]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/inode.c
btrfs: make btrfs_delalloc_release_space take btrfs_inode
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
8f18cf13 6#include <linux/kernel.h>
065631f6 7#include <linux/bio.h>
55e20bd1 8#include <linux/buffer_head.h>
f2eb0a24 9#include <linux/file.h>
39279cc3
CM
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
39279cc3 16#include <linux/backing-dev.h>
39279cc3 17#include <linux/writeback.h>
39279cc3 18#include <linux/compat.h>
5103e947 19#include <linux/xattr.h>
33268eaf 20#include <linux/posix_acl.h>
d899e052 21#include <linux/falloc.h>
5a0e3ad6 22#include <linux/slab.h>
7a36ddec 23#include <linux/ratelimit.h>
55e301fd 24#include <linux/btrfs.h>
53b381b3 25#include <linux/blkdev.h>
f23b5a59 26#include <linux/posix_acl_xattr.h>
e2e40f2c 27#include <linux/uio.h>
69fe2d75 28#include <linux/magic.h>
ae5e165d 29#include <linux/iversion.h>
ed46ff3d 30#include <linux/swap.h>
f8e66081 31#include <linux/migrate.h>
b1c16ac9 32#include <linux/sched/mm.h>
92d32170 33#include <asm/unaligned.h>
602cbe91 34#include "misc.h"
39279cc3
CM
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39279cc3 39#include "print-tree.h"
e6dcd2dc 40#include "ordered-data.h"
95819c05 41#include "xattr.h"
e02119d5 42#include "tree-log.h"
4a54c8c1 43#include "volumes.h"
c8b97818 44#include "compression.h"
b4ce94de 45#include "locking.h"
dc89e982 46#include "free-space-cache.h"
581bb050 47#include "inode-map.h"
63541927 48#include "props.h"
31193213 49#include "qgroup.h"
86736342 50#include "delalloc-space.h"
aac0023c 51#include "block-group.h"
467dc47e 52#include "space-info.h"
39279cc3
CM
53
54struct btrfs_iget_args {
0202e83f 55 u64 ino;
39279cc3
CM
56 struct btrfs_root *root;
57};
58
f28a4928 59struct btrfs_dio_data {
f28a4928 60 u64 reserve;
55e20bd1
DS
61 u64 unsubmitted_oe_range_start;
62 u64 unsubmitted_oe_range_end;
63 int overwrite;
f28a4928
FM
64};
65
6e1d5dcc
AD
66static const struct inode_operations btrfs_dir_inode_operations;
67static const struct inode_operations btrfs_symlink_inode_operations;
6e1d5dcc
AD
68static const struct inode_operations btrfs_special_inode_operations;
69static const struct inode_operations btrfs_file_inode_operations;
7f09410b 70static const struct address_space_operations btrfs_aops;
828c0950 71static const struct file_operations btrfs_dir_file_operations;
20e5506b 72static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
73
74static struct kmem_cache *btrfs_inode_cachep;
75struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 76struct kmem_cache *btrfs_path_cachep;
dc89e982 77struct kmem_cache *btrfs_free_space_cachep;
3acd4850 78struct kmem_cache *btrfs_free_space_bitmap_cachep;
39279cc3 79
3972f260 80static int btrfs_setsize(struct inode *inode, struct iattr *attr);
213e8c55 81static int btrfs_truncate(struct inode *inode, bool skip_writeback);
5fd02043 82static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
6e26c442 83static noinline int cow_file_range(struct btrfs_inode *inode,
771ed689 84 struct page *locked_page,
74e9194a 85 u64 start, u64 end, int *page_started,
330a5827 86 unsigned long *nr_written, int unlock);
4b67c11d
NB
87static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
88 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
89 u64 block_len, u64 orig_block_len,
90 u64 ram_bytes, int compress_type,
91 int type);
7b128766 92
b672b5c1 93static void __endio_write_update_ordered(struct btrfs_inode *inode,
52427260
QW
94 const u64 offset, const u64 bytes,
95 const bool uptodate);
96
97/*
98 * Cleanup all submitted ordered extents in specified range to handle errors
52042d8e 99 * from the btrfs_run_delalloc_range() callback.
52427260
QW
100 *
101 * NOTE: caller must ensure that when an error happens, it can not call
102 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
103 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
104 * to be released, which we want to happen only when finishing the ordered
d1051d6e 105 * extent (btrfs_finish_ordered_io()).
52427260 106 */
64e1db56 107static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
d1051d6e
NB
108 struct page *locked_page,
109 u64 offset, u64 bytes)
52427260 110{
63d71450
NA
111 unsigned long index = offset >> PAGE_SHIFT;
112 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
d1051d6e
NB
113 u64 page_start = page_offset(locked_page);
114 u64 page_end = page_start + PAGE_SIZE - 1;
115
63d71450
NA
116 struct page *page;
117
118 while (index <= end_index) {
64e1db56 119 page = find_get_page(inode->vfs_inode.i_mapping, index);
63d71450
NA
120 index++;
121 if (!page)
122 continue;
123 ClearPagePrivate2(page);
124 put_page(page);
125 }
d1051d6e
NB
126
127 /*
128 * In case this page belongs to the delalloc range being instantiated
129 * then skip it, since the first page of a range is going to be
130 * properly cleaned up by the caller of run_delalloc_range
131 */
132 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
133 offset += PAGE_SIZE;
134 bytes -= PAGE_SIZE;
135 }
136
64e1db56 137 return __endio_write_update_ordered(inode, offset, bytes, false);
52427260
QW
138}
139
48a3b636 140static int btrfs_dirty_inode(struct inode *inode);
7b128766 141
6a3891c5
JB
142#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
143void btrfs_test_inode_set_ops(struct inode *inode)
144{
145 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
146}
147#endif
148
f34f57a3 149static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
150 struct inode *inode, struct inode *dir,
151 const struct qstr *qstr)
0279b4cd
JO
152{
153 int err;
154
f34f57a3 155 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 156 if (!err)
2a7dba39 157 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
158 return err;
159}
160
c8b97818
CM
161/*
162 * this does all the hard work for inserting an inline extent into
163 * the btree. The caller should have done a btrfs_drop_extents so that
164 * no overlapping inline items exist in the btree
165 */
40f76580 166static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 167 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
168 struct btrfs_root *root, struct inode *inode,
169 u64 start, size_t size, size_t compressed_size,
fe3f566c 170 int compress_type,
c8b97818
CM
171 struct page **compressed_pages)
172{
c8b97818
CM
173 struct extent_buffer *leaf;
174 struct page *page = NULL;
175 char *kaddr;
176 unsigned long ptr;
177 struct btrfs_file_extent_item *ei;
c8b97818
CM
178 int ret;
179 size_t cur_size = size;
c8b97818 180 unsigned long offset;
c8b97818 181
982f1f5d
JJB
182 ASSERT((compressed_size > 0 && compressed_pages) ||
183 (compressed_size == 0 && !compressed_pages));
184
fe3f566c 185 if (compressed_size && compressed_pages)
c8b97818 186 cur_size = compressed_size;
c8b97818 187
1acae57b 188 inode_add_bytes(inode, size);
c8b97818 189
1acae57b
FDBM
190 if (!extent_inserted) {
191 struct btrfs_key key;
192 size_t datasize;
c8b97818 193
4a0cc7ca 194 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 195 key.offset = start;
962a298f 196 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 197
1acae57b
FDBM
198 datasize = btrfs_file_extent_calc_inline_size(cur_size);
199 path->leave_spinning = 1;
200 ret = btrfs_insert_empty_item(trans, root, path, &key,
201 datasize);
79b4f4c6 202 if (ret)
1acae57b 203 goto fail;
c8b97818
CM
204 }
205 leaf = path->nodes[0];
206 ei = btrfs_item_ptr(leaf, path->slots[0],
207 struct btrfs_file_extent_item);
208 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
209 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
210 btrfs_set_file_extent_encryption(leaf, ei, 0);
211 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
212 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
213 ptr = btrfs_file_extent_inline_start(ei);
214
261507a0 215 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
216 struct page *cpage;
217 int i = 0;
d397712b 218 while (compressed_size > 0) {
c8b97818 219 cpage = compressed_pages[i];
5b050f04 220 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 221 PAGE_SIZE);
c8b97818 222
7ac687d9 223 kaddr = kmap_atomic(cpage);
c8b97818 224 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 225 kunmap_atomic(kaddr);
c8b97818
CM
226
227 i++;
228 ptr += cur_size;
229 compressed_size -= cur_size;
230 }
231 btrfs_set_file_extent_compression(leaf, ei,
261507a0 232 compress_type);
c8b97818
CM
233 } else {
234 page = find_get_page(inode->i_mapping,
09cbfeaf 235 start >> PAGE_SHIFT);
c8b97818 236 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 237 kaddr = kmap_atomic(page);
7073017a 238 offset = offset_in_page(start);
c8b97818 239 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 240 kunmap_atomic(kaddr);
09cbfeaf 241 put_page(page);
c8b97818
CM
242 }
243 btrfs_mark_buffer_dirty(leaf);
1acae57b 244 btrfs_release_path(path);
c8b97818 245
9ddc959e
JB
246 /*
247 * We align size to sectorsize for inline extents just for simplicity
248 * sake.
249 */
250 size = ALIGN(size, root->fs_info->sectorsize);
251 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
252 if (ret)
253 goto fail;
254
c2167754
YZ
255 /*
256 * we're an inline extent, so nobody can
257 * extend the file past i_size without locking
258 * a page we already have locked.
259 *
260 * We must do any isize and inode updates
261 * before we unlock the pages. Otherwise we
262 * could end up racing with unlink.
263 */
c8b97818 264 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 265 ret = btrfs_update_inode(trans, root, inode);
c2167754 266
c8b97818 267fail:
79b4f4c6 268 return ret;
c8b97818
CM
269}
270
271
272/*
273 * conditionally insert an inline extent into the file. This
274 * does the checks required to make sure the data is small enough
275 * to fit as an inline extent.
276 */
a0349401 277static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
00361589
JB
278 u64 end, size_t compressed_size,
279 int compress_type,
280 struct page **compressed_pages)
c8b97818 281{
a0349401 282 struct btrfs_root *root = inode->root;
0b246afa 283 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 284 struct btrfs_trans_handle *trans;
a0349401 285 u64 isize = i_size_read(&inode->vfs_inode);
c8b97818
CM
286 u64 actual_end = min(end + 1, isize);
287 u64 inline_len = actual_end - start;
0b246afa 288 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
289 u64 data_len = inline_len;
290 int ret;
1acae57b
FDBM
291 struct btrfs_path *path;
292 int extent_inserted = 0;
293 u32 extent_item_size;
c8b97818
CM
294
295 if (compressed_size)
296 data_len = compressed_size;
297
298 if (start > 0 ||
0b246afa
JM
299 actual_end > fs_info->sectorsize ||
300 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 301 (!compressed_size &&
0b246afa 302 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 303 end + 1 < isize ||
0b246afa 304 data_len > fs_info->max_inline) {
c8b97818
CM
305 return 1;
306 }
307
1acae57b
FDBM
308 path = btrfs_alloc_path();
309 if (!path)
310 return -ENOMEM;
311
00361589 312 trans = btrfs_join_transaction(root);
1acae57b
FDBM
313 if (IS_ERR(trans)) {
314 btrfs_free_path(path);
00361589 315 return PTR_ERR(trans);
1acae57b 316 }
a0349401 317 trans->block_rsv = &inode->block_rsv;
00361589 318
1acae57b
FDBM
319 if (compressed_size && compressed_pages)
320 extent_item_size = btrfs_file_extent_calc_inline_size(
321 compressed_size);
322 else
323 extent_item_size = btrfs_file_extent_calc_inline_size(
324 inline_len);
325
a0349401
NB
326 ret = __btrfs_drop_extents(trans, root, inode, path, start, aligned_end,
327 NULL, 1, 1, extent_item_size,
328 &extent_inserted);
00361589 329 if (ret) {
66642832 330 btrfs_abort_transaction(trans, ret);
00361589
JB
331 goto out;
332 }
c8b97818
CM
333
334 if (isize > actual_end)
335 inline_len = min_t(u64, isize, actual_end);
1acae57b 336 ret = insert_inline_extent(trans, path, extent_inserted,
a0349401 337 root, &inode->vfs_inode, start,
c8b97818 338 inline_len, compressed_size,
fe3f566c 339 compress_type, compressed_pages);
2adcac1a 340 if (ret && ret != -ENOSPC) {
66642832 341 btrfs_abort_transaction(trans, ret);
00361589 342 goto out;
2adcac1a 343 } else if (ret == -ENOSPC) {
00361589
JB
344 ret = 1;
345 goto out;
79787eaa 346 }
2adcac1a 347
a0349401
NB
348 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
349 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 350out:
94ed938a
QW
351 /*
352 * Don't forget to free the reserved space, as for inlined extent
353 * it won't count as data extent, free them directly here.
354 * And at reserve time, it's always aligned to page size, so
355 * just free one page here.
356 */
a0349401 357 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 358 btrfs_free_path(path);
3a45bb20 359 btrfs_end_transaction(trans);
00361589 360 return ret;
c8b97818
CM
361}
362
771ed689
CM
363struct async_extent {
364 u64 start;
365 u64 ram_size;
366 u64 compressed_size;
367 struct page **pages;
368 unsigned long nr_pages;
261507a0 369 int compress_type;
771ed689
CM
370 struct list_head list;
371};
372
97db1204 373struct async_chunk {
771ed689 374 struct inode *inode;
771ed689
CM
375 struct page *locked_page;
376 u64 start;
377 u64 end;
f82b7359 378 unsigned int write_flags;
771ed689 379 struct list_head extents;
ec39f769 380 struct cgroup_subsys_state *blkcg_css;
771ed689 381 struct btrfs_work work;
97db1204 382 atomic_t *pending;
771ed689
CM
383};
384
97db1204
NB
385struct async_cow {
386 /* Number of chunks in flight; must be first in the structure */
387 atomic_t num_chunks;
388 struct async_chunk chunks[];
771ed689
CM
389};
390
97db1204 391static noinline int add_async_extent(struct async_chunk *cow,
771ed689
CM
392 u64 start, u64 ram_size,
393 u64 compressed_size,
394 struct page **pages,
261507a0
LZ
395 unsigned long nr_pages,
396 int compress_type)
771ed689
CM
397{
398 struct async_extent *async_extent;
399
400 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 401 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
402 async_extent->start = start;
403 async_extent->ram_size = ram_size;
404 async_extent->compressed_size = compressed_size;
405 async_extent->pages = pages;
406 async_extent->nr_pages = nr_pages;
261507a0 407 async_extent->compress_type = compress_type;
771ed689
CM
408 list_add_tail(&async_extent->list, &cow->extents);
409 return 0;
410}
411
42c16da6
QW
412/*
413 * Check if the inode has flags compatible with compression
414 */
99c88dc7 415static inline bool inode_can_compress(struct btrfs_inode *inode)
42c16da6 416{
99c88dc7
NB
417 if (inode->flags & BTRFS_INODE_NODATACOW ||
418 inode->flags & BTRFS_INODE_NODATASUM)
42c16da6
QW
419 return false;
420 return true;
421}
422
423/*
424 * Check if the inode needs to be submitted to compression, based on mount
425 * options, defragmentation, properties or heuristics.
426 */
808a1292
NB
427static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
428 u64 end)
f79707b0 429{
808a1292 430 struct btrfs_fs_info *fs_info = inode->root->fs_info;
f79707b0 431
808a1292 432 if (!inode_can_compress(inode)) {
42c16da6
QW
433 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
434 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
808a1292 435 btrfs_ino(inode));
42c16da6
QW
436 return 0;
437 }
f79707b0 438 /* force compress */
0b246afa 439 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 440 return 1;
eec63c65 441 /* defrag ioctl */
808a1292 442 if (inode->defrag_compress)
eec63c65 443 return 1;
f79707b0 444 /* bad compression ratios */
808a1292 445 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
f79707b0 446 return 0;
0b246afa 447 if (btrfs_test_opt(fs_info, COMPRESS) ||
808a1292
NB
448 inode->flags & BTRFS_INODE_COMPRESS ||
449 inode->prop_compress)
450 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
f79707b0
WS
451 return 0;
452}
453
6158e1ce 454static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
455 u64 start, u64 end, u64 num_bytes, u64 small_write)
456{
457 /* If this is a small write inside eof, kick off a defrag */
458 if (num_bytes < small_write &&
6158e1ce 459 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
460 btrfs_add_inode_defrag(NULL, inode);
461}
462
d352ac68 463/*
771ed689
CM
464 * we create compressed extents in two phases. The first
465 * phase compresses a range of pages that have already been
466 * locked (both pages and state bits are locked).
c8b97818 467 *
771ed689
CM
468 * This is done inside an ordered work queue, and the compression
469 * is spread across many cpus. The actual IO submission is step
470 * two, and the ordered work queue takes care of making sure that
471 * happens in the same order things were put onto the queue by
472 * writepages and friends.
c8b97818 473 *
771ed689
CM
474 * If this code finds it can't get good compression, it puts an
475 * entry onto the work queue to write the uncompressed bytes. This
476 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
477 * are written in the same order that the flusher thread sent them
478 * down.
d352ac68 479 */
ac3e9933 480static noinline int compress_file_range(struct async_chunk *async_chunk)
b888db2b 481{
1368c6da 482 struct inode *inode = async_chunk->inode;
0b246afa 483 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0b246afa 484 u64 blocksize = fs_info->sectorsize;
1368c6da
NB
485 u64 start = async_chunk->start;
486 u64 end = async_chunk->end;
c8b97818 487 u64 actual_end;
d98da499 488 u64 i_size;
e6dcd2dc 489 int ret = 0;
c8b97818
CM
490 struct page **pages = NULL;
491 unsigned long nr_pages;
c8b97818
CM
492 unsigned long total_compressed = 0;
493 unsigned long total_in = 0;
c8b97818
CM
494 int i;
495 int will_compress;
0b246afa 496 int compress_type = fs_info->compress_type;
ac3e9933 497 int compressed_extents = 0;
4adaa611 498 int redirty = 0;
b888db2b 499
6158e1ce
NB
500 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
501 SZ_16K);
4cb5300b 502
d98da499
JB
503 /*
504 * We need to save i_size before now because it could change in between
505 * us evaluating the size and assigning it. This is because we lock and
506 * unlock the page in truncate and fallocate, and then modify the i_size
507 * later on.
508 *
509 * The barriers are to emulate READ_ONCE, remove that once i_size_read
510 * does that for us.
511 */
512 barrier();
513 i_size = i_size_read(inode);
514 barrier();
515 actual_end = min_t(u64, i_size, end + 1);
c8b97818
CM
516again:
517 will_compress = 0;
09cbfeaf 518 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
519 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
520 nr_pages = min_t(unsigned long, nr_pages,
521 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 522
f03d9301
CM
523 /*
524 * we don't want to send crud past the end of i_size through
525 * compression, that's just a waste of CPU time. So, if the
526 * end of the file is before the start of our current
527 * requested range of bytes, we bail out to the uncompressed
528 * cleanup code that can deal with all of this.
529 *
530 * It isn't really the fastest way to fix things, but this is a
531 * very uncommon corner.
532 */
533 if (actual_end <= start)
534 goto cleanup_and_bail_uncompressed;
535
c8b97818
CM
536 total_compressed = actual_end - start;
537
4bcbb332
SW
538 /*
539 * skip compression for a small file range(<=blocksize) that
01327610 540 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
541 */
542 if (total_compressed <= blocksize &&
543 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
544 goto cleanup_and_bail_uncompressed;
545
069eac78
DS
546 total_compressed = min_t(unsigned long, total_compressed,
547 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
548 total_in = 0;
549 ret = 0;
db94535d 550
771ed689
CM
551 /*
552 * we do compression for mount -o compress and when the
553 * inode has not been flagged as nocompress. This flag can
554 * change at any time if we discover bad compression ratios.
c8b97818 555 */
808a1292 556 if (inode_need_compress(BTRFS_I(inode), start, end)) {
c8b97818 557 WARN_ON(pages);
31e818fe 558 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
559 if (!pages) {
560 /* just bail out to the uncompressed code */
3527a018 561 nr_pages = 0;
560f7d75
LZ
562 goto cont;
563 }
c8b97818 564
eec63c65
DS
565 if (BTRFS_I(inode)->defrag_compress)
566 compress_type = BTRFS_I(inode)->defrag_compress;
567 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 568 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 569
4adaa611
CM
570 /*
571 * we need to call clear_page_dirty_for_io on each
572 * page in the range. Otherwise applications with the file
573 * mmap'd can wander in and change the page contents while
574 * we are compressing them.
575 *
576 * If the compression fails for any reason, we set the pages
577 * dirty again later on.
e9679de3
TT
578 *
579 * Note that the remaining part is redirtied, the start pointer
580 * has moved, the end is the original one.
4adaa611 581 */
e9679de3
TT
582 if (!redirty) {
583 extent_range_clear_dirty_for_io(inode, start, end);
584 redirty = 1;
585 }
f51d2b59
DS
586
587 /* Compression level is applied here and only here */
588 ret = btrfs_compress_pages(
589 compress_type | (fs_info->compress_level << 4),
261507a0 590 inode->i_mapping, start,
38c31464 591 pages,
4d3a800e 592 &nr_pages,
261507a0 593 &total_in,
e5d74902 594 &total_compressed);
c8b97818
CM
595
596 if (!ret) {
7073017a 597 unsigned long offset = offset_in_page(total_compressed);
4d3a800e 598 struct page *page = pages[nr_pages - 1];
c8b97818
CM
599 char *kaddr;
600
601 /* zero the tail end of the last page, we might be
602 * sending it down to disk
603 */
604 if (offset) {
7ac687d9 605 kaddr = kmap_atomic(page);
c8b97818 606 memset(kaddr + offset, 0,
09cbfeaf 607 PAGE_SIZE - offset);
7ac687d9 608 kunmap_atomic(kaddr);
c8b97818
CM
609 }
610 will_compress = 1;
611 }
612 }
560f7d75 613cont:
c8b97818
CM
614 if (start == 0) {
615 /* lets try to make an inline extent */
6018ba0a 616 if (ret || total_in < actual_end) {
c8b97818 617 /* we didn't compress the entire range, try
771ed689 618 * to make an uncompressed inline extent.
c8b97818 619 */
a0349401
NB
620 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
621 0, BTRFS_COMPRESS_NONE,
622 NULL);
c8b97818 623 } else {
771ed689 624 /* try making a compressed inline extent */
a0349401 625 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
fe3f566c
LZ
626 total_compressed,
627 compress_type, pages);
c8b97818 628 }
79787eaa 629 if (ret <= 0) {
151a41bc 630 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
631 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
632 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
633 unsigned long page_error_op;
634
e6eb4314 635 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 636
771ed689 637 /*
79787eaa
JM
638 * inline extent creation worked or returned error,
639 * we don't need to create any more async work items.
640 * Unlock and free up our temp pages.
8b62f87b
JB
641 *
642 * We use DO_ACCOUNTING here because we need the
643 * delalloc_release_metadata to be done _after_ we drop
644 * our outstanding extent for clearing delalloc for this
645 * range.
771ed689 646 */
ad7ff17b
NB
647 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
648 NULL,
74e9194a 649 clear_flags,
ba8b04c1 650 PAGE_UNLOCK |
c2790a2e
JB
651 PAGE_CLEAR_DIRTY |
652 PAGE_SET_WRITEBACK |
e6eb4314 653 page_error_op |
c2790a2e 654 PAGE_END_WRITEBACK);
cecc8d90
NB
655
656 for (i = 0; i < nr_pages; i++) {
657 WARN_ON(pages[i]->mapping);
658 put_page(pages[i]);
659 }
660 kfree(pages);
661
662 return 0;
c8b97818
CM
663 }
664 }
665
666 if (will_compress) {
667 /*
668 * we aren't doing an inline extent round the compressed size
669 * up to a block size boundary so the allocator does sane
670 * things
671 */
fda2832f 672 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
673
674 /*
675 * one last check to make sure the compression is really a
170607eb
TT
676 * win, compare the page count read with the blocks on disk,
677 * compression must free at least one sector size
c8b97818 678 */
09cbfeaf 679 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 680 if (total_compressed + blocksize <= total_in) {
ac3e9933 681 compressed_extents++;
c8bb0c8b
AS
682
683 /*
684 * The async work queues will take care of doing actual
685 * allocation on disk for these compressed pages, and
686 * will submit them to the elevator.
687 */
b5326271 688 add_async_extent(async_chunk, start, total_in,
4d3a800e 689 total_compressed, pages, nr_pages,
c8bb0c8b
AS
690 compress_type);
691
1170862d
TT
692 if (start + total_in < end) {
693 start += total_in;
c8bb0c8b
AS
694 pages = NULL;
695 cond_resched();
696 goto again;
697 }
ac3e9933 698 return compressed_extents;
c8b97818
CM
699 }
700 }
c8bb0c8b 701 if (pages) {
c8b97818
CM
702 /*
703 * the compression code ran but failed to make things smaller,
704 * free any pages it allocated and our page pointer array
705 */
4d3a800e 706 for (i = 0; i < nr_pages; i++) {
70b99e69 707 WARN_ON(pages[i]->mapping);
09cbfeaf 708 put_page(pages[i]);
c8b97818
CM
709 }
710 kfree(pages);
711 pages = NULL;
712 total_compressed = 0;
4d3a800e 713 nr_pages = 0;
c8b97818
CM
714
715 /* flag the file so we don't compress in the future */
0b246afa 716 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 717 !(BTRFS_I(inode)->prop_compress)) {
a555f810 718 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 719 }
c8b97818 720 }
f03d9301 721cleanup_and_bail_uncompressed:
c8bb0c8b
AS
722 /*
723 * No compression, but we still need to write the pages in the file
724 * we've been given so far. redirty the locked page if it corresponds
725 * to our extent and set things up for the async work queue to run
726 * cow_file_range to do the normal delalloc dance.
727 */
1d53c9e6
CM
728 if (async_chunk->locked_page &&
729 (page_offset(async_chunk->locked_page) >= start &&
730 page_offset(async_chunk->locked_page)) <= end) {
1368c6da 731 __set_page_dirty_nobuffers(async_chunk->locked_page);
c8bb0c8b 732 /* unlocked later on in the async handlers */
1d53c9e6 733 }
c8bb0c8b
AS
734
735 if (redirty)
736 extent_range_redirty_for_io(inode, start, end);
b5326271 737 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
c8bb0c8b 738 BTRFS_COMPRESS_NONE);
ac3e9933 739 compressed_extents++;
3b951516 740
ac3e9933 741 return compressed_extents;
771ed689 742}
771ed689 743
40ae837b
FM
744static void free_async_extent_pages(struct async_extent *async_extent)
745{
746 int i;
747
748 if (!async_extent->pages)
749 return;
750
751 for (i = 0; i < async_extent->nr_pages; i++) {
752 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 753 put_page(async_extent->pages[i]);
40ae837b
FM
754 }
755 kfree(async_extent->pages);
756 async_extent->nr_pages = 0;
757 async_extent->pages = NULL;
771ed689
CM
758}
759
760/*
761 * phase two of compressed writeback. This is the ordered portion
762 * of the code, which only gets called in the order the work was
763 * queued. We walk all the async extents created by compress_file_range
764 * and send them down to the disk.
765 */
b5326271 766static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
771ed689 767{
a0ff10dc
NB
768 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
769 struct btrfs_fs_info *fs_info = inode->root->fs_info;
771ed689
CM
770 struct async_extent *async_extent;
771 u64 alloc_hint = 0;
771ed689
CM
772 struct btrfs_key ins;
773 struct extent_map *em;
a0ff10dc
NB
774 struct btrfs_root *root = inode->root;
775 struct extent_io_tree *io_tree = &inode->io_tree;
f5a84ee3 776 int ret = 0;
771ed689 777
3e04e7f1 778again:
b5326271
NB
779 while (!list_empty(&async_chunk->extents)) {
780 async_extent = list_entry(async_chunk->extents.next,
771ed689
CM
781 struct async_extent, list);
782 list_del(&async_extent->list);
c8b97818 783
f5a84ee3 784retry:
7447555f
NB
785 lock_extent(io_tree, async_extent->start,
786 async_extent->start + async_extent->ram_size - 1);
771ed689
CM
787 /* did the compression code fall back to uncompressed IO? */
788 if (!async_extent->pages) {
789 int page_started = 0;
790 unsigned long nr_written = 0;
791
771ed689 792 /* allocate blocks */
a0ff10dc 793 ret = cow_file_range(inode, async_chunk->locked_page,
f5a84ee3
JB
794 async_extent->start,
795 async_extent->start +
796 async_extent->ram_size - 1,
330a5827 797 &page_started, &nr_written, 0);
771ed689 798
79787eaa
JM
799 /* JDM XXX */
800
771ed689
CM
801 /*
802 * if page_started, cow_file_range inserted an
803 * inline extent and took care of all the unlocking
804 * and IO for us. Otherwise, we need to submit
805 * all those pages down to the drive.
806 */
f5a84ee3 807 if (!page_started && !ret)
a0ff10dc 808 extent_write_locked_range(&inode->vfs_inode,
5e3ee236 809 async_extent->start,
d397712b 810 async_extent->start +
771ed689 811 async_extent->ram_size - 1,
771ed689 812 WB_SYNC_ALL);
1d53c9e6 813 else if (ret && async_chunk->locked_page)
b5326271 814 unlock_page(async_chunk->locked_page);
771ed689
CM
815 kfree(async_extent);
816 cond_resched();
817 continue;
818 }
819
18513091 820 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
821 async_extent->compressed_size,
822 async_extent->compressed_size,
e570fd27 823 0, alloc_hint, &ins, 1, 1);
f5a84ee3 824 if (ret) {
40ae837b 825 free_async_extent_pages(async_extent);
3e04e7f1 826
fdf8e2ea
JB
827 if (ret == -ENOSPC) {
828 unlock_extent(io_tree, async_extent->start,
829 async_extent->start +
830 async_extent->ram_size - 1);
ce62003f
LB
831
832 /*
833 * we need to redirty the pages if we decide to
834 * fallback to uncompressed IO, otherwise we
835 * will not submit these pages down to lower
836 * layers.
837 */
a0ff10dc 838 extent_range_redirty_for_io(&inode->vfs_inode,
ce62003f
LB
839 async_extent->start,
840 async_extent->start +
841 async_extent->ram_size - 1);
842
79787eaa 843 goto retry;
fdf8e2ea 844 }
3e04e7f1 845 goto out_free;
f5a84ee3 846 }
c2167754
YZ
847 /*
848 * here we're doing allocation and writeback of the
849 * compressed pages
850 */
a0ff10dc 851 em = create_io_em(inode, async_extent->start,
6f9994db
LB
852 async_extent->ram_size, /* len */
853 async_extent->start, /* orig_start */
854 ins.objectid, /* block_start */
855 ins.offset, /* block_len */
856 ins.offset, /* orig_block_len */
857 async_extent->ram_size, /* ram_bytes */
858 async_extent->compress_type,
859 BTRFS_ORDERED_COMPRESSED);
860 if (IS_ERR(em))
861 /* ret value is not necessary due to void function */
3e04e7f1 862 goto out_free_reserve;
6f9994db 863 free_extent_map(em);
3e04e7f1 864
a0ff10dc 865 ret = btrfs_add_ordered_extent_compress(inode,
261507a0
LZ
866 async_extent->start,
867 ins.objectid,
868 async_extent->ram_size,
869 ins.offset,
870 BTRFS_ORDERED_COMPRESSED,
871 async_extent->compress_type);
d9f85963 872 if (ret) {
a0ff10dc 873 btrfs_drop_extent_cache(inode, async_extent->start,
d9f85963
FM
874 async_extent->start +
875 async_extent->ram_size - 1, 0);
3e04e7f1 876 goto out_free_reserve;
d9f85963 877 }
0b246afa 878 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 879
771ed689
CM
880 /*
881 * clear dirty, set writeback and unlock the pages.
882 */
a0ff10dc 883 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
884 async_extent->start +
885 async_extent->ram_size - 1,
151a41bc
JB
886 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
887 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 888 PAGE_SET_WRITEBACK);
a0ff10dc 889 if (btrfs_submit_compressed_write(inode, async_extent->start,
d397712b
CM
890 async_extent->ram_size,
891 ins.objectid,
892 ins.offset, async_extent->pages,
f82b7359 893 async_extent->nr_pages,
ec39f769
CM
894 async_chunk->write_flags,
895 async_chunk->blkcg_css)) {
fce2a4e6
FM
896 struct page *p = async_extent->pages[0];
897 const u64 start = async_extent->start;
898 const u64 end = start + async_extent->ram_size - 1;
899
a0ff10dc 900 p->mapping = inode->vfs_inode.i_mapping;
c629732d 901 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
7087a9d8 902
fce2a4e6 903 p->mapping = NULL;
a0ff10dc 904 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
fce2a4e6
FM
905 PAGE_END_WRITEBACK |
906 PAGE_SET_ERROR);
40ae837b 907 free_async_extent_pages(async_extent);
fce2a4e6 908 }
771ed689
CM
909 alloc_hint = ins.objectid + ins.offset;
910 kfree(async_extent);
911 cond_resched();
912 }
dec8f175 913 return;
3e04e7f1 914out_free_reserve:
0b246afa 915 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 916 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 917out_free:
a0ff10dc 918 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
919 async_extent->start +
920 async_extent->ram_size - 1,
c2790a2e 921 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 922 EXTENT_DELALLOC_NEW |
151a41bc
JB
923 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
924 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
925 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
926 PAGE_SET_ERROR);
40ae837b 927 free_async_extent_pages(async_extent);
79787eaa 928 kfree(async_extent);
3e04e7f1 929 goto again;
771ed689
CM
930}
931
43c69849 932static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
4b46fce2
JB
933 u64 num_bytes)
934{
43c69849 935 struct extent_map_tree *em_tree = &inode->extent_tree;
4b46fce2
JB
936 struct extent_map *em;
937 u64 alloc_hint = 0;
938
939 read_lock(&em_tree->lock);
940 em = search_extent_mapping(em_tree, start, num_bytes);
941 if (em) {
942 /*
943 * if block start isn't an actual block number then find the
944 * first block in this inode and use that as a hint. If that
945 * block is also bogus then just don't worry about it.
946 */
947 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
948 free_extent_map(em);
949 em = search_extent_mapping(em_tree, 0, 0);
950 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
951 alloc_hint = em->block_start;
952 if (em)
953 free_extent_map(em);
954 } else {
955 alloc_hint = em->block_start;
956 free_extent_map(em);
957 }
958 }
959 read_unlock(&em_tree->lock);
960
961 return alloc_hint;
962}
963
771ed689
CM
964/*
965 * when extent_io.c finds a delayed allocation range in the file,
966 * the call backs end up in this code. The basic idea is to
967 * allocate extents on disk for the range, and create ordered data structs
968 * in ram to track those extents.
969 *
970 * locked_page is the page that writepage had locked already. We use
971 * it to make sure we don't do extra locks or unlocks.
972 *
973 * *page_started is set to one if we unlock locked_page and do everything
974 * required to start IO on it. It may be clean and already done with
975 * IO when we return.
976 */
6e26c442 977static noinline int cow_file_range(struct btrfs_inode *inode,
00361589 978 struct page *locked_page,
74e9194a 979 u64 start, u64 end, int *page_started,
330a5827 980 unsigned long *nr_written, int unlock)
771ed689 981{
6e26c442
NB
982 struct btrfs_root *root = inode->root;
983 struct btrfs_fs_info *fs_info = root->fs_info;
771ed689
CM
984 u64 alloc_hint = 0;
985 u64 num_bytes;
986 unsigned long ram_size;
a315e68f 987 u64 cur_alloc_size = 0;
432cd2a1 988 u64 min_alloc_size;
0b246afa 989 u64 blocksize = fs_info->sectorsize;
771ed689
CM
990 struct btrfs_key ins;
991 struct extent_map *em;
a315e68f
FM
992 unsigned clear_bits;
993 unsigned long page_ops;
994 bool extent_reserved = false;
771ed689
CM
995 int ret = 0;
996
6e26c442 997 if (btrfs_is_free_space_inode(inode)) {
02ecd2c2 998 WARN_ON_ONCE(1);
29bce2f3
JB
999 ret = -EINVAL;
1000 goto out_unlock;
02ecd2c2 1001 }
771ed689 1002
fda2832f 1003 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 1004 num_bytes = max(blocksize, num_bytes);
566b1760 1005 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 1006
6e26c442 1007 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
4cb5300b 1008
771ed689
CM
1009 if (start == 0) {
1010 /* lets try to make an inline extent */
6e26c442 1011 ret = cow_file_range_inline(inode, start, end, 0,
d02c0e20 1012 BTRFS_COMPRESS_NONE, NULL);
771ed689 1013 if (ret == 0) {
8b62f87b
JB
1014 /*
1015 * We use DO_ACCOUNTING here because we need the
1016 * delalloc_release_metadata to be run _after_ we drop
1017 * our outstanding extent for clearing delalloc for this
1018 * range.
1019 */
6e26c442 1020 extent_clear_unlock_delalloc(inode, start, end, NULL,
c2790a2e 1021 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
1022 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1023 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
1024 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1025 PAGE_END_WRITEBACK);
771ed689 1026 *nr_written = *nr_written +
09cbfeaf 1027 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 1028 *page_started = 1;
771ed689 1029 goto out;
79787eaa 1030 } else if (ret < 0) {
79787eaa 1031 goto out_unlock;
771ed689
CM
1032 }
1033 }
1034
6e26c442
NB
1035 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1036 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
771ed689 1037
432cd2a1
FM
1038 /*
1039 * Relocation relies on the relocated extents to have exactly the same
1040 * size as the original extents. Normally writeback for relocation data
1041 * extents follows a NOCOW path because relocation preallocates the
1042 * extents. However, due to an operation such as scrub turning a block
1043 * group to RO mode, it may fallback to COW mode, so we must make sure
1044 * an extent allocated during COW has exactly the requested size and can
1045 * not be split into smaller extents, otherwise relocation breaks and
1046 * fails during the stage where it updates the bytenr of file extent
1047 * items.
1048 */
1049 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1050 min_alloc_size = num_bytes;
1051 else
1052 min_alloc_size = fs_info->sectorsize;
1053
3752d22f
AJ
1054 while (num_bytes > 0) {
1055 cur_alloc_size = num_bytes;
18513091 1056 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
432cd2a1 1057 min_alloc_size, 0, alloc_hint,
e570fd27 1058 &ins, 1, 1);
00361589 1059 if (ret < 0)
79787eaa 1060 goto out_unlock;
a315e68f
FM
1061 cur_alloc_size = ins.offset;
1062 extent_reserved = true;
d397712b 1063
771ed689 1064 ram_size = ins.offset;
6e26c442 1065 em = create_io_em(inode, start, ins.offset, /* len */
6f9994db
LB
1066 start, /* orig_start */
1067 ins.objectid, /* block_start */
1068 ins.offset, /* block_len */
1069 ins.offset, /* orig_block_len */
1070 ram_size, /* ram_bytes */
1071 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1072 BTRFS_ORDERED_REGULAR /* type */);
090a127a
SY
1073 if (IS_ERR(em)) {
1074 ret = PTR_ERR(em);
ace68bac 1075 goto out_reserve;
090a127a 1076 }
6f9994db 1077 free_extent_map(em);
e6dcd2dc 1078
6e26c442
NB
1079 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1080 ram_size, cur_alloc_size, 0);
ace68bac 1081 if (ret)
d9f85963 1082 goto out_drop_extent_cache;
c8b97818 1083
17d217fe
YZ
1084 if (root->root_key.objectid ==
1085 BTRFS_DATA_RELOC_TREE_OBJECTID) {
6e26c442 1086 ret = btrfs_reloc_clone_csums(inode, start,
17d217fe 1087 cur_alloc_size);
4dbd80fb
QW
1088 /*
1089 * Only drop cache here, and process as normal.
1090 *
1091 * We must not allow extent_clear_unlock_delalloc()
1092 * at out_unlock label to free meta of this ordered
1093 * extent, as its meta should be freed by
1094 * btrfs_finish_ordered_io().
1095 *
1096 * So we must continue until @start is increased to
1097 * skip current ordered extent.
1098 */
00361589 1099 if (ret)
6e26c442 1100 btrfs_drop_extent_cache(inode, start,
4dbd80fb 1101 start + ram_size - 1, 0);
17d217fe
YZ
1102 }
1103
0b246afa 1104 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1105
c8b97818
CM
1106 /* we're not doing compressed IO, don't unlock the first
1107 * page (which the caller expects to stay locked), don't
1108 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1109 *
1110 * Do set the Private2 bit so we know this page was properly
1111 * setup for writepage
c8b97818 1112 */
a315e68f
FM
1113 page_ops = unlock ? PAGE_UNLOCK : 0;
1114 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1115
6e26c442 1116 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
74e9194a 1117 locked_page,
c2790a2e 1118 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1119 page_ops);
3752d22f
AJ
1120 if (num_bytes < cur_alloc_size)
1121 num_bytes = 0;
4dbd80fb 1122 else
3752d22f 1123 num_bytes -= cur_alloc_size;
c59f8951
CM
1124 alloc_hint = ins.objectid + ins.offset;
1125 start += cur_alloc_size;
a315e68f 1126 extent_reserved = false;
4dbd80fb
QW
1127
1128 /*
1129 * btrfs_reloc_clone_csums() error, since start is increased
1130 * extent_clear_unlock_delalloc() at out_unlock label won't
1131 * free metadata of current ordered extent, we're OK to exit.
1132 */
1133 if (ret)
1134 goto out_unlock;
b888db2b 1135 }
79787eaa 1136out:
be20aa9d 1137 return ret;
b7d5b0a8 1138
d9f85963 1139out_drop_extent_cache:
6e26c442 1140 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1141out_reserve:
0b246afa 1142 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1143 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1144out_unlock:
a7e3b975
FM
1145 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1146 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1147 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1148 PAGE_END_WRITEBACK;
1149 /*
1150 * If we reserved an extent for our delalloc range (or a subrange) and
1151 * failed to create the respective ordered extent, then it means that
1152 * when we reserved the extent we decremented the extent's size from
1153 * the data space_info's bytes_may_use counter and incremented the
1154 * space_info's bytes_reserved counter by the same amount. We must make
1155 * sure extent_clear_unlock_delalloc() does not try to decrement again
1156 * the data space_info's bytes_may_use counter, therefore we do not pass
1157 * it the flag EXTENT_CLEAR_DATA_RESV.
1158 */
1159 if (extent_reserved) {
6e26c442 1160 extent_clear_unlock_delalloc(inode, start,
e2c8e92d 1161 start + cur_alloc_size - 1,
a315e68f
FM
1162 locked_page,
1163 clear_bits,
1164 page_ops);
1165 start += cur_alloc_size;
1166 if (start >= end)
1167 goto out;
1168 }
6e26c442 1169 extent_clear_unlock_delalloc(inode, start, end, locked_page,
a315e68f
FM
1170 clear_bits | EXTENT_CLEAR_DATA_RESV,
1171 page_ops);
79787eaa 1172 goto out;
771ed689 1173}
c8b97818 1174
771ed689
CM
1175/*
1176 * work queue call back to started compression on a file and pages
1177 */
1178static noinline void async_cow_start(struct btrfs_work *work)
1179{
b5326271 1180 struct async_chunk *async_chunk;
ac3e9933 1181 int compressed_extents;
771ed689 1182
b5326271 1183 async_chunk = container_of(work, struct async_chunk, work);
771ed689 1184
ac3e9933
NB
1185 compressed_extents = compress_file_range(async_chunk);
1186 if (compressed_extents == 0) {
b5326271
NB
1187 btrfs_add_delayed_iput(async_chunk->inode);
1188 async_chunk->inode = NULL;
8180ef88 1189 }
771ed689
CM
1190}
1191
1192/*
1193 * work queue call back to submit previously compressed pages
1194 */
1195static noinline void async_cow_submit(struct btrfs_work *work)
1196{
c5a68aec
NB
1197 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1198 work);
1199 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
771ed689
CM
1200 unsigned long nr_pages;
1201
b5326271 1202 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
09cbfeaf 1203 PAGE_SHIFT;
771ed689 1204
093258e6 1205 /* atomic_sub_return implies a barrier */
0b246afa 1206 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
093258e6
DS
1207 5 * SZ_1M)
1208 cond_wake_up_nomb(&fs_info->async_submit_wait);
771ed689 1209
4546d178 1210 /*
b5326271 1211 * ->inode could be NULL if async_chunk_start has failed to compress,
4546d178
NB
1212 * in which case we don't have anything to submit, yet we need to
1213 * always adjust ->async_delalloc_pages as its paired with the init
1214 * happening in cow_file_range_async
1215 */
b5326271
NB
1216 if (async_chunk->inode)
1217 submit_compressed_extents(async_chunk);
771ed689 1218}
c8b97818 1219
771ed689
CM
1220static noinline void async_cow_free(struct btrfs_work *work)
1221{
b5326271 1222 struct async_chunk *async_chunk;
97db1204 1223
b5326271
NB
1224 async_chunk = container_of(work, struct async_chunk, work);
1225 if (async_chunk->inode)
1226 btrfs_add_delayed_iput(async_chunk->inode);
ec39f769
CM
1227 if (async_chunk->blkcg_css)
1228 css_put(async_chunk->blkcg_css);
97db1204
NB
1229 /*
1230 * Since the pointer to 'pending' is at the beginning of the array of
b5326271 1231 * async_chunk's, freeing it ensures the whole array has been freed.
97db1204 1232 */
b5326271 1233 if (atomic_dec_and_test(async_chunk->pending))
b1c16ac9 1234 kvfree(async_chunk->pending);
771ed689
CM
1235}
1236
751b6431 1237static int cow_file_range_async(struct btrfs_inode *inode,
ec39f769
CM
1238 struct writeback_control *wbc,
1239 struct page *locked_page,
771ed689 1240 u64 start, u64 end, int *page_started,
fac07d2b 1241 unsigned long *nr_written)
771ed689 1242{
751b6431 1243 struct btrfs_fs_info *fs_info = inode->root->fs_info;
ec39f769 1244 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
97db1204
NB
1245 struct async_cow *ctx;
1246 struct async_chunk *async_chunk;
771ed689
CM
1247 unsigned long nr_pages;
1248 u64 cur_end;
97db1204
NB
1249 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1250 int i;
1251 bool should_compress;
b1c16ac9 1252 unsigned nofs_flag;
fac07d2b 1253 const unsigned int write_flags = wbc_to_write_flags(wbc);
771ed689 1254
751b6431 1255 unlock_extent(&inode->io_tree, start, end);
97db1204 1256
751b6431 1257 if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
97db1204
NB
1258 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1259 num_chunks = 1;
1260 should_compress = false;
1261 } else {
1262 should_compress = true;
1263 }
1264
b1c16ac9
NB
1265 nofs_flag = memalloc_nofs_save();
1266 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1267 memalloc_nofs_restore(nofs_flag);
1268
97db1204
NB
1269 if (!ctx) {
1270 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1271 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1272 EXTENT_DO_ACCOUNTING;
1273 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1274 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1275 PAGE_SET_ERROR;
1276
751b6431
NB
1277 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1278 clear_bits, page_ops);
97db1204
NB
1279 return -ENOMEM;
1280 }
1281
1282 async_chunk = ctx->chunks;
1283 atomic_set(&ctx->num_chunks, num_chunks);
1284
1285 for (i = 0; i < num_chunks; i++) {
1286 if (should_compress)
1287 cur_end = min(end, start + SZ_512K - 1);
1288 else
1289 cur_end = end;
771ed689 1290
bd4691a0
NB
1291 /*
1292 * igrab is called higher up in the call chain, take only the
1293 * lightweight reference for the callback lifetime
1294 */
751b6431 1295 ihold(&inode->vfs_inode);
97db1204 1296 async_chunk[i].pending = &ctx->num_chunks;
751b6431 1297 async_chunk[i].inode = &inode->vfs_inode;
97db1204
NB
1298 async_chunk[i].start = start;
1299 async_chunk[i].end = cur_end;
97db1204
NB
1300 async_chunk[i].write_flags = write_flags;
1301 INIT_LIST_HEAD(&async_chunk[i].extents);
1302
1d53c9e6
CM
1303 /*
1304 * The locked_page comes all the way from writepage and its
1305 * the original page we were actually given. As we spread
1306 * this large delalloc region across multiple async_chunk
1307 * structs, only the first struct needs a pointer to locked_page
1308 *
1309 * This way we don't need racey decisions about who is supposed
1310 * to unlock it.
1311 */
1312 if (locked_page) {
ec39f769
CM
1313 /*
1314 * Depending on the compressibility, the pages might or
1315 * might not go through async. We want all of them to
1316 * be accounted against wbc once. Let's do it here
1317 * before the paths diverge. wbc accounting is used
1318 * only for foreign writeback detection and doesn't
1319 * need full accuracy. Just account the whole thing
1320 * against the first page.
1321 */
1322 wbc_account_cgroup_owner(wbc, locked_page,
1323 cur_end - start);
1d53c9e6
CM
1324 async_chunk[i].locked_page = locked_page;
1325 locked_page = NULL;
1326 } else {
1327 async_chunk[i].locked_page = NULL;
1328 }
1329
ec39f769
CM
1330 if (blkcg_css != blkcg_root_css) {
1331 css_get(blkcg_css);
1332 async_chunk[i].blkcg_css = blkcg_css;
1333 } else {
1334 async_chunk[i].blkcg_css = NULL;
1335 }
1336
a0cac0ec
OS
1337 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1338 async_cow_submit, async_cow_free);
771ed689 1339
97db1204 1340 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
0b246afa 1341 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1342
97db1204 1343 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
771ed689 1344
771ed689
CM
1345 *nr_written += nr_pages;
1346 start = cur_end + 1;
1347 }
1348 *page_started = 1;
1349 return 0;
be20aa9d
CM
1350}
1351
2ff7e61e 1352static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1353 u64 bytenr, u64 num_bytes)
1354{
1355 int ret;
1356 struct btrfs_ordered_sum *sums;
1357 LIST_HEAD(list);
1358
0b246afa 1359 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1360 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1361 if (ret == 0 && list_empty(&list))
1362 return 0;
1363
1364 while (!list_empty(&list)) {
1365 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1366 list_del(&sums->list);
1367 kfree(sums);
1368 }
58113753
LB
1369 if (ret < 0)
1370 return ret;
17d217fe
YZ
1371 return 1;
1372}
1373
8ba96f3d 1374static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
467dc47e
FM
1375 const u64 start, const u64 end,
1376 int *page_started, unsigned long *nr_written)
1377{
8ba96f3d
NB
1378 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1379 const bool is_reloc_ino = (inode->root->root_key.objectid ==
6bd335b4 1380 BTRFS_DATA_RELOC_TREE_OBJECTID);
2166e5ed 1381 const u64 range_bytes = end + 1 - start;
8ba96f3d 1382 struct extent_io_tree *io_tree = &inode->io_tree;
467dc47e
FM
1383 u64 range_start = start;
1384 u64 count;
1385
1386 /*
1387 * If EXTENT_NORESERVE is set it means that when the buffered write was
1388 * made we had not enough available data space and therefore we did not
1389 * reserve data space for it, since we though we could do NOCOW for the
1390 * respective file range (either there is prealloc extent or the inode
1391 * has the NOCOW bit set).
1392 *
1393 * However when we need to fallback to COW mode (because for example the
1394 * block group for the corresponding extent was turned to RO mode by a
1395 * scrub or relocation) we need to do the following:
1396 *
1397 * 1) We increment the bytes_may_use counter of the data space info.
1398 * If COW succeeds, it allocates a new data extent and after doing
1399 * that it decrements the space info's bytes_may_use counter and
1400 * increments its bytes_reserved counter by the same amount (we do
1401 * this at btrfs_add_reserved_bytes()). So we need to increment the
1402 * bytes_may_use counter to compensate (when space is reserved at
1403 * buffered write time, the bytes_may_use counter is incremented);
1404 *
1405 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1406 * that if the COW path fails for any reason, it decrements (through
1407 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1408 * data space info, which we incremented in the step above.
2166e5ed
FM
1409 *
1410 * If we need to fallback to cow and the inode corresponds to a free
6bd335b4
FM
1411 * space cache inode or an inode of the data relocation tree, we must
1412 * also increment bytes_may_use of the data space_info for the same
1413 * reason. Space caches and relocated data extents always get a prealloc
2166e5ed 1414 * extent for them, however scrub or balance may have set the block
6bd335b4
FM
1415 * group that contains that extent to RO mode and therefore force COW
1416 * when starting writeback.
467dc47e 1417 */
2166e5ed 1418 count = count_range_bits(io_tree, &range_start, end, range_bytes,
467dc47e 1419 EXTENT_NORESERVE, 0);
6bd335b4
FM
1420 if (count > 0 || is_space_ino || is_reloc_ino) {
1421 u64 bytes = count;
8ba96f3d 1422 struct btrfs_fs_info *fs_info = inode->root->fs_info;
467dc47e
FM
1423 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1424
6bd335b4
FM
1425 if (is_space_ino || is_reloc_ino)
1426 bytes = range_bytes;
1427
467dc47e 1428 spin_lock(&sinfo->lock);
2166e5ed 1429 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
467dc47e
FM
1430 spin_unlock(&sinfo->lock);
1431
2166e5ed
FM
1432 if (count > 0)
1433 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1434 0, 0, NULL);
467dc47e
FM
1435 }
1436
8ba96f3d
NB
1437 return cow_file_range(inode, locked_page, start, end, page_started,
1438 nr_written, 1);
467dc47e
FM
1439}
1440
d352ac68
CM
1441/*
1442 * when nowcow writeback call back. This checks for snapshots or COW copies
1443 * of the extents that exist in the file, and COWs the file as required.
1444 *
1445 * If no cow copies or snapshots exist, we write directly to the existing
1446 * blocks on disk
1447 */
968322c8 1448static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
7f366cfe 1449 struct page *locked_page,
3e024846
NB
1450 const u64 start, const u64 end,
1451 int *page_started, int force,
1452 unsigned long *nr_written)
be20aa9d 1453{
968322c8
NB
1454 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1455 struct btrfs_root *root = inode->root;
be20aa9d 1456 struct btrfs_path *path;
3e024846
NB
1457 u64 cow_start = (u64)-1;
1458 u64 cur_offset = start;
8ecebf4d 1459 int ret;
3e024846 1460 bool check_prev = true;
968322c8
NB
1461 const bool freespace_inode = btrfs_is_free_space_inode(inode);
1462 u64 ino = btrfs_ino(inode);
762bf098
NB
1463 bool nocow = false;
1464 u64 disk_bytenr = 0;
be20aa9d
CM
1465
1466 path = btrfs_alloc_path();
17ca04af 1467 if (!path) {
968322c8 1468 extent_clear_unlock_delalloc(inode, start, end, locked_page,
c2790a2e 1469 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1470 EXTENT_DO_ACCOUNTING |
1471 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1472 PAGE_CLEAR_DIRTY |
1473 PAGE_SET_WRITEBACK |
1474 PAGE_END_WRITEBACK);
d8926bb3 1475 return -ENOMEM;
17ca04af 1476 }
82d5902d 1477
80ff3856 1478 while (1) {
3e024846
NB
1479 struct btrfs_key found_key;
1480 struct btrfs_file_extent_item *fi;
1481 struct extent_buffer *leaf;
1482 u64 extent_end;
1483 u64 extent_offset;
3e024846
NB
1484 u64 num_bytes = 0;
1485 u64 disk_num_bytes;
3e024846
NB
1486 u64 ram_bytes;
1487 int extent_type;
762bf098
NB
1488
1489 nocow = false;
3e024846 1490
e4c3b2dc 1491 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1492 cur_offset, 0);
d788a349 1493 if (ret < 0)
79787eaa 1494 goto error;
a6bd9cd1
NB
1495
1496 /*
1497 * If there is no extent for our range when doing the initial
1498 * search, then go back to the previous slot as it will be the
1499 * one containing the search offset
1500 */
80ff3856
YZ
1501 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1502 leaf = path->nodes[0];
1503 btrfs_item_key_to_cpu(leaf, &found_key,
1504 path->slots[0] - 1);
33345d01 1505 if (found_key.objectid == ino &&
80ff3856
YZ
1506 found_key.type == BTRFS_EXTENT_DATA_KEY)
1507 path->slots[0]--;
1508 }
3e024846 1509 check_prev = false;
80ff3856 1510next_slot:
a6bd9cd1 1511 /* Go to next leaf if we have exhausted the current one */
80ff3856
YZ
1512 leaf = path->nodes[0];
1513 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1514 ret = btrfs_next_leaf(root, path);
e8916699
LB
1515 if (ret < 0) {
1516 if (cow_start != (u64)-1)
1517 cur_offset = cow_start;
79787eaa 1518 goto error;
e8916699 1519 }
80ff3856
YZ
1520 if (ret > 0)
1521 break;
1522 leaf = path->nodes[0];
1523 }
be20aa9d 1524
80ff3856
YZ
1525 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1526
a6bd9cd1 1527 /* Didn't find anything for our INO */
1d512cb7
FM
1528 if (found_key.objectid > ino)
1529 break;
a6bd9cd1
NB
1530 /*
1531 * Keep searching until we find an EXTENT_ITEM or there are no
1532 * more extents for this inode
1533 */
1d512cb7
FM
1534 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1535 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1536 path->slots[0]++;
1537 goto next_slot;
1538 }
a6bd9cd1
NB
1539
1540 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1d512cb7 1541 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1542 found_key.offset > end)
1543 break;
1544
a6bd9cd1
NB
1545 /*
1546 * If the found extent starts after requested offset, then
1547 * adjust extent_end to be right before this extent begins
1548 */
80ff3856
YZ
1549 if (found_key.offset > cur_offset) {
1550 extent_end = found_key.offset;
e9061e21 1551 extent_type = 0;
80ff3856
YZ
1552 goto out_check;
1553 }
1554
a6bd9cd1
NB
1555 /*
1556 * Found extent which begins before our range and potentially
1557 * intersect it
1558 */
80ff3856
YZ
1559 fi = btrfs_item_ptr(leaf, path->slots[0],
1560 struct btrfs_file_extent_item);
1561 extent_type = btrfs_file_extent_type(leaf, fi);
1562
cc95bef6 1563 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1564 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1565 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1566 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1567 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1568 extent_end = found_key.offset +
1569 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1570 disk_num_bytes =
1571 btrfs_file_extent_disk_num_bytes(leaf, fi);
a6bd9cd1 1572 /*
de7999af
FM
1573 * If the extent we got ends before our current offset,
1574 * skip to the next extent.
a6bd9cd1 1575 */
de7999af 1576 if (extent_end <= cur_offset) {
80ff3856
YZ
1577 path->slots[0]++;
1578 goto next_slot;
1579 }
a6bd9cd1 1580 /* Skip holes */
17d217fe
YZ
1581 if (disk_bytenr == 0)
1582 goto out_check;
a6bd9cd1 1583 /* Skip compressed/encrypted/encoded extents */
80ff3856
YZ
1584 if (btrfs_file_extent_compression(leaf, fi) ||
1585 btrfs_file_extent_encryption(leaf, fi) ||
1586 btrfs_file_extent_other_encoding(leaf, fi))
1587 goto out_check;
78d4295b 1588 /*
a6bd9cd1
NB
1589 * If extent is created before the last volume's snapshot
1590 * this implies the extent is shared, hence we can't do
1591 * nocow. This is the same check as in
1592 * btrfs_cross_ref_exist but without calling
1593 * btrfs_search_slot.
78d4295b 1594 */
3e024846 1595 if (!freespace_inode &&
27a7ff55 1596 btrfs_file_extent_generation(leaf, fi) <=
78d4295b
EL
1597 btrfs_root_last_snapshot(&root->root_item))
1598 goto out_check;
d899e052
YZ
1599 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1600 goto out_check;
a6bd9cd1 1601 /* If extent is RO, we must COW it */
2ff7e61e 1602 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1603 goto out_check;
58113753
LB
1604 ret = btrfs_cross_ref_exist(root, ino,
1605 found_key.offset -
1606 extent_offset, disk_bytenr);
1607 if (ret) {
1608 /*
1609 * ret could be -EIO if the above fails to read
1610 * metadata.
1611 */
1612 if (ret < 0) {
1613 if (cow_start != (u64)-1)
1614 cur_offset = cow_start;
1615 goto error;
1616 }
1617
3e024846 1618 WARN_ON_ONCE(freespace_inode);
17d217fe 1619 goto out_check;
58113753 1620 }
5d4f98a2 1621 disk_bytenr += extent_offset;
17d217fe
YZ
1622 disk_bytenr += cur_offset - found_key.offset;
1623 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3 1624 /*
a6bd9cd1
NB
1625 * If there are pending snapshots for this root, we
1626 * fall into common COW way
e9894fd3 1627 */
3e024846 1628 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
8ecebf4d 1629 goto out_check;
17d217fe
YZ
1630 /*
1631 * force cow if csum exists in the range.
1632 * this ensure that csum for a given extent are
1633 * either valid or do not exist.
1634 */
58113753
LB
1635 ret = csum_exist_in_range(fs_info, disk_bytenr,
1636 num_bytes);
1637 if (ret) {
58113753
LB
1638 /*
1639 * ret could be -EIO if the above fails to read
1640 * metadata.
1641 */
1642 if (ret < 0) {
1643 if (cow_start != (u64)-1)
1644 cur_offset = cow_start;
1645 goto error;
1646 }
3e024846 1647 WARN_ON_ONCE(freespace_inode);
17d217fe 1648 goto out_check;
91e1f56a 1649 }
8ecebf4d 1650 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
f78c436c 1651 goto out_check;
3e024846 1652 nocow = true;
80ff3856 1653 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e8e21007
NB
1654 extent_end = found_key.offset + ram_bytes;
1655 extent_end = ALIGN(extent_end, fs_info->sectorsize);
922f0518
NB
1656 /* Skip extents outside of our requested range */
1657 if (extent_end <= start) {
1658 path->slots[0]++;
1659 goto next_slot;
1660 }
80ff3856 1661 } else {
e8e21007 1662 /* If this triggers then we have a memory corruption */
290342f6 1663 BUG();
80ff3856
YZ
1664 }
1665out_check:
a6bd9cd1
NB
1666 /*
1667 * If nocow is false then record the beginning of the range
1668 * that needs to be COWed
1669 */
80ff3856
YZ
1670 if (!nocow) {
1671 if (cow_start == (u64)-1)
1672 cow_start = cur_offset;
1673 cur_offset = extent_end;
1674 if (cur_offset > end)
1675 break;
1676 path->slots[0]++;
1677 goto next_slot;
7ea394f1
YZ
1678 }
1679
b3b4aa74 1680 btrfs_release_path(path);
a6bd9cd1
NB
1681
1682 /*
1683 * COW range from cow_start to found_key.offset - 1. As the key
1684 * will contain the beginning of the first extent that can be
1685 * NOCOW, following one which needs to be COW'ed
1686 */
80ff3856 1687 if (cow_start != (u64)-1) {
968322c8 1688 ret = fallback_to_cow(inode, locked_page,
8ba96f3d 1689 cow_start, found_key.offset - 1,
467dc47e 1690 page_started, nr_written);
230ed397 1691 if (ret)
79787eaa 1692 goto error;
80ff3856 1693 cow_start = (u64)-1;
7ea394f1 1694 }
80ff3856 1695
d899e052 1696 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db 1697 u64 orig_start = found_key.offset - extent_offset;
3e024846 1698 struct extent_map *em;
6f9994db 1699
968322c8 1700 em = create_io_em(inode, cur_offset, num_bytes,
6f9994db
LB
1701 orig_start,
1702 disk_bytenr, /* block_start */
1703 num_bytes, /* block_len */
1704 disk_num_bytes, /* orig_block_len */
1705 ram_bytes, BTRFS_COMPRESS_NONE,
1706 BTRFS_ORDERED_PREALLOC);
1707 if (IS_ERR(em)) {
6f9994db
LB
1708 ret = PTR_ERR(em);
1709 goto error;
d899e052 1710 }
6f9994db 1711 free_extent_map(em);
968322c8 1712 ret = btrfs_add_ordered_extent(inode, cur_offset,
bb55f626
NB
1713 disk_bytenr, num_bytes,
1714 num_bytes,
1715 BTRFS_ORDERED_PREALLOC);
762bf098 1716 if (ret) {
968322c8 1717 btrfs_drop_extent_cache(inode, cur_offset,
762bf098
NB
1718 cur_offset + num_bytes - 1,
1719 0);
1720 goto error;
1721 }
d899e052 1722 } else {
968322c8 1723 ret = btrfs_add_ordered_extent(inode, cur_offset,
bb55f626
NB
1724 disk_bytenr, num_bytes,
1725 num_bytes,
1726 BTRFS_ORDERED_NOCOW);
762bf098
NB
1727 if (ret)
1728 goto error;
d899e052 1729 }
80ff3856 1730
f78c436c 1731 if (nocow)
0b246afa 1732 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
762bf098 1733 nocow = false;
771ed689 1734
efa56464 1735 if (root->root_key.objectid ==
4dbd80fb
QW
1736 BTRFS_DATA_RELOC_TREE_OBJECTID)
1737 /*
1738 * Error handled later, as we must prevent
1739 * extent_clear_unlock_delalloc() in error handler
1740 * from freeing metadata of created ordered extent.
1741 */
968322c8 1742 ret = btrfs_reloc_clone_csums(inode, cur_offset,
efa56464 1743 num_bytes);
efa56464 1744
968322c8 1745 extent_clear_unlock_delalloc(inode, cur_offset,
74e9194a 1746 cur_offset + num_bytes - 1,
c2790a2e 1747 locked_page, EXTENT_LOCKED |
18513091
WX
1748 EXTENT_DELALLOC |
1749 EXTENT_CLEAR_DATA_RESV,
1750 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1751
80ff3856 1752 cur_offset = extent_end;
4dbd80fb
QW
1753
1754 /*
1755 * btrfs_reloc_clone_csums() error, now we're OK to call error
1756 * handler, as metadata for created ordered extent will only
1757 * be freed by btrfs_finish_ordered_io().
1758 */
1759 if (ret)
1760 goto error;
80ff3856
YZ
1761 if (cur_offset > end)
1762 break;
be20aa9d 1763 }
b3b4aa74 1764 btrfs_release_path(path);
80ff3856 1765
506481b2 1766 if (cur_offset <= end && cow_start == (u64)-1)
80ff3856 1767 cow_start = cur_offset;
17ca04af 1768
80ff3856 1769 if (cow_start != (u64)-1) {
506481b2 1770 cur_offset = end;
968322c8
NB
1771 ret = fallback_to_cow(inode, locked_page, cow_start, end,
1772 page_started, nr_written);
d788a349 1773 if (ret)
79787eaa 1774 goto error;
80ff3856
YZ
1775 }
1776
79787eaa 1777error:
762bf098
NB
1778 if (nocow)
1779 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1780
17ca04af 1781 if (ret && cur_offset < end)
968322c8 1782 extent_clear_unlock_delalloc(inode, cur_offset, end,
c2790a2e 1783 locked_page, EXTENT_LOCKED |
151a41bc
JB
1784 EXTENT_DELALLOC | EXTENT_DEFRAG |
1785 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1786 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1787 PAGE_SET_WRITEBACK |
1788 PAGE_END_WRITEBACK);
7ea394f1 1789 btrfs_free_path(path);
79787eaa 1790 return ret;
be20aa9d
CM
1791}
1792
0c494225 1793static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end)
47059d93
WS
1794{
1795
0c494225
NB
1796 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1797 !(inode->flags & BTRFS_INODE_PREALLOC))
47059d93
WS
1798 return 0;
1799
1800 /*
1801 * @defrag_bytes is a hint value, no spinlock held here,
1802 * if is not zero, it means the file is defragging.
1803 * Force cow if given extent needs to be defragged.
1804 */
0c494225
NB
1805 if (inode->defrag_bytes &&
1806 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL))
47059d93
WS
1807 return 1;
1808
1809 return 0;
1810}
1811
d352ac68 1812/*
5eaad97a
NB
1813 * Function to process delayed allocation (create CoW) for ranges which are
1814 * being touched for the first time.
d352ac68 1815 */
98456b9c 1816int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
5eaad97a
NB
1817 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1818 struct writeback_control *wbc)
be20aa9d 1819{
be20aa9d 1820 int ret;
98456b9c 1821 int force_cow = need_force_cow(inode, start, end);
a2135011 1822
98456b9c
NB
1823 if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1824 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1825 page_started, 1, nr_written);
98456b9c
NB
1826 } else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1827 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1828 page_started, 0, nr_written);
98456b9c
NB
1829 } else if (!inode_can_compress(inode) ||
1830 !inode_need_compress(inode, start, end)) {
1831 ret = cow_file_range(inode, locked_page, start, end,
1832 page_started, nr_written, 1);
7ddf5a42 1833 } else {
98456b9c
NB
1834 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1835 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
fac07d2b 1836 page_started, nr_written);
7ddf5a42 1837 }
52427260 1838 if (ret)
98456b9c 1839 btrfs_cleanup_ordered_extents(inode, locked_page, start,
d1051d6e 1840 end - start + 1);
b888db2b
CM
1841 return ret;
1842}
1843
abbb55f4
NB
1844void btrfs_split_delalloc_extent(struct inode *inode,
1845 struct extent_state *orig, u64 split)
9ed74f2d 1846{
dcab6a3b
JB
1847 u64 size;
1848
0ca1f7ce 1849 /* not delalloc, ignore it */
9ed74f2d 1850 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1851 return;
9ed74f2d 1852
dcab6a3b
JB
1853 size = orig->end - orig->start + 1;
1854 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1855 u32 num_extents;
dcab6a3b
JB
1856 u64 new_size;
1857
1858 /*
5c848198 1859 * See the explanation in btrfs_merge_delalloc_extent, the same
ba117213 1860 * applies here, just in reverse.
dcab6a3b
JB
1861 */
1862 new_size = orig->end - split + 1;
823bb20a 1863 num_extents = count_max_extents(new_size);
ba117213 1864 new_size = split - orig->start;
823bb20a
DS
1865 num_extents += count_max_extents(new_size);
1866 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1867 return;
1868 }
1869
9e0baf60 1870 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1871 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1872 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1873}
1874
1875/*
5c848198
NB
1876 * Handle merged delayed allocation extents so we can keep track of new extents
1877 * that are just merged onto old extents, such as when we are doing sequential
1878 * writes, so we can properly account for the metadata space we'll need.
9ed74f2d 1879 */
5c848198
NB
1880void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1881 struct extent_state *other)
9ed74f2d 1882{
dcab6a3b 1883 u64 new_size, old_size;
823bb20a 1884 u32 num_extents;
dcab6a3b 1885
9ed74f2d
JB
1886 /* not delalloc, ignore it */
1887 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1888 return;
9ed74f2d 1889
8461a3de
JB
1890 if (new->start > other->start)
1891 new_size = new->end - other->start + 1;
1892 else
1893 new_size = other->end - new->start + 1;
dcab6a3b
JB
1894
1895 /* we're not bigger than the max, unreserve the space and go */
1896 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1897 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1898 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1899 spin_unlock(&BTRFS_I(inode)->lock);
1900 return;
1901 }
1902
1903 /*
ba117213
JB
1904 * We have to add up either side to figure out how many extents were
1905 * accounted for before we merged into one big extent. If the number of
1906 * extents we accounted for is <= the amount we need for the new range
1907 * then we can return, otherwise drop. Think of it like this
1908 *
1909 * [ 4k][MAX_SIZE]
1910 *
1911 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1912 * need 2 outstanding extents, on one side we have 1 and the other side
1913 * we have 1 so they are == and we can return. But in this case
1914 *
1915 * [MAX_SIZE+4k][MAX_SIZE+4k]
1916 *
1917 * Each range on their own accounts for 2 extents, but merged together
1918 * they are only 3 extents worth of accounting, so we need to drop in
1919 * this case.
dcab6a3b 1920 */
ba117213 1921 old_size = other->end - other->start + 1;
823bb20a 1922 num_extents = count_max_extents(old_size);
ba117213 1923 old_size = new->end - new->start + 1;
823bb20a
DS
1924 num_extents += count_max_extents(old_size);
1925 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1926 return;
1927
9e0baf60 1928 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1929 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1930 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1931}
1932
eb73c1b7
MX
1933static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1934 struct inode *inode)
1935{
0b246afa
JM
1936 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1937
eb73c1b7
MX
1938 spin_lock(&root->delalloc_lock);
1939 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1940 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1941 &root->delalloc_inodes);
1942 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1943 &BTRFS_I(inode)->runtime_flags);
1944 root->nr_delalloc_inodes++;
1945 if (root->nr_delalloc_inodes == 1) {
0b246afa 1946 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1947 BUG_ON(!list_empty(&root->delalloc_root));
1948 list_add_tail(&root->delalloc_root,
0b246afa
JM
1949 &fs_info->delalloc_roots);
1950 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1951 }
1952 }
1953 spin_unlock(&root->delalloc_lock);
1954}
1955
2b877331
NB
1956
1957void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1958 struct btrfs_inode *inode)
eb73c1b7 1959{
3ffbd68c 1960 struct btrfs_fs_info *fs_info = root->fs_info;
0b246afa 1961
9e3e97f4
NB
1962 if (!list_empty(&inode->delalloc_inodes)) {
1963 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1964 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1965 &inode->runtime_flags);
eb73c1b7
MX
1966 root->nr_delalloc_inodes--;
1967 if (!root->nr_delalloc_inodes) {
7c8a0d36 1968 ASSERT(list_empty(&root->delalloc_inodes));
0b246afa 1969 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1970 BUG_ON(list_empty(&root->delalloc_root));
1971 list_del_init(&root->delalloc_root);
0b246afa 1972 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1973 }
1974 }
2b877331
NB
1975}
1976
1977static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1978 struct btrfs_inode *inode)
1979{
1980 spin_lock(&root->delalloc_lock);
1981 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
1982 spin_unlock(&root->delalloc_lock);
1983}
1984
d352ac68 1985/*
e06a1fc9
NB
1986 * Properly track delayed allocation bytes in the inode and to maintain the
1987 * list of inodes that have pending delalloc work to be done.
d352ac68 1988 */
e06a1fc9
NB
1989void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1990 unsigned *bits)
291d673e 1991{
0b246afa
JM
1992 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1993
47059d93
WS
1994 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1995 WARN_ON(1);
75eff68e
CM
1996 /*
1997 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1998 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1999 * bit, which is only set or cleared with irqs on
2000 */
0ca1f7ce 2001 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 2002 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2003 u64 len = state->end + 1 - state->start;
8b62f87b 2004 u32 num_extents = count_max_extents(len);
70ddc553 2005 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 2006
8b62f87b
JB
2007 spin_lock(&BTRFS_I(inode)->lock);
2008 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2009 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 2010
6a3891c5 2011 /* For sanity tests */
0b246afa 2012 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2013 return;
2014
104b4e51
NB
2015 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2016 fs_info->delalloc_batch);
df0af1a5 2017 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 2018 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
2019 if (*bits & EXTENT_DEFRAG)
2020 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 2021 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
2022 &BTRFS_I(inode)->runtime_flags))
2023 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 2024 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 2025 }
a7e3b975
FM
2026
2027 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2028 (*bits & EXTENT_DELALLOC_NEW)) {
2029 spin_lock(&BTRFS_I(inode)->lock);
2030 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2031 state->start;
2032 spin_unlock(&BTRFS_I(inode)->lock);
2033 }
291d673e
CM
2034}
2035
d352ac68 2036/*
a36bb5f9
NB
2037 * Once a range is no longer delalloc this function ensures that proper
2038 * accounting happens.
d352ac68 2039 */
a36bb5f9
NB
2040void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2041 struct extent_state *state, unsigned *bits)
291d673e 2042{
a36bb5f9
NB
2043 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2044 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
47059d93 2045 u64 len = state->end + 1 - state->start;
823bb20a 2046 u32 num_extents = count_max_extents(len);
47059d93 2047
4a4b964f
FM
2048 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2049 spin_lock(&inode->lock);
6fc0ef68 2050 inode->defrag_bytes -= len;
4a4b964f
FM
2051 spin_unlock(&inode->lock);
2052 }
47059d93 2053
75eff68e
CM
2054 /*
2055 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 2056 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
2057 * bit, which is only set or cleared with irqs on
2058 */
0ca1f7ce 2059 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 2060 struct btrfs_root *root = inode->root;
83eea1f1 2061 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 2062
8b62f87b
JB
2063 spin_lock(&inode->lock);
2064 btrfs_mod_outstanding_extents(inode, -num_extents);
2065 spin_unlock(&inode->lock);
0ca1f7ce 2066
b6d08f06
JB
2067 /*
2068 * We don't reserve metadata space for space cache inodes so we
52042d8e 2069 * don't need to call delalloc_release_metadata if there is an
b6d08f06
JB
2070 * error.
2071 */
a315e68f 2072 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 2073 root != fs_info->tree_root)
43b18595 2074 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 2075
6a3891c5 2076 /* For sanity tests. */
0b246afa 2077 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2078 return;
2079
a315e68f
FM
2080 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2081 do_list && !(state->state & EXTENT_NORESERVE) &&
2082 (*bits & EXTENT_CLEAR_DATA_RESV))
9db5d510 2083 btrfs_free_reserved_data_space_noquota(fs_info, len);
9ed74f2d 2084
104b4e51
NB
2085 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2086 fs_info->delalloc_batch);
6fc0ef68
NB
2087 spin_lock(&inode->lock);
2088 inode->delalloc_bytes -= len;
2089 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 2090 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 2091 &inode->runtime_flags))
eb73c1b7 2092 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 2093 spin_unlock(&inode->lock);
291d673e 2094 }
a7e3b975
FM
2095
2096 if ((state->state & EXTENT_DELALLOC_NEW) &&
2097 (*bits & EXTENT_DELALLOC_NEW)) {
2098 spin_lock(&inode->lock);
2099 ASSERT(inode->new_delalloc_bytes >= len);
2100 inode->new_delalloc_bytes -= len;
2101 spin_unlock(&inode->lock);
2102 }
291d673e
CM
2103}
2104
d352ac68 2105/*
da12fe54
NB
2106 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2107 * in a chunk's stripe. This function ensures that bios do not span a
2108 * stripe/chunk
6f034ece 2109 *
da12fe54
NB
2110 * @page - The page we are about to add to the bio
2111 * @size - size we want to add to the bio
2112 * @bio - bio we want to ensure is smaller than a stripe
2113 * @bio_flags - flags of the bio
2114 *
2115 * return 1 if page cannot be added to the bio
2116 * return 0 if page can be added to the bio
6f034ece 2117 * return error otherwise
d352ac68 2118 */
da12fe54
NB
2119int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2120 unsigned long bio_flags)
239b14b3 2121{
0b246afa
JM
2122 struct inode *inode = page->mapping->host;
2123 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 2124 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
2125 u64 length = 0;
2126 u64 map_length;
239b14b3 2127 int ret;
89b798ad 2128 struct btrfs_io_geometry geom;
239b14b3 2129
771ed689
CM
2130 if (bio_flags & EXTENT_BIO_COMPRESSED)
2131 return 0;
2132
4f024f37 2133 length = bio->bi_iter.bi_size;
239b14b3 2134 map_length = length;
89b798ad
NB
2135 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2136 &geom);
6f034ece
LB
2137 if (ret < 0)
2138 return ret;
89b798ad
NB
2139
2140 if (geom.len < length + size)
239b14b3 2141 return 1;
3444a972 2142 return 0;
239b14b3
CM
2143}
2144
d352ac68
CM
2145/*
2146 * in order to insert checksums into the metadata in large chunks,
2147 * we wait until bio submission time. All the pages in the bio are
2148 * checksummed and sums are attached onto the ordered extent record.
2149 *
2150 * At IO completion time the cums attached on the ordered extent record
2151 * are inserted into the btree
2152 */
d0ee3934 2153static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
eaf25d93 2154 u64 bio_offset)
065631f6 2155{
c6100a4b 2156 struct inode *inode = private_data;
4e4cbee9 2157 blk_status_t ret = 0;
e015640f 2158
bd242a08 2159 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
79787eaa 2160 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
2161 return 0;
2162}
e015640f 2163
d352ac68 2164/*
cad321ad 2165 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
2166 * on write, or reading the csums from the tree before a read.
2167 *
2168 * Rules about async/sync submit,
2169 * a) read: sync submit
2170 *
2171 * b) write without checksum: sync submit
2172 *
2173 * c) write with checksum:
2174 * c-1) if bio is issued by fsync: sync submit
2175 * (sync_writers != 0)
2176 *
2177 * c-2) if root is reloc root: sync submit
2178 * (only in case of buffered IO)
2179 *
2180 * c-3) otherwise: async submit
d352ac68 2181 */
a56b1c7b 2182static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
2183 int mirror_num,
2184 unsigned long bio_flags)
2185
44b8bd7e 2186{
0b246afa 2187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 2188 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 2189 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 2190 blk_status_t ret = 0;
19b9bdb0 2191 int skip_sum;
b812ce28 2192 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 2193
6cbff00f 2194 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 2195
70ddc553 2196 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 2197 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 2198
37226b21 2199 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 2200 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 2201 if (ret)
61891923 2202 goto out;
5fd02043 2203
d20f7043 2204 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
2205 ret = btrfs_submit_compressed_read(inode, bio,
2206 mirror_num,
2207 bio_flags);
2208 goto out;
c2db1073 2209 } else if (!skip_sum) {
db72e47f 2210 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL);
c2db1073 2211 if (ret)
61891923 2212 goto out;
c2db1073 2213 }
4d1b5fb4 2214 goto mapit;
b812ce28 2215 } else if (async && !skip_sum) {
17d217fe
YZ
2216 /* csum items have already been cloned */
2217 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2218 goto mapit;
19b9bdb0 2219 /* we're doing a write, do the async checksumming */
c6100a4b 2220 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
e7681167 2221 0, inode, btrfs_submit_bio_start);
61891923 2222 goto out;
b812ce28 2223 } else if (!skip_sum) {
bd242a08 2224 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
b812ce28
JB
2225 if (ret)
2226 goto out;
19b9bdb0
CM
2227 }
2228
0b86a832 2229mapit:
08635bae 2230 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
2231
2232out:
4e4cbee9
CH
2233 if (ret) {
2234 bio->bi_status = ret;
4246a0b6
CH
2235 bio_endio(bio);
2236 }
61891923 2237 return ret;
065631f6 2238}
6885f308 2239
d352ac68
CM
2240/*
2241 * given a list of ordered sums record them in the inode. This happens
2242 * at IO completion time based on sums calculated at bio submission time.
2243 */
ba1da2f4 2244static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2245 struct inode *inode, struct list_head *list)
e6dcd2dc 2246{
e6dcd2dc 2247 struct btrfs_ordered_sum *sum;
ac01f26a 2248 int ret;
e6dcd2dc 2249
c6e30871 2250 list_for_each_entry(sum, list, list) {
7c2871a2 2251 trans->adding_csums = true;
ac01f26a 2252 ret = btrfs_csum_file_blocks(trans,
d20f7043 2253 BTRFS_I(inode)->root->fs_info->csum_root, sum);
7c2871a2 2254 trans->adding_csums = false;
ac01f26a
NB
2255 if (ret)
2256 return ret;
e6dcd2dc
CM
2257 }
2258 return 0;
2259}
2260
c2566f22 2261int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
e3b8a485 2262 unsigned int extra_bits,
330a5827 2263 struct extent_state **cached_state)
ea8c2819 2264{
fdb1e121 2265 WARN_ON(PAGE_ALIGNED(end));
c2566f22
NB
2266 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2267 cached_state);
ea8c2819
CM
2268}
2269
d352ac68 2270/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2271struct btrfs_writepage_fixup {
2272 struct page *page;
f4b1363c 2273 struct inode *inode;
247e743c
CM
2274 struct btrfs_work work;
2275};
2276
b2950863 2277static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2278{
2279 struct btrfs_writepage_fixup *fixup;
2280 struct btrfs_ordered_extent *ordered;
2ac55d41 2281 struct extent_state *cached_state = NULL;
364ecf36 2282 struct extent_changeset *data_reserved = NULL;
247e743c
CM
2283 struct page *page;
2284 struct inode *inode;
2285 u64 page_start;
2286 u64 page_end;
25f3c502 2287 int ret = 0;
f4b1363c 2288 bool free_delalloc_space = true;
247e743c
CM
2289
2290 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2291 page = fixup->page;
f4b1363c
JB
2292 inode = fixup->inode;
2293 page_start = page_offset(page);
2294 page_end = page_offset(page) + PAGE_SIZE - 1;
2295
2296 /*
2297 * This is similar to page_mkwrite, we need to reserve the space before
2298 * we take the page lock.
2299 */
2300 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2301 PAGE_SIZE);
4a096752 2302again:
247e743c 2303 lock_page(page);
25f3c502
CM
2304
2305 /*
2306 * Before we queued this fixup, we took a reference on the page.
2307 * page->mapping may go NULL, but it shouldn't be moved to a different
2308 * address space.
2309 */
f4b1363c
JB
2310 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2311 /*
2312 * Unfortunately this is a little tricky, either
2313 *
2314 * 1) We got here and our page had already been dealt with and
2315 * we reserved our space, thus ret == 0, so we need to just
2316 * drop our space reservation and bail. This can happen the
2317 * first time we come into the fixup worker, or could happen
2318 * while waiting for the ordered extent.
2319 * 2) Our page was already dealt with, but we happened to get an
2320 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2321 * this case we obviously don't have anything to release, but
2322 * because the page was already dealt with we don't want to
2323 * mark the page with an error, so make sure we're resetting
2324 * ret to 0. This is why we have this check _before_ the ret
2325 * check, because we do not want to have a surprise ENOSPC
2326 * when the page was already properly dealt with.
2327 */
2328 if (!ret) {
2329 btrfs_delalloc_release_extents(BTRFS_I(inode),
2330 PAGE_SIZE);
86d52921
NB
2331 btrfs_delalloc_release_space(BTRFS_I(inode),
2332 data_reserved,
f4b1363c
JB
2333 page_start, PAGE_SIZE,
2334 true);
2335 }
2336 ret = 0;
247e743c 2337 goto out_page;
f4b1363c 2338 }
247e743c 2339
25f3c502 2340 /*
f4b1363c
JB
2341 * We can't mess with the page state unless it is locked, so now that
2342 * it is locked bail if we failed to make our space reservation.
25f3c502 2343 */
f4b1363c
JB
2344 if (ret)
2345 goto out_page;
247e743c 2346
ff13db41 2347 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2348 &cached_state);
4a096752
CM
2349
2350 /* already ordered? We're done */
8b62b72b 2351 if (PagePrivate2(page))
f4b1363c 2352 goto out_reserved;
4a096752 2353
a776c6fa 2354 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2355 PAGE_SIZE);
4a096752 2356 if (ordered) {
2ac55d41 2357 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
e43bbe5e 2358 page_end, &cached_state);
4a096752
CM
2359 unlock_page(page);
2360 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2361 btrfs_put_ordered_extent(ordered);
4a096752
CM
2362 goto again;
2363 }
247e743c 2364
c2566f22 2365 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, page_end, 0,
330a5827 2366 &cached_state);
25f3c502 2367 if (ret)
53687007 2368 goto out_reserved;
f3038ee3 2369
25f3c502
CM
2370 /*
2371 * Everything went as planned, we're now the owner of a dirty page with
2372 * delayed allocation bits set and space reserved for our COW
2373 * destination.
2374 *
2375 * The page was dirty when we started, nothing should have cleaned it.
2376 */
2377 BUG_ON(!PageDirty(page));
f4b1363c 2378 free_delalloc_space = false;
53687007 2379out_reserved:
8702ba93 2380 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
f4b1363c 2381 if (free_delalloc_space)
86d52921
NB
2382 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
2383 page_start, PAGE_SIZE, true);
2ac55d41 2384 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
e43bbe5e 2385 &cached_state);
247e743c 2386out_page:
25f3c502
CM
2387 if (ret) {
2388 /*
2389 * We hit ENOSPC or other errors. Update the mapping and page
2390 * to reflect the errors and clean the page.
2391 */
2392 mapping_set_error(page->mapping, ret);
2393 end_extent_writepage(page, ret, page_start, page_end);
2394 clear_page_dirty_for_io(page);
2395 SetPageError(page);
2396 }
2397 ClearPageChecked(page);
247e743c 2398 unlock_page(page);
09cbfeaf 2399 put_page(page);
b897abec 2400 kfree(fixup);
364ecf36 2401 extent_changeset_free(data_reserved);
f4b1363c
JB
2402 /*
2403 * As a precaution, do a delayed iput in case it would be the last iput
2404 * that could need flushing space. Recursing back to fixup worker would
2405 * deadlock.
2406 */
2407 btrfs_add_delayed_iput(inode);
247e743c
CM
2408}
2409
2410/*
2411 * There are a few paths in the higher layers of the kernel that directly
2412 * set the page dirty bit without asking the filesystem if it is a
2413 * good idea. This causes problems because we want to make sure COW
2414 * properly happens and the data=ordered rules are followed.
2415 *
c8b97818 2416 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2417 * hasn't been properly setup for IO. We kick off an async process
2418 * to fix it up. The async helper will wait for ordered extents, set
2419 * the delalloc bit and make it safe to write the page.
2420 */
d75855b4 2421int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
247e743c
CM
2422{
2423 struct inode *inode = page->mapping->host;
0b246afa 2424 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2425 struct btrfs_writepage_fixup *fixup;
247e743c 2426
8b62b72b
CM
2427 /* this page is properly in the ordered list */
2428 if (TestClearPagePrivate2(page))
247e743c
CM
2429 return 0;
2430
25f3c502
CM
2431 /*
2432 * PageChecked is set below when we create a fixup worker for this page,
2433 * don't try to create another one if we're already PageChecked()
2434 *
2435 * The extent_io writepage code will redirty the page if we send back
2436 * EAGAIN.
2437 */
247e743c
CM
2438 if (PageChecked(page))
2439 return -EAGAIN;
2440
2441 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2442 if (!fixup)
2443 return -EAGAIN;
f421950f 2444
f4b1363c
JB
2445 /*
2446 * We are already holding a reference to this inode from
2447 * write_cache_pages. We need to hold it because the space reservation
2448 * takes place outside of the page lock, and we can't trust
2449 * page->mapping outside of the page lock.
2450 */
2451 ihold(inode);
247e743c 2452 SetPageChecked(page);
09cbfeaf 2453 get_page(page);
a0cac0ec 2454 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2455 fixup->page = page;
f4b1363c 2456 fixup->inode = inode;
0b246afa 2457 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
25f3c502
CM
2458
2459 return -EAGAIN;
247e743c
CM
2460}
2461
d899e052 2462static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
c553f94d 2463 struct btrfs_inode *inode, u64 file_pos,
9729f10a
QW
2464 struct btrfs_file_extent_item *stack_fi,
2465 u64 qgroup_reserved)
d899e052 2466{
c553f94d 2467 struct btrfs_root *root = inode->root;
d899e052
YZ
2468 struct btrfs_path *path;
2469 struct extent_buffer *leaf;
2470 struct btrfs_key ins;
203f44c5
QW
2471 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2472 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2473 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2474 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
1acae57b 2475 int extent_inserted = 0;
d899e052
YZ
2476 int ret;
2477
2478 path = btrfs_alloc_path();
d8926bb3
MF
2479 if (!path)
2480 return -ENOMEM;
d899e052 2481
a1ed835e
CM
2482 /*
2483 * we may be replacing one extent in the tree with another.
2484 * The new extent is pinned in the extent map, and we don't want
2485 * to drop it from the cache until it is completely in the btree.
2486 *
2487 * So, tell btrfs_drop_extents to leave this extent in the cache.
2488 * the caller is expected to unpin it and allow it to be merged
2489 * with the others.
2490 */
c553f94d 2491 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1acae57b 2492 file_pos + num_bytes, NULL, 0,
203f44c5 2493 1, sizeof(*stack_fi), &extent_inserted);
79787eaa
JM
2494 if (ret)
2495 goto out;
d899e052 2496
1acae57b 2497 if (!extent_inserted) {
c553f94d 2498 ins.objectid = btrfs_ino(inode);
1acae57b
FDBM
2499 ins.offset = file_pos;
2500 ins.type = BTRFS_EXTENT_DATA_KEY;
2501
2502 path->leave_spinning = 1;
2503 ret = btrfs_insert_empty_item(trans, root, path, &ins,
203f44c5 2504 sizeof(*stack_fi));
1acae57b
FDBM
2505 if (ret)
2506 goto out;
2507 }
d899e052 2508 leaf = path->nodes[0];
203f44c5
QW
2509 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2510 write_extent_buffer(leaf, stack_fi,
2511 btrfs_item_ptr_offset(leaf, path->slots[0]),
2512 sizeof(struct btrfs_file_extent_item));
b9473439 2513
d899e052 2514 btrfs_mark_buffer_dirty(leaf);
ce195332 2515 btrfs_release_path(path);
d899e052 2516
c553f94d 2517 inode_add_bytes(&inode->vfs_inode, num_bytes);
d899e052
YZ
2518
2519 ins.objectid = disk_bytenr;
2520 ins.offset = disk_num_bytes;
2521 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2522
c553f94d 2523 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
9ddc959e
JB
2524 if (ret)
2525 goto out;
2526
c553f94d 2527 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
9729f10a 2528 file_pos, qgroup_reserved, &ins);
79787eaa 2529out:
d899e052 2530 btrfs_free_path(path);
b9473439 2531
79787eaa 2532 return ret;
d899e052
YZ
2533}
2534
2ff7e61e 2535static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2536 u64 start, u64 len)
2537{
32da5386 2538 struct btrfs_block_group *cache;
e570fd27 2539
0b246afa 2540 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2541 ASSERT(cache);
2542
2543 spin_lock(&cache->lock);
2544 cache->delalloc_bytes -= len;
2545 spin_unlock(&cache->lock);
2546
2547 btrfs_put_block_group(cache);
2548}
2549
203f44c5
QW
2550static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2551 struct inode *inode,
2552 struct btrfs_ordered_extent *oe)
2553{
2554 struct btrfs_file_extent_item stack_fi;
2555 u64 logical_len;
2556
2557 memset(&stack_fi, 0, sizeof(stack_fi));
2558 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2559 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2560 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2561 oe->disk_num_bytes);
2562 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2563 logical_len = oe->truncated_len;
2564 else
2565 logical_len = oe->num_bytes;
2566 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2567 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2568 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2569 /* Encryption and other encoding is reserved and all 0 */
2570
c553f94d 2571 return insert_reserved_file_extent(trans, BTRFS_I(inode), oe->file_offset,
7dbeaad0 2572 &stack_fi, oe->qgroup_rsv);
203f44c5
QW
2573}
2574
2575/*
2576 * As ordered data IO finishes, this gets called so we can finish
d352ac68
CM
2577 * an ordered extent if the range of bytes in the file it covers are
2578 * fully written.
2579 */
5fd02043 2580static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2581{
5fd02043 2582 struct inode *inode = ordered_extent->inode;
0b246afa 2583 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2584 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2585 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2586 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2587 struct extent_state *cached_state = NULL;
bffe633e 2588 u64 start, end;
261507a0 2589 int compress_type = 0;
77cef2ec 2590 int ret = 0;
bffe633e 2591 u64 logical_len = ordered_extent->num_bytes;
8d510121 2592 bool freespace_inode;
77cef2ec 2593 bool truncated = false;
a7e3b975
FM
2594 bool range_locked = false;
2595 bool clear_new_delalloc_bytes = false;
49940bdd 2596 bool clear_reserved_extent = true;
313facc5 2597 unsigned int clear_bits;
a7e3b975 2598
bffe633e
OS
2599 start = ordered_extent->file_offset;
2600 end = start + ordered_extent->num_bytes - 1;
2601
a7e3b975
FM
2602 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2603 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2604 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2605 clear_new_delalloc_bytes = true;
e6dcd2dc 2606
8d510121 2607 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2608
5fd02043
JB
2609 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2610 ret = -EIO;
2611 goto out;
2612 }
2613
bffe633e 2614 btrfs_free_io_failure_record(BTRFS_I(inode), start, end);
f612496b 2615
77cef2ec
JB
2616 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2617 truncated = true;
2618 logical_len = ordered_extent->truncated_len;
2619 /* Truncated the entire extent, don't bother adding */
2620 if (!logical_len)
2621 goto out;
2622 }
2623
c2167754 2624 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2625 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a 2626
d923afe9 2627 btrfs_inode_safe_disk_i_size_write(inode, 0);
8d510121
NB
2628 if (freespace_inode)
2629 trans = btrfs_join_transaction_spacecache(root);
6c760c07
JB
2630 else
2631 trans = btrfs_join_transaction(root);
2632 if (IS_ERR(trans)) {
2633 ret = PTR_ERR(trans);
2634 trans = NULL;
2635 goto out;
c2167754 2636 }
69fe2d75 2637 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
2638 ret = btrfs_update_inode_fallback(trans, root, inode);
2639 if (ret) /* -ENOMEM or corruption */
66642832 2640 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2641 goto out;
2642 }
e6dcd2dc 2643
a7e3b975 2644 range_locked = true;
bffe633e 2645 lock_extent_bits(io_tree, start, end, &cached_state);
e6dcd2dc 2646
8d510121
NB
2647 if (freespace_inode)
2648 trans = btrfs_join_transaction_spacecache(root);
0cb59c99 2649 else
7a7eaa40 2650 trans = btrfs_join_transaction(root);
79787eaa
JM
2651 if (IS_ERR(trans)) {
2652 ret = PTR_ERR(trans);
2653 trans = NULL;
a7e3b975 2654 goto out;
79787eaa 2655 }
a79b7d4b 2656
69fe2d75 2657 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 2658
c8b97818 2659 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2660 compress_type = ordered_extent->compress_type;
d899e052 2661 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2662 BUG_ON(compress_type);
7a6d7067 2663 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
2664 ordered_extent->file_offset,
2665 ordered_extent->file_offset +
77cef2ec 2666 logical_len);
d899e052 2667 } else {
0b246afa 2668 BUG_ON(root == fs_info->tree_root);
203f44c5
QW
2669 ret = insert_ordered_extent_file_extent(trans, inode,
2670 ordered_extent);
49940bdd
JB
2671 if (!ret) {
2672 clear_reserved_extent = false;
2ff7e61e 2673 btrfs_release_delalloc_bytes(fs_info,
bffe633e
OS
2674 ordered_extent->disk_bytenr,
2675 ordered_extent->disk_num_bytes);
49940bdd 2676 }
d899e052 2677 }
5dc562c5 2678 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
bffe633e
OS
2679 ordered_extent->file_offset,
2680 ordered_extent->num_bytes, trans->transid);
79787eaa 2681 if (ret < 0) {
66642832 2682 btrfs_abort_transaction(trans, ret);
a7e3b975 2683 goto out;
79787eaa 2684 }
2ac55d41 2685
ac01f26a
NB
2686 ret = add_pending_csums(trans, inode, &ordered_extent->list);
2687 if (ret) {
2688 btrfs_abort_transaction(trans, ret);
2689 goto out;
2690 }
e6dcd2dc 2691
d923afe9 2692 btrfs_inode_safe_disk_i_size_write(inode, 0);
6c760c07
JB
2693 ret = btrfs_update_inode_fallback(trans, root, inode);
2694 if (ret) { /* -ENOMEM or corruption */
66642832 2695 btrfs_abort_transaction(trans, ret);
a7e3b975 2696 goto out;
1ef30be1
JB
2697 }
2698 ret = 0;
c2167754 2699out:
313facc5
OS
2700 clear_bits = EXTENT_DEFRAG;
2701 if (range_locked)
2702 clear_bits |= EXTENT_LOCKED;
2703 if (clear_new_delalloc_bytes)
2704 clear_bits |= EXTENT_DELALLOC_NEW;
bffe633e
OS
2705 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits,
2706 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
313facc5 2707 &cached_state);
a7e3b975 2708
a698d075 2709 if (trans)
3a45bb20 2710 btrfs_end_transaction(trans);
0cb59c99 2711
77cef2ec 2712 if (ret || truncated) {
bffe633e 2713 u64 unwritten_start = start;
77cef2ec
JB
2714
2715 if (truncated)
bffe633e
OS
2716 unwritten_start += logical_len;
2717 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
77cef2ec
JB
2718
2719 /* Drop the cache for the part of the extent we didn't write. */
bffe633e 2720 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0);
5fd02043 2721
0bec9ef5
JB
2722 /*
2723 * If the ordered extent had an IOERR or something else went
2724 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2725 * back to the allocator. We only free the extent in the
2726 * truncated case if we didn't write out the extent at all.
49940bdd
JB
2727 *
2728 * If we made it past insert_reserved_file_extent before we
2729 * errored out then we don't need to do this as the accounting
2730 * has already been done.
0bec9ef5 2731 */
77cef2ec 2732 if ((ret || !logical_len) &&
49940bdd 2733 clear_reserved_extent &&
77cef2ec 2734 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
4eaaec24
NB
2735 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2736 /*
2737 * Discard the range before returning it back to the
2738 * free space pool
2739 */
46b27f50 2740 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
4eaaec24 2741 btrfs_discard_extent(fs_info,
bffe633e
OS
2742 ordered_extent->disk_bytenr,
2743 ordered_extent->disk_num_bytes,
2744 NULL);
2ff7e61e 2745 btrfs_free_reserved_extent(fs_info,
bffe633e
OS
2746 ordered_extent->disk_bytenr,
2747 ordered_extent->disk_num_bytes, 1);
4eaaec24 2748 }
0bec9ef5
JB
2749 }
2750
5fd02043 2751 /*
8bad3c02
LB
2752 * This needs to be done to make sure anybody waiting knows we are done
2753 * updating everything for this ordered extent.
5fd02043
JB
2754 */
2755 btrfs_remove_ordered_extent(inode, ordered_extent);
2756
e6dcd2dc
CM
2757 /* once for us */
2758 btrfs_put_ordered_extent(ordered_extent);
2759 /* once for the tree */
2760 btrfs_put_ordered_extent(ordered_extent);
2761
5fd02043
JB
2762 return ret;
2763}
2764
2765static void finish_ordered_fn(struct btrfs_work *work)
2766{
2767 struct btrfs_ordered_extent *ordered_extent;
2768 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2769 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2770}
2771
c629732d
NB
2772void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
2773 u64 end, int uptodate)
211f90e6 2774{
5fd02043 2775 struct inode *inode = page->mapping->host;
0b246afa 2776 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 2777 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237 2778 struct btrfs_workqueue *wq;
5fd02043 2779
1abe9b8a 2780 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2781
8b62b72b 2782 ClearPagePrivate2(page);
5fd02043
JB
2783 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2784 end - start + 1, uptodate))
c3988d63 2785 return;
5fd02043 2786
a0cac0ec 2787 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0b246afa 2788 wq = fs_info->endio_freespace_worker;
a0cac0ec 2789 else
0b246afa 2790 wq = fs_info->endio_write_workers;
5fd02043 2791
a0cac0ec 2792 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
9e0af237 2793 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
2794}
2795
47df7765
OS
2796static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
2797 int icsum, struct page *page, int pgoff, u64 start,
2798 size_t len)
dc380aea 2799{
d5178578
JT
2800 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2801 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
dc380aea 2802 char *kaddr;
d5178578
JT
2803 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2804 u8 *csum_expected;
2805 u8 csum[BTRFS_CSUM_SIZE];
dc380aea 2806
d5178578 2807 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
dc380aea
MX
2808
2809 kaddr = kmap_atomic(page);
d5178578
JT
2810 shash->tfm = fs_info->csum_shash;
2811
fd08001f 2812 crypto_shash_digest(shash, kaddr + pgoff, len, csum);
d5178578
JT
2813
2814 if (memcmp(csum, csum_expected, csum_size))
dc380aea
MX
2815 goto zeroit;
2816
2817 kunmap_atomic(kaddr);
2818 return 0;
2819zeroit:
ea41d6b2
JT
2820 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
2821 io_bio->mirror_num);
dc380aea
MX
2822 memset(kaddr + pgoff, 1, len);
2823 flush_dcache_page(page);
2824 kunmap_atomic(kaddr);
dc380aea
MX
2825 return -EIO;
2826}
2827
d352ac68
CM
2828/*
2829 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2830 * if there's a match, we allow the bio to finish. If not, the code in
2831 * extent_io.c will try to find good copies for us.
d352ac68 2832 */
facc8a22
MX
2833static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2834 u64 phy_offset, struct page *page,
2835 u64 start, u64 end, int mirror)
07157aac 2836{
4eee4fa4 2837 size_t offset = start - page_offset(page);
07157aac 2838 struct inode *inode = page->mapping->host;
d1310b2e 2839 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 2840 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 2841
d20f7043
CM
2842 if (PageChecked(page)) {
2843 ClearPageChecked(page);
dc380aea 2844 return 0;
d20f7043 2845 }
6cbff00f
CH
2846
2847 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 2848 return 0;
17d217fe
YZ
2849
2850 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2851 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 2852 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 2853 return 0;
17d217fe 2854 }
d20f7043 2855
facc8a22 2856 phy_offset >>= inode->i_sb->s_blocksize_bits;
47df7765
OS
2857 return check_data_csum(inode, io_bio, phy_offset, page, offset, start,
2858 (size_t)(end - start + 1));
07157aac 2859}
b888db2b 2860
c1c3fac2
NB
2861/*
2862 * btrfs_add_delayed_iput - perform a delayed iput on @inode
2863 *
2864 * @inode: The inode we want to perform iput on
2865 *
2866 * This function uses the generic vfs_inode::i_count to track whether we should
2867 * just decrement it (in case it's > 1) or if this is the last iput then link
2868 * the inode to the delayed iput machinery. Delayed iputs are processed at
2869 * transaction commit time/superblock commit/cleaner kthread.
2870 */
24bbcf04
YZ
2871void btrfs_add_delayed_iput(struct inode *inode)
2872{
0b246afa 2873 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 2874 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
2875
2876 if (atomic_add_unless(&inode->i_count, -1, 1))
2877 return;
2878
034f784d 2879 atomic_inc(&fs_info->nr_delayed_iputs);
24bbcf04 2880 spin_lock(&fs_info->delayed_iput_lock);
c1c3fac2
NB
2881 ASSERT(list_empty(&binode->delayed_iput));
2882 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
24bbcf04 2883 spin_unlock(&fs_info->delayed_iput_lock);
fd340d0f
JB
2884 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
2885 wake_up_process(fs_info->cleaner_kthread);
24bbcf04
YZ
2886}
2887
63611e73
JB
2888static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
2889 struct btrfs_inode *inode)
2890{
2891 list_del_init(&inode->delayed_iput);
2892 spin_unlock(&fs_info->delayed_iput_lock);
2893 iput(&inode->vfs_inode);
2894 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
2895 wake_up(&fs_info->delayed_iputs_wait);
2896 spin_lock(&fs_info->delayed_iput_lock);
2897}
2898
2899static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
2900 struct btrfs_inode *inode)
2901{
2902 if (!list_empty(&inode->delayed_iput)) {
2903 spin_lock(&fs_info->delayed_iput_lock);
2904 if (!list_empty(&inode->delayed_iput))
2905 run_delayed_iput_locked(fs_info, inode);
2906 spin_unlock(&fs_info->delayed_iput_lock);
2907 }
2908}
2909
2ff7e61e 2910void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 2911{
24bbcf04 2912
24bbcf04 2913 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
2914 while (!list_empty(&fs_info->delayed_iputs)) {
2915 struct btrfs_inode *inode;
2916
2917 inode = list_first_entry(&fs_info->delayed_iputs,
2918 struct btrfs_inode, delayed_iput);
63611e73 2919 run_delayed_iput_locked(fs_info, inode);
24bbcf04 2920 }
8089fe62 2921 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
2922}
2923
034f784d
JB
2924/**
2925 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
2926 * @fs_info - the fs_info for this fs
2927 * @return - EINTR if we were killed, 0 if nothing's pending
2928 *
2929 * This will wait on any delayed iputs that are currently running with KILLABLE
2930 * set. Once they are all done running we will return, unless we are killed in
2931 * which case we return EINTR. This helps in user operations like fallocate etc
2932 * that might get blocked on the iputs.
2933 */
2934int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
2935{
2936 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
2937 atomic_read(&fs_info->nr_delayed_iputs) == 0);
2938 if (ret)
2939 return -EINTR;
2940 return 0;
2941}
2942
7b128766 2943/*
f7e9e8fc
OS
2944 * This creates an orphan entry for the given inode in case something goes wrong
2945 * in the middle of an unlink.
7b128766 2946 */
73f2e545 2947int btrfs_orphan_add(struct btrfs_trans_handle *trans,
27919067 2948 struct btrfs_inode *inode)
7b128766 2949{
d68fc57b 2950 int ret;
7b128766 2951
27919067
OS
2952 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
2953 if (ret && ret != -EEXIST) {
2954 btrfs_abort_transaction(trans, ret);
2955 return ret;
d68fc57b
YZ
2956 }
2957
d68fc57b 2958 return 0;
7b128766
JB
2959}
2960
2961/*
f7e9e8fc
OS
2962 * We have done the delete so we can go ahead and remove the orphan item for
2963 * this particular inode.
7b128766 2964 */
48a3b636 2965static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 2966 struct btrfs_inode *inode)
7b128766 2967{
27919067 2968 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
7b128766
JB
2969}
2970
2971/*
2972 * this cleans up any orphans that may be left on the list from the last use
2973 * of this root.
2974 */
66b4ffd1 2975int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 2976{
0b246afa 2977 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
2978 struct btrfs_path *path;
2979 struct extent_buffer *leaf;
7b128766
JB
2980 struct btrfs_key key, found_key;
2981 struct btrfs_trans_handle *trans;
2982 struct inode *inode;
8f6d7f4f 2983 u64 last_objectid = 0;
f7e9e8fc 2984 int ret = 0, nr_unlink = 0;
7b128766 2985
d68fc57b 2986 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2987 return 0;
c71bf099
YZ
2988
2989 path = btrfs_alloc_path();
66b4ffd1
JB
2990 if (!path) {
2991 ret = -ENOMEM;
2992 goto out;
2993 }
e4058b54 2994 path->reada = READA_BACK;
7b128766
JB
2995
2996 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 2997 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
2998 key.offset = (u64)-1;
2999
7b128766
JB
3000 while (1) {
3001 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3002 if (ret < 0)
3003 goto out;
7b128766
JB
3004
3005 /*
3006 * if ret == 0 means we found what we were searching for, which
25985edc 3007 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3008 * find the key and see if we have stuff that matches
3009 */
3010 if (ret > 0) {
66b4ffd1 3011 ret = 0;
7b128766
JB
3012 if (path->slots[0] == 0)
3013 break;
3014 path->slots[0]--;
3015 }
3016
3017 /* pull out the item */
3018 leaf = path->nodes[0];
7b128766
JB
3019 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3020
3021 /* make sure the item matches what we want */
3022 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3023 break;
962a298f 3024 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3025 break;
3026
3027 /* release the path since we're done with it */
b3b4aa74 3028 btrfs_release_path(path);
7b128766
JB
3029
3030 /*
3031 * this is where we are basically btrfs_lookup, without the
3032 * crossing root thing. we store the inode number in the
3033 * offset of the orphan item.
3034 */
8f6d7f4f
JB
3035
3036 if (found_key.offset == last_objectid) {
0b246afa
JM
3037 btrfs_err(fs_info,
3038 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3039 ret = -EINVAL;
3040 goto out;
3041 }
3042
3043 last_objectid = found_key.offset;
3044
5d4f98a2
YZ
3045 found_key.objectid = found_key.offset;
3046 found_key.type = BTRFS_INODE_ITEM_KEY;
3047 found_key.offset = 0;
0202e83f 3048 inode = btrfs_iget(fs_info->sb, last_objectid, root);
8c6ffba0 3049 ret = PTR_ERR_OR_ZERO(inode);
67710892 3050 if (ret && ret != -ENOENT)
66b4ffd1 3051 goto out;
7b128766 3052
0b246afa 3053 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3054 struct btrfs_root *dead_root;
3055 struct btrfs_fs_info *fs_info = root->fs_info;
3056 int is_dead_root = 0;
3057
3058 /*
3059 * this is an orphan in the tree root. Currently these
3060 * could come from 2 sources:
3061 * a) a snapshot deletion in progress
3062 * b) a free space cache inode
3063 * We need to distinguish those two, as the snapshot
3064 * orphan must not get deleted.
3065 * find_dead_roots already ran before us, so if this
3066 * is a snapshot deletion, we should find the root
a619b3c7 3067 * in the fs_roots radix tree.
f8e9e0b0 3068 */
a619b3c7
RK
3069
3070 spin_lock(&fs_info->fs_roots_radix_lock);
3071 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3072 (unsigned long)found_key.objectid);
3073 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3074 is_dead_root = 1;
3075 spin_unlock(&fs_info->fs_roots_radix_lock);
3076
f8e9e0b0
AJ
3077 if (is_dead_root) {
3078 /* prevent this orphan from being found again */
3079 key.offset = found_key.objectid - 1;
3080 continue;
3081 }
f7e9e8fc 3082
f8e9e0b0 3083 }
f7e9e8fc 3084
7b128766 3085 /*
f7e9e8fc
OS
3086 * If we have an inode with links, there are a couple of
3087 * possibilities. Old kernels (before v3.12) used to create an
3088 * orphan item for truncate indicating that there were possibly
3089 * extent items past i_size that needed to be deleted. In v3.12,
3090 * truncate was changed to update i_size in sync with the extent
3091 * items, but the (useless) orphan item was still created. Since
3092 * v4.18, we don't create the orphan item for truncate at all.
3093 *
3094 * So, this item could mean that we need to do a truncate, but
3095 * only if this filesystem was last used on a pre-v3.12 kernel
3096 * and was not cleanly unmounted. The odds of that are quite
3097 * slim, and it's a pain to do the truncate now, so just delete
3098 * the orphan item.
3099 *
3100 * It's also possible that this orphan item was supposed to be
3101 * deleted but wasn't. The inode number may have been reused,
3102 * but either way, we can delete the orphan item.
7b128766 3103 */
f7e9e8fc
OS
3104 if (ret == -ENOENT || inode->i_nlink) {
3105 if (!ret)
3106 iput(inode);
a8c9e576 3107 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3108 if (IS_ERR(trans)) {
3109 ret = PTR_ERR(trans);
3110 goto out;
3111 }
0b246afa
JM
3112 btrfs_debug(fs_info, "auto deleting %Lu",
3113 found_key.objectid);
a8c9e576
JB
3114 ret = btrfs_del_orphan_item(trans, root,
3115 found_key.objectid);
3a45bb20 3116 btrfs_end_transaction(trans);
4ef31a45
JB
3117 if (ret)
3118 goto out;
7b128766
JB
3119 continue;
3120 }
3121
f7e9e8fc 3122 nr_unlink++;
7b128766
JB
3123
3124 /* this will do delete_inode and everything for us */
3125 iput(inode);
3126 }
3254c876
MX
3127 /* release the path since we're done with it */
3128 btrfs_release_path(path);
3129
d68fc57b
YZ
3130 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3131
a575ceeb 3132 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3133 trans = btrfs_join_transaction(root);
66b4ffd1 3134 if (!IS_ERR(trans))
3a45bb20 3135 btrfs_end_transaction(trans);
d68fc57b 3136 }
7b128766
JB
3137
3138 if (nr_unlink)
0b246afa 3139 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
66b4ffd1
JB
3140
3141out:
3142 if (ret)
0b246afa 3143 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3144 btrfs_free_path(path);
3145 return ret;
7b128766
JB
3146}
3147
46a53cca
CM
3148/*
3149 * very simple check to peek ahead in the leaf looking for xattrs. If we
3150 * don't find any xattrs, we know there can't be any acls.
3151 *
3152 * slot is the slot the inode is in, objectid is the objectid of the inode
3153 */
3154static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3155 int slot, u64 objectid,
3156 int *first_xattr_slot)
46a53cca
CM
3157{
3158 u32 nritems = btrfs_header_nritems(leaf);
3159 struct btrfs_key found_key;
f23b5a59
JB
3160 static u64 xattr_access = 0;
3161 static u64 xattr_default = 0;
46a53cca
CM
3162 int scanned = 0;
3163
f23b5a59 3164 if (!xattr_access) {
97d79299
AG
3165 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3166 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3167 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3168 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3169 }
3170
46a53cca 3171 slot++;
63541927 3172 *first_xattr_slot = -1;
46a53cca
CM
3173 while (slot < nritems) {
3174 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3175
3176 /* we found a different objectid, there must not be acls */
3177 if (found_key.objectid != objectid)
3178 return 0;
3179
3180 /* we found an xattr, assume we've got an acl */
f23b5a59 3181 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3182 if (*first_xattr_slot == -1)
3183 *first_xattr_slot = slot;
f23b5a59
JB
3184 if (found_key.offset == xattr_access ||
3185 found_key.offset == xattr_default)
3186 return 1;
3187 }
46a53cca
CM
3188
3189 /*
3190 * we found a key greater than an xattr key, there can't
3191 * be any acls later on
3192 */
3193 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3194 return 0;
3195
3196 slot++;
3197 scanned++;
3198
3199 /*
3200 * it goes inode, inode backrefs, xattrs, extents,
3201 * so if there are a ton of hard links to an inode there can
3202 * be a lot of backrefs. Don't waste time searching too hard,
3203 * this is just an optimization
3204 */
3205 if (scanned >= 8)
3206 break;
3207 }
3208 /* we hit the end of the leaf before we found an xattr or
3209 * something larger than an xattr. We have to assume the inode
3210 * has acls
3211 */
63541927
FDBM
3212 if (*first_xattr_slot == -1)
3213 *first_xattr_slot = slot;
46a53cca
CM
3214 return 1;
3215}
3216
d352ac68
CM
3217/*
3218 * read an inode from the btree into the in-memory inode
3219 */
4222ea71
FM
3220static int btrfs_read_locked_inode(struct inode *inode,
3221 struct btrfs_path *in_path)
39279cc3 3222{
0b246afa 3223 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4222ea71 3224 struct btrfs_path *path = in_path;
5f39d397 3225 struct extent_buffer *leaf;
39279cc3
CM
3226 struct btrfs_inode_item *inode_item;
3227 struct btrfs_root *root = BTRFS_I(inode)->root;
3228 struct btrfs_key location;
67de1176 3229 unsigned long ptr;
46a53cca 3230 int maybe_acls;
618e21d5 3231 u32 rdev;
39279cc3 3232 int ret;
2f7e33d4 3233 bool filled = false;
63541927 3234 int first_xattr_slot;
2f7e33d4
MX
3235
3236 ret = btrfs_fill_inode(inode, &rdev);
3237 if (!ret)
3238 filled = true;
39279cc3 3239
4222ea71
FM
3240 if (!path) {
3241 path = btrfs_alloc_path();
3242 if (!path)
3243 return -ENOMEM;
3244 }
1748f843 3245
39279cc3 3246 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3247
39279cc3 3248 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892 3249 if (ret) {
4222ea71
FM
3250 if (path != in_path)
3251 btrfs_free_path(path);
f5b3a417 3252 return ret;
67710892 3253 }
39279cc3 3254
5f39d397 3255 leaf = path->nodes[0];
2f7e33d4
MX
3256
3257 if (filled)
67de1176 3258 goto cache_index;
2f7e33d4 3259
5f39d397
CM
3260 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3261 struct btrfs_inode_item);
5f39d397 3262 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3263 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3264 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3265 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3266 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
41a2ee75
JB
3267 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3268 round_up(i_size_read(inode), fs_info->sectorsize));
5f39d397 3269
a937b979
DS
3270 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3271 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3272
a937b979
DS
3273 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3274 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3275
a937b979
DS
3276 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3277 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3278
9cc97d64 3279 BTRFS_I(inode)->i_otime.tv_sec =
3280 btrfs_timespec_sec(leaf, &inode_item->otime);
3281 BTRFS_I(inode)->i_otime.tv_nsec =
3282 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3283
a76a3cd4 3284 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3285 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3286 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3287
c7f88c4e
JL
3288 inode_set_iversion_queried(inode,
3289 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3290 inode->i_generation = BTRFS_I(inode)->generation;
3291 inode->i_rdev = 0;
3292 rdev = btrfs_inode_rdev(leaf, inode_item);
3293
3294 BTRFS_I(inode)->index_cnt = (u64)-1;
3295 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3296
3297cache_index:
5dc562c5
JB
3298 /*
3299 * If we were modified in the current generation and evicted from memory
3300 * and then re-read we need to do a full sync since we don't have any
3301 * idea about which extents were modified before we were evicted from
3302 * cache.
6e17d30b
YD
3303 *
3304 * This is required for both inode re-read from disk and delayed inode
3305 * in delayed_nodes_tree.
5dc562c5 3306 */
0b246afa 3307 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3308 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3309 &BTRFS_I(inode)->runtime_flags);
3310
bde6c242
FM
3311 /*
3312 * We don't persist the id of the transaction where an unlink operation
3313 * against the inode was last made. So here we assume the inode might
3314 * have been evicted, and therefore the exact value of last_unlink_trans
3315 * lost, and set it to last_trans to avoid metadata inconsistencies
3316 * between the inode and its parent if the inode is fsync'ed and the log
3317 * replayed. For example, in the scenario:
3318 *
3319 * touch mydir/foo
3320 * ln mydir/foo mydir/bar
3321 * sync
3322 * unlink mydir/bar
3323 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3324 * xfs_io -c fsync mydir/foo
3325 * <power failure>
3326 * mount fs, triggers fsync log replay
3327 *
3328 * We must make sure that when we fsync our inode foo we also log its
3329 * parent inode, otherwise after log replay the parent still has the
3330 * dentry with the "bar" name but our inode foo has a link count of 1
3331 * and doesn't have an inode ref with the name "bar" anymore.
3332 *
3333 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3334 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3335 * transaction commits on fsync if our inode is a directory, or if our
3336 * inode is not a directory, logging its parent unnecessarily.
3337 */
3338 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3339
67de1176
MX
3340 path->slots[0]++;
3341 if (inode->i_nlink != 1 ||
3342 path->slots[0] >= btrfs_header_nritems(leaf))
3343 goto cache_acl;
3344
3345 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3346 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3347 goto cache_acl;
3348
3349 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3350 if (location.type == BTRFS_INODE_REF_KEY) {
3351 struct btrfs_inode_ref *ref;
3352
3353 ref = (struct btrfs_inode_ref *)ptr;
3354 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3355 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3356 struct btrfs_inode_extref *extref;
3357
3358 extref = (struct btrfs_inode_extref *)ptr;
3359 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3360 extref);
3361 }
2f7e33d4 3362cache_acl:
46a53cca
CM
3363 /*
3364 * try to precache a NULL acl entry for files that don't have
3365 * any xattrs or acls
3366 */
33345d01 3367 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3368 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3369 if (first_xattr_slot != -1) {
3370 path->slots[0] = first_xattr_slot;
3371 ret = btrfs_load_inode_props(inode, path);
3372 if (ret)
0b246afa 3373 btrfs_err(fs_info,
351fd353 3374 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3375 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3376 root->root_key.objectid, ret);
3377 }
4222ea71
FM
3378 if (path != in_path)
3379 btrfs_free_path(path);
63541927 3380
72c04902
AV
3381 if (!maybe_acls)
3382 cache_no_acl(inode);
46a53cca 3383
39279cc3 3384 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3385 case S_IFREG:
3386 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3387 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3388 inode->i_fop = &btrfs_file_operations;
3389 inode->i_op = &btrfs_file_inode_operations;
3390 break;
3391 case S_IFDIR:
3392 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3393 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3394 break;
3395 case S_IFLNK:
3396 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3397 inode_nohighmem(inode);
4779cc04 3398 inode->i_mapping->a_ops = &btrfs_aops;
39279cc3 3399 break;
618e21d5 3400 default:
0279b4cd 3401 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3402 init_special_inode(inode, inode->i_mode, rdev);
3403 break;
39279cc3 3404 }
6cbff00f 3405
7b6a221e 3406 btrfs_sync_inode_flags_to_i_flags(inode);
67710892 3407 return 0;
39279cc3
CM
3408}
3409
d352ac68
CM
3410/*
3411 * given a leaf and an inode, copy the inode fields into the leaf
3412 */
e02119d5
CM
3413static void fill_inode_item(struct btrfs_trans_handle *trans,
3414 struct extent_buffer *leaf,
5f39d397 3415 struct btrfs_inode_item *item,
39279cc3
CM
3416 struct inode *inode)
3417{
51fab693
LB
3418 struct btrfs_map_token token;
3419
c82f823c 3420 btrfs_init_map_token(&token, leaf);
5f39d397 3421
cc4c13d5
DS
3422 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3423 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3424 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3425 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3426 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3427
3428 btrfs_set_token_timespec_sec(&token, &item->atime,
3429 inode->i_atime.tv_sec);
3430 btrfs_set_token_timespec_nsec(&token, &item->atime,
3431 inode->i_atime.tv_nsec);
3432
3433 btrfs_set_token_timespec_sec(&token, &item->mtime,
3434 inode->i_mtime.tv_sec);
3435 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3436 inode->i_mtime.tv_nsec);
3437
3438 btrfs_set_token_timespec_sec(&token, &item->ctime,
3439 inode->i_ctime.tv_sec);
3440 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3441 inode->i_ctime.tv_nsec);
3442
3443 btrfs_set_token_timespec_sec(&token, &item->otime,
3444 BTRFS_I(inode)->i_otime.tv_sec);
3445 btrfs_set_token_timespec_nsec(&token, &item->otime,
3446 BTRFS_I(inode)->i_otime.tv_nsec);
3447
3448 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3449 btrfs_set_token_inode_generation(&token, item,
3450 BTRFS_I(inode)->generation);
3451 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3452 btrfs_set_token_inode_transid(&token, item, trans->transid);
3453 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3454 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3455 btrfs_set_token_inode_block_group(&token, item, 0);
39279cc3
CM
3456}
3457
d352ac68
CM
3458/*
3459 * copy everything in the in-memory inode into the btree.
3460 */
2115133f 3461static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3462 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3463{
3464 struct btrfs_inode_item *inode_item;
3465 struct btrfs_path *path;
5f39d397 3466 struct extent_buffer *leaf;
39279cc3
CM
3467 int ret;
3468
3469 path = btrfs_alloc_path();
16cdcec7
MX
3470 if (!path)
3471 return -ENOMEM;
3472
b9473439 3473 path->leave_spinning = 1;
16cdcec7
MX
3474 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3475 1);
39279cc3
CM
3476 if (ret) {
3477 if (ret > 0)
3478 ret = -ENOENT;
3479 goto failed;
3480 }
3481
5f39d397
CM
3482 leaf = path->nodes[0];
3483 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3484 struct btrfs_inode_item);
39279cc3 3485
e02119d5 3486 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3487 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3488 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3489 ret = 0;
3490failed:
39279cc3
CM
3491 btrfs_free_path(path);
3492 return ret;
3493}
3494
2115133f
CM
3495/*
3496 * copy everything in the in-memory inode into the btree.
3497 */
3498noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3499 struct btrfs_root *root, struct inode *inode)
3500{
0b246afa 3501 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3502 int ret;
3503
3504 /*
3505 * If the inode is a free space inode, we can deadlock during commit
3506 * if we put it into the delayed code.
3507 *
3508 * The data relocation inode should also be directly updated
3509 * without delay
3510 */
70ddc553 3511 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 3512 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 3513 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
3514 btrfs_update_root_times(trans, root);
3515
2115133f
CM
3516 ret = btrfs_delayed_update_inode(trans, root, inode);
3517 if (!ret)
3518 btrfs_set_inode_last_trans(trans, inode);
3519 return ret;
3520 }
3521
3522 return btrfs_update_inode_item(trans, root, inode);
3523}
3524
be6aef60
JB
3525noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3526 struct btrfs_root *root,
3527 struct inode *inode)
2115133f
CM
3528{
3529 int ret;
3530
3531 ret = btrfs_update_inode(trans, root, inode);
3532 if (ret == -ENOSPC)
3533 return btrfs_update_inode_item(trans, root, inode);
3534 return ret;
3535}
3536
d352ac68
CM
3537/*
3538 * unlink helper that gets used here in inode.c and in the tree logging
3539 * recovery code. It remove a link in a directory with a given name, and
3540 * also drops the back refs in the inode to the directory
3541 */
92986796
AV
3542static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3543 struct btrfs_root *root,
4ec5934e
NB
3544 struct btrfs_inode *dir,
3545 struct btrfs_inode *inode,
92986796 3546 const char *name, int name_len)
39279cc3 3547{
0b246afa 3548 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 3549 struct btrfs_path *path;
39279cc3 3550 int ret = 0;
39279cc3 3551 struct btrfs_dir_item *di;
aec7477b 3552 u64 index;
33345d01
LZ
3553 u64 ino = btrfs_ino(inode);
3554 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3555
3556 path = btrfs_alloc_path();
54aa1f4d
CM
3557 if (!path) {
3558 ret = -ENOMEM;
554233a6 3559 goto out;
54aa1f4d
CM
3560 }
3561
b9473439 3562 path->leave_spinning = 1;
33345d01 3563 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3 3564 name, name_len, -1);
3cf5068f
LB
3565 if (IS_ERR_OR_NULL(di)) {
3566 ret = di ? PTR_ERR(di) : -ENOENT;
39279cc3
CM
3567 goto err;
3568 }
39279cc3 3569 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3570 if (ret)
3571 goto err;
b3b4aa74 3572 btrfs_release_path(path);
39279cc3 3573
67de1176
MX
3574 /*
3575 * If we don't have dir index, we have to get it by looking up
3576 * the inode ref, since we get the inode ref, remove it directly,
3577 * it is unnecessary to do delayed deletion.
3578 *
3579 * But if we have dir index, needn't search inode ref to get it.
3580 * Since the inode ref is close to the inode item, it is better
3581 * that we delay to delete it, and just do this deletion when
3582 * we update the inode item.
3583 */
4ec5934e 3584 if (inode->dir_index) {
67de1176
MX
3585 ret = btrfs_delayed_delete_inode_ref(inode);
3586 if (!ret) {
4ec5934e 3587 index = inode->dir_index;
67de1176
MX
3588 goto skip_backref;
3589 }
3590 }
3591
33345d01
LZ
3592 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3593 dir_ino, &index);
aec7477b 3594 if (ret) {
0b246afa 3595 btrfs_info(fs_info,
c2cf52eb 3596 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3597 name_len, name, ino, dir_ino);
66642832 3598 btrfs_abort_transaction(trans, ret);
aec7477b
JB
3599 goto err;
3600 }
67de1176 3601skip_backref:
9add2945 3602 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
79787eaa 3603 if (ret) {
66642832 3604 btrfs_abort_transaction(trans, ret);
39279cc3 3605 goto err;
79787eaa 3606 }
39279cc3 3607
4ec5934e
NB
3608 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3609 dir_ino);
79787eaa 3610 if (ret != 0 && ret != -ENOENT) {
66642832 3611 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3612 goto err;
3613 }
e02119d5 3614
4ec5934e
NB
3615 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3616 index);
6418c961
CM
3617 if (ret == -ENOENT)
3618 ret = 0;
d4e3991b 3619 else if (ret)
66642832 3620 btrfs_abort_transaction(trans, ret);
63611e73
JB
3621
3622 /*
3623 * If we have a pending delayed iput we could end up with the final iput
3624 * being run in btrfs-cleaner context. If we have enough of these built
3625 * up we can end up burning a lot of time in btrfs-cleaner without any
3626 * way to throttle the unlinks. Since we're currently holding a ref on
3627 * the inode we can run the delayed iput here without any issues as the
3628 * final iput won't be done until after we drop the ref we're currently
3629 * holding.
3630 */
3631 btrfs_run_delayed_iput(fs_info, inode);
39279cc3
CM
3632err:
3633 btrfs_free_path(path);
e02119d5
CM
3634 if (ret)
3635 goto out;
3636
6ef06d27 3637 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
3638 inode_inc_iversion(&inode->vfs_inode);
3639 inode_inc_iversion(&dir->vfs_inode);
3640 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3641 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3642 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 3643out:
39279cc3
CM
3644 return ret;
3645}
3646
92986796
AV
3647int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3648 struct btrfs_root *root,
4ec5934e 3649 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
3650 const char *name, int name_len)
3651{
3652 int ret;
3653 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3654 if (!ret) {
4ec5934e
NB
3655 drop_nlink(&inode->vfs_inode);
3656 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
3657 }
3658 return ret;
3659}
39279cc3 3660
a22285a6
YZ
3661/*
3662 * helper to start transaction for unlink and rmdir.
3663 *
d52be818
JB
3664 * unlink and rmdir are special in btrfs, they do not always free space, so
3665 * if we cannot make our reservations the normal way try and see if there is
3666 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3667 * allow the unlink to occur.
a22285a6 3668 */
d52be818 3669static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3670{
a22285a6 3671 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 3672
e70bea5f
JB
3673 /*
3674 * 1 for the possible orphan item
3675 * 1 for the dir item
3676 * 1 for the dir index
3677 * 1 for the inode ref
e70bea5f
JB
3678 * 1 for the inode
3679 */
7f9fe614 3680 return btrfs_start_transaction_fallback_global_rsv(root, 5);
a22285a6
YZ
3681}
3682
3683static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3684{
3685 struct btrfs_root *root = BTRFS_I(dir)->root;
3686 struct btrfs_trans_handle *trans;
2b0143b5 3687 struct inode *inode = d_inode(dentry);
a22285a6 3688 int ret;
a22285a6 3689
d52be818 3690 trans = __unlink_start_trans(dir);
a22285a6
YZ
3691 if (IS_ERR(trans))
3692 return PTR_ERR(trans);
5f39d397 3693
4ec5934e
NB
3694 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
3695 0);
12fcfd22 3696
4ec5934e
NB
3697 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
3698 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
3699 dentry->d_name.len);
b532402e
TI
3700 if (ret)
3701 goto out;
7b128766 3702
a22285a6 3703 if (inode->i_nlink == 0) {
73f2e545 3704 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
3705 if (ret)
3706 goto out;
a22285a6 3707 }
7b128766 3708
b532402e 3709out:
3a45bb20 3710 btrfs_end_transaction(trans);
2ff7e61e 3711 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
3712 return ret;
3713}
3714
f60a2364 3715static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
045d3967 3716 struct inode *dir, struct dentry *dentry)
4df27c4d 3717{
401b3b19 3718 struct btrfs_root *root = BTRFS_I(dir)->root;
045d3967 3719 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4df27c4d
YZ
3720 struct btrfs_path *path;
3721 struct extent_buffer *leaf;
3722 struct btrfs_dir_item *di;
3723 struct btrfs_key key;
045d3967
JB
3724 const char *name = dentry->d_name.name;
3725 int name_len = dentry->d_name.len;
4df27c4d
YZ
3726 u64 index;
3727 int ret;
045d3967 3728 u64 objectid;
4a0cc7ca 3729 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d 3730
045d3967
JB
3731 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
3732 objectid = inode->root->root_key.objectid;
3733 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3734 objectid = inode->location.objectid;
3735 } else {
3736 WARN_ON(1);
3737 return -EINVAL;
3738 }
3739
4df27c4d
YZ
3740 path = btrfs_alloc_path();
3741 if (!path)
3742 return -ENOMEM;
3743
33345d01 3744 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3745 name, name_len, -1);
79787eaa 3746 if (IS_ERR_OR_NULL(di)) {
3cf5068f 3747 ret = di ? PTR_ERR(di) : -ENOENT;
79787eaa
JM
3748 goto out;
3749 }
4df27c4d
YZ
3750
3751 leaf = path->nodes[0];
3752 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3753 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3754 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 3755 if (ret) {
66642832 3756 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3757 goto out;
3758 }
b3b4aa74 3759 btrfs_release_path(path);
4df27c4d 3760
d49d3287
JB
3761 /*
3762 * This is a placeholder inode for a subvolume we didn't have a
3763 * reference to at the time of the snapshot creation. In the meantime
3764 * we could have renamed the real subvol link into our snapshot, so
3765 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3766 * Instead simply lookup the dir_index_item for this entry so we can
3767 * remove it. Otherwise we know we have a ref to the root and we can
3768 * call btrfs_del_root_ref, and it _shouldn't_ fail.
3769 */
3770 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
33345d01 3771 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3772 name, name_len);
79787eaa
JM
3773 if (IS_ERR_OR_NULL(di)) {
3774 if (!di)
3775 ret = -ENOENT;
3776 else
3777 ret = PTR_ERR(di);
66642832 3778 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3779 goto out;
3780 }
4df27c4d
YZ
3781
3782 leaf = path->nodes[0];
3783 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4df27c4d 3784 index = key.offset;
d49d3287
JB
3785 btrfs_release_path(path);
3786 } else {
3787 ret = btrfs_del_root_ref(trans, objectid,
3788 root->root_key.objectid, dir_ino,
3789 &index, name, name_len);
3790 if (ret) {
3791 btrfs_abort_transaction(trans, ret);
3792 goto out;
3793 }
4df27c4d
YZ
3794 }
3795
9add2945 3796 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
79787eaa 3797 if (ret) {
66642832 3798 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3799 goto out;
3800 }
4df27c4d 3801
6ef06d27 3802 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 3803 inode_inc_iversion(dir);
c2050a45 3804 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 3805 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 3806 if (ret)
66642832 3807 btrfs_abort_transaction(trans, ret);
79787eaa 3808out:
71d7aed0 3809 btrfs_free_path(path);
79787eaa 3810 return ret;
4df27c4d
YZ
3811}
3812
ec42f167
MT
3813/*
3814 * Helper to check if the subvolume references other subvolumes or if it's
3815 * default.
3816 */
f60a2364 3817static noinline int may_destroy_subvol(struct btrfs_root *root)
ec42f167
MT
3818{
3819 struct btrfs_fs_info *fs_info = root->fs_info;
3820 struct btrfs_path *path;
3821 struct btrfs_dir_item *di;
3822 struct btrfs_key key;
3823 u64 dir_id;
3824 int ret;
3825
3826 path = btrfs_alloc_path();
3827 if (!path)
3828 return -ENOMEM;
3829
3830 /* Make sure this root isn't set as the default subvol */
3831 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3832 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
3833 dir_id, "default", 7, 0);
3834 if (di && !IS_ERR(di)) {
3835 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
3836 if (key.objectid == root->root_key.objectid) {
3837 ret = -EPERM;
3838 btrfs_err(fs_info,
3839 "deleting default subvolume %llu is not allowed",
3840 key.objectid);
3841 goto out;
3842 }
3843 btrfs_release_path(path);
3844 }
3845
3846 key.objectid = root->root_key.objectid;
3847 key.type = BTRFS_ROOT_REF_KEY;
3848 key.offset = (u64)-1;
3849
3850 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3851 if (ret < 0)
3852 goto out;
3853 BUG_ON(ret == 0);
3854
3855 ret = 0;
3856 if (path->slots[0] > 0) {
3857 path->slots[0]--;
3858 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3859 if (key.objectid == root->root_key.objectid &&
3860 key.type == BTRFS_ROOT_REF_KEY)
3861 ret = -ENOTEMPTY;
3862 }
3863out:
3864 btrfs_free_path(path);
3865 return ret;
3866}
3867
20a68004
NB
3868/* Delete all dentries for inodes belonging to the root */
3869static void btrfs_prune_dentries(struct btrfs_root *root)
3870{
3871 struct btrfs_fs_info *fs_info = root->fs_info;
3872 struct rb_node *node;
3873 struct rb_node *prev;
3874 struct btrfs_inode *entry;
3875 struct inode *inode;
3876 u64 objectid = 0;
3877
3878 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3879 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3880
3881 spin_lock(&root->inode_lock);
3882again:
3883 node = root->inode_tree.rb_node;
3884 prev = NULL;
3885 while (node) {
3886 prev = node;
3887 entry = rb_entry(node, struct btrfs_inode, rb_node);
3888
37508515 3889 if (objectid < btrfs_ino(entry))
20a68004 3890 node = node->rb_left;
37508515 3891 else if (objectid > btrfs_ino(entry))
20a68004
NB
3892 node = node->rb_right;
3893 else
3894 break;
3895 }
3896 if (!node) {
3897 while (prev) {
3898 entry = rb_entry(prev, struct btrfs_inode, rb_node);
37508515 3899 if (objectid <= btrfs_ino(entry)) {
20a68004
NB
3900 node = prev;
3901 break;
3902 }
3903 prev = rb_next(prev);
3904 }
3905 }
3906 while (node) {
3907 entry = rb_entry(node, struct btrfs_inode, rb_node);
37508515 3908 objectid = btrfs_ino(entry) + 1;
20a68004
NB
3909 inode = igrab(&entry->vfs_inode);
3910 if (inode) {
3911 spin_unlock(&root->inode_lock);
3912 if (atomic_read(&inode->i_count) > 1)
3913 d_prune_aliases(inode);
3914 /*
3915 * btrfs_drop_inode will have it removed from the inode
3916 * cache when its usage count hits zero.
3917 */
3918 iput(inode);
3919 cond_resched();
3920 spin_lock(&root->inode_lock);
3921 goto again;
3922 }
3923
3924 if (cond_resched_lock(&root->inode_lock))
3925 goto again;
3926
3927 node = rb_next(node);
3928 }
3929 spin_unlock(&root->inode_lock);
3930}
3931
f60a2364
MT
3932int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
3933{
3934 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
3935 struct btrfs_root *root = BTRFS_I(dir)->root;
3936 struct inode *inode = d_inode(dentry);
3937 struct btrfs_root *dest = BTRFS_I(inode)->root;
3938 struct btrfs_trans_handle *trans;
3939 struct btrfs_block_rsv block_rsv;
3940 u64 root_flags;
f60a2364
MT
3941 int ret;
3942 int err;
3943
3944 /*
3945 * Don't allow to delete a subvolume with send in progress. This is
3946 * inside the inode lock so the error handling that has to drop the bit
3947 * again is not run concurrently.
3948 */
3949 spin_lock(&dest->root_item_lock);
a7176f74 3950 if (dest->send_in_progress) {
f60a2364
MT
3951 spin_unlock(&dest->root_item_lock);
3952 btrfs_warn(fs_info,
3953 "attempt to delete subvolume %llu during send",
3954 dest->root_key.objectid);
3955 return -EPERM;
3956 }
a7176f74
LF
3957 root_flags = btrfs_root_flags(&dest->root_item);
3958 btrfs_set_root_flags(&dest->root_item,
3959 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
3960 spin_unlock(&dest->root_item_lock);
f60a2364
MT
3961
3962 down_write(&fs_info->subvol_sem);
3963
3964 err = may_destroy_subvol(dest);
3965 if (err)
3966 goto out_up_write;
3967
3968 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
3969 /*
3970 * One for dir inode,
3971 * two for dir entries,
3972 * two for root ref/backref.
3973 */
c4c129db 3974 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
f60a2364
MT
3975 if (err)
3976 goto out_up_write;
3977
3978 trans = btrfs_start_transaction(root, 0);
3979 if (IS_ERR(trans)) {
3980 err = PTR_ERR(trans);
3981 goto out_release;
3982 }
3983 trans->block_rsv = &block_rsv;
3984 trans->bytes_reserved = block_rsv.size;
3985
3986 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
3987
045d3967 3988 ret = btrfs_unlink_subvol(trans, dir, dentry);
f60a2364
MT
3989 if (ret) {
3990 err = ret;
3991 btrfs_abort_transaction(trans, ret);
3992 goto out_end_trans;
3993 }
3994
3995 btrfs_record_root_in_trans(trans, dest);
3996
3997 memset(&dest->root_item.drop_progress, 0,
3998 sizeof(dest->root_item.drop_progress));
3999 dest->root_item.drop_level = 0;
4000 btrfs_set_root_refs(&dest->root_item, 0);
4001
4002 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4003 ret = btrfs_insert_orphan_item(trans,
4004 fs_info->tree_root,
4005 dest->root_key.objectid);
4006 if (ret) {
4007 btrfs_abort_transaction(trans, ret);
4008 err = ret;
4009 goto out_end_trans;
4010 }
4011 }
4012
d1957791 4013 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
f60a2364
MT
4014 BTRFS_UUID_KEY_SUBVOL,
4015 dest->root_key.objectid);
4016 if (ret && ret != -ENOENT) {
4017 btrfs_abort_transaction(trans, ret);
4018 err = ret;
4019 goto out_end_trans;
4020 }
4021 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
d1957791 4022 ret = btrfs_uuid_tree_remove(trans,
f60a2364
MT
4023 dest->root_item.received_uuid,
4024 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4025 dest->root_key.objectid);
4026 if (ret && ret != -ENOENT) {
4027 btrfs_abort_transaction(trans, ret);
4028 err = ret;
4029 goto out_end_trans;
4030 }
4031 }
4032
4033out_end_trans:
4034 trans->block_rsv = NULL;
4035 trans->bytes_reserved = 0;
4036 ret = btrfs_end_transaction(trans);
4037 if (ret && !err)
4038 err = ret;
4039 inode->i_flags |= S_DEAD;
4040out_release:
4041 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4042out_up_write:
4043 up_write(&fs_info->subvol_sem);
4044 if (err) {
4045 spin_lock(&dest->root_item_lock);
4046 root_flags = btrfs_root_flags(&dest->root_item);
4047 btrfs_set_root_flags(&dest->root_item,
4048 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4049 spin_unlock(&dest->root_item_lock);
4050 } else {
4051 d_invalidate(dentry);
20a68004 4052 btrfs_prune_dentries(dest);
f60a2364
MT
4053 ASSERT(dest->send_in_progress == 0);
4054
4055 /* the last ref */
4056 if (dest->ino_cache_inode) {
4057 iput(dest->ino_cache_inode);
4058 dest->ino_cache_inode = NULL;
4059 }
4060 }
4061
4062 return err;
4063}
4064
39279cc3
CM
4065static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4066{
2b0143b5 4067 struct inode *inode = d_inode(dentry);
1832a6d5 4068 int err = 0;
39279cc3 4069 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4070 struct btrfs_trans_handle *trans;
44f714da 4071 u64 last_unlink_trans;
39279cc3 4072
b3ae244e 4073 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4074 return -ENOTEMPTY;
4a0cc7ca 4075 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
a79a464d 4076 return btrfs_delete_subvolume(dir, dentry);
134d4512 4077
d52be818 4078 trans = __unlink_start_trans(dir);
a22285a6 4079 if (IS_ERR(trans))
5df6a9f6 4080 return PTR_ERR(trans);
5df6a9f6 4081
4a0cc7ca 4082 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
045d3967 4083 err = btrfs_unlink_subvol(trans, dir, dentry);
4df27c4d
YZ
4084 goto out;
4085 }
4086
73f2e545 4087 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4088 if (err)
4df27c4d 4089 goto out;
7b128766 4090
44f714da
FM
4091 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4092
39279cc3 4093 /* now the directory is empty */
4ec5934e
NB
4094 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4095 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4096 dentry->d_name.len);
44f714da 4097 if (!err) {
6ef06d27 4098 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4099 /*
4100 * Propagate the last_unlink_trans value of the deleted dir to
4101 * its parent directory. This is to prevent an unrecoverable
4102 * log tree in the case we do something like this:
4103 * 1) create dir foo
4104 * 2) create snapshot under dir foo
4105 * 3) delete the snapshot
4106 * 4) rmdir foo
4107 * 5) mkdir foo
4108 * 6) fsync foo or some file inside foo
4109 */
4110 if (last_unlink_trans >= trans->transid)
4111 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4112 }
4df27c4d 4113out:
3a45bb20 4114 btrfs_end_transaction(trans);
2ff7e61e 4115 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4116
39279cc3
CM
4117 return err;
4118}
4119
ddfae63c
JB
4120/*
4121 * Return this if we need to call truncate_block for the last bit of the
4122 * truncate.
4123 */
4124#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4125
39279cc3
CM
4126/*
4127 * this can truncate away extent items, csum items and directory items.
4128 * It starts at a high offset and removes keys until it can't find
d352ac68 4129 * any higher than new_size
39279cc3
CM
4130 *
4131 * csum items that cross the new i_size are truncated to the new size
4132 * as well.
7b128766
JB
4133 *
4134 * min_type is the minimum key type to truncate down to. If set to 0, this
4135 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4136 */
8082510e
YZ
4137int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4138 struct btrfs_root *root,
4139 struct inode *inode,
4140 u64 new_size, u32 min_type)
39279cc3 4141{
0b246afa 4142 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4143 struct btrfs_path *path;
5f39d397 4144 struct extent_buffer *leaf;
39279cc3 4145 struct btrfs_file_extent_item *fi;
8082510e
YZ
4146 struct btrfs_key key;
4147 struct btrfs_key found_key;
39279cc3 4148 u64 extent_start = 0;
db94535d 4149 u64 extent_num_bytes = 0;
5d4f98a2 4150 u64 extent_offset = 0;
39279cc3 4151 u64 item_end = 0;
c1aa4575 4152 u64 last_size = new_size;
8082510e 4153 u32 found_type = (u8)-1;
39279cc3
CM
4154 int found_extent;
4155 int del_item;
85e21bac
CM
4156 int pending_del_nr = 0;
4157 int pending_del_slot = 0;
179e29e4 4158 int extent_type = -1;
8082510e 4159 int ret;
4a0cc7ca 4160 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4161 u64 bytes_deleted = 0;
897ca819
TM
4162 bool be_nice = false;
4163 bool should_throttle = false;
28553fa9
FM
4164 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4165 struct extent_state *cached_state = NULL;
8082510e
YZ
4166
4167 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4168
28ed1345 4169 /*
92a7cc42
QW
4170 * For non-free space inodes and non-shareable roots, we want to back
4171 * off from time to time. This means all inodes in subvolume roots,
4172 * reloc roots, and data reloc roots.
28ed1345 4173 */
70ddc553 4174 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
92a7cc42 4175 test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
897ca819 4176 be_nice = true;
28ed1345 4177
0eb0e19c
MF
4178 path = btrfs_alloc_path();
4179 if (!path)
4180 return -ENOMEM;
e4058b54 4181 path->reada = READA_BACK;
0eb0e19c 4182
82028e0a 4183 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
a5ae50de
FM
4184 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
4185 &cached_state);
28553fa9 4186
82028e0a
QW
4187 /*
4188 * We want to drop from the next block forward in case this
4189 * new size is not block aligned since we will be keeping the
4190 * last block of the extent just the way it is.
4191 */
dcdbc059 4192 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4193 fs_info->sectorsize),
da17066c 4194 (u64)-1, 0);
82028e0a 4195 }
8082510e 4196
16cdcec7
MX
4197 /*
4198 * This function is also used to drop the items in the log tree before
4199 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
52042d8e 4200 * it is used to drop the logged items. So we shouldn't kill the delayed
16cdcec7
MX
4201 * items.
4202 */
4203 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4204 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4205
33345d01 4206 key.objectid = ino;
39279cc3 4207 key.offset = (u64)-1;
5f39d397
CM
4208 key.type = (u8)-1;
4209
85e21bac 4210search_again:
28ed1345
CM
4211 /*
4212 * with a 16K leaf size and 128MB extents, you can actually queue
4213 * up a huge file in a single leaf. Most of the time that
4214 * bytes_deleted is > 0, it will be huge by the time we get here
4215 */
fd86a3a3
OS
4216 if (be_nice && bytes_deleted > SZ_32M &&
4217 btrfs_should_end_transaction(trans)) {
4218 ret = -EAGAIN;
4219 goto out;
28ed1345
CM
4220 }
4221
85e21bac 4222 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
fd86a3a3 4223 if (ret < 0)
8082510e 4224 goto out;
d397712b 4225
85e21bac 4226 if (ret > 0) {
fd86a3a3 4227 ret = 0;
e02119d5
CM
4228 /* there are no items in the tree for us to truncate, we're
4229 * done
4230 */
8082510e
YZ
4231 if (path->slots[0] == 0)
4232 goto out;
85e21bac
CM
4233 path->slots[0]--;
4234 }
4235
d397712b 4236 while (1) {
9ddc959e
JB
4237 u64 clear_start = 0, clear_len = 0;
4238
39279cc3 4239 fi = NULL;
5f39d397
CM
4240 leaf = path->nodes[0];
4241 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4242 found_type = found_key.type;
39279cc3 4243
33345d01 4244 if (found_key.objectid != ino)
39279cc3 4245 break;
5f39d397 4246
85e21bac 4247 if (found_type < min_type)
39279cc3
CM
4248 break;
4249
5f39d397 4250 item_end = found_key.offset;
39279cc3 4251 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4252 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4253 struct btrfs_file_extent_item);
179e29e4
CM
4254 extent_type = btrfs_file_extent_type(leaf, fi);
4255 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4256 item_end +=
db94535d 4257 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4258
4259 trace_btrfs_truncate_show_fi_regular(
4260 BTRFS_I(inode), leaf, fi,
4261 found_key.offset);
179e29e4 4262 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589
QW
4263 item_end += btrfs_file_extent_ram_bytes(leaf,
4264 fi);
09ed2f16
LB
4265
4266 trace_btrfs_truncate_show_fi_inline(
4267 BTRFS_I(inode), leaf, fi, path->slots[0],
4268 found_key.offset);
39279cc3 4269 }
008630c1 4270 item_end--;
39279cc3 4271 }
8082510e
YZ
4272 if (found_type > min_type) {
4273 del_item = 1;
4274 } else {
76b42abb 4275 if (item_end < new_size)
b888db2b 4276 break;
8082510e
YZ
4277 if (found_key.offset >= new_size)
4278 del_item = 1;
4279 else
4280 del_item = 0;
39279cc3 4281 }
39279cc3 4282 found_extent = 0;
39279cc3 4283 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4284 if (found_type != BTRFS_EXTENT_DATA_KEY)
4285 goto delete;
4286
4287 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4288 u64 num_dec;
9ddc959e
JB
4289
4290 clear_start = found_key.offset;
db94535d 4291 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4292 if (!del_item) {
db94535d
CM
4293 u64 orig_num_bytes =
4294 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4295 extent_num_bytes = ALIGN(new_size -
4296 found_key.offset,
0b246afa 4297 fs_info->sectorsize);
9ddc959e 4298 clear_start = ALIGN(new_size, fs_info->sectorsize);
db94535d
CM
4299 btrfs_set_file_extent_num_bytes(leaf, fi,
4300 extent_num_bytes);
4301 num_dec = (orig_num_bytes -
9069218d 4302 extent_num_bytes);
92a7cc42 4303 if (test_bit(BTRFS_ROOT_SHAREABLE,
27cdeb70
MX
4304 &root->state) &&
4305 extent_start != 0)
a76a3cd4 4306 inode_sub_bytes(inode, num_dec);
5f39d397 4307 btrfs_mark_buffer_dirty(leaf);
39279cc3 4308 } else {
db94535d
CM
4309 extent_num_bytes =
4310 btrfs_file_extent_disk_num_bytes(leaf,
4311 fi);
5d4f98a2
YZ
4312 extent_offset = found_key.offset -
4313 btrfs_file_extent_offset(leaf, fi);
4314
39279cc3 4315 /* FIXME blocksize != 4096 */
9069218d 4316 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4317 if (extent_start != 0) {
4318 found_extent = 1;
92a7cc42 4319 if (test_bit(BTRFS_ROOT_SHAREABLE,
27cdeb70 4320 &root->state))
a76a3cd4 4321 inode_sub_bytes(inode, num_dec);
e02119d5 4322 }
39279cc3 4323 }
9ddc959e 4324 clear_len = num_dec;
9069218d 4325 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4326 /*
4327 * we can't truncate inline items that have had
4328 * special encodings
4329 */
4330 if (!del_item &&
c8b97818 4331 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4332 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4333 btrfs_file_extent_compression(leaf, fi) == 0) {
4334 u32 size = (u32)(new_size - found_key.offset);
4335
4336 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4337 size = btrfs_file_extent_calc_inline_size(size);
78ac4f9e 4338 btrfs_truncate_item(path, size, 1);
ddfae63c 4339 } else if (!del_item) {
514ac8ad 4340 /*
ddfae63c
JB
4341 * We have to bail so the last_size is set to
4342 * just before this extent.
514ac8ad 4343 */
fd86a3a3 4344 ret = NEED_TRUNCATE_BLOCK;
ddfae63c 4345 break;
9ddc959e
JB
4346 } else {
4347 /*
4348 * Inline extents are special, we just treat
4349 * them as a full sector worth in the file
4350 * extent tree just for simplicity sake.
4351 */
4352 clear_len = fs_info->sectorsize;
ddfae63c 4353 }
0305cd5f 4354
92a7cc42 4355 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
0305cd5f 4356 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4357 }
179e29e4 4358delete:
9ddc959e
JB
4359 /*
4360 * We use btrfs_truncate_inode_items() to clean up log trees for
4361 * multiple fsyncs, and in this case we don't want to clear the
4362 * file extent range because it's just the log.
4363 */
4364 if (root == BTRFS_I(inode)->root) {
4365 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
4366 clear_start, clear_len);
4367 if (ret) {
4368 btrfs_abort_transaction(trans, ret);
4369 break;
4370 }
4371 }
4372
ddfae63c
JB
4373 if (del_item)
4374 last_size = found_key.offset;
4375 else
4376 last_size = new_size;
39279cc3 4377 if (del_item) {
85e21bac
CM
4378 if (!pending_del_nr) {
4379 /* no pending yet, add ourselves */
4380 pending_del_slot = path->slots[0];
4381 pending_del_nr = 1;
4382 } else if (pending_del_nr &&
4383 path->slots[0] + 1 == pending_del_slot) {
4384 /* hop on the pending chunk */
4385 pending_del_nr++;
4386 pending_del_slot = path->slots[0];
4387 } else {
d397712b 4388 BUG();
85e21bac 4389 }
39279cc3
CM
4390 } else {
4391 break;
4392 }
897ca819 4393 should_throttle = false;
28f75a0e 4394
27cdeb70 4395 if (found_extent &&
82028e0a 4396 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
ffd4bb2a
QW
4397 struct btrfs_ref ref = { 0 };
4398
28ed1345 4399 bytes_deleted += extent_num_bytes;
ffd4bb2a
QW
4400
4401 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4402 extent_start, extent_num_bytes, 0);
4403 ref.real_root = root->root_key.objectid;
4404 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4405 ino, extent_offset);
4406 ret = btrfs_free_extent(trans, &ref);
05522109
OS
4407 if (ret) {
4408 btrfs_abort_transaction(trans, ret);
4409 break;
4410 }
28f75a0e 4411 if (be_nice) {
7c861627 4412 if (btrfs_should_throttle_delayed_refs(trans))
897ca819 4413 should_throttle = true;
28f75a0e 4414 }
39279cc3 4415 }
85e21bac 4416
8082510e
YZ
4417 if (found_type == BTRFS_INODE_ITEM_KEY)
4418 break;
4419
4420 if (path->slots[0] == 0 ||
1262133b 4421 path->slots[0] != pending_del_slot ||
28bad212 4422 should_throttle) {
8082510e
YZ
4423 if (pending_del_nr) {
4424 ret = btrfs_del_items(trans, root, path,
4425 pending_del_slot,
4426 pending_del_nr);
79787eaa 4427 if (ret) {
66642832 4428 btrfs_abort_transaction(trans, ret);
fd86a3a3 4429 break;
79787eaa 4430 }
8082510e
YZ
4431 pending_del_nr = 0;
4432 }
b3b4aa74 4433 btrfs_release_path(path);
28bad212 4434
28f75a0e 4435 /*
28bad212
JB
4436 * We can generate a lot of delayed refs, so we need to
4437 * throttle every once and a while and make sure we're
4438 * adding enough space to keep up with the work we are
4439 * generating. Since we hold a transaction here we
4440 * can't flush, and we don't want to FLUSH_LIMIT because
4441 * we could have generated too many delayed refs to
4442 * actually allocate, so just bail if we're short and
4443 * let the normal reservation dance happen higher up.
28f75a0e 4444 */
28bad212
JB
4445 if (should_throttle) {
4446 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4447 BTRFS_RESERVE_NO_FLUSH);
4448 if (ret) {
4449 ret = -EAGAIN;
4450 break;
4451 }
28f75a0e 4452 }
85e21bac 4453 goto search_again;
8082510e
YZ
4454 } else {
4455 path->slots[0]--;
85e21bac 4456 }
39279cc3 4457 }
8082510e 4458out:
fd86a3a3
OS
4459 if (ret >= 0 && pending_del_nr) {
4460 int err;
4461
4462 err = btrfs_del_items(trans, root, path, pending_del_slot,
85e21bac 4463 pending_del_nr);
fd86a3a3
OS
4464 if (err) {
4465 btrfs_abort_transaction(trans, err);
4466 ret = err;
4467 }
85e21bac 4468 }
76b42abb
FM
4469 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4470 ASSERT(last_size >= new_size);
fd86a3a3 4471 if (!ret && last_size > new_size)
76b42abb 4472 last_size = new_size;
d923afe9 4473 btrfs_inode_safe_disk_i_size_write(inode, last_size);
a5ae50de
FM
4474 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
4475 (u64)-1, &cached_state);
76b42abb 4476 }
28ed1345 4477
39279cc3 4478 btrfs_free_path(path);
fd86a3a3 4479 return ret;
39279cc3
CM
4480}
4481
4482/*
9703fefe 4483 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4484 * @inode - inode that we're zeroing
4485 * @from - the offset to start zeroing
4486 * @len - the length to zero, 0 to zero the entire range respective to the
4487 * offset
4488 * @front - zero up to the offset instead of from the offset on
4489 *
9703fefe 4490 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4491 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4492 */
9703fefe 4493int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4494 int front)
39279cc3 4495{
0b246afa 4496 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4497 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4498 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4499 struct btrfs_ordered_extent *ordered;
2ac55d41 4500 struct extent_state *cached_state = NULL;
364ecf36 4501 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4502 char *kaddr;
6d4572a9 4503 bool only_release_metadata = false;
0b246afa 4504 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4505 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4506 unsigned offset = from & (blocksize - 1);
39279cc3 4507 struct page *page;
3b16a4e3 4508 gfp_t mask = btrfs_alloc_write_mask(mapping);
6d4572a9 4509 size_t write_bytes = blocksize;
39279cc3 4510 int ret = 0;
9703fefe
CR
4511 u64 block_start;
4512 u64 block_end;
39279cc3 4513
b03ebd99
NB
4514 if (IS_ALIGNED(offset, blocksize) &&
4515 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4516 goto out;
9703fefe 4517
8b62f87b
JB
4518 block_start = round_down(from, blocksize);
4519 block_end = block_start + blocksize - 1;
4520
39279cc3 4521
6d4572a9
QW
4522 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4523 blocksize);
4524 if (ret < 0) {
38d37aa9
QW
4525 if (btrfs_check_nocow_lock(BTRFS_I(inode), block_start,
4526 &write_bytes) > 0) {
6d4572a9
QW
4527 /* For nocow case, no need to reserve data space */
4528 only_release_metadata = true;
4529 } else {
4530 goto out;
4531 }
4532 }
4533 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize);
4534 if (ret < 0) {
4535 if (!only_release_metadata)
25ce28ca
NB
4536 btrfs_free_reserved_data_space(BTRFS_I(inode),
4537 data_reserved, block_start, blocksize);
6d4572a9
QW
4538 goto out;
4539 }
211c17f5 4540again:
3b16a4e3 4541 page = find_or_create_page(mapping, index, mask);
5d5e103a 4542 if (!page) {
86d52921 4543 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
43b18595 4544 block_start, blocksize, true);
8702ba93 4545 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
ac6a2b36 4546 ret = -ENOMEM;
39279cc3 4547 goto out;
5d5e103a 4548 }
e6dcd2dc 4549
39279cc3 4550 if (!PageUptodate(page)) {
9ebefb18 4551 ret = btrfs_readpage(NULL, page);
39279cc3 4552 lock_page(page);
211c17f5
CM
4553 if (page->mapping != mapping) {
4554 unlock_page(page);
09cbfeaf 4555 put_page(page);
211c17f5
CM
4556 goto again;
4557 }
39279cc3
CM
4558 if (!PageUptodate(page)) {
4559 ret = -EIO;
89642229 4560 goto out_unlock;
39279cc3
CM
4561 }
4562 }
211c17f5 4563 wait_on_page_writeback(page);
e6dcd2dc 4564
9703fefe 4565 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4566 set_page_extent_mapped(page);
4567
c3504372 4568 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), block_start);
e6dcd2dc 4569 if (ordered) {
9703fefe 4570 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4571 &cached_state);
e6dcd2dc 4572 unlock_page(page);
09cbfeaf 4573 put_page(page);
eb84ae03 4574 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4575 btrfs_put_ordered_extent(ordered);
4576 goto again;
4577 }
4578
9703fefe 4579 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
e182163d
OS
4580 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4581 0, 0, &cached_state);
5d5e103a 4582
c2566f22 4583 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), block_start, block_end, 0,
330a5827 4584 &cached_state);
9ed74f2d 4585 if (ret) {
9703fefe 4586 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4587 &cached_state);
9ed74f2d
JB
4588 goto out_unlock;
4589 }
4590
9703fefe 4591 if (offset != blocksize) {
2aaa6655 4592 if (!len)
9703fefe 4593 len = blocksize - offset;
e6dcd2dc 4594 kaddr = kmap(page);
2aaa6655 4595 if (front)
9703fefe
CR
4596 memset(kaddr + (block_start - page_offset(page)),
4597 0, offset);
2aaa6655 4598 else
9703fefe
CR
4599 memset(kaddr + (block_start - page_offset(page)) + offset,
4600 0, len);
e6dcd2dc
CM
4601 flush_dcache_page(page);
4602 kunmap(page);
4603 }
247e743c 4604 ClearPageChecked(page);
e6dcd2dc 4605 set_page_dirty(page);
e43bbe5e 4606 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
39279cc3 4607
6d4572a9
QW
4608 if (only_release_metadata)
4609 set_extent_bit(&BTRFS_I(inode)->io_tree, block_start,
4610 block_end, EXTENT_NORESERVE, NULL, NULL,
4611 GFP_NOFS);
4612
89642229 4613out_unlock:
6d4572a9
QW
4614 if (ret) {
4615 if (only_release_metadata)
4616 btrfs_delalloc_release_metadata(BTRFS_I(inode),
4617 blocksize, true);
4618 else
86d52921 4619 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
6d4572a9
QW
4620 block_start, blocksize, true);
4621 }
8702ba93 4622 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
39279cc3 4623 unlock_page(page);
09cbfeaf 4624 put_page(page);
39279cc3 4625out:
6d4572a9 4626 if (only_release_metadata)
38d37aa9 4627 btrfs_check_nocow_unlock(BTRFS_I(inode));
364ecf36 4628 extent_changeset_free(data_reserved);
39279cc3
CM
4629 return ret;
4630}
4631
16e7549f
JB
4632static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4633 u64 offset, u64 len)
4634{
0b246afa 4635 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4636 struct btrfs_trans_handle *trans;
4637 int ret;
4638
4639 /*
4640 * Still need to make sure the inode looks like it's been updated so
4641 * that any holes get logged if we fsync.
4642 */
0b246afa
JM
4643 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4644 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4645 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4646 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4647 return 0;
4648 }
4649
4650 /*
4651 * 1 - for the one we're dropping
4652 * 1 - for the one we're adding
4653 * 1 - for updating the inode.
4654 */
4655 trans = btrfs_start_transaction(root, 3);
4656 if (IS_ERR(trans))
4657 return PTR_ERR(trans);
4658
4659 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4660 if (ret) {
66642832 4661 btrfs_abort_transaction(trans, ret);
3a45bb20 4662 btrfs_end_transaction(trans);
16e7549f
JB
4663 return ret;
4664 }
4665
f85b7379
DS
4666 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4667 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4668 if (ret)
66642832 4669 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4670 else
4671 btrfs_update_inode(trans, root, inode);
3a45bb20 4672 btrfs_end_transaction(trans);
16e7549f
JB
4673 return ret;
4674}
4675
695a0d0d
JB
4676/*
4677 * This function puts in dummy file extents for the area we're creating a hole
4678 * for. So if we are truncating this file to a larger size we need to insert
4679 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4680 * the range between oldsize and size
4681 */
a41ad394 4682int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4683{
0b246afa 4684 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4685 struct btrfs_root *root = BTRFS_I(inode)->root;
4686 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4687 struct extent_map *em = NULL;
2ac55d41 4688 struct extent_state *cached_state = NULL;
5dc562c5 4689 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4690 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4691 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4692 u64 last_byte;
4693 u64 cur_offset;
4694 u64 hole_size;
9ed74f2d 4695 int err = 0;
39279cc3 4696
a71754fc 4697 /*
9703fefe
CR
4698 * If our size started in the middle of a block we need to zero out the
4699 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4700 * expose stale data.
4701 */
9703fefe 4702 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4703 if (err)
4704 return err;
4705
9036c102
YZ
4706 if (size <= hole_start)
4707 return 0;
4708
b272ae22 4709 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start,
23d31bd4 4710 block_end - 1, &cached_state);
9036c102
YZ
4711 cur_offset = hole_start;
4712 while (1) {
fc4f21b1 4713 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
39b07b5d 4714 block_end - cur_offset);
79787eaa
JM
4715 if (IS_ERR(em)) {
4716 err = PTR_ERR(em);
f2767956 4717 em = NULL;
79787eaa
JM
4718 break;
4719 }
9036c102 4720 last_byte = min(extent_map_end(em), block_end);
0b246afa 4721 last_byte = ALIGN(last_byte, fs_info->sectorsize);
9ddc959e
JB
4722 hole_size = last_byte - cur_offset;
4723
8082510e 4724 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4725 struct extent_map *hole_em;
9ed74f2d 4726
16e7549f
JB
4727 err = maybe_insert_hole(root, inode, cur_offset,
4728 hole_size);
4729 if (err)
3893e33b 4730 break;
9ddc959e
JB
4731
4732 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4733 cur_offset, hole_size);
4734 if (err)
4735 break;
4736
dcdbc059 4737 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
4738 cur_offset + hole_size - 1, 0);
4739 hole_em = alloc_extent_map();
4740 if (!hole_em) {
4741 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4742 &BTRFS_I(inode)->runtime_flags);
4743 goto next;
4744 }
4745 hole_em->start = cur_offset;
4746 hole_em->len = hole_size;
4747 hole_em->orig_start = cur_offset;
8082510e 4748
5dc562c5
JB
4749 hole_em->block_start = EXTENT_MAP_HOLE;
4750 hole_em->block_len = 0;
b4939680 4751 hole_em->orig_block_len = 0;
cc95bef6 4752 hole_em->ram_bytes = hole_size;
5dc562c5 4753 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 4754 hole_em->generation = fs_info->generation;
8082510e 4755
5dc562c5
JB
4756 while (1) {
4757 write_lock(&em_tree->lock);
09a2a8f9 4758 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4759 write_unlock(&em_tree->lock);
4760 if (err != -EEXIST)
4761 break;
dcdbc059
NB
4762 btrfs_drop_extent_cache(BTRFS_I(inode),
4763 cur_offset,
5dc562c5
JB
4764 cur_offset +
4765 hole_size - 1, 0);
4766 }
4767 free_extent_map(hole_em);
9ddc959e
JB
4768 } else {
4769 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4770 cur_offset, hole_size);
4771 if (err)
4772 break;
9036c102 4773 }
16e7549f 4774next:
9036c102 4775 free_extent_map(em);
a22285a6 4776 em = NULL;
9036c102 4777 cur_offset = last_byte;
8082510e 4778 if (cur_offset >= block_end)
9036c102
YZ
4779 break;
4780 }
a22285a6 4781 free_extent_map(em);
e43bbe5e 4782 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
4783 return err;
4784}
39279cc3 4785
3972f260 4786static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4787{
f4a2f4c5
MX
4788 struct btrfs_root *root = BTRFS_I(inode)->root;
4789 struct btrfs_trans_handle *trans;
a41ad394 4790 loff_t oldsize = i_size_read(inode);
3972f260
ES
4791 loff_t newsize = attr->ia_size;
4792 int mask = attr->ia_valid;
8082510e
YZ
4793 int ret;
4794
3972f260
ES
4795 /*
4796 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4797 * special case where we need to update the times despite not having
4798 * these flags set. For all other operations the VFS set these flags
4799 * explicitly if it wants a timestamp update.
4800 */
dff6efc3
CH
4801 if (newsize != oldsize) {
4802 inode_inc_iversion(inode);
4803 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4804 inode->i_ctime = inode->i_mtime =
c2050a45 4805 current_time(inode);
dff6efc3 4806 }
3972f260 4807
a41ad394 4808 if (newsize > oldsize) {
9ea24bbe 4809 /*
ea14b57f 4810 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
4811 * This is to ensure the snapshot captures a fully consistent
4812 * state of this file - if the snapshot captures this expanding
4813 * truncation, it must capture all writes that happened before
4814 * this truncation.
4815 */
dcc3eb96 4816 btrfs_drew_write_lock(&root->snapshot_lock);
a41ad394 4817 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 4818 if (ret) {
dcc3eb96 4819 btrfs_drew_write_unlock(&root->snapshot_lock);
8082510e 4820 return ret;
9ea24bbe 4821 }
8082510e 4822
f4a2f4c5 4823 trans = btrfs_start_transaction(root, 1);
9ea24bbe 4824 if (IS_ERR(trans)) {
dcc3eb96 4825 btrfs_drew_write_unlock(&root->snapshot_lock);
f4a2f4c5 4826 return PTR_ERR(trans);
9ea24bbe 4827 }
f4a2f4c5
MX
4828
4829 i_size_write(inode, newsize);
d923afe9 4830 btrfs_inode_safe_disk_i_size_write(inode, 0);
27772b68 4831 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 4832 ret = btrfs_update_inode(trans, root, inode);
dcc3eb96 4833 btrfs_drew_write_unlock(&root->snapshot_lock);
3a45bb20 4834 btrfs_end_transaction(trans);
a41ad394 4835 } else {
8082510e 4836
a41ad394
JB
4837 /*
4838 * We're truncating a file that used to have good data down to
4839 * zero. Make sure it gets into the ordered flush list so that
4840 * any new writes get down to disk quickly.
4841 */
4842 if (newsize == 0)
72ac3c0d
JB
4843 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4844 &BTRFS_I(inode)->runtime_flags);
8082510e 4845
a41ad394 4846 truncate_setsize(inode, newsize);
2e60a51e 4847
8e0fa5d7
DS
4848 /* Disable nonlocked read DIO to avoid the endless truncate */
4849 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 4850 inode_dio_wait(inode);
8e0fa5d7 4851 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 4852
213e8c55 4853 ret = btrfs_truncate(inode, newsize == oldsize);
7f4f6e0a
JB
4854 if (ret && inode->i_nlink) {
4855 int err;
4856
4857 /*
f7e9e8fc
OS
4858 * Truncate failed, so fix up the in-memory size. We
4859 * adjusted disk_i_size down as we removed extents, so
4860 * wait for disk_i_size to be stable and then update the
4861 * in-memory size to match.
7f4f6e0a 4862 */
f7e9e8fc 4863 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
7f4f6e0a 4864 if (err)
f7e9e8fc
OS
4865 return err;
4866 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
7f4f6e0a 4867 }
8082510e
YZ
4868 }
4869
a41ad394 4870 return ret;
8082510e
YZ
4871}
4872
9036c102
YZ
4873static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4874{
2b0143b5 4875 struct inode *inode = d_inode(dentry);
b83cc969 4876 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4877 int err;
39279cc3 4878
b83cc969
LZ
4879 if (btrfs_root_readonly(root))
4880 return -EROFS;
4881
31051c85 4882 err = setattr_prepare(dentry, attr);
9036c102
YZ
4883 if (err)
4884 return err;
2bf5a725 4885
5a3f23d5 4886 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4887 err = btrfs_setsize(inode, attr);
8082510e
YZ
4888 if (err)
4889 return err;
39279cc3 4890 }
9036c102 4891
1025774c
CH
4892 if (attr->ia_valid) {
4893 setattr_copy(inode, attr);
0c4d2d95 4894 inode_inc_iversion(inode);
22c44fe6 4895 err = btrfs_dirty_inode(inode);
1025774c 4896
22c44fe6 4897 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 4898 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 4899 }
33268eaf 4900
39279cc3
CM
4901 return err;
4902}
61295eb8 4903
131e404a
FDBM
4904/*
4905 * While truncating the inode pages during eviction, we get the VFS calling
4906 * btrfs_invalidatepage() against each page of the inode. This is slow because
4907 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4908 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4909 * extent_state structures over and over, wasting lots of time.
4910 *
4911 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4912 * those expensive operations on a per page basis and do only the ordered io
4913 * finishing, while we release here the extent_map and extent_state structures,
4914 * without the excessive merging and splitting.
4915 */
4916static void evict_inode_truncate_pages(struct inode *inode)
4917{
4918 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4919 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4920 struct rb_node *node;
4921
4922 ASSERT(inode->i_state & I_FREEING);
91b0abe3 4923 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
4924
4925 write_lock(&map_tree->lock);
07e1ce09 4926 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
131e404a
FDBM
4927 struct extent_map *em;
4928
07e1ce09 4929 node = rb_first_cached(&map_tree->map);
131e404a 4930 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
4931 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4932 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
4933 remove_extent_mapping(map_tree, em);
4934 free_extent_map(em);
7064dd5c
FM
4935 if (need_resched()) {
4936 write_unlock(&map_tree->lock);
4937 cond_resched();
4938 write_lock(&map_tree->lock);
4939 }
131e404a
FDBM
4940 }
4941 write_unlock(&map_tree->lock);
4942
6ca07097
FM
4943 /*
4944 * Keep looping until we have no more ranges in the io tree.
ba206a02
MWO
4945 * We can have ongoing bios started by readahead that have
4946 * their endio callback (extent_io.c:end_bio_extent_readpage)
9c6429d9
FM
4947 * still in progress (unlocked the pages in the bio but did not yet
4948 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
4949 * ranges can still be locked and eviction started because before
4950 * submitting those bios, which are executed by a separate task (work
4951 * queue kthread), inode references (inode->i_count) were not taken
4952 * (which would be dropped in the end io callback of each bio).
4953 * Therefore here we effectively end up waiting for those bios and
4954 * anyone else holding locked ranges without having bumped the inode's
4955 * reference count - if we don't do it, when they access the inode's
4956 * io_tree to unlock a range it may be too late, leading to an
4957 * use-after-free issue.
4958 */
131e404a
FDBM
4959 spin_lock(&io_tree->lock);
4960 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4961 struct extent_state *state;
4962 struct extent_state *cached_state = NULL;
6ca07097
FM
4963 u64 start;
4964 u64 end;
421f0922 4965 unsigned state_flags;
131e404a
FDBM
4966
4967 node = rb_first(&io_tree->state);
4968 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
4969 start = state->start;
4970 end = state->end;
421f0922 4971 state_flags = state->state;
131e404a
FDBM
4972 spin_unlock(&io_tree->lock);
4973
ff13db41 4974 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
4975
4976 /*
4977 * If still has DELALLOC flag, the extent didn't reach disk,
4978 * and its reserved space won't be freed by delayed_ref.
4979 * So we need to free its reserved space here.
4980 * (Refer to comment in btrfs_invalidatepage, case 2)
4981 *
4982 * Note, end is the bytenr of last byte, so we need + 1 here.
4983 */
421f0922 4984 if (state_flags & EXTENT_DELALLOC)
8b8a979f
NB
4985 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
4986 end - start + 1);
b9d0b389 4987
6ca07097 4988 clear_extent_bit(io_tree, start, end,
e182163d
OS
4989 EXTENT_LOCKED | EXTENT_DELALLOC |
4990 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
4991 &cached_state);
131e404a 4992
7064dd5c 4993 cond_resched();
131e404a
FDBM
4994 spin_lock(&io_tree->lock);
4995 }
4996 spin_unlock(&io_tree->lock);
4997}
4998
4b9d7b59 4999static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
ad80cf50 5000 struct btrfs_block_rsv *rsv)
4b9d7b59
OS
5001{
5002 struct btrfs_fs_info *fs_info = root->fs_info;
5003 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d3984c90 5004 struct btrfs_trans_handle *trans;
2bd36e7b 5005 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
d3984c90 5006 int ret;
4b9d7b59 5007
d3984c90
JB
5008 /*
5009 * Eviction should be taking place at some place safe because of our
5010 * delayed iputs. However the normal flushing code will run delayed
5011 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5012 *
5013 * We reserve the delayed_refs_extra here again because we can't use
5014 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5015 * above. We reserve our extra bit here because we generate a ton of
5016 * delayed refs activity by truncating.
5017 *
5018 * If we cannot make our reservation we'll attempt to steal from the
5019 * global reserve, because we really want to be able to free up space.
5020 */
5021 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5022 BTRFS_RESERVE_FLUSH_EVICT);
5023 if (ret) {
4b9d7b59
OS
5024 /*
5025 * Try to steal from the global reserve if there is space for
5026 * it.
5027 */
d3984c90
JB
5028 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5029 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5030 btrfs_warn(fs_info,
5031 "could not allocate space for delete; will truncate on mount");
5032 return ERR_PTR(-ENOSPC);
5033 }
5034 delayed_refs_extra = 0;
5035 }
4b9d7b59 5036
d3984c90
JB
5037 trans = btrfs_join_transaction(root);
5038 if (IS_ERR(trans))
5039 return trans;
5040
5041 if (delayed_refs_extra) {
5042 trans->block_rsv = &fs_info->trans_block_rsv;
5043 trans->bytes_reserved = delayed_refs_extra;
5044 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5045 delayed_refs_extra, 1);
4b9d7b59 5046 }
d3984c90 5047 return trans;
4b9d7b59
OS
5048}
5049
bd555975 5050void btrfs_evict_inode(struct inode *inode)
39279cc3 5051{
0b246afa 5052 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5053 struct btrfs_trans_handle *trans;
5054 struct btrfs_root *root = BTRFS_I(inode)->root;
4b9d7b59 5055 struct btrfs_block_rsv *rsv;
39279cc3
CM
5056 int ret;
5057
1abe9b8a 5058 trace_btrfs_inode_evict(inode);
5059
3d48d981 5060 if (!root) {
e8f1bc14 5061 clear_inode(inode);
3d48d981
NB
5062 return;
5063 }
5064
131e404a
FDBM
5065 evict_inode_truncate_pages(inode);
5066
69e9c6c6
SB
5067 if (inode->i_nlink &&
5068 ((btrfs_root_refs(&root->root_item) != 0 &&
5069 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5070 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5071 goto no_delete;
5072
27919067 5073 if (is_bad_inode(inode))
39279cc3 5074 goto no_delete;
5f39d397 5075
7ab7956e 5076 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5077
7b40b695 5078 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
c71bf099 5079 goto no_delete;
c71bf099 5080
76dda93c 5081 if (inode->i_nlink > 0) {
69e9c6c6
SB
5082 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5083 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5084 goto no_delete;
5085 }
5086
aa79021f 5087 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
27919067 5088 if (ret)
0e8c36a9 5089 goto no_delete;
0e8c36a9 5090
2ff7e61e 5091 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
27919067 5092 if (!rsv)
4289a667 5093 goto no_delete;
2bd36e7b 5094 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
ca7e70f5 5095 rsv->failfast = 1;
4289a667 5096
6ef06d27 5097 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5098
8082510e 5099 while (1) {
ad80cf50 5100 trans = evict_refill_and_join(root, rsv);
27919067
OS
5101 if (IS_ERR(trans))
5102 goto free_rsv;
7b128766 5103
4289a667
JB
5104 trans->block_rsv = rsv;
5105
d68fc57b 5106 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
27919067
OS
5107 trans->block_rsv = &fs_info->trans_block_rsv;
5108 btrfs_end_transaction(trans);
5109 btrfs_btree_balance_dirty(fs_info);
5110 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5111 goto free_rsv;
5112 else if (!ret)
8082510e 5113 break;
8082510e 5114 }
5f39d397 5115
4ef31a45 5116 /*
27919067
OS
5117 * Errors here aren't a big deal, it just means we leave orphan items in
5118 * the tree. They will be cleaned up on the next mount. If the inode
5119 * number gets reused, cleanup deletes the orphan item without doing
5120 * anything, and unlink reuses the existing orphan item.
5121 *
5122 * If it turns out that we are dropping too many of these, we might want
5123 * to add a mechanism for retrying these after a commit.
4ef31a45 5124 */
ad80cf50 5125 trans = evict_refill_and_join(root, rsv);
27919067
OS
5126 if (!IS_ERR(trans)) {
5127 trans->block_rsv = rsv;
5128 btrfs_orphan_del(trans, BTRFS_I(inode));
5129 trans->block_rsv = &fs_info->trans_block_rsv;
5130 btrfs_end_transaction(trans);
5131 }
54aa1f4d 5132
0b246afa 5133 if (!(root == fs_info->tree_root ||
581bb050 5134 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5135 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5136
27919067
OS
5137free_rsv:
5138 btrfs_free_block_rsv(fs_info, rsv);
39279cc3 5139no_delete:
27919067
OS
5140 /*
5141 * If we didn't successfully delete, the orphan item will still be in
5142 * the tree and we'll retry on the next mount. Again, we might also want
5143 * to retry these periodically in the future.
5144 */
f48d1cf5 5145 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5146 clear_inode(inode);
39279cc3
CM
5147}
5148
5149/*
6bf9e4bd
QW
5150 * Return the key found in the dir entry in the location pointer, fill @type
5151 * with BTRFS_FT_*, and return 0.
5152 *
005d6712
SY
5153 * If no dir entries were found, returns -ENOENT.
5154 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3
CM
5155 */
5156static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
6bf9e4bd 5157 struct btrfs_key *location, u8 *type)
39279cc3
CM
5158{
5159 const char *name = dentry->d_name.name;
5160 int namelen = dentry->d_name.len;
5161 struct btrfs_dir_item *di;
5162 struct btrfs_path *path;
5163 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5164 int ret = 0;
39279cc3
CM
5165
5166 path = btrfs_alloc_path();
d8926bb3
MF
5167 if (!path)
5168 return -ENOMEM;
3954401f 5169
f85b7379
DS
5170 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5171 name, namelen, 0);
3cf5068f
LB
5172 if (IS_ERR_OR_NULL(di)) {
5173 ret = di ? PTR_ERR(di) : -ENOENT;
005d6712
SY
5174 goto out;
5175 }
d397712b 5176
5f39d397 5177 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5178 if (location->type != BTRFS_INODE_ITEM_KEY &&
5179 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5180 ret = -EUCLEAN;
56a0e706
LB
5181 btrfs_warn(root->fs_info,
5182"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5183 __func__, name, btrfs_ino(BTRFS_I(dir)),
5184 location->objectid, location->type, location->offset);
56a0e706 5185 }
6bf9e4bd
QW
5186 if (!ret)
5187 *type = btrfs_dir_type(path->nodes[0], di);
39279cc3 5188out:
39279cc3
CM
5189 btrfs_free_path(path);
5190 return ret;
5191}
5192
5193/*
5194 * when we hit a tree root in a directory, the btrfs part of the inode
5195 * needs to be changed to reflect the root directory of the tree root. This
5196 * is kind of like crossing a mount point.
5197 */
2ff7e61e 5198static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5199 struct inode *dir,
5200 struct dentry *dentry,
5201 struct btrfs_key *location,
5202 struct btrfs_root **sub_root)
39279cc3 5203{
4df27c4d
YZ
5204 struct btrfs_path *path;
5205 struct btrfs_root *new_root;
5206 struct btrfs_root_ref *ref;
5207 struct extent_buffer *leaf;
1d4c08e0 5208 struct btrfs_key key;
4df27c4d
YZ
5209 int ret;
5210 int err = 0;
39279cc3 5211
4df27c4d
YZ
5212 path = btrfs_alloc_path();
5213 if (!path) {
5214 err = -ENOMEM;
5215 goto out;
5216 }
39279cc3 5217
4df27c4d 5218 err = -ENOENT;
1d4c08e0
DS
5219 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5220 key.type = BTRFS_ROOT_REF_KEY;
5221 key.offset = location->objectid;
5222
0b246afa 5223 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5224 if (ret) {
5225 if (ret < 0)
5226 err = ret;
5227 goto out;
5228 }
39279cc3 5229
4df27c4d
YZ
5230 leaf = path->nodes[0];
5231 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5232 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5233 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5234 goto out;
39279cc3 5235
4df27c4d
YZ
5236 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5237 (unsigned long)(ref + 1),
5238 dentry->d_name.len);
5239 if (ret)
5240 goto out;
5241
b3b4aa74 5242 btrfs_release_path(path);
4df27c4d 5243
56e9357a 5244 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
4df27c4d
YZ
5245 if (IS_ERR(new_root)) {
5246 err = PTR_ERR(new_root);
5247 goto out;
5248 }
5249
4df27c4d
YZ
5250 *sub_root = new_root;
5251 location->objectid = btrfs_root_dirid(&new_root->root_item);
5252 location->type = BTRFS_INODE_ITEM_KEY;
5253 location->offset = 0;
5254 err = 0;
5255out:
5256 btrfs_free_path(path);
5257 return err;
39279cc3
CM
5258}
5259
5d4f98a2
YZ
5260static void inode_tree_add(struct inode *inode)
5261{
5262 struct btrfs_root *root = BTRFS_I(inode)->root;
5263 struct btrfs_inode *entry;
03e860bd
NP
5264 struct rb_node **p;
5265 struct rb_node *parent;
cef21937 5266 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5267 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5268
1d3382cb 5269 if (inode_unhashed(inode))
76dda93c 5270 return;
e1409cef 5271 parent = NULL;
5d4f98a2 5272 spin_lock(&root->inode_lock);
e1409cef 5273 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5274 while (*p) {
5275 parent = *p;
5276 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5277
37508515 5278 if (ino < btrfs_ino(entry))
03e860bd 5279 p = &parent->rb_left;
37508515 5280 else if (ino > btrfs_ino(entry))
03e860bd 5281 p = &parent->rb_right;
5d4f98a2
YZ
5282 else {
5283 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5284 (I_WILL_FREE | I_FREEING)));
cef21937 5285 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
NP
5286 RB_CLEAR_NODE(parent);
5287 spin_unlock(&root->inode_lock);
cef21937 5288 return;
5d4f98a2
YZ
5289 }
5290 }
cef21937
FDBM
5291 rb_link_node(new, parent, p);
5292 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5293 spin_unlock(&root->inode_lock);
5294}
5295
5296static void inode_tree_del(struct inode *inode)
5297{
5298 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5299 int empty = 0;
5d4f98a2 5300
03e860bd 5301 spin_lock(&root->inode_lock);
5d4f98a2 5302 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5303 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5304 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5305 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5306 }
03e860bd 5307 spin_unlock(&root->inode_lock);
76dda93c 5308
69e9c6c6 5309 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5310 spin_lock(&root->inode_lock);
5311 empty = RB_EMPTY_ROOT(&root->inode_tree);
5312 spin_unlock(&root->inode_lock);
5313 if (empty)
5314 btrfs_add_dead_root(root);
5315 }
5316}
5317
5d4f98a2 5318
e02119d5
CM
5319static int btrfs_init_locked_inode(struct inode *inode, void *p)
5320{
5321 struct btrfs_iget_args *args = p;
0202e83f
DS
5322
5323 inode->i_ino = args->ino;
5324 BTRFS_I(inode)->location.objectid = args->ino;
5325 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5326 BTRFS_I(inode)->location.offset = 0;
5c8fd99f
JB
5327 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5328 BUG_ON(args->root && !BTRFS_I(inode)->root);
39279cc3
CM
5329 return 0;
5330}
5331
5332static int btrfs_find_actor(struct inode *inode, void *opaque)
5333{
5334 struct btrfs_iget_args *args = opaque;
0202e83f
DS
5335
5336 return args->ino == BTRFS_I(inode)->location.objectid &&
d397712b 5337 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5338}
5339
0202e83f 5340static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5d4f98a2 5341 struct btrfs_root *root)
39279cc3
CM
5342{
5343 struct inode *inode;
5344 struct btrfs_iget_args args;
0202e83f 5345 unsigned long hashval = btrfs_inode_hash(ino, root);
778ba82b 5346
0202e83f 5347 args.ino = ino;
39279cc3
CM
5348 args.root = root;
5349
778ba82b 5350 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5351 btrfs_init_locked_inode,
5352 (void *)&args);
5353 return inode;
5354}
5355
4c66e0d4 5356/*
0202e83f 5357 * Get an inode object given its inode number and corresponding root.
4c66e0d4
DS
5358 * Path can be preallocated to prevent recursing back to iget through
5359 * allocator. NULL is also valid but may require an additional allocation
5360 * later.
1a54ef8c 5361 */
0202e83f 5362struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
4c66e0d4 5363 struct btrfs_root *root, struct btrfs_path *path)
1a54ef8c
BR
5364{
5365 struct inode *inode;
5366
0202e83f 5367 inode = btrfs_iget_locked(s, ino, root);
1a54ef8c 5368 if (!inode)
5d4f98a2 5369 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5370
5371 if (inode->i_state & I_NEW) {
67710892
FM
5372 int ret;
5373
4222ea71 5374 ret = btrfs_read_locked_inode(inode, path);
9bc2ceff 5375 if (!ret) {
1748f843
MF
5376 inode_tree_add(inode);
5377 unlock_new_inode(inode);
1748f843 5378 } else {
f5b3a417
AV
5379 iget_failed(inode);
5380 /*
5381 * ret > 0 can come from btrfs_search_slot called by
5382 * btrfs_read_locked_inode, this means the inode item
5383 * was not found.
5384 */
5385 if (ret > 0)
5386 ret = -ENOENT;
5387 inode = ERR_PTR(ret);
1748f843
MF
5388 }
5389 }
5390
1a54ef8c
BR
5391 return inode;
5392}
5393
0202e83f 5394struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
4222ea71 5395{
0202e83f 5396 return btrfs_iget_path(s, ino, root, NULL);
4222ea71
FM
5397}
5398
4df27c4d
YZ
5399static struct inode *new_simple_dir(struct super_block *s,
5400 struct btrfs_key *key,
5401 struct btrfs_root *root)
5402{
5403 struct inode *inode = new_inode(s);
5404
5405 if (!inode)
5406 return ERR_PTR(-ENOMEM);
5407
5c8fd99f 5408 BTRFS_I(inode)->root = btrfs_grab_root(root);
4df27c4d 5409 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5410 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5411
5412 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
6bb6b514
OS
5413 /*
5414 * We only need lookup, the rest is read-only and there's no inode
5415 * associated with the dentry
5416 */
5417 inode->i_op = &simple_dir_inode_operations;
1fdf4194 5418 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5419 inode->i_fop = &simple_dir_operations;
5420 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5421 inode->i_mtime = current_time(inode);
9cc97d64 5422 inode->i_atime = inode->i_mtime;
5423 inode->i_ctime = inode->i_mtime;
d3c6be6f 5424 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5425
5426 return inode;
5427}
5428
6bf9e4bd
QW
5429static inline u8 btrfs_inode_type(struct inode *inode)
5430{
5431 /*
5432 * Compile-time asserts that generic FT_* types still match
5433 * BTRFS_FT_* types
5434 */
5435 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5436 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5437 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5438 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5439 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5440 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5441 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5442 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5443
5444 return fs_umode_to_ftype(inode->i_mode);
5445}
5446
3de4586c 5447struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5448{
0b246afa 5449 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5450 struct inode *inode;
4df27c4d 5451 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5452 struct btrfs_root *sub_root = root;
5453 struct btrfs_key location;
6bf9e4bd 5454 u8 di_type = 0;
b4aff1f8 5455 int ret = 0;
39279cc3
CM
5456
5457 if (dentry->d_name.len > BTRFS_NAME_LEN)
5458 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5459
6bf9e4bd 5460 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
39279cc3
CM
5461 if (ret < 0)
5462 return ERR_PTR(ret);
5f39d397 5463
4df27c4d 5464 if (location.type == BTRFS_INODE_ITEM_KEY) {
0202e83f 5465 inode = btrfs_iget(dir->i_sb, location.objectid, root);
6bf9e4bd
QW
5466 if (IS_ERR(inode))
5467 return inode;
5468
5469 /* Do extra check against inode mode with di_type */
5470 if (btrfs_inode_type(inode) != di_type) {
5471 btrfs_crit(fs_info,
5472"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5473 inode->i_mode, btrfs_inode_type(inode),
5474 di_type);
5475 iput(inode);
5476 return ERR_PTR(-EUCLEAN);
5477 }
4df27c4d
YZ
5478 return inode;
5479 }
5480
2ff7e61e 5481 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5482 &location, &sub_root);
5483 if (ret < 0) {
5484 if (ret != -ENOENT)
5485 inode = ERR_PTR(ret);
5486 else
5487 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5488 } else {
0202e83f 5489 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
39279cc3 5490 }
8727002f 5491 if (root != sub_root)
00246528 5492 btrfs_put_root(sub_root);
76dda93c 5493
34d19bad 5494 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5495 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5496 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5497 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5498 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5499 if (ret) {
5500 iput(inode);
66b4ffd1 5501 inode = ERR_PTR(ret);
01cd3367 5502 }
c71bf099
YZ
5503 }
5504
3de4586c
CM
5505 return inode;
5506}
5507
fe15ce44 5508static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5509{
5510 struct btrfs_root *root;
2b0143b5 5511 struct inode *inode = d_inode(dentry);
76dda93c 5512
848cce0d 5513 if (!inode && !IS_ROOT(dentry))
2b0143b5 5514 inode = d_inode(dentry->d_parent);
76dda93c 5515
848cce0d
LZ
5516 if (inode) {
5517 root = BTRFS_I(inode)->root;
efefb143
YZ
5518 if (btrfs_root_refs(&root->root_item) == 0)
5519 return 1;
848cce0d 5520
4a0cc7ca 5521 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5522 return 1;
efefb143 5523 }
76dda93c
YZ
5524 return 0;
5525}
5526
3de4586c 5527static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5528 unsigned int flags)
3de4586c 5529{
3837d208 5530 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5662344b 5531
3837d208
AV
5532 if (inode == ERR_PTR(-ENOENT))
5533 inode = NULL;
41d28bca 5534 return d_splice_alias(inode, dentry);
39279cc3
CM
5535}
5536
23b5ec74
JB
5537/*
5538 * All this infrastructure exists because dir_emit can fault, and we are holding
5539 * the tree lock when doing readdir. For now just allocate a buffer and copy
5540 * our information into that, and then dir_emit from the buffer. This is
5541 * similar to what NFS does, only we don't keep the buffer around in pagecache
5542 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5543 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5544 * tree lock.
5545 */
5546static int btrfs_opendir(struct inode *inode, struct file *file)
5547{
5548 struct btrfs_file_private *private;
5549
5550 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5551 if (!private)
5552 return -ENOMEM;
5553 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5554 if (!private->filldir_buf) {
5555 kfree(private);
5556 return -ENOMEM;
5557 }
5558 file->private_data = private;
5559 return 0;
5560}
5561
5562struct dir_entry {
5563 u64 ino;
5564 u64 offset;
5565 unsigned type;
5566 int name_len;
5567};
5568
5569static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5570{
5571 while (entries--) {
5572 struct dir_entry *entry = addr;
5573 char *name = (char *)(entry + 1);
5574
92d32170
DS
5575 ctx->pos = get_unaligned(&entry->offset);
5576 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5577 get_unaligned(&entry->ino),
5578 get_unaligned(&entry->type)))
23b5ec74 5579 return 1;
92d32170
DS
5580 addr += sizeof(struct dir_entry) +
5581 get_unaligned(&entry->name_len);
23b5ec74
JB
5582 ctx->pos++;
5583 }
5584 return 0;
5585}
5586
9cdda8d3 5587static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5588{
9cdda8d3 5589 struct inode *inode = file_inode(file);
39279cc3 5590 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5591 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5592 struct btrfs_dir_item *di;
5593 struct btrfs_key key;
5f39d397 5594 struct btrfs_key found_key;
39279cc3 5595 struct btrfs_path *path;
23b5ec74 5596 void *addr;
16cdcec7
MX
5597 struct list_head ins_list;
5598 struct list_head del_list;
39279cc3 5599 int ret;
5f39d397 5600 struct extent_buffer *leaf;
39279cc3 5601 int slot;
5f39d397
CM
5602 char *name_ptr;
5603 int name_len;
23b5ec74
JB
5604 int entries = 0;
5605 int total_len = 0;
02dbfc99 5606 bool put = false;
c2951f32 5607 struct btrfs_key location;
5f39d397 5608
9cdda8d3
AV
5609 if (!dir_emit_dots(file, ctx))
5610 return 0;
5611
49593bfa 5612 path = btrfs_alloc_path();
16cdcec7
MX
5613 if (!path)
5614 return -ENOMEM;
ff5714cc 5615
23b5ec74 5616 addr = private->filldir_buf;
e4058b54 5617 path->reada = READA_FORWARD;
49593bfa 5618
c2951f32
JM
5619 INIT_LIST_HEAD(&ins_list);
5620 INIT_LIST_HEAD(&del_list);
5621 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5622
23b5ec74 5623again:
c2951f32 5624 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5625 key.offset = ctx->pos;
4a0cc7ca 5626 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5627
39279cc3
CM
5628 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5629 if (ret < 0)
5630 goto err;
49593bfa
DW
5631
5632 while (1) {
23b5ec74
JB
5633 struct dir_entry *entry;
5634
5f39d397 5635 leaf = path->nodes[0];
39279cc3 5636 slot = path->slots[0];
b9e03af0
LZ
5637 if (slot >= btrfs_header_nritems(leaf)) {
5638 ret = btrfs_next_leaf(root, path);
5639 if (ret < 0)
5640 goto err;
5641 else if (ret > 0)
5642 break;
5643 continue;
39279cc3 5644 }
3de4586c 5645
5f39d397
CM
5646 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5647
5648 if (found_key.objectid != key.objectid)
39279cc3 5649 break;
c2951f32 5650 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5651 break;
9cdda8d3 5652 if (found_key.offset < ctx->pos)
b9e03af0 5653 goto next;
c2951f32 5654 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5655 goto next;
39279cc3 5656 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
c2951f32 5657 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5658 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5659 PAGE_SIZE) {
5660 btrfs_release_path(path);
5661 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5662 if (ret)
5663 goto nopos;
5664 addr = private->filldir_buf;
5665 entries = 0;
5666 total_len = 0;
5667 goto again;
c2951f32 5668 }
23b5ec74
JB
5669
5670 entry = addr;
92d32170 5671 put_unaligned(name_len, &entry->name_len);
23b5ec74 5672 name_ptr = (char *)(entry + 1);
c2951f32
JM
5673 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5674 name_len);
7d157c3d 5675 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
92d32170 5676 &entry->type);
c2951f32 5677 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
5678 put_unaligned(location.objectid, &entry->ino);
5679 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
5680 entries++;
5681 addr += sizeof(struct dir_entry) + name_len;
5682 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
5683next:
5684 path->slots[0]++;
39279cc3 5685 }
23b5ec74
JB
5686 btrfs_release_path(path);
5687
5688 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5689 if (ret)
5690 goto nopos;
49593bfa 5691
d2fbb2b5 5692 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5693 if (ret)
bc4ef759
DS
5694 goto nopos;
5695
db62efbb
ZB
5696 /*
5697 * Stop new entries from being returned after we return the last
5698 * entry.
5699 *
5700 * New directory entries are assigned a strictly increasing
5701 * offset. This means that new entries created during readdir
5702 * are *guaranteed* to be seen in the future by that readdir.
5703 * This has broken buggy programs which operate on names as
5704 * they're returned by readdir. Until we re-use freed offsets
5705 * we have this hack to stop new entries from being returned
5706 * under the assumption that they'll never reach this huge
5707 * offset.
5708 *
5709 * This is being careful not to overflow 32bit loff_t unless the
5710 * last entry requires it because doing so has broken 32bit apps
5711 * in the past.
5712 */
c2951f32
JM
5713 if (ctx->pos >= INT_MAX)
5714 ctx->pos = LLONG_MAX;
5715 else
5716 ctx->pos = INT_MAX;
39279cc3
CM
5717nopos:
5718 ret = 0;
5719err:
02dbfc99
OS
5720 if (put)
5721 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5722 btrfs_free_path(path);
39279cc3
CM
5723 return ret;
5724}
5725
39279cc3 5726/*
54aa1f4d 5727 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5728 * inode changes. But, it is most likely to find the inode in cache.
5729 * FIXME, needs more benchmarking...there are no reasons other than performance
5730 * to keep or drop this code.
5731 */
48a3b636 5732static int btrfs_dirty_inode(struct inode *inode)
39279cc3 5733{
2ff7e61e 5734 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5735 struct btrfs_root *root = BTRFS_I(inode)->root;
5736 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5737 int ret;
5738
72ac3c0d 5739 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5740 return 0;
39279cc3 5741
7a7eaa40 5742 trans = btrfs_join_transaction(root);
22c44fe6
JB
5743 if (IS_ERR(trans))
5744 return PTR_ERR(trans);
8929ecfa
YZ
5745
5746 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5747 if (ret && ret == -ENOSPC) {
5748 /* whoops, lets try again with the full transaction */
3a45bb20 5749 btrfs_end_transaction(trans);
94b60442 5750 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5751 if (IS_ERR(trans))
5752 return PTR_ERR(trans);
8929ecfa 5753
94b60442 5754 ret = btrfs_update_inode(trans, root, inode);
94b60442 5755 }
3a45bb20 5756 btrfs_end_transaction(trans);
16cdcec7 5757 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 5758 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
5759
5760 return ret;
5761}
5762
5763/*
5764 * This is a copy of file_update_time. We need this so we can return error on
5765 * ENOSPC for updating the inode in the case of file write and mmap writes.
5766 */
95582b00 5767static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
e41f941a 5768 int flags)
22c44fe6 5769{
2bc55652 5770 struct btrfs_root *root = BTRFS_I(inode)->root;
3a8c7231 5771 bool dirty = flags & ~S_VERSION;
2bc55652
AB
5772
5773 if (btrfs_root_readonly(root))
5774 return -EROFS;
5775
e41f941a 5776 if (flags & S_VERSION)
3a8c7231 5777 dirty |= inode_maybe_inc_iversion(inode, dirty);
e41f941a
JB
5778 if (flags & S_CTIME)
5779 inode->i_ctime = *now;
5780 if (flags & S_MTIME)
5781 inode->i_mtime = *now;
5782 if (flags & S_ATIME)
5783 inode->i_atime = *now;
3a8c7231 5784 return dirty ? btrfs_dirty_inode(inode) : 0;
39279cc3
CM
5785}
5786
d352ac68
CM
5787/*
5788 * find the highest existing sequence number in a directory
5789 * and then set the in-memory index_cnt variable to reflect
5790 * free sequence numbers
5791 */
4c570655 5792static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 5793{
4c570655 5794 struct btrfs_root *root = inode->root;
aec7477b
JB
5795 struct btrfs_key key, found_key;
5796 struct btrfs_path *path;
5797 struct extent_buffer *leaf;
5798 int ret;
5799
4c570655 5800 key.objectid = btrfs_ino(inode);
962a298f 5801 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
5802 key.offset = (u64)-1;
5803
5804 path = btrfs_alloc_path();
5805 if (!path)
5806 return -ENOMEM;
5807
5808 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5809 if (ret < 0)
5810 goto out;
5811 /* FIXME: we should be able to handle this */
5812 if (ret == 0)
5813 goto out;
5814 ret = 0;
5815
5816 /*
5817 * MAGIC NUMBER EXPLANATION:
5818 * since we search a directory based on f_pos we have to start at 2
5819 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5820 * else has to start at 2
5821 */
5822 if (path->slots[0] == 0) {
4c570655 5823 inode->index_cnt = 2;
aec7477b
JB
5824 goto out;
5825 }
5826
5827 path->slots[0]--;
5828
5829 leaf = path->nodes[0];
5830 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5831
4c570655 5832 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 5833 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 5834 inode->index_cnt = 2;
aec7477b
JB
5835 goto out;
5836 }
5837
4c570655 5838 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
5839out:
5840 btrfs_free_path(path);
5841 return ret;
5842}
5843
d352ac68
CM
5844/*
5845 * helper to find a free sequence number in a given directory. This current
5846 * code is very simple, later versions will do smarter things in the btree
5847 */
877574e2 5848int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
5849{
5850 int ret = 0;
5851
877574e2
NB
5852 if (dir->index_cnt == (u64)-1) {
5853 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
5854 if (ret) {
5855 ret = btrfs_set_inode_index_count(dir);
5856 if (ret)
5857 return ret;
5858 }
aec7477b
JB
5859 }
5860
877574e2
NB
5861 *index = dir->index_cnt;
5862 dir->index_cnt++;
aec7477b
JB
5863
5864 return ret;
5865}
5866
b0d5d10f
CM
5867static int btrfs_insert_inode_locked(struct inode *inode)
5868{
5869 struct btrfs_iget_args args;
0202e83f
DS
5870
5871 args.ino = BTRFS_I(inode)->location.objectid;
b0d5d10f
CM
5872 args.root = BTRFS_I(inode)->root;
5873
5874 return insert_inode_locked4(inode,
5875 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5876 btrfs_find_actor, &args);
5877}
5878
19aee8de
AJ
5879/*
5880 * Inherit flags from the parent inode.
5881 *
5882 * Currently only the compression flags and the cow flags are inherited.
5883 */
5884static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
5885{
5886 unsigned int flags;
5887
5888 if (!dir)
5889 return;
5890
5891 flags = BTRFS_I(dir)->flags;
5892
5893 if (flags & BTRFS_INODE_NOCOMPRESS) {
5894 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
5895 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
5896 } else if (flags & BTRFS_INODE_COMPRESS) {
5897 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
5898 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
5899 }
5900
5901 if (flags & BTRFS_INODE_NODATACOW) {
5902 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
5903 if (S_ISREG(inode->i_mode))
5904 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5905 }
5906
7b6a221e 5907 btrfs_sync_inode_flags_to_i_flags(inode);
19aee8de
AJ
5908}
5909
39279cc3
CM
5910static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5911 struct btrfs_root *root,
aec7477b 5912 struct inode *dir,
9c58309d 5913 const char *name, int name_len,
175a4eb7
AV
5914 u64 ref_objectid, u64 objectid,
5915 umode_t mode, u64 *index)
39279cc3 5916{
0b246afa 5917 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 5918 struct inode *inode;
5f39d397 5919 struct btrfs_inode_item *inode_item;
39279cc3 5920 struct btrfs_key *location;
5f39d397 5921 struct btrfs_path *path;
9c58309d
CM
5922 struct btrfs_inode_ref *ref;
5923 struct btrfs_key key[2];
5924 u32 sizes[2];
ef3b9af5 5925 int nitems = name ? 2 : 1;
9c58309d 5926 unsigned long ptr;
11a19a90 5927 unsigned int nofs_flag;
39279cc3 5928 int ret;
39279cc3 5929
5f39d397 5930 path = btrfs_alloc_path();
d8926bb3
MF
5931 if (!path)
5932 return ERR_PTR(-ENOMEM);
5f39d397 5933
11a19a90 5934 nofs_flag = memalloc_nofs_save();
0b246afa 5935 inode = new_inode(fs_info->sb);
11a19a90 5936 memalloc_nofs_restore(nofs_flag);
8fb27640
YS
5937 if (!inode) {
5938 btrfs_free_path(path);
39279cc3 5939 return ERR_PTR(-ENOMEM);
8fb27640 5940 }
39279cc3 5941
5762b5c9
FM
5942 /*
5943 * O_TMPFILE, set link count to 0, so that after this point,
5944 * we fill in an inode item with the correct link count.
5945 */
5946 if (!name)
5947 set_nlink(inode, 0);
5948
581bb050
LZ
5949 /*
5950 * we have to initialize this early, so we can reclaim the inode
5951 * number if we fail afterwards in this function.
5952 */
5953 inode->i_ino = objectid;
5954
ef3b9af5 5955 if (dir && name) {
1abe9b8a 5956 trace_btrfs_inode_request(dir);
5957
877574e2 5958 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 5959 if (ret) {
8fb27640 5960 btrfs_free_path(path);
09771430 5961 iput(inode);
aec7477b 5962 return ERR_PTR(ret);
09771430 5963 }
ef3b9af5
FM
5964 } else if (dir) {
5965 *index = 0;
aec7477b
JB
5966 }
5967 /*
5968 * index_cnt is ignored for everything but a dir,
df6703e1 5969 * btrfs_set_inode_index_count has an explanation for the magic
aec7477b
JB
5970 * number
5971 */
5972 BTRFS_I(inode)->index_cnt = 2;
67de1176 5973 BTRFS_I(inode)->dir_index = *index;
5c8fd99f 5974 BTRFS_I(inode)->root = btrfs_grab_root(root);
e02119d5 5975 BTRFS_I(inode)->generation = trans->transid;
76195853 5976 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5977
5dc562c5
JB
5978 /*
5979 * We could have gotten an inode number from somebody who was fsynced
5980 * and then removed in this same transaction, so let's just set full
5981 * sync since it will be a full sync anyway and this will blow away the
5982 * old info in the log.
5983 */
5984 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5985
9c58309d 5986 key[0].objectid = objectid;
962a298f 5987 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
5988 key[0].offset = 0;
5989
9c58309d 5990 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
5991
5992 if (name) {
5993 /*
5994 * Start new inodes with an inode_ref. This is slightly more
5995 * efficient for small numbers of hard links since they will
5996 * be packed into one item. Extended refs will kick in if we
5997 * add more hard links than can fit in the ref item.
5998 */
5999 key[1].objectid = objectid;
962a298f 6000 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6001 key[1].offset = ref_objectid;
6002
6003 sizes[1] = name_len + sizeof(*ref);
6004 }
9c58309d 6005
b0d5d10f
CM
6006 location = &BTRFS_I(inode)->location;
6007 location->objectid = objectid;
6008 location->offset = 0;
962a298f 6009 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6010
6011 ret = btrfs_insert_inode_locked(inode);
32955c54
AV
6012 if (ret < 0) {
6013 iput(inode);
b0d5d10f 6014 goto fail;
32955c54 6015 }
b0d5d10f 6016
b9473439 6017 path->leave_spinning = 1;
ef3b9af5 6018 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6019 if (ret != 0)
b0d5d10f 6020 goto fail_unlock;
5f39d397 6021
ecc11fab 6022 inode_init_owner(inode, dir, mode);
a76a3cd4 6023 inode_set_bytes(inode, 0);
9cc97d64 6024
c2050a45 6025 inode->i_mtime = current_time(inode);
9cc97d64 6026 inode->i_atime = inode->i_mtime;
6027 inode->i_ctime = inode->i_mtime;
d3c6be6f 6028 BTRFS_I(inode)->i_otime = inode->i_mtime;
9cc97d64 6029
5f39d397
CM
6030 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6031 struct btrfs_inode_item);
b159fa28 6032 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6033 sizeof(*inode_item));
e02119d5 6034 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6035
ef3b9af5
FM
6036 if (name) {
6037 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6038 struct btrfs_inode_ref);
6039 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6040 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6041 ptr = (unsigned long)(ref + 1);
6042 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6043 }
9c58309d 6044
5f39d397
CM
6045 btrfs_mark_buffer_dirty(path->nodes[0]);
6046 btrfs_free_path(path);
6047
6cbff00f
CH
6048 btrfs_inherit_iflags(inode, dir);
6049
569254b0 6050 if (S_ISREG(mode)) {
0b246afa 6051 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6052 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6053 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6054 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6055 BTRFS_INODE_NODATASUM;
94272164
CM
6056 }
6057
5d4f98a2 6058 inode_tree_add(inode);
1abe9b8a 6059
6060 trace_btrfs_inode_new(inode);
1973f0fa 6061 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6062
8ea05e3a
AB
6063 btrfs_update_root_times(trans, root);
6064
63541927
FDBM
6065 ret = btrfs_inode_inherit_props(trans, inode, dir);
6066 if (ret)
0b246afa 6067 btrfs_err(fs_info,
63541927 6068 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6069 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6070
39279cc3 6071 return inode;
b0d5d10f
CM
6072
6073fail_unlock:
32955c54 6074 discard_new_inode(inode);
5f39d397 6075fail:
ef3b9af5 6076 if (dir && name)
aec7477b 6077 BTRFS_I(dir)->index_cnt--;
5f39d397
CM
6078 btrfs_free_path(path);
6079 return ERR_PTR(ret);
39279cc3
CM
6080}
6081
d352ac68
CM
6082/*
6083 * utility function to add 'inode' into 'parent_inode' with
6084 * a give name and a given sequence number.
6085 * if 'add_backref' is true, also insert a backref from the
6086 * inode to the parent directory.
6087 */
e02119d5 6088int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6089 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6090 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6091{
4df27c4d 6092 int ret = 0;
39279cc3 6093 struct btrfs_key key;
db0a669f
NB
6094 struct btrfs_root *root = parent_inode->root;
6095 u64 ino = btrfs_ino(inode);
6096 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6097
33345d01 6098 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6099 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6100 } else {
33345d01 6101 key.objectid = ino;
962a298f 6102 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6103 key.offset = 0;
6104 }
6105
33345d01 6106 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6025c19f 6107 ret = btrfs_add_root_ref(trans, key.objectid,
0b246afa
JM
6108 root->root_key.objectid, parent_ino,
6109 index, name, name_len);
4df27c4d 6110 } else if (add_backref) {
33345d01
LZ
6111 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6112 parent_ino, index);
4df27c4d 6113 }
39279cc3 6114
79787eaa
JM
6115 /* Nothing to clean up yet */
6116 if (ret)
6117 return ret;
4df27c4d 6118
684572df 6119 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
db0a669f 6120 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6121 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6122 goto fail_dir_item;
6123 else if (ret) {
66642832 6124 btrfs_abort_transaction(trans, ret);
79787eaa 6125 return ret;
39279cc3 6126 }
79787eaa 6127
db0a669f 6128 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6129 name_len * 2);
db0a669f 6130 inode_inc_iversion(&parent_inode->vfs_inode);
5338e43a
FM
6131 /*
6132 * If we are replaying a log tree, we do not want to update the mtime
6133 * and ctime of the parent directory with the current time, since the
6134 * log replay procedure is responsible for setting them to their correct
6135 * values (the ones it had when the fsync was done).
6136 */
6137 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6138 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6139
6140 parent_inode->vfs_inode.i_mtime = now;
6141 parent_inode->vfs_inode.i_ctime = now;
6142 }
db0a669f 6143 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6144 if (ret)
66642832 6145 btrfs_abort_transaction(trans, ret);
39279cc3 6146 return ret;
fe66a05a
CM
6147
6148fail_dir_item:
6149 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6150 u64 local_index;
6151 int err;
3ee1c553 6152 err = btrfs_del_root_ref(trans, key.objectid,
0b246afa
JM
6153 root->root_key.objectid, parent_ino,
6154 &local_index, name, name_len);
1690dd41
JT
6155 if (err)
6156 btrfs_abort_transaction(trans, err);
fe66a05a
CM
6157 } else if (add_backref) {
6158 u64 local_index;
6159 int err;
6160
6161 err = btrfs_del_inode_ref(trans, root, name, name_len,
6162 ino, parent_ino, &local_index);
1690dd41
JT
6163 if (err)
6164 btrfs_abort_transaction(trans, err);
fe66a05a 6165 }
1690dd41
JT
6166
6167 /* Return the original error code */
fe66a05a 6168 return ret;
39279cc3
CM
6169}
6170
6171static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6172 struct btrfs_inode *dir, struct dentry *dentry,
6173 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6174{
a1b075d2
JB
6175 int err = btrfs_add_link(trans, dir, inode,
6176 dentry->d_name.name, dentry->d_name.len,
6177 backref, index);
39279cc3
CM
6178 if (err > 0)
6179 err = -EEXIST;
6180 return err;
6181}
6182
618e21d5 6183static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6184 umode_t mode, dev_t rdev)
618e21d5 6185{
2ff7e61e 6186 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6187 struct btrfs_trans_handle *trans;
6188 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6189 struct inode *inode = NULL;
618e21d5 6190 int err;
618e21d5 6191 u64 objectid;
00e4e6b3 6192 u64 index = 0;
618e21d5 6193
9ed74f2d
JB
6194 /*
6195 * 2 for inode item and ref
6196 * 2 for dir items
6197 * 1 for xattr if selinux is on
6198 */
a22285a6
YZ
6199 trans = btrfs_start_transaction(root, 5);
6200 if (IS_ERR(trans))
6201 return PTR_ERR(trans);
1832a6d5 6202
581bb050
LZ
6203 err = btrfs_find_free_ino(root, &objectid);
6204 if (err)
6205 goto out_unlock;
6206
aec7477b 6207 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6208 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6209 mode, &index);
7cf96da3
TI
6210 if (IS_ERR(inode)) {
6211 err = PTR_ERR(inode);
32955c54 6212 inode = NULL;
618e21d5 6213 goto out_unlock;
7cf96da3 6214 }
618e21d5 6215
ad19db71
CS
6216 /*
6217 * If the active LSM wants to access the inode during
6218 * d_instantiate it needs these. Smack checks to see
6219 * if the filesystem supports xattrs by looking at the
6220 * ops vector.
6221 */
ad19db71 6222 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6223 init_special_inode(inode, inode->i_mode, rdev);
6224
6225 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6226 if (err)
32955c54 6227 goto out_unlock;
b0d5d10f 6228
cef415af
NB
6229 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6230 0, index);
32955c54
AV
6231 if (err)
6232 goto out_unlock;
6233
6234 btrfs_update_inode(trans, root, inode);
6235 d_instantiate_new(dentry, inode);
b0d5d10f 6236
618e21d5 6237out_unlock:
3a45bb20 6238 btrfs_end_transaction(trans);
2ff7e61e 6239 btrfs_btree_balance_dirty(fs_info);
32955c54 6240 if (err && inode) {
618e21d5 6241 inode_dec_link_count(inode);
32955c54 6242 discard_new_inode(inode);
618e21d5 6243 }
618e21d5
JB
6244 return err;
6245}
6246
39279cc3 6247static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6248 umode_t mode, bool excl)
39279cc3 6249{
2ff7e61e 6250 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6251 struct btrfs_trans_handle *trans;
6252 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6253 struct inode *inode = NULL;
a22285a6 6254 int err;
39279cc3 6255 u64 objectid;
00e4e6b3 6256 u64 index = 0;
39279cc3 6257
9ed74f2d
JB
6258 /*
6259 * 2 for inode item and ref
6260 * 2 for dir items
6261 * 1 for xattr if selinux is on
6262 */
a22285a6
YZ
6263 trans = btrfs_start_transaction(root, 5);
6264 if (IS_ERR(trans))
6265 return PTR_ERR(trans);
9ed74f2d 6266
581bb050
LZ
6267 err = btrfs_find_free_ino(root, &objectid);
6268 if (err)
6269 goto out_unlock;
6270
aec7477b 6271 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6272 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6273 mode, &index);
7cf96da3
TI
6274 if (IS_ERR(inode)) {
6275 err = PTR_ERR(inode);
32955c54 6276 inode = NULL;
39279cc3 6277 goto out_unlock;
7cf96da3 6278 }
ad19db71
CS
6279 /*
6280 * If the active LSM wants to access the inode during
6281 * d_instantiate it needs these. Smack checks to see
6282 * if the filesystem supports xattrs by looking at the
6283 * ops vector.
6284 */
6285 inode->i_fop = &btrfs_file_operations;
6286 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6287 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6288
6289 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6290 if (err)
32955c54 6291 goto out_unlock;
b0d5d10f
CM
6292
6293 err = btrfs_update_inode(trans, root, inode);
6294 if (err)
32955c54 6295 goto out_unlock;
ad19db71 6296
cef415af
NB
6297 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6298 0, index);
39279cc3 6299 if (err)
32955c54 6300 goto out_unlock;
43baa579 6301
43baa579 6302 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1e2e547a 6303 d_instantiate_new(dentry, inode);
43baa579 6304
39279cc3 6305out_unlock:
3a45bb20 6306 btrfs_end_transaction(trans);
32955c54 6307 if (err && inode) {
39279cc3 6308 inode_dec_link_count(inode);
32955c54 6309 discard_new_inode(inode);
39279cc3 6310 }
2ff7e61e 6311 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6312 return err;
6313}
6314
6315static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6316 struct dentry *dentry)
6317{
271dba45 6318 struct btrfs_trans_handle *trans = NULL;
39279cc3 6319 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6320 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6321 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6322 u64 index;
39279cc3
CM
6323 int err;
6324 int drop_inode = 0;
6325
4a8be425 6326 /* do not allow sys_link's with other subvols of the same device */
4fd786e6 6327 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
3ab3564f 6328 return -EXDEV;
4a8be425 6329
f186373f 6330 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6331 return -EMLINK;
4a8be425 6332
877574e2 6333 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6334 if (err)
6335 goto fail;
6336
a22285a6 6337 /*
7e6b6465 6338 * 2 items for inode and inode ref
a22285a6 6339 * 2 items for dir items
7e6b6465 6340 * 1 item for parent inode
399b0bbf 6341 * 1 item for orphan item deletion if O_TMPFILE
a22285a6 6342 */
399b0bbf 6343 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
a22285a6
YZ
6344 if (IS_ERR(trans)) {
6345 err = PTR_ERR(trans);
271dba45 6346 trans = NULL;
a22285a6
YZ
6347 goto fail;
6348 }
5f39d397 6349
67de1176
MX
6350 /* There are several dir indexes for this inode, clear the cache. */
6351 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6352 inc_nlink(inode);
0c4d2d95 6353 inode_inc_iversion(inode);
c2050a45 6354 inode->i_ctime = current_time(inode);
7de9c6ee 6355 ihold(inode);
e9976151 6356 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6357
cef415af
NB
6358 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6359 1, index);
5f39d397 6360
a5719521 6361 if (err) {
54aa1f4d 6362 drop_inode = 1;
a5719521 6363 } else {
10d9f309 6364 struct dentry *parent = dentry->d_parent;
d4682ba0
FM
6365 int ret;
6366
a5719521 6367 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6368 if (err)
6369 goto fail;
ef3b9af5
FM
6370 if (inode->i_nlink == 1) {
6371 /*
6372 * If new hard link count is 1, it's a file created
6373 * with open(2) O_TMPFILE flag.
6374 */
3d6ae7bb 6375 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6376 if (err)
6377 goto fail;
6378 }
08c422c2 6379 d_instantiate(dentry, inode);
d4682ba0
FM
6380 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6381 true, NULL);
6382 if (ret == BTRFS_NEED_TRANS_COMMIT) {
6383 err = btrfs_commit_transaction(trans);
6384 trans = NULL;
6385 }
a5719521 6386 }
39279cc3 6387
1832a6d5 6388fail:
271dba45 6389 if (trans)
3a45bb20 6390 btrfs_end_transaction(trans);
39279cc3
CM
6391 if (drop_inode) {
6392 inode_dec_link_count(inode);
6393 iput(inode);
6394 }
2ff7e61e 6395 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6396 return err;
6397}
6398
18bb1db3 6399static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6400{
2ff7e61e 6401 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6402 struct inode *inode = NULL;
39279cc3
CM
6403 struct btrfs_trans_handle *trans;
6404 struct btrfs_root *root = BTRFS_I(dir)->root;
6405 int err = 0;
b9d86667 6406 u64 objectid = 0;
00e4e6b3 6407 u64 index = 0;
39279cc3 6408
9ed74f2d
JB
6409 /*
6410 * 2 items for inode and ref
6411 * 2 items for dir items
6412 * 1 for xattr if selinux is on
6413 */
a22285a6
YZ
6414 trans = btrfs_start_transaction(root, 5);
6415 if (IS_ERR(trans))
6416 return PTR_ERR(trans);
39279cc3 6417
581bb050
LZ
6418 err = btrfs_find_free_ino(root, &objectid);
6419 if (err)
6420 goto out_fail;
6421
aec7477b 6422 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6423 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6424 S_IFDIR | mode, &index);
39279cc3
CM
6425 if (IS_ERR(inode)) {
6426 err = PTR_ERR(inode);
32955c54 6427 inode = NULL;
39279cc3
CM
6428 goto out_fail;
6429 }
5f39d397 6430
b0d5d10f
CM
6431 /* these must be set before we unlock the inode */
6432 inode->i_op = &btrfs_dir_inode_operations;
6433 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6434
2a7dba39 6435 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6436 if (err)
32955c54 6437 goto out_fail;
39279cc3 6438
6ef06d27 6439 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6440 err = btrfs_update_inode(trans, root, inode);
6441 if (err)
32955c54 6442 goto out_fail;
5f39d397 6443
db0a669f
NB
6444 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6445 dentry->d_name.name,
6446 dentry->d_name.len, 0, index);
39279cc3 6447 if (err)
32955c54 6448 goto out_fail;
5f39d397 6449
1e2e547a 6450 d_instantiate_new(dentry, inode);
39279cc3
CM
6451
6452out_fail:
3a45bb20 6453 btrfs_end_transaction(trans);
32955c54 6454 if (err && inode) {
c7cfb8a5 6455 inode_dec_link_count(inode);
32955c54 6456 discard_new_inode(inode);
c7cfb8a5 6457 }
2ff7e61e 6458 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6459 return err;
6460}
6461
c8b97818 6462static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6463 struct page *page,
c8b97818
CM
6464 size_t pg_offset, u64 extent_offset,
6465 struct btrfs_file_extent_item *item)
6466{
6467 int ret;
6468 struct extent_buffer *leaf = path->nodes[0];
6469 char *tmp;
6470 size_t max_size;
6471 unsigned long inline_size;
6472 unsigned long ptr;
261507a0 6473 int compress_type;
c8b97818
CM
6474
6475 WARN_ON(pg_offset != 0);
261507a0 6476 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6477 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6478 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6479 btrfs_item_nr(path->slots[0]));
c8b97818 6480 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6481 if (!tmp)
6482 return -ENOMEM;
c8b97818
CM
6483 ptr = btrfs_file_extent_inline_start(item);
6484
6485 read_extent_buffer(leaf, tmp, ptr, inline_size);
6486
09cbfeaf 6487 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6488 ret = btrfs_decompress(compress_type, tmp, page,
6489 extent_offset, inline_size, max_size);
e1699d2d
ZB
6490
6491 /*
6492 * decompression code contains a memset to fill in any space between the end
6493 * of the uncompressed data and the end of max_size in case the decompressed
6494 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6495 * the end of an inline extent and the beginning of the next block, so we
6496 * cover that region here.
6497 */
6498
6499 if (max_size + pg_offset < PAGE_SIZE) {
6500 char *map = kmap(page);
6501 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6502 kunmap(page);
6503 }
c8b97818 6504 kfree(tmp);
166ae5a4 6505 return ret;
c8b97818
CM
6506}
6507
39b07b5d
OS
6508/**
6509 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6510 * @inode: file to search in
6511 * @page: page to read extent data into if the extent is inline
6512 * @pg_offset: offset into @page to copy to
6513 * @start: file offset
6514 * @len: length of range starting at @start
6515 *
6516 * This returns the first &struct extent_map which overlaps with the given
6517 * range, reading it from the B-tree and caching it if necessary. Note that
6518 * there may be more extents which overlap the given range after the returned
6519 * extent_map.
d352ac68 6520 *
39b07b5d
OS
6521 * If @page is not NULL and the extent is inline, this also reads the extent
6522 * data directly into the page and marks the extent up to date in the io_tree.
6523 *
6524 * Return: ERR_PTR on error, non-NULL extent_map on success.
d352ac68 6525 */
fc4f21b1 6526struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
6527 struct page *page, size_t pg_offset,
6528 u64 start, u64 len)
a52d9a80 6529{
3ffbd68c 6530 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a52d9a80
CM
6531 int ret;
6532 int err = 0;
a52d9a80
CM
6533 u64 extent_start = 0;
6534 u64 extent_end = 0;
fc4f21b1 6535 u64 objectid = btrfs_ino(inode);
7e74e235 6536 int extent_type = -1;
f421950f 6537 struct btrfs_path *path = NULL;
fc4f21b1 6538 struct btrfs_root *root = inode->root;
a52d9a80 6539 struct btrfs_file_extent_item *item;
5f39d397
CM
6540 struct extent_buffer *leaf;
6541 struct btrfs_key found_key;
a52d9a80 6542 struct extent_map *em = NULL;
fc4f21b1
NB
6543 struct extent_map_tree *em_tree = &inode->extent_tree;
6544 struct extent_io_tree *io_tree = &inode->io_tree;
a52d9a80 6545
890871be 6546 read_lock(&em_tree->lock);
d1310b2e 6547 em = lookup_extent_mapping(em_tree, start, len);
890871be 6548 read_unlock(&em_tree->lock);
d1310b2e 6549
a52d9a80 6550 if (em) {
e1c4b745
CM
6551 if (em->start > start || em->start + em->len <= start)
6552 free_extent_map(em);
6553 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6554 free_extent_map(em);
6555 else
6556 goto out;
a52d9a80 6557 }
172ddd60 6558 em = alloc_extent_map();
a52d9a80 6559 if (!em) {
d1310b2e
CM
6560 err = -ENOMEM;
6561 goto out;
a52d9a80 6562 }
d1310b2e 6563 em->start = EXTENT_MAP_HOLE;
445a6944 6564 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6565 em->len = (u64)-1;
c8b97818 6566 em->block_len = (u64)-1;
f421950f 6567
bee6ec82 6568 path = btrfs_alloc_path();
f421950f 6569 if (!path) {
bee6ec82
LB
6570 err = -ENOMEM;
6571 goto out;
f421950f
CM
6572 }
6573
bee6ec82
LB
6574 /* Chances are we'll be called again, so go ahead and do readahead */
6575 path->reada = READA_FORWARD;
6576
e49aabd9
LB
6577 /*
6578 * Unless we're going to uncompress the inline extent, no sleep would
6579 * happen.
6580 */
6581 path->leave_spinning = 1;
6582
5c9a702e 6583 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80
CM
6584 if (ret < 0) {
6585 err = ret;
6586 goto out;
b8eeab7f 6587 } else if (ret > 0) {
a52d9a80
CM
6588 if (path->slots[0] == 0)
6589 goto not_found;
6590 path->slots[0]--;
6591 }
6592
5f39d397
CM
6593 leaf = path->nodes[0];
6594 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6595 struct btrfs_file_extent_item);
5f39d397 6596 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5f39d397 6597 if (found_key.objectid != objectid ||
694c12ed 6598 found_key.type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6599 /*
6600 * If we backup past the first extent we want to move forward
6601 * and see if there is an extent in front of us, otherwise we'll
6602 * say there is a hole for our whole search range which can
6603 * cause problems.
6604 */
6605 extent_end = start;
6606 goto next;
a52d9a80
CM
6607 }
6608
694c12ed 6609 extent_type = btrfs_file_extent_type(leaf, item);
5f39d397 6610 extent_start = found_key.offset;
a5eeb3d1 6611 extent_end = btrfs_file_extent_end(path);
694c12ed
NB
6612 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6613 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6bf9e4bd
QW
6614 /* Only regular file could have regular/prealloc extent */
6615 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6616 ret = -EUCLEAN;
6617 btrfs_crit(fs_info,
6618 "regular/prealloc extent found for non-regular inode %llu",
6619 btrfs_ino(inode));
6620 goto out;
6621 }
09ed2f16
LB
6622 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6623 extent_start);
694c12ed 6624 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
09ed2f16
LB
6625 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6626 path->slots[0],
6627 extent_start);
9036c102 6628 }
25a50341 6629next:
9036c102
YZ
6630 if (start >= extent_end) {
6631 path->slots[0]++;
6632 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6633 ret = btrfs_next_leaf(root, path);
6634 if (ret < 0) {
6635 err = ret;
6636 goto out;
b8eeab7f 6637 } else if (ret > 0) {
9036c102 6638 goto not_found;
b8eeab7f 6639 }
9036c102 6640 leaf = path->nodes[0];
a52d9a80 6641 }
9036c102
YZ
6642 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6643 if (found_key.objectid != objectid ||
6644 found_key.type != BTRFS_EXTENT_DATA_KEY)
6645 goto not_found;
6646 if (start + len <= found_key.offset)
6647 goto not_found;
e2eca69d
WS
6648 if (start > found_key.offset)
6649 goto next;
02a033df
NB
6650
6651 /* New extent overlaps with existing one */
9036c102 6652 em->start = start;
70c8a91c 6653 em->orig_start = start;
9036c102 6654 em->len = found_key.offset - start;
02a033df
NB
6655 em->block_start = EXTENT_MAP_HOLE;
6656 goto insert;
9036c102
YZ
6657 }
6658
39b07b5d 6659 btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
7ffbb598 6660
694c12ed
NB
6661 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6662 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6663 goto insert;
694c12ed 6664 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6665 unsigned long ptr;
a52d9a80 6666 char *map;
3326d1b0
CM
6667 size_t size;
6668 size_t extent_offset;
6669 size_t copy_size;
a52d9a80 6670
39b07b5d 6671 if (!page)
689f9346 6672 goto out;
5f39d397 6673
e41ca589 6674 size = btrfs_file_extent_ram_bytes(leaf, item);
9036c102 6675 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6676 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6677 size - extent_offset);
3326d1b0 6678 em->start = extent_start + extent_offset;
0b246afa 6679 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 6680 em->orig_block_len = em->len;
70c8a91c 6681 em->orig_start = em->start;
689f9346 6682 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
e49aabd9
LB
6683
6684 btrfs_set_path_blocking(path);
bf46f52d 6685 if (!PageUptodate(page)) {
261507a0
LZ
6686 if (btrfs_file_extent_compression(leaf, item) !=
6687 BTRFS_COMPRESS_NONE) {
e40da0e5 6688 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6689 extent_offset, item);
166ae5a4
ZB
6690 if (ret) {
6691 err = ret;
6692 goto out;
6693 }
c8b97818
CM
6694 } else {
6695 map = kmap(page);
6696 read_extent_buffer(leaf, map + pg_offset, ptr,
6697 copy_size);
09cbfeaf 6698 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6699 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6700 PAGE_SIZE - pg_offset -
93c82d57
CM
6701 copy_size);
6702 }
c8b97818
CM
6703 kunmap(page);
6704 }
179e29e4 6705 flush_dcache_page(page);
a52d9a80 6706 }
d1310b2e 6707 set_extent_uptodate(io_tree, em->start,
507903b8 6708 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6709 goto insert;
a52d9a80
CM
6710 }
6711not_found:
6712 em->start = start;
70c8a91c 6713 em->orig_start = start;
d1310b2e 6714 em->len = len;
5f39d397 6715 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 6716insert:
b3b4aa74 6717 btrfs_release_path(path);
d1310b2e 6718 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 6719 btrfs_err(fs_info,
5d163e0e
JM
6720 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6721 em->start, em->len, start, len);
a52d9a80
CM
6722 err = -EIO;
6723 goto out;
6724 }
d1310b2e
CM
6725
6726 err = 0;
890871be 6727 write_lock(&em_tree->lock);
f46b24c9 6728 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
890871be 6729 write_unlock(&em_tree->lock);
a52d9a80 6730out:
c6414280 6731 btrfs_free_path(path);
1abe9b8a 6732
fc4f21b1 6733 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 6734
a52d9a80
CM
6735 if (err) {
6736 free_extent_map(em);
a52d9a80
CM
6737 return ERR_PTR(err);
6738 }
79787eaa 6739 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6740 return em;
6741}
6742
fc4f21b1 6743struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
4ab47a8d 6744 u64 start, u64 len)
ec29ed5b
CM
6745{
6746 struct extent_map *em;
6747 struct extent_map *hole_em = NULL;
f3714ef4 6748 u64 delalloc_start = start;
ec29ed5b 6749 u64 end;
f3714ef4
NB
6750 u64 delalloc_len;
6751 u64 delalloc_end;
ec29ed5b
CM
6752 int err = 0;
6753
39b07b5d 6754 em = btrfs_get_extent(inode, NULL, 0, start, len);
ec29ed5b
CM
6755 if (IS_ERR(em))
6756 return em;
9986277e
DC
6757 /*
6758 * If our em maps to:
6759 * - a hole or
6760 * - a pre-alloc extent,
6761 * there might actually be delalloc bytes behind it.
6762 */
6763 if (em->block_start != EXTENT_MAP_HOLE &&
6764 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6765 return em;
6766 else
6767 hole_em = em;
ec29ed5b
CM
6768
6769 /* check to see if we've wrapped (len == -1 or similar) */
6770 end = start + len;
6771 if (end < start)
6772 end = (u64)-1;
6773 else
6774 end -= 1;
6775
6776 em = NULL;
6777
6778 /* ok, we didn't find anything, lets look for delalloc */
f3714ef4 6779 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
ec29ed5b 6780 end, len, EXTENT_DELALLOC, 1);
f3714ef4
NB
6781 delalloc_end = delalloc_start + delalloc_len;
6782 if (delalloc_end < delalloc_start)
6783 delalloc_end = (u64)-1;
ec29ed5b
CM
6784
6785 /*
f3714ef4
NB
6786 * We didn't find anything useful, return the original results from
6787 * get_extent()
ec29ed5b 6788 */
f3714ef4 6789 if (delalloc_start > end || delalloc_end <= start) {
ec29ed5b
CM
6790 em = hole_em;
6791 hole_em = NULL;
6792 goto out;
6793 }
6794
f3714ef4
NB
6795 /*
6796 * Adjust the delalloc_start to make sure it doesn't go backwards from
6797 * the start they passed in
ec29ed5b 6798 */
f3714ef4
NB
6799 delalloc_start = max(start, delalloc_start);
6800 delalloc_len = delalloc_end - delalloc_start;
ec29ed5b 6801
f3714ef4
NB
6802 if (delalloc_len > 0) {
6803 u64 hole_start;
02950af4 6804 u64 hole_len;
f3714ef4 6805 const u64 hole_end = extent_map_end(hole_em);
ec29ed5b 6806
172ddd60 6807 em = alloc_extent_map();
ec29ed5b
CM
6808 if (!em) {
6809 err = -ENOMEM;
6810 goto out;
6811 }
f3714ef4
NB
6812
6813 ASSERT(hole_em);
ec29ed5b 6814 /*
f3714ef4
NB
6815 * When btrfs_get_extent can't find anything it returns one
6816 * huge hole
ec29ed5b 6817 *
f3714ef4
NB
6818 * Make sure what it found really fits our range, and adjust to
6819 * make sure it is based on the start from the caller
ec29ed5b 6820 */
f3714ef4
NB
6821 if (hole_end <= start || hole_em->start > end) {
6822 free_extent_map(hole_em);
6823 hole_em = NULL;
6824 } else {
6825 hole_start = max(hole_em->start, start);
6826 hole_len = hole_end - hole_start;
ec29ed5b 6827 }
f3714ef4
NB
6828
6829 if (hole_em && delalloc_start > hole_start) {
6830 /*
6831 * Our hole starts before our delalloc, so we have to
6832 * return just the parts of the hole that go until the
6833 * delalloc starts
ec29ed5b 6834 */
f3714ef4 6835 em->len = min(hole_len, delalloc_start - hole_start);
ec29ed5b
CM
6836 em->start = hole_start;
6837 em->orig_start = hole_start;
6838 /*
f3714ef4
NB
6839 * Don't adjust block start at all, it is fixed at
6840 * EXTENT_MAP_HOLE
ec29ed5b
CM
6841 */
6842 em->block_start = hole_em->block_start;
6843 em->block_len = hole_len;
f9e4fb53
LB
6844 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6845 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b 6846 } else {
f3714ef4
NB
6847 /*
6848 * Hole is out of passed range or it starts after
6849 * delalloc range
6850 */
6851 em->start = delalloc_start;
6852 em->len = delalloc_len;
6853 em->orig_start = delalloc_start;
ec29ed5b 6854 em->block_start = EXTENT_MAP_DELALLOC;
f3714ef4 6855 em->block_len = delalloc_len;
ec29ed5b 6856 }
bf8d32b9 6857 } else {
ec29ed5b
CM
6858 return hole_em;
6859 }
6860out:
6861
6862 free_extent_map(hole_em);
6863 if (err) {
6864 free_extent_map(em);
6865 return ERR_PTR(err);
6866 }
6867 return em;
6868}
6869
64f54188 6870static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
5f9a8a51
FM
6871 const u64 start,
6872 const u64 len,
6873 const u64 orig_start,
6874 const u64 block_start,
6875 const u64 block_len,
6876 const u64 orig_block_len,
6877 const u64 ram_bytes,
6878 const int type)
6879{
6880 struct extent_map *em = NULL;
6881 int ret;
6882
5f9a8a51 6883 if (type != BTRFS_ORDERED_NOCOW) {
64f54188
NB
6884 em = create_io_em(inode, start, len, orig_start, block_start,
6885 block_len, orig_block_len, ram_bytes,
6f9994db
LB
6886 BTRFS_COMPRESS_NONE, /* compress_type */
6887 type);
5f9a8a51
FM
6888 if (IS_ERR(em))
6889 goto out;
6890 }
64f54188
NB
6891 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
6892 block_len, type);
5f9a8a51
FM
6893 if (ret) {
6894 if (em) {
6895 free_extent_map(em);
64f54188 6896 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5f9a8a51
FM
6897 }
6898 em = ERR_PTR(ret);
6899 }
6900 out:
5f9a8a51
FM
6901
6902 return em;
6903}
6904
9fc6f911 6905static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
4b46fce2
JB
6906 u64 start, u64 len)
6907{
9fc6f911
NB
6908 struct btrfs_root *root = inode->root;
6909 struct btrfs_fs_info *fs_info = root->fs_info;
70c8a91c 6910 struct extent_map *em;
4b46fce2
JB
6911 struct btrfs_key ins;
6912 u64 alloc_hint;
6913 int ret;
4b46fce2 6914
9fc6f911 6915 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 6916 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 6917 0, alloc_hint, &ins, 1, 1);
00361589
JB
6918 if (ret)
6919 return ERR_PTR(ret);
4b46fce2 6920
9fc6f911 6921 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
5f9a8a51 6922 ins.objectid, ins.offset, ins.offset,
6288d6ea 6923 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 6924 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 6925 if (IS_ERR(em))
9fc6f911
NB
6926 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
6927 1);
de0ee0ed 6928
4b46fce2
JB
6929 return em;
6930}
6931
46bfbb5c 6932/*
e4ecaf90
QW
6933 * Check if we can do nocow write into the range [@offset, @offset + @len)
6934 *
6935 * @offset: File offset
6936 * @len: The length to write, will be updated to the nocow writeable
6937 * range
6938 * @orig_start: (optional) Return the original file offset of the file extent
6939 * @orig_len: (optional) Return the original on-disk length of the file extent
6940 * @ram_bytes: (optional) Return the ram_bytes of the file extent
6941 *
6942 * This function will flush ordered extents in the range to ensure proper
6943 * nocow checks for (nowait == false) case.
6944 *
6945 * Return:
6946 * >0 and update @len if we can do nocow write
6947 * 0 if we can't do nocow write
6948 * <0 if error happened
6949 *
6950 * NOTE: This only checks the file extents, caller is responsible to wait for
6951 * any ordered extents.
46bfbb5c 6952 */
00361589 6953noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
6954 u64 *orig_start, u64 *orig_block_len,
6955 u64 *ram_bytes)
46bfbb5c 6956{
2ff7e61e 6957 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
6958 struct btrfs_path *path;
6959 int ret;
6960 struct extent_buffer *leaf;
6961 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 6962 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
6963 struct btrfs_file_extent_item *fi;
6964 struct btrfs_key key;
6965 u64 disk_bytenr;
6966 u64 backref_offset;
6967 u64 extent_end;
6968 u64 num_bytes;
6969 int slot;
6970 int found_type;
7ee9e440 6971 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 6972
46bfbb5c
CM
6973 path = btrfs_alloc_path();
6974 if (!path)
6975 return -ENOMEM;
6976
f85b7379
DS
6977 ret = btrfs_lookup_file_extent(NULL, root, path,
6978 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
6979 if (ret < 0)
6980 goto out;
6981
6982 slot = path->slots[0];
6983 if (ret == 1) {
6984 if (slot == 0) {
6985 /* can't find the item, must cow */
6986 ret = 0;
6987 goto out;
6988 }
6989 slot--;
6990 }
6991 ret = 0;
6992 leaf = path->nodes[0];
6993 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 6994 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
6995 key.type != BTRFS_EXTENT_DATA_KEY) {
6996 /* not our file or wrong item type, must cow */
6997 goto out;
6998 }
6999
7000 if (key.offset > offset) {
7001 /* Wrong offset, must cow */
7002 goto out;
7003 }
7004
7005 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7006 found_type = btrfs_file_extent_type(leaf, fi);
7007 if (found_type != BTRFS_FILE_EXTENT_REG &&
7008 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7009 /* not a regular extent, must cow */
7010 goto out;
7011 }
7ee9e440
JB
7012
7013 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7014 goto out;
7015
e77751aa
MX
7016 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7017 if (extent_end <= offset)
7018 goto out;
7019
46bfbb5c 7020 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7021 if (disk_bytenr == 0)
7022 goto out;
7023
7024 if (btrfs_file_extent_compression(leaf, fi) ||
7025 btrfs_file_extent_encryption(leaf, fi) ||
7026 btrfs_file_extent_other_encoding(leaf, fi))
7027 goto out;
7028
78d4295b
EL
7029 /*
7030 * Do the same check as in btrfs_cross_ref_exist but without the
7031 * unnecessary search.
7032 */
7033 if (btrfs_file_extent_generation(leaf, fi) <=
7034 btrfs_root_last_snapshot(&root->root_item))
7035 goto out;
7036
46bfbb5c
CM
7037 backref_offset = btrfs_file_extent_offset(leaf, fi);
7038
7ee9e440
JB
7039 if (orig_start) {
7040 *orig_start = key.offset - backref_offset;
7041 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7042 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7043 }
eb384b55 7044
2ff7e61e 7045 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7046 goto out;
7b2b7085
MX
7047
7048 num_bytes = min(offset + *len, extent_end) - offset;
7049 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7050 u64 range_end;
7051
da17066c
JM
7052 range_end = round_up(offset + num_bytes,
7053 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7054 ret = test_range_bit(io_tree, offset, range_end,
7055 EXTENT_DELALLOC, 0, NULL);
7056 if (ret) {
7057 ret = -EAGAIN;
7058 goto out;
7059 }
7060 }
7061
1bda19eb 7062 btrfs_release_path(path);
46bfbb5c
CM
7063
7064 /*
7065 * look for other files referencing this extent, if we
7066 * find any we must cow
7067 */
00361589 7068
e4c3b2dc 7069 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7070 key.offset - backref_offset, disk_bytenr);
00361589
JB
7071 if (ret) {
7072 ret = 0;
7073 goto out;
7074 }
46bfbb5c
CM
7075
7076 /*
7077 * adjust disk_bytenr and num_bytes to cover just the bytes
7078 * in this extent we are about to write. If there
7079 * are any csums in that range we have to cow in order
7080 * to keep the csums correct
7081 */
7082 disk_bytenr += backref_offset;
7083 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7084 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7085 goto out;
46bfbb5c
CM
7086 /*
7087 * all of the above have passed, it is safe to overwrite this extent
7088 * without cow
7089 */
eb384b55 7090 *len = num_bytes;
46bfbb5c
CM
7091 ret = 1;
7092out:
7093 btrfs_free_path(path);
7094 return ret;
7095}
7096
eb838e73 7097static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
55e20bd1 7098 struct extent_state **cached_state, int writing)
eb838e73
JB
7099{
7100 struct btrfs_ordered_extent *ordered;
7101 int ret = 0;
7102
7103 while (1) {
7104 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7105 cached_state);
eb838e73
JB
7106 /*
7107 * We're concerned with the entire range that we're going to be
01327610 7108 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7109 * extents in this range.
7110 */
a776c6fa 7111 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7112 lockend - lockstart + 1);
7113
7114 /*
7115 * We need to make sure there are no buffered pages in this
7116 * range either, we could have raced between the invalidate in
7117 * generic_file_direct_write and locking the extent. The
7118 * invalidate needs to happen so that reads after a write do not
7119 * get stale data.
7120 */
fc4adbff 7121 if (!ordered &&
051c98eb
DS
7122 (!writing || !filemap_range_has_page(inode->i_mapping,
7123 lockstart, lockend)))
eb838e73
JB
7124 break;
7125
7126 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 7127 cached_state);
eb838e73
JB
7128
7129 if (ordered) {
ade77029
FM
7130 /*
7131 * If we are doing a DIO read and the ordered extent we
7132 * found is for a buffered write, we can not wait for it
7133 * to complete and retry, because if we do so we can
7134 * deadlock with concurrent buffered writes on page
7135 * locks. This happens only if our DIO read covers more
7136 * than one extent map, if at this point has already
7137 * created an ordered extent for a previous extent map
7138 * and locked its range in the inode's io tree, and a
7139 * concurrent write against that previous extent map's
7140 * range and this range started (we unlock the ranges
7141 * in the io tree only when the bios complete and
7142 * buffered writes always lock pages before attempting
7143 * to lock range in the io tree).
7144 */
7145 if (writing ||
7146 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7147 btrfs_start_ordered_extent(inode, ordered, 1);
7148 else
7149 ret = -ENOTBLK;
eb838e73
JB
7150 btrfs_put_ordered_extent(ordered);
7151 } else {
eb838e73 7152 /*
b850ae14
FM
7153 * We could trigger writeback for this range (and wait
7154 * for it to complete) and then invalidate the pages for
7155 * this range (through invalidate_inode_pages2_range()),
7156 * but that can lead us to a deadlock with a concurrent
ba206a02 7157 * call to readahead (a buffered read or a defrag call
b850ae14
FM
7158 * triggered a readahead) on a page lock due to an
7159 * ordered dio extent we created before but did not have
7160 * yet a corresponding bio submitted (whence it can not
ba206a02 7161 * complete), which makes readahead wait for that
b850ae14
FM
7162 * ordered extent to complete while holding a lock on
7163 * that page.
eb838e73 7164 */
b850ae14 7165 ret = -ENOTBLK;
eb838e73
JB
7166 }
7167
ade77029
FM
7168 if (ret)
7169 break;
7170
eb838e73
JB
7171 cond_resched();
7172 }
7173
7174 return ret;
7175}
7176
6f9994db 7177/* The callers of this must take lock_extent() */
4b67c11d
NB
7178static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7179 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
7180 u64 block_len, u64 orig_block_len,
7181 u64 ram_bytes, int compress_type,
7182 int type)
69ffb543
JB
7183{
7184 struct extent_map_tree *em_tree;
7185 struct extent_map *em;
69ffb543
JB
7186 int ret;
7187
6f9994db
LB
7188 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7189 type == BTRFS_ORDERED_COMPRESSED ||
7190 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7191 type == BTRFS_ORDERED_REGULAR);
6f9994db 7192
4b67c11d 7193 em_tree = &inode->extent_tree;
69ffb543
JB
7194 em = alloc_extent_map();
7195 if (!em)
7196 return ERR_PTR(-ENOMEM);
7197
7198 em->start = start;
7199 em->orig_start = orig_start;
7200 em->len = len;
7201 em->block_len = block_len;
7202 em->block_start = block_start;
b4939680 7203 em->orig_block_len = orig_block_len;
cc95bef6 7204 em->ram_bytes = ram_bytes;
70c8a91c 7205 em->generation = -1;
69ffb543 7206 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7207 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7208 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7209 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7210 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7211 em->compress_type = compress_type;
7212 }
69ffb543
JB
7213
7214 do {
4b67c11d
NB
7215 btrfs_drop_extent_cache(inode, em->start,
7216 em->start + em->len - 1, 0);
69ffb543 7217 write_lock(&em_tree->lock);
09a2a8f9 7218 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7219 write_unlock(&em_tree->lock);
6f9994db
LB
7220 /*
7221 * The caller has taken lock_extent(), who could race with us
7222 * to add em?
7223 */
69ffb543
JB
7224 } while (ret == -EEXIST);
7225
7226 if (ret) {
7227 free_extent_map(em);
7228 return ERR_PTR(ret);
7229 }
7230
6f9994db 7231 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7232 return em;
7233}
7234
1c8d0175 7235
55e20bd1
DS
7236static int btrfs_get_blocks_direct_read(struct extent_map *em,
7237 struct buffer_head *bh_result,
7238 struct inode *inode,
7239 u64 start, u64 len)
7240{
7241 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7242
7243 if (em->block_start == EXTENT_MAP_HOLE ||
7244 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7245 return -ENOENT;
7246
7247 len = min(len, em->len - (start - em->start));
7248
7249 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7250 inode->i_blkbits;
7251 bh_result->b_size = len;
7252 bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7253 set_buffer_mapped(bh_result);
7254
7255 return 0;
7256}
7257
c5794e51 7258static int btrfs_get_blocks_direct_write(struct extent_map **map,
55e20bd1 7259 struct buffer_head *bh_result,
c5794e51
NB
7260 struct inode *inode,
7261 struct btrfs_dio_data *dio_data,
7262 u64 start, u64 len)
7263{
7264 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7265 struct extent_map *em = *map;
7266 int ret = 0;
7267
7268 /*
7269 * We don't allocate a new extent in the following cases
7270 *
7271 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7272 * existing extent.
7273 * 2) The extent is marked as PREALLOC. We're good to go here and can
7274 * just use the extent.
7275 *
7276 */
7277 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7278 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7279 em->block_start != EXTENT_MAP_HOLE)) {
7280 int type;
7281 u64 block_start, orig_start, orig_block_len, ram_bytes;
7282
7283 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7284 type = BTRFS_ORDERED_PREALLOC;
7285 else
7286 type = BTRFS_ORDERED_NOCOW;
7287 len = min(len, em->len - (start - em->start));
7288 block_start = em->block_start + (start - em->start);
7289
7290 if (can_nocow_extent(inode, start, &len, &orig_start,
7291 &orig_block_len, &ram_bytes) == 1 &&
7292 btrfs_inc_nocow_writers(fs_info, block_start)) {
7293 struct extent_map *em2;
7294
64f54188 7295 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
c5794e51
NB
7296 orig_start, block_start,
7297 len, orig_block_len,
7298 ram_bytes, type);
7299 btrfs_dec_nocow_writers(fs_info, block_start);
7300 if (type == BTRFS_ORDERED_PREALLOC) {
7301 free_extent_map(em);
7302 *map = em = em2;
7303 }
7304
7305 if (em2 && IS_ERR(em2)) {
7306 ret = PTR_ERR(em2);
7307 goto out;
7308 }
7309 /*
7310 * For inode marked NODATACOW or extent marked PREALLOC,
7311 * use the existing or preallocated extent, so does not
7312 * need to adjust btrfs_space_info's bytes_may_use.
7313 */
9db5d510 7314 btrfs_free_reserved_data_space_noquota(fs_info, len);
c5794e51
NB
7315 goto skip_cow;
7316 }
7317 }
7318
7319 /* this will cow the extent */
55e20bd1 7320 len = bh_result->b_size;
c5794e51 7321 free_extent_map(em);
9fc6f911 7322 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
c5794e51
NB
7323 if (IS_ERR(em)) {
7324 ret = PTR_ERR(em);
7325 goto out;
7326 }
7327
7328 len = min(len, em->len - (start - em->start));
7329
7330skip_cow:
55e20bd1
DS
7331 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7332 inode->i_blkbits;
7333 bh_result->b_size = len;
7334 bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7335 set_buffer_mapped(bh_result);
7336
7337 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7338 set_buffer_new(bh_result);
7339
c5794e51
NB
7340 /*
7341 * Need to update the i_size under the extent lock so buffered
7342 * readers will get the updated i_size when we unlock.
7343 */
55e20bd1 7344 if (!dio_data->overwrite && start + len > i_size_read(inode))
c5794e51
NB
7345 i_size_write(inode, start + len);
7346
55e20bd1 7347 WARN_ON(dio_data->reserve < len);
c5794e51 7348 dio_data->reserve -= len;
55e20bd1
DS
7349 dio_data->unsubmitted_oe_range_end = start + len;
7350 current->journal_info = dio_data;
c5794e51
NB
7351out:
7352 return ret;
7353}
7354
55e20bd1
DS
7355static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7356 struct buffer_head *bh_result, int create)
4b46fce2 7357{
0b246afa 7358 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7359 struct extent_map *em;
eb838e73 7360 struct extent_state *cached_state = NULL;
50745b0a 7361 struct btrfs_dio_data *dio_data = NULL;
55e20bd1 7362 u64 start = iblock << inode->i_blkbits;
eb838e73 7363 u64 lockstart, lockend;
55e20bd1 7364 u64 len = bh_result->b_size;
0934856d 7365 int ret = 0;
eb838e73 7366
55e20bd1 7367 if (!create)
0b246afa 7368 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7369
c329861d
JB
7370 lockstart = start;
7371 lockend = start + len - 1;
7372
55e20bd1
DS
7373 if (current->journal_info) {
7374 /*
7375 * Need to pull our outstanding extents and set journal_info to NULL so
7376 * that anything that needs to check if there's a transaction doesn't get
7377 * confused.
7378 */
7379 dio_data = current->journal_info;
7380 current->journal_info = NULL;
e1cbbfa5
JB
7381 }
7382
eb838e73
JB
7383 /*
7384 * If this errors out it's because we couldn't invalidate pagecache for
7385 * this range and we need to fallback to buffered.
7386 */
55e20bd1
DS
7387 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7388 create)) {
9c9464cc
FM
7389 ret = -ENOTBLK;
7390 goto err;
7391 }
eb838e73 7392
39b07b5d 7393 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
eb838e73
JB
7394 if (IS_ERR(em)) {
7395 ret = PTR_ERR(em);
7396 goto unlock_err;
7397 }
4b46fce2
JB
7398
7399 /*
7400 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7401 * io. INLINE is special, and we could probably kludge it in here, but
7402 * it's still buffered so for safety lets just fall back to the generic
7403 * buffered path.
7404 *
7405 * For COMPRESSED we _have_ to read the entire extent in so we can
7406 * decompress it, so there will be buffering required no matter what we
7407 * do, so go ahead and fallback to buffered.
7408 *
01327610 7409 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7410 * to buffered IO. Don't blame me, this is the price we pay for using
7411 * the generic code.
7412 */
7413 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7414 em->block_start == EXTENT_MAP_INLINE) {
7415 free_extent_map(em);
eb838e73
JB
7416 ret = -ENOTBLK;
7417 goto unlock_err;
4b46fce2
JB
7418 }
7419
55e20bd1
DS
7420 if (create) {
7421 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7422 dio_data, start, len);
c5794e51
NB
7423 if (ret < 0)
7424 goto unlock_err;
55e20bd1
DS
7425
7426 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
7427 lockend, &cached_state);
c5794e51 7428 } else {
55e20bd1
DS
7429 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7430 start, len);
7431 /* Can be negative only if we read from a hole */
7432 if (ret < 0) {
7433 ret = 0;
7434 free_extent_map(em);
7435 goto unlock_err;
7436 }
1c8d0175
NB
7437 /*
7438 * We need to unlock only the end area that we aren't using.
7439 * The rest is going to be unlocked by the endio routine.
7440 */
55e20bd1
DS
7441 lockstart = start + bh_result->b_size;
7442 if (lockstart < lockend) {
7443 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7444 lockstart, lockend, &cached_state);
7445 } else {
7446 free_extent_state(cached_state);
7447 }
a43a67a2 7448 }
a43a67a2 7449
4b46fce2
JB
7450 free_extent_map(em);
7451
7452 return 0;
eb838e73
JB
7453
7454unlock_err:
e182163d
OS
7455 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7456 &cached_state);
9c9464cc 7457err:
55e20bd1
DS
7458 if (dio_data)
7459 current->journal_info = dio_data;
8b110e39
MX
7460 return ret;
7461}
7462
769b4f24 7463static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
8b110e39 7464{
769b4f24
OS
7465 /*
7466 * This implies a barrier so that stores to dio_bio->bi_status before
7467 * this and loads of dio_bio->bi_status after this are fully ordered.
7468 */
7469 if (!refcount_dec_and_test(&dip->refs))
7470 return;
8b110e39 7471
769b4f24 7472 if (bio_op(dip->dio_bio) == REQ_OP_WRITE) {
b672b5c1
NB
7473 __endio_write_update_ordered(BTRFS_I(dip->inode),
7474 dip->logical_offset,
769b4f24
OS
7475 dip->bytes,
7476 !dip->dio_bio->bi_status);
7477 } else {
7478 unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7479 dip->logical_offset,
7480 dip->logical_offset + dip->bytes - 1);
8b110e39
MX
7481 }
7482
55e20bd1 7483 dio_end_io(dip->dio_bio);
769b4f24 7484 kfree(dip);
8b110e39
MX
7485}
7486
77d5d689
OS
7487static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7488 int mirror_num,
7489 unsigned long bio_flags)
8b110e39 7490{
77d5d689 7491 struct btrfs_dio_private *dip = bio->bi_private;
2ff7e61e 7492 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7493 blk_status_t ret;
8b110e39 7494
37226b21 7495 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7496
5c047a69 7497 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8b110e39 7498 if (ret)
ea057f6d 7499 return ret;
8b110e39 7500
77d5d689 7501 refcount_inc(&dip->refs);
08635bae 7502 ret = btrfs_map_bio(fs_info, bio, mirror_num);
8b110e39 7503 if (ret)
fd9d6670 7504 refcount_dec(&dip->refs);
77d5d689 7505 return ret;
8b110e39
MX
7506}
7507
fd9d6670
OS
7508static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7509 struct btrfs_io_bio *io_bio,
7510 const bool uptodate)
4b46fce2 7511{
fd9d6670
OS
7512 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7513 const u32 sectorsize = fs_info->sectorsize;
7514 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7515 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7516 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
17347cec
LB
7517 struct bio_vec bvec;
7518 struct bvec_iter iter;
fd9d6670
OS
7519 u64 start = io_bio->logical;
7520 int icsum = 0;
58efbc9f 7521 blk_status_t err = BLK_STS_OK;
4b46fce2 7522
fd9d6670
OS
7523 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7524 unsigned int i, nr_sectors, pgoff;
8b110e39 7525
17347cec
LB
7526 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7527 pgoff = bvec.bv_offset;
fd9d6670 7528 for (i = 0; i < nr_sectors; i++) {
97bf5a55 7529 ASSERT(pgoff < PAGE_SIZE);
fd9d6670
OS
7530 if (uptodate &&
7531 (!csum || !check_data_csum(inode, io_bio, icsum,
7532 bvec.bv_page, pgoff,
7533 start, sectorsize))) {
7534 clean_io_failure(fs_info, failure_tree, io_tree,
7535 start, bvec.bv_page,
7536 btrfs_ino(BTRFS_I(inode)),
7537 pgoff);
7538 } else {
7539 blk_status_t status;
7540
77d5d689
OS
7541 status = btrfs_submit_read_repair(inode,
7542 &io_bio->bio,
7543 start - io_bio->logical,
fd9d6670
OS
7544 bvec.bv_page, pgoff,
7545 start,
7546 start + sectorsize - 1,
77d5d689
OS
7547 io_bio->mirror_num,
7548 submit_dio_repair_bio);
fd9d6670
OS
7549 if (status)
7550 err = status;
7551 }
7552 start += sectorsize;
7553 icsum++;
2dabb324 7554 pgoff += sectorsize;
2dabb324 7555 }
2c30c71b 7556 }
c1dc0896
MX
7557 return err;
7558}
7559
b672b5c1 7560static void __endio_write_update_ordered(struct btrfs_inode *inode,
52427260
QW
7561 const u64 offset, const u64 bytes,
7562 const bool uptodate)
4b46fce2 7563{
b672b5c1 7564 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4b46fce2 7565 struct btrfs_ordered_extent *ordered = NULL;
52427260 7566 struct btrfs_workqueue *wq;
14543774
FM
7567 u64 ordered_offset = offset;
7568 u64 ordered_bytes = bytes;
67c003f9 7569 u64 last_offset;
4b46fce2 7570
b672b5c1 7571 if (btrfs_is_free_space_inode(inode))
52427260 7572 wq = fs_info->endio_freespace_worker;
a0cac0ec 7573 else
52427260 7574 wq = fs_info->endio_write_workers;
52427260 7575
b25f0d00
NB
7576 while (ordered_offset < offset + bytes) {
7577 last_offset = ordered_offset;
b672b5c1 7578 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7095821e
NB
7579 &ordered_offset,
7580 ordered_bytes,
7581 uptodate)) {
a0cac0ec
OS
7582 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7583 NULL);
b25f0d00
NB
7584 btrfs_queue_work(wq, &ordered->work);
7585 }
7586 /*
7587 * If btrfs_dec_test_ordered_pending does not find any ordered
7588 * extent in the range, we can exit.
7589 */
7590 if (ordered_offset == last_offset)
7591 return;
7592 /*
7593 * Our bio might span multiple ordered extents. In this case
52042d8e 7594 * we keep going until we have accounted the whole dio.
b25f0d00
NB
7595 */
7596 if (ordered_offset < offset + bytes) {
7597 ordered_bytes = offset + bytes - ordered_offset;
7598 ordered = NULL;
7599 }
163cf09c 7600 }
14543774
FM
7601}
7602
d0ee3934 7603static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
d0779291 7604 struct bio *bio, u64 offset)
eaf25d93 7605{
c6100a4b 7606 struct inode *inode = private_data;
4e4cbee9 7607 blk_status_t ret;
bd242a08 7608 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, offset, 1);
79787eaa 7609 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
7610 return 0;
7611}
7612
4246a0b6 7613static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
7614{
7615 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 7616 blk_status_t err = bio->bi_status;
e65e1535 7617
8b110e39
MX
7618 if (err)
7619 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 7620 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
7621 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7622 bio->bi_opf,
8b110e39
MX
7623 (unsigned long long)bio->bi_iter.bi_sector,
7624 bio->bi_iter.bi_size, err);
7625
769b4f24
OS
7626 if (bio_op(bio) == REQ_OP_READ) {
7627 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
fd9d6670 7628 !err);
e65e1535
MX
7629 }
7630
769b4f24
OS
7631 if (err)
7632 dip->dio_bio->bi_status = err;
e65e1535 7633
e65e1535 7634 bio_put(bio);
769b4f24 7635 btrfs_dio_private_put(dip);
c1dc0896
MX
7636}
7637
d0ee3934
DS
7638static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7639 struct inode *inode, u64 file_offset, int async_submit)
e65e1535 7640{
0b246afa 7641 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 7642 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 7643 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 7644 blk_status_t ret;
e65e1535 7645
4c274bc6 7646 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
7647 if (async_submit)
7648 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7649
5fd02043 7650 if (!write) {
0b246afa 7651 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
7652 if (ret)
7653 goto err;
7654 }
e65e1535 7655
e6961cac 7656 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
7657 goto map;
7658
7659 if (write && async_submit) {
c6100a4b
JB
7660 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
7661 file_offset, inode,
e288c080 7662 btrfs_submit_bio_start_direct_io);
e65e1535 7663 goto err;
1ae39938
JB
7664 } else if (write) {
7665 /*
7666 * If we aren't doing async submit, calculate the csum of the
7667 * bio now.
7668 */
bd242a08 7669 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
1ae39938
JB
7670 if (ret)
7671 goto err;
23ea8e5a 7672 } else {
85879573
OS
7673 u64 csum_offset;
7674
7675 csum_offset = file_offset - dip->logical_offset;
7676 csum_offset >>= inode->i_sb->s_blocksize_bits;
7677 csum_offset *= btrfs_super_csum_size(fs_info->super_copy);
7678 btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
c2db1073 7679 }
1ae39938 7680map:
08635bae 7681 ret = btrfs_map_bio(fs_info, bio, 0);
e65e1535 7682err:
e65e1535
MX
7683 return ret;
7684}
7685
c36cac28
OS
7686/*
7687 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7688 * or ordered extents whether or not we submit any bios.
7689 */
7690static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
7691 struct inode *inode,
7692 loff_t file_offset)
e65e1535 7693{
c36cac28 7694 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
85879573
OS
7695 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7696 size_t dip_size;
c36cac28 7697 struct btrfs_dio_private *dip;
c36cac28 7698
85879573
OS
7699 dip_size = sizeof(*dip);
7700 if (!write && csum) {
7701 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7702 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
7703 size_t nblocks;
7704
7705 nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
7706 dip_size += csum_size * nblocks;
7707 }
7708
7709 dip = kzalloc(dip_size, GFP_NOFS);
c36cac28
OS
7710 if (!dip)
7711 return NULL;
7712
c36cac28
OS
7713 dip->inode = inode;
7714 dip->logical_offset = file_offset;
7715 dip->bytes = dio_bio->bi_iter.bi_size;
7716 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
c36cac28 7717 dip->dio_bio = dio_bio;
e3b318d1 7718 refcount_set(&dip->refs, 1);
55e20bd1
DS
7719
7720 if (write) {
7721 struct btrfs_dio_data *dio_data = current->journal_info;
7722
7723 /*
7724 * Setting range start and end to the same value means that
7725 * no cleanup will happen in btrfs_direct_IO
7726 */
7727 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
7728 dip->bytes;
7729 dio_data->unsubmitted_oe_range_start =
7730 dio_data->unsubmitted_oe_range_end;
7731 }
c36cac28
OS
7732 return dip;
7733}
7734
55e20bd1
DS
7735static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
7736 loff_t file_offset)
c36cac28
OS
7737{
7738 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
85879573 7739 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
0b246afa 7740 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
769b4f24
OS
7741 const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7742 BTRFS_BLOCK_GROUP_RAID56_MASK);
c36cac28 7743 struct btrfs_dio_private *dip;
e65e1535 7744 struct bio *bio;
c36cac28 7745 u64 start_sector;
1ae39938 7746 int async_submit = 0;
725130ba
LB
7747 u64 submit_len;
7748 int clone_offset = 0;
7749 int clone_len;
5f4dc8fc 7750 int ret;
58efbc9f 7751 blk_status_t status;
89b798ad 7752 struct btrfs_io_geometry geom;
e65e1535 7753
c36cac28
OS
7754 dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
7755 if (!dip) {
7756 if (!write) {
7757 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
7758 file_offset + dio_bio->bi_iter.bi_size - 1);
7759 }
7760 dio_bio->bi_status = BLK_STS_RESOURCE;
55e20bd1
DS
7761 dio_end_io(dio_bio);
7762 return;
c36cac28 7763 }
facc8a22 7764
85879573
OS
7765 if (!write && csum) {
7766 /*
7767 * Load the csums up front to reduce csum tree searches and
7768 * contention when submitting bios.
7769 */
7770 status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset,
7771 dip->csums);
7772 if (status != BLK_STS_OK)
7773 goto out_err;
02f57c7a
JB
7774 }
7775
769b4f24
OS
7776 start_sector = dio_bio->bi_iter.bi_sector;
7777 submit_len = dio_bio->bi_iter.bi_size;
53b381b3 7778
3c91ee69 7779 do {
769b4f24
OS
7780 ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio),
7781 start_sector << 9, submit_len,
7782 &geom);
7783 if (ret) {
7784 status = errno_to_blk_status(ret);
7785 goto out_err;
7786 }
7787 ASSERT(geom.len <= INT_MAX);
7788
89b798ad 7789 clone_len = min_t(int, submit_len, geom.len);
02f57c7a 7790
725130ba
LB
7791 /*
7792 * This will never fail as it's passing GPF_NOFS and
7793 * the allocation is backed by btrfs_bioset.
7794 */
769b4f24 7795 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
725130ba
LB
7796 bio->bi_private = dip;
7797 bio->bi_end_io = btrfs_end_dio_bio;
7798 btrfs_io_bio(bio)->logical = file_offset;
7799
7800 ASSERT(submit_len >= clone_len);
7801 submit_len -= clone_len;
e65e1535 7802
725130ba
LB
7803 /*
7804 * Increase the count before we submit the bio so we know
7805 * the end IO handler won't happen before we increase the
7806 * count. Otherwise, the dip might get freed before we're
7807 * done setting it up.
769b4f24
OS
7808 *
7809 * We transfer the initial reference to the last bio, so we
7810 * don't need to increment the reference count for the last one.
725130ba 7811 */
769b4f24
OS
7812 if (submit_len > 0) {
7813 refcount_inc(&dip->refs);
7814 /*
7815 * If we are submitting more than one bio, submit them
7816 * all asynchronously. The exception is RAID 5 or 6, as
7817 * asynchronous checksums make it difficult to collect
7818 * full stripe writes.
7819 */
7820 if (!raid56)
7821 async_submit = 1;
7822 }
e65e1535 7823
d0ee3934 7824 status = btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
7825 async_submit);
7826 if (status) {
725130ba 7827 bio_put(bio);
769b4f24
OS
7828 if (submit_len > 0)
7829 refcount_dec(&dip->refs);
725130ba
LB
7830 goto out_err;
7831 }
e65e1535 7832
725130ba
LB
7833 clone_offset += clone_len;
7834 start_sector += clone_len >> 9;
7835 file_offset += clone_len;
3c91ee69 7836 } while (submit_len > 0);
55e20bd1 7837 return;
e65e1535 7838
e65e1535 7839out_err:
769b4f24
OS
7840 dip->dio_bio->bi_status = status;
7841 btrfs_dio_private_put(dip);
4b46fce2
JB
7842}
7843
f4c48b44
DS
7844static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
7845 const struct iov_iter *iter, loff_t offset)
7846{
7847 int seg;
7848 int i;
7849 unsigned int blocksize_mask = fs_info->sectorsize - 1;
7850 ssize_t retval = -EINVAL;
0934856d 7851
f4c48b44
DS
7852 if (offset & blocksize_mask)
7853 goto out;
7854
7855 if (iov_iter_alignment(iter) & blocksize_mask)
7856 goto out;
7857
7858 /* If this is a write we don't need to check anymore */
7859 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
7860 return 0;
7861 /*
7862 * Check to make sure we don't have duplicate iov_base's in this
7863 * iovec, if so return EINVAL, otherwise we'll get csum errors
7864 * when reading back.
7865 */
7866 for (seg = 0; seg < iter->nr_segs; seg++) {
7867 for (i = seg + 1; i < iter->nr_segs; i++) {
7868 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7869 goto out;
7870 }
7871 }
7872 retval = 0;
7873out:
7874 return retval;
7875}
7876
55e20bd1 7877static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
f4c48b44
DS
7878{
7879 struct file *file = iocb->ki_filp;
7880 struct inode *inode = file->f_mapping->host;
7881 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
55e20bd1 7882 struct btrfs_dio_data dio_data = { 0 };
f4c48b44
DS
7883 struct extent_changeset *data_reserved = NULL;
7884 loff_t offset = iocb->ki_pos;
7885 size_t count = 0;
55e20bd1
DS
7886 int flags = 0;
7887 bool wakeup = true;
f4c48b44
DS
7888 bool relock = false;
7889 ssize_t ret;
7890
7891 if (check_direct_IO(fs_info, iter, offset))
7892 return 0;
7893
55e20bd1
DS
7894 inode_dio_begin(inode);
7895
7896 /*
7897 * The generic stuff only does filemap_write_and_wait_range, which
7898 * isn't enough if we've written compressed pages to this area, so
7899 * we need to flush the dirty pages again to make absolutely sure
7900 * that any outstanding dirty pages are on disk.
7901 */
f4c48b44 7902 count = iov_iter_count(iter);
55e20bd1
DS
7903 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7904 &BTRFS_I(inode)->runtime_flags))
7905 filemap_fdatawrite_range(inode->i_mapping, offset,
7906 offset + count - 1);
7907
f4c48b44
DS
7908 if (iov_iter_rw(iter) == WRITE) {
7909 /*
7910 * If the write DIO is beyond the EOF, we need update
7911 * the isize, but it is protected by i_mutex. So we can
7912 * not unlock the i_mutex at this case.
7913 */
7914 if (offset + count <= inode->i_size) {
55e20bd1 7915 dio_data.overwrite = 1;
f4c48b44
DS
7916 inode_unlock(inode);
7917 relock = true;
f4c48b44 7918 }
55e20bd1
DS
7919 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
7920 offset, count);
7921 if (ret)
7922 goto out;
7923
7924 /*
7925 * We need to know how many extents we reserved so that we can
7926 * do the accounting properly if we go over the number we
7927 * originally calculated. Abuse current->journal_info for this.
7928 */
7929 dio_data.reserve = round_up(count,
7930 fs_info->sectorsize);
7931 dio_data.unsubmitted_oe_range_start = (u64)offset;
7932 dio_data.unsubmitted_oe_range_end = (u64)offset;
7933 current->journal_info = &dio_data;
f4c48b44 7934 down_read(&BTRFS_I(inode)->dio_sem);
55e20bd1
DS
7935 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7936 &BTRFS_I(inode)->runtime_flags)) {
7937 inode_dio_end(inode);
7938 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7939 wakeup = false;
f4c48b44
DS
7940 }
7941
55e20bd1
DS
7942 ret = __blockdev_direct_IO(iocb, inode,
7943 fs_info->fs_devices->latest_bdev,
7944 iter, btrfs_get_blocks_direct, NULL,
7945 btrfs_submit_direct, flags);
f4c48b44
DS
7946 if (iov_iter_rw(iter) == WRITE) {
7947 up_read(&BTRFS_I(inode)->dio_sem);
55e20bd1
DS
7948 current->journal_info = NULL;
7949 if (ret < 0 && ret != -EIOCBQUEUED) {
7950 if (dio_data.reserve)
86d52921
NB
7951 btrfs_delalloc_release_space(BTRFS_I(inode),
7952 data_reserved, offset, dio_data.reserve,
7953 true);
55e20bd1
DS
7954 /*
7955 * On error we might have left some ordered extents
7956 * without submitting corresponding bios for them, so
7957 * cleanup them up to avoid other tasks getting them
7958 * and waiting for them to complete forever.
7959 */
7960 if (dio_data.unsubmitted_oe_range_start <
7961 dio_data.unsubmitted_oe_range_end)
b672b5c1 7962 __endio_write_update_ordered(BTRFS_I(inode),
55e20bd1
DS
7963 dio_data.unsubmitted_oe_range_start,
7964 dio_data.unsubmitted_oe_range_end -
7965 dio_data.unsubmitted_oe_range_start,
7966 false);
7967 } else if (ret >= 0 && (size_t)ret < count)
86d52921 7968 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
55e20bd1
DS
7969 offset, count - (size_t)ret, true);
7970 btrfs_delalloc_release_extents(BTRFS_I(inode), count);
f4c48b44
DS
7971 }
7972out:
55e20bd1
DS
7973 if (wakeup)
7974 inode_dio_end(inode);
f4c48b44
DS
7975 if (relock)
7976 inode_lock(inode);
55e20bd1 7977
f4c48b44
DS
7978 extent_changeset_free(data_reserved);
7979 return ret;
7980}
16432985 7981
1506fcc8 7982static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
bab16e21 7983 u64 start, u64 len)
1506fcc8 7984{
05dadc09
TI
7985 int ret;
7986
45dd052e 7987 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
05dadc09
TI
7988 if (ret)
7989 return ret;
7990
2135fb9b 7991 return extent_fiemap(inode, fieinfo, start, len);
1506fcc8
YS
7992}
7993
a52d9a80 7994int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 7995{
71ad38b4 7996 return extent_read_full_page(page, btrfs_get_extent, 0);
9ebefb18 7997}
1832a6d5 7998
a52d9a80 7999static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8000{
be7bd730
JB
8001 struct inode *inode = page->mapping->host;
8002 int ret;
b888db2b
CM
8003
8004 if (current->flags & PF_MEMALLOC) {
8005 redirty_page_for_writepage(wbc, page);
8006 unlock_page(page);
8007 return 0;
8008 }
be7bd730
JB
8009
8010 /*
8011 * If we are under memory pressure we will call this directly from the
8012 * VM, we need to make sure we have the inode referenced for the ordered
8013 * extent. If not just return like we didn't do anything.
8014 */
8015 if (!igrab(inode)) {
8016 redirty_page_for_writepage(wbc, page);
8017 return AOP_WRITEPAGE_ACTIVATE;
8018 }
0a9b0e53 8019 ret = extent_write_full_page(page, wbc);
be7bd730
JB
8020 btrfs_add_delayed_iput(inode);
8021 return ret;
9ebefb18
CM
8022}
8023
48a3b636
ES
8024static int btrfs_writepages(struct address_space *mapping,
8025 struct writeback_control *wbc)
b293f02e 8026{
8ae225a8 8027 return extent_writepages(mapping, wbc);
b293f02e
CM
8028}
8029
ba206a02 8030static void btrfs_readahead(struct readahead_control *rac)
3ab2fb5a 8031{
ba206a02 8032 extent_readahead(rac);
3ab2fb5a 8033}
2a3ff0ad 8034
e6dcd2dc 8035static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8036{
477a30ba 8037 int ret = try_release_extent_mapping(page, gfp_flags);
d1b89bc0
GJ
8038 if (ret == 1)
8039 detach_page_private(page);
a52d9a80 8040 return ret;
39279cc3
CM
8041}
8042
e6dcd2dc
CM
8043static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8044{
98509cfc
CM
8045 if (PageWriteback(page) || PageDirty(page))
8046 return 0;
3ba7ab22 8047 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8048}
8049
f8e66081
RG
8050#ifdef CONFIG_MIGRATION
8051static int btrfs_migratepage(struct address_space *mapping,
8052 struct page *newpage, struct page *page,
8053 enum migrate_mode mode)
8054{
8055 int ret;
8056
8057 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8058 if (ret != MIGRATEPAGE_SUCCESS)
8059 return ret;
8060
d1b89bc0
GJ
8061 if (page_has_private(page))
8062 attach_page_private(newpage, detach_page_private(page));
f8e66081
RG
8063
8064 if (PagePrivate2(page)) {
8065 ClearPagePrivate2(page);
8066 SetPagePrivate2(newpage);
8067 }
8068
8069 if (mode != MIGRATE_SYNC_NO_COPY)
8070 migrate_page_copy(newpage, page);
8071 else
8072 migrate_page_states(newpage, page);
8073 return MIGRATEPAGE_SUCCESS;
8074}
8075#endif
8076
d47992f8
LC
8077static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8078 unsigned int length)
39279cc3 8079{
5fd02043 8080 struct inode *inode = page->mapping->host;
d1310b2e 8081 struct extent_io_tree *tree;
e6dcd2dc 8082 struct btrfs_ordered_extent *ordered;
2ac55d41 8083 struct extent_state *cached_state = NULL;
e6dcd2dc 8084 u64 page_start = page_offset(page);
09cbfeaf 8085 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8086 u64 start;
8087 u64 end;
131e404a 8088 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8089
8b62b72b
CM
8090 /*
8091 * we have the page locked, so new writeback can't start,
8092 * and the dirty bit won't be cleared while we are here.
8093 *
8094 * Wait for IO on this page so that we can safely clear
8095 * the PagePrivate2 bit and do ordered accounting
8096 */
e6dcd2dc 8097 wait_on_page_writeback(page);
8b62b72b 8098
5fd02043 8099 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8100 if (offset) {
8101 btrfs_releasepage(page, GFP_NOFS);
8102 return;
8103 }
131e404a
FDBM
8104
8105 if (!inode_evicting)
ff13db41 8106 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8107again:
8108 start = page_start;
a776c6fa 8109 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8110 page_end - start + 1);
e6dcd2dc 8111 if (ordered) {
bffe633e
OS
8112 end = min(page_end,
8113 ordered->file_offset + ordered->num_bytes - 1);
eb84ae03
CM
8114 /*
8115 * IO on this page will never be started, so we need
8116 * to account for any ordered extents now
8117 */
131e404a 8118 if (!inode_evicting)
dbfdb6d1 8119 clear_extent_bit(tree, start, end,
e182163d 8120 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
131e404a 8121 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8122 EXTENT_DEFRAG, 1, 0, &cached_state);
8b62b72b
CM
8123 /*
8124 * whoever cleared the private bit is responsible
8125 * for the finish_ordered_io
8126 */
77cef2ec
JB
8127 if (TestClearPagePrivate2(page)) {
8128 struct btrfs_ordered_inode_tree *tree;
8129 u64 new_len;
8130
8131 tree = &BTRFS_I(inode)->ordered_tree;
8132
8133 spin_lock_irq(&tree->lock);
8134 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8135 new_len = start - ordered->file_offset;
77cef2ec
JB
8136 if (new_len < ordered->truncated_len)
8137 ordered->truncated_len = new_len;
8138 spin_unlock_irq(&tree->lock);
8139
8140 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8141 start,
8142 end - start + 1, 1))
77cef2ec 8143 btrfs_finish_ordered_io(ordered);
8b62b72b 8144 }
e6dcd2dc 8145 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8146 if (!inode_evicting) {
8147 cached_state = NULL;
dbfdb6d1 8148 lock_extent_bits(tree, start, end,
131e404a
FDBM
8149 &cached_state);
8150 }
dbfdb6d1
CR
8151
8152 start = end + 1;
8153 if (start < page_end)
8154 goto again;
131e404a
FDBM
8155 }
8156
b9d0b389
QW
8157 /*
8158 * Qgroup reserved space handler
8159 * Page here will be either
fa91e4aa
QW
8160 * 1) Already written to disk or ordered extent already submitted
8161 * Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8162 * Qgroup will be handled by its qgroup_record then.
8163 * btrfs_qgroup_free_data() call will do nothing here.
8164 *
8165 * 2) Not written to disk yet
8166 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8167 * bit of its io_tree, and free the qgroup reserved data space.
8168 * Since the IO will never happen for this page.
b9d0b389 8169 */
8b8a979f 8170 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, page_start, PAGE_SIZE);
131e404a 8171 if (!inode_evicting) {
e182163d 8172 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
a7e3b975
FM
8173 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8174 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
ae0f1625 8175 &cached_state);
131e404a
FDBM
8176
8177 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8178 }
e6dcd2dc 8179
4a096752 8180 ClearPageChecked(page);
d1b89bc0 8181 detach_page_private(page);
39279cc3
CM
8182}
8183
9ebefb18
CM
8184/*
8185 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8186 * called from a page fault handler when a page is first dirtied. Hence we must
8187 * be careful to check for EOF conditions here. We set the page up correctly
8188 * for a written page which means we get ENOSPC checking when writing into
8189 * holes and correct delalloc and unwritten extent mapping on filesystems that
8190 * support these features.
8191 *
8192 * We are not allowed to take the i_mutex here so we have to play games to
8193 * protect against truncate races as the page could now be beyond EOF. Because
d1342aad
OS
8194 * truncate_setsize() writes the inode size before removing pages, once we have
8195 * the page lock we can determine safely if the page is beyond EOF. If it is not
9ebefb18
CM
8196 * beyond EOF, then the page is guaranteed safe against truncation until we
8197 * unlock the page.
8198 */
a528a241 8199vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8200{
c2ec175c 8201 struct page *page = vmf->page;
11bac800 8202 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8203 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8204 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8205 struct btrfs_ordered_extent *ordered;
2ac55d41 8206 struct extent_state *cached_state = NULL;
364ecf36 8207 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
8208 char *kaddr;
8209 unsigned long zero_start;
9ebefb18 8210 loff_t size;
a528a241
SJ
8211 vm_fault_t ret;
8212 int ret2;
9998eb70 8213 int reserved = 0;
d0b7da88 8214 u64 reserved_space;
a52d9a80 8215 u64 page_start;
e6dcd2dc 8216 u64 page_end;
d0b7da88
CR
8217 u64 end;
8218
09cbfeaf 8219 reserved_space = PAGE_SIZE;
9ebefb18 8220
b2b5ef5c 8221 sb_start_pagefault(inode->i_sb);
df480633 8222 page_start = page_offset(page);
09cbfeaf 8223 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8224 end = page_end;
df480633 8225
d0b7da88
CR
8226 /*
8227 * Reserving delalloc space after obtaining the page lock can lead to
8228 * deadlock. For example, if a dirty page is locked by this function
8229 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8230 * dirty page write out, then the btrfs_writepage() function could
8231 * end up waiting indefinitely to get a lock on the page currently
8232 * being processed by btrfs_page_mkwrite() function.
8233 */
a528a241 8234 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
d0b7da88 8235 reserved_space);
a528a241
SJ
8236 if (!ret2) {
8237 ret2 = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8238 reserved = 1;
8239 }
a528a241
SJ
8240 if (ret2) {
8241 ret = vmf_error(ret2);
9998eb70
CM
8242 if (reserved)
8243 goto out;
8244 goto out_noreserve;
56a76f82 8245 }
1832a6d5 8246
56a76f82 8247 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8248again:
9ebefb18 8249 lock_page(page);
9ebefb18 8250 size = i_size_read(inode);
a52d9a80 8251
9ebefb18 8252 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8253 (page_start >= size)) {
9ebefb18
CM
8254 /* page got truncated out from underneath us */
8255 goto out_unlock;
8256 }
e6dcd2dc
CM
8257 wait_on_page_writeback(page);
8258
ff13db41 8259 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8260 set_page_extent_mapped(page);
8261
eb84ae03
CM
8262 /*
8263 * we can't set the delalloc bits if there are pending ordered
8264 * extents. Drop our locks and wait for them to finish
8265 */
a776c6fa
NB
8266 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8267 PAGE_SIZE);
e6dcd2dc 8268 if (ordered) {
2ac55d41 8269 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8270 &cached_state);
e6dcd2dc 8271 unlock_page(page);
eb84ae03 8272 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8273 btrfs_put_ordered_extent(ordered);
8274 goto again;
8275 }
8276
09cbfeaf 8277 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 8278 reserved_space = round_up(size - page_start,
0b246afa 8279 fs_info->sectorsize);
09cbfeaf 8280 if (reserved_space < PAGE_SIZE) {
d0b7da88 8281 end = page_start + reserved_space - 1;
86d52921
NB
8282 btrfs_delalloc_release_space(BTRFS_I(inode),
8283 data_reserved, page_start,
8284 PAGE_SIZE - reserved_space, true);
d0b7da88
CR
8285 }
8286 }
8287
fbf19087 8288 /*
5416034f
LB
8289 * page_mkwrite gets called when the page is firstly dirtied after it's
8290 * faulted in, but write(2) could also dirty a page and set delalloc
8291 * bits, thus in this case for space account reason, we still need to
8292 * clear any delalloc bits within this page range since we have to
8293 * reserve data&meta space before lock_page() (see above comments).
fbf19087 8294 */
d0b7da88 8295 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
e182163d
OS
8296 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8297 EXTENT_DEFRAG, 0, 0, &cached_state);
fbf19087 8298
c2566f22 8299 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
330a5827 8300 &cached_state);
a528a241 8301 if (ret2) {
2ac55d41 8302 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8303 &cached_state);
9ed74f2d
JB
8304 ret = VM_FAULT_SIGBUS;
8305 goto out_unlock;
8306 }
9ebefb18
CM
8307
8308 /* page is wholly or partially inside EOF */
09cbfeaf 8309 if (page_start + PAGE_SIZE > size)
7073017a 8310 zero_start = offset_in_page(size);
9ebefb18 8311 else
09cbfeaf 8312 zero_start = PAGE_SIZE;
9ebefb18 8313
09cbfeaf 8314 if (zero_start != PAGE_SIZE) {
e6dcd2dc 8315 kaddr = kmap(page);
09cbfeaf 8316 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
8317 flush_dcache_page(page);
8318 kunmap(page);
8319 }
247e743c 8320 ClearPageChecked(page);
e6dcd2dc 8321 set_page_dirty(page);
50a9b214 8322 SetPageUptodate(page);
5a3f23d5 8323
0b246afa 8324 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 8325 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8326 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8327
e43bbe5e 8328 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9ebefb18 8329
76de60ed
YY
8330 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8331 sb_end_pagefault(inode->i_sb);
8332 extent_changeset_free(data_reserved);
8333 return VM_FAULT_LOCKED;
717beb96
CM
8334
8335out_unlock:
9ebefb18 8336 unlock_page(page);
1832a6d5 8337out:
8702ba93 8338 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
86d52921 8339 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
43b18595 8340 reserved_space, (ret != 0));
9998eb70 8341out_noreserve:
b2b5ef5c 8342 sb_end_pagefault(inode->i_sb);
364ecf36 8343 extent_changeset_free(data_reserved);
9ebefb18
CM
8344 return ret;
8345}
8346
213e8c55 8347static int btrfs_truncate(struct inode *inode, bool skip_writeback)
39279cc3 8348{
0b246afa 8349 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 8350 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8351 struct btrfs_block_rsv *rsv;
ad7e1a74 8352 int ret;
39279cc3 8353 struct btrfs_trans_handle *trans;
0b246afa 8354 u64 mask = fs_info->sectorsize - 1;
2bd36e7b 8355 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
39279cc3 8356
213e8c55
FM
8357 if (!skip_writeback) {
8358 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8359 (u64)-1);
8360 if (ret)
8361 return ret;
8362 }
39279cc3 8363
fcb80c2a 8364 /*
f7e9e8fc
OS
8365 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8366 * things going on here:
fcb80c2a 8367 *
f7e9e8fc 8368 * 1) We need to reserve space to update our inode.
fcb80c2a 8369 *
f7e9e8fc 8370 * 2) We need to have something to cache all the space that is going to
fcb80c2a
JB
8371 * be free'd up by the truncate operation, but also have some slack
8372 * space reserved in case it uses space during the truncate (thank you
8373 * very much snapshotting).
8374 *
f7e9e8fc 8375 * And we need these to be separate. The fact is we can use a lot of
fcb80c2a 8376 * space doing the truncate, and we have no earthly idea how much space
01327610 8377 * we will use, so we need the truncate reservation to be separate so it
f7e9e8fc
OS
8378 * doesn't end up using space reserved for updating the inode. We also
8379 * need to be able to stop the transaction and start a new one, which
8380 * means we need to be able to update the inode several times, and we
8381 * have no idea of knowing how many times that will be, so we can't just
8382 * reserve 1 item for the entirety of the operation, so that has to be
8383 * done separately as well.
fcb80c2a
JB
8384 *
8385 * So that leaves us with
8386 *
f7e9e8fc 8387 * 1) rsv - for the truncate reservation, which we will steal from the
fcb80c2a 8388 * transaction reservation.
f7e9e8fc 8389 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
fcb80c2a
JB
8390 * updating the inode.
8391 */
2ff7e61e 8392 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8393 if (!rsv)
8394 return -ENOMEM;
4a338542 8395 rsv->size = min_size;
ca7e70f5 8396 rsv->failfast = 1;
f0cd846e 8397
907cbceb 8398 /*
07127184 8399 * 1 for the truncate slack space
907cbceb
JB
8400 * 1 for updating the inode.
8401 */
f3fe820c 8402 trans = btrfs_start_transaction(root, 2);
fcb80c2a 8403 if (IS_ERR(trans)) {
ad7e1a74 8404 ret = PTR_ERR(trans);
fcb80c2a
JB
8405 goto out;
8406 }
f0cd846e 8407
907cbceb 8408 /* Migrate the slack space for the truncate to our reserve */
0b246afa 8409 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
3a584174 8410 min_size, false);
fcb80c2a 8411 BUG_ON(ret);
f0cd846e 8412
5dc562c5
JB
8413 /*
8414 * So if we truncate and then write and fsync we normally would just
8415 * write the extents that changed, which is a problem if we need to
8416 * first truncate that entire inode. So set this flag so we write out
8417 * all of the extents in the inode to the sync log so we're completely
8418 * safe.
8419 */
8420 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 8421 trans->block_rsv = rsv;
907cbceb 8422
8082510e
YZ
8423 while (1) {
8424 ret = btrfs_truncate_inode_items(trans, root, inode,
8425 inode->i_size,
8426 BTRFS_EXTENT_DATA_KEY);
ddfae63c 8427 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74 8428 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 8429 break;
39279cc3 8430
8082510e 8431 ret = btrfs_update_inode(trans, root, inode);
ad7e1a74 8432 if (ret)
3893e33b 8433 break;
ca7e70f5 8434
3a45bb20 8435 btrfs_end_transaction(trans);
2ff7e61e 8436 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
8437
8438 trans = btrfs_start_transaction(root, 2);
8439 if (IS_ERR(trans)) {
ad7e1a74 8440 ret = PTR_ERR(trans);
ca7e70f5
JB
8441 trans = NULL;
8442 break;
8443 }
8444
63f018be 8445 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
0b246afa 8446 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
3a584174 8447 rsv, min_size, false);
ca7e70f5
JB
8448 BUG_ON(ret); /* shouldn't happen */
8449 trans->block_rsv = rsv;
8082510e
YZ
8450 }
8451
ddfae63c
JB
8452 /*
8453 * We can't call btrfs_truncate_block inside a trans handle as we could
8454 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8455 * we've truncated everything except the last little bit, and can do
8456 * btrfs_truncate_block and then update the disk_i_size.
8457 */
8458 if (ret == NEED_TRUNCATE_BLOCK) {
8459 btrfs_end_transaction(trans);
8460 btrfs_btree_balance_dirty(fs_info);
8461
8462 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
8463 if (ret)
8464 goto out;
8465 trans = btrfs_start_transaction(root, 1);
8466 if (IS_ERR(trans)) {
8467 ret = PTR_ERR(trans);
8468 goto out;
8469 }
d923afe9 8470 btrfs_inode_safe_disk_i_size_write(inode, 0);
ddfae63c
JB
8471 }
8472
917c16b2 8473 if (trans) {
ad7e1a74
OS
8474 int ret2;
8475
0b246afa 8476 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74
OS
8477 ret2 = btrfs_update_inode(trans, root, inode);
8478 if (ret2 && !ret)
8479 ret = ret2;
7b128766 8480
ad7e1a74
OS
8481 ret2 = btrfs_end_transaction(trans);
8482 if (ret2 && !ret)
8483 ret = ret2;
2ff7e61e 8484 btrfs_btree_balance_dirty(fs_info);
917c16b2 8485 }
fcb80c2a 8486out:
2ff7e61e 8487 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 8488
ad7e1a74 8489 return ret;
39279cc3
CM
8490}
8491
d352ac68
CM
8492/*
8493 * create a new subvolume directory/inode (helper for the ioctl).
8494 */
d2fb3437 8495int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
8496 struct btrfs_root *new_root,
8497 struct btrfs_root *parent_root,
8498 u64 new_dirid)
39279cc3 8499{
39279cc3 8500 struct inode *inode;
76dda93c 8501 int err;
00e4e6b3 8502 u64 index = 0;
39279cc3 8503
12fc9d09
FA
8504 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8505 new_dirid, new_dirid,
8506 S_IFDIR | (~current_umask() & S_IRWXUGO),
8507 &index);
54aa1f4d 8508 if (IS_ERR(inode))
f46b5a66 8509 return PTR_ERR(inode);
39279cc3
CM
8510 inode->i_op = &btrfs_dir_inode_operations;
8511 inode->i_fop = &btrfs_dir_file_operations;
8512
bfe86848 8513 set_nlink(inode, 1);
6ef06d27 8514 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 8515 unlock_new_inode(inode);
3b96362c 8516
63541927
FDBM
8517 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8518 if (err)
8519 btrfs_err(new_root->fs_info,
351fd353 8520 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
8521 new_root->root_key.objectid, err);
8522
76dda93c 8523 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 8524
76dda93c 8525 iput(inode);
ce598979 8526 return err;
39279cc3
CM
8527}
8528
39279cc3
CM
8529struct inode *btrfs_alloc_inode(struct super_block *sb)
8530{
69fe2d75 8531 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 8532 struct btrfs_inode *ei;
2ead6ae7 8533 struct inode *inode;
39279cc3 8534
712e36c5 8535 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
8536 if (!ei)
8537 return NULL;
2ead6ae7
YZ
8538
8539 ei->root = NULL;
2ead6ae7 8540 ei->generation = 0;
15ee9bc7 8541 ei->last_trans = 0;
257c62e1 8542 ei->last_sub_trans = 0;
e02119d5 8543 ei->logged_trans = 0;
2ead6ae7 8544 ei->delalloc_bytes = 0;
a7e3b975 8545 ei->new_delalloc_bytes = 0;
47059d93 8546 ei->defrag_bytes = 0;
2ead6ae7
YZ
8547 ei->disk_i_size = 0;
8548 ei->flags = 0;
7709cde3 8549 ei->csum_bytes = 0;
2ead6ae7 8550 ei->index_cnt = (u64)-1;
67de1176 8551 ei->dir_index = 0;
2ead6ae7 8552 ei->last_unlink_trans = 0;
46d8bc34 8553 ei->last_log_commit = 0;
2ead6ae7 8554
9e0baf60
JB
8555 spin_lock_init(&ei->lock);
8556 ei->outstanding_extents = 0;
69fe2d75
JB
8557 if (sb->s_magic != BTRFS_TEST_MAGIC)
8558 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8559 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 8560 ei->runtime_flags = 0;
b52aa8c9 8561 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 8562 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8563
16cdcec7
MX
8564 ei->delayed_node = NULL;
8565
9cc97d64 8566 ei->i_otime.tv_sec = 0;
8567 ei->i_otime.tv_nsec = 0;
8568
2ead6ae7 8569 inode = &ei->vfs_inode;
a8067e02 8570 extent_map_tree_init(&ei->extent_tree);
43eb5f29
QW
8571 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8572 extent_io_tree_init(fs_info, &ei->io_failure_tree,
8573 IO_TREE_INODE_IO_FAILURE, inode);
41a2ee75
JB
8574 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8575 IO_TREE_INODE_FILE_EXTENT, inode);
7b439738
DS
8576 ei->io_tree.track_uptodate = true;
8577 ei->io_failure_tree.track_uptodate = true;
b812ce28 8578 atomic_set(&ei->sync_writers, 0);
2ead6ae7 8579 mutex_init(&ei->log_mutex);
e6dcd2dc 8580 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 8581 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 8582 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 8583 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 8584 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
8585
8586 return inode;
39279cc3
CM
8587}
8588
aaedb55b
JB
8589#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8590void btrfs_test_destroy_inode(struct inode *inode)
8591{
dcdbc059 8592 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
8593 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8594}
8595#endif
8596
26602cab 8597void btrfs_free_inode(struct inode *inode)
fa0d7e3d 8598{
fa0d7e3d
NP
8599 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8600}
8601
39279cc3
CM
8602void btrfs_destroy_inode(struct inode *inode)
8603{
0b246afa 8604 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 8605 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
8606 struct btrfs_root *root = BTRFS_I(inode)->root;
8607
b3d9b7a3 8608 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 8609 WARN_ON(inode->i_data.nrpages);
69fe2d75
JB
8610 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
8611 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9e0baf60 8612 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7709cde3 8613 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 8614 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 8615 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 8616 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 8617
a6dbd429
JB
8618 /*
8619 * This can happen where we create an inode, but somebody else also
8620 * created the same inode and we need to destroy the one we already
8621 * created.
8622 */
8623 if (!root)
26602cab 8624 return;
a6dbd429 8625
d397712b 8626 while (1) {
e6dcd2dc
CM
8627 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8628 if (!ordered)
8629 break;
8630 else {
0b246afa 8631 btrfs_err(fs_info,
5d163e0e 8632 "found ordered extent %llu %llu on inode cleanup",
bffe633e 8633 ordered->file_offset, ordered->num_bytes);
e6dcd2dc
CM
8634 btrfs_remove_ordered_extent(inode, ordered);
8635 btrfs_put_ordered_extent(ordered);
8636 btrfs_put_ordered_extent(ordered);
8637 }
8638 }
56fa9d07 8639 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 8640 inode_tree_del(inode);
dcdbc059 8641 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
41a2ee75 8642 btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 0, (u64)-1);
5c8fd99f 8643 btrfs_put_root(BTRFS_I(inode)->root);
39279cc3
CM
8644}
8645
45321ac5 8646int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8647{
8648 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8649
6379ef9f
NA
8650 if (root == NULL)
8651 return 1;
8652
fa6ac876 8653 /* the snap/subvol tree is on deleting */
69e9c6c6 8654 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8655 return 1;
76dda93c 8656 else
45321ac5 8657 return generic_drop_inode(inode);
76dda93c
YZ
8658}
8659
0ee0fda0 8660static void init_once(void *foo)
39279cc3
CM
8661{
8662 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8663
8664 inode_init_once(&ei->vfs_inode);
8665}
8666
e67c718b 8667void __cold btrfs_destroy_cachep(void)
39279cc3 8668{
8c0a8537
KS
8669 /*
8670 * Make sure all delayed rcu free inodes are flushed before we
8671 * destroy cache.
8672 */
8673 rcu_barrier();
5598e900
KM
8674 kmem_cache_destroy(btrfs_inode_cachep);
8675 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
8676 kmem_cache_destroy(btrfs_path_cachep);
8677 kmem_cache_destroy(btrfs_free_space_cachep);
3acd4850 8678 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
39279cc3
CM
8679}
8680
f5c29bd9 8681int __init btrfs_init_cachep(void)
39279cc3 8682{
837e1972 8683 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 8684 sizeof(struct btrfs_inode), 0,
5d097056
VD
8685 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8686 init_once);
39279cc3
CM
8687 if (!btrfs_inode_cachep)
8688 goto fail;
9601e3f6 8689
837e1972 8690 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 8691 sizeof(struct btrfs_trans_handle), 0,
fba4b697 8692 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8693 if (!btrfs_trans_handle_cachep)
8694 goto fail;
9601e3f6 8695
837e1972 8696 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 8697 sizeof(struct btrfs_path), 0,
fba4b697 8698 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8699 if (!btrfs_path_cachep)
8700 goto fail;
9601e3f6 8701
837e1972 8702 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 8703 sizeof(struct btrfs_free_space), 0,
fba4b697 8704 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
8705 if (!btrfs_free_space_cachep)
8706 goto fail;
8707
3acd4850
CL
8708 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
8709 PAGE_SIZE, PAGE_SIZE,
8710 SLAB_RED_ZONE, NULL);
8711 if (!btrfs_free_space_bitmap_cachep)
8712 goto fail;
8713
39279cc3
CM
8714 return 0;
8715fail:
8716 btrfs_destroy_cachep();
8717 return -ENOMEM;
8718}
8719
a528d35e
DH
8720static int btrfs_getattr(const struct path *path, struct kstat *stat,
8721 u32 request_mask, unsigned int flags)
39279cc3 8722{
df0af1a5 8723 u64 delalloc_bytes;
a528d35e 8724 struct inode *inode = d_inode(path->dentry);
fadc0d8b 8725 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
8726 u32 bi_flags = BTRFS_I(inode)->flags;
8727
8728 stat->result_mask |= STATX_BTIME;
8729 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8730 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8731 if (bi_flags & BTRFS_INODE_APPEND)
8732 stat->attributes |= STATX_ATTR_APPEND;
8733 if (bi_flags & BTRFS_INODE_COMPRESS)
8734 stat->attributes |= STATX_ATTR_COMPRESSED;
8735 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8736 stat->attributes |= STATX_ATTR_IMMUTABLE;
8737 if (bi_flags & BTRFS_INODE_NODUMP)
8738 stat->attributes |= STATX_ATTR_NODUMP;
8739
8740 stat->attributes_mask |= (STATX_ATTR_APPEND |
8741 STATX_ATTR_COMPRESSED |
8742 STATX_ATTR_IMMUTABLE |
8743 STATX_ATTR_NODUMP);
fadc0d8b 8744
39279cc3 8745 generic_fillattr(inode, stat);
0ee5dc67 8746 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
8747
8748 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 8749 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 8750 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 8751 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 8752 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
8753 return 0;
8754}
8755
cdd1fedf
DF
8756static int btrfs_rename_exchange(struct inode *old_dir,
8757 struct dentry *old_dentry,
8758 struct inode *new_dir,
8759 struct dentry *new_dentry)
8760{
0b246afa 8761 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
8762 struct btrfs_trans_handle *trans;
8763 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8764 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8765 struct inode *new_inode = new_dentry->d_inode;
8766 struct inode *old_inode = old_dentry->d_inode;
95582b00 8767 struct timespec64 ctime = current_time(old_inode);
cdd1fedf 8768 struct dentry *parent;
4a0cc7ca
NB
8769 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8770 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
8771 u64 old_idx = 0;
8772 u64 new_idx = 0;
cdd1fedf 8773 int ret;
86e8aa0e
FM
8774 bool root_log_pinned = false;
8775 bool dest_log_pinned = false;
d4682ba0
FM
8776 struct btrfs_log_ctx ctx_root;
8777 struct btrfs_log_ctx ctx_dest;
8778 bool sync_log_root = false;
8779 bool sync_log_dest = false;
8780 bool commit_transaction = false;
cdd1fedf
DF
8781
8782 /* we only allow rename subvolume link between subvolumes */
8783 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8784 return -EXDEV;
8785
d4682ba0
FM
8786 btrfs_init_log_ctx(&ctx_root, old_inode);
8787 btrfs_init_log_ctx(&ctx_dest, new_inode);
8788
cdd1fedf 8789 /* close the race window with snapshot create/destroy ioctl */
943eb3bf
JB
8790 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8791 new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 8792 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
8793
8794 /*
8795 * We want to reserve the absolute worst case amount of items. So if
8796 * both inodes are subvols and we need to unlink them then that would
8797 * require 4 item modifications, but if they are both normal inodes it
8798 * would require 5 item modifications, so we'll assume their normal
8799 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
8800 * should cover the worst case number of items we'll modify.
8801 */
8802 trans = btrfs_start_transaction(root, 12);
8803 if (IS_ERR(trans)) {
8804 ret = PTR_ERR(trans);
8805 goto out_notrans;
8806 }
8807
3e174099
JB
8808 if (dest != root)
8809 btrfs_record_root_in_trans(trans, dest);
8810
cdd1fedf
DF
8811 /*
8812 * We need to find a free sequence number both in the source and
8813 * in the destination directory for the exchange.
8814 */
877574e2 8815 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
8816 if (ret)
8817 goto out_fail;
877574e2 8818 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
8819 if (ret)
8820 goto out_fail;
8821
8822 BTRFS_I(old_inode)->dir_index = 0ULL;
8823 BTRFS_I(new_inode)->dir_index = 0ULL;
8824
8825 /* Reference for the source. */
8826 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8827 /* force full log commit if subvolume involved. */
90787766 8828 btrfs_set_log_full_commit(trans);
cdd1fedf 8829 } else {
376e5a57
FM
8830 btrfs_pin_log_trans(root);
8831 root_log_pinned = true;
cdd1fedf
DF
8832 ret = btrfs_insert_inode_ref(trans, dest,
8833 new_dentry->d_name.name,
8834 new_dentry->d_name.len,
8835 old_ino,
f85b7379
DS
8836 btrfs_ino(BTRFS_I(new_dir)),
8837 old_idx);
cdd1fedf
DF
8838 if (ret)
8839 goto out_fail;
cdd1fedf
DF
8840 }
8841
8842 /* And now for the dest. */
8843 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8844 /* force full log commit if subvolume involved. */
90787766 8845 btrfs_set_log_full_commit(trans);
cdd1fedf 8846 } else {
376e5a57
FM
8847 btrfs_pin_log_trans(dest);
8848 dest_log_pinned = true;
cdd1fedf
DF
8849 ret = btrfs_insert_inode_ref(trans, root,
8850 old_dentry->d_name.name,
8851 old_dentry->d_name.len,
8852 new_ino,
f85b7379
DS
8853 btrfs_ino(BTRFS_I(old_dir)),
8854 new_idx);
cdd1fedf
DF
8855 if (ret)
8856 goto out_fail;
cdd1fedf
DF
8857 }
8858
8859 /* Update inode version and ctime/mtime. */
8860 inode_inc_iversion(old_dir);
8861 inode_inc_iversion(new_dir);
8862 inode_inc_iversion(old_inode);
8863 inode_inc_iversion(new_inode);
8864 old_dir->i_ctime = old_dir->i_mtime = ctime;
8865 new_dir->i_ctime = new_dir->i_mtime = ctime;
8866 old_inode->i_ctime = ctime;
8867 new_inode->i_ctime = ctime;
8868
8869 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
8870 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8871 BTRFS_I(old_inode), 1);
8872 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8873 BTRFS_I(new_inode), 1);
cdd1fedf
DF
8874 }
8875
8876 /* src is a subvolume */
8877 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
045d3967 8878 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
cdd1fedf 8879 } else { /* src is an inode */
4ec5934e
NB
8880 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
8881 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
8882 old_dentry->d_name.name,
8883 old_dentry->d_name.len);
8884 if (!ret)
8885 ret = btrfs_update_inode(trans, root, old_inode);
8886 }
8887 if (ret) {
66642832 8888 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8889 goto out_fail;
8890 }
8891
8892 /* dest is a subvolume */
8893 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
045d3967 8894 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
cdd1fedf 8895 } else { /* dest is an inode */
4ec5934e
NB
8896 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
8897 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
8898 new_dentry->d_name.name,
8899 new_dentry->d_name.len);
8900 if (!ret)
8901 ret = btrfs_update_inode(trans, dest, new_inode);
8902 }
8903 if (ret) {
66642832 8904 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8905 goto out_fail;
8906 }
8907
db0a669f 8908 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
8909 new_dentry->d_name.name,
8910 new_dentry->d_name.len, 0, old_idx);
8911 if (ret) {
66642832 8912 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8913 goto out_fail;
8914 }
8915
db0a669f 8916 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
8917 old_dentry->d_name.name,
8918 old_dentry->d_name.len, 0, new_idx);
8919 if (ret) {
66642832 8920 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8921 goto out_fail;
8922 }
8923
8924 if (old_inode->i_nlink == 1)
8925 BTRFS_I(old_inode)->dir_index = old_idx;
8926 if (new_inode->i_nlink == 1)
8927 BTRFS_I(new_inode)->dir_index = new_idx;
8928
86e8aa0e 8929 if (root_log_pinned) {
cdd1fedf 8930 parent = new_dentry->d_parent;
d4682ba0
FM
8931 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
8932 BTRFS_I(old_dir), parent,
8933 false, &ctx_root);
8934 if (ret == BTRFS_NEED_LOG_SYNC)
8935 sync_log_root = true;
8936 else if (ret == BTRFS_NEED_TRANS_COMMIT)
8937 commit_transaction = true;
8938 ret = 0;
cdd1fedf 8939 btrfs_end_log_trans(root);
86e8aa0e 8940 root_log_pinned = false;
cdd1fedf 8941 }
86e8aa0e 8942 if (dest_log_pinned) {
d4682ba0
FM
8943 if (!commit_transaction) {
8944 parent = old_dentry->d_parent;
8945 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
8946 BTRFS_I(new_dir), parent,
8947 false, &ctx_dest);
8948 if (ret == BTRFS_NEED_LOG_SYNC)
8949 sync_log_dest = true;
8950 else if (ret == BTRFS_NEED_TRANS_COMMIT)
8951 commit_transaction = true;
8952 ret = 0;
8953 }
cdd1fedf 8954 btrfs_end_log_trans(dest);
86e8aa0e 8955 dest_log_pinned = false;
cdd1fedf
DF
8956 }
8957out_fail:
86e8aa0e
FM
8958 /*
8959 * If we have pinned a log and an error happened, we unpin tasks
8960 * trying to sync the log and force them to fallback to a transaction
8961 * commit if the log currently contains any of the inodes involved in
8962 * this rename operation (to ensure we do not persist a log with an
8963 * inconsistent state for any of these inodes or leading to any
8964 * inconsistencies when replayed). If the transaction was aborted, the
8965 * abortion reason is propagated to userspace when attempting to commit
8966 * the transaction. If the log does not contain any of these inodes, we
8967 * allow the tasks to sync it.
8968 */
8969 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
8970 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
8971 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
8972 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 8973 (new_inode &&
0f8939b8 8974 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 8975 btrfs_set_log_full_commit(trans);
86e8aa0e
FM
8976
8977 if (root_log_pinned) {
8978 btrfs_end_log_trans(root);
8979 root_log_pinned = false;
8980 }
8981 if (dest_log_pinned) {
8982 btrfs_end_log_trans(dest);
8983 dest_log_pinned = false;
8984 }
8985 }
d4682ba0
FM
8986 if (!ret && sync_log_root && !commit_transaction) {
8987 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
8988 &ctx_root);
8989 if (ret)
8990 commit_transaction = true;
8991 }
8992 if (!ret && sync_log_dest && !commit_transaction) {
8993 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
8994 &ctx_dest);
8995 if (ret)
8996 commit_transaction = true;
8997 }
8998 if (commit_transaction) {
e6c61710
FM
8999 /*
9000 * We may have set commit_transaction when logging the new name
9001 * in the destination root, in which case we left the source
9002 * root context in the list of log contextes. So make sure we
9003 * remove it to avoid invalid memory accesses, since the context
9004 * was allocated in our stack frame.
9005 */
9006 if (sync_log_root) {
9007 mutex_lock(&root->log_mutex);
9008 list_del_init(&ctx_root.list);
9009 mutex_unlock(&root->log_mutex);
9010 }
d4682ba0
FM
9011 ret = btrfs_commit_transaction(trans);
9012 } else {
9013 int ret2;
9014
9015 ret2 = btrfs_end_transaction(trans);
9016 ret = ret ? ret : ret2;
9017 }
cdd1fedf 9018out_notrans:
943eb3bf
JB
9019 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9020 old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9021 up_read(&fs_info->subvol_sem);
cdd1fedf 9022
e6c61710
FM
9023 ASSERT(list_empty(&ctx_root.list));
9024 ASSERT(list_empty(&ctx_dest.list));
9025
cdd1fedf
DF
9026 return ret;
9027}
9028
9029static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9030 struct btrfs_root *root,
9031 struct inode *dir,
9032 struct dentry *dentry)
9033{
9034 int ret;
9035 struct inode *inode;
9036 u64 objectid;
9037 u64 index;
9038
9039 ret = btrfs_find_free_ino(root, &objectid);
9040 if (ret)
9041 return ret;
9042
9043 inode = btrfs_new_inode(trans, root, dir,
9044 dentry->d_name.name,
9045 dentry->d_name.len,
4a0cc7ca 9046 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9047 objectid,
9048 S_IFCHR | WHITEOUT_MODE,
9049 &index);
9050
9051 if (IS_ERR(inode)) {
9052 ret = PTR_ERR(inode);
9053 return ret;
9054 }
9055
9056 inode->i_op = &btrfs_special_inode_operations;
9057 init_special_inode(inode, inode->i_mode,
9058 WHITEOUT_DEV);
9059
9060 ret = btrfs_init_inode_security(trans, inode, dir,
9061 &dentry->d_name);
9062 if (ret)
c9901618 9063 goto out;
cdd1fedf 9064
cef415af
NB
9065 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9066 BTRFS_I(inode), 0, index);
cdd1fedf 9067 if (ret)
c9901618 9068 goto out;
cdd1fedf
DF
9069
9070 ret = btrfs_update_inode(trans, root, inode);
c9901618 9071out:
cdd1fedf 9072 unlock_new_inode(inode);
c9901618
FM
9073 if (ret)
9074 inode_dec_link_count(inode);
cdd1fedf
DF
9075 iput(inode);
9076
c9901618 9077 return ret;
cdd1fedf
DF
9078}
9079
d397712b 9080static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9081 struct inode *new_dir, struct dentry *new_dentry,
9082 unsigned int flags)
39279cc3 9083{
0b246afa 9084 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9085 struct btrfs_trans_handle *trans;
5062af35 9086 unsigned int trans_num_items;
39279cc3 9087 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9088 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9089 struct inode *new_inode = d_inode(new_dentry);
9090 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9091 u64 index = 0;
39279cc3 9092 int ret;
4a0cc7ca 9093 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9094 bool log_pinned = false;
d4682ba0
FM
9095 struct btrfs_log_ctx ctx;
9096 bool sync_log = false;
9097 bool commit_transaction = false;
39279cc3 9098
4a0cc7ca 9099 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9100 return -EPERM;
9101
4df27c4d 9102 /* we only allow rename subvolume link between subvolumes */
33345d01 9103 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9104 return -EXDEV;
9105
33345d01 9106 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9107 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9108 return -ENOTEMPTY;
5f39d397 9109
4df27c4d
YZ
9110 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9111 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9112 return -ENOTEMPTY;
9c52057c
CM
9113
9114
9115 /* check for collisions, even if the name isn't there */
4871c158 9116 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9117 new_dentry->d_name.name,
9118 new_dentry->d_name.len);
9119
9120 if (ret) {
9121 if (ret == -EEXIST) {
9122 /* we shouldn't get
9123 * eexist without a new_inode */
fae7f21c 9124 if (WARN_ON(!new_inode)) {
9c52057c
CM
9125 return ret;
9126 }
9127 } else {
9128 /* maybe -EOVERFLOW */
9129 return ret;
9130 }
9131 }
9132 ret = 0;
9133
5a3f23d5 9134 /*
8d875f95
CM
9135 * we're using rename to replace one file with another. Start IO on it
9136 * now so we don't add too much work to the end of the transaction
5a3f23d5 9137 */
8d875f95 9138 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9139 filemap_flush(old_inode->i_mapping);
9140
76dda93c 9141 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9142 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9143 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9144 /*
9145 * We want to reserve the absolute worst case amount of items. So if
9146 * both inodes are subvols and we need to unlink them then that would
9147 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9148 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9149 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9150 * should cover the worst case number of items we'll modify.
5062af35
FM
9151 * If our rename has the whiteout flag, we need more 5 units for the
9152 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9153 * when selinux is enabled).
a22285a6 9154 */
5062af35
FM
9155 trans_num_items = 11;
9156 if (flags & RENAME_WHITEOUT)
9157 trans_num_items += 5;
9158 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9159 if (IS_ERR(trans)) {
cdd1fedf
DF
9160 ret = PTR_ERR(trans);
9161 goto out_notrans;
9162 }
76dda93c 9163
4df27c4d
YZ
9164 if (dest != root)
9165 btrfs_record_root_in_trans(trans, dest);
5f39d397 9166
877574e2 9167 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9168 if (ret)
9169 goto out_fail;
5a3f23d5 9170
67de1176 9171 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9172 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9173 /* force full log commit if subvolume involved. */
90787766 9174 btrfs_set_log_full_commit(trans);
4df27c4d 9175 } else {
c4aba954
FM
9176 btrfs_pin_log_trans(root);
9177 log_pinned = true;
a5719521
YZ
9178 ret = btrfs_insert_inode_ref(trans, dest,
9179 new_dentry->d_name.name,
9180 new_dentry->d_name.len,
33345d01 9181 old_ino,
4a0cc7ca 9182 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9183 if (ret)
9184 goto out_fail;
4df27c4d 9185 }
5a3f23d5 9186
0c4d2d95
JB
9187 inode_inc_iversion(old_dir);
9188 inode_inc_iversion(new_dir);
9189 inode_inc_iversion(old_inode);
04b285f3
DD
9190 old_dir->i_ctime = old_dir->i_mtime =
9191 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9192 old_inode->i_ctime = current_time(old_dir);
5f39d397 9193
12fcfd22 9194 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9195 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9196 BTRFS_I(old_inode), 1);
12fcfd22 9197
33345d01 9198 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
045d3967 9199 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
4df27c4d 9200 } else {
4ec5934e
NB
9201 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9202 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9203 old_dentry->d_name.name,
9204 old_dentry->d_name.len);
9205 if (!ret)
9206 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9207 }
79787eaa 9208 if (ret) {
66642832 9209 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9210 goto out_fail;
9211 }
39279cc3
CM
9212
9213 if (new_inode) {
0c4d2d95 9214 inode_inc_iversion(new_inode);
c2050a45 9215 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9216 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d 9217 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
045d3967 9218 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
4df27c4d
YZ
9219 BUG_ON(new_inode->i_nlink == 0);
9220 } else {
4ec5934e
NB
9221 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9222 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9223 new_dentry->d_name.name,
9224 new_dentry->d_name.len);
9225 }
4ef31a45 9226 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9227 ret = btrfs_orphan_add(trans,
9228 BTRFS_I(d_inode(new_dentry)));
79787eaa 9229 if (ret) {
66642832 9230 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9231 goto out_fail;
9232 }
39279cc3 9233 }
aec7477b 9234
db0a669f 9235 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 9236 new_dentry->d_name.name,
a5719521 9237 new_dentry->d_name.len, 0, index);
79787eaa 9238 if (ret) {
66642832 9239 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9240 goto out_fail;
9241 }
39279cc3 9242
67de1176
MX
9243 if (old_inode->i_nlink == 1)
9244 BTRFS_I(old_inode)->dir_index = index;
9245
3dc9e8f7 9246 if (log_pinned) {
10d9f309 9247 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9248
d4682ba0
FM
9249 btrfs_init_log_ctx(&ctx, old_inode);
9250 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9251 BTRFS_I(old_dir), parent,
9252 false, &ctx);
9253 if (ret == BTRFS_NEED_LOG_SYNC)
9254 sync_log = true;
9255 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9256 commit_transaction = true;
9257 ret = 0;
4df27c4d 9258 btrfs_end_log_trans(root);
3dc9e8f7 9259 log_pinned = false;
4df27c4d 9260 }
cdd1fedf
DF
9261
9262 if (flags & RENAME_WHITEOUT) {
9263 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9264 old_dentry);
9265
9266 if (ret) {
66642832 9267 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9268 goto out_fail;
9269 }
4df27c4d 9270 }
39279cc3 9271out_fail:
3dc9e8f7
FM
9272 /*
9273 * If we have pinned the log and an error happened, we unpin tasks
9274 * trying to sync the log and force them to fallback to a transaction
9275 * commit if the log currently contains any of the inodes involved in
9276 * this rename operation (to ensure we do not persist a log with an
9277 * inconsistent state for any of these inodes or leading to any
9278 * inconsistencies when replayed). If the transaction was aborted, the
9279 * abortion reason is propagated to userspace when attempting to commit
9280 * the transaction. If the log does not contain any of these inodes, we
9281 * allow the tasks to sync it.
9282 */
9283 if (ret && log_pinned) {
0f8939b8
NB
9284 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9285 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9286 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 9287 (new_inode &&
0f8939b8 9288 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 9289 btrfs_set_log_full_commit(trans);
3dc9e8f7
FM
9290
9291 btrfs_end_log_trans(root);
9292 log_pinned = false;
9293 }
d4682ba0
FM
9294 if (!ret && sync_log) {
9295 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9296 if (ret)
9297 commit_transaction = true;
236ebc20
FM
9298 } else if (sync_log) {
9299 mutex_lock(&root->log_mutex);
9300 list_del(&ctx.list);
9301 mutex_unlock(&root->log_mutex);
d4682ba0
FM
9302 }
9303 if (commit_transaction) {
9304 ret = btrfs_commit_transaction(trans);
9305 } else {
9306 int ret2;
9307
9308 ret2 = btrfs_end_transaction(trans);
9309 ret = ret ? ret : ret2;
9310 }
b44c59a8 9311out_notrans:
33345d01 9312 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9313 up_read(&fs_info->subvol_sem);
9ed74f2d 9314
39279cc3
CM
9315 return ret;
9316}
9317
80ace85c
MS
9318static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9319 struct inode *new_dir, struct dentry *new_dentry,
9320 unsigned int flags)
9321{
cdd1fedf 9322 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9323 return -EINVAL;
9324
cdd1fedf
DF
9325 if (flags & RENAME_EXCHANGE)
9326 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9327 new_dentry);
9328
9329 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9330}
9331
3a2f8c07
NB
9332struct btrfs_delalloc_work {
9333 struct inode *inode;
9334 struct completion completion;
9335 struct list_head list;
9336 struct btrfs_work work;
9337};
9338
8ccf6f19
MX
9339static void btrfs_run_delalloc_work(struct btrfs_work *work)
9340{
9341 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9342 struct inode *inode;
8ccf6f19
MX
9343
9344 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9345 work);
9f23e289 9346 inode = delalloc_work->inode;
30424601
DS
9347 filemap_flush(inode->i_mapping);
9348 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9349 &BTRFS_I(inode)->runtime_flags))
9f23e289 9350 filemap_flush(inode->i_mapping);
8ccf6f19 9351
076da91c 9352 iput(inode);
8ccf6f19
MX
9353 complete(&delalloc_work->completion);
9354}
9355
3a2f8c07 9356static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8ccf6f19
MX
9357{
9358 struct btrfs_delalloc_work *work;
9359
100d5702 9360 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9361 if (!work)
9362 return NULL;
9363
9364 init_completion(&work->completion);
9365 INIT_LIST_HEAD(&work->list);
9366 work->inode = inode;
a0cac0ec 9367 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9368
9369 return work;
9370}
9371
d352ac68
CM
9372/*
9373 * some fairly slow code that needs optimization. This walks the list
9374 * of all the inodes with pending delalloc and forces them to disk.
9375 */
3cd24c69 9376static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
ea8c2819 9377{
ea8c2819 9378 struct btrfs_inode *binode;
5b21f2ed 9379 struct inode *inode;
8ccf6f19
MX
9380 struct btrfs_delalloc_work *work, *next;
9381 struct list_head works;
1eafa6c7 9382 struct list_head splice;
8ccf6f19 9383 int ret = 0;
ea8c2819 9384
8ccf6f19 9385 INIT_LIST_HEAD(&works);
1eafa6c7 9386 INIT_LIST_HEAD(&splice);
63607cc8 9387
573bfb72 9388 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9389 spin_lock(&root->delalloc_lock);
9390 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9391 while (!list_empty(&splice)) {
9392 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9393 delalloc_inodes);
1eafa6c7 9394
eb73c1b7
MX
9395 list_move_tail(&binode->delalloc_inodes,
9396 &root->delalloc_inodes);
5b21f2ed 9397 inode = igrab(&binode->vfs_inode);
df0af1a5 9398 if (!inode) {
eb73c1b7 9399 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9400 continue;
df0af1a5 9401 }
eb73c1b7 9402 spin_unlock(&root->delalloc_lock);
1eafa6c7 9403
3cd24c69
EL
9404 if (snapshot)
9405 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9406 &binode->runtime_flags);
076da91c 9407 work = btrfs_alloc_delalloc_work(inode);
5d99a998 9408 if (!work) {
4fbb5147 9409 iput(inode);
1eafa6c7 9410 ret = -ENOMEM;
a1ecaabb 9411 goto out;
5b21f2ed 9412 }
1eafa6c7 9413 list_add_tail(&work->list, &works);
a44903ab
QW
9414 btrfs_queue_work(root->fs_info->flush_workers,
9415 &work->work);
6c255e67
MX
9416 ret++;
9417 if (nr != -1 && ret >= nr)
a1ecaabb 9418 goto out;
5b21f2ed 9419 cond_resched();
eb73c1b7 9420 spin_lock(&root->delalloc_lock);
ea8c2819 9421 }
eb73c1b7 9422 spin_unlock(&root->delalloc_lock);
8c8bee1d 9423
a1ecaabb 9424out:
eb73c1b7
MX
9425 list_for_each_entry_safe(work, next, &works, list) {
9426 list_del_init(&work->list);
40012f96
NB
9427 wait_for_completion(&work->completion);
9428 kfree(work);
eb73c1b7
MX
9429 }
9430
81f1d390 9431 if (!list_empty(&splice)) {
eb73c1b7
MX
9432 spin_lock(&root->delalloc_lock);
9433 list_splice_tail(&splice, &root->delalloc_inodes);
9434 spin_unlock(&root->delalloc_lock);
9435 }
573bfb72 9436 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9437 return ret;
9438}
1eafa6c7 9439
3cd24c69 9440int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
eb73c1b7 9441{
0b246afa 9442 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 9443 int ret;
1eafa6c7 9444
0b246afa 9445 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9446 return -EROFS;
9447
3cd24c69 9448 ret = start_delalloc_inodes(root, -1, true);
6c255e67
MX
9449 if (ret > 0)
9450 ret = 0;
eb73c1b7
MX
9451 return ret;
9452}
9453
82b3e53b 9454int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
eb73c1b7
MX
9455{
9456 struct btrfs_root *root;
9457 struct list_head splice;
9458 int ret;
9459
2c21b4d7 9460 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9461 return -EROFS;
9462
9463 INIT_LIST_HEAD(&splice);
9464
573bfb72 9465 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9466 spin_lock(&fs_info->delalloc_root_lock);
9467 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 9468 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
9469 root = list_first_entry(&splice, struct btrfs_root,
9470 delalloc_root);
00246528 9471 root = btrfs_grab_root(root);
eb73c1b7
MX
9472 BUG_ON(!root);
9473 list_move_tail(&root->delalloc_root,
9474 &fs_info->delalloc_roots);
9475 spin_unlock(&fs_info->delalloc_root_lock);
9476
3cd24c69 9477 ret = start_delalloc_inodes(root, nr, false);
00246528 9478 btrfs_put_root(root);
6c255e67 9479 if (ret < 0)
eb73c1b7
MX
9480 goto out;
9481
6c255e67
MX
9482 if (nr != -1) {
9483 nr -= ret;
9484 WARN_ON(nr < 0);
9485 }
eb73c1b7 9486 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9487 }
eb73c1b7 9488 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9489
6c255e67 9490 ret = 0;
eb73c1b7 9491out:
81f1d390 9492 if (!list_empty(&splice)) {
eb73c1b7
MX
9493 spin_lock(&fs_info->delalloc_root_lock);
9494 list_splice_tail(&splice, &fs_info->delalloc_roots);
9495 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9496 }
573bfb72 9497 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9498 return ret;
ea8c2819
CM
9499}
9500
39279cc3
CM
9501static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9502 const char *symname)
9503{
0b246afa 9504 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
9505 struct btrfs_trans_handle *trans;
9506 struct btrfs_root *root = BTRFS_I(dir)->root;
9507 struct btrfs_path *path;
9508 struct btrfs_key key;
1832a6d5 9509 struct inode *inode = NULL;
39279cc3 9510 int err;
39279cc3 9511 u64 objectid;
67871254 9512 u64 index = 0;
39279cc3
CM
9513 int name_len;
9514 int datasize;
5f39d397 9515 unsigned long ptr;
39279cc3 9516 struct btrfs_file_extent_item *ei;
5f39d397 9517 struct extent_buffer *leaf;
39279cc3 9518
f06becc4 9519 name_len = strlen(symname);
0b246afa 9520 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 9521 return -ENAMETOOLONG;
1832a6d5 9522
9ed74f2d
JB
9523 /*
9524 * 2 items for inode item and ref
9525 * 2 items for dir items
9269d12b
FM
9526 * 1 item for updating parent inode item
9527 * 1 item for the inline extent item
9ed74f2d
JB
9528 * 1 item for xattr if selinux is on
9529 */
9269d12b 9530 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
9531 if (IS_ERR(trans))
9532 return PTR_ERR(trans);
1832a6d5 9533
581bb050
LZ
9534 err = btrfs_find_free_ino(root, &objectid);
9535 if (err)
9536 goto out_unlock;
9537
aec7477b 9538 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
9539 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9540 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
9541 if (IS_ERR(inode)) {
9542 err = PTR_ERR(inode);
32955c54 9543 inode = NULL;
39279cc3 9544 goto out_unlock;
7cf96da3 9545 }
39279cc3 9546
ad19db71
CS
9547 /*
9548 * If the active LSM wants to access the inode during
9549 * d_instantiate it needs these. Smack checks to see
9550 * if the filesystem supports xattrs by looking at the
9551 * ops vector.
9552 */
9553 inode->i_fop = &btrfs_file_operations;
9554 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 9555 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
9556 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9557
9558 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9559 if (err)
32955c54 9560 goto out_unlock;
ad19db71 9561
39279cc3 9562 path = btrfs_alloc_path();
d8926bb3
MF
9563 if (!path) {
9564 err = -ENOMEM;
32955c54 9565 goto out_unlock;
d8926bb3 9566 }
4a0cc7ca 9567 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 9568 key.offset = 0;
962a298f 9569 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9570 datasize = btrfs_file_extent_calc_inline_size(name_len);
9571 err = btrfs_insert_empty_item(trans, root, path, &key,
9572 datasize);
54aa1f4d 9573 if (err) {
b0839166 9574 btrfs_free_path(path);
32955c54 9575 goto out_unlock;
54aa1f4d 9576 }
5f39d397
CM
9577 leaf = path->nodes[0];
9578 ei = btrfs_item_ptr(leaf, path->slots[0],
9579 struct btrfs_file_extent_item);
9580 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9581 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9582 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9583 btrfs_set_file_extent_encryption(leaf, ei, 0);
9584 btrfs_set_file_extent_compression(leaf, ei, 0);
9585 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9586 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9587
39279cc3 9588 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
9589 write_extent_buffer(leaf, symname, ptr, name_len);
9590 btrfs_mark_buffer_dirty(leaf);
39279cc3 9591 btrfs_free_path(path);
5f39d397 9592
39279cc3 9593 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 9594 inode_nohighmem(inode);
d899e052 9595 inode_set_bytes(inode, name_len);
6ef06d27 9596 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 9597 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
9598 /*
9599 * Last step, add directory indexes for our symlink inode. This is the
9600 * last step to avoid extra cleanup of these indexes if an error happens
9601 * elsewhere above.
9602 */
9603 if (!err)
cef415af
NB
9604 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9605 BTRFS_I(inode), 0, index);
32955c54
AV
9606 if (err)
9607 goto out_unlock;
b0d5d10f 9608
1e2e547a 9609 d_instantiate_new(dentry, inode);
39279cc3
CM
9610
9611out_unlock:
3a45bb20 9612 btrfs_end_transaction(trans);
32955c54 9613 if (err && inode) {
39279cc3 9614 inode_dec_link_count(inode);
32955c54 9615 discard_new_inode(inode);
39279cc3 9616 }
2ff7e61e 9617 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
9618 return err;
9619}
16432985 9620
203f44c5
QW
9621static int insert_prealloc_file_extent(struct btrfs_trans_handle *trans,
9622 struct inode *inode, struct btrfs_key *ins,
9623 u64 file_offset)
9624{
9625 struct btrfs_file_extent_item stack_fi;
9626 u64 start = ins->objectid;
9627 u64 len = ins->offset;
9729f10a 9628 int ret;
203f44c5
QW
9629
9630 memset(&stack_fi, 0, sizeof(stack_fi));
9631
9632 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9633 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9634 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9635 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9636 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9637 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9638 /* Encryption and other encoding is reserved and all 0 */
9639
72b7d15b 9640 ret = btrfs_qgroup_release_data(BTRFS_I(inode), file_offset, len);
9729f10a
QW
9641 if (ret < 0)
9642 return ret;
c553f94d 9643 return insert_reserved_file_extent(trans, BTRFS_I(inode), file_offset,
9729f10a 9644 &stack_fi, ret);
203f44c5 9645}
0af3d00b
JB
9646static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9647 u64 start, u64 num_bytes, u64 min_size,
9648 loff_t actual_len, u64 *alloc_hint,
9649 struct btrfs_trans_handle *trans)
d899e052 9650{
0b246afa 9651 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
9652 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9653 struct extent_map *em;
d899e052
YZ
9654 struct btrfs_root *root = BTRFS_I(inode)->root;
9655 struct btrfs_key ins;
d899e052 9656 u64 cur_offset = start;
b778cf96 9657 u64 clear_offset = start;
55a61d1d 9658 u64 i_size;
154ea289 9659 u64 cur_bytes;
0b670dc4 9660 u64 last_alloc = (u64)-1;
d899e052 9661 int ret = 0;
0af3d00b 9662 bool own_trans = true;
18513091 9663 u64 end = start + num_bytes - 1;
d899e052 9664
0af3d00b
JB
9665 if (trans)
9666 own_trans = false;
d899e052 9667 while (num_bytes > 0) {
0af3d00b
JB
9668 if (own_trans) {
9669 trans = btrfs_start_transaction(root, 3);
9670 if (IS_ERR(trans)) {
9671 ret = PTR_ERR(trans);
9672 break;
9673 }
5a303d5d
YZ
9674 }
9675
ee22184b 9676 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 9677 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
9678 /*
9679 * If we are severely fragmented we could end up with really
9680 * small allocations, so if the allocator is returning small
9681 * chunks lets make its job easier by only searching for those
9682 * sized chunks.
9683 */
9684 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
9685 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9686 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 9687 if (ret) {
0af3d00b 9688 if (own_trans)
3a45bb20 9689 btrfs_end_transaction(trans);
a22285a6 9690 break;
d899e052 9691 }
b778cf96
JB
9692
9693 /*
9694 * We've reserved this space, and thus converted it from
9695 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9696 * from here on out we will only need to clear our reservation
9697 * for the remaining unreserved area, so advance our
9698 * clear_offset by our extent size.
9699 */
9700 clear_offset += ins.offset;
0b246afa 9701 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 9702
0b670dc4 9703 last_alloc = ins.offset;
c553f94d 9704 ret = insert_prealloc_file_extent(trans, inode, &ins, cur_offset);
79787eaa 9705 if (ret) {
2ff7e61e 9706 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 9707 ins.offset, 0);
66642832 9708 btrfs_abort_transaction(trans, ret);
79787eaa 9709 if (own_trans)
3a45bb20 9710 btrfs_end_transaction(trans);
79787eaa
JM
9711 break;
9712 }
31193213 9713
dcdbc059 9714 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 9715 cur_offset + ins.offset -1, 0);
5a303d5d 9716
5dc562c5
JB
9717 em = alloc_extent_map();
9718 if (!em) {
9719 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9720 &BTRFS_I(inode)->runtime_flags);
9721 goto next;
9722 }
9723
9724 em->start = cur_offset;
9725 em->orig_start = cur_offset;
9726 em->len = ins.offset;
9727 em->block_start = ins.objectid;
9728 em->block_len = ins.offset;
b4939680 9729 em->orig_block_len = ins.offset;
cc95bef6 9730 em->ram_bytes = ins.offset;
5dc562c5
JB
9731 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9732 em->generation = trans->transid;
9733
9734 while (1) {
9735 write_lock(&em_tree->lock);
09a2a8f9 9736 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
9737 write_unlock(&em_tree->lock);
9738 if (ret != -EEXIST)
9739 break;
dcdbc059 9740 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
9741 cur_offset + ins.offset - 1,
9742 0);
9743 }
9744 free_extent_map(em);
9745next:
d899e052
YZ
9746 num_bytes -= ins.offset;
9747 cur_offset += ins.offset;
efa56464 9748 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9749
0c4d2d95 9750 inode_inc_iversion(inode);
c2050a45 9751 inode->i_ctime = current_time(inode);
6cbff00f 9752 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9753 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9754 (actual_len > inode->i_size) &&
9755 (cur_offset > inode->i_size)) {
d1ea6a61 9756 if (cur_offset > actual_len)
55a61d1d 9757 i_size = actual_len;
d1ea6a61 9758 else
55a61d1d
JB
9759 i_size = cur_offset;
9760 i_size_write(inode, i_size);
d923afe9 9761 btrfs_inode_safe_disk_i_size_write(inode, 0);
5a303d5d
YZ
9762 }
9763
d899e052 9764 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
9765
9766 if (ret) {
66642832 9767 btrfs_abort_transaction(trans, ret);
79787eaa 9768 if (own_trans)
3a45bb20 9769 btrfs_end_transaction(trans);
79787eaa
JM
9770 break;
9771 }
d899e052 9772
0af3d00b 9773 if (own_trans)
3a45bb20 9774 btrfs_end_transaction(trans);
5a303d5d 9775 }
b778cf96 9776 if (clear_offset < end)
25ce28ca 9777 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
b778cf96 9778 end - clear_offset + 1);
d899e052
YZ
9779 return ret;
9780}
9781
0af3d00b
JB
9782int btrfs_prealloc_file_range(struct inode *inode, int mode,
9783 u64 start, u64 num_bytes, u64 min_size,
9784 loff_t actual_len, u64 *alloc_hint)
9785{
9786 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9787 min_size, actual_len, alloc_hint,
9788 NULL);
9789}
9790
9791int btrfs_prealloc_file_range_trans(struct inode *inode,
9792 struct btrfs_trans_handle *trans, int mode,
9793 u64 start, u64 num_bytes, u64 min_size,
9794 loff_t actual_len, u64 *alloc_hint)
9795{
9796 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9797 min_size, actual_len, alloc_hint, trans);
9798}
9799
e6dcd2dc
CM
9800static int btrfs_set_page_dirty(struct page *page)
9801{
e6dcd2dc
CM
9802 return __set_page_dirty_nobuffers(page);
9803}
9804
10556cb2 9805static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 9806{
b83cc969 9807 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9808 umode_t mode = inode->i_mode;
b83cc969 9809
cb6db4e5
JM
9810 if (mask & MAY_WRITE &&
9811 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9812 if (btrfs_root_readonly(root))
9813 return -EROFS;
9814 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9815 return -EACCES;
9816 }
2830ba7f 9817 return generic_permission(inode, mask);
fdebe2bd 9818}
39279cc3 9819
ef3b9af5
FM
9820static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9821{
2ff7e61e 9822 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
9823 struct btrfs_trans_handle *trans;
9824 struct btrfs_root *root = BTRFS_I(dir)->root;
9825 struct inode *inode = NULL;
9826 u64 objectid;
9827 u64 index;
9828 int ret = 0;
9829
9830 /*
9831 * 5 units required for adding orphan entry
9832 */
9833 trans = btrfs_start_transaction(root, 5);
9834 if (IS_ERR(trans))
9835 return PTR_ERR(trans);
9836
9837 ret = btrfs_find_free_ino(root, &objectid);
9838 if (ret)
9839 goto out;
9840
9841 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 9842 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
9843 if (IS_ERR(inode)) {
9844 ret = PTR_ERR(inode);
9845 inode = NULL;
9846 goto out;
9847 }
9848
ef3b9af5
FM
9849 inode->i_fop = &btrfs_file_operations;
9850 inode->i_op = &btrfs_file_inode_operations;
9851
9852 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
9853 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9854
b0d5d10f
CM
9855 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9856 if (ret)
32955c54 9857 goto out;
b0d5d10f
CM
9858
9859 ret = btrfs_update_inode(trans, root, inode);
9860 if (ret)
32955c54 9861 goto out;
73f2e545 9862 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 9863 if (ret)
32955c54 9864 goto out;
ef3b9af5 9865
5762b5c9
FM
9866 /*
9867 * We set number of links to 0 in btrfs_new_inode(), and here we set
9868 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9869 * through:
9870 *
9871 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9872 */
9873 set_nlink(inode, 1);
ef3b9af5 9874 d_tmpfile(dentry, inode);
32955c54 9875 unlock_new_inode(inode);
ef3b9af5 9876 mark_inode_dirty(inode);
ef3b9af5 9877out:
3a45bb20 9878 btrfs_end_transaction(trans);
32955c54
AV
9879 if (ret && inode)
9880 discard_new_inode(inode);
2ff7e61e 9881 btrfs_btree_balance_dirty(fs_info);
ef3b9af5
FM
9882 return ret;
9883}
9884
5cdc84bf 9885void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
c6100a4b 9886{
5cdc84bf 9887 struct inode *inode = tree->private_data;
c6100a4b
JB
9888 unsigned long index = start >> PAGE_SHIFT;
9889 unsigned long end_index = end >> PAGE_SHIFT;
9890 struct page *page;
9891
9892 while (index <= end_index) {
9893 page = find_get_page(inode->i_mapping, index);
9894 ASSERT(page); /* Pages should be in the extent_io_tree */
9895 set_page_writeback(page);
9896 put_page(page);
9897 index++;
9898 }
9899}
9900
ed46ff3d
OS
9901#ifdef CONFIG_SWAP
9902/*
9903 * Add an entry indicating a block group or device which is pinned by a
9904 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9905 * negative errno on failure.
9906 */
9907static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9908 bool is_block_group)
9909{
9910 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9911 struct btrfs_swapfile_pin *sp, *entry;
9912 struct rb_node **p;
9913 struct rb_node *parent = NULL;
9914
9915 sp = kmalloc(sizeof(*sp), GFP_NOFS);
9916 if (!sp)
9917 return -ENOMEM;
9918 sp->ptr = ptr;
9919 sp->inode = inode;
9920 sp->is_block_group = is_block_group;
9921
9922 spin_lock(&fs_info->swapfile_pins_lock);
9923 p = &fs_info->swapfile_pins.rb_node;
9924 while (*p) {
9925 parent = *p;
9926 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9927 if (sp->ptr < entry->ptr ||
9928 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9929 p = &(*p)->rb_left;
9930 } else if (sp->ptr > entry->ptr ||
9931 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9932 p = &(*p)->rb_right;
9933 } else {
9934 spin_unlock(&fs_info->swapfile_pins_lock);
9935 kfree(sp);
9936 return 1;
9937 }
9938 }
9939 rb_link_node(&sp->node, parent, p);
9940 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9941 spin_unlock(&fs_info->swapfile_pins_lock);
9942 return 0;
9943}
9944
9945/* Free all of the entries pinned by this swapfile. */
9946static void btrfs_free_swapfile_pins(struct inode *inode)
9947{
9948 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9949 struct btrfs_swapfile_pin *sp;
9950 struct rb_node *node, *next;
9951
9952 spin_lock(&fs_info->swapfile_pins_lock);
9953 node = rb_first(&fs_info->swapfile_pins);
9954 while (node) {
9955 next = rb_next(node);
9956 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9957 if (sp->inode == inode) {
9958 rb_erase(&sp->node, &fs_info->swapfile_pins);
9959 if (sp->is_block_group)
9960 btrfs_put_block_group(sp->ptr);
9961 kfree(sp);
9962 }
9963 node = next;
9964 }
9965 spin_unlock(&fs_info->swapfile_pins_lock);
9966}
9967
9968struct btrfs_swap_info {
9969 u64 start;
9970 u64 block_start;
9971 u64 block_len;
9972 u64 lowest_ppage;
9973 u64 highest_ppage;
9974 unsigned long nr_pages;
9975 int nr_extents;
9976};
9977
9978static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9979 struct btrfs_swap_info *bsi)
9980{
9981 unsigned long nr_pages;
9982 u64 first_ppage, first_ppage_reported, next_ppage;
9983 int ret;
9984
9985 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
9986 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
9987 PAGE_SIZE) >> PAGE_SHIFT;
9988
9989 if (first_ppage >= next_ppage)
9990 return 0;
9991 nr_pages = next_ppage - first_ppage;
9992
9993 first_ppage_reported = first_ppage;
9994 if (bsi->start == 0)
9995 first_ppage_reported++;
9996 if (bsi->lowest_ppage > first_ppage_reported)
9997 bsi->lowest_ppage = first_ppage_reported;
9998 if (bsi->highest_ppage < (next_ppage - 1))
9999 bsi->highest_ppage = next_ppage - 1;
10000
10001 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10002 if (ret < 0)
10003 return ret;
10004 bsi->nr_extents += ret;
10005 bsi->nr_pages += nr_pages;
10006 return 0;
10007}
10008
10009static void btrfs_swap_deactivate(struct file *file)
10010{
10011 struct inode *inode = file_inode(file);
10012
10013 btrfs_free_swapfile_pins(inode);
10014 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10015}
10016
10017static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10018 sector_t *span)
10019{
10020 struct inode *inode = file_inode(file);
10021 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10022 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10023 struct extent_state *cached_state = NULL;
10024 struct extent_map *em = NULL;
10025 struct btrfs_device *device = NULL;
10026 struct btrfs_swap_info bsi = {
10027 .lowest_ppage = (sector_t)-1ULL,
10028 };
10029 int ret = 0;
10030 u64 isize;
10031 u64 start;
10032
10033 /*
10034 * If the swap file was just created, make sure delalloc is done. If the
10035 * file changes again after this, the user is doing something stupid and
10036 * we don't really care.
10037 */
10038 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10039 if (ret)
10040 return ret;
10041
10042 /*
10043 * The inode is locked, so these flags won't change after we check them.
10044 */
10045 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10046 btrfs_warn(fs_info, "swapfile must not be compressed");
10047 return -EINVAL;
10048 }
10049 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10050 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10051 return -EINVAL;
10052 }
10053 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10054 btrfs_warn(fs_info, "swapfile must not be checksummed");
10055 return -EINVAL;
10056 }
10057
10058 /*
10059 * Balance or device remove/replace/resize can move stuff around from
10060 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10061 * concurrently while we are mapping the swap extents, and
10062 * fs_info->swapfile_pins prevents them from running while the swap file
10063 * is active and moving the extents. Note that this also prevents a
10064 * concurrent device add which isn't actually necessary, but it's not
10065 * really worth the trouble to allow it.
10066 */
10067 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10068 btrfs_warn(fs_info,
10069 "cannot activate swapfile while exclusive operation is running");
10070 return -EBUSY;
10071 }
10072 /*
10073 * Snapshots can create extents which require COW even if NODATACOW is
10074 * set. We use this counter to prevent snapshots. We must increment it
10075 * before walking the extents because we don't want a concurrent
10076 * snapshot to run after we've already checked the extents.
10077 */
10078 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10079
10080 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10081
10082 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10083 start = 0;
10084 while (start < isize) {
10085 u64 logical_block_start, physical_block_start;
32da5386 10086 struct btrfs_block_group *bg;
ed46ff3d
OS
10087 u64 len = isize - start;
10088
39b07b5d 10089 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
ed46ff3d
OS
10090 if (IS_ERR(em)) {
10091 ret = PTR_ERR(em);
10092 goto out;
10093 }
10094
10095 if (em->block_start == EXTENT_MAP_HOLE) {
10096 btrfs_warn(fs_info, "swapfile must not have holes");
10097 ret = -EINVAL;
10098 goto out;
10099 }
10100 if (em->block_start == EXTENT_MAP_INLINE) {
10101 /*
10102 * It's unlikely we'll ever actually find ourselves
10103 * here, as a file small enough to fit inline won't be
10104 * big enough to store more than the swap header, but in
10105 * case something changes in the future, let's catch it
10106 * here rather than later.
10107 */
10108 btrfs_warn(fs_info, "swapfile must not be inline");
10109 ret = -EINVAL;
10110 goto out;
10111 }
10112 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10113 btrfs_warn(fs_info, "swapfile must not be compressed");
10114 ret = -EINVAL;
10115 goto out;
10116 }
10117
10118 logical_block_start = em->block_start + (start - em->start);
10119 len = min(len, em->len - (start - em->start));
10120 free_extent_map(em);
10121 em = NULL;
10122
10123 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10124 if (ret < 0) {
10125 goto out;
10126 } else if (ret) {
10127 ret = 0;
10128 } else {
10129 btrfs_warn(fs_info,
10130 "swapfile must not be copy-on-write");
10131 ret = -EINVAL;
10132 goto out;
10133 }
10134
10135 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10136 if (IS_ERR(em)) {
10137 ret = PTR_ERR(em);
10138 goto out;
10139 }
10140
10141 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10142 btrfs_warn(fs_info,
10143 "swapfile must have single data profile");
10144 ret = -EINVAL;
10145 goto out;
10146 }
10147
10148 if (device == NULL) {
10149 device = em->map_lookup->stripes[0].dev;
10150 ret = btrfs_add_swapfile_pin(inode, device, false);
10151 if (ret == 1)
10152 ret = 0;
10153 else if (ret)
10154 goto out;
10155 } else if (device != em->map_lookup->stripes[0].dev) {
10156 btrfs_warn(fs_info, "swapfile must be on one device");
10157 ret = -EINVAL;
10158 goto out;
10159 }
10160
10161 physical_block_start = (em->map_lookup->stripes[0].physical +
10162 (logical_block_start - em->start));
10163 len = min(len, em->len - (logical_block_start - em->start));
10164 free_extent_map(em);
10165 em = NULL;
10166
10167 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10168 if (!bg) {
10169 btrfs_warn(fs_info,
10170 "could not find block group containing swapfile");
10171 ret = -EINVAL;
10172 goto out;
10173 }
10174
10175 ret = btrfs_add_swapfile_pin(inode, bg, true);
10176 if (ret) {
10177 btrfs_put_block_group(bg);
10178 if (ret == 1)
10179 ret = 0;
10180 else
10181 goto out;
10182 }
10183
10184 if (bsi.block_len &&
10185 bsi.block_start + bsi.block_len == physical_block_start) {
10186 bsi.block_len += len;
10187 } else {
10188 if (bsi.block_len) {
10189 ret = btrfs_add_swap_extent(sis, &bsi);
10190 if (ret)
10191 goto out;
10192 }
10193 bsi.start = start;
10194 bsi.block_start = physical_block_start;
10195 bsi.block_len = len;
10196 }
10197
10198 start += len;
10199 }
10200
10201 if (bsi.block_len)
10202 ret = btrfs_add_swap_extent(sis, &bsi);
10203
10204out:
10205 if (!IS_ERR_OR_NULL(em))
10206 free_extent_map(em);
10207
10208 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10209
10210 if (ret)
10211 btrfs_swap_deactivate(file);
10212
10213 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10214
10215 if (ret)
10216 return ret;
10217
10218 if (device)
10219 sis->bdev = device->bdev;
10220 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10221 sis->max = bsi.nr_pages;
10222 sis->pages = bsi.nr_pages - 1;
10223 sis->highest_bit = bsi.nr_pages - 1;
10224 return bsi.nr_extents;
10225}
10226#else
10227static void btrfs_swap_deactivate(struct file *file)
10228{
10229}
10230
10231static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10232 sector_t *span)
10233{
10234 return -EOPNOTSUPP;
10235}
10236#endif
10237
6e1d5dcc 10238static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10239 .getattr = btrfs_getattr,
39279cc3
CM
10240 .lookup = btrfs_lookup,
10241 .create = btrfs_create,
10242 .unlink = btrfs_unlink,
10243 .link = btrfs_link,
10244 .mkdir = btrfs_mkdir,
10245 .rmdir = btrfs_rmdir,
2773bf00 10246 .rename = btrfs_rename2,
39279cc3
CM
10247 .symlink = btrfs_symlink,
10248 .setattr = btrfs_setattr,
618e21d5 10249 .mknod = btrfs_mknod,
5103e947 10250 .listxattr = btrfs_listxattr,
fdebe2bd 10251 .permission = btrfs_permission,
4e34e719 10252 .get_acl = btrfs_get_acl,
996a710d 10253 .set_acl = btrfs_set_acl,
93fd63c2 10254 .update_time = btrfs_update_time,
ef3b9af5 10255 .tmpfile = btrfs_tmpfile,
39279cc3 10256};
76dda93c 10257
828c0950 10258static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10259 .llseek = generic_file_llseek,
10260 .read = generic_read_dir,
02dbfc99 10261 .iterate_shared = btrfs_real_readdir,
23b5ec74 10262 .open = btrfs_opendir,
34287aa3 10263 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10264#ifdef CONFIG_COMPAT
4c63c245 10265 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10266#endif
6bf13c0c 10267 .release = btrfs_release_file,
e02119d5 10268 .fsync = btrfs_sync_file,
39279cc3
CM
10269};
10270
20e5506b 10271static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10272 /* mandatory callbacks */
065631f6 10273 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac
CM
10274 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10275};
10276
35054394
CM
10277/*
10278 * btrfs doesn't support the bmap operation because swapfiles
10279 * use bmap to make a mapping of extents in the file. They assume
10280 * these extents won't change over the life of the file and they
10281 * use the bmap result to do IO directly to the drive.
10282 *
10283 * the btrfs bmap call would return logical addresses that aren't
10284 * suitable for IO and they also will change frequently as COW
10285 * operations happen. So, swapfile + btrfs == corruption.
10286 *
10287 * For now we're avoiding this by dropping bmap.
10288 */
7f09410b 10289static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10290 .readpage = btrfs_readpage,
10291 .writepage = btrfs_writepage,
b293f02e 10292 .writepages = btrfs_writepages,
ba206a02 10293 .readahead = btrfs_readahead,
55e20bd1 10294 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10295 .invalidatepage = btrfs_invalidatepage,
10296 .releasepage = btrfs_releasepage,
f8e66081
RG
10297#ifdef CONFIG_MIGRATION
10298 .migratepage = btrfs_migratepage,
10299#endif
e6dcd2dc 10300 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10301 .error_remove_page = generic_error_remove_page,
ed46ff3d
OS
10302 .swap_activate = btrfs_swap_activate,
10303 .swap_deactivate = btrfs_swap_deactivate,
39279cc3
CM
10304};
10305
6e1d5dcc 10306static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10307 .getattr = btrfs_getattr,
10308 .setattr = btrfs_setattr,
5103e947 10309 .listxattr = btrfs_listxattr,
fdebe2bd 10310 .permission = btrfs_permission,
1506fcc8 10311 .fiemap = btrfs_fiemap,
4e34e719 10312 .get_acl = btrfs_get_acl,
996a710d 10313 .set_acl = btrfs_set_acl,
e41f941a 10314 .update_time = btrfs_update_time,
39279cc3 10315};
6e1d5dcc 10316static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10317 .getattr = btrfs_getattr,
10318 .setattr = btrfs_setattr,
fdebe2bd 10319 .permission = btrfs_permission,
33268eaf 10320 .listxattr = btrfs_listxattr,
4e34e719 10321 .get_acl = btrfs_get_acl,
996a710d 10322 .set_acl = btrfs_set_acl,
e41f941a 10323 .update_time = btrfs_update_time,
618e21d5 10324};
6e1d5dcc 10325static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10326 .get_link = page_get_link,
f209561a 10327 .getattr = btrfs_getattr,
22c44fe6 10328 .setattr = btrfs_setattr,
fdebe2bd 10329 .permission = btrfs_permission,
0279b4cd 10330 .listxattr = btrfs_listxattr,
e41f941a 10331 .update_time = btrfs_update_time,
39279cc3 10332};
76dda93c 10333
82d339d9 10334const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
10335 .d_delete = btrfs_dentry_delete,
10336};