]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/inode.c
btrfs: qgroup: Return actually freed bytes for qgroup release or free data
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
39279cc3 33#include <linux/compat.h>
9ebefb18 34#include <linux/bit_spinlock.h>
5103e947 35#include <linux/xattr.h>
33268eaf 36#include <linux/posix_acl.h>
d899e052 37#include <linux/falloc.h>
5a0e3ad6 38#include <linux/slab.h>
7a36ddec 39#include <linux/ratelimit.h>
22c44fe6 40#include <linux/mount.h>
55e301fd 41#include <linux/btrfs.h>
53b381b3 42#include <linux/blkdev.h>
f23b5a59 43#include <linux/posix_acl_xattr.h>
e2e40f2c 44#include <linux/uio.h>
39279cc3
CM
45#include "ctree.h"
46#include "disk-io.h"
47#include "transaction.h"
48#include "btrfs_inode.h"
39279cc3 49#include "print-tree.h"
e6dcd2dc 50#include "ordered-data.h"
95819c05 51#include "xattr.h"
e02119d5 52#include "tree-log.h"
4a54c8c1 53#include "volumes.h"
c8b97818 54#include "compression.h"
b4ce94de 55#include "locking.h"
dc89e982 56#include "free-space-cache.h"
581bb050 57#include "inode-map.h"
38c227d8 58#include "backref.h"
f23b5a59 59#include "hash.h"
63541927 60#include "props.h"
31193213 61#include "qgroup.h"
dda3245e 62#include "dedupe.h"
39279cc3
CM
63
64struct btrfs_iget_args {
90d3e592 65 struct btrfs_key *location;
39279cc3
CM
66 struct btrfs_root *root;
67};
68
f28a4928
FM
69struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
4aaedfb0 74 int overwrite;
f28a4928
FM
75};
76
6e1d5dcc
AD
77static const struct inode_operations btrfs_dir_inode_operations;
78static const struct inode_operations btrfs_symlink_inode_operations;
79static const struct inode_operations btrfs_dir_ro_inode_operations;
80static const struct inode_operations btrfs_special_inode_operations;
81static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
82static const struct address_space_operations btrfs_aops;
83static const struct address_space_operations btrfs_symlink_aops;
828c0950 84static const struct file_operations btrfs_dir_file_operations;
20e5506b 85static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
86
87static struct kmem_cache *btrfs_inode_cachep;
88struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 89struct kmem_cache *btrfs_path_cachep;
dc89e982 90struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
91
92#define S_SHIFT 12
4d4ab6d6 93static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101};
102
3972f260 103static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 104static int btrfs_truncate(struct inode *inode);
5fd02043 105static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
106static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
dda3245e
WX
108 u64 start, u64 end, u64 delalloc_end,
109 int *page_started, unsigned long *nr_written,
110 int unlock, struct btrfs_dedupe_hash *hash);
6f9994db
LB
111static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
112 u64 orig_start, u64 block_start,
113 u64 block_len, u64 orig_block_len,
114 u64 ram_bytes, int compress_type,
115 int type);
7b128766 116
52427260
QW
117static void __endio_write_update_ordered(struct inode *inode,
118 const u64 offset, const u64 bytes,
119 const bool uptodate);
120
121/*
122 * Cleanup all submitted ordered extents in specified range to handle errors
123 * from the fill_dellaloc() callback.
124 *
125 * NOTE: caller must ensure that when an error happens, it can not call
126 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
127 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
128 * to be released, which we want to happen only when finishing the ordered
129 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
130 * fill_delalloc() callback already does proper cleanup for the first page of
131 * the range, that is, it invokes the callback writepage_end_io_hook() for the
132 * range of the first page.
133 */
134static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
135 const u64 offset,
136 const u64 bytes)
137{
138 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
139 bytes - PAGE_SIZE, false);
140}
141
48a3b636 142static int btrfs_dirty_inode(struct inode *inode);
7b128766 143
6a3891c5
JB
144#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
145void btrfs_test_inode_set_ops(struct inode *inode)
146{
147 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
148}
149#endif
150
f34f57a3 151static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
152 struct inode *inode, struct inode *dir,
153 const struct qstr *qstr)
0279b4cd
JO
154{
155 int err;
156
f34f57a3 157 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 158 if (!err)
2a7dba39 159 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
160 return err;
161}
162
c8b97818
CM
163/*
164 * this does all the hard work for inserting an inline extent into
165 * the btree. The caller should have done a btrfs_drop_extents so that
166 * no overlapping inline items exist in the btree
167 */
40f76580 168static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 169 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
170 struct btrfs_root *root, struct inode *inode,
171 u64 start, size_t size, size_t compressed_size,
fe3f566c 172 int compress_type,
c8b97818
CM
173 struct page **compressed_pages)
174{
c8b97818
CM
175 struct extent_buffer *leaf;
176 struct page *page = NULL;
177 char *kaddr;
178 unsigned long ptr;
179 struct btrfs_file_extent_item *ei;
c8b97818
CM
180 int ret;
181 size_t cur_size = size;
c8b97818 182 unsigned long offset;
c8b97818 183
fe3f566c 184 if (compressed_size && compressed_pages)
c8b97818 185 cur_size = compressed_size;
c8b97818 186
1acae57b 187 inode_add_bytes(inode, size);
c8b97818 188
1acae57b
FDBM
189 if (!extent_inserted) {
190 struct btrfs_key key;
191 size_t datasize;
c8b97818 192
4a0cc7ca 193 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 194 key.offset = start;
962a298f 195 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 196
1acae57b
FDBM
197 datasize = btrfs_file_extent_calc_inline_size(cur_size);
198 path->leave_spinning = 1;
199 ret = btrfs_insert_empty_item(trans, root, path, &key,
200 datasize);
79b4f4c6 201 if (ret)
1acae57b 202 goto fail;
c8b97818
CM
203 }
204 leaf = path->nodes[0];
205 ei = btrfs_item_ptr(leaf, path->slots[0],
206 struct btrfs_file_extent_item);
207 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
208 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
209 btrfs_set_file_extent_encryption(leaf, ei, 0);
210 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
211 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
212 ptr = btrfs_file_extent_inline_start(ei);
213
261507a0 214 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
215 struct page *cpage;
216 int i = 0;
d397712b 217 while (compressed_size > 0) {
c8b97818 218 cpage = compressed_pages[i];
5b050f04 219 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 220 PAGE_SIZE);
c8b97818 221
7ac687d9 222 kaddr = kmap_atomic(cpage);
c8b97818 223 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 224 kunmap_atomic(kaddr);
c8b97818
CM
225
226 i++;
227 ptr += cur_size;
228 compressed_size -= cur_size;
229 }
230 btrfs_set_file_extent_compression(leaf, ei,
261507a0 231 compress_type);
c8b97818
CM
232 } else {
233 page = find_get_page(inode->i_mapping,
09cbfeaf 234 start >> PAGE_SHIFT);
c8b97818 235 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 236 kaddr = kmap_atomic(page);
09cbfeaf 237 offset = start & (PAGE_SIZE - 1);
c8b97818 238 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 239 kunmap_atomic(kaddr);
09cbfeaf 240 put_page(page);
c8b97818
CM
241 }
242 btrfs_mark_buffer_dirty(leaf);
1acae57b 243 btrfs_release_path(path);
c8b97818 244
c2167754
YZ
245 /*
246 * we're an inline extent, so nobody can
247 * extend the file past i_size without locking
248 * a page we already have locked.
249 *
250 * We must do any isize and inode updates
251 * before we unlock the pages. Otherwise we
252 * could end up racing with unlink.
253 */
c8b97818 254 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 255 ret = btrfs_update_inode(trans, root, inode);
c2167754 256
c8b97818 257fail:
79b4f4c6 258 return ret;
c8b97818
CM
259}
260
261
262/*
263 * conditionally insert an inline extent into the file. This
264 * does the checks required to make sure the data is small enough
265 * to fit as an inline extent.
266 */
00361589
JB
267static noinline int cow_file_range_inline(struct btrfs_root *root,
268 struct inode *inode, u64 start,
269 u64 end, size_t compressed_size,
270 int compress_type,
271 struct page **compressed_pages)
c8b97818 272{
0b246afa 273 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 274 struct btrfs_trans_handle *trans;
c8b97818
CM
275 u64 isize = i_size_read(inode);
276 u64 actual_end = min(end + 1, isize);
277 u64 inline_len = actual_end - start;
0b246afa 278 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
279 u64 data_len = inline_len;
280 int ret;
1acae57b
FDBM
281 struct btrfs_path *path;
282 int extent_inserted = 0;
283 u32 extent_item_size;
c8b97818
CM
284
285 if (compressed_size)
286 data_len = compressed_size;
287
288 if (start > 0 ||
0b246afa
JM
289 actual_end > fs_info->sectorsize ||
290 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 291 (!compressed_size &&
0b246afa 292 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 293 end + 1 < isize ||
0b246afa 294 data_len > fs_info->max_inline) {
c8b97818
CM
295 return 1;
296 }
297
1acae57b
FDBM
298 path = btrfs_alloc_path();
299 if (!path)
300 return -ENOMEM;
301
00361589 302 trans = btrfs_join_transaction(root);
1acae57b
FDBM
303 if (IS_ERR(trans)) {
304 btrfs_free_path(path);
00361589 305 return PTR_ERR(trans);
1acae57b 306 }
0b246afa 307 trans->block_rsv = &fs_info->delalloc_block_rsv;
00361589 308
1acae57b
FDBM
309 if (compressed_size && compressed_pages)
310 extent_item_size = btrfs_file_extent_calc_inline_size(
311 compressed_size);
312 else
313 extent_item_size = btrfs_file_extent_calc_inline_size(
314 inline_len);
315
316 ret = __btrfs_drop_extents(trans, root, inode, path,
317 start, aligned_end, NULL,
318 1, 1, extent_item_size, &extent_inserted);
00361589 319 if (ret) {
66642832 320 btrfs_abort_transaction(trans, ret);
00361589
JB
321 goto out;
322 }
c8b97818
CM
323
324 if (isize > actual_end)
325 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
326 ret = insert_inline_extent(trans, path, extent_inserted,
327 root, inode, start,
c8b97818 328 inline_len, compressed_size,
fe3f566c 329 compress_type, compressed_pages);
2adcac1a 330 if (ret && ret != -ENOSPC) {
66642832 331 btrfs_abort_transaction(trans, ret);
00361589 332 goto out;
2adcac1a 333 } else if (ret == -ENOSPC) {
00361589
JB
334 ret = 1;
335 goto out;
79787eaa 336 }
2adcac1a 337
bdc20e67 338 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
691fa059 339 btrfs_delalloc_release_metadata(BTRFS_I(inode), end + 1 - start);
dcdbc059 340 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 341out:
94ed938a
QW
342 /*
343 * Don't forget to free the reserved space, as for inlined extent
344 * it won't count as data extent, free them directly here.
345 * And at reserve time, it's always aligned to page size, so
346 * just free one page here.
347 */
09cbfeaf 348 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
1acae57b 349 btrfs_free_path(path);
3a45bb20 350 btrfs_end_transaction(trans);
00361589 351 return ret;
c8b97818
CM
352}
353
771ed689
CM
354struct async_extent {
355 u64 start;
356 u64 ram_size;
357 u64 compressed_size;
358 struct page **pages;
359 unsigned long nr_pages;
261507a0 360 int compress_type;
771ed689
CM
361 struct list_head list;
362};
363
364struct async_cow {
365 struct inode *inode;
366 struct btrfs_root *root;
367 struct page *locked_page;
368 u64 start;
369 u64 end;
370 struct list_head extents;
371 struct btrfs_work work;
372};
373
374static noinline int add_async_extent(struct async_cow *cow,
375 u64 start, u64 ram_size,
376 u64 compressed_size,
377 struct page **pages,
261507a0
LZ
378 unsigned long nr_pages,
379 int compress_type)
771ed689
CM
380{
381 struct async_extent *async_extent;
382
383 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 384 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
385 async_extent->start = start;
386 async_extent->ram_size = ram_size;
387 async_extent->compressed_size = compressed_size;
388 async_extent->pages = pages;
389 async_extent->nr_pages = nr_pages;
261507a0 390 async_extent->compress_type = compress_type;
771ed689
CM
391 list_add_tail(&async_extent->list, &cow->extents);
392 return 0;
393}
394
f79707b0
WS
395static inline int inode_need_compress(struct inode *inode)
396{
0b246afa 397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
398
399 /* force compress */
0b246afa 400 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0
WS
401 return 1;
402 /* bad compression ratios */
403 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
404 return 0;
0b246afa 405 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0
WS
406 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
407 BTRFS_I(inode)->force_compress)
408 return 1;
409 return 0;
410}
411
6158e1ce 412static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
413 u64 start, u64 end, u64 num_bytes, u64 small_write)
414{
415 /* If this is a small write inside eof, kick off a defrag */
416 if (num_bytes < small_write &&
6158e1ce 417 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
418 btrfs_add_inode_defrag(NULL, inode);
419}
420
d352ac68 421/*
771ed689
CM
422 * we create compressed extents in two phases. The first
423 * phase compresses a range of pages that have already been
424 * locked (both pages and state bits are locked).
c8b97818 425 *
771ed689
CM
426 * This is done inside an ordered work queue, and the compression
427 * is spread across many cpus. The actual IO submission is step
428 * two, and the ordered work queue takes care of making sure that
429 * happens in the same order things were put onto the queue by
430 * writepages and friends.
c8b97818 431 *
771ed689
CM
432 * If this code finds it can't get good compression, it puts an
433 * entry onto the work queue to write the uncompressed bytes. This
434 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
435 * are written in the same order that the flusher thread sent them
436 * down.
d352ac68 437 */
c44f649e 438static noinline void compress_file_range(struct inode *inode,
771ed689
CM
439 struct page *locked_page,
440 u64 start, u64 end,
441 struct async_cow *async_cow,
442 int *num_added)
b888db2b 443{
0b246afa 444 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
b888db2b 445 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 446 u64 num_bytes;
0b246afa 447 u64 blocksize = fs_info->sectorsize;
c8b97818 448 u64 actual_end;
42dc7bab 449 u64 isize = i_size_read(inode);
e6dcd2dc 450 int ret = 0;
c8b97818
CM
451 struct page **pages = NULL;
452 unsigned long nr_pages;
c8b97818
CM
453 unsigned long total_compressed = 0;
454 unsigned long total_in = 0;
c8b97818
CM
455 int i;
456 int will_compress;
0b246afa 457 int compress_type = fs_info->compress_type;
4adaa611 458 int redirty = 0;
b888db2b 459
6158e1ce
NB
460 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
461 SZ_16K);
4cb5300b 462
42dc7bab 463 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
464again:
465 will_compress = 0;
09cbfeaf 466 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
467 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
468 nr_pages = min_t(unsigned long, nr_pages,
469 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 470
f03d9301
CM
471 /*
472 * we don't want to send crud past the end of i_size through
473 * compression, that's just a waste of CPU time. So, if the
474 * end of the file is before the start of our current
475 * requested range of bytes, we bail out to the uncompressed
476 * cleanup code that can deal with all of this.
477 *
478 * It isn't really the fastest way to fix things, but this is a
479 * very uncommon corner.
480 */
481 if (actual_end <= start)
482 goto cleanup_and_bail_uncompressed;
483
c8b97818
CM
484 total_compressed = actual_end - start;
485
4bcbb332
SW
486 /*
487 * skip compression for a small file range(<=blocksize) that
01327610 488 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
489 */
490 if (total_compressed <= blocksize &&
491 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
492 goto cleanup_and_bail_uncompressed;
493
069eac78
DS
494 total_compressed = min_t(unsigned long, total_compressed,
495 BTRFS_MAX_UNCOMPRESSED);
fda2832f 496 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 497 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
498 total_in = 0;
499 ret = 0;
db94535d 500
771ed689
CM
501 /*
502 * we do compression for mount -o compress and when the
503 * inode has not been flagged as nocompress. This flag can
504 * change at any time if we discover bad compression ratios.
c8b97818 505 */
f79707b0 506 if (inode_need_compress(inode)) {
c8b97818 507 WARN_ON(pages);
31e818fe 508 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
509 if (!pages) {
510 /* just bail out to the uncompressed code */
511 goto cont;
512 }
c8b97818 513
261507a0
LZ
514 if (BTRFS_I(inode)->force_compress)
515 compress_type = BTRFS_I(inode)->force_compress;
516
4adaa611
CM
517 /*
518 * we need to call clear_page_dirty_for_io on each
519 * page in the range. Otherwise applications with the file
520 * mmap'd can wander in and change the page contents while
521 * we are compressing them.
522 *
523 * If the compression fails for any reason, we set the pages
524 * dirty again later on.
525 */
526 extent_range_clear_dirty_for_io(inode, start, end);
527 redirty = 1;
261507a0
LZ
528 ret = btrfs_compress_pages(compress_type,
529 inode->i_mapping, start,
38c31464 530 pages,
4d3a800e 531 &nr_pages,
261507a0 532 &total_in,
e5d74902 533 &total_compressed);
c8b97818
CM
534
535 if (!ret) {
536 unsigned long offset = total_compressed &
09cbfeaf 537 (PAGE_SIZE - 1);
4d3a800e 538 struct page *page = pages[nr_pages - 1];
c8b97818
CM
539 char *kaddr;
540
541 /* zero the tail end of the last page, we might be
542 * sending it down to disk
543 */
544 if (offset) {
7ac687d9 545 kaddr = kmap_atomic(page);
c8b97818 546 memset(kaddr + offset, 0,
09cbfeaf 547 PAGE_SIZE - offset);
7ac687d9 548 kunmap_atomic(kaddr);
c8b97818
CM
549 }
550 will_compress = 1;
551 }
552 }
560f7d75 553cont:
c8b97818
CM
554 if (start == 0) {
555 /* lets try to make an inline extent */
771ed689 556 if (ret || total_in < (actual_end - start)) {
c8b97818 557 /* we didn't compress the entire range, try
771ed689 558 * to make an uncompressed inline extent.
c8b97818 559 */
00361589 560 ret = cow_file_range_inline(root, inode, start, end,
f74670f7 561 0, BTRFS_COMPRESS_NONE, NULL);
c8b97818 562 } else {
771ed689 563 /* try making a compressed inline extent */
00361589 564 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
565 total_compressed,
566 compress_type, pages);
c8b97818 567 }
79787eaa 568 if (ret <= 0) {
151a41bc 569 unsigned long clear_flags = EXTENT_DELALLOC |
a7e3b975 570 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG;
e6eb4314
FM
571 unsigned long page_error_op;
572
151a41bc 573 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 574 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 575
771ed689 576 /*
79787eaa
JM
577 * inline extent creation worked or returned error,
578 * we don't need to create any more async work items.
579 * Unlock and free up our temp pages.
771ed689 580 */
ba8b04c1
QW
581 extent_clear_unlock_delalloc(inode, start, end, end,
582 NULL, clear_flags,
583 PAGE_UNLOCK |
c2790a2e
JB
584 PAGE_CLEAR_DIRTY |
585 PAGE_SET_WRITEBACK |
e6eb4314 586 page_error_op |
c2790a2e 587 PAGE_END_WRITEBACK);
1c81ba23
FM
588 if (ret == 0)
589 btrfs_free_reserved_data_space_noquota(inode,
590 start,
591 end - start + 1);
c8b97818
CM
592 goto free_pages_out;
593 }
594 }
595
596 if (will_compress) {
597 /*
598 * we aren't doing an inline extent round the compressed size
599 * up to a block size boundary so the allocator does sane
600 * things
601 */
fda2832f 602 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
603
604 /*
605 * one last check to make sure the compression is really a
170607eb
TT
606 * win, compare the page count read with the blocks on disk,
607 * compression must free at least one sector size
c8b97818 608 */
09cbfeaf 609 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 610 if (total_compressed + blocksize <= total_in) {
c8b97818 611 num_bytes = total_in;
c8bb0c8b
AS
612 *num_added += 1;
613
614 /*
615 * The async work queues will take care of doing actual
616 * allocation on disk for these compressed pages, and
617 * will submit them to the elevator.
618 */
619 add_async_extent(async_cow, start, num_bytes,
4d3a800e 620 total_compressed, pages, nr_pages,
c8bb0c8b
AS
621 compress_type);
622
623 if (start + num_bytes < end) {
624 start += num_bytes;
625 pages = NULL;
626 cond_resched();
627 goto again;
628 }
629 return;
c8b97818
CM
630 }
631 }
c8bb0c8b 632 if (pages) {
c8b97818
CM
633 /*
634 * the compression code ran but failed to make things smaller,
635 * free any pages it allocated and our page pointer array
636 */
4d3a800e 637 for (i = 0; i < nr_pages; i++) {
70b99e69 638 WARN_ON(pages[i]->mapping);
09cbfeaf 639 put_page(pages[i]);
c8b97818
CM
640 }
641 kfree(pages);
642 pages = NULL;
643 total_compressed = 0;
4d3a800e 644 nr_pages = 0;
c8b97818
CM
645
646 /* flag the file so we don't compress in the future */
0b246afa 647 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
1e701a32 648 !(BTRFS_I(inode)->force_compress)) {
a555f810 649 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 650 }
c8b97818 651 }
f03d9301 652cleanup_and_bail_uncompressed:
c8bb0c8b
AS
653 /*
654 * No compression, but we still need to write the pages in the file
655 * we've been given so far. redirty the locked page if it corresponds
656 * to our extent and set things up for the async work queue to run
657 * cow_file_range to do the normal delalloc dance.
658 */
659 if (page_offset(locked_page) >= start &&
660 page_offset(locked_page) <= end)
661 __set_page_dirty_nobuffers(locked_page);
662 /* unlocked later on in the async handlers */
663
664 if (redirty)
665 extent_range_redirty_for_io(inode, start, end);
666 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
667 BTRFS_COMPRESS_NONE);
668 *num_added += 1;
3b951516 669
c44f649e 670 return;
771ed689
CM
671
672free_pages_out:
4d3a800e 673 for (i = 0; i < nr_pages; i++) {
771ed689 674 WARN_ON(pages[i]->mapping);
09cbfeaf 675 put_page(pages[i]);
771ed689 676 }
d397712b 677 kfree(pages);
771ed689 678}
771ed689 679
40ae837b
FM
680static void free_async_extent_pages(struct async_extent *async_extent)
681{
682 int i;
683
684 if (!async_extent->pages)
685 return;
686
687 for (i = 0; i < async_extent->nr_pages; i++) {
688 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 689 put_page(async_extent->pages[i]);
40ae837b
FM
690 }
691 kfree(async_extent->pages);
692 async_extent->nr_pages = 0;
693 async_extent->pages = NULL;
771ed689
CM
694}
695
696/*
697 * phase two of compressed writeback. This is the ordered portion
698 * of the code, which only gets called in the order the work was
699 * queued. We walk all the async extents created by compress_file_range
700 * and send them down to the disk.
701 */
dec8f175 702static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
703 struct async_cow *async_cow)
704{
0b246afa 705 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
706 struct async_extent *async_extent;
707 u64 alloc_hint = 0;
771ed689
CM
708 struct btrfs_key ins;
709 struct extent_map *em;
710 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689 711 struct extent_io_tree *io_tree;
f5a84ee3 712 int ret = 0;
771ed689 713
3e04e7f1 714again:
d397712b 715 while (!list_empty(&async_cow->extents)) {
771ed689
CM
716 async_extent = list_entry(async_cow->extents.next,
717 struct async_extent, list);
718 list_del(&async_extent->list);
c8b97818 719
771ed689
CM
720 io_tree = &BTRFS_I(inode)->io_tree;
721
f5a84ee3 722retry:
771ed689
CM
723 /* did the compression code fall back to uncompressed IO? */
724 if (!async_extent->pages) {
725 int page_started = 0;
726 unsigned long nr_written = 0;
727
728 lock_extent(io_tree, async_extent->start,
2ac55d41 729 async_extent->start +
d0082371 730 async_extent->ram_size - 1);
771ed689
CM
731
732 /* allocate blocks */
f5a84ee3
JB
733 ret = cow_file_range(inode, async_cow->locked_page,
734 async_extent->start,
735 async_extent->start +
736 async_extent->ram_size - 1,
dda3245e
WX
737 async_extent->start +
738 async_extent->ram_size - 1,
739 &page_started, &nr_written, 0,
740 NULL);
771ed689 741
79787eaa
JM
742 /* JDM XXX */
743
771ed689
CM
744 /*
745 * if page_started, cow_file_range inserted an
746 * inline extent and took care of all the unlocking
747 * and IO for us. Otherwise, we need to submit
748 * all those pages down to the drive.
749 */
f5a84ee3 750 if (!page_started && !ret)
771ed689
CM
751 extent_write_locked_range(io_tree,
752 inode, async_extent->start,
d397712b 753 async_extent->start +
771ed689
CM
754 async_extent->ram_size - 1,
755 btrfs_get_extent,
756 WB_SYNC_ALL);
3e04e7f1
JB
757 else if (ret)
758 unlock_page(async_cow->locked_page);
771ed689
CM
759 kfree(async_extent);
760 cond_resched();
761 continue;
762 }
763
764 lock_extent(io_tree, async_extent->start,
d0082371 765 async_extent->start + async_extent->ram_size - 1);
771ed689 766
18513091 767 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
768 async_extent->compressed_size,
769 async_extent->compressed_size,
e570fd27 770 0, alloc_hint, &ins, 1, 1);
f5a84ee3 771 if (ret) {
40ae837b 772 free_async_extent_pages(async_extent);
3e04e7f1 773
fdf8e2ea
JB
774 if (ret == -ENOSPC) {
775 unlock_extent(io_tree, async_extent->start,
776 async_extent->start +
777 async_extent->ram_size - 1);
ce62003f
LB
778
779 /*
780 * we need to redirty the pages if we decide to
781 * fallback to uncompressed IO, otherwise we
782 * will not submit these pages down to lower
783 * layers.
784 */
785 extent_range_redirty_for_io(inode,
786 async_extent->start,
787 async_extent->start +
788 async_extent->ram_size - 1);
789
79787eaa 790 goto retry;
fdf8e2ea 791 }
3e04e7f1 792 goto out_free;
f5a84ee3 793 }
c2167754
YZ
794 /*
795 * here we're doing allocation and writeback of the
796 * compressed pages
797 */
6f9994db
LB
798 em = create_io_em(inode, async_extent->start,
799 async_extent->ram_size, /* len */
800 async_extent->start, /* orig_start */
801 ins.objectid, /* block_start */
802 ins.offset, /* block_len */
803 ins.offset, /* orig_block_len */
804 async_extent->ram_size, /* ram_bytes */
805 async_extent->compress_type,
806 BTRFS_ORDERED_COMPRESSED);
807 if (IS_ERR(em))
808 /* ret value is not necessary due to void function */
3e04e7f1 809 goto out_free_reserve;
6f9994db 810 free_extent_map(em);
3e04e7f1 811
261507a0
LZ
812 ret = btrfs_add_ordered_extent_compress(inode,
813 async_extent->start,
814 ins.objectid,
815 async_extent->ram_size,
816 ins.offset,
817 BTRFS_ORDERED_COMPRESSED,
818 async_extent->compress_type);
d9f85963 819 if (ret) {
dcdbc059
NB
820 btrfs_drop_extent_cache(BTRFS_I(inode),
821 async_extent->start,
d9f85963
FM
822 async_extent->start +
823 async_extent->ram_size - 1, 0);
3e04e7f1 824 goto out_free_reserve;
d9f85963 825 }
0b246afa 826 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 827
771ed689
CM
828 /*
829 * clear dirty, set writeback and unlock the pages.
830 */
c2790a2e 831 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
832 async_extent->start +
833 async_extent->ram_size - 1,
a791e35e
CM
834 async_extent->start +
835 async_extent->ram_size - 1,
151a41bc
JB
836 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
837 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 838 PAGE_SET_WRITEBACK);
771ed689 839 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
840 async_extent->start,
841 async_extent->ram_size,
842 ins.objectid,
843 ins.offset, async_extent->pages,
844 async_extent->nr_pages);
fce2a4e6
FM
845 if (ret) {
846 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
847 struct page *p = async_extent->pages[0];
848 const u64 start = async_extent->start;
849 const u64 end = start + async_extent->ram_size - 1;
850
851 p->mapping = inode->i_mapping;
852 tree->ops->writepage_end_io_hook(p, start, end,
853 NULL, 0);
854 p->mapping = NULL;
ba8b04c1
QW
855 extent_clear_unlock_delalloc(inode, start, end, end,
856 NULL, 0,
fce2a4e6
FM
857 PAGE_END_WRITEBACK |
858 PAGE_SET_ERROR);
40ae837b 859 free_async_extent_pages(async_extent);
fce2a4e6 860 }
771ed689
CM
861 alloc_hint = ins.objectid + ins.offset;
862 kfree(async_extent);
863 cond_resched();
864 }
dec8f175 865 return;
3e04e7f1 866out_free_reserve:
0b246afa 867 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 868 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 869out_free:
c2790a2e 870 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
871 async_extent->start +
872 async_extent->ram_size - 1,
3e04e7f1
JB
873 async_extent->start +
874 async_extent->ram_size - 1,
c2790a2e 875 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 876 EXTENT_DELALLOC_NEW |
151a41bc
JB
877 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
878 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
879 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
880 PAGE_SET_ERROR);
40ae837b 881 free_async_extent_pages(async_extent);
79787eaa 882 kfree(async_extent);
3e04e7f1 883 goto again;
771ed689
CM
884}
885
4b46fce2
JB
886static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
887 u64 num_bytes)
888{
889 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
890 struct extent_map *em;
891 u64 alloc_hint = 0;
892
893 read_lock(&em_tree->lock);
894 em = search_extent_mapping(em_tree, start, num_bytes);
895 if (em) {
896 /*
897 * if block start isn't an actual block number then find the
898 * first block in this inode and use that as a hint. If that
899 * block is also bogus then just don't worry about it.
900 */
901 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
902 free_extent_map(em);
903 em = search_extent_mapping(em_tree, 0, 0);
904 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
905 alloc_hint = em->block_start;
906 if (em)
907 free_extent_map(em);
908 } else {
909 alloc_hint = em->block_start;
910 free_extent_map(em);
911 }
912 }
913 read_unlock(&em_tree->lock);
914
915 return alloc_hint;
916}
917
771ed689
CM
918/*
919 * when extent_io.c finds a delayed allocation range in the file,
920 * the call backs end up in this code. The basic idea is to
921 * allocate extents on disk for the range, and create ordered data structs
922 * in ram to track those extents.
923 *
924 * locked_page is the page that writepage had locked already. We use
925 * it to make sure we don't do extra locks or unlocks.
926 *
927 * *page_started is set to one if we unlock locked_page and do everything
928 * required to start IO on it. It may be clean and already done with
929 * IO when we return.
930 */
00361589
JB
931static noinline int cow_file_range(struct inode *inode,
932 struct page *locked_page,
dda3245e
WX
933 u64 start, u64 end, u64 delalloc_end,
934 int *page_started, unsigned long *nr_written,
935 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 936{
0b246afa 937 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 938 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
939 u64 alloc_hint = 0;
940 u64 num_bytes;
941 unsigned long ram_size;
942 u64 disk_num_bytes;
a315e68f 943 u64 cur_alloc_size = 0;
0b246afa 944 u64 blocksize = fs_info->sectorsize;
771ed689
CM
945 struct btrfs_key ins;
946 struct extent_map *em;
a315e68f
FM
947 unsigned clear_bits;
948 unsigned long page_ops;
949 bool extent_reserved = false;
771ed689
CM
950 int ret = 0;
951
70ddc553 952 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 953 WARN_ON_ONCE(1);
29bce2f3
JB
954 ret = -EINVAL;
955 goto out_unlock;
02ecd2c2 956 }
771ed689 957
fda2832f 958 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
959 num_bytes = max(blocksize, num_bytes);
960 disk_num_bytes = num_bytes;
771ed689 961
6158e1ce 962 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 963
771ed689
CM
964 if (start == 0) {
965 /* lets try to make an inline extent */
f74670f7
AJ
966 ret = cow_file_range_inline(root, inode, start, end, 0,
967 BTRFS_COMPRESS_NONE, NULL);
771ed689 968 if (ret == 0) {
ba8b04c1
QW
969 extent_clear_unlock_delalloc(inode, start, end,
970 delalloc_end, NULL,
c2790a2e 971 EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 972 EXTENT_DELALLOC_NEW |
151a41bc 973 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
974 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
975 PAGE_END_WRITEBACK);
18513091
WX
976 btrfs_free_reserved_data_space_noquota(inode, start,
977 end - start + 1);
771ed689 978 *nr_written = *nr_written +
09cbfeaf 979 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 980 *page_started = 1;
771ed689 981 goto out;
79787eaa 982 } else if (ret < 0) {
79787eaa 983 goto out_unlock;
771ed689
CM
984 }
985 }
986
987 BUG_ON(disk_num_bytes >
0b246afa 988 btrfs_super_total_bytes(fs_info->super_copy));
771ed689 989
4b46fce2 990 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
991 btrfs_drop_extent_cache(BTRFS_I(inode), start,
992 start + num_bytes - 1, 0);
771ed689 993
d397712b 994 while (disk_num_bytes > 0) {
287a0ab9 995 cur_alloc_size = disk_num_bytes;
18513091 996 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 997 fs_info->sectorsize, 0, alloc_hint,
e570fd27 998 &ins, 1, 1);
00361589 999 if (ret < 0)
79787eaa 1000 goto out_unlock;
a315e68f
FM
1001 cur_alloc_size = ins.offset;
1002 extent_reserved = true;
d397712b 1003
771ed689 1004 ram_size = ins.offset;
6f9994db
LB
1005 em = create_io_em(inode, start, ins.offset, /* len */
1006 start, /* orig_start */
1007 ins.objectid, /* block_start */
1008 ins.offset, /* block_len */
1009 ins.offset, /* orig_block_len */
1010 ram_size, /* ram_bytes */
1011 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1012 BTRFS_ORDERED_REGULAR /* type */);
6f9994db 1013 if (IS_ERR(em))
ace68bac 1014 goto out_reserve;
6f9994db 1015 free_extent_map(em);
e6dcd2dc 1016
e6dcd2dc 1017 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1018 ram_size, cur_alloc_size, 0);
ace68bac 1019 if (ret)
d9f85963 1020 goto out_drop_extent_cache;
c8b97818 1021
17d217fe
YZ
1022 if (root->root_key.objectid ==
1023 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1024 ret = btrfs_reloc_clone_csums(inode, start,
1025 cur_alloc_size);
4dbd80fb
QW
1026 /*
1027 * Only drop cache here, and process as normal.
1028 *
1029 * We must not allow extent_clear_unlock_delalloc()
1030 * at out_unlock label to free meta of this ordered
1031 * extent, as its meta should be freed by
1032 * btrfs_finish_ordered_io().
1033 *
1034 * So we must continue until @start is increased to
1035 * skip current ordered extent.
1036 */
00361589 1037 if (ret)
4dbd80fb
QW
1038 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1039 start + ram_size - 1, 0);
17d217fe
YZ
1040 }
1041
0b246afa 1042 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1043
c8b97818
CM
1044 /* we're not doing compressed IO, don't unlock the first
1045 * page (which the caller expects to stay locked), don't
1046 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1047 *
1048 * Do set the Private2 bit so we know this page was properly
1049 * setup for writepage
c8b97818 1050 */
a315e68f
FM
1051 page_ops = unlock ? PAGE_UNLOCK : 0;
1052 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1053
c2790a2e 1054 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1055 start + ram_size - 1,
1056 delalloc_end, locked_page,
c2790a2e 1057 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1058 page_ops);
4dbd80fb
QW
1059 if (disk_num_bytes < cur_alloc_size)
1060 disk_num_bytes = 0;
1061 else
1062 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1063 num_bytes -= cur_alloc_size;
1064 alloc_hint = ins.objectid + ins.offset;
1065 start += cur_alloc_size;
a315e68f 1066 extent_reserved = false;
4dbd80fb
QW
1067
1068 /*
1069 * btrfs_reloc_clone_csums() error, since start is increased
1070 * extent_clear_unlock_delalloc() at out_unlock label won't
1071 * free metadata of current ordered extent, we're OK to exit.
1072 */
1073 if (ret)
1074 goto out_unlock;
b888db2b 1075 }
79787eaa 1076out:
be20aa9d 1077 return ret;
b7d5b0a8 1078
d9f85963 1079out_drop_extent_cache:
dcdbc059 1080 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1081out_reserve:
0b246afa 1082 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1083 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1084out_unlock:
a7e3b975
FM
1085 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1086 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1087 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1088 PAGE_END_WRITEBACK;
1089 /*
1090 * If we reserved an extent for our delalloc range (or a subrange) and
1091 * failed to create the respective ordered extent, then it means that
1092 * when we reserved the extent we decremented the extent's size from
1093 * the data space_info's bytes_may_use counter and incremented the
1094 * space_info's bytes_reserved counter by the same amount. We must make
1095 * sure extent_clear_unlock_delalloc() does not try to decrement again
1096 * the data space_info's bytes_may_use counter, therefore we do not pass
1097 * it the flag EXTENT_CLEAR_DATA_RESV.
1098 */
1099 if (extent_reserved) {
1100 extent_clear_unlock_delalloc(inode, start,
1101 start + cur_alloc_size,
1102 start + cur_alloc_size,
1103 locked_page,
1104 clear_bits,
1105 page_ops);
1106 start += cur_alloc_size;
1107 if (start >= end)
1108 goto out;
1109 }
ba8b04c1
QW
1110 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1111 locked_page,
a315e68f
FM
1112 clear_bits | EXTENT_CLEAR_DATA_RESV,
1113 page_ops);
79787eaa 1114 goto out;
771ed689 1115}
c8b97818 1116
771ed689
CM
1117/*
1118 * work queue call back to started compression on a file and pages
1119 */
1120static noinline void async_cow_start(struct btrfs_work *work)
1121{
1122 struct async_cow *async_cow;
1123 int num_added = 0;
1124 async_cow = container_of(work, struct async_cow, work);
1125
1126 compress_file_range(async_cow->inode, async_cow->locked_page,
1127 async_cow->start, async_cow->end, async_cow,
1128 &num_added);
8180ef88 1129 if (num_added == 0) {
cb77fcd8 1130 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1131 async_cow->inode = NULL;
8180ef88 1132 }
771ed689
CM
1133}
1134
1135/*
1136 * work queue call back to submit previously compressed pages
1137 */
1138static noinline void async_cow_submit(struct btrfs_work *work)
1139{
0b246afa 1140 struct btrfs_fs_info *fs_info;
771ed689
CM
1141 struct async_cow *async_cow;
1142 struct btrfs_root *root;
1143 unsigned long nr_pages;
1144
1145 async_cow = container_of(work, struct async_cow, work);
1146
1147 root = async_cow->root;
0b246afa 1148 fs_info = root->fs_info;
09cbfeaf
KS
1149 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1150 PAGE_SHIFT;
771ed689 1151
ee863954
DS
1152 /*
1153 * atomic_sub_return implies a barrier for waitqueue_active
1154 */
0b246afa 1155 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
ee22184b 1156 5 * SZ_1M &&
0b246afa
JM
1157 waitqueue_active(&fs_info->async_submit_wait))
1158 wake_up(&fs_info->async_submit_wait);
771ed689 1159
d397712b 1160 if (async_cow->inode)
771ed689 1161 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1162}
c8b97818 1163
771ed689
CM
1164static noinline void async_cow_free(struct btrfs_work *work)
1165{
1166 struct async_cow *async_cow;
1167 async_cow = container_of(work, struct async_cow, work);
8180ef88 1168 if (async_cow->inode)
cb77fcd8 1169 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1170 kfree(async_cow);
1171}
1172
1173static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1174 u64 start, u64 end, int *page_started,
1175 unsigned long *nr_written)
1176{
0b246afa 1177 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
1178 struct async_cow *async_cow;
1179 struct btrfs_root *root = BTRFS_I(inode)->root;
1180 unsigned long nr_pages;
1181 u64 cur_end;
771ed689 1182
a3429ab7
CM
1183 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1184 1, 0, NULL, GFP_NOFS);
d397712b 1185 while (start < end) {
771ed689 1186 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1187 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1188 async_cow->inode = igrab(inode);
771ed689
CM
1189 async_cow->root = root;
1190 async_cow->locked_page = locked_page;
1191 async_cow->start = start;
1192
f79707b0 1193 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
0b246afa 1194 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
771ed689
CM
1195 cur_end = end;
1196 else
ee22184b 1197 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1198
1199 async_cow->end = cur_end;
1200 INIT_LIST_HEAD(&async_cow->extents);
1201
9e0af237
LB
1202 btrfs_init_work(&async_cow->work,
1203 btrfs_delalloc_helper,
1204 async_cow_start, async_cow_submit,
1205 async_cow_free);
771ed689 1206
09cbfeaf
KS
1207 nr_pages = (cur_end - start + PAGE_SIZE) >>
1208 PAGE_SHIFT;
0b246afa 1209 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1210
0b246afa 1211 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
771ed689 1212
0b246afa
JM
1213 while (atomic_read(&fs_info->async_submit_draining) &&
1214 atomic_read(&fs_info->async_delalloc_pages)) {
1215 wait_event(fs_info->async_submit_wait,
1216 (atomic_read(&fs_info->async_delalloc_pages) ==
1217 0));
771ed689
CM
1218 }
1219
1220 *nr_written += nr_pages;
1221 start = cur_end + 1;
1222 }
1223 *page_started = 1;
1224 return 0;
be20aa9d
CM
1225}
1226
2ff7e61e 1227static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1228 u64 bytenr, u64 num_bytes)
1229{
1230 int ret;
1231 struct btrfs_ordered_sum *sums;
1232 LIST_HEAD(list);
1233
0b246afa 1234 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1235 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1236 if (ret == 0 && list_empty(&list))
1237 return 0;
1238
1239 while (!list_empty(&list)) {
1240 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1241 list_del(&sums->list);
1242 kfree(sums);
1243 }
1244 return 1;
1245}
1246
d352ac68
CM
1247/*
1248 * when nowcow writeback call back. This checks for snapshots or COW copies
1249 * of the extents that exist in the file, and COWs the file as required.
1250 *
1251 * If no cow copies or snapshots exist, we write directly to the existing
1252 * blocks on disk
1253 */
7f366cfe
CM
1254static noinline int run_delalloc_nocow(struct inode *inode,
1255 struct page *locked_page,
771ed689
CM
1256 u64 start, u64 end, int *page_started, int force,
1257 unsigned long *nr_written)
be20aa9d 1258{
0b246afa 1259 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d
CM
1260 struct btrfs_root *root = BTRFS_I(inode)->root;
1261 struct extent_buffer *leaf;
be20aa9d 1262 struct btrfs_path *path;
80ff3856 1263 struct btrfs_file_extent_item *fi;
be20aa9d 1264 struct btrfs_key found_key;
6f9994db 1265 struct extent_map *em;
80ff3856
YZ
1266 u64 cow_start;
1267 u64 cur_offset;
1268 u64 extent_end;
5d4f98a2 1269 u64 extent_offset;
80ff3856
YZ
1270 u64 disk_bytenr;
1271 u64 num_bytes;
b4939680 1272 u64 disk_num_bytes;
cc95bef6 1273 u64 ram_bytes;
80ff3856 1274 int extent_type;
79787eaa 1275 int ret, err;
d899e052 1276 int type;
80ff3856
YZ
1277 int nocow;
1278 int check_prev = 1;
82d5902d 1279 bool nolock;
4a0cc7ca 1280 u64 ino = btrfs_ino(BTRFS_I(inode));
be20aa9d
CM
1281
1282 path = btrfs_alloc_path();
17ca04af 1283 if (!path) {
ba8b04c1
QW
1284 extent_clear_unlock_delalloc(inode, start, end, end,
1285 locked_page,
c2790a2e 1286 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1287 EXTENT_DO_ACCOUNTING |
1288 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1289 PAGE_CLEAR_DIRTY |
1290 PAGE_SET_WRITEBACK |
1291 PAGE_END_WRITEBACK);
d8926bb3 1292 return -ENOMEM;
17ca04af 1293 }
82d5902d 1294
70ddc553 1295 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
82d5902d 1296
80ff3856
YZ
1297 cow_start = (u64)-1;
1298 cur_offset = start;
1299 while (1) {
e4c3b2dc 1300 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1301 cur_offset, 0);
d788a349 1302 if (ret < 0)
79787eaa 1303 goto error;
80ff3856
YZ
1304 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1305 leaf = path->nodes[0];
1306 btrfs_item_key_to_cpu(leaf, &found_key,
1307 path->slots[0] - 1);
33345d01 1308 if (found_key.objectid == ino &&
80ff3856
YZ
1309 found_key.type == BTRFS_EXTENT_DATA_KEY)
1310 path->slots[0]--;
1311 }
1312 check_prev = 0;
1313next_slot:
1314 leaf = path->nodes[0];
1315 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1316 ret = btrfs_next_leaf(root, path);
d788a349 1317 if (ret < 0)
79787eaa 1318 goto error;
80ff3856
YZ
1319 if (ret > 0)
1320 break;
1321 leaf = path->nodes[0];
1322 }
be20aa9d 1323
80ff3856
YZ
1324 nocow = 0;
1325 disk_bytenr = 0;
17d217fe 1326 num_bytes = 0;
80ff3856
YZ
1327 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1328
1d512cb7
FM
1329 if (found_key.objectid > ino)
1330 break;
1331 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1332 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1333 path->slots[0]++;
1334 goto next_slot;
1335 }
1336 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1337 found_key.offset > end)
1338 break;
1339
1340 if (found_key.offset > cur_offset) {
1341 extent_end = found_key.offset;
e9061e21 1342 extent_type = 0;
80ff3856
YZ
1343 goto out_check;
1344 }
1345
1346 fi = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_file_extent_item);
1348 extent_type = btrfs_file_extent_type(leaf, fi);
1349
cc95bef6 1350 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1351 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1352 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1353 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1354 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1355 extent_end = found_key.offset +
1356 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1357 disk_num_bytes =
1358 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1359 if (extent_end <= start) {
1360 path->slots[0]++;
1361 goto next_slot;
1362 }
17d217fe
YZ
1363 if (disk_bytenr == 0)
1364 goto out_check;
80ff3856
YZ
1365 if (btrfs_file_extent_compression(leaf, fi) ||
1366 btrfs_file_extent_encryption(leaf, fi) ||
1367 btrfs_file_extent_other_encoding(leaf, fi))
1368 goto out_check;
d899e052
YZ
1369 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1370 goto out_check;
2ff7e61e 1371 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1372 goto out_check;
e4c3b2dc 1373 if (btrfs_cross_ref_exist(root, ino,
5d4f98a2
YZ
1374 found_key.offset -
1375 extent_offset, disk_bytenr))
17d217fe 1376 goto out_check;
5d4f98a2 1377 disk_bytenr += extent_offset;
17d217fe
YZ
1378 disk_bytenr += cur_offset - found_key.offset;
1379 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1380 /*
1381 * if there are pending snapshots for this root,
1382 * we fall into common COW way.
1383 */
1384 if (!nolock) {
9ea24bbe 1385 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1386 if (!err)
1387 goto out_check;
1388 }
17d217fe
YZ
1389 /*
1390 * force cow if csum exists in the range.
1391 * this ensure that csum for a given extent are
1392 * either valid or do not exist.
1393 */
2ff7e61e 1394 if (csum_exist_in_range(fs_info, disk_bytenr,
91e1f56a
RK
1395 num_bytes)) {
1396 if (!nolock)
1397 btrfs_end_write_no_snapshoting(root);
17d217fe 1398 goto out_check;
91e1f56a
RK
1399 }
1400 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1401 if (!nolock)
1402 btrfs_end_write_no_snapshoting(root);
f78c436c 1403 goto out_check;
91e1f56a 1404 }
80ff3856
YZ
1405 nocow = 1;
1406 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1407 extent_end = found_key.offset +
514ac8ad
CM
1408 btrfs_file_extent_inline_len(leaf,
1409 path->slots[0], fi);
da17066c 1410 extent_end = ALIGN(extent_end,
0b246afa 1411 fs_info->sectorsize);
80ff3856
YZ
1412 } else {
1413 BUG_ON(1);
1414 }
1415out_check:
1416 if (extent_end <= start) {
1417 path->slots[0]++;
e9894fd3 1418 if (!nolock && nocow)
9ea24bbe 1419 btrfs_end_write_no_snapshoting(root);
f78c436c 1420 if (nocow)
0b246afa 1421 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1422 goto next_slot;
1423 }
1424 if (!nocow) {
1425 if (cow_start == (u64)-1)
1426 cow_start = cur_offset;
1427 cur_offset = extent_end;
1428 if (cur_offset > end)
1429 break;
1430 path->slots[0]++;
1431 goto next_slot;
7ea394f1
YZ
1432 }
1433
b3b4aa74 1434 btrfs_release_path(path);
80ff3856 1435 if (cow_start != (u64)-1) {
00361589
JB
1436 ret = cow_file_range(inode, locked_page,
1437 cow_start, found_key.offset - 1,
dda3245e
WX
1438 end, page_started, nr_written, 1,
1439 NULL);
e9894fd3
WS
1440 if (ret) {
1441 if (!nolock && nocow)
9ea24bbe 1442 btrfs_end_write_no_snapshoting(root);
f78c436c 1443 if (nocow)
0b246afa 1444 btrfs_dec_nocow_writers(fs_info,
f78c436c 1445 disk_bytenr);
79787eaa 1446 goto error;
e9894fd3 1447 }
80ff3856 1448 cow_start = (u64)-1;
7ea394f1 1449 }
80ff3856 1450
d899e052 1451 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db
LB
1452 u64 orig_start = found_key.offset - extent_offset;
1453
1454 em = create_io_em(inode, cur_offset, num_bytes,
1455 orig_start,
1456 disk_bytenr, /* block_start */
1457 num_bytes, /* block_len */
1458 disk_num_bytes, /* orig_block_len */
1459 ram_bytes, BTRFS_COMPRESS_NONE,
1460 BTRFS_ORDERED_PREALLOC);
1461 if (IS_ERR(em)) {
1462 if (!nolock && nocow)
1463 btrfs_end_write_no_snapshoting(root);
1464 if (nocow)
1465 btrfs_dec_nocow_writers(fs_info,
1466 disk_bytenr);
1467 ret = PTR_ERR(em);
1468 goto error;
d899e052 1469 }
6f9994db
LB
1470 free_extent_map(em);
1471 }
1472
1473 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
d899e052
YZ
1474 type = BTRFS_ORDERED_PREALLOC;
1475 } else {
1476 type = BTRFS_ORDERED_NOCOW;
1477 }
80ff3856
YZ
1478
1479 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1480 num_bytes, num_bytes, type);
f78c436c 1481 if (nocow)
0b246afa 1482 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1483 BUG_ON(ret); /* -ENOMEM */
771ed689 1484
efa56464 1485 if (root->root_key.objectid ==
4dbd80fb
QW
1486 BTRFS_DATA_RELOC_TREE_OBJECTID)
1487 /*
1488 * Error handled later, as we must prevent
1489 * extent_clear_unlock_delalloc() in error handler
1490 * from freeing metadata of created ordered extent.
1491 */
efa56464
YZ
1492 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1493 num_bytes);
efa56464 1494
c2790a2e 1495 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1496 cur_offset + num_bytes - 1, end,
c2790a2e 1497 locked_page, EXTENT_LOCKED |
18513091
WX
1498 EXTENT_DELALLOC |
1499 EXTENT_CLEAR_DATA_RESV,
1500 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1501
e9894fd3 1502 if (!nolock && nocow)
9ea24bbe 1503 btrfs_end_write_no_snapshoting(root);
80ff3856 1504 cur_offset = extent_end;
4dbd80fb
QW
1505
1506 /*
1507 * btrfs_reloc_clone_csums() error, now we're OK to call error
1508 * handler, as metadata for created ordered extent will only
1509 * be freed by btrfs_finish_ordered_io().
1510 */
1511 if (ret)
1512 goto error;
80ff3856
YZ
1513 if (cur_offset > end)
1514 break;
be20aa9d 1515 }
b3b4aa74 1516 btrfs_release_path(path);
80ff3856 1517
17ca04af 1518 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1519 cow_start = cur_offset;
17ca04af
JB
1520 cur_offset = end;
1521 }
1522
80ff3856 1523 if (cow_start != (u64)-1) {
dda3245e
WX
1524 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1525 page_started, nr_written, 1, NULL);
d788a349 1526 if (ret)
79787eaa 1527 goto error;
80ff3856
YZ
1528 }
1529
79787eaa 1530error:
17ca04af 1531 if (ret && cur_offset < end)
ba8b04c1 1532 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1533 locked_page, EXTENT_LOCKED |
151a41bc
JB
1534 EXTENT_DELALLOC | EXTENT_DEFRAG |
1535 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1536 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1537 PAGE_SET_WRITEBACK |
1538 PAGE_END_WRITEBACK);
7ea394f1 1539 btrfs_free_path(path);
79787eaa 1540 return ret;
be20aa9d
CM
1541}
1542
47059d93
WS
1543static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1544{
1545
1546 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1547 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1548 return 0;
1549
1550 /*
1551 * @defrag_bytes is a hint value, no spinlock held here,
1552 * if is not zero, it means the file is defragging.
1553 * Force cow if given extent needs to be defragged.
1554 */
1555 if (BTRFS_I(inode)->defrag_bytes &&
1556 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1557 EXTENT_DEFRAG, 0, NULL))
1558 return 1;
1559
1560 return 0;
1561}
1562
d352ac68
CM
1563/*
1564 * extent_io.c call back to do delayed allocation processing
1565 */
c6100a4b 1566static int run_delalloc_range(void *private_data, struct page *locked_page,
771ed689
CM
1567 u64 start, u64 end, int *page_started,
1568 unsigned long *nr_written)
be20aa9d 1569{
c6100a4b 1570 struct inode *inode = private_data;
be20aa9d 1571 int ret;
47059d93 1572 int force_cow = need_force_cow(inode, start, end);
a2135011 1573
47059d93 1574 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1575 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1576 page_started, 1, nr_written);
47059d93 1577 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1578 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1579 page_started, 0, nr_written);
7816030e 1580 } else if (!inode_need_compress(inode)) {
dda3245e
WX
1581 ret = cow_file_range(inode, locked_page, start, end, end,
1582 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1583 } else {
1584 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1585 &BTRFS_I(inode)->runtime_flags);
771ed689 1586 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1587 page_started, nr_written);
7ddf5a42 1588 }
52427260
QW
1589 if (ret)
1590 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
b888db2b
CM
1591 return ret;
1592}
1593
c6100a4b 1594static void btrfs_split_extent_hook(void *private_data,
1bf85046 1595 struct extent_state *orig, u64 split)
9ed74f2d 1596{
c6100a4b 1597 struct inode *inode = private_data;
dcab6a3b
JB
1598 u64 size;
1599
0ca1f7ce 1600 /* not delalloc, ignore it */
9ed74f2d 1601 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1602 return;
9ed74f2d 1603
dcab6a3b
JB
1604 size = orig->end - orig->start + 1;
1605 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1606 u32 num_extents;
dcab6a3b
JB
1607 u64 new_size;
1608
1609 /*
ba117213
JB
1610 * See the explanation in btrfs_merge_extent_hook, the same
1611 * applies here, just in reverse.
dcab6a3b
JB
1612 */
1613 new_size = orig->end - split + 1;
823bb20a 1614 num_extents = count_max_extents(new_size);
ba117213 1615 new_size = split - orig->start;
823bb20a
DS
1616 num_extents += count_max_extents(new_size);
1617 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1618 return;
1619 }
1620
9e0baf60
JB
1621 spin_lock(&BTRFS_I(inode)->lock);
1622 BTRFS_I(inode)->outstanding_extents++;
1623 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1624}
1625
1626/*
1627 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1628 * extents so we can keep track of new extents that are just merged onto old
1629 * extents, such as when we are doing sequential writes, so we can properly
1630 * account for the metadata space we'll need.
1631 */
c6100a4b 1632static void btrfs_merge_extent_hook(void *private_data,
1bf85046
JM
1633 struct extent_state *new,
1634 struct extent_state *other)
9ed74f2d 1635{
c6100a4b 1636 struct inode *inode = private_data;
dcab6a3b 1637 u64 new_size, old_size;
823bb20a 1638 u32 num_extents;
dcab6a3b 1639
9ed74f2d
JB
1640 /* not delalloc, ignore it */
1641 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1642 return;
9ed74f2d 1643
8461a3de
JB
1644 if (new->start > other->start)
1645 new_size = new->end - other->start + 1;
1646 else
1647 new_size = other->end - new->start + 1;
dcab6a3b
JB
1648
1649 /* we're not bigger than the max, unreserve the space and go */
1650 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1651 spin_lock(&BTRFS_I(inode)->lock);
1652 BTRFS_I(inode)->outstanding_extents--;
1653 spin_unlock(&BTRFS_I(inode)->lock);
1654 return;
1655 }
1656
1657 /*
ba117213
JB
1658 * We have to add up either side to figure out how many extents were
1659 * accounted for before we merged into one big extent. If the number of
1660 * extents we accounted for is <= the amount we need for the new range
1661 * then we can return, otherwise drop. Think of it like this
1662 *
1663 * [ 4k][MAX_SIZE]
1664 *
1665 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1666 * need 2 outstanding extents, on one side we have 1 and the other side
1667 * we have 1 so they are == and we can return. But in this case
1668 *
1669 * [MAX_SIZE+4k][MAX_SIZE+4k]
1670 *
1671 * Each range on their own accounts for 2 extents, but merged together
1672 * they are only 3 extents worth of accounting, so we need to drop in
1673 * this case.
dcab6a3b 1674 */
ba117213 1675 old_size = other->end - other->start + 1;
823bb20a 1676 num_extents = count_max_extents(old_size);
ba117213 1677 old_size = new->end - new->start + 1;
823bb20a
DS
1678 num_extents += count_max_extents(old_size);
1679 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1680 return;
1681
9e0baf60
JB
1682 spin_lock(&BTRFS_I(inode)->lock);
1683 BTRFS_I(inode)->outstanding_extents--;
1684 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1685}
1686
eb73c1b7
MX
1687static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1688 struct inode *inode)
1689{
0b246afa
JM
1690 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1691
eb73c1b7
MX
1692 spin_lock(&root->delalloc_lock);
1693 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1694 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1695 &root->delalloc_inodes);
1696 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1697 &BTRFS_I(inode)->runtime_flags);
1698 root->nr_delalloc_inodes++;
1699 if (root->nr_delalloc_inodes == 1) {
0b246afa 1700 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1701 BUG_ON(!list_empty(&root->delalloc_root));
1702 list_add_tail(&root->delalloc_root,
0b246afa
JM
1703 &fs_info->delalloc_roots);
1704 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1705 }
1706 }
1707 spin_unlock(&root->delalloc_lock);
1708}
1709
1710static void btrfs_del_delalloc_inode(struct btrfs_root *root,
9e3e97f4 1711 struct btrfs_inode *inode)
eb73c1b7 1712{
9e3e97f4 1713 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0b246afa 1714
eb73c1b7 1715 spin_lock(&root->delalloc_lock);
9e3e97f4
NB
1716 if (!list_empty(&inode->delalloc_inodes)) {
1717 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1718 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1719 &inode->runtime_flags);
eb73c1b7
MX
1720 root->nr_delalloc_inodes--;
1721 if (!root->nr_delalloc_inodes) {
0b246afa 1722 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1723 BUG_ON(list_empty(&root->delalloc_root));
1724 list_del_init(&root->delalloc_root);
0b246afa 1725 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1726 }
1727 }
1728 spin_unlock(&root->delalloc_lock);
1729}
1730
d352ac68
CM
1731/*
1732 * extent_io.c set_bit_hook, used to track delayed allocation
1733 * bytes in this file, and to maintain the list of inodes that
1734 * have pending delalloc work to be done.
1735 */
c6100a4b 1736static void btrfs_set_bit_hook(void *private_data,
9ee49a04 1737 struct extent_state *state, unsigned *bits)
291d673e 1738{
c6100a4b 1739 struct inode *inode = private_data;
9ed74f2d 1740
0b246afa
JM
1741 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1742
47059d93
WS
1743 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1744 WARN_ON(1);
75eff68e
CM
1745 /*
1746 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1747 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1748 * bit, which is only set or cleared with irqs on
1749 */
0ca1f7ce 1750 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1751 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1752 u64 len = state->end + 1 - state->start;
70ddc553 1753 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1754
9e0baf60 1755 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1756 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1757 } else {
1758 spin_lock(&BTRFS_I(inode)->lock);
1759 BTRFS_I(inode)->outstanding_extents++;
1760 spin_unlock(&BTRFS_I(inode)->lock);
1761 }
287a0ab9 1762
6a3891c5 1763 /* For sanity tests */
0b246afa 1764 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1765 return;
1766
0b246afa
JM
1767 __percpu_counter_add(&fs_info->delalloc_bytes, len,
1768 fs_info->delalloc_batch);
df0af1a5 1769 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1770 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1771 if (*bits & EXTENT_DEFRAG)
1772 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1773 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1774 &BTRFS_I(inode)->runtime_flags))
1775 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1776 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1777 }
a7e3b975
FM
1778
1779 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1780 (*bits & EXTENT_DELALLOC_NEW)) {
1781 spin_lock(&BTRFS_I(inode)->lock);
1782 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1783 state->start;
1784 spin_unlock(&BTRFS_I(inode)->lock);
1785 }
291d673e
CM
1786}
1787
d352ac68
CM
1788/*
1789 * extent_io.c clear_bit_hook, see set_bit_hook for why
1790 */
c6100a4b 1791static void btrfs_clear_bit_hook(void *private_data,
41074888 1792 struct extent_state *state,
9ee49a04 1793 unsigned *bits)
291d673e 1794{
c6100a4b 1795 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
6fc0ef68 1796 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
47059d93 1797 u64 len = state->end + 1 - state->start;
823bb20a 1798 u32 num_extents = count_max_extents(len);
47059d93 1799
6fc0ef68 1800 spin_lock(&inode->lock);
47059d93 1801 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
6fc0ef68
NB
1802 inode->defrag_bytes -= len;
1803 spin_unlock(&inode->lock);
47059d93 1804
75eff68e
CM
1805 /*
1806 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1807 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1808 * bit, which is only set or cleared with irqs on
1809 */
0ca1f7ce 1810 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1811 struct btrfs_root *root = inode->root;
83eea1f1 1812 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1813
9e0baf60 1814 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1815 *bits &= ~EXTENT_FIRST_DELALLOC;
a315e68f 1816 } else if (!(*bits & EXTENT_CLEAR_META_RESV)) {
6fc0ef68
NB
1817 spin_lock(&inode->lock);
1818 inode->outstanding_extents -= num_extents;
1819 spin_unlock(&inode->lock);
9e0baf60 1820 }
0ca1f7ce 1821
b6d08f06
JB
1822 /*
1823 * We don't reserve metadata space for space cache inodes so we
1824 * don't need to call dellalloc_release_metadata if there is an
1825 * error.
1826 */
a315e68f 1827 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 1828 root != fs_info->tree_root)
0ca1f7ce
YZ
1829 btrfs_delalloc_release_metadata(inode, len);
1830
6a3891c5 1831 /* For sanity tests. */
0b246afa 1832 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1833 return;
1834
a315e68f
FM
1835 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1836 do_list && !(state->state & EXTENT_NORESERVE) &&
1837 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
1838 btrfs_free_reserved_data_space_noquota(
1839 &inode->vfs_inode,
51773bec 1840 state->start, len);
9ed74f2d 1841
0b246afa
JM
1842 __percpu_counter_add(&fs_info->delalloc_bytes, -len,
1843 fs_info->delalloc_batch);
6fc0ef68
NB
1844 spin_lock(&inode->lock);
1845 inode->delalloc_bytes -= len;
1846 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 1847 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1848 &inode->runtime_flags))
eb73c1b7 1849 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 1850 spin_unlock(&inode->lock);
291d673e 1851 }
a7e3b975
FM
1852
1853 if ((state->state & EXTENT_DELALLOC_NEW) &&
1854 (*bits & EXTENT_DELALLOC_NEW)) {
1855 spin_lock(&inode->lock);
1856 ASSERT(inode->new_delalloc_bytes >= len);
1857 inode->new_delalloc_bytes -= len;
1858 spin_unlock(&inode->lock);
1859 }
291d673e
CM
1860}
1861
d352ac68
CM
1862/*
1863 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1864 * we don't create bios that span stripes or chunks
6f034ece
LB
1865 *
1866 * return 1 if page cannot be merged to bio
1867 * return 0 if page can be merged to bio
1868 * return error otherwise
d352ac68 1869 */
81a75f67 1870int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1871 size_t size, struct bio *bio,
1872 unsigned long bio_flags)
239b14b3 1873{
0b246afa
JM
1874 struct inode *inode = page->mapping->host;
1875 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1876 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1877 u64 length = 0;
1878 u64 map_length;
239b14b3
CM
1879 int ret;
1880
771ed689
CM
1881 if (bio_flags & EXTENT_BIO_COMPRESSED)
1882 return 0;
1883
4f024f37 1884 length = bio->bi_iter.bi_size;
239b14b3 1885 map_length = length;
0b246afa
JM
1886 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1887 NULL, 0);
6f034ece
LB
1888 if (ret < 0)
1889 return ret;
d397712b 1890 if (map_length < length + size)
239b14b3 1891 return 1;
3444a972 1892 return 0;
239b14b3
CM
1893}
1894
d352ac68
CM
1895/*
1896 * in order to insert checksums into the metadata in large chunks,
1897 * we wait until bio submission time. All the pages in the bio are
1898 * checksummed and sums are attached onto the ordered extent record.
1899 *
1900 * At IO completion time the cums attached on the ordered extent record
1901 * are inserted into the btree
1902 */
c6100a4b 1903static int __btrfs_submit_bio_start(void *private_data, struct bio *bio,
81a75f67 1904 int mirror_num, unsigned long bio_flags,
eaf25d93 1905 u64 bio_offset)
065631f6 1906{
c6100a4b 1907 struct inode *inode = private_data;
065631f6 1908 int ret = 0;
e015640f 1909
2ff7e61e 1910 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1911 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1912 return 0;
1913}
e015640f 1914
4a69a410
CM
1915/*
1916 * in order to insert checksums into the metadata in large chunks,
1917 * we wait until bio submission time. All the pages in the bio are
1918 * checksummed and sums are attached onto the ordered extent record.
1919 *
1920 * At IO completion time the cums attached on the ordered extent record
1921 * are inserted into the btree
1922 */
c6100a4b 1923static int __btrfs_submit_bio_done(void *private_data, struct bio *bio,
eaf25d93
CM
1924 int mirror_num, unsigned long bio_flags,
1925 u64 bio_offset)
4a69a410 1926{
c6100a4b 1927 struct inode *inode = private_data;
2ff7e61e 1928 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
61891923
SB
1929 int ret;
1930
2ff7e61e 1931 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
4246a0b6
CH
1932 if (ret) {
1933 bio->bi_error = ret;
1934 bio_endio(bio);
1935 }
61891923 1936 return ret;
44b8bd7e
CM
1937}
1938
d352ac68 1939/*
cad321ad
CM
1940 * extent_io.c submission hook. This does the right thing for csum calculation
1941 * on write, or reading the csums from the tree before a read
d352ac68 1942 */
c6100a4b
JB
1943static int btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1944 int mirror_num, unsigned long bio_flags,
1945 u64 bio_offset)
44b8bd7e 1946{
c6100a4b 1947 struct inode *inode = private_data;
0b246afa 1948 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 1949 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1950 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1951 int ret = 0;
19b9bdb0 1952 int skip_sum;
b812ce28 1953 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1954
6cbff00f 1955 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1956
70ddc553 1957 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 1958 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1959
37226b21 1960 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 1961 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 1962 if (ret)
61891923 1963 goto out;
5fd02043 1964
d20f7043 1965 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1966 ret = btrfs_submit_compressed_read(inode, bio,
1967 mirror_num,
1968 bio_flags);
1969 goto out;
c2db1073 1970 } else if (!skip_sum) {
2ff7e61e 1971 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 1972 if (ret)
61891923 1973 goto out;
c2db1073 1974 }
4d1b5fb4 1975 goto mapit;
b812ce28 1976 } else if (async && !skip_sum) {
17d217fe
YZ
1977 /* csum items have already been cloned */
1978 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1979 goto mapit;
19b9bdb0 1980 /* we're doing a write, do the async checksumming */
c6100a4b
JB
1981 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
1982 bio_offset, inode,
0b246afa
JM
1983 __btrfs_submit_bio_start,
1984 __btrfs_submit_bio_done);
61891923 1985 goto out;
b812ce28 1986 } else if (!skip_sum) {
2ff7e61e 1987 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
1988 if (ret)
1989 goto out;
19b9bdb0
CM
1990 }
1991
0b86a832 1992mapit:
2ff7e61e 1993 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
1994
1995out:
4246a0b6
CH
1996 if (ret < 0) {
1997 bio->bi_error = ret;
1998 bio_endio(bio);
1999 }
61891923 2000 return ret;
065631f6 2001}
6885f308 2002
d352ac68
CM
2003/*
2004 * given a list of ordered sums record them in the inode. This happens
2005 * at IO completion time based on sums calculated at bio submission time.
2006 */
ba1da2f4 2007static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2008 struct inode *inode, struct list_head *list)
e6dcd2dc 2009{
e6dcd2dc
CM
2010 struct btrfs_ordered_sum *sum;
2011
c6e30871 2012 list_for_each_entry(sum, list, list) {
39847c4d 2013 trans->adding_csums = 1;
d20f7043
CM
2014 btrfs_csum_file_blocks(trans,
2015 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 2016 trans->adding_csums = 0;
e6dcd2dc
CM
2017 }
2018 return 0;
2019}
2020
2ac55d41 2021int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
ba8b04c1 2022 struct extent_state **cached_state, int dedupe)
ea8c2819 2023{
09cbfeaf 2024 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 2025 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
7cd8c752 2026 cached_state);
ea8c2819
CM
2027}
2028
d352ac68 2029/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2030struct btrfs_writepage_fixup {
2031 struct page *page;
2032 struct btrfs_work work;
2033};
2034
b2950863 2035static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2036{
2037 struct btrfs_writepage_fixup *fixup;
2038 struct btrfs_ordered_extent *ordered;
2ac55d41 2039 struct extent_state *cached_state = NULL;
247e743c
CM
2040 struct page *page;
2041 struct inode *inode;
2042 u64 page_start;
2043 u64 page_end;
87826df0 2044 int ret;
247e743c
CM
2045
2046 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2047 page = fixup->page;
4a096752 2048again:
247e743c
CM
2049 lock_page(page);
2050 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2051 ClearPageChecked(page);
2052 goto out_page;
2053 }
2054
2055 inode = page->mapping->host;
2056 page_start = page_offset(page);
09cbfeaf 2057 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2058
ff13db41 2059 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2060 &cached_state);
4a096752
CM
2061
2062 /* already ordered? We're done */
8b62b72b 2063 if (PagePrivate2(page))
247e743c 2064 goto out;
4a096752 2065
a776c6fa 2066 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2067 PAGE_SIZE);
4a096752 2068 if (ordered) {
2ac55d41
JB
2069 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2070 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2071 unlock_page(page);
2072 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2073 btrfs_put_ordered_extent(ordered);
4a096752
CM
2074 goto again;
2075 }
247e743c 2076
7cf5b976 2077 ret = btrfs_delalloc_reserve_space(inode, page_start,
09cbfeaf 2078 PAGE_SIZE);
87826df0
JM
2079 if (ret) {
2080 mapping_set_error(page->mapping, ret);
2081 end_extent_writepage(page, ret, page_start, page_end);
2082 ClearPageChecked(page);
2083 goto out;
2084 }
2085
ba8b04c1
QW
2086 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
2087 0);
247e743c 2088 ClearPageChecked(page);
87826df0 2089 set_page_dirty(page);
247e743c 2090out:
2ac55d41
JB
2091 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2092 &cached_state, GFP_NOFS);
247e743c
CM
2093out_page:
2094 unlock_page(page);
09cbfeaf 2095 put_page(page);
b897abec 2096 kfree(fixup);
247e743c
CM
2097}
2098
2099/*
2100 * There are a few paths in the higher layers of the kernel that directly
2101 * set the page dirty bit without asking the filesystem if it is a
2102 * good idea. This causes problems because we want to make sure COW
2103 * properly happens and the data=ordered rules are followed.
2104 *
c8b97818 2105 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2106 * hasn't been properly setup for IO. We kick off an async process
2107 * to fix it up. The async helper will wait for ordered extents, set
2108 * the delalloc bit and make it safe to write the page.
2109 */
b2950863 2110static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2111{
2112 struct inode *inode = page->mapping->host;
0b246afa 2113 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2114 struct btrfs_writepage_fixup *fixup;
247e743c 2115
8b62b72b
CM
2116 /* this page is properly in the ordered list */
2117 if (TestClearPagePrivate2(page))
247e743c
CM
2118 return 0;
2119
2120 if (PageChecked(page))
2121 return -EAGAIN;
2122
2123 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2124 if (!fixup)
2125 return -EAGAIN;
f421950f 2126
247e743c 2127 SetPageChecked(page);
09cbfeaf 2128 get_page(page);
9e0af237
LB
2129 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2130 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2131 fixup->page = page;
0b246afa 2132 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2133 return -EBUSY;
247e743c
CM
2134}
2135
d899e052
YZ
2136static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2137 struct inode *inode, u64 file_pos,
2138 u64 disk_bytenr, u64 disk_num_bytes,
2139 u64 num_bytes, u64 ram_bytes,
2140 u8 compression, u8 encryption,
2141 u16 other_encoding, int extent_type)
2142{
2143 struct btrfs_root *root = BTRFS_I(inode)->root;
2144 struct btrfs_file_extent_item *fi;
2145 struct btrfs_path *path;
2146 struct extent_buffer *leaf;
2147 struct btrfs_key ins;
1acae57b 2148 int extent_inserted = 0;
d899e052
YZ
2149 int ret;
2150
2151 path = btrfs_alloc_path();
d8926bb3
MF
2152 if (!path)
2153 return -ENOMEM;
d899e052 2154
a1ed835e
CM
2155 /*
2156 * we may be replacing one extent in the tree with another.
2157 * The new extent is pinned in the extent map, and we don't want
2158 * to drop it from the cache until it is completely in the btree.
2159 *
2160 * So, tell btrfs_drop_extents to leave this extent in the cache.
2161 * the caller is expected to unpin it and allow it to be merged
2162 * with the others.
2163 */
1acae57b
FDBM
2164 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2165 file_pos + num_bytes, NULL, 0,
2166 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2167 if (ret)
2168 goto out;
d899e052 2169
1acae57b 2170 if (!extent_inserted) {
4a0cc7ca 2171 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2172 ins.offset = file_pos;
2173 ins.type = BTRFS_EXTENT_DATA_KEY;
2174
2175 path->leave_spinning = 1;
2176 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2177 sizeof(*fi));
2178 if (ret)
2179 goto out;
2180 }
d899e052
YZ
2181 leaf = path->nodes[0];
2182 fi = btrfs_item_ptr(leaf, path->slots[0],
2183 struct btrfs_file_extent_item);
2184 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2185 btrfs_set_file_extent_type(leaf, fi, extent_type);
2186 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2187 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2188 btrfs_set_file_extent_offset(leaf, fi, 0);
2189 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2190 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2191 btrfs_set_file_extent_compression(leaf, fi, compression);
2192 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2193 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2194
d899e052 2195 btrfs_mark_buffer_dirty(leaf);
ce195332 2196 btrfs_release_path(path);
d899e052
YZ
2197
2198 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2199
2200 ins.objectid = disk_bytenr;
2201 ins.offset = disk_num_bytes;
2202 ins.type = BTRFS_EXTENT_ITEM_KEY;
2ff7e61e 2203 ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid,
f85b7379 2204 btrfs_ino(BTRFS_I(inode)), file_pos, ram_bytes, &ins);
297d750b 2205 /*
5846a3c2
QW
2206 * Release the reserved range from inode dirty range map, as it is
2207 * already moved into delayed_ref_head
297d750b
QW
2208 */
2209 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
79787eaa 2210out:
d899e052 2211 btrfs_free_path(path);
b9473439 2212
79787eaa 2213 return ret;
d899e052
YZ
2214}
2215
38c227d8
LB
2216/* snapshot-aware defrag */
2217struct sa_defrag_extent_backref {
2218 struct rb_node node;
2219 struct old_sa_defrag_extent *old;
2220 u64 root_id;
2221 u64 inum;
2222 u64 file_pos;
2223 u64 extent_offset;
2224 u64 num_bytes;
2225 u64 generation;
2226};
2227
2228struct old_sa_defrag_extent {
2229 struct list_head list;
2230 struct new_sa_defrag_extent *new;
2231
2232 u64 extent_offset;
2233 u64 bytenr;
2234 u64 offset;
2235 u64 len;
2236 int count;
2237};
2238
2239struct new_sa_defrag_extent {
2240 struct rb_root root;
2241 struct list_head head;
2242 struct btrfs_path *path;
2243 struct inode *inode;
2244 u64 file_pos;
2245 u64 len;
2246 u64 bytenr;
2247 u64 disk_len;
2248 u8 compress_type;
2249};
2250
2251static int backref_comp(struct sa_defrag_extent_backref *b1,
2252 struct sa_defrag_extent_backref *b2)
2253{
2254 if (b1->root_id < b2->root_id)
2255 return -1;
2256 else if (b1->root_id > b2->root_id)
2257 return 1;
2258
2259 if (b1->inum < b2->inum)
2260 return -1;
2261 else if (b1->inum > b2->inum)
2262 return 1;
2263
2264 if (b1->file_pos < b2->file_pos)
2265 return -1;
2266 else if (b1->file_pos > b2->file_pos)
2267 return 1;
2268
2269 /*
2270 * [------------------------------] ===> (a range of space)
2271 * |<--->| |<---->| =============> (fs/file tree A)
2272 * |<---------------------------->| ===> (fs/file tree B)
2273 *
2274 * A range of space can refer to two file extents in one tree while
2275 * refer to only one file extent in another tree.
2276 *
2277 * So we may process a disk offset more than one time(two extents in A)
2278 * and locate at the same extent(one extent in B), then insert two same
2279 * backrefs(both refer to the extent in B).
2280 */
2281 return 0;
2282}
2283
2284static void backref_insert(struct rb_root *root,
2285 struct sa_defrag_extent_backref *backref)
2286{
2287 struct rb_node **p = &root->rb_node;
2288 struct rb_node *parent = NULL;
2289 struct sa_defrag_extent_backref *entry;
2290 int ret;
2291
2292 while (*p) {
2293 parent = *p;
2294 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2295
2296 ret = backref_comp(backref, entry);
2297 if (ret < 0)
2298 p = &(*p)->rb_left;
2299 else
2300 p = &(*p)->rb_right;
2301 }
2302
2303 rb_link_node(&backref->node, parent, p);
2304 rb_insert_color(&backref->node, root);
2305}
2306
2307/*
2308 * Note the backref might has changed, and in this case we just return 0.
2309 */
2310static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2311 void *ctx)
2312{
2313 struct btrfs_file_extent_item *extent;
38c227d8
LB
2314 struct old_sa_defrag_extent *old = ctx;
2315 struct new_sa_defrag_extent *new = old->new;
2316 struct btrfs_path *path = new->path;
2317 struct btrfs_key key;
2318 struct btrfs_root *root;
2319 struct sa_defrag_extent_backref *backref;
2320 struct extent_buffer *leaf;
2321 struct inode *inode = new->inode;
0b246afa 2322 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2323 int slot;
2324 int ret;
2325 u64 extent_offset;
2326 u64 num_bytes;
2327
2328 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2329 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2330 return 0;
2331
2332 key.objectid = root_id;
2333 key.type = BTRFS_ROOT_ITEM_KEY;
2334 key.offset = (u64)-1;
2335
38c227d8
LB
2336 root = btrfs_read_fs_root_no_name(fs_info, &key);
2337 if (IS_ERR(root)) {
2338 if (PTR_ERR(root) == -ENOENT)
2339 return 0;
2340 WARN_ON(1);
ab8d0fc4 2341 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2342 inum, offset, root_id);
2343 return PTR_ERR(root);
2344 }
2345
2346 key.objectid = inum;
2347 key.type = BTRFS_EXTENT_DATA_KEY;
2348 if (offset > (u64)-1 << 32)
2349 key.offset = 0;
2350 else
2351 key.offset = offset;
2352
2353 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2354 if (WARN_ON(ret < 0))
38c227d8 2355 return ret;
50f1319c 2356 ret = 0;
38c227d8
LB
2357
2358 while (1) {
2359 cond_resched();
2360
2361 leaf = path->nodes[0];
2362 slot = path->slots[0];
2363
2364 if (slot >= btrfs_header_nritems(leaf)) {
2365 ret = btrfs_next_leaf(root, path);
2366 if (ret < 0) {
2367 goto out;
2368 } else if (ret > 0) {
2369 ret = 0;
2370 goto out;
2371 }
2372 continue;
2373 }
2374
2375 path->slots[0]++;
2376
2377 btrfs_item_key_to_cpu(leaf, &key, slot);
2378
2379 if (key.objectid > inum)
2380 goto out;
2381
2382 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2383 continue;
2384
2385 extent = btrfs_item_ptr(leaf, slot,
2386 struct btrfs_file_extent_item);
2387
2388 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2389 continue;
2390
e68afa49
LB
2391 /*
2392 * 'offset' refers to the exact key.offset,
2393 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2394 * (key.offset - extent_offset).
2395 */
2396 if (key.offset != offset)
38c227d8
LB
2397 continue;
2398
e68afa49 2399 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2400 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2401
38c227d8
LB
2402 if (extent_offset >= old->extent_offset + old->offset +
2403 old->len || extent_offset + num_bytes <=
2404 old->extent_offset + old->offset)
2405 continue;
38c227d8
LB
2406 break;
2407 }
2408
2409 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2410 if (!backref) {
2411 ret = -ENOENT;
2412 goto out;
2413 }
2414
2415 backref->root_id = root_id;
2416 backref->inum = inum;
e68afa49 2417 backref->file_pos = offset;
38c227d8
LB
2418 backref->num_bytes = num_bytes;
2419 backref->extent_offset = extent_offset;
2420 backref->generation = btrfs_file_extent_generation(leaf, extent);
2421 backref->old = old;
2422 backref_insert(&new->root, backref);
2423 old->count++;
2424out:
2425 btrfs_release_path(path);
2426 WARN_ON(ret);
2427 return ret;
2428}
2429
2430static noinline bool record_extent_backrefs(struct btrfs_path *path,
2431 struct new_sa_defrag_extent *new)
2432{
0b246afa 2433 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2434 struct old_sa_defrag_extent *old, *tmp;
2435 int ret;
2436
2437 new->path = path;
2438
2439 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2440 ret = iterate_inodes_from_logical(old->bytenr +
2441 old->extent_offset, fs_info,
38c227d8
LB
2442 path, record_one_backref,
2443 old);
4724b106
JB
2444 if (ret < 0 && ret != -ENOENT)
2445 return false;
38c227d8
LB
2446
2447 /* no backref to be processed for this extent */
2448 if (!old->count) {
2449 list_del(&old->list);
2450 kfree(old);
2451 }
2452 }
2453
2454 if (list_empty(&new->head))
2455 return false;
2456
2457 return true;
2458}
2459
2460static int relink_is_mergable(struct extent_buffer *leaf,
2461 struct btrfs_file_extent_item *fi,
116e0024 2462 struct new_sa_defrag_extent *new)
38c227d8 2463{
116e0024 2464 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2465 return 0;
2466
2467 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2468 return 0;
2469
116e0024
LB
2470 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2471 return 0;
2472
2473 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2474 btrfs_file_extent_other_encoding(leaf, fi))
2475 return 0;
2476
2477 return 1;
2478}
2479
2480/*
2481 * Note the backref might has changed, and in this case we just return 0.
2482 */
2483static noinline int relink_extent_backref(struct btrfs_path *path,
2484 struct sa_defrag_extent_backref *prev,
2485 struct sa_defrag_extent_backref *backref)
2486{
2487 struct btrfs_file_extent_item *extent;
2488 struct btrfs_file_extent_item *item;
2489 struct btrfs_ordered_extent *ordered;
2490 struct btrfs_trans_handle *trans;
38c227d8
LB
2491 struct btrfs_root *root;
2492 struct btrfs_key key;
2493 struct extent_buffer *leaf;
2494 struct old_sa_defrag_extent *old = backref->old;
2495 struct new_sa_defrag_extent *new = old->new;
0b246afa 2496 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2497 struct inode *inode;
2498 struct extent_state *cached = NULL;
2499 int ret = 0;
2500 u64 start;
2501 u64 len;
2502 u64 lock_start;
2503 u64 lock_end;
2504 bool merge = false;
2505 int index;
2506
2507 if (prev && prev->root_id == backref->root_id &&
2508 prev->inum == backref->inum &&
2509 prev->file_pos + prev->num_bytes == backref->file_pos)
2510 merge = true;
2511
2512 /* step 1: get root */
2513 key.objectid = backref->root_id;
2514 key.type = BTRFS_ROOT_ITEM_KEY;
2515 key.offset = (u64)-1;
2516
38c227d8
LB
2517 index = srcu_read_lock(&fs_info->subvol_srcu);
2518
2519 root = btrfs_read_fs_root_no_name(fs_info, &key);
2520 if (IS_ERR(root)) {
2521 srcu_read_unlock(&fs_info->subvol_srcu, index);
2522 if (PTR_ERR(root) == -ENOENT)
2523 return 0;
2524 return PTR_ERR(root);
2525 }
38c227d8 2526
bcbba5e6
WS
2527 if (btrfs_root_readonly(root)) {
2528 srcu_read_unlock(&fs_info->subvol_srcu, index);
2529 return 0;
2530 }
2531
38c227d8
LB
2532 /* step 2: get inode */
2533 key.objectid = backref->inum;
2534 key.type = BTRFS_INODE_ITEM_KEY;
2535 key.offset = 0;
2536
2537 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2538 if (IS_ERR(inode)) {
2539 srcu_read_unlock(&fs_info->subvol_srcu, index);
2540 return 0;
2541 }
2542
2543 srcu_read_unlock(&fs_info->subvol_srcu, index);
2544
2545 /* step 3: relink backref */
2546 lock_start = backref->file_pos;
2547 lock_end = backref->file_pos + backref->num_bytes - 1;
2548 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2549 &cached);
38c227d8
LB
2550
2551 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2552 if (ordered) {
2553 btrfs_put_ordered_extent(ordered);
2554 goto out_unlock;
2555 }
2556
2557 trans = btrfs_join_transaction(root);
2558 if (IS_ERR(trans)) {
2559 ret = PTR_ERR(trans);
2560 goto out_unlock;
2561 }
2562
2563 key.objectid = backref->inum;
2564 key.type = BTRFS_EXTENT_DATA_KEY;
2565 key.offset = backref->file_pos;
2566
2567 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2568 if (ret < 0) {
2569 goto out_free_path;
2570 } else if (ret > 0) {
2571 ret = 0;
2572 goto out_free_path;
2573 }
2574
2575 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2576 struct btrfs_file_extent_item);
2577
2578 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2579 backref->generation)
2580 goto out_free_path;
2581
2582 btrfs_release_path(path);
2583
2584 start = backref->file_pos;
2585 if (backref->extent_offset < old->extent_offset + old->offset)
2586 start += old->extent_offset + old->offset -
2587 backref->extent_offset;
2588
2589 len = min(backref->extent_offset + backref->num_bytes,
2590 old->extent_offset + old->offset + old->len);
2591 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2592
2593 ret = btrfs_drop_extents(trans, root, inode, start,
2594 start + len, 1);
2595 if (ret)
2596 goto out_free_path;
2597again:
4a0cc7ca 2598 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2599 key.type = BTRFS_EXTENT_DATA_KEY;
2600 key.offset = start;
2601
a09a0a70 2602 path->leave_spinning = 1;
38c227d8
LB
2603 if (merge) {
2604 struct btrfs_file_extent_item *fi;
2605 u64 extent_len;
2606 struct btrfs_key found_key;
2607
3c9665df 2608 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2609 if (ret < 0)
2610 goto out_free_path;
2611
2612 path->slots[0]--;
2613 leaf = path->nodes[0];
2614 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2615
2616 fi = btrfs_item_ptr(leaf, path->slots[0],
2617 struct btrfs_file_extent_item);
2618 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2619
116e0024
LB
2620 if (extent_len + found_key.offset == start &&
2621 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2622 btrfs_set_file_extent_num_bytes(leaf, fi,
2623 extent_len + len);
2624 btrfs_mark_buffer_dirty(leaf);
2625 inode_add_bytes(inode, len);
2626
2627 ret = 1;
2628 goto out_free_path;
2629 } else {
2630 merge = false;
2631 btrfs_release_path(path);
2632 goto again;
2633 }
2634 }
2635
2636 ret = btrfs_insert_empty_item(trans, root, path, &key,
2637 sizeof(*extent));
2638 if (ret) {
66642832 2639 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2640 goto out_free_path;
2641 }
2642
2643 leaf = path->nodes[0];
2644 item = btrfs_item_ptr(leaf, path->slots[0],
2645 struct btrfs_file_extent_item);
2646 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2647 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2648 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2649 btrfs_set_file_extent_num_bytes(leaf, item, len);
2650 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2651 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2652 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2653 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2654 btrfs_set_file_extent_encryption(leaf, item, 0);
2655 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2656
2657 btrfs_mark_buffer_dirty(leaf);
2658 inode_add_bytes(inode, len);
a09a0a70 2659 btrfs_release_path(path);
38c227d8 2660
2ff7e61e 2661 ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr,
38c227d8
LB
2662 new->disk_len, 0,
2663 backref->root_id, backref->inum,
b06c4bf5 2664 new->file_pos); /* start - extent_offset */
38c227d8 2665 if (ret) {
66642832 2666 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2667 goto out_free_path;
2668 }
2669
2670 ret = 1;
2671out_free_path:
2672 btrfs_release_path(path);
a09a0a70 2673 path->leave_spinning = 0;
3a45bb20 2674 btrfs_end_transaction(trans);
38c227d8
LB
2675out_unlock:
2676 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2677 &cached, GFP_NOFS);
2678 iput(inode);
2679 return ret;
2680}
2681
6f519564
LB
2682static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2683{
2684 struct old_sa_defrag_extent *old, *tmp;
2685
2686 if (!new)
2687 return;
2688
2689 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2690 kfree(old);
2691 }
2692 kfree(new);
2693}
2694
38c227d8
LB
2695static void relink_file_extents(struct new_sa_defrag_extent *new)
2696{
0b246afa 2697 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2698 struct btrfs_path *path;
38c227d8
LB
2699 struct sa_defrag_extent_backref *backref;
2700 struct sa_defrag_extent_backref *prev = NULL;
2701 struct inode *inode;
2702 struct btrfs_root *root;
2703 struct rb_node *node;
2704 int ret;
2705
2706 inode = new->inode;
2707 root = BTRFS_I(inode)->root;
2708
2709 path = btrfs_alloc_path();
2710 if (!path)
2711 return;
2712
2713 if (!record_extent_backrefs(path, new)) {
2714 btrfs_free_path(path);
2715 goto out;
2716 }
2717 btrfs_release_path(path);
2718
2719 while (1) {
2720 node = rb_first(&new->root);
2721 if (!node)
2722 break;
2723 rb_erase(node, &new->root);
2724
2725 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2726
2727 ret = relink_extent_backref(path, prev, backref);
2728 WARN_ON(ret < 0);
2729
2730 kfree(prev);
2731
2732 if (ret == 1)
2733 prev = backref;
2734 else
2735 prev = NULL;
2736 cond_resched();
2737 }
2738 kfree(prev);
2739
2740 btrfs_free_path(path);
38c227d8 2741out:
6f519564
LB
2742 free_sa_defrag_extent(new);
2743
0b246afa
JM
2744 atomic_dec(&fs_info->defrag_running);
2745 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2746}
2747
2748static struct new_sa_defrag_extent *
2749record_old_file_extents(struct inode *inode,
2750 struct btrfs_ordered_extent *ordered)
2751{
0b246afa 2752 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2753 struct btrfs_root *root = BTRFS_I(inode)->root;
2754 struct btrfs_path *path;
2755 struct btrfs_key key;
6f519564 2756 struct old_sa_defrag_extent *old;
38c227d8
LB
2757 struct new_sa_defrag_extent *new;
2758 int ret;
2759
2760 new = kmalloc(sizeof(*new), GFP_NOFS);
2761 if (!new)
2762 return NULL;
2763
2764 new->inode = inode;
2765 new->file_pos = ordered->file_offset;
2766 new->len = ordered->len;
2767 new->bytenr = ordered->start;
2768 new->disk_len = ordered->disk_len;
2769 new->compress_type = ordered->compress_type;
2770 new->root = RB_ROOT;
2771 INIT_LIST_HEAD(&new->head);
2772
2773 path = btrfs_alloc_path();
2774 if (!path)
2775 goto out_kfree;
2776
4a0cc7ca 2777 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2778 key.type = BTRFS_EXTENT_DATA_KEY;
2779 key.offset = new->file_pos;
2780
2781 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2782 if (ret < 0)
2783 goto out_free_path;
2784 if (ret > 0 && path->slots[0] > 0)
2785 path->slots[0]--;
2786
2787 /* find out all the old extents for the file range */
2788 while (1) {
2789 struct btrfs_file_extent_item *extent;
2790 struct extent_buffer *l;
2791 int slot;
2792 u64 num_bytes;
2793 u64 offset;
2794 u64 end;
2795 u64 disk_bytenr;
2796 u64 extent_offset;
2797
2798 l = path->nodes[0];
2799 slot = path->slots[0];
2800
2801 if (slot >= btrfs_header_nritems(l)) {
2802 ret = btrfs_next_leaf(root, path);
2803 if (ret < 0)
6f519564 2804 goto out_free_path;
38c227d8
LB
2805 else if (ret > 0)
2806 break;
2807 continue;
2808 }
2809
2810 btrfs_item_key_to_cpu(l, &key, slot);
2811
4a0cc7ca 2812 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2813 break;
2814 if (key.type != BTRFS_EXTENT_DATA_KEY)
2815 break;
2816 if (key.offset >= new->file_pos + new->len)
2817 break;
2818
2819 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2820
2821 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2822 if (key.offset + num_bytes < new->file_pos)
2823 goto next;
2824
2825 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2826 if (!disk_bytenr)
2827 goto next;
2828
2829 extent_offset = btrfs_file_extent_offset(l, extent);
2830
2831 old = kmalloc(sizeof(*old), GFP_NOFS);
2832 if (!old)
6f519564 2833 goto out_free_path;
38c227d8
LB
2834
2835 offset = max(new->file_pos, key.offset);
2836 end = min(new->file_pos + new->len, key.offset + num_bytes);
2837
2838 old->bytenr = disk_bytenr;
2839 old->extent_offset = extent_offset;
2840 old->offset = offset - key.offset;
2841 old->len = end - offset;
2842 old->new = new;
2843 old->count = 0;
2844 list_add_tail(&old->list, &new->head);
2845next:
2846 path->slots[0]++;
2847 cond_resched();
2848 }
2849
2850 btrfs_free_path(path);
0b246afa 2851 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2852
2853 return new;
2854
38c227d8
LB
2855out_free_path:
2856 btrfs_free_path(path);
2857out_kfree:
6f519564 2858 free_sa_defrag_extent(new);
38c227d8
LB
2859 return NULL;
2860}
2861
2ff7e61e 2862static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2863 u64 start, u64 len)
2864{
2865 struct btrfs_block_group_cache *cache;
2866
0b246afa 2867 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2868 ASSERT(cache);
2869
2870 spin_lock(&cache->lock);
2871 cache->delalloc_bytes -= len;
2872 spin_unlock(&cache->lock);
2873
2874 btrfs_put_block_group(cache);
2875}
2876
d352ac68
CM
2877/* as ordered data IO finishes, this gets called so we can finish
2878 * an ordered extent if the range of bytes in the file it covers are
2879 * fully written.
2880 */
5fd02043 2881static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2882{
5fd02043 2883 struct inode *inode = ordered_extent->inode;
0b246afa 2884 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2885 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2886 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2887 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2888 struct extent_state *cached_state = NULL;
38c227d8 2889 struct new_sa_defrag_extent *new = NULL;
261507a0 2890 int compress_type = 0;
77cef2ec
JB
2891 int ret = 0;
2892 u64 logical_len = ordered_extent->len;
82d5902d 2893 bool nolock;
77cef2ec 2894 bool truncated = false;
a7e3b975
FM
2895 bool range_locked = false;
2896 bool clear_new_delalloc_bytes = false;
2897
2898 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2899 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2900 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2901 clear_new_delalloc_bytes = true;
e6dcd2dc 2902
70ddc553 2903 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2904
5fd02043
JB
2905 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2906 ret = -EIO;
2907 goto out;
2908 }
2909
7ab7956e
NB
2910 btrfs_free_io_failure_record(BTRFS_I(inode),
2911 ordered_extent->file_offset,
2912 ordered_extent->file_offset +
2913 ordered_extent->len - 1);
f612496b 2914
77cef2ec
JB
2915 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2916 truncated = true;
2917 logical_len = ordered_extent->truncated_len;
2918 /* Truncated the entire extent, don't bother adding */
2919 if (!logical_len)
2920 goto out;
2921 }
2922
c2167754 2923 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2924 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2925
2926 /*
2927 * For mwrite(mmap + memset to write) case, we still reserve
2928 * space for NOCOW range.
2929 * As NOCOW won't cause a new delayed ref, just free the space
2930 */
2931 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2932 ordered_extent->len);
6c760c07
JB
2933 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2934 if (nolock)
2935 trans = btrfs_join_transaction_nolock(root);
2936 else
2937 trans = btrfs_join_transaction(root);
2938 if (IS_ERR(trans)) {
2939 ret = PTR_ERR(trans);
2940 trans = NULL;
2941 goto out;
c2167754 2942 }
0b246afa 2943 trans->block_rsv = &fs_info->delalloc_block_rsv;
6c760c07
JB
2944 ret = btrfs_update_inode_fallback(trans, root, inode);
2945 if (ret) /* -ENOMEM or corruption */
66642832 2946 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2947 goto out;
2948 }
e6dcd2dc 2949
a7e3b975 2950 range_locked = true;
2ac55d41
JB
2951 lock_extent_bits(io_tree, ordered_extent->file_offset,
2952 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2953 &cached_state);
e6dcd2dc 2954
38c227d8
LB
2955 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2956 ordered_extent->file_offset + ordered_extent->len - 1,
452e62b7 2957 EXTENT_DEFRAG, 0, cached_state);
38c227d8
LB
2958 if (ret) {
2959 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2960 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2961 /* the inode is shared */
2962 new = record_old_file_extents(inode, ordered_extent);
2963
2964 clear_extent_bit(io_tree, ordered_extent->file_offset,
2965 ordered_extent->file_offset + ordered_extent->len - 1,
2966 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2967 }
2968
0cb59c99 2969 if (nolock)
7a7eaa40 2970 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2971 else
7a7eaa40 2972 trans = btrfs_join_transaction(root);
79787eaa
JM
2973 if (IS_ERR(trans)) {
2974 ret = PTR_ERR(trans);
2975 trans = NULL;
a7e3b975 2976 goto out;
79787eaa 2977 }
a79b7d4b 2978
0b246afa 2979 trans->block_rsv = &fs_info->delalloc_block_rsv;
c2167754 2980
c8b97818 2981 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2982 compress_type = ordered_extent->compress_type;
d899e052 2983 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2984 BUG_ON(compress_type);
7a6d7067 2985 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
2986 ordered_extent->file_offset,
2987 ordered_extent->file_offset +
77cef2ec 2988 logical_len);
d899e052 2989 } else {
0b246afa 2990 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
2991 ret = insert_reserved_file_extent(trans, inode,
2992 ordered_extent->file_offset,
2993 ordered_extent->start,
2994 ordered_extent->disk_len,
77cef2ec 2995 logical_len, logical_len,
261507a0 2996 compress_type, 0, 0,
d899e052 2997 BTRFS_FILE_EXTENT_REG);
e570fd27 2998 if (!ret)
2ff7e61e 2999 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
3000 ordered_extent->start,
3001 ordered_extent->disk_len);
d899e052 3002 }
5dc562c5
JB
3003 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3004 ordered_extent->file_offset, ordered_extent->len,
3005 trans->transid);
79787eaa 3006 if (ret < 0) {
66642832 3007 btrfs_abort_transaction(trans, ret);
a7e3b975 3008 goto out;
79787eaa 3009 }
2ac55d41 3010
df9f628e 3011 add_pending_csums(trans, inode, &ordered_extent->list);
e6dcd2dc 3012
6c760c07
JB
3013 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3014 ret = btrfs_update_inode_fallback(trans, root, inode);
3015 if (ret) { /* -ENOMEM or corruption */
66642832 3016 btrfs_abort_transaction(trans, ret);
a7e3b975 3017 goto out;
1ef30be1
JB
3018 }
3019 ret = 0;
c2167754 3020out:
a7e3b975
FM
3021 if (range_locked || clear_new_delalloc_bytes) {
3022 unsigned int clear_bits = 0;
3023
3024 if (range_locked)
3025 clear_bits |= EXTENT_LOCKED;
3026 if (clear_new_delalloc_bytes)
3027 clear_bits |= EXTENT_DELALLOC_NEW;
3028 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3029 ordered_extent->file_offset,
3030 ordered_extent->file_offset +
3031 ordered_extent->len - 1,
3032 clear_bits,
3033 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3034 0, &cached_state, GFP_NOFS);
3035 }
3036
0b246afa 3037 if (root != fs_info->tree_root)
691fa059
NB
3038 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3039 ordered_extent->len);
a698d075 3040 if (trans)
3a45bb20 3041 btrfs_end_transaction(trans);
0cb59c99 3042
77cef2ec
JB
3043 if (ret || truncated) {
3044 u64 start, end;
3045
3046 if (truncated)
3047 start = ordered_extent->file_offset + logical_len;
3048 else
3049 start = ordered_extent->file_offset;
3050 end = ordered_extent->file_offset + ordered_extent->len - 1;
3051 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3052
3053 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 3054 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 3055
0bec9ef5
JB
3056 /*
3057 * If the ordered extent had an IOERR or something else went
3058 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3059 * back to the allocator. We only free the extent in the
3060 * truncated case if we didn't write out the extent at all.
0bec9ef5 3061 */
77cef2ec
JB
3062 if ((ret || !logical_len) &&
3063 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3064 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3065 btrfs_free_reserved_extent(fs_info,
3066 ordered_extent->start,
e570fd27 3067 ordered_extent->disk_len, 1);
0bec9ef5
JB
3068 }
3069
3070
5fd02043 3071 /*
8bad3c02
LB
3072 * This needs to be done to make sure anybody waiting knows we are done
3073 * updating everything for this ordered extent.
5fd02043
JB
3074 */
3075 btrfs_remove_ordered_extent(inode, ordered_extent);
3076
38c227d8 3077 /* for snapshot-aware defrag */
6f519564
LB
3078 if (new) {
3079 if (ret) {
3080 free_sa_defrag_extent(new);
0b246afa 3081 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3082 } else {
3083 relink_file_extents(new);
3084 }
3085 }
38c227d8 3086
e6dcd2dc
CM
3087 /* once for us */
3088 btrfs_put_ordered_extent(ordered_extent);
3089 /* once for the tree */
3090 btrfs_put_ordered_extent(ordered_extent);
3091
5fd02043
JB
3092 return ret;
3093}
3094
3095static void finish_ordered_fn(struct btrfs_work *work)
3096{
3097 struct btrfs_ordered_extent *ordered_extent;
3098 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3099 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3100}
3101
c3988d63 3102static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3103 struct extent_state *state, int uptodate)
3104{
5fd02043 3105 struct inode *inode = page->mapping->host;
0b246afa 3106 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3107 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3108 struct btrfs_workqueue *wq;
3109 btrfs_work_func_t func;
5fd02043 3110
1abe9b8a 3111 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3112
8b62b72b 3113 ClearPagePrivate2(page);
5fd02043
JB
3114 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3115 end - start + 1, uptodate))
c3988d63 3116 return;
5fd02043 3117
70ddc553 3118 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 3119 wq = fs_info->endio_freespace_worker;
9e0af237
LB
3120 func = btrfs_freespace_write_helper;
3121 } else {
0b246afa 3122 wq = fs_info->endio_write_workers;
9e0af237
LB
3123 func = btrfs_endio_write_helper;
3124 }
5fd02043 3125
9e0af237
LB
3126 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3127 NULL);
3128 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3129}
3130
dc380aea
MX
3131static int __readpage_endio_check(struct inode *inode,
3132 struct btrfs_io_bio *io_bio,
3133 int icsum, struct page *page,
3134 int pgoff, u64 start, size_t len)
3135{
3136 char *kaddr;
3137 u32 csum_expected;
3138 u32 csum = ~(u32)0;
dc380aea
MX
3139
3140 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3141
3142 kaddr = kmap_atomic(page);
3143 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
0b5e3daf 3144 btrfs_csum_final(csum, (u8 *)&csum);
dc380aea
MX
3145 if (csum != csum_expected)
3146 goto zeroit;
3147
3148 kunmap_atomic(kaddr);
3149 return 0;
3150zeroit:
0970a22e 3151 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
6f6b643e 3152 io_bio->mirror_num);
dc380aea
MX
3153 memset(kaddr + pgoff, 1, len);
3154 flush_dcache_page(page);
3155 kunmap_atomic(kaddr);
3156 if (csum_expected == 0)
3157 return 0;
3158 return -EIO;
3159}
3160
d352ac68
CM
3161/*
3162 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3163 * if there's a match, we allow the bio to finish. If not, the code in
3164 * extent_io.c will try to find good copies for us.
d352ac68 3165 */
facc8a22
MX
3166static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3167 u64 phy_offset, struct page *page,
3168 u64 start, u64 end, int mirror)
07157aac 3169{
4eee4fa4 3170 size_t offset = start - page_offset(page);
07157aac 3171 struct inode *inode = page->mapping->host;
d1310b2e 3172 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3173 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3174
d20f7043
CM
3175 if (PageChecked(page)) {
3176 ClearPageChecked(page);
dc380aea 3177 return 0;
d20f7043 3178 }
6cbff00f
CH
3179
3180 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3181 return 0;
17d217fe
YZ
3182
3183 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3184 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3185 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3186 return 0;
17d217fe 3187 }
d20f7043 3188
facc8a22 3189 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3190 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3191 start, (size_t)(end - start + 1));
07157aac 3192}
b888db2b 3193
24bbcf04
YZ
3194void btrfs_add_delayed_iput(struct inode *inode)
3195{
0b246afa 3196 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3197 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3198
3199 if (atomic_add_unless(&inode->i_count, -1, 1))
3200 return;
3201
24bbcf04 3202 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3203 if (binode->delayed_iput_count == 0) {
3204 ASSERT(list_empty(&binode->delayed_iput));
3205 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3206 } else {
3207 binode->delayed_iput_count++;
3208 }
24bbcf04
YZ
3209 spin_unlock(&fs_info->delayed_iput_lock);
3210}
3211
2ff7e61e 3212void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3213{
24bbcf04 3214
24bbcf04 3215 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3216 while (!list_empty(&fs_info->delayed_iputs)) {
3217 struct btrfs_inode *inode;
3218
3219 inode = list_first_entry(&fs_info->delayed_iputs,
3220 struct btrfs_inode, delayed_iput);
3221 if (inode->delayed_iput_count) {
3222 inode->delayed_iput_count--;
3223 list_move_tail(&inode->delayed_iput,
3224 &fs_info->delayed_iputs);
3225 } else {
3226 list_del_init(&inode->delayed_iput);
3227 }
3228 spin_unlock(&fs_info->delayed_iput_lock);
3229 iput(&inode->vfs_inode);
3230 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3231 }
8089fe62 3232 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3233}
3234
d68fc57b 3235/*
42b2aa86 3236 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3237 * files in the subvolume, it removes orphan item and frees block_rsv
3238 * structure.
3239 */
3240void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3241 struct btrfs_root *root)
3242{
0b246afa 3243 struct btrfs_fs_info *fs_info = root->fs_info;
90290e19 3244 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3245 int ret;
3246
8a35d95f 3247 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3248 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3249 return;
3250
90290e19 3251 spin_lock(&root->orphan_lock);
8a35d95f 3252 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3253 spin_unlock(&root->orphan_lock);
3254 return;
3255 }
3256
3257 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3258 spin_unlock(&root->orphan_lock);
3259 return;
3260 }
3261
3262 block_rsv = root->orphan_block_rsv;
3263 root->orphan_block_rsv = NULL;
3264 spin_unlock(&root->orphan_lock);
3265
27cdeb70 3266 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b 3267 btrfs_root_refs(&root->root_item) > 0) {
0b246afa 3268 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
d68fc57b 3269 root->root_key.objectid);
4ef31a45 3270 if (ret)
66642832 3271 btrfs_abort_transaction(trans, ret);
4ef31a45 3272 else
27cdeb70
MX
3273 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3274 &root->state);
d68fc57b
YZ
3275 }
3276
90290e19
JB
3277 if (block_rsv) {
3278 WARN_ON(block_rsv->size > 0);
2ff7e61e 3279 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b
YZ
3280 }
3281}
3282
7b128766
JB
3283/*
3284 * This creates an orphan entry for the given inode in case something goes
3285 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3286 *
3287 * NOTE: caller of this function should reserve 5 units of metadata for
3288 * this function.
7b128766 3289 */
73f2e545
NB
3290int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3291 struct btrfs_inode *inode)
7b128766 3292{
73f2e545
NB
3293 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3294 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3295 struct btrfs_block_rsv *block_rsv = NULL;
3296 int reserve = 0;
3297 int insert = 0;
3298 int ret;
7b128766 3299
d68fc57b 3300 if (!root->orphan_block_rsv) {
2ff7e61e
JM
3301 block_rsv = btrfs_alloc_block_rsv(fs_info,
3302 BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3303 if (!block_rsv)
3304 return -ENOMEM;
d68fc57b 3305 }
7b128766 3306
d68fc57b
YZ
3307 spin_lock(&root->orphan_lock);
3308 if (!root->orphan_block_rsv) {
3309 root->orphan_block_rsv = block_rsv;
3310 } else if (block_rsv) {
2ff7e61e 3311 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b 3312 block_rsv = NULL;
7b128766 3313 }
7b128766 3314
8a35d95f 3315 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3316 &inode->runtime_flags)) {
d68fc57b
YZ
3317#if 0
3318 /*
3319 * For proper ENOSPC handling, we should do orphan
3320 * cleanup when mounting. But this introduces backward
3321 * compatibility issue.
3322 */
3323 if (!xchg(&root->orphan_item_inserted, 1))
3324 insert = 2;
3325 else
3326 insert = 1;
3327#endif
3328 insert = 1;
321f0e70 3329 atomic_inc(&root->orphan_inodes);
7b128766
JB
3330 }
3331
72ac3c0d 3332 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3333 &inode->runtime_flags))
d68fc57b 3334 reserve = 1;
d68fc57b 3335 spin_unlock(&root->orphan_lock);
7b128766 3336
d68fc57b
YZ
3337 /* grab metadata reservation from transaction handle */
3338 if (reserve) {
3339 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3340 ASSERT(!ret);
3341 if (ret) {
3342 atomic_dec(&root->orphan_inodes);
3343 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3344 &inode->runtime_flags);
3b6571c1
JB
3345 if (insert)
3346 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3347 &inode->runtime_flags);
3b6571c1
JB
3348 return ret;
3349 }
d68fc57b 3350 }
7b128766 3351
d68fc57b
YZ
3352 /* insert an orphan item to track this unlinked/truncated file */
3353 if (insert >= 1) {
73f2e545 3354 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3355 if (ret) {
703c88e0 3356 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3357 if (reserve) {
3358 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3359 &inode->runtime_flags);
4ef31a45
JB
3360 btrfs_orphan_release_metadata(inode);
3361 }
3362 if (ret != -EEXIST) {
e8e7cff6 3363 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3364 &inode->runtime_flags);
66642832 3365 btrfs_abort_transaction(trans, ret);
4ef31a45
JB
3366 return ret;
3367 }
79787eaa
JM
3368 }
3369 ret = 0;
d68fc57b
YZ
3370 }
3371
3372 /* insert an orphan item to track subvolume contains orphan files */
3373 if (insert >= 2) {
0b246afa 3374 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
d68fc57b 3375 root->root_key.objectid);
79787eaa 3376 if (ret && ret != -EEXIST) {
66642832 3377 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3378 return ret;
3379 }
d68fc57b
YZ
3380 }
3381 return 0;
7b128766
JB
3382}
3383
3384/*
3385 * We have done the truncate/delete so we can go ahead and remove the orphan
3386 * item for this particular inode.
3387 */
48a3b636 3388static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3389 struct btrfs_inode *inode)
7b128766 3390{
3d6ae7bb 3391 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3392 int delete_item = 0;
3393 int release_rsv = 0;
7b128766
JB
3394 int ret = 0;
3395
d68fc57b 3396 spin_lock(&root->orphan_lock);
8a35d95f 3397 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3d6ae7bb 3398 &inode->runtime_flags))
d68fc57b 3399 delete_item = 1;
7b128766 3400
72ac3c0d 3401 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3d6ae7bb 3402 &inode->runtime_flags))
d68fc57b 3403 release_rsv = 1;
d68fc57b 3404 spin_unlock(&root->orphan_lock);
7b128766 3405
703c88e0 3406 if (delete_item) {
8a35d95f 3407 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3408 if (trans)
3409 ret = btrfs_del_orphan_item(trans, root,
3d6ae7bb 3410 btrfs_ino(inode));
8a35d95f 3411 }
7b128766 3412
703c88e0
FDBM
3413 if (release_rsv)
3414 btrfs_orphan_release_metadata(inode);
3415
4ef31a45 3416 return ret;
7b128766
JB
3417}
3418
3419/*
3420 * this cleans up any orphans that may be left on the list from the last use
3421 * of this root.
3422 */
66b4ffd1 3423int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3424{
0b246afa 3425 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3426 struct btrfs_path *path;
3427 struct extent_buffer *leaf;
7b128766
JB
3428 struct btrfs_key key, found_key;
3429 struct btrfs_trans_handle *trans;
3430 struct inode *inode;
8f6d7f4f 3431 u64 last_objectid = 0;
7b128766
JB
3432 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3433
d68fc57b 3434 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3435 return 0;
c71bf099
YZ
3436
3437 path = btrfs_alloc_path();
66b4ffd1
JB
3438 if (!path) {
3439 ret = -ENOMEM;
3440 goto out;
3441 }
e4058b54 3442 path->reada = READA_BACK;
7b128766
JB
3443
3444 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3445 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3446 key.offset = (u64)-1;
3447
7b128766
JB
3448 while (1) {
3449 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3450 if (ret < 0)
3451 goto out;
7b128766
JB
3452
3453 /*
3454 * if ret == 0 means we found what we were searching for, which
25985edc 3455 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3456 * find the key and see if we have stuff that matches
3457 */
3458 if (ret > 0) {
66b4ffd1 3459 ret = 0;
7b128766
JB
3460 if (path->slots[0] == 0)
3461 break;
3462 path->slots[0]--;
3463 }
3464
3465 /* pull out the item */
3466 leaf = path->nodes[0];
7b128766
JB
3467 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3468
3469 /* make sure the item matches what we want */
3470 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3471 break;
962a298f 3472 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3473 break;
3474
3475 /* release the path since we're done with it */
b3b4aa74 3476 btrfs_release_path(path);
7b128766
JB
3477
3478 /*
3479 * this is where we are basically btrfs_lookup, without the
3480 * crossing root thing. we store the inode number in the
3481 * offset of the orphan item.
3482 */
8f6d7f4f
JB
3483
3484 if (found_key.offset == last_objectid) {
0b246afa
JM
3485 btrfs_err(fs_info,
3486 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3487 ret = -EINVAL;
3488 goto out;
3489 }
3490
3491 last_objectid = found_key.offset;
3492
5d4f98a2
YZ
3493 found_key.objectid = found_key.offset;
3494 found_key.type = BTRFS_INODE_ITEM_KEY;
3495 found_key.offset = 0;
0b246afa 3496 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3497 ret = PTR_ERR_OR_ZERO(inode);
67710892 3498 if (ret && ret != -ENOENT)
66b4ffd1 3499 goto out;
7b128766 3500
0b246afa 3501 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3502 struct btrfs_root *dead_root;
3503 struct btrfs_fs_info *fs_info = root->fs_info;
3504 int is_dead_root = 0;
3505
3506 /*
3507 * this is an orphan in the tree root. Currently these
3508 * could come from 2 sources:
3509 * a) a snapshot deletion in progress
3510 * b) a free space cache inode
3511 * We need to distinguish those two, as the snapshot
3512 * orphan must not get deleted.
3513 * find_dead_roots already ran before us, so if this
3514 * is a snapshot deletion, we should find the root
3515 * in the dead_roots list
3516 */
3517 spin_lock(&fs_info->trans_lock);
3518 list_for_each_entry(dead_root, &fs_info->dead_roots,
3519 root_list) {
3520 if (dead_root->root_key.objectid ==
3521 found_key.objectid) {
3522 is_dead_root = 1;
3523 break;
3524 }
3525 }
3526 spin_unlock(&fs_info->trans_lock);
3527 if (is_dead_root) {
3528 /* prevent this orphan from being found again */
3529 key.offset = found_key.objectid - 1;
3530 continue;
3531 }
3532 }
7b128766 3533 /*
a8c9e576
JB
3534 * Inode is already gone but the orphan item is still there,
3535 * kill the orphan item.
7b128766 3536 */
67710892 3537 if (ret == -ENOENT) {
a8c9e576 3538 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3539 if (IS_ERR(trans)) {
3540 ret = PTR_ERR(trans);
3541 goto out;
3542 }
0b246afa
JM
3543 btrfs_debug(fs_info, "auto deleting %Lu",
3544 found_key.objectid);
a8c9e576
JB
3545 ret = btrfs_del_orphan_item(trans, root,
3546 found_key.objectid);
3a45bb20 3547 btrfs_end_transaction(trans);
4ef31a45
JB
3548 if (ret)
3549 goto out;
7b128766
JB
3550 continue;
3551 }
3552
a8c9e576
JB
3553 /*
3554 * add this inode to the orphan list so btrfs_orphan_del does
3555 * the proper thing when we hit it
3556 */
8a35d95f
JB
3557 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3558 &BTRFS_I(inode)->runtime_flags);
925396ec 3559 atomic_inc(&root->orphan_inodes);
a8c9e576 3560
7b128766
JB
3561 /* if we have links, this was a truncate, lets do that */
3562 if (inode->i_nlink) {
fae7f21c 3563 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3564 iput(inode);
3565 continue;
3566 }
7b128766 3567 nr_truncate++;
f3fe820c
JB
3568
3569 /* 1 for the orphan item deletion. */
3570 trans = btrfs_start_transaction(root, 1);
3571 if (IS_ERR(trans)) {
c69b26b0 3572 iput(inode);
f3fe820c
JB
3573 ret = PTR_ERR(trans);
3574 goto out;
3575 }
73f2e545 3576 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 3577 btrfs_end_transaction(trans);
c69b26b0
JB
3578 if (ret) {
3579 iput(inode);
f3fe820c 3580 goto out;
c69b26b0 3581 }
f3fe820c 3582
66b4ffd1 3583 ret = btrfs_truncate(inode);
4a7d0f68 3584 if (ret)
3d6ae7bb 3585 btrfs_orphan_del(NULL, BTRFS_I(inode));
7b128766
JB
3586 } else {
3587 nr_unlink++;
3588 }
3589
3590 /* this will do delete_inode and everything for us */
3591 iput(inode);
66b4ffd1
JB
3592 if (ret)
3593 goto out;
7b128766 3594 }
3254c876
MX
3595 /* release the path since we're done with it */
3596 btrfs_release_path(path);
3597
d68fc57b
YZ
3598 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3599
3600 if (root->orphan_block_rsv)
2ff7e61e 3601 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
d68fc57b
YZ
3602 (u64)-1);
3603
27cdeb70
MX
3604 if (root->orphan_block_rsv ||
3605 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3606 trans = btrfs_join_transaction(root);
66b4ffd1 3607 if (!IS_ERR(trans))
3a45bb20 3608 btrfs_end_transaction(trans);
d68fc57b 3609 }
7b128766
JB
3610
3611 if (nr_unlink)
0b246afa 3612 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3613 if (nr_truncate)
0b246afa 3614 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3615
3616out:
3617 if (ret)
0b246afa 3618 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3619 btrfs_free_path(path);
3620 return ret;
7b128766
JB
3621}
3622
46a53cca
CM
3623/*
3624 * very simple check to peek ahead in the leaf looking for xattrs. If we
3625 * don't find any xattrs, we know there can't be any acls.
3626 *
3627 * slot is the slot the inode is in, objectid is the objectid of the inode
3628 */
3629static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3630 int slot, u64 objectid,
3631 int *first_xattr_slot)
46a53cca
CM
3632{
3633 u32 nritems = btrfs_header_nritems(leaf);
3634 struct btrfs_key found_key;
f23b5a59
JB
3635 static u64 xattr_access = 0;
3636 static u64 xattr_default = 0;
46a53cca
CM
3637 int scanned = 0;
3638
f23b5a59 3639 if (!xattr_access) {
97d79299
AG
3640 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3641 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3642 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3643 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3644 }
3645
46a53cca 3646 slot++;
63541927 3647 *first_xattr_slot = -1;
46a53cca
CM
3648 while (slot < nritems) {
3649 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3650
3651 /* we found a different objectid, there must not be acls */
3652 if (found_key.objectid != objectid)
3653 return 0;
3654
3655 /* we found an xattr, assume we've got an acl */
f23b5a59 3656 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3657 if (*first_xattr_slot == -1)
3658 *first_xattr_slot = slot;
f23b5a59
JB
3659 if (found_key.offset == xattr_access ||
3660 found_key.offset == xattr_default)
3661 return 1;
3662 }
46a53cca
CM
3663
3664 /*
3665 * we found a key greater than an xattr key, there can't
3666 * be any acls later on
3667 */
3668 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3669 return 0;
3670
3671 slot++;
3672 scanned++;
3673
3674 /*
3675 * it goes inode, inode backrefs, xattrs, extents,
3676 * so if there are a ton of hard links to an inode there can
3677 * be a lot of backrefs. Don't waste time searching too hard,
3678 * this is just an optimization
3679 */
3680 if (scanned >= 8)
3681 break;
3682 }
3683 /* we hit the end of the leaf before we found an xattr or
3684 * something larger than an xattr. We have to assume the inode
3685 * has acls
3686 */
63541927
FDBM
3687 if (*first_xattr_slot == -1)
3688 *first_xattr_slot = slot;
46a53cca
CM
3689 return 1;
3690}
3691
d352ac68
CM
3692/*
3693 * read an inode from the btree into the in-memory inode
3694 */
67710892 3695static int btrfs_read_locked_inode(struct inode *inode)
39279cc3 3696{
0b246afa 3697 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 3698 struct btrfs_path *path;
5f39d397 3699 struct extent_buffer *leaf;
39279cc3
CM
3700 struct btrfs_inode_item *inode_item;
3701 struct btrfs_root *root = BTRFS_I(inode)->root;
3702 struct btrfs_key location;
67de1176 3703 unsigned long ptr;
46a53cca 3704 int maybe_acls;
618e21d5 3705 u32 rdev;
39279cc3 3706 int ret;
2f7e33d4 3707 bool filled = false;
63541927 3708 int first_xattr_slot;
2f7e33d4
MX
3709
3710 ret = btrfs_fill_inode(inode, &rdev);
3711 if (!ret)
3712 filled = true;
39279cc3
CM
3713
3714 path = btrfs_alloc_path();
67710892
FM
3715 if (!path) {
3716 ret = -ENOMEM;
1748f843 3717 goto make_bad;
67710892 3718 }
1748f843 3719
39279cc3 3720 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3721
39279cc3 3722 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3723 if (ret) {
3724 if (ret > 0)
3725 ret = -ENOENT;
39279cc3 3726 goto make_bad;
67710892 3727 }
39279cc3 3728
5f39d397 3729 leaf = path->nodes[0];
2f7e33d4
MX
3730
3731 if (filled)
67de1176 3732 goto cache_index;
2f7e33d4 3733
5f39d397
CM
3734 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3735 struct btrfs_inode_item);
5f39d397 3736 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3737 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3738 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3739 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3740 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3741
a937b979
DS
3742 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3743 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3744
a937b979
DS
3745 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3746 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3747
a937b979
DS
3748 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3749 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3750
9cc97d64 3751 BTRFS_I(inode)->i_otime.tv_sec =
3752 btrfs_timespec_sec(leaf, &inode_item->otime);
3753 BTRFS_I(inode)->i_otime.tv_nsec =
3754 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3755
a76a3cd4 3756 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3757 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3758 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3759
6e17d30b
YD
3760 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3761 inode->i_generation = BTRFS_I(inode)->generation;
3762 inode->i_rdev = 0;
3763 rdev = btrfs_inode_rdev(leaf, inode_item);
3764
3765 BTRFS_I(inode)->index_cnt = (u64)-1;
3766 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3767
3768cache_index:
5dc562c5
JB
3769 /*
3770 * If we were modified in the current generation and evicted from memory
3771 * and then re-read we need to do a full sync since we don't have any
3772 * idea about which extents were modified before we were evicted from
3773 * cache.
6e17d30b
YD
3774 *
3775 * This is required for both inode re-read from disk and delayed inode
3776 * in delayed_nodes_tree.
5dc562c5 3777 */
0b246afa 3778 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3779 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3780 &BTRFS_I(inode)->runtime_flags);
3781
bde6c242
FM
3782 /*
3783 * We don't persist the id of the transaction where an unlink operation
3784 * against the inode was last made. So here we assume the inode might
3785 * have been evicted, and therefore the exact value of last_unlink_trans
3786 * lost, and set it to last_trans to avoid metadata inconsistencies
3787 * between the inode and its parent if the inode is fsync'ed and the log
3788 * replayed. For example, in the scenario:
3789 *
3790 * touch mydir/foo
3791 * ln mydir/foo mydir/bar
3792 * sync
3793 * unlink mydir/bar
3794 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3795 * xfs_io -c fsync mydir/foo
3796 * <power failure>
3797 * mount fs, triggers fsync log replay
3798 *
3799 * We must make sure that when we fsync our inode foo we also log its
3800 * parent inode, otherwise after log replay the parent still has the
3801 * dentry with the "bar" name but our inode foo has a link count of 1
3802 * and doesn't have an inode ref with the name "bar" anymore.
3803 *
3804 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3805 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3806 * transaction commits on fsync if our inode is a directory, or if our
3807 * inode is not a directory, logging its parent unnecessarily.
3808 */
3809 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3810
67de1176
MX
3811 path->slots[0]++;
3812 if (inode->i_nlink != 1 ||
3813 path->slots[0] >= btrfs_header_nritems(leaf))
3814 goto cache_acl;
3815
3816 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3817 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3818 goto cache_acl;
3819
3820 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3821 if (location.type == BTRFS_INODE_REF_KEY) {
3822 struct btrfs_inode_ref *ref;
3823
3824 ref = (struct btrfs_inode_ref *)ptr;
3825 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3826 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3827 struct btrfs_inode_extref *extref;
3828
3829 extref = (struct btrfs_inode_extref *)ptr;
3830 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3831 extref);
3832 }
2f7e33d4 3833cache_acl:
46a53cca
CM
3834 /*
3835 * try to precache a NULL acl entry for files that don't have
3836 * any xattrs or acls
3837 */
33345d01 3838 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3839 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3840 if (first_xattr_slot != -1) {
3841 path->slots[0] = first_xattr_slot;
3842 ret = btrfs_load_inode_props(inode, path);
3843 if (ret)
0b246afa 3844 btrfs_err(fs_info,
351fd353 3845 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3846 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3847 root->root_key.objectid, ret);
3848 }
3849 btrfs_free_path(path);
3850
72c04902
AV
3851 if (!maybe_acls)
3852 cache_no_acl(inode);
46a53cca 3853
39279cc3 3854 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3855 case S_IFREG:
3856 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3857 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3858 inode->i_fop = &btrfs_file_operations;
3859 inode->i_op = &btrfs_file_inode_operations;
3860 break;
3861 case S_IFDIR:
3862 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3863 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3864 break;
3865 case S_IFLNK:
3866 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3867 inode_nohighmem(inode);
39279cc3
CM
3868 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3869 break;
618e21d5 3870 default:
0279b4cd 3871 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3872 init_special_inode(inode, inode->i_mode, rdev);
3873 break;
39279cc3 3874 }
6cbff00f
CH
3875
3876 btrfs_update_iflags(inode);
67710892 3877 return 0;
39279cc3
CM
3878
3879make_bad:
39279cc3 3880 btrfs_free_path(path);
39279cc3 3881 make_bad_inode(inode);
67710892 3882 return ret;
39279cc3
CM
3883}
3884
d352ac68
CM
3885/*
3886 * given a leaf and an inode, copy the inode fields into the leaf
3887 */
e02119d5
CM
3888static void fill_inode_item(struct btrfs_trans_handle *trans,
3889 struct extent_buffer *leaf,
5f39d397 3890 struct btrfs_inode_item *item,
39279cc3
CM
3891 struct inode *inode)
3892{
51fab693
LB
3893 struct btrfs_map_token token;
3894
3895 btrfs_init_map_token(&token);
5f39d397 3896
51fab693
LB
3897 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3898 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3899 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3900 &token);
3901 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3902 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3903
a937b979 3904 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3905 inode->i_atime.tv_sec, &token);
a937b979 3906 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3907 inode->i_atime.tv_nsec, &token);
5f39d397 3908
a937b979 3909 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3910 inode->i_mtime.tv_sec, &token);
a937b979 3911 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3912 inode->i_mtime.tv_nsec, &token);
5f39d397 3913
a937b979 3914 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3915 inode->i_ctime.tv_sec, &token);
a937b979 3916 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3917 inode->i_ctime.tv_nsec, &token);
5f39d397 3918
9cc97d64 3919 btrfs_set_token_timespec_sec(leaf, &item->otime,
3920 BTRFS_I(inode)->i_otime.tv_sec, &token);
3921 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3922 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3923
51fab693
LB
3924 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3925 &token);
3926 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3927 &token);
3928 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3929 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3930 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3931 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3932 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3933}
3934
d352ac68
CM
3935/*
3936 * copy everything in the in-memory inode into the btree.
3937 */
2115133f 3938static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3939 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3940{
3941 struct btrfs_inode_item *inode_item;
3942 struct btrfs_path *path;
5f39d397 3943 struct extent_buffer *leaf;
39279cc3
CM
3944 int ret;
3945
3946 path = btrfs_alloc_path();
16cdcec7
MX
3947 if (!path)
3948 return -ENOMEM;
3949
b9473439 3950 path->leave_spinning = 1;
16cdcec7
MX
3951 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3952 1);
39279cc3
CM
3953 if (ret) {
3954 if (ret > 0)
3955 ret = -ENOENT;
3956 goto failed;
3957 }
3958
5f39d397
CM
3959 leaf = path->nodes[0];
3960 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3961 struct btrfs_inode_item);
39279cc3 3962
e02119d5 3963 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3964 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3965 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3966 ret = 0;
3967failed:
39279cc3
CM
3968 btrfs_free_path(path);
3969 return ret;
3970}
3971
2115133f
CM
3972/*
3973 * copy everything in the in-memory inode into the btree.
3974 */
3975noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3976 struct btrfs_root *root, struct inode *inode)
3977{
0b246afa 3978 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3979 int ret;
3980
3981 /*
3982 * If the inode is a free space inode, we can deadlock during commit
3983 * if we put it into the delayed code.
3984 *
3985 * The data relocation inode should also be directly updated
3986 * without delay
3987 */
70ddc553 3988 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 3989 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 3990 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
3991 btrfs_update_root_times(trans, root);
3992
2115133f
CM
3993 ret = btrfs_delayed_update_inode(trans, root, inode);
3994 if (!ret)
3995 btrfs_set_inode_last_trans(trans, inode);
3996 return ret;
3997 }
3998
3999 return btrfs_update_inode_item(trans, root, inode);
4000}
4001
be6aef60
JB
4002noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4003 struct btrfs_root *root,
4004 struct inode *inode)
2115133f
CM
4005{
4006 int ret;
4007
4008 ret = btrfs_update_inode(trans, root, inode);
4009 if (ret == -ENOSPC)
4010 return btrfs_update_inode_item(trans, root, inode);
4011 return ret;
4012}
4013
d352ac68
CM
4014/*
4015 * unlink helper that gets used here in inode.c and in the tree logging
4016 * recovery code. It remove a link in a directory with a given name, and
4017 * also drops the back refs in the inode to the directory
4018 */
92986796
AV
4019static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4020 struct btrfs_root *root,
4ec5934e
NB
4021 struct btrfs_inode *dir,
4022 struct btrfs_inode *inode,
92986796 4023 const char *name, int name_len)
39279cc3 4024{
0b246afa 4025 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4026 struct btrfs_path *path;
39279cc3 4027 int ret = 0;
5f39d397 4028 struct extent_buffer *leaf;
39279cc3 4029 struct btrfs_dir_item *di;
5f39d397 4030 struct btrfs_key key;
aec7477b 4031 u64 index;
33345d01
LZ
4032 u64 ino = btrfs_ino(inode);
4033 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
4034
4035 path = btrfs_alloc_path();
54aa1f4d
CM
4036 if (!path) {
4037 ret = -ENOMEM;
554233a6 4038 goto out;
54aa1f4d
CM
4039 }
4040
b9473439 4041 path->leave_spinning = 1;
33345d01 4042 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
4043 name, name_len, -1);
4044 if (IS_ERR(di)) {
4045 ret = PTR_ERR(di);
4046 goto err;
4047 }
4048 if (!di) {
4049 ret = -ENOENT;
4050 goto err;
4051 }
5f39d397
CM
4052 leaf = path->nodes[0];
4053 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 4054 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4055 if (ret)
4056 goto err;
b3b4aa74 4057 btrfs_release_path(path);
39279cc3 4058
67de1176
MX
4059 /*
4060 * If we don't have dir index, we have to get it by looking up
4061 * the inode ref, since we get the inode ref, remove it directly,
4062 * it is unnecessary to do delayed deletion.
4063 *
4064 * But if we have dir index, needn't search inode ref to get it.
4065 * Since the inode ref is close to the inode item, it is better
4066 * that we delay to delete it, and just do this deletion when
4067 * we update the inode item.
4068 */
4ec5934e 4069 if (inode->dir_index) {
67de1176
MX
4070 ret = btrfs_delayed_delete_inode_ref(inode);
4071 if (!ret) {
4ec5934e 4072 index = inode->dir_index;
67de1176
MX
4073 goto skip_backref;
4074 }
4075 }
4076
33345d01
LZ
4077 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4078 dir_ino, &index);
aec7477b 4079 if (ret) {
0b246afa 4080 btrfs_info(fs_info,
c2cf52eb 4081 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4082 name_len, name, ino, dir_ino);
66642832 4083 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4084 goto err;
4085 }
67de1176 4086skip_backref:
2ff7e61e 4087 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
79787eaa 4088 if (ret) {
66642832 4089 btrfs_abort_transaction(trans, ret);
39279cc3 4090 goto err;
79787eaa 4091 }
39279cc3 4092
4ec5934e
NB
4093 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4094 dir_ino);
79787eaa 4095 if (ret != 0 && ret != -ENOENT) {
66642832 4096 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4097 goto err;
4098 }
e02119d5 4099
4ec5934e
NB
4100 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4101 index);
6418c961
CM
4102 if (ret == -ENOENT)
4103 ret = 0;
d4e3991b 4104 else if (ret)
66642832 4105 btrfs_abort_transaction(trans, ret);
39279cc3
CM
4106err:
4107 btrfs_free_path(path);
e02119d5
CM
4108 if (ret)
4109 goto out;
4110
6ef06d27 4111 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
4112 inode_inc_iversion(&inode->vfs_inode);
4113 inode_inc_iversion(&dir->vfs_inode);
4114 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4115 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4116 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 4117out:
39279cc3
CM
4118 return ret;
4119}
4120
92986796
AV
4121int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4122 struct btrfs_root *root,
4ec5934e 4123 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
4124 const char *name, int name_len)
4125{
4126 int ret;
4127 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4128 if (!ret) {
4ec5934e
NB
4129 drop_nlink(&inode->vfs_inode);
4130 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4131 }
4132 return ret;
4133}
39279cc3 4134
a22285a6
YZ
4135/*
4136 * helper to start transaction for unlink and rmdir.
4137 *
d52be818
JB
4138 * unlink and rmdir are special in btrfs, they do not always free space, so
4139 * if we cannot make our reservations the normal way try and see if there is
4140 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4141 * allow the unlink to occur.
a22285a6 4142 */
d52be818 4143static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4144{
a22285a6 4145 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4146
e70bea5f
JB
4147 /*
4148 * 1 for the possible orphan item
4149 * 1 for the dir item
4150 * 1 for the dir index
4151 * 1 for the inode ref
e70bea5f
JB
4152 * 1 for the inode
4153 */
8eab77ff 4154 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4155}
4156
4157static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4158{
4159 struct btrfs_root *root = BTRFS_I(dir)->root;
4160 struct btrfs_trans_handle *trans;
2b0143b5 4161 struct inode *inode = d_inode(dentry);
a22285a6 4162 int ret;
a22285a6 4163
d52be818 4164 trans = __unlink_start_trans(dir);
a22285a6
YZ
4165 if (IS_ERR(trans))
4166 return PTR_ERR(trans);
5f39d397 4167
4ec5934e
NB
4168 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4169 0);
12fcfd22 4170
4ec5934e
NB
4171 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4172 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4173 dentry->d_name.len);
b532402e
TI
4174 if (ret)
4175 goto out;
7b128766 4176
a22285a6 4177 if (inode->i_nlink == 0) {
73f2e545 4178 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4179 if (ret)
4180 goto out;
a22285a6 4181 }
7b128766 4182
b532402e 4183out:
3a45bb20 4184 btrfs_end_transaction(trans);
2ff7e61e 4185 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4186 return ret;
4187}
4188
4df27c4d
YZ
4189int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4190 struct btrfs_root *root,
4191 struct inode *dir, u64 objectid,
4192 const char *name, int name_len)
4193{
0b246afa 4194 struct btrfs_fs_info *fs_info = root->fs_info;
4df27c4d
YZ
4195 struct btrfs_path *path;
4196 struct extent_buffer *leaf;
4197 struct btrfs_dir_item *di;
4198 struct btrfs_key key;
4199 u64 index;
4200 int ret;
4a0cc7ca 4201 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4202
4203 path = btrfs_alloc_path();
4204 if (!path)
4205 return -ENOMEM;
4206
33345d01 4207 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4208 name, name_len, -1);
79787eaa
JM
4209 if (IS_ERR_OR_NULL(di)) {
4210 if (!di)
4211 ret = -ENOENT;
4212 else
4213 ret = PTR_ERR(di);
4214 goto out;
4215 }
4df27c4d
YZ
4216
4217 leaf = path->nodes[0];
4218 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4219 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4220 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4221 if (ret) {
66642832 4222 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4223 goto out;
4224 }
b3b4aa74 4225 btrfs_release_path(path);
4df27c4d 4226
0b246afa
JM
4227 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4228 root->root_key.objectid, dir_ino,
4229 &index, name, name_len);
4df27c4d 4230 if (ret < 0) {
79787eaa 4231 if (ret != -ENOENT) {
66642832 4232 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4233 goto out;
4234 }
33345d01 4235 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4236 name, name_len);
79787eaa
JM
4237 if (IS_ERR_OR_NULL(di)) {
4238 if (!di)
4239 ret = -ENOENT;
4240 else
4241 ret = PTR_ERR(di);
66642832 4242 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4243 goto out;
4244 }
4df27c4d
YZ
4245
4246 leaf = path->nodes[0];
4247 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4248 btrfs_release_path(path);
4df27c4d
YZ
4249 index = key.offset;
4250 }
945d8962 4251 btrfs_release_path(path);
4df27c4d 4252
e67bbbb9 4253 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
79787eaa 4254 if (ret) {
66642832 4255 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4256 goto out;
4257 }
4df27c4d 4258
6ef06d27 4259 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4260 inode_inc_iversion(dir);
c2050a45 4261 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4262 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4263 if (ret)
66642832 4264 btrfs_abort_transaction(trans, ret);
79787eaa 4265out:
71d7aed0 4266 btrfs_free_path(path);
79787eaa 4267 return ret;
4df27c4d
YZ
4268}
4269
39279cc3
CM
4270static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4271{
2b0143b5 4272 struct inode *inode = d_inode(dentry);
1832a6d5 4273 int err = 0;
39279cc3 4274 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4275 struct btrfs_trans_handle *trans;
44f714da 4276 u64 last_unlink_trans;
39279cc3 4277
b3ae244e 4278 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4279 return -ENOTEMPTY;
4a0cc7ca 4280 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
b3ae244e 4281 return -EPERM;
134d4512 4282
d52be818 4283 trans = __unlink_start_trans(dir);
a22285a6 4284 if (IS_ERR(trans))
5df6a9f6 4285 return PTR_ERR(trans);
5df6a9f6 4286
4a0cc7ca 4287 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4288 err = btrfs_unlink_subvol(trans, root, dir,
4289 BTRFS_I(inode)->location.objectid,
4290 dentry->d_name.name,
4291 dentry->d_name.len);
4292 goto out;
4293 }
4294
73f2e545 4295 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4296 if (err)
4df27c4d 4297 goto out;
7b128766 4298
44f714da
FM
4299 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4300
39279cc3 4301 /* now the directory is empty */
4ec5934e
NB
4302 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4303 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4304 dentry->d_name.len);
44f714da 4305 if (!err) {
6ef06d27 4306 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4307 /*
4308 * Propagate the last_unlink_trans value of the deleted dir to
4309 * its parent directory. This is to prevent an unrecoverable
4310 * log tree in the case we do something like this:
4311 * 1) create dir foo
4312 * 2) create snapshot under dir foo
4313 * 3) delete the snapshot
4314 * 4) rmdir foo
4315 * 5) mkdir foo
4316 * 6) fsync foo or some file inside foo
4317 */
4318 if (last_unlink_trans >= trans->transid)
4319 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4320 }
4df27c4d 4321out:
3a45bb20 4322 btrfs_end_transaction(trans);
2ff7e61e 4323 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4324
39279cc3
CM
4325 return err;
4326}
4327
28f75a0e
CM
4328static int truncate_space_check(struct btrfs_trans_handle *trans,
4329 struct btrfs_root *root,
4330 u64 bytes_deleted)
4331{
0b246afa 4332 struct btrfs_fs_info *fs_info = root->fs_info;
28f75a0e
CM
4333 int ret;
4334
dc95f7bf
JB
4335 /*
4336 * This is only used to apply pressure to the enospc system, we don't
4337 * intend to use this reservation at all.
4338 */
2ff7e61e 4339 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
0b246afa
JM
4340 bytes_deleted *= fs_info->nodesize;
4341 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
28f75a0e 4342 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf 4343 if (!ret) {
0b246afa 4344 trace_btrfs_space_reservation(fs_info, "transaction",
dc95f7bf
JB
4345 trans->transid,
4346 bytes_deleted, 1);
28f75a0e 4347 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4348 }
28f75a0e
CM
4349 return ret;
4350
4351}
4352
0305cd5f
FM
4353static int truncate_inline_extent(struct inode *inode,
4354 struct btrfs_path *path,
4355 struct btrfs_key *found_key,
4356 const u64 item_end,
4357 const u64 new_size)
4358{
4359 struct extent_buffer *leaf = path->nodes[0];
4360 int slot = path->slots[0];
4361 struct btrfs_file_extent_item *fi;
4362 u32 size = (u32)(new_size - found_key->offset);
4363 struct btrfs_root *root = BTRFS_I(inode)->root;
4364
4365 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4366
4367 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4368 loff_t offset = new_size;
09cbfeaf 4369 loff_t page_end = ALIGN(offset, PAGE_SIZE);
0305cd5f
FM
4370
4371 /*
4372 * Zero out the remaining of the last page of our inline extent,
4373 * instead of directly truncating our inline extent here - that
4374 * would be much more complex (decompressing all the data, then
4375 * compressing the truncated data, which might be bigger than
4376 * the size of the inline extent, resize the extent, etc).
4377 * We release the path because to get the page we might need to
4378 * read the extent item from disk (data not in the page cache).
4379 */
4380 btrfs_release_path(path);
9703fefe
CR
4381 return btrfs_truncate_block(inode, offset, page_end - offset,
4382 0);
0305cd5f
FM
4383 }
4384
4385 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4386 size = btrfs_file_extent_calc_inline_size(size);
2ff7e61e 4387 btrfs_truncate_item(root->fs_info, path, size, 1);
0305cd5f
FM
4388
4389 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4390 inode_sub_bytes(inode, item_end + 1 - new_size);
4391
4392 return 0;
4393}
4394
39279cc3
CM
4395/*
4396 * this can truncate away extent items, csum items and directory items.
4397 * It starts at a high offset and removes keys until it can't find
d352ac68 4398 * any higher than new_size
39279cc3
CM
4399 *
4400 * csum items that cross the new i_size are truncated to the new size
4401 * as well.
7b128766
JB
4402 *
4403 * min_type is the minimum key type to truncate down to. If set to 0, this
4404 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4405 */
8082510e
YZ
4406int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4407 struct btrfs_root *root,
4408 struct inode *inode,
4409 u64 new_size, u32 min_type)
39279cc3 4410{
0b246afa 4411 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4412 struct btrfs_path *path;
5f39d397 4413 struct extent_buffer *leaf;
39279cc3 4414 struct btrfs_file_extent_item *fi;
8082510e
YZ
4415 struct btrfs_key key;
4416 struct btrfs_key found_key;
39279cc3 4417 u64 extent_start = 0;
db94535d 4418 u64 extent_num_bytes = 0;
5d4f98a2 4419 u64 extent_offset = 0;
39279cc3 4420 u64 item_end = 0;
c1aa4575 4421 u64 last_size = new_size;
8082510e 4422 u32 found_type = (u8)-1;
39279cc3
CM
4423 int found_extent;
4424 int del_item;
85e21bac
CM
4425 int pending_del_nr = 0;
4426 int pending_del_slot = 0;
179e29e4 4427 int extent_type = -1;
8082510e
YZ
4428 int ret;
4429 int err = 0;
4a0cc7ca 4430 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4431 u64 bytes_deleted = 0;
1262133b
JB
4432 bool be_nice = 0;
4433 bool should_throttle = 0;
28f75a0e 4434 bool should_end = 0;
8082510e
YZ
4435
4436 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4437
28ed1345
CM
4438 /*
4439 * for non-free space inodes and ref cows, we want to back off from
4440 * time to time
4441 */
70ddc553 4442 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345
CM
4443 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4444 be_nice = 1;
4445
0eb0e19c
MF
4446 path = btrfs_alloc_path();
4447 if (!path)
4448 return -ENOMEM;
e4058b54 4449 path->reada = READA_BACK;
0eb0e19c 4450
5dc562c5
JB
4451 /*
4452 * We want to drop from the next block forward in case this new size is
4453 * not block aligned since we will be keeping the last block of the
4454 * extent just the way it is.
4455 */
27cdeb70 4456 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4457 root == fs_info->tree_root)
dcdbc059 4458 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4459 fs_info->sectorsize),
da17066c 4460 (u64)-1, 0);
8082510e 4461
16cdcec7
MX
4462 /*
4463 * This function is also used to drop the items in the log tree before
4464 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4465 * it is used to drop the loged items. So we shouldn't kill the delayed
4466 * items.
4467 */
4468 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4469 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4470
33345d01 4471 key.objectid = ino;
39279cc3 4472 key.offset = (u64)-1;
5f39d397
CM
4473 key.type = (u8)-1;
4474
85e21bac 4475search_again:
28ed1345
CM
4476 /*
4477 * with a 16K leaf size and 128MB extents, you can actually queue
4478 * up a huge file in a single leaf. Most of the time that
4479 * bytes_deleted is > 0, it will be huge by the time we get here
4480 */
ee22184b 4481 if (be_nice && bytes_deleted > SZ_32M) {
3a45bb20 4482 if (btrfs_should_end_transaction(trans)) {
28ed1345
CM
4483 err = -EAGAIN;
4484 goto error;
4485 }
4486 }
4487
4488
b9473439 4489 path->leave_spinning = 1;
85e21bac 4490 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4491 if (ret < 0) {
4492 err = ret;
4493 goto out;
4494 }
d397712b 4495
85e21bac 4496 if (ret > 0) {
e02119d5
CM
4497 /* there are no items in the tree for us to truncate, we're
4498 * done
4499 */
8082510e
YZ
4500 if (path->slots[0] == 0)
4501 goto out;
85e21bac
CM
4502 path->slots[0]--;
4503 }
4504
d397712b 4505 while (1) {
39279cc3 4506 fi = NULL;
5f39d397
CM
4507 leaf = path->nodes[0];
4508 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4509 found_type = found_key.type;
39279cc3 4510
33345d01 4511 if (found_key.objectid != ino)
39279cc3 4512 break;
5f39d397 4513
85e21bac 4514 if (found_type < min_type)
39279cc3
CM
4515 break;
4516
5f39d397 4517 item_end = found_key.offset;
39279cc3 4518 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4519 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4520 struct btrfs_file_extent_item);
179e29e4
CM
4521 extent_type = btrfs_file_extent_type(leaf, fi);
4522 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4523 item_end +=
db94535d 4524 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4525
4526 trace_btrfs_truncate_show_fi_regular(
4527 BTRFS_I(inode), leaf, fi,
4528 found_key.offset);
179e29e4 4529 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4530 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4531 path->slots[0], fi);
09ed2f16
LB
4532
4533 trace_btrfs_truncate_show_fi_inline(
4534 BTRFS_I(inode), leaf, fi, path->slots[0],
4535 found_key.offset);
39279cc3 4536 }
008630c1 4537 item_end--;
39279cc3 4538 }
8082510e
YZ
4539 if (found_type > min_type) {
4540 del_item = 1;
4541 } else {
76b42abb 4542 if (item_end < new_size)
b888db2b 4543 break;
8082510e
YZ
4544 if (found_key.offset >= new_size)
4545 del_item = 1;
4546 else
4547 del_item = 0;
39279cc3 4548 }
39279cc3 4549 found_extent = 0;
39279cc3 4550 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4551 if (found_type != BTRFS_EXTENT_DATA_KEY)
4552 goto delete;
4553
7f4f6e0a
JB
4554 if (del_item)
4555 last_size = found_key.offset;
4556 else
4557 last_size = new_size;
4558
179e29e4 4559 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4560 u64 num_dec;
db94535d 4561 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4562 if (!del_item) {
db94535d
CM
4563 u64 orig_num_bytes =
4564 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4565 extent_num_bytes = ALIGN(new_size -
4566 found_key.offset,
0b246afa 4567 fs_info->sectorsize);
db94535d
CM
4568 btrfs_set_file_extent_num_bytes(leaf, fi,
4569 extent_num_bytes);
4570 num_dec = (orig_num_bytes -
9069218d 4571 extent_num_bytes);
27cdeb70
MX
4572 if (test_bit(BTRFS_ROOT_REF_COWS,
4573 &root->state) &&
4574 extent_start != 0)
a76a3cd4 4575 inode_sub_bytes(inode, num_dec);
5f39d397 4576 btrfs_mark_buffer_dirty(leaf);
39279cc3 4577 } else {
db94535d
CM
4578 extent_num_bytes =
4579 btrfs_file_extent_disk_num_bytes(leaf,
4580 fi);
5d4f98a2
YZ
4581 extent_offset = found_key.offset -
4582 btrfs_file_extent_offset(leaf, fi);
4583
39279cc3 4584 /* FIXME blocksize != 4096 */
9069218d 4585 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4586 if (extent_start != 0) {
4587 found_extent = 1;
27cdeb70
MX
4588 if (test_bit(BTRFS_ROOT_REF_COWS,
4589 &root->state))
a76a3cd4 4590 inode_sub_bytes(inode, num_dec);
e02119d5 4591 }
39279cc3 4592 }
9069218d 4593 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4594 /*
4595 * we can't truncate inline items that have had
4596 * special encodings
4597 */
4598 if (!del_item &&
c8b97818
CM
4599 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4600 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4601
4602 /*
0305cd5f
FM
4603 * Need to release path in order to truncate a
4604 * compressed extent. So delete any accumulated
4605 * extent items so far.
514ac8ad 4606 */
0305cd5f
FM
4607 if (btrfs_file_extent_compression(leaf, fi) !=
4608 BTRFS_COMPRESS_NONE && pending_del_nr) {
4609 err = btrfs_del_items(trans, root, path,
4610 pending_del_slot,
4611 pending_del_nr);
4612 if (err) {
4613 btrfs_abort_transaction(trans,
0305cd5f
FM
4614 err);
4615 goto error;
4616 }
4617 pending_del_nr = 0;
4618 }
4619
4620 err = truncate_inline_extent(inode, path,
4621 &found_key,
4622 item_end,
4623 new_size);
4624 if (err) {
66642832 4625 btrfs_abort_transaction(trans, err);
0305cd5f
FM
4626 goto error;
4627 }
27cdeb70
MX
4628 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4629 &root->state)) {
0305cd5f 4630 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4631 }
39279cc3 4632 }
179e29e4 4633delete:
39279cc3 4634 if (del_item) {
85e21bac
CM
4635 if (!pending_del_nr) {
4636 /* no pending yet, add ourselves */
4637 pending_del_slot = path->slots[0];
4638 pending_del_nr = 1;
4639 } else if (pending_del_nr &&
4640 path->slots[0] + 1 == pending_del_slot) {
4641 /* hop on the pending chunk */
4642 pending_del_nr++;
4643 pending_del_slot = path->slots[0];
4644 } else {
d397712b 4645 BUG();
85e21bac 4646 }
39279cc3
CM
4647 } else {
4648 break;
4649 }
28f75a0e
CM
4650 should_throttle = 0;
4651
27cdeb70
MX
4652 if (found_extent &&
4653 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4654 root == fs_info->tree_root)) {
b9473439 4655 btrfs_set_path_blocking(path);
28ed1345 4656 bytes_deleted += extent_num_bytes;
2ff7e61e 4657 ret = btrfs_free_extent(trans, fs_info, extent_start,
5d4f98a2
YZ
4658 extent_num_bytes, 0,
4659 btrfs_header_owner(leaf),
b06c4bf5 4660 ino, extent_offset);
39279cc3 4661 BUG_ON(ret);
2ff7e61e
JM
4662 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4663 btrfs_async_run_delayed_refs(fs_info,
dd4b857a
WX
4664 trans->delayed_ref_updates * 2,
4665 trans->transid, 0);
28f75a0e
CM
4666 if (be_nice) {
4667 if (truncate_space_check(trans, root,
4668 extent_num_bytes)) {
4669 should_end = 1;
4670 }
4671 if (btrfs_should_throttle_delayed_refs(trans,
2ff7e61e 4672 fs_info))
28f75a0e 4673 should_throttle = 1;
28f75a0e 4674 }
39279cc3 4675 }
85e21bac 4676
8082510e
YZ
4677 if (found_type == BTRFS_INODE_ITEM_KEY)
4678 break;
4679
4680 if (path->slots[0] == 0 ||
1262133b 4681 path->slots[0] != pending_del_slot ||
28f75a0e 4682 should_throttle || should_end) {
8082510e
YZ
4683 if (pending_del_nr) {
4684 ret = btrfs_del_items(trans, root, path,
4685 pending_del_slot,
4686 pending_del_nr);
79787eaa 4687 if (ret) {
66642832 4688 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4689 goto error;
4690 }
8082510e
YZ
4691 pending_del_nr = 0;
4692 }
b3b4aa74 4693 btrfs_release_path(path);
28f75a0e 4694 if (should_throttle) {
1262133b
JB
4695 unsigned long updates = trans->delayed_ref_updates;
4696 if (updates) {
4697 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4698 ret = btrfs_run_delayed_refs(trans,
4699 fs_info,
4700 updates * 2);
1262133b
JB
4701 if (ret && !err)
4702 err = ret;
4703 }
4704 }
28f75a0e
CM
4705 /*
4706 * if we failed to refill our space rsv, bail out
4707 * and let the transaction restart
4708 */
4709 if (should_end) {
4710 err = -EAGAIN;
4711 goto error;
4712 }
85e21bac 4713 goto search_again;
8082510e
YZ
4714 } else {
4715 path->slots[0]--;
85e21bac 4716 }
39279cc3 4717 }
8082510e 4718out:
85e21bac
CM
4719 if (pending_del_nr) {
4720 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4721 pending_del_nr);
79787eaa 4722 if (ret)
66642832 4723 btrfs_abort_transaction(trans, ret);
85e21bac 4724 }
79787eaa 4725error:
76b42abb
FM
4726 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4727 ASSERT(last_size >= new_size);
4728 if (!err && last_size > new_size)
4729 last_size = new_size;
7f4f6e0a 4730 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4731 }
28ed1345 4732
39279cc3 4733 btrfs_free_path(path);
28ed1345 4734
ee22184b 4735 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4736 unsigned long updates = trans->delayed_ref_updates;
4737 if (updates) {
4738 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4739 ret = btrfs_run_delayed_refs(trans, fs_info,
4740 updates * 2);
28ed1345
CM
4741 if (ret && !err)
4742 err = ret;
4743 }
4744 }
8082510e 4745 return err;
39279cc3
CM
4746}
4747
4748/*
9703fefe 4749 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4750 * @inode - inode that we're zeroing
4751 * @from - the offset to start zeroing
4752 * @len - the length to zero, 0 to zero the entire range respective to the
4753 * offset
4754 * @front - zero up to the offset instead of from the offset on
4755 *
9703fefe 4756 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4757 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4758 */
9703fefe 4759int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4760 int front)
39279cc3 4761{
0b246afa 4762 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4763 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4764 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4765 struct btrfs_ordered_extent *ordered;
2ac55d41 4766 struct extent_state *cached_state = NULL;
e6dcd2dc 4767 char *kaddr;
0b246afa 4768 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4769 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4770 unsigned offset = from & (blocksize - 1);
39279cc3 4771 struct page *page;
3b16a4e3 4772 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4773 int ret = 0;
9703fefe
CR
4774 u64 block_start;
4775 u64 block_end;
39279cc3 4776
2aaa6655
JB
4777 if ((offset & (blocksize - 1)) == 0 &&
4778 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4779 goto out;
9703fefe 4780
7cf5b976 4781 ret = btrfs_delalloc_reserve_space(inode,
9703fefe 4782 round_down(from, blocksize), blocksize);
5d5e103a
JB
4783 if (ret)
4784 goto out;
39279cc3 4785
211c17f5 4786again:
3b16a4e3 4787 page = find_or_create_page(mapping, index, mask);
5d5e103a 4788 if (!page) {
7cf5b976 4789 btrfs_delalloc_release_space(inode,
9703fefe
CR
4790 round_down(from, blocksize),
4791 blocksize);
ac6a2b36 4792 ret = -ENOMEM;
39279cc3 4793 goto out;
5d5e103a 4794 }
e6dcd2dc 4795
9703fefe
CR
4796 block_start = round_down(from, blocksize);
4797 block_end = block_start + blocksize - 1;
e6dcd2dc 4798
39279cc3 4799 if (!PageUptodate(page)) {
9ebefb18 4800 ret = btrfs_readpage(NULL, page);
39279cc3 4801 lock_page(page);
211c17f5
CM
4802 if (page->mapping != mapping) {
4803 unlock_page(page);
09cbfeaf 4804 put_page(page);
211c17f5
CM
4805 goto again;
4806 }
39279cc3
CM
4807 if (!PageUptodate(page)) {
4808 ret = -EIO;
89642229 4809 goto out_unlock;
39279cc3
CM
4810 }
4811 }
211c17f5 4812 wait_on_page_writeback(page);
e6dcd2dc 4813
9703fefe 4814 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4815 set_page_extent_mapped(page);
4816
9703fefe 4817 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4818 if (ordered) {
9703fefe 4819 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4820 &cached_state, GFP_NOFS);
e6dcd2dc 4821 unlock_page(page);
09cbfeaf 4822 put_page(page);
eb84ae03 4823 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4824 btrfs_put_ordered_extent(ordered);
4825 goto again;
4826 }
4827
9703fefe 4828 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4829 EXTENT_DIRTY | EXTENT_DELALLOC |
4830 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4831 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4832
9703fefe 4833 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
ba8b04c1 4834 &cached_state, 0);
9ed74f2d 4835 if (ret) {
9703fefe 4836 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4837 &cached_state, GFP_NOFS);
9ed74f2d
JB
4838 goto out_unlock;
4839 }
4840
9703fefe 4841 if (offset != blocksize) {
2aaa6655 4842 if (!len)
9703fefe 4843 len = blocksize - offset;
e6dcd2dc 4844 kaddr = kmap(page);
2aaa6655 4845 if (front)
9703fefe
CR
4846 memset(kaddr + (block_start - page_offset(page)),
4847 0, offset);
2aaa6655 4848 else
9703fefe
CR
4849 memset(kaddr + (block_start - page_offset(page)) + offset,
4850 0, len);
e6dcd2dc
CM
4851 flush_dcache_page(page);
4852 kunmap(page);
4853 }
247e743c 4854 ClearPageChecked(page);
e6dcd2dc 4855 set_page_dirty(page);
9703fefe 4856 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4857 GFP_NOFS);
39279cc3 4858
89642229 4859out_unlock:
5d5e103a 4860 if (ret)
9703fefe
CR
4861 btrfs_delalloc_release_space(inode, block_start,
4862 blocksize);
39279cc3 4863 unlock_page(page);
09cbfeaf 4864 put_page(page);
39279cc3
CM
4865out:
4866 return ret;
4867}
4868
16e7549f
JB
4869static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4870 u64 offset, u64 len)
4871{
0b246afa 4872 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4873 struct btrfs_trans_handle *trans;
4874 int ret;
4875
4876 /*
4877 * Still need to make sure the inode looks like it's been updated so
4878 * that any holes get logged if we fsync.
4879 */
0b246afa
JM
4880 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4881 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4882 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4883 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4884 return 0;
4885 }
4886
4887 /*
4888 * 1 - for the one we're dropping
4889 * 1 - for the one we're adding
4890 * 1 - for updating the inode.
4891 */
4892 trans = btrfs_start_transaction(root, 3);
4893 if (IS_ERR(trans))
4894 return PTR_ERR(trans);
4895
4896 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4897 if (ret) {
66642832 4898 btrfs_abort_transaction(trans, ret);
3a45bb20 4899 btrfs_end_transaction(trans);
16e7549f
JB
4900 return ret;
4901 }
4902
f85b7379
DS
4903 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4904 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4905 if (ret)
66642832 4906 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4907 else
4908 btrfs_update_inode(trans, root, inode);
3a45bb20 4909 btrfs_end_transaction(trans);
16e7549f
JB
4910 return ret;
4911}
4912
695a0d0d
JB
4913/*
4914 * This function puts in dummy file extents for the area we're creating a hole
4915 * for. So if we are truncating this file to a larger size we need to insert
4916 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4917 * the range between oldsize and size
4918 */
a41ad394 4919int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4920{
0b246afa 4921 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4922 struct btrfs_root *root = BTRFS_I(inode)->root;
4923 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4924 struct extent_map *em = NULL;
2ac55d41 4925 struct extent_state *cached_state = NULL;
5dc562c5 4926 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4927 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4928 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4929 u64 last_byte;
4930 u64 cur_offset;
4931 u64 hole_size;
9ed74f2d 4932 int err = 0;
39279cc3 4933
a71754fc 4934 /*
9703fefe
CR
4935 * If our size started in the middle of a block we need to zero out the
4936 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4937 * expose stale data.
4938 */
9703fefe 4939 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4940 if (err)
4941 return err;
4942
9036c102
YZ
4943 if (size <= hole_start)
4944 return 0;
4945
9036c102
YZ
4946 while (1) {
4947 struct btrfs_ordered_extent *ordered;
fa7c1494 4948
ff13db41 4949 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4950 &cached_state);
a776c6fa 4951 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
fa7c1494 4952 block_end - hole_start);
9036c102
YZ
4953 if (!ordered)
4954 break;
2ac55d41
JB
4955 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4956 &cached_state, GFP_NOFS);
fa7c1494 4957 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4958 btrfs_put_ordered_extent(ordered);
4959 }
39279cc3 4960
9036c102
YZ
4961 cur_offset = hole_start;
4962 while (1) {
fc4f21b1 4963 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 4964 block_end - cur_offset, 0);
79787eaa
JM
4965 if (IS_ERR(em)) {
4966 err = PTR_ERR(em);
f2767956 4967 em = NULL;
79787eaa
JM
4968 break;
4969 }
9036c102 4970 last_byte = min(extent_map_end(em), block_end);
0b246afa 4971 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 4972 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4973 struct extent_map *hole_em;
9036c102 4974 hole_size = last_byte - cur_offset;
9ed74f2d 4975
16e7549f
JB
4976 err = maybe_insert_hole(root, inode, cur_offset,
4977 hole_size);
4978 if (err)
3893e33b 4979 break;
dcdbc059 4980 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
4981 cur_offset + hole_size - 1, 0);
4982 hole_em = alloc_extent_map();
4983 if (!hole_em) {
4984 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4985 &BTRFS_I(inode)->runtime_flags);
4986 goto next;
4987 }
4988 hole_em->start = cur_offset;
4989 hole_em->len = hole_size;
4990 hole_em->orig_start = cur_offset;
8082510e 4991
5dc562c5
JB
4992 hole_em->block_start = EXTENT_MAP_HOLE;
4993 hole_em->block_len = 0;
b4939680 4994 hole_em->orig_block_len = 0;
cc95bef6 4995 hole_em->ram_bytes = hole_size;
0b246afa 4996 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 4997 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 4998 hole_em->generation = fs_info->generation;
8082510e 4999
5dc562c5
JB
5000 while (1) {
5001 write_lock(&em_tree->lock);
09a2a8f9 5002 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
5003 write_unlock(&em_tree->lock);
5004 if (err != -EEXIST)
5005 break;
dcdbc059
NB
5006 btrfs_drop_extent_cache(BTRFS_I(inode),
5007 cur_offset,
5dc562c5
JB
5008 cur_offset +
5009 hole_size - 1, 0);
5010 }
5011 free_extent_map(hole_em);
9036c102 5012 }
16e7549f 5013next:
9036c102 5014 free_extent_map(em);
a22285a6 5015 em = NULL;
9036c102 5016 cur_offset = last_byte;
8082510e 5017 if (cur_offset >= block_end)
9036c102
YZ
5018 break;
5019 }
a22285a6 5020 free_extent_map(em);
2ac55d41
JB
5021 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
5022 GFP_NOFS);
9036c102
YZ
5023 return err;
5024}
39279cc3 5025
3972f260 5026static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 5027{
f4a2f4c5
MX
5028 struct btrfs_root *root = BTRFS_I(inode)->root;
5029 struct btrfs_trans_handle *trans;
a41ad394 5030 loff_t oldsize = i_size_read(inode);
3972f260
ES
5031 loff_t newsize = attr->ia_size;
5032 int mask = attr->ia_valid;
8082510e
YZ
5033 int ret;
5034
3972f260
ES
5035 /*
5036 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5037 * special case where we need to update the times despite not having
5038 * these flags set. For all other operations the VFS set these flags
5039 * explicitly if it wants a timestamp update.
5040 */
dff6efc3
CH
5041 if (newsize != oldsize) {
5042 inode_inc_iversion(inode);
5043 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5044 inode->i_ctime = inode->i_mtime =
c2050a45 5045 current_time(inode);
dff6efc3 5046 }
3972f260 5047
a41ad394 5048 if (newsize > oldsize) {
9ea24bbe
FM
5049 /*
5050 * Don't do an expanding truncate while snapshoting is ongoing.
5051 * This is to ensure the snapshot captures a fully consistent
5052 * state of this file - if the snapshot captures this expanding
5053 * truncation, it must capture all writes that happened before
5054 * this truncation.
5055 */
0bc19f90 5056 btrfs_wait_for_snapshot_creation(root);
a41ad394 5057 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
5058 if (ret) {
5059 btrfs_end_write_no_snapshoting(root);
8082510e 5060 return ret;
9ea24bbe 5061 }
8082510e 5062
f4a2f4c5 5063 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
5064 if (IS_ERR(trans)) {
5065 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 5066 return PTR_ERR(trans);
9ea24bbe 5067 }
f4a2f4c5
MX
5068
5069 i_size_write(inode, newsize);
5070 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5071 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5072 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 5073 btrfs_end_write_no_snapshoting(root);
3a45bb20 5074 btrfs_end_transaction(trans);
a41ad394 5075 } else {
8082510e 5076
a41ad394
JB
5077 /*
5078 * We're truncating a file that used to have good data down to
5079 * zero. Make sure it gets into the ordered flush list so that
5080 * any new writes get down to disk quickly.
5081 */
5082 if (newsize == 0)
72ac3c0d
JB
5083 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5084 &BTRFS_I(inode)->runtime_flags);
8082510e 5085
f3fe820c
JB
5086 /*
5087 * 1 for the orphan item we're going to add
5088 * 1 for the orphan item deletion.
5089 */
5090 trans = btrfs_start_transaction(root, 2);
5091 if (IS_ERR(trans))
5092 return PTR_ERR(trans);
5093
5094 /*
5095 * We need to do this in case we fail at _any_ point during the
5096 * actual truncate. Once we do the truncate_setsize we could
5097 * invalidate pages which forces any outstanding ordered io to
5098 * be instantly completed which will give us extents that need
5099 * to be truncated. If we fail to get an orphan inode down we
5100 * could have left over extents that were never meant to live,
01327610 5101 * so we need to guarantee from this point on that everything
f3fe820c
JB
5102 * will be consistent.
5103 */
73f2e545 5104 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 5105 btrfs_end_transaction(trans);
f3fe820c
JB
5106 if (ret)
5107 return ret;
5108
a41ad394
JB
5109 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5110 truncate_setsize(inode, newsize);
2e60a51e
MX
5111
5112 /* Disable nonlocked read DIO to avoid the end less truncate */
abcefb1e 5113 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 5114 inode_dio_wait(inode);
0b581701 5115 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 5116
a41ad394 5117 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5118 if (ret && inode->i_nlink) {
5119 int err;
5120
19fd2df5
LB
5121 /* To get a stable disk_i_size */
5122 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5123 if (err) {
3d6ae7bb 5124 btrfs_orphan_del(NULL, BTRFS_I(inode));
19fd2df5
LB
5125 return err;
5126 }
5127
7f4f6e0a
JB
5128 /*
5129 * failed to truncate, disk_i_size is only adjusted down
5130 * as we remove extents, so it should represent the true
5131 * size of the inode, so reset the in memory size and
5132 * delete our orphan entry.
5133 */
5134 trans = btrfs_join_transaction(root);
5135 if (IS_ERR(trans)) {
3d6ae7bb 5136 btrfs_orphan_del(NULL, BTRFS_I(inode));
7f4f6e0a
JB
5137 return ret;
5138 }
5139 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
3d6ae7bb 5140 err = btrfs_orphan_del(trans, BTRFS_I(inode));
7f4f6e0a 5141 if (err)
66642832 5142 btrfs_abort_transaction(trans, err);
3a45bb20 5143 btrfs_end_transaction(trans);
7f4f6e0a 5144 }
8082510e
YZ
5145 }
5146
a41ad394 5147 return ret;
8082510e
YZ
5148}
5149
9036c102
YZ
5150static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5151{
2b0143b5 5152 struct inode *inode = d_inode(dentry);
b83cc969 5153 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5154 int err;
39279cc3 5155
b83cc969
LZ
5156 if (btrfs_root_readonly(root))
5157 return -EROFS;
5158
31051c85 5159 err = setattr_prepare(dentry, attr);
9036c102
YZ
5160 if (err)
5161 return err;
2bf5a725 5162
5a3f23d5 5163 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5164 err = btrfs_setsize(inode, attr);
8082510e
YZ
5165 if (err)
5166 return err;
39279cc3 5167 }
9036c102 5168
1025774c
CH
5169 if (attr->ia_valid) {
5170 setattr_copy(inode, attr);
0c4d2d95 5171 inode_inc_iversion(inode);
22c44fe6 5172 err = btrfs_dirty_inode(inode);
1025774c 5173
22c44fe6 5174 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5175 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5176 }
33268eaf 5177
39279cc3
CM
5178 return err;
5179}
61295eb8 5180
131e404a
FDBM
5181/*
5182 * While truncating the inode pages during eviction, we get the VFS calling
5183 * btrfs_invalidatepage() against each page of the inode. This is slow because
5184 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5185 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5186 * extent_state structures over and over, wasting lots of time.
5187 *
5188 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5189 * those expensive operations on a per page basis and do only the ordered io
5190 * finishing, while we release here the extent_map and extent_state structures,
5191 * without the excessive merging and splitting.
5192 */
5193static void evict_inode_truncate_pages(struct inode *inode)
5194{
5195 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5196 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5197 struct rb_node *node;
5198
5199 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5200 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5201
5202 write_lock(&map_tree->lock);
5203 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5204 struct extent_map *em;
5205
5206 node = rb_first(&map_tree->map);
5207 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5208 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5209 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5210 remove_extent_mapping(map_tree, em);
5211 free_extent_map(em);
7064dd5c
FM
5212 if (need_resched()) {
5213 write_unlock(&map_tree->lock);
5214 cond_resched();
5215 write_lock(&map_tree->lock);
5216 }
131e404a
FDBM
5217 }
5218 write_unlock(&map_tree->lock);
5219
6ca07097
FM
5220 /*
5221 * Keep looping until we have no more ranges in the io tree.
5222 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5223 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5224 * still in progress (unlocked the pages in the bio but did not yet
5225 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5226 * ranges can still be locked and eviction started because before
5227 * submitting those bios, which are executed by a separate task (work
5228 * queue kthread), inode references (inode->i_count) were not taken
5229 * (which would be dropped in the end io callback of each bio).
5230 * Therefore here we effectively end up waiting for those bios and
5231 * anyone else holding locked ranges without having bumped the inode's
5232 * reference count - if we don't do it, when they access the inode's
5233 * io_tree to unlock a range it may be too late, leading to an
5234 * use-after-free issue.
5235 */
131e404a
FDBM
5236 spin_lock(&io_tree->lock);
5237 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5238 struct extent_state *state;
5239 struct extent_state *cached_state = NULL;
6ca07097
FM
5240 u64 start;
5241 u64 end;
131e404a
FDBM
5242
5243 node = rb_first(&io_tree->state);
5244 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5245 start = state->start;
5246 end = state->end;
131e404a
FDBM
5247 spin_unlock(&io_tree->lock);
5248
ff13db41 5249 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5250
5251 /*
5252 * If still has DELALLOC flag, the extent didn't reach disk,
5253 * and its reserved space won't be freed by delayed_ref.
5254 * So we need to free its reserved space here.
5255 * (Refer to comment in btrfs_invalidatepage, case 2)
5256 *
5257 * Note, end is the bytenr of last byte, so we need + 1 here.
5258 */
5259 if (state->state & EXTENT_DELALLOC)
5260 btrfs_qgroup_free_data(inode, start, end - start + 1);
5261
6ca07097 5262 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5263 EXTENT_LOCKED | EXTENT_DIRTY |
5264 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5265 EXTENT_DEFRAG, 1, 1,
5266 &cached_state, GFP_NOFS);
131e404a 5267
7064dd5c 5268 cond_resched();
131e404a
FDBM
5269 spin_lock(&io_tree->lock);
5270 }
5271 spin_unlock(&io_tree->lock);
5272}
5273
bd555975 5274void btrfs_evict_inode(struct inode *inode)
39279cc3 5275{
0b246afa 5276 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5277 struct btrfs_trans_handle *trans;
5278 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5279 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5280 int steal_from_global = 0;
3d48d981 5281 u64 min_size;
39279cc3
CM
5282 int ret;
5283
1abe9b8a 5284 trace_btrfs_inode_evict(inode);
5285
3d48d981
NB
5286 if (!root) {
5287 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5288 return;
5289 }
5290
0b246afa 5291 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
3d48d981 5292
131e404a
FDBM
5293 evict_inode_truncate_pages(inode);
5294
69e9c6c6
SB
5295 if (inode->i_nlink &&
5296 ((btrfs_root_refs(&root->root_item) != 0 &&
5297 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5298 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5299 goto no_delete;
5300
39279cc3 5301 if (is_bad_inode(inode)) {
3d6ae7bb 5302 btrfs_orphan_del(NULL, BTRFS_I(inode));
39279cc3
CM
5303 goto no_delete;
5304 }
bd555975 5305 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5306 if (!special_file(inode->i_mode))
5307 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5308
7ab7956e 5309 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5310
0b246afa 5311 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
6bf02314 5312 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5313 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5314 goto no_delete;
5315 }
5316
76dda93c 5317 if (inode->i_nlink > 0) {
69e9c6c6
SB
5318 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5319 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5320 goto no_delete;
5321 }
5322
aa79021f 5323 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
0e8c36a9 5324 if (ret) {
3d6ae7bb 5325 btrfs_orphan_del(NULL, BTRFS_I(inode));
0e8c36a9
MX
5326 goto no_delete;
5327 }
5328
2ff7e61e 5329 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
4289a667 5330 if (!rsv) {
3d6ae7bb 5331 btrfs_orphan_del(NULL, BTRFS_I(inode));
4289a667
JB
5332 goto no_delete;
5333 }
4a338542 5334 rsv->size = min_size;
ca7e70f5 5335 rsv->failfast = 1;
0b246afa 5336 global_rsv = &fs_info->global_block_rsv;
4289a667 5337
6ef06d27 5338 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5339
4289a667 5340 /*
8407aa46
MX
5341 * This is a bit simpler than btrfs_truncate since we've already
5342 * reserved our space for our orphan item in the unlink, so we just
5343 * need to reserve some slack space in case we add bytes and update
5344 * inode item when doing the truncate.
4289a667 5345 */
8082510e 5346 while (1) {
08e007d2
MX
5347 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5348 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5349
5350 /*
5351 * Try and steal from the global reserve since we will
5352 * likely not use this space anyway, we want to try as
5353 * hard as possible to get this to work.
5354 */
5355 if (ret)
3bce876f
JB
5356 steal_from_global++;
5357 else
5358 steal_from_global = 0;
5359 ret = 0;
d68fc57b 5360
3bce876f
JB
5361 /*
5362 * steal_from_global == 0: we reserved stuff, hooray!
5363 * steal_from_global == 1: we didn't reserve stuff, boo!
5364 * steal_from_global == 2: we've committed, still not a lot of
5365 * room but maybe we'll have room in the global reserve this
5366 * time.
5367 * steal_from_global == 3: abandon all hope!
5368 */
5369 if (steal_from_global > 2) {
0b246afa
JM
5370 btrfs_warn(fs_info,
5371 "Could not get space for a delete, will truncate on mount %d",
5372 ret);
3d6ae7bb 5373 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5374 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5375 goto no_delete;
d68fc57b 5376 }
7b128766 5377
0e8c36a9 5378 trans = btrfs_join_transaction(root);
4289a667 5379 if (IS_ERR(trans)) {
3d6ae7bb 5380 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5381 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5382 goto no_delete;
d68fc57b 5383 }
7b128766 5384
3bce876f 5385 /*
01327610 5386 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5387 * sure there is room to do it, if not we need to commit and try
5388 * again.
5389 */
5390 if (steal_from_global) {
2ff7e61e 5391 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
3bce876f 5392 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
25d609f8 5393 min_size, 0);
3bce876f
JB
5394 else
5395 ret = -ENOSPC;
5396 }
5397
5398 /*
5399 * Couldn't steal from the global reserve, we have too much
5400 * pending stuff built up, commit the transaction and try it
5401 * again.
5402 */
5403 if (ret) {
3a45bb20 5404 ret = btrfs_commit_transaction(trans);
3bce876f 5405 if (ret) {
3d6ae7bb 5406 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5407 btrfs_free_block_rsv(fs_info, rsv);
3bce876f
JB
5408 goto no_delete;
5409 }
5410 continue;
5411 } else {
5412 steal_from_global = 0;
5413 }
5414
4289a667
JB
5415 trans->block_rsv = rsv;
5416
d68fc57b 5417 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5418 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5419 break;
85e21bac 5420
0b246afa 5421 trans->block_rsv = &fs_info->trans_block_rsv;
3a45bb20 5422 btrfs_end_transaction(trans);
8082510e 5423 trans = NULL;
2ff7e61e 5424 btrfs_btree_balance_dirty(fs_info);
8082510e 5425 }
5f39d397 5426
2ff7e61e 5427 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5428
4ef31a45
JB
5429 /*
5430 * Errors here aren't a big deal, it just means we leave orphan items
5431 * in the tree. They will be cleaned up on the next mount.
5432 */
8082510e 5433 if (ret == 0) {
4289a667 5434 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 5435 btrfs_orphan_del(trans, BTRFS_I(inode));
4ef31a45 5436 } else {
3d6ae7bb 5437 btrfs_orphan_del(NULL, BTRFS_I(inode));
8082510e 5438 }
54aa1f4d 5439
0b246afa
JM
5440 trans->block_rsv = &fs_info->trans_block_rsv;
5441 if (!(root == fs_info->tree_root ||
581bb050 5442 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5443 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5444
3a45bb20 5445 btrfs_end_transaction(trans);
2ff7e61e 5446 btrfs_btree_balance_dirty(fs_info);
39279cc3 5447no_delete:
f48d1cf5 5448 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5449 clear_inode(inode);
39279cc3
CM
5450}
5451
5452/*
5453 * this returns the key found in the dir entry in the location pointer.
5454 * If no dir entries were found, location->objectid is 0.
5455 */
5456static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5457 struct btrfs_key *location)
5458{
5459 const char *name = dentry->d_name.name;
5460 int namelen = dentry->d_name.len;
5461 struct btrfs_dir_item *di;
5462 struct btrfs_path *path;
5463 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5464 int ret = 0;
39279cc3
CM
5465
5466 path = btrfs_alloc_path();
d8926bb3
MF
5467 if (!path)
5468 return -ENOMEM;
3954401f 5469
f85b7379
DS
5470 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5471 name, namelen, 0);
0d9f7f3e
Y
5472 if (IS_ERR(di))
5473 ret = PTR_ERR(di);
d397712b 5474
c704005d 5475 if (IS_ERR_OR_NULL(di))
3954401f 5476 goto out_err;
d397712b 5477
5f39d397 5478 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5479out:
39279cc3
CM
5480 btrfs_free_path(path);
5481 return ret;
3954401f
CM
5482out_err:
5483 location->objectid = 0;
5484 goto out;
39279cc3
CM
5485}
5486
5487/*
5488 * when we hit a tree root in a directory, the btrfs part of the inode
5489 * needs to be changed to reflect the root directory of the tree root. This
5490 * is kind of like crossing a mount point.
5491 */
2ff7e61e 5492static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5493 struct inode *dir,
5494 struct dentry *dentry,
5495 struct btrfs_key *location,
5496 struct btrfs_root **sub_root)
39279cc3 5497{
4df27c4d
YZ
5498 struct btrfs_path *path;
5499 struct btrfs_root *new_root;
5500 struct btrfs_root_ref *ref;
5501 struct extent_buffer *leaf;
1d4c08e0 5502 struct btrfs_key key;
4df27c4d
YZ
5503 int ret;
5504 int err = 0;
39279cc3 5505
4df27c4d
YZ
5506 path = btrfs_alloc_path();
5507 if (!path) {
5508 err = -ENOMEM;
5509 goto out;
5510 }
39279cc3 5511
4df27c4d 5512 err = -ENOENT;
1d4c08e0
DS
5513 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5514 key.type = BTRFS_ROOT_REF_KEY;
5515 key.offset = location->objectid;
5516
0b246afa 5517 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5518 if (ret) {
5519 if (ret < 0)
5520 err = ret;
5521 goto out;
5522 }
39279cc3 5523
4df27c4d
YZ
5524 leaf = path->nodes[0];
5525 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5526 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5527 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5528 goto out;
39279cc3 5529
4df27c4d
YZ
5530 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5531 (unsigned long)(ref + 1),
5532 dentry->d_name.len);
5533 if (ret)
5534 goto out;
5535
b3b4aa74 5536 btrfs_release_path(path);
4df27c4d 5537
0b246afa 5538 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5539 if (IS_ERR(new_root)) {
5540 err = PTR_ERR(new_root);
5541 goto out;
5542 }
5543
4df27c4d
YZ
5544 *sub_root = new_root;
5545 location->objectid = btrfs_root_dirid(&new_root->root_item);
5546 location->type = BTRFS_INODE_ITEM_KEY;
5547 location->offset = 0;
5548 err = 0;
5549out:
5550 btrfs_free_path(path);
5551 return err;
39279cc3
CM
5552}
5553
5d4f98a2
YZ
5554static void inode_tree_add(struct inode *inode)
5555{
5556 struct btrfs_root *root = BTRFS_I(inode)->root;
5557 struct btrfs_inode *entry;
03e860bd
NP
5558 struct rb_node **p;
5559 struct rb_node *parent;
cef21937 5560 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5561 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5562
1d3382cb 5563 if (inode_unhashed(inode))
76dda93c 5564 return;
e1409cef 5565 parent = NULL;
5d4f98a2 5566 spin_lock(&root->inode_lock);
e1409cef 5567 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5568 while (*p) {
5569 parent = *p;
5570 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5571
4a0cc7ca 5572 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5573 p = &parent->rb_left;
4a0cc7ca 5574 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5575 p = &parent->rb_right;
5d4f98a2
YZ
5576 else {
5577 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5578 (I_WILL_FREE | I_FREEING)));
cef21937 5579 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
NP
5580 RB_CLEAR_NODE(parent);
5581 spin_unlock(&root->inode_lock);
cef21937 5582 return;
5d4f98a2
YZ
5583 }
5584 }
cef21937
FDBM
5585 rb_link_node(new, parent, p);
5586 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5587 spin_unlock(&root->inode_lock);
5588}
5589
5590static void inode_tree_del(struct inode *inode)
5591{
0b246afa 5592 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5593 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5594 int empty = 0;
5d4f98a2 5595
03e860bd 5596 spin_lock(&root->inode_lock);
5d4f98a2 5597 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5598 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5599 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5600 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5601 }
03e860bd 5602 spin_unlock(&root->inode_lock);
76dda93c 5603
69e9c6c6 5604 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5605 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5606 spin_lock(&root->inode_lock);
5607 empty = RB_EMPTY_ROOT(&root->inode_tree);
5608 spin_unlock(&root->inode_lock);
5609 if (empty)
5610 btrfs_add_dead_root(root);
5611 }
5612}
5613
143bede5 5614void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c 5615{
0b246afa 5616 struct btrfs_fs_info *fs_info = root->fs_info;
76dda93c
YZ
5617 struct rb_node *node;
5618 struct rb_node *prev;
5619 struct btrfs_inode *entry;
5620 struct inode *inode;
5621 u64 objectid = 0;
5622
0b246afa 5623 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
7813b3db 5624 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5625
5626 spin_lock(&root->inode_lock);
5627again:
5628 node = root->inode_tree.rb_node;
5629 prev = NULL;
5630 while (node) {
5631 prev = node;
5632 entry = rb_entry(node, struct btrfs_inode, rb_node);
5633
4a0cc7ca 5634 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c 5635 node = node->rb_left;
4a0cc7ca 5636 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c
YZ
5637 node = node->rb_right;
5638 else
5639 break;
5640 }
5641 if (!node) {
5642 while (prev) {
5643 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4a0cc7ca 5644 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
76dda93c
YZ
5645 node = prev;
5646 break;
5647 }
5648 prev = rb_next(prev);
5649 }
5650 }
5651 while (node) {
5652 entry = rb_entry(node, struct btrfs_inode, rb_node);
4a0cc7ca 5653 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
76dda93c
YZ
5654 inode = igrab(&entry->vfs_inode);
5655 if (inode) {
5656 spin_unlock(&root->inode_lock);
5657 if (atomic_read(&inode->i_count) > 1)
5658 d_prune_aliases(inode);
5659 /*
45321ac5 5660 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5661 * the inode cache when its usage count
5662 * hits zero.
5663 */
5664 iput(inode);
5665 cond_resched();
5666 spin_lock(&root->inode_lock);
5667 goto again;
5668 }
5669
5670 if (cond_resched_lock(&root->inode_lock))
5671 goto again;
5672
5673 node = rb_next(node);
5674 }
5675 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5676}
5677
e02119d5
CM
5678static int btrfs_init_locked_inode(struct inode *inode, void *p)
5679{
5680 struct btrfs_iget_args *args = p;
90d3e592
CM
5681 inode->i_ino = args->location->objectid;
5682 memcpy(&BTRFS_I(inode)->location, args->location,
5683 sizeof(*args->location));
e02119d5 5684 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5685 return 0;
5686}
5687
5688static int btrfs_find_actor(struct inode *inode, void *opaque)
5689{
5690 struct btrfs_iget_args *args = opaque;
90d3e592 5691 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5692 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5693}
5694
5d4f98a2 5695static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5696 struct btrfs_key *location,
5d4f98a2 5697 struct btrfs_root *root)
39279cc3
CM
5698{
5699 struct inode *inode;
5700 struct btrfs_iget_args args;
90d3e592 5701 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5702
90d3e592 5703 args.location = location;
39279cc3
CM
5704 args.root = root;
5705
778ba82b 5706 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5707 btrfs_init_locked_inode,
5708 (void *)&args);
5709 return inode;
5710}
5711
1a54ef8c
BR
5712/* Get an inode object given its location and corresponding root.
5713 * Returns in *is_new if the inode was read from disk
5714 */
5715struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5716 struct btrfs_root *root, int *new)
1a54ef8c
BR
5717{
5718 struct inode *inode;
5719
90d3e592 5720 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5721 if (!inode)
5d4f98a2 5722 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5723
5724 if (inode->i_state & I_NEW) {
67710892
FM
5725 int ret;
5726
5727 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5728 if (!is_bad_inode(inode)) {
5729 inode_tree_add(inode);
5730 unlock_new_inode(inode);
5731 if (new)
5732 *new = 1;
5733 } else {
e0b6d65b
ST
5734 unlock_new_inode(inode);
5735 iput(inode);
67710892
FM
5736 ASSERT(ret < 0);
5737 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5738 }
5739 }
5740
1a54ef8c
BR
5741 return inode;
5742}
5743
4df27c4d
YZ
5744static struct inode *new_simple_dir(struct super_block *s,
5745 struct btrfs_key *key,
5746 struct btrfs_root *root)
5747{
5748 struct inode *inode = new_inode(s);
5749
5750 if (!inode)
5751 return ERR_PTR(-ENOMEM);
5752
4df27c4d
YZ
5753 BTRFS_I(inode)->root = root;
5754 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5755 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5756
5757 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5758 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5759 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5760 inode->i_fop = &simple_dir_operations;
5761 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5762 inode->i_mtime = current_time(inode);
9cc97d64 5763 inode->i_atime = inode->i_mtime;
5764 inode->i_ctime = inode->i_mtime;
5765 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5766
5767 return inode;
5768}
5769
3de4586c 5770struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5771{
0b246afa 5772 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5773 struct inode *inode;
4df27c4d 5774 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5775 struct btrfs_root *sub_root = root;
5776 struct btrfs_key location;
76dda93c 5777 int index;
b4aff1f8 5778 int ret = 0;
39279cc3
CM
5779
5780 if (dentry->d_name.len > BTRFS_NAME_LEN)
5781 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5782
39e3c955 5783 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5784 if (ret < 0)
5785 return ERR_PTR(ret);
5f39d397 5786
4df27c4d 5787 if (location.objectid == 0)
5662344b 5788 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5789
5790 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5791 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5792 return inode;
5793 }
5794
5795 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5796
0b246afa 5797 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5798 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5799 &location, &sub_root);
5800 if (ret < 0) {
5801 if (ret != -ENOENT)
5802 inode = ERR_PTR(ret);
5803 else
5804 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5805 } else {
73f73415 5806 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5807 }
0b246afa 5808 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5809
34d19bad 5810 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5811 down_read(&fs_info->cleanup_work_sem);
c71bf099 5812 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5813 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5814 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5815 if (ret) {
5816 iput(inode);
66b4ffd1 5817 inode = ERR_PTR(ret);
01cd3367 5818 }
c71bf099
YZ
5819 }
5820
3de4586c
CM
5821 return inode;
5822}
5823
fe15ce44 5824static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5825{
5826 struct btrfs_root *root;
2b0143b5 5827 struct inode *inode = d_inode(dentry);
76dda93c 5828
848cce0d 5829 if (!inode && !IS_ROOT(dentry))
2b0143b5 5830 inode = d_inode(dentry->d_parent);
76dda93c 5831
848cce0d
LZ
5832 if (inode) {
5833 root = BTRFS_I(inode)->root;
efefb143
YZ
5834 if (btrfs_root_refs(&root->root_item) == 0)
5835 return 1;
848cce0d 5836
4a0cc7ca 5837 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5838 return 1;
efefb143 5839 }
76dda93c
YZ
5840 return 0;
5841}
5842
b4aff1f8
JB
5843static void btrfs_dentry_release(struct dentry *dentry)
5844{
944a4515 5845 kfree(dentry->d_fsdata);
b4aff1f8
JB
5846}
5847
3de4586c 5848static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5849 unsigned int flags)
3de4586c 5850{
5662344b 5851 struct inode *inode;
a66e7cc6 5852
5662344b
TI
5853 inode = btrfs_lookup_dentry(dir, dentry);
5854 if (IS_ERR(inode)) {
5855 if (PTR_ERR(inode) == -ENOENT)
5856 inode = NULL;
5857 else
5858 return ERR_CAST(inode);
5859 }
5860
41d28bca 5861 return d_splice_alias(inode, dentry);
39279cc3
CM
5862}
5863
16cdcec7 5864unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5865 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5866};
5867
9cdda8d3 5868static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5869{
9cdda8d3 5870 struct inode *inode = file_inode(file);
2ff7e61e 5871 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 5872 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3
CM
5873 struct btrfs_dir_item *di;
5874 struct btrfs_key key;
5f39d397 5875 struct btrfs_key found_key;
39279cc3 5876 struct btrfs_path *path;
16cdcec7
MX
5877 struct list_head ins_list;
5878 struct list_head del_list;
39279cc3 5879 int ret;
5f39d397 5880 struct extent_buffer *leaf;
39279cc3 5881 int slot;
39279cc3
CM
5882 unsigned char d_type;
5883 int over = 0;
5f39d397
CM
5884 char tmp_name[32];
5885 char *name_ptr;
5886 int name_len;
02dbfc99 5887 bool put = false;
c2951f32 5888 struct btrfs_key location;
5f39d397 5889
9cdda8d3
AV
5890 if (!dir_emit_dots(file, ctx))
5891 return 0;
5892
49593bfa 5893 path = btrfs_alloc_path();
16cdcec7
MX
5894 if (!path)
5895 return -ENOMEM;
ff5714cc 5896
e4058b54 5897 path->reada = READA_FORWARD;
49593bfa 5898
c2951f32
JM
5899 INIT_LIST_HEAD(&ins_list);
5900 INIT_LIST_HEAD(&del_list);
5901 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5902
c2951f32 5903 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5904 key.offset = ctx->pos;
4a0cc7ca 5905 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5906
39279cc3
CM
5907 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5908 if (ret < 0)
5909 goto err;
49593bfa
DW
5910
5911 while (1) {
5f39d397 5912 leaf = path->nodes[0];
39279cc3 5913 slot = path->slots[0];
b9e03af0
LZ
5914 if (slot >= btrfs_header_nritems(leaf)) {
5915 ret = btrfs_next_leaf(root, path);
5916 if (ret < 0)
5917 goto err;
5918 else if (ret > 0)
5919 break;
5920 continue;
39279cc3 5921 }
3de4586c 5922
5f39d397
CM
5923 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5924
5925 if (found_key.objectid != key.objectid)
39279cc3 5926 break;
c2951f32 5927 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5928 break;
9cdda8d3 5929 if (found_key.offset < ctx->pos)
b9e03af0 5930 goto next;
c2951f32 5931 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5932 goto next;
5f39d397 5933
9cdda8d3 5934 ctx->pos = found_key.offset;
49593bfa 5935
39279cc3 5936 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
e79a3327 5937 if (verify_dir_item(fs_info, leaf, slot, di))
c2951f32 5938 goto next;
22a94d44 5939
c2951f32
JM
5940 name_len = btrfs_dir_name_len(leaf, di);
5941 if (name_len <= sizeof(tmp_name)) {
5942 name_ptr = tmp_name;
5943 } else {
5944 name_ptr = kmalloc(name_len, GFP_KERNEL);
5945 if (!name_ptr) {
5946 ret = -ENOMEM;
5947 goto err;
5f39d397 5948 }
c2951f32
JM
5949 }
5950 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5951 name_len);
3de4586c 5952
c2951f32
JM
5953 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5954 btrfs_dir_item_key_to_cpu(leaf, di, &location);
fede766f 5955
c2951f32
JM
5956 over = !dir_emit(ctx, name_ptr, name_len, location.objectid,
5957 d_type);
5f39d397 5958
c2951f32
JM
5959 if (name_ptr != tmp_name)
5960 kfree(name_ptr);
5f39d397 5961
c2951f32
JM
5962 if (over)
5963 goto nopos;
d2fbb2b5 5964 ctx->pos++;
b9e03af0
LZ
5965next:
5966 path->slots[0]++;
39279cc3 5967 }
49593bfa 5968
d2fbb2b5 5969 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5970 if (ret)
bc4ef759
DS
5971 goto nopos;
5972
db62efbb
ZB
5973 /*
5974 * Stop new entries from being returned after we return the last
5975 * entry.
5976 *
5977 * New directory entries are assigned a strictly increasing
5978 * offset. This means that new entries created during readdir
5979 * are *guaranteed* to be seen in the future by that readdir.
5980 * This has broken buggy programs which operate on names as
5981 * they're returned by readdir. Until we re-use freed offsets
5982 * we have this hack to stop new entries from being returned
5983 * under the assumption that they'll never reach this huge
5984 * offset.
5985 *
5986 * This is being careful not to overflow 32bit loff_t unless the
5987 * last entry requires it because doing so has broken 32bit apps
5988 * in the past.
5989 */
c2951f32
JM
5990 if (ctx->pos >= INT_MAX)
5991 ctx->pos = LLONG_MAX;
5992 else
5993 ctx->pos = INT_MAX;
39279cc3
CM
5994nopos:
5995 ret = 0;
5996err:
02dbfc99
OS
5997 if (put)
5998 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5999 btrfs_free_path(path);
39279cc3
CM
6000 return ret;
6001}
6002
a9185b41 6003int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
6004{
6005 struct btrfs_root *root = BTRFS_I(inode)->root;
6006 struct btrfs_trans_handle *trans;
6007 int ret = 0;
0af3d00b 6008 bool nolock = false;
39279cc3 6009
72ac3c0d 6010 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
6011 return 0;
6012
70ddc553
NB
6013 if (btrfs_fs_closing(root->fs_info) &&
6014 btrfs_is_free_space_inode(BTRFS_I(inode)))
82d5902d 6015 nolock = true;
0af3d00b 6016
a9185b41 6017 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 6018 if (nolock)
7a7eaa40 6019 trans = btrfs_join_transaction_nolock(root);
0af3d00b 6020 else
7a7eaa40 6021 trans = btrfs_join_transaction(root);
3612b495
TI
6022 if (IS_ERR(trans))
6023 return PTR_ERR(trans);
3a45bb20 6024 ret = btrfs_commit_transaction(trans);
39279cc3
CM
6025 }
6026 return ret;
6027}
6028
6029/*
54aa1f4d 6030 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6031 * inode changes. But, it is most likely to find the inode in cache.
6032 * FIXME, needs more benchmarking...there are no reasons other than performance
6033 * to keep or drop this code.
6034 */
48a3b636 6035static int btrfs_dirty_inode(struct inode *inode)
39279cc3 6036{
2ff7e61e 6037 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
6038 struct btrfs_root *root = BTRFS_I(inode)->root;
6039 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6040 int ret;
6041
72ac3c0d 6042 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6043 return 0;
39279cc3 6044
7a7eaa40 6045 trans = btrfs_join_transaction(root);
22c44fe6
JB
6046 if (IS_ERR(trans))
6047 return PTR_ERR(trans);
8929ecfa
YZ
6048
6049 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6050 if (ret && ret == -ENOSPC) {
6051 /* whoops, lets try again with the full transaction */
3a45bb20 6052 btrfs_end_transaction(trans);
94b60442 6053 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6054 if (IS_ERR(trans))
6055 return PTR_ERR(trans);
8929ecfa 6056
94b60442 6057 ret = btrfs_update_inode(trans, root, inode);
94b60442 6058 }
3a45bb20 6059 btrfs_end_transaction(trans);
16cdcec7 6060 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6061 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6062
6063 return ret;
6064}
6065
6066/*
6067 * This is a copy of file_update_time. We need this so we can return error on
6068 * ENOSPC for updating the inode in the case of file write and mmap writes.
6069 */
e41f941a
JB
6070static int btrfs_update_time(struct inode *inode, struct timespec *now,
6071 int flags)
22c44fe6 6072{
2bc55652
AB
6073 struct btrfs_root *root = BTRFS_I(inode)->root;
6074
6075 if (btrfs_root_readonly(root))
6076 return -EROFS;
6077
e41f941a 6078 if (flags & S_VERSION)
22c44fe6 6079 inode_inc_iversion(inode);
e41f941a
JB
6080 if (flags & S_CTIME)
6081 inode->i_ctime = *now;
6082 if (flags & S_MTIME)
6083 inode->i_mtime = *now;
6084 if (flags & S_ATIME)
6085 inode->i_atime = *now;
6086 return btrfs_dirty_inode(inode);
39279cc3
CM
6087}
6088
d352ac68
CM
6089/*
6090 * find the highest existing sequence number in a directory
6091 * and then set the in-memory index_cnt variable to reflect
6092 * free sequence numbers
6093 */
4c570655 6094static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6095{
4c570655 6096 struct btrfs_root *root = inode->root;
aec7477b
JB
6097 struct btrfs_key key, found_key;
6098 struct btrfs_path *path;
6099 struct extent_buffer *leaf;
6100 int ret;
6101
4c570655 6102 key.objectid = btrfs_ino(inode);
962a298f 6103 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6104 key.offset = (u64)-1;
6105
6106 path = btrfs_alloc_path();
6107 if (!path)
6108 return -ENOMEM;
6109
6110 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6111 if (ret < 0)
6112 goto out;
6113 /* FIXME: we should be able to handle this */
6114 if (ret == 0)
6115 goto out;
6116 ret = 0;
6117
6118 /*
6119 * MAGIC NUMBER EXPLANATION:
6120 * since we search a directory based on f_pos we have to start at 2
6121 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6122 * else has to start at 2
6123 */
6124 if (path->slots[0] == 0) {
4c570655 6125 inode->index_cnt = 2;
aec7477b
JB
6126 goto out;
6127 }
6128
6129 path->slots[0]--;
6130
6131 leaf = path->nodes[0];
6132 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6133
4c570655 6134 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6135 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6136 inode->index_cnt = 2;
aec7477b
JB
6137 goto out;
6138 }
6139
4c570655 6140 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6141out:
6142 btrfs_free_path(path);
6143 return ret;
6144}
6145
d352ac68
CM
6146/*
6147 * helper to find a free sequence number in a given directory. This current
6148 * code is very simple, later versions will do smarter things in the btree
6149 */
877574e2 6150int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6151{
6152 int ret = 0;
6153
877574e2
NB
6154 if (dir->index_cnt == (u64)-1) {
6155 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6156 if (ret) {
6157 ret = btrfs_set_inode_index_count(dir);
6158 if (ret)
6159 return ret;
6160 }
aec7477b
JB
6161 }
6162
877574e2
NB
6163 *index = dir->index_cnt;
6164 dir->index_cnt++;
aec7477b
JB
6165
6166 return ret;
6167}
6168
b0d5d10f
CM
6169static int btrfs_insert_inode_locked(struct inode *inode)
6170{
6171 struct btrfs_iget_args args;
6172 args.location = &BTRFS_I(inode)->location;
6173 args.root = BTRFS_I(inode)->root;
6174
6175 return insert_inode_locked4(inode,
6176 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6177 btrfs_find_actor, &args);
6178}
6179
39279cc3
CM
6180static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6181 struct btrfs_root *root,
aec7477b 6182 struct inode *dir,
9c58309d 6183 const char *name, int name_len,
175a4eb7
AV
6184 u64 ref_objectid, u64 objectid,
6185 umode_t mode, u64 *index)
39279cc3 6186{
0b246afa 6187 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6188 struct inode *inode;
5f39d397 6189 struct btrfs_inode_item *inode_item;
39279cc3 6190 struct btrfs_key *location;
5f39d397 6191 struct btrfs_path *path;
9c58309d
CM
6192 struct btrfs_inode_ref *ref;
6193 struct btrfs_key key[2];
6194 u32 sizes[2];
ef3b9af5 6195 int nitems = name ? 2 : 1;
9c58309d 6196 unsigned long ptr;
39279cc3 6197 int ret;
39279cc3 6198
5f39d397 6199 path = btrfs_alloc_path();
d8926bb3
MF
6200 if (!path)
6201 return ERR_PTR(-ENOMEM);
5f39d397 6202
0b246afa 6203 inode = new_inode(fs_info->sb);
8fb27640
YS
6204 if (!inode) {
6205 btrfs_free_path(path);
39279cc3 6206 return ERR_PTR(-ENOMEM);
8fb27640 6207 }
39279cc3 6208
5762b5c9
FM
6209 /*
6210 * O_TMPFILE, set link count to 0, so that after this point,
6211 * we fill in an inode item with the correct link count.
6212 */
6213 if (!name)
6214 set_nlink(inode, 0);
6215
581bb050
LZ
6216 /*
6217 * we have to initialize this early, so we can reclaim the inode
6218 * number if we fail afterwards in this function.
6219 */
6220 inode->i_ino = objectid;
6221
ef3b9af5 6222 if (dir && name) {
1abe9b8a 6223 trace_btrfs_inode_request(dir);
6224
877574e2 6225 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6226 if (ret) {
8fb27640 6227 btrfs_free_path(path);
09771430 6228 iput(inode);
aec7477b 6229 return ERR_PTR(ret);
09771430 6230 }
ef3b9af5
FM
6231 } else if (dir) {
6232 *index = 0;
aec7477b
JB
6233 }
6234 /*
6235 * index_cnt is ignored for everything but a dir,
6236 * btrfs_get_inode_index_count has an explanation for the magic
6237 * number
6238 */
6239 BTRFS_I(inode)->index_cnt = 2;
67de1176 6240 BTRFS_I(inode)->dir_index = *index;
39279cc3 6241 BTRFS_I(inode)->root = root;
e02119d5 6242 BTRFS_I(inode)->generation = trans->transid;
76195853 6243 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6244
5dc562c5
JB
6245 /*
6246 * We could have gotten an inode number from somebody who was fsynced
6247 * and then removed in this same transaction, so let's just set full
6248 * sync since it will be a full sync anyway and this will blow away the
6249 * old info in the log.
6250 */
6251 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6252
9c58309d 6253 key[0].objectid = objectid;
962a298f 6254 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6255 key[0].offset = 0;
6256
9c58309d 6257 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6258
6259 if (name) {
6260 /*
6261 * Start new inodes with an inode_ref. This is slightly more
6262 * efficient for small numbers of hard links since they will
6263 * be packed into one item. Extended refs will kick in if we
6264 * add more hard links than can fit in the ref item.
6265 */
6266 key[1].objectid = objectid;
962a298f 6267 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6268 key[1].offset = ref_objectid;
6269
6270 sizes[1] = name_len + sizeof(*ref);
6271 }
9c58309d 6272
b0d5d10f
CM
6273 location = &BTRFS_I(inode)->location;
6274 location->objectid = objectid;
6275 location->offset = 0;
962a298f 6276 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6277
6278 ret = btrfs_insert_inode_locked(inode);
6279 if (ret < 0)
6280 goto fail;
6281
b9473439 6282 path->leave_spinning = 1;
ef3b9af5 6283 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6284 if (ret != 0)
b0d5d10f 6285 goto fail_unlock;
5f39d397 6286
ecc11fab 6287 inode_init_owner(inode, dir, mode);
a76a3cd4 6288 inode_set_bytes(inode, 0);
9cc97d64 6289
c2050a45 6290 inode->i_mtime = current_time(inode);
9cc97d64 6291 inode->i_atime = inode->i_mtime;
6292 inode->i_ctime = inode->i_mtime;
6293 BTRFS_I(inode)->i_otime = inode->i_mtime;
6294
5f39d397
CM
6295 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6296 struct btrfs_inode_item);
b159fa28 6297 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6298 sizeof(*inode_item));
e02119d5 6299 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6300
ef3b9af5
FM
6301 if (name) {
6302 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6303 struct btrfs_inode_ref);
6304 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6305 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6306 ptr = (unsigned long)(ref + 1);
6307 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6308 }
9c58309d 6309
5f39d397
CM
6310 btrfs_mark_buffer_dirty(path->nodes[0]);
6311 btrfs_free_path(path);
6312
6cbff00f
CH
6313 btrfs_inherit_iflags(inode, dir);
6314
569254b0 6315 if (S_ISREG(mode)) {
0b246afa 6316 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6317 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6318 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6319 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6320 BTRFS_INODE_NODATASUM;
94272164
CM
6321 }
6322
5d4f98a2 6323 inode_tree_add(inode);
1abe9b8a 6324
6325 trace_btrfs_inode_new(inode);
1973f0fa 6326 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6327
8ea05e3a
AB
6328 btrfs_update_root_times(trans, root);
6329
63541927
FDBM
6330 ret = btrfs_inode_inherit_props(trans, inode, dir);
6331 if (ret)
0b246afa 6332 btrfs_err(fs_info,
63541927 6333 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6334 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6335
39279cc3 6336 return inode;
b0d5d10f
CM
6337
6338fail_unlock:
6339 unlock_new_inode(inode);
5f39d397 6340fail:
ef3b9af5 6341 if (dir && name)
aec7477b 6342 BTRFS_I(dir)->index_cnt--;
5f39d397 6343 btrfs_free_path(path);
09771430 6344 iput(inode);
5f39d397 6345 return ERR_PTR(ret);
39279cc3
CM
6346}
6347
6348static inline u8 btrfs_inode_type(struct inode *inode)
6349{
6350 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6351}
6352
d352ac68
CM
6353/*
6354 * utility function to add 'inode' into 'parent_inode' with
6355 * a give name and a given sequence number.
6356 * if 'add_backref' is true, also insert a backref from the
6357 * inode to the parent directory.
6358 */
e02119d5 6359int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6360 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6361 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6362{
db0a669f 6363 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
4df27c4d 6364 int ret = 0;
39279cc3 6365 struct btrfs_key key;
db0a669f
NB
6366 struct btrfs_root *root = parent_inode->root;
6367 u64 ino = btrfs_ino(inode);
6368 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6369
33345d01 6370 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6371 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6372 } else {
33345d01 6373 key.objectid = ino;
962a298f 6374 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6375 key.offset = 0;
6376 }
6377
33345d01 6378 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
0b246afa
JM
6379 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6380 root->root_key.objectid, parent_ino,
6381 index, name, name_len);
4df27c4d 6382 } else if (add_backref) {
33345d01
LZ
6383 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6384 parent_ino, index);
4df27c4d 6385 }
39279cc3 6386
79787eaa
JM
6387 /* Nothing to clean up yet */
6388 if (ret)
6389 return ret;
4df27c4d 6390
79787eaa
JM
6391 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6392 parent_inode, &key,
db0a669f 6393 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6394 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6395 goto fail_dir_item;
6396 else if (ret) {
66642832 6397 btrfs_abort_transaction(trans, ret);
79787eaa 6398 return ret;
39279cc3 6399 }
79787eaa 6400
db0a669f 6401 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6402 name_len * 2);
db0a669f
NB
6403 inode_inc_iversion(&parent_inode->vfs_inode);
6404 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6405 current_time(&parent_inode->vfs_inode);
6406 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6407 if (ret)
66642832 6408 btrfs_abort_transaction(trans, ret);
39279cc3 6409 return ret;
fe66a05a
CM
6410
6411fail_dir_item:
6412 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6413 u64 local_index;
6414 int err;
0b246afa
JM
6415 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6416 root->root_key.objectid, parent_ino,
6417 &local_index, name, name_len);
fe66a05a
CM
6418
6419 } else if (add_backref) {
6420 u64 local_index;
6421 int err;
6422
6423 err = btrfs_del_inode_ref(trans, root, name, name_len,
6424 ino, parent_ino, &local_index);
6425 }
6426 return ret;
39279cc3
CM
6427}
6428
6429static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6430 struct btrfs_inode *dir, struct dentry *dentry,
6431 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6432{
a1b075d2
JB
6433 int err = btrfs_add_link(trans, dir, inode,
6434 dentry->d_name.name, dentry->d_name.len,
6435 backref, index);
39279cc3
CM
6436 if (err > 0)
6437 err = -EEXIST;
6438 return err;
6439}
6440
618e21d5 6441static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6442 umode_t mode, dev_t rdev)
618e21d5 6443{
2ff7e61e 6444 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6445 struct btrfs_trans_handle *trans;
6446 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6447 struct inode *inode = NULL;
618e21d5
JB
6448 int err;
6449 int drop_inode = 0;
6450 u64 objectid;
00e4e6b3 6451 u64 index = 0;
618e21d5 6452
9ed74f2d
JB
6453 /*
6454 * 2 for inode item and ref
6455 * 2 for dir items
6456 * 1 for xattr if selinux is on
6457 */
a22285a6
YZ
6458 trans = btrfs_start_transaction(root, 5);
6459 if (IS_ERR(trans))
6460 return PTR_ERR(trans);
1832a6d5 6461
581bb050
LZ
6462 err = btrfs_find_free_ino(root, &objectid);
6463 if (err)
6464 goto out_unlock;
6465
aec7477b 6466 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6467 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6468 mode, &index);
7cf96da3
TI
6469 if (IS_ERR(inode)) {
6470 err = PTR_ERR(inode);
618e21d5 6471 goto out_unlock;
7cf96da3 6472 }
618e21d5 6473
ad19db71
CS
6474 /*
6475 * If the active LSM wants to access the inode during
6476 * d_instantiate it needs these. Smack checks to see
6477 * if the filesystem supports xattrs by looking at the
6478 * ops vector.
6479 */
ad19db71 6480 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6481 init_special_inode(inode, inode->i_mode, rdev);
6482
6483 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6484 if (err)
b0d5d10f
CM
6485 goto out_unlock_inode;
6486
cef415af
NB
6487 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6488 0, index);
b0d5d10f
CM
6489 if (err) {
6490 goto out_unlock_inode;
6491 } else {
1b4ab1bb 6492 btrfs_update_inode(trans, root, inode);
b0d5d10f 6493 unlock_new_inode(inode);
08c422c2 6494 d_instantiate(dentry, inode);
618e21d5 6495 }
b0d5d10f 6496
618e21d5 6497out_unlock:
3a45bb20 6498 btrfs_end_transaction(trans);
2ff7e61e
JM
6499 btrfs_balance_delayed_items(fs_info);
6500 btrfs_btree_balance_dirty(fs_info);
618e21d5
JB
6501 if (drop_inode) {
6502 inode_dec_link_count(inode);
6503 iput(inode);
6504 }
618e21d5 6505 return err;
b0d5d10f
CM
6506
6507out_unlock_inode:
6508 drop_inode = 1;
6509 unlock_new_inode(inode);
6510 goto out_unlock;
6511
618e21d5
JB
6512}
6513
39279cc3 6514static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6515 umode_t mode, bool excl)
39279cc3 6516{
2ff7e61e 6517 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6518 struct btrfs_trans_handle *trans;
6519 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6520 struct inode *inode = NULL;
43baa579 6521 int drop_inode_on_err = 0;
a22285a6 6522 int err;
39279cc3 6523 u64 objectid;
00e4e6b3 6524 u64 index = 0;
39279cc3 6525
9ed74f2d
JB
6526 /*
6527 * 2 for inode item and ref
6528 * 2 for dir items
6529 * 1 for xattr if selinux is on
6530 */
a22285a6
YZ
6531 trans = btrfs_start_transaction(root, 5);
6532 if (IS_ERR(trans))
6533 return PTR_ERR(trans);
9ed74f2d 6534
581bb050
LZ
6535 err = btrfs_find_free_ino(root, &objectid);
6536 if (err)
6537 goto out_unlock;
6538
aec7477b 6539 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6540 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6541 mode, &index);
7cf96da3
TI
6542 if (IS_ERR(inode)) {
6543 err = PTR_ERR(inode);
39279cc3 6544 goto out_unlock;
7cf96da3 6545 }
43baa579 6546 drop_inode_on_err = 1;
ad19db71
CS
6547 /*
6548 * If the active LSM wants to access the inode during
6549 * d_instantiate it needs these. Smack checks to see
6550 * if the filesystem supports xattrs by looking at the
6551 * ops vector.
6552 */
6553 inode->i_fop = &btrfs_file_operations;
6554 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6555 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6556
6557 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6558 if (err)
6559 goto out_unlock_inode;
6560
6561 err = btrfs_update_inode(trans, root, inode);
6562 if (err)
6563 goto out_unlock_inode;
ad19db71 6564
cef415af
NB
6565 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6566 0, index);
39279cc3 6567 if (err)
b0d5d10f 6568 goto out_unlock_inode;
43baa579 6569
43baa579 6570 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6571 unlock_new_inode(inode);
43baa579
FB
6572 d_instantiate(dentry, inode);
6573
39279cc3 6574out_unlock:
3a45bb20 6575 btrfs_end_transaction(trans);
43baa579 6576 if (err && drop_inode_on_err) {
39279cc3
CM
6577 inode_dec_link_count(inode);
6578 iput(inode);
6579 }
2ff7e61e
JM
6580 btrfs_balance_delayed_items(fs_info);
6581 btrfs_btree_balance_dirty(fs_info);
39279cc3 6582 return err;
b0d5d10f
CM
6583
6584out_unlock_inode:
6585 unlock_new_inode(inode);
6586 goto out_unlock;
6587
39279cc3
CM
6588}
6589
6590static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6591 struct dentry *dentry)
6592{
271dba45 6593 struct btrfs_trans_handle *trans = NULL;
39279cc3 6594 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6595 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6596 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6597 u64 index;
39279cc3
CM
6598 int err;
6599 int drop_inode = 0;
6600
4a8be425
TH
6601 /* do not allow sys_link's with other subvols of the same device */
6602 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6603 return -EXDEV;
4a8be425 6604
f186373f 6605 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6606 return -EMLINK;
4a8be425 6607
877574e2 6608 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6609 if (err)
6610 goto fail;
6611
a22285a6 6612 /*
7e6b6465 6613 * 2 items for inode and inode ref
a22285a6 6614 * 2 items for dir items
7e6b6465 6615 * 1 item for parent inode
a22285a6 6616 */
7e6b6465 6617 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6618 if (IS_ERR(trans)) {
6619 err = PTR_ERR(trans);
271dba45 6620 trans = NULL;
a22285a6
YZ
6621 goto fail;
6622 }
5f39d397 6623
67de1176
MX
6624 /* There are several dir indexes for this inode, clear the cache. */
6625 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6626 inc_nlink(inode);
0c4d2d95 6627 inode_inc_iversion(inode);
c2050a45 6628 inode->i_ctime = current_time(inode);
7de9c6ee 6629 ihold(inode);
e9976151 6630 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6631
cef415af
NB
6632 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6633 1, index);
5f39d397 6634
a5719521 6635 if (err) {
54aa1f4d 6636 drop_inode = 1;
a5719521 6637 } else {
10d9f309 6638 struct dentry *parent = dentry->d_parent;
a5719521 6639 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6640 if (err)
6641 goto fail;
ef3b9af5
FM
6642 if (inode->i_nlink == 1) {
6643 /*
6644 * If new hard link count is 1, it's a file created
6645 * with open(2) O_TMPFILE flag.
6646 */
3d6ae7bb 6647 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6648 if (err)
6649 goto fail;
6650 }
08c422c2 6651 d_instantiate(dentry, inode);
9ca5fbfb 6652 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
a5719521 6653 }
39279cc3 6654
2ff7e61e 6655 btrfs_balance_delayed_items(fs_info);
1832a6d5 6656fail:
271dba45 6657 if (trans)
3a45bb20 6658 btrfs_end_transaction(trans);
39279cc3
CM
6659 if (drop_inode) {
6660 inode_dec_link_count(inode);
6661 iput(inode);
6662 }
2ff7e61e 6663 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6664 return err;
6665}
6666
18bb1db3 6667static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6668{
2ff7e61e 6669 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6670 struct inode *inode = NULL;
39279cc3
CM
6671 struct btrfs_trans_handle *trans;
6672 struct btrfs_root *root = BTRFS_I(dir)->root;
6673 int err = 0;
6674 int drop_on_err = 0;
b9d86667 6675 u64 objectid = 0;
00e4e6b3 6676 u64 index = 0;
39279cc3 6677
9ed74f2d
JB
6678 /*
6679 * 2 items for inode and ref
6680 * 2 items for dir items
6681 * 1 for xattr if selinux is on
6682 */
a22285a6
YZ
6683 trans = btrfs_start_transaction(root, 5);
6684 if (IS_ERR(trans))
6685 return PTR_ERR(trans);
39279cc3 6686
581bb050
LZ
6687 err = btrfs_find_free_ino(root, &objectid);
6688 if (err)
6689 goto out_fail;
6690
aec7477b 6691 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6692 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6693 S_IFDIR | mode, &index);
39279cc3
CM
6694 if (IS_ERR(inode)) {
6695 err = PTR_ERR(inode);
6696 goto out_fail;
6697 }
5f39d397 6698
39279cc3 6699 drop_on_err = 1;
b0d5d10f
CM
6700 /* these must be set before we unlock the inode */
6701 inode->i_op = &btrfs_dir_inode_operations;
6702 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6703
2a7dba39 6704 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6705 if (err)
b0d5d10f 6706 goto out_fail_inode;
39279cc3 6707
6ef06d27 6708 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6709 err = btrfs_update_inode(trans, root, inode);
6710 if (err)
b0d5d10f 6711 goto out_fail_inode;
5f39d397 6712
db0a669f
NB
6713 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6714 dentry->d_name.name,
6715 dentry->d_name.len, 0, index);
39279cc3 6716 if (err)
b0d5d10f 6717 goto out_fail_inode;
5f39d397 6718
39279cc3 6719 d_instantiate(dentry, inode);
b0d5d10f
CM
6720 /*
6721 * mkdir is special. We're unlocking after we call d_instantiate
6722 * to avoid a race with nfsd calling d_instantiate.
6723 */
6724 unlock_new_inode(inode);
39279cc3 6725 drop_on_err = 0;
39279cc3
CM
6726
6727out_fail:
3a45bb20 6728 btrfs_end_transaction(trans);
c7cfb8a5
WS
6729 if (drop_on_err) {
6730 inode_dec_link_count(inode);
39279cc3 6731 iput(inode);
c7cfb8a5 6732 }
2ff7e61e
JM
6733 btrfs_balance_delayed_items(fs_info);
6734 btrfs_btree_balance_dirty(fs_info);
39279cc3 6735 return err;
b0d5d10f
CM
6736
6737out_fail_inode:
6738 unlock_new_inode(inode);
6739 goto out_fail;
39279cc3
CM
6740}
6741
e6c4efd8
QW
6742/* Find next extent map of a given extent map, caller needs to ensure locks */
6743static struct extent_map *next_extent_map(struct extent_map *em)
6744{
6745 struct rb_node *next;
6746
6747 next = rb_next(&em->rb_node);
6748 if (!next)
6749 return NULL;
6750 return container_of(next, struct extent_map, rb_node);
6751}
6752
6753static struct extent_map *prev_extent_map(struct extent_map *em)
6754{
6755 struct rb_node *prev;
6756
6757 prev = rb_prev(&em->rb_node);
6758 if (!prev)
6759 return NULL;
6760 return container_of(prev, struct extent_map, rb_node);
6761}
6762
d352ac68 6763/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6764 * the existing extent is the nearest extent to map_start,
d352ac68 6765 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6766 * the best fitted new extent into the tree.
d352ac68 6767 */
3b951516
CM
6768static int merge_extent_mapping(struct extent_map_tree *em_tree,
6769 struct extent_map *existing,
e6dcd2dc 6770 struct extent_map *em,
51f395ad 6771 u64 map_start)
3b951516 6772{
e6c4efd8
QW
6773 struct extent_map *prev;
6774 struct extent_map *next;
6775 u64 start;
6776 u64 end;
3b951516 6777 u64 start_diff;
3b951516 6778
e6dcd2dc 6779 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6780
6781 if (existing->start > map_start) {
6782 next = existing;
6783 prev = prev_extent_map(next);
6784 } else {
6785 prev = existing;
6786 next = next_extent_map(prev);
6787 }
6788
6789 start = prev ? extent_map_end(prev) : em->start;
6790 start = max_t(u64, start, em->start);
6791 end = next ? next->start : extent_map_end(em);
6792 end = min_t(u64, end, extent_map_end(em));
6793 start_diff = start - em->start;
6794 em->start = start;
6795 em->len = end - start;
c8b97818
CM
6796 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6797 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6798 em->block_start += start_diff;
c8b97818
CM
6799 em->block_len -= start_diff;
6800 }
09a2a8f9 6801 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6802}
6803
c8b97818 6804static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6805 struct page *page,
c8b97818
CM
6806 size_t pg_offset, u64 extent_offset,
6807 struct btrfs_file_extent_item *item)
6808{
6809 int ret;
6810 struct extent_buffer *leaf = path->nodes[0];
6811 char *tmp;
6812 size_t max_size;
6813 unsigned long inline_size;
6814 unsigned long ptr;
261507a0 6815 int compress_type;
c8b97818
CM
6816
6817 WARN_ON(pg_offset != 0);
261507a0 6818 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6819 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6820 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6821 btrfs_item_nr(path->slots[0]));
c8b97818 6822 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6823 if (!tmp)
6824 return -ENOMEM;
c8b97818
CM
6825 ptr = btrfs_file_extent_inline_start(item);
6826
6827 read_extent_buffer(leaf, tmp, ptr, inline_size);
6828
09cbfeaf 6829 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6830 ret = btrfs_decompress(compress_type, tmp, page,
6831 extent_offset, inline_size, max_size);
e1699d2d
ZB
6832
6833 /*
6834 * decompression code contains a memset to fill in any space between the end
6835 * of the uncompressed data and the end of max_size in case the decompressed
6836 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6837 * the end of an inline extent and the beginning of the next block, so we
6838 * cover that region here.
6839 */
6840
6841 if (max_size + pg_offset < PAGE_SIZE) {
6842 char *map = kmap(page);
6843 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6844 kunmap(page);
6845 }
c8b97818 6846 kfree(tmp);
166ae5a4 6847 return ret;
c8b97818
CM
6848}
6849
d352ac68
CM
6850/*
6851 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6852 * the ugly parts come from merging extents from the disk with the in-ram
6853 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6854 * where the in-ram extents might be locked pending data=ordered completion.
6855 *
6856 * This also copies inline extents directly into the page.
6857 */
fc4f21b1
NB
6858struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6859 struct page *page,
6860 size_t pg_offset, u64 start, u64 len,
6861 int create)
a52d9a80 6862{
fc4f21b1 6863 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
a52d9a80
CM
6864 int ret;
6865 int err = 0;
a52d9a80
CM
6866 u64 extent_start = 0;
6867 u64 extent_end = 0;
fc4f21b1 6868 u64 objectid = btrfs_ino(inode);
a52d9a80 6869 u32 found_type;
f421950f 6870 struct btrfs_path *path = NULL;
fc4f21b1 6871 struct btrfs_root *root = inode->root;
a52d9a80 6872 struct btrfs_file_extent_item *item;
5f39d397
CM
6873 struct extent_buffer *leaf;
6874 struct btrfs_key found_key;
a52d9a80 6875 struct extent_map *em = NULL;
fc4f21b1
NB
6876 struct extent_map_tree *em_tree = &inode->extent_tree;
6877 struct extent_io_tree *io_tree = &inode->io_tree;
a52d9a80 6878 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6879 const bool new_inline = !page || create;
a52d9a80 6880
a52d9a80 6881again:
890871be 6882 read_lock(&em_tree->lock);
d1310b2e 6883 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6884 if (em)
0b246afa 6885 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6886 read_unlock(&em_tree->lock);
d1310b2e 6887
a52d9a80 6888 if (em) {
e1c4b745
CM
6889 if (em->start > start || em->start + em->len <= start)
6890 free_extent_map(em);
6891 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6892 free_extent_map(em);
6893 else
6894 goto out;
a52d9a80 6895 }
172ddd60 6896 em = alloc_extent_map();
a52d9a80 6897 if (!em) {
d1310b2e
CM
6898 err = -ENOMEM;
6899 goto out;
a52d9a80 6900 }
0b246afa 6901 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6902 em->start = EXTENT_MAP_HOLE;
445a6944 6903 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6904 em->len = (u64)-1;
c8b97818 6905 em->block_len = (u64)-1;
f421950f
CM
6906
6907 if (!path) {
6908 path = btrfs_alloc_path();
026fd317
JB
6909 if (!path) {
6910 err = -ENOMEM;
6911 goto out;
6912 }
6913 /*
6914 * Chances are we'll be called again, so go ahead and do
6915 * readahead
6916 */
e4058b54 6917 path->reada = READA_FORWARD;
f421950f
CM
6918 }
6919
179e29e4
CM
6920 ret = btrfs_lookup_file_extent(trans, root, path,
6921 objectid, start, trans != NULL);
a52d9a80
CM
6922 if (ret < 0) {
6923 err = ret;
6924 goto out;
6925 }
6926
6927 if (ret != 0) {
6928 if (path->slots[0] == 0)
6929 goto not_found;
6930 path->slots[0]--;
6931 }
6932
5f39d397
CM
6933 leaf = path->nodes[0];
6934 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6935 struct btrfs_file_extent_item);
a52d9a80 6936 /* are we inside the extent that was found? */
5f39d397 6937 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6938 found_type = found_key.type;
5f39d397 6939 if (found_key.objectid != objectid ||
a52d9a80 6940 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6941 /*
6942 * If we backup past the first extent we want to move forward
6943 * and see if there is an extent in front of us, otherwise we'll
6944 * say there is a hole for our whole search range which can
6945 * cause problems.
6946 */
6947 extent_end = start;
6948 goto next;
a52d9a80
CM
6949 }
6950
5f39d397
CM
6951 found_type = btrfs_file_extent_type(leaf, item);
6952 extent_start = found_key.offset;
d899e052
YZ
6953 if (found_type == BTRFS_FILE_EXTENT_REG ||
6954 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6955 extent_end = extent_start +
db94535d 6956 btrfs_file_extent_num_bytes(leaf, item);
09ed2f16
LB
6957
6958 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6959 extent_start);
9036c102
YZ
6960 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6961 size_t size;
514ac8ad 6962 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
da17066c 6963 extent_end = ALIGN(extent_start + size,
0b246afa 6964 fs_info->sectorsize);
09ed2f16
LB
6965
6966 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6967 path->slots[0],
6968 extent_start);
9036c102 6969 }
25a50341 6970next:
9036c102
YZ
6971 if (start >= extent_end) {
6972 path->slots[0]++;
6973 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6974 ret = btrfs_next_leaf(root, path);
6975 if (ret < 0) {
6976 err = ret;
6977 goto out;
a52d9a80 6978 }
9036c102
YZ
6979 if (ret > 0)
6980 goto not_found;
6981 leaf = path->nodes[0];
a52d9a80 6982 }
9036c102
YZ
6983 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6984 if (found_key.objectid != objectid ||
6985 found_key.type != BTRFS_EXTENT_DATA_KEY)
6986 goto not_found;
6987 if (start + len <= found_key.offset)
6988 goto not_found;
e2eca69d
WS
6989 if (start > found_key.offset)
6990 goto next;
9036c102 6991 em->start = start;
70c8a91c 6992 em->orig_start = start;
9036c102
YZ
6993 em->len = found_key.offset - start;
6994 goto not_found_em;
6995 }
6996
fc4f21b1 6997 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 6998 new_inline, em);
7ffbb598 6999
d899e052
YZ
7000 if (found_type == BTRFS_FILE_EXTENT_REG ||
7001 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
7002 goto insert;
7003 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 7004 unsigned long ptr;
a52d9a80 7005 char *map;
3326d1b0
CM
7006 size_t size;
7007 size_t extent_offset;
7008 size_t copy_size;
a52d9a80 7009
7ffbb598 7010 if (new_inline)
689f9346 7011 goto out;
5f39d397 7012
514ac8ad 7013 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 7014 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
7015 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7016 size - extent_offset);
3326d1b0 7017 em->start = extent_start + extent_offset;
0b246afa 7018 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 7019 em->orig_block_len = em->len;
70c8a91c 7020 em->orig_start = em->start;
689f9346 7021 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 7022 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
7023 if (btrfs_file_extent_compression(leaf, item) !=
7024 BTRFS_COMPRESS_NONE) {
e40da0e5 7025 ret = uncompress_inline(path, page, pg_offset,
c8b97818 7026 extent_offset, item);
166ae5a4
ZB
7027 if (ret) {
7028 err = ret;
7029 goto out;
7030 }
c8b97818
CM
7031 } else {
7032 map = kmap(page);
7033 read_extent_buffer(leaf, map + pg_offset, ptr,
7034 copy_size);
09cbfeaf 7035 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 7036 memset(map + pg_offset + copy_size, 0,
09cbfeaf 7037 PAGE_SIZE - pg_offset -
93c82d57
CM
7038 copy_size);
7039 }
c8b97818
CM
7040 kunmap(page);
7041 }
179e29e4
CM
7042 flush_dcache_page(page);
7043 } else if (create && PageUptodate(page)) {
6bf7e080 7044 BUG();
179e29e4
CM
7045 if (!trans) {
7046 kunmap(page);
7047 free_extent_map(em);
7048 em = NULL;
ff5714cc 7049
b3b4aa74 7050 btrfs_release_path(path);
7a7eaa40 7051 trans = btrfs_join_transaction(root);
ff5714cc 7052
3612b495
TI
7053 if (IS_ERR(trans))
7054 return ERR_CAST(trans);
179e29e4
CM
7055 goto again;
7056 }
c8b97818 7057 map = kmap(page);
70dec807 7058 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 7059 copy_size);
c8b97818 7060 kunmap(page);
179e29e4 7061 btrfs_mark_buffer_dirty(leaf);
a52d9a80 7062 }
d1310b2e 7063 set_extent_uptodate(io_tree, em->start,
507903b8 7064 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7065 goto insert;
a52d9a80
CM
7066 }
7067not_found:
7068 em->start = start;
70c8a91c 7069 em->orig_start = start;
d1310b2e 7070 em->len = len;
a52d9a80 7071not_found_em:
5f39d397 7072 em->block_start = EXTENT_MAP_HOLE;
9036c102 7073 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 7074insert:
b3b4aa74 7075 btrfs_release_path(path);
d1310b2e 7076 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 7077 btrfs_err(fs_info,
5d163e0e
JM
7078 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7079 em->start, em->len, start, len);
a52d9a80
CM
7080 err = -EIO;
7081 goto out;
7082 }
d1310b2e
CM
7083
7084 err = 0;
890871be 7085 write_lock(&em_tree->lock);
09a2a8f9 7086 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
7087 /* it is possible that someone inserted the extent into the tree
7088 * while we had the lock dropped. It is also possible that
7089 * an overlapping map exists in the tree
7090 */
a52d9a80 7091 if (ret == -EEXIST) {
3b951516 7092 struct extent_map *existing;
e6dcd2dc
CM
7093
7094 ret = 0;
7095
e6c4efd8
QW
7096 existing = search_extent_mapping(em_tree, start, len);
7097 /*
7098 * existing will always be non-NULL, since there must be
7099 * extent causing the -EEXIST.
7100 */
8dff9c85 7101 if (existing->start == em->start &&
8e2bd3b7 7102 extent_map_end(existing) >= extent_map_end(em) &&
8dff9c85
CM
7103 em->block_start == existing->block_start) {
7104 /*
8e2bd3b7
OS
7105 * The existing extent map already encompasses the
7106 * entire extent map we tried to add.
8dff9c85
CM
7107 */
7108 free_extent_map(em);
7109 em = existing;
7110 err = 0;
7111
7112 } else if (start >= extent_map_end(existing) ||
32be3a1a 7113 start <= existing->start) {
e6c4efd8
QW
7114 /*
7115 * The existing extent map is the one nearest to
7116 * the [start, start + len) range which overlaps
7117 */
7118 err = merge_extent_mapping(em_tree, existing,
7119 em, start);
e1c4b745 7120 free_extent_map(existing);
e6c4efd8 7121 if (err) {
3b951516
CM
7122 free_extent_map(em);
7123 em = NULL;
7124 }
7125 } else {
7126 free_extent_map(em);
7127 em = existing;
e6dcd2dc 7128 err = 0;
a52d9a80 7129 }
a52d9a80 7130 }
890871be 7131 write_unlock(&em_tree->lock);
a52d9a80 7132out:
1abe9b8a 7133
fc4f21b1 7134 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 7135
527afb44 7136 btrfs_free_path(path);
a52d9a80 7137 if (trans) {
3a45bb20 7138 ret = btrfs_end_transaction(trans);
d397712b 7139 if (!err)
a52d9a80
CM
7140 err = ret;
7141 }
a52d9a80
CM
7142 if (err) {
7143 free_extent_map(em);
a52d9a80
CM
7144 return ERR_PTR(err);
7145 }
79787eaa 7146 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7147 return em;
7148}
7149
fc4f21b1
NB
7150struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7151 struct page *page,
7152 size_t pg_offset, u64 start, u64 len,
7153 int create)
ec29ed5b
CM
7154{
7155 struct extent_map *em;
7156 struct extent_map *hole_em = NULL;
7157 u64 range_start = start;
7158 u64 end;
7159 u64 found;
7160 u64 found_end;
7161 int err = 0;
7162
7163 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7164 if (IS_ERR(em))
7165 return em;
9986277e
DC
7166 /*
7167 * If our em maps to:
7168 * - a hole or
7169 * - a pre-alloc extent,
7170 * there might actually be delalloc bytes behind it.
7171 */
7172 if (em->block_start != EXTENT_MAP_HOLE &&
7173 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7174 return em;
7175 else
7176 hole_em = em;
ec29ed5b
CM
7177
7178 /* check to see if we've wrapped (len == -1 or similar) */
7179 end = start + len;
7180 if (end < start)
7181 end = (u64)-1;
7182 else
7183 end -= 1;
7184
7185 em = NULL;
7186
7187 /* ok, we didn't find anything, lets look for delalloc */
fc4f21b1 7188 found = count_range_bits(&inode->io_tree, &range_start,
ec29ed5b
CM
7189 end, len, EXTENT_DELALLOC, 1);
7190 found_end = range_start + found;
7191 if (found_end < range_start)
7192 found_end = (u64)-1;
7193
7194 /*
7195 * we didn't find anything useful, return
7196 * the original results from get_extent()
7197 */
7198 if (range_start > end || found_end <= start) {
7199 em = hole_em;
7200 hole_em = NULL;
7201 goto out;
7202 }
7203
7204 /* adjust the range_start to make sure it doesn't
7205 * go backwards from the start they passed in
7206 */
67871254 7207 range_start = max(start, range_start);
ec29ed5b
CM
7208 found = found_end - range_start;
7209
7210 if (found > 0) {
7211 u64 hole_start = start;
7212 u64 hole_len = len;
7213
172ddd60 7214 em = alloc_extent_map();
ec29ed5b
CM
7215 if (!em) {
7216 err = -ENOMEM;
7217 goto out;
7218 }
7219 /*
7220 * when btrfs_get_extent can't find anything it
7221 * returns one huge hole
7222 *
7223 * make sure what it found really fits our range, and
7224 * adjust to make sure it is based on the start from
7225 * the caller
7226 */
7227 if (hole_em) {
7228 u64 calc_end = extent_map_end(hole_em);
7229
7230 if (calc_end <= start || (hole_em->start > end)) {
7231 free_extent_map(hole_em);
7232 hole_em = NULL;
7233 } else {
7234 hole_start = max(hole_em->start, start);
7235 hole_len = calc_end - hole_start;
7236 }
7237 }
7238 em->bdev = NULL;
7239 if (hole_em && range_start > hole_start) {
7240 /* our hole starts before our delalloc, so we
7241 * have to return just the parts of the hole
7242 * that go until the delalloc starts
7243 */
7244 em->len = min(hole_len,
7245 range_start - hole_start);
7246 em->start = hole_start;
7247 em->orig_start = hole_start;
7248 /*
7249 * don't adjust block start at all,
7250 * it is fixed at EXTENT_MAP_HOLE
7251 */
7252 em->block_start = hole_em->block_start;
7253 em->block_len = hole_len;
f9e4fb53
LB
7254 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7255 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7256 } else {
7257 em->start = range_start;
7258 em->len = found;
7259 em->orig_start = range_start;
7260 em->block_start = EXTENT_MAP_DELALLOC;
7261 em->block_len = found;
7262 }
7263 } else if (hole_em) {
7264 return hole_em;
7265 }
7266out:
7267
7268 free_extent_map(hole_em);
7269 if (err) {
7270 free_extent_map(em);
7271 return ERR_PTR(err);
7272 }
7273 return em;
7274}
7275
5f9a8a51
FM
7276static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7277 const u64 start,
7278 const u64 len,
7279 const u64 orig_start,
7280 const u64 block_start,
7281 const u64 block_len,
7282 const u64 orig_block_len,
7283 const u64 ram_bytes,
7284 const int type)
7285{
7286 struct extent_map *em = NULL;
7287 int ret;
7288
5f9a8a51 7289 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7290 em = create_io_em(inode, start, len, orig_start,
7291 block_start, block_len, orig_block_len,
7292 ram_bytes,
7293 BTRFS_COMPRESS_NONE, /* compress_type */
7294 type);
5f9a8a51
FM
7295 if (IS_ERR(em))
7296 goto out;
7297 }
7298 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7299 len, block_len, type);
7300 if (ret) {
7301 if (em) {
7302 free_extent_map(em);
dcdbc059 7303 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7304 start + len - 1, 0);
7305 }
7306 em = ERR_PTR(ret);
7307 }
7308 out:
5f9a8a51
FM
7309
7310 return em;
7311}
7312
4b46fce2
JB
7313static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7314 u64 start, u64 len)
7315{
0b246afa 7316 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7317 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7318 struct extent_map *em;
4b46fce2
JB
7319 struct btrfs_key ins;
7320 u64 alloc_hint;
7321 int ret;
4b46fce2 7322
4b46fce2 7323 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7324 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7325 0, alloc_hint, &ins, 1, 1);
00361589
JB
7326 if (ret)
7327 return ERR_PTR(ret);
4b46fce2 7328
5f9a8a51
FM
7329 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7330 ins.objectid, ins.offset, ins.offset,
6288d6ea 7331 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7332 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7333 if (IS_ERR(em))
2ff7e61e
JM
7334 btrfs_free_reserved_extent(fs_info, ins.objectid,
7335 ins.offset, 1);
de0ee0ed 7336
4b46fce2
JB
7337 return em;
7338}
7339
46bfbb5c
CM
7340/*
7341 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7342 * block must be cow'd
7343 */
00361589 7344noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7345 u64 *orig_start, u64 *orig_block_len,
7346 u64 *ram_bytes)
46bfbb5c 7347{
2ff7e61e 7348 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7349 struct btrfs_path *path;
7350 int ret;
7351 struct extent_buffer *leaf;
7352 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7353 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7354 struct btrfs_file_extent_item *fi;
7355 struct btrfs_key key;
7356 u64 disk_bytenr;
7357 u64 backref_offset;
7358 u64 extent_end;
7359 u64 num_bytes;
7360 int slot;
7361 int found_type;
7ee9e440 7362 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7363
46bfbb5c
CM
7364 path = btrfs_alloc_path();
7365 if (!path)
7366 return -ENOMEM;
7367
f85b7379
DS
7368 ret = btrfs_lookup_file_extent(NULL, root, path,
7369 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7370 if (ret < 0)
7371 goto out;
7372
7373 slot = path->slots[0];
7374 if (ret == 1) {
7375 if (slot == 0) {
7376 /* can't find the item, must cow */
7377 ret = 0;
7378 goto out;
7379 }
7380 slot--;
7381 }
7382 ret = 0;
7383 leaf = path->nodes[0];
7384 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7385 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7386 key.type != BTRFS_EXTENT_DATA_KEY) {
7387 /* not our file or wrong item type, must cow */
7388 goto out;
7389 }
7390
7391 if (key.offset > offset) {
7392 /* Wrong offset, must cow */
7393 goto out;
7394 }
7395
7396 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7397 found_type = btrfs_file_extent_type(leaf, fi);
7398 if (found_type != BTRFS_FILE_EXTENT_REG &&
7399 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7400 /* not a regular extent, must cow */
7401 goto out;
7402 }
7ee9e440
JB
7403
7404 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7405 goto out;
7406
e77751aa
MX
7407 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7408 if (extent_end <= offset)
7409 goto out;
7410
46bfbb5c 7411 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7412 if (disk_bytenr == 0)
7413 goto out;
7414
7415 if (btrfs_file_extent_compression(leaf, fi) ||
7416 btrfs_file_extent_encryption(leaf, fi) ||
7417 btrfs_file_extent_other_encoding(leaf, fi))
7418 goto out;
7419
46bfbb5c
CM
7420 backref_offset = btrfs_file_extent_offset(leaf, fi);
7421
7ee9e440
JB
7422 if (orig_start) {
7423 *orig_start = key.offset - backref_offset;
7424 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7425 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7426 }
eb384b55 7427
2ff7e61e 7428 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7429 goto out;
7b2b7085
MX
7430
7431 num_bytes = min(offset + *len, extent_end) - offset;
7432 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7433 u64 range_end;
7434
da17066c
JM
7435 range_end = round_up(offset + num_bytes,
7436 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7437 ret = test_range_bit(io_tree, offset, range_end,
7438 EXTENT_DELALLOC, 0, NULL);
7439 if (ret) {
7440 ret = -EAGAIN;
7441 goto out;
7442 }
7443 }
7444
1bda19eb 7445 btrfs_release_path(path);
46bfbb5c
CM
7446
7447 /*
7448 * look for other files referencing this extent, if we
7449 * find any we must cow
7450 */
00361589 7451
e4c3b2dc 7452 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7453 key.offset - backref_offset, disk_bytenr);
00361589
JB
7454 if (ret) {
7455 ret = 0;
7456 goto out;
7457 }
46bfbb5c
CM
7458
7459 /*
7460 * adjust disk_bytenr and num_bytes to cover just the bytes
7461 * in this extent we are about to write. If there
7462 * are any csums in that range we have to cow in order
7463 * to keep the csums correct
7464 */
7465 disk_bytenr += backref_offset;
7466 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7467 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7468 goto out;
46bfbb5c
CM
7469 /*
7470 * all of the above have passed, it is safe to overwrite this extent
7471 * without cow
7472 */
eb384b55 7473 *len = num_bytes;
46bfbb5c
CM
7474 ret = 1;
7475out:
7476 btrfs_free_path(path);
7477 return ret;
7478}
7479
fc4adbff
AG
7480bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7481{
7482 struct radix_tree_root *root = &inode->i_mapping->page_tree;
e03733da 7483 bool found = false;
fc4adbff
AG
7484 void **pagep = NULL;
7485 struct page *page = NULL;
cc2b702c
DS
7486 unsigned long start_idx;
7487 unsigned long end_idx;
fc4adbff 7488
09cbfeaf 7489 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7490
7491 /*
7492 * end is the last byte in the last page. end == start is legal
7493 */
09cbfeaf 7494 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7495
7496 rcu_read_lock();
7497
7498 /* Most of the code in this while loop is lifted from
7499 * find_get_page. It's been modified to begin searching from a
7500 * page and return just the first page found in that range. If the
7501 * found idx is less than or equal to the end idx then we know that
7502 * a page exists. If no pages are found or if those pages are
7503 * outside of the range then we're fine (yay!) */
7504 while (page == NULL &&
7505 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7506 page = radix_tree_deref_slot(pagep);
7507 if (unlikely(!page))
7508 break;
7509
7510 if (radix_tree_exception(page)) {
809f9016
FM
7511 if (radix_tree_deref_retry(page)) {
7512 page = NULL;
fc4adbff 7513 continue;
809f9016 7514 }
fc4adbff
AG
7515 /*
7516 * Otherwise, shmem/tmpfs must be storing a swap entry
7517 * here as an exceptional entry: so return it without
7518 * attempting to raise page count.
7519 */
6fdef6d4 7520 page = NULL;
fc4adbff
AG
7521 break; /* TODO: Is this relevant for this use case? */
7522 }
7523
91405151
FM
7524 if (!page_cache_get_speculative(page)) {
7525 page = NULL;
fc4adbff 7526 continue;
91405151 7527 }
fc4adbff
AG
7528
7529 /*
7530 * Has the page moved?
7531 * This is part of the lockless pagecache protocol. See
7532 * include/linux/pagemap.h for details.
7533 */
7534 if (unlikely(page != *pagep)) {
09cbfeaf 7535 put_page(page);
fc4adbff
AG
7536 page = NULL;
7537 }
7538 }
7539
7540 if (page) {
7541 if (page->index <= end_idx)
7542 found = true;
09cbfeaf 7543 put_page(page);
fc4adbff
AG
7544 }
7545
7546 rcu_read_unlock();
7547 return found;
7548}
7549
eb838e73
JB
7550static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7551 struct extent_state **cached_state, int writing)
7552{
7553 struct btrfs_ordered_extent *ordered;
7554 int ret = 0;
7555
7556 while (1) {
7557 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7558 cached_state);
eb838e73
JB
7559 /*
7560 * We're concerned with the entire range that we're going to be
01327610 7561 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7562 * extents in this range.
7563 */
a776c6fa 7564 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7565 lockend - lockstart + 1);
7566
7567 /*
7568 * We need to make sure there are no buffered pages in this
7569 * range either, we could have raced between the invalidate in
7570 * generic_file_direct_write and locking the extent. The
7571 * invalidate needs to happen so that reads after a write do not
7572 * get stale data.
7573 */
fc4adbff
AG
7574 if (!ordered &&
7575 (!writing ||
7576 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7577 break;
7578
7579 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7580 cached_state, GFP_NOFS);
7581
7582 if (ordered) {
ade77029
FM
7583 /*
7584 * If we are doing a DIO read and the ordered extent we
7585 * found is for a buffered write, we can not wait for it
7586 * to complete and retry, because if we do so we can
7587 * deadlock with concurrent buffered writes on page
7588 * locks. This happens only if our DIO read covers more
7589 * than one extent map, if at this point has already
7590 * created an ordered extent for a previous extent map
7591 * and locked its range in the inode's io tree, and a
7592 * concurrent write against that previous extent map's
7593 * range and this range started (we unlock the ranges
7594 * in the io tree only when the bios complete and
7595 * buffered writes always lock pages before attempting
7596 * to lock range in the io tree).
7597 */
7598 if (writing ||
7599 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7600 btrfs_start_ordered_extent(inode, ordered, 1);
7601 else
7602 ret = -ENOTBLK;
eb838e73
JB
7603 btrfs_put_ordered_extent(ordered);
7604 } else {
eb838e73 7605 /*
b850ae14
FM
7606 * We could trigger writeback for this range (and wait
7607 * for it to complete) and then invalidate the pages for
7608 * this range (through invalidate_inode_pages2_range()),
7609 * but that can lead us to a deadlock with a concurrent
7610 * call to readpages() (a buffered read or a defrag call
7611 * triggered a readahead) on a page lock due to an
7612 * ordered dio extent we created before but did not have
7613 * yet a corresponding bio submitted (whence it can not
7614 * complete), which makes readpages() wait for that
7615 * ordered extent to complete while holding a lock on
7616 * that page.
eb838e73 7617 */
b850ae14 7618 ret = -ENOTBLK;
eb838e73
JB
7619 }
7620
ade77029
FM
7621 if (ret)
7622 break;
7623
eb838e73
JB
7624 cond_resched();
7625 }
7626
7627 return ret;
7628}
7629
6f9994db
LB
7630/* The callers of this must take lock_extent() */
7631static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7632 u64 orig_start, u64 block_start,
7633 u64 block_len, u64 orig_block_len,
7634 u64 ram_bytes, int compress_type,
7635 int type)
69ffb543
JB
7636{
7637 struct extent_map_tree *em_tree;
7638 struct extent_map *em;
7639 struct btrfs_root *root = BTRFS_I(inode)->root;
7640 int ret;
7641
6f9994db
LB
7642 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7643 type == BTRFS_ORDERED_COMPRESSED ||
7644 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7645 type == BTRFS_ORDERED_REGULAR);
6f9994db 7646
69ffb543
JB
7647 em_tree = &BTRFS_I(inode)->extent_tree;
7648 em = alloc_extent_map();
7649 if (!em)
7650 return ERR_PTR(-ENOMEM);
7651
7652 em->start = start;
7653 em->orig_start = orig_start;
7654 em->len = len;
7655 em->block_len = block_len;
7656 em->block_start = block_start;
7657 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7658 em->orig_block_len = orig_block_len;
cc95bef6 7659 em->ram_bytes = ram_bytes;
70c8a91c 7660 em->generation = -1;
69ffb543 7661 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7662 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7663 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7664 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7665 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7666 em->compress_type = compress_type;
7667 }
69ffb543
JB
7668
7669 do {
dcdbc059 7670 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7671 em->start + em->len - 1, 0);
7672 write_lock(&em_tree->lock);
09a2a8f9 7673 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7674 write_unlock(&em_tree->lock);
6f9994db
LB
7675 /*
7676 * The caller has taken lock_extent(), who could race with us
7677 * to add em?
7678 */
69ffb543
JB
7679 } while (ret == -EEXIST);
7680
7681 if (ret) {
7682 free_extent_map(em);
7683 return ERR_PTR(ret);
7684 }
7685
6f9994db 7686 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7687 return em;
7688}
7689
9c9464cc
FM
7690static void adjust_dio_outstanding_extents(struct inode *inode,
7691 struct btrfs_dio_data *dio_data,
7692 const u64 len)
7693{
823bb20a 7694 unsigned num_extents = count_max_extents(len);
9c9464cc 7695
9c9464cc
FM
7696 /*
7697 * If we have an outstanding_extents count still set then we're
7698 * within our reservation, otherwise we need to adjust our inode
7699 * counter appropriately.
7700 */
c2931667 7701 if (dio_data->outstanding_extents >= num_extents) {
9c9464cc
FM
7702 dio_data->outstanding_extents -= num_extents;
7703 } else {
c2931667
LB
7704 /*
7705 * If dio write length has been split due to no large enough
7706 * contiguous space, we need to compensate our inode counter
7707 * appropriately.
7708 */
7709 u64 num_needed = num_extents - dio_data->outstanding_extents;
7710
9c9464cc 7711 spin_lock(&BTRFS_I(inode)->lock);
c2931667 7712 BTRFS_I(inode)->outstanding_extents += num_needed;
9c9464cc
FM
7713 spin_unlock(&BTRFS_I(inode)->lock);
7714 }
7715}
7716
4b46fce2
JB
7717static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7718 struct buffer_head *bh_result, int create)
7719{
0b246afa 7720 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7721 struct extent_map *em;
eb838e73 7722 struct extent_state *cached_state = NULL;
50745b0a 7723 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7724 u64 start = iblock << inode->i_blkbits;
eb838e73 7725 u64 lockstart, lockend;
4b46fce2 7726 u64 len = bh_result->b_size;
eb838e73 7727 int unlock_bits = EXTENT_LOCKED;
0934856d 7728 int ret = 0;
eb838e73 7729
172a5049 7730 if (create)
3266789f 7731 unlock_bits |= EXTENT_DIRTY;
172a5049 7732 else
0b246afa 7733 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7734
c329861d
JB
7735 lockstart = start;
7736 lockend = start + len - 1;
7737
e1cbbfa5
JB
7738 if (current->journal_info) {
7739 /*
7740 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7741 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7742 * confused.
7743 */
50745b0a 7744 dio_data = current->journal_info;
e1cbbfa5
JB
7745 current->journal_info = NULL;
7746 }
7747
eb838e73
JB
7748 /*
7749 * If this errors out it's because we couldn't invalidate pagecache for
7750 * this range and we need to fallback to buffered.
7751 */
9c9464cc
FM
7752 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7753 create)) {
7754 ret = -ENOTBLK;
7755 goto err;
7756 }
eb838e73 7757
fc4f21b1 7758 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7759 if (IS_ERR(em)) {
7760 ret = PTR_ERR(em);
7761 goto unlock_err;
7762 }
4b46fce2
JB
7763
7764 /*
7765 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7766 * io. INLINE is special, and we could probably kludge it in here, but
7767 * it's still buffered so for safety lets just fall back to the generic
7768 * buffered path.
7769 *
7770 * For COMPRESSED we _have_ to read the entire extent in so we can
7771 * decompress it, so there will be buffering required no matter what we
7772 * do, so go ahead and fallback to buffered.
7773 *
01327610 7774 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7775 * to buffered IO. Don't blame me, this is the price we pay for using
7776 * the generic code.
7777 */
7778 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7779 em->block_start == EXTENT_MAP_INLINE) {
7780 free_extent_map(em);
eb838e73
JB
7781 ret = -ENOTBLK;
7782 goto unlock_err;
4b46fce2
JB
7783 }
7784
7785 /* Just a good old fashioned hole, return */
7786 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7787 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7788 free_extent_map(em);
eb838e73 7789 goto unlock_err;
4b46fce2
JB
7790 }
7791
7792 /*
7793 * We don't allocate a new extent in the following cases
7794 *
7795 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7796 * existing extent.
7797 * 2) The extent is marked as PREALLOC. We're good to go here and can
7798 * just use the extent.
7799 *
7800 */
46bfbb5c 7801 if (!create) {
eb838e73
JB
7802 len = min(len, em->len - (start - em->start));
7803 lockstart = start + len;
7804 goto unlock;
46bfbb5c 7805 }
4b46fce2
JB
7806
7807 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7808 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7809 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7810 int type;
eb384b55 7811 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7812
7813 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7814 type = BTRFS_ORDERED_PREALLOC;
7815 else
7816 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7817 len = min(len, em->len - (start - em->start));
4b46fce2 7818 block_start = em->block_start + (start - em->start);
46bfbb5c 7819
00361589 7820 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c 7821 &orig_block_len, &ram_bytes) == 1 &&
0b246afa 7822 btrfs_inc_nocow_writers(fs_info, block_start)) {
5f9a8a51 7823 struct extent_map *em2;
0b901916 7824
5f9a8a51
FM
7825 em2 = btrfs_create_dio_extent(inode, start, len,
7826 orig_start, block_start,
7827 len, orig_block_len,
7828 ram_bytes, type);
0b246afa 7829 btrfs_dec_nocow_writers(fs_info, block_start);
69ffb543
JB
7830 if (type == BTRFS_ORDERED_PREALLOC) {
7831 free_extent_map(em);
5f9a8a51 7832 em = em2;
69ffb543 7833 }
5f9a8a51
FM
7834 if (em2 && IS_ERR(em2)) {
7835 ret = PTR_ERR(em2);
eb838e73 7836 goto unlock_err;
46bfbb5c 7837 }
18513091
WX
7838 /*
7839 * For inode marked NODATACOW or extent marked PREALLOC,
7840 * use the existing or preallocated extent, so does not
7841 * need to adjust btrfs_space_info's bytes_may_use.
7842 */
7843 btrfs_free_reserved_data_space_noquota(inode,
7844 start, len);
46bfbb5c 7845 goto unlock;
4b46fce2 7846 }
4b46fce2 7847 }
00361589 7848
46bfbb5c
CM
7849 /*
7850 * this will cow the extent, reset the len in case we changed
7851 * it above
7852 */
7853 len = bh_result->b_size;
70c8a91c
JB
7854 free_extent_map(em);
7855 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7856 if (IS_ERR(em)) {
7857 ret = PTR_ERR(em);
7858 goto unlock_err;
7859 }
46bfbb5c
CM
7860 len = min(len, em->len - (start - em->start));
7861unlock:
4b46fce2
JB
7862 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7863 inode->i_blkbits;
46bfbb5c 7864 bh_result->b_size = len;
4b46fce2
JB
7865 bh_result->b_bdev = em->bdev;
7866 set_buffer_mapped(bh_result);
c3473e83
JB
7867 if (create) {
7868 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7869 set_buffer_new(bh_result);
7870
7871 /*
7872 * Need to update the i_size under the extent lock so buffered
7873 * readers will get the updated i_size when we unlock.
7874 */
4aaedfb0 7875 if (!dio_data->overwrite && start + len > i_size_read(inode))
c3473e83 7876 i_size_write(inode, start + len);
0934856d 7877
9c9464cc 7878 adjust_dio_outstanding_extents(inode, dio_data, len);
50745b0a 7879 WARN_ON(dio_data->reserve < len);
7880 dio_data->reserve -= len;
f28a4928 7881 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7882 current->journal_info = dio_data;
c3473e83 7883 }
4b46fce2 7884
eb838e73
JB
7885 /*
7886 * In the case of write we need to clear and unlock the entire range,
7887 * in the case of read we need to unlock only the end area that we
7888 * aren't using if there is any left over space.
7889 */
24c03fa5 7890 if (lockstart < lockend) {
0934856d
MX
7891 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7892 lockend, unlock_bits, 1, 0,
7893 &cached_state, GFP_NOFS);
24c03fa5 7894 } else {
eb838e73 7895 free_extent_state(cached_state);
24c03fa5 7896 }
eb838e73 7897
4b46fce2
JB
7898 free_extent_map(em);
7899
7900 return 0;
eb838e73
JB
7901
7902unlock_err:
eb838e73
JB
7903 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7904 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7905err:
50745b0a 7906 if (dio_data)
7907 current->journal_info = dio_data;
9c9464cc
FM
7908 /*
7909 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7910 * write less data then expected, so that we don't underflow our inode's
7911 * outstanding extents counter.
7912 */
7913 if (create && dio_data)
7914 adjust_dio_outstanding_extents(inode, dio_data, len);
7915
eb838e73 7916 return ret;
4b46fce2
JB
7917}
7918
8b110e39 7919static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
81a75f67 7920 int mirror_num)
8b110e39 7921{
2ff7e61e 7922 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7923 int ret;
7924
37226b21 7925 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39
MX
7926
7927 bio_get(bio);
7928
2ff7e61e 7929 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39
MX
7930 if (ret)
7931 goto err;
7932
2ff7e61e 7933 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
8b110e39
MX
7934err:
7935 bio_put(bio);
7936 return ret;
7937}
7938
7939static int btrfs_check_dio_repairable(struct inode *inode,
7940 struct bio *failed_bio,
7941 struct io_failure_record *failrec,
7942 int failed_mirror)
7943{
ab8d0fc4 7944 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7945 int num_copies;
7946
ab8d0fc4 7947 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7948 if (num_copies == 1) {
7949 /*
7950 * we only have a single copy of the data, so don't bother with
7951 * all the retry and error correction code that follows. no
7952 * matter what the error is, it is very likely to persist.
7953 */
ab8d0fc4
JM
7954 btrfs_debug(fs_info,
7955 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7956 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7957 return 0;
7958 }
7959
7960 failrec->failed_mirror = failed_mirror;
7961 failrec->this_mirror++;
7962 if (failrec->this_mirror == failed_mirror)
7963 failrec->this_mirror++;
7964
7965 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7966 btrfs_debug(fs_info,
7967 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7968 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7969 return 0;
7970 }
7971
7972 return 1;
7973}
7974
7975static int dio_read_error(struct inode *inode, struct bio *failed_bio,
2dabb324
CR
7976 struct page *page, unsigned int pgoff,
7977 u64 start, u64 end, int failed_mirror,
7978 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7979{
7980 struct io_failure_record *failrec;
7870d082
JB
7981 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7982 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8b110e39
MX
7983 struct bio *bio;
7984 int isector;
70fd7614 7985 int read_mode = 0;
17347cec 7986 int segs;
8b110e39
MX
7987 int ret;
7988
37226b21 7989 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7990
7991 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7992 if (ret)
7993 return ret;
7994
7995 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7996 failed_mirror);
7997 if (!ret) {
7870d082 7998 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
7999 return -EIO;
8000 }
8001
17347cec
LB
8002 segs = bio_segments(failed_bio);
8003 if (segs > 1 ||
8004 (failed_bio->bi_io_vec->bv_len > btrfs_inode_sectorsize(inode)))
70fd7614 8005 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
8006
8007 isector = start - btrfs_io_bio(failed_bio)->logical;
8008 isector >>= inode->i_sb->s_blocksize_bits;
8009 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 8010 pgoff, isector, repair_endio, repair_arg);
8b110e39 8011 if (!bio) {
7870d082 8012 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
8013 return -EIO;
8014 }
37226b21 8015 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
8016
8017 btrfs_debug(BTRFS_I(inode)->root->fs_info,
8018 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
8019 read_mode, failrec->this_mirror, failrec->in_validation);
8020
81a75f67 8021 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8b110e39 8022 if (ret) {
7870d082 8023 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
8024 bio_put(bio);
8025 }
8026
8027 return ret;
8028}
8029
8030struct btrfs_retry_complete {
8031 struct completion done;
8032 struct inode *inode;
8033 u64 start;
8034 int uptodate;
8035};
8036
4246a0b6 8037static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
8038{
8039 struct btrfs_retry_complete *done = bio->bi_private;
7870d082 8040 struct inode *inode = done->inode;
8b110e39 8041 struct bio_vec *bvec;
7870d082 8042 struct extent_io_tree *io_tree, *failure_tree;
8b110e39
MX
8043 int i;
8044
4246a0b6 8045 if (bio->bi_error)
8b110e39
MX
8046 goto end;
8047
2dabb324 8048 ASSERT(bio->bi_vcnt == 1);
7870d082
JB
8049 io_tree = &BTRFS_I(inode)->io_tree;
8050 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8051 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 8052
8b110e39
MX
8053 done->uptodate = 1;
8054 bio_for_each_segment_all(bvec, bio, i)
7870d082
JB
8055 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8056 io_tree, done->start, bvec->bv_page,
8057 btrfs_ino(BTRFS_I(inode)), 0);
8b110e39
MX
8058end:
8059 complete(&done->done);
8060 bio_put(bio);
8061}
8062
8063static int __btrfs_correct_data_nocsum(struct inode *inode,
8064 struct btrfs_io_bio *io_bio)
4b46fce2 8065{
2dabb324 8066 struct btrfs_fs_info *fs_info;
17347cec
LB
8067 struct bio_vec bvec;
8068 struct bvec_iter iter;
8b110e39 8069 struct btrfs_retry_complete done;
4b46fce2 8070 u64 start;
2dabb324
CR
8071 unsigned int pgoff;
8072 u32 sectorsize;
8073 int nr_sectors;
c1dc0896 8074 int ret;
629ebf4f 8075 int err = 0;
4b46fce2 8076
2dabb324 8077 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8078 sectorsize = fs_info->sectorsize;
2dabb324 8079
8b110e39
MX
8080 start = io_bio->logical;
8081 done.inode = inode;
17347cec 8082 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8083
17347cec
LB
8084 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8085 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8086 pgoff = bvec.bv_offset;
2dabb324
CR
8087
8088next_block_or_try_again:
8b110e39
MX
8089 done.uptodate = 0;
8090 done.start = start;
8091 init_completion(&done.done);
8092
17347cec 8093 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
8094 pgoff, start, start + sectorsize - 1,
8095 io_bio->mirror_num,
8096 btrfs_retry_endio_nocsum, &done);
629ebf4f
LB
8097 if (ret) {
8098 err = ret;
8099 goto next;
8100 }
8b110e39
MX
8101
8102 wait_for_completion(&done.done);
8103
8104 if (!done.uptodate) {
8105 /* We might have another mirror, so try again */
2dabb324 8106 goto next_block_or_try_again;
8b110e39
MX
8107 }
8108
629ebf4f 8109next:
2dabb324
CR
8110 start += sectorsize;
8111
97bf5a55
LB
8112 nr_sectors--;
8113 if (nr_sectors) {
2dabb324 8114 pgoff += sectorsize;
97bf5a55 8115 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8116 goto next_block_or_try_again;
8117 }
8b110e39
MX
8118 }
8119
629ebf4f 8120 return err;
8b110e39
MX
8121}
8122
4246a0b6 8123static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
8124{
8125 struct btrfs_retry_complete *done = bio->bi_private;
8126 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082
JB
8127 struct extent_io_tree *io_tree, *failure_tree;
8128 struct inode *inode = done->inode;
8b110e39
MX
8129 struct bio_vec *bvec;
8130 int uptodate;
8131 int ret;
8132 int i;
8133
4246a0b6 8134 if (bio->bi_error)
8b110e39
MX
8135 goto end;
8136
8137 uptodate = 1;
2dabb324 8138
2dabb324 8139 ASSERT(bio->bi_vcnt == 1);
2e949b0a 8140 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 8141
7870d082
JB
8142 io_tree = &BTRFS_I(inode)->io_tree;
8143 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8144
8b110e39 8145 bio_for_each_segment_all(bvec, bio, i) {
7870d082
JB
8146 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8147 bvec->bv_offset, done->start,
8148 bvec->bv_len);
8b110e39 8149 if (!ret)
7870d082
JB
8150 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8151 failure_tree, io_tree, done->start,
8152 bvec->bv_page,
8153 btrfs_ino(BTRFS_I(inode)),
8154 bvec->bv_offset);
8b110e39
MX
8155 else
8156 uptodate = 0;
8157 }
8158
8159 done->uptodate = uptodate;
8160end:
8161 complete(&done->done);
8162 bio_put(bio);
8163}
8164
8165static int __btrfs_subio_endio_read(struct inode *inode,
8166 struct btrfs_io_bio *io_bio, int err)
8167{
2dabb324 8168 struct btrfs_fs_info *fs_info;
17347cec
LB
8169 struct bio_vec bvec;
8170 struct bvec_iter iter;
8b110e39
MX
8171 struct btrfs_retry_complete done;
8172 u64 start;
8173 u64 offset = 0;
2dabb324
CR
8174 u32 sectorsize;
8175 int nr_sectors;
8176 unsigned int pgoff;
8177 int csum_pos;
ef7cdac1 8178 bool uptodate = (err == 0);
8b110e39 8179 int ret;
dc380aea 8180
2dabb324 8181 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8182 sectorsize = fs_info->sectorsize;
2dabb324 8183
8b110e39 8184 err = 0;
c1dc0896 8185 start = io_bio->logical;
8b110e39 8186 done.inode = inode;
17347cec 8187 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8188
17347cec
LB
8189 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8190 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
2dabb324 8191
17347cec 8192 pgoff = bvec.bv_offset;
2dabb324 8193next_block:
ef7cdac1
LB
8194 if (uptodate) {
8195 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8196 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8197 bvec.bv_page, pgoff, start, sectorsize);
8198 if (likely(!ret))
8199 goto next;
8200 }
8b110e39
MX
8201try_again:
8202 done.uptodate = 0;
8203 done.start = start;
8204 init_completion(&done.done);
8205
17347cec 8206 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
8207 pgoff, start, start + sectorsize - 1,
8208 io_bio->mirror_num,
8209 btrfs_retry_endio, &done);
8b110e39
MX
8210 if (ret) {
8211 err = ret;
8212 goto next;
8213 }
8214
8215 wait_for_completion(&done.done);
8216
8217 if (!done.uptodate) {
8218 /* We might have another mirror, so try again */
8219 goto try_again;
8220 }
8221next:
2dabb324
CR
8222 offset += sectorsize;
8223 start += sectorsize;
8224
8225 ASSERT(nr_sectors);
8226
97bf5a55
LB
8227 nr_sectors--;
8228 if (nr_sectors) {
2dabb324 8229 pgoff += sectorsize;
97bf5a55 8230 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8231 goto next_block;
8232 }
2c30c71b 8233 }
c1dc0896
MX
8234
8235 return err;
8236}
8237
8b110e39
MX
8238static int btrfs_subio_endio_read(struct inode *inode,
8239 struct btrfs_io_bio *io_bio, int err)
8240{
8241 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8242
8243 if (skip_csum) {
8244 if (unlikely(err))
8245 return __btrfs_correct_data_nocsum(inode, io_bio);
8246 else
8247 return 0;
8248 } else {
8249 return __btrfs_subio_endio_read(inode, io_bio, err);
8250 }
8251}
8252
4246a0b6 8253static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8254{
8255 struct btrfs_dio_private *dip = bio->bi_private;
8256 struct inode *inode = dip->inode;
8257 struct bio *dio_bio;
8258 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 8259 int err = bio->bi_error;
c1dc0896 8260
e3d37fab 8261 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) {
8b110e39 8262 err = btrfs_subio_endio_read(inode, io_bio, err);
e3d37fab
LB
8263 if (!err)
8264 bio->bi_error = 0;
8265 }
c1dc0896 8266
4b46fce2 8267 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8268 dip->logical_offset + dip->bytes - 1);
9be3395b 8269 dio_bio = dip->dio_bio;
4b46fce2 8270
4b46fce2 8271 kfree(dip);
c0da7aa1 8272
1636d1d7 8273 dio_bio->bi_error = bio->bi_error;
4246a0b6 8274 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
8275
8276 if (io_bio->end_io)
8277 io_bio->end_io(io_bio, err);
9be3395b 8278 bio_put(bio);
4b46fce2
JB
8279}
8280
52427260
QW
8281static void __endio_write_update_ordered(struct inode *inode,
8282 const u64 offset, const u64 bytes,
8283 const bool uptodate)
4b46fce2 8284{
0b246afa 8285 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8286 struct btrfs_ordered_extent *ordered = NULL;
52427260
QW
8287 struct btrfs_workqueue *wq;
8288 btrfs_work_func_t func;
14543774
FM
8289 u64 ordered_offset = offset;
8290 u64 ordered_bytes = bytes;
4b46fce2
JB
8291 int ret;
8292
52427260
QW
8293 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8294 wq = fs_info->endio_freespace_worker;
8295 func = btrfs_freespace_write_helper;
8296 } else {
8297 wq = fs_info->endio_write_workers;
8298 func = btrfs_endio_write_helper;
8299 }
8300
163cf09c
CM
8301again:
8302 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8303 &ordered_offset,
4246a0b6 8304 ordered_bytes,
14543774 8305 uptodate);
4b46fce2 8306 if (!ret)
163cf09c 8307 goto out_test;
4b46fce2 8308
52427260
QW
8309 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8310 btrfs_queue_work(wq, &ordered->work);
163cf09c
CM
8311out_test:
8312 /*
8313 * our bio might span multiple ordered extents. If we haven't
8314 * completed the accounting for the whole dio, go back and try again
8315 */
14543774
FM
8316 if (ordered_offset < offset + bytes) {
8317 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8318 ordered = NULL;
163cf09c
CM
8319 goto again;
8320 }
14543774
FM
8321}
8322
8323static void btrfs_endio_direct_write(struct bio *bio)
8324{
8325 struct btrfs_dio_private *dip = bio->bi_private;
8326 struct bio *dio_bio = dip->dio_bio;
8327
52427260
QW
8328 __endio_write_update_ordered(dip->inode, dip->logical_offset,
8329 dip->bytes, !bio->bi_error);
4b46fce2 8330
4b46fce2 8331 kfree(dip);
c0da7aa1 8332
1636d1d7 8333 dio_bio->bi_error = bio->bi_error;
4246a0b6 8334 dio_end_io(dio_bio, bio->bi_error);
9be3395b 8335 bio_put(bio);
4b46fce2
JB
8336}
8337
c6100a4b 8338static int __btrfs_submit_bio_start_direct_io(void *private_data,
eaf25d93
CM
8339 struct bio *bio, int mirror_num,
8340 unsigned long bio_flags, u64 offset)
8341{
c6100a4b 8342 struct inode *inode = private_data;
eaf25d93 8343 int ret;
2ff7e61e 8344 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8345 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8346 return 0;
8347}
8348
4246a0b6 8349static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8350{
8351 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8352 int err = bio->bi_error;
e65e1535 8353
8b110e39
MX
8354 if (err)
8355 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8356 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8357 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8358 bio->bi_opf,
8b110e39
MX
8359 (unsigned long long)bio->bi_iter.bi_sector,
8360 bio->bi_iter.bi_size, err);
8361
8362 if (dip->subio_endio)
8363 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8364
8365 if (err) {
e65e1535
MX
8366 dip->errors = 1;
8367
8368 /*
8369 * before atomic variable goto zero, we must make sure
8370 * dip->errors is perceived to be set.
8371 */
4e857c58 8372 smp_mb__before_atomic();
e65e1535
MX
8373 }
8374
8375 /* if there are more bios still pending for this dio, just exit */
8376 if (!atomic_dec_and_test(&dip->pending_bios))
8377 goto out;
8378
9be3395b 8379 if (dip->errors) {
e65e1535 8380 bio_io_error(dip->orig_bio);
9be3395b 8381 } else {
4246a0b6
CH
8382 dip->dio_bio->bi_error = 0;
8383 bio_endio(dip->orig_bio);
e65e1535
MX
8384 }
8385out:
8386 bio_put(bio);
8387}
8388
2ff7e61e 8389static inline int btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8390 struct btrfs_dio_private *dip,
8391 struct bio *bio,
8392 u64 file_offset)
8393{
8394 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8395 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8396 int ret;
8397
8398 /*
8399 * We load all the csum data we need when we submit
8400 * the first bio to reduce the csum tree search and
8401 * contention.
8402 */
8403 if (dip->logical_offset == file_offset) {
2ff7e61e 8404 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8405 file_offset);
8406 if (ret)
8407 return ret;
8408 }
8409
8410 if (bio == dip->orig_bio)
8411 return 0;
8412
8413 file_offset -= dip->logical_offset;
8414 file_offset >>= inode->i_sb->s_blocksize_bits;
8415 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8416
8417 return 0;
8418}
8419
e65e1535 8420static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
81a75f67 8421 u64 file_offset, int skip_sum,
c329861d 8422 int async_submit)
e65e1535 8423{
0b246afa 8424 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8425 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8426 bool write = bio_op(bio) == REQ_OP_WRITE;
e65e1535
MX
8427 int ret;
8428
b812ce28
JB
8429 if (async_submit)
8430 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8431
e65e1535 8432 bio_get(bio);
5fd02043
JB
8433
8434 if (!write) {
0b246afa 8435 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8436 if (ret)
8437 goto err;
8438 }
e65e1535 8439
1ae39938
JB
8440 if (skip_sum)
8441 goto map;
8442
8443 if (write && async_submit) {
c6100a4b
JB
8444 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8445 file_offset, inode,
0b246afa
JM
8446 __btrfs_submit_bio_start_direct_io,
8447 __btrfs_submit_bio_done);
e65e1535 8448 goto err;
1ae39938
JB
8449 } else if (write) {
8450 /*
8451 * If we aren't doing async submit, calculate the csum of the
8452 * bio now.
8453 */
2ff7e61e 8454 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8455 if (ret)
8456 goto err;
23ea8e5a 8457 } else {
2ff7e61e 8458 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8459 file_offset);
c2db1073
TI
8460 if (ret)
8461 goto err;
8462 }
1ae39938 8463map:
2ff7e61e 8464 ret = btrfs_map_bio(fs_info, bio, 0, async_submit);
e65e1535
MX
8465err:
8466 bio_put(bio);
8467 return ret;
8468}
8469
81a75f67 8470static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
e65e1535
MX
8471 int skip_sum)
8472{
8473 struct inode *inode = dip->inode;
0b246afa 8474 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535
MX
8475 struct bio *bio;
8476 struct bio *orig_bio = dip->orig_bio;
4f024f37 8477 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535 8478 u64 file_offset = dip->logical_offset;
e65e1535 8479 u64 map_length;
1ae39938 8480 int async_submit = 0;
725130ba
LB
8481 u64 submit_len;
8482 int clone_offset = 0;
8483 int clone_len;
5f4dc8fc 8484 int ret;
e65e1535 8485
4f024f37 8486 map_length = orig_bio->bi_iter.bi_size;
725130ba 8487 submit_len = map_length;
0b246afa
JM
8488 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8489 &map_length, NULL, 0);
7a5c3c9b 8490 if (ret)
e65e1535 8491 return -EIO;
facc8a22 8492
725130ba 8493 if (map_length >= submit_len) {
02f57c7a 8494 bio = orig_bio;
c1dc0896 8495 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8496 goto submit;
8497 }
8498
53b381b3 8499 /* async crcs make it difficult to collect full stripe writes. */
1b86826d 8500 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8501 async_submit = 0;
8502 else
8503 async_submit = 1;
8504
725130ba
LB
8505 /* bio split */
8506 ASSERT(map_length <= INT_MAX);
02f57c7a 8507 atomic_inc(&dip->pending_bios);
3c91ee69 8508 do {
725130ba 8509 clone_len = min_t(int, submit_len, map_length);
02f57c7a 8510
725130ba
LB
8511 /*
8512 * This will never fail as it's passing GPF_NOFS and
8513 * the allocation is backed by btrfs_bioset.
8514 */
e477094f 8515 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
725130ba
LB
8516 clone_len);
8517 bio->bi_private = dip;
8518 bio->bi_end_io = btrfs_end_dio_bio;
8519 btrfs_io_bio(bio)->logical = file_offset;
8520
8521 ASSERT(submit_len >= clone_len);
8522 submit_len -= clone_len;
8523 if (submit_len == 0)
8524 break;
e65e1535 8525
725130ba
LB
8526 /*
8527 * Increase the count before we submit the bio so we know
8528 * the end IO handler won't happen before we increase the
8529 * count. Otherwise, the dip might get freed before we're
8530 * done setting it up.
8531 */
8532 atomic_inc(&dip->pending_bios);
e65e1535 8533
725130ba
LB
8534 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
8535 async_submit);
8536 if (ret) {
8537 bio_put(bio);
8538 atomic_dec(&dip->pending_bios);
8539 goto out_err;
8540 }
e65e1535 8541
725130ba
LB
8542 clone_offset += clone_len;
8543 start_sector += clone_len >> 9;
8544 file_offset += clone_len;
5f4dc8fc 8545
725130ba
LB
8546 map_length = submit_len;
8547 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8548 start_sector << 9, &map_length, NULL, 0);
8549 if (ret)
8550 goto out_err;
3c91ee69 8551 } while (submit_len > 0);
e65e1535 8552
02f57c7a 8553submit:
81a75f67 8554 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
c329861d 8555 async_submit);
e65e1535
MX
8556 if (!ret)
8557 return 0;
8558
8559 bio_put(bio);
8560out_err:
8561 dip->errors = 1;
8562 /*
8563 * before atomic variable goto zero, we must
8564 * make sure dip->errors is perceived to be set.
8565 */
4e857c58 8566 smp_mb__before_atomic();
e65e1535
MX
8567 if (atomic_dec_and_test(&dip->pending_bios))
8568 bio_io_error(dip->orig_bio);
8569
8570 /* bio_end_io() will handle error, so we needn't return it */
8571 return 0;
8572}
8573
8a4c1e42
MC
8574static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8575 loff_t file_offset)
4b46fce2 8576{
61de718f 8577 struct btrfs_dio_private *dip = NULL;
3892ac90
LB
8578 struct bio *bio = NULL;
8579 struct btrfs_io_bio *io_bio;
4b46fce2 8580 int skip_sum;
8a4c1e42 8581 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8582 int ret = 0;
8583
8584 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8585
8b6c1d56 8586 bio = btrfs_bio_clone(dio_bio);
9be3395b 8587
c1dc0896 8588 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8589 if (!dip) {
8590 ret = -ENOMEM;
61de718f 8591 goto free_ordered;
4b46fce2 8592 }
4b46fce2 8593
9be3395b 8594 dip->private = dio_bio->bi_private;
4b46fce2
JB
8595 dip->inode = inode;
8596 dip->logical_offset = file_offset;
4f024f37
KO
8597 dip->bytes = dio_bio->bi_iter.bi_size;
8598 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
3892ac90
LB
8599 bio->bi_private = dip;
8600 dip->orig_bio = bio;
9be3395b 8601 dip->dio_bio = dio_bio;
e65e1535 8602 atomic_set(&dip->pending_bios, 0);
3892ac90
LB
8603 io_bio = btrfs_io_bio(bio);
8604 io_bio->logical = file_offset;
4b46fce2 8605
c1dc0896 8606 if (write) {
3892ac90 8607 bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8608 } else {
3892ac90 8609 bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8610 dip->subio_endio = btrfs_subio_endio_read;
8611 }
4b46fce2 8612
f28a4928
FM
8613 /*
8614 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8615 * even if we fail to submit a bio, because in such case we do the
8616 * corresponding error handling below and it must not be done a second
8617 * time by btrfs_direct_IO().
8618 */
8619 if (write) {
8620 struct btrfs_dio_data *dio_data = current->journal_info;
8621
8622 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8623 dip->bytes;
8624 dio_data->unsubmitted_oe_range_start =
8625 dio_data->unsubmitted_oe_range_end;
8626 }
8627
81a75f67 8628 ret = btrfs_submit_direct_hook(dip, skip_sum);
e65e1535 8629 if (!ret)
eaf25d93 8630 return;
9be3395b 8631
3892ac90
LB
8632 if (io_bio->end_io)
8633 io_bio->end_io(io_bio, ret);
9be3395b 8634
4b46fce2
JB
8635free_ordered:
8636 /*
61de718f
FM
8637 * If we arrived here it means either we failed to submit the dip
8638 * or we either failed to clone the dio_bio or failed to allocate the
8639 * dip. If we cloned the dio_bio and allocated the dip, we can just
8640 * call bio_endio against our io_bio so that we get proper resource
8641 * cleanup if we fail to submit the dip, otherwise, we must do the
8642 * same as btrfs_endio_direct_[write|read] because we can't call these
8643 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8644 */
3892ac90 8645 if (bio && dip) {
054ec2f6 8646 bio_io_error(bio);
61de718f 8647 /*
3892ac90 8648 * The end io callbacks free our dip, do the final put on bio
61de718f
FM
8649 * and all the cleanup and final put for dio_bio (through
8650 * dio_end_io()).
8651 */
8652 dip = NULL;
3892ac90 8653 bio = NULL;
61de718f 8654 } else {
14543774 8655 if (write)
52427260 8656 __endio_write_update_ordered(inode,
14543774
FM
8657 file_offset,
8658 dio_bio->bi_iter.bi_size,
52427260 8659 false);
14543774 8660 else
61de718f
FM
8661 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8662 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8663
4246a0b6 8664 dio_bio->bi_error = -EIO;
61de718f
FM
8665 /*
8666 * Releases and cleans up our dio_bio, no need to bio_put()
8667 * nor bio_endio()/bio_io_error() against dio_bio.
8668 */
8669 dio_end_io(dio_bio, ret);
4b46fce2 8670 }
3892ac90
LB
8671 if (bio)
8672 bio_put(bio);
61de718f 8673 kfree(dip);
4b46fce2
JB
8674}
8675
2ff7e61e
JM
8676static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8677 struct kiocb *iocb,
8678 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8679{
8680 int seg;
a1b75f7d 8681 int i;
0b246afa 8682 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8683 ssize_t retval = -EINVAL;
5a5f79b5
CM
8684
8685 if (offset & blocksize_mask)
8686 goto out;
8687
28060d5d
AV
8688 if (iov_iter_alignment(iter) & blocksize_mask)
8689 goto out;
a1b75f7d 8690
28060d5d 8691 /* If this is a write we don't need to check anymore */
cd27e455 8692 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8693 return 0;
8694 /*
8695 * Check to make sure we don't have duplicate iov_base's in this
8696 * iovec, if so return EINVAL, otherwise we'll get csum errors
8697 * when reading back.
8698 */
8699 for (seg = 0; seg < iter->nr_segs; seg++) {
8700 for (i = seg + 1; i < iter->nr_segs; i++) {
8701 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8702 goto out;
8703 }
5a5f79b5
CM
8704 }
8705 retval = 0;
8706out:
8707 return retval;
8708}
eb838e73 8709
c8b8e32d 8710static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8711{
4b46fce2
JB
8712 struct file *file = iocb->ki_filp;
8713 struct inode *inode = file->f_mapping->host;
0b246afa 8714 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8715 struct btrfs_dio_data dio_data = { 0 };
c8b8e32d 8716 loff_t offset = iocb->ki_pos;
0934856d 8717 size_t count = 0;
2e60a51e 8718 int flags = 0;
38851cc1
MX
8719 bool wakeup = true;
8720 bool relock = false;
0934856d 8721 ssize_t ret;
4b46fce2 8722
2ff7e61e 8723 if (check_direct_IO(fs_info, iocb, iter, offset))
5a5f79b5 8724 return 0;
3f7c579c 8725
fe0f07d0 8726 inode_dio_begin(inode);
4e857c58 8727 smp_mb__after_atomic();
38851cc1 8728
0e267c44 8729 /*
41bd9ca4
MX
8730 * The generic stuff only does filemap_write_and_wait_range, which
8731 * isn't enough if we've written compressed pages to this area, so
8732 * we need to flush the dirty pages again to make absolutely sure
8733 * that any outstanding dirty pages are on disk.
0e267c44 8734 */
a6cbcd4a 8735 count = iov_iter_count(iter);
41bd9ca4
MX
8736 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8737 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8738 filemap_fdatawrite_range(inode->i_mapping, offset,
8739 offset + count - 1);
0e267c44 8740
6f673763 8741 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8742 /*
8743 * If the write DIO is beyond the EOF, we need update
8744 * the isize, but it is protected by i_mutex. So we can
8745 * not unlock the i_mutex at this case.
8746 */
8747 if (offset + count <= inode->i_size) {
4aaedfb0 8748 dio_data.overwrite = 1;
5955102c 8749 inode_unlock(inode);
38851cc1
MX
8750 relock = true;
8751 }
7cf5b976 8752 ret = btrfs_delalloc_reserve_space(inode, offset, count);
0934856d 8753 if (ret)
38851cc1 8754 goto out;
823bb20a 8755 dio_data.outstanding_extents = count_max_extents(count);
e1cbbfa5
JB
8756
8757 /*
8758 * We need to know how many extents we reserved so that we can
8759 * do the accounting properly if we go over the number we
8760 * originally calculated. Abuse current->journal_info for this.
8761 */
da17066c 8762 dio_data.reserve = round_up(count,
0b246afa 8763 fs_info->sectorsize);
f28a4928
FM
8764 dio_data.unsubmitted_oe_range_start = (u64)offset;
8765 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8766 current->journal_info = &dio_data;
97dcdea0 8767 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8768 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8769 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8770 inode_dio_end(inode);
38851cc1
MX
8771 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8772 wakeup = false;
0934856d
MX
8773 }
8774
17f8c842 8775 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8776 fs_info->fs_devices->latest_bdev,
c8b8e32d 8777 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8778 btrfs_submit_direct, flags);
6f673763 8779 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8780 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8781 current->journal_info = NULL;
ddba1bfc 8782 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8783 if (dio_data.reserve)
7cf5b976
QW
8784 btrfs_delalloc_release_space(inode, offset,
8785 dio_data.reserve);
f28a4928
FM
8786 /*
8787 * On error we might have left some ordered extents
8788 * without submitting corresponding bios for them, so
8789 * cleanup them up to avoid other tasks getting them
8790 * and waiting for them to complete forever.
8791 */
8792 if (dio_data.unsubmitted_oe_range_start <
8793 dio_data.unsubmitted_oe_range_end)
52427260 8794 __endio_write_update_ordered(inode,
f28a4928
FM
8795 dio_data.unsubmitted_oe_range_start,
8796 dio_data.unsubmitted_oe_range_end -
8797 dio_data.unsubmitted_oe_range_start,
52427260 8798 false);
ddba1bfc 8799 } else if (ret >= 0 && (size_t)ret < count)
7cf5b976
QW
8800 btrfs_delalloc_release_space(inode, offset,
8801 count - (size_t)ret);
0934856d 8802 }
38851cc1 8803out:
2e60a51e 8804 if (wakeup)
fe0f07d0 8805 inode_dio_end(inode);
38851cc1 8806 if (relock)
5955102c 8807 inode_lock(inode);
0934856d
MX
8808
8809 return ret;
16432985
CM
8810}
8811
05dadc09
TI
8812#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8813
1506fcc8
YS
8814static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8815 __u64 start, __u64 len)
8816{
05dadc09
TI
8817 int ret;
8818
8819 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8820 if (ret)
8821 return ret;
8822
ec29ed5b 8823 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8824}
8825
a52d9a80 8826int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8827{
d1310b2e
CM
8828 struct extent_io_tree *tree;
8829 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8830 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8831}
1832a6d5 8832
a52d9a80 8833static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8834{
d1310b2e 8835 struct extent_io_tree *tree;
be7bd730
JB
8836 struct inode *inode = page->mapping->host;
8837 int ret;
b888db2b
CM
8838
8839 if (current->flags & PF_MEMALLOC) {
8840 redirty_page_for_writepage(wbc, page);
8841 unlock_page(page);
8842 return 0;
8843 }
be7bd730
JB
8844
8845 /*
8846 * If we are under memory pressure we will call this directly from the
8847 * VM, we need to make sure we have the inode referenced for the ordered
8848 * extent. If not just return like we didn't do anything.
8849 */
8850 if (!igrab(inode)) {
8851 redirty_page_for_writepage(wbc, page);
8852 return AOP_WRITEPAGE_ACTIVATE;
8853 }
d1310b2e 8854 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8855 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8856 btrfs_add_delayed_iput(inode);
8857 return ret;
9ebefb18
CM
8858}
8859
48a3b636
ES
8860static int btrfs_writepages(struct address_space *mapping,
8861 struct writeback_control *wbc)
b293f02e 8862{
d1310b2e 8863 struct extent_io_tree *tree;
771ed689 8864
d1310b2e 8865 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8866 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8867}
8868
3ab2fb5a
CM
8869static int
8870btrfs_readpages(struct file *file, struct address_space *mapping,
8871 struct list_head *pages, unsigned nr_pages)
8872{
d1310b2e
CM
8873 struct extent_io_tree *tree;
8874 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8875 return extent_readpages(tree, mapping, pages, nr_pages,
8876 btrfs_get_extent);
8877}
e6dcd2dc 8878static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8879{
d1310b2e
CM
8880 struct extent_io_tree *tree;
8881 struct extent_map_tree *map;
a52d9a80 8882 int ret;
8c2383c3 8883
d1310b2e
CM
8884 tree = &BTRFS_I(page->mapping->host)->io_tree;
8885 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8886 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8887 if (ret == 1) {
8888 ClearPagePrivate(page);
8889 set_page_private(page, 0);
09cbfeaf 8890 put_page(page);
39279cc3 8891 }
a52d9a80 8892 return ret;
39279cc3
CM
8893}
8894
e6dcd2dc
CM
8895static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8896{
98509cfc
CM
8897 if (PageWriteback(page) || PageDirty(page))
8898 return 0;
3ba7ab22 8899 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8900}
8901
d47992f8
LC
8902static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8903 unsigned int length)
39279cc3 8904{
5fd02043 8905 struct inode *inode = page->mapping->host;
d1310b2e 8906 struct extent_io_tree *tree;
e6dcd2dc 8907 struct btrfs_ordered_extent *ordered;
2ac55d41 8908 struct extent_state *cached_state = NULL;
e6dcd2dc 8909 u64 page_start = page_offset(page);
09cbfeaf 8910 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8911 u64 start;
8912 u64 end;
131e404a 8913 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8914
8b62b72b
CM
8915 /*
8916 * we have the page locked, so new writeback can't start,
8917 * and the dirty bit won't be cleared while we are here.
8918 *
8919 * Wait for IO on this page so that we can safely clear
8920 * the PagePrivate2 bit and do ordered accounting
8921 */
e6dcd2dc 8922 wait_on_page_writeback(page);
8b62b72b 8923
5fd02043 8924 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8925 if (offset) {
8926 btrfs_releasepage(page, GFP_NOFS);
8927 return;
8928 }
131e404a
FDBM
8929
8930 if (!inode_evicting)
ff13db41 8931 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8932again:
8933 start = page_start;
a776c6fa 8934 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8935 page_end - start + 1);
e6dcd2dc 8936 if (ordered) {
dbfdb6d1 8937 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8938 /*
8939 * IO on this page will never be started, so we need
8940 * to account for any ordered extents now
8941 */
131e404a 8942 if (!inode_evicting)
dbfdb6d1 8943 clear_extent_bit(tree, start, end,
131e404a 8944 EXTENT_DIRTY | EXTENT_DELALLOC |
a7e3b975 8945 EXTENT_DELALLOC_NEW |
131e404a
FDBM
8946 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8947 EXTENT_DEFRAG, 1, 0, &cached_state,
8948 GFP_NOFS);
8b62b72b
CM
8949 /*
8950 * whoever cleared the private bit is responsible
8951 * for the finish_ordered_io
8952 */
77cef2ec
JB
8953 if (TestClearPagePrivate2(page)) {
8954 struct btrfs_ordered_inode_tree *tree;
8955 u64 new_len;
8956
8957 tree = &BTRFS_I(inode)->ordered_tree;
8958
8959 spin_lock_irq(&tree->lock);
8960 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8961 new_len = start - ordered->file_offset;
77cef2ec
JB
8962 if (new_len < ordered->truncated_len)
8963 ordered->truncated_len = new_len;
8964 spin_unlock_irq(&tree->lock);
8965
8966 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8967 start,
8968 end - start + 1, 1))
77cef2ec 8969 btrfs_finish_ordered_io(ordered);
8b62b72b 8970 }
e6dcd2dc 8971 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8972 if (!inode_evicting) {
8973 cached_state = NULL;
dbfdb6d1 8974 lock_extent_bits(tree, start, end,
131e404a
FDBM
8975 &cached_state);
8976 }
dbfdb6d1
CR
8977
8978 start = end + 1;
8979 if (start < page_end)
8980 goto again;
131e404a
FDBM
8981 }
8982
b9d0b389
QW
8983 /*
8984 * Qgroup reserved space handler
8985 * Page here will be either
8986 * 1) Already written to disk
8987 * In this case, its reserved space is released from data rsv map
8988 * and will be freed by delayed_ref handler finally.
8989 * So even we call qgroup_free_data(), it won't decrease reserved
8990 * space.
8991 * 2) Not written to disk
0b34c261
GR
8992 * This means the reserved space should be freed here. However,
8993 * if a truncate invalidates the page (by clearing PageDirty)
8994 * and the page is accounted for while allocating extent
8995 * in btrfs_check_data_free_space() we let delayed_ref to
8996 * free the entire extent.
b9d0b389 8997 */
0b34c261
GR
8998 if (PageDirty(page))
8999 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
131e404a
FDBM
9000 if (!inode_evicting) {
9001 clear_extent_bit(tree, page_start, page_end,
9002 EXTENT_LOCKED | EXTENT_DIRTY |
a7e3b975
FM
9003 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
9004 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
131e404a
FDBM
9005 &cached_state, GFP_NOFS);
9006
9007 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 9008 }
e6dcd2dc 9009
4a096752 9010 ClearPageChecked(page);
9ad6b7bc 9011 if (PagePrivate(page)) {
9ad6b7bc
CM
9012 ClearPagePrivate(page);
9013 set_page_private(page, 0);
09cbfeaf 9014 put_page(page);
9ad6b7bc 9015 }
39279cc3
CM
9016}
9017
9ebefb18
CM
9018/*
9019 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9020 * called from a page fault handler when a page is first dirtied. Hence we must
9021 * be careful to check for EOF conditions here. We set the page up correctly
9022 * for a written page which means we get ENOSPC checking when writing into
9023 * holes and correct delalloc and unwritten extent mapping on filesystems that
9024 * support these features.
9025 *
9026 * We are not allowed to take the i_mutex here so we have to play games to
9027 * protect against truncate races as the page could now be beyond EOF. Because
9028 * vmtruncate() writes the inode size before removing pages, once we have the
9029 * page lock we can determine safely if the page is beyond EOF. If it is not
9030 * beyond EOF, then the page is guaranteed safe against truncation until we
9031 * unlock the page.
9032 */
11bac800 9033int btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 9034{
c2ec175c 9035 struct page *page = vmf->page;
11bac800 9036 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 9037 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
9038 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9039 struct btrfs_ordered_extent *ordered;
2ac55d41 9040 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
9041 char *kaddr;
9042 unsigned long zero_start;
9ebefb18 9043 loff_t size;
1832a6d5 9044 int ret;
9998eb70 9045 int reserved = 0;
d0b7da88 9046 u64 reserved_space;
a52d9a80 9047 u64 page_start;
e6dcd2dc 9048 u64 page_end;
d0b7da88
CR
9049 u64 end;
9050
09cbfeaf 9051 reserved_space = PAGE_SIZE;
9ebefb18 9052
b2b5ef5c 9053 sb_start_pagefault(inode->i_sb);
df480633 9054 page_start = page_offset(page);
09cbfeaf 9055 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 9056 end = page_end;
df480633 9057
d0b7da88
CR
9058 /*
9059 * Reserving delalloc space after obtaining the page lock can lead to
9060 * deadlock. For example, if a dirty page is locked by this function
9061 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9062 * dirty page write out, then the btrfs_writepage() function could
9063 * end up waiting indefinitely to get a lock on the page currently
9064 * being processed by btrfs_page_mkwrite() function.
9065 */
7cf5b976 9066 ret = btrfs_delalloc_reserve_space(inode, page_start,
d0b7da88 9067 reserved_space);
9998eb70 9068 if (!ret) {
11bac800 9069 ret = file_update_time(vmf->vma->vm_file);
9998eb70
CM
9070 reserved = 1;
9071 }
56a76f82
NP
9072 if (ret) {
9073 if (ret == -ENOMEM)
9074 ret = VM_FAULT_OOM;
9075 else /* -ENOSPC, -EIO, etc */
9076 ret = VM_FAULT_SIGBUS;
9998eb70
CM
9077 if (reserved)
9078 goto out;
9079 goto out_noreserve;
56a76f82 9080 }
1832a6d5 9081
56a76f82 9082 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 9083again:
9ebefb18 9084 lock_page(page);
9ebefb18 9085 size = i_size_read(inode);
a52d9a80 9086
9ebefb18 9087 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 9088 (page_start >= size)) {
9ebefb18
CM
9089 /* page got truncated out from underneath us */
9090 goto out_unlock;
9091 }
e6dcd2dc
CM
9092 wait_on_page_writeback(page);
9093
ff13db41 9094 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
9095 set_page_extent_mapped(page);
9096
eb84ae03
CM
9097 /*
9098 * we can't set the delalloc bits if there are pending ordered
9099 * extents. Drop our locks and wait for them to finish
9100 */
a776c6fa
NB
9101 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9102 PAGE_SIZE);
e6dcd2dc 9103 if (ordered) {
2ac55d41
JB
9104 unlock_extent_cached(io_tree, page_start, page_end,
9105 &cached_state, GFP_NOFS);
e6dcd2dc 9106 unlock_page(page);
eb84ae03 9107 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
9108 btrfs_put_ordered_extent(ordered);
9109 goto again;
9110 }
9111
09cbfeaf 9112 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 9113 reserved_space = round_up(size - page_start,
0b246afa 9114 fs_info->sectorsize);
09cbfeaf 9115 if (reserved_space < PAGE_SIZE) {
d0b7da88
CR
9116 end = page_start + reserved_space - 1;
9117 spin_lock(&BTRFS_I(inode)->lock);
9118 BTRFS_I(inode)->outstanding_extents++;
9119 spin_unlock(&BTRFS_I(inode)->lock);
9120 btrfs_delalloc_release_space(inode, page_start,
09cbfeaf 9121 PAGE_SIZE - reserved_space);
d0b7da88
CR
9122 }
9123 }
9124
fbf19087 9125 /*
5416034f
LB
9126 * page_mkwrite gets called when the page is firstly dirtied after it's
9127 * faulted in, but write(2) could also dirty a page and set delalloc
9128 * bits, thus in this case for space account reason, we still need to
9129 * clear any delalloc bits within this page range since we have to
9130 * reserve data&meta space before lock_page() (see above comments).
fbf19087 9131 */
d0b7da88 9132 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
9133 EXTENT_DIRTY | EXTENT_DELALLOC |
9134 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 9135 0, 0, &cached_state, GFP_NOFS);
fbf19087 9136
d0b7da88 9137 ret = btrfs_set_extent_delalloc(inode, page_start, end,
ba8b04c1 9138 &cached_state, 0);
9ed74f2d 9139 if (ret) {
2ac55d41
JB
9140 unlock_extent_cached(io_tree, page_start, page_end,
9141 &cached_state, GFP_NOFS);
9ed74f2d
JB
9142 ret = VM_FAULT_SIGBUS;
9143 goto out_unlock;
9144 }
e6dcd2dc 9145 ret = 0;
9ebefb18
CM
9146
9147 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9148 if (page_start + PAGE_SIZE > size)
9149 zero_start = size & ~PAGE_MASK;
9ebefb18 9150 else
09cbfeaf 9151 zero_start = PAGE_SIZE;
9ebefb18 9152
09cbfeaf 9153 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9154 kaddr = kmap(page);
09cbfeaf 9155 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9156 flush_dcache_page(page);
9157 kunmap(page);
9158 }
247e743c 9159 ClearPageChecked(page);
e6dcd2dc 9160 set_page_dirty(page);
50a9b214 9161 SetPageUptodate(page);
5a3f23d5 9162
0b246afa 9163 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 9164 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9165 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9166
2ac55d41 9167 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
9168
9169out_unlock:
b2b5ef5c
JK
9170 if (!ret) {
9171 sb_end_pagefault(inode->i_sb);
50a9b214 9172 return VM_FAULT_LOCKED;
b2b5ef5c 9173 }
9ebefb18 9174 unlock_page(page);
1832a6d5 9175out:
d0b7da88 9176 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9998eb70 9177out_noreserve:
b2b5ef5c 9178 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
9179 return ret;
9180}
9181
a41ad394 9182static int btrfs_truncate(struct inode *inode)
39279cc3 9183{
0b246afa 9184 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 9185 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9186 struct btrfs_block_rsv *rsv;
a71754fc 9187 int ret = 0;
3893e33b 9188 int err = 0;
39279cc3 9189 struct btrfs_trans_handle *trans;
0b246afa
JM
9190 u64 mask = fs_info->sectorsize - 1;
9191 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 9192
0ef8b726
JB
9193 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9194 (u64)-1);
9195 if (ret)
9196 return ret;
39279cc3 9197
fcb80c2a 9198 /*
01327610 9199 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9200 * 3 things going on here
9201 *
9202 * 1) We need to reserve space for our orphan item and the space to
9203 * delete our orphan item. Lord knows we don't want to have a dangling
9204 * orphan item because we didn't reserve space to remove it.
9205 *
9206 * 2) We need to reserve space to update our inode.
9207 *
9208 * 3) We need to have something to cache all the space that is going to
9209 * be free'd up by the truncate operation, but also have some slack
9210 * space reserved in case it uses space during the truncate (thank you
9211 * very much snapshotting).
9212 *
01327610 9213 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9214 * space doing the truncate, and we have no earthly idea how much space
01327610 9215 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9216 * doesn't end up using space reserved for updating the inode or
9217 * removing the orphan item. We also need to be able to stop the
9218 * transaction and start a new one, which means we need to be able to
9219 * update the inode several times, and we have no idea of knowing how
9220 * many times that will be, so we can't just reserve 1 item for the
01327610 9221 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9222 * Then there is the orphan item, which does indeed need to be held on
9223 * to for the whole operation, and we need nobody to touch this reserved
9224 * space except the orphan code.
9225 *
9226 * So that leaves us with
9227 *
9228 * 1) root->orphan_block_rsv - for the orphan deletion.
9229 * 2) rsv - for the truncate reservation, which we will steal from the
9230 * transaction reservation.
9231 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9232 * updating the inode.
9233 */
2ff7e61e 9234 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9235 if (!rsv)
9236 return -ENOMEM;
4a338542 9237 rsv->size = min_size;
ca7e70f5 9238 rsv->failfast = 1;
f0cd846e 9239
907cbceb 9240 /*
07127184 9241 * 1 for the truncate slack space
907cbceb
JB
9242 * 1 for updating the inode.
9243 */
f3fe820c 9244 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9245 if (IS_ERR(trans)) {
9246 err = PTR_ERR(trans);
9247 goto out;
9248 }
f0cd846e 9249
907cbceb 9250 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9251 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 9252 min_size, 0);
fcb80c2a 9253 BUG_ON(ret);
f0cd846e 9254
5dc562c5
JB
9255 /*
9256 * So if we truncate and then write and fsync we normally would just
9257 * write the extents that changed, which is a problem if we need to
9258 * first truncate that entire inode. So set this flag so we write out
9259 * all of the extents in the inode to the sync log so we're completely
9260 * safe.
9261 */
9262 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9263 trans->block_rsv = rsv;
907cbceb 9264
8082510e
YZ
9265 while (1) {
9266 ret = btrfs_truncate_inode_items(trans, root, inode,
9267 inode->i_size,
9268 BTRFS_EXTENT_DATA_KEY);
28ed1345 9269 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9270 err = ret;
8082510e 9271 break;
3893e33b 9272 }
39279cc3 9273
0b246afa 9274 trans->block_rsv = &fs_info->trans_block_rsv;
8082510e 9275 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9276 if (ret) {
9277 err = ret;
9278 break;
9279 }
ca7e70f5 9280
3a45bb20 9281 btrfs_end_transaction(trans);
2ff7e61e 9282 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9283
9284 trans = btrfs_start_transaction(root, 2);
9285 if (IS_ERR(trans)) {
9286 ret = err = PTR_ERR(trans);
9287 trans = NULL;
9288 break;
9289 }
9290
47b5d646 9291 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9292 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 9293 rsv, min_size, 0);
ca7e70f5
JB
9294 BUG_ON(ret); /* shouldn't happen */
9295 trans->block_rsv = rsv;
8082510e
YZ
9296 }
9297
9298 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9299 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 9300 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
3893e33b
JB
9301 if (ret)
9302 err = ret;
8082510e
YZ
9303 }
9304
917c16b2 9305 if (trans) {
0b246afa 9306 trans->block_rsv = &fs_info->trans_block_rsv;
917c16b2
CM
9307 ret = btrfs_update_inode(trans, root, inode);
9308 if (ret && !err)
9309 err = ret;
7b128766 9310
3a45bb20 9311 ret = btrfs_end_transaction(trans);
2ff7e61e 9312 btrfs_btree_balance_dirty(fs_info);
917c16b2 9313 }
fcb80c2a 9314out:
2ff7e61e 9315 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9316
3893e33b
JB
9317 if (ret && !err)
9318 err = ret;
a41ad394 9319
3893e33b 9320 return err;
39279cc3
CM
9321}
9322
d352ac68
CM
9323/*
9324 * create a new subvolume directory/inode (helper for the ioctl).
9325 */
d2fb3437 9326int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9327 struct btrfs_root *new_root,
9328 struct btrfs_root *parent_root,
9329 u64 new_dirid)
39279cc3 9330{
39279cc3 9331 struct inode *inode;
76dda93c 9332 int err;
00e4e6b3 9333 u64 index = 0;
39279cc3 9334
12fc9d09
FA
9335 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9336 new_dirid, new_dirid,
9337 S_IFDIR | (~current_umask() & S_IRWXUGO),
9338 &index);
54aa1f4d 9339 if (IS_ERR(inode))
f46b5a66 9340 return PTR_ERR(inode);
39279cc3
CM
9341 inode->i_op = &btrfs_dir_inode_operations;
9342 inode->i_fop = &btrfs_dir_file_operations;
9343
bfe86848 9344 set_nlink(inode, 1);
6ef06d27 9345 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9346 unlock_new_inode(inode);
3b96362c 9347
63541927
FDBM
9348 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9349 if (err)
9350 btrfs_err(new_root->fs_info,
351fd353 9351 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9352 new_root->root_key.objectid, err);
9353
76dda93c 9354 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9355
76dda93c 9356 iput(inode);
ce598979 9357 return err;
39279cc3
CM
9358}
9359
39279cc3
CM
9360struct inode *btrfs_alloc_inode(struct super_block *sb)
9361{
9362 struct btrfs_inode *ei;
2ead6ae7 9363 struct inode *inode;
39279cc3
CM
9364
9365 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9366 if (!ei)
9367 return NULL;
2ead6ae7
YZ
9368
9369 ei->root = NULL;
2ead6ae7 9370 ei->generation = 0;
15ee9bc7 9371 ei->last_trans = 0;
257c62e1 9372 ei->last_sub_trans = 0;
e02119d5 9373 ei->logged_trans = 0;
2ead6ae7 9374 ei->delalloc_bytes = 0;
a7e3b975 9375 ei->new_delalloc_bytes = 0;
47059d93 9376 ei->defrag_bytes = 0;
2ead6ae7
YZ
9377 ei->disk_i_size = 0;
9378 ei->flags = 0;
7709cde3 9379 ei->csum_bytes = 0;
2ead6ae7 9380 ei->index_cnt = (u64)-1;
67de1176 9381 ei->dir_index = 0;
2ead6ae7 9382 ei->last_unlink_trans = 0;
46d8bc34 9383 ei->last_log_commit = 0;
8089fe62 9384 ei->delayed_iput_count = 0;
2ead6ae7 9385
9e0baf60
JB
9386 spin_lock_init(&ei->lock);
9387 ei->outstanding_extents = 0;
9388 ei->reserved_extents = 0;
2ead6ae7 9389
72ac3c0d 9390 ei->runtime_flags = 0;
261507a0 9391 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9392
16cdcec7
MX
9393 ei->delayed_node = NULL;
9394
9cc97d64 9395 ei->i_otime.tv_sec = 0;
9396 ei->i_otime.tv_nsec = 0;
9397
2ead6ae7 9398 inode = &ei->vfs_inode;
a8067e02 9399 extent_map_tree_init(&ei->extent_tree);
c6100a4b
JB
9400 extent_io_tree_init(&ei->io_tree, inode);
9401 extent_io_tree_init(&ei->io_failure_tree, inode);
0b32f4bb
JB
9402 ei->io_tree.track_uptodate = 1;
9403 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9404 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9405 mutex_init(&ei->log_mutex);
f248679e 9406 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9407 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9408 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9409 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9410 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9411 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9412
9413 return inode;
39279cc3
CM
9414}
9415
aaedb55b
JB
9416#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9417void btrfs_test_destroy_inode(struct inode *inode)
9418{
dcdbc059 9419 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9420 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9421}
9422#endif
9423
fa0d7e3d
NP
9424static void btrfs_i_callback(struct rcu_head *head)
9425{
9426 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9427 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9428}
9429
39279cc3
CM
9430void btrfs_destroy_inode(struct inode *inode)
9431{
0b246afa 9432 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9433 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9434 struct btrfs_root *root = BTRFS_I(inode)->root;
9435
b3d9b7a3 9436 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9437 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9438 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9439 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3 9440 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 9441 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 9442 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9443 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9444
a6dbd429
JB
9445 /*
9446 * This can happen where we create an inode, but somebody else also
9447 * created the same inode and we need to destroy the one we already
9448 * created.
9449 */
9450 if (!root)
9451 goto free;
9452
8a35d95f
JB
9453 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9454 &BTRFS_I(inode)->runtime_flags)) {
0b246afa 9455 btrfs_info(fs_info, "inode %llu still on the orphan list",
4a0cc7ca 9456 btrfs_ino(BTRFS_I(inode)));
8a35d95f 9457 atomic_dec(&root->orphan_inodes);
7b128766 9458 }
7b128766 9459
d397712b 9460 while (1) {
e6dcd2dc
CM
9461 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9462 if (!ordered)
9463 break;
9464 else {
0b246afa 9465 btrfs_err(fs_info,
5d163e0e
JM
9466 "found ordered extent %llu %llu on inode cleanup",
9467 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9468 btrfs_remove_ordered_extent(inode, ordered);
9469 btrfs_put_ordered_extent(ordered);
9470 btrfs_put_ordered_extent(ordered);
9471 }
9472 }
56fa9d07 9473 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9474 inode_tree_del(inode);
dcdbc059 9475 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
a6dbd429 9476free:
fa0d7e3d 9477 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9478}
9479
45321ac5 9480int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9481{
9482 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9483
6379ef9f
NA
9484 if (root == NULL)
9485 return 1;
9486
fa6ac876 9487 /* the snap/subvol tree is on deleting */
69e9c6c6 9488 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9489 return 1;
76dda93c 9490 else
45321ac5 9491 return generic_drop_inode(inode);
76dda93c
YZ
9492}
9493
0ee0fda0 9494static void init_once(void *foo)
39279cc3
CM
9495{
9496 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9497
9498 inode_init_once(&ei->vfs_inode);
9499}
9500
9501void btrfs_destroy_cachep(void)
9502{
8c0a8537
KS
9503 /*
9504 * Make sure all delayed rcu free inodes are flushed before we
9505 * destroy cache.
9506 */
9507 rcu_barrier();
5598e900
KM
9508 kmem_cache_destroy(btrfs_inode_cachep);
9509 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
9510 kmem_cache_destroy(btrfs_path_cachep);
9511 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9512}
9513
9514int btrfs_init_cachep(void)
9515{
837e1972 9516 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9517 sizeof(struct btrfs_inode), 0,
5d097056
VD
9518 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9519 init_once);
39279cc3
CM
9520 if (!btrfs_inode_cachep)
9521 goto fail;
9601e3f6 9522
837e1972 9523 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9524 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9525 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3 9526 if (!btrfs_trans_handle_cachep)
39279cc3 9527 goto fail;
9601e3f6 9528
837e1972 9529 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9530 sizeof(struct btrfs_path), 0,
fba4b697 9531 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9532 if (!btrfs_path_cachep)
9533 goto fail;
9601e3f6 9534
837e1972 9535 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9536 sizeof(struct btrfs_free_space), 0,
fba4b697 9537 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9538 if (!btrfs_free_space_cachep)
9539 goto fail;
9540
39279cc3
CM
9541 return 0;
9542fail:
9543 btrfs_destroy_cachep();
9544 return -ENOMEM;
9545}
9546
a528d35e
DH
9547static int btrfs_getattr(const struct path *path, struct kstat *stat,
9548 u32 request_mask, unsigned int flags)
39279cc3 9549{
df0af1a5 9550 u64 delalloc_bytes;
a528d35e 9551 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9552 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
9553 u32 bi_flags = BTRFS_I(inode)->flags;
9554
9555 stat->result_mask |= STATX_BTIME;
9556 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9557 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9558 if (bi_flags & BTRFS_INODE_APPEND)
9559 stat->attributes |= STATX_ATTR_APPEND;
9560 if (bi_flags & BTRFS_INODE_COMPRESS)
9561 stat->attributes |= STATX_ATTR_COMPRESSED;
9562 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9563 stat->attributes |= STATX_ATTR_IMMUTABLE;
9564 if (bi_flags & BTRFS_INODE_NODUMP)
9565 stat->attributes |= STATX_ATTR_NODUMP;
9566
9567 stat->attributes_mask |= (STATX_ATTR_APPEND |
9568 STATX_ATTR_COMPRESSED |
9569 STATX_ATTR_IMMUTABLE |
9570 STATX_ATTR_NODUMP);
fadc0d8b 9571
39279cc3 9572 generic_fillattr(inode, stat);
0ee5dc67 9573 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9574
9575 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9576 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 9577 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9578 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9579 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9580 return 0;
9581}
9582
cdd1fedf
DF
9583static int btrfs_rename_exchange(struct inode *old_dir,
9584 struct dentry *old_dentry,
9585 struct inode *new_dir,
9586 struct dentry *new_dentry)
9587{
0b246afa 9588 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9589 struct btrfs_trans_handle *trans;
9590 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9591 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9592 struct inode *new_inode = new_dentry->d_inode;
9593 struct inode *old_inode = old_dentry->d_inode;
c2050a45 9594 struct timespec ctime = current_time(old_inode);
cdd1fedf 9595 struct dentry *parent;
4a0cc7ca
NB
9596 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9597 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9598 u64 old_idx = 0;
9599 u64 new_idx = 0;
9600 u64 root_objectid;
9601 int ret;
86e8aa0e
FM
9602 bool root_log_pinned = false;
9603 bool dest_log_pinned = false;
cdd1fedf
DF
9604
9605 /* we only allow rename subvolume link between subvolumes */
9606 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9607 return -EXDEV;
9608
9609 /* close the race window with snapshot create/destroy ioctl */
9610 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9611 down_read(&fs_info->subvol_sem);
cdd1fedf 9612 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9613 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9614
9615 /*
9616 * We want to reserve the absolute worst case amount of items. So if
9617 * both inodes are subvols and we need to unlink them then that would
9618 * require 4 item modifications, but if they are both normal inodes it
9619 * would require 5 item modifications, so we'll assume their normal
9620 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9621 * should cover the worst case number of items we'll modify.
9622 */
9623 trans = btrfs_start_transaction(root, 12);
9624 if (IS_ERR(trans)) {
9625 ret = PTR_ERR(trans);
9626 goto out_notrans;
9627 }
9628
9629 /*
9630 * We need to find a free sequence number both in the source and
9631 * in the destination directory for the exchange.
9632 */
877574e2 9633 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9634 if (ret)
9635 goto out_fail;
877574e2 9636 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9637 if (ret)
9638 goto out_fail;
9639
9640 BTRFS_I(old_inode)->dir_index = 0ULL;
9641 BTRFS_I(new_inode)->dir_index = 0ULL;
9642
9643 /* Reference for the source. */
9644 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9645 /* force full log commit if subvolume involved. */
0b246afa 9646 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9647 } else {
376e5a57
FM
9648 btrfs_pin_log_trans(root);
9649 root_log_pinned = true;
cdd1fedf
DF
9650 ret = btrfs_insert_inode_ref(trans, dest,
9651 new_dentry->d_name.name,
9652 new_dentry->d_name.len,
9653 old_ino,
f85b7379
DS
9654 btrfs_ino(BTRFS_I(new_dir)),
9655 old_idx);
cdd1fedf
DF
9656 if (ret)
9657 goto out_fail;
cdd1fedf
DF
9658 }
9659
9660 /* And now for the dest. */
9661 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9662 /* force full log commit if subvolume involved. */
0b246afa 9663 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9664 } else {
376e5a57
FM
9665 btrfs_pin_log_trans(dest);
9666 dest_log_pinned = true;
cdd1fedf
DF
9667 ret = btrfs_insert_inode_ref(trans, root,
9668 old_dentry->d_name.name,
9669 old_dentry->d_name.len,
9670 new_ino,
f85b7379
DS
9671 btrfs_ino(BTRFS_I(old_dir)),
9672 new_idx);
cdd1fedf
DF
9673 if (ret)
9674 goto out_fail;
cdd1fedf
DF
9675 }
9676
9677 /* Update inode version and ctime/mtime. */
9678 inode_inc_iversion(old_dir);
9679 inode_inc_iversion(new_dir);
9680 inode_inc_iversion(old_inode);
9681 inode_inc_iversion(new_inode);
9682 old_dir->i_ctime = old_dir->i_mtime = ctime;
9683 new_dir->i_ctime = new_dir->i_mtime = ctime;
9684 old_inode->i_ctime = ctime;
9685 new_inode->i_ctime = ctime;
9686
9687 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9688 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9689 BTRFS_I(old_inode), 1);
9690 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9691 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9692 }
9693
9694 /* src is a subvolume */
9695 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9696 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9697 ret = btrfs_unlink_subvol(trans, root, old_dir,
9698 root_objectid,
9699 old_dentry->d_name.name,
9700 old_dentry->d_name.len);
9701 } else { /* src is an inode */
4ec5934e
NB
9702 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9703 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9704 old_dentry->d_name.name,
9705 old_dentry->d_name.len);
9706 if (!ret)
9707 ret = btrfs_update_inode(trans, root, old_inode);
9708 }
9709 if (ret) {
66642832 9710 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9711 goto out_fail;
9712 }
9713
9714 /* dest is a subvolume */
9715 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9716 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9717 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9718 root_objectid,
9719 new_dentry->d_name.name,
9720 new_dentry->d_name.len);
9721 } else { /* dest is an inode */
4ec5934e
NB
9722 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9723 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9724 new_dentry->d_name.name,
9725 new_dentry->d_name.len);
9726 if (!ret)
9727 ret = btrfs_update_inode(trans, dest, new_inode);
9728 }
9729 if (ret) {
66642832 9730 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9731 goto out_fail;
9732 }
9733
db0a669f 9734 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9735 new_dentry->d_name.name,
9736 new_dentry->d_name.len, 0, old_idx);
9737 if (ret) {
66642832 9738 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9739 goto out_fail;
9740 }
9741
db0a669f 9742 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9743 old_dentry->d_name.name,
9744 old_dentry->d_name.len, 0, new_idx);
9745 if (ret) {
66642832 9746 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9747 goto out_fail;
9748 }
9749
9750 if (old_inode->i_nlink == 1)
9751 BTRFS_I(old_inode)->dir_index = old_idx;
9752 if (new_inode->i_nlink == 1)
9753 BTRFS_I(new_inode)->dir_index = new_idx;
9754
86e8aa0e 9755 if (root_log_pinned) {
cdd1fedf 9756 parent = new_dentry->d_parent;
f85b7379
DS
9757 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9758 parent);
cdd1fedf 9759 btrfs_end_log_trans(root);
86e8aa0e 9760 root_log_pinned = false;
cdd1fedf 9761 }
86e8aa0e 9762 if (dest_log_pinned) {
cdd1fedf 9763 parent = old_dentry->d_parent;
f85b7379
DS
9764 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9765 parent);
cdd1fedf 9766 btrfs_end_log_trans(dest);
86e8aa0e 9767 dest_log_pinned = false;
cdd1fedf
DF
9768 }
9769out_fail:
86e8aa0e
FM
9770 /*
9771 * If we have pinned a log and an error happened, we unpin tasks
9772 * trying to sync the log and force them to fallback to a transaction
9773 * commit if the log currently contains any of the inodes involved in
9774 * this rename operation (to ensure we do not persist a log with an
9775 * inconsistent state for any of these inodes or leading to any
9776 * inconsistencies when replayed). If the transaction was aborted, the
9777 * abortion reason is propagated to userspace when attempting to commit
9778 * the transaction. If the log does not contain any of these inodes, we
9779 * allow the tasks to sync it.
9780 */
9781 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9782 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9783 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9784 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9785 (new_inode &&
0f8939b8 9786 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9787 btrfs_set_log_full_commit(fs_info, trans);
86e8aa0e
FM
9788
9789 if (root_log_pinned) {
9790 btrfs_end_log_trans(root);
9791 root_log_pinned = false;
9792 }
9793 if (dest_log_pinned) {
9794 btrfs_end_log_trans(dest);
9795 dest_log_pinned = false;
9796 }
9797 }
3a45bb20 9798 ret = btrfs_end_transaction(trans);
cdd1fedf
DF
9799out_notrans:
9800 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9801 up_read(&fs_info->subvol_sem);
cdd1fedf 9802 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9803 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9804
9805 return ret;
9806}
9807
9808static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9809 struct btrfs_root *root,
9810 struct inode *dir,
9811 struct dentry *dentry)
9812{
9813 int ret;
9814 struct inode *inode;
9815 u64 objectid;
9816 u64 index;
9817
9818 ret = btrfs_find_free_ino(root, &objectid);
9819 if (ret)
9820 return ret;
9821
9822 inode = btrfs_new_inode(trans, root, dir,
9823 dentry->d_name.name,
9824 dentry->d_name.len,
4a0cc7ca 9825 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9826 objectid,
9827 S_IFCHR | WHITEOUT_MODE,
9828 &index);
9829
9830 if (IS_ERR(inode)) {
9831 ret = PTR_ERR(inode);
9832 return ret;
9833 }
9834
9835 inode->i_op = &btrfs_special_inode_operations;
9836 init_special_inode(inode, inode->i_mode,
9837 WHITEOUT_DEV);
9838
9839 ret = btrfs_init_inode_security(trans, inode, dir,
9840 &dentry->d_name);
9841 if (ret)
c9901618 9842 goto out;
cdd1fedf 9843
cef415af
NB
9844 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9845 BTRFS_I(inode), 0, index);
cdd1fedf 9846 if (ret)
c9901618 9847 goto out;
cdd1fedf
DF
9848
9849 ret = btrfs_update_inode(trans, root, inode);
c9901618 9850out:
cdd1fedf 9851 unlock_new_inode(inode);
c9901618
FM
9852 if (ret)
9853 inode_dec_link_count(inode);
cdd1fedf
DF
9854 iput(inode);
9855
c9901618 9856 return ret;
cdd1fedf
DF
9857}
9858
d397712b 9859static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9860 struct inode *new_dir, struct dentry *new_dentry,
9861 unsigned int flags)
39279cc3 9862{
0b246afa 9863 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9864 struct btrfs_trans_handle *trans;
5062af35 9865 unsigned int trans_num_items;
39279cc3 9866 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9867 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9868 struct inode *new_inode = d_inode(new_dentry);
9869 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9870 u64 index = 0;
4df27c4d 9871 u64 root_objectid;
39279cc3 9872 int ret;
4a0cc7ca 9873 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9874 bool log_pinned = false;
39279cc3 9875
4a0cc7ca 9876 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9877 return -EPERM;
9878
4df27c4d 9879 /* we only allow rename subvolume link between subvolumes */
33345d01 9880 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9881 return -EXDEV;
9882
33345d01 9883 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9884 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9885 return -ENOTEMPTY;
5f39d397 9886
4df27c4d
YZ
9887 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9888 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9889 return -ENOTEMPTY;
9c52057c
CM
9890
9891
9892 /* check for collisions, even if the name isn't there */
4871c158 9893 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9894 new_dentry->d_name.name,
9895 new_dentry->d_name.len);
9896
9897 if (ret) {
9898 if (ret == -EEXIST) {
9899 /* we shouldn't get
9900 * eexist without a new_inode */
fae7f21c 9901 if (WARN_ON(!new_inode)) {
9c52057c
CM
9902 return ret;
9903 }
9904 } else {
9905 /* maybe -EOVERFLOW */
9906 return ret;
9907 }
9908 }
9909 ret = 0;
9910
5a3f23d5 9911 /*
8d875f95
CM
9912 * we're using rename to replace one file with another. Start IO on it
9913 * now so we don't add too much work to the end of the transaction
5a3f23d5 9914 */
8d875f95 9915 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9916 filemap_flush(old_inode->i_mapping);
9917
76dda93c 9918 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9919 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9920 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9921 /*
9922 * We want to reserve the absolute worst case amount of items. So if
9923 * both inodes are subvols and we need to unlink them then that would
9924 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9925 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9926 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9927 * should cover the worst case number of items we'll modify.
5062af35
FM
9928 * If our rename has the whiteout flag, we need more 5 units for the
9929 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9930 * when selinux is enabled).
a22285a6 9931 */
5062af35
FM
9932 trans_num_items = 11;
9933 if (flags & RENAME_WHITEOUT)
9934 trans_num_items += 5;
9935 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9936 if (IS_ERR(trans)) {
cdd1fedf
DF
9937 ret = PTR_ERR(trans);
9938 goto out_notrans;
9939 }
76dda93c 9940
4df27c4d
YZ
9941 if (dest != root)
9942 btrfs_record_root_in_trans(trans, dest);
5f39d397 9943
877574e2 9944 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9945 if (ret)
9946 goto out_fail;
5a3f23d5 9947
67de1176 9948 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9949 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9950 /* force full log commit if subvolume involved. */
0b246afa 9951 btrfs_set_log_full_commit(fs_info, trans);
4df27c4d 9952 } else {
c4aba954
FM
9953 btrfs_pin_log_trans(root);
9954 log_pinned = true;
a5719521
YZ
9955 ret = btrfs_insert_inode_ref(trans, dest,
9956 new_dentry->d_name.name,
9957 new_dentry->d_name.len,
33345d01 9958 old_ino,
4a0cc7ca 9959 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9960 if (ret)
9961 goto out_fail;
4df27c4d 9962 }
5a3f23d5 9963
0c4d2d95
JB
9964 inode_inc_iversion(old_dir);
9965 inode_inc_iversion(new_dir);
9966 inode_inc_iversion(old_inode);
04b285f3
DD
9967 old_dir->i_ctime = old_dir->i_mtime =
9968 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9969 old_inode->i_ctime = current_time(old_dir);
5f39d397 9970
12fcfd22 9971 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9972 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9973 BTRFS_I(old_inode), 1);
12fcfd22 9974
33345d01 9975 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9976 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9977 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9978 old_dentry->d_name.name,
9979 old_dentry->d_name.len);
9980 } else {
4ec5934e
NB
9981 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9982 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9983 old_dentry->d_name.name,
9984 old_dentry->d_name.len);
9985 if (!ret)
9986 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9987 }
79787eaa 9988 if (ret) {
66642832 9989 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9990 goto out_fail;
9991 }
39279cc3
CM
9992
9993 if (new_inode) {
0c4d2d95 9994 inode_inc_iversion(new_inode);
c2050a45 9995 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9996 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
9997 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9998 root_objectid = BTRFS_I(new_inode)->location.objectid;
9999 ret = btrfs_unlink_subvol(trans, dest, new_dir,
10000 root_objectid,
10001 new_dentry->d_name.name,
10002 new_dentry->d_name.len);
10003 BUG_ON(new_inode->i_nlink == 0);
10004 } else {
4ec5934e
NB
10005 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10006 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
10007 new_dentry->d_name.name,
10008 new_dentry->d_name.len);
10009 }
4ef31a45 10010 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
10011 ret = btrfs_orphan_add(trans,
10012 BTRFS_I(d_inode(new_dentry)));
79787eaa 10013 if (ret) {
66642832 10014 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10015 goto out_fail;
10016 }
39279cc3 10017 }
aec7477b 10018
db0a669f 10019 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 10020 new_dentry->d_name.name,
a5719521 10021 new_dentry->d_name.len, 0, index);
79787eaa 10022 if (ret) {
66642832 10023 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10024 goto out_fail;
10025 }
39279cc3 10026
67de1176
MX
10027 if (old_inode->i_nlink == 1)
10028 BTRFS_I(old_inode)->dir_index = index;
10029
3dc9e8f7 10030 if (log_pinned) {
10d9f309 10031 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 10032
f85b7379
DS
10033 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
10034 parent);
4df27c4d 10035 btrfs_end_log_trans(root);
3dc9e8f7 10036 log_pinned = false;
4df27c4d 10037 }
cdd1fedf
DF
10038
10039 if (flags & RENAME_WHITEOUT) {
10040 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10041 old_dentry);
10042
10043 if (ret) {
66642832 10044 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
10045 goto out_fail;
10046 }
4df27c4d 10047 }
39279cc3 10048out_fail:
3dc9e8f7
FM
10049 /*
10050 * If we have pinned the log and an error happened, we unpin tasks
10051 * trying to sync the log and force them to fallback to a transaction
10052 * commit if the log currently contains any of the inodes involved in
10053 * this rename operation (to ensure we do not persist a log with an
10054 * inconsistent state for any of these inodes or leading to any
10055 * inconsistencies when replayed). If the transaction was aborted, the
10056 * abortion reason is propagated to userspace when attempting to commit
10057 * the transaction. If the log does not contain any of these inodes, we
10058 * allow the tasks to sync it.
10059 */
10060 if (ret && log_pinned) {
0f8939b8
NB
10061 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10062 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10063 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 10064 (new_inode &&
0f8939b8 10065 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 10066 btrfs_set_log_full_commit(fs_info, trans);
3dc9e8f7
FM
10067
10068 btrfs_end_log_trans(root);
10069 log_pinned = false;
10070 }
3a45bb20 10071 btrfs_end_transaction(trans);
b44c59a8 10072out_notrans:
33345d01 10073 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 10074 up_read(&fs_info->subvol_sem);
9ed74f2d 10075
39279cc3
CM
10076 return ret;
10077}
10078
80ace85c
MS
10079static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10080 struct inode *new_dir, struct dentry *new_dentry,
10081 unsigned int flags)
10082{
cdd1fedf 10083 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
10084 return -EINVAL;
10085
cdd1fedf
DF
10086 if (flags & RENAME_EXCHANGE)
10087 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10088 new_dentry);
10089
10090 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
10091}
10092
8ccf6f19
MX
10093static void btrfs_run_delalloc_work(struct btrfs_work *work)
10094{
10095 struct btrfs_delalloc_work *delalloc_work;
9f23e289 10096 struct inode *inode;
8ccf6f19
MX
10097
10098 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10099 work);
9f23e289 10100 inode = delalloc_work->inode;
30424601
DS
10101 filemap_flush(inode->i_mapping);
10102 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10103 &BTRFS_I(inode)->runtime_flags))
9f23e289 10104 filemap_flush(inode->i_mapping);
8ccf6f19
MX
10105
10106 if (delalloc_work->delay_iput)
9f23e289 10107 btrfs_add_delayed_iput(inode);
8ccf6f19 10108 else
9f23e289 10109 iput(inode);
8ccf6f19
MX
10110 complete(&delalloc_work->completion);
10111}
10112
10113struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 10114 int delay_iput)
8ccf6f19
MX
10115{
10116 struct btrfs_delalloc_work *work;
10117
100d5702 10118 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
10119 if (!work)
10120 return NULL;
10121
10122 init_completion(&work->completion);
10123 INIT_LIST_HEAD(&work->list);
10124 work->inode = inode;
8ccf6f19 10125 work->delay_iput = delay_iput;
9e0af237
LB
10126 WARN_ON_ONCE(!inode);
10127 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10128 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
10129
10130 return work;
10131}
10132
10133void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10134{
10135 wait_for_completion(&work->completion);
100d5702 10136 kfree(work);
8ccf6f19
MX
10137}
10138
d352ac68
CM
10139/*
10140 * some fairly slow code that needs optimization. This walks the list
10141 * of all the inodes with pending delalloc and forces them to disk.
10142 */
6c255e67
MX
10143static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10144 int nr)
ea8c2819 10145{
ea8c2819 10146 struct btrfs_inode *binode;
5b21f2ed 10147 struct inode *inode;
8ccf6f19
MX
10148 struct btrfs_delalloc_work *work, *next;
10149 struct list_head works;
1eafa6c7 10150 struct list_head splice;
8ccf6f19 10151 int ret = 0;
ea8c2819 10152
8ccf6f19 10153 INIT_LIST_HEAD(&works);
1eafa6c7 10154 INIT_LIST_HEAD(&splice);
63607cc8 10155
573bfb72 10156 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10157 spin_lock(&root->delalloc_lock);
10158 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10159 while (!list_empty(&splice)) {
10160 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10161 delalloc_inodes);
1eafa6c7 10162
eb73c1b7
MX
10163 list_move_tail(&binode->delalloc_inodes,
10164 &root->delalloc_inodes);
5b21f2ed 10165 inode = igrab(&binode->vfs_inode);
df0af1a5 10166 if (!inode) {
eb73c1b7 10167 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10168 continue;
df0af1a5 10169 }
eb73c1b7 10170 spin_unlock(&root->delalloc_lock);
1eafa6c7 10171
651d494a 10172 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10173 if (!work) {
f4ab9ea7
JB
10174 if (delay_iput)
10175 btrfs_add_delayed_iput(inode);
10176 else
10177 iput(inode);
1eafa6c7 10178 ret = -ENOMEM;
a1ecaabb 10179 goto out;
5b21f2ed 10180 }
1eafa6c7 10181 list_add_tail(&work->list, &works);
a44903ab
QW
10182 btrfs_queue_work(root->fs_info->flush_workers,
10183 &work->work);
6c255e67
MX
10184 ret++;
10185 if (nr != -1 && ret >= nr)
a1ecaabb 10186 goto out;
5b21f2ed 10187 cond_resched();
eb73c1b7 10188 spin_lock(&root->delalloc_lock);
ea8c2819 10189 }
eb73c1b7 10190 spin_unlock(&root->delalloc_lock);
8c8bee1d 10191
a1ecaabb 10192out:
eb73c1b7
MX
10193 list_for_each_entry_safe(work, next, &works, list) {
10194 list_del_init(&work->list);
10195 btrfs_wait_and_free_delalloc_work(work);
10196 }
10197
10198 if (!list_empty_careful(&splice)) {
10199 spin_lock(&root->delalloc_lock);
10200 list_splice_tail(&splice, &root->delalloc_inodes);
10201 spin_unlock(&root->delalloc_lock);
10202 }
573bfb72 10203 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10204 return ret;
10205}
1eafa6c7 10206
eb73c1b7
MX
10207int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10208{
0b246afa 10209 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10210 int ret;
1eafa6c7 10211
0b246afa 10212 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10213 return -EROFS;
10214
6c255e67
MX
10215 ret = __start_delalloc_inodes(root, delay_iput, -1);
10216 if (ret > 0)
10217 ret = 0;
eb73c1b7
MX
10218 /*
10219 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
10220 * we have to make sure the IO is actually started and that
10221 * ordered extents get created before we return
10222 */
0b246afa
JM
10223 atomic_inc(&fs_info->async_submit_draining);
10224 while (atomic_read(&fs_info->nr_async_submits) ||
10225 atomic_read(&fs_info->async_delalloc_pages)) {
10226 wait_event(fs_info->async_submit_wait,
10227 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10228 atomic_read(&fs_info->async_delalloc_pages) == 0));
10229 }
10230 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7
MX
10231 return ret;
10232}
10233
6c255e67
MX
10234int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10235 int nr)
eb73c1b7
MX
10236{
10237 struct btrfs_root *root;
10238 struct list_head splice;
10239 int ret;
10240
2c21b4d7 10241 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10242 return -EROFS;
10243
10244 INIT_LIST_HEAD(&splice);
10245
573bfb72 10246 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10247 spin_lock(&fs_info->delalloc_root_lock);
10248 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10249 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10250 root = list_first_entry(&splice, struct btrfs_root,
10251 delalloc_root);
10252 root = btrfs_grab_fs_root(root);
10253 BUG_ON(!root);
10254 list_move_tail(&root->delalloc_root,
10255 &fs_info->delalloc_roots);
10256 spin_unlock(&fs_info->delalloc_root_lock);
10257
6c255e67 10258 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10259 btrfs_put_fs_root(root);
6c255e67 10260 if (ret < 0)
eb73c1b7
MX
10261 goto out;
10262
6c255e67
MX
10263 if (nr != -1) {
10264 nr -= ret;
10265 WARN_ON(nr < 0);
10266 }
eb73c1b7 10267 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10268 }
eb73c1b7 10269 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10270
6c255e67 10271 ret = 0;
eb73c1b7
MX
10272 atomic_inc(&fs_info->async_submit_draining);
10273 while (atomic_read(&fs_info->nr_async_submits) ||
10274 atomic_read(&fs_info->async_delalloc_pages)) {
10275 wait_event(fs_info->async_submit_wait,
10276 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10277 atomic_read(&fs_info->async_delalloc_pages) == 0));
10278 }
10279 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 10280out:
1eafa6c7 10281 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10282 spin_lock(&fs_info->delalloc_root_lock);
10283 list_splice_tail(&splice, &fs_info->delalloc_roots);
10284 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10285 }
573bfb72 10286 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10287 return ret;
ea8c2819
CM
10288}
10289
39279cc3
CM
10290static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10291 const char *symname)
10292{
0b246afa 10293 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10294 struct btrfs_trans_handle *trans;
10295 struct btrfs_root *root = BTRFS_I(dir)->root;
10296 struct btrfs_path *path;
10297 struct btrfs_key key;
1832a6d5 10298 struct inode *inode = NULL;
39279cc3
CM
10299 int err;
10300 int drop_inode = 0;
10301 u64 objectid;
67871254 10302 u64 index = 0;
39279cc3
CM
10303 int name_len;
10304 int datasize;
5f39d397 10305 unsigned long ptr;
39279cc3 10306 struct btrfs_file_extent_item *ei;
5f39d397 10307 struct extent_buffer *leaf;
39279cc3 10308
f06becc4 10309 name_len = strlen(symname);
0b246afa 10310 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10311 return -ENAMETOOLONG;
1832a6d5 10312
9ed74f2d
JB
10313 /*
10314 * 2 items for inode item and ref
10315 * 2 items for dir items
9269d12b
FM
10316 * 1 item for updating parent inode item
10317 * 1 item for the inline extent item
9ed74f2d
JB
10318 * 1 item for xattr if selinux is on
10319 */
9269d12b 10320 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10321 if (IS_ERR(trans))
10322 return PTR_ERR(trans);
1832a6d5 10323
581bb050
LZ
10324 err = btrfs_find_free_ino(root, &objectid);
10325 if (err)
10326 goto out_unlock;
10327
aec7477b 10328 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10329 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10330 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10331 if (IS_ERR(inode)) {
10332 err = PTR_ERR(inode);
39279cc3 10333 goto out_unlock;
7cf96da3 10334 }
39279cc3 10335
ad19db71
CS
10336 /*
10337 * If the active LSM wants to access the inode during
10338 * d_instantiate it needs these. Smack checks to see
10339 * if the filesystem supports xattrs by looking at the
10340 * ops vector.
10341 */
10342 inode->i_fop = &btrfs_file_operations;
10343 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10344 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10345 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10346
10347 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10348 if (err)
10349 goto out_unlock_inode;
ad19db71 10350
39279cc3 10351 path = btrfs_alloc_path();
d8926bb3
MF
10352 if (!path) {
10353 err = -ENOMEM;
b0d5d10f 10354 goto out_unlock_inode;
d8926bb3 10355 }
4a0cc7ca 10356 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10357 key.offset = 0;
962a298f 10358 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10359 datasize = btrfs_file_extent_calc_inline_size(name_len);
10360 err = btrfs_insert_empty_item(trans, root, path, &key,
10361 datasize);
54aa1f4d 10362 if (err) {
b0839166 10363 btrfs_free_path(path);
b0d5d10f 10364 goto out_unlock_inode;
54aa1f4d 10365 }
5f39d397
CM
10366 leaf = path->nodes[0];
10367 ei = btrfs_item_ptr(leaf, path->slots[0],
10368 struct btrfs_file_extent_item);
10369 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10370 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10371 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10372 btrfs_set_file_extent_encryption(leaf, ei, 0);
10373 btrfs_set_file_extent_compression(leaf, ei, 0);
10374 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10375 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10376
39279cc3 10377 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10378 write_extent_buffer(leaf, symname, ptr, name_len);
10379 btrfs_mark_buffer_dirty(leaf);
39279cc3 10380 btrfs_free_path(path);
5f39d397 10381
39279cc3 10382 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10383 inode_nohighmem(inode);
39279cc3 10384 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10385 inode_set_bytes(inode, name_len);
6ef06d27 10386 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10387 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10388 /*
10389 * Last step, add directory indexes for our symlink inode. This is the
10390 * last step to avoid extra cleanup of these indexes if an error happens
10391 * elsewhere above.
10392 */
10393 if (!err)
cef415af
NB
10394 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10395 BTRFS_I(inode), 0, index);
b0d5d10f 10396 if (err) {
54aa1f4d 10397 drop_inode = 1;
b0d5d10f
CM
10398 goto out_unlock_inode;
10399 }
10400
10401 unlock_new_inode(inode);
10402 d_instantiate(dentry, inode);
39279cc3
CM
10403
10404out_unlock:
3a45bb20 10405 btrfs_end_transaction(trans);
39279cc3
CM
10406 if (drop_inode) {
10407 inode_dec_link_count(inode);
10408 iput(inode);
10409 }
2ff7e61e 10410 btrfs_btree_balance_dirty(fs_info);
39279cc3 10411 return err;
b0d5d10f
CM
10412
10413out_unlock_inode:
10414 drop_inode = 1;
10415 unlock_new_inode(inode);
10416 goto out_unlock;
39279cc3 10417}
16432985 10418
0af3d00b
JB
10419static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10420 u64 start, u64 num_bytes, u64 min_size,
10421 loff_t actual_len, u64 *alloc_hint,
10422 struct btrfs_trans_handle *trans)
d899e052 10423{
0b246afa 10424 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10425 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10426 struct extent_map *em;
d899e052
YZ
10427 struct btrfs_root *root = BTRFS_I(inode)->root;
10428 struct btrfs_key ins;
d899e052 10429 u64 cur_offset = start;
55a61d1d 10430 u64 i_size;
154ea289 10431 u64 cur_bytes;
0b670dc4 10432 u64 last_alloc = (u64)-1;
d899e052 10433 int ret = 0;
0af3d00b 10434 bool own_trans = true;
18513091 10435 u64 end = start + num_bytes - 1;
d899e052 10436
0af3d00b
JB
10437 if (trans)
10438 own_trans = false;
d899e052 10439 while (num_bytes > 0) {
0af3d00b
JB
10440 if (own_trans) {
10441 trans = btrfs_start_transaction(root, 3);
10442 if (IS_ERR(trans)) {
10443 ret = PTR_ERR(trans);
10444 break;
10445 }
5a303d5d
YZ
10446 }
10447
ee22184b 10448 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10449 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10450 /*
10451 * If we are severely fragmented we could end up with really
10452 * small allocations, so if the allocator is returning small
10453 * chunks lets make its job easier by only searching for those
10454 * sized chunks.
10455 */
10456 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10457 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10458 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10459 if (ret) {
0af3d00b 10460 if (own_trans)
3a45bb20 10461 btrfs_end_transaction(trans);
a22285a6 10462 break;
d899e052 10463 }
0b246afa 10464 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10465
0b670dc4 10466 last_alloc = ins.offset;
d899e052
YZ
10467 ret = insert_reserved_file_extent(trans, inode,
10468 cur_offset, ins.objectid,
10469 ins.offset, ins.offset,
920bbbfb 10470 ins.offset, 0, 0, 0,
d899e052 10471 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10472 if (ret) {
2ff7e61e 10473 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10474 ins.offset, 0);
66642832 10475 btrfs_abort_transaction(trans, ret);
79787eaa 10476 if (own_trans)
3a45bb20 10477 btrfs_end_transaction(trans);
79787eaa
JM
10478 break;
10479 }
31193213 10480
dcdbc059 10481 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10482 cur_offset + ins.offset -1, 0);
5a303d5d 10483
5dc562c5
JB
10484 em = alloc_extent_map();
10485 if (!em) {
10486 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10487 &BTRFS_I(inode)->runtime_flags);
10488 goto next;
10489 }
10490
10491 em->start = cur_offset;
10492 em->orig_start = cur_offset;
10493 em->len = ins.offset;
10494 em->block_start = ins.objectid;
10495 em->block_len = ins.offset;
b4939680 10496 em->orig_block_len = ins.offset;
cc95bef6 10497 em->ram_bytes = ins.offset;
0b246afa 10498 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10499 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10500 em->generation = trans->transid;
10501
10502 while (1) {
10503 write_lock(&em_tree->lock);
09a2a8f9 10504 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10505 write_unlock(&em_tree->lock);
10506 if (ret != -EEXIST)
10507 break;
dcdbc059 10508 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10509 cur_offset + ins.offset - 1,
10510 0);
10511 }
10512 free_extent_map(em);
10513next:
d899e052
YZ
10514 num_bytes -= ins.offset;
10515 cur_offset += ins.offset;
efa56464 10516 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10517
0c4d2d95 10518 inode_inc_iversion(inode);
c2050a45 10519 inode->i_ctime = current_time(inode);
6cbff00f 10520 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10521 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10522 (actual_len > inode->i_size) &&
10523 (cur_offset > inode->i_size)) {
d1ea6a61 10524 if (cur_offset > actual_len)
55a61d1d 10525 i_size = actual_len;
d1ea6a61 10526 else
55a61d1d
JB
10527 i_size = cur_offset;
10528 i_size_write(inode, i_size);
10529 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10530 }
10531
d899e052 10532 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10533
10534 if (ret) {
66642832 10535 btrfs_abort_transaction(trans, ret);
79787eaa 10536 if (own_trans)
3a45bb20 10537 btrfs_end_transaction(trans);
79787eaa
JM
10538 break;
10539 }
d899e052 10540
0af3d00b 10541 if (own_trans)
3a45bb20 10542 btrfs_end_transaction(trans);
5a303d5d 10543 }
18513091
WX
10544 if (cur_offset < end)
10545 btrfs_free_reserved_data_space(inode, cur_offset,
10546 end - cur_offset + 1);
d899e052
YZ
10547 return ret;
10548}
10549
0af3d00b
JB
10550int btrfs_prealloc_file_range(struct inode *inode, int mode,
10551 u64 start, u64 num_bytes, u64 min_size,
10552 loff_t actual_len, u64 *alloc_hint)
10553{
10554 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10555 min_size, actual_len, alloc_hint,
10556 NULL);
10557}
10558
10559int btrfs_prealloc_file_range_trans(struct inode *inode,
10560 struct btrfs_trans_handle *trans, int mode,
10561 u64 start, u64 num_bytes, u64 min_size,
10562 loff_t actual_len, u64 *alloc_hint)
10563{
10564 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10565 min_size, actual_len, alloc_hint, trans);
10566}
10567
e6dcd2dc
CM
10568static int btrfs_set_page_dirty(struct page *page)
10569{
e6dcd2dc
CM
10570 return __set_page_dirty_nobuffers(page);
10571}
10572
10556cb2 10573static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10574{
b83cc969 10575 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10576 umode_t mode = inode->i_mode;
b83cc969 10577
cb6db4e5
JM
10578 if (mask & MAY_WRITE &&
10579 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10580 if (btrfs_root_readonly(root))
10581 return -EROFS;
10582 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10583 return -EACCES;
10584 }
2830ba7f 10585 return generic_permission(inode, mask);
fdebe2bd 10586}
39279cc3 10587
ef3b9af5
FM
10588static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10589{
2ff7e61e 10590 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10591 struct btrfs_trans_handle *trans;
10592 struct btrfs_root *root = BTRFS_I(dir)->root;
10593 struct inode *inode = NULL;
10594 u64 objectid;
10595 u64 index;
10596 int ret = 0;
10597
10598 /*
10599 * 5 units required for adding orphan entry
10600 */
10601 trans = btrfs_start_transaction(root, 5);
10602 if (IS_ERR(trans))
10603 return PTR_ERR(trans);
10604
10605 ret = btrfs_find_free_ino(root, &objectid);
10606 if (ret)
10607 goto out;
10608
10609 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10610 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10611 if (IS_ERR(inode)) {
10612 ret = PTR_ERR(inode);
10613 inode = NULL;
10614 goto out;
10615 }
10616
ef3b9af5
FM
10617 inode->i_fop = &btrfs_file_operations;
10618 inode->i_op = &btrfs_file_inode_operations;
10619
10620 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10621 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10622
b0d5d10f
CM
10623 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10624 if (ret)
10625 goto out_inode;
10626
10627 ret = btrfs_update_inode(trans, root, inode);
10628 if (ret)
10629 goto out_inode;
73f2e545 10630 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10631 if (ret)
b0d5d10f 10632 goto out_inode;
ef3b9af5 10633
5762b5c9
FM
10634 /*
10635 * We set number of links to 0 in btrfs_new_inode(), and here we set
10636 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10637 * through:
10638 *
10639 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10640 */
10641 set_nlink(inode, 1);
b0d5d10f 10642 unlock_new_inode(inode);
ef3b9af5
FM
10643 d_tmpfile(dentry, inode);
10644 mark_inode_dirty(inode);
10645
10646out:
3a45bb20 10647 btrfs_end_transaction(trans);
ef3b9af5
FM
10648 if (ret)
10649 iput(inode);
2ff7e61e
JM
10650 btrfs_balance_delayed_items(fs_info);
10651 btrfs_btree_balance_dirty(fs_info);
ef3b9af5 10652 return ret;
b0d5d10f
CM
10653
10654out_inode:
10655 unlock_new_inode(inode);
10656 goto out;
10657
ef3b9af5
FM
10658}
10659
20a7db8a 10660__attribute__((const))
9d0d1c8b 10661static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
20a7db8a 10662{
9d0d1c8b 10663 return -EAGAIN;
20a7db8a
DS
10664}
10665
c6100a4b
JB
10666static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10667{
10668 struct inode *inode = private_data;
10669 return btrfs_sb(inode->i_sb);
10670}
10671
10672static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10673 u64 start, u64 end)
10674{
10675 struct inode *inode = private_data;
10676 u64 isize;
10677
10678 isize = i_size_read(inode);
10679 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10680 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10681 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10682 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10683 }
10684}
10685
10686void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10687{
10688 struct inode *inode = private_data;
10689 unsigned long index = start >> PAGE_SHIFT;
10690 unsigned long end_index = end >> PAGE_SHIFT;
10691 struct page *page;
10692
10693 while (index <= end_index) {
10694 page = find_get_page(inode->i_mapping, index);
10695 ASSERT(page); /* Pages should be in the extent_io_tree */
10696 set_page_writeback(page);
10697 put_page(page);
10698 index++;
10699 }
10700}
10701
6e1d5dcc 10702static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10703 .getattr = btrfs_getattr,
39279cc3
CM
10704 .lookup = btrfs_lookup,
10705 .create = btrfs_create,
10706 .unlink = btrfs_unlink,
10707 .link = btrfs_link,
10708 .mkdir = btrfs_mkdir,
10709 .rmdir = btrfs_rmdir,
2773bf00 10710 .rename = btrfs_rename2,
39279cc3
CM
10711 .symlink = btrfs_symlink,
10712 .setattr = btrfs_setattr,
618e21d5 10713 .mknod = btrfs_mknod,
5103e947 10714 .listxattr = btrfs_listxattr,
fdebe2bd 10715 .permission = btrfs_permission,
4e34e719 10716 .get_acl = btrfs_get_acl,
996a710d 10717 .set_acl = btrfs_set_acl,
93fd63c2 10718 .update_time = btrfs_update_time,
ef3b9af5 10719 .tmpfile = btrfs_tmpfile,
39279cc3 10720};
6e1d5dcc 10721static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10722 .lookup = btrfs_lookup,
fdebe2bd 10723 .permission = btrfs_permission,
93fd63c2 10724 .update_time = btrfs_update_time,
39279cc3 10725};
76dda93c 10726
828c0950 10727static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10728 .llseek = generic_file_llseek,
10729 .read = generic_read_dir,
02dbfc99 10730 .iterate_shared = btrfs_real_readdir,
34287aa3 10731 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10732#ifdef CONFIG_COMPAT
4c63c245 10733 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10734#endif
6bf13c0c 10735 .release = btrfs_release_file,
e02119d5 10736 .fsync = btrfs_sync_file,
39279cc3
CM
10737};
10738
20e5506b 10739static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10740 /* mandatory callbacks */
065631f6 10741 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac 10742 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4d53dddb 10743 .merge_bio_hook = btrfs_merge_bio_hook,
9d0d1c8b 10744 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
c6100a4b
JB
10745 .tree_fs_info = iotree_fs_info,
10746 .set_range_writeback = btrfs_set_range_writeback,
4d53dddb
DS
10747
10748 /* optional callbacks */
10749 .fill_delalloc = run_delalloc_range,
e6dcd2dc 10750 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10751 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10752 .set_bit_hook = btrfs_set_bit_hook,
10753 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10754 .merge_extent_hook = btrfs_merge_extent_hook,
10755 .split_extent_hook = btrfs_split_extent_hook,
c6100a4b 10756 .check_extent_io_range = btrfs_check_extent_io_range,
07157aac
CM
10757};
10758
35054394
CM
10759/*
10760 * btrfs doesn't support the bmap operation because swapfiles
10761 * use bmap to make a mapping of extents in the file. They assume
10762 * these extents won't change over the life of the file and they
10763 * use the bmap result to do IO directly to the drive.
10764 *
10765 * the btrfs bmap call would return logical addresses that aren't
10766 * suitable for IO and they also will change frequently as COW
10767 * operations happen. So, swapfile + btrfs == corruption.
10768 *
10769 * For now we're avoiding this by dropping bmap.
10770 */
7f09410b 10771static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10772 .readpage = btrfs_readpage,
10773 .writepage = btrfs_writepage,
b293f02e 10774 .writepages = btrfs_writepages,
3ab2fb5a 10775 .readpages = btrfs_readpages,
16432985 10776 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10777 .invalidatepage = btrfs_invalidatepage,
10778 .releasepage = btrfs_releasepage,
e6dcd2dc 10779 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10780 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10781};
10782
7f09410b 10783static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10784 .readpage = btrfs_readpage,
10785 .writepage = btrfs_writepage,
2bf5a725
CM
10786 .invalidatepage = btrfs_invalidatepage,
10787 .releasepage = btrfs_releasepage,
39279cc3
CM
10788};
10789
6e1d5dcc 10790static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10791 .getattr = btrfs_getattr,
10792 .setattr = btrfs_setattr,
5103e947 10793 .listxattr = btrfs_listxattr,
fdebe2bd 10794 .permission = btrfs_permission,
1506fcc8 10795 .fiemap = btrfs_fiemap,
4e34e719 10796 .get_acl = btrfs_get_acl,
996a710d 10797 .set_acl = btrfs_set_acl,
e41f941a 10798 .update_time = btrfs_update_time,
39279cc3 10799};
6e1d5dcc 10800static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10801 .getattr = btrfs_getattr,
10802 .setattr = btrfs_setattr,
fdebe2bd 10803 .permission = btrfs_permission,
33268eaf 10804 .listxattr = btrfs_listxattr,
4e34e719 10805 .get_acl = btrfs_get_acl,
996a710d 10806 .set_acl = btrfs_set_acl,
e41f941a 10807 .update_time = btrfs_update_time,
618e21d5 10808};
6e1d5dcc 10809static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10810 .get_link = page_get_link,
f209561a 10811 .getattr = btrfs_getattr,
22c44fe6 10812 .setattr = btrfs_setattr,
fdebe2bd 10813 .permission = btrfs_permission,
0279b4cd 10814 .listxattr = btrfs_listxattr,
e41f941a 10815 .update_time = btrfs_update_time,
39279cc3 10816};
76dda93c 10817
82d339d9 10818const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10819 .d_delete = btrfs_dentry_delete,
b4aff1f8 10820 .d_release = btrfs_dentry_release,
76dda93c 10821};