MX
9957
9958 if (delalloc_work->delay_iput)
9f23e289 9959 btrfs_add_delayed_iput(inode);
8ccf6f19 9960 else
9f23e289 9961 iput(inode);
8ccf6f19
MX
9962 complete(&delalloc_work->completion);
9963}
9964
9965struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 9966 int delay_iput)
8ccf6f19
MX
9967{
9968 struct btrfs_delalloc_work *work;
9969
100d5702 9970 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9971 if (!work)
9972 return NULL;
9973
9974 init_completion(&work->completion);
9975 INIT_LIST_HEAD(&work->list);
9976 work->inode = inode;
8ccf6f19 9977 work->delay_iput = delay_iput;
9e0af237
LB
9978 WARN_ON_ONCE(!inode);
9979 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9980 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9981
9982 return work;
9983}
9984
9985void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9986{
9987 wait_for_completion(&work->completion);
100d5702 9988 kfree(work);
8ccf6f19
MX
9989}
9990
d352ac68
CM
9991/*
9992 * some fairly slow code that needs optimization. This walks the list
9993 * of all the inodes with pending delalloc and forces them to disk.
9994 */
6c255e67
MX
9995static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9996 int nr)
ea8c2819 9997{
ea8c2819 9998 struct btrfs_inode *binode;
5b21f2ed 9999 struct inode *inode;
8ccf6f19
MX
10000 struct btrfs_delalloc_work *work, *next;
10001 struct list_head works;
1eafa6c7 10002 struct list_head splice;
8ccf6f19 10003 int ret = 0;
ea8c2819 10004
8ccf6f19 10005 INIT_LIST_HEAD(&works);
1eafa6c7 10006 INIT_LIST_HEAD(&splice);
63607cc8 10007
573bfb72 10008 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10009 spin_lock(&root->delalloc_lock);
10010 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10011 while (!list_empty(&splice)) {
10012 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10013 delalloc_inodes);
1eafa6c7 10014
eb73c1b7
MX
10015 list_move_tail(&binode->delalloc_inodes,
10016 &root->delalloc_inodes);
5b21f2ed 10017 inode = igrab(&binode->vfs_inode);
df0af1a5 10018 if (!inode) {
eb73c1b7 10019 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10020 continue;
df0af1a5 10021 }
eb73c1b7 10022 spin_unlock(&root->delalloc_lock);
1eafa6c7 10023
651d494a 10024 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10025 if (!work) {
f4ab9ea7
JB
10026 if (delay_iput)
10027 btrfs_add_delayed_iput(inode);
10028 else
10029 iput(inode);
1eafa6c7 10030 ret = -ENOMEM;
a1ecaabb 10031 goto out;
5b21f2ed 10032 }
1eafa6c7 10033 list_add_tail(&work->list, &works);
a44903ab
QW
10034 btrfs_queue_work(root->fs_info->flush_workers,
10035 &work->work);
6c255e67
MX
10036 ret++;
10037 if (nr != -1 && ret >= nr)
a1ecaabb 10038 goto out;
5b21f2ed 10039 cond_resched();
eb73c1b7 10040 spin_lock(&root->delalloc_lock);
ea8c2819 10041 }
eb73c1b7 10042 spin_unlock(&root->delalloc_lock);
8c8bee1d 10043
a1ecaabb 10044out:
eb73c1b7
MX
10045 list_for_each_entry_safe(work, next, &works, list) {
10046 list_del_init(&work->list);
10047 btrfs_wait_and_free_delalloc_work(work);
10048 }
10049
10050 if (!list_empty_careful(&splice)) {
10051 spin_lock(&root->delalloc_lock);
10052 list_splice_tail(&splice, &root->delalloc_inodes);
10053 spin_unlock(&root->delalloc_lock);
10054 }
573bfb72 10055 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10056 return ret;
10057}
1eafa6c7 10058
eb73c1b7
MX
10059int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10060{
10061 int ret;
1eafa6c7 10062
2c21b4d7 10063 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
10064 return -EROFS;
10065
6c255e67
MX
10066 ret = __start_delalloc_inodes(root, delay_iput, -1);
10067 if (ret > 0)
10068 ret = 0;
eb73c1b7
MX
10069 /*
10070 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
10071 * we have to make sure the IO is actually started and that
10072 * ordered extents get created before we return
10073 */
10074 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 10075 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 10076 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 10077 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
10078 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10079 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
10080 }
10081 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
10082 return ret;
10083}
10084
6c255e67
MX
10085int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10086 int nr)
eb73c1b7
MX
10087{
10088 struct btrfs_root *root;
10089 struct list_head splice;
10090 int ret;
10091
2c21b4d7 10092 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10093 return -EROFS;
10094
10095 INIT_LIST_HEAD(&splice);
10096
573bfb72 10097 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10098 spin_lock(&fs_info->delalloc_root_lock);
10099 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10100 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10101 root = list_first_entry(&splice, struct btrfs_root,
10102 delalloc_root);
10103 root = btrfs_grab_fs_root(root);
10104 BUG_ON(!root);
10105 list_move_tail(&root->delalloc_root,
10106 &fs_info->delalloc_roots);
10107 spin_unlock(&fs_info->delalloc_root_lock);
10108
6c255e67 10109 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10110 btrfs_put_fs_root(root);
6c255e67 10111 if (ret < 0)
eb73c1b7
MX
10112 goto out;
10113
6c255e67
MX
10114 if (nr != -1) {
10115 nr -= ret;
10116 WARN_ON(nr < 0);
10117 }
eb73c1b7 10118 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10119 }
eb73c1b7 10120 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10121
6c255e67 10122 ret = 0;
eb73c1b7
MX
10123 atomic_inc(&fs_info->async_submit_draining);
10124 while (atomic_read(&fs_info->nr_async_submits) ||
10125 atomic_read(&fs_info->async_delalloc_pages)) {
10126 wait_event(fs_info->async_submit_wait,
10127 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10128 atomic_read(&fs_info->async_delalloc_pages) == 0));
10129 }
10130 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 10131out:
1eafa6c7 10132 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10133 spin_lock(&fs_info->delalloc_root_lock);
10134 list_splice_tail(&splice, &fs_info->delalloc_roots);
10135 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10136 }
573bfb72 10137 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10138 return ret;
ea8c2819
CM
10139}
10140
39279cc3
CM
10141static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10142 const char *symname)
10143{
10144 struct btrfs_trans_handle *trans;
10145 struct btrfs_root *root = BTRFS_I(dir)->root;
10146 struct btrfs_path *path;
10147 struct btrfs_key key;
1832a6d5 10148 struct inode *inode = NULL;
39279cc3
CM
10149 int err;
10150 int drop_inode = 0;
10151 u64 objectid;
67871254 10152 u64 index = 0;
39279cc3
CM
10153 int name_len;
10154 int datasize;
5f39d397 10155 unsigned long ptr;
39279cc3 10156 struct btrfs_file_extent_item *ei;
5f39d397 10157 struct extent_buffer *leaf;
39279cc3 10158
f06becc4 10159 name_len = strlen(symname);
39279cc3
CM
10160 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10161 return -ENAMETOOLONG;
1832a6d5 10162
9ed74f2d
JB
10163 /*
10164 * 2 items for inode item and ref
10165 * 2 items for dir items
9269d12b
FM
10166 * 1 item for updating parent inode item
10167 * 1 item for the inline extent item
9ed74f2d
JB
10168 * 1 item for xattr if selinux is on
10169 */
9269d12b 10170 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10171 if (IS_ERR(trans))
10172 return PTR_ERR(trans);
1832a6d5 10173
581bb050
LZ
10174 err = btrfs_find_free_ino(root, &objectid);
10175 if (err)
10176 goto out_unlock;
10177
aec7477b 10178 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 10179 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 10180 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10181 if (IS_ERR(inode)) {
10182 err = PTR_ERR(inode);
39279cc3 10183 goto out_unlock;
7cf96da3 10184 }
39279cc3 10185
ad19db71
CS
10186 /*
10187 * If the active LSM wants to access the inode during
10188 * d_instantiate it needs these. Smack checks to see
10189 * if the filesystem supports xattrs by looking at the
10190 * ops vector.
10191 */
10192 inode->i_fop = &btrfs_file_operations;
10193 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10194 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10195 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10196
10197 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10198 if (err)
10199 goto out_unlock_inode;
ad19db71 10200
39279cc3 10201 path = btrfs_alloc_path();
d8926bb3
MF
10202 if (!path) {
10203 err = -ENOMEM;
b0d5d10f 10204 goto out_unlock_inode;
d8926bb3 10205 }
33345d01 10206 key.objectid = btrfs_ino(inode);
39279cc3 10207 key.offset = 0;
962a298f 10208 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10209 datasize = btrfs_file_extent_calc_inline_size(name_len);
10210 err = btrfs_insert_empty_item(trans, root, path, &key,
10211 datasize);
54aa1f4d 10212 if (err) {
b0839166 10213 btrfs_free_path(path);
b0d5d10f 10214 goto out_unlock_inode;
54aa1f4d 10215 }
5f39d397
CM
10216 leaf = path->nodes[0];
10217 ei = btrfs_item_ptr(leaf, path->slots[0],
10218 struct btrfs_file_extent_item);
10219 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10220 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10221 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10222 btrfs_set_file_extent_encryption(leaf, ei, 0);
10223 btrfs_set_file_extent_compression(leaf, ei, 0);
10224 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10225 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10226
39279cc3 10227 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10228 write_extent_buffer(leaf, symname, ptr, name_len);
10229 btrfs_mark_buffer_dirty(leaf);
39279cc3 10230 btrfs_free_path(path);
5f39d397 10231
39279cc3 10232 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10233 inode_nohighmem(inode);
39279cc3 10234 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10235 inode_set_bytes(inode, name_len);
f06becc4 10236 btrfs_i_size_write(inode, name_len);
54aa1f4d 10237 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10238 /*
10239 * Last step, add directory indexes for our symlink inode. This is the
10240 * last step to avoid extra cleanup of these indexes if an error happens
10241 * elsewhere above.
10242 */
10243 if (!err)
10244 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
b0d5d10f 10245 if (err) {
54aa1f4d 10246 drop_inode = 1;
b0d5d10f
CM
10247 goto out_unlock_inode;
10248 }
10249
10250 unlock_new_inode(inode);
10251 d_instantiate(dentry, inode);
39279cc3
CM
10252
10253out_unlock:
7ad85bb7 10254 btrfs_end_transaction(trans, root);
39279cc3
CM
10255 if (drop_inode) {
10256 inode_dec_link_count(inode);
10257 iput(inode);
10258 }
b53d3f5d 10259 btrfs_btree_balance_dirty(root);
39279cc3 10260 return err;
b0d5d10f
CM
10261
10262out_unlock_inode:
10263 drop_inode = 1;
10264 unlock_new_inode(inode);
10265 goto out_unlock;
39279cc3 10266}
16432985 10267
0af3d00b
JB
10268static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10269 u64 start, u64 num_bytes, u64 min_size,
10270 loff_t actual_len, u64 *alloc_hint,
10271 struct btrfs_trans_handle *trans)
d899e052 10272{
5dc562c5
JB
10273 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10274 struct extent_map *em;
d899e052
YZ
10275 struct btrfs_root *root = BTRFS_I(inode)->root;
10276 struct btrfs_key ins;
d899e052 10277 u64 cur_offset = start;
55a61d1d 10278 u64 i_size;
154ea289 10279 u64 cur_bytes;
0b670dc4 10280 u64 last_alloc = (u64)-1;
d899e052 10281 int ret = 0;
0af3d00b 10282 bool own_trans = true;
d899e052 10283
0af3d00b
JB
10284 if (trans)
10285 own_trans = false;
d899e052 10286 while (num_bytes > 0) {
0af3d00b
JB
10287 if (own_trans) {
10288 trans = btrfs_start_transaction(root, 3);
10289 if (IS_ERR(trans)) {
10290 ret = PTR_ERR(trans);
10291 break;
10292 }
5a303d5d
YZ
10293 }
10294
ee22184b 10295 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10296 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10297 /*
10298 * If we are severely fragmented we could end up with really
10299 * small allocations, so if the allocator is returning small
10300 * chunks lets make its job easier by only searching for those
10301 * sized chunks.
10302 */
10303 cur_bytes = min(cur_bytes, last_alloc);
00361589 10304 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
e570fd27 10305 *alloc_hint, &ins, 1, 0);
5a303d5d 10306 if (ret) {
0af3d00b
JB
10307 if (own_trans)
10308 btrfs_end_transaction(trans, root);
a22285a6 10309 break;
d899e052 10310 }
9cfa3e34 10311 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
5a303d5d 10312
0b670dc4 10313 last_alloc = ins.offset;
d899e052
YZ
10314 ret = insert_reserved_file_extent(trans, inode,
10315 cur_offset, ins.objectid,
10316 ins.offset, ins.offset,
920bbbfb 10317 ins.offset, 0, 0, 0,
d899e052 10318 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10319 if (ret) {
857cc2fc 10320 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 10321 ins.offset, 0);
66642832 10322 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10323 if (own_trans)
10324 btrfs_end_transaction(trans, root);
10325 break;
10326 }
31193213 10327
a1ed835e
CM
10328 btrfs_drop_extent_cache(inode, cur_offset,
10329 cur_offset + ins.offset -1, 0);
5a303d5d 10330
5dc562c5
JB
10331 em = alloc_extent_map();
10332 if (!em) {
10333 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10334 &BTRFS_I(inode)->runtime_flags);
10335 goto next;
10336 }
10337
10338 em->start = cur_offset;
10339 em->orig_start = cur_offset;
10340 em->len = ins.offset;
10341 em->block_start = ins.objectid;
10342 em->block_len = ins.offset;
b4939680 10343 em->orig_block_len = ins.offset;
cc95bef6 10344 em->ram_bytes = ins.offset;
5dc562c5
JB
10345 em->bdev = root->fs_info->fs_devices->latest_bdev;
10346 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10347 em->generation = trans->transid;
10348
10349 while (1) {
10350 write_lock(&em_tree->lock);
09a2a8f9 10351 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10352 write_unlock(&em_tree->lock);
10353 if (ret != -EEXIST)
10354 break;
10355 btrfs_drop_extent_cache(inode, cur_offset,
10356 cur_offset + ins.offset - 1,
10357 0);
10358 }
10359 free_extent_map(em);
10360next:
d899e052
YZ
10361 num_bytes -= ins.offset;
10362 cur_offset += ins.offset;
efa56464 10363 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10364
0c4d2d95 10365 inode_inc_iversion(inode);
04b285f3 10366 inode->i_ctime = current_fs_time(inode->i_sb);
6cbff00f 10367 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10368 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10369 (actual_len > inode->i_size) &&
10370 (cur_offset > inode->i_size)) {
d1ea6a61 10371 if (cur_offset > actual_len)
55a61d1d 10372 i_size = actual_len;
d1ea6a61 10373 else
55a61d1d
JB
10374 i_size = cur_offset;
10375 i_size_write(inode, i_size);
10376 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10377 }
10378
d899e052 10379 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10380
10381 if (ret) {
66642832 10382 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10383 if (own_trans)
10384 btrfs_end_transaction(trans, root);
10385 break;
10386 }
d899e052 10387
0af3d00b
JB
10388 if (own_trans)
10389 btrfs_end_transaction(trans, root);
5a303d5d 10390 }
d899e052
YZ
10391 return ret;
10392}
10393
0af3d00b
JB
10394int btrfs_prealloc_file_range(struct inode *inode, int mode,
10395 u64 start, u64 num_bytes, u64 min_size,
10396 loff_t actual_len, u64 *alloc_hint)
10397{
10398 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10399 min_size, actual_len, alloc_hint,
10400 NULL);
10401}
10402
10403int btrfs_prealloc_file_range_trans(struct inode *inode,
10404 struct btrfs_trans_handle *trans, int mode,
10405 u64 start, u64 num_bytes, u64 min_size,
10406 loff_t actual_len, u64 *alloc_hint)
10407{
10408 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10409 min_size, actual_len, alloc_hint, trans);
10410}
10411
e6dcd2dc
CM
10412static int btrfs_set_page_dirty(struct page *page)
10413{
e6dcd2dc
CM
10414 return __set_page_dirty_nobuffers(page);
10415}
10416
10556cb2 10417static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10418{
b83cc969 10419 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10420 umode_t mode = inode->i_mode;
b83cc969 10421
cb6db4e5
JM
10422 if (mask & MAY_WRITE &&
10423 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10424 if (btrfs_root_readonly(root))
10425 return -EROFS;
10426 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10427 return -EACCES;
10428 }
2830ba7f 10429 return generic_permission(inode, mask);
fdebe2bd 10430}
39279cc3 10431
ef3b9af5
FM
10432static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10433{
10434 struct btrfs_trans_handle *trans;
10435 struct btrfs_root *root = BTRFS_I(dir)->root;
10436 struct inode *inode = NULL;
10437 u64 objectid;
10438 u64 index;
10439 int ret = 0;
10440
10441 /*
10442 * 5 units required for adding orphan entry
10443 */
10444 trans = btrfs_start_transaction(root, 5);
10445 if (IS_ERR(trans))
10446 return PTR_ERR(trans);
10447
10448 ret = btrfs_find_free_ino(root, &objectid);
10449 if (ret)
10450 goto out;
10451
10452 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10453 btrfs_ino(dir), objectid, mode, &index);
10454 if (IS_ERR(inode)) {
10455 ret = PTR_ERR(inode);
10456 inode = NULL;
10457 goto out;
10458 }
10459
ef3b9af5
FM
10460 inode->i_fop = &btrfs_file_operations;
10461 inode->i_op = &btrfs_file_inode_operations;
10462
10463 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10464 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10465
b0d5d10f
CM
10466 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10467 if (ret)
10468 goto out_inode;
10469
10470 ret = btrfs_update_inode(trans, root, inode);
10471 if (ret)
10472 goto out_inode;
ef3b9af5
FM
10473 ret = btrfs_orphan_add(trans, inode);
10474 if (ret)
b0d5d10f 10475 goto out_inode;
ef3b9af5 10476
5762b5c9
FM
10477 /*
10478 * We set number of links to 0 in btrfs_new_inode(), and here we set
10479 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10480 * through:
10481 *
10482 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10483 */
10484 set_nlink(inode, 1);
b0d5d10f 10485 unlock_new_inode(inode);
ef3b9af5
FM
10486 d_tmpfile(dentry, inode);
10487 mark_inode_dirty(inode);
10488
10489out:
10490 btrfs_end_transaction(trans, root);
10491 if (ret)
10492 iput(inode);
10493 btrfs_balance_delayed_items(root);
10494 btrfs_btree_balance_dirty(root);
ef3b9af5 10495 return ret;
b0d5d10f
CM
10496
10497out_inode:
10498 unlock_new_inode(inode);
10499 goto out;
10500
ef3b9af5
FM
10501}
10502
b38ef71c
FM
10503/* Inspired by filemap_check_errors() */
10504int btrfs_inode_check_errors(struct inode *inode)
10505{
10506 int ret = 0;
10507
10508 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10509 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10510 ret = -ENOSPC;
10511 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10512 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10513 ret = -EIO;
10514
10515 return ret;
10516}
10517
6e1d5dcc 10518static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10519 .getattr = btrfs_getattr,
39279cc3
CM
10520 .lookup = btrfs_lookup,
10521 .create = btrfs_create,
10522 .unlink = btrfs_unlink,
10523 .link = btrfs_link,
10524 .mkdir = btrfs_mkdir,
10525 .rmdir = btrfs_rmdir,
80ace85c 10526 .rename2 = btrfs_rename2,
39279cc3
CM
10527 .symlink = btrfs_symlink,
10528 .setattr = btrfs_setattr,
618e21d5 10529 .mknod = btrfs_mknod,
e0d46f5c 10530 .setxattr = generic_setxattr,
9172abbc 10531 .getxattr = generic_getxattr,
5103e947 10532 .listxattr = btrfs_listxattr,
e0d46f5c 10533 .removexattr = generic_removexattr,
fdebe2bd 10534 .permission = btrfs_permission,
4e34e719 10535 .get_acl = btrfs_get_acl,
996a710d 10536 .set_acl = btrfs_set_acl,
93fd63c2 10537 .update_time = btrfs_update_time,
ef3b9af5 10538 .tmpfile = btrfs_tmpfile,
39279cc3 10539};
6e1d5dcc 10540static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10541 .lookup = btrfs_lookup,
fdebe2bd 10542 .permission = btrfs_permission,
4e34e719 10543 .get_acl = btrfs_get_acl,
996a710d 10544 .set_acl = btrfs_set_acl,
93fd63c2 10545 .update_time = btrfs_update_time,
39279cc3 10546};
76dda93c 10547
828c0950 10548static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10549 .llseek = generic_file_llseek,
10550 .read = generic_read_dir,
02dbfc99 10551 .iterate_shared = btrfs_real_readdir,
34287aa3 10552 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10553#ifdef CONFIG_COMPAT
4c63c245 10554 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10555#endif
6bf13c0c 10556 .release = btrfs_release_file,
e02119d5 10557 .fsync = btrfs_sync_file,
39279cc3
CM
10558};
10559
20e5506b 10560static const struct extent_io_ops btrfs_extent_io_ops = {
07157aac 10561 .fill_delalloc = run_delalloc_range,
065631f6 10562 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 10563 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 10564 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 10565 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10566 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10567 .set_bit_hook = btrfs_set_bit_hook,
10568 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10569 .merge_extent_hook = btrfs_merge_extent_hook,
10570 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
10571};
10572
35054394
CM
10573/*
10574 * btrfs doesn't support the bmap operation because swapfiles
10575 * use bmap to make a mapping of extents in the file. They assume
10576 * these extents won't change over the life of the file and they
10577 * use the bmap result to do IO directly to the drive.
10578 *
10579 * the btrfs bmap call would return logical addresses that aren't
10580 * suitable for IO and they also will change frequently as COW
10581 * operations happen. So, swapfile + btrfs == corruption.
10582 *
10583 * For now we're avoiding this by dropping bmap.
10584 */
7f09410b 10585static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10586 .readpage = btrfs_readpage,
10587 .writepage = btrfs_writepage,
b293f02e 10588 .writepages = btrfs_writepages,
3ab2fb5a 10589 .readpages = btrfs_readpages,
16432985 10590 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10591 .invalidatepage = btrfs_invalidatepage,
10592 .releasepage = btrfs_releasepage,
e6dcd2dc 10593 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10594 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10595};
10596
7f09410b 10597static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10598 .readpage = btrfs_readpage,
10599 .writepage = btrfs_writepage,
2bf5a725
CM
10600 .invalidatepage = btrfs_invalidatepage,
10601 .releasepage = btrfs_releasepage,
39279cc3
CM
10602};
10603
6e1d5dcc 10604static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10605 .getattr = btrfs_getattr,
10606 .setattr = btrfs_setattr,
e0d46f5c 10607 .setxattr = generic_setxattr,
9172abbc 10608 .getxattr = generic_getxattr,
5103e947 10609 .listxattr = btrfs_listxattr,
e0d46f5c 10610 .removexattr = generic_removexattr,
fdebe2bd 10611 .permission = btrfs_permission,
1506fcc8 10612 .fiemap = btrfs_fiemap,
4e34e719 10613 .get_acl = btrfs_get_acl,
996a710d 10614 .set_acl = btrfs_set_acl,
e41f941a 10615 .update_time = btrfs_update_time,
39279cc3 10616};
6e1d5dcc 10617static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10618 .getattr = btrfs_getattr,
10619 .setattr = btrfs_setattr,
fdebe2bd 10620 .permission = btrfs_permission,
e0d46f5c 10621 .setxattr = generic_setxattr,
9172abbc 10622 .getxattr = generic_getxattr,
33268eaf 10623 .listxattr = btrfs_listxattr,
e0d46f5c 10624 .removexattr = generic_removexattr,
4e34e719 10625 .get_acl = btrfs_get_acl,
996a710d 10626 .set_acl = btrfs_set_acl,
e41f941a 10627 .update_time = btrfs_update_time,
618e21d5 10628};
6e1d5dcc 10629static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3 10630 .readlink = generic_readlink,
6b255391 10631 .get_link = page_get_link,
f209561a 10632 .getattr = btrfs_getattr,
22c44fe6 10633 .setattr = btrfs_setattr,
fdebe2bd 10634 .permission = btrfs_permission,
e0d46f5c 10635 .setxattr = generic_setxattr,
9172abbc 10636 .getxattr = generic_getxattr,
0279b4cd 10637 .listxattr = btrfs_listxattr,
e0d46f5c 10638 .removexattr = generic_removexattr,
e41f941a 10639 .update_time = btrfs_update_time,
39279cc3 10640};
76dda93c 10641
82d339d9 10642const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10643 .d_delete = btrfs_dentry_delete,
b4aff1f8 10644 .d_release = btrfs_dentry_release,
76dda93c 10645};