]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/inode.c
btrfs: Make btrfs_mark_extent_written take btrfs_inode
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
39279cc3 33#include <linux/compat.h>
9ebefb18 34#include <linux/bit_spinlock.h>
5103e947 35#include <linux/xattr.h>
33268eaf 36#include <linux/posix_acl.h>
d899e052 37#include <linux/falloc.h>
5a0e3ad6 38#include <linux/slab.h>
7a36ddec 39#include <linux/ratelimit.h>
22c44fe6 40#include <linux/mount.h>
55e301fd 41#include <linux/btrfs.h>
53b381b3 42#include <linux/blkdev.h>
f23b5a59 43#include <linux/posix_acl_xattr.h>
e2e40f2c 44#include <linux/uio.h>
39279cc3
CM
45#include "ctree.h"
46#include "disk-io.h"
47#include "transaction.h"
48#include "btrfs_inode.h"
39279cc3 49#include "print-tree.h"
e6dcd2dc 50#include "ordered-data.h"
95819c05 51#include "xattr.h"
e02119d5 52#include "tree-log.h"
4a54c8c1 53#include "volumes.h"
c8b97818 54#include "compression.h"
b4ce94de 55#include "locking.h"
dc89e982 56#include "free-space-cache.h"
581bb050 57#include "inode-map.h"
38c227d8 58#include "backref.h"
f23b5a59 59#include "hash.h"
63541927 60#include "props.h"
31193213 61#include "qgroup.h"
dda3245e 62#include "dedupe.h"
39279cc3
CM
63
64struct btrfs_iget_args {
90d3e592 65 struct btrfs_key *location;
39279cc3
CM
66 struct btrfs_root *root;
67};
68
f28a4928
FM
69struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
4aaedfb0 74 int overwrite;
f28a4928
FM
75};
76
6e1d5dcc
AD
77static const struct inode_operations btrfs_dir_inode_operations;
78static const struct inode_operations btrfs_symlink_inode_operations;
79static const struct inode_operations btrfs_dir_ro_inode_operations;
80static const struct inode_operations btrfs_special_inode_operations;
81static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
82static const struct address_space_operations btrfs_aops;
83static const struct address_space_operations btrfs_symlink_aops;
828c0950 84static const struct file_operations btrfs_dir_file_operations;
20e5506b 85static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
86
87static struct kmem_cache *btrfs_inode_cachep;
88struct kmem_cache *btrfs_trans_handle_cachep;
89struct kmem_cache *btrfs_transaction_cachep;
39279cc3 90struct kmem_cache *btrfs_path_cachep;
dc89e982 91struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
92
93#define S_SHIFT 12
4d4ab6d6 94static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
102};
103
3972f260 104static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 105static int btrfs_truncate(struct inode *inode);
5fd02043 106static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
107static noinline int cow_file_range(struct inode *inode,
108 struct page *locked_page,
dda3245e
WX
109 u64 start, u64 end, u64 delalloc_end,
110 int *page_started, unsigned long *nr_written,
111 int unlock, struct btrfs_dedupe_hash *hash);
6f9994db
LB
112static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
113 u64 orig_start, u64 block_start,
114 u64 block_len, u64 orig_block_len,
115 u64 ram_bytes, int compress_type,
116 int type);
7b128766 117
48a3b636 118static int btrfs_dirty_inode(struct inode *inode);
7b128766 119
6a3891c5
JB
120#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
121void btrfs_test_inode_set_ops(struct inode *inode)
122{
123 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
124}
125#endif
126
f34f57a3 127static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
128 struct inode *inode, struct inode *dir,
129 const struct qstr *qstr)
0279b4cd
JO
130{
131 int err;
132
f34f57a3 133 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 134 if (!err)
2a7dba39 135 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
136 return err;
137}
138
c8b97818
CM
139/*
140 * this does all the hard work for inserting an inline extent into
141 * the btree. The caller should have done a btrfs_drop_extents so that
142 * no overlapping inline items exist in the btree
143 */
40f76580 144static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 145 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
146 struct btrfs_root *root, struct inode *inode,
147 u64 start, size_t size, size_t compressed_size,
fe3f566c 148 int compress_type,
c8b97818
CM
149 struct page **compressed_pages)
150{
c8b97818
CM
151 struct extent_buffer *leaf;
152 struct page *page = NULL;
153 char *kaddr;
154 unsigned long ptr;
155 struct btrfs_file_extent_item *ei;
156 int err = 0;
157 int ret;
158 size_t cur_size = size;
c8b97818 159 unsigned long offset;
c8b97818 160
fe3f566c 161 if (compressed_size && compressed_pages)
c8b97818 162 cur_size = compressed_size;
c8b97818 163
1acae57b 164 inode_add_bytes(inode, size);
c8b97818 165
1acae57b
FDBM
166 if (!extent_inserted) {
167 struct btrfs_key key;
168 size_t datasize;
c8b97818 169
4a0cc7ca 170 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 171 key.offset = start;
962a298f 172 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 173
1acae57b
FDBM
174 datasize = btrfs_file_extent_calc_inline_size(cur_size);
175 path->leave_spinning = 1;
176 ret = btrfs_insert_empty_item(trans, root, path, &key,
177 datasize);
178 if (ret) {
179 err = ret;
180 goto fail;
181 }
c8b97818
CM
182 }
183 leaf = path->nodes[0];
184 ei = btrfs_item_ptr(leaf, path->slots[0],
185 struct btrfs_file_extent_item);
186 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
187 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
188 btrfs_set_file_extent_encryption(leaf, ei, 0);
189 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
190 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
191 ptr = btrfs_file_extent_inline_start(ei);
192
261507a0 193 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
194 struct page *cpage;
195 int i = 0;
d397712b 196 while (compressed_size > 0) {
c8b97818 197 cpage = compressed_pages[i];
5b050f04 198 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 199 PAGE_SIZE);
c8b97818 200
7ac687d9 201 kaddr = kmap_atomic(cpage);
c8b97818 202 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 203 kunmap_atomic(kaddr);
c8b97818
CM
204
205 i++;
206 ptr += cur_size;
207 compressed_size -= cur_size;
208 }
209 btrfs_set_file_extent_compression(leaf, ei,
261507a0 210 compress_type);
c8b97818
CM
211 } else {
212 page = find_get_page(inode->i_mapping,
09cbfeaf 213 start >> PAGE_SHIFT);
c8b97818 214 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 215 kaddr = kmap_atomic(page);
09cbfeaf 216 offset = start & (PAGE_SIZE - 1);
c8b97818 217 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 218 kunmap_atomic(kaddr);
09cbfeaf 219 put_page(page);
c8b97818
CM
220 }
221 btrfs_mark_buffer_dirty(leaf);
1acae57b 222 btrfs_release_path(path);
c8b97818 223
c2167754
YZ
224 /*
225 * we're an inline extent, so nobody can
226 * extend the file past i_size without locking
227 * a page we already have locked.
228 *
229 * We must do any isize and inode updates
230 * before we unlock the pages. Otherwise we
231 * could end up racing with unlink.
232 */
c8b97818 233 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 234 ret = btrfs_update_inode(trans, root, inode);
c2167754 235
79787eaa 236 return ret;
c8b97818 237fail:
c8b97818
CM
238 return err;
239}
240
241
242/*
243 * conditionally insert an inline extent into the file. This
244 * does the checks required to make sure the data is small enough
245 * to fit as an inline extent.
246 */
00361589
JB
247static noinline int cow_file_range_inline(struct btrfs_root *root,
248 struct inode *inode, u64 start,
249 u64 end, size_t compressed_size,
250 int compress_type,
251 struct page **compressed_pages)
c8b97818 252{
0b246afa 253 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 254 struct btrfs_trans_handle *trans;
c8b97818
CM
255 u64 isize = i_size_read(inode);
256 u64 actual_end = min(end + 1, isize);
257 u64 inline_len = actual_end - start;
0b246afa 258 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
259 u64 data_len = inline_len;
260 int ret;
1acae57b
FDBM
261 struct btrfs_path *path;
262 int extent_inserted = 0;
263 u32 extent_item_size;
c8b97818
CM
264
265 if (compressed_size)
266 data_len = compressed_size;
267
268 if (start > 0 ||
0b246afa
JM
269 actual_end > fs_info->sectorsize ||
270 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 271 (!compressed_size &&
0b246afa 272 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 273 end + 1 < isize ||
0b246afa 274 data_len > fs_info->max_inline) {
c8b97818
CM
275 return 1;
276 }
277
1acae57b
FDBM
278 path = btrfs_alloc_path();
279 if (!path)
280 return -ENOMEM;
281
00361589 282 trans = btrfs_join_transaction(root);
1acae57b
FDBM
283 if (IS_ERR(trans)) {
284 btrfs_free_path(path);
00361589 285 return PTR_ERR(trans);
1acae57b 286 }
0b246afa 287 trans->block_rsv = &fs_info->delalloc_block_rsv;
00361589 288
1acae57b
FDBM
289 if (compressed_size && compressed_pages)
290 extent_item_size = btrfs_file_extent_calc_inline_size(
291 compressed_size);
292 else
293 extent_item_size = btrfs_file_extent_calc_inline_size(
294 inline_len);
295
296 ret = __btrfs_drop_extents(trans, root, inode, path,
297 start, aligned_end, NULL,
298 1, 1, extent_item_size, &extent_inserted);
00361589 299 if (ret) {
66642832 300 btrfs_abort_transaction(trans, ret);
00361589
JB
301 goto out;
302 }
c8b97818
CM
303
304 if (isize > actual_end)
305 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
306 ret = insert_inline_extent(trans, path, extent_inserted,
307 root, inode, start,
c8b97818 308 inline_len, compressed_size,
fe3f566c 309 compress_type, compressed_pages);
2adcac1a 310 if (ret && ret != -ENOSPC) {
66642832 311 btrfs_abort_transaction(trans, ret);
00361589 312 goto out;
2adcac1a 313 } else if (ret == -ENOSPC) {
00361589
JB
314 ret = 1;
315 goto out;
79787eaa 316 }
2adcac1a 317
bdc20e67 318 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
691fa059 319 btrfs_delalloc_release_metadata(BTRFS_I(inode), end + 1 - start);
dcdbc059 320 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 321out:
94ed938a
QW
322 /*
323 * Don't forget to free the reserved space, as for inlined extent
324 * it won't count as data extent, free them directly here.
325 * And at reserve time, it's always aligned to page size, so
326 * just free one page here.
327 */
09cbfeaf 328 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
1acae57b 329 btrfs_free_path(path);
3a45bb20 330 btrfs_end_transaction(trans);
00361589 331 return ret;
c8b97818
CM
332}
333
771ed689
CM
334struct async_extent {
335 u64 start;
336 u64 ram_size;
337 u64 compressed_size;
338 struct page **pages;
339 unsigned long nr_pages;
261507a0 340 int compress_type;
771ed689
CM
341 struct list_head list;
342};
343
344struct async_cow {
345 struct inode *inode;
346 struct btrfs_root *root;
347 struct page *locked_page;
348 u64 start;
349 u64 end;
350 struct list_head extents;
351 struct btrfs_work work;
352};
353
354static noinline int add_async_extent(struct async_cow *cow,
355 u64 start, u64 ram_size,
356 u64 compressed_size,
357 struct page **pages,
261507a0
LZ
358 unsigned long nr_pages,
359 int compress_type)
771ed689
CM
360{
361 struct async_extent *async_extent;
362
363 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 364 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
365 async_extent->start = start;
366 async_extent->ram_size = ram_size;
367 async_extent->compressed_size = compressed_size;
368 async_extent->pages = pages;
369 async_extent->nr_pages = nr_pages;
261507a0 370 async_extent->compress_type = compress_type;
771ed689
CM
371 list_add_tail(&async_extent->list, &cow->extents);
372 return 0;
373}
374
f79707b0
WS
375static inline int inode_need_compress(struct inode *inode)
376{
0b246afa 377 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
378
379 /* force compress */
0b246afa 380 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0
WS
381 return 1;
382 /* bad compression ratios */
383 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
384 return 0;
0b246afa 385 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0
WS
386 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
387 BTRFS_I(inode)->force_compress)
388 return 1;
389 return 0;
390}
391
6158e1ce 392static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
393 u64 start, u64 end, u64 num_bytes, u64 small_write)
394{
395 /* If this is a small write inside eof, kick off a defrag */
396 if (num_bytes < small_write &&
6158e1ce 397 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
398 btrfs_add_inode_defrag(NULL, inode);
399}
400
d352ac68 401/*
771ed689
CM
402 * we create compressed extents in two phases. The first
403 * phase compresses a range of pages that have already been
404 * locked (both pages and state bits are locked).
c8b97818 405 *
771ed689
CM
406 * This is done inside an ordered work queue, and the compression
407 * is spread across many cpus. The actual IO submission is step
408 * two, and the ordered work queue takes care of making sure that
409 * happens in the same order things were put onto the queue by
410 * writepages and friends.
c8b97818 411 *
771ed689
CM
412 * If this code finds it can't get good compression, it puts an
413 * entry onto the work queue to write the uncompressed bytes. This
414 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
415 * are written in the same order that the flusher thread sent them
416 * down.
d352ac68 417 */
c44f649e 418static noinline void compress_file_range(struct inode *inode,
771ed689
CM
419 struct page *locked_page,
420 u64 start, u64 end,
421 struct async_cow *async_cow,
422 int *num_added)
b888db2b 423{
0b246afa 424 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
b888db2b 425 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 426 u64 num_bytes;
0b246afa 427 u64 blocksize = fs_info->sectorsize;
c8b97818 428 u64 actual_end;
42dc7bab 429 u64 isize = i_size_read(inode);
e6dcd2dc 430 int ret = 0;
c8b97818
CM
431 struct page **pages = NULL;
432 unsigned long nr_pages;
433 unsigned long nr_pages_ret = 0;
434 unsigned long total_compressed = 0;
435 unsigned long total_in = 0;
ee22184b
BL
436 unsigned long max_compressed = SZ_128K;
437 unsigned long max_uncompressed = SZ_128K;
c8b97818
CM
438 int i;
439 int will_compress;
0b246afa 440 int compress_type = fs_info->compress_type;
4adaa611 441 int redirty = 0;
b888db2b 442
6158e1ce
NB
443 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
444 SZ_16K);
4cb5300b 445
42dc7bab 446 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
447again:
448 will_compress = 0;
09cbfeaf
KS
449 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
450 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
be20aa9d 451
f03d9301
CM
452 /*
453 * we don't want to send crud past the end of i_size through
454 * compression, that's just a waste of CPU time. So, if the
455 * end of the file is before the start of our current
456 * requested range of bytes, we bail out to the uncompressed
457 * cleanup code that can deal with all of this.
458 *
459 * It isn't really the fastest way to fix things, but this is a
460 * very uncommon corner.
461 */
462 if (actual_end <= start)
463 goto cleanup_and_bail_uncompressed;
464
c8b97818
CM
465 total_compressed = actual_end - start;
466
4bcbb332
SW
467 /*
468 * skip compression for a small file range(<=blocksize) that
01327610 469 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
470 */
471 if (total_compressed <= blocksize &&
472 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
473 goto cleanup_and_bail_uncompressed;
474
c8b97818
CM
475 /* we want to make sure that amount of ram required to uncompress
476 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
477 * of a compressed extent to 128k. This is a crucial number
478 * because it also controls how easily we can spread reads across
479 * cpus for decompression.
480 *
481 * We also want to make sure the amount of IO required to do
482 * a random read is reasonably small, so we limit the size of
483 * a compressed extent to 128k.
c8b97818
CM
484 */
485 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 486 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 487 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
488 total_in = 0;
489 ret = 0;
db94535d 490
771ed689
CM
491 /*
492 * we do compression for mount -o compress and when the
493 * inode has not been flagged as nocompress. This flag can
494 * change at any time if we discover bad compression ratios.
c8b97818 495 */
f79707b0 496 if (inode_need_compress(inode)) {
c8b97818 497 WARN_ON(pages);
31e818fe 498 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
499 if (!pages) {
500 /* just bail out to the uncompressed code */
501 goto cont;
502 }
c8b97818 503
261507a0
LZ
504 if (BTRFS_I(inode)->force_compress)
505 compress_type = BTRFS_I(inode)->force_compress;
506
4adaa611
CM
507 /*
508 * we need to call clear_page_dirty_for_io on each
509 * page in the range. Otherwise applications with the file
510 * mmap'd can wander in and change the page contents while
511 * we are compressing them.
512 *
513 * If the compression fails for any reason, we set the pages
514 * dirty again later on.
515 */
516 extent_range_clear_dirty_for_io(inode, start, end);
517 redirty = 1;
261507a0
LZ
518 ret = btrfs_compress_pages(compress_type,
519 inode->i_mapping, start,
520 total_compressed, pages,
521 nr_pages, &nr_pages_ret,
522 &total_in,
523 &total_compressed,
524 max_compressed);
c8b97818
CM
525
526 if (!ret) {
527 unsigned long offset = total_compressed &
09cbfeaf 528 (PAGE_SIZE - 1);
c8b97818
CM
529 struct page *page = pages[nr_pages_ret - 1];
530 char *kaddr;
531
532 /* zero the tail end of the last page, we might be
533 * sending it down to disk
534 */
535 if (offset) {
7ac687d9 536 kaddr = kmap_atomic(page);
c8b97818 537 memset(kaddr + offset, 0,
09cbfeaf 538 PAGE_SIZE - offset);
7ac687d9 539 kunmap_atomic(kaddr);
c8b97818
CM
540 }
541 will_compress = 1;
542 }
543 }
560f7d75 544cont:
c8b97818
CM
545 if (start == 0) {
546 /* lets try to make an inline extent */
771ed689 547 if (ret || total_in < (actual_end - start)) {
c8b97818 548 /* we didn't compress the entire range, try
771ed689 549 * to make an uncompressed inline extent.
c8b97818 550 */
00361589 551 ret = cow_file_range_inline(root, inode, start, end,
f74670f7 552 0, BTRFS_COMPRESS_NONE, NULL);
c8b97818 553 } else {
771ed689 554 /* try making a compressed inline extent */
00361589 555 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
556 total_compressed,
557 compress_type, pages);
c8b97818 558 }
79787eaa 559 if (ret <= 0) {
151a41bc
JB
560 unsigned long clear_flags = EXTENT_DELALLOC |
561 EXTENT_DEFRAG;
e6eb4314
FM
562 unsigned long page_error_op;
563
151a41bc 564 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 565 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 566
771ed689 567 /*
79787eaa
JM
568 * inline extent creation worked or returned error,
569 * we don't need to create any more async work items.
570 * Unlock and free up our temp pages.
771ed689 571 */
ba8b04c1
QW
572 extent_clear_unlock_delalloc(inode, start, end, end,
573 NULL, clear_flags,
574 PAGE_UNLOCK |
c2790a2e
JB
575 PAGE_CLEAR_DIRTY |
576 PAGE_SET_WRITEBACK |
e6eb4314 577 page_error_op |
c2790a2e 578 PAGE_END_WRITEBACK);
18513091
WX
579 btrfs_free_reserved_data_space_noquota(inode, start,
580 end - start + 1);
c8b97818
CM
581 goto free_pages_out;
582 }
583 }
584
585 if (will_compress) {
586 /*
587 * we aren't doing an inline extent round the compressed size
588 * up to a block size boundary so the allocator does sane
589 * things
590 */
fda2832f 591 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
592
593 /*
594 * one last check to make sure the compression is really a
595 * win, compare the page count read with the blocks on disk
596 */
09cbfeaf 597 total_in = ALIGN(total_in, PAGE_SIZE);
c8b97818
CM
598 if (total_compressed >= total_in) {
599 will_compress = 0;
600 } else {
c8b97818 601 num_bytes = total_in;
c8bb0c8b
AS
602 *num_added += 1;
603
604 /*
605 * The async work queues will take care of doing actual
606 * allocation on disk for these compressed pages, and
607 * will submit them to the elevator.
608 */
609 add_async_extent(async_cow, start, num_bytes,
610 total_compressed, pages, nr_pages_ret,
611 compress_type);
612
613 if (start + num_bytes < end) {
614 start += num_bytes;
615 pages = NULL;
616 cond_resched();
617 goto again;
618 }
619 return;
c8b97818
CM
620 }
621 }
c8bb0c8b 622 if (pages) {
c8b97818
CM
623 /*
624 * the compression code ran but failed to make things smaller,
625 * free any pages it allocated and our page pointer array
626 */
627 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 628 WARN_ON(pages[i]->mapping);
09cbfeaf 629 put_page(pages[i]);
c8b97818
CM
630 }
631 kfree(pages);
632 pages = NULL;
633 total_compressed = 0;
634 nr_pages_ret = 0;
635
636 /* flag the file so we don't compress in the future */
0b246afa 637 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
1e701a32 638 !(BTRFS_I(inode)->force_compress)) {
a555f810 639 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 640 }
c8b97818 641 }
f03d9301 642cleanup_and_bail_uncompressed:
c8bb0c8b
AS
643 /*
644 * No compression, but we still need to write the pages in the file
645 * we've been given so far. redirty the locked page if it corresponds
646 * to our extent and set things up for the async work queue to run
647 * cow_file_range to do the normal delalloc dance.
648 */
649 if (page_offset(locked_page) >= start &&
650 page_offset(locked_page) <= end)
651 __set_page_dirty_nobuffers(locked_page);
652 /* unlocked later on in the async handlers */
653
654 if (redirty)
655 extent_range_redirty_for_io(inode, start, end);
656 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
657 BTRFS_COMPRESS_NONE);
658 *num_added += 1;
3b951516 659
c44f649e 660 return;
771ed689
CM
661
662free_pages_out:
663 for (i = 0; i < nr_pages_ret; i++) {
664 WARN_ON(pages[i]->mapping);
09cbfeaf 665 put_page(pages[i]);
771ed689 666 }
d397712b 667 kfree(pages);
771ed689 668}
771ed689 669
40ae837b
FM
670static void free_async_extent_pages(struct async_extent *async_extent)
671{
672 int i;
673
674 if (!async_extent->pages)
675 return;
676
677 for (i = 0; i < async_extent->nr_pages; i++) {
678 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 679 put_page(async_extent->pages[i]);
40ae837b
FM
680 }
681 kfree(async_extent->pages);
682 async_extent->nr_pages = 0;
683 async_extent->pages = NULL;
771ed689
CM
684}
685
686/*
687 * phase two of compressed writeback. This is the ordered portion
688 * of the code, which only gets called in the order the work was
689 * queued. We walk all the async extents created by compress_file_range
690 * and send them down to the disk.
691 */
dec8f175 692static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
693 struct async_cow *async_cow)
694{
0b246afa 695 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
696 struct async_extent *async_extent;
697 u64 alloc_hint = 0;
771ed689
CM
698 struct btrfs_key ins;
699 struct extent_map *em;
700 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689 701 struct extent_io_tree *io_tree;
f5a84ee3 702 int ret = 0;
771ed689 703
3e04e7f1 704again:
d397712b 705 while (!list_empty(&async_cow->extents)) {
771ed689
CM
706 async_extent = list_entry(async_cow->extents.next,
707 struct async_extent, list);
708 list_del(&async_extent->list);
c8b97818 709
771ed689
CM
710 io_tree = &BTRFS_I(inode)->io_tree;
711
f5a84ee3 712retry:
771ed689
CM
713 /* did the compression code fall back to uncompressed IO? */
714 if (!async_extent->pages) {
715 int page_started = 0;
716 unsigned long nr_written = 0;
717
718 lock_extent(io_tree, async_extent->start,
2ac55d41 719 async_extent->start +
d0082371 720 async_extent->ram_size - 1);
771ed689
CM
721
722 /* allocate blocks */
f5a84ee3
JB
723 ret = cow_file_range(inode, async_cow->locked_page,
724 async_extent->start,
725 async_extent->start +
726 async_extent->ram_size - 1,
dda3245e
WX
727 async_extent->start +
728 async_extent->ram_size - 1,
729 &page_started, &nr_written, 0,
730 NULL);
771ed689 731
79787eaa
JM
732 /* JDM XXX */
733
771ed689
CM
734 /*
735 * if page_started, cow_file_range inserted an
736 * inline extent and took care of all the unlocking
737 * and IO for us. Otherwise, we need to submit
738 * all those pages down to the drive.
739 */
f5a84ee3 740 if (!page_started && !ret)
771ed689
CM
741 extent_write_locked_range(io_tree,
742 inode, async_extent->start,
d397712b 743 async_extent->start +
771ed689
CM
744 async_extent->ram_size - 1,
745 btrfs_get_extent,
746 WB_SYNC_ALL);
3e04e7f1
JB
747 else if (ret)
748 unlock_page(async_cow->locked_page);
771ed689
CM
749 kfree(async_extent);
750 cond_resched();
751 continue;
752 }
753
754 lock_extent(io_tree, async_extent->start,
d0082371 755 async_extent->start + async_extent->ram_size - 1);
771ed689 756
18513091 757 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
758 async_extent->compressed_size,
759 async_extent->compressed_size,
e570fd27 760 0, alloc_hint, &ins, 1, 1);
f5a84ee3 761 if (ret) {
40ae837b 762 free_async_extent_pages(async_extent);
3e04e7f1 763
fdf8e2ea
JB
764 if (ret == -ENOSPC) {
765 unlock_extent(io_tree, async_extent->start,
766 async_extent->start +
767 async_extent->ram_size - 1);
ce62003f
LB
768
769 /*
770 * we need to redirty the pages if we decide to
771 * fallback to uncompressed IO, otherwise we
772 * will not submit these pages down to lower
773 * layers.
774 */
775 extent_range_redirty_for_io(inode,
776 async_extent->start,
777 async_extent->start +
778 async_extent->ram_size - 1);
779
79787eaa 780 goto retry;
fdf8e2ea 781 }
3e04e7f1 782 goto out_free;
f5a84ee3 783 }
c2167754
YZ
784 /*
785 * here we're doing allocation and writeback of the
786 * compressed pages
787 */
6f9994db
LB
788 em = create_io_em(inode, async_extent->start,
789 async_extent->ram_size, /* len */
790 async_extent->start, /* orig_start */
791 ins.objectid, /* block_start */
792 ins.offset, /* block_len */
793 ins.offset, /* orig_block_len */
794 async_extent->ram_size, /* ram_bytes */
795 async_extent->compress_type,
796 BTRFS_ORDERED_COMPRESSED);
797 if (IS_ERR(em))
798 /* ret value is not necessary due to void function */
3e04e7f1 799 goto out_free_reserve;
6f9994db 800 free_extent_map(em);
3e04e7f1 801
261507a0
LZ
802 ret = btrfs_add_ordered_extent_compress(inode,
803 async_extent->start,
804 ins.objectid,
805 async_extent->ram_size,
806 ins.offset,
807 BTRFS_ORDERED_COMPRESSED,
808 async_extent->compress_type);
d9f85963 809 if (ret) {
dcdbc059
NB
810 btrfs_drop_extent_cache(BTRFS_I(inode),
811 async_extent->start,
d9f85963
FM
812 async_extent->start +
813 async_extent->ram_size - 1, 0);
3e04e7f1 814 goto out_free_reserve;
d9f85963 815 }
0b246afa 816 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 817
771ed689
CM
818 /*
819 * clear dirty, set writeback and unlock the pages.
820 */
c2790a2e 821 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
822 async_extent->start +
823 async_extent->ram_size - 1,
a791e35e
CM
824 async_extent->start +
825 async_extent->ram_size - 1,
151a41bc
JB
826 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
827 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 828 PAGE_SET_WRITEBACK);
771ed689 829 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
830 async_extent->start,
831 async_extent->ram_size,
832 ins.objectid,
833 ins.offset, async_extent->pages,
834 async_extent->nr_pages);
fce2a4e6
FM
835 if (ret) {
836 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
837 struct page *p = async_extent->pages[0];
838 const u64 start = async_extent->start;
839 const u64 end = start + async_extent->ram_size - 1;
840
841 p->mapping = inode->i_mapping;
842 tree->ops->writepage_end_io_hook(p, start, end,
843 NULL, 0);
844 p->mapping = NULL;
ba8b04c1
QW
845 extent_clear_unlock_delalloc(inode, start, end, end,
846 NULL, 0,
fce2a4e6
FM
847 PAGE_END_WRITEBACK |
848 PAGE_SET_ERROR);
40ae837b 849 free_async_extent_pages(async_extent);
fce2a4e6 850 }
771ed689
CM
851 alloc_hint = ins.objectid + ins.offset;
852 kfree(async_extent);
853 cond_resched();
854 }
dec8f175 855 return;
3e04e7f1 856out_free_reserve:
0b246afa 857 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 858 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 859out_free:
c2790a2e 860 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
861 async_extent->start +
862 async_extent->ram_size - 1,
3e04e7f1
JB
863 async_extent->start +
864 async_extent->ram_size - 1,
c2790a2e 865 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
866 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
867 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
868 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
869 PAGE_SET_ERROR);
40ae837b 870 free_async_extent_pages(async_extent);
79787eaa 871 kfree(async_extent);
3e04e7f1 872 goto again;
771ed689
CM
873}
874
4b46fce2
JB
875static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
876 u64 num_bytes)
877{
878 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
879 struct extent_map *em;
880 u64 alloc_hint = 0;
881
882 read_lock(&em_tree->lock);
883 em = search_extent_mapping(em_tree, start, num_bytes);
884 if (em) {
885 /*
886 * if block start isn't an actual block number then find the
887 * first block in this inode and use that as a hint. If that
888 * block is also bogus then just don't worry about it.
889 */
890 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
891 free_extent_map(em);
892 em = search_extent_mapping(em_tree, 0, 0);
893 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
894 alloc_hint = em->block_start;
895 if (em)
896 free_extent_map(em);
897 } else {
898 alloc_hint = em->block_start;
899 free_extent_map(em);
900 }
901 }
902 read_unlock(&em_tree->lock);
903
904 return alloc_hint;
905}
906
771ed689
CM
907/*
908 * when extent_io.c finds a delayed allocation range in the file,
909 * the call backs end up in this code. The basic idea is to
910 * allocate extents on disk for the range, and create ordered data structs
911 * in ram to track those extents.
912 *
913 * locked_page is the page that writepage had locked already. We use
914 * it to make sure we don't do extra locks or unlocks.
915 *
916 * *page_started is set to one if we unlock locked_page and do everything
917 * required to start IO on it. It may be clean and already done with
918 * IO when we return.
919 */
00361589
JB
920static noinline int cow_file_range(struct inode *inode,
921 struct page *locked_page,
dda3245e
WX
922 u64 start, u64 end, u64 delalloc_end,
923 int *page_started, unsigned long *nr_written,
924 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 925{
0b246afa 926 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 927 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
928 u64 alloc_hint = 0;
929 u64 num_bytes;
930 unsigned long ram_size;
931 u64 disk_num_bytes;
932 u64 cur_alloc_size;
0b246afa 933 u64 blocksize = fs_info->sectorsize;
771ed689
CM
934 struct btrfs_key ins;
935 struct extent_map *em;
771ed689
CM
936 int ret = 0;
937
70ddc553 938 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 939 WARN_ON_ONCE(1);
29bce2f3
JB
940 ret = -EINVAL;
941 goto out_unlock;
02ecd2c2 942 }
771ed689 943
fda2832f 944 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
945 num_bytes = max(blocksize, num_bytes);
946 disk_num_bytes = num_bytes;
771ed689 947
6158e1ce 948 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 949
771ed689
CM
950 if (start == 0) {
951 /* lets try to make an inline extent */
f74670f7
AJ
952 ret = cow_file_range_inline(root, inode, start, end, 0,
953 BTRFS_COMPRESS_NONE, NULL);
771ed689 954 if (ret == 0) {
ba8b04c1
QW
955 extent_clear_unlock_delalloc(inode, start, end,
956 delalloc_end, NULL,
c2790a2e 957 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 958 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
959 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
960 PAGE_END_WRITEBACK);
18513091
WX
961 btrfs_free_reserved_data_space_noquota(inode, start,
962 end - start + 1);
771ed689 963 *nr_written = *nr_written +
09cbfeaf 964 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 965 *page_started = 1;
771ed689 966 goto out;
79787eaa 967 } else if (ret < 0) {
79787eaa 968 goto out_unlock;
771ed689
CM
969 }
970 }
971
972 BUG_ON(disk_num_bytes >
0b246afa 973 btrfs_super_total_bytes(fs_info->super_copy));
771ed689 974
4b46fce2 975 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
976 btrfs_drop_extent_cache(BTRFS_I(inode), start,
977 start + num_bytes - 1, 0);
771ed689 978
d397712b 979 while (disk_num_bytes > 0) {
a791e35e
CM
980 unsigned long op;
981
287a0ab9 982 cur_alloc_size = disk_num_bytes;
18513091 983 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 984 fs_info->sectorsize, 0, alloc_hint,
e570fd27 985 &ins, 1, 1);
00361589 986 if (ret < 0)
79787eaa 987 goto out_unlock;
d397712b 988
771ed689 989 ram_size = ins.offset;
6f9994db
LB
990 em = create_io_em(inode, start, ins.offset, /* len */
991 start, /* orig_start */
992 ins.objectid, /* block_start */
993 ins.offset, /* block_len */
994 ins.offset, /* orig_block_len */
995 ram_size, /* ram_bytes */
996 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 997 BTRFS_ORDERED_REGULAR /* type */);
6f9994db 998 if (IS_ERR(em))
ace68bac 999 goto out_reserve;
6f9994db 1000 free_extent_map(em);
e6dcd2dc 1001
98d20f67 1002 cur_alloc_size = ins.offset;
e6dcd2dc 1003 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1004 ram_size, cur_alloc_size, 0);
ace68bac 1005 if (ret)
d9f85963 1006 goto out_drop_extent_cache;
c8b97818 1007
17d217fe
YZ
1008 if (root->root_key.objectid ==
1009 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1010 ret = btrfs_reloc_clone_csums(inode, start,
1011 cur_alloc_size);
00361589 1012 if (ret)
d9f85963 1013 goto out_drop_extent_cache;
17d217fe
YZ
1014 }
1015
0b246afa 1016 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1017
d397712b 1018 if (disk_num_bytes < cur_alloc_size)
3b951516 1019 break;
d397712b 1020
c8b97818
CM
1021 /* we're not doing compressed IO, don't unlock the first
1022 * page (which the caller expects to stay locked), don't
1023 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1024 *
1025 * Do set the Private2 bit so we know this page was properly
1026 * setup for writepage
c8b97818 1027 */
c2790a2e
JB
1028 op = unlock ? PAGE_UNLOCK : 0;
1029 op |= PAGE_SET_PRIVATE2;
a791e35e 1030
c2790a2e 1031 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1032 start + ram_size - 1,
1033 delalloc_end, locked_page,
c2790a2e
JB
1034 EXTENT_LOCKED | EXTENT_DELALLOC,
1035 op);
c8b97818 1036 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1037 num_bytes -= cur_alloc_size;
1038 alloc_hint = ins.objectid + ins.offset;
1039 start += cur_alloc_size;
b888db2b 1040 }
79787eaa 1041out:
be20aa9d 1042 return ret;
b7d5b0a8 1043
d9f85963 1044out_drop_extent_cache:
dcdbc059 1045 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1046out_reserve:
0b246afa 1047 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1048 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1049out_unlock:
ba8b04c1
QW
1050 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1051 locked_page,
151a41bc
JB
1052 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1053 EXTENT_DELALLOC | EXTENT_DEFRAG,
1054 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1055 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1056 goto out;
771ed689 1057}
c8b97818 1058
771ed689
CM
1059/*
1060 * work queue call back to started compression on a file and pages
1061 */
1062static noinline void async_cow_start(struct btrfs_work *work)
1063{
1064 struct async_cow *async_cow;
1065 int num_added = 0;
1066 async_cow = container_of(work, struct async_cow, work);
1067
1068 compress_file_range(async_cow->inode, async_cow->locked_page,
1069 async_cow->start, async_cow->end, async_cow,
1070 &num_added);
8180ef88 1071 if (num_added == 0) {
cb77fcd8 1072 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1073 async_cow->inode = NULL;
8180ef88 1074 }
771ed689
CM
1075}
1076
1077/*
1078 * work queue call back to submit previously compressed pages
1079 */
1080static noinline void async_cow_submit(struct btrfs_work *work)
1081{
0b246afa 1082 struct btrfs_fs_info *fs_info;
771ed689
CM
1083 struct async_cow *async_cow;
1084 struct btrfs_root *root;
1085 unsigned long nr_pages;
1086
1087 async_cow = container_of(work, struct async_cow, work);
1088
1089 root = async_cow->root;
0b246afa 1090 fs_info = root->fs_info;
09cbfeaf
KS
1091 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1092 PAGE_SHIFT;
771ed689 1093
ee863954
DS
1094 /*
1095 * atomic_sub_return implies a barrier for waitqueue_active
1096 */
0b246afa 1097 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
ee22184b 1098 5 * SZ_1M &&
0b246afa
JM
1099 waitqueue_active(&fs_info->async_submit_wait))
1100 wake_up(&fs_info->async_submit_wait);
771ed689 1101
d397712b 1102 if (async_cow->inode)
771ed689 1103 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1104}
c8b97818 1105
771ed689
CM
1106static noinline void async_cow_free(struct btrfs_work *work)
1107{
1108 struct async_cow *async_cow;
1109 async_cow = container_of(work, struct async_cow, work);
8180ef88 1110 if (async_cow->inode)
cb77fcd8 1111 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1112 kfree(async_cow);
1113}
1114
1115static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1116 u64 start, u64 end, int *page_started,
1117 unsigned long *nr_written)
1118{
0b246afa 1119 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
1120 struct async_cow *async_cow;
1121 struct btrfs_root *root = BTRFS_I(inode)->root;
1122 unsigned long nr_pages;
1123 u64 cur_end;
771ed689 1124
a3429ab7
CM
1125 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1126 1, 0, NULL, GFP_NOFS);
d397712b 1127 while (start < end) {
771ed689 1128 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1129 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1130 async_cow->inode = igrab(inode);
771ed689
CM
1131 async_cow->root = root;
1132 async_cow->locked_page = locked_page;
1133 async_cow->start = start;
1134
f79707b0 1135 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
0b246afa 1136 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
771ed689
CM
1137 cur_end = end;
1138 else
ee22184b 1139 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1140
1141 async_cow->end = cur_end;
1142 INIT_LIST_HEAD(&async_cow->extents);
1143
9e0af237
LB
1144 btrfs_init_work(&async_cow->work,
1145 btrfs_delalloc_helper,
1146 async_cow_start, async_cow_submit,
1147 async_cow_free);
771ed689 1148
09cbfeaf
KS
1149 nr_pages = (cur_end - start + PAGE_SIZE) >>
1150 PAGE_SHIFT;
0b246afa 1151 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1152
0b246afa 1153 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
771ed689 1154
0b246afa
JM
1155 while (atomic_read(&fs_info->async_submit_draining) &&
1156 atomic_read(&fs_info->async_delalloc_pages)) {
1157 wait_event(fs_info->async_submit_wait,
1158 (atomic_read(&fs_info->async_delalloc_pages) ==
1159 0));
771ed689
CM
1160 }
1161
1162 *nr_written += nr_pages;
1163 start = cur_end + 1;
1164 }
1165 *page_started = 1;
1166 return 0;
be20aa9d
CM
1167}
1168
2ff7e61e 1169static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1170 u64 bytenr, u64 num_bytes)
1171{
1172 int ret;
1173 struct btrfs_ordered_sum *sums;
1174 LIST_HEAD(list);
1175
0b246afa 1176 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1177 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1178 if (ret == 0 && list_empty(&list))
1179 return 0;
1180
1181 while (!list_empty(&list)) {
1182 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1183 list_del(&sums->list);
1184 kfree(sums);
1185 }
1186 return 1;
1187}
1188
d352ac68
CM
1189/*
1190 * when nowcow writeback call back. This checks for snapshots or COW copies
1191 * of the extents that exist in the file, and COWs the file as required.
1192 *
1193 * If no cow copies or snapshots exist, we write directly to the existing
1194 * blocks on disk
1195 */
7f366cfe
CM
1196static noinline int run_delalloc_nocow(struct inode *inode,
1197 struct page *locked_page,
771ed689
CM
1198 u64 start, u64 end, int *page_started, int force,
1199 unsigned long *nr_written)
be20aa9d 1200{
0b246afa 1201 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d
CM
1202 struct btrfs_root *root = BTRFS_I(inode)->root;
1203 struct extent_buffer *leaf;
be20aa9d 1204 struct btrfs_path *path;
80ff3856 1205 struct btrfs_file_extent_item *fi;
be20aa9d 1206 struct btrfs_key found_key;
6f9994db 1207 struct extent_map *em;
80ff3856
YZ
1208 u64 cow_start;
1209 u64 cur_offset;
1210 u64 extent_end;
5d4f98a2 1211 u64 extent_offset;
80ff3856
YZ
1212 u64 disk_bytenr;
1213 u64 num_bytes;
b4939680 1214 u64 disk_num_bytes;
cc95bef6 1215 u64 ram_bytes;
80ff3856 1216 int extent_type;
79787eaa 1217 int ret, err;
d899e052 1218 int type;
80ff3856
YZ
1219 int nocow;
1220 int check_prev = 1;
82d5902d 1221 bool nolock;
4a0cc7ca 1222 u64 ino = btrfs_ino(BTRFS_I(inode));
be20aa9d
CM
1223
1224 path = btrfs_alloc_path();
17ca04af 1225 if (!path) {
ba8b04c1
QW
1226 extent_clear_unlock_delalloc(inode, start, end, end,
1227 locked_page,
c2790a2e 1228 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1229 EXTENT_DO_ACCOUNTING |
1230 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1231 PAGE_CLEAR_DIRTY |
1232 PAGE_SET_WRITEBACK |
1233 PAGE_END_WRITEBACK);
d8926bb3 1234 return -ENOMEM;
17ca04af 1235 }
82d5902d 1236
70ddc553 1237 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
82d5902d 1238
80ff3856
YZ
1239 cow_start = (u64)-1;
1240 cur_offset = start;
1241 while (1) {
e4c3b2dc 1242 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1243 cur_offset, 0);
d788a349 1244 if (ret < 0)
79787eaa 1245 goto error;
80ff3856
YZ
1246 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1247 leaf = path->nodes[0];
1248 btrfs_item_key_to_cpu(leaf, &found_key,
1249 path->slots[0] - 1);
33345d01 1250 if (found_key.objectid == ino &&
80ff3856
YZ
1251 found_key.type == BTRFS_EXTENT_DATA_KEY)
1252 path->slots[0]--;
1253 }
1254 check_prev = 0;
1255next_slot:
1256 leaf = path->nodes[0];
1257 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1258 ret = btrfs_next_leaf(root, path);
d788a349 1259 if (ret < 0)
79787eaa 1260 goto error;
80ff3856
YZ
1261 if (ret > 0)
1262 break;
1263 leaf = path->nodes[0];
1264 }
be20aa9d 1265
80ff3856
YZ
1266 nocow = 0;
1267 disk_bytenr = 0;
17d217fe 1268 num_bytes = 0;
80ff3856
YZ
1269 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1270
1d512cb7
FM
1271 if (found_key.objectid > ino)
1272 break;
1273 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1274 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1275 path->slots[0]++;
1276 goto next_slot;
1277 }
1278 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1279 found_key.offset > end)
1280 break;
1281
1282 if (found_key.offset > cur_offset) {
1283 extent_end = found_key.offset;
e9061e21 1284 extent_type = 0;
80ff3856
YZ
1285 goto out_check;
1286 }
1287
1288 fi = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_file_extent_item);
1290 extent_type = btrfs_file_extent_type(leaf, fi);
1291
cc95bef6 1292 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1293 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1294 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1295 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1296 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1297 extent_end = found_key.offset +
1298 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1299 disk_num_bytes =
1300 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1301 if (extent_end <= start) {
1302 path->slots[0]++;
1303 goto next_slot;
1304 }
17d217fe
YZ
1305 if (disk_bytenr == 0)
1306 goto out_check;
80ff3856
YZ
1307 if (btrfs_file_extent_compression(leaf, fi) ||
1308 btrfs_file_extent_encryption(leaf, fi) ||
1309 btrfs_file_extent_other_encoding(leaf, fi))
1310 goto out_check;
d899e052
YZ
1311 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1312 goto out_check;
2ff7e61e 1313 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1314 goto out_check;
e4c3b2dc 1315 if (btrfs_cross_ref_exist(root, ino,
5d4f98a2
YZ
1316 found_key.offset -
1317 extent_offset, disk_bytenr))
17d217fe 1318 goto out_check;
5d4f98a2 1319 disk_bytenr += extent_offset;
17d217fe
YZ
1320 disk_bytenr += cur_offset - found_key.offset;
1321 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1322 /*
1323 * if there are pending snapshots for this root,
1324 * we fall into common COW way.
1325 */
1326 if (!nolock) {
9ea24bbe 1327 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1328 if (!err)
1329 goto out_check;
1330 }
17d217fe
YZ
1331 /*
1332 * force cow if csum exists in the range.
1333 * this ensure that csum for a given extent are
1334 * either valid or do not exist.
1335 */
2ff7e61e
JM
1336 if (csum_exist_in_range(fs_info, disk_bytenr,
1337 num_bytes))
17d217fe 1338 goto out_check;
0b246afa 1339 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
f78c436c 1340 goto out_check;
80ff3856
YZ
1341 nocow = 1;
1342 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1343 extent_end = found_key.offset +
514ac8ad
CM
1344 btrfs_file_extent_inline_len(leaf,
1345 path->slots[0], fi);
da17066c 1346 extent_end = ALIGN(extent_end,
0b246afa 1347 fs_info->sectorsize);
80ff3856
YZ
1348 } else {
1349 BUG_ON(1);
1350 }
1351out_check:
1352 if (extent_end <= start) {
1353 path->slots[0]++;
e9894fd3 1354 if (!nolock && nocow)
9ea24bbe 1355 btrfs_end_write_no_snapshoting(root);
f78c436c 1356 if (nocow)
0b246afa 1357 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1358 goto next_slot;
1359 }
1360 if (!nocow) {
1361 if (cow_start == (u64)-1)
1362 cow_start = cur_offset;
1363 cur_offset = extent_end;
1364 if (cur_offset > end)
1365 break;
1366 path->slots[0]++;
1367 goto next_slot;
7ea394f1
YZ
1368 }
1369
b3b4aa74 1370 btrfs_release_path(path);
80ff3856 1371 if (cow_start != (u64)-1) {
00361589
JB
1372 ret = cow_file_range(inode, locked_page,
1373 cow_start, found_key.offset - 1,
dda3245e
WX
1374 end, page_started, nr_written, 1,
1375 NULL);
e9894fd3
WS
1376 if (ret) {
1377 if (!nolock && nocow)
9ea24bbe 1378 btrfs_end_write_no_snapshoting(root);
f78c436c 1379 if (nocow)
0b246afa 1380 btrfs_dec_nocow_writers(fs_info,
f78c436c 1381 disk_bytenr);
79787eaa 1382 goto error;
e9894fd3 1383 }
80ff3856 1384 cow_start = (u64)-1;
7ea394f1 1385 }
80ff3856 1386
d899e052 1387 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db
LB
1388 u64 orig_start = found_key.offset - extent_offset;
1389
1390 em = create_io_em(inode, cur_offset, num_bytes,
1391 orig_start,
1392 disk_bytenr, /* block_start */
1393 num_bytes, /* block_len */
1394 disk_num_bytes, /* orig_block_len */
1395 ram_bytes, BTRFS_COMPRESS_NONE,
1396 BTRFS_ORDERED_PREALLOC);
1397 if (IS_ERR(em)) {
1398 if (!nolock && nocow)
1399 btrfs_end_write_no_snapshoting(root);
1400 if (nocow)
1401 btrfs_dec_nocow_writers(fs_info,
1402 disk_bytenr);
1403 ret = PTR_ERR(em);
1404 goto error;
d899e052 1405 }
6f9994db
LB
1406 free_extent_map(em);
1407 }
1408
1409 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
d899e052
YZ
1410 type = BTRFS_ORDERED_PREALLOC;
1411 } else {
1412 type = BTRFS_ORDERED_NOCOW;
1413 }
80ff3856
YZ
1414
1415 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1416 num_bytes, num_bytes, type);
f78c436c 1417 if (nocow)
0b246afa 1418 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1419 BUG_ON(ret); /* -ENOMEM */
771ed689 1420
efa56464
YZ
1421 if (root->root_key.objectid ==
1422 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1423 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1424 num_bytes);
e9894fd3
WS
1425 if (ret) {
1426 if (!nolock && nocow)
9ea24bbe 1427 btrfs_end_write_no_snapshoting(root);
79787eaa 1428 goto error;
e9894fd3 1429 }
efa56464
YZ
1430 }
1431
c2790a2e 1432 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1433 cur_offset + num_bytes - 1, end,
c2790a2e 1434 locked_page, EXTENT_LOCKED |
18513091
WX
1435 EXTENT_DELALLOC |
1436 EXTENT_CLEAR_DATA_RESV,
1437 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1438
e9894fd3 1439 if (!nolock && nocow)
9ea24bbe 1440 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1441 cur_offset = extent_end;
1442 if (cur_offset > end)
1443 break;
be20aa9d 1444 }
b3b4aa74 1445 btrfs_release_path(path);
80ff3856 1446
17ca04af 1447 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1448 cow_start = cur_offset;
17ca04af
JB
1449 cur_offset = end;
1450 }
1451
80ff3856 1452 if (cow_start != (u64)-1) {
dda3245e
WX
1453 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1454 page_started, nr_written, 1, NULL);
d788a349 1455 if (ret)
79787eaa 1456 goto error;
80ff3856
YZ
1457 }
1458
79787eaa 1459error:
17ca04af 1460 if (ret && cur_offset < end)
ba8b04c1 1461 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1462 locked_page, EXTENT_LOCKED |
151a41bc
JB
1463 EXTENT_DELALLOC | EXTENT_DEFRAG |
1464 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1465 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1466 PAGE_SET_WRITEBACK |
1467 PAGE_END_WRITEBACK);
7ea394f1 1468 btrfs_free_path(path);
79787eaa 1469 return ret;
be20aa9d
CM
1470}
1471
47059d93
WS
1472static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1473{
1474
1475 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1476 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1477 return 0;
1478
1479 /*
1480 * @defrag_bytes is a hint value, no spinlock held here,
1481 * if is not zero, it means the file is defragging.
1482 * Force cow if given extent needs to be defragged.
1483 */
1484 if (BTRFS_I(inode)->defrag_bytes &&
1485 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1486 EXTENT_DEFRAG, 0, NULL))
1487 return 1;
1488
1489 return 0;
1490}
1491
d352ac68
CM
1492/*
1493 * extent_io.c call back to do delayed allocation processing
1494 */
c8b97818 1495static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1496 u64 start, u64 end, int *page_started,
1497 unsigned long *nr_written)
be20aa9d 1498{
be20aa9d 1499 int ret;
47059d93 1500 int force_cow = need_force_cow(inode, start, end);
a2135011 1501
47059d93 1502 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1503 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1504 page_started, 1, nr_written);
47059d93 1505 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1506 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1507 page_started, 0, nr_written);
7816030e 1508 } else if (!inode_need_compress(inode)) {
dda3245e
WX
1509 ret = cow_file_range(inode, locked_page, start, end, end,
1510 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1511 } else {
1512 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1513 &BTRFS_I(inode)->runtime_flags);
771ed689 1514 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1515 page_started, nr_written);
7ddf5a42 1516 }
b888db2b
CM
1517 return ret;
1518}
1519
1bf85046
JM
1520static void btrfs_split_extent_hook(struct inode *inode,
1521 struct extent_state *orig, u64 split)
9ed74f2d 1522{
dcab6a3b
JB
1523 u64 size;
1524
0ca1f7ce 1525 /* not delalloc, ignore it */
9ed74f2d 1526 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1527 return;
9ed74f2d 1528
dcab6a3b
JB
1529 size = orig->end - orig->start + 1;
1530 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1531 u32 num_extents;
dcab6a3b
JB
1532 u64 new_size;
1533
1534 /*
ba117213
JB
1535 * See the explanation in btrfs_merge_extent_hook, the same
1536 * applies here, just in reverse.
dcab6a3b
JB
1537 */
1538 new_size = orig->end - split + 1;
823bb20a 1539 num_extents = count_max_extents(new_size);
ba117213 1540 new_size = split - orig->start;
823bb20a
DS
1541 num_extents += count_max_extents(new_size);
1542 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1543 return;
1544 }
1545
9e0baf60
JB
1546 spin_lock(&BTRFS_I(inode)->lock);
1547 BTRFS_I(inode)->outstanding_extents++;
1548 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1549}
1550
1551/*
1552 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1553 * extents so we can keep track of new extents that are just merged onto old
1554 * extents, such as when we are doing sequential writes, so we can properly
1555 * account for the metadata space we'll need.
1556 */
1bf85046
JM
1557static void btrfs_merge_extent_hook(struct inode *inode,
1558 struct extent_state *new,
1559 struct extent_state *other)
9ed74f2d 1560{
dcab6a3b 1561 u64 new_size, old_size;
823bb20a 1562 u32 num_extents;
dcab6a3b 1563
9ed74f2d
JB
1564 /* not delalloc, ignore it */
1565 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1566 return;
9ed74f2d 1567
8461a3de
JB
1568 if (new->start > other->start)
1569 new_size = new->end - other->start + 1;
1570 else
1571 new_size = other->end - new->start + 1;
dcab6a3b
JB
1572
1573 /* we're not bigger than the max, unreserve the space and go */
1574 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1575 spin_lock(&BTRFS_I(inode)->lock);
1576 BTRFS_I(inode)->outstanding_extents--;
1577 spin_unlock(&BTRFS_I(inode)->lock);
1578 return;
1579 }
1580
1581 /*
ba117213
JB
1582 * We have to add up either side to figure out how many extents were
1583 * accounted for before we merged into one big extent. If the number of
1584 * extents we accounted for is <= the amount we need for the new range
1585 * then we can return, otherwise drop. Think of it like this
1586 *
1587 * [ 4k][MAX_SIZE]
1588 *
1589 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1590 * need 2 outstanding extents, on one side we have 1 and the other side
1591 * we have 1 so they are == and we can return. But in this case
1592 *
1593 * [MAX_SIZE+4k][MAX_SIZE+4k]
1594 *
1595 * Each range on their own accounts for 2 extents, but merged together
1596 * they are only 3 extents worth of accounting, so we need to drop in
1597 * this case.
dcab6a3b 1598 */
ba117213 1599 old_size = other->end - other->start + 1;
823bb20a 1600 num_extents = count_max_extents(old_size);
ba117213 1601 old_size = new->end - new->start + 1;
823bb20a
DS
1602 num_extents += count_max_extents(old_size);
1603 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1604 return;
1605
9e0baf60
JB
1606 spin_lock(&BTRFS_I(inode)->lock);
1607 BTRFS_I(inode)->outstanding_extents--;
1608 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1609}
1610
eb73c1b7
MX
1611static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1612 struct inode *inode)
1613{
0b246afa
JM
1614 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1615
eb73c1b7
MX
1616 spin_lock(&root->delalloc_lock);
1617 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1618 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1619 &root->delalloc_inodes);
1620 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1621 &BTRFS_I(inode)->runtime_flags);
1622 root->nr_delalloc_inodes++;
1623 if (root->nr_delalloc_inodes == 1) {
0b246afa 1624 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1625 BUG_ON(!list_empty(&root->delalloc_root));
1626 list_add_tail(&root->delalloc_root,
0b246afa
JM
1627 &fs_info->delalloc_roots);
1628 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1629 }
1630 }
1631 spin_unlock(&root->delalloc_lock);
1632}
1633
1634static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1635 struct inode *inode)
1636{
0b246afa
JM
1637 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1638
eb73c1b7
MX
1639 spin_lock(&root->delalloc_lock);
1640 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1641 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1642 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1643 &BTRFS_I(inode)->runtime_flags);
1644 root->nr_delalloc_inodes--;
1645 if (!root->nr_delalloc_inodes) {
0b246afa 1646 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1647 BUG_ON(list_empty(&root->delalloc_root));
1648 list_del_init(&root->delalloc_root);
0b246afa 1649 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1650 }
1651 }
1652 spin_unlock(&root->delalloc_lock);
1653}
1654
d352ac68
CM
1655/*
1656 * extent_io.c set_bit_hook, used to track delayed allocation
1657 * bytes in this file, and to maintain the list of inodes that
1658 * have pending delalloc work to be done.
1659 */
1bf85046 1660static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1661 struct extent_state *state, unsigned *bits)
291d673e 1662{
9ed74f2d 1663
0b246afa
JM
1664 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1665
47059d93
WS
1666 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1667 WARN_ON(1);
75eff68e
CM
1668 /*
1669 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1670 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1671 * bit, which is only set or cleared with irqs on
1672 */
0ca1f7ce 1673 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1674 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1675 u64 len = state->end + 1 - state->start;
70ddc553 1676 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1677
9e0baf60 1678 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1679 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1680 } else {
1681 spin_lock(&BTRFS_I(inode)->lock);
1682 BTRFS_I(inode)->outstanding_extents++;
1683 spin_unlock(&BTRFS_I(inode)->lock);
1684 }
287a0ab9 1685
6a3891c5 1686 /* For sanity tests */
0b246afa 1687 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1688 return;
1689
0b246afa
JM
1690 __percpu_counter_add(&fs_info->delalloc_bytes, len,
1691 fs_info->delalloc_batch);
df0af1a5 1692 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1693 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1694 if (*bits & EXTENT_DEFRAG)
1695 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1696 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1697 &BTRFS_I(inode)->runtime_flags))
1698 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1699 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1700 }
291d673e
CM
1701}
1702
d352ac68
CM
1703/*
1704 * extent_io.c clear_bit_hook, see set_bit_hook for why
1705 */
1bf85046 1706static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1707 struct extent_state *state,
9ee49a04 1708 unsigned *bits)
291d673e 1709{
0b246afa 1710 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
47059d93 1711 u64 len = state->end + 1 - state->start;
823bb20a 1712 u32 num_extents = count_max_extents(len);
47059d93
WS
1713
1714 spin_lock(&BTRFS_I(inode)->lock);
1715 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1716 BTRFS_I(inode)->defrag_bytes -= len;
1717 spin_unlock(&BTRFS_I(inode)->lock);
1718
75eff68e
CM
1719 /*
1720 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1721 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1722 * bit, which is only set or cleared with irqs on
1723 */
0ca1f7ce 1724 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1725 struct btrfs_root *root = BTRFS_I(inode)->root;
70ddc553 1726 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
bcbfce8a 1727
9e0baf60 1728 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1729 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1730 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1731 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 1732 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60
JB
1733 spin_unlock(&BTRFS_I(inode)->lock);
1734 }
0ca1f7ce 1735
b6d08f06
JB
1736 /*
1737 * We don't reserve metadata space for space cache inodes so we
1738 * don't need to call dellalloc_release_metadata if there is an
1739 * error.
1740 */
1741 if (*bits & EXTENT_DO_ACCOUNTING &&
0b246afa 1742 root != fs_info->tree_root)
691fa059 1743 btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
0ca1f7ce 1744
6a3891c5 1745 /* For sanity tests. */
0b246afa 1746 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1747 return;
1748
0cb59c99 1749 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
18513091
WX
1750 && do_list && !(state->state & EXTENT_NORESERVE)
1751 && (*bits & (EXTENT_DO_ACCOUNTING |
1752 EXTENT_CLEAR_DATA_RESV)))
51773bec
QW
1753 btrfs_free_reserved_data_space_noquota(inode,
1754 state->start, len);
9ed74f2d 1755
0b246afa
JM
1756 __percpu_counter_add(&fs_info->delalloc_bytes, -len,
1757 fs_info->delalloc_batch);
df0af1a5 1758 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1759 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1760 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1761 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1762 &BTRFS_I(inode)->runtime_flags))
1763 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1764 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1765 }
291d673e
CM
1766}
1767
d352ac68
CM
1768/*
1769 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1770 * we don't create bios that span stripes or chunks
6f034ece
LB
1771 *
1772 * return 1 if page cannot be merged to bio
1773 * return 0 if page can be merged to bio
1774 * return error otherwise
d352ac68 1775 */
81a75f67 1776int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1777 size_t size, struct bio *bio,
1778 unsigned long bio_flags)
239b14b3 1779{
0b246afa
JM
1780 struct inode *inode = page->mapping->host;
1781 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1782 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1783 u64 length = 0;
1784 u64 map_length;
239b14b3
CM
1785 int ret;
1786
771ed689
CM
1787 if (bio_flags & EXTENT_BIO_COMPRESSED)
1788 return 0;
1789
4f024f37 1790 length = bio->bi_iter.bi_size;
239b14b3 1791 map_length = length;
0b246afa
JM
1792 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1793 NULL, 0);
6f034ece
LB
1794 if (ret < 0)
1795 return ret;
d397712b 1796 if (map_length < length + size)
239b14b3 1797 return 1;
3444a972 1798 return 0;
239b14b3
CM
1799}
1800
d352ac68
CM
1801/*
1802 * in order to insert checksums into the metadata in large chunks,
1803 * we wait until bio submission time. All the pages in the bio are
1804 * checksummed and sums are attached onto the ordered extent record.
1805 *
1806 * At IO completion time the cums attached on the ordered extent record
1807 * are inserted into the btree
1808 */
81a75f67
MC
1809static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
1810 int mirror_num, unsigned long bio_flags,
eaf25d93 1811 u64 bio_offset)
065631f6 1812{
065631f6 1813 int ret = 0;
e015640f 1814
2ff7e61e 1815 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1816 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1817 return 0;
1818}
e015640f 1819
4a69a410
CM
1820/*
1821 * in order to insert checksums into the metadata in large chunks,
1822 * we wait until bio submission time. All the pages in the bio are
1823 * checksummed and sums are attached onto the ordered extent record.
1824 *
1825 * At IO completion time the cums attached on the ordered extent record
1826 * are inserted into the btree
1827 */
81a75f67 1828static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio,
eaf25d93
CM
1829 int mirror_num, unsigned long bio_flags,
1830 u64 bio_offset)
4a69a410 1831{
2ff7e61e 1832 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
61891923
SB
1833 int ret;
1834
2ff7e61e 1835 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
4246a0b6
CH
1836 if (ret) {
1837 bio->bi_error = ret;
1838 bio_endio(bio);
1839 }
61891923 1840 return ret;
44b8bd7e
CM
1841}
1842
d352ac68 1843/*
cad321ad
CM
1844 * extent_io.c submission hook. This does the right thing for csum calculation
1845 * on write, or reading the csums from the tree before a read
d352ac68 1846 */
81a75f67 1847static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
eaf25d93
CM
1848 int mirror_num, unsigned long bio_flags,
1849 u64 bio_offset)
44b8bd7e 1850{
0b246afa 1851 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 1852 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1853 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1854 int ret = 0;
19b9bdb0 1855 int skip_sum;
b812ce28 1856 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1857
6cbff00f 1858 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1859
70ddc553 1860 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 1861 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1862
37226b21 1863 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 1864 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 1865 if (ret)
61891923 1866 goto out;
5fd02043 1867
d20f7043 1868 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1869 ret = btrfs_submit_compressed_read(inode, bio,
1870 mirror_num,
1871 bio_flags);
1872 goto out;
c2db1073 1873 } else if (!skip_sum) {
2ff7e61e 1874 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 1875 if (ret)
61891923 1876 goto out;
c2db1073 1877 }
4d1b5fb4 1878 goto mapit;
b812ce28 1879 } else if (async && !skip_sum) {
17d217fe
YZ
1880 /* csum items have already been cloned */
1881 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1882 goto mapit;
19b9bdb0 1883 /* we're doing a write, do the async checksumming */
0b246afa
JM
1884 ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num,
1885 bio_flags, bio_offset,
1886 __btrfs_submit_bio_start,
1887 __btrfs_submit_bio_done);
61891923 1888 goto out;
b812ce28 1889 } else if (!skip_sum) {
2ff7e61e 1890 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
1891 if (ret)
1892 goto out;
19b9bdb0
CM
1893 }
1894
0b86a832 1895mapit:
2ff7e61e 1896 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
1897
1898out:
4246a0b6
CH
1899 if (ret < 0) {
1900 bio->bi_error = ret;
1901 bio_endio(bio);
1902 }
61891923 1903 return ret;
065631f6 1904}
6885f308 1905
d352ac68
CM
1906/*
1907 * given a list of ordered sums record them in the inode. This happens
1908 * at IO completion time based on sums calculated at bio submission time.
1909 */
ba1da2f4 1910static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 1911 struct inode *inode, struct list_head *list)
e6dcd2dc 1912{
e6dcd2dc
CM
1913 struct btrfs_ordered_sum *sum;
1914
c6e30871 1915 list_for_each_entry(sum, list, list) {
39847c4d 1916 trans->adding_csums = 1;
d20f7043
CM
1917 btrfs_csum_file_blocks(trans,
1918 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1919 trans->adding_csums = 0;
e6dcd2dc
CM
1920 }
1921 return 0;
1922}
1923
2ac55d41 1924int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
ba8b04c1 1925 struct extent_state **cached_state, int dedupe)
ea8c2819 1926{
09cbfeaf 1927 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 1928 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
7cd8c752 1929 cached_state);
ea8c2819
CM
1930}
1931
d352ac68 1932/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1933struct btrfs_writepage_fixup {
1934 struct page *page;
1935 struct btrfs_work work;
1936};
1937
b2950863 1938static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1939{
1940 struct btrfs_writepage_fixup *fixup;
1941 struct btrfs_ordered_extent *ordered;
2ac55d41 1942 struct extent_state *cached_state = NULL;
247e743c
CM
1943 struct page *page;
1944 struct inode *inode;
1945 u64 page_start;
1946 u64 page_end;
87826df0 1947 int ret;
247e743c
CM
1948
1949 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1950 page = fixup->page;
4a096752 1951again:
247e743c
CM
1952 lock_page(page);
1953 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1954 ClearPageChecked(page);
1955 goto out_page;
1956 }
1957
1958 inode = page->mapping->host;
1959 page_start = page_offset(page);
09cbfeaf 1960 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 1961
ff13db41 1962 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 1963 &cached_state);
4a096752
CM
1964
1965 /* already ordered? We're done */
8b62b72b 1966 if (PagePrivate2(page))
247e743c 1967 goto out;
4a096752 1968
dbfdb6d1 1969 ordered = btrfs_lookup_ordered_range(inode, page_start,
09cbfeaf 1970 PAGE_SIZE);
4a096752 1971 if (ordered) {
2ac55d41
JB
1972 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1973 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1974 unlock_page(page);
1975 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1976 btrfs_put_ordered_extent(ordered);
4a096752
CM
1977 goto again;
1978 }
247e743c 1979
7cf5b976 1980 ret = btrfs_delalloc_reserve_space(inode, page_start,
09cbfeaf 1981 PAGE_SIZE);
87826df0
JM
1982 if (ret) {
1983 mapping_set_error(page->mapping, ret);
1984 end_extent_writepage(page, ret, page_start, page_end);
1985 ClearPageChecked(page);
1986 goto out;
1987 }
1988
ba8b04c1
QW
1989 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
1990 0);
247e743c 1991 ClearPageChecked(page);
87826df0 1992 set_page_dirty(page);
247e743c 1993out:
2ac55d41
JB
1994 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1995 &cached_state, GFP_NOFS);
247e743c
CM
1996out_page:
1997 unlock_page(page);
09cbfeaf 1998 put_page(page);
b897abec 1999 kfree(fixup);
247e743c
CM
2000}
2001
2002/*
2003 * There are a few paths in the higher layers of the kernel that directly
2004 * set the page dirty bit without asking the filesystem if it is a
2005 * good idea. This causes problems because we want to make sure COW
2006 * properly happens and the data=ordered rules are followed.
2007 *
c8b97818 2008 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2009 * hasn't been properly setup for IO. We kick off an async process
2010 * to fix it up. The async helper will wait for ordered extents, set
2011 * the delalloc bit and make it safe to write the page.
2012 */
b2950863 2013static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2014{
2015 struct inode *inode = page->mapping->host;
0b246afa 2016 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2017 struct btrfs_writepage_fixup *fixup;
247e743c 2018
8b62b72b
CM
2019 /* this page is properly in the ordered list */
2020 if (TestClearPagePrivate2(page))
247e743c
CM
2021 return 0;
2022
2023 if (PageChecked(page))
2024 return -EAGAIN;
2025
2026 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2027 if (!fixup)
2028 return -EAGAIN;
f421950f 2029
247e743c 2030 SetPageChecked(page);
09cbfeaf 2031 get_page(page);
9e0af237
LB
2032 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2033 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2034 fixup->page = page;
0b246afa 2035 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2036 return -EBUSY;
247e743c
CM
2037}
2038
d899e052
YZ
2039static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2040 struct inode *inode, u64 file_pos,
2041 u64 disk_bytenr, u64 disk_num_bytes,
2042 u64 num_bytes, u64 ram_bytes,
2043 u8 compression, u8 encryption,
2044 u16 other_encoding, int extent_type)
2045{
2046 struct btrfs_root *root = BTRFS_I(inode)->root;
2047 struct btrfs_file_extent_item *fi;
2048 struct btrfs_path *path;
2049 struct extent_buffer *leaf;
2050 struct btrfs_key ins;
1acae57b 2051 int extent_inserted = 0;
d899e052
YZ
2052 int ret;
2053
2054 path = btrfs_alloc_path();
d8926bb3
MF
2055 if (!path)
2056 return -ENOMEM;
d899e052 2057
a1ed835e
CM
2058 /*
2059 * we may be replacing one extent in the tree with another.
2060 * The new extent is pinned in the extent map, and we don't want
2061 * to drop it from the cache until it is completely in the btree.
2062 *
2063 * So, tell btrfs_drop_extents to leave this extent in the cache.
2064 * the caller is expected to unpin it and allow it to be merged
2065 * with the others.
2066 */
1acae57b
FDBM
2067 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2068 file_pos + num_bytes, NULL, 0,
2069 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2070 if (ret)
2071 goto out;
d899e052 2072
1acae57b 2073 if (!extent_inserted) {
4a0cc7ca 2074 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2075 ins.offset = file_pos;
2076 ins.type = BTRFS_EXTENT_DATA_KEY;
2077
2078 path->leave_spinning = 1;
2079 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2080 sizeof(*fi));
2081 if (ret)
2082 goto out;
2083 }
d899e052
YZ
2084 leaf = path->nodes[0];
2085 fi = btrfs_item_ptr(leaf, path->slots[0],
2086 struct btrfs_file_extent_item);
2087 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2088 btrfs_set_file_extent_type(leaf, fi, extent_type);
2089 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2090 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2091 btrfs_set_file_extent_offset(leaf, fi, 0);
2092 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2093 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2094 btrfs_set_file_extent_compression(leaf, fi, compression);
2095 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2096 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2097
d899e052 2098 btrfs_mark_buffer_dirty(leaf);
ce195332 2099 btrfs_release_path(path);
d899e052
YZ
2100
2101 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2102
2103 ins.objectid = disk_bytenr;
2104 ins.offset = disk_num_bytes;
2105 ins.type = BTRFS_EXTENT_ITEM_KEY;
2ff7e61e 2106 ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid,
f85b7379 2107 btrfs_ino(BTRFS_I(inode)), file_pos, ram_bytes, &ins);
297d750b 2108 /*
5846a3c2
QW
2109 * Release the reserved range from inode dirty range map, as it is
2110 * already moved into delayed_ref_head
297d750b
QW
2111 */
2112 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
79787eaa 2113out:
d899e052 2114 btrfs_free_path(path);
b9473439 2115
79787eaa 2116 return ret;
d899e052
YZ
2117}
2118
38c227d8
LB
2119/* snapshot-aware defrag */
2120struct sa_defrag_extent_backref {
2121 struct rb_node node;
2122 struct old_sa_defrag_extent *old;
2123 u64 root_id;
2124 u64 inum;
2125 u64 file_pos;
2126 u64 extent_offset;
2127 u64 num_bytes;
2128 u64 generation;
2129};
2130
2131struct old_sa_defrag_extent {
2132 struct list_head list;
2133 struct new_sa_defrag_extent *new;
2134
2135 u64 extent_offset;
2136 u64 bytenr;
2137 u64 offset;
2138 u64 len;
2139 int count;
2140};
2141
2142struct new_sa_defrag_extent {
2143 struct rb_root root;
2144 struct list_head head;
2145 struct btrfs_path *path;
2146 struct inode *inode;
2147 u64 file_pos;
2148 u64 len;
2149 u64 bytenr;
2150 u64 disk_len;
2151 u8 compress_type;
2152};
2153
2154static int backref_comp(struct sa_defrag_extent_backref *b1,
2155 struct sa_defrag_extent_backref *b2)
2156{
2157 if (b1->root_id < b2->root_id)
2158 return -1;
2159 else if (b1->root_id > b2->root_id)
2160 return 1;
2161
2162 if (b1->inum < b2->inum)
2163 return -1;
2164 else if (b1->inum > b2->inum)
2165 return 1;
2166
2167 if (b1->file_pos < b2->file_pos)
2168 return -1;
2169 else if (b1->file_pos > b2->file_pos)
2170 return 1;
2171
2172 /*
2173 * [------------------------------] ===> (a range of space)
2174 * |<--->| |<---->| =============> (fs/file tree A)
2175 * |<---------------------------->| ===> (fs/file tree B)
2176 *
2177 * A range of space can refer to two file extents in one tree while
2178 * refer to only one file extent in another tree.
2179 *
2180 * So we may process a disk offset more than one time(two extents in A)
2181 * and locate at the same extent(one extent in B), then insert two same
2182 * backrefs(both refer to the extent in B).
2183 */
2184 return 0;
2185}
2186
2187static void backref_insert(struct rb_root *root,
2188 struct sa_defrag_extent_backref *backref)
2189{
2190 struct rb_node **p = &root->rb_node;
2191 struct rb_node *parent = NULL;
2192 struct sa_defrag_extent_backref *entry;
2193 int ret;
2194
2195 while (*p) {
2196 parent = *p;
2197 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2198
2199 ret = backref_comp(backref, entry);
2200 if (ret < 0)
2201 p = &(*p)->rb_left;
2202 else
2203 p = &(*p)->rb_right;
2204 }
2205
2206 rb_link_node(&backref->node, parent, p);
2207 rb_insert_color(&backref->node, root);
2208}
2209
2210/*
2211 * Note the backref might has changed, and in this case we just return 0.
2212 */
2213static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2214 void *ctx)
2215{
2216 struct btrfs_file_extent_item *extent;
38c227d8
LB
2217 struct old_sa_defrag_extent *old = ctx;
2218 struct new_sa_defrag_extent *new = old->new;
2219 struct btrfs_path *path = new->path;
2220 struct btrfs_key key;
2221 struct btrfs_root *root;
2222 struct sa_defrag_extent_backref *backref;
2223 struct extent_buffer *leaf;
2224 struct inode *inode = new->inode;
0b246afa 2225 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2226 int slot;
2227 int ret;
2228 u64 extent_offset;
2229 u64 num_bytes;
2230
2231 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2232 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2233 return 0;
2234
2235 key.objectid = root_id;
2236 key.type = BTRFS_ROOT_ITEM_KEY;
2237 key.offset = (u64)-1;
2238
38c227d8
LB
2239 root = btrfs_read_fs_root_no_name(fs_info, &key);
2240 if (IS_ERR(root)) {
2241 if (PTR_ERR(root) == -ENOENT)
2242 return 0;
2243 WARN_ON(1);
ab8d0fc4 2244 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2245 inum, offset, root_id);
2246 return PTR_ERR(root);
2247 }
2248
2249 key.objectid = inum;
2250 key.type = BTRFS_EXTENT_DATA_KEY;
2251 if (offset > (u64)-1 << 32)
2252 key.offset = 0;
2253 else
2254 key.offset = offset;
2255
2256 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2257 if (WARN_ON(ret < 0))
38c227d8 2258 return ret;
50f1319c 2259 ret = 0;
38c227d8
LB
2260
2261 while (1) {
2262 cond_resched();
2263
2264 leaf = path->nodes[0];
2265 slot = path->slots[0];
2266
2267 if (slot >= btrfs_header_nritems(leaf)) {
2268 ret = btrfs_next_leaf(root, path);
2269 if (ret < 0) {
2270 goto out;
2271 } else if (ret > 0) {
2272 ret = 0;
2273 goto out;
2274 }
2275 continue;
2276 }
2277
2278 path->slots[0]++;
2279
2280 btrfs_item_key_to_cpu(leaf, &key, slot);
2281
2282 if (key.objectid > inum)
2283 goto out;
2284
2285 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2286 continue;
2287
2288 extent = btrfs_item_ptr(leaf, slot,
2289 struct btrfs_file_extent_item);
2290
2291 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2292 continue;
2293
e68afa49
LB
2294 /*
2295 * 'offset' refers to the exact key.offset,
2296 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2297 * (key.offset - extent_offset).
2298 */
2299 if (key.offset != offset)
38c227d8
LB
2300 continue;
2301
e68afa49 2302 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2303 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2304
38c227d8
LB
2305 if (extent_offset >= old->extent_offset + old->offset +
2306 old->len || extent_offset + num_bytes <=
2307 old->extent_offset + old->offset)
2308 continue;
38c227d8
LB
2309 break;
2310 }
2311
2312 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2313 if (!backref) {
2314 ret = -ENOENT;
2315 goto out;
2316 }
2317
2318 backref->root_id = root_id;
2319 backref->inum = inum;
e68afa49 2320 backref->file_pos = offset;
38c227d8
LB
2321 backref->num_bytes = num_bytes;
2322 backref->extent_offset = extent_offset;
2323 backref->generation = btrfs_file_extent_generation(leaf, extent);
2324 backref->old = old;
2325 backref_insert(&new->root, backref);
2326 old->count++;
2327out:
2328 btrfs_release_path(path);
2329 WARN_ON(ret);
2330 return ret;
2331}
2332
2333static noinline bool record_extent_backrefs(struct btrfs_path *path,
2334 struct new_sa_defrag_extent *new)
2335{
0b246afa 2336 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2337 struct old_sa_defrag_extent *old, *tmp;
2338 int ret;
2339
2340 new->path = path;
2341
2342 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2343 ret = iterate_inodes_from_logical(old->bytenr +
2344 old->extent_offset, fs_info,
38c227d8
LB
2345 path, record_one_backref,
2346 old);
4724b106
JB
2347 if (ret < 0 && ret != -ENOENT)
2348 return false;
38c227d8
LB
2349
2350 /* no backref to be processed for this extent */
2351 if (!old->count) {
2352 list_del(&old->list);
2353 kfree(old);
2354 }
2355 }
2356
2357 if (list_empty(&new->head))
2358 return false;
2359
2360 return true;
2361}
2362
2363static int relink_is_mergable(struct extent_buffer *leaf,
2364 struct btrfs_file_extent_item *fi,
116e0024 2365 struct new_sa_defrag_extent *new)
38c227d8 2366{
116e0024 2367 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2368 return 0;
2369
2370 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2371 return 0;
2372
116e0024
LB
2373 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2374 return 0;
2375
2376 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2377 btrfs_file_extent_other_encoding(leaf, fi))
2378 return 0;
2379
2380 return 1;
2381}
2382
2383/*
2384 * Note the backref might has changed, and in this case we just return 0.
2385 */
2386static noinline int relink_extent_backref(struct btrfs_path *path,
2387 struct sa_defrag_extent_backref *prev,
2388 struct sa_defrag_extent_backref *backref)
2389{
2390 struct btrfs_file_extent_item *extent;
2391 struct btrfs_file_extent_item *item;
2392 struct btrfs_ordered_extent *ordered;
2393 struct btrfs_trans_handle *trans;
38c227d8
LB
2394 struct btrfs_root *root;
2395 struct btrfs_key key;
2396 struct extent_buffer *leaf;
2397 struct old_sa_defrag_extent *old = backref->old;
2398 struct new_sa_defrag_extent *new = old->new;
0b246afa 2399 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2400 struct inode *inode;
2401 struct extent_state *cached = NULL;
2402 int ret = 0;
2403 u64 start;
2404 u64 len;
2405 u64 lock_start;
2406 u64 lock_end;
2407 bool merge = false;
2408 int index;
2409
2410 if (prev && prev->root_id == backref->root_id &&
2411 prev->inum == backref->inum &&
2412 prev->file_pos + prev->num_bytes == backref->file_pos)
2413 merge = true;
2414
2415 /* step 1: get root */
2416 key.objectid = backref->root_id;
2417 key.type = BTRFS_ROOT_ITEM_KEY;
2418 key.offset = (u64)-1;
2419
38c227d8
LB
2420 index = srcu_read_lock(&fs_info->subvol_srcu);
2421
2422 root = btrfs_read_fs_root_no_name(fs_info, &key);
2423 if (IS_ERR(root)) {
2424 srcu_read_unlock(&fs_info->subvol_srcu, index);
2425 if (PTR_ERR(root) == -ENOENT)
2426 return 0;
2427 return PTR_ERR(root);
2428 }
38c227d8 2429
bcbba5e6
WS
2430 if (btrfs_root_readonly(root)) {
2431 srcu_read_unlock(&fs_info->subvol_srcu, index);
2432 return 0;
2433 }
2434
38c227d8
LB
2435 /* step 2: get inode */
2436 key.objectid = backref->inum;
2437 key.type = BTRFS_INODE_ITEM_KEY;
2438 key.offset = 0;
2439
2440 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2441 if (IS_ERR(inode)) {
2442 srcu_read_unlock(&fs_info->subvol_srcu, index);
2443 return 0;
2444 }
2445
2446 srcu_read_unlock(&fs_info->subvol_srcu, index);
2447
2448 /* step 3: relink backref */
2449 lock_start = backref->file_pos;
2450 lock_end = backref->file_pos + backref->num_bytes - 1;
2451 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2452 &cached);
38c227d8
LB
2453
2454 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2455 if (ordered) {
2456 btrfs_put_ordered_extent(ordered);
2457 goto out_unlock;
2458 }
2459
2460 trans = btrfs_join_transaction(root);
2461 if (IS_ERR(trans)) {
2462 ret = PTR_ERR(trans);
2463 goto out_unlock;
2464 }
2465
2466 key.objectid = backref->inum;
2467 key.type = BTRFS_EXTENT_DATA_KEY;
2468 key.offset = backref->file_pos;
2469
2470 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2471 if (ret < 0) {
2472 goto out_free_path;
2473 } else if (ret > 0) {
2474 ret = 0;
2475 goto out_free_path;
2476 }
2477
2478 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2479 struct btrfs_file_extent_item);
2480
2481 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2482 backref->generation)
2483 goto out_free_path;
2484
2485 btrfs_release_path(path);
2486
2487 start = backref->file_pos;
2488 if (backref->extent_offset < old->extent_offset + old->offset)
2489 start += old->extent_offset + old->offset -
2490 backref->extent_offset;
2491
2492 len = min(backref->extent_offset + backref->num_bytes,
2493 old->extent_offset + old->offset + old->len);
2494 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2495
2496 ret = btrfs_drop_extents(trans, root, inode, start,
2497 start + len, 1);
2498 if (ret)
2499 goto out_free_path;
2500again:
4a0cc7ca 2501 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2502 key.type = BTRFS_EXTENT_DATA_KEY;
2503 key.offset = start;
2504
a09a0a70 2505 path->leave_spinning = 1;
38c227d8
LB
2506 if (merge) {
2507 struct btrfs_file_extent_item *fi;
2508 u64 extent_len;
2509 struct btrfs_key found_key;
2510
3c9665df 2511 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2512 if (ret < 0)
2513 goto out_free_path;
2514
2515 path->slots[0]--;
2516 leaf = path->nodes[0];
2517 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2518
2519 fi = btrfs_item_ptr(leaf, path->slots[0],
2520 struct btrfs_file_extent_item);
2521 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2522
116e0024
LB
2523 if (extent_len + found_key.offset == start &&
2524 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2525 btrfs_set_file_extent_num_bytes(leaf, fi,
2526 extent_len + len);
2527 btrfs_mark_buffer_dirty(leaf);
2528 inode_add_bytes(inode, len);
2529
2530 ret = 1;
2531 goto out_free_path;
2532 } else {
2533 merge = false;
2534 btrfs_release_path(path);
2535 goto again;
2536 }
2537 }
2538
2539 ret = btrfs_insert_empty_item(trans, root, path, &key,
2540 sizeof(*extent));
2541 if (ret) {
66642832 2542 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2543 goto out_free_path;
2544 }
2545
2546 leaf = path->nodes[0];
2547 item = btrfs_item_ptr(leaf, path->slots[0],
2548 struct btrfs_file_extent_item);
2549 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2550 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2551 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2552 btrfs_set_file_extent_num_bytes(leaf, item, len);
2553 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2554 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2555 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2556 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2557 btrfs_set_file_extent_encryption(leaf, item, 0);
2558 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2559
2560 btrfs_mark_buffer_dirty(leaf);
2561 inode_add_bytes(inode, len);
a09a0a70 2562 btrfs_release_path(path);
38c227d8 2563
2ff7e61e 2564 ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr,
38c227d8
LB
2565 new->disk_len, 0,
2566 backref->root_id, backref->inum,
b06c4bf5 2567 new->file_pos); /* start - extent_offset */
38c227d8 2568 if (ret) {
66642832 2569 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2570 goto out_free_path;
2571 }
2572
2573 ret = 1;
2574out_free_path:
2575 btrfs_release_path(path);
a09a0a70 2576 path->leave_spinning = 0;
3a45bb20 2577 btrfs_end_transaction(trans);
38c227d8
LB
2578out_unlock:
2579 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2580 &cached, GFP_NOFS);
2581 iput(inode);
2582 return ret;
2583}
2584
6f519564
LB
2585static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2586{
2587 struct old_sa_defrag_extent *old, *tmp;
2588
2589 if (!new)
2590 return;
2591
2592 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2593 kfree(old);
2594 }
2595 kfree(new);
2596}
2597
38c227d8
LB
2598static void relink_file_extents(struct new_sa_defrag_extent *new)
2599{
0b246afa 2600 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2601 struct btrfs_path *path;
38c227d8
LB
2602 struct sa_defrag_extent_backref *backref;
2603 struct sa_defrag_extent_backref *prev = NULL;
2604 struct inode *inode;
2605 struct btrfs_root *root;
2606 struct rb_node *node;
2607 int ret;
2608
2609 inode = new->inode;
2610 root = BTRFS_I(inode)->root;
2611
2612 path = btrfs_alloc_path();
2613 if (!path)
2614 return;
2615
2616 if (!record_extent_backrefs(path, new)) {
2617 btrfs_free_path(path);
2618 goto out;
2619 }
2620 btrfs_release_path(path);
2621
2622 while (1) {
2623 node = rb_first(&new->root);
2624 if (!node)
2625 break;
2626 rb_erase(node, &new->root);
2627
2628 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2629
2630 ret = relink_extent_backref(path, prev, backref);
2631 WARN_ON(ret < 0);
2632
2633 kfree(prev);
2634
2635 if (ret == 1)
2636 prev = backref;
2637 else
2638 prev = NULL;
2639 cond_resched();
2640 }
2641 kfree(prev);
2642
2643 btrfs_free_path(path);
38c227d8 2644out:
6f519564
LB
2645 free_sa_defrag_extent(new);
2646
0b246afa
JM
2647 atomic_dec(&fs_info->defrag_running);
2648 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2649}
2650
2651static struct new_sa_defrag_extent *
2652record_old_file_extents(struct inode *inode,
2653 struct btrfs_ordered_extent *ordered)
2654{
0b246afa 2655 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2656 struct btrfs_root *root = BTRFS_I(inode)->root;
2657 struct btrfs_path *path;
2658 struct btrfs_key key;
6f519564 2659 struct old_sa_defrag_extent *old;
38c227d8
LB
2660 struct new_sa_defrag_extent *new;
2661 int ret;
2662
2663 new = kmalloc(sizeof(*new), GFP_NOFS);
2664 if (!new)
2665 return NULL;
2666
2667 new->inode = inode;
2668 new->file_pos = ordered->file_offset;
2669 new->len = ordered->len;
2670 new->bytenr = ordered->start;
2671 new->disk_len = ordered->disk_len;
2672 new->compress_type = ordered->compress_type;
2673 new->root = RB_ROOT;
2674 INIT_LIST_HEAD(&new->head);
2675
2676 path = btrfs_alloc_path();
2677 if (!path)
2678 goto out_kfree;
2679
4a0cc7ca 2680 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2681 key.type = BTRFS_EXTENT_DATA_KEY;
2682 key.offset = new->file_pos;
2683
2684 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2685 if (ret < 0)
2686 goto out_free_path;
2687 if (ret > 0 && path->slots[0] > 0)
2688 path->slots[0]--;
2689
2690 /* find out all the old extents for the file range */
2691 while (1) {
2692 struct btrfs_file_extent_item *extent;
2693 struct extent_buffer *l;
2694 int slot;
2695 u64 num_bytes;
2696 u64 offset;
2697 u64 end;
2698 u64 disk_bytenr;
2699 u64 extent_offset;
2700
2701 l = path->nodes[0];
2702 slot = path->slots[0];
2703
2704 if (slot >= btrfs_header_nritems(l)) {
2705 ret = btrfs_next_leaf(root, path);
2706 if (ret < 0)
6f519564 2707 goto out_free_path;
38c227d8
LB
2708 else if (ret > 0)
2709 break;
2710 continue;
2711 }
2712
2713 btrfs_item_key_to_cpu(l, &key, slot);
2714
4a0cc7ca 2715 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2716 break;
2717 if (key.type != BTRFS_EXTENT_DATA_KEY)
2718 break;
2719 if (key.offset >= new->file_pos + new->len)
2720 break;
2721
2722 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2723
2724 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2725 if (key.offset + num_bytes < new->file_pos)
2726 goto next;
2727
2728 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2729 if (!disk_bytenr)
2730 goto next;
2731
2732 extent_offset = btrfs_file_extent_offset(l, extent);
2733
2734 old = kmalloc(sizeof(*old), GFP_NOFS);
2735 if (!old)
6f519564 2736 goto out_free_path;
38c227d8
LB
2737
2738 offset = max(new->file_pos, key.offset);
2739 end = min(new->file_pos + new->len, key.offset + num_bytes);
2740
2741 old->bytenr = disk_bytenr;
2742 old->extent_offset = extent_offset;
2743 old->offset = offset - key.offset;
2744 old->len = end - offset;
2745 old->new = new;
2746 old->count = 0;
2747 list_add_tail(&old->list, &new->head);
2748next:
2749 path->slots[0]++;
2750 cond_resched();
2751 }
2752
2753 btrfs_free_path(path);
0b246afa 2754 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2755
2756 return new;
2757
38c227d8
LB
2758out_free_path:
2759 btrfs_free_path(path);
2760out_kfree:
6f519564 2761 free_sa_defrag_extent(new);
38c227d8
LB
2762 return NULL;
2763}
2764
2ff7e61e 2765static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2766 u64 start, u64 len)
2767{
2768 struct btrfs_block_group_cache *cache;
2769
0b246afa 2770 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2771 ASSERT(cache);
2772
2773 spin_lock(&cache->lock);
2774 cache->delalloc_bytes -= len;
2775 spin_unlock(&cache->lock);
2776
2777 btrfs_put_block_group(cache);
2778}
2779
d352ac68
CM
2780/* as ordered data IO finishes, this gets called so we can finish
2781 * an ordered extent if the range of bytes in the file it covers are
2782 * fully written.
2783 */
5fd02043 2784static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2785{
5fd02043 2786 struct inode *inode = ordered_extent->inode;
0b246afa 2787 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2788 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2789 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2790 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2791 struct extent_state *cached_state = NULL;
38c227d8 2792 struct new_sa_defrag_extent *new = NULL;
261507a0 2793 int compress_type = 0;
77cef2ec
JB
2794 int ret = 0;
2795 u64 logical_len = ordered_extent->len;
82d5902d 2796 bool nolock;
77cef2ec 2797 bool truncated = false;
e6dcd2dc 2798
70ddc553 2799 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2800
5fd02043
JB
2801 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2802 ret = -EIO;
2803 goto out;
2804 }
2805
f612496b
MX
2806 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2807 ordered_extent->file_offset +
2808 ordered_extent->len - 1);
2809
77cef2ec
JB
2810 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2811 truncated = true;
2812 logical_len = ordered_extent->truncated_len;
2813 /* Truncated the entire extent, don't bother adding */
2814 if (!logical_len)
2815 goto out;
2816 }
2817
c2167754 2818 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2819 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2820
2821 /*
2822 * For mwrite(mmap + memset to write) case, we still reserve
2823 * space for NOCOW range.
2824 * As NOCOW won't cause a new delayed ref, just free the space
2825 */
2826 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2827 ordered_extent->len);
6c760c07
JB
2828 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2829 if (nolock)
2830 trans = btrfs_join_transaction_nolock(root);
2831 else
2832 trans = btrfs_join_transaction(root);
2833 if (IS_ERR(trans)) {
2834 ret = PTR_ERR(trans);
2835 trans = NULL;
2836 goto out;
c2167754 2837 }
0b246afa 2838 trans->block_rsv = &fs_info->delalloc_block_rsv;
6c760c07
JB
2839 ret = btrfs_update_inode_fallback(trans, root, inode);
2840 if (ret) /* -ENOMEM or corruption */
66642832 2841 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2842 goto out;
2843 }
e6dcd2dc 2844
2ac55d41
JB
2845 lock_extent_bits(io_tree, ordered_extent->file_offset,
2846 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2847 &cached_state);
e6dcd2dc 2848
38c227d8
LB
2849 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2850 ordered_extent->file_offset + ordered_extent->len - 1,
2851 EXTENT_DEFRAG, 1, cached_state);
2852 if (ret) {
2853 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2854 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2855 /* the inode is shared */
2856 new = record_old_file_extents(inode, ordered_extent);
2857
2858 clear_extent_bit(io_tree, ordered_extent->file_offset,
2859 ordered_extent->file_offset + ordered_extent->len - 1,
2860 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2861 }
2862
0cb59c99 2863 if (nolock)
7a7eaa40 2864 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2865 else
7a7eaa40 2866 trans = btrfs_join_transaction(root);
79787eaa
JM
2867 if (IS_ERR(trans)) {
2868 ret = PTR_ERR(trans);
2869 trans = NULL;
2870 goto out_unlock;
2871 }
a79b7d4b 2872
0b246afa 2873 trans->block_rsv = &fs_info->delalloc_block_rsv;
c2167754 2874
c8b97818 2875 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2876 compress_type = ordered_extent->compress_type;
d899e052 2877 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2878 BUG_ON(compress_type);
7a6d7067 2879 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
2880 ordered_extent->file_offset,
2881 ordered_extent->file_offset +
77cef2ec 2882 logical_len);
d899e052 2883 } else {
0b246afa 2884 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
2885 ret = insert_reserved_file_extent(trans, inode,
2886 ordered_extent->file_offset,
2887 ordered_extent->start,
2888 ordered_extent->disk_len,
77cef2ec 2889 logical_len, logical_len,
261507a0 2890 compress_type, 0, 0,
d899e052 2891 BTRFS_FILE_EXTENT_REG);
e570fd27 2892 if (!ret)
2ff7e61e 2893 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
2894 ordered_extent->start,
2895 ordered_extent->disk_len);
d899e052 2896 }
5dc562c5
JB
2897 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2898 ordered_extent->file_offset, ordered_extent->len,
2899 trans->transid);
79787eaa 2900 if (ret < 0) {
66642832 2901 btrfs_abort_transaction(trans, ret);
5fd02043 2902 goto out_unlock;
79787eaa 2903 }
2ac55d41 2904
df9f628e 2905 add_pending_csums(trans, inode, &ordered_extent->list);
e6dcd2dc 2906
6c760c07
JB
2907 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2908 ret = btrfs_update_inode_fallback(trans, root, inode);
2909 if (ret) { /* -ENOMEM or corruption */
66642832 2910 btrfs_abort_transaction(trans, ret);
6c760c07 2911 goto out_unlock;
1ef30be1
JB
2912 }
2913 ret = 0;
5fd02043
JB
2914out_unlock:
2915 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2916 ordered_extent->file_offset +
2917 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2918out:
0b246afa 2919 if (root != fs_info->tree_root)
691fa059
NB
2920 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2921 ordered_extent->len);
a698d075 2922 if (trans)
3a45bb20 2923 btrfs_end_transaction(trans);
0cb59c99 2924
77cef2ec
JB
2925 if (ret || truncated) {
2926 u64 start, end;
2927
2928 if (truncated)
2929 start = ordered_extent->file_offset + logical_len;
2930 else
2931 start = ordered_extent->file_offset;
2932 end = ordered_extent->file_offset + ordered_extent->len - 1;
2933 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2934
2935 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 2936 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 2937
0bec9ef5
JB
2938 /*
2939 * If the ordered extent had an IOERR or something else went
2940 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2941 * back to the allocator. We only free the extent in the
2942 * truncated case if we didn't write out the extent at all.
0bec9ef5 2943 */
77cef2ec
JB
2944 if ((ret || !logical_len) &&
2945 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 2946 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
2947 btrfs_free_reserved_extent(fs_info,
2948 ordered_extent->start,
e570fd27 2949 ordered_extent->disk_len, 1);
0bec9ef5
JB
2950 }
2951
2952
5fd02043 2953 /*
8bad3c02
LB
2954 * This needs to be done to make sure anybody waiting knows we are done
2955 * updating everything for this ordered extent.
5fd02043
JB
2956 */
2957 btrfs_remove_ordered_extent(inode, ordered_extent);
2958
38c227d8 2959 /* for snapshot-aware defrag */
6f519564
LB
2960 if (new) {
2961 if (ret) {
2962 free_sa_defrag_extent(new);
0b246afa 2963 atomic_dec(&fs_info->defrag_running);
6f519564
LB
2964 } else {
2965 relink_file_extents(new);
2966 }
2967 }
38c227d8 2968
e6dcd2dc
CM
2969 /* once for us */
2970 btrfs_put_ordered_extent(ordered_extent);
2971 /* once for the tree */
2972 btrfs_put_ordered_extent(ordered_extent);
2973
5fd02043
JB
2974 return ret;
2975}
2976
2977static void finish_ordered_fn(struct btrfs_work *work)
2978{
2979 struct btrfs_ordered_extent *ordered_extent;
2980 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2981 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2982}
2983
b2950863 2984static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2985 struct extent_state *state, int uptodate)
2986{
5fd02043 2987 struct inode *inode = page->mapping->host;
0b246afa 2988 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 2989 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
2990 struct btrfs_workqueue *wq;
2991 btrfs_work_func_t func;
5fd02043 2992
1abe9b8a 2993 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2994
8b62b72b 2995 ClearPagePrivate2(page);
5fd02043
JB
2996 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2997 end - start + 1, uptodate))
2998 return 0;
2999
70ddc553 3000 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 3001 wq = fs_info->endio_freespace_worker;
9e0af237
LB
3002 func = btrfs_freespace_write_helper;
3003 } else {
0b246afa 3004 wq = fs_info->endio_write_workers;
9e0af237
LB
3005 func = btrfs_endio_write_helper;
3006 }
5fd02043 3007
9e0af237
LB
3008 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3009 NULL);
3010 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
3011
3012 return 0;
211f90e6
CM
3013}
3014
dc380aea
MX
3015static int __readpage_endio_check(struct inode *inode,
3016 struct btrfs_io_bio *io_bio,
3017 int icsum, struct page *page,
3018 int pgoff, u64 start, size_t len)
3019{
3020 char *kaddr;
3021 u32 csum_expected;
3022 u32 csum = ~(u32)0;
dc380aea
MX
3023
3024 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3025
3026 kaddr = kmap_atomic(page);
3027 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
0b5e3daf 3028 btrfs_csum_final(csum, (u8 *)&csum);
dc380aea
MX
3029 if (csum != csum_expected)
3030 goto zeroit;
3031
3032 kunmap_atomic(kaddr);
3033 return 0;
3034zeroit:
6f6b643e
QW
3035 btrfs_print_data_csum_error(inode, start, csum, csum_expected,
3036 io_bio->mirror_num);
dc380aea
MX
3037 memset(kaddr + pgoff, 1, len);
3038 flush_dcache_page(page);
3039 kunmap_atomic(kaddr);
3040 if (csum_expected == 0)
3041 return 0;
3042 return -EIO;
3043}
3044
d352ac68
CM
3045/*
3046 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3047 * if there's a match, we allow the bio to finish. If not, the code in
3048 * extent_io.c will try to find good copies for us.
d352ac68 3049 */
facc8a22
MX
3050static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3051 u64 phy_offset, struct page *page,
3052 u64 start, u64 end, int mirror)
07157aac 3053{
4eee4fa4 3054 size_t offset = start - page_offset(page);
07157aac 3055 struct inode *inode = page->mapping->host;
d1310b2e 3056 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3057 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3058
d20f7043
CM
3059 if (PageChecked(page)) {
3060 ClearPageChecked(page);
dc380aea 3061 return 0;
d20f7043 3062 }
6cbff00f
CH
3063
3064 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3065 return 0;
17d217fe
YZ
3066
3067 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3068 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3069 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3070 return 0;
17d217fe 3071 }
d20f7043 3072
facc8a22 3073 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3074 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3075 start, (size_t)(end - start + 1));
07157aac 3076}
b888db2b 3077
24bbcf04
YZ
3078void btrfs_add_delayed_iput(struct inode *inode)
3079{
0b246afa 3080 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3081 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3082
3083 if (atomic_add_unless(&inode->i_count, -1, 1))
3084 return;
3085
24bbcf04 3086 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3087 if (binode->delayed_iput_count == 0) {
3088 ASSERT(list_empty(&binode->delayed_iput));
3089 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3090 } else {
3091 binode->delayed_iput_count++;
3092 }
24bbcf04
YZ
3093 spin_unlock(&fs_info->delayed_iput_lock);
3094}
3095
2ff7e61e 3096void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3097{
24bbcf04 3098
24bbcf04 3099 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3100 while (!list_empty(&fs_info->delayed_iputs)) {
3101 struct btrfs_inode *inode;
3102
3103 inode = list_first_entry(&fs_info->delayed_iputs,
3104 struct btrfs_inode, delayed_iput);
3105 if (inode->delayed_iput_count) {
3106 inode->delayed_iput_count--;
3107 list_move_tail(&inode->delayed_iput,
3108 &fs_info->delayed_iputs);
3109 } else {
3110 list_del_init(&inode->delayed_iput);
3111 }
3112 spin_unlock(&fs_info->delayed_iput_lock);
3113 iput(&inode->vfs_inode);
3114 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3115 }
8089fe62 3116 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3117}
3118
d68fc57b 3119/*
42b2aa86 3120 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3121 * files in the subvolume, it removes orphan item and frees block_rsv
3122 * structure.
3123 */
3124void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3125 struct btrfs_root *root)
3126{
0b246afa 3127 struct btrfs_fs_info *fs_info = root->fs_info;
90290e19 3128 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3129 int ret;
3130
8a35d95f 3131 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3132 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3133 return;
3134
90290e19 3135 spin_lock(&root->orphan_lock);
8a35d95f 3136 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3137 spin_unlock(&root->orphan_lock);
3138 return;
3139 }
3140
3141 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3142 spin_unlock(&root->orphan_lock);
3143 return;
3144 }
3145
3146 block_rsv = root->orphan_block_rsv;
3147 root->orphan_block_rsv = NULL;
3148 spin_unlock(&root->orphan_lock);
3149
27cdeb70 3150 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b 3151 btrfs_root_refs(&root->root_item) > 0) {
0b246afa 3152 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
d68fc57b 3153 root->root_key.objectid);
4ef31a45 3154 if (ret)
66642832 3155 btrfs_abort_transaction(trans, ret);
4ef31a45 3156 else
27cdeb70
MX
3157 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3158 &root->state);
d68fc57b
YZ
3159 }
3160
90290e19
JB
3161 if (block_rsv) {
3162 WARN_ON(block_rsv->size > 0);
2ff7e61e 3163 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b
YZ
3164 }
3165}
3166
7b128766
JB
3167/*
3168 * This creates an orphan entry for the given inode in case something goes
3169 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3170 *
3171 * NOTE: caller of this function should reserve 5 units of metadata for
3172 * this function.
7b128766
JB
3173 */
3174int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3175{
0b246afa 3176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7b128766 3177 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3178 struct btrfs_block_rsv *block_rsv = NULL;
3179 int reserve = 0;
3180 int insert = 0;
3181 int ret;
7b128766 3182
d68fc57b 3183 if (!root->orphan_block_rsv) {
2ff7e61e
JM
3184 block_rsv = btrfs_alloc_block_rsv(fs_info,
3185 BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3186 if (!block_rsv)
3187 return -ENOMEM;
d68fc57b 3188 }
7b128766 3189
d68fc57b
YZ
3190 spin_lock(&root->orphan_lock);
3191 if (!root->orphan_block_rsv) {
3192 root->orphan_block_rsv = block_rsv;
3193 } else if (block_rsv) {
2ff7e61e 3194 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b 3195 block_rsv = NULL;
7b128766 3196 }
7b128766 3197
8a35d95f
JB
3198 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3199 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3200#if 0
3201 /*
3202 * For proper ENOSPC handling, we should do orphan
3203 * cleanup when mounting. But this introduces backward
3204 * compatibility issue.
3205 */
3206 if (!xchg(&root->orphan_item_inserted, 1))
3207 insert = 2;
3208 else
3209 insert = 1;
3210#endif
3211 insert = 1;
321f0e70 3212 atomic_inc(&root->orphan_inodes);
7b128766
JB
3213 }
3214
72ac3c0d
JB
3215 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3216 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3217 reserve = 1;
d68fc57b 3218 spin_unlock(&root->orphan_lock);
7b128766 3219
d68fc57b
YZ
3220 /* grab metadata reservation from transaction handle */
3221 if (reserve) {
8ed7a2a0 3222 ret = btrfs_orphan_reserve_metadata(trans, BTRFS_I(inode));
3b6571c1
JB
3223 ASSERT(!ret);
3224 if (ret) {
3225 atomic_dec(&root->orphan_inodes);
3226 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3227 &BTRFS_I(inode)->runtime_flags);
3228 if (insert)
3229 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3230 &BTRFS_I(inode)->runtime_flags);
3231 return ret;
3232 }
d68fc57b 3233 }
7b128766 3234
d68fc57b
YZ
3235 /* insert an orphan item to track this unlinked/truncated file */
3236 if (insert >= 1) {
f85b7379
DS
3237 ret = btrfs_insert_orphan_item(trans, root,
3238 btrfs_ino(BTRFS_I(inode)));
4ef31a45 3239 if (ret) {
703c88e0 3240 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3241 if (reserve) {
3242 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3243 &BTRFS_I(inode)->runtime_flags);
703b391a 3244 btrfs_orphan_release_metadata(BTRFS_I(inode));
4ef31a45
JB
3245 }
3246 if (ret != -EEXIST) {
e8e7cff6
JB
3247 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3248 &BTRFS_I(inode)->runtime_flags);
66642832 3249 btrfs_abort_transaction(trans, ret);
4ef31a45
JB
3250 return ret;
3251 }
79787eaa
JM
3252 }
3253 ret = 0;
d68fc57b
YZ
3254 }
3255
3256 /* insert an orphan item to track subvolume contains orphan files */
3257 if (insert >= 2) {
0b246afa 3258 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
d68fc57b 3259 root->root_key.objectid);
79787eaa 3260 if (ret && ret != -EEXIST) {
66642832 3261 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3262 return ret;
3263 }
d68fc57b
YZ
3264 }
3265 return 0;
7b128766
JB
3266}
3267
3268/*
3269 * We have done the truncate/delete so we can go ahead and remove the orphan
3270 * item for this particular inode.
3271 */
48a3b636
ES
3272static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3273 struct inode *inode)
7b128766
JB
3274{
3275 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3276 int delete_item = 0;
3277 int release_rsv = 0;
7b128766
JB
3278 int ret = 0;
3279
d68fc57b 3280 spin_lock(&root->orphan_lock);
8a35d95f
JB
3281 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3282 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3283 delete_item = 1;
7b128766 3284
72ac3c0d
JB
3285 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3286 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3287 release_rsv = 1;
d68fc57b 3288 spin_unlock(&root->orphan_lock);
7b128766 3289
703c88e0 3290 if (delete_item) {
8a35d95f 3291 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3292 if (trans)
3293 ret = btrfs_del_orphan_item(trans, root,
4a0cc7ca 3294 btrfs_ino(BTRFS_I(inode)));
8a35d95f 3295 }
7b128766 3296
703c88e0 3297 if (release_rsv)
703b391a 3298 btrfs_orphan_release_metadata(BTRFS_I(inode));
703c88e0 3299
4ef31a45 3300 return ret;
7b128766
JB
3301}
3302
3303/*
3304 * this cleans up any orphans that may be left on the list from the last use
3305 * of this root.
3306 */
66b4ffd1 3307int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3308{
0b246afa 3309 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3310 struct btrfs_path *path;
3311 struct extent_buffer *leaf;
7b128766
JB
3312 struct btrfs_key key, found_key;
3313 struct btrfs_trans_handle *trans;
3314 struct inode *inode;
8f6d7f4f 3315 u64 last_objectid = 0;
7b128766
JB
3316 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3317
d68fc57b 3318 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3319 return 0;
c71bf099
YZ
3320
3321 path = btrfs_alloc_path();
66b4ffd1
JB
3322 if (!path) {
3323 ret = -ENOMEM;
3324 goto out;
3325 }
e4058b54 3326 path->reada = READA_BACK;
7b128766
JB
3327
3328 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3329 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3330 key.offset = (u64)-1;
3331
7b128766
JB
3332 while (1) {
3333 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3334 if (ret < 0)
3335 goto out;
7b128766
JB
3336
3337 /*
3338 * if ret == 0 means we found what we were searching for, which
25985edc 3339 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3340 * find the key and see if we have stuff that matches
3341 */
3342 if (ret > 0) {
66b4ffd1 3343 ret = 0;
7b128766
JB
3344 if (path->slots[0] == 0)
3345 break;
3346 path->slots[0]--;
3347 }
3348
3349 /* pull out the item */
3350 leaf = path->nodes[0];
7b128766
JB
3351 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3352
3353 /* make sure the item matches what we want */
3354 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3355 break;
962a298f 3356 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3357 break;
3358
3359 /* release the path since we're done with it */
b3b4aa74 3360 btrfs_release_path(path);
7b128766
JB
3361
3362 /*
3363 * this is where we are basically btrfs_lookup, without the
3364 * crossing root thing. we store the inode number in the
3365 * offset of the orphan item.
3366 */
8f6d7f4f
JB
3367
3368 if (found_key.offset == last_objectid) {
0b246afa
JM
3369 btrfs_err(fs_info,
3370 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3371 ret = -EINVAL;
3372 goto out;
3373 }
3374
3375 last_objectid = found_key.offset;
3376
5d4f98a2
YZ
3377 found_key.objectid = found_key.offset;
3378 found_key.type = BTRFS_INODE_ITEM_KEY;
3379 found_key.offset = 0;
0b246afa 3380 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3381 ret = PTR_ERR_OR_ZERO(inode);
67710892 3382 if (ret && ret != -ENOENT)
66b4ffd1 3383 goto out;
7b128766 3384
0b246afa 3385 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3386 struct btrfs_root *dead_root;
3387 struct btrfs_fs_info *fs_info = root->fs_info;
3388 int is_dead_root = 0;
3389
3390 /*
3391 * this is an orphan in the tree root. Currently these
3392 * could come from 2 sources:
3393 * a) a snapshot deletion in progress
3394 * b) a free space cache inode
3395 * We need to distinguish those two, as the snapshot
3396 * orphan must not get deleted.
3397 * find_dead_roots already ran before us, so if this
3398 * is a snapshot deletion, we should find the root
3399 * in the dead_roots list
3400 */
3401 spin_lock(&fs_info->trans_lock);
3402 list_for_each_entry(dead_root, &fs_info->dead_roots,
3403 root_list) {
3404 if (dead_root->root_key.objectid ==
3405 found_key.objectid) {
3406 is_dead_root = 1;
3407 break;
3408 }
3409 }
3410 spin_unlock(&fs_info->trans_lock);
3411 if (is_dead_root) {
3412 /* prevent this orphan from being found again */
3413 key.offset = found_key.objectid - 1;
3414 continue;
3415 }
3416 }
7b128766 3417 /*
a8c9e576
JB
3418 * Inode is already gone but the orphan item is still there,
3419 * kill the orphan item.
7b128766 3420 */
67710892 3421 if (ret == -ENOENT) {
a8c9e576 3422 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3423 if (IS_ERR(trans)) {
3424 ret = PTR_ERR(trans);
3425 goto out;
3426 }
0b246afa
JM
3427 btrfs_debug(fs_info, "auto deleting %Lu",
3428 found_key.objectid);
a8c9e576
JB
3429 ret = btrfs_del_orphan_item(trans, root,
3430 found_key.objectid);
3a45bb20 3431 btrfs_end_transaction(trans);
4ef31a45
JB
3432 if (ret)
3433 goto out;
7b128766
JB
3434 continue;
3435 }
3436
a8c9e576
JB
3437 /*
3438 * add this inode to the orphan list so btrfs_orphan_del does
3439 * the proper thing when we hit it
3440 */
8a35d95f
JB
3441 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3442 &BTRFS_I(inode)->runtime_flags);
925396ec 3443 atomic_inc(&root->orphan_inodes);
a8c9e576 3444
7b128766
JB
3445 /* if we have links, this was a truncate, lets do that */
3446 if (inode->i_nlink) {
fae7f21c 3447 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3448 iput(inode);
3449 continue;
3450 }
7b128766 3451 nr_truncate++;
f3fe820c
JB
3452
3453 /* 1 for the orphan item deletion. */
3454 trans = btrfs_start_transaction(root, 1);
3455 if (IS_ERR(trans)) {
c69b26b0 3456 iput(inode);
f3fe820c
JB
3457 ret = PTR_ERR(trans);
3458 goto out;
3459 }
3460 ret = btrfs_orphan_add(trans, inode);
3a45bb20 3461 btrfs_end_transaction(trans);
c69b26b0
JB
3462 if (ret) {
3463 iput(inode);
f3fe820c 3464 goto out;
c69b26b0 3465 }
f3fe820c 3466
66b4ffd1 3467 ret = btrfs_truncate(inode);
4a7d0f68
JB
3468 if (ret)
3469 btrfs_orphan_del(NULL, inode);
7b128766
JB
3470 } else {
3471 nr_unlink++;
3472 }
3473
3474 /* this will do delete_inode and everything for us */
3475 iput(inode);
66b4ffd1
JB
3476 if (ret)
3477 goto out;
7b128766 3478 }
3254c876
MX
3479 /* release the path since we're done with it */
3480 btrfs_release_path(path);
3481
d68fc57b
YZ
3482 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3483
3484 if (root->orphan_block_rsv)
2ff7e61e 3485 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
d68fc57b
YZ
3486 (u64)-1);
3487
27cdeb70
MX
3488 if (root->orphan_block_rsv ||
3489 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3490 trans = btrfs_join_transaction(root);
66b4ffd1 3491 if (!IS_ERR(trans))
3a45bb20 3492 btrfs_end_transaction(trans);
d68fc57b 3493 }
7b128766
JB
3494
3495 if (nr_unlink)
0b246afa 3496 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3497 if (nr_truncate)
0b246afa 3498 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3499
3500out:
3501 if (ret)
0b246afa 3502 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3503 btrfs_free_path(path);
3504 return ret;
7b128766
JB
3505}
3506
46a53cca
CM
3507/*
3508 * very simple check to peek ahead in the leaf looking for xattrs. If we
3509 * don't find any xattrs, we know there can't be any acls.
3510 *
3511 * slot is the slot the inode is in, objectid is the objectid of the inode
3512 */
3513static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3514 int slot, u64 objectid,
3515 int *first_xattr_slot)
46a53cca
CM
3516{
3517 u32 nritems = btrfs_header_nritems(leaf);
3518 struct btrfs_key found_key;
f23b5a59
JB
3519 static u64 xattr_access = 0;
3520 static u64 xattr_default = 0;
46a53cca
CM
3521 int scanned = 0;
3522
f23b5a59 3523 if (!xattr_access) {
97d79299
AG
3524 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3525 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3526 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3527 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3528 }
3529
46a53cca 3530 slot++;
63541927 3531 *first_xattr_slot = -1;
46a53cca
CM
3532 while (slot < nritems) {
3533 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3534
3535 /* we found a different objectid, there must not be acls */
3536 if (found_key.objectid != objectid)
3537 return 0;
3538
3539 /* we found an xattr, assume we've got an acl */
f23b5a59 3540 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3541 if (*first_xattr_slot == -1)
3542 *first_xattr_slot = slot;
f23b5a59
JB
3543 if (found_key.offset == xattr_access ||
3544 found_key.offset == xattr_default)
3545 return 1;
3546 }
46a53cca
CM
3547
3548 /*
3549 * we found a key greater than an xattr key, there can't
3550 * be any acls later on
3551 */
3552 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3553 return 0;
3554
3555 slot++;
3556 scanned++;
3557
3558 /*
3559 * it goes inode, inode backrefs, xattrs, extents,
3560 * so if there are a ton of hard links to an inode there can
3561 * be a lot of backrefs. Don't waste time searching too hard,
3562 * this is just an optimization
3563 */
3564 if (scanned >= 8)
3565 break;
3566 }
3567 /* we hit the end of the leaf before we found an xattr or
3568 * something larger than an xattr. We have to assume the inode
3569 * has acls
3570 */
63541927
FDBM
3571 if (*first_xattr_slot == -1)
3572 *first_xattr_slot = slot;
46a53cca
CM
3573 return 1;
3574}
3575
d352ac68
CM
3576/*
3577 * read an inode from the btree into the in-memory inode
3578 */
67710892 3579static int btrfs_read_locked_inode(struct inode *inode)
39279cc3 3580{
0b246afa 3581 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 3582 struct btrfs_path *path;
5f39d397 3583 struct extent_buffer *leaf;
39279cc3
CM
3584 struct btrfs_inode_item *inode_item;
3585 struct btrfs_root *root = BTRFS_I(inode)->root;
3586 struct btrfs_key location;
67de1176 3587 unsigned long ptr;
46a53cca 3588 int maybe_acls;
618e21d5 3589 u32 rdev;
39279cc3 3590 int ret;
2f7e33d4 3591 bool filled = false;
63541927 3592 int first_xattr_slot;
2f7e33d4
MX
3593
3594 ret = btrfs_fill_inode(inode, &rdev);
3595 if (!ret)
3596 filled = true;
39279cc3
CM
3597
3598 path = btrfs_alloc_path();
67710892
FM
3599 if (!path) {
3600 ret = -ENOMEM;
1748f843 3601 goto make_bad;
67710892 3602 }
1748f843 3603
39279cc3 3604 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3605
39279cc3 3606 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3607 if (ret) {
3608 if (ret > 0)
3609 ret = -ENOENT;
39279cc3 3610 goto make_bad;
67710892 3611 }
39279cc3 3612
5f39d397 3613 leaf = path->nodes[0];
2f7e33d4
MX
3614
3615 if (filled)
67de1176 3616 goto cache_index;
2f7e33d4 3617
5f39d397
CM
3618 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3619 struct btrfs_inode_item);
5f39d397 3620 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3621 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3622 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3623 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3624 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3625
a937b979
DS
3626 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3627 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3628
a937b979
DS
3629 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3630 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3631
a937b979
DS
3632 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3633 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3634
9cc97d64 3635 BTRFS_I(inode)->i_otime.tv_sec =
3636 btrfs_timespec_sec(leaf, &inode_item->otime);
3637 BTRFS_I(inode)->i_otime.tv_nsec =
3638 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3639
a76a3cd4 3640 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3641 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3642 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3643
6e17d30b
YD
3644 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3645 inode->i_generation = BTRFS_I(inode)->generation;
3646 inode->i_rdev = 0;
3647 rdev = btrfs_inode_rdev(leaf, inode_item);
3648
3649 BTRFS_I(inode)->index_cnt = (u64)-1;
3650 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3651
3652cache_index:
5dc562c5
JB
3653 /*
3654 * If we were modified in the current generation and evicted from memory
3655 * and then re-read we need to do a full sync since we don't have any
3656 * idea about which extents were modified before we were evicted from
3657 * cache.
6e17d30b
YD
3658 *
3659 * This is required for both inode re-read from disk and delayed inode
3660 * in delayed_nodes_tree.
5dc562c5 3661 */
0b246afa 3662 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3663 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3664 &BTRFS_I(inode)->runtime_flags);
3665
bde6c242
FM
3666 /*
3667 * We don't persist the id of the transaction where an unlink operation
3668 * against the inode was last made. So here we assume the inode might
3669 * have been evicted, and therefore the exact value of last_unlink_trans
3670 * lost, and set it to last_trans to avoid metadata inconsistencies
3671 * between the inode and its parent if the inode is fsync'ed and the log
3672 * replayed. For example, in the scenario:
3673 *
3674 * touch mydir/foo
3675 * ln mydir/foo mydir/bar
3676 * sync
3677 * unlink mydir/bar
3678 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3679 * xfs_io -c fsync mydir/foo
3680 * <power failure>
3681 * mount fs, triggers fsync log replay
3682 *
3683 * We must make sure that when we fsync our inode foo we also log its
3684 * parent inode, otherwise after log replay the parent still has the
3685 * dentry with the "bar" name but our inode foo has a link count of 1
3686 * and doesn't have an inode ref with the name "bar" anymore.
3687 *
3688 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3689 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3690 * transaction commits on fsync if our inode is a directory, or if our
3691 * inode is not a directory, logging its parent unnecessarily.
3692 */
3693 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3694
67de1176
MX
3695 path->slots[0]++;
3696 if (inode->i_nlink != 1 ||
3697 path->slots[0] >= btrfs_header_nritems(leaf))
3698 goto cache_acl;
3699
3700 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3701 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3702 goto cache_acl;
3703
3704 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3705 if (location.type == BTRFS_INODE_REF_KEY) {
3706 struct btrfs_inode_ref *ref;
3707
3708 ref = (struct btrfs_inode_ref *)ptr;
3709 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3710 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3711 struct btrfs_inode_extref *extref;
3712
3713 extref = (struct btrfs_inode_extref *)ptr;
3714 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3715 extref);
3716 }
2f7e33d4 3717cache_acl:
46a53cca
CM
3718 /*
3719 * try to precache a NULL acl entry for files that don't have
3720 * any xattrs or acls
3721 */
33345d01 3722 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3723 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3724 if (first_xattr_slot != -1) {
3725 path->slots[0] = first_xattr_slot;
3726 ret = btrfs_load_inode_props(inode, path);
3727 if (ret)
0b246afa 3728 btrfs_err(fs_info,
351fd353 3729 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3730 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3731 root->root_key.objectid, ret);
3732 }
3733 btrfs_free_path(path);
3734
72c04902
AV
3735 if (!maybe_acls)
3736 cache_no_acl(inode);
46a53cca 3737
39279cc3 3738 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3739 case S_IFREG:
3740 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3741 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3742 inode->i_fop = &btrfs_file_operations;
3743 inode->i_op = &btrfs_file_inode_operations;
3744 break;
3745 case S_IFDIR:
3746 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3747 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3748 break;
3749 case S_IFLNK:
3750 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3751 inode_nohighmem(inode);
39279cc3
CM
3752 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3753 break;
618e21d5 3754 default:
0279b4cd 3755 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3756 init_special_inode(inode, inode->i_mode, rdev);
3757 break;
39279cc3 3758 }
6cbff00f
CH
3759
3760 btrfs_update_iflags(inode);
67710892 3761 return 0;
39279cc3
CM
3762
3763make_bad:
39279cc3 3764 btrfs_free_path(path);
39279cc3 3765 make_bad_inode(inode);
67710892 3766 return ret;
39279cc3
CM
3767}
3768
d352ac68
CM
3769/*
3770 * given a leaf and an inode, copy the inode fields into the leaf
3771 */
e02119d5
CM
3772static void fill_inode_item(struct btrfs_trans_handle *trans,
3773 struct extent_buffer *leaf,
5f39d397 3774 struct btrfs_inode_item *item,
39279cc3
CM
3775 struct inode *inode)
3776{
51fab693
LB
3777 struct btrfs_map_token token;
3778
3779 btrfs_init_map_token(&token);
5f39d397 3780
51fab693
LB
3781 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3782 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3783 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3784 &token);
3785 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3786 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3787
a937b979 3788 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3789 inode->i_atime.tv_sec, &token);
a937b979 3790 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3791 inode->i_atime.tv_nsec, &token);
5f39d397 3792
a937b979 3793 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3794 inode->i_mtime.tv_sec, &token);
a937b979 3795 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3796 inode->i_mtime.tv_nsec, &token);
5f39d397 3797
a937b979 3798 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3799 inode->i_ctime.tv_sec, &token);
a937b979 3800 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3801 inode->i_ctime.tv_nsec, &token);
5f39d397 3802
9cc97d64 3803 btrfs_set_token_timespec_sec(leaf, &item->otime,
3804 BTRFS_I(inode)->i_otime.tv_sec, &token);
3805 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3806 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3807
51fab693
LB
3808 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3809 &token);
3810 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3811 &token);
3812 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3813 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3814 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3815 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3816 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3817}
3818
d352ac68
CM
3819/*
3820 * copy everything in the in-memory inode into the btree.
3821 */
2115133f 3822static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3823 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3824{
3825 struct btrfs_inode_item *inode_item;
3826 struct btrfs_path *path;
5f39d397 3827 struct extent_buffer *leaf;
39279cc3
CM
3828 int ret;
3829
3830 path = btrfs_alloc_path();
16cdcec7
MX
3831 if (!path)
3832 return -ENOMEM;
3833
b9473439 3834 path->leave_spinning = 1;
16cdcec7
MX
3835 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3836 1);
39279cc3
CM
3837 if (ret) {
3838 if (ret > 0)
3839 ret = -ENOENT;
3840 goto failed;
3841 }
3842
5f39d397
CM
3843 leaf = path->nodes[0];
3844 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3845 struct btrfs_inode_item);
39279cc3 3846
e02119d5 3847 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3848 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3849 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3850 ret = 0;
3851failed:
39279cc3
CM
3852 btrfs_free_path(path);
3853 return ret;
3854}
3855
2115133f
CM
3856/*
3857 * copy everything in the in-memory inode into the btree.
3858 */
3859noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3860 struct btrfs_root *root, struct inode *inode)
3861{
0b246afa 3862 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3863 int ret;
3864
3865 /*
3866 * If the inode is a free space inode, we can deadlock during commit
3867 * if we put it into the delayed code.
3868 *
3869 * The data relocation inode should also be directly updated
3870 * without delay
3871 */
70ddc553 3872 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 3873 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 3874 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
3875 btrfs_update_root_times(trans, root);
3876
2115133f
CM
3877 ret = btrfs_delayed_update_inode(trans, root, inode);
3878 if (!ret)
3879 btrfs_set_inode_last_trans(trans, inode);
3880 return ret;
3881 }
3882
3883 return btrfs_update_inode_item(trans, root, inode);
3884}
3885
be6aef60
JB
3886noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3887 struct btrfs_root *root,
3888 struct inode *inode)
2115133f
CM
3889{
3890 int ret;
3891
3892 ret = btrfs_update_inode(trans, root, inode);
3893 if (ret == -ENOSPC)
3894 return btrfs_update_inode_item(trans, root, inode);
3895 return ret;
3896}
3897
d352ac68
CM
3898/*
3899 * unlink helper that gets used here in inode.c and in the tree logging
3900 * recovery code. It remove a link in a directory with a given name, and
3901 * also drops the back refs in the inode to the directory
3902 */
92986796
AV
3903static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3904 struct btrfs_root *root,
4ec5934e
NB
3905 struct btrfs_inode *dir,
3906 struct btrfs_inode *inode,
92986796 3907 const char *name, int name_len)
39279cc3 3908{
0b246afa 3909 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 3910 struct btrfs_path *path;
39279cc3 3911 int ret = 0;
5f39d397 3912 struct extent_buffer *leaf;
39279cc3 3913 struct btrfs_dir_item *di;
5f39d397 3914 struct btrfs_key key;
aec7477b 3915 u64 index;
4ec5934e
NB
3916 u64 ino = btrfs_ino(inode);
3917 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3918
3919 path = btrfs_alloc_path();
54aa1f4d
CM
3920 if (!path) {
3921 ret = -ENOMEM;
554233a6 3922 goto out;
54aa1f4d
CM
3923 }
3924
b9473439 3925 path->leave_spinning = 1;
33345d01 3926 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3927 name, name_len, -1);
3928 if (IS_ERR(di)) {
3929 ret = PTR_ERR(di);
3930 goto err;
3931 }
3932 if (!di) {
3933 ret = -ENOENT;
3934 goto err;
3935 }
5f39d397
CM
3936 leaf = path->nodes[0];
3937 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3938 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3939 if (ret)
3940 goto err;
b3b4aa74 3941 btrfs_release_path(path);
39279cc3 3942
67de1176
MX
3943 /*
3944 * If we don't have dir index, we have to get it by looking up
3945 * the inode ref, since we get the inode ref, remove it directly,
3946 * it is unnecessary to do delayed deletion.
3947 *
3948 * But if we have dir index, needn't search inode ref to get it.
3949 * Since the inode ref is close to the inode item, it is better
3950 * that we delay to delete it, and just do this deletion when
3951 * we update the inode item.
3952 */
4ec5934e
NB
3953 if (inode->dir_index) {
3954 ret = btrfs_delayed_delete_inode_ref(inode);
67de1176 3955 if (!ret) {
4ec5934e 3956 index = inode->dir_index;
67de1176
MX
3957 goto skip_backref;
3958 }
3959 }
3960
33345d01
LZ
3961 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3962 dir_ino, &index);
aec7477b 3963 if (ret) {
0b246afa 3964 btrfs_info(fs_info,
c2cf52eb 3965 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3966 name_len, name, ino, dir_ino);
66642832 3967 btrfs_abort_transaction(trans, ret);
aec7477b
JB
3968 goto err;
3969 }
67de1176 3970skip_backref:
4ec5934e 3971 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
79787eaa 3972 if (ret) {
66642832 3973 btrfs_abort_transaction(trans, ret);
39279cc3 3974 goto err;
79787eaa 3975 }
39279cc3 3976
4ec5934e
NB
3977 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3978 dir_ino);
79787eaa 3979 if (ret != 0 && ret != -ENOENT) {
66642832 3980 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3981 goto err;
3982 }
e02119d5 3983
4ec5934e
NB
3984 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3985 index);
6418c961
CM
3986 if (ret == -ENOENT)
3987 ret = 0;
d4e3991b 3988 else if (ret)
66642832 3989 btrfs_abort_transaction(trans, ret);
39279cc3
CM
3990err:
3991 btrfs_free_path(path);
e02119d5
CM
3992 if (ret)
3993 goto out;
3994
6ef06d27 3995 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
3996 inode_inc_iversion(&inode->vfs_inode);
3997 inode_inc_iversion(&dir->vfs_inode);
3998 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3999 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4000 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 4001out:
39279cc3
CM
4002 return ret;
4003}
4004
92986796
AV
4005int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4006 struct btrfs_root *root,
4ec5934e 4007 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
4008 const char *name, int name_len)
4009{
4010 int ret;
4011 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4012 if (!ret) {
4ec5934e
NB
4013 drop_nlink(&inode->vfs_inode);
4014 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4015 }
4016 return ret;
4017}
39279cc3 4018
a22285a6
YZ
4019/*
4020 * helper to start transaction for unlink and rmdir.
4021 *
d52be818
JB
4022 * unlink and rmdir are special in btrfs, they do not always free space, so
4023 * if we cannot make our reservations the normal way try and see if there is
4024 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4025 * allow the unlink to occur.
a22285a6 4026 */
d52be818 4027static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4028{
a22285a6 4029 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4030
e70bea5f
JB
4031 /*
4032 * 1 for the possible orphan item
4033 * 1 for the dir item
4034 * 1 for the dir index
4035 * 1 for the inode ref
e70bea5f
JB
4036 * 1 for the inode
4037 */
8eab77ff 4038 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4039}
4040
4041static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4042{
4043 struct btrfs_root *root = BTRFS_I(dir)->root;
4044 struct btrfs_trans_handle *trans;
2b0143b5 4045 struct inode *inode = d_inode(dentry);
a22285a6 4046 int ret;
a22285a6 4047
d52be818 4048 trans = __unlink_start_trans(dir);
a22285a6
YZ
4049 if (IS_ERR(trans))
4050 return PTR_ERR(trans);
5f39d397 4051
4ec5934e
NB
4052 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4053 0);
12fcfd22 4054
4ec5934e
NB
4055 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4056 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4057 dentry->d_name.len);
b532402e
TI
4058 if (ret)
4059 goto out;
7b128766 4060
a22285a6 4061 if (inode->i_nlink == 0) {
7b128766 4062 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
4063 if (ret)
4064 goto out;
a22285a6 4065 }
7b128766 4066
b532402e 4067out:
3a45bb20 4068 btrfs_end_transaction(trans);
2ff7e61e 4069 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4070 return ret;
4071}
4072
4df27c4d
YZ
4073int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4074 struct btrfs_root *root,
4075 struct inode *dir, u64 objectid,
4076 const char *name, int name_len)
4077{
0b246afa 4078 struct btrfs_fs_info *fs_info = root->fs_info;
4df27c4d
YZ
4079 struct btrfs_path *path;
4080 struct extent_buffer *leaf;
4081 struct btrfs_dir_item *di;
4082 struct btrfs_key key;
4083 u64 index;
4084 int ret;
4a0cc7ca 4085 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4086
4087 path = btrfs_alloc_path();
4088 if (!path)
4089 return -ENOMEM;
4090
33345d01 4091 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4092 name, name_len, -1);
79787eaa
JM
4093 if (IS_ERR_OR_NULL(di)) {
4094 if (!di)
4095 ret = -ENOENT;
4096 else
4097 ret = PTR_ERR(di);
4098 goto out;
4099 }
4df27c4d
YZ
4100
4101 leaf = path->nodes[0];
4102 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4103 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4104 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4105 if (ret) {
66642832 4106 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4107 goto out;
4108 }
b3b4aa74 4109 btrfs_release_path(path);
4df27c4d 4110
0b246afa
JM
4111 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4112 root->root_key.objectid, dir_ino,
4113 &index, name, name_len);
4df27c4d 4114 if (ret < 0) {
79787eaa 4115 if (ret != -ENOENT) {
66642832 4116 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4117 goto out;
4118 }
33345d01 4119 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4120 name, name_len);
79787eaa
JM
4121 if (IS_ERR_OR_NULL(di)) {
4122 if (!di)
4123 ret = -ENOENT;
4124 else
4125 ret = PTR_ERR(di);
66642832 4126 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4127 goto out;
4128 }
4df27c4d
YZ
4129
4130 leaf = path->nodes[0];
4131 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4132 btrfs_release_path(path);
4df27c4d
YZ
4133 index = key.offset;
4134 }
945d8962 4135 btrfs_release_path(path);
4df27c4d 4136
e67bbbb9 4137 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
79787eaa 4138 if (ret) {
66642832 4139 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4140 goto out;
4141 }
4df27c4d 4142
6ef06d27 4143 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4144 inode_inc_iversion(dir);
c2050a45 4145 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4146 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4147 if (ret)
66642832 4148 btrfs_abort_transaction(trans, ret);
79787eaa 4149out:
71d7aed0 4150 btrfs_free_path(path);
79787eaa 4151 return ret;
4df27c4d
YZ
4152}
4153
39279cc3
CM
4154static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4155{
2b0143b5 4156 struct inode *inode = d_inode(dentry);
1832a6d5 4157 int err = 0;
39279cc3 4158 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4159 struct btrfs_trans_handle *trans;
44f714da 4160 u64 last_unlink_trans;
39279cc3 4161
b3ae244e 4162 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4163 return -ENOTEMPTY;
4a0cc7ca 4164 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
b3ae244e 4165 return -EPERM;
134d4512 4166
d52be818 4167 trans = __unlink_start_trans(dir);
a22285a6 4168 if (IS_ERR(trans))
5df6a9f6 4169 return PTR_ERR(trans);
5df6a9f6 4170
4a0cc7ca 4171 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4172 err = btrfs_unlink_subvol(trans, root, dir,
4173 BTRFS_I(inode)->location.objectid,
4174 dentry->d_name.name,
4175 dentry->d_name.len);
4176 goto out;
4177 }
4178
7b128766
JB
4179 err = btrfs_orphan_add(trans, inode);
4180 if (err)
4df27c4d 4181 goto out;
7b128766 4182
44f714da
FM
4183 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4184
39279cc3 4185 /* now the directory is empty */
4ec5934e
NB
4186 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4187 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4188 dentry->d_name.len);
44f714da 4189 if (!err) {
6ef06d27 4190 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4191 /*
4192 * Propagate the last_unlink_trans value of the deleted dir to
4193 * its parent directory. This is to prevent an unrecoverable
4194 * log tree in the case we do something like this:
4195 * 1) create dir foo
4196 * 2) create snapshot under dir foo
4197 * 3) delete the snapshot
4198 * 4) rmdir foo
4199 * 5) mkdir foo
4200 * 6) fsync foo or some file inside foo
4201 */
4202 if (last_unlink_trans >= trans->transid)
4203 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4204 }
4df27c4d 4205out:
3a45bb20 4206 btrfs_end_transaction(trans);
2ff7e61e 4207 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4208
39279cc3
CM
4209 return err;
4210}
4211
28f75a0e
CM
4212static int truncate_space_check(struct btrfs_trans_handle *trans,
4213 struct btrfs_root *root,
4214 u64 bytes_deleted)
4215{
0b246afa 4216 struct btrfs_fs_info *fs_info = root->fs_info;
28f75a0e
CM
4217 int ret;
4218
dc95f7bf
JB
4219 /*
4220 * This is only used to apply pressure to the enospc system, we don't
4221 * intend to use this reservation at all.
4222 */
2ff7e61e 4223 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
0b246afa
JM
4224 bytes_deleted *= fs_info->nodesize;
4225 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
28f75a0e 4226 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf 4227 if (!ret) {
0b246afa 4228 trace_btrfs_space_reservation(fs_info, "transaction",
dc95f7bf
JB
4229 trans->transid,
4230 bytes_deleted, 1);
28f75a0e 4231 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4232 }
28f75a0e
CM
4233 return ret;
4234
4235}
4236
0305cd5f
FM
4237static int truncate_inline_extent(struct inode *inode,
4238 struct btrfs_path *path,
4239 struct btrfs_key *found_key,
4240 const u64 item_end,
4241 const u64 new_size)
4242{
4243 struct extent_buffer *leaf = path->nodes[0];
4244 int slot = path->slots[0];
4245 struct btrfs_file_extent_item *fi;
4246 u32 size = (u32)(new_size - found_key->offset);
4247 struct btrfs_root *root = BTRFS_I(inode)->root;
4248
4249 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4250
4251 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4252 loff_t offset = new_size;
09cbfeaf 4253 loff_t page_end = ALIGN(offset, PAGE_SIZE);
0305cd5f
FM
4254
4255 /*
4256 * Zero out the remaining of the last page of our inline extent,
4257 * instead of directly truncating our inline extent here - that
4258 * would be much more complex (decompressing all the data, then
4259 * compressing the truncated data, which might be bigger than
4260 * the size of the inline extent, resize the extent, etc).
4261 * We release the path because to get the page we might need to
4262 * read the extent item from disk (data not in the page cache).
4263 */
4264 btrfs_release_path(path);
9703fefe
CR
4265 return btrfs_truncate_block(inode, offset, page_end - offset,
4266 0);
0305cd5f
FM
4267 }
4268
4269 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4270 size = btrfs_file_extent_calc_inline_size(size);
2ff7e61e 4271 btrfs_truncate_item(root->fs_info, path, size, 1);
0305cd5f
FM
4272
4273 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4274 inode_sub_bytes(inode, item_end + 1 - new_size);
4275
4276 return 0;
4277}
4278
39279cc3
CM
4279/*
4280 * this can truncate away extent items, csum items and directory items.
4281 * It starts at a high offset and removes keys until it can't find
d352ac68 4282 * any higher than new_size
39279cc3
CM
4283 *
4284 * csum items that cross the new i_size are truncated to the new size
4285 * as well.
7b128766
JB
4286 *
4287 * min_type is the minimum key type to truncate down to. If set to 0, this
4288 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4289 */
8082510e
YZ
4290int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4291 struct btrfs_root *root,
4292 struct inode *inode,
4293 u64 new_size, u32 min_type)
39279cc3 4294{
0b246afa 4295 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4296 struct btrfs_path *path;
5f39d397 4297 struct extent_buffer *leaf;
39279cc3 4298 struct btrfs_file_extent_item *fi;
8082510e
YZ
4299 struct btrfs_key key;
4300 struct btrfs_key found_key;
39279cc3 4301 u64 extent_start = 0;
db94535d 4302 u64 extent_num_bytes = 0;
5d4f98a2 4303 u64 extent_offset = 0;
39279cc3 4304 u64 item_end = 0;
c1aa4575 4305 u64 last_size = new_size;
8082510e 4306 u32 found_type = (u8)-1;
39279cc3
CM
4307 int found_extent;
4308 int del_item;
85e21bac
CM
4309 int pending_del_nr = 0;
4310 int pending_del_slot = 0;
179e29e4 4311 int extent_type = -1;
8082510e
YZ
4312 int ret;
4313 int err = 0;
4a0cc7ca 4314 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4315 u64 bytes_deleted = 0;
1262133b
JB
4316 bool be_nice = 0;
4317 bool should_throttle = 0;
28f75a0e 4318 bool should_end = 0;
8082510e
YZ
4319
4320 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4321
28ed1345
CM
4322 /*
4323 * for non-free space inodes and ref cows, we want to back off from
4324 * time to time
4325 */
70ddc553 4326 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345
CM
4327 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4328 be_nice = 1;
4329
0eb0e19c
MF
4330 path = btrfs_alloc_path();
4331 if (!path)
4332 return -ENOMEM;
e4058b54 4333 path->reada = READA_BACK;
0eb0e19c 4334
5dc562c5
JB
4335 /*
4336 * We want to drop from the next block forward in case this new size is
4337 * not block aligned since we will be keeping the last block of the
4338 * extent just the way it is.
4339 */
27cdeb70 4340 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4341 root == fs_info->tree_root)
dcdbc059 4342 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4343 fs_info->sectorsize),
da17066c 4344 (u64)-1, 0);
8082510e 4345
16cdcec7
MX
4346 /*
4347 * This function is also used to drop the items in the log tree before
4348 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4349 * it is used to drop the loged items. So we shouldn't kill the delayed
4350 * items.
4351 */
4352 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4353 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4354
33345d01 4355 key.objectid = ino;
39279cc3 4356 key.offset = (u64)-1;
5f39d397
CM
4357 key.type = (u8)-1;
4358
85e21bac 4359search_again:
28ed1345
CM
4360 /*
4361 * with a 16K leaf size and 128MB extents, you can actually queue
4362 * up a huge file in a single leaf. Most of the time that
4363 * bytes_deleted is > 0, it will be huge by the time we get here
4364 */
ee22184b 4365 if (be_nice && bytes_deleted > SZ_32M) {
3a45bb20 4366 if (btrfs_should_end_transaction(trans)) {
28ed1345
CM
4367 err = -EAGAIN;
4368 goto error;
4369 }
4370 }
4371
4372
b9473439 4373 path->leave_spinning = 1;
85e21bac 4374 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4375 if (ret < 0) {
4376 err = ret;
4377 goto out;
4378 }
d397712b 4379
85e21bac 4380 if (ret > 0) {
e02119d5
CM
4381 /* there are no items in the tree for us to truncate, we're
4382 * done
4383 */
8082510e
YZ
4384 if (path->slots[0] == 0)
4385 goto out;
85e21bac
CM
4386 path->slots[0]--;
4387 }
4388
d397712b 4389 while (1) {
39279cc3 4390 fi = NULL;
5f39d397
CM
4391 leaf = path->nodes[0];
4392 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4393 found_type = found_key.type;
39279cc3 4394
33345d01 4395 if (found_key.objectid != ino)
39279cc3 4396 break;
5f39d397 4397
85e21bac 4398 if (found_type < min_type)
39279cc3
CM
4399 break;
4400
5f39d397 4401 item_end = found_key.offset;
39279cc3 4402 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4403 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4404 struct btrfs_file_extent_item);
179e29e4
CM
4405 extent_type = btrfs_file_extent_type(leaf, fi);
4406 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4407 item_end +=
db94535d 4408 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4409 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4410 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4411 path->slots[0], fi);
39279cc3 4412 }
008630c1 4413 item_end--;
39279cc3 4414 }
8082510e
YZ
4415 if (found_type > min_type) {
4416 del_item = 1;
4417 } else {
91298eec
LB
4418 if (item_end < new_size) {
4419 /*
4420 * With NO_HOLES mode, for the following mapping
4421 *
4422 * [0-4k][hole][8k-12k]
4423 *
4424 * if truncating isize down to 6k, it ends up
4425 * isize being 8k.
4426 */
4427 if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
4428 last_size = new_size;
b888db2b 4429 break;
91298eec 4430 }
8082510e
YZ
4431 if (found_key.offset >= new_size)
4432 del_item = 1;
4433 else
4434 del_item = 0;
39279cc3 4435 }
39279cc3 4436 found_extent = 0;
39279cc3 4437 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4438 if (found_type != BTRFS_EXTENT_DATA_KEY)
4439 goto delete;
4440
7f4f6e0a
JB
4441 if (del_item)
4442 last_size = found_key.offset;
4443 else
4444 last_size = new_size;
4445
179e29e4 4446 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4447 u64 num_dec;
db94535d 4448 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4449 if (!del_item) {
db94535d
CM
4450 u64 orig_num_bytes =
4451 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4452 extent_num_bytes = ALIGN(new_size -
4453 found_key.offset,
0b246afa 4454 fs_info->sectorsize);
db94535d
CM
4455 btrfs_set_file_extent_num_bytes(leaf, fi,
4456 extent_num_bytes);
4457 num_dec = (orig_num_bytes -
9069218d 4458 extent_num_bytes);
27cdeb70
MX
4459 if (test_bit(BTRFS_ROOT_REF_COWS,
4460 &root->state) &&
4461 extent_start != 0)
a76a3cd4 4462 inode_sub_bytes(inode, num_dec);
5f39d397 4463 btrfs_mark_buffer_dirty(leaf);
39279cc3 4464 } else {
db94535d
CM
4465 extent_num_bytes =
4466 btrfs_file_extent_disk_num_bytes(leaf,
4467 fi);
5d4f98a2
YZ
4468 extent_offset = found_key.offset -
4469 btrfs_file_extent_offset(leaf, fi);
4470
39279cc3 4471 /* FIXME blocksize != 4096 */
9069218d 4472 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4473 if (extent_start != 0) {
4474 found_extent = 1;
27cdeb70
MX
4475 if (test_bit(BTRFS_ROOT_REF_COWS,
4476 &root->state))
a76a3cd4 4477 inode_sub_bytes(inode, num_dec);
e02119d5 4478 }
39279cc3 4479 }
9069218d 4480 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4481 /*
4482 * we can't truncate inline items that have had
4483 * special encodings
4484 */
4485 if (!del_item &&
c8b97818
CM
4486 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4487 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4488
4489 /*
0305cd5f
FM
4490 * Need to release path in order to truncate a
4491 * compressed extent. So delete any accumulated
4492 * extent items so far.
514ac8ad 4493 */
0305cd5f
FM
4494 if (btrfs_file_extent_compression(leaf, fi) !=
4495 BTRFS_COMPRESS_NONE && pending_del_nr) {
4496 err = btrfs_del_items(trans, root, path,
4497 pending_del_slot,
4498 pending_del_nr);
4499 if (err) {
4500 btrfs_abort_transaction(trans,
0305cd5f
FM
4501 err);
4502 goto error;
4503 }
4504 pending_del_nr = 0;
4505 }
4506
4507 err = truncate_inline_extent(inode, path,
4508 &found_key,
4509 item_end,
4510 new_size);
4511 if (err) {
66642832 4512 btrfs_abort_transaction(trans, err);
0305cd5f
FM
4513 goto error;
4514 }
27cdeb70
MX
4515 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4516 &root->state)) {
0305cd5f 4517 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4518 }
39279cc3 4519 }
179e29e4 4520delete:
39279cc3 4521 if (del_item) {
85e21bac
CM
4522 if (!pending_del_nr) {
4523 /* no pending yet, add ourselves */
4524 pending_del_slot = path->slots[0];
4525 pending_del_nr = 1;
4526 } else if (pending_del_nr &&
4527 path->slots[0] + 1 == pending_del_slot) {
4528 /* hop on the pending chunk */
4529 pending_del_nr++;
4530 pending_del_slot = path->slots[0];
4531 } else {
d397712b 4532 BUG();
85e21bac 4533 }
39279cc3
CM
4534 } else {
4535 break;
4536 }
28f75a0e
CM
4537 should_throttle = 0;
4538
27cdeb70
MX
4539 if (found_extent &&
4540 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4541 root == fs_info->tree_root)) {
b9473439 4542 btrfs_set_path_blocking(path);
28ed1345 4543 bytes_deleted += extent_num_bytes;
2ff7e61e 4544 ret = btrfs_free_extent(trans, fs_info, extent_start,
5d4f98a2
YZ
4545 extent_num_bytes, 0,
4546 btrfs_header_owner(leaf),
b06c4bf5 4547 ino, extent_offset);
39279cc3 4548 BUG_ON(ret);
2ff7e61e
JM
4549 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4550 btrfs_async_run_delayed_refs(fs_info,
dd4b857a
WX
4551 trans->delayed_ref_updates * 2,
4552 trans->transid, 0);
28f75a0e
CM
4553 if (be_nice) {
4554 if (truncate_space_check(trans, root,
4555 extent_num_bytes)) {
4556 should_end = 1;
4557 }
4558 if (btrfs_should_throttle_delayed_refs(trans,
2ff7e61e 4559 fs_info))
28f75a0e 4560 should_throttle = 1;
28f75a0e 4561 }
39279cc3 4562 }
85e21bac 4563
8082510e
YZ
4564 if (found_type == BTRFS_INODE_ITEM_KEY)
4565 break;
4566
4567 if (path->slots[0] == 0 ||
1262133b 4568 path->slots[0] != pending_del_slot ||
28f75a0e 4569 should_throttle || should_end) {
8082510e
YZ
4570 if (pending_del_nr) {
4571 ret = btrfs_del_items(trans, root, path,
4572 pending_del_slot,
4573 pending_del_nr);
79787eaa 4574 if (ret) {
66642832 4575 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4576 goto error;
4577 }
8082510e
YZ
4578 pending_del_nr = 0;
4579 }
b3b4aa74 4580 btrfs_release_path(path);
28f75a0e 4581 if (should_throttle) {
1262133b
JB
4582 unsigned long updates = trans->delayed_ref_updates;
4583 if (updates) {
4584 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4585 ret = btrfs_run_delayed_refs(trans,
4586 fs_info,
4587 updates * 2);
1262133b
JB
4588 if (ret && !err)
4589 err = ret;
4590 }
4591 }
28f75a0e
CM
4592 /*
4593 * if we failed to refill our space rsv, bail out
4594 * and let the transaction restart
4595 */
4596 if (should_end) {
4597 err = -EAGAIN;
4598 goto error;
4599 }
85e21bac 4600 goto search_again;
8082510e
YZ
4601 } else {
4602 path->slots[0]--;
85e21bac 4603 }
39279cc3 4604 }
8082510e 4605out:
85e21bac
CM
4606 if (pending_del_nr) {
4607 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4608 pending_del_nr);
79787eaa 4609 if (ret)
66642832 4610 btrfs_abort_transaction(trans, ret);
85e21bac 4611 }
79787eaa 4612error:
c1aa4575 4613 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4614 btrfs_ordered_update_i_size(inode, last_size, NULL);
28ed1345 4615
39279cc3 4616 btrfs_free_path(path);
28ed1345 4617
19fd2df5
LB
4618 if (err == 0) {
4619 /* only inline file may have last_size != new_size */
4620 if (new_size >= fs_info->sectorsize ||
4621 new_size > fs_info->max_inline)
4622 ASSERT(last_size == new_size);
4623 }
4624
ee22184b 4625 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4626 unsigned long updates = trans->delayed_ref_updates;
4627 if (updates) {
4628 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4629 ret = btrfs_run_delayed_refs(trans, fs_info,
4630 updates * 2);
28ed1345
CM
4631 if (ret && !err)
4632 err = ret;
4633 }
4634 }
8082510e 4635 return err;
39279cc3
CM
4636}
4637
4638/*
9703fefe 4639 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4640 * @inode - inode that we're zeroing
4641 * @from - the offset to start zeroing
4642 * @len - the length to zero, 0 to zero the entire range respective to the
4643 * offset
4644 * @front - zero up to the offset instead of from the offset on
4645 *
9703fefe 4646 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4647 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4648 */
9703fefe 4649int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4650 int front)
39279cc3 4651{
0b246afa 4652 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4653 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4654 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4655 struct btrfs_ordered_extent *ordered;
2ac55d41 4656 struct extent_state *cached_state = NULL;
e6dcd2dc 4657 char *kaddr;
0b246afa 4658 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4659 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4660 unsigned offset = from & (blocksize - 1);
39279cc3 4661 struct page *page;
3b16a4e3 4662 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4663 int ret = 0;
9703fefe
CR
4664 u64 block_start;
4665 u64 block_end;
39279cc3 4666
2aaa6655
JB
4667 if ((offset & (blocksize - 1)) == 0 &&
4668 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4669 goto out;
9703fefe 4670
7cf5b976 4671 ret = btrfs_delalloc_reserve_space(inode,
9703fefe 4672 round_down(from, blocksize), blocksize);
5d5e103a
JB
4673 if (ret)
4674 goto out;
39279cc3 4675
211c17f5 4676again:
3b16a4e3 4677 page = find_or_create_page(mapping, index, mask);
5d5e103a 4678 if (!page) {
7cf5b976 4679 btrfs_delalloc_release_space(inode,
9703fefe
CR
4680 round_down(from, blocksize),
4681 blocksize);
ac6a2b36 4682 ret = -ENOMEM;
39279cc3 4683 goto out;
5d5e103a 4684 }
e6dcd2dc 4685
9703fefe
CR
4686 block_start = round_down(from, blocksize);
4687 block_end = block_start + blocksize - 1;
e6dcd2dc 4688
39279cc3 4689 if (!PageUptodate(page)) {
9ebefb18 4690 ret = btrfs_readpage(NULL, page);
39279cc3 4691 lock_page(page);
211c17f5
CM
4692 if (page->mapping != mapping) {
4693 unlock_page(page);
09cbfeaf 4694 put_page(page);
211c17f5
CM
4695 goto again;
4696 }
39279cc3
CM
4697 if (!PageUptodate(page)) {
4698 ret = -EIO;
89642229 4699 goto out_unlock;
39279cc3
CM
4700 }
4701 }
211c17f5 4702 wait_on_page_writeback(page);
e6dcd2dc 4703
9703fefe 4704 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4705 set_page_extent_mapped(page);
4706
9703fefe 4707 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4708 if (ordered) {
9703fefe 4709 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4710 &cached_state, GFP_NOFS);
e6dcd2dc 4711 unlock_page(page);
09cbfeaf 4712 put_page(page);
eb84ae03 4713 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4714 btrfs_put_ordered_extent(ordered);
4715 goto again;
4716 }
4717
9703fefe 4718 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4719 EXTENT_DIRTY | EXTENT_DELALLOC |
4720 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4721 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4722
9703fefe 4723 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
ba8b04c1 4724 &cached_state, 0);
9ed74f2d 4725 if (ret) {
9703fefe 4726 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4727 &cached_state, GFP_NOFS);
9ed74f2d
JB
4728 goto out_unlock;
4729 }
4730
9703fefe 4731 if (offset != blocksize) {
2aaa6655 4732 if (!len)
9703fefe 4733 len = blocksize - offset;
e6dcd2dc 4734 kaddr = kmap(page);
2aaa6655 4735 if (front)
9703fefe
CR
4736 memset(kaddr + (block_start - page_offset(page)),
4737 0, offset);
2aaa6655 4738 else
9703fefe
CR
4739 memset(kaddr + (block_start - page_offset(page)) + offset,
4740 0, len);
e6dcd2dc
CM
4741 flush_dcache_page(page);
4742 kunmap(page);
4743 }
247e743c 4744 ClearPageChecked(page);
e6dcd2dc 4745 set_page_dirty(page);
9703fefe 4746 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4747 GFP_NOFS);
39279cc3 4748
89642229 4749out_unlock:
5d5e103a 4750 if (ret)
9703fefe
CR
4751 btrfs_delalloc_release_space(inode, block_start,
4752 blocksize);
39279cc3 4753 unlock_page(page);
09cbfeaf 4754 put_page(page);
39279cc3
CM
4755out:
4756 return ret;
4757}
4758
16e7549f
JB
4759static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4760 u64 offset, u64 len)
4761{
0b246afa 4762 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4763 struct btrfs_trans_handle *trans;
4764 int ret;
4765
4766 /*
4767 * Still need to make sure the inode looks like it's been updated so
4768 * that any holes get logged if we fsync.
4769 */
0b246afa
JM
4770 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4771 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4772 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4773 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4774 return 0;
4775 }
4776
4777 /*
4778 * 1 - for the one we're dropping
4779 * 1 - for the one we're adding
4780 * 1 - for updating the inode.
4781 */
4782 trans = btrfs_start_transaction(root, 3);
4783 if (IS_ERR(trans))
4784 return PTR_ERR(trans);
4785
4786 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4787 if (ret) {
66642832 4788 btrfs_abort_transaction(trans, ret);
3a45bb20 4789 btrfs_end_transaction(trans);
16e7549f
JB
4790 return ret;
4791 }
4792
f85b7379
DS
4793 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4794 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4795 if (ret)
66642832 4796 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4797 else
4798 btrfs_update_inode(trans, root, inode);
3a45bb20 4799 btrfs_end_transaction(trans);
16e7549f
JB
4800 return ret;
4801}
4802
695a0d0d
JB
4803/*
4804 * This function puts in dummy file extents for the area we're creating a hole
4805 * for. So if we are truncating this file to a larger size we need to insert
4806 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4807 * the range between oldsize and size
4808 */
a41ad394 4809int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4810{
0b246afa 4811 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4812 struct btrfs_root *root = BTRFS_I(inode)->root;
4813 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4814 struct extent_map *em = NULL;
2ac55d41 4815 struct extent_state *cached_state = NULL;
5dc562c5 4816 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4817 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4818 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4819 u64 last_byte;
4820 u64 cur_offset;
4821 u64 hole_size;
9ed74f2d 4822 int err = 0;
39279cc3 4823
a71754fc 4824 /*
9703fefe
CR
4825 * If our size started in the middle of a block we need to zero out the
4826 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4827 * expose stale data.
4828 */
9703fefe 4829 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4830 if (err)
4831 return err;
4832
9036c102
YZ
4833 if (size <= hole_start)
4834 return 0;
4835
9036c102
YZ
4836 while (1) {
4837 struct btrfs_ordered_extent *ordered;
fa7c1494 4838
ff13db41 4839 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4840 &cached_state);
fa7c1494
MX
4841 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4842 block_end - hole_start);
9036c102
YZ
4843 if (!ordered)
4844 break;
2ac55d41
JB
4845 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4846 &cached_state, GFP_NOFS);
fa7c1494 4847 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4848 btrfs_put_ordered_extent(ordered);
4849 }
39279cc3 4850
9036c102
YZ
4851 cur_offset = hole_start;
4852 while (1) {
4853 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4854 block_end - cur_offset, 0);
79787eaa
JM
4855 if (IS_ERR(em)) {
4856 err = PTR_ERR(em);
f2767956 4857 em = NULL;
79787eaa
JM
4858 break;
4859 }
9036c102 4860 last_byte = min(extent_map_end(em), block_end);
0b246afa 4861 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 4862 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4863 struct extent_map *hole_em;
9036c102 4864 hole_size = last_byte - cur_offset;
9ed74f2d 4865
16e7549f
JB
4866 err = maybe_insert_hole(root, inode, cur_offset,
4867 hole_size);
4868 if (err)
3893e33b 4869 break;
dcdbc059 4870 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
4871 cur_offset + hole_size - 1, 0);
4872 hole_em = alloc_extent_map();
4873 if (!hole_em) {
4874 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4875 &BTRFS_I(inode)->runtime_flags);
4876 goto next;
4877 }
4878 hole_em->start = cur_offset;
4879 hole_em->len = hole_size;
4880 hole_em->orig_start = cur_offset;
8082510e 4881
5dc562c5
JB
4882 hole_em->block_start = EXTENT_MAP_HOLE;
4883 hole_em->block_len = 0;
b4939680 4884 hole_em->orig_block_len = 0;
cc95bef6 4885 hole_em->ram_bytes = hole_size;
0b246afa 4886 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 4887 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 4888 hole_em->generation = fs_info->generation;
8082510e 4889
5dc562c5
JB
4890 while (1) {
4891 write_lock(&em_tree->lock);
09a2a8f9 4892 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4893 write_unlock(&em_tree->lock);
4894 if (err != -EEXIST)
4895 break;
dcdbc059
NB
4896 btrfs_drop_extent_cache(BTRFS_I(inode),
4897 cur_offset,
5dc562c5
JB
4898 cur_offset +
4899 hole_size - 1, 0);
4900 }
4901 free_extent_map(hole_em);
9036c102 4902 }
16e7549f 4903next:
9036c102 4904 free_extent_map(em);
a22285a6 4905 em = NULL;
9036c102 4906 cur_offset = last_byte;
8082510e 4907 if (cur_offset >= block_end)
9036c102
YZ
4908 break;
4909 }
a22285a6 4910 free_extent_map(em);
2ac55d41
JB
4911 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4912 GFP_NOFS);
9036c102
YZ
4913 return err;
4914}
39279cc3 4915
3972f260 4916static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4917{
f4a2f4c5
MX
4918 struct btrfs_root *root = BTRFS_I(inode)->root;
4919 struct btrfs_trans_handle *trans;
a41ad394 4920 loff_t oldsize = i_size_read(inode);
3972f260
ES
4921 loff_t newsize = attr->ia_size;
4922 int mask = attr->ia_valid;
8082510e
YZ
4923 int ret;
4924
3972f260
ES
4925 /*
4926 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4927 * special case where we need to update the times despite not having
4928 * these flags set. For all other operations the VFS set these flags
4929 * explicitly if it wants a timestamp update.
4930 */
dff6efc3
CH
4931 if (newsize != oldsize) {
4932 inode_inc_iversion(inode);
4933 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4934 inode->i_ctime = inode->i_mtime =
c2050a45 4935 current_time(inode);
dff6efc3 4936 }
3972f260 4937
a41ad394 4938 if (newsize > oldsize) {
9ea24bbe
FM
4939 /*
4940 * Don't do an expanding truncate while snapshoting is ongoing.
4941 * This is to ensure the snapshot captures a fully consistent
4942 * state of this file - if the snapshot captures this expanding
4943 * truncation, it must capture all writes that happened before
4944 * this truncation.
4945 */
0bc19f90 4946 btrfs_wait_for_snapshot_creation(root);
a41ad394 4947 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4948 if (ret) {
4949 btrfs_end_write_no_snapshoting(root);
8082510e 4950 return ret;
9ea24bbe 4951 }
8082510e 4952
f4a2f4c5 4953 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4954 if (IS_ERR(trans)) {
4955 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 4956 return PTR_ERR(trans);
9ea24bbe 4957 }
f4a2f4c5
MX
4958
4959 i_size_write(inode, newsize);
4960 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 4961 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 4962 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 4963 btrfs_end_write_no_snapshoting(root);
3a45bb20 4964 btrfs_end_transaction(trans);
a41ad394 4965 } else {
8082510e 4966
a41ad394
JB
4967 /*
4968 * We're truncating a file that used to have good data down to
4969 * zero. Make sure it gets into the ordered flush list so that
4970 * any new writes get down to disk quickly.
4971 */
4972 if (newsize == 0)
72ac3c0d
JB
4973 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4974 &BTRFS_I(inode)->runtime_flags);
8082510e 4975
f3fe820c
JB
4976 /*
4977 * 1 for the orphan item we're going to add
4978 * 1 for the orphan item deletion.
4979 */
4980 trans = btrfs_start_transaction(root, 2);
4981 if (IS_ERR(trans))
4982 return PTR_ERR(trans);
4983
4984 /*
4985 * We need to do this in case we fail at _any_ point during the
4986 * actual truncate. Once we do the truncate_setsize we could
4987 * invalidate pages which forces any outstanding ordered io to
4988 * be instantly completed which will give us extents that need
4989 * to be truncated. If we fail to get an orphan inode down we
4990 * could have left over extents that were never meant to live,
01327610 4991 * so we need to guarantee from this point on that everything
f3fe820c
JB
4992 * will be consistent.
4993 */
4994 ret = btrfs_orphan_add(trans, inode);
3a45bb20 4995 btrfs_end_transaction(trans);
f3fe820c
JB
4996 if (ret)
4997 return ret;
4998
a41ad394
JB
4999 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5000 truncate_setsize(inode, newsize);
2e60a51e
MX
5001
5002 /* Disable nonlocked read DIO to avoid the end less truncate */
5003 btrfs_inode_block_unlocked_dio(inode);
5004 inode_dio_wait(inode);
5005 btrfs_inode_resume_unlocked_dio(inode);
5006
a41ad394 5007 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5008 if (ret && inode->i_nlink) {
5009 int err;
5010
19fd2df5
LB
5011 /* To get a stable disk_i_size */
5012 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5013 if (err) {
5014 btrfs_orphan_del(NULL, inode);
5015 return err;
5016 }
5017
7f4f6e0a
JB
5018 /*
5019 * failed to truncate, disk_i_size is only adjusted down
5020 * as we remove extents, so it should represent the true
5021 * size of the inode, so reset the in memory size and
5022 * delete our orphan entry.
5023 */
5024 trans = btrfs_join_transaction(root);
5025 if (IS_ERR(trans)) {
5026 btrfs_orphan_del(NULL, inode);
5027 return ret;
5028 }
5029 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5030 err = btrfs_orphan_del(trans, inode);
5031 if (err)
66642832 5032 btrfs_abort_transaction(trans, err);
3a45bb20 5033 btrfs_end_transaction(trans);
7f4f6e0a 5034 }
8082510e
YZ
5035 }
5036
a41ad394 5037 return ret;
8082510e
YZ
5038}
5039
9036c102
YZ
5040static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5041{
2b0143b5 5042 struct inode *inode = d_inode(dentry);
b83cc969 5043 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5044 int err;
39279cc3 5045
b83cc969
LZ
5046 if (btrfs_root_readonly(root))
5047 return -EROFS;
5048
31051c85 5049 err = setattr_prepare(dentry, attr);
9036c102
YZ
5050 if (err)
5051 return err;
2bf5a725 5052
5a3f23d5 5053 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5054 err = btrfs_setsize(inode, attr);
8082510e
YZ
5055 if (err)
5056 return err;
39279cc3 5057 }
9036c102 5058
1025774c
CH
5059 if (attr->ia_valid) {
5060 setattr_copy(inode, attr);
0c4d2d95 5061 inode_inc_iversion(inode);
22c44fe6 5062 err = btrfs_dirty_inode(inode);
1025774c 5063
22c44fe6 5064 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5065 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5066 }
33268eaf 5067
39279cc3
CM
5068 return err;
5069}
61295eb8 5070
131e404a
FDBM
5071/*
5072 * While truncating the inode pages during eviction, we get the VFS calling
5073 * btrfs_invalidatepage() against each page of the inode. This is slow because
5074 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5075 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5076 * extent_state structures over and over, wasting lots of time.
5077 *
5078 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5079 * those expensive operations on a per page basis and do only the ordered io
5080 * finishing, while we release here the extent_map and extent_state structures,
5081 * without the excessive merging and splitting.
5082 */
5083static void evict_inode_truncate_pages(struct inode *inode)
5084{
5085 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5086 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5087 struct rb_node *node;
5088
5089 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5090 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5091
5092 write_lock(&map_tree->lock);
5093 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5094 struct extent_map *em;
5095
5096 node = rb_first(&map_tree->map);
5097 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5098 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5099 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5100 remove_extent_mapping(map_tree, em);
5101 free_extent_map(em);
7064dd5c
FM
5102 if (need_resched()) {
5103 write_unlock(&map_tree->lock);
5104 cond_resched();
5105 write_lock(&map_tree->lock);
5106 }
131e404a
FDBM
5107 }
5108 write_unlock(&map_tree->lock);
5109
6ca07097
FM
5110 /*
5111 * Keep looping until we have no more ranges in the io tree.
5112 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5113 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5114 * still in progress (unlocked the pages in the bio but did not yet
5115 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5116 * ranges can still be locked and eviction started because before
5117 * submitting those bios, which are executed by a separate task (work
5118 * queue kthread), inode references (inode->i_count) were not taken
5119 * (which would be dropped in the end io callback of each bio).
5120 * Therefore here we effectively end up waiting for those bios and
5121 * anyone else holding locked ranges without having bumped the inode's
5122 * reference count - if we don't do it, when they access the inode's
5123 * io_tree to unlock a range it may be too late, leading to an
5124 * use-after-free issue.
5125 */
131e404a
FDBM
5126 spin_lock(&io_tree->lock);
5127 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5128 struct extent_state *state;
5129 struct extent_state *cached_state = NULL;
6ca07097
FM
5130 u64 start;
5131 u64 end;
131e404a
FDBM
5132
5133 node = rb_first(&io_tree->state);
5134 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5135 start = state->start;
5136 end = state->end;
131e404a
FDBM
5137 spin_unlock(&io_tree->lock);
5138
ff13db41 5139 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5140
5141 /*
5142 * If still has DELALLOC flag, the extent didn't reach disk,
5143 * and its reserved space won't be freed by delayed_ref.
5144 * So we need to free its reserved space here.
5145 * (Refer to comment in btrfs_invalidatepage, case 2)
5146 *
5147 * Note, end is the bytenr of last byte, so we need + 1 here.
5148 */
5149 if (state->state & EXTENT_DELALLOC)
5150 btrfs_qgroup_free_data(inode, start, end - start + 1);
5151
6ca07097 5152 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5153 EXTENT_LOCKED | EXTENT_DIRTY |
5154 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5155 EXTENT_DEFRAG, 1, 1,
5156 &cached_state, GFP_NOFS);
131e404a 5157
7064dd5c 5158 cond_resched();
131e404a
FDBM
5159 spin_lock(&io_tree->lock);
5160 }
5161 spin_unlock(&io_tree->lock);
5162}
5163
bd555975 5164void btrfs_evict_inode(struct inode *inode)
39279cc3 5165{
0b246afa 5166 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5167 struct btrfs_trans_handle *trans;
5168 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5169 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5170 int steal_from_global = 0;
3d48d981 5171 u64 min_size;
39279cc3
CM
5172 int ret;
5173
1abe9b8a 5174 trace_btrfs_inode_evict(inode);
5175
3d48d981
NB
5176 if (!root) {
5177 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5178 return;
5179 }
5180
0b246afa 5181 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
3d48d981 5182
131e404a
FDBM
5183 evict_inode_truncate_pages(inode);
5184
69e9c6c6
SB
5185 if (inode->i_nlink &&
5186 ((btrfs_root_refs(&root->root_item) != 0 &&
5187 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5188 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5189 goto no_delete;
5190
39279cc3 5191 if (is_bad_inode(inode)) {
7b128766 5192 btrfs_orphan_del(NULL, inode);
39279cc3
CM
5193 goto no_delete;
5194 }
bd555975 5195 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5196 if (!special_file(inode->i_mode))
5197 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5198
f612496b
MX
5199 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5200
0b246afa 5201 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
6bf02314 5202 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5203 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5204 goto no_delete;
5205 }
5206
76dda93c 5207 if (inode->i_nlink > 0) {
69e9c6c6
SB
5208 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5209 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5210 goto no_delete;
5211 }
5212
aa79021f 5213 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
0e8c36a9
MX
5214 if (ret) {
5215 btrfs_orphan_del(NULL, inode);
5216 goto no_delete;
5217 }
5218
2ff7e61e 5219 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
5220 if (!rsv) {
5221 btrfs_orphan_del(NULL, inode);
5222 goto no_delete;
5223 }
4a338542 5224 rsv->size = min_size;
ca7e70f5 5225 rsv->failfast = 1;
0b246afa 5226 global_rsv = &fs_info->global_block_rsv;
4289a667 5227
6ef06d27 5228 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5229
4289a667 5230 /*
8407aa46
MX
5231 * This is a bit simpler than btrfs_truncate since we've already
5232 * reserved our space for our orphan item in the unlink, so we just
5233 * need to reserve some slack space in case we add bytes and update
5234 * inode item when doing the truncate.
4289a667 5235 */
8082510e 5236 while (1) {
08e007d2
MX
5237 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5238 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5239
5240 /*
5241 * Try and steal from the global reserve since we will
5242 * likely not use this space anyway, we want to try as
5243 * hard as possible to get this to work.
5244 */
5245 if (ret)
3bce876f
JB
5246 steal_from_global++;
5247 else
5248 steal_from_global = 0;
5249 ret = 0;
d68fc57b 5250
3bce876f
JB
5251 /*
5252 * steal_from_global == 0: we reserved stuff, hooray!
5253 * steal_from_global == 1: we didn't reserve stuff, boo!
5254 * steal_from_global == 2: we've committed, still not a lot of
5255 * room but maybe we'll have room in the global reserve this
5256 * time.
5257 * steal_from_global == 3: abandon all hope!
5258 */
5259 if (steal_from_global > 2) {
0b246afa
JM
5260 btrfs_warn(fs_info,
5261 "Could not get space for a delete, will truncate on mount %d",
5262 ret);
4289a667 5263 btrfs_orphan_del(NULL, inode);
2ff7e61e 5264 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5265 goto no_delete;
d68fc57b 5266 }
7b128766 5267
0e8c36a9 5268 trans = btrfs_join_transaction(root);
4289a667
JB
5269 if (IS_ERR(trans)) {
5270 btrfs_orphan_del(NULL, inode);
2ff7e61e 5271 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5272 goto no_delete;
d68fc57b 5273 }
7b128766 5274
3bce876f 5275 /*
01327610 5276 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5277 * sure there is room to do it, if not we need to commit and try
5278 * again.
5279 */
5280 if (steal_from_global) {
2ff7e61e 5281 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
3bce876f 5282 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
25d609f8 5283 min_size, 0);
3bce876f
JB
5284 else
5285 ret = -ENOSPC;
5286 }
5287
5288 /*
5289 * Couldn't steal from the global reserve, we have too much
5290 * pending stuff built up, commit the transaction and try it
5291 * again.
5292 */
5293 if (ret) {
3a45bb20 5294 ret = btrfs_commit_transaction(trans);
3bce876f
JB
5295 if (ret) {
5296 btrfs_orphan_del(NULL, inode);
2ff7e61e 5297 btrfs_free_block_rsv(fs_info, rsv);
3bce876f
JB
5298 goto no_delete;
5299 }
5300 continue;
5301 } else {
5302 steal_from_global = 0;
5303 }
5304
4289a667
JB
5305 trans->block_rsv = rsv;
5306
d68fc57b 5307 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5308 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5309 break;
85e21bac 5310
0b246afa 5311 trans->block_rsv = &fs_info->trans_block_rsv;
3a45bb20 5312 btrfs_end_transaction(trans);
8082510e 5313 trans = NULL;
2ff7e61e 5314 btrfs_btree_balance_dirty(fs_info);
8082510e 5315 }
5f39d397 5316
2ff7e61e 5317 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5318
4ef31a45
JB
5319 /*
5320 * Errors here aren't a big deal, it just means we leave orphan items
5321 * in the tree. They will be cleaned up on the next mount.
5322 */
8082510e 5323 if (ret == 0) {
4289a667 5324 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
5325 btrfs_orphan_del(trans, inode);
5326 } else {
5327 btrfs_orphan_del(NULL, inode);
8082510e 5328 }
54aa1f4d 5329
0b246afa
JM
5330 trans->block_rsv = &fs_info->trans_block_rsv;
5331 if (!(root == fs_info->tree_root ||
581bb050 5332 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5333 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5334
3a45bb20 5335 btrfs_end_transaction(trans);
2ff7e61e 5336 btrfs_btree_balance_dirty(fs_info);
39279cc3 5337no_delete:
f48d1cf5 5338 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5339 clear_inode(inode);
39279cc3
CM
5340}
5341
5342/*
5343 * this returns the key found in the dir entry in the location pointer.
5344 * If no dir entries were found, location->objectid is 0.
5345 */
5346static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5347 struct btrfs_key *location)
5348{
5349 const char *name = dentry->d_name.name;
5350 int namelen = dentry->d_name.len;
5351 struct btrfs_dir_item *di;
5352 struct btrfs_path *path;
5353 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5354 int ret = 0;
39279cc3
CM
5355
5356 path = btrfs_alloc_path();
d8926bb3
MF
5357 if (!path)
5358 return -ENOMEM;
3954401f 5359
f85b7379
DS
5360 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5361 name, namelen, 0);
0d9f7f3e
Y
5362 if (IS_ERR(di))
5363 ret = PTR_ERR(di);
d397712b 5364
c704005d 5365 if (IS_ERR_OR_NULL(di))
3954401f 5366 goto out_err;
d397712b 5367
5f39d397 5368 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5369out:
39279cc3
CM
5370 btrfs_free_path(path);
5371 return ret;
3954401f
CM
5372out_err:
5373 location->objectid = 0;
5374 goto out;
39279cc3
CM
5375}
5376
5377/*
5378 * when we hit a tree root in a directory, the btrfs part of the inode
5379 * needs to be changed to reflect the root directory of the tree root. This
5380 * is kind of like crossing a mount point.
5381 */
2ff7e61e 5382static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5383 struct inode *dir,
5384 struct dentry *dentry,
5385 struct btrfs_key *location,
5386 struct btrfs_root **sub_root)
39279cc3 5387{
4df27c4d
YZ
5388 struct btrfs_path *path;
5389 struct btrfs_root *new_root;
5390 struct btrfs_root_ref *ref;
5391 struct extent_buffer *leaf;
1d4c08e0 5392 struct btrfs_key key;
4df27c4d
YZ
5393 int ret;
5394 int err = 0;
39279cc3 5395
4df27c4d
YZ
5396 path = btrfs_alloc_path();
5397 if (!path) {
5398 err = -ENOMEM;
5399 goto out;
5400 }
39279cc3 5401
4df27c4d 5402 err = -ENOENT;
1d4c08e0
DS
5403 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5404 key.type = BTRFS_ROOT_REF_KEY;
5405 key.offset = location->objectid;
5406
0b246afa 5407 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5408 if (ret) {
5409 if (ret < 0)
5410 err = ret;
5411 goto out;
5412 }
39279cc3 5413
4df27c4d
YZ
5414 leaf = path->nodes[0];
5415 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5416 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5417 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5418 goto out;
39279cc3 5419
4df27c4d
YZ
5420 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5421 (unsigned long)(ref + 1),
5422 dentry->d_name.len);
5423 if (ret)
5424 goto out;
5425
b3b4aa74 5426 btrfs_release_path(path);
4df27c4d 5427
0b246afa 5428 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5429 if (IS_ERR(new_root)) {
5430 err = PTR_ERR(new_root);
5431 goto out;
5432 }
5433
4df27c4d
YZ
5434 *sub_root = new_root;
5435 location->objectid = btrfs_root_dirid(&new_root->root_item);
5436 location->type = BTRFS_INODE_ITEM_KEY;
5437 location->offset = 0;
5438 err = 0;
5439out:
5440 btrfs_free_path(path);
5441 return err;
39279cc3
CM
5442}
5443
5d4f98a2
YZ
5444static void inode_tree_add(struct inode *inode)
5445{
5446 struct btrfs_root *root = BTRFS_I(inode)->root;
5447 struct btrfs_inode *entry;
03e860bd
NP
5448 struct rb_node **p;
5449 struct rb_node *parent;
cef21937 5450 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5451 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5452
1d3382cb 5453 if (inode_unhashed(inode))
76dda93c 5454 return;
e1409cef 5455 parent = NULL;
5d4f98a2 5456 spin_lock(&root->inode_lock);
e1409cef 5457 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5458 while (*p) {
5459 parent = *p;
5460 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5461
4a0cc7ca 5462 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5463 p = &parent->rb_left;
4a0cc7ca 5464 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5465 p = &parent->rb_right;
5d4f98a2
YZ
5466 else {
5467 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5468 (I_WILL_FREE | I_FREEING)));
cef21937 5469 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
NP
5470 RB_CLEAR_NODE(parent);
5471 spin_unlock(&root->inode_lock);
cef21937 5472 return;
5d4f98a2
YZ
5473 }
5474 }
cef21937
FDBM
5475 rb_link_node(new, parent, p);
5476 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5477 spin_unlock(&root->inode_lock);
5478}
5479
5480static void inode_tree_del(struct inode *inode)
5481{
0b246afa 5482 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5483 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5484 int empty = 0;
5d4f98a2 5485
03e860bd 5486 spin_lock(&root->inode_lock);
5d4f98a2 5487 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5488 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5489 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5490 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5491 }
03e860bd 5492 spin_unlock(&root->inode_lock);
76dda93c 5493
69e9c6c6 5494 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5495 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5496 spin_lock(&root->inode_lock);
5497 empty = RB_EMPTY_ROOT(&root->inode_tree);
5498 spin_unlock(&root->inode_lock);
5499 if (empty)
5500 btrfs_add_dead_root(root);
5501 }
5502}
5503
143bede5 5504void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c 5505{
0b246afa 5506 struct btrfs_fs_info *fs_info = root->fs_info;
76dda93c
YZ
5507 struct rb_node *node;
5508 struct rb_node *prev;
5509 struct btrfs_inode *entry;
5510 struct inode *inode;
5511 u64 objectid = 0;
5512
0b246afa 5513 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
7813b3db 5514 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5515
5516 spin_lock(&root->inode_lock);
5517again:
5518 node = root->inode_tree.rb_node;
5519 prev = NULL;
5520 while (node) {
5521 prev = node;
5522 entry = rb_entry(node, struct btrfs_inode, rb_node);
5523
4a0cc7ca 5524 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c 5525 node = node->rb_left;
4a0cc7ca 5526 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c
YZ
5527 node = node->rb_right;
5528 else
5529 break;
5530 }
5531 if (!node) {
5532 while (prev) {
5533 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4a0cc7ca 5534 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
76dda93c
YZ
5535 node = prev;
5536 break;
5537 }
5538 prev = rb_next(prev);
5539 }
5540 }
5541 while (node) {
5542 entry = rb_entry(node, struct btrfs_inode, rb_node);
4a0cc7ca 5543 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
76dda93c
YZ
5544 inode = igrab(&entry->vfs_inode);
5545 if (inode) {
5546 spin_unlock(&root->inode_lock);
5547 if (atomic_read(&inode->i_count) > 1)
5548 d_prune_aliases(inode);
5549 /*
45321ac5 5550 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5551 * the inode cache when its usage count
5552 * hits zero.
5553 */
5554 iput(inode);
5555 cond_resched();
5556 spin_lock(&root->inode_lock);
5557 goto again;
5558 }
5559
5560 if (cond_resched_lock(&root->inode_lock))
5561 goto again;
5562
5563 node = rb_next(node);
5564 }
5565 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5566}
5567
e02119d5
CM
5568static int btrfs_init_locked_inode(struct inode *inode, void *p)
5569{
5570 struct btrfs_iget_args *args = p;
90d3e592
CM
5571 inode->i_ino = args->location->objectid;
5572 memcpy(&BTRFS_I(inode)->location, args->location,
5573 sizeof(*args->location));
e02119d5 5574 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5575 return 0;
5576}
5577
5578static int btrfs_find_actor(struct inode *inode, void *opaque)
5579{
5580 struct btrfs_iget_args *args = opaque;
90d3e592 5581 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5582 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5583}
5584
5d4f98a2 5585static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5586 struct btrfs_key *location,
5d4f98a2 5587 struct btrfs_root *root)
39279cc3
CM
5588{
5589 struct inode *inode;
5590 struct btrfs_iget_args args;
90d3e592 5591 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5592
90d3e592 5593 args.location = location;
39279cc3
CM
5594 args.root = root;
5595
778ba82b 5596 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5597 btrfs_init_locked_inode,
5598 (void *)&args);
5599 return inode;
5600}
5601
1a54ef8c
BR
5602/* Get an inode object given its location and corresponding root.
5603 * Returns in *is_new if the inode was read from disk
5604 */
5605struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5606 struct btrfs_root *root, int *new)
1a54ef8c
BR
5607{
5608 struct inode *inode;
5609
90d3e592 5610 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5611 if (!inode)
5d4f98a2 5612 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5613
5614 if (inode->i_state & I_NEW) {
67710892
FM
5615 int ret;
5616
5617 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5618 if (!is_bad_inode(inode)) {
5619 inode_tree_add(inode);
5620 unlock_new_inode(inode);
5621 if (new)
5622 *new = 1;
5623 } else {
e0b6d65b
ST
5624 unlock_new_inode(inode);
5625 iput(inode);
67710892
FM
5626 ASSERT(ret < 0);
5627 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5628 }
5629 }
5630
1a54ef8c
BR
5631 return inode;
5632}
5633
4df27c4d
YZ
5634static struct inode *new_simple_dir(struct super_block *s,
5635 struct btrfs_key *key,
5636 struct btrfs_root *root)
5637{
5638 struct inode *inode = new_inode(s);
5639
5640 if (!inode)
5641 return ERR_PTR(-ENOMEM);
5642
4df27c4d
YZ
5643 BTRFS_I(inode)->root = root;
5644 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5645 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5646
5647 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5648 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5649 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5650 inode->i_fop = &simple_dir_operations;
5651 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5652 inode->i_mtime = current_time(inode);
9cc97d64 5653 inode->i_atime = inode->i_mtime;
5654 inode->i_ctime = inode->i_mtime;
5655 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5656
5657 return inode;
5658}
5659
3de4586c 5660struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5661{
0b246afa 5662 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5663 struct inode *inode;
4df27c4d 5664 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5665 struct btrfs_root *sub_root = root;
5666 struct btrfs_key location;
76dda93c 5667 int index;
b4aff1f8 5668 int ret = 0;
39279cc3
CM
5669
5670 if (dentry->d_name.len > BTRFS_NAME_LEN)
5671 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5672
39e3c955 5673 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5674 if (ret < 0)
5675 return ERR_PTR(ret);
5f39d397 5676
4df27c4d 5677 if (location.objectid == 0)
5662344b 5678 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5679
5680 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5681 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5682 return inode;
5683 }
5684
5685 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5686
0b246afa 5687 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5688 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5689 &location, &sub_root);
5690 if (ret < 0) {
5691 if (ret != -ENOENT)
5692 inode = ERR_PTR(ret);
5693 else
5694 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5695 } else {
73f73415 5696 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5697 }
0b246afa 5698 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5699
34d19bad 5700 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5701 down_read(&fs_info->cleanup_work_sem);
c71bf099 5702 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5703 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5704 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5705 if (ret) {
5706 iput(inode);
66b4ffd1 5707 inode = ERR_PTR(ret);
01cd3367 5708 }
c71bf099
YZ
5709 }
5710
3de4586c
CM
5711 return inode;
5712}
5713
fe15ce44 5714static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5715{
5716 struct btrfs_root *root;
2b0143b5 5717 struct inode *inode = d_inode(dentry);
76dda93c 5718
848cce0d 5719 if (!inode && !IS_ROOT(dentry))
2b0143b5 5720 inode = d_inode(dentry->d_parent);
76dda93c 5721
848cce0d
LZ
5722 if (inode) {
5723 root = BTRFS_I(inode)->root;
efefb143
YZ
5724 if (btrfs_root_refs(&root->root_item) == 0)
5725 return 1;
848cce0d 5726
4a0cc7ca 5727 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5728 return 1;
efefb143 5729 }
76dda93c
YZ
5730 return 0;
5731}
5732
b4aff1f8
JB
5733static void btrfs_dentry_release(struct dentry *dentry)
5734{
944a4515 5735 kfree(dentry->d_fsdata);
b4aff1f8
JB
5736}
5737
3de4586c 5738static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5739 unsigned int flags)
3de4586c 5740{
5662344b 5741 struct inode *inode;
a66e7cc6 5742
5662344b
TI
5743 inode = btrfs_lookup_dentry(dir, dentry);
5744 if (IS_ERR(inode)) {
5745 if (PTR_ERR(inode) == -ENOENT)
5746 inode = NULL;
5747 else
5748 return ERR_CAST(inode);
5749 }
5750
41d28bca 5751 return d_splice_alias(inode, dentry);
39279cc3
CM
5752}
5753
16cdcec7 5754unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5755 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5756};
5757
9cdda8d3 5758static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5759{
9cdda8d3 5760 struct inode *inode = file_inode(file);
2ff7e61e 5761 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5762 struct btrfs_root *root = BTRFS_I(inode)->root;
5763 struct btrfs_item *item;
5764 struct btrfs_dir_item *di;
5765 struct btrfs_key key;
5f39d397 5766 struct btrfs_key found_key;
39279cc3 5767 struct btrfs_path *path;
16cdcec7
MX
5768 struct list_head ins_list;
5769 struct list_head del_list;
39279cc3 5770 int ret;
5f39d397 5771 struct extent_buffer *leaf;
39279cc3 5772 int slot;
39279cc3
CM
5773 unsigned char d_type;
5774 int over = 0;
5f39d397
CM
5775 char tmp_name[32];
5776 char *name_ptr;
5777 int name_len;
02dbfc99 5778 bool put = false;
c2951f32 5779 struct btrfs_key location;
5f39d397 5780
9cdda8d3
AV
5781 if (!dir_emit_dots(file, ctx))
5782 return 0;
5783
49593bfa 5784 path = btrfs_alloc_path();
16cdcec7
MX
5785 if (!path)
5786 return -ENOMEM;
ff5714cc 5787
e4058b54 5788 path->reada = READA_FORWARD;
49593bfa 5789
c2951f32
JM
5790 INIT_LIST_HEAD(&ins_list);
5791 INIT_LIST_HEAD(&del_list);
5792 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5793
c2951f32 5794 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5795 key.offset = ctx->pos;
4a0cc7ca 5796 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5797
39279cc3
CM
5798 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5799 if (ret < 0)
5800 goto err;
49593bfa
DW
5801
5802 while (1) {
5f39d397 5803 leaf = path->nodes[0];
39279cc3 5804 slot = path->slots[0];
b9e03af0
LZ
5805 if (slot >= btrfs_header_nritems(leaf)) {
5806 ret = btrfs_next_leaf(root, path);
5807 if (ret < 0)
5808 goto err;
5809 else if (ret > 0)
5810 break;
5811 continue;
39279cc3 5812 }
3de4586c 5813
dd3cc16b 5814 item = btrfs_item_nr(slot);
5f39d397
CM
5815 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5816
5817 if (found_key.objectid != key.objectid)
39279cc3 5818 break;
c2951f32 5819 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5820 break;
9cdda8d3 5821 if (found_key.offset < ctx->pos)
b9e03af0 5822 goto next;
c2951f32 5823 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5824 goto next;
5f39d397 5825
9cdda8d3 5826 ctx->pos = found_key.offset;
49593bfa 5827
39279cc3 5828 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2ff7e61e 5829 if (verify_dir_item(fs_info, leaf, di))
c2951f32 5830 goto next;
22a94d44 5831
c2951f32
JM
5832 name_len = btrfs_dir_name_len(leaf, di);
5833 if (name_len <= sizeof(tmp_name)) {
5834 name_ptr = tmp_name;
5835 } else {
5836 name_ptr = kmalloc(name_len, GFP_KERNEL);
5837 if (!name_ptr) {
5838 ret = -ENOMEM;
5839 goto err;
5f39d397 5840 }
c2951f32
JM
5841 }
5842 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5843 name_len);
3de4586c 5844
c2951f32
JM
5845 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5846 btrfs_dir_item_key_to_cpu(leaf, di, &location);
fede766f 5847
c2951f32
JM
5848 over = !dir_emit(ctx, name_ptr, name_len, location.objectid,
5849 d_type);
5f39d397 5850
c2951f32
JM
5851 if (name_ptr != tmp_name)
5852 kfree(name_ptr);
5f39d397 5853
c2951f32
JM
5854 if (over)
5855 goto nopos;
d2fbb2b5 5856 ctx->pos++;
b9e03af0
LZ
5857next:
5858 path->slots[0]++;
39279cc3 5859 }
49593bfa 5860
d2fbb2b5 5861 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5862 if (ret)
bc4ef759
DS
5863 goto nopos;
5864
db62efbb
ZB
5865 /*
5866 * Stop new entries from being returned after we return the last
5867 * entry.
5868 *
5869 * New directory entries are assigned a strictly increasing
5870 * offset. This means that new entries created during readdir
5871 * are *guaranteed* to be seen in the future by that readdir.
5872 * This has broken buggy programs which operate on names as
5873 * they're returned by readdir. Until we re-use freed offsets
5874 * we have this hack to stop new entries from being returned
5875 * under the assumption that they'll never reach this huge
5876 * offset.
5877 *
5878 * This is being careful not to overflow 32bit loff_t unless the
5879 * last entry requires it because doing so has broken 32bit apps
5880 * in the past.
5881 */
c2951f32
JM
5882 if (ctx->pos >= INT_MAX)
5883 ctx->pos = LLONG_MAX;
5884 else
5885 ctx->pos = INT_MAX;
39279cc3
CM
5886nopos:
5887 ret = 0;
5888err:
02dbfc99
OS
5889 if (put)
5890 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5891 btrfs_free_path(path);
39279cc3
CM
5892 return ret;
5893}
5894
a9185b41 5895int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5896{
5897 struct btrfs_root *root = BTRFS_I(inode)->root;
5898 struct btrfs_trans_handle *trans;
5899 int ret = 0;
0af3d00b 5900 bool nolock = false;
39279cc3 5901
72ac3c0d 5902 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5903 return 0;
5904
70ddc553
NB
5905 if (btrfs_fs_closing(root->fs_info) &&
5906 btrfs_is_free_space_inode(BTRFS_I(inode)))
82d5902d 5907 nolock = true;
0af3d00b 5908
a9185b41 5909 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5910 if (nolock)
7a7eaa40 5911 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5912 else
7a7eaa40 5913 trans = btrfs_join_transaction(root);
3612b495
TI
5914 if (IS_ERR(trans))
5915 return PTR_ERR(trans);
3a45bb20 5916 ret = btrfs_commit_transaction(trans);
39279cc3
CM
5917 }
5918 return ret;
5919}
5920
5921/*
54aa1f4d 5922 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5923 * inode changes. But, it is most likely to find the inode in cache.
5924 * FIXME, needs more benchmarking...there are no reasons other than performance
5925 * to keep or drop this code.
5926 */
48a3b636 5927static int btrfs_dirty_inode(struct inode *inode)
39279cc3 5928{
2ff7e61e 5929 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5930 struct btrfs_root *root = BTRFS_I(inode)->root;
5931 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5932 int ret;
5933
72ac3c0d 5934 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5935 return 0;
39279cc3 5936
7a7eaa40 5937 trans = btrfs_join_transaction(root);
22c44fe6
JB
5938 if (IS_ERR(trans))
5939 return PTR_ERR(trans);
8929ecfa
YZ
5940
5941 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5942 if (ret && ret == -ENOSPC) {
5943 /* whoops, lets try again with the full transaction */
3a45bb20 5944 btrfs_end_transaction(trans);
94b60442 5945 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5946 if (IS_ERR(trans))
5947 return PTR_ERR(trans);
8929ecfa 5948
94b60442 5949 ret = btrfs_update_inode(trans, root, inode);
94b60442 5950 }
3a45bb20 5951 btrfs_end_transaction(trans);
16cdcec7 5952 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 5953 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
5954
5955 return ret;
5956}
5957
5958/*
5959 * This is a copy of file_update_time. We need this so we can return error on
5960 * ENOSPC for updating the inode in the case of file write and mmap writes.
5961 */
e41f941a
JB
5962static int btrfs_update_time(struct inode *inode, struct timespec *now,
5963 int flags)
22c44fe6 5964{
2bc55652
AB
5965 struct btrfs_root *root = BTRFS_I(inode)->root;
5966
5967 if (btrfs_root_readonly(root))
5968 return -EROFS;
5969
e41f941a 5970 if (flags & S_VERSION)
22c44fe6 5971 inode_inc_iversion(inode);
e41f941a
JB
5972 if (flags & S_CTIME)
5973 inode->i_ctime = *now;
5974 if (flags & S_MTIME)
5975 inode->i_mtime = *now;
5976 if (flags & S_ATIME)
5977 inode->i_atime = *now;
5978 return btrfs_dirty_inode(inode);
39279cc3
CM
5979}
5980
d352ac68
CM
5981/*
5982 * find the highest existing sequence number in a directory
5983 * and then set the in-memory index_cnt variable to reflect
5984 * free sequence numbers
5985 */
4c570655 5986static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 5987{
4c570655 5988 struct btrfs_root *root = inode->root;
aec7477b
JB
5989 struct btrfs_key key, found_key;
5990 struct btrfs_path *path;
5991 struct extent_buffer *leaf;
5992 int ret;
5993
4c570655 5994 key.objectid = btrfs_ino(inode);
962a298f 5995 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
5996 key.offset = (u64)-1;
5997
5998 path = btrfs_alloc_path();
5999 if (!path)
6000 return -ENOMEM;
6001
6002 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6003 if (ret < 0)
6004 goto out;
6005 /* FIXME: we should be able to handle this */
6006 if (ret == 0)
6007 goto out;
6008 ret = 0;
6009
6010 /*
6011 * MAGIC NUMBER EXPLANATION:
6012 * since we search a directory based on f_pos we have to start at 2
6013 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6014 * else has to start at 2
6015 */
6016 if (path->slots[0] == 0) {
4c570655 6017 inode->index_cnt = 2;
aec7477b
JB
6018 goto out;
6019 }
6020
6021 path->slots[0]--;
6022
6023 leaf = path->nodes[0];
6024 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6025
4c570655 6026 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6027 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6028 inode->index_cnt = 2;
aec7477b
JB
6029 goto out;
6030 }
6031
4c570655 6032 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6033out:
6034 btrfs_free_path(path);
6035 return ret;
6036}
6037
d352ac68
CM
6038/*
6039 * helper to find a free sequence number in a given directory. This current
6040 * code is very simple, later versions will do smarter things in the btree
6041 */
877574e2 6042int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6043{
6044 int ret = 0;
6045
877574e2
NB
6046 if (dir->index_cnt == (u64)-1) {
6047 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7 6048 if (ret) {
877574e2 6049 ret = btrfs_set_inode_index_count(dir);
16cdcec7
MX
6050 if (ret)
6051 return ret;
6052 }
aec7477b
JB
6053 }
6054
877574e2
NB
6055 *index = dir->index_cnt;
6056 dir->index_cnt++;
aec7477b
JB
6057
6058 return ret;
6059}
6060
b0d5d10f
CM
6061static int btrfs_insert_inode_locked(struct inode *inode)
6062{
6063 struct btrfs_iget_args args;
6064 args.location = &BTRFS_I(inode)->location;
6065 args.root = BTRFS_I(inode)->root;
6066
6067 return insert_inode_locked4(inode,
6068 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6069 btrfs_find_actor, &args);
6070}
6071
39279cc3
CM
6072static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6073 struct btrfs_root *root,
aec7477b 6074 struct inode *dir,
9c58309d 6075 const char *name, int name_len,
175a4eb7
AV
6076 u64 ref_objectid, u64 objectid,
6077 umode_t mode, u64 *index)
39279cc3 6078{
0b246afa 6079 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6080 struct inode *inode;
5f39d397 6081 struct btrfs_inode_item *inode_item;
39279cc3 6082 struct btrfs_key *location;
5f39d397 6083 struct btrfs_path *path;
9c58309d
CM
6084 struct btrfs_inode_ref *ref;
6085 struct btrfs_key key[2];
6086 u32 sizes[2];
ef3b9af5 6087 int nitems = name ? 2 : 1;
9c58309d 6088 unsigned long ptr;
39279cc3 6089 int ret;
39279cc3 6090
5f39d397 6091 path = btrfs_alloc_path();
d8926bb3
MF
6092 if (!path)
6093 return ERR_PTR(-ENOMEM);
5f39d397 6094
0b246afa 6095 inode = new_inode(fs_info->sb);
8fb27640
YS
6096 if (!inode) {
6097 btrfs_free_path(path);
39279cc3 6098 return ERR_PTR(-ENOMEM);
8fb27640 6099 }
39279cc3 6100
5762b5c9
FM
6101 /*
6102 * O_TMPFILE, set link count to 0, so that after this point,
6103 * we fill in an inode item with the correct link count.
6104 */
6105 if (!name)
6106 set_nlink(inode, 0);
6107
581bb050
LZ
6108 /*
6109 * we have to initialize this early, so we can reclaim the inode
6110 * number if we fail afterwards in this function.
6111 */
6112 inode->i_ino = objectid;
6113
ef3b9af5 6114 if (dir && name) {
1abe9b8a 6115 trace_btrfs_inode_request(dir);
6116
877574e2 6117 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6118 if (ret) {
8fb27640 6119 btrfs_free_path(path);
09771430 6120 iput(inode);
aec7477b 6121 return ERR_PTR(ret);
09771430 6122 }
ef3b9af5
FM
6123 } else if (dir) {
6124 *index = 0;
aec7477b
JB
6125 }
6126 /*
6127 * index_cnt is ignored for everything but a dir,
6128 * btrfs_get_inode_index_count has an explanation for the magic
6129 * number
6130 */
6131 BTRFS_I(inode)->index_cnt = 2;
67de1176 6132 BTRFS_I(inode)->dir_index = *index;
39279cc3 6133 BTRFS_I(inode)->root = root;
e02119d5 6134 BTRFS_I(inode)->generation = trans->transid;
76195853 6135 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6136
5dc562c5
JB
6137 /*
6138 * We could have gotten an inode number from somebody who was fsynced
6139 * and then removed in this same transaction, so let's just set full
6140 * sync since it will be a full sync anyway and this will blow away the
6141 * old info in the log.
6142 */
6143 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6144
9c58309d 6145 key[0].objectid = objectid;
962a298f 6146 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6147 key[0].offset = 0;
6148
9c58309d 6149 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6150
6151 if (name) {
6152 /*
6153 * Start new inodes with an inode_ref. This is slightly more
6154 * efficient for small numbers of hard links since they will
6155 * be packed into one item. Extended refs will kick in if we
6156 * add more hard links than can fit in the ref item.
6157 */
6158 key[1].objectid = objectid;
962a298f 6159 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6160 key[1].offset = ref_objectid;
6161
6162 sizes[1] = name_len + sizeof(*ref);
6163 }
9c58309d 6164
b0d5d10f
CM
6165 location = &BTRFS_I(inode)->location;
6166 location->objectid = objectid;
6167 location->offset = 0;
962a298f 6168 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6169
6170 ret = btrfs_insert_inode_locked(inode);
6171 if (ret < 0)
6172 goto fail;
6173
b9473439 6174 path->leave_spinning = 1;
ef3b9af5 6175 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6176 if (ret != 0)
b0d5d10f 6177 goto fail_unlock;
5f39d397 6178
ecc11fab 6179 inode_init_owner(inode, dir, mode);
a76a3cd4 6180 inode_set_bytes(inode, 0);
9cc97d64 6181
c2050a45 6182 inode->i_mtime = current_time(inode);
9cc97d64 6183 inode->i_atime = inode->i_mtime;
6184 inode->i_ctime = inode->i_mtime;
6185 BTRFS_I(inode)->i_otime = inode->i_mtime;
6186
5f39d397
CM
6187 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6188 struct btrfs_inode_item);
b159fa28 6189 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6190 sizeof(*inode_item));
e02119d5 6191 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6192
ef3b9af5
FM
6193 if (name) {
6194 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6195 struct btrfs_inode_ref);
6196 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6197 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6198 ptr = (unsigned long)(ref + 1);
6199 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6200 }
9c58309d 6201
5f39d397
CM
6202 btrfs_mark_buffer_dirty(path->nodes[0]);
6203 btrfs_free_path(path);
6204
6cbff00f
CH
6205 btrfs_inherit_iflags(inode, dir);
6206
569254b0 6207 if (S_ISREG(mode)) {
0b246afa 6208 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6209 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6210 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6211 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6212 BTRFS_INODE_NODATASUM;
94272164
CM
6213 }
6214
5d4f98a2 6215 inode_tree_add(inode);
1abe9b8a 6216
6217 trace_btrfs_inode_new(inode);
1973f0fa 6218 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6219
8ea05e3a
AB
6220 btrfs_update_root_times(trans, root);
6221
63541927
FDBM
6222 ret = btrfs_inode_inherit_props(trans, inode, dir);
6223 if (ret)
0b246afa 6224 btrfs_err(fs_info,
63541927 6225 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6226 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6227
39279cc3 6228 return inode;
b0d5d10f
CM
6229
6230fail_unlock:
6231 unlock_new_inode(inode);
5f39d397 6232fail:
ef3b9af5 6233 if (dir && name)
aec7477b 6234 BTRFS_I(dir)->index_cnt--;
5f39d397 6235 btrfs_free_path(path);
09771430 6236 iput(inode);
5f39d397 6237 return ERR_PTR(ret);
39279cc3
CM
6238}
6239
6240static inline u8 btrfs_inode_type(struct inode *inode)
6241{
6242 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6243}
6244
d352ac68
CM
6245/*
6246 * utility function to add 'inode' into 'parent_inode' with
6247 * a give name and a given sequence number.
6248 * if 'add_backref' is true, also insert a backref from the
6249 * inode to the parent directory.
6250 */
e02119d5
CM
6251int btrfs_add_link(struct btrfs_trans_handle *trans,
6252 struct inode *parent_inode, struct inode *inode,
6253 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6254{
0b246afa 6255 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4df27c4d 6256 int ret = 0;
39279cc3 6257 struct btrfs_key key;
e02119d5 6258 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4a0cc7ca
NB
6259 u64 ino = btrfs_ino(BTRFS_I(inode));
6260 u64 parent_ino = btrfs_ino(BTRFS_I(parent_inode));
5f39d397 6261
33345d01 6262 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6263 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6264 } else {
33345d01 6265 key.objectid = ino;
962a298f 6266 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6267 key.offset = 0;
6268 }
6269
33345d01 6270 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
0b246afa
JM
6271 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6272 root->root_key.objectid, parent_ino,
6273 index, name, name_len);
4df27c4d 6274 } else if (add_backref) {
33345d01
LZ
6275 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6276 parent_ino, index);
4df27c4d 6277 }
39279cc3 6278
79787eaa
JM
6279 /* Nothing to clean up yet */
6280 if (ret)
6281 return ret;
4df27c4d 6282
79787eaa 6283 ret = btrfs_insert_dir_item(trans, root, name, name_len,
8e7611cf 6284 BTRFS_I(parent_inode), &key,
79787eaa 6285 btrfs_inode_type(inode), index);
9c52057c 6286 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6287 goto fail_dir_item;
6288 else if (ret) {
66642832 6289 btrfs_abort_transaction(trans, ret);
79787eaa 6290 return ret;
39279cc3 6291 }
79787eaa 6292
6ef06d27 6293 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
79787eaa 6294 name_len * 2);
0c4d2d95 6295 inode_inc_iversion(parent_inode);
04b285f3 6296 parent_inode->i_mtime = parent_inode->i_ctime =
c2050a45 6297 current_time(parent_inode);
79787eaa
JM
6298 ret = btrfs_update_inode(trans, root, parent_inode);
6299 if (ret)
66642832 6300 btrfs_abort_transaction(trans, ret);
39279cc3 6301 return ret;
fe66a05a
CM
6302
6303fail_dir_item:
6304 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6305 u64 local_index;
6306 int err;
0b246afa
JM
6307 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6308 root->root_key.objectid, parent_ino,
6309 &local_index, name, name_len);
fe66a05a
CM
6310
6311 } else if (add_backref) {
6312 u64 local_index;
6313 int err;
6314
6315 err = btrfs_del_inode_ref(trans, root, name, name_len,
6316 ino, parent_ino, &local_index);
6317 }
6318 return ret;
39279cc3
CM
6319}
6320
6321static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
6322 struct inode *dir, struct dentry *dentry,
6323 struct inode *inode, int backref, u64 index)
39279cc3 6324{
a1b075d2
JB
6325 int err = btrfs_add_link(trans, dir, inode,
6326 dentry->d_name.name, dentry->d_name.len,
6327 backref, index);
39279cc3
CM
6328 if (err > 0)
6329 err = -EEXIST;
6330 return err;
6331}
6332
618e21d5 6333static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6334 umode_t mode, dev_t rdev)
618e21d5 6335{
2ff7e61e 6336 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6337 struct btrfs_trans_handle *trans;
6338 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6339 struct inode *inode = NULL;
618e21d5
JB
6340 int err;
6341 int drop_inode = 0;
6342 u64 objectid;
00e4e6b3 6343 u64 index = 0;
618e21d5 6344
9ed74f2d
JB
6345 /*
6346 * 2 for inode item and ref
6347 * 2 for dir items
6348 * 1 for xattr if selinux is on
6349 */
a22285a6
YZ
6350 trans = btrfs_start_transaction(root, 5);
6351 if (IS_ERR(trans))
6352 return PTR_ERR(trans);
1832a6d5 6353
581bb050
LZ
6354 err = btrfs_find_free_ino(root, &objectid);
6355 if (err)
6356 goto out_unlock;
6357
aec7477b 6358 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6359 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6360 mode, &index);
7cf96da3
TI
6361 if (IS_ERR(inode)) {
6362 err = PTR_ERR(inode);
618e21d5 6363 goto out_unlock;
7cf96da3 6364 }
618e21d5 6365
ad19db71
CS
6366 /*
6367 * If the active LSM wants to access the inode during
6368 * d_instantiate it needs these. Smack checks to see
6369 * if the filesystem supports xattrs by looking at the
6370 * ops vector.
6371 */
ad19db71 6372 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6373 init_special_inode(inode, inode->i_mode, rdev);
6374
6375 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6376 if (err)
b0d5d10f
CM
6377 goto out_unlock_inode;
6378
6379 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6380 if (err) {
6381 goto out_unlock_inode;
6382 } else {
1b4ab1bb 6383 btrfs_update_inode(trans, root, inode);
b0d5d10f 6384 unlock_new_inode(inode);
08c422c2 6385 d_instantiate(dentry, inode);
618e21d5 6386 }
b0d5d10f 6387
618e21d5 6388out_unlock:
3a45bb20 6389 btrfs_end_transaction(trans);
2ff7e61e
JM
6390 btrfs_balance_delayed_items(fs_info);
6391 btrfs_btree_balance_dirty(fs_info);
618e21d5
JB
6392 if (drop_inode) {
6393 inode_dec_link_count(inode);
6394 iput(inode);
6395 }
618e21d5 6396 return err;
b0d5d10f
CM
6397
6398out_unlock_inode:
6399 drop_inode = 1;
6400 unlock_new_inode(inode);
6401 goto out_unlock;
6402
618e21d5
JB
6403}
6404
39279cc3 6405static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6406 umode_t mode, bool excl)
39279cc3 6407{
2ff7e61e 6408 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6409 struct btrfs_trans_handle *trans;
6410 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6411 struct inode *inode = NULL;
43baa579 6412 int drop_inode_on_err = 0;
a22285a6 6413 int err;
39279cc3 6414 u64 objectid;
00e4e6b3 6415 u64 index = 0;
39279cc3 6416
9ed74f2d
JB
6417 /*
6418 * 2 for inode item and ref
6419 * 2 for dir items
6420 * 1 for xattr if selinux is on
6421 */
a22285a6
YZ
6422 trans = btrfs_start_transaction(root, 5);
6423 if (IS_ERR(trans))
6424 return PTR_ERR(trans);
9ed74f2d 6425
581bb050
LZ
6426 err = btrfs_find_free_ino(root, &objectid);
6427 if (err)
6428 goto out_unlock;
6429
aec7477b 6430 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6431 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6432 mode, &index);
7cf96da3
TI
6433 if (IS_ERR(inode)) {
6434 err = PTR_ERR(inode);
39279cc3 6435 goto out_unlock;
7cf96da3 6436 }
43baa579 6437 drop_inode_on_err = 1;
ad19db71
CS
6438 /*
6439 * If the active LSM wants to access the inode during
6440 * d_instantiate it needs these. Smack checks to see
6441 * if the filesystem supports xattrs by looking at the
6442 * ops vector.
6443 */
6444 inode->i_fop = &btrfs_file_operations;
6445 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6446 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6447
6448 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6449 if (err)
6450 goto out_unlock_inode;
6451
6452 err = btrfs_update_inode(trans, root, inode);
6453 if (err)
6454 goto out_unlock_inode;
ad19db71 6455
a1b075d2 6456 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6457 if (err)
b0d5d10f 6458 goto out_unlock_inode;
43baa579 6459
43baa579 6460 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6461 unlock_new_inode(inode);
43baa579
FB
6462 d_instantiate(dentry, inode);
6463
39279cc3 6464out_unlock:
3a45bb20 6465 btrfs_end_transaction(trans);
43baa579 6466 if (err && drop_inode_on_err) {
39279cc3
CM
6467 inode_dec_link_count(inode);
6468 iput(inode);
6469 }
2ff7e61e
JM
6470 btrfs_balance_delayed_items(fs_info);
6471 btrfs_btree_balance_dirty(fs_info);
39279cc3 6472 return err;
b0d5d10f
CM
6473
6474out_unlock_inode:
6475 unlock_new_inode(inode);
6476 goto out_unlock;
6477
39279cc3
CM
6478}
6479
6480static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6481 struct dentry *dentry)
6482{
271dba45 6483 struct btrfs_trans_handle *trans = NULL;
39279cc3 6484 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6485 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6486 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6487 u64 index;
39279cc3
CM
6488 int err;
6489 int drop_inode = 0;
6490
4a8be425
TH
6491 /* do not allow sys_link's with other subvols of the same device */
6492 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6493 return -EXDEV;
4a8be425 6494
f186373f 6495 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6496 return -EMLINK;
4a8be425 6497
877574e2 6498 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6499 if (err)
6500 goto fail;
6501
a22285a6 6502 /*
7e6b6465 6503 * 2 items for inode and inode ref
a22285a6 6504 * 2 items for dir items
7e6b6465 6505 * 1 item for parent inode
a22285a6 6506 */
7e6b6465 6507 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6508 if (IS_ERR(trans)) {
6509 err = PTR_ERR(trans);
271dba45 6510 trans = NULL;
a22285a6
YZ
6511 goto fail;
6512 }
5f39d397 6513
67de1176
MX
6514 /* There are several dir indexes for this inode, clear the cache. */
6515 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6516 inc_nlink(inode);
0c4d2d95 6517 inode_inc_iversion(inode);
c2050a45 6518 inode->i_ctime = current_time(inode);
7de9c6ee 6519 ihold(inode);
e9976151 6520 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6521
a1b075d2 6522 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6523
a5719521 6524 if (err) {
54aa1f4d 6525 drop_inode = 1;
a5719521 6526 } else {
10d9f309 6527 struct dentry *parent = dentry->d_parent;
a5719521 6528 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6529 if (err)
6530 goto fail;
ef3b9af5
FM
6531 if (inode->i_nlink == 1) {
6532 /*
6533 * If new hard link count is 1, it's a file created
6534 * with open(2) O_TMPFILE flag.
6535 */
6536 err = btrfs_orphan_del(trans, inode);
6537 if (err)
6538 goto fail;
6539 }
08c422c2 6540 d_instantiate(dentry, inode);
9ca5fbfb 6541 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
a5719521 6542 }
39279cc3 6543
2ff7e61e 6544 btrfs_balance_delayed_items(fs_info);
1832a6d5 6545fail:
271dba45 6546 if (trans)
3a45bb20 6547 btrfs_end_transaction(trans);
39279cc3
CM
6548 if (drop_inode) {
6549 inode_dec_link_count(inode);
6550 iput(inode);
6551 }
2ff7e61e 6552 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6553 return err;
6554}
6555
18bb1db3 6556static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6557{
2ff7e61e 6558 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6559 struct inode *inode = NULL;
39279cc3
CM
6560 struct btrfs_trans_handle *trans;
6561 struct btrfs_root *root = BTRFS_I(dir)->root;
6562 int err = 0;
6563 int drop_on_err = 0;
b9d86667 6564 u64 objectid = 0;
00e4e6b3 6565 u64 index = 0;
39279cc3 6566
9ed74f2d
JB
6567 /*
6568 * 2 items for inode and ref
6569 * 2 items for dir items
6570 * 1 for xattr if selinux is on
6571 */
a22285a6
YZ
6572 trans = btrfs_start_transaction(root, 5);
6573 if (IS_ERR(trans))
6574 return PTR_ERR(trans);
39279cc3 6575
581bb050
LZ
6576 err = btrfs_find_free_ino(root, &objectid);
6577 if (err)
6578 goto out_fail;
6579
aec7477b 6580 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6581 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6582 S_IFDIR | mode, &index);
39279cc3
CM
6583 if (IS_ERR(inode)) {
6584 err = PTR_ERR(inode);
6585 goto out_fail;
6586 }
5f39d397 6587
39279cc3 6588 drop_on_err = 1;
b0d5d10f
CM
6589 /* these must be set before we unlock the inode */
6590 inode->i_op = &btrfs_dir_inode_operations;
6591 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6592
2a7dba39 6593 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6594 if (err)
b0d5d10f 6595 goto out_fail_inode;
39279cc3 6596
6ef06d27 6597 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6598 err = btrfs_update_inode(trans, root, inode);
6599 if (err)
b0d5d10f 6600 goto out_fail_inode;
5f39d397 6601
a1b075d2
JB
6602 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6603 dentry->d_name.len, 0, index);
39279cc3 6604 if (err)
b0d5d10f 6605 goto out_fail_inode;
5f39d397 6606
39279cc3 6607 d_instantiate(dentry, inode);
b0d5d10f
CM
6608 /*
6609 * mkdir is special. We're unlocking after we call d_instantiate
6610 * to avoid a race with nfsd calling d_instantiate.
6611 */
6612 unlock_new_inode(inode);
39279cc3 6613 drop_on_err = 0;
39279cc3
CM
6614
6615out_fail:
3a45bb20 6616 btrfs_end_transaction(trans);
c7cfb8a5
WS
6617 if (drop_on_err) {
6618 inode_dec_link_count(inode);
39279cc3 6619 iput(inode);
c7cfb8a5 6620 }
2ff7e61e
JM
6621 btrfs_balance_delayed_items(fs_info);
6622 btrfs_btree_balance_dirty(fs_info);
39279cc3 6623 return err;
b0d5d10f
CM
6624
6625out_fail_inode:
6626 unlock_new_inode(inode);
6627 goto out_fail;
39279cc3
CM
6628}
6629
e6c4efd8
QW
6630/* Find next extent map of a given extent map, caller needs to ensure locks */
6631static struct extent_map *next_extent_map(struct extent_map *em)
6632{
6633 struct rb_node *next;
6634
6635 next = rb_next(&em->rb_node);
6636 if (!next)
6637 return NULL;
6638 return container_of(next, struct extent_map, rb_node);
6639}
6640
6641static struct extent_map *prev_extent_map(struct extent_map *em)
6642{
6643 struct rb_node *prev;
6644
6645 prev = rb_prev(&em->rb_node);
6646 if (!prev)
6647 return NULL;
6648 return container_of(prev, struct extent_map, rb_node);
6649}
6650
d352ac68 6651/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6652 * the existing extent is the nearest extent to map_start,
d352ac68 6653 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6654 * the best fitted new extent into the tree.
d352ac68 6655 */
3b951516
CM
6656static int merge_extent_mapping(struct extent_map_tree *em_tree,
6657 struct extent_map *existing,
e6dcd2dc 6658 struct extent_map *em,
51f395ad 6659 u64 map_start)
3b951516 6660{
e6c4efd8
QW
6661 struct extent_map *prev;
6662 struct extent_map *next;
6663 u64 start;
6664 u64 end;
3b951516 6665 u64 start_diff;
3b951516 6666
e6dcd2dc 6667 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6668
6669 if (existing->start > map_start) {
6670 next = existing;
6671 prev = prev_extent_map(next);
6672 } else {
6673 prev = existing;
6674 next = next_extent_map(prev);
6675 }
6676
6677 start = prev ? extent_map_end(prev) : em->start;
6678 start = max_t(u64, start, em->start);
6679 end = next ? next->start : extent_map_end(em);
6680 end = min_t(u64, end, extent_map_end(em));
6681 start_diff = start - em->start;
6682 em->start = start;
6683 em->len = end - start;
c8b97818
CM
6684 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6685 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6686 em->block_start += start_diff;
c8b97818
CM
6687 em->block_len -= start_diff;
6688 }
09a2a8f9 6689 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6690}
6691
c8b97818 6692static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6693 struct page *page,
c8b97818
CM
6694 size_t pg_offset, u64 extent_offset,
6695 struct btrfs_file_extent_item *item)
6696{
6697 int ret;
6698 struct extent_buffer *leaf = path->nodes[0];
6699 char *tmp;
6700 size_t max_size;
6701 unsigned long inline_size;
6702 unsigned long ptr;
261507a0 6703 int compress_type;
c8b97818
CM
6704
6705 WARN_ON(pg_offset != 0);
261507a0 6706 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6707 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6708 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6709 btrfs_item_nr(path->slots[0]));
c8b97818 6710 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6711 if (!tmp)
6712 return -ENOMEM;
c8b97818
CM
6713 ptr = btrfs_file_extent_inline_start(item);
6714
6715 read_extent_buffer(leaf, tmp, ptr, inline_size);
6716
09cbfeaf 6717 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6718 ret = btrfs_decompress(compress_type, tmp, page,
6719 extent_offset, inline_size, max_size);
c8b97818 6720 kfree(tmp);
166ae5a4 6721 return ret;
c8b97818
CM
6722}
6723
d352ac68
CM
6724/*
6725 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6726 * the ugly parts come from merging extents from the disk with the in-ram
6727 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6728 * where the in-ram extents might be locked pending data=ordered completion.
6729 *
6730 * This also copies inline extents directly into the page.
6731 */
d397712b 6732
a52d9a80 6733struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6734 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6735 int create)
6736{
0b246afa 6737 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
a52d9a80
CM
6738 int ret;
6739 int err = 0;
a52d9a80
CM
6740 u64 extent_start = 0;
6741 u64 extent_end = 0;
4a0cc7ca 6742 u64 objectid = btrfs_ino(BTRFS_I(inode));
a52d9a80 6743 u32 found_type;
f421950f 6744 struct btrfs_path *path = NULL;
a52d9a80
CM
6745 struct btrfs_root *root = BTRFS_I(inode)->root;
6746 struct btrfs_file_extent_item *item;
5f39d397
CM
6747 struct extent_buffer *leaf;
6748 struct btrfs_key found_key;
a52d9a80
CM
6749 struct extent_map *em = NULL;
6750 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6751 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6752 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6753 const bool new_inline = !page || create;
a52d9a80 6754
a52d9a80 6755again:
890871be 6756 read_lock(&em_tree->lock);
d1310b2e 6757 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6758 if (em)
0b246afa 6759 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6760 read_unlock(&em_tree->lock);
d1310b2e 6761
a52d9a80 6762 if (em) {
e1c4b745
CM
6763 if (em->start > start || em->start + em->len <= start)
6764 free_extent_map(em);
6765 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6766 free_extent_map(em);
6767 else
6768 goto out;
a52d9a80 6769 }
172ddd60 6770 em = alloc_extent_map();
a52d9a80 6771 if (!em) {
d1310b2e
CM
6772 err = -ENOMEM;
6773 goto out;
a52d9a80 6774 }
0b246afa 6775 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6776 em->start = EXTENT_MAP_HOLE;
445a6944 6777 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6778 em->len = (u64)-1;
c8b97818 6779 em->block_len = (u64)-1;
f421950f
CM
6780
6781 if (!path) {
6782 path = btrfs_alloc_path();
026fd317
JB
6783 if (!path) {
6784 err = -ENOMEM;
6785 goto out;
6786 }
6787 /*
6788 * Chances are we'll be called again, so go ahead and do
6789 * readahead
6790 */
e4058b54 6791 path->reada = READA_FORWARD;
f421950f
CM
6792 }
6793
179e29e4
CM
6794 ret = btrfs_lookup_file_extent(trans, root, path,
6795 objectid, start, trans != NULL);
a52d9a80
CM
6796 if (ret < 0) {
6797 err = ret;
6798 goto out;
6799 }
6800
6801 if (ret != 0) {
6802 if (path->slots[0] == 0)
6803 goto not_found;
6804 path->slots[0]--;
6805 }
6806
5f39d397
CM
6807 leaf = path->nodes[0];
6808 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6809 struct btrfs_file_extent_item);
a52d9a80 6810 /* are we inside the extent that was found? */
5f39d397 6811 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6812 found_type = found_key.type;
5f39d397 6813 if (found_key.objectid != objectid ||
a52d9a80 6814 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6815 /*
6816 * If we backup past the first extent we want to move forward
6817 * and see if there is an extent in front of us, otherwise we'll
6818 * say there is a hole for our whole search range which can
6819 * cause problems.
6820 */
6821 extent_end = start;
6822 goto next;
a52d9a80
CM
6823 }
6824
5f39d397
CM
6825 found_type = btrfs_file_extent_type(leaf, item);
6826 extent_start = found_key.offset;
d899e052
YZ
6827 if (found_type == BTRFS_FILE_EXTENT_REG ||
6828 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6829 extent_end = extent_start +
db94535d 6830 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6831 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6832 size_t size;
514ac8ad 6833 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
da17066c 6834 extent_end = ALIGN(extent_start + size,
0b246afa 6835 fs_info->sectorsize);
9036c102 6836 }
25a50341 6837next:
9036c102
YZ
6838 if (start >= extent_end) {
6839 path->slots[0]++;
6840 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6841 ret = btrfs_next_leaf(root, path);
6842 if (ret < 0) {
6843 err = ret;
6844 goto out;
a52d9a80 6845 }
9036c102
YZ
6846 if (ret > 0)
6847 goto not_found;
6848 leaf = path->nodes[0];
a52d9a80 6849 }
9036c102
YZ
6850 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6851 if (found_key.objectid != objectid ||
6852 found_key.type != BTRFS_EXTENT_DATA_KEY)
6853 goto not_found;
6854 if (start + len <= found_key.offset)
6855 goto not_found;
e2eca69d
WS
6856 if (start > found_key.offset)
6857 goto next;
9036c102 6858 em->start = start;
70c8a91c 6859 em->orig_start = start;
9036c102
YZ
6860 em->len = found_key.offset - start;
6861 goto not_found_em;
6862 }
6863
7ffbb598
FM
6864 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6865
d899e052
YZ
6866 if (found_type == BTRFS_FILE_EXTENT_REG ||
6867 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6868 goto insert;
6869 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6870 unsigned long ptr;
a52d9a80 6871 char *map;
3326d1b0
CM
6872 size_t size;
6873 size_t extent_offset;
6874 size_t copy_size;
a52d9a80 6875
7ffbb598 6876 if (new_inline)
689f9346 6877 goto out;
5f39d397 6878
514ac8ad 6879 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6880 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6881 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6882 size - extent_offset);
3326d1b0 6883 em->start = extent_start + extent_offset;
0b246afa 6884 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 6885 em->orig_block_len = em->len;
70c8a91c 6886 em->orig_start = em->start;
689f9346 6887 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6888 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6889 if (btrfs_file_extent_compression(leaf, item) !=
6890 BTRFS_COMPRESS_NONE) {
e40da0e5 6891 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6892 extent_offset, item);
166ae5a4
ZB
6893 if (ret) {
6894 err = ret;
6895 goto out;
6896 }
c8b97818
CM
6897 } else {
6898 map = kmap(page);
6899 read_extent_buffer(leaf, map + pg_offset, ptr,
6900 copy_size);
09cbfeaf 6901 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6902 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6903 PAGE_SIZE - pg_offset -
93c82d57
CM
6904 copy_size);
6905 }
c8b97818
CM
6906 kunmap(page);
6907 }
179e29e4
CM
6908 flush_dcache_page(page);
6909 } else if (create && PageUptodate(page)) {
6bf7e080 6910 BUG();
179e29e4
CM
6911 if (!trans) {
6912 kunmap(page);
6913 free_extent_map(em);
6914 em = NULL;
ff5714cc 6915
b3b4aa74 6916 btrfs_release_path(path);
7a7eaa40 6917 trans = btrfs_join_transaction(root);
ff5714cc 6918
3612b495
TI
6919 if (IS_ERR(trans))
6920 return ERR_CAST(trans);
179e29e4
CM
6921 goto again;
6922 }
c8b97818 6923 map = kmap(page);
70dec807 6924 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6925 copy_size);
c8b97818 6926 kunmap(page);
179e29e4 6927 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6928 }
d1310b2e 6929 set_extent_uptodate(io_tree, em->start,
507903b8 6930 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6931 goto insert;
a52d9a80
CM
6932 }
6933not_found:
6934 em->start = start;
70c8a91c 6935 em->orig_start = start;
d1310b2e 6936 em->len = len;
a52d9a80 6937not_found_em:
5f39d397 6938 em->block_start = EXTENT_MAP_HOLE;
9036c102 6939 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6940insert:
b3b4aa74 6941 btrfs_release_path(path);
d1310b2e 6942 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 6943 btrfs_err(fs_info,
5d163e0e
JM
6944 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6945 em->start, em->len, start, len);
a52d9a80
CM
6946 err = -EIO;
6947 goto out;
6948 }
d1310b2e
CM
6949
6950 err = 0;
890871be 6951 write_lock(&em_tree->lock);
09a2a8f9 6952 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6953 /* it is possible that someone inserted the extent into the tree
6954 * while we had the lock dropped. It is also possible that
6955 * an overlapping map exists in the tree
6956 */
a52d9a80 6957 if (ret == -EEXIST) {
3b951516 6958 struct extent_map *existing;
e6dcd2dc
CM
6959
6960 ret = 0;
6961
e6c4efd8
QW
6962 existing = search_extent_mapping(em_tree, start, len);
6963 /*
6964 * existing will always be non-NULL, since there must be
6965 * extent causing the -EEXIST.
6966 */
8dff9c85 6967 if (existing->start == em->start &&
8e2bd3b7 6968 extent_map_end(existing) >= extent_map_end(em) &&
8dff9c85
CM
6969 em->block_start == existing->block_start) {
6970 /*
8e2bd3b7
OS
6971 * The existing extent map already encompasses the
6972 * entire extent map we tried to add.
8dff9c85
CM
6973 */
6974 free_extent_map(em);
6975 em = existing;
6976 err = 0;
6977
6978 } else if (start >= extent_map_end(existing) ||
32be3a1a 6979 start <= existing->start) {
e6c4efd8
QW
6980 /*
6981 * The existing extent map is the one nearest to
6982 * the [start, start + len) range which overlaps
6983 */
6984 err = merge_extent_mapping(em_tree, existing,
6985 em, start);
e1c4b745 6986 free_extent_map(existing);
e6c4efd8 6987 if (err) {
3b951516
CM
6988 free_extent_map(em);
6989 em = NULL;
6990 }
6991 } else {
6992 free_extent_map(em);
6993 em = existing;
e6dcd2dc 6994 err = 0;
a52d9a80 6995 }
a52d9a80 6996 }
890871be 6997 write_unlock(&em_tree->lock);
a52d9a80 6998out:
1abe9b8a 6999
4a0cc7ca 7000 trace_btrfs_get_extent(root, BTRFS_I(inode), em);
1abe9b8a 7001
527afb44 7002 btrfs_free_path(path);
a52d9a80 7003 if (trans) {
3a45bb20 7004 ret = btrfs_end_transaction(trans);
d397712b 7005 if (!err)
a52d9a80
CM
7006 err = ret;
7007 }
a52d9a80
CM
7008 if (err) {
7009 free_extent_map(em);
a52d9a80
CM
7010 return ERR_PTR(err);
7011 }
79787eaa 7012 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7013 return em;
7014}
7015
ec29ed5b
CM
7016struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7017 size_t pg_offset, u64 start, u64 len,
7018 int create)
7019{
7020 struct extent_map *em;
7021 struct extent_map *hole_em = NULL;
7022 u64 range_start = start;
7023 u64 end;
7024 u64 found;
7025 u64 found_end;
7026 int err = 0;
7027
7028 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7029 if (IS_ERR(em))
7030 return em;
7031 if (em) {
7032 /*
f9e4fb53
LB
7033 * if our em maps to
7034 * - a hole or
7035 * - a pre-alloc extent,
7036 * there might actually be delalloc bytes behind it.
ec29ed5b 7037 */
f9e4fb53
LB
7038 if (em->block_start != EXTENT_MAP_HOLE &&
7039 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
7040 return em;
7041 else
7042 hole_em = em;
7043 }
7044
7045 /* check to see if we've wrapped (len == -1 or similar) */
7046 end = start + len;
7047 if (end < start)
7048 end = (u64)-1;
7049 else
7050 end -= 1;
7051
7052 em = NULL;
7053
7054 /* ok, we didn't find anything, lets look for delalloc */
7055 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7056 end, len, EXTENT_DELALLOC, 1);
7057 found_end = range_start + found;
7058 if (found_end < range_start)
7059 found_end = (u64)-1;
7060
7061 /*
7062 * we didn't find anything useful, return
7063 * the original results from get_extent()
7064 */
7065 if (range_start > end || found_end <= start) {
7066 em = hole_em;
7067 hole_em = NULL;
7068 goto out;
7069 }
7070
7071 /* adjust the range_start to make sure it doesn't
7072 * go backwards from the start they passed in
7073 */
67871254 7074 range_start = max(start, range_start);
ec29ed5b
CM
7075 found = found_end - range_start;
7076
7077 if (found > 0) {
7078 u64 hole_start = start;
7079 u64 hole_len = len;
7080
172ddd60 7081 em = alloc_extent_map();
ec29ed5b
CM
7082 if (!em) {
7083 err = -ENOMEM;
7084 goto out;
7085 }
7086 /*
7087 * when btrfs_get_extent can't find anything it
7088 * returns one huge hole
7089 *
7090 * make sure what it found really fits our range, and
7091 * adjust to make sure it is based on the start from
7092 * the caller
7093 */
7094 if (hole_em) {
7095 u64 calc_end = extent_map_end(hole_em);
7096
7097 if (calc_end <= start || (hole_em->start > end)) {
7098 free_extent_map(hole_em);
7099 hole_em = NULL;
7100 } else {
7101 hole_start = max(hole_em->start, start);
7102 hole_len = calc_end - hole_start;
7103 }
7104 }
7105 em->bdev = NULL;
7106 if (hole_em && range_start > hole_start) {
7107 /* our hole starts before our delalloc, so we
7108 * have to return just the parts of the hole
7109 * that go until the delalloc starts
7110 */
7111 em->len = min(hole_len,
7112 range_start - hole_start);
7113 em->start = hole_start;
7114 em->orig_start = hole_start;
7115 /*
7116 * don't adjust block start at all,
7117 * it is fixed at EXTENT_MAP_HOLE
7118 */
7119 em->block_start = hole_em->block_start;
7120 em->block_len = hole_len;
f9e4fb53
LB
7121 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7122 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7123 } else {
7124 em->start = range_start;
7125 em->len = found;
7126 em->orig_start = range_start;
7127 em->block_start = EXTENT_MAP_DELALLOC;
7128 em->block_len = found;
7129 }
7130 } else if (hole_em) {
7131 return hole_em;
7132 }
7133out:
7134
7135 free_extent_map(hole_em);
7136 if (err) {
7137 free_extent_map(em);
7138 return ERR_PTR(err);
7139 }
7140 return em;
7141}
7142
5f9a8a51
FM
7143static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7144 const u64 start,
7145 const u64 len,
7146 const u64 orig_start,
7147 const u64 block_start,
7148 const u64 block_len,
7149 const u64 orig_block_len,
7150 const u64 ram_bytes,
7151 const int type)
7152{
7153 struct extent_map *em = NULL;
7154 int ret;
7155
5f9a8a51 7156 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7157 em = create_io_em(inode, start, len, orig_start,
7158 block_start, block_len, orig_block_len,
7159 ram_bytes,
7160 BTRFS_COMPRESS_NONE, /* compress_type */
7161 type);
5f9a8a51
FM
7162 if (IS_ERR(em))
7163 goto out;
7164 }
7165 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7166 len, block_len, type);
7167 if (ret) {
7168 if (em) {
7169 free_extent_map(em);
dcdbc059 7170 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7171 start + len - 1, 0);
7172 }
7173 em = ERR_PTR(ret);
7174 }
7175 out:
5f9a8a51
FM
7176
7177 return em;
7178}
7179
4b46fce2
JB
7180static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7181 u64 start, u64 len)
7182{
0b246afa 7183 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7184 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7185 struct extent_map *em;
4b46fce2
JB
7186 struct btrfs_key ins;
7187 u64 alloc_hint;
7188 int ret;
4b46fce2 7189
4b46fce2 7190 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7191 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7192 0, alloc_hint, &ins, 1, 1);
00361589
JB
7193 if (ret)
7194 return ERR_PTR(ret);
4b46fce2 7195
5f9a8a51
FM
7196 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7197 ins.objectid, ins.offset, ins.offset,
6288d6ea 7198 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7199 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7200 if (IS_ERR(em))
2ff7e61e
JM
7201 btrfs_free_reserved_extent(fs_info, ins.objectid,
7202 ins.offset, 1);
de0ee0ed 7203
4b46fce2
JB
7204 return em;
7205}
7206
46bfbb5c
CM
7207/*
7208 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7209 * block must be cow'd
7210 */
00361589 7211noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7212 u64 *orig_start, u64 *orig_block_len,
7213 u64 *ram_bytes)
46bfbb5c 7214{
2ff7e61e 7215 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7216 struct btrfs_path *path;
7217 int ret;
7218 struct extent_buffer *leaf;
7219 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7220 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7221 struct btrfs_file_extent_item *fi;
7222 struct btrfs_key key;
7223 u64 disk_bytenr;
7224 u64 backref_offset;
7225 u64 extent_end;
7226 u64 num_bytes;
7227 int slot;
7228 int found_type;
7ee9e440 7229 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7230
46bfbb5c
CM
7231 path = btrfs_alloc_path();
7232 if (!path)
7233 return -ENOMEM;
7234
f85b7379
DS
7235 ret = btrfs_lookup_file_extent(NULL, root, path,
7236 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7237 if (ret < 0)
7238 goto out;
7239
7240 slot = path->slots[0];
7241 if (ret == 1) {
7242 if (slot == 0) {
7243 /* can't find the item, must cow */
7244 ret = 0;
7245 goto out;
7246 }
7247 slot--;
7248 }
7249 ret = 0;
7250 leaf = path->nodes[0];
7251 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7252 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7253 key.type != BTRFS_EXTENT_DATA_KEY) {
7254 /* not our file or wrong item type, must cow */
7255 goto out;
7256 }
7257
7258 if (key.offset > offset) {
7259 /* Wrong offset, must cow */
7260 goto out;
7261 }
7262
7263 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7264 found_type = btrfs_file_extent_type(leaf, fi);
7265 if (found_type != BTRFS_FILE_EXTENT_REG &&
7266 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7267 /* not a regular extent, must cow */
7268 goto out;
7269 }
7ee9e440
JB
7270
7271 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7272 goto out;
7273
e77751aa
MX
7274 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7275 if (extent_end <= offset)
7276 goto out;
7277
46bfbb5c 7278 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7279 if (disk_bytenr == 0)
7280 goto out;
7281
7282 if (btrfs_file_extent_compression(leaf, fi) ||
7283 btrfs_file_extent_encryption(leaf, fi) ||
7284 btrfs_file_extent_other_encoding(leaf, fi))
7285 goto out;
7286
46bfbb5c
CM
7287 backref_offset = btrfs_file_extent_offset(leaf, fi);
7288
7ee9e440
JB
7289 if (orig_start) {
7290 *orig_start = key.offset - backref_offset;
7291 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7292 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7293 }
eb384b55 7294
2ff7e61e 7295 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7296 goto out;
7b2b7085
MX
7297
7298 num_bytes = min(offset + *len, extent_end) - offset;
7299 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7300 u64 range_end;
7301
da17066c
JM
7302 range_end = round_up(offset + num_bytes,
7303 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7304 ret = test_range_bit(io_tree, offset, range_end,
7305 EXTENT_DELALLOC, 0, NULL);
7306 if (ret) {
7307 ret = -EAGAIN;
7308 goto out;
7309 }
7310 }
7311
1bda19eb 7312 btrfs_release_path(path);
46bfbb5c
CM
7313
7314 /*
7315 * look for other files referencing this extent, if we
7316 * find any we must cow
7317 */
00361589 7318
e4c3b2dc 7319 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7320 key.offset - backref_offset, disk_bytenr);
00361589
JB
7321 if (ret) {
7322 ret = 0;
7323 goto out;
7324 }
46bfbb5c
CM
7325
7326 /*
7327 * adjust disk_bytenr and num_bytes to cover just the bytes
7328 * in this extent we are about to write. If there
7329 * are any csums in that range we have to cow in order
7330 * to keep the csums correct
7331 */
7332 disk_bytenr += backref_offset;
7333 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7334 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7335 goto out;
46bfbb5c
CM
7336 /*
7337 * all of the above have passed, it is safe to overwrite this extent
7338 * without cow
7339 */
eb384b55 7340 *len = num_bytes;
46bfbb5c
CM
7341 ret = 1;
7342out:
7343 btrfs_free_path(path);
7344 return ret;
7345}
7346
fc4adbff
AG
7347bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7348{
7349 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7350 int found = false;
7351 void **pagep = NULL;
7352 struct page *page = NULL;
7353 int start_idx;
7354 int end_idx;
7355
09cbfeaf 7356 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7357
7358 /*
7359 * end is the last byte in the last page. end == start is legal
7360 */
09cbfeaf 7361 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7362
7363 rcu_read_lock();
7364
7365 /* Most of the code in this while loop is lifted from
7366 * find_get_page. It's been modified to begin searching from a
7367 * page and return just the first page found in that range. If the
7368 * found idx is less than or equal to the end idx then we know that
7369 * a page exists. If no pages are found or if those pages are
7370 * outside of the range then we're fine (yay!) */
7371 while (page == NULL &&
7372 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7373 page = radix_tree_deref_slot(pagep);
7374 if (unlikely(!page))
7375 break;
7376
7377 if (radix_tree_exception(page)) {
809f9016
FM
7378 if (radix_tree_deref_retry(page)) {
7379 page = NULL;
fc4adbff 7380 continue;
809f9016 7381 }
fc4adbff
AG
7382 /*
7383 * Otherwise, shmem/tmpfs must be storing a swap entry
7384 * here as an exceptional entry: so return it without
7385 * attempting to raise page count.
7386 */
6fdef6d4 7387 page = NULL;
fc4adbff
AG
7388 break; /* TODO: Is this relevant for this use case? */
7389 }
7390
91405151
FM
7391 if (!page_cache_get_speculative(page)) {
7392 page = NULL;
fc4adbff 7393 continue;
91405151 7394 }
fc4adbff
AG
7395
7396 /*
7397 * Has the page moved?
7398 * This is part of the lockless pagecache protocol. See
7399 * include/linux/pagemap.h for details.
7400 */
7401 if (unlikely(page != *pagep)) {
09cbfeaf 7402 put_page(page);
fc4adbff
AG
7403 page = NULL;
7404 }
7405 }
7406
7407 if (page) {
7408 if (page->index <= end_idx)
7409 found = true;
09cbfeaf 7410 put_page(page);
fc4adbff
AG
7411 }
7412
7413 rcu_read_unlock();
7414 return found;
7415}
7416
eb838e73
JB
7417static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7418 struct extent_state **cached_state, int writing)
7419{
7420 struct btrfs_ordered_extent *ordered;
7421 int ret = 0;
7422
7423 while (1) {
7424 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7425 cached_state);
eb838e73
JB
7426 /*
7427 * We're concerned with the entire range that we're going to be
01327610 7428 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7429 * extents in this range.
7430 */
7431 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7432 lockend - lockstart + 1);
7433
7434 /*
7435 * We need to make sure there are no buffered pages in this
7436 * range either, we could have raced between the invalidate in
7437 * generic_file_direct_write and locking the extent. The
7438 * invalidate needs to happen so that reads after a write do not
7439 * get stale data.
7440 */
fc4adbff
AG
7441 if (!ordered &&
7442 (!writing ||
7443 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7444 break;
7445
7446 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7447 cached_state, GFP_NOFS);
7448
7449 if (ordered) {
ade77029
FM
7450 /*
7451 * If we are doing a DIO read and the ordered extent we
7452 * found is for a buffered write, we can not wait for it
7453 * to complete and retry, because if we do so we can
7454 * deadlock with concurrent buffered writes on page
7455 * locks. This happens only if our DIO read covers more
7456 * than one extent map, if at this point has already
7457 * created an ordered extent for a previous extent map
7458 * and locked its range in the inode's io tree, and a
7459 * concurrent write against that previous extent map's
7460 * range and this range started (we unlock the ranges
7461 * in the io tree only when the bios complete and
7462 * buffered writes always lock pages before attempting
7463 * to lock range in the io tree).
7464 */
7465 if (writing ||
7466 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7467 btrfs_start_ordered_extent(inode, ordered, 1);
7468 else
7469 ret = -ENOTBLK;
eb838e73
JB
7470 btrfs_put_ordered_extent(ordered);
7471 } else {
eb838e73 7472 /*
b850ae14
FM
7473 * We could trigger writeback for this range (and wait
7474 * for it to complete) and then invalidate the pages for
7475 * this range (through invalidate_inode_pages2_range()),
7476 * but that can lead us to a deadlock with a concurrent
7477 * call to readpages() (a buffered read or a defrag call
7478 * triggered a readahead) on a page lock due to an
7479 * ordered dio extent we created before but did not have
7480 * yet a corresponding bio submitted (whence it can not
7481 * complete), which makes readpages() wait for that
7482 * ordered extent to complete while holding a lock on
7483 * that page.
eb838e73 7484 */
b850ae14 7485 ret = -ENOTBLK;
eb838e73
JB
7486 }
7487
ade77029
FM
7488 if (ret)
7489 break;
7490
eb838e73
JB
7491 cond_resched();
7492 }
7493
7494 return ret;
7495}
7496
6f9994db
LB
7497/* The callers of this must take lock_extent() */
7498static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7499 u64 orig_start, u64 block_start,
7500 u64 block_len, u64 orig_block_len,
7501 u64 ram_bytes, int compress_type,
7502 int type)
69ffb543
JB
7503{
7504 struct extent_map_tree *em_tree;
7505 struct extent_map *em;
7506 struct btrfs_root *root = BTRFS_I(inode)->root;
7507 int ret;
7508
6f9994db
LB
7509 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7510 type == BTRFS_ORDERED_COMPRESSED ||
7511 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7512 type == BTRFS_ORDERED_REGULAR);
6f9994db 7513
69ffb543
JB
7514 em_tree = &BTRFS_I(inode)->extent_tree;
7515 em = alloc_extent_map();
7516 if (!em)
7517 return ERR_PTR(-ENOMEM);
7518
7519 em->start = start;
7520 em->orig_start = orig_start;
7521 em->len = len;
7522 em->block_len = block_len;
7523 em->block_start = block_start;
7524 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7525 em->orig_block_len = orig_block_len;
cc95bef6 7526 em->ram_bytes = ram_bytes;
70c8a91c 7527 em->generation = -1;
69ffb543 7528 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7529 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7530 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7531 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7532 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7533 em->compress_type = compress_type;
7534 }
69ffb543
JB
7535
7536 do {
dcdbc059 7537 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7538 em->start + em->len - 1, 0);
7539 write_lock(&em_tree->lock);
09a2a8f9 7540 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7541 write_unlock(&em_tree->lock);
6f9994db
LB
7542 /*
7543 * The caller has taken lock_extent(), who could race with us
7544 * to add em?
7545 */
69ffb543
JB
7546 } while (ret == -EEXIST);
7547
7548 if (ret) {
7549 free_extent_map(em);
7550 return ERR_PTR(ret);
7551 }
7552
6f9994db 7553 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7554 return em;
7555}
7556
9c9464cc
FM
7557static void adjust_dio_outstanding_extents(struct inode *inode,
7558 struct btrfs_dio_data *dio_data,
7559 const u64 len)
7560{
823bb20a 7561 unsigned num_extents = count_max_extents(len);
9c9464cc 7562
9c9464cc
FM
7563 /*
7564 * If we have an outstanding_extents count still set then we're
7565 * within our reservation, otherwise we need to adjust our inode
7566 * counter appropriately.
7567 */
c2931667 7568 if (dio_data->outstanding_extents >= num_extents) {
9c9464cc
FM
7569 dio_data->outstanding_extents -= num_extents;
7570 } else {
c2931667
LB
7571 /*
7572 * If dio write length has been split due to no large enough
7573 * contiguous space, we need to compensate our inode counter
7574 * appropriately.
7575 */
7576 u64 num_needed = num_extents - dio_data->outstanding_extents;
7577
9c9464cc 7578 spin_lock(&BTRFS_I(inode)->lock);
c2931667 7579 BTRFS_I(inode)->outstanding_extents += num_needed;
9c9464cc
FM
7580 spin_unlock(&BTRFS_I(inode)->lock);
7581 }
7582}
7583
4b46fce2
JB
7584static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7585 struct buffer_head *bh_result, int create)
7586{
0b246afa 7587 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7588 struct extent_map *em;
eb838e73 7589 struct extent_state *cached_state = NULL;
50745b0a 7590 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7591 u64 start = iblock << inode->i_blkbits;
eb838e73 7592 u64 lockstart, lockend;
4b46fce2 7593 u64 len = bh_result->b_size;
eb838e73 7594 int unlock_bits = EXTENT_LOCKED;
0934856d 7595 int ret = 0;
eb838e73 7596
172a5049 7597 if (create)
3266789f 7598 unlock_bits |= EXTENT_DIRTY;
172a5049 7599 else
0b246afa 7600 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7601
c329861d
JB
7602 lockstart = start;
7603 lockend = start + len - 1;
7604
e1cbbfa5
JB
7605 if (current->journal_info) {
7606 /*
7607 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7608 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7609 * confused.
7610 */
50745b0a 7611 dio_data = current->journal_info;
e1cbbfa5
JB
7612 current->journal_info = NULL;
7613 }
7614
eb838e73
JB
7615 /*
7616 * If this errors out it's because we couldn't invalidate pagecache for
7617 * this range and we need to fallback to buffered.
7618 */
9c9464cc
FM
7619 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7620 create)) {
7621 ret = -ENOTBLK;
7622 goto err;
7623 }
eb838e73 7624
4b46fce2 7625 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7626 if (IS_ERR(em)) {
7627 ret = PTR_ERR(em);
7628 goto unlock_err;
7629 }
4b46fce2
JB
7630
7631 /*
7632 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7633 * io. INLINE is special, and we could probably kludge it in here, but
7634 * it's still buffered so for safety lets just fall back to the generic
7635 * buffered path.
7636 *
7637 * For COMPRESSED we _have_ to read the entire extent in so we can
7638 * decompress it, so there will be buffering required no matter what we
7639 * do, so go ahead and fallback to buffered.
7640 *
01327610 7641 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7642 * to buffered IO. Don't blame me, this is the price we pay for using
7643 * the generic code.
7644 */
7645 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7646 em->block_start == EXTENT_MAP_INLINE) {
7647 free_extent_map(em);
eb838e73
JB
7648 ret = -ENOTBLK;
7649 goto unlock_err;
4b46fce2
JB
7650 }
7651
7652 /* Just a good old fashioned hole, return */
7653 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7654 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7655 free_extent_map(em);
eb838e73 7656 goto unlock_err;
4b46fce2
JB
7657 }
7658
7659 /*
7660 * We don't allocate a new extent in the following cases
7661 *
7662 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7663 * existing extent.
7664 * 2) The extent is marked as PREALLOC. We're good to go here and can
7665 * just use the extent.
7666 *
7667 */
46bfbb5c 7668 if (!create) {
eb838e73
JB
7669 len = min(len, em->len - (start - em->start));
7670 lockstart = start + len;
7671 goto unlock;
46bfbb5c 7672 }
4b46fce2
JB
7673
7674 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7675 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7676 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7677 int type;
eb384b55 7678 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7679
7680 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7681 type = BTRFS_ORDERED_PREALLOC;
7682 else
7683 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7684 len = min(len, em->len - (start - em->start));
4b46fce2 7685 block_start = em->block_start + (start - em->start);
46bfbb5c 7686
00361589 7687 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c 7688 &orig_block_len, &ram_bytes) == 1 &&
0b246afa 7689 btrfs_inc_nocow_writers(fs_info, block_start)) {
5f9a8a51 7690 struct extent_map *em2;
0b901916 7691
5f9a8a51
FM
7692 em2 = btrfs_create_dio_extent(inode, start, len,
7693 orig_start, block_start,
7694 len, orig_block_len,
7695 ram_bytes, type);
0b246afa 7696 btrfs_dec_nocow_writers(fs_info, block_start);
69ffb543
JB
7697 if (type == BTRFS_ORDERED_PREALLOC) {
7698 free_extent_map(em);
5f9a8a51 7699 em = em2;
69ffb543 7700 }
5f9a8a51
FM
7701 if (em2 && IS_ERR(em2)) {
7702 ret = PTR_ERR(em2);
eb838e73 7703 goto unlock_err;
46bfbb5c 7704 }
18513091
WX
7705 /*
7706 * For inode marked NODATACOW or extent marked PREALLOC,
7707 * use the existing or preallocated extent, so does not
7708 * need to adjust btrfs_space_info's bytes_may_use.
7709 */
7710 btrfs_free_reserved_data_space_noquota(inode,
7711 start, len);
46bfbb5c 7712 goto unlock;
4b46fce2 7713 }
4b46fce2 7714 }
00361589 7715
46bfbb5c
CM
7716 /*
7717 * this will cow the extent, reset the len in case we changed
7718 * it above
7719 */
7720 len = bh_result->b_size;
70c8a91c
JB
7721 free_extent_map(em);
7722 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7723 if (IS_ERR(em)) {
7724 ret = PTR_ERR(em);
7725 goto unlock_err;
7726 }
46bfbb5c
CM
7727 len = min(len, em->len - (start - em->start));
7728unlock:
4b46fce2
JB
7729 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7730 inode->i_blkbits;
46bfbb5c 7731 bh_result->b_size = len;
4b46fce2
JB
7732 bh_result->b_bdev = em->bdev;
7733 set_buffer_mapped(bh_result);
c3473e83
JB
7734 if (create) {
7735 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7736 set_buffer_new(bh_result);
7737
7738 /*
7739 * Need to update the i_size under the extent lock so buffered
7740 * readers will get the updated i_size when we unlock.
7741 */
4aaedfb0 7742 if (!dio_data->overwrite && start + len > i_size_read(inode))
c3473e83 7743 i_size_write(inode, start + len);
0934856d 7744
9c9464cc 7745 adjust_dio_outstanding_extents(inode, dio_data, len);
50745b0a 7746 WARN_ON(dio_data->reserve < len);
7747 dio_data->reserve -= len;
f28a4928 7748 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7749 current->journal_info = dio_data;
c3473e83 7750 }
4b46fce2 7751
eb838e73
JB
7752 /*
7753 * In the case of write we need to clear and unlock the entire range,
7754 * in the case of read we need to unlock only the end area that we
7755 * aren't using if there is any left over space.
7756 */
24c03fa5 7757 if (lockstart < lockend) {
0934856d
MX
7758 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7759 lockend, unlock_bits, 1, 0,
7760 &cached_state, GFP_NOFS);
24c03fa5 7761 } else {
eb838e73 7762 free_extent_state(cached_state);
24c03fa5 7763 }
eb838e73 7764
4b46fce2
JB
7765 free_extent_map(em);
7766
7767 return 0;
eb838e73
JB
7768
7769unlock_err:
eb838e73
JB
7770 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7771 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7772err:
50745b0a 7773 if (dio_data)
7774 current->journal_info = dio_data;
9c9464cc
FM
7775 /*
7776 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7777 * write less data then expected, so that we don't underflow our inode's
7778 * outstanding extents counter.
7779 */
7780 if (create && dio_data)
7781 adjust_dio_outstanding_extents(inode, dio_data, len);
7782
eb838e73 7783 return ret;
4b46fce2
JB
7784}
7785
8b110e39 7786static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
81a75f67 7787 int mirror_num)
8b110e39 7788{
2ff7e61e 7789 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7790 int ret;
7791
37226b21 7792 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39
MX
7793
7794 bio_get(bio);
7795
2ff7e61e 7796 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39
MX
7797 if (ret)
7798 goto err;
7799
2ff7e61e 7800 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
8b110e39
MX
7801err:
7802 bio_put(bio);
7803 return ret;
7804}
7805
7806static int btrfs_check_dio_repairable(struct inode *inode,
7807 struct bio *failed_bio,
7808 struct io_failure_record *failrec,
7809 int failed_mirror)
7810{
ab8d0fc4 7811 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7812 int num_copies;
7813
ab8d0fc4 7814 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7815 if (num_copies == 1) {
7816 /*
7817 * we only have a single copy of the data, so don't bother with
7818 * all the retry and error correction code that follows. no
7819 * matter what the error is, it is very likely to persist.
7820 */
ab8d0fc4
JM
7821 btrfs_debug(fs_info,
7822 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7823 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7824 return 0;
7825 }
7826
7827 failrec->failed_mirror = failed_mirror;
7828 failrec->this_mirror++;
7829 if (failrec->this_mirror == failed_mirror)
7830 failrec->this_mirror++;
7831
7832 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7833 btrfs_debug(fs_info,
7834 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7835 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7836 return 0;
7837 }
7838
7839 return 1;
7840}
7841
7842static int dio_read_error(struct inode *inode, struct bio *failed_bio,
2dabb324
CR
7843 struct page *page, unsigned int pgoff,
7844 u64 start, u64 end, int failed_mirror,
7845 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7846{
7847 struct io_failure_record *failrec;
7848 struct bio *bio;
7849 int isector;
70fd7614 7850 int read_mode = 0;
8b110e39
MX
7851 int ret;
7852
37226b21 7853 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7854
7855 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7856 if (ret)
7857 return ret;
7858
7859 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7860 failed_mirror);
7861 if (!ret) {
7862 free_io_failure(inode, failrec);
7863 return -EIO;
7864 }
7865
2dabb324
CR
7866 if ((failed_bio->bi_vcnt > 1)
7867 || (failed_bio->bi_io_vec->bv_len
da17066c 7868 > btrfs_inode_sectorsize(inode)))
70fd7614 7869 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
7870
7871 isector = start - btrfs_io_bio(failed_bio)->logical;
7872 isector >>= inode->i_sb->s_blocksize_bits;
7873 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7874 pgoff, isector, repair_endio, repair_arg);
8b110e39
MX
7875 if (!bio) {
7876 free_io_failure(inode, failrec);
7877 return -EIO;
7878 }
37226b21 7879 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
7880
7881 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7882 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7883 read_mode, failrec->this_mirror, failrec->in_validation);
7884
81a75f67 7885 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8b110e39
MX
7886 if (ret) {
7887 free_io_failure(inode, failrec);
7888 bio_put(bio);
7889 }
7890
7891 return ret;
7892}
7893
7894struct btrfs_retry_complete {
7895 struct completion done;
7896 struct inode *inode;
7897 u64 start;
7898 int uptodate;
7899};
7900
4246a0b6 7901static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7902{
7903 struct btrfs_retry_complete *done = bio->bi_private;
2dabb324 7904 struct inode *inode;
8b110e39
MX
7905 struct bio_vec *bvec;
7906 int i;
7907
4246a0b6 7908 if (bio->bi_error)
8b110e39
MX
7909 goto end;
7910
2dabb324
CR
7911 ASSERT(bio->bi_vcnt == 1);
7912 inode = bio->bi_io_vec->bv_page->mapping->host;
da17066c 7913 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 7914
8b110e39
MX
7915 done->uptodate = 1;
7916 bio_for_each_segment_all(bvec, bio, i)
7917 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7918end:
7919 complete(&done->done);
7920 bio_put(bio);
7921}
7922
7923static int __btrfs_correct_data_nocsum(struct inode *inode,
7924 struct btrfs_io_bio *io_bio)
4b46fce2 7925{
2dabb324 7926 struct btrfs_fs_info *fs_info;
2c30c71b 7927 struct bio_vec *bvec;
8b110e39 7928 struct btrfs_retry_complete done;
4b46fce2 7929 u64 start;
2dabb324
CR
7930 unsigned int pgoff;
7931 u32 sectorsize;
7932 int nr_sectors;
2c30c71b 7933 int i;
c1dc0896 7934 int ret;
4b46fce2 7935
2dabb324 7936 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 7937 sectorsize = fs_info->sectorsize;
2dabb324 7938
8b110e39
MX
7939 start = io_bio->logical;
7940 done.inode = inode;
7941
7942 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
7943 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7944 pgoff = bvec->bv_offset;
7945
7946next_block_or_try_again:
8b110e39
MX
7947 done.uptodate = 0;
7948 done.start = start;
7949 init_completion(&done.done);
7950
2dabb324
CR
7951 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7952 pgoff, start, start + sectorsize - 1,
7953 io_bio->mirror_num,
7954 btrfs_retry_endio_nocsum, &done);
8b110e39
MX
7955 if (ret)
7956 return ret;
7957
7958 wait_for_completion(&done.done);
7959
7960 if (!done.uptodate) {
7961 /* We might have another mirror, so try again */
2dabb324 7962 goto next_block_or_try_again;
8b110e39
MX
7963 }
7964
2dabb324
CR
7965 start += sectorsize;
7966
7967 if (nr_sectors--) {
7968 pgoff += sectorsize;
7969 goto next_block_or_try_again;
7970 }
8b110e39
MX
7971 }
7972
7973 return 0;
7974}
7975
4246a0b6 7976static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7977{
7978 struct btrfs_retry_complete *done = bio->bi_private;
7979 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2dabb324 7980 struct inode *inode;
8b110e39 7981 struct bio_vec *bvec;
2dabb324 7982 u64 start;
8b110e39
MX
7983 int uptodate;
7984 int ret;
7985 int i;
7986
4246a0b6 7987 if (bio->bi_error)
8b110e39
MX
7988 goto end;
7989
7990 uptodate = 1;
2dabb324
CR
7991
7992 start = done->start;
7993
7994 ASSERT(bio->bi_vcnt == 1);
7995 inode = bio->bi_io_vec->bv_page->mapping->host;
da17066c 7996 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 7997
8b110e39
MX
7998 bio_for_each_segment_all(bvec, bio, i) {
7999 ret = __readpage_endio_check(done->inode, io_bio, i,
2dabb324
CR
8000 bvec->bv_page, bvec->bv_offset,
8001 done->start, bvec->bv_len);
8b110e39
MX
8002 if (!ret)
8003 clean_io_failure(done->inode, done->start,
2dabb324 8004 bvec->bv_page, bvec->bv_offset);
8b110e39
MX
8005 else
8006 uptodate = 0;
8007 }
8008
8009 done->uptodate = uptodate;
8010end:
8011 complete(&done->done);
8012 bio_put(bio);
8013}
8014
8015static int __btrfs_subio_endio_read(struct inode *inode,
8016 struct btrfs_io_bio *io_bio, int err)
8017{
2dabb324 8018 struct btrfs_fs_info *fs_info;
8b110e39
MX
8019 struct bio_vec *bvec;
8020 struct btrfs_retry_complete done;
8021 u64 start;
8022 u64 offset = 0;
2dabb324
CR
8023 u32 sectorsize;
8024 int nr_sectors;
8025 unsigned int pgoff;
8026 int csum_pos;
8b110e39
MX
8027 int i;
8028 int ret;
dc380aea 8029
2dabb324 8030 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8031 sectorsize = fs_info->sectorsize;
2dabb324 8032
8b110e39 8033 err = 0;
c1dc0896 8034 start = io_bio->logical;
8b110e39
MX
8035 done.inode = inode;
8036
c1dc0896 8037 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
8038 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8039
8040 pgoff = bvec->bv_offset;
8041next_block:
8042 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8043 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8044 bvec->bv_page, pgoff, start,
8045 sectorsize);
8b110e39
MX
8046 if (likely(!ret))
8047 goto next;
8048try_again:
8049 done.uptodate = 0;
8050 done.start = start;
8051 init_completion(&done.done);
8052
2dabb324
CR
8053 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8054 pgoff, start, start + sectorsize - 1,
8055 io_bio->mirror_num,
8056 btrfs_retry_endio, &done);
8b110e39
MX
8057 if (ret) {
8058 err = ret;
8059 goto next;
8060 }
8061
8062 wait_for_completion(&done.done);
8063
8064 if (!done.uptodate) {
8065 /* We might have another mirror, so try again */
8066 goto try_again;
8067 }
8068next:
2dabb324
CR
8069 offset += sectorsize;
8070 start += sectorsize;
8071
8072 ASSERT(nr_sectors);
8073
8074 if (--nr_sectors) {
8075 pgoff += sectorsize;
8076 goto next_block;
8077 }
2c30c71b 8078 }
c1dc0896
MX
8079
8080 return err;
8081}
8082
8b110e39
MX
8083static int btrfs_subio_endio_read(struct inode *inode,
8084 struct btrfs_io_bio *io_bio, int err)
8085{
8086 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8087
8088 if (skip_csum) {
8089 if (unlikely(err))
8090 return __btrfs_correct_data_nocsum(inode, io_bio);
8091 else
8092 return 0;
8093 } else {
8094 return __btrfs_subio_endio_read(inode, io_bio, err);
8095 }
8096}
8097
4246a0b6 8098static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8099{
8100 struct btrfs_dio_private *dip = bio->bi_private;
8101 struct inode *inode = dip->inode;
8102 struct bio *dio_bio;
8103 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 8104 int err = bio->bi_error;
c1dc0896 8105
8b110e39
MX
8106 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8107 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8108
4b46fce2 8109 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8110 dip->logical_offset + dip->bytes - 1);
9be3395b 8111 dio_bio = dip->dio_bio;
4b46fce2 8112
4b46fce2 8113 kfree(dip);
c0da7aa1 8114
1636d1d7 8115 dio_bio->bi_error = bio->bi_error;
4246a0b6 8116 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
8117
8118 if (io_bio->end_io)
8119 io_bio->end_io(io_bio, err);
9be3395b 8120 bio_put(bio);
4b46fce2
JB
8121}
8122
14543774
FM
8123static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8124 const u64 offset,
8125 const u64 bytes,
8126 const int uptodate)
4b46fce2 8127{
0b246afa 8128 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8129 struct btrfs_ordered_extent *ordered = NULL;
14543774
FM
8130 u64 ordered_offset = offset;
8131 u64 ordered_bytes = bytes;
4b46fce2
JB
8132 int ret;
8133
163cf09c
CM
8134again:
8135 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8136 &ordered_offset,
4246a0b6 8137 ordered_bytes,
14543774 8138 uptodate);
4b46fce2 8139 if (!ret)
163cf09c 8140 goto out_test;
4b46fce2 8141
9e0af237
LB
8142 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8143 finish_ordered_fn, NULL, NULL);
0b246afa 8144 btrfs_queue_work(fs_info->endio_write_workers, &ordered->work);
163cf09c
CM
8145out_test:
8146 /*
8147 * our bio might span multiple ordered extents. If we haven't
8148 * completed the accounting for the whole dio, go back and try again
8149 */
14543774
FM
8150 if (ordered_offset < offset + bytes) {
8151 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8152 ordered = NULL;
163cf09c
CM
8153 goto again;
8154 }
14543774
FM
8155}
8156
8157static void btrfs_endio_direct_write(struct bio *bio)
8158{
8159 struct btrfs_dio_private *dip = bio->bi_private;
8160 struct bio *dio_bio = dip->dio_bio;
8161
8162 btrfs_endio_direct_write_update_ordered(dip->inode,
8163 dip->logical_offset,
8164 dip->bytes,
8165 !bio->bi_error);
4b46fce2 8166
4b46fce2 8167 kfree(dip);
c0da7aa1 8168
1636d1d7 8169 dio_bio->bi_error = bio->bi_error;
4246a0b6 8170 dio_end_io(dio_bio, bio->bi_error);
9be3395b 8171 bio_put(bio);
4b46fce2
JB
8172}
8173
81a75f67 8174static int __btrfs_submit_bio_start_direct_io(struct inode *inode,
eaf25d93
CM
8175 struct bio *bio, int mirror_num,
8176 unsigned long bio_flags, u64 offset)
8177{
8178 int ret;
2ff7e61e 8179 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8180 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8181 return 0;
8182}
8183
4246a0b6 8184static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8185{
8186 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8187 int err = bio->bi_error;
e65e1535 8188
8b110e39
MX
8189 if (err)
8190 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8191 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8192 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8193 bio->bi_opf,
8b110e39
MX
8194 (unsigned long long)bio->bi_iter.bi_sector,
8195 bio->bi_iter.bi_size, err);
8196
8197 if (dip->subio_endio)
8198 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8199
8200 if (err) {
e65e1535
MX
8201 dip->errors = 1;
8202
8203 /*
8204 * before atomic variable goto zero, we must make sure
8205 * dip->errors is perceived to be set.
8206 */
4e857c58 8207 smp_mb__before_atomic();
e65e1535
MX
8208 }
8209
8210 /* if there are more bios still pending for this dio, just exit */
8211 if (!atomic_dec_and_test(&dip->pending_bios))
8212 goto out;
8213
9be3395b 8214 if (dip->errors) {
e65e1535 8215 bio_io_error(dip->orig_bio);
9be3395b 8216 } else {
4246a0b6
CH
8217 dip->dio_bio->bi_error = 0;
8218 bio_endio(dip->orig_bio);
e65e1535
MX
8219 }
8220out:
8221 bio_put(bio);
8222}
8223
8224static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8225 u64 first_sector, gfp_t gfp_flags)
8226{
da2f0f74 8227 struct bio *bio;
22365979 8228 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
da2f0f74
CM
8229 if (bio)
8230 bio_associate_current(bio);
8231 return bio;
e65e1535
MX
8232}
8233
2ff7e61e 8234static inline int btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8235 struct btrfs_dio_private *dip,
8236 struct bio *bio,
8237 u64 file_offset)
8238{
8239 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8240 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8241 int ret;
8242
8243 /*
8244 * We load all the csum data we need when we submit
8245 * the first bio to reduce the csum tree search and
8246 * contention.
8247 */
8248 if (dip->logical_offset == file_offset) {
2ff7e61e 8249 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8250 file_offset);
8251 if (ret)
8252 return ret;
8253 }
8254
8255 if (bio == dip->orig_bio)
8256 return 0;
8257
8258 file_offset -= dip->logical_offset;
8259 file_offset >>= inode->i_sb->s_blocksize_bits;
8260 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8261
8262 return 0;
8263}
8264
e65e1535 8265static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
81a75f67 8266 u64 file_offset, int skip_sum,
c329861d 8267 int async_submit)
e65e1535 8268{
0b246afa 8269 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8270 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8271 bool write = bio_op(bio) == REQ_OP_WRITE;
e65e1535
MX
8272 int ret;
8273
b812ce28
JB
8274 if (async_submit)
8275 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8276
e65e1535 8277 bio_get(bio);
5fd02043
JB
8278
8279 if (!write) {
0b246afa 8280 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8281 if (ret)
8282 goto err;
8283 }
e65e1535 8284
1ae39938
JB
8285 if (skip_sum)
8286 goto map;
8287
8288 if (write && async_submit) {
0b246afa
JM
8289 ret = btrfs_wq_submit_bio(fs_info, inode, bio, 0, 0,
8290 file_offset,
8291 __btrfs_submit_bio_start_direct_io,
8292 __btrfs_submit_bio_done);
e65e1535 8293 goto err;
1ae39938
JB
8294 } else if (write) {
8295 /*
8296 * If we aren't doing async submit, calculate the csum of the
8297 * bio now.
8298 */
2ff7e61e 8299 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8300 if (ret)
8301 goto err;
23ea8e5a 8302 } else {
2ff7e61e 8303 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8304 file_offset);
c2db1073
TI
8305 if (ret)
8306 goto err;
8307 }
1ae39938 8308map:
2ff7e61e 8309 ret = btrfs_map_bio(fs_info, bio, 0, async_submit);
e65e1535
MX
8310err:
8311 bio_put(bio);
8312 return ret;
8313}
8314
81a75f67 8315static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
e65e1535
MX
8316 int skip_sum)
8317{
8318 struct inode *inode = dip->inode;
0b246afa 8319 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535 8320 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
8321 struct bio *bio;
8322 struct bio *orig_bio = dip->orig_bio;
6a2de22f 8323 struct bio_vec *bvec;
4f024f37 8324 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
8325 u64 file_offset = dip->logical_offset;
8326 u64 submit_len = 0;
8327 u64 map_length;
0b246afa 8328 u32 blocksize = fs_info->sectorsize;
1ae39938 8329 int async_submit = 0;
5f4dc8fc
CR
8330 int nr_sectors;
8331 int ret;
6a2de22f 8332 int i, j;
e65e1535 8333
4f024f37 8334 map_length = orig_bio->bi_iter.bi_size;
0b246afa
JM
8335 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8336 &map_length, NULL, 0);
7a5c3c9b 8337 if (ret)
e65e1535 8338 return -EIO;
facc8a22 8339
4f024f37 8340 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 8341 bio = orig_bio;
c1dc0896 8342 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8343 goto submit;
8344 }
8345
53b381b3 8346 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 8347 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8348 async_submit = 0;
8349 else
8350 async_submit = 1;
8351
02f57c7a
JB
8352 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8353 if (!bio)
8354 return -ENOMEM;
7a5c3c9b 8355
ef295ecf 8356 bio->bi_opf = orig_bio->bi_opf;
02f57c7a
JB
8357 bio->bi_private = dip;
8358 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8359 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
8360 atomic_inc(&dip->pending_bios);
8361
6a2de22f 8362 bio_for_each_segment_all(bvec, orig_bio, j) {
0b246afa 8363 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
5f4dc8fc
CR
8364 i = 0;
8365next_block:
8366 if (unlikely(map_length < submit_len + blocksize ||
8367 bio_add_page(bio, bvec->bv_page, blocksize,
8368 bvec->bv_offset + (i * blocksize)) < blocksize)) {
e65e1535
MX
8369 /*
8370 * inc the count before we submit the bio so
8371 * we know the end IO handler won't happen before
8372 * we inc the count. Otherwise, the dip might get freed
8373 * before we're done setting it up
8374 */
8375 atomic_inc(&dip->pending_bios);
81a75f67 8376 ret = __btrfs_submit_dio_bio(bio, inode,
e65e1535 8377 file_offset, skip_sum,
c329861d 8378 async_submit);
e65e1535
MX
8379 if (ret) {
8380 bio_put(bio);
8381 atomic_dec(&dip->pending_bios);
8382 goto out_err;
8383 }
8384
e65e1535
MX
8385 start_sector += submit_len >> 9;
8386 file_offset += submit_len;
8387
8388 submit_len = 0;
e65e1535
MX
8389
8390 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8391 start_sector, GFP_NOFS);
8392 if (!bio)
8393 goto out_err;
ef295ecf 8394 bio->bi_opf = orig_bio->bi_opf;
e65e1535
MX
8395 bio->bi_private = dip;
8396 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8397 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 8398
4f024f37 8399 map_length = orig_bio->bi_iter.bi_size;
0b246afa 8400 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
3ec706c8 8401 start_sector << 9,
e65e1535
MX
8402 &map_length, NULL, 0);
8403 if (ret) {
8404 bio_put(bio);
8405 goto out_err;
8406 }
5f4dc8fc
CR
8407
8408 goto next_block;
e65e1535 8409 } else {
5f4dc8fc
CR
8410 submit_len += blocksize;
8411 if (--nr_sectors) {
8412 i++;
8413 goto next_block;
8414 }
e65e1535
MX
8415 }
8416 }
8417
02f57c7a 8418submit:
81a75f67 8419 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
c329861d 8420 async_submit);
e65e1535
MX
8421 if (!ret)
8422 return 0;
8423
8424 bio_put(bio);
8425out_err:
8426 dip->errors = 1;
8427 /*
8428 * before atomic variable goto zero, we must
8429 * make sure dip->errors is perceived to be set.
8430 */
4e857c58 8431 smp_mb__before_atomic();
e65e1535
MX
8432 if (atomic_dec_and_test(&dip->pending_bios))
8433 bio_io_error(dip->orig_bio);
8434
8435 /* bio_end_io() will handle error, so we needn't return it */
8436 return 0;
8437}
8438
8a4c1e42
MC
8439static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8440 loff_t file_offset)
4b46fce2 8441{
61de718f
FM
8442 struct btrfs_dio_private *dip = NULL;
8443 struct bio *io_bio = NULL;
23ea8e5a 8444 struct btrfs_io_bio *btrfs_bio;
4b46fce2 8445 int skip_sum;
8a4c1e42 8446 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8447 int ret = 0;
8448
8449 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8450
9be3395b 8451 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
8452 if (!io_bio) {
8453 ret = -ENOMEM;
8454 goto free_ordered;
8455 }
8456
c1dc0896 8457 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8458 if (!dip) {
8459 ret = -ENOMEM;
61de718f 8460 goto free_ordered;
4b46fce2 8461 }
4b46fce2 8462
9be3395b 8463 dip->private = dio_bio->bi_private;
4b46fce2
JB
8464 dip->inode = inode;
8465 dip->logical_offset = file_offset;
4f024f37
KO
8466 dip->bytes = dio_bio->bi_iter.bi_size;
8467 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8468 io_bio->bi_private = dip;
9be3395b
CM
8469 dip->orig_bio = io_bio;
8470 dip->dio_bio = dio_bio;
e65e1535 8471 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8472 btrfs_bio = btrfs_io_bio(io_bio);
8473 btrfs_bio->logical = file_offset;
4b46fce2 8474
c1dc0896 8475 if (write) {
9be3395b 8476 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8477 } else {
9be3395b 8478 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8479 dip->subio_endio = btrfs_subio_endio_read;
8480 }
4b46fce2 8481
f28a4928
FM
8482 /*
8483 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8484 * even if we fail to submit a bio, because in such case we do the
8485 * corresponding error handling below and it must not be done a second
8486 * time by btrfs_direct_IO().
8487 */
8488 if (write) {
8489 struct btrfs_dio_data *dio_data = current->journal_info;
8490
8491 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8492 dip->bytes;
8493 dio_data->unsubmitted_oe_range_start =
8494 dio_data->unsubmitted_oe_range_end;
8495 }
8496
81a75f67 8497 ret = btrfs_submit_direct_hook(dip, skip_sum);
e65e1535 8498 if (!ret)
eaf25d93 8499 return;
9be3395b 8500
23ea8e5a
MX
8501 if (btrfs_bio->end_io)
8502 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b 8503
4b46fce2
JB
8504free_ordered:
8505 /*
61de718f
FM
8506 * If we arrived here it means either we failed to submit the dip
8507 * or we either failed to clone the dio_bio or failed to allocate the
8508 * dip. If we cloned the dio_bio and allocated the dip, we can just
8509 * call bio_endio against our io_bio so that we get proper resource
8510 * cleanup if we fail to submit the dip, otherwise, we must do the
8511 * same as btrfs_endio_direct_[write|read] because we can't call these
8512 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8513 */
61de718f 8514 if (io_bio && dip) {
4246a0b6
CH
8515 io_bio->bi_error = -EIO;
8516 bio_endio(io_bio);
61de718f
FM
8517 /*
8518 * The end io callbacks free our dip, do the final put on io_bio
8519 * and all the cleanup and final put for dio_bio (through
8520 * dio_end_io()).
8521 */
8522 dip = NULL;
8523 io_bio = NULL;
8524 } else {
14543774
FM
8525 if (write)
8526 btrfs_endio_direct_write_update_ordered(inode,
8527 file_offset,
8528 dio_bio->bi_iter.bi_size,
8529 0);
8530 else
61de718f
FM
8531 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8532 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8533
4246a0b6 8534 dio_bio->bi_error = -EIO;
61de718f
FM
8535 /*
8536 * Releases and cleans up our dio_bio, no need to bio_put()
8537 * nor bio_endio()/bio_io_error() against dio_bio.
8538 */
8539 dio_end_io(dio_bio, ret);
4b46fce2 8540 }
61de718f
FM
8541 if (io_bio)
8542 bio_put(io_bio);
8543 kfree(dip);
4b46fce2
JB
8544}
8545
2ff7e61e
JM
8546static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8547 struct kiocb *iocb,
8548 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8549{
8550 int seg;
a1b75f7d 8551 int i;
0b246afa 8552 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8553 ssize_t retval = -EINVAL;
5a5f79b5
CM
8554
8555 if (offset & blocksize_mask)
8556 goto out;
8557
28060d5d
AV
8558 if (iov_iter_alignment(iter) & blocksize_mask)
8559 goto out;
a1b75f7d 8560
28060d5d 8561 /* If this is a write we don't need to check anymore */
cd27e455 8562 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8563 return 0;
8564 /*
8565 * Check to make sure we don't have duplicate iov_base's in this
8566 * iovec, if so return EINVAL, otherwise we'll get csum errors
8567 * when reading back.
8568 */
8569 for (seg = 0; seg < iter->nr_segs; seg++) {
8570 for (i = seg + 1; i < iter->nr_segs; i++) {
8571 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8572 goto out;
8573 }
5a5f79b5
CM
8574 }
8575 retval = 0;
8576out:
8577 return retval;
8578}
eb838e73 8579
c8b8e32d 8580static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8581{
4b46fce2
JB
8582 struct file *file = iocb->ki_filp;
8583 struct inode *inode = file->f_mapping->host;
0b246afa 8584 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8585 struct btrfs_dio_data dio_data = { 0 };
c8b8e32d 8586 loff_t offset = iocb->ki_pos;
0934856d 8587 size_t count = 0;
2e60a51e 8588 int flags = 0;
38851cc1
MX
8589 bool wakeup = true;
8590 bool relock = false;
0934856d 8591 ssize_t ret;
4b46fce2 8592
2ff7e61e 8593 if (check_direct_IO(fs_info, iocb, iter, offset))
5a5f79b5 8594 return 0;
3f7c579c 8595
fe0f07d0 8596 inode_dio_begin(inode);
4e857c58 8597 smp_mb__after_atomic();
38851cc1 8598
0e267c44 8599 /*
41bd9ca4
MX
8600 * The generic stuff only does filemap_write_and_wait_range, which
8601 * isn't enough if we've written compressed pages to this area, so
8602 * we need to flush the dirty pages again to make absolutely sure
8603 * that any outstanding dirty pages are on disk.
0e267c44 8604 */
a6cbcd4a 8605 count = iov_iter_count(iter);
41bd9ca4
MX
8606 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8607 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8608 filemap_fdatawrite_range(inode->i_mapping, offset,
8609 offset + count - 1);
0e267c44 8610
6f673763 8611 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8612 /*
8613 * If the write DIO is beyond the EOF, we need update
8614 * the isize, but it is protected by i_mutex. So we can
8615 * not unlock the i_mutex at this case.
8616 */
8617 if (offset + count <= inode->i_size) {
4aaedfb0 8618 dio_data.overwrite = 1;
5955102c 8619 inode_unlock(inode);
38851cc1
MX
8620 relock = true;
8621 }
7cf5b976 8622 ret = btrfs_delalloc_reserve_space(inode, offset, count);
0934856d 8623 if (ret)
38851cc1 8624 goto out;
823bb20a 8625 dio_data.outstanding_extents = count_max_extents(count);
e1cbbfa5
JB
8626
8627 /*
8628 * We need to know how many extents we reserved so that we can
8629 * do the accounting properly if we go over the number we
8630 * originally calculated. Abuse current->journal_info for this.
8631 */
da17066c 8632 dio_data.reserve = round_up(count,
0b246afa 8633 fs_info->sectorsize);
f28a4928
FM
8634 dio_data.unsubmitted_oe_range_start = (u64)offset;
8635 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8636 current->journal_info = &dio_data;
97dcdea0 8637 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8638 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8639 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8640 inode_dio_end(inode);
38851cc1
MX
8641 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8642 wakeup = false;
0934856d
MX
8643 }
8644
17f8c842 8645 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8646 fs_info->fs_devices->latest_bdev,
c8b8e32d 8647 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8648 btrfs_submit_direct, flags);
6f673763 8649 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8650 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8651 current->journal_info = NULL;
ddba1bfc 8652 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8653 if (dio_data.reserve)
7cf5b976
QW
8654 btrfs_delalloc_release_space(inode, offset,
8655 dio_data.reserve);
f28a4928
FM
8656 /*
8657 * On error we might have left some ordered extents
8658 * without submitting corresponding bios for them, so
8659 * cleanup them up to avoid other tasks getting them
8660 * and waiting for them to complete forever.
8661 */
8662 if (dio_data.unsubmitted_oe_range_start <
8663 dio_data.unsubmitted_oe_range_end)
8664 btrfs_endio_direct_write_update_ordered(inode,
8665 dio_data.unsubmitted_oe_range_start,
8666 dio_data.unsubmitted_oe_range_end -
8667 dio_data.unsubmitted_oe_range_start,
8668 0);
ddba1bfc 8669 } else if (ret >= 0 && (size_t)ret < count)
7cf5b976
QW
8670 btrfs_delalloc_release_space(inode, offset,
8671 count - (size_t)ret);
0934856d 8672 }
38851cc1 8673out:
2e60a51e 8674 if (wakeup)
fe0f07d0 8675 inode_dio_end(inode);
38851cc1 8676 if (relock)
5955102c 8677 inode_lock(inode);
0934856d
MX
8678
8679 return ret;
16432985
CM
8680}
8681
05dadc09
TI
8682#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8683
1506fcc8
YS
8684static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8685 __u64 start, __u64 len)
8686{
05dadc09
TI
8687 int ret;
8688
8689 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8690 if (ret)
8691 return ret;
8692
ec29ed5b 8693 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8694}
8695
a52d9a80 8696int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8697{
d1310b2e
CM
8698 struct extent_io_tree *tree;
8699 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8700 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8701}
1832a6d5 8702
a52d9a80 8703static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8704{
d1310b2e 8705 struct extent_io_tree *tree;
be7bd730
JB
8706 struct inode *inode = page->mapping->host;
8707 int ret;
b888db2b
CM
8708
8709 if (current->flags & PF_MEMALLOC) {
8710 redirty_page_for_writepage(wbc, page);
8711 unlock_page(page);
8712 return 0;
8713 }
be7bd730
JB
8714
8715 /*
8716 * If we are under memory pressure we will call this directly from the
8717 * VM, we need to make sure we have the inode referenced for the ordered
8718 * extent. If not just return like we didn't do anything.
8719 */
8720 if (!igrab(inode)) {
8721 redirty_page_for_writepage(wbc, page);
8722 return AOP_WRITEPAGE_ACTIVATE;
8723 }
d1310b2e 8724 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8725 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8726 btrfs_add_delayed_iput(inode);
8727 return ret;
9ebefb18
CM
8728}
8729
48a3b636
ES
8730static int btrfs_writepages(struct address_space *mapping,
8731 struct writeback_control *wbc)
b293f02e 8732{
d1310b2e 8733 struct extent_io_tree *tree;
771ed689 8734
d1310b2e 8735 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8736 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8737}
8738
3ab2fb5a
CM
8739static int
8740btrfs_readpages(struct file *file, struct address_space *mapping,
8741 struct list_head *pages, unsigned nr_pages)
8742{
d1310b2e
CM
8743 struct extent_io_tree *tree;
8744 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8745 return extent_readpages(tree, mapping, pages, nr_pages,
8746 btrfs_get_extent);
8747}
e6dcd2dc 8748static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8749{
d1310b2e
CM
8750 struct extent_io_tree *tree;
8751 struct extent_map_tree *map;
a52d9a80 8752 int ret;
8c2383c3 8753
d1310b2e
CM
8754 tree = &BTRFS_I(page->mapping->host)->io_tree;
8755 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8756 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8757 if (ret == 1) {
8758 ClearPagePrivate(page);
8759 set_page_private(page, 0);
09cbfeaf 8760 put_page(page);
39279cc3 8761 }
a52d9a80 8762 return ret;
39279cc3
CM
8763}
8764
e6dcd2dc
CM
8765static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8766{
98509cfc
CM
8767 if (PageWriteback(page) || PageDirty(page))
8768 return 0;
3ba7ab22 8769 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8770}
8771
d47992f8
LC
8772static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8773 unsigned int length)
39279cc3 8774{
5fd02043 8775 struct inode *inode = page->mapping->host;
d1310b2e 8776 struct extent_io_tree *tree;
e6dcd2dc 8777 struct btrfs_ordered_extent *ordered;
2ac55d41 8778 struct extent_state *cached_state = NULL;
e6dcd2dc 8779 u64 page_start = page_offset(page);
09cbfeaf 8780 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8781 u64 start;
8782 u64 end;
131e404a 8783 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8784
8b62b72b
CM
8785 /*
8786 * we have the page locked, so new writeback can't start,
8787 * and the dirty bit won't be cleared while we are here.
8788 *
8789 * Wait for IO on this page so that we can safely clear
8790 * the PagePrivate2 bit and do ordered accounting
8791 */
e6dcd2dc 8792 wait_on_page_writeback(page);
8b62b72b 8793
5fd02043 8794 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8795 if (offset) {
8796 btrfs_releasepage(page, GFP_NOFS);
8797 return;
8798 }
131e404a
FDBM
8799
8800 if (!inode_evicting)
ff13db41 8801 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8802again:
8803 start = page_start;
8804 ordered = btrfs_lookup_ordered_range(inode, start,
8805 page_end - start + 1);
e6dcd2dc 8806 if (ordered) {
dbfdb6d1 8807 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8808 /*
8809 * IO on this page will never be started, so we need
8810 * to account for any ordered extents now
8811 */
131e404a 8812 if (!inode_evicting)
dbfdb6d1 8813 clear_extent_bit(tree, start, end,
131e404a
FDBM
8814 EXTENT_DIRTY | EXTENT_DELALLOC |
8815 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8816 EXTENT_DEFRAG, 1, 0, &cached_state,
8817 GFP_NOFS);
8b62b72b
CM
8818 /*
8819 * whoever cleared the private bit is responsible
8820 * for the finish_ordered_io
8821 */
77cef2ec
JB
8822 if (TestClearPagePrivate2(page)) {
8823 struct btrfs_ordered_inode_tree *tree;
8824 u64 new_len;
8825
8826 tree = &BTRFS_I(inode)->ordered_tree;
8827
8828 spin_lock_irq(&tree->lock);
8829 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8830 new_len = start - ordered->file_offset;
77cef2ec
JB
8831 if (new_len < ordered->truncated_len)
8832 ordered->truncated_len = new_len;
8833 spin_unlock_irq(&tree->lock);
8834
8835 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8836 start,
8837 end - start + 1, 1))
77cef2ec 8838 btrfs_finish_ordered_io(ordered);
8b62b72b 8839 }
e6dcd2dc 8840 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8841 if (!inode_evicting) {
8842 cached_state = NULL;
dbfdb6d1 8843 lock_extent_bits(tree, start, end,
131e404a
FDBM
8844 &cached_state);
8845 }
dbfdb6d1
CR
8846
8847 start = end + 1;
8848 if (start < page_end)
8849 goto again;
131e404a
FDBM
8850 }
8851
b9d0b389
QW
8852 /*
8853 * Qgroup reserved space handler
8854 * Page here will be either
8855 * 1) Already written to disk
8856 * In this case, its reserved space is released from data rsv map
8857 * and will be freed by delayed_ref handler finally.
8858 * So even we call qgroup_free_data(), it won't decrease reserved
8859 * space.
8860 * 2) Not written to disk
0b34c261
GR
8861 * This means the reserved space should be freed here. However,
8862 * if a truncate invalidates the page (by clearing PageDirty)
8863 * and the page is accounted for while allocating extent
8864 * in btrfs_check_data_free_space() we let delayed_ref to
8865 * free the entire extent.
b9d0b389 8866 */
0b34c261
GR
8867 if (PageDirty(page))
8868 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
131e404a
FDBM
8869 if (!inode_evicting) {
8870 clear_extent_bit(tree, page_start, page_end,
8871 EXTENT_LOCKED | EXTENT_DIRTY |
8872 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8873 EXTENT_DEFRAG, 1, 1,
8874 &cached_state, GFP_NOFS);
8875
8876 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8877 }
e6dcd2dc 8878
4a096752 8879 ClearPageChecked(page);
9ad6b7bc 8880 if (PagePrivate(page)) {
9ad6b7bc
CM
8881 ClearPagePrivate(page);
8882 set_page_private(page, 0);
09cbfeaf 8883 put_page(page);
9ad6b7bc 8884 }
39279cc3
CM
8885}
8886
9ebefb18
CM
8887/*
8888 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8889 * called from a page fault handler when a page is first dirtied. Hence we must
8890 * be careful to check for EOF conditions here. We set the page up correctly
8891 * for a written page which means we get ENOSPC checking when writing into
8892 * holes and correct delalloc and unwritten extent mapping on filesystems that
8893 * support these features.
8894 *
8895 * We are not allowed to take the i_mutex here so we have to play games to
8896 * protect against truncate races as the page could now be beyond EOF. Because
8897 * vmtruncate() writes the inode size before removing pages, once we have the
8898 * page lock we can determine safely if the page is beyond EOF. If it is not
8899 * beyond EOF, then the page is guaranteed safe against truncation until we
8900 * unlock the page.
8901 */
c2ec175c 8902int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8903{
c2ec175c 8904 struct page *page = vmf->page;
496ad9aa 8905 struct inode *inode = file_inode(vma->vm_file);
0b246afa 8906 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8907 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8908 struct btrfs_ordered_extent *ordered;
2ac55d41 8909 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8910 char *kaddr;
8911 unsigned long zero_start;
9ebefb18 8912 loff_t size;
1832a6d5 8913 int ret;
9998eb70 8914 int reserved = 0;
d0b7da88 8915 u64 reserved_space;
a52d9a80 8916 u64 page_start;
e6dcd2dc 8917 u64 page_end;
d0b7da88
CR
8918 u64 end;
8919
09cbfeaf 8920 reserved_space = PAGE_SIZE;
9ebefb18 8921
b2b5ef5c 8922 sb_start_pagefault(inode->i_sb);
df480633 8923 page_start = page_offset(page);
09cbfeaf 8924 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8925 end = page_end;
df480633 8926
d0b7da88
CR
8927 /*
8928 * Reserving delalloc space after obtaining the page lock can lead to
8929 * deadlock. For example, if a dirty page is locked by this function
8930 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8931 * dirty page write out, then the btrfs_writepage() function could
8932 * end up waiting indefinitely to get a lock on the page currently
8933 * being processed by btrfs_page_mkwrite() function.
8934 */
7cf5b976 8935 ret = btrfs_delalloc_reserve_space(inode, page_start,
d0b7da88 8936 reserved_space);
9998eb70 8937 if (!ret) {
e41f941a 8938 ret = file_update_time(vma->vm_file);
9998eb70
CM
8939 reserved = 1;
8940 }
56a76f82
NP
8941 if (ret) {
8942 if (ret == -ENOMEM)
8943 ret = VM_FAULT_OOM;
8944 else /* -ENOSPC, -EIO, etc */
8945 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8946 if (reserved)
8947 goto out;
8948 goto out_noreserve;
56a76f82 8949 }
1832a6d5 8950
56a76f82 8951 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8952again:
9ebefb18 8953 lock_page(page);
9ebefb18 8954 size = i_size_read(inode);
a52d9a80 8955
9ebefb18 8956 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8957 (page_start >= size)) {
9ebefb18
CM
8958 /* page got truncated out from underneath us */
8959 goto out_unlock;
8960 }
e6dcd2dc
CM
8961 wait_on_page_writeback(page);
8962
ff13db41 8963 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8964 set_page_extent_mapped(page);
8965
eb84ae03
CM
8966 /*
8967 * we can't set the delalloc bits if there are pending ordered
8968 * extents. Drop our locks and wait for them to finish
8969 */
9a9239ac 8970 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
e6dcd2dc 8971 if (ordered) {
2ac55d41
JB
8972 unlock_extent_cached(io_tree, page_start, page_end,
8973 &cached_state, GFP_NOFS);
e6dcd2dc 8974 unlock_page(page);
eb84ae03 8975 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8976 btrfs_put_ordered_extent(ordered);
8977 goto again;
8978 }
8979
09cbfeaf 8980 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 8981 reserved_space = round_up(size - page_start,
0b246afa 8982 fs_info->sectorsize);
09cbfeaf 8983 if (reserved_space < PAGE_SIZE) {
d0b7da88
CR
8984 end = page_start + reserved_space - 1;
8985 spin_lock(&BTRFS_I(inode)->lock);
8986 BTRFS_I(inode)->outstanding_extents++;
8987 spin_unlock(&BTRFS_I(inode)->lock);
8988 btrfs_delalloc_release_space(inode, page_start,
09cbfeaf 8989 PAGE_SIZE - reserved_space);
d0b7da88
CR
8990 }
8991 }
8992
fbf19087 8993 /*
5416034f
LB
8994 * page_mkwrite gets called when the page is firstly dirtied after it's
8995 * faulted in, but write(2) could also dirty a page and set delalloc
8996 * bits, thus in this case for space account reason, we still need to
8997 * clear any delalloc bits within this page range since we have to
8998 * reserve data&meta space before lock_page() (see above comments).
fbf19087 8999 */
d0b7da88 9000 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
9001 EXTENT_DIRTY | EXTENT_DELALLOC |
9002 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 9003 0, 0, &cached_state, GFP_NOFS);
fbf19087 9004
d0b7da88 9005 ret = btrfs_set_extent_delalloc(inode, page_start, end,
ba8b04c1 9006 &cached_state, 0);
9ed74f2d 9007 if (ret) {
2ac55d41
JB
9008 unlock_extent_cached(io_tree, page_start, page_end,
9009 &cached_state, GFP_NOFS);
9ed74f2d
JB
9010 ret = VM_FAULT_SIGBUS;
9011 goto out_unlock;
9012 }
e6dcd2dc 9013 ret = 0;
9ebefb18
CM
9014
9015 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9016 if (page_start + PAGE_SIZE > size)
9017 zero_start = size & ~PAGE_MASK;
9ebefb18 9018 else
09cbfeaf 9019 zero_start = PAGE_SIZE;
9ebefb18 9020
09cbfeaf 9021 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9022 kaddr = kmap(page);
09cbfeaf 9023 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9024 flush_dcache_page(page);
9025 kunmap(page);
9026 }
247e743c 9027 ClearPageChecked(page);
e6dcd2dc 9028 set_page_dirty(page);
50a9b214 9029 SetPageUptodate(page);
5a3f23d5 9030
0b246afa 9031 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 9032 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9033 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9034
2ac55d41 9035 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
9036
9037out_unlock:
b2b5ef5c
JK
9038 if (!ret) {
9039 sb_end_pagefault(inode->i_sb);
50a9b214 9040 return VM_FAULT_LOCKED;
b2b5ef5c 9041 }
9ebefb18 9042 unlock_page(page);
1832a6d5 9043out:
d0b7da88 9044 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9998eb70 9045out_noreserve:
b2b5ef5c 9046 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
9047 return ret;
9048}
9049
a41ad394 9050static int btrfs_truncate(struct inode *inode)
39279cc3 9051{
0b246afa 9052 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 9053 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9054 struct btrfs_block_rsv *rsv;
a71754fc 9055 int ret = 0;
3893e33b 9056 int err = 0;
39279cc3 9057 struct btrfs_trans_handle *trans;
0b246afa
JM
9058 u64 mask = fs_info->sectorsize - 1;
9059 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 9060
0ef8b726
JB
9061 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9062 (u64)-1);
9063 if (ret)
9064 return ret;
39279cc3 9065
fcb80c2a 9066 /*
01327610 9067 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9068 * 3 things going on here
9069 *
9070 * 1) We need to reserve space for our orphan item and the space to
9071 * delete our orphan item. Lord knows we don't want to have a dangling
9072 * orphan item because we didn't reserve space to remove it.
9073 *
9074 * 2) We need to reserve space to update our inode.
9075 *
9076 * 3) We need to have something to cache all the space that is going to
9077 * be free'd up by the truncate operation, but also have some slack
9078 * space reserved in case it uses space during the truncate (thank you
9079 * very much snapshotting).
9080 *
01327610 9081 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9082 * space doing the truncate, and we have no earthly idea how much space
01327610 9083 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9084 * doesn't end up using space reserved for updating the inode or
9085 * removing the orphan item. We also need to be able to stop the
9086 * transaction and start a new one, which means we need to be able to
9087 * update the inode several times, and we have no idea of knowing how
9088 * many times that will be, so we can't just reserve 1 item for the
01327610 9089 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9090 * Then there is the orphan item, which does indeed need to be held on
9091 * to for the whole operation, and we need nobody to touch this reserved
9092 * space except the orphan code.
9093 *
9094 * So that leaves us with
9095 *
9096 * 1) root->orphan_block_rsv - for the orphan deletion.
9097 * 2) rsv - for the truncate reservation, which we will steal from the
9098 * transaction reservation.
9099 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9100 * updating the inode.
9101 */
2ff7e61e 9102 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9103 if (!rsv)
9104 return -ENOMEM;
4a338542 9105 rsv->size = min_size;
ca7e70f5 9106 rsv->failfast = 1;
f0cd846e 9107
907cbceb 9108 /*
07127184 9109 * 1 for the truncate slack space
907cbceb
JB
9110 * 1 for updating the inode.
9111 */
f3fe820c 9112 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9113 if (IS_ERR(trans)) {
9114 err = PTR_ERR(trans);
9115 goto out;
9116 }
f0cd846e 9117
907cbceb 9118 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9119 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 9120 min_size, 0);
fcb80c2a 9121 BUG_ON(ret);
f0cd846e 9122
5dc562c5
JB
9123 /*
9124 * So if we truncate and then write and fsync we normally would just
9125 * write the extents that changed, which is a problem if we need to
9126 * first truncate that entire inode. So set this flag so we write out
9127 * all of the extents in the inode to the sync log so we're completely
9128 * safe.
9129 */
9130 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9131 trans->block_rsv = rsv;
907cbceb 9132
8082510e
YZ
9133 while (1) {
9134 ret = btrfs_truncate_inode_items(trans, root, inode,
9135 inode->i_size,
9136 BTRFS_EXTENT_DATA_KEY);
28ed1345 9137 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9138 err = ret;
8082510e 9139 break;
3893e33b 9140 }
39279cc3 9141
0b246afa 9142 trans->block_rsv = &fs_info->trans_block_rsv;
8082510e 9143 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9144 if (ret) {
9145 err = ret;
9146 break;
9147 }
ca7e70f5 9148
3a45bb20 9149 btrfs_end_transaction(trans);
2ff7e61e 9150 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9151
9152 trans = btrfs_start_transaction(root, 2);
9153 if (IS_ERR(trans)) {
9154 ret = err = PTR_ERR(trans);
9155 trans = NULL;
9156 break;
9157 }
9158
47b5d646 9159 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9160 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 9161 rsv, min_size, 0);
ca7e70f5
JB
9162 BUG_ON(ret); /* shouldn't happen */
9163 trans->block_rsv = rsv;
8082510e
YZ
9164 }
9165
9166 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9167 trans->block_rsv = root->orphan_block_rsv;
8082510e 9168 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
9169 if (ret)
9170 err = ret;
8082510e
YZ
9171 }
9172
917c16b2 9173 if (trans) {
0b246afa 9174 trans->block_rsv = &fs_info->trans_block_rsv;
917c16b2
CM
9175 ret = btrfs_update_inode(trans, root, inode);
9176 if (ret && !err)
9177 err = ret;
7b128766 9178
3a45bb20 9179 ret = btrfs_end_transaction(trans);
2ff7e61e 9180 btrfs_btree_balance_dirty(fs_info);
917c16b2 9181 }
fcb80c2a 9182out:
2ff7e61e 9183 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9184
3893e33b
JB
9185 if (ret && !err)
9186 err = ret;
a41ad394 9187
3893e33b 9188 return err;
39279cc3
CM
9189}
9190
d352ac68
CM
9191/*
9192 * create a new subvolume directory/inode (helper for the ioctl).
9193 */
d2fb3437 9194int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9195 struct btrfs_root *new_root,
9196 struct btrfs_root *parent_root,
9197 u64 new_dirid)
39279cc3 9198{
39279cc3 9199 struct inode *inode;
76dda93c 9200 int err;
00e4e6b3 9201 u64 index = 0;
39279cc3 9202
12fc9d09
FA
9203 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9204 new_dirid, new_dirid,
9205 S_IFDIR | (~current_umask() & S_IRWXUGO),
9206 &index);
54aa1f4d 9207 if (IS_ERR(inode))
f46b5a66 9208 return PTR_ERR(inode);
39279cc3
CM
9209 inode->i_op = &btrfs_dir_inode_operations;
9210 inode->i_fop = &btrfs_dir_file_operations;
9211
bfe86848 9212 set_nlink(inode, 1);
6ef06d27 9213 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9214 unlock_new_inode(inode);
3b96362c 9215
63541927
FDBM
9216 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9217 if (err)
9218 btrfs_err(new_root->fs_info,
351fd353 9219 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9220 new_root->root_key.objectid, err);
9221
76dda93c 9222 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9223
76dda93c 9224 iput(inode);
ce598979 9225 return err;
39279cc3
CM
9226}
9227
39279cc3
CM
9228struct inode *btrfs_alloc_inode(struct super_block *sb)
9229{
9230 struct btrfs_inode *ei;
2ead6ae7 9231 struct inode *inode;
39279cc3
CM
9232
9233 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9234 if (!ei)
9235 return NULL;
2ead6ae7
YZ
9236
9237 ei->root = NULL;
2ead6ae7 9238 ei->generation = 0;
15ee9bc7 9239 ei->last_trans = 0;
257c62e1 9240 ei->last_sub_trans = 0;
e02119d5 9241 ei->logged_trans = 0;
2ead6ae7 9242 ei->delalloc_bytes = 0;
47059d93 9243 ei->defrag_bytes = 0;
2ead6ae7
YZ
9244 ei->disk_i_size = 0;
9245 ei->flags = 0;
7709cde3 9246 ei->csum_bytes = 0;
2ead6ae7 9247 ei->index_cnt = (u64)-1;
67de1176 9248 ei->dir_index = 0;
2ead6ae7 9249 ei->last_unlink_trans = 0;
46d8bc34 9250 ei->last_log_commit = 0;
8089fe62 9251 ei->delayed_iput_count = 0;
2ead6ae7 9252
9e0baf60
JB
9253 spin_lock_init(&ei->lock);
9254 ei->outstanding_extents = 0;
9255 ei->reserved_extents = 0;
2ead6ae7 9256
72ac3c0d 9257 ei->runtime_flags = 0;
261507a0 9258 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9259
16cdcec7
MX
9260 ei->delayed_node = NULL;
9261
9cc97d64 9262 ei->i_otime.tv_sec = 0;
9263 ei->i_otime.tv_nsec = 0;
9264
2ead6ae7 9265 inode = &ei->vfs_inode;
a8067e02 9266 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
9267 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9268 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
9269 ei->io_tree.track_uptodate = 1;
9270 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9271 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9272 mutex_init(&ei->log_mutex);
f248679e 9273 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9274 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9275 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9276 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9277 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9278 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9279
9280 return inode;
39279cc3
CM
9281}
9282
aaedb55b
JB
9283#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9284void btrfs_test_destroy_inode(struct inode *inode)
9285{
dcdbc059 9286 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9287 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9288}
9289#endif
9290
fa0d7e3d
NP
9291static void btrfs_i_callback(struct rcu_head *head)
9292{
9293 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9294 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9295}
9296
39279cc3
CM
9297void btrfs_destroy_inode(struct inode *inode)
9298{
0b246afa 9299 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9300 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9301 struct btrfs_root *root = BTRFS_I(inode)->root;
9302
b3d9b7a3 9303 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9304 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9305 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9306 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
9307 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9308 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9309 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9310
a6dbd429
JB
9311 /*
9312 * This can happen where we create an inode, but somebody else also
9313 * created the same inode and we need to destroy the one we already
9314 * created.
9315 */
9316 if (!root)
9317 goto free;
9318
8a35d95f
JB
9319 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9320 &BTRFS_I(inode)->runtime_flags)) {
0b246afa 9321 btrfs_info(fs_info, "inode %llu still on the orphan list",
4a0cc7ca 9322 btrfs_ino(BTRFS_I(inode)));
8a35d95f 9323 atomic_dec(&root->orphan_inodes);
7b128766 9324 }
7b128766 9325
d397712b 9326 while (1) {
e6dcd2dc
CM
9327 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9328 if (!ordered)
9329 break;
9330 else {
0b246afa 9331 btrfs_err(fs_info,
5d163e0e
JM
9332 "found ordered extent %llu %llu on inode cleanup",
9333 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9334 btrfs_remove_ordered_extent(inode, ordered);
9335 btrfs_put_ordered_extent(ordered);
9336 btrfs_put_ordered_extent(ordered);
9337 }
9338 }
56fa9d07 9339 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9340 inode_tree_del(inode);
dcdbc059 9341 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
a6dbd429 9342free:
fa0d7e3d 9343 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9344}
9345
45321ac5 9346int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9347{
9348 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9349
6379ef9f
NA
9350 if (root == NULL)
9351 return 1;
9352
fa6ac876 9353 /* the snap/subvol tree is on deleting */
69e9c6c6 9354 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9355 return 1;
76dda93c 9356 else
45321ac5 9357 return generic_drop_inode(inode);
76dda93c
YZ
9358}
9359
0ee0fda0 9360static void init_once(void *foo)
39279cc3
CM
9361{
9362 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9363
9364 inode_init_once(&ei->vfs_inode);
9365}
9366
9367void btrfs_destroy_cachep(void)
9368{
8c0a8537
KS
9369 /*
9370 * Make sure all delayed rcu free inodes are flushed before we
9371 * destroy cache.
9372 */
9373 rcu_barrier();
5598e900
KM
9374 kmem_cache_destroy(btrfs_inode_cachep);
9375 kmem_cache_destroy(btrfs_trans_handle_cachep);
9376 kmem_cache_destroy(btrfs_transaction_cachep);
9377 kmem_cache_destroy(btrfs_path_cachep);
9378 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9379}
9380
9381int btrfs_init_cachep(void)
9382{
837e1972 9383 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9384 sizeof(struct btrfs_inode), 0,
5d097056
VD
9385 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9386 init_once);
39279cc3
CM
9387 if (!btrfs_inode_cachep)
9388 goto fail;
9601e3f6 9389
837e1972 9390 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9391 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9392 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9393 if (!btrfs_trans_handle_cachep)
9394 goto fail;
9601e3f6 9395
837e1972 9396 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6 9397 sizeof(struct btrfs_transaction), 0,
fba4b697 9398 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9399 if (!btrfs_transaction_cachep)
9400 goto fail;
9601e3f6 9401
837e1972 9402 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9403 sizeof(struct btrfs_path), 0,
fba4b697 9404 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9405 if (!btrfs_path_cachep)
9406 goto fail;
9601e3f6 9407
837e1972 9408 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9409 sizeof(struct btrfs_free_space), 0,
fba4b697 9410 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9411 if (!btrfs_free_space_cachep)
9412 goto fail;
9413
39279cc3
CM
9414 return 0;
9415fail:
9416 btrfs_destroy_cachep();
9417 return -ENOMEM;
9418}
9419
9420static int btrfs_getattr(struct vfsmount *mnt,
9421 struct dentry *dentry, struct kstat *stat)
9422{
df0af1a5 9423 u64 delalloc_bytes;
2b0143b5 9424 struct inode *inode = d_inode(dentry);
fadc0d8b
DS
9425 u32 blocksize = inode->i_sb->s_blocksize;
9426
39279cc3 9427 generic_fillattr(inode, stat);
0ee5dc67 9428 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9429
9430 spin_lock(&BTRFS_I(inode)->lock);
9431 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9432 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9433 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9434 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9435 return 0;
9436}
9437
cdd1fedf
DF
9438static int btrfs_rename_exchange(struct inode *old_dir,
9439 struct dentry *old_dentry,
9440 struct inode *new_dir,
9441 struct dentry *new_dentry)
9442{
0b246afa 9443 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9444 struct btrfs_trans_handle *trans;
9445 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9446 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9447 struct inode *new_inode = new_dentry->d_inode;
9448 struct inode *old_inode = old_dentry->d_inode;
c2050a45 9449 struct timespec ctime = current_time(old_inode);
cdd1fedf 9450 struct dentry *parent;
4a0cc7ca
NB
9451 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9452 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9453 u64 old_idx = 0;
9454 u64 new_idx = 0;
9455 u64 root_objectid;
9456 int ret;
86e8aa0e
FM
9457 bool root_log_pinned = false;
9458 bool dest_log_pinned = false;
cdd1fedf
DF
9459
9460 /* we only allow rename subvolume link between subvolumes */
9461 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9462 return -EXDEV;
9463
9464 /* close the race window with snapshot create/destroy ioctl */
9465 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9466 down_read(&fs_info->subvol_sem);
cdd1fedf 9467 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9468 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9469
9470 /*
9471 * We want to reserve the absolute worst case amount of items. So if
9472 * both inodes are subvols and we need to unlink them then that would
9473 * require 4 item modifications, but if they are both normal inodes it
9474 * would require 5 item modifications, so we'll assume their normal
9475 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9476 * should cover the worst case number of items we'll modify.
9477 */
9478 trans = btrfs_start_transaction(root, 12);
9479 if (IS_ERR(trans)) {
9480 ret = PTR_ERR(trans);
9481 goto out_notrans;
9482 }
9483
9484 /*
9485 * We need to find a free sequence number both in the source and
9486 * in the destination directory for the exchange.
9487 */
877574e2 9488 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9489 if (ret)
9490 goto out_fail;
877574e2 9491 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9492 if (ret)
9493 goto out_fail;
9494
9495 BTRFS_I(old_inode)->dir_index = 0ULL;
9496 BTRFS_I(new_inode)->dir_index = 0ULL;
9497
9498 /* Reference for the source. */
9499 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9500 /* force full log commit if subvolume involved. */
0b246afa 9501 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9502 } else {
376e5a57
FM
9503 btrfs_pin_log_trans(root);
9504 root_log_pinned = true;
cdd1fedf
DF
9505 ret = btrfs_insert_inode_ref(trans, dest,
9506 new_dentry->d_name.name,
9507 new_dentry->d_name.len,
9508 old_ino,
f85b7379
DS
9509 btrfs_ino(BTRFS_I(new_dir)),
9510 old_idx);
cdd1fedf
DF
9511 if (ret)
9512 goto out_fail;
cdd1fedf
DF
9513 }
9514
9515 /* And now for the dest. */
9516 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9517 /* force full log commit if subvolume involved. */
0b246afa 9518 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9519 } else {
376e5a57
FM
9520 btrfs_pin_log_trans(dest);
9521 dest_log_pinned = true;
cdd1fedf
DF
9522 ret = btrfs_insert_inode_ref(trans, root,
9523 old_dentry->d_name.name,
9524 old_dentry->d_name.len,
9525 new_ino,
f85b7379
DS
9526 btrfs_ino(BTRFS_I(old_dir)),
9527 new_idx);
cdd1fedf
DF
9528 if (ret)
9529 goto out_fail;
cdd1fedf
DF
9530 }
9531
9532 /* Update inode version and ctime/mtime. */
9533 inode_inc_iversion(old_dir);
9534 inode_inc_iversion(new_dir);
9535 inode_inc_iversion(old_inode);
9536 inode_inc_iversion(new_inode);
9537 old_dir->i_ctime = old_dir->i_mtime = ctime;
9538 new_dir->i_ctime = new_dir->i_mtime = ctime;
9539 old_inode->i_ctime = ctime;
9540 new_inode->i_ctime = ctime;
9541
9542 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9543 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9544 BTRFS_I(old_inode), 1);
9545 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9546 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9547 }
9548
9549 /* src is a subvolume */
9550 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9551 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9552 ret = btrfs_unlink_subvol(trans, root, old_dir,
9553 root_objectid,
9554 old_dentry->d_name.name,
9555 old_dentry->d_name.len);
9556 } else { /* src is an inode */
4ec5934e
NB
9557 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9558 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9559 old_dentry->d_name.name,
9560 old_dentry->d_name.len);
9561 if (!ret)
9562 ret = btrfs_update_inode(trans, root, old_inode);
9563 }
9564 if (ret) {
66642832 9565 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9566 goto out_fail;
9567 }
9568
9569 /* dest is a subvolume */
9570 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9571 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9572 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9573 root_objectid,
9574 new_dentry->d_name.name,
9575 new_dentry->d_name.len);
9576 } else { /* dest is an inode */
4ec5934e
NB
9577 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9578 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9579 new_dentry->d_name.name,
9580 new_dentry->d_name.len);
9581 if (!ret)
9582 ret = btrfs_update_inode(trans, dest, new_inode);
9583 }
9584 if (ret) {
66642832 9585 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9586 goto out_fail;
9587 }
9588
9589 ret = btrfs_add_link(trans, new_dir, old_inode,
9590 new_dentry->d_name.name,
9591 new_dentry->d_name.len, 0, old_idx);
9592 if (ret) {
66642832 9593 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9594 goto out_fail;
9595 }
9596
9597 ret = btrfs_add_link(trans, old_dir, new_inode,
9598 old_dentry->d_name.name,
9599 old_dentry->d_name.len, 0, new_idx);
9600 if (ret) {
66642832 9601 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9602 goto out_fail;
9603 }
9604
9605 if (old_inode->i_nlink == 1)
9606 BTRFS_I(old_inode)->dir_index = old_idx;
9607 if (new_inode->i_nlink == 1)
9608 BTRFS_I(new_inode)->dir_index = new_idx;
9609
86e8aa0e 9610 if (root_log_pinned) {
cdd1fedf 9611 parent = new_dentry->d_parent;
f85b7379
DS
9612 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9613 parent);
cdd1fedf 9614 btrfs_end_log_trans(root);
86e8aa0e 9615 root_log_pinned = false;
cdd1fedf 9616 }
86e8aa0e 9617 if (dest_log_pinned) {
cdd1fedf 9618 parent = old_dentry->d_parent;
f85b7379
DS
9619 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9620 parent);
cdd1fedf 9621 btrfs_end_log_trans(dest);
86e8aa0e 9622 dest_log_pinned = false;
cdd1fedf
DF
9623 }
9624out_fail:
86e8aa0e
FM
9625 /*
9626 * If we have pinned a log and an error happened, we unpin tasks
9627 * trying to sync the log and force them to fallback to a transaction
9628 * commit if the log currently contains any of the inodes involved in
9629 * this rename operation (to ensure we do not persist a log with an
9630 * inconsistent state for any of these inodes or leading to any
9631 * inconsistencies when replayed). If the transaction was aborted, the
9632 * abortion reason is propagated to userspace when attempting to commit
9633 * the transaction. If the log does not contain any of these inodes, we
9634 * allow the tasks to sync it.
9635 */
9636 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9637 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9638 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9639 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9640 (new_inode &&
0f8939b8 9641 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9642 btrfs_set_log_full_commit(fs_info, trans);
86e8aa0e
FM
9643
9644 if (root_log_pinned) {
9645 btrfs_end_log_trans(root);
9646 root_log_pinned = false;
9647 }
9648 if (dest_log_pinned) {
9649 btrfs_end_log_trans(dest);
9650 dest_log_pinned = false;
9651 }
9652 }
3a45bb20 9653 ret = btrfs_end_transaction(trans);
cdd1fedf
DF
9654out_notrans:
9655 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9656 up_read(&fs_info->subvol_sem);
cdd1fedf 9657 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9658 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9659
9660 return ret;
9661}
9662
9663static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9664 struct btrfs_root *root,
9665 struct inode *dir,
9666 struct dentry *dentry)
9667{
9668 int ret;
9669 struct inode *inode;
9670 u64 objectid;
9671 u64 index;
9672
9673 ret = btrfs_find_free_ino(root, &objectid);
9674 if (ret)
9675 return ret;
9676
9677 inode = btrfs_new_inode(trans, root, dir,
9678 dentry->d_name.name,
9679 dentry->d_name.len,
4a0cc7ca 9680 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9681 objectid,
9682 S_IFCHR | WHITEOUT_MODE,
9683 &index);
9684
9685 if (IS_ERR(inode)) {
9686 ret = PTR_ERR(inode);
9687 return ret;
9688 }
9689
9690 inode->i_op = &btrfs_special_inode_operations;
9691 init_special_inode(inode, inode->i_mode,
9692 WHITEOUT_DEV);
9693
9694 ret = btrfs_init_inode_security(trans, inode, dir,
9695 &dentry->d_name);
9696 if (ret)
c9901618 9697 goto out;
cdd1fedf
DF
9698
9699 ret = btrfs_add_nondir(trans, dir, dentry,
9700 inode, 0, index);
9701 if (ret)
c9901618 9702 goto out;
cdd1fedf
DF
9703
9704 ret = btrfs_update_inode(trans, root, inode);
c9901618 9705out:
cdd1fedf 9706 unlock_new_inode(inode);
c9901618
FM
9707 if (ret)
9708 inode_dec_link_count(inode);
cdd1fedf
DF
9709 iput(inode);
9710
c9901618 9711 return ret;
cdd1fedf
DF
9712}
9713
d397712b 9714static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9715 struct inode *new_dir, struct dentry *new_dentry,
9716 unsigned int flags)
39279cc3 9717{
0b246afa 9718 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9719 struct btrfs_trans_handle *trans;
5062af35 9720 unsigned int trans_num_items;
39279cc3 9721 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9722 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9723 struct inode *new_inode = d_inode(new_dentry);
9724 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9725 u64 index = 0;
4df27c4d 9726 u64 root_objectid;
39279cc3 9727 int ret;
4a0cc7ca 9728 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9729 bool log_pinned = false;
39279cc3 9730
4a0cc7ca 9731 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9732 return -EPERM;
9733
4df27c4d 9734 /* we only allow rename subvolume link between subvolumes */
33345d01 9735 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9736 return -EXDEV;
9737
33345d01 9738 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9739 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9740 return -ENOTEMPTY;
5f39d397 9741
4df27c4d
YZ
9742 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9743 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9744 return -ENOTEMPTY;
9c52057c
CM
9745
9746
9747 /* check for collisions, even if the name isn't there */
4871c158 9748 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9749 new_dentry->d_name.name,
9750 new_dentry->d_name.len);
9751
9752 if (ret) {
9753 if (ret == -EEXIST) {
9754 /* we shouldn't get
9755 * eexist without a new_inode */
fae7f21c 9756 if (WARN_ON(!new_inode)) {
9c52057c
CM
9757 return ret;
9758 }
9759 } else {
9760 /* maybe -EOVERFLOW */
9761 return ret;
9762 }
9763 }
9764 ret = 0;
9765
5a3f23d5 9766 /*
8d875f95
CM
9767 * we're using rename to replace one file with another. Start IO on it
9768 * now so we don't add too much work to the end of the transaction
5a3f23d5 9769 */
8d875f95 9770 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9771 filemap_flush(old_inode->i_mapping);
9772
76dda93c 9773 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9774 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9775 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9776 /*
9777 * We want to reserve the absolute worst case amount of items. So if
9778 * both inodes are subvols and we need to unlink them then that would
9779 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9780 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9781 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9782 * should cover the worst case number of items we'll modify.
5062af35
FM
9783 * If our rename has the whiteout flag, we need more 5 units for the
9784 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9785 * when selinux is enabled).
a22285a6 9786 */
5062af35
FM
9787 trans_num_items = 11;
9788 if (flags & RENAME_WHITEOUT)
9789 trans_num_items += 5;
9790 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9791 if (IS_ERR(trans)) {
cdd1fedf
DF
9792 ret = PTR_ERR(trans);
9793 goto out_notrans;
9794 }
76dda93c 9795
4df27c4d
YZ
9796 if (dest != root)
9797 btrfs_record_root_in_trans(trans, dest);
5f39d397 9798
877574e2 9799 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9800 if (ret)
9801 goto out_fail;
5a3f23d5 9802
67de1176 9803 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9804 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9805 /* force full log commit if subvolume involved. */
0b246afa 9806 btrfs_set_log_full_commit(fs_info, trans);
4df27c4d 9807 } else {
c4aba954
FM
9808 btrfs_pin_log_trans(root);
9809 log_pinned = true;
a5719521
YZ
9810 ret = btrfs_insert_inode_ref(trans, dest,
9811 new_dentry->d_name.name,
9812 new_dentry->d_name.len,
33345d01 9813 old_ino,
4a0cc7ca 9814 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9815 if (ret)
9816 goto out_fail;
4df27c4d 9817 }
5a3f23d5 9818
0c4d2d95
JB
9819 inode_inc_iversion(old_dir);
9820 inode_inc_iversion(new_dir);
9821 inode_inc_iversion(old_inode);
04b285f3
DD
9822 old_dir->i_ctime = old_dir->i_mtime =
9823 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9824 old_inode->i_ctime = current_time(old_dir);
5f39d397 9825
12fcfd22 9826 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9827 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9828 BTRFS_I(old_inode), 1);
12fcfd22 9829
33345d01 9830 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9831 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9832 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9833 old_dentry->d_name.name,
9834 old_dentry->d_name.len);
9835 } else {
4ec5934e
NB
9836 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9837 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9838 old_dentry->d_name.name,
9839 old_dentry->d_name.len);
9840 if (!ret)
9841 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9842 }
79787eaa 9843 if (ret) {
66642832 9844 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9845 goto out_fail;
9846 }
39279cc3
CM
9847
9848 if (new_inode) {
0c4d2d95 9849 inode_inc_iversion(new_inode);
c2050a45 9850 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9851 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
9852 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9853 root_objectid = BTRFS_I(new_inode)->location.objectid;
9854 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9855 root_objectid,
9856 new_dentry->d_name.name,
9857 new_dentry->d_name.len);
9858 BUG_ON(new_inode->i_nlink == 0);
9859 } else {
4ec5934e
NB
9860 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9861 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9862 new_dentry->d_name.name,
9863 new_dentry->d_name.len);
9864 }
4ef31a45 9865 if (!ret && new_inode->i_nlink == 0)
2b0143b5 9866 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
79787eaa 9867 if (ret) {
66642832 9868 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9869 goto out_fail;
9870 }
39279cc3 9871 }
aec7477b 9872
4df27c4d
YZ
9873 ret = btrfs_add_link(trans, new_dir, old_inode,
9874 new_dentry->d_name.name,
a5719521 9875 new_dentry->d_name.len, 0, index);
79787eaa 9876 if (ret) {
66642832 9877 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9878 goto out_fail;
9879 }
39279cc3 9880
67de1176
MX
9881 if (old_inode->i_nlink == 1)
9882 BTRFS_I(old_inode)->dir_index = index;
9883
3dc9e8f7 9884 if (log_pinned) {
10d9f309 9885 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9886
f85b7379
DS
9887 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9888 parent);
4df27c4d 9889 btrfs_end_log_trans(root);
3dc9e8f7 9890 log_pinned = false;
4df27c4d 9891 }
cdd1fedf
DF
9892
9893 if (flags & RENAME_WHITEOUT) {
9894 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9895 old_dentry);
9896
9897 if (ret) {
66642832 9898 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9899 goto out_fail;
9900 }
4df27c4d 9901 }
39279cc3 9902out_fail:
3dc9e8f7
FM
9903 /*
9904 * If we have pinned the log and an error happened, we unpin tasks
9905 * trying to sync the log and force them to fallback to a transaction
9906 * commit if the log currently contains any of the inodes involved in
9907 * this rename operation (to ensure we do not persist a log with an
9908 * inconsistent state for any of these inodes or leading to any
9909 * inconsistencies when replayed). If the transaction was aborted, the
9910 * abortion reason is propagated to userspace when attempting to commit
9911 * the transaction. If the log does not contain any of these inodes, we
9912 * allow the tasks to sync it.
9913 */
9914 if (ret && log_pinned) {
0f8939b8
NB
9915 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9916 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9917 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 9918 (new_inode &&
0f8939b8 9919 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9920 btrfs_set_log_full_commit(fs_info, trans);
3dc9e8f7
FM
9921
9922 btrfs_end_log_trans(root);
9923 log_pinned = false;
9924 }
3a45bb20 9925 btrfs_end_transaction(trans);
b44c59a8 9926out_notrans:
33345d01 9927 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9928 up_read(&fs_info->subvol_sem);
9ed74f2d 9929
39279cc3
CM
9930 return ret;
9931}
9932
80ace85c
MS
9933static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9934 struct inode *new_dir, struct dentry *new_dentry,
9935 unsigned int flags)
9936{
cdd1fedf 9937 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9938 return -EINVAL;
9939
cdd1fedf
DF
9940 if (flags & RENAME_EXCHANGE)
9941 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9942 new_dentry);
9943
9944 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9945}
9946
8ccf6f19
MX
9947static void btrfs_run_delalloc_work(struct btrfs_work *work)
9948{
9949 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9950 struct inode *inode;
8ccf6f19
MX
9951
9952 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9953 work);
9f23e289 9954 inode = delalloc_work->inode;
30424601
DS
9955 filemap_flush(inode->i_mapping);
9956 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9957 &BTRFS_I(inode)->runtime_flags))
9f23e289 9958 filemap_flush(inode->i_mapping);
8ccf6f19
MX
9959
9960 if (delalloc_work->delay_iput)
9f23e289 9961 btrfs_add_delayed_iput(inode);
8ccf6f19 9962 else
9f23e289 9963 iput(inode);
8ccf6f19
MX
9964 complete(&delalloc_work->completion);
9965}
9966
9967struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 9968 int delay_iput)
8ccf6f19
MX
9969{
9970 struct btrfs_delalloc_work *work;
9971
100d5702 9972 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9973 if (!work)
9974 return NULL;
9975
9976 init_completion(&work->completion);
9977 INIT_LIST_HEAD(&work->list);
9978 work->inode = inode;
8ccf6f19 9979 work->delay_iput = delay_iput;
9e0af237
LB
9980 WARN_ON_ONCE(!inode);
9981 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9982 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9983
9984 return work;
9985}
9986
9987void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9988{
9989 wait_for_completion(&work->completion);
100d5702 9990 kfree(work);
8ccf6f19
MX
9991}
9992
d352ac68
CM
9993/*
9994 * some fairly slow code that needs optimization. This walks the list
9995 * of all the inodes with pending delalloc and forces them to disk.
9996 */
6c255e67
MX
9997static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9998 int nr)
ea8c2819 9999{
ea8c2819 10000 struct btrfs_inode *binode;
5b21f2ed 10001 struct inode *inode;
8ccf6f19
MX
10002 struct btrfs_delalloc_work *work, *next;
10003 struct list_head works;
1eafa6c7 10004 struct list_head splice;
8ccf6f19 10005 int ret = 0;
ea8c2819 10006
8ccf6f19 10007 INIT_LIST_HEAD(&works);
1eafa6c7 10008 INIT_LIST_HEAD(&splice);
63607cc8 10009
573bfb72 10010 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10011 spin_lock(&root->delalloc_lock);
10012 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10013 while (!list_empty(&splice)) {
10014 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10015 delalloc_inodes);
1eafa6c7 10016
eb73c1b7
MX
10017 list_move_tail(&binode->delalloc_inodes,
10018 &root->delalloc_inodes);
5b21f2ed 10019 inode = igrab(&binode->vfs_inode);
df0af1a5 10020 if (!inode) {
eb73c1b7 10021 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10022 continue;
df0af1a5 10023 }
eb73c1b7 10024 spin_unlock(&root->delalloc_lock);
1eafa6c7 10025
651d494a 10026 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10027 if (!work) {
f4ab9ea7
JB
10028 if (delay_iput)
10029 btrfs_add_delayed_iput(inode);
10030 else
10031 iput(inode);
1eafa6c7 10032 ret = -ENOMEM;
a1ecaabb 10033 goto out;
5b21f2ed 10034 }
1eafa6c7 10035 list_add_tail(&work->list, &works);
a44903ab
QW
10036 btrfs_queue_work(root->fs_info->flush_workers,
10037 &work->work);
6c255e67
MX
10038 ret++;
10039 if (nr != -1 && ret >= nr)
a1ecaabb 10040 goto out;
5b21f2ed 10041 cond_resched();
eb73c1b7 10042 spin_lock(&root->delalloc_lock);
ea8c2819 10043 }
eb73c1b7 10044 spin_unlock(&root->delalloc_lock);
8c8bee1d 10045
a1ecaabb 10046out:
eb73c1b7
MX
10047 list_for_each_entry_safe(work, next, &works, list) {
10048 list_del_init(&work->list);
10049 btrfs_wait_and_free_delalloc_work(work);
10050 }
10051
10052 if (!list_empty_careful(&splice)) {
10053 spin_lock(&root->delalloc_lock);
10054 list_splice_tail(&splice, &root->delalloc_inodes);
10055 spin_unlock(&root->delalloc_lock);
10056 }
573bfb72 10057 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10058 return ret;
10059}
1eafa6c7 10060
eb73c1b7
MX
10061int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10062{
0b246afa 10063 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10064 int ret;
1eafa6c7 10065
0b246afa 10066 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10067 return -EROFS;
10068
6c255e67
MX
10069 ret = __start_delalloc_inodes(root, delay_iput, -1);
10070 if (ret > 0)
10071 ret = 0;
eb73c1b7
MX
10072 /*
10073 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
10074 * we have to make sure the IO is actually started and that
10075 * ordered extents get created before we return
10076 */
0b246afa
JM
10077 atomic_inc(&fs_info->async_submit_draining);
10078 while (atomic_read(&fs_info->nr_async_submits) ||
10079 atomic_read(&fs_info->async_delalloc_pages)) {
10080 wait_event(fs_info->async_submit_wait,
10081 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10082 atomic_read(&fs_info->async_delalloc_pages) == 0));
10083 }
10084 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7
MX
10085 return ret;
10086}
10087
6c255e67
MX
10088int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10089 int nr)
eb73c1b7
MX
10090{
10091 struct btrfs_root *root;
10092 struct list_head splice;
10093 int ret;
10094
2c21b4d7 10095 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10096 return -EROFS;
10097
10098 INIT_LIST_HEAD(&splice);
10099
573bfb72 10100 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10101 spin_lock(&fs_info->delalloc_root_lock);
10102 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10103 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10104 root = list_first_entry(&splice, struct btrfs_root,
10105 delalloc_root);
10106 root = btrfs_grab_fs_root(root);
10107 BUG_ON(!root);
10108 list_move_tail(&root->delalloc_root,
10109 &fs_info->delalloc_roots);
10110 spin_unlock(&fs_info->delalloc_root_lock);
10111
6c255e67 10112 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10113 btrfs_put_fs_root(root);
6c255e67 10114 if (ret < 0)
eb73c1b7
MX
10115 goto out;
10116
6c255e67
MX
10117 if (nr != -1) {
10118 nr -= ret;
10119 WARN_ON(nr < 0);
10120 }
eb73c1b7 10121 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10122 }
eb73c1b7 10123 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10124
6c255e67 10125 ret = 0;
eb73c1b7
MX
10126 atomic_inc(&fs_info->async_submit_draining);
10127 while (atomic_read(&fs_info->nr_async_submits) ||
10128 atomic_read(&fs_info->async_delalloc_pages)) {
10129 wait_event(fs_info->async_submit_wait,
10130 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10131 atomic_read(&fs_info->async_delalloc_pages) == 0));
10132 }
10133 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 10134out:
1eafa6c7 10135 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10136 spin_lock(&fs_info->delalloc_root_lock);
10137 list_splice_tail(&splice, &fs_info->delalloc_roots);
10138 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10139 }
573bfb72 10140 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10141 return ret;
ea8c2819
CM
10142}
10143
39279cc3
CM
10144static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10145 const char *symname)
10146{
0b246afa 10147 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10148 struct btrfs_trans_handle *trans;
10149 struct btrfs_root *root = BTRFS_I(dir)->root;
10150 struct btrfs_path *path;
10151 struct btrfs_key key;
1832a6d5 10152 struct inode *inode = NULL;
39279cc3
CM
10153 int err;
10154 int drop_inode = 0;
10155 u64 objectid;
67871254 10156 u64 index = 0;
39279cc3
CM
10157 int name_len;
10158 int datasize;
5f39d397 10159 unsigned long ptr;
39279cc3 10160 struct btrfs_file_extent_item *ei;
5f39d397 10161 struct extent_buffer *leaf;
39279cc3 10162
f06becc4 10163 name_len = strlen(symname);
0b246afa 10164 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10165 return -ENAMETOOLONG;
1832a6d5 10166
9ed74f2d
JB
10167 /*
10168 * 2 items for inode item and ref
10169 * 2 items for dir items
9269d12b
FM
10170 * 1 item for updating parent inode item
10171 * 1 item for the inline extent item
9ed74f2d
JB
10172 * 1 item for xattr if selinux is on
10173 */
9269d12b 10174 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10175 if (IS_ERR(trans))
10176 return PTR_ERR(trans);
1832a6d5 10177
581bb050
LZ
10178 err = btrfs_find_free_ino(root, &objectid);
10179 if (err)
10180 goto out_unlock;
10181
aec7477b 10182 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10183 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10184 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10185 if (IS_ERR(inode)) {
10186 err = PTR_ERR(inode);
39279cc3 10187 goto out_unlock;
7cf96da3 10188 }
39279cc3 10189
ad19db71
CS
10190 /*
10191 * If the active LSM wants to access the inode during
10192 * d_instantiate it needs these. Smack checks to see
10193 * if the filesystem supports xattrs by looking at the
10194 * ops vector.
10195 */
10196 inode->i_fop = &btrfs_file_operations;
10197 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10198 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10199 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10200
10201 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10202 if (err)
10203 goto out_unlock_inode;
ad19db71 10204
39279cc3 10205 path = btrfs_alloc_path();
d8926bb3
MF
10206 if (!path) {
10207 err = -ENOMEM;
b0d5d10f 10208 goto out_unlock_inode;
d8926bb3 10209 }
4a0cc7ca 10210 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10211 key.offset = 0;
962a298f 10212 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10213 datasize = btrfs_file_extent_calc_inline_size(name_len);
10214 err = btrfs_insert_empty_item(trans, root, path, &key,
10215 datasize);
54aa1f4d 10216 if (err) {
b0839166 10217 btrfs_free_path(path);
b0d5d10f 10218 goto out_unlock_inode;
54aa1f4d 10219 }
5f39d397
CM
10220 leaf = path->nodes[0];
10221 ei = btrfs_item_ptr(leaf, path->slots[0],
10222 struct btrfs_file_extent_item);
10223 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10224 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10225 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10226 btrfs_set_file_extent_encryption(leaf, ei, 0);
10227 btrfs_set_file_extent_compression(leaf, ei, 0);
10228 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10229 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10230
39279cc3 10231 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10232 write_extent_buffer(leaf, symname, ptr, name_len);
10233 btrfs_mark_buffer_dirty(leaf);
39279cc3 10234 btrfs_free_path(path);
5f39d397 10235
39279cc3 10236 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10237 inode_nohighmem(inode);
39279cc3 10238 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10239 inode_set_bytes(inode, name_len);
6ef06d27 10240 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10241 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10242 /*
10243 * Last step, add directory indexes for our symlink inode. This is the
10244 * last step to avoid extra cleanup of these indexes if an error happens
10245 * elsewhere above.
10246 */
10247 if (!err)
10248 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
b0d5d10f 10249 if (err) {
54aa1f4d 10250 drop_inode = 1;
b0d5d10f
CM
10251 goto out_unlock_inode;
10252 }
10253
10254 unlock_new_inode(inode);
10255 d_instantiate(dentry, inode);
39279cc3
CM
10256
10257out_unlock:
3a45bb20 10258 btrfs_end_transaction(trans);
39279cc3
CM
10259 if (drop_inode) {
10260 inode_dec_link_count(inode);
10261 iput(inode);
10262 }
2ff7e61e 10263 btrfs_btree_balance_dirty(fs_info);
39279cc3 10264 return err;
b0d5d10f
CM
10265
10266out_unlock_inode:
10267 drop_inode = 1;
10268 unlock_new_inode(inode);
10269 goto out_unlock;
39279cc3 10270}
16432985 10271
0af3d00b
JB
10272static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10273 u64 start, u64 num_bytes, u64 min_size,
10274 loff_t actual_len, u64 *alloc_hint,
10275 struct btrfs_trans_handle *trans)
d899e052 10276{
0b246afa 10277 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10278 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10279 struct extent_map *em;
d899e052
YZ
10280 struct btrfs_root *root = BTRFS_I(inode)->root;
10281 struct btrfs_key ins;
d899e052 10282 u64 cur_offset = start;
55a61d1d 10283 u64 i_size;
154ea289 10284 u64 cur_bytes;
0b670dc4 10285 u64 last_alloc = (u64)-1;
d899e052 10286 int ret = 0;
0af3d00b 10287 bool own_trans = true;
18513091 10288 u64 end = start + num_bytes - 1;
d899e052 10289
0af3d00b
JB
10290 if (trans)
10291 own_trans = false;
d899e052 10292 while (num_bytes > 0) {
0af3d00b
JB
10293 if (own_trans) {
10294 trans = btrfs_start_transaction(root, 3);
10295 if (IS_ERR(trans)) {
10296 ret = PTR_ERR(trans);
10297 break;
10298 }
5a303d5d
YZ
10299 }
10300
ee22184b 10301 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10302 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10303 /*
10304 * If we are severely fragmented we could end up with really
10305 * small allocations, so if the allocator is returning small
10306 * chunks lets make its job easier by only searching for those
10307 * sized chunks.
10308 */
10309 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10310 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10311 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10312 if (ret) {
0af3d00b 10313 if (own_trans)
3a45bb20 10314 btrfs_end_transaction(trans);
a22285a6 10315 break;
d899e052 10316 }
0b246afa 10317 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10318
0b670dc4 10319 last_alloc = ins.offset;
d899e052
YZ
10320 ret = insert_reserved_file_extent(trans, inode,
10321 cur_offset, ins.objectid,
10322 ins.offset, ins.offset,
920bbbfb 10323 ins.offset, 0, 0, 0,
d899e052 10324 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10325 if (ret) {
2ff7e61e 10326 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10327 ins.offset, 0);
66642832 10328 btrfs_abort_transaction(trans, ret);
79787eaa 10329 if (own_trans)
3a45bb20 10330 btrfs_end_transaction(trans);
79787eaa
JM
10331 break;
10332 }
31193213 10333
dcdbc059 10334 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10335 cur_offset + ins.offset -1, 0);
5a303d5d 10336
5dc562c5
JB
10337 em = alloc_extent_map();
10338 if (!em) {
10339 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10340 &BTRFS_I(inode)->runtime_flags);
10341 goto next;
10342 }
10343
10344 em->start = cur_offset;
10345 em->orig_start = cur_offset;
10346 em->len = ins.offset;
10347 em->block_start = ins.objectid;
10348 em->block_len = ins.offset;
b4939680 10349 em->orig_block_len = ins.offset;
cc95bef6 10350 em->ram_bytes = ins.offset;
0b246afa 10351 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10352 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10353 em->generation = trans->transid;
10354
10355 while (1) {
10356 write_lock(&em_tree->lock);
09a2a8f9 10357 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10358 write_unlock(&em_tree->lock);
10359 if (ret != -EEXIST)
10360 break;
dcdbc059 10361 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10362 cur_offset + ins.offset - 1,
10363 0);
10364 }
10365 free_extent_map(em);
10366next:
d899e052
YZ
10367 num_bytes -= ins.offset;
10368 cur_offset += ins.offset;
efa56464 10369 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10370
0c4d2d95 10371 inode_inc_iversion(inode);
c2050a45 10372 inode->i_ctime = current_time(inode);
6cbff00f 10373 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10374 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10375 (actual_len > inode->i_size) &&
10376 (cur_offset > inode->i_size)) {
d1ea6a61 10377 if (cur_offset > actual_len)
55a61d1d 10378 i_size = actual_len;
d1ea6a61 10379 else
55a61d1d
JB
10380 i_size = cur_offset;
10381 i_size_write(inode, i_size);
10382 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10383 }
10384
d899e052 10385 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10386
10387 if (ret) {
66642832 10388 btrfs_abort_transaction(trans, ret);
79787eaa 10389 if (own_trans)
3a45bb20 10390 btrfs_end_transaction(trans);
79787eaa
JM
10391 break;
10392 }
d899e052 10393
0af3d00b 10394 if (own_trans)
3a45bb20 10395 btrfs_end_transaction(trans);
5a303d5d 10396 }
18513091
WX
10397 if (cur_offset < end)
10398 btrfs_free_reserved_data_space(inode, cur_offset,
10399 end - cur_offset + 1);
d899e052
YZ
10400 return ret;
10401}
10402
0af3d00b
JB
10403int btrfs_prealloc_file_range(struct inode *inode, int mode,
10404 u64 start, u64 num_bytes, u64 min_size,
10405 loff_t actual_len, u64 *alloc_hint)
10406{
10407 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10408 min_size, actual_len, alloc_hint,
10409 NULL);
10410}
10411
10412int btrfs_prealloc_file_range_trans(struct inode *inode,
10413 struct btrfs_trans_handle *trans, int mode,
10414 u64 start, u64 num_bytes, u64 min_size,
10415 loff_t actual_len, u64 *alloc_hint)
10416{
10417 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10418 min_size, actual_len, alloc_hint, trans);
10419}
10420
e6dcd2dc
CM
10421static int btrfs_set_page_dirty(struct page *page)
10422{
e6dcd2dc
CM
10423 return __set_page_dirty_nobuffers(page);
10424}
10425
10556cb2 10426static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10427{
b83cc969 10428 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10429 umode_t mode = inode->i_mode;
b83cc969 10430
cb6db4e5
JM
10431 if (mask & MAY_WRITE &&
10432 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10433 if (btrfs_root_readonly(root))
10434 return -EROFS;
10435 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10436 return -EACCES;
10437 }
2830ba7f 10438 return generic_permission(inode, mask);
fdebe2bd 10439}
39279cc3 10440
ef3b9af5
FM
10441static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10442{
2ff7e61e 10443 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10444 struct btrfs_trans_handle *trans;
10445 struct btrfs_root *root = BTRFS_I(dir)->root;
10446 struct inode *inode = NULL;
10447 u64 objectid;
10448 u64 index;
10449 int ret = 0;
10450
10451 /*
10452 * 5 units required for adding orphan entry
10453 */
10454 trans = btrfs_start_transaction(root, 5);
10455 if (IS_ERR(trans))
10456 return PTR_ERR(trans);
10457
10458 ret = btrfs_find_free_ino(root, &objectid);
10459 if (ret)
10460 goto out;
10461
10462 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10463 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10464 if (IS_ERR(inode)) {
10465 ret = PTR_ERR(inode);
10466 inode = NULL;
10467 goto out;
10468 }
10469
ef3b9af5
FM
10470 inode->i_fop = &btrfs_file_operations;
10471 inode->i_op = &btrfs_file_inode_operations;
10472
10473 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10474 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10475
b0d5d10f
CM
10476 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10477 if (ret)
10478 goto out_inode;
10479
10480 ret = btrfs_update_inode(trans, root, inode);
10481 if (ret)
10482 goto out_inode;
ef3b9af5
FM
10483 ret = btrfs_orphan_add(trans, inode);
10484 if (ret)
b0d5d10f 10485 goto out_inode;
ef3b9af5 10486
5762b5c9
FM
10487 /*
10488 * We set number of links to 0 in btrfs_new_inode(), and here we set
10489 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10490 * through:
10491 *
10492 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10493 */
10494 set_nlink(inode, 1);
b0d5d10f 10495 unlock_new_inode(inode);
ef3b9af5
FM
10496 d_tmpfile(dentry, inode);
10497 mark_inode_dirty(inode);
10498
10499out:
3a45bb20 10500 btrfs_end_transaction(trans);
ef3b9af5
FM
10501 if (ret)
10502 iput(inode);
2ff7e61e
JM
10503 btrfs_balance_delayed_items(fs_info);
10504 btrfs_btree_balance_dirty(fs_info);
ef3b9af5 10505 return ret;
b0d5d10f
CM
10506
10507out_inode:
10508 unlock_new_inode(inode);
10509 goto out;
10510
ef3b9af5
FM
10511}
10512
6e1d5dcc 10513static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10514 .getattr = btrfs_getattr,
39279cc3
CM
10515 .lookup = btrfs_lookup,
10516 .create = btrfs_create,
10517 .unlink = btrfs_unlink,
10518 .link = btrfs_link,
10519 .mkdir = btrfs_mkdir,
10520 .rmdir = btrfs_rmdir,
2773bf00 10521 .rename = btrfs_rename2,
39279cc3
CM
10522 .symlink = btrfs_symlink,
10523 .setattr = btrfs_setattr,
618e21d5 10524 .mknod = btrfs_mknod,
5103e947 10525 .listxattr = btrfs_listxattr,
fdebe2bd 10526 .permission = btrfs_permission,
4e34e719 10527 .get_acl = btrfs_get_acl,
996a710d 10528 .set_acl = btrfs_set_acl,
93fd63c2 10529 .update_time = btrfs_update_time,
ef3b9af5 10530 .tmpfile = btrfs_tmpfile,
39279cc3 10531};
6e1d5dcc 10532static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10533 .lookup = btrfs_lookup,
fdebe2bd 10534 .permission = btrfs_permission,
93fd63c2 10535 .update_time = btrfs_update_time,
39279cc3 10536};
76dda93c 10537
828c0950 10538static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10539 .llseek = generic_file_llseek,
10540 .read = generic_read_dir,
02dbfc99 10541 .iterate_shared = btrfs_real_readdir,
34287aa3 10542 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10543#ifdef CONFIG_COMPAT
4c63c245 10544 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10545#endif
6bf13c0c 10546 .release = btrfs_release_file,
e02119d5 10547 .fsync = btrfs_sync_file,
39279cc3
CM
10548};
10549
20e5506b 10550static const struct extent_io_ops btrfs_extent_io_ops = {
07157aac 10551 .fill_delalloc = run_delalloc_range,
065631f6 10552 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 10553 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 10554 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 10555 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10556 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10557 .set_bit_hook = btrfs_set_bit_hook,
10558 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10559 .merge_extent_hook = btrfs_merge_extent_hook,
10560 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
10561};
10562
35054394
CM
10563/*
10564 * btrfs doesn't support the bmap operation because swapfiles
10565 * use bmap to make a mapping of extents in the file. They assume
10566 * these extents won't change over the life of the file and they
10567 * use the bmap result to do IO directly to the drive.
10568 *
10569 * the btrfs bmap call would return logical addresses that aren't
10570 * suitable for IO and they also will change frequently as COW
10571 * operations happen. So, swapfile + btrfs == corruption.
10572 *
10573 * For now we're avoiding this by dropping bmap.
10574 */
7f09410b 10575static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10576 .readpage = btrfs_readpage,
10577 .writepage = btrfs_writepage,
b293f02e 10578 .writepages = btrfs_writepages,
3ab2fb5a 10579 .readpages = btrfs_readpages,
16432985 10580 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10581 .invalidatepage = btrfs_invalidatepage,
10582 .releasepage = btrfs_releasepage,
e6dcd2dc 10583 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10584 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10585};
10586
7f09410b 10587static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10588 .readpage = btrfs_readpage,
10589 .writepage = btrfs_writepage,
2bf5a725
CM
10590 .invalidatepage = btrfs_invalidatepage,
10591 .releasepage = btrfs_releasepage,
39279cc3
CM
10592};
10593
6e1d5dcc 10594static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10595 .getattr = btrfs_getattr,
10596 .setattr = btrfs_setattr,
5103e947 10597 .listxattr = btrfs_listxattr,
fdebe2bd 10598 .permission = btrfs_permission,
1506fcc8 10599 .fiemap = btrfs_fiemap,
4e34e719 10600 .get_acl = btrfs_get_acl,
996a710d 10601 .set_acl = btrfs_set_acl,
e41f941a 10602 .update_time = btrfs_update_time,
39279cc3 10603};
6e1d5dcc 10604static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10605 .getattr = btrfs_getattr,
10606 .setattr = btrfs_setattr,
fdebe2bd 10607 .permission = btrfs_permission,
33268eaf 10608 .listxattr = btrfs_listxattr,
4e34e719 10609 .get_acl = btrfs_get_acl,
996a710d 10610 .set_acl = btrfs_set_acl,
e41f941a 10611 .update_time = btrfs_update_time,
618e21d5 10612};
6e1d5dcc 10613static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10614 .get_link = page_get_link,
f209561a 10615 .getattr = btrfs_getattr,
22c44fe6 10616 .setattr = btrfs_setattr,
fdebe2bd 10617 .permission = btrfs_permission,
0279b4cd 10618 .listxattr = btrfs_listxattr,
e41f941a 10619 .update_time = btrfs_update_time,
39279cc3 10620};
76dda93c 10621
82d339d9 10622const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10623 .d_delete = btrfs_dentry_delete,
b4aff1f8 10624 .d_release = btrfs_dentry_release,
76dda93c 10625};