]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/inode.c
Linux 3.1-rc2
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
4b4e25f2 41#include "compat.h"
39279cc3
CM
42#include "ctree.h"
43#include "disk-io.h"
44#include "transaction.h"
45#include "btrfs_inode.h"
46#include "ioctl.h"
47#include "print-tree.h"
0b86a832 48#include "volumes.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
c8b97818 52#include "compression.h"
b4ce94de 53#include "locking.h"
dc89e982 54#include "free-space-cache.h"
581bb050 55#include "inode-map.h"
39279cc3
CM
56
57struct btrfs_iget_args {
58 u64 ino;
59 struct btrfs_root *root;
60};
61
6e1d5dcc
AD
62static const struct inode_operations btrfs_dir_inode_operations;
63static const struct inode_operations btrfs_symlink_inode_operations;
64static const struct inode_operations btrfs_dir_ro_inode_operations;
65static const struct inode_operations btrfs_special_inode_operations;
66static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
67static const struct address_space_operations btrfs_aops;
68static const struct address_space_operations btrfs_symlink_aops;
828c0950 69static const struct file_operations btrfs_dir_file_operations;
d1310b2e 70static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
71
72static struct kmem_cache *btrfs_inode_cachep;
73struct kmem_cache *btrfs_trans_handle_cachep;
74struct kmem_cache *btrfs_transaction_cachep;
39279cc3 75struct kmem_cache *btrfs_path_cachep;
dc89e982 76struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
77
78#define S_SHIFT 12
79static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
80 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
81 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
82 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
83 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
84 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
85 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
86 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
87};
88
a41ad394
JB
89static int btrfs_setsize(struct inode *inode, loff_t newsize);
90static int btrfs_truncate(struct inode *inode);
c8b97818 91static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
92static noinline int cow_file_range(struct inode *inode,
93 struct page *locked_page,
94 u64 start, u64 end, int *page_started,
95 unsigned long *nr_written, int unlock);
7b128766 96
f34f57a3 97static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
98 struct inode *inode, struct inode *dir,
99 const struct qstr *qstr)
0279b4cd
JO
100{
101 int err;
102
f34f57a3 103 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 104 if (!err)
2a7dba39 105 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
106 return err;
107}
108
c8b97818
CM
109/*
110 * this does all the hard work for inserting an inline extent into
111 * the btree. The caller should have done a btrfs_drop_extents so that
112 * no overlapping inline items exist in the btree
113 */
d397712b 114static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
115 struct btrfs_root *root, struct inode *inode,
116 u64 start, size_t size, size_t compressed_size,
fe3f566c 117 int compress_type,
c8b97818
CM
118 struct page **compressed_pages)
119{
120 struct btrfs_key key;
121 struct btrfs_path *path;
122 struct extent_buffer *leaf;
123 struct page *page = NULL;
124 char *kaddr;
125 unsigned long ptr;
126 struct btrfs_file_extent_item *ei;
127 int err = 0;
128 int ret;
129 size_t cur_size = size;
130 size_t datasize;
131 unsigned long offset;
c8b97818 132
fe3f566c 133 if (compressed_size && compressed_pages)
c8b97818 134 cur_size = compressed_size;
c8b97818 135
d397712b
CM
136 path = btrfs_alloc_path();
137 if (!path)
c8b97818
CM
138 return -ENOMEM;
139
b9473439 140 path->leave_spinning = 1;
c8b97818 141
33345d01 142 key.objectid = btrfs_ino(inode);
c8b97818
CM
143 key.offset = start;
144 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
145 datasize = btrfs_file_extent_calc_inline_size(cur_size);
146
147 inode_add_bytes(inode, size);
148 ret = btrfs_insert_empty_item(trans, root, path, &key,
149 datasize);
150 BUG_ON(ret);
151 if (ret) {
152 err = ret;
c8b97818
CM
153 goto fail;
154 }
155 leaf = path->nodes[0];
156 ei = btrfs_item_ptr(leaf, path->slots[0],
157 struct btrfs_file_extent_item);
158 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160 btrfs_set_file_extent_encryption(leaf, ei, 0);
161 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163 ptr = btrfs_file_extent_inline_start(ei);
164
261507a0 165 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
166 struct page *cpage;
167 int i = 0;
d397712b 168 while (compressed_size > 0) {
c8b97818 169 cpage = compressed_pages[i];
5b050f04 170 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
171 PAGE_CACHE_SIZE);
172
b9473439 173 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 174 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 175 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
176
177 i++;
178 ptr += cur_size;
179 compressed_size -= cur_size;
180 }
181 btrfs_set_file_extent_compression(leaf, ei,
261507a0 182 compress_type);
c8b97818
CM
183 } else {
184 page = find_get_page(inode->i_mapping,
185 start >> PAGE_CACHE_SHIFT);
186 btrfs_set_file_extent_compression(leaf, ei, 0);
187 kaddr = kmap_atomic(page, KM_USER0);
188 offset = start & (PAGE_CACHE_SIZE - 1);
189 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190 kunmap_atomic(kaddr, KM_USER0);
191 page_cache_release(page);
192 }
193 btrfs_mark_buffer_dirty(leaf);
194 btrfs_free_path(path);
195
c2167754
YZ
196 /*
197 * we're an inline extent, so nobody can
198 * extend the file past i_size without locking
199 * a page we already have locked.
200 *
201 * We must do any isize and inode updates
202 * before we unlock the pages. Otherwise we
203 * could end up racing with unlink.
204 */
c8b97818
CM
205 BTRFS_I(inode)->disk_i_size = inode->i_size;
206 btrfs_update_inode(trans, root, inode);
c2167754 207
c8b97818
CM
208 return 0;
209fail:
210 btrfs_free_path(path);
211 return err;
212}
213
214
215/*
216 * conditionally insert an inline extent into the file. This
217 * does the checks required to make sure the data is small enough
218 * to fit as an inline extent.
219 */
7f366cfe 220static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
221 struct btrfs_root *root,
222 struct inode *inode, u64 start, u64 end,
fe3f566c 223 size_t compressed_size, int compress_type,
c8b97818
CM
224 struct page **compressed_pages)
225{
226 u64 isize = i_size_read(inode);
227 u64 actual_end = min(end + 1, isize);
228 u64 inline_len = actual_end - start;
229 u64 aligned_end = (end + root->sectorsize - 1) &
230 ~((u64)root->sectorsize - 1);
231 u64 hint_byte;
232 u64 data_len = inline_len;
233 int ret;
234
235 if (compressed_size)
236 data_len = compressed_size;
237
238 if (start > 0 ||
70b99e69 239 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 (!compressed_size &&
242 (actual_end & (root->sectorsize - 1)) == 0) ||
243 end + 1 < isize ||
244 data_len > root->fs_info->max_inline) {
245 return 1;
246 }
247
920bbbfb 248 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 249 &hint_byte, 1);
c8b97818
CM
250 BUG_ON(ret);
251
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
fe3f566c 256 compress_type, compressed_pages);
c8b97818 257 BUG_ON(ret);
0ca1f7ce 258 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 259 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
260 return 0;
261}
262
771ed689
CM
263struct async_extent {
264 u64 start;
265 u64 ram_size;
266 u64 compressed_size;
267 struct page **pages;
268 unsigned long nr_pages;
261507a0 269 int compress_type;
771ed689
CM
270 struct list_head list;
271};
272
273struct async_cow {
274 struct inode *inode;
275 struct btrfs_root *root;
276 struct page *locked_page;
277 u64 start;
278 u64 end;
279 struct list_head extents;
280 struct btrfs_work work;
281};
282
283static noinline int add_async_extent(struct async_cow *cow,
284 u64 start, u64 ram_size,
285 u64 compressed_size,
286 struct page **pages,
261507a0
LZ
287 unsigned long nr_pages,
288 int compress_type)
771ed689
CM
289{
290 struct async_extent *async_extent;
291
292 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
dac97e51 293 BUG_ON(!async_extent);
771ed689
CM
294 async_extent->start = start;
295 async_extent->ram_size = ram_size;
296 async_extent->compressed_size = compressed_size;
297 async_extent->pages = pages;
298 async_extent->nr_pages = nr_pages;
261507a0 299 async_extent->compress_type = compress_type;
771ed689
CM
300 list_add_tail(&async_extent->list, &cow->extents);
301 return 0;
302}
303
d352ac68 304/*
771ed689
CM
305 * we create compressed extents in two phases. The first
306 * phase compresses a range of pages that have already been
307 * locked (both pages and state bits are locked).
c8b97818 308 *
771ed689
CM
309 * This is done inside an ordered work queue, and the compression
310 * is spread across many cpus. The actual IO submission is step
311 * two, and the ordered work queue takes care of making sure that
312 * happens in the same order things were put onto the queue by
313 * writepages and friends.
c8b97818 314 *
771ed689
CM
315 * If this code finds it can't get good compression, it puts an
316 * entry onto the work queue to write the uncompressed bytes. This
317 * makes sure that both compressed inodes and uncompressed inodes
318 * are written in the same order that pdflush sent them down.
d352ac68 319 */
771ed689
CM
320static noinline int compress_file_range(struct inode *inode,
321 struct page *locked_page,
322 u64 start, u64 end,
323 struct async_cow *async_cow,
324 int *num_added)
b888db2b
CM
325{
326 struct btrfs_root *root = BTRFS_I(inode)->root;
327 struct btrfs_trans_handle *trans;
db94535d 328 u64 num_bytes;
db94535d 329 u64 blocksize = root->sectorsize;
c8b97818 330 u64 actual_end;
42dc7bab 331 u64 isize = i_size_read(inode);
e6dcd2dc 332 int ret = 0;
c8b97818
CM
333 struct page **pages = NULL;
334 unsigned long nr_pages;
335 unsigned long nr_pages_ret = 0;
336 unsigned long total_compressed = 0;
337 unsigned long total_in = 0;
338 unsigned long max_compressed = 128 * 1024;
771ed689 339 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
340 int i;
341 int will_compress;
261507a0 342 int compress_type = root->fs_info->compress_type;
b888db2b 343
4cb5300b
CM
344 /* if this is a small write inside eof, kick off a defragbot */
345 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
346 btrfs_add_inode_defrag(NULL, inode);
347
42dc7bab 348 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
349again:
350 will_compress = 0;
351 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
352 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 353
f03d9301
CM
354 /*
355 * we don't want to send crud past the end of i_size through
356 * compression, that's just a waste of CPU time. So, if the
357 * end of the file is before the start of our current
358 * requested range of bytes, we bail out to the uncompressed
359 * cleanup code that can deal with all of this.
360 *
361 * It isn't really the fastest way to fix things, but this is a
362 * very uncommon corner.
363 */
364 if (actual_end <= start)
365 goto cleanup_and_bail_uncompressed;
366
c8b97818
CM
367 total_compressed = actual_end - start;
368
369 /* we want to make sure that amount of ram required to uncompress
370 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
371 * of a compressed extent to 128k. This is a crucial number
372 * because it also controls how easily we can spread reads across
373 * cpus for decompression.
374 *
375 * We also want to make sure the amount of IO required to do
376 * a random read is reasonably small, so we limit the size of
377 * a compressed extent to 128k.
c8b97818
CM
378 */
379 total_compressed = min(total_compressed, max_uncompressed);
db94535d 380 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 381 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
382 total_in = 0;
383 ret = 0;
db94535d 384
771ed689
CM
385 /*
386 * we do compression for mount -o compress and when the
387 * inode has not been flagged as nocompress. This flag can
388 * change at any time if we discover bad compression ratios.
c8b97818 389 */
6cbff00f 390 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 391 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
392 (BTRFS_I(inode)->force_compress) ||
393 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 394 WARN_ON(pages);
cfbc246e 395 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
dac97e51 396 BUG_ON(!pages);
c8b97818 397
261507a0
LZ
398 if (BTRFS_I(inode)->force_compress)
399 compress_type = BTRFS_I(inode)->force_compress;
400
401 ret = btrfs_compress_pages(compress_type,
402 inode->i_mapping, start,
403 total_compressed, pages,
404 nr_pages, &nr_pages_ret,
405 &total_in,
406 &total_compressed,
407 max_compressed);
c8b97818
CM
408
409 if (!ret) {
410 unsigned long offset = total_compressed &
411 (PAGE_CACHE_SIZE - 1);
412 struct page *page = pages[nr_pages_ret - 1];
413 char *kaddr;
414
415 /* zero the tail end of the last page, we might be
416 * sending it down to disk
417 */
418 if (offset) {
419 kaddr = kmap_atomic(page, KM_USER0);
420 memset(kaddr + offset, 0,
421 PAGE_CACHE_SIZE - offset);
422 kunmap_atomic(kaddr, KM_USER0);
423 }
424 will_compress = 1;
425 }
426 }
427 if (start == 0) {
7a7eaa40 428 trans = btrfs_join_transaction(root);
3612b495 429 BUG_ON(IS_ERR(trans));
0ca1f7ce 430 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 431
c8b97818 432 /* lets try to make an inline extent */
771ed689 433 if (ret || total_in < (actual_end - start)) {
c8b97818 434 /* we didn't compress the entire range, try
771ed689 435 * to make an uncompressed inline extent.
c8b97818
CM
436 */
437 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 438 start, end, 0, 0, NULL);
c8b97818 439 } else {
771ed689 440 /* try making a compressed inline extent */
c8b97818
CM
441 ret = cow_file_range_inline(trans, root, inode,
442 start, end,
fe3f566c
LZ
443 total_compressed,
444 compress_type, pages);
c8b97818
CM
445 }
446 if (ret == 0) {
771ed689
CM
447 /*
448 * inline extent creation worked, we don't need
449 * to create any more async work items. Unlock
450 * and free up our temp pages.
451 */
c8b97818 452 extent_clear_unlock_delalloc(inode,
a791e35e
CM
453 &BTRFS_I(inode)->io_tree,
454 start, end, NULL,
455 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 456 EXTENT_CLEAR_DELALLOC |
a791e35e 457 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
458
459 btrfs_end_transaction(trans, root);
c8b97818
CM
460 goto free_pages_out;
461 }
c2167754 462 btrfs_end_transaction(trans, root);
c8b97818
CM
463 }
464
465 if (will_compress) {
466 /*
467 * we aren't doing an inline extent round the compressed size
468 * up to a block size boundary so the allocator does sane
469 * things
470 */
471 total_compressed = (total_compressed + blocksize - 1) &
472 ~(blocksize - 1);
473
474 /*
475 * one last check to make sure the compression is really a
476 * win, compare the page count read with the blocks on disk
477 */
478 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
479 ~(PAGE_CACHE_SIZE - 1);
480 if (total_compressed >= total_in) {
481 will_compress = 0;
482 } else {
c8b97818
CM
483 num_bytes = total_in;
484 }
485 }
486 if (!will_compress && pages) {
487 /*
488 * the compression code ran but failed to make things smaller,
489 * free any pages it allocated and our page pointer array
490 */
491 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 492 WARN_ON(pages[i]->mapping);
c8b97818
CM
493 page_cache_release(pages[i]);
494 }
495 kfree(pages);
496 pages = NULL;
497 total_compressed = 0;
498 nr_pages_ret = 0;
499
500 /* flag the file so we don't compress in the future */
1e701a32
CM
501 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
502 !(BTRFS_I(inode)->force_compress)) {
a555f810 503 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 504 }
c8b97818 505 }
771ed689
CM
506 if (will_compress) {
507 *num_added += 1;
c8b97818 508
771ed689
CM
509 /* the async work queues will take care of doing actual
510 * allocation on disk for these compressed pages,
511 * and will submit them to the elevator.
512 */
513 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
514 total_compressed, pages, nr_pages_ret,
515 compress_type);
179e29e4 516
24ae6365 517 if (start + num_bytes < end) {
771ed689
CM
518 start += num_bytes;
519 pages = NULL;
520 cond_resched();
521 goto again;
522 }
523 } else {
f03d9301 524cleanup_and_bail_uncompressed:
771ed689
CM
525 /*
526 * No compression, but we still need to write the pages in
527 * the file we've been given so far. redirty the locked
528 * page if it corresponds to our extent and set things up
529 * for the async work queue to run cow_file_range to do
530 * the normal delalloc dance
531 */
532 if (page_offset(locked_page) >= start &&
533 page_offset(locked_page) <= end) {
534 __set_page_dirty_nobuffers(locked_page);
535 /* unlocked later on in the async handlers */
536 }
261507a0
LZ
537 add_async_extent(async_cow, start, end - start + 1,
538 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
539 *num_added += 1;
540 }
3b951516 541
771ed689
CM
542out:
543 return 0;
544
545free_pages_out:
546 for (i = 0; i < nr_pages_ret; i++) {
547 WARN_ON(pages[i]->mapping);
548 page_cache_release(pages[i]);
549 }
d397712b 550 kfree(pages);
771ed689
CM
551
552 goto out;
553}
554
555/*
556 * phase two of compressed writeback. This is the ordered portion
557 * of the code, which only gets called in the order the work was
558 * queued. We walk all the async extents created by compress_file_range
559 * and send them down to the disk.
560 */
561static noinline int submit_compressed_extents(struct inode *inode,
562 struct async_cow *async_cow)
563{
564 struct async_extent *async_extent;
565 u64 alloc_hint = 0;
566 struct btrfs_trans_handle *trans;
567 struct btrfs_key ins;
568 struct extent_map *em;
569 struct btrfs_root *root = BTRFS_I(inode)->root;
570 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
571 struct extent_io_tree *io_tree;
f5a84ee3 572 int ret = 0;
771ed689
CM
573
574 if (list_empty(&async_cow->extents))
575 return 0;
576
771ed689 577
d397712b 578 while (!list_empty(&async_cow->extents)) {
771ed689
CM
579 async_extent = list_entry(async_cow->extents.next,
580 struct async_extent, list);
581 list_del(&async_extent->list);
c8b97818 582
771ed689
CM
583 io_tree = &BTRFS_I(inode)->io_tree;
584
f5a84ee3 585retry:
771ed689
CM
586 /* did the compression code fall back to uncompressed IO? */
587 if (!async_extent->pages) {
588 int page_started = 0;
589 unsigned long nr_written = 0;
590
591 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
592 async_extent->start +
593 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
594
595 /* allocate blocks */
f5a84ee3
JB
596 ret = cow_file_range(inode, async_cow->locked_page,
597 async_extent->start,
598 async_extent->start +
599 async_extent->ram_size - 1,
600 &page_started, &nr_written, 0);
771ed689
CM
601
602 /*
603 * if page_started, cow_file_range inserted an
604 * inline extent and took care of all the unlocking
605 * and IO for us. Otherwise, we need to submit
606 * all those pages down to the drive.
607 */
f5a84ee3 608 if (!page_started && !ret)
771ed689
CM
609 extent_write_locked_range(io_tree,
610 inode, async_extent->start,
d397712b 611 async_extent->start +
771ed689
CM
612 async_extent->ram_size - 1,
613 btrfs_get_extent,
614 WB_SYNC_ALL);
615 kfree(async_extent);
616 cond_resched();
617 continue;
618 }
619
620 lock_extent(io_tree, async_extent->start,
621 async_extent->start + async_extent->ram_size - 1,
622 GFP_NOFS);
771ed689 623
7a7eaa40 624 trans = btrfs_join_transaction(root);
3612b495 625 BUG_ON(IS_ERR(trans));
74b21075 626 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689
CM
627 ret = btrfs_reserve_extent(trans, root,
628 async_extent->compressed_size,
629 async_extent->compressed_size,
630 0, alloc_hint,
631 (u64)-1, &ins, 1);
c2167754
YZ
632 btrfs_end_transaction(trans, root);
633
f5a84ee3
JB
634 if (ret) {
635 int i;
636 for (i = 0; i < async_extent->nr_pages; i++) {
637 WARN_ON(async_extent->pages[i]->mapping);
638 page_cache_release(async_extent->pages[i]);
639 }
640 kfree(async_extent->pages);
641 async_extent->nr_pages = 0;
642 async_extent->pages = NULL;
643 unlock_extent(io_tree, async_extent->start,
644 async_extent->start +
645 async_extent->ram_size - 1, GFP_NOFS);
646 goto retry;
647 }
648
c2167754
YZ
649 /*
650 * here we're doing allocation and writeback of the
651 * compressed pages
652 */
653 btrfs_drop_extent_cache(inode, async_extent->start,
654 async_extent->start +
655 async_extent->ram_size - 1, 0);
656
172ddd60 657 em = alloc_extent_map();
c26a9203 658 BUG_ON(!em);
771ed689
CM
659 em->start = async_extent->start;
660 em->len = async_extent->ram_size;
445a6944 661 em->orig_start = em->start;
c8b97818 662
771ed689
CM
663 em->block_start = ins.objectid;
664 em->block_len = ins.offset;
665 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 666 em->compress_type = async_extent->compress_type;
771ed689
CM
667 set_bit(EXTENT_FLAG_PINNED, &em->flags);
668 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
669
d397712b 670 while (1) {
890871be 671 write_lock(&em_tree->lock);
771ed689 672 ret = add_extent_mapping(em_tree, em);
890871be 673 write_unlock(&em_tree->lock);
771ed689
CM
674 if (ret != -EEXIST) {
675 free_extent_map(em);
676 break;
677 }
678 btrfs_drop_extent_cache(inode, async_extent->start,
679 async_extent->start +
680 async_extent->ram_size - 1, 0);
681 }
682
261507a0
LZ
683 ret = btrfs_add_ordered_extent_compress(inode,
684 async_extent->start,
685 ins.objectid,
686 async_extent->ram_size,
687 ins.offset,
688 BTRFS_ORDERED_COMPRESSED,
689 async_extent->compress_type);
771ed689
CM
690 BUG_ON(ret);
691
771ed689
CM
692 /*
693 * clear dirty, set writeback and unlock the pages.
694 */
695 extent_clear_unlock_delalloc(inode,
a791e35e
CM
696 &BTRFS_I(inode)->io_tree,
697 async_extent->start,
698 async_extent->start +
699 async_extent->ram_size - 1,
700 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
701 EXTENT_CLEAR_UNLOCK |
a3429ab7 702 EXTENT_CLEAR_DELALLOC |
a791e35e 703 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
704
705 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
706 async_extent->start,
707 async_extent->ram_size,
708 ins.objectid,
709 ins.offset, async_extent->pages,
710 async_extent->nr_pages);
771ed689
CM
711
712 BUG_ON(ret);
771ed689
CM
713 alloc_hint = ins.objectid + ins.offset;
714 kfree(async_extent);
715 cond_resched();
716 }
717
771ed689
CM
718 return 0;
719}
720
4b46fce2
JB
721static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
722 u64 num_bytes)
723{
724 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
725 struct extent_map *em;
726 u64 alloc_hint = 0;
727
728 read_lock(&em_tree->lock);
729 em = search_extent_mapping(em_tree, start, num_bytes);
730 if (em) {
731 /*
732 * if block start isn't an actual block number then find the
733 * first block in this inode and use that as a hint. If that
734 * block is also bogus then just don't worry about it.
735 */
736 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
737 free_extent_map(em);
738 em = search_extent_mapping(em_tree, 0, 0);
739 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
740 alloc_hint = em->block_start;
741 if (em)
742 free_extent_map(em);
743 } else {
744 alloc_hint = em->block_start;
745 free_extent_map(em);
746 }
747 }
748 read_unlock(&em_tree->lock);
749
750 return alloc_hint;
751}
752
771ed689
CM
753/*
754 * when extent_io.c finds a delayed allocation range in the file,
755 * the call backs end up in this code. The basic idea is to
756 * allocate extents on disk for the range, and create ordered data structs
757 * in ram to track those extents.
758 *
759 * locked_page is the page that writepage had locked already. We use
760 * it to make sure we don't do extra locks or unlocks.
761 *
762 * *page_started is set to one if we unlock locked_page and do everything
763 * required to start IO on it. It may be clean and already done with
764 * IO when we return.
765 */
766static noinline int cow_file_range(struct inode *inode,
767 struct page *locked_page,
768 u64 start, u64 end, int *page_started,
769 unsigned long *nr_written,
770 int unlock)
771{
772 struct btrfs_root *root = BTRFS_I(inode)->root;
773 struct btrfs_trans_handle *trans;
774 u64 alloc_hint = 0;
775 u64 num_bytes;
776 unsigned long ram_size;
777 u64 disk_num_bytes;
778 u64 cur_alloc_size;
779 u64 blocksize = root->sectorsize;
771ed689
CM
780 struct btrfs_key ins;
781 struct extent_map *em;
782 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
783 int ret = 0;
784
2cf8572d 785 BUG_ON(btrfs_is_free_space_inode(root, inode));
7a7eaa40 786 trans = btrfs_join_transaction(root);
3612b495 787 BUG_ON(IS_ERR(trans));
0ca1f7ce 788 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 789
771ed689
CM
790 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
791 num_bytes = max(blocksize, num_bytes);
792 disk_num_bytes = num_bytes;
793 ret = 0;
794
4cb5300b
CM
795 /* if this is a small write inside eof, kick off defrag */
796 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
797 btrfs_add_inode_defrag(trans, inode);
798
771ed689
CM
799 if (start == 0) {
800 /* lets try to make an inline extent */
801 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 802 start, end, 0, 0, NULL);
771ed689
CM
803 if (ret == 0) {
804 extent_clear_unlock_delalloc(inode,
a791e35e
CM
805 &BTRFS_I(inode)->io_tree,
806 start, end, NULL,
807 EXTENT_CLEAR_UNLOCK_PAGE |
808 EXTENT_CLEAR_UNLOCK |
809 EXTENT_CLEAR_DELALLOC |
810 EXTENT_CLEAR_DIRTY |
811 EXTENT_SET_WRITEBACK |
812 EXTENT_END_WRITEBACK);
c2167754 813
771ed689
CM
814 *nr_written = *nr_written +
815 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
816 *page_started = 1;
817 ret = 0;
818 goto out;
819 }
820 }
821
822 BUG_ON(disk_num_bytes >
823 btrfs_super_total_bytes(&root->fs_info->super_copy));
824
4b46fce2 825 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
826 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
827
d397712b 828 while (disk_num_bytes > 0) {
a791e35e
CM
829 unsigned long op;
830
287a0ab9 831 cur_alloc_size = disk_num_bytes;
e6dcd2dc 832 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 833 root->sectorsize, 0, alloc_hint,
e6dcd2dc 834 (u64)-1, &ins, 1);
d397712b
CM
835 BUG_ON(ret);
836
172ddd60 837 em = alloc_extent_map();
c26a9203 838 BUG_ON(!em);
e6dcd2dc 839 em->start = start;
445a6944 840 em->orig_start = em->start;
771ed689
CM
841 ram_size = ins.offset;
842 em->len = ins.offset;
c8b97818 843
e6dcd2dc 844 em->block_start = ins.objectid;
c8b97818 845 em->block_len = ins.offset;
e6dcd2dc 846 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 847 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 848
d397712b 849 while (1) {
890871be 850 write_lock(&em_tree->lock);
e6dcd2dc 851 ret = add_extent_mapping(em_tree, em);
890871be 852 write_unlock(&em_tree->lock);
e6dcd2dc
CM
853 if (ret != -EEXIST) {
854 free_extent_map(em);
855 break;
856 }
857 btrfs_drop_extent_cache(inode, start,
c8b97818 858 start + ram_size - 1, 0);
e6dcd2dc
CM
859 }
860
98d20f67 861 cur_alloc_size = ins.offset;
e6dcd2dc 862 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 863 ram_size, cur_alloc_size, 0);
e6dcd2dc 864 BUG_ON(ret);
c8b97818 865
17d217fe
YZ
866 if (root->root_key.objectid ==
867 BTRFS_DATA_RELOC_TREE_OBJECTID) {
868 ret = btrfs_reloc_clone_csums(inode, start,
869 cur_alloc_size);
870 BUG_ON(ret);
871 }
872
d397712b 873 if (disk_num_bytes < cur_alloc_size)
3b951516 874 break;
d397712b 875
c8b97818
CM
876 /* we're not doing compressed IO, don't unlock the first
877 * page (which the caller expects to stay locked), don't
878 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
879 *
880 * Do set the Private2 bit so we know this page was properly
881 * setup for writepage
c8b97818 882 */
a791e35e
CM
883 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
884 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
885 EXTENT_SET_PRIVATE2;
886
c8b97818
CM
887 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
888 start, start + ram_size - 1,
a791e35e 889 locked_page, op);
c8b97818 890 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
891 num_bytes -= cur_alloc_size;
892 alloc_hint = ins.objectid + ins.offset;
893 start += cur_alloc_size;
b888db2b 894 }
b888db2b 895out:
771ed689 896 ret = 0;
b888db2b 897 btrfs_end_transaction(trans, root);
c8b97818 898
be20aa9d 899 return ret;
771ed689 900}
c8b97818 901
771ed689
CM
902/*
903 * work queue call back to started compression on a file and pages
904 */
905static noinline void async_cow_start(struct btrfs_work *work)
906{
907 struct async_cow *async_cow;
908 int num_added = 0;
909 async_cow = container_of(work, struct async_cow, work);
910
911 compress_file_range(async_cow->inode, async_cow->locked_page,
912 async_cow->start, async_cow->end, async_cow,
913 &num_added);
914 if (num_added == 0)
915 async_cow->inode = NULL;
916}
917
918/*
919 * work queue call back to submit previously compressed pages
920 */
921static noinline void async_cow_submit(struct btrfs_work *work)
922{
923 struct async_cow *async_cow;
924 struct btrfs_root *root;
925 unsigned long nr_pages;
926
927 async_cow = container_of(work, struct async_cow, work);
928
929 root = async_cow->root;
930 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
931 PAGE_CACHE_SHIFT;
932
933 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
934
935 if (atomic_read(&root->fs_info->async_delalloc_pages) <
936 5 * 1042 * 1024 &&
937 waitqueue_active(&root->fs_info->async_submit_wait))
938 wake_up(&root->fs_info->async_submit_wait);
939
d397712b 940 if (async_cow->inode)
771ed689 941 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 942}
c8b97818 943
771ed689
CM
944static noinline void async_cow_free(struct btrfs_work *work)
945{
946 struct async_cow *async_cow;
947 async_cow = container_of(work, struct async_cow, work);
948 kfree(async_cow);
949}
950
951static int cow_file_range_async(struct inode *inode, struct page *locked_page,
952 u64 start, u64 end, int *page_started,
953 unsigned long *nr_written)
954{
955 struct async_cow *async_cow;
956 struct btrfs_root *root = BTRFS_I(inode)->root;
957 unsigned long nr_pages;
958 u64 cur_end;
959 int limit = 10 * 1024 * 1042;
960
a3429ab7
CM
961 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
962 1, 0, NULL, GFP_NOFS);
d397712b 963 while (start < end) {
771ed689 964 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
8d413713 965 BUG_ON(!async_cow);
771ed689
CM
966 async_cow->inode = inode;
967 async_cow->root = root;
968 async_cow->locked_page = locked_page;
969 async_cow->start = start;
970
6cbff00f 971 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
972 cur_end = end;
973 else
974 cur_end = min(end, start + 512 * 1024 - 1);
975
976 async_cow->end = cur_end;
977 INIT_LIST_HEAD(&async_cow->extents);
978
979 async_cow->work.func = async_cow_start;
980 async_cow->work.ordered_func = async_cow_submit;
981 async_cow->work.ordered_free = async_cow_free;
982 async_cow->work.flags = 0;
983
771ed689
CM
984 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
985 PAGE_CACHE_SHIFT;
986 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
987
988 btrfs_queue_worker(&root->fs_info->delalloc_workers,
989 &async_cow->work);
990
991 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
992 wait_event(root->fs_info->async_submit_wait,
993 (atomic_read(&root->fs_info->async_delalloc_pages) <
994 limit));
995 }
996
d397712b 997 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
998 atomic_read(&root->fs_info->async_delalloc_pages)) {
999 wait_event(root->fs_info->async_submit_wait,
1000 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1001 0));
1002 }
1003
1004 *nr_written += nr_pages;
1005 start = cur_end + 1;
1006 }
1007 *page_started = 1;
1008 return 0;
be20aa9d
CM
1009}
1010
d397712b 1011static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1012 u64 bytenr, u64 num_bytes)
1013{
1014 int ret;
1015 struct btrfs_ordered_sum *sums;
1016 LIST_HEAD(list);
1017
07d400a6 1018 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1019 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1020 if (ret == 0 && list_empty(&list))
1021 return 0;
1022
1023 while (!list_empty(&list)) {
1024 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1025 list_del(&sums->list);
1026 kfree(sums);
1027 }
1028 return 1;
1029}
1030
d352ac68
CM
1031/*
1032 * when nowcow writeback call back. This checks for snapshots or COW copies
1033 * of the extents that exist in the file, and COWs the file as required.
1034 *
1035 * If no cow copies or snapshots exist, we write directly to the existing
1036 * blocks on disk
1037 */
7f366cfe
CM
1038static noinline int run_delalloc_nocow(struct inode *inode,
1039 struct page *locked_page,
771ed689
CM
1040 u64 start, u64 end, int *page_started, int force,
1041 unsigned long *nr_written)
be20aa9d 1042{
be20aa9d 1043 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1044 struct btrfs_trans_handle *trans;
be20aa9d 1045 struct extent_buffer *leaf;
be20aa9d 1046 struct btrfs_path *path;
80ff3856 1047 struct btrfs_file_extent_item *fi;
be20aa9d 1048 struct btrfs_key found_key;
80ff3856
YZ
1049 u64 cow_start;
1050 u64 cur_offset;
1051 u64 extent_end;
5d4f98a2 1052 u64 extent_offset;
80ff3856
YZ
1053 u64 disk_bytenr;
1054 u64 num_bytes;
1055 int extent_type;
1056 int ret;
d899e052 1057 int type;
80ff3856
YZ
1058 int nocow;
1059 int check_prev = 1;
82d5902d 1060 bool nolock;
33345d01 1061 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1062
1063 path = btrfs_alloc_path();
d8926bb3
MF
1064 if (!path)
1065 return -ENOMEM;
82d5902d 1066
2cf8572d 1067 nolock = btrfs_is_free_space_inode(root, inode);
82d5902d
LZ
1068
1069 if (nolock)
7a7eaa40 1070 trans = btrfs_join_transaction_nolock(root);
82d5902d 1071 else
7a7eaa40 1072 trans = btrfs_join_transaction(root);
ff5714cc 1073
3612b495 1074 BUG_ON(IS_ERR(trans));
74b21075 1075 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1076
80ff3856
YZ
1077 cow_start = (u64)-1;
1078 cur_offset = start;
1079 while (1) {
33345d01 1080 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856
YZ
1081 cur_offset, 0);
1082 BUG_ON(ret < 0);
1083 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1084 leaf = path->nodes[0];
1085 btrfs_item_key_to_cpu(leaf, &found_key,
1086 path->slots[0] - 1);
33345d01 1087 if (found_key.objectid == ino &&
80ff3856
YZ
1088 found_key.type == BTRFS_EXTENT_DATA_KEY)
1089 path->slots[0]--;
1090 }
1091 check_prev = 0;
1092next_slot:
1093 leaf = path->nodes[0];
1094 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1095 ret = btrfs_next_leaf(root, path);
1096 if (ret < 0)
1097 BUG_ON(1);
1098 if (ret > 0)
1099 break;
1100 leaf = path->nodes[0];
1101 }
be20aa9d 1102
80ff3856
YZ
1103 nocow = 0;
1104 disk_bytenr = 0;
17d217fe 1105 num_bytes = 0;
80ff3856
YZ
1106 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1107
33345d01 1108 if (found_key.objectid > ino ||
80ff3856
YZ
1109 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1110 found_key.offset > end)
1111 break;
1112
1113 if (found_key.offset > cur_offset) {
1114 extent_end = found_key.offset;
e9061e21 1115 extent_type = 0;
80ff3856
YZ
1116 goto out_check;
1117 }
1118
1119 fi = btrfs_item_ptr(leaf, path->slots[0],
1120 struct btrfs_file_extent_item);
1121 extent_type = btrfs_file_extent_type(leaf, fi);
1122
d899e052
YZ
1123 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1124 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1125 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1126 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1127 extent_end = found_key.offset +
1128 btrfs_file_extent_num_bytes(leaf, fi);
1129 if (extent_end <= start) {
1130 path->slots[0]++;
1131 goto next_slot;
1132 }
17d217fe
YZ
1133 if (disk_bytenr == 0)
1134 goto out_check;
80ff3856
YZ
1135 if (btrfs_file_extent_compression(leaf, fi) ||
1136 btrfs_file_extent_encryption(leaf, fi) ||
1137 btrfs_file_extent_other_encoding(leaf, fi))
1138 goto out_check;
d899e052
YZ
1139 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1140 goto out_check;
d2fb3437 1141 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1142 goto out_check;
33345d01 1143 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1144 found_key.offset -
1145 extent_offset, disk_bytenr))
17d217fe 1146 goto out_check;
5d4f98a2 1147 disk_bytenr += extent_offset;
17d217fe
YZ
1148 disk_bytenr += cur_offset - found_key.offset;
1149 num_bytes = min(end + 1, extent_end) - cur_offset;
1150 /*
1151 * force cow if csum exists in the range.
1152 * this ensure that csum for a given extent are
1153 * either valid or do not exist.
1154 */
1155 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1156 goto out_check;
80ff3856
YZ
1157 nocow = 1;
1158 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1159 extent_end = found_key.offset +
1160 btrfs_file_extent_inline_len(leaf, fi);
1161 extent_end = ALIGN(extent_end, root->sectorsize);
1162 } else {
1163 BUG_ON(1);
1164 }
1165out_check:
1166 if (extent_end <= start) {
1167 path->slots[0]++;
1168 goto next_slot;
1169 }
1170 if (!nocow) {
1171 if (cow_start == (u64)-1)
1172 cow_start = cur_offset;
1173 cur_offset = extent_end;
1174 if (cur_offset > end)
1175 break;
1176 path->slots[0]++;
1177 goto next_slot;
7ea394f1
YZ
1178 }
1179
b3b4aa74 1180 btrfs_release_path(path);
80ff3856
YZ
1181 if (cow_start != (u64)-1) {
1182 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1183 found_key.offset - 1, page_started,
1184 nr_written, 1);
80ff3856
YZ
1185 BUG_ON(ret);
1186 cow_start = (u64)-1;
7ea394f1 1187 }
80ff3856 1188
d899e052
YZ
1189 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1190 struct extent_map *em;
1191 struct extent_map_tree *em_tree;
1192 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1193 em = alloc_extent_map();
c26a9203 1194 BUG_ON(!em);
d899e052 1195 em->start = cur_offset;
445a6944 1196 em->orig_start = em->start;
d899e052
YZ
1197 em->len = num_bytes;
1198 em->block_len = num_bytes;
1199 em->block_start = disk_bytenr;
1200 em->bdev = root->fs_info->fs_devices->latest_bdev;
1201 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1202 while (1) {
890871be 1203 write_lock(&em_tree->lock);
d899e052 1204 ret = add_extent_mapping(em_tree, em);
890871be 1205 write_unlock(&em_tree->lock);
d899e052
YZ
1206 if (ret != -EEXIST) {
1207 free_extent_map(em);
1208 break;
1209 }
1210 btrfs_drop_extent_cache(inode, em->start,
1211 em->start + em->len - 1, 0);
1212 }
1213 type = BTRFS_ORDERED_PREALLOC;
1214 } else {
1215 type = BTRFS_ORDERED_NOCOW;
1216 }
80ff3856
YZ
1217
1218 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1219 num_bytes, num_bytes, type);
1220 BUG_ON(ret);
771ed689 1221
efa56464
YZ
1222 if (root->root_key.objectid ==
1223 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1224 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1225 num_bytes);
1226 BUG_ON(ret);
1227 }
1228
d899e052 1229 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1230 cur_offset, cur_offset + num_bytes - 1,
1231 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1232 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1233 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1234 cur_offset = extent_end;
1235 if (cur_offset > end)
1236 break;
be20aa9d 1237 }
b3b4aa74 1238 btrfs_release_path(path);
80ff3856
YZ
1239
1240 if (cur_offset <= end && cow_start == (u64)-1)
1241 cow_start = cur_offset;
1242 if (cow_start != (u64)-1) {
1243 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1244 page_started, nr_written, 1);
80ff3856
YZ
1245 BUG_ON(ret);
1246 }
1247
0cb59c99
JB
1248 if (nolock) {
1249 ret = btrfs_end_transaction_nolock(trans, root);
1250 BUG_ON(ret);
1251 } else {
1252 ret = btrfs_end_transaction(trans, root);
1253 BUG_ON(ret);
1254 }
7ea394f1 1255 btrfs_free_path(path);
80ff3856 1256 return 0;
be20aa9d
CM
1257}
1258
d352ac68
CM
1259/*
1260 * extent_io.c call back to do delayed allocation processing
1261 */
c8b97818 1262static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1263 u64 start, u64 end, int *page_started,
1264 unsigned long *nr_written)
be20aa9d 1265{
be20aa9d 1266 int ret;
7f366cfe 1267 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1268
6cbff00f 1269 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1270 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1271 page_started, 1, nr_written);
6cbff00f 1272 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1273 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1274 page_started, 0, nr_written);
1e701a32 1275 else if (!btrfs_test_opt(root, COMPRESS) &&
75e7cb7f
LB
1276 !(BTRFS_I(inode)->force_compress) &&
1277 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
7f366cfe
CM
1278 ret = cow_file_range(inode, locked_page, start, end,
1279 page_started, nr_written, 1);
be20aa9d 1280 else
771ed689 1281 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1282 page_started, nr_written);
b888db2b
CM
1283 return ret;
1284}
1285
1bf85046
JM
1286static void btrfs_split_extent_hook(struct inode *inode,
1287 struct extent_state *orig, u64 split)
9ed74f2d 1288{
0ca1f7ce 1289 /* not delalloc, ignore it */
9ed74f2d 1290 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1291 return;
9ed74f2d 1292
9e0baf60
JB
1293 spin_lock(&BTRFS_I(inode)->lock);
1294 BTRFS_I(inode)->outstanding_extents++;
1295 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1296}
1297
1298/*
1299 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1300 * extents so we can keep track of new extents that are just merged onto old
1301 * extents, such as when we are doing sequential writes, so we can properly
1302 * account for the metadata space we'll need.
1303 */
1bf85046
JM
1304static void btrfs_merge_extent_hook(struct inode *inode,
1305 struct extent_state *new,
1306 struct extent_state *other)
9ed74f2d 1307{
9ed74f2d
JB
1308 /* not delalloc, ignore it */
1309 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1310 return;
9ed74f2d 1311
9e0baf60
JB
1312 spin_lock(&BTRFS_I(inode)->lock);
1313 BTRFS_I(inode)->outstanding_extents--;
1314 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1315}
1316
d352ac68
CM
1317/*
1318 * extent_io.c set_bit_hook, used to track delayed allocation
1319 * bytes in this file, and to maintain the list of inodes that
1320 * have pending delalloc work to be done.
1321 */
1bf85046
JM
1322static void btrfs_set_bit_hook(struct inode *inode,
1323 struct extent_state *state, int *bits)
291d673e 1324{
9ed74f2d 1325
75eff68e
CM
1326 /*
1327 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1328 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1329 * bit, which is only set or cleared with irqs on
1330 */
0ca1f7ce 1331 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1332 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1333 u64 len = state->end + 1 - state->start;
2cf8572d 1334 bool do_list = !btrfs_is_free_space_inode(root, inode);
9ed74f2d 1335
9e0baf60 1336 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1337 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1338 } else {
1339 spin_lock(&BTRFS_I(inode)->lock);
1340 BTRFS_I(inode)->outstanding_extents++;
1341 spin_unlock(&BTRFS_I(inode)->lock);
1342 }
287a0ab9 1343
75eff68e 1344 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1345 BTRFS_I(inode)->delalloc_bytes += len;
1346 root->fs_info->delalloc_bytes += len;
0cb59c99 1347 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1348 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1349 &root->fs_info->delalloc_inodes);
1350 }
75eff68e 1351 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1352 }
291d673e
CM
1353}
1354
d352ac68
CM
1355/*
1356 * extent_io.c clear_bit_hook, see set_bit_hook for why
1357 */
1bf85046
JM
1358static void btrfs_clear_bit_hook(struct inode *inode,
1359 struct extent_state *state, int *bits)
291d673e 1360{
75eff68e
CM
1361 /*
1362 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1363 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1364 * bit, which is only set or cleared with irqs on
1365 */
0ca1f7ce 1366 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1367 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1368 u64 len = state->end + 1 - state->start;
2cf8572d 1369 bool do_list = !btrfs_is_free_space_inode(root, inode);
bcbfce8a 1370
9e0baf60 1371 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1372 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1373 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1374 spin_lock(&BTRFS_I(inode)->lock);
1375 BTRFS_I(inode)->outstanding_extents--;
1376 spin_unlock(&BTRFS_I(inode)->lock);
1377 }
0ca1f7ce
YZ
1378
1379 if (*bits & EXTENT_DO_ACCOUNTING)
1380 btrfs_delalloc_release_metadata(inode, len);
1381
0cb59c99
JB
1382 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1383 && do_list)
0ca1f7ce 1384 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1385
75eff68e 1386 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1387 root->fs_info->delalloc_bytes -= len;
1388 BTRFS_I(inode)->delalloc_bytes -= len;
1389
0cb59c99 1390 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1391 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1392 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1393 }
75eff68e 1394 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1395 }
291d673e
CM
1396}
1397
d352ac68
CM
1398/*
1399 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1400 * we don't create bios that span stripes or chunks
1401 */
239b14b3 1402int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1403 size_t size, struct bio *bio,
1404 unsigned long bio_flags)
239b14b3
CM
1405{
1406 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1407 struct btrfs_mapping_tree *map_tree;
a62b9401 1408 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1409 u64 length = 0;
1410 u64 map_length;
239b14b3
CM
1411 int ret;
1412
771ed689
CM
1413 if (bio_flags & EXTENT_BIO_COMPRESSED)
1414 return 0;
1415
f2d8d74d 1416 length = bio->bi_size;
239b14b3
CM
1417 map_tree = &root->fs_info->mapping_tree;
1418 map_length = length;
cea9e445 1419 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1420 &map_length, NULL, 0);
cea9e445 1421
d397712b 1422 if (map_length < length + size)
239b14b3 1423 return 1;
411fc6bc 1424 return ret;
239b14b3
CM
1425}
1426
d352ac68
CM
1427/*
1428 * in order to insert checksums into the metadata in large chunks,
1429 * we wait until bio submission time. All the pages in the bio are
1430 * checksummed and sums are attached onto the ordered extent record.
1431 *
1432 * At IO completion time the cums attached on the ordered extent record
1433 * are inserted into the btree
1434 */
d397712b
CM
1435static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1436 struct bio *bio, int mirror_num,
eaf25d93
CM
1437 unsigned long bio_flags,
1438 u64 bio_offset)
065631f6 1439{
065631f6 1440 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1441 int ret = 0;
e015640f 1442
d20f7043 1443 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1444 BUG_ON(ret);
4a69a410
CM
1445 return 0;
1446}
e015640f 1447
4a69a410
CM
1448/*
1449 * in order to insert checksums into the metadata in large chunks,
1450 * we wait until bio submission time. All the pages in the bio are
1451 * checksummed and sums are attached onto the ordered extent record.
1452 *
1453 * At IO completion time the cums attached on the ordered extent record
1454 * are inserted into the btree
1455 */
b2950863 1456static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1457 int mirror_num, unsigned long bio_flags,
1458 u64 bio_offset)
4a69a410
CM
1459{
1460 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1461 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1462}
1463
d352ac68 1464/*
cad321ad
CM
1465 * extent_io.c submission hook. This does the right thing for csum calculation
1466 * on write, or reading the csums from the tree before a read
d352ac68 1467 */
b2950863 1468static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1469 int mirror_num, unsigned long bio_flags,
1470 u64 bio_offset)
44b8bd7e
CM
1471{
1472 struct btrfs_root *root = BTRFS_I(inode)->root;
1473 int ret = 0;
19b9bdb0 1474 int skip_sum;
44b8bd7e 1475
6cbff00f 1476 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1477
2cf8572d 1478 if (btrfs_is_free_space_inode(root, inode))
0cb59c99
JB
1479 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1480 else
1481 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1482 BUG_ON(ret);
065631f6 1483
7b6d91da 1484 if (!(rw & REQ_WRITE)) {
d20f7043 1485 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1486 return btrfs_submit_compressed_read(inode, bio,
1487 mirror_num, bio_flags);
c2db1073
TI
1488 } else if (!skip_sum) {
1489 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1490 if (ret)
1491 return ret;
1492 }
4d1b5fb4 1493 goto mapit;
19b9bdb0 1494 } else if (!skip_sum) {
17d217fe
YZ
1495 /* csum items have already been cloned */
1496 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1497 goto mapit;
19b9bdb0
CM
1498 /* we're doing a write, do the async checksumming */
1499 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1500 inode, rw, bio, mirror_num,
eaf25d93
CM
1501 bio_flags, bio_offset,
1502 __btrfs_submit_bio_start,
4a69a410 1503 __btrfs_submit_bio_done);
19b9bdb0
CM
1504 }
1505
0b86a832 1506mapit:
8b712842 1507 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1508}
6885f308 1509
d352ac68
CM
1510/*
1511 * given a list of ordered sums record them in the inode. This happens
1512 * at IO completion time based on sums calculated at bio submission time.
1513 */
ba1da2f4 1514static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1515 struct inode *inode, u64 file_offset,
1516 struct list_head *list)
1517{
e6dcd2dc
CM
1518 struct btrfs_ordered_sum *sum;
1519
c6e30871 1520 list_for_each_entry(sum, list, list) {
d20f7043
CM
1521 btrfs_csum_file_blocks(trans,
1522 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1523 }
1524 return 0;
1525}
1526
2ac55d41
JB
1527int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1528 struct extent_state **cached_state)
ea8c2819 1529{
d397712b 1530 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1531 WARN_ON(1);
ea8c2819 1532 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1533 cached_state, GFP_NOFS);
ea8c2819
CM
1534}
1535
d352ac68 1536/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1537struct btrfs_writepage_fixup {
1538 struct page *page;
1539 struct btrfs_work work;
1540};
1541
b2950863 1542static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1543{
1544 struct btrfs_writepage_fixup *fixup;
1545 struct btrfs_ordered_extent *ordered;
2ac55d41 1546 struct extent_state *cached_state = NULL;
247e743c
CM
1547 struct page *page;
1548 struct inode *inode;
1549 u64 page_start;
1550 u64 page_end;
1551
1552 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1553 page = fixup->page;
4a096752 1554again:
247e743c
CM
1555 lock_page(page);
1556 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1557 ClearPageChecked(page);
1558 goto out_page;
1559 }
1560
1561 inode = page->mapping->host;
1562 page_start = page_offset(page);
1563 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1564
2ac55d41
JB
1565 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1566 &cached_state, GFP_NOFS);
4a096752
CM
1567
1568 /* already ordered? We're done */
8b62b72b 1569 if (PagePrivate2(page))
247e743c 1570 goto out;
4a096752
CM
1571
1572 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1573 if (ordered) {
2ac55d41
JB
1574 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1575 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1576 unlock_page(page);
1577 btrfs_start_ordered_extent(inode, ordered, 1);
1578 goto again;
1579 }
247e743c 1580
0ca1f7ce 1581 BUG();
2ac55d41 1582 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1583 ClearPageChecked(page);
1584out:
2ac55d41
JB
1585 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1586 &cached_state, GFP_NOFS);
247e743c
CM
1587out_page:
1588 unlock_page(page);
1589 page_cache_release(page);
b897abec 1590 kfree(fixup);
247e743c
CM
1591}
1592
1593/*
1594 * There are a few paths in the higher layers of the kernel that directly
1595 * set the page dirty bit without asking the filesystem if it is a
1596 * good idea. This causes problems because we want to make sure COW
1597 * properly happens and the data=ordered rules are followed.
1598 *
c8b97818 1599 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1600 * hasn't been properly setup for IO. We kick off an async process
1601 * to fix it up. The async helper will wait for ordered extents, set
1602 * the delalloc bit and make it safe to write the page.
1603 */
b2950863 1604static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1605{
1606 struct inode *inode = page->mapping->host;
1607 struct btrfs_writepage_fixup *fixup;
1608 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1609
8b62b72b
CM
1610 /* this page is properly in the ordered list */
1611 if (TestClearPagePrivate2(page))
247e743c
CM
1612 return 0;
1613
1614 if (PageChecked(page))
1615 return -EAGAIN;
1616
1617 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1618 if (!fixup)
1619 return -EAGAIN;
f421950f 1620
247e743c
CM
1621 SetPageChecked(page);
1622 page_cache_get(page);
1623 fixup->work.func = btrfs_writepage_fixup_worker;
1624 fixup->page = page;
1625 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1626 return -EAGAIN;
1627}
1628
d899e052
YZ
1629static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1630 struct inode *inode, u64 file_pos,
1631 u64 disk_bytenr, u64 disk_num_bytes,
1632 u64 num_bytes, u64 ram_bytes,
1633 u8 compression, u8 encryption,
1634 u16 other_encoding, int extent_type)
1635{
1636 struct btrfs_root *root = BTRFS_I(inode)->root;
1637 struct btrfs_file_extent_item *fi;
1638 struct btrfs_path *path;
1639 struct extent_buffer *leaf;
1640 struct btrfs_key ins;
1641 u64 hint;
1642 int ret;
1643
1644 path = btrfs_alloc_path();
d8926bb3
MF
1645 if (!path)
1646 return -ENOMEM;
d899e052 1647
b9473439 1648 path->leave_spinning = 1;
a1ed835e
CM
1649
1650 /*
1651 * we may be replacing one extent in the tree with another.
1652 * The new extent is pinned in the extent map, and we don't want
1653 * to drop it from the cache until it is completely in the btree.
1654 *
1655 * So, tell btrfs_drop_extents to leave this extent in the cache.
1656 * the caller is expected to unpin it and allow it to be merged
1657 * with the others.
1658 */
920bbbfb
YZ
1659 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1660 &hint, 0);
d899e052
YZ
1661 BUG_ON(ret);
1662
33345d01 1663 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1664 ins.offset = file_pos;
1665 ins.type = BTRFS_EXTENT_DATA_KEY;
1666 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1667 BUG_ON(ret);
1668 leaf = path->nodes[0];
1669 fi = btrfs_item_ptr(leaf, path->slots[0],
1670 struct btrfs_file_extent_item);
1671 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1672 btrfs_set_file_extent_type(leaf, fi, extent_type);
1673 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1674 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1675 btrfs_set_file_extent_offset(leaf, fi, 0);
1676 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1677 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1678 btrfs_set_file_extent_compression(leaf, fi, compression);
1679 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1680 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1681
1682 btrfs_unlock_up_safe(path, 1);
1683 btrfs_set_lock_blocking(leaf);
1684
d899e052
YZ
1685 btrfs_mark_buffer_dirty(leaf);
1686
1687 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1688
1689 ins.objectid = disk_bytenr;
1690 ins.offset = disk_num_bytes;
1691 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1692 ret = btrfs_alloc_reserved_file_extent(trans, root,
1693 root->root_key.objectid,
33345d01 1694 btrfs_ino(inode), file_pos, &ins);
d899e052 1695 BUG_ON(ret);
d899e052 1696 btrfs_free_path(path);
b9473439 1697
d899e052
YZ
1698 return 0;
1699}
1700
5d13a98f
CM
1701/*
1702 * helper function for btrfs_finish_ordered_io, this
1703 * just reads in some of the csum leaves to prime them into ram
1704 * before we start the transaction. It limits the amount of btree
1705 * reads required while inside the transaction.
1706 */
d352ac68
CM
1707/* as ordered data IO finishes, this gets called so we can finish
1708 * an ordered extent if the range of bytes in the file it covers are
1709 * fully written.
1710 */
211f90e6 1711static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1712{
e6dcd2dc 1713 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1714 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1715 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1716 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1717 struct extent_state *cached_state = NULL;
261507a0 1718 int compress_type = 0;
e6dcd2dc 1719 int ret;
82d5902d 1720 bool nolock;
e6dcd2dc 1721
5a1a3df1
JB
1722 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1723 end - start + 1);
ba1da2f4 1724 if (!ret)
e6dcd2dc 1725 return 0;
e6dcd2dc 1726 BUG_ON(!ordered_extent);
efd049fb 1727
2cf8572d 1728 nolock = btrfs_is_free_space_inode(root, inode);
0cb59c99 1729
c2167754
YZ
1730 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1731 BUG_ON(!list_empty(&ordered_extent->list));
1732 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1733 if (!ret) {
0cb59c99 1734 if (nolock)
7a7eaa40 1735 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1736 else
7a7eaa40 1737 trans = btrfs_join_transaction(root);
3612b495 1738 BUG_ON(IS_ERR(trans));
0ca1f7ce 1739 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1740 ret = btrfs_update_inode(trans, root, inode);
1741 BUG_ON(ret);
c2167754
YZ
1742 }
1743 goto out;
1744 }
e6dcd2dc 1745
2ac55d41
JB
1746 lock_extent_bits(io_tree, ordered_extent->file_offset,
1747 ordered_extent->file_offset + ordered_extent->len - 1,
1748 0, &cached_state, GFP_NOFS);
e6dcd2dc 1749
0cb59c99 1750 if (nolock)
7a7eaa40 1751 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1752 else
7a7eaa40 1753 trans = btrfs_join_transaction(root);
3612b495 1754 BUG_ON(IS_ERR(trans));
0ca1f7ce 1755 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1756
c8b97818 1757 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1758 compress_type = ordered_extent->compress_type;
d899e052 1759 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1760 BUG_ON(compress_type);
920bbbfb 1761 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1762 ordered_extent->file_offset,
1763 ordered_extent->file_offset +
1764 ordered_extent->len);
1765 BUG_ON(ret);
1766 } else {
0af3d00b 1767 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1768 ret = insert_reserved_file_extent(trans, inode,
1769 ordered_extent->file_offset,
1770 ordered_extent->start,
1771 ordered_extent->disk_len,
1772 ordered_extent->len,
1773 ordered_extent->len,
261507a0 1774 compress_type, 0, 0,
d899e052 1775 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1776 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1777 ordered_extent->file_offset,
1778 ordered_extent->len);
d899e052
YZ
1779 BUG_ON(ret);
1780 }
2ac55d41
JB
1781 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1782 ordered_extent->file_offset +
1783 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1784
e6dcd2dc
CM
1785 add_pending_csums(trans, inode, ordered_extent->file_offset,
1786 &ordered_extent->list);
1787
1ef30be1
JB
1788 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1789 if (!ret) {
1790 ret = btrfs_update_inode(trans, root, inode);
1791 BUG_ON(ret);
1792 }
1793 ret = 0;
c2167754 1794out:
0cb59c99
JB
1795 if (nolock) {
1796 if (trans)
1797 btrfs_end_transaction_nolock(trans, root);
1798 } else {
1799 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1800 if (trans)
1801 btrfs_end_transaction(trans, root);
1802 }
1803
e6dcd2dc
CM
1804 /* once for us */
1805 btrfs_put_ordered_extent(ordered_extent);
1806 /* once for the tree */
1807 btrfs_put_ordered_extent(ordered_extent);
1808
e6dcd2dc
CM
1809 return 0;
1810}
1811
b2950863 1812static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1813 struct extent_state *state, int uptodate)
1814{
1abe9b8a 1815 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1816
8b62b72b 1817 ClearPagePrivate2(page);
211f90e6
CM
1818 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1819}
1820
d352ac68
CM
1821/*
1822 * When IO fails, either with EIO or csum verification fails, we
1823 * try other mirrors that might have a good copy of the data. This
1824 * io_failure_record is used to record state as we go through all the
1825 * mirrors. If another mirror has good data, the page is set up to date
1826 * and things continue. If a good mirror can't be found, the original
1827 * bio end_io callback is called to indicate things have failed.
1828 */
7e38326f
CM
1829struct io_failure_record {
1830 struct page *page;
1831 u64 start;
1832 u64 len;
1833 u64 logical;
d20f7043 1834 unsigned long bio_flags;
7e38326f
CM
1835 int last_mirror;
1836};
1837
b2950863 1838static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1839 struct page *page, u64 start, u64 end,
1840 struct extent_state *state)
7e38326f
CM
1841{
1842 struct io_failure_record *failrec = NULL;
1843 u64 private;
1844 struct extent_map *em;
1845 struct inode *inode = page->mapping->host;
1846 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1847 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1848 struct bio *bio;
1849 int num_copies;
1850 int ret;
1259ab75 1851 int rw;
7e38326f
CM
1852 u64 logical;
1853
1854 ret = get_state_private(failure_tree, start, &private);
1855 if (ret) {
7e38326f
CM
1856 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1857 if (!failrec)
1858 return -ENOMEM;
1859 failrec->start = start;
1860 failrec->len = end - start + 1;
1861 failrec->last_mirror = 0;
d20f7043 1862 failrec->bio_flags = 0;
7e38326f 1863
890871be 1864 read_lock(&em_tree->lock);
3b951516
CM
1865 em = lookup_extent_mapping(em_tree, start, failrec->len);
1866 if (em->start > start || em->start + em->len < start) {
1867 free_extent_map(em);
1868 em = NULL;
1869 }
890871be 1870 read_unlock(&em_tree->lock);
7e38326f 1871
c704005d 1872 if (IS_ERR_OR_NULL(em)) {
7e38326f
CM
1873 kfree(failrec);
1874 return -EIO;
1875 }
1876 logical = start - em->start;
1877 logical = em->block_start + logical;
d20f7043
CM
1878 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1879 logical = em->block_start;
1880 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
261507a0
LZ
1881 extent_set_compress_type(&failrec->bio_flags,
1882 em->compress_type);
d20f7043 1883 }
7e38326f
CM
1884 failrec->logical = logical;
1885 free_extent_map(em);
1886 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1887 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1888 set_state_private(failure_tree, start,
1889 (u64)(unsigned long)failrec);
7e38326f 1890 } else {
587f7704 1891 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1892 }
1893 num_copies = btrfs_num_copies(
1894 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1895 failrec->logical, failrec->len);
1896 failrec->last_mirror++;
1897 if (!state) {
cad321ad 1898 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1899 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1900 failrec->start,
1901 EXTENT_LOCKED);
1902 if (state && state->start != failrec->start)
1903 state = NULL;
cad321ad 1904 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1905 }
1906 if (!state || failrec->last_mirror > num_copies) {
1907 set_state_private(failure_tree, failrec->start, 0);
1908 clear_extent_bits(failure_tree, failrec->start,
1909 failrec->start + failrec->len - 1,
1910 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1911 kfree(failrec);
1912 return -EIO;
1913 }
1914 bio = bio_alloc(GFP_NOFS, 1);
1915 bio->bi_private = state;
1916 bio->bi_end_io = failed_bio->bi_end_io;
1917 bio->bi_sector = failrec->logical >> 9;
1918 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1919 bio->bi_size = 0;
d20f7043 1920
7e38326f 1921 bio_add_page(bio, page, failrec->len, start - page_offset(page));
7b6d91da 1922 if (failed_bio->bi_rw & REQ_WRITE)
1259ab75
CM
1923 rw = WRITE;
1924 else
1925 rw = READ;
1926
c2db1073 1927 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1928 failrec->last_mirror,
eaf25d93 1929 failrec->bio_flags, 0);
c2db1073 1930 return ret;
1259ab75
CM
1931}
1932
d352ac68
CM
1933/*
1934 * each time an IO finishes, we do a fast check in the IO failure tree
1935 * to see if we need to process or clean up an io_failure_record
1936 */
b2950863 1937static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1938{
1939 u64 private;
1940 u64 private_failure;
1941 struct io_failure_record *failure;
1942 int ret;
1943
1944 private = 0;
1945 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
ec29ed5b 1946 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1259ab75
CM
1947 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1948 start, &private_failure);
1949 if (ret == 0) {
1950 failure = (struct io_failure_record *)(unsigned long)
1951 private_failure;
1952 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1953 failure->start, 0);
1954 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1955 failure->start,
1956 failure->start + failure->len - 1,
1957 EXTENT_DIRTY | EXTENT_LOCKED,
1958 GFP_NOFS);
1959 kfree(failure);
1960 }
1961 }
7e38326f
CM
1962 return 0;
1963}
1964
d352ac68
CM
1965/*
1966 * when reads are done, we need to check csums to verify the data is correct
1967 * if there's a match, we allow the bio to finish. If not, we go through
1968 * the io_failure_record routines to find good copies
1969 */
b2950863 1970static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1971 struct extent_state *state)
07157aac 1972{
35ebb934 1973 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1974 struct inode *inode = page->mapping->host;
d1310b2e 1975 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1976 char *kaddr;
aadfeb6e 1977 u64 private = ~(u32)0;
07157aac 1978 int ret;
ff79f819
CM
1979 struct btrfs_root *root = BTRFS_I(inode)->root;
1980 u32 csum = ~(u32)0;
d1310b2e 1981
d20f7043
CM
1982 if (PageChecked(page)) {
1983 ClearPageChecked(page);
1984 goto good;
1985 }
6cbff00f
CH
1986
1987 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 1988 goto good;
17d217fe
YZ
1989
1990 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1991 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1992 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1993 GFP_NOFS);
b6cda9bc 1994 return 0;
17d217fe 1995 }
d20f7043 1996
c2e639f0 1997 if (state && state->start == start) {
70dec807
CM
1998 private = state->private;
1999 ret = 0;
2000 } else {
2001 ret = get_state_private(io_tree, start, &private);
2002 }
9ab86c8e 2003 kaddr = kmap_atomic(page, KM_USER0);
d397712b 2004 if (ret)
07157aac 2005 goto zeroit;
d397712b 2006
ff79f819
CM
2007 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2008 btrfs_csum_final(csum, (char *)&csum);
d397712b 2009 if (csum != private)
07157aac 2010 goto zeroit;
d397712b 2011
9ab86c8e 2012 kunmap_atomic(kaddr, KM_USER0);
d20f7043 2013good:
7e38326f
CM
2014 /* if the io failure tree for this inode is non-empty,
2015 * check to see if we've recovered from a failed IO
2016 */
1259ab75 2017 btrfs_clean_io_failures(inode, start);
07157aac
CM
2018 return 0;
2019
2020zeroit:
945d8962 2021 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
2022 "private %llu\n",
2023 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
2024 (unsigned long long)start, csum,
2025 (unsigned long long)private);
db94535d
CM
2026 memset(kaddr + offset, 1, end - start + 1);
2027 flush_dcache_page(page);
9ab86c8e 2028 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2029 if (private == 0)
2030 return 0;
7e38326f 2031 return -EIO;
07157aac 2032}
b888db2b 2033
24bbcf04
YZ
2034struct delayed_iput {
2035 struct list_head list;
2036 struct inode *inode;
2037};
2038
2039void btrfs_add_delayed_iput(struct inode *inode)
2040{
2041 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2042 struct delayed_iput *delayed;
2043
2044 if (atomic_add_unless(&inode->i_count, -1, 1))
2045 return;
2046
2047 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2048 delayed->inode = inode;
2049
2050 spin_lock(&fs_info->delayed_iput_lock);
2051 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2052 spin_unlock(&fs_info->delayed_iput_lock);
2053}
2054
2055void btrfs_run_delayed_iputs(struct btrfs_root *root)
2056{
2057 LIST_HEAD(list);
2058 struct btrfs_fs_info *fs_info = root->fs_info;
2059 struct delayed_iput *delayed;
2060 int empty;
2061
2062 spin_lock(&fs_info->delayed_iput_lock);
2063 empty = list_empty(&fs_info->delayed_iputs);
2064 spin_unlock(&fs_info->delayed_iput_lock);
2065 if (empty)
2066 return;
2067
2068 down_read(&root->fs_info->cleanup_work_sem);
2069 spin_lock(&fs_info->delayed_iput_lock);
2070 list_splice_init(&fs_info->delayed_iputs, &list);
2071 spin_unlock(&fs_info->delayed_iput_lock);
2072
2073 while (!list_empty(&list)) {
2074 delayed = list_entry(list.next, struct delayed_iput, list);
2075 list_del(&delayed->list);
2076 iput(delayed->inode);
2077 kfree(delayed);
2078 }
2079 up_read(&root->fs_info->cleanup_work_sem);
2080}
2081
d68fc57b
YZ
2082/*
2083 * calculate extra metadata reservation when snapshotting a subvolume
2084 * contains orphan files.
2085 */
2086void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2087 struct btrfs_pending_snapshot *pending,
2088 u64 *bytes_to_reserve)
2089{
2090 struct btrfs_root *root;
2091 struct btrfs_block_rsv *block_rsv;
2092 u64 num_bytes;
2093 int index;
2094
2095 root = pending->root;
2096 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2097 return;
2098
2099 block_rsv = root->orphan_block_rsv;
2100
2101 /* orphan block reservation for the snapshot */
2102 num_bytes = block_rsv->size;
2103
2104 /*
2105 * after the snapshot is created, COWing tree blocks may use more
2106 * space than it frees. So we should make sure there is enough
2107 * reserved space.
2108 */
2109 index = trans->transid & 0x1;
2110 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2111 num_bytes += block_rsv->size -
2112 (block_rsv->reserved + block_rsv->freed[index]);
2113 }
2114
2115 *bytes_to_reserve += num_bytes;
2116}
2117
2118void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2119 struct btrfs_pending_snapshot *pending)
2120{
2121 struct btrfs_root *root = pending->root;
2122 struct btrfs_root *snap = pending->snap;
2123 struct btrfs_block_rsv *block_rsv;
2124 u64 num_bytes;
2125 int index;
2126 int ret;
2127
2128 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2129 return;
2130
2131 /* refill source subvolume's orphan block reservation */
2132 block_rsv = root->orphan_block_rsv;
2133 index = trans->transid & 0x1;
2134 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2135 num_bytes = block_rsv->size -
2136 (block_rsv->reserved + block_rsv->freed[index]);
2137 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2138 root->orphan_block_rsv,
2139 num_bytes);
2140 BUG_ON(ret);
2141 }
2142
2143 /* setup orphan block reservation for the snapshot */
2144 block_rsv = btrfs_alloc_block_rsv(snap);
2145 BUG_ON(!block_rsv);
2146
2147 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2148 snap->orphan_block_rsv = block_rsv;
2149
2150 num_bytes = root->orphan_block_rsv->size;
2151 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2152 block_rsv, num_bytes);
2153 BUG_ON(ret);
2154
2155#if 0
2156 /* insert orphan item for the snapshot */
2157 WARN_ON(!root->orphan_item_inserted);
2158 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2159 snap->root_key.objectid);
2160 BUG_ON(ret);
2161 snap->orphan_item_inserted = 1;
2162#endif
2163}
2164
2165enum btrfs_orphan_cleanup_state {
2166 ORPHAN_CLEANUP_STARTED = 1,
2167 ORPHAN_CLEANUP_DONE = 2,
2168};
2169
2170/*
2171 * This is called in transaction commmit time. If there are no orphan
2172 * files in the subvolume, it removes orphan item and frees block_rsv
2173 * structure.
2174 */
2175void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2176 struct btrfs_root *root)
2177{
2178 int ret;
2179
2180 if (!list_empty(&root->orphan_list) ||
2181 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2182 return;
2183
2184 if (root->orphan_item_inserted &&
2185 btrfs_root_refs(&root->root_item) > 0) {
2186 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2187 root->root_key.objectid);
2188 BUG_ON(ret);
2189 root->orphan_item_inserted = 0;
2190 }
2191
2192 if (root->orphan_block_rsv) {
2193 WARN_ON(root->orphan_block_rsv->size > 0);
2194 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2195 root->orphan_block_rsv = NULL;
2196 }
2197}
2198
7b128766
JB
2199/*
2200 * This creates an orphan entry for the given inode in case something goes
2201 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2202 *
2203 * NOTE: caller of this function should reserve 5 units of metadata for
2204 * this function.
7b128766
JB
2205 */
2206int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2207{
2208 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2209 struct btrfs_block_rsv *block_rsv = NULL;
2210 int reserve = 0;
2211 int insert = 0;
2212 int ret;
7b128766 2213
d68fc57b
YZ
2214 if (!root->orphan_block_rsv) {
2215 block_rsv = btrfs_alloc_block_rsv(root);
b532402e
TI
2216 if (!block_rsv)
2217 return -ENOMEM;
d68fc57b 2218 }
7b128766 2219
d68fc57b
YZ
2220 spin_lock(&root->orphan_lock);
2221 if (!root->orphan_block_rsv) {
2222 root->orphan_block_rsv = block_rsv;
2223 } else if (block_rsv) {
2224 btrfs_free_block_rsv(root, block_rsv);
2225 block_rsv = NULL;
7b128766 2226 }
7b128766 2227
d68fc57b
YZ
2228 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2229 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2230#if 0
2231 /*
2232 * For proper ENOSPC handling, we should do orphan
2233 * cleanup when mounting. But this introduces backward
2234 * compatibility issue.
2235 */
2236 if (!xchg(&root->orphan_item_inserted, 1))
2237 insert = 2;
2238 else
2239 insert = 1;
2240#endif
2241 insert = 1;
7b128766
JB
2242 }
2243
d68fc57b
YZ
2244 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2245 BTRFS_I(inode)->orphan_meta_reserved = 1;
2246 reserve = 1;
2247 }
2248 spin_unlock(&root->orphan_lock);
7b128766 2249
d68fc57b
YZ
2250 if (block_rsv)
2251 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
7b128766 2252
d68fc57b
YZ
2253 /* grab metadata reservation from transaction handle */
2254 if (reserve) {
2255 ret = btrfs_orphan_reserve_metadata(trans, inode);
2256 BUG_ON(ret);
2257 }
7b128766 2258
d68fc57b
YZ
2259 /* insert an orphan item to track this unlinked/truncated file */
2260 if (insert >= 1) {
33345d01 2261 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2262 BUG_ON(ret);
2263 }
2264
2265 /* insert an orphan item to track subvolume contains orphan files */
2266 if (insert >= 2) {
2267 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2268 root->root_key.objectid);
2269 BUG_ON(ret);
2270 }
2271 return 0;
7b128766
JB
2272}
2273
2274/*
2275 * We have done the truncate/delete so we can go ahead and remove the orphan
2276 * item for this particular inode.
2277 */
2278int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2279{
2280 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2281 int delete_item = 0;
2282 int release_rsv = 0;
7b128766
JB
2283 int ret = 0;
2284
d68fc57b
YZ
2285 spin_lock(&root->orphan_lock);
2286 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2287 list_del_init(&BTRFS_I(inode)->i_orphan);
2288 delete_item = 1;
7b128766
JB
2289 }
2290
d68fc57b
YZ
2291 if (BTRFS_I(inode)->orphan_meta_reserved) {
2292 BTRFS_I(inode)->orphan_meta_reserved = 0;
2293 release_rsv = 1;
7b128766 2294 }
d68fc57b 2295 spin_unlock(&root->orphan_lock);
7b128766 2296
d68fc57b 2297 if (trans && delete_item) {
33345d01 2298 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2299 BUG_ON(ret);
2300 }
7b128766 2301
d68fc57b
YZ
2302 if (release_rsv)
2303 btrfs_orphan_release_metadata(inode);
7b128766 2304
d68fc57b 2305 return 0;
7b128766
JB
2306}
2307
2308/*
2309 * this cleans up any orphans that may be left on the list from the last use
2310 * of this root.
2311 */
66b4ffd1 2312int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2313{
2314 struct btrfs_path *path;
2315 struct extent_buffer *leaf;
7b128766
JB
2316 struct btrfs_key key, found_key;
2317 struct btrfs_trans_handle *trans;
2318 struct inode *inode;
2319 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2320
d68fc57b 2321 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2322 return 0;
c71bf099
YZ
2323
2324 path = btrfs_alloc_path();
66b4ffd1
JB
2325 if (!path) {
2326 ret = -ENOMEM;
2327 goto out;
2328 }
7b128766
JB
2329 path->reada = -1;
2330
2331 key.objectid = BTRFS_ORPHAN_OBJECTID;
2332 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2333 key.offset = (u64)-1;
2334
7b128766
JB
2335 while (1) {
2336 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2337 if (ret < 0)
2338 goto out;
7b128766
JB
2339
2340 /*
2341 * if ret == 0 means we found what we were searching for, which
25985edc 2342 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2343 * find the key and see if we have stuff that matches
2344 */
2345 if (ret > 0) {
66b4ffd1 2346 ret = 0;
7b128766
JB
2347 if (path->slots[0] == 0)
2348 break;
2349 path->slots[0]--;
2350 }
2351
2352 /* pull out the item */
2353 leaf = path->nodes[0];
7b128766
JB
2354 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2355
2356 /* make sure the item matches what we want */
2357 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2358 break;
2359 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2360 break;
2361
2362 /* release the path since we're done with it */
b3b4aa74 2363 btrfs_release_path(path);
7b128766
JB
2364
2365 /*
2366 * this is where we are basically btrfs_lookup, without the
2367 * crossing root thing. we store the inode number in the
2368 * offset of the orphan item.
2369 */
5d4f98a2
YZ
2370 found_key.objectid = found_key.offset;
2371 found_key.type = BTRFS_INODE_ITEM_KEY;
2372 found_key.offset = 0;
73f73415 2373 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
66b4ffd1
JB
2374 if (IS_ERR(inode)) {
2375 ret = PTR_ERR(inode);
2376 goto out;
2377 }
7b128766 2378
7b128766
JB
2379 /*
2380 * add this inode to the orphan list so btrfs_orphan_del does
2381 * the proper thing when we hit it
2382 */
d68fc57b 2383 spin_lock(&root->orphan_lock);
7b128766 2384 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
d68fc57b 2385 spin_unlock(&root->orphan_lock);
7b128766
JB
2386
2387 /*
2388 * if this is a bad inode, means we actually succeeded in
2389 * removing the inode, but not the orphan record, which means
2390 * we need to manually delete the orphan since iput will just
2391 * do a destroy_inode
2392 */
2393 if (is_bad_inode(inode)) {
a22285a6 2394 trans = btrfs_start_transaction(root, 0);
66b4ffd1
JB
2395 if (IS_ERR(trans)) {
2396 ret = PTR_ERR(trans);
2397 goto out;
2398 }
7b128766 2399 btrfs_orphan_del(trans, inode);
5b21f2ed 2400 btrfs_end_transaction(trans, root);
7b128766
JB
2401 iput(inode);
2402 continue;
2403 }
2404
2405 /* if we have links, this was a truncate, lets do that */
2406 if (inode->i_nlink) {
a41ad394
JB
2407 if (!S_ISREG(inode->i_mode)) {
2408 WARN_ON(1);
2409 iput(inode);
2410 continue;
2411 }
7b128766 2412 nr_truncate++;
66b4ffd1 2413 ret = btrfs_truncate(inode);
7b128766
JB
2414 } else {
2415 nr_unlink++;
2416 }
2417
2418 /* this will do delete_inode and everything for us */
2419 iput(inode);
66b4ffd1
JB
2420 if (ret)
2421 goto out;
7b128766 2422 }
d68fc57b
YZ
2423 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2424
2425 if (root->orphan_block_rsv)
2426 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2427 (u64)-1);
2428
2429 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2430 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2431 if (!IS_ERR(trans))
2432 btrfs_end_transaction(trans, root);
d68fc57b 2433 }
7b128766
JB
2434
2435 if (nr_unlink)
2436 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2437 if (nr_truncate)
2438 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2439
2440out:
2441 if (ret)
2442 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2443 btrfs_free_path(path);
2444 return ret;
7b128766
JB
2445}
2446
46a53cca
CM
2447/*
2448 * very simple check to peek ahead in the leaf looking for xattrs. If we
2449 * don't find any xattrs, we know there can't be any acls.
2450 *
2451 * slot is the slot the inode is in, objectid is the objectid of the inode
2452 */
2453static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2454 int slot, u64 objectid)
2455{
2456 u32 nritems = btrfs_header_nritems(leaf);
2457 struct btrfs_key found_key;
2458 int scanned = 0;
2459
2460 slot++;
2461 while (slot < nritems) {
2462 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2463
2464 /* we found a different objectid, there must not be acls */
2465 if (found_key.objectid != objectid)
2466 return 0;
2467
2468 /* we found an xattr, assume we've got an acl */
2469 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2470 return 1;
2471
2472 /*
2473 * we found a key greater than an xattr key, there can't
2474 * be any acls later on
2475 */
2476 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2477 return 0;
2478
2479 slot++;
2480 scanned++;
2481
2482 /*
2483 * it goes inode, inode backrefs, xattrs, extents,
2484 * so if there are a ton of hard links to an inode there can
2485 * be a lot of backrefs. Don't waste time searching too hard,
2486 * this is just an optimization
2487 */
2488 if (scanned >= 8)
2489 break;
2490 }
2491 /* we hit the end of the leaf before we found an xattr or
2492 * something larger than an xattr. We have to assume the inode
2493 * has acls
2494 */
2495 return 1;
2496}
2497
d352ac68
CM
2498/*
2499 * read an inode from the btree into the in-memory inode
2500 */
5d4f98a2 2501static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2502{
2503 struct btrfs_path *path;
5f39d397 2504 struct extent_buffer *leaf;
39279cc3 2505 struct btrfs_inode_item *inode_item;
0b86a832 2506 struct btrfs_timespec *tspec;
39279cc3
CM
2507 struct btrfs_root *root = BTRFS_I(inode)->root;
2508 struct btrfs_key location;
46a53cca 2509 int maybe_acls;
618e21d5 2510 u32 rdev;
39279cc3 2511 int ret;
2f7e33d4
MX
2512 bool filled = false;
2513
2514 ret = btrfs_fill_inode(inode, &rdev);
2515 if (!ret)
2516 filled = true;
39279cc3
CM
2517
2518 path = btrfs_alloc_path();
1748f843
MF
2519 if (!path)
2520 goto make_bad;
2521
d90c7321 2522 path->leave_spinning = 1;
39279cc3 2523 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2524
39279cc3 2525 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2526 if (ret)
39279cc3 2527 goto make_bad;
39279cc3 2528
5f39d397 2529 leaf = path->nodes[0];
2f7e33d4
MX
2530
2531 if (filled)
2532 goto cache_acl;
2533
5f39d397
CM
2534 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2535 struct btrfs_inode_item);
5f39d397
CM
2536 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2537 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2538 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2539 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2540 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2541
2542 tspec = btrfs_inode_atime(inode_item);
2543 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2544 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2545
2546 tspec = btrfs_inode_mtime(inode_item);
2547 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2548 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2549
2550 tspec = btrfs_inode_ctime(inode_item);
2551 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2552 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2553
a76a3cd4 2554 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2555 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2556 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2557 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2558 inode->i_rdev = 0;
5f39d397
CM
2559 rdev = btrfs_inode_rdev(leaf, inode_item);
2560
aec7477b 2561 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2562 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 2563cache_acl:
46a53cca
CM
2564 /*
2565 * try to precache a NULL acl entry for files that don't have
2566 * any xattrs or acls
2567 */
33345d01
LZ
2568 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2569 btrfs_ino(inode));
72c04902
AV
2570 if (!maybe_acls)
2571 cache_no_acl(inode);
46a53cca 2572
39279cc3 2573 btrfs_free_path(path);
39279cc3 2574
39279cc3 2575 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2576 case S_IFREG:
2577 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2578 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2579 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2580 inode->i_fop = &btrfs_file_operations;
2581 inode->i_op = &btrfs_file_inode_operations;
2582 break;
2583 case S_IFDIR:
2584 inode->i_fop = &btrfs_dir_file_operations;
2585 if (root == root->fs_info->tree_root)
2586 inode->i_op = &btrfs_dir_ro_inode_operations;
2587 else
2588 inode->i_op = &btrfs_dir_inode_operations;
2589 break;
2590 case S_IFLNK:
2591 inode->i_op = &btrfs_symlink_inode_operations;
2592 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2593 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2594 break;
618e21d5 2595 default:
0279b4cd 2596 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2597 init_special_inode(inode, inode->i_mode, rdev);
2598 break;
39279cc3 2599 }
6cbff00f
CH
2600
2601 btrfs_update_iflags(inode);
39279cc3
CM
2602 return;
2603
2604make_bad:
39279cc3 2605 btrfs_free_path(path);
39279cc3
CM
2606 make_bad_inode(inode);
2607}
2608
d352ac68
CM
2609/*
2610 * given a leaf and an inode, copy the inode fields into the leaf
2611 */
e02119d5
CM
2612static void fill_inode_item(struct btrfs_trans_handle *trans,
2613 struct extent_buffer *leaf,
5f39d397 2614 struct btrfs_inode_item *item,
39279cc3
CM
2615 struct inode *inode)
2616{
5f39d397
CM
2617 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2618 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2619 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2620 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2621 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2622
2623 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2624 inode->i_atime.tv_sec);
2625 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2626 inode->i_atime.tv_nsec);
2627
2628 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2629 inode->i_mtime.tv_sec);
2630 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2631 inode->i_mtime.tv_nsec);
2632
2633 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2634 inode->i_ctime.tv_sec);
2635 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2636 inode->i_ctime.tv_nsec);
2637
a76a3cd4 2638 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2639 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2640 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2641 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2642 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2643 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d82a6f1d 2644 btrfs_set_inode_block_group(leaf, item, 0);
39279cc3
CM
2645}
2646
d352ac68
CM
2647/*
2648 * copy everything in the in-memory inode into the btree.
2649 */
d397712b
CM
2650noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2651 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2652{
2653 struct btrfs_inode_item *inode_item;
2654 struct btrfs_path *path;
5f39d397 2655 struct extent_buffer *leaf;
39279cc3
CM
2656 int ret;
2657
16cdcec7 2658 /*
149e2d76
MX
2659 * If the inode is a free space inode, we can deadlock during commit
2660 * if we put it into the delayed code.
2661 *
2662 * The data relocation inode should also be directly updated
2663 * without delay
16cdcec7 2664 */
2cf8572d 2665 if (!btrfs_is_free_space_inode(root, inode)
149e2d76 2666 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
16cdcec7
MX
2667 ret = btrfs_delayed_update_inode(trans, root, inode);
2668 if (!ret)
2669 btrfs_set_inode_last_trans(trans, inode);
2670 return ret;
2671 }
2672
39279cc3 2673 path = btrfs_alloc_path();
16cdcec7
MX
2674 if (!path)
2675 return -ENOMEM;
2676
b9473439 2677 path->leave_spinning = 1;
16cdcec7
MX
2678 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2679 1);
39279cc3
CM
2680 if (ret) {
2681 if (ret > 0)
2682 ret = -ENOENT;
2683 goto failed;
2684 }
2685
b4ce94de 2686 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2687 leaf = path->nodes[0];
2688 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2689 struct btrfs_inode_item);
39279cc3 2690
e02119d5 2691 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2692 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2693 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2694 ret = 0;
2695failed:
39279cc3
CM
2696 btrfs_free_path(path);
2697 return ret;
2698}
2699
d352ac68
CM
2700/*
2701 * unlink helper that gets used here in inode.c and in the tree logging
2702 * recovery code. It remove a link in a directory with a given name, and
2703 * also drops the back refs in the inode to the directory
2704 */
92986796
AV
2705static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2706 struct btrfs_root *root,
2707 struct inode *dir, struct inode *inode,
2708 const char *name, int name_len)
39279cc3
CM
2709{
2710 struct btrfs_path *path;
39279cc3 2711 int ret = 0;
5f39d397 2712 struct extent_buffer *leaf;
39279cc3 2713 struct btrfs_dir_item *di;
5f39d397 2714 struct btrfs_key key;
aec7477b 2715 u64 index;
33345d01
LZ
2716 u64 ino = btrfs_ino(inode);
2717 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2718
2719 path = btrfs_alloc_path();
54aa1f4d
CM
2720 if (!path) {
2721 ret = -ENOMEM;
554233a6 2722 goto out;
54aa1f4d
CM
2723 }
2724
b9473439 2725 path->leave_spinning = 1;
33345d01 2726 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2727 name, name_len, -1);
2728 if (IS_ERR(di)) {
2729 ret = PTR_ERR(di);
2730 goto err;
2731 }
2732 if (!di) {
2733 ret = -ENOENT;
2734 goto err;
2735 }
5f39d397
CM
2736 leaf = path->nodes[0];
2737 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2738 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2739 if (ret)
2740 goto err;
b3b4aa74 2741 btrfs_release_path(path);
39279cc3 2742
33345d01
LZ
2743 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2744 dir_ino, &index);
aec7477b 2745 if (ret) {
d397712b 2746 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2747 "inode %llu parent %llu\n", name_len, name,
2748 (unsigned long long)ino, (unsigned long long)dir_ino);
aec7477b
JB
2749 goto err;
2750 }
2751
16cdcec7
MX
2752 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2753 if (ret)
39279cc3 2754 goto err;
39279cc3 2755
e02119d5 2756 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2757 inode, dir_ino);
49eb7e46 2758 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2759
2760 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2761 dir, index);
6418c961
CM
2762 if (ret == -ENOENT)
2763 ret = 0;
39279cc3
CM
2764err:
2765 btrfs_free_path(path);
e02119d5
CM
2766 if (ret)
2767 goto out;
2768
2769 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2770 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2771 btrfs_update_inode(trans, root, dir);
e02119d5 2772out:
39279cc3
CM
2773 return ret;
2774}
2775
92986796
AV
2776int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2777 struct btrfs_root *root,
2778 struct inode *dir, struct inode *inode,
2779 const char *name, int name_len)
2780{
2781 int ret;
2782 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2783 if (!ret) {
2784 btrfs_drop_nlink(inode);
2785 ret = btrfs_update_inode(trans, root, inode);
2786 }
2787 return ret;
2788}
2789
2790
a22285a6
YZ
2791/* helper to check if there is any shared block in the path */
2792static int check_path_shared(struct btrfs_root *root,
2793 struct btrfs_path *path)
39279cc3 2794{
a22285a6
YZ
2795 struct extent_buffer *eb;
2796 int level;
0e4dcbef 2797 u64 refs = 1;
5df6a9f6 2798
a22285a6 2799 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2800 int ret;
2801
a22285a6
YZ
2802 if (!path->nodes[level])
2803 break;
2804 eb = path->nodes[level];
2805 if (!btrfs_block_can_be_shared(root, eb))
2806 continue;
2807 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2808 &refs, NULL);
2809 if (refs > 1)
2810 return 1;
5df6a9f6 2811 }
dedefd72 2812 return 0;
39279cc3
CM
2813}
2814
a22285a6
YZ
2815/*
2816 * helper to start transaction for unlink and rmdir.
2817 *
2818 * unlink and rmdir are special in btrfs, they do not always free space.
2819 * so in enospc case, we should make sure they will free space before
2820 * allowing them to use the global metadata reservation.
2821 */
2822static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2823 struct dentry *dentry)
4df27c4d 2824{
39279cc3 2825 struct btrfs_trans_handle *trans;
a22285a6 2826 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2827 struct btrfs_path *path;
a22285a6 2828 struct btrfs_inode_ref *ref;
4df27c4d 2829 struct btrfs_dir_item *di;
7b128766 2830 struct inode *inode = dentry->d_inode;
4df27c4d 2831 u64 index;
a22285a6
YZ
2832 int check_link = 1;
2833 int err = -ENOSPC;
4df27c4d 2834 int ret;
33345d01
LZ
2835 u64 ino = btrfs_ino(inode);
2836 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2837
a22285a6
YZ
2838 trans = btrfs_start_transaction(root, 10);
2839 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2840 return trans;
4df27c4d 2841
33345d01 2842 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2843 return ERR_PTR(-ENOSPC);
4df27c4d 2844
a22285a6
YZ
2845 /* check if there is someone else holds reference */
2846 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2847 return ERR_PTR(-ENOSPC);
4df27c4d 2848
a22285a6
YZ
2849 if (atomic_read(&inode->i_count) > 2)
2850 return ERR_PTR(-ENOSPC);
4df27c4d 2851
a22285a6
YZ
2852 if (xchg(&root->fs_info->enospc_unlink, 1))
2853 return ERR_PTR(-ENOSPC);
2854
2855 path = btrfs_alloc_path();
2856 if (!path) {
2857 root->fs_info->enospc_unlink = 0;
2858 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2859 }
2860
a22285a6 2861 trans = btrfs_start_transaction(root, 0);
5df6a9f6 2862 if (IS_ERR(trans)) {
a22285a6
YZ
2863 btrfs_free_path(path);
2864 root->fs_info->enospc_unlink = 0;
2865 return trans;
2866 }
4df27c4d 2867
a22285a6
YZ
2868 path->skip_locking = 1;
2869 path->search_commit_root = 1;
4df27c4d 2870
a22285a6
YZ
2871 ret = btrfs_lookup_inode(trans, root, path,
2872 &BTRFS_I(dir)->location, 0);
2873 if (ret < 0) {
2874 err = ret;
2875 goto out;
2876 }
2877 if (ret == 0) {
2878 if (check_path_shared(root, path))
2879 goto out;
2880 } else {
2881 check_link = 0;
5df6a9f6 2882 }
b3b4aa74 2883 btrfs_release_path(path);
a22285a6
YZ
2884
2885 ret = btrfs_lookup_inode(trans, root, path,
2886 &BTRFS_I(inode)->location, 0);
2887 if (ret < 0) {
2888 err = ret;
2889 goto out;
2890 }
2891 if (ret == 0) {
2892 if (check_path_shared(root, path))
2893 goto out;
2894 } else {
2895 check_link = 0;
2896 }
b3b4aa74 2897 btrfs_release_path(path);
a22285a6
YZ
2898
2899 if (ret == 0 && S_ISREG(inode->i_mode)) {
2900 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 2901 ino, (u64)-1, 0);
a22285a6
YZ
2902 if (ret < 0) {
2903 err = ret;
2904 goto out;
2905 }
2906 BUG_ON(ret == 0);
2907 if (check_path_shared(root, path))
2908 goto out;
b3b4aa74 2909 btrfs_release_path(path);
a22285a6
YZ
2910 }
2911
2912 if (!check_link) {
2913 err = 0;
2914 goto out;
2915 }
2916
33345d01 2917 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
2918 dentry->d_name.name, dentry->d_name.len, 0);
2919 if (IS_ERR(di)) {
2920 err = PTR_ERR(di);
2921 goto out;
2922 }
2923 if (di) {
2924 if (check_path_shared(root, path))
2925 goto out;
2926 } else {
2927 err = 0;
2928 goto out;
2929 }
b3b4aa74 2930 btrfs_release_path(path);
a22285a6
YZ
2931
2932 ref = btrfs_lookup_inode_ref(trans, root, path,
2933 dentry->d_name.name, dentry->d_name.len,
33345d01 2934 ino, dir_ino, 0);
a22285a6
YZ
2935 if (IS_ERR(ref)) {
2936 err = PTR_ERR(ref);
2937 goto out;
2938 }
2939 BUG_ON(!ref);
2940 if (check_path_shared(root, path))
2941 goto out;
2942 index = btrfs_inode_ref_index(path->nodes[0], ref);
b3b4aa74 2943 btrfs_release_path(path);
a22285a6 2944
16cdcec7
MX
2945 /*
2946 * This is a commit root search, if we can lookup inode item and other
2947 * relative items in the commit root, it means the transaction of
2948 * dir/file creation has been committed, and the dir index item that we
2949 * delay to insert has also been inserted into the commit root. So
2950 * we needn't worry about the delayed insertion of the dir index item
2951 * here.
2952 */
33345d01 2953 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
2954 dentry->d_name.name, dentry->d_name.len, 0);
2955 if (IS_ERR(di)) {
2956 err = PTR_ERR(di);
2957 goto out;
2958 }
2959 BUG_ON(ret == -ENOENT);
2960 if (check_path_shared(root, path))
2961 goto out;
2962
2963 err = 0;
2964out:
2965 btrfs_free_path(path);
2966 if (err) {
2967 btrfs_end_transaction(trans, root);
2968 root->fs_info->enospc_unlink = 0;
2969 return ERR_PTR(err);
2970 }
2971
2972 trans->block_rsv = &root->fs_info->global_block_rsv;
2973 return trans;
2974}
2975
2976static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2977 struct btrfs_root *root)
2978{
2979 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2980 BUG_ON(!root->fs_info->enospc_unlink);
2981 root->fs_info->enospc_unlink = 0;
2982 }
2983 btrfs_end_transaction_throttle(trans, root);
2984}
2985
2986static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2987{
2988 struct btrfs_root *root = BTRFS_I(dir)->root;
2989 struct btrfs_trans_handle *trans;
2990 struct inode *inode = dentry->d_inode;
2991 int ret;
2992 unsigned long nr = 0;
2993
2994 trans = __unlink_start_trans(dir, dentry);
2995 if (IS_ERR(trans))
2996 return PTR_ERR(trans);
5f39d397 2997
12fcfd22
CM
2998 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2999
e02119d5
CM
3000 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3001 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3002 if (ret)
3003 goto out;
7b128766 3004
a22285a6 3005 if (inode->i_nlink == 0) {
7b128766 3006 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3007 if (ret)
3008 goto out;
a22285a6 3009 }
7b128766 3010
b532402e 3011out:
d3c2fdcf 3012 nr = trans->blocks_used;
a22285a6 3013 __unlink_end_trans(trans, root);
d3c2fdcf 3014 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3015 return ret;
3016}
3017
4df27c4d
YZ
3018int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3019 struct btrfs_root *root,
3020 struct inode *dir, u64 objectid,
3021 const char *name, int name_len)
3022{
3023 struct btrfs_path *path;
3024 struct extent_buffer *leaf;
3025 struct btrfs_dir_item *di;
3026 struct btrfs_key key;
3027 u64 index;
3028 int ret;
33345d01 3029 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3030
3031 path = btrfs_alloc_path();
3032 if (!path)
3033 return -ENOMEM;
3034
33345d01 3035 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3036 name, name_len, -1);
c704005d 3037 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
3038
3039 leaf = path->nodes[0];
3040 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3041 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3042 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3043 BUG_ON(ret);
b3b4aa74 3044 btrfs_release_path(path);
4df27c4d
YZ
3045
3046 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3047 objectid, root->root_key.objectid,
33345d01 3048 dir_ino, &index, name, name_len);
4df27c4d
YZ
3049 if (ret < 0) {
3050 BUG_ON(ret != -ENOENT);
33345d01 3051 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3052 name, name_len);
c704005d 3053 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
3054
3055 leaf = path->nodes[0];
3056 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3057 btrfs_release_path(path);
4df27c4d
YZ
3058 index = key.offset;
3059 }
945d8962 3060 btrfs_release_path(path);
4df27c4d 3061
16cdcec7 3062 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4df27c4d 3063 BUG_ON(ret);
4df27c4d
YZ
3064
3065 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3066 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3067 ret = btrfs_update_inode(trans, root, dir);
3068 BUG_ON(ret);
4df27c4d 3069
71d7aed0 3070 btrfs_free_path(path);
4df27c4d
YZ
3071 return 0;
3072}
3073
39279cc3
CM
3074static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3075{
3076 struct inode *inode = dentry->d_inode;
1832a6d5 3077 int err = 0;
39279cc3 3078 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3079 struct btrfs_trans_handle *trans;
1832a6d5 3080 unsigned long nr = 0;
39279cc3 3081
3394e160 3082 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
33345d01 3083 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
3084 return -ENOTEMPTY;
3085
a22285a6
YZ
3086 trans = __unlink_start_trans(dir, dentry);
3087 if (IS_ERR(trans))
5df6a9f6 3088 return PTR_ERR(trans);
5df6a9f6 3089
33345d01 3090 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3091 err = btrfs_unlink_subvol(trans, root, dir,
3092 BTRFS_I(inode)->location.objectid,
3093 dentry->d_name.name,
3094 dentry->d_name.len);
3095 goto out;
3096 }
3097
7b128766
JB
3098 err = btrfs_orphan_add(trans, inode);
3099 if (err)
4df27c4d 3100 goto out;
7b128766 3101
39279cc3 3102 /* now the directory is empty */
e02119d5
CM
3103 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3104 dentry->d_name.name, dentry->d_name.len);
d397712b 3105 if (!err)
dbe674a9 3106 btrfs_i_size_write(inode, 0);
4df27c4d 3107out:
d3c2fdcf 3108 nr = trans->blocks_used;
a22285a6 3109 __unlink_end_trans(trans, root);
d3c2fdcf 3110 btrfs_btree_balance_dirty(root, nr);
3954401f 3111
39279cc3
CM
3112 return err;
3113}
3114
39279cc3
CM
3115/*
3116 * this can truncate away extent items, csum items and directory items.
3117 * It starts at a high offset and removes keys until it can't find
d352ac68 3118 * any higher than new_size
39279cc3
CM
3119 *
3120 * csum items that cross the new i_size are truncated to the new size
3121 * as well.
7b128766
JB
3122 *
3123 * min_type is the minimum key type to truncate down to. If set to 0, this
3124 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3125 */
8082510e
YZ
3126int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3127 struct btrfs_root *root,
3128 struct inode *inode,
3129 u64 new_size, u32 min_type)
39279cc3 3130{
39279cc3 3131 struct btrfs_path *path;
5f39d397 3132 struct extent_buffer *leaf;
39279cc3 3133 struct btrfs_file_extent_item *fi;
8082510e
YZ
3134 struct btrfs_key key;
3135 struct btrfs_key found_key;
39279cc3 3136 u64 extent_start = 0;
db94535d 3137 u64 extent_num_bytes = 0;
5d4f98a2 3138 u64 extent_offset = 0;
39279cc3 3139 u64 item_end = 0;
8082510e
YZ
3140 u64 mask = root->sectorsize - 1;
3141 u32 found_type = (u8)-1;
39279cc3
CM
3142 int found_extent;
3143 int del_item;
85e21bac
CM
3144 int pending_del_nr = 0;
3145 int pending_del_slot = 0;
179e29e4 3146 int extent_type = -1;
771ed689 3147 int encoding;
8082510e
YZ
3148 int ret;
3149 int err = 0;
33345d01 3150 u64 ino = btrfs_ino(inode);
8082510e
YZ
3151
3152 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3153
0eb0e19c
MF
3154 path = btrfs_alloc_path();
3155 if (!path)
3156 return -ENOMEM;
3157 path->reada = -1;
3158
0af3d00b 3159 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3160 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3161
16cdcec7
MX
3162 /*
3163 * This function is also used to drop the items in the log tree before
3164 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3165 * it is used to drop the loged items. So we shouldn't kill the delayed
3166 * items.
3167 */
3168 if (min_type == 0 && root == BTRFS_I(inode)->root)
3169 btrfs_kill_delayed_inode_items(inode);
3170
33345d01 3171 key.objectid = ino;
39279cc3 3172 key.offset = (u64)-1;
5f39d397
CM
3173 key.type = (u8)-1;
3174
85e21bac 3175search_again:
b9473439 3176 path->leave_spinning = 1;
85e21bac 3177 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3178 if (ret < 0) {
3179 err = ret;
3180 goto out;
3181 }
d397712b 3182
85e21bac 3183 if (ret > 0) {
e02119d5
CM
3184 /* there are no items in the tree for us to truncate, we're
3185 * done
3186 */
8082510e
YZ
3187 if (path->slots[0] == 0)
3188 goto out;
85e21bac
CM
3189 path->slots[0]--;
3190 }
3191
d397712b 3192 while (1) {
39279cc3 3193 fi = NULL;
5f39d397
CM
3194 leaf = path->nodes[0];
3195 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3196 found_type = btrfs_key_type(&found_key);
771ed689 3197 encoding = 0;
39279cc3 3198
33345d01 3199 if (found_key.objectid != ino)
39279cc3 3200 break;
5f39d397 3201
85e21bac 3202 if (found_type < min_type)
39279cc3
CM
3203 break;
3204
5f39d397 3205 item_end = found_key.offset;
39279cc3 3206 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3207 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3208 struct btrfs_file_extent_item);
179e29e4 3209 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3210 encoding = btrfs_file_extent_compression(leaf, fi);
3211 encoding |= btrfs_file_extent_encryption(leaf, fi);
3212 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3213
179e29e4 3214 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3215 item_end +=
db94535d 3216 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3217 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3218 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3219 fi);
39279cc3 3220 }
008630c1 3221 item_end--;
39279cc3 3222 }
8082510e
YZ
3223 if (found_type > min_type) {
3224 del_item = 1;
3225 } else {
3226 if (item_end < new_size)
b888db2b 3227 break;
8082510e
YZ
3228 if (found_key.offset >= new_size)
3229 del_item = 1;
3230 else
3231 del_item = 0;
39279cc3 3232 }
39279cc3 3233 found_extent = 0;
39279cc3 3234 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3235 if (found_type != BTRFS_EXTENT_DATA_KEY)
3236 goto delete;
3237
3238 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3239 u64 num_dec;
db94535d 3240 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3241 if (!del_item && !encoding) {
db94535d
CM
3242 u64 orig_num_bytes =
3243 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3244 extent_num_bytes = new_size -
5f39d397 3245 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3246 extent_num_bytes = extent_num_bytes &
3247 ~((u64)root->sectorsize - 1);
db94535d
CM
3248 btrfs_set_file_extent_num_bytes(leaf, fi,
3249 extent_num_bytes);
3250 num_dec = (orig_num_bytes -
9069218d 3251 extent_num_bytes);
e02119d5 3252 if (root->ref_cows && extent_start != 0)
a76a3cd4 3253 inode_sub_bytes(inode, num_dec);
5f39d397 3254 btrfs_mark_buffer_dirty(leaf);
39279cc3 3255 } else {
db94535d
CM
3256 extent_num_bytes =
3257 btrfs_file_extent_disk_num_bytes(leaf,
3258 fi);
5d4f98a2
YZ
3259 extent_offset = found_key.offset -
3260 btrfs_file_extent_offset(leaf, fi);
3261
39279cc3 3262 /* FIXME blocksize != 4096 */
9069218d 3263 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3264 if (extent_start != 0) {
3265 found_extent = 1;
e02119d5 3266 if (root->ref_cows)
a76a3cd4 3267 inode_sub_bytes(inode, num_dec);
e02119d5 3268 }
39279cc3 3269 }
9069218d 3270 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3271 /*
3272 * we can't truncate inline items that have had
3273 * special encodings
3274 */
3275 if (!del_item &&
3276 btrfs_file_extent_compression(leaf, fi) == 0 &&
3277 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3278 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3279 u32 size = new_size - found_key.offset;
3280
3281 if (root->ref_cows) {
a76a3cd4
YZ
3282 inode_sub_bytes(inode, item_end + 1 -
3283 new_size);
e02119d5
CM
3284 }
3285 size =
3286 btrfs_file_extent_calc_inline_size(size);
9069218d 3287 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3288 size, 1);
e02119d5 3289 } else if (root->ref_cows) {
a76a3cd4
YZ
3290 inode_sub_bytes(inode, item_end + 1 -
3291 found_key.offset);
9069218d 3292 }
39279cc3 3293 }
179e29e4 3294delete:
39279cc3 3295 if (del_item) {
85e21bac
CM
3296 if (!pending_del_nr) {
3297 /* no pending yet, add ourselves */
3298 pending_del_slot = path->slots[0];
3299 pending_del_nr = 1;
3300 } else if (pending_del_nr &&
3301 path->slots[0] + 1 == pending_del_slot) {
3302 /* hop on the pending chunk */
3303 pending_del_nr++;
3304 pending_del_slot = path->slots[0];
3305 } else {
d397712b 3306 BUG();
85e21bac 3307 }
39279cc3
CM
3308 } else {
3309 break;
3310 }
0af3d00b
JB
3311 if (found_extent && (root->ref_cows ||
3312 root == root->fs_info->tree_root)) {
b9473439 3313 btrfs_set_path_blocking(path);
39279cc3 3314 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3315 extent_num_bytes, 0,
3316 btrfs_header_owner(leaf),
33345d01 3317 ino, extent_offset);
39279cc3
CM
3318 BUG_ON(ret);
3319 }
85e21bac 3320
8082510e
YZ
3321 if (found_type == BTRFS_INODE_ITEM_KEY)
3322 break;
3323
3324 if (path->slots[0] == 0 ||
3325 path->slots[0] != pending_del_slot) {
82d5902d
LZ
3326 if (root->ref_cows &&
3327 BTRFS_I(inode)->location.objectid !=
3328 BTRFS_FREE_INO_OBJECTID) {
8082510e
YZ
3329 err = -EAGAIN;
3330 goto out;
3331 }
3332 if (pending_del_nr) {
3333 ret = btrfs_del_items(trans, root, path,
3334 pending_del_slot,
3335 pending_del_nr);
3336 BUG_ON(ret);
3337 pending_del_nr = 0;
3338 }
b3b4aa74 3339 btrfs_release_path(path);
85e21bac 3340 goto search_again;
8082510e
YZ
3341 } else {
3342 path->slots[0]--;
85e21bac 3343 }
39279cc3 3344 }
8082510e 3345out:
85e21bac
CM
3346 if (pending_del_nr) {
3347 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3348 pending_del_nr);
d68fc57b 3349 BUG_ON(ret);
85e21bac 3350 }
39279cc3 3351 btrfs_free_path(path);
8082510e 3352 return err;
39279cc3
CM
3353}
3354
3355/*
3356 * taken from block_truncate_page, but does cow as it zeros out
3357 * any bytes left in the last page in the file.
3358 */
3359static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3360{
3361 struct inode *inode = mapping->host;
db94535d 3362 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3363 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3364 struct btrfs_ordered_extent *ordered;
2ac55d41 3365 struct extent_state *cached_state = NULL;
e6dcd2dc 3366 char *kaddr;
db94535d 3367 u32 blocksize = root->sectorsize;
39279cc3
CM
3368 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3369 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3370 struct page *page;
39279cc3 3371 int ret = 0;
a52d9a80 3372 u64 page_start;
e6dcd2dc 3373 u64 page_end;
39279cc3
CM
3374
3375 if ((offset & (blocksize - 1)) == 0)
3376 goto out;
0ca1f7ce 3377 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3378 if (ret)
3379 goto out;
39279cc3
CM
3380
3381 ret = -ENOMEM;
211c17f5 3382again:
a94733d0 3383 page = find_or_create_page(mapping, index, GFP_NOFS);
5d5e103a 3384 if (!page) {
0ca1f7ce 3385 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3386 goto out;
5d5e103a 3387 }
e6dcd2dc
CM
3388
3389 page_start = page_offset(page);
3390 page_end = page_start + PAGE_CACHE_SIZE - 1;
3391
39279cc3 3392 if (!PageUptodate(page)) {
9ebefb18 3393 ret = btrfs_readpage(NULL, page);
39279cc3 3394 lock_page(page);
211c17f5
CM
3395 if (page->mapping != mapping) {
3396 unlock_page(page);
3397 page_cache_release(page);
3398 goto again;
3399 }
39279cc3
CM
3400 if (!PageUptodate(page)) {
3401 ret = -EIO;
89642229 3402 goto out_unlock;
39279cc3
CM
3403 }
3404 }
211c17f5 3405 wait_on_page_writeback(page);
e6dcd2dc 3406
2ac55d41
JB
3407 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3408 GFP_NOFS);
e6dcd2dc
CM
3409 set_page_extent_mapped(page);
3410
3411 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3412 if (ordered) {
2ac55d41
JB
3413 unlock_extent_cached(io_tree, page_start, page_end,
3414 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3415 unlock_page(page);
3416 page_cache_release(page);
eb84ae03 3417 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3418 btrfs_put_ordered_extent(ordered);
3419 goto again;
3420 }
3421
2ac55d41 3422 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3423 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3424 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3425
2ac55d41
JB
3426 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3427 &cached_state);
9ed74f2d 3428 if (ret) {
2ac55d41
JB
3429 unlock_extent_cached(io_tree, page_start, page_end,
3430 &cached_state, GFP_NOFS);
9ed74f2d
JB
3431 goto out_unlock;
3432 }
3433
e6dcd2dc
CM
3434 ret = 0;
3435 if (offset != PAGE_CACHE_SIZE) {
3436 kaddr = kmap(page);
3437 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3438 flush_dcache_page(page);
3439 kunmap(page);
3440 }
247e743c 3441 ClearPageChecked(page);
e6dcd2dc 3442 set_page_dirty(page);
2ac55d41
JB
3443 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3444 GFP_NOFS);
39279cc3 3445
89642229 3446out_unlock:
5d5e103a 3447 if (ret)
0ca1f7ce 3448 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3449 unlock_page(page);
3450 page_cache_release(page);
3451out:
3452 return ret;
3453}
3454
695a0d0d
JB
3455/*
3456 * This function puts in dummy file extents for the area we're creating a hole
3457 * for. So if we are truncating this file to a larger size we need to insert
3458 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3459 * the range between oldsize and size
3460 */
a41ad394 3461int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3462{
9036c102
YZ
3463 struct btrfs_trans_handle *trans;
3464 struct btrfs_root *root = BTRFS_I(inode)->root;
3465 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3466 struct extent_map *em = NULL;
2ac55d41 3467 struct extent_state *cached_state = NULL;
9036c102 3468 u64 mask = root->sectorsize - 1;
a41ad394 3469 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3470 u64 block_end = (size + mask) & ~mask;
3471 u64 last_byte;
3472 u64 cur_offset;
3473 u64 hole_size;
9ed74f2d 3474 int err = 0;
39279cc3 3475
9036c102
YZ
3476 if (size <= hole_start)
3477 return 0;
3478
9036c102
YZ
3479 while (1) {
3480 struct btrfs_ordered_extent *ordered;
3481 btrfs_wait_ordered_range(inode, hole_start,
3482 block_end - hole_start);
2ac55d41
JB
3483 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3484 &cached_state, GFP_NOFS);
9036c102
YZ
3485 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3486 if (!ordered)
3487 break;
2ac55d41
JB
3488 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3489 &cached_state, GFP_NOFS);
9036c102
YZ
3490 btrfs_put_ordered_extent(ordered);
3491 }
39279cc3 3492
9036c102
YZ
3493 cur_offset = hole_start;
3494 while (1) {
3495 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3496 block_end - cur_offset, 0);
c704005d 3497 BUG_ON(IS_ERR_OR_NULL(em));
9036c102
YZ
3498 last_byte = min(extent_map_end(em), block_end);
3499 last_byte = (last_byte + mask) & ~mask;
8082510e 3500 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3501 u64 hint_byte = 0;
9036c102 3502 hole_size = last_byte - cur_offset;
9ed74f2d 3503
a22285a6
YZ
3504 trans = btrfs_start_transaction(root, 2);
3505 if (IS_ERR(trans)) {
3506 err = PTR_ERR(trans);
9ed74f2d 3507 break;
a22285a6 3508 }
8082510e
YZ
3509
3510 err = btrfs_drop_extents(trans, inode, cur_offset,
3511 cur_offset + hole_size,
3512 &hint_byte, 1);
3893e33b
JB
3513 if (err)
3514 break;
8082510e 3515
9036c102 3516 err = btrfs_insert_file_extent(trans, root,
33345d01 3517 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3518 0, hole_size, 0, hole_size,
3519 0, 0, 0);
3893e33b
JB
3520 if (err)
3521 break;
8082510e 3522
9036c102
YZ
3523 btrfs_drop_extent_cache(inode, hole_start,
3524 last_byte - 1, 0);
8082510e
YZ
3525
3526 btrfs_end_transaction(trans, root);
9036c102
YZ
3527 }
3528 free_extent_map(em);
a22285a6 3529 em = NULL;
9036c102 3530 cur_offset = last_byte;
8082510e 3531 if (cur_offset >= block_end)
9036c102
YZ
3532 break;
3533 }
1832a6d5 3534
a22285a6 3535 free_extent_map(em);
2ac55d41
JB
3536 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3537 GFP_NOFS);
9036c102
YZ
3538 return err;
3539}
39279cc3 3540
a41ad394 3541static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3542{
a41ad394 3543 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3544 int ret;
3545
a41ad394 3546 if (newsize == oldsize)
8082510e
YZ
3547 return 0;
3548
a41ad394
JB
3549 if (newsize > oldsize) {
3550 i_size_write(inode, newsize);
3551 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3552 truncate_pagecache(inode, oldsize, newsize);
3553 ret = btrfs_cont_expand(inode, oldsize, newsize);
8082510e 3554 if (ret) {
a41ad394 3555 btrfs_setsize(inode, oldsize);
8082510e
YZ
3556 return ret;
3557 }
3558
930f028a 3559 mark_inode_dirty(inode);
a41ad394 3560 } else {
8082510e 3561
a41ad394
JB
3562 /*
3563 * We're truncating a file that used to have good data down to
3564 * zero. Make sure it gets into the ordered flush list so that
3565 * any new writes get down to disk quickly.
3566 */
3567 if (newsize == 0)
3568 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3569
a41ad394
JB
3570 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3571 truncate_setsize(inode, newsize);
3572 ret = btrfs_truncate(inode);
8082510e
YZ
3573 }
3574
a41ad394 3575 return ret;
8082510e
YZ
3576}
3577
9036c102
YZ
3578static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3579{
3580 struct inode *inode = dentry->d_inode;
b83cc969 3581 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3582 int err;
39279cc3 3583
b83cc969
LZ
3584 if (btrfs_root_readonly(root))
3585 return -EROFS;
3586
9036c102
YZ
3587 err = inode_change_ok(inode, attr);
3588 if (err)
3589 return err;
2bf5a725 3590
5a3f23d5 3591 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3592 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3593 if (err)
3594 return err;
39279cc3 3595 }
9036c102 3596
1025774c
CH
3597 if (attr->ia_valid) {
3598 setattr_copy(inode, attr);
3599 mark_inode_dirty(inode);
3600
3601 if (attr->ia_valid & ATTR_MODE)
3602 err = btrfs_acl_chmod(inode);
3603 }
33268eaf 3604
39279cc3
CM
3605 return err;
3606}
61295eb8 3607
bd555975 3608void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3609{
3610 struct btrfs_trans_handle *trans;
3611 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3612 unsigned long nr;
39279cc3
CM
3613 int ret;
3614
1abe9b8a 3615 trace_btrfs_inode_evict(inode);
3616
39279cc3 3617 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3618 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
2cf8572d 3619 btrfs_is_free_space_inode(root, inode)))
bd555975
AV
3620 goto no_delete;
3621
39279cc3 3622 if (is_bad_inode(inode)) {
7b128766 3623 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3624 goto no_delete;
3625 }
bd555975 3626 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3627 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3628
c71bf099
YZ
3629 if (root->fs_info->log_root_recovering) {
3630 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3631 goto no_delete;
3632 }
3633
76dda93c
YZ
3634 if (inode->i_nlink > 0) {
3635 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3636 goto no_delete;
3637 }
3638
dbe674a9 3639 btrfs_i_size_write(inode, 0);
5f39d397 3640
8082510e 3641 while (1) {
30b4caf5 3642 trans = btrfs_join_transaction(root);
d68fc57b 3643 BUG_ON(IS_ERR(trans));
d68fc57b
YZ
3644 trans->block_rsv = root->orphan_block_rsv;
3645
3646 ret = btrfs_block_rsv_check(trans, root,
3647 root->orphan_block_rsv, 0, 5);
3648 if (ret) {
3649 BUG_ON(ret != -EAGAIN);
3650 ret = btrfs_commit_transaction(trans, root);
3651 BUG_ON(ret);
3652 continue;
3653 }
7b128766 3654
d68fc57b 3655 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3656 if (ret != -EAGAIN)
3657 break;
85e21bac 3658
8082510e
YZ
3659 nr = trans->blocks_used;
3660 btrfs_end_transaction(trans, root);
3661 trans = NULL;
3662 btrfs_btree_balance_dirty(root, nr);
d68fc57b 3663
8082510e 3664 }
5f39d397 3665
8082510e
YZ
3666 if (ret == 0) {
3667 ret = btrfs_orphan_del(trans, inode);
3668 BUG_ON(ret);
3669 }
54aa1f4d 3670
581bb050
LZ
3671 if (!(root == root->fs_info->tree_root ||
3672 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3673 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3674
d3c2fdcf 3675 nr = trans->blocks_used;
54aa1f4d 3676 btrfs_end_transaction(trans, root);
d3c2fdcf 3677 btrfs_btree_balance_dirty(root, nr);
39279cc3 3678no_delete:
bd555975 3679 end_writeback(inode);
8082510e 3680 return;
39279cc3
CM
3681}
3682
3683/*
3684 * this returns the key found in the dir entry in the location pointer.
3685 * If no dir entries were found, location->objectid is 0.
3686 */
3687static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3688 struct btrfs_key *location)
3689{
3690 const char *name = dentry->d_name.name;
3691 int namelen = dentry->d_name.len;
3692 struct btrfs_dir_item *di;
3693 struct btrfs_path *path;
3694 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3695 int ret = 0;
39279cc3
CM
3696
3697 path = btrfs_alloc_path();
d8926bb3
MF
3698 if (!path)
3699 return -ENOMEM;
3954401f 3700
33345d01 3701 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3702 namelen, 0);
0d9f7f3e
Y
3703 if (IS_ERR(di))
3704 ret = PTR_ERR(di);
d397712b 3705
c704005d 3706 if (IS_ERR_OR_NULL(di))
3954401f 3707 goto out_err;
d397712b 3708
5f39d397 3709 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3710out:
39279cc3
CM
3711 btrfs_free_path(path);
3712 return ret;
3954401f
CM
3713out_err:
3714 location->objectid = 0;
3715 goto out;
39279cc3
CM
3716}
3717
3718/*
3719 * when we hit a tree root in a directory, the btrfs part of the inode
3720 * needs to be changed to reflect the root directory of the tree root. This
3721 * is kind of like crossing a mount point.
3722 */
3723static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3724 struct inode *dir,
3725 struct dentry *dentry,
3726 struct btrfs_key *location,
3727 struct btrfs_root **sub_root)
39279cc3 3728{
4df27c4d
YZ
3729 struct btrfs_path *path;
3730 struct btrfs_root *new_root;
3731 struct btrfs_root_ref *ref;
3732 struct extent_buffer *leaf;
3733 int ret;
3734 int err = 0;
39279cc3 3735
4df27c4d
YZ
3736 path = btrfs_alloc_path();
3737 if (!path) {
3738 err = -ENOMEM;
3739 goto out;
3740 }
39279cc3 3741
4df27c4d
YZ
3742 err = -ENOENT;
3743 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3744 BTRFS_I(dir)->root->root_key.objectid,
3745 location->objectid);
3746 if (ret) {
3747 if (ret < 0)
3748 err = ret;
3749 goto out;
3750 }
39279cc3 3751
4df27c4d
YZ
3752 leaf = path->nodes[0];
3753 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 3754 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
3755 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3756 goto out;
39279cc3 3757
4df27c4d
YZ
3758 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3759 (unsigned long)(ref + 1),
3760 dentry->d_name.len);
3761 if (ret)
3762 goto out;
3763
b3b4aa74 3764 btrfs_release_path(path);
4df27c4d
YZ
3765
3766 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3767 if (IS_ERR(new_root)) {
3768 err = PTR_ERR(new_root);
3769 goto out;
3770 }
3771
3772 if (btrfs_root_refs(&new_root->root_item) == 0) {
3773 err = -ENOENT;
3774 goto out;
3775 }
3776
3777 *sub_root = new_root;
3778 location->objectid = btrfs_root_dirid(&new_root->root_item);
3779 location->type = BTRFS_INODE_ITEM_KEY;
3780 location->offset = 0;
3781 err = 0;
3782out:
3783 btrfs_free_path(path);
3784 return err;
39279cc3
CM
3785}
3786
5d4f98a2
YZ
3787static void inode_tree_add(struct inode *inode)
3788{
3789 struct btrfs_root *root = BTRFS_I(inode)->root;
3790 struct btrfs_inode *entry;
03e860bd
FNP
3791 struct rb_node **p;
3792 struct rb_node *parent;
33345d01 3793 u64 ino = btrfs_ino(inode);
03e860bd
FNP
3794again:
3795 p = &root->inode_tree.rb_node;
3796 parent = NULL;
5d4f98a2 3797
1d3382cb 3798 if (inode_unhashed(inode))
76dda93c
YZ
3799 return;
3800
5d4f98a2
YZ
3801 spin_lock(&root->inode_lock);
3802 while (*p) {
3803 parent = *p;
3804 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3805
33345d01 3806 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 3807 p = &parent->rb_left;
33345d01 3808 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 3809 p = &parent->rb_right;
5d4f98a2
YZ
3810 else {
3811 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3812 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3813 rb_erase(parent, &root->inode_tree);
3814 RB_CLEAR_NODE(parent);
3815 spin_unlock(&root->inode_lock);
3816 goto again;
5d4f98a2
YZ
3817 }
3818 }
3819 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3820 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3821 spin_unlock(&root->inode_lock);
3822}
3823
3824static void inode_tree_del(struct inode *inode)
3825{
3826 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3827 int empty = 0;
5d4f98a2 3828
03e860bd 3829 spin_lock(&root->inode_lock);
5d4f98a2 3830 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3831 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3832 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3833 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3834 }
03e860bd 3835 spin_unlock(&root->inode_lock);
76dda93c 3836
0af3d00b
JB
3837 /*
3838 * Free space cache has inodes in the tree root, but the tree root has a
3839 * root_refs of 0, so this could end up dropping the tree root as a
3840 * snapshot, so we need the extra !root->fs_info->tree_root check to
3841 * make sure we don't drop it.
3842 */
3843 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3844 root != root->fs_info->tree_root) {
76dda93c
YZ
3845 synchronize_srcu(&root->fs_info->subvol_srcu);
3846 spin_lock(&root->inode_lock);
3847 empty = RB_EMPTY_ROOT(&root->inode_tree);
3848 spin_unlock(&root->inode_lock);
3849 if (empty)
3850 btrfs_add_dead_root(root);
3851 }
3852}
3853
3854int btrfs_invalidate_inodes(struct btrfs_root *root)
3855{
3856 struct rb_node *node;
3857 struct rb_node *prev;
3858 struct btrfs_inode *entry;
3859 struct inode *inode;
3860 u64 objectid = 0;
3861
3862 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3863
3864 spin_lock(&root->inode_lock);
3865again:
3866 node = root->inode_tree.rb_node;
3867 prev = NULL;
3868 while (node) {
3869 prev = node;
3870 entry = rb_entry(node, struct btrfs_inode, rb_node);
3871
33345d01 3872 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 3873 node = node->rb_left;
33345d01 3874 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
3875 node = node->rb_right;
3876 else
3877 break;
3878 }
3879 if (!node) {
3880 while (prev) {
3881 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 3882 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
3883 node = prev;
3884 break;
3885 }
3886 prev = rb_next(prev);
3887 }
3888 }
3889 while (node) {
3890 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 3891 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
3892 inode = igrab(&entry->vfs_inode);
3893 if (inode) {
3894 spin_unlock(&root->inode_lock);
3895 if (atomic_read(&inode->i_count) > 1)
3896 d_prune_aliases(inode);
3897 /*
45321ac5 3898 * btrfs_drop_inode will have it removed from
76dda93c
YZ
3899 * the inode cache when its usage count
3900 * hits zero.
3901 */
3902 iput(inode);
3903 cond_resched();
3904 spin_lock(&root->inode_lock);
3905 goto again;
3906 }
3907
3908 if (cond_resched_lock(&root->inode_lock))
3909 goto again;
3910
3911 node = rb_next(node);
3912 }
3913 spin_unlock(&root->inode_lock);
3914 return 0;
5d4f98a2
YZ
3915}
3916
e02119d5
CM
3917static int btrfs_init_locked_inode(struct inode *inode, void *p)
3918{
3919 struct btrfs_iget_args *args = p;
3920 inode->i_ino = args->ino;
e02119d5 3921 BTRFS_I(inode)->root = args->root;
6a63209f 3922 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3923 return 0;
3924}
3925
3926static int btrfs_find_actor(struct inode *inode, void *opaque)
3927{
3928 struct btrfs_iget_args *args = opaque;
33345d01 3929 return args->ino == btrfs_ino(inode) &&
d397712b 3930 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3931}
3932
5d4f98a2
YZ
3933static struct inode *btrfs_iget_locked(struct super_block *s,
3934 u64 objectid,
3935 struct btrfs_root *root)
39279cc3
CM
3936{
3937 struct inode *inode;
3938 struct btrfs_iget_args args;
3939 args.ino = objectid;
3940 args.root = root;
3941
3942 inode = iget5_locked(s, objectid, btrfs_find_actor,
3943 btrfs_init_locked_inode,
3944 (void *)&args);
3945 return inode;
3946}
3947
1a54ef8c
BR
3948/* Get an inode object given its location and corresponding root.
3949 * Returns in *is_new if the inode was read from disk
3950 */
3951struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 3952 struct btrfs_root *root, int *new)
1a54ef8c
BR
3953{
3954 struct inode *inode;
1748f843 3955 int bad_inode = 0;
1a54ef8c
BR
3956
3957 inode = btrfs_iget_locked(s, location->objectid, root);
3958 if (!inode)
5d4f98a2 3959 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3960
3961 if (inode->i_state & I_NEW) {
3962 BTRFS_I(inode)->root = root;
3963 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3964 btrfs_read_locked_inode(inode);
1748f843
MF
3965 if (!is_bad_inode(inode)) {
3966 inode_tree_add(inode);
3967 unlock_new_inode(inode);
3968 if (new)
3969 *new = 1;
3970 } else {
3971 bad_inode = 1;
3972 }
3973 }
3974
3975 if (bad_inode) {
3976 iput(inode);
3977 inode = ERR_PTR(-ESTALE);
1a54ef8c
BR
3978 }
3979
3980 return inode;
3981}
3982
4df27c4d
YZ
3983static struct inode *new_simple_dir(struct super_block *s,
3984 struct btrfs_key *key,
3985 struct btrfs_root *root)
3986{
3987 struct inode *inode = new_inode(s);
3988
3989 if (!inode)
3990 return ERR_PTR(-ENOMEM);
3991
4df27c4d
YZ
3992 BTRFS_I(inode)->root = root;
3993 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3994 BTRFS_I(inode)->dummy_inode = 1;
3995
3996 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3997 inode->i_op = &simple_dir_inode_operations;
3998 inode->i_fop = &simple_dir_operations;
3999 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4000 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4001
4002 return inode;
4003}
4004
3de4586c 4005struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4006{
d397712b 4007 struct inode *inode;
4df27c4d 4008 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4009 struct btrfs_root *sub_root = root;
4010 struct btrfs_key location;
76dda93c 4011 int index;
b4aff1f8 4012 int ret = 0;
39279cc3
CM
4013
4014 if (dentry->d_name.len > BTRFS_NAME_LEN)
4015 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4016
b4aff1f8
JB
4017 if (unlikely(d_need_lookup(dentry))) {
4018 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4019 kfree(dentry->d_fsdata);
4020 dentry->d_fsdata = NULL;
4021 d_clear_need_lookup(dentry);
4022 } else {
4023 ret = btrfs_inode_by_name(dir, dentry, &location);
4024 }
5f39d397 4025
39279cc3
CM
4026 if (ret < 0)
4027 return ERR_PTR(ret);
5f39d397 4028
4df27c4d
YZ
4029 if (location.objectid == 0)
4030 return NULL;
4031
4032 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4033 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4034 return inode;
4035 }
4036
4037 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4038
76dda93c 4039 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4040 ret = fixup_tree_root_location(root, dir, dentry,
4041 &location, &sub_root);
4042 if (ret < 0) {
4043 if (ret != -ENOENT)
4044 inode = ERR_PTR(ret);
4045 else
4046 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4047 } else {
73f73415 4048 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4049 }
76dda93c
YZ
4050 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4051
34d19bad 4052 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4053 down_read(&root->fs_info->cleanup_work_sem);
4054 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4055 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4056 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4057 if (ret)
4058 inode = ERR_PTR(ret);
c71bf099
YZ
4059 }
4060
3de4586c
CM
4061 return inode;
4062}
4063
fe15ce44 4064static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4065{
4066 struct btrfs_root *root;
4067
efefb143
YZ
4068 if (!dentry->d_inode && !IS_ROOT(dentry))
4069 dentry = dentry->d_parent;
76dda93c 4070
efefb143
YZ
4071 if (dentry->d_inode) {
4072 root = BTRFS_I(dentry->d_inode)->root;
4073 if (btrfs_root_refs(&root->root_item) == 0)
4074 return 1;
4075 }
76dda93c
YZ
4076 return 0;
4077}
4078
b4aff1f8
JB
4079static void btrfs_dentry_release(struct dentry *dentry)
4080{
4081 if (dentry->d_fsdata)
4082 kfree(dentry->d_fsdata);
4083}
4084
3de4586c
CM
4085static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4086 struct nameidata *nd)
4087{
a9049376 4088 return d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
39279cc3
CM
4089}
4090
16cdcec7 4091unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4092 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4093};
4094
cbdf5a24
DW
4095static int btrfs_real_readdir(struct file *filp, void *dirent,
4096 filldir_t filldir)
39279cc3 4097{
6da6abae 4098 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4099 struct btrfs_root *root = BTRFS_I(inode)->root;
4100 struct btrfs_item *item;
4101 struct btrfs_dir_item *di;
4102 struct btrfs_key key;
5f39d397 4103 struct btrfs_key found_key;
39279cc3 4104 struct btrfs_path *path;
16cdcec7
MX
4105 struct list_head ins_list;
4106 struct list_head del_list;
b4aff1f8 4107 struct qstr q;
39279cc3 4108 int ret;
5f39d397 4109 struct extent_buffer *leaf;
39279cc3 4110 int slot;
39279cc3
CM
4111 unsigned char d_type;
4112 int over = 0;
4113 u32 di_cur;
4114 u32 di_total;
4115 u32 di_len;
4116 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4117 char tmp_name[32];
4118 char *name_ptr;
4119 int name_len;
16cdcec7 4120 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4121
4122 /* FIXME, use a real flag for deciding about the key type */
4123 if (root->fs_info->tree_root == root)
4124 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4125
3954401f
CM
4126 /* special case for "." */
4127 if (filp->f_pos == 0) {
33345d01 4128 over = filldir(dirent, ".", 1, 1, btrfs_ino(inode), DT_DIR);
3954401f
CM
4129 if (over)
4130 return 0;
4131 filp->f_pos = 1;
4132 }
3954401f
CM
4133 /* special case for .., just use the back ref */
4134 if (filp->f_pos == 1) {
5ecc7e5d 4135 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4136 over = filldir(dirent, "..", 2,
5ecc7e5d 4137 2, pino, DT_DIR);
3954401f 4138 if (over)
49593bfa 4139 return 0;
3954401f
CM
4140 filp->f_pos = 2;
4141 }
49593bfa 4142 path = btrfs_alloc_path();
16cdcec7
MX
4143 if (!path)
4144 return -ENOMEM;
ff5714cc 4145
026fd317 4146 path->reada = 1;
49593bfa 4147
16cdcec7
MX
4148 if (key_type == BTRFS_DIR_INDEX_KEY) {
4149 INIT_LIST_HEAD(&ins_list);
4150 INIT_LIST_HEAD(&del_list);
4151 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4152 }
4153
39279cc3
CM
4154 btrfs_set_key_type(&key, key_type);
4155 key.offset = filp->f_pos;
33345d01 4156 key.objectid = btrfs_ino(inode);
5f39d397 4157
39279cc3
CM
4158 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4159 if (ret < 0)
4160 goto err;
49593bfa
DW
4161
4162 while (1) {
5f39d397 4163 leaf = path->nodes[0];
39279cc3 4164 slot = path->slots[0];
b9e03af0
LZ
4165 if (slot >= btrfs_header_nritems(leaf)) {
4166 ret = btrfs_next_leaf(root, path);
4167 if (ret < 0)
4168 goto err;
4169 else if (ret > 0)
4170 break;
4171 continue;
39279cc3 4172 }
3de4586c 4173
5f39d397
CM
4174 item = btrfs_item_nr(leaf, slot);
4175 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4176
4177 if (found_key.objectid != key.objectid)
39279cc3 4178 break;
5f39d397 4179 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4180 break;
5f39d397 4181 if (found_key.offset < filp->f_pos)
b9e03af0 4182 goto next;
16cdcec7
MX
4183 if (key_type == BTRFS_DIR_INDEX_KEY &&
4184 btrfs_should_delete_dir_index(&del_list,
4185 found_key.offset))
4186 goto next;
5f39d397
CM
4187
4188 filp->f_pos = found_key.offset;
16cdcec7 4189 is_curr = 1;
49593bfa 4190
39279cc3
CM
4191 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4192 di_cur = 0;
5f39d397 4193 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4194
4195 while (di_cur < di_total) {
5f39d397 4196 struct btrfs_key location;
b4aff1f8 4197 struct dentry *tmp;
5f39d397 4198
22a94d44
JB
4199 if (verify_dir_item(root, leaf, di))
4200 break;
4201
5f39d397 4202 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4203 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4204 name_ptr = tmp_name;
4205 } else {
4206 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4207 if (!name_ptr) {
4208 ret = -ENOMEM;
4209 goto err;
4210 }
5f39d397
CM
4211 }
4212 read_extent_buffer(leaf, name_ptr,
4213 (unsigned long)(di + 1), name_len);
4214
4215 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4216 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 4217
b4aff1f8
JB
4218 q.name = name_ptr;
4219 q.len = name_len;
4220 q.hash = full_name_hash(q.name, q.len);
4221 tmp = d_lookup(filp->f_dentry, &q);
4222 if (!tmp) {
4223 struct btrfs_key *newkey;
4224
4225 newkey = kzalloc(sizeof(struct btrfs_key),
4226 GFP_NOFS);
4227 if (!newkey)
4228 goto no_dentry;
4229 tmp = d_alloc(filp->f_dentry, &q);
4230 if (!tmp) {
4231 kfree(newkey);
4232 dput(tmp);
4233 goto no_dentry;
4234 }
4235 memcpy(newkey, &location,
4236 sizeof(struct btrfs_key));
4237 tmp->d_fsdata = newkey;
4238 tmp->d_flags |= DCACHE_NEED_LOOKUP;
4239 d_rehash(tmp);
4240 dput(tmp);
4241 } else {
4242 dput(tmp);
4243 }
4244no_dentry:
3de4586c
CM
4245 /* is this a reference to our own snapshot? If so
4246 * skip it
4247 */
4248 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4249 location.objectid == root->root_key.objectid) {
4250 over = 0;
4251 goto skip;
4252 }
5f39d397 4253 over = filldir(dirent, name_ptr, name_len,
49593bfa 4254 found_key.offset, location.objectid,
39279cc3 4255 d_type);
5f39d397 4256
3de4586c 4257skip:
5f39d397
CM
4258 if (name_ptr != tmp_name)
4259 kfree(name_ptr);
4260
39279cc3
CM
4261 if (over)
4262 goto nopos;
5103e947 4263 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4264 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4265 di_cur += di_len;
4266 di = (struct btrfs_dir_item *)((char *)di + di_len);
4267 }
b9e03af0
LZ
4268next:
4269 path->slots[0]++;
39279cc3 4270 }
49593bfa 4271
16cdcec7
MX
4272 if (key_type == BTRFS_DIR_INDEX_KEY) {
4273 if (is_curr)
4274 filp->f_pos++;
4275 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4276 &ins_list);
4277 if (ret)
4278 goto nopos;
4279 }
4280
49593bfa 4281 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4282 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4283 /*
4284 * 32-bit glibc will use getdents64, but then strtol -
4285 * so the last number we can serve is this.
4286 */
4287 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4288 else
4289 filp->f_pos++;
39279cc3
CM
4290nopos:
4291 ret = 0;
4292err:
16cdcec7
MX
4293 if (key_type == BTRFS_DIR_INDEX_KEY)
4294 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4295 btrfs_free_path(path);
39279cc3
CM
4296 return ret;
4297}
4298
a9185b41 4299int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4300{
4301 struct btrfs_root *root = BTRFS_I(inode)->root;
4302 struct btrfs_trans_handle *trans;
4303 int ret = 0;
0af3d00b 4304 bool nolock = false;
39279cc3 4305
8929ecfa 4306 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4307 return 0;
4308
2cf8572d 4309 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
82d5902d 4310 nolock = true;
0af3d00b 4311
a9185b41 4312 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4313 if (nolock)
7a7eaa40 4314 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4315 else
7a7eaa40 4316 trans = btrfs_join_transaction(root);
3612b495
TI
4317 if (IS_ERR(trans))
4318 return PTR_ERR(trans);
0af3d00b
JB
4319 if (nolock)
4320 ret = btrfs_end_transaction_nolock(trans, root);
4321 else
4322 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4323 }
4324 return ret;
4325}
4326
4327/*
54aa1f4d 4328 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4329 * inode changes. But, it is most likely to find the inode in cache.
4330 * FIXME, needs more benchmarking...there are no reasons other than performance
4331 * to keep or drop this code.
4332 */
aa385729 4333void btrfs_dirty_inode(struct inode *inode, int flags)
39279cc3
CM
4334{
4335 struct btrfs_root *root = BTRFS_I(inode)->root;
4336 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4337 int ret;
4338
4339 if (BTRFS_I(inode)->dummy_inode)
4340 return;
39279cc3 4341
7a7eaa40 4342 trans = btrfs_join_transaction(root);
3612b495 4343 BUG_ON(IS_ERR(trans));
8929ecfa
YZ
4344
4345 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4346 if (ret && ret == -ENOSPC) {
4347 /* whoops, lets try again with the full transaction */
4348 btrfs_end_transaction(trans, root);
4349 trans = btrfs_start_transaction(root, 1);
9aeead73 4350 if (IS_ERR(trans)) {
7a36ddec 4351 printk_ratelimited(KERN_ERR "btrfs: fail to "
33345d01
LZ
4352 "dirty inode %llu error %ld\n",
4353 (unsigned long long)btrfs_ino(inode),
4354 PTR_ERR(trans));
9aeead73
CM
4355 return;
4356 }
8929ecfa 4357
94b60442
CM
4358 ret = btrfs_update_inode(trans, root, inode);
4359 if (ret) {
7a36ddec 4360 printk_ratelimited(KERN_ERR "btrfs: fail to "
33345d01
LZ
4361 "dirty inode %llu error %d\n",
4362 (unsigned long long)btrfs_ino(inode),
4363 ret);
94b60442
CM
4364 }
4365 }
39279cc3 4366 btrfs_end_transaction(trans, root);
16cdcec7
MX
4367 if (BTRFS_I(inode)->delayed_node)
4368 btrfs_balance_delayed_items(root);
39279cc3
CM
4369}
4370
d352ac68
CM
4371/*
4372 * find the highest existing sequence number in a directory
4373 * and then set the in-memory index_cnt variable to reflect
4374 * free sequence numbers
4375 */
aec7477b
JB
4376static int btrfs_set_inode_index_count(struct inode *inode)
4377{
4378 struct btrfs_root *root = BTRFS_I(inode)->root;
4379 struct btrfs_key key, found_key;
4380 struct btrfs_path *path;
4381 struct extent_buffer *leaf;
4382 int ret;
4383
33345d01 4384 key.objectid = btrfs_ino(inode);
aec7477b
JB
4385 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4386 key.offset = (u64)-1;
4387
4388 path = btrfs_alloc_path();
4389 if (!path)
4390 return -ENOMEM;
4391
4392 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4393 if (ret < 0)
4394 goto out;
4395 /* FIXME: we should be able to handle this */
4396 if (ret == 0)
4397 goto out;
4398 ret = 0;
4399
4400 /*
4401 * MAGIC NUMBER EXPLANATION:
4402 * since we search a directory based on f_pos we have to start at 2
4403 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4404 * else has to start at 2
4405 */
4406 if (path->slots[0] == 0) {
4407 BTRFS_I(inode)->index_cnt = 2;
4408 goto out;
4409 }
4410
4411 path->slots[0]--;
4412
4413 leaf = path->nodes[0];
4414 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4415
33345d01 4416 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4417 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4418 BTRFS_I(inode)->index_cnt = 2;
4419 goto out;
4420 }
4421
4422 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4423out:
4424 btrfs_free_path(path);
4425 return ret;
4426}
4427
d352ac68
CM
4428/*
4429 * helper to find a free sequence number in a given directory. This current
4430 * code is very simple, later versions will do smarter things in the btree
4431 */
3de4586c 4432int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4433{
4434 int ret = 0;
4435
4436 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4437 ret = btrfs_inode_delayed_dir_index_count(dir);
4438 if (ret) {
4439 ret = btrfs_set_inode_index_count(dir);
4440 if (ret)
4441 return ret;
4442 }
aec7477b
JB
4443 }
4444
00e4e6b3 4445 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4446 BTRFS_I(dir)->index_cnt++;
4447
4448 return ret;
4449}
4450
39279cc3
CM
4451static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4452 struct btrfs_root *root,
aec7477b 4453 struct inode *dir,
9c58309d 4454 const char *name, int name_len,
d82a6f1d
JB
4455 u64 ref_objectid, u64 objectid, int mode,
4456 u64 *index)
39279cc3
CM
4457{
4458 struct inode *inode;
5f39d397 4459 struct btrfs_inode_item *inode_item;
39279cc3 4460 struct btrfs_key *location;
5f39d397 4461 struct btrfs_path *path;
9c58309d
CM
4462 struct btrfs_inode_ref *ref;
4463 struct btrfs_key key[2];
4464 u32 sizes[2];
4465 unsigned long ptr;
39279cc3
CM
4466 int ret;
4467 int owner;
4468
5f39d397 4469 path = btrfs_alloc_path();
d8926bb3
MF
4470 if (!path)
4471 return ERR_PTR(-ENOMEM);
5f39d397 4472
39279cc3 4473 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4474 if (!inode) {
4475 btrfs_free_path(path);
39279cc3 4476 return ERR_PTR(-ENOMEM);
8fb27640 4477 }
39279cc3 4478
581bb050
LZ
4479 /*
4480 * we have to initialize this early, so we can reclaim the inode
4481 * number if we fail afterwards in this function.
4482 */
4483 inode->i_ino = objectid;
4484
aec7477b 4485 if (dir) {
1abe9b8a 4486 trace_btrfs_inode_request(dir);
4487
3de4586c 4488 ret = btrfs_set_inode_index(dir, index);
09771430 4489 if (ret) {
8fb27640 4490 btrfs_free_path(path);
09771430 4491 iput(inode);
aec7477b 4492 return ERR_PTR(ret);
09771430 4493 }
aec7477b
JB
4494 }
4495 /*
4496 * index_cnt is ignored for everything but a dir,
4497 * btrfs_get_inode_index_count has an explanation for the magic
4498 * number
4499 */
4500 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4501 BTRFS_I(inode)->root = root;
e02119d5 4502 BTRFS_I(inode)->generation = trans->transid;
76195853 4503 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4504 btrfs_set_inode_space_info(root, inode);
b888db2b 4505
569254b0 4506 if (S_ISDIR(mode))
39279cc3
CM
4507 owner = 0;
4508 else
4509 owner = 1;
9c58309d
CM
4510
4511 key[0].objectid = objectid;
4512 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4513 key[0].offset = 0;
4514
4515 key[1].objectid = objectid;
4516 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4517 key[1].offset = ref_objectid;
4518
4519 sizes[0] = sizeof(struct btrfs_inode_item);
4520 sizes[1] = name_len + sizeof(*ref);
4521
b9473439 4522 path->leave_spinning = 1;
9c58309d
CM
4523 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4524 if (ret != 0)
5f39d397
CM
4525 goto fail;
4526
ecc11fab 4527 inode_init_owner(inode, dir, mode);
a76a3cd4 4528 inode_set_bytes(inode, 0);
39279cc3 4529 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4530 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4531 struct btrfs_inode_item);
e02119d5 4532 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4533
4534 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4535 struct btrfs_inode_ref);
4536 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4537 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4538 ptr = (unsigned long)(ref + 1);
4539 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4540
5f39d397
CM
4541 btrfs_mark_buffer_dirty(path->nodes[0]);
4542 btrfs_free_path(path);
4543
39279cc3
CM
4544 location = &BTRFS_I(inode)->location;
4545 location->objectid = objectid;
39279cc3
CM
4546 location->offset = 0;
4547 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4548
6cbff00f
CH
4549 btrfs_inherit_iflags(inode, dir);
4550
569254b0 4551 if (S_ISREG(mode)) {
94272164
CM
4552 if (btrfs_test_opt(root, NODATASUM))
4553 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4554 if (btrfs_test_opt(root, NODATACOW) ||
4555 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4556 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4557 }
4558
39279cc3 4559 insert_inode_hash(inode);
5d4f98a2 4560 inode_tree_add(inode);
1abe9b8a 4561
4562 trace_btrfs_inode_new(inode);
1973f0fa 4563 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 4564
39279cc3 4565 return inode;
5f39d397 4566fail:
aec7477b
JB
4567 if (dir)
4568 BTRFS_I(dir)->index_cnt--;
5f39d397 4569 btrfs_free_path(path);
09771430 4570 iput(inode);
5f39d397 4571 return ERR_PTR(ret);
39279cc3
CM
4572}
4573
4574static inline u8 btrfs_inode_type(struct inode *inode)
4575{
4576 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4577}
4578
d352ac68
CM
4579/*
4580 * utility function to add 'inode' into 'parent_inode' with
4581 * a give name and a given sequence number.
4582 * if 'add_backref' is true, also insert a backref from the
4583 * inode to the parent directory.
4584 */
e02119d5
CM
4585int btrfs_add_link(struct btrfs_trans_handle *trans,
4586 struct inode *parent_inode, struct inode *inode,
4587 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4588{
4df27c4d 4589 int ret = 0;
39279cc3 4590 struct btrfs_key key;
e02119d5 4591 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4592 u64 ino = btrfs_ino(inode);
4593 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4594
33345d01 4595 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4596 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4597 } else {
33345d01 4598 key.objectid = ino;
4df27c4d
YZ
4599 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4600 key.offset = 0;
4601 }
4602
33345d01 4603 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4604 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4605 key.objectid, root->root_key.objectid,
33345d01 4606 parent_ino, index, name, name_len);
4df27c4d 4607 } else if (add_backref) {
33345d01
LZ
4608 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4609 parent_ino, index);
4df27c4d 4610 }
39279cc3 4611
39279cc3 4612 if (ret == 0) {
4df27c4d 4613 ret = btrfs_insert_dir_item(trans, root, name, name_len,
16cdcec7 4614 parent_inode, &key,
4df27c4d
YZ
4615 btrfs_inode_type(inode), index);
4616 BUG_ON(ret);
4617
dbe674a9 4618 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4619 name_len * 2);
79c44584 4620 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4621 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4622 }
4623 return ret;
4624}
4625
4626static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4627 struct inode *dir, struct dentry *dentry,
4628 struct inode *inode, int backref, u64 index)
39279cc3 4629{
a1b075d2
JB
4630 int err = btrfs_add_link(trans, dir, inode,
4631 dentry->d_name.name, dentry->d_name.len,
4632 backref, index);
39279cc3
CM
4633 if (!err) {
4634 d_instantiate(dentry, inode);
4635 return 0;
4636 }
4637 if (err > 0)
4638 err = -EEXIST;
4639 return err;
4640}
4641
618e21d5
JB
4642static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4643 int mode, dev_t rdev)
4644{
4645 struct btrfs_trans_handle *trans;
4646 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4647 struct inode *inode = NULL;
618e21d5
JB
4648 int err;
4649 int drop_inode = 0;
4650 u64 objectid;
1832a6d5 4651 unsigned long nr = 0;
00e4e6b3 4652 u64 index = 0;
618e21d5
JB
4653
4654 if (!new_valid_dev(rdev))
4655 return -EINVAL;
4656
9ed74f2d
JB
4657 /*
4658 * 2 for inode item and ref
4659 * 2 for dir items
4660 * 1 for xattr if selinux is on
4661 */
a22285a6
YZ
4662 trans = btrfs_start_transaction(root, 5);
4663 if (IS_ERR(trans))
4664 return PTR_ERR(trans);
1832a6d5 4665
581bb050
LZ
4666 err = btrfs_find_free_ino(root, &objectid);
4667 if (err)
4668 goto out_unlock;
4669
aec7477b 4670 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4671 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4672 mode, &index);
7cf96da3
TI
4673 if (IS_ERR(inode)) {
4674 err = PTR_ERR(inode);
618e21d5 4675 goto out_unlock;
7cf96da3 4676 }
618e21d5 4677
2a7dba39 4678 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4679 if (err) {
4680 drop_inode = 1;
4681 goto out_unlock;
4682 }
4683
a1b075d2 4684 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4685 if (err)
4686 drop_inode = 1;
4687 else {
4688 inode->i_op = &btrfs_special_inode_operations;
4689 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4690 btrfs_update_inode(trans, root, inode);
618e21d5 4691 }
618e21d5 4692out_unlock:
d3c2fdcf 4693 nr = trans->blocks_used;
89ce8a63 4694 btrfs_end_transaction_throttle(trans, root);
a22285a6 4695 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4696 if (drop_inode) {
4697 inode_dec_link_count(inode);
4698 iput(inode);
4699 }
618e21d5
JB
4700 return err;
4701}
4702
39279cc3
CM
4703static int btrfs_create(struct inode *dir, struct dentry *dentry,
4704 int mode, struct nameidata *nd)
4705{
4706 struct btrfs_trans_handle *trans;
4707 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4708 struct inode *inode = NULL;
39279cc3 4709 int drop_inode = 0;
a22285a6 4710 int err;
1832a6d5 4711 unsigned long nr = 0;
39279cc3 4712 u64 objectid;
00e4e6b3 4713 u64 index = 0;
39279cc3 4714
9ed74f2d
JB
4715 /*
4716 * 2 for inode item and ref
4717 * 2 for dir items
4718 * 1 for xattr if selinux is on
4719 */
a22285a6
YZ
4720 trans = btrfs_start_transaction(root, 5);
4721 if (IS_ERR(trans))
4722 return PTR_ERR(trans);
9ed74f2d 4723
581bb050
LZ
4724 err = btrfs_find_free_ino(root, &objectid);
4725 if (err)
4726 goto out_unlock;
4727
aec7477b 4728 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4729 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4730 mode, &index);
7cf96da3
TI
4731 if (IS_ERR(inode)) {
4732 err = PTR_ERR(inode);
39279cc3 4733 goto out_unlock;
7cf96da3 4734 }
39279cc3 4735
2a7dba39 4736 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4737 if (err) {
4738 drop_inode = 1;
4739 goto out_unlock;
4740 }
4741
a1b075d2 4742 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4743 if (err)
4744 drop_inode = 1;
4745 else {
4746 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4747 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4748 inode->i_fop = &btrfs_file_operations;
4749 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4750 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4751 }
39279cc3 4752out_unlock:
d3c2fdcf 4753 nr = trans->blocks_used;
ab78c84d 4754 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4755 if (drop_inode) {
4756 inode_dec_link_count(inode);
4757 iput(inode);
4758 }
d3c2fdcf 4759 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4760 return err;
4761}
4762
4763static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4764 struct dentry *dentry)
4765{
4766 struct btrfs_trans_handle *trans;
4767 struct btrfs_root *root = BTRFS_I(dir)->root;
4768 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4769 u64 index;
1832a6d5 4770 unsigned long nr = 0;
39279cc3
CM
4771 int err;
4772 int drop_inode = 0;
4773
4a8be425
TH
4774 /* do not allow sys_link's with other subvols of the same device */
4775 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4776 return -EXDEV;
4a8be425 4777
c055e99e
AV
4778 if (inode->i_nlink == ~0U)
4779 return -EMLINK;
4a8be425 4780
3de4586c 4781 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4782 if (err)
4783 goto fail;
4784
a22285a6 4785 /*
7e6b6465 4786 * 2 items for inode and inode ref
a22285a6 4787 * 2 items for dir items
7e6b6465 4788 * 1 item for parent inode
a22285a6 4789 */
7e6b6465 4790 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4791 if (IS_ERR(trans)) {
4792 err = PTR_ERR(trans);
4793 goto fail;
4794 }
5f39d397 4795
3153495d
MX
4796 btrfs_inc_nlink(inode);
4797 inode->i_ctime = CURRENT_TIME;
7de9c6ee 4798 ihold(inode);
aec7477b 4799
a1b075d2 4800 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4801
a5719521 4802 if (err) {
54aa1f4d 4803 drop_inode = 1;
a5719521 4804 } else {
10d9f309 4805 struct dentry *parent = dentry->d_parent;
a5719521
YZ
4806 err = btrfs_update_inode(trans, root, inode);
4807 BUG_ON(err);
6a912213 4808 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 4809 }
39279cc3 4810
d3c2fdcf 4811 nr = trans->blocks_used;
ab78c84d 4812 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4813fail:
39279cc3
CM
4814 if (drop_inode) {
4815 inode_dec_link_count(inode);
4816 iput(inode);
4817 }
d3c2fdcf 4818 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4819 return err;
4820}
4821
39279cc3
CM
4822static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4823{
b9d86667 4824 struct inode *inode = NULL;
39279cc3
CM
4825 struct btrfs_trans_handle *trans;
4826 struct btrfs_root *root = BTRFS_I(dir)->root;
4827 int err = 0;
4828 int drop_on_err = 0;
b9d86667 4829 u64 objectid = 0;
00e4e6b3 4830 u64 index = 0;
d3c2fdcf 4831 unsigned long nr = 1;
39279cc3 4832
9ed74f2d
JB
4833 /*
4834 * 2 items for inode and ref
4835 * 2 items for dir items
4836 * 1 for xattr if selinux is on
4837 */
a22285a6
YZ
4838 trans = btrfs_start_transaction(root, 5);
4839 if (IS_ERR(trans))
4840 return PTR_ERR(trans);
39279cc3 4841
581bb050
LZ
4842 err = btrfs_find_free_ino(root, &objectid);
4843 if (err)
4844 goto out_fail;
4845
aec7477b 4846 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4847 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4848 S_IFDIR | mode, &index);
39279cc3
CM
4849 if (IS_ERR(inode)) {
4850 err = PTR_ERR(inode);
4851 goto out_fail;
4852 }
5f39d397 4853
39279cc3 4854 drop_on_err = 1;
33268eaf 4855
2a7dba39 4856 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4857 if (err)
4858 goto out_fail;
4859
39279cc3
CM
4860 inode->i_op = &btrfs_dir_inode_operations;
4861 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 4862
dbe674a9 4863 btrfs_i_size_write(inode, 0);
39279cc3
CM
4864 err = btrfs_update_inode(trans, root, inode);
4865 if (err)
4866 goto out_fail;
5f39d397 4867
a1b075d2
JB
4868 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4869 dentry->d_name.len, 0, index);
39279cc3
CM
4870 if (err)
4871 goto out_fail;
5f39d397 4872
39279cc3
CM
4873 d_instantiate(dentry, inode);
4874 drop_on_err = 0;
39279cc3
CM
4875
4876out_fail:
d3c2fdcf 4877 nr = trans->blocks_used;
ab78c84d 4878 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4879 if (drop_on_err)
4880 iput(inode);
d3c2fdcf 4881 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4882 return err;
4883}
4884
d352ac68
CM
4885/* helper for btfs_get_extent. Given an existing extent in the tree,
4886 * and an extent that you want to insert, deal with overlap and insert
4887 * the new extent into the tree.
4888 */
3b951516
CM
4889static int merge_extent_mapping(struct extent_map_tree *em_tree,
4890 struct extent_map *existing,
e6dcd2dc
CM
4891 struct extent_map *em,
4892 u64 map_start, u64 map_len)
3b951516
CM
4893{
4894 u64 start_diff;
3b951516 4895
e6dcd2dc
CM
4896 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4897 start_diff = map_start - em->start;
4898 em->start = map_start;
4899 em->len = map_len;
c8b97818
CM
4900 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4901 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4902 em->block_start += start_diff;
c8b97818
CM
4903 em->block_len -= start_diff;
4904 }
e6dcd2dc 4905 return add_extent_mapping(em_tree, em);
3b951516
CM
4906}
4907
c8b97818
CM
4908static noinline int uncompress_inline(struct btrfs_path *path,
4909 struct inode *inode, struct page *page,
4910 size_t pg_offset, u64 extent_offset,
4911 struct btrfs_file_extent_item *item)
4912{
4913 int ret;
4914 struct extent_buffer *leaf = path->nodes[0];
4915 char *tmp;
4916 size_t max_size;
4917 unsigned long inline_size;
4918 unsigned long ptr;
261507a0 4919 int compress_type;
c8b97818
CM
4920
4921 WARN_ON(pg_offset != 0);
261507a0 4922 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
4923 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4924 inline_size = btrfs_file_extent_inline_item_len(leaf,
4925 btrfs_item_nr(leaf, path->slots[0]));
4926 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
4927 if (!tmp)
4928 return -ENOMEM;
c8b97818
CM
4929 ptr = btrfs_file_extent_inline_start(item);
4930
4931 read_extent_buffer(leaf, tmp, ptr, inline_size);
4932
5b050f04 4933 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
4934 ret = btrfs_decompress(compress_type, tmp, page,
4935 extent_offset, inline_size, max_size);
c8b97818
CM
4936 if (ret) {
4937 char *kaddr = kmap_atomic(page, KM_USER0);
4938 unsigned long copy_size = min_t(u64,
4939 PAGE_CACHE_SIZE - pg_offset,
4940 max_size - extent_offset);
4941 memset(kaddr + pg_offset, 0, copy_size);
4942 kunmap_atomic(kaddr, KM_USER0);
4943 }
4944 kfree(tmp);
4945 return 0;
4946}
4947
d352ac68
CM
4948/*
4949 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4950 * the ugly parts come from merging extents from the disk with the in-ram
4951 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4952 * where the in-ram extents might be locked pending data=ordered completion.
4953 *
4954 * This also copies inline extents directly into the page.
4955 */
d397712b 4956
a52d9a80 4957struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4958 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4959 int create)
4960{
4961 int ret;
4962 int err = 0;
db94535d 4963 u64 bytenr;
a52d9a80
CM
4964 u64 extent_start = 0;
4965 u64 extent_end = 0;
33345d01 4966 u64 objectid = btrfs_ino(inode);
a52d9a80 4967 u32 found_type;
f421950f 4968 struct btrfs_path *path = NULL;
a52d9a80
CM
4969 struct btrfs_root *root = BTRFS_I(inode)->root;
4970 struct btrfs_file_extent_item *item;
5f39d397
CM
4971 struct extent_buffer *leaf;
4972 struct btrfs_key found_key;
a52d9a80
CM
4973 struct extent_map *em = NULL;
4974 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4975 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4976 struct btrfs_trans_handle *trans = NULL;
261507a0 4977 int compress_type;
a52d9a80 4978
a52d9a80 4979again:
890871be 4980 read_lock(&em_tree->lock);
d1310b2e 4981 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4982 if (em)
4983 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4984 read_unlock(&em_tree->lock);
d1310b2e 4985
a52d9a80 4986 if (em) {
e1c4b745
CM
4987 if (em->start > start || em->start + em->len <= start)
4988 free_extent_map(em);
4989 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4990 free_extent_map(em);
4991 else
4992 goto out;
a52d9a80 4993 }
172ddd60 4994 em = alloc_extent_map();
a52d9a80 4995 if (!em) {
d1310b2e
CM
4996 err = -ENOMEM;
4997 goto out;
a52d9a80 4998 }
e6dcd2dc 4999 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5000 em->start = EXTENT_MAP_HOLE;
445a6944 5001 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5002 em->len = (u64)-1;
c8b97818 5003 em->block_len = (u64)-1;
f421950f
CM
5004
5005 if (!path) {
5006 path = btrfs_alloc_path();
026fd317
JB
5007 if (!path) {
5008 err = -ENOMEM;
5009 goto out;
5010 }
5011 /*
5012 * Chances are we'll be called again, so go ahead and do
5013 * readahead
5014 */
5015 path->reada = 1;
f421950f
CM
5016 }
5017
179e29e4
CM
5018 ret = btrfs_lookup_file_extent(trans, root, path,
5019 objectid, start, trans != NULL);
a52d9a80
CM
5020 if (ret < 0) {
5021 err = ret;
5022 goto out;
5023 }
5024
5025 if (ret != 0) {
5026 if (path->slots[0] == 0)
5027 goto not_found;
5028 path->slots[0]--;
5029 }
5030
5f39d397
CM
5031 leaf = path->nodes[0];
5032 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5033 struct btrfs_file_extent_item);
a52d9a80 5034 /* are we inside the extent that was found? */
5f39d397
CM
5035 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5036 found_type = btrfs_key_type(&found_key);
5037 if (found_key.objectid != objectid ||
a52d9a80
CM
5038 found_type != BTRFS_EXTENT_DATA_KEY) {
5039 goto not_found;
5040 }
5041
5f39d397
CM
5042 found_type = btrfs_file_extent_type(leaf, item);
5043 extent_start = found_key.offset;
261507a0 5044 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5045 if (found_type == BTRFS_FILE_EXTENT_REG ||
5046 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5047 extent_end = extent_start +
db94535d 5048 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5049 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5050 size_t size;
5051 size = btrfs_file_extent_inline_len(leaf, item);
5052 extent_end = (extent_start + size + root->sectorsize - 1) &
5053 ~((u64)root->sectorsize - 1);
5054 }
5055
5056 if (start >= extent_end) {
5057 path->slots[0]++;
5058 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5059 ret = btrfs_next_leaf(root, path);
5060 if (ret < 0) {
5061 err = ret;
5062 goto out;
a52d9a80 5063 }
9036c102
YZ
5064 if (ret > 0)
5065 goto not_found;
5066 leaf = path->nodes[0];
a52d9a80 5067 }
9036c102
YZ
5068 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5069 if (found_key.objectid != objectid ||
5070 found_key.type != BTRFS_EXTENT_DATA_KEY)
5071 goto not_found;
5072 if (start + len <= found_key.offset)
5073 goto not_found;
5074 em->start = start;
5075 em->len = found_key.offset - start;
5076 goto not_found_em;
5077 }
5078
d899e052
YZ
5079 if (found_type == BTRFS_FILE_EXTENT_REG ||
5080 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5081 em->start = extent_start;
5082 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5083 em->orig_start = extent_start -
5084 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5085 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5086 if (bytenr == 0) {
5f39d397 5087 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5088 goto insert;
5089 }
261507a0 5090 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5091 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5092 em->compress_type = compress_type;
c8b97818
CM
5093 em->block_start = bytenr;
5094 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5095 item);
5096 } else {
5097 bytenr += btrfs_file_extent_offset(leaf, item);
5098 em->block_start = bytenr;
5099 em->block_len = em->len;
d899e052
YZ
5100 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5101 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5102 }
a52d9a80
CM
5103 goto insert;
5104 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5105 unsigned long ptr;
a52d9a80 5106 char *map;
3326d1b0
CM
5107 size_t size;
5108 size_t extent_offset;
5109 size_t copy_size;
a52d9a80 5110
689f9346 5111 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5112 if (!page || create) {
689f9346 5113 em->start = extent_start;
9036c102 5114 em->len = extent_end - extent_start;
689f9346
Y
5115 goto out;
5116 }
5f39d397 5117
9036c102
YZ
5118 size = btrfs_file_extent_inline_len(leaf, item);
5119 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5120 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5121 size - extent_offset);
3326d1b0 5122 em->start = extent_start + extent_offset;
70dec807
CM
5123 em->len = (copy_size + root->sectorsize - 1) &
5124 ~((u64)root->sectorsize - 1);
ff5b7ee3 5125 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5126 if (compress_type) {
c8b97818 5127 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5128 em->compress_type = compress_type;
5129 }
689f9346 5130 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5131 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5132 if (btrfs_file_extent_compression(leaf, item) !=
5133 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5134 ret = uncompress_inline(path, inode, page,
5135 pg_offset,
5136 extent_offset, item);
5137 BUG_ON(ret);
5138 } else {
5139 map = kmap(page);
5140 read_extent_buffer(leaf, map + pg_offset, ptr,
5141 copy_size);
93c82d57
CM
5142 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5143 memset(map + pg_offset + copy_size, 0,
5144 PAGE_CACHE_SIZE - pg_offset -
5145 copy_size);
5146 }
c8b97818
CM
5147 kunmap(page);
5148 }
179e29e4
CM
5149 flush_dcache_page(page);
5150 } else if (create && PageUptodate(page)) {
0ca1f7ce 5151 WARN_ON(1);
179e29e4
CM
5152 if (!trans) {
5153 kunmap(page);
5154 free_extent_map(em);
5155 em = NULL;
ff5714cc 5156
b3b4aa74 5157 btrfs_release_path(path);
7a7eaa40 5158 trans = btrfs_join_transaction(root);
ff5714cc 5159
3612b495
TI
5160 if (IS_ERR(trans))
5161 return ERR_CAST(trans);
179e29e4
CM
5162 goto again;
5163 }
c8b97818 5164 map = kmap(page);
70dec807 5165 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5166 copy_size);
c8b97818 5167 kunmap(page);
179e29e4 5168 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5169 }
d1310b2e 5170 set_extent_uptodate(io_tree, em->start,
507903b8 5171 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5172 goto insert;
5173 } else {
d397712b 5174 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5175 WARN_ON(1);
5176 }
5177not_found:
5178 em->start = start;
d1310b2e 5179 em->len = len;
a52d9a80 5180not_found_em:
5f39d397 5181 em->block_start = EXTENT_MAP_HOLE;
9036c102 5182 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5183insert:
b3b4aa74 5184 btrfs_release_path(path);
d1310b2e 5185 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5186 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5187 "[%llu %llu]\n", (unsigned long long)em->start,
5188 (unsigned long long)em->len,
5189 (unsigned long long)start,
5190 (unsigned long long)len);
a52d9a80
CM
5191 err = -EIO;
5192 goto out;
5193 }
d1310b2e
CM
5194
5195 err = 0;
890871be 5196 write_lock(&em_tree->lock);
a52d9a80 5197 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5198 /* it is possible that someone inserted the extent into the tree
5199 * while we had the lock dropped. It is also possible that
5200 * an overlapping map exists in the tree
5201 */
a52d9a80 5202 if (ret == -EEXIST) {
3b951516 5203 struct extent_map *existing;
e6dcd2dc
CM
5204
5205 ret = 0;
5206
3b951516 5207 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5208 if (existing && (existing->start > start ||
5209 existing->start + existing->len <= start)) {
5210 free_extent_map(existing);
5211 existing = NULL;
5212 }
3b951516
CM
5213 if (!existing) {
5214 existing = lookup_extent_mapping(em_tree, em->start,
5215 em->len);
5216 if (existing) {
5217 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5218 em, start,
5219 root->sectorsize);
3b951516
CM
5220 free_extent_map(existing);
5221 if (err) {
5222 free_extent_map(em);
5223 em = NULL;
5224 }
5225 } else {
5226 err = -EIO;
3b951516
CM
5227 free_extent_map(em);
5228 em = NULL;
5229 }
5230 } else {
5231 free_extent_map(em);
5232 em = existing;
e6dcd2dc 5233 err = 0;
a52d9a80 5234 }
a52d9a80 5235 }
890871be 5236 write_unlock(&em_tree->lock);
a52d9a80 5237out:
1abe9b8a 5238
5239 trace_btrfs_get_extent(root, em);
5240
f421950f
CM
5241 if (path)
5242 btrfs_free_path(path);
a52d9a80
CM
5243 if (trans) {
5244 ret = btrfs_end_transaction(trans, root);
d397712b 5245 if (!err)
a52d9a80
CM
5246 err = ret;
5247 }
a52d9a80
CM
5248 if (err) {
5249 free_extent_map(em);
a52d9a80
CM
5250 return ERR_PTR(err);
5251 }
5252 return em;
5253}
5254
ec29ed5b
CM
5255struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5256 size_t pg_offset, u64 start, u64 len,
5257 int create)
5258{
5259 struct extent_map *em;
5260 struct extent_map *hole_em = NULL;
5261 u64 range_start = start;
5262 u64 end;
5263 u64 found;
5264 u64 found_end;
5265 int err = 0;
5266
5267 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5268 if (IS_ERR(em))
5269 return em;
5270 if (em) {
5271 /*
5272 * if our em maps to a hole, there might
5273 * actually be delalloc bytes behind it
5274 */
5275 if (em->block_start != EXTENT_MAP_HOLE)
5276 return em;
5277 else
5278 hole_em = em;
5279 }
5280
5281 /* check to see if we've wrapped (len == -1 or similar) */
5282 end = start + len;
5283 if (end < start)
5284 end = (u64)-1;
5285 else
5286 end -= 1;
5287
5288 em = NULL;
5289
5290 /* ok, we didn't find anything, lets look for delalloc */
5291 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5292 end, len, EXTENT_DELALLOC, 1);
5293 found_end = range_start + found;
5294 if (found_end < range_start)
5295 found_end = (u64)-1;
5296
5297 /*
5298 * we didn't find anything useful, return
5299 * the original results from get_extent()
5300 */
5301 if (range_start > end || found_end <= start) {
5302 em = hole_em;
5303 hole_em = NULL;
5304 goto out;
5305 }
5306
5307 /* adjust the range_start to make sure it doesn't
5308 * go backwards from the start they passed in
5309 */
5310 range_start = max(start,range_start);
5311 found = found_end - range_start;
5312
5313 if (found > 0) {
5314 u64 hole_start = start;
5315 u64 hole_len = len;
5316
172ddd60 5317 em = alloc_extent_map();
ec29ed5b
CM
5318 if (!em) {
5319 err = -ENOMEM;
5320 goto out;
5321 }
5322 /*
5323 * when btrfs_get_extent can't find anything it
5324 * returns one huge hole
5325 *
5326 * make sure what it found really fits our range, and
5327 * adjust to make sure it is based on the start from
5328 * the caller
5329 */
5330 if (hole_em) {
5331 u64 calc_end = extent_map_end(hole_em);
5332
5333 if (calc_end <= start || (hole_em->start > end)) {
5334 free_extent_map(hole_em);
5335 hole_em = NULL;
5336 } else {
5337 hole_start = max(hole_em->start, start);
5338 hole_len = calc_end - hole_start;
5339 }
5340 }
5341 em->bdev = NULL;
5342 if (hole_em && range_start > hole_start) {
5343 /* our hole starts before our delalloc, so we
5344 * have to return just the parts of the hole
5345 * that go until the delalloc starts
5346 */
5347 em->len = min(hole_len,
5348 range_start - hole_start);
5349 em->start = hole_start;
5350 em->orig_start = hole_start;
5351 /*
5352 * don't adjust block start at all,
5353 * it is fixed at EXTENT_MAP_HOLE
5354 */
5355 em->block_start = hole_em->block_start;
5356 em->block_len = hole_len;
5357 } else {
5358 em->start = range_start;
5359 em->len = found;
5360 em->orig_start = range_start;
5361 em->block_start = EXTENT_MAP_DELALLOC;
5362 em->block_len = found;
5363 }
5364 } else if (hole_em) {
5365 return hole_em;
5366 }
5367out:
5368
5369 free_extent_map(hole_em);
5370 if (err) {
5371 free_extent_map(em);
5372 return ERR_PTR(err);
5373 }
5374 return em;
5375}
5376
4b46fce2 5377static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5378 struct extent_map *em,
4b46fce2
JB
5379 u64 start, u64 len)
5380{
5381 struct btrfs_root *root = BTRFS_I(inode)->root;
5382 struct btrfs_trans_handle *trans;
4b46fce2
JB
5383 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5384 struct btrfs_key ins;
5385 u64 alloc_hint;
5386 int ret;
16d299ac 5387 bool insert = false;
4b46fce2 5388
16d299ac
JB
5389 /*
5390 * Ok if the extent map we looked up is a hole and is for the exact
5391 * range we want, there is no reason to allocate a new one, however if
5392 * it is not right then we need to free this one and drop the cache for
5393 * our range.
5394 */
5395 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5396 em->len != len) {
5397 free_extent_map(em);
5398 em = NULL;
5399 insert = true;
5400 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5401 }
4b46fce2 5402
7a7eaa40 5403 trans = btrfs_join_transaction(root);
3612b495
TI
5404 if (IS_ERR(trans))
5405 return ERR_CAST(trans);
4b46fce2 5406
4cb5300b
CM
5407 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5408 btrfs_add_inode_defrag(trans, inode);
5409
4b46fce2
JB
5410 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5411
5412 alloc_hint = get_extent_allocation_hint(inode, start, len);
5413 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5414 alloc_hint, (u64)-1, &ins, 1);
5415 if (ret) {
5416 em = ERR_PTR(ret);
5417 goto out;
5418 }
5419
4b46fce2 5420 if (!em) {
172ddd60 5421 em = alloc_extent_map();
16d299ac
JB
5422 if (!em) {
5423 em = ERR_PTR(-ENOMEM);
5424 goto out;
5425 }
4b46fce2
JB
5426 }
5427
5428 em->start = start;
5429 em->orig_start = em->start;
5430 em->len = ins.offset;
5431
5432 em->block_start = ins.objectid;
5433 em->block_len = ins.offset;
5434 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5435
5436 /*
5437 * We need to do this because if we're using the original em we searched
5438 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5439 */
5440 em->flags = 0;
4b46fce2
JB
5441 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5442
16d299ac 5443 while (insert) {
4b46fce2
JB
5444 write_lock(&em_tree->lock);
5445 ret = add_extent_mapping(em_tree, em);
5446 write_unlock(&em_tree->lock);
5447 if (ret != -EEXIST)
5448 break;
5449 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5450 }
5451
5452 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5453 ins.offset, ins.offset, 0);
5454 if (ret) {
5455 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5456 em = ERR_PTR(ret);
5457 }
5458out:
5459 btrfs_end_transaction(trans, root);
5460 return em;
5461}
5462
46bfbb5c
CM
5463/*
5464 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5465 * block must be cow'd
5466 */
5467static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5468 struct inode *inode, u64 offset, u64 len)
5469{
5470 struct btrfs_path *path;
5471 int ret;
5472 struct extent_buffer *leaf;
5473 struct btrfs_root *root = BTRFS_I(inode)->root;
5474 struct btrfs_file_extent_item *fi;
5475 struct btrfs_key key;
5476 u64 disk_bytenr;
5477 u64 backref_offset;
5478 u64 extent_end;
5479 u64 num_bytes;
5480 int slot;
5481 int found_type;
5482
5483 path = btrfs_alloc_path();
5484 if (!path)
5485 return -ENOMEM;
5486
33345d01 5487 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5488 offset, 0);
5489 if (ret < 0)
5490 goto out;
5491
5492 slot = path->slots[0];
5493 if (ret == 1) {
5494 if (slot == 0) {
5495 /* can't find the item, must cow */
5496 ret = 0;
5497 goto out;
5498 }
5499 slot--;
5500 }
5501 ret = 0;
5502 leaf = path->nodes[0];
5503 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5504 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5505 key.type != BTRFS_EXTENT_DATA_KEY) {
5506 /* not our file or wrong item type, must cow */
5507 goto out;
5508 }
5509
5510 if (key.offset > offset) {
5511 /* Wrong offset, must cow */
5512 goto out;
5513 }
5514
5515 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5516 found_type = btrfs_file_extent_type(leaf, fi);
5517 if (found_type != BTRFS_FILE_EXTENT_REG &&
5518 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5519 /* not a regular extent, must cow */
5520 goto out;
5521 }
5522 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5523 backref_offset = btrfs_file_extent_offset(leaf, fi);
5524
5525 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5526 if (extent_end < offset + len) {
5527 /* extent doesn't include our full range, must cow */
5528 goto out;
5529 }
5530
5531 if (btrfs_extent_readonly(root, disk_bytenr))
5532 goto out;
5533
5534 /*
5535 * look for other files referencing this extent, if we
5536 * find any we must cow
5537 */
33345d01 5538 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5539 key.offset - backref_offset, disk_bytenr))
5540 goto out;
5541
5542 /*
5543 * adjust disk_bytenr and num_bytes to cover just the bytes
5544 * in this extent we are about to write. If there
5545 * are any csums in that range we have to cow in order
5546 * to keep the csums correct
5547 */
5548 disk_bytenr += backref_offset;
5549 disk_bytenr += offset - key.offset;
5550 num_bytes = min(offset + len, extent_end) - offset;
5551 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5552 goto out;
5553 /*
5554 * all of the above have passed, it is safe to overwrite this extent
5555 * without cow
5556 */
5557 ret = 1;
5558out:
5559 btrfs_free_path(path);
5560 return ret;
5561}
5562
4b46fce2
JB
5563static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5564 struct buffer_head *bh_result, int create)
5565{
5566 struct extent_map *em;
5567 struct btrfs_root *root = BTRFS_I(inode)->root;
5568 u64 start = iblock << inode->i_blkbits;
5569 u64 len = bh_result->b_size;
46bfbb5c 5570 struct btrfs_trans_handle *trans;
4b46fce2
JB
5571
5572 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5573 if (IS_ERR(em))
5574 return PTR_ERR(em);
5575
5576 /*
5577 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5578 * io. INLINE is special, and we could probably kludge it in here, but
5579 * it's still buffered so for safety lets just fall back to the generic
5580 * buffered path.
5581 *
5582 * For COMPRESSED we _have_ to read the entire extent in so we can
5583 * decompress it, so there will be buffering required no matter what we
5584 * do, so go ahead and fallback to buffered.
5585 *
5586 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5587 * to buffered IO. Don't blame me, this is the price we pay for using
5588 * the generic code.
5589 */
5590 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5591 em->block_start == EXTENT_MAP_INLINE) {
5592 free_extent_map(em);
5593 return -ENOTBLK;
5594 }
5595
5596 /* Just a good old fashioned hole, return */
5597 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5598 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5599 free_extent_map(em);
5600 /* DIO will do one hole at a time, so just unlock a sector */
5601 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5602 start + root->sectorsize - 1, GFP_NOFS);
5603 return 0;
5604 }
5605
5606 /*
5607 * We don't allocate a new extent in the following cases
5608 *
5609 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5610 * existing extent.
5611 * 2) The extent is marked as PREALLOC. We're good to go here and can
5612 * just use the extent.
5613 *
5614 */
46bfbb5c
CM
5615 if (!create) {
5616 len = em->len - (start - em->start);
4b46fce2 5617 goto map;
46bfbb5c 5618 }
4b46fce2
JB
5619
5620 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5621 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5622 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5623 int type;
5624 int ret;
46bfbb5c 5625 u64 block_start;
4b46fce2
JB
5626
5627 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5628 type = BTRFS_ORDERED_PREALLOC;
5629 else
5630 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5631 len = min(len, em->len - (start - em->start));
4b46fce2 5632 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5633
5634 /*
5635 * we're not going to log anything, but we do need
5636 * to make sure the current transaction stays open
5637 * while we look for nocow cross refs
5638 */
7a7eaa40 5639 trans = btrfs_join_transaction(root);
3612b495 5640 if (IS_ERR(trans))
46bfbb5c
CM
5641 goto must_cow;
5642
5643 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5644 ret = btrfs_add_ordered_extent_dio(inode, start,
5645 block_start, len, len, type);
5646 btrfs_end_transaction(trans, root);
5647 if (ret) {
5648 free_extent_map(em);
5649 return ret;
5650 }
5651 goto unlock;
4b46fce2 5652 }
46bfbb5c 5653 btrfs_end_transaction(trans, root);
4b46fce2 5654 }
46bfbb5c
CM
5655must_cow:
5656 /*
5657 * this will cow the extent, reset the len in case we changed
5658 * it above
5659 */
5660 len = bh_result->b_size;
16d299ac 5661 em = btrfs_new_extent_direct(inode, em, start, len);
46bfbb5c
CM
5662 if (IS_ERR(em))
5663 return PTR_ERR(em);
5664 len = min(len, em->len - (start - em->start));
5665unlock:
4845e44f
CM
5666 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5667 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5668 0, NULL, GFP_NOFS);
4b46fce2
JB
5669map:
5670 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5671 inode->i_blkbits;
46bfbb5c 5672 bh_result->b_size = len;
4b46fce2
JB
5673 bh_result->b_bdev = em->bdev;
5674 set_buffer_mapped(bh_result);
5675 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5676 set_buffer_new(bh_result);
5677
5678 free_extent_map(em);
5679
5680 return 0;
5681}
5682
5683struct btrfs_dio_private {
5684 struct inode *inode;
5685 u64 logical_offset;
5686 u64 disk_bytenr;
5687 u64 bytes;
5688 u32 *csums;
5689 void *private;
e65e1535
MX
5690
5691 /* number of bios pending for this dio */
5692 atomic_t pending_bios;
5693
5694 /* IO errors */
5695 int errors;
5696
5697 struct bio *orig_bio;
4b46fce2
JB
5698};
5699
5700static void btrfs_endio_direct_read(struct bio *bio, int err)
5701{
e65e1535 5702 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5703 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5704 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5705 struct inode *inode = dip->inode;
5706 struct btrfs_root *root = BTRFS_I(inode)->root;
5707 u64 start;
5708 u32 *private = dip->csums;
5709
5710 start = dip->logical_offset;
5711 do {
5712 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5713 struct page *page = bvec->bv_page;
5714 char *kaddr;
5715 u32 csum = ~(u32)0;
5716 unsigned long flags;
5717
5718 local_irq_save(flags);
5719 kaddr = kmap_atomic(page, KM_IRQ0);
5720 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5721 csum, bvec->bv_len);
5722 btrfs_csum_final(csum, (char *)&csum);
5723 kunmap_atomic(kaddr, KM_IRQ0);
5724 local_irq_restore(flags);
5725
5726 flush_dcache_page(bvec->bv_page);
5727 if (csum != *private) {
33345d01 5728 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 5729 " %llu csum %u private %u\n",
33345d01
LZ
5730 (unsigned long long)btrfs_ino(inode),
5731 (unsigned long long)start,
4b46fce2
JB
5732 csum, *private);
5733 err = -EIO;
5734 }
5735 }
5736
5737 start += bvec->bv_len;
5738 private++;
5739 bvec++;
5740 } while (bvec <= bvec_end);
5741
5742 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5743 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5744 bio->bi_private = dip->private;
5745
5746 kfree(dip->csums);
5747 kfree(dip);
c0da7aa1
JB
5748
5749 /* If we had a csum failure make sure to clear the uptodate flag */
5750 if (err)
5751 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5752 dio_end_io(bio, err);
5753}
5754
5755static void btrfs_endio_direct_write(struct bio *bio, int err)
5756{
5757 struct btrfs_dio_private *dip = bio->bi_private;
5758 struct inode *inode = dip->inode;
5759 struct btrfs_root *root = BTRFS_I(inode)->root;
5760 struct btrfs_trans_handle *trans;
5761 struct btrfs_ordered_extent *ordered = NULL;
5762 struct extent_state *cached_state = NULL;
163cf09c
CM
5763 u64 ordered_offset = dip->logical_offset;
5764 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5765 int ret;
5766
5767 if (err)
5768 goto out_done;
163cf09c
CM
5769again:
5770 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5771 &ordered_offset,
5772 ordered_bytes);
4b46fce2 5773 if (!ret)
163cf09c 5774 goto out_test;
4b46fce2
JB
5775
5776 BUG_ON(!ordered);
5777
7a7eaa40 5778 trans = btrfs_join_transaction(root);
3612b495 5779 if (IS_ERR(trans)) {
4b46fce2
JB
5780 err = -ENOMEM;
5781 goto out;
5782 }
5783 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5784
5785 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5786 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5787 if (!ret)
5788 ret = btrfs_update_inode(trans, root, inode);
5789 err = ret;
5790 goto out;
5791 }
5792
5793 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5794 ordered->file_offset + ordered->len - 1, 0,
5795 &cached_state, GFP_NOFS);
5796
5797 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5798 ret = btrfs_mark_extent_written(trans, inode,
5799 ordered->file_offset,
5800 ordered->file_offset +
5801 ordered->len);
5802 if (ret) {
5803 err = ret;
5804 goto out_unlock;
5805 }
5806 } else {
5807 ret = insert_reserved_file_extent(trans, inode,
5808 ordered->file_offset,
5809 ordered->start,
5810 ordered->disk_len,
5811 ordered->len,
5812 ordered->len,
5813 0, 0, 0,
5814 BTRFS_FILE_EXTENT_REG);
5815 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5816 ordered->file_offset, ordered->len);
5817 if (ret) {
5818 err = ret;
5819 WARN_ON(1);
5820 goto out_unlock;
5821 }
5822 }
5823
5824 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
1ef30be1
JB
5825 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5826 if (!ret)
5827 btrfs_update_inode(trans, root, inode);
5828 ret = 0;
4b46fce2
JB
5829out_unlock:
5830 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5831 ordered->file_offset + ordered->len - 1,
5832 &cached_state, GFP_NOFS);
5833out:
5834 btrfs_delalloc_release_metadata(inode, ordered->len);
5835 btrfs_end_transaction(trans, root);
163cf09c 5836 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5837 btrfs_put_ordered_extent(ordered);
5838 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5839
5840out_test:
5841 /*
5842 * our bio might span multiple ordered extents. If we haven't
5843 * completed the accounting for the whole dio, go back and try again
5844 */
5845 if (ordered_offset < dip->logical_offset + dip->bytes) {
5846 ordered_bytes = dip->logical_offset + dip->bytes -
5847 ordered_offset;
5848 goto again;
5849 }
4b46fce2
JB
5850out_done:
5851 bio->bi_private = dip->private;
5852
5853 kfree(dip->csums);
5854 kfree(dip);
c0da7aa1
JB
5855
5856 /* If we had an error make sure to clear the uptodate flag */
5857 if (err)
5858 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5859 dio_end_io(bio, err);
5860}
5861
eaf25d93
CM
5862static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5863 struct bio *bio, int mirror_num,
5864 unsigned long bio_flags, u64 offset)
5865{
5866 int ret;
5867 struct btrfs_root *root = BTRFS_I(inode)->root;
5868 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5869 BUG_ON(ret);
5870 return 0;
5871}
5872
e65e1535
MX
5873static void btrfs_end_dio_bio(struct bio *bio, int err)
5874{
5875 struct btrfs_dio_private *dip = bio->bi_private;
5876
5877 if (err) {
33345d01 5878 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 5879 "sector %#Lx len %u err no %d\n",
33345d01 5880 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 5881 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5882 dip->errors = 1;
5883
5884 /*
5885 * before atomic variable goto zero, we must make sure
5886 * dip->errors is perceived to be set.
5887 */
5888 smp_mb__before_atomic_dec();
5889 }
5890
5891 /* if there are more bios still pending for this dio, just exit */
5892 if (!atomic_dec_and_test(&dip->pending_bios))
5893 goto out;
5894
5895 if (dip->errors)
5896 bio_io_error(dip->orig_bio);
5897 else {
5898 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5899 bio_endio(dip->orig_bio, 0);
5900 }
5901out:
5902 bio_put(bio);
5903}
5904
5905static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5906 u64 first_sector, gfp_t gfp_flags)
5907{
5908 int nr_vecs = bio_get_nr_vecs(bdev);
5909 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5910}
5911
5912static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5913 int rw, u64 file_offset, int skip_sum,
1ae39938 5914 u32 *csums, int async_submit)
e65e1535
MX
5915{
5916 int write = rw & REQ_WRITE;
5917 struct btrfs_root *root = BTRFS_I(inode)->root;
5918 int ret;
5919
5920 bio_get(bio);
5921 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5922 if (ret)
5923 goto err;
5924
1ae39938
JB
5925 if (skip_sum)
5926 goto map;
5927
5928 if (write && async_submit) {
e65e1535
MX
5929 ret = btrfs_wq_submit_bio(root->fs_info,
5930 inode, rw, bio, 0, 0,
5931 file_offset,
5932 __btrfs_submit_bio_start_direct_io,
5933 __btrfs_submit_bio_done);
5934 goto err;
1ae39938
JB
5935 } else if (write) {
5936 /*
5937 * If we aren't doing async submit, calculate the csum of the
5938 * bio now.
5939 */
5940 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5941 if (ret)
5942 goto err;
c2db1073
TI
5943 } else if (!skip_sum) {
5944 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
e65e1535 5945 file_offset, csums);
c2db1073
TI
5946 if (ret)
5947 goto err;
5948 }
e65e1535 5949
1ae39938
JB
5950map:
5951 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
5952err:
5953 bio_put(bio);
5954 return ret;
5955}
5956
5957static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5958 int skip_sum)
5959{
5960 struct inode *inode = dip->inode;
5961 struct btrfs_root *root = BTRFS_I(inode)->root;
5962 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5963 struct bio *bio;
5964 struct bio *orig_bio = dip->orig_bio;
5965 struct bio_vec *bvec = orig_bio->bi_io_vec;
5966 u64 start_sector = orig_bio->bi_sector;
5967 u64 file_offset = dip->logical_offset;
5968 u64 submit_len = 0;
5969 u64 map_length;
5970 int nr_pages = 0;
5971 u32 *csums = dip->csums;
5972 int ret = 0;
1ae39938 5973 int async_submit = 0;
98bc3149 5974 int write = rw & REQ_WRITE;
e65e1535 5975
e65e1535
MX
5976 map_length = orig_bio->bi_size;
5977 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5978 &map_length, NULL, 0);
5979 if (ret) {
64728bbb 5980 bio_put(orig_bio);
e65e1535
MX
5981 return -EIO;
5982 }
5983
02f57c7a
JB
5984 if (map_length >= orig_bio->bi_size) {
5985 bio = orig_bio;
5986 goto submit;
5987 }
5988
1ae39938 5989 async_submit = 1;
02f57c7a
JB
5990 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5991 if (!bio)
5992 return -ENOMEM;
5993 bio->bi_private = dip;
5994 bio->bi_end_io = btrfs_end_dio_bio;
5995 atomic_inc(&dip->pending_bios);
5996
e65e1535
MX
5997 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5998 if (unlikely(map_length < submit_len + bvec->bv_len ||
5999 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6000 bvec->bv_offset) < bvec->bv_len)) {
6001 /*
6002 * inc the count before we submit the bio so
6003 * we know the end IO handler won't happen before
6004 * we inc the count. Otherwise, the dip might get freed
6005 * before we're done setting it up
6006 */
6007 atomic_inc(&dip->pending_bios);
6008 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6009 file_offset, skip_sum,
1ae39938 6010 csums, async_submit);
e65e1535
MX
6011 if (ret) {
6012 bio_put(bio);
6013 atomic_dec(&dip->pending_bios);
6014 goto out_err;
6015 }
6016
98bc3149
JB
6017 /* Write's use the ordered csums */
6018 if (!write && !skip_sum)
e65e1535
MX
6019 csums = csums + nr_pages;
6020 start_sector += submit_len >> 9;
6021 file_offset += submit_len;
6022
6023 submit_len = 0;
6024 nr_pages = 0;
6025
6026 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6027 start_sector, GFP_NOFS);
6028 if (!bio)
6029 goto out_err;
6030 bio->bi_private = dip;
6031 bio->bi_end_io = btrfs_end_dio_bio;
6032
6033 map_length = orig_bio->bi_size;
6034 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6035 &map_length, NULL, 0);
6036 if (ret) {
6037 bio_put(bio);
6038 goto out_err;
6039 }
6040 } else {
6041 submit_len += bvec->bv_len;
6042 nr_pages ++;
6043 bvec++;
6044 }
6045 }
6046
02f57c7a 6047submit:
e65e1535 6048 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
1ae39938 6049 csums, async_submit);
e65e1535
MX
6050 if (!ret)
6051 return 0;
6052
6053 bio_put(bio);
6054out_err:
6055 dip->errors = 1;
6056 /*
6057 * before atomic variable goto zero, we must
6058 * make sure dip->errors is perceived to be set.
6059 */
6060 smp_mb__before_atomic_dec();
6061 if (atomic_dec_and_test(&dip->pending_bios))
6062 bio_io_error(dip->orig_bio);
6063
6064 /* bio_end_io() will handle error, so we needn't return it */
6065 return 0;
6066}
6067
4b46fce2
JB
6068static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6069 loff_t file_offset)
6070{
6071 struct btrfs_root *root = BTRFS_I(inode)->root;
6072 struct btrfs_dio_private *dip;
6073 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6074 int skip_sum;
7b6d91da 6075 int write = rw & REQ_WRITE;
4b46fce2
JB
6076 int ret = 0;
6077
6078 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6079
6080 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6081 if (!dip) {
6082 ret = -ENOMEM;
6083 goto free_ordered;
6084 }
6085 dip->csums = NULL;
6086
98bc3149
JB
6087 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6088 if (!write && !skip_sum) {
4b46fce2
JB
6089 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6090 if (!dip->csums) {
b4966b77 6091 kfree(dip);
4b46fce2
JB
6092 ret = -ENOMEM;
6093 goto free_ordered;
6094 }
6095 }
6096
6097 dip->private = bio->bi_private;
6098 dip->inode = inode;
6099 dip->logical_offset = file_offset;
6100
4b46fce2
JB
6101 dip->bytes = 0;
6102 do {
6103 dip->bytes += bvec->bv_len;
6104 bvec++;
6105 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6106
46bfbb5c 6107 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6108 bio->bi_private = dip;
e65e1535
MX
6109 dip->errors = 0;
6110 dip->orig_bio = bio;
6111 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6112
6113 if (write)
6114 bio->bi_end_io = btrfs_endio_direct_write;
6115 else
6116 bio->bi_end_io = btrfs_endio_direct_read;
6117
e65e1535
MX
6118 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6119 if (!ret)
eaf25d93 6120 return;
4b46fce2
JB
6121free_ordered:
6122 /*
6123 * If this is a write, we need to clean up the reserved space and kill
6124 * the ordered extent.
6125 */
6126 if (write) {
6127 struct btrfs_ordered_extent *ordered;
955256f2 6128 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6129 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6130 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6131 btrfs_free_reserved_extent(root, ordered->start,
6132 ordered->disk_len);
6133 btrfs_put_ordered_extent(ordered);
6134 btrfs_put_ordered_extent(ordered);
6135 }
6136 bio_endio(bio, ret);
6137}
6138
5a5f79b5
CM
6139static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6140 const struct iovec *iov, loff_t offset,
6141 unsigned long nr_segs)
6142{
6143 int seg;
a1b75f7d 6144 int i;
5a5f79b5
CM
6145 size_t size;
6146 unsigned long addr;
6147 unsigned blocksize_mask = root->sectorsize - 1;
6148 ssize_t retval = -EINVAL;
6149 loff_t end = offset;
6150
6151 if (offset & blocksize_mask)
6152 goto out;
6153
6154 /* Check the memory alignment. Blocks cannot straddle pages */
6155 for (seg = 0; seg < nr_segs; seg++) {
6156 addr = (unsigned long)iov[seg].iov_base;
6157 size = iov[seg].iov_len;
6158 end += size;
a1b75f7d 6159 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6160 goto out;
a1b75f7d
JB
6161
6162 /* If this is a write we don't need to check anymore */
6163 if (rw & WRITE)
6164 continue;
6165
6166 /*
6167 * Check to make sure we don't have duplicate iov_base's in this
6168 * iovec, if so return EINVAL, otherwise we'll get csum errors
6169 * when reading back.
6170 */
6171 for (i = seg + 1; i < nr_segs; i++) {
6172 if (iov[seg].iov_base == iov[i].iov_base)
6173 goto out;
6174 }
5a5f79b5
CM
6175 }
6176 retval = 0;
6177out:
6178 return retval;
6179}
16432985
CM
6180static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6181 const struct iovec *iov, loff_t offset,
6182 unsigned long nr_segs)
6183{
4b46fce2
JB
6184 struct file *file = iocb->ki_filp;
6185 struct inode *inode = file->f_mapping->host;
6186 struct btrfs_ordered_extent *ordered;
4845e44f 6187 struct extent_state *cached_state = NULL;
4b46fce2
JB
6188 u64 lockstart, lockend;
6189 ssize_t ret;
4845e44f
CM
6190 int writing = rw & WRITE;
6191 int write_bits = 0;
3f7c579c 6192 size_t count = iov_length(iov, nr_segs);
4b46fce2 6193
5a5f79b5
CM
6194 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6195 offset, nr_segs)) {
6196 return 0;
6197 }
6198
4b46fce2 6199 lockstart = offset;
3f7c579c
CM
6200 lockend = offset + count - 1;
6201
6202 if (writing) {
6203 ret = btrfs_delalloc_reserve_space(inode, count);
6204 if (ret)
6205 goto out;
6206 }
4845e44f 6207
4b46fce2 6208 while (1) {
4845e44f
CM
6209 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6210 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6211 /*
6212 * We're concerned with the entire range that we're going to be
6213 * doing DIO to, so we need to make sure theres no ordered
6214 * extents in this range.
6215 */
6216 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6217 lockend - lockstart + 1);
6218 if (!ordered)
6219 break;
4845e44f
CM
6220 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6221 &cached_state, GFP_NOFS);
4b46fce2
JB
6222 btrfs_start_ordered_extent(inode, ordered, 1);
6223 btrfs_put_ordered_extent(ordered);
6224 cond_resched();
6225 }
6226
4845e44f
CM
6227 /*
6228 * we don't use btrfs_set_extent_delalloc because we don't want
6229 * the dirty or uptodate bits
6230 */
6231 if (writing) {
6232 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6233 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6234 EXTENT_DELALLOC, 0, NULL, &cached_state,
6235 GFP_NOFS);
6236 if (ret) {
6237 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6238 lockend, EXTENT_LOCKED | write_bits,
6239 1, 0, &cached_state, GFP_NOFS);
6240 goto out;
6241 }
6242 }
6243
6244 free_extent_state(cached_state);
6245 cached_state = NULL;
6246
5a5f79b5
CM
6247 ret = __blockdev_direct_IO(rw, iocb, inode,
6248 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6249 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6250 btrfs_submit_direct, 0);
4b46fce2
JB
6251
6252 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6253 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6254 offset + iov_length(iov, nr_segs) - 1,
6255 EXTENT_LOCKED | write_bits, 1, 0,
6256 &cached_state, GFP_NOFS);
4b46fce2
JB
6257 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6258 /*
6259 * We're falling back to buffered, unlock the section we didn't
6260 * do IO on.
6261 */
4845e44f
CM
6262 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6263 offset + iov_length(iov, nr_segs) - 1,
6264 EXTENT_LOCKED | write_bits, 1, 0,
6265 &cached_state, GFP_NOFS);
4b46fce2 6266 }
4845e44f
CM
6267out:
6268 free_extent_state(cached_state);
4b46fce2 6269 return ret;
16432985
CM
6270}
6271
1506fcc8
YS
6272static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6273 __u64 start, __u64 len)
6274{
ec29ed5b 6275 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6276}
6277
a52d9a80 6278int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6279{
d1310b2e
CM
6280 struct extent_io_tree *tree;
6281 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6282 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 6283}
1832a6d5 6284
a52d9a80 6285static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6286{
d1310b2e 6287 struct extent_io_tree *tree;
b888db2b
CM
6288
6289
6290 if (current->flags & PF_MEMALLOC) {
6291 redirty_page_for_writepage(wbc, page);
6292 unlock_page(page);
6293 return 0;
6294 }
d1310b2e 6295 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6296 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6297}
6298
f421950f
CM
6299int btrfs_writepages(struct address_space *mapping,
6300 struct writeback_control *wbc)
b293f02e 6301{
d1310b2e 6302 struct extent_io_tree *tree;
771ed689 6303
d1310b2e 6304 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6305 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6306}
6307
3ab2fb5a
CM
6308static int
6309btrfs_readpages(struct file *file, struct address_space *mapping,
6310 struct list_head *pages, unsigned nr_pages)
6311{
d1310b2e
CM
6312 struct extent_io_tree *tree;
6313 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6314 return extent_readpages(tree, mapping, pages, nr_pages,
6315 btrfs_get_extent);
6316}
e6dcd2dc 6317static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6318{
d1310b2e
CM
6319 struct extent_io_tree *tree;
6320 struct extent_map_tree *map;
a52d9a80 6321 int ret;
8c2383c3 6322
d1310b2e
CM
6323 tree = &BTRFS_I(page->mapping->host)->io_tree;
6324 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6325 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6326 if (ret == 1) {
6327 ClearPagePrivate(page);
6328 set_page_private(page, 0);
6329 page_cache_release(page);
39279cc3 6330 }
a52d9a80 6331 return ret;
39279cc3
CM
6332}
6333
e6dcd2dc
CM
6334static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6335{
98509cfc
CM
6336 if (PageWriteback(page) || PageDirty(page))
6337 return 0;
b335b003 6338 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6339}
6340
a52d9a80 6341static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6342{
d1310b2e 6343 struct extent_io_tree *tree;
e6dcd2dc 6344 struct btrfs_ordered_extent *ordered;
2ac55d41 6345 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6346 u64 page_start = page_offset(page);
6347 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6348
8b62b72b
CM
6349
6350 /*
6351 * we have the page locked, so new writeback can't start,
6352 * and the dirty bit won't be cleared while we are here.
6353 *
6354 * Wait for IO on this page so that we can safely clear
6355 * the PagePrivate2 bit and do ordered accounting
6356 */
e6dcd2dc 6357 wait_on_page_writeback(page);
8b62b72b 6358
d1310b2e 6359 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6360 if (offset) {
6361 btrfs_releasepage(page, GFP_NOFS);
6362 return;
6363 }
2ac55d41
JB
6364 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6365 GFP_NOFS);
e6dcd2dc
CM
6366 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6367 page_offset(page));
6368 if (ordered) {
eb84ae03
CM
6369 /*
6370 * IO on this page will never be started, so we need
6371 * to account for any ordered extents now
6372 */
e6dcd2dc
CM
6373 clear_extent_bit(tree, page_start, page_end,
6374 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6375 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6376 &cached_state, GFP_NOFS);
8b62b72b
CM
6377 /*
6378 * whoever cleared the private bit is responsible
6379 * for the finish_ordered_io
6380 */
6381 if (TestClearPagePrivate2(page)) {
6382 btrfs_finish_ordered_io(page->mapping->host,
6383 page_start, page_end);
6384 }
e6dcd2dc 6385 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6386 cached_state = NULL;
6387 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6388 GFP_NOFS);
e6dcd2dc
CM
6389 }
6390 clear_extent_bit(tree, page_start, page_end,
32c00aff 6391 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6392 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6393 __btrfs_releasepage(page, GFP_NOFS);
6394
4a096752 6395 ClearPageChecked(page);
9ad6b7bc 6396 if (PagePrivate(page)) {
9ad6b7bc
CM
6397 ClearPagePrivate(page);
6398 set_page_private(page, 0);
6399 page_cache_release(page);
6400 }
39279cc3
CM
6401}
6402
9ebefb18
CM
6403/*
6404 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6405 * called from a page fault handler when a page is first dirtied. Hence we must
6406 * be careful to check for EOF conditions here. We set the page up correctly
6407 * for a written page which means we get ENOSPC checking when writing into
6408 * holes and correct delalloc and unwritten extent mapping on filesystems that
6409 * support these features.
6410 *
6411 * We are not allowed to take the i_mutex here so we have to play games to
6412 * protect against truncate races as the page could now be beyond EOF. Because
6413 * vmtruncate() writes the inode size before removing pages, once we have the
6414 * page lock we can determine safely if the page is beyond EOF. If it is not
6415 * beyond EOF, then the page is guaranteed safe against truncation until we
6416 * unlock the page.
6417 */
c2ec175c 6418int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6419{
c2ec175c 6420 struct page *page = vmf->page;
6da6abae 6421 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6422 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6423 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6424 struct btrfs_ordered_extent *ordered;
2ac55d41 6425 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6426 char *kaddr;
6427 unsigned long zero_start;
9ebefb18 6428 loff_t size;
1832a6d5 6429 int ret;
a52d9a80 6430 u64 page_start;
e6dcd2dc 6431 u64 page_end;
9ebefb18 6432
0ca1f7ce 6433 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
6434 if (ret) {
6435 if (ret == -ENOMEM)
6436 ret = VM_FAULT_OOM;
6437 else /* -ENOSPC, -EIO, etc */
6438 ret = VM_FAULT_SIGBUS;
1832a6d5 6439 goto out;
56a76f82 6440 }
1832a6d5 6441
56a76f82 6442 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6443again:
9ebefb18 6444 lock_page(page);
9ebefb18 6445 size = i_size_read(inode);
e6dcd2dc
CM
6446 page_start = page_offset(page);
6447 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6448
9ebefb18 6449 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6450 (page_start >= size)) {
9ebefb18
CM
6451 /* page got truncated out from underneath us */
6452 goto out_unlock;
6453 }
e6dcd2dc
CM
6454 wait_on_page_writeback(page);
6455
2ac55d41
JB
6456 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6457 GFP_NOFS);
e6dcd2dc
CM
6458 set_page_extent_mapped(page);
6459
eb84ae03
CM
6460 /*
6461 * we can't set the delalloc bits if there are pending ordered
6462 * extents. Drop our locks and wait for them to finish
6463 */
e6dcd2dc
CM
6464 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6465 if (ordered) {
2ac55d41
JB
6466 unlock_extent_cached(io_tree, page_start, page_end,
6467 &cached_state, GFP_NOFS);
e6dcd2dc 6468 unlock_page(page);
eb84ae03 6469 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6470 btrfs_put_ordered_extent(ordered);
6471 goto again;
6472 }
6473
fbf19087
JB
6474 /*
6475 * XXX - page_mkwrite gets called every time the page is dirtied, even
6476 * if it was already dirty, so for space accounting reasons we need to
6477 * clear any delalloc bits for the range we are fixing to save. There
6478 * is probably a better way to do this, but for now keep consistent with
6479 * prepare_pages in the normal write path.
6480 */
2ac55d41 6481 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6482 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6483 0, 0, &cached_state, GFP_NOFS);
fbf19087 6484
2ac55d41
JB
6485 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6486 &cached_state);
9ed74f2d 6487 if (ret) {
2ac55d41
JB
6488 unlock_extent_cached(io_tree, page_start, page_end,
6489 &cached_state, GFP_NOFS);
9ed74f2d
JB
6490 ret = VM_FAULT_SIGBUS;
6491 goto out_unlock;
6492 }
e6dcd2dc 6493 ret = 0;
9ebefb18
CM
6494
6495 /* page is wholly or partially inside EOF */
a52d9a80 6496 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6497 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6498 else
e6dcd2dc 6499 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6500
e6dcd2dc
CM
6501 if (zero_start != PAGE_CACHE_SIZE) {
6502 kaddr = kmap(page);
6503 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6504 flush_dcache_page(page);
6505 kunmap(page);
6506 }
247e743c 6507 ClearPageChecked(page);
e6dcd2dc 6508 set_page_dirty(page);
50a9b214 6509 SetPageUptodate(page);
5a3f23d5 6510
257c62e1
CM
6511 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6512 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6513
2ac55d41 6514 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6515
6516out_unlock:
50a9b214
CM
6517 if (!ret)
6518 return VM_FAULT_LOCKED;
9ebefb18 6519 unlock_page(page);
0ca1f7ce 6520 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 6521out:
9ebefb18
CM
6522 return ret;
6523}
6524
a41ad394 6525static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6526{
6527 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6528 struct btrfs_block_rsv *rsv;
39279cc3 6529 int ret;
3893e33b 6530 int err = 0;
39279cc3 6531 struct btrfs_trans_handle *trans;
d3c2fdcf 6532 unsigned long nr;
dbe674a9 6533 u64 mask = root->sectorsize - 1;
39279cc3 6534
5d5e103a
JB
6535 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6536 if (ret)
a41ad394 6537 return ret;
8082510e 6538
4a096752 6539 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6540 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6541
fcb80c2a
JB
6542 /*
6543 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6544 * 3 things going on here
6545 *
6546 * 1) We need to reserve space for our orphan item and the space to
6547 * delete our orphan item. Lord knows we don't want to have a dangling
6548 * orphan item because we didn't reserve space to remove it.
6549 *
6550 * 2) We need to reserve space to update our inode.
6551 *
6552 * 3) We need to have something to cache all the space that is going to
6553 * be free'd up by the truncate operation, but also have some slack
6554 * space reserved in case it uses space during the truncate (thank you
6555 * very much snapshotting).
6556 *
6557 * And we need these to all be seperate. The fact is we can use alot of
6558 * space doing the truncate, and we have no earthly idea how much space
6559 * we will use, so we need the truncate reservation to be seperate so it
6560 * doesn't end up using space reserved for updating the inode or
6561 * removing the orphan item. We also need to be able to stop the
6562 * transaction and start a new one, which means we need to be able to
6563 * update the inode several times, and we have no idea of knowing how
6564 * many times that will be, so we can't just reserve 1 item for the
6565 * entirety of the opration, so that has to be done seperately as well.
6566 * Then there is the orphan item, which does indeed need to be held on
6567 * to for the whole operation, and we need nobody to touch this reserved
6568 * space except the orphan code.
6569 *
6570 * So that leaves us with
6571 *
6572 * 1) root->orphan_block_rsv - for the orphan deletion.
6573 * 2) rsv - for the truncate reservation, which we will steal from the
6574 * transaction reservation.
6575 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6576 * updating the inode.
6577 */
6578 rsv = btrfs_alloc_block_rsv(root);
6579 if (!rsv)
6580 return -ENOMEM;
6581 btrfs_add_durable_block_rsv(root->fs_info, rsv);
f0cd846e 6582
fcb80c2a
JB
6583 trans = btrfs_start_transaction(root, 4);
6584 if (IS_ERR(trans)) {
6585 err = PTR_ERR(trans);
6586 goto out;
6587 }
f0cd846e 6588
fcb80c2a
JB
6589 /*
6590 * Reserve space for the truncate process. Truncate should be adding
6591 * space, but if there are snapshots it may end up using space.
6592 */
6593 ret = btrfs_truncate_reserve_metadata(trans, root, rsv);
6594 BUG_ON(ret);
f0cd846e
JB
6595
6596 ret = btrfs_orphan_add(trans, inode);
6597 if (ret) {
6598 btrfs_end_transaction(trans, root);
fcb80c2a 6599 goto out;
f0cd846e
JB
6600 }
6601
6602 nr = trans->blocks_used;
6603 btrfs_end_transaction(trans, root);
6604 btrfs_btree_balance_dirty(root, nr);
6605
fcb80c2a
JB
6606 /*
6607 * Ok so we've already migrated our bytes over for the truncate, so here
6608 * just reserve the one slot we need for updating the inode.
6609 */
6610 trans = btrfs_start_transaction(root, 1);
6611 if (IS_ERR(trans)) {
6612 err = PTR_ERR(trans);
6613 goto out;
6614 }
fcb80c2a 6615 trans->block_rsv = rsv;
5a3f23d5
CM
6616
6617 /*
6618 * setattr is responsible for setting the ordered_data_close flag,
6619 * but that is only tested during the last file release. That
6620 * could happen well after the next commit, leaving a great big
6621 * window where new writes may get lost if someone chooses to write
6622 * to this file after truncating to zero
6623 *
6624 * The inode doesn't have any dirty data here, and so if we commit
6625 * this is a noop. If someone immediately starts writing to the inode
6626 * it is very likely we'll catch some of their writes in this
6627 * transaction, and the commit will find this file on the ordered
6628 * data list with good things to send down.
6629 *
6630 * This is a best effort solution, there is still a window where
6631 * using truncate to replace the contents of the file will
6632 * end up with a zero length file after a crash.
6633 */
6634 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6635 btrfs_add_ordered_operation(trans, root, inode);
6636
8082510e 6637 while (1) {
d68fc57b 6638 if (!trans) {
fcb80c2a
JB
6639 trans = btrfs_start_transaction(root, 3);
6640 if (IS_ERR(trans)) {
6641 err = PTR_ERR(trans);
6642 goto out;
6643 }
d68fc57b 6644
fcb80c2a
JB
6645 ret = btrfs_truncate_reserve_metadata(trans, root,
6646 rsv);
6647 BUG_ON(ret);
6648
fcb80c2a 6649 trans->block_rsv = rsv;
d68fc57b
YZ
6650 }
6651
8082510e
YZ
6652 ret = btrfs_truncate_inode_items(trans, root, inode,
6653 inode->i_size,
6654 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6655 if (ret != -EAGAIN) {
6656 err = ret;
8082510e 6657 break;
3893e33b 6658 }
39279cc3 6659
fcb80c2a 6660 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6661 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6662 if (ret) {
6663 err = ret;
6664 break;
6665 }
5f39d397 6666
8082510e
YZ
6667 nr = trans->blocks_used;
6668 btrfs_end_transaction(trans, root);
d68fc57b 6669 trans = NULL;
8082510e 6670 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6671 }
6672
6673 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 6674 trans->block_rsv = root->orphan_block_rsv;
8082510e 6675 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6676 if (ret)
6677 err = ret;
ded5db9d
JB
6678 } else if (ret && inode->i_nlink > 0) {
6679 /*
6680 * Failed to do the truncate, remove us from the in memory
6681 * orphan list.
6682 */
6683 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6684 }
6685
fcb80c2a 6686 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6687 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6688 if (ret && !err)
6689 err = ret;
7b128766 6690
7b128766 6691 nr = trans->blocks_used;
89ce8a63 6692 ret = btrfs_end_transaction_throttle(trans, root);
fcb80c2a
JB
6693 btrfs_btree_balance_dirty(root, nr);
6694
6695out:
6696 btrfs_free_block_rsv(root, rsv);
6697
3893e33b
JB
6698 if (ret && !err)
6699 err = ret;
a41ad394 6700
3893e33b 6701 return err;
39279cc3
CM
6702}
6703
d352ac68
CM
6704/*
6705 * create a new subvolume directory/inode (helper for the ioctl).
6706 */
d2fb3437 6707int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 6708 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 6709{
39279cc3 6710 struct inode *inode;
76dda93c 6711 int err;
00e4e6b3 6712 u64 index = 0;
39279cc3 6713
aec7477b 6714 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d82a6f1d 6715 new_dirid, S_IFDIR | 0700, &index);
54aa1f4d 6716 if (IS_ERR(inode))
f46b5a66 6717 return PTR_ERR(inode);
39279cc3
CM
6718 inode->i_op = &btrfs_dir_inode_operations;
6719 inode->i_fop = &btrfs_dir_file_operations;
6720
39279cc3 6721 inode->i_nlink = 1;
dbe674a9 6722 btrfs_i_size_write(inode, 0);
3b96362c 6723
76dda93c
YZ
6724 err = btrfs_update_inode(trans, new_root, inode);
6725 BUG_ON(err);
cb8e7090 6726
76dda93c 6727 iput(inode);
cb8e7090 6728 return 0;
39279cc3
CM
6729}
6730
39279cc3
CM
6731struct inode *btrfs_alloc_inode(struct super_block *sb)
6732{
6733 struct btrfs_inode *ei;
2ead6ae7 6734 struct inode *inode;
39279cc3
CM
6735
6736 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6737 if (!ei)
6738 return NULL;
2ead6ae7
YZ
6739
6740 ei->root = NULL;
6741 ei->space_info = NULL;
6742 ei->generation = 0;
6743 ei->sequence = 0;
15ee9bc7 6744 ei->last_trans = 0;
257c62e1 6745 ei->last_sub_trans = 0;
e02119d5 6746 ei->logged_trans = 0;
2ead6ae7
YZ
6747 ei->delalloc_bytes = 0;
6748 ei->reserved_bytes = 0;
6749 ei->disk_i_size = 0;
6750 ei->flags = 0;
6751 ei->index_cnt = (u64)-1;
6752 ei->last_unlink_trans = 0;
6753
9e0baf60
JB
6754 spin_lock_init(&ei->lock);
6755 ei->outstanding_extents = 0;
6756 ei->reserved_extents = 0;
2ead6ae7
YZ
6757
6758 ei->ordered_data_close = 0;
d68fc57b 6759 ei->orphan_meta_reserved = 0;
2ead6ae7 6760 ei->dummy_inode = 0;
4cb5300b 6761 ei->in_defrag = 0;
261507a0 6762 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 6763
16cdcec7
MX
6764 ei->delayed_node = NULL;
6765
2ead6ae7 6766 inode = &ei->vfs_inode;
a8067e02 6767 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
6768 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6769 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
2ead6ae7 6770 mutex_init(&ei->log_mutex);
e6dcd2dc 6771 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6772 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6773 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6774 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6775 RB_CLEAR_NODE(&ei->rb_node);
6776
6777 return inode;
39279cc3
CM
6778}
6779
fa0d7e3d
NP
6780static void btrfs_i_callback(struct rcu_head *head)
6781{
6782 struct inode *inode = container_of(head, struct inode, i_rcu);
6783 INIT_LIST_HEAD(&inode->i_dentry);
6784 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6785}
6786
39279cc3
CM
6787void btrfs_destroy_inode(struct inode *inode)
6788{
e6dcd2dc 6789 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6790 struct btrfs_root *root = BTRFS_I(inode)->root;
6791
39279cc3
CM
6792 WARN_ON(!list_empty(&inode->i_dentry));
6793 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
6794 WARN_ON(BTRFS_I(inode)->outstanding_extents);
6795 WARN_ON(BTRFS_I(inode)->reserved_extents);
39279cc3 6796
a6dbd429
JB
6797 /*
6798 * This can happen where we create an inode, but somebody else also
6799 * created the same inode and we need to destroy the one we already
6800 * created.
6801 */
6802 if (!root)
6803 goto free;
6804
5a3f23d5
CM
6805 /*
6806 * Make sure we're properly removed from the ordered operation
6807 * lists.
6808 */
6809 smp_mb();
6810 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6811 spin_lock(&root->fs_info->ordered_extent_lock);
6812 list_del_init(&BTRFS_I(inode)->ordered_operations);
6813 spin_unlock(&root->fs_info->ordered_extent_lock);
6814 }
6815
d68fc57b 6816 spin_lock(&root->orphan_lock);
7b128766 6817 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
33345d01
LZ
6818 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6819 (unsigned long long)btrfs_ino(inode));
8082510e 6820 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6821 }
d68fc57b 6822 spin_unlock(&root->orphan_lock);
7b128766 6823
d397712b 6824 while (1) {
e6dcd2dc
CM
6825 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6826 if (!ordered)
6827 break;
6828 else {
d397712b
CM
6829 printk(KERN_ERR "btrfs found ordered "
6830 "extent %llu %llu on inode cleanup\n",
6831 (unsigned long long)ordered->file_offset,
6832 (unsigned long long)ordered->len);
e6dcd2dc
CM
6833 btrfs_remove_ordered_extent(inode, ordered);
6834 btrfs_put_ordered_extent(ordered);
6835 btrfs_put_ordered_extent(ordered);
6836 }
6837 }
5d4f98a2 6838 inode_tree_del(inode);
5b21f2ed 6839 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6840free:
16cdcec7 6841 btrfs_remove_delayed_node(inode);
fa0d7e3d 6842 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6843}
6844
45321ac5 6845int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6846{
6847 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6848
0af3d00b 6849 if (btrfs_root_refs(&root->root_item) == 0 &&
2cf8572d 6850 !btrfs_is_free_space_inode(root, inode))
45321ac5 6851 return 1;
76dda93c 6852 else
45321ac5 6853 return generic_drop_inode(inode);
76dda93c
YZ
6854}
6855
0ee0fda0 6856static void init_once(void *foo)
39279cc3
CM
6857{
6858 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6859
6860 inode_init_once(&ei->vfs_inode);
6861}
6862
6863void btrfs_destroy_cachep(void)
6864{
6865 if (btrfs_inode_cachep)
6866 kmem_cache_destroy(btrfs_inode_cachep);
6867 if (btrfs_trans_handle_cachep)
6868 kmem_cache_destroy(btrfs_trans_handle_cachep);
6869 if (btrfs_transaction_cachep)
6870 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6871 if (btrfs_path_cachep)
6872 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6873 if (btrfs_free_space_cachep)
6874 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6875}
6876
6877int btrfs_init_cachep(void)
6878{
9601e3f6
CH
6879 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6880 sizeof(struct btrfs_inode), 0,
6881 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6882 if (!btrfs_inode_cachep)
6883 goto fail;
9601e3f6
CH
6884
6885 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6886 sizeof(struct btrfs_trans_handle), 0,
6887 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6888 if (!btrfs_trans_handle_cachep)
6889 goto fail;
9601e3f6
CH
6890
6891 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6892 sizeof(struct btrfs_transaction), 0,
6893 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6894 if (!btrfs_transaction_cachep)
6895 goto fail;
9601e3f6
CH
6896
6897 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6898 sizeof(struct btrfs_path), 0,
6899 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6900 if (!btrfs_path_cachep)
6901 goto fail;
9601e3f6 6902
dc89e982
JB
6903 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6904 sizeof(struct btrfs_free_space), 0,
6905 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6906 if (!btrfs_free_space_cachep)
6907 goto fail;
6908
39279cc3
CM
6909 return 0;
6910fail:
6911 btrfs_destroy_cachep();
6912 return -ENOMEM;
6913}
6914
6915static int btrfs_getattr(struct vfsmount *mnt,
6916 struct dentry *dentry, struct kstat *stat)
6917{
6918 struct inode *inode = dentry->d_inode;
6919 generic_fillattr(inode, stat);
0ee5dc67 6920 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 6921 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
6922 stat->blocks = (inode_get_bytes(inode) +
6923 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
6924 return 0;
6925}
6926
75e7cb7f
LB
6927/*
6928 * If a file is moved, it will inherit the cow and compression flags of the new
6929 * directory.
6930 */
6931static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6932{
6933 struct btrfs_inode *b_dir = BTRFS_I(dir);
6934 struct btrfs_inode *b_inode = BTRFS_I(inode);
6935
6936 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6937 b_inode->flags |= BTRFS_INODE_NODATACOW;
6938 else
6939 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6940
6941 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6942 b_inode->flags |= BTRFS_INODE_COMPRESS;
6943 else
6944 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6945}
6946
d397712b
CM
6947static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6948 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6949{
6950 struct btrfs_trans_handle *trans;
6951 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6952 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6953 struct inode *new_inode = new_dentry->d_inode;
6954 struct inode *old_inode = old_dentry->d_inode;
6955 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6956 u64 index = 0;
4df27c4d 6957 u64 root_objectid;
39279cc3 6958 int ret;
33345d01 6959 u64 old_ino = btrfs_ino(old_inode);
39279cc3 6960
33345d01 6961 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
6962 return -EPERM;
6963
4df27c4d 6964 /* we only allow rename subvolume link between subvolumes */
33345d01 6965 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
6966 return -EXDEV;
6967
33345d01
LZ
6968 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6969 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 6970 return -ENOTEMPTY;
5f39d397 6971
4df27c4d
YZ
6972 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6973 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6974 return -ENOTEMPTY;
5a3f23d5
CM
6975 /*
6976 * we're using rename to replace one file with another.
6977 * and the replacement file is large. Start IO on it now so
6978 * we don't add too much work to the end of the transaction
6979 */
4baf8c92 6980 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
6981 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6982 filemap_flush(old_inode->i_mapping);
6983
76dda93c 6984 /* close the racy window with snapshot create/destroy ioctl */
33345d01 6985 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 6986 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
6987 /*
6988 * We want to reserve the absolute worst case amount of items. So if
6989 * both inodes are subvols and we need to unlink them then that would
6990 * require 4 item modifications, but if they are both normal inodes it
6991 * would require 5 item modifications, so we'll assume their normal
6992 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6993 * should cover the worst case number of items we'll modify.
6994 */
6995 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
6996 if (IS_ERR(trans)) {
6997 ret = PTR_ERR(trans);
6998 goto out_notrans;
6999 }
76dda93c 7000
4df27c4d
YZ
7001 if (dest != root)
7002 btrfs_record_root_in_trans(trans, dest);
5f39d397 7003
a5719521
YZ
7004 ret = btrfs_set_inode_index(new_dir, &index);
7005 if (ret)
7006 goto out_fail;
5a3f23d5 7007
33345d01 7008 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7009 /* force full log commit if subvolume involved. */
7010 root->fs_info->last_trans_log_full_commit = trans->transid;
7011 } else {
a5719521
YZ
7012 ret = btrfs_insert_inode_ref(trans, dest,
7013 new_dentry->d_name.name,
7014 new_dentry->d_name.len,
33345d01
LZ
7015 old_ino,
7016 btrfs_ino(new_dir), index);
a5719521
YZ
7017 if (ret)
7018 goto out_fail;
4df27c4d
YZ
7019 /*
7020 * this is an ugly little race, but the rename is required
7021 * to make sure that if we crash, the inode is either at the
7022 * old name or the new one. pinning the log transaction lets
7023 * us make sure we don't allow a log commit to come in after
7024 * we unlink the name but before we add the new name back in.
7025 */
7026 btrfs_pin_log_trans(root);
7027 }
5a3f23d5
CM
7028 /*
7029 * make sure the inode gets flushed if it is replacing
7030 * something.
7031 */
33345d01 7032 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 7033 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 7034
39279cc3
CM
7035 old_dir->i_ctime = old_dir->i_mtime = ctime;
7036 new_dir->i_ctime = new_dir->i_mtime = ctime;
7037 old_inode->i_ctime = ctime;
5f39d397 7038
12fcfd22
CM
7039 if (old_dentry->d_parent != new_dentry->d_parent)
7040 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7041
33345d01 7042 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7043 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7044 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7045 old_dentry->d_name.name,
7046 old_dentry->d_name.len);
7047 } else {
92986796
AV
7048 ret = __btrfs_unlink_inode(trans, root, old_dir,
7049 old_dentry->d_inode,
7050 old_dentry->d_name.name,
7051 old_dentry->d_name.len);
7052 if (!ret)
7053 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d
YZ
7054 }
7055 BUG_ON(ret);
39279cc3
CM
7056
7057 if (new_inode) {
7058 new_inode->i_ctime = CURRENT_TIME;
33345d01 7059 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7060 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7061 root_objectid = BTRFS_I(new_inode)->location.objectid;
7062 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7063 root_objectid,
7064 new_dentry->d_name.name,
7065 new_dentry->d_name.len);
7066 BUG_ON(new_inode->i_nlink == 0);
7067 } else {
7068 ret = btrfs_unlink_inode(trans, dest, new_dir,
7069 new_dentry->d_inode,
7070 new_dentry->d_name.name,
7071 new_dentry->d_name.len);
7072 }
7073 BUG_ON(ret);
7b128766 7074 if (new_inode->i_nlink == 0) {
e02119d5 7075 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7076 BUG_ON(ret);
7b128766 7077 }
39279cc3 7078 }
aec7477b 7079
75e7cb7f
LB
7080 fixup_inode_flags(new_dir, old_inode);
7081
4df27c4d
YZ
7082 ret = btrfs_add_link(trans, new_dir, old_inode,
7083 new_dentry->d_name.name,
a5719521 7084 new_dentry->d_name.len, 0, index);
4df27c4d 7085 BUG_ON(ret);
39279cc3 7086
33345d01 7087 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 7088 struct dentry *parent = new_dentry->d_parent;
6a912213 7089 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
7090 btrfs_end_log_trans(root);
7091 }
39279cc3 7092out_fail:
ab78c84d 7093 btrfs_end_transaction_throttle(trans, root);
b44c59a8 7094out_notrans:
33345d01 7095 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7096 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7097
39279cc3
CM
7098 return ret;
7099}
7100
d352ac68
CM
7101/*
7102 * some fairly slow code that needs optimization. This walks the list
7103 * of all the inodes with pending delalloc and forces them to disk.
7104 */
24bbcf04 7105int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7106{
7107 struct list_head *head = &root->fs_info->delalloc_inodes;
7108 struct btrfs_inode *binode;
5b21f2ed 7109 struct inode *inode;
ea8c2819 7110
c146afad
YZ
7111 if (root->fs_info->sb->s_flags & MS_RDONLY)
7112 return -EROFS;
7113
75eff68e 7114 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7115 while (!list_empty(head)) {
ea8c2819
CM
7116 binode = list_entry(head->next, struct btrfs_inode,
7117 delalloc_inodes);
5b21f2ed
ZY
7118 inode = igrab(&binode->vfs_inode);
7119 if (!inode)
7120 list_del_init(&binode->delalloc_inodes);
75eff68e 7121 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7122 if (inode) {
8c8bee1d 7123 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7124 if (delay_iput)
7125 btrfs_add_delayed_iput(inode);
7126 else
7127 iput(inode);
5b21f2ed
ZY
7128 }
7129 cond_resched();
75eff68e 7130 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7131 }
75eff68e 7132 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7133
7134 /* the filemap_flush will queue IO into the worker threads, but
7135 * we have to make sure the IO is actually started and that
7136 * ordered extents get created before we return
7137 */
7138 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7139 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7140 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7141 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7142 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7143 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7144 }
7145 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7146 return 0;
7147}
7148
39279cc3
CM
7149static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7150 const char *symname)
7151{
7152 struct btrfs_trans_handle *trans;
7153 struct btrfs_root *root = BTRFS_I(dir)->root;
7154 struct btrfs_path *path;
7155 struct btrfs_key key;
1832a6d5 7156 struct inode *inode = NULL;
39279cc3
CM
7157 int err;
7158 int drop_inode = 0;
7159 u64 objectid;
00e4e6b3 7160 u64 index = 0 ;
39279cc3
CM
7161 int name_len;
7162 int datasize;
5f39d397 7163 unsigned long ptr;
39279cc3 7164 struct btrfs_file_extent_item *ei;
5f39d397 7165 struct extent_buffer *leaf;
1832a6d5 7166 unsigned long nr = 0;
39279cc3
CM
7167
7168 name_len = strlen(symname) + 1;
7169 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7170 return -ENAMETOOLONG;
1832a6d5 7171
9ed74f2d
JB
7172 /*
7173 * 2 items for inode item and ref
7174 * 2 items for dir items
7175 * 1 item for xattr if selinux is on
7176 */
a22285a6
YZ
7177 trans = btrfs_start_transaction(root, 5);
7178 if (IS_ERR(trans))
7179 return PTR_ERR(trans);
1832a6d5 7180
581bb050
LZ
7181 err = btrfs_find_free_ino(root, &objectid);
7182 if (err)
7183 goto out_unlock;
7184
aec7477b 7185 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7186 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7187 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7188 if (IS_ERR(inode)) {
7189 err = PTR_ERR(inode);
39279cc3 7190 goto out_unlock;
7cf96da3 7191 }
39279cc3 7192
2a7dba39 7193 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7194 if (err) {
7195 drop_inode = 1;
7196 goto out_unlock;
7197 }
7198
a1b075d2 7199 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7200 if (err)
7201 drop_inode = 1;
7202 else {
7203 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7204 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
7205 inode->i_fop = &btrfs_file_operations;
7206 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 7207 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7208 }
39279cc3
CM
7209 if (drop_inode)
7210 goto out_unlock;
7211
7212 path = btrfs_alloc_path();
d8926bb3
MF
7213 if (!path) {
7214 err = -ENOMEM;
7215 drop_inode = 1;
7216 goto out_unlock;
7217 }
33345d01 7218 key.objectid = btrfs_ino(inode);
39279cc3 7219 key.offset = 0;
39279cc3
CM
7220 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7221 datasize = btrfs_file_extent_calc_inline_size(name_len);
7222 err = btrfs_insert_empty_item(trans, root, path, &key,
7223 datasize);
54aa1f4d
CM
7224 if (err) {
7225 drop_inode = 1;
b0839166 7226 btrfs_free_path(path);
54aa1f4d
CM
7227 goto out_unlock;
7228 }
5f39d397
CM
7229 leaf = path->nodes[0];
7230 ei = btrfs_item_ptr(leaf, path->slots[0],
7231 struct btrfs_file_extent_item);
7232 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7233 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7234 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7235 btrfs_set_file_extent_encryption(leaf, ei, 0);
7236 btrfs_set_file_extent_compression(leaf, ei, 0);
7237 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7238 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7239
39279cc3 7240 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7241 write_extent_buffer(leaf, symname, ptr, name_len);
7242 btrfs_mark_buffer_dirty(leaf);
39279cc3 7243 btrfs_free_path(path);
5f39d397 7244
39279cc3
CM
7245 inode->i_op = &btrfs_symlink_inode_operations;
7246 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7247 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7248 inode_set_bytes(inode, name_len);
dbe674a9 7249 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7250 err = btrfs_update_inode(trans, root, inode);
7251 if (err)
7252 drop_inode = 1;
39279cc3
CM
7253
7254out_unlock:
d3c2fdcf 7255 nr = trans->blocks_used;
ab78c84d 7256 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
7257 if (drop_inode) {
7258 inode_dec_link_count(inode);
7259 iput(inode);
7260 }
d3c2fdcf 7261 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7262 return err;
7263}
16432985 7264
0af3d00b
JB
7265static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7266 u64 start, u64 num_bytes, u64 min_size,
7267 loff_t actual_len, u64 *alloc_hint,
7268 struct btrfs_trans_handle *trans)
d899e052 7269{
d899e052
YZ
7270 struct btrfs_root *root = BTRFS_I(inode)->root;
7271 struct btrfs_key ins;
d899e052 7272 u64 cur_offset = start;
55a61d1d 7273 u64 i_size;
d899e052 7274 int ret = 0;
0af3d00b 7275 bool own_trans = true;
d899e052 7276
0af3d00b
JB
7277 if (trans)
7278 own_trans = false;
d899e052 7279 while (num_bytes > 0) {
0af3d00b
JB
7280 if (own_trans) {
7281 trans = btrfs_start_transaction(root, 3);
7282 if (IS_ERR(trans)) {
7283 ret = PTR_ERR(trans);
7284 break;
7285 }
5a303d5d
YZ
7286 }
7287
efa56464
YZ
7288 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7289 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7290 if (ret) {
0af3d00b
JB
7291 if (own_trans)
7292 btrfs_end_transaction(trans, root);
a22285a6 7293 break;
d899e052 7294 }
5a303d5d 7295
d899e052
YZ
7296 ret = insert_reserved_file_extent(trans, inode,
7297 cur_offset, ins.objectid,
7298 ins.offset, ins.offset,
920bbbfb 7299 ins.offset, 0, 0, 0,
d899e052
YZ
7300 BTRFS_FILE_EXTENT_PREALLOC);
7301 BUG_ON(ret);
a1ed835e
CM
7302 btrfs_drop_extent_cache(inode, cur_offset,
7303 cur_offset + ins.offset -1, 0);
5a303d5d 7304
d899e052
YZ
7305 num_bytes -= ins.offset;
7306 cur_offset += ins.offset;
efa56464 7307 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7308
d899e052 7309 inode->i_ctime = CURRENT_TIME;
6cbff00f 7310 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7311 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7312 (actual_len > inode->i_size) &&
7313 (cur_offset > inode->i_size)) {
d1ea6a61 7314 if (cur_offset > actual_len)
55a61d1d 7315 i_size = actual_len;
d1ea6a61 7316 else
55a61d1d
JB
7317 i_size = cur_offset;
7318 i_size_write(inode, i_size);
7319 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7320 }
7321
d899e052
YZ
7322 ret = btrfs_update_inode(trans, root, inode);
7323 BUG_ON(ret);
d899e052 7324
0af3d00b
JB
7325 if (own_trans)
7326 btrfs_end_transaction(trans, root);
5a303d5d 7327 }
d899e052
YZ
7328 return ret;
7329}
7330
0af3d00b
JB
7331int btrfs_prealloc_file_range(struct inode *inode, int mode,
7332 u64 start, u64 num_bytes, u64 min_size,
7333 loff_t actual_len, u64 *alloc_hint)
7334{
7335 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7336 min_size, actual_len, alloc_hint,
7337 NULL);
7338}
7339
7340int btrfs_prealloc_file_range_trans(struct inode *inode,
7341 struct btrfs_trans_handle *trans, int mode,
7342 u64 start, u64 num_bytes, u64 min_size,
7343 loff_t actual_len, u64 *alloc_hint)
7344{
7345 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7346 min_size, actual_len, alloc_hint, trans);
7347}
7348
e6dcd2dc
CM
7349static int btrfs_set_page_dirty(struct page *page)
7350{
e6dcd2dc
CM
7351 return __set_page_dirty_nobuffers(page);
7352}
7353
10556cb2 7354static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 7355{
b83cc969
LZ
7356 struct btrfs_root *root = BTRFS_I(inode)->root;
7357
7358 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7359 return -EROFS;
6cbff00f 7360 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 7361 return -EACCES;
2830ba7f 7362 return generic_permission(inode, mask);
fdebe2bd 7363}
39279cc3 7364
6e1d5dcc 7365static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7366 .getattr = btrfs_getattr,
39279cc3
CM
7367 .lookup = btrfs_lookup,
7368 .create = btrfs_create,
7369 .unlink = btrfs_unlink,
7370 .link = btrfs_link,
7371 .mkdir = btrfs_mkdir,
7372 .rmdir = btrfs_rmdir,
7373 .rename = btrfs_rename,
7374 .symlink = btrfs_symlink,
7375 .setattr = btrfs_setattr,
618e21d5 7376 .mknod = btrfs_mknod,
95819c05
CH
7377 .setxattr = btrfs_setxattr,
7378 .getxattr = btrfs_getxattr,
5103e947 7379 .listxattr = btrfs_listxattr,
95819c05 7380 .removexattr = btrfs_removexattr,
fdebe2bd 7381 .permission = btrfs_permission,
4e34e719 7382 .get_acl = btrfs_get_acl,
39279cc3 7383};
6e1d5dcc 7384static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7385 .lookup = btrfs_lookup,
fdebe2bd 7386 .permission = btrfs_permission,
4e34e719 7387 .get_acl = btrfs_get_acl,
39279cc3 7388};
76dda93c 7389
828c0950 7390static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7391 .llseek = generic_file_llseek,
7392 .read = generic_read_dir,
cbdf5a24 7393 .readdir = btrfs_real_readdir,
34287aa3 7394 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7395#ifdef CONFIG_COMPAT
34287aa3 7396 .compat_ioctl = btrfs_ioctl,
39279cc3 7397#endif
6bf13c0c 7398 .release = btrfs_release_file,
e02119d5 7399 .fsync = btrfs_sync_file,
39279cc3
CM
7400};
7401
d1310b2e 7402static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7403 .fill_delalloc = run_delalloc_range,
065631f6 7404 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7405 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7406 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7407 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7408 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 7409 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
7410 .set_bit_hook = btrfs_set_bit_hook,
7411 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7412 .merge_extent_hook = btrfs_merge_extent_hook,
7413 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7414};
7415
35054394
CM
7416/*
7417 * btrfs doesn't support the bmap operation because swapfiles
7418 * use bmap to make a mapping of extents in the file. They assume
7419 * these extents won't change over the life of the file and they
7420 * use the bmap result to do IO directly to the drive.
7421 *
7422 * the btrfs bmap call would return logical addresses that aren't
7423 * suitable for IO and they also will change frequently as COW
7424 * operations happen. So, swapfile + btrfs == corruption.
7425 *
7426 * For now we're avoiding this by dropping bmap.
7427 */
7f09410b 7428static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7429 .readpage = btrfs_readpage,
7430 .writepage = btrfs_writepage,
b293f02e 7431 .writepages = btrfs_writepages,
3ab2fb5a 7432 .readpages = btrfs_readpages,
16432985 7433 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7434 .invalidatepage = btrfs_invalidatepage,
7435 .releasepage = btrfs_releasepage,
e6dcd2dc 7436 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7437 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7438};
7439
7f09410b 7440static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7441 .readpage = btrfs_readpage,
7442 .writepage = btrfs_writepage,
2bf5a725
CM
7443 .invalidatepage = btrfs_invalidatepage,
7444 .releasepage = btrfs_releasepage,
39279cc3
CM
7445};
7446
6e1d5dcc 7447static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7448 .getattr = btrfs_getattr,
7449 .setattr = btrfs_setattr,
95819c05
CH
7450 .setxattr = btrfs_setxattr,
7451 .getxattr = btrfs_getxattr,
5103e947 7452 .listxattr = btrfs_listxattr,
95819c05 7453 .removexattr = btrfs_removexattr,
fdebe2bd 7454 .permission = btrfs_permission,
1506fcc8 7455 .fiemap = btrfs_fiemap,
4e34e719 7456 .get_acl = btrfs_get_acl,
39279cc3 7457};
6e1d5dcc 7458static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7459 .getattr = btrfs_getattr,
7460 .setattr = btrfs_setattr,
fdebe2bd 7461 .permission = btrfs_permission,
95819c05
CH
7462 .setxattr = btrfs_setxattr,
7463 .getxattr = btrfs_getxattr,
33268eaf 7464 .listxattr = btrfs_listxattr,
95819c05 7465 .removexattr = btrfs_removexattr,
4e34e719 7466 .get_acl = btrfs_get_acl,
618e21d5 7467};
6e1d5dcc 7468static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7469 .readlink = generic_readlink,
7470 .follow_link = page_follow_link_light,
7471 .put_link = page_put_link,
f209561a 7472 .getattr = btrfs_getattr,
fdebe2bd 7473 .permission = btrfs_permission,
0279b4cd
JO
7474 .setxattr = btrfs_setxattr,
7475 .getxattr = btrfs_getxattr,
7476 .listxattr = btrfs_listxattr,
7477 .removexattr = btrfs_removexattr,
4e34e719 7478 .get_acl = btrfs_get_acl,
39279cc3 7479};
76dda93c 7480
82d339d9 7481const struct dentry_operations btrfs_dentry_operations = {
76dda93c 7482 .d_delete = btrfs_dentry_delete,
b4aff1f8 7483 .d_release = btrfs_dentry_release,
76dda93c 7484};