]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/inode.c
btrfs: make btrfs_qgroup_release_data take btrfs_inode
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
8f18cf13 6#include <linux/kernel.h>
065631f6 7#include <linux/bio.h>
55e20bd1 8#include <linux/buffer_head.h>
f2eb0a24 9#include <linux/file.h>
39279cc3
CM
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
39279cc3 16#include <linux/backing-dev.h>
39279cc3 17#include <linux/writeback.h>
39279cc3 18#include <linux/compat.h>
5103e947 19#include <linux/xattr.h>
33268eaf 20#include <linux/posix_acl.h>
d899e052 21#include <linux/falloc.h>
5a0e3ad6 22#include <linux/slab.h>
7a36ddec 23#include <linux/ratelimit.h>
55e301fd 24#include <linux/btrfs.h>
53b381b3 25#include <linux/blkdev.h>
f23b5a59 26#include <linux/posix_acl_xattr.h>
e2e40f2c 27#include <linux/uio.h>
69fe2d75 28#include <linux/magic.h>
ae5e165d 29#include <linux/iversion.h>
ed46ff3d 30#include <linux/swap.h>
f8e66081 31#include <linux/migrate.h>
b1c16ac9 32#include <linux/sched/mm.h>
92d32170 33#include <asm/unaligned.h>
602cbe91 34#include "misc.h"
39279cc3
CM
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39279cc3 39#include "print-tree.h"
e6dcd2dc 40#include "ordered-data.h"
95819c05 41#include "xattr.h"
e02119d5 42#include "tree-log.h"
4a54c8c1 43#include "volumes.h"
c8b97818 44#include "compression.h"
b4ce94de 45#include "locking.h"
dc89e982 46#include "free-space-cache.h"
581bb050 47#include "inode-map.h"
63541927 48#include "props.h"
31193213 49#include "qgroup.h"
86736342 50#include "delalloc-space.h"
aac0023c 51#include "block-group.h"
467dc47e 52#include "space-info.h"
39279cc3
CM
53
54struct btrfs_iget_args {
0202e83f 55 u64 ino;
39279cc3
CM
56 struct btrfs_root *root;
57};
58
f28a4928 59struct btrfs_dio_data {
f28a4928 60 u64 reserve;
55e20bd1
DS
61 u64 unsubmitted_oe_range_start;
62 u64 unsubmitted_oe_range_end;
63 int overwrite;
f28a4928
FM
64};
65
6e1d5dcc
AD
66static const struct inode_operations btrfs_dir_inode_operations;
67static const struct inode_operations btrfs_symlink_inode_operations;
6e1d5dcc
AD
68static const struct inode_operations btrfs_special_inode_operations;
69static const struct inode_operations btrfs_file_inode_operations;
7f09410b 70static const struct address_space_operations btrfs_aops;
828c0950 71static const struct file_operations btrfs_dir_file_operations;
20e5506b 72static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
73
74static struct kmem_cache *btrfs_inode_cachep;
75struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 76struct kmem_cache *btrfs_path_cachep;
dc89e982 77struct kmem_cache *btrfs_free_space_cachep;
3acd4850 78struct kmem_cache *btrfs_free_space_bitmap_cachep;
39279cc3 79
3972f260 80static int btrfs_setsize(struct inode *inode, struct iattr *attr);
213e8c55 81static int btrfs_truncate(struct inode *inode, bool skip_writeback);
5fd02043 82static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
6e26c442 83static noinline int cow_file_range(struct btrfs_inode *inode,
771ed689 84 struct page *locked_page,
74e9194a 85 u64 start, u64 end, int *page_started,
330a5827 86 unsigned long *nr_written, int unlock);
4b67c11d
NB
87static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
88 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
89 u64 block_len, u64 orig_block_len,
90 u64 ram_bytes, int compress_type,
91 int type);
7b128766 92
52427260
QW
93static void __endio_write_update_ordered(struct inode *inode,
94 const u64 offset, const u64 bytes,
95 const bool uptodate);
96
97/*
98 * Cleanup all submitted ordered extents in specified range to handle errors
52042d8e 99 * from the btrfs_run_delalloc_range() callback.
52427260
QW
100 *
101 * NOTE: caller must ensure that when an error happens, it can not call
102 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
103 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
104 * to be released, which we want to happen only when finishing the ordered
d1051d6e 105 * extent (btrfs_finish_ordered_io()).
52427260
QW
106 */
107static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
d1051d6e
NB
108 struct page *locked_page,
109 u64 offset, u64 bytes)
52427260 110{
63d71450
NA
111 unsigned long index = offset >> PAGE_SHIFT;
112 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
d1051d6e
NB
113 u64 page_start = page_offset(locked_page);
114 u64 page_end = page_start + PAGE_SIZE - 1;
115
63d71450
NA
116 struct page *page;
117
118 while (index <= end_index) {
119 page = find_get_page(inode->i_mapping, index);
120 index++;
121 if (!page)
122 continue;
123 ClearPagePrivate2(page);
124 put_page(page);
125 }
d1051d6e
NB
126
127 /*
128 * In case this page belongs to the delalloc range being instantiated
129 * then skip it, since the first page of a range is going to be
130 * properly cleaned up by the caller of run_delalloc_range
131 */
132 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
133 offset += PAGE_SIZE;
134 bytes -= PAGE_SIZE;
135 }
136
137 return __endio_write_update_ordered(inode, offset, bytes, false);
52427260
QW
138}
139
48a3b636 140static int btrfs_dirty_inode(struct inode *inode);
7b128766 141
6a3891c5
JB
142#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
143void btrfs_test_inode_set_ops(struct inode *inode)
144{
145 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
146}
147#endif
148
f34f57a3 149static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
150 struct inode *inode, struct inode *dir,
151 const struct qstr *qstr)
0279b4cd
JO
152{
153 int err;
154
f34f57a3 155 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 156 if (!err)
2a7dba39 157 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
158 return err;
159}
160
c8b97818
CM
161/*
162 * this does all the hard work for inserting an inline extent into
163 * the btree. The caller should have done a btrfs_drop_extents so that
164 * no overlapping inline items exist in the btree
165 */
40f76580 166static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 167 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
168 struct btrfs_root *root, struct inode *inode,
169 u64 start, size_t size, size_t compressed_size,
fe3f566c 170 int compress_type,
c8b97818
CM
171 struct page **compressed_pages)
172{
c8b97818
CM
173 struct extent_buffer *leaf;
174 struct page *page = NULL;
175 char *kaddr;
176 unsigned long ptr;
177 struct btrfs_file_extent_item *ei;
c8b97818
CM
178 int ret;
179 size_t cur_size = size;
c8b97818 180 unsigned long offset;
c8b97818 181
982f1f5d
JJB
182 ASSERT((compressed_size > 0 && compressed_pages) ||
183 (compressed_size == 0 && !compressed_pages));
184
fe3f566c 185 if (compressed_size && compressed_pages)
c8b97818 186 cur_size = compressed_size;
c8b97818 187
1acae57b 188 inode_add_bytes(inode, size);
c8b97818 189
1acae57b
FDBM
190 if (!extent_inserted) {
191 struct btrfs_key key;
192 size_t datasize;
c8b97818 193
4a0cc7ca 194 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 195 key.offset = start;
962a298f 196 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 197
1acae57b
FDBM
198 datasize = btrfs_file_extent_calc_inline_size(cur_size);
199 path->leave_spinning = 1;
200 ret = btrfs_insert_empty_item(trans, root, path, &key,
201 datasize);
79b4f4c6 202 if (ret)
1acae57b 203 goto fail;
c8b97818
CM
204 }
205 leaf = path->nodes[0];
206 ei = btrfs_item_ptr(leaf, path->slots[0],
207 struct btrfs_file_extent_item);
208 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
209 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
210 btrfs_set_file_extent_encryption(leaf, ei, 0);
211 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
212 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
213 ptr = btrfs_file_extent_inline_start(ei);
214
261507a0 215 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
216 struct page *cpage;
217 int i = 0;
d397712b 218 while (compressed_size > 0) {
c8b97818 219 cpage = compressed_pages[i];
5b050f04 220 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 221 PAGE_SIZE);
c8b97818 222
7ac687d9 223 kaddr = kmap_atomic(cpage);
c8b97818 224 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 225 kunmap_atomic(kaddr);
c8b97818
CM
226
227 i++;
228 ptr += cur_size;
229 compressed_size -= cur_size;
230 }
231 btrfs_set_file_extent_compression(leaf, ei,
261507a0 232 compress_type);
c8b97818
CM
233 } else {
234 page = find_get_page(inode->i_mapping,
09cbfeaf 235 start >> PAGE_SHIFT);
c8b97818 236 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 237 kaddr = kmap_atomic(page);
7073017a 238 offset = offset_in_page(start);
c8b97818 239 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 240 kunmap_atomic(kaddr);
09cbfeaf 241 put_page(page);
c8b97818
CM
242 }
243 btrfs_mark_buffer_dirty(leaf);
1acae57b 244 btrfs_release_path(path);
c8b97818 245
9ddc959e
JB
246 /*
247 * We align size to sectorsize for inline extents just for simplicity
248 * sake.
249 */
250 size = ALIGN(size, root->fs_info->sectorsize);
251 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
252 if (ret)
253 goto fail;
254
c2167754
YZ
255 /*
256 * we're an inline extent, so nobody can
257 * extend the file past i_size without locking
258 * a page we already have locked.
259 *
260 * We must do any isize and inode updates
261 * before we unlock the pages. Otherwise we
262 * could end up racing with unlink.
263 */
c8b97818 264 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 265 ret = btrfs_update_inode(trans, root, inode);
c2167754 266
c8b97818 267fail:
79b4f4c6 268 return ret;
c8b97818
CM
269}
270
271
272/*
273 * conditionally insert an inline extent into the file. This
274 * does the checks required to make sure the data is small enough
275 * to fit as an inline extent.
276 */
a0349401 277static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
00361589
JB
278 u64 end, size_t compressed_size,
279 int compress_type,
280 struct page **compressed_pages)
c8b97818 281{
a0349401 282 struct btrfs_root *root = inode->root;
0b246afa 283 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 284 struct btrfs_trans_handle *trans;
a0349401 285 u64 isize = i_size_read(&inode->vfs_inode);
c8b97818
CM
286 u64 actual_end = min(end + 1, isize);
287 u64 inline_len = actual_end - start;
0b246afa 288 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
289 u64 data_len = inline_len;
290 int ret;
1acae57b
FDBM
291 struct btrfs_path *path;
292 int extent_inserted = 0;
293 u32 extent_item_size;
c8b97818
CM
294
295 if (compressed_size)
296 data_len = compressed_size;
297
298 if (start > 0 ||
0b246afa
JM
299 actual_end > fs_info->sectorsize ||
300 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 301 (!compressed_size &&
0b246afa 302 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 303 end + 1 < isize ||
0b246afa 304 data_len > fs_info->max_inline) {
c8b97818
CM
305 return 1;
306 }
307
1acae57b
FDBM
308 path = btrfs_alloc_path();
309 if (!path)
310 return -ENOMEM;
311
00361589 312 trans = btrfs_join_transaction(root);
1acae57b
FDBM
313 if (IS_ERR(trans)) {
314 btrfs_free_path(path);
00361589 315 return PTR_ERR(trans);
1acae57b 316 }
a0349401 317 trans->block_rsv = &inode->block_rsv;
00361589 318
1acae57b
FDBM
319 if (compressed_size && compressed_pages)
320 extent_item_size = btrfs_file_extent_calc_inline_size(
321 compressed_size);
322 else
323 extent_item_size = btrfs_file_extent_calc_inline_size(
324 inline_len);
325
a0349401
NB
326 ret = __btrfs_drop_extents(trans, root, inode, path, start, aligned_end,
327 NULL, 1, 1, extent_item_size,
328 &extent_inserted);
00361589 329 if (ret) {
66642832 330 btrfs_abort_transaction(trans, ret);
00361589
JB
331 goto out;
332 }
c8b97818
CM
333
334 if (isize > actual_end)
335 inline_len = min_t(u64, isize, actual_end);
1acae57b 336 ret = insert_inline_extent(trans, path, extent_inserted,
a0349401 337 root, &inode->vfs_inode, start,
c8b97818 338 inline_len, compressed_size,
fe3f566c 339 compress_type, compressed_pages);
2adcac1a 340 if (ret && ret != -ENOSPC) {
66642832 341 btrfs_abort_transaction(trans, ret);
00361589 342 goto out;
2adcac1a 343 } else if (ret == -ENOSPC) {
00361589
JB
344 ret = 1;
345 goto out;
79787eaa 346 }
2adcac1a 347
a0349401
NB
348 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
349 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 350out:
94ed938a
QW
351 /*
352 * Don't forget to free the reserved space, as for inlined extent
353 * it won't count as data extent, free them directly here.
354 * And at reserve time, it's always aligned to page size, so
355 * just free one page here.
356 */
a0349401 357 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 358 btrfs_free_path(path);
3a45bb20 359 btrfs_end_transaction(trans);
00361589 360 return ret;
c8b97818
CM
361}
362
771ed689
CM
363struct async_extent {
364 u64 start;
365 u64 ram_size;
366 u64 compressed_size;
367 struct page **pages;
368 unsigned long nr_pages;
261507a0 369 int compress_type;
771ed689
CM
370 struct list_head list;
371};
372
97db1204 373struct async_chunk {
771ed689 374 struct inode *inode;
771ed689
CM
375 struct page *locked_page;
376 u64 start;
377 u64 end;
f82b7359 378 unsigned int write_flags;
771ed689 379 struct list_head extents;
ec39f769 380 struct cgroup_subsys_state *blkcg_css;
771ed689 381 struct btrfs_work work;
97db1204 382 atomic_t *pending;
771ed689
CM
383};
384
97db1204
NB
385struct async_cow {
386 /* Number of chunks in flight; must be first in the structure */
387 atomic_t num_chunks;
388 struct async_chunk chunks[];
771ed689
CM
389};
390
97db1204 391static noinline int add_async_extent(struct async_chunk *cow,
771ed689
CM
392 u64 start, u64 ram_size,
393 u64 compressed_size,
394 struct page **pages,
261507a0
LZ
395 unsigned long nr_pages,
396 int compress_type)
771ed689
CM
397{
398 struct async_extent *async_extent;
399
400 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 401 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
402 async_extent->start = start;
403 async_extent->ram_size = ram_size;
404 async_extent->compressed_size = compressed_size;
405 async_extent->pages = pages;
406 async_extent->nr_pages = nr_pages;
261507a0 407 async_extent->compress_type = compress_type;
771ed689
CM
408 list_add_tail(&async_extent->list, &cow->extents);
409 return 0;
410}
411
42c16da6
QW
412/*
413 * Check if the inode has flags compatible with compression
414 */
415static inline bool inode_can_compress(struct inode *inode)
416{
417 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW ||
418 BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
419 return false;
420 return true;
421}
422
423/*
424 * Check if the inode needs to be submitted to compression, based on mount
425 * options, defragmentation, properties or heuristics.
426 */
c2fcdcdf 427static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
f79707b0 428{
0b246afa 429 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0 430
42c16da6
QW
431 if (!inode_can_compress(inode)) {
432 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
433 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
434 btrfs_ino(BTRFS_I(inode)));
435 return 0;
436 }
f79707b0 437 /* force compress */
0b246afa 438 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 439 return 1;
eec63c65
DS
440 /* defrag ioctl */
441 if (BTRFS_I(inode)->defrag_compress)
442 return 1;
f79707b0
WS
443 /* bad compression ratios */
444 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
445 return 0;
0b246afa 446 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0 447 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
b52aa8c9 448 BTRFS_I(inode)->prop_compress)
c2fcdcdf 449 return btrfs_compress_heuristic(inode, start, end);
f79707b0
WS
450 return 0;
451}
452
6158e1ce 453static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
454 u64 start, u64 end, u64 num_bytes, u64 small_write)
455{
456 /* If this is a small write inside eof, kick off a defrag */
457 if (num_bytes < small_write &&
6158e1ce 458 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
459 btrfs_add_inode_defrag(NULL, inode);
460}
461
d352ac68 462/*
771ed689
CM
463 * we create compressed extents in two phases. The first
464 * phase compresses a range of pages that have already been
465 * locked (both pages and state bits are locked).
c8b97818 466 *
771ed689
CM
467 * This is done inside an ordered work queue, and the compression
468 * is spread across many cpus. The actual IO submission is step
469 * two, and the ordered work queue takes care of making sure that
470 * happens in the same order things were put onto the queue by
471 * writepages and friends.
c8b97818 472 *
771ed689
CM
473 * If this code finds it can't get good compression, it puts an
474 * entry onto the work queue to write the uncompressed bytes. This
475 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
476 * are written in the same order that the flusher thread sent them
477 * down.
d352ac68 478 */
ac3e9933 479static noinline int compress_file_range(struct async_chunk *async_chunk)
b888db2b 480{
1368c6da 481 struct inode *inode = async_chunk->inode;
0b246afa 482 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0b246afa 483 u64 blocksize = fs_info->sectorsize;
1368c6da
NB
484 u64 start = async_chunk->start;
485 u64 end = async_chunk->end;
c8b97818 486 u64 actual_end;
d98da499 487 u64 i_size;
e6dcd2dc 488 int ret = 0;
c8b97818
CM
489 struct page **pages = NULL;
490 unsigned long nr_pages;
c8b97818
CM
491 unsigned long total_compressed = 0;
492 unsigned long total_in = 0;
c8b97818
CM
493 int i;
494 int will_compress;
0b246afa 495 int compress_type = fs_info->compress_type;
ac3e9933 496 int compressed_extents = 0;
4adaa611 497 int redirty = 0;
b888db2b 498
6158e1ce
NB
499 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
500 SZ_16K);
4cb5300b 501
d98da499
JB
502 /*
503 * We need to save i_size before now because it could change in between
504 * us evaluating the size and assigning it. This is because we lock and
505 * unlock the page in truncate and fallocate, and then modify the i_size
506 * later on.
507 *
508 * The barriers are to emulate READ_ONCE, remove that once i_size_read
509 * does that for us.
510 */
511 barrier();
512 i_size = i_size_read(inode);
513 barrier();
514 actual_end = min_t(u64, i_size, end + 1);
c8b97818
CM
515again:
516 will_compress = 0;
09cbfeaf 517 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
518 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
519 nr_pages = min_t(unsigned long, nr_pages,
520 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 521
f03d9301
CM
522 /*
523 * we don't want to send crud past the end of i_size through
524 * compression, that's just a waste of CPU time. So, if the
525 * end of the file is before the start of our current
526 * requested range of bytes, we bail out to the uncompressed
527 * cleanup code that can deal with all of this.
528 *
529 * It isn't really the fastest way to fix things, but this is a
530 * very uncommon corner.
531 */
532 if (actual_end <= start)
533 goto cleanup_and_bail_uncompressed;
534
c8b97818
CM
535 total_compressed = actual_end - start;
536
4bcbb332
SW
537 /*
538 * skip compression for a small file range(<=blocksize) that
01327610 539 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
540 */
541 if (total_compressed <= blocksize &&
542 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
543 goto cleanup_and_bail_uncompressed;
544
069eac78
DS
545 total_compressed = min_t(unsigned long, total_compressed,
546 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
547 total_in = 0;
548 ret = 0;
db94535d 549
771ed689
CM
550 /*
551 * we do compression for mount -o compress and when the
552 * inode has not been flagged as nocompress. This flag can
553 * change at any time if we discover bad compression ratios.
c8b97818 554 */
c2fcdcdf 555 if (inode_need_compress(inode, start, end)) {
c8b97818 556 WARN_ON(pages);
31e818fe 557 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
558 if (!pages) {
559 /* just bail out to the uncompressed code */
3527a018 560 nr_pages = 0;
560f7d75
LZ
561 goto cont;
562 }
c8b97818 563
eec63c65
DS
564 if (BTRFS_I(inode)->defrag_compress)
565 compress_type = BTRFS_I(inode)->defrag_compress;
566 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 567 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 568
4adaa611
CM
569 /*
570 * we need to call clear_page_dirty_for_io on each
571 * page in the range. Otherwise applications with the file
572 * mmap'd can wander in and change the page contents while
573 * we are compressing them.
574 *
575 * If the compression fails for any reason, we set the pages
576 * dirty again later on.
e9679de3
TT
577 *
578 * Note that the remaining part is redirtied, the start pointer
579 * has moved, the end is the original one.
4adaa611 580 */
e9679de3
TT
581 if (!redirty) {
582 extent_range_clear_dirty_for_io(inode, start, end);
583 redirty = 1;
584 }
f51d2b59
DS
585
586 /* Compression level is applied here and only here */
587 ret = btrfs_compress_pages(
588 compress_type | (fs_info->compress_level << 4),
261507a0 589 inode->i_mapping, start,
38c31464 590 pages,
4d3a800e 591 &nr_pages,
261507a0 592 &total_in,
e5d74902 593 &total_compressed);
c8b97818
CM
594
595 if (!ret) {
7073017a 596 unsigned long offset = offset_in_page(total_compressed);
4d3a800e 597 struct page *page = pages[nr_pages - 1];
c8b97818
CM
598 char *kaddr;
599
600 /* zero the tail end of the last page, we might be
601 * sending it down to disk
602 */
603 if (offset) {
7ac687d9 604 kaddr = kmap_atomic(page);
c8b97818 605 memset(kaddr + offset, 0,
09cbfeaf 606 PAGE_SIZE - offset);
7ac687d9 607 kunmap_atomic(kaddr);
c8b97818
CM
608 }
609 will_compress = 1;
610 }
611 }
560f7d75 612cont:
c8b97818
CM
613 if (start == 0) {
614 /* lets try to make an inline extent */
6018ba0a 615 if (ret || total_in < actual_end) {
c8b97818 616 /* we didn't compress the entire range, try
771ed689 617 * to make an uncompressed inline extent.
c8b97818 618 */
a0349401
NB
619 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
620 0, BTRFS_COMPRESS_NONE,
621 NULL);
c8b97818 622 } else {
771ed689 623 /* try making a compressed inline extent */
a0349401 624 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
fe3f566c
LZ
625 total_compressed,
626 compress_type, pages);
c8b97818 627 }
79787eaa 628 if (ret <= 0) {
151a41bc 629 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
630 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
631 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
632 unsigned long page_error_op;
633
e6eb4314 634 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 635
771ed689 636 /*
79787eaa
JM
637 * inline extent creation worked or returned error,
638 * we don't need to create any more async work items.
639 * Unlock and free up our temp pages.
8b62f87b
JB
640 *
641 * We use DO_ACCOUNTING here because we need the
642 * delalloc_release_metadata to be done _after_ we drop
643 * our outstanding extent for clearing delalloc for this
644 * range.
771ed689 645 */
ad7ff17b
NB
646 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
647 NULL,
74e9194a 648 clear_flags,
ba8b04c1 649 PAGE_UNLOCK |
c2790a2e
JB
650 PAGE_CLEAR_DIRTY |
651 PAGE_SET_WRITEBACK |
e6eb4314 652 page_error_op |
c2790a2e 653 PAGE_END_WRITEBACK);
cecc8d90
NB
654
655 for (i = 0; i < nr_pages; i++) {
656 WARN_ON(pages[i]->mapping);
657 put_page(pages[i]);
658 }
659 kfree(pages);
660
661 return 0;
c8b97818
CM
662 }
663 }
664
665 if (will_compress) {
666 /*
667 * we aren't doing an inline extent round the compressed size
668 * up to a block size boundary so the allocator does sane
669 * things
670 */
fda2832f 671 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
672
673 /*
674 * one last check to make sure the compression is really a
170607eb
TT
675 * win, compare the page count read with the blocks on disk,
676 * compression must free at least one sector size
c8b97818 677 */
09cbfeaf 678 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 679 if (total_compressed + blocksize <= total_in) {
ac3e9933 680 compressed_extents++;
c8bb0c8b
AS
681
682 /*
683 * The async work queues will take care of doing actual
684 * allocation on disk for these compressed pages, and
685 * will submit them to the elevator.
686 */
b5326271 687 add_async_extent(async_chunk, start, total_in,
4d3a800e 688 total_compressed, pages, nr_pages,
c8bb0c8b
AS
689 compress_type);
690
1170862d
TT
691 if (start + total_in < end) {
692 start += total_in;
c8bb0c8b
AS
693 pages = NULL;
694 cond_resched();
695 goto again;
696 }
ac3e9933 697 return compressed_extents;
c8b97818
CM
698 }
699 }
c8bb0c8b 700 if (pages) {
c8b97818
CM
701 /*
702 * the compression code ran but failed to make things smaller,
703 * free any pages it allocated and our page pointer array
704 */
4d3a800e 705 for (i = 0; i < nr_pages; i++) {
70b99e69 706 WARN_ON(pages[i]->mapping);
09cbfeaf 707 put_page(pages[i]);
c8b97818
CM
708 }
709 kfree(pages);
710 pages = NULL;
711 total_compressed = 0;
4d3a800e 712 nr_pages = 0;
c8b97818
CM
713
714 /* flag the file so we don't compress in the future */
0b246afa 715 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 716 !(BTRFS_I(inode)->prop_compress)) {
a555f810 717 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 718 }
c8b97818 719 }
f03d9301 720cleanup_and_bail_uncompressed:
c8bb0c8b
AS
721 /*
722 * No compression, but we still need to write the pages in the file
723 * we've been given so far. redirty the locked page if it corresponds
724 * to our extent and set things up for the async work queue to run
725 * cow_file_range to do the normal delalloc dance.
726 */
1d53c9e6
CM
727 if (async_chunk->locked_page &&
728 (page_offset(async_chunk->locked_page) >= start &&
729 page_offset(async_chunk->locked_page)) <= end) {
1368c6da 730 __set_page_dirty_nobuffers(async_chunk->locked_page);
c8bb0c8b 731 /* unlocked later on in the async handlers */
1d53c9e6 732 }
c8bb0c8b
AS
733
734 if (redirty)
735 extent_range_redirty_for_io(inode, start, end);
b5326271 736 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
c8bb0c8b 737 BTRFS_COMPRESS_NONE);
ac3e9933 738 compressed_extents++;
3b951516 739
ac3e9933 740 return compressed_extents;
771ed689 741}
771ed689 742
40ae837b
FM
743static void free_async_extent_pages(struct async_extent *async_extent)
744{
745 int i;
746
747 if (!async_extent->pages)
748 return;
749
750 for (i = 0; i < async_extent->nr_pages; i++) {
751 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 752 put_page(async_extent->pages[i]);
40ae837b
FM
753 }
754 kfree(async_extent->pages);
755 async_extent->nr_pages = 0;
756 async_extent->pages = NULL;
771ed689
CM
757}
758
759/*
760 * phase two of compressed writeback. This is the ordered portion
761 * of the code, which only gets called in the order the work was
762 * queued. We walk all the async extents created by compress_file_range
763 * and send them down to the disk.
764 */
b5326271 765static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
771ed689 766{
a0ff10dc
NB
767 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
768 struct btrfs_fs_info *fs_info = inode->root->fs_info;
771ed689
CM
769 struct async_extent *async_extent;
770 u64 alloc_hint = 0;
771ed689
CM
771 struct btrfs_key ins;
772 struct extent_map *em;
a0ff10dc
NB
773 struct btrfs_root *root = inode->root;
774 struct extent_io_tree *io_tree = &inode->io_tree;
f5a84ee3 775 int ret = 0;
771ed689 776
3e04e7f1 777again:
b5326271
NB
778 while (!list_empty(&async_chunk->extents)) {
779 async_extent = list_entry(async_chunk->extents.next,
771ed689
CM
780 struct async_extent, list);
781 list_del(&async_extent->list);
c8b97818 782
f5a84ee3 783retry:
7447555f
NB
784 lock_extent(io_tree, async_extent->start,
785 async_extent->start + async_extent->ram_size - 1);
771ed689
CM
786 /* did the compression code fall back to uncompressed IO? */
787 if (!async_extent->pages) {
788 int page_started = 0;
789 unsigned long nr_written = 0;
790
771ed689 791 /* allocate blocks */
a0ff10dc 792 ret = cow_file_range(inode, async_chunk->locked_page,
f5a84ee3
JB
793 async_extent->start,
794 async_extent->start +
795 async_extent->ram_size - 1,
330a5827 796 &page_started, &nr_written, 0);
771ed689 797
79787eaa
JM
798 /* JDM XXX */
799
771ed689
CM
800 /*
801 * if page_started, cow_file_range inserted an
802 * inline extent and took care of all the unlocking
803 * and IO for us. Otherwise, we need to submit
804 * all those pages down to the drive.
805 */
f5a84ee3 806 if (!page_started && !ret)
a0ff10dc 807 extent_write_locked_range(&inode->vfs_inode,
5e3ee236 808 async_extent->start,
d397712b 809 async_extent->start +
771ed689 810 async_extent->ram_size - 1,
771ed689 811 WB_SYNC_ALL);
1d53c9e6 812 else if (ret && async_chunk->locked_page)
b5326271 813 unlock_page(async_chunk->locked_page);
771ed689
CM
814 kfree(async_extent);
815 cond_resched();
816 continue;
817 }
818
18513091 819 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
820 async_extent->compressed_size,
821 async_extent->compressed_size,
e570fd27 822 0, alloc_hint, &ins, 1, 1);
f5a84ee3 823 if (ret) {
40ae837b 824 free_async_extent_pages(async_extent);
3e04e7f1 825
fdf8e2ea
JB
826 if (ret == -ENOSPC) {
827 unlock_extent(io_tree, async_extent->start,
828 async_extent->start +
829 async_extent->ram_size - 1);
ce62003f
LB
830
831 /*
832 * we need to redirty the pages if we decide to
833 * fallback to uncompressed IO, otherwise we
834 * will not submit these pages down to lower
835 * layers.
836 */
a0ff10dc 837 extent_range_redirty_for_io(&inode->vfs_inode,
ce62003f
LB
838 async_extent->start,
839 async_extent->start +
840 async_extent->ram_size - 1);
841
79787eaa 842 goto retry;
fdf8e2ea 843 }
3e04e7f1 844 goto out_free;
f5a84ee3 845 }
c2167754
YZ
846 /*
847 * here we're doing allocation and writeback of the
848 * compressed pages
849 */
a0ff10dc 850 em = create_io_em(inode, async_extent->start,
6f9994db
LB
851 async_extent->ram_size, /* len */
852 async_extent->start, /* orig_start */
853 ins.objectid, /* block_start */
854 ins.offset, /* block_len */
855 ins.offset, /* orig_block_len */
856 async_extent->ram_size, /* ram_bytes */
857 async_extent->compress_type,
858 BTRFS_ORDERED_COMPRESSED);
859 if (IS_ERR(em))
860 /* ret value is not necessary due to void function */
3e04e7f1 861 goto out_free_reserve;
6f9994db 862 free_extent_map(em);
3e04e7f1 863
a0ff10dc 864 ret = btrfs_add_ordered_extent_compress(inode,
261507a0
LZ
865 async_extent->start,
866 ins.objectid,
867 async_extent->ram_size,
868 ins.offset,
869 BTRFS_ORDERED_COMPRESSED,
870 async_extent->compress_type);
d9f85963 871 if (ret) {
a0ff10dc 872 btrfs_drop_extent_cache(inode, async_extent->start,
d9f85963
FM
873 async_extent->start +
874 async_extent->ram_size - 1, 0);
3e04e7f1 875 goto out_free_reserve;
d9f85963 876 }
0b246afa 877 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 878
771ed689
CM
879 /*
880 * clear dirty, set writeback and unlock the pages.
881 */
a0ff10dc 882 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
883 async_extent->start +
884 async_extent->ram_size - 1,
151a41bc
JB
885 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
886 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 887 PAGE_SET_WRITEBACK);
a0ff10dc 888 if (btrfs_submit_compressed_write(inode, async_extent->start,
d397712b
CM
889 async_extent->ram_size,
890 ins.objectid,
891 ins.offset, async_extent->pages,
f82b7359 892 async_extent->nr_pages,
ec39f769
CM
893 async_chunk->write_flags,
894 async_chunk->blkcg_css)) {
fce2a4e6
FM
895 struct page *p = async_extent->pages[0];
896 const u64 start = async_extent->start;
897 const u64 end = start + async_extent->ram_size - 1;
898
a0ff10dc 899 p->mapping = inode->vfs_inode.i_mapping;
c629732d 900 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
7087a9d8 901
fce2a4e6 902 p->mapping = NULL;
a0ff10dc 903 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
fce2a4e6
FM
904 PAGE_END_WRITEBACK |
905 PAGE_SET_ERROR);
40ae837b 906 free_async_extent_pages(async_extent);
fce2a4e6 907 }
771ed689
CM
908 alloc_hint = ins.objectid + ins.offset;
909 kfree(async_extent);
910 cond_resched();
911 }
dec8f175 912 return;
3e04e7f1 913out_free_reserve:
0b246afa 914 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 915 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 916out_free:
a0ff10dc 917 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
918 async_extent->start +
919 async_extent->ram_size - 1,
c2790a2e 920 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 921 EXTENT_DELALLOC_NEW |
151a41bc
JB
922 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
923 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
924 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
925 PAGE_SET_ERROR);
40ae837b 926 free_async_extent_pages(async_extent);
79787eaa 927 kfree(async_extent);
3e04e7f1 928 goto again;
771ed689
CM
929}
930
43c69849 931static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
4b46fce2
JB
932 u64 num_bytes)
933{
43c69849 934 struct extent_map_tree *em_tree = &inode->extent_tree;
4b46fce2
JB
935 struct extent_map *em;
936 u64 alloc_hint = 0;
937
938 read_lock(&em_tree->lock);
939 em = search_extent_mapping(em_tree, start, num_bytes);
940 if (em) {
941 /*
942 * if block start isn't an actual block number then find the
943 * first block in this inode and use that as a hint. If that
944 * block is also bogus then just don't worry about it.
945 */
946 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
947 free_extent_map(em);
948 em = search_extent_mapping(em_tree, 0, 0);
949 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
950 alloc_hint = em->block_start;
951 if (em)
952 free_extent_map(em);
953 } else {
954 alloc_hint = em->block_start;
955 free_extent_map(em);
956 }
957 }
958 read_unlock(&em_tree->lock);
959
960 return alloc_hint;
961}
962
771ed689
CM
963/*
964 * when extent_io.c finds a delayed allocation range in the file,
965 * the call backs end up in this code. The basic idea is to
966 * allocate extents on disk for the range, and create ordered data structs
967 * in ram to track those extents.
968 *
969 * locked_page is the page that writepage had locked already. We use
970 * it to make sure we don't do extra locks or unlocks.
971 *
972 * *page_started is set to one if we unlock locked_page and do everything
973 * required to start IO on it. It may be clean and already done with
974 * IO when we return.
975 */
6e26c442 976static noinline int cow_file_range(struct btrfs_inode *inode,
00361589 977 struct page *locked_page,
74e9194a 978 u64 start, u64 end, int *page_started,
330a5827 979 unsigned long *nr_written, int unlock)
771ed689 980{
6e26c442
NB
981 struct btrfs_root *root = inode->root;
982 struct btrfs_fs_info *fs_info = root->fs_info;
771ed689
CM
983 u64 alloc_hint = 0;
984 u64 num_bytes;
985 unsigned long ram_size;
a315e68f 986 u64 cur_alloc_size = 0;
432cd2a1 987 u64 min_alloc_size;
0b246afa 988 u64 blocksize = fs_info->sectorsize;
771ed689
CM
989 struct btrfs_key ins;
990 struct extent_map *em;
a315e68f
FM
991 unsigned clear_bits;
992 unsigned long page_ops;
993 bool extent_reserved = false;
771ed689
CM
994 int ret = 0;
995
6e26c442 996 if (btrfs_is_free_space_inode(inode)) {
02ecd2c2 997 WARN_ON_ONCE(1);
29bce2f3
JB
998 ret = -EINVAL;
999 goto out_unlock;
02ecd2c2 1000 }
771ed689 1001
fda2832f 1002 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 1003 num_bytes = max(blocksize, num_bytes);
566b1760 1004 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 1005
6e26c442 1006 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
4cb5300b 1007
771ed689
CM
1008 if (start == 0) {
1009 /* lets try to make an inline extent */
6e26c442 1010 ret = cow_file_range_inline(inode, start, end, 0,
d02c0e20 1011 BTRFS_COMPRESS_NONE, NULL);
771ed689 1012 if (ret == 0) {
8b62f87b
JB
1013 /*
1014 * We use DO_ACCOUNTING here because we need the
1015 * delalloc_release_metadata to be run _after_ we drop
1016 * our outstanding extent for clearing delalloc for this
1017 * range.
1018 */
6e26c442 1019 extent_clear_unlock_delalloc(inode, start, end, NULL,
c2790a2e 1020 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
1021 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1022 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
1023 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1024 PAGE_END_WRITEBACK);
771ed689 1025 *nr_written = *nr_written +
09cbfeaf 1026 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 1027 *page_started = 1;
771ed689 1028 goto out;
79787eaa 1029 } else if (ret < 0) {
79787eaa 1030 goto out_unlock;
771ed689
CM
1031 }
1032 }
1033
6e26c442
NB
1034 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1035 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
771ed689 1036
432cd2a1
FM
1037 /*
1038 * Relocation relies on the relocated extents to have exactly the same
1039 * size as the original extents. Normally writeback for relocation data
1040 * extents follows a NOCOW path because relocation preallocates the
1041 * extents. However, due to an operation such as scrub turning a block
1042 * group to RO mode, it may fallback to COW mode, so we must make sure
1043 * an extent allocated during COW has exactly the requested size and can
1044 * not be split into smaller extents, otherwise relocation breaks and
1045 * fails during the stage where it updates the bytenr of file extent
1046 * items.
1047 */
1048 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1049 min_alloc_size = num_bytes;
1050 else
1051 min_alloc_size = fs_info->sectorsize;
1052
3752d22f
AJ
1053 while (num_bytes > 0) {
1054 cur_alloc_size = num_bytes;
18513091 1055 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
432cd2a1 1056 min_alloc_size, 0, alloc_hint,
e570fd27 1057 &ins, 1, 1);
00361589 1058 if (ret < 0)
79787eaa 1059 goto out_unlock;
a315e68f
FM
1060 cur_alloc_size = ins.offset;
1061 extent_reserved = true;
d397712b 1062
771ed689 1063 ram_size = ins.offset;
6e26c442 1064 em = create_io_em(inode, start, ins.offset, /* len */
6f9994db
LB
1065 start, /* orig_start */
1066 ins.objectid, /* block_start */
1067 ins.offset, /* block_len */
1068 ins.offset, /* orig_block_len */
1069 ram_size, /* ram_bytes */
1070 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1071 BTRFS_ORDERED_REGULAR /* type */);
090a127a
SY
1072 if (IS_ERR(em)) {
1073 ret = PTR_ERR(em);
ace68bac 1074 goto out_reserve;
090a127a 1075 }
6f9994db 1076 free_extent_map(em);
e6dcd2dc 1077
6e26c442
NB
1078 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1079 ram_size, cur_alloc_size, 0);
ace68bac 1080 if (ret)
d9f85963 1081 goto out_drop_extent_cache;
c8b97818 1082
17d217fe
YZ
1083 if (root->root_key.objectid ==
1084 BTRFS_DATA_RELOC_TREE_OBJECTID) {
6e26c442 1085 ret = btrfs_reloc_clone_csums(inode, start,
17d217fe 1086 cur_alloc_size);
4dbd80fb
QW
1087 /*
1088 * Only drop cache here, and process as normal.
1089 *
1090 * We must not allow extent_clear_unlock_delalloc()
1091 * at out_unlock label to free meta of this ordered
1092 * extent, as its meta should be freed by
1093 * btrfs_finish_ordered_io().
1094 *
1095 * So we must continue until @start is increased to
1096 * skip current ordered extent.
1097 */
00361589 1098 if (ret)
6e26c442 1099 btrfs_drop_extent_cache(inode, start,
4dbd80fb 1100 start + ram_size - 1, 0);
17d217fe
YZ
1101 }
1102
0b246afa 1103 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1104
c8b97818
CM
1105 /* we're not doing compressed IO, don't unlock the first
1106 * page (which the caller expects to stay locked), don't
1107 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1108 *
1109 * Do set the Private2 bit so we know this page was properly
1110 * setup for writepage
c8b97818 1111 */
a315e68f
FM
1112 page_ops = unlock ? PAGE_UNLOCK : 0;
1113 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1114
6e26c442 1115 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
74e9194a 1116 locked_page,
c2790a2e 1117 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1118 page_ops);
3752d22f
AJ
1119 if (num_bytes < cur_alloc_size)
1120 num_bytes = 0;
4dbd80fb 1121 else
3752d22f 1122 num_bytes -= cur_alloc_size;
c59f8951
CM
1123 alloc_hint = ins.objectid + ins.offset;
1124 start += cur_alloc_size;
a315e68f 1125 extent_reserved = false;
4dbd80fb
QW
1126
1127 /*
1128 * btrfs_reloc_clone_csums() error, since start is increased
1129 * extent_clear_unlock_delalloc() at out_unlock label won't
1130 * free metadata of current ordered extent, we're OK to exit.
1131 */
1132 if (ret)
1133 goto out_unlock;
b888db2b 1134 }
79787eaa 1135out:
be20aa9d 1136 return ret;
b7d5b0a8 1137
d9f85963 1138out_drop_extent_cache:
6e26c442 1139 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1140out_reserve:
0b246afa 1141 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1142 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1143out_unlock:
a7e3b975
FM
1144 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1145 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1146 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1147 PAGE_END_WRITEBACK;
1148 /*
1149 * If we reserved an extent for our delalloc range (or a subrange) and
1150 * failed to create the respective ordered extent, then it means that
1151 * when we reserved the extent we decremented the extent's size from
1152 * the data space_info's bytes_may_use counter and incremented the
1153 * space_info's bytes_reserved counter by the same amount. We must make
1154 * sure extent_clear_unlock_delalloc() does not try to decrement again
1155 * the data space_info's bytes_may_use counter, therefore we do not pass
1156 * it the flag EXTENT_CLEAR_DATA_RESV.
1157 */
1158 if (extent_reserved) {
6e26c442 1159 extent_clear_unlock_delalloc(inode, start,
e2c8e92d 1160 start + cur_alloc_size - 1,
a315e68f
FM
1161 locked_page,
1162 clear_bits,
1163 page_ops);
1164 start += cur_alloc_size;
1165 if (start >= end)
1166 goto out;
1167 }
6e26c442 1168 extent_clear_unlock_delalloc(inode, start, end, locked_page,
a315e68f
FM
1169 clear_bits | EXTENT_CLEAR_DATA_RESV,
1170 page_ops);
79787eaa 1171 goto out;
771ed689 1172}
c8b97818 1173
771ed689
CM
1174/*
1175 * work queue call back to started compression on a file and pages
1176 */
1177static noinline void async_cow_start(struct btrfs_work *work)
1178{
b5326271 1179 struct async_chunk *async_chunk;
ac3e9933 1180 int compressed_extents;
771ed689 1181
b5326271 1182 async_chunk = container_of(work, struct async_chunk, work);
771ed689 1183
ac3e9933
NB
1184 compressed_extents = compress_file_range(async_chunk);
1185 if (compressed_extents == 0) {
b5326271
NB
1186 btrfs_add_delayed_iput(async_chunk->inode);
1187 async_chunk->inode = NULL;
8180ef88 1188 }
771ed689
CM
1189}
1190
1191/*
1192 * work queue call back to submit previously compressed pages
1193 */
1194static noinline void async_cow_submit(struct btrfs_work *work)
1195{
c5a68aec
NB
1196 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1197 work);
1198 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
771ed689
CM
1199 unsigned long nr_pages;
1200
b5326271 1201 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
09cbfeaf 1202 PAGE_SHIFT;
771ed689 1203
093258e6 1204 /* atomic_sub_return implies a barrier */
0b246afa 1205 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
093258e6
DS
1206 5 * SZ_1M)
1207 cond_wake_up_nomb(&fs_info->async_submit_wait);
771ed689 1208
4546d178 1209 /*
b5326271 1210 * ->inode could be NULL if async_chunk_start has failed to compress,
4546d178
NB
1211 * in which case we don't have anything to submit, yet we need to
1212 * always adjust ->async_delalloc_pages as its paired with the init
1213 * happening in cow_file_range_async
1214 */
b5326271
NB
1215 if (async_chunk->inode)
1216 submit_compressed_extents(async_chunk);
771ed689 1217}
c8b97818 1218
771ed689
CM
1219static noinline void async_cow_free(struct btrfs_work *work)
1220{
b5326271 1221 struct async_chunk *async_chunk;
97db1204 1222
b5326271
NB
1223 async_chunk = container_of(work, struct async_chunk, work);
1224 if (async_chunk->inode)
1225 btrfs_add_delayed_iput(async_chunk->inode);
ec39f769
CM
1226 if (async_chunk->blkcg_css)
1227 css_put(async_chunk->blkcg_css);
97db1204
NB
1228 /*
1229 * Since the pointer to 'pending' is at the beginning of the array of
b5326271 1230 * async_chunk's, freeing it ensures the whole array has been freed.
97db1204 1231 */
b5326271 1232 if (atomic_dec_and_test(async_chunk->pending))
b1c16ac9 1233 kvfree(async_chunk->pending);
771ed689
CM
1234}
1235
ec39f769
CM
1236static int cow_file_range_async(struct inode *inode,
1237 struct writeback_control *wbc,
1238 struct page *locked_page,
771ed689 1239 u64 start, u64 end, int *page_started,
fac07d2b 1240 unsigned long *nr_written)
771ed689 1241{
0b246afa 1242 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
ec39f769 1243 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
97db1204
NB
1244 struct async_cow *ctx;
1245 struct async_chunk *async_chunk;
771ed689
CM
1246 unsigned long nr_pages;
1247 u64 cur_end;
97db1204
NB
1248 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1249 int i;
1250 bool should_compress;
b1c16ac9 1251 unsigned nofs_flag;
fac07d2b 1252 const unsigned int write_flags = wbc_to_write_flags(wbc);
771ed689 1253
69684c5a 1254 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
97db1204
NB
1255
1256 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1257 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1258 num_chunks = 1;
1259 should_compress = false;
1260 } else {
1261 should_compress = true;
1262 }
1263
b1c16ac9
NB
1264 nofs_flag = memalloc_nofs_save();
1265 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1266 memalloc_nofs_restore(nofs_flag);
1267
97db1204
NB
1268 if (!ctx) {
1269 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1270 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1271 EXTENT_DO_ACCOUNTING;
1272 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1273 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1274 PAGE_SET_ERROR;
1275
ad7ff17b
NB
1276 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
1277 locked_page, clear_bits, page_ops);
97db1204
NB
1278 return -ENOMEM;
1279 }
1280
1281 async_chunk = ctx->chunks;
1282 atomic_set(&ctx->num_chunks, num_chunks);
1283
1284 for (i = 0; i < num_chunks; i++) {
1285 if (should_compress)
1286 cur_end = min(end, start + SZ_512K - 1);
1287 else
1288 cur_end = end;
771ed689 1289
bd4691a0
NB
1290 /*
1291 * igrab is called higher up in the call chain, take only the
1292 * lightweight reference for the callback lifetime
1293 */
1294 ihold(inode);
97db1204
NB
1295 async_chunk[i].pending = &ctx->num_chunks;
1296 async_chunk[i].inode = inode;
1297 async_chunk[i].start = start;
1298 async_chunk[i].end = cur_end;
97db1204
NB
1299 async_chunk[i].write_flags = write_flags;
1300 INIT_LIST_HEAD(&async_chunk[i].extents);
1301
1d53c9e6
CM
1302 /*
1303 * The locked_page comes all the way from writepage and its
1304 * the original page we were actually given. As we spread
1305 * this large delalloc region across multiple async_chunk
1306 * structs, only the first struct needs a pointer to locked_page
1307 *
1308 * This way we don't need racey decisions about who is supposed
1309 * to unlock it.
1310 */
1311 if (locked_page) {
ec39f769
CM
1312 /*
1313 * Depending on the compressibility, the pages might or
1314 * might not go through async. We want all of them to
1315 * be accounted against wbc once. Let's do it here
1316 * before the paths diverge. wbc accounting is used
1317 * only for foreign writeback detection and doesn't
1318 * need full accuracy. Just account the whole thing
1319 * against the first page.
1320 */
1321 wbc_account_cgroup_owner(wbc, locked_page,
1322 cur_end - start);
1d53c9e6
CM
1323 async_chunk[i].locked_page = locked_page;
1324 locked_page = NULL;
1325 } else {
1326 async_chunk[i].locked_page = NULL;
1327 }
1328
ec39f769
CM
1329 if (blkcg_css != blkcg_root_css) {
1330 css_get(blkcg_css);
1331 async_chunk[i].blkcg_css = blkcg_css;
1332 } else {
1333 async_chunk[i].blkcg_css = NULL;
1334 }
1335
a0cac0ec
OS
1336 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1337 async_cow_submit, async_cow_free);
771ed689 1338
97db1204 1339 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
0b246afa 1340 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1341
97db1204 1342 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
771ed689 1343
771ed689
CM
1344 *nr_written += nr_pages;
1345 start = cur_end + 1;
1346 }
1347 *page_started = 1;
1348 return 0;
be20aa9d
CM
1349}
1350
2ff7e61e 1351static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1352 u64 bytenr, u64 num_bytes)
1353{
1354 int ret;
1355 struct btrfs_ordered_sum *sums;
1356 LIST_HEAD(list);
1357
0b246afa 1358 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1359 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1360 if (ret == 0 && list_empty(&list))
1361 return 0;
1362
1363 while (!list_empty(&list)) {
1364 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1365 list_del(&sums->list);
1366 kfree(sums);
1367 }
58113753
LB
1368 if (ret < 0)
1369 return ret;
17d217fe
YZ
1370 return 1;
1371}
1372
467dc47e
FM
1373static int fallback_to_cow(struct inode *inode, struct page *locked_page,
1374 const u64 start, const u64 end,
1375 int *page_started, unsigned long *nr_written)
1376{
2166e5ed 1377 const bool is_space_ino = btrfs_is_free_space_inode(BTRFS_I(inode));
6bd335b4
FM
1378 const bool is_reloc_ino = (BTRFS_I(inode)->root->root_key.objectid ==
1379 BTRFS_DATA_RELOC_TREE_OBJECTID);
2166e5ed 1380 const u64 range_bytes = end + 1 - start;
467dc47e
FM
1381 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1382 u64 range_start = start;
1383 u64 count;
1384
1385 /*
1386 * If EXTENT_NORESERVE is set it means that when the buffered write was
1387 * made we had not enough available data space and therefore we did not
1388 * reserve data space for it, since we though we could do NOCOW for the
1389 * respective file range (either there is prealloc extent or the inode
1390 * has the NOCOW bit set).
1391 *
1392 * However when we need to fallback to COW mode (because for example the
1393 * block group for the corresponding extent was turned to RO mode by a
1394 * scrub or relocation) we need to do the following:
1395 *
1396 * 1) We increment the bytes_may_use counter of the data space info.
1397 * If COW succeeds, it allocates a new data extent and after doing
1398 * that it decrements the space info's bytes_may_use counter and
1399 * increments its bytes_reserved counter by the same amount (we do
1400 * this at btrfs_add_reserved_bytes()). So we need to increment the
1401 * bytes_may_use counter to compensate (when space is reserved at
1402 * buffered write time, the bytes_may_use counter is incremented);
1403 *
1404 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1405 * that if the COW path fails for any reason, it decrements (through
1406 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1407 * data space info, which we incremented in the step above.
2166e5ed
FM
1408 *
1409 * If we need to fallback to cow and the inode corresponds to a free
6bd335b4
FM
1410 * space cache inode or an inode of the data relocation tree, we must
1411 * also increment bytes_may_use of the data space_info for the same
1412 * reason. Space caches and relocated data extents always get a prealloc
2166e5ed 1413 * extent for them, however scrub or balance may have set the block
6bd335b4
FM
1414 * group that contains that extent to RO mode and therefore force COW
1415 * when starting writeback.
467dc47e 1416 */
2166e5ed 1417 count = count_range_bits(io_tree, &range_start, end, range_bytes,
467dc47e 1418 EXTENT_NORESERVE, 0);
6bd335b4
FM
1419 if (count > 0 || is_space_ino || is_reloc_ino) {
1420 u64 bytes = count;
467dc47e
FM
1421 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1422 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1423
6bd335b4
FM
1424 if (is_space_ino || is_reloc_ino)
1425 bytes = range_bytes;
1426
467dc47e 1427 spin_lock(&sinfo->lock);
2166e5ed 1428 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
467dc47e
FM
1429 spin_unlock(&sinfo->lock);
1430
2166e5ed
FM
1431 if (count > 0)
1432 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1433 0, 0, NULL);
467dc47e
FM
1434 }
1435
6e26c442
NB
1436 return cow_file_range(BTRFS_I(inode), locked_page, start, end,
1437 page_started, nr_written, 1);
467dc47e
FM
1438}
1439
d352ac68
CM
1440/*
1441 * when nowcow writeback call back. This checks for snapshots or COW copies
1442 * of the extents that exist in the file, and COWs the file as required.
1443 *
1444 * If no cow copies or snapshots exist, we write directly to the existing
1445 * blocks on disk
1446 */
7f366cfe
CM
1447static noinline int run_delalloc_nocow(struct inode *inode,
1448 struct page *locked_page,
3e024846
NB
1449 const u64 start, const u64 end,
1450 int *page_started, int force,
1451 unsigned long *nr_written)
be20aa9d 1452{
0b246afa 1453 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d 1454 struct btrfs_root *root = BTRFS_I(inode)->root;
be20aa9d 1455 struct btrfs_path *path;
3e024846
NB
1456 u64 cow_start = (u64)-1;
1457 u64 cur_offset = start;
8ecebf4d 1458 int ret;
3e024846
NB
1459 bool check_prev = true;
1460 const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
4a0cc7ca 1461 u64 ino = btrfs_ino(BTRFS_I(inode));
762bf098
NB
1462 bool nocow = false;
1463 u64 disk_bytenr = 0;
be20aa9d
CM
1464
1465 path = btrfs_alloc_path();
17ca04af 1466 if (!path) {
ad7ff17b
NB
1467 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
1468 locked_page,
c2790a2e 1469 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1470 EXTENT_DO_ACCOUNTING |
1471 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1472 PAGE_CLEAR_DIRTY |
1473 PAGE_SET_WRITEBACK |
1474 PAGE_END_WRITEBACK);
d8926bb3 1475 return -ENOMEM;
17ca04af 1476 }
82d5902d 1477
80ff3856 1478 while (1) {
3e024846
NB
1479 struct btrfs_key found_key;
1480 struct btrfs_file_extent_item *fi;
1481 struct extent_buffer *leaf;
1482 u64 extent_end;
1483 u64 extent_offset;
3e024846
NB
1484 u64 num_bytes = 0;
1485 u64 disk_num_bytes;
3e024846
NB
1486 u64 ram_bytes;
1487 int extent_type;
762bf098
NB
1488
1489 nocow = false;
3e024846 1490
e4c3b2dc 1491 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1492 cur_offset, 0);
d788a349 1493 if (ret < 0)
79787eaa 1494 goto error;
a6bd9cd1
NB
1495
1496 /*
1497 * If there is no extent for our range when doing the initial
1498 * search, then go back to the previous slot as it will be the
1499 * one containing the search offset
1500 */
80ff3856
YZ
1501 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1502 leaf = path->nodes[0];
1503 btrfs_item_key_to_cpu(leaf, &found_key,
1504 path->slots[0] - 1);
33345d01 1505 if (found_key.objectid == ino &&
80ff3856
YZ
1506 found_key.type == BTRFS_EXTENT_DATA_KEY)
1507 path->slots[0]--;
1508 }
3e024846 1509 check_prev = false;
80ff3856 1510next_slot:
a6bd9cd1 1511 /* Go to next leaf if we have exhausted the current one */
80ff3856
YZ
1512 leaf = path->nodes[0];
1513 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1514 ret = btrfs_next_leaf(root, path);
e8916699
LB
1515 if (ret < 0) {
1516 if (cow_start != (u64)-1)
1517 cur_offset = cow_start;
79787eaa 1518 goto error;
e8916699 1519 }
80ff3856
YZ
1520 if (ret > 0)
1521 break;
1522 leaf = path->nodes[0];
1523 }
be20aa9d 1524
80ff3856
YZ
1525 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1526
a6bd9cd1 1527 /* Didn't find anything for our INO */
1d512cb7
FM
1528 if (found_key.objectid > ino)
1529 break;
a6bd9cd1
NB
1530 /*
1531 * Keep searching until we find an EXTENT_ITEM or there are no
1532 * more extents for this inode
1533 */
1d512cb7
FM
1534 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1535 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1536 path->slots[0]++;
1537 goto next_slot;
1538 }
a6bd9cd1
NB
1539
1540 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1d512cb7 1541 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1542 found_key.offset > end)
1543 break;
1544
a6bd9cd1
NB
1545 /*
1546 * If the found extent starts after requested offset, then
1547 * adjust extent_end to be right before this extent begins
1548 */
80ff3856
YZ
1549 if (found_key.offset > cur_offset) {
1550 extent_end = found_key.offset;
e9061e21 1551 extent_type = 0;
80ff3856
YZ
1552 goto out_check;
1553 }
1554
a6bd9cd1
NB
1555 /*
1556 * Found extent which begins before our range and potentially
1557 * intersect it
1558 */
80ff3856
YZ
1559 fi = btrfs_item_ptr(leaf, path->slots[0],
1560 struct btrfs_file_extent_item);
1561 extent_type = btrfs_file_extent_type(leaf, fi);
1562
cc95bef6 1563 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1564 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1565 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1566 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1567 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1568 extent_end = found_key.offset +
1569 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1570 disk_num_bytes =
1571 btrfs_file_extent_disk_num_bytes(leaf, fi);
a6bd9cd1 1572 /*
de7999af
FM
1573 * If the extent we got ends before our current offset,
1574 * skip to the next extent.
a6bd9cd1 1575 */
de7999af 1576 if (extent_end <= cur_offset) {
80ff3856
YZ
1577 path->slots[0]++;
1578 goto next_slot;
1579 }
a6bd9cd1 1580 /* Skip holes */
17d217fe
YZ
1581 if (disk_bytenr == 0)
1582 goto out_check;
a6bd9cd1 1583 /* Skip compressed/encrypted/encoded extents */
80ff3856
YZ
1584 if (btrfs_file_extent_compression(leaf, fi) ||
1585 btrfs_file_extent_encryption(leaf, fi) ||
1586 btrfs_file_extent_other_encoding(leaf, fi))
1587 goto out_check;
78d4295b 1588 /*
a6bd9cd1
NB
1589 * If extent is created before the last volume's snapshot
1590 * this implies the extent is shared, hence we can't do
1591 * nocow. This is the same check as in
1592 * btrfs_cross_ref_exist but without calling
1593 * btrfs_search_slot.
78d4295b 1594 */
3e024846 1595 if (!freespace_inode &&
27a7ff55 1596 btrfs_file_extent_generation(leaf, fi) <=
78d4295b
EL
1597 btrfs_root_last_snapshot(&root->root_item))
1598 goto out_check;
d899e052
YZ
1599 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1600 goto out_check;
a6bd9cd1 1601 /* If extent is RO, we must COW it */
2ff7e61e 1602 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1603 goto out_check;
58113753
LB
1604 ret = btrfs_cross_ref_exist(root, ino,
1605 found_key.offset -
1606 extent_offset, disk_bytenr);
1607 if (ret) {
1608 /*
1609 * ret could be -EIO if the above fails to read
1610 * metadata.
1611 */
1612 if (ret < 0) {
1613 if (cow_start != (u64)-1)
1614 cur_offset = cow_start;
1615 goto error;
1616 }
1617
3e024846 1618 WARN_ON_ONCE(freespace_inode);
17d217fe 1619 goto out_check;
58113753 1620 }
5d4f98a2 1621 disk_bytenr += extent_offset;
17d217fe
YZ
1622 disk_bytenr += cur_offset - found_key.offset;
1623 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3 1624 /*
a6bd9cd1
NB
1625 * If there are pending snapshots for this root, we
1626 * fall into common COW way
e9894fd3 1627 */
3e024846 1628 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
8ecebf4d 1629 goto out_check;
17d217fe
YZ
1630 /*
1631 * force cow if csum exists in the range.
1632 * this ensure that csum for a given extent are
1633 * either valid or do not exist.
1634 */
58113753
LB
1635 ret = csum_exist_in_range(fs_info, disk_bytenr,
1636 num_bytes);
1637 if (ret) {
58113753
LB
1638 /*
1639 * ret could be -EIO if the above fails to read
1640 * metadata.
1641 */
1642 if (ret < 0) {
1643 if (cow_start != (u64)-1)
1644 cur_offset = cow_start;
1645 goto error;
1646 }
3e024846 1647 WARN_ON_ONCE(freespace_inode);
17d217fe 1648 goto out_check;
91e1f56a 1649 }
8ecebf4d 1650 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
f78c436c 1651 goto out_check;
3e024846 1652 nocow = true;
80ff3856 1653 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e8e21007
NB
1654 extent_end = found_key.offset + ram_bytes;
1655 extent_end = ALIGN(extent_end, fs_info->sectorsize);
922f0518
NB
1656 /* Skip extents outside of our requested range */
1657 if (extent_end <= start) {
1658 path->slots[0]++;
1659 goto next_slot;
1660 }
80ff3856 1661 } else {
e8e21007 1662 /* If this triggers then we have a memory corruption */
290342f6 1663 BUG();
80ff3856
YZ
1664 }
1665out_check:
a6bd9cd1
NB
1666 /*
1667 * If nocow is false then record the beginning of the range
1668 * that needs to be COWed
1669 */
80ff3856
YZ
1670 if (!nocow) {
1671 if (cow_start == (u64)-1)
1672 cow_start = cur_offset;
1673 cur_offset = extent_end;
1674 if (cur_offset > end)
1675 break;
1676 path->slots[0]++;
1677 goto next_slot;
7ea394f1
YZ
1678 }
1679
b3b4aa74 1680 btrfs_release_path(path);
a6bd9cd1
NB
1681
1682 /*
1683 * COW range from cow_start to found_key.offset - 1. As the key
1684 * will contain the beginning of the first extent that can be
1685 * NOCOW, following one which needs to be COW'ed
1686 */
80ff3856 1687 if (cow_start != (u64)-1) {
467dc47e
FM
1688 ret = fallback_to_cow(inode, locked_page, cow_start,
1689 found_key.offset - 1,
1690 page_started, nr_written);
230ed397 1691 if (ret)
79787eaa 1692 goto error;
80ff3856 1693 cow_start = (u64)-1;
7ea394f1 1694 }
80ff3856 1695
d899e052 1696 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db 1697 u64 orig_start = found_key.offset - extent_offset;
3e024846 1698 struct extent_map *em;
6f9994db 1699
4b67c11d 1700 em = create_io_em(BTRFS_I(inode), cur_offset, num_bytes,
6f9994db
LB
1701 orig_start,
1702 disk_bytenr, /* block_start */
1703 num_bytes, /* block_len */
1704 disk_num_bytes, /* orig_block_len */
1705 ram_bytes, BTRFS_COMPRESS_NONE,
1706 BTRFS_ORDERED_PREALLOC);
1707 if (IS_ERR(em)) {
6f9994db
LB
1708 ret = PTR_ERR(em);
1709 goto error;
d899e052 1710 }
6f9994db 1711 free_extent_map(em);
e7fbf604 1712 ret = btrfs_add_ordered_extent(BTRFS_I(inode), cur_offset,
bb55f626
NB
1713 disk_bytenr, num_bytes,
1714 num_bytes,
1715 BTRFS_ORDERED_PREALLOC);
762bf098
NB
1716 if (ret) {
1717 btrfs_drop_extent_cache(BTRFS_I(inode),
1718 cur_offset,
1719 cur_offset + num_bytes - 1,
1720 0);
1721 goto error;
1722 }
d899e052 1723 } else {
e7fbf604 1724 ret = btrfs_add_ordered_extent(BTRFS_I(inode), cur_offset,
bb55f626
NB
1725 disk_bytenr, num_bytes,
1726 num_bytes,
1727 BTRFS_ORDERED_NOCOW);
762bf098
NB
1728 if (ret)
1729 goto error;
d899e052 1730 }
80ff3856 1731
f78c436c 1732 if (nocow)
0b246afa 1733 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
762bf098 1734 nocow = false;
771ed689 1735
efa56464 1736 if (root->root_key.objectid ==
4dbd80fb
QW
1737 BTRFS_DATA_RELOC_TREE_OBJECTID)
1738 /*
1739 * Error handled later, as we must prevent
1740 * extent_clear_unlock_delalloc() in error handler
1741 * from freeing metadata of created ordered extent.
1742 */
7bfa9535 1743 ret = btrfs_reloc_clone_csums(BTRFS_I(inode), cur_offset,
efa56464 1744 num_bytes);
efa56464 1745
ad7ff17b 1746 extent_clear_unlock_delalloc(BTRFS_I(inode), cur_offset,
74e9194a 1747 cur_offset + num_bytes - 1,
c2790a2e 1748 locked_page, EXTENT_LOCKED |
18513091
WX
1749 EXTENT_DELALLOC |
1750 EXTENT_CLEAR_DATA_RESV,
1751 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1752
80ff3856 1753 cur_offset = extent_end;
4dbd80fb
QW
1754
1755 /*
1756 * btrfs_reloc_clone_csums() error, now we're OK to call error
1757 * handler, as metadata for created ordered extent will only
1758 * be freed by btrfs_finish_ordered_io().
1759 */
1760 if (ret)
1761 goto error;
80ff3856
YZ
1762 if (cur_offset > end)
1763 break;
be20aa9d 1764 }
b3b4aa74 1765 btrfs_release_path(path);
80ff3856 1766
506481b2 1767 if (cur_offset <= end && cow_start == (u64)-1)
80ff3856 1768 cow_start = cur_offset;
17ca04af 1769
80ff3856 1770 if (cow_start != (u64)-1) {
506481b2 1771 cur_offset = end;
467dc47e
FM
1772 ret = fallback_to_cow(inode, locked_page, cow_start, end,
1773 page_started, nr_written);
d788a349 1774 if (ret)
79787eaa 1775 goto error;
80ff3856
YZ
1776 }
1777
79787eaa 1778error:
762bf098
NB
1779 if (nocow)
1780 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1781
17ca04af 1782 if (ret && cur_offset < end)
ad7ff17b 1783 extent_clear_unlock_delalloc(BTRFS_I(inode), cur_offset, end,
c2790a2e 1784 locked_page, EXTENT_LOCKED |
151a41bc
JB
1785 EXTENT_DELALLOC | EXTENT_DEFRAG |
1786 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1787 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1788 PAGE_SET_WRITEBACK |
1789 PAGE_END_WRITEBACK);
7ea394f1 1790 btrfs_free_path(path);
79787eaa 1791 return ret;
be20aa9d
CM
1792}
1793
47059d93
WS
1794static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1795{
1796
1797 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1798 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1799 return 0;
1800
1801 /*
1802 * @defrag_bytes is a hint value, no spinlock held here,
1803 * if is not zero, it means the file is defragging.
1804 * Force cow if given extent needs to be defragged.
1805 */
1806 if (BTRFS_I(inode)->defrag_bytes &&
1807 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1808 EXTENT_DEFRAG, 0, NULL))
1809 return 1;
1810
1811 return 0;
1812}
1813
d352ac68 1814/*
5eaad97a
NB
1815 * Function to process delayed allocation (create CoW) for ranges which are
1816 * being touched for the first time.
d352ac68 1817 */
bc9a8bf7 1818int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page,
5eaad97a
NB
1819 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1820 struct writeback_control *wbc)
be20aa9d 1821{
be20aa9d 1822 int ret;
47059d93 1823 int force_cow = need_force_cow(inode, start, end);
a2135011 1824
47059d93 1825 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1826 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1827 page_started, 1, nr_written);
47059d93 1828 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1829 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1830 page_started, 0, nr_written);
42c16da6
QW
1831 } else if (!inode_can_compress(inode) ||
1832 !inode_need_compress(inode, start, end)) {
6e26c442 1833 ret = cow_file_range(BTRFS_I(inode), locked_page, start, end,
330a5827 1834 page_started, nr_written, 1);
7ddf5a42
JB
1835 } else {
1836 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1837 &BTRFS_I(inode)->runtime_flags);
ec39f769 1838 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
fac07d2b 1839 page_started, nr_written);
7ddf5a42 1840 }
52427260 1841 if (ret)
d1051d6e
NB
1842 btrfs_cleanup_ordered_extents(inode, locked_page, start,
1843 end - start + 1);
b888db2b
CM
1844 return ret;
1845}
1846
abbb55f4
NB
1847void btrfs_split_delalloc_extent(struct inode *inode,
1848 struct extent_state *orig, u64 split)
9ed74f2d 1849{
dcab6a3b
JB
1850 u64 size;
1851
0ca1f7ce 1852 /* not delalloc, ignore it */
9ed74f2d 1853 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1854 return;
9ed74f2d 1855
dcab6a3b
JB
1856 size = orig->end - orig->start + 1;
1857 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1858 u32 num_extents;
dcab6a3b
JB
1859 u64 new_size;
1860
1861 /*
5c848198 1862 * See the explanation in btrfs_merge_delalloc_extent, the same
ba117213 1863 * applies here, just in reverse.
dcab6a3b
JB
1864 */
1865 new_size = orig->end - split + 1;
823bb20a 1866 num_extents = count_max_extents(new_size);
ba117213 1867 new_size = split - orig->start;
823bb20a
DS
1868 num_extents += count_max_extents(new_size);
1869 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1870 return;
1871 }
1872
9e0baf60 1873 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1874 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1875 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1876}
1877
1878/*
5c848198
NB
1879 * Handle merged delayed allocation extents so we can keep track of new extents
1880 * that are just merged onto old extents, such as when we are doing sequential
1881 * writes, so we can properly account for the metadata space we'll need.
9ed74f2d 1882 */
5c848198
NB
1883void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1884 struct extent_state *other)
9ed74f2d 1885{
dcab6a3b 1886 u64 new_size, old_size;
823bb20a 1887 u32 num_extents;
dcab6a3b 1888
9ed74f2d
JB
1889 /* not delalloc, ignore it */
1890 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1891 return;
9ed74f2d 1892
8461a3de
JB
1893 if (new->start > other->start)
1894 new_size = new->end - other->start + 1;
1895 else
1896 new_size = other->end - new->start + 1;
dcab6a3b
JB
1897
1898 /* we're not bigger than the max, unreserve the space and go */
1899 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1900 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1901 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1902 spin_unlock(&BTRFS_I(inode)->lock);
1903 return;
1904 }
1905
1906 /*
ba117213
JB
1907 * We have to add up either side to figure out how many extents were
1908 * accounted for before we merged into one big extent. If the number of
1909 * extents we accounted for is <= the amount we need for the new range
1910 * then we can return, otherwise drop. Think of it like this
1911 *
1912 * [ 4k][MAX_SIZE]
1913 *
1914 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1915 * need 2 outstanding extents, on one side we have 1 and the other side
1916 * we have 1 so they are == and we can return. But in this case
1917 *
1918 * [MAX_SIZE+4k][MAX_SIZE+4k]
1919 *
1920 * Each range on their own accounts for 2 extents, but merged together
1921 * they are only 3 extents worth of accounting, so we need to drop in
1922 * this case.
dcab6a3b 1923 */
ba117213 1924 old_size = other->end - other->start + 1;
823bb20a 1925 num_extents = count_max_extents(old_size);
ba117213 1926 old_size = new->end - new->start + 1;
823bb20a
DS
1927 num_extents += count_max_extents(old_size);
1928 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1929 return;
1930
9e0baf60 1931 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1932 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1933 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1934}
1935
eb73c1b7
MX
1936static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1937 struct inode *inode)
1938{
0b246afa
JM
1939 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1940
eb73c1b7
MX
1941 spin_lock(&root->delalloc_lock);
1942 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1943 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1944 &root->delalloc_inodes);
1945 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1946 &BTRFS_I(inode)->runtime_flags);
1947 root->nr_delalloc_inodes++;
1948 if (root->nr_delalloc_inodes == 1) {
0b246afa 1949 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1950 BUG_ON(!list_empty(&root->delalloc_root));
1951 list_add_tail(&root->delalloc_root,
0b246afa
JM
1952 &fs_info->delalloc_roots);
1953 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1954 }
1955 }
1956 spin_unlock(&root->delalloc_lock);
1957}
1958
2b877331
NB
1959
1960void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1961 struct btrfs_inode *inode)
eb73c1b7 1962{
3ffbd68c 1963 struct btrfs_fs_info *fs_info = root->fs_info;
0b246afa 1964
9e3e97f4
NB
1965 if (!list_empty(&inode->delalloc_inodes)) {
1966 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1967 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1968 &inode->runtime_flags);
eb73c1b7
MX
1969 root->nr_delalloc_inodes--;
1970 if (!root->nr_delalloc_inodes) {
7c8a0d36 1971 ASSERT(list_empty(&root->delalloc_inodes));
0b246afa 1972 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1973 BUG_ON(list_empty(&root->delalloc_root));
1974 list_del_init(&root->delalloc_root);
0b246afa 1975 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1976 }
1977 }
2b877331
NB
1978}
1979
1980static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1981 struct btrfs_inode *inode)
1982{
1983 spin_lock(&root->delalloc_lock);
1984 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
1985 spin_unlock(&root->delalloc_lock);
1986}
1987
d352ac68 1988/*
e06a1fc9
NB
1989 * Properly track delayed allocation bytes in the inode and to maintain the
1990 * list of inodes that have pending delalloc work to be done.
d352ac68 1991 */
e06a1fc9
NB
1992void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1993 unsigned *bits)
291d673e 1994{
0b246afa
JM
1995 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1996
47059d93
WS
1997 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1998 WARN_ON(1);
75eff68e
CM
1999 /*
2000 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 2001 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
2002 * bit, which is only set or cleared with irqs on
2003 */
0ca1f7ce 2004 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 2005 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2006 u64 len = state->end + 1 - state->start;
8b62f87b 2007 u32 num_extents = count_max_extents(len);
70ddc553 2008 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 2009
8b62f87b
JB
2010 spin_lock(&BTRFS_I(inode)->lock);
2011 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2012 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 2013
6a3891c5 2014 /* For sanity tests */
0b246afa 2015 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2016 return;
2017
104b4e51
NB
2018 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2019 fs_info->delalloc_batch);
df0af1a5 2020 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 2021 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
2022 if (*bits & EXTENT_DEFRAG)
2023 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 2024 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
2025 &BTRFS_I(inode)->runtime_flags))
2026 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 2027 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 2028 }
a7e3b975
FM
2029
2030 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2031 (*bits & EXTENT_DELALLOC_NEW)) {
2032 spin_lock(&BTRFS_I(inode)->lock);
2033 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2034 state->start;
2035 spin_unlock(&BTRFS_I(inode)->lock);
2036 }
291d673e
CM
2037}
2038
d352ac68 2039/*
a36bb5f9
NB
2040 * Once a range is no longer delalloc this function ensures that proper
2041 * accounting happens.
d352ac68 2042 */
a36bb5f9
NB
2043void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2044 struct extent_state *state, unsigned *bits)
291d673e 2045{
a36bb5f9
NB
2046 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2047 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
47059d93 2048 u64 len = state->end + 1 - state->start;
823bb20a 2049 u32 num_extents = count_max_extents(len);
47059d93 2050
4a4b964f
FM
2051 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2052 spin_lock(&inode->lock);
6fc0ef68 2053 inode->defrag_bytes -= len;
4a4b964f
FM
2054 spin_unlock(&inode->lock);
2055 }
47059d93 2056
75eff68e
CM
2057 /*
2058 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 2059 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
2060 * bit, which is only set or cleared with irqs on
2061 */
0ca1f7ce 2062 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 2063 struct btrfs_root *root = inode->root;
83eea1f1 2064 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 2065
8b62f87b
JB
2066 spin_lock(&inode->lock);
2067 btrfs_mod_outstanding_extents(inode, -num_extents);
2068 spin_unlock(&inode->lock);
0ca1f7ce 2069
b6d08f06
JB
2070 /*
2071 * We don't reserve metadata space for space cache inodes so we
52042d8e 2072 * don't need to call delalloc_release_metadata if there is an
b6d08f06
JB
2073 * error.
2074 */
a315e68f 2075 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 2076 root != fs_info->tree_root)
43b18595 2077 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 2078
6a3891c5 2079 /* For sanity tests. */
0b246afa 2080 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2081 return;
2082
a315e68f
FM
2083 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2084 do_list && !(state->state & EXTENT_NORESERVE) &&
2085 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
2086 btrfs_free_reserved_data_space_noquota(
2087 &inode->vfs_inode,
46d4dac8 2088 len);
9ed74f2d 2089
104b4e51
NB
2090 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2091 fs_info->delalloc_batch);
6fc0ef68
NB
2092 spin_lock(&inode->lock);
2093 inode->delalloc_bytes -= len;
2094 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 2095 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 2096 &inode->runtime_flags))
eb73c1b7 2097 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 2098 spin_unlock(&inode->lock);
291d673e 2099 }
a7e3b975
FM
2100
2101 if ((state->state & EXTENT_DELALLOC_NEW) &&
2102 (*bits & EXTENT_DELALLOC_NEW)) {
2103 spin_lock(&inode->lock);
2104 ASSERT(inode->new_delalloc_bytes >= len);
2105 inode->new_delalloc_bytes -= len;
2106 spin_unlock(&inode->lock);
2107 }
291d673e
CM
2108}
2109
d352ac68 2110/*
da12fe54
NB
2111 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2112 * in a chunk's stripe. This function ensures that bios do not span a
2113 * stripe/chunk
6f034ece 2114 *
da12fe54
NB
2115 * @page - The page we are about to add to the bio
2116 * @size - size we want to add to the bio
2117 * @bio - bio we want to ensure is smaller than a stripe
2118 * @bio_flags - flags of the bio
2119 *
2120 * return 1 if page cannot be added to the bio
2121 * return 0 if page can be added to the bio
6f034ece 2122 * return error otherwise
d352ac68 2123 */
da12fe54
NB
2124int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2125 unsigned long bio_flags)
239b14b3 2126{
0b246afa
JM
2127 struct inode *inode = page->mapping->host;
2128 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 2129 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
2130 u64 length = 0;
2131 u64 map_length;
239b14b3 2132 int ret;
89b798ad 2133 struct btrfs_io_geometry geom;
239b14b3 2134
771ed689
CM
2135 if (bio_flags & EXTENT_BIO_COMPRESSED)
2136 return 0;
2137
4f024f37 2138 length = bio->bi_iter.bi_size;
239b14b3 2139 map_length = length;
89b798ad
NB
2140 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2141 &geom);
6f034ece
LB
2142 if (ret < 0)
2143 return ret;
89b798ad
NB
2144
2145 if (geom.len < length + size)
239b14b3 2146 return 1;
3444a972 2147 return 0;
239b14b3
CM
2148}
2149
d352ac68
CM
2150/*
2151 * in order to insert checksums into the metadata in large chunks,
2152 * we wait until bio submission time. All the pages in the bio are
2153 * checksummed and sums are attached onto the ordered extent record.
2154 *
2155 * At IO completion time the cums attached on the ordered extent record
2156 * are inserted into the btree
2157 */
d0ee3934 2158static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
eaf25d93 2159 u64 bio_offset)
065631f6 2160{
c6100a4b 2161 struct inode *inode = private_data;
4e4cbee9 2162 blk_status_t ret = 0;
e015640f 2163
bd242a08 2164 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
79787eaa 2165 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
2166 return 0;
2167}
e015640f 2168
d352ac68 2169/*
cad321ad 2170 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
2171 * on write, or reading the csums from the tree before a read.
2172 *
2173 * Rules about async/sync submit,
2174 * a) read: sync submit
2175 *
2176 * b) write without checksum: sync submit
2177 *
2178 * c) write with checksum:
2179 * c-1) if bio is issued by fsync: sync submit
2180 * (sync_writers != 0)
2181 *
2182 * c-2) if root is reloc root: sync submit
2183 * (only in case of buffered IO)
2184 *
2185 * c-3) otherwise: async submit
d352ac68 2186 */
a56b1c7b 2187static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
2188 int mirror_num,
2189 unsigned long bio_flags)
2190
44b8bd7e 2191{
0b246afa 2192 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 2193 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 2194 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 2195 blk_status_t ret = 0;
19b9bdb0 2196 int skip_sum;
b812ce28 2197 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 2198
6cbff00f 2199 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 2200
70ddc553 2201 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 2202 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 2203
37226b21 2204 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 2205 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 2206 if (ret)
61891923 2207 goto out;
5fd02043 2208
d20f7043 2209 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
2210 ret = btrfs_submit_compressed_read(inode, bio,
2211 mirror_num,
2212 bio_flags);
2213 goto out;
c2db1073 2214 } else if (!skip_sum) {
db72e47f 2215 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL);
c2db1073 2216 if (ret)
61891923 2217 goto out;
c2db1073 2218 }
4d1b5fb4 2219 goto mapit;
b812ce28 2220 } else if (async && !skip_sum) {
17d217fe
YZ
2221 /* csum items have already been cloned */
2222 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2223 goto mapit;
19b9bdb0 2224 /* we're doing a write, do the async checksumming */
c6100a4b 2225 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
e7681167 2226 0, inode, btrfs_submit_bio_start);
61891923 2227 goto out;
b812ce28 2228 } else if (!skip_sum) {
bd242a08 2229 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
b812ce28
JB
2230 if (ret)
2231 goto out;
19b9bdb0
CM
2232 }
2233
0b86a832 2234mapit:
08635bae 2235 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
2236
2237out:
4e4cbee9
CH
2238 if (ret) {
2239 bio->bi_status = ret;
4246a0b6
CH
2240 bio_endio(bio);
2241 }
61891923 2242 return ret;
065631f6 2243}
6885f308 2244
d352ac68
CM
2245/*
2246 * given a list of ordered sums record them in the inode. This happens
2247 * at IO completion time based on sums calculated at bio submission time.
2248 */
ba1da2f4 2249static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2250 struct inode *inode, struct list_head *list)
e6dcd2dc 2251{
e6dcd2dc 2252 struct btrfs_ordered_sum *sum;
ac01f26a 2253 int ret;
e6dcd2dc 2254
c6e30871 2255 list_for_each_entry(sum, list, list) {
7c2871a2 2256 trans->adding_csums = true;
ac01f26a 2257 ret = btrfs_csum_file_blocks(trans,
d20f7043 2258 BTRFS_I(inode)->root->fs_info->csum_root, sum);
7c2871a2 2259 trans->adding_csums = false;
ac01f26a
NB
2260 if (ret)
2261 return ret;
e6dcd2dc
CM
2262 }
2263 return 0;
2264}
2265
2ac55d41 2266int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
e3b8a485 2267 unsigned int extra_bits,
330a5827 2268 struct extent_state **cached_state)
ea8c2819 2269{
fdb1e121 2270 WARN_ON(PAGE_ALIGNED(end));
ea8c2819 2271 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
e3b8a485 2272 extra_bits, cached_state);
ea8c2819
CM
2273}
2274
d352ac68 2275/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2276struct btrfs_writepage_fixup {
2277 struct page *page;
f4b1363c 2278 struct inode *inode;
247e743c
CM
2279 struct btrfs_work work;
2280};
2281
b2950863 2282static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2283{
2284 struct btrfs_writepage_fixup *fixup;
2285 struct btrfs_ordered_extent *ordered;
2ac55d41 2286 struct extent_state *cached_state = NULL;
364ecf36 2287 struct extent_changeset *data_reserved = NULL;
247e743c
CM
2288 struct page *page;
2289 struct inode *inode;
2290 u64 page_start;
2291 u64 page_end;
25f3c502 2292 int ret = 0;
f4b1363c 2293 bool free_delalloc_space = true;
247e743c
CM
2294
2295 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2296 page = fixup->page;
f4b1363c
JB
2297 inode = fixup->inode;
2298 page_start = page_offset(page);
2299 page_end = page_offset(page) + PAGE_SIZE - 1;
2300
2301 /*
2302 * This is similar to page_mkwrite, we need to reserve the space before
2303 * we take the page lock.
2304 */
2305 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2306 PAGE_SIZE);
4a096752 2307again:
247e743c 2308 lock_page(page);
25f3c502
CM
2309
2310 /*
2311 * Before we queued this fixup, we took a reference on the page.
2312 * page->mapping may go NULL, but it shouldn't be moved to a different
2313 * address space.
2314 */
f4b1363c
JB
2315 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2316 /*
2317 * Unfortunately this is a little tricky, either
2318 *
2319 * 1) We got here and our page had already been dealt with and
2320 * we reserved our space, thus ret == 0, so we need to just
2321 * drop our space reservation and bail. This can happen the
2322 * first time we come into the fixup worker, or could happen
2323 * while waiting for the ordered extent.
2324 * 2) Our page was already dealt with, but we happened to get an
2325 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2326 * this case we obviously don't have anything to release, but
2327 * because the page was already dealt with we don't want to
2328 * mark the page with an error, so make sure we're resetting
2329 * ret to 0. This is why we have this check _before_ the ret
2330 * check, because we do not want to have a surprise ENOSPC
2331 * when the page was already properly dealt with.
2332 */
2333 if (!ret) {
2334 btrfs_delalloc_release_extents(BTRFS_I(inode),
2335 PAGE_SIZE);
2336 btrfs_delalloc_release_space(inode, data_reserved,
2337 page_start, PAGE_SIZE,
2338 true);
2339 }
2340 ret = 0;
247e743c 2341 goto out_page;
f4b1363c 2342 }
247e743c 2343
25f3c502 2344 /*
f4b1363c
JB
2345 * We can't mess with the page state unless it is locked, so now that
2346 * it is locked bail if we failed to make our space reservation.
25f3c502 2347 */
f4b1363c
JB
2348 if (ret)
2349 goto out_page;
247e743c 2350
ff13db41 2351 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2352 &cached_state);
4a096752
CM
2353
2354 /* already ordered? We're done */
8b62b72b 2355 if (PagePrivate2(page))
f4b1363c 2356 goto out_reserved;
4a096752 2357
a776c6fa 2358 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2359 PAGE_SIZE);
4a096752 2360 if (ordered) {
2ac55d41 2361 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
e43bbe5e 2362 page_end, &cached_state);
4a096752
CM
2363 unlock_page(page);
2364 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2365 btrfs_put_ordered_extent(ordered);
4a096752
CM
2366 goto again;
2367 }
247e743c 2368
f3038ee3 2369 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
330a5827 2370 &cached_state);
25f3c502 2371 if (ret)
53687007 2372 goto out_reserved;
f3038ee3 2373
25f3c502
CM
2374 /*
2375 * Everything went as planned, we're now the owner of a dirty page with
2376 * delayed allocation bits set and space reserved for our COW
2377 * destination.
2378 *
2379 * The page was dirty when we started, nothing should have cleaned it.
2380 */
2381 BUG_ON(!PageDirty(page));
f4b1363c 2382 free_delalloc_space = false;
53687007 2383out_reserved:
8702ba93 2384 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
f4b1363c 2385 if (free_delalloc_space)
53687007
FM
2386 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2387 PAGE_SIZE, true);
2ac55d41 2388 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
e43bbe5e 2389 &cached_state);
247e743c 2390out_page:
25f3c502
CM
2391 if (ret) {
2392 /*
2393 * We hit ENOSPC or other errors. Update the mapping and page
2394 * to reflect the errors and clean the page.
2395 */
2396 mapping_set_error(page->mapping, ret);
2397 end_extent_writepage(page, ret, page_start, page_end);
2398 clear_page_dirty_for_io(page);
2399 SetPageError(page);
2400 }
2401 ClearPageChecked(page);
247e743c 2402 unlock_page(page);
09cbfeaf 2403 put_page(page);
b897abec 2404 kfree(fixup);
364ecf36 2405 extent_changeset_free(data_reserved);
f4b1363c
JB
2406 /*
2407 * As a precaution, do a delayed iput in case it would be the last iput
2408 * that could need flushing space. Recursing back to fixup worker would
2409 * deadlock.
2410 */
2411 btrfs_add_delayed_iput(inode);
247e743c
CM
2412}
2413
2414/*
2415 * There are a few paths in the higher layers of the kernel that directly
2416 * set the page dirty bit without asking the filesystem if it is a
2417 * good idea. This causes problems because we want to make sure COW
2418 * properly happens and the data=ordered rules are followed.
2419 *
c8b97818 2420 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2421 * hasn't been properly setup for IO. We kick off an async process
2422 * to fix it up. The async helper will wait for ordered extents, set
2423 * the delalloc bit and make it safe to write the page.
2424 */
d75855b4 2425int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
247e743c
CM
2426{
2427 struct inode *inode = page->mapping->host;
0b246afa 2428 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2429 struct btrfs_writepage_fixup *fixup;
247e743c 2430
8b62b72b
CM
2431 /* this page is properly in the ordered list */
2432 if (TestClearPagePrivate2(page))
247e743c
CM
2433 return 0;
2434
25f3c502
CM
2435 /*
2436 * PageChecked is set below when we create a fixup worker for this page,
2437 * don't try to create another one if we're already PageChecked()
2438 *
2439 * The extent_io writepage code will redirty the page if we send back
2440 * EAGAIN.
2441 */
247e743c
CM
2442 if (PageChecked(page))
2443 return -EAGAIN;
2444
2445 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2446 if (!fixup)
2447 return -EAGAIN;
f421950f 2448
f4b1363c
JB
2449 /*
2450 * We are already holding a reference to this inode from
2451 * write_cache_pages. We need to hold it because the space reservation
2452 * takes place outside of the page lock, and we can't trust
2453 * page->mapping outside of the page lock.
2454 */
2455 ihold(inode);
247e743c 2456 SetPageChecked(page);
09cbfeaf 2457 get_page(page);
a0cac0ec 2458 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2459 fixup->page = page;
f4b1363c 2460 fixup->inode = inode;
0b246afa 2461 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
25f3c502
CM
2462
2463 return -EAGAIN;
247e743c
CM
2464}
2465
d899e052
YZ
2466static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2467 struct inode *inode, u64 file_pos,
9729f10a
QW
2468 struct btrfs_file_extent_item *stack_fi,
2469 u64 qgroup_reserved)
d899e052
YZ
2470{
2471 struct btrfs_root *root = BTRFS_I(inode)->root;
d899e052
YZ
2472 struct btrfs_path *path;
2473 struct extent_buffer *leaf;
2474 struct btrfs_key ins;
203f44c5
QW
2475 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2476 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2477 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2478 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
1acae57b 2479 int extent_inserted = 0;
d899e052
YZ
2480 int ret;
2481
2482 path = btrfs_alloc_path();
d8926bb3
MF
2483 if (!path)
2484 return -ENOMEM;
d899e052 2485
a1ed835e
CM
2486 /*
2487 * we may be replacing one extent in the tree with another.
2488 * The new extent is pinned in the extent map, and we don't want
2489 * to drop it from the cache until it is completely in the btree.
2490 *
2491 * So, tell btrfs_drop_extents to leave this extent in the cache.
2492 * the caller is expected to unpin it and allow it to be merged
2493 * with the others.
2494 */
906c448c 2495 ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path, file_pos,
1acae57b 2496 file_pos + num_bytes, NULL, 0,
203f44c5 2497 1, sizeof(*stack_fi), &extent_inserted);
79787eaa
JM
2498 if (ret)
2499 goto out;
d899e052 2500
1acae57b 2501 if (!extent_inserted) {
4a0cc7ca 2502 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2503 ins.offset = file_pos;
2504 ins.type = BTRFS_EXTENT_DATA_KEY;
2505
2506 path->leave_spinning = 1;
2507 ret = btrfs_insert_empty_item(trans, root, path, &ins,
203f44c5 2508 sizeof(*stack_fi));
1acae57b
FDBM
2509 if (ret)
2510 goto out;
2511 }
d899e052 2512 leaf = path->nodes[0];
203f44c5
QW
2513 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2514 write_extent_buffer(leaf, stack_fi,
2515 btrfs_item_ptr_offset(leaf, path->slots[0]),
2516 sizeof(struct btrfs_file_extent_item));
b9473439 2517
d899e052 2518 btrfs_mark_buffer_dirty(leaf);
ce195332 2519 btrfs_release_path(path);
d899e052
YZ
2520
2521 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2522
2523 ins.objectid = disk_bytenr;
2524 ins.offset = disk_num_bytes;
2525 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2526
9ddc959e
JB
2527 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), file_pos,
2528 ram_bytes);
2529 if (ret)
2530 goto out;
2531
84f7d8e6
JB
2532 ret = btrfs_alloc_reserved_file_extent(trans, root,
2533 btrfs_ino(BTRFS_I(inode)),
9729f10a 2534 file_pos, qgroup_reserved, &ins);
79787eaa 2535out:
d899e052 2536 btrfs_free_path(path);
b9473439 2537
79787eaa 2538 return ret;
d899e052
YZ
2539}
2540
2ff7e61e 2541static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2542 u64 start, u64 len)
2543{
32da5386 2544 struct btrfs_block_group *cache;
e570fd27 2545
0b246afa 2546 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2547 ASSERT(cache);
2548
2549 spin_lock(&cache->lock);
2550 cache->delalloc_bytes -= len;
2551 spin_unlock(&cache->lock);
2552
2553 btrfs_put_block_group(cache);
2554}
2555
203f44c5
QW
2556static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2557 struct inode *inode,
2558 struct btrfs_ordered_extent *oe)
2559{
2560 struct btrfs_file_extent_item stack_fi;
2561 u64 logical_len;
2562
2563 memset(&stack_fi, 0, sizeof(stack_fi));
2564 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2565 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2566 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2567 oe->disk_num_bytes);
2568 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2569 logical_len = oe->truncated_len;
2570 else
2571 logical_len = oe->num_bytes;
2572 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2573 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2574 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2575 /* Encryption and other encoding is reserved and all 0 */
2576
2577 return insert_reserved_file_extent(trans, inode, oe->file_offset,
7dbeaad0 2578 &stack_fi, oe->qgroup_rsv);
203f44c5
QW
2579}
2580
2581/*
2582 * As ordered data IO finishes, this gets called so we can finish
d352ac68
CM
2583 * an ordered extent if the range of bytes in the file it covers are
2584 * fully written.
2585 */
5fd02043 2586static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2587{
5fd02043 2588 struct inode *inode = ordered_extent->inode;
0b246afa 2589 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2590 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2591 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2592 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2593 struct extent_state *cached_state = NULL;
bffe633e 2594 u64 start, end;
261507a0 2595 int compress_type = 0;
77cef2ec 2596 int ret = 0;
bffe633e 2597 u64 logical_len = ordered_extent->num_bytes;
8d510121 2598 bool freespace_inode;
77cef2ec 2599 bool truncated = false;
a7e3b975
FM
2600 bool range_locked = false;
2601 bool clear_new_delalloc_bytes = false;
49940bdd 2602 bool clear_reserved_extent = true;
313facc5 2603 unsigned int clear_bits;
a7e3b975 2604
bffe633e
OS
2605 start = ordered_extent->file_offset;
2606 end = start + ordered_extent->num_bytes - 1;
2607
a7e3b975
FM
2608 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2609 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2610 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2611 clear_new_delalloc_bytes = true;
e6dcd2dc 2612
8d510121 2613 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2614
5fd02043
JB
2615 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2616 ret = -EIO;
2617 goto out;
2618 }
2619
bffe633e 2620 btrfs_free_io_failure_record(BTRFS_I(inode), start, end);
f612496b 2621
77cef2ec
JB
2622 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2623 truncated = true;
2624 logical_len = ordered_extent->truncated_len;
2625 /* Truncated the entire extent, don't bother adding */
2626 if (!logical_len)
2627 goto out;
2628 }
2629
c2167754 2630 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2631 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a 2632
d923afe9 2633 btrfs_inode_safe_disk_i_size_write(inode, 0);
8d510121
NB
2634 if (freespace_inode)
2635 trans = btrfs_join_transaction_spacecache(root);
6c760c07
JB
2636 else
2637 trans = btrfs_join_transaction(root);
2638 if (IS_ERR(trans)) {
2639 ret = PTR_ERR(trans);
2640 trans = NULL;
2641 goto out;
c2167754 2642 }
69fe2d75 2643 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
2644 ret = btrfs_update_inode_fallback(trans, root, inode);
2645 if (ret) /* -ENOMEM or corruption */
66642832 2646 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2647 goto out;
2648 }
e6dcd2dc 2649
a7e3b975 2650 range_locked = true;
bffe633e 2651 lock_extent_bits(io_tree, start, end, &cached_state);
e6dcd2dc 2652
8d510121
NB
2653 if (freespace_inode)
2654 trans = btrfs_join_transaction_spacecache(root);
0cb59c99 2655 else
7a7eaa40 2656 trans = btrfs_join_transaction(root);
79787eaa
JM
2657 if (IS_ERR(trans)) {
2658 ret = PTR_ERR(trans);
2659 trans = NULL;
a7e3b975 2660 goto out;
79787eaa 2661 }
a79b7d4b 2662
69fe2d75 2663 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 2664
c8b97818 2665 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2666 compress_type = ordered_extent->compress_type;
d899e052 2667 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2668 BUG_ON(compress_type);
7a6d7067 2669 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
2670 ordered_extent->file_offset,
2671 ordered_extent->file_offset +
77cef2ec 2672 logical_len);
d899e052 2673 } else {
0b246afa 2674 BUG_ON(root == fs_info->tree_root);
203f44c5
QW
2675 ret = insert_ordered_extent_file_extent(trans, inode,
2676 ordered_extent);
49940bdd
JB
2677 if (!ret) {
2678 clear_reserved_extent = false;
2ff7e61e 2679 btrfs_release_delalloc_bytes(fs_info,
bffe633e
OS
2680 ordered_extent->disk_bytenr,
2681 ordered_extent->disk_num_bytes);
49940bdd 2682 }
d899e052 2683 }
5dc562c5 2684 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
bffe633e
OS
2685 ordered_extent->file_offset,
2686 ordered_extent->num_bytes, trans->transid);
79787eaa 2687 if (ret < 0) {
66642832 2688 btrfs_abort_transaction(trans, ret);
a7e3b975 2689 goto out;
79787eaa 2690 }
2ac55d41 2691
ac01f26a
NB
2692 ret = add_pending_csums(trans, inode, &ordered_extent->list);
2693 if (ret) {
2694 btrfs_abort_transaction(trans, ret);
2695 goto out;
2696 }
e6dcd2dc 2697
d923afe9 2698 btrfs_inode_safe_disk_i_size_write(inode, 0);
6c760c07
JB
2699 ret = btrfs_update_inode_fallback(trans, root, inode);
2700 if (ret) { /* -ENOMEM or corruption */
66642832 2701 btrfs_abort_transaction(trans, ret);
a7e3b975 2702 goto out;
1ef30be1
JB
2703 }
2704 ret = 0;
c2167754 2705out:
313facc5
OS
2706 clear_bits = EXTENT_DEFRAG;
2707 if (range_locked)
2708 clear_bits |= EXTENT_LOCKED;
2709 if (clear_new_delalloc_bytes)
2710 clear_bits |= EXTENT_DELALLOC_NEW;
bffe633e
OS
2711 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits,
2712 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
313facc5 2713 &cached_state);
a7e3b975 2714
a698d075 2715 if (trans)
3a45bb20 2716 btrfs_end_transaction(trans);
0cb59c99 2717
77cef2ec 2718 if (ret || truncated) {
bffe633e 2719 u64 unwritten_start = start;
77cef2ec
JB
2720
2721 if (truncated)
bffe633e
OS
2722 unwritten_start += logical_len;
2723 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
77cef2ec
JB
2724
2725 /* Drop the cache for the part of the extent we didn't write. */
bffe633e 2726 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0);
5fd02043 2727
0bec9ef5
JB
2728 /*
2729 * If the ordered extent had an IOERR or something else went
2730 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2731 * back to the allocator. We only free the extent in the
2732 * truncated case if we didn't write out the extent at all.
49940bdd
JB
2733 *
2734 * If we made it past insert_reserved_file_extent before we
2735 * errored out then we don't need to do this as the accounting
2736 * has already been done.
0bec9ef5 2737 */
77cef2ec 2738 if ((ret || !logical_len) &&
49940bdd 2739 clear_reserved_extent &&
77cef2ec 2740 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
4eaaec24
NB
2741 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2742 /*
2743 * Discard the range before returning it back to the
2744 * free space pool
2745 */
46b27f50 2746 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
4eaaec24 2747 btrfs_discard_extent(fs_info,
bffe633e
OS
2748 ordered_extent->disk_bytenr,
2749 ordered_extent->disk_num_bytes,
2750 NULL);
2ff7e61e 2751 btrfs_free_reserved_extent(fs_info,
bffe633e
OS
2752 ordered_extent->disk_bytenr,
2753 ordered_extent->disk_num_bytes, 1);
4eaaec24 2754 }
0bec9ef5
JB
2755 }
2756
5fd02043 2757 /*
8bad3c02
LB
2758 * This needs to be done to make sure anybody waiting knows we are done
2759 * updating everything for this ordered extent.
5fd02043
JB
2760 */
2761 btrfs_remove_ordered_extent(inode, ordered_extent);
2762
e6dcd2dc
CM
2763 /* once for us */
2764 btrfs_put_ordered_extent(ordered_extent);
2765 /* once for the tree */
2766 btrfs_put_ordered_extent(ordered_extent);
2767
5fd02043
JB
2768 return ret;
2769}
2770
2771static void finish_ordered_fn(struct btrfs_work *work)
2772{
2773 struct btrfs_ordered_extent *ordered_extent;
2774 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2775 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2776}
2777
c629732d
NB
2778void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
2779 u64 end, int uptodate)
211f90e6 2780{
5fd02043 2781 struct inode *inode = page->mapping->host;
0b246afa 2782 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 2783 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237 2784 struct btrfs_workqueue *wq;
5fd02043 2785
1abe9b8a 2786 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2787
8b62b72b 2788 ClearPagePrivate2(page);
5fd02043
JB
2789 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2790 end - start + 1, uptodate))
c3988d63 2791 return;
5fd02043 2792
a0cac0ec 2793 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0b246afa 2794 wq = fs_info->endio_freespace_worker;
a0cac0ec 2795 else
0b246afa 2796 wq = fs_info->endio_write_workers;
5fd02043 2797
a0cac0ec 2798 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
9e0af237 2799 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
2800}
2801
47df7765
OS
2802static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
2803 int icsum, struct page *page, int pgoff, u64 start,
2804 size_t len)
dc380aea 2805{
d5178578
JT
2806 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2807 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
dc380aea 2808 char *kaddr;
d5178578
JT
2809 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2810 u8 *csum_expected;
2811 u8 csum[BTRFS_CSUM_SIZE];
dc380aea 2812
d5178578 2813 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
dc380aea
MX
2814
2815 kaddr = kmap_atomic(page);
d5178578
JT
2816 shash->tfm = fs_info->csum_shash;
2817
fd08001f 2818 crypto_shash_digest(shash, kaddr + pgoff, len, csum);
d5178578
JT
2819
2820 if (memcmp(csum, csum_expected, csum_size))
dc380aea
MX
2821 goto zeroit;
2822
2823 kunmap_atomic(kaddr);
2824 return 0;
2825zeroit:
ea41d6b2
JT
2826 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
2827 io_bio->mirror_num);
dc380aea
MX
2828 memset(kaddr + pgoff, 1, len);
2829 flush_dcache_page(page);
2830 kunmap_atomic(kaddr);
dc380aea
MX
2831 return -EIO;
2832}
2833
d352ac68
CM
2834/*
2835 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2836 * if there's a match, we allow the bio to finish. If not, the code in
2837 * extent_io.c will try to find good copies for us.
d352ac68 2838 */
facc8a22
MX
2839static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2840 u64 phy_offset, struct page *page,
2841 u64 start, u64 end, int mirror)
07157aac 2842{
4eee4fa4 2843 size_t offset = start - page_offset(page);
07157aac 2844 struct inode *inode = page->mapping->host;
d1310b2e 2845 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 2846 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 2847
d20f7043
CM
2848 if (PageChecked(page)) {
2849 ClearPageChecked(page);
dc380aea 2850 return 0;
d20f7043 2851 }
6cbff00f
CH
2852
2853 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 2854 return 0;
17d217fe
YZ
2855
2856 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2857 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 2858 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 2859 return 0;
17d217fe 2860 }
d20f7043 2861
facc8a22 2862 phy_offset >>= inode->i_sb->s_blocksize_bits;
47df7765
OS
2863 return check_data_csum(inode, io_bio, phy_offset, page, offset, start,
2864 (size_t)(end - start + 1));
07157aac 2865}
b888db2b 2866
c1c3fac2
NB
2867/*
2868 * btrfs_add_delayed_iput - perform a delayed iput on @inode
2869 *
2870 * @inode: The inode we want to perform iput on
2871 *
2872 * This function uses the generic vfs_inode::i_count to track whether we should
2873 * just decrement it (in case it's > 1) or if this is the last iput then link
2874 * the inode to the delayed iput machinery. Delayed iputs are processed at
2875 * transaction commit time/superblock commit/cleaner kthread.
2876 */
24bbcf04
YZ
2877void btrfs_add_delayed_iput(struct inode *inode)
2878{
0b246afa 2879 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 2880 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
2881
2882 if (atomic_add_unless(&inode->i_count, -1, 1))
2883 return;
2884
034f784d 2885 atomic_inc(&fs_info->nr_delayed_iputs);
24bbcf04 2886 spin_lock(&fs_info->delayed_iput_lock);
c1c3fac2
NB
2887 ASSERT(list_empty(&binode->delayed_iput));
2888 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
24bbcf04 2889 spin_unlock(&fs_info->delayed_iput_lock);
fd340d0f
JB
2890 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
2891 wake_up_process(fs_info->cleaner_kthread);
24bbcf04
YZ
2892}
2893
63611e73
JB
2894static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
2895 struct btrfs_inode *inode)
2896{
2897 list_del_init(&inode->delayed_iput);
2898 spin_unlock(&fs_info->delayed_iput_lock);
2899 iput(&inode->vfs_inode);
2900 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
2901 wake_up(&fs_info->delayed_iputs_wait);
2902 spin_lock(&fs_info->delayed_iput_lock);
2903}
2904
2905static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
2906 struct btrfs_inode *inode)
2907{
2908 if (!list_empty(&inode->delayed_iput)) {
2909 spin_lock(&fs_info->delayed_iput_lock);
2910 if (!list_empty(&inode->delayed_iput))
2911 run_delayed_iput_locked(fs_info, inode);
2912 spin_unlock(&fs_info->delayed_iput_lock);
2913 }
2914}
2915
2ff7e61e 2916void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 2917{
24bbcf04 2918
24bbcf04 2919 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
2920 while (!list_empty(&fs_info->delayed_iputs)) {
2921 struct btrfs_inode *inode;
2922
2923 inode = list_first_entry(&fs_info->delayed_iputs,
2924 struct btrfs_inode, delayed_iput);
63611e73 2925 run_delayed_iput_locked(fs_info, inode);
24bbcf04 2926 }
8089fe62 2927 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
2928}
2929
034f784d
JB
2930/**
2931 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
2932 * @fs_info - the fs_info for this fs
2933 * @return - EINTR if we were killed, 0 if nothing's pending
2934 *
2935 * This will wait on any delayed iputs that are currently running with KILLABLE
2936 * set. Once they are all done running we will return, unless we are killed in
2937 * which case we return EINTR. This helps in user operations like fallocate etc
2938 * that might get blocked on the iputs.
2939 */
2940int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
2941{
2942 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
2943 atomic_read(&fs_info->nr_delayed_iputs) == 0);
2944 if (ret)
2945 return -EINTR;
2946 return 0;
2947}
2948
7b128766 2949/*
f7e9e8fc
OS
2950 * This creates an orphan entry for the given inode in case something goes wrong
2951 * in the middle of an unlink.
7b128766 2952 */
73f2e545 2953int btrfs_orphan_add(struct btrfs_trans_handle *trans,
27919067 2954 struct btrfs_inode *inode)
7b128766 2955{
d68fc57b 2956 int ret;
7b128766 2957
27919067
OS
2958 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
2959 if (ret && ret != -EEXIST) {
2960 btrfs_abort_transaction(trans, ret);
2961 return ret;
d68fc57b
YZ
2962 }
2963
d68fc57b 2964 return 0;
7b128766
JB
2965}
2966
2967/*
f7e9e8fc
OS
2968 * We have done the delete so we can go ahead and remove the orphan item for
2969 * this particular inode.
7b128766 2970 */
48a3b636 2971static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 2972 struct btrfs_inode *inode)
7b128766 2973{
27919067 2974 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
7b128766
JB
2975}
2976
2977/*
2978 * this cleans up any orphans that may be left on the list from the last use
2979 * of this root.
2980 */
66b4ffd1 2981int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 2982{
0b246afa 2983 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
2984 struct btrfs_path *path;
2985 struct extent_buffer *leaf;
7b128766
JB
2986 struct btrfs_key key, found_key;
2987 struct btrfs_trans_handle *trans;
2988 struct inode *inode;
8f6d7f4f 2989 u64 last_objectid = 0;
f7e9e8fc 2990 int ret = 0, nr_unlink = 0;
7b128766 2991
d68fc57b 2992 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2993 return 0;
c71bf099
YZ
2994
2995 path = btrfs_alloc_path();
66b4ffd1
JB
2996 if (!path) {
2997 ret = -ENOMEM;
2998 goto out;
2999 }
e4058b54 3000 path->reada = READA_BACK;
7b128766
JB
3001
3002 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3003 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3004 key.offset = (u64)-1;
3005
7b128766
JB
3006 while (1) {
3007 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3008 if (ret < 0)
3009 goto out;
7b128766
JB
3010
3011 /*
3012 * if ret == 0 means we found what we were searching for, which
25985edc 3013 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3014 * find the key and see if we have stuff that matches
3015 */
3016 if (ret > 0) {
66b4ffd1 3017 ret = 0;
7b128766
JB
3018 if (path->slots[0] == 0)
3019 break;
3020 path->slots[0]--;
3021 }
3022
3023 /* pull out the item */
3024 leaf = path->nodes[0];
7b128766
JB
3025 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3026
3027 /* make sure the item matches what we want */
3028 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3029 break;
962a298f 3030 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3031 break;
3032
3033 /* release the path since we're done with it */
b3b4aa74 3034 btrfs_release_path(path);
7b128766
JB
3035
3036 /*
3037 * this is where we are basically btrfs_lookup, without the
3038 * crossing root thing. we store the inode number in the
3039 * offset of the orphan item.
3040 */
8f6d7f4f
JB
3041
3042 if (found_key.offset == last_objectid) {
0b246afa
JM
3043 btrfs_err(fs_info,
3044 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3045 ret = -EINVAL;
3046 goto out;
3047 }
3048
3049 last_objectid = found_key.offset;
3050
5d4f98a2
YZ
3051 found_key.objectid = found_key.offset;
3052 found_key.type = BTRFS_INODE_ITEM_KEY;
3053 found_key.offset = 0;
0202e83f 3054 inode = btrfs_iget(fs_info->sb, last_objectid, root);
8c6ffba0 3055 ret = PTR_ERR_OR_ZERO(inode);
67710892 3056 if (ret && ret != -ENOENT)
66b4ffd1 3057 goto out;
7b128766 3058
0b246afa 3059 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3060 struct btrfs_root *dead_root;
3061 struct btrfs_fs_info *fs_info = root->fs_info;
3062 int is_dead_root = 0;
3063
3064 /*
3065 * this is an orphan in the tree root. Currently these
3066 * could come from 2 sources:
3067 * a) a snapshot deletion in progress
3068 * b) a free space cache inode
3069 * We need to distinguish those two, as the snapshot
3070 * orphan must not get deleted.
3071 * find_dead_roots already ran before us, so if this
3072 * is a snapshot deletion, we should find the root
a619b3c7 3073 * in the fs_roots radix tree.
f8e9e0b0 3074 */
a619b3c7
RK
3075
3076 spin_lock(&fs_info->fs_roots_radix_lock);
3077 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3078 (unsigned long)found_key.objectid);
3079 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3080 is_dead_root = 1;
3081 spin_unlock(&fs_info->fs_roots_radix_lock);
3082
f8e9e0b0
AJ
3083 if (is_dead_root) {
3084 /* prevent this orphan from being found again */
3085 key.offset = found_key.objectid - 1;
3086 continue;
3087 }
f7e9e8fc 3088
f8e9e0b0 3089 }
f7e9e8fc 3090
7b128766 3091 /*
f7e9e8fc
OS
3092 * If we have an inode with links, there are a couple of
3093 * possibilities. Old kernels (before v3.12) used to create an
3094 * orphan item for truncate indicating that there were possibly
3095 * extent items past i_size that needed to be deleted. In v3.12,
3096 * truncate was changed to update i_size in sync with the extent
3097 * items, but the (useless) orphan item was still created. Since
3098 * v4.18, we don't create the orphan item for truncate at all.
3099 *
3100 * So, this item could mean that we need to do a truncate, but
3101 * only if this filesystem was last used on a pre-v3.12 kernel
3102 * and was not cleanly unmounted. The odds of that are quite
3103 * slim, and it's a pain to do the truncate now, so just delete
3104 * the orphan item.
3105 *
3106 * It's also possible that this orphan item was supposed to be
3107 * deleted but wasn't. The inode number may have been reused,
3108 * but either way, we can delete the orphan item.
7b128766 3109 */
f7e9e8fc
OS
3110 if (ret == -ENOENT || inode->i_nlink) {
3111 if (!ret)
3112 iput(inode);
a8c9e576 3113 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3114 if (IS_ERR(trans)) {
3115 ret = PTR_ERR(trans);
3116 goto out;
3117 }
0b246afa
JM
3118 btrfs_debug(fs_info, "auto deleting %Lu",
3119 found_key.objectid);
a8c9e576
JB
3120 ret = btrfs_del_orphan_item(trans, root,
3121 found_key.objectid);
3a45bb20 3122 btrfs_end_transaction(trans);
4ef31a45
JB
3123 if (ret)
3124 goto out;
7b128766
JB
3125 continue;
3126 }
3127
f7e9e8fc 3128 nr_unlink++;
7b128766
JB
3129
3130 /* this will do delete_inode and everything for us */
3131 iput(inode);
3132 }
3254c876
MX
3133 /* release the path since we're done with it */
3134 btrfs_release_path(path);
3135
d68fc57b
YZ
3136 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3137
a575ceeb 3138 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3139 trans = btrfs_join_transaction(root);
66b4ffd1 3140 if (!IS_ERR(trans))
3a45bb20 3141 btrfs_end_transaction(trans);
d68fc57b 3142 }
7b128766
JB
3143
3144 if (nr_unlink)
0b246afa 3145 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
66b4ffd1
JB
3146
3147out:
3148 if (ret)
0b246afa 3149 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3150 btrfs_free_path(path);
3151 return ret;
7b128766
JB
3152}
3153
46a53cca
CM
3154/*
3155 * very simple check to peek ahead in the leaf looking for xattrs. If we
3156 * don't find any xattrs, we know there can't be any acls.
3157 *
3158 * slot is the slot the inode is in, objectid is the objectid of the inode
3159 */
3160static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3161 int slot, u64 objectid,
3162 int *first_xattr_slot)
46a53cca
CM
3163{
3164 u32 nritems = btrfs_header_nritems(leaf);
3165 struct btrfs_key found_key;
f23b5a59
JB
3166 static u64 xattr_access = 0;
3167 static u64 xattr_default = 0;
46a53cca
CM
3168 int scanned = 0;
3169
f23b5a59 3170 if (!xattr_access) {
97d79299
AG
3171 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3172 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3173 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3174 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3175 }
3176
46a53cca 3177 slot++;
63541927 3178 *first_xattr_slot = -1;
46a53cca
CM
3179 while (slot < nritems) {
3180 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3181
3182 /* we found a different objectid, there must not be acls */
3183 if (found_key.objectid != objectid)
3184 return 0;
3185
3186 /* we found an xattr, assume we've got an acl */
f23b5a59 3187 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3188 if (*first_xattr_slot == -1)
3189 *first_xattr_slot = slot;
f23b5a59
JB
3190 if (found_key.offset == xattr_access ||
3191 found_key.offset == xattr_default)
3192 return 1;
3193 }
46a53cca
CM
3194
3195 /*
3196 * we found a key greater than an xattr key, there can't
3197 * be any acls later on
3198 */
3199 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3200 return 0;
3201
3202 slot++;
3203 scanned++;
3204
3205 /*
3206 * it goes inode, inode backrefs, xattrs, extents,
3207 * so if there are a ton of hard links to an inode there can
3208 * be a lot of backrefs. Don't waste time searching too hard,
3209 * this is just an optimization
3210 */
3211 if (scanned >= 8)
3212 break;
3213 }
3214 /* we hit the end of the leaf before we found an xattr or
3215 * something larger than an xattr. We have to assume the inode
3216 * has acls
3217 */
63541927
FDBM
3218 if (*first_xattr_slot == -1)
3219 *first_xattr_slot = slot;
46a53cca
CM
3220 return 1;
3221}
3222
d352ac68
CM
3223/*
3224 * read an inode from the btree into the in-memory inode
3225 */
4222ea71
FM
3226static int btrfs_read_locked_inode(struct inode *inode,
3227 struct btrfs_path *in_path)
39279cc3 3228{
0b246afa 3229 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4222ea71 3230 struct btrfs_path *path = in_path;
5f39d397 3231 struct extent_buffer *leaf;
39279cc3
CM
3232 struct btrfs_inode_item *inode_item;
3233 struct btrfs_root *root = BTRFS_I(inode)->root;
3234 struct btrfs_key location;
67de1176 3235 unsigned long ptr;
46a53cca 3236 int maybe_acls;
618e21d5 3237 u32 rdev;
39279cc3 3238 int ret;
2f7e33d4 3239 bool filled = false;
63541927 3240 int first_xattr_slot;
2f7e33d4
MX
3241
3242 ret = btrfs_fill_inode(inode, &rdev);
3243 if (!ret)
3244 filled = true;
39279cc3 3245
4222ea71
FM
3246 if (!path) {
3247 path = btrfs_alloc_path();
3248 if (!path)
3249 return -ENOMEM;
3250 }
1748f843 3251
39279cc3 3252 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3253
39279cc3 3254 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892 3255 if (ret) {
4222ea71
FM
3256 if (path != in_path)
3257 btrfs_free_path(path);
f5b3a417 3258 return ret;
67710892 3259 }
39279cc3 3260
5f39d397 3261 leaf = path->nodes[0];
2f7e33d4
MX
3262
3263 if (filled)
67de1176 3264 goto cache_index;
2f7e33d4 3265
5f39d397
CM
3266 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3267 struct btrfs_inode_item);
5f39d397 3268 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3269 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3270 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3271 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3272 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
41a2ee75
JB
3273 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3274 round_up(i_size_read(inode), fs_info->sectorsize));
5f39d397 3275
a937b979
DS
3276 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3277 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3278
a937b979
DS
3279 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3280 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3281
a937b979
DS
3282 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3283 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3284
9cc97d64 3285 BTRFS_I(inode)->i_otime.tv_sec =
3286 btrfs_timespec_sec(leaf, &inode_item->otime);
3287 BTRFS_I(inode)->i_otime.tv_nsec =
3288 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3289
a76a3cd4 3290 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3291 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3292 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3293
c7f88c4e
JL
3294 inode_set_iversion_queried(inode,
3295 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3296 inode->i_generation = BTRFS_I(inode)->generation;
3297 inode->i_rdev = 0;
3298 rdev = btrfs_inode_rdev(leaf, inode_item);
3299
3300 BTRFS_I(inode)->index_cnt = (u64)-1;
3301 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3302
3303cache_index:
5dc562c5
JB
3304 /*
3305 * If we were modified in the current generation and evicted from memory
3306 * and then re-read we need to do a full sync since we don't have any
3307 * idea about which extents were modified before we were evicted from
3308 * cache.
6e17d30b
YD
3309 *
3310 * This is required for both inode re-read from disk and delayed inode
3311 * in delayed_nodes_tree.
5dc562c5 3312 */
0b246afa 3313 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3314 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3315 &BTRFS_I(inode)->runtime_flags);
3316
bde6c242
FM
3317 /*
3318 * We don't persist the id of the transaction where an unlink operation
3319 * against the inode was last made. So here we assume the inode might
3320 * have been evicted, and therefore the exact value of last_unlink_trans
3321 * lost, and set it to last_trans to avoid metadata inconsistencies
3322 * between the inode and its parent if the inode is fsync'ed and the log
3323 * replayed. For example, in the scenario:
3324 *
3325 * touch mydir/foo
3326 * ln mydir/foo mydir/bar
3327 * sync
3328 * unlink mydir/bar
3329 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3330 * xfs_io -c fsync mydir/foo
3331 * <power failure>
3332 * mount fs, triggers fsync log replay
3333 *
3334 * We must make sure that when we fsync our inode foo we also log its
3335 * parent inode, otherwise after log replay the parent still has the
3336 * dentry with the "bar" name but our inode foo has a link count of 1
3337 * and doesn't have an inode ref with the name "bar" anymore.
3338 *
3339 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3340 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3341 * transaction commits on fsync if our inode is a directory, or if our
3342 * inode is not a directory, logging its parent unnecessarily.
3343 */
3344 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3345
67de1176
MX
3346 path->slots[0]++;
3347 if (inode->i_nlink != 1 ||
3348 path->slots[0] >= btrfs_header_nritems(leaf))
3349 goto cache_acl;
3350
3351 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3352 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3353 goto cache_acl;
3354
3355 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3356 if (location.type == BTRFS_INODE_REF_KEY) {
3357 struct btrfs_inode_ref *ref;
3358
3359 ref = (struct btrfs_inode_ref *)ptr;
3360 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3361 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3362 struct btrfs_inode_extref *extref;
3363
3364 extref = (struct btrfs_inode_extref *)ptr;
3365 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3366 extref);
3367 }
2f7e33d4 3368cache_acl:
46a53cca
CM
3369 /*
3370 * try to precache a NULL acl entry for files that don't have
3371 * any xattrs or acls
3372 */
33345d01 3373 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3374 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3375 if (first_xattr_slot != -1) {
3376 path->slots[0] = first_xattr_slot;
3377 ret = btrfs_load_inode_props(inode, path);
3378 if (ret)
0b246afa 3379 btrfs_err(fs_info,
351fd353 3380 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3381 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3382 root->root_key.objectid, ret);
3383 }
4222ea71
FM
3384 if (path != in_path)
3385 btrfs_free_path(path);
63541927 3386
72c04902
AV
3387 if (!maybe_acls)
3388 cache_no_acl(inode);
46a53cca 3389
39279cc3 3390 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3391 case S_IFREG:
3392 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3393 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3394 inode->i_fop = &btrfs_file_operations;
3395 inode->i_op = &btrfs_file_inode_operations;
3396 break;
3397 case S_IFDIR:
3398 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3399 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3400 break;
3401 case S_IFLNK:
3402 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3403 inode_nohighmem(inode);
4779cc04 3404 inode->i_mapping->a_ops = &btrfs_aops;
39279cc3 3405 break;
618e21d5 3406 default:
0279b4cd 3407 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3408 init_special_inode(inode, inode->i_mode, rdev);
3409 break;
39279cc3 3410 }
6cbff00f 3411
7b6a221e 3412 btrfs_sync_inode_flags_to_i_flags(inode);
67710892 3413 return 0;
39279cc3
CM
3414}
3415
d352ac68
CM
3416/*
3417 * given a leaf and an inode, copy the inode fields into the leaf
3418 */
e02119d5
CM
3419static void fill_inode_item(struct btrfs_trans_handle *trans,
3420 struct extent_buffer *leaf,
5f39d397 3421 struct btrfs_inode_item *item,
39279cc3
CM
3422 struct inode *inode)
3423{
51fab693
LB
3424 struct btrfs_map_token token;
3425
c82f823c 3426 btrfs_init_map_token(&token, leaf);
5f39d397 3427
cc4c13d5
DS
3428 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3429 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3430 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3431 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3432 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3433
3434 btrfs_set_token_timespec_sec(&token, &item->atime,
3435 inode->i_atime.tv_sec);
3436 btrfs_set_token_timespec_nsec(&token, &item->atime,
3437 inode->i_atime.tv_nsec);
3438
3439 btrfs_set_token_timespec_sec(&token, &item->mtime,
3440 inode->i_mtime.tv_sec);
3441 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3442 inode->i_mtime.tv_nsec);
3443
3444 btrfs_set_token_timespec_sec(&token, &item->ctime,
3445 inode->i_ctime.tv_sec);
3446 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3447 inode->i_ctime.tv_nsec);
3448
3449 btrfs_set_token_timespec_sec(&token, &item->otime,
3450 BTRFS_I(inode)->i_otime.tv_sec);
3451 btrfs_set_token_timespec_nsec(&token, &item->otime,
3452 BTRFS_I(inode)->i_otime.tv_nsec);
3453
3454 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3455 btrfs_set_token_inode_generation(&token, item,
3456 BTRFS_I(inode)->generation);
3457 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3458 btrfs_set_token_inode_transid(&token, item, trans->transid);
3459 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3460 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3461 btrfs_set_token_inode_block_group(&token, item, 0);
39279cc3
CM
3462}
3463
d352ac68
CM
3464/*
3465 * copy everything in the in-memory inode into the btree.
3466 */
2115133f 3467static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3468 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3469{
3470 struct btrfs_inode_item *inode_item;
3471 struct btrfs_path *path;
5f39d397 3472 struct extent_buffer *leaf;
39279cc3
CM
3473 int ret;
3474
3475 path = btrfs_alloc_path();
16cdcec7
MX
3476 if (!path)
3477 return -ENOMEM;
3478
b9473439 3479 path->leave_spinning = 1;
16cdcec7
MX
3480 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3481 1);
39279cc3
CM
3482 if (ret) {
3483 if (ret > 0)
3484 ret = -ENOENT;
3485 goto failed;
3486 }
3487
5f39d397
CM
3488 leaf = path->nodes[0];
3489 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3490 struct btrfs_inode_item);
39279cc3 3491
e02119d5 3492 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3493 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3494 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3495 ret = 0;
3496failed:
39279cc3
CM
3497 btrfs_free_path(path);
3498 return ret;
3499}
3500
2115133f
CM
3501/*
3502 * copy everything in the in-memory inode into the btree.
3503 */
3504noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3505 struct btrfs_root *root, struct inode *inode)
3506{
0b246afa 3507 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3508 int ret;
3509
3510 /*
3511 * If the inode is a free space inode, we can deadlock during commit
3512 * if we put it into the delayed code.
3513 *
3514 * The data relocation inode should also be directly updated
3515 * without delay
3516 */
70ddc553 3517 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 3518 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 3519 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
3520 btrfs_update_root_times(trans, root);
3521
2115133f
CM
3522 ret = btrfs_delayed_update_inode(trans, root, inode);
3523 if (!ret)
3524 btrfs_set_inode_last_trans(trans, inode);
3525 return ret;
3526 }
3527
3528 return btrfs_update_inode_item(trans, root, inode);
3529}
3530
be6aef60
JB
3531noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3532 struct btrfs_root *root,
3533 struct inode *inode)
2115133f
CM
3534{
3535 int ret;
3536
3537 ret = btrfs_update_inode(trans, root, inode);
3538 if (ret == -ENOSPC)
3539 return btrfs_update_inode_item(trans, root, inode);
3540 return ret;
3541}
3542
d352ac68
CM
3543/*
3544 * unlink helper that gets used here in inode.c and in the tree logging
3545 * recovery code. It remove a link in a directory with a given name, and
3546 * also drops the back refs in the inode to the directory
3547 */
92986796
AV
3548static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3549 struct btrfs_root *root,
4ec5934e
NB
3550 struct btrfs_inode *dir,
3551 struct btrfs_inode *inode,
92986796 3552 const char *name, int name_len)
39279cc3 3553{
0b246afa 3554 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 3555 struct btrfs_path *path;
39279cc3 3556 int ret = 0;
39279cc3 3557 struct btrfs_dir_item *di;
aec7477b 3558 u64 index;
33345d01
LZ
3559 u64 ino = btrfs_ino(inode);
3560 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3561
3562 path = btrfs_alloc_path();
54aa1f4d
CM
3563 if (!path) {
3564 ret = -ENOMEM;
554233a6 3565 goto out;
54aa1f4d
CM
3566 }
3567
b9473439 3568 path->leave_spinning = 1;
33345d01 3569 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3 3570 name, name_len, -1);
3cf5068f
LB
3571 if (IS_ERR_OR_NULL(di)) {
3572 ret = di ? PTR_ERR(di) : -ENOENT;
39279cc3
CM
3573 goto err;
3574 }
39279cc3 3575 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3576 if (ret)
3577 goto err;
b3b4aa74 3578 btrfs_release_path(path);
39279cc3 3579
67de1176
MX
3580 /*
3581 * If we don't have dir index, we have to get it by looking up
3582 * the inode ref, since we get the inode ref, remove it directly,
3583 * it is unnecessary to do delayed deletion.
3584 *
3585 * But if we have dir index, needn't search inode ref to get it.
3586 * Since the inode ref is close to the inode item, it is better
3587 * that we delay to delete it, and just do this deletion when
3588 * we update the inode item.
3589 */
4ec5934e 3590 if (inode->dir_index) {
67de1176
MX
3591 ret = btrfs_delayed_delete_inode_ref(inode);
3592 if (!ret) {
4ec5934e 3593 index = inode->dir_index;
67de1176
MX
3594 goto skip_backref;
3595 }
3596 }
3597
33345d01
LZ
3598 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3599 dir_ino, &index);
aec7477b 3600 if (ret) {
0b246afa 3601 btrfs_info(fs_info,
c2cf52eb 3602 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3603 name_len, name, ino, dir_ino);
66642832 3604 btrfs_abort_transaction(trans, ret);
aec7477b
JB
3605 goto err;
3606 }
67de1176 3607skip_backref:
9add2945 3608 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
79787eaa 3609 if (ret) {
66642832 3610 btrfs_abort_transaction(trans, ret);
39279cc3 3611 goto err;
79787eaa 3612 }
39279cc3 3613
4ec5934e
NB
3614 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3615 dir_ino);
79787eaa 3616 if (ret != 0 && ret != -ENOENT) {
66642832 3617 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3618 goto err;
3619 }
e02119d5 3620
4ec5934e
NB
3621 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3622 index);
6418c961
CM
3623 if (ret == -ENOENT)
3624 ret = 0;
d4e3991b 3625 else if (ret)
66642832 3626 btrfs_abort_transaction(trans, ret);
63611e73
JB
3627
3628 /*
3629 * If we have a pending delayed iput we could end up with the final iput
3630 * being run in btrfs-cleaner context. If we have enough of these built
3631 * up we can end up burning a lot of time in btrfs-cleaner without any
3632 * way to throttle the unlinks. Since we're currently holding a ref on
3633 * the inode we can run the delayed iput here without any issues as the
3634 * final iput won't be done until after we drop the ref we're currently
3635 * holding.
3636 */
3637 btrfs_run_delayed_iput(fs_info, inode);
39279cc3
CM
3638err:
3639 btrfs_free_path(path);
e02119d5
CM
3640 if (ret)
3641 goto out;
3642
6ef06d27 3643 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
3644 inode_inc_iversion(&inode->vfs_inode);
3645 inode_inc_iversion(&dir->vfs_inode);
3646 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3647 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3648 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 3649out:
39279cc3
CM
3650 return ret;
3651}
3652
92986796
AV
3653int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3654 struct btrfs_root *root,
4ec5934e 3655 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
3656 const char *name, int name_len)
3657{
3658 int ret;
3659 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3660 if (!ret) {
4ec5934e
NB
3661 drop_nlink(&inode->vfs_inode);
3662 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
3663 }
3664 return ret;
3665}
39279cc3 3666
a22285a6
YZ
3667/*
3668 * helper to start transaction for unlink and rmdir.
3669 *
d52be818
JB
3670 * unlink and rmdir are special in btrfs, they do not always free space, so
3671 * if we cannot make our reservations the normal way try and see if there is
3672 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3673 * allow the unlink to occur.
a22285a6 3674 */
d52be818 3675static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3676{
a22285a6 3677 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 3678
e70bea5f
JB
3679 /*
3680 * 1 for the possible orphan item
3681 * 1 for the dir item
3682 * 1 for the dir index
3683 * 1 for the inode ref
e70bea5f
JB
3684 * 1 for the inode
3685 */
7f9fe614 3686 return btrfs_start_transaction_fallback_global_rsv(root, 5);
a22285a6
YZ
3687}
3688
3689static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3690{
3691 struct btrfs_root *root = BTRFS_I(dir)->root;
3692 struct btrfs_trans_handle *trans;
2b0143b5 3693 struct inode *inode = d_inode(dentry);
a22285a6 3694 int ret;
a22285a6 3695
d52be818 3696 trans = __unlink_start_trans(dir);
a22285a6
YZ
3697 if (IS_ERR(trans))
3698 return PTR_ERR(trans);
5f39d397 3699
4ec5934e
NB
3700 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
3701 0);
12fcfd22 3702
4ec5934e
NB
3703 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
3704 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
3705 dentry->d_name.len);
b532402e
TI
3706 if (ret)
3707 goto out;
7b128766 3708
a22285a6 3709 if (inode->i_nlink == 0) {
73f2e545 3710 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
3711 if (ret)
3712 goto out;
a22285a6 3713 }
7b128766 3714
b532402e 3715out:
3a45bb20 3716 btrfs_end_transaction(trans);
2ff7e61e 3717 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
3718 return ret;
3719}
3720
f60a2364 3721static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
045d3967 3722 struct inode *dir, struct dentry *dentry)
4df27c4d 3723{
401b3b19 3724 struct btrfs_root *root = BTRFS_I(dir)->root;
045d3967 3725 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4df27c4d
YZ
3726 struct btrfs_path *path;
3727 struct extent_buffer *leaf;
3728 struct btrfs_dir_item *di;
3729 struct btrfs_key key;
045d3967
JB
3730 const char *name = dentry->d_name.name;
3731 int name_len = dentry->d_name.len;
4df27c4d
YZ
3732 u64 index;
3733 int ret;
045d3967 3734 u64 objectid;
4a0cc7ca 3735 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d 3736
045d3967
JB
3737 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
3738 objectid = inode->root->root_key.objectid;
3739 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3740 objectid = inode->location.objectid;
3741 } else {
3742 WARN_ON(1);
3743 return -EINVAL;
3744 }
3745
4df27c4d
YZ
3746 path = btrfs_alloc_path();
3747 if (!path)
3748 return -ENOMEM;
3749
33345d01 3750 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3751 name, name_len, -1);
79787eaa 3752 if (IS_ERR_OR_NULL(di)) {
3cf5068f 3753 ret = di ? PTR_ERR(di) : -ENOENT;
79787eaa
JM
3754 goto out;
3755 }
4df27c4d
YZ
3756
3757 leaf = path->nodes[0];
3758 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3759 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3760 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 3761 if (ret) {
66642832 3762 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3763 goto out;
3764 }
b3b4aa74 3765 btrfs_release_path(path);
4df27c4d 3766
d49d3287
JB
3767 /*
3768 * This is a placeholder inode for a subvolume we didn't have a
3769 * reference to at the time of the snapshot creation. In the meantime
3770 * we could have renamed the real subvol link into our snapshot, so
3771 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3772 * Instead simply lookup the dir_index_item for this entry so we can
3773 * remove it. Otherwise we know we have a ref to the root and we can
3774 * call btrfs_del_root_ref, and it _shouldn't_ fail.
3775 */
3776 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
33345d01 3777 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3778 name, name_len);
79787eaa
JM
3779 if (IS_ERR_OR_NULL(di)) {
3780 if (!di)
3781 ret = -ENOENT;
3782 else
3783 ret = PTR_ERR(di);
66642832 3784 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3785 goto out;
3786 }
4df27c4d
YZ
3787
3788 leaf = path->nodes[0];
3789 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4df27c4d 3790 index = key.offset;
d49d3287
JB
3791 btrfs_release_path(path);
3792 } else {
3793 ret = btrfs_del_root_ref(trans, objectid,
3794 root->root_key.objectid, dir_ino,
3795 &index, name, name_len);
3796 if (ret) {
3797 btrfs_abort_transaction(trans, ret);
3798 goto out;
3799 }
4df27c4d
YZ
3800 }
3801
9add2945 3802 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
79787eaa 3803 if (ret) {
66642832 3804 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3805 goto out;
3806 }
4df27c4d 3807
6ef06d27 3808 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 3809 inode_inc_iversion(dir);
c2050a45 3810 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 3811 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 3812 if (ret)
66642832 3813 btrfs_abort_transaction(trans, ret);
79787eaa 3814out:
71d7aed0 3815 btrfs_free_path(path);
79787eaa 3816 return ret;
4df27c4d
YZ
3817}
3818
ec42f167
MT
3819/*
3820 * Helper to check if the subvolume references other subvolumes or if it's
3821 * default.
3822 */
f60a2364 3823static noinline int may_destroy_subvol(struct btrfs_root *root)
ec42f167
MT
3824{
3825 struct btrfs_fs_info *fs_info = root->fs_info;
3826 struct btrfs_path *path;
3827 struct btrfs_dir_item *di;
3828 struct btrfs_key key;
3829 u64 dir_id;
3830 int ret;
3831
3832 path = btrfs_alloc_path();
3833 if (!path)
3834 return -ENOMEM;
3835
3836 /* Make sure this root isn't set as the default subvol */
3837 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3838 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
3839 dir_id, "default", 7, 0);
3840 if (di && !IS_ERR(di)) {
3841 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
3842 if (key.objectid == root->root_key.objectid) {
3843 ret = -EPERM;
3844 btrfs_err(fs_info,
3845 "deleting default subvolume %llu is not allowed",
3846 key.objectid);
3847 goto out;
3848 }
3849 btrfs_release_path(path);
3850 }
3851
3852 key.objectid = root->root_key.objectid;
3853 key.type = BTRFS_ROOT_REF_KEY;
3854 key.offset = (u64)-1;
3855
3856 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3857 if (ret < 0)
3858 goto out;
3859 BUG_ON(ret == 0);
3860
3861 ret = 0;
3862 if (path->slots[0] > 0) {
3863 path->slots[0]--;
3864 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3865 if (key.objectid == root->root_key.objectid &&
3866 key.type == BTRFS_ROOT_REF_KEY)
3867 ret = -ENOTEMPTY;
3868 }
3869out:
3870 btrfs_free_path(path);
3871 return ret;
3872}
3873
20a68004
NB
3874/* Delete all dentries for inodes belonging to the root */
3875static void btrfs_prune_dentries(struct btrfs_root *root)
3876{
3877 struct btrfs_fs_info *fs_info = root->fs_info;
3878 struct rb_node *node;
3879 struct rb_node *prev;
3880 struct btrfs_inode *entry;
3881 struct inode *inode;
3882 u64 objectid = 0;
3883
3884 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3885 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3886
3887 spin_lock(&root->inode_lock);
3888again:
3889 node = root->inode_tree.rb_node;
3890 prev = NULL;
3891 while (node) {
3892 prev = node;
3893 entry = rb_entry(node, struct btrfs_inode, rb_node);
3894
37508515 3895 if (objectid < btrfs_ino(entry))
20a68004 3896 node = node->rb_left;
37508515 3897 else if (objectid > btrfs_ino(entry))
20a68004
NB
3898 node = node->rb_right;
3899 else
3900 break;
3901 }
3902 if (!node) {
3903 while (prev) {
3904 entry = rb_entry(prev, struct btrfs_inode, rb_node);
37508515 3905 if (objectid <= btrfs_ino(entry)) {
20a68004
NB
3906 node = prev;
3907 break;
3908 }
3909 prev = rb_next(prev);
3910 }
3911 }
3912 while (node) {
3913 entry = rb_entry(node, struct btrfs_inode, rb_node);
37508515 3914 objectid = btrfs_ino(entry) + 1;
20a68004
NB
3915 inode = igrab(&entry->vfs_inode);
3916 if (inode) {
3917 spin_unlock(&root->inode_lock);
3918 if (atomic_read(&inode->i_count) > 1)
3919 d_prune_aliases(inode);
3920 /*
3921 * btrfs_drop_inode will have it removed from the inode
3922 * cache when its usage count hits zero.
3923 */
3924 iput(inode);
3925 cond_resched();
3926 spin_lock(&root->inode_lock);
3927 goto again;
3928 }
3929
3930 if (cond_resched_lock(&root->inode_lock))
3931 goto again;
3932
3933 node = rb_next(node);
3934 }
3935 spin_unlock(&root->inode_lock);
3936}
3937
f60a2364
MT
3938int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
3939{
3940 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
3941 struct btrfs_root *root = BTRFS_I(dir)->root;
3942 struct inode *inode = d_inode(dentry);
3943 struct btrfs_root *dest = BTRFS_I(inode)->root;
3944 struct btrfs_trans_handle *trans;
3945 struct btrfs_block_rsv block_rsv;
3946 u64 root_flags;
f60a2364
MT
3947 int ret;
3948 int err;
3949
3950 /*
3951 * Don't allow to delete a subvolume with send in progress. This is
3952 * inside the inode lock so the error handling that has to drop the bit
3953 * again is not run concurrently.
3954 */
3955 spin_lock(&dest->root_item_lock);
a7176f74 3956 if (dest->send_in_progress) {
f60a2364
MT
3957 spin_unlock(&dest->root_item_lock);
3958 btrfs_warn(fs_info,
3959 "attempt to delete subvolume %llu during send",
3960 dest->root_key.objectid);
3961 return -EPERM;
3962 }
a7176f74
LF
3963 root_flags = btrfs_root_flags(&dest->root_item);
3964 btrfs_set_root_flags(&dest->root_item,
3965 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
3966 spin_unlock(&dest->root_item_lock);
f60a2364
MT
3967
3968 down_write(&fs_info->subvol_sem);
3969
3970 err = may_destroy_subvol(dest);
3971 if (err)
3972 goto out_up_write;
3973
3974 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
3975 /*
3976 * One for dir inode,
3977 * two for dir entries,
3978 * two for root ref/backref.
3979 */
c4c129db 3980 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
f60a2364
MT
3981 if (err)
3982 goto out_up_write;
3983
3984 trans = btrfs_start_transaction(root, 0);
3985 if (IS_ERR(trans)) {
3986 err = PTR_ERR(trans);
3987 goto out_release;
3988 }
3989 trans->block_rsv = &block_rsv;
3990 trans->bytes_reserved = block_rsv.size;
3991
3992 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
3993
045d3967 3994 ret = btrfs_unlink_subvol(trans, dir, dentry);
f60a2364
MT
3995 if (ret) {
3996 err = ret;
3997 btrfs_abort_transaction(trans, ret);
3998 goto out_end_trans;
3999 }
4000
4001 btrfs_record_root_in_trans(trans, dest);
4002
4003 memset(&dest->root_item.drop_progress, 0,
4004 sizeof(dest->root_item.drop_progress));
4005 dest->root_item.drop_level = 0;
4006 btrfs_set_root_refs(&dest->root_item, 0);
4007
4008 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4009 ret = btrfs_insert_orphan_item(trans,
4010 fs_info->tree_root,
4011 dest->root_key.objectid);
4012 if (ret) {
4013 btrfs_abort_transaction(trans, ret);
4014 err = ret;
4015 goto out_end_trans;
4016 }
4017 }
4018
d1957791 4019 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
f60a2364
MT
4020 BTRFS_UUID_KEY_SUBVOL,
4021 dest->root_key.objectid);
4022 if (ret && ret != -ENOENT) {
4023 btrfs_abort_transaction(trans, ret);
4024 err = ret;
4025 goto out_end_trans;
4026 }
4027 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
d1957791 4028 ret = btrfs_uuid_tree_remove(trans,
f60a2364
MT
4029 dest->root_item.received_uuid,
4030 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4031 dest->root_key.objectid);
4032 if (ret && ret != -ENOENT) {
4033 btrfs_abort_transaction(trans, ret);
4034 err = ret;
4035 goto out_end_trans;
4036 }
4037 }
4038
4039out_end_trans:
4040 trans->block_rsv = NULL;
4041 trans->bytes_reserved = 0;
4042 ret = btrfs_end_transaction(trans);
4043 if (ret && !err)
4044 err = ret;
4045 inode->i_flags |= S_DEAD;
4046out_release:
4047 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4048out_up_write:
4049 up_write(&fs_info->subvol_sem);
4050 if (err) {
4051 spin_lock(&dest->root_item_lock);
4052 root_flags = btrfs_root_flags(&dest->root_item);
4053 btrfs_set_root_flags(&dest->root_item,
4054 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4055 spin_unlock(&dest->root_item_lock);
4056 } else {
4057 d_invalidate(dentry);
20a68004 4058 btrfs_prune_dentries(dest);
f60a2364
MT
4059 ASSERT(dest->send_in_progress == 0);
4060
4061 /* the last ref */
4062 if (dest->ino_cache_inode) {
4063 iput(dest->ino_cache_inode);
4064 dest->ino_cache_inode = NULL;
4065 }
4066 }
4067
4068 return err;
4069}
4070
39279cc3
CM
4071static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4072{
2b0143b5 4073 struct inode *inode = d_inode(dentry);
1832a6d5 4074 int err = 0;
39279cc3 4075 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4076 struct btrfs_trans_handle *trans;
44f714da 4077 u64 last_unlink_trans;
39279cc3 4078
b3ae244e 4079 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4080 return -ENOTEMPTY;
4a0cc7ca 4081 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
a79a464d 4082 return btrfs_delete_subvolume(dir, dentry);
134d4512 4083
d52be818 4084 trans = __unlink_start_trans(dir);
a22285a6 4085 if (IS_ERR(trans))
5df6a9f6 4086 return PTR_ERR(trans);
5df6a9f6 4087
4a0cc7ca 4088 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
045d3967 4089 err = btrfs_unlink_subvol(trans, dir, dentry);
4df27c4d
YZ
4090 goto out;
4091 }
4092
73f2e545 4093 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4094 if (err)
4df27c4d 4095 goto out;
7b128766 4096
44f714da
FM
4097 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4098
39279cc3 4099 /* now the directory is empty */
4ec5934e
NB
4100 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4101 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4102 dentry->d_name.len);
44f714da 4103 if (!err) {
6ef06d27 4104 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4105 /*
4106 * Propagate the last_unlink_trans value of the deleted dir to
4107 * its parent directory. This is to prevent an unrecoverable
4108 * log tree in the case we do something like this:
4109 * 1) create dir foo
4110 * 2) create snapshot under dir foo
4111 * 3) delete the snapshot
4112 * 4) rmdir foo
4113 * 5) mkdir foo
4114 * 6) fsync foo or some file inside foo
4115 */
4116 if (last_unlink_trans >= trans->transid)
4117 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4118 }
4df27c4d 4119out:
3a45bb20 4120 btrfs_end_transaction(trans);
2ff7e61e 4121 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4122
39279cc3
CM
4123 return err;
4124}
4125
ddfae63c
JB
4126/*
4127 * Return this if we need to call truncate_block for the last bit of the
4128 * truncate.
4129 */
4130#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4131
39279cc3
CM
4132/*
4133 * this can truncate away extent items, csum items and directory items.
4134 * It starts at a high offset and removes keys until it can't find
d352ac68 4135 * any higher than new_size
39279cc3
CM
4136 *
4137 * csum items that cross the new i_size are truncated to the new size
4138 * as well.
7b128766
JB
4139 *
4140 * min_type is the minimum key type to truncate down to. If set to 0, this
4141 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4142 */
8082510e
YZ
4143int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4144 struct btrfs_root *root,
4145 struct inode *inode,
4146 u64 new_size, u32 min_type)
39279cc3 4147{
0b246afa 4148 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4149 struct btrfs_path *path;
5f39d397 4150 struct extent_buffer *leaf;
39279cc3 4151 struct btrfs_file_extent_item *fi;
8082510e
YZ
4152 struct btrfs_key key;
4153 struct btrfs_key found_key;
39279cc3 4154 u64 extent_start = 0;
db94535d 4155 u64 extent_num_bytes = 0;
5d4f98a2 4156 u64 extent_offset = 0;
39279cc3 4157 u64 item_end = 0;
c1aa4575 4158 u64 last_size = new_size;
8082510e 4159 u32 found_type = (u8)-1;
39279cc3
CM
4160 int found_extent;
4161 int del_item;
85e21bac
CM
4162 int pending_del_nr = 0;
4163 int pending_del_slot = 0;
179e29e4 4164 int extent_type = -1;
8082510e 4165 int ret;
4a0cc7ca 4166 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4167 u64 bytes_deleted = 0;
897ca819
TM
4168 bool be_nice = false;
4169 bool should_throttle = false;
28553fa9
FM
4170 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4171 struct extent_state *cached_state = NULL;
8082510e
YZ
4172
4173 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4174
28ed1345 4175 /*
92a7cc42
QW
4176 * For non-free space inodes and non-shareable roots, we want to back
4177 * off from time to time. This means all inodes in subvolume roots,
4178 * reloc roots, and data reloc roots.
28ed1345 4179 */
70ddc553 4180 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
92a7cc42 4181 test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
897ca819 4182 be_nice = true;
28ed1345 4183
0eb0e19c
MF
4184 path = btrfs_alloc_path();
4185 if (!path)
4186 return -ENOMEM;
e4058b54 4187 path->reada = READA_BACK;
0eb0e19c 4188
82028e0a 4189 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
a5ae50de
FM
4190 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
4191 &cached_state);
28553fa9 4192
82028e0a
QW
4193 /*
4194 * We want to drop from the next block forward in case this
4195 * new size is not block aligned since we will be keeping the
4196 * last block of the extent just the way it is.
4197 */
dcdbc059 4198 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4199 fs_info->sectorsize),
da17066c 4200 (u64)-1, 0);
82028e0a 4201 }
8082510e 4202
16cdcec7
MX
4203 /*
4204 * This function is also used to drop the items in the log tree before
4205 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
52042d8e 4206 * it is used to drop the logged items. So we shouldn't kill the delayed
16cdcec7
MX
4207 * items.
4208 */
4209 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4210 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4211
33345d01 4212 key.objectid = ino;
39279cc3 4213 key.offset = (u64)-1;
5f39d397
CM
4214 key.type = (u8)-1;
4215
85e21bac 4216search_again:
28ed1345
CM
4217 /*
4218 * with a 16K leaf size and 128MB extents, you can actually queue
4219 * up a huge file in a single leaf. Most of the time that
4220 * bytes_deleted is > 0, it will be huge by the time we get here
4221 */
fd86a3a3
OS
4222 if (be_nice && bytes_deleted > SZ_32M &&
4223 btrfs_should_end_transaction(trans)) {
4224 ret = -EAGAIN;
4225 goto out;
28ed1345
CM
4226 }
4227
85e21bac 4228 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
fd86a3a3 4229 if (ret < 0)
8082510e 4230 goto out;
d397712b 4231
85e21bac 4232 if (ret > 0) {
fd86a3a3 4233 ret = 0;
e02119d5
CM
4234 /* there are no items in the tree for us to truncate, we're
4235 * done
4236 */
8082510e
YZ
4237 if (path->slots[0] == 0)
4238 goto out;
85e21bac
CM
4239 path->slots[0]--;
4240 }
4241
d397712b 4242 while (1) {
9ddc959e
JB
4243 u64 clear_start = 0, clear_len = 0;
4244
39279cc3 4245 fi = NULL;
5f39d397
CM
4246 leaf = path->nodes[0];
4247 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4248 found_type = found_key.type;
39279cc3 4249
33345d01 4250 if (found_key.objectid != ino)
39279cc3 4251 break;
5f39d397 4252
85e21bac 4253 if (found_type < min_type)
39279cc3
CM
4254 break;
4255
5f39d397 4256 item_end = found_key.offset;
39279cc3 4257 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4258 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4259 struct btrfs_file_extent_item);
179e29e4
CM
4260 extent_type = btrfs_file_extent_type(leaf, fi);
4261 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4262 item_end +=
db94535d 4263 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4264
4265 trace_btrfs_truncate_show_fi_regular(
4266 BTRFS_I(inode), leaf, fi,
4267 found_key.offset);
179e29e4 4268 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589
QW
4269 item_end += btrfs_file_extent_ram_bytes(leaf,
4270 fi);
09ed2f16
LB
4271
4272 trace_btrfs_truncate_show_fi_inline(
4273 BTRFS_I(inode), leaf, fi, path->slots[0],
4274 found_key.offset);
39279cc3 4275 }
008630c1 4276 item_end--;
39279cc3 4277 }
8082510e
YZ
4278 if (found_type > min_type) {
4279 del_item = 1;
4280 } else {
76b42abb 4281 if (item_end < new_size)
b888db2b 4282 break;
8082510e
YZ
4283 if (found_key.offset >= new_size)
4284 del_item = 1;
4285 else
4286 del_item = 0;
39279cc3 4287 }
39279cc3 4288 found_extent = 0;
39279cc3 4289 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4290 if (found_type != BTRFS_EXTENT_DATA_KEY)
4291 goto delete;
4292
4293 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4294 u64 num_dec;
9ddc959e
JB
4295
4296 clear_start = found_key.offset;
db94535d 4297 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4298 if (!del_item) {
db94535d
CM
4299 u64 orig_num_bytes =
4300 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4301 extent_num_bytes = ALIGN(new_size -
4302 found_key.offset,
0b246afa 4303 fs_info->sectorsize);
9ddc959e 4304 clear_start = ALIGN(new_size, fs_info->sectorsize);
db94535d
CM
4305 btrfs_set_file_extent_num_bytes(leaf, fi,
4306 extent_num_bytes);
4307 num_dec = (orig_num_bytes -
9069218d 4308 extent_num_bytes);
92a7cc42 4309 if (test_bit(BTRFS_ROOT_SHAREABLE,
27cdeb70
MX
4310 &root->state) &&
4311 extent_start != 0)
a76a3cd4 4312 inode_sub_bytes(inode, num_dec);
5f39d397 4313 btrfs_mark_buffer_dirty(leaf);
39279cc3 4314 } else {
db94535d
CM
4315 extent_num_bytes =
4316 btrfs_file_extent_disk_num_bytes(leaf,
4317 fi);
5d4f98a2
YZ
4318 extent_offset = found_key.offset -
4319 btrfs_file_extent_offset(leaf, fi);
4320
39279cc3 4321 /* FIXME blocksize != 4096 */
9069218d 4322 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4323 if (extent_start != 0) {
4324 found_extent = 1;
92a7cc42 4325 if (test_bit(BTRFS_ROOT_SHAREABLE,
27cdeb70 4326 &root->state))
a76a3cd4 4327 inode_sub_bytes(inode, num_dec);
e02119d5 4328 }
39279cc3 4329 }
9ddc959e 4330 clear_len = num_dec;
9069218d 4331 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4332 /*
4333 * we can't truncate inline items that have had
4334 * special encodings
4335 */
4336 if (!del_item &&
c8b97818 4337 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4338 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4339 btrfs_file_extent_compression(leaf, fi) == 0) {
4340 u32 size = (u32)(new_size - found_key.offset);
4341
4342 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4343 size = btrfs_file_extent_calc_inline_size(size);
78ac4f9e 4344 btrfs_truncate_item(path, size, 1);
ddfae63c 4345 } else if (!del_item) {
514ac8ad 4346 /*
ddfae63c
JB
4347 * We have to bail so the last_size is set to
4348 * just before this extent.
514ac8ad 4349 */
fd86a3a3 4350 ret = NEED_TRUNCATE_BLOCK;
ddfae63c 4351 break;
9ddc959e
JB
4352 } else {
4353 /*
4354 * Inline extents are special, we just treat
4355 * them as a full sector worth in the file
4356 * extent tree just for simplicity sake.
4357 */
4358 clear_len = fs_info->sectorsize;
ddfae63c 4359 }
0305cd5f 4360
92a7cc42 4361 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
0305cd5f 4362 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4363 }
179e29e4 4364delete:
9ddc959e
JB
4365 /*
4366 * We use btrfs_truncate_inode_items() to clean up log trees for
4367 * multiple fsyncs, and in this case we don't want to clear the
4368 * file extent range because it's just the log.
4369 */
4370 if (root == BTRFS_I(inode)->root) {
4371 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
4372 clear_start, clear_len);
4373 if (ret) {
4374 btrfs_abort_transaction(trans, ret);
4375 break;
4376 }
4377 }
4378
ddfae63c
JB
4379 if (del_item)
4380 last_size = found_key.offset;
4381 else
4382 last_size = new_size;
39279cc3 4383 if (del_item) {
85e21bac
CM
4384 if (!pending_del_nr) {
4385 /* no pending yet, add ourselves */
4386 pending_del_slot = path->slots[0];
4387 pending_del_nr = 1;
4388 } else if (pending_del_nr &&
4389 path->slots[0] + 1 == pending_del_slot) {
4390 /* hop on the pending chunk */
4391 pending_del_nr++;
4392 pending_del_slot = path->slots[0];
4393 } else {
d397712b 4394 BUG();
85e21bac 4395 }
39279cc3
CM
4396 } else {
4397 break;
4398 }
897ca819 4399 should_throttle = false;
28f75a0e 4400
27cdeb70 4401 if (found_extent &&
82028e0a 4402 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
ffd4bb2a
QW
4403 struct btrfs_ref ref = { 0 };
4404
28ed1345 4405 bytes_deleted += extent_num_bytes;
ffd4bb2a
QW
4406
4407 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4408 extent_start, extent_num_bytes, 0);
4409 ref.real_root = root->root_key.objectid;
4410 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4411 ino, extent_offset);
4412 ret = btrfs_free_extent(trans, &ref);
05522109
OS
4413 if (ret) {
4414 btrfs_abort_transaction(trans, ret);
4415 break;
4416 }
28f75a0e 4417 if (be_nice) {
7c861627 4418 if (btrfs_should_throttle_delayed_refs(trans))
897ca819 4419 should_throttle = true;
28f75a0e 4420 }
39279cc3 4421 }
85e21bac 4422
8082510e
YZ
4423 if (found_type == BTRFS_INODE_ITEM_KEY)
4424 break;
4425
4426 if (path->slots[0] == 0 ||
1262133b 4427 path->slots[0] != pending_del_slot ||
28bad212 4428 should_throttle) {
8082510e
YZ
4429 if (pending_del_nr) {
4430 ret = btrfs_del_items(trans, root, path,
4431 pending_del_slot,
4432 pending_del_nr);
79787eaa 4433 if (ret) {
66642832 4434 btrfs_abort_transaction(trans, ret);
fd86a3a3 4435 break;
79787eaa 4436 }
8082510e
YZ
4437 pending_del_nr = 0;
4438 }
b3b4aa74 4439 btrfs_release_path(path);
28bad212 4440
28f75a0e 4441 /*
28bad212
JB
4442 * We can generate a lot of delayed refs, so we need to
4443 * throttle every once and a while and make sure we're
4444 * adding enough space to keep up with the work we are
4445 * generating. Since we hold a transaction here we
4446 * can't flush, and we don't want to FLUSH_LIMIT because
4447 * we could have generated too many delayed refs to
4448 * actually allocate, so just bail if we're short and
4449 * let the normal reservation dance happen higher up.
28f75a0e 4450 */
28bad212
JB
4451 if (should_throttle) {
4452 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4453 BTRFS_RESERVE_NO_FLUSH);
4454 if (ret) {
4455 ret = -EAGAIN;
4456 break;
4457 }
28f75a0e 4458 }
85e21bac 4459 goto search_again;
8082510e
YZ
4460 } else {
4461 path->slots[0]--;
85e21bac 4462 }
39279cc3 4463 }
8082510e 4464out:
fd86a3a3
OS
4465 if (ret >= 0 && pending_del_nr) {
4466 int err;
4467
4468 err = btrfs_del_items(trans, root, path, pending_del_slot,
85e21bac 4469 pending_del_nr);
fd86a3a3
OS
4470 if (err) {
4471 btrfs_abort_transaction(trans, err);
4472 ret = err;
4473 }
85e21bac 4474 }
76b42abb
FM
4475 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4476 ASSERT(last_size >= new_size);
fd86a3a3 4477 if (!ret && last_size > new_size)
76b42abb 4478 last_size = new_size;
d923afe9 4479 btrfs_inode_safe_disk_i_size_write(inode, last_size);
a5ae50de
FM
4480 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
4481 (u64)-1, &cached_state);
76b42abb 4482 }
28ed1345 4483
39279cc3 4484 btrfs_free_path(path);
fd86a3a3 4485 return ret;
39279cc3
CM
4486}
4487
4488/*
9703fefe 4489 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4490 * @inode - inode that we're zeroing
4491 * @from - the offset to start zeroing
4492 * @len - the length to zero, 0 to zero the entire range respective to the
4493 * offset
4494 * @front - zero up to the offset instead of from the offset on
4495 *
9703fefe 4496 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4497 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4498 */
9703fefe 4499int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4500 int front)
39279cc3 4501{
0b246afa 4502 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4503 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4504 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4505 struct btrfs_ordered_extent *ordered;
2ac55d41 4506 struct extent_state *cached_state = NULL;
364ecf36 4507 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4508 char *kaddr;
6d4572a9 4509 bool only_release_metadata = false;
0b246afa 4510 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4511 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4512 unsigned offset = from & (blocksize - 1);
39279cc3 4513 struct page *page;
3b16a4e3 4514 gfp_t mask = btrfs_alloc_write_mask(mapping);
6d4572a9 4515 size_t write_bytes = blocksize;
39279cc3 4516 int ret = 0;
9703fefe
CR
4517 u64 block_start;
4518 u64 block_end;
39279cc3 4519
b03ebd99
NB
4520 if (IS_ALIGNED(offset, blocksize) &&
4521 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4522 goto out;
9703fefe 4523
8b62f87b
JB
4524 block_start = round_down(from, blocksize);
4525 block_end = block_start + blocksize - 1;
4526
39279cc3 4527
6d4572a9
QW
4528 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4529 blocksize);
4530 if (ret < 0) {
38d37aa9
QW
4531 if (btrfs_check_nocow_lock(BTRFS_I(inode), block_start,
4532 &write_bytes) > 0) {
6d4572a9
QW
4533 /* For nocow case, no need to reserve data space */
4534 only_release_metadata = true;
4535 } else {
4536 goto out;
4537 }
4538 }
4539 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize);
4540 if (ret < 0) {
4541 if (!only_release_metadata)
4542 btrfs_free_reserved_data_space(inode, data_reserved,
4543 block_start, blocksize);
4544 goto out;
4545 }
211c17f5 4546again:
3b16a4e3 4547 page = find_or_create_page(mapping, index, mask);
5d5e103a 4548 if (!page) {
bc42bda2 4549 btrfs_delalloc_release_space(inode, data_reserved,
43b18595 4550 block_start, blocksize, true);
8702ba93 4551 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
ac6a2b36 4552 ret = -ENOMEM;
39279cc3 4553 goto out;
5d5e103a 4554 }
e6dcd2dc 4555
39279cc3 4556 if (!PageUptodate(page)) {
9ebefb18 4557 ret = btrfs_readpage(NULL, page);
39279cc3 4558 lock_page(page);
211c17f5
CM
4559 if (page->mapping != mapping) {
4560 unlock_page(page);
09cbfeaf 4561 put_page(page);
211c17f5
CM
4562 goto again;
4563 }
39279cc3
CM
4564 if (!PageUptodate(page)) {
4565 ret = -EIO;
89642229 4566 goto out_unlock;
39279cc3
CM
4567 }
4568 }
211c17f5 4569 wait_on_page_writeback(page);
e6dcd2dc 4570
9703fefe 4571 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4572 set_page_extent_mapped(page);
4573
c3504372 4574 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), block_start);
e6dcd2dc 4575 if (ordered) {
9703fefe 4576 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4577 &cached_state);
e6dcd2dc 4578 unlock_page(page);
09cbfeaf 4579 put_page(page);
eb84ae03 4580 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4581 btrfs_put_ordered_extent(ordered);
4582 goto again;
4583 }
4584
9703fefe 4585 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
e182163d
OS
4586 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4587 0, 0, &cached_state);
5d5e103a 4588
e3b8a485 4589 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
330a5827 4590 &cached_state);
9ed74f2d 4591 if (ret) {
9703fefe 4592 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4593 &cached_state);
9ed74f2d
JB
4594 goto out_unlock;
4595 }
4596
9703fefe 4597 if (offset != blocksize) {
2aaa6655 4598 if (!len)
9703fefe 4599 len = blocksize - offset;
e6dcd2dc 4600 kaddr = kmap(page);
2aaa6655 4601 if (front)
9703fefe
CR
4602 memset(kaddr + (block_start - page_offset(page)),
4603 0, offset);
2aaa6655 4604 else
9703fefe
CR
4605 memset(kaddr + (block_start - page_offset(page)) + offset,
4606 0, len);
e6dcd2dc
CM
4607 flush_dcache_page(page);
4608 kunmap(page);
4609 }
247e743c 4610 ClearPageChecked(page);
e6dcd2dc 4611 set_page_dirty(page);
e43bbe5e 4612 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
39279cc3 4613
6d4572a9
QW
4614 if (only_release_metadata)
4615 set_extent_bit(&BTRFS_I(inode)->io_tree, block_start,
4616 block_end, EXTENT_NORESERVE, NULL, NULL,
4617 GFP_NOFS);
4618
89642229 4619out_unlock:
6d4572a9
QW
4620 if (ret) {
4621 if (only_release_metadata)
4622 btrfs_delalloc_release_metadata(BTRFS_I(inode),
4623 blocksize, true);
4624 else
4625 btrfs_delalloc_release_space(inode, data_reserved,
4626 block_start, blocksize, true);
4627 }
8702ba93 4628 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
39279cc3 4629 unlock_page(page);
09cbfeaf 4630 put_page(page);
39279cc3 4631out:
6d4572a9 4632 if (only_release_metadata)
38d37aa9 4633 btrfs_check_nocow_unlock(BTRFS_I(inode));
364ecf36 4634 extent_changeset_free(data_reserved);
39279cc3
CM
4635 return ret;
4636}
4637
16e7549f
JB
4638static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4639 u64 offset, u64 len)
4640{
0b246afa 4641 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4642 struct btrfs_trans_handle *trans;
4643 int ret;
4644
4645 /*
4646 * Still need to make sure the inode looks like it's been updated so
4647 * that any holes get logged if we fsync.
4648 */
0b246afa
JM
4649 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4650 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4651 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4652 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4653 return 0;
4654 }
4655
4656 /*
4657 * 1 - for the one we're dropping
4658 * 1 - for the one we're adding
4659 * 1 - for updating the inode.
4660 */
4661 trans = btrfs_start_transaction(root, 3);
4662 if (IS_ERR(trans))
4663 return PTR_ERR(trans);
4664
4665 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4666 if (ret) {
66642832 4667 btrfs_abort_transaction(trans, ret);
3a45bb20 4668 btrfs_end_transaction(trans);
16e7549f
JB
4669 return ret;
4670 }
4671
f85b7379
DS
4672 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4673 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4674 if (ret)
66642832 4675 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4676 else
4677 btrfs_update_inode(trans, root, inode);
3a45bb20 4678 btrfs_end_transaction(trans);
16e7549f
JB
4679 return ret;
4680}
4681
695a0d0d
JB
4682/*
4683 * This function puts in dummy file extents for the area we're creating a hole
4684 * for. So if we are truncating this file to a larger size we need to insert
4685 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4686 * the range between oldsize and size
4687 */
a41ad394 4688int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4689{
0b246afa 4690 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4691 struct btrfs_root *root = BTRFS_I(inode)->root;
4692 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4693 struct extent_map *em = NULL;
2ac55d41 4694 struct extent_state *cached_state = NULL;
5dc562c5 4695 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4696 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4697 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4698 u64 last_byte;
4699 u64 cur_offset;
4700 u64 hole_size;
9ed74f2d 4701 int err = 0;
39279cc3 4702
a71754fc 4703 /*
9703fefe
CR
4704 * If our size started in the middle of a block we need to zero out the
4705 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4706 * expose stale data.
4707 */
9703fefe 4708 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4709 if (err)
4710 return err;
4711
9036c102
YZ
4712 if (size <= hole_start)
4713 return 0;
4714
b272ae22 4715 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start,
23d31bd4 4716 block_end - 1, &cached_state);
9036c102
YZ
4717 cur_offset = hole_start;
4718 while (1) {
fc4f21b1 4719 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
39b07b5d 4720 block_end - cur_offset);
79787eaa
JM
4721 if (IS_ERR(em)) {
4722 err = PTR_ERR(em);
f2767956 4723 em = NULL;
79787eaa
JM
4724 break;
4725 }
9036c102 4726 last_byte = min(extent_map_end(em), block_end);
0b246afa 4727 last_byte = ALIGN(last_byte, fs_info->sectorsize);
9ddc959e
JB
4728 hole_size = last_byte - cur_offset;
4729
8082510e 4730 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4731 struct extent_map *hole_em;
9ed74f2d 4732
16e7549f
JB
4733 err = maybe_insert_hole(root, inode, cur_offset,
4734 hole_size);
4735 if (err)
3893e33b 4736 break;
9ddc959e
JB
4737
4738 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4739 cur_offset, hole_size);
4740 if (err)
4741 break;
4742
dcdbc059 4743 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
4744 cur_offset + hole_size - 1, 0);
4745 hole_em = alloc_extent_map();
4746 if (!hole_em) {
4747 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4748 &BTRFS_I(inode)->runtime_flags);
4749 goto next;
4750 }
4751 hole_em->start = cur_offset;
4752 hole_em->len = hole_size;
4753 hole_em->orig_start = cur_offset;
8082510e 4754
5dc562c5
JB
4755 hole_em->block_start = EXTENT_MAP_HOLE;
4756 hole_em->block_len = 0;
b4939680 4757 hole_em->orig_block_len = 0;
cc95bef6 4758 hole_em->ram_bytes = hole_size;
5dc562c5 4759 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 4760 hole_em->generation = fs_info->generation;
8082510e 4761
5dc562c5
JB
4762 while (1) {
4763 write_lock(&em_tree->lock);
09a2a8f9 4764 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4765 write_unlock(&em_tree->lock);
4766 if (err != -EEXIST)
4767 break;
dcdbc059
NB
4768 btrfs_drop_extent_cache(BTRFS_I(inode),
4769 cur_offset,
5dc562c5
JB
4770 cur_offset +
4771 hole_size - 1, 0);
4772 }
4773 free_extent_map(hole_em);
9ddc959e
JB
4774 } else {
4775 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4776 cur_offset, hole_size);
4777 if (err)
4778 break;
9036c102 4779 }
16e7549f 4780next:
9036c102 4781 free_extent_map(em);
a22285a6 4782 em = NULL;
9036c102 4783 cur_offset = last_byte;
8082510e 4784 if (cur_offset >= block_end)
9036c102
YZ
4785 break;
4786 }
a22285a6 4787 free_extent_map(em);
e43bbe5e 4788 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
4789 return err;
4790}
39279cc3 4791
3972f260 4792static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4793{
f4a2f4c5
MX
4794 struct btrfs_root *root = BTRFS_I(inode)->root;
4795 struct btrfs_trans_handle *trans;
a41ad394 4796 loff_t oldsize = i_size_read(inode);
3972f260
ES
4797 loff_t newsize = attr->ia_size;
4798 int mask = attr->ia_valid;
8082510e
YZ
4799 int ret;
4800
3972f260
ES
4801 /*
4802 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4803 * special case where we need to update the times despite not having
4804 * these flags set. For all other operations the VFS set these flags
4805 * explicitly if it wants a timestamp update.
4806 */
dff6efc3
CH
4807 if (newsize != oldsize) {
4808 inode_inc_iversion(inode);
4809 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4810 inode->i_ctime = inode->i_mtime =
c2050a45 4811 current_time(inode);
dff6efc3 4812 }
3972f260 4813
a41ad394 4814 if (newsize > oldsize) {
9ea24bbe 4815 /*
ea14b57f 4816 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
4817 * This is to ensure the snapshot captures a fully consistent
4818 * state of this file - if the snapshot captures this expanding
4819 * truncation, it must capture all writes that happened before
4820 * this truncation.
4821 */
dcc3eb96 4822 btrfs_drew_write_lock(&root->snapshot_lock);
a41ad394 4823 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 4824 if (ret) {
dcc3eb96 4825 btrfs_drew_write_unlock(&root->snapshot_lock);
8082510e 4826 return ret;
9ea24bbe 4827 }
8082510e 4828
f4a2f4c5 4829 trans = btrfs_start_transaction(root, 1);
9ea24bbe 4830 if (IS_ERR(trans)) {
dcc3eb96 4831 btrfs_drew_write_unlock(&root->snapshot_lock);
f4a2f4c5 4832 return PTR_ERR(trans);
9ea24bbe 4833 }
f4a2f4c5
MX
4834
4835 i_size_write(inode, newsize);
d923afe9 4836 btrfs_inode_safe_disk_i_size_write(inode, 0);
27772b68 4837 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 4838 ret = btrfs_update_inode(trans, root, inode);
dcc3eb96 4839 btrfs_drew_write_unlock(&root->snapshot_lock);
3a45bb20 4840 btrfs_end_transaction(trans);
a41ad394 4841 } else {
8082510e 4842
a41ad394
JB
4843 /*
4844 * We're truncating a file that used to have good data down to
4845 * zero. Make sure it gets into the ordered flush list so that
4846 * any new writes get down to disk quickly.
4847 */
4848 if (newsize == 0)
72ac3c0d
JB
4849 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4850 &BTRFS_I(inode)->runtime_flags);
8082510e 4851
a41ad394 4852 truncate_setsize(inode, newsize);
2e60a51e 4853
8e0fa5d7
DS
4854 /* Disable nonlocked read DIO to avoid the endless truncate */
4855 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 4856 inode_dio_wait(inode);
8e0fa5d7 4857 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 4858
213e8c55 4859 ret = btrfs_truncate(inode, newsize == oldsize);
7f4f6e0a
JB
4860 if (ret && inode->i_nlink) {
4861 int err;
4862
4863 /*
f7e9e8fc
OS
4864 * Truncate failed, so fix up the in-memory size. We
4865 * adjusted disk_i_size down as we removed extents, so
4866 * wait for disk_i_size to be stable and then update the
4867 * in-memory size to match.
7f4f6e0a 4868 */
f7e9e8fc 4869 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
7f4f6e0a 4870 if (err)
f7e9e8fc
OS
4871 return err;
4872 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
7f4f6e0a 4873 }
8082510e
YZ
4874 }
4875
a41ad394 4876 return ret;
8082510e
YZ
4877}
4878
9036c102
YZ
4879static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4880{
2b0143b5 4881 struct inode *inode = d_inode(dentry);
b83cc969 4882 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4883 int err;
39279cc3 4884
b83cc969
LZ
4885 if (btrfs_root_readonly(root))
4886 return -EROFS;
4887
31051c85 4888 err = setattr_prepare(dentry, attr);
9036c102
YZ
4889 if (err)
4890 return err;
2bf5a725 4891
5a3f23d5 4892 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4893 err = btrfs_setsize(inode, attr);
8082510e
YZ
4894 if (err)
4895 return err;
39279cc3 4896 }
9036c102 4897
1025774c
CH
4898 if (attr->ia_valid) {
4899 setattr_copy(inode, attr);
0c4d2d95 4900 inode_inc_iversion(inode);
22c44fe6 4901 err = btrfs_dirty_inode(inode);
1025774c 4902
22c44fe6 4903 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 4904 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 4905 }
33268eaf 4906
39279cc3
CM
4907 return err;
4908}
61295eb8 4909
131e404a
FDBM
4910/*
4911 * While truncating the inode pages during eviction, we get the VFS calling
4912 * btrfs_invalidatepage() against each page of the inode. This is slow because
4913 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4914 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4915 * extent_state structures over and over, wasting lots of time.
4916 *
4917 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4918 * those expensive operations on a per page basis and do only the ordered io
4919 * finishing, while we release here the extent_map and extent_state structures,
4920 * without the excessive merging and splitting.
4921 */
4922static void evict_inode_truncate_pages(struct inode *inode)
4923{
4924 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4925 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4926 struct rb_node *node;
4927
4928 ASSERT(inode->i_state & I_FREEING);
91b0abe3 4929 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
4930
4931 write_lock(&map_tree->lock);
07e1ce09 4932 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
131e404a
FDBM
4933 struct extent_map *em;
4934
07e1ce09 4935 node = rb_first_cached(&map_tree->map);
131e404a 4936 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
4937 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4938 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
4939 remove_extent_mapping(map_tree, em);
4940 free_extent_map(em);
7064dd5c
FM
4941 if (need_resched()) {
4942 write_unlock(&map_tree->lock);
4943 cond_resched();
4944 write_lock(&map_tree->lock);
4945 }
131e404a
FDBM
4946 }
4947 write_unlock(&map_tree->lock);
4948
6ca07097
FM
4949 /*
4950 * Keep looping until we have no more ranges in the io tree.
ba206a02
MWO
4951 * We can have ongoing bios started by readahead that have
4952 * their endio callback (extent_io.c:end_bio_extent_readpage)
9c6429d9
FM
4953 * still in progress (unlocked the pages in the bio but did not yet
4954 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
4955 * ranges can still be locked and eviction started because before
4956 * submitting those bios, which are executed by a separate task (work
4957 * queue kthread), inode references (inode->i_count) were not taken
4958 * (which would be dropped in the end io callback of each bio).
4959 * Therefore here we effectively end up waiting for those bios and
4960 * anyone else holding locked ranges without having bumped the inode's
4961 * reference count - if we don't do it, when they access the inode's
4962 * io_tree to unlock a range it may be too late, leading to an
4963 * use-after-free issue.
4964 */
131e404a
FDBM
4965 spin_lock(&io_tree->lock);
4966 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4967 struct extent_state *state;
4968 struct extent_state *cached_state = NULL;
6ca07097
FM
4969 u64 start;
4970 u64 end;
421f0922 4971 unsigned state_flags;
131e404a
FDBM
4972
4973 node = rb_first(&io_tree->state);
4974 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
4975 start = state->start;
4976 end = state->end;
421f0922 4977 state_flags = state->state;
131e404a
FDBM
4978 spin_unlock(&io_tree->lock);
4979
ff13db41 4980 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
4981
4982 /*
4983 * If still has DELALLOC flag, the extent didn't reach disk,
4984 * and its reserved space won't be freed by delayed_ref.
4985 * So we need to free its reserved space here.
4986 * (Refer to comment in btrfs_invalidatepage, case 2)
4987 *
4988 * Note, end is the bytenr of last byte, so we need + 1 here.
4989 */
421f0922 4990 if (state_flags & EXTENT_DELALLOC)
8b8a979f
NB
4991 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
4992 end - start + 1);
b9d0b389 4993
6ca07097 4994 clear_extent_bit(io_tree, start, end,
e182163d
OS
4995 EXTENT_LOCKED | EXTENT_DELALLOC |
4996 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
4997 &cached_state);
131e404a 4998
7064dd5c 4999 cond_resched();
131e404a
FDBM
5000 spin_lock(&io_tree->lock);
5001 }
5002 spin_unlock(&io_tree->lock);
5003}
5004
4b9d7b59 5005static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
ad80cf50 5006 struct btrfs_block_rsv *rsv)
4b9d7b59
OS
5007{
5008 struct btrfs_fs_info *fs_info = root->fs_info;
5009 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d3984c90 5010 struct btrfs_trans_handle *trans;
2bd36e7b 5011 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
d3984c90 5012 int ret;
4b9d7b59 5013
d3984c90
JB
5014 /*
5015 * Eviction should be taking place at some place safe because of our
5016 * delayed iputs. However the normal flushing code will run delayed
5017 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5018 *
5019 * We reserve the delayed_refs_extra here again because we can't use
5020 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5021 * above. We reserve our extra bit here because we generate a ton of
5022 * delayed refs activity by truncating.
5023 *
5024 * If we cannot make our reservation we'll attempt to steal from the
5025 * global reserve, because we really want to be able to free up space.
5026 */
5027 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5028 BTRFS_RESERVE_FLUSH_EVICT);
5029 if (ret) {
4b9d7b59
OS
5030 /*
5031 * Try to steal from the global reserve if there is space for
5032 * it.
5033 */
d3984c90
JB
5034 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5035 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5036 btrfs_warn(fs_info,
5037 "could not allocate space for delete; will truncate on mount");
5038 return ERR_PTR(-ENOSPC);
5039 }
5040 delayed_refs_extra = 0;
5041 }
4b9d7b59 5042
d3984c90
JB
5043 trans = btrfs_join_transaction(root);
5044 if (IS_ERR(trans))
5045 return trans;
5046
5047 if (delayed_refs_extra) {
5048 trans->block_rsv = &fs_info->trans_block_rsv;
5049 trans->bytes_reserved = delayed_refs_extra;
5050 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5051 delayed_refs_extra, 1);
4b9d7b59 5052 }
d3984c90 5053 return trans;
4b9d7b59
OS
5054}
5055
bd555975 5056void btrfs_evict_inode(struct inode *inode)
39279cc3 5057{
0b246afa 5058 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5059 struct btrfs_trans_handle *trans;
5060 struct btrfs_root *root = BTRFS_I(inode)->root;
4b9d7b59 5061 struct btrfs_block_rsv *rsv;
39279cc3
CM
5062 int ret;
5063
1abe9b8a 5064 trace_btrfs_inode_evict(inode);
5065
3d48d981 5066 if (!root) {
e8f1bc14 5067 clear_inode(inode);
3d48d981
NB
5068 return;
5069 }
5070
131e404a
FDBM
5071 evict_inode_truncate_pages(inode);
5072
69e9c6c6
SB
5073 if (inode->i_nlink &&
5074 ((btrfs_root_refs(&root->root_item) != 0 &&
5075 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5076 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5077 goto no_delete;
5078
27919067 5079 if (is_bad_inode(inode))
39279cc3 5080 goto no_delete;
5f39d397 5081
7ab7956e 5082 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5083
7b40b695 5084 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
c71bf099 5085 goto no_delete;
c71bf099 5086
76dda93c 5087 if (inode->i_nlink > 0) {
69e9c6c6
SB
5088 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5089 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5090 goto no_delete;
5091 }
5092
aa79021f 5093 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
27919067 5094 if (ret)
0e8c36a9 5095 goto no_delete;
0e8c36a9 5096
2ff7e61e 5097 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
27919067 5098 if (!rsv)
4289a667 5099 goto no_delete;
2bd36e7b 5100 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
ca7e70f5 5101 rsv->failfast = 1;
4289a667 5102
6ef06d27 5103 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5104
8082510e 5105 while (1) {
ad80cf50 5106 trans = evict_refill_and_join(root, rsv);
27919067
OS
5107 if (IS_ERR(trans))
5108 goto free_rsv;
7b128766 5109
4289a667
JB
5110 trans->block_rsv = rsv;
5111
d68fc57b 5112 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
27919067
OS
5113 trans->block_rsv = &fs_info->trans_block_rsv;
5114 btrfs_end_transaction(trans);
5115 btrfs_btree_balance_dirty(fs_info);
5116 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5117 goto free_rsv;
5118 else if (!ret)
8082510e 5119 break;
8082510e 5120 }
5f39d397 5121
4ef31a45 5122 /*
27919067
OS
5123 * Errors here aren't a big deal, it just means we leave orphan items in
5124 * the tree. They will be cleaned up on the next mount. If the inode
5125 * number gets reused, cleanup deletes the orphan item without doing
5126 * anything, and unlink reuses the existing orphan item.
5127 *
5128 * If it turns out that we are dropping too many of these, we might want
5129 * to add a mechanism for retrying these after a commit.
4ef31a45 5130 */
ad80cf50 5131 trans = evict_refill_and_join(root, rsv);
27919067
OS
5132 if (!IS_ERR(trans)) {
5133 trans->block_rsv = rsv;
5134 btrfs_orphan_del(trans, BTRFS_I(inode));
5135 trans->block_rsv = &fs_info->trans_block_rsv;
5136 btrfs_end_transaction(trans);
5137 }
54aa1f4d 5138
0b246afa 5139 if (!(root == fs_info->tree_root ||
581bb050 5140 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5141 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5142
27919067
OS
5143free_rsv:
5144 btrfs_free_block_rsv(fs_info, rsv);
39279cc3 5145no_delete:
27919067
OS
5146 /*
5147 * If we didn't successfully delete, the orphan item will still be in
5148 * the tree and we'll retry on the next mount. Again, we might also want
5149 * to retry these periodically in the future.
5150 */
f48d1cf5 5151 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5152 clear_inode(inode);
39279cc3
CM
5153}
5154
5155/*
6bf9e4bd
QW
5156 * Return the key found in the dir entry in the location pointer, fill @type
5157 * with BTRFS_FT_*, and return 0.
5158 *
005d6712
SY
5159 * If no dir entries were found, returns -ENOENT.
5160 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3
CM
5161 */
5162static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
6bf9e4bd 5163 struct btrfs_key *location, u8 *type)
39279cc3
CM
5164{
5165 const char *name = dentry->d_name.name;
5166 int namelen = dentry->d_name.len;
5167 struct btrfs_dir_item *di;
5168 struct btrfs_path *path;
5169 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5170 int ret = 0;
39279cc3
CM
5171
5172 path = btrfs_alloc_path();
d8926bb3
MF
5173 if (!path)
5174 return -ENOMEM;
3954401f 5175
f85b7379
DS
5176 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5177 name, namelen, 0);
3cf5068f
LB
5178 if (IS_ERR_OR_NULL(di)) {
5179 ret = di ? PTR_ERR(di) : -ENOENT;
005d6712
SY
5180 goto out;
5181 }
d397712b 5182
5f39d397 5183 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5184 if (location->type != BTRFS_INODE_ITEM_KEY &&
5185 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5186 ret = -EUCLEAN;
56a0e706
LB
5187 btrfs_warn(root->fs_info,
5188"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5189 __func__, name, btrfs_ino(BTRFS_I(dir)),
5190 location->objectid, location->type, location->offset);
56a0e706 5191 }
6bf9e4bd
QW
5192 if (!ret)
5193 *type = btrfs_dir_type(path->nodes[0], di);
39279cc3 5194out:
39279cc3
CM
5195 btrfs_free_path(path);
5196 return ret;
5197}
5198
5199/*
5200 * when we hit a tree root in a directory, the btrfs part of the inode
5201 * needs to be changed to reflect the root directory of the tree root. This
5202 * is kind of like crossing a mount point.
5203 */
2ff7e61e 5204static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5205 struct inode *dir,
5206 struct dentry *dentry,
5207 struct btrfs_key *location,
5208 struct btrfs_root **sub_root)
39279cc3 5209{
4df27c4d
YZ
5210 struct btrfs_path *path;
5211 struct btrfs_root *new_root;
5212 struct btrfs_root_ref *ref;
5213 struct extent_buffer *leaf;
1d4c08e0 5214 struct btrfs_key key;
4df27c4d
YZ
5215 int ret;
5216 int err = 0;
39279cc3 5217
4df27c4d
YZ
5218 path = btrfs_alloc_path();
5219 if (!path) {
5220 err = -ENOMEM;
5221 goto out;
5222 }
39279cc3 5223
4df27c4d 5224 err = -ENOENT;
1d4c08e0
DS
5225 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5226 key.type = BTRFS_ROOT_REF_KEY;
5227 key.offset = location->objectid;
5228
0b246afa 5229 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5230 if (ret) {
5231 if (ret < 0)
5232 err = ret;
5233 goto out;
5234 }
39279cc3 5235
4df27c4d
YZ
5236 leaf = path->nodes[0];
5237 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5238 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5239 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5240 goto out;
39279cc3 5241
4df27c4d
YZ
5242 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5243 (unsigned long)(ref + 1),
5244 dentry->d_name.len);
5245 if (ret)
5246 goto out;
5247
b3b4aa74 5248 btrfs_release_path(path);
4df27c4d 5249
56e9357a 5250 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
4df27c4d
YZ
5251 if (IS_ERR(new_root)) {
5252 err = PTR_ERR(new_root);
5253 goto out;
5254 }
5255
4df27c4d
YZ
5256 *sub_root = new_root;
5257 location->objectid = btrfs_root_dirid(&new_root->root_item);
5258 location->type = BTRFS_INODE_ITEM_KEY;
5259 location->offset = 0;
5260 err = 0;
5261out:
5262 btrfs_free_path(path);
5263 return err;
39279cc3
CM
5264}
5265
5d4f98a2
YZ
5266static void inode_tree_add(struct inode *inode)
5267{
5268 struct btrfs_root *root = BTRFS_I(inode)->root;
5269 struct btrfs_inode *entry;
03e860bd
NP
5270 struct rb_node **p;
5271 struct rb_node *parent;
cef21937 5272 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5273 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5274
1d3382cb 5275 if (inode_unhashed(inode))
76dda93c 5276 return;
e1409cef 5277 parent = NULL;
5d4f98a2 5278 spin_lock(&root->inode_lock);
e1409cef 5279 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5280 while (*p) {
5281 parent = *p;
5282 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5283
37508515 5284 if (ino < btrfs_ino(entry))
03e860bd 5285 p = &parent->rb_left;
37508515 5286 else if (ino > btrfs_ino(entry))
03e860bd 5287 p = &parent->rb_right;
5d4f98a2
YZ
5288 else {
5289 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5290 (I_WILL_FREE | I_FREEING)));
cef21937 5291 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
NP
5292 RB_CLEAR_NODE(parent);
5293 spin_unlock(&root->inode_lock);
cef21937 5294 return;
5d4f98a2
YZ
5295 }
5296 }
cef21937
FDBM
5297 rb_link_node(new, parent, p);
5298 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5299 spin_unlock(&root->inode_lock);
5300}
5301
5302static void inode_tree_del(struct inode *inode)
5303{
5304 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5305 int empty = 0;
5d4f98a2 5306
03e860bd 5307 spin_lock(&root->inode_lock);
5d4f98a2 5308 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5309 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5310 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5311 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5312 }
03e860bd 5313 spin_unlock(&root->inode_lock);
76dda93c 5314
69e9c6c6 5315 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5316 spin_lock(&root->inode_lock);
5317 empty = RB_EMPTY_ROOT(&root->inode_tree);
5318 spin_unlock(&root->inode_lock);
5319 if (empty)
5320 btrfs_add_dead_root(root);
5321 }
5322}
5323
5d4f98a2 5324
e02119d5
CM
5325static int btrfs_init_locked_inode(struct inode *inode, void *p)
5326{
5327 struct btrfs_iget_args *args = p;
0202e83f
DS
5328
5329 inode->i_ino = args->ino;
5330 BTRFS_I(inode)->location.objectid = args->ino;
5331 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5332 BTRFS_I(inode)->location.offset = 0;
5c8fd99f
JB
5333 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5334 BUG_ON(args->root && !BTRFS_I(inode)->root);
39279cc3
CM
5335 return 0;
5336}
5337
5338static int btrfs_find_actor(struct inode *inode, void *opaque)
5339{
5340 struct btrfs_iget_args *args = opaque;
0202e83f
DS
5341
5342 return args->ino == BTRFS_I(inode)->location.objectid &&
d397712b 5343 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5344}
5345
0202e83f 5346static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5d4f98a2 5347 struct btrfs_root *root)
39279cc3
CM
5348{
5349 struct inode *inode;
5350 struct btrfs_iget_args args;
0202e83f 5351 unsigned long hashval = btrfs_inode_hash(ino, root);
778ba82b 5352
0202e83f 5353 args.ino = ino;
39279cc3
CM
5354 args.root = root;
5355
778ba82b 5356 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5357 btrfs_init_locked_inode,
5358 (void *)&args);
5359 return inode;
5360}
5361
4c66e0d4 5362/*
0202e83f 5363 * Get an inode object given its inode number and corresponding root.
4c66e0d4
DS
5364 * Path can be preallocated to prevent recursing back to iget through
5365 * allocator. NULL is also valid but may require an additional allocation
5366 * later.
1a54ef8c 5367 */
0202e83f 5368struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
4c66e0d4 5369 struct btrfs_root *root, struct btrfs_path *path)
1a54ef8c
BR
5370{
5371 struct inode *inode;
5372
0202e83f 5373 inode = btrfs_iget_locked(s, ino, root);
1a54ef8c 5374 if (!inode)
5d4f98a2 5375 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5376
5377 if (inode->i_state & I_NEW) {
67710892
FM
5378 int ret;
5379
4222ea71 5380 ret = btrfs_read_locked_inode(inode, path);
9bc2ceff 5381 if (!ret) {
1748f843
MF
5382 inode_tree_add(inode);
5383 unlock_new_inode(inode);
1748f843 5384 } else {
f5b3a417
AV
5385 iget_failed(inode);
5386 /*
5387 * ret > 0 can come from btrfs_search_slot called by
5388 * btrfs_read_locked_inode, this means the inode item
5389 * was not found.
5390 */
5391 if (ret > 0)
5392 ret = -ENOENT;
5393 inode = ERR_PTR(ret);
1748f843
MF
5394 }
5395 }
5396
1a54ef8c
BR
5397 return inode;
5398}
5399
0202e83f 5400struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
4222ea71 5401{
0202e83f 5402 return btrfs_iget_path(s, ino, root, NULL);
4222ea71
FM
5403}
5404
4df27c4d
YZ
5405static struct inode *new_simple_dir(struct super_block *s,
5406 struct btrfs_key *key,
5407 struct btrfs_root *root)
5408{
5409 struct inode *inode = new_inode(s);
5410
5411 if (!inode)
5412 return ERR_PTR(-ENOMEM);
5413
5c8fd99f 5414 BTRFS_I(inode)->root = btrfs_grab_root(root);
4df27c4d 5415 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5416 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5417
5418 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
6bb6b514
OS
5419 /*
5420 * We only need lookup, the rest is read-only and there's no inode
5421 * associated with the dentry
5422 */
5423 inode->i_op = &simple_dir_inode_operations;
1fdf4194 5424 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5425 inode->i_fop = &simple_dir_operations;
5426 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5427 inode->i_mtime = current_time(inode);
9cc97d64 5428 inode->i_atime = inode->i_mtime;
5429 inode->i_ctime = inode->i_mtime;
d3c6be6f 5430 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5431
5432 return inode;
5433}
5434
6bf9e4bd
QW
5435static inline u8 btrfs_inode_type(struct inode *inode)
5436{
5437 /*
5438 * Compile-time asserts that generic FT_* types still match
5439 * BTRFS_FT_* types
5440 */
5441 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5442 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5443 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5444 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5445 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5446 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5447 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5448 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5449
5450 return fs_umode_to_ftype(inode->i_mode);
5451}
5452
3de4586c 5453struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5454{
0b246afa 5455 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5456 struct inode *inode;
4df27c4d 5457 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5458 struct btrfs_root *sub_root = root;
5459 struct btrfs_key location;
6bf9e4bd 5460 u8 di_type = 0;
b4aff1f8 5461 int ret = 0;
39279cc3
CM
5462
5463 if (dentry->d_name.len > BTRFS_NAME_LEN)
5464 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5465
6bf9e4bd 5466 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
39279cc3
CM
5467 if (ret < 0)
5468 return ERR_PTR(ret);
5f39d397 5469
4df27c4d 5470 if (location.type == BTRFS_INODE_ITEM_KEY) {
0202e83f 5471 inode = btrfs_iget(dir->i_sb, location.objectid, root);
6bf9e4bd
QW
5472 if (IS_ERR(inode))
5473 return inode;
5474
5475 /* Do extra check against inode mode with di_type */
5476 if (btrfs_inode_type(inode) != di_type) {
5477 btrfs_crit(fs_info,
5478"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5479 inode->i_mode, btrfs_inode_type(inode),
5480 di_type);
5481 iput(inode);
5482 return ERR_PTR(-EUCLEAN);
5483 }
4df27c4d
YZ
5484 return inode;
5485 }
5486
2ff7e61e 5487 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5488 &location, &sub_root);
5489 if (ret < 0) {
5490 if (ret != -ENOENT)
5491 inode = ERR_PTR(ret);
5492 else
5493 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5494 } else {
0202e83f 5495 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
39279cc3 5496 }
8727002f 5497 if (root != sub_root)
00246528 5498 btrfs_put_root(sub_root);
76dda93c 5499
34d19bad 5500 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5501 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5502 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5503 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5504 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5505 if (ret) {
5506 iput(inode);
66b4ffd1 5507 inode = ERR_PTR(ret);
01cd3367 5508 }
c71bf099
YZ
5509 }
5510
3de4586c
CM
5511 return inode;
5512}
5513
fe15ce44 5514static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5515{
5516 struct btrfs_root *root;
2b0143b5 5517 struct inode *inode = d_inode(dentry);
76dda93c 5518
848cce0d 5519 if (!inode && !IS_ROOT(dentry))
2b0143b5 5520 inode = d_inode(dentry->d_parent);
76dda93c 5521
848cce0d
LZ
5522 if (inode) {
5523 root = BTRFS_I(inode)->root;
efefb143
YZ
5524 if (btrfs_root_refs(&root->root_item) == 0)
5525 return 1;
848cce0d 5526
4a0cc7ca 5527 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5528 return 1;
efefb143 5529 }
76dda93c
YZ
5530 return 0;
5531}
5532
3de4586c 5533static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5534 unsigned int flags)
3de4586c 5535{
3837d208 5536 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5662344b 5537
3837d208
AV
5538 if (inode == ERR_PTR(-ENOENT))
5539 inode = NULL;
41d28bca 5540 return d_splice_alias(inode, dentry);
39279cc3
CM
5541}
5542
23b5ec74
JB
5543/*
5544 * All this infrastructure exists because dir_emit can fault, and we are holding
5545 * the tree lock when doing readdir. For now just allocate a buffer and copy
5546 * our information into that, and then dir_emit from the buffer. This is
5547 * similar to what NFS does, only we don't keep the buffer around in pagecache
5548 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5549 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5550 * tree lock.
5551 */
5552static int btrfs_opendir(struct inode *inode, struct file *file)
5553{
5554 struct btrfs_file_private *private;
5555
5556 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5557 if (!private)
5558 return -ENOMEM;
5559 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5560 if (!private->filldir_buf) {
5561 kfree(private);
5562 return -ENOMEM;
5563 }
5564 file->private_data = private;
5565 return 0;
5566}
5567
5568struct dir_entry {
5569 u64 ino;
5570 u64 offset;
5571 unsigned type;
5572 int name_len;
5573};
5574
5575static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5576{
5577 while (entries--) {
5578 struct dir_entry *entry = addr;
5579 char *name = (char *)(entry + 1);
5580
92d32170
DS
5581 ctx->pos = get_unaligned(&entry->offset);
5582 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5583 get_unaligned(&entry->ino),
5584 get_unaligned(&entry->type)))
23b5ec74 5585 return 1;
92d32170
DS
5586 addr += sizeof(struct dir_entry) +
5587 get_unaligned(&entry->name_len);
23b5ec74
JB
5588 ctx->pos++;
5589 }
5590 return 0;
5591}
5592
9cdda8d3 5593static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5594{
9cdda8d3 5595 struct inode *inode = file_inode(file);
39279cc3 5596 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5597 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5598 struct btrfs_dir_item *di;
5599 struct btrfs_key key;
5f39d397 5600 struct btrfs_key found_key;
39279cc3 5601 struct btrfs_path *path;
23b5ec74 5602 void *addr;
16cdcec7
MX
5603 struct list_head ins_list;
5604 struct list_head del_list;
39279cc3 5605 int ret;
5f39d397 5606 struct extent_buffer *leaf;
39279cc3 5607 int slot;
5f39d397
CM
5608 char *name_ptr;
5609 int name_len;
23b5ec74
JB
5610 int entries = 0;
5611 int total_len = 0;
02dbfc99 5612 bool put = false;
c2951f32 5613 struct btrfs_key location;
5f39d397 5614
9cdda8d3
AV
5615 if (!dir_emit_dots(file, ctx))
5616 return 0;
5617
49593bfa 5618 path = btrfs_alloc_path();
16cdcec7
MX
5619 if (!path)
5620 return -ENOMEM;
ff5714cc 5621
23b5ec74 5622 addr = private->filldir_buf;
e4058b54 5623 path->reada = READA_FORWARD;
49593bfa 5624
c2951f32
JM
5625 INIT_LIST_HEAD(&ins_list);
5626 INIT_LIST_HEAD(&del_list);
5627 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5628
23b5ec74 5629again:
c2951f32 5630 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5631 key.offset = ctx->pos;
4a0cc7ca 5632 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5633
39279cc3
CM
5634 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5635 if (ret < 0)
5636 goto err;
49593bfa
DW
5637
5638 while (1) {
23b5ec74
JB
5639 struct dir_entry *entry;
5640
5f39d397 5641 leaf = path->nodes[0];
39279cc3 5642 slot = path->slots[0];
b9e03af0
LZ
5643 if (slot >= btrfs_header_nritems(leaf)) {
5644 ret = btrfs_next_leaf(root, path);
5645 if (ret < 0)
5646 goto err;
5647 else if (ret > 0)
5648 break;
5649 continue;
39279cc3 5650 }
3de4586c 5651
5f39d397
CM
5652 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5653
5654 if (found_key.objectid != key.objectid)
39279cc3 5655 break;
c2951f32 5656 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5657 break;
9cdda8d3 5658 if (found_key.offset < ctx->pos)
b9e03af0 5659 goto next;
c2951f32 5660 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5661 goto next;
39279cc3 5662 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
c2951f32 5663 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5664 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5665 PAGE_SIZE) {
5666 btrfs_release_path(path);
5667 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5668 if (ret)
5669 goto nopos;
5670 addr = private->filldir_buf;
5671 entries = 0;
5672 total_len = 0;
5673 goto again;
c2951f32 5674 }
23b5ec74
JB
5675
5676 entry = addr;
92d32170 5677 put_unaligned(name_len, &entry->name_len);
23b5ec74 5678 name_ptr = (char *)(entry + 1);
c2951f32
JM
5679 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5680 name_len);
7d157c3d 5681 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
92d32170 5682 &entry->type);
c2951f32 5683 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
5684 put_unaligned(location.objectid, &entry->ino);
5685 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
5686 entries++;
5687 addr += sizeof(struct dir_entry) + name_len;
5688 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
5689next:
5690 path->slots[0]++;
39279cc3 5691 }
23b5ec74
JB
5692 btrfs_release_path(path);
5693
5694 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5695 if (ret)
5696 goto nopos;
49593bfa 5697
d2fbb2b5 5698 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5699 if (ret)
bc4ef759
DS
5700 goto nopos;
5701
db62efbb
ZB
5702 /*
5703 * Stop new entries from being returned after we return the last
5704 * entry.
5705 *
5706 * New directory entries are assigned a strictly increasing
5707 * offset. This means that new entries created during readdir
5708 * are *guaranteed* to be seen in the future by that readdir.
5709 * This has broken buggy programs which operate on names as
5710 * they're returned by readdir. Until we re-use freed offsets
5711 * we have this hack to stop new entries from being returned
5712 * under the assumption that they'll never reach this huge
5713 * offset.
5714 *
5715 * This is being careful not to overflow 32bit loff_t unless the
5716 * last entry requires it because doing so has broken 32bit apps
5717 * in the past.
5718 */
c2951f32
JM
5719 if (ctx->pos >= INT_MAX)
5720 ctx->pos = LLONG_MAX;
5721 else
5722 ctx->pos = INT_MAX;
39279cc3
CM
5723nopos:
5724 ret = 0;
5725err:
02dbfc99
OS
5726 if (put)
5727 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5728 btrfs_free_path(path);
39279cc3
CM
5729 return ret;
5730}
5731
39279cc3 5732/*
54aa1f4d 5733 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5734 * inode changes. But, it is most likely to find the inode in cache.
5735 * FIXME, needs more benchmarking...there are no reasons other than performance
5736 * to keep or drop this code.
5737 */
48a3b636 5738static int btrfs_dirty_inode(struct inode *inode)
39279cc3 5739{
2ff7e61e 5740 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5741 struct btrfs_root *root = BTRFS_I(inode)->root;
5742 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5743 int ret;
5744
72ac3c0d 5745 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5746 return 0;
39279cc3 5747
7a7eaa40 5748 trans = btrfs_join_transaction(root);
22c44fe6
JB
5749 if (IS_ERR(trans))
5750 return PTR_ERR(trans);
8929ecfa
YZ
5751
5752 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5753 if (ret && ret == -ENOSPC) {
5754 /* whoops, lets try again with the full transaction */
3a45bb20 5755 btrfs_end_transaction(trans);
94b60442 5756 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5757 if (IS_ERR(trans))
5758 return PTR_ERR(trans);
8929ecfa 5759
94b60442 5760 ret = btrfs_update_inode(trans, root, inode);
94b60442 5761 }
3a45bb20 5762 btrfs_end_transaction(trans);
16cdcec7 5763 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 5764 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
5765
5766 return ret;
5767}
5768
5769/*
5770 * This is a copy of file_update_time. We need this so we can return error on
5771 * ENOSPC for updating the inode in the case of file write and mmap writes.
5772 */
95582b00 5773static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
e41f941a 5774 int flags)
22c44fe6 5775{
2bc55652 5776 struct btrfs_root *root = BTRFS_I(inode)->root;
3a8c7231 5777 bool dirty = flags & ~S_VERSION;
2bc55652
AB
5778
5779 if (btrfs_root_readonly(root))
5780 return -EROFS;
5781
e41f941a 5782 if (flags & S_VERSION)
3a8c7231 5783 dirty |= inode_maybe_inc_iversion(inode, dirty);
e41f941a
JB
5784 if (flags & S_CTIME)
5785 inode->i_ctime = *now;
5786 if (flags & S_MTIME)
5787 inode->i_mtime = *now;
5788 if (flags & S_ATIME)
5789 inode->i_atime = *now;
3a8c7231 5790 return dirty ? btrfs_dirty_inode(inode) : 0;
39279cc3
CM
5791}
5792
d352ac68
CM
5793/*
5794 * find the highest existing sequence number in a directory
5795 * and then set the in-memory index_cnt variable to reflect
5796 * free sequence numbers
5797 */
4c570655 5798static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 5799{
4c570655 5800 struct btrfs_root *root = inode->root;
aec7477b
JB
5801 struct btrfs_key key, found_key;
5802 struct btrfs_path *path;
5803 struct extent_buffer *leaf;
5804 int ret;
5805
4c570655 5806 key.objectid = btrfs_ino(inode);
962a298f 5807 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
5808 key.offset = (u64)-1;
5809
5810 path = btrfs_alloc_path();
5811 if (!path)
5812 return -ENOMEM;
5813
5814 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5815 if (ret < 0)
5816 goto out;
5817 /* FIXME: we should be able to handle this */
5818 if (ret == 0)
5819 goto out;
5820 ret = 0;
5821
5822 /*
5823 * MAGIC NUMBER EXPLANATION:
5824 * since we search a directory based on f_pos we have to start at 2
5825 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5826 * else has to start at 2
5827 */
5828 if (path->slots[0] == 0) {
4c570655 5829 inode->index_cnt = 2;
aec7477b
JB
5830 goto out;
5831 }
5832
5833 path->slots[0]--;
5834
5835 leaf = path->nodes[0];
5836 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5837
4c570655 5838 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 5839 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 5840 inode->index_cnt = 2;
aec7477b
JB
5841 goto out;
5842 }
5843
4c570655 5844 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
5845out:
5846 btrfs_free_path(path);
5847 return ret;
5848}
5849
d352ac68
CM
5850/*
5851 * helper to find a free sequence number in a given directory. This current
5852 * code is very simple, later versions will do smarter things in the btree
5853 */
877574e2 5854int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
5855{
5856 int ret = 0;
5857
877574e2
NB
5858 if (dir->index_cnt == (u64)-1) {
5859 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
5860 if (ret) {
5861 ret = btrfs_set_inode_index_count(dir);
5862 if (ret)
5863 return ret;
5864 }
aec7477b
JB
5865 }
5866
877574e2
NB
5867 *index = dir->index_cnt;
5868 dir->index_cnt++;
aec7477b
JB
5869
5870 return ret;
5871}
5872
b0d5d10f
CM
5873static int btrfs_insert_inode_locked(struct inode *inode)
5874{
5875 struct btrfs_iget_args args;
0202e83f
DS
5876
5877 args.ino = BTRFS_I(inode)->location.objectid;
b0d5d10f
CM
5878 args.root = BTRFS_I(inode)->root;
5879
5880 return insert_inode_locked4(inode,
5881 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5882 btrfs_find_actor, &args);
5883}
5884
19aee8de
AJ
5885/*
5886 * Inherit flags from the parent inode.
5887 *
5888 * Currently only the compression flags and the cow flags are inherited.
5889 */
5890static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
5891{
5892 unsigned int flags;
5893
5894 if (!dir)
5895 return;
5896
5897 flags = BTRFS_I(dir)->flags;
5898
5899 if (flags & BTRFS_INODE_NOCOMPRESS) {
5900 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
5901 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
5902 } else if (flags & BTRFS_INODE_COMPRESS) {
5903 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
5904 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
5905 }
5906
5907 if (flags & BTRFS_INODE_NODATACOW) {
5908 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
5909 if (S_ISREG(inode->i_mode))
5910 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5911 }
5912
7b6a221e 5913 btrfs_sync_inode_flags_to_i_flags(inode);
19aee8de
AJ
5914}
5915
39279cc3
CM
5916static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5917 struct btrfs_root *root,
aec7477b 5918 struct inode *dir,
9c58309d 5919 const char *name, int name_len,
175a4eb7
AV
5920 u64 ref_objectid, u64 objectid,
5921 umode_t mode, u64 *index)
39279cc3 5922{
0b246afa 5923 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 5924 struct inode *inode;
5f39d397 5925 struct btrfs_inode_item *inode_item;
39279cc3 5926 struct btrfs_key *location;
5f39d397 5927 struct btrfs_path *path;
9c58309d
CM
5928 struct btrfs_inode_ref *ref;
5929 struct btrfs_key key[2];
5930 u32 sizes[2];
ef3b9af5 5931 int nitems = name ? 2 : 1;
9c58309d 5932 unsigned long ptr;
11a19a90 5933 unsigned int nofs_flag;
39279cc3 5934 int ret;
39279cc3 5935
5f39d397 5936 path = btrfs_alloc_path();
d8926bb3
MF
5937 if (!path)
5938 return ERR_PTR(-ENOMEM);
5f39d397 5939
11a19a90 5940 nofs_flag = memalloc_nofs_save();
0b246afa 5941 inode = new_inode(fs_info->sb);
11a19a90 5942 memalloc_nofs_restore(nofs_flag);
8fb27640
YS
5943 if (!inode) {
5944 btrfs_free_path(path);
39279cc3 5945 return ERR_PTR(-ENOMEM);
8fb27640 5946 }
39279cc3 5947
5762b5c9
FM
5948 /*
5949 * O_TMPFILE, set link count to 0, so that after this point,
5950 * we fill in an inode item with the correct link count.
5951 */
5952 if (!name)
5953 set_nlink(inode, 0);
5954
581bb050
LZ
5955 /*
5956 * we have to initialize this early, so we can reclaim the inode
5957 * number if we fail afterwards in this function.
5958 */
5959 inode->i_ino = objectid;
5960
ef3b9af5 5961 if (dir && name) {
1abe9b8a 5962 trace_btrfs_inode_request(dir);
5963
877574e2 5964 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 5965 if (ret) {
8fb27640 5966 btrfs_free_path(path);
09771430 5967 iput(inode);
aec7477b 5968 return ERR_PTR(ret);
09771430 5969 }
ef3b9af5
FM
5970 } else if (dir) {
5971 *index = 0;
aec7477b
JB
5972 }
5973 /*
5974 * index_cnt is ignored for everything but a dir,
df6703e1 5975 * btrfs_set_inode_index_count has an explanation for the magic
aec7477b
JB
5976 * number
5977 */
5978 BTRFS_I(inode)->index_cnt = 2;
67de1176 5979 BTRFS_I(inode)->dir_index = *index;
5c8fd99f 5980 BTRFS_I(inode)->root = btrfs_grab_root(root);
e02119d5 5981 BTRFS_I(inode)->generation = trans->transid;
76195853 5982 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5983
5dc562c5
JB
5984 /*
5985 * We could have gotten an inode number from somebody who was fsynced
5986 * and then removed in this same transaction, so let's just set full
5987 * sync since it will be a full sync anyway and this will blow away the
5988 * old info in the log.
5989 */
5990 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5991
9c58309d 5992 key[0].objectid = objectid;
962a298f 5993 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
5994 key[0].offset = 0;
5995
9c58309d 5996 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
5997
5998 if (name) {
5999 /*
6000 * Start new inodes with an inode_ref. This is slightly more
6001 * efficient for small numbers of hard links since they will
6002 * be packed into one item. Extended refs will kick in if we
6003 * add more hard links than can fit in the ref item.
6004 */
6005 key[1].objectid = objectid;
962a298f 6006 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6007 key[1].offset = ref_objectid;
6008
6009 sizes[1] = name_len + sizeof(*ref);
6010 }
9c58309d 6011
b0d5d10f
CM
6012 location = &BTRFS_I(inode)->location;
6013 location->objectid = objectid;
6014 location->offset = 0;
962a298f 6015 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6016
6017 ret = btrfs_insert_inode_locked(inode);
32955c54
AV
6018 if (ret < 0) {
6019 iput(inode);
b0d5d10f 6020 goto fail;
32955c54 6021 }
b0d5d10f 6022
b9473439 6023 path->leave_spinning = 1;
ef3b9af5 6024 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6025 if (ret != 0)
b0d5d10f 6026 goto fail_unlock;
5f39d397 6027
ecc11fab 6028 inode_init_owner(inode, dir, mode);
a76a3cd4 6029 inode_set_bytes(inode, 0);
9cc97d64 6030
c2050a45 6031 inode->i_mtime = current_time(inode);
9cc97d64 6032 inode->i_atime = inode->i_mtime;
6033 inode->i_ctime = inode->i_mtime;
d3c6be6f 6034 BTRFS_I(inode)->i_otime = inode->i_mtime;
9cc97d64 6035
5f39d397
CM
6036 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6037 struct btrfs_inode_item);
b159fa28 6038 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6039 sizeof(*inode_item));
e02119d5 6040 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6041
ef3b9af5
FM
6042 if (name) {
6043 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6044 struct btrfs_inode_ref);
6045 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6046 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6047 ptr = (unsigned long)(ref + 1);
6048 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6049 }
9c58309d 6050
5f39d397
CM
6051 btrfs_mark_buffer_dirty(path->nodes[0]);
6052 btrfs_free_path(path);
6053
6cbff00f
CH
6054 btrfs_inherit_iflags(inode, dir);
6055
569254b0 6056 if (S_ISREG(mode)) {
0b246afa 6057 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6058 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6059 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6060 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6061 BTRFS_INODE_NODATASUM;
94272164
CM
6062 }
6063
5d4f98a2 6064 inode_tree_add(inode);
1abe9b8a 6065
6066 trace_btrfs_inode_new(inode);
1973f0fa 6067 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6068
8ea05e3a
AB
6069 btrfs_update_root_times(trans, root);
6070
63541927
FDBM
6071 ret = btrfs_inode_inherit_props(trans, inode, dir);
6072 if (ret)
0b246afa 6073 btrfs_err(fs_info,
63541927 6074 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6075 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6076
39279cc3 6077 return inode;
b0d5d10f
CM
6078
6079fail_unlock:
32955c54 6080 discard_new_inode(inode);
5f39d397 6081fail:
ef3b9af5 6082 if (dir && name)
aec7477b 6083 BTRFS_I(dir)->index_cnt--;
5f39d397
CM
6084 btrfs_free_path(path);
6085 return ERR_PTR(ret);
39279cc3
CM
6086}
6087
d352ac68
CM
6088/*
6089 * utility function to add 'inode' into 'parent_inode' with
6090 * a give name and a given sequence number.
6091 * if 'add_backref' is true, also insert a backref from the
6092 * inode to the parent directory.
6093 */
e02119d5 6094int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6095 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6096 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6097{
4df27c4d 6098 int ret = 0;
39279cc3 6099 struct btrfs_key key;
db0a669f
NB
6100 struct btrfs_root *root = parent_inode->root;
6101 u64 ino = btrfs_ino(inode);
6102 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6103
33345d01 6104 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6105 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6106 } else {
33345d01 6107 key.objectid = ino;
962a298f 6108 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6109 key.offset = 0;
6110 }
6111
33345d01 6112 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6025c19f 6113 ret = btrfs_add_root_ref(trans, key.objectid,
0b246afa
JM
6114 root->root_key.objectid, parent_ino,
6115 index, name, name_len);
4df27c4d 6116 } else if (add_backref) {
33345d01
LZ
6117 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6118 parent_ino, index);
4df27c4d 6119 }
39279cc3 6120
79787eaa
JM
6121 /* Nothing to clean up yet */
6122 if (ret)
6123 return ret;
4df27c4d 6124
684572df 6125 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
db0a669f 6126 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6127 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6128 goto fail_dir_item;
6129 else if (ret) {
66642832 6130 btrfs_abort_transaction(trans, ret);
79787eaa 6131 return ret;
39279cc3 6132 }
79787eaa 6133
db0a669f 6134 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6135 name_len * 2);
db0a669f 6136 inode_inc_iversion(&parent_inode->vfs_inode);
5338e43a
FM
6137 /*
6138 * If we are replaying a log tree, we do not want to update the mtime
6139 * and ctime of the parent directory with the current time, since the
6140 * log replay procedure is responsible for setting them to their correct
6141 * values (the ones it had when the fsync was done).
6142 */
6143 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6144 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6145
6146 parent_inode->vfs_inode.i_mtime = now;
6147 parent_inode->vfs_inode.i_ctime = now;
6148 }
db0a669f 6149 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6150 if (ret)
66642832 6151 btrfs_abort_transaction(trans, ret);
39279cc3 6152 return ret;
fe66a05a
CM
6153
6154fail_dir_item:
6155 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6156 u64 local_index;
6157 int err;
3ee1c553 6158 err = btrfs_del_root_ref(trans, key.objectid,
0b246afa
JM
6159 root->root_key.objectid, parent_ino,
6160 &local_index, name, name_len);
1690dd41
JT
6161 if (err)
6162 btrfs_abort_transaction(trans, err);
fe66a05a
CM
6163 } else if (add_backref) {
6164 u64 local_index;
6165 int err;
6166
6167 err = btrfs_del_inode_ref(trans, root, name, name_len,
6168 ino, parent_ino, &local_index);
1690dd41
JT
6169 if (err)
6170 btrfs_abort_transaction(trans, err);
fe66a05a 6171 }
1690dd41
JT
6172
6173 /* Return the original error code */
fe66a05a 6174 return ret;
39279cc3
CM
6175}
6176
6177static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6178 struct btrfs_inode *dir, struct dentry *dentry,
6179 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6180{
a1b075d2
JB
6181 int err = btrfs_add_link(trans, dir, inode,
6182 dentry->d_name.name, dentry->d_name.len,
6183 backref, index);
39279cc3
CM
6184 if (err > 0)
6185 err = -EEXIST;
6186 return err;
6187}
6188
618e21d5 6189static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6190 umode_t mode, dev_t rdev)
618e21d5 6191{
2ff7e61e 6192 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6193 struct btrfs_trans_handle *trans;
6194 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6195 struct inode *inode = NULL;
618e21d5 6196 int err;
618e21d5 6197 u64 objectid;
00e4e6b3 6198 u64 index = 0;
618e21d5 6199
9ed74f2d
JB
6200 /*
6201 * 2 for inode item and ref
6202 * 2 for dir items
6203 * 1 for xattr if selinux is on
6204 */
a22285a6
YZ
6205 trans = btrfs_start_transaction(root, 5);
6206 if (IS_ERR(trans))
6207 return PTR_ERR(trans);
1832a6d5 6208
581bb050
LZ
6209 err = btrfs_find_free_ino(root, &objectid);
6210 if (err)
6211 goto out_unlock;
6212
aec7477b 6213 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6214 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6215 mode, &index);
7cf96da3
TI
6216 if (IS_ERR(inode)) {
6217 err = PTR_ERR(inode);
32955c54 6218 inode = NULL;
618e21d5 6219 goto out_unlock;
7cf96da3 6220 }
618e21d5 6221
ad19db71
CS
6222 /*
6223 * If the active LSM wants to access the inode during
6224 * d_instantiate it needs these. Smack checks to see
6225 * if the filesystem supports xattrs by looking at the
6226 * ops vector.
6227 */
ad19db71 6228 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6229 init_special_inode(inode, inode->i_mode, rdev);
6230
6231 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6232 if (err)
32955c54 6233 goto out_unlock;
b0d5d10f 6234
cef415af
NB
6235 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6236 0, index);
32955c54
AV
6237 if (err)
6238 goto out_unlock;
6239
6240 btrfs_update_inode(trans, root, inode);
6241 d_instantiate_new(dentry, inode);
b0d5d10f 6242
618e21d5 6243out_unlock:
3a45bb20 6244 btrfs_end_transaction(trans);
2ff7e61e 6245 btrfs_btree_balance_dirty(fs_info);
32955c54 6246 if (err && inode) {
618e21d5 6247 inode_dec_link_count(inode);
32955c54 6248 discard_new_inode(inode);
618e21d5 6249 }
618e21d5
JB
6250 return err;
6251}
6252
39279cc3 6253static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6254 umode_t mode, bool excl)
39279cc3 6255{
2ff7e61e 6256 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6257 struct btrfs_trans_handle *trans;
6258 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6259 struct inode *inode = NULL;
a22285a6 6260 int err;
39279cc3 6261 u64 objectid;
00e4e6b3 6262 u64 index = 0;
39279cc3 6263
9ed74f2d
JB
6264 /*
6265 * 2 for inode item and ref
6266 * 2 for dir items
6267 * 1 for xattr if selinux is on
6268 */
a22285a6
YZ
6269 trans = btrfs_start_transaction(root, 5);
6270 if (IS_ERR(trans))
6271 return PTR_ERR(trans);
9ed74f2d 6272
581bb050
LZ
6273 err = btrfs_find_free_ino(root, &objectid);
6274 if (err)
6275 goto out_unlock;
6276
aec7477b 6277 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6278 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6279 mode, &index);
7cf96da3
TI
6280 if (IS_ERR(inode)) {
6281 err = PTR_ERR(inode);
32955c54 6282 inode = NULL;
39279cc3 6283 goto out_unlock;
7cf96da3 6284 }
ad19db71
CS
6285 /*
6286 * If the active LSM wants to access the inode during
6287 * d_instantiate it needs these. Smack checks to see
6288 * if the filesystem supports xattrs by looking at the
6289 * ops vector.
6290 */
6291 inode->i_fop = &btrfs_file_operations;
6292 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6293 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6294
6295 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6296 if (err)
32955c54 6297 goto out_unlock;
b0d5d10f
CM
6298
6299 err = btrfs_update_inode(trans, root, inode);
6300 if (err)
32955c54 6301 goto out_unlock;
ad19db71 6302
cef415af
NB
6303 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6304 0, index);
39279cc3 6305 if (err)
32955c54 6306 goto out_unlock;
43baa579 6307
43baa579 6308 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1e2e547a 6309 d_instantiate_new(dentry, inode);
43baa579 6310
39279cc3 6311out_unlock:
3a45bb20 6312 btrfs_end_transaction(trans);
32955c54 6313 if (err && inode) {
39279cc3 6314 inode_dec_link_count(inode);
32955c54 6315 discard_new_inode(inode);
39279cc3 6316 }
2ff7e61e 6317 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6318 return err;
6319}
6320
6321static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6322 struct dentry *dentry)
6323{
271dba45 6324 struct btrfs_trans_handle *trans = NULL;
39279cc3 6325 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6326 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6327 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6328 u64 index;
39279cc3
CM
6329 int err;
6330 int drop_inode = 0;
6331
4a8be425 6332 /* do not allow sys_link's with other subvols of the same device */
4fd786e6 6333 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
3ab3564f 6334 return -EXDEV;
4a8be425 6335
f186373f 6336 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6337 return -EMLINK;
4a8be425 6338
877574e2 6339 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6340 if (err)
6341 goto fail;
6342
a22285a6 6343 /*
7e6b6465 6344 * 2 items for inode and inode ref
a22285a6 6345 * 2 items for dir items
7e6b6465 6346 * 1 item for parent inode
399b0bbf 6347 * 1 item for orphan item deletion if O_TMPFILE
a22285a6 6348 */
399b0bbf 6349 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
a22285a6
YZ
6350 if (IS_ERR(trans)) {
6351 err = PTR_ERR(trans);
271dba45 6352 trans = NULL;
a22285a6
YZ
6353 goto fail;
6354 }
5f39d397 6355
67de1176
MX
6356 /* There are several dir indexes for this inode, clear the cache. */
6357 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6358 inc_nlink(inode);
0c4d2d95 6359 inode_inc_iversion(inode);
c2050a45 6360 inode->i_ctime = current_time(inode);
7de9c6ee 6361 ihold(inode);
e9976151 6362 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6363
cef415af
NB
6364 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6365 1, index);
5f39d397 6366
a5719521 6367 if (err) {
54aa1f4d 6368 drop_inode = 1;
a5719521 6369 } else {
10d9f309 6370 struct dentry *parent = dentry->d_parent;
d4682ba0
FM
6371 int ret;
6372
a5719521 6373 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6374 if (err)
6375 goto fail;
ef3b9af5
FM
6376 if (inode->i_nlink == 1) {
6377 /*
6378 * If new hard link count is 1, it's a file created
6379 * with open(2) O_TMPFILE flag.
6380 */
3d6ae7bb 6381 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6382 if (err)
6383 goto fail;
6384 }
08c422c2 6385 d_instantiate(dentry, inode);
d4682ba0
FM
6386 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6387 true, NULL);
6388 if (ret == BTRFS_NEED_TRANS_COMMIT) {
6389 err = btrfs_commit_transaction(trans);
6390 trans = NULL;
6391 }
a5719521 6392 }
39279cc3 6393
1832a6d5 6394fail:
271dba45 6395 if (trans)
3a45bb20 6396 btrfs_end_transaction(trans);
39279cc3
CM
6397 if (drop_inode) {
6398 inode_dec_link_count(inode);
6399 iput(inode);
6400 }
2ff7e61e 6401 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6402 return err;
6403}
6404
18bb1db3 6405static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6406{
2ff7e61e 6407 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6408 struct inode *inode = NULL;
39279cc3
CM
6409 struct btrfs_trans_handle *trans;
6410 struct btrfs_root *root = BTRFS_I(dir)->root;
6411 int err = 0;
b9d86667 6412 u64 objectid = 0;
00e4e6b3 6413 u64 index = 0;
39279cc3 6414
9ed74f2d
JB
6415 /*
6416 * 2 items for inode and ref
6417 * 2 items for dir items
6418 * 1 for xattr if selinux is on
6419 */
a22285a6
YZ
6420 trans = btrfs_start_transaction(root, 5);
6421 if (IS_ERR(trans))
6422 return PTR_ERR(trans);
39279cc3 6423
581bb050
LZ
6424 err = btrfs_find_free_ino(root, &objectid);
6425 if (err)
6426 goto out_fail;
6427
aec7477b 6428 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6429 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6430 S_IFDIR | mode, &index);
39279cc3
CM
6431 if (IS_ERR(inode)) {
6432 err = PTR_ERR(inode);
32955c54 6433 inode = NULL;
39279cc3
CM
6434 goto out_fail;
6435 }
5f39d397 6436
b0d5d10f
CM
6437 /* these must be set before we unlock the inode */
6438 inode->i_op = &btrfs_dir_inode_operations;
6439 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6440
2a7dba39 6441 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6442 if (err)
32955c54 6443 goto out_fail;
39279cc3 6444
6ef06d27 6445 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6446 err = btrfs_update_inode(trans, root, inode);
6447 if (err)
32955c54 6448 goto out_fail;
5f39d397 6449
db0a669f
NB
6450 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6451 dentry->d_name.name,
6452 dentry->d_name.len, 0, index);
39279cc3 6453 if (err)
32955c54 6454 goto out_fail;
5f39d397 6455
1e2e547a 6456 d_instantiate_new(dentry, inode);
39279cc3
CM
6457
6458out_fail:
3a45bb20 6459 btrfs_end_transaction(trans);
32955c54 6460 if (err && inode) {
c7cfb8a5 6461 inode_dec_link_count(inode);
32955c54 6462 discard_new_inode(inode);
c7cfb8a5 6463 }
2ff7e61e 6464 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6465 return err;
6466}
6467
c8b97818 6468static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6469 struct page *page,
c8b97818
CM
6470 size_t pg_offset, u64 extent_offset,
6471 struct btrfs_file_extent_item *item)
6472{
6473 int ret;
6474 struct extent_buffer *leaf = path->nodes[0];
6475 char *tmp;
6476 size_t max_size;
6477 unsigned long inline_size;
6478 unsigned long ptr;
261507a0 6479 int compress_type;
c8b97818
CM
6480
6481 WARN_ON(pg_offset != 0);
261507a0 6482 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6483 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6484 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6485 btrfs_item_nr(path->slots[0]));
c8b97818 6486 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6487 if (!tmp)
6488 return -ENOMEM;
c8b97818
CM
6489 ptr = btrfs_file_extent_inline_start(item);
6490
6491 read_extent_buffer(leaf, tmp, ptr, inline_size);
6492
09cbfeaf 6493 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6494 ret = btrfs_decompress(compress_type, tmp, page,
6495 extent_offset, inline_size, max_size);
e1699d2d
ZB
6496
6497 /*
6498 * decompression code contains a memset to fill in any space between the end
6499 * of the uncompressed data and the end of max_size in case the decompressed
6500 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6501 * the end of an inline extent and the beginning of the next block, so we
6502 * cover that region here.
6503 */
6504
6505 if (max_size + pg_offset < PAGE_SIZE) {
6506 char *map = kmap(page);
6507 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6508 kunmap(page);
6509 }
c8b97818 6510 kfree(tmp);
166ae5a4 6511 return ret;
c8b97818
CM
6512}
6513
39b07b5d
OS
6514/**
6515 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6516 * @inode: file to search in
6517 * @page: page to read extent data into if the extent is inline
6518 * @pg_offset: offset into @page to copy to
6519 * @start: file offset
6520 * @len: length of range starting at @start
6521 *
6522 * This returns the first &struct extent_map which overlaps with the given
6523 * range, reading it from the B-tree and caching it if necessary. Note that
6524 * there may be more extents which overlap the given range after the returned
6525 * extent_map.
d352ac68 6526 *
39b07b5d
OS
6527 * If @page is not NULL and the extent is inline, this also reads the extent
6528 * data directly into the page and marks the extent up to date in the io_tree.
6529 *
6530 * Return: ERR_PTR on error, non-NULL extent_map on success.
d352ac68 6531 */
fc4f21b1 6532struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
6533 struct page *page, size_t pg_offset,
6534 u64 start, u64 len)
a52d9a80 6535{
3ffbd68c 6536 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a52d9a80
CM
6537 int ret;
6538 int err = 0;
a52d9a80
CM
6539 u64 extent_start = 0;
6540 u64 extent_end = 0;
fc4f21b1 6541 u64 objectid = btrfs_ino(inode);
7e74e235 6542 int extent_type = -1;
f421950f 6543 struct btrfs_path *path = NULL;
fc4f21b1 6544 struct btrfs_root *root = inode->root;
a52d9a80 6545 struct btrfs_file_extent_item *item;
5f39d397
CM
6546 struct extent_buffer *leaf;
6547 struct btrfs_key found_key;
a52d9a80 6548 struct extent_map *em = NULL;
fc4f21b1
NB
6549 struct extent_map_tree *em_tree = &inode->extent_tree;
6550 struct extent_io_tree *io_tree = &inode->io_tree;
a52d9a80 6551
890871be 6552 read_lock(&em_tree->lock);
d1310b2e 6553 em = lookup_extent_mapping(em_tree, start, len);
890871be 6554 read_unlock(&em_tree->lock);
d1310b2e 6555
a52d9a80 6556 if (em) {
e1c4b745
CM
6557 if (em->start > start || em->start + em->len <= start)
6558 free_extent_map(em);
6559 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6560 free_extent_map(em);
6561 else
6562 goto out;
a52d9a80 6563 }
172ddd60 6564 em = alloc_extent_map();
a52d9a80 6565 if (!em) {
d1310b2e
CM
6566 err = -ENOMEM;
6567 goto out;
a52d9a80 6568 }
d1310b2e 6569 em->start = EXTENT_MAP_HOLE;
445a6944 6570 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6571 em->len = (u64)-1;
c8b97818 6572 em->block_len = (u64)-1;
f421950f 6573
bee6ec82 6574 path = btrfs_alloc_path();
f421950f 6575 if (!path) {
bee6ec82
LB
6576 err = -ENOMEM;
6577 goto out;
f421950f
CM
6578 }
6579
bee6ec82
LB
6580 /* Chances are we'll be called again, so go ahead and do readahead */
6581 path->reada = READA_FORWARD;
6582
e49aabd9
LB
6583 /*
6584 * Unless we're going to uncompress the inline extent, no sleep would
6585 * happen.
6586 */
6587 path->leave_spinning = 1;
6588
5c9a702e 6589 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80
CM
6590 if (ret < 0) {
6591 err = ret;
6592 goto out;
b8eeab7f 6593 } else if (ret > 0) {
a52d9a80
CM
6594 if (path->slots[0] == 0)
6595 goto not_found;
6596 path->slots[0]--;
6597 }
6598
5f39d397
CM
6599 leaf = path->nodes[0];
6600 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6601 struct btrfs_file_extent_item);
5f39d397 6602 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5f39d397 6603 if (found_key.objectid != objectid ||
694c12ed 6604 found_key.type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6605 /*
6606 * If we backup past the first extent we want to move forward
6607 * and see if there is an extent in front of us, otherwise we'll
6608 * say there is a hole for our whole search range which can
6609 * cause problems.
6610 */
6611 extent_end = start;
6612 goto next;
a52d9a80
CM
6613 }
6614
694c12ed 6615 extent_type = btrfs_file_extent_type(leaf, item);
5f39d397 6616 extent_start = found_key.offset;
a5eeb3d1 6617 extent_end = btrfs_file_extent_end(path);
694c12ed
NB
6618 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6619 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6bf9e4bd
QW
6620 /* Only regular file could have regular/prealloc extent */
6621 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6622 ret = -EUCLEAN;
6623 btrfs_crit(fs_info,
6624 "regular/prealloc extent found for non-regular inode %llu",
6625 btrfs_ino(inode));
6626 goto out;
6627 }
09ed2f16
LB
6628 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6629 extent_start);
694c12ed 6630 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
09ed2f16
LB
6631 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6632 path->slots[0],
6633 extent_start);
9036c102 6634 }
25a50341 6635next:
9036c102
YZ
6636 if (start >= extent_end) {
6637 path->slots[0]++;
6638 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6639 ret = btrfs_next_leaf(root, path);
6640 if (ret < 0) {
6641 err = ret;
6642 goto out;
b8eeab7f 6643 } else if (ret > 0) {
9036c102 6644 goto not_found;
b8eeab7f 6645 }
9036c102 6646 leaf = path->nodes[0];
a52d9a80 6647 }
9036c102
YZ
6648 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6649 if (found_key.objectid != objectid ||
6650 found_key.type != BTRFS_EXTENT_DATA_KEY)
6651 goto not_found;
6652 if (start + len <= found_key.offset)
6653 goto not_found;
e2eca69d
WS
6654 if (start > found_key.offset)
6655 goto next;
02a033df
NB
6656
6657 /* New extent overlaps with existing one */
9036c102 6658 em->start = start;
70c8a91c 6659 em->orig_start = start;
9036c102 6660 em->len = found_key.offset - start;
02a033df
NB
6661 em->block_start = EXTENT_MAP_HOLE;
6662 goto insert;
9036c102
YZ
6663 }
6664
39b07b5d 6665 btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
7ffbb598 6666
694c12ed
NB
6667 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6668 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6669 goto insert;
694c12ed 6670 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6671 unsigned long ptr;
a52d9a80 6672 char *map;
3326d1b0
CM
6673 size_t size;
6674 size_t extent_offset;
6675 size_t copy_size;
a52d9a80 6676
39b07b5d 6677 if (!page)
689f9346 6678 goto out;
5f39d397 6679
e41ca589 6680 size = btrfs_file_extent_ram_bytes(leaf, item);
9036c102 6681 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6682 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6683 size - extent_offset);
3326d1b0 6684 em->start = extent_start + extent_offset;
0b246afa 6685 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 6686 em->orig_block_len = em->len;
70c8a91c 6687 em->orig_start = em->start;
689f9346 6688 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
e49aabd9
LB
6689
6690 btrfs_set_path_blocking(path);
bf46f52d 6691 if (!PageUptodate(page)) {
261507a0
LZ
6692 if (btrfs_file_extent_compression(leaf, item) !=
6693 BTRFS_COMPRESS_NONE) {
e40da0e5 6694 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6695 extent_offset, item);
166ae5a4
ZB
6696 if (ret) {
6697 err = ret;
6698 goto out;
6699 }
c8b97818
CM
6700 } else {
6701 map = kmap(page);
6702 read_extent_buffer(leaf, map + pg_offset, ptr,
6703 copy_size);
09cbfeaf 6704 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6705 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6706 PAGE_SIZE - pg_offset -
93c82d57
CM
6707 copy_size);
6708 }
c8b97818
CM
6709 kunmap(page);
6710 }
179e29e4 6711 flush_dcache_page(page);
a52d9a80 6712 }
d1310b2e 6713 set_extent_uptodate(io_tree, em->start,
507903b8 6714 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6715 goto insert;
a52d9a80
CM
6716 }
6717not_found:
6718 em->start = start;
70c8a91c 6719 em->orig_start = start;
d1310b2e 6720 em->len = len;
5f39d397 6721 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 6722insert:
b3b4aa74 6723 btrfs_release_path(path);
d1310b2e 6724 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 6725 btrfs_err(fs_info,
5d163e0e
JM
6726 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6727 em->start, em->len, start, len);
a52d9a80
CM
6728 err = -EIO;
6729 goto out;
6730 }
d1310b2e
CM
6731
6732 err = 0;
890871be 6733 write_lock(&em_tree->lock);
f46b24c9 6734 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
890871be 6735 write_unlock(&em_tree->lock);
a52d9a80 6736out:
c6414280 6737 btrfs_free_path(path);
1abe9b8a 6738
fc4f21b1 6739 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 6740
a52d9a80
CM
6741 if (err) {
6742 free_extent_map(em);
a52d9a80
CM
6743 return ERR_PTR(err);
6744 }
79787eaa 6745 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6746 return em;
6747}
6748
fc4f21b1 6749struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
4ab47a8d 6750 u64 start, u64 len)
ec29ed5b
CM
6751{
6752 struct extent_map *em;
6753 struct extent_map *hole_em = NULL;
f3714ef4 6754 u64 delalloc_start = start;
ec29ed5b 6755 u64 end;
f3714ef4
NB
6756 u64 delalloc_len;
6757 u64 delalloc_end;
ec29ed5b
CM
6758 int err = 0;
6759
39b07b5d 6760 em = btrfs_get_extent(inode, NULL, 0, start, len);
ec29ed5b
CM
6761 if (IS_ERR(em))
6762 return em;
9986277e
DC
6763 /*
6764 * If our em maps to:
6765 * - a hole or
6766 * - a pre-alloc extent,
6767 * there might actually be delalloc bytes behind it.
6768 */
6769 if (em->block_start != EXTENT_MAP_HOLE &&
6770 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6771 return em;
6772 else
6773 hole_em = em;
ec29ed5b
CM
6774
6775 /* check to see if we've wrapped (len == -1 or similar) */
6776 end = start + len;
6777 if (end < start)
6778 end = (u64)-1;
6779 else
6780 end -= 1;
6781
6782 em = NULL;
6783
6784 /* ok, we didn't find anything, lets look for delalloc */
f3714ef4 6785 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
ec29ed5b 6786 end, len, EXTENT_DELALLOC, 1);
f3714ef4
NB
6787 delalloc_end = delalloc_start + delalloc_len;
6788 if (delalloc_end < delalloc_start)
6789 delalloc_end = (u64)-1;
ec29ed5b
CM
6790
6791 /*
f3714ef4
NB
6792 * We didn't find anything useful, return the original results from
6793 * get_extent()
ec29ed5b 6794 */
f3714ef4 6795 if (delalloc_start > end || delalloc_end <= start) {
ec29ed5b
CM
6796 em = hole_em;
6797 hole_em = NULL;
6798 goto out;
6799 }
6800
f3714ef4
NB
6801 /*
6802 * Adjust the delalloc_start to make sure it doesn't go backwards from
6803 * the start they passed in
ec29ed5b 6804 */
f3714ef4
NB
6805 delalloc_start = max(start, delalloc_start);
6806 delalloc_len = delalloc_end - delalloc_start;
ec29ed5b 6807
f3714ef4
NB
6808 if (delalloc_len > 0) {
6809 u64 hole_start;
02950af4 6810 u64 hole_len;
f3714ef4 6811 const u64 hole_end = extent_map_end(hole_em);
ec29ed5b 6812
172ddd60 6813 em = alloc_extent_map();
ec29ed5b
CM
6814 if (!em) {
6815 err = -ENOMEM;
6816 goto out;
6817 }
f3714ef4
NB
6818
6819 ASSERT(hole_em);
ec29ed5b 6820 /*
f3714ef4
NB
6821 * When btrfs_get_extent can't find anything it returns one
6822 * huge hole
ec29ed5b 6823 *
f3714ef4
NB
6824 * Make sure what it found really fits our range, and adjust to
6825 * make sure it is based on the start from the caller
ec29ed5b 6826 */
f3714ef4
NB
6827 if (hole_end <= start || hole_em->start > end) {
6828 free_extent_map(hole_em);
6829 hole_em = NULL;
6830 } else {
6831 hole_start = max(hole_em->start, start);
6832 hole_len = hole_end - hole_start;
ec29ed5b 6833 }
f3714ef4
NB
6834
6835 if (hole_em && delalloc_start > hole_start) {
6836 /*
6837 * Our hole starts before our delalloc, so we have to
6838 * return just the parts of the hole that go until the
6839 * delalloc starts
ec29ed5b 6840 */
f3714ef4 6841 em->len = min(hole_len, delalloc_start - hole_start);
ec29ed5b
CM
6842 em->start = hole_start;
6843 em->orig_start = hole_start;
6844 /*
f3714ef4
NB
6845 * Don't adjust block start at all, it is fixed at
6846 * EXTENT_MAP_HOLE
ec29ed5b
CM
6847 */
6848 em->block_start = hole_em->block_start;
6849 em->block_len = hole_len;
f9e4fb53
LB
6850 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6851 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b 6852 } else {
f3714ef4
NB
6853 /*
6854 * Hole is out of passed range or it starts after
6855 * delalloc range
6856 */
6857 em->start = delalloc_start;
6858 em->len = delalloc_len;
6859 em->orig_start = delalloc_start;
ec29ed5b 6860 em->block_start = EXTENT_MAP_DELALLOC;
f3714ef4 6861 em->block_len = delalloc_len;
ec29ed5b 6862 }
bf8d32b9 6863 } else {
ec29ed5b
CM
6864 return hole_em;
6865 }
6866out:
6867
6868 free_extent_map(hole_em);
6869 if (err) {
6870 free_extent_map(em);
6871 return ERR_PTR(err);
6872 }
6873 return em;
6874}
6875
5f9a8a51
FM
6876static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
6877 const u64 start,
6878 const u64 len,
6879 const u64 orig_start,
6880 const u64 block_start,
6881 const u64 block_len,
6882 const u64 orig_block_len,
6883 const u64 ram_bytes,
6884 const int type)
6885{
6886 struct extent_map *em = NULL;
6887 int ret;
6888
5f9a8a51 6889 if (type != BTRFS_ORDERED_NOCOW) {
4b67c11d 6890 em = create_io_em(BTRFS_I(inode), start, len, orig_start,
6f9994db
LB
6891 block_start, block_len, orig_block_len,
6892 ram_bytes,
6893 BTRFS_COMPRESS_NONE, /* compress_type */
6894 type);
5f9a8a51
FM
6895 if (IS_ERR(em))
6896 goto out;
6897 }
6898 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
6899 len, block_len, type);
6900 if (ret) {
6901 if (em) {
6902 free_extent_map(em);
dcdbc059 6903 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
6904 start + len - 1, 0);
6905 }
6906 em = ERR_PTR(ret);
6907 }
6908 out:
5f9a8a51
FM
6909
6910 return em;
6911}
6912
4b46fce2
JB
6913static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6914 u64 start, u64 len)
6915{
0b246afa 6916 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 6917 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 6918 struct extent_map *em;
4b46fce2
JB
6919 struct btrfs_key ins;
6920 u64 alloc_hint;
6921 int ret;
4b46fce2 6922
43c69849 6923 alloc_hint = get_extent_allocation_hint(BTRFS_I(inode), start, len);
0b246afa 6924 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 6925 0, alloc_hint, &ins, 1, 1);
00361589
JB
6926 if (ret)
6927 return ERR_PTR(ret);
4b46fce2 6928
5f9a8a51
FM
6929 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
6930 ins.objectid, ins.offset, ins.offset,
6288d6ea 6931 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 6932 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 6933 if (IS_ERR(em))
2ff7e61e
JM
6934 btrfs_free_reserved_extent(fs_info, ins.objectid,
6935 ins.offset, 1);
de0ee0ed 6936
4b46fce2
JB
6937 return em;
6938}
6939
46bfbb5c 6940/*
e4ecaf90
QW
6941 * Check if we can do nocow write into the range [@offset, @offset + @len)
6942 *
6943 * @offset: File offset
6944 * @len: The length to write, will be updated to the nocow writeable
6945 * range
6946 * @orig_start: (optional) Return the original file offset of the file extent
6947 * @orig_len: (optional) Return the original on-disk length of the file extent
6948 * @ram_bytes: (optional) Return the ram_bytes of the file extent
6949 *
6950 * This function will flush ordered extents in the range to ensure proper
6951 * nocow checks for (nowait == false) case.
6952 *
6953 * Return:
6954 * >0 and update @len if we can do nocow write
6955 * 0 if we can't do nocow write
6956 * <0 if error happened
6957 *
6958 * NOTE: This only checks the file extents, caller is responsible to wait for
6959 * any ordered extents.
46bfbb5c 6960 */
00361589 6961noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
6962 u64 *orig_start, u64 *orig_block_len,
6963 u64 *ram_bytes)
46bfbb5c 6964{
2ff7e61e 6965 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
6966 struct btrfs_path *path;
6967 int ret;
6968 struct extent_buffer *leaf;
6969 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 6970 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
6971 struct btrfs_file_extent_item *fi;
6972 struct btrfs_key key;
6973 u64 disk_bytenr;
6974 u64 backref_offset;
6975 u64 extent_end;
6976 u64 num_bytes;
6977 int slot;
6978 int found_type;
7ee9e440 6979 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 6980
46bfbb5c
CM
6981 path = btrfs_alloc_path();
6982 if (!path)
6983 return -ENOMEM;
6984
f85b7379
DS
6985 ret = btrfs_lookup_file_extent(NULL, root, path,
6986 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
6987 if (ret < 0)
6988 goto out;
6989
6990 slot = path->slots[0];
6991 if (ret == 1) {
6992 if (slot == 0) {
6993 /* can't find the item, must cow */
6994 ret = 0;
6995 goto out;
6996 }
6997 slot--;
6998 }
6999 ret = 0;
7000 leaf = path->nodes[0];
7001 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7002 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7003 key.type != BTRFS_EXTENT_DATA_KEY) {
7004 /* not our file or wrong item type, must cow */
7005 goto out;
7006 }
7007
7008 if (key.offset > offset) {
7009 /* Wrong offset, must cow */
7010 goto out;
7011 }
7012
7013 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7014 found_type = btrfs_file_extent_type(leaf, fi);
7015 if (found_type != BTRFS_FILE_EXTENT_REG &&
7016 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7017 /* not a regular extent, must cow */
7018 goto out;
7019 }
7ee9e440
JB
7020
7021 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7022 goto out;
7023
e77751aa
MX
7024 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7025 if (extent_end <= offset)
7026 goto out;
7027
46bfbb5c 7028 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7029 if (disk_bytenr == 0)
7030 goto out;
7031
7032 if (btrfs_file_extent_compression(leaf, fi) ||
7033 btrfs_file_extent_encryption(leaf, fi) ||
7034 btrfs_file_extent_other_encoding(leaf, fi))
7035 goto out;
7036
78d4295b
EL
7037 /*
7038 * Do the same check as in btrfs_cross_ref_exist but without the
7039 * unnecessary search.
7040 */
7041 if (btrfs_file_extent_generation(leaf, fi) <=
7042 btrfs_root_last_snapshot(&root->root_item))
7043 goto out;
7044
46bfbb5c
CM
7045 backref_offset = btrfs_file_extent_offset(leaf, fi);
7046
7ee9e440
JB
7047 if (orig_start) {
7048 *orig_start = key.offset - backref_offset;
7049 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7050 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7051 }
eb384b55 7052
2ff7e61e 7053 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7054 goto out;
7b2b7085
MX
7055
7056 num_bytes = min(offset + *len, extent_end) - offset;
7057 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7058 u64 range_end;
7059
da17066c
JM
7060 range_end = round_up(offset + num_bytes,
7061 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7062 ret = test_range_bit(io_tree, offset, range_end,
7063 EXTENT_DELALLOC, 0, NULL);
7064 if (ret) {
7065 ret = -EAGAIN;
7066 goto out;
7067 }
7068 }
7069
1bda19eb 7070 btrfs_release_path(path);
46bfbb5c
CM
7071
7072 /*
7073 * look for other files referencing this extent, if we
7074 * find any we must cow
7075 */
00361589 7076
e4c3b2dc 7077 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7078 key.offset - backref_offset, disk_bytenr);
00361589
JB
7079 if (ret) {
7080 ret = 0;
7081 goto out;
7082 }
46bfbb5c
CM
7083
7084 /*
7085 * adjust disk_bytenr and num_bytes to cover just the bytes
7086 * in this extent we are about to write. If there
7087 * are any csums in that range we have to cow in order
7088 * to keep the csums correct
7089 */
7090 disk_bytenr += backref_offset;
7091 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7092 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7093 goto out;
46bfbb5c
CM
7094 /*
7095 * all of the above have passed, it is safe to overwrite this extent
7096 * without cow
7097 */
eb384b55 7098 *len = num_bytes;
46bfbb5c
CM
7099 ret = 1;
7100out:
7101 btrfs_free_path(path);
7102 return ret;
7103}
7104
eb838e73 7105static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
55e20bd1 7106 struct extent_state **cached_state, int writing)
eb838e73
JB
7107{
7108 struct btrfs_ordered_extent *ordered;
7109 int ret = 0;
7110
7111 while (1) {
7112 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7113 cached_state);
eb838e73
JB
7114 /*
7115 * We're concerned with the entire range that we're going to be
01327610 7116 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7117 * extents in this range.
7118 */
a776c6fa 7119 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7120 lockend - lockstart + 1);
7121
7122 /*
7123 * We need to make sure there are no buffered pages in this
7124 * range either, we could have raced between the invalidate in
7125 * generic_file_direct_write and locking the extent. The
7126 * invalidate needs to happen so that reads after a write do not
7127 * get stale data.
7128 */
fc4adbff 7129 if (!ordered &&
051c98eb
DS
7130 (!writing || !filemap_range_has_page(inode->i_mapping,
7131 lockstart, lockend)))
eb838e73
JB
7132 break;
7133
7134 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 7135 cached_state);
eb838e73
JB
7136
7137 if (ordered) {
ade77029
FM
7138 /*
7139 * If we are doing a DIO read and the ordered extent we
7140 * found is for a buffered write, we can not wait for it
7141 * to complete and retry, because if we do so we can
7142 * deadlock with concurrent buffered writes on page
7143 * locks. This happens only if our DIO read covers more
7144 * than one extent map, if at this point has already
7145 * created an ordered extent for a previous extent map
7146 * and locked its range in the inode's io tree, and a
7147 * concurrent write against that previous extent map's
7148 * range and this range started (we unlock the ranges
7149 * in the io tree only when the bios complete and
7150 * buffered writes always lock pages before attempting
7151 * to lock range in the io tree).
7152 */
7153 if (writing ||
7154 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7155 btrfs_start_ordered_extent(inode, ordered, 1);
7156 else
7157 ret = -ENOTBLK;
eb838e73
JB
7158 btrfs_put_ordered_extent(ordered);
7159 } else {
eb838e73 7160 /*
b850ae14
FM
7161 * We could trigger writeback for this range (and wait
7162 * for it to complete) and then invalidate the pages for
7163 * this range (through invalidate_inode_pages2_range()),
7164 * but that can lead us to a deadlock with a concurrent
ba206a02 7165 * call to readahead (a buffered read or a defrag call
b850ae14
FM
7166 * triggered a readahead) on a page lock due to an
7167 * ordered dio extent we created before but did not have
7168 * yet a corresponding bio submitted (whence it can not
ba206a02 7169 * complete), which makes readahead wait for that
b850ae14
FM
7170 * ordered extent to complete while holding a lock on
7171 * that page.
eb838e73 7172 */
b850ae14 7173 ret = -ENOTBLK;
eb838e73
JB
7174 }
7175
ade77029
FM
7176 if (ret)
7177 break;
7178
eb838e73
JB
7179 cond_resched();
7180 }
7181
7182 return ret;
7183}
7184
6f9994db 7185/* The callers of this must take lock_extent() */
4b67c11d
NB
7186static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7187 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
7188 u64 block_len, u64 orig_block_len,
7189 u64 ram_bytes, int compress_type,
7190 int type)
69ffb543
JB
7191{
7192 struct extent_map_tree *em_tree;
7193 struct extent_map *em;
69ffb543
JB
7194 int ret;
7195
6f9994db
LB
7196 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7197 type == BTRFS_ORDERED_COMPRESSED ||
7198 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7199 type == BTRFS_ORDERED_REGULAR);
6f9994db 7200
4b67c11d 7201 em_tree = &inode->extent_tree;
69ffb543
JB
7202 em = alloc_extent_map();
7203 if (!em)
7204 return ERR_PTR(-ENOMEM);
7205
7206 em->start = start;
7207 em->orig_start = orig_start;
7208 em->len = len;
7209 em->block_len = block_len;
7210 em->block_start = block_start;
b4939680 7211 em->orig_block_len = orig_block_len;
cc95bef6 7212 em->ram_bytes = ram_bytes;
70c8a91c 7213 em->generation = -1;
69ffb543 7214 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7215 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7216 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7217 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7218 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7219 em->compress_type = compress_type;
7220 }
69ffb543
JB
7221
7222 do {
4b67c11d
NB
7223 btrfs_drop_extent_cache(inode, em->start,
7224 em->start + em->len - 1, 0);
69ffb543 7225 write_lock(&em_tree->lock);
09a2a8f9 7226 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7227 write_unlock(&em_tree->lock);
6f9994db
LB
7228 /*
7229 * The caller has taken lock_extent(), who could race with us
7230 * to add em?
7231 */
69ffb543
JB
7232 } while (ret == -EEXIST);
7233
7234 if (ret) {
7235 free_extent_map(em);
7236 return ERR_PTR(ret);
7237 }
7238
6f9994db 7239 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7240 return em;
7241}
7242
1c8d0175 7243
55e20bd1
DS
7244static int btrfs_get_blocks_direct_read(struct extent_map *em,
7245 struct buffer_head *bh_result,
7246 struct inode *inode,
7247 u64 start, u64 len)
7248{
7249 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7250
7251 if (em->block_start == EXTENT_MAP_HOLE ||
7252 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7253 return -ENOENT;
7254
7255 len = min(len, em->len - (start - em->start));
7256
7257 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7258 inode->i_blkbits;
7259 bh_result->b_size = len;
7260 bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7261 set_buffer_mapped(bh_result);
7262
7263 return 0;
7264}
7265
c5794e51 7266static int btrfs_get_blocks_direct_write(struct extent_map **map,
55e20bd1 7267 struct buffer_head *bh_result,
c5794e51
NB
7268 struct inode *inode,
7269 struct btrfs_dio_data *dio_data,
7270 u64 start, u64 len)
7271{
7272 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7273 struct extent_map *em = *map;
7274 int ret = 0;
7275
7276 /*
7277 * We don't allocate a new extent in the following cases
7278 *
7279 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7280 * existing extent.
7281 * 2) The extent is marked as PREALLOC. We're good to go here and can
7282 * just use the extent.
7283 *
7284 */
7285 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7286 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7287 em->block_start != EXTENT_MAP_HOLE)) {
7288 int type;
7289 u64 block_start, orig_start, orig_block_len, ram_bytes;
7290
7291 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7292 type = BTRFS_ORDERED_PREALLOC;
7293 else
7294 type = BTRFS_ORDERED_NOCOW;
7295 len = min(len, em->len - (start - em->start));
7296 block_start = em->block_start + (start - em->start);
7297
7298 if (can_nocow_extent(inode, start, &len, &orig_start,
7299 &orig_block_len, &ram_bytes) == 1 &&
7300 btrfs_inc_nocow_writers(fs_info, block_start)) {
7301 struct extent_map *em2;
7302
7303 em2 = btrfs_create_dio_extent(inode, start, len,
7304 orig_start, block_start,
7305 len, orig_block_len,
7306 ram_bytes, type);
7307 btrfs_dec_nocow_writers(fs_info, block_start);
7308 if (type == BTRFS_ORDERED_PREALLOC) {
7309 free_extent_map(em);
7310 *map = em = em2;
7311 }
7312
7313 if (em2 && IS_ERR(em2)) {
7314 ret = PTR_ERR(em2);
7315 goto out;
7316 }
7317 /*
7318 * For inode marked NODATACOW or extent marked PREALLOC,
7319 * use the existing or preallocated extent, so does not
7320 * need to adjust btrfs_space_info's bytes_may_use.
7321 */
46d4dac8 7322 btrfs_free_reserved_data_space_noquota(inode, len);
c5794e51
NB
7323 goto skip_cow;
7324 }
7325 }
7326
7327 /* this will cow the extent */
55e20bd1 7328 len = bh_result->b_size;
c5794e51
NB
7329 free_extent_map(em);
7330 *map = em = btrfs_new_extent_direct(inode, start, len);
7331 if (IS_ERR(em)) {
7332 ret = PTR_ERR(em);
7333 goto out;
7334 }
7335
7336 len = min(len, em->len - (start - em->start));
7337
7338skip_cow:
55e20bd1
DS
7339 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7340 inode->i_blkbits;
7341 bh_result->b_size = len;
7342 bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7343 set_buffer_mapped(bh_result);
7344
7345 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7346 set_buffer_new(bh_result);
7347
c5794e51
NB
7348 /*
7349 * Need to update the i_size under the extent lock so buffered
7350 * readers will get the updated i_size when we unlock.
7351 */
55e20bd1 7352 if (!dio_data->overwrite && start + len > i_size_read(inode))
c5794e51
NB
7353 i_size_write(inode, start + len);
7354
55e20bd1 7355 WARN_ON(dio_data->reserve < len);
c5794e51 7356 dio_data->reserve -= len;
55e20bd1
DS
7357 dio_data->unsubmitted_oe_range_end = start + len;
7358 current->journal_info = dio_data;
c5794e51
NB
7359out:
7360 return ret;
7361}
7362
55e20bd1
DS
7363static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7364 struct buffer_head *bh_result, int create)
4b46fce2 7365{
0b246afa 7366 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7367 struct extent_map *em;
eb838e73 7368 struct extent_state *cached_state = NULL;
50745b0a 7369 struct btrfs_dio_data *dio_data = NULL;
55e20bd1 7370 u64 start = iblock << inode->i_blkbits;
eb838e73 7371 u64 lockstart, lockend;
55e20bd1 7372 u64 len = bh_result->b_size;
0934856d 7373 int ret = 0;
eb838e73 7374
55e20bd1 7375 if (!create)
0b246afa 7376 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7377
c329861d
JB
7378 lockstart = start;
7379 lockend = start + len - 1;
7380
55e20bd1
DS
7381 if (current->journal_info) {
7382 /*
7383 * Need to pull our outstanding extents and set journal_info to NULL so
7384 * that anything that needs to check if there's a transaction doesn't get
7385 * confused.
7386 */
7387 dio_data = current->journal_info;
7388 current->journal_info = NULL;
e1cbbfa5
JB
7389 }
7390
eb838e73
JB
7391 /*
7392 * If this errors out it's because we couldn't invalidate pagecache for
7393 * this range and we need to fallback to buffered.
7394 */
55e20bd1
DS
7395 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7396 create)) {
9c9464cc
FM
7397 ret = -ENOTBLK;
7398 goto err;
7399 }
eb838e73 7400
39b07b5d 7401 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
eb838e73
JB
7402 if (IS_ERR(em)) {
7403 ret = PTR_ERR(em);
7404 goto unlock_err;
7405 }
4b46fce2
JB
7406
7407 /*
7408 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7409 * io. INLINE is special, and we could probably kludge it in here, but
7410 * it's still buffered so for safety lets just fall back to the generic
7411 * buffered path.
7412 *
7413 * For COMPRESSED we _have_ to read the entire extent in so we can
7414 * decompress it, so there will be buffering required no matter what we
7415 * do, so go ahead and fallback to buffered.
7416 *
01327610 7417 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7418 * to buffered IO. Don't blame me, this is the price we pay for using
7419 * the generic code.
7420 */
7421 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7422 em->block_start == EXTENT_MAP_INLINE) {
7423 free_extent_map(em);
eb838e73
JB
7424 ret = -ENOTBLK;
7425 goto unlock_err;
4b46fce2
JB
7426 }
7427
55e20bd1
DS
7428 if (create) {
7429 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7430 dio_data, start, len);
c5794e51
NB
7431 if (ret < 0)
7432 goto unlock_err;
55e20bd1
DS
7433
7434 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
7435 lockend, &cached_state);
c5794e51 7436 } else {
55e20bd1
DS
7437 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7438 start, len);
7439 /* Can be negative only if we read from a hole */
7440 if (ret < 0) {
7441 ret = 0;
7442 free_extent_map(em);
7443 goto unlock_err;
7444 }
1c8d0175
NB
7445 /*
7446 * We need to unlock only the end area that we aren't using.
7447 * The rest is going to be unlocked by the endio routine.
7448 */
55e20bd1
DS
7449 lockstart = start + bh_result->b_size;
7450 if (lockstart < lockend) {
7451 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7452 lockstart, lockend, &cached_state);
7453 } else {
7454 free_extent_state(cached_state);
7455 }
a43a67a2 7456 }
a43a67a2 7457
4b46fce2
JB
7458 free_extent_map(em);
7459
7460 return 0;
eb838e73
JB
7461
7462unlock_err:
e182163d
OS
7463 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7464 &cached_state);
9c9464cc 7465err:
55e20bd1
DS
7466 if (dio_data)
7467 current->journal_info = dio_data;
8b110e39
MX
7468 return ret;
7469}
7470
769b4f24 7471static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
8b110e39 7472{
769b4f24
OS
7473 /*
7474 * This implies a barrier so that stores to dio_bio->bi_status before
7475 * this and loads of dio_bio->bi_status after this are fully ordered.
7476 */
7477 if (!refcount_dec_and_test(&dip->refs))
7478 return;
8b110e39 7479
769b4f24
OS
7480 if (bio_op(dip->dio_bio) == REQ_OP_WRITE) {
7481 __endio_write_update_ordered(dip->inode, dip->logical_offset,
7482 dip->bytes,
7483 !dip->dio_bio->bi_status);
7484 } else {
7485 unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7486 dip->logical_offset,
7487 dip->logical_offset + dip->bytes - 1);
8b110e39
MX
7488 }
7489
55e20bd1 7490 dio_end_io(dip->dio_bio);
769b4f24 7491 kfree(dip);
8b110e39
MX
7492}
7493
77d5d689
OS
7494static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7495 int mirror_num,
7496 unsigned long bio_flags)
8b110e39 7497{
77d5d689 7498 struct btrfs_dio_private *dip = bio->bi_private;
2ff7e61e 7499 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7500 blk_status_t ret;
8b110e39 7501
37226b21 7502 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7503
5c047a69 7504 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8b110e39 7505 if (ret)
ea057f6d 7506 return ret;
8b110e39 7507
77d5d689 7508 refcount_inc(&dip->refs);
08635bae 7509 ret = btrfs_map_bio(fs_info, bio, mirror_num);
8b110e39 7510 if (ret)
fd9d6670 7511 refcount_dec(&dip->refs);
77d5d689 7512 return ret;
8b110e39
MX
7513}
7514
fd9d6670
OS
7515static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7516 struct btrfs_io_bio *io_bio,
7517 const bool uptodate)
4b46fce2 7518{
fd9d6670
OS
7519 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7520 const u32 sectorsize = fs_info->sectorsize;
7521 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7522 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7523 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
17347cec
LB
7524 struct bio_vec bvec;
7525 struct bvec_iter iter;
fd9d6670
OS
7526 u64 start = io_bio->logical;
7527 int icsum = 0;
58efbc9f 7528 blk_status_t err = BLK_STS_OK;
4b46fce2 7529
fd9d6670
OS
7530 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7531 unsigned int i, nr_sectors, pgoff;
8b110e39 7532
17347cec
LB
7533 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7534 pgoff = bvec.bv_offset;
fd9d6670 7535 for (i = 0; i < nr_sectors; i++) {
97bf5a55 7536 ASSERT(pgoff < PAGE_SIZE);
fd9d6670
OS
7537 if (uptodate &&
7538 (!csum || !check_data_csum(inode, io_bio, icsum,
7539 bvec.bv_page, pgoff,
7540 start, sectorsize))) {
7541 clean_io_failure(fs_info, failure_tree, io_tree,
7542 start, bvec.bv_page,
7543 btrfs_ino(BTRFS_I(inode)),
7544 pgoff);
7545 } else {
7546 blk_status_t status;
7547
77d5d689
OS
7548 status = btrfs_submit_read_repair(inode,
7549 &io_bio->bio,
7550 start - io_bio->logical,
fd9d6670
OS
7551 bvec.bv_page, pgoff,
7552 start,
7553 start + sectorsize - 1,
77d5d689
OS
7554 io_bio->mirror_num,
7555 submit_dio_repair_bio);
fd9d6670
OS
7556 if (status)
7557 err = status;
7558 }
7559 start += sectorsize;
7560 icsum++;
2dabb324 7561 pgoff += sectorsize;
2dabb324 7562 }
2c30c71b 7563 }
c1dc0896
MX
7564 return err;
7565}
7566
52427260
QW
7567static void __endio_write_update_ordered(struct inode *inode,
7568 const u64 offset, const u64 bytes,
7569 const bool uptodate)
4b46fce2 7570{
0b246afa 7571 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7572 struct btrfs_ordered_extent *ordered = NULL;
52427260 7573 struct btrfs_workqueue *wq;
14543774
FM
7574 u64 ordered_offset = offset;
7575 u64 ordered_bytes = bytes;
67c003f9 7576 u64 last_offset;
4b46fce2 7577
a0cac0ec 7578 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
52427260 7579 wq = fs_info->endio_freespace_worker;
a0cac0ec 7580 else
52427260 7581 wq = fs_info->endio_write_workers;
52427260 7582
b25f0d00
NB
7583 while (ordered_offset < offset + bytes) {
7584 last_offset = ordered_offset;
7585 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7586 &ordered_offset,
7587 ordered_bytes,
7588 uptodate)) {
a0cac0ec
OS
7589 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7590 NULL);
b25f0d00
NB
7591 btrfs_queue_work(wq, &ordered->work);
7592 }
7593 /*
7594 * If btrfs_dec_test_ordered_pending does not find any ordered
7595 * extent in the range, we can exit.
7596 */
7597 if (ordered_offset == last_offset)
7598 return;
7599 /*
7600 * Our bio might span multiple ordered extents. In this case
52042d8e 7601 * we keep going until we have accounted the whole dio.
b25f0d00
NB
7602 */
7603 if (ordered_offset < offset + bytes) {
7604 ordered_bytes = offset + bytes - ordered_offset;
7605 ordered = NULL;
7606 }
163cf09c 7607 }
14543774
FM
7608}
7609
d0ee3934 7610static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
d0779291 7611 struct bio *bio, u64 offset)
eaf25d93 7612{
c6100a4b 7613 struct inode *inode = private_data;
4e4cbee9 7614 blk_status_t ret;
bd242a08 7615 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, offset, 1);
79787eaa 7616 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
7617 return 0;
7618}
7619
4246a0b6 7620static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
7621{
7622 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 7623 blk_status_t err = bio->bi_status;
e65e1535 7624
8b110e39
MX
7625 if (err)
7626 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 7627 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
7628 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7629 bio->bi_opf,
8b110e39
MX
7630 (unsigned long long)bio->bi_iter.bi_sector,
7631 bio->bi_iter.bi_size, err);
7632
769b4f24
OS
7633 if (bio_op(bio) == REQ_OP_READ) {
7634 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
fd9d6670 7635 !err);
e65e1535
MX
7636 }
7637
769b4f24
OS
7638 if (err)
7639 dip->dio_bio->bi_status = err;
e65e1535 7640
e65e1535 7641 bio_put(bio);
769b4f24 7642 btrfs_dio_private_put(dip);
c1dc0896
MX
7643}
7644
d0ee3934
DS
7645static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7646 struct inode *inode, u64 file_offset, int async_submit)
e65e1535 7647{
0b246afa 7648 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 7649 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 7650 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 7651 blk_status_t ret;
e65e1535 7652
4c274bc6 7653 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
7654 if (async_submit)
7655 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7656
5fd02043 7657 if (!write) {
0b246afa 7658 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
7659 if (ret)
7660 goto err;
7661 }
e65e1535 7662
e6961cac 7663 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
7664 goto map;
7665
7666 if (write && async_submit) {
c6100a4b
JB
7667 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
7668 file_offset, inode,
e288c080 7669 btrfs_submit_bio_start_direct_io);
e65e1535 7670 goto err;
1ae39938
JB
7671 } else if (write) {
7672 /*
7673 * If we aren't doing async submit, calculate the csum of the
7674 * bio now.
7675 */
bd242a08 7676 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
1ae39938
JB
7677 if (ret)
7678 goto err;
23ea8e5a 7679 } else {
85879573
OS
7680 u64 csum_offset;
7681
7682 csum_offset = file_offset - dip->logical_offset;
7683 csum_offset >>= inode->i_sb->s_blocksize_bits;
7684 csum_offset *= btrfs_super_csum_size(fs_info->super_copy);
7685 btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
c2db1073 7686 }
1ae39938 7687map:
08635bae 7688 ret = btrfs_map_bio(fs_info, bio, 0);
e65e1535 7689err:
e65e1535
MX
7690 return ret;
7691}
7692
c36cac28
OS
7693/*
7694 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7695 * or ordered extents whether or not we submit any bios.
7696 */
7697static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
7698 struct inode *inode,
7699 loff_t file_offset)
e65e1535 7700{
c36cac28 7701 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
85879573
OS
7702 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7703 size_t dip_size;
c36cac28 7704 struct btrfs_dio_private *dip;
c36cac28 7705
85879573
OS
7706 dip_size = sizeof(*dip);
7707 if (!write && csum) {
7708 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7709 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
7710 size_t nblocks;
7711
7712 nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
7713 dip_size += csum_size * nblocks;
7714 }
7715
7716 dip = kzalloc(dip_size, GFP_NOFS);
c36cac28
OS
7717 if (!dip)
7718 return NULL;
7719
c36cac28
OS
7720 dip->inode = inode;
7721 dip->logical_offset = file_offset;
7722 dip->bytes = dio_bio->bi_iter.bi_size;
7723 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
c36cac28 7724 dip->dio_bio = dio_bio;
e3b318d1 7725 refcount_set(&dip->refs, 1);
55e20bd1
DS
7726
7727 if (write) {
7728 struct btrfs_dio_data *dio_data = current->journal_info;
7729
7730 /*
7731 * Setting range start and end to the same value means that
7732 * no cleanup will happen in btrfs_direct_IO
7733 */
7734 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
7735 dip->bytes;
7736 dio_data->unsubmitted_oe_range_start =
7737 dio_data->unsubmitted_oe_range_end;
7738 }
c36cac28
OS
7739 return dip;
7740}
7741
55e20bd1
DS
7742static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
7743 loff_t file_offset)
c36cac28
OS
7744{
7745 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
85879573 7746 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
0b246afa 7747 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
769b4f24
OS
7748 const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7749 BTRFS_BLOCK_GROUP_RAID56_MASK);
c36cac28 7750 struct btrfs_dio_private *dip;
e65e1535 7751 struct bio *bio;
c36cac28 7752 u64 start_sector;
1ae39938 7753 int async_submit = 0;
725130ba
LB
7754 u64 submit_len;
7755 int clone_offset = 0;
7756 int clone_len;
5f4dc8fc 7757 int ret;
58efbc9f 7758 blk_status_t status;
89b798ad 7759 struct btrfs_io_geometry geom;
e65e1535 7760
c36cac28
OS
7761 dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
7762 if (!dip) {
7763 if (!write) {
7764 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
7765 file_offset + dio_bio->bi_iter.bi_size - 1);
7766 }
7767 dio_bio->bi_status = BLK_STS_RESOURCE;
55e20bd1
DS
7768 dio_end_io(dio_bio);
7769 return;
c36cac28 7770 }
facc8a22 7771
85879573
OS
7772 if (!write && csum) {
7773 /*
7774 * Load the csums up front to reduce csum tree searches and
7775 * contention when submitting bios.
7776 */
7777 status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset,
7778 dip->csums);
7779 if (status != BLK_STS_OK)
7780 goto out_err;
02f57c7a
JB
7781 }
7782
769b4f24
OS
7783 start_sector = dio_bio->bi_iter.bi_sector;
7784 submit_len = dio_bio->bi_iter.bi_size;
53b381b3 7785
3c91ee69 7786 do {
769b4f24
OS
7787 ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio),
7788 start_sector << 9, submit_len,
7789 &geom);
7790 if (ret) {
7791 status = errno_to_blk_status(ret);
7792 goto out_err;
7793 }
7794 ASSERT(geom.len <= INT_MAX);
7795
89b798ad 7796 clone_len = min_t(int, submit_len, geom.len);
02f57c7a 7797
725130ba
LB
7798 /*
7799 * This will never fail as it's passing GPF_NOFS and
7800 * the allocation is backed by btrfs_bioset.
7801 */
769b4f24 7802 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
725130ba
LB
7803 bio->bi_private = dip;
7804 bio->bi_end_io = btrfs_end_dio_bio;
7805 btrfs_io_bio(bio)->logical = file_offset;
7806
7807 ASSERT(submit_len >= clone_len);
7808 submit_len -= clone_len;
e65e1535 7809
725130ba
LB
7810 /*
7811 * Increase the count before we submit the bio so we know
7812 * the end IO handler won't happen before we increase the
7813 * count. Otherwise, the dip might get freed before we're
7814 * done setting it up.
769b4f24
OS
7815 *
7816 * We transfer the initial reference to the last bio, so we
7817 * don't need to increment the reference count for the last one.
725130ba 7818 */
769b4f24
OS
7819 if (submit_len > 0) {
7820 refcount_inc(&dip->refs);
7821 /*
7822 * If we are submitting more than one bio, submit them
7823 * all asynchronously. The exception is RAID 5 or 6, as
7824 * asynchronous checksums make it difficult to collect
7825 * full stripe writes.
7826 */
7827 if (!raid56)
7828 async_submit = 1;
7829 }
e65e1535 7830
d0ee3934 7831 status = btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
7832 async_submit);
7833 if (status) {
725130ba 7834 bio_put(bio);
769b4f24
OS
7835 if (submit_len > 0)
7836 refcount_dec(&dip->refs);
725130ba
LB
7837 goto out_err;
7838 }
e65e1535 7839
725130ba
LB
7840 clone_offset += clone_len;
7841 start_sector += clone_len >> 9;
7842 file_offset += clone_len;
3c91ee69 7843 } while (submit_len > 0);
55e20bd1 7844 return;
e65e1535 7845
e65e1535 7846out_err:
769b4f24
OS
7847 dip->dio_bio->bi_status = status;
7848 btrfs_dio_private_put(dip);
4b46fce2
JB
7849}
7850
f4c48b44
DS
7851static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
7852 const struct iov_iter *iter, loff_t offset)
7853{
7854 int seg;
7855 int i;
7856 unsigned int blocksize_mask = fs_info->sectorsize - 1;
7857 ssize_t retval = -EINVAL;
0934856d 7858
f4c48b44
DS
7859 if (offset & blocksize_mask)
7860 goto out;
7861
7862 if (iov_iter_alignment(iter) & blocksize_mask)
7863 goto out;
7864
7865 /* If this is a write we don't need to check anymore */
7866 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
7867 return 0;
7868 /*
7869 * Check to make sure we don't have duplicate iov_base's in this
7870 * iovec, if so return EINVAL, otherwise we'll get csum errors
7871 * when reading back.
7872 */
7873 for (seg = 0; seg < iter->nr_segs; seg++) {
7874 for (i = seg + 1; i < iter->nr_segs; i++) {
7875 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7876 goto out;
7877 }
7878 }
7879 retval = 0;
7880out:
7881 return retval;
7882}
7883
55e20bd1 7884static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
f4c48b44
DS
7885{
7886 struct file *file = iocb->ki_filp;
7887 struct inode *inode = file->f_mapping->host;
7888 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
55e20bd1 7889 struct btrfs_dio_data dio_data = { 0 };
f4c48b44
DS
7890 struct extent_changeset *data_reserved = NULL;
7891 loff_t offset = iocb->ki_pos;
7892 size_t count = 0;
55e20bd1
DS
7893 int flags = 0;
7894 bool wakeup = true;
f4c48b44
DS
7895 bool relock = false;
7896 ssize_t ret;
7897
7898 if (check_direct_IO(fs_info, iter, offset))
7899 return 0;
7900
55e20bd1
DS
7901 inode_dio_begin(inode);
7902
7903 /*
7904 * The generic stuff only does filemap_write_and_wait_range, which
7905 * isn't enough if we've written compressed pages to this area, so
7906 * we need to flush the dirty pages again to make absolutely sure
7907 * that any outstanding dirty pages are on disk.
7908 */
f4c48b44 7909 count = iov_iter_count(iter);
55e20bd1
DS
7910 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7911 &BTRFS_I(inode)->runtime_flags))
7912 filemap_fdatawrite_range(inode->i_mapping, offset,
7913 offset + count - 1);
7914
f4c48b44
DS
7915 if (iov_iter_rw(iter) == WRITE) {
7916 /*
7917 * If the write DIO is beyond the EOF, we need update
7918 * the isize, but it is protected by i_mutex. So we can
7919 * not unlock the i_mutex at this case.
7920 */
7921 if (offset + count <= inode->i_size) {
55e20bd1 7922 dio_data.overwrite = 1;
f4c48b44
DS
7923 inode_unlock(inode);
7924 relock = true;
f4c48b44 7925 }
55e20bd1
DS
7926 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
7927 offset, count);
7928 if (ret)
7929 goto out;
7930
7931 /*
7932 * We need to know how many extents we reserved so that we can
7933 * do the accounting properly if we go over the number we
7934 * originally calculated. Abuse current->journal_info for this.
7935 */
7936 dio_data.reserve = round_up(count,
7937 fs_info->sectorsize);
7938 dio_data.unsubmitted_oe_range_start = (u64)offset;
7939 dio_data.unsubmitted_oe_range_end = (u64)offset;
7940 current->journal_info = &dio_data;
f4c48b44 7941 down_read(&BTRFS_I(inode)->dio_sem);
55e20bd1
DS
7942 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7943 &BTRFS_I(inode)->runtime_flags)) {
7944 inode_dio_end(inode);
7945 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7946 wakeup = false;
f4c48b44
DS
7947 }
7948
55e20bd1
DS
7949 ret = __blockdev_direct_IO(iocb, inode,
7950 fs_info->fs_devices->latest_bdev,
7951 iter, btrfs_get_blocks_direct, NULL,
7952 btrfs_submit_direct, flags);
f4c48b44
DS
7953 if (iov_iter_rw(iter) == WRITE) {
7954 up_read(&BTRFS_I(inode)->dio_sem);
55e20bd1
DS
7955 current->journal_info = NULL;
7956 if (ret < 0 && ret != -EIOCBQUEUED) {
7957 if (dio_data.reserve)
7958 btrfs_delalloc_release_space(inode, data_reserved,
7959 offset, dio_data.reserve, true);
7960 /*
7961 * On error we might have left some ordered extents
7962 * without submitting corresponding bios for them, so
7963 * cleanup them up to avoid other tasks getting them
7964 * and waiting for them to complete forever.
7965 */
7966 if (dio_data.unsubmitted_oe_range_start <
7967 dio_data.unsubmitted_oe_range_end)
7968 __endio_write_update_ordered(inode,
7969 dio_data.unsubmitted_oe_range_start,
7970 dio_data.unsubmitted_oe_range_end -
7971 dio_data.unsubmitted_oe_range_start,
7972 false);
7973 } else if (ret >= 0 && (size_t)ret < count)
7974 btrfs_delalloc_release_space(inode, data_reserved,
7975 offset, count - (size_t)ret, true);
7976 btrfs_delalloc_release_extents(BTRFS_I(inode), count);
f4c48b44
DS
7977 }
7978out:
55e20bd1
DS
7979 if (wakeup)
7980 inode_dio_end(inode);
f4c48b44
DS
7981 if (relock)
7982 inode_lock(inode);
55e20bd1 7983
f4c48b44
DS
7984 extent_changeset_free(data_reserved);
7985 return ret;
7986}
16432985 7987
1506fcc8 7988static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
bab16e21 7989 u64 start, u64 len)
1506fcc8 7990{
05dadc09
TI
7991 int ret;
7992
45dd052e 7993 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
05dadc09
TI
7994 if (ret)
7995 return ret;
7996
2135fb9b 7997 return extent_fiemap(inode, fieinfo, start, len);
1506fcc8
YS
7998}
7999
a52d9a80 8000int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8001{
71ad38b4 8002 return extent_read_full_page(page, btrfs_get_extent, 0);
9ebefb18 8003}
1832a6d5 8004
a52d9a80 8005static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8006{
be7bd730
JB
8007 struct inode *inode = page->mapping->host;
8008 int ret;
b888db2b
CM
8009
8010 if (current->flags & PF_MEMALLOC) {
8011 redirty_page_for_writepage(wbc, page);
8012 unlock_page(page);
8013 return 0;
8014 }
be7bd730
JB
8015
8016 /*
8017 * If we are under memory pressure we will call this directly from the
8018 * VM, we need to make sure we have the inode referenced for the ordered
8019 * extent. If not just return like we didn't do anything.
8020 */
8021 if (!igrab(inode)) {
8022 redirty_page_for_writepage(wbc, page);
8023 return AOP_WRITEPAGE_ACTIVATE;
8024 }
0a9b0e53 8025 ret = extent_write_full_page(page, wbc);
be7bd730
JB
8026 btrfs_add_delayed_iput(inode);
8027 return ret;
9ebefb18
CM
8028}
8029
48a3b636
ES
8030static int btrfs_writepages(struct address_space *mapping,
8031 struct writeback_control *wbc)
b293f02e 8032{
8ae225a8 8033 return extent_writepages(mapping, wbc);
b293f02e
CM
8034}
8035
ba206a02 8036static void btrfs_readahead(struct readahead_control *rac)
3ab2fb5a 8037{
ba206a02 8038 extent_readahead(rac);
3ab2fb5a 8039}
2a3ff0ad 8040
e6dcd2dc 8041static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8042{
477a30ba 8043 int ret = try_release_extent_mapping(page, gfp_flags);
d1b89bc0
GJ
8044 if (ret == 1)
8045 detach_page_private(page);
a52d9a80 8046 return ret;
39279cc3
CM
8047}
8048
e6dcd2dc
CM
8049static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8050{
98509cfc
CM
8051 if (PageWriteback(page) || PageDirty(page))
8052 return 0;
3ba7ab22 8053 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8054}
8055
f8e66081
RG
8056#ifdef CONFIG_MIGRATION
8057static int btrfs_migratepage(struct address_space *mapping,
8058 struct page *newpage, struct page *page,
8059 enum migrate_mode mode)
8060{
8061 int ret;
8062
8063 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8064 if (ret != MIGRATEPAGE_SUCCESS)
8065 return ret;
8066
d1b89bc0
GJ
8067 if (page_has_private(page))
8068 attach_page_private(newpage, detach_page_private(page));
f8e66081
RG
8069
8070 if (PagePrivate2(page)) {
8071 ClearPagePrivate2(page);
8072 SetPagePrivate2(newpage);
8073 }
8074
8075 if (mode != MIGRATE_SYNC_NO_COPY)
8076 migrate_page_copy(newpage, page);
8077 else
8078 migrate_page_states(newpage, page);
8079 return MIGRATEPAGE_SUCCESS;
8080}
8081#endif
8082
d47992f8
LC
8083static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8084 unsigned int length)
39279cc3 8085{
5fd02043 8086 struct inode *inode = page->mapping->host;
d1310b2e 8087 struct extent_io_tree *tree;
e6dcd2dc 8088 struct btrfs_ordered_extent *ordered;
2ac55d41 8089 struct extent_state *cached_state = NULL;
e6dcd2dc 8090 u64 page_start = page_offset(page);
09cbfeaf 8091 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8092 u64 start;
8093 u64 end;
131e404a 8094 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8095
8b62b72b
CM
8096 /*
8097 * we have the page locked, so new writeback can't start,
8098 * and the dirty bit won't be cleared while we are here.
8099 *
8100 * Wait for IO on this page so that we can safely clear
8101 * the PagePrivate2 bit and do ordered accounting
8102 */
e6dcd2dc 8103 wait_on_page_writeback(page);
8b62b72b 8104
5fd02043 8105 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8106 if (offset) {
8107 btrfs_releasepage(page, GFP_NOFS);
8108 return;
8109 }
131e404a
FDBM
8110
8111 if (!inode_evicting)
ff13db41 8112 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8113again:
8114 start = page_start;
a776c6fa 8115 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8116 page_end - start + 1);
e6dcd2dc 8117 if (ordered) {
bffe633e
OS
8118 end = min(page_end,
8119 ordered->file_offset + ordered->num_bytes - 1);
eb84ae03
CM
8120 /*
8121 * IO on this page will never be started, so we need
8122 * to account for any ordered extents now
8123 */
131e404a 8124 if (!inode_evicting)
dbfdb6d1 8125 clear_extent_bit(tree, start, end,
e182163d 8126 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
131e404a 8127 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8128 EXTENT_DEFRAG, 1, 0, &cached_state);
8b62b72b
CM
8129 /*
8130 * whoever cleared the private bit is responsible
8131 * for the finish_ordered_io
8132 */
77cef2ec
JB
8133 if (TestClearPagePrivate2(page)) {
8134 struct btrfs_ordered_inode_tree *tree;
8135 u64 new_len;
8136
8137 tree = &BTRFS_I(inode)->ordered_tree;
8138
8139 spin_lock_irq(&tree->lock);
8140 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8141 new_len = start - ordered->file_offset;
77cef2ec
JB
8142 if (new_len < ordered->truncated_len)
8143 ordered->truncated_len = new_len;
8144 spin_unlock_irq(&tree->lock);
8145
8146 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8147 start,
8148 end - start + 1, 1))
77cef2ec 8149 btrfs_finish_ordered_io(ordered);
8b62b72b 8150 }
e6dcd2dc 8151 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8152 if (!inode_evicting) {
8153 cached_state = NULL;
dbfdb6d1 8154 lock_extent_bits(tree, start, end,
131e404a
FDBM
8155 &cached_state);
8156 }
dbfdb6d1
CR
8157
8158 start = end + 1;
8159 if (start < page_end)
8160 goto again;
131e404a
FDBM
8161 }
8162
b9d0b389
QW
8163 /*
8164 * Qgroup reserved space handler
8165 * Page here will be either
fa91e4aa
QW
8166 * 1) Already written to disk or ordered extent already submitted
8167 * Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8168 * Qgroup will be handled by its qgroup_record then.
8169 * btrfs_qgroup_free_data() call will do nothing here.
8170 *
8171 * 2) Not written to disk yet
8172 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8173 * bit of its io_tree, and free the qgroup reserved data space.
8174 * Since the IO will never happen for this page.
b9d0b389 8175 */
8b8a979f 8176 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, page_start, PAGE_SIZE);
131e404a 8177 if (!inode_evicting) {
e182163d 8178 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
a7e3b975
FM
8179 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8180 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
ae0f1625 8181 &cached_state);
131e404a
FDBM
8182
8183 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8184 }
e6dcd2dc 8185
4a096752 8186 ClearPageChecked(page);
d1b89bc0 8187 detach_page_private(page);
39279cc3
CM
8188}
8189
9ebefb18
CM
8190/*
8191 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8192 * called from a page fault handler when a page is first dirtied. Hence we must
8193 * be careful to check for EOF conditions here. We set the page up correctly
8194 * for a written page which means we get ENOSPC checking when writing into
8195 * holes and correct delalloc and unwritten extent mapping on filesystems that
8196 * support these features.
8197 *
8198 * We are not allowed to take the i_mutex here so we have to play games to
8199 * protect against truncate races as the page could now be beyond EOF. Because
d1342aad
OS
8200 * truncate_setsize() writes the inode size before removing pages, once we have
8201 * the page lock we can determine safely if the page is beyond EOF. If it is not
9ebefb18
CM
8202 * beyond EOF, then the page is guaranteed safe against truncation until we
8203 * unlock the page.
8204 */
a528a241 8205vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8206{
c2ec175c 8207 struct page *page = vmf->page;
11bac800 8208 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8209 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8210 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8211 struct btrfs_ordered_extent *ordered;
2ac55d41 8212 struct extent_state *cached_state = NULL;
364ecf36 8213 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
8214 char *kaddr;
8215 unsigned long zero_start;
9ebefb18 8216 loff_t size;
a528a241
SJ
8217 vm_fault_t ret;
8218 int ret2;
9998eb70 8219 int reserved = 0;
d0b7da88 8220 u64 reserved_space;
a52d9a80 8221 u64 page_start;
e6dcd2dc 8222 u64 page_end;
d0b7da88
CR
8223 u64 end;
8224
09cbfeaf 8225 reserved_space = PAGE_SIZE;
9ebefb18 8226
b2b5ef5c 8227 sb_start_pagefault(inode->i_sb);
df480633 8228 page_start = page_offset(page);
09cbfeaf 8229 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8230 end = page_end;
df480633 8231
d0b7da88
CR
8232 /*
8233 * Reserving delalloc space after obtaining the page lock can lead to
8234 * deadlock. For example, if a dirty page is locked by this function
8235 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8236 * dirty page write out, then the btrfs_writepage() function could
8237 * end up waiting indefinitely to get a lock on the page currently
8238 * being processed by btrfs_page_mkwrite() function.
8239 */
a528a241 8240 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
d0b7da88 8241 reserved_space);
a528a241
SJ
8242 if (!ret2) {
8243 ret2 = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8244 reserved = 1;
8245 }
a528a241
SJ
8246 if (ret2) {
8247 ret = vmf_error(ret2);
9998eb70
CM
8248 if (reserved)
8249 goto out;
8250 goto out_noreserve;
56a76f82 8251 }
1832a6d5 8252
56a76f82 8253 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8254again:
9ebefb18 8255 lock_page(page);
9ebefb18 8256 size = i_size_read(inode);
a52d9a80 8257
9ebefb18 8258 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8259 (page_start >= size)) {
9ebefb18
CM
8260 /* page got truncated out from underneath us */
8261 goto out_unlock;
8262 }
e6dcd2dc
CM
8263 wait_on_page_writeback(page);
8264
ff13db41 8265 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8266 set_page_extent_mapped(page);
8267
eb84ae03
CM
8268 /*
8269 * we can't set the delalloc bits if there are pending ordered
8270 * extents. Drop our locks and wait for them to finish
8271 */
a776c6fa
NB
8272 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8273 PAGE_SIZE);
e6dcd2dc 8274 if (ordered) {
2ac55d41 8275 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8276 &cached_state);
e6dcd2dc 8277 unlock_page(page);
eb84ae03 8278 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8279 btrfs_put_ordered_extent(ordered);
8280 goto again;
8281 }
8282
09cbfeaf 8283 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 8284 reserved_space = round_up(size - page_start,
0b246afa 8285 fs_info->sectorsize);
09cbfeaf 8286 if (reserved_space < PAGE_SIZE) {
d0b7da88 8287 end = page_start + reserved_space - 1;
bc42bda2 8288 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
8289 page_start, PAGE_SIZE - reserved_space,
8290 true);
d0b7da88
CR
8291 }
8292 }
8293
fbf19087 8294 /*
5416034f
LB
8295 * page_mkwrite gets called when the page is firstly dirtied after it's
8296 * faulted in, but write(2) could also dirty a page and set delalloc
8297 * bits, thus in this case for space account reason, we still need to
8298 * clear any delalloc bits within this page range since we have to
8299 * reserve data&meta space before lock_page() (see above comments).
fbf19087 8300 */
d0b7da88 8301 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
e182163d
OS
8302 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8303 EXTENT_DEFRAG, 0, 0, &cached_state);
fbf19087 8304
a528a241 8305 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
330a5827 8306 &cached_state);
a528a241 8307 if (ret2) {
2ac55d41 8308 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8309 &cached_state);
9ed74f2d
JB
8310 ret = VM_FAULT_SIGBUS;
8311 goto out_unlock;
8312 }
9ebefb18
CM
8313
8314 /* page is wholly or partially inside EOF */
09cbfeaf 8315 if (page_start + PAGE_SIZE > size)
7073017a 8316 zero_start = offset_in_page(size);
9ebefb18 8317 else
09cbfeaf 8318 zero_start = PAGE_SIZE;
9ebefb18 8319
09cbfeaf 8320 if (zero_start != PAGE_SIZE) {
e6dcd2dc 8321 kaddr = kmap(page);
09cbfeaf 8322 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
8323 flush_dcache_page(page);
8324 kunmap(page);
8325 }
247e743c 8326 ClearPageChecked(page);
e6dcd2dc 8327 set_page_dirty(page);
50a9b214 8328 SetPageUptodate(page);
5a3f23d5 8329
0b246afa 8330 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 8331 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8332 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8333
e43bbe5e 8334 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9ebefb18 8335
76de60ed
YY
8336 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8337 sb_end_pagefault(inode->i_sb);
8338 extent_changeset_free(data_reserved);
8339 return VM_FAULT_LOCKED;
717beb96
CM
8340
8341out_unlock:
9ebefb18 8342 unlock_page(page);
1832a6d5 8343out:
8702ba93 8344 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
bc42bda2 8345 btrfs_delalloc_release_space(inode, data_reserved, page_start,
43b18595 8346 reserved_space, (ret != 0));
9998eb70 8347out_noreserve:
b2b5ef5c 8348 sb_end_pagefault(inode->i_sb);
364ecf36 8349 extent_changeset_free(data_reserved);
9ebefb18
CM
8350 return ret;
8351}
8352
213e8c55 8353static int btrfs_truncate(struct inode *inode, bool skip_writeback)
39279cc3 8354{
0b246afa 8355 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 8356 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8357 struct btrfs_block_rsv *rsv;
ad7e1a74 8358 int ret;
39279cc3 8359 struct btrfs_trans_handle *trans;
0b246afa 8360 u64 mask = fs_info->sectorsize - 1;
2bd36e7b 8361 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
39279cc3 8362
213e8c55
FM
8363 if (!skip_writeback) {
8364 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8365 (u64)-1);
8366 if (ret)
8367 return ret;
8368 }
39279cc3 8369
fcb80c2a 8370 /*
f7e9e8fc
OS
8371 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8372 * things going on here:
fcb80c2a 8373 *
f7e9e8fc 8374 * 1) We need to reserve space to update our inode.
fcb80c2a 8375 *
f7e9e8fc 8376 * 2) We need to have something to cache all the space that is going to
fcb80c2a
JB
8377 * be free'd up by the truncate operation, but also have some slack
8378 * space reserved in case it uses space during the truncate (thank you
8379 * very much snapshotting).
8380 *
f7e9e8fc 8381 * And we need these to be separate. The fact is we can use a lot of
fcb80c2a 8382 * space doing the truncate, and we have no earthly idea how much space
01327610 8383 * we will use, so we need the truncate reservation to be separate so it
f7e9e8fc
OS
8384 * doesn't end up using space reserved for updating the inode. We also
8385 * need to be able to stop the transaction and start a new one, which
8386 * means we need to be able to update the inode several times, and we
8387 * have no idea of knowing how many times that will be, so we can't just
8388 * reserve 1 item for the entirety of the operation, so that has to be
8389 * done separately as well.
fcb80c2a
JB
8390 *
8391 * So that leaves us with
8392 *
f7e9e8fc 8393 * 1) rsv - for the truncate reservation, which we will steal from the
fcb80c2a 8394 * transaction reservation.
f7e9e8fc 8395 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
fcb80c2a
JB
8396 * updating the inode.
8397 */
2ff7e61e 8398 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8399 if (!rsv)
8400 return -ENOMEM;
4a338542 8401 rsv->size = min_size;
ca7e70f5 8402 rsv->failfast = 1;
f0cd846e 8403
907cbceb 8404 /*
07127184 8405 * 1 for the truncate slack space
907cbceb
JB
8406 * 1 for updating the inode.
8407 */
f3fe820c 8408 trans = btrfs_start_transaction(root, 2);
fcb80c2a 8409 if (IS_ERR(trans)) {
ad7e1a74 8410 ret = PTR_ERR(trans);
fcb80c2a
JB
8411 goto out;
8412 }
f0cd846e 8413
907cbceb 8414 /* Migrate the slack space for the truncate to our reserve */
0b246afa 8415 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
3a584174 8416 min_size, false);
fcb80c2a 8417 BUG_ON(ret);
f0cd846e 8418
5dc562c5
JB
8419 /*
8420 * So if we truncate and then write and fsync we normally would just
8421 * write the extents that changed, which is a problem if we need to
8422 * first truncate that entire inode. So set this flag so we write out
8423 * all of the extents in the inode to the sync log so we're completely
8424 * safe.
8425 */
8426 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 8427 trans->block_rsv = rsv;
907cbceb 8428
8082510e
YZ
8429 while (1) {
8430 ret = btrfs_truncate_inode_items(trans, root, inode,
8431 inode->i_size,
8432 BTRFS_EXTENT_DATA_KEY);
ddfae63c 8433 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74 8434 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 8435 break;
39279cc3 8436
8082510e 8437 ret = btrfs_update_inode(trans, root, inode);
ad7e1a74 8438 if (ret)
3893e33b 8439 break;
ca7e70f5 8440
3a45bb20 8441 btrfs_end_transaction(trans);
2ff7e61e 8442 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
8443
8444 trans = btrfs_start_transaction(root, 2);
8445 if (IS_ERR(trans)) {
ad7e1a74 8446 ret = PTR_ERR(trans);
ca7e70f5
JB
8447 trans = NULL;
8448 break;
8449 }
8450
63f018be 8451 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
0b246afa 8452 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
3a584174 8453 rsv, min_size, false);
ca7e70f5
JB
8454 BUG_ON(ret); /* shouldn't happen */
8455 trans->block_rsv = rsv;
8082510e
YZ
8456 }
8457
ddfae63c
JB
8458 /*
8459 * We can't call btrfs_truncate_block inside a trans handle as we could
8460 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8461 * we've truncated everything except the last little bit, and can do
8462 * btrfs_truncate_block and then update the disk_i_size.
8463 */
8464 if (ret == NEED_TRUNCATE_BLOCK) {
8465 btrfs_end_transaction(trans);
8466 btrfs_btree_balance_dirty(fs_info);
8467
8468 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
8469 if (ret)
8470 goto out;
8471 trans = btrfs_start_transaction(root, 1);
8472 if (IS_ERR(trans)) {
8473 ret = PTR_ERR(trans);
8474 goto out;
8475 }
d923afe9 8476 btrfs_inode_safe_disk_i_size_write(inode, 0);
ddfae63c
JB
8477 }
8478
917c16b2 8479 if (trans) {
ad7e1a74
OS
8480 int ret2;
8481
0b246afa 8482 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74
OS
8483 ret2 = btrfs_update_inode(trans, root, inode);
8484 if (ret2 && !ret)
8485 ret = ret2;
7b128766 8486
ad7e1a74
OS
8487 ret2 = btrfs_end_transaction(trans);
8488 if (ret2 && !ret)
8489 ret = ret2;
2ff7e61e 8490 btrfs_btree_balance_dirty(fs_info);
917c16b2 8491 }
fcb80c2a 8492out:
2ff7e61e 8493 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 8494
ad7e1a74 8495 return ret;
39279cc3
CM
8496}
8497
d352ac68
CM
8498/*
8499 * create a new subvolume directory/inode (helper for the ioctl).
8500 */
d2fb3437 8501int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
8502 struct btrfs_root *new_root,
8503 struct btrfs_root *parent_root,
8504 u64 new_dirid)
39279cc3 8505{
39279cc3 8506 struct inode *inode;
76dda93c 8507 int err;
00e4e6b3 8508 u64 index = 0;
39279cc3 8509
12fc9d09
FA
8510 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8511 new_dirid, new_dirid,
8512 S_IFDIR | (~current_umask() & S_IRWXUGO),
8513 &index);
54aa1f4d 8514 if (IS_ERR(inode))
f46b5a66 8515 return PTR_ERR(inode);
39279cc3
CM
8516 inode->i_op = &btrfs_dir_inode_operations;
8517 inode->i_fop = &btrfs_dir_file_operations;
8518
bfe86848 8519 set_nlink(inode, 1);
6ef06d27 8520 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 8521 unlock_new_inode(inode);
3b96362c 8522
63541927
FDBM
8523 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8524 if (err)
8525 btrfs_err(new_root->fs_info,
351fd353 8526 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
8527 new_root->root_key.objectid, err);
8528
76dda93c 8529 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 8530
76dda93c 8531 iput(inode);
ce598979 8532 return err;
39279cc3
CM
8533}
8534
39279cc3
CM
8535struct inode *btrfs_alloc_inode(struct super_block *sb)
8536{
69fe2d75 8537 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 8538 struct btrfs_inode *ei;
2ead6ae7 8539 struct inode *inode;
39279cc3 8540
712e36c5 8541 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
8542 if (!ei)
8543 return NULL;
2ead6ae7
YZ
8544
8545 ei->root = NULL;
2ead6ae7 8546 ei->generation = 0;
15ee9bc7 8547 ei->last_trans = 0;
257c62e1 8548 ei->last_sub_trans = 0;
e02119d5 8549 ei->logged_trans = 0;
2ead6ae7 8550 ei->delalloc_bytes = 0;
a7e3b975 8551 ei->new_delalloc_bytes = 0;
47059d93 8552 ei->defrag_bytes = 0;
2ead6ae7
YZ
8553 ei->disk_i_size = 0;
8554 ei->flags = 0;
7709cde3 8555 ei->csum_bytes = 0;
2ead6ae7 8556 ei->index_cnt = (u64)-1;
67de1176 8557 ei->dir_index = 0;
2ead6ae7 8558 ei->last_unlink_trans = 0;
46d8bc34 8559 ei->last_log_commit = 0;
2ead6ae7 8560
9e0baf60
JB
8561 spin_lock_init(&ei->lock);
8562 ei->outstanding_extents = 0;
69fe2d75
JB
8563 if (sb->s_magic != BTRFS_TEST_MAGIC)
8564 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8565 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 8566 ei->runtime_flags = 0;
b52aa8c9 8567 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 8568 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8569
16cdcec7
MX
8570 ei->delayed_node = NULL;
8571
9cc97d64 8572 ei->i_otime.tv_sec = 0;
8573 ei->i_otime.tv_nsec = 0;
8574
2ead6ae7 8575 inode = &ei->vfs_inode;
a8067e02 8576 extent_map_tree_init(&ei->extent_tree);
43eb5f29
QW
8577 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8578 extent_io_tree_init(fs_info, &ei->io_failure_tree,
8579 IO_TREE_INODE_IO_FAILURE, inode);
41a2ee75
JB
8580 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8581 IO_TREE_INODE_FILE_EXTENT, inode);
7b439738
DS
8582 ei->io_tree.track_uptodate = true;
8583 ei->io_failure_tree.track_uptodate = true;
b812ce28 8584 atomic_set(&ei->sync_writers, 0);
2ead6ae7 8585 mutex_init(&ei->log_mutex);
e6dcd2dc 8586 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 8587 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 8588 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 8589 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 8590 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
8591
8592 return inode;
39279cc3
CM
8593}
8594
aaedb55b
JB
8595#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8596void btrfs_test_destroy_inode(struct inode *inode)
8597{
dcdbc059 8598 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
8599 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8600}
8601#endif
8602
26602cab 8603void btrfs_free_inode(struct inode *inode)
fa0d7e3d 8604{
fa0d7e3d
NP
8605 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8606}
8607
39279cc3
CM
8608void btrfs_destroy_inode(struct inode *inode)
8609{
0b246afa 8610 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 8611 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
8612 struct btrfs_root *root = BTRFS_I(inode)->root;
8613
b3d9b7a3 8614 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 8615 WARN_ON(inode->i_data.nrpages);
69fe2d75
JB
8616 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
8617 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9e0baf60 8618 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7709cde3 8619 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 8620 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 8621 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 8622 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 8623
a6dbd429
JB
8624 /*
8625 * This can happen where we create an inode, but somebody else also
8626 * created the same inode and we need to destroy the one we already
8627 * created.
8628 */
8629 if (!root)
26602cab 8630 return;
a6dbd429 8631
d397712b 8632 while (1) {
e6dcd2dc
CM
8633 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8634 if (!ordered)
8635 break;
8636 else {
0b246afa 8637 btrfs_err(fs_info,
5d163e0e 8638 "found ordered extent %llu %llu on inode cleanup",
bffe633e 8639 ordered->file_offset, ordered->num_bytes);
e6dcd2dc
CM
8640 btrfs_remove_ordered_extent(inode, ordered);
8641 btrfs_put_ordered_extent(ordered);
8642 btrfs_put_ordered_extent(ordered);
8643 }
8644 }
56fa9d07 8645 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 8646 inode_tree_del(inode);
dcdbc059 8647 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
41a2ee75 8648 btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 0, (u64)-1);
5c8fd99f 8649 btrfs_put_root(BTRFS_I(inode)->root);
39279cc3
CM
8650}
8651
45321ac5 8652int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8653{
8654 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8655
6379ef9f
NA
8656 if (root == NULL)
8657 return 1;
8658
fa6ac876 8659 /* the snap/subvol tree is on deleting */
69e9c6c6 8660 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8661 return 1;
76dda93c 8662 else
45321ac5 8663 return generic_drop_inode(inode);
76dda93c
YZ
8664}
8665
0ee0fda0 8666static void init_once(void *foo)
39279cc3
CM
8667{
8668 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8669
8670 inode_init_once(&ei->vfs_inode);
8671}
8672
e67c718b 8673void __cold btrfs_destroy_cachep(void)
39279cc3 8674{
8c0a8537
KS
8675 /*
8676 * Make sure all delayed rcu free inodes are flushed before we
8677 * destroy cache.
8678 */
8679 rcu_barrier();
5598e900
KM
8680 kmem_cache_destroy(btrfs_inode_cachep);
8681 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
8682 kmem_cache_destroy(btrfs_path_cachep);
8683 kmem_cache_destroy(btrfs_free_space_cachep);
3acd4850 8684 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
39279cc3
CM
8685}
8686
f5c29bd9 8687int __init btrfs_init_cachep(void)
39279cc3 8688{
837e1972 8689 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 8690 sizeof(struct btrfs_inode), 0,
5d097056
VD
8691 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8692 init_once);
39279cc3
CM
8693 if (!btrfs_inode_cachep)
8694 goto fail;
9601e3f6 8695
837e1972 8696 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 8697 sizeof(struct btrfs_trans_handle), 0,
fba4b697 8698 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8699 if (!btrfs_trans_handle_cachep)
8700 goto fail;
9601e3f6 8701
837e1972 8702 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 8703 sizeof(struct btrfs_path), 0,
fba4b697 8704 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8705 if (!btrfs_path_cachep)
8706 goto fail;
9601e3f6 8707
837e1972 8708 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 8709 sizeof(struct btrfs_free_space), 0,
fba4b697 8710 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
8711 if (!btrfs_free_space_cachep)
8712 goto fail;
8713
3acd4850
CL
8714 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
8715 PAGE_SIZE, PAGE_SIZE,
8716 SLAB_RED_ZONE, NULL);
8717 if (!btrfs_free_space_bitmap_cachep)
8718 goto fail;
8719
39279cc3
CM
8720 return 0;
8721fail:
8722 btrfs_destroy_cachep();
8723 return -ENOMEM;
8724}
8725
a528d35e
DH
8726static int btrfs_getattr(const struct path *path, struct kstat *stat,
8727 u32 request_mask, unsigned int flags)
39279cc3 8728{
df0af1a5 8729 u64 delalloc_bytes;
a528d35e 8730 struct inode *inode = d_inode(path->dentry);
fadc0d8b 8731 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
8732 u32 bi_flags = BTRFS_I(inode)->flags;
8733
8734 stat->result_mask |= STATX_BTIME;
8735 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8736 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8737 if (bi_flags & BTRFS_INODE_APPEND)
8738 stat->attributes |= STATX_ATTR_APPEND;
8739 if (bi_flags & BTRFS_INODE_COMPRESS)
8740 stat->attributes |= STATX_ATTR_COMPRESSED;
8741 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8742 stat->attributes |= STATX_ATTR_IMMUTABLE;
8743 if (bi_flags & BTRFS_INODE_NODUMP)
8744 stat->attributes |= STATX_ATTR_NODUMP;
8745
8746 stat->attributes_mask |= (STATX_ATTR_APPEND |
8747 STATX_ATTR_COMPRESSED |
8748 STATX_ATTR_IMMUTABLE |
8749 STATX_ATTR_NODUMP);
fadc0d8b 8750
39279cc3 8751 generic_fillattr(inode, stat);
0ee5dc67 8752 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
8753
8754 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 8755 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 8756 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 8757 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 8758 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
8759 return 0;
8760}
8761
cdd1fedf
DF
8762static int btrfs_rename_exchange(struct inode *old_dir,
8763 struct dentry *old_dentry,
8764 struct inode *new_dir,
8765 struct dentry *new_dentry)
8766{
0b246afa 8767 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
8768 struct btrfs_trans_handle *trans;
8769 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8770 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8771 struct inode *new_inode = new_dentry->d_inode;
8772 struct inode *old_inode = old_dentry->d_inode;
95582b00 8773 struct timespec64 ctime = current_time(old_inode);
cdd1fedf 8774 struct dentry *parent;
4a0cc7ca
NB
8775 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8776 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
8777 u64 old_idx = 0;
8778 u64 new_idx = 0;
cdd1fedf 8779 int ret;
86e8aa0e
FM
8780 bool root_log_pinned = false;
8781 bool dest_log_pinned = false;
d4682ba0
FM
8782 struct btrfs_log_ctx ctx_root;
8783 struct btrfs_log_ctx ctx_dest;
8784 bool sync_log_root = false;
8785 bool sync_log_dest = false;
8786 bool commit_transaction = false;
cdd1fedf
DF
8787
8788 /* we only allow rename subvolume link between subvolumes */
8789 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8790 return -EXDEV;
8791
d4682ba0
FM
8792 btrfs_init_log_ctx(&ctx_root, old_inode);
8793 btrfs_init_log_ctx(&ctx_dest, new_inode);
8794
cdd1fedf 8795 /* close the race window with snapshot create/destroy ioctl */
943eb3bf
JB
8796 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8797 new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 8798 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
8799
8800 /*
8801 * We want to reserve the absolute worst case amount of items. So if
8802 * both inodes are subvols and we need to unlink them then that would
8803 * require 4 item modifications, but if they are both normal inodes it
8804 * would require 5 item modifications, so we'll assume their normal
8805 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
8806 * should cover the worst case number of items we'll modify.
8807 */
8808 trans = btrfs_start_transaction(root, 12);
8809 if (IS_ERR(trans)) {
8810 ret = PTR_ERR(trans);
8811 goto out_notrans;
8812 }
8813
3e174099
JB
8814 if (dest != root)
8815 btrfs_record_root_in_trans(trans, dest);
8816
cdd1fedf
DF
8817 /*
8818 * We need to find a free sequence number both in the source and
8819 * in the destination directory for the exchange.
8820 */
877574e2 8821 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
8822 if (ret)
8823 goto out_fail;
877574e2 8824 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
8825 if (ret)
8826 goto out_fail;
8827
8828 BTRFS_I(old_inode)->dir_index = 0ULL;
8829 BTRFS_I(new_inode)->dir_index = 0ULL;
8830
8831 /* Reference for the source. */
8832 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8833 /* force full log commit if subvolume involved. */
90787766 8834 btrfs_set_log_full_commit(trans);
cdd1fedf 8835 } else {
376e5a57
FM
8836 btrfs_pin_log_trans(root);
8837 root_log_pinned = true;
cdd1fedf
DF
8838 ret = btrfs_insert_inode_ref(trans, dest,
8839 new_dentry->d_name.name,
8840 new_dentry->d_name.len,
8841 old_ino,
f85b7379
DS
8842 btrfs_ino(BTRFS_I(new_dir)),
8843 old_idx);
cdd1fedf
DF
8844 if (ret)
8845 goto out_fail;
cdd1fedf
DF
8846 }
8847
8848 /* And now for the dest. */
8849 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8850 /* force full log commit if subvolume involved. */
90787766 8851 btrfs_set_log_full_commit(trans);
cdd1fedf 8852 } else {
376e5a57
FM
8853 btrfs_pin_log_trans(dest);
8854 dest_log_pinned = true;
cdd1fedf
DF
8855 ret = btrfs_insert_inode_ref(trans, root,
8856 old_dentry->d_name.name,
8857 old_dentry->d_name.len,
8858 new_ino,
f85b7379
DS
8859 btrfs_ino(BTRFS_I(old_dir)),
8860 new_idx);
cdd1fedf
DF
8861 if (ret)
8862 goto out_fail;
cdd1fedf
DF
8863 }
8864
8865 /* Update inode version and ctime/mtime. */
8866 inode_inc_iversion(old_dir);
8867 inode_inc_iversion(new_dir);
8868 inode_inc_iversion(old_inode);
8869 inode_inc_iversion(new_inode);
8870 old_dir->i_ctime = old_dir->i_mtime = ctime;
8871 new_dir->i_ctime = new_dir->i_mtime = ctime;
8872 old_inode->i_ctime = ctime;
8873 new_inode->i_ctime = ctime;
8874
8875 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
8876 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8877 BTRFS_I(old_inode), 1);
8878 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8879 BTRFS_I(new_inode), 1);
cdd1fedf
DF
8880 }
8881
8882 /* src is a subvolume */
8883 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
045d3967 8884 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
cdd1fedf 8885 } else { /* src is an inode */
4ec5934e
NB
8886 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
8887 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
8888 old_dentry->d_name.name,
8889 old_dentry->d_name.len);
8890 if (!ret)
8891 ret = btrfs_update_inode(trans, root, old_inode);
8892 }
8893 if (ret) {
66642832 8894 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8895 goto out_fail;
8896 }
8897
8898 /* dest is a subvolume */
8899 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
045d3967 8900 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
cdd1fedf 8901 } else { /* dest is an inode */
4ec5934e
NB
8902 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
8903 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
8904 new_dentry->d_name.name,
8905 new_dentry->d_name.len);
8906 if (!ret)
8907 ret = btrfs_update_inode(trans, dest, new_inode);
8908 }
8909 if (ret) {
66642832 8910 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8911 goto out_fail;
8912 }
8913
db0a669f 8914 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
8915 new_dentry->d_name.name,
8916 new_dentry->d_name.len, 0, old_idx);
8917 if (ret) {
66642832 8918 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8919 goto out_fail;
8920 }
8921
db0a669f 8922 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
8923 old_dentry->d_name.name,
8924 old_dentry->d_name.len, 0, new_idx);
8925 if (ret) {
66642832 8926 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8927 goto out_fail;
8928 }
8929
8930 if (old_inode->i_nlink == 1)
8931 BTRFS_I(old_inode)->dir_index = old_idx;
8932 if (new_inode->i_nlink == 1)
8933 BTRFS_I(new_inode)->dir_index = new_idx;
8934
86e8aa0e 8935 if (root_log_pinned) {
cdd1fedf 8936 parent = new_dentry->d_parent;
d4682ba0
FM
8937 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
8938 BTRFS_I(old_dir), parent,
8939 false, &ctx_root);
8940 if (ret == BTRFS_NEED_LOG_SYNC)
8941 sync_log_root = true;
8942 else if (ret == BTRFS_NEED_TRANS_COMMIT)
8943 commit_transaction = true;
8944 ret = 0;
cdd1fedf 8945 btrfs_end_log_trans(root);
86e8aa0e 8946 root_log_pinned = false;
cdd1fedf 8947 }
86e8aa0e 8948 if (dest_log_pinned) {
d4682ba0
FM
8949 if (!commit_transaction) {
8950 parent = old_dentry->d_parent;
8951 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
8952 BTRFS_I(new_dir), parent,
8953 false, &ctx_dest);
8954 if (ret == BTRFS_NEED_LOG_SYNC)
8955 sync_log_dest = true;
8956 else if (ret == BTRFS_NEED_TRANS_COMMIT)
8957 commit_transaction = true;
8958 ret = 0;
8959 }
cdd1fedf 8960 btrfs_end_log_trans(dest);
86e8aa0e 8961 dest_log_pinned = false;
cdd1fedf
DF
8962 }
8963out_fail:
86e8aa0e
FM
8964 /*
8965 * If we have pinned a log and an error happened, we unpin tasks
8966 * trying to sync the log and force them to fallback to a transaction
8967 * commit if the log currently contains any of the inodes involved in
8968 * this rename operation (to ensure we do not persist a log with an
8969 * inconsistent state for any of these inodes or leading to any
8970 * inconsistencies when replayed). If the transaction was aborted, the
8971 * abortion reason is propagated to userspace when attempting to commit
8972 * the transaction. If the log does not contain any of these inodes, we
8973 * allow the tasks to sync it.
8974 */
8975 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
8976 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
8977 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
8978 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 8979 (new_inode &&
0f8939b8 8980 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 8981 btrfs_set_log_full_commit(trans);
86e8aa0e
FM
8982
8983 if (root_log_pinned) {
8984 btrfs_end_log_trans(root);
8985 root_log_pinned = false;
8986 }
8987 if (dest_log_pinned) {
8988 btrfs_end_log_trans(dest);
8989 dest_log_pinned = false;
8990 }
8991 }
d4682ba0
FM
8992 if (!ret && sync_log_root && !commit_transaction) {
8993 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
8994 &ctx_root);
8995 if (ret)
8996 commit_transaction = true;
8997 }
8998 if (!ret && sync_log_dest && !commit_transaction) {
8999 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9000 &ctx_dest);
9001 if (ret)
9002 commit_transaction = true;
9003 }
9004 if (commit_transaction) {
e6c61710
FM
9005 /*
9006 * We may have set commit_transaction when logging the new name
9007 * in the destination root, in which case we left the source
9008 * root context in the list of log contextes. So make sure we
9009 * remove it to avoid invalid memory accesses, since the context
9010 * was allocated in our stack frame.
9011 */
9012 if (sync_log_root) {
9013 mutex_lock(&root->log_mutex);
9014 list_del_init(&ctx_root.list);
9015 mutex_unlock(&root->log_mutex);
9016 }
d4682ba0
FM
9017 ret = btrfs_commit_transaction(trans);
9018 } else {
9019 int ret2;
9020
9021 ret2 = btrfs_end_transaction(trans);
9022 ret = ret ? ret : ret2;
9023 }
cdd1fedf 9024out_notrans:
943eb3bf
JB
9025 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9026 old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9027 up_read(&fs_info->subvol_sem);
cdd1fedf 9028
e6c61710
FM
9029 ASSERT(list_empty(&ctx_root.list));
9030 ASSERT(list_empty(&ctx_dest.list));
9031
cdd1fedf
DF
9032 return ret;
9033}
9034
9035static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9036 struct btrfs_root *root,
9037 struct inode *dir,
9038 struct dentry *dentry)
9039{
9040 int ret;
9041 struct inode *inode;
9042 u64 objectid;
9043 u64 index;
9044
9045 ret = btrfs_find_free_ino(root, &objectid);
9046 if (ret)
9047 return ret;
9048
9049 inode = btrfs_new_inode(trans, root, dir,
9050 dentry->d_name.name,
9051 dentry->d_name.len,
4a0cc7ca 9052 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9053 objectid,
9054 S_IFCHR | WHITEOUT_MODE,
9055 &index);
9056
9057 if (IS_ERR(inode)) {
9058 ret = PTR_ERR(inode);
9059 return ret;
9060 }
9061
9062 inode->i_op = &btrfs_special_inode_operations;
9063 init_special_inode(inode, inode->i_mode,
9064 WHITEOUT_DEV);
9065
9066 ret = btrfs_init_inode_security(trans, inode, dir,
9067 &dentry->d_name);
9068 if (ret)
c9901618 9069 goto out;
cdd1fedf 9070
cef415af
NB
9071 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9072 BTRFS_I(inode), 0, index);
cdd1fedf 9073 if (ret)
c9901618 9074 goto out;
cdd1fedf
DF
9075
9076 ret = btrfs_update_inode(trans, root, inode);
c9901618 9077out:
cdd1fedf 9078 unlock_new_inode(inode);
c9901618
FM
9079 if (ret)
9080 inode_dec_link_count(inode);
cdd1fedf
DF
9081 iput(inode);
9082
c9901618 9083 return ret;
cdd1fedf
DF
9084}
9085
d397712b 9086static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9087 struct inode *new_dir, struct dentry *new_dentry,
9088 unsigned int flags)
39279cc3 9089{
0b246afa 9090 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9091 struct btrfs_trans_handle *trans;
5062af35 9092 unsigned int trans_num_items;
39279cc3 9093 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9094 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9095 struct inode *new_inode = d_inode(new_dentry);
9096 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9097 u64 index = 0;
39279cc3 9098 int ret;
4a0cc7ca 9099 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9100 bool log_pinned = false;
d4682ba0
FM
9101 struct btrfs_log_ctx ctx;
9102 bool sync_log = false;
9103 bool commit_transaction = false;
39279cc3 9104
4a0cc7ca 9105 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9106 return -EPERM;
9107
4df27c4d 9108 /* we only allow rename subvolume link between subvolumes */
33345d01 9109 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9110 return -EXDEV;
9111
33345d01 9112 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9113 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9114 return -ENOTEMPTY;
5f39d397 9115
4df27c4d
YZ
9116 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9117 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9118 return -ENOTEMPTY;
9c52057c
CM
9119
9120
9121 /* check for collisions, even if the name isn't there */
4871c158 9122 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9123 new_dentry->d_name.name,
9124 new_dentry->d_name.len);
9125
9126 if (ret) {
9127 if (ret == -EEXIST) {
9128 /* we shouldn't get
9129 * eexist without a new_inode */
fae7f21c 9130 if (WARN_ON(!new_inode)) {
9c52057c
CM
9131 return ret;
9132 }
9133 } else {
9134 /* maybe -EOVERFLOW */
9135 return ret;
9136 }
9137 }
9138 ret = 0;
9139
5a3f23d5 9140 /*
8d875f95
CM
9141 * we're using rename to replace one file with another. Start IO on it
9142 * now so we don't add too much work to the end of the transaction
5a3f23d5 9143 */
8d875f95 9144 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9145 filemap_flush(old_inode->i_mapping);
9146
76dda93c 9147 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9148 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9149 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9150 /*
9151 * We want to reserve the absolute worst case amount of items. So if
9152 * both inodes are subvols and we need to unlink them then that would
9153 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9154 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9155 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9156 * should cover the worst case number of items we'll modify.
5062af35
FM
9157 * If our rename has the whiteout flag, we need more 5 units for the
9158 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9159 * when selinux is enabled).
a22285a6 9160 */
5062af35
FM
9161 trans_num_items = 11;
9162 if (flags & RENAME_WHITEOUT)
9163 trans_num_items += 5;
9164 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9165 if (IS_ERR(trans)) {
cdd1fedf
DF
9166 ret = PTR_ERR(trans);
9167 goto out_notrans;
9168 }
76dda93c 9169
4df27c4d
YZ
9170 if (dest != root)
9171 btrfs_record_root_in_trans(trans, dest);
5f39d397 9172
877574e2 9173 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9174 if (ret)
9175 goto out_fail;
5a3f23d5 9176
67de1176 9177 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9178 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9179 /* force full log commit if subvolume involved. */
90787766 9180 btrfs_set_log_full_commit(trans);
4df27c4d 9181 } else {
c4aba954
FM
9182 btrfs_pin_log_trans(root);
9183 log_pinned = true;
a5719521
YZ
9184 ret = btrfs_insert_inode_ref(trans, dest,
9185 new_dentry->d_name.name,
9186 new_dentry->d_name.len,
33345d01 9187 old_ino,
4a0cc7ca 9188 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9189 if (ret)
9190 goto out_fail;
4df27c4d 9191 }
5a3f23d5 9192
0c4d2d95
JB
9193 inode_inc_iversion(old_dir);
9194 inode_inc_iversion(new_dir);
9195 inode_inc_iversion(old_inode);
04b285f3
DD
9196 old_dir->i_ctime = old_dir->i_mtime =
9197 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9198 old_inode->i_ctime = current_time(old_dir);
5f39d397 9199
12fcfd22 9200 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9201 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9202 BTRFS_I(old_inode), 1);
12fcfd22 9203
33345d01 9204 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
045d3967 9205 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
4df27c4d 9206 } else {
4ec5934e
NB
9207 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9208 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9209 old_dentry->d_name.name,
9210 old_dentry->d_name.len);
9211 if (!ret)
9212 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9213 }
79787eaa 9214 if (ret) {
66642832 9215 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9216 goto out_fail;
9217 }
39279cc3
CM
9218
9219 if (new_inode) {
0c4d2d95 9220 inode_inc_iversion(new_inode);
c2050a45 9221 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9222 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d 9223 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
045d3967 9224 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
4df27c4d
YZ
9225 BUG_ON(new_inode->i_nlink == 0);
9226 } else {
4ec5934e
NB
9227 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9228 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9229 new_dentry->d_name.name,
9230 new_dentry->d_name.len);
9231 }
4ef31a45 9232 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9233 ret = btrfs_orphan_add(trans,
9234 BTRFS_I(d_inode(new_dentry)));
79787eaa 9235 if (ret) {
66642832 9236 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9237 goto out_fail;
9238 }
39279cc3 9239 }
aec7477b 9240
db0a669f 9241 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 9242 new_dentry->d_name.name,
a5719521 9243 new_dentry->d_name.len, 0, index);
79787eaa 9244 if (ret) {
66642832 9245 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9246 goto out_fail;
9247 }
39279cc3 9248
67de1176
MX
9249 if (old_inode->i_nlink == 1)
9250 BTRFS_I(old_inode)->dir_index = index;
9251
3dc9e8f7 9252 if (log_pinned) {
10d9f309 9253 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9254
d4682ba0
FM
9255 btrfs_init_log_ctx(&ctx, old_inode);
9256 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9257 BTRFS_I(old_dir), parent,
9258 false, &ctx);
9259 if (ret == BTRFS_NEED_LOG_SYNC)
9260 sync_log = true;
9261 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9262 commit_transaction = true;
9263 ret = 0;
4df27c4d 9264 btrfs_end_log_trans(root);
3dc9e8f7 9265 log_pinned = false;
4df27c4d 9266 }
cdd1fedf
DF
9267
9268 if (flags & RENAME_WHITEOUT) {
9269 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9270 old_dentry);
9271
9272 if (ret) {
66642832 9273 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9274 goto out_fail;
9275 }
4df27c4d 9276 }
39279cc3 9277out_fail:
3dc9e8f7
FM
9278 /*
9279 * If we have pinned the log and an error happened, we unpin tasks
9280 * trying to sync the log and force them to fallback to a transaction
9281 * commit if the log currently contains any of the inodes involved in
9282 * this rename operation (to ensure we do not persist a log with an
9283 * inconsistent state for any of these inodes or leading to any
9284 * inconsistencies when replayed). If the transaction was aborted, the
9285 * abortion reason is propagated to userspace when attempting to commit
9286 * the transaction. If the log does not contain any of these inodes, we
9287 * allow the tasks to sync it.
9288 */
9289 if (ret && log_pinned) {
0f8939b8
NB
9290 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9291 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9292 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 9293 (new_inode &&
0f8939b8 9294 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 9295 btrfs_set_log_full_commit(trans);
3dc9e8f7
FM
9296
9297 btrfs_end_log_trans(root);
9298 log_pinned = false;
9299 }
d4682ba0
FM
9300 if (!ret && sync_log) {
9301 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9302 if (ret)
9303 commit_transaction = true;
236ebc20
FM
9304 } else if (sync_log) {
9305 mutex_lock(&root->log_mutex);
9306 list_del(&ctx.list);
9307 mutex_unlock(&root->log_mutex);
d4682ba0
FM
9308 }
9309 if (commit_transaction) {
9310 ret = btrfs_commit_transaction(trans);
9311 } else {
9312 int ret2;
9313
9314 ret2 = btrfs_end_transaction(trans);
9315 ret = ret ? ret : ret2;
9316 }
b44c59a8 9317out_notrans:
33345d01 9318 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9319 up_read(&fs_info->subvol_sem);
9ed74f2d 9320
39279cc3
CM
9321 return ret;
9322}
9323
80ace85c
MS
9324static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9325 struct inode *new_dir, struct dentry *new_dentry,
9326 unsigned int flags)
9327{
cdd1fedf 9328 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9329 return -EINVAL;
9330
cdd1fedf
DF
9331 if (flags & RENAME_EXCHANGE)
9332 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9333 new_dentry);
9334
9335 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9336}
9337
3a2f8c07
NB
9338struct btrfs_delalloc_work {
9339 struct inode *inode;
9340 struct completion completion;
9341 struct list_head list;
9342 struct btrfs_work work;
9343};
9344
8ccf6f19
MX
9345static void btrfs_run_delalloc_work(struct btrfs_work *work)
9346{
9347 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9348 struct inode *inode;
8ccf6f19
MX
9349
9350 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9351 work);
9f23e289 9352 inode = delalloc_work->inode;
30424601
DS
9353 filemap_flush(inode->i_mapping);
9354 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9355 &BTRFS_I(inode)->runtime_flags))
9f23e289 9356 filemap_flush(inode->i_mapping);
8ccf6f19 9357
076da91c 9358 iput(inode);
8ccf6f19
MX
9359 complete(&delalloc_work->completion);
9360}
9361
3a2f8c07 9362static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8ccf6f19
MX
9363{
9364 struct btrfs_delalloc_work *work;
9365
100d5702 9366 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9367 if (!work)
9368 return NULL;
9369
9370 init_completion(&work->completion);
9371 INIT_LIST_HEAD(&work->list);
9372 work->inode = inode;
a0cac0ec 9373 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9374
9375 return work;
9376}
9377
d352ac68
CM
9378/*
9379 * some fairly slow code that needs optimization. This walks the list
9380 * of all the inodes with pending delalloc and forces them to disk.
9381 */
3cd24c69 9382static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
ea8c2819 9383{
ea8c2819 9384 struct btrfs_inode *binode;
5b21f2ed 9385 struct inode *inode;
8ccf6f19
MX
9386 struct btrfs_delalloc_work *work, *next;
9387 struct list_head works;
1eafa6c7 9388 struct list_head splice;
8ccf6f19 9389 int ret = 0;
ea8c2819 9390
8ccf6f19 9391 INIT_LIST_HEAD(&works);
1eafa6c7 9392 INIT_LIST_HEAD(&splice);
63607cc8 9393
573bfb72 9394 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9395 spin_lock(&root->delalloc_lock);
9396 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9397 while (!list_empty(&splice)) {
9398 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9399 delalloc_inodes);
1eafa6c7 9400
eb73c1b7
MX
9401 list_move_tail(&binode->delalloc_inodes,
9402 &root->delalloc_inodes);
5b21f2ed 9403 inode = igrab(&binode->vfs_inode);
df0af1a5 9404 if (!inode) {
eb73c1b7 9405 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9406 continue;
df0af1a5 9407 }
eb73c1b7 9408 spin_unlock(&root->delalloc_lock);
1eafa6c7 9409
3cd24c69
EL
9410 if (snapshot)
9411 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9412 &binode->runtime_flags);
076da91c 9413 work = btrfs_alloc_delalloc_work(inode);
5d99a998 9414 if (!work) {
4fbb5147 9415 iput(inode);
1eafa6c7 9416 ret = -ENOMEM;
a1ecaabb 9417 goto out;
5b21f2ed 9418 }
1eafa6c7 9419 list_add_tail(&work->list, &works);
a44903ab
QW
9420 btrfs_queue_work(root->fs_info->flush_workers,
9421 &work->work);
6c255e67
MX
9422 ret++;
9423 if (nr != -1 && ret >= nr)
a1ecaabb 9424 goto out;
5b21f2ed 9425 cond_resched();
eb73c1b7 9426 spin_lock(&root->delalloc_lock);
ea8c2819 9427 }
eb73c1b7 9428 spin_unlock(&root->delalloc_lock);
8c8bee1d 9429
a1ecaabb 9430out:
eb73c1b7
MX
9431 list_for_each_entry_safe(work, next, &works, list) {
9432 list_del_init(&work->list);
40012f96
NB
9433 wait_for_completion(&work->completion);
9434 kfree(work);
eb73c1b7
MX
9435 }
9436
81f1d390 9437 if (!list_empty(&splice)) {
eb73c1b7
MX
9438 spin_lock(&root->delalloc_lock);
9439 list_splice_tail(&splice, &root->delalloc_inodes);
9440 spin_unlock(&root->delalloc_lock);
9441 }
573bfb72 9442 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9443 return ret;
9444}
1eafa6c7 9445
3cd24c69 9446int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
eb73c1b7 9447{
0b246afa 9448 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 9449 int ret;
1eafa6c7 9450
0b246afa 9451 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9452 return -EROFS;
9453
3cd24c69 9454 ret = start_delalloc_inodes(root, -1, true);
6c255e67
MX
9455 if (ret > 0)
9456 ret = 0;
eb73c1b7
MX
9457 return ret;
9458}
9459
82b3e53b 9460int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
eb73c1b7
MX
9461{
9462 struct btrfs_root *root;
9463 struct list_head splice;
9464 int ret;
9465
2c21b4d7 9466 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9467 return -EROFS;
9468
9469 INIT_LIST_HEAD(&splice);
9470
573bfb72 9471 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9472 spin_lock(&fs_info->delalloc_root_lock);
9473 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 9474 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
9475 root = list_first_entry(&splice, struct btrfs_root,
9476 delalloc_root);
00246528 9477 root = btrfs_grab_root(root);
eb73c1b7
MX
9478 BUG_ON(!root);
9479 list_move_tail(&root->delalloc_root,
9480 &fs_info->delalloc_roots);
9481 spin_unlock(&fs_info->delalloc_root_lock);
9482
3cd24c69 9483 ret = start_delalloc_inodes(root, nr, false);
00246528 9484 btrfs_put_root(root);
6c255e67 9485 if (ret < 0)
eb73c1b7
MX
9486 goto out;
9487
6c255e67
MX
9488 if (nr != -1) {
9489 nr -= ret;
9490 WARN_ON(nr < 0);
9491 }
eb73c1b7 9492 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9493 }
eb73c1b7 9494 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9495
6c255e67 9496 ret = 0;
eb73c1b7 9497out:
81f1d390 9498 if (!list_empty(&splice)) {
eb73c1b7
MX
9499 spin_lock(&fs_info->delalloc_root_lock);
9500 list_splice_tail(&splice, &fs_info->delalloc_roots);
9501 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9502 }
573bfb72 9503 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9504 return ret;
ea8c2819
CM
9505}
9506
39279cc3
CM
9507static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9508 const char *symname)
9509{
0b246afa 9510 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
9511 struct btrfs_trans_handle *trans;
9512 struct btrfs_root *root = BTRFS_I(dir)->root;
9513 struct btrfs_path *path;
9514 struct btrfs_key key;
1832a6d5 9515 struct inode *inode = NULL;
39279cc3 9516 int err;
39279cc3 9517 u64 objectid;
67871254 9518 u64 index = 0;
39279cc3
CM
9519 int name_len;
9520 int datasize;
5f39d397 9521 unsigned long ptr;
39279cc3 9522 struct btrfs_file_extent_item *ei;
5f39d397 9523 struct extent_buffer *leaf;
39279cc3 9524
f06becc4 9525 name_len = strlen(symname);
0b246afa 9526 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 9527 return -ENAMETOOLONG;
1832a6d5 9528
9ed74f2d
JB
9529 /*
9530 * 2 items for inode item and ref
9531 * 2 items for dir items
9269d12b
FM
9532 * 1 item for updating parent inode item
9533 * 1 item for the inline extent item
9ed74f2d
JB
9534 * 1 item for xattr if selinux is on
9535 */
9269d12b 9536 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
9537 if (IS_ERR(trans))
9538 return PTR_ERR(trans);
1832a6d5 9539
581bb050
LZ
9540 err = btrfs_find_free_ino(root, &objectid);
9541 if (err)
9542 goto out_unlock;
9543
aec7477b 9544 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
9545 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9546 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
9547 if (IS_ERR(inode)) {
9548 err = PTR_ERR(inode);
32955c54 9549 inode = NULL;
39279cc3 9550 goto out_unlock;
7cf96da3 9551 }
39279cc3 9552
ad19db71
CS
9553 /*
9554 * If the active LSM wants to access the inode during
9555 * d_instantiate it needs these. Smack checks to see
9556 * if the filesystem supports xattrs by looking at the
9557 * ops vector.
9558 */
9559 inode->i_fop = &btrfs_file_operations;
9560 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 9561 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
9562 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9563
9564 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9565 if (err)
32955c54 9566 goto out_unlock;
ad19db71 9567
39279cc3 9568 path = btrfs_alloc_path();
d8926bb3
MF
9569 if (!path) {
9570 err = -ENOMEM;
32955c54 9571 goto out_unlock;
d8926bb3 9572 }
4a0cc7ca 9573 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 9574 key.offset = 0;
962a298f 9575 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9576 datasize = btrfs_file_extent_calc_inline_size(name_len);
9577 err = btrfs_insert_empty_item(trans, root, path, &key,
9578 datasize);
54aa1f4d 9579 if (err) {
b0839166 9580 btrfs_free_path(path);
32955c54 9581 goto out_unlock;
54aa1f4d 9582 }
5f39d397
CM
9583 leaf = path->nodes[0];
9584 ei = btrfs_item_ptr(leaf, path->slots[0],
9585 struct btrfs_file_extent_item);
9586 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9587 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9588 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9589 btrfs_set_file_extent_encryption(leaf, ei, 0);
9590 btrfs_set_file_extent_compression(leaf, ei, 0);
9591 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9592 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9593
39279cc3 9594 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
9595 write_extent_buffer(leaf, symname, ptr, name_len);
9596 btrfs_mark_buffer_dirty(leaf);
39279cc3 9597 btrfs_free_path(path);
5f39d397 9598
39279cc3 9599 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 9600 inode_nohighmem(inode);
d899e052 9601 inode_set_bytes(inode, name_len);
6ef06d27 9602 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 9603 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
9604 /*
9605 * Last step, add directory indexes for our symlink inode. This is the
9606 * last step to avoid extra cleanup of these indexes if an error happens
9607 * elsewhere above.
9608 */
9609 if (!err)
cef415af
NB
9610 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9611 BTRFS_I(inode), 0, index);
32955c54
AV
9612 if (err)
9613 goto out_unlock;
b0d5d10f 9614
1e2e547a 9615 d_instantiate_new(dentry, inode);
39279cc3
CM
9616
9617out_unlock:
3a45bb20 9618 btrfs_end_transaction(trans);
32955c54 9619 if (err && inode) {
39279cc3 9620 inode_dec_link_count(inode);
32955c54 9621 discard_new_inode(inode);
39279cc3 9622 }
2ff7e61e 9623 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
9624 return err;
9625}
16432985 9626
203f44c5
QW
9627static int insert_prealloc_file_extent(struct btrfs_trans_handle *trans,
9628 struct inode *inode, struct btrfs_key *ins,
9629 u64 file_offset)
9630{
9631 struct btrfs_file_extent_item stack_fi;
9632 u64 start = ins->objectid;
9633 u64 len = ins->offset;
9729f10a 9634 int ret;
203f44c5
QW
9635
9636 memset(&stack_fi, 0, sizeof(stack_fi));
9637
9638 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9639 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9640 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9641 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9642 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9643 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9644 /* Encryption and other encoding is reserved and all 0 */
9645
72b7d15b 9646 ret = btrfs_qgroup_release_data(BTRFS_I(inode), file_offset, len);
9729f10a
QW
9647 if (ret < 0)
9648 return ret;
203f44c5 9649 return insert_reserved_file_extent(trans, inode, file_offset,
9729f10a 9650 &stack_fi, ret);
203f44c5 9651}
0af3d00b
JB
9652static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9653 u64 start, u64 num_bytes, u64 min_size,
9654 loff_t actual_len, u64 *alloc_hint,
9655 struct btrfs_trans_handle *trans)
d899e052 9656{
0b246afa 9657 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
9658 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9659 struct extent_map *em;
d899e052
YZ
9660 struct btrfs_root *root = BTRFS_I(inode)->root;
9661 struct btrfs_key ins;
d899e052 9662 u64 cur_offset = start;
b778cf96 9663 u64 clear_offset = start;
55a61d1d 9664 u64 i_size;
154ea289 9665 u64 cur_bytes;
0b670dc4 9666 u64 last_alloc = (u64)-1;
d899e052 9667 int ret = 0;
0af3d00b 9668 bool own_trans = true;
18513091 9669 u64 end = start + num_bytes - 1;
d899e052 9670
0af3d00b
JB
9671 if (trans)
9672 own_trans = false;
d899e052 9673 while (num_bytes > 0) {
0af3d00b
JB
9674 if (own_trans) {
9675 trans = btrfs_start_transaction(root, 3);
9676 if (IS_ERR(trans)) {
9677 ret = PTR_ERR(trans);
9678 break;
9679 }
5a303d5d
YZ
9680 }
9681
ee22184b 9682 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 9683 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
9684 /*
9685 * If we are severely fragmented we could end up with really
9686 * small allocations, so if the allocator is returning small
9687 * chunks lets make its job easier by only searching for those
9688 * sized chunks.
9689 */
9690 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
9691 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9692 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 9693 if (ret) {
0af3d00b 9694 if (own_trans)
3a45bb20 9695 btrfs_end_transaction(trans);
a22285a6 9696 break;
d899e052 9697 }
b778cf96
JB
9698
9699 /*
9700 * We've reserved this space, and thus converted it from
9701 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9702 * from here on out we will only need to clear our reservation
9703 * for the remaining unreserved area, so advance our
9704 * clear_offset by our extent size.
9705 */
9706 clear_offset += ins.offset;
0b246afa 9707 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 9708
0b670dc4 9709 last_alloc = ins.offset;
203f44c5
QW
9710 ret = insert_prealloc_file_extent(trans, inode, &ins,
9711 cur_offset);
79787eaa 9712 if (ret) {
2ff7e61e 9713 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 9714 ins.offset, 0);
66642832 9715 btrfs_abort_transaction(trans, ret);
79787eaa 9716 if (own_trans)
3a45bb20 9717 btrfs_end_transaction(trans);
79787eaa
JM
9718 break;
9719 }
31193213 9720
dcdbc059 9721 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 9722 cur_offset + ins.offset -1, 0);
5a303d5d 9723
5dc562c5
JB
9724 em = alloc_extent_map();
9725 if (!em) {
9726 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9727 &BTRFS_I(inode)->runtime_flags);
9728 goto next;
9729 }
9730
9731 em->start = cur_offset;
9732 em->orig_start = cur_offset;
9733 em->len = ins.offset;
9734 em->block_start = ins.objectid;
9735 em->block_len = ins.offset;
b4939680 9736 em->orig_block_len = ins.offset;
cc95bef6 9737 em->ram_bytes = ins.offset;
5dc562c5
JB
9738 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9739 em->generation = trans->transid;
9740
9741 while (1) {
9742 write_lock(&em_tree->lock);
09a2a8f9 9743 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
9744 write_unlock(&em_tree->lock);
9745 if (ret != -EEXIST)
9746 break;
dcdbc059 9747 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
9748 cur_offset + ins.offset - 1,
9749 0);
9750 }
9751 free_extent_map(em);
9752next:
d899e052
YZ
9753 num_bytes -= ins.offset;
9754 cur_offset += ins.offset;
efa56464 9755 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9756
0c4d2d95 9757 inode_inc_iversion(inode);
c2050a45 9758 inode->i_ctime = current_time(inode);
6cbff00f 9759 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9760 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9761 (actual_len > inode->i_size) &&
9762 (cur_offset > inode->i_size)) {
d1ea6a61 9763 if (cur_offset > actual_len)
55a61d1d 9764 i_size = actual_len;
d1ea6a61 9765 else
55a61d1d
JB
9766 i_size = cur_offset;
9767 i_size_write(inode, i_size);
d923afe9 9768 btrfs_inode_safe_disk_i_size_write(inode, 0);
5a303d5d
YZ
9769 }
9770
d899e052 9771 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
9772
9773 if (ret) {
66642832 9774 btrfs_abort_transaction(trans, ret);
79787eaa 9775 if (own_trans)
3a45bb20 9776 btrfs_end_transaction(trans);
79787eaa
JM
9777 break;
9778 }
d899e052 9779
0af3d00b 9780 if (own_trans)
3a45bb20 9781 btrfs_end_transaction(trans);
5a303d5d 9782 }
b778cf96
JB
9783 if (clear_offset < end)
9784 btrfs_free_reserved_data_space(inode, NULL, clear_offset,
9785 end - clear_offset + 1);
d899e052
YZ
9786 return ret;
9787}
9788
0af3d00b
JB
9789int btrfs_prealloc_file_range(struct inode *inode, int mode,
9790 u64 start, u64 num_bytes, u64 min_size,
9791 loff_t actual_len, u64 *alloc_hint)
9792{
9793 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9794 min_size, actual_len, alloc_hint,
9795 NULL);
9796}
9797
9798int btrfs_prealloc_file_range_trans(struct inode *inode,
9799 struct btrfs_trans_handle *trans, int mode,
9800 u64 start, u64 num_bytes, u64 min_size,
9801 loff_t actual_len, u64 *alloc_hint)
9802{
9803 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9804 min_size, actual_len, alloc_hint, trans);
9805}
9806
e6dcd2dc
CM
9807static int btrfs_set_page_dirty(struct page *page)
9808{
e6dcd2dc
CM
9809 return __set_page_dirty_nobuffers(page);
9810}
9811
10556cb2 9812static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 9813{
b83cc969 9814 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9815 umode_t mode = inode->i_mode;
b83cc969 9816
cb6db4e5
JM
9817 if (mask & MAY_WRITE &&
9818 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9819 if (btrfs_root_readonly(root))
9820 return -EROFS;
9821 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9822 return -EACCES;
9823 }
2830ba7f 9824 return generic_permission(inode, mask);
fdebe2bd 9825}
39279cc3 9826
ef3b9af5
FM
9827static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9828{
2ff7e61e 9829 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
9830 struct btrfs_trans_handle *trans;
9831 struct btrfs_root *root = BTRFS_I(dir)->root;
9832 struct inode *inode = NULL;
9833 u64 objectid;
9834 u64 index;
9835 int ret = 0;
9836
9837 /*
9838 * 5 units required for adding orphan entry
9839 */
9840 trans = btrfs_start_transaction(root, 5);
9841 if (IS_ERR(trans))
9842 return PTR_ERR(trans);
9843
9844 ret = btrfs_find_free_ino(root, &objectid);
9845 if (ret)
9846 goto out;
9847
9848 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 9849 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
9850 if (IS_ERR(inode)) {
9851 ret = PTR_ERR(inode);
9852 inode = NULL;
9853 goto out;
9854 }
9855
ef3b9af5
FM
9856 inode->i_fop = &btrfs_file_operations;
9857 inode->i_op = &btrfs_file_inode_operations;
9858
9859 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
9860 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9861
b0d5d10f
CM
9862 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9863 if (ret)
32955c54 9864 goto out;
b0d5d10f
CM
9865
9866 ret = btrfs_update_inode(trans, root, inode);
9867 if (ret)
32955c54 9868 goto out;
73f2e545 9869 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 9870 if (ret)
32955c54 9871 goto out;
ef3b9af5 9872
5762b5c9
FM
9873 /*
9874 * We set number of links to 0 in btrfs_new_inode(), and here we set
9875 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9876 * through:
9877 *
9878 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9879 */
9880 set_nlink(inode, 1);
ef3b9af5 9881 d_tmpfile(dentry, inode);
32955c54 9882 unlock_new_inode(inode);
ef3b9af5 9883 mark_inode_dirty(inode);
ef3b9af5 9884out:
3a45bb20 9885 btrfs_end_transaction(trans);
32955c54
AV
9886 if (ret && inode)
9887 discard_new_inode(inode);
2ff7e61e 9888 btrfs_btree_balance_dirty(fs_info);
ef3b9af5
FM
9889 return ret;
9890}
9891
5cdc84bf 9892void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
c6100a4b 9893{
5cdc84bf 9894 struct inode *inode = tree->private_data;
c6100a4b
JB
9895 unsigned long index = start >> PAGE_SHIFT;
9896 unsigned long end_index = end >> PAGE_SHIFT;
9897 struct page *page;
9898
9899 while (index <= end_index) {
9900 page = find_get_page(inode->i_mapping, index);
9901 ASSERT(page); /* Pages should be in the extent_io_tree */
9902 set_page_writeback(page);
9903 put_page(page);
9904 index++;
9905 }
9906}
9907
ed46ff3d
OS
9908#ifdef CONFIG_SWAP
9909/*
9910 * Add an entry indicating a block group or device which is pinned by a
9911 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9912 * negative errno on failure.
9913 */
9914static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9915 bool is_block_group)
9916{
9917 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9918 struct btrfs_swapfile_pin *sp, *entry;
9919 struct rb_node **p;
9920 struct rb_node *parent = NULL;
9921
9922 sp = kmalloc(sizeof(*sp), GFP_NOFS);
9923 if (!sp)
9924 return -ENOMEM;
9925 sp->ptr = ptr;
9926 sp->inode = inode;
9927 sp->is_block_group = is_block_group;
9928
9929 spin_lock(&fs_info->swapfile_pins_lock);
9930 p = &fs_info->swapfile_pins.rb_node;
9931 while (*p) {
9932 parent = *p;
9933 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9934 if (sp->ptr < entry->ptr ||
9935 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9936 p = &(*p)->rb_left;
9937 } else if (sp->ptr > entry->ptr ||
9938 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9939 p = &(*p)->rb_right;
9940 } else {
9941 spin_unlock(&fs_info->swapfile_pins_lock);
9942 kfree(sp);
9943 return 1;
9944 }
9945 }
9946 rb_link_node(&sp->node, parent, p);
9947 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9948 spin_unlock(&fs_info->swapfile_pins_lock);
9949 return 0;
9950}
9951
9952/* Free all of the entries pinned by this swapfile. */
9953static void btrfs_free_swapfile_pins(struct inode *inode)
9954{
9955 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9956 struct btrfs_swapfile_pin *sp;
9957 struct rb_node *node, *next;
9958
9959 spin_lock(&fs_info->swapfile_pins_lock);
9960 node = rb_first(&fs_info->swapfile_pins);
9961 while (node) {
9962 next = rb_next(node);
9963 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9964 if (sp->inode == inode) {
9965 rb_erase(&sp->node, &fs_info->swapfile_pins);
9966 if (sp->is_block_group)
9967 btrfs_put_block_group(sp->ptr);
9968 kfree(sp);
9969 }
9970 node = next;
9971 }
9972 spin_unlock(&fs_info->swapfile_pins_lock);
9973}
9974
9975struct btrfs_swap_info {
9976 u64 start;
9977 u64 block_start;
9978 u64 block_len;
9979 u64 lowest_ppage;
9980 u64 highest_ppage;
9981 unsigned long nr_pages;
9982 int nr_extents;
9983};
9984
9985static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9986 struct btrfs_swap_info *bsi)
9987{
9988 unsigned long nr_pages;
9989 u64 first_ppage, first_ppage_reported, next_ppage;
9990 int ret;
9991
9992 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
9993 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
9994 PAGE_SIZE) >> PAGE_SHIFT;
9995
9996 if (first_ppage >= next_ppage)
9997 return 0;
9998 nr_pages = next_ppage - first_ppage;
9999
10000 first_ppage_reported = first_ppage;
10001 if (bsi->start == 0)
10002 first_ppage_reported++;
10003 if (bsi->lowest_ppage > first_ppage_reported)
10004 bsi->lowest_ppage = first_ppage_reported;
10005 if (bsi->highest_ppage < (next_ppage - 1))
10006 bsi->highest_ppage = next_ppage - 1;
10007
10008 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10009 if (ret < 0)
10010 return ret;
10011 bsi->nr_extents += ret;
10012 bsi->nr_pages += nr_pages;
10013 return 0;
10014}
10015
10016static void btrfs_swap_deactivate(struct file *file)
10017{
10018 struct inode *inode = file_inode(file);
10019
10020 btrfs_free_swapfile_pins(inode);
10021 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10022}
10023
10024static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10025 sector_t *span)
10026{
10027 struct inode *inode = file_inode(file);
10028 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10029 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10030 struct extent_state *cached_state = NULL;
10031 struct extent_map *em = NULL;
10032 struct btrfs_device *device = NULL;
10033 struct btrfs_swap_info bsi = {
10034 .lowest_ppage = (sector_t)-1ULL,
10035 };
10036 int ret = 0;
10037 u64 isize;
10038 u64 start;
10039
10040 /*
10041 * If the swap file was just created, make sure delalloc is done. If the
10042 * file changes again after this, the user is doing something stupid and
10043 * we don't really care.
10044 */
10045 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10046 if (ret)
10047 return ret;
10048
10049 /*
10050 * The inode is locked, so these flags won't change after we check them.
10051 */
10052 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10053 btrfs_warn(fs_info, "swapfile must not be compressed");
10054 return -EINVAL;
10055 }
10056 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10057 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10058 return -EINVAL;
10059 }
10060 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10061 btrfs_warn(fs_info, "swapfile must not be checksummed");
10062 return -EINVAL;
10063 }
10064
10065 /*
10066 * Balance or device remove/replace/resize can move stuff around from
10067 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10068 * concurrently while we are mapping the swap extents, and
10069 * fs_info->swapfile_pins prevents them from running while the swap file
10070 * is active and moving the extents. Note that this also prevents a
10071 * concurrent device add which isn't actually necessary, but it's not
10072 * really worth the trouble to allow it.
10073 */
10074 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10075 btrfs_warn(fs_info,
10076 "cannot activate swapfile while exclusive operation is running");
10077 return -EBUSY;
10078 }
10079 /*
10080 * Snapshots can create extents which require COW even if NODATACOW is
10081 * set. We use this counter to prevent snapshots. We must increment it
10082 * before walking the extents because we don't want a concurrent
10083 * snapshot to run after we've already checked the extents.
10084 */
10085 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10086
10087 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10088
10089 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10090 start = 0;
10091 while (start < isize) {
10092 u64 logical_block_start, physical_block_start;
32da5386 10093 struct btrfs_block_group *bg;
ed46ff3d
OS
10094 u64 len = isize - start;
10095
39b07b5d 10096 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
ed46ff3d
OS
10097 if (IS_ERR(em)) {
10098 ret = PTR_ERR(em);
10099 goto out;
10100 }
10101
10102 if (em->block_start == EXTENT_MAP_HOLE) {
10103 btrfs_warn(fs_info, "swapfile must not have holes");
10104 ret = -EINVAL;
10105 goto out;
10106 }
10107 if (em->block_start == EXTENT_MAP_INLINE) {
10108 /*
10109 * It's unlikely we'll ever actually find ourselves
10110 * here, as a file small enough to fit inline won't be
10111 * big enough to store more than the swap header, but in
10112 * case something changes in the future, let's catch it
10113 * here rather than later.
10114 */
10115 btrfs_warn(fs_info, "swapfile must not be inline");
10116 ret = -EINVAL;
10117 goto out;
10118 }
10119 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10120 btrfs_warn(fs_info, "swapfile must not be compressed");
10121 ret = -EINVAL;
10122 goto out;
10123 }
10124
10125 logical_block_start = em->block_start + (start - em->start);
10126 len = min(len, em->len - (start - em->start));
10127 free_extent_map(em);
10128 em = NULL;
10129
10130 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10131 if (ret < 0) {
10132 goto out;
10133 } else if (ret) {
10134 ret = 0;
10135 } else {
10136 btrfs_warn(fs_info,
10137 "swapfile must not be copy-on-write");
10138 ret = -EINVAL;
10139 goto out;
10140 }
10141
10142 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10143 if (IS_ERR(em)) {
10144 ret = PTR_ERR(em);
10145 goto out;
10146 }
10147
10148 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10149 btrfs_warn(fs_info,
10150 "swapfile must have single data profile");
10151 ret = -EINVAL;
10152 goto out;
10153 }
10154
10155 if (device == NULL) {
10156 device = em->map_lookup->stripes[0].dev;
10157 ret = btrfs_add_swapfile_pin(inode, device, false);
10158 if (ret == 1)
10159 ret = 0;
10160 else if (ret)
10161 goto out;
10162 } else if (device != em->map_lookup->stripes[0].dev) {
10163 btrfs_warn(fs_info, "swapfile must be on one device");
10164 ret = -EINVAL;
10165 goto out;
10166 }
10167
10168 physical_block_start = (em->map_lookup->stripes[0].physical +
10169 (logical_block_start - em->start));
10170 len = min(len, em->len - (logical_block_start - em->start));
10171 free_extent_map(em);
10172 em = NULL;
10173
10174 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10175 if (!bg) {
10176 btrfs_warn(fs_info,
10177 "could not find block group containing swapfile");
10178 ret = -EINVAL;
10179 goto out;
10180 }
10181
10182 ret = btrfs_add_swapfile_pin(inode, bg, true);
10183 if (ret) {
10184 btrfs_put_block_group(bg);
10185 if (ret == 1)
10186 ret = 0;
10187 else
10188 goto out;
10189 }
10190
10191 if (bsi.block_len &&
10192 bsi.block_start + bsi.block_len == physical_block_start) {
10193 bsi.block_len += len;
10194 } else {
10195 if (bsi.block_len) {
10196 ret = btrfs_add_swap_extent(sis, &bsi);
10197 if (ret)
10198 goto out;
10199 }
10200 bsi.start = start;
10201 bsi.block_start = physical_block_start;
10202 bsi.block_len = len;
10203 }
10204
10205 start += len;
10206 }
10207
10208 if (bsi.block_len)
10209 ret = btrfs_add_swap_extent(sis, &bsi);
10210
10211out:
10212 if (!IS_ERR_OR_NULL(em))
10213 free_extent_map(em);
10214
10215 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10216
10217 if (ret)
10218 btrfs_swap_deactivate(file);
10219
10220 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10221
10222 if (ret)
10223 return ret;
10224
10225 if (device)
10226 sis->bdev = device->bdev;
10227 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10228 sis->max = bsi.nr_pages;
10229 sis->pages = bsi.nr_pages - 1;
10230 sis->highest_bit = bsi.nr_pages - 1;
10231 return bsi.nr_extents;
10232}
10233#else
10234static void btrfs_swap_deactivate(struct file *file)
10235{
10236}
10237
10238static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10239 sector_t *span)
10240{
10241 return -EOPNOTSUPP;
10242}
10243#endif
10244
6e1d5dcc 10245static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10246 .getattr = btrfs_getattr,
39279cc3
CM
10247 .lookup = btrfs_lookup,
10248 .create = btrfs_create,
10249 .unlink = btrfs_unlink,
10250 .link = btrfs_link,
10251 .mkdir = btrfs_mkdir,
10252 .rmdir = btrfs_rmdir,
2773bf00 10253 .rename = btrfs_rename2,
39279cc3
CM
10254 .symlink = btrfs_symlink,
10255 .setattr = btrfs_setattr,
618e21d5 10256 .mknod = btrfs_mknod,
5103e947 10257 .listxattr = btrfs_listxattr,
fdebe2bd 10258 .permission = btrfs_permission,
4e34e719 10259 .get_acl = btrfs_get_acl,
996a710d 10260 .set_acl = btrfs_set_acl,
93fd63c2 10261 .update_time = btrfs_update_time,
ef3b9af5 10262 .tmpfile = btrfs_tmpfile,
39279cc3 10263};
76dda93c 10264
828c0950 10265static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10266 .llseek = generic_file_llseek,
10267 .read = generic_read_dir,
02dbfc99 10268 .iterate_shared = btrfs_real_readdir,
23b5ec74 10269 .open = btrfs_opendir,
34287aa3 10270 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10271#ifdef CONFIG_COMPAT
4c63c245 10272 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10273#endif
6bf13c0c 10274 .release = btrfs_release_file,
e02119d5 10275 .fsync = btrfs_sync_file,
39279cc3
CM
10276};
10277
20e5506b 10278static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10279 /* mandatory callbacks */
065631f6 10280 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac
CM
10281 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10282};
10283
35054394
CM
10284/*
10285 * btrfs doesn't support the bmap operation because swapfiles
10286 * use bmap to make a mapping of extents in the file. They assume
10287 * these extents won't change over the life of the file and they
10288 * use the bmap result to do IO directly to the drive.
10289 *
10290 * the btrfs bmap call would return logical addresses that aren't
10291 * suitable for IO and they also will change frequently as COW
10292 * operations happen. So, swapfile + btrfs == corruption.
10293 *
10294 * For now we're avoiding this by dropping bmap.
10295 */
7f09410b 10296static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10297 .readpage = btrfs_readpage,
10298 .writepage = btrfs_writepage,
b293f02e 10299 .writepages = btrfs_writepages,
ba206a02 10300 .readahead = btrfs_readahead,
55e20bd1 10301 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10302 .invalidatepage = btrfs_invalidatepage,
10303 .releasepage = btrfs_releasepage,
f8e66081
RG
10304#ifdef CONFIG_MIGRATION
10305 .migratepage = btrfs_migratepage,
10306#endif
e6dcd2dc 10307 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10308 .error_remove_page = generic_error_remove_page,
ed46ff3d
OS
10309 .swap_activate = btrfs_swap_activate,
10310 .swap_deactivate = btrfs_swap_deactivate,
39279cc3
CM
10311};
10312
6e1d5dcc 10313static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10314 .getattr = btrfs_getattr,
10315 .setattr = btrfs_setattr,
5103e947 10316 .listxattr = btrfs_listxattr,
fdebe2bd 10317 .permission = btrfs_permission,
1506fcc8 10318 .fiemap = btrfs_fiemap,
4e34e719 10319 .get_acl = btrfs_get_acl,
996a710d 10320 .set_acl = btrfs_set_acl,
e41f941a 10321 .update_time = btrfs_update_time,
39279cc3 10322};
6e1d5dcc 10323static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10324 .getattr = btrfs_getattr,
10325 .setattr = btrfs_setattr,
fdebe2bd 10326 .permission = btrfs_permission,
33268eaf 10327 .listxattr = btrfs_listxattr,
4e34e719 10328 .get_acl = btrfs_get_acl,
996a710d 10329 .set_acl = btrfs_set_acl,
e41f941a 10330 .update_time = btrfs_update_time,
618e21d5 10331};
6e1d5dcc 10332static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10333 .get_link = page_get_link,
f209561a 10334 .getattr = btrfs_getattr,
22c44fe6 10335 .setattr = btrfs_setattr,
fdebe2bd 10336 .permission = btrfs_permission,
0279b4cd 10337 .listxattr = btrfs_listxattr,
e41f941a 10338 .update_time = btrfs_update_time,
39279cc3 10339};
76dda93c 10340
82d339d9 10341const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
10342 .d_delete = btrfs_dentry_delete,
10343};