]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/inode.c
Btrfs: be more precise on errors when getting an inode from disk
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
55e301fd 42#include <linux/btrfs.h>
53b381b3 43#include <linux/blkdev.h>
f23b5a59 44#include <linux/posix_acl_xattr.h>
e2e40f2c 45#include <linux/uio.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
39279cc3
CM
63
64struct btrfs_iget_args {
90d3e592 65 struct btrfs_key *location;
39279cc3
CM
66 struct btrfs_root *root;
67};
68
f28a4928
FM
69struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
74};
75
6e1d5dcc
AD
76static const struct inode_operations btrfs_dir_inode_operations;
77static const struct inode_operations btrfs_symlink_inode_operations;
78static const struct inode_operations btrfs_dir_ro_inode_operations;
79static const struct inode_operations btrfs_special_inode_operations;
80static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
81static const struct address_space_operations btrfs_aops;
82static const struct address_space_operations btrfs_symlink_aops;
828c0950 83static const struct file_operations btrfs_dir_file_operations;
20e5506b 84static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
85
86static struct kmem_cache *btrfs_inode_cachep;
87struct kmem_cache *btrfs_trans_handle_cachep;
88struct kmem_cache *btrfs_transaction_cachep;
39279cc3 89struct kmem_cache *btrfs_path_cachep;
dc89e982 90struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
91
92#define S_SHIFT 12
4d4ab6d6 93static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101};
102
3972f260 103static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 104static int btrfs_truncate(struct inode *inode);
5fd02043 105static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
106static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
108 u64 start, u64 end, int *page_started,
109 unsigned long *nr_written, int unlock);
70c8a91c
JB
110static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
111 u64 len, u64 orig_start,
112 u64 block_start, u64 block_len,
cc95bef6
JB
113 u64 orig_block_len, u64 ram_bytes,
114 int type);
7b128766 115
48a3b636 116static int btrfs_dirty_inode(struct inode *inode);
7b128766 117
6a3891c5
JB
118#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
119void btrfs_test_inode_set_ops(struct inode *inode)
120{
121 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
122}
123#endif
124
f34f57a3 125static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
126 struct inode *inode, struct inode *dir,
127 const struct qstr *qstr)
0279b4cd
JO
128{
129 int err;
130
f34f57a3 131 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 132 if (!err)
2a7dba39 133 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
134 return err;
135}
136
c8b97818
CM
137/*
138 * this does all the hard work for inserting an inline extent into
139 * the btree. The caller should have done a btrfs_drop_extents so that
140 * no overlapping inline items exist in the btree
141 */
40f76580 142static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 143 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
144 struct btrfs_root *root, struct inode *inode,
145 u64 start, size_t size, size_t compressed_size,
fe3f566c 146 int compress_type,
c8b97818
CM
147 struct page **compressed_pages)
148{
c8b97818
CM
149 struct extent_buffer *leaf;
150 struct page *page = NULL;
151 char *kaddr;
152 unsigned long ptr;
153 struct btrfs_file_extent_item *ei;
154 int err = 0;
155 int ret;
156 size_t cur_size = size;
c8b97818 157 unsigned long offset;
c8b97818 158
fe3f566c 159 if (compressed_size && compressed_pages)
c8b97818 160 cur_size = compressed_size;
c8b97818 161
1acae57b 162 inode_add_bytes(inode, size);
c8b97818 163
1acae57b
FDBM
164 if (!extent_inserted) {
165 struct btrfs_key key;
166 size_t datasize;
c8b97818 167
1acae57b
FDBM
168 key.objectid = btrfs_ino(inode);
169 key.offset = start;
962a298f 170 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 171
1acae57b
FDBM
172 datasize = btrfs_file_extent_calc_inline_size(cur_size);
173 path->leave_spinning = 1;
174 ret = btrfs_insert_empty_item(trans, root, path, &key,
175 datasize);
176 if (ret) {
177 err = ret;
178 goto fail;
179 }
c8b97818
CM
180 }
181 leaf = path->nodes[0];
182 ei = btrfs_item_ptr(leaf, path->slots[0],
183 struct btrfs_file_extent_item);
184 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
185 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
186 btrfs_set_file_extent_encryption(leaf, ei, 0);
187 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
188 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
189 ptr = btrfs_file_extent_inline_start(ei);
190
261507a0 191 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
192 struct page *cpage;
193 int i = 0;
d397712b 194 while (compressed_size > 0) {
c8b97818 195 cpage = compressed_pages[i];
5b050f04 196 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 197 PAGE_SIZE);
c8b97818 198
7ac687d9 199 kaddr = kmap_atomic(cpage);
c8b97818 200 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 201 kunmap_atomic(kaddr);
c8b97818
CM
202
203 i++;
204 ptr += cur_size;
205 compressed_size -= cur_size;
206 }
207 btrfs_set_file_extent_compression(leaf, ei,
261507a0 208 compress_type);
c8b97818
CM
209 } else {
210 page = find_get_page(inode->i_mapping,
09cbfeaf 211 start >> PAGE_SHIFT);
c8b97818 212 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 213 kaddr = kmap_atomic(page);
09cbfeaf 214 offset = start & (PAGE_SIZE - 1);
c8b97818 215 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 216 kunmap_atomic(kaddr);
09cbfeaf 217 put_page(page);
c8b97818
CM
218 }
219 btrfs_mark_buffer_dirty(leaf);
1acae57b 220 btrfs_release_path(path);
c8b97818 221
c2167754
YZ
222 /*
223 * we're an inline extent, so nobody can
224 * extend the file past i_size without locking
225 * a page we already have locked.
226 *
227 * We must do any isize and inode updates
228 * before we unlock the pages. Otherwise we
229 * could end up racing with unlink.
230 */
c8b97818 231 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 232 ret = btrfs_update_inode(trans, root, inode);
c2167754 233
79787eaa 234 return ret;
c8b97818 235fail:
c8b97818
CM
236 return err;
237}
238
239
240/*
241 * conditionally insert an inline extent into the file. This
242 * does the checks required to make sure the data is small enough
243 * to fit as an inline extent.
244 */
00361589
JB
245static noinline int cow_file_range_inline(struct btrfs_root *root,
246 struct inode *inode, u64 start,
247 u64 end, size_t compressed_size,
248 int compress_type,
249 struct page **compressed_pages)
c8b97818 250{
00361589 251 struct btrfs_trans_handle *trans;
c8b97818
CM
252 u64 isize = i_size_read(inode);
253 u64 actual_end = min(end + 1, isize);
254 u64 inline_len = actual_end - start;
fda2832f 255 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
256 u64 data_len = inline_len;
257 int ret;
1acae57b
FDBM
258 struct btrfs_path *path;
259 int extent_inserted = 0;
260 u32 extent_item_size;
c8b97818
CM
261
262 if (compressed_size)
263 data_len = compressed_size;
264
265 if (start > 0 ||
0c29ba99 266 actual_end > root->sectorsize ||
354877be 267 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
268 (!compressed_size &&
269 (actual_end & (root->sectorsize - 1)) == 0) ||
270 end + 1 < isize ||
271 data_len > root->fs_info->max_inline) {
272 return 1;
273 }
274
1acae57b
FDBM
275 path = btrfs_alloc_path();
276 if (!path)
277 return -ENOMEM;
278
00361589 279 trans = btrfs_join_transaction(root);
1acae57b
FDBM
280 if (IS_ERR(trans)) {
281 btrfs_free_path(path);
00361589 282 return PTR_ERR(trans);
1acae57b 283 }
00361589
JB
284 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
285
1acae57b
FDBM
286 if (compressed_size && compressed_pages)
287 extent_item_size = btrfs_file_extent_calc_inline_size(
288 compressed_size);
289 else
290 extent_item_size = btrfs_file_extent_calc_inline_size(
291 inline_len);
292
293 ret = __btrfs_drop_extents(trans, root, inode, path,
294 start, aligned_end, NULL,
295 1, 1, extent_item_size, &extent_inserted);
00361589
JB
296 if (ret) {
297 btrfs_abort_transaction(trans, root, ret);
298 goto out;
299 }
c8b97818
CM
300
301 if (isize > actual_end)
302 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
303 ret = insert_inline_extent(trans, path, extent_inserted,
304 root, inode, start,
c8b97818 305 inline_len, compressed_size,
fe3f566c 306 compress_type, compressed_pages);
2adcac1a 307 if (ret && ret != -ENOSPC) {
79787eaa 308 btrfs_abort_transaction(trans, root, ret);
00361589 309 goto out;
2adcac1a 310 } else if (ret == -ENOSPC) {
00361589
JB
311 ret = 1;
312 goto out;
79787eaa 313 }
2adcac1a 314
bdc20e67 315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 316 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 317 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 318out:
94ed938a
QW
319 /*
320 * Don't forget to free the reserved space, as for inlined extent
321 * it won't count as data extent, free them directly here.
322 * And at reserve time, it's always aligned to page size, so
323 * just free one page here.
324 */
09cbfeaf 325 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
1acae57b 326 btrfs_free_path(path);
00361589
JB
327 btrfs_end_transaction(trans, root);
328 return ret;
c8b97818
CM
329}
330
771ed689
CM
331struct async_extent {
332 u64 start;
333 u64 ram_size;
334 u64 compressed_size;
335 struct page **pages;
336 unsigned long nr_pages;
261507a0 337 int compress_type;
771ed689
CM
338 struct list_head list;
339};
340
341struct async_cow {
342 struct inode *inode;
343 struct btrfs_root *root;
344 struct page *locked_page;
345 u64 start;
346 u64 end;
347 struct list_head extents;
348 struct btrfs_work work;
349};
350
351static noinline int add_async_extent(struct async_cow *cow,
352 u64 start, u64 ram_size,
353 u64 compressed_size,
354 struct page **pages,
261507a0
LZ
355 unsigned long nr_pages,
356 int compress_type)
771ed689
CM
357{
358 struct async_extent *async_extent;
359
360 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 361 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
362 async_extent->start = start;
363 async_extent->ram_size = ram_size;
364 async_extent->compressed_size = compressed_size;
365 async_extent->pages = pages;
366 async_extent->nr_pages = nr_pages;
261507a0 367 async_extent->compress_type = compress_type;
771ed689
CM
368 list_add_tail(&async_extent->list, &cow->extents);
369 return 0;
370}
371
f79707b0
WS
372static inline int inode_need_compress(struct inode *inode)
373{
374 struct btrfs_root *root = BTRFS_I(inode)->root;
375
376 /* force compress */
377 if (btrfs_test_opt(root, FORCE_COMPRESS))
378 return 1;
379 /* bad compression ratios */
380 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
381 return 0;
382 if (btrfs_test_opt(root, COMPRESS) ||
383 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
384 BTRFS_I(inode)->force_compress)
385 return 1;
386 return 0;
387}
388
d352ac68 389/*
771ed689
CM
390 * we create compressed extents in two phases. The first
391 * phase compresses a range of pages that have already been
392 * locked (both pages and state bits are locked).
c8b97818 393 *
771ed689
CM
394 * This is done inside an ordered work queue, and the compression
395 * is spread across many cpus. The actual IO submission is step
396 * two, and the ordered work queue takes care of making sure that
397 * happens in the same order things were put onto the queue by
398 * writepages and friends.
c8b97818 399 *
771ed689
CM
400 * If this code finds it can't get good compression, it puts an
401 * entry onto the work queue to write the uncompressed bytes. This
402 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
403 * are written in the same order that the flusher thread sent them
404 * down.
d352ac68 405 */
c44f649e 406static noinline void compress_file_range(struct inode *inode,
771ed689
CM
407 struct page *locked_page,
408 u64 start, u64 end,
409 struct async_cow *async_cow,
410 int *num_added)
b888db2b
CM
411{
412 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 413 u64 num_bytes;
db94535d 414 u64 blocksize = root->sectorsize;
c8b97818 415 u64 actual_end;
42dc7bab 416 u64 isize = i_size_read(inode);
e6dcd2dc 417 int ret = 0;
c8b97818
CM
418 struct page **pages = NULL;
419 unsigned long nr_pages;
420 unsigned long nr_pages_ret = 0;
421 unsigned long total_compressed = 0;
422 unsigned long total_in = 0;
ee22184b
BL
423 unsigned long max_compressed = SZ_128K;
424 unsigned long max_uncompressed = SZ_128K;
c8b97818
CM
425 int i;
426 int will_compress;
261507a0 427 int compress_type = root->fs_info->compress_type;
4adaa611 428 int redirty = 0;
b888db2b 429
4cb13e5d 430 /* if this is a small write inside eof, kick off a defrag */
ee22184b 431 if ((end - start + 1) < SZ_16K &&
4cb13e5d 432 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
433 btrfs_add_inode_defrag(NULL, inode);
434
42dc7bab 435 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
436again:
437 will_compress = 0;
09cbfeaf
KS
438 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
439 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
be20aa9d 440
f03d9301
CM
441 /*
442 * we don't want to send crud past the end of i_size through
443 * compression, that's just a waste of CPU time. So, if the
444 * end of the file is before the start of our current
445 * requested range of bytes, we bail out to the uncompressed
446 * cleanup code that can deal with all of this.
447 *
448 * It isn't really the fastest way to fix things, but this is a
449 * very uncommon corner.
450 */
451 if (actual_end <= start)
452 goto cleanup_and_bail_uncompressed;
453
c8b97818
CM
454 total_compressed = actual_end - start;
455
4bcbb332
SW
456 /*
457 * skip compression for a small file range(<=blocksize) that
01327610 458 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
459 */
460 if (total_compressed <= blocksize &&
461 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
462 goto cleanup_and_bail_uncompressed;
463
c8b97818
CM
464 /* we want to make sure that amount of ram required to uncompress
465 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
466 * of a compressed extent to 128k. This is a crucial number
467 * because it also controls how easily we can spread reads across
468 * cpus for decompression.
469 *
470 * We also want to make sure the amount of IO required to do
471 * a random read is reasonably small, so we limit the size of
472 * a compressed extent to 128k.
c8b97818
CM
473 */
474 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 475 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 476 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
477 total_in = 0;
478 ret = 0;
db94535d 479
771ed689
CM
480 /*
481 * we do compression for mount -o compress and when the
482 * inode has not been flagged as nocompress. This flag can
483 * change at any time if we discover bad compression ratios.
c8b97818 484 */
f79707b0 485 if (inode_need_compress(inode)) {
c8b97818 486 WARN_ON(pages);
31e818fe 487 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
488 if (!pages) {
489 /* just bail out to the uncompressed code */
490 goto cont;
491 }
c8b97818 492
261507a0
LZ
493 if (BTRFS_I(inode)->force_compress)
494 compress_type = BTRFS_I(inode)->force_compress;
495
4adaa611
CM
496 /*
497 * we need to call clear_page_dirty_for_io on each
498 * page in the range. Otherwise applications with the file
499 * mmap'd can wander in and change the page contents while
500 * we are compressing them.
501 *
502 * If the compression fails for any reason, we set the pages
503 * dirty again later on.
504 */
505 extent_range_clear_dirty_for_io(inode, start, end);
506 redirty = 1;
261507a0
LZ
507 ret = btrfs_compress_pages(compress_type,
508 inode->i_mapping, start,
509 total_compressed, pages,
510 nr_pages, &nr_pages_ret,
511 &total_in,
512 &total_compressed,
513 max_compressed);
c8b97818
CM
514
515 if (!ret) {
516 unsigned long offset = total_compressed &
09cbfeaf 517 (PAGE_SIZE - 1);
c8b97818
CM
518 struct page *page = pages[nr_pages_ret - 1];
519 char *kaddr;
520
521 /* zero the tail end of the last page, we might be
522 * sending it down to disk
523 */
524 if (offset) {
7ac687d9 525 kaddr = kmap_atomic(page);
c8b97818 526 memset(kaddr + offset, 0,
09cbfeaf 527 PAGE_SIZE - offset);
7ac687d9 528 kunmap_atomic(kaddr);
c8b97818
CM
529 }
530 will_compress = 1;
531 }
532 }
560f7d75 533cont:
c8b97818
CM
534 if (start == 0) {
535 /* lets try to make an inline extent */
771ed689 536 if (ret || total_in < (actual_end - start)) {
c8b97818 537 /* we didn't compress the entire range, try
771ed689 538 * to make an uncompressed inline extent.
c8b97818 539 */
00361589
JB
540 ret = cow_file_range_inline(root, inode, start, end,
541 0, 0, NULL);
c8b97818 542 } else {
771ed689 543 /* try making a compressed inline extent */
00361589 544 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
545 total_compressed,
546 compress_type, pages);
c8b97818 547 }
79787eaa 548 if (ret <= 0) {
151a41bc
JB
549 unsigned long clear_flags = EXTENT_DELALLOC |
550 EXTENT_DEFRAG;
e6eb4314
FM
551 unsigned long page_error_op;
552
151a41bc 553 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 554 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 555
771ed689 556 /*
79787eaa
JM
557 * inline extent creation worked or returned error,
558 * we don't need to create any more async work items.
559 * Unlock and free up our temp pages.
771ed689 560 */
c2790a2e 561 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 562 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
563 PAGE_CLEAR_DIRTY |
564 PAGE_SET_WRITEBACK |
e6eb4314 565 page_error_op |
c2790a2e 566 PAGE_END_WRITEBACK);
c8b97818
CM
567 goto free_pages_out;
568 }
569 }
570
571 if (will_compress) {
572 /*
573 * we aren't doing an inline extent round the compressed size
574 * up to a block size boundary so the allocator does sane
575 * things
576 */
fda2832f 577 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
578
579 /*
580 * one last check to make sure the compression is really a
581 * win, compare the page count read with the blocks on disk
582 */
09cbfeaf 583 total_in = ALIGN(total_in, PAGE_SIZE);
c8b97818
CM
584 if (total_compressed >= total_in) {
585 will_compress = 0;
586 } else {
c8b97818
CM
587 num_bytes = total_in;
588 }
589 }
590 if (!will_compress && pages) {
591 /*
592 * the compression code ran but failed to make things smaller,
593 * free any pages it allocated and our page pointer array
594 */
595 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 596 WARN_ON(pages[i]->mapping);
09cbfeaf 597 put_page(pages[i]);
c8b97818
CM
598 }
599 kfree(pages);
600 pages = NULL;
601 total_compressed = 0;
602 nr_pages_ret = 0;
603
604 /* flag the file so we don't compress in the future */
1e701a32
CM
605 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
606 !(BTRFS_I(inode)->force_compress)) {
a555f810 607 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 608 }
c8b97818 609 }
771ed689
CM
610 if (will_compress) {
611 *num_added += 1;
c8b97818 612
771ed689
CM
613 /* the async work queues will take care of doing actual
614 * allocation on disk for these compressed pages,
615 * and will submit them to the elevator.
616 */
617 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
618 total_compressed, pages, nr_pages_ret,
619 compress_type);
179e29e4 620
24ae6365 621 if (start + num_bytes < end) {
771ed689
CM
622 start += num_bytes;
623 pages = NULL;
624 cond_resched();
625 goto again;
626 }
627 } else {
f03d9301 628cleanup_and_bail_uncompressed:
771ed689
CM
629 /*
630 * No compression, but we still need to write the pages in
631 * the file we've been given so far. redirty the locked
632 * page if it corresponds to our extent and set things up
633 * for the async work queue to run cow_file_range to do
634 * the normal delalloc dance
635 */
636 if (page_offset(locked_page) >= start &&
637 page_offset(locked_page) <= end) {
638 __set_page_dirty_nobuffers(locked_page);
639 /* unlocked later on in the async handlers */
640 }
4adaa611
CM
641 if (redirty)
642 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
643 add_async_extent(async_cow, start, end - start + 1,
644 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
645 *num_added += 1;
646 }
3b951516 647
c44f649e 648 return;
771ed689
CM
649
650free_pages_out:
651 for (i = 0; i < nr_pages_ret; i++) {
652 WARN_ON(pages[i]->mapping);
09cbfeaf 653 put_page(pages[i]);
771ed689 654 }
d397712b 655 kfree(pages);
771ed689 656}
771ed689 657
40ae837b
FM
658static void free_async_extent_pages(struct async_extent *async_extent)
659{
660 int i;
661
662 if (!async_extent->pages)
663 return;
664
665 for (i = 0; i < async_extent->nr_pages; i++) {
666 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 667 put_page(async_extent->pages[i]);
40ae837b
FM
668 }
669 kfree(async_extent->pages);
670 async_extent->nr_pages = 0;
671 async_extent->pages = NULL;
771ed689
CM
672}
673
674/*
675 * phase two of compressed writeback. This is the ordered portion
676 * of the code, which only gets called in the order the work was
677 * queued. We walk all the async extents created by compress_file_range
678 * and send them down to the disk.
679 */
dec8f175 680static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
681 struct async_cow *async_cow)
682{
683 struct async_extent *async_extent;
684 u64 alloc_hint = 0;
771ed689
CM
685 struct btrfs_key ins;
686 struct extent_map *em;
687 struct btrfs_root *root = BTRFS_I(inode)->root;
688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
689 struct extent_io_tree *io_tree;
f5a84ee3 690 int ret = 0;
771ed689 691
3e04e7f1 692again:
d397712b 693 while (!list_empty(&async_cow->extents)) {
771ed689
CM
694 async_extent = list_entry(async_cow->extents.next,
695 struct async_extent, list);
696 list_del(&async_extent->list);
c8b97818 697
771ed689
CM
698 io_tree = &BTRFS_I(inode)->io_tree;
699
f5a84ee3 700retry:
771ed689
CM
701 /* did the compression code fall back to uncompressed IO? */
702 if (!async_extent->pages) {
703 int page_started = 0;
704 unsigned long nr_written = 0;
705
706 lock_extent(io_tree, async_extent->start,
2ac55d41 707 async_extent->start +
d0082371 708 async_extent->ram_size - 1);
771ed689
CM
709
710 /* allocate blocks */
f5a84ee3
JB
711 ret = cow_file_range(inode, async_cow->locked_page,
712 async_extent->start,
713 async_extent->start +
714 async_extent->ram_size - 1,
715 &page_started, &nr_written, 0);
771ed689 716
79787eaa
JM
717 /* JDM XXX */
718
771ed689
CM
719 /*
720 * if page_started, cow_file_range inserted an
721 * inline extent and took care of all the unlocking
722 * and IO for us. Otherwise, we need to submit
723 * all those pages down to the drive.
724 */
f5a84ee3 725 if (!page_started && !ret)
771ed689
CM
726 extent_write_locked_range(io_tree,
727 inode, async_extent->start,
d397712b 728 async_extent->start +
771ed689
CM
729 async_extent->ram_size - 1,
730 btrfs_get_extent,
731 WB_SYNC_ALL);
3e04e7f1
JB
732 else if (ret)
733 unlock_page(async_cow->locked_page);
771ed689
CM
734 kfree(async_extent);
735 cond_resched();
736 continue;
737 }
738
739 lock_extent(io_tree, async_extent->start,
d0082371 740 async_extent->start + async_extent->ram_size - 1);
771ed689 741
00361589 742 ret = btrfs_reserve_extent(root,
771ed689
CM
743 async_extent->compressed_size,
744 async_extent->compressed_size,
e570fd27 745 0, alloc_hint, &ins, 1, 1);
f5a84ee3 746 if (ret) {
40ae837b 747 free_async_extent_pages(async_extent);
3e04e7f1 748
fdf8e2ea
JB
749 if (ret == -ENOSPC) {
750 unlock_extent(io_tree, async_extent->start,
751 async_extent->start +
752 async_extent->ram_size - 1);
ce62003f
LB
753
754 /*
755 * we need to redirty the pages if we decide to
756 * fallback to uncompressed IO, otherwise we
757 * will not submit these pages down to lower
758 * layers.
759 */
760 extent_range_redirty_for_io(inode,
761 async_extent->start,
762 async_extent->start +
763 async_extent->ram_size - 1);
764
79787eaa 765 goto retry;
fdf8e2ea 766 }
3e04e7f1 767 goto out_free;
f5a84ee3 768 }
c2167754
YZ
769 /*
770 * here we're doing allocation and writeback of the
771 * compressed pages
772 */
773 btrfs_drop_extent_cache(inode, async_extent->start,
774 async_extent->start +
775 async_extent->ram_size - 1, 0);
776
172ddd60 777 em = alloc_extent_map();
b9aa55be
LB
778 if (!em) {
779 ret = -ENOMEM;
3e04e7f1 780 goto out_free_reserve;
b9aa55be 781 }
771ed689
CM
782 em->start = async_extent->start;
783 em->len = async_extent->ram_size;
445a6944 784 em->orig_start = em->start;
2ab28f32
JB
785 em->mod_start = em->start;
786 em->mod_len = em->len;
c8b97818 787
771ed689
CM
788 em->block_start = ins.objectid;
789 em->block_len = ins.offset;
b4939680 790 em->orig_block_len = ins.offset;
cc95bef6 791 em->ram_bytes = async_extent->ram_size;
771ed689 792 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 793 em->compress_type = async_extent->compress_type;
771ed689
CM
794 set_bit(EXTENT_FLAG_PINNED, &em->flags);
795 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 796 em->generation = -1;
771ed689 797
d397712b 798 while (1) {
890871be 799 write_lock(&em_tree->lock);
09a2a8f9 800 ret = add_extent_mapping(em_tree, em, 1);
890871be 801 write_unlock(&em_tree->lock);
771ed689
CM
802 if (ret != -EEXIST) {
803 free_extent_map(em);
804 break;
805 }
806 btrfs_drop_extent_cache(inode, async_extent->start,
807 async_extent->start +
808 async_extent->ram_size - 1, 0);
809 }
810
3e04e7f1
JB
811 if (ret)
812 goto out_free_reserve;
813
261507a0
LZ
814 ret = btrfs_add_ordered_extent_compress(inode,
815 async_extent->start,
816 ins.objectid,
817 async_extent->ram_size,
818 ins.offset,
819 BTRFS_ORDERED_COMPRESSED,
820 async_extent->compress_type);
d9f85963
FM
821 if (ret) {
822 btrfs_drop_extent_cache(inode, async_extent->start,
823 async_extent->start +
824 async_extent->ram_size - 1, 0);
3e04e7f1 825 goto out_free_reserve;
d9f85963 826 }
9cfa3e34 827 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
771ed689 828
771ed689
CM
829 /*
830 * clear dirty, set writeback and unlock the pages.
831 */
c2790a2e 832 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
833 async_extent->start +
834 async_extent->ram_size - 1,
151a41bc
JB
835 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
836 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 837 PAGE_SET_WRITEBACK);
771ed689 838 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
839 async_extent->start,
840 async_extent->ram_size,
841 ins.objectid,
842 ins.offset, async_extent->pages,
843 async_extent->nr_pages);
fce2a4e6
FM
844 if (ret) {
845 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
846 struct page *p = async_extent->pages[0];
847 const u64 start = async_extent->start;
848 const u64 end = start + async_extent->ram_size - 1;
849
850 p->mapping = inode->i_mapping;
851 tree->ops->writepage_end_io_hook(p, start, end,
852 NULL, 0);
853 p->mapping = NULL;
854 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
855 PAGE_END_WRITEBACK |
856 PAGE_SET_ERROR);
40ae837b 857 free_async_extent_pages(async_extent);
fce2a4e6 858 }
771ed689
CM
859 alloc_hint = ins.objectid + ins.offset;
860 kfree(async_extent);
861 cond_resched();
862 }
dec8f175 863 return;
3e04e7f1 864out_free_reserve:
9cfa3e34 865 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
e570fd27 866 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 867out_free:
c2790a2e 868 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
869 async_extent->start +
870 async_extent->ram_size - 1,
c2790a2e 871 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
872 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
873 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
874 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
875 PAGE_SET_ERROR);
40ae837b 876 free_async_extent_pages(async_extent);
79787eaa 877 kfree(async_extent);
3e04e7f1 878 goto again;
771ed689
CM
879}
880
4b46fce2
JB
881static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
882 u64 num_bytes)
883{
884 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
885 struct extent_map *em;
886 u64 alloc_hint = 0;
887
888 read_lock(&em_tree->lock);
889 em = search_extent_mapping(em_tree, start, num_bytes);
890 if (em) {
891 /*
892 * if block start isn't an actual block number then find the
893 * first block in this inode and use that as a hint. If that
894 * block is also bogus then just don't worry about it.
895 */
896 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
897 free_extent_map(em);
898 em = search_extent_mapping(em_tree, 0, 0);
899 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
900 alloc_hint = em->block_start;
901 if (em)
902 free_extent_map(em);
903 } else {
904 alloc_hint = em->block_start;
905 free_extent_map(em);
906 }
907 }
908 read_unlock(&em_tree->lock);
909
910 return alloc_hint;
911}
912
771ed689
CM
913/*
914 * when extent_io.c finds a delayed allocation range in the file,
915 * the call backs end up in this code. The basic idea is to
916 * allocate extents on disk for the range, and create ordered data structs
917 * in ram to track those extents.
918 *
919 * locked_page is the page that writepage had locked already. We use
920 * it to make sure we don't do extra locks or unlocks.
921 *
922 * *page_started is set to one if we unlock locked_page and do everything
923 * required to start IO on it. It may be clean and already done with
924 * IO when we return.
925 */
00361589
JB
926static noinline int cow_file_range(struct inode *inode,
927 struct page *locked_page,
928 u64 start, u64 end, int *page_started,
929 unsigned long *nr_written,
930 int unlock)
771ed689 931{
00361589 932 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
933 u64 alloc_hint = 0;
934 u64 num_bytes;
935 unsigned long ram_size;
936 u64 disk_num_bytes;
937 u64 cur_alloc_size;
938 u64 blocksize = root->sectorsize;
771ed689
CM
939 struct btrfs_key ins;
940 struct extent_map *em;
941 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
942 int ret = 0;
943
02ecd2c2
JB
944 if (btrfs_is_free_space_inode(inode)) {
945 WARN_ON_ONCE(1);
29bce2f3
JB
946 ret = -EINVAL;
947 goto out_unlock;
02ecd2c2 948 }
771ed689 949
fda2832f 950 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
951 num_bytes = max(blocksize, num_bytes);
952 disk_num_bytes = num_bytes;
771ed689 953
4cb5300b 954 /* if this is a small write inside eof, kick off defrag */
ee22184b 955 if (num_bytes < SZ_64K &&
4cb13e5d 956 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 957 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 958
771ed689
CM
959 if (start == 0) {
960 /* lets try to make an inline extent */
00361589
JB
961 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
962 NULL);
771ed689 963 if (ret == 0) {
c2790a2e
JB
964 extent_clear_unlock_delalloc(inode, start, end, NULL,
965 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 966 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
967 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
968 PAGE_END_WRITEBACK);
c2167754 969
771ed689 970 *nr_written = *nr_written +
09cbfeaf 971 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 972 *page_started = 1;
771ed689 973 goto out;
79787eaa 974 } else if (ret < 0) {
79787eaa 975 goto out_unlock;
771ed689
CM
976 }
977 }
978
979 BUG_ON(disk_num_bytes >
6c41761f 980 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 981
4b46fce2 982 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
983 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
984
d397712b 985 while (disk_num_bytes > 0) {
a791e35e
CM
986 unsigned long op;
987
287a0ab9 988 cur_alloc_size = disk_num_bytes;
00361589 989 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 990 root->sectorsize, 0, alloc_hint,
e570fd27 991 &ins, 1, 1);
00361589 992 if (ret < 0)
79787eaa 993 goto out_unlock;
d397712b 994
172ddd60 995 em = alloc_extent_map();
b9aa55be
LB
996 if (!em) {
997 ret = -ENOMEM;
ace68bac 998 goto out_reserve;
b9aa55be 999 }
e6dcd2dc 1000 em->start = start;
445a6944 1001 em->orig_start = em->start;
771ed689
CM
1002 ram_size = ins.offset;
1003 em->len = ins.offset;
2ab28f32
JB
1004 em->mod_start = em->start;
1005 em->mod_len = em->len;
c8b97818 1006
e6dcd2dc 1007 em->block_start = ins.objectid;
c8b97818 1008 em->block_len = ins.offset;
b4939680 1009 em->orig_block_len = ins.offset;
cc95bef6 1010 em->ram_bytes = ram_size;
e6dcd2dc 1011 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 1012 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 1013 em->generation = -1;
c8b97818 1014
d397712b 1015 while (1) {
890871be 1016 write_lock(&em_tree->lock);
09a2a8f9 1017 ret = add_extent_mapping(em_tree, em, 1);
890871be 1018 write_unlock(&em_tree->lock);
e6dcd2dc
CM
1019 if (ret != -EEXIST) {
1020 free_extent_map(em);
1021 break;
1022 }
1023 btrfs_drop_extent_cache(inode, start,
c8b97818 1024 start + ram_size - 1, 0);
e6dcd2dc 1025 }
ace68bac
LB
1026 if (ret)
1027 goto out_reserve;
e6dcd2dc 1028
98d20f67 1029 cur_alloc_size = ins.offset;
e6dcd2dc 1030 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1031 ram_size, cur_alloc_size, 0);
ace68bac 1032 if (ret)
d9f85963 1033 goto out_drop_extent_cache;
c8b97818 1034
17d217fe
YZ
1035 if (root->root_key.objectid ==
1036 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1037 ret = btrfs_reloc_clone_csums(inode, start,
1038 cur_alloc_size);
00361589 1039 if (ret)
d9f85963 1040 goto out_drop_extent_cache;
17d217fe
YZ
1041 }
1042
9cfa3e34
FM
1043 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1044
d397712b 1045 if (disk_num_bytes < cur_alloc_size)
3b951516 1046 break;
d397712b 1047
c8b97818
CM
1048 /* we're not doing compressed IO, don't unlock the first
1049 * page (which the caller expects to stay locked), don't
1050 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1051 *
1052 * Do set the Private2 bit so we know this page was properly
1053 * setup for writepage
c8b97818 1054 */
c2790a2e
JB
1055 op = unlock ? PAGE_UNLOCK : 0;
1056 op |= PAGE_SET_PRIVATE2;
a791e35e 1057
c2790a2e
JB
1058 extent_clear_unlock_delalloc(inode, start,
1059 start + ram_size - 1, locked_page,
1060 EXTENT_LOCKED | EXTENT_DELALLOC,
1061 op);
c8b97818 1062 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1063 num_bytes -= cur_alloc_size;
1064 alloc_hint = ins.objectid + ins.offset;
1065 start += cur_alloc_size;
b888db2b 1066 }
79787eaa 1067out:
be20aa9d 1068 return ret;
b7d5b0a8 1069
d9f85963
FM
1070out_drop_extent_cache:
1071 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1072out_reserve:
9cfa3e34 1073 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
e570fd27 1074 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1075out_unlock:
c2790a2e 1076 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1077 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1078 EXTENT_DELALLOC | EXTENT_DEFRAG,
1079 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1080 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1081 goto out;
771ed689 1082}
c8b97818 1083
771ed689
CM
1084/*
1085 * work queue call back to started compression on a file and pages
1086 */
1087static noinline void async_cow_start(struct btrfs_work *work)
1088{
1089 struct async_cow *async_cow;
1090 int num_added = 0;
1091 async_cow = container_of(work, struct async_cow, work);
1092
1093 compress_file_range(async_cow->inode, async_cow->locked_page,
1094 async_cow->start, async_cow->end, async_cow,
1095 &num_added);
8180ef88 1096 if (num_added == 0) {
cb77fcd8 1097 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1098 async_cow->inode = NULL;
8180ef88 1099 }
771ed689
CM
1100}
1101
1102/*
1103 * work queue call back to submit previously compressed pages
1104 */
1105static noinline void async_cow_submit(struct btrfs_work *work)
1106{
1107 struct async_cow *async_cow;
1108 struct btrfs_root *root;
1109 unsigned long nr_pages;
1110
1111 async_cow = container_of(work, struct async_cow, work);
1112
1113 root = async_cow->root;
09cbfeaf
KS
1114 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1115 PAGE_SHIFT;
771ed689 1116
ee863954
DS
1117 /*
1118 * atomic_sub_return implies a barrier for waitqueue_active
1119 */
66657b31 1120 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
ee22184b 1121 5 * SZ_1M &&
771ed689
CM
1122 waitqueue_active(&root->fs_info->async_submit_wait))
1123 wake_up(&root->fs_info->async_submit_wait);
1124
d397712b 1125 if (async_cow->inode)
771ed689 1126 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1127}
c8b97818 1128
771ed689
CM
1129static noinline void async_cow_free(struct btrfs_work *work)
1130{
1131 struct async_cow *async_cow;
1132 async_cow = container_of(work, struct async_cow, work);
8180ef88 1133 if (async_cow->inode)
cb77fcd8 1134 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1135 kfree(async_cow);
1136}
1137
1138static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1139 u64 start, u64 end, int *page_started,
1140 unsigned long *nr_written)
1141{
1142 struct async_cow *async_cow;
1143 struct btrfs_root *root = BTRFS_I(inode)->root;
1144 unsigned long nr_pages;
1145 u64 cur_end;
ee22184b 1146 int limit = 10 * SZ_1M;
771ed689 1147
a3429ab7
CM
1148 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1149 1, 0, NULL, GFP_NOFS);
d397712b 1150 while (start < end) {
771ed689 1151 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1152 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1153 async_cow->inode = igrab(inode);
771ed689
CM
1154 async_cow->root = root;
1155 async_cow->locked_page = locked_page;
1156 async_cow->start = start;
1157
f79707b0
WS
1158 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1159 !btrfs_test_opt(root, FORCE_COMPRESS))
771ed689
CM
1160 cur_end = end;
1161 else
ee22184b 1162 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1163
1164 async_cow->end = cur_end;
1165 INIT_LIST_HEAD(&async_cow->extents);
1166
9e0af237
LB
1167 btrfs_init_work(&async_cow->work,
1168 btrfs_delalloc_helper,
1169 async_cow_start, async_cow_submit,
1170 async_cow_free);
771ed689 1171
09cbfeaf
KS
1172 nr_pages = (cur_end - start + PAGE_SIZE) >>
1173 PAGE_SHIFT;
771ed689
CM
1174 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1175
afe3d242
QW
1176 btrfs_queue_work(root->fs_info->delalloc_workers,
1177 &async_cow->work);
771ed689
CM
1178
1179 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1180 wait_event(root->fs_info->async_submit_wait,
1181 (atomic_read(&root->fs_info->async_delalloc_pages) <
1182 limit));
1183 }
1184
d397712b 1185 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1186 atomic_read(&root->fs_info->async_delalloc_pages)) {
1187 wait_event(root->fs_info->async_submit_wait,
1188 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1189 0));
1190 }
1191
1192 *nr_written += nr_pages;
1193 start = cur_end + 1;
1194 }
1195 *page_started = 1;
1196 return 0;
be20aa9d
CM
1197}
1198
d397712b 1199static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1200 u64 bytenr, u64 num_bytes)
1201{
1202 int ret;
1203 struct btrfs_ordered_sum *sums;
1204 LIST_HEAD(list);
1205
07d400a6 1206 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1207 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1208 if (ret == 0 && list_empty(&list))
1209 return 0;
1210
1211 while (!list_empty(&list)) {
1212 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1213 list_del(&sums->list);
1214 kfree(sums);
1215 }
1216 return 1;
1217}
1218
d352ac68
CM
1219/*
1220 * when nowcow writeback call back. This checks for snapshots or COW copies
1221 * of the extents that exist in the file, and COWs the file as required.
1222 *
1223 * If no cow copies or snapshots exist, we write directly to the existing
1224 * blocks on disk
1225 */
7f366cfe
CM
1226static noinline int run_delalloc_nocow(struct inode *inode,
1227 struct page *locked_page,
771ed689
CM
1228 u64 start, u64 end, int *page_started, int force,
1229 unsigned long *nr_written)
be20aa9d 1230{
be20aa9d 1231 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1232 struct btrfs_trans_handle *trans;
be20aa9d 1233 struct extent_buffer *leaf;
be20aa9d 1234 struct btrfs_path *path;
80ff3856 1235 struct btrfs_file_extent_item *fi;
be20aa9d 1236 struct btrfs_key found_key;
80ff3856
YZ
1237 u64 cow_start;
1238 u64 cur_offset;
1239 u64 extent_end;
5d4f98a2 1240 u64 extent_offset;
80ff3856
YZ
1241 u64 disk_bytenr;
1242 u64 num_bytes;
b4939680 1243 u64 disk_num_bytes;
cc95bef6 1244 u64 ram_bytes;
80ff3856 1245 int extent_type;
79787eaa 1246 int ret, err;
d899e052 1247 int type;
80ff3856
YZ
1248 int nocow;
1249 int check_prev = 1;
82d5902d 1250 bool nolock;
33345d01 1251 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1252
1253 path = btrfs_alloc_path();
17ca04af 1254 if (!path) {
c2790a2e
JB
1255 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1256 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1257 EXTENT_DO_ACCOUNTING |
1258 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1259 PAGE_CLEAR_DIRTY |
1260 PAGE_SET_WRITEBACK |
1261 PAGE_END_WRITEBACK);
d8926bb3 1262 return -ENOMEM;
17ca04af 1263 }
82d5902d 1264
83eea1f1 1265 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1266
1267 if (nolock)
7a7eaa40 1268 trans = btrfs_join_transaction_nolock(root);
82d5902d 1269 else
7a7eaa40 1270 trans = btrfs_join_transaction(root);
ff5714cc 1271
79787eaa 1272 if (IS_ERR(trans)) {
c2790a2e
JB
1273 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1274 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1275 EXTENT_DO_ACCOUNTING |
1276 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1277 PAGE_CLEAR_DIRTY |
1278 PAGE_SET_WRITEBACK |
1279 PAGE_END_WRITEBACK);
79787eaa
JM
1280 btrfs_free_path(path);
1281 return PTR_ERR(trans);
1282 }
1283
74b21075 1284 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1285
80ff3856
YZ
1286 cow_start = (u64)-1;
1287 cur_offset = start;
1288 while (1) {
33345d01 1289 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1290 cur_offset, 0);
d788a349 1291 if (ret < 0)
79787eaa 1292 goto error;
80ff3856
YZ
1293 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1294 leaf = path->nodes[0];
1295 btrfs_item_key_to_cpu(leaf, &found_key,
1296 path->slots[0] - 1);
33345d01 1297 if (found_key.objectid == ino &&
80ff3856
YZ
1298 found_key.type == BTRFS_EXTENT_DATA_KEY)
1299 path->slots[0]--;
1300 }
1301 check_prev = 0;
1302next_slot:
1303 leaf = path->nodes[0];
1304 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1305 ret = btrfs_next_leaf(root, path);
d788a349 1306 if (ret < 0)
79787eaa 1307 goto error;
80ff3856
YZ
1308 if (ret > 0)
1309 break;
1310 leaf = path->nodes[0];
1311 }
be20aa9d 1312
80ff3856
YZ
1313 nocow = 0;
1314 disk_bytenr = 0;
17d217fe 1315 num_bytes = 0;
80ff3856
YZ
1316 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1317
1d512cb7
FM
1318 if (found_key.objectid > ino)
1319 break;
1320 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1321 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1322 path->slots[0]++;
1323 goto next_slot;
1324 }
1325 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1326 found_key.offset > end)
1327 break;
1328
1329 if (found_key.offset > cur_offset) {
1330 extent_end = found_key.offset;
e9061e21 1331 extent_type = 0;
80ff3856
YZ
1332 goto out_check;
1333 }
1334
1335 fi = btrfs_item_ptr(leaf, path->slots[0],
1336 struct btrfs_file_extent_item);
1337 extent_type = btrfs_file_extent_type(leaf, fi);
1338
cc95bef6 1339 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1340 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1341 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1342 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1343 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1344 extent_end = found_key.offset +
1345 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1346 disk_num_bytes =
1347 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1348 if (extent_end <= start) {
1349 path->slots[0]++;
1350 goto next_slot;
1351 }
17d217fe
YZ
1352 if (disk_bytenr == 0)
1353 goto out_check;
80ff3856
YZ
1354 if (btrfs_file_extent_compression(leaf, fi) ||
1355 btrfs_file_extent_encryption(leaf, fi) ||
1356 btrfs_file_extent_other_encoding(leaf, fi))
1357 goto out_check;
d899e052
YZ
1358 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1359 goto out_check;
d2fb3437 1360 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1361 goto out_check;
33345d01 1362 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1363 found_key.offset -
1364 extent_offset, disk_bytenr))
17d217fe 1365 goto out_check;
5d4f98a2 1366 disk_bytenr += extent_offset;
17d217fe
YZ
1367 disk_bytenr += cur_offset - found_key.offset;
1368 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1369 /*
1370 * if there are pending snapshots for this root,
1371 * we fall into common COW way.
1372 */
1373 if (!nolock) {
9ea24bbe 1374 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1375 if (!err)
1376 goto out_check;
1377 }
17d217fe
YZ
1378 /*
1379 * force cow if csum exists in the range.
1380 * this ensure that csum for a given extent are
1381 * either valid or do not exist.
1382 */
1383 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1384 goto out_check;
f78c436c
FM
1385 if (!btrfs_inc_nocow_writers(root->fs_info,
1386 disk_bytenr))
1387 goto out_check;
80ff3856
YZ
1388 nocow = 1;
1389 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1390 extent_end = found_key.offset +
514ac8ad
CM
1391 btrfs_file_extent_inline_len(leaf,
1392 path->slots[0], fi);
80ff3856
YZ
1393 extent_end = ALIGN(extent_end, root->sectorsize);
1394 } else {
1395 BUG_ON(1);
1396 }
1397out_check:
1398 if (extent_end <= start) {
1399 path->slots[0]++;
e9894fd3 1400 if (!nolock && nocow)
9ea24bbe 1401 btrfs_end_write_no_snapshoting(root);
f78c436c
FM
1402 if (nocow)
1403 btrfs_dec_nocow_writers(root->fs_info,
1404 disk_bytenr);
80ff3856
YZ
1405 goto next_slot;
1406 }
1407 if (!nocow) {
1408 if (cow_start == (u64)-1)
1409 cow_start = cur_offset;
1410 cur_offset = extent_end;
1411 if (cur_offset > end)
1412 break;
1413 path->slots[0]++;
1414 goto next_slot;
7ea394f1
YZ
1415 }
1416
b3b4aa74 1417 btrfs_release_path(path);
80ff3856 1418 if (cow_start != (u64)-1) {
00361589
JB
1419 ret = cow_file_range(inode, locked_page,
1420 cow_start, found_key.offset - 1,
1421 page_started, nr_written, 1);
e9894fd3
WS
1422 if (ret) {
1423 if (!nolock && nocow)
9ea24bbe 1424 btrfs_end_write_no_snapshoting(root);
f78c436c
FM
1425 if (nocow)
1426 btrfs_dec_nocow_writers(root->fs_info,
1427 disk_bytenr);
79787eaa 1428 goto error;
e9894fd3 1429 }
80ff3856 1430 cow_start = (u64)-1;
7ea394f1 1431 }
80ff3856 1432
d899e052
YZ
1433 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1434 struct extent_map *em;
1435 struct extent_map_tree *em_tree;
1436 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1437 em = alloc_extent_map();
79787eaa 1438 BUG_ON(!em); /* -ENOMEM */
d899e052 1439 em->start = cur_offset;
70c8a91c 1440 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1441 em->len = num_bytes;
1442 em->block_len = num_bytes;
1443 em->block_start = disk_bytenr;
b4939680 1444 em->orig_block_len = disk_num_bytes;
cc95bef6 1445 em->ram_bytes = ram_bytes;
d899e052 1446 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1447 em->mod_start = em->start;
1448 em->mod_len = em->len;
d899e052 1449 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1450 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1451 em->generation = -1;
d899e052 1452 while (1) {
890871be 1453 write_lock(&em_tree->lock);
09a2a8f9 1454 ret = add_extent_mapping(em_tree, em, 1);
890871be 1455 write_unlock(&em_tree->lock);
d899e052
YZ
1456 if (ret != -EEXIST) {
1457 free_extent_map(em);
1458 break;
1459 }
1460 btrfs_drop_extent_cache(inode, em->start,
1461 em->start + em->len - 1, 0);
1462 }
1463 type = BTRFS_ORDERED_PREALLOC;
1464 } else {
1465 type = BTRFS_ORDERED_NOCOW;
1466 }
80ff3856
YZ
1467
1468 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1469 num_bytes, num_bytes, type);
f78c436c
FM
1470 if (nocow)
1471 btrfs_dec_nocow_writers(root->fs_info, disk_bytenr);
79787eaa 1472 BUG_ON(ret); /* -ENOMEM */
771ed689 1473
efa56464
YZ
1474 if (root->root_key.objectid ==
1475 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1476 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1477 num_bytes);
e9894fd3
WS
1478 if (ret) {
1479 if (!nolock && nocow)
9ea24bbe 1480 btrfs_end_write_no_snapshoting(root);
79787eaa 1481 goto error;
e9894fd3 1482 }
efa56464
YZ
1483 }
1484
c2790a2e
JB
1485 extent_clear_unlock_delalloc(inode, cur_offset,
1486 cur_offset + num_bytes - 1,
1487 locked_page, EXTENT_LOCKED |
1488 EXTENT_DELALLOC, PAGE_UNLOCK |
1489 PAGE_SET_PRIVATE2);
e9894fd3 1490 if (!nolock && nocow)
9ea24bbe 1491 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1492 cur_offset = extent_end;
1493 if (cur_offset > end)
1494 break;
be20aa9d 1495 }
b3b4aa74 1496 btrfs_release_path(path);
80ff3856 1497
17ca04af 1498 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1499 cow_start = cur_offset;
17ca04af
JB
1500 cur_offset = end;
1501 }
1502
80ff3856 1503 if (cow_start != (u64)-1) {
00361589
JB
1504 ret = cow_file_range(inode, locked_page, cow_start, end,
1505 page_started, nr_written, 1);
d788a349 1506 if (ret)
79787eaa 1507 goto error;
80ff3856
YZ
1508 }
1509
79787eaa 1510error:
a698d075 1511 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1512 if (!ret)
1513 ret = err;
1514
17ca04af 1515 if (ret && cur_offset < end)
c2790a2e
JB
1516 extent_clear_unlock_delalloc(inode, cur_offset, end,
1517 locked_page, EXTENT_LOCKED |
151a41bc
JB
1518 EXTENT_DELALLOC | EXTENT_DEFRAG |
1519 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1520 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1521 PAGE_SET_WRITEBACK |
1522 PAGE_END_WRITEBACK);
7ea394f1 1523 btrfs_free_path(path);
79787eaa 1524 return ret;
be20aa9d
CM
1525}
1526
47059d93
WS
1527static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1528{
1529
1530 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1531 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1532 return 0;
1533
1534 /*
1535 * @defrag_bytes is a hint value, no spinlock held here,
1536 * if is not zero, it means the file is defragging.
1537 * Force cow if given extent needs to be defragged.
1538 */
1539 if (BTRFS_I(inode)->defrag_bytes &&
1540 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1541 EXTENT_DEFRAG, 0, NULL))
1542 return 1;
1543
1544 return 0;
1545}
1546
d352ac68
CM
1547/*
1548 * extent_io.c call back to do delayed allocation processing
1549 */
c8b97818 1550static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1551 u64 start, u64 end, int *page_started,
1552 unsigned long *nr_written)
be20aa9d 1553{
be20aa9d 1554 int ret;
47059d93 1555 int force_cow = need_force_cow(inode, start, end);
a2135011 1556
47059d93 1557 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1558 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1559 page_started, 1, nr_written);
47059d93 1560 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1561 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1562 page_started, 0, nr_written);
7816030e 1563 } else if (!inode_need_compress(inode)) {
7f366cfe
CM
1564 ret = cow_file_range(inode, locked_page, start, end,
1565 page_started, nr_written, 1);
7ddf5a42
JB
1566 } else {
1567 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1568 &BTRFS_I(inode)->runtime_flags);
771ed689 1569 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1570 page_started, nr_written);
7ddf5a42 1571 }
b888db2b
CM
1572 return ret;
1573}
1574
1bf85046
JM
1575static void btrfs_split_extent_hook(struct inode *inode,
1576 struct extent_state *orig, u64 split)
9ed74f2d 1577{
dcab6a3b
JB
1578 u64 size;
1579
0ca1f7ce 1580 /* not delalloc, ignore it */
9ed74f2d 1581 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1582 return;
9ed74f2d 1583
dcab6a3b
JB
1584 size = orig->end - orig->start + 1;
1585 if (size > BTRFS_MAX_EXTENT_SIZE) {
1586 u64 num_extents;
1587 u64 new_size;
1588
1589 /*
ba117213
JB
1590 * See the explanation in btrfs_merge_extent_hook, the same
1591 * applies here, just in reverse.
dcab6a3b
JB
1592 */
1593 new_size = orig->end - split + 1;
ba117213 1594 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
dcab6a3b 1595 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1596 new_size = split - orig->start;
1597 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1598 BTRFS_MAX_EXTENT_SIZE);
1599 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1600 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1601 return;
1602 }
1603
9e0baf60
JB
1604 spin_lock(&BTRFS_I(inode)->lock);
1605 BTRFS_I(inode)->outstanding_extents++;
1606 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1607}
1608
1609/*
1610 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1611 * extents so we can keep track of new extents that are just merged onto old
1612 * extents, such as when we are doing sequential writes, so we can properly
1613 * account for the metadata space we'll need.
1614 */
1bf85046
JM
1615static void btrfs_merge_extent_hook(struct inode *inode,
1616 struct extent_state *new,
1617 struct extent_state *other)
9ed74f2d 1618{
dcab6a3b
JB
1619 u64 new_size, old_size;
1620 u64 num_extents;
1621
9ed74f2d
JB
1622 /* not delalloc, ignore it */
1623 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1624 return;
9ed74f2d 1625
8461a3de
JB
1626 if (new->start > other->start)
1627 new_size = new->end - other->start + 1;
1628 else
1629 new_size = other->end - new->start + 1;
dcab6a3b
JB
1630
1631 /* we're not bigger than the max, unreserve the space and go */
1632 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1633 spin_lock(&BTRFS_I(inode)->lock);
1634 BTRFS_I(inode)->outstanding_extents--;
1635 spin_unlock(&BTRFS_I(inode)->lock);
1636 return;
1637 }
1638
1639 /*
ba117213
JB
1640 * We have to add up either side to figure out how many extents were
1641 * accounted for before we merged into one big extent. If the number of
1642 * extents we accounted for is <= the amount we need for the new range
1643 * then we can return, otherwise drop. Think of it like this
1644 *
1645 * [ 4k][MAX_SIZE]
1646 *
1647 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1648 * need 2 outstanding extents, on one side we have 1 and the other side
1649 * we have 1 so they are == and we can return. But in this case
1650 *
1651 * [MAX_SIZE+4k][MAX_SIZE+4k]
1652 *
1653 * Each range on their own accounts for 2 extents, but merged together
1654 * they are only 3 extents worth of accounting, so we need to drop in
1655 * this case.
dcab6a3b 1656 */
ba117213 1657 old_size = other->end - other->start + 1;
dcab6a3b
JB
1658 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1659 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1660 old_size = new->end - new->start + 1;
1661 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1662 BTRFS_MAX_EXTENT_SIZE);
1663
dcab6a3b 1664 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
ba117213 1665 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1666 return;
1667
9e0baf60
JB
1668 spin_lock(&BTRFS_I(inode)->lock);
1669 BTRFS_I(inode)->outstanding_extents--;
1670 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1671}
1672
eb73c1b7
MX
1673static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1674 struct inode *inode)
1675{
1676 spin_lock(&root->delalloc_lock);
1677 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1678 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1679 &root->delalloc_inodes);
1680 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1681 &BTRFS_I(inode)->runtime_flags);
1682 root->nr_delalloc_inodes++;
1683 if (root->nr_delalloc_inodes == 1) {
1684 spin_lock(&root->fs_info->delalloc_root_lock);
1685 BUG_ON(!list_empty(&root->delalloc_root));
1686 list_add_tail(&root->delalloc_root,
1687 &root->fs_info->delalloc_roots);
1688 spin_unlock(&root->fs_info->delalloc_root_lock);
1689 }
1690 }
1691 spin_unlock(&root->delalloc_lock);
1692}
1693
1694static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1695 struct inode *inode)
1696{
1697 spin_lock(&root->delalloc_lock);
1698 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1699 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1700 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1701 &BTRFS_I(inode)->runtime_flags);
1702 root->nr_delalloc_inodes--;
1703 if (!root->nr_delalloc_inodes) {
1704 spin_lock(&root->fs_info->delalloc_root_lock);
1705 BUG_ON(list_empty(&root->delalloc_root));
1706 list_del_init(&root->delalloc_root);
1707 spin_unlock(&root->fs_info->delalloc_root_lock);
1708 }
1709 }
1710 spin_unlock(&root->delalloc_lock);
1711}
1712
d352ac68
CM
1713/*
1714 * extent_io.c set_bit_hook, used to track delayed allocation
1715 * bytes in this file, and to maintain the list of inodes that
1716 * have pending delalloc work to be done.
1717 */
1bf85046 1718static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1719 struct extent_state *state, unsigned *bits)
291d673e 1720{
9ed74f2d 1721
47059d93
WS
1722 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1723 WARN_ON(1);
75eff68e
CM
1724 /*
1725 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1726 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1727 * bit, which is only set or cleared with irqs on
1728 */
0ca1f7ce 1729 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1730 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1731 u64 len = state->end + 1 - state->start;
83eea1f1 1732 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1733
9e0baf60 1734 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1735 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1736 } else {
1737 spin_lock(&BTRFS_I(inode)->lock);
1738 BTRFS_I(inode)->outstanding_extents++;
1739 spin_unlock(&BTRFS_I(inode)->lock);
1740 }
287a0ab9 1741
6a3891c5
JB
1742 /* For sanity tests */
1743 if (btrfs_test_is_dummy_root(root))
1744 return;
1745
963d678b
MX
1746 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1747 root->fs_info->delalloc_batch);
df0af1a5 1748 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1749 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1750 if (*bits & EXTENT_DEFRAG)
1751 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1752 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1753 &BTRFS_I(inode)->runtime_flags))
1754 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1755 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1756 }
291d673e
CM
1757}
1758
d352ac68
CM
1759/*
1760 * extent_io.c clear_bit_hook, see set_bit_hook for why
1761 */
1bf85046 1762static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1763 struct extent_state *state,
9ee49a04 1764 unsigned *bits)
291d673e 1765{
47059d93 1766 u64 len = state->end + 1 - state->start;
dcab6a3b
JB
1767 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1768 BTRFS_MAX_EXTENT_SIZE);
47059d93
WS
1769
1770 spin_lock(&BTRFS_I(inode)->lock);
1771 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1772 BTRFS_I(inode)->defrag_bytes -= len;
1773 spin_unlock(&BTRFS_I(inode)->lock);
1774
75eff68e
CM
1775 /*
1776 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1777 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1778 * bit, which is only set or cleared with irqs on
1779 */
0ca1f7ce 1780 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1781 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1782 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1783
9e0baf60 1784 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1785 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1786 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1787 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 1788 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60
JB
1789 spin_unlock(&BTRFS_I(inode)->lock);
1790 }
0ca1f7ce 1791
b6d08f06
JB
1792 /*
1793 * We don't reserve metadata space for space cache inodes so we
1794 * don't need to call dellalloc_release_metadata if there is an
1795 * error.
1796 */
1797 if (*bits & EXTENT_DO_ACCOUNTING &&
1798 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1799 btrfs_delalloc_release_metadata(inode, len);
1800
6a3891c5
JB
1801 /* For sanity tests. */
1802 if (btrfs_test_is_dummy_root(root))
1803 return;
1804
0cb59c99 1805 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1806 && do_list && !(state->state & EXTENT_NORESERVE))
51773bec
QW
1807 btrfs_free_reserved_data_space_noquota(inode,
1808 state->start, len);
9ed74f2d 1809
963d678b
MX
1810 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1811 root->fs_info->delalloc_batch);
df0af1a5 1812 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1813 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1814 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1815 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1816 &BTRFS_I(inode)->runtime_flags))
1817 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1818 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1819 }
291d673e
CM
1820}
1821
d352ac68
CM
1822/*
1823 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1824 * we don't create bios that span stripes or chunks
1825 */
64a16701 1826int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1827 size_t size, struct bio *bio,
1828 unsigned long bio_flags)
239b14b3
CM
1829{
1830 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1831 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1832 u64 length = 0;
1833 u64 map_length;
239b14b3
CM
1834 int ret;
1835
771ed689
CM
1836 if (bio_flags & EXTENT_BIO_COMPRESSED)
1837 return 0;
1838
4f024f37 1839 length = bio->bi_iter.bi_size;
239b14b3 1840 map_length = length;
64a16701 1841 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1842 &map_length, NULL, 0);
3ec706c8 1843 /* Will always return 0 with map_multi == NULL */
3444a972 1844 BUG_ON(ret < 0);
d397712b 1845 if (map_length < length + size)
239b14b3 1846 return 1;
3444a972 1847 return 0;
239b14b3
CM
1848}
1849
d352ac68
CM
1850/*
1851 * in order to insert checksums into the metadata in large chunks,
1852 * we wait until bio submission time. All the pages in the bio are
1853 * checksummed and sums are attached onto the ordered extent record.
1854 *
1855 * At IO completion time the cums attached on the ordered extent record
1856 * are inserted into the btree
1857 */
d397712b
CM
1858static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1859 struct bio *bio, int mirror_num,
eaf25d93
CM
1860 unsigned long bio_flags,
1861 u64 bio_offset)
065631f6 1862{
065631f6 1863 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1864 int ret = 0;
e015640f 1865
d20f7043 1866 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1867 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1868 return 0;
1869}
e015640f 1870
4a69a410
CM
1871/*
1872 * in order to insert checksums into the metadata in large chunks,
1873 * we wait until bio submission time. All the pages in the bio are
1874 * checksummed and sums are attached onto the ordered extent record.
1875 *
1876 * At IO completion time the cums attached on the ordered extent record
1877 * are inserted into the btree
1878 */
b2950863 1879static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1880 int mirror_num, unsigned long bio_flags,
1881 u64 bio_offset)
4a69a410
CM
1882{
1883 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1884 int ret;
1885
1886 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
4246a0b6
CH
1887 if (ret) {
1888 bio->bi_error = ret;
1889 bio_endio(bio);
1890 }
61891923 1891 return ret;
44b8bd7e
CM
1892}
1893
d352ac68 1894/*
cad321ad
CM
1895 * extent_io.c submission hook. This does the right thing for csum calculation
1896 * on write, or reading the csums from the tree before a read
d352ac68 1897 */
b2950863 1898static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1899 int mirror_num, unsigned long bio_flags,
1900 u64 bio_offset)
44b8bd7e
CM
1901{
1902 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1903 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1904 int ret = 0;
19b9bdb0 1905 int skip_sum;
b812ce28 1906 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1907
6cbff00f 1908 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1909
83eea1f1 1910 if (btrfs_is_free_space_inode(inode))
0d51e28a 1911 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1912
7b6d91da 1913 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1914 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1915 if (ret)
61891923 1916 goto out;
5fd02043 1917
d20f7043 1918 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1919 ret = btrfs_submit_compressed_read(inode, bio,
1920 mirror_num,
1921 bio_flags);
1922 goto out;
c2db1073
TI
1923 } else if (!skip_sum) {
1924 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1925 if (ret)
61891923 1926 goto out;
c2db1073 1927 }
4d1b5fb4 1928 goto mapit;
b812ce28 1929 } else if (async && !skip_sum) {
17d217fe
YZ
1930 /* csum items have already been cloned */
1931 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1932 goto mapit;
19b9bdb0 1933 /* we're doing a write, do the async checksumming */
61891923 1934 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1935 inode, rw, bio, mirror_num,
eaf25d93
CM
1936 bio_flags, bio_offset,
1937 __btrfs_submit_bio_start,
4a69a410 1938 __btrfs_submit_bio_done);
61891923 1939 goto out;
b812ce28
JB
1940 } else if (!skip_sum) {
1941 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1942 if (ret)
1943 goto out;
19b9bdb0
CM
1944 }
1945
0b86a832 1946mapit:
61891923
SB
1947 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1948
1949out:
4246a0b6
CH
1950 if (ret < 0) {
1951 bio->bi_error = ret;
1952 bio_endio(bio);
1953 }
61891923 1954 return ret;
065631f6 1955}
6885f308 1956
d352ac68
CM
1957/*
1958 * given a list of ordered sums record them in the inode. This happens
1959 * at IO completion time based on sums calculated at bio submission time.
1960 */
ba1da2f4 1961static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1962 struct inode *inode, u64 file_offset,
1963 struct list_head *list)
1964{
e6dcd2dc
CM
1965 struct btrfs_ordered_sum *sum;
1966
c6e30871 1967 list_for_each_entry(sum, list, list) {
39847c4d 1968 trans->adding_csums = 1;
d20f7043
CM
1969 btrfs_csum_file_blocks(trans,
1970 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1971 trans->adding_csums = 0;
e6dcd2dc
CM
1972 }
1973 return 0;
1974}
1975
2ac55d41
JB
1976int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1977 struct extent_state **cached_state)
ea8c2819 1978{
09cbfeaf 1979 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 1980 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
7cd8c752 1981 cached_state);
ea8c2819
CM
1982}
1983
d352ac68 1984/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1985struct btrfs_writepage_fixup {
1986 struct page *page;
1987 struct btrfs_work work;
1988};
1989
b2950863 1990static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1991{
1992 struct btrfs_writepage_fixup *fixup;
1993 struct btrfs_ordered_extent *ordered;
2ac55d41 1994 struct extent_state *cached_state = NULL;
247e743c
CM
1995 struct page *page;
1996 struct inode *inode;
1997 u64 page_start;
1998 u64 page_end;
87826df0 1999 int ret;
247e743c
CM
2000
2001 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2002 page = fixup->page;
4a096752 2003again:
247e743c
CM
2004 lock_page(page);
2005 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2006 ClearPageChecked(page);
2007 goto out_page;
2008 }
2009
2010 inode = page->mapping->host;
2011 page_start = page_offset(page);
09cbfeaf 2012 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2013
ff13db41 2014 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2015 &cached_state);
4a096752
CM
2016
2017 /* already ordered? We're done */
8b62b72b 2018 if (PagePrivate2(page))
247e743c 2019 goto out;
4a096752 2020
dbfdb6d1 2021 ordered = btrfs_lookup_ordered_range(inode, page_start,
09cbfeaf 2022 PAGE_SIZE);
4a096752 2023 if (ordered) {
2ac55d41
JB
2024 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2025 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2026 unlock_page(page);
2027 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2028 btrfs_put_ordered_extent(ordered);
4a096752
CM
2029 goto again;
2030 }
247e743c 2031
7cf5b976 2032 ret = btrfs_delalloc_reserve_space(inode, page_start,
09cbfeaf 2033 PAGE_SIZE);
87826df0
JM
2034 if (ret) {
2035 mapping_set_error(page->mapping, ret);
2036 end_extent_writepage(page, ret, page_start, page_end);
2037 ClearPageChecked(page);
2038 goto out;
2039 }
2040
2ac55d41 2041 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 2042 ClearPageChecked(page);
87826df0 2043 set_page_dirty(page);
247e743c 2044out:
2ac55d41
JB
2045 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2046 &cached_state, GFP_NOFS);
247e743c
CM
2047out_page:
2048 unlock_page(page);
09cbfeaf 2049 put_page(page);
b897abec 2050 kfree(fixup);
247e743c
CM
2051}
2052
2053/*
2054 * There are a few paths in the higher layers of the kernel that directly
2055 * set the page dirty bit without asking the filesystem if it is a
2056 * good idea. This causes problems because we want to make sure COW
2057 * properly happens and the data=ordered rules are followed.
2058 *
c8b97818 2059 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2060 * hasn't been properly setup for IO. We kick off an async process
2061 * to fix it up. The async helper will wait for ordered extents, set
2062 * the delalloc bit and make it safe to write the page.
2063 */
b2950863 2064static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2065{
2066 struct inode *inode = page->mapping->host;
2067 struct btrfs_writepage_fixup *fixup;
2068 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 2069
8b62b72b
CM
2070 /* this page is properly in the ordered list */
2071 if (TestClearPagePrivate2(page))
247e743c
CM
2072 return 0;
2073
2074 if (PageChecked(page))
2075 return -EAGAIN;
2076
2077 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2078 if (!fixup)
2079 return -EAGAIN;
f421950f 2080
247e743c 2081 SetPageChecked(page);
09cbfeaf 2082 get_page(page);
9e0af237
LB
2083 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2084 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2085 fixup->page = page;
dc6e3209 2086 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 2087 return -EBUSY;
247e743c
CM
2088}
2089
d899e052
YZ
2090static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2091 struct inode *inode, u64 file_pos,
2092 u64 disk_bytenr, u64 disk_num_bytes,
2093 u64 num_bytes, u64 ram_bytes,
2094 u8 compression, u8 encryption,
2095 u16 other_encoding, int extent_type)
2096{
2097 struct btrfs_root *root = BTRFS_I(inode)->root;
2098 struct btrfs_file_extent_item *fi;
2099 struct btrfs_path *path;
2100 struct extent_buffer *leaf;
2101 struct btrfs_key ins;
1acae57b 2102 int extent_inserted = 0;
d899e052
YZ
2103 int ret;
2104
2105 path = btrfs_alloc_path();
d8926bb3
MF
2106 if (!path)
2107 return -ENOMEM;
d899e052 2108
a1ed835e
CM
2109 /*
2110 * we may be replacing one extent in the tree with another.
2111 * The new extent is pinned in the extent map, and we don't want
2112 * to drop it from the cache until it is completely in the btree.
2113 *
2114 * So, tell btrfs_drop_extents to leave this extent in the cache.
2115 * the caller is expected to unpin it and allow it to be merged
2116 * with the others.
2117 */
1acae57b
FDBM
2118 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2119 file_pos + num_bytes, NULL, 0,
2120 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2121 if (ret)
2122 goto out;
d899e052 2123
1acae57b
FDBM
2124 if (!extent_inserted) {
2125 ins.objectid = btrfs_ino(inode);
2126 ins.offset = file_pos;
2127 ins.type = BTRFS_EXTENT_DATA_KEY;
2128
2129 path->leave_spinning = 1;
2130 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2131 sizeof(*fi));
2132 if (ret)
2133 goto out;
2134 }
d899e052
YZ
2135 leaf = path->nodes[0];
2136 fi = btrfs_item_ptr(leaf, path->slots[0],
2137 struct btrfs_file_extent_item);
2138 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2139 btrfs_set_file_extent_type(leaf, fi, extent_type);
2140 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2141 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2142 btrfs_set_file_extent_offset(leaf, fi, 0);
2143 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2144 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2145 btrfs_set_file_extent_compression(leaf, fi, compression);
2146 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2147 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2148
d899e052 2149 btrfs_mark_buffer_dirty(leaf);
ce195332 2150 btrfs_release_path(path);
d899e052
YZ
2151
2152 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2153
2154 ins.objectid = disk_bytenr;
2155 ins.offset = disk_num_bytes;
2156 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2157 ret = btrfs_alloc_reserved_file_extent(trans, root,
2158 root->root_key.objectid,
5846a3c2
QW
2159 btrfs_ino(inode), file_pos,
2160 ram_bytes, &ins);
297d750b 2161 /*
5846a3c2
QW
2162 * Release the reserved range from inode dirty range map, as it is
2163 * already moved into delayed_ref_head
297d750b
QW
2164 */
2165 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
79787eaa 2166out:
d899e052 2167 btrfs_free_path(path);
b9473439 2168
79787eaa 2169 return ret;
d899e052
YZ
2170}
2171
38c227d8
LB
2172/* snapshot-aware defrag */
2173struct sa_defrag_extent_backref {
2174 struct rb_node node;
2175 struct old_sa_defrag_extent *old;
2176 u64 root_id;
2177 u64 inum;
2178 u64 file_pos;
2179 u64 extent_offset;
2180 u64 num_bytes;
2181 u64 generation;
2182};
2183
2184struct old_sa_defrag_extent {
2185 struct list_head list;
2186 struct new_sa_defrag_extent *new;
2187
2188 u64 extent_offset;
2189 u64 bytenr;
2190 u64 offset;
2191 u64 len;
2192 int count;
2193};
2194
2195struct new_sa_defrag_extent {
2196 struct rb_root root;
2197 struct list_head head;
2198 struct btrfs_path *path;
2199 struct inode *inode;
2200 u64 file_pos;
2201 u64 len;
2202 u64 bytenr;
2203 u64 disk_len;
2204 u8 compress_type;
2205};
2206
2207static int backref_comp(struct sa_defrag_extent_backref *b1,
2208 struct sa_defrag_extent_backref *b2)
2209{
2210 if (b1->root_id < b2->root_id)
2211 return -1;
2212 else if (b1->root_id > b2->root_id)
2213 return 1;
2214
2215 if (b1->inum < b2->inum)
2216 return -1;
2217 else if (b1->inum > b2->inum)
2218 return 1;
2219
2220 if (b1->file_pos < b2->file_pos)
2221 return -1;
2222 else if (b1->file_pos > b2->file_pos)
2223 return 1;
2224
2225 /*
2226 * [------------------------------] ===> (a range of space)
2227 * |<--->| |<---->| =============> (fs/file tree A)
2228 * |<---------------------------->| ===> (fs/file tree B)
2229 *
2230 * A range of space can refer to two file extents in one tree while
2231 * refer to only one file extent in another tree.
2232 *
2233 * So we may process a disk offset more than one time(two extents in A)
2234 * and locate at the same extent(one extent in B), then insert two same
2235 * backrefs(both refer to the extent in B).
2236 */
2237 return 0;
2238}
2239
2240static void backref_insert(struct rb_root *root,
2241 struct sa_defrag_extent_backref *backref)
2242{
2243 struct rb_node **p = &root->rb_node;
2244 struct rb_node *parent = NULL;
2245 struct sa_defrag_extent_backref *entry;
2246 int ret;
2247
2248 while (*p) {
2249 parent = *p;
2250 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2251
2252 ret = backref_comp(backref, entry);
2253 if (ret < 0)
2254 p = &(*p)->rb_left;
2255 else
2256 p = &(*p)->rb_right;
2257 }
2258
2259 rb_link_node(&backref->node, parent, p);
2260 rb_insert_color(&backref->node, root);
2261}
2262
2263/*
2264 * Note the backref might has changed, and in this case we just return 0.
2265 */
2266static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2267 void *ctx)
2268{
2269 struct btrfs_file_extent_item *extent;
2270 struct btrfs_fs_info *fs_info;
2271 struct old_sa_defrag_extent *old = ctx;
2272 struct new_sa_defrag_extent *new = old->new;
2273 struct btrfs_path *path = new->path;
2274 struct btrfs_key key;
2275 struct btrfs_root *root;
2276 struct sa_defrag_extent_backref *backref;
2277 struct extent_buffer *leaf;
2278 struct inode *inode = new->inode;
2279 int slot;
2280 int ret;
2281 u64 extent_offset;
2282 u64 num_bytes;
2283
2284 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2285 inum == btrfs_ino(inode))
2286 return 0;
2287
2288 key.objectid = root_id;
2289 key.type = BTRFS_ROOT_ITEM_KEY;
2290 key.offset = (u64)-1;
2291
2292 fs_info = BTRFS_I(inode)->root->fs_info;
2293 root = btrfs_read_fs_root_no_name(fs_info, &key);
2294 if (IS_ERR(root)) {
2295 if (PTR_ERR(root) == -ENOENT)
2296 return 0;
2297 WARN_ON(1);
2298 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2299 inum, offset, root_id);
2300 return PTR_ERR(root);
2301 }
2302
2303 key.objectid = inum;
2304 key.type = BTRFS_EXTENT_DATA_KEY;
2305 if (offset > (u64)-1 << 32)
2306 key.offset = 0;
2307 else
2308 key.offset = offset;
2309
2310 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2311 if (WARN_ON(ret < 0))
38c227d8 2312 return ret;
50f1319c 2313 ret = 0;
38c227d8
LB
2314
2315 while (1) {
2316 cond_resched();
2317
2318 leaf = path->nodes[0];
2319 slot = path->slots[0];
2320
2321 if (slot >= btrfs_header_nritems(leaf)) {
2322 ret = btrfs_next_leaf(root, path);
2323 if (ret < 0) {
2324 goto out;
2325 } else if (ret > 0) {
2326 ret = 0;
2327 goto out;
2328 }
2329 continue;
2330 }
2331
2332 path->slots[0]++;
2333
2334 btrfs_item_key_to_cpu(leaf, &key, slot);
2335
2336 if (key.objectid > inum)
2337 goto out;
2338
2339 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2340 continue;
2341
2342 extent = btrfs_item_ptr(leaf, slot,
2343 struct btrfs_file_extent_item);
2344
2345 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2346 continue;
2347
e68afa49
LB
2348 /*
2349 * 'offset' refers to the exact key.offset,
2350 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2351 * (key.offset - extent_offset).
2352 */
2353 if (key.offset != offset)
38c227d8
LB
2354 continue;
2355
e68afa49 2356 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2357 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2358
38c227d8
LB
2359 if (extent_offset >= old->extent_offset + old->offset +
2360 old->len || extent_offset + num_bytes <=
2361 old->extent_offset + old->offset)
2362 continue;
38c227d8
LB
2363 break;
2364 }
2365
2366 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2367 if (!backref) {
2368 ret = -ENOENT;
2369 goto out;
2370 }
2371
2372 backref->root_id = root_id;
2373 backref->inum = inum;
e68afa49 2374 backref->file_pos = offset;
38c227d8
LB
2375 backref->num_bytes = num_bytes;
2376 backref->extent_offset = extent_offset;
2377 backref->generation = btrfs_file_extent_generation(leaf, extent);
2378 backref->old = old;
2379 backref_insert(&new->root, backref);
2380 old->count++;
2381out:
2382 btrfs_release_path(path);
2383 WARN_ON(ret);
2384 return ret;
2385}
2386
2387static noinline bool record_extent_backrefs(struct btrfs_path *path,
2388 struct new_sa_defrag_extent *new)
2389{
2390 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2391 struct old_sa_defrag_extent *old, *tmp;
2392 int ret;
2393
2394 new->path = path;
2395
2396 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2397 ret = iterate_inodes_from_logical(old->bytenr +
2398 old->extent_offset, fs_info,
38c227d8
LB
2399 path, record_one_backref,
2400 old);
4724b106
JB
2401 if (ret < 0 && ret != -ENOENT)
2402 return false;
38c227d8
LB
2403
2404 /* no backref to be processed for this extent */
2405 if (!old->count) {
2406 list_del(&old->list);
2407 kfree(old);
2408 }
2409 }
2410
2411 if (list_empty(&new->head))
2412 return false;
2413
2414 return true;
2415}
2416
2417static int relink_is_mergable(struct extent_buffer *leaf,
2418 struct btrfs_file_extent_item *fi,
116e0024 2419 struct new_sa_defrag_extent *new)
38c227d8 2420{
116e0024 2421 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2422 return 0;
2423
2424 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2425 return 0;
2426
116e0024
LB
2427 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2428 return 0;
2429
2430 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2431 btrfs_file_extent_other_encoding(leaf, fi))
2432 return 0;
2433
2434 return 1;
2435}
2436
2437/*
2438 * Note the backref might has changed, and in this case we just return 0.
2439 */
2440static noinline int relink_extent_backref(struct btrfs_path *path,
2441 struct sa_defrag_extent_backref *prev,
2442 struct sa_defrag_extent_backref *backref)
2443{
2444 struct btrfs_file_extent_item *extent;
2445 struct btrfs_file_extent_item *item;
2446 struct btrfs_ordered_extent *ordered;
2447 struct btrfs_trans_handle *trans;
2448 struct btrfs_fs_info *fs_info;
2449 struct btrfs_root *root;
2450 struct btrfs_key key;
2451 struct extent_buffer *leaf;
2452 struct old_sa_defrag_extent *old = backref->old;
2453 struct new_sa_defrag_extent *new = old->new;
2454 struct inode *src_inode = new->inode;
2455 struct inode *inode;
2456 struct extent_state *cached = NULL;
2457 int ret = 0;
2458 u64 start;
2459 u64 len;
2460 u64 lock_start;
2461 u64 lock_end;
2462 bool merge = false;
2463 int index;
2464
2465 if (prev && prev->root_id == backref->root_id &&
2466 prev->inum == backref->inum &&
2467 prev->file_pos + prev->num_bytes == backref->file_pos)
2468 merge = true;
2469
2470 /* step 1: get root */
2471 key.objectid = backref->root_id;
2472 key.type = BTRFS_ROOT_ITEM_KEY;
2473 key.offset = (u64)-1;
2474
2475 fs_info = BTRFS_I(src_inode)->root->fs_info;
2476 index = srcu_read_lock(&fs_info->subvol_srcu);
2477
2478 root = btrfs_read_fs_root_no_name(fs_info, &key);
2479 if (IS_ERR(root)) {
2480 srcu_read_unlock(&fs_info->subvol_srcu, index);
2481 if (PTR_ERR(root) == -ENOENT)
2482 return 0;
2483 return PTR_ERR(root);
2484 }
38c227d8 2485
bcbba5e6
WS
2486 if (btrfs_root_readonly(root)) {
2487 srcu_read_unlock(&fs_info->subvol_srcu, index);
2488 return 0;
2489 }
2490
38c227d8
LB
2491 /* step 2: get inode */
2492 key.objectid = backref->inum;
2493 key.type = BTRFS_INODE_ITEM_KEY;
2494 key.offset = 0;
2495
2496 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2497 if (IS_ERR(inode)) {
2498 srcu_read_unlock(&fs_info->subvol_srcu, index);
2499 return 0;
2500 }
2501
2502 srcu_read_unlock(&fs_info->subvol_srcu, index);
2503
2504 /* step 3: relink backref */
2505 lock_start = backref->file_pos;
2506 lock_end = backref->file_pos + backref->num_bytes - 1;
2507 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2508 &cached);
38c227d8
LB
2509
2510 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2511 if (ordered) {
2512 btrfs_put_ordered_extent(ordered);
2513 goto out_unlock;
2514 }
2515
2516 trans = btrfs_join_transaction(root);
2517 if (IS_ERR(trans)) {
2518 ret = PTR_ERR(trans);
2519 goto out_unlock;
2520 }
2521
2522 key.objectid = backref->inum;
2523 key.type = BTRFS_EXTENT_DATA_KEY;
2524 key.offset = backref->file_pos;
2525
2526 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2527 if (ret < 0) {
2528 goto out_free_path;
2529 } else if (ret > 0) {
2530 ret = 0;
2531 goto out_free_path;
2532 }
2533
2534 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2535 struct btrfs_file_extent_item);
2536
2537 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2538 backref->generation)
2539 goto out_free_path;
2540
2541 btrfs_release_path(path);
2542
2543 start = backref->file_pos;
2544 if (backref->extent_offset < old->extent_offset + old->offset)
2545 start += old->extent_offset + old->offset -
2546 backref->extent_offset;
2547
2548 len = min(backref->extent_offset + backref->num_bytes,
2549 old->extent_offset + old->offset + old->len);
2550 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2551
2552 ret = btrfs_drop_extents(trans, root, inode, start,
2553 start + len, 1);
2554 if (ret)
2555 goto out_free_path;
2556again:
2557 key.objectid = btrfs_ino(inode);
2558 key.type = BTRFS_EXTENT_DATA_KEY;
2559 key.offset = start;
2560
a09a0a70 2561 path->leave_spinning = 1;
38c227d8
LB
2562 if (merge) {
2563 struct btrfs_file_extent_item *fi;
2564 u64 extent_len;
2565 struct btrfs_key found_key;
2566
3c9665df 2567 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2568 if (ret < 0)
2569 goto out_free_path;
2570
2571 path->slots[0]--;
2572 leaf = path->nodes[0];
2573 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2574
2575 fi = btrfs_item_ptr(leaf, path->slots[0],
2576 struct btrfs_file_extent_item);
2577 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2578
116e0024
LB
2579 if (extent_len + found_key.offset == start &&
2580 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2581 btrfs_set_file_extent_num_bytes(leaf, fi,
2582 extent_len + len);
2583 btrfs_mark_buffer_dirty(leaf);
2584 inode_add_bytes(inode, len);
2585
2586 ret = 1;
2587 goto out_free_path;
2588 } else {
2589 merge = false;
2590 btrfs_release_path(path);
2591 goto again;
2592 }
2593 }
2594
2595 ret = btrfs_insert_empty_item(trans, root, path, &key,
2596 sizeof(*extent));
2597 if (ret) {
2598 btrfs_abort_transaction(trans, root, ret);
2599 goto out_free_path;
2600 }
2601
2602 leaf = path->nodes[0];
2603 item = btrfs_item_ptr(leaf, path->slots[0],
2604 struct btrfs_file_extent_item);
2605 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2606 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2607 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2608 btrfs_set_file_extent_num_bytes(leaf, item, len);
2609 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2610 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2611 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2612 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2613 btrfs_set_file_extent_encryption(leaf, item, 0);
2614 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2615
2616 btrfs_mark_buffer_dirty(leaf);
2617 inode_add_bytes(inode, len);
a09a0a70 2618 btrfs_release_path(path);
38c227d8
LB
2619
2620 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2621 new->disk_len, 0,
2622 backref->root_id, backref->inum,
b06c4bf5 2623 new->file_pos); /* start - extent_offset */
38c227d8
LB
2624 if (ret) {
2625 btrfs_abort_transaction(trans, root, ret);
2626 goto out_free_path;
2627 }
2628
2629 ret = 1;
2630out_free_path:
2631 btrfs_release_path(path);
a09a0a70 2632 path->leave_spinning = 0;
38c227d8
LB
2633 btrfs_end_transaction(trans, root);
2634out_unlock:
2635 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2636 &cached, GFP_NOFS);
2637 iput(inode);
2638 return ret;
2639}
2640
6f519564
LB
2641static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2642{
2643 struct old_sa_defrag_extent *old, *tmp;
2644
2645 if (!new)
2646 return;
2647
2648 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2649 kfree(old);
2650 }
2651 kfree(new);
2652}
2653
38c227d8
LB
2654static void relink_file_extents(struct new_sa_defrag_extent *new)
2655{
2656 struct btrfs_path *path;
38c227d8
LB
2657 struct sa_defrag_extent_backref *backref;
2658 struct sa_defrag_extent_backref *prev = NULL;
2659 struct inode *inode;
2660 struct btrfs_root *root;
2661 struct rb_node *node;
2662 int ret;
2663
2664 inode = new->inode;
2665 root = BTRFS_I(inode)->root;
2666
2667 path = btrfs_alloc_path();
2668 if (!path)
2669 return;
2670
2671 if (!record_extent_backrefs(path, new)) {
2672 btrfs_free_path(path);
2673 goto out;
2674 }
2675 btrfs_release_path(path);
2676
2677 while (1) {
2678 node = rb_first(&new->root);
2679 if (!node)
2680 break;
2681 rb_erase(node, &new->root);
2682
2683 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2684
2685 ret = relink_extent_backref(path, prev, backref);
2686 WARN_ON(ret < 0);
2687
2688 kfree(prev);
2689
2690 if (ret == 1)
2691 prev = backref;
2692 else
2693 prev = NULL;
2694 cond_resched();
2695 }
2696 kfree(prev);
2697
2698 btrfs_free_path(path);
38c227d8 2699out:
6f519564
LB
2700 free_sa_defrag_extent(new);
2701
38c227d8
LB
2702 atomic_dec(&root->fs_info->defrag_running);
2703 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2704}
2705
2706static struct new_sa_defrag_extent *
2707record_old_file_extents(struct inode *inode,
2708 struct btrfs_ordered_extent *ordered)
2709{
2710 struct btrfs_root *root = BTRFS_I(inode)->root;
2711 struct btrfs_path *path;
2712 struct btrfs_key key;
6f519564 2713 struct old_sa_defrag_extent *old;
38c227d8
LB
2714 struct new_sa_defrag_extent *new;
2715 int ret;
2716
2717 new = kmalloc(sizeof(*new), GFP_NOFS);
2718 if (!new)
2719 return NULL;
2720
2721 new->inode = inode;
2722 new->file_pos = ordered->file_offset;
2723 new->len = ordered->len;
2724 new->bytenr = ordered->start;
2725 new->disk_len = ordered->disk_len;
2726 new->compress_type = ordered->compress_type;
2727 new->root = RB_ROOT;
2728 INIT_LIST_HEAD(&new->head);
2729
2730 path = btrfs_alloc_path();
2731 if (!path)
2732 goto out_kfree;
2733
2734 key.objectid = btrfs_ino(inode);
2735 key.type = BTRFS_EXTENT_DATA_KEY;
2736 key.offset = new->file_pos;
2737
2738 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2739 if (ret < 0)
2740 goto out_free_path;
2741 if (ret > 0 && path->slots[0] > 0)
2742 path->slots[0]--;
2743
2744 /* find out all the old extents for the file range */
2745 while (1) {
2746 struct btrfs_file_extent_item *extent;
2747 struct extent_buffer *l;
2748 int slot;
2749 u64 num_bytes;
2750 u64 offset;
2751 u64 end;
2752 u64 disk_bytenr;
2753 u64 extent_offset;
2754
2755 l = path->nodes[0];
2756 slot = path->slots[0];
2757
2758 if (slot >= btrfs_header_nritems(l)) {
2759 ret = btrfs_next_leaf(root, path);
2760 if (ret < 0)
6f519564 2761 goto out_free_path;
38c227d8
LB
2762 else if (ret > 0)
2763 break;
2764 continue;
2765 }
2766
2767 btrfs_item_key_to_cpu(l, &key, slot);
2768
2769 if (key.objectid != btrfs_ino(inode))
2770 break;
2771 if (key.type != BTRFS_EXTENT_DATA_KEY)
2772 break;
2773 if (key.offset >= new->file_pos + new->len)
2774 break;
2775
2776 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2777
2778 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2779 if (key.offset + num_bytes < new->file_pos)
2780 goto next;
2781
2782 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2783 if (!disk_bytenr)
2784 goto next;
2785
2786 extent_offset = btrfs_file_extent_offset(l, extent);
2787
2788 old = kmalloc(sizeof(*old), GFP_NOFS);
2789 if (!old)
6f519564 2790 goto out_free_path;
38c227d8
LB
2791
2792 offset = max(new->file_pos, key.offset);
2793 end = min(new->file_pos + new->len, key.offset + num_bytes);
2794
2795 old->bytenr = disk_bytenr;
2796 old->extent_offset = extent_offset;
2797 old->offset = offset - key.offset;
2798 old->len = end - offset;
2799 old->new = new;
2800 old->count = 0;
2801 list_add_tail(&old->list, &new->head);
2802next:
2803 path->slots[0]++;
2804 cond_resched();
2805 }
2806
2807 btrfs_free_path(path);
2808 atomic_inc(&root->fs_info->defrag_running);
2809
2810 return new;
2811
38c227d8
LB
2812out_free_path:
2813 btrfs_free_path(path);
2814out_kfree:
6f519564 2815 free_sa_defrag_extent(new);
38c227d8
LB
2816 return NULL;
2817}
2818
e570fd27
MX
2819static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2820 u64 start, u64 len)
2821{
2822 struct btrfs_block_group_cache *cache;
2823
2824 cache = btrfs_lookup_block_group(root->fs_info, start);
2825 ASSERT(cache);
2826
2827 spin_lock(&cache->lock);
2828 cache->delalloc_bytes -= len;
2829 spin_unlock(&cache->lock);
2830
2831 btrfs_put_block_group(cache);
2832}
2833
d352ac68
CM
2834/* as ordered data IO finishes, this gets called so we can finish
2835 * an ordered extent if the range of bytes in the file it covers are
2836 * fully written.
2837 */
5fd02043 2838static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2839{
5fd02043 2840 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2841 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2842 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2843 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2844 struct extent_state *cached_state = NULL;
38c227d8 2845 struct new_sa_defrag_extent *new = NULL;
261507a0 2846 int compress_type = 0;
77cef2ec
JB
2847 int ret = 0;
2848 u64 logical_len = ordered_extent->len;
82d5902d 2849 bool nolock;
77cef2ec 2850 bool truncated = false;
e6dcd2dc 2851
83eea1f1 2852 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2853
5fd02043
JB
2854 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2855 ret = -EIO;
2856 goto out;
2857 }
2858
f612496b
MX
2859 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2860 ordered_extent->file_offset +
2861 ordered_extent->len - 1);
2862
77cef2ec
JB
2863 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2864 truncated = true;
2865 logical_len = ordered_extent->truncated_len;
2866 /* Truncated the entire extent, don't bother adding */
2867 if (!logical_len)
2868 goto out;
2869 }
2870
c2167754 2871 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2872 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2873
2874 /*
2875 * For mwrite(mmap + memset to write) case, we still reserve
2876 * space for NOCOW range.
2877 * As NOCOW won't cause a new delayed ref, just free the space
2878 */
2879 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2880 ordered_extent->len);
6c760c07
JB
2881 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2882 if (nolock)
2883 trans = btrfs_join_transaction_nolock(root);
2884 else
2885 trans = btrfs_join_transaction(root);
2886 if (IS_ERR(trans)) {
2887 ret = PTR_ERR(trans);
2888 trans = NULL;
2889 goto out;
c2167754 2890 }
6c760c07
JB
2891 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2892 ret = btrfs_update_inode_fallback(trans, root, inode);
2893 if (ret) /* -ENOMEM or corruption */
2894 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2895 goto out;
2896 }
e6dcd2dc 2897
2ac55d41
JB
2898 lock_extent_bits(io_tree, ordered_extent->file_offset,
2899 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2900 &cached_state);
e6dcd2dc 2901
38c227d8
LB
2902 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2903 ordered_extent->file_offset + ordered_extent->len - 1,
2904 EXTENT_DEFRAG, 1, cached_state);
2905 if (ret) {
2906 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2907 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2908 /* the inode is shared */
2909 new = record_old_file_extents(inode, ordered_extent);
2910
2911 clear_extent_bit(io_tree, ordered_extent->file_offset,
2912 ordered_extent->file_offset + ordered_extent->len - 1,
2913 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2914 }
2915
0cb59c99 2916 if (nolock)
7a7eaa40 2917 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2918 else
7a7eaa40 2919 trans = btrfs_join_transaction(root);
79787eaa
JM
2920 if (IS_ERR(trans)) {
2921 ret = PTR_ERR(trans);
2922 trans = NULL;
2923 goto out_unlock;
2924 }
a79b7d4b 2925
0ca1f7ce 2926 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2927
c8b97818 2928 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2929 compress_type = ordered_extent->compress_type;
d899e052 2930 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2931 BUG_ON(compress_type);
920bbbfb 2932 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2933 ordered_extent->file_offset,
2934 ordered_extent->file_offset +
77cef2ec 2935 logical_len);
d899e052 2936 } else {
0af3d00b 2937 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2938 ret = insert_reserved_file_extent(trans, inode,
2939 ordered_extent->file_offset,
2940 ordered_extent->start,
2941 ordered_extent->disk_len,
77cef2ec 2942 logical_len, logical_len,
261507a0 2943 compress_type, 0, 0,
d899e052 2944 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2945 if (!ret)
2946 btrfs_release_delalloc_bytes(root,
2947 ordered_extent->start,
2948 ordered_extent->disk_len);
d899e052 2949 }
5dc562c5
JB
2950 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2951 ordered_extent->file_offset, ordered_extent->len,
2952 trans->transid);
79787eaa
JM
2953 if (ret < 0) {
2954 btrfs_abort_transaction(trans, root, ret);
5fd02043 2955 goto out_unlock;
79787eaa 2956 }
2ac55d41 2957
e6dcd2dc
CM
2958 add_pending_csums(trans, inode, ordered_extent->file_offset,
2959 &ordered_extent->list);
2960
6c760c07
JB
2961 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2962 ret = btrfs_update_inode_fallback(trans, root, inode);
2963 if (ret) { /* -ENOMEM or corruption */
2964 btrfs_abort_transaction(trans, root, ret);
2965 goto out_unlock;
1ef30be1
JB
2966 }
2967 ret = 0;
5fd02043
JB
2968out_unlock:
2969 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2970 ordered_extent->file_offset +
2971 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2972out:
5b0e95bf 2973 if (root != root->fs_info->tree_root)
0cb59c99 2974 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2975 if (trans)
2976 btrfs_end_transaction(trans, root);
0cb59c99 2977
77cef2ec
JB
2978 if (ret || truncated) {
2979 u64 start, end;
2980
2981 if (truncated)
2982 start = ordered_extent->file_offset + logical_len;
2983 else
2984 start = ordered_extent->file_offset;
2985 end = ordered_extent->file_offset + ordered_extent->len - 1;
2986 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2987
2988 /* Drop the cache for the part of the extent we didn't write. */
2989 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2990
0bec9ef5
JB
2991 /*
2992 * If the ordered extent had an IOERR or something else went
2993 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2994 * back to the allocator. We only free the extent in the
2995 * truncated case if we didn't write out the extent at all.
0bec9ef5 2996 */
77cef2ec
JB
2997 if ((ret || !logical_len) &&
2998 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2999 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3000 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 3001 ordered_extent->disk_len, 1);
0bec9ef5
JB
3002 }
3003
3004
5fd02043 3005 /*
8bad3c02
LB
3006 * This needs to be done to make sure anybody waiting knows we are done
3007 * updating everything for this ordered extent.
5fd02043
JB
3008 */
3009 btrfs_remove_ordered_extent(inode, ordered_extent);
3010
38c227d8 3011 /* for snapshot-aware defrag */
6f519564
LB
3012 if (new) {
3013 if (ret) {
3014 free_sa_defrag_extent(new);
3015 atomic_dec(&root->fs_info->defrag_running);
3016 } else {
3017 relink_file_extents(new);
3018 }
3019 }
38c227d8 3020
e6dcd2dc
CM
3021 /* once for us */
3022 btrfs_put_ordered_extent(ordered_extent);
3023 /* once for the tree */
3024 btrfs_put_ordered_extent(ordered_extent);
3025
5fd02043
JB
3026 return ret;
3027}
3028
3029static void finish_ordered_fn(struct btrfs_work *work)
3030{
3031 struct btrfs_ordered_extent *ordered_extent;
3032 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3033 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3034}
3035
b2950863 3036static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3037 struct extent_state *state, int uptodate)
3038{
5fd02043
JB
3039 struct inode *inode = page->mapping->host;
3040 struct btrfs_root *root = BTRFS_I(inode)->root;
3041 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3042 struct btrfs_workqueue *wq;
3043 btrfs_work_func_t func;
5fd02043 3044
1abe9b8a 3045 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3046
8b62b72b 3047 ClearPagePrivate2(page);
5fd02043
JB
3048 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3049 end - start + 1, uptodate))
3050 return 0;
3051
9e0af237
LB
3052 if (btrfs_is_free_space_inode(inode)) {
3053 wq = root->fs_info->endio_freespace_worker;
3054 func = btrfs_freespace_write_helper;
3055 } else {
3056 wq = root->fs_info->endio_write_workers;
3057 func = btrfs_endio_write_helper;
3058 }
5fd02043 3059
9e0af237
LB
3060 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3061 NULL);
3062 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
3063
3064 return 0;
211f90e6
CM
3065}
3066
dc380aea
MX
3067static int __readpage_endio_check(struct inode *inode,
3068 struct btrfs_io_bio *io_bio,
3069 int icsum, struct page *page,
3070 int pgoff, u64 start, size_t len)
3071{
3072 char *kaddr;
3073 u32 csum_expected;
3074 u32 csum = ~(u32)0;
dc380aea
MX
3075
3076 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3077
3078 kaddr = kmap_atomic(page);
3079 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3080 btrfs_csum_final(csum, (char *)&csum);
3081 if (csum != csum_expected)
3082 goto zeroit;
3083
3084 kunmap_atomic(kaddr);
3085 return 0;
3086zeroit:
94647322
DS
3087 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3088 "csum failed ino %llu off %llu csum %u expected csum %u",
dc380aea
MX
3089 btrfs_ino(inode), start, csum, csum_expected);
3090 memset(kaddr + pgoff, 1, len);
3091 flush_dcache_page(page);
3092 kunmap_atomic(kaddr);
3093 if (csum_expected == 0)
3094 return 0;
3095 return -EIO;
3096}
3097
d352ac68
CM
3098/*
3099 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3100 * if there's a match, we allow the bio to finish. If not, the code in
3101 * extent_io.c will try to find good copies for us.
d352ac68 3102 */
facc8a22
MX
3103static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3104 u64 phy_offset, struct page *page,
3105 u64 start, u64 end, int mirror)
07157aac 3106{
4eee4fa4 3107 size_t offset = start - page_offset(page);
07157aac 3108 struct inode *inode = page->mapping->host;
d1310b2e 3109 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3110 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3111
d20f7043
CM
3112 if (PageChecked(page)) {
3113 ClearPageChecked(page);
dc380aea 3114 return 0;
d20f7043 3115 }
6cbff00f
CH
3116
3117 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3118 return 0;
17d217fe
YZ
3119
3120 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3121 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3122 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3123 return 0;
17d217fe 3124 }
d20f7043 3125
facc8a22 3126 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3127 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3128 start, (size_t)(end - start + 1));
07157aac 3129}
b888db2b 3130
24bbcf04
YZ
3131void btrfs_add_delayed_iput(struct inode *inode)
3132{
3133 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
8089fe62 3134 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3135
3136 if (atomic_add_unless(&inode->i_count, -1, 1))
3137 return;
3138
24bbcf04 3139 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3140 if (binode->delayed_iput_count == 0) {
3141 ASSERT(list_empty(&binode->delayed_iput));
3142 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3143 } else {
3144 binode->delayed_iput_count++;
3145 }
24bbcf04
YZ
3146 spin_unlock(&fs_info->delayed_iput_lock);
3147}
3148
3149void btrfs_run_delayed_iputs(struct btrfs_root *root)
3150{
24bbcf04 3151 struct btrfs_fs_info *fs_info = root->fs_info;
24bbcf04 3152
24bbcf04 3153 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3154 while (!list_empty(&fs_info->delayed_iputs)) {
3155 struct btrfs_inode *inode;
3156
3157 inode = list_first_entry(&fs_info->delayed_iputs,
3158 struct btrfs_inode, delayed_iput);
3159 if (inode->delayed_iput_count) {
3160 inode->delayed_iput_count--;
3161 list_move_tail(&inode->delayed_iput,
3162 &fs_info->delayed_iputs);
3163 } else {
3164 list_del_init(&inode->delayed_iput);
3165 }
3166 spin_unlock(&fs_info->delayed_iput_lock);
3167 iput(&inode->vfs_inode);
3168 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3169 }
8089fe62 3170 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3171}
3172
d68fc57b 3173/*
42b2aa86 3174 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3175 * files in the subvolume, it removes orphan item and frees block_rsv
3176 * structure.
3177 */
3178void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3179 struct btrfs_root *root)
3180{
90290e19 3181 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3182 int ret;
3183
8a35d95f 3184 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3185 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3186 return;
3187
90290e19 3188 spin_lock(&root->orphan_lock);
8a35d95f 3189 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3190 spin_unlock(&root->orphan_lock);
3191 return;
3192 }
3193
3194 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3195 spin_unlock(&root->orphan_lock);
3196 return;
3197 }
3198
3199 block_rsv = root->orphan_block_rsv;
3200 root->orphan_block_rsv = NULL;
3201 spin_unlock(&root->orphan_lock);
3202
27cdeb70 3203 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3204 btrfs_root_refs(&root->root_item) > 0) {
3205 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3206 root->root_key.objectid);
4ef31a45
JB
3207 if (ret)
3208 btrfs_abort_transaction(trans, root, ret);
3209 else
27cdeb70
MX
3210 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3211 &root->state);
d68fc57b
YZ
3212 }
3213
90290e19
JB
3214 if (block_rsv) {
3215 WARN_ON(block_rsv->size > 0);
3216 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3217 }
3218}
3219
7b128766
JB
3220/*
3221 * This creates an orphan entry for the given inode in case something goes
3222 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3223 *
3224 * NOTE: caller of this function should reserve 5 units of metadata for
3225 * this function.
7b128766
JB
3226 */
3227int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3228{
3229 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3230 struct btrfs_block_rsv *block_rsv = NULL;
3231 int reserve = 0;
3232 int insert = 0;
3233 int ret;
7b128766 3234
d68fc57b 3235 if (!root->orphan_block_rsv) {
66d8f3dd 3236 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3237 if (!block_rsv)
3238 return -ENOMEM;
d68fc57b 3239 }
7b128766 3240
d68fc57b
YZ
3241 spin_lock(&root->orphan_lock);
3242 if (!root->orphan_block_rsv) {
3243 root->orphan_block_rsv = block_rsv;
3244 } else if (block_rsv) {
3245 btrfs_free_block_rsv(root, block_rsv);
3246 block_rsv = NULL;
7b128766 3247 }
7b128766 3248
8a35d95f
JB
3249 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3250 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3251#if 0
3252 /*
3253 * For proper ENOSPC handling, we should do orphan
3254 * cleanup when mounting. But this introduces backward
3255 * compatibility issue.
3256 */
3257 if (!xchg(&root->orphan_item_inserted, 1))
3258 insert = 2;
3259 else
3260 insert = 1;
3261#endif
3262 insert = 1;
321f0e70 3263 atomic_inc(&root->orphan_inodes);
7b128766
JB
3264 }
3265
72ac3c0d
JB
3266 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3267 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3268 reserve = 1;
d68fc57b 3269 spin_unlock(&root->orphan_lock);
7b128766 3270
d68fc57b
YZ
3271 /* grab metadata reservation from transaction handle */
3272 if (reserve) {
3273 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3274 ASSERT(!ret);
3275 if (ret) {
3276 atomic_dec(&root->orphan_inodes);
3277 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3278 &BTRFS_I(inode)->runtime_flags);
3279 if (insert)
3280 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3281 &BTRFS_I(inode)->runtime_flags);
3282 return ret;
3283 }
d68fc57b 3284 }
7b128766 3285
d68fc57b
YZ
3286 /* insert an orphan item to track this unlinked/truncated file */
3287 if (insert >= 1) {
33345d01 3288 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3289 if (ret) {
703c88e0 3290 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3291 if (reserve) {
3292 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3293 &BTRFS_I(inode)->runtime_flags);
3294 btrfs_orphan_release_metadata(inode);
3295 }
3296 if (ret != -EEXIST) {
e8e7cff6
JB
3297 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3298 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3299 btrfs_abort_transaction(trans, root, ret);
3300 return ret;
3301 }
79787eaa
JM
3302 }
3303 ret = 0;
d68fc57b
YZ
3304 }
3305
3306 /* insert an orphan item to track subvolume contains orphan files */
3307 if (insert >= 2) {
3308 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3309 root->root_key.objectid);
79787eaa
JM
3310 if (ret && ret != -EEXIST) {
3311 btrfs_abort_transaction(trans, root, ret);
3312 return ret;
3313 }
d68fc57b
YZ
3314 }
3315 return 0;
7b128766
JB
3316}
3317
3318/*
3319 * We have done the truncate/delete so we can go ahead and remove the orphan
3320 * item for this particular inode.
3321 */
48a3b636
ES
3322static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3323 struct inode *inode)
7b128766
JB
3324{
3325 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3326 int delete_item = 0;
3327 int release_rsv = 0;
7b128766
JB
3328 int ret = 0;
3329
d68fc57b 3330 spin_lock(&root->orphan_lock);
8a35d95f
JB
3331 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3332 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3333 delete_item = 1;
7b128766 3334
72ac3c0d
JB
3335 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3336 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3337 release_rsv = 1;
d68fc57b 3338 spin_unlock(&root->orphan_lock);
7b128766 3339
703c88e0 3340 if (delete_item) {
8a35d95f 3341 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3342 if (trans)
3343 ret = btrfs_del_orphan_item(trans, root,
3344 btrfs_ino(inode));
8a35d95f 3345 }
7b128766 3346
703c88e0
FDBM
3347 if (release_rsv)
3348 btrfs_orphan_release_metadata(inode);
3349
4ef31a45 3350 return ret;
7b128766
JB
3351}
3352
3353/*
3354 * this cleans up any orphans that may be left on the list from the last use
3355 * of this root.
3356 */
66b4ffd1 3357int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3358{
3359 struct btrfs_path *path;
3360 struct extent_buffer *leaf;
7b128766
JB
3361 struct btrfs_key key, found_key;
3362 struct btrfs_trans_handle *trans;
3363 struct inode *inode;
8f6d7f4f 3364 u64 last_objectid = 0;
7b128766
JB
3365 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3366
d68fc57b 3367 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3368 return 0;
c71bf099
YZ
3369
3370 path = btrfs_alloc_path();
66b4ffd1
JB
3371 if (!path) {
3372 ret = -ENOMEM;
3373 goto out;
3374 }
e4058b54 3375 path->reada = READA_BACK;
7b128766
JB
3376
3377 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3378 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3379 key.offset = (u64)-1;
3380
7b128766
JB
3381 while (1) {
3382 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3383 if (ret < 0)
3384 goto out;
7b128766
JB
3385
3386 /*
3387 * if ret == 0 means we found what we were searching for, which
25985edc 3388 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3389 * find the key and see if we have stuff that matches
3390 */
3391 if (ret > 0) {
66b4ffd1 3392 ret = 0;
7b128766
JB
3393 if (path->slots[0] == 0)
3394 break;
3395 path->slots[0]--;
3396 }
3397
3398 /* pull out the item */
3399 leaf = path->nodes[0];
7b128766
JB
3400 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3401
3402 /* make sure the item matches what we want */
3403 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3404 break;
962a298f 3405 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3406 break;
3407
3408 /* release the path since we're done with it */
b3b4aa74 3409 btrfs_release_path(path);
7b128766
JB
3410
3411 /*
3412 * this is where we are basically btrfs_lookup, without the
3413 * crossing root thing. we store the inode number in the
3414 * offset of the orphan item.
3415 */
8f6d7f4f
JB
3416
3417 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3418 btrfs_err(root->fs_info,
3419 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3420 ret = -EINVAL;
3421 goto out;
3422 }
3423
3424 last_objectid = found_key.offset;
3425
5d4f98a2
YZ
3426 found_key.objectid = found_key.offset;
3427 found_key.type = BTRFS_INODE_ITEM_KEY;
3428 found_key.offset = 0;
73f73415 3429 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3430 ret = PTR_ERR_OR_ZERO(inode);
67710892 3431 if (ret && ret != -ENOENT)
66b4ffd1 3432 goto out;
7b128766 3433
67710892 3434 if (ret == -ENOENT && root == root->fs_info->tree_root) {
f8e9e0b0
AJ
3435 struct btrfs_root *dead_root;
3436 struct btrfs_fs_info *fs_info = root->fs_info;
3437 int is_dead_root = 0;
3438
3439 /*
3440 * this is an orphan in the tree root. Currently these
3441 * could come from 2 sources:
3442 * a) a snapshot deletion in progress
3443 * b) a free space cache inode
3444 * We need to distinguish those two, as the snapshot
3445 * orphan must not get deleted.
3446 * find_dead_roots already ran before us, so if this
3447 * is a snapshot deletion, we should find the root
3448 * in the dead_roots list
3449 */
3450 spin_lock(&fs_info->trans_lock);
3451 list_for_each_entry(dead_root, &fs_info->dead_roots,
3452 root_list) {
3453 if (dead_root->root_key.objectid ==
3454 found_key.objectid) {
3455 is_dead_root = 1;
3456 break;
3457 }
3458 }
3459 spin_unlock(&fs_info->trans_lock);
3460 if (is_dead_root) {
3461 /* prevent this orphan from being found again */
3462 key.offset = found_key.objectid - 1;
3463 continue;
3464 }
3465 }
7b128766 3466 /*
a8c9e576
JB
3467 * Inode is already gone but the orphan item is still there,
3468 * kill the orphan item.
7b128766 3469 */
67710892 3470 if (ret == -ENOENT) {
a8c9e576 3471 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3472 if (IS_ERR(trans)) {
3473 ret = PTR_ERR(trans);
3474 goto out;
3475 }
c2cf52eb
SK
3476 btrfs_debug(root->fs_info, "auto deleting %Lu",
3477 found_key.objectid);
a8c9e576
JB
3478 ret = btrfs_del_orphan_item(trans, root,
3479 found_key.objectid);
5b21f2ed 3480 btrfs_end_transaction(trans, root);
4ef31a45
JB
3481 if (ret)
3482 goto out;
7b128766
JB
3483 continue;
3484 }
3485
a8c9e576
JB
3486 /*
3487 * add this inode to the orphan list so btrfs_orphan_del does
3488 * the proper thing when we hit it
3489 */
8a35d95f
JB
3490 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3491 &BTRFS_I(inode)->runtime_flags);
925396ec 3492 atomic_inc(&root->orphan_inodes);
a8c9e576 3493
7b128766
JB
3494 /* if we have links, this was a truncate, lets do that */
3495 if (inode->i_nlink) {
fae7f21c 3496 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3497 iput(inode);
3498 continue;
3499 }
7b128766 3500 nr_truncate++;
f3fe820c
JB
3501
3502 /* 1 for the orphan item deletion. */
3503 trans = btrfs_start_transaction(root, 1);
3504 if (IS_ERR(trans)) {
c69b26b0 3505 iput(inode);
f3fe820c
JB
3506 ret = PTR_ERR(trans);
3507 goto out;
3508 }
3509 ret = btrfs_orphan_add(trans, inode);
3510 btrfs_end_transaction(trans, root);
c69b26b0
JB
3511 if (ret) {
3512 iput(inode);
f3fe820c 3513 goto out;
c69b26b0 3514 }
f3fe820c 3515
66b4ffd1 3516 ret = btrfs_truncate(inode);
4a7d0f68
JB
3517 if (ret)
3518 btrfs_orphan_del(NULL, inode);
7b128766
JB
3519 } else {
3520 nr_unlink++;
3521 }
3522
3523 /* this will do delete_inode and everything for us */
3524 iput(inode);
66b4ffd1
JB
3525 if (ret)
3526 goto out;
7b128766 3527 }
3254c876
MX
3528 /* release the path since we're done with it */
3529 btrfs_release_path(path);
3530
d68fc57b
YZ
3531 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3532
3533 if (root->orphan_block_rsv)
3534 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3535 (u64)-1);
3536
27cdeb70
MX
3537 if (root->orphan_block_rsv ||
3538 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3539 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3540 if (!IS_ERR(trans))
3541 btrfs_end_transaction(trans, root);
d68fc57b 3542 }
7b128766
JB
3543
3544 if (nr_unlink)
4884b476 3545 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3546 if (nr_truncate)
4884b476 3547 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3548
3549out:
3550 if (ret)
68b663d1 3551 btrfs_err(root->fs_info,
c2cf52eb 3552 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3553 btrfs_free_path(path);
3554 return ret;
7b128766
JB
3555}
3556
46a53cca
CM
3557/*
3558 * very simple check to peek ahead in the leaf looking for xattrs. If we
3559 * don't find any xattrs, we know there can't be any acls.
3560 *
3561 * slot is the slot the inode is in, objectid is the objectid of the inode
3562 */
3563static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3564 int slot, u64 objectid,
3565 int *first_xattr_slot)
46a53cca
CM
3566{
3567 u32 nritems = btrfs_header_nritems(leaf);
3568 struct btrfs_key found_key;
f23b5a59
JB
3569 static u64 xattr_access = 0;
3570 static u64 xattr_default = 0;
46a53cca
CM
3571 int scanned = 0;
3572
f23b5a59 3573 if (!xattr_access) {
97d79299
AG
3574 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3575 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3576 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3577 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3578 }
3579
46a53cca 3580 slot++;
63541927 3581 *first_xattr_slot = -1;
46a53cca
CM
3582 while (slot < nritems) {
3583 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3584
3585 /* we found a different objectid, there must not be acls */
3586 if (found_key.objectid != objectid)
3587 return 0;
3588
3589 /* we found an xattr, assume we've got an acl */
f23b5a59 3590 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3591 if (*first_xattr_slot == -1)
3592 *first_xattr_slot = slot;
f23b5a59
JB
3593 if (found_key.offset == xattr_access ||
3594 found_key.offset == xattr_default)
3595 return 1;
3596 }
46a53cca
CM
3597
3598 /*
3599 * we found a key greater than an xattr key, there can't
3600 * be any acls later on
3601 */
3602 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3603 return 0;
3604
3605 slot++;
3606 scanned++;
3607
3608 /*
3609 * it goes inode, inode backrefs, xattrs, extents,
3610 * so if there are a ton of hard links to an inode there can
3611 * be a lot of backrefs. Don't waste time searching too hard,
3612 * this is just an optimization
3613 */
3614 if (scanned >= 8)
3615 break;
3616 }
3617 /* we hit the end of the leaf before we found an xattr or
3618 * something larger than an xattr. We have to assume the inode
3619 * has acls
3620 */
63541927
FDBM
3621 if (*first_xattr_slot == -1)
3622 *first_xattr_slot = slot;
46a53cca
CM
3623 return 1;
3624}
3625
d352ac68
CM
3626/*
3627 * read an inode from the btree into the in-memory inode
3628 */
67710892 3629static int btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3630{
3631 struct btrfs_path *path;
5f39d397 3632 struct extent_buffer *leaf;
39279cc3
CM
3633 struct btrfs_inode_item *inode_item;
3634 struct btrfs_root *root = BTRFS_I(inode)->root;
3635 struct btrfs_key location;
67de1176 3636 unsigned long ptr;
46a53cca 3637 int maybe_acls;
618e21d5 3638 u32 rdev;
39279cc3 3639 int ret;
2f7e33d4 3640 bool filled = false;
63541927 3641 int first_xattr_slot;
2f7e33d4
MX
3642
3643 ret = btrfs_fill_inode(inode, &rdev);
3644 if (!ret)
3645 filled = true;
39279cc3
CM
3646
3647 path = btrfs_alloc_path();
67710892
FM
3648 if (!path) {
3649 ret = -ENOMEM;
1748f843 3650 goto make_bad;
67710892 3651 }
1748f843 3652
39279cc3 3653 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3654
39279cc3 3655 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3656 if (ret) {
3657 if (ret > 0)
3658 ret = -ENOENT;
39279cc3 3659 goto make_bad;
67710892 3660 }
39279cc3 3661
5f39d397 3662 leaf = path->nodes[0];
2f7e33d4
MX
3663
3664 if (filled)
67de1176 3665 goto cache_index;
2f7e33d4 3666
5f39d397
CM
3667 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3668 struct btrfs_inode_item);
5f39d397 3669 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3670 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3671 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3672 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3673 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397 3674
a937b979
DS
3675 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3676 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3677
a937b979
DS
3678 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3679 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3680
a937b979
DS
3681 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3682 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3683
9cc97d64 3684 BTRFS_I(inode)->i_otime.tv_sec =
3685 btrfs_timespec_sec(leaf, &inode_item->otime);
3686 BTRFS_I(inode)->i_otime.tv_nsec =
3687 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3688
a76a3cd4 3689 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3690 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3691 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3692
6e17d30b
YD
3693 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3694 inode->i_generation = BTRFS_I(inode)->generation;
3695 inode->i_rdev = 0;
3696 rdev = btrfs_inode_rdev(leaf, inode_item);
3697
3698 BTRFS_I(inode)->index_cnt = (u64)-1;
3699 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3700
3701cache_index:
5dc562c5
JB
3702 /*
3703 * If we were modified in the current generation and evicted from memory
3704 * and then re-read we need to do a full sync since we don't have any
3705 * idea about which extents were modified before we were evicted from
3706 * cache.
6e17d30b
YD
3707 *
3708 * This is required for both inode re-read from disk and delayed inode
3709 * in delayed_nodes_tree.
5dc562c5
JB
3710 */
3711 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3712 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3713 &BTRFS_I(inode)->runtime_flags);
3714
bde6c242
FM
3715 /*
3716 * We don't persist the id of the transaction where an unlink operation
3717 * against the inode was last made. So here we assume the inode might
3718 * have been evicted, and therefore the exact value of last_unlink_trans
3719 * lost, and set it to last_trans to avoid metadata inconsistencies
3720 * between the inode and its parent if the inode is fsync'ed and the log
3721 * replayed. For example, in the scenario:
3722 *
3723 * touch mydir/foo
3724 * ln mydir/foo mydir/bar
3725 * sync
3726 * unlink mydir/bar
3727 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3728 * xfs_io -c fsync mydir/foo
3729 * <power failure>
3730 * mount fs, triggers fsync log replay
3731 *
3732 * We must make sure that when we fsync our inode foo we also log its
3733 * parent inode, otherwise after log replay the parent still has the
3734 * dentry with the "bar" name but our inode foo has a link count of 1
3735 * and doesn't have an inode ref with the name "bar" anymore.
3736 *
3737 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3738 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3739 * transaction commits on fsync if our inode is a directory, or if our
3740 * inode is not a directory, logging its parent unnecessarily.
3741 */
3742 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3743
67de1176
MX
3744 path->slots[0]++;
3745 if (inode->i_nlink != 1 ||
3746 path->slots[0] >= btrfs_header_nritems(leaf))
3747 goto cache_acl;
3748
3749 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3750 if (location.objectid != btrfs_ino(inode))
3751 goto cache_acl;
3752
3753 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3754 if (location.type == BTRFS_INODE_REF_KEY) {
3755 struct btrfs_inode_ref *ref;
3756
3757 ref = (struct btrfs_inode_ref *)ptr;
3758 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3759 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3760 struct btrfs_inode_extref *extref;
3761
3762 extref = (struct btrfs_inode_extref *)ptr;
3763 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3764 extref);
3765 }
2f7e33d4 3766cache_acl:
46a53cca
CM
3767 /*
3768 * try to precache a NULL acl entry for files that don't have
3769 * any xattrs or acls
3770 */
33345d01 3771 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3772 btrfs_ino(inode), &first_xattr_slot);
3773 if (first_xattr_slot != -1) {
3774 path->slots[0] = first_xattr_slot;
3775 ret = btrfs_load_inode_props(inode, path);
3776 if (ret)
3777 btrfs_err(root->fs_info,
351fd353 3778 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3779 btrfs_ino(inode),
3780 root->root_key.objectid, ret);
3781 }
3782 btrfs_free_path(path);
3783
72c04902
AV
3784 if (!maybe_acls)
3785 cache_no_acl(inode);
46a53cca 3786
39279cc3 3787 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3788 case S_IFREG:
3789 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3790 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3791 inode->i_fop = &btrfs_file_operations;
3792 inode->i_op = &btrfs_file_inode_operations;
3793 break;
3794 case S_IFDIR:
3795 inode->i_fop = &btrfs_dir_file_operations;
3796 if (root == root->fs_info->tree_root)
3797 inode->i_op = &btrfs_dir_ro_inode_operations;
3798 else
3799 inode->i_op = &btrfs_dir_inode_operations;
3800 break;
3801 case S_IFLNK:
3802 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3803 inode_nohighmem(inode);
39279cc3
CM
3804 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3805 break;
618e21d5 3806 default:
0279b4cd 3807 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3808 init_special_inode(inode, inode->i_mode, rdev);
3809 break;
39279cc3 3810 }
6cbff00f
CH
3811
3812 btrfs_update_iflags(inode);
67710892 3813 return 0;
39279cc3
CM
3814
3815make_bad:
39279cc3 3816 btrfs_free_path(path);
39279cc3 3817 make_bad_inode(inode);
67710892 3818 return ret;
39279cc3
CM
3819}
3820
d352ac68
CM
3821/*
3822 * given a leaf and an inode, copy the inode fields into the leaf
3823 */
e02119d5
CM
3824static void fill_inode_item(struct btrfs_trans_handle *trans,
3825 struct extent_buffer *leaf,
5f39d397 3826 struct btrfs_inode_item *item,
39279cc3
CM
3827 struct inode *inode)
3828{
51fab693
LB
3829 struct btrfs_map_token token;
3830
3831 btrfs_init_map_token(&token);
5f39d397 3832
51fab693
LB
3833 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3834 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3835 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3836 &token);
3837 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3838 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3839
a937b979 3840 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3841 inode->i_atime.tv_sec, &token);
a937b979 3842 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3843 inode->i_atime.tv_nsec, &token);
5f39d397 3844
a937b979 3845 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3846 inode->i_mtime.tv_sec, &token);
a937b979 3847 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3848 inode->i_mtime.tv_nsec, &token);
5f39d397 3849
a937b979 3850 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3851 inode->i_ctime.tv_sec, &token);
a937b979 3852 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3853 inode->i_ctime.tv_nsec, &token);
5f39d397 3854
9cc97d64 3855 btrfs_set_token_timespec_sec(leaf, &item->otime,
3856 BTRFS_I(inode)->i_otime.tv_sec, &token);
3857 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3858 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3859
51fab693
LB
3860 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3861 &token);
3862 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3863 &token);
3864 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3865 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3866 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3867 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3868 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3869}
3870
d352ac68
CM
3871/*
3872 * copy everything in the in-memory inode into the btree.
3873 */
2115133f 3874static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3875 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3876{
3877 struct btrfs_inode_item *inode_item;
3878 struct btrfs_path *path;
5f39d397 3879 struct extent_buffer *leaf;
39279cc3
CM
3880 int ret;
3881
3882 path = btrfs_alloc_path();
16cdcec7
MX
3883 if (!path)
3884 return -ENOMEM;
3885
b9473439 3886 path->leave_spinning = 1;
16cdcec7
MX
3887 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3888 1);
39279cc3
CM
3889 if (ret) {
3890 if (ret > 0)
3891 ret = -ENOENT;
3892 goto failed;
3893 }
3894
5f39d397
CM
3895 leaf = path->nodes[0];
3896 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3897 struct btrfs_inode_item);
39279cc3 3898
e02119d5 3899 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3900 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3901 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3902 ret = 0;
3903failed:
39279cc3
CM
3904 btrfs_free_path(path);
3905 return ret;
3906}
3907
2115133f
CM
3908/*
3909 * copy everything in the in-memory inode into the btree.
3910 */
3911noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3912 struct btrfs_root *root, struct inode *inode)
3913{
3914 int ret;
3915
3916 /*
3917 * If the inode is a free space inode, we can deadlock during commit
3918 * if we put it into the delayed code.
3919 *
3920 * The data relocation inode should also be directly updated
3921 * without delay
3922 */
83eea1f1 3923 if (!btrfs_is_free_space_inode(inode)
1d52c78a
JB
3924 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3925 && !root->fs_info->log_root_recovering) {
8ea05e3a
AB
3926 btrfs_update_root_times(trans, root);
3927
2115133f
CM
3928 ret = btrfs_delayed_update_inode(trans, root, inode);
3929 if (!ret)
3930 btrfs_set_inode_last_trans(trans, inode);
3931 return ret;
3932 }
3933
3934 return btrfs_update_inode_item(trans, root, inode);
3935}
3936
be6aef60
JB
3937noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3938 struct btrfs_root *root,
3939 struct inode *inode)
2115133f
CM
3940{
3941 int ret;
3942
3943 ret = btrfs_update_inode(trans, root, inode);
3944 if (ret == -ENOSPC)
3945 return btrfs_update_inode_item(trans, root, inode);
3946 return ret;
3947}
3948
d352ac68
CM
3949/*
3950 * unlink helper that gets used here in inode.c and in the tree logging
3951 * recovery code. It remove a link in a directory with a given name, and
3952 * also drops the back refs in the inode to the directory
3953 */
92986796
AV
3954static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3955 struct btrfs_root *root,
3956 struct inode *dir, struct inode *inode,
3957 const char *name, int name_len)
39279cc3
CM
3958{
3959 struct btrfs_path *path;
39279cc3 3960 int ret = 0;
5f39d397 3961 struct extent_buffer *leaf;
39279cc3 3962 struct btrfs_dir_item *di;
5f39d397 3963 struct btrfs_key key;
aec7477b 3964 u64 index;
33345d01
LZ
3965 u64 ino = btrfs_ino(inode);
3966 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3967
3968 path = btrfs_alloc_path();
54aa1f4d
CM
3969 if (!path) {
3970 ret = -ENOMEM;
554233a6 3971 goto out;
54aa1f4d
CM
3972 }
3973
b9473439 3974 path->leave_spinning = 1;
33345d01 3975 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3976 name, name_len, -1);
3977 if (IS_ERR(di)) {
3978 ret = PTR_ERR(di);
3979 goto err;
3980 }
3981 if (!di) {
3982 ret = -ENOENT;
3983 goto err;
3984 }
5f39d397
CM
3985 leaf = path->nodes[0];
3986 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3987 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3988 if (ret)
3989 goto err;
b3b4aa74 3990 btrfs_release_path(path);
39279cc3 3991
67de1176
MX
3992 /*
3993 * If we don't have dir index, we have to get it by looking up
3994 * the inode ref, since we get the inode ref, remove it directly,
3995 * it is unnecessary to do delayed deletion.
3996 *
3997 * But if we have dir index, needn't search inode ref to get it.
3998 * Since the inode ref is close to the inode item, it is better
3999 * that we delay to delete it, and just do this deletion when
4000 * we update the inode item.
4001 */
4002 if (BTRFS_I(inode)->dir_index) {
4003 ret = btrfs_delayed_delete_inode_ref(inode);
4004 if (!ret) {
4005 index = BTRFS_I(inode)->dir_index;
4006 goto skip_backref;
4007 }
4008 }
4009
33345d01
LZ
4010 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4011 dir_ino, &index);
aec7477b 4012 if (ret) {
c2cf52eb
SK
4013 btrfs_info(root->fs_info,
4014 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4015 name_len, name, ino, dir_ino);
79787eaa 4016 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
4017 goto err;
4018 }
67de1176 4019skip_backref:
16cdcec7 4020 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
4021 if (ret) {
4022 btrfs_abort_transaction(trans, root, ret);
39279cc3 4023 goto err;
79787eaa 4024 }
39279cc3 4025
e02119d5 4026 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 4027 inode, dir_ino);
79787eaa
JM
4028 if (ret != 0 && ret != -ENOENT) {
4029 btrfs_abort_transaction(trans, root, ret);
4030 goto err;
4031 }
e02119d5
CM
4032
4033 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4034 dir, index);
6418c961
CM
4035 if (ret == -ENOENT)
4036 ret = 0;
d4e3991b
ZB
4037 else if (ret)
4038 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
4039err:
4040 btrfs_free_path(path);
e02119d5
CM
4041 if (ret)
4042 goto out;
4043
4044 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
4045 inode_inc_iversion(inode);
4046 inode_inc_iversion(dir);
04b285f3
DD
4047 inode->i_ctime = dir->i_mtime =
4048 dir->i_ctime = current_fs_time(inode->i_sb);
b9959295 4049 ret = btrfs_update_inode(trans, root, dir);
e02119d5 4050out:
39279cc3
CM
4051 return ret;
4052}
4053
92986796
AV
4054int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4055 struct btrfs_root *root,
4056 struct inode *dir, struct inode *inode,
4057 const char *name, int name_len)
4058{
4059 int ret;
4060 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4061 if (!ret) {
8b558c5f 4062 drop_nlink(inode);
92986796
AV
4063 ret = btrfs_update_inode(trans, root, inode);
4064 }
4065 return ret;
4066}
39279cc3 4067
a22285a6
YZ
4068/*
4069 * helper to start transaction for unlink and rmdir.
4070 *
d52be818
JB
4071 * unlink and rmdir are special in btrfs, they do not always free space, so
4072 * if we cannot make our reservations the normal way try and see if there is
4073 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4074 * allow the unlink to occur.
a22285a6 4075 */
d52be818 4076static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4077{
a22285a6 4078 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4079
e70bea5f
JB
4080 /*
4081 * 1 for the possible orphan item
4082 * 1 for the dir item
4083 * 1 for the dir index
4084 * 1 for the inode ref
e70bea5f
JB
4085 * 1 for the inode
4086 */
8eab77ff 4087 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4088}
4089
4090static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4091{
4092 struct btrfs_root *root = BTRFS_I(dir)->root;
4093 struct btrfs_trans_handle *trans;
2b0143b5 4094 struct inode *inode = d_inode(dentry);
a22285a6 4095 int ret;
a22285a6 4096
d52be818 4097 trans = __unlink_start_trans(dir);
a22285a6
YZ
4098 if (IS_ERR(trans))
4099 return PTR_ERR(trans);
5f39d397 4100
2b0143b5 4101 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
12fcfd22 4102
2b0143b5 4103 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4104 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
4105 if (ret)
4106 goto out;
7b128766 4107
a22285a6 4108 if (inode->i_nlink == 0) {
7b128766 4109 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
4110 if (ret)
4111 goto out;
a22285a6 4112 }
7b128766 4113
b532402e 4114out:
d52be818 4115 btrfs_end_transaction(trans, root);
b53d3f5d 4116 btrfs_btree_balance_dirty(root);
39279cc3
CM
4117 return ret;
4118}
4119
4df27c4d
YZ
4120int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4121 struct btrfs_root *root,
4122 struct inode *dir, u64 objectid,
4123 const char *name, int name_len)
4124{
4125 struct btrfs_path *path;
4126 struct extent_buffer *leaf;
4127 struct btrfs_dir_item *di;
4128 struct btrfs_key key;
4129 u64 index;
4130 int ret;
33345d01 4131 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
4132
4133 path = btrfs_alloc_path();
4134 if (!path)
4135 return -ENOMEM;
4136
33345d01 4137 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4138 name, name_len, -1);
79787eaa
JM
4139 if (IS_ERR_OR_NULL(di)) {
4140 if (!di)
4141 ret = -ENOENT;
4142 else
4143 ret = PTR_ERR(di);
4144 goto out;
4145 }
4df27c4d
YZ
4146
4147 leaf = path->nodes[0];
4148 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4149 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4150 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
4151 if (ret) {
4152 btrfs_abort_transaction(trans, root, ret);
4153 goto out;
4154 }
b3b4aa74 4155 btrfs_release_path(path);
4df27c4d
YZ
4156
4157 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4158 objectid, root->root_key.objectid,
33345d01 4159 dir_ino, &index, name, name_len);
4df27c4d 4160 if (ret < 0) {
79787eaa
JM
4161 if (ret != -ENOENT) {
4162 btrfs_abort_transaction(trans, root, ret);
4163 goto out;
4164 }
33345d01 4165 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4166 name, name_len);
79787eaa
JM
4167 if (IS_ERR_OR_NULL(di)) {
4168 if (!di)
4169 ret = -ENOENT;
4170 else
4171 ret = PTR_ERR(di);
4172 btrfs_abort_transaction(trans, root, ret);
4173 goto out;
4174 }
4df27c4d
YZ
4175
4176 leaf = path->nodes[0];
4177 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4178 btrfs_release_path(path);
4df27c4d
YZ
4179 index = key.offset;
4180 }
945d8962 4181 btrfs_release_path(path);
4df27c4d 4182
16cdcec7 4183 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
4184 if (ret) {
4185 btrfs_abort_transaction(trans, root, ret);
4186 goto out;
4187 }
4df27c4d
YZ
4188
4189 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4190 inode_inc_iversion(dir);
04b285f3 4191 dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb);
5a24e84c 4192 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
4193 if (ret)
4194 btrfs_abort_transaction(trans, root, ret);
4195out:
71d7aed0 4196 btrfs_free_path(path);
79787eaa 4197 return ret;
4df27c4d
YZ
4198}
4199
39279cc3
CM
4200static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4201{
2b0143b5 4202 struct inode *inode = d_inode(dentry);
1832a6d5 4203 int err = 0;
39279cc3 4204 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4205 struct btrfs_trans_handle *trans;
39279cc3 4206
b3ae244e 4207 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4208 return -ENOTEMPTY;
b3ae244e
DS
4209 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4210 return -EPERM;
134d4512 4211
d52be818 4212 trans = __unlink_start_trans(dir);
a22285a6 4213 if (IS_ERR(trans))
5df6a9f6 4214 return PTR_ERR(trans);
5df6a9f6 4215
33345d01 4216 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4217 err = btrfs_unlink_subvol(trans, root, dir,
4218 BTRFS_I(inode)->location.objectid,
4219 dentry->d_name.name,
4220 dentry->d_name.len);
4221 goto out;
4222 }
4223
7b128766
JB
4224 err = btrfs_orphan_add(trans, inode);
4225 if (err)
4df27c4d 4226 goto out;
7b128766 4227
39279cc3 4228 /* now the directory is empty */
2b0143b5 4229 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4230 dentry->d_name.name, dentry->d_name.len);
d397712b 4231 if (!err)
dbe674a9 4232 btrfs_i_size_write(inode, 0);
4df27c4d 4233out:
d52be818 4234 btrfs_end_transaction(trans, root);
b53d3f5d 4235 btrfs_btree_balance_dirty(root);
3954401f 4236
39279cc3
CM
4237 return err;
4238}
4239
28f75a0e
CM
4240static int truncate_space_check(struct btrfs_trans_handle *trans,
4241 struct btrfs_root *root,
4242 u64 bytes_deleted)
4243{
4244 int ret;
4245
dc95f7bf
JB
4246 /*
4247 * This is only used to apply pressure to the enospc system, we don't
4248 * intend to use this reservation at all.
4249 */
28f75a0e 4250 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
dc95f7bf 4251 bytes_deleted *= root->nodesize;
28f75a0e
CM
4252 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4253 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf
JB
4254 if (!ret) {
4255 trace_btrfs_space_reservation(root->fs_info, "transaction",
4256 trans->transid,
4257 bytes_deleted, 1);
28f75a0e 4258 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4259 }
28f75a0e
CM
4260 return ret;
4261
4262}
4263
0305cd5f
FM
4264static int truncate_inline_extent(struct inode *inode,
4265 struct btrfs_path *path,
4266 struct btrfs_key *found_key,
4267 const u64 item_end,
4268 const u64 new_size)
4269{
4270 struct extent_buffer *leaf = path->nodes[0];
4271 int slot = path->slots[0];
4272 struct btrfs_file_extent_item *fi;
4273 u32 size = (u32)(new_size - found_key->offset);
4274 struct btrfs_root *root = BTRFS_I(inode)->root;
4275
4276 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4277
4278 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4279 loff_t offset = new_size;
09cbfeaf 4280 loff_t page_end = ALIGN(offset, PAGE_SIZE);
0305cd5f
FM
4281
4282 /*
4283 * Zero out the remaining of the last page of our inline extent,
4284 * instead of directly truncating our inline extent here - that
4285 * would be much more complex (decompressing all the data, then
4286 * compressing the truncated data, which might be bigger than
4287 * the size of the inline extent, resize the extent, etc).
4288 * We release the path because to get the page we might need to
4289 * read the extent item from disk (data not in the page cache).
4290 */
4291 btrfs_release_path(path);
9703fefe
CR
4292 return btrfs_truncate_block(inode, offset, page_end - offset,
4293 0);
0305cd5f
FM
4294 }
4295
4296 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4297 size = btrfs_file_extent_calc_inline_size(size);
4298 btrfs_truncate_item(root, path, size, 1);
4299
4300 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4301 inode_sub_bytes(inode, item_end + 1 - new_size);
4302
4303 return 0;
4304}
4305
39279cc3
CM
4306/*
4307 * this can truncate away extent items, csum items and directory items.
4308 * It starts at a high offset and removes keys until it can't find
d352ac68 4309 * any higher than new_size
39279cc3
CM
4310 *
4311 * csum items that cross the new i_size are truncated to the new size
4312 * as well.
7b128766
JB
4313 *
4314 * min_type is the minimum key type to truncate down to. If set to 0, this
4315 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4316 */
8082510e
YZ
4317int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4318 struct btrfs_root *root,
4319 struct inode *inode,
4320 u64 new_size, u32 min_type)
39279cc3 4321{
39279cc3 4322 struct btrfs_path *path;
5f39d397 4323 struct extent_buffer *leaf;
39279cc3 4324 struct btrfs_file_extent_item *fi;
8082510e
YZ
4325 struct btrfs_key key;
4326 struct btrfs_key found_key;
39279cc3 4327 u64 extent_start = 0;
db94535d 4328 u64 extent_num_bytes = 0;
5d4f98a2 4329 u64 extent_offset = 0;
39279cc3 4330 u64 item_end = 0;
c1aa4575 4331 u64 last_size = new_size;
8082510e 4332 u32 found_type = (u8)-1;
39279cc3
CM
4333 int found_extent;
4334 int del_item;
85e21bac
CM
4335 int pending_del_nr = 0;
4336 int pending_del_slot = 0;
179e29e4 4337 int extent_type = -1;
8082510e
YZ
4338 int ret;
4339 int err = 0;
33345d01 4340 u64 ino = btrfs_ino(inode);
28ed1345 4341 u64 bytes_deleted = 0;
1262133b
JB
4342 bool be_nice = 0;
4343 bool should_throttle = 0;
28f75a0e 4344 bool should_end = 0;
8082510e
YZ
4345
4346 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4347
28ed1345
CM
4348 /*
4349 * for non-free space inodes and ref cows, we want to back off from
4350 * time to time
4351 */
4352 if (!btrfs_is_free_space_inode(inode) &&
4353 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4354 be_nice = 1;
4355
0eb0e19c
MF
4356 path = btrfs_alloc_path();
4357 if (!path)
4358 return -ENOMEM;
e4058b54 4359 path->reada = READA_BACK;
0eb0e19c 4360
5dc562c5
JB
4361 /*
4362 * We want to drop from the next block forward in case this new size is
4363 * not block aligned since we will be keeping the last block of the
4364 * extent just the way it is.
4365 */
27cdeb70
MX
4366 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4367 root == root->fs_info->tree_root)
fda2832f
QW
4368 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4369 root->sectorsize), (u64)-1, 0);
8082510e 4370
16cdcec7
MX
4371 /*
4372 * This function is also used to drop the items in the log tree before
4373 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4374 * it is used to drop the loged items. So we shouldn't kill the delayed
4375 * items.
4376 */
4377 if (min_type == 0 && root == BTRFS_I(inode)->root)
4378 btrfs_kill_delayed_inode_items(inode);
4379
33345d01 4380 key.objectid = ino;
39279cc3 4381 key.offset = (u64)-1;
5f39d397
CM
4382 key.type = (u8)-1;
4383
85e21bac 4384search_again:
28ed1345
CM
4385 /*
4386 * with a 16K leaf size and 128MB extents, you can actually queue
4387 * up a huge file in a single leaf. Most of the time that
4388 * bytes_deleted is > 0, it will be huge by the time we get here
4389 */
ee22184b 4390 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4391 if (btrfs_should_end_transaction(trans, root)) {
4392 err = -EAGAIN;
4393 goto error;
4394 }
4395 }
4396
4397
b9473439 4398 path->leave_spinning = 1;
85e21bac 4399 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4400 if (ret < 0) {
4401 err = ret;
4402 goto out;
4403 }
d397712b 4404
85e21bac 4405 if (ret > 0) {
e02119d5
CM
4406 /* there are no items in the tree for us to truncate, we're
4407 * done
4408 */
8082510e
YZ
4409 if (path->slots[0] == 0)
4410 goto out;
85e21bac
CM
4411 path->slots[0]--;
4412 }
4413
d397712b 4414 while (1) {
39279cc3 4415 fi = NULL;
5f39d397
CM
4416 leaf = path->nodes[0];
4417 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4418 found_type = found_key.type;
39279cc3 4419
33345d01 4420 if (found_key.objectid != ino)
39279cc3 4421 break;
5f39d397 4422
85e21bac 4423 if (found_type < min_type)
39279cc3
CM
4424 break;
4425
5f39d397 4426 item_end = found_key.offset;
39279cc3 4427 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4428 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4429 struct btrfs_file_extent_item);
179e29e4
CM
4430 extent_type = btrfs_file_extent_type(leaf, fi);
4431 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4432 item_end +=
db94535d 4433 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4434 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4435 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4436 path->slots[0], fi);
39279cc3 4437 }
008630c1 4438 item_end--;
39279cc3 4439 }
8082510e
YZ
4440 if (found_type > min_type) {
4441 del_item = 1;
4442 } else {
4443 if (item_end < new_size)
b888db2b 4444 break;
8082510e
YZ
4445 if (found_key.offset >= new_size)
4446 del_item = 1;
4447 else
4448 del_item = 0;
39279cc3 4449 }
39279cc3 4450 found_extent = 0;
39279cc3 4451 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4452 if (found_type != BTRFS_EXTENT_DATA_KEY)
4453 goto delete;
4454
7f4f6e0a
JB
4455 if (del_item)
4456 last_size = found_key.offset;
4457 else
4458 last_size = new_size;
4459
179e29e4 4460 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4461 u64 num_dec;
db94535d 4462 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4463 if (!del_item) {
db94535d
CM
4464 u64 orig_num_bytes =
4465 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4466 extent_num_bytes = ALIGN(new_size -
4467 found_key.offset,
4468 root->sectorsize);
db94535d
CM
4469 btrfs_set_file_extent_num_bytes(leaf, fi,
4470 extent_num_bytes);
4471 num_dec = (orig_num_bytes -
9069218d 4472 extent_num_bytes);
27cdeb70
MX
4473 if (test_bit(BTRFS_ROOT_REF_COWS,
4474 &root->state) &&
4475 extent_start != 0)
a76a3cd4 4476 inode_sub_bytes(inode, num_dec);
5f39d397 4477 btrfs_mark_buffer_dirty(leaf);
39279cc3 4478 } else {
db94535d
CM
4479 extent_num_bytes =
4480 btrfs_file_extent_disk_num_bytes(leaf,
4481 fi);
5d4f98a2
YZ
4482 extent_offset = found_key.offset -
4483 btrfs_file_extent_offset(leaf, fi);
4484
39279cc3 4485 /* FIXME blocksize != 4096 */
9069218d 4486 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4487 if (extent_start != 0) {
4488 found_extent = 1;
27cdeb70
MX
4489 if (test_bit(BTRFS_ROOT_REF_COWS,
4490 &root->state))
a76a3cd4 4491 inode_sub_bytes(inode, num_dec);
e02119d5 4492 }
39279cc3 4493 }
9069218d 4494 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4495 /*
4496 * we can't truncate inline items that have had
4497 * special encodings
4498 */
4499 if (!del_item &&
c8b97818
CM
4500 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4501 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4502
4503 /*
0305cd5f
FM
4504 * Need to release path in order to truncate a
4505 * compressed extent. So delete any accumulated
4506 * extent items so far.
514ac8ad 4507 */
0305cd5f
FM
4508 if (btrfs_file_extent_compression(leaf, fi) !=
4509 BTRFS_COMPRESS_NONE && pending_del_nr) {
4510 err = btrfs_del_items(trans, root, path,
4511 pending_del_slot,
4512 pending_del_nr);
4513 if (err) {
4514 btrfs_abort_transaction(trans,
4515 root,
4516 err);
4517 goto error;
4518 }
4519 pending_del_nr = 0;
4520 }
4521
4522 err = truncate_inline_extent(inode, path,
4523 &found_key,
4524 item_end,
4525 new_size);
4526 if (err) {
4527 btrfs_abort_transaction(trans,
4528 root, err);
4529 goto error;
4530 }
27cdeb70
MX
4531 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4532 &root->state)) {
0305cd5f 4533 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4534 }
39279cc3 4535 }
179e29e4 4536delete:
39279cc3 4537 if (del_item) {
85e21bac
CM
4538 if (!pending_del_nr) {
4539 /* no pending yet, add ourselves */
4540 pending_del_slot = path->slots[0];
4541 pending_del_nr = 1;
4542 } else if (pending_del_nr &&
4543 path->slots[0] + 1 == pending_del_slot) {
4544 /* hop on the pending chunk */
4545 pending_del_nr++;
4546 pending_del_slot = path->slots[0];
4547 } else {
d397712b 4548 BUG();
85e21bac 4549 }
39279cc3
CM
4550 } else {
4551 break;
4552 }
28f75a0e
CM
4553 should_throttle = 0;
4554
27cdeb70
MX
4555 if (found_extent &&
4556 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4557 root == root->fs_info->tree_root)) {
b9473439 4558 btrfs_set_path_blocking(path);
28ed1345 4559 bytes_deleted += extent_num_bytes;
39279cc3 4560 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4561 extent_num_bytes, 0,
4562 btrfs_header_owner(leaf),
b06c4bf5 4563 ino, extent_offset);
39279cc3 4564 BUG_ON(ret);
1262133b 4565 if (btrfs_should_throttle_delayed_refs(trans, root))
28ed1345 4566 btrfs_async_run_delayed_refs(root,
31b9655f 4567 trans->transid,
28ed1345 4568 trans->delayed_ref_updates * 2, 0);
28f75a0e
CM
4569 if (be_nice) {
4570 if (truncate_space_check(trans, root,
4571 extent_num_bytes)) {
4572 should_end = 1;
4573 }
4574 if (btrfs_should_throttle_delayed_refs(trans,
4575 root)) {
4576 should_throttle = 1;
4577 }
4578 }
39279cc3 4579 }
85e21bac 4580
8082510e
YZ
4581 if (found_type == BTRFS_INODE_ITEM_KEY)
4582 break;
4583
4584 if (path->slots[0] == 0 ||
1262133b 4585 path->slots[0] != pending_del_slot ||
28f75a0e 4586 should_throttle || should_end) {
8082510e
YZ
4587 if (pending_del_nr) {
4588 ret = btrfs_del_items(trans, root, path,
4589 pending_del_slot,
4590 pending_del_nr);
79787eaa
JM
4591 if (ret) {
4592 btrfs_abort_transaction(trans,
4593 root, ret);
4594 goto error;
4595 }
8082510e
YZ
4596 pending_del_nr = 0;
4597 }
b3b4aa74 4598 btrfs_release_path(path);
28f75a0e 4599 if (should_throttle) {
1262133b
JB
4600 unsigned long updates = trans->delayed_ref_updates;
4601 if (updates) {
4602 trans->delayed_ref_updates = 0;
4603 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4604 if (ret && !err)
4605 err = ret;
4606 }
4607 }
28f75a0e
CM
4608 /*
4609 * if we failed to refill our space rsv, bail out
4610 * and let the transaction restart
4611 */
4612 if (should_end) {
4613 err = -EAGAIN;
4614 goto error;
4615 }
85e21bac 4616 goto search_again;
8082510e
YZ
4617 } else {
4618 path->slots[0]--;
85e21bac 4619 }
39279cc3 4620 }
8082510e 4621out:
85e21bac
CM
4622 if (pending_del_nr) {
4623 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4624 pending_del_nr);
79787eaa
JM
4625 if (ret)
4626 btrfs_abort_transaction(trans, root, ret);
85e21bac 4627 }
79787eaa 4628error:
c1aa4575 4629 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4630 btrfs_ordered_update_i_size(inode, last_size, NULL);
28ed1345 4631
39279cc3 4632 btrfs_free_path(path);
28ed1345 4633
ee22184b 4634 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4635 unsigned long updates = trans->delayed_ref_updates;
4636 if (updates) {
4637 trans->delayed_ref_updates = 0;
4638 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4639 if (ret && !err)
4640 err = ret;
4641 }
4642 }
8082510e 4643 return err;
39279cc3
CM
4644}
4645
4646/*
9703fefe 4647 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4648 * @inode - inode that we're zeroing
4649 * @from - the offset to start zeroing
4650 * @len - the length to zero, 0 to zero the entire range respective to the
4651 * offset
4652 * @front - zero up to the offset instead of from the offset on
4653 *
9703fefe 4654 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4655 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4656 */
9703fefe 4657int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4658 int front)
39279cc3 4659{
2aaa6655 4660 struct address_space *mapping = inode->i_mapping;
db94535d 4661 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4662 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4663 struct btrfs_ordered_extent *ordered;
2ac55d41 4664 struct extent_state *cached_state = NULL;
e6dcd2dc 4665 char *kaddr;
db94535d 4666 u32 blocksize = root->sectorsize;
09cbfeaf 4667 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4668 unsigned offset = from & (blocksize - 1);
39279cc3 4669 struct page *page;
3b16a4e3 4670 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4671 int ret = 0;
9703fefe
CR
4672 u64 block_start;
4673 u64 block_end;
39279cc3 4674
2aaa6655
JB
4675 if ((offset & (blocksize - 1)) == 0 &&
4676 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4677 goto out;
9703fefe 4678
7cf5b976 4679 ret = btrfs_delalloc_reserve_space(inode,
9703fefe 4680 round_down(from, blocksize), blocksize);
5d5e103a
JB
4681 if (ret)
4682 goto out;
39279cc3 4683
211c17f5 4684again:
3b16a4e3 4685 page = find_or_create_page(mapping, index, mask);
5d5e103a 4686 if (!page) {
7cf5b976 4687 btrfs_delalloc_release_space(inode,
9703fefe
CR
4688 round_down(from, blocksize),
4689 blocksize);
ac6a2b36 4690 ret = -ENOMEM;
39279cc3 4691 goto out;
5d5e103a 4692 }
e6dcd2dc 4693
9703fefe
CR
4694 block_start = round_down(from, blocksize);
4695 block_end = block_start + blocksize - 1;
e6dcd2dc 4696
39279cc3 4697 if (!PageUptodate(page)) {
9ebefb18 4698 ret = btrfs_readpage(NULL, page);
39279cc3 4699 lock_page(page);
211c17f5
CM
4700 if (page->mapping != mapping) {
4701 unlock_page(page);
09cbfeaf 4702 put_page(page);
211c17f5
CM
4703 goto again;
4704 }
39279cc3
CM
4705 if (!PageUptodate(page)) {
4706 ret = -EIO;
89642229 4707 goto out_unlock;
39279cc3
CM
4708 }
4709 }
211c17f5 4710 wait_on_page_writeback(page);
e6dcd2dc 4711
9703fefe 4712 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4713 set_page_extent_mapped(page);
4714
9703fefe 4715 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4716 if (ordered) {
9703fefe 4717 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4718 &cached_state, GFP_NOFS);
e6dcd2dc 4719 unlock_page(page);
09cbfeaf 4720 put_page(page);
eb84ae03 4721 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4722 btrfs_put_ordered_extent(ordered);
4723 goto again;
4724 }
4725
9703fefe 4726 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4727 EXTENT_DIRTY | EXTENT_DELALLOC |
4728 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4729 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4730
9703fefe 4731 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
2ac55d41 4732 &cached_state);
9ed74f2d 4733 if (ret) {
9703fefe 4734 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4735 &cached_state, GFP_NOFS);
9ed74f2d
JB
4736 goto out_unlock;
4737 }
4738
9703fefe 4739 if (offset != blocksize) {
2aaa6655 4740 if (!len)
9703fefe 4741 len = blocksize - offset;
e6dcd2dc 4742 kaddr = kmap(page);
2aaa6655 4743 if (front)
9703fefe
CR
4744 memset(kaddr + (block_start - page_offset(page)),
4745 0, offset);
2aaa6655 4746 else
9703fefe
CR
4747 memset(kaddr + (block_start - page_offset(page)) + offset,
4748 0, len);
e6dcd2dc
CM
4749 flush_dcache_page(page);
4750 kunmap(page);
4751 }
247e743c 4752 ClearPageChecked(page);
e6dcd2dc 4753 set_page_dirty(page);
9703fefe 4754 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4755 GFP_NOFS);
39279cc3 4756
89642229 4757out_unlock:
5d5e103a 4758 if (ret)
9703fefe
CR
4759 btrfs_delalloc_release_space(inode, block_start,
4760 blocksize);
39279cc3 4761 unlock_page(page);
09cbfeaf 4762 put_page(page);
39279cc3
CM
4763out:
4764 return ret;
4765}
4766
16e7549f
JB
4767static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4768 u64 offset, u64 len)
4769{
4770 struct btrfs_trans_handle *trans;
4771 int ret;
4772
4773 /*
4774 * Still need to make sure the inode looks like it's been updated so
4775 * that any holes get logged if we fsync.
4776 */
4777 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4778 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4779 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4780 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4781 return 0;
4782 }
4783
4784 /*
4785 * 1 - for the one we're dropping
4786 * 1 - for the one we're adding
4787 * 1 - for updating the inode.
4788 */
4789 trans = btrfs_start_transaction(root, 3);
4790 if (IS_ERR(trans))
4791 return PTR_ERR(trans);
4792
4793 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4794 if (ret) {
4795 btrfs_abort_transaction(trans, root, ret);
4796 btrfs_end_transaction(trans, root);
4797 return ret;
4798 }
4799
4800 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4801 0, 0, len, 0, len, 0, 0, 0);
4802 if (ret)
4803 btrfs_abort_transaction(trans, root, ret);
4804 else
4805 btrfs_update_inode(trans, root, inode);
4806 btrfs_end_transaction(trans, root);
4807 return ret;
4808}
4809
695a0d0d
JB
4810/*
4811 * This function puts in dummy file extents for the area we're creating a hole
4812 * for. So if we are truncating this file to a larger size we need to insert
4813 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4814 * the range between oldsize and size
4815 */
a41ad394 4816int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4817{
9036c102
YZ
4818 struct btrfs_root *root = BTRFS_I(inode)->root;
4819 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4820 struct extent_map *em = NULL;
2ac55d41 4821 struct extent_state *cached_state = NULL;
5dc562c5 4822 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4823 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4824 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4825 u64 last_byte;
4826 u64 cur_offset;
4827 u64 hole_size;
9ed74f2d 4828 int err = 0;
39279cc3 4829
a71754fc 4830 /*
9703fefe
CR
4831 * If our size started in the middle of a block we need to zero out the
4832 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4833 * expose stale data.
4834 */
9703fefe 4835 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4836 if (err)
4837 return err;
4838
9036c102
YZ
4839 if (size <= hole_start)
4840 return 0;
4841
9036c102
YZ
4842 while (1) {
4843 struct btrfs_ordered_extent *ordered;
fa7c1494 4844
ff13db41 4845 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4846 &cached_state);
fa7c1494
MX
4847 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4848 block_end - hole_start);
9036c102
YZ
4849 if (!ordered)
4850 break;
2ac55d41
JB
4851 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4852 &cached_state, GFP_NOFS);
fa7c1494 4853 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4854 btrfs_put_ordered_extent(ordered);
4855 }
39279cc3 4856
9036c102
YZ
4857 cur_offset = hole_start;
4858 while (1) {
4859 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4860 block_end - cur_offset, 0);
79787eaa
JM
4861 if (IS_ERR(em)) {
4862 err = PTR_ERR(em);
f2767956 4863 em = NULL;
79787eaa
JM
4864 break;
4865 }
9036c102 4866 last_byte = min(extent_map_end(em), block_end);
fda2832f 4867 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4868 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4869 struct extent_map *hole_em;
9036c102 4870 hole_size = last_byte - cur_offset;
9ed74f2d 4871
16e7549f
JB
4872 err = maybe_insert_hole(root, inode, cur_offset,
4873 hole_size);
4874 if (err)
3893e33b 4875 break;
5dc562c5
JB
4876 btrfs_drop_extent_cache(inode, cur_offset,
4877 cur_offset + hole_size - 1, 0);
4878 hole_em = alloc_extent_map();
4879 if (!hole_em) {
4880 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4881 &BTRFS_I(inode)->runtime_flags);
4882 goto next;
4883 }
4884 hole_em->start = cur_offset;
4885 hole_em->len = hole_size;
4886 hole_em->orig_start = cur_offset;
8082510e 4887
5dc562c5
JB
4888 hole_em->block_start = EXTENT_MAP_HOLE;
4889 hole_em->block_len = 0;
b4939680 4890 hole_em->orig_block_len = 0;
cc95bef6 4891 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4892 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4893 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4894 hole_em->generation = root->fs_info->generation;
8082510e 4895
5dc562c5
JB
4896 while (1) {
4897 write_lock(&em_tree->lock);
09a2a8f9 4898 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4899 write_unlock(&em_tree->lock);
4900 if (err != -EEXIST)
4901 break;
4902 btrfs_drop_extent_cache(inode, cur_offset,
4903 cur_offset +
4904 hole_size - 1, 0);
4905 }
4906 free_extent_map(hole_em);
9036c102 4907 }
16e7549f 4908next:
9036c102 4909 free_extent_map(em);
a22285a6 4910 em = NULL;
9036c102 4911 cur_offset = last_byte;
8082510e 4912 if (cur_offset >= block_end)
9036c102
YZ
4913 break;
4914 }
a22285a6 4915 free_extent_map(em);
2ac55d41
JB
4916 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4917 GFP_NOFS);
9036c102
YZ
4918 return err;
4919}
39279cc3 4920
3972f260 4921static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4922{
f4a2f4c5
MX
4923 struct btrfs_root *root = BTRFS_I(inode)->root;
4924 struct btrfs_trans_handle *trans;
a41ad394 4925 loff_t oldsize = i_size_read(inode);
3972f260
ES
4926 loff_t newsize = attr->ia_size;
4927 int mask = attr->ia_valid;
8082510e
YZ
4928 int ret;
4929
3972f260
ES
4930 /*
4931 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4932 * special case where we need to update the times despite not having
4933 * these flags set. For all other operations the VFS set these flags
4934 * explicitly if it wants a timestamp update.
4935 */
dff6efc3
CH
4936 if (newsize != oldsize) {
4937 inode_inc_iversion(inode);
4938 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4939 inode->i_ctime = inode->i_mtime =
4940 current_fs_time(inode->i_sb);
4941 }
3972f260 4942
a41ad394 4943 if (newsize > oldsize) {
9ea24bbe
FM
4944 /*
4945 * Don't do an expanding truncate while snapshoting is ongoing.
4946 * This is to ensure the snapshot captures a fully consistent
4947 * state of this file - if the snapshot captures this expanding
4948 * truncation, it must capture all writes that happened before
4949 * this truncation.
4950 */
0bc19f90 4951 btrfs_wait_for_snapshot_creation(root);
a41ad394 4952 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4953 if (ret) {
4954 btrfs_end_write_no_snapshoting(root);
8082510e 4955 return ret;
9ea24bbe 4956 }
8082510e 4957
f4a2f4c5 4958 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4959 if (IS_ERR(trans)) {
4960 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 4961 return PTR_ERR(trans);
9ea24bbe 4962 }
f4a2f4c5
MX
4963
4964 i_size_write(inode, newsize);
4965 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 4966 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 4967 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 4968 btrfs_end_write_no_snapshoting(root);
7ad85bb7 4969 btrfs_end_transaction(trans, root);
a41ad394 4970 } else {
8082510e 4971
a41ad394
JB
4972 /*
4973 * We're truncating a file that used to have good data down to
4974 * zero. Make sure it gets into the ordered flush list so that
4975 * any new writes get down to disk quickly.
4976 */
4977 if (newsize == 0)
72ac3c0d
JB
4978 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4979 &BTRFS_I(inode)->runtime_flags);
8082510e 4980
f3fe820c
JB
4981 /*
4982 * 1 for the orphan item we're going to add
4983 * 1 for the orphan item deletion.
4984 */
4985 trans = btrfs_start_transaction(root, 2);
4986 if (IS_ERR(trans))
4987 return PTR_ERR(trans);
4988
4989 /*
4990 * We need to do this in case we fail at _any_ point during the
4991 * actual truncate. Once we do the truncate_setsize we could
4992 * invalidate pages which forces any outstanding ordered io to
4993 * be instantly completed which will give us extents that need
4994 * to be truncated. If we fail to get an orphan inode down we
4995 * could have left over extents that were never meant to live,
01327610 4996 * so we need to guarantee from this point on that everything
f3fe820c
JB
4997 * will be consistent.
4998 */
4999 ret = btrfs_orphan_add(trans, inode);
5000 btrfs_end_transaction(trans, root);
5001 if (ret)
5002 return ret;
5003
a41ad394
JB
5004 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5005 truncate_setsize(inode, newsize);
2e60a51e
MX
5006
5007 /* Disable nonlocked read DIO to avoid the end less truncate */
5008 btrfs_inode_block_unlocked_dio(inode);
5009 inode_dio_wait(inode);
5010 btrfs_inode_resume_unlocked_dio(inode);
5011
a41ad394 5012 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5013 if (ret && inode->i_nlink) {
5014 int err;
5015
5016 /*
5017 * failed to truncate, disk_i_size is only adjusted down
5018 * as we remove extents, so it should represent the true
5019 * size of the inode, so reset the in memory size and
5020 * delete our orphan entry.
5021 */
5022 trans = btrfs_join_transaction(root);
5023 if (IS_ERR(trans)) {
5024 btrfs_orphan_del(NULL, inode);
5025 return ret;
5026 }
5027 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5028 err = btrfs_orphan_del(trans, inode);
5029 if (err)
5030 btrfs_abort_transaction(trans, root, err);
5031 btrfs_end_transaction(trans, root);
5032 }
8082510e
YZ
5033 }
5034
a41ad394 5035 return ret;
8082510e
YZ
5036}
5037
9036c102
YZ
5038static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5039{
2b0143b5 5040 struct inode *inode = d_inode(dentry);
b83cc969 5041 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5042 int err;
39279cc3 5043
b83cc969
LZ
5044 if (btrfs_root_readonly(root))
5045 return -EROFS;
5046
9036c102
YZ
5047 err = inode_change_ok(inode, attr);
5048 if (err)
5049 return err;
2bf5a725 5050
5a3f23d5 5051 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5052 err = btrfs_setsize(inode, attr);
8082510e
YZ
5053 if (err)
5054 return err;
39279cc3 5055 }
9036c102 5056
1025774c
CH
5057 if (attr->ia_valid) {
5058 setattr_copy(inode, attr);
0c4d2d95 5059 inode_inc_iversion(inode);
22c44fe6 5060 err = btrfs_dirty_inode(inode);
1025774c 5061
22c44fe6 5062 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5063 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5064 }
33268eaf 5065
39279cc3
CM
5066 return err;
5067}
61295eb8 5068
131e404a
FDBM
5069/*
5070 * While truncating the inode pages during eviction, we get the VFS calling
5071 * btrfs_invalidatepage() against each page of the inode. This is slow because
5072 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5073 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5074 * extent_state structures over and over, wasting lots of time.
5075 *
5076 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5077 * those expensive operations on a per page basis and do only the ordered io
5078 * finishing, while we release here the extent_map and extent_state structures,
5079 * without the excessive merging and splitting.
5080 */
5081static void evict_inode_truncate_pages(struct inode *inode)
5082{
5083 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5084 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5085 struct rb_node *node;
5086
5087 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5088 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5089
5090 write_lock(&map_tree->lock);
5091 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5092 struct extent_map *em;
5093
5094 node = rb_first(&map_tree->map);
5095 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5096 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5097 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5098 remove_extent_mapping(map_tree, em);
5099 free_extent_map(em);
7064dd5c
FM
5100 if (need_resched()) {
5101 write_unlock(&map_tree->lock);
5102 cond_resched();
5103 write_lock(&map_tree->lock);
5104 }
131e404a
FDBM
5105 }
5106 write_unlock(&map_tree->lock);
5107
6ca07097
FM
5108 /*
5109 * Keep looping until we have no more ranges in the io tree.
5110 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5111 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5112 * still in progress (unlocked the pages in the bio but did not yet
5113 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5114 * ranges can still be locked and eviction started because before
5115 * submitting those bios, which are executed by a separate task (work
5116 * queue kthread), inode references (inode->i_count) were not taken
5117 * (which would be dropped in the end io callback of each bio).
5118 * Therefore here we effectively end up waiting for those bios and
5119 * anyone else holding locked ranges without having bumped the inode's
5120 * reference count - if we don't do it, when they access the inode's
5121 * io_tree to unlock a range it may be too late, leading to an
5122 * use-after-free issue.
5123 */
131e404a
FDBM
5124 spin_lock(&io_tree->lock);
5125 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5126 struct extent_state *state;
5127 struct extent_state *cached_state = NULL;
6ca07097
FM
5128 u64 start;
5129 u64 end;
131e404a
FDBM
5130
5131 node = rb_first(&io_tree->state);
5132 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5133 start = state->start;
5134 end = state->end;
131e404a
FDBM
5135 spin_unlock(&io_tree->lock);
5136
ff13db41 5137 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5138
5139 /*
5140 * If still has DELALLOC flag, the extent didn't reach disk,
5141 * and its reserved space won't be freed by delayed_ref.
5142 * So we need to free its reserved space here.
5143 * (Refer to comment in btrfs_invalidatepage, case 2)
5144 *
5145 * Note, end is the bytenr of last byte, so we need + 1 here.
5146 */
5147 if (state->state & EXTENT_DELALLOC)
5148 btrfs_qgroup_free_data(inode, start, end - start + 1);
5149
6ca07097 5150 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5151 EXTENT_LOCKED | EXTENT_DIRTY |
5152 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5153 EXTENT_DEFRAG, 1, 1,
5154 &cached_state, GFP_NOFS);
131e404a 5155
7064dd5c 5156 cond_resched();
131e404a
FDBM
5157 spin_lock(&io_tree->lock);
5158 }
5159 spin_unlock(&io_tree->lock);
5160}
5161
bd555975 5162void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
5163{
5164 struct btrfs_trans_handle *trans;
5165 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5166 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5167 int steal_from_global = 0;
07127184 5168 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
5169 int ret;
5170
1abe9b8a 5171 trace_btrfs_inode_evict(inode);
5172
131e404a
FDBM
5173 evict_inode_truncate_pages(inode);
5174
69e9c6c6
SB
5175 if (inode->i_nlink &&
5176 ((btrfs_root_refs(&root->root_item) != 0 &&
5177 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5178 btrfs_is_free_space_inode(inode)))
bd555975
AV
5179 goto no_delete;
5180
39279cc3 5181 if (is_bad_inode(inode)) {
7b128766 5182 btrfs_orphan_del(NULL, inode);
39279cc3
CM
5183 goto no_delete;
5184 }
bd555975 5185 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5186 if (!special_file(inode->i_mode))
5187 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5188
f612496b
MX
5189 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5190
c71bf099 5191 if (root->fs_info->log_root_recovering) {
6bf02314 5192 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5193 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5194 goto no_delete;
5195 }
5196
76dda93c 5197 if (inode->i_nlink > 0) {
69e9c6c6
SB
5198 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5199 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5200 goto no_delete;
5201 }
5202
0e8c36a9
MX
5203 ret = btrfs_commit_inode_delayed_inode(inode);
5204 if (ret) {
5205 btrfs_orphan_del(NULL, inode);
5206 goto no_delete;
5207 }
5208
66d8f3dd 5209 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
5210 if (!rsv) {
5211 btrfs_orphan_del(NULL, inode);
5212 goto no_delete;
5213 }
4a338542 5214 rsv->size = min_size;
ca7e70f5 5215 rsv->failfast = 1;
726c35fa 5216 global_rsv = &root->fs_info->global_block_rsv;
4289a667 5217
dbe674a9 5218 btrfs_i_size_write(inode, 0);
5f39d397 5219
4289a667 5220 /*
8407aa46
MX
5221 * This is a bit simpler than btrfs_truncate since we've already
5222 * reserved our space for our orphan item in the unlink, so we just
5223 * need to reserve some slack space in case we add bytes and update
5224 * inode item when doing the truncate.
4289a667 5225 */
8082510e 5226 while (1) {
08e007d2
MX
5227 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5228 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5229
5230 /*
5231 * Try and steal from the global reserve since we will
5232 * likely not use this space anyway, we want to try as
5233 * hard as possible to get this to work.
5234 */
5235 if (ret)
3bce876f
JB
5236 steal_from_global++;
5237 else
5238 steal_from_global = 0;
5239 ret = 0;
d68fc57b 5240
3bce876f
JB
5241 /*
5242 * steal_from_global == 0: we reserved stuff, hooray!
5243 * steal_from_global == 1: we didn't reserve stuff, boo!
5244 * steal_from_global == 2: we've committed, still not a lot of
5245 * room but maybe we'll have room in the global reserve this
5246 * time.
5247 * steal_from_global == 3: abandon all hope!
5248 */
5249 if (steal_from_global > 2) {
c2cf52eb
SK
5250 btrfs_warn(root->fs_info,
5251 "Could not get space for a delete, will truncate on mount %d",
5252 ret);
4289a667
JB
5253 btrfs_orphan_del(NULL, inode);
5254 btrfs_free_block_rsv(root, rsv);
5255 goto no_delete;
d68fc57b 5256 }
7b128766 5257
0e8c36a9 5258 trans = btrfs_join_transaction(root);
4289a667
JB
5259 if (IS_ERR(trans)) {
5260 btrfs_orphan_del(NULL, inode);
5261 btrfs_free_block_rsv(root, rsv);
5262 goto no_delete;
d68fc57b 5263 }
7b128766 5264
3bce876f 5265 /*
01327610 5266 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5267 * sure there is room to do it, if not we need to commit and try
5268 * again.
5269 */
5270 if (steal_from_global) {
5271 if (!btrfs_check_space_for_delayed_refs(trans, root))
5272 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
25d609f8 5273 min_size, 0);
3bce876f
JB
5274 else
5275 ret = -ENOSPC;
5276 }
5277
5278 /*
5279 * Couldn't steal from the global reserve, we have too much
5280 * pending stuff built up, commit the transaction and try it
5281 * again.
5282 */
5283 if (ret) {
5284 ret = btrfs_commit_transaction(trans, root);
5285 if (ret) {
5286 btrfs_orphan_del(NULL, inode);
5287 btrfs_free_block_rsv(root, rsv);
5288 goto no_delete;
5289 }
5290 continue;
5291 } else {
5292 steal_from_global = 0;
5293 }
5294
4289a667
JB
5295 trans->block_rsv = rsv;
5296
d68fc57b 5297 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5298 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5299 break;
85e21bac 5300
8407aa46 5301 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
5302 btrfs_end_transaction(trans, root);
5303 trans = NULL;
b53d3f5d 5304 btrfs_btree_balance_dirty(root);
8082510e 5305 }
5f39d397 5306
4289a667
JB
5307 btrfs_free_block_rsv(root, rsv);
5308
4ef31a45
JB
5309 /*
5310 * Errors here aren't a big deal, it just means we leave orphan items
5311 * in the tree. They will be cleaned up on the next mount.
5312 */
8082510e 5313 if (ret == 0) {
4289a667 5314 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
5315 btrfs_orphan_del(trans, inode);
5316 } else {
5317 btrfs_orphan_del(NULL, inode);
8082510e 5318 }
54aa1f4d 5319
4289a667 5320 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
5321 if (!(root == root->fs_info->tree_root ||
5322 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 5323 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 5324
54aa1f4d 5325 btrfs_end_transaction(trans, root);
b53d3f5d 5326 btrfs_btree_balance_dirty(root);
39279cc3 5327no_delete:
89042e5a 5328 btrfs_remove_delayed_node(inode);
dbd5768f 5329 clear_inode(inode);
39279cc3
CM
5330}
5331
5332/*
5333 * this returns the key found in the dir entry in the location pointer.
5334 * If no dir entries were found, location->objectid is 0.
5335 */
5336static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5337 struct btrfs_key *location)
5338{
5339 const char *name = dentry->d_name.name;
5340 int namelen = dentry->d_name.len;
5341 struct btrfs_dir_item *di;
5342 struct btrfs_path *path;
5343 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5344 int ret = 0;
39279cc3
CM
5345
5346 path = btrfs_alloc_path();
d8926bb3
MF
5347 if (!path)
5348 return -ENOMEM;
3954401f 5349
33345d01 5350 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 5351 namelen, 0);
0d9f7f3e
Y
5352 if (IS_ERR(di))
5353 ret = PTR_ERR(di);
d397712b 5354
c704005d 5355 if (IS_ERR_OR_NULL(di))
3954401f 5356 goto out_err;
d397712b 5357
5f39d397 5358 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5359out:
39279cc3
CM
5360 btrfs_free_path(path);
5361 return ret;
3954401f
CM
5362out_err:
5363 location->objectid = 0;
5364 goto out;
39279cc3
CM
5365}
5366
5367/*
5368 * when we hit a tree root in a directory, the btrfs part of the inode
5369 * needs to be changed to reflect the root directory of the tree root. This
5370 * is kind of like crossing a mount point.
5371 */
5372static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
5373 struct inode *dir,
5374 struct dentry *dentry,
5375 struct btrfs_key *location,
5376 struct btrfs_root **sub_root)
39279cc3 5377{
4df27c4d
YZ
5378 struct btrfs_path *path;
5379 struct btrfs_root *new_root;
5380 struct btrfs_root_ref *ref;
5381 struct extent_buffer *leaf;
1d4c08e0 5382 struct btrfs_key key;
4df27c4d
YZ
5383 int ret;
5384 int err = 0;
39279cc3 5385
4df27c4d
YZ
5386 path = btrfs_alloc_path();
5387 if (!path) {
5388 err = -ENOMEM;
5389 goto out;
5390 }
39279cc3 5391
4df27c4d 5392 err = -ENOENT;
1d4c08e0
DS
5393 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5394 key.type = BTRFS_ROOT_REF_KEY;
5395 key.offset = location->objectid;
5396
5397 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5398 0, 0);
4df27c4d
YZ
5399 if (ret) {
5400 if (ret < 0)
5401 err = ret;
5402 goto out;
5403 }
39279cc3 5404
4df27c4d
YZ
5405 leaf = path->nodes[0];
5406 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 5407 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
5408 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5409 goto out;
39279cc3 5410
4df27c4d
YZ
5411 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5412 (unsigned long)(ref + 1),
5413 dentry->d_name.len);
5414 if (ret)
5415 goto out;
5416
b3b4aa74 5417 btrfs_release_path(path);
4df27c4d
YZ
5418
5419 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5420 if (IS_ERR(new_root)) {
5421 err = PTR_ERR(new_root);
5422 goto out;
5423 }
5424
4df27c4d
YZ
5425 *sub_root = new_root;
5426 location->objectid = btrfs_root_dirid(&new_root->root_item);
5427 location->type = BTRFS_INODE_ITEM_KEY;
5428 location->offset = 0;
5429 err = 0;
5430out:
5431 btrfs_free_path(path);
5432 return err;
39279cc3
CM
5433}
5434
5d4f98a2
YZ
5435static void inode_tree_add(struct inode *inode)
5436{
5437 struct btrfs_root *root = BTRFS_I(inode)->root;
5438 struct btrfs_inode *entry;
03e860bd
FNP
5439 struct rb_node **p;
5440 struct rb_node *parent;
cef21937 5441 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5442 u64 ino = btrfs_ino(inode);
5d4f98a2 5443
1d3382cb 5444 if (inode_unhashed(inode))
76dda93c 5445 return;
e1409cef 5446 parent = NULL;
5d4f98a2 5447 spin_lock(&root->inode_lock);
e1409cef 5448 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5449 while (*p) {
5450 parent = *p;
5451 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5452
33345d01 5453 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5454 p = &parent->rb_left;
33345d01 5455 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5456 p = &parent->rb_right;
5d4f98a2
YZ
5457 else {
5458 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5459 (I_WILL_FREE | I_FREEING)));
cef21937 5460 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5461 RB_CLEAR_NODE(parent);
5462 spin_unlock(&root->inode_lock);
cef21937 5463 return;
5d4f98a2
YZ
5464 }
5465 }
cef21937
FDBM
5466 rb_link_node(new, parent, p);
5467 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5468 spin_unlock(&root->inode_lock);
5469}
5470
5471static void inode_tree_del(struct inode *inode)
5472{
5473 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5474 int empty = 0;
5d4f98a2 5475
03e860bd 5476 spin_lock(&root->inode_lock);
5d4f98a2 5477 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5478 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5479 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5480 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5481 }
03e860bd 5482 spin_unlock(&root->inode_lock);
76dda93c 5483
69e9c6c6 5484 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5485 synchronize_srcu(&root->fs_info->subvol_srcu);
5486 spin_lock(&root->inode_lock);
5487 empty = RB_EMPTY_ROOT(&root->inode_tree);
5488 spin_unlock(&root->inode_lock);
5489 if (empty)
5490 btrfs_add_dead_root(root);
5491 }
5492}
5493
143bede5 5494void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5495{
5496 struct rb_node *node;
5497 struct rb_node *prev;
5498 struct btrfs_inode *entry;
5499 struct inode *inode;
5500 u64 objectid = 0;
5501
7813b3db
LB
5502 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5503 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5504
5505 spin_lock(&root->inode_lock);
5506again:
5507 node = root->inode_tree.rb_node;
5508 prev = NULL;
5509 while (node) {
5510 prev = node;
5511 entry = rb_entry(node, struct btrfs_inode, rb_node);
5512
33345d01 5513 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5514 node = node->rb_left;
33345d01 5515 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5516 node = node->rb_right;
5517 else
5518 break;
5519 }
5520 if (!node) {
5521 while (prev) {
5522 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5523 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5524 node = prev;
5525 break;
5526 }
5527 prev = rb_next(prev);
5528 }
5529 }
5530 while (node) {
5531 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5532 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5533 inode = igrab(&entry->vfs_inode);
5534 if (inode) {
5535 spin_unlock(&root->inode_lock);
5536 if (atomic_read(&inode->i_count) > 1)
5537 d_prune_aliases(inode);
5538 /*
45321ac5 5539 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5540 * the inode cache when its usage count
5541 * hits zero.
5542 */
5543 iput(inode);
5544 cond_resched();
5545 spin_lock(&root->inode_lock);
5546 goto again;
5547 }
5548
5549 if (cond_resched_lock(&root->inode_lock))
5550 goto again;
5551
5552 node = rb_next(node);
5553 }
5554 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5555}
5556
e02119d5
CM
5557static int btrfs_init_locked_inode(struct inode *inode, void *p)
5558{
5559 struct btrfs_iget_args *args = p;
90d3e592
CM
5560 inode->i_ino = args->location->objectid;
5561 memcpy(&BTRFS_I(inode)->location, args->location,
5562 sizeof(*args->location));
e02119d5 5563 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5564 return 0;
5565}
5566
5567static int btrfs_find_actor(struct inode *inode, void *opaque)
5568{
5569 struct btrfs_iget_args *args = opaque;
90d3e592 5570 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5571 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5572}
5573
5d4f98a2 5574static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5575 struct btrfs_key *location,
5d4f98a2 5576 struct btrfs_root *root)
39279cc3
CM
5577{
5578 struct inode *inode;
5579 struct btrfs_iget_args args;
90d3e592 5580 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5581
90d3e592 5582 args.location = location;
39279cc3
CM
5583 args.root = root;
5584
778ba82b 5585 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5586 btrfs_init_locked_inode,
5587 (void *)&args);
5588 return inode;
5589}
5590
1a54ef8c
BR
5591/* Get an inode object given its location and corresponding root.
5592 * Returns in *is_new if the inode was read from disk
5593 */
5594struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5595 struct btrfs_root *root, int *new)
1a54ef8c
BR
5596{
5597 struct inode *inode;
5598
90d3e592 5599 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5600 if (!inode)
5d4f98a2 5601 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5602
5603 if (inode->i_state & I_NEW) {
67710892
FM
5604 int ret;
5605
5606 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5607 if (!is_bad_inode(inode)) {
5608 inode_tree_add(inode);
5609 unlock_new_inode(inode);
5610 if (new)
5611 *new = 1;
5612 } else {
e0b6d65b
ST
5613 unlock_new_inode(inode);
5614 iput(inode);
67710892
FM
5615 ASSERT(ret < 0);
5616 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5617 }
5618 }
5619
1a54ef8c
BR
5620 return inode;
5621}
5622
4df27c4d
YZ
5623static struct inode *new_simple_dir(struct super_block *s,
5624 struct btrfs_key *key,
5625 struct btrfs_root *root)
5626{
5627 struct inode *inode = new_inode(s);
5628
5629 if (!inode)
5630 return ERR_PTR(-ENOMEM);
5631
4df27c4d
YZ
5632 BTRFS_I(inode)->root = root;
5633 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5634 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5635
5636 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5637 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5638 inode->i_fop = &simple_dir_operations;
5639 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
04b285f3 5640 inode->i_mtime = current_fs_time(inode->i_sb);
9cc97d64 5641 inode->i_atime = inode->i_mtime;
5642 inode->i_ctime = inode->i_mtime;
5643 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5644
5645 return inode;
5646}
5647
3de4586c 5648struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5649{
d397712b 5650 struct inode *inode;
4df27c4d 5651 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5652 struct btrfs_root *sub_root = root;
5653 struct btrfs_key location;
76dda93c 5654 int index;
b4aff1f8 5655 int ret = 0;
39279cc3
CM
5656
5657 if (dentry->d_name.len > BTRFS_NAME_LEN)
5658 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5659
39e3c955 5660 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5661 if (ret < 0)
5662 return ERR_PTR(ret);
5f39d397 5663
4df27c4d 5664 if (location.objectid == 0)
5662344b 5665 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5666
5667 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5668 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5669 return inode;
5670 }
5671
5672 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5673
76dda93c 5674 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5675 ret = fixup_tree_root_location(root, dir, dentry,
5676 &location, &sub_root);
5677 if (ret < 0) {
5678 if (ret != -ENOENT)
5679 inode = ERR_PTR(ret);
5680 else
5681 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5682 } else {
73f73415 5683 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5684 }
76dda93c
YZ
5685 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5686
34d19bad 5687 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5688 down_read(&root->fs_info->cleanup_work_sem);
5689 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5690 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5691 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5692 if (ret) {
5693 iput(inode);
66b4ffd1 5694 inode = ERR_PTR(ret);
01cd3367 5695 }
c71bf099
YZ
5696 }
5697
3de4586c
CM
5698 return inode;
5699}
5700
fe15ce44 5701static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5702{
5703 struct btrfs_root *root;
2b0143b5 5704 struct inode *inode = d_inode(dentry);
76dda93c 5705
848cce0d 5706 if (!inode && !IS_ROOT(dentry))
2b0143b5 5707 inode = d_inode(dentry->d_parent);
76dda93c 5708
848cce0d
LZ
5709 if (inode) {
5710 root = BTRFS_I(inode)->root;
efefb143
YZ
5711 if (btrfs_root_refs(&root->root_item) == 0)
5712 return 1;
848cce0d
LZ
5713
5714 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5715 return 1;
efefb143 5716 }
76dda93c
YZ
5717 return 0;
5718}
5719
b4aff1f8
JB
5720static void btrfs_dentry_release(struct dentry *dentry)
5721{
944a4515 5722 kfree(dentry->d_fsdata);
b4aff1f8
JB
5723}
5724
3de4586c 5725static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5726 unsigned int flags)
3de4586c 5727{
5662344b 5728 struct inode *inode;
a66e7cc6 5729
5662344b
TI
5730 inode = btrfs_lookup_dentry(dir, dentry);
5731 if (IS_ERR(inode)) {
5732 if (PTR_ERR(inode) == -ENOENT)
5733 inode = NULL;
5734 else
5735 return ERR_CAST(inode);
5736 }
5737
41d28bca 5738 return d_splice_alias(inode, dentry);
39279cc3
CM
5739}
5740
16cdcec7 5741unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5742 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5743};
5744
9cdda8d3 5745static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5746{
9cdda8d3 5747 struct inode *inode = file_inode(file);
39279cc3
CM
5748 struct btrfs_root *root = BTRFS_I(inode)->root;
5749 struct btrfs_item *item;
5750 struct btrfs_dir_item *di;
5751 struct btrfs_key key;
5f39d397 5752 struct btrfs_key found_key;
39279cc3 5753 struct btrfs_path *path;
16cdcec7
MX
5754 struct list_head ins_list;
5755 struct list_head del_list;
39279cc3 5756 int ret;
5f39d397 5757 struct extent_buffer *leaf;
39279cc3 5758 int slot;
39279cc3
CM
5759 unsigned char d_type;
5760 int over = 0;
5761 u32 di_cur;
5762 u32 di_total;
5763 u32 di_len;
5764 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5765 char tmp_name[32];
5766 char *name_ptr;
5767 int name_len;
9cdda8d3 5768 int is_curr = 0; /* ctx->pos points to the current index? */
bc4ef759 5769 bool emitted;
02dbfc99 5770 bool put = false;
39279cc3
CM
5771
5772 /* FIXME, use a real flag for deciding about the key type */
5773 if (root->fs_info->tree_root == root)
5774 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5775
9cdda8d3
AV
5776 if (!dir_emit_dots(file, ctx))
5777 return 0;
5778
49593bfa 5779 path = btrfs_alloc_path();
16cdcec7
MX
5780 if (!path)
5781 return -ENOMEM;
ff5714cc 5782
e4058b54 5783 path->reada = READA_FORWARD;
49593bfa 5784
16cdcec7
MX
5785 if (key_type == BTRFS_DIR_INDEX_KEY) {
5786 INIT_LIST_HEAD(&ins_list);
5787 INIT_LIST_HEAD(&del_list);
02dbfc99
OS
5788 put = btrfs_readdir_get_delayed_items(inode, &ins_list,
5789 &del_list);
16cdcec7
MX
5790 }
5791
962a298f 5792 key.type = key_type;
9cdda8d3 5793 key.offset = ctx->pos;
33345d01 5794 key.objectid = btrfs_ino(inode);
5f39d397 5795
39279cc3
CM
5796 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5797 if (ret < 0)
5798 goto err;
49593bfa 5799
bc4ef759 5800 emitted = false;
49593bfa 5801 while (1) {
5f39d397 5802 leaf = path->nodes[0];
39279cc3 5803 slot = path->slots[0];
b9e03af0
LZ
5804 if (slot >= btrfs_header_nritems(leaf)) {
5805 ret = btrfs_next_leaf(root, path);
5806 if (ret < 0)
5807 goto err;
5808 else if (ret > 0)
5809 break;
5810 continue;
39279cc3 5811 }
3de4586c 5812
dd3cc16b 5813 item = btrfs_item_nr(slot);
5f39d397
CM
5814 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5815
5816 if (found_key.objectid != key.objectid)
39279cc3 5817 break;
962a298f 5818 if (found_key.type != key_type)
39279cc3 5819 break;
9cdda8d3 5820 if (found_key.offset < ctx->pos)
b9e03af0 5821 goto next;
16cdcec7
MX
5822 if (key_type == BTRFS_DIR_INDEX_KEY &&
5823 btrfs_should_delete_dir_index(&del_list,
5824 found_key.offset))
5825 goto next;
5f39d397 5826
9cdda8d3 5827 ctx->pos = found_key.offset;
16cdcec7 5828 is_curr = 1;
49593bfa 5829
39279cc3
CM
5830 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5831 di_cur = 0;
5f39d397 5832 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5833
5834 while (di_cur < di_total) {
5f39d397
CM
5835 struct btrfs_key location;
5836
22a94d44
JB
5837 if (verify_dir_item(root, leaf, di))
5838 break;
5839
5f39d397 5840 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5841 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5842 name_ptr = tmp_name;
5843 } else {
49e350a4 5844 name_ptr = kmalloc(name_len, GFP_KERNEL);
49593bfa
DW
5845 if (!name_ptr) {
5846 ret = -ENOMEM;
5847 goto err;
5848 }
5f39d397
CM
5849 }
5850 read_extent_buffer(leaf, name_ptr,
5851 (unsigned long)(di + 1), name_len);
5852
5853 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5854 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5855
fede766f 5856
3de4586c 5857 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5858 * skip it.
5859 *
5860 * In contrast to old kernels, we insert the snapshot's
5861 * dir item and dir index after it has been created, so
5862 * we won't find a reference to our own snapshot. We
5863 * still keep the following code for backward
5864 * compatibility.
3de4586c
CM
5865 */
5866 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5867 location.objectid == root->root_key.objectid) {
5868 over = 0;
5869 goto skip;
5870 }
9cdda8d3
AV
5871 over = !dir_emit(ctx, name_ptr, name_len,
5872 location.objectid, d_type);
5f39d397 5873
3de4586c 5874skip:
5f39d397
CM
5875 if (name_ptr != tmp_name)
5876 kfree(name_ptr);
5877
39279cc3
CM
5878 if (over)
5879 goto nopos;
bc4ef759 5880 emitted = true;
5103e947 5881 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5882 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5883 di_cur += di_len;
5884 di = (struct btrfs_dir_item *)((char *)di + di_len);
5885 }
b9e03af0
LZ
5886next:
5887 path->slots[0]++;
39279cc3 5888 }
49593bfa 5889
16cdcec7
MX
5890 if (key_type == BTRFS_DIR_INDEX_KEY) {
5891 if (is_curr)
9cdda8d3 5892 ctx->pos++;
bc4ef759 5893 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
16cdcec7
MX
5894 if (ret)
5895 goto nopos;
5896 }
5897
bc4ef759
DS
5898 /*
5899 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5900 * it was was set to the termination value in previous call. We assume
5901 * that "." and ".." were emitted if we reach this point and set the
5902 * termination value as well for an empty directory.
5903 */
5904 if (ctx->pos > 2 && !emitted)
5905 goto nopos;
5906
49593bfa 5907 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5908 ctx->pos++;
5909
5910 /*
5911 * Stop new entries from being returned after we return the last
5912 * entry.
5913 *
5914 * New directory entries are assigned a strictly increasing
5915 * offset. This means that new entries created during readdir
5916 * are *guaranteed* to be seen in the future by that readdir.
5917 * This has broken buggy programs which operate on names as
5918 * they're returned by readdir. Until we re-use freed offsets
5919 * we have this hack to stop new entries from being returned
5920 * under the assumption that they'll never reach this huge
5921 * offset.
5922 *
5923 * This is being careful not to overflow 32bit loff_t unless the
5924 * last entry requires it because doing so has broken 32bit apps
5925 * in the past.
5926 */
5927 if (key_type == BTRFS_DIR_INDEX_KEY) {
5928 if (ctx->pos >= INT_MAX)
5929 ctx->pos = LLONG_MAX;
5930 else
5931 ctx->pos = INT_MAX;
5932 }
39279cc3
CM
5933nopos:
5934 ret = 0;
5935err:
02dbfc99
OS
5936 if (put)
5937 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5938 btrfs_free_path(path);
39279cc3
CM
5939 return ret;
5940}
5941
a9185b41 5942int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5943{
5944 struct btrfs_root *root = BTRFS_I(inode)->root;
5945 struct btrfs_trans_handle *trans;
5946 int ret = 0;
0af3d00b 5947 bool nolock = false;
39279cc3 5948
72ac3c0d 5949 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5950 return 0;
5951
83eea1f1 5952 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5953 nolock = true;
0af3d00b 5954
a9185b41 5955 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5956 if (nolock)
7a7eaa40 5957 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5958 else
7a7eaa40 5959 trans = btrfs_join_transaction(root);
3612b495
TI
5960 if (IS_ERR(trans))
5961 return PTR_ERR(trans);
a698d075 5962 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5963 }
5964 return ret;
5965}
5966
5967/*
54aa1f4d 5968 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5969 * inode changes. But, it is most likely to find the inode in cache.
5970 * FIXME, needs more benchmarking...there are no reasons other than performance
5971 * to keep or drop this code.
5972 */
48a3b636 5973static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5974{
5975 struct btrfs_root *root = BTRFS_I(inode)->root;
5976 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5977 int ret;
5978
72ac3c0d 5979 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5980 return 0;
39279cc3 5981
7a7eaa40 5982 trans = btrfs_join_transaction(root);
22c44fe6
JB
5983 if (IS_ERR(trans))
5984 return PTR_ERR(trans);
8929ecfa
YZ
5985
5986 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5987 if (ret && ret == -ENOSPC) {
5988 /* whoops, lets try again with the full transaction */
5989 btrfs_end_transaction(trans, root);
5990 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5991 if (IS_ERR(trans))
5992 return PTR_ERR(trans);
8929ecfa 5993
94b60442 5994 ret = btrfs_update_inode(trans, root, inode);
94b60442 5995 }
39279cc3 5996 btrfs_end_transaction(trans, root);
16cdcec7
MX
5997 if (BTRFS_I(inode)->delayed_node)
5998 btrfs_balance_delayed_items(root);
22c44fe6
JB
5999
6000 return ret;
6001}
6002
6003/*
6004 * This is a copy of file_update_time. We need this so we can return error on
6005 * ENOSPC for updating the inode in the case of file write and mmap writes.
6006 */
e41f941a
JB
6007static int btrfs_update_time(struct inode *inode, struct timespec *now,
6008 int flags)
22c44fe6 6009{
2bc55652
AB
6010 struct btrfs_root *root = BTRFS_I(inode)->root;
6011
6012 if (btrfs_root_readonly(root))
6013 return -EROFS;
6014
e41f941a 6015 if (flags & S_VERSION)
22c44fe6 6016 inode_inc_iversion(inode);
e41f941a
JB
6017 if (flags & S_CTIME)
6018 inode->i_ctime = *now;
6019 if (flags & S_MTIME)
6020 inode->i_mtime = *now;
6021 if (flags & S_ATIME)
6022 inode->i_atime = *now;
6023 return btrfs_dirty_inode(inode);
39279cc3
CM
6024}
6025
d352ac68
CM
6026/*
6027 * find the highest existing sequence number in a directory
6028 * and then set the in-memory index_cnt variable to reflect
6029 * free sequence numbers
6030 */
aec7477b
JB
6031static int btrfs_set_inode_index_count(struct inode *inode)
6032{
6033 struct btrfs_root *root = BTRFS_I(inode)->root;
6034 struct btrfs_key key, found_key;
6035 struct btrfs_path *path;
6036 struct extent_buffer *leaf;
6037 int ret;
6038
33345d01 6039 key.objectid = btrfs_ino(inode);
962a298f 6040 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6041 key.offset = (u64)-1;
6042
6043 path = btrfs_alloc_path();
6044 if (!path)
6045 return -ENOMEM;
6046
6047 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6048 if (ret < 0)
6049 goto out;
6050 /* FIXME: we should be able to handle this */
6051 if (ret == 0)
6052 goto out;
6053 ret = 0;
6054
6055 /*
6056 * MAGIC NUMBER EXPLANATION:
6057 * since we search a directory based on f_pos we have to start at 2
6058 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6059 * else has to start at 2
6060 */
6061 if (path->slots[0] == 0) {
6062 BTRFS_I(inode)->index_cnt = 2;
6063 goto out;
6064 }
6065
6066 path->slots[0]--;
6067
6068 leaf = path->nodes[0];
6069 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6070
33345d01 6071 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6072 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
6073 BTRFS_I(inode)->index_cnt = 2;
6074 goto out;
6075 }
6076
6077 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6078out:
6079 btrfs_free_path(path);
6080 return ret;
6081}
6082
d352ac68
CM
6083/*
6084 * helper to find a free sequence number in a given directory. This current
6085 * code is very simple, later versions will do smarter things in the btree
6086 */
3de4586c 6087int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
6088{
6089 int ret = 0;
6090
6091 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
6092 ret = btrfs_inode_delayed_dir_index_count(dir);
6093 if (ret) {
6094 ret = btrfs_set_inode_index_count(dir);
6095 if (ret)
6096 return ret;
6097 }
aec7477b
JB
6098 }
6099
00e4e6b3 6100 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
6101 BTRFS_I(dir)->index_cnt++;
6102
6103 return ret;
6104}
6105
b0d5d10f
CM
6106static int btrfs_insert_inode_locked(struct inode *inode)
6107{
6108 struct btrfs_iget_args args;
6109 args.location = &BTRFS_I(inode)->location;
6110 args.root = BTRFS_I(inode)->root;
6111
6112 return insert_inode_locked4(inode,
6113 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6114 btrfs_find_actor, &args);
6115}
6116
39279cc3
CM
6117static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6118 struct btrfs_root *root,
aec7477b 6119 struct inode *dir,
9c58309d 6120 const char *name, int name_len,
175a4eb7
AV
6121 u64 ref_objectid, u64 objectid,
6122 umode_t mode, u64 *index)
39279cc3
CM
6123{
6124 struct inode *inode;
5f39d397 6125 struct btrfs_inode_item *inode_item;
39279cc3 6126 struct btrfs_key *location;
5f39d397 6127 struct btrfs_path *path;
9c58309d
CM
6128 struct btrfs_inode_ref *ref;
6129 struct btrfs_key key[2];
6130 u32 sizes[2];
ef3b9af5 6131 int nitems = name ? 2 : 1;
9c58309d 6132 unsigned long ptr;
39279cc3 6133 int ret;
39279cc3 6134
5f39d397 6135 path = btrfs_alloc_path();
d8926bb3
MF
6136 if (!path)
6137 return ERR_PTR(-ENOMEM);
5f39d397 6138
39279cc3 6139 inode = new_inode(root->fs_info->sb);
8fb27640
YS
6140 if (!inode) {
6141 btrfs_free_path(path);
39279cc3 6142 return ERR_PTR(-ENOMEM);
8fb27640 6143 }
39279cc3 6144
5762b5c9
FM
6145 /*
6146 * O_TMPFILE, set link count to 0, so that after this point,
6147 * we fill in an inode item with the correct link count.
6148 */
6149 if (!name)
6150 set_nlink(inode, 0);
6151
581bb050
LZ
6152 /*
6153 * we have to initialize this early, so we can reclaim the inode
6154 * number if we fail afterwards in this function.
6155 */
6156 inode->i_ino = objectid;
6157
ef3b9af5 6158 if (dir && name) {
1abe9b8a 6159 trace_btrfs_inode_request(dir);
6160
3de4586c 6161 ret = btrfs_set_inode_index(dir, index);
09771430 6162 if (ret) {
8fb27640 6163 btrfs_free_path(path);
09771430 6164 iput(inode);
aec7477b 6165 return ERR_PTR(ret);
09771430 6166 }
ef3b9af5
FM
6167 } else if (dir) {
6168 *index = 0;
aec7477b
JB
6169 }
6170 /*
6171 * index_cnt is ignored for everything but a dir,
6172 * btrfs_get_inode_index_count has an explanation for the magic
6173 * number
6174 */
6175 BTRFS_I(inode)->index_cnt = 2;
67de1176 6176 BTRFS_I(inode)->dir_index = *index;
39279cc3 6177 BTRFS_I(inode)->root = root;
e02119d5 6178 BTRFS_I(inode)->generation = trans->transid;
76195853 6179 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6180
5dc562c5
JB
6181 /*
6182 * We could have gotten an inode number from somebody who was fsynced
6183 * and then removed in this same transaction, so let's just set full
6184 * sync since it will be a full sync anyway and this will blow away the
6185 * old info in the log.
6186 */
6187 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6188
9c58309d 6189 key[0].objectid = objectid;
962a298f 6190 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6191 key[0].offset = 0;
6192
9c58309d 6193 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6194
6195 if (name) {
6196 /*
6197 * Start new inodes with an inode_ref. This is slightly more
6198 * efficient for small numbers of hard links since they will
6199 * be packed into one item. Extended refs will kick in if we
6200 * add more hard links than can fit in the ref item.
6201 */
6202 key[1].objectid = objectid;
962a298f 6203 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6204 key[1].offset = ref_objectid;
6205
6206 sizes[1] = name_len + sizeof(*ref);
6207 }
9c58309d 6208
b0d5d10f
CM
6209 location = &BTRFS_I(inode)->location;
6210 location->objectid = objectid;
6211 location->offset = 0;
962a298f 6212 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6213
6214 ret = btrfs_insert_inode_locked(inode);
6215 if (ret < 0)
6216 goto fail;
6217
b9473439 6218 path->leave_spinning = 1;
ef3b9af5 6219 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6220 if (ret != 0)
b0d5d10f 6221 goto fail_unlock;
5f39d397 6222
ecc11fab 6223 inode_init_owner(inode, dir, mode);
a76a3cd4 6224 inode_set_bytes(inode, 0);
9cc97d64 6225
04b285f3 6226 inode->i_mtime = current_fs_time(inode->i_sb);
9cc97d64 6227 inode->i_atime = inode->i_mtime;
6228 inode->i_ctime = inode->i_mtime;
6229 BTRFS_I(inode)->i_otime = inode->i_mtime;
6230
5f39d397
CM
6231 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6232 struct btrfs_inode_item);
293f7e07
LZ
6233 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6234 sizeof(*inode_item));
e02119d5 6235 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6236
ef3b9af5
FM
6237 if (name) {
6238 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6239 struct btrfs_inode_ref);
6240 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6241 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6242 ptr = (unsigned long)(ref + 1);
6243 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6244 }
9c58309d 6245
5f39d397
CM
6246 btrfs_mark_buffer_dirty(path->nodes[0]);
6247 btrfs_free_path(path);
6248
6cbff00f
CH
6249 btrfs_inherit_iflags(inode, dir);
6250
569254b0 6251 if (S_ISREG(mode)) {
94272164
CM
6252 if (btrfs_test_opt(root, NODATASUM))
6253 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 6254 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
6255 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6256 BTRFS_INODE_NODATASUM;
94272164
CM
6257 }
6258
5d4f98a2 6259 inode_tree_add(inode);
1abe9b8a 6260
6261 trace_btrfs_inode_new(inode);
1973f0fa 6262 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6263
8ea05e3a
AB
6264 btrfs_update_root_times(trans, root);
6265
63541927
FDBM
6266 ret = btrfs_inode_inherit_props(trans, inode, dir);
6267 if (ret)
6268 btrfs_err(root->fs_info,
6269 "error inheriting props for ino %llu (root %llu): %d",
6270 btrfs_ino(inode), root->root_key.objectid, ret);
6271
39279cc3 6272 return inode;
b0d5d10f
CM
6273
6274fail_unlock:
6275 unlock_new_inode(inode);
5f39d397 6276fail:
ef3b9af5 6277 if (dir && name)
aec7477b 6278 BTRFS_I(dir)->index_cnt--;
5f39d397 6279 btrfs_free_path(path);
09771430 6280 iput(inode);
5f39d397 6281 return ERR_PTR(ret);
39279cc3
CM
6282}
6283
6284static inline u8 btrfs_inode_type(struct inode *inode)
6285{
6286 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6287}
6288
d352ac68
CM
6289/*
6290 * utility function to add 'inode' into 'parent_inode' with
6291 * a give name and a given sequence number.
6292 * if 'add_backref' is true, also insert a backref from the
6293 * inode to the parent directory.
6294 */
e02119d5
CM
6295int btrfs_add_link(struct btrfs_trans_handle *trans,
6296 struct inode *parent_inode, struct inode *inode,
6297 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6298{
4df27c4d 6299 int ret = 0;
39279cc3 6300 struct btrfs_key key;
e02119d5 6301 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
6302 u64 ino = btrfs_ino(inode);
6303 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6304
33345d01 6305 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6306 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6307 } else {
33345d01 6308 key.objectid = ino;
962a298f 6309 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6310 key.offset = 0;
6311 }
6312
33345d01 6313 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6314 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6315 key.objectid, root->root_key.objectid,
33345d01 6316 parent_ino, index, name, name_len);
4df27c4d 6317 } else if (add_backref) {
33345d01
LZ
6318 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6319 parent_ino, index);
4df27c4d 6320 }
39279cc3 6321
79787eaa
JM
6322 /* Nothing to clean up yet */
6323 if (ret)
6324 return ret;
4df27c4d 6325
79787eaa
JM
6326 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6327 parent_inode, &key,
6328 btrfs_inode_type(inode), index);
9c52057c 6329 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6330 goto fail_dir_item;
6331 else if (ret) {
6332 btrfs_abort_transaction(trans, root, ret);
6333 return ret;
39279cc3 6334 }
79787eaa
JM
6335
6336 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6337 name_len * 2);
0c4d2d95 6338 inode_inc_iversion(parent_inode);
04b285f3
DD
6339 parent_inode->i_mtime = parent_inode->i_ctime =
6340 current_fs_time(parent_inode->i_sb);
79787eaa
JM
6341 ret = btrfs_update_inode(trans, root, parent_inode);
6342 if (ret)
6343 btrfs_abort_transaction(trans, root, ret);
39279cc3 6344 return ret;
fe66a05a
CM
6345
6346fail_dir_item:
6347 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6348 u64 local_index;
6349 int err;
6350 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6351 key.objectid, root->root_key.objectid,
6352 parent_ino, &local_index, name, name_len);
6353
6354 } else if (add_backref) {
6355 u64 local_index;
6356 int err;
6357
6358 err = btrfs_del_inode_ref(trans, root, name, name_len,
6359 ino, parent_ino, &local_index);
6360 }
6361 return ret;
39279cc3
CM
6362}
6363
6364static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
6365 struct inode *dir, struct dentry *dentry,
6366 struct inode *inode, int backref, u64 index)
39279cc3 6367{
a1b075d2
JB
6368 int err = btrfs_add_link(trans, dir, inode,
6369 dentry->d_name.name, dentry->d_name.len,
6370 backref, index);
39279cc3
CM
6371 if (err > 0)
6372 err = -EEXIST;
6373 return err;
6374}
6375
618e21d5 6376static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6377 umode_t mode, dev_t rdev)
618e21d5
JB
6378{
6379 struct btrfs_trans_handle *trans;
6380 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6381 struct inode *inode = NULL;
618e21d5
JB
6382 int err;
6383 int drop_inode = 0;
6384 u64 objectid;
00e4e6b3 6385 u64 index = 0;
618e21d5 6386
9ed74f2d
JB
6387 /*
6388 * 2 for inode item and ref
6389 * 2 for dir items
6390 * 1 for xattr if selinux is on
6391 */
a22285a6
YZ
6392 trans = btrfs_start_transaction(root, 5);
6393 if (IS_ERR(trans))
6394 return PTR_ERR(trans);
1832a6d5 6395
581bb050
LZ
6396 err = btrfs_find_free_ino(root, &objectid);
6397 if (err)
6398 goto out_unlock;
6399
aec7477b 6400 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6401 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6402 mode, &index);
7cf96da3
TI
6403 if (IS_ERR(inode)) {
6404 err = PTR_ERR(inode);
618e21d5 6405 goto out_unlock;
7cf96da3 6406 }
618e21d5 6407
ad19db71
CS
6408 /*
6409 * If the active LSM wants to access the inode during
6410 * d_instantiate it needs these. Smack checks to see
6411 * if the filesystem supports xattrs by looking at the
6412 * ops vector.
6413 */
ad19db71 6414 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6415 init_special_inode(inode, inode->i_mode, rdev);
6416
6417 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6418 if (err)
b0d5d10f
CM
6419 goto out_unlock_inode;
6420
6421 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6422 if (err) {
6423 goto out_unlock_inode;
6424 } else {
1b4ab1bb 6425 btrfs_update_inode(trans, root, inode);
b0d5d10f 6426 unlock_new_inode(inode);
08c422c2 6427 d_instantiate(dentry, inode);
618e21d5 6428 }
b0d5d10f 6429
618e21d5 6430out_unlock:
7ad85bb7 6431 btrfs_end_transaction(trans, root);
c581afc8 6432 btrfs_balance_delayed_items(root);
b53d3f5d 6433 btrfs_btree_balance_dirty(root);
618e21d5
JB
6434 if (drop_inode) {
6435 inode_dec_link_count(inode);
6436 iput(inode);
6437 }
618e21d5 6438 return err;
b0d5d10f
CM
6439
6440out_unlock_inode:
6441 drop_inode = 1;
6442 unlock_new_inode(inode);
6443 goto out_unlock;
6444
618e21d5
JB
6445}
6446
39279cc3 6447static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6448 umode_t mode, bool excl)
39279cc3
CM
6449{
6450 struct btrfs_trans_handle *trans;
6451 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6452 struct inode *inode = NULL;
43baa579 6453 int drop_inode_on_err = 0;
a22285a6 6454 int err;
39279cc3 6455 u64 objectid;
00e4e6b3 6456 u64 index = 0;
39279cc3 6457
9ed74f2d
JB
6458 /*
6459 * 2 for inode item and ref
6460 * 2 for dir items
6461 * 1 for xattr if selinux is on
6462 */
a22285a6
YZ
6463 trans = btrfs_start_transaction(root, 5);
6464 if (IS_ERR(trans))
6465 return PTR_ERR(trans);
9ed74f2d 6466
581bb050
LZ
6467 err = btrfs_find_free_ino(root, &objectid);
6468 if (err)
6469 goto out_unlock;
6470
aec7477b 6471 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6472 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6473 mode, &index);
7cf96da3
TI
6474 if (IS_ERR(inode)) {
6475 err = PTR_ERR(inode);
39279cc3 6476 goto out_unlock;
7cf96da3 6477 }
43baa579 6478 drop_inode_on_err = 1;
ad19db71
CS
6479 /*
6480 * If the active LSM wants to access the inode during
6481 * d_instantiate it needs these. Smack checks to see
6482 * if the filesystem supports xattrs by looking at the
6483 * ops vector.
6484 */
6485 inode->i_fop = &btrfs_file_operations;
6486 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6487 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6488
6489 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6490 if (err)
6491 goto out_unlock_inode;
6492
6493 err = btrfs_update_inode(trans, root, inode);
6494 if (err)
6495 goto out_unlock_inode;
ad19db71 6496
a1b075d2 6497 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6498 if (err)
b0d5d10f 6499 goto out_unlock_inode;
43baa579 6500
43baa579 6501 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6502 unlock_new_inode(inode);
43baa579
FB
6503 d_instantiate(dentry, inode);
6504
39279cc3 6505out_unlock:
7ad85bb7 6506 btrfs_end_transaction(trans, root);
43baa579 6507 if (err && drop_inode_on_err) {
39279cc3
CM
6508 inode_dec_link_count(inode);
6509 iput(inode);
6510 }
c581afc8 6511 btrfs_balance_delayed_items(root);
b53d3f5d 6512 btrfs_btree_balance_dirty(root);
39279cc3 6513 return err;
b0d5d10f
CM
6514
6515out_unlock_inode:
6516 unlock_new_inode(inode);
6517 goto out_unlock;
6518
39279cc3
CM
6519}
6520
6521static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6522 struct dentry *dentry)
6523{
271dba45 6524 struct btrfs_trans_handle *trans = NULL;
39279cc3 6525 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6526 struct inode *inode = d_inode(old_dentry);
00e4e6b3 6527 u64 index;
39279cc3
CM
6528 int err;
6529 int drop_inode = 0;
6530
4a8be425
TH
6531 /* do not allow sys_link's with other subvols of the same device */
6532 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6533 return -EXDEV;
4a8be425 6534
f186373f 6535 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6536 return -EMLINK;
4a8be425 6537
3de4586c 6538 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6539 if (err)
6540 goto fail;
6541
a22285a6 6542 /*
7e6b6465 6543 * 2 items for inode and inode ref
a22285a6 6544 * 2 items for dir items
7e6b6465 6545 * 1 item for parent inode
a22285a6 6546 */
7e6b6465 6547 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6548 if (IS_ERR(trans)) {
6549 err = PTR_ERR(trans);
271dba45 6550 trans = NULL;
a22285a6
YZ
6551 goto fail;
6552 }
5f39d397 6553
67de1176
MX
6554 /* There are several dir indexes for this inode, clear the cache. */
6555 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6556 inc_nlink(inode);
0c4d2d95 6557 inode_inc_iversion(inode);
04b285f3 6558 inode->i_ctime = current_fs_time(inode->i_sb);
7de9c6ee 6559 ihold(inode);
e9976151 6560 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6561
a1b075d2 6562 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6563
a5719521 6564 if (err) {
54aa1f4d 6565 drop_inode = 1;
a5719521 6566 } else {
10d9f309 6567 struct dentry *parent = dentry->d_parent;
a5719521 6568 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6569 if (err)
6570 goto fail;
ef3b9af5
FM
6571 if (inode->i_nlink == 1) {
6572 /*
6573 * If new hard link count is 1, it's a file created
6574 * with open(2) O_TMPFILE flag.
6575 */
6576 err = btrfs_orphan_del(trans, inode);
6577 if (err)
6578 goto fail;
6579 }
08c422c2 6580 d_instantiate(dentry, inode);
6a912213 6581 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6582 }
39279cc3 6583
c581afc8 6584 btrfs_balance_delayed_items(root);
1832a6d5 6585fail:
271dba45
FM
6586 if (trans)
6587 btrfs_end_transaction(trans, root);
39279cc3
CM
6588 if (drop_inode) {
6589 inode_dec_link_count(inode);
6590 iput(inode);
6591 }
b53d3f5d 6592 btrfs_btree_balance_dirty(root);
39279cc3
CM
6593 return err;
6594}
6595
18bb1db3 6596static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6597{
b9d86667 6598 struct inode *inode = NULL;
39279cc3
CM
6599 struct btrfs_trans_handle *trans;
6600 struct btrfs_root *root = BTRFS_I(dir)->root;
6601 int err = 0;
6602 int drop_on_err = 0;
b9d86667 6603 u64 objectid = 0;
00e4e6b3 6604 u64 index = 0;
39279cc3 6605
9ed74f2d
JB
6606 /*
6607 * 2 items for inode and ref
6608 * 2 items for dir items
6609 * 1 for xattr if selinux is on
6610 */
a22285a6
YZ
6611 trans = btrfs_start_transaction(root, 5);
6612 if (IS_ERR(trans))
6613 return PTR_ERR(trans);
39279cc3 6614
581bb050
LZ
6615 err = btrfs_find_free_ino(root, &objectid);
6616 if (err)
6617 goto out_fail;
6618
aec7477b 6619 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6620 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6621 S_IFDIR | mode, &index);
39279cc3
CM
6622 if (IS_ERR(inode)) {
6623 err = PTR_ERR(inode);
6624 goto out_fail;
6625 }
5f39d397 6626
39279cc3 6627 drop_on_err = 1;
b0d5d10f
CM
6628 /* these must be set before we unlock the inode */
6629 inode->i_op = &btrfs_dir_inode_operations;
6630 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6631
2a7dba39 6632 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6633 if (err)
b0d5d10f 6634 goto out_fail_inode;
39279cc3 6635
dbe674a9 6636 btrfs_i_size_write(inode, 0);
39279cc3
CM
6637 err = btrfs_update_inode(trans, root, inode);
6638 if (err)
b0d5d10f 6639 goto out_fail_inode;
5f39d397 6640
a1b075d2
JB
6641 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6642 dentry->d_name.len, 0, index);
39279cc3 6643 if (err)
b0d5d10f 6644 goto out_fail_inode;
5f39d397 6645
39279cc3 6646 d_instantiate(dentry, inode);
b0d5d10f
CM
6647 /*
6648 * mkdir is special. We're unlocking after we call d_instantiate
6649 * to avoid a race with nfsd calling d_instantiate.
6650 */
6651 unlock_new_inode(inode);
39279cc3 6652 drop_on_err = 0;
39279cc3
CM
6653
6654out_fail:
7ad85bb7 6655 btrfs_end_transaction(trans, root);
c7cfb8a5
WS
6656 if (drop_on_err) {
6657 inode_dec_link_count(inode);
39279cc3 6658 iput(inode);
c7cfb8a5 6659 }
c581afc8 6660 btrfs_balance_delayed_items(root);
b53d3f5d 6661 btrfs_btree_balance_dirty(root);
39279cc3 6662 return err;
b0d5d10f
CM
6663
6664out_fail_inode:
6665 unlock_new_inode(inode);
6666 goto out_fail;
39279cc3
CM
6667}
6668
e6c4efd8
QW
6669/* Find next extent map of a given extent map, caller needs to ensure locks */
6670static struct extent_map *next_extent_map(struct extent_map *em)
6671{
6672 struct rb_node *next;
6673
6674 next = rb_next(&em->rb_node);
6675 if (!next)
6676 return NULL;
6677 return container_of(next, struct extent_map, rb_node);
6678}
6679
6680static struct extent_map *prev_extent_map(struct extent_map *em)
6681{
6682 struct rb_node *prev;
6683
6684 prev = rb_prev(&em->rb_node);
6685 if (!prev)
6686 return NULL;
6687 return container_of(prev, struct extent_map, rb_node);
6688}
6689
d352ac68 6690/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6691 * the existing extent is the nearest extent to map_start,
d352ac68 6692 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6693 * the best fitted new extent into the tree.
d352ac68 6694 */
3b951516
CM
6695static int merge_extent_mapping(struct extent_map_tree *em_tree,
6696 struct extent_map *existing,
e6dcd2dc 6697 struct extent_map *em,
51f395ad 6698 u64 map_start)
3b951516 6699{
e6c4efd8
QW
6700 struct extent_map *prev;
6701 struct extent_map *next;
6702 u64 start;
6703 u64 end;
3b951516 6704 u64 start_diff;
3b951516 6705
e6dcd2dc 6706 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6707
6708 if (existing->start > map_start) {
6709 next = existing;
6710 prev = prev_extent_map(next);
6711 } else {
6712 prev = existing;
6713 next = next_extent_map(prev);
6714 }
6715
6716 start = prev ? extent_map_end(prev) : em->start;
6717 start = max_t(u64, start, em->start);
6718 end = next ? next->start : extent_map_end(em);
6719 end = min_t(u64, end, extent_map_end(em));
6720 start_diff = start - em->start;
6721 em->start = start;
6722 em->len = end - start;
c8b97818
CM
6723 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6724 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6725 em->block_start += start_diff;
c8b97818
CM
6726 em->block_len -= start_diff;
6727 }
09a2a8f9 6728 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6729}
6730
c8b97818 6731static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6732 struct page *page,
c8b97818
CM
6733 size_t pg_offset, u64 extent_offset,
6734 struct btrfs_file_extent_item *item)
6735{
6736 int ret;
6737 struct extent_buffer *leaf = path->nodes[0];
6738 char *tmp;
6739 size_t max_size;
6740 unsigned long inline_size;
6741 unsigned long ptr;
261507a0 6742 int compress_type;
c8b97818
CM
6743
6744 WARN_ON(pg_offset != 0);
261507a0 6745 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6746 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6747 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6748 btrfs_item_nr(path->slots[0]));
c8b97818 6749 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6750 if (!tmp)
6751 return -ENOMEM;
c8b97818
CM
6752 ptr = btrfs_file_extent_inline_start(item);
6753
6754 read_extent_buffer(leaf, tmp, ptr, inline_size);
6755
09cbfeaf 6756 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6757 ret = btrfs_decompress(compress_type, tmp, page,
6758 extent_offset, inline_size, max_size);
c8b97818 6759 kfree(tmp);
166ae5a4 6760 return ret;
c8b97818
CM
6761}
6762
d352ac68
CM
6763/*
6764 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6765 * the ugly parts come from merging extents from the disk with the in-ram
6766 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6767 * where the in-ram extents might be locked pending data=ordered completion.
6768 *
6769 * This also copies inline extents directly into the page.
6770 */
d397712b 6771
a52d9a80 6772struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6773 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6774 int create)
6775{
6776 int ret;
6777 int err = 0;
a52d9a80
CM
6778 u64 extent_start = 0;
6779 u64 extent_end = 0;
33345d01 6780 u64 objectid = btrfs_ino(inode);
a52d9a80 6781 u32 found_type;
f421950f 6782 struct btrfs_path *path = NULL;
a52d9a80
CM
6783 struct btrfs_root *root = BTRFS_I(inode)->root;
6784 struct btrfs_file_extent_item *item;
5f39d397
CM
6785 struct extent_buffer *leaf;
6786 struct btrfs_key found_key;
a52d9a80
CM
6787 struct extent_map *em = NULL;
6788 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6789 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6790 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6791 const bool new_inline = !page || create;
a52d9a80 6792
a52d9a80 6793again:
890871be 6794 read_lock(&em_tree->lock);
d1310b2e 6795 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6796 if (em)
6797 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6798 read_unlock(&em_tree->lock);
d1310b2e 6799
a52d9a80 6800 if (em) {
e1c4b745
CM
6801 if (em->start > start || em->start + em->len <= start)
6802 free_extent_map(em);
6803 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6804 free_extent_map(em);
6805 else
6806 goto out;
a52d9a80 6807 }
172ddd60 6808 em = alloc_extent_map();
a52d9a80 6809 if (!em) {
d1310b2e
CM
6810 err = -ENOMEM;
6811 goto out;
a52d9a80 6812 }
e6dcd2dc 6813 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6814 em->start = EXTENT_MAP_HOLE;
445a6944 6815 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6816 em->len = (u64)-1;
c8b97818 6817 em->block_len = (u64)-1;
f421950f
CM
6818
6819 if (!path) {
6820 path = btrfs_alloc_path();
026fd317
JB
6821 if (!path) {
6822 err = -ENOMEM;
6823 goto out;
6824 }
6825 /*
6826 * Chances are we'll be called again, so go ahead and do
6827 * readahead
6828 */
e4058b54 6829 path->reada = READA_FORWARD;
f421950f
CM
6830 }
6831
179e29e4
CM
6832 ret = btrfs_lookup_file_extent(trans, root, path,
6833 objectid, start, trans != NULL);
a52d9a80
CM
6834 if (ret < 0) {
6835 err = ret;
6836 goto out;
6837 }
6838
6839 if (ret != 0) {
6840 if (path->slots[0] == 0)
6841 goto not_found;
6842 path->slots[0]--;
6843 }
6844
5f39d397
CM
6845 leaf = path->nodes[0];
6846 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6847 struct btrfs_file_extent_item);
a52d9a80 6848 /* are we inside the extent that was found? */
5f39d397 6849 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6850 found_type = found_key.type;
5f39d397 6851 if (found_key.objectid != objectid ||
a52d9a80 6852 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6853 /*
6854 * If we backup past the first extent we want to move forward
6855 * and see if there is an extent in front of us, otherwise we'll
6856 * say there is a hole for our whole search range which can
6857 * cause problems.
6858 */
6859 extent_end = start;
6860 goto next;
a52d9a80
CM
6861 }
6862
5f39d397
CM
6863 found_type = btrfs_file_extent_type(leaf, item);
6864 extent_start = found_key.offset;
d899e052
YZ
6865 if (found_type == BTRFS_FILE_EXTENT_REG ||
6866 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6867 extent_end = extent_start +
db94535d 6868 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6869 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6870 size_t size;
514ac8ad 6871 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6872 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6873 }
25a50341 6874next:
9036c102
YZ
6875 if (start >= extent_end) {
6876 path->slots[0]++;
6877 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6878 ret = btrfs_next_leaf(root, path);
6879 if (ret < 0) {
6880 err = ret;
6881 goto out;
a52d9a80 6882 }
9036c102
YZ
6883 if (ret > 0)
6884 goto not_found;
6885 leaf = path->nodes[0];
a52d9a80 6886 }
9036c102
YZ
6887 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6888 if (found_key.objectid != objectid ||
6889 found_key.type != BTRFS_EXTENT_DATA_KEY)
6890 goto not_found;
6891 if (start + len <= found_key.offset)
6892 goto not_found;
e2eca69d
WS
6893 if (start > found_key.offset)
6894 goto next;
9036c102 6895 em->start = start;
70c8a91c 6896 em->orig_start = start;
9036c102
YZ
6897 em->len = found_key.offset - start;
6898 goto not_found_em;
6899 }
6900
7ffbb598
FM
6901 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6902
d899e052
YZ
6903 if (found_type == BTRFS_FILE_EXTENT_REG ||
6904 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6905 goto insert;
6906 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6907 unsigned long ptr;
a52d9a80 6908 char *map;
3326d1b0
CM
6909 size_t size;
6910 size_t extent_offset;
6911 size_t copy_size;
a52d9a80 6912
7ffbb598 6913 if (new_inline)
689f9346 6914 goto out;
5f39d397 6915
514ac8ad 6916 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6917 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6918 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6919 size - extent_offset);
3326d1b0 6920 em->start = extent_start + extent_offset;
fda2832f 6921 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6922 em->orig_block_len = em->len;
70c8a91c 6923 em->orig_start = em->start;
689f9346 6924 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6925 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6926 if (btrfs_file_extent_compression(leaf, item) !=
6927 BTRFS_COMPRESS_NONE) {
e40da0e5 6928 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6929 extent_offset, item);
166ae5a4
ZB
6930 if (ret) {
6931 err = ret;
6932 goto out;
6933 }
c8b97818
CM
6934 } else {
6935 map = kmap(page);
6936 read_extent_buffer(leaf, map + pg_offset, ptr,
6937 copy_size);
09cbfeaf 6938 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6939 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6940 PAGE_SIZE - pg_offset -
93c82d57
CM
6941 copy_size);
6942 }
c8b97818
CM
6943 kunmap(page);
6944 }
179e29e4
CM
6945 flush_dcache_page(page);
6946 } else if (create && PageUptodate(page)) {
6bf7e080 6947 BUG();
179e29e4
CM
6948 if (!trans) {
6949 kunmap(page);
6950 free_extent_map(em);
6951 em = NULL;
ff5714cc 6952
b3b4aa74 6953 btrfs_release_path(path);
7a7eaa40 6954 trans = btrfs_join_transaction(root);
ff5714cc 6955
3612b495
TI
6956 if (IS_ERR(trans))
6957 return ERR_CAST(trans);
179e29e4
CM
6958 goto again;
6959 }
c8b97818 6960 map = kmap(page);
70dec807 6961 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6962 copy_size);
c8b97818 6963 kunmap(page);
179e29e4 6964 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6965 }
d1310b2e 6966 set_extent_uptodate(io_tree, em->start,
507903b8 6967 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6968 goto insert;
a52d9a80
CM
6969 }
6970not_found:
6971 em->start = start;
70c8a91c 6972 em->orig_start = start;
d1310b2e 6973 em->len = len;
a52d9a80 6974not_found_em:
5f39d397 6975 em->block_start = EXTENT_MAP_HOLE;
9036c102 6976 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6977insert:
b3b4aa74 6978 btrfs_release_path(path);
d1310b2e 6979 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6980 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6981 em->start, em->len, start, len);
a52d9a80
CM
6982 err = -EIO;
6983 goto out;
6984 }
d1310b2e
CM
6985
6986 err = 0;
890871be 6987 write_lock(&em_tree->lock);
09a2a8f9 6988 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6989 /* it is possible that someone inserted the extent into the tree
6990 * while we had the lock dropped. It is also possible that
6991 * an overlapping map exists in the tree
6992 */
a52d9a80 6993 if (ret == -EEXIST) {
3b951516 6994 struct extent_map *existing;
e6dcd2dc
CM
6995
6996 ret = 0;
6997
e6c4efd8
QW
6998 existing = search_extent_mapping(em_tree, start, len);
6999 /*
7000 * existing will always be non-NULL, since there must be
7001 * extent causing the -EEXIST.
7002 */
8dff9c85
CM
7003 if (existing->start == em->start &&
7004 extent_map_end(existing) == extent_map_end(em) &&
7005 em->block_start == existing->block_start) {
7006 /*
7007 * these two extents are the same, it happens
7008 * with inlines especially
7009 */
7010 free_extent_map(em);
7011 em = existing;
7012 err = 0;
7013
7014 } else if (start >= extent_map_end(existing) ||
32be3a1a 7015 start <= existing->start) {
e6c4efd8
QW
7016 /*
7017 * The existing extent map is the one nearest to
7018 * the [start, start + len) range which overlaps
7019 */
7020 err = merge_extent_mapping(em_tree, existing,
7021 em, start);
e1c4b745 7022 free_extent_map(existing);
e6c4efd8 7023 if (err) {
3b951516
CM
7024 free_extent_map(em);
7025 em = NULL;
7026 }
7027 } else {
7028 free_extent_map(em);
7029 em = existing;
e6dcd2dc 7030 err = 0;
a52d9a80 7031 }
a52d9a80 7032 }
890871be 7033 write_unlock(&em_tree->lock);
a52d9a80 7034out:
1abe9b8a 7035
4cd8587c 7036 trace_btrfs_get_extent(root, em);
1abe9b8a 7037
527afb44 7038 btrfs_free_path(path);
a52d9a80
CM
7039 if (trans) {
7040 ret = btrfs_end_transaction(trans, root);
d397712b 7041 if (!err)
a52d9a80
CM
7042 err = ret;
7043 }
a52d9a80
CM
7044 if (err) {
7045 free_extent_map(em);
a52d9a80
CM
7046 return ERR_PTR(err);
7047 }
79787eaa 7048 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7049 return em;
7050}
7051
ec29ed5b
CM
7052struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7053 size_t pg_offset, u64 start, u64 len,
7054 int create)
7055{
7056 struct extent_map *em;
7057 struct extent_map *hole_em = NULL;
7058 u64 range_start = start;
7059 u64 end;
7060 u64 found;
7061 u64 found_end;
7062 int err = 0;
7063
7064 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7065 if (IS_ERR(em))
7066 return em;
7067 if (em) {
7068 /*
f9e4fb53
LB
7069 * if our em maps to
7070 * - a hole or
7071 * - a pre-alloc extent,
7072 * there might actually be delalloc bytes behind it.
ec29ed5b 7073 */
f9e4fb53
LB
7074 if (em->block_start != EXTENT_MAP_HOLE &&
7075 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
7076 return em;
7077 else
7078 hole_em = em;
7079 }
7080
7081 /* check to see if we've wrapped (len == -1 or similar) */
7082 end = start + len;
7083 if (end < start)
7084 end = (u64)-1;
7085 else
7086 end -= 1;
7087
7088 em = NULL;
7089
7090 /* ok, we didn't find anything, lets look for delalloc */
7091 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7092 end, len, EXTENT_DELALLOC, 1);
7093 found_end = range_start + found;
7094 if (found_end < range_start)
7095 found_end = (u64)-1;
7096
7097 /*
7098 * we didn't find anything useful, return
7099 * the original results from get_extent()
7100 */
7101 if (range_start > end || found_end <= start) {
7102 em = hole_em;
7103 hole_em = NULL;
7104 goto out;
7105 }
7106
7107 /* adjust the range_start to make sure it doesn't
7108 * go backwards from the start they passed in
7109 */
67871254 7110 range_start = max(start, range_start);
ec29ed5b
CM
7111 found = found_end - range_start;
7112
7113 if (found > 0) {
7114 u64 hole_start = start;
7115 u64 hole_len = len;
7116
172ddd60 7117 em = alloc_extent_map();
ec29ed5b
CM
7118 if (!em) {
7119 err = -ENOMEM;
7120 goto out;
7121 }
7122 /*
7123 * when btrfs_get_extent can't find anything it
7124 * returns one huge hole
7125 *
7126 * make sure what it found really fits our range, and
7127 * adjust to make sure it is based on the start from
7128 * the caller
7129 */
7130 if (hole_em) {
7131 u64 calc_end = extent_map_end(hole_em);
7132
7133 if (calc_end <= start || (hole_em->start > end)) {
7134 free_extent_map(hole_em);
7135 hole_em = NULL;
7136 } else {
7137 hole_start = max(hole_em->start, start);
7138 hole_len = calc_end - hole_start;
7139 }
7140 }
7141 em->bdev = NULL;
7142 if (hole_em && range_start > hole_start) {
7143 /* our hole starts before our delalloc, so we
7144 * have to return just the parts of the hole
7145 * that go until the delalloc starts
7146 */
7147 em->len = min(hole_len,
7148 range_start - hole_start);
7149 em->start = hole_start;
7150 em->orig_start = hole_start;
7151 /*
7152 * don't adjust block start at all,
7153 * it is fixed at EXTENT_MAP_HOLE
7154 */
7155 em->block_start = hole_em->block_start;
7156 em->block_len = hole_len;
f9e4fb53
LB
7157 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7158 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7159 } else {
7160 em->start = range_start;
7161 em->len = found;
7162 em->orig_start = range_start;
7163 em->block_start = EXTENT_MAP_DELALLOC;
7164 em->block_len = found;
7165 }
7166 } else if (hole_em) {
7167 return hole_em;
7168 }
7169out:
7170
7171 free_extent_map(hole_em);
7172 if (err) {
7173 free_extent_map(em);
7174 return ERR_PTR(err);
7175 }
7176 return em;
7177}
7178
5f9a8a51
FM
7179static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7180 const u64 start,
7181 const u64 len,
7182 const u64 orig_start,
7183 const u64 block_start,
7184 const u64 block_len,
7185 const u64 orig_block_len,
7186 const u64 ram_bytes,
7187 const int type)
7188{
7189 struct extent_map *em = NULL;
7190 int ret;
7191
7192 down_read(&BTRFS_I(inode)->dio_sem);
7193 if (type != BTRFS_ORDERED_NOCOW) {
7194 em = create_pinned_em(inode, start, len, orig_start,
7195 block_start, block_len, orig_block_len,
7196 ram_bytes, type);
7197 if (IS_ERR(em))
7198 goto out;
7199 }
7200 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7201 len, block_len, type);
7202 if (ret) {
7203 if (em) {
7204 free_extent_map(em);
7205 btrfs_drop_extent_cache(inode, start,
7206 start + len - 1, 0);
7207 }
7208 em = ERR_PTR(ret);
7209 }
7210 out:
7211 up_read(&BTRFS_I(inode)->dio_sem);
7212
7213 return em;
7214}
7215
4b46fce2
JB
7216static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7217 u64 start, u64 len)
7218{
7219 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7220 struct extent_map *em;
4b46fce2
JB
7221 struct btrfs_key ins;
7222 u64 alloc_hint;
7223 int ret;
4b46fce2 7224
4b46fce2 7225 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 7226 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
e570fd27 7227 alloc_hint, &ins, 1, 1);
00361589
JB
7228 if (ret)
7229 return ERR_PTR(ret);
4b46fce2 7230
5f9a8a51
FM
7231 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7232 ins.objectid, ins.offset, ins.offset,
7233 ins.offset, 0);
9cfa3e34 7234 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
5f9a8a51 7235 if (IS_ERR(em))
e570fd27 7236 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
de0ee0ed 7237
4b46fce2
JB
7238 return em;
7239}
7240
46bfbb5c
CM
7241/*
7242 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7243 * block must be cow'd
7244 */
00361589 7245noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7246 u64 *orig_start, u64 *orig_block_len,
7247 u64 *ram_bytes)
46bfbb5c 7248{
00361589 7249 struct btrfs_trans_handle *trans;
46bfbb5c
CM
7250 struct btrfs_path *path;
7251 int ret;
7252 struct extent_buffer *leaf;
7253 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7254 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7255 struct btrfs_file_extent_item *fi;
7256 struct btrfs_key key;
7257 u64 disk_bytenr;
7258 u64 backref_offset;
7259 u64 extent_end;
7260 u64 num_bytes;
7261 int slot;
7262 int found_type;
7ee9e440 7263 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7264
46bfbb5c
CM
7265 path = btrfs_alloc_path();
7266 if (!path)
7267 return -ENOMEM;
7268
00361589 7269 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
7270 offset, 0);
7271 if (ret < 0)
7272 goto out;
7273
7274 slot = path->slots[0];
7275 if (ret == 1) {
7276 if (slot == 0) {
7277 /* can't find the item, must cow */
7278 ret = 0;
7279 goto out;
7280 }
7281 slot--;
7282 }
7283 ret = 0;
7284 leaf = path->nodes[0];
7285 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 7286 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
7287 key.type != BTRFS_EXTENT_DATA_KEY) {
7288 /* not our file or wrong item type, must cow */
7289 goto out;
7290 }
7291
7292 if (key.offset > offset) {
7293 /* Wrong offset, must cow */
7294 goto out;
7295 }
7296
7297 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7298 found_type = btrfs_file_extent_type(leaf, fi);
7299 if (found_type != BTRFS_FILE_EXTENT_REG &&
7300 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7301 /* not a regular extent, must cow */
7302 goto out;
7303 }
7ee9e440
JB
7304
7305 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7306 goto out;
7307
e77751aa
MX
7308 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7309 if (extent_end <= offset)
7310 goto out;
7311
46bfbb5c 7312 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7313 if (disk_bytenr == 0)
7314 goto out;
7315
7316 if (btrfs_file_extent_compression(leaf, fi) ||
7317 btrfs_file_extent_encryption(leaf, fi) ||
7318 btrfs_file_extent_other_encoding(leaf, fi))
7319 goto out;
7320
46bfbb5c
CM
7321 backref_offset = btrfs_file_extent_offset(leaf, fi);
7322
7ee9e440
JB
7323 if (orig_start) {
7324 *orig_start = key.offset - backref_offset;
7325 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7326 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7327 }
eb384b55 7328
46bfbb5c
CM
7329 if (btrfs_extent_readonly(root, disk_bytenr))
7330 goto out;
7b2b7085
MX
7331
7332 num_bytes = min(offset + *len, extent_end) - offset;
7333 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7334 u64 range_end;
7335
7336 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7337 ret = test_range_bit(io_tree, offset, range_end,
7338 EXTENT_DELALLOC, 0, NULL);
7339 if (ret) {
7340 ret = -EAGAIN;
7341 goto out;
7342 }
7343 }
7344
1bda19eb 7345 btrfs_release_path(path);
46bfbb5c
CM
7346
7347 /*
7348 * look for other files referencing this extent, if we
7349 * find any we must cow
7350 */
00361589
JB
7351 trans = btrfs_join_transaction(root);
7352 if (IS_ERR(trans)) {
7353 ret = 0;
46bfbb5c 7354 goto out;
00361589
JB
7355 }
7356
7357 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7358 key.offset - backref_offset, disk_bytenr);
7359 btrfs_end_transaction(trans, root);
7360 if (ret) {
7361 ret = 0;
7362 goto out;
7363 }
46bfbb5c
CM
7364
7365 /*
7366 * adjust disk_bytenr and num_bytes to cover just the bytes
7367 * in this extent we are about to write. If there
7368 * are any csums in that range we have to cow in order
7369 * to keep the csums correct
7370 */
7371 disk_bytenr += backref_offset;
7372 disk_bytenr += offset - key.offset;
46bfbb5c
CM
7373 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7374 goto out;
7375 /*
7376 * all of the above have passed, it is safe to overwrite this extent
7377 * without cow
7378 */
eb384b55 7379 *len = num_bytes;
46bfbb5c
CM
7380 ret = 1;
7381out:
7382 btrfs_free_path(path);
7383 return ret;
7384}
7385
fc4adbff
AG
7386bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7387{
7388 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7389 int found = false;
7390 void **pagep = NULL;
7391 struct page *page = NULL;
7392 int start_idx;
7393 int end_idx;
7394
09cbfeaf 7395 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7396
7397 /*
7398 * end is the last byte in the last page. end == start is legal
7399 */
09cbfeaf 7400 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7401
7402 rcu_read_lock();
7403
7404 /* Most of the code in this while loop is lifted from
7405 * find_get_page. It's been modified to begin searching from a
7406 * page and return just the first page found in that range. If the
7407 * found idx is less than or equal to the end idx then we know that
7408 * a page exists. If no pages are found or if those pages are
7409 * outside of the range then we're fine (yay!) */
7410 while (page == NULL &&
7411 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7412 page = radix_tree_deref_slot(pagep);
7413 if (unlikely(!page))
7414 break;
7415
7416 if (radix_tree_exception(page)) {
809f9016
FM
7417 if (radix_tree_deref_retry(page)) {
7418 page = NULL;
fc4adbff 7419 continue;
809f9016 7420 }
fc4adbff
AG
7421 /*
7422 * Otherwise, shmem/tmpfs must be storing a swap entry
7423 * here as an exceptional entry: so return it without
7424 * attempting to raise page count.
7425 */
6fdef6d4 7426 page = NULL;
fc4adbff
AG
7427 break; /* TODO: Is this relevant for this use case? */
7428 }
7429
91405151
FM
7430 if (!page_cache_get_speculative(page)) {
7431 page = NULL;
fc4adbff 7432 continue;
91405151 7433 }
fc4adbff
AG
7434
7435 /*
7436 * Has the page moved?
7437 * This is part of the lockless pagecache protocol. See
7438 * include/linux/pagemap.h for details.
7439 */
7440 if (unlikely(page != *pagep)) {
09cbfeaf 7441 put_page(page);
fc4adbff
AG
7442 page = NULL;
7443 }
7444 }
7445
7446 if (page) {
7447 if (page->index <= end_idx)
7448 found = true;
09cbfeaf 7449 put_page(page);
fc4adbff
AG
7450 }
7451
7452 rcu_read_unlock();
7453 return found;
7454}
7455
eb838e73
JB
7456static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7457 struct extent_state **cached_state, int writing)
7458{
7459 struct btrfs_ordered_extent *ordered;
7460 int ret = 0;
7461
7462 while (1) {
7463 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7464 cached_state);
eb838e73
JB
7465 /*
7466 * We're concerned with the entire range that we're going to be
01327610 7467 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7468 * extents in this range.
7469 */
7470 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7471 lockend - lockstart + 1);
7472
7473 /*
7474 * We need to make sure there are no buffered pages in this
7475 * range either, we could have raced between the invalidate in
7476 * generic_file_direct_write and locking the extent. The
7477 * invalidate needs to happen so that reads after a write do not
7478 * get stale data.
7479 */
fc4adbff
AG
7480 if (!ordered &&
7481 (!writing ||
7482 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7483 break;
7484
7485 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7486 cached_state, GFP_NOFS);
7487
7488 if (ordered) {
ade77029
FM
7489 /*
7490 * If we are doing a DIO read and the ordered extent we
7491 * found is for a buffered write, we can not wait for it
7492 * to complete and retry, because if we do so we can
7493 * deadlock with concurrent buffered writes on page
7494 * locks. This happens only if our DIO read covers more
7495 * than one extent map, if at this point has already
7496 * created an ordered extent for a previous extent map
7497 * and locked its range in the inode's io tree, and a
7498 * concurrent write against that previous extent map's
7499 * range and this range started (we unlock the ranges
7500 * in the io tree only when the bios complete and
7501 * buffered writes always lock pages before attempting
7502 * to lock range in the io tree).
7503 */
7504 if (writing ||
7505 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7506 btrfs_start_ordered_extent(inode, ordered, 1);
7507 else
7508 ret = -ENOTBLK;
eb838e73
JB
7509 btrfs_put_ordered_extent(ordered);
7510 } else {
eb838e73 7511 /*
b850ae14
FM
7512 * We could trigger writeback for this range (and wait
7513 * for it to complete) and then invalidate the pages for
7514 * this range (through invalidate_inode_pages2_range()),
7515 * but that can lead us to a deadlock with a concurrent
7516 * call to readpages() (a buffered read or a defrag call
7517 * triggered a readahead) on a page lock due to an
7518 * ordered dio extent we created before but did not have
7519 * yet a corresponding bio submitted (whence it can not
7520 * complete), which makes readpages() wait for that
7521 * ordered extent to complete while holding a lock on
7522 * that page.
eb838e73 7523 */
b850ae14 7524 ret = -ENOTBLK;
eb838e73
JB
7525 }
7526
ade77029
FM
7527 if (ret)
7528 break;
7529
eb838e73
JB
7530 cond_resched();
7531 }
7532
7533 return ret;
7534}
7535
69ffb543
JB
7536static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7537 u64 len, u64 orig_start,
7538 u64 block_start, u64 block_len,
cc95bef6
JB
7539 u64 orig_block_len, u64 ram_bytes,
7540 int type)
69ffb543
JB
7541{
7542 struct extent_map_tree *em_tree;
7543 struct extent_map *em;
7544 struct btrfs_root *root = BTRFS_I(inode)->root;
7545 int ret;
7546
7547 em_tree = &BTRFS_I(inode)->extent_tree;
7548 em = alloc_extent_map();
7549 if (!em)
7550 return ERR_PTR(-ENOMEM);
7551
7552 em->start = start;
7553 em->orig_start = orig_start;
2ab28f32
JB
7554 em->mod_start = start;
7555 em->mod_len = len;
69ffb543
JB
7556 em->len = len;
7557 em->block_len = block_len;
7558 em->block_start = block_start;
7559 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7560 em->orig_block_len = orig_block_len;
cc95bef6 7561 em->ram_bytes = ram_bytes;
70c8a91c 7562 em->generation = -1;
69ffb543
JB
7563 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7564 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7565 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7566
7567 do {
7568 btrfs_drop_extent_cache(inode, em->start,
7569 em->start + em->len - 1, 0);
7570 write_lock(&em_tree->lock);
09a2a8f9 7571 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7572 write_unlock(&em_tree->lock);
7573 } while (ret == -EEXIST);
7574
7575 if (ret) {
7576 free_extent_map(em);
7577 return ERR_PTR(ret);
7578 }
7579
7580 return em;
7581}
7582
9c9464cc
FM
7583static void adjust_dio_outstanding_extents(struct inode *inode,
7584 struct btrfs_dio_data *dio_data,
7585 const u64 len)
7586{
7587 unsigned num_extents;
7588
7589 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7590 BTRFS_MAX_EXTENT_SIZE);
7591 /*
7592 * If we have an outstanding_extents count still set then we're
7593 * within our reservation, otherwise we need to adjust our inode
7594 * counter appropriately.
7595 */
7596 if (dio_data->outstanding_extents) {
7597 dio_data->outstanding_extents -= num_extents;
7598 } else {
7599 spin_lock(&BTRFS_I(inode)->lock);
7600 BTRFS_I(inode)->outstanding_extents += num_extents;
7601 spin_unlock(&BTRFS_I(inode)->lock);
7602 }
7603}
7604
4b46fce2
JB
7605static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7606 struct buffer_head *bh_result, int create)
7607{
7608 struct extent_map *em;
7609 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7610 struct extent_state *cached_state = NULL;
50745b0a 7611 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7612 u64 start = iblock << inode->i_blkbits;
eb838e73 7613 u64 lockstart, lockend;
4b46fce2 7614 u64 len = bh_result->b_size;
eb838e73 7615 int unlock_bits = EXTENT_LOCKED;
0934856d 7616 int ret = 0;
eb838e73 7617
172a5049 7618 if (create)
3266789f 7619 unlock_bits |= EXTENT_DIRTY;
172a5049 7620 else
c329861d 7621 len = min_t(u64, len, root->sectorsize);
eb838e73 7622
c329861d
JB
7623 lockstart = start;
7624 lockend = start + len - 1;
7625
e1cbbfa5
JB
7626 if (current->journal_info) {
7627 /*
7628 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7629 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7630 * confused.
7631 */
50745b0a 7632 dio_data = current->journal_info;
e1cbbfa5
JB
7633 current->journal_info = NULL;
7634 }
7635
eb838e73
JB
7636 /*
7637 * If this errors out it's because we couldn't invalidate pagecache for
7638 * this range and we need to fallback to buffered.
7639 */
9c9464cc
FM
7640 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7641 create)) {
7642 ret = -ENOTBLK;
7643 goto err;
7644 }
eb838e73 7645
4b46fce2 7646 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7647 if (IS_ERR(em)) {
7648 ret = PTR_ERR(em);
7649 goto unlock_err;
7650 }
4b46fce2
JB
7651
7652 /*
7653 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7654 * io. INLINE is special, and we could probably kludge it in here, but
7655 * it's still buffered so for safety lets just fall back to the generic
7656 * buffered path.
7657 *
7658 * For COMPRESSED we _have_ to read the entire extent in so we can
7659 * decompress it, so there will be buffering required no matter what we
7660 * do, so go ahead and fallback to buffered.
7661 *
01327610 7662 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7663 * to buffered IO. Don't blame me, this is the price we pay for using
7664 * the generic code.
7665 */
7666 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7667 em->block_start == EXTENT_MAP_INLINE) {
7668 free_extent_map(em);
eb838e73
JB
7669 ret = -ENOTBLK;
7670 goto unlock_err;
4b46fce2
JB
7671 }
7672
7673 /* Just a good old fashioned hole, return */
7674 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7675 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7676 free_extent_map(em);
eb838e73 7677 goto unlock_err;
4b46fce2
JB
7678 }
7679
7680 /*
7681 * We don't allocate a new extent in the following cases
7682 *
7683 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7684 * existing extent.
7685 * 2) The extent is marked as PREALLOC. We're good to go here and can
7686 * just use the extent.
7687 *
7688 */
46bfbb5c 7689 if (!create) {
eb838e73
JB
7690 len = min(len, em->len - (start - em->start));
7691 lockstart = start + len;
7692 goto unlock;
46bfbb5c 7693 }
4b46fce2
JB
7694
7695 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7696 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7697 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7698 int type;
eb384b55 7699 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7700
7701 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7702 type = BTRFS_ORDERED_PREALLOC;
7703 else
7704 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7705 len = min(len, em->len - (start - em->start));
4b46fce2 7706 block_start = em->block_start + (start - em->start);
46bfbb5c 7707
00361589 7708 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c
FM
7709 &orig_block_len, &ram_bytes) == 1 &&
7710 btrfs_inc_nocow_writers(root->fs_info, block_start)) {
5f9a8a51 7711 struct extent_map *em2;
0b901916 7712
5f9a8a51
FM
7713 em2 = btrfs_create_dio_extent(inode, start, len,
7714 orig_start, block_start,
7715 len, orig_block_len,
7716 ram_bytes, type);
f78c436c 7717 btrfs_dec_nocow_writers(root->fs_info, block_start);
69ffb543
JB
7718 if (type == BTRFS_ORDERED_PREALLOC) {
7719 free_extent_map(em);
5f9a8a51 7720 em = em2;
69ffb543 7721 }
5f9a8a51
FM
7722 if (em2 && IS_ERR(em2)) {
7723 ret = PTR_ERR(em2);
eb838e73 7724 goto unlock_err;
46bfbb5c
CM
7725 }
7726 goto unlock;
4b46fce2 7727 }
4b46fce2 7728 }
00361589 7729
46bfbb5c
CM
7730 /*
7731 * this will cow the extent, reset the len in case we changed
7732 * it above
7733 */
7734 len = bh_result->b_size;
70c8a91c
JB
7735 free_extent_map(em);
7736 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7737 if (IS_ERR(em)) {
7738 ret = PTR_ERR(em);
7739 goto unlock_err;
7740 }
46bfbb5c
CM
7741 len = min(len, em->len - (start - em->start));
7742unlock:
4b46fce2
JB
7743 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7744 inode->i_blkbits;
46bfbb5c 7745 bh_result->b_size = len;
4b46fce2
JB
7746 bh_result->b_bdev = em->bdev;
7747 set_buffer_mapped(bh_result);
c3473e83
JB
7748 if (create) {
7749 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7750 set_buffer_new(bh_result);
7751
7752 /*
7753 * Need to update the i_size under the extent lock so buffered
7754 * readers will get the updated i_size when we unlock.
7755 */
7756 if (start + len > i_size_read(inode))
7757 i_size_write(inode, start + len);
0934856d 7758
9c9464cc 7759 adjust_dio_outstanding_extents(inode, dio_data, len);
7cf5b976 7760 btrfs_free_reserved_data_space(inode, start, len);
50745b0a 7761 WARN_ON(dio_data->reserve < len);
7762 dio_data->reserve -= len;
f28a4928 7763 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7764 current->journal_info = dio_data;
c3473e83 7765 }
4b46fce2 7766
eb838e73
JB
7767 /*
7768 * In the case of write we need to clear and unlock the entire range,
7769 * in the case of read we need to unlock only the end area that we
7770 * aren't using if there is any left over space.
7771 */
24c03fa5 7772 if (lockstart < lockend) {
0934856d
MX
7773 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7774 lockend, unlock_bits, 1, 0,
7775 &cached_state, GFP_NOFS);
24c03fa5 7776 } else {
eb838e73 7777 free_extent_state(cached_state);
24c03fa5 7778 }
eb838e73 7779
4b46fce2
JB
7780 free_extent_map(em);
7781
7782 return 0;
eb838e73
JB
7783
7784unlock_err:
eb838e73
JB
7785 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7786 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7787err:
50745b0a 7788 if (dio_data)
7789 current->journal_info = dio_data;
9c9464cc
FM
7790 /*
7791 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7792 * write less data then expected, so that we don't underflow our inode's
7793 * outstanding extents counter.
7794 */
7795 if (create && dio_data)
7796 adjust_dio_outstanding_extents(inode, dio_data, len);
7797
eb838e73 7798 return ret;
4b46fce2
JB
7799}
7800
8b110e39
MX
7801static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7802 int rw, int mirror_num)
7803{
7804 struct btrfs_root *root = BTRFS_I(inode)->root;
7805 int ret;
7806
7807 BUG_ON(rw & REQ_WRITE);
7808
7809 bio_get(bio);
7810
7811 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7812 BTRFS_WQ_ENDIO_DIO_REPAIR);
7813 if (ret)
7814 goto err;
7815
7816 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7817err:
7818 bio_put(bio);
7819 return ret;
7820}
7821
7822static int btrfs_check_dio_repairable(struct inode *inode,
7823 struct bio *failed_bio,
7824 struct io_failure_record *failrec,
7825 int failed_mirror)
7826{
7827 int num_copies;
7828
7829 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7830 failrec->logical, failrec->len);
7831 if (num_copies == 1) {
7832 /*
7833 * we only have a single copy of the data, so don't bother with
7834 * all the retry and error correction code that follows. no
7835 * matter what the error is, it is very likely to persist.
7836 */
7837 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7838 num_copies, failrec->this_mirror, failed_mirror);
7839 return 0;
7840 }
7841
7842 failrec->failed_mirror = failed_mirror;
7843 failrec->this_mirror++;
7844 if (failrec->this_mirror == failed_mirror)
7845 failrec->this_mirror++;
7846
7847 if (failrec->this_mirror > num_copies) {
7848 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7849 num_copies, failrec->this_mirror, failed_mirror);
7850 return 0;
7851 }
7852
7853 return 1;
7854}
7855
7856static int dio_read_error(struct inode *inode, struct bio *failed_bio,
2dabb324
CR
7857 struct page *page, unsigned int pgoff,
7858 u64 start, u64 end, int failed_mirror,
7859 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7860{
7861 struct io_failure_record *failrec;
7862 struct bio *bio;
7863 int isector;
7864 int read_mode;
7865 int ret;
7866
7867 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7868
7869 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7870 if (ret)
7871 return ret;
7872
7873 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7874 failed_mirror);
7875 if (!ret) {
7876 free_io_failure(inode, failrec);
7877 return -EIO;
7878 }
7879
2dabb324
CR
7880 if ((failed_bio->bi_vcnt > 1)
7881 || (failed_bio->bi_io_vec->bv_len
7882 > BTRFS_I(inode)->root->sectorsize))
8b110e39
MX
7883 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7884 else
7885 read_mode = READ_SYNC;
7886
7887 isector = start - btrfs_io_bio(failed_bio)->logical;
7888 isector >>= inode->i_sb->s_blocksize_bits;
7889 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7890 pgoff, isector, repair_endio, repair_arg);
8b110e39
MX
7891 if (!bio) {
7892 free_io_failure(inode, failrec);
7893 return -EIO;
7894 }
7895
7896 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7897 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7898 read_mode, failrec->this_mirror, failrec->in_validation);
7899
7900 ret = submit_dio_repair_bio(inode, bio, read_mode,
7901 failrec->this_mirror);
7902 if (ret) {
7903 free_io_failure(inode, failrec);
7904 bio_put(bio);
7905 }
7906
7907 return ret;
7908}
7909
7910struct btrfs_retry_complete {
7911 struct completion done;
7912 struct inode *inode;
7913 u64 start;
7914 int uptodate;
7915};
7916
4246a0b6 7917static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7918{
7919 struct btrfs_retry_complete *done = bio->bi_private;
2dabb324 7920 struct inode *inode;
8b110e39
MX
7921 struct bio_vec *bvec;
7922 int i;
7923
4246a0b6 7924 if (bio->bi_error)
8b110e39
MX
7925 goto end;
7926
2dabb324
CR
7927 ASSERT(bio->bi_vcnt == 1);
7928 inode = bio->bi_io_vec->bv_page->mapping->host;
7929 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7930
8b110e39
MX
7931 done->uptodate = 1;
7932 bio_for_each_segment_all(bvec, bio, i)
7933 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7934end:
7935 complete(&done->done);
7936 bio_put(bio);
7937}
7938
7939static int __btrfs_correct_data_nocsum(struct inode *inode,
7940 struct btrfs_io_bio *io_bio)
4b46fce2 7941{
2dabb324 7942 struct btrfs_fs_info *fs_info;
2c30c71b 7943 struct bio_vec *bvec;
8b110e39 7944 struct btrfs_retry_complete done;
4b46fce2 7945 u64 start;
2dabb324
CR
7946 unsigned int pgoff;
7947 u32 sectorsize;
7948 int nr_sectors;
2c30c71b 7949 int i;
c1dc0896 7950 int ret;
4b46fce2 7951
2dabb324
CR
7952 fs_info = BTRFS_I(inode)->root->fs_info;
7953 sectorsize = BTRFS_I(inode)->root->sectorsize;
7954
8b110e39
MX
7955 start = io_bio->logical;
7956 done.inode = inode;
7957
7958 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
7959 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7960 pgoff = bvec->bv_offset;
7961
7962next_block_or_try_again:
8b110e39
MX
7963 done.uptodate = 0;
7964 done.start = start;
7965 init_completion(&done.done);
7966
2dabb324
CR
7967 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7968 pgoff, start, start + sectorsize - 1,
7969 io_bio->mirror_num,
7970 btrfs_retry_endio_nocsum, &done);
8b110e39
MX
7971 if (ret)
7972 return ret;
7973
7974 wait_for_completion(&done.done);
7975
7976 if (!done.uptodate) {
7977 /* We might have another mirror, so try again */
2dabb324 7978 goto next_block_or_try_again;
8b110e39
MX
7979 }
7980
2dabb324
CR
7981 start += sectorsize;
7982
7983 if (nr_sectors--) {
7984 pgoff += sectorsize;
7985 goto next_block_or_try_again;
7986 }
8b110e39
MX
7987 }
7988
7989 return 0;
7990}
7991
4246a0b6 7992static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7993{
7994 struct btrfs_retry_complete *done = bio->bi_private;
7995 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2dabb324 7996 struct inode *inode;
8b110e39 7997 struct bio_vec *bvec;
2dabb324 7998 u64 start;
8b110e39
MX
7999 int uptodate;
8000 int ret;
8001 int i;
8002
4246a0b6 8003 if (bio->bi_error)
8b110e39
MX
8004 goto end;
8005
8006 uptodate = 1;
2dabb324
CR
8007
8008 start = done->start;
8009
8010 ASSERT(bio->bi_vcnt == 1);
8011 inode = bio->bi_io_vec->bv_page->mapping->host;
8012 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
8013
8b110e39
MX
8014 bio_for_each_segment_all(bvec, bio, i) {
8015 ret = __readpage_endio_check(done->inode, io_bio, i,
2dabb324
CR
8016 bvec->bv_page, bvec->bv_offset,
8017 done->start, bvec->bv_len);
8b110e39
MX
8018 if (!ret)
8019 clean_io_failure(done->inode, done->start,
2dabb324 8020 bvec->bv_page, bvec->bv_offset);
8b110e39
MX
8021 else
8022 uptodate = 0;
8023 }
8024
8025 done->uptodate = uptodate;
8026end:
8027 complete(&done->done);
8028 bio_put(bio);
8029}
8030
8031static int __btrfs_subio_endio_read(struct inode *inode,
8032 struct btrfs_io_bio *io_bio, int err)
8033{
2dabb324 8034 struct btrfs_fs_info *fs_info;
8b110e39
MX
8035 struct bio_vec *bvec;
8036 struct btrfs_retry_complete done;
8037 u64 start;
8038 u64 offset = 0;
2dabb324
CR
8039 u32 sectorsize;
8040 int nr_sectors;
8041 unsigned int pgoff;
8042 int csum_pos;
8b110e39
MX
8043 int i;
8044 int ret;
dc380aea 8045
2dabb324
CR
8046 fs_info = BTRFS_I(inode)->root->fs_info;
8047 sectorsize = BTRFS_I(inode)->root->sectorsize;
8048
8b110e39 8049 err = 0;
c1dc0896 8050 start = io_bio->logical;
8b110e39
MX
8051 done.inode = inode;
8052
c1dc0896 8053 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
8054 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8055
8056 pgoff = bvec->bv_offset;
8057next_block:
8058 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8059 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8060 bvec->bv_page, pgoff, start,
8061 sectorsize);
8b110e39
MX
8062 if (likely(!ret))
8063 goto next;
8064try_again:
8065 done.uptodate = 0;
8066 done.start = start;
8067 init_completion(&done.done);
8068
2dabb324
CR
8069 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8070 pgoff, start, start + sectorsize - 1,
8071 io_bio->mirror_num,
8072 btrfs_retry_endio, &done);
8b110e39
MX
8073 if (ret) {
8074 err = ret;
8075 goto next;
8076 }
8077
8078 wait_for_completion(&done.done);
8079
8080 if (!done.uptodate) {
8081 /* We might have another mirror, so try again */
8082 goto try_again;
8083 }
8084next:
2dabb324
CR
8085 offset += sectorsize;
8086 start += sectorsize;
8087
8088 ASSERT(nr_sectors);
8089
8090 if (--nr_sectors) {
8091 pgoff += sectorsize;
8092 goto next_block;
8093 }
2c30c71b 8094 }
c1dc0896
MX
8095
8096 return err;
8097}
8098
8b110e39
MX
8099static int btrfs_subio_endio_read(struct inode *inode,
8100 struct btrfs_io_bio *io_bio, int err)
8101{
8102 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8103
8104 if (skip_csum) {
8105 if (unlikely(err))
8106 return __btrfs_correct_data_nocsum(inode, io_bio);
8107 else
8108 return 0;
8109 } else {
8110 return __btrfs_subio_endio_read(inode, io_bio, err);
8111 }
8112}
8113
4246a0b6 8114static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8115{
8116 struct btrfs_dio_private *dip = bio->bi_private;
8117 struct inode *inode = dip->inode;
8118 struct bio *dio_bio;
8119 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 8120 int err = bio->bi_error;
c1dc0896 8121
8b110e39
MX
8122 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8123 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8124
4b46fce2 8125 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8126 dip->logical_offset + dip->bytes - 1);
9be3395b 8127 dio_bio = dip->dio_bio;
4b46fce2 8128
4b46fce2 8129 kfree(dip);
c0da7aa1 8130
1636d1d7 8131 dio_bio->bi_error = bio->bi_error;
4246a0b6 8132 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
8133
8134 if (io_bio->end_io)
8135 io_bio->end_io(io_bio, err);
9be3395b 8136 bio_put(bio);
4b46fce2
JB
8137}
8138
14543774
FM
8139static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8140 const u64 offset,
8141 const u64 bytes,
8142 const int uptodate)
4b46fce2 8143{
4b46fce2 8144 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 8145 struct btrfs_ordered_extent *ordered = NULL;
14543774
FM
8146 u64 ordered_offset = offset;
8147 u64 ordered_bytes = bytes;
4b46fce2
JB
8148 int ret;
8149
163cf09c
CM
8150again:
8151 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8152 &ordered_offset,
4246a0b6 8153 ordered_bytes,
14543774 8154 uptodate);
4b46fce2 8155 if (!ret)
163cf09c 8156 goto out_test;
4b46fce2 8157
9e0af237
LB
8158 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8159 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
8160 btrfs_queue_work(root->fs_info->endio_write_workers,
8161 &ordered->work);
163cf09c
CM
8162out_test:
8163 /*
8164 * our bio might span multiple ordered extents. If we haven't
8165 * completed the accounting for the whole dio, go back and try again
8166 */
14543774
FM
8167 if (ordered_offset < offset + bytes) {
8168 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8169 ordered = NULL;
163cf09c
CM
8170 goto again;
8171 }
14543774
FM
8172}
8173
8174static void btrfs_endio_direct_write(struct bio *bio)
8175{
8176 struct btrfs_dio_private *dip = bio->bi_private;
8177 struct bio *dio_bio = dip->dio_bio;
8178
8179 btrfs_endio_direct_write_update_ordered(dip->inode,
8180 dip->logical_offset,
8181 dip->bytes,
8182 !bio->bi_error);
4b46fce2 8183
4b46fce2 8184 kfree(dip);
c0da7aa1 8185
1636d1d7 8186 dio_bio->bi_error = bio->bi_error;
4246a0b6 8187 dio_end_io(dio_bio, bio->bi_error);
9be3395b 8188 bio_put(bio);
4b46fce2
JB
8189}
8190
eaf25d93
CM
8191static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8192 struct bio *bio, int mirror_num,
8193 unsigned long bio_flags, u64 offset)
8194{
8195 int ret;
8196 struct btrfs_root *root = BTRFS_I(inode)->root;
8197 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 8198 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8199 return 0;
8200}
8201
4246a0b6 8202static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8203{
8204 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8205 int err = bio->bi_error;
e65e1535 8206
8b110e39
MX
8207 if (err)
8208 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8209 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8210 btrfs_ino(dip->inode), bio->bi_rw,
8211 (unsigned long long)bio->bi_iter.bi_sector,
8212 bio->bi_iter.bi_size, err);
8213
8214 if (dip->subio_endio)
8215 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8216
8217 if (err) {
e65e1535
MX
8218 dip->errors = 1;
8219
8220 /*
8221 * before atomic variable goto zero, we must make sure
8222 * dip->errors is perceived to be set.
8223 */
4e857c58 8224 smp_mb__before_atomic();
e65e1535
MX
8225 }
8226
8227 /* if there are more bios still pending for this dio, just exit */
8228 if (!atomic_dec_and_test(&dip->pending_bios))
8229 goto out;
8230
9be3395b 8231 if (dip->errors) {
e65e1535 8232 bio_io_error(dip->orig_bio);
9be3395b 8233 } else {
4246a0b6
CH
8234 dip->dio_bio->bi_error = 0;
8235 bio_endio(dip->orig_bio);
e65e1535
MX
8236 }
8237out:
8238 bio_put(bio);
8239}
8240
8241static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8242 u64 first_sector, gfp_t gfp_flags)
8243{
da2f0f74 8244 struct bio *bio;
22365979 8245 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
da2f0f74
CM
8246 if (bio)
8247 bio_associate_current(bio);
8248 return bio;
e65e1535
MX
8249}
8250
c1dc0896
MX
8251static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8252 struct inode *inode,
8253 struct btrfs_dio_private *dip,
8254 struct bio *bio,
8255 u64 file_offset)
8256{
8257 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8258 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8259 int ret;
8260
8261 /*
8262 * We load all the csum data we need when we submit
8263 * the first bio to reduce the csum tree search and
8264 * contention.
8265 */
8266 if (dip->logical_offset == file_offset) {
8267 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8268 file_offset);
8269 if (ret)
8270 return ret;
8271 }
8272
8273 if (bio == dip->orig_bio)
8274 return 0;
8275
8276 file_offset -= dip->logical_offset;
8277 file_offset >>= inode->i_sb->s_blocksize_bits;
8278 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8279
8280 return 0;
8281}
8282
e65e1535
MX
8283static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8284 int rw, u64 file_offset, int skip_sum,
c329861d 8285 int async_submit)
e65e1535 8286{
facc8a22 8287 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
8288 int write = rw & REQ_WRITE;
8289 struct btrfs_root *root = BTRFS_I(inode)->root;
8290 int ret;
8291
b812ce28
JB
8292 if (async_submit)
8293 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8294
e65e1535 8295 bio_get(bio);
5fd02043
JB
8296
8297 if (!write) {
bfebd8b5
DS
8298 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8299 BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8300 if (ret)
8301 goto err;
8302 }
e65e1535 8303
1ae39938
JB
8304 if (skip_sum)
8305 goto map;
8306
8307 if (write && async_submit) {
e65e1535
MX
8308 ret = btrfs_wq_submit_bio(root->fs_info,
8309 inode, rw, bio, 0, 0,
8310 file_offset,
8311 __btrfs_submit_bio_start_direct_io,
8312 __btrfs_submit_bio_done);
8313 goto err;
1ae39938
JB
8314 } else if (write) {
8315 /*
8316 * If we aren't doing async submit, calculate the csum of the
8317 * bio now.
8318 */
8319 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8320 if (ret)
8321 goto err;
23ea8e5a 8322 } else {
c1dc0896
MX
8323 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8324 file_offset);
c2db1073
TI
8325 if (ret)
8326 goto err;
8327 }
1ae39938
JB
8328map:
8329 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
8330err:
8331 bio_put(bio);
8332 return ret;
8333}
8334
8335static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8336 int skip_sum)
8337{
8338 struct inode *inode = dip->inode;
8339 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
8340 struct bio *bio;
8341 struct bio *orig_bio = dip->orig_bio;
8342 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 8343 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
8344 u64 file_offset = dip->logical_offset;
8345 u64 submit_len = 0;
8346 u64 map_length;
5f4dc8fc 8347 u32 blocksize = root->sectorsize;
1ae39938 8348 int async_submit = 0;
5f4dc8fc
CR
8349 int nr_sectors;
8350 int ret;
8351 int i;
e65e1535 8352
4f024f37 8353 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8354 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535 8355 &map_length, NULL, 0);
7a5c3c9b 8356 if (ret)
e65e1535 8357 return -EIO;
facc8a22 8358
4f024f37 8359 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 8360 bio = orig_bio;
c1dc0896 8361 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8362 goto submit;
8363 }
8364
53b381b3 8365 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 8366 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8367 async_submit = 0;
8368 else
8369 async_submit = 1;
8370
02f57c7a
JB
8371 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8372 if (!bio)
8373 return -ENOMEM;
7a5c3c9b 8374
02f57c7a
JB
8375 bio->bi_private = dip;
8376 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8377 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
8378 atomic_inc(&dip->pending_bios);
8379
e65e1535 8380 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5f4dc8fc
CR
8381 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8382 i = 0;
8383next_block:
8384 if (unlikely(map_length < submit_len + blocksize ||
8385 bio_add_page(bio, bvec->bv_page, blocksize,
8386 bvec->bv_offset + (i * blocksize)) < blocksize)) {
e65e1535
MX
8387 /*
8388 * inc the count before we submit the bio so
8389 * we know the end IO handler won't happen before
8390 * we inc the count. Otherwise, the dip might get freed
8391 * before we're done setting it up
8392 */
8393 atomic_inc(&dip->pending_bios);
8394 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8395 file_offset, skip_sum,
c329861d 8396 async_submit);
e65e1535
MX
8397 if (ret) {
8398 bio_put(bio);
8399 atomic_dec(&dip->pending_bios);
8400 goto out_err;
8401 }
8402
e65e1535
MX
8403 start_sector += submit_len >> 9;
8404 file_offset += submit_len;
8405
8406 submit_len = 0;
e65e1535
MX
8407
8408 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8409 start_sector, GFP_NOFS);
8410 if (!bio)
8411 goto out_err;
8412 bio->bi_private = dip;
8413 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8414 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 8415
4f024f37 8416 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8417 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 8418 start_sector << 9,
e65e1535
MX
8419 &map_length, NULL, 0);
8420 if (ret) {
8421 bio_put(bio);
8422 goto out_err;
8423 }
5f4dc8fc
CR
8424
8425 goto next_block;
e65e1535 8426 } else {
5f4dc8fc
CR
8427 submit_len += blocksize;
8428 if (--nr_sectors) {
8429 i++;
8430 goto next_block;
8431 }
e65e1535
MX
8432 bvec++;
8433 }
8434 }
8435
02f57c7a 8436submit:
e65e1535 8437 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 8438 async_submit);
e65e1535
MX
8439 if (!ret)
8440 return 0;
8441
8442 bio_put(bio);
8443out_err:
8444 dip->errors = 1;
8445 /*
8446 * before atomic variable goto zero, we must
8447 * make sure dip->errors is perceived to be set.
8448 */
4e857c58 8449 smp_mb__before_atomic();
e65e1535
MX
8450 if (atomic_dec_and_test(&dip->pending_bios))
8451 bio_io_error(dip->orig_bio);
8452
8453 /* bio_end_io() will handle error, so we needn't return it */
8454 return 0;
8455}
8456
9be3395b
CM
8457static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8458 struct inode *inode, loff_t file_offset)
4b46fce2 8459{
61de718f
FM
8460 struct btrfs_dio_private *dip = NULL;
8461 struct bio *io_bio = NULL;
23ea8e5a 8462 struct btrfs_io_bio *btrfs_bio;
4b46fce2 8463 int skip_sum;
7b6d91da 8464 int write = rw & REQ_WRITE;
4b46fce2
JB
8465 int ret = 0;
8466
8467 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8468
9be3395b 8469 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
8470 if (!io_bio) {
8471 ret = -ENOMEM;
8472 goto free_ordered;
8473 }
8474
c1dc0896 8475 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8476 if (!dip) {
8477 ret = -ENOMEM;
61de718f 8478 goto free_ordered;
4b46fce2 8479 }
4b46fce2 8480
9be3395b 8481 dip->private = dio_bio->bi_private;
4b46fce2
JB
8482 dip->inode = inode;
8483 dip->logical_offset = file_offset;
4f024f37
KO
8484 dip->bytes = dio_bio->bi_iter.bi_size;
8485 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8486 io_bio->bi_private = dip;
9be3395b
CM
8487 dip->orig_bio = io_bio;
8488 dip->dio_bio = dio_bio;
e65e1535 8489 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8490 btrfs_bio = btrfs_io_bio(io_bio);
8491 btrfs_bio->logical = file_offset;
4b46fce2 8492
c1dc0896 8493 if (write) {
9be3395b 8494 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8495 } else {
9be3395b 8496 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8497 dip->subio_endio = btrfs_subio_endio_read;
8498 }
4b46fce2 8499
f28a4928
FM
8500 /*
8501 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8502 * even if we fail to submit a bio, because in such case we do the
8503 * corresponding error handling below and it must not be done a second
8504 * time by btrfs_direct_IO().
8505 */
8506 if (write) {
8507 struct btrfs_dio_data *dio_data = current->journal_info;
8508
8509 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8510 dip->bytes;
8511 dio_data->unsubmitted_oe_range_start =
8512 dio_data->unsubmitted_oe_range_end;
8513 }
8514
e65e1535
MX
8515 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8516 if (!ret)
eaf25d93 8517 return;
9be3395b 8518
23ea8e5a
MX
8519 if (btrfs_bio->end_io)
8520 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b 8521
4b46fce2
JB
8522free_ordered:
8523 /*
61de718f
FM
8524 * If we arrived here it means either we failed to submit the dip
8525 * or we either failed to clone the dio_bio or failed to allocate the
8526 * dip. If we cloned the dio_bio and allocated the dip, we can just
8527 * call bio_endio against our io_bio so that we get proper resource
8528 * cleanup if we fail to submit the dip, otherwise, we must do the
8529 * same as btrfs_endio_direct_[write|read] because we can't call these
8530 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8531 */
61de718f 8532 if (io_bio && dip) {
4246a0b6
CH
8533 io_bio->bi_error = -EIO;
8534 bio_endio(io_bio);
61de718f
FM
8535 /*
8536 * The end io callbacks free our dip, do the final put on io_bio
8537 * and all the cleanup and final put for dio_bio (through
8538 * dio_end_io()).
8539 */
8540 dip = NULL;
8541 io_bio = NULL;
8542 } else {
14543774
FM
8543 if (write)
8544 btrfs_endio_direct_write_update_ordered(inode,
8545 file_offset,
8546 dio_bio->bi_iter.bi_size,
8547 0);
8548 else
61de718f
FM
8549 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8550 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8551
4246a0b6 8552 dio_bio->bi_error = -EIO;
61de718f
FM
8553 /*
8554 * Releases and cleans up our dio_bio, no need to bio_put()
8555 * nor bio_endio()/bio_io_error() against dio_bio.
8556 */
8557 dio_end_io(dio_bio, ret);
4b46fce2 8558 }
61de718f
FM
8559 if (io_bio)
8560 bio_put(io_bio);
8561 kfree(dip);
4b46fce2
JB
8562}
8563
6f673763 8564static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
28060d5d 8565 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8566{
8567 int seg;
a1b75f7d 8568 int i;
5a5f79b5
CM
8569 unsigned blocksize_mask = root->sectorsize - 1;
8570 ssize_t retval = -EINVAL;
5a5f79b5
CM
8571
8572 if (offset & blocksize_mask)
8573 goto out;
8574
28060d5d
AV
8575 if (iov_iter_alignment(iter) & blocksize_mask)
8576 goto out;
a1b75f7d 8577
28060d5d 8578 /* If this is a write we don't need to check anymore */
6f673763 8579 if (iov_iter_rw(iter) == WRITE)
28060d5d
AV
8580 return 0;
8581 /*
8582 * Check to make sure we don't have duplicate iov_base's in this
8583 * iovec, if so return EINVAL, otherwise we'll get csum errors
8584 * when reading back.
8585 */
8586 for (seg = 0; seg < iter->nr_segs; seg++) {
8587 for (i = seg + 1; i < iter->nr_segs; i++) {
8588 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8589 goto out;
8590 }
5a5f79b5
CM
8591 }
8592 retval = 0;
8593out:
8594 return retval;
8595}
eb838e73 8596
c8b8e32d 8597static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8598{
4b46fce2
JB
8599 struct file *file = iocb->ki_filp;
8600 struct inode *inode = file->f_mapping->host;
50745b0a 8601 struct btrfs_root *root = BTRFS_I(inode)->root;
8602 struct btrfs_dio_data dio_data = { 0 };
c8b8e32d 8603 loff_t offset = iocb->ki_pos;
0934856d 8604 size_t count = 0;
2e60a51e 8605 int flags = 0;
38851cc1
MX
8606 bool wakeup = true;
8607 bool relock = false;
0934856d 8608 ssize_t ret;
4b46fce2 8609
6f673763 8610 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
5a5f79b5 8611 return 0;
3f7c579c 8612
fe0f07d0 8613 inode_dio_begin(inode);
4e857c58 8614 smp_mb__after_atomic();
38851cc1 8615
0e267c44 8616 /*
41bd9ca4
MX
8617 * The generic stuff only does filemap_write_and_wait_range, which
8618 * isn't enough if we've written compressed pages to this area, so
8619 * we need to flush the dirty pages again to make absolutely sure
8620 * that any outstanding dirty pages are on disk.
0e267c44 8621 */
a6cbcd4a 8622 count = iov_iter_count(iter);
41bd9ca4
MX
8623 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8624 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8625 filemap_fdatawrite_range(inode->i_mapping, offset,
8626 offset + count - 1);
0e267c44 8627
6f673763 8628 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8629 /*
8630 * If the write DIO is beyond the EOF, we need update
8631 * the isize, but it is protected by i_mutex. So we can
8632 * not unlock the i_mutex at this case.
8633 */
8634 if (offset + count <= inode->i_size) {
5955102c 8635 inode_unlock(inode);
38851cc1
MX
8636 relock = true;
8637 }
7cf5b976 8638 ret = btrfs_delalloc_reserve_space(inode, offset, count);
0934856d 8639 if (ret)
38851cc1 8640 goto out;
50745b0a 8641 dio_data.outstanding_extents = div64_u64(count +
e1cbbfa5
JB
8642 BTRFS_MAX_EXTENT_SIZE - 1,
8643 BTRFS_MAX_EXTENT_SIZE);
8644
8645 /*
8646 * We need to know how many extents we reserved so that we can
8647 * do the accounting properly if we go over the number we
8648 * originally calculated. Abuse current->journal_info for this.
8649 */
50745b0a 8650 dio_data.reserve = round_up(count, root->sectorsize);
f28a4928
FM
8651 dio_data.unsubmitted_oe_range_start = (u64)offset;
8652 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8653 current->journal_info = &dio_data;
ee39b432
DS
8654 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8655 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8656 inode_dio_end(inode);
38851cc1
MX
8657 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8658 wakeup = false;
0934856d
MX
8659 }
8660
17f8c842
OS
8661 ret = __blockdev_direct_IO(iocb, inode,
8662 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
c8b8e32d 8663 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8664 btrfs_submit_direct, flags);
6f673763 8665 if (iov_iter_rw(iter) == WRITE) {
e1cbbfa5 8666 current->journal_info = NULL;
ddba1bfc 8667 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8668 if (dio_data.reserve)
7cf5b976
QW
8669 btrfs_delalloc_release_space(inode, offset,
8670 dio_data.reserve);
f28a4928
FM
8671 /*
8672 * On error we might have left some ordered extents
8673 * without submitting corresponding bios for them, so
8674 * cleanup them up to avoid other tasks getting them
8675 * and waiting for them to complete forever.
8676 */
8677 if (dio_data.unsubmitted_oe_range_start <
8678 dio_data.unsubmitted_oe_range_end)
8679 btrfs_endio_direct_write_update_ordered(inode,
8680 dio_data.unsubmitted_oe_range_start,
8681 dio_data.unsubmitted_oe_range_end -
8682 dio_data.unsubmitted_oe_range_start,
8683 0);
ddba1bfc 8684 } else if (ret >= 0 && (size_t)ret < count)
7cf5b976
QW
8685 btrfs_delalloc_release_space(inode, offset,
8686 count - (size_t)ret);
0934856d 8687 }
38851cc1 8688out:
2e60a51e 8689 if (wakeup)
fe0f07d0 8690 inode_dio_end(inode);
38851cc1 8691 if (relock)
5955102c 8692 inode_lock(inode);
0934856d
MX
8693
8694 return ret;
16432985
CM
8695}
8696
05dadc09
TI
8697#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8698
1506fcc8
YS
8699static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8700 __u64 start, __u64 len)
8701{
05dadc09
TI
8702 int ret;
8703
8704 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8705 if (ret)
8706 return ret;
8707
ec29ed5b 8708 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8709}
8710
a52d9a80 8711int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8712{
d1310b2e
CM
8713 struct extent_io_tree *tree;
8714 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8715 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8716}
1832a6d5 8717
a52d9a80 8718static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8719{
d1310b2e 8720 struct extent_io_tree *tree;
be7bd730
JB
8721 struct inode *inode = page->mapping->host;
8722 int ret;
b888db2b
CM
8723
8724 if (current->flags & PF_MEMALLOC) {
8725 redirty_page_for_writepage(wbc, page);
8726 unlock_page(page);
8727 return 0;
8728 }
be7bd730
JB
8729
8730 /*
8731 * If we are under memory pressure we will call this directly from the
8732 * VM, we need to make sure we have the inode referenced for the ordered
8733 * extent. If not just return like we didn't do anything.
8734 */
8735 if (!igrab(inode)) {
8736 redirty_page_for_writepage(wbc, page);
8737 return AOP_WRITEPAGE_ACTIVATE;
8738 }
d1310b2e 8739 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8740 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8741 btrfs_add_delayed_iput(inode);
8742 return ret;
9ebefb18
CM
8743}
8744
48a3b636
ES
8745static int btrfs_writepages(struct address_space *mapping,
8746 struct writeback_control *wbc)
b293f02e 8747{
d1310b2e 8748 struct extent_io_tree *tree;
771ed689 8749
d1310b2e 8750 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8751 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8752}
8753
3ab2fb5a
CM
8754static int
8755btrfs_readpages(struct file *file, struct address_space *mapping,
8756 struct list_head *pages, unsigned nr_pages)
8757{
d1310b2e
CM
8758 struct extent_io_tree *tree;
8759 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8760 return extent_readpages(tree, mapping, pages, nr_pages,
8761 btrfs_get_extent);
8762}
e6dcd2dc 8763static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8764{
d1310b2e
CM
8765 struct extent_io_tree *tree;
8766 struct extent_map_tree *map;
a52d9a80 8767 int ret;
8c2383c3 8768
d1310b2e
CM
8769 tree = &BTRFS_I(page->mapping->host)->io_tree;
8770 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8771 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8772 if (ret == 1) {
8773 ClearPagePrivate(page);
8774 set_page_private(page, 0);
09cbfeaf 8775 put_page(page);
39279cc3 8776 }
a52d9a80 8777 return ret;
39279cc3
CM
8778}
8779
e6dcd2dc
CM
8780static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8781{
98509cfc
CM
8782 if (PageWriteback(page) || PageDirty(page))
8783 return 0;
b335b003 8784 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8785}
8786
d47992f8
LC
8787static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8788 unsigned int length)
39279cc3 8789{
5fd02043 8790 struct inode *inode = page->mapping->host;
d1310b2e 8791 struct extent_io_tree *tree;
e6dcd2dc 8792 struct btrfs_ordered_extent *ordered;
2ac55d41 8793 struct extent_state *cached_state = NULL;
e6dcd2dc 8794 u64 page_start = page_offset(page);
09cbfeaf 8795 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8796 u64 start;
8797 u64 end;
131e404a 8798 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8799
8b62b72b
CM
8800 /*
8801 * we have the page locked, so new writeback can't start,
8802 * and the dirty bit won't be cleared while we are here.
8803 *
8804 * Wait for IO on this page so that we can safely clear
8805 * the PagePrivate2 bit and do ordered accounting
8806 */
e6dcd2dc 8807 wait_on_page_writeback(page);
8b62b72b 8808
5fd02043 8809 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8810 if (offset) {
8811 btrfs_releasepage(page, GFP_NOFS);
8812 return;
8813 }
131e404a
FDBM
8814
8815 if (!inode_evicting)
ff13db41 8816 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8817again:
8818 start = page_start;
8819 ordered = btrfs_lookup_ordered_range(inode, start,
8820 page_end - start + 1);
e6dcd2dc 8821 if (ordered) {
dbfdb6d1 8822 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8823 /*
8824 * IO on this page will never be started, so we need
8825 * to account for any ordered extents now
8826 */
131e404a 8827 if (!inode_evicting)
dbfdb6d1 8828 clear_extent_bit(tree, start, end,
131e404a
FDBM
8829 EXTENT_DIRTY | EXTENT_DELALLOC |
8830 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8831 EXTENT_DEFRAG, 1, 0, &cached_state,
8832 GFP_NOFS);
8b62b72b
CM
8833 /*
8834 * whoever cleared the private bit is responsible
8835 * for the finish_ordered_io
8836 */
77cef2ec
JB
8837 if (TestClearPagePrivate2(page)) {
8838 struct btrfs_ordered_inode_tree *tree;
8839 u64 new_len;
8840
8841 tree = &BTRFS_I(inode)->ordered_tree;
8842
8843 spin_lock_irq(&tree->lock);
8844 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8845 new_len = start - ordered->file_offset;
77cef2ec
JB
8846 if (new_len < ordered->truncated_len)
8847 ordered->truncated_len = new_len;
8848 spin_unlock_irq(&tree->lock);
8849
8850 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8851 start,
8852 end - start + 1, 1))
77cef2ec 8853 btrfs_finish_ordered_io(ordered);
8b62b72b 8854 }
e6dcd2dc 8855 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8856 if (!inode_evicting) {
8857 cached_state = NULL;
dbfdb6d1 8858 lock_extent_bits(tree, start, end,
131e404a
FDBM
8859 &cached_state);
8860 }
dbfdb6d1
CR
8861
8862 start = end + 1;
8863 if (start < page_end)
8864 goto again;
131e404a
FDBM
8865 }
8866
b9d0b389
QW
8867 /*
8868 * Qgroup reserved space handler
8869 * Page here will be either
8870 * 1) Already written to disk
8871 * In this case, its reserved space is released from data rsv map
8872 * and will be freed by delayed_ref handler finally.
8873 * So even we call qgroup_free_data(), it won't decrease reserved
8874 * space.
8875 * 2) Not written to disk
8876 * This means the reserved space should be freed here.
8877 */
09cbfeaf 8878 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
131e404a
FDBM
8879 if (!inode_evicting) {
8880 clear_extent_bit(tree, page_start, page_end,
8881 EXTENT_LOCKED | EXTENT_DIRTY |
8882 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8883 EXTENT_DEFRAG, 1, 1,
8884 &cached_state, GFP_NOFS);
8885
8886 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8887 }
e6dcd2dc 8888
4a096752 8889 ClearPageChecked(page);
9ad6b7bc 8890 if (PagePrivate(page)) {
9ad6b7bc
CM
8891 ClearPagePrivate(page);
8892 set_page_private(page, 0);
09cbfeaf 8893 put_page(page);
9ad6b7bc 8894 }
39279cc3
CM
8895}
8896
9ebefb18
CM
8897/*
8898 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8899 * called from a page fault handler when a page is first dirtied. Hence we must
8900 * be careful to check for EOF conditions here. We set the page up correctly
8901 * for a written page which means we get ENOSPC checking when writing into
8902 * holes and correct delalloc and unwritten extent mapping on filesystems that
8903 * support these features.
8904 *
8905 * We are not allowed to take the i_mutex here so we have to play games to
8906 * protect against truncate races as the page could now be beyond EOF. Because
8907 * vmtruncate() writes the inode size before removing pages, once we have the
8908 * page lock we can determine safely if the page is beyond EOF. If it is not
8909 * beyond EOF, then the page is guaranteed safe against truncation until we
8910 * unlock the page.
8911 */
c2ec175c 8912int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8913{
c2ec175c 8914 struct page *page = vmf->page;
496ad9aa 8915 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8916 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8917 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8918 struct btrfs_ordered_extent *ordered;
2ac55d41 8919 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8920 char *kaddr;
8921 unsigned long zero_start;
9ebefb18 8922 loff_t size;
1832a6d5 8923 int ret;
9998eb70 8924 int reserved = 0;
d0b7da88 8925 u64 reserved_space;
a52d9a80 8926 u64 page_start;
e6dcd2dc 8927 u64 page_end;
d0b7da88
CR
8928 u64 end;
8929
09cbfeaf 8930 reserved_space = PAGE_SIZE;
9ebefb18 8931
b2b5ef5c 8932 sb_start_pagefault(inode->i_sb);
df480633 8933 page_start = page_offset(page);
09cbfeaf 8934 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8935 end = page_end;
df480633 8936
d0b7da88
CR
8937 /*
8938 * Reserving delalloc space after obtaining the page lock can lead to
8939 * deadlock. For example, if a dirty page is locked by this function
8940 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8941 * dirty page write out, then the btrfs_writepage() function could
8942 * end up waiting indefinitely to get a lock on the page currently
8943 * being processed by btrfs_page_mkwrite() function.
8944 */
7cf5b976 8945 ret = btrfs_delalloc_reserve_space(inode, page_start,
d0b7da88 8946 reserved_space);
9998eb70 8947 if (!ret) {
e41f941a 8948 ret = file_update_time(vma->vm_file);
9998eb70
CM
8949 reserved = 1;
8950 }
56a76f82
NP
8951 if (ret) {
8952 if (ret == -ENOMEM)
8953 ret = VM_FAULT_OOM;
8954 else /* -ENOSPC, -EIO, etc */
8955 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8956 if (reserved)
8957 goto out;
8958 goto out_noreserve;
56a76f82 8959 }
1832a6d5 8960
56a76f82 8961 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8962again:
9ebefb18 8963 lock_page(page);
9ebefb18 8964 size = i_size_read(inode);
a52d9a80 8965
9ebefb18 8966 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8967 (page_start >= size)) {
9ebefb18
CM
8968 /* page got truncated out from underneath us */
8969 goto out_unlock;
8970 }
e6dcd2dc
CM
8971 wait_on_page_writeback(page);
8972
ff13db41 8973 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8974 set_page_extent_mapped(page);
8975
eb84ae03
CM
8976 /*
8977 * we can't set the delalloc bits if there are pending ordered
8978 * extents. Drop our locks and wait for them to finish
8979 */
d0b7da88 8980 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
e6dcd2dc 8981 if (ordered) {
2ac55d41
JB
8982 unlock_extent_cached(io_tree, page_start, page_end,
8983 &cached_state, GFP_NOFS);
e6dcd2dc 8984 unlock_page(page);
eb84ae03 8985 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8986 btrfs_put_ordered_extent(ordered);
8987 goto again;
8988 }
8989
09cbfeaf 8990 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
d0b7da88 8991 reserved_space = round_up(size - page_start, root->sectorsize);
09cbfeaf 8992 if (reserved_space < PAGE_SIZE) {
d0b7da88
CR
8993 end = page_start + reserved_space - 1;
8994 spin_lock(&BTRFS_I(inode)->lock);
8995 BTRFS_I(inode)->outstanding_extents++;
8996 spin_unlock(&BTRFS_I(inode)->lock);
8997 btrfs_delalloc_release_space(inode, page_start,
09cbfeaf 8998 PAGE_SIZE - reserved_space);
d0b7da88
CR
8999 }
9000 }
9001
fbf19087
JB
9002 /*
9003 * XXX - page_mkwrite gets called every time the page is dirtied, even
9004 * if it was already dirty, so for space accounting reasons we need to
9005 * clear any delalloc bits for the range we are fixing to save. There
9006 * is probably a better way to do this, but for now keep consistent with
9007 * prepare_pages in the normal write path.
9008 */
d0b7da88 9009 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
9010 EXTENT_DIRTY | EXTENT_DELALLOC |
9011 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 9012 0, 0, &cached_state, GFP_NOFS);
fbf19087 9013
d0b7da88 9014 ret = btrfs_set_extent_delalloc(inode, page_start, end,
2ac55d41 9015 &cached_state);
9ed74f2d 9016 if (ret) {
2ac55d41
JB
9017 unlock_extent_cached(io_tree, page_start, page_end,
9018 &cached_state, GFP_NOFS);
9ed74f2d
JB
9019 ret = VM_FAULT_SIGBUS;
9020 goto out_unlock;
9021 }
e6dcd2dc 9022 ret = 0;
9ebefb18
CM
9023
9024 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9025 if (page_start + PAGE_SIZE > size)
9026 zero_start = size & ~PAGE_MASK;
9ebefb18 9027 else
09cbfeaf 9028 zero_start = PAGE_SIZE;
9ebefb18 9029
09cbfeaf 9030 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9031 kaddr = kmap(page);
09cbfeaf 9032 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9033 flush_dcache_page(page);
9034 kunmap(page);
9035 }
247e743c 9036 ClearPageChecked(page);
e6dcd2dc 9037 set_page_dirty(page);
50a9b214 9038 SetPageUptodate(page);
5a3f23d5 9039
257c62e1
CM
9040 BTRFS_I(inode)->last_trans = root->fs_info->generation;
9041 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9042 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9043
2ac55d41 9044 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
9045
9046out_unlock:
b2b5ef5c
JK
9047 if (!ret) {
9048 sb_end_pagefault(inode->i_sb);
50a9b214 9049 return VM_FAULT_LOCKED;
b2b5ef5c 9050 }
9ebefb18 9051 unlock_page(page);
1832a6d5 9052out:
d0b7da88 9053 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9998eb70 9054out_noreserve:
b2b5ef5c 9055 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
9056 return ret;
9057}
9058
a41ad394 9059static int btrfs_truncate(struct inode *inode)
39279cc3
CM
9060{
9061 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9062 struct btrfs_block_rsv *rsv;
a71754fc 9063 int ret = 0;
3893e33b 9064 int err = 0;
39279cc3 9065 struct btrfs_trans_handle *trans;
dbe674a9 9066 u64 mask = root->sectorsize - 1;
07127184 9067 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 9068
0ef8b726
JB
9069 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9070 (u64)-1);
9071 if (ret)
9072 return ret;
39279cc3 9073
fcb80c2a 9074 /*
01327610 9075 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9076 * 3 things going on here
9077 *
9078 * 1) We need to reserve space for our orphan item and the space to
9079 * delete our orphan item. Lord knows we don't want to have a dangling
9080 * orphan item because we didn't reserve space to remove it.
9081 *
9082 * 2) We need to reserve space to update our inode.
9083 *
9084 * 3) We need to have something to cache all the space that is going to
9085 * be free'd up by the truncate operation, but also have some slack
9086 * space reserved in case it uses space during the truncate (thank you
9087 * very much snapshotting).
9088 *
01327610 9089 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9090 * space doing the truncate, and we have no earthly idea how much space
01327610 9091 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9092 * doesn't end up using space reserved for updating the inode or
9093 * removing the orphan item. We also need to be able to stop the
9094 * transaction and start a new one, which means we need to be able to
9095 * update the inode several times, and we have no idea of knowing how
9096 * many times that will be, so we can't just reserve 1 item for the
01327610 9097 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9098 * Then there is the orphan item, which does indeed need to be held on
9099 * to for the whole operation, and we need nobody to touch this reserved
9100 * space except the orphan code.
9101 *
9102 * So that leaves us with
9103 *
9104 * 1) root->orphan_block_rsv - for the orphan deletion.
9105 * 2) rsv - for the truncate reservation, which we will steal from the
9106 * transaction reservation.
9107 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9108 * updating the inode.
9109 */
66d8f3dd 9110 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9111 if (!rsv)
9112 return -ENOMEM;
4a338542 9113 rsv->size = min_size;
ca7e70f5 9114 rsv->failfast = 1;
f0cd846e 9115
907cbceb 9116 /*
07127184 9117 * 1 for the truncate slack space
907cbceb
JB
9118 * 1 for updating the inode.
9119 */
f3fe820c 9120 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9121 if (IS_ERR(trans)) {
9122 err = PTR_ERR(trans);
9123 goto out;
9124 }
f0cd846e 9125
907cbceb
JB
9126 /* Migrate the slack space for the truncate to our reserve */
9127 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
25d609f8 9128 min_size, 0);
fcb80c2a 9129 BUG_ON(ret);
f0cd846e 9130
5dc562c5
JB
9131 /*
9132 * So if we truncate and then write and fsync we normally would just
9133 * write the extents that changed, which is a problem if we need to
9134 * first truncate that entire inode. So set this flag so we write out
9135 * all of the extents in the inode to the sync log so we're completely
9136 * safe.
9137 */
9138 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9139 trans->block_rsv = rsv;
907cbceb 9140
8082510e
YZ
9141 while (1) {
9142 ret = btrfs_truncate_inode_items(trans, root, inode,
9143 inode->i_size,
9144 BTRFS_EXTENT_DATA_KEY);
28ed1345 9145 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9146 err = ret;
8082510e 9147 break;
3893e33b 9148 }
39279cc3 9149
fcb80c2a 9150 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 9151 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9152 if (ret) {
9153 err = ret;
9154 break;
9155 }
ca7e70f5 9156
8082510e 9157 btrfs_end_transaction(trans, root);
b53d3f5d 9158 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
9159
9160 trans = btrfs_start_transaction(root, 2);
9161 if (IS_ERR(trans)) {
9162 ret = err = PTR_ERR(trans);
9163 trans = NULL;
9164 break;
9165 }
9166
9167 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
25d609f8 9168 rsv, min_size, 0);
ca7e70f5
JB
9169 BUG_ON(ret); /* shouldn't happen */
9170 trans->block_rsv = rsv;
8082510e
YZ
9171 }
9172
9173 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9174 trans->block_rsv = root->orphan_block_rsv;
8082510e 9175 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
9176 if (ret)
9177 err = ret;
8082510e
YZ
9178 }
9179
917c16b2
CM
9180 if (trans) {
9181 trans->block_rsv = &root->fs_info->trans_block_rsv;
9182 ret = btrfs_update_inode(trans, root, inode);
9183 if (ret && !err)
9184 err = ret;
7b128766 9185
7ad85bb7 9186 ret = btrfs_end_transaction(trans, root);
b53d3f5d 9187 btrfs_btree_balance_dirty(root);
917c16b2 9188 }
fcb80c2a
JB
9189out:
9190 btrfs_free_block_rsv(root, rsv);
9191
3893e33b
JB
9192 if (ret && !err)
9193 err = ret;
a41ad394 9194
3893e33b 9195 return err;
39279cc3
CM
9196}
9197
d352ac68
CM
9198/*
9199 * create a new subvolume directory/inode (helper for the ioctl).
9200 */
d2fb3437 9201int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9202 struct btrfs_root *new_root,
9203 struct btrfs_root *parent_root,
9204 u64 new_dirid)
39279cc3 9205{
39279cc3 9206 struct inode *inode;
76dda93c 9207 int err;
00e4e6b3 9208 u64 index = 0;
39279cc3 9209
12fc9d09
FA
9210 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9211 new_dirid, new_dirid,
9212 S_IFDIR | (~current_umask() & S_IRWXUGO),
9213 &index);
54aa1f4d 9214 if (IS_ERR(inode))
f46b5a66 9215 return PTR_ERR(inode);
39279cc3
CM
9216 inode->i_op = &btrfs_dir_inode_operations;
9217 inode->i_fop = &btrfs_dir_file_operations;
9218
bfe86848 9219 set_nlink(inode, 1);
dbe674a9 9220 btrfs_i_size_write(inode, 0);
b0d5d10f 9221 unlock_new_inode(inode);
3b96362c 9222
63541927
FDBM
9223 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9224 if (err)
9225 btrfs_err(new_root->fs_info,
351fd353 9226 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9227 new_root->root_key.objectid, err);
9228
76dda93c 9229 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9230
76dda93c 9231 iput(inode);
ce598979 9232 return err;
39279cc3
CM
9233}
9234
39279cc3
CM
9235struct inode *btrfs_alloc_inode(struct super_block *sb)
9236{
9237 struct btrfs_inode *ei;
2ead6ae7 9238 struct inode *inode;
39279cc3
CM
9239
9240 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9241 if (!ei)
9242 return NULL;
2ead6ae7
YZ
9243
9244 ei->root = NULL;
2ead6ae7 9245 ei->generation = 0;
15ee9bc7 9246 ei->last_trans = 0;
257c62e1 9247 ei->last_sub_trans = 0;
e02119d5 9248 ei->logged_trans = 0;
2ead6ae7 9249 ei->delalloc_bytes = 0;
47059d93 9250 ei->defrag_bytes = 0;
2ead6ae7
YZ
9251 ei->disk_i_size = 0;
9252 ei->flags = 0;
7709cde3 9253 ei->csum_bytes = 0;
2ead6ae7 9254 ei->index_cnt = (u64)-1;
67de1176 9255 ei->dir_index = 0;
2ead6ae7 9256 ei->last_unlink_trans = 0;
46d8bc34 9257 ei->last_log_commit = 0;
8089fe62 9258 ei->delayed_iput_count = 0;
2ead6ae7 9259
9e0baf60
JB
9260 spin_lock_init(&ei->lock);
9261 ei->outstanding_extents = 0;
9262 ei->reserved_extents = 0;
2ead6ae7 9263
72ac3c0d 9264 ei->runtime_flags = 0;
261507a0 9265 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9266
16cdcec7
MX
9267 ei->delayed_node = NULL;
9268
9cc97d64 9269 ei->i_otime.tv_sec = 0;
9270 ei->i_otime.tv_nsec = 0;
9271
2ead6ae7 9272 inode = &ei->vfs_inode;
a8067e02 9273 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
9274 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9275 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
9276 ei->io_tree.track_uptodate = 1;
9277 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9278 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9279 mutex_init(&ei->log_mutex);
f248679e 9280 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9281 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9282 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9283 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9284 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9285 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9286
9287 return inode;
39279cc3
CM
9288}
9289
aaedb55b
JB
9290#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9291void btrfs_test_destroy_inode(struct inode *inode)
9292{
9293 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9294 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9295}
9296#endif
9297
fa0d7e3d
NP
9298static void btrfs_i_callback(struct rcu_head *head)
9299{
9300 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9301 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9302}
9303
39279cc3
CM
9304void btrfs_destroy_inode(struct inode *inode)
9305{
e6dcd2dc 9306 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9307 struct btrfs_root *root = BTRFS_I(inode)->root;
9308
b3d9b7a3 9309 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9310 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9311 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9312 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
9313 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9314 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9315 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9316
a6dbd429
JB
9317 /*
9318 * This can happen where we create an inode, but somebody else also
9319 * created the same inode and we need to destroy the one we already
9320 * created.
9321 */
9322 if (!root)
9323 goto free;
9324
8a35d95f
JB
9325 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9326 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 9327 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 9328 btrfs_ino(inode));
8a35d95f 9329 atomic_dec(&root->orphan_inodes);
7b128766 9330 }
7b128766 9331
d397712b 9332 while (1) {
e6dcd2dc
CM
9333 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9334 if (!ordered)
9335 break;
9336 else {
c2cf52eb 9337 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 9338 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9339 btrfs_remove_ordered_extent(inode, ordered);
9340 btrfs_put_ordered_extent(ordered);
9341 btrfs_put_ordered_extent(ordered);
9342 }
9343 }
56fa9d07 9344 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9345 inode_tree_del(inode);
5b21f2ed 9346 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 9347free:
fa0d7e3d 9348 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9349}
9350
45321ac5 9351int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9352{
9353 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9354
6379ef9f
NA
9355 if (root == NULL)
9356 return 1;
9357
fa6ac876 9358 /* the snap/subvol tree is on deleting */
69e9c6c6 9359 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9360 return 1;
76dda93c 9361 else
45321ac5 9362 return generic_drop_inode(inode);
76dda93c
YZ
9363}
9364
0ee0fda0 9365static void init_once(void *foo)
39279cc3
CM
9366{
9367 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9368
9369 inode_init_once(&ei->vfs_inode);
9370}
9371
9372void btrfs_destroy_cachep(void)
9373{
8c0a8537
KS
9374 /*
9375 * Make sure all delayed rcu free inodes are flushed before we
9376 * destroy cache.
9377 */
9378 rcu_barrier();
5598e900
KM
9379 kmem_cache_destroy(btrfs_inode_cachep);
9380 kmem_cache_destroy(btrfs_trans_handle_cachep);
9381 kmem_cache_destroy(btrfs_transaction_cachep);
9382 kmem_cache_destroy(btrfs_path_cachep);
9383 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9384}
9385
9386int btrfs_init_cachep(void)
9387{
837e1972 9388 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9389 sizeof(struct btrfs_inode), 0,
5d097056
VD
9390 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9391 init_once);
39279cc3
CM
9392 if (!btrfs_inode_cachep)
9393 goto fail;
9601e3f6 9394
837e1972 9395 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
9396 sizeof(struct btrfs_trans_handle), 0,
9397 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9398 if (!btrfs_trans_handle_cachep)
9399 goto fail;
9601e3f6 9400
837e1972 9401 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
9402 sizeof(struct btrfs_transaction), 0,
9403 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9404 if (!btrfs_transaction_cachep)
9405 goto fail;
9601e3f6 9406
837e1972 9407 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
9408 sizeof(struct btrfs_path), 0,
9409 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9410 if (!btrfs_path_cachep)
9411 goto fail;
9601e3f6 9412
837e1972 9413 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
9414 sizeof(struct btrfs_free_space), 0,
9415 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9416 if (!btrfs_free_space_cachep)
9417 goto fail;
9418
39279cc3
CM
9419 return 0;
9420fail:
9421 btrfs_destroy_cachep();
9422 return -ENOMEM;
9423}
9424
9425static int btrfs_getattr(struct vfsmount *mnt,
9426 struct dentry *dentry, struct kstat *stat)
9427{
df0af1a5 9428 u64 delalloc_bytes;
2b0143b5 9429 struct inode *inode = d_inode(dentry);
fadc0d8b
DS
9430 u32 blocksize = inode->i_sb->s_blocksize;
9431
39279cc3 9432 generic_fillattr(inode, stat);
0ee5dc67 9433 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9434
9435 spin_lock(&BTRFS_I(inode)->lock);
9436 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9437 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9438 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9439 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9440 return 0;
9441}
9442
cdd1fedf
DF
9443static int btrfs_rename_exchange(struct inode *old_dir,
9444 struct dentry *old_dentry,
9445 struct inode *new_dir,
9446 struct dentry *new_dentry)
9447{
9448 struct btrfs_trans_handle *trans;
9449 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9450 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9451 struct inode *new_inode = new_dentry->d_inode;
9452 struct inode *old_inode = old_dentry->d_inode;
9453 struct timespec ctime = CURRENT_TIME;
9454 struct dentry *parent;
9455 u64 old_ino = btrfs_ino(old_inode);
9456 u64 new_ino = btrfs_ino(new_inode);
9457 u64 old_idx = 0;
9458 u64 new_idx = 0;
9459 u64 root_objectid;
9460 int ret;
86e8aa0e
FM
9461 bool root_log_pinned = false;
9462 bool dest_log_pinned = false;
cdd1fedf
DF
9463
9464 /* we only allow rename subvolume link between subvolumes */
9465 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9466 return -EXDEV;
9467
9468 /* close the race window with snapshot create/destroy ioctl */
9469 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9470 down_read(&root->fs_info->subvol_sem);
9471 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9472 down_read(&dest->fs_info->subvol_sem);
9473
9474 /*
9475 * We want to reserve the absolute worst case amount of items. So if
9476 * both inodes are subvols and we need to unlink them then that would
9477 * require 4 item modifications, but if they are both normal inodes it
9478 * would require 5 item modifications, so we'll assume their normal
9479 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9480 * should cover the worst case number of items we'll modify.
9481 */
9482 trans = btrfs_start_transaction(root, 12);
9483 if (IS_ERR(trans)) {
9484 ret = PTR_ERR(trans);
9485 goto out_notrans;
9486 }
9487
9488 /*
9489 * We need to find a free sequence number both in the source and
9490 * in the destination directory for the exchange.
9491 */
9492 ret = btrfs_set_inode_index(new_dir, &old_idx);
9493 if (ret)
9494 goto out_fail;
9495 ret = btrfs_set_inode_index(old_dir, &new_idx);
9496 if (ret)
9497 goto out_fail;
9498
9499 BTRFS_I(old_inode)->dir_index = 0ULL;
9500 BTRFS_I(new_inode)->dir_index = 0ULL;
9501
9502 /* Reference for the source. */
9503 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9504 /* force full log commit if subvolume involved. */
9505 btrfs_set_log_full_commit(root->fs_info, trans);
9506 } else {
376e5a57
FM
9507 btrfs_pin_log_trans(root);
9508 root_log_pinned = true;
cdd1fedf
DF
9509 ret = btrfs_insert_inode_ref(trans, dest,
9510 new_dentry->d_name.name,
9511 new_dentry->d_name.len,
9512 old_ino,
9513 btrfs_ino(new_dir), old_idx);
9514 if (ret)
9515 goto out_fail;
cdd1fedf
DF
9516 }
9517
9518 /* And now for the dest. */
9519 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9520 /* force full log commit if subvolume involved. */
9521 btrfs_set_log_full_commit(dest->fs_info, trans);
9522 } else {
376e5a57
FM
9523 btrfs_pin_log_trans(dest);
9524 dest_log_pinned = true;
cdd1fedf
DF
9525 ret = btrfs_insert_inode_ref(trans, root,
9526 old_dentry->d_name.name,
9527 old_dentry->d_name.len,
9528 new_ino,
9529 btrfs_ino(old_dir), new_idx);
9530 if (ret)
9531 goto out_fail;
cdd1fedf
DF
9532 }
9533
9534 /* Update inode version and ctime/mtime. */
9535 inode_inc_iversion(old_dir);
9536 inode_inc_iversion(new_dir);
9537 inode_inc_iversion(old_inode);
9538 inode_inc_iversion(new_inode);
9539 old_dir->i_ctime = old_dir->i_mtime = ctime;
9540 new_dir->i_ctime = new_dir->i_mtime = ctime;
9541 old_inode->i_ctime = ctime;
9542 new_inode->i_ctime = ctime;
9543
9544 if (old_dentry->d_parent != new_dentry->d_parent) {
9545 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9546 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9547 }
9548
9549 /* src is a subvolume */
9550 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9551 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9552 ret = btrfs_unlink_subvol(trans, root, old_dir,
9553 root_objectid,
9554 old_dentry->d_name.name,
9555 old_dentry->d_name.len);
9556 } else { /* src is an inode */
9557 ret = __btrfs_unlink_inode(trans, root, old_dir,
9558 old_dentry->d_inode,
9559 old_dentry->d_name.name,
9560 old_dentry->d_name.len);
9561 if (!ret)
9562 ret = btrfs_update_inode(trans, root, old_inode);
9563 }
9564 if (ret) {
9565 btrfs_abort_transaction(trans, root, ret);
9566 goto out_fail;
9567 }
9568
9569 /* dest is a subvolume */
9570 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9571 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9572 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9573 root_objectid,
9574 new_dentry->d_name.name,
9575 new_dentry->d_name.len);
9576 } else { /* dest is an inode */
9577 ret = __btrfs_unlink_inode(trans, dest, new_dir,
9578 new_dentry->d_inode,
9579 new_dentry->d_name.name,
9580 new_dentry->d_name.len);
9581 if (!ret)
9582 ret = btrfs_update_inode(trans, dest, new_inode);
9583 }
9584 if (ret) {
9585 btrfs_abort_transaction(trans, root, ret);
9586 goto out_fail;
9587 }
9588
9589 ret = btrfs_add_link(trans, new_dir, old_inode,
9590 new_dentry->d_name.name,
9591 new_dentry->d_name.len, 0, old_idx);
9592 if (ret) {
9593 btrfs_abort_transaction(trans, root, ret);
9594 goto out_fail;
9595 }
9596
9597 ret = btrfs_add_link(trans, old_dir, new_inode,
9598 old_dentry->d_name.name,
9599 old_dentry->d_name.len, 0, new_idx);
9600 if (ret) {
9601 btrfs_abort_transaction(trans, root, ret);
9602 goto out_fail;
9603 }
9604
9605 if (old_inode->i_nlink == 1)
9606 BTRFS_I(old_inode)->dir_index = old_idx;
9607 if (new_inode->i_nlink == 1)
9608 BTRFS_I(new_inode)->dir_index = new_idx;
9609
86e8aa0e 9610 if (root_log_pinned) {
cdd1fedf
DF
9611 parent = new_dentry->d_parent;
9612 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9613 btrfs_end_log_trans(root);
86e8aa0e 9614 root_log_pinned = false;
cdd1fedf 9615 }
86e8aa0e 9616 if (dest_log_pinned) {
cdd1fedf
DF
9617 parent = old_dentry->d_parent;
9618 btrfs_log_new_name(trans, new_inode, new_dir, parent);
9619 btrfs_end_log_trans(dest);
86e8aa0e 9620 dest_log_pinned = false;
cdd1fedf
DF
9621 }
9622out_fail:
86e8aa0e
FM
9623 /*
9624 * If we have pinned a log and an error happened, we unpin tasks
9625 * trying to sync the log and force them to fallback to a transaction
9626 * commit if the log currently contains any of the inodes involved in
9627 * this rename operation (to ensure we do not persist a log with an
9628 * inconsistent state for any of these inodes or leading to any
9629 * inconsistencies when replayed). If the transaction was aborted, the
9630 * abortion reason is propagated to userspace when attempting to commit
9631 * the transaction. If the log does not contain any of these inodes, we
9632 * allow the tasks to sync it.
9633 */
9634 if (ret && (root_log_pinned || dest_log_pinned)) {
9635 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9636 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9637 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9638 (new_inode &&
9639 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9640 btrfs_set_log_full_commit(root->fs_info, trans);
9641
9642 if (root_log_pinned) {
9643 btrfs_end_log_trans(root);
9644 root_log_pinned = false;
9645 }
9646 if (dest_log_pinned) {
9647 btrfs_end_log_trans(dest);
9648 dest_log_pinned = false;
9649 }
9650 }
cdd1fedf
DF
9651 ret = btrfs_end_transaction(trans, root);
9652out_notrans:
9653 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9654 up_read(&dest->fs_info->subvol_sem);
9655 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9656 up_read(&root->fs_info->subvol_sem);
9657
9658 return ret;
9659}
9660
9661static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9662 struct btrfs_root *root,
9663 struct inode *dir,
9664 struct dentry *dentry)
9665{
9666 int ret;
9667 struct inode *inode;
9668 u64 objectid;
9669 u64 index;
9670
9671 ret = btrfs_find_free_ino(root, &objectid);
9672 if (ret)
9673 return ret;
9674
9675 inode = btrfs_new_inode(trans, root, dir,
9676 dentry->d_name.name,
9677 dentry->d_name.len,
9678 btrfs_ino(dir),
9679 objectid,
9680 S_IFCHR | WHITEOUT_MODE,
9681 &index);
9682
9683 if (IS_ERR(inode)) {
9684 ret = PTR_ERR(inode);
9685 return ret;
9686 }
9687
9688 inode->i_op = &btrfs_special_inode_operations;
9689 init_special_inode(inode, inode->i_mode,
9690 WHITEOUT_DEV);
9691
9692 ret = btrfs_init_inode_security(trans, inode, dir,
9693 &dentry->d_name);
9694 if (ret)
c9901618 9695 goto out;
cdd1fedf
DF
9696
9697 ret = btrfs_add_nondir(trans, dir, dentry,
9698 inode, 0, index);
9699 if (ret)
c9901618 9700 goto out;
cdd1fedf
DF
9701
9702 ret = btrfs_update_inode(trans, root, inode);
c9901618 9703out:
cdd1fedf 9704 unlock_new_inode(inode);
c9901618
FM
9705 if (ret)
9706 inode_dec_link_count(inode);
cdd1fedf
DF
9707 iput(inode);
9708
c9901618 9709 return ret;
cdd1fedf
DF
9710}
9711
d397712b 9712static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9713 struct inode *new_dir, struct dentry *new_dentry,
9714 unsigned int flags)
39279cc3
CM
9715{
9716 struct btrfs_trans_handle *trans;
5062af35 9717 unsigned int trans_num_items;
39279cc3 9718 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9719 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9720 struct inode *new_inode = d_inode(new_dentry);
9721 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9722 u64 index = 0;
4df27c4d 9723 u64 root_objectid;
39279cc3 9724 int ret;
33345d01 9725 u64 old_ino = btrfs_ino(old_inode);
3dc9e8f7 9726 bool log_pinned = false;
39279cc3 9727
33345d01 9728 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9729 return -EPERM;
9730
4df27c4d 9731 /* we only allow rename subvolume link between subvolumes */
33345d01 9732 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9733 return -EXDEV;
9734
33345d01
LZ
9735 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9736 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9737 return -ENOTEMPTY;
5f39d397 9738
4df27c4d
YZ
9739 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9740 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9741 return -ENOTEMPTY;
9c52057c
CM
9742
9743
9744 /* check for collisions, even if the name isn't there */
4871c158 9745 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9746 new_dentry->d_name.name,
9747 new_dentry->d_name.len);
9748
9749 if (ret) {
9750 if (ret == -EEXIST) {
9751 /* we shouldn't get
9752 * eexist without a new_inode */
fae7f21c 9753 if (WARN_ON(!new_inode)) {
9c52057c
CM
9754 return ret;
9755 }
9756 } else {
9757 /* maybe -EOVERFLOW */
9758 return ret;
9759 }
9760 }
9761 ret = 0;
9762
5a3f23d5 9763 /*
8d875f95
CM
9764 * we're using rename to replace one file with another. Start IO on it
9765 * now so we don't add too much work to the end of the transaction
5a3f23d5 9766 */
8d875f95 9767 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9768 filemap_flush(old_inode->i_mapping);
9769
76dda93c 9770 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9771 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9772 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
9773 /*
9774 * We want to reserve the absolute worst case amount of items. So if
9775 * both inodes are subvols and we need to unlink them then that would
9776 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9777 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9778 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9779 * should cover the worst case number of items we'll modify.
5062af35
FM
9780 * If our rename has the whiteout flag, we need more 5 units for the
9781 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9782 * when selinux is enabled).
a22285a6 9783 */
5062af35
FM
9784 trans_num_items = 11;
9785 if (flags & RENAME_WHITEOUT)
9786 trans_num_items += 5;
9787 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9788 if (IS_ERR(trans)) {
cdd1fedf
DF
9789 ret = PTR_ERR(trans);
9790 goto out_notrans;
9791 }
76dda93c 9792
4df27c4d
YZ
9793 if (dest != root)
9794 btrfs_record_root_in_trans(trans, dest);
5f39d397 9795
a5719521
YZ
9796 ret = btrfs_set_inode_index(new_dir, &index);
9797 if (ret)
9798 goto out_fail;
5a3f23d5 9799
67de1176 9800 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9801 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9802 /* force full log commit if subvolume involved. */
995946dd 9803 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 9804 } else {
c4aba954
FM
9805 btrfs_pin_log_trans(root);
9806 log_pinned = true;
a5719521
YZ
9807 ret = btrfs_insert_inode_ref(trans, dest,
9808 new_dentry->d_name.name,
9809 new_dentry->d_name.len,
33345d01
LZ
9810 old_ino,
9811 btrfs_ino(new_dir), index);
a5719521
YZ
9812 if (ret)
9813 goto out_fail;
4df27c4d 9814 }
5a3f23d5 9815
0c4d2d95
JB
9816 inode_inc_iversion(old_dir);
9817 inode_inc_iversion(new_dir);
9818 inode_inc_iversion(old_inode);
04b285f3
DD
9819 old_dir->i_ctime = old_dir->i_mtime =
9820 new_dir->i_ctime = new_dir->i_mtime =
9821 old_inode->i_ctime = current_fs_time(old_dir->i_sb);
5f39d397 9822
12fcfd22
CM
9823 if (old_dentry->d_parent != new_dentry->d_parent)
9824 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9825
33345d01 9826 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9827 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9828 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9829 old_dentry->d_name.name,
9830 old_dentry->d_name.len);
9831 } else {
92986796 9832 ret = __btrfs_unlink_inode(trans, root, old_dir,
2b0143b5 9833 d_inode(old_dentry),
92986796
AV
9834 old_dentry->d_name.name,
9835 old_dentry->d_name.len);
9836 if (!ret)
9837 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9838 }
79787eaa
JM
9839 if (ret) {
9840 btrfs_abort_transaction(trans, root, ret);
9841 goto out_fail;
9842 }
39279cc3
CM
9843
9844 if (new_inode) {
0c4d2d95 9845 inode_inc_iversion(new_inode);
04b285f3 9846 new_inode->i_ctime = current_fs_time(new_inode->i_sb);
33345d01 9847 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
9848 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9849 root_objectid = BTRFS_I(new_inode)->location.objectid;
9850 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9851 root_objectid,
9852 new_dentry->d_name.name,
9853 new_dentry->d_name.len);
9854 BUG_ON(new_inode->i_nlink == 0);
9855 } else {
9856 ret = btrfs_unlink_inode(trans, dest, new_dir,
2b0143b5 9857 d_inode(new_dentry),
4df27c4d
YZ
9858 new_dentry->d_name.name,
9859 new_dentry->d_name.len);
9860 }
4ef31a45 9861 if (!ret && new_inode->i_nlink == 0)
2b0143b5 9862 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
79787eaa
JM
9863 if (ret) {
9864 btrfs_abort_transaction(trans, root, ret);
9865 goto out_fail;
9866 }
39279cc3 9867 }
aec7477b 9868
4df27c4d
YZ
9869 ret = btrfs_add_link(trans, new_dir, old_inode,
9870 new_dentry->d_name.name,
a5719521 9871 new_dentry->d_name.len, 0, index);
79787eaa
JM
9872 if (ret) {
9873 btrfs_abort_transaction(trans, root, ret);
9874 goto out_fail;
9875 }
39279cc3 9876
67de1176
MX
9877 if (old_inode->i_nlink == 1)
9878 BTRFS_I(old_inode)->dir_index = index;
9879
3dc9e8f7 9880 if (log_pinned) {
10d9f309 9881 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9882
6a912213 9883 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d 9884 btrfs_end_log_trans(root);
3dc9e8f7 9885 log_pinned = false;
4df27c4d 9886 }
cdd1fedf
DF
9887
9888 if (flags & RENAME_WHITEOUT) {
9889 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9890 old_dentry);
9891
9892 if (ret) {
9893 btrfs_abort_transaction(trans, root, ret);
9894 goto out_fail;
9895 }
4df27c4d 9896 }
39279cc3 9897out_fail:
3dc9e8f7
FM
9898 /*
9899 * If we have pinned the log and an error happened, we unpin tasks
9900 * trying to sync the log and force them to fallback to a transaction
9901 * commit if the log currently contains any of the inodes involved in
9902 * this rename operation (to ensure we do not persist a log with an
9903 * inconsistent state for any of these inodes or leading to any
9904 * inconsistencies when replayed). If the transaction was aborted, the
9905 * abortion reason is propagated to userspace when attempting to commit
9906 * the transaction. If the log does not contain any of these inodes, we
9907 * allow the tasks to sync it.
9908 */
9909 if (ret && log_pinned) {
9910 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9911 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9912 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9913 (new_inode &&
9914 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9915 btrfs_set_log_full_commit(root->fs_info, trans);
9916
9917 btrfs_end_log_trans(root);
9918 log_pinned = false;
9919 }
7ad85bb7 9920 btrfs_end_transaction(trans, root);
b44c59a8 9921out_notrans:
33345d01 9922 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9923 up_read(&root->fs_info->subvol_sem);
9ed74f2d 9924
39279cc3
CM
9925 return ret;
9926}
9927
80ace85c
MS
9928static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9929 struct inode *new_dir, struct dentry *new_dentry,
9930 unsigned int flags)
9931{
cdd1fedf 9932 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9933 return -EINVAL;
9934
cdd1fedf
DF
9935 if (flags & RENAME_EXCHANGE)
9936 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9937 new_dentry);
9938
9939 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9940}
9941
8ccf6f19
MX
9942static void btrfs_run_delalloc_work(struct btrfs_work *work)
9943{
9944 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9945 struct inode *inode;
8ccf6f19
MX
9946
9947 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9948 work);
9f23e289 9949 inode = delalloc_work->inode;
30424601
DS
9950 filemap_flush(inode->i_mapping);
9951 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9952 &BTRFS_I(inode)->runtime_flags))
9f23e289 9953 filemap_flush(inode->i_mapping);
8ccf6f19
MX
9954
9955 if (delalloc_work->delay_iput)
9f23e289 9956 btrfs_add_delayed_iput(inode);
8ccf6f19 9957 else
9f23e289 9958 iput(inode);
8ccf6f19
MX
9959 complete(&delalloc_work->completion);
9960}
9961
9962struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 9963 int delay_iput)
8ccf6f19
MX
9964{
9965 struct btrfs_delalloc_work *work;
9966
100d5702 9967 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9968 if (!work)
9969 return NULL;
9970
9971 init_completion(&work->completion);
9972 INIT_LIST_HEAD(&work->list);
9973 work->inode = inode;
8ccf6f19 9974 work->delay_iput = delay_iput;
9e0af237
LB
9975 WARN_ON_ONCE(!inode);
9976 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9977 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9978
9979 return work;
9980}
9981
9982void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9983{
9984 wait_for_completion(&work->completion);
100d5702 9985 kfree(work);
8ccf6f19
MX
9986}
9987
d352ac68
CM
9988/*
9989 * some fairly slow code that needs optimization. This walks the list
9990 * of all the inodes with pending delalloc and forces them to disk.
9991 */
6c255e67
MX
9992static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9993 int nr)
ea8c2819 9994{
ea8c2819 9995 struct btrfs_inode *binode;
5b21f2ed 9996 struct inode *inode;
8ccf6f19
MX
9997 struct btrfs_delalloc_work *work, *next;
9998 struct list_head works;
1eafa6c7 9999 struct list_head splice;
8ccf6f19 10000 int ret = 0;
ea8c2819 10001
8ccf6f19 10002 INIT_LIST_HEAD(&works);
1eafa6c7 10003 INIT_LIST_HEAD(&splice);
63607cc8 10004
573bfb72 10005 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10006 spin_lock(&root->delalloc_lock);
10007 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10008 while (!list_empty(&splice)) {
10009 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10010 delalloc_inodes);
1eafa6c7 10011
eb73c1b7
MX
10012 list_move_tail(&binode->delalloc_inodes,
10013 &root->delalloc_inodes);
5b21f2ed 10014 inode = igrab(&binode->vfs_inode);
df0af1a5 10015 if (!inode) {
eb73c1b7 10016 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10017 continue;
df0af1a5 10018 }
eb73c1b7 10019 spin_unlock(&root->delalloc_lock);
1eafa6c7 10020
651d494a 10021 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10022 if (!work) {
f4ab9ea7
JB
10023 if (delay_iput)
10024 btrfs_add_delayed_iput(inode);
10025 else
10026 iput(inode);
1eafa6c7 10027 ret = -ENOMEM;
a1ecaabb 10028 goto out;
5b21f2ed 10029 }
1eafa6c7 10030 list_add_tail(&work->list, &works);
a44903ab
QW
10031 btrfs_queue_work(root->fs_info->flush_workers,
10032 &work->work);
6c255e67
MX
10033 ret++;
10034 if (nr != -1 && ret >= nr)
a1ecaabb 10035 goto out;
5b21f2ed 10036 cond_resched();
eb73c1b7 10037 spin_lock(&root->delalloc_lock);
ea8c2819 10038 }
eb73c1b7 10039 spin_unlock(&root->delalloc_lock);
8c8bee1d 10040
a1ecaabb 10041out:
eb73c1b7
MX
10042 list_for_each_entry_safe(work, next, &works, list) {
10043 list_del_init(&work->list);
10044 btrfs_wait_and_free_delalloc_work(work);
10045 }
10046
10047 if (!list_empty_careful(&splice)) {
10048 spin_lock(&root->delalloc_lock);
10049 list_splice_tail(&splice, &root->delalloc_inodes);
10050 spin_unlock(&root->delalloc_lock);
10051 }
573bfb72 10052 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10053 return ret;
10054}
1eafa6c7 10055
eb73c1b7
MX
10056int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10057{
10058 int ret;
1eafa6c7 10059
2c21b4d7 10060 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
10061 return -EROFS;
10062
6c255e67
MX
10063 ret = __start_delalloc_inodes(root, delay_iput, -1);
10064 if (ret > 0)
10065 ret = 0;
eb73c1b7
MX
10066 /*
10067 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
10068 * we have to make sure the IO is actually started and that
10069 * ordered extents get created before we return
10070 */
10071 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 10072 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 10073 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 10074 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
10075 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10076 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
10077 }
10078 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
10079 return ret;
10080}
10081
6c255e67
MX
10082int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10083 int nr)
eb73c1b7
MX
10084{
10085 struct btrfs_root *root;
10086 struct list_head splice;
10087 int ret;
10088
2c21b4d7 10089 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10090 return -EROFS;
10091
10092 INIT_LIST_HEAD(&splice);
10093
573bfb72 10094 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10095 spin_lock(&fs_info->delalloc_root_lock);
10096 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10097 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10098 root = list_first_entry(&splice, struct btrfs_root,
10099 delalloc_root);
10100 root = btrfs_grab_fs_root(root);
10101 BUG_ON(!root);
10102 list_move_tail(&root->delalloc_root,
10103 &fs_info->delalloc_roots);
10104 spin_unlock(&fs_info->delalloc_root_lock);
10105
6c255e67 10106 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10107 btrfs_put_fs_root(root);
6c255e67 10108 if (ret < 0)
eb73c1b7
MX
10109 goto out;
10110
6c255e67
MX
10111 if (nr != -1) {
10112 nr -= ret;
10113 WARN_ON(nr < 0);
10114 }
eb73c1b7 10115 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10116 }
eb73c1b7 10117 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10118
6c255e67 10119 ret = 0;
eb73c1b7
MX
10120 atomic_inc(&fs_info->async_submit_draining);
10121 while (atomic_read(&fs_info->nr_async_submits) ||
10122 atomic_read(&fs_info->async_delalloc_pages)) {
10123 wait_event(fs_info->async_submit_wait,
10124 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10125 atomic_read(&fs_info->async_delalloc_pages) == 0));
10126 }
10127 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 10128out:
1eafa6c7 10129 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10130 spin_lock(&fs_info->delalloc_root_lock);
10131 list_splice_tail(&splice, &fs_info->delalloc_roots);
10132 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10133 }
573bfb72 10134 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10135 return ret;
ea8c2819
CM
10136}
10137
39279cc3
CM
10138static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10139 const char *symname)
10140{
10141 struct btrfs_trans_handle *trans;
10142 struct btrfs_root *root = BTRFS_I(dir)->root;
10143 struct btrfs_path *path;
10144 struct btrfs_key key;
1832a6d5 10145 struct inode *inode = NULL;
39279cc3
CM
10146 int err;
10147 int drop_inode = 0;
10148 u64 objectid;
67871254 10149 u64 index = 0;
39279cc3
CM
10150 int name_len;
10151 int datasize;
5f39d397 10152 unsigned long ptr;
39279cc3 10153 struct btrfs_file_extent_item *ei;
5f39d397 10154 struct extent_buffer *leaf;
39279cc3 10155
f06becc4 10156 name_len = strlen(symname);
39279cc3
CM
10157 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10158 return -ENAMETOOLONG;
1832a6d5 10159
9ed74f2d
JB
10160 /*
10161 * 2 items for inode item and ref
10162 * 2 items for dir items
9269d12b
FM
10163 * 1 item for updating parent inode item
10164 * 1 item for the inline extent item
9ed74f2d
JB
10165 * 1 item for xattr if selinux is on
10166 */
9269d12b 10167 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10168 if (IS_ERR(trans))
10169 return PTR_ERR(trans);
1832a6d5 10170
581bb050
LZ
10171 err = btrfs_find_free_ino(root, &objectid);
10172 if (err)
10173 goto out_unlock;
10174
aec7477b 10175 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 10176 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 10177 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10178 if (IS_ERR(inode)) {
10179 err = PTR_ERR(inode);
39279cc3 10180 goto out_unlock;
7cf96da3 10181 }
39279cc3 10182
ad19db71
CS
10183 /*
10184 * If the active LSM wants to access the inode during
10185 * d_instantiate it needs these. Smack checks to see
10186 * if the filesystem supports xattrs by looking at the
10187 * ops vector.
10188 */
10189 inode->i_fop = &btrfs_file_operations;
10190 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10191 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10192 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10193
10194 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10195 if (err)
10196 goto out_unlock_inode;
ad19db71 10197
39279cc3 10198 path = btrfs_alloc_path();
d8926bb3
MF
10199 if (!path) {
10200 err = -ENOMEM;
b0d5d10f 10201 goto out_unlock_inode;
d8926bb3 10202 }
33345d01 10203 key.objectid = btrfs_ino(inode);
39279cc3 10204 key.offset = 0;
962a298f 10205 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10206 datasize = btrfs_file_extent_calc_inline_size(name_len);
10207 err = btrfs_insert_empty_item(trans, root, path, &key,
10208 datasize);
54aa1f4d 10209 if (err) {
b0839166 10210 btrfs_free_path(path);
b0d5d10f 10211 goto out_unlock_inode;
54aa1f4d 10212 }
5f39d397
CM
10213 leaf = path->nodes[0];
10214 ei = btrfs_item_ptr(leaf, path->slots[0],
10215 struct btrfs_file_extent_item);
10216 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10217 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10218 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10219 btrfs_set_file_extent_encryption(leaf, ei, 0);
10220 btrfs_set_file_extent_compression(leaf, ei, 0);
10221 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10222 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10223
39279cc3 10224 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10225 write_extent_buffer(leaf, symname, ptr, name_len);
10226 btrfs_mark_buffer_dirty(leaf);
39279cc3 10227 btrfs_free_path(path);
5f39d397 10228
39279cc3 10229 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10230 inode_nohighmem(inode);
39279cc3 10231 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10232 inode_set_bytes(inode, name_len);
f06becc4 10233 btrfs_i_size_write(inode, name_len);
54aa1f4d 10234 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10235 /*
10236 * Last step, add directory indexes for our symlink inode. This is the
10237 * last step to avoid extra cleanup of these indexes if an error happens
10238 * elsewhere above.
10239 */
10240 if (!err)
10241 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
b0d5d10f 10242 if (err) {
54aa1f4d 10243 drop_inode = 1;
b0d5d10f
CM
10244 goto out_unlock_inode;
10245 }
10246
10247 unlock_new_inode(inode);
10248 d_instantiate(dentry, inode);
39279cc3
CM
10249
10250out_unlock:
7ad85bb7 10251 btrfs_end_transaction(trans, root);
39279cc3
CM
10252 if (drop_inode) {
10253 inode_dec_link_count(inode);
10254 iput(inode);
10255 }
b53d3f5d 10256 btrfs_btree_balance_dirty(root);
39279cc3 10257 return err;
b0d5d10f
CM
10258
10259out_unlock_inode:
10260 drop_inode = 1;
10261 unlock_new_inode(inode);
10262 goto out_unlock;
39279cc3 10263}
16432985 10264
0af3d00b
JB
10265static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10266 u64 start, u64 num_bytes, u64 min_size,
10267 loff_t actual_len, u64 *alloc_hint,
10268 struct btrfs_trans_handle *trans)
d899e052 10269{
5dc562c5
JB
10270 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10271 struct extent_map *em;
d899e052
YZ
10272 struct btrfs_root *root = BTRFS_I(inode)->root;
10273 struct btrfs_key ins;
d899e052 10274 u64 cur_offset = start;
55a61d1d 10275 u64 i_size;
154ea289 10276 u64 cur_bytes;
0b670dc4 10277 u64 last_alloc = (u64)-1;
d899e052 10278 int ret = 0;
0af3d00b 10279 bool own_trans = true;
d899e052 10280
0af3d00b
JB
10281 if (trans)
10282 own_trans = false;
d899e052 10283 while (num_bytes > 0) {
0af3d00b
JB
10284 if (own_trans) {
10285 trans = btrfs_start_transaction(root, 3);
10286 if (IS_ERR(trans)) {
10287 ret = PTR_ERR(trans);
10288 break;
10289 }
5a303d5d
YZ
10290 }
10291
ee22184b 10292 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10293 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10294 /*
10295 * If we are severely fragmented we could end up with really
10296 * small allocations, so if the allocator is returning small
10297 * chunks lets make its job easier by only searching for those
10298 * sized chunks.
10299 */
10300 cur_bytes = min(cur_bytes, last_alloc);
00361589 10301 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
e570fd27 10302 *alloc_hint, &ins, 1, 0);
5a303d5d 10303 if (ret) {
0af3d00b
JB
10304 if (own_trans)
10305 btrfs_end_transaction(trans, root);
a22285a6 10306 break;
d899e052 10307 }
9cfa3e34 10308 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
5a303d5d 10309
0b670dc4 10310 last_alloc = ins.offset;
d899e052
YZ
10311 ret = insert_reserved_file_extent(trans, inode,
10312 cur_offset, ins.objectid,
10313 ins.offset, ins.offset,
920bbbfb 10314 ins.offset, 0, 0, 0,
d899e052 10315 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10316 if (ret) {
857cc2fc 10317 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 10318 ins.offset, 0);
79787eaa
JM
10319 btrfs_abort_transaction(trans, root, ret);
10320 if (own_trans)
10321 btrfs_end_transaction(trans, root);
10322 break;
10323 }
31193213 10324
a1ed835e
CM
10325 btrfs_drop_extent_cache(inode, cur_offset,
10326 cur_offset + ins.offset -1, 0);
5a303d5d 10327
5dc562c5
JB
10328 em = alloc_extent_map();
10329 if (!em) {
10330 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10331 &BTRFS_I(inode)->runtime_flags);
10332 goto next;
10333 }
10334
10335 em->start = cur_offset;
10336 em->orig_start = cur_offset;
10337 em->len = ins.offset;
10338 em->block_start = ins.objectid;
10339 em->block_len = ins.offset;
b4939680 10340 em->orig_block_len = ins.offset;
cc95bef6 10341 em->ram_bytes = ins.offset;
5dc562c5
JB
10342 em->bdev = root->fs_info->fs_devices->latest_bdev;
10343 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10344 em->generation = trans->transid;
10345
10346 while (1) {
10347 write_lock(&em_tree->lock);
09a2a8f9 10348 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10349 write_unlock(&em_tree->lock);
10350 if (ret != -EEXIST)
10351 break;
10352 btrfs_drop_extent_cache(inode, cur_offset,
10353 cur_offset + ins.offset - 1,
10354 0);
10355 }
10356 free_extent_map(em);
10357next:
d899e052
YZ
10358 num_bytes -= ins.offset;
10359 cur_offset += ins.offset;
efa56464 10360 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10361
0c4d2d95 10362 inode_inc_iversion(inode);
04b285f3 10363 inode->i_ctime = current_fs_time(inode->i_sb);
6cbff00f 10364 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10365 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10366 (actual_len > inode->i_size) &&
10367 (cur_offset > inode->i_size)) {
d1ea6a61 10368 if (cur_offset > actual_len)
55a61d1d 10369 i_size = actual_len;
d1ea6a61 10370 else
55a61d1d
JB
10371 i_size = cur_offset;
10372 i_size_write(inode, i_size);
10373 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10374 }
10375
d899e052 10376 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10377
10378 if (ret) {
10379 btrfs_abort_transaction(trans, root, ret);
10380 if (own_trans)
10381 btrfs_end_transaction(trans, root);
10382 break;
10383 }
d899e052 10384
0af3d00b
JB
10385 if (own_trans)
10386 btrfs_end_transaction(trans, root);
5a303d5d 10387 }
d899e052
YZ
10388 return ret;
10389}
10390
0af3d00b
JB
10391int btrfs_prealloc_file_range(struct inode *inode, int mode,
10392 u64 start, u64 num_bytes, u64 min_size,
10393 loff_t actual_len, u64 *alloc_hint)
10394{
10395 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10396 min_size, actual_len, alloc_hint,
10397 NULL);
10398}
10399
10400int btrfs_prealloc_file_range_trans(struct inode *inode,
10401 struct btrfs_trans_handle *trans, int mode,
10402 u64 start, u64 num_bytes, u64 min_size,
10403 loff_t actual_len, u64 *alloc_hint)
10404{
10405 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10406 min_size, actual_len, alloc_hint, trans);
10407}
10408
e6dcd2dc
CM
10409static int btrfs_set_page_dirty(struct page *page)
10410{
e6dcd2dc
CM
10411 return __set_page_dirty_nobuffers(page);
10412}
10413
10556cb2 10414static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10415{
b83cc969 10416 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10417 umode_t mode = inode->i_mode;
b83cc969 10418
cb6db4e5
JM
10419 if (mask & MAY_WRITE &&
10420 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10421 if (btrfs_root_readonly(root))
10422 return -EROFS;
10423 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10424 return -EACCES;
10425 }
2830ba7f 10426 return generic_permission(inode, mask);
fdebe2bd 10427}
39279cc3 10428
ef3b9af5
FM
10429static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10430{
10431 struct btrfs_trans_handle *trans;
10432 struct btrfs_root *root = BTRFS_I(dir)->root;
10433 struct inode *inode = NULL;
10434 u64 objectid;
10435 u64 index;
10436 int ret = 0;
10437
10438 /*
10439 * 5 units required for adding orphan entry
10440 */
10441 trans = btrfs_start_transaction(root, 5);
10442 if (IS_ERR(trans))
10443 return PTR_ERR(trans);
10444
10445 ret = btrfs_find_free_ino(root, &objectid);
10446 if (ret)
10447 goto out;
10448
10449 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10450 btrfs_ino(dir), objectid, mode, &index);
10451 if (IS_ERR(inode)) {
10452 ret = PTR_ERR(inode);
10453 inode = NULL;
10454 goto out;
10455 }
10456
ef3b9af5
FM
10457 inode->i_fop = &btrfs_file_operations;
10458 inode->i_op = &btrfs_file_inode_operations;
10459
10460 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10461 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10462
b0d5d10f
CM
10463 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10464 if (ret)
10465 goto out_inode;
10466
10467 ret = btrfs_update_inode(trans, root, inode);
10468 if (ret)
10469 goto out_inode;
ef3b9af5
FM
10470 ret = btrfs_orphan_add(trans, inode);
10471 if (ret)
b0d5d10f 10472 goto out_inode;
ef3b9af5 10473
5762b5c9
FM
10474 /*
10475 * We set number of links to 0 in btrfs_new_inode(), and here we set
10476 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10477 * through:
10478 *
10479 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10480 */
10481 set_nlink(inode, 1);
b0d5d10f 10482 unlock_new_inode(inode);
ef3b9af5
FM
10483 d_tmpfile(dentry, inode);
10484 mark_inode_dirty(inode);
10485
10486out:
10487 btrfs_end_transaction(trans, root);
10488 if (ret)
10489 iput(inode);
10490 btrfs_balance_delayed_items(root);
10491 btrfs_btree_balance_dirty(root);
ef3b9af5 10492 return ret;
b0d5d10f
CM
10493
10494out_inode:
10495 unlock_new_inode(inode);
10496 goto out;
10497
ef3b9af5
FM
10498}
10499
b38ef71c
FM
10500/* Inspired by filemap_check_errors() */
10501int btrfs_inode_check_errors(struct inode *inode)
10502{
10503 int ret = 0;
10504
10505 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10506 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10507 ret = -ENOSPC;
10508 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10509 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10510 ret = -EIO;
10511
10512 return ret;
10513}
10514
6e1d5dcc 10515static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10516 .getattr = btrfs_getattr,
39279cc3
CM
10517 .lookup = btrfs_lookup,
10518 .create = btrfs_create,
10519 .unlink = btrfs_unlink,
10520 .link = btrfs_link,
10521 .mkdir = btrfs_mkdir,
10522 .rmdir = btrfs_rmdir,
80ace85c 10523 .rename2 = btrfs_rename2,
39279cc3
CM
10524 .symlink = btrfs_symlink,
10525 .setattr = btrfs_setattr,
618e21d5 10526 .mknod = btrfs_mknod,
e0d46f5c 10527 .setxattr = generic_setxattr,
9172abbc 10528 .getxattr = generic_getxattr,
5103e947 10529 .listxattr = btrfs_listxattr,
e0d46f5c 10530 .removexattr = generic_removexattr,
fdebe2bd 10531 .permission = btrfs_permission,
4e34e719 10532 .get_acl = btrfs_get_acl,
996a710d 10533 .set_acl = btrfs_set_acl,
93fd63c2 10534 .update_time = btrfs_update_time,
ef3b9af5 10535 .tmpfile = btrfs_tmpfile,
39279cc3 10536};
6e1d5dcc 10537static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10538 .lookup = btrfs_lookup,
fdebe2bd 10539 .permission = btrfs_permission,
4e34e719 10540 .get_acl = btrfs_get_acl,
996a710d 10541 .set_acl = btrfs_set_acl,
93fd63c2 10542 .update_time = btrfs_update_time,
39279cc3 10543};
76dda93c 10544
828c0950 10545static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10546 .llseek = generic_file_llseek,
10547 .read = generic_read_dir,
02dbfc99 10548 .iterate_shared = btrfs_real_readdir,
34287aa3 10549 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10550#ifdef CONFIG_COMPAT
4c63c245 10551 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10552#endif
6bf13c0c 10553 .release = btrfs_release_file,
e02119d5 10554 .fsync = btrfs_sync_file,
39279cc3
CM
10555};
10556
20e5506b 10557static const struct extent_io_ops btrfs_extent_io_ops = {
07157aac 10558 .fill_delalloc = run_delalloc_range,
065631f6 10559 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 10560 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 10561 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 10562 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10563 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10564 .set_bit_hook = btrfs_set_bit_hook,
10565 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10566 .merge_extent_hook = btrfs_merge_extent_hook,
10567 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
10568};
10569
35054394
CM
10570/*
10571 * btrfs doesn't support the bmap operation because swapfiles
10572 * use bmap to make a mapping of extents in the file. They assume
10573 * these extents won't change over the life of the file and they
10574 * use the bmap result to do IO directly to the drive.
10575 *
10576 * the btrfs bmap call would return logical addresses that aren't
10577 * suitable for IO and they also will change frequently as COW
10578 * operations happen. So, swapfile + btrfs == corruption.
10579 *
10580 * For now we're avoiding this by dropping bmap.
10581 */
7f09410b 10582static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10583 .readpage = btrfs_readpage,
10584 .writepage = btrfs_writepage,
b293f02e 10585 .writepages = btrfs_writepages,
3ab2fb5a 10586 .readpages = btrfs_readpages,
16432985 10587 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10588 .invalidatepage = btrfs_invalidatepage,
10589 .releasepage = btrfs_releasepage,
e6dcd2dc 10590 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10591 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10592};
10593
7f09410b 10594static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10595 .readpage = btrfs_readpage,
10596 .writepage = btrfs_writepage,
2bf5a725
CM
10597 .invalidatepage = btrfs_invalidatepage,
10598 .releasepage = btrfs_releasepage,
39279cc3
CM
10599};
10600
6e1d5dcc 10601static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10602 .getattr = btrfs_getattr,
10603 .setattr = btrfs_setattr,
e0d46f5c 10604 .setxattr = generic_setxattr,
9172abbc 10605 .getxattr = generic_getxattr,
5103e947 10606 .listxattr = btrfs_listxattr,
e0d46f5c 10607 .removexattr = generic_removexattr,
fdebe2bd 10608 .permission = btrfs_permission,
1506fcc8 10609 .fiemap = btrfs_fiemap,
4e34e719 10610 .get_acl = btrfs_get_acl,
996a710d 10611 .set_acl = btrfs_set_acl,
e41f941a 10612 .update_time = btrfs_update_time,
39279cc3 10613};
6e1d5dcc 10614static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10615 .getattr = btrfs_getattr,
10616 .setattr = btrfs_setattr,
fdebe2bd 10617 .permission = btrfs_permission,
e0d46f5c 10618 .setxattr = generic_setxattr,
9172abbc 10619 .getxattr = generic_getxattr,
33268eaf 10620 .listxattr = btrfs_listxattr,
e0d46f5c 10621 .removexattr = generic_removexattr,
4e34e719 10622 .get_acl = btrfs_get_acl,
996a710d 10623 .set_acl = btrfs_set_acl,
e41f941a 10624 .update_time = btrfs_update_time,
618e21d5 10625};
6e1d5dcc 10626static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3 10627 .readlink = generic_readlink,
6b255391 10628 .get_link = page_get_link,
f209561a 10629 .getattr = btrfs_getattr,
22c44fe6 10630 .setattr = btrfs_setattr,
fdebe2bd 10631 .permission = btrfs_permission,
e0d46f5c 10632 .setxattr = generic_setxattr,
9172abbc 10633 .getxattr = generic_getxattr,
0279b4cd 10634 .listxattr = btrfs_listxattr,
e0d46f5c 10635 .removexattr = generic_removexattr,
e41f941a 10636 .update_time = btrfs_update_time,
39279cc3 10637};
76dda93c 10638
82d339d9 10639const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10640 .d_delete = btrfs_dentry_delete,
b4aff1f8 10641 .d_release = btrfs_dentry_release,
76dda93c 10642};